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A comparison is made of the behaviour of some evolutionary algorithms in time-varying adaptive recursive filter systems. Sim-
ulations show that an algorithm including random immigrants outperforms a more conventional algorithm using the breeder
genetic algorithm as the mutation operator when the time variation is discontinuous, but neither algorithms performs well when
the time variation is rapid but smooth. To meet this deficit, a new hybrid algorithm which uses a hill climber as an additional
genetic operator, applied for several steps at each generation, is introduced. A comparison is made of the effect of applying the
hill climbing operator a few times to all members of the population or a larger number of times solely to the best individual; it is
found that applying to the whole population yields the better results, substantially improved compared with those obtained using
earlier methods.
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1. INTRODUCTION

Many problems in signal processing may be viewed as sys-
tem identification. A block diagram of a typical system iden-
tification configuration is shown in Figure 1. The informa-
tion available to the user is typically the input and the noise-
corrupted output signals, x(n) and a(n), respectively, and
the aim is to identify the properties of the “unknown sys-
tem” by, for example, putting an adaptive filter of a suitable
structure in parallel to the unknown system and altering the
parameters of this filter to minimise the error signal ε(n).
When the nature of the unknown system requires pole-zero
modelling, there is a difficulty in adjusting the parameters
of the adaptive filter, as the mean square error (MSE) is a
nonquadratic function of the recursive filter coefficients, so
the error surface of such a filter may have local minima as
well as the global minimum that is being sought. The ability
of evolutionary algorithms (EAs) to find global minima of
multimodal functions has led to their application in this area
[1, 2, 3, 4].

All these authors have considered only time-invariant
unknown systems. However in many real-life applications,
time variations are an ever-present feature. In noise or echo
cancellation, for example, the unknown system represents

the path between the primary and reference microphones.
Movements inside or outside of the recording environment
cause the characteristics of this filter to change with time.
The system to be identified in an HF transmission system
corresponds to the varying propagation path through the at-
mosphere. Hence there is an interest in investigating the ap-
plicability of evolutionary-based adaptive system identifica-
tion algorithms to tracking time-varying recursive systems.
Previous work on the use of EAs in time-varying systems
has been published in [5, 6, 7, 8, 9] but none of these deal
with system identification of recursive systems. After explain-
ing our choice of filter structure in Section 3, we go on in
Section 4 to compare the performance of the EA introduced
in [4] with that of the algorithm in [7]. We show that while
both can cope reasonably well with slow variations in the sys-
tem parameters, the approach of [7] is more successful in the
case of discontinuous changes, but neither copes well where
the variation is smooth but fairly rapid (the distinction be-
tween slow and rapid variation is explained quantitatively
in Section 3.1). In Section 5, we propose a new hybrid algo-
rithm which embeds what is in effect a hill-climbing opera-
tor within the EA and show that this new algorithm is much
more successful for the difficult problem of tracking rapid
variations.
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Figure 1: System identification.

2. GENETIC ALGORITHMS IN CHANGING
ENVIRONMENTS

The standard genetic algorithm (GA), with its strong selec-
tion policy and low rate of mutation, quickly eliminates di-
versity from the population as it proceeds. In typical function
optimization applications, where the “environment” remains
static, we are not usually concerned with the population di-
versity at later stages of the search, so long as the best or mean
value of the population fitness is somewhere near to an ac-
ceptable value. However, when the function to be optimized
is nonstationary, the standard GA runs into considerable
problems once the population has substantially converged
on a particular region of the search space. At this point, the
GA is effectively reliant on the small number of random mu-
tations, occurring each generation, to somehow redirect its
search to regions of higher fitness since standard crossover
operators are ineffective when the population has become
largely homogeneous. This view is borne out by Pettit’s and
Swigger’s study [10] in which a Holland-type GA was com-
pared to cognitive (statistical predictive) and random point-
mutation models in a stochastically fluctuating environment.
In all cases, the GA performed poorly in tracking the chang-
ing environment even when the rate of fluctuation was slow.
An approach to providing EAs capable of functioning well in
time-varying systems is the mutation-based strategy adopted
by Cobb and Grefenstette [5, 6, 7]. In this approach, popula-
tion diversity is sustained either by replacing a proportion of
the standard GA’s population with randomly generated in-
dividuals, the random immigrants strategy, or by increasing
the mutation rate when the performance of the GA degrades
(triggered hypermutation). Cobb’s hypermutation operator is
adaptive, briefly increasing the mutation rate when it detects
that a degradation of performance (measured as a running
average of the best performing population members over five
generations) has occurred. However, it is easy to contrive cat-
egories of environmental change which would not trigger the
hypermutable state. On continuously changing functions,
the hypermutation GA has a greater variance in its tracking
performance than either the standard or random immigrants
GA. In oscillating environments, where the changes are more
drastic, the high mutation level of the hypermutation GA
destroys much of the information contained in the current
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Figure 2: Pole-zero lattice filter.

population. Consequently, when the environment returns to
its prior state, the GA has to locate the previous optimum
from scratch.

3. CHOICE OF RECURSIVE FILTER STRUCTURE

One of the main difficulties encountered in recursive adap-
tive systems is the fact that the system can become unstable
if the coefficients are unconstrained. With many filter struc-
tures, it is not immediately obvious whether any particular
set of coefficients will result in the presence of a pole out-
side the unit circle, and hence instability. On the other hand,
it is important that the adaptive algorithm is able to cover
the entire stable coefficient space, so it is desirable to adopt
a structure which will make this possible at the same time as
making stability monitoring easy. It is for this reason that the
pole-zero lattice filter [11] was adopted for this work. A block
diagram of the filter structure is given in Figure 2.

The input-output relation of the filter is given by

y(n) =
N∑

i=0

νi(n)Bi(n), (1)

where Fi(n) and Bi(n) are the forward and backward residu-
als denoted by

Bi(n) = Bi−1(n) + κi(n)Fi(n), i = 1, 2, . . . , N,

Fi(n) = Fi+1(n)− κi+1(n)Bi(n− 1), i = N, . . . , 1,

FN (n) = x(N).
(2)

It can be shown that a necessary and sufficient condi-
tion for all of the roots of the pole polynomial to lie within
the unit circle is |ki| < 1, i = 1, . . . , N , so the stability of
candidate models can be guaranteed merely by restricting
the range over which the feedback coefficients are allowed
to vary. Since this must be done when implementing the GA
anyway, the ability to maintain filter stability is essentially ob-
tained without cost.

3.1. Quantifying time variations in the system
being tracked

Work on the tracking performance of LMS, detailed in [12],
employs the concept of the nonstationarity degree to embody
the notions of both the size and speed of time variations. The
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nonstationarity degree d(n) is defined as

d(n) =

√√√√E
(∣∣t(n)

∣∣2
)

σmin(n)
, (3)

where t(n) is the output noise caused by the time variations
in the unknown system and σmin(n) is the output noise power
in the absence of time variations in the system.

Having devised a metric incorporating both the speed
and size of time variations, Macchi [12] goes on to describe
three distinct classes of nonstationarity. Slow variations are
those in which the nonstationarity degree is much less than
one, that is, the variation noise is masked by the measure-
ment noise. For the LMS adaptive filter, slow changes to the
plant impulse response are seen to be easy to track since
the time variations need not be estimated very accurately.
This class of time variations is further subdivided into two
groups in which the “unknown” filter coefficients undergo
deterministic or random evolution patterns. Rapid varia-
tions (d(n) permanently greater than one), however, present
a much greater problem to LMS and LS adaptive filters. In
the case of time-varying line enhancement at low signal-to-
noise ratio, where the frequency of the sinusoidal input signal
is “chirped,” Macchi et al. state that “. . . slow adaptation/slow
variation condition implies an upper limit for the chirp rate
ψ. This limit is the level above which the misadjustment is
larger than the original additive noise. The noisy signal is
thus a better estimate of the sinusoid than the adaptive sys-
tem output. The “slow adaptation” condition is therefore re-
quired, in practice, to implement the adaptive system” [13,
page 360].

In the case of LMS adaptive and inverse adaptive mod-
elling, “adaptive filters cannot track time variations which
are so rapid that d(n) is permanently greater than one. In-
deed within a single iteration, the algorithm cannot acquire
the new optimal filter H̃(n+1), starting from H̃(n)” [12, page
298].

As a consequence, only a special subset of rapid time
variations is generally considered in the context of LMS fil-
ter adaptation. The jump class of nonstationarity produces
scarce large changes in the unknown filter impulse-response.
Hence the definition of jump variations is variations where
occasionally

d(n) ≥ 1, (4)

but otherwise,

d(n) � 1. (5)

In this case “occasionally” is defined as a period of time long
enough for the algorithm to achieve the steady-state where
the error is approximately equal to the additive noise.

4. RANDOM IMMIGRANTS AND BGA-TYPE
ALGORITHMS

In this section, the performance of two genetic adaptive algo-
rithms operating in a variety of nonstationary environments

is investigated. The first algorithm is the modified genetic
adaptive algorithm described in [4]. The lattice coefficients
are encoded as floating-point numbers and the mutation op-
erator used is that from the breeder genetic algorithm (BGA)
described in [14]. This scheme randomly chooses, with prob-
ability 1/32, one of the 32 points ±(2−15A, 2−14A, . . . , 20A),
where A defines the mutation range and is, in these simu-
lations, set to 0.1 × coefficient range. The crossover opera-
tor involved selecting two parent filter structures at random
and generating identical copies. Two cut points were ran-
domly selected and coefficients lying between these limits
were swapped between the offspring. The newly generated
lattice filters were then inserted into the population replac-
ing the two parent structures.

A measure of fitness of the new filter was obtained by
calculating the MSE for a block of current input and output
data. A block length of 10 input-output pairs was used for the
experiments reported below on a slowly varying system while
a length of 5 input-output pairs was used for the rapidly vary-
ing system. Fitness scaling was used, as described in Gold-
berg [15, page 77], and fitness proportional selection was
implemented using Baker’s stochastic universal sampling al-
gorithm [16]. Elitism was used to preserve the best perform-
ing individual from each generation. Crossover and mutation
rates were set to 0.1 and 0.6, respectively, and the population
contained 400 models. It was hoped that the use of the BGA
mutation scheme would give this algorithm a greater ability
to follow system changes than that of a GA using a more con-
ventional mutation scheme, as the BGA algorithm retains,
even when the population has comparatively converged, sig-
nificant probability of making substantial changes in the co-
efficients if the system that it is modelling is found to have
changed.

In competition with this genetic optimizer, the random
immigrants mechanism of Cobb and Grefenstette, discussed
above, was placed. For this set of simulation experiments,
20% of the population was replaced by randomly generated
individuals every 10 generations. The same controlling pa-
rameters were used for both GAs.

4.1. The test systems

Deterministically varying environments were produced by
making nonrandom alterations to the coefficients of a sixth-
order all-pole lattice filter. In the case of slow and rapid time
variations, the lattice coefficients were varied in a sinusoidal
or cosinusoidal fashion taking in the full extent of the co-
efficient range (±1). Changes to the plant coefficients were
effected at every sample instant with the precise magnitude
of these variations reflected in the value of d for each envi-
ronment. With measurement noise suitably scaled to give a
signal-to-noise ratio of approximately 40 dB, the nonstation-
arity degrees of the slow and rapidly varying systems are 0.03
and 1.6, respectively.

Traditional (nonevolutionary) adaptive algorithms can
run into problems when called upon to track rapid time
variations (d permanently greater than one). When these
changes occur infrequently, however, the well-documented
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Figure 3: Performance of the genetic adaptive algorithm in a
rapidly varying environment (d = 1.6).

transient behaviour of the adaptive algorithm can be used
to describe the time to convergence and excess MSE that re-
sults. In order to investigate the performance of the genetic
adaptive algorithm under such conditions, an environment
was constructed in which the time variations of the plant
coefficients are occasional and are often large in magnitude.
The system to be modelled was once again a sixth-order all-
pole filter. The infrequent time variations were introduced
by periodically negating one of the plant lattice coefficients.
As a consequence, for much of the simulation, the unknown
system is time invariant (d = 0) with the nonstationar-
ity degree greater than zero only during the occasional step
changes.

4.2. Results

The performance of the BGA-based algorithm and random
immigrants GA was evaluated in each of the three time-
varying environments detailed. In each case, fifty GA runs
were performed using the same environment (time-varying
system).

In both the slowly changing and the jump environments,
the behaviour was more or less as expected. In the slowly
changing environment, both algorithms were able to reduce
the error to near the −40 dB noise floor (set by the level of
noise added to the system) and inspection of the parameters
shows them to be following the changes in the system well.
In the case of the step changes, the random immigrants al-
gorithm exhibited better behaviour, recovering more quickly
when the system changed. The tracking of rapid changes
however is more difficult than either of these, and hence of
more interest, and in this neither of the algorithms are par-
ticularly successful. The error reduction performance of the
two adaptive algorithms is illustrated in Figure 3. In addi-
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Figure 4: Genetic adaptive algorithm tracking performance in a
rapidly varying environment (d = 1.6).

tion to rapid small-scale excursions resulting from the use of
blocked input-output data, the extent to which the unknown
system is correctly identified fluctuates on a more macro-
scopic scale. The normalised mean square error (NMSE)
varies between the theoretical minimum of −40 dB and a
maximum of around −8 dB, eventual settling down to a
mean of around −20 dB.

These phenomena can be explained when one looks at a
graph of the coefficient tracking performance (Figure 4). The
graph shows the time evolutions of the first three direct-form
coefficients of the plant (represented by a dotted line) and the
best adaptive filter in the population. The coefficients gener-
ated by the standard floating point GA are depicted by a gray
line whilst those produced by the random immigrants GA
are represented by a black line. Neither the standard floating-
point GA nor the random immigrants GA were able to track
the rapid variations in the plant coefficients throughout the
entire run. The periods when the best adaptive filter coef-
ficient values differed significantly from the optimal values
correspond, in both cases, to the times when the identifica-
tion was poor (see Figure 3).

5. HYBRID GENETIC ALGORITHMS

Clearly, an algorithm which would be better able to track
rapid changes system parameters would be useful. A possible
method is to devise a hybrid algorithm combining the global
properties of the GA with a local search method to follow
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the local variations in the parameters. In this way, the two
major failings of the individual components of the hybrid
can be addressed. The GA is often capable of finding reason-
able solutions to quite difficult problems but its characteris-
tic slow finishing is legendary. Conversely, the huge array of
gradient-based and gradientless local search techniques run
the risk of becoming hopelessly entangled in local optima. In
combining these two methodologies, the hybrid GA has been
shown to produce improvements in performance over the
constituent search techniques in certain problem domains
[17, 18, 19, 20].

Goldberg [15, page 202] discusses a number of ways in
which local search and GAs may be hybridized. In one con-
figuration, the hybrid is described in terms of a batch scheme.
The GA is run long enough for the population to become
largely homogeneous. At this point, the local optimization
procedure takes over and continues the search, from per-
haps the best 5 or 10% of solutions in the population, un-
til improvement is no longer possible. This method allows
the GA to determine the gross features of the solution space,
hopefully resulting in convergence to the basin of attraction
around the global optimum, before switching to a technique
better suited to fine tuning of the solutions. An alternative
approach is to embed the local search within the framework
of the GA, treating it rather like another genetic operator.
This is the scheme adopted by Kido et al. [18] (who com-
bine GA, simulated annealing, and TABU search), Bersini
and Renders [20] (whose GA incorporates a hill-climbing
operator), and Miller et al. [19] (who employ a variety of
problem-specific local improvement operators). This second
hybrid configuration is better suited to the identification of
time-varying systems. In this case, the local search heuristic
is embedded within the framework of the EA and is treated
as another genetic operator. The local optimization scheme is
enabled for a certain number of iterations at regular intervals
in the GA run.

The hybrid approach utilizes a random hill-climbing
technique to perform periodic local optimization. This pro-
cedure is ideally suited to incorporation in the EA since it
does not require calculation of gradients or any other aux-
iliary information. Instead, the same evaluation function
can be employed to determine the merit of the newly sam-
pled points in the coefficient space. Since the technique is
“greedy,” the locally optimized solution is always at least as
good as its genetic predecessor. In addition, once a change
in the unknown system has occurred and is detected by a
degradation of the model’s performance, no new data sam-
ples are required. The hill-climbing method incorporated
here into the GA is the random search technique proposed
by Solis and Wets [21]. This algorithm randomly gener-
ates a new search point from a uniform distribution cen-
tred about the current coefficient set. The standard devi-
ation of the distribution ρk is expanded or contracted in
relation to the success of the algorithm in locating better
performing models. If the first-chosen new point is not an
improvement on the original point, the algorithm tests an-
other point the same distance away in exactly the opposite
direction.

In detail, the structure of the algorithm as used here is as
follows. Firstly, the parameter ρk is updated, being increased
by a factor of 2 if the previous 5 iterations have all yielded
improved fitness, decreased by a factor of 2 if the previous
3 iterations have all failed to find an improved fitness, and
left unchanged if neither of these conditions has been met.
In the second step, a new candidate point in coefficient space
is obtained from a normal distribution of standard deviation
ρk centred on the current point. The fitness of this new point
is then evaluated. If the fitness is improved, the new point
is retained and becomes the current point; if the fitness is
not improved, the point an equal distance in the opposite
direction is tested; and if better, it becomes the current point.
If neither yields an improvement, the current point is kept
and the algorithm returns to the first step.

The use of this hybrid arrangement of EA and hill climber
introduces further control parameters into the adaptive sys-
tem, namely, the number of structures to undergo local opti-
mization and the number of iterations in each hill-climbing
episode. Two extremes were investigated. In the first, hy-
brid A, every model in the population underwent a limited
amount of hill climbing. The other configuration, hybrid B,
locally optimized only the best structure in the population at
each generational step. In order to allow for direct compar-
ison with the results in the previous section, the population
size was reduced so that there would be approximately the
same number of function evaluations in each case. For hy-
brid A, each model in a population of 100 underwent three
iterations of the hill-climbing algorithm at every generational
step while for hybrid B the population was set to 300 and
then the best at each generation was optimized over approxi-
mately 100 iterations of the random hill-climbing procedure.

Simulation experiments indicated that both hybrids were
able to track the slowly varying environment requiring less
than two hundred generations to acquire near-optimal coef-
ficient values. The smaller population size implemented in
each case resulted in poorer initial performance, but this was
offset by the increased rate of improvement brought about
by the local hill-climbing operator. In the case of intermit-
tent step changes in the unknown system characteristics, the
performance of the two hybrids was observed to fall between
that of the standard and random immigrants GAs. Figure 5
compares the tracking performance of these two hybrid GA
configurations in a rapidly changing environment. Hybrid A
(development of every individual) is represented by a gray
line. The second hill-climbing/GA hybrid (development of
the best individual) is shown by a black solid line. Although
a slight bias in the estimated coefficients is sometimes in ev-
idence, hybrid A is clearly able to track the qualitative be-
haviour of the plant coefficients. Development of the best in-
dividual, however, is not sufficient to induce reliable tracking
and the performance of hybrid B suffers as a result.

The addition of individual improvement within the EA
framework has resulted in an adaptive algorithm which is
able to track the coefficients of a rapidly varying system
(d > 1) with some success. This is a feat which poses con-
siderable problems to conventional adaptive algorithms (see
Section 3.1). Wholesale local improvement was observed to
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Figure 5: Genetic adaptive algorithm tracking performance in a
rapidly varying environment (d = 1.6).

outperform the development of a single individual since this
latter technique leaves the remainder of the population trail-
ing behind the best structure. As the nonstationarity degree
of the plant is increased, an adaptive algorithm relying solely
upon evolutionary principles will lag further behind the time
variations. This hybrid technique, however, permits the pro-
vision of greater local optimization flexibility (more itera-
tions of the hill climber) when required.

Figure 6 illustrates the tracking performance of the hy-
brid GA subjected to a time-varying environment in which
the nonstationarity degree was three times greater than in
the previous experiment (d = 4.8). The population in this
case contained 400 models, each one undergoing ten local
optimization iterations at every generational step. The input-
output block size was further reduced to just two samples
in order that the plant coefficients would not vary substan-
tially within the duration of a data block. This resulted in
the coefficient estimates generated by the hybrid adaptive al-
gorithm fluctuating about their trajectory to a greater ex-
tent. Individual evaluations of candidate models, however,
required far less computation. The overall tracking perfor-
mance of the hybrid was observed to be less accurate in
this case but the mean estimates of the time-varying plant
coefficients were observed to express the correct qualitative
behaviour.

With emphasis shifting away from the role of evolution-
ary improvement in the hybrid adaptive algorithm as the
time variations become more extreme, the balance of explo-
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Figure 6: Genetic adaptive algorithm tracking performance in a
rapidly varying environment (d = 4.8).

ration versus exploitation (or global versus local search) is
altered. This highlights that no single adaptation scheme is
likely to outperform all others on every class of time-varying
problem. On slowly varying systems, for example, a more
or less conventional EA provided good performance. When
the unknown system was affected by intermittent but large-
scale time variations, the wider ranging search of the ran-
dom immigrants operator was required. If the error surface is
multimodal, hill-climbing operators are unlikely to provide
the desired search characteristics. Conversely, with a rapidly
changing system, the fast local search engendered by the hill-
climbing operator provides the necessary response since only
relatively minor changes to the optimal coefficients occur at
each generational step. However, this classification assumes
that the nature of the time variations affecting the unknown
system is known in advance. When such information is not
available or when more than one class of time variation is
present, some combination of techniques may be desirable.

6. CONCLUSIONS

On system identification tasks where the plant coefficients
are changing slowly (d � 1), both the floating-point GA
and the random immigrants GA were able to track the time
variations. However, when the time variations were infre-
quent but large in magnitude (jump variations), the standard
GA was unable to react quickly to the changes in the coeffi-
cient values; but the random immigrants mechanism, on the
other hand, produced sufficient diversity in the population
to rapidly respond to such step-like time variations. Neither
algorithm was able to successfully track the plant coefficients
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when the time variations were rapid and continuous (d > 1).
In the final section of the paper, a hybrid scheme is intro-
duced and shown to be more effective than either of the ear-
lier schemes for tracking these rapid variations.
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Preliminary call for papers

The 2011 European Signal Processing Conference (EUSIPCO 2011) is the
nineteenth in a series of conferences promoted by the European Association for
Signal Processing (EURASIP, www.eurasip.org). This year edition will take place
in Barcelona, capital city of Catalonia (Spain), and will be jointly organized by the
Centre Tecnològic de Telecomunicacions de Catalunya (CTTC) and the
Universitat Politècnica de Catalunya (UPC).
EUSIPCO 2011 will focus on key aspects of signal processing theory and
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Organizing Committee

Honorary Chair
Miguel A. Lagunas (CTTC)

General Chair
Ana I. Pérez Neira (UPC)

General Vice Chair
Carles Antón Haro (CTTC)

Technical Program Chair
Xavier Mestre (CTTC)

Technical Program Co Chairsapplications as listed below. Acceptance of submissions will be based on quality,
relevance and originality. Accepted papers will be published in the EUSIPCO
proceedings and presented during the conference. Paper submissions, proposals
for tutorials and proposals for special sessions are invited in, but not limited to,
the following areas of interest.

Areas of Interest

• Audio and electro acoustics.
• Design, implementation, and applications of signal processing systems.

l d l d d

Technical Program Co Chairs
Javier Hernando (UPC)
Montserrat Pardàs (UPC)

Plenary Talks
Ferran Marqués (UPC)
Yonina Eldar (Technion)

Special Sessions
Ignacio Santamaría (Unversidad
de Cantabria)
Mats Bengtsson (KTH)

Finances
Montserrat Nájar (UPC)• Multimedia signal processing and coding.

• Image and multidimensional signal processing.
• Signal detection and estimation.
• Sensor array and multi channel signal processing.
• Sensor fusion in networked systems.
• Signal processing for communications.
• Medical imaging and image analysis.
• Non stationary, non linear and non Gaussian signal processing.

Submissions

Montserrat Nájar (UPC)

Tutorials
Daniel P. Palomar
(Hong Kong UST)
Beatrice Pesquet Popescu (ENST)

Publicity
Stephan Pfletschinger (CTTC)
Mònica Navarro (CTTC)

Publications
Antonio Pascual (UPC)
Carles Fernández (CTTC)

I d i l Li i & E hibiSubmissions

Procedures to submit a paper and proposals for special sessions and tutorials will
be detailed at www.eusipco2011.org. Submitted papers must be camera ready, no
more than 5 pages long, and conforming to the standard specified on the
EUSIPCO 2011 web site. First authors who are registered students can participate
in the best student paper competition.

Important Deadlines:

P l f i l i 15 D 2010

Industrial Liaison & Exhibits
Angeliki Alexiou
(University of Piraeus)
Albert Sitjà (CTTC)

International Liaison
Ju Liu (Shandong University China)
Jinhong Yuan (UNSW Australia)
Tamas Sziranyi (SZTAKI Hungary)
Rich Stern (CMU USA)
Ricardo L. de Queiroz (UNB Brazil)

Webpage: www.eusipco2011.org

Proposals for special sessions 15 Dec 2010
Proposals for tutorials 18 Feb 2011
Electronic submission of full papers 21 Feb 2011
Notification of acceptance 23 May 2011
Submission of camera ready papers 6 Jun 2011


