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SPIN AND GAUGE FIELDS ON A LATTICE

ABSTRACT

Formulating quantum field theories on a lattice provides one way 
of controlling the divergences that appear in the calculation of 

physical quantities for these theories. At the same time the formal 

analogy with statistical mechanics may be exploited, in particular a 

continuum field theory exists only at a critical point of a statistical 
mechanical system.

Chapter one begins with a review of Wilson’s proposal for placing 

gauge (local) invariant theories on a lattice, whereby quark confinement 

emerges as a natural consequence. The possibilities for phase transitions 

and spontaneous symmetry breaking in global and locally invariant theories 

are discussed.
Methods of calculation in lattice theories are introduced, in 

particular the mean field theory and Monte Carlo methods of integration.

In Chapter two those methods are applied to a globally invariant 

spin theory - the 0(n) generalised Heisenberg model. Details of high 

and low temperature expansions are also given. Although much is already 

known about such systems we are able here to check the usefulness of 

our methods. In addition, the Heisenberg model is to be found at one 

of the limits of the system in Chapter four.

Chapter three is concerned with locally invariant pure gauge theories 

in four dimensions. Monte Carlo simulations are compared for the abelian 

UCl) theory and the non-abelian SU(3). In the U(l) case we use a finite 
scaling argument to suggest a second-order phase transition separating 

’Maxwell’ and confining regions. In SU(3) the situation is unclear, but 
is not inconsistent with confinement for all values of the coupling.

RHC.
LlBRARy
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In Chapter four, a two coupling constant model is defined of

U(l) gauge fields coupled to n-component complex matter (spin) fields.

The action is then invariant to global U(n) transformations as well
as local U(l). The model interpolates between pure U(l) gauge theory,

n-1a lattice version of the gauge invariant CP model, and the 0(2n) 

Heisenberg model. The phase diagram is mapped out in the two coupling 

constant space and ’masses' are calculated in the various regions.
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CHAPTER ONE INTRODUCTION

1. Gauge theories

The relativistic quantum field theories now dominating theoretical 

particle physics are based on the concept of local gauge invariance 

[1,2,3]. The principle has been most successfully applied to quantum 

electrodynamics (Q.E.D.), the gauge theory for Dirac particles based 

on the abelian group U(l). The addition of scalar fields (Higgs 

particles) and the idea of spontaneous symmetry breaking has since 

led to the successful unification of electromagnetism with the weak 

nuclear force [1,2].

The generalization of the idea of local gauge invariance to 

include arbitrary non-abelian Lie groups leads to the well known 

Yang-Mills theories [4]. In particular the SU(3) colour theory of 

quarks, known as quantum chromodynamics (Q.C.D.), is thought to 

govern the behaviour of the strong nuclear force [5,6,7],

There is much compelling theoretical and experimental evidence 

in favour of Q.C.D, [8]. One important property of non-abelian 

gauge theories in four dimensions is that of ’asymptotic freedom'.

This idea suggests weaker interactions at smaller distances and is 

well supported by experiment. One might then expect stronger forces 

at larger distances and the possibility of quark confinement. It is 

this last property that occurs very naturally in the lattice gauge 

theories we discuss.

2. The lattice cutoff
In the Feynman path integral formulation of a general quantum 

field theory, perturbation expansions are made in order to predict 
physical quantities [2,9]. The coefficients in the expansion may
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contain divergent expressions which in many cases are understood 

through the process of renormalization [1,2,3,9].

Ultraviolet divergences (from integrals diverging for large 

momentum) may firstly be ’regularized’ by a modification of the 

integral - for instance a momentum cutoff may be introduced,

or alternatively the dimensionality may be altered. The divergent 

parts of these integrals may be cancelled (formally) order by order 

in the perturbation series by ’renormalizations’ of the fields and 
coupling constant.

If in addition there are conditions under which the renormalized 

coupling constant becomes small then one might expect the leading 

terms in the expansion to be significant.

A theory is ’asymptotically free’ if the renormalized coupling 

constant g(A^) tends to zero as the momentum cutoff grows to

infinity. In Q.C.D. this means that quarks are less tightly bound 

at short distances. In Wilson’s lattice gauge theory [10,11,12,13, 

14,15] one is able to probe the strong coupling regime where confinement 

is expected to occur.
On the lattice a natural ultraviolet cutoff is provided by the 

spacing a. This regularization scheme is non-perturbative in the 

sense that ultraviolet divergences are controlled in a manner 

independent of Feynman diagrams.
Consider firstly the d-dimensional infinite volume lattice 

Fourier transform, which should reduce to the ordinary Fourier 

transform as a -»0 :

% : = c Z (}) 1.1
P n= - «° ^
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where P = p^)

and the integer lattice sites are labelled

n = n^)

C is an arbitrary constant.

Since space is discrete the momentum space is periodic and 
so inversion of (1.1) is by

-IT (2%)d X

To see the cutoff,physical distances and momenta are introduced 

by specifying a lattice spacing a. Then we write

X = na

^ ' ^/a 1,3

so that (1.2) becomes

A ’'/a ,dd k ik.xR 1.4

Putting C a a ^ and letting a 0 then reproduces the ordinary 

Fourier transform.
Equation 1.4 shows that the lattice has the effect of cutting

off the momentum integral at = V  a - wavelengths of less than

twice the lattice spacing have no meaning. (Note that in general 

the cutoff may not be the same as the usual momentum cutoff since 
the cutoff there is introduced after the angular integrations have

* In subsequent sections subscript x will be used rather than n to

denote lattice sites.
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been performed). One is interested in conditions under which the 

momentum cutoff is large, that is the lattice spacing appears small 

compared to physical length scales.

Finally, notice that in restricting the lattice to finite size 

N and imposing periodic boundary conditions on (1.2)

one finds momentum is discretized:

P = O'* IT ' even N

* IT for odd N •

3. Wilson’s lattice gauge theory

As with any cutoff prescription, a renormalizable field theory 

may be constructed in any way that leaves the physics of the theory 

(when the cutoff is removed) independent of the details of the 

regulator. With the cutoff in place however, terms may be added to 

the lagrangian which do not contribute in the continuum limit. The 

elegant formulation proposed by Wilson [10] is special because 

continuum fields with values in a Lie algebra are replaced by field 

variables taking their values in the corresponding Lie group. In 

this way, local gauge invariance is kept as an exact symmetry in the 

mathematically well-defined system.
In Chapter three pure U(l) and SU(3) lattice gauge theories in 

four dimensions are compared. The lattice U(l) action is easily 

shown to reduce to the conventional , Q.E.D. action as the lattice 
spacing is taken to zero. In Chapter four the U(l) gauge field 

is coupled to n-component scalar fields to give a lattice version 

of scalar Q.E.D.

1.5
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In order to review the properties of Wilson’s lattice gauge 

theory we now consider pure SU(3), Consider the Q.C.D, Lagrangian 

in four-dimensional Euclidean space [1], restricting attention 

to pure Yang-Mills fields.

I  ■ ' 1.6

with

, = %  A^Cx) - 3^ A^(x) - g^I^f^^^A^(x)A=(x)

The f^^^ are the structure constants of SU(3) [ 16 ]

satisfying

[ ] = 2i Z f^^^ X^ 1.7
c=l

where X^ are the eight generators of SU(3), conventionally chosen 

to be the Gell-Mann matrices. The dimensionless parameter g

plays the role of a coupling constant. The gauge fields A^(x)

are vector fields carrying an index of the adjoint representation 

of the group SU(3).
Letting A^(x) denote the corresponding element of the Lie 

algebra
8

A (x) = Z 4  A*(x) 1.8
 ̂ acl  ̂ W

the Lagrangian (1.6) is then invariant under the following 

transformations ;

A^(x) ^A^(x) = g(x) A^(x) g ^(x) + i  [a^g(x)]g ^(x) 1.9
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where g(x) denotes an element of SU(3). The full Lagrangian 

would contain in addition to (1.6), scalar or fermion fields 

coupled to the gauge field in a manner invariant to (1.9).

In Wilson’s lattice formulation the gauge fields are thought 

of as residing on the links of a hypercubical lattice with spacing 

a. The links are specified by a lattice site and a forward 

direction u along a link out of the site. The pure gauge theory 

action reads: (See for example ref. [13] for proposals concerning

the inclusion of fermion fields)

, 4 —1 —1
S(g,a) = E E TrCU^'uL +h.c.] 1.10

2% X w .v = l  
y^v

where y steps one lattice spacing in the y direction. (The * 

notation is dropped from now on). The U^'s are SU(3) matrices, 

which may be written in the representation

uJJ = exp[ i a g  aJJ] 1.11

where A^ = I 4  ^t ̂
 ̂ a=l 2

(Note that A^ is bounded since SU(3) is compact).

The four U’s in equation 1.10 then form an elementary square 

or ’plaquette' and the sum is over all such plaquettes on the 
lattice. Imagining a set of local transformations on the site 

forming the plaquettes, the action (1.10) is invariant under

= g* 1.12



14.

To see the corresponding continuum theory the lattice 
'difference operator* is defined:

Av Ax : = Ax+v- 1-13

For small a A /a approximates a derivative 3 . If the y y
fields are smooth (but see later in this section) a Taylor 
expansion may be made:

A%+v = A% + A%

= + a9^ A^ + O(a^) + ... 1.14

Using (1.11) the four U^/s in the action may be rewritten as a

product of exponentials. Repeated use of the Baker-Campbell-Hausdorff

formula
AB _ ^A+B + i  [A,B] + ... 1.15

and equation 1.14 brings the expression for the U's into the form 

of a single exponential

exp{ia^gO^ A^ - 3^ A^ + i g [A^ , A^]) + 0(a^)...}

= exp{ ia^g E ( 3^ Â *̂  - 3^A%^ - g a JJ*̂ A^^ ) + o(a^) ...} 1.16

Then (1.10) becomes

S(g,a) = ' ^2 2̂ 21 Tr exp{i a gZ F^ + 0(a )...} 1,17
2g X y,v a

Expanding the exponential in (1.17) the Tr 1 term has no dynamics
and may be dropped. The term linear in F^^^ is traceless and so

we have
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S(g,a) = -^2 ï Z { - a ‘̂ g^[Z Z Tr(A^ + 0(a^)...} 1.182g X p,v a b 2 2 X

Finally, replacing

E -> a"""
X

d^x 1.19

in the limit a -»■ 0 reproduces the continuum action (1.6)

S(g,a) = [ d A x C - i z  Z F^x)F^(x)) 1.20
lima + 0 ^ - •

By a similar argument the transformation (1.12) becomes the 

continuum transformation equation 1.9.

Note that if d  ̂4 a rescaling of the dimensionless coupling 

constant or fields by a power of a is required to keep the action 

dimensionless. The existence of dimensionless parameters in the 

action indicates the renormalizability of the model in four 

dimensions [1] (also see Chapter two).

Notice that equation 1.14 is only valid for smoothly varying classical 
fields [11] - fluctuations in the full quantum theory will only 

become unimportant when the action is large and negative. Hence
% fin the quantum formulation that we now review, the naive limit a 0 

may not approach the correct continuum theory for all values of 

the coupling.
In the lattice quantum theory the generating functional Z 

looks like the partition function for a statistical mechanical system 

(see next section).
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Z = n DU exp{S(g,a)} 1.21
links

where DU is the group invariant measure [16]. Gauge invariant 
expectation values < Q > are given by

< Q > = Z"^ n Q exp{S(g,a)} 1.22
links

One important quantity is the 'Wilson loop* [1]:

Q = Tr ( n U) 1.23
TxR 

planar loops

A strong coupling expansion (see Chapter three) gives

^ TR
<Q^> a (—j) + higher orders 1.24

g
For T >> R the closed current loop <Q^> may be interpreted as 

the ratio of the partition function with external charges to the 

partition function without them. The system is seen as containing

a static charge at x = R  separated from its antiparticle at x = 0.

We write
<Q%> = ~ exp{(E[J] - E[0]) T } 1.25

A study of the transfer matrix [12] shows that E[J] represents 

the lowest lying energy level for the system. Since the charges 

are static the energy difference in (1.25) is pure potential. Using 

(1.24) one finds the confining potential

V(R) a R 1.26
If this picture could be extended to include quarks Cl7] we see that 

confinement would emerge very naturally in the lattice theory at 

strong coupling.
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4 Statistical mechanics and phase transitions.

Much of our understanding of lattice gauge theories is derived 

from a knowledge of critical phenomena in spin systems [18]. These 

spin theories correspond to globally invariant spin (matter) theories 

in the continuum. An important example of a spin theory is the 0(n) 

generalised Heisenberg model discussed in Chapter two. Like four

dimensional non-abelian gauge theories this model is asymptotically 
free in two dimensions for n > 2.

Familiar objects in field theory are associated with statistical 

mechanical quantities [11, 19], for instance the two-point function 

is identified on the lattice as the spin-spin correlation function 

C(r) (see next section). From this a further relation may be derived:

Ç a = i  1.27
R

where M^ is the renormalized mass of the field theory. C is the 

correlation length of the statistical system, and in some sense 

characterizes correlations between spins Separated by distance r .

For a general theory a phase diagram might be drawn showing the 

dependence of some quantity < Q > on the bare coupling g. Equation 
1.27 tells us that a sensible continuum theory will be found only at 

places where C + ». By holding M^ fixed and allowing the spacing 

a to go to zero an effective coupling g(a) is defined (and hence 

a whole sequence of lattice theories). If a continuum limit exists, 

then as the lattice cutoff is removed g(a) should tend in some way 

towards a point where the scale of correlation becomes unbounded.
In the language of statistical mechanics, such points are examples
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of critical behaviour of the system. (See Chapter two). If at some 

temperature (Tag) Ç tends to infinity accompanied by a

spontaneous magnetization (spontaneous symmetry breaking) then the 

system is said to have undergone a second-order phase transition.

This situation occurs for example in 0(n) if n and d are large. 

Alternatively, the scale of correlations may diverge without the 

occurrence of a spontaneous magnetization, as for example in the 
0(2) system in two dimensions.

There is unfortunately, no more hope of solving exactly the lattice 

theory than a conventional field theory. In addition, in the region 

of large Ç, correlation functions become difficult to study - finite 

order small and large coupling expansions may leave their domain of 

validity. However, the lattice system is amenable to a powerful non- 

perturbative approximation - Monte Carlo simulation (see section six). 

Wilson [20] and Creutz [21] have used this technique in conjunction 

with renormalization group ideas [9,11,19,22] to study non-abelian 

lattice gauge theories. For an example of Wilson's approach applied 

to a spin theory, see ref. [23].
In a gauge theory a physical observable such as the string tension 

X(g) may be extracted from combinations of Wilson loops. By increasing 

the size of the loops and holding x fixed in the process, the lattice 
spacing is effectively reduced. In this way Creutz attempts to match 

the strong coupling behaviour (equation 1.26) of the string tension in 

lattice Q.C.D. to the known asymptotic freedom prediction at weak 

coupling.
In Chapter three we compare Monte Carlo simulations of U(l) and 

SU(3) four-dimensional lattice gauge theories. If the (full) U(l)
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lattice theory as a->-0 is to describe conventional Q.E.D. then the 

confining properties at strong coupling should not persist for all 

values of the coupling. Thus a transition is expected to occur at 
some finite g^. Below g^ the continuum limit of the lattice 

theory should contain free electrons. On the other hand, if Creutz*s 

approach is not misleading, the strong coupling behaviour in SU(3) 

should continue smoothly into the region of vanishing coupling, as 

has been found in the 0(3) spin model in two dimensions [23].

In Chapter four matter fields are coupled to the U(l) gauge 

fields and we discuss the possibility of a 'Higgs* phase in addition 

to confining and 'Maxwell' phases.

5 Mean field theory

A very useful guide to the lattice physics is provided by the 

mean field approximation. Some details of this method are given in 

Chapter two. In this section we show briefly how masses might be 

calculated in this approximation and how Goldstone's theorem applies.

Consider the 0(n) Heisenberg model of Chapter two, consisting 

of n-component spins (j>̂= unit length situated at

the sites of the lattice.

The action with sources reads

H = : + : *x " Jx - 1-28
x , p  “ X

The partition function is 

Z(3) = n D(j)̂ exp{3 H} 1.29
X
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where 3 = /T and a suitable measure D(|)̂ has been defined. 
Expectation values < Q > are given by

-1< Q > = Z n D4> Q exp{3 H} 1.30

The key to the mean field idea lies in defining a mean field 

h^ consistent with (1.30). When Q = h^ is thought of as the

average field over nearest neighbours y(x). For the Heisenberg 

model (see Chapter two)

h = 3 E < 6 > + J
y(x) y

1.31

1.32

The partition function becomes

Z(3) = D<f> exp{ <p • h^} 1.33

with the average field

< + x >  = D<() exp{* • h^} 1.34

In order to extract masses, consider the connected spin-spin 

correlation function

>g: = <  ( t > ^ >  ^  <  <i>t > <  <l>î >X 1.35

Then we write

>C 9 J'
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> 8
d a jiX

Using (1.34) equation 1.36'becomes

i i  i k  i k ^ ^ x
<+ x ' * y > C  = [<*x" *X > - <*x > < * % >  ] ---j-

3Jy

< 't’x • *y ̂  " 'I'x' ♦x "c [8(Ax + 2d) + «kj *xy ̂

or

1.36

i i 2 3<*x>= <*x- * x ^ [ 8 (Ax + 2d) — p -  + 6kj«xy] 1-37
y

2A is the lattice Laplacian defined by

A^ f(x) : = E f(y) - 2d f ( x) .

The last equation is derived by noting that equation 1.31 may be 

written

h = 6 (A^ + 2d) < (j) > + J 1.38X  X X

Finally, the correlation function is expressed as

1.39

[ - Aj «ij + «ik^xy 1-"°

Equation 1.40 looks like a free particle wave equation with mass 
2matrix M :

= (3 )"1 - 2d 6.. 1.41^X c 1]
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where the quantity easily evaluated in the mean

field approximation.

In the case of spontaneous symmetry breaking (see Chapter two) 

Goldstone's theorem applies. Here at most one component of

(|)̂ = (o^, , TT̂  ^) gains a non-zero expectation value.

Equation 1.41 gives one massive scalar

%  = >^)“^ - 2d 1.42

In addition there are n - 1  massless Goldstone bosons;

Selecting one component Tf of we have (with set to zero) 

from (1.33)

D(|) TT̂  exp{2d 3 < > • 0} 1.43

Consider equation 1.29 invariant to global rotations

cos 0 - sin 0
*x + = I . ,sin 0 cos 0

The infinitesimal form of (1.44) is

0 -r
4* = [1 + E t 1 0) ] 1.45

Thus we may write

6 = - e 7T ̂
0 1.46
6tt = e 0

and the Ward identity [9] may be derived

0 = e[< 0 > - 2d 3 < < 0  ̂> + 2d 3 > < irj- > < 0.̂ > ] 1.47X X
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c > W* G<*x ' *x >c 1-A8

Now 3 < tt̂  • TT^> > 0 always, hence if < ^ 0 we have

the Goldstone boson
2W = 0  1,49“IT

6 Monte Carlo methods.

The aim of a Monte Carlo simulation [24] is to obtain an approximation 

to the expectation value

-1< Q > = Z D* Q(*) exp{ S(*) } 1.50

where the <J)'s form a set of numbers (either spins on the sites of 

the lattice or gauge variables on the links). On a finite lattice the 

set is finite and a full description of a configuration may be written 

down. In the case of continuous groups however, there are still an 

infinite number of configurations. In a Monte Carlo simulation the 

full integral is approximated by a sum over a finite sequence of 

states. In order to obtain a good approximation to (1.50) the density 

of states in the sequence should approach

p(*) = exp{ S((f) ) } / Z 1.51

i.e. the probability density of encountering any configuration is 

proportional to the Boltzmann weighting exp{S(^)} .

Successive configurations are generated from proceding ones using 

a specific algorithm. (Usually one seeks the aid of a computer for 

storing and updating variables - for example, there are 1024 links on
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a 4*̂ lattice). The probability of obtaining a configuration (f>* 

from (|) may be specified as P(<j>* ,<j)).

The choice of P((j)* , (J)) is not unique [25]. Many algorithms 

change one variable (site or link) at a time satisfying a condition 

of 'detailed balance*;

P(*' ,♦) 1.52

It may be shown [25] that any algorithm satisfying equation 1.52 

will bring an ensemble of configurations into the correct equilibrium 

state defined by equation 1.51. To understand this we consider a 

particular algorithm.

In Chapters two and four we use the algorithm of Metropolis [27], 

well known in statistical mechanics. A random generator (designed 

to optimize convergence - see Chapter two) is used to suggest a new 

configuration (|>' = B($). (j)' then replaces <j> if

p(*'g) > X p(*) 1.53

where x is a number uniformly distributed between zero and one.

Otherwise <p is kept and ^ is discarded.

The probability that B(#) suggests (j)' is written B(**,#) 

so that

^  B(*' ,<|)) if p(*') k p(4>)

if p(*') < p(4) 1.54

The remainder(Bj^ say) if (important
for discrete groups)

Note that if the following condition holds true for the particular

algorithm (see Chapter two):
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B(4',4) = B(*, *') 1.55

then using equation 1.54 we see that the detailed balance equation 

1.52 is satisfied.

Now assuming (1.55) and using (1.54) we have

I P(4,*')p(*') = ZB(*,**)p(4') + EB(*,*') p(*) 
r  {*':p(*!)kp(4 )} {*':#(*')% p(*)} ,

+ B^ p(*)

= I P(*',4) p(*) = p(*) 1.56

Denoting the m-step probability as P^^#* , (j)) we have

Z P(4' , *") P^ (*", 4) = ) 1.57

Hence as m -$- » the desired result is obtained:

P^($', <t>) p(<t>*) 1.58

Note that the detailed balance condition is sufficient but 

not necessary to achieve the correct target distribution p($*).

In Chapter three we use the more intuitive *heat bath* method of 

Creutz (see Chapter three and Appendix B). Here the new spins or 

links are selected randomly from the group space with a weighting 

given by the Boltzmann factor

P(** ) 'V e"  ̂ 1.59

In this way equation 1.51 is satisfied, yet for this algorithm
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detailed balance holds only if the spins to be updated are selected 

from random positions on the lattice [28].

Since essentially an experiment is being conducted one considers 

the expectation value <Q> of the average of Q(4>) over-a sequence 

of configurations ••• » 4»̂ . We conclude by showing that if

equation 1.58 holds then <Q> approaches <Q> as N -> » .

The expectation value of the sequence average is

1 ”
<Q> = I P(+N'+N-l) W   ̂ 1-60{all possible " " J- ° “ n=l

sequences
*0’ ■ ■ ■

= Ï Q(4i )P((fi , i ) + I Q ( 4 ) P ( 4 , *  ) ? ( * , * )  + ...]

Q(*) P($.*o) + Z Q(*) + ... ]
<j> *

1 ^^  Z Z Q(*) V U  , 6 ) 
(j) n=l

1 H= Z Q(4) [ p(4) + E D ( 6 ) ] 1.61
4, n=l " *

where D measures the * distance' of P from the equilibrium n n ^
distribution.

Let X be a positive const -a .nt such that

I D I < e"^* 1.62' n '
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so

n=l
Dn 1 < Y  1.63

and hence < Q > approaches < Q > as N tends to infinity.

Finally, since <Q> is a sum over distributions, the Central 

Limit Theorem applies for large N. Standard error estimates 

( 'v 1/ /N ) may then be made on < Q > [24].
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A SURVEY OF METHODS - THE 0(n) HEISENBERG MODEL

CHAPTER TWO

We begin with the generalised Heisenberg model [1-4] for two 

reasons. Firstly, the model is of great interest in statistical 

mechanics. Much is already known about such systems, so it is 

easier to check the usefulness of our methods. Secondly, the spin-gauge 

model of Chapter four is, at one of its limits, gauge equivalent to 
the Heisenberg model.

The corresponding continuum field theory is the 0(n) non-linear
î'{o-model . This model is non-renormalizable according to usual criteria 

in four-dimensional space-time. On the other hand, the two-dimensional 

case is renormalizable [5] and enjoys a number of features in common 

with four-dimensional non-abelian gauge theories [5,6,7].

1. Definition

We consider a square periodic lattice in d dimensions with N^ 

sites and spacing a. To each site we associate an n-component spin 

vector = (4>̂ ,(f)̂ ,... . Each site is coupled only to its nearest

neighbours in all directions y , with strength J. Thus the Hamiltonian

H = J 2.1

is invariant to global rotations of the spins.

Properties of the statistical mechanical system are extracted from 

the partition function

Z(6) = n D(f,̂ 6( -1) exp{- 3H } 2.2
X

*See Chapter four for reference to general non-linear a-models.
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and various expectation values

where 3 = J/rp , T = temperature .

2The fixed length condition (j)̂ = 1 is incorporated into the 

measure here and leads to non-trivial interactions.

2. High and low temperatures.

Systematic expansions of equation (2.3) may be made for high and

low T. These methods are reviewed in appendix A as they will be useful

in Chapter four.

The following results are for the average energy density E and 

may be compared with the Monte Carlo data in Fig. la:

E(g) = I " < *X+P > 2.4
I  x,y

since the lattice is translation invariant. (N^ is the number of links 

on the lattice.)

(i) High temperature (low 3)

E(3) 3/n + [ — — - — ------ ]3 +0(3 ) ... 2.5
n^ n^(n+2)

(ii) bow^temperature_(high_3)

- - 2 - ^  + 0(g"3) ... 2.6
2̂ B̂ 8d2g2

-2 - 1 .(neglecting terms 0(3 ) .

The high temperature result is insensitive to the lattice size at 

this low order, while at low temperatures long wave-length fluctuations
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are important and the calculation shows an dependence at order 3 ^.

3. Phase transitions.

In the cases d = 4, n = 4,6 that we consider the space and spin

dimensions are high enough that a second-order phase transition occurs
at some finite T .c

At high T the model is considered to be in the symmetric phase 

and < > = 0 for all i = l,...,n . Define the connected spin-spin

correlation function for two spins separated by distance r:

= < * x + r - * x >  -
2= < by translation invariance

= <  ̂ the symmetric phase. 2.7

At high T the large r behaviour is thought to be [g]

C(r) 'V exp{"^/C(T)} 2.8
itup to a power of r

Ç(T) is known as the correlation length.

For low T a spontaneous magnetization occurs. The symmetry is broken 

and / 0 for some i. As the system is simply magnetized there

are no long-range correlations and we expect

C(r) = < ^ O  2.9

We shall be interested in the behaviour of systems that are close to 

the critical temperature Tc. In this region distant spins are highly 

correlated in some sense characterized by the correlation length.
The critical behaviour of various other thermodynamic quantities can 

be represented as a set of critical indices [9] •

* See section 7.
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One such quantity, which will be of use in measuring distant 

correlations, is the magnetic susceptibility x(T) :

Add an external field to H of (2.1) :

H -X H + £ = 6 Z 4. . + E Jy- 2 10
X  X j P  X

Then define

By a version of the fluctuation - dissipation theorem [2] it 

is easy to obtain the useful result

X(B) = < I > - <4» 2.12yfx y
Clearly the sum in (2.12) will show up the long range contribution 

near Tc.

4. Critical region and continuum field theory

Defining the lattice 'difference operator' ^x + p " ̂ x ’
equation (2.1) looks like a lattice approximation to the Euclidean action 
for the contunuum 0(n) non-linear a-model in field theory :

H = Z [1 - 4, )2] . 2.13x,y 2 y X
Identifying 3 with the inverse coupling constant ^  and adding

g
external sources, Z(3) becomes the familiar generating functional 

for the Green's functions -of the field theory.

For a general scalar theory, comparison of the long range behavior 
of C(r) with the field-theoretic propagator yields the familiar 

relation [l,]l],
M = —R Ca 2.14
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where is the renormalized mass of the field theory. Equation (2.14)

tells us that as a 0 finite masses will only be obtained from the 

lattice if the system is nearly critical.

The special status of d = 2 for these models is observed by making 

the approximation to the continuum theory for small a:

8 y (j) (x) ~ Ay ^^/a

d^x ~ a^ Z
2.15

Substitution into (2.13) brings out the first order power a^^

In d = 2 we see that H remains dimensionless without rescaling of 

the parameters $(x) or g to cancel this power. This fact leads to 

the renormalizability of the model and the d=2 + e expansions [4,12].

5 Approximate models.

In the vicinity of Tc the expansions of section two are of limited 

use and we look to ways of simplifying H itself.

One method is to take the 'Stanley limit' n-^“> (Spherical model) 

and make corrections in ~  [4,13]’. We might expect good results 
for the cases n = 4,6 to be considered.

An alternative is to play with the space dimensionality of the 

system. For example, the case d = 1 is informative [2] - the spins

decouple in the expresion for Z(3) so that each link (bond) gives a

factor

Y ($) 3^ I (3) where I is the modified2 n/2-1 n

Bessel function, y(q) is the gamma function .
There is obviously no transition here at any finite T, but a zero

mass may be extracted as T->0 when the system approaches ordering and



35.

the correlation function behaves as

The cases d = 2, 3, 4 are the most physically relevant and the 

most difficult to study. Close to d = 2,4 , useful expansion have 
been made in e = d-2 [4,12] and in e = 4 - d  [3,11].

For d > 4  we may rely on the other extreme d-> «-an interpretation 

of mean field theory where the number of nearest neighbour interactions 

becomes large and so behaves as some average field [2]. We shall 

construct a mean field theory argument as a guide to the case d = 4.

6. Mean field theory

The idea of a mean field theory has many interpretations [2]. From 

the field theoretic point of view [3] a formal perturbation expansion 

is made around a saddle-point approximation to W=£n Z. The first term 

W^ in this series is the mean field theory. Corrections to this lowest 

order indicate that the mean field approximation is certainly invalid 

below four dimensions while above d = 4 critical exponents are not 

modified
As a first step before making any calculations the assumption of a 

mean field is made self-consistent. Write the action equation (2,10) 

in terms of pairs of sites (x,y):

S = 3 E 4" . + % J*' 4* 2.17
(x,y) y X

A given 4> interacts with E # + J where y(x) denotes the 2d
^ y(x ) y

neighbours of the site x . The mean field h^ may then be written

as some average over those neighbours :

h :  = 3 E < ( | ) > + J  2.18
^ y(x) y ^



36.

Self-consistency then requires

Z(h) =

-1
X X

2.19
n D(J) 6 ( (j) - 1) exp{- (j) . h^}X X

where Z is seen to decouple in a similar fashion to the case d = 1 , 

and calculations are made using the single site measure

D (j) := D(^ 3(4% ~ 1) for all x .

Symmetry breaking
»  W  —  —  ^  ^  —  ■■

stAssume constant sources chosen in the 1 direction and write

J = (J , 0,. . . J 0)

4>x = (a , TT̂ , . . .

so that < 2  > = 0 while < a > >' 0. 
Then self-consistency requires

where

< a > = Z

Z(h) =

-1 D <t> o exp{ - h o }  

D (}> exp { - h o }

2.20

and h = 2 d 3 < o > + J .

A unique solution to eqn. (2.20)may be obtained by the following 

construction of the thermodynamic potential F(<o>), (the Legendre 

transform of w) given by the equation [3]

dr
d<o> = J 2.21

Noticing In Z(h) 

additive constant)

J = h - 2d 3 <cr >

= <o> leads to the solution (up to an irrelevant
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2r(<o>) = J <o> + d3<a> - lnZ(2d3<a> + J) 2.22

with Z(h) = (h) (h) . (y(^) is the gamma function .

We can then minimize F w.r.t. <o> (in the absence of an external

field J) by considering eqn.(2.22)and expansions of InZ for small 
*and large h

For small 3 (high temperature) the minimum occurs at <a> = 0 

and the model is in its symmetric phase. At 3 = Be two minima appear 

either side of <o> = 0, but as close as we like to <a> = 0. It is 
easy to show that 3^ = ^/d [14].

As 3 is increased past the transition point the two minima move 

smoothly away from <o> = 0. Thus the model has undergone a second-order 

(continuous) transition and ia in"its ordered phase.

Calculation of masses

Identifying the long range behaviour of the correlation function 

with the small momentum behaviour of the two-point function we may 

extract masses from the lattice approximation [14] .

The following mean field result is derived in momentum space. In 

position space the result is straightforward for the Heisenberg model"*" 

but presents problems when applied to the mixed model of Chapter four.

Take the mean field h^, i = 1,2,...,n in the absence of an 

external field (source):

= 6 Z 2.23
^ y(x) y

and consider the response of h^ to a small position dependent 
isource J :X

* Bessel Functions for Engineers - N.W, McLachlan - O.U.P, 

t See Chapter one.
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6h^ = 3 E 6 <4^ > + . 2.24
* y(x) y X

Working in momentum space (see appendix A) :

-*■ cos px with constant

and by translation invariance assume the response of < > is of
the same momentum and phase, i.e.

6< <J)̂ > = 6< <b̂  > cos px 2,25X ^p ^

6 h^ = 6 h^ cos pxX P

Self-consistency then requires

i j i > i 1< (|) 6 > 5 h =  :---  6h = 6< d) > 2.26X X c P 5 P P
X

Using the result
2 4cos[p(x + l)] + cos[p(x-l)] = (2-p ) cos px + 0(p ) ...

2an expression is obtained for the sum in equation (2,24) as p -*■ 0 :

6h^ = (2d - p^) 2.27X ^ X X

and substituting (2.27) into (2.26) we have :

6< > = < d)̂ d)̂ > [3(2d- p^) 6<4Î> + j3] 2.28C  ̂ p

=  > [ p^ 6. . + M? . ] 6 < > = 3 ^ 2.291] 1] P

a free-particle wave equation with mass matrix

»ij =

= constant with sources set to zero.
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Since at most one component of <j)̂ has a non-zero expectation

value, is always diagonal.

(i) Symmetric phase

i i 2^ ^ij there are n degenerate scalars giving masses y :

= [ 6 <4* - 2d for all i 2.30

(ii) Broken symmetry

f ° i,j = 1, ... ,n-l .

We have one massive scalar

Wg = [6 <Ox°x>c] ^ - 2d 2.31

and it can be shown in accordance with Goldstone's theorem that there 

are n - 1 massless Goldstone bosons (see Chapter one)

= [ 6 < ir̂ >^ ]'^ - 2d = 0 2.32

i = 1̂ , ... , n - 1 .

The expectation values <())({)> used in calculating these masses 

are obtained simply as derivations with respect to h of the expressions 

obtained for < <f) > earlier in this section.
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7 Monte Carlo method and results.

In this section we discuss the evaluation of various expectation 

values < Q > on a lattice by Monte Carlo methods of integration on 
a computer.

Recent work by Creutz and others [15,16] has indicated that 

encouraging results may be obtained even from very small lattices.

For this chapter we have used only the standard method of 

Metropolis [17]. This general algorithm requires only that we know 

how to generate elements uniformly distributed over our group space - 

the relevant Boltzmann.weight exp{-S} is incorporated for us in the' 

algorithm. In the case of 0(n) this means n-component vectors of 

unit length distributed uniformly on the surface of an n-dimensional 

sphere. Consider the following method :

Generate independently each with a Gaussian distribution
i £i.e. P(4>)‘V e  , then as the 4) are all independent the combined

distribution function P(4>) is 'just the product of the P($^). So
_  y/,i)2

P(^) ^ e , which is rotationally invariant and so constant on

the sphere after normalization of <j> .

In practice however, to speed up computations the spins are chosen 

with a certain bias. Consider a single site update, and the probability 

B(<J) , 4>*) of selecting a new spin 4>‘ for comparison with the old spin (j) . 

Then it can be shown that 'detailed balance' requires (see Chapter one)

B(4> ,*') = B(*',4) 2.33

In the bias we choose 4>' close to (j) , and satisfying (2.33) as 

follows :
Select from a Gaussian distribution and add to each component

(j)̂ of 4> :
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4>̂ <()̂ + e 2.34

where £ is adjusted 'empirically* to achieve a suitable acceptance 

rate for the new spins (usually ~ 50%). Vectors generated in this 

way are distributed'spherically'in an area* above <j) on the unit 

sphere. The projection of this area onto the unit sphere forms a 

uniform distribution in the vicinity of (p . Thus after normalization 

the generated vectors are the (|)* , and since any vector is equally 

likely , the selection of any 4>* from any given <t> is equally 
likely. Hence (2.33) is satisfied .

Errors
Having written a program to evaluate < Q > , we first check the code 

itself. Comparisons are made to low and high temperature expansions 

and also to any published results. Standard 5% error bars are given.

It is also important that the samples of configurations used in 

the sum for < Q > are not statistically correlated in some unnatural 

way dependent on the updating algorithm. The simplest way to avoid 

this effect is to take samples only every few updates of the lattice, 

although more sophisticated methods have been devised [18].

Results

The results of computer simulations are useful with varying 

reliability for
a) Locating critical points of the system.
b) Establishing the order of a transition and perhaps critical exponents.

c) Extracting correlation lengths near the critical points.

* the size of which depends on e
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(i) +x>

Rough estimates for (a) , (b) are commonly made using E(3) [15], 

Iterating from either hot or cold starting configurations at fixed 3, 

a phase transition is expected to show up as a slow convergence to 

equilibrium from the different starts. It is thought that for a 

first-order transition at 3^ , the two starting configurations never 

converge [lsQj while for higher-order transitions the two agree if 
enough iterations are carried out.

Figs. la, lb show E(3) for 0(4), d = 4 with the 'hysterisis 

loop' around 3^ but eventual convergence after many iterations.

(ii) M = < I 4, I >

On small lattices it is not easy to establish a spontaneous

magnetization at 3^. Fig. 2. shows M / 0  for all 3 due to finite

size effects.

(iii) x(B) = TT-(< E * * > -
yfx y

The susceptibility, as defined in section 3 has been used with some 

success for (b). Tobochnik and Chester [15] consider the 0(2), d = 2 

system. In this case M is always zero (large lattice limit) and %

diverges for all 3 & In two dimensions large lattices are

computationally feasible. Tobochnik and Chester consider lattices up 

to 60^ and find evidence for an exponential divergence (*Kosteriitz - 
Thouless* transition [20]) in £ as 3 approaches 3^ from above.

For d = 4, large lattices are out. The divergence may still be 

studied, however, by comparing the height and position of the peak in 

X for different small lattices (typically 4,5,6). This argument is 

used seriously in Chapter three.
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Fig. 3 shows the shift in the peak of x with lattice size for 

0(4),d =4, although no attempt is made to extract the power law 

divergence of the second-order transition.

(iv) C^(3) = /N^(< [ Z - < E
________________ ÎS4_______________ x.y____ _̂_____

The specific heat is a measure of energy - energy fluctuations
and may diverge with x for a given system as indicated by various scaling
relations [g] eg.

a = 2 - Vd

where a is the critical exponent of and v the exponent of Ç.

The system 0(4), d = 4 (Fig. 4) shows a strong increase in C 

near 8^ in contrast to the d=2, 0(2) and 0(3) cases.

- Jë G(6) 2.35

SO that measurements of the specific heat may. be made from careful 

analysis of the average energy curve (see Chapter three)

(v) C(r,6) =

Extracting correlation lengths Ç and hence masses on a computer 

has proved difficult in practice [21]. Due to the exponential fall off 

with r , even at distances as small as 3 or 4 C(r ,8) is small enough 

to be insignificant compared to the statistical 'noise* of the 

simulation.
A modification of C(r , 8) may be used to improve statistics. In 

addition, the resulting quantity behaves as a pure exponential - it 

is not modified by the power of r in (2.8).
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(yi) C'(r , 3) = C(r , 3)

- Where integration is over all x directions except the r 
direction.

Consider  ̂ +  ̂ of C(r ,3). In a field theoretic notation
we write

where x = (x,t)y —
In momentum space we have the small p^ behaviour

y
and so we can write

2.36

> =

E^+£^+
2.37

Integration over x , £  and shifting 21 Ü  Z  gives

C'(t,3) =
d-1 d-1

dx d£ < " *(y,0) >

d-1
dx

(2n)4 E^ +
2.38

The 21 integration then may be written as a delta function on £, 

and performing the integral over £  leaves :

C'(t,3) a dE eiEt
E^+M^

-M t 
“2M" 2.39

On the Euclidean lattice the time direction is lost and we measure 
correlations between spins separated by spacial distance r. In Fig. 5 

C(r) and C'(r) are compared for the system 0(4) with d = 2 on an
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8^ lattice. Figs. 6a, 6b show C(r) and C'(r) respectively for 

0(4) on a 6*̂  lattice. Various values of 3 are considered in the 

symmetric region - the flattening of the slope as 3 is increased 

shows the increasing correlation length as the critical temperature 

is approached.
For larger distances then, this data shows the advantage of C'(r) 

over C(r) for measuring correlation lengths. Measuring C(r), up 

to ten times as many sweeps of the lattice were required to reproduce 

the straight line of C*(r) fig. 5. Note however that summing over 

planes for C'(r) requires more work on a computer than C(r), thus the 

advantages of measuring C(r) must be weighed against the efficiency 

of the program.
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0

Fig. la Average energy E(0) for the system 0(4) in d = 4
L|.on a 5 lattice, 30 iterations are made for each data 

point, averaging only over the last 20 so that thermal 

equilibrium may be reached. Considerably more than 

10 iterations are required to reach equilibrium near- 

the critical point 3 ~ "6. Here, poor convergence from 
ordered and disordered starting configurations shows up 

y as a *hysterisis loop' in the thermal cycle between low

and high temperatures.
High and low temperature expansions are given.
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100
Iterations

~200

Fig. lb E(3) for the above system at 3 = • 6 . Some convergence

is seen to occur after about 100 iterations. 5% error bars 

would be as small as the data points after ~100 iterations.
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Fig. 2 The Magnetization M for the above system as a function

of 3 .
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Fig. 3 The susceptibility x as a function of 3 .

300 iterations of the whole lattice were made per point, 

averaging over the last 200 every 3 iterations to avoid 

correlations between successive updates.

Curves A and B refer to the 0(4) system in d = 4 for 4^ and 

6^ lattices. The limited number of data points show 

some evidence for a shift in x with lattice size, 

suggesting a second order transition.
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Fig. 4 The specific heat as a function of 3.

In the 0(4) , d = 4 case curve A shows C,̂  diverging

with X . This contrasts with 0(2) (curve B) and 0(3)
2(curve C) in d = 2 (40 lattices used here) these 

results are consistent with scaling relations.
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Fig. 5 Comparison of C(r) with C*(r) in the 0(4),d= 2 system on
2an 8 lattice in the symmetric region at 3 = .4 .

Taking -InC extracts the correlation length. 300 iterations 

were made, averaging over the last 200 every 3 updates.

5% error bars are given where they are not smaller than the 

data points.

On a finite lattice we may only measure correlations between 

spins separated by distances less than the lattice size, 

since at larger distances the periodicity of the lattice 

introduces extra correlations. Hence correlations are 

measured here only up to r = 3. At r = 3 C'(r) compares

favourably with C(r), although at r i 2  results are similar.
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-In C
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Fig. 6a Increasing correlation lengths with 3 , extracted from 

C(r) in the symmetric phase of 0(4) in d = 4 on a 6^ 

lattice. Errors are as small as the data points after 

200 iterations.
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Fig 6b As for fig. 6a but with C'(r). No improvement on C(r)
is found on this smaller lattice.
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PURE GAUGE THEORY

CHAPTER 3

In this chapter we firstly review some properties of another

limit of the mixed model - pure U(l) lattice gauge theory in

four dimensions. These results are compared with a computer simulation 

of four dimensional SU(3) gauge theory.

If we are to follow the example of the spin models and search for 

a characteristic length Ç in a gauge system, then we are restricted 

by Elitzur's theorem [ 1 ] to measurements between gauge invariant 

objects. Since the average field < > vanishes in a gauge theory

there can be no direct analogy of the susceptibility % [i.e. field-

field correlations] of Chapter two.

Recall that the simplest gauge invariant objects on the lattice 

are plaquettes. We might hope that a measurement of correlations 

between distant plaquettescould reveal some kind of phase structure 

familiar in spin models. To this end we differentiate the average 

action equation 1.10, giving the gauge analogue of % » the specific 

heat C ;V

= < E U ^ « U > - < U > ^  3.1

and so contributions from distant plaquettes to (3.1) will show up 

in C near second-order phase transitions.V ^
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The abelian case 

1, Definition

Consider the Wilson action from Chapter one for U(l) with 

elements residing on the links of a four-dimensional lattice:

u*' =
3.2

(Ux)'" = C ,  - s"'"***

where 0 3 5 ^Vea

and e is the conventional bare coupling constant of a field theory.

The sum over all plaquettes is then the action;

Su(i)= ' Tr i

= 2 cos{ea[e^ + 8%^ - eJJ - 6^]} 3.3

-i%x+
(3.3) is invariant under local transformations e , e on

the sites

^U(l) ^U(l)

Integration over all links defines the partition function:

Z(a) =

where a will be related to e.

n D uJJ exp{ a } 3.5

The normalized measure D for U(l) is simply Dsĵ  andno4

averages over U(l) invariant qualities arc:
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2.High and low a

Expansions similar to those for the spin models are discussed 

in appendix B. For large a (low temperature) a * gauge fixing* 

term needs to be introduced into the action as with continuum 

perturbation theories. At small momentum p, i.e. long wavelengths, 

where the lattice spacing becomes unimportant, the low temperature 

result reduces to that of continuum electrodynamics.

The results for the average energy density (average plaquette)

E^ are compared with Monte Carlo data in fig. 1 for d = 4.

(i) High_ot

-  Î  ■ Ï 6  * H  * O f * ' )  ••• 0.7

(ii) Low a

E ~ 1 - &  - + O(a'O) ... 3.8p —  4" o2

3. Naive continuum limit

In parallel with spin systems in two dimensions, lattice gauge 

theories reduce in the limit a 0 to the desired continuum form 

only if d = 4.

For U(l), obtaining this limit is a very swift exercise:

Writing the product of U^' s round a plaquette of equation 3.3 

as Ug, we use a suggestive notation:

U_  = expCiea^F ] 3.9
□  ^ yv

where F = A - Ayv y X V X
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approximates a derivative.

The real part of U ̂  gives 

Re = cosCea^F^^]

ê a** 2
2 —  0-10

Replacing Z in (3.2) by a ^ 4d X and taking a -+ 0 leaves
X,4V

S 4. ±  4** .. ,.2Ou(l) 2 d X F 3.11yv
a-K)

We recognise here the conventional Yang-Mills action for
2electrodynamics, e is absorbed into the definition of a in (3.5), 

thus we have for this model:

a = ~  3.12
e

4.The second-order transition

As discussed in Chapter one, the U(l) gauge theory in four

dimensions is known to undergo a transition at finite coupling [2 ]

Experience with spin models has given rise to two main views on the

nature of this transition. On one hand an analogy is made with the

two dimensional 0(2) spin model (in accordance with the Migdal-Kadanoff

recursion relations). The correlation length here is expected to

diverge exponentially near the critical point [ 3 ]:
T 1

( ~ . exp{b } 3.13
T4-T cc

This has been explained in terms of the unbinding of vortices
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beyond the critical temperature [4 ]. The analogy in four dimensions 

is seen as the unbinding of monopole strings [ g ], and this has 

been observed in a computer study by Degrand and Toussaint [ 6 ].

However, there has appeared much evidence from Monte Carlo 

simulations supporting the existence of a conventional power law 

divergence (second-order transition) of the gauge theory at the 

critical region [7,8 ,9 ]

C |T 3.14

A renormalization group analysis carried out by Hamber [ 10 ] 
also supports this view.

We consider here an approach very similar to that of Lautrup and 

Nauenberg [ 7 ], using Monte Carlo simulation on small lattices
î'cftogether with a finite size scaling method [11] :

Consider the correlation length C^(T) for a finite lattice of 

size . Then by definition - L and we write

= LS (x) 3.15

where S is a scaling function to be determined, x is a variable 

characteristic of the system. It is convenient to choose :

I I 1/vX = I T - T^ I L 3.16

where T^ is the critical temperature of the finite system.

Some simple properties of S follow :

* See ref.[ 8 ] for a slightly different use of this method to extract 

the critical index v. 

t The validity of this approach has been called into question, however 
[1 2] .
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1) Clearly S(0) = 1 3.17

since = L at T = T.Li L

2) Up to a certain distance from we might expect the

finite system to mimic the infinite one, i.e.

~ |T - \ r ' ’ 3.18

for 1T - T J  > T' L* e

For |t -T ĵ| < (3.17) and (3.18) would be inconsistent.

Equation 3.18 is obtained by assuming the asymptotic behaviour:

S(x) ~ X ^ 3.19
for

3) Obtaining  ̂ for T very close to T_ then amounts to
L i L

making corrections to (3.19) for |T- | < consistent with
(3.17).

A simple choice is:
2 ~Y2S(x) = (1 + Xx ) 3.20

with X a free parameter.

We are now in a position to estimate the critical behaviour of 

the system. Consider the large L behaviour

( 1  «L

=> |t - LS(x) 3.21

In particular, for T = T , using (3.17)

=> |T^ - 2: L 3.22
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Experience shows that for all finite L and so

?L - ?c ~ 3.23

Now take the specific heat

~ |T - T ^ r “ 3.24

Using the relation a = 2 - vd [12 ] we have

CfCT = T^) 'V

= [|T^-

= -d 3.25

from (3.22).

In ref. [ 7] is found using Monte Carlo simulation for the

('normalised') specific heat with L = 4,5,6. The scaling function

of (3.20) with A = 0.6 is then used to obtain a fit to the data

for C. . Good fits are claimed when v = i. T is estimated from L o c
(3.23) so that the parameters used to fit C^ may be used to

estimate C in the limit L
In the next section we assume a value for T and considerc

lattice sizes 4,5,6. Equation 3.23 is then used to estimate v. For 

comparison, an independent estimate for v is made using (3.25).

5. Monte Carlo results

The convergence of Monte Carlo data in the neighbourhood of a 

second—order transition is in general very slow [14 ], indeed this is
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often taken to be the signal for such a transition.

The 'heat bath' algorithm of Creutz has been extensively used

[14,15,16,17] to speed up computations. Implementation of this 

method, however is technically more difficult [see Introduction].

In appendix B the simple case of U(l) is compared with the 

algorithm for SU(3).

Results
As many as 6000 updates of the whole lattice were made in order 

to obtain equilibrium data in the critical region. In addition, 

many data points were required to be sure of locating the peaks 

in C^.

Fig. 1 shows E(a) for L=6. The error bars are smaller than 

the data points.

The results for T^ and are ;

4 1.02 3.43

L 5 1.005 5.50

6 .996 7.98

With this limited data we are able to estimate the constant 

of proportionality in (3.23) and (3.25) and the critical exponent 

V. Both (3.23) and (3.25) yield estimates of v that are 

consistent with v = -̂  ( .25 and ^.32 respectively) although

the result for (3,23) is a little small.

An attempt was also made to measure correlations between plaquettes
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separated by distance r. Unfortunately, the results were 

statistically insignificant for r > 1.

6. Remarks

We have presented evidence for a second-order phase transition 

in the infinite system at a = .998. It is known from exact 

evaluation of systems with discrete symmetries []8 ] that lattices

as small as L=2 do not indicate the correct large L behaviour.

It is hoped however, that the slightly larger lattices considered 

here are suitable for the finite size scaling analysis. It is 

encouraging at least that the behaviour of the U(l) system for

L = 4,5,6 differs from that of SU(2) [19 ] and the SU(3) case

we consider next.

As commented by other authors [ 8 ,9 ] it may be possible to 

fit the data to an essential singularity as in the two dimensional 

0(2) spin model. Larger lattices and better statistics would be 

required to confirm the algebraic singularity in the specific heat 

with exponent v 2  y  *
Note that mean field theory predicts a transition at a 1, 

but indicates incorrectly a first-order transition. Masses may 

also be extracted in this scheme [20 ] .
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The non-abelian case

The properties of SU(3) lattice gauge theory have been discussed 

in Chapter one - we now make computations for comparison with the 
U(l) case.

7, The specific heat of SU(3)

Recall the SU(3) lattice action of 1.

" S U(3)=I : h.c.)] 3.26X^yV
8 b

where is the SU(3) matrix exp [ iae E .
b=l

The partition function is 

Z(a) = exp{aSgy(3j } 3.27

where a = ^e^ .

Writing U = (X, ^  where )(, _Z are 3-vectors, the

following SU(3) constraints are imposed on the measure D int> dx’t; inipusea on une measure u

the form of delta functions;

A A *1 = X . X = Y * Y  = Z * Z

A A A0 = X ' Y = X « Z  = Y - Z

Det U = +1 .

A 'heat bath' Monte Carlo simulation was used to measure the

specific heat of (3.1) on lattice sizes 4,5,6. The results are

shown in fig. 3. They are similar to those found by Lautrup and

Nauenberg for SU(2) [ 19 ]. There is a peak in the specific heat

3.28
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at around a ~ 6.00 which does not appear to increase with lattice 

size, unlike the U(l) case. There is, however, a small shift 
in the position of the curve.

8. Remarks

The behaviour of the non-abelian system near a 'v 6.00 appears 

to be of a novel character. If the confinement property at small a 

is to persist for all values of the coupling, then we would hope 

that this is not a signal for a change of phase, such as occurs in 

the abelian system.

The peak occurs near to where Creutz [ 21 ] and Pietarinen [17] 

find a rapid crossover in the string tension from the strong 

coupling region matching on to the known Q.C.D. behaviour at weak 

coupling. Since the height of the peak does not increase with 

lattice size we might hope that correlations are not large in this 

region. It is not clear why there is a shift in the position of 

the curve, although this might be related to the onset of asymptotic 

freedom in the weak coupling region.

The possibility of a 'roughening* transition has been suggested

[22]. A roughening transition forms a natural barrier to the 

extrapolation of strong coupling series for quantities like the 

string tension. This weak singularity takes the form of fluctuations 

in the surfaces spanned by Wilson loops and may be measurable even 

on very small lattices [23 ]. Such a transition may affect computer 

simulations by slowing down the approach to equilibrium configurations 

and by increasing finite size effects. For analytic calculations 

the problem is more serious in that care may need to be taken in the 

choice of quantity to be measured if a matching of low to high a is 

required.
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Fig. 1
E versus a for U(l) on a 6 lattice. Data points in 

the critical region are the result of 6000 sweeps of the 

lattice, averaging over the last 5800 every 3 sweeps. Error 

bars would be smaller than the points.
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Fig. 2
E versus a for SU(3) on a 5 lattice. Statistics 

are as for fig. 1. High and low a curves are also given.
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Fig. 3

versus a for SU(3) in four dimensions, showing 

the effect of increasing lattice size L. Statistics are 

as for figs. 1 and 2 with curves fitted by eye.
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CHAPTER 4 CP^~^ COUPLED TO GAUGE FIELDS.

In this chapter matter (spin) fields are coupled to the pure 

abelian gauge theory of Chapter three. Various coupled systems have 

been studied both analytically [1-4] and by Monte Carlo simulations 

[5-9]. We shall consider the case of U(l) coupled to fixed length 

scalar (Higgs) fields. More site spins are introduced (each in the 

fundamental representation of the gauge group) than are needed to 

break the gauge symmetry completely. Under certain conditions this 

lattice model reduces in the continuum limit to n-component scalar 
Q.E.D.'*

1, The mixed model

We consider a lattice action of the form :

X,yv X,4

where is an n-component complex vector satisfying the fixed

length condition on each site;

\  z :  = :  4.2a=l

The gauge group is U(l) and we have as before

iaeA^
U% = e 0 < A^ < 2tt

while the matter fields are written

* One motivation for studying this model is to understand the suggested 

connection between U(l) and CP^ ^ field theories [18], although work 

by Callaway and Carson [7] has not lent support to this idea.
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18  ̂  ̂ 16  ̂ 18^
Zx = (r* e , e e )

0 3 8^ < 2n a = 1, ..., n

Then using previous notation (4.1) becomes

S = a Z cosCaeF^^] + g Re Z Z^+^ 4.3

The action (4,3) is invariant to the local transformations:

while the spin fields also lie in the fundamental representation 

of the global symmetry group U(n),

Making the usual replacements 

A a3y y

Z
JI

4.4

4.5

and rescaling Z^

•* z/* = a2f //g 4.6

we obtain the naive continuum limit of (4.3) in four dimensions:

as a 0 .
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The constraint (4,2) may be incorporated by allowing |

to fluctuate, but adding a suitable potential term to the action (4.1)i

S - > S ' = S  + X Z  ( Z^Z^ -1)2 4.8
X

Then in the limit X -> *» configurations different from unity 
are not important. Defining

x'l = Vg2

f : =

and taking the limit a ■> 0 as before then gives

S' + i | 0 ^ +  ieA^)Z^l^ + X'(|z®|2-f)2] 4.9

- a Euclidean action for n-component scalar Q.E.D.

The partition function is defined as

Z(a,6) = n D A ^ n D Z ^ D Z ^  6(Z^Z^-1) exp{ -S} 4.10
X

and only gauge ̂ variant quantities will gain non-zero expectation 

values.

2. Limits of a and 6.

The expression (4.10) for Z simplifies in the various extreme 

limits of a and 6.

When 3 = 0  the integration over the Z^ s is trivial and

* See Discussion (section seven).
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the model is reduced to the pure U(l) gauge theory of Chapter three,

with a second-order phase transition at a 1 separating the

confining and Maxwell phases.

Suppose we consider small but non-zero 3. Consideration of

strong coupling diagrams indicates the form of these extra interactions.

The first contribution will occur when four links lie around a single

plaquette, i.e. 0(3^). Since this is a 'plaquette term* we may

interpret the first correction as an addition to the pure gauge
4 3action, i.e. a renormalization of a by + 3 / 8n .

Following this line of reasoning we would expect a line of 

transitions ending at the pure U(l) theory given by:
4

a (3) ~ a (0) - B/Gn^ + 0(3^) ... 4.11c —  c

We expect this line of transitions to be of the same order as the 

pure gauge theory, although we cannot be sure of the effect of 

higher order (non-plaquette) modifications.

b) 3

Here the configurations that minimize the sum over links in

(4.3) have the spins frozen (magnetized). In addition the link 

variables are forced into a pure gauge configuration. Hence there

is no a dependence and the model is trivial in this limit.

c) a_^_0

For n = l [4] following consideration of a suitable gauge 

transformation the model is seen to be trivial in this limit. For

the cases n > 1 that we consider this cannot occur.

^ Up fe>
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For a = 0 , the link variables factorize, giving

r 2 n
Z(0,3)= n D Z^ D Z^ 6 ( z % - i ) n

X  X , y

de exp{e|z*z^^ loose} 4.12
0 ^

nDZ^DZ^ ô(Z^Z^-l) exp{ E In 1^(3 j Z^ Z^^^ [)} 4.13

The resulting 'action* of (4.13) may be written in terms of gauge 

invariant projectors

= Z^ Z^ 4.14
X  X X

where (P^^)2 = P^^ 4.15

and tr P^^ = 1

Expanding the Bessel function in (4.13) the action reads

1  ‘ t'rt tr P f  - “/B«(tr P f  P^ï„ l' * ■ • ■ ] «.IB
x,y

(4.13) now has the form of a lattice CP^ ^ model [10,11] and 

might be expected to possess a first-order phase transition except 

for n = 2 and possibly other low values of n [12].

d) a -►_®

In this instance the link variables are 'frozen* into pure 

gauge configurations. Then the model is 'gauge equivalent* to the 

0(2n) Heisenberg spin model. We expect the same transitions as we

found in Chapter two except that singularities only occur in gauge
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invariant objects, and not for example in the average field

(magnetization) < > .

When a and 3 are large but finite a perturbation expansion

may be made. The matter fields are assumed to be slowly varying 

about a given direction and a suitable gauge transformation fixes

to be real. Then expanding in the gauge field results in the

addition of a mass term (in the continuum limit) to the pure U(l) 

propagator of equation (B 2.4).

3. The phase diagram - Monte Carlo results.

As a guide to the physics of this model we use a computer 

simulation to map out the phase diagram in the (a,3) plane for
Ifn = 2,3 on a 4 lattice. We use the Metropolis algorithm and 

by analogy with Chapter two, random numbers selected from a normal 

distribution are used to update the spins and links with an 

appropriate bias.

To search for possible phase transitions we consider expectation 

values of the link and plaquette terms contributing to the action
N *(4.3)

<P> = *1 < cos[F^^] > 4.17

<L> = ^  < Z^ e^^x + h.c. > 4.18

Thermal cycles in < P > and < L > are then observed from 

three points of view:

* Where the lattice spacing is set to 1 and e is absorbed into the fields
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1) a fixed , varying 3-

2) 3 fixed , varying a.

3) Varying both a and 3.

Only a small number of Monte Carlo iterations (50 - lOO) 

were used for each point due to the large computations involved at 

each link and site. Hence the occurrence of hysterisis loops in 

the thermal cycles is taken as the signal for phase transitions 

- see fig. 1. With this limited data, however, we cannot be sure of 
the order of the transitions.

Combining results for <P> and <L> from (1) and (2) we 

find evidence for three phases in the models n = 2,3. Using diagonal 

scans as in (3) we see clearly that the transition line C shows up 

in both < P > and < L >. However, the spin ordering transition B 

shows up only in < L > while the gauge transitions A is noticed 

only by <P>. This effect may be understood by considering the free 

energy density F(a,3) = In Z(a,3) on either side of a given phase 

boundary. Assuming F to be analytic within each phase we have :

= < P > da + < L > d3 4.19

Suppose there exists a discontinuous jump in F between two phases 

I and II (as in a first-order transition) then we can write

dFj = dFjj . 4.20

Then from (4.19)
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( < P >j - < P ) da = ( < L - < L >j)d8 4.21

ie, da 2 A < L >
d3 d-1 A < P >

Thus the ratio of discontinuities in < L > and < P > is 

determined simply by the orientation of the phase boundary in the 

(a,3) plane. Note that since <L> and <P> are both positive 
the slope of the boundary must be negative.

For higher-order transitions corrections to (4.20) will appear.

In this case (4.22) may be thought of as the ratio of leading 

singularities in < P > and < L >. The strength of these singularities 

might then determine the relative extent to which the transitions 

show up in < P > and < L >.

4. Mean field theory and masses.

In order to extract some of the physics in each phase we turn 

to the mean field approximation reviewed in Chapter two. We 

summarise the results here and some details are given in appendix C.

Elitzur’s theorem.

Within the mean field approach it is natural to follow the 

example of the spin theory and determine self-consistently the 

average values of the fields <U^> and <Z^>, For locally invariant 

theories however, this apparently contradicts Elitzur's theorem^ 

which requires that both these quantities should vanish. Despite 

this, some results have been obtained in impressive agreement with 

Monte Carlo data [13], Since the average fields are gauge dependent

* Referenced in Chapter three

4.22
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quantities it might seem natural to fix a gauge as a way round 

this problem [14]. However, it has been shown [15] that at least 

for the axial gauge <U^> still vanishes rigorously.

For the coupled system considered here, a qualitatively identical 

phase diagram is obtained with or without gauge fixing [1]. In 

what follows we use an unfixed scheme to firstly obtain a phase 

diagram for comparison with the Monte Carlo results of section three. 

These results are in good agreement and we go on to compute various
masses,

The_phases

For the coupled system the self-consistency equation 2.20 on 

the sites of the spin model is replaced by a pair of self-consistency 

conditions on the site and link expectation, values. In the case of 
symmetry breaking the are rotated and a gauge

transformation is made so that both <U^> = <C> and <Z^> = <X > 

are real.

The corresponding mean fields are :

h = 2(d-l) a < c>^ + 3<X + J 4.23c c

h^ = 2d 3<c><x> +

Expectation values are obtained using the'partition functions' :

"c (he) =

"x (hx) =

D 0 exp{ c • h^}

DZ^DZ^6(Z^ Z^-1) exp{ x • h^}

4.24



79.

4.25

and self-consistency gives the results for < c > and < x > :

< c> = I,(h ) / I (h ) 1 c o c

< X > = I^(h^) /

The phase boundaries are then determined in the same way as 

the spin model from the thermodynamic free energy T(< c >,< x >):

r(< c >,< X >) = 2d3< c >< X d(d-l) a < c + J^< s > + dJ^< c >

- In Z, (h ) - d In Z (h ) 4.25X X C C

The resulting phase diagram is compared with the Monte Carlo

results in figs. 2 , 3 with n = 2,3 .

We find (incorrectly) a first-order transition beginning at

the pure U(l) transition point and continuing through the triple
n-1point up to the CP axis at a = 0. On the other hand the 

transition line from the 0(2n) axis at a = » leading to the triple 

point is second-order in this approximation. This result is not 

inconsistent with the expected behaviour of 0(4) and 0(6) spin 

models.

itMasses

In the mean field calculation for the coupled system we find a 

mixing occurs between site and link expectation values. As a result 

no simple formula for the a mass analogous to (1.39 ) may be 

obtained for the Green's function in position space. Hence we consider 

the momentum space derivation of Chapter two. The mixing still occurs

* See Acknowledgements,
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but was found to be manageable. The calculations are outlined in

appendix C. The results are as follows:

a) 'Confining region' - small a, small 3

In the symmetric phase (small 3 ) < > = 0 for all a, and there are

2n degenerate scalar fields given by

4 . Z  = l i r e  -  24

where 3 3 3^ = for the symmetric phases.

However, in this first region a is also small, we have <c> = 0 

and so all the masses are infinite. Thus confinement occurs but for 

trivial reasons - in fact the same argument may be used to find bound 
states, eg. < Z^ Z^> of infinite mass I

b) Maxwell phase - large a , small 3

Here c  ̂0 and(4.27)gives a set of 2n degenerate massive scalars 

There are 2d modes of fluctuation in the link value <U^>.

Of these d are massless transverse modes (see proof 01). One of 

these is the unphysical gauge degree of freedom, while d-1 are the 

photon.

The remaining d modes are massive and remain so in the continuum
2limit 3 3^ where m^ - 0 .

c) Higgs phase

In the remaining region we have an example of the Higgs mechanism
[16]. The photon is massive:
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■î = î  7 7 ?  ' °

with d-1 polarizations.

There are now 2n-2 massless Goldstone bosons (See appendix C

and Chapter one) and a massive scalar field o . The calculation of
2 am^ ' involves mixing between < Z > and the longitudinal mode in

< > (The physical o is identified with the state having

lower mass which tends to zero as 3 B^)j and is omitted here.

5. Discussion

As n > 1 more spins have been added than are necessary to 

break the gauge symmetry. The existence in these models of a phase 

boundary separating Higgs ando>4̂ <â ertt- phases is in sharp contrast 

to the case n = 1 [5,7].

For n = l  a similar effect is achieved however, when the

Higgs field carries multiple (integer) charge q. The action then 

reads

S = a Z cos[aeF ] + 3 Z cos[A 0 - qA^ ] 4.29

In this case, when q = 1 it has been shown that the two phases are

continuously connected [4].
As the model here has two coupling constants if is possible to 

demonstrate renormalization group flows within the phase diagram 

(see Chapter one). Bad statistics meant that Monte Carlo calculations 

of masses were unfeasible, but some results were obtained in the 

mean field approximation [17].
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In order that the physics remains the same along contours in

the phase diagram we require that the couplings a and 3 depend on
2 . 2 2 on the lattice cutoff, A say, in such a way that both m^ and m^

(in the Higgs phase) remain constant as A varies, i.e.

m^ (a,3) =• f(a,3)A^

4.3')

m^ (a,3) = g(a,3)A^

2
Computing the ratio ^a/my then eliminates the A dependence

2 2of (4.30) and the mean field results for m^ and m^ give the

contours of fig.4 .

The flows of constant mass ratio are in the direction of 
2increasing m^ . The effect of a second-order transition is seen

2clearly near the Higgs/Maxwell boundary where m^ 0 rapidly. In

this lowest order mean field approximation we would expect these 

lines to hit the boundary at some point. If the second-order 

transition were to persist in higher orders however, we would expect 

the flows to tend only asymptotically to the boundary.

However, a calculation in the corresponding continuum field 

theory [18] indicates a first-order transition (for n ^ 365) separating 

Higgs and Maxwell phases. If this result is true in the limit X -»■ ® 

applying to the present model than we might expect the lattice mean 

field prediction of a second-order transition to be incorrect, except 

of course at the point a = » where it becomes the 0(2n) Heisenberg 
model.
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1 - < P >

1 - < L >

.8

' r<xns’»Vvow% lînxa. Ç\.4

0
.8

0
.5 1.5.1.00 2.0

a = 23

Fig. 1.
Diagonal scan for the line a = 23 when n = 2 (see fig. 2) . 

Only 100 sweeps of the lattice were made for each point,averaging 

over the last 70.
Different transitions show up in < L > and < P >.
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a

2

0
3210

Fig. 2
14.Phase diagram for n = 2 on a 4 lattice obtained by 

Monte Carlo simulation. Horizontal and vertical bars 

indicate the approximate size of regions of slow convergence 

in < L > and < P > respectively. The line CAB indicates 

the path of the thermal cycle of fig. 1.
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a

0 1 2 3

Fig. 3

As for fig. 2 but with n = 3.
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2

1

0
0 1 2 3

Fig. 4

Phase diagram for n = 3, obtained in the mean field
approximation. The flow indicated in the Higgs phase is

2 2 2 in the direction of increasing , keeping fixed,
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APPENDIX A

I High temperature expansion (low g)

Since we are only concerned here with low order in g , diagrams 

are obtained directly from expanding the exponential in Z, rather 

than from the more powerful method of performing a character 

expansion first [1] :

Z(g) =

a.

n D (f)x6((|>̂ -1) exp {g Z *x+u

Any term in the product II that is not invariant to the measure 

on all sites within the term will vanish. The remaining terms depend 

numerically on n and the size and dimension of the lattice, and can 

be represented as a sum of diagrams.

Clearly, only even powers of 4> are invariant to the measure
2D 4>x 6(4>x “ i) so we write

“ 2k ~Z(g) = Z g ^  Z_ A1.2k=0
To evaluate consider the following results. Let 4>̂  ,

i = 1,2, ...,n be the vector components at a given site x and

define

D ($^-1) A1.3< 6^ 6̂

Then clearly

< 4^ > = A 6. . A1.4X 1]

The normalization condition 1 = < 1 > implies
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21 = < 1 > = <(() > = An , so 

. . 6 . .
<<f> == A1.5

Higher order expressions may be obtained by combining indices in 

all possible ways:

Contracting over k and i implies

n *̂ ij ” = B(n + 2) 6^^ , so

n(n + 2)

Diagrams for ^ may now be evaluated by combinations of \
the single site integrals A1.5, A1.6.

%0
Zq = 1 , the trivial order A1.7

x+y

= 2V 1

i  C^/n . A1.8

C^ is the factor associated with the possible positions of 

the diagram on the lattice. In this case a single link oriented 

twice:

Hence Ĉ  ̂= d , the number of links on a finite lattice and
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^2 = #

There are four different diagrams:

(i) = Al.lO

Each bracket contributes a factor ^  from the integration, while 

contracting over the indices gives a factor n. ^2 ~ \  dN^(d-l), 
the number of plaquettes on a lattice. Hence Al.9

n
(ii) • = »  = Cj[i A1.12

= i  dN^CdN^ - (4d-l))/4n^ A1.13

iii) " z k r(iii) I \ <4» 4> ><4) 4> 4> 4> <P A1.14

" 2T2T 4 "  T O T  " ÏÏ " + 2)

where the last factor arises from contractions over the deltas.

=

= dN^(2d-l)/4n^ A1.15

(iv) i  A1.16

" * r,2(n+2)2

The last factor gives 9 terms and turns out to be 3n(n+2)  ̂ so
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/ 8n(n + 2)

dN^ / 8n(n + 2) A1.17

Summing the diagrams we have an expression for Z(g) to 
1+order g :

2(3) + + C w W  + + #  + 0(3^)..., M.XB
4n 2n 8n

F(g) = InZ(g) is the free energy and differentiating F with
3respect to g gives the average energy density E(g) of 2.5 to 0(g ):

E(B) = B/n + ( ^  ---) 6® + 0(8®) + ...
n n (n+2)

As an informative check we calculate E directly from diagrams ;

E(g) =• Z l h  I ^
dN x,y

nD4>x6((|)x - i) 4>x exp{g I A1.20
X x,U

A1.20 is evaluated at a fixed link 6 . 6  = L somewhere on thea+y ^a
lattice - since the system is translationally invariant, any one 
link will do.

A diagram will now be non-zero where every site on the diagram 

belongs to either:

a) an even power of links from the II in the expansion of A1.17.
x,y

b) an odd power of links from the H and to L ,
x,y

Hence the lowest order diagram is simply

^ ^  = ^/n A1.21

Each such diagram can occur with all possible sets of disconnected 

diagrams from Z(g), i.e.

E(B) 1 +  .__, + 1__I + 2 Z T  . . . ] A1.22
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When all diagrams are considered the two bracketed series 

do not quite cancel, since the top bracket is a sum over all 

diagrams in Z(g) on the lattice except for those including L.

i) Consider the first diagram ^  giving a factor g/n .

Now any diagram ( e . g . d > t o  lowest order) from II in the 

expansion of A1.17 with sites in common with must be

subtracted. To this low order there are two kinds!

1) 0  ^ occurs (4d- 2) ways so using previous considerations

we subtract

i  (4d - 2) B®/n^ A1.23

2) ^ occurs in only one way, hence subtract

I 8®/n® A1.24

3With 0(g ) corrections taken care of, we evaluate the positive
3g contributions in a similar fashion to Z(g) :

(ii) [_

it gives

occurs in 2(d - 1) ways for given link L, therefore

2(d-l)g^/n^ A1.25

2(4d- 2) g^/n^ A1.26

(which cancels exactly with (1))

(iv) = g^/2n(n+2) A1.27

5 3The next terms and corrections are 0(g ). To order g we have

E(g) = ^/n + ( ^  - —  ) g^ . . . as before A1.28
n n (n+2)
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II Low temperature expansion (high g)

The general method is the standard perturbation expansion for 

the Green's functions in field theory, based around Z^, the free 

field generating functional. The case of an 0(n) symmetric 

Lagrangian is given in ref. [2],

The following basic results are easily derived from the momentum 
space transformation

+ 7T .
<P̂ Z (f>

%

where

1 :  = r e'ip-* j,
P X

using = N*" J  _  ^

1) : +x *x ' - -K = N p^,P2L..,p^_^^Pj_^P2 • • • *Pk_i*-Pi,-P2'. • • ."Pk-l
A2.1

where momentum is understood to be conserved only modulo 2 t t

2) By translational invariance and using A2.1

: (4*+, = : (24* - 2 4,1^4*)x,y  ̂ x,y

(i Ou “V —1
= N é (p A A2.2P -P P

where A ^ : = L ( 2 - 2  cos p ) .
^ y

The partition function 2.2 for the Hamiltonian in the absence of 

external fields reads ;
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z(e) =

1 2writing the fields (f> = (o^,n^) scalar , tt̂  =
X  X X X  ^  X  X

n-1.
- '*x )

IIDir^Da^6(o®-[l-n2]) exp{-| a + <’̂ x+p ”x ̂ ̂  ̂  ̂ A2.3

The fixed length condition gives interactions by

d4>^6(4)^- 1) = dn^ dô  ô(â  - [1- tt̂ ])

1 1 2  - J  diT̂  exp -  ln(l - 7T̂ ) }

Transforming to momentum space A2.3 reads

Z(g) a n diT exp {H^ + }
P ^

A2.4

where - v - p * p '

H = - ^  I a a a"^I 2 p P -P P I ln(l- )2 p P -P

At low temperature, spins tend to align in the a direction, 

say. Oscillations around a are assumed to be small, hence

n^l < <1 and we write :

4 , 1 2 1 4  
*x = (1 -*x) ^ 1 -  l2*x - 8 "x - - -

and , u, 2. 2 1 4In(l-n^) 2-*x - 2 "x - - - •

Up to quaytic terms, then is
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 ̂P . . V P ,  ‘V ' ’ ■>=■ " V p - p .  ’ * • • ■

+ -IT- I ir .7T _ + —  Z (tt.tt )(tt .ÏÏ ) + .,. A2.5
2 p P -P % l . P ^ . P g  Pi P2 P3 -PI-P2-P3

Adding source terms J .ir for the it fields and makingp -p p
the usual replacement tt -+ we pull exp{H_(-r4—  )} outsidep 0J I oJ

T "P "Pthe integral A2.4, leaving the Gaussian form with the tt̂  integration 

range extended to + “ ;

Zp(8) =
+«’ ^

n D TT exp{- Z tt.tt A ^  + N ^ Z J . tt }P P  2 p p -p p p P - p

^d
a exp{ 7̂  Z J ,J A } A2.6

p «  p -p p

Note that the p = 0 mode is excluded in order that the 'propagator*

A^ be well defined. The integral over the p = 0 mode of may

be taken out right at the beginning since it contributes a numerical 

factor which cancels with Z in the denominator for averages over 

0(n) invariant quantities.

A set of * Feynman rules' may be given in the normal way. Note 

that diagrams for the 0(n) theory will contain factors <S i j 

i, j = l , . . . , n - l  leading to a factor n -1 for all closed tt̂  loops.

Diagrams

 1-------------   ^  Î  ^

^ /  +-+ - N^g A"^ A2.8
p

 M  ■<-+ N-̂  from the measure. A2.9
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In addition to closed index loops, any closed loop will involve

a sum  ̂ over all p for which every propagator in the loop has 
P

non-zero momentum.

Evaluation of E(B)

E(6) = Z * . 4 > = d'l< Z 4*)®]>x,y " + P x,p 2 x+u X

-1 1 -1 - 1 - d < Z ^  <p.(P A >P 2 p̂ -̂P p

1 V - - P  “I" >

A2.10
(i) The first bracket of 2.7 gives :

/

(a) Tr«ir acting on the free part of Z, i.e. the 'tree level'P -P
diagram

-1

d= (n -1) —  (N -1) A2.11

The dependence is apparent even at this lowest order.

For -+ «> we have

E(6) 2  1 - + 0 (g"2) , . . A2.12

b) TT.ïï combined with interaction terms from Z, giving
_2contributions 0(3 ) . Expressions arise :

IT TTP -P
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IT. TTP "P = - N-24 z a A-i a
B ^2 Pl*P2 ^2

The non-trivial sum may be evaluated in the large N limit, 
or summed directly on a computer.

(ii) The second bracket of A2.10 also gives 0(3 ^) terms from 
acting are the free part of Z.

The final N dependent result for E(3) is

E(B) 2  1 - N~‘̂(n ‘̂ - 1) + 1" "y) I A2.13

I = n "'̂  Z A Z A'^ A -2]
Pi Pj V P 2  P2

In the large N limit I becomes - ~  and A2.13 is

E(B) ~ 1 - - 2 ^  + 0(6"®) . . . A2.14
8d®6®
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APPENDIX B

I High temperature (low a) expansion for U(l)

Expansions to very high order (up to ) have been carried

out [1,2] using character expansions. As an aid to the mixed 

model we simply list here the low order diagrams obtained from 

expanding the exponential in Z of (3.5) (putting a =1)

Z(a) = n D exp{a Z cosG^ }

n D 0 n (1 + a cos 0_ + ^  cos^ 6_+ ... ) & O a 21 D Bl.l

Using the results:
,2ïï

d0 COS0 = 0
0 
2tt

and 1
2 it 0

d 8^ cos ( \  + 8g)

we see that in analogy with the spin models, only terms with an even 

number of links belonging to each plaquette in a given diagram will 

survive. Expanding Z as a set of diagrams we have:

O(a^)

O(a^)

(i)

= Ng * Y froM integration B1.2

B1.3
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(il) = 272! C8d-l])x 1

(iii) = 272!“ «a 6) “ è

Calculations similar to those for the spin model yield the 

result (3.7) for E(a) ;
3

<E(a)> — '2~̂  ^  ^ ^  ((1 " "^) + 0(a )...

(B1.5)

(B1.6)

II Low temperature (high a) expansion for U(l)

The method is again the general one of perturbation theory.

A discussion of lattice weak coupling is given in [ 3 ].

As in continuum theory the calculation is only possible if a 

'gauge' is chosen. When distances are large compared to the
I

lattice spacing, i.e. for small momentum p. the results of 

continuum Q.E.D are recovered.

For large a we approximate (3.3):

6- 
" - i f ' 4 T (B2.1)

where 0x,yv

and A 6^ = 6^ - 8^ is the lattice 'difference' operator withy X x+y X
spacing a set to unity.

The generating functional is obtained as in the spin model
2from the quadratic part of (B2.1). Transforming into

momentum space yields the inverse propagator

=
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M ^ = 2N^ [E (2-2 cos p ) 6 + (cosp + cosp - cos(p - p ) -1)] B2.2yv ^ a yv ^y v y v

This matrix is not invertible without the addition of a gauge 

fixing term, for instance

- J  %  8%)'

to the action (B2.1).

For suitable A we have the lattice 'Feynman gauge' and (B2.2) 

becomes

= 2N^ [ Z (2-2 cosp )] 6 B2.3yv ^ yv

giving

M = i  n"^C Z (2 - 2 cosp )]‘^6 B2.4yv 2 ^ yv
/

For small p we recognize as the ordinary massless propagator

M 'V i  6 for small p. B2.5yv p2 yv ^

If required, a set of 'Feynman rules' could be written down in 

a similar fashion to the spin model.

Ill The heat bath algorithm in U(l) and SU(3)

Given a supply of uniformly distributed random numbers from a 

computer we need a way of transforming them into group elements U 

distributed with the BoItzmanh. weighting P(U) dU of (1.51).

Suppose we write

P(U) dU = Q(U) d[R(U)] B3.1

where we require 0 < R < 1.
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Two cases arise ;

(i) Q = constant.

If Q is independent of U we see immediately U may be

generated according to (B3.1) by taking numbers R uniformly

distributed on (0,1) and inverting R(U) .

(ii) Q t constant.

In general the form of P(U) 'v exp{Tr ReA^U} is too 

complicated to allow us to define R(U) in such a way as to make 

Q constant. However, we can still satisfy (B3.1) by firstly 

generating R uniformly and then correcting for the weight factor 

Q(U).
Given a U generated as in (i), this defines a value of Q = Q .

Suppose we generate a new random number R* distributed uniformly

on the range of Q(U). Then if R* < Q We reject Q and generate 

a new R and hence a new Q. Thus the generated U that we finally 

accept is conditional on Q being accepted, i.e. the 'flat*
rQ

distribution d[R(u)] is multiplied by a factor dR' and so we
0

have

dR' d[R(u)] = Q(u)d[R(u)] . B3.2
0

We are required here to generate 0 according to:

P(0) d0 = e^cosG 0 < 0 < B3.3

* We need only solve (B3.3) for the half plane and then change 0 + - 0 
1with probability •
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Let

R(x) = (e^* - e .^)/(e^ - e B3.4

and Q(x) = exp{M[cos ̂ /2 (1 - x) - x] }

2 0where x = 1 - /tt

Then clearly (B3.3) becomes

P(0)d0 a Q(x) d[R(x)] B3.5

with 0 < R(x) ^ 1 .

Then selecting R uniformly on (0,1] gives x from the inverse 
function to R(x):

1 2MX = —  In { l + ( e - l ) R } “ 1 B3.5

To allow for the weighting Q(x) we take a second random number 

R and keep x if and only if:

Q(x)
QMAX > R' B3.7

, _ .. . T \ 0.2105137a . ., .where is the maximum value of Q(x) = e in this case.

The SU(3) case

The case of SU(3) is of course considerably more complicated.

In the heat bath algorithm for SU(2) [4] one is able to make use of 

the fact that any sum of SU(2) matrices is proportional to another 

SU(2) element - thus the sum over surrounding plaquettes in the 
exponent of (1.59) is a single SU(2) matrix (times a factor).

For SU(3) however, this trick is out. The expression (B3.1) 

is decomposed into a weight factor Q(U), together with several factors 

d[R^(U)]. Some details are given in ref. [5].
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APPENDIX C

Mean field calculation

Changing notation we recall the action (4.1);

S = ^ Z [U^uVu^ + C.C.] + I  2 C Z ^ U Z ^ '  + C.C.] Cl.l
X— X☆4 ryCL =a

1 Z Z
5 i0^ 5 Çand write U = e = c  + is & = 1,...,4

„a a . a _Z = X + iy a = l,...,n

x*x^ + y“  = 1 .

Rewriting (Cl.l) in terms of real and imaginary parts we have:

_ p l 2 3 4 ^  1 2 3 4 ^ .  1 2 3 4 ,  1 3 2 4  1 4 2 3 ^ 2 3 1 4S = a Z L c c c c  + S S S S  + (-s s e e  + s s c c  + s s c c  + s s c c

 ̂ 2 4 1 3  3 4 1 2 . ,+ S S C C  - ^ s s c c ) J

Given a site or link, (denoted x or..in the following equations) 
mean values are associated with all the surrounding fields. Then the 

following expressions for the mean fields h are constructed from 

the relevant terms in (Cl.2).

2 3 4  2 3 4  3 2 4h = a Z <c ><c ><c > + a Z [- <c ><s ><s > + <c ><s ><s >c â .3
- a ,  ' . Ç :
4 2 3  5 6 7  6 5 7  7 5 6 ,+ <c ><s ><s > + <c ><s ><s > + <c ><s ><s > - <c ><s ><s >J

+ 3C<X^XX^>+ <y^><y^>] + Cl.3a
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2 3 4  2 3 4  3 2 4h = a Z <s ><s ><s > + Z [-<s >c ><c > + <s ><c ><c >

: 8

4 2 3  5 6 7  6 5 7  7 5 6 ^+ <s ><c ><c > + <s ><c ><c > + <s ><c ><c > - <s ><c ><c >]

+ 3[<y^><x^ > - <x^xy^ >] + J Ç1.3b

â â * a *h = 3 Z <cxx > + 3{ Z <sxy > Cl.3c

3 . 3   ̂ 3  ^h = 3 1  <cxy > + 3( Z <s><x > Z <sxx^>} + Cl. 3d

Then the self-consistency conditions are

<c> = Z-1 D 6 C exp {ch + sh }  ̂ c s Cl. 4a

<s> = Z-1 D 0 S exp {ch + sh } e s Cl. 4b

<x^> = DX DY x^exp{x^h^ + y^h^} ^ X y Cl. 4c

DX DY y^ exp{x^h^ + y^h^ } X y C1.4d

where Z^ = D0 exp {ch + sh } c s

DXDY exp{x*h* + y^ h* } X y

Cl.5

and the site measure is

DX DY:= DX^ DY^ 6(x^x^ + y^y^ - 1)
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Symmetry breaking

As in the spin model, when magnetization takes place, we rotate 

the so that only the first component, say of Z^, has a

non-zero expectation value. Performing a suitable gauge transformation 

on the links then leaves <z^> = <x^> real. This in turn means the 

second part of the action (Cl.l) contains only cosine terms and hence,

<s> is also zero.

Thus only h^ and h^ of (1.3) need be considered here. They 

become (after imposing translation invariance):

h = 2(d-l) a<c>^ + 3<x^>^ + J Cl.6ac c

h^^ = 2d3 <c><x^> + Cl.6b

where self-consistency requires 

-1<c> = Z^

<x^> =

D0 c exp{ch } Cl.7ac

DXDY x^ exp{x^h^ } Cl.7b

with Z^(h)= DXDY exp{ch }

DXDY exp{x^h^ }

Cl.8

The Legendre transform of the free energy w = In Z yields the 

following equation for the thermodynamic potential T(<c>, <x^>) :

dr(<c>,<x’>) = d J^d<c> + d<x*> Cl.9

The solution of equation 4.23 is :
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r(<c>,<x^>) = Y  d(d-l) a<c>^ + 2d 3<c><x^>^

+ dJ <c> + J^<x^> - InZ, (h ) - In Z.(h^) Cl.10c X 1 c 2 X

Masses

As in the spin model we consider the responses 6<c> etc. 

of the average fields to a small source and write down an expression 

for the change 6h^ in the mean fields. Thus ignoring higher 

derivative terms the Green's functions are obtained.

6h = a I <c>^ [6 <c^> + 6<c^> + 6<c^>

1 1 ' 1+ 3 <x >[ 6<x > + 6<x > ] + J Cl.11ac

6h = a Z <c>^[-6<s^> + 6<s^> + 0<s^> + 6<s^> - 6<s^> ]

+ 3<x^>[6<y^> - 6<y^ >] + Cl.11b

6h^ = 3 Z <c> 6<x®> + Cl.11cX X

6h^ = 3 Z <c> 6<y^> + Cl.lid
y — V y

where <x^> = 0

6h^ = 3 Z[<c> 6<x^> + <x^> 6<c>] + Cl.lie
“ — X “

6h^ = B Z <c> 6<y > + o[ 2 < x^> 6<s> - E<x^> 6<s>]+— X — X X—  y
1where <x > X 0

Cl.Ilf
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Scalar masses

We notice that the expressions for 6h^ and ôh^, where 

<x^> = 0 , are essentially identical to that of the Heisenberg

model (eqn. 2.23) with ^HEISENBERG “ 3< c>. By analogy we call 
these modes tt and we have

m^ = [3 <0<%x >^]~^-2d 01.12

In the symmetric phases there are 2n such degenerate non-zero

masses (see Chapter two). In the Higgs phase thaere are 2n - 2

massless Goldstone bosons - the proof is as given for the Heisenberg

model in Chapter one, section six .

The value of < ~  found in equation 4.24 is obtained

from rotating the s when symmetry breaking has occurred, i.e.
/

h=0

h = 0

~ l/2n + 0(h) Cl.13

'Photon^masses

In the Higgs phase 6<x^> mixes with 6<c> and 6<y^> with 6<s>.

For the transverse photons, consider the second case. Writing 

for the link from site x in direction y, and for the usual

lattice difference operator, equation 01.lib becomes

ôh^y = CL <c>^ [ (A^ + 2(d-l) ) 6^^- A^ A^ ] 6 <s^ >

+ 3 < x ^ > A 6 < y ^ > + J y  Cl. 14w J s*
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From (Cl.lid) we argue that 6<y^> in (Cl.14) mixes with the

longitudinal part of 6<s^>. In addition, the transverse part satisfies

A 6 <s > =0. Hence (Cl.14) becomes y X

6h y = a<c>^ [A^ + 2(d-l)] 6 6<s^> + J y Cl.15
^  X

2Hence we obtain a photon mass m^ from the equation

6<s% > = < s% s% 6 h^y Cl.16

= < èl st> (a< c [A^ + 2(d-l)] 6 ) 6<s* > + J y Cl.17X X c yv X

=> ( - A^ + m^) 6<s^ > = a < c > ^ J u  Cl.18Y  ̂ ®x

where
m^ = ( a < c )“^ - 2(d-l) Cl.19

Using Ward identities as for the Goldstone bosons we now 

distinguish between transverse photons in the Maxwell and Higgs phases.

?F22|_£1 : The transverse photons are massless in the Maxwell region.

In this phase < x’ > = 0 and eqn. Cl.6a gives

< s > = D0 exp{ [ 2(d-l) a< c > ̂ ] c) Cl.20

Changing variables

6 c = - e s , Ô s = E c 

leads to the Ward identity :
3 30 = e(< c > - < s^ s^> 2(d-l) a <c> + < s ̂ > < s ̂  > 2(d-l) a < c> ) Cl.21
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2= e< c > (1 - < s^>2(d-l)a<c> Cl.22

= e< c> a < using (Cl.19) Cl.23

2m = 0 in this phase.Y

EE22|_Ç?_* The photons are massive in the Higgs phase 

Here <  ̂0 and (Cl.20) is replaced by

D0 exp{ [2(d-l) a < c >^ + 3 < x^ ]@} 01.24

and the Ward identity is :

0 = e(< c > - < ŝ  [2(d-l) a < c + 3 < >^] ) Cl.25

= t(<s^s^>_, a< c >3 m? - <s^ a < >^ ) ci.26

i.e. ^  (eqn. 4.25) Cl.27
y “ < c>8

2and it may be shown that m^ finite persists in the limit 

a ^ ® , 3 fixed.
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AbstracL The average aclion/plaquetlc and the specific heat of SU(3) lattice gauge theory in 
four dimensions arc calculated by Monte-Carlo simulation on lattices of lattice length 4 and 
5 by averaging over 400 iterations through the 4* lattice and 200 iterations through the 5* 
lattice. The calculations show a peak in the specific heat at a value of the inverse temperature 
^ of 6.31.

SU(3) lattice gauge theory in four dimensions is hoped not to possess a phase transition 
between the low-iemperature and the high-temperature regions. This would lead to the 
confinement of quarks for all values of the temperature (Wilson 1974).

In the present letter, we evaluate the average action/plaquette (£> of SU(3) lattice 
gauge theory using the Monte-Carlo method (Creutz 1980). The specific heat is then 
defined by

Cy = d{E}!ÿT=-f »(,£)! (I)

where T is the temperature, ̂  is the inverse temperature and ̂ =6/^2. where g is the bare 
coupling constant. Monte-Carlo calculations have been carried out on lattices of lattice 
length 4 and 5. For lattice lengths 4 and 5 we used 400 and 200 iterations through the 
lattice, respectively.

In figure 1 we see the average action/plaquette (£) plotted against for 0<^<7.0. 
(This figure contains 119 data points.) Also shown in the figure are the low-temperature 
expansion (Creutz 1979)

and the high temperature expansion (Creutz, private communication)

In figure 2 we plot the data for the average action/plaquette shown in figure I in the 
vicinity of the cross over in order to show the detail more clearly.

0305-4616/81/050085 + 04 $01.50 ©  1981 The Insdtute of Physics L85
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Figure I. The average aciion/plaqucttc for 400 iterations through the lattice for SU(3) lattice 
gauge theory as a function of the inverse temperature. The low- and high-temperature 
expansions are also shown.

The specific heat Cy w as obtained by first smoothing the average action/plaquette data 
and then interpolating this smoothed data by means of cubic splines (Anderson el al 1979). 
The cubic spline interpolation then immediately gave the first derivative of the smoothed 
curve for use in equation (1). W e  only used ordered (cold start) configurations in our 
calculations as we know that both ordered (cold start) and disordered (hot start) 
configurations lead to the same results.

Our results for the specific heat Cy are shown in figure 3. The sharp peak at 6.31 is 
impressive. This peak occurs near the point ()9~6.00) where Creutz (private 
communication) found a rapid cross over in the string tension between the low- and high- 
temperature regions. Using the same program, we have computed values of the average 
action/plaquette for up to 15.0 but this is beyond the transition and thus irrelevant to 
the present discussion. In the high-temperature region, the agreement between the high- 
temperature expansion and the Monte-Carlo results is quite good.

W e  have also evaluated the specific heat for 200 iterations through a 5* lattice at 21 
values of These results indicate that the peak in the specific heat does not shift 
appreciably in P compared with the 4* lattice. This was previously found to be so in SU(2) 
lattice gauge theory (Lautrup and Nauenberg 1980).

Our results indicate that there is a transition between the low- and high-temperature 
regions in SU(3) lattice gauge theory, which is similar to that found in SU(2) lattice gauge
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Figure 2. The average aclioa/piaquctic for 400 iterations through the lattice for SU(3) lattice 
gauge theory as a function of the inverse temperature.

theory. In a recent publication, DroufTe and Zuber (1980) found a roughening transition in 
four-dimensional SU(3) lattice gauge theory at ̂ =5.94 ±0.36 which corresponds closely 
with the peak we have found in the specific heat Using order parameters other than (E), 
such as the pinch operator />w (Itzykson et al 1980), we are continuing to investigate the 
nature of this phenomenon.

The authors would like to thank Dr M  Creutz for his computer program, numerous 
discussions, correspondence and his constant encouragement, Dr B Lautrup for 
correspondence concerning his results and Dr M  B Green for discussions. Two of the 
authors (RCE and LMcC) wish to thank the Science Research Council of Great Britain for 
financial support.

References

Anderson J, Ardill R W  B. Moriarty K J M  and Beckwith R C 1979 Compui. Phys. Commun. 16 199 
Creutz M  1979 Phys. P c i\ Lett. 43 553 
 1980 FA IS. R cy. D 21 2308



8 8 /  l i t er  to t h e  f  d i l ur

Ki'

8

t

L

2

0

Figure 3. The specific heal C y for SU(3) lallice gauge theory as a function of the inverse 
temperature.

Drouffe J M  and Zuber J B 1980 Saclay Preprint D P h -T /8 0  128 
Itzykson C, Peskin M E and Zuber J B 1980 Phys. Lett. 95B 259 
Lautrup B and Nauenberg M  1980 FAvr. Rex. Lett. AS 1755 
Wilson K 1974 Phvs. Rex-. D 10 2245



P A P E R  2.



• I'! • , ■ (
■!. II. : I ..' I,.:.'I.. (

J? I I'V-.I > 4 4 \-

M O M  I ( A K L O  SIMULA! ION OF U(l) LAll lCL G A U G E  IHLO K V  

R.C. M ) G A R
l)t lia r in in il o f  P i.v iu  s d A slro iiom y. Vnn crsity CoUcyc, (lo w er S ln-ci, LunJoti U’CJ t  OBJ, U K

L. McCROSSLN
DL jia r im rn i o f  M crht ntaiK s. R o y a l Jio llow ay Collcyc. Kyham. Surrey T ^ ’20  OEX. UR  

and

KJ.M. MORIARTY *
D E S Y , Ham burg. Fed Hep Germ any  

Received 18 Novembci ] 980

P R O G R A M  S U M M A R Y

Title  o f  pray ram: U) LATI ICE 

Cataloyue num ber. ABt.A

Proyram aia ilab lc  fro m . CPC P/ogiam Library, Queen’s 
IJnivciMiy of Bclfasl, N. Ireland (see application foini in this 
issue)

Computer: C D C  1 6 0 0 , Installation: ULCC 

Opcraiiny system. SCOPL ,

Proyramminy lanyuayc used: FORTRAN IV

Htyh speed storaye required: 16 Kvs ords
Ao. o f  bits in a word: 60
Overlay structure: none

Ao. o f  m aynetic tapes required: none
Other peripherals used: card reader, line printer

Card punchiny code: CDC

To ta l no. o f  cards in com bined proyram  and test deck : 430

Keywords: lattice gauge theory, U(I ), quark confinement, 
phase diagram, phase transition, statistical mechanics, action 
per plaquette, Monte Carlo
• Permanent address; Department of Mathematics, Royal 
Holloway College, Egham, Surrey, TW20 OEX, UK.

N ature  o f  the physical problem
Tfic program calculates the average action per plaquette foi 
U(l) lattice gauge theory. Gauge theories formulated on a 
lattice were proposed by Wilson 11 ] and Pol)akov |2]. and 
the average plaquette action is an important observable in 
the stud) of phase transitions in such systems.

M etho d  o f  solution
A Monte Carlo simulation of the lattice system, using the 
heal bath method of ref. (3] adapted to U(1 j, generates a 
series of field configurations approximating statistical equi
librium at a given temperature.

Restrictions on the com plexity  o f  the proyram  
The storage rccjuired is dependent on the lattice size. The 
execution time increases with the lattice size and with the 
number of Monte Carlo iterations required, and is typically 
rather long. At temperatures much below the critical point 
the Monte Carlo vetoing process becomes very slow .

Typical running tim e
The test run took 34 s on the CDC 7600 at ULCC. 
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1. IiilmdiK'liun

llic piogiaiu laliulatfS I In avciapc ailioii pci 
plaijiJcnc fur a U( 1 ) gauge tiicoty on a logulaf lal ticc 
in 2 OÎ more dimensions. I ;iliiec gauge theories are 
one way of tf> ing to understand gauge-invariant 
quantum field theories and phenomena such as quark 
confinement. A popular approach to the investigation 
of lattice systems is to use the Monte Carlo metho
dology of numerical simulation which is familiar in 
statistical mechanics. The algorithm is relatively 
simple, the main problem being to loop efficiently 
through the links and their associated plaquettes. It 
is straightforward for the user to add routines to cal
culate quantities such as Wilson loops, or to modify 
the program for groups other than U(l).

4 ,

I *  — 4..
Fig. 1. A plaquette of the lattice.

or
- I - COS(0,y + -f <i>^i +

and the total action for the system in a configuration 
Cis

Sc. = S5„,

2. Outline of the Iheor)

A good introduction to lattice systems with 
further references is contained in ref. 11 ]. The lattice 
is a regular square, cubic or hypercubic array of sites 
in n > 2 dimensions with / sites on a side. A typical 
site has integer coordinates m = (mi, m ^ , m „ )  
where 1 < m,- <  /. Nearest neighbour sites i and / are 
joined by a link which carries an element U,j = 
exp(iCyy) of the group U(l). The links are directed in 
the sense that L/,y = Uj, and

(0
Each site carries 2n links so that the lattice has 
2nP link variables but ( 1 ) reduces the number of 
independent Unk angles to n/”. Periodic boundary 
conditions are normally applied, neighbours to 
sites on the edge of the lattice are defined by hav
ing:
(mJ,..., ftij + / , =  (rrr|,..., m,,..., m.fi'). (2)

where each combination (ijkl) is counted only once. 
If different permutations (ilkj), (klij). etc. are 
counted separately, there is also a factor g . The parti
tion function is

Z= Z/expl-ZiSc], c
where the sum stands symbolically for an integration 
over all possible configurations. The parameter is 
known as the inverse temperature and corresponds to 
the inverse coupling constant squared in field theory. 
If the continuum limit is correctly taken, the link 
angle (t>̂ (m) can be identified with the electromag
netic field A^(x); 4>̂ (m) denotes the angle on the 
link from the site with coordinates m in the gi direc
tion. Then the action becomes

S = \ J d^x (3̂ /4,, —

wliich is the usual Euclidean action for the electro
magnetic field.

/

In other words, the lattice repeats in every direction.
A plaquette is a square of nearest-neighbour sites 

in a lattice plane which we label (ijkl) (fig. 1). The 
action for this typical plaquette p is

Sp = ] -Ke(Ui, Û yUy,Ui,),

3. Monte Carlo method

The theory and practice of the Monte Carlo tech
nique is comprehensively discussed in ref. [2]. At 
values of p far from a critical region, the lattice con
figuration converges very rapidly to a stable state
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V.nil irl.il)vcl\ Mii.tll tlicim.il flui 1 ii;ilions, wluili \i'i 
llif mil nil stale. Neai a m m  al \aliie of p, liovecvci. 
eoiivei) eiiec will be slovscr and the vaiialiuns of 
laiyci amplitude. If insufficient itciations aic made, 
liysieiesis effects wi.l be appaicnt.

4. Tlic program

A description of the piogram and its use is 
included in comment cards. There are two subrou
tines: CHECK, which traps illegal values of param
eters that the user may alter; and SVH’EEP which per
forms a single Monte Carlo sweep through all the 
links on the lattice and returns the average plaquette 
action. The main program initialises the lattice to an 
ordered configuration (<p,j = 0 ) or to a disordered 
configuration (0,y selected at random in the range 
10,2ti]), and calls SWEEP repeatedly. The main pro
gram also includes assignment statements for param
eters controlling the Monte Carlo process and for /3, 
n, I. To run the program, the user alters these assign
ments as he wishes and adjusts the dimensions of 
arrays storing lattice variables accordingly (this is 
explained in more detail by comments). The program 
calls NAG routine G05CAF |3] which returns a ran
dom number uniformly distributed between 0 and 1, 
but any similar function could be substituted. The 
mam program and CHECK arc easily understood, so 
we now concentrate on the subroutine SWEEP. It is 
necessary to loop through each link in turn, calculat
ing the action around each plaquette which includes 
that link.

At the site with coordinates rrr, there are n links in 
the positive directions, and the values of cos and 
sin <Pij on these links are stored in the arrays COSP 
and SINP, respectively. Tlte link in the positive k 
direction from this site is at location

A: + n S  (rrr, - 1 ) /' * (4)

6 1 4  K
l ii;. 2. The two plaquettes in the K. L plane.

in these a I l ays  I be i ( « n d i i . a l e  m ,  is al  1,. a i i n n  / ,,, 

aiiay l(OOKD.
Given the link in the /. diiectmn fnmi a site (which 

is denoted 1J theie arc two pidcjiieties to be «.oii- 
sidcicd in the K.L plane (fig. 2). v.hich v.e denote 
(I 2.34) and (1 256). Site 1. with coordinates m,, has 
an entry in COSP and SINP starting at location

n

NSITEI = 1 + /J S  (m, - 1)/'- ’1= 1
and similarly for NS1TE2, KS1TE5 and NSl 1E6. The 
values of cos j and sin (/>j2 will be at location

n

LINK12 = I 4 n Z) (m, - 1)/'-'i= I
= NSITEI 4(1-1).

To save explicitly evaluating the sums of (4), it is 
possible to simply find the displacement in COSP and 
SINP caused by moving to a neighbouring site in a 
given direction. To move one site in the ±k direction, 
i.e. to the site with coordinates

(  S to'-t )

^  I i  t h t  incu l ooto c o rrec t^  Print r-rrçr rr^ isoge &.i-

(n inolise coor d inc te i. etc

N ew  la ttice  site

N ew  d irection  LI
Find neig tibounnç s u e n L  d irec tion , 

link w ith  tnis s ite d )

1
N ew  d irec tion  K f L.colcuiote octon  

Ground the  tw o  pBOoettes m K.L plane

M o re  d irections K ’

Apply neot potn to  link 1

c T
M o re  d irections L’

 ____
I Increm ent coorom otes. updote IPOS, INEG|

^__________i_________ ^
<  M o re  s ites ’ VN------------------- /yInq

Cofculote o veroge o c to n

W rite  out tne resultsI 7
(  Stop ^

Fig. 3. Flowchart summarising the program, carrying oui 
one sweep.
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'Du |>i ii'ulu biMiii(!,ir\' {iiiidiiloMs ii-siili iii s]>ct ial 
i.isc's V.bin w is al ibc licginniii}’ oi end of a low in 
ilic A diucnon. Using (2) we see that

a) \slicri = ) io move one siie in tlic -A dncc- 
iion(/- rnnsi be added, and

b) vs lien - / lo move one sue in the 4 A dircc- 
lion (1 - /)/;/*''’ imisi be added.
The poiniei anays IN'CPOS and INCNEG are set lo:
1NCP0S(A)= /j/k -1 1NCNI:G(A)= (1 - l)nl k - )

'Hie arrays IPOS and IN'LG arc maintained so that to 
move one step in the 4A direction IPOS(A) has to be 
added, and to move one step in the — A direction 
INEG(A) has to be added. Normally, then, IPOS(A) = 
lNCPOS(A)and 1NHG(A)= -INCPGS(A): but if 

= 1 then JNEG(Aj = -INCNEG(A) and if m* = / 
then IPOS(A) = INCNEG(A). Using these pointers it is 
now easy to locate the values of cos and sin (6,y 
around the two plaquettes of fig. 2 .

The output from the program is self-explanatory. 
The test run output will only be approximately 
reproduced by the user because of the dependence on 
the random number generation. The flowchart of 
the program is shown in fig. 3.
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We define a luo pajameiej laiiicc field lheor> which interpolates between the 0(Z\1 Heisenbeip model, pure Ud ) 
paupe theory, and a lattice version of the CP-̂  ” * model. The phase diapram in space-time dimension cf = 4 is obtained b) 
Monte Carlo simulation on a 4** lattice, and the nature of the phases is discussed in mean field approximation

CicneraJ features of the pliase diagrams for lattice 
formulations of various Higgs models (coupled spin- 
gauge systems) have been understood both by qualita
tive theoretical arguments and,by numerical simulation 
(refs. 11 - 7J ). In these models the scalar fields (de
fined on the lattice sites) have fixed length and are 
able to give a mass to some of or all of the gauge fields 
by the Higgs mechanism, depending on their number 
and in which representation of the gauge group tliey 
lie.

In tliis letter we extend such investigations to 
models in wliich there are more site spins (each in the 
fundamental representation) than are necessary’ to 
break the gauge symmetry' completely. For simplicity 
we restrict our attention to systems having an abelian 
gauge group U(l): these include the CP^ models 
(refs. [8,9] ) as special limits. We are partially motivat
ed by the wish to understand suggested connections 
between tlie continuum field theories of CP^ ~ ̂ and 
A'-component scalar Q E D  (ref. [10]).

The theories we consider are defined by the euclid
ean lattice action density

/i.
M>1

— )U/ pZg(f c.c., ̂p,<7 ( 1 1

where the spin 2 (̂1) at site / is a set of A' complex scalar 
fields (Â  >  l)in the fundamental representation of tlie 
global symmetry group U(A') as well as the local U(l). 
It satisfies the fixed length condition

2)2.(02.(/)= 1 .

pisa complex phase factor definedTlie variable U, 
on the link between sites / and ; + /j, gi being a unit lat
tice vector in d dimensions: we shall take J to be 4. 
Thus the action

(2)
is the sum over plaquettes p of the usual Wilson action 
fp with coupling q. plus the sum over links C of the 
simplest gauge invariant nearest-neighbour spin-spin 
interaction L .̂, coupling p.

The partition function is defined as
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(3)
and siinpliftcs in llic various cxiicine liintis of o,p.

(a) /? -♦ 0. The S]iin inlegralion is uivial, and the 
model becomes pure U(I) gauge theory, which is 
known in d = 4 to have a second order transition be
tween confining and Maxwell phases. Integrating out 
tlie spin degrees of freedom for non-zero P introduces 
extra (gauge invariant) interactions of the link variables. 
The first contribution occurs at 0(p^) and amounts
to an additive renormalization of o by +^^/8.V 3. Thus 
we expect the transition point in tlie pure U(I) gauge 
theory to lie at tlie end of a line of transitions given by
o,OT = o,(0)-P‘‘/8A'3 + O(/3‘'),
but cannot rule out the possibility that the transition 
goes first order.

(b) In this limit the configurations that mini
mize L in (1) have tlie spins frozen into a state of com
plete “mapietization”. Following ref. [11] this may 
be characterized in a gauge invariant manner as the 
state in which tlie matrix order parameter

attains its maximal value, diag[l - 1/A',-1/A',...,-1/ 
A ]. Furthermore tlie link variables must be in a pure 
gauge configuration to minimize L. Thus there is no 
a-dependence and the model is trivial.

(c) o -* 0. This limit is non trivial for Â  >  1, in con
trast to tlie case A' = 1 considered in ref. [4]. The inte
grations over link variables factorize, giving

2n
Z= / fDf <7)2 n  r dO

l.K 0
X exp (/3 If (/)*z(/ + /I) I cos 0)

= r <7)f 7)2 exp (Sin

X(g|z(/)T(, + AI )1 . (4)
Tliis is a lattice version of tlie CP^ “ ̂ model (an alter
native to that discussed in ref. [12]). In terms of tlie 
gauge invariant projectors f^^(r) = 2g(;)2 (̂r), the ac
tion in eq. (4) reads

Etr S  [ti P(i) P(i + JÛ)] 2 +...,
^ i,p i,u

and, by analogy wiih the results of ref. 111 ]. the j'hasc 
liansilion betwicn oidcr (P = and disorder (p = 0) 
might be expected to be first order, except for A = 2, 
and possibly other low values of A'.

(d) Q The link variables are forced in this limit 
into pure gauge configurations. In the gauge wiierc all 
links arc 1, the action reduces to the 0(2A') Heisenberg 
model. Thus tlie partition function (3) becomes an in
tegral over all gauge transformations of 111 at for tlie 
Heisenberg model, and should have the same phase 
transition. However singularities will occur only in tlie 
gauge invariant quantities like and not in <ẑ >,
which always vanishes.

We have obtained the phase diagram of the model 
for finite and positive values of the coupbngs a, P, by 
Monte Carlo simulation on a 4^ lattice, for N = 2, 3.
By using an algoritlim analogous to that of Metropolis 
et al. (ref. [12]), we generated sequences of configura
tions of spin and gauge degrees of freedom, obeying 
tlie equilibrium distribution, for various values of a, . 
From these we extracted values for the two terms con
tributing to the action (1)

a) = 5(f(0-t/,-„2(/ + ̂ )+c.c.>,
averaged over all positions and orientations on the lat
tice. In the behaviour of these expectation values over 
a “thermal” cycle involving some variation of a, P, pos
sible phase transitions show up as regions of poor con
vergence, i.e. hysteresis loops. The results are displayed 
in figs. 1,2 , where the length of the bars indicate 
roughly the extent of the hysteresis loops.

Combining the results for CP) and iL), we find evi
dence for three phases in each model but cannot be 
sure what order the various transitions are. As shown 
in fig. 3, we find that the transitions tend to show up 
more clearly in one expectation value than the other.
In the mean field analysis presented below, each transi
tion is associated with the ordering of one or both 
types of degree of freedom. Thus it is not surprising 
that the spin ordering transition (B) is visible in 
(A) but not <P) and likewise the gauge ordering transi
tion (A) shows in (f ), not (L). However a more direct 
argument can be given, assuming the free energ>' den
sity to be analytic within each phase (/ = 1, 2) so 
lliat
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1 0

0 0
p 3 0

I jp ]. FMia.st* diapiam foi f'l*̂ coupled 1u pauye fields, ob
tained by Monte Carlo simulation of 4'’ lattice, Horizontal and 
vertical bars indicate repions of slow converg ence of (/,), iP )  
respectively.

dr(')= (ôr^'Vao)da-1 or̂ '>/â )dj3 

= {(d- i)(yô 'Ma + a/'M/3.

F oi a first order transition between phases (1) and (2) 
tlie coexistence curve satisfies dP^ ̂ ̂ = dP^^\ i.e.

do/d/1 = \ -2f id -  1)] A(/.>/A(70 . (5)
(This is just Clapcyron’s equation.) Thus the ratio of 
discontinuities in (L) and (/') is trivially determined by 
the orientation of the phase boundary in the o-/3 plane.

a

0 0
0 0 1 0 ?o 3 0P

I ip. 2. As fip. 1 but CP' coupled to paupc fields. 1 he line 
OAH indicates the path of the thermal cycle plotted in fip. 3.

0 6
0 4
00

Q ?P
rip. 3. Thermal cycle obtained in CP' coupled to paupe fields 
for the line a = 2/3 in fip. 2, sbowinp different behaviour of 
(L )  znd iP ).

In particular, the slope of the phase boundary must al
ways be negative since (1 ) and (F) are essentially spe
cific heats, and tlierefore both positive. At higlier order 
transitions, wliich may have non-classical critical expo
nents, the right-hand side of eq. (5) is replaced by the 
ratio of tbe amplitudes of the leading singularity in (Z. >, 
(f >. Presumably these amplitudes determine the relative 
extent to which the phase transition shows up via 
hysteresis loops in any Monte Carlo simulation.

To extract some of the physics in each phase, we 
consider tlie mean field approximation, in which, each 
degree of freedom is taken to interact w ith the average 
value of its neighbours. This decouples the iniegials in 
eq. (3) and leads to a pair of self consistency' condi
tions on the site and link expectation values, which 
we assume are spatially uniform. We use the remaining 
unbroken symmetries to rotate <ẑ > to tliat only <r„) 
may be nonzero, and make (U) = c,(z^)^x both real., 
In terms of tire corresponding mean fields

= 2(d — ])ac^ + (ix̂  , h^=2d(k'.x, (6)
and defining

„(/r) = In ̂  J d ^ ” 0 6(1 -  exp(/n?2„)j

tire self consistency conditions are

p. (7)
We have ignored the apparent inconsistency with 

Elitzur’s tlieoreirr, which requires that botlr x and c

CO
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and lead to a qualitatively identical phase diapiani for 
(J -  A. ref. 11 ].

Any anibijMJily in the solution of ec]S. (7) is removed 
by minimizing the free cneiĵ - I', which turns out in 
this apjuoximalion to be
r ̂  I - — j Old{d — I )c — Pidcx ̂   ̂̂ 7 j (̂) *
per site, where 7,, is the Lependre transform of 
The resulting phase diagiarn for A' - 3 is shown in fig. 
4, which is to be compared with the Monte Carlo re
sults, fig. 1. The names given to the phases in fig. 4 are 
justified by calculating the mass spectrum in each. We 
omit the details, which arc rather tedious, merely out
lining the method, which is standard. Position-depen
dent source terms are introduced into the action, one 
for each field, so that the expectation values (z), (z ), 
(LO become position dependent too. Re-expressing the 
free energy' f y in terms of the momentum space 
components of the fields,x (p̂ ). etc., and letting 
-* 0 allows one to read off the masses from the qua
dratic part of r , so, for example
Tmi (0 )= \A + Bp^ + OCp"*)] o(p)o(-p) + ... 

ml = A/B .

? 0

HiggsMaxwella

10

Confining

00
3 02 0ro0 0 P

I ig. 4. J’liase diagram for Cl'* mu pled 10 gauge fields, ohrain- 
cd in mean field approximatitm. 1 he flow indicated in the 
Higgs phase is in the direction of increasing keeping m^/ 
mj, fixed

I he results ate as follous:
(i) In the small o, small-fi phase, r = 0, and all masses 

ate infinite since iioighhi’unng degiees (if fieedom de
couple, making all correlation lengths vanish. Thus
the charged fields ẑ  are confined, albeit for trivial 
reasons: the would-be bound states also have 
infinite mass in this simplest mean field analysis.

(ii) In the large-a, small-f phase, the spin fluctua
tions correspond to a degenerate set of 2\' massive 
scalars
m l  ̂  = ZWJcd -  ZJ N/dc) .
There are 2d modes of fluctuation in the link 
2c/— I arc transverse U) (U )̂p7 = and one longitu
dinal. The longitudinal mode, and d -  \ of the trans
verse modes are massive and irrelevant, since the mass 
remains non-zero in the continuum limit m: ̂  0
(in units of the lattice cutoff), i.e. P Of the re
maining d massless transverse modes, one is the un
physical gauge degree of freedom, and the other c/ - 1 
are the photon, whose longitudinal polarization de
couples when P -*■ P̂ .

(iii) In the third phase, the Higgs mechanism occurs. 
There remain 2{N — 1) massless Goldstone bosons:
ml -  (cPivTi) )̂~ ̂ -  2d = 0 ,

which follows from tlie Ward identity
X - (7T7T X 2dc'P = 0 ,
since x 9̂  0. The photon is massive

= (PIq)x /̂c  ̂> 0
having d — 1 polarizations. Just one more degree of 
freedom is physical, tlie massive scalar field 0. Tlie cal
culation of its mass is complicated by mixing between 
<z> and the longitudinal mode in (U^). The physical o 
is identified with the state having the lower mass, 
wliich tends to zero asp jŜ. We omit the rather com
plicated formula for ml, and instead have plotted in 
fig. 4 contours along which the ratio of the two physi
cal masses m^ and m̂  are constant.

The existence in this two coupling constant model 
of two physical masses allows us to define (at least in 
tlie Higgs phase) a phenomenological renormalization 
group, as follows. We require the couplings a and p to 
depend on the lattice cutoff A  in such a way that both 
m^ and ml remain constant as A  varies. Thus
ml(a ,p)=f (a ,p)A-, w;(a, fl) = g(a./3) A‘ .
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foi instance, and tlie sj>eed of llie lesuliing flow lends 
10 zero with/,g at a second order transition. In the 
mean field apjiroximalion, this flow uil) hr along the 
contours plotted in fig. 4. Quantum corrections to this 
mean field picture will modify this flow, however we 
have not attempted to calculate them.

Ref. 113] includes the results of a one-loop calcula
tion for the corresponding continuum field tlieory, of 
charged scalars interacting with photons. Perturbing in 
the gauge coupling c^ and in the scalar interaction 
X(4j* they find for A' <  365 a first order transi
tion separating Higgs and Maxwell phases, and an infra
red instability in = 1 /q at the fixed point q = «>,
/Î = X = 0. Thus one might expect that the Higgs/ 
Maxwell phase boundary' in the lattice theory consid
ered here is also first order, if tlicse results persist in 
the limit required to impose the con
straint on the length of the scalar field.

We ail- gi.ileful In M M. f oicn (or ht lpfu! di . ris
sions at m.iiiv SI ages of this work. KG and L McC. 
acknowledge the Sh.RC fur financial support.
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