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In this chapter, we examine convergence behavior in simple bimatrix games. We classify the

possible types of simple games, pick interesting examples of each type, and summarize

convergence behavior under various information and player matching protocols. See

Friedman (1996), Cheung and Friedman (1997) and Bouchez (1998) for more complete

descriptions of the experiments.

We begin with normal form games that have only two alternative strategies and a single

symmetric population of players.  These games are defined by a 2x2 matrix A=((aij))

specifying the payoff to any player choosing strategy i when the opponent chooses j.

Evolutionary game theory predicts that the direction of change in the fraction p∈(0,1) of

players choosing the first strategy is given by the sign of the payoff differential

D(p)=(1, -1)A(p,1-p)' = (1-p) a-pb where a=a12-a22 and b=a21-a11.  When D(p) is positive

(i.e., the first strategy has the higher payoff) then p < 1 increases and the fraction 1-p of

players choosing the alternative strategy i=2 decreases; the opposite is true when D(p) is

negative. The graph of D(p) is a straight line with intercept a at p = 0 and value -b at p = 1.

Thus (apart from the degenerate case a=b=0 in which a player is always indifferent between

her two actions) each payoff matrix falls into one of three qualitatively different types as
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shown in Figure 1.  In accordance with this classification scheme, we used single and two

population games of all three types.

The next most complicated case is a single population of strategically identical players with

three alternative actions. Here the payoff matrix A is 3x3 and the current state is a point in

two-dimensional simplex S={(p,q,1-p-q ) ∈ R3: p, q≥0, p+q≤1}.  The classification of

matrices becomes more complex as the edges of the simplex retain all three possibilities and

the interior can be a sink, source, saddle or center.  We consider here only a version of the

"Hawk-Dove-Bourgeois" (HDB) game, as illustrated in

Figure 2.

I. LABORATORY PROCEDURES AND TREATMENTS

The experiments consist of 60-120 minute laboratory sessions with 6 to 24 undergraduate

subjects.  Population size varies from 8 to 16 in the results presented here;  Friedman (1996)

finds strategic behavior contrary to the evolutionary assumption with population sizes of 6

and smaller.  After instruction and a few practice periods, each session consists of 60-200

periods broken up into runs of 10 to 16 periods. Over 90% of the subjects earned between $8

and $32 per session.

The treatments used were random pairwise (RP) and mean matching (MM) matching

protocols, and the amount of historical information that appears on each player's screen

(Hist/No Hist).

Under random pairwise (RP) the player has a single opponent each period chosen randomly

and independently from the set of possible opponents.  Players view their own (but not the

opponent’s) payoff matrix, and type "a" or "b" at the keyboard to indicate the choice of the
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first or second strategy.  Under RP matching for payoff matrix A, a player's  choice of strategy

i = 1 or 2, gives expected payoff  (2-i, i-1)A(p, 1-p)’ when the fraction of potential opponents

choosing strategy 1 is p.  However, his actual payoff depends on the action taken by his

actual opponent, and so has some variance around its expectation. The variance is eliminated

in the alternative matching procedure, called  mean matching (MM). Here each player is

matched once against  each possible opponent in each  round and receives the average (mean)

payoff over all his matches.

The other major treatment in our experiments is the amount of historical information that

appears in the upper left box on each player's screen. In the minimum level, No Hist, the

player receives no historical information other than what she could tabulate herself: her own

action and actual payoff in previous periods. In the other level,  Hist, the box also displays the

full distribution of choices in the opponent population in previous periods.

All treatments are held constant within a run to test for convergence.  Runs are separated by

obvious changes in the player population and/or the payoff matrix, and the history box is

erased at the beginning of a new run.

II.   RESULTS

We have collected more than 300 such runs and used various statistical tests as well as

summary graphs to study convergence properties.  Figures 3-5 illustrate behavior observed in

different sorts of environments. The main findings, presented more fully in Friedman (1996),

can be summarized as follows.

1) Some behavioral equilibrium (BE) is typically achieved by the second half of a 10 to 16

period run.  The operational definition of BE is that strategy selection is almost constant in
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each population in a given run  (or half-run). Almost constant means that the mean absolute

deviation from the median number of players choosing a given strategy is less than 1 player

("tight") or less than 2 players ("loose"). Overall, we observe tight BE in over 70% of second

half-runs and loose BE in over 98% of second half-runs. Tight BE was achieved most reliably

in type 3 games (over 95% of all half-runs).  By contrast, type 1 games achieved tight BE in

only 55% of half runs, but achieved loose BE in 96%.

2) BE typically coincides with NE, especially with those (called EE) that evolutionary game

theory identifies as stable. We operationalize NE by replacing the median number of players

by the NE number. In second half-runs, for example, about 79% of the loose BE are loose

NE, and 84% of those are loose EE. The only notable exception to this conclusion is that in

type 2 runs the BE sometimes coincided with the non-EE mixed NE. A closer look at the

graphs suggests that many of these cases actually represent slow divergence from the mixed

NE, and many of the half-runs deemed BE but not NE seem to represent slow or incomplete

convergence to an EE (a pure NE.)

3) Convergence to BE is faster in the mean-matching (MM) than in the random-pairwise (RP)

treatment, and faster in the Hist treatment than in the No Hist treatment. In particular, the

slow and incomplete convergence observed in type 1 games arises mainly in RP matching

protocol and No Hist runs. The results from type 2 single population games and all  two

population games support the same conclusion. There is, however, an interesting exception.

The few instances of non-convergence in type 3 games arise more often under MM than

under RP.

4) Individual behavior at a mixed strategy BE is better explained by idiosyncratic

"purification" strategies than by identical individual mixed strategies. In particular, in the
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simplest type 1 game, Hawk-Dove, we see persistent heterogeneity in which some players

consistently pick the first ("Hawk") strategy and others consistently pick the other ("Dove")

strategy.

5) "Hawk-Dove-Bourgeois" is a 1-population 3-action  game with a triangular state space and

with  one corner NE (an EE) with target area b2 and one edge NE (not an EE) with target area

2b2. Only one session was explored in Friedman 1996.  Additional data has been collected

(Bouchez 1998) and the results summarized here are for the combined data. Loose (tight)

convergence was found to some BE in 41 (7) of 46 half-runs, loose (tight) convergence to the

EE in 8 (3) half-runs, and no loose or tight convergence was found to the edge NE despite its

larger area. The data are sparse but consistent with evolutionary game theory.

III. DISCUSSION

For all three types of one dimensional games and their two dimensional analogues, the states

reliably achieve a loose behavioral equilibrium (BE) even within the first half-run of 5

periods. Most of the loose BE are also tight BE, the main exceptions occurring in two

dimensional games with unique Nash equilibria (NE). Most BE coincide with NE, and most

of the observed NE are indeed evolutionary equilibria (EE). In general, the "evolutionary"

treatments of mean-matching (MM) and feedback (Hist) appear to improve convergence to

EE. Thus, the main tendencies of the data are consistent with evolutionary game theory.

The exceptions or boundaries to these main tendencies may be of special interest. Friedman

(1996) shows that when group size is smaller than 6, players much more often appear willing

to sacrifice current personal payoffs to increase group payoffs (and perhaps own later

payoffs). Cooperative behavior (foregoing the dominant strategy) is sometimes observed in
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type 3 prisoner's dilemma sessions that have runs splitting the players into groups of size 2 or

4, and it is especially prevalent in the runs with the smaller groups. Such behavior is notably

less frequent  in sessions where the minimum group size remains above 6.

Perhaps the most surprising finding concerns another boundary for evolutionary game theory.

An influential branch of the theory ( Kandori, Mailath and Rob, 1993, and Young, 1993)

argues that in simple coordination (type 2) games with two pure strategy (corner) NE = EE

and one interior NE, the "risk-dominant" corner EE is  most likely to be observed because it

has the larger basin of attraction, and indeed that   only the risk-dominant EE will be observed

in the relevant limiting case.  Friedman (1996) shows that the data reviewed in this chapter

support the contrary theoretical view of Bergin and Lipman (1995) that one can bias

convergence towards the other ("payoff-dominant") EE by increasing the potential gains to

cooperation. In some applications, evolutionary game theory may have to be supplemented by

a theory of trembles (or "mutations") that allows for forward-looking attempts to influence

others' behavior.
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Type 1:  a, b >0 
We have global convergence to p*=a/(a+b) 
over [0,1]  because D is downward sloping 
so p increases (decreases) whenever it is 
below (above) p*. Hence p* is the unique 
evolutionary equilibrium (EE).  It is also the 
unique Nash equilibrium (NE).

Type 2:  a, b < 0
p*= a/(a+b) separates the basins of 
convergence of the two evolutionary 
equilibria p = 0 and p = 1. The NE include p* 
as well.

Type 3:  If a and b have opposite signs, then 
D(p) lies everywhere above (or everywhere 
below) the p-axis,  i.e. the first pure strategy 
p = 1 (or the second pure strategy p = 0) is 
dominant. The dominant strategy is the 
unique EE (and the unique NE). 

Figure 1: The three generic types of 2x2 symmetric games.  The 2x2 matrix A=(aij) specifies the payoff to 
any player choosing strategy i when the opponent chooses j. The direction of change in the fraction p of 
players choosing the first strategy is the sign of the payoff differential D(p) =(1,-1) A (p,1-p)' = (1-p)a-pb 
where a=a12-a22 and b=a21-a11.  The slope of D(p) and location of the root p*=a/(a+b) of D(p)=0 determine 
the type of  game A.
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Figure 2: A 3x3 symmetric game. This version of the Hawk-Dome-Bourgeois game has a corner Nash 
equilibrium (NE) at (p ,q )=(0,0) and an edge NE at (2/3,1/3).  Under standard evolutionary dynamics , 
the corner NE is an evolutionary equilibrium (EE) and the edge NE is a saddle point.  The equations 
dp/dt=(1,0,0)'As-(1/3,1/3,1/3)'As and dq/dt=(0,1,0)'As-(1/3,1/3,1/3)'As define one simple version of 
the dynamics in the interior of the simplex; see Weibull (1995) for an introduction to replicator and 
other standard dynamics.
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Figure 3: The time path of pt in the first four runs of Exp3,  the first usable session. The type 1 payoff matrix here has unique mixed NE 
p*= 2/3 = 8/12. That is, in NE 8 of 12 players choose the first strategy (or 4 of 12 when the matrix rows and columns are interchanged as 
in runs 2 and 3). The graphs show a tolerance of 1 player in the band around NE. The time paths in the first four runs suggest that the 
NE attracts states pt outside the tolerance band p*±1/12, but there is considerable behavioral noise, the path is inside the band in only 
about 50% of the periods. 
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Figure 4: Behavior in the first four runs of exp5, the first 2-population session. All periods use the Buyer-Seller matrix or its interchange, 
so the unique NE (denoted by    ) is at (p,q) = (.25, .50) or, for the interchanged version, at (.75, .50). The graphs show a 2-period 
moving average of the time path in the unit square. The graph for the first run looks like an unstable counterclockwise spiral diverging 
from the NE. The second run looks like a tidy counterclockwise double loop around the NE, neither converging nor diverging. The third 
run uses the random matching protocol; at best there is a weak tendency to drift towards the NE. The fourth run reverts to mean 
matching and looks like a counterclockwise spiral possibly converging to the NE. In general, mean-matching, (and history) promote 
faster convergence to a behavioral equilibrium and a closer approximation to NE.
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Figure 5: Behavior in the first four HDB runs of exp57. The two NE are at (p,q) =(0, 0) and (2/3,1/3) (for the interchanged version, at (1,0) 
and (0,1/3)) and are represented by    and     respectively. The graphs show a 2-period moving average. The Run 1 has loose 
convergence in the second half of the run as does Run 7.  Run 4 shows no convergence in either half. Run 6 has loose convergence in 
both the first and second halves of the experiment.   In general, mean-matching (and history) promote faster convergence to a 
behavioral equilibrium and a closer approximation to NE.


