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Abstract

Let Dp be a central simple Qp-division algebra of index 2, with maximal Zp-order
∆p. We give an explicit formula for the number of subalgebras of any given finite
index in the Zp-Lie algebra L := sl1(∆p). From this we obtain a closed formula for
the zeta function ζL(s) :=

∑
M�L |L : M |−s. The results are extended to the p-power

congruence subalgebras of L, and as an application we obtain the zeta functions of
the corresponding congruence subgroups of the uniform pro-p group SL21(∆p).

1. Introduction

Let G be a finitely generated pro-p group, and for every n ∈ N0 let ân(G) denote
the number of subgroups of index pn in G. The subgroup growth of G is determined
by the sequence ân(G), n ∈ N. The group G is said to have polynomial subgroup
growth if there exists α ∈ R�0 such that for all n ∈ N0 we have ân(G) � pαn.
It is known that G has polynomial subgroup growth if and only if it is p-adic

analytic; see [1, corollary 8·34]. The aim of current research is to provide a more
detailed description of pro-p groups with “slow” polynomial growth. The present
paper forms a small detour from the author’s characterization of pro-p groups with
linear subgroup growth [8], which solves a problem posed by Shalev in [9].
Working in the context of Lie groups, it is natural to look for a link between

the subgroup growth of a p-adic analytic group and the subalgebra growth of an
associated Lie algebra. Indeed, every compact p-adic analytic group contains an
open uniform pro-p subgroup, and there is an equivalence between the category of
uniform pro-p groups and the category of powerful Zp-Lie algebras; see [1, chapter 9].
Suppose that G is a uniform pro-p group and let L = LG denote the powerful Zp-Lie
algebra corresponding to G. Ilani [6] has shown that, if p � dim(L), then there is
an index-preserving isomorphism between the open subalgebra lattice of L and the
open subgroup lattice ofG. In general, the subgroup growth ofG and the subalgebra
growth of L have at least the same asymptotic behaviour; see [8]. We are thus led to
consider the subalgebra growth of Lie algebras over the p-adic integers Zp.
Let L be a finite dimensional Zp-Lie algebra. For every n ∈ N0 let ân(L) denote

the number of subalgebras of index pn in L. The arithmetic sequence ân(L), n ∈ N0,
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can be encoded in a generating function

ζL(s) :=
∞∑

n=0

ân(L)p−ns =
∑

M�L with
|L:M |<∞

|L:M |−s.

In the first instance, this is just a formal Dirichlet series; however, Grunewald, Segal
and Smith [5] have shown that ζL(s) is in fact a rational function overQ of p−s. These
rational functions are surprisingly difficult to compute, even in small dimensions.
Essentially three explicit examples have been calculated; the resulting zeta functions
can be neatly expressed in terms of ζp(s) :=

∑∞
k=0 p−ks, the local p-factor of the

Riemann zeta function.

(1) If L = Zd
p is abelian of dimension d, then

ζL(s) = ζp(s)ζp(s − 1) · · · ζp(s − d + 1).

(2) If L = Zpx + Zpy + Zpz, with defining relations [x, y] = z and [x, z] = [y, z] = 0,
is the so-called Heisenberg algebra, then

ζL(s) = ζp(s)ζp(s − 1)ζp(2s − 2)ζp(2s − 3)ζp(3s − 3)−1.

(3) If L = sl2(Zp) and p > 2, then

ζL(s) = ζp(s)ζp(s − 1)ζp(2s − 1)ζp(2s − 2)ζp(3s − 1)−1.

Examples (1) and (2) were calculated in [5], together with some more complicated
Dirichlet series counting ideals rather than subalgebras. Example (3) is due to Ilani
[7] and du Sautoy [2]. More recently, the zeta function of sl2(Z2) has also been
calculated [4].
Our list of examples is beautiful, but rather short – much too short to provide a

reasonable starting point for a more general theory. The main purpose of this paper
is to investigate the subalgebra growth of the Zp-Lie algebra sl1(∆p), which affords
some interesting new features. As indicated above, our main motivation for studying
zeta functions of Zp-Lie algebras comes from the subject of subgroup growth, and
applications of our results in that area will be pointed out. More on zeta functions of
groups, and the connection with Zp-Lie algebras, can be found in [3].
Let Dp be a central simple Qp-division algebra of index 2; recall that up to iso-

morphism there is precisely one such object. Let ∆p denote the (unique) maximal
Zp-order in Dp and write P for the maximal ideal of ∆p. The set sl1(∆p) of ele-
ments of reduced trace zero in ∆p forms a Zp-Lie algebra. For every m ∈ N0 let
sl

m
1 (∆p) := sl1(∆p) � P

m denote the mth congruence subalgebra of sl1(∆p).

Theorem 1·1. LetDp be a central simpleQp-division algebra of index 2,with maximal
Zp-order ∆p. Consider the Zp-Lie algebra L := sl1(∆p).
(1) Suppose that p = 2. Then for every n ∈ N0 we have

ân(L) =
{
1
3

(
13 · 2n+1 − 3 · 2(n+6)/2 + 1

)
if n ≡2 0,

1
3

(
11 · 2n+1 − 3 · 2(n+5)/2 + 1

)
if n ≡2 1.

The zeta function of L is given by

ζL(s) = Φ(2−s)ζ2(s)ζ2(2s − 1)ζ2(2s − 2),
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where Φ(T ) = 1 + 6T + 6T 2 − 12T 3 ∈ Z[T ]. Moreover, for every m ∈ N0 the zeta
function of 2mL = sl

2m
1 (∆2) is given by

ζ2mL(s) = ζZ2
3 (s)− 2(−s+2)(m+2)(1 + 3 · 2−s)ζ2(s − 2)ζ2(2s − 1)ζ2(2s − 2).

(2) Suppose that p > 2. Then for every n ∈ N0 we have

ân(L) =
A(n)

(p − 1)2(p + 1) ,

where

A(n) =

{
pn+3 − (p + 1)p(n+2)/2 + 1 if n ≡2 0,

pn+2 − (p + 1)p(n+1)/2 + 1 if n ≡2 1.

The zeta function of L is given by
ζL(s) = ζp(s)ζp(2s − 1)ζp(2s − 2),

and it satisfies the functional equation

ζL(s) |p�→p−1= −p−5s+3ζL(s).

More generally, for every m ∈ N0 the zeta function of pmL = sl
2m
1 (∆p) is given by

ζpmL(s) = ζZp
3 (s)− p(−s+2)mΨ(p, p−s)ζp(s − 2)ζp(2s − 1)ζp(2s − 2),

where Ψ(T1, T2) = T1T2(1 + T1 + T1T2) ∈ Z[T1, T2].

Remarks 1·2. If we exclude the case p = 2, then for everym ∈ N0 the zeta function
of pmL = sl

2m
1 (∆p) varies uniformly in p and p−s. The corresponding formulae for

p = 2 are similar, but do not fit strictly into the general pattern. For the following
remarks let us focus on the case p > 2.

(1) From [2, 7] it is easily seen that the sequence ân(sl2(Zp)), n ∈ N0, grows
asymptotically like npn; in contrast to this, the sequence ân(sl1(∆p)), n ∈ N0,
only grows like pn. In other words the rate of growth “distinguishes” between
the split and the non-split form of p-adic Lie algebras of type A1. In [8] it
is shown that, up to commensurability, sl1(∆p) is the only non-soluble Zp-Lie
algebra with linear subalgebra growth.

(2) Again, from [2, 7] it follows that

lim
n→∞

ân(sl2(Zp))
npn

=
p + 1
2(p − 1) .

In contrast to this, the sequence p−nân(sl1(∆p)), n ∈ N0, has two distinct limit
points, namely p3 and p2. A general “explanation” of this phenomenon is given
in [8].

(3) Suppose thatL is a powerfulZp-Lie algebra and letG = GL denote the uniform
pro-p group corresponding to L. Ilani [6] has shown that, if p � dim(L), then
there is an index-preserving isomorphism between the open subalgebra lattice
of L and the open subgroup lattice of G.
In our case, still assuming p > 2, this means that for every m ∈ N�2 the zeta
function of the uniform pro-p group SLm

1 (∆p) is equal to the zeta function of
the powerful Zp-Lie algebra sl

m
1 (∆p). Hence Theorem 1·1 also determines the

zeta functions of the p-power congruence subgroups of SL21(∆p).
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(4) There is an interesting connection between counting subalgebras in the Zp-
Lie algebra sl2(Zp) and counting Fp[[t]]-subalgebras in the Fp[[t]]-Lie algebra
sl2(Fp[[t]]); see [2].
Let Ep be a central simple Fp((t))-division algebra of index 2, with maximal
Fp[[t]]-order Σp. Then, still assuming p > 2 and translating our proof of
Theorem 1·1 word for word, it can be seen that the zeta function counting
Fp[[t]]-subalgebras in the Fp[[t]]-Lie algebra sl1(Σp) is equal to the (ordinary)
zeta function of sl1(Zp).

These comments suggest a number of interesting questions; we formulate two prob-
lems explicitly.

Problem 1·3. Investigate the subalgebra growth of Zp-Lie algebras, which are full
Zp-sublattices in central simple Qp-division algebras of higher index.

Problem 1·4. Let Ep be a central simple Fp((t))-division algebra of index 2, with
maximal Fp[[t]]-order Σp. Investigate and compare the subgroup growth of the pro-p
groups SL11(Σp) and SL

1
2(Fp[[t]]).

There is also some interest in zeta functions related to counting ideals instead of
subalgebras. Again, let L be a finite dimensional Zp-Lie algebra. For every n ∈ N0

let â�
n(L) denote the number of ideals of index pn in L. Define

ζ�
L(s) :=

∞∑
n=0

â�
n(L)p

−ns =
∑

I�L with
|L:I|<∞

|L: I|−s.

In a short addendum we prove that ζ�
L(s) can be expressed in a rather concise form,

whenever Qp ⊗L is a simple p-adic Lie algebra. This generalizes [2, proposition 4·1].
As a “working example” we obtain:

Proposition 1·5. Suppose that p > 2 and let L be as in Theorem 1·1. Then we have

ζ�
L(s) = (1 + p−s)ζp(3s) =

ζp(s)ζp(3s)
ζp(2s)

.

The paper is organized as follows. Section 2 deals with preliminary definitions and
not-so-standard notation. In Section 3 we prove Theorem 1·1. Section 4 is the short
addendum, already referred to above.
Notation. Throughout the paper p denotes a prime number. The p-adic numbers

are denoted by Qp, the p-adic integers by Zp. By convention, a Zp-Lie algebra is
torsion-free with respect to addition and finite dimensional. We write N for the set
of natural numbers, and N0 :=N � {0}. Further notations are introduced in the text
as needed.

2. Preliminaries

There are two simple p-adic Lie algebras of type A1. One of these is the familiar
Lie algebra sl2(Qp), the other can be obtained as follows. Let

ρ := −3, if p = 2,
ρ ∈ {1, 2, . . . , p − 1}, not a square modulo p, if p > 2.
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Then the quaternion algebra

Dp :=Qp +Qpu +Qpv +Qpuv,

defined by the multiplication rules

u2 = ρ, v2 = p, uv = −vu,

is non-split; it is a central simple Qp-division algebra of index 2. The reduced norm
and reduced trace of x = α + βu + γv + δuv ∈ Dp are given by

N(x) = α2 − ρβ2 − (γ2 − ρδ2)p and T(x) = 2α.

The valuation of Qp extends uniquely to Dp, and the ring of integers ∆p of Dp forms
the unique maximal Zp-order in Dp. It can be described as

∆p =

{{
0, 12 +

1
2u, 12v +

1
2uv,

1
2 +

1
2u +

1
2v +

1
2uv

}
+ Z2 + Z2u + Z2v + Z2uv if p = 2,

Zp + Zpu + Zpv + Zpuv if p > 2.

The maximal ideal P of ∆p is generated by v, that is P = v∆p.
The set SL1(Dp) of elements of reduced norm one in Dp forms a compact p-adic

analytic group of dimension three, and coincides with SL1(∆p) := SL1(Dp) � ∆p.
Let m ∈ N0. Then the mth congruence subgroup of SL1(∆p) is defined as
SLm

1 (∆p) := SL1(∆p) � (1 +P
m).

In a similar way, the set sl1(Dp) of elements of reduced trace zero in Dp

forms a simple Qp-Lie algebra of dimension three and has a full Zp-sublattice
sl1(∆p) := sl1(Dp) � ∆p. Writing i := 1

2u, j :=
1
2v and k :=

1
2uv, we have

sl1(∆p) =

{
{0, j + k} + 2Z2i + 2Z2 j + 2Z2k if p = 2,

Zpi + Zp j + Zpk if p > 2,

where

[i, j] = k, [i,k] = ρj, [j,k] = −pi. (2·1)

The mth congruence subalgebra of sl1(∆p) is sl
m
1 (∆p) := sl1(∆p) � P

m, and it satisfies

sl
m
1 (∆p) =

{{
0, 2�m/2�(j + k)

}
+ 2�m/2�+1Z2i + 2�m/2�+1Z2 j + 2�m/2�+1Z2k if p = 2,

p�m/2�Zpi + p�m/2�Zp j + p�m/2�Zpk if p > 2.

Note that for p > 2 and m � 2 the Lie algebra sl
m
1 (∆p) is powerful; indeed it

corresponds to the uniform pro-p group SLm
1 (∆p) via the exponential map.

3. Zeta functions counting subalgebras

In this section we derive explicit formulae for the subalgebra growth of the Zp-Lie
algebra L :=Zpi + Zpj + Zpk. If p > 2, then L = sl1(∆p) is precisely the Lie algebra
we are interested in. If p = 2, then sl1(∆2) is a subalgebra of index 4 in L and its zeta
function is closely related to the one of L.
For every x ∈ L let v(x) := sup{k ∈ N0 | x ∈ pkL}. We write (L,+) to denote the

additive group of the Lie algebra L, and for every subgroup H of (L,+) we define
the lower level of H in L as

�(H) := �L(H) := inf{k ∈ N0 | H ⊇ pkL}.
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It will be convenient to consider the “defect zeta function”

ζ−
L (s) =

∞∑
n=0

d̂n(L)p−ns := ζZ3p
(s)− ζL(s),

counting subgroups of (L,+) which are not closed under the Lie bracket. Let n ∈ N0,
and for every k ∈ N0 define

bk,n := bk,n(L) :=#{M | M a subalgebra of L with �(M ) = k and |L:M | = pn},
ck,n := ck,n(L) :=#{H | H a subgroup of (L,+) with �(H) = k and |L:H| = pn},
dk,n := dk,n(L) := ck,n − bk,n.

Then clearly, we have

ân(L) = ân

(
Z3p

)
− d̂n(L), and d̂n(L) =

∞∑
k=0

dk,n =
n∑

k=�n/3�

dk,n. (3·1)

Lemma 3·1. Let n, k ∈ N0 with n/2 < k � n. Then we have

ân

(
Z3p

)
=

p2n+3 − (p + 1)pn+1 + 1
(p − 1)2(p + 1)

and

ck,n(L) = ck,n

(
Z3p

)
=
(p3 − 1)(p2k−1 − p3k−n−2)

(p − 1)2 .

Proof. The first formula can be computed easily from example (1) in the Intro-
duction. For the second formula see [7, proposition 3·1], or adapt the proof of
Lemma 3·3 below.

Let H be a finite index subgroup of (L,+). For j ∈ {1, 2, 3} define

sj(H) := min{k ∈ N0 | |(H � pkL) + pk+1L: pk+1L| � pj}.

Note that |L:H| = ps1(H)+s2(H)+s3(H) and s3(H) = �(H).
A good basis for H is a triple (a1, a2, a3) ∈ L3 such that

H = Zpa1 + Zpa2 + Zpa3 and v(aj) = sj(H) for all j ∈ {1, 2, 3}. (GB)

Note that H has good bases. Moreover, if (a1, a2, a3) is a good basis for H, then
H = Zpa1 ⊕ Zpa2 ⊕ Zpa3.
Let a,b ∈ L \ {0}. Writing a = pv(a)(αi + βj + γk) and b = pv(b)(λi + µj + νk) with

coefficients in Zp, we define

x(a,b) := det
(

β γ
µ ν

)
, y(a,b) := det

(
α γ
λ ν

)
, z(a,b) := det

(
α β
λ µ

)
.

Lemma 3·2. Let H be a finite index subgroup of (L,+), and write sj := sj(H) for
j ∈ {1, 2}. Let (a,b, c) be a good basis for H.

(1) Suppose that s1 + s2 � �(H). Then H is a Lie subalgebra of L.
(2) Suppose that s1 + s2 < �(H) and p = 2. Then H is a Lie subalgebra of L if and

only if one of the following holds:
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(a) s1 + s2 = �(H)− 1, x(a,b) ≡2 1 and y(a,b) ≡2 z(a,b) ≡2 0;
(b) s1 + s2 = �(H)− 1 and y(a,b) ≡2 z(a,b) ≡2 1;
(c) s1 + s2 = �(H)− 2, x(a,b) ≡2 0 and y(a,b) ≡2 z(a,b) ≡2 1.

(3) Suppose that s1 + s2 < �(H) and p > 2. Then H is a Lie subalgebra of L if and
only if s1 + s2 = �(H)− 1, x(a,b)�p 0 and y(a,b) ≡p z(a,b) ≡p 0.

Proof. Put a := v(a), b := v(b). As before we write a = pa(αi + βj + γk) and b =
pb(λi+µj+νk) with coefficients in Zp. Also put x :=x(a,b), y := y(a,b) and z := z(a,b).
Then

[a,b] = pa+b(−pxi + ρyj + zk).

We note that H is a Lie subalgebra of L if and only if [a,b] ∈ H.

(1) By assumption, we have a + b � �(H), so [a,b] ∈ pa+bL ⊆ H.
(2) Since H = Zpa ⊕ Zpb ⊕ Zpc, the vectors (α, β, γ) and (λ, µ, ν) are linearly

independent modulo p. In particular, at least one of x, y, z is not congruent to zero
modulo p.
Put k := �(H)− s1 − s2 = �(H)− (a + b) ∈ N. The elements

pba = pa+b(αi + βj + γk),

pab = pa+b(λi + µj + νk)

generate the group H � pa+bLmodulo p�(H)L. So [a,b] ∈ H if and only if (−px, ρy, z)
is a Zp-linear combination of (α, β, γ) and (λ, µ, ν) modulo pk. So [a,b] ∈ H if and
only if

−px2 − ρy2 + z2 = det


 α β γ

λ µ ν
−px ρy z


 ≡pk 0. (3·2)

Recall that ρ is not a square modulo p. For k = 1, this implies: [a,b] ∈ H if and
only if x(a,b)�p 0 and y(a,b)≡p z(a,b)≡p 0. For k � 2, the congruence (3·2) is never
satisfied.
(3) The argument is similar to case (2). Put k := �(H)− (a + b). Then [a,b] ∈ H if

and only if −2x2 + 3y2 + z2 ≡2k 0, leading to conditions (a) – (c). We leave the reader
to fill in the details.

Lemma 3·3. Let a, k ∈ N0 with a � (k − 1)/2.
(1) LetM1 be the set of all finite index subalgebrasM of L with s1(M ) = a, s2(M ) =

k − 1− a, �(M ) = k. Then

#M1 =




9 · 22(k−a)−3 if p = 2 and a < (k − 1)/2,
3 · 2k−1 if p = 2 and a = (k − 1)/2,
(p + 1)p2(k−a)−3 if p > 2 and a < (k − 1)/2,
pk−1 if p > 2 and a = (k − 1)/2.

(2) Suppose that p = 2 and let M2 be the set of all finite index subalgebras M of L
with s1(M ) = a, s2(M ) = k − 2− a, �(M ) = k. Then

#M2 =

{
3 · 22(k−a)−3 if a < (k − 2)/2,
2k if a = (k − 2)/2.
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Proof. We prove the assertions for p > 2. The formulae stated in (1) and (2) for
p = 2 are obtained by a similar argument.
Suppose that p > 2. We write b := k−1−a and c := k. Let T1 be the set of all triples

(a,b, c) ∈ L3 such that:

(i) (a,b, c) is a good basis for some finite index subgroupH of (L,+) with s1(H) =
a, s2(H) = b, s3(H) = c;

(ii) x(a,b)�p 0, and y(a,b)≡p z(a,b)≡p 0.

Simple counting yields

t1 := #{(a + pcL,b + pcL) | (a,b, c) ∈ T1}
= (p2 − 1)p3(c−a−1) · (p2 − p)p3(c−b−1).

Let H be finite index subgroup of (L,+) with s1(H) = a, s2(H) = b and s3(H) = c.
Let T2 be the set of all good bases for H. Then counting yields

t2 := #{(a + pcL,b + pcL) | (a,b, c) ∈ T2}

=

{
(p − 1)p(c−a−1)+(c−b) · (p2 − p)p2(c−b−1) if a < b,

(p2 − 1)p2(c−a−1) · (p2 − p)p2(c−b−1) if a = b;

and from Lemma 3·2 (3) we infer that

#M1 = t1/t2 =

{
(p + 1)p2(c−a)−3 if a < b,

p2(c−a)−2 if a = b.

Rewriting this in terms of k gives the formulae stated in (1) for p > 2.

Lemma 3·4. Let n, k ∈ N0 with k � n. Then we have

bk,n =




ck,n if k � n/2,

3 · (22k−1 − 2k−1) if p = 2 and k = (n + 1)/2,

22k−1 − 2k if p = 2 and k = (n + 2)/2,

0 if p = 2 and k � (n + 3)/2,

(p − 1)−1(p2k−1 − pk−1) if p > 2 and k = (n + 1)/2,

0 if p > 2 and k � (n + 2)/2.

Proof. We prove the lemma for p > 2. The formulae stated for p = 2 are obtained
by a similar argument.
Suppose that p > 2. Let H be a subgroup of (L,+) with �(H) = k and |L:H| = pn.

Write sj := sj(H) for j ∈ {1, 2}. If k � n/2, then s1 + s2 = n − k � k = �(H), so H is
a subalgebra of L by Lemma 3·2. If k � (n + 2)/2, then s1 + s2 = n − k � k − 2 =
�(H) − 2, so H is not a subalgebra of L by Lemma 3·2.
It remains to consider the case where k = (n + 1)/2. Lemma 3·3 shows that under

this assumption

bk,n =




∑(k−2)/2
j=0 (p + 1)p2k−2j−3 if k ≡2 0,∑(k−3)/2
j=0 (p + 1)p2k−2j−3 + pk−1 if k ≡2 1.

After summing, this simplifies to bk,n = (p − 1)−1(p2k−1 − pk−1).



Zeta functions related to the pro-p group SL1(∆p) 53
Lemma 3·5. Let n, k ∈ N0 with k � n. Then we have

dk,n =




0 if k � n/2,

2 ·
(
2n+1 − 2(n+1)/2

)
if p = 2 and k = (n + 1)/2,

6 ·
(
2n+1 − 2(n+2)/2

)
if p = 2 and k = (n + 2)/2,

7 · (22k−1 − 23k−n−2) if p = 2 and k � (n + 3)/2,

(p − 1)−1(p + 1)
(
pn+1 − p(n+1)/2

)
if p > 2 and k = (n + 1)/2,

(p − 1)−2(p3 − 1)(p2k−1 − p3k−n−2) if p > 2 and k � (n + 2)/2.

Proof. This follows from Lemmata 3·1 and 3·4 by direct calculation. Again, we
give full details only for p > 2.

Suppose that p > 2. The formulae for k � n/2 and k � (n + 2)/2 follow trivially
from the quoted lemmata, and for k = (n + 1)/2 we obtain

dk,n =
(p3 − 1)(p2k−1 − p3k−n−2)

(p − 1)2 − p2k−1 − pk−1

p − 1

=
((p3 − 1)− (p − 1))(p2k−1 − pk−1)

(p − 1)2

=
(p + 1)

(
pn+1 − p(n+1)/2

)
(p − 1) .

Lemma 3·6. Let n ∈ N0.

(1) Suppose that p = 2. Then we have

d̂n(L) =

{
1
3

(
22n+3 − 5 · 2n+2 + 3 · 2(n+4)/2

)
if n ≡2 0,

1
3

(
22n+3 − 2n+4 + 3 · 2(n+3)/2

)
if n ≡2 1.

(2) Suppose that p > 2. Then we have d̂n(L) = D(n)/(p − 1)2(p + 1), where

D(n) =

{
p2n+3 − (p2 + p + 1)pn+1 + (p + 1)p(n+2)/2 if n ≡2 0,

p2n+3 − (2p + 1)pn+1 + (p + 1)p(n+1)/2 if n ≡2 1.

Proof. Using Lemma 3·5 and equation (3·1), the proof becomes purely computa-
tional. Again, we assume that p > 2 and leave the reader to check the p = 2 case.
Recall that d̂n(L) =

∑n
k=�n/3� dk,n. If n ≡2 0, we get

d̂n(L) =
n∑

k=(n+2)/2

p3 − 1
(p − 1)2 (p

2k−1 − p3k−n−2)

=
p3 − 1
(p − 1)2

(
p2n+2 − pn+2

p(p2 − 1) − p3n+3 − p3(n+2)/2

pn+2(p3 − 1)

)

=
(p2 + p + 1)(p2n+1 − pn+1)

(p − 1)2(p + 1) −
(p + 1)

(
p2n+1 − p(n+2)/2

)
(p − 1)2(p + 1)

=
p2n+3 − (p2 + p + 1)pn+1 + (p + 1)p(n+2)/2

(p − 1)2(p + 1) .
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If n ≡2 1, we get

d̂n(L) =
p + 1
p − 1

(
pn+1 − p(n+1)/2

)
+

n∑
k=(n+3)/2

p3 − 1
(p − 1)2 (p

2k−1 − p3k−n−2)

=
(p2 − 1)

(
pn+1 − p(n+1)/2

)
(p − 1)2

+
p3 − 1
(p − 1)2

(
p2n+2 − pn+3

p(p2 − 1) − p3n+3 − p3(n+3)/2

pn+2(p3 − 1)

)

=
(p3 + p2 − p − 1)

(
pn+1 − p(n+1)/2

)
(p − 1)2(p + 1)

+
(p2 + p + 1)(p2n+1 − pn+2)

(p − 1)2(p + 1) −
(p + 1)

(
p2n+1 − p(n+3)/2+1

)
(p − 1)2(p + 1)

=
p2n+3 − (2p + 1)pn+1 + (p + 1)p(n+1)/2

(p − 1)2(p + 1) .

Proof of Theorem 1·1. The proof is now purely computational.
First suppose that that p > 2. Then L = L = sl1(∆p). The formula for ân(L),

n ∈ N0, follows from Lemma 3·6 and equation (3·1). Next we compute the defect
zeta function ζ−

L (s) =
∑∞

n=0 d̂np−ns. From Lemma 3·6 we obtain

ζ−
L (s) · (p − 1)2(p + 1) =

∞∑
k=0

p2k+3p−ks − (p2 + p + 1)
∞∑

k=0

p2k+1p−2ks

+ (p + 1)
∞∑

k=0

p(2k+2)/2p−2ks − (2p + 1)
∞∑

k=0

p2k+2p−(2k+1)s

+ (p + 1)
∞∑

k=0

p(2k+2)/2p−(2k+1)s

= p · Φ(p, p−s),

where

Φ(p, T ) = p2(1− p2T )−1 + (p + 1)(1 + T )(1− pT 2)−1

−
(
(p2 + p + 1) + (2p + 1)pT

)
(1− p2T 2)−1.

Furthermore we have

Φ(p, T ) · (1− p2T )(1− pT 2)(1− p2T 2)

= p2
(
1− (p2 + p)T 2 + p3T 4

)
+ (p + 1)(1 + T )(1− p2T − p2T 2 + p4T 3)

−
(
p2 + p + 1 + (2p + 1)pT

) (
1− p2T − pT 2 + p3T 3

)
= (p4 − 2p2 + 1)T + (p4 − p3 − p2 + p)T 2

= (p2 − 1)2T + (p − 1)2(p + 1)pT 2.

This shows that

ζL(s) = ζZp
3 (s)−Ψ(p, p−s)ζp(s − 2)ζp(2s − 1)ζp(2s − 2),
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where

Ψ(T1, T2) = T1T2(1 + T1 + T1T2).

This simplifies to

ζL(s) = ζp(s)ζp(s − 1)ζp(s − 2)
− p−s+1(1 + p + p−s+1)ζp(s − 2)ζp(2s − 1)ζp(2s − 2)

=
(1 + p−s+1)(1− p−2s+1)− p−s+1(1 + p + p−s+1)(1− p−s)

(1− p−s)(1− p−s+2)(1− p−2s+1)(1− p−2s+2)

= ζp(s)ζp(2s − 1)ζp(2s − 2),

and it is easy to check the functional equation. The last claim, about the congruence
subalgebras of L, follows from [2, theorem 2·1].
Now suppose that p = 2. Then L = sl1(∆2) is a subalgebra of index 4 in L. So for

every n ∈ N0 we have

ân(L) = ân+2(L)− #{M � L | |L : M | = 2n+2, M �L}.

The subalgebra growth of L is calculated similarly as above; we obtain

ân(L) =

{
1
3

(
7 · 2n+1 − 3 · 2(n+4)/2 + 1

)
if n ≡2 0,

1
3

(
5 · 2n+1 − 3 · 2(n+3)/2 + 1

)
if n ≡2 1.

If n ∈ N0 and if M is a subalgebra of index 2n+2 in L with M � L, then clearly
s1(M ) = 0 and s3(M ) = n− s2(M ) + 2; moreover Lemma 3·2 provides the restriction
n/2 � s2(M ) � (n + 2)/2. Using Lemma 3·2 once again, it is therefore easy to show
that for every n ∈ N0,

#{M � L | |L : M | = 2n+2, M �L} =
{
5 · 2n+1 if n ≡2 0,

3 · 2n+1 if n ≡2 1.

From this we obtained the desired formulae for ân(L) and a straightforward computa-
tion gives the corresponding zeta function ζL(s). The last claim, about the congruence
subalgebras of L, follows again from [2, theorem 2·1].

In conclusion we record the following formulae, which describe explicitly the coef-
ficients of the zeta functions associated to the p-power congruence subalgebras of
sl1(∆p); they can be computed easily from Theorem 1·1, and the resulting formulae
underline our second comment in Remarks 1·2.

Proposition 3·7. Let Dp be a central simple Qp-division algebra of index 2, with
maximal Zp-order ∆p. Suppose that p > 2, and let m ∈ N0. Then for every n ∈ N0 we
have

ân

(
sl
2m
1 (∆p)

)
=

A(m, n)
(p − 1)2(p + 1) ,
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where

A(m, n) =




p2n+3 − (p + 1)pn+1 + 1 if m � n,

((p2 + p + 1)pm − p − 1)pn+1

− (p + 1)p(n+3m+2)/2 + 1 if m < n and m + n ≡2 0,

((2p + 1)pm − p − 1)pn+1

− (p + 1)p(n+3m+1)/2 + 1 if m < n and m + n ≡2 1.

4. Addendum: zeta functions counting ideals

Throughout this section let L be a Zp-Lie algebra of dimension d. Suppose thatM
is a subalgebra of L. The lower level �L(M ) was introduced in the previous section;
we now define the upper level of M in L,

uL(M ) := sup{k ∈ N0 | M ⊆ pkL}.

For every x ∈ L let 〈x〉L denote the ideal generated by x in L. For every k ∈ N0 let
Ik(L) := {I � L | uL(I) = k and |L: I| < ∞}. We observe:

Lemma 4·1. Let L be a Zp-Lie algebra of dimension d and let k ∈ N0. Then there
is a bijection I0(L) → Ik(L), given by I �→ pkI, and for every I ∈ I0(L) we have
|L: pkI| = pkd|L: I|.

From this almost trivial observation we obtain

ζ�
L(s) =

∞∑
k=0

∑
I∈Ik(L)

|L: I|−s = ζp(ds)
∑

I∈I0(L)
|L: I|−s. (4·1)

In general, the sum on the right-hand side of (4·1) may still be rather complicated;
but there is a class of Zp-Lie algebras for which I0(L) is finite, so that ζ�

L(s) takes a
particularly simple shape. We define the rigidity of L,

r(L) := sup{�L(I)− uL(I) | I � L with |L: I| < ∞}.

From (4·1) it is easy to observe:

Lemma 4·2. Let L be a Zp-Lie algebra of dimension d and suppose that r := r(L) is
finite. Then there exists a polynomial Φ ∈ Z[T ] with non-negative coefficients and of
degree at most rd such that

ζ�
L(s) = Φ(p

−s)ζp(ds).

In particular, for every n ∈ {1, 2, . . . , d} and all j ∈ N�r we have

â�
n+jd(L) = â�

n+(r−1)d(L).

The next result states under which conditions r(L) is finite, so that Lemma 4·2
becomes applicable; compare with [2, proposition 4·1].

Proposition 4·3. Let L be a Zp-Lie algebra. Then r(L) is finite if and only if Qp ⊗L
is a simple p-adic Lie algebra.

Proof. “←”. Assume that Qp ⊗ L is a simple p-adic Lie algebra. Let K :=L \ pL.
For every n ∈ N0 define Un := {x ∈ K | �L(〈x〉L) � n}. Then {Un | n ∈ N0} provides



Zeta functions related to the pro-p group SL1(∆p) 57
an open covering of the compact set K. Hence we find r ∈ N0 such that every x ∈ K
satisfies �L(〈x〉L) � r.
Next suppose that I is a finite index ideal of L and write m :=uL(I) ∈ N0. Choose

y ∈ I such that y ∈ pmL \ pm+1L, and put x := p−my ∈ K. It follows that �L(〈y〉L) =
m + �L(〈x〉L) � m + r, so �L(I)− uL(I) � (m + r)− m = r. This shows that r(L) � r
is finite.
“→”. Now assume that the p-adic Lie algebra L(e) :=Qp ⊗ L is not simple and let
r ∈ N0. We have to find a finite index ideal I of L with �L(I)− uL(I) > r. Let J (e) be
a non-trivial proper ideal of L(e). Then J :=L � J (e) is a non-trivial ideal of infinite
index in L. Put m :=uL(J) + r + 1. Then I := J + pmL is a finite index ideal of L with
�L(I)− uL(I) = r + 1 > r.

Example 4·4. Suppose that L = Zpi+Zpj+Zpk as in the previous section. Then it
is easily checked that for every m ∈ N0 we have r(pmL) = m + 1, and for m = 0 one
obtains Proposition 1·5.

In both situations, counting subalgebras and counting ideals, there is a probabil-
istic formula which relates the zeta functions of L and pL; see [2]. Moreover, if the
dimension of L is no larger than three, this formula provides a practical procedure for
calculating one of these zeta functions from the other. Du Sautoy has used this fact
to compute ζ�

L(s) for L = sl
m
2 (Zp),m ∈ N0; albeit there appears to be a mistake in [2,

lemma 4·6]. With some care it is possible to correct those formulae and in a similar
way we can calculate ζ�

L(s) for L = sl
2m
1 (∆p), m ∈ N0. Unfortunately, the resulting

formulae are not particularly illuminating.
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