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The exotic nature of many strongly correlated materials at reasonably high temperatures—for instance,
cuprate superconductors in their normal state—has led to the suggestion that such behavior occurs within a
quantum-critical region where the physics is controlled by the influence of a phase transition down at zero
temperature. Such a scenario can be thought of as a bottom-up approach, with the zero-temperature mecha-
nisms finding a way to manifest critical behavior at high temperatures. Here we propose an alternative,
top-down, mechanism by which strong kinematic constraints that can only be broken at extremely high
temperatures are responsible for critical behavior at intermediate but still high temperatures. This critical
behavior may extend all the way down to zero temperature, but this outcome is not one of necessity, and the
system may order at low temperatures. We provide explicit examples of such high-temperature criticality when
additional strong interactions are introduced in quantum Heisenberg, transverse-field Ising, and some bosonic
lattice models.
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I. INTRODUCTION

Strongly correlated systems display very rich phase dia-
grams upon varying thermodynamic parameters such as tem-
perature, pressure, doping concentration, magnetic field, and
so on.1 At sufficiently low temperatures, distinct phases of
matter appear that are characterized by �sometimes coexist-
ing� long-range order of, say, the magnetic, charge, orbital,
or superconducting type. When transitions between different
zero-temperature quantum phases are continuous, fluctua-
tions occur at all length scales and lead to power-law behav-
ior for correlation functions of the order parameter at the
critical coupling. Tuning the temperature slightly away from
zero decreases the strength of the order parameter fluctua-
tions but as long as they remain sufficiently strong they lead
to scaling laws that are insensitive to the microscopic details
and, to a large degree, universality has emerged.

The temperature range for which scaling laws apply is a
measure of how strong fluctuations are. In strongly corre-
lated systems such as organic materials, high-Tc supercon-
ductors, etc., these scaling laws extend to surprisingly high
temperatures above the critical temperature. This fact is at-
tributed to the presence of very strong one- or two-
dimensional fluctuations of the order parameter that are pre-
dominantly quantum at sufficiently short length scales. How
large the temperature is at which quantum fluctuations are
effectively observed is a matter of intense debate.2 For ex-
ample, it has been proposed that many exotic properties in
the so-called pseudogap regime of high-Tc superconductors
originate in a hidden quantum critical point.3–5 In this sce-
nario, increasing the doping concentration induces at zero
temperature a continuous phase transition between two dif-
ferent states of matter below the superconducting dome,
which is reflected in the strange metallic properties of the
normal state above the superconducting dome.

In this paper, we present an alternative picture where the
critical behavior in some strongly interacting systems is

present at high temperatures due to strong kinematic con-
straints in the quantum Hamiltonian. The system remains
critical as long as the constraints are respected—i.e., below
some large energy scale corresponding to the largest cou-
pling in the Hamiltonian. This critical phase becomes the
physically important, universal feature from which a scaling
regime can descend. The zero-temperature physics is instead
system specific, with a rich variety of different ordered
phases, and may or may not allow for the finite-temperature
criticality to survive all the way to zero temperature. We also
discuss how this picture brings about four distinct scenarios
for the finite-temperature behavior of the system, depending
on the type of interactions present in the quantum Hamil-
tonian. In particular, we show how one scenario naturally
leads to a quantum system exhibiting an exotic correlation
length that increases with increasing temperature over a wide
range of temperatures.

The making of a system displaying high-temperature criti-
cality is as follows.

�1� At least one characteristic energy scale in the quantum
Hamiltonian—say, U—is much larger than all others. Thus,
U splits the Hilbert space in sectors separated by large en-
ergy gaps. In particular, the infinite-U limit projects the Hil-
bert space onto the space H0,U of allowed states.

�2� The quantum dynamics is generated by terms that do
not commute with the U term in the quantum Hamiltonian.
However, one needs a process of order n�2 in the perturba-
tive expansion in the characteristic energy scale of these
terms, �, to generate an effective quantum coupling between
allowed states. Hence, this effective quantum coupling
�eff���� /U�n−1 can be very small, ��eff�� ���.

�3� By squashing down the effective quantum coupling
�eff, one opens a hierarchy of temperature scales, which we
discuss in detail in the paper. In particular, already at reason-
ably low temperatures �above the small ��eff��, the effective
quantum term can be neglected in the calculation of equilib-
rium thermodynamic quantities.
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�4� Although the equilibrium thermodynamics for
T� ��eff� is classical, the dynamics is still quantum. The rea-
son is the following. If the system were to rely on thermally
activated processes to move within the restricted Hilbert
space H0,U, the characteristic time scale would be, for a
small system-bath coupling ��0, �T=�−1 exp�U /T�, which
is astronomical for temperatures well below the large energy
scale U. There are also virtual processes due to system-bath
coupling that bypass thermal activation, but whose effective
coupling is suppressed, �eff���� /U�n−1��, much alike the
intrinsic terms that do not commute with the U term.
The waiting time for a quantum tunneling event is
�Q=min���eff

−1� ,�eff
−1�, which depends only algebraically on U.

Since �� ��� �the bath coupling should be the weakest term
in order not to perturb the energy levels of the system�, the
intrinsic quantum dynamics provides the smallest dynamical
time scale. Hence, a phantom of quantum mechanics in the
form of sporadic tunneling events between which coherence
is lost provides the fastest mechanism for the system to reach
classical thermodynamic equilibrium when ��eff��T�U.

�5� The strong constraint on the allowed states imposed by
taking the limit U→	 first makes the system critical in the
constrained entropic limit T→	 with all the remaining char-
acteristic energy scales held fixed. We call such a critical
point a constrained entropic critical point. The system’s
properties at low temperatures compared to U are controlled
by the close proximity to this purely constrained entropic
critical point. Ice, coloring, and dimer models provide ex-
amples of constrained entropic critical points in systems with
hard constraints.

�6� Finally, if there are other terms in the Hamiltonian
with characteristic energy scale g, �g��U, but that commute
with the U term, there can be different phases and transitions
among them when T / �g� is O�1�. When U�T� �g�, the phys-
ics is controlled by the proximity to the constrained entropic
critical point. Even though the constrained entropic critical
point may be unstable, the nearby renormalization group
�RG� trajectories feel its presence until the RG scale T�U is
reached, beyond which the constraint becomes immaterial.
The featureless unconstrained �stable� fixed point takes over
at that stage.

The phase diagram in Fig. 1 exemplifies the high-
temperature critical behavior arising from kinematic con-
straints that we highlight in this paper. It shows a large
region—the constrained entropic critical regime—standing
in between two ordered phases. The constrained entropic
critical region exists because of the strong constraints im-
posed by the large energy scale U in the problem, and it
covers a high-temperature range that ends at the extreme
limit of temperatures of order U, where the system becomes
featureless in that it is controlled by its proximity to the
unconstrained entropic fixed point �paramagnetic phase�. The
ordered phases to the left or right of the constrained entropic
critical regime have a classical origin in Fig. 1, since there
the second largest energy scale �g� is associated with an op-
erator that commutes with the constraint. If we fix �eff and
vary g, as in Fig. 1, the high-temperature constrained en-
tropic critical region sits on top of a quantum phase with
radius of the order of ��eff� around the origin T=g=0. Quan-
tum criticality may exist only within this small region.

We illustrate this constraint-based critical behavior at high
temperatures using simple case studies, a constrained quan-
tum Heisenberg model and a constrained Ising model in a
transverse field both on the honeycomb lattice, and a con-
strained bosonic model on the square lattice that leads to the
quantum dimer model at low energies. The single-band Hub-
bard model, where a large on-site repulsive term U is the
dominant energy scale, fails to fulfill condition �5�, and cor-
relations decay exponentially fast with separation beyond a
characteristic length scale of the order of the lattice spacing.
However, this situation may change if one considers ex-
tended Hubbard models with large nearest-neighbor coupling
V, next-nearest-neighbor coupling V�, etc., at commensurate
fillings. We shall comment on this situation in the Conclu-
sions and discuss, for instance, the possible connection be-
tween the ideas of constrained entropic criticality and those
of fluctuating stripes.5 In addition, power-law behavior at
high temperatures was also shown to occur in the context of
locally fluctuating bond currents in d-density-wave states by
Chakravarty in Ref. 6, who also recognized the importance
of the constraints in determining the long-distance correla-
tions in the system.

The plan of the paper is as follows. Four examples of
constrained quantum models are introduced in Sec. II. The

FIG. 1. �Color online� Generic phase diagram for a strongly
constrained quantum system that satisfies conditions �1�–�6� in Sec.
I. The parameter space encodes the competition between two energy
scales, the temperature T, and a characteristic energy scale g that
selects a classical ordered phase, while �eff and U are held fixed. A
quantum-critical scaling regime, if it exists, is restricted to a region
represented by the upper half of a disk of radius ���eff� and cen-
tered at the origin �g ,T�= �0,0� of parameter space. The focus of
this paper is on the constrained entropic scaling regime at tempera-
tures intermediate between the small characteristic quantum energy
scale �eff and the large characteristic energy scale U set by a strong
constraint. At a fixed temperature, the constrained entropic scaling
regime terminates in a phase transition that needs not be continuous
upon increasing �g�. At fixed g, the constrained entropic scaling
regime crosses over to the conventional high-temperature phase—
say, a paramagnetic one for spin degrees of freedom—when T is of
the order of U. The transition from the constrained entropic scaling
regime to the quantum regime upon lowering T at fixed g is system
specific.
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regimes of temperature that are of relevance to this paper are
presented in Sec. III. The constrained entropic scaling regime
is described in Sec. IV. Realizations of constrained entropic
scaling regimes for quantum XXZ Heisenberg and
transverse-field Ising models, on the one hand, and lattice
bosonic models, on the other hand, can be found in Secs. V
and VI, respectively. In Sec. VII we discuss the regime when
the quantum scale ��eff� is the largest scale below U—i.e.,
�g�� ��eff��U—and we conclude in Sec. VIII.

II. FOUR EXAMPLES OF CONSTRAINED QUANTUM
MODELS

Constrained quantum-mechanical systems are described
by Hamiltonians of the generic form

Ĥ = Ĥg,� + ĤU, �2.1a�

Ĥg,� = Ĥg + Ĥ�, �2.1b�

where it is assumed that ĤU can be diagonalized in some

preferred basis B that spans the Hilbert space H on which Ĥ

is defined, Ĥg commutes with ĤU,

�Ĥg,ĤU� = 0, �2.1c�

Ĥ� does not commute with HU,

�Ĥ�,ĤU� � 0, �2.1d�

and the characteristic energy scale U of ĤU is much larger

than the characteristic energy scales g and � of Ĥg and Ĥ�,
respectively,

�g�, ��� � U . �2.1e�

A famous example of a constrained many-body Hamil-
tonian is the single-band Hubbard model7

Ĥ ª − 
�
i

�
�=↑,↓

ĉi�
† ĉi� �2.2a�

− t�
�ij	

�
�=↑,↓

�ĉi�
† ĉj� + ĉj�

† ĉi�� �2.2b�

+ U�
i



�=↑,↓

�ĉi�
† ĉi�� , �2.2c�

which acts on the fermionic Fock space generated by the
creation ĉi�

† and annihilation ĉi� operators for electrons car-
rying the site index i and the spin index �. The preferred
basis B is the basis specified by all local fermionic occupa-
tion numbers ĉi�

† ĉi� where i runs over all lattice sites and �
over the spin up or down. In this preferred basis, the chemi-
cal potential �2.2a� and the potential energy �2.2c� are diag-
onal whereas the kinetic energy �2.2b� is not. The chemical
potential 
 thus plays the role of g while the hopping ampli-
tude t plays the role of �.

A second example is the constrained XXZ quantum spin-
1 /2 magnet defined on the two-dimensional honeycomb lat-
tice by the Hamiltonian8,9

Ĥ ª − J�
�ij	

�̂i
z�̂ j

z − �
i=1

N

�h + �− 1�ihs��̂i
z �2.3a�

− ��
�ij	

��̂i
x�̂ j

x + �̂i
y�̂ j

y� �2.3b�

+ U�̋ �1 − cos�2� �
i�˝

�̂i
z/3
� , �2.3c�

where the sum over the symbol ˝ is to be understood as a
summation over all elementary hexagons making up the hon-
eycomb lattice and the three 2
2 Pauli matrices are denoted
by �̂x, �̂y, �̂z, respectively. The preferred basis B is the basis
specified by all the eigenstates with eigenvalues �i

z of �̂i
z,

where i runs over all N sites of the honeycomb lattice. In this
preferred basis the potential energy �2.3c� and the longitudi-
nal one- and two-body interactions �2.3a� are diagonal
whereas the transverse two-body interaction �2.3b� is not.
The exchange coupling J, the uniform magnetic field h, and
the staggered magnetic field hs thus play the role of three
different diagonal couplings g.

A third example is the constrained quantum Ising model
in a transverse field,9,10

Ĥ ª − J�
�ij	

�̂i
z�̂ j

z − �
i=1

N

�h + �− 1�ihs��̂i
z �2.4a�

− ��
i=1

N

�̂i
x �2.4b�

+ U�̋ �1 − cos�2� �
i�˝

�̂i
z/3
� , �2.4c�

which shares with the spin-1 /2 quantum Hamiltonian �2.3�
the same preferred basis. In this preferred basis, the potential
energy �2.4c� and the one- and two-body interactions �2.4a�
are diagonal whereas the one-body transverse field �2.4b� is
not. The exchange coupling J, the uniform magnetic field h,
and the staggered magnetic field hs thus play again the role
of three different couplings g.

Our last example is the quantum Hamiltonian

Ĥ ª v�
i=1

N

��b̂i,i+x
† b̂i,i+x��b̂i+y,i+y+x

† b̂i+y,i+y+x� + x ↔ y� �2.5a�

− t�
i=1

N

�b̂i,i+x
† �b̂i,i+y + b̂i+x,i+x+y + b̂i−y,i + b̂i+x−y,i+x� + H.c.�

�2.5b�

+ U�
i=1

N

�1 − �
e=x,y

�b̂i−e,i
† b̂i−e,i + b̂i,i+e

† b̂i,i+e��2
, �2.5c�

which acts on the bosonic Fock space generated by the

bosonic creation b̂i,i+e
† and annihilation b̂i,i+e operators de-

fined on the midpoints of the nearest-neighbor links of the
square lattice. The preferred basis B is the basis specified by
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all the local bosonic occupation numbers—i.e., the eigenval-
ues ni,i+e of

n̂i,i+e ª b̂i,i+e
† b̂i,i+e �2.6�

for all 2N links i , i+e where i runs over the N sites of the
square lattice and e over its two generating vectors x and y.
In this preferred basis the potential energy �2.5c� and the
four-body interaction �2.5a� are diagonal whereas the kinetic
energy �2.5b� is not. The coupling v thus plays the role of g
while the coupling t plays the role of �.

By assumption, the contribution ĤU encodes the largest
characteristic energy scale U in the problem. As long as all
other energy scales are much smaller than U, the low-energy

physics is captured by an effective Hamiltonian Ĥeff that is
defined on the Hilbert space restricted to the lowest-energy

eigenstates of ĤU. Ĥeff can be systematically deduced from Ĥ

by treating all the contributions Ĥ� to Ĥg,� that do not com-

mute with ĤU within perturbation theory. This effective
model is particularly interesting whenever the ground-state

manifold H0,U of ĤU is extensively degenerate, as is the case
for all examples �2.2�–�2.5�. Within degenerate perturbation

theory, Ĥeff is given by

Ĥeff = Ĥg − �effĤ�/U
�n� , �2.7a�

with

�eff �
�n

Un−1 �2.7b�

and Ĥ�/U
�n� of order zero in � /U, whereby it is understood that

Ĥeff acts only on the subspace H0,U of the unconstrained
Hilbert space with basis B. The order n and the form taken

by Ĥ�/U
�n� in Eq. �2.7a� are model dependent.

For the Hubbard model �2.2�, n=1 and11–13

Ĥeff = − 
�
i

�
�=↑,↓

ĉi�
† ĉi� − t��

�ij	
�

�=↑,↓
�ĉi�

† ĉj� + ĉj�
† ĉi��

+
4t

U
�
�ij	

�Ŝi · Ŝ j −
1

4
n̂in̂j
 + ¯ � �2.8�

acts on the subspace H0,U of the fermionic Fock space with
no more than one electron per site. Here, we have introduced

the fermionic bilinears Ŝiª ĉi�
† ����

2 ĉi�� and n̂iª ĉi�
† ĉi� �sum-

mation over repeated spin indices is implied�. Notice that, at
half-filling, all contributions to first order in t vanish so that
�eff becomes second order in t �n=2�.

For the constrained XXZ quantum spin-1 /2 magnet on the
honeycomb lattice �2.3�, n=3 in Eqs. �2.7� whereby the con-
strained Hilbert space is the subspace H0,U defined by all
states of the form ��1

z , . . . ,�N
z 	 such that the magnetization of

each elementary hexagonal plaquette is some integer mul-
tiple of 3—i.e.,

�
i�˝

�i
z/3 � Z . �2.9�

For the constrained quantum Ising model in a transverse field
on the honeycomb lattice �2.4�, n=6, and the constrained
Hilbert space is the same as in example �2.3�.

At last, n=2 for the bosonic Hamiltonian �2.5� whereby
the constrained Hilbert space is the subspace H0,U spanned
by all states of the form � . . . ,n�ij	 , . . . 	, where �ij	 runs over
all 2N links of the square lattice made of N sites and the
boson occupation numbers are restricted to

1 = �
e=x,y

�ni−e,i + ni,i+e� �2.10�

for all N sites i. This condition is satisfied if n�ij	=0,1 and
only one link out of the four connected to each vertex is
occupied by a boson. This constrained system is equivalent
to a square lattice quantum dimer model.

The last three models will be studied in detail in Secs. V
and VI, which the reader is referred to for an example-based
approach. In Secs. III and IV we now discuss the possible
topologies of the phase diagram when a strongly constrained
quantum system possesses a constrained critical regime at
intermediary temperatures.

III. COMPETING CHARACTERISTIC ENERGY SCALES

From the generic form taken by the low-energy Hamil-
tonian �2.7� acting on the ground-state manifold H0,U and
from the assumption that �g� , ����U, we deduce the exis-
tence of at least three regimes of temperatures provided any
one of the hierarchies of energy scales

T � ��eff�, �g� � U , �3.1a�

��eff�, �g� � T � U , �3.1b�

��eff�, �g� � U � T �3.1c�

holds. In addition to these three temperature regimes,
strongly constrained systems described by the low-energy
Hamiltonian �2.7� can exhibit a fourth regime if �g� is much
larger than all effective off-diagonal couplings. This is the
case, for example, when �g�� ��� and the off-diagonal terms

in Ĥ� do not contribute to first order in �—i.e., n�1 in Eq.
�2.7b�. If so, ��eff� is guaranteed to be much smaller than g
and the temperature regime �3.1a� can be further subdivided
into two distinct ones, for a total of four regimes

T � ��eff� � �g� � U , �3.2a�

��eff� � T � �g� � U , �3.2b�

��eff� � �g� � T � U , �3.2c�

��eff� � �g� � U � T . �3.2d�

For simplicity, we shall consider only two limiting cases
that encode the competition between the classical energy

CASTELNOVO et al. PHYSICAL REVIEW B 73, 144411 �2006�

144411-4



scale g and the quantum energy scale �eff in this paper. The
first occurs when �g�� ��eff� in the temperature regime �3.2c�.
The second occurs when �g�� ��eff� in the temperature regime
�3.1b�. Both situations can be realized in examples
�2.3�–�2.5�. In particular, the case of a quantum energy scale
dominating over the classical one is of relevance to the Hub-
bard model close to half-filling, to quantum XXZ Heisenberg
magnets with strong XY exchange anisotropy, to Ising mag-
nets subjected to strong transverse magnetic fields, or to con-
strained bosons whose kinetic energy dominates over their
interactions. We postpone the discussion of the second case
to Sec. VII, while we consider here the case �g�� ��eff�.

The quantum world at T=0 is governed by a delicate
competition between the diagonal and off-diagonal energy
scales. As these characteristic energy scales are varied, quan-
tum phase transitions can take place between different states
of matter that usually support long-range order. Universality
emerges at fine-tuned quantum critical points where the tran-
sitions between different states of matter are continuous. The
signature of a quantum critical point can manifest itself as a
scaling regime as long as temperatures are not too large—
say, when Eq. �3.2a� holds.

Upon increasing the temperature from T=0, one leaves
the quantum regime �3.2a� once T becomes larger than the
quantum coupling ��eff� in the restricted Hilbert space. Be-
yond the quantum regime one distinguishes the three regimes
�3.2b�, �3.2c�, and �3.2d�. If the temperature is much smaller
than �g�, the thermal fluctuations are dominated by the clas-
sical energy scale g. If the temperature is raised to values
that are much larger than �g� but that remain much smaller
than the characteristic constraint energy U, then the thermal
fluctuations are predominantly entropic in character, with the
entropy of the classical constrained phase space isomorphic
to the preferred basis B0,U that spans the ground-state mani-
fold H0,U of ĤU. Finally, once the temperature becomes the
largest energy scale in the problem, the thermal fluctuations
are still entropic in character, but now with the entropy of the
classical unconstrained phase space isomorphic to the basis
B of Ĥ. The transitions between these regimes can take place
through phase transitions or through crossovers.

The two entropic regimes �3.2c� and �3.2d� do not always
need to be qualitatively different. This is the case for the
Hubbard model for which all connected spatial correlation
functions between the local electronic densities n̂i�= ĉi�

† ĉi� in
the entropic regime �3.2c� decay in a qualitatively similar
way as in the entropic regime �3.2d�—i.e., exponentially fast
with separation beyond a characteristic length scale of the
order of the lattice spacing. The situation may change if one
considers extended Hubbard models with nearest-neighbor
coupling V, next-nearest-neighbor coupling V�, etc., at com-
mensurate fillings. We shall comment on this situation in the
Conclusions. In the examples �2.3�–�2.5�, we shall show be-
low that the two entropic regimes �3.2c� and �3.2d� are quali-
tatively different as measured by the temperature dependence
and order of magnitude of the correlation length characteriz-
ing the onset of exponential decay in spatial correlation func-
tions.

IV. CONSTRAINED ENTROPIC SCALING REGIME

In this section we shall study the generic features of the
constrained entropic regime �3.2c� for Hamiltonians of the

type �2.3�–�2.5�. All the assumptions and different cases con-
sidered here will be supported with explicit examples in
Secs. V and VI. The reader who may be unfamiliar with the
physics of constrained models is referred to those two sec-
tions for an example-based approach.

Since quantum dynamics is of no qualitative relevance in
the regime �3.2c�, we shall always assume that ��eff� /T→0
while keeping the ratios �g� /T�1 and T /U�1 fixed. Were it
not for the presence of the constraint in the regime �3.2c�, set
by the large energy scale U�T, the condition T� �g� would
place the system deep into a massive phase; i.e., correlation
functions would decay exponentially in space with a charac-
teristic decay length, the correlation length, of the order of
the lattice spacing a. We are going to argue that, in the ex-
amples �2.3�–�2.5�, the constraining energy scale U induces a
correlation length much larger than the lattice spacing and
possibly increasing with temperature in the regime �3.2c�.

Without loss of generality g�0 is assumed in the remain-
der of this section.

A. Scaling limit g /T ,T /U\0

We begin our analysis by considering the scaling limit
g /T ,T /U→0. In this limit, all entropic fluctuations are re-
stricted to the classical configuration space isomorphic to the
basis B0,U. This hard constraint has dramatic consequences
on thermal averages in the examples �2.3�–�2.5�. Indeed any
spatial spin-spin correlation functions in the examples �2.3�
and �2.4� or spatial correlation functions between the local
bosonic densities n�ij	 in the example �2.5� decay algebra-
ically with separation in the scaling regime g /T ,T /U→0.
This is so because the examples �2.3� and �2.4� reduce to the
noninteracting classical three-coloring model that was solved
by Baxter in Ref. 14, whereas the example �2.5� reduces to
the noninteracting classical square-lattice dimer model that
was solved by Kasteleyn in Ref. 15. In either case, it is now
understood that the constrained entropic scaling limit
g /T ,T /U→0 is critical in that correlation functions decay as
power laws in space.

B. Scaling limit g /T\0, 0�T /U™1

In this paper, we shall assume that, if we soften the con-
dition that entropic fluctuations satisfy the constraint—i.e., if
we consider the limit g /T→0 holding T /U small but
finite—we must then impose a cutoff �ce�T /U� to the spatial
algebraic decay of correlation functions. In effect, we are
assuming that the operator related to the appearance of de-
fects that violate the constraint imposed by the energy scale
U is a relevant perturbation to the constrained entropic criti-
cal point in the RG sense. This assumption is indeed satisfied
by the examples �2.3�–�2.5� but there are no fundamental
reasons for it to hold for all constrained systems.

If defects cause the system to flow to a generic uncon-
strained fixed point with short-range correlations in space,
the correlation length of the system is controlled by the ratio
T /U and can be estimated with the following argument. The
concentration of thermally activated defects that violate the
constraint is proportional to exp�−�UU /T� when T�U,
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where �U�0 is some nonuniversal numerical constant spe-

cific to ĤU, since it represents the fugacity of defects that
enters as the coupling constant driving the system away from
the constrained entropic scaling limit. Therefore, the corre-
lation length of the system is

�ce�T/U� � a exp� �U

d − yU

U

T

 , �4.1a�

when T�U. Here, a is the lattice spacing, d is the dimen-
sionality of space, and 0�yU�d is the scaling dimension of
the operator representing a defect. Upon approaching the
constrained entropic critical point T /U=0, the exponential
growth of the correlation length �ce�T /U� guarantees that
correlation functions decay in space as power laws over a
macroscopically large window of length scales

a � r � �ce�T/U� . �4.1b�

While the entropic regime �3.2c� of the constrained Hubbard
model is featureless beyond few lattice spacings, the entropic
regimes �3.2c� of the examples �2.3�–�2.5� exhibit a scaling
behavior over an exponentially large window of length
scales. For length scales large compared to the lattice spacing
but smaller than �ce�T /U� the system behaves as a noninter-
acting classical system with the constraint fully enforced,
whose correlation functions are captured by a �purely en-
tropic� critical theory. As the ratio T /U is increased to a
value of order 1, the correlation length �ce�T /U� decreases
until it becomes of the same order of the lattice spacing.

An interesting possibility occurs if the relevant coupling
constant that drives the system away from an unstable con-
strained entropic fixed point generates a correlation length
�ce�T /U� that is an algebraic function of T /U as opposed to
an exponential one in T /U. If so, the correlation length
�ce�T /U���T /U�−�U for some correlation length exponent
�U. This scaling of the correlation length with temperature is
identical to that near a quantum-critical point, �QCP�T−1/z

for some dynamical exponent z. It may thus deceive observ-
ers expecting quantum-critical scaling: the behavior is clas-
sical as we are in the temperature regime �3.2c�, very far past
the quantum regime �3.2a�.

C. Scaling limit T /U\0, 0�g /T™1

We now perturb the constrained entropic critical point
�g /T ,T /U�= �0,0� by working at a finite value of g /T while
T /U=0. We call scenario I the case when g /T is irrelevant if
sufficiently small but becomes relevant beyond some finite
critical value �g /T�c. We call scenario II the case when any
finite value of g /T is relevant. Scenario III occurs when g /T
is exactly marginal up to some critical value �g /T�c, in which
case the segment 0�g /T� �g /T�c realizes a line of critical
points. At last, scenario IV happens when the small coupling
g /T preserves criticality but strongly alters its nature; for
instance, it changes continuously the value of the central
charge in the two-dimensional example given in Sec. V D.

In the case of scenario I, all properties of the constrained
entropic critical point �g /T ,T /U�= �0,0� survive a suffi-
ciently small perturbation g /T until it reaches the critical

value �g /T�c at which a phase transition takes place to a
noncritical phase of matter selected by the characteristic en-
ergy scale g. This classical phase transition can be continu-
ous but need not be so. The noncritical phase of matter could
support a conventional classical long-range order such as,
say, antiferromagnetic order. If classical frustration effects
are prevalent, the noncritical phase of matter could support
less conventional classical order such as spin-glass order. An
exotic possibility occurs when classical frustration effects se-
lect a noncritical phase devoid of any long-range order.

In the case of scenario II, any finite g /T generates a finite
correlation length �II�g /T� by causing the system to order
into a noncritical phase. This correlation length diverges with
g /T→0 in the case of a continuous classical phase transition
at infinite temperature, but it may as well remain finite—for
example, if the transition is first order.

Scenarios III and IV differ from scenario I in that the
segment 0�g /T� �g /T�c with T /U=0 is a line of critical
points in both cases. The number of critical degrees of free-
dom is unchanged in case III whereas it does change in case
IV as a function of 0�g /T� �g /T�c.

The constrained quantum XXZ Heisenberg and transverse
field Ising models �2.3� and �2.4�, respectively, provide ex-
plicit realizations of scenarios I, II, III, and IV, as we will
demonstrate in Secs. V and VI.

D. Perturbing the constrained entropic critical point with
0�T /U and 0�g /T

The fate of the transition at (�g /T�c ,0) on the boundary of
the phase diagram parametrized by the dimensionless cou-
plings �g /T ,T /U� is model dependent as one moves to the
interior of the phase diagram.

For simplicity, we assume that the phase diagram consists
of two competing phases only. One phase is the basin of
attraction of the unconstrained entropic stable fixed point
located at �g /T ,T /U�= �0,	�. The other phase is the basin of
attraction of the stable fixed point located at �g /T ,T /U�
= �	 ,0�. A cartoon version of this phase diagram is depicted
in Fig. 2 �top� for scenarios I, III, or IV and in Fig. 2 �bot-
tom� for scenario II. Curves with the dimensionless ratio
g /U held fixed are represented by dashed lines in Fig. 2.
Changing the temperature for some given g /U corresponds
to moving along a dashed line in Fig. 2. The smaller the ratio
g /U, the larger the temperature range for which the system
lingers in the vicinity of the constrained entropic critical
point �0,0� along a line with g /U held fixed.

Finally, observe that the location of the phase boundary
close to the constrained entropic critical point �0,0� follows
from

�II�g/T� � �ce�T/U� �4.2�

in the case of scenario II, assuming that the phase boundary
is a line of continuous transitions. One interesting feature of
scenario II is that the correlation length increases as tempera-
ture increases for a large range of temperatures. The reason is
that, since the constrained entropic fixed point is unstable in
both horizontal �g /T� and vertical �T /U� directions, as the
temperature is raised and one moves in parameter space
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along the dashed line with g /U�1, the correlation length
first increases as one approaches the fixed point from the
horizontal direction and only starts to decrease as one moves
away along the vertical direction. The crossover temperature
scale is set by Eq. �4.2�, and it goes to infinity as U→	.

V. CONSTRAINED QUANTUM XXZ HEISENBERG AND
TRANSVERSE-FIELD ISING MODELS

We are going to illustrate how the high-temperature criti-
cal scaling picture is realized for the constrained quantum
XXZ Heisenberg and transverse-field Ising models on the
honeycomb lattice. The effective models are identical for
both systems, the only difference lying with the order n in

� /U needed to generate the effective “ring exchange” Ĥ�/U
�n�

in Eq. �2.7�. So it suffices to analyze the constrained
transverse-field Ising model �2.4� whose effective Hamil-
tonian �2.7� restricted to the subspace H0,U takes the form

Ĥeff ª − h�
i=1

N

�̂i
z − hs�

i=1

N

�− 1�i�̂i
z − J�

�ij	
�̂i

z�̂ j
z

− �eff��̋ 

v=1

6

�̂iv
x + ¯ � , �5.1�

where the indices iv, v=1, . . . ,6, label the sites around an
elementary hexagon ˝. The coupling h describes a uniform
magnetic field, hs describes a staggered magnetic field, and J
describes an exchange interaction between nearest-neighbor
sites of the honeycomb lattice. J�0 favors ferromagnetic �F�
order while J�0 favors antiferromagnetic �AF� order. Both
the classical antiferromagnetic and ferromagnetic ground
states are compatible with the constraint that the magnetiza-
tion of each hexagonal plaquette has to be ±6 or 0. These
couplings h, hs, and J are three g-like couplings that we
analyze below.

The temperature in the regime �3.2c� is small compared to
U and large compared to ��eff�� ��6 /U5�. The approximation
of neglecting either violations of the constraint or the off-
diagonal part of the quantum Hamiltonian should thus be a
good starting point. If so, in the scaling regime
�h� /T , �hs� /T , �g� /T ,T /U→0, the model reduces to a nonin-
teracting Ising model on the honeycomb lattice, with the
constraint that the magnetization of each hexagonal plaquette
has to be ±6 or 0. This model maps onto the noninteracting
three-coloring model which was studied by Baxter and
whose entropy can be computed exactly in the thermody-
namic limit.14 He also showed that the model exhibits alge-
braically decaying spatial correlations and as such is critical.
We shall call this constrained entropic scaling limit
�h� /T , �hs� /T , �g� /T ,T /U→0 the Baxter critical point. The
long-wavelength, low-energy limit of this model is captured
by a conformally invariant field theory with central charge
c=2.16

As the temperature is lowered, the effects of the couplings
J, h, hs, and any other couplings compatible with the sym-
metries of Hamiltonian �5.1� need to be taken into account.
That is, we need to decide what perturbations are relevant,
marginal, and irrelevant at the Baxter critical point. Infini-
tesimally close to it in parameter space one can use pertur-
bative renormalization group arguments. At a finite distance
away these methods fail and one must rely on numerical
tools to explore the stability of the Baxter critical point.

Natural choices for perturbations of the Baxter critical
point are a uniform magnetic field h, a staggered field hs, and

FIG. 2. �Color online� Qualitative phase diagram of the classical
constrained system assuming the existence of two phases, a classi-
cal ordered phase and a disordered one, separated by a phase
boundary that extends all the way to T=0. Not all of the phase
boundary between the ordered phase and the paramagnetic phase is
shown here. The topology of the phase boundary upon approaching
T=0 depends on the microscopics, as we imply by depicting the
small-T side of the phase boundary with a dotted segment. The
dashed lines represent curves where g and U are held fixed and only
the temperature is varied. These curves originate at the ordered
fixed point �	 ,0� at T=0 and end at the disordered and uncon-
strained entropic fixed point �0,	� at T=	. In the limit of
g /U�1, these curves become infinitesimally close to the g /T and
T /U semiaxes, and the classification discussed in this paper applies.
The universal physics occurs in regime �3.2c�; therefore, in the
region T /U�1, g /T�1 close to the origin of the coordinate sys-
tem. The shaded region represents the scaling entropic region ap-
pearing in a constrained system due to the proximity to the con-
strained entropic critical point at the origin. �Top� This diagram
encompasses scenarios I, III, and IV depending on the behavior
of the system along the segment 0�g /T� �g /T�c with T /U=0.
�Bottom� Phase diagram corresponding to scenario II, where
�g /T�c=0.
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a nearest-neighbor interaction J. The system is still exactly
solvable in the presence of the hs coupling alone. In the
presence of either the h or J coupling, the system is no
longer exactly solvable, and we chose to resort to numerical
transfer matrix calculations in order to investigate the fate of
the Baxter critical point.

Since we are interested in distinguishing between critical-
ity and any long-range-ordered or disordered gapped phase, a
convenient choice is to measure the central charge of the
system. This can be obtained from the coefficient of the larg-
est finite-size scaling correction to the free energy of a semi-
infinite system with periodic boundary conditions in the fi-
nite direction.17,18 The central charge is known to be strictly
nonzero if the theory describing the long-wavelength behav-
ior of the system is critical �massless�. Numerically, a mas-
sive phase is signaled by the vanishing of the measured c, for
the finite-size corrections vanish faster than in a critical sys-
tem. �There are conformally invariant topological field theo-
ries with c=0, but the numerically measured c=0 is here
more trivially an indication of a massive phase.� From simi-
lar calculations on the semi-infinite system one can also ob-
tain the scaling dimensions of the operators in the conformal
field theory describing the long-wavelength behavior of the
system. In addition to providing a better understanding of the
critical regime, the scaling dimensions are known to either
vanish or diverge as the system becomes massive and they
can be used to confirm the central charge results.

In order to compute the central charge and scaling dimen-
sions of the system in a cylindrical geometry, we made use of
transfer matrix techniques in combination with sparse matrix
diagonalization routines from the free package ARPACK. Our
results for the central charge are obtained either as a function
of h /T or as a function of J /T. We did not consider the case
of h and J simultaneously present or the case when either is
present together with hs.

A. Uniform field h: Scenario I

The numerical results for a uniform magnetic field h are
presented in Fig. 3 �as the transformation h→−h and
�̂i

z→−�̂i
z leaves the Hamiltonian unchanged, it is sufficient

to consider the case h /T�0�. The dependence on h /T of the
central charge of a honeycomb lattice wrapped around a cyl-
inder is shown in Fig. 3 �top�, for different values of the
cylinder radius. The dependence on h /T of the two smallest
scaling dimensions is shown in Fig. 3 �bottom�.

The numerical calculations proceed in two steps, to be
repeated for each value of the reduced magnetic field
h /T.17,18 First, the three largest eigenvalues � j

�0��� j
�1�

�� j
�2� of the transfer matrix corresponding to the diameters

Lj =2j, j=2, . . . ,7, of the cylinder are computed. Here Lj /2
corresponds to the number of hexagonal plaquettes or,
equivalently, 2Lj is the number of spins in a row of the
infinite cylinder. The largest eigenvalue � j

�0� yields the di-
mensionless free energy per spin,

f j = −
1

2Lj
ln�� j

�0�� , �5.2a�

while the next two subleading eigenvalues � j
�1,2� yield the

dimensionless excitation energies

�f j
�k� =

1

2Lj
ln�� j

�0�

� j
�k� 
, k = 1,2. �5.2b�

Second, a value of the �finite-size� central charge cLi,Li+1
is

obtained from the finite-size scaling fit performed on two
consecutive values of the free energy—i.e., on data points of
the type ��Lj , f j� , j= i , i+1�. This is repeated for i=2 to i=6.
The �finite-size� scaling dimensions yLi,Li+1

�k� , k=1,2, follow
from finite-size scaling fits on two consecutive values of
�f j

�k�—i.e., on data points of the type ��Lj ,�f j
�k�� , j= i , i+1�.

What we are after is not so much the finite-size values
cLi,Li+1

and yLi,Li+1

�k� as their values in the thermodynamic limit
Li→	 �i→	�. We present finite-size data cLi,Li+1

in Fig. 3
�top� to illustrate the finite-size corrections while we
present the extrapolated values y�k�� limi→	yLi,Li+1

�k� in Fig. 3
�bottom�. The dependence on h /T of the central charge

FIG. 3. �Color online� �Top� Behavior of the �finite-size� central
charge cLi,Li+1

as a function of h /T, obtained from finite-size scaling
of the free energy computed via transfer matrix. From top to
bottom, the different curves correspond to increasing diameters
Lj =4, . . . ,14 for the systems used in the scaling fit to compute the
value of the central charge cLi,Li+1

. The system in presence of a field
is symmetric upon the sign change h↔−h; therefore, only the
h�0 axis is shown. Notice that the high-temperature criticality is
robust with respect to a uniform field and it survives at large but
finite temperatures. �Bottom� Behavior of the two smallest scaling
dimensions allowed by the conformal field theory as a function of
h /T. The extrapolated values for L→	 are shown here for simplic-
ity. The fact that both �degenerate� scaling dimensions remain con-
stant in the critical regime suggests that the whole critical phase is
described by the same conformal field theory. The lines between
data points are guides to the eyes.
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c� limi→	cLi,Li+1
that we deduce from Fig. 3 �top� is

c = �2, 0 �
h

T
� � h

T



c
,

0, � h

T



c
�

h

T
. � �5.3�

From Fig. 3 one reads that the Baxter critical point is
robust to the introduction of a uniform magnetic field. Ac-
cording to Fig. 3 �top�, the system remains critical with cen-
tral charge c=2 over the finite interval 0�h /T� �h /T�c, be-
fore entering an ordered phase through a �first-order� phase
transition at �h /T�c. This is confirmed by the behavior of the
scaling dimensions shown in Fig. 3 �bottom�, which seem to
rapidly vanish or diverge across the transition at �h /T�c, re-
spectively. Also, according to Fig. 3 �bottom�, the smallest
scaling dimensions are unchanged along the segment
0�h /T� �h /T�c. These numerical results support the con-
clusion that a small coupling h /T is irrelevant at the Baxter
critical point and scenario I is realized along the segment.

This behavior is perhaps surprising if compared to the
effect of a uniform magnetic field in the unconstrained Ising
model on the honeycomb lattice. In that case, the uniform
magnetic field is a relevant perturbation that causes the sys-
tem to order at any finite temperature. The origin of this
difference is due to the large depletion of configurations with
finite magnetization induced by the projective action of the
constraint. The entropy of the system as a function of mag-
netization m seems to acquire a cusp at m=0 that leads to a
strong first-order transition at finite temperature in the pres-
ence of a uniform magnetic field.

B. Staggered field hs: Scenario II

The case of the staggered magnetic field hs has been
solved exactly by Baxter14 in the limit T /U→0, hs /T arbi-
trary. The model exhibits an infinite-order phase transition as
hs /T→0. The staggered field is a marginally relevant
coupling to the Baxter critical point hs /T ,hs /U ,T /U→0
�Ref. 16�; i.e., a staggered magnetic field realizes scenario II
of Sec. IV C. In particular, this implies that any small stag-
gered field hs /T induces an exponentially large correlation
length

�II�hs/T� � a exp��hs

T

hs

 , �5.4�

where �hs
is some dimensionless number.

The divergence of the correlation length �5.4� as
hs /T→0 is cut off at the crossover temperature

Tcross � �Uhs. �5.5�

This estimate follows from the finite correlation length in-
duced by the fact that T /U, although large, is finite. Indeed,
the Baxter critical point is unstable to constraint-violating
defects that appear as soon as T /U is finite. The dependence
on T /U of the corresponding correlation length �ce�T /U� is
governed by the most relevant operator that introduces vio-
lations of the constraint in the spin language. This operator

corresponds to the insertion of fractional vortices in the con-
tinuum theory that describes the Baxter critical point. The
scaling dimension yU of this operator is given by yU=2/9
according to Ref. 19 in the case when there are no interac-
tions added to the model. This is indeed in agreement with
our numerical results for h /T ,J /T→0 �see Figs. 3 and 4�.
The estimate �4.1a� thus becomes

�ce�T/U� � a exp��U
9U

16T

 , �5.6�

and the crossover temperature �5.5� follows from solving Eq.
�4.2� with the help of Eqs. �5.4� and �5.6�.

FIG. 4. �Color online� �Top� Behavior of the �finite-size� central
charge cLi,Li+1

as a function of J /T, obtained from finite-size scaling
of the free energy computed via transfer matrix. From top to bot-
tom, the different curves correspond to increasing diameters
Lj =4, . . . ,14 for the systems used in the scaling fit to compute the
value of the central charge cLi,Li+1

. Positive values of J correspond
to a ferromagnetic �F� coupling, while negative values correspond
to an antiferromagnetic �AF� coupling. Notice that the high-
temperature criticality is robust with respect to uniform nearest-
neighbor interactions and it survives at large but finite temperatures
both for positive and negative J. Antiferromagnetic interactions,
however, deeply affect the critical behavior, inducing what appears
to be a continuously varying central charge. �Bottom� Behavior of
the two smallest scaling dimensions allowed by the conformal field
theory as a function of J /T. The extrapolated values for L→	 are
shown here for simplicity. Contrary to the uniform field case, the
scaling dimensions vary on the AF side �J /T�c

�AF�
�J /T�0. Varia-

tions of the scaling dimensions on the F side 0�J /T� �J /T�c
�F�

cannot be resolved numerically. The lines between data points are
guides to the eyes.
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C. Nearest-neighbor interaction J�0: Scenario III

The numerical results for a uniform nearest-neighbor in-
teraction J between the Ising spins are presented in Fig. 4.
The dependence on J /T of the central charge of a honey-
comb lattice wrapped around a cylinder is shown in Fig. 4
�top�, for different values of the cylinder radius. The depen-
dence on J /T of the two smallest scaling dimensions is
shown in Fig. 4 �bottom�.

We consider first the ferromagnetic side of the interaction,
J�0. According to Fig. 4 �top�, for small but finite J /T, the
central charge remains larger than or equal to the noninter-
acting value c=2, until the central charge drops to zero
abruptly. This suggests that the correlation length remains
infinite over the finite interval 0�J /T� �J /T�c

�F�, until the
system undergoes a strong first-order transition at �J /T�c

�F�.
This is confirmed by the behavior of the scaling dimensions,
which seem to rapidly vanish or diverge across the transition
at �J /T�c

�F�, respectively. Moreover, Fig. 4 �bottom� suggests
that the lowest scaling dimensions vary continuously with
J /T, even though numerics alone cannot be deemed conclu-
sive on this issue.

The behavior of the central charge in the critical range
0�J /T� �J /T�c

�F� is different from the uniform field case, as
cLi,Li+1

is seen to grow significantly upon approaching the
critical value �J /T�c

�F� for a fixed system size Li. This growth
can be explained by exponential corrections to finite-size
scaling that are known to occur at a first-order phase transi-
tion. Indeed, extrapolating the curves in Fig. 4 in the limit
Lj→	 yields an approximately constant value of c=2 over
the interval 0�J /T� �J /T�c

�F�. The extrapolated curve is,
however, rather noisy due to the limited range of numerically
accessible system sizes and it is not shown here. The reason
why these corrections are so strong in the case of a nearest-
neighbor ferromagnetic perturbation compared to the case of
a uniform magnetic field deserves further study.

Our interpretation of Fig. 4 is that, in the thermodynamic
limit, the central charge is constant on the segment
0�J /T� �J /T�c

�F� while the scaling dimensions are not. If
so, the segment 0�J /T� �J /T�c

�F� realizes a line of critical
points; i.e., J /T is a marginal interaction along this segment,
thus realizing scenario III. This interpretation agrees with the
perturbative RG calculation from Ref. 20.

The equilibration properties of the constrained XXZ
Heisenberg or transverse-field Ising model in the ferromag-
netically ordered phase exhibit rather peculiar features and
have been discussed in Ref. 9. Based on those results, we
expect quantum glassiness to appear in the system when the
temperature is lowered across the transition to the ferromag-
netically ordered phase, at least as long as the transition tem-
perature is small enough for the U-violating defects not to
play a significant role in the equilibration process �Fig. 5�.

D. Nearest-neighbor interaction J�0: Scenario IV

The behavior of the central charge is even more surprising
on the antiferromagnetic side of the interaction J�0. The
values taken by cLi,Li+1

in Fig. 4 �top� are seen to drop below
c=2 for J /T�−0.1 as soon as the system size is sufficiently

large. As the diameter of the cylinder is increased from
Li=4 to Li=14, the dependence of cLi,Li+1

on J /T seems to
indicate the existence of two distinct regimes for J /T. On the
one hand, the cLi,Li+1

appear to collapse onto a nonvanishing
value of c for sufficiently large J /T �close to J /T=0� in the
thermodynamic limit. On the other hand, consecutive cLi,Li+1
remain well separated from each other for sufficiently small
�negative� J /T, thereby suggesting a vanishing limiting value
c for the central charge in the thermodynamic limit.

We interpret our finite-size simulations as signaling
the existence of a �continuous� transition at a finite
�J /T�c

�AF��−0.2, which is in agreement with variational
mean-field results by Cirillo et al. in Ref. 21. Our simula-
tions for the two smallest scaling dimensions also agree with
this interpretation. While they are degenerate and they vary
continuously in the temperature region �J /T�c

AF�J /T�0,
they split and rapidly vanish or diverge as soon as
J /T� �J /T�c

�AF�, respectively. As for our numerical results for
the central charge, we interpret them as indicative of one of
three different possibilities. The first possibility is that the
phase transition at �J /T�c

�AF� separates a phase with vanishing
central charge below �J /T�c

AF and a line of critical points
with continuously varying central charge above �J /T�c

�AF� that
interpolate between the values c=3/2 at �J /T�c

�AF� and c=2 at

FIG. 5. �Color online� Illustration of the phase diagram of the
constrained Ising model in the presence of a nearest-neighbor cou-
pling J, discussed in Sec. V. U is held fixed in the figure, and only
two out of the three parameters of the model—namely, J �horizontal
axis� and T �vertical axis�—are shown. The effects of the quantum
energy scale � become dominant only at very small values of the
coupling J, in the interval −��eff��J� ��eff�, and for very small
temperatures T� ��eff�, giving rise to the quantum regime shown in
the picture. At low temperatures, but for �J�� ��eff�, the system ex-
hibits two classical ordered phases, a ferromagnetic �F� one for
J�0 and an antiferromagnetic �AF� one for J�0. While the tran-
sition to the AF ordered phase is continuous, the transition to the F
ordered phase is strongly first order �dotted line�. As discussed in
Ref. 9, quantum glassiness is expected to appear in the system when
the temperature is lowered across the transition to the F-ordered
phase, at least as long as the transition temperature is small enough
for the U-violating defects not to play a significant role in the
equilibration process.
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infinite temperature. The second possibility is that the finite-
size data when �J /T�c

�AF��J /T�0 are the signature of an
infinite sequence of stepwise increases of the central charge
in the thermodynamic limit that interpolates between the val-
ues c=3/2 at �J /T�c

�AF� and c=2 at infinite temperature. �See
Ref. 22 for a possibly related phenomenon.� And finally, the
third possibility is that the finite-size data for cLi,Li+1

collapse
in the thermodynamic limit to the central charge c=0 when
J /T� �J /T�c

�AF� and c=3/2 when �J /T�c
�AF��J /T�0. The

plateau with c=3/2 would correspond to a conformal field
theory built out of three Majorana fermions and endowed
with a supersymmetry. More accurate simulations—i.e.,
simulations that can access larger diameters of the cylinder
on which the honeycomb lattice is wrapped—are required to
select which of these possibilities corresponds to the correct
thermodynamic limit.

The phase diagram for the constrained Ising model in the
presence of a nearest-neighbor interaction is summarized in
Fig. 5.

E. Possible experimental realization of the constrained Ising
model in a transverse field

A possible physical realization of the constrained classical
Ising model has been discussed in Refs. 19 and 20 in the
form of lattices of superconducting devices with broken
time-reversal symmetry. Finding an experimental probe
mimicking a staggered magnetic field might allow the obser-
vation of a correlation length that increases with temperature
over a large window of temperatures in the regime �3.2c�.

VI. SQUARE-LATTICE DIMER MODEL

We are now going to illustrate how the high-temperature
critical scaling picture is realized for the bosonic model in
the example �2.5�. The effective Hamiltonian �2.7� restricted
to the subspace H0,U takes the form23

Ĥeff ª v�
i=1

N

�n̂i,i+xn̂i+y,i+y+x + x ↔ y�

− �eff�
i=1

N

�e+i�âi,i+x+âi+y,i+y+x�−i�x↔y� + H.c.� + ¯ .

�6.1�

Here, âi,i+e is the Hermitian operator canonically conjugate
to the local bosonic number operator n̂i,i+e; i.e., their
commutator is the C number i. Under the assumption that
�v���t��U the coupling �eff� t2 /U of the off-diagonal term
in the effective Hamiltonian �6.1� is much smaller than v. If
we relax this assumption by allowing for all possible values
of the ratio v /�eff, Eq. �6.1� is nothing but the square-lattice
quantum dimer model introduced by Rokhsar and Kivelson
in Ref. 24.

We are after the high-temperature universal behavior of
the regime �3.2c�. To this purpose, we consider first the con-
strained entropic scaling limit �v� /T ,T /U→0 for which the
model reduces to the square-lattice classical noninteracting
dimer model, which was studied by Kasteleyn in Ref. 15. He

showed that the entropy can be computed exactly in the ther-
modynamic limit. He also showed that the model exhibits
algebraically decaying spatial correlations, and, as such, it is
critical. We shall call the constrained entropic scaling limit
�v� /T ,T /U→0 the Kasteleyn critical point.

The Kasteleyn critical point is captured by a height model
which, in the long-wavelength limit, is described by the two-
dimensional conformally invariant field theory23

S = �K� d2x����2, �6.2a�

with stiffness specified by

K =
1

2
�6.2b�

and central charge

c = 1. �6.2c�

A microscopic dimer is represented in the field theory
�6.2� by a linear combination of two field operators. The first
one is the charge qe= ±1 “vertex operator” exp�i2�qe��
where the sign assignment has to do with the lattice being
bipartite. The second one is the “dipolar operator” e ·��
where e is one of the two basis vectors of the square lattice
such that �i , i+e� is the pair of sites covered by the dimer �for
some site i�. The two-point correlation function

�ei2����x�−��y��	K � � a

�x − y�

1/K

�6.3�

decays with the exponent 2 when K=1/2. The two-point
correlation function

��e · ���x���e · ���y��	K � � a

�x − y�

2

�6.4�

decays with the exponent 2 for any stiffness K�0. The value
�6.2b� is thus special in that the scaling dimensions of the
charge qe= ±1 vertex and dipolar operators are degenerate
and equal to 1.

A monomer at site i of the square lattice is a defect in the
dimer covering since site i is not the end point of a dimer. A
finite concentration of monomers is represented in the field
theory �6.2� by the local charge qm= ±1 vertex operator
exp�i2�Kqm�� for the field � dual to �,

� ��

�x
,
��

�y

 = � ��

�y
,−

��

�x

 . �6.5�

The two-point correlation function

�ei2�K���x�−��y��	K � � a

�x − y�

K

�6.6�

decays with the exponent 1 /2 when K=1/2. The charge ±1
monomer is represented by a strongly relevant operator with
scaling dimension 1/4.
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In the following we will focus on the temperature region
where the quantum effects are negligible for the thermody-
namic properties of the system—i.e., when ��eff��T�U.

A. Case v=0 in bipartite lattices: Scenarios II and III

It is useful to first consider the situation when v=0 and
add some other perturbations to dimer models like those re-
cently studied by Sandvik and Moessner in Ref. 25. We in-
troduce a small fugacity for dimers to cover bonds that, al-
though of finite length, extend beyond nearest-neighbor
bonds. Consider separately two cases: �1� when the long
bonds break the bipartiteness of the lattice by connecting
sites in the same sublattices and �2� when the bonds preserve
the bipartite nature of the lattice.

We interpret these perturbations within the framework of
the field theory as follows. The introduction of appropriate
chemical potentials leads to a small fraction of the longer
dimers. If one of these longer dimers is simply removed from
a configuration, one is left with two monomers in the system.
So a longer dimer can be thought of as two monomers at its
end points that are chained together �see Fig. 6�. In case �1�
a longer dimer connecting sites in the same sublattice can be
interpreted as a pair of chained monomers with equal
charges. The operator product expansion �OPE� of the cor-
responding charge qm= ±1 vertex operators leads to charge
qm= ±2 vertex operators. These composite operators have
scaling dimension 22
K /2=1 when K=1/2. Thus, they are
relevant and they open a gap in the system. The underlying
structure consists of a disordered arrangement of dimers with
short range correlations. Hence, the Kasteleyn critical point
should be strongly unstable to perturbations that break the
sublattice symmetry.26 The simplest perturbation of this type
is to allow next-nearest-neighbor bonds to be covered by
dimers. Other analytical arguments and numerics are consis-
tent with this expectation.25,26 Therefore, scenario II is real-
ized upon the introduction of any finite chemical potential
for second-neighbor dimers in the system.

In case �2� a longer dimer connecting sites in opposite
sublattices can be interpreted as a pair of chained monomers
with opposite charges. The OPE of the corresponding vertex
operators �when all the possible directions of the long dimer
are added� will lead to a ����2 term that renormalizes the
stiffness. This is also consistent with the numerical results of
Refs. 25 and 26. Scenario III is thus realized.

We would like to note that violations of the constraint in
the form of monomers are relevant perturbations that drive
the system away from the the Kasteleyn critical point, as in
all the situations discussed is Sec. IV. The finite correlation
length �4.1a� thereby generated is given by

�ce�T/U� � a exp��U
4U

7T

 �6.7�

when T�U.

B. Case vÅ0 in bipartite lattices: Scenario III

We are going to argue on the basis of numerics that sce-
nario III can also be realized by perturbing the Kasteleyn
critical point with the interaction v in Eq. �6.1�.

To this end, observe that Ĥv, defined by Eq. �2.5a�, counts
the total number of elementary square plaquettes of the
square lattice that are flippable in the dimer basis represen-
tation. Here, a flippable plaquette is an elementary square
plaquette that has two occupied edges �dimers�. This model
has already been studied by Alet et al. in Ref. 27 for negative
values of the coupling constant v. Here we consider both
positive and negative values, and good agreement with the
previous results is found where they overlap.27

As exact analytical results are no longer available, we use
a numerical approach similar to the one described in Sec. V.
We compute the central charge of the system as well as the
scaling dimensions of two specific operators via transfer ma-
trix techniques, using finite size scaling fits. The accessible
system sizes are Lj =2j, j=3, . . . ,8, where Lj is the number
of square plaquettes across the periodic direction of the sys-
tem or, equivalently, 2Lj is the number of edges. As dis-
cussed by Alet et al. in Ref. 27, the critical regime of this
system is captured by a c=1 two-dimensional conformal
field theory of the Coulomb gas type, with continuously
varying stiffness. They also computed the scaling dimensions
of some known operators in the conformal field theory;
namely, those corresponding to the electric and magnetic
vortices in the Coulomb gas picture. From these measure-
ments one can then obtain the values of all other scaling
dimensions present in the conformal field theory and discuss
the nature of the critical phase and of the phase transitions.

The central charge as a function of the coupling constant
v /T is plotted in Fig. 7 �top�. Thanks to the good conver-
gence in the L→	 limit, we report the extrapolated values of
c instead of each separate curve for increasing system size.
From the existence of a c=1 plateau

�v/T�c
�columnar� � v/T � �v/T�c

�staggered� �6.8�

that extends to the left and right of the Kasteleyn fixed point
v /T ,T /U→0, we infer that criticality is preserved upon in-

FIG. 6. �Color online� Example of longer dimers that can be
thought of as pairs of monomers chained together. When the end
points of a long dimer sit at sites within the same sublattice, the
chained monomers have equal charges. When the end points sit at
opposite sublattices, the chained monomers have opposite charges.
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troducing a small but finite coupling v /T. Moreover, the be-
havior of the scaling dimensions presented in Fig. 7 �bottom�
tells us that the stiffness K in the critical theory �6.2a� varies
continuously along the line of critical points. Therefore we
conclude that the introduction of the coupling v realizes sce-
nario III.

The transition at T=Tc
�columnar� has been characterized by

Alet et al. The quasi-long-range-ordered phase �6.8� under-
goes a Kosterliz-Thouless transition at �v /T�c

�columnar� to an
ordered phase. This phase is characterized by an alignment
of parallel dimers along columns or rows and is therefore
called the columnar phase.

On the other side, for v�0, our results show that
the quasi-long-range-ordered phase �6.8� terminates at
T=Tc

�staggered� where it undergoes a first-order phase transition
to an ordered phase. This phase is characterized by a stag-
gering of parallel dimers along two consecutive columns or
rows and is therefore called the staggered phase.

The phase diagram in the regime �3.2c� has the same to-
pology as the one for the constrained Ising model in the
presence of a nearest-neighbor interaction �Fig. 5�.

VII. QUANTUM-DOMINATED REGIME �g�™ ��eff�

In Secs. III–VI we assumed that ��eff� is the smallest en-
ergy scale in the problem. This is to be expected whenever

�eff=��� /U�n−1 is highly suppressed because of the order n
needed for virtual processes to return to an allowed configu-
ration. Even if we initially had �g�� ���, it is likely that
��eff�� �g�� ���, since ����U. However, if the coupling con-
stant �g� for those terms that commute with the constraint is
small compared to ��eff� or, in particular, if g=0, the discus-
sion above must be revisted.

Let us consider here the case g=0 for simplicity. Indepen-
dently of whether �eff is suppressed with respect to � or not,
there are now only three regimes of temperatures:

T � ��eff� � U , �7.1a�

��eff� � T � U , �7.1b�

��eff� � U � T . �7.1c�

The constraint, as well as all other energy scales in
the system, becomes negligible in regime �7.1c� and the
resulting physics is that of a featureless high-temperature
phase—say, a paramagnetic phase if the degrees of freedom
are exclusively magnetic.

As the temperature is lowered down to the regime �7.1b�,
the system is still classical �at least from the point of view of
its thermodynamic properties� but the constraint is now en-
forced. The physics is controlled by the proximity to the
constrained entropic critical point at ��eff� /T ,T /U→0.

Finally, in the regime �7.1a� the system is fully quantum
mechanical.

When �g� is finite but much smaller than ��eff�, these ar-
guments should still be valid. Therefore, we can draw a
qualitative phase diagram for a generic strongly constrained
quantum system at fixed g as a function of �eff. In Fig. 8 we
represent the phase diagram of a system exhibiting a zero-
temperature phase transition at a finite value of the ratio
�eff /g. Notice that the shaded dome around the origin or
parameter space contains both the classical ordered phase
that onsets when �g� becomes larger than ��eff� and the quan-
tum critical scaling regime that is expected to appear in a
cone-shaped region above the zero-temperature quantum-
critical point. The actual details of this shaded region are
highly system specific.

It is worth mentioning that the existence of a zero-
temperature phase transition at �eff� ± �g� is by no means a
necessity. It is also possible—for example—that the coupling
�eff never destroys the ordered phase determined by the di-
agonal coupling g at zero temperature, e.g., if it favors the
same type of order. In this case there would be no quantum-
gapped phase in Fig. 8 and the dome above the origin of
parameter space would stretch out from �−	 ,0� to �	 ,0�,
without any phase transition at �±	 ,0�. The phase under the
dome would be uniform and determined by the �fixed� value
of g. This is so, for example, in the quantum Hamiltonian
�6.1� for any fixed value of g�0, where the columnar or-
dered phase is stable at all values of �eff according to the
numerical results in Ref. 28.

FIG. 7. �Color online� �Top� Behavior of the extrapolated central
charge as a function of v /T, obtained from finite-size scaling of the
free energy computed via transfer matrix. �Bottom� Behavior of the
scaling dimensions corresponding to the electric and magnetic ver-
tex operators as a function of v /T, also obtained from finite-size
scaling arguments and transfer matrix calculations. Observe that the
scaling dimensions of the electric and magnetic vertex operators are
1 and 1/4, respectively, when v /T=0. The lines between data
points are guides to the eyes.
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VIII. CONCLUSIONS

In this paper we have presented a mechanism that leads to
a large temperature regime where critical scaling behavior
appears as a consequence of having a large energy scale U in
the problem. Hard constraints are imposed on the system in
the limit U→	 that project the original Hilbert space onto a
space of allowed configurations satisfying the constraints.
Critical behavior in the U→	 limit occurs when correlations
functions, calculated as uniform averages over all of these
projected states, are algebraically decaying in space. We call
the limit U→	 followed by T→	 at which criticality
emerges a constrained entropic critical point. For large but
finite U and in the presence of other couplings �g� , ����U in
the problem, the physics at temperatures large compared to
all other couplings but small compared to U is still controlled
by the proximity to the constrained entropic critical point.
Indeed, this hierarchy among the couplings opens a rather
large window of temperatures for which a constrained en-
tropic critical regime exists as a consequence of the proxim-
ity to the constrained entropic critical point. We expect the
constrained entropic critical regime to be qualitatively differ-
ent in general from the quantum-critical regime associated
with a putative quantum-critical point at zero temperature.
The picture is summarized in Fig. 1.

The mechanism for criticality at high temperature dis-
cussed here should be applicable to some, but not all, prob-
lems with a large dominant energy scale. Examples can be
found in frustrated magnets—say, pyrochlore antiferromag-
nets where a magnetic field that induces a magnetization pla-
teau at half the value of full magnetization supplies a strong
constraint.29–31 Furthermore, since the order n of a virtual
process leading to the effective kinetic quantum term
�eff=��� /U�n−1 is usually large �it is of order 9 in Ref. 30�,
the window of temperatures for which the system is in the
quantum regime can be extremely small �T� ��eff�� ����.
Hence, in practice, even for the smallest temperatures acces-
sible experimentally, these constrained systems should either
order or be within the constrained entropic critical regime.
What determines whether the system orders or not is the
presence of another energy scale g, set by the coupling
strengths of additional terms in the Hamiltonian that com-
mute with the U term imposing the constraint.

Another example for which the idea of high-temperature
criticality may apply is that of the fluctuations about a so-
called d density wave �DDW�.32 In this instance, the order
may form locally at some large energy �d, but the current
loop directions may fluctuate.6,33 At low temperatures, the
system should order in a given current pattern. Above the
global ordering temperature, this system should display high-
energy constrained entropic criticality, because it resembles
an ice model as long as T is below �d.

In the single-band Hubbard model, with a strong local
on-site repulsion only, there is no constrained entropic criti-
cal point in the U→	 limit. It has been recently proposed by
Phillips and co-workers that the order in which the limit
U→	 and the thermodynamic limit L→	 �L being the lin-
ear size of the system� are taken has implications for hole
transport in the single-band Hubbard model.34 The issue is
that, for finite U, there is a characteristic length scale asso-
ciated with the distance between doubly occupied sites, and
hence for system sizes greater than this distance one has a
finite density of such “defects.” The appearance of this extra
length scale was suggested as a way to resolve the issue of
the breakdown of the one-parameter scaling picture for quan-
tum criticality in the cuprates.35 While we do not know how
to connect their results to ours, it seems that there is one
common theme: that high-energy terms find their way to af-
fect the physics at intermediate temperatures.

The chances to find a constrained entropic critical point
improve if one adds nearest-neighbor, next-nearest neighbor,
etc., couplings—i.e., in extended versions of the Hubbard
model—at some commensurate fillings. For example, the
presence of very strong nearest-neighbor interactions at 1 /4
filling leads to a classical checkerboard configuration, where
one of the two sublattices of the bipartite square lattice is
filled and the other empty. If one now starts changing the
doping away from 1/4 filling, extra holes or particles will
tend to cluster in stripes.36–42 Other longer-range couplings
that commute with the constraint could lead to charge order-
ing, perhaps in the form of static stripes or other patterns at
low temperatures. Now, at high temperatures, when charge
order is destroyed, these stripes meander and fluctuate, and

FIG. 8. �Color online� Generic phase diagram for a strongly
constrained quantum system that satisfies conditions �1�–�6� from
Sec. I. Parameter space encodes the competition between two en-
ergy scales, the temperature T, and a characteristic energy scale �eff

given by the effective coupling of the off-diagonal term in the
Hamiltonian, while g and U are held fixed. Here we chose to rep-
resent the case of a system exhibiting a zero-temperature phase
transition at a finite value of the ratio �eff /g. A quantum-critical
scaling regime, if it exists, is restricted to a region represented by
the upper half of a disk of radius �eff and centered at the origin
�g ,T�= �0,0� of parameter space. As in the case of Fig. 1, the sys-
tem exhibits a constrained entropic scaling regime at temperatures
intermediate between the small characteristic quantum energy scale
�eff and the large characteristic energy scale U set by a strong
constraint. At a fixed temperature, the constrained entropic scaling
regime terminates in a phase transition that needs not be continuous
upon increasing ��eff�. At fixed �eff, the constrained entropic scaling
regime crosses over to the conventional high-temperature phase—
say, a paramagnetic one for spin degrees of freedom—when T is of
the order of U.
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the system could be in an entropic critical regime. Certainly,
these are speculative thoughts, in contrast to the concrete
cases of the constrained quantum Heisenberg and transverse
field Ising models that we presented as examples of con-
strained entropic criticality. But the discussion suggests how
it is not implausible that a constrained entropic critical point
may play a role in the physics of the extended Hubbard
model near commensurate fillings.
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