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SPIN AND GAUGE FIELDS ON A LATTICE

ABSTRACT

Formulating quantum field theories on a lattice provides one way
of controlling the divergences that appear in the calculation of
physical quantities for these theories. At the same time the formal
analogy with statistical mechanics may be exploitéd, in particular a
continuum field theory exists only at a critical point of a statistical
mechanical system. '

Chapter one begins with a review of Wilson's proposal for placing
gauge (local) invariant theories on a lattice, whereby quark confinement
emerges as a natural consequence. The possibilities for phase transitions
and spontaneous symmetry breaking in global and locally invariant theories
are discussed,

Methods of calculation in lattice theories are introduced, in
particular the mean field theory and Monte Carlo methods of integration.
In Chapter two those methods are applied to a globally invariant

spin theory - the 0(n) generalised Heisenberg model. Details of high
and low temperature expansions are also given. Although much is already
known about such systems we are able here to check the usefulness of

our methods. In addition, the Heisenberg model is to be found at one

of the limits of the system in Chapter four.

Chapter three is concerned with locally invariant pure gauge theories
in four dimensions. Monte Carlo simulations are compared for the abelian
U(1) theory and the non-abelian SU(3). In the U(1l) case we use a finite
scaling argument to suggest a second-order phase transition separating
'Maxwell' and confining regions. In SU(3) the situation is unclear, but

is not inconsistent with confinement for all values of the coupling.

RH.C.
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In chapter fbur, a two coupling constant model is defined of
U(1l) gauge fields coupled to n—componeﬁt complex matter (spin) fields.
The action is then invariant to global U(n) transformations as well
as local U(l). The model interpolates between pure U(l) gauge theory,
a lattice version of the gauge invariant CPn-l model, and the 0(2n)
Heisenberg model. The phase diagram is mapped out in the two coupling

constant space and 'masses' are calculated in the various regions.
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CHAPTER ONE INTRODUCTION

. Gauge theories

The relativistic quantum field theories now dominating theoretical

particle physics are based on the concept of local gauge invariance
[1,2,3]. The principle has been most successfully applied to quantum
electrodynamics (Q.E.D.), the gauge theory for Dirac particles based
on the abelian group U(l). The addition of scalar fields (Higgs
particles) and the idea of spontaneous symmetry breaking has since
led to the successful unification of electromagnetism with the weak
nuclear force [1,2].

The generalization of the idea of local gauge invariance to
include arbitrary nqn-abelian Lie groups leads to the well known
Yang-Mills theories [4]. In particular the SU(3) colour theory of
quarks, known as quantum chromodynamics (Q.C.D.), is thought to
govern the behaviour of the strong nuclear force [5,6,7].

There is much compelling theoretical and experimental evidence
in favour of Q.C.D. [8]. One important property of non-abelian
gauge theories in four dimensions is that of 'asymptotic freedom'.
This idea suggests weaker interactions at smaller distances and is
well supported by experiment. One might then expect stronger forces
at larger distances and the possibility of quark confinement. It is
this last property that occurs very naturally in the lattice gauge

thecries we discuss.

The lattice cutoff

In the Feynman path integral formulation of a general quantum
field theory, perturbation expansions are made in order to predict

physical quantities [2,9]. The coefficients in the expansion may



contain divergent expressions which in many cases are understood
through the process of renormalization [1,2,3,9].

Ultraviolet divergences (from integrals diverging for large
momentum) may firstly be 'regularized' by a modification of the
integral -~ for instance a momentum cutoff Ac may be introduced,
or alternatively the dimensionality may be altered. The divergent
parts of these integrals may be cancelled (formally) order by order
in the perturbation series by 'renormalizations' of the fields and
coupling constant.

If in addition there are conditions under which the renormalized
coupling constant becomes small then one might expect the leading
terms in the expansion to be significant.

A theory is 'aéymptotically free' if the renormalized coupling
constant g(AC) tends to zero as the momentum cutoff Ac grows to
infinity. In Q.C.D. this means that quarks are less tightly bound
at short distances. In Wilson's lattice gauge theory [10,11,12,13,
14,15] one is able to probe the strong coupling regime where confinement
is expected to occur.

On the lattice a natural ultraviolet cutoff is provided by the
spacing a. This regularization scheme is non-perturbative in the
sense that ultraviolet divergences are controlled in a manner
independent of Feynman diagrams.

Consider firstly the d-dimensional infinite volume lattice
Fourier transform, which should reduce to the ordinary Fourier

transform as a-=>+0 :

¢ 1.1
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where P =P, = (pyseees py)

- . L3 *
and the integer lattice sites are labelled

n=mn, = (nl,..., nd)

C 1is an arbitrary constant.
Since space is discrete the momentum space is periodic and

so inversion of (1.1) is by

+m

d .
P -1 J dp elp.n$
n C . (2v)d k

To see the cutoff,physical distances and momenta are introduced

by specifying a lattice spacing a. Then we write

"
n

na

so that (1.2) becomes

+7
o od I
a —a ¢ %
)

Putting C a a-d and letting a-+0 then reproduces the ordinary
Fourier transform;

Equation 1.4 shows that the lattice has the effect of cutting
off the momentum integral at Ac =Ta - wavelengths of less than
twice the 1attice spacing have no meaning. (Note that in general
the cutoff may notvbe the same as the usual momentum cutoff since

the cutoff there is introduced after the angular integrations have

* In subsequent sections subscript x will be used rather than n to

denote lattice sites.

1.2

1.4
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been performed). One is interested in conditions under which the
momentum cutoff is large, that is the lattice spacing appears small
compared to physical length scales.

Finally, notice that in restricting the lattice to finite size

N and imposing periodic boundary conditions ¢n = ¢n+N on (1.2)
one finds momentum is discretized:
_ 2t . uw N=2)7w
pu = 0,t% T ° * N v ,tS—Tr)—-, t 7 for even N
2 M - -
O,i—ﬁ[, i—ﬁ’-'-,..., :(NNs)" ,:(NNl)" for odd N.

Wilson's lattice gauge theory

As with any cutoff prescription, a renormalizable field theory
may be constructed in any way that leaves the physics of the theory
(when the cutoff is removed) independent of the details of the

regulator. With the cutoff in place however, terms may be added to

the lagrangian which do not contribute in the continuum limit. The -

elegant formulation proposed by Wilson [10] is special because
continuum fields with values in a Lie algebra are replaced by field
variables taking their values in the corresponding Lie group. In
this way, local gauge invariance is kept as an exact symmetry in the
mathematically well-defined system.

In Chapter three pure U(1) an& SU(3) lattice gauge theories in
four dimensions are compared. The lattice U(l) action is easily
shown to reduce to the conventional . R.E.D. action as the lattice
spacing is taken to zero. In Chapter four the U(1l) gauge field
is coupled to n-component scalar fields to give a lattice version

of scalar Q.E.D.

1.5
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In order to review the properties of Wilson's lattice gauge
theory we now consider pure SU(3). Consider the Q.C.D. Lagrangian
in four-dimensional Euclidean space [1], restricting attention

to pure Yang-Mills fields.

éiz 1 8 4 a a
=-= 3 I F(x) Fo(x)
4 a=1l u,v=1 PS' PS
with
Fo(x) = 8 AS(x) -3 A(x) -gZ £3PC5B(%) 4% (x)
H v v U b.c U \Y
]
abc
The f are the structure constants of SU(3) [16 ]
satisfying
a b 8 abec . c
A", A1 =2i ¢ f A

c=1

where A? are the eight generators of SU(3), conventionally chosen
to be the Gell-Mann matrices. The dimensionless parameter g

plays the role of a coupling constant. The gauge fields Az(x)

are vector fields carrying an index of the adjoint represenfation
of the group SU(3).

Letting Au(x) denote the corresponding element of the Lie

algebra
8 2
A(x) = L % A%(x)
H acl H

the Lagrangian (1.6) is then invariant under the following

transformations :

A“(x) + gA“(x) = g(x)Au(x)g-l(x) + é-[apg(x)]g_l(x)

1.6

1.7

1.8

1.9



13.

where g(x) denotes an element of SU(3). The full Lagrangian
would contain in addition to (1.6), scalar or fermion fields
coupled to the gauge field in a manner invariant to (1.9).

In Wilson's lattice formulation the gauge fields are thought
of as residing on the links of a hypercubical lattice with spacing
a. The links are specified by a lattice site and a forward
direction u along a link out of the site. Thé pure gauge theory
action reads: (See for example ref. [13] for proposals concerning

the inclusion of fermion fields)

1 L v Lrl \rl
S(g,a) =—= I L TrfUW. .U U + h.c.]
2g2 X 40zl XX+l x+0 %
u#Fv

~

where u steps one lattice spacing in the p direction. (The *
notation is dropped from now on). The Ug’s are SU(3) matrices,

which may be written in the representation

Uﬂ = a@[iagAgj
8 Aa a
where At: = I 5 Ax H

(Note that Az is bounded since SU(3) is compact).

The four U's in equation 1.10 then form an elementary square
or 'plaquette' and the sum is over all such plaquettes on the
lattice. Imagining a set of local transformations on the site

forming the plaquettes, the action (1.10) is invariant under

-1

H g
Ug X+

Hoo_ H
x Ux - gx Ux g

1.10

1.11

1.12
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To see the corresponding continuum theory the lattice

'difference operator' is defined:

U, o g _ M
A, At = AL AL 1.13

For small a Au/a approximates a derivative au. If the
fields are smooth (but see later in this section) a Taylor

expansion may be made:

o
h =
|

v \
Xy - Ax + Au Ax

v V) 2
Ax+a?u Ax+o(a ) + ... 1.14

Using (1.11) the four Ui's in the action may be rewritten as a
product of exponentials. Repeated use of the Baker-Campbell-Hausdorff

formula
1
eAB - eA+B + 5'[A’BJ + ... 1.15

and equation 1l.14 brings the expression for the U's into the form

of a single exponential

x ?

. 2 v o_ H . H Y 3
exp{ia g(au A -3, A +igla A Q) +0(a”)...}

d .

_ .2 vd pd abc ,ub ,ve , A 3
—e>{p{:1.agc2‘.1(2)u A -3 A - gf AT A ) = + 0(a”) ...} 1.16
Then (1.10) becomes
1 2 Hva s 3
S(g,a) =—% I I Tr explia’g I F =~ S5 + 0(a™)...} 1.17
2g° X U,V a

Expanding the exponential in (1.17) the Tr 1 term has no dynamics
X wva .
and may be dropped. The term linear in FE is traceless and so

we have
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a
{- a4g2[2 I Tr(%-

b
I )‘—-)P“"ar‘;"b] + 0(a%)...}
U,V a b

1
S(g,a) = —= I ;
2 2 N 2 X

2g

Finally, replacing

I - a_‘+ J dqx

X

in the limit a + O reproduces the continuum action (1.6)

- L 1 a a
S(g,a) = Jd x(-fﬁ-z b FPSX)F?SX))

lima-=>0 a U,V

By a similar argument the transformation (1.12) becomes the

continuum transformation equation 1.9.

Note that if d $ 4 a rescaling of the dimensionless coupling
constant or fields by a power of a 1is required to keep the action
dimensionless. The existence of dimensionless parameters in the
action indicates the renormalizability of the model in four

dimensions [1] (also see Chapter two).

1.18

1.19

1.20

Notice that equation 1.14 is only valid for smoothly varying classical

fields [11] - fluctuations in the full quantum theory will only

become unimportant when the action is large and negative. Hence

o . ‘ | '
in the quantum formulation that we now review, the naive limit a + 0

may not approach the correct continuum theory for all values of
the coupling.
In the lattice quantum theory the generating functional Z
looks like the partition function for a statistical mechanical system

(see next section).
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Z = J I DU exp{S(g,a)}
links

where DU is the group invariant measure [16].
expectation values < Q> are given by
I |
<Q> =12 J il Q exp{S(g,a)}
links
One important quantity is the 'Wilson loop' [1]:
Q = Tr (1 v

TxR
planar loops

A strong coupling expansion (see Chapter three) gives

TR

<Q,> a 035) + higher orders

g

For T >>R the closed current loop <Qw,> may be interpreted as
the ratio of the partition function with external charges to the
partition function without them. The system is seen as containing

a static charge at x=R separated from its antiparticle at x=0.

We write

<Qy .—.%E%%-m exp{(E[J] - E[o]) T }

A study of the transfer matrix [12] shows that E[J] represents
the lowest lying energy level for the system. Since the charges

are static the energy difference in (1.25) is pure potential.

(1.24) one finds the confining potential

V(R) a R

Gauge invariant

1.2

1.22

1.23

1.2u

1.25

1.26

If this picture could be extended to include quarks [17] we see that

confinement would emerge very naturally in the lattice theory at

strong coupling.



17.

4 Statistical mechanics and phase transitions.

Much of our understanding of lattice gauge theories is derived
from a knowledge of critical phenomena in spin systems [18]. These
spin theories correspond to globally invariant spin (matter) theories
in the continuum. An important example of a spin theory is the 0(n)
generalised Heisenberg model discussed in Chapter two. Like four-
dimensional non-abelian gauge theories this model is asymptotiéally
free in two dimensions for n > 2,

Familiar objects in field theory are associated with statistical
mechanical quantities [11, 19], for instance the two-point function
is identified on the lattice as the spin-spin correlation function

C(r) (see next section). From this a further relation may be derived:
R

where Mp is the renormalized mass of the field theory. & is the
correlation length of the statistical system, and in some sense
characterizes correlations between spins separated by distance r.
For a general theory a phase diagram might be drawn showing the
dependence of some quantity <Q> on the bare coupling g. Equation
1.27 tells us that a sensible continuum theory will be found only at
places where £ + «, By holding MR fixed and allowing the spacing
a to go to zero an effective coupling g(a) is defined (and hence
a whole sequence of lattice theories). If a continuum limit exists,
then as the lattice cutoff is removed g(a) should tend in some way

towards a point where the scale of correlation becomes unbounded.

In the language of statistical mechanics, such points are examples

1.27
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of critical behaviour of the system. (See Chapter two). If at some
temperature Tc (Tag) E tends to infinity accompanied by a
spontaneous magnetization (spontaneous symmetry breaking) then the
system is said to have undergone a second-order phase transition.
This situation occurs for example in O(n) if n and d are large.
Alternatively, the scale of correlations may diverge without the
occurrence of a spontaneous magnetization, as for example in the
0(2) system in two dimensions.

There is unfortunately, no more hope of solving exactly the lattice
theory than a conventional field theory. In addition, in the region
of large &, correlation functions become difficult to study - finite
order small and large coupling expansions may leave their domain of
validity. However, the lattice system is amenable to a powerful non-
perturbative approximation - Monte Carlo simulation (see section six).
Wilson [20] and Creutz [21] hafe used this technique in conjunction
with renormalization group ideas [9,11,19,22] to study non-abelian
lattice gauge theories. For an example of Wilson's approach applied
to a spin theory, see ref. [23].

In a gauge theory a physical observable such as the string tension
x(g) may be extracted from combinations of Wilson loops. By increasing
the size of the loops and holding x fixed in the process, the lattice
spacing is effectively reduced. In this way Creutz attempts to match
the strong coupling behaviour (equation 1.26) of the string tension in
lattice Q.C.D. to the known asymptotic freedom prediction at weak
coupling.

In Chapter three we compare Monte Carlo simﬁlations of U(1) and

SU(3) four-dimensional lattice gauge theories. If the (full) U(1)
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lattice theory as a—+0 is to describe conventional Q.E.D. then the
confining properties at strong coupling should not persist for all
values of the coupling. Thus a transition is expected to occur at
some finite .- Below g the continuum limit of the lattice
theory should contain free electrons. On the other hand, if Creutz's
approach is not misleading, the strong coupling behaviour in SU(3)
should continue smoothly into the region of vanishing coupling, as
has been found in the 0(3) spin model in two dimensions [23].

In Chapter four matter fields are coupled to the U(1l) gauge
fields and we discuss the possibility of a 'Higgs' phase in addition

to confining and 'Maxwell' phases.

5 Mean field theory

A very useful guide to the lattice physics is provided by the
mean field approximation, Some details of this method are given in
Chapter two. In this section we show briefly how masses might be
calculated in this approximation and how Goldstone's theorem applies.

Consider the O0(n) Heisenberg model of Chapter two, consisting
of n-component spins ¢ = (¢i,¢§,...¢2) of unit length situated at
the sites of the lattice.

The action with sources Jx reads

=)
1"

¢><+'1,l¢x + 1 ¢><.J>< ¢
x,l..l . X

The partition function is

Z(B) = J I D, exp{B H}
X

1.28

1.29
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where B = J'/T and a suitable measure D¢>< has been defined.

Expectation values <Q> are given by

<Q> = z’ljn D¢, Q exp{B H}
x

The key to the mean field idea lies in defining a mean field
hX consistent with (1.30). When Q = ¢ » hx is thought of as the
average field over nearest neighbours y(x).  For the Heisenberg

model (see Chapter two)

t=2
"

B I <¢ >+ 4

y(x) X

2ds<¢x> + JX .
The partition function becomes
Z(B) = fuqs exp{ ¢ « h }
with the average field :
<, > :Jch ¢, exp{cb'hx}

In order to extract masses, consider the connected spin-spin
correlation function

. C : :
L PRE RS EEIR Y E TEER T R o

y ¢

Then we write

3<d, >

i, .3
<¢x ¢x >C an
X

1.30

1.31

1.32

1.33

1.34

1.35



d<¢i> ahi
ans 34J3
X y

Using (1.34) equation 1.36 becomes

ahk
X

i k
> =< ><d_>1] ;
X X J
)
y

k

X

[<ole s

<¢i-¢;>c

. 5 3<¢§>

- 93> [B (A +2d) —
3 g’

y

i
x

<¢ ]

+ ijéxy

A2 is the lattice Laplacian defined by

B2 E(x) s = £ £(y) - 2d£( x) .
y(x)

The last equation is derived by noting that equation 1,31 may be

written

_ 2
h = B +2d) <4 >+ 3

Finally, the correlation function is expressed as

<oreodo = <ol ol (BT v20) cofelo v o 6 ]

or

2 3.k, - gl
S5+ M)yqd <oxtep =BT By

2
[-)

Equation 1.40 looks like a free particle wave equation with mass

matrix M2

M2 = (Begle gl >c)’l - 24 8,

1.36

1.37

1.38

1.39

1.40

1.41
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. i j . . .
where the quantity <« ¢x . ¢3 >c is easily evaluated in the mean

field approximation.

In the case of spontaneous symmetry breaking (see Chapter two)

Goldstone's theorem applies. Here at most one component o, of

2 n-l)

2 . .
¢x = (cx, L P L gains a non-zero expectation value.

Equation 1.41 gives one massive scalar

2 _ , -1
My = (B<Ux.°x>c) - 2d

In addition there are n -1 massless Goldstone bosons:

Selecting one component T of 11

from (1.33)

-1
<"3> =7 ID¢ wi‘ exp{2d8<ox> + g}

Consider equation 1.29 invariant to global rotations

cos 6 -sin#
-> ¢;( = ¢x

sin® cos#®

¢

x

The infinitesimal form of (1.u44) is

o -1
¢, = [1 +e€ 1 0 1¢,
Thus we may write
§ =-s'n1
o
§m = e€eo

and the Ward identity [9] may be derived

- 1 1 1
0 = e[<ox> —2d8<1rx-1ri‘><ox>+ 2dB<1rx > <1rx><ox>]

we have (with JX set to zero)

1.42

1.43

1.44

1.45

1.u46

1.47
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(1]

1 1
el<o, >- 1248 ST 2 <o, >]

2 1 1
e<o, > pﬂ B<‘rrx~‘rrx>c

Now B<1r>]; . 1ri'> > 0 always, hence if <o > # 0 we have

the Goldstone boson

6 Monte Carlo methods.

1.48

1.489

The aim of a Monte Carlo simulation [24] is to obtain an approximation

to the expectation value

<Q> = 771 JD¢Q(¢) exp{ S(¢) }

where the ¢'s form a set of numbers (either spins on the sites of

the lattice or gauge variables on the links). On a finite lattice the
set is finite and a full description of a configuration may be written
down. In the case of continuous groups however, there are still an
infinite number of configurations. In a Monte Carlo simulation the
full integral is approximated by a sum over a finite sequence of
states. In order to obtain a good approximation to (1.50) the density

of states in the sequence should approach
p(¢) = exp{S(¢)}/ 2

i.e. the probability density of encountering any configuration is
proportional to the Boltzmann weighting exp{S(¢)} .

Successive configurations are generated from proc‘eding ones using
a specific algorithm. (Usually one seeks the aid of a computer for

storing and updating variables - for example, there are 1024 links on

1.50

1.51
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a u” lattice). The probability of obtaining a configuration ¢'
from ¢ may be specified as P(¢*' , ¢).

The choice of P(¢', ¢) is not unique [25]. Many algorithms
change one variable (site or link) at a time satisfying a condition

of 'detailed balance':

-8S(¢")

B5(8) _ peg, 01y e F 1.52

P(¢' ,4) e

It may be shown [26] that any algorithm satisfying equation 1.52
will bring an ensemble of configurations into the correct equilibrium
state defined by equation 1.51. To understand this we consider a
particular algorithm.

In Chapters two and four we use the algorithm of Metropolis [27],
well known in statistical mechanics. A random generator (designed
to optimize convergence - see Chapter two) is used to suggest a new

configuration ¢é = B(¢). ¢‘B then replaces ¢ if

p(¢'B) > x p(¢) : 1.53

where x 1is a number uniformly distributed between zero and one.
Otherwise ¢ is kept and ¢'B is discarded.

The probability that B(¢) suggests ¢' 1is written B(¢',¢)

so that
B($' ,4) if p(s') 2 p(4)
P(¢',0) = { B(s',4) 27‘%;—’ IF p(6") < p($) 1.54

The remainder(BR say) if ¢'=¢ (important

for discrete groups)
Note that if the following condition holds true for the particular

algorithm (see Chapter two):
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B(¢',4) = B(¢, ¢') 1.55

then using equation 1.54 we see that the detailed balance equation
1.52 is satisfied.

Now assuming (1.55) and using (1.54) we have

T P(¢,9")p(¢") = ZB(¢,9")p(¢') + ZB(d,0') p(¢)

¢! {6':p(¢")2p ()} {6"20(¢") 2 p(¢)}
+ BR p(d)
= T P(¢',9)p(d) = p(d) 1.56
¢! :

Denoting the m-step probability as Pm(¢' » §) we have

I P(6",0") B (4",0) = P (',4) 1.57

(pl!

m+1l

Hence as m * « the desired result is obtained:
P(4',8) + p(4") 1.58

Note that the detailed balance condition is sufficient but
not necessary to achieve the correct target distribution p(¢').
In Chapter three we use the more intuitive 'heat bath' method of
Creutz (see Chapter three and Appendix B). Here the new spins or
links are selected randomly from the group space with a weighting

given by the Boltzmann factor

- Bs(¢*)

P(¢') v e 1.59

In this way equation 1.51 is satisfied, yet for this algorithm
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detailed balance holds only if the spins to be updated are selected
from random positions on the lattice [28].

Since essentially an experiment is being conducted one considers
the expectation value <Q> of the average of Q(¢) over-a sequence
of configurations ¢o,.;. . ¢N' We conclude by showing that if
equation 1.58 holds then <Q> approaches <Q> as N->o,

The expectation vélue of the sequence average is

1 N

<Q> _{allzPOSSible P(¢N,¢N_l) eee P(¢759) ﬁ-nil Q(¢_) - 1.60

sequences

bos - e sby)

_ 1
=SUZ QU P(4,0) + T Q6,) Po,0 ) P( oy, 60+ ...]
N 41,0,

1
-ﬁ[: Q(¢) P(o,0.) + z Q¢) P (4,6 ) + o0o ]

N
I Qe) B (6, 4)

p
¢ n=1

N .
=XNW[PW)+%E D_(¢, ¢)1 1.61
_,+ N o
] n=1l
where Dn measures the 'distance' of Pn from the equilibrium

distribution.

Let A be a positive const -a nt such that

D | s e 1.62
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SO
.-}
[ZD |<
n=1 o

1.63

>+

and hence <Q> approaches <Q> as N tends to infinity.
Finally, since <Q> is a sum over distributions, the Central
Limit Theorem applies for large N, Standard error estimates

(~ 1/VN ) may then be made on <Q> [2u].
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A SURVEY OF METHODS - THE 0(n) HEISENBERG MODEL

CHAPTER TWO

We begin with the generalised Heisenberg model [1-4] for two
reasons. Firstly, the model is of great interest in statistical
mechanics. Much is already known about such systems, so it is
easier to check the usefulness of our methods. Secondly, the spin-gauge
model of €hapter four is, at one of its limits, gauge equivalent to
the Heisenberg model.

The corresponding continuum field theory is the 0(n) non-linear
c—modél*. This model is non-renormalizable aécording to usual criteria
in four-dimensional space-time. On the other hand, the two-dimensional
case is renormalizable [5] and enjoys a number of features in common

with four-dimensional non-abelian gauge theories [5,6,7].

1. Definition

We consider a square periodic lattice in d dimensions with Nd

sites and spacing a. To each site we associate an n-component spin
vector ¢ = (¢i,¢3,...,¢2). Each site is coupled only to its nearest

neighbours in all directions u, with strength J. Thus the Hamiltonian

H = J Z ¢x;u b 2.1
Xsu :

is invariant to global rotations of the spins.
Properties of the statistical mechanical system are extracted from

the partition function

Z(B) = fnnq)x 8( ¢3—1) exp{-BH} : 2.2
N : .

*See Chapter four for reference to general non-linear o-models.
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and various expectation values

< Q>

Z-IJHDd)XG (4>)2<-41) Q exp{-B H} 2.3
X

™
|

where J/T » T = temperature.

The fixed length condition ¢i =1 1is incorporated into the

measure here and leads to non-trivial interactions.

2. High and low temperatures.

Systematic expansions of equation (2.3) may be made for high and
low T. These methods are reviewed in appendix A as they will be useful
in Chapter four.

fhe following results are for the average energy density E and

may be compared with the Monte Carlo data in Fig. la:

E(B) = <

Z| =

z (‘bx-.bu <bx> = < ¢x-;-u ¢x> . 2.4
£ x,u

since the lattice is translation invariant. (Nz is the number of links

on the lattice.)

(i) High temperature (low é)

22 2 35 22t Tt - 2 1 T 5 &

EB) v 8/n + [ 25 - 2% 36%4 0(8”) ... 2.5
: n n (n+2)
(ii) Low_temperature (high 8)

-1 n-1 -3

E(B) v 1 - 2 - + 0(B77) ... 2.6
2dB 6a2g?
. -2 -1
(neglecting terms O(B N, ) .

The high temperature result is insensitive to the lattice size at

this low order, while at low temperatures long wave-length fluctuations
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-2

are important and the calculation shows an NZ dependence at order B

3. Phase transitions.

In the cases d=4, n=04,6 that we consider the space and spin
dimensions are high enough that a second-order phase transition occurs
at some finite Tc‘

At high T the model is considered to be in the symmetric phase

i 2 . . . .
and < ¢ > =0 forall i=1,...,n . Define the connected spin-spin

correlation function for two spins separated by distance r:

Clr) = <¢ . -0, > - < §,, 250,
2 . . .
= < ¢X+r'¢x > - <¢x> by translation invariance
= <t O in the symmetric phase. 2.7

At high T the large r behaviour is thought to be [g]

clr) ~ exp{"F/E&(T)} 2.8

%

up to avpower of r .
E(T) is known as the correlation length.

For low T a spontaneous magnetization occurs. The symmetry is broken
and < ¢i> # 0 for some 1. As the system is simply magnetized there

are no long-range correlations and we expect

2

Cr) = <o > -<p > 20 2.9

X+
We shall be interested in the behaviour of systems that are close to
the critical temperature Tc. In this region distant spins are highly
correlated in some sense characterized by the correlation length.

The critical behaviour of various other thermodynamic quantities can

be represented as a set of critical indices [9] .

* See section 7.
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One such quantity, which will be of use in measuring distant
correlations, is the magnetic susceptibility x(T) :

Add an external field Jx to H of (2.1):

H->+H+Z J - = z . + L J
N x"Ox Bx,u ¢><+p L o X 0y 2.10
Then define
x(B) = = <4 > | 2.11
6J x“ by _ )
y X:O

By a version of the fluctuation - dissipation theorem [2] it

is easy to obtain the useful result

x(B) = <L cby.¢x> - <¢, >2 2.12

y#X
Clearly the sum in (2.12) will show up the long range contribution

near Tc.

4, Critical region and continuum field theory

Defining the lattice 'difference operator' Au¢x== ¢x-+u'-¢x .

equation (2.1) looks like a lattice approximation to the Euclidean action
for the contunuum O(n) non-linear o-model in field theory :

} 1 2 '
H=1 [1-5(8 6,070, - 2.13

X,u

2
g

external sources, Z(B) becomes the familiar generating functional

Identifying B with the inverse coupling constant : and adding

for the Green's functions .of the field theory.
For a general scalar theory, comparison of the long range behavior
of C(r) with the field-theoretic propagator yields the familiar

relation [1,11].

R tEa 2.14
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where MR is the renormalized mass of the field theory. Equation (2.14)
tells us that as a~+ 0 finite masses will only be obtained from the
lattice if the system is nearly critical.

The special status of d=2 for these models is observed by making

the approximation to the continuum theory for small a:

du ¢ (x) ~ Au ¢ /a

Jddx ~ ad L
x,p

2.15

Substitution into (2.13) brings out the first order power a(2_d).

In d=2 we see that H remains dimensionless without rescaling of
the parameters ¢(x) or g to cancel this power. This fact leads to

the renormalizability of the model and the d=2+e€e expansions [4,12].

5 Approximate models.

In the vicinity of Tc the expansions of section two are of limited
use and we look to ways of simplifying H itself.

One method is to take the 'Stanley limit' n-+« (Spherical model)
and make corrections in %-[4,13]2 We might expect good results
for the cases n=U4,6 to be considered.

An alternative is to play with the space dimensionality of the
system, Fér example, the case d=1 is informative [2] - the spins
decouple in the expresion for Z(B) so that each link (bond) gives a
factor

n, ,1-n/2

n I . . s
Y(2) B n/2§{ where In is the modified

Bessel function, y(q) is the gamma function .
There is obviously no transition here at any finite T, but a zero

mass may be extracted as T+0 when the system approaches ordering and
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the correlation function behaves as

~r(n-1)

C(r, B) ~ expl /28} 2.16

The cases d=2, 3, & are the most physically relevant and the
most difficult to study. Close to d=2,Y4, useful expansion have
been made in e€=d-2 [4,12] and in e=4-d [3,11].

For d>4 we may rely on the other extreme d+ ®-an interpretation
of mean field theory where the number of nearest neighbour interactions
becomes large and so behaves as some average field [2]. We shall

construct a mean field theory argument as a guide to the case d=u,

6. Mean field theory

The idea of a mean field theory has many interpretations [2]. From
the field theoretic point of view [3] a formal perturbation expansion
is made around a saddle-point approximation to W=4£n Z. The first term
Wo in this series is the mean field theory. Corrections to this lowest
order indicate that the mean field approximation is certainly invalid
below four dimensions while above d=U4 critical exponents are not
modified

As a first step before making any calculations the assumption of a
mean field is made self-consistent. Write the action equation (2.10)
in terms of pairs of sites (x,y):

S=8 I ¢..¢_ + L J_.19¢ 2.17
(x,y) x y o X

A given ¢  interacts with I ¢y + J_ where y(x) denotes the 2d
y(x)
neighbours of the site x . The mean field hx may then be written

as some average over those neighbours :

h : =8 1L < ¢ >+ JX 2.18
x y(x)
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Self-consistency then requires

<¢ > Z—l f il D¢>x6(¢i -1) ¢, exp{- ¢, - h;(}
X

2.19

Z(h) I ID¢, &( ¢>2( -1) exp{- ¢, h'x}
N .

where Z 1is seen to decouple in a similar fashion to the case d=1,

and calculations are made using the single site measure

D¢:=D¢x6(¢)2(—l) for all x .

=S¥ S

. st ,. . .
Assume constant sources chosen in the 1 direction and write

J (Jd_, 0. « . ,0)

X X

T )

(6, o v v

O

so that <1 > =0 while <o > > 0.

Then self-consistency requires

<g> 77t [Dcpo exp{-ho} 2.20

where Z(h) JD ¢ exp {-hol

and ‘ h

2dB <o > +J .
A unique solution to eqn. (2.20)may be obtained by the following
construction of the thermodynamic potential T(<o>), (the Legendre

transform of w) given by the equation [3]

dar

o> = J . 2.21

J=h-2dB8<0>

Noticing % 1n Z(h) = <o> leads to the solution (up to an irrelevant

additive constant)
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2
I(<o>) = J <o> + dB<o>" - InZ(2dB<o> + J) 2.22

1-n/2 1

with Z(h) = y(2)(h)
2 Nyo-1

(h) . (Y(%J is the gamma function .

We can then minimize T w.r.t. <o> (in the absence of an external
field J) by considering eqn.(2.22)and expansions of 1nZ for small
and large h* .

For small B (high temperature) the minimum occurs at <o> = 0
and the model is in its symmetric phase. At B =gc two minima appear
either side of <o0>= 0, but as close as we like to <g> = 0. It is
easy to show that BC = /4 [14].

As B is increased past the transition point the two minima move
smoothly away from <o> =0, Thus the model has undgrgone a second-order

(continuous) transition and is in its ordered phase.

Calculation of masses

S L N S S s s S S ===

Identifying the long range behaviour of the correlation function
with the small momentum behaviour of the two-point funcfion we may
extract masses from the lattice approximation [14]. -

The following mean field result is derived in momentum space. In
position space the result is straightforward for the Heisenberg model+
but presents problems when applied to the mixed model of Chapter four.

.

Take the mean field h;, i=1,2,...,n in the absence of an

external field (source):

g I <¢i> 2.23
y(x)

hi
X

and consider the response of h: to a small position dependent

i
source Jx :

% Bessel Functions for Engineers - N.W. McLachlan - 0.U.P.

t See Chapter one.
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éh)l( = B I §<¢t >4yt
y(x) x

Working in momentum space (see appendix A) :

i

and by translation invariance assume the response of

the same momentum and phase, i.e.

6<¢)1(> = 6<¢; > cos px

§ht =¢&nt cos px
X P

Self-consistency then requires
. : §«< ¢>i > : .
<ot ¢J> GhJ = - Gh] = 6<¢1>
X 'Xx ¢ p 5 hi p P
X

Using the result

cos[p(x+1)] + cos[p(x-1)] = (2-—p2) cos px + O(pu) cee

an expression is obtained for the sum in equation (2.24) as p2 +0:

i
X

i_ 2 i
th- (2d-p7) 6<¢ > +J

and substituting (2.27) into (2.26) we have :

10 gty 2 3 3
6<¢p>.. <¢, 95>, [B(2d-p ) 5<¢p> +J7]

_ 2 2 o o_ -1
=> [p6;, + M, 18<¢3> =83

a free-particle wave equation with mass matrix

=
1

ij -1 _
i (B<¢x o5 >c) ?d sij

constant with sources set to zero.

i . 1
Jx + J° cospx with J° constant

2.24

2.25

2.26

2.27

2.28

2.29
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Since at most one component o, of ¢  has a non-zero expectation

value, < ¢i 4)3( > is always diagonal,

i s
<, ¢3< > a Gij and there are n degenerate scalars giving masses u2:

2 _ ii, -1 .
wo= [B<¢, ¢,> 77 -2d forall i 2.30

- - —————————

> a6, i,5=1,...,0-1 .

We have one massive scalar

2 -1
W, = (B <oxox>c] - 24 2.31

and it can be shown in accordance with ~Goldstone's theorem that there

are n-1 massless Goldstone bosons (see Chapter one)

-1

S = [B<m "xl'>c] -2d=0 2.32

i
T x

i=1,... ,n-1.

The expectation values <¢ ¢ > used in calculating these masses
are obtained simply as derivations with respect to h of the expressions

obtained for < ¢ > earlier in this section.
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7 Monte Carlo method and results.

In this section we discuss the evaluation of various expectation
values <Q > on a lattice by Monte Carlo methods of integration on
a computer,

Recent work by Creutz and others [15,16] has indicated that

encouraging results may be obtained even from very small lattices.

Method pop this chapter we have used only the standard method of

Metropolis [17]. This general algorithm requires only that we know
how to generate elements uniformly distributed over our group space -
the relevant Boltzmann. weight exp{-S} is incorporated for us in the'
algorithm. 1In the case of 0(n) this means n-component vectors of
unit length distributed uniformly on the surface of an n-dimensional
sphere. Consider the following method :
Generate ¢l,¢2,..., ¢n independently each with a Gaussian distribﬁti01
-(¢h)?

i.e. P(¢l) noe , then as the ¢l are all indépendent the combined

distribution function P(¢) 1is Just the product of the P(¢Y). So
-teh? . o
P(¢) ve 1 , which is rotationally invariant and so constant on
the sphere after normalization of ¢.
In practice however, to speed up computations the spins are chosen

with a certain bias. Consider a single site update, and the probability

B(¢ , ¢') of selecting a new spin ¢' for comparison with the old spin ¢ .

Then it can be shown that 'detailed balance' requires (see Chapter one)
B(¢,4') = B(¢',¢) 2.33

In the bias we choose ¢' close to ¢ , and satisfying (2.33) as
follows :
Select N from a Gaussian distribution and add to each component

i

¢ of ¢ :
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¢l > ¢l + e N 2,34

where € 1is adjusted ‘empirically' to achie&e a suitable acceptance
rate for the new spins (usually ) 50%). Vectors generated in this
way are distributed'spherically'in an area* above ¢ on the unit
sphere. The projection of this area onto the unit sphere forms a
uniform distribution in the vicinity of ¢ . Thus after normalization
the generated vectors are the ¢' , and since any Vector is equally
likely , the selection of any ¢' from any given ¢ 1is equally

likely. Hence (2.33) is satisfied .

Having written a program to evaluate < Q >, we first check the code
itself. Comparisons are made to low and high temperature expansions
and also to any published results. Standard 5% error bars are given.

It is also important that the samples of configurations used in
the sum for < Q > are not statistically correlated in some unnatural
way dependent on the updating algorithm. The simplest way to avoid
this effect is to take samples only every few updates of the lattice,

although more sophisticated methods have been devised [18].

Results

The results of computer simulations are useful with varying
reliability for
a) Locating critical points of the system.
b) Establishing the order of a transition and perhaps critical exponents.

c) Extracting correlation lengths near the critical points.

P

the size of which depends on €
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(i) L(B) = <¢

L) xfy x>

Rough estimates for (a) ,(b) are commonly made using E(B8) [15].
Iterating from either hot or cold starting configurations at fixed B8,
a phase transition is expected to show up as a slow convergence to
equilibrium from the different starts. It is thought that for a
first-order transition at BC » the two starting configurations never
converge [1a], while for higher-order transitions the two agree if
enough iterations are carried out.

Figs. la, 1b show E(B) for O(4), d=4 with the ‘hysterisis

loop' around BC but eventual convergence after many iteratioms.

(ii) M= <| ¢x| >

On small lattices it is not easy to establish a spontaneous
magnetization at BC. Fig. 2. shows M#Z0 for all B due to finite

size effects.

(iii) x(B) = NL(< I ¢ - <4, >2)

$_ >
S VEX y ox

The susceptibility, as defined in section 3 has been used with some
success for (b). Tobochnik and Chester [16] consider the 0(2), d=2
system. In this case M is always zero (large lattice limit) and X
diverges for all B8 2 Bc. In two dimensions large lattices are
computationally feasible. Tobochnik and Chester consider lattices up
to 602 and find evidence for an exponential divergence ('Kesterlitz -
Thouless' transition [20]) in £ as B approaches Bc from above.

For d=U4, large lattices are out. The divergence may still_be
studied, however, by comparing the height and position of the peak in
X for different small lattices (typically 4,5, 6). This argument is

used seriously in Chapter three.
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Fig. 3 shows the shift in the peak of yx with lattice size for
0(4),d =4, although no attempt is made to extract the power law

divergence of the second-order transition.

. 1
(iv) CV(B) = /N£(< [XZ ¢x;u¢x]2 > - <xg ¢ 2)

>
x+ﬁ ¢x
k] "9 -

The specific heat Cv is a measure of energy - energy fluctuations
and may diverge with x for a given system as indicated by various scaling

relations [9] eg.

where o 1is the critical exponent of Cv and v the exponent of E£.
The system O0(4), d=4 (Fig.Y4) shows a strong increase in C
v

near BC in contrast to the d=2, 0(2) and 0(3) cases.

- -
¢ = 38 E(B) | 2.35
so that measurements of the specific heat may.be made from careful

analysis of the average energy curve (see Chapter three)

(v) C(r,B) = <¢_» ¢_> = <¢x>2

X+ "X

Extracting correlation lengths & and hence masses on a computerk
has proved difficult in practice [21]. Due to the exponential fall off
with r, even at distances as small as 3 or 4 C(r,B) is small enough
to be insignificant compared to the statistical ‘noise' of the
simulation.

A modification of C(r, B) may be used to improve statistics. In
addition, the resulting quantity behaves as a pure exponential - it

is not modified by the power of r in (2.8).
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(i) C'(r,8) = Jd‘,i'li C(r, 8)

- where integration is over all x directions except the r
direction.

Consider < ¢ «¢,> of C(r,B). In a field theoretic notation

X+
we write
< - =
$arp®x> = Ox 1) 0y,0)” 2.38
where X, = (x,t) ~
In momentum space we have the small pu behaviour
1l
< ¢ . b__ > NV = p. = (B’E)
Py Py P2+M2 H
' H
and so we can write
_ d-1  i[Et+ (x-y) *p]
RA(ET IR DR [l L : 2.37
(2w) E“+p“+ M
Integration over x,y and shifting x +x +y gives :
( d-1 d4d-1 . ,
v = : - e >
CU(EB) =[x dy <4 "0y 0
r d-1 d-1 . .
of ax (dR J4E el[Et+§ pJ ) a8
) J ny® £2 + p% + 4’

The x integration then may be written as a delta function on p,

and performing the integral over p leaves :

iEt -Mk
dE e e
C'(t,B) o J—— _— = = 2.39
’ 2n E2+M2 2M

On the Euclidean lattice the time direction is lost and we measure
correlations between spins separated by spacial distance r. In Fig. 5

C(r) and C'(r) are compared for the system Q(4) with d=2 on an
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g2 lattice. Figs. 6a, 6b show C(r) and C'(r) respectively for

o(4) on a 6' lattice. Various values of B are considered in the
symmetric region - the flattening of the slope as £ is increased
shows the increasing correlation length as the critical temperature
is approached.

For larger distances then, this data shows the advantage of C'(r)
over C(r) for measuring correlation lengths. Measuring C(r), up
to ten times as many sweeps of the lattice were required to reproduce
the straight line of C'(r) fig. 5. Note however that summing over
planes for C'(r) requires more work on a computer than C(r), thus the
advantages of measuring C'(r) must be weighed against the efficiency

of the program.
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Fig. la

Average energy E(B) for the system O(4) in d=4
on a 6'+ lattice. 30 iterations are made for each data
point, averaging only over the last 20 so that thermal
equilibrium may be reached. Considerably more than

10 iterations are required to reach equilibrium near-
the critical point B ~ +6. Here, poor convergence from
ordered and disordered starting configurations shows up
as a 'hysterisis loop' in the thermal cycle between low

and high temperatures.

High and low temperature expansions are given.

.
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Fig. 1b E(B) for the above system at B = + 6 . Some convergence

is seen to occur after about 100 iterations. 5% error bars

would be as small as the data points after ~100 iteratioms.
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Fig., 2 The Magnetization M for the above system as a function

of B.
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Fig. 3 The susceptibility x as a function of B .
300 iterations of the whole lattice were made per point,
averaging over the last 200 every 3 iterations to avoid
correlations between successive updates,
Curves A and B refer to the O(4) system in d=14 for Huand
6'+ lattices. The limited number of data points show

some evidence for a shift in x with lattice size,

suggesting a second order transition.
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The specific heat C,, as a function of B.
In the 0O(4), d=4 case curve A shows CQ diverging
with x . This contrasts with 0(2) (curve B) and 0(3)

2

(curve C) in d=2 (40° lattices used here) these

results are consistent with scaling relations.
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Comparison of C(r) with C'(r) in the 0(4),d =2 system on
an 82 lattice in the symmetric region at B = .4 .

Taking =-1nC extracts the correlation length. 300 iterations
were made, averaging over the last 200 every 3 updates.

5% error bars are given where they are not smaller than the
data points.

On a finite lattice we may only measure correlations between
spins separated by distances less than the lattice size,
since at larger distances the periodicity of the lattice
introduces extra correlations. Hence correlations are
measured here only up to r=3., At r=3 C'(r) compares

favourably with C(r), although at r 2 results are similar,
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Increasing correlation lengths with B, extracted from
C(r) in the symmetric phase of O(4) in d=4 on a 6"
lattice. Errors are as small as the data points after

200 iterations.
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Fig éb ~ As for fig. 6a but with C'(r). No improvement on C(r)

is found on this smaller lattice.
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PURE GAUGE THEORY

CHAPTER 3

In this chapter we firstly review some properties of another
limit of the mixed model - pure U(l) lattice gauge theory in
four dimensions. These results are compared with a computer simulation
of four dimensional SU(3) gauge theory.

If we are to follow the example of the spin models and search for
a characteristic length § in a gauge system, then we are restricted
by Elitzur's  theorem [ 1 ] to measurements between gauge invariant
objects. Since the average field < Ug > vanishes in a gauge theory
there can be no direct analogy of the susceptibility x [i.e. field-
field correlations] of Chapter two.

Recall that the simplest gauge invariant objects on the lattice
are plaquettes. We might hope that a measurement of correlations
between distant plaquettescould reveal some kind of phase structure
familiar in spin models. To this end we differentiate the average
action equation 1,10, giving the gauge analogue of X, the specific

heat C
v

(@]
"
m
~
Q
~

and so contributions from distant plaquettes to (3.1) will show up

in C, near second-order phase transitionms.
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The abelian case

1. Definition
Consider the Wilson action from Chapter one for U(1l) with

elements U: residing on the links of a four-dimensional lattice:

. 6\1
gt = olealy
8 3.2
(Uu)-l T -ieaet
x T Vx+yp e
where 0 = 62 < 2."/ea
and e 1is the conventional bare coupling constant of a field theory.
The sum over all plaquettes is then the action:
_ L -v
SU(l) = Tr3lu, Ux+p X4+u+v Usy * h.c]
x’u\)
_ u S TR
= I cos{ea[ex+ex+u By ~ 8,33 3.3
X, UV
v, _ixx+u
(3.3) is invariant under local transformations e s € " on
the sites
. iy . v =iy
e 4 o x elaeex e X+u
3.4
iy 7 Su)
Integration over all links defines the partition function:
- H
Z(a) = Ln DU, exp{aSU(l)} | 3.5

sH

where o will be related to e.

. . l
The normalized measure IJUi for U(1l) is simply DUE = 5m Dﬁ: and

averages over U(l) invariant qualities QU(l) are:
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_ -1 u
< Qyepy > = Z LII D8, Q1) exp{a S }

(1)

2.High and low a

Expansions similar to those for the spin models are discussed
in appendix B. For large o (low temperature) a 'gauge fixing®
term needs to be introduced into the action as with continuum
perturbation theories. At small momentum p, i.e. long wavelengths,
where the lattice spacing becomes unimportant, the low temperature
result reduces to that of continuum electrodynamics.

The results for the average energy density (average plaquette)

EP are compared with Monte Carlo data in fig. } for d=u4,

(i) High a
"""" 3
E X z-9z * %%»as + o) ...
(ii) Low__a
E, &1 _%9_51_2_0‘2 + 0™ ...

3, Naive continuum limit

In parallel with spin systems in two dimensions, lattice gauge
theories reduce in the limit a-+0 to the desired continuum form
only if d=u4,

For U(l), obtaining this limit is a very swift exercise:
Writing the product of U‘: 's round a plaquette of equation 3.3

as U, we use a suggestive notation:

. 2
Ug = expliea FW]
_a eV o oM
where Fu\) = IZ\u ex A\) ex

3.6

3.8
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_ Qv
and Aue : = (8 Gx)/a

X+

approximates a derivative.

The real part of UcJ gives

Re UD

2
coslea Fuv]

+ e« e 0 3.10

le

z Fuv

Replacing £ in (3.2) by a—qfcf*x and taking a + 0 leaves
XsHV '
e2 4 2
SU(l) > —Q—Jd X IW 3.11
a0
We recognise here the conventional Yang-Mills action for

electrodynamics. e2 is absorbed into the definition of o in (3.5),

thus we have for this model:

a = — 3.12

4.The second-order transition

As discussed in Chapter one, the U(1l) gauge theory in four
dimensions is known to undergo a transition at finite coupling [2 ]
Experience with spin models has given rise to two main views on the
nature of this transition. On one hand an analogy is made with the
two dimensional O0(2) spin model (in accordance with the Migdal-Kadanoff
recursion relations). The correlation length here is expected to

diverge exponentially near the critical point [ 3 J:
T
c

H
7)) 3.13
C

£ v, exp{b (
T+Tc

This has been explained in terms of the unbinding of vortices
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beyond the critical temperature [4 ]. The analogy in four dimensions

is seen as the unbinding of monopole stringsl[ 5 ], and this has

been observed in a computer study by Degrand and Toussaint [ 6 ].
Howevef, there has appeared much evidence from Monte Carlo

simulations supporfing the existence of a conventional power law

divergence (second-order transition) of the gauge theory at the

critical region [ 7,8 ,9 ]

-V
£~ T-T |

A renormalization group analysis carried out by Hamber [ 10 ]
also supports this view.

We consider here an approach very similar to that of Lautrup and
Nauenberg [ 7 ], using Monte Carlo simulation on small lattices

T

together with a finite size scaling method
Consider the correlation length EL(T) for a finite lattice of

size Ld . Then by definition EL £ L and we write

£ = LS (x)

where S 1is a scaling function to be determined. x is a variable

characteristic of the system. It is convenient to choose :

1/v

x=|T-T |L

L]

where TL is the critical temperature of the finite system.

Some simple properties of S follow :

See ref.[ 8] for a slightly different use of this method to extract
the critical index v.

The validity of this approach has been called into question, however

[121.

3.14

3.15

3.16
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1) Clearly S(0) =1 3.17

since = L at T=TL

EL
2) Up to a certain distance ‘I‘E from TC we might expect the
finite system to mimic the infinite one, i.e.
-v

£, v [T TL| 3.18
for [T - T | 2 T
For |T-TL| < T, (3.17) and (3.18) would be inconsistent.
Equation 3.18 is obtained by assuming the asymptotic behaviour:

S(x) v x Y 3.19

for X > o©

3) Obtaining EL for T very close to TL then amounts to

making corrections to (3.19) for IT-TLI < Te consistent with
(3.17).
A simple choice is:
2 V2
S(x) = (1 + Aax") . 3.20
with X a free parameter.
We are now in a position to estimate the critical behaviour of

the system. Consider the large L behaviour
I 2
-v
=> IT - T |77 v Ls(x) 3.21

In particular, for T = T, » using (3.17)

— - Y ’
=> | |TL TV~ L 3.22
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Experience shows that T > TC for all finite L and so

L
-1/v
TL - Tc v L 3.23
Now take the specific heat
c. o~ o T-T|7¢ 3.24
v c
Using the relation a = 2-vd [13 ] we have
_ _ -a
C (T =T~ lTL Tcl
- - v, 2k -d
=0l -T1,]
2/ -
=1 /v -4 3.25

from (3.22).

In ref. [ 7] TL is found using Monte Carlo simulation for the
('normalised') specific heat with L = 4,5,6. The scaling function

of (3.20) with X = 0.6 is then used to obtain a fit to the data
1
3.
(3.23) so that the parameters used to fit C

for CL. Good fits are claimed when v = ’I‘c is estimated from

L may be used to

estimate CL in the limit L= e,
In the next section we assume a value for Tc and consider
lattice sizes 4,5,6. Equation 3.23 is then used to estimate v. For

comparison, an independent estimate for v is made using (3.25).

. Monte Carlo results

The convergence of Monte Carlo data in the neighbourhood of a

second—order transition is in general very slow [14 ], indeed this is
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often taken to be the signal for such a transition.

The 'heat bath' algorithm of Creutz has been extensively used
[14,15,16,17] to speed up computations. Implementation of this
method, however is technically more difficult [see Introduction].
In appendix B the simple case of U(l) is compared with the

algorithm for SU(3).

Results

As many as 6000 updates of the whole lattice were made in order
to obtain equilibrium data in the critical region. In addition,
many data points were required to be sure of locating the peaks
in CL.

Fig. 1 shows E(a) for L=6. The error bars are smaller than

the data points.

The results for TL and CL are
:37/“
TL( L) cL
4 1.02 3.43
L 5§ 1.005 5.50
6 .9396 7.98

With this limited data we are able to estimate the constant
of proportionality in (3.23) and (3.25) and the critical exponent
v. Both (3.23) and (3.25) yield estimates of v that are
consistent with v = % ( ~ .25 and ~.32 respectively) although
the result for (3.23) is a little small.

An attempt was also made to measure correlations between plaquettes



63.

separated by distance r. Unfortunately, the results were

statistically insignificant for r > 1.

Remarks

We have presented evidence for a second-order phase transition
in the infinite system at o = .998. It is known from exact
evaluation of systems with discrete symmetries [18 ] that lattices
as small as L=2 do not indicate the correct large L behaviour.
It is hoped however, that the slightly larger lattices considered
here are suitable for the finite size scaling analysis. It is
encouraging at least that the behaviour of the U(l) system for
L=4,5,6 differs from that of SU(2) [19 ] and the SU(3) case
we consider next.

As commented by other authors [ 8 ,9 ] it may be possible to
fit the data to an essential singularity as in the two dimensiocnal
0(2) spin model. Larger lattices and better statistics would be
required to confirm the algebraic singularity in the specific heat
with exponent v 2% .

Note that mean field theory predicts a transition at o v~ 1,

but indicates incorrectly a first-order transition. Masses may

also be extracted in this scheme [20 ] .
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The non-abelian case

The properties of SU(3) lattice gauge theory have been discussed
in Chapter one - we now make computations for comparison with the

U(1l) case.

The specific heat of SU(3)

Recall the SU(3) lattice action of 1.

-1 H 4V o~ H -V
SSU(a) T2 z [TI‘(UX U?<+qu+u+\)Ux+\,+ h.c.)] 3.26
X, uv " 4
8 .b
where Uz is the SU(3) matrix exp [iae I %T.A:b] .
b=1

The partition function is

- H
Z(a) -Jn DU, explasSgyqy } 3.27
X, U
where a = Ye2 .
Writing U = (X, Y, Z) where X, Y, Z are 3-vectors, the
following SU(3) constraints are imposed on the measure DUE in
the form of delta functions:
% % %
1=X+X = Y+Y = Z-2
3.28

Det U= +1.

A 'heat bath' Monte Carlo simulation was used to measure the
specific heat of (3.1) on lattice sizes 4,5,6. The results are
shown in fig. 3. They are similar to those found by Lautrup and

Nauenberg for SU(2) [ 19 ]. There is a peak in the specific heat
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at around a " 6.00 which does not appear to increase with lattice
size, unlike the U(1l) case. There is, however, a small shift

in the position of the curve.

Remarks

The behaviour of the non-abelian system near a " 6.00 appears
to be of a novel character. If the confinement property at small o
is to persist for all values of the coupling, then we would hope
that this is not a signal for a change of phase, such as occurs in
the abelian system.

The peak occurs near to where Creutz [21 ] and Pietarinen [17 ]
find a rapid crossover in the string tension from the strong
coupling region matching on to the known Q.C.D. behaviour at weak
coupling. Since the height of the peak does not increase with
lattice size we might hope that correlations are not large in this
region. It is not clear why there is a shift in the position of
the curve, although this might be related to the onset of asymptotic
freedom in the weak coupling region.

The possibility of a 'roughening' transition has been suggested
[22]. A roughening transition forms a natural bariier to the
extrapolation of strong coupling series for quantities like the
string tension. This weak singularity takes the form of fluctuations
in the surfaces spanned by Wilson loops and may be measurable even
on very small lattices [23 ]. Such a transition may affect computer
simulations by slowing down the approach to equilibrium configurations
and by increasing finite size effects. For analytic calculations
the problem is more serious in that care may need to be taken in the

choice of quantity to be measured if a matching of low to high o is

required.
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Fig. 1

E versus a for U(1l) on a 64 lattice. Data points in
the critical region are the result of 6000 sweeps of the
lattice, averaging over the last 5800 every 3 sweeps. Error

bars would be smaller than the points.
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Fig. 2

E versus

a for SU(3) on a 5'+ lattice. Statistics

are as for fig. 1. High and low a curves are also given.
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Fig, 3
Cv versus o for SU(3) in four dimensions, showing
the effect of increasing lattice size L. Statistics are

as for figs. 1 and 2 with curves fitted by eye.
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CHAPTER 4 CPnnl COUPLED TO GAUGE FIELDS.

In this chapter matter (spin) fields are coupled to the pure
abelian gauge theory of Chapter three. Various coupled systems have
been'studied both analytically [1-4] and by Monte Carlo simulations
[5-9]. We shall consider the case of U(1l) coupled to fixed length
scalar (Higgs) fields. More site spins are introduced (each in the
fundamental representation of the gauge group) than are needed to
break the gauge symmetry completely. Under certain conditions this
lattice model reduces in the continuum limit to n-component scalar

Q.E.D."

1. The mixed model

We consider a lattice action of the form :

a VAV -u -V R
S=—= I U U +—= L 2Z
2 X X+ X+u+y  X+v 2
XUV s H XU

a . u-=a
% Ux Zx+u + h.c.

where Zi is an n-component complex vector satisfying the fixed
length condition on each site:
n

a =a
L Zx Zx = 1
as=1l

The gauge group is U(l) and we have as before :

. H
1aeAx

while the matter fields are written

% One motivation for studying this model is to understand the suggested
connection between U(l) and cpt field theories [18], although work

by Callaway and Carson [7] has not lent support to this idea.

4.2
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a1l n
a 1 19x 5 186 n 16
2y = (r_ e » Ty € s+ -1 € )
056 <2n a=1l, ..., n
Then using previous notation (4.1) becomes
a za jaeA
S = a I cosfaeF, J+BRel Z_ Z e x
UV X X+u

X,uv Xy U

The action (4.3) is invariant to the local transformations:

while the spin fields also lie in the fundamental representation

of the global symmetry group U(n),

Making the usual replacements

A > asd
H
z = a—dedx
X,u
. a
and rescaling 2
a

1
z° > Zxa = aZi/@

X
we obtain the naive continuum limit of (4.3) in four dimensions:

1.2

4 1 . My o2 (2
S Jd XL+ 5|(au + ieA?) zx[ ]

as a+o.,.

4.3

4,7
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The constraint (4.2) may be incorporated by allowing | Zi|

to fluctuate, but adding a suitable potential term to the action (4.1):

s » st = s + Az (2322 -1)?
X

%
Then in the limit A =+ o configurations different from unity

are not important. Defining
. _ A
)\ . - /82

= B2

H
|

and taking the limit a + O as before then gives

‘ L 1.2 1 . Uy o8 12, Ly a2 _.\2
S +Id XEqFﬁv+—2-|(3u+ iea )z |“+a (|2 [7-6)71]

- a Euclidean action for n-component scalar Q.E.D.

The partition function is defined as

_ U a.sa 53/ a_ _
Z2(a,B) = LTIMDAXEDZXDZ>< §(Z2 2 - 1) exp{ - S}
?

and only gauge.wariant quantities will gain non-zero expectation

values.

The expression (4.10) for Z simplifies in the various extreme

2. Limits of o and 8.
limits of a and BR.
a) >0

B3

- ———

t
When B = O the integration over the Zi s is trivial and

See Discussion (section seven).

4.9

4.10
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the model is reduced to the pure U(1l) gauge theory of Chapter three,
with a second-order phase transition at o "~ 1 separating the
confining and Maxwell phases.

Suppose we consider small but non-zero B. Consideration of
strong coupling diagrams indicates the form of these extra interactions.
The first contribution will occur when four links lie around a single
plaquette, i.e, O(Bu). Since this is a 'plaquette term' we may
interpret the first correction as an addition to the pure gauge
action, i.e. a renormalization of a by + Bq/8n3.

Following this line of reasoning we would expect a line of

transitions ending at the pure U(l) theory given by:
B}, 3 6
a (B) v a (0) - 7/8n" + 0O(B") ... 4,11

We expect this line of transitions to be of the same order as the
pure gauge theory, although we cannot be sure of the effect of

higher order (non-plaquette) modifications.

b) B » =

Here the configurations that minimize the sum over links in
(4.3) have the spins frozen (magnetized). In addition the link
variables are forced into a pure gauge configuration. Hence there

is no a dependence and the model is trivial in this limit,

c)a—+0

For n=1 [4] following consideration of a suitable gauge
transformation the model is seen to be trivial in this limit. For

the cases n>1 that we consider this cannot occur.

X \)F> tb SYMUEXSL cgjju:%qlsuax;éz_,
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For o=0, the link variables factorize, giving

2n
a.za,, za,a
Z(0,B) = II)ED 2,0z, 8 (Z 2 - l)xIIu JO de exp{8|Zxe+ |cos 6}
,.

JIIDZ DZ §(2°2% -1)exp{Zln I (Blz [)}

x x+u
XyH

The resulting 'action' of (4.13) may be written in terms of gauge

invariant projectors

Pab - Za Zb
X X X
ab,2 ab
where (Px ) = P
and tr Pab = 1

Expanding the Bessel function in (4.13) the action reads

S, = I Inl (Iz | 8)
CPn-l Xsu X X+
vz [fu e PP Piﬁu &6 tr 2P p 2 R I

X’u
(4.13) now has the form of a lattice CPn“l model [10,11] and
might be expected to possess a first-order phase transition except

for n=2 andpossibly other low values of n [12].

d) ¢ + =

-

In this instance the link variables are 'frozen' into pure
gauge configurations. Then the model is 'gauge equivalent! to the
0(2n) Heisenberg spin model. We expect the same transitions as we

found in Chapter two except that singularities only occur in gauge

4,12

4.13

4.1y

4.15

L.16
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invariant objects, and not for example in the average field

(magnetization) < Zi > .

Wheﬁ a and B are large but finite a perturbation expansion
may be made. The matter fields are assumed to be slowly varying
about a given direction and a suitable gauge transformation fixes
Zi to be real. Then expanding in the gauge field results in the
addition of a mass term (in the continuum limit) to the pure U(1)

propagator of equation (B 2.4).

3. The phase diagram - Monte Carlo results.

As a guide to the physics of this model we use a computer
simulation to map out the phase diagram in the (a,R) plane for
n=2,3 ona u” lattice. We use the Metropolis algorithm and
by analogy with Chapter two, random numbers selected from a normal
distribution are used to update the spins and links with an
appropriate bias.

To search for possible phase transitions we consider expectation

values of the link and plaquette terms contributing to the action

b3
(4.3)
<P> = i < cos[F 1 > 4,17
2 Hv
<L> = i-< Za iAﬂ Za + h.c, > 4,18
= 3 e oy .C. .

Thermal cycles in <P> and <L> are then observed from

three points of view:

* Where the lattice spacing is set to 1 and e is absorbed into the fields
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1) o fixed , varying B.
2) B fixed , varying a.

3) Varying both o and 8.

Only a small number of Monte Carlo iterations (50 - 100)
were used for each point due to the large computations involved at
each link and site.. Hence the occurrence of hysterisis loops in
the thermal cycles is taken as the signal for phase transitions
- see fig. 1. With this limited data, however, we cannot be sure of
the order of the transitiomns.

Combining results for <P> and <L > from (1) and (2) we
find evidence for three phases in the models n=2,3. Using diagonal
scans as in (3) we see clearly that the transition line C shows up
in both <P> and <L >. However, the spin ordering transition B
shows up only in <L > while the gauge transitions A is noticed
only by <P>. This effect may be understood by considering the free
energy density T(a,B) = 1ln Z(a,B) on either side of a given phase

boundary. Assuming T to be analytic within each phase we have :

_ar or
dr = Ea-da + 38 dg
= ééi <P>da + <L>dB

Suppose there exists a discontinuous jump in T between two phases

I and II (as in a first-order transition) then we can write

dFI = dFII .

Then from (4.19)

4.19

4,20
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5 (<P>I <P/II)da-(<L>II <L>I)d8
ie. da _ _ 2 A<L>
dp d-1 A<P>

Thus the ratio of discontinuities in <L> and <P> is
determined simply by the orientation of the phase boundary in the
(a,B) plane. Note that since <L> and <P> are both positive-
the slope of the boundary must be negative.

For higher-order transitions corrections to (4.20) will appear.
In this case (4.22) may be thought of as the ratio of leading
singularities in <P > and <L >, The strength of these singularities
might then determine the relative extent to which the transitions

show up in <P> and <L>.

Mean field theory and masses.

In order to extract some of the physics in each phase we turn
to the mean field approximation reviewed in Chapter two. We

summarise the results here and some details are given in appendix C.

Elitzur's theorem.

—EESESSSoSESEE=s==

Within the mean field approach it is natural to follow the

example of the spin theory and determine self-consistently the

average values of the fields < Ug > and <Zi'>. For locally invariant_

N\
theories however, this apparently contradicts Elitzur's theorem”
which requires that both these quantities should vanish. Despite
this, some results have been obtained in impressive agreement with

Monte Carlo data [13]. Since the average fields are gauge dependent

% Referenced in Chapter three

4,21

4,22
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qQuantities it might seem natural to fix a gauge as a way round
this problem [14]. However, it has been shown [15] that at least
for the axial gauge <I12> still vanishes rigorously.

For the coupled system considered here, a qualitatively identical
phase diagram is obtained with or without gauge fixing [i]. In
what follows we use an unfixed scheme to firstly obtain a phase
diagram for comparison with the Monte Carlo results of section three.
These results are in good agreement and we go on to compute various

masses.

==z =======

For the coupled system the self-consistency equation 2.20 on
the sites of the spin model is replaced by a pair of self-consistency
conditions on the site and link expectation values. In the case of
symmetry breaking the 2% are rotated and a gauge
transformation is made so that both <U¥> = <C> and <2%> = <Xx>
are real,

The corresponding mean fields are :

o
n

2(d-1) a<c>3 + B<x>2 + Jc

=g
n

% 2d B <c><x > + Jx

Expectation values are obtained using the'partition functions':

Z (hc) JD Bexp{c- hc}

z, (n) JDZaDZaG(Zaia-l)exp{x-hx}

4,23

4,24
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and self-consistency gives the results for <c> and <x> :

<e> = Il(hc) / Io(hc)
b,25
<xX> = In(hx) / In—l(hx)
The phase boundaries are then determined in the same way as
the spin model from the thermodynamic free energy TI'(<c>,<x>):
_ 2 3 y
F(<e>,<x>) = 2dB<c>< x> +§d(d-—l)a<c> +Jx<s>+dJC<c>
- 1ln Zx(hx) -d 1ln Zc(hc) 4,26

The resulting phase diagram is compared with the Monte Carlo
results in figs. 2 , 3 with n = 2,3 .

We find (incorrectly) a first-order transition beginning at
the pure U(l) transition point and continuing through the triple
peint up to the CPn-—l axis at a=0. On the other hand the
transition line from the 0(2n) axis at o=« leading to the triple
point is second-order in this épproximation. This result is not
inconsistent with the expected behaviour of 0O(4) and 0(6) spin

models.

L,

®
Masses

In the mean field calculation for the coupled system we find a
mixing occurs between site and link expectation values. As a result
no simple formula for the ¢ mass analogous to (1.39 ) may be
obtained for the Green's function in position space. Hence we consider

the momentum space derivation of Chapter two. The mixing still occurs

% See Acknowledgements,
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but was found to be manageable. The calculations are outlined in

appendix C. The results are as follows:

a) ‘'Confining region' - small a, small B

In the symmetric phase (smallB) <2z%> = 0 for all a, and there are

2n degenerate scalar fields given by

2 - 2n
2,2~ <ooB 2d 4,27

where B £ Bc = for the symmetric phases.

n

d<c>
However, in this first region a is also small, we have <c>=0

and so all the masses are infinite. Thus confinement occurs but for

trivial reasons - in fact the same argument may be used to find bound

asb s ca s .
states, eg. <Z_Z > of infinite mass !

b) Maxwell phase - large a , small B

Here ¢ # O and(4.27)gives a set of 2n degenerate massive scalars.
There are 2d modes of fluctuation in the link value <UM>.
Of these d are massless transverse modes (see proof Cl). One of
these is the unphysical gauge deéree of freedom, while d-1 are the
photon.
The remaining d modes are massive and remain so in the continuum

limit 8 - B where m2 =+0 .
c 2,2

c) Higgs phase

In the remaining region we have an example of the Higgs mechanism

[16]. The photon is massive:



>0 4.28

with d-1 polarizations.

There are now 2n-2 massless Goldstone bosons (See appendix C
and Chapter one) and a massive scalar field o. The calculation of
m§ "involves mixing between <z®> and the longitudinal mode in
<U"> (The physical o is identified with the state having

lower mass which tends to zero as B8 > Bc), and is omitted here.

Discussion

As n>1 more spins have been added than are necessary to
break the gauge symmetry. The existence in these models of a phase
boundary separating Higgs andcewhwsceat phases is in sharp contrast
to the case n=1 [5,7].

For n=1 a similar effect is achieved however, when the
Higgs field carries multiple (integer) charge q. The action then
reads

S=a & cosf[aeF 1+ B8 I cos[A 6 - qa"] 4.29

X,uv uv Xy L x .

In this case, when q=1 it has been shown that the two phases are
continuously connected [4].

As the model here has two coupling constants it is possible to
demonstrate renormalization group flows within the phase diagram
(see Chapter one). Bad statistics meant that Monte Carlo calculations
of masses were unfeasible, but some results were obtained in the

mean field approximation [17].
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In order that the physics remains the same along contours in
the phase diagram we require that the couplings o and B depend on
on the lattice cutoff, A2 say, in such a way that both mi and mi

(in the Higgs phase) remain constant as A varies, i.e.

2
m (a,B) = f(m,B)A2
4,30
2
e (0,8) = gla,B)’
2 2 2
Computing the ratio mo/mY then eliminates the A“~ dependence

of (4.30) and the mean field results for mg and m%, give the
contours of fig.y.

The flows of constant mass ratio are in the direction of
increasing mg . The effect of a second-order transition is seen
clearly near the Higgs/Maxwell boundary where mg + 0 rapidly. In
this lowest order mean field approximation we would expect these
lines to hit the boundary at some point. If the second-order
transition were to persist in higher orders however, we would expect
the flows to tend only asymptotically to the boundary.

However, a calculation in the correspdnding continuum field
theory [18] indicates a first-order transition (for n S 365) separating
Higgs and Maxwell phases. If this result is true in the limit A= o
applying to the present model than we might expect the lattice mean
field prediction of a second-order transition to be incorrect, except
of course at the point o = = where it becomes the 0(2n) Heisenberg

model.
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Diagonal scan for the line a = 28 when n=2 (see fig, 2).
Only 100 sweeps of the lattice were made for each point,averagiﬁg
over the last 70. |

Different transitions show up in <L> and <P>.:



85,

Fig. 2

Phase diagram for n=2 on a ut lattice obtained by
Monte Carlo simulation. Horizontal and vertical bars
indicate the approximate size of regions of slow convergence
in <L> and <P> respectively. The line OAB indicates

the path of the thermal cycle of fig. 1.
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As for fig. 2 but with n =



87.

Mauu.on.\ l
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Fig. u

Phase diagram for n=3, obtained in the mean field

approximation. The flow indicated in the Higgs phase is

in the direction of increasing mg s keeping mi/hﬁ fixed.
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APPENDIX A

I High temperature expansion (low B)

Since we are only concerned here with low order in g, diagrams
are obtained directly from expanding the exponential in Z, rather
than from the more powerful method of performing a character

expansion first (1] :

Z(B)

X

Jn1>¢x6(¢z 1) exp {B I ¢  +9¢
X Xa U H

anxmf-l) L+ B4,p 0, %5y B
x ' ¢

X,u

¢x)2+ ce.] Al.1

|e

"

Any term in the product N that is not invariant to the measure
x
on all sites within the term,zill vanish. The remaining terms depend
numerically on n and the size and dimension of the lattice, and can
be represented as a sum of diagrams.

Clearly, only even powers of ¢, are invariant to the measure

D¢x6(¢i~l) so we write

© N
z(8) = & 83z, Al.2
k=0
To -evaluate %2k consider the following results. Let ¢i,

i=1,2,...,n be the vector components at a given site =x and

define
. . 2 i .
<ot elo = J D ¢, 6 (o, -1) ¢, ¢3 AL.3
Then clearly

< ot 93 > Al.4

1]
e-3
O

b S 1]

The normalization condition 1 = < 1 > implies
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l:<l>:<¢2>=An ) SO
14 6i.
<¢ ¢]>X= __ln Al.5.

Higher order expressions may be obtained by combining indices in

all possible ways:

B($ 8 ) Al.6

i35 k.n
@ eTe e > 15 % * S S50 % 850 85k

Contracting over k and & implies

1 - ig,2, _
= Gij = <¢ P ¢ > = B(n+ 2) Gij , SO
B = 1
n(n+2) °

Diagrams for %’2]( may now be evaluated by combinations of
A

the single site integrals Al.5, Al.6.

0
%’O = 1 , the trivial order Al.7
% .
2
""""" u _ 1 i 3 i 3
22 = 2—!Cl <¢” ¢ >x<¢ ¢ >x+u
_ 1 2
_ 1
- é"! cl/n . . Al.8

Cl is the factor associated with the possible positions of

the diagram on the lattice. In this case a single link oriented

twice: < e

Hence CJ. = de , the number of links on a finite lattice and
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y . al
2 7 2n
2
There are four different diagrams:
. _ i3, .3k k... . _.%.i
(1) = CpedeT co7d >x+p<¢ ¢ >X+p+v<¢ ¢ >xsu

Each bracket contributes a factor %- from the integration, while

1

- de

contracting over the indices gives a factor n. C

the number of plaquettes on a lattice. Hence Al.9

% an(a-1)/n°

T

2

1 i3 i
Cilg, <t7e%>, oied> ]
— 2
Calun

%— andean? - (4d-1))/un?

...0:>_1 IR )
(111) - '2!_2! <¢ ¢3;<¢ ¢ ¢ ¢ >x+u<¢ ¢ >x+u+v

1 1

3 1 1
=G T YT mwmy ¢ @ ¢ nn+2)

where the last factor arises from contractions over the deltas.

2
Cu/un

1]

and(2d - 1)/un2

' L icka ik
(iv) D = Cg 5, ¢ 07670 > <070l 0>,
1 1 2
= C — X ——ee X (6.- +o-o +6- 6. )
S 4 n2(n+2)2 ij il > Tif ik

The last factor gives 9 terms and turns out to be 3n(n+2) , so

Al.9

Al.10

Al.11

Al.12

Al.13

Al.1lu

Al.15

Al.16
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C5 / 8n(n+2)

and / en(n +2) AL.17

Summing the diagrams we have an expression for Z(R) to

order B‘+

d d
v dN 2 d 1 24d-1 d-1 dN-44d+1
Z(B) — X + — B +dN [ + + +
2n 8n(n+2) L+n2 2n3 8n2

y

1B + 0(86)..., Al.18

F(B) = 1nZ(B) is the free energy and differentiating F with

respect to B gives the average energy density E(B) of 2.5 to 0(83):

3

+ 0B +...

E(R) = 8/n+ (33 -22% ¢

n n2(n+2)

As an informative check we calculate E directly from diagrams :

o7 1 2 -
E(R) -.z(é) — I JHD¢XG(¢X~1) ¢x+,'j ¢, exp{B I ¢’X+°u ¢} Al.20
dN" xu / x Xy
Al.20 is evaluated at a fixed link ¢ ¢_ = L somewhere on the

a+p ‘a
lattice - since the system is translationally invariant, any one
link will do.

A diagram will now be non-zero where every site on the diagram
belongs to either:
a) an even power of links from the NI in the expansion of Al.17.
b) an odd power of links from the ;,uand to L.

T

Hence the lowest order diagram is simply

= =  B/n Al.21

Each such diagram can occur with all possible sets of disconnected
diagrams from 2(B), i.e.

L

E(B) =e--a[ 1 +a_-» +1___I+“"‘. e o ] Al.22

[l+.c:.>+m+o...].
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When all diagrams are considered the two bracketed series
do not quite cancel, since the top bracket is a sum over all

diagrams in Z(B) on the lattice except for those including L.

i) Consider the first diagram &«——s giving a factor 8/n .
Now any diagram (e.g.«——">to lowest order) from I in the
) X,
expansion of Al.17 with sites in common with «Z”>» must be

subtracted. To this low order there are two kinds:

1) (E occurs (4d-2) ways so using previous considerations
we subtract

2 (4a - 2) 8%/n? A1.23
2) === occurs in only one way, hence subtract

% 83/n? Al.24

With 0(83) corrections taken care of, we evaluate the positive

63 contributions in a similar fashion to Z(B):

(ii) l l occurs in 2(d - 1) ways for given link L, therefore
it gives

2(d - 1)8%/n° AL.25

1
(iii) " = Z(ud-2) 83/n° Al.26

(which cancels exactly with (1))

C(iv) > - 63/2n(n+2) Al.27
The next terms and corrections are 0(85). To order 63 we have

3

Sn+h ) 8° . . . as before Al.28

E(p) = P/n v (55 -
n n (n+2)
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ITI Low temperature expansion (high B)

The general method is the standard perturbation expansion for
the Green's functions in field theory, based around Zo’ the free
field generating functional. The case of an 0(n) symmetric

Lagrangian is given in ref. [2].

The following basic results are easily derived from the momentum

space transformation

+7 . "
6, > F etdeX 5
q= -7 4
where
"~ -d -ip.x
: =N " Ie
¢ ; oy
. 4+
using z el(P“q)'x Nd z 8 +9
'x nz -w P a7 enm
1.2 k d vl a2 k-1 vk
1) = b b » o o4 =N z ¢ ¢ ... o _ -p
X Pl:P2,°'-st_l Pl P2 pk_l Pl: P2S' e * 3 }(-l
A2.1
where momentum is understood to be conserved only modulo 2w
2) By translational invariance and using A2.1
2 2
z (¢ -¢. )" =L (29, -2¢ = ¢ )
X, \ X+ x x, u x X" X
da o -1
=N A A2.2
¢P ¢‘P )%
whereA 27tz (2-2 cosp. ) .
P U

u

The partition function 2.2 for the Hamiltonian in the absence of

external fields reads :
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7(8) = [ T D4,8(5-1) explB I [1-3(o70%1}

writing the fields ¢ = (cx,'rrx)

x
The fixed length

do, 842 - 1)

o fﬂ Dm, Dcxa (03 -(1- 115]) exp {-

X+ X
X’P

8

2
5 I Lo, 000"+ (n
X,u

condition gives interactions by :

2 2
dr do, §(c_ - [1-m. 1)

1 2.-%
-Q-dﬂx(l"ﬂ'x)

n

1 1 2
5 dm, exp {- 5 In(l - n ) }

Transforming to momentum space A2.3 reads
i

Z(R) u[ndn
P

P

where H, = -

At low temperature, spins tend to align in the o direction,

say. Oscillations around o are assumed to be small, hence

exp {HF + H_1}

I
g -1
Z I T b
2
d d
NBsg o l—N—Zln(l—'nuT ) .
2 p P PP 2 b -

IHX| <<1 and we write :

2 2 1
and ln(l-wx) v s 5T

Up to quaptic terms, H_ then is

I

1 -(l 2
o, scalar , 7 = Trx,'rrx,...,Trx

=T
X4y X

n-1

)

A2.3

A2.4
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N"B -1
Hoovoo— z (m_-m_) (m . w )+ L.
I 8 p..p,p, P1L P2 P1*Py  'P3. "Py7Py7Py
1°>42°%3
N4 N9
+ 7 z 'ﬂp.'ﬂ’_p + T z (’lT . )('ﬂ' .Tl'_ -p- ) o o A2.5
P Py3PysPg Py Py Pz "P1;7Py7P3

Adding source terms Jp.ﬂ_p for the “p fields and making

8 )
th _— — ;
e usual replacement L. > 53 we pull eXP{HI(dJ )} outside

the integral A2.4, leaving the Caussian form with the ﬂp integration

range extended to .

4+

d
Z_(B) = I IDn_ exp{- NB yomon a7t s N4 LJd .m _}
F p P 2 p P PP P -P
_ e P
yd
o expl 5= I J .J__ A} A2.6
28 Luo PP

Note that the p=0 mode is excluded in order that the 'propagator'
AP be well defined. The integral over the p=0 mode of ¢p may
be taken out right at the beginning since it contributes a numerical
factor which cancels with Z in the denominator for averages over
0(n) invariant quantities.

A set of 'Feynman rules' may be given in the normal way. Note
that diagrams for the 0(n) theory will contain factors § i j |

i, 3j=1,...,n-1 leading to a factor n-1 for all closed np loops.

Diagrams

-4

A A2.7

Y
3

w|
Lo

P - - Nds A7t A2.8
—_- - p

4 > Nd from the measure. A2.9
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In addition to closed index loops, any closed loop will involve

a sum I over all p for which every propagator in the loop has
P

non-zero momentum,

Evaluation of E(BR)

o .-d .-1 _o-d -1 1 2
E(B) = <N " d "I ¢,;6>=N"d <Il1-50¢,,5¢71>
XU Xy -
=1-atczis.e -1,
2°p-p p
p ,
1 -1 1 -1
VI-—== <Imen_ A > -=<ZI (mem DA ( ) >
2d P PP 8d P,:P,:py Pl Py P1*P, Pz “P17Py7Pq
A2.10
(i) The first bracket of 2.7 gives :
i
(a) ", acting on the free part of 2, i.e. the 'tree level'
diagram
-d ’
=(n-1)lé— z a’ta
pto PP
Tr—
P -p N-d 4
= (n—l)—B- (N"-1) : A2.11
The Nd dependence is apparent even at this lowest order.
For Nd + « we have
(n-1) -2
E(B) ~» 1 W*O(B ) A2.12
b) ﬂﬁﬂ_ combined with interaction terms from Z, giving

contributions 0(8—2) . Expressions arise :
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- ! - (n-1) N—2d
P -P 62

g A a1t o,

Py P1tP, P
PysPy, 27172 %2

The non-trivial sum may be evaluated in the large N 1limit,

or summed directly on a computer.

(ii) The second bracket of A2.10 also gives 0(8_2) terms from

acting are the free part of Z.

The final N dependent result for E(B) is

E(B) v 1 - %1—) Nead-1) « (“—'2—1—)- I A2.13

Ld B

r=nYra 'l oot s -2]
p, F1 p, F1 Py Pp
: 1
In the large N 1limit I becomes - 5q and A2.13 is
n-1 n-1 -3

E(B)_’\;l--?as—--‘?_—z + 0B 7)) ... A2.14

8d B



98.

References

(1] R. Balian, J.M. Drouffe and C. Itzikson, Phys. Rev, D11
(1975) 2104,

[2] D. Amit, Field Theory, the Renormalization Group and Critical
Phenomena (McGraw Hill, London, 1978).



99,

APPENDIX B

I High temperature (low a) expansien for U(1)

Expansions to very high order (up to alu) have been carried
out {1, 2] using character expansions. As an aid to the mixed

model we simply list here the low order diagrams obtained from

expanding the exponential in Z of (3.5) (putting a=1)

Z(a) = f nlyeﬁ exp{a I cosb 4 }
Xy U Xyu
a2 2
_’y_[ I;DBpu g (l+ou::osecl + 57 cos Ot ees)
where 6, = 6% and 6_ = 6u + e” - oM - 6V
L X o x X+ X+u+v X4y

Using the results:
3
2m
J de cos® =0
0

27

1 2 1
e 0 0 = =

Jo d 4 ©Os ( Wt B) >

and S

we see that in analogy with the spin models, only terms with an even

number of links belonging to each plaquette in a given diagram will

survive. Expanding Z as a set of diagrams we have:

0fa”)
a2 1
= 57 NEl X 5 from integration
o(a’)
I
. o] 3
(1) "7 Ya¥3

Bl.1l

Bl.2

Bl.3
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— Y
.. o 1
(i) =557 7 No (g - [sa-2Dx L (BL.4)
au 1
(iii) = 5791 x Ng (4d -6) x T (B1.5)

Calculations similar to those for the spin model yield the
result (3.7) for E(a):

3

7
E@P ¥3-L o+ (@-) a® + o)., (B1.6)

Low temperature (high a) €Xpansion for u(l1)

The method is again the general one of perturbation theory.
A discussion of lattice weak coupling is given in [ 3 ].

As in continuum theory the calculation is only possible if a
'gauge' is chosen. When distances are large compared to the
lattice spacing, i.e: for small momentum p. the results of

continuum Q.E.D are recovered.

For large o we approximate (3.3):

2 64
_ _Xsuv X, PV
SU(l) ~ L [1 =1 et e . ] (B2.1)

X UV

. = v o_ H
where eX,uv HIES (A‘J M Av ex)
and A 8° =6’ -8  is the lattice 'difference' operator with

H X xX+U X

spacing a set to unity.

The generating functional Zo is obtained as in the spin model

from the quadratic part of (B2.1). Transforming Si - into
9

momentum space yields the inverse propagator
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M—l = 2Nd [Z (2-2 cos pa) 8

W r + (cosp!_l *cosp - cos(py— pv) -1)]

uv
This matrix is not invertible without the addition of a gauge
fixing term, for instance

-1 Hy2
A (Au 6.)

to the action (B2.1).

For suitable A we have the lattice 'Feynman gauge' and (B2.2)

becomes
-1 _ d
Mpv = 2N [ i (2-2 cosp )]Guu
giving
_ 1 . ) -1
Muv = 3N [Z (2 QCospa )] 6uv

aQ

’

For small p we recognize Muv as the ordinary massless propagator

1
Muv v ;5 Guv for small p.

If required, a set of 'Feynman rules' could be written down in

a similar fashion to the spin model.

The heat bath algorithm in U(1l) and SU(3)

Given a supply of uniformly distributed random numbers from a
computer we need a way of transforming them into group elements U
distributed with the BoltzmanM.weighting P(U) dU of (1.51).

Suppose we write

P(U) dU = Q(U) d[r(U)]

where we require 0 <R <1,

B2.2

B2.3

B2.4

B2.5

B3.1
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Two cases arise:
(i) Q = constant.

If Q is independent of U we see immediately U may be

generated according to (B3.l1l) by taking numbers R ‘uniformly

distributed on (0,1) and inverting R(U) .

(ii) Q # constant.

In general the form of P(U) ~ exp{Tr Re AY U} is too
complicated to allow us to define R(U) 1in such a way as to make
Q constant. However, we can still satisfy (B3.l) by firstly
generating R uniformly and then correcting for the weight factor
Q(u).

Given a U generated as in (i), this defines a value of Q=Q.

Suppose we generate a new random number R' distributed uniformly
’ ~ ~ "~
on the range of Q(U). Then if R!' < Q we reject Q and generate
a new R and hence a new Q. Thus the generated U that we finally

~

accept is conditional on Q bedng accepted, i.e. the 'flat’

Q
distribution d[R(u)] is multiplied by a factor j dR' and so we
0
have
Q
J dR* d[R(uw)] = Q(uw)d[R(uw)] . B3.2
0

The U(1l) case

We are required here to generate 6 according to:

%
P(8) do = e1°°%? 4g 056 < B3.3

% We need only solve (B3.3) for the half plane and then change 6+ -6

with probability %-.



103.

Let

R(x) = (™ - eMy/(e - &™)
and Q(x) = exp{Mlcos "/2 (1 -x) - x]}
where x =1- 26/n

Then clearly (B3.3) becomes
P(8)de a Q(x) d[R(x)]

with 0 <R(x)s1.

~

Then selecting R uniformly on (0,1] gives x from the inverse

function to R(x):
x=-l%ln{l + (ezM-l) R}-1

To allow for the ‘weighting Q(x) we take a second random number

R and keep x if and only if:

Q(x) -
qax. &

0.2105137a .

where QMAX is the maximum value of Q(x) = e in this case.

The SU(3) case

The case of SU(3) is of course considerably more complicated.
In the heat bath algorithm for SU(2) [4] one is able to make use of
the fact that any sum of SU(2) matrices is proportional to another
SU(2) element - thus the sum over surrounding plaquettes in the
exponent of (1.39) is a single SU(2) matrix (times a factor).

For SU(3) however, this trick is out. The expression (B3.1)
is decomposed into a weight factor Q(U), together with several factors

d[Ri(U)]. Some details are given in ref. [5].

B3.4

B3.5

B3.6

B3.7
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APPENDIX C

Mean field calculation

Changing notation we recall the action (4.1):

PN
Sz I ruto?udu® + ce.d +-g- : [22uZz® + c.c.] cl.1
{i} E%ar
w2 7 7
cal
. 6
and write Uz = el = cz + is2 £ = 1,.0..44
722 = x® + iya a = 1l,.0e4D

xx? + yaya =1,

Rewriting (Cl.1) in terms of real and imaginary parts we have:

Sza I [clc2¢::3<:'4-i-sls?sasu*—(—slchacu'+slsac2cl++sJ's!+c2c3-1-525,3c:|'c’1L
u@z

1 2413 3412
-,s"s cc’)]

+ s scc¢

aa
a_a' aa' aa's ~-xy s] Cl.2
+ B )(E [xx" c+yy c+yx

. |
722 Z@

Given a site or link, (denoted x or..in the following equations)
mean values are associated with all the surrounding fields. Then the
following expressions for the mean fields h are constructed from

the relevant terms in (Cl.2).

h =a ¢ <c2><c3><cu> +a I [- <c2><83><su> + <c3><82><54>

3 3
ot &

3 5 7 5 7 5 6
+ <Cq><52><s > + <c ><SG><S > + <c6><s ><s7> - <c ><s ><s >]

1 1 ’
B[<xa><xa> + <ya><yai>] + JC , Cl.3a

+
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h =a ); <52><sa><su> + ‘g‘. [-<s2>c3><cu> + <53><c2><cl+>
© %N

7LeY 5
+ <su><c2><c3> + <ss><c6><c7> + <56><c5><c7> - <s7><c5><c6>]

) 1

+ s[<ya><xa > - <xa><ya >] + Js ¢1.3b
1 1
hi =B I <c><xa >+ p{ I <s><ya > - % <s><ya>} + Jz Cl.3c
—_X *— —_—
] |}
ha =B L <c><ya >+ B{ Z <s><x‘-’l > -z <s><xa>} + Ja Cl.3d
y —X e H— y

Then the self-consistency conditions are:

<c> ll J D6 Cexp{ ch  + sh_ } Cl.ua
<s> ll DO S exp { ch_ + sh_ } Cl.ub

-1 a
x> = z, JDXDY x? exp{x® h +y hy} Cl.k4c
<> lJ'DXDY y? exp{x®*n? + y¥n? } Ccl.4d

2 X y

where Z, = J D8 exp {chc + shs}
Cl.5

_ a a a,a
Z, = J DX DY exp{x h, +y hy}

and the site measure is

DX DY:= DX DY &(x"x% + yoy° - 1) .
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As in the spin model, when magnetization takes place, we rotate

the 2% so that only the first component, say Zl of 2z

, has a
non-zero expectation value. Performing a suitable gauge transformation
on the links then leaves <zl> = <xl> real., This in turn means the
second part of the action (Cl,1) contains only cosine terms and hence,
<s> 1is also zero.

Thus only hc and hi of (1.3) need be considered here. They

become (after imposing translation invariance):

hc = 2(d-1) a<c>3 + B<xl>2 + Jc

hxl = 2dB8 <c><x1> + J

[

where self-consistency requires

<c> = Zil IDB c exp{chc}
<xl> = Z;l IDX DY xl exp{xlhi}
with Zl(h)z J DX DY expl chc}

1, _ 1.1
Z,(h ) = J DX DY exp{x hx}

The Legendre transform of the free energy w = ln Z yields the

following equation for the thermodynamic potential T(<c>, <xl>) :

dr(<c>,<x"'>) = d ch<c> + J; d<x'>

The solution of equation 4,23 is :

Cl.6a

Cl.6b

Cl.7a

Cl1.7b

Cl.8

Cl.9
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1"(<c>,<xl>) = %-d(d—l) a<c>4 + 2d B<c><xl>2

1 1 . 1
+ dJc<c> + Jx<x > - 1n Zl(hc) - 1n Z2(hx) Cl.10

Masses

As in the spin model we consider the responses 6<c> etc.
of the average fields to a small source and write down an expression
for the change th in the mean fields. Thus ignoring higher

derivative terms the Green's functions are obtained,

h = a § <c>2[6 <> + 6<c3> + 6<cu>
c
“{?}2
1 ]
+ B <><1>[6<xl > 4+ 6<xl>] + Jc Cl.lla

chs_: Qa g <c>2[—§<52> + 6<53> + 6<sq> + 6<s5> - 6<56>]
y 2
7{315
1
+ B<xl>[6<yl> - 6<yl >] + Js Cl.11b
‘Shi = B8 I <c> 8<x®> 4 Ji Cl.1llc’
—xX
§hd = B L <c> Sy 4+ J° C1.11d
y —_ y
where <xa> =0
5hi = B I[<e> 6<xl> + <xl> §<c>] + Ji ' _ Cl.1lle
—xX
1 1
Sh™ = B I <c> <y > + al T <xl> §<s> = £<xl> S<s> ]+ Jl Cl.11f
y — p— *— y

where <xl> £0



109.

Scalar masses

We notice that the expressions for Ghi and (Sh;, where

x> = 0 » are essentially identical to that of the Heisenberg

model (eqﬁ. 2.23) with B = B<c>, By analogy we call

HEISENBERG
these modes =n and we have

mfr = (8 <c><ni n': >c]'l-2d

In the symmetric phases there are 2n such degenerate non-zero
masses (see Chapter two). In the Higgs phase thaere are 2n-2
massless Goldstone bosons - the proof is as given for the Heisenberg

model in Chapter one, section six .

The value of <1r31ri>c = 53:5 found in equation 4.24 is obtained

. at . .
from rotating the % s when symmetry breaking has occurred, i.e.

I3

a_a d
> =< = —
<7TXTTX Oxo‘x> <g>

dh h=0

I
w ¢

)|
In-1" hh=o

v Y2n + o(n)

' Photon'masses

In the Higgs phase 6<xl> mixes with &<e> and 6<yl> with 8<s>..

u

For the transverse photons, consider the second case. Writing s_

for the link from site x in direction u, and A‘J for the usual
lattice difference operator, equation Cl.1lb becomes

_ 2 2 _ _ v
<Sh81)1( = a <> [ (AT + 2(d-1)) é’w A!1 AV]6<sx>

1 1l
+ <x"> A 6< > +  J
B " y sl):

Ci.12

Cl.13

Cl.1y
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From (Cl.11d) we argue that 6<yl> in (Cl.14) mixes with the
longitudinal part of 6<st>. In addition, the transverse part satisfies

Aué <s}(1 > = 0. Hence (Cl.l4) becomes

_ 2 .2 "
éhsu = a<c> [AT+2(d-1)] 611\) <S<Sx> + JgH Cl.15

X X

Hence we obtain a photon mass mi from the equation

u,o_ VR
5<sx> =<8, s >céhsi -Cl.16
= <g” ¥ (a<c>2 [A2+2(d-l)]6 ) 6<st > + Jn Cl1.17

x x "¢ UV X Sy )
=> (-A2+m)6<8:> =u<c>2JSu cl.18
x
where

2 = (a<cofes® &> )7h - 2(a-1) C1.19

Using Ward identities as for the Goldstone bosons we now

distinguish between transverse photons in the Maxwell and Higgs phases.

Proof Cl : The transverse photons are massless in the Maxwell region.

======z==x=

In this phase <x'> = 0 and eqn. Cl.6a gives

<g> = le JDB exp{ [ 2(d-1) a<c>3]c} Cl.20

Changing variables

§dc = -€s58 , §s = ec

leads to the Ward identity :

0 = a(<c>-<sxsx> 2(d-1) o <c>3+ <s_> <sx>2(d-l)a<c>3) Cl.21
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= g<ec> (l-<Sx sx>2(d—.l)cx<c:>2 Cl.22
zg<ec> < > m2
=€ @ <55 % My using (C1.19) Cl.23
2 . .
= mY = 0 in this phase.
Proof C2_: The photons are massive in the Higgs phase.

Here < xl ># 0 and (Cl.20) is replaced by

<§> = le JDG exp{ [2(d-1) a < c>3+ B<x1 >2 Je} Cl.2u

and the Ward identity is :

0= elce> - <s s > [20d-1) a <c>® + gext>°]) c1.25
} 3 2 1.2
= e(<sxsx>C ac<e> mY <8, Sx>ca<x >7) Cl.26
, 1.2
i.e. m = B XX 2 (eqn. 1.25) c1.27
Y o <c>3

and it may be shown that m$ finite persists in the limit

a + = , B fixed.



PUBLICATIONS




PAPER 1.




JPae GNPy 2016 b et Frnae! o Gecar b ot

ILETTER 70 THE EDIVTOR

The specific heat of SU(3) lattice gauge theory

R C Fdgart, L McCrossen} and K J M Moriarty}
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Received 13 January 1981

Abstract. The average action/plaquetie and the specific heat of SU(3) lattice gauge theory in
four dimensions are calculated by Monte-Carlo simulation on lattices of lattice length 4 and
S by averaging over 400 iterations through the 4* lattice and 200 iterations through the 5
Jattice. The calculations show a peak in the specific heat at a value of the inverse temperature

Bof6.31.

SU(3) lattice gauge theory in four dimensions is hoped not to possess a phase transition
between the low-temperature and the high-temperature regions. This would lead to the
confinement of quarks for all values of the temperature (Wilson 1974).

In the present Letter, we evaluate the average action/plaquette (E) of SU(3) lattice
gauge theory using the Monte-Carlo method (Creutz 1980). The specific heat is then
defined by

Cy=0(E) éT=—p8(E)/ 2B (1)

where T is the temperature, f is the inverse temperature and f=16/g?, where g is the bare
coupling corstant. Monte-Carlo calculations have been carried out on lattices of lattice
length 4 and 5. For lattice lengths 4 and 5 we used 400 and 200 iterations through the
lattice, respectively.

In figure 1 we see the average action/plaquette {(E) plotted against §, for 0<£<7.0.
(This figure contains 119 data points.) Also shown in the figure are the low-temperature
expansion (Creutz 1979)

(E) 5== 2B
and the high-temperature expansion (Creutz, private communication)

(Ey =5 1 — b B— 2k B + ssin B* + s B° + O(8").

In figure 2 we plot the data for the average action/plaquette shown in figure I in the
vicinity of the cross-over in order to show the detail more clearly.

0305-4616/81/050085 + 04%301.50 © 198] The Institute of Physics L85
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Figure 1. The average action/plaquette for 400 iterations through the lattice for SU(3) latuce
gauge theory as a function of the inverse temperature. The Jow- and high-temperature
expansions are also shown.

.

The specific heat Cy was obtained by first smoothing the average action/plaquette data
and then interpolating this smoothed data by means of cubic splines (Anderson ef al 1979).
The cubic spline interpolation then immediately gave the first derivative of the smoothed
curve for use in equation (1). We only used ordered (cold start) configurations in our
calculations as we know that both ordered (cold start) and disordered (hot start)
configurations lead to the same results.

Our results for the specific heat Cy are shown in figure 3. The sharp peak at §~6.31 is
impressive. This peak occurs near the point (§~6.00) where Creutz (private
communication) found a rapid cross-over in the string tension between the low- and high-
temperature regions. Using the same program, we have computed values of the average
action/plaquette for up to f=15.0 but this is beyond the transition and thus irrelevant to
the present discussion. In the high-temperature region, the agreement between the high-
temperature expansion and the Monte-Carlo results is quite good.

We have also evaluated the specific heat for 200 iterations through a 5* lattice at 21
values of f. These results indicate that the peak in the specific heat does not shift
appreciably in § compared with the 4* lattice. This was previously found to be so in SU(2)
lattice gauge theory (Lautrup and Nauenberg 1980).

Our results indicate that there is a transition between the low- and high-temperature
regions in SU(3) lattice gauge theory, which is similar to that found in SU(2) lattice gauge
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Figure 2. The average action/piaquette for 400 iterations through the lattice for SU(3) lattice
gauge theory as a function of the inverse temperature.

4

theory. In a recent publication, Drouffe and Zuber (1980) found a roughening transition in
four-dimensional SU(3) lattice gauge theory at f=5.94 + 0.36 which corresponds closely
with the peak we have found in the specific heat. Using order parameters other than {E),
such as the pinch operator pw (ltzykson ef al 1980), we are continuing to investigate the
nature of this phenomenon.

The authors would like to thank Dr M Creutz for his computer program, numerous
discussions, correspondence and his constant encouragement, Dr B Lautrup for
correspondence concerning his results and Dr M B Green for discussions. Two of the
authors (RCE and LMcC) wish to thank the Science Research Council of Great Britain for

financial support.
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MONTL CARLO SIMULATION OF U(1) LATTICE GAUGE THLORY
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and
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Reccived 18 Novembes 1980
PROGRAM SUMMARY

Tule of program: UILATTICE

Ca;ulogue number. ABEA

» Program available from. CPC Progiam Library, Queen’s
University of Belfast, N. Jreland (see apphcation form in this
Jssue)

Computer: CDC 7600, Installation: ULCC

Operating sysiem: SCOPL ’

Programming longuage used: FORTRAN IV

High speed storage required: 16 Kwords

No. of bits in a word: 60

Overlay structure: none

No. of magnetic tapes required: none

Other peripherals used: card reader, line printer

Card punching code: CDC

To1al no. of cards in combined program and test deck: 430
Keywords: lattice pauge theory, U(1), quark confinement,

phase disgram, phase transition, statistical mechanics, action
per plaquette, Monte Carlo

* Permancent address: Department of Mathematics, Royal
Holloway College, Egham, Surrey, TW20 OEX, UK.

Nature of the physical problem

The program calculates the average action per plaquetie for
U(1) lattice gauge theory. Gauge theories formulated on a
lattice were proposed by Wilson [ 1] and Polyakov [2]. and
the average plaquette acuon is an important observable 1in
the study of phase transitions in such sysiems,

Method of sulution

A Monte Carlo simulation of the lattice system. using the
heat bath method of ref. [3] adapted to U(]), generates a
series of field configurations approximatng siatistical equi-
librium at a given temperature.

Restrictions on the complexity of the program

The storage required is dependent on the latuice size. The
execution time increases with the lattice size and with the
number of Monte Carlo iterations required. and is typically
rather long. At temperatures much below the critical point
the Monte Carlo vetoing process becomes very slow.

Typical running time
The test run 1ook 34 s on the CDC 7600 at ULCC.
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1. Introducthion

The program caleulates the averape sction pes
plaguetie for 3 U()) paupe theory ona regular lattice
in 2 o1 more dimensions. Tatoce paupe theories are
one way of tiying to understand pauge-invariant
quantum ficld theories and phenomena such as quark
confinement. A popular approach to the investigation
of lattice systems is to use the Monte Cario metho-
dology of numerical simulation which is familiar in
stutistical mechanics. The algorithm is relatively
simple, the main problem being 10 loop efficiently
" through the links and their associated plaquettes. It
is straightforward for the uses to add routines to cal-
culate quantities such as Wilson Joops, o1 to modify
the program for groups other than U(1).

2. Outline of the theory

A pood introduction to lattice systems with
further references is contained in ref. |1]. The lattice
1s a regular square, cubic or hypercubic array of sites
in n 2 2 dimensions with /' sites on a side. A typical
site has integer coordinates m = (m,, m,, ..., m,)
where ) € m; € 1. Nearest neighbour sites i and j are
joined by a link which carries an element U;; =
exp(i¢,;) of the group U(1). The links are directed in
the sense that U;; = U;,~ and

¢i/‘ = 9"/:‘- (1)

Each site carries 2n links so that the lattice has
2n!" link variables but (1) reduces the number of
independent Link angles to nl". Periodic boundary
conditions are normally applied, neighbours to
sites on the edge of the lattice are defined by hav-
ing:

(my, coymitl o, mp) = (my, o, My, o, Mp). 2)

In other words, the lattice repeats in every direction.

A plaquette is a square of nearest-neighbour sites
in a lattice plane which we label (7k7) (fig. 1). The
action for this typical plaquette p is

Sp =1 = Re(Uy Up Ur, Uyy),

¢4, <.,

o e ®
1

4.
Tag. 1. A plaquette of the lattice.

J

or

Sp =1 = cos(¢jj + ¢jn + ¢y + &y, ()

and the total action for the system in a configuration
Cis

Se =275,
p

where each combination (ijk[) is counted only once.
If different permutations (itkf), (klif), ctc. are
counted separately, there is also a factor 3. The parti-
tion function is

z-= ?exp{—ﬁm,

where the sum stands symbolically for an integration
over all possible configurations. The parameter f§ is
known as the inverse temperature and corresponds to
the inverse coupling constant squared in field theory.
If the continuum limit is correctly taken, the link
angle ¢, (m) can be identified with the electromag-
netic field A, (x); ¢,,(m) denotes the angle on the
link from the site with coordinates m in the u direc--
tion. Then the action becomes

5= [d*x @uAy - 3,4,X0,4, — 3.4,),

which is the usual Euclidean action for the electro-
magnetic field.

3. Monte Carlo method

The theory and practice of the Monte Carlo tech-
nique is comprehensively discussed in ref. [2]. At
values of 8 far from a critical region, the lattice con-
figuration converges very rapidly to a stable state

/

e
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withorelanively amall thermal fluctaations, wlanever
the mmal state. Near g onmcal value of £, however,
converpence will be slower and the vanations of
larper amplitude. I insufficient iterations are made,
hysteresis effects will be apparent.

4. The program

A description of the program and its use is
included in comment cards. There are two subrou-
tines: CHECK, which traps illepal values of param-
eters that the user may alter; and SWEEP which per-
forms a single Monte Carlo sweep through all the
links on the lattice and returns the average plaquette
action. The main program initialiscs the lattice {o an
ordered confipuration (¢,, = 0) or 10 a disordered
configuration (¢;; sclected at random in the range
[0,27]), and calls SWEEP repeatedly. The main pro-
gram also includes assignment statements for param-
eters controlling the Monte Carlo process and for §,
n, 1. To run the program, the user alters these assign-
ments as he wishes and adjusts the dimensions of
arrays storing lattice varisbles accordingly (this is
explained in more detail by comments). The program
calls NAG routine GOSCAF |3] which returns a ran-
dom number uniformly distributed between O and 1,
but any similar function could be substituted. The
mam program and CHECK are easily understood, so
we now concentrate on the subroutine SWEEP. It is
necessary to loop through each hink in turn, calculat-
ing the action around each plaquette which includes
that link.

At the site with coordinates m; there are n links in
the positive directions, and the values of cos ¢,; and
sin ¢,; on these links are stored in the arrays COSP
and SINP, respectively. The hink in the positive k
direction from this site is at Jocation

n
k+n 2 (m—1)0" (4)
i=1
s, 2 3
4 L
6 7 ‘4 4

Fig. 2. The two plaquettes in the X, L plane.

Montte Corlovoagicinm ol U] dctine o oane tia ary 43¢

i these arravs. The coordimate my s at 1o o 1,
sy 1COORD.

Given the hskoin the L duection from 2 site (which
is denoted 1) there are two plaqueties 10 he con-
sidered in the A, L plane (fig. 2), which we denote
(1234) und (1256). Site 1. with coordinates m,, has
an entry in COSP and SINP starting at location

n
NSITEL =1 4n 2 (m, — 1)1}
i=1
and similarly for NSITE2, NSITES and NSITEG. The
values of cos ¢y, and sin ¢, will be at location

n
LINKI2=L 4+n 20 (m; — 1)11~"

i=1
= NSITEI + (L - 1).

To save explicitly evaluating the sums of (4), it is
possible to simply find the displacement in COSP and
SINP caused by moving to a neighbouring site in a
given direction. To move one site in the 2k direction,
i.e. to the site with coordinates

I
m;=m; by,

1 e
< Is the iNput doto correct’ >"‘-@crﬂr messoge 8570 )
Jres
[ Initichise coordincies, etc ]
{ New lattice site Jo——
L New oirecton L }o—
Fino neighbounng site N L dwectron,
hink with thrs site (1)

New direCLion K ¢ L, coiculate action
oround the two ploqueties in K L piane
( More directions K?

YES
i~ i
[ Apply heat bath to bink | |
( More directions L? )T
7 NC
[1ncrement coorainctes. upacte IPOS, INEG]
( More sites? N <
Y
T :
[ Coiculate averoge acton ]
AN Write Out the results /

Fig. 3. Flowchart summarising the program, carrying out
one sweep,
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1 can heoseen fron (A hat the degplacenient i
T
The penadic boundary condions resnli i special
Cwases when m s at the hepinning or end of a 10w in
the A duecnon, Uang (2) we sec that

g)when my =) to move one site in the -k direc-
non (I = 1)nl* =" must be added; snd

b) when my = 1o move one site in the 44 direc-
tion (1 = Hnt* =" must be added.
The pomnier arrays INCPOS and INCNEG are set to:

INCPOS(L) = nl* =", INCNEG(A)= (1 - Iyn* 7).

The atrays IPOS and INEG are maintained so that to
move onc step in the 4k diection 1POS(k) has to be
added, and 1o move one step in the —k direction
INEG(K) has 10 be added. Normally, then, IPOS(A) =
INCPOS(k) and INEG(k) = —INCPOS(k): but if

my; =1 then INEG(A) = -INCNEG(k) and if my =1
then 1POS(A) = INCNLEG(K). Using these pointers it is
now easy to Jocate the va}ues of cos ¢;; and sin ¢,;
around the two plaquettes of fig. 2.

The output fiom the program is self-explanatory.
The test tun output will only be approximately
reproduced by the uscr because of the dependence on
the random number generation. The flowchart of
the program is shown in fig. 3.
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We define a two parameter lattice field theory which interpolates between the O (2N) Heisenberg model, pure U(1)
gaupe theory, and a laitice version of the CPM -1 model. The phase diagram in space-time dimension d = 4 is obrained by
Monie Carlo simulation on a 4% lattice, and the nature of the phases is discussed in mean field approximation

General features of the phase diagrams for lattice
formulations of various Higes models (coupled spin-
gauge svstems) have been understood both by qualita-
tive theoretical arguments and by numencal simujation
(refs. [1-7]). In these models the scalar fields (de-
fined on the lattice sites) have fixed length and are
able 1o give 2 mass 10 some of or all of the pauge fields
by the Higgs mechanism, depending on their number
and in which representation of the gauge group they
lie.

In this Jetter we extend such investigations to
models in which therc are more site spins (each in the
fundamental representation) than are necessary to
break the gauge symmetry completely. Forsimplicity
we restrict our attention to systems having an abelian
gauge group U(1): these include the CPY ~1 models
(refs. [8,9] ) as special limits. We are partially motivat-
ed by the wish to understand suggested connections
between the continuum ficld theories of CPA -1 and
N-<omponent scalar QED (ref. [10]).

The theories we consider are defined by the euclid-
ean lattice action density

s,.=-%§u,.pv Ui 0,

> Yieg o Uieiy
u>v
B iy o i+ i) (1
2“0-0 i w21t k)t e,

where the spin z,(i) at site i is a set of A complex scalar
fields (N > 1) in the fundamental representation of the

global symmetry group U(N) as well as the local U(1).

It satisfies the fixed length condition

235,()2,G)=1. ,
. |

The variable U; , is a complex phase factor defined

on the link between sites7 and i + 1, 1 being a unit lat-
tice vector in d dimensions: we shall take d to be 4.
Thus the action

S:ESI,EQZPP+BEL; (2)
i P £

is the sum over plaquettes p of the usual Wilson action
Pp with coupling a. plus the sum over links £ of the
simplest gauge invariant nearest-neighbour spin—spin
interaction L, coupling f.

The partition function is defined as

44 0 031-9163/82/0000-0000/S02.75 © 1982 Nonh-Holland
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and simplifies in the various extreme linms of o, 8
(a) § -+ 0. The spin intepration is tivial, and the
model becomes pure U(1) pauge theory, which is
known in d = 4 1o have a second order transition be-
tween confining and Maxwell pliases. Integrating out
the spin degrees of freedom for non-zero f introduces

extra (pauge invariant) interactions of the link variables.

The first contribution occurs at O(84) and amounts

10 an additive renormalization of a by +84/8N 3. Thus
we expect the transition point in the pure U(1) gauge
theory to lie at the end of a line of transitions given by

a.(8) =o.(0) — B*/8N3 + 0(8®),

but cannot rule out the paossibility that the transition
goes first order,

(b) B ==. In this limit the configurations that mini-
mize L in (1) have the spins frozen into a state of com-
plete “magnetization”, Following ref, [11] this may
be characterized in a gauge invariant manner as the
state in which the matrix order parameter

Qo = 2,(1)2p()) =N 8y,

attains its maximal value, diag[1 — 1/N, =1/N, ..., =1/
N]. Furthermore the link variabl¢s must be in a pure
gauge configuration to minimize L. Thus there is no
a-dependence and the model is trivial.

(c) @ = 0. This limit is non-trivial for N > 1, in con-
trast to the case N' = 1 considered in ref. [4]. The inte-
grations over link variables factorize, giving

2n
z=[ ozl [ a0

LH 0

Xexp(BlZ()-z(i+ g)lcos )
=f Dz D2 exp(ZlnlO
i

X(B1Z(i)- 2 + )| )) _ @)
This is a lattice version of the CPA' =1 model (an alter-
native 1o that discussed in ref. [12]). in terms of the
gauge invariant projectors P, (i) = Z,(i)z, (i), the ac-
tion in eq. (4) reads

4
”—42 D ppi+ i) - 5 1w Py pa+ i)+ ..,
Ly NS
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and, hy analapy with the resulis of vef, {117, the phase
tuansiion between order (£ = «<) and disorder (5= 0)
might be expected 1o be first order, except for A= 2,
and possibly other Jow values of N,

(d) @ = o=, The link variables are forced in this limit
into pure gauge confipurations. In the gaupe where all
links are 1, the action reduces 1o the O(2A') Heisenberg
model. Thus the partition function (3) becomes an in-
tegral over all gauge transformations of that for the
Heisenberg model, and should have the same phase
transition. However singularities will occur only in the
gauge invariant quantities like (Q,, ), and not in (z,),
which always vanishes.

We have obtained the phase diagram of the model
for finite and positive values of the couplings ¢, 8, by
Monte Carlo simulation on a 44 lattice, for N = 2, 3.
By using an alporithm analogous to that of Metropolis
et al. (ref. [12]), we generated sequences of configura-
tions of spin and gauge degrees of freedom, obeying
the equilibrium distribution, for various values of @, § .
From these we extracted values for the two terms con-
tributing to the action (1)

(PY=3(U; LU,

IRITRY

U,-.,;.“_,Uj,,,'l' cc.),

W)= 34E() U, ,2(i+ i)+ ced,

averaged over all positions and orientations on the lat-
tice. In the behaviour of these expectation values over
a “‘thermal” cycle involving some variation of e, f3, pos-
sible phase transitions show up as regions of poor con-
vergence, i.e. hysteresis loops. The results are displayed
in figs. 1,2, where the length of the bars indicate
roughly the extent of the hysteresis loops.

Combining the results for (P) and (L), we find evi-
dence for three phases in each model but cannot be
sure what order the various transitions are. As shown
in fig. 3, we find that the transitions tend to show up
more clearly in one expectation value than the other.
In the mean field analysis presented below, each transi-
tion is associated with the ordering of one or both
types of degree of freedom. Thus it is not surprising
that the spin ordering transition (B) is visible in
(L) but not {P) and likewise the gauge ordering transi-
tion (A) shows in (P), not (L), However a more direct
argument can be given, assuming the free energy den-
sity ") to be analytic within each phase (i = 1, 2) so
that ‘

H
"I
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Fig. 1. Phase duapam for CF? coupled 10 gaupe ficlds, ob-
tained by Monte Carlo simulation of 4% lattice. Horizontal and
vertical bars indicate repons of slow converpence of (L), (P)
respectively.

dr® = (a1 /3e)da + (37 /38)dB
=1d - 1)) Nda+ wVap.

For a furst order transition between phases (1) and (2)
the coexistence curve satisfics dI"3) = dr(2) je.

2(d = D — ) da
= (P —wHMyap,

da/df = [- 2/(d — 1)] AU AL . (5)

(This is just Clapeyron’s equation.) Thus the ratio of
discontinuities in (L) and (/") is trivially determincd by

the orientation of the phase boundary in the a—f plane.

20 r —_

30

Fig. 2. As fig. 1 but CP! coupled to gauge ficlds. The hine
OAR indicates the path of the thermal eycele plotted in fig. 3.
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Fig. 3. Thermal cycle obtained in CP' coupled 1o pdupe ficlds
for the line ¢ = 28 in fig. 2, showing different behaviour of
(L)and (P).

In particular, the slope of the phase boundary must al-
ways be nepative since (L) and (P) are essentially spe-
cific heats, and therefore both positive. At higher order
transitions, which may have non-classical critical expo-
nents, the right-hand side of eq. (5) is replaced by the
ratio of the amplitudes of the leading singularity in (L),
(P). Presumably these amplitudes determine the relative
extent to which the phase transition shows up via
hysteresis Joops in any Monte Carlo simulation.

To extract some of the physics in each phase. we
consider the mean field approximation. in which cach
degree of freedom is taken to interact with the average
value of its neighbours. This decouples the integrals in
eq. (3) and leads to a pair of self consistency condi-
tions on the site and link expectation values, which
we assume are spatially uniform. We use the remaining
unbroken symmetries to rotate {z,) to that only {z,,)
may be nonzero, and make (U)=¢,{z,,) = x both real.,
In terms of the corresponding mean fields

he=2(d — 1ac3 + g%,k = 2dpex , (©6)

and defining

w, (k) =1n (fdznqb 6(1 — ¢2) exp(hxpzn))
the self consistency conditions are

X = (.A)I’\v (hX) = lhr(h)\)‘,[f\. _](h)‘) N

c=with) =L h ) . N

We have ignored the apparent inconsistency with
Elitzur’s theorem, which requires that both x and ¢
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varids. This could be semoved by chioosing o paupe. For
instance in anavial pauee the mean ficlds become

2B1(d -

arial
hy

e+ 1]x,

}4\la| [(d »,)(,3 + (,] 4 ﬁ.x'2 ,

and lead 1o a qualitatively identical phase diagram for
d=4.1ef [1].

Any ambipuity in the solution of eqs.(7)is1emoved
by minimizing the free energy I, which turns out in
this approximation 1o be

i = = 3ad(d = 1)e* ~ pdex? + 9, (x) 4 dvy (),

per site, where ,, is the Lependre transform of w,

The resulting phase diagram for N = 3 is shown in ﬁg
4, which is to be compared with the Monte Carlo re-
sults, fig. 1. The names given to the phases in fig. 4 are
justificd by calculating the mess spectrum in each. We
omit the details, which are rather tedious, merely out-
lining the method, which is standard. Position-depen-
dent source terms are introduced into the action, one
for each field, so that the expectation values (z), (Z),
(U) become position dependent too. Re-expressing the
free energy I'yy - in terms of the momentum space
components of the fields, x (p ). etc., and ]cmngp

- 0 allows one to read off the masses from the qua-
dratic part of '\, so, for examplé

Typ(0)=[4+Bp2+ O(p*)) o(p)o(-p) + ...

- mg =A/B.

20 rr

Maxwell

10

Confining

00 10 20 30

Fig. 4. Phase diagram for CP? coupled 1o gauge fields, obain-
ed in mean fiedd approximation. The flow indicated in the
Higgs phase is in the direction of increasing m?,. keeping mg,/
mg fined.
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The results are as follows:

(3) In the small-a, sisl!-fi phase. e = 0, sud all masses
are infinite since neighbounng degrees of freedom de.
couple, making all correlation lIengths vanish. Thos
the charged fields 2, are confined, albeit for trivial
reasons: the would-be bound states (0, also have
infinite mass in this simplest mean field analysis.

(ii) In the large-a, small-f phase, the spin fluctua-
tions correspond to a depenerate set of 2N massive
scalars

m-~"“’\’/cﬁ 2 (BB, = Njde).

There ate 2d modes of fluctuation in the link W,
2d — 1 are transverse to (U, )2-¢. and onc Jongitu-
dinal. The longitudinal mode, and d — 1 of the trans-
verse modes are massive and irrelevant, since the mass
remains non-zero in the continuum limit m?‘z- =0
(in units of the lattice cutoff), i.e. f = f.. Of the re-
maining d massless transverse modes, one is the un-

. physical gauge degree of freedom, and the otherd — 1

are the photon, whose longitudinal polarization de-
couples when - .

(iii) In the third phase, the Higgs mechanism occurs.
There remain 2(N — 1) massless Goldstone bosons:

= (cB(ﬂn)C)_] —-2d=0,
which follows from the Ward identity
x —{nz).x 2dcf=0,
since x ¥ 0. The photon is massive

= (B/a) x?Jc* > 0

having d — 1 polarizations. Just one more degree of
freedom is physical, the massive scalar field 0. The cal-
culation of its mass is complicated by mixing between
(z)and the longitudinal mode in (U, ). The physical o
is identified with the state having the Jower mass,
which tends to zero as ﬁ B.. We omit the rather com-
plicated formula for m , and instead have plotted in
fig. 4 contours along WhJCh the ratio of the two physi-
cal masses m_ and m are constant.

The existence in this two coupling constant model
of two physical masses allows us to define (at least in
the Higgs phase) a phenomenological renormalization
group, as follows. We require the couplings a and i to
d(r})end on‘)thc lattice cutoff A in such a way that both
m and m; remain constant as A varies. Thus

ms(a, B) =f_(a,ﬁ)A2, m;':(a, £) = g(a. [3),'\2 .

1a
~)
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A2 ap Fosl\ae op w0 dp)

for instance, and the speed of the resulting flow tends
10 zero with f, g at a sccond order transition. In the
mean field approximation, this flow will be along the
contours plotted in fip. 4. Quantum corrections to this
mean field picture will modify this flow, however we
have not atiempted to calculate them.

Ref. [13] includes the results of a one-loop calcula-
tion for the corresponding continuum field theory, of
charped scalars interacting with photons. Perturbing in
the pauge coupling ¢? and in the scalar interaction
A" -¢)?, they find for N < 365 a first order transi-
tion separating Higes and Maxwell phases, and an infra-
red instability in % = 1/a at the fixed point a = o=,

B =P., A =0. Thus one might expect that the Higgs/
Maxwell phase boundary in the lattice theory consid-
ered here is also first order, if these results persist in
the imit Ay o gy = 2@ required to impose the con-
stiaint on the length of the scalar field.
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