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A b s tra c t

Graphs with high regularity and transitivity conditions are studied. The first 

graphs considered are graphs where each vertex has an intersection array (possibly 

dilTering from that of other vertices). These graphs are called distance regularised and 

arc shown to be distance-regular or bipartite with each bipartition having the same 

intersection array. The latter graphs are called distance-biregular. This leads to the 

study of distance-biregular graphs. The derived graphs of a distance-biregular graph are 

shown to be distance-regular and the notion of feasibility for a distance-regular graph 

is extended to the hiregular case. The study of the intersection arrays of distance- 

biregular graphs is concluded with a bound on the diameter in terms of the girth 

and valencies. Special classes of distance-biregular graphs are also studied. Distance- 

biregular graphs with 2-valent vertices are shown to be the subdivision graphs of cages. 

Distance-biregular graphs with one derived graph complete and the other strongly- 

regular are characterised according to the minimum eigenvalue of the strongly-regular 

graph. Distance-biregular graphs with prescribed derived graph are classified in cases 

where the derived graph is from some classes of classical distance-regular graphs. A 

graph theoretic proof of part of the Praeger, Saxl and Yokoyama theorem is given. 

Finally imprimitivity in distance-biregular graphs is studied and the Praeger, Saxl and 

Yokoyama theorem is used to show that primitive non-regular distance-bitransitive 

graphs have almost simple automorphism groups. Many examples of distance-biregular 

and distance-bitransitive graphs are given.
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1 D efin itions a n d  E xam ples

In this introductory section we first include the definitions which will be useful 

throughout the thesis. The second part of the section lists the main examples of 

distance-regular and distance-biregular graphs which we will meet a t different points 

in the ensuing work.

1.1 D efin itions

We have divided the definitions up into groups, each group having a title and number. 

It is hoped th a t this will not only make them  more readable, but also make references 

from the tex t easier to trace.

D efin itio n  1 .1 .1 : Graphs

A graph G is a pair of sets (TG,J5G), where VG is the set of verticeg and E G  C  

V G  x V G  the set of edges. Unless explicitly referred to as a digraph^ we will consider 

only non-directed graphs without loops, th a t is E G  will be a symmetric areflexive 

relation and the number of edges will be l/2|F7G|. A finite (infinite) graph is one in 

which the vertex set is finite (infinite). A multigraph is a digraph in which multiple 

edges are allowed (EG  can be thought of as a multiset, or we can assign to each edge 

a number denoting its multiplicity). For G FG , we write u v if ( u ,v )  G F7G,



and say th a t v is a neighbour of u or that u and v arc adjacent. Also the edge («,v) 

is said to be incident with the vertices u and v. Two edges are incident if they have 

a common vertex. A clique in a graph G is a subset of the vertex set whose members 

are all pairwise adjacent.

A sequence t>o, v i , . . . ,  Vjt of vertices in a graph is a path (or walk) of length k from vq 

to Vk  ̂ if Vi v , - i , 1 =  1, . . , , / ; .  If Vo =  Vfc then the walk is called closed. By ^g(w, v) 

(or ^(w,v), if G is clear from the context) we denote the length of the shortest path 

from u to V in G ( 5 ( u , v )  =  oo, if no path exists). We also say tha t v is at distance 

5(w, v) from u. A graph G is connected if <9(u, v) <  oo for all u, v 6  F G. The diameter 

of a connected graph is the maximum value d attains on G and is denoted diam(G). 

A connected graph G is bipartite [n-partite)^ if the vertex set of G can be partitioned 

into 2 (n) non-empty subsets such th a t if u v, then u and v are in different subsets. 

The complement of a graph G is a graph with VG^ = V G  and u ~  v in G^ if u 9̂  v 

in G.

We associate with a graph G on n vertices numbered 1 ,2 ,.. . ,n  the n x  n adjacency 

matrix A(G) defined by

l o ;  otherwise.

The eigenvalues A(G) of a graph G are the eigenvalues A(A(G)) of the adjacency matrix 

of G.

The degree (or valency) of a vertex v is the number of neighbours of v. A graph is 

locally-finite if each vertex has finite degree. A locally-finite graph G is k~regular if 

each vertex has valency k. A graph is biregular if it is bipartite and vertices in the 

same part of the bipartition have the same degree.

For a graph G, the %-th derived graph G^') is the graph with vertex set F G^') =  F G  and 

adjacent vertices those at distance i in G. For a bipartite graph G, the second derived 

graph is the disjoint union of two connected graphs also called the derived graphs of 

G.

A cycle of length k ui a graph G is a path v o ,...,v jt, for which v , _ i  ^  v. + i, i =  

1 , — 1 and vq =  vjt- The girth of a graph G is the length of the shortest cycle in 

G.

A star graph is one of the graphs with n >  2.



For a graph G  and vertex v G F G , the graph G \  v is the graph obtained from G by 

deleting the vertex v and all edges incident it.

For graphs G i , . , . ,  G*., their cartesian product  is the graph Gi x  . . .  x  G*., with vertex 

set F Gi X . . .  X F Gk and (vi, . . . ,  vjt) ^  (v j, . . . ,  if for some i, vj =  v'-, for j  ^  i 

and Vi ~  vJ in G, .

For a graph G, the line graph of G is the graph L(G) with vertex set the edges of G, 

and adjacency between incident edges. The subdivision graph S(G ) of a graph G is the 

graph obtained from G by subdividing each edge with a new vertex. ■

D efin itio n  1.1.2 : Geometries and Designs

An incidence structure (or geometry) J  is a pair (P ,L ), where the set P  are the points 

of I  and the set L is a collection of at least two subsets of P , called the lines of / .  The 

points and lines are the elements of the geometry; a point being an element of point 

type^ and a line an element of line type. If two points x and y of an incidence structure 

determine a unique line I  containing them  both, then t  is referred to as the line xy. 

The incidence graph G =  G (J) of an incidence structure I  =  (P,T) has vertex set 

V G  — P u l  with pairs (p,£), p G P  and £ G P , adjacent if p G £. The distance between 

elements of an incidence structure I  is the distance in the graph G (I) .  The incidence 

graph of an incidence structure is clearly a bipartite graph, so we will call an incidence 

structure regular (biregular) H its incidence graph is regular (biregular). The line graph 

of an incidence structure I  is the derived graph of the structure’s incidence graph with 

vertex set the lines of J ,  while the point graph is the derived graph on the points of J . 

A t-(v ,/î. A) block design P is an incidence stucture D =  (%, 5) with v points and 

its lines (also called blocks) all of size k, such tha t each (-subset of points occurs in 

precisely A blocks.

A Steiner System  5 '(d,m , n) is a d-(n,m , 1) block design, th a t is a block design for 

which A =  1.

A symmetric block design is a 2-(v, A, A) design for which each pair of blocks intersects 

in the same number of points.

A quasisymmetric block design with intersection numbers ii^ i^  is a 2-(v, /;, A) design 

for which each pair of blocks intersect in either i\ or i-i points.



An incidence structure P is a 2-(û;;^,û', l)-(raniveria/ design if the point set of D can 

be partitioned into oc sets tv,-, i =  0, . . . , a  — 1, each containing elements such tha t 

the blocks P j ,  /  =  1, . . . , ^ ^ ,  of size Of satisfy

(1) each B j  and tv,- have exactly one element in common,

(2) if y ^  A, then B j  and Bk have at most one element in common.

A 4-point in an incident structure P is set of 4 points no three of which lie on a single 

line. A projective plane is an incidence structure P with a 4-point, such tha t each pair 

of points determine a unique line containing them  and each pair of lines intersect in a 

unique point.

A generalised n~gon is an incidence structure P satisfying

(i) it is biregular with line size « -f 1 and point degree ( +  1,

(ii) the distance between any two elements of the structure is a t most n,

(iii) if the distance between two elements is less than n, there is a unique shortest path 

joining those two elements in G (? ),

(iv) for any element of the structure there is a t least one element at distance n from 

it. ■

D efin itio n  1.1.8 ; Distance-regulaiity

Let G be a connected graph. By G,-(u) we denote the set of vertices of G at distance 

i  from the vertex «, and by (w) the size of G,-(u). An alternative notation for Gi (w) 

is simply G(w). Let w, v G VG with i :=  5(w, v), then

c(u,v) =  |G,-_i(u) n G(v)| , 

a(u,v) =  |G,-(«) n  G(v)l and 

6(w,v) =  |G,-+i(u) n G(v)| .

If for fixed u  E VG  the numbers c(it,v), o(u,v) and 6(w,v) are independent of the 

choice of V in G, [u)  for each i =  1, . . . ,  diam(G), then u is d is tance -regular ised  and we 

denote by c,-(u), a,-(u) and 6,-(u) the numbers c(-u,v), a(u,v) and 6(u,v), where v is any 

vertex m G, («). If u is a distance-regularised vertex of a graph G, then the array

-(«) —

* C i ( w )  Cq ( u ) . . .  C d ( u )

0  a i ( w )  0 2  ( u )  . . .  a d { u )

_6o(u) 6i(u) 63(w) . . .  *



is the intersection array of u and the matrix

I(u) =

/  0 Cl (w) 0 0
6o(w) ai(u) C2(u) 0

0 6i(u) a 2(u) C3(u)

0 \  
0 
0

0 b t- 2 (u) a t_ i(« ) ct(u)
0 0 6f_i(u) at (u) J

is the intersection matrix for u, where d =  diam(G) and t is such tha t G^(w) ^  0, but 

+ =  0 .

A graph G  is distance-regularised if each vertex of G is distance-regularised. If every 

vertex of a distance-regularised graph G has the same intersection array then G is 

distance-regular. A bipartite distance-regularised graph is distance-biregular if vertices 

in the same part of the bipartition have the same intersection array. ■

D éfin itio n  1 .1.4 : Distancc-regiilar Graphs

The intersection array i(G) of a distance-regular graph G is the unique intersection 

array of its vertices. The standard notation for this array is

i(G) —
* Cl C2
0 ai 02
k b\ 62

Cd
ad
4

where d =  diam(G). Note th a t G is a A-regular graph.

Let G be a distance-regular graph with diameter d. The graph G is antipodal if the d-th 

derived graph of G is disconnected. If a distance-regular graph G is antipodal then the 

antipodal derived graph G' is obtained from G by taking VG ' the components of its 

d-th derived graph with two components adjacent if there is an edge of G joining them. 

The antipodal derived graph is also distance-regular and the graph G is called an 

antipodal covering of its antipodal derived graph. A distance-regular graph is primitive 

if the z-th derived graph is connected for i =  1, . . .  ,d, otherwise it is imprimitive. It is 

well known th a t an imprimitive distance-regular graph is either bipartite (the second 

derived graph disconnected) or antipodal (the d-th derived graph disconnected).

A (k^g)-graph or cage is a regular graph of valency k and girth g with diameter d 

satisfying d — [y /2j and which is bipartite if y is even. It is well known [l] th a t a



(^»i7)‘graph is distance-regular and has no(/:,y) vertices, where

1 1 +  g even.

D efin itio n  1.1.5 : Strongly-regular Graphs

A strongly-regular graph is a distance-regular graph of diameter 2. For a strongly- 

regular graph there are four standard parameters (v,/;, A,/i). They are |VG|, deg(G), 

the number of common neighbours of adjacent vertices and the number of common 

neighbours of non-adjacent vertices, respectively. We also use a  for the absolute value 

of the smallest eigenvalue of a strongly-regular graph and for the difference between 

the second and smallest eigenvalue.

A conference graph is a strongly-regular graph for which

V =  4/i -f 1, /: =  2/i, A =  /i -  1, =  \ / 4 / i +  1, a  =  ^ ( l  -f y / ip  +  l) .

A Steiner graph is the line graph of an 5 ( 2 ,a ,a  -f — 1)) Steiner system,

with A Steiner graph is a strongly-regular graph. A pseudo-Steiner graph

is a strongly-regular graph for which /i =  .

The line graph of a 2-(o-^, a , l)-transversal design with >  a  -f 1 is called a latin 

square graph and denoted by L S q(0). Latin square graphs are also strongly-regular. 

A pseudo-latin square graph is a strongly-regular graph satisfying p =  «(or — l) .

D efin itio n  1.1.6 ; Distance-biregniar Graphs

Unless explicitly stated we will use the following standard notation for a distance- 

biregular graph G. The two parts of the bipartition of the vertex set V G are denoted 

by A  and B . The diameter of G is d. A typical vertex in A  is denoted by u and has 

intersection array

(A) =
* Cl Cg • • • C(f _

0
r

0
6i

0
b2

. . .  0 
* _

or just * Cl C2 . . .  Cd
r b\ &2 . . .  *

10



while V is a typical vertex of B  and has intersection array

,(B] =  I • • •

8 t \  6 2  . . .  ♦

The corresponding intersection matrices are denoted 1(A) and 1(B) respectively. Note 

th a t the valency of vertices in A is r, while th a t of vertices in B is g. We denote with b, 

the numbers k , ( u )  for vertices u E  A  and with l{ the numbers A, (v) for vertices v G B , 

i =  0 ,1 ,..  .,d . Note that ^ 0  and kd-i ^  0 though one of Id and kd may be zero. 

A CSR graph is a distance-biregular graph for which one derived graph is complete 

and the other strongly-regular.

A non-regular distance-biregular graph G is imprimitive if the 2i-th derived graph has 

more than 2 components for some 2, 1 <  2 <  [d /2j ,  otherwise it is primitive.

D efin itio n  1.1.7 : Permutation Groups and Automorphism Groups

A pair (T,%) is a permutation group if T is a group with an implicit homomorphism 

to  the group of all permutations of X .  The degree of a perm utation group is the size 

of the set X .  The action is transitive if for all z, y G % there exists 7 G T such that 

7 (35) =  y. The action is faithful if the implicit homomorphism has trivial kernel. The 

action is imprimitive if there exists a non-trivial subset Y  oi X  such that for all 7 G F, 

7 (F) =  F  or 7 (F) n  F  = 0 .  If the permutation group is not imprimitive then it is 

primitive.

A perm utation a  of the vertex set of a graph G is an automorphism of G if it preserves 

adjacency (and non-adjacency). The set of all automorphisms of a graph G form a 

group Aut(G), the automorphism group of the graph.

A perm utation of the points of a geometry ^  is an automorphism of the geometry if 

it maps lines to lines. The set of all automorphisms of § form a group A u t(^ ), the 

automorphism group of the geometry.

D efin itio n  1 .1.8 : Distance-transitivity in Graphs and Geometries

A pair (F ,G ), where G is a connected graph and F a subgroup of Aut(G) is 

dis tance-transitive if F acts transitively onj^pairs of vertices at distance 2 apart.

11



i =  1 , 2 , . .  .,d iam (G ). A graph G is distance-transitive if (Aut(G),G) is a distance- 

transitive pair. It is well known that a distance-transitive graph is distance-regular and 

th a t it is primitive as a permutation group (Aut(G), VG) precisely when it is primitive 

as a distance-regular graph [16].

A pair (F ,^ )  where ^  is a geometry and F a subgroup of A ut(^) is distance-transitive 

if F acts tansitively on pairs of elements at distance i  apart provided their component 

types match, i  =  1, . . . ,  diam (G (^)). A geometry Q is distance-transitive if the pair 

(A u t(^ ) ,^ )  is distance-transitive.

A pair (F,G) is distance-bitransitive if G is the incidence graph of a geometry Q such 

th a t ( (F )p ,^ )  is distance-transitive, where (F)p is the subgroup of F stabilising the 

set P  of points of the geometry. A graph G is distance-bitransitive if (Aut(G),G) is a 

distance-bitransitive pair.

A distance-transitive geometry Q is imprimitive if Aut(,p) acts imprimitively on either 

the points or the lines of otherwise the geometry is primitive. A distance-bitransitive 

graph is imprimitive (primitive) if the corresponding geometry is imprimitive (primi­

tive) .

D efin itio n  1.1.9 : Fields and Finite Vector Spaces

The real number field is denoted by Æ, the complex field by C, the integers by Z and the 

natural numbers by M. The unique galois field of order g, where g is a prime power, is 

denoted by GF[q). The number of j-dimensional subspaces of an n-dimensional vector 

space over GF[q) is denoted by

,  .Vo ^  ^
The subscript g can be omitted if it is apparent from the context.

A form on a vector space V is a bilinear mapping to the underlying field. A form /  

is non-degenerate if /(u ,v )  =  0 for all v G V implies u =  0. If /  is such a form and 

U C.V  then U-^ denotes the subspace

=  {v G V |/(u ,v ) =  0, for all u G 1/} .

If 1/ is a subspace of dimension j  and dimV =  n  then dimt/-*- = n — j .  A  subspace U 

is called isotropic if 1/ C (/"*■.

12
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D efin itio n  1 .1.10 : Matiices

A Hadamard matrix of order n is a real matrix H  whose entries are 1 or —1, satisfying 

=  n l. Note tha t |detH | =  being the maximum possible value for a real

n X n  m atrix with entries having absolute value less than or equal to 1.

1.2 E x am p les  of D is ta n c e -re g u la r  a n d  D is ta n c e -b ire g u la r  G ra p h s

The first examples will be of known families of distance regular graphs. We then give 

some examples of distance-biregular and distance-bitransitive graphs.

E x a m p le  1.2.1 : The Hamming Graph H  (d, n).

Let X  be a g-element set for some g >  1. Set VG  = d > 1 and for G VG, 

let w ^  V if u and v differ in exactly one coordinate. Clearly H [d,n) = Kg x  . . .  x  Kg 

with n factors and 5(u,v) = i U u and v differ in precisely i  coordinates. A subgroup 

of the automorphism group of G is Sym(g) ( Sym(d) acting in the obvious way. Thus 

fixing a vertex u, (Aut(G))u acts transitively on vertices at distance i. As Aut(G) is 

transitive, G is distance-transitive. ■

E x a m p le  1.2.2 : The Johnson Scheme / (d ,n ) .

Let X  be the M-element set { 1 , 2 , . . . ,n }  and set VG =  {d-subsets of X }. For u,v G 

VG, u  ~  V if |w n v| =  d  — 1. Vertices u,v G VG satisfy |u f lv | =  d  —2 if 5(u,v) =  i. A  

subgroup of the automorphism group of G is Sym(n) acting in the obvious way. Fixing 

a vertex u, (Aut(G))„ clearly acts transitively on vertices at distance i from u. As 

Aut(G) acts transitively on VG, the graph G is distance-transitive. ■

E x a m p le  1 .2.8 : The q-analogue of the Johnson Scheme d^(d, n).

Let V be an n-dimensional vector space over GF[q) and set VG =  {d-subspaces of V ). 

For «,v G VG, u ~  V if dim («ri2;) =  d - 1 .  Vertices u,v  G VG satisfy dim(uriv) =  d — i

13



if d(u^v) =  i. A subgroup of the automorphism group of dg(d, n) is P r i / (n ,g ) .  Fixing 

a vertex w, clearly (Aut(G))u acts transitively on vertices at distance i from u. As 

Aut(G) acts transitively G is distance-transitive. ■

E x a m p le  1 .2 .4  : Dual Polar Space Graphs

Let q and r be prime powers and V  one of the following spaces equipped with the 

respective form:

Gd(q) — GF(q)‘̂^ with a non-degenerate symplectic form,

(P rS p (2d,g)),

with a non-degenerate quadratic form,

(B rO + (2d +  l,g )) ,

=  G F (qy^  with a non-degenerate quadratic form of W itt index d,

(P rO + (2d,g)),

(g) =  GF(g)^‘̂~*̂  ̂ with a non-degenerate quadratic form of W itt index d, 

(F F O -(2d,g)),

•̂A.2 d(r) — G F [qy^^^  with a non-degenerate hermitian form (g =  r^),

(PFC/(2d + l , r ) j ,

‘̂ A 2 d -i(r )  = G F(qY^  with a non-degenerate hermitian form (g =  r^), 

(PYU (2d,r)).

In each case the vertices of the dual polar space graph G are the maximal isotropic 

subspaces (of dimension d) with two subspaces adjacent if their intersection has dimen­

sion d — 1. The exponent of the graphs are e =  0 ,0 ,—1, 1, l / 2, —1/2 respectively. It 

is proved in [6] that these graphs are distance-transitive with the groups in brackets 

acting. ■

E x a m p le  1.2.5 : The complete bipartite graph Kr,a-

The complete bipartite graph is an example of a distance-biregular graph. If r g 

it is not a distance-regular graph. Its two intersection arrays are:

4 1 f 4 1 g

0 0 0 and 0 0 0

r g - 1 4 g r  -  1 4

14



E x a m p le  1.2.6 : The Johnson Biregular Graphs J B (k ,n )

Consider the set { l , . . . ,n } .  Let A  =  (A subsets} and B  =  {h +  1-subsets} where k 

is a positive integer less than n. The vertex set of the graph G is V G  =  A U B  and 

adjacency is defined in the natural way: u ^  v, with u E A  and v E B  ii u C v. It 

is not hard to show that this graph has automorphisms mapping pairs of vertices at 

the same distance to each other provided they lie in corresponding colour classes. This 

property clearly means th a t every vertex has an intersection array and so the graph is 

distance-biregular. The array for a vertex in A is:

♦ 1 1 2 2 . . .  i i . . .
n — k k n — k — 1 k — 1 n — k — 2 . . .  k — 2 1 21 — k — 2 . . .

^ J  ̂ 1 ^ 4 ^ 1  ii k > n  — k (2k > n) or with the ending:

■

E x a m p le  1 .2 .7 : The q-analogue Johnson hiregular graphs JBq(k^n)

Consider an n-dimensional vector space over GP(g), where q is the power of a prime 

and GF(g) is the (unique) Galois field of order q. Let A =  {b-subspaces} and B  =  

{k  H" 1-subspaces} and VG  =  A U B . Adjacency is defined for u G A and v E B  

with u ^  V ÎÎ u C V. Again we can find an automorphism of the vector space and 

so also of the graph which maps pairs of spaces at the same distance apart to each 

other provided they lie in corresponding colour classes. This means tha t all vertices 

are distance-regularised and tha t the graph G is distance-biregular.

The intersection array for a b-space is as follows:

4 1 1 L2I / - I
g - 1  g - 1

r " - * - l  q " ~ * - g
g—1 g—1 g—1 '** g—1 g —1

g—1 g —1 g—1

4, n —Ar—1 sLUjzIT *
g - 1

ÏÎ k >  n — k̂
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E x a m p le  1 .2.8 : Generalised n-gon

A Generalised n-gon is a distance-biregular graph and not a distance-regular graph if 

the number g -f- 1 of points on each line differs from the number ( -f 1 of lines through 

each point. The intersection array for a ‘point’ as opposed to a ‘line’ vertex is:

r * 1 1 1 . . .  1 ( +  l l
[ (■ f l  g t 8 . . .  g * J

E x am p le  1.2.9 : Quasisymmetric 2-design

Let D  be a quasisymmetric 2-design with block intersection numbers i \ , tg, with 2g =  0. 

Then the incidence graph G of D is a distance-biregular graph of diameter 4 with 

intersection array for a point vertex:

* 1 A3 6
Aj b — 1 Ai — A3 *

and intersection array for a block vertex:

* 1 ii C3 =  6A3/21 b
b Aj — 1 6 — 2*1 Ai — C3 *

where 6 is the block size and Xj is the number of blocks each /-element set of points is 

contained in, /  =  1, 2. ■

E x a m p le  1 .2.10 : A Distance-bitransitive Graph in PG (2,4).

It is well known that the 2-(21,5, l)-design consisting of the points and lines of FG (2,4) 

can be extended to a 3-(22,6, l)-design by adding an additional vertex to each line and 

a class of 56 ovals, determined by an equivalence relation on the set of all ovals in 

PG (2,4) (an oval is a maximal set of points no three of which are collinear and the
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relation is given by O O’ if |0  D 0^| =  0,2 or 6). The graph G  has vertex set the 

points of PG (2,4) and the 56 ovals of a chosen class. The pair (®,0) is an edge of G 

if a; is a point of the oval O. We will prove in section 8 tha t G is distance-bitransitive 

and so certainly distance-jregular. The intersection arrays of G are

*  1 2 12 6
6 15 4 4 ♦ and * 1 4 6

16 5 12 *
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2 D istance-R egularised  Graphs

This section is concerned with proving tha t distance regularised graphs (see Def­

inition 1.1.3) are distance-regular (see Definition 1.1.4) or distance-biregular (see Defi­

nition 1.1.6). It is divided into two sections. The first deals with the non-bipartite case 

while the second is concerned with bipartite distance-regularised graphs.

2.1 N o n -b ip a r t ite  D is ta n c e -re g u la rise d  G ra p h s

I
The following lemma will prove very helpful in the non-bipartite case.

L em m a 2.1.1 : Let G be a non bipartite connected graph. Let f  be a function from 

the vertices o f G to the natural numbers such that for u E V G ,f  is constant on G\ (u). 

Then /  is a constant function.

P ro o f  : Let u ,w  be vertices of G. Since G  is not bipartite, G  contains an odd cycle C: 

«1, . . . ,  X2 k =  *1. As G is connected we can fiuad a path u =  y i , . . . ,  y , =  from u to 

xi and a path  w =  , . . . ,  =  aJi from w to z i .  If the path y i , . . .  ,y* =  zi =  , . . . ,

from If to w is of odd length then by adding the odd cycle G to it we get an even path 

from If to w. In either case we can find a path if =  v i , vg, . . . ,  V2Jt+i =  w from if to w of 

even length. Then V2i-i,V 2«+i E G i(v2j) and so / (v 2, - i )  =  / ( 1/21 + 1), for t =  1, . . . ,  b. 

Hence /(if)  =  /(w ) . m
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As an example of using Lemma 2.1.1 we give a corollary which will be useful later.

C o ro lla ry  2 .1 .2  : Let G be a non-bipartite distance-regularised graph. Then G is

regular.

P r o o f :  Let u  E  VG  and i/ ~  u. Then deg[v)  =  6i(u) -f a i(u ) +  ci(w), which is 

independent of the choice of i/ in G i(tt). ■

We are now ready to tackle the main theorem of this section. Our method of proof 

will follow the spirit of Corollary 2.1.2.

T h e o rem  2.1.3 : Let G be a non-bipartite distance-regularised graph. Then G is

distance-regular.

P r o o f :  We prove that all vertices have the same array by induction on the columns 

of the array. Let u,d e V G  with u v. F irst we calculate the number |G( (w) fl Gt (v) |. 

This is given by (u )—re — Sf, where =  |Gf (u)nG t + i(v)| and st =  |Gf (u)nG<_i (v)|. 

Note th a t si =  1 and ri =  6i(v). By counting edges between Gt(u) (1 G i-\[v]  and 

G f_i(u) n  G f_2(v) we obtain

ct-i(v)8 t =  8 t- ib t- i(u )

as each vertex in Gt («) adjacent to a vertex in G t- i  (w) (1 G t~ 2 {v) must be in Gt (u) fl 

G f_i(v), while each of the c<_i (v) neighbours nearer to t/ of a vertex in Gt (u )n G f-i(v ) 

must lie in Gf_i(w) n G t_ 2(v). Hence

_  6<-i(u) . . . 6i(u) 
c t- i(v ) .. .c i(v )

Similarly

Note also tha t

c<(w) . . .c i(« )

^  fc.
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We now start the induction on the columns of the intersection arrays. By Corol­

lary 2.1.2 the first entry in each array is the same as G is regular. Now assume this is 

true for all entries up to and including the (( — l)-st column, for some ( >  1. Since G is 

connected it will be sufficient to prove tha t the entries in the (-th column of the arrays 

for u and v agree, as u and v were chosen as any two adjacent vertices. The inductive 

assumption allows us to evaluate |G((u) fl G( (v)| as

We consider two cases.

Case 1 ; G* (u) fl Gffy) =  0.

By the above formula q (u ) +  6/ (v) =  A, the degree of G. Similarly Cf(v) +  bi(u) =  k 

and so

ct (u) +  bt (w) +  bt (v) +  ct (v) =  2k

and we must have Cf(u) bt[u) = k =  6f (v) +  C((i/). In this case af(u) =  a((v) =  0. 

Note also tha t fy) =  k — ct{u) =  6f(u), so tha t the arrays of u and v agree in the (-th 

column.

Case 2 ; G((w)nGffy) /  0.

Let w 6  Gf(w) n  Gf(i;) and qi =  |G, (w) fl Gf_, (w)|. Clearly q\ =  c/(u) and we can 

readily evaluate

. _  M  ...C f-,-fl(lf)

Using the induction hypothesis q i-\  =  Cf(u). But q t-\  =  Q(w) by definition and 

so Cf(«) =  Similarly Q (w) =  Cf(v) and so c/(u) =  c* (i/). Finally calculating

|Gf (w) n  Gt (v) I in two ways we have Cf (w) +  bt (v) =  ct (v) -f bt (u), so bt (v) =  bt (w) and 

the ( th  column of the arrays of u and v agree. ■
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2.2 B ip artite  D istance-regu larised Graphs

The bipartite case will prove easier to treat. In fact the following lemma does all the 

essential work and the required result will be a simple corollary.

L em m a2.2.1 ; Let G be a bipartite disfcance-reguJarisedf graph with u ,v  E VG  and 

u ^  V.  Then the intersection a r r ^  for v can be determined from that o f u.

P ro o f : Assume the standard notation and let v ^  We will compute the intersection 

array for v from that of u. We have G, (v) C  G ,_i(u) U G,_j.i(u). Set x,- =  |G, (w) n 

G ,_ i (v) | ,  for i =  1, . . .  , d .  Then xi = 1 ^X2 = bi. Note also tha t Iq =  1, =  bi -f.c i ,

ei =  6q — 1, f l  =  1, eo =  6i -f ci. Assume now that we know ê -, /y, (j, x j,  j  < i  and 

z,', for some i > 2. Then

li = k{-1 - X i - i  -YxibijJi

smce

|G, (v) n  G ,- i(u ) | =  lG,_i(w)l -  x i- i

and each vertex w  E  G,+i (u) D G, (v) is adjacent to /,• vertices in G, (u). But we also 

have li =  so eliminating we obtain

l i - i c i - i  —X{bi
ft =

If k i- i  =  X i-i then G i-i(u )  C G .-gfy), forcing G,(v) =  0. In this case e,_i =  0, 

and we have already determined Hence we can evaluate /,*. Then of course

c,‘ =  b i-\  and we can  com p ute by ®, + i =  T h is com p letes th e

calculations of another column of the array. The result follows by induction. ■

C o ro lla ry  2 ,2.2 : A bipartite distance-regularised graph is distance-biregular.

P r o o f :  Let u , w  be vertices of a bipartite distance-regularised graph G which lie in 

the same colour class. Then there exists a path of even length from u to w. Alternate 

vertices along this path have the same intersection array by the lemma. Hence u  and 

w  have the same array. ■
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8 Intersection  Arrays o f D istance-b iregular Graphs

This section is concerned with understanding the intersection arrays of a distance- 

biregular graph. We will begin by relating these arrays to those of its derived graphs, 

which are shown to be distance-regular. We then generalise the feasibility conditions 

of a distance-regular graph to the biregular case. After various other relations on 

the arrays have been proved we introduce the notion of a pair of feasible arrays for a 

distance-biregular graph. Finally we prove some results about the diameter of distance- 

biregular graphs including a bound in terms of the girth and the valencies of the graph.

3.1 T he D erived Graphs of a D istance-b iregular G raph

In this subsection we show that the derived graphs of a distance-biregular graph are 

distance-regular and also investigate the relations between the intersection arrays and 

eigenvalues of the graph and its derived graphs.

P rop osition  3.1.1 : Let G be a distance-biregular graph. Then the derived graphs

of G are distance-regular and their intersection arrays can be calculated from the arrays 

o fG .

P r o o f ;  Assume that the arrays of G are in the standard notation. Let the derived 

graph on vertex set A  be D . Let u E A  and consider D j(u) — G 2j(u )  (note tha t this
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set is contained in A). Pick x G D j(u ). In G, vertex x is adjacent to no vertices in 

G 2j(u )  but is adjacent to cgy vertices in Ggy-% (w) and 62) vertices in G2J-1-1 (w). Each 

of the vertices in G2j-i(w ) is adjacent to 62J -1 — 1 vertices in G2j(«) other than x. 

Similarly the vertices in G2j-i-i(u) are adjacent to C2j+ i — 1 vertices in G2j(u ) other 

than X.  Let Oj := |D j (w) fl D% (®) |, Then in G  each of these Oj vertices is at distance 2 

from X and so has C2 common neighbours with x. Hence counting edges in G between 

Gi (®) and G 2j(u)  n  ^ 2(25) in two ways we have:

ajC2 = dgjlhj- i  “  1) +  62y(c2j+i  — l ) ,

giv in g

a j  — — (c 2j (62j - 1  -  1) - h b 2 j ( c 2 j - t - l  -  1)),

which is independent of the choice of x in Dy(«).

Now by a similar argument we obtain

cj =  C2jfC2j - i / c 2 and bj =  62̂ 62 -̂1-1/02

for the number of vertices adjacent to a; in D j_ i («) and D j^ i  (u), both independent of 

the vertex x. Hence the intersection array for u in the graph D  exists and is given by

■(“ ) =
4 1 C2 • • • Cf1 c*
0

_65 6Î 6*

where t =  [d /2 j. This array is independent of the choice of w in VD. Hence the graph 

D  is distance-regular and its intersection array can be computed from those of G. A 

similar argument holds for the other derived graph on the vertex set B . ■

Not only can we relate the intersection numbers of the derived graph with those 

of the original graph, we can also find relations between the eigenvalues of the two 

graphs.
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L e m m a 3.1 .2  : Let G he a distance-biregular graph with the standard notation such 

tha t f s  ^ 0  and cj qk 0, and let the derived graph on vertex set A b e  D  and the derived 

graph on vertex set B  be E . Then the squares o f the eigenvalues o f G, A(G)^, are 

related to the eigenvalues o f the graphs D  and E  by the equation:

A(G)2 \ { 0} =  C2( A ( D ) \{ - r / c 2} ) + r  

=  / 2( A ( D ) \{ - s / / 3} )-f  S .

Also  —r /c 2 <  ininA(D) and —s//2  <  minA(D). I f  0 E A(G) then at least one of 

—r /c 2 E A(D),—s//2  E A(D) holds.

P r o o f :  Consider the adjacency m atrix A(G) of G. By indexing the vertices in A  

before those in B  we give A(G) the following block structure;

/  \

A(G) =
0

M 0
y

Then A(G)2 =
M ^ M

0

0

M M ^

/

But A(G) =
C2A(D) -f r l  

0 / 3A(D) +  s i

as A(G)^ counts the paths of length 2 between vertices of G. Hence M ^ M  =  C2 A(D)-f- 

r l  and M M ^ =  f 2 A (E )  4- »I As M ^ M  and M M ^ are positive semi-definite they 

have non-negative eigenvalues. So —r/cg < minA(D) and —s//2  <  minA(D). Further 

M ^ M  and M M ^ have the same non-zero eigenvalues and hence 

A (G )^\{0} =  A (M ^M )\{0 }

=  C 2 (A p ) \{ - r /c 3 } )  +  r

=  / 2( A ( £ ) \{ - « / / î} )  +  » .

Finally if 0 e  A(G) then 0 e  A(M ^M ) U A(M M ^) giving at least one of —r /c j  e  A(D) 

and — »//2  G A (E ) . ■
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8.2 F eas ib ility  C o n d itio n s  fo r a D is ta n c e -b ire g u la r  G ra p h

We begin with elementary numerical conditions on the intersection arrays of a distance- 

biregular graph.

P ro p o s it io n  8 .2.1 : Using the standard notation for the parameters o f a distance-

biregular graph, we have the following relations:

fi) ko =  1, =  hihifcui, lo — 1, = liC{ffi^and the k,- and I,- are whole numbers.

(ii) Alternate (non-zero) columns in the intersection arrays sum to r and e:

=  i f i i s e ^ n ,
[ 8, otherwise.

[ s, otherwise.

(lii) C| —1 ^  hi ^  C|-f 1 — l , . . . , d  2.

(iy) / i+ i >  C,- >  / , - i , Î =  2, . . . , d -  1.

(y) The following equations hold:

1 +  ^2 +  ^4 +  .. • +  -f- /a -f . . .  +  = : n

and +  /;3 -f . . .  4- =  1 -f 2̂ +  4̂ 4- • •. +  = : m ,

where d! is the largest even integer less than or equal to d and d" is the largest such

odd integer. Also nr = m s.

P r o o f ;  (i) The first two relations follow from counting edges between G{(u) and 

G,-i-i('u), u G A. The second two relations follow from counting edges between G, (i;) 

and (v), v G B .

(ii) a vertex in G, (u) has degree r if i is even and s if i is odd. The reverse holds 

for vertices in G, (v).

(iii) Let u G A and v G B with u ^  v. We can choose a vertex x G G, (u )n G ,_ i (v). 

The hi neighbours of a: in G, + i (u) lie in G, (v), and so e,*_i >  6,-. By symmetry 6,- >  .

(iv) W ith u and as in (iii) we can choose a vertex x G G, (u) (1 G,-^-i(v). The c,- 

neighbours of a; in G ,-i(u ) lie in G, (v),  hence /i+ i >  c,-. By symmetry c, >  i .

(v) This follows from considering n  =  |A| and m = \B\ and the number of edges 

passing between A and B . ■
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We have already shown in section 2 (Lemma 2.2.1) tha t one array of a distance- 

biregular graph can be computed from the other. We present now a simpler expression 

of th a t relation.

L em m a 8 .2 .2 : Let G be a distance-biregular graph with the standard notation.

Then cg. + icg,- =  h i+ ih i  and 62,62,-1 =  62,62, - 1, for 1, . . . ,  [d/2] -  1.

P r o o f :  Let 1 <  i  <  [d/2] —1 and consider two vertices u ,v  with ^(u,v) =  2i + 1(< d), 

with u in A and v in B . We wish to evaluate the size of the set Gy(u) D G2, + i- j(v ) . 

We claim that

: =  l < ^ j ( w )  n G 2 ,  +  i - j ( v ) |  =  ( / 2 ,  +  i . . . / 2 ,  +  2 - j ) / ( c i  . . . C j )  .

We prove the claim by induction on j .  For /  =  l ,m i =  / 2,-n by the definition 

of the intersection numbers. Suppose the equation holds for smaller numbers than j .  

Each vertex in G j_ i (u )nG 2,-f2-j(v ) is adjacent to / 2,+2- ;  vertices in G2,+ i- j(v )  each 

of which lies in Gy (u), while each vertex in G y(u)nG 2,-|-i-y(v) is adjacent to cy vertices 

in G y-i(u ), each of which lies in G2,+2-y(v). Hence m y _ i/2,+2- ;  =  rnjcj. Using the 

induction hypothesis the claim follows. But then m 2,+i =  |G2,+ i(u) fl Go(v)| =  1 and 

so

(/21 + I • • • / l  )/(< l̂ • • • <̂2i + l ) “  1 

and / 21-f 1 ••• f  I ”  ^2i-fi • • • 61 .

As / 2, - l  . . . / l  =  C2,--l ...61 ^  0

we have / 2, + i / 2i =  C2i-t-iC2i.

To prove the second equation of the lemma we partition G2, («), for w in A and 

1 <  i <  [d /2] — 1, into two subsets, G2, (u) n G 2,- i(v )  and G2, (w) fl G2,-f 1 (v), where v 

is a vertex adjacent to u. We now estimate k^i =  |G2, (u)| in two ways. Firstly in the 

obvious fashion

=  (6q6i . .  -62,-1 ) /(c i62 .. • 62,) ^  0, as 2i < d ,

26



To get the second estimate we first prove a claim that

1 (« )n G j » I  =  (6i6 3 . . .b j ) / ( A / 3 . . . J j ) .

We again proceed by induction on j .  For j =  1 it is true by the definition of b i . 

Now assume it holds for integers less than j .  Each vertex in Gy(u) n Gy_i (v) is 

adjacent to bj  vertices in Gy+i (u) all of which are distance /  from v.  Each vertex in 

n Gj(v) is adjacent to J j  vertices in Gy_i(v) all of which are distance J from

u. Hence ny_i6y =  r i j j j .  Using.the induction hypothesis

Uj  =  (6162 . . .  b j ) l  ( /i  /2 . . .  J j )  .

By the symmetry of the definition of a distance biregular graph

|Gj+i(v) n Gy(«)| =  (ei62 •••ey)/(ciC2 ...cy) .

Hence k^i =  |G2, (u) fl G 2,-i(v)| +  |G2, (u) nG2,-i-i(v)|

— ^1^3.'.621-1 _j_ 6lC2".C3i 
/ i /g - ./a i'- i  C1C2...C2,

By the first part ci C2 . . .  C2,--1 =  / i  /a • ..  /21 -1

and so 6q6i . . .  62,-1 =  6162 .. .62,-1 C2,- +  ciC2. . .  ca,'

and 6162 . . .  62, -1 (60 — C2, ) =  Cl 62 . . .  ca,

or b\ 62. . .  62, ~~ 6162 . . .  62, .

For i  >  1, 6162 . . .62, -2 =  C1C2 . . .62, -2 ^  0 , 

and so we have 62,62,-1 =  62,62,-1 as required. ■

We now use techniques of quotient graphs to discover connections between the 

eigenvalues of a graph G and those of the intersection matrix of a distance-regularised 

vertex of G. The basic technique employed and some of the results presented here 

appear in [8], but we give the proofs in full for completeness.
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Lem m a 8.2 .8  : Let w Ç VG  be a distance-regularised vertex o f a graph G. Let C be 

the incidence matrix between the vertices of G (columns) and the sets G, (w) =

(here t is the number such that Gt{w) ^  0 and Gt-^i(w) =  0j. Let Q be the 

intersection matrix for w, and A the adjacency matrix of G. Then we have:

(a) C A  =  QC

(b) I f  Az =  Az then Q Cz =  ACz

(c) Q has a complete set o f eigenvectors o f the form Cz, where z ranges over the 

eigejivectors of A

(d) all the eigenvalues o f Q are simple and are eigenvalues o f G.

P ro o f  : (a) follows from the definition of Q.

(b) Suppose Az =  Az, then ACz =  CA z =  QCz.

(c) C has rank 14-1 since its rows are clearly linearly independent. Thus if i i , . . . ,  in  

is a complete set of eigenvectors for A then the non-zero vectors among C i i C i „  

span and form a complete set of eigenvectors for Q.

(d) Clearly by (c) A(Q) C A(G). But since Q is the adjacency m atrix of a multigraph 

of diameter t, Q has at least t - f  1 distinct eigenvalues [l], so they must all be simple. ■

D efin itio n  8 .2 .4  : The Walk Generating Function and Characteristic Polynomial

For any square m atrix A we define

oo

W(A, ï )  =  ^  I* A* =  (I -  * A) -  '
k= 0

and

^(A, ®) =  d e t(z l — A) .

W ith a slight abuse of notation we write W(G,z) for W(A,aj) and ^(G ,x)  for <^(A,x), 

where G is a digraph with adjacency matrix A. The matrix function W(G,a;) is often 

called the walk generating function for G, while <f>(G,x) is the characteristic polynomial 

of G. For u ,v  G VG  the uv entry of W(G, x) is denoted by W ( G ,  a;). By A \  i we will 

denote the m atrix obtained from A by deleting the t-th row and t-th column, where 

the columns and rows are numbered from 0 upwards.
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T heorem  3 .3 .6  : Let G be any digraph.

(i) tor ti e  VG,

(Ü) The trace of the walk generating function of a graph G is given by

where here and subsequently is the derivative of tj> with respect to its  parameter (in 

this case l / x) .

P r o o f :  (i) We have

oo

k= 0

=  ( ( I - i A ) - ' ) ^ ^  (*)

Now ( * I - A ) - > = j ^ ^ ç i - ^ a 4 i ( * I - A )

B ut the vv entry of adj(a;I — A) is the determinant of the vv cofactor of x l  — A, th a t 

is (f>{G \  V, aj). Hence

( * I -  A)„-J =

Substituting this into (*) we obtain the result.

(ii) The result follows from (i) and the equation:

/ ( G , » ) =  Y .
we VO

Consider a distance-biregular graph with the standard notation. Let P  be the 

intersection matrix 1(A) of vertices in A. It can be readily verified by induction tha t 

for u G A, the number of walks of length h in G which start at a specified vertex in 

G, (u) and finish anywhere in Gj(u) is (P^)y, . This in turn means th a t Wuu(G,a:) =  

W oo(P ,«) for u E A,
We are now ready to prove the main theorem of this subsection. This result is a 

stronger version of the one proved in [19].
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T h e o rem  s .2.6 : Let G be a distance-biregular graph. Then the eigenvalues o f G

and their multiplicities can be determined from its two intersection arrays.

P r o o f :  Using the notation from above, we have;

=  Y  +  Y
ueA veB

Consider the adjacency m atrix A of the graph G with the vertices of A  indexed before 

those of B . The m atrix A then has a block structure:

A =
0

M

while A(G) 3 _

0

0

M M ^

Hence

Now Wuu(G,a;) =  ^ ( t r a c e ( M ^ M ) '‘)a;^''-f n
r=l
oo

=  y^ (trace (M  m -f  (n — m)

ueA

r=l
=  W„„(G,a:) +  n - m .

veB

=  2„ ( i )

Applying a change of variable;

m  — n.

^{G ,x) 4{P ,x)
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Since the eigenvalues of P  are simple we can write

For the LES we have the following

where m{6 ) is the multiplicity of 6  in G. Hence

^ (P \0 ,a ;)  m - n

Equating residuals we obtain;

=  0 / 0 ,

and

m(0) =  2 n x „p , (O) +  « » - « •

This equation enables us to calculate the multiplicities and also tells us th a t we have 

all the eigenvalues, th a t is;

A(G)U{0} =  A(P)U{0} .

By the symmetry of the arrays we could equally well have computed the eigenvalues 

and their multiplicities from the intersection matrix 1(B). ■

Though we can theoretically use Theorem 3.2.6 to calculate the eigenvalue m ulti­

plicities for G, it is in practice not easy to evaluate ^ (P \O ,^ )/0 '(P ,^ )  directly. However 

we can use a method analogous to that for distance-regular graphs [l] as we prove in 

the following proposition.
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aJui (jouj^t
P ro p o s it io n S .2 .7 :  Let P  be any tridiagonal m atrix with all upperJdiagonal el­

ements non-zero. Let X be an eigenvalue of P  and y (x) a left (right) eigenvector 

corresponding to X normalised with xq =  yo =  1. Then

P ro o f :  We first consider the polynomials in  ̂ defined by po(i) =  1, pi (() =  ( t - a o ) /c u  

and

c ,+ ip ,  + i ( t )  +  (a,- 4- 6 , -_ ip ,_ i(e )  =  0, i — l , . . . , d ,

where

P  =

/  ao Cl 0 0
6q Ol C2 0
0 bi 02 cg

0 ••• 0 bj-2 CLj-i Cj
Vo ’ • • 0 0 bd~ 1 CLd J

Cd+1 is taken as 1 and c, ^  0 by assumption. Then if A is an eigenvalue of P  we have 

Pd+i(A) =  0 and

X == [PO

is a right eigenvector with Xq =  1. Let B, be the leading principal i x  i minor of 

(I -  P .  We claim that B, =  p, (<) Ily=i cy. We prove this by induction;

for 1 =  1, Bi =  1 — Oo =  (t — oq)ci/ci =  pi ( t)c i,

and inductively

B , + i  =  (t -  cLi)B{ -  6 , _ i c , B , _ i
«■

=  (t -  0 ,)p,(t) ] ] [  C j  -  6 , _ i p , - i ( 0  Cj

y=i j=i
1+1

=  Pr + l ( 0  n  
J=l
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Now consider forming the polynomials ç, (t) by

%(() =  1, — {t — ad)lcd

and c,g,_i (t) +  (a,-~ t)ç,(t) +  6,g,_(.i(t) =  0, i =  d — 

setting c_i =  1. Then if A is an eigenvalue of P ,  g - i  (A) =  0 and the vector

[̂ 0

is a left eigenvector of P . As above it can be shown that if G, is the (d — i) x  (d — 

minor of t l  — P  on the rows and columns î +  1 , . . . ,  d then

d
C i= q ,( t)  J J  Cj. 

i= i + l

B ut now we have
d

^ (P  \  i,t)  =  BiCi =  p, (e)g, (t) J J  Cj.
J=1

Hence for A an eigenvalue of P , ^ (P \0 ,  A) =  qo (A) YIy=i cy, which is non zero, since the 

upper and lower diagonal elements are non zero. We can thus perform the following 

calculation:
d

^ '(P , A )/^(P  \  0, A) =  x ;  ^ (P  \  »■. A )/^(P  \  0, A)
1 = 0

^  S ?=0 Pt(A)g,(A)riy=iCi

?̂o(A) riy=i cy
d

=  X^P,(A)(g,(A)/go(A)) = y x ,
1=0

where y  =  [l,g i (A)/go(A),... ,gd(A)/ço(A)] 

is the left eigenvector with yo =  1. ■

We can in fact obtain even more precise information about the multiplicity cal­

culation by comparing the graph with its derived graph, as the following proposition 

shows.
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P ro p o s it io n  8.2 .8  : Let G be a distance-biregular graph and x  the right eigenvector 

of 1(A) corresponding to the non-zero eigenvalue A and satisfying Xq =  1. Then the 

coordinates o f x  satisfy

Y  *(/*'■ =  E }  *?/*:.-
' even ,■ g j j

P r o o f :  Let m(A) be the multiplicity of the eigenvalue A in G. Then X' =  (Â  — r ) /c 2 

is an eigenvalue of the derived graph D  on vertex set VD =  A (see Lemma 3.1.2). As 

G is bipartite —A is also an eigenvalue of G with multiplicity m(A). Hence Â  is an 

eigenvalue of A(G)^ with multiplicity 2m(A). Assume we have indexed the rows and 

columns of A(G) so th a t it has the block structure of Lem m a3.1.2. As M ^ M  and 

M M ^  have the same non zero eigenvalues with equal multiplicity each has Â  with 

multiplicity m(A).

We claim  that the (d' / 2  +  l)-vector {d' is the largest even coordinate of x)

X* =  [Xo,X2,. ..,Xrf/]^

is a right eigenvector of the intersection m atrix 1(D) of D  corresponding to A\

Let the intersection numbers of D be in the standard notation, but with a * superscript. 

We prove the claim by induction. F irst note th a t

C2 ((I(D) — A^I)x* ) JJ =  C2 (—A'xo 4- cj X2) =

=  C2 (—A^xq 4" X2C2C1/C2) =  —Â  4- r 4" C2C1X2 =  0 

as Xl =  A and r — Axi 4" C2X2 =  0.

Now inductively using the general formula bjXj =  Axy^-i — cy.j.2Xy+2,

621X21' =  AX2,'+1 — C2i'+ 2 X 2 ,'+ 2

= >  6 2 1 '+ 1 6 2 1 X 2 ,' =  A 6 2 , '- f lX 2 , '- f  1 — 62, '+ l C 2,'4-2X 2 , '- f2

=  A^X2,'+2 — 62,'+ iC 2,'+2X 2,'+2 ~  A c2,'+3X 2,'+3•

Similarly

C 2 ,'+ 4 C 2 i '+ 3 X 2 , '+ 4  =  A ^ X 2 ,'+ 2  ~  6 2 , ' f  2 C 2 r '+ 3 X 2 i' +  2 “  A6 2 , '-H  X 2 ,'-t-1 .
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Using the above equations we can evaluate the cg x  (i -f- l)-s t coordinate of I(D )x*:

C2(6*X2,- +  1 X 2 ,-4-2 +  C * - t - 2 * 2 i + 4 )  =
. , f  62,+262,+ 3  C2,-4-2C2. + 1  ̂ _ , C2,--|-4C2, + 3 ^

=  C2 I -------------X2,- +  I /C-----------------------------------------------X2. + 2 +  ----------------- X2,+4
V C2 V C2 C2 /  C2 /

=  (2Â  — 621-1.1 C 2 ,+ 2 — 62,-1-2^21+3 +r(«  — 1) — 62,--1-362,-1-2 — C2,--f2C2, +  l ) X2,-f-2 

— A(c2, +3X2,'+3 •+• 62, + 1X2,-1-1)

=  (A ^  — 6 2 , -1- 1 6 2 , > 2  — 6 2 , - 1 - 2 6 2 ,+  3 4 - ^ ( 3  — 1 ) — 6 2 , - 1-3 6 2 , +  2 — 6 2 , - + 2 6 2 ,  +  1 ) X 2 , - f 2

=  (A  ̂ 4- r ( » - l )  — 62,+2(62, + 1 4- 62,-|-i) — 62,-|-2(62,+3 4- 62,-|-3)) X2,-(-2 

=  (Â  4- f (3 — 1) — r3)x2,-t-2 

=  (Â  — r)x2,-i-3

=  62A'x2,--1-2

Finally if x  is a 14* 1-vector we consider two cases when t is even and odd. If t is even

,♦ f b t - 2b t - \  \
625(1_2)/2^<-2 — C2 ( -----— X<_2 I

=  6f_i (Axf_i — CfXf )

=  6t_i (A^Xf_2/6f_i -  CfXf)

—  X f  (Â  —  r 6f _i)

=  x t  ((Â  - r )  - c t ( b t - i  - 1))

=  62 (Â  — a^ygjxf.

while if ( is odd

L* ( ^ t - z b t - 2  \
6 2 5 ( ^ _ 3 ) / 2 ^ t - 3  — C2 I -  X (-3  I

=  6(_2(AX(_2 -  6(_lX (_i)

=  A^X(_i — Ac(X( — bt-QCt—iX t- i  

=  A^X(_i  — c t b t - \ X t - i  — 6f _ 26t - i X f _ i

=  X(_i(A^ — r — (c<6f_i 4- 6(-26(-i  — r))

=  62  (A' — 0 ( ( _ l ) / 2 ) * ( - l "

Hence x* is an eigenvector of the intersection matrix 1(D) of the graph D . The feasi­

bility conditions for a distance-regular graph [l] state tha t the multiplicity of Â in D
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is given by

But
E ,  even X?//:, '

=  m(A) =  ^
E , * = o  / k i

by Theorem 3.2.6, giving

as required.

1 = 0 I even

Theorem 3.2.6 makes it reasonable to define a pair of feasible arrays for a distance- 

biregular graph in an analoguous way to feasible arrays for distance-regular graphs [l].

D efin itio n  8.2.9 : Two intersection arrays are said to be a pair o f feasible arrays for

a distance-bireguiar graph i f

(i) they satisfy the numerical conditions o f Proposition3.2.1;

(ii) Each can be calculated from the other using the equations o f Lemma 3 .2 .2 ;

(iii) The values determined as multiplicities using the procedure of Theorem 3.2.6 and 

Proposition 3.2.7 are positive integers.

(iv) The equation o f Proposition 3.2.8 involving the eigenvectors o f the intersection 

m atrix  is satisfied.

As has been done in the case of distance-regular graphs, these requirements could 

be used in a computer programme to generate feasible arrays of moderate size. Once 

such arrays had been found the task would remain of deciding which feasible arrays 

can be “realised” , in the sense that a distance-biregular graph exists with the given 

array.
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8.S The D iam eter o f D istance-biregular Graphs

This subsection is concerned with the diameter of distance-biregular graphs. F irst we

prove that regular distance-biregular graphs are distance-regular and th a t non-regular

distance-biregular graphs have even diameter. We then proceed to generalise a result

of Terwilliger [17] bounding the diameter d of a bipartite distance-regular graph as

a function of its girth g and valency k: d < k U  — — 2) -f 1. If we consider a
Irreducible

non-regular distance-biregular graph with girth g then its derived graphs havej^cycles 

of length gj2  and greater, hence we can apply a result of Ivanov [13] to bound the 

diameter in terms of the valency of the derived graph and g. However this bound is 

very weak, being exponential in the valency. The result we prove in this subsection 

parallels the work of Terwilliger and gives a bound d < (r — l)(« — l)(^  — 2)/2  +  1, 

which is linear in the valency of the derived graph, though even this bound we suspect 

is too large by a factor of m ax{r — 1, » — l} . To finish off the subsection we provide an 

even sharper bound in the special case when the graph has girth 4.

Lem m a 8.5.1 : A regular distance-biregular graph is distance-regular.

P ro o f : Assume the standard notation for the regular distance-biregular graph G. We 

prove by induction that t(A) =  t(B ). As G is regular of degree r =  s, the first 

two columns in each array are identical. Suppose now th a t the arrays are identical 

up to and including the {2 i — l)-st column, for some i > 1. Then by Lemma 3.2.2 

62162,-1 =  62,62, - 1, and so 62, =  62,-. As r =  s this gives 62," =  / 2,‘. But again by 

Lemma 3.2.2, 62,4-162,' =  A ,+ 1/ 2," and so 62,4.1 =  A i+ i, yielding 62,4-1 =  62,4-1 and 

agreement of the next two columns of the two intersection arrays. The result follows. ■

L em m a 8.8.2 : The diameter d of a non-regular distance-biregular graph is even.

P ro o f: Suppose without loss of generality th a t Gd(u) ^ for u in A. By ordering the 

rows and columns of the adjacency m atrix A(G) of G as in Lemma 3.1.2, it is clear th a t 

rank (A (G)) <  2min{n,m} as at most this many rows may be linearly independent. 

As n 7̂ : m, A(G) is not full rank and so 0 is an eigenvalue of G. By Theorem 3.2.6 we 

know th a t A(G) =  A(1(A)) U A(1(B)). But then 0 is an eigenvalue of 1(A) or 1(B). As
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both 1(A) and 1(B) are tridiagonal with ofF-diagonals non-zero and diagonal zero, they 

have 0 as an eigenvalue if and only if they have odd order.

Suppose d is odd. Let v in G j(u) ^  0. But then v is in B and u is in G j(i;), so both 

1(A) and 1(B) have even order, a contradiction. ■

We now begin to prove the bound on the diameter of a distance-biregular graph G. 

Throughout the next two lemmas and the main theorem we will assume the standard 

notation for G. It will be useful to consider the following subset of the vertex set of G:

G =  C{u,w) = { x G V G|^(u,a;) +  â{x,w ) — (} ,

where u ,w  G VG  and ^(u , w) =  t. The first two lemmas provide the groundwork for 

the theorem.

L em m a3.8.8 : I f  x is a vertex in C  = G[u,w) and d (x ,u )  =  t, with 1 <  t <  t — 1

and u E A , then the valency of x in the induced subgraph on G is c,- +  , i f  t is even

and Ci +  f t - h  ^  ( is odd. The valency of w in the subgraph is ct, while that o f u is Cf 

or fty according as t is even or odd.

P ro o f  : The result follows directly from considering the intersection numbers and the 

fact th a t the vertices of G (u,w ) adjacent to x  are precisely those closer than x to either 

u or w. a

Lem m a 8 .8 .4 : A ny pair o f vertices a,b in C{u,w} satisfy

d[a,b) < d[u,w ) =  t .

P r o o f :  By taking two paths from u to w one through a and the other through 6, we 

obtain a circuit containing o ,6 ,u  and w of length 2t. Any two vertices on such a circuit 

are clearly at most distance t apart. ■
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We now present the main theorem, with the required result as a corollary.

T h e o rem  8.8.5 : Let G be a distance-biregular graph with the standard notation.

Let t be a positive integer less than or equal to d, such that ct > 1 .  I f  t is even, there 

exists a n i ( l < i < t  — l) such that

IS even, 
is odd.

while i f  t is odd, there exists an i [l < i < t — l) such that

P ro o f  : For the corollaries we wiU need only the t odd case, so we omit the proof 

for the even case, though it is very similar. Assume that for some odd t the theorem 

does not hold, that is for all $ <  (, t even implies c,- f t -{ > A, while i odd implies 

C{ 4- f t - i  > Ct. We will show that in this case ct =  1. Choose u,w  with u in A and 

d[u,w)  — t and let C  = G{u,w)  as above. We define the map:

f  : C x C — . Z 

by f(a,b)  =  d(a,b)  -  |^ (a ,u ) -  d(b,u)\ .

Note tha t f [u,w]  =  d{u,w) — d{u,w)  =  0. By Lem m a3.3.4 <9(a,6) <  ( so f{a,b)  <  i. 

Also we have

d{a,u) < d(a,b) -\-d(b,u)

so

|5 (a,u ) -  ^(6 ,u )| <  ^(a,6)

giving f(a,b] > 0. Let

/o =  m ax{/(a ,6 )|a ,6  G C} .

C laim : We claim that /o =  0 and so / ( a ,  6) =  0 for all a, 6 G C. To show this consider 

the set

S = { ( a ,6 ) G C x C |/ ( a ,6 )  =  /o}
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and choose (a, 6) G S  such tha t |^ (a ,u ) — ^ (6,u ) | is maximum. We will show that 

( a ,6) =  (u,«;) or and so /o =  f[u ,w )  =  0. Suppose a ^  u or w. Let d{a,u) =  j

so tha t 1 <  j t — 1, and let 5(a,6) — t  < t. Recall tha t the valency of o in G is 

Cj +  J t - j  which satisfies

We consider three cases as a and b lie in the same or different colour classes.

C ase(i) : Vertices a and b are in A (£ is even and j  is even as a and u are both in 

A). Exactly cg vertices in G adjacent to a are closer to 6 than a. While all the other 

vertices adjacent to a are further away from 6. Since t < i ,  and ( is odd while t  is even, 

It ^  6g, SO that more than cg vertices are adjacent to a in G. So at least one vertex a’ 

in G is adjacent to a but further from b than o. But then as |<9(a',u) — 5(6 ,u)j differs 

from \d(a,u) — 5(6 ,u)| by at most one, so

/ (o ',  6) =  5 (o ',6) -  |5(o',w) -  5 (6 ,u)|

>  5(o,6) +  1 — |5(o,w) — 5(6 ,w)| — 1 

=  / ( a , 6) =  /o

and so / ( o ' , 6) =  /o and

[5(o',w) - 5 ( 6 ,u ) | > |5(o ,u) -  5 (6 ,u)I 

contradicting our choice of o and 6.

Case (ii) Vertices a and 6 are in different parts of the bipartition. W ithout loss of 

generality assume o in A and 6 in B (^ is odd and /  is even). Exactly fg vertices in G 

are adjacent to a and closer to 6 than o, while the other neighbours of o are further 

away from 6. Since t>  i , t  and i  both odd, then ft  > ft-  Hence more than fg vertices 

are adjacent to a in G, and so there is a t least one vertex o' in G adjacent to o but 

further away from 6. As in case (i) we get a contradiction with the choice of o and 6. 

Case (iii) Vertices a and 6 are in B (t is even but /  is odd as o and u are not both 

in the same part). Exactly fg vertices in G are adjacent to o and closer to 6. Since 

C( >  A  and the degree of o in G is greater than ct, there is at least one vertex o' in C 

adjacent to o but further away from 6. Again we get a contradiction as in case (i).
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We conclude that a is either u or w. Similarly b = u or w. Hence (0 , 6) is one of

the pairs (u,w), (u ,«), (w,w) or To maximise |5 (a,u) — 5{6,u)| we must have

(u,w) or Hence /o =  /(u ,w )  =  0 as claimed.

Suppose now that ct 7̂  1. In this case we can find distinct vertices x and y both

in G[w) n G t-\(u ). But

J(x, y)  -  5 (a;,2/) -  |5(a;,u) -  5(y,w)|

=  d(x ,y )  =  2 >  0

contradicting /o =  0. We conclude that C( =  1, completing the proof of the theorem in 

the odd case. ■

C o ro lla ry  5 .S.6 : Let G be distance-biregular graph with girth g and diameter d.  

Then i f  i is an odd integer less than or equal to d,

^  ’

and

d <  i ( r - l ) ( s - l ) ( f i r - 2 )  +  l  .

P r o o f :  We prove the first inequality by induction. Consider first t < g j 2 . Then

— 1, while 2 tf{ig — 2) <  (g — 2)/(g  — 2) =  1.

Now assume true for i  odd, i < t, for some odd t > g/2 . Since Cg/g >  1 and /g/g >  1

certainly Cf >  1. Hence we can apply the theorem to find some i < t  such tha t

If { is odd then

ctct-i > CiCt-i 4-

^  C|‘C,'_i 4" Jt — i-rtJt — i 

> CiCi-i 4-

by Lemma 3.2.2, provided i 7̂  1. But then by the induction hypothesis

2 i 2 ( i - i 4 - l )  2t
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If t =  1 then Cf >  1 -f f t - i  so that

6fCf_i >  Cf _1 +  Cf_i/(_1

^  Q-1 +  f t - 2 f t -3

> 1 +  2(( -  2)/(g -  2) =  (2< +  g -  6)/(g -  2)

> ^ t l ( g - 2 ) ,

provided g >  6. If g =  4 then, as ( >  2 and t odd, t — 1 >  2. But then Cf_i >  2 and so

>  2 +  >  J L  .
g — 2 g — 2 g — 2

Now consider the case when i is even. Then using Lemma 3.2.2 we obtain 

CfCf-i =  f t f t - i  > c ,/f_ i H - / f - , / f - i

>  C, +  iC,- - | - / f _ , / f _ , _ i  ,

provided i ^  t — 1. Hence by the induction hypothesis

^ 2 ( »  +  l )  2 ( t - . - ) ^  21
; - i  2 -------  1---------— >CfCf.

g - 2  g -  2 g -  2

If t =  ( — 1 then we have

J t f t - l  >  C f _ i / f _ i  +  / f - l

>  C f _ 2 C f - 3  - f  1

> 2 {t — 2)/(g — 2) +  1

> (2( +  g — 6)/(g — 2) 

> 2 t / ( g - 2 )  ,

provided g >  6. If g =  4 then t > S and so /f_ i > 1  giving

The first result follows by induction.
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Consider now a distance-biregular graph with girth g and diameter d. We know by 

Lemma 3.3.2 that if G is not regular then d is even. Applying the first part of the 

corollary with < =  d — 1 we obtain

2 {d — 1)
Cd-lCd- 2  >  —  -g — I

Hence as Cd-\Cd- 2  <  (r — l)(g — 1) we have

d <  - ( r  -  1) (s -  1) (g -  2) +  1 .

If however G is regular, then by Lemma 3.3.1 G is a bipartite distance-regular graph 

and Terwilliger’s [17] bound on the diameter holds:

d <  - ( r  -  l)(g  -  2) -i- 1 .

Our inequality certainly follows from this. ■

C oroU ary S.S.7 : The only infinite locaüy-ûnite distance-biregular graphs are bireg­

ular trees.

P r o o f :  By Corollary3.3.6, if a distance-biregular graph has finite girth it also has 

finite diameter. ■

To show that the above results are by no means optimal, we will prove a much 

stronger result in the special case when g =  4.

P ro p o s it io n  S.3.8 : Let G be a distance-biregular graph with diameter d, girth 4

and r > 8 in the standard notation. Then C3 >  A  + 1 , /a >  cg 4- 2, A > A -g  4- 2 and 

Cf >  Cf _ 2  4- 2, for t odd, with t <  d.

P ro o f  : Let u E A , v E B  with u ~  v and the other neighbours of v being u i , . . . ,  1.

Choose v' E G(ui ) (1 G3 («).

A ssum e C3 =  A- In this case the C3 neighbours of v' in Gg (u) are among u i , . . . ,  u«_i 

as they coincide with the A  common neighbours of v and v'. Consider some other 

vertex v" E G(u) D Ggfv') (other than v -  there are A  — 1 of them). The A  common
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neighbours of v' and v" must be the common neighbours of v and v'. Hence v and v" 

have A  +  1 common neighbours (count u as well), a contradiction. Hence 63 > A» 

N ow  su p p o se  C3 =  A  +  1* Let ui,U 2 , . -. be the neighbours of v' in Gg (u)

with u ' 7̂  V.  Then 5(v ,u ') =  3 and so C3 vertices are a distance 2 from u' and 1 from 

V. One of them is u. The other C3 — 1 =  A  of them must be precisely the common 

neighbours of v and v', « i , . . . ,  .

Now consider x G G(u) fl G (u'). Vertex x must be adjacent to exactly A  ~  1 of the 

vertices u i , . .. ,u / , ,  in order to have A  common neighbours with v '. Each such vertex 

X must be adjacent to a different selection of A  — 1 vertices as otherwise two vertices 

X  and x' adjacent to the same set would have A  +  -1 common neighbours. Hence 

(G(w) n  G(m')| <  A i tha t is cg <  A* But as r >  s and (r — l)c2 =  (s — 1)62,

( r - l ) ( s - A )  =  ( 3 - l ) ( r - C 2 )  ,

so

(r — 1)(A — 1) =  (3 -  l)(c2 -  1) ,

giving A  <  C2, a contradiction. We conclude tha t C3 >  A  +  1- But then by Lemma 3.2.2 

C3C2 =  A A î so

A  > =  C2 +  2 ^  >  C2 +  3 ,
A  A

as required.

To prove the second two inequalities consider first a vertex u E A  and v G  Ggj-t-i ( u ) ,  

for some i < [(d — l ) /2 j .  Choose a vertex w in G(v) D G2,(u). We now count paths 

of length two between w and X  =  (G(v) H Gg, (u)) \  {w}. Each vertex v' adjacent to 

w in G g,-!(u) has A  neighbours in G(i/) fl Gg,(u) (the common neighbours with v). 

Hence we obtain cg, (A — 1) paths between w and X .  There are a further C2, + i — 1 

paths through v. If however we consider a vertex a: G X , it is at distance 2 from w and 

so has C2 common neighbours with w. As |%| =  C2 i^ i  — 1 we must have

Cg(c2, + 1 — 1) ^  C2,4_i — 1 +  C2,(A — 1)5

giving

e, _  1 >
C2I + I -  1
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Next consider v G Gg, (u) and w G G(v) fl Gg,_ % (u). Applying a similar argument to 

tha t above we get

_ 1 >
C2,- — 1

Combining the two inequalities gives

^  Cg, , ,or C2i>i > cgi - i    +  1
Cg,- -  1

^  Cg,' - 1 +  2 .

By the symmetry of the definition of a distance-biregular graph the second inequality 

/g,'+i ^  /g ,'-i + 2  follows. ■

Corollary 3 .3 .9  : Let G be a distance-biregular graph with girth 4, diameter d >  i  

and valencies r, s with r >  s. Then

d < 8  — / 2 + 2 < r  — Cg +  l .

P ro o f  : By the proposition we have C3 >  /g + 2  and cg.'+i >  C2, - i + 2. Hence inductively 

cg,'+i >  2» + A  or Cf >  t — 14-A» for t odd. But if t is odd, Cf <  s, giving t — 14- A  ^  ® 

and so d < 8  — A  4- 2 as we can choose t >  d — 1.

Note th a t applying the same technique to the array l[B)  using the inequality A  ^  cg 4-3 

yields the bound d <  r — cg 4- 1 for the diameter. We will now prove the second 

inequality of the corollary, which shows th a t this bound is in fact weaker. Since r > 8  

and ( r  —  cg)(s — l) =  6g6i =  cgci =  (s — A ) ( r  — l)i we have s  — A  <  r  — cg, giving 

3 — A " b 2 ^ r  — cg4"l.M
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4 D istance-biregular Graphs w ith  2-valent Vertices

In this section we study a special class of distance-biregular graphs, namely those 

with 2-valent vertices, though in the last subsection we extend this investigation to look 

at distance-biregular graphs whose derived graphs have minimum eigenvalue —2. The 

first subsection looks at disteince-biregular graphs with 2-valent vertices and derives a 

characterisation in terms of subdivision graphs. This leads us in the next subsection 

to investigate distance-regular line graphs, which are shown to be the line graphs 

of cages (see Definition 1.1.4). In the penultimate subsection we use this result to 

classify distance-biregular graphs with 2-valent vertices. The final subsection extends 

the argument to look at distance-biregular graphs whose derived graphs have minimum 

eigenvalue —2.
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4.1 C haracterisation in  term s of Sub d iv ision  Graphs

We begin with a theorem giving a fairly straightforward characterisation of distance- 

biregular graphs with 2-valent vertices. Later on, however, we will obtain a much more 

complete classification.

Theorem  4.1.1 : Let H  be the derived graph on the vertex set A  of the bipartition

of a distance-biregular graph G in the standard notation. Suppose H  has standard 

intersection array with a *-superscript and that diam (ff) is greater than 1 . Then the 

following conditions are equivalent:

(i) G is the subdivision graph of H ,

(ii) 3 =  2,

(iii) a j  =  0.

P roof: (iii)=^(ii). Let v E B  and « =  deg(i;) > 2. Pick Ui,ug,ug distinct neighbours 

of V. The «2 and ug belong to Gg (ui) =  jEfi(ui). Since U2 and ug are adjacent in H , 

we have oj >  0, a contradiction.

(ii)=>(i) We show that for any two adjacent vertices, u and u \  of i f  there is precisely 

one vertex v which is adjacent to both of them in G (thus G is the subdivision graph of 

H ). Suppose there is a second vertex v' E G[u) D G (u'). Then G(v) D G('y') =  {u,u'} 

and so A  =  2. But then C2 =  0, and diam(G) < 3. This contradicts the assumption 

th a t diam (if) >  1.

(i)=*.(iii) Suppose a\ > 0, Let u E A , and let v\ be a vertex in G which subdivides an 

edge of H  joining two vertices in H \(u ). Since diam (if) >  1, there is a vertex V2 in G 

which subdivides an edge of H  joining a vertex in H\ (u) to a vertex in H 2 (u). But v\ 

and V2 are in Gg(u), while |G2 (w) n G (v i) | =  2 and |G2(m) (1 G(v2)[ =  1, contradicting 

th a t u is distance-regularised. ■

Corollary 4 .1 .2  : Let G and Bi he graphs as in the theorem. I f  diam (if) >  1 and

8  = 2 , then the derived graphs of G are H  and its line graph L (H ).

P ro o f: By the theorem G is the subdivision graph of H . The vertex sets of the derived 

graphs are then the vertices of H  and the edges of H , with adjacency between adjacent
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vertices and incident edges. ■

To finish this subsection we cover for completeness the case when diam (/f) =  1.

T h eo rem  4.1.3 : Let G and H  be as in Theorem 4.1.1. Suppose that g = 2  and

diam (if) =  1. Then either

(a) E  =  Kn^ n > 3, and G is the subdivision graph of H , or

(b) E  = K 2 , and G = for some r > 1 .

P ro o f :  If E  = K 2 then clearly G =  ifg.r* If E  = K n, n >  3, then for a vertex 

V E B  = V (G) \  F (B ) only two of the vertices of E  are adjacent to v. Hence at least 

one vertex is at distance 3 from v giving Gg(v) ^  0. Applying the argument of (ii)=4^(i) 

from Theorem 4.1.1 shows tha t G is the subdivision graph of E . m

Some examples of subdivision graphs which are distance-biregular are easily found, 

for example 5(Lf„) and 5(brn,n)* By Corollary 4.1.2, if 5 (H ) is to be distance-biregular 

its derived graphs and so the line graph of E  must be distance-regular. Hence our next 

problem is to determine which graphs have distance-regular line graphs.

4.2 D istance-regular Line Graphs

In [2] Biggs proved that, if the line graph L(G) of G is distance-transitive, then G 

is either K\^n or a cage. We now generalise this result to the case when L{G) is

distance-regular f i  O’] .

Theorem  4.2.1 : I f  the line graph L(G) of a graph G is distance-regular, then either

G  =  Ki^n or G is a cage.

Before giving the proof of Theorem 4.2.1 we need a simple lemma.
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Lem m a 4.2 .2  : IfL{G ) is distance-regular, then either G is regular o f degree greater 

than one, or it  is a star n >  1.

P ro o f :  Since L(G) is regular, G  is either regular or biregular. Suppose tha t G is not 

regular. If it contains a vertex of degree 1, it must be K\^n, for some n greater than 

or equal to 1. Assume now that G has no monovalent vertices. Let e be an edge of G 

joining vertices a and 6 where 2 <  deg(a) <  deg(6). We consider two cases.

(i) There are adjacent edges e' and e" such tha t e' ^  e, t"  ^  e, e' is incident with a 

and e" is incident with b (e, e' and e" thus form a triangle).

(ii) There is an edge e' incident with a which is not adjacent to an edge e" incident 

with b.

In both cases the numbers |L(G)(e) H L(G)(e')] and |L(G)(e) nL(G )(e")| are different, 

contradicting the distance-regularity of L(G ). ■

P roof of Theorem  4.2.1 : If G contains vertices of degree 1, then G is a star ATi.n 

as guaranteed by Lemma 4.2.2. Otherwise G is regular of degree greater than 1. The 

case when G contains no cycles is also trivial. It must be an infinite regular tree which 

is a (/:,oo)-graph.

The rest of the proof will assume that G is ^-regular, k greater than 1, and that the 

girth g of G is finite. The intersection array of L(G) will be assumed in the standard 

notation. For each edge e of G, we denote by L,(e), i =  0 , 1 , . . . , d, the set L(G),(e). 

We must show that diam(G) =  [g/2j and if g is even tha t G is bipartite. Denote \g /2 \ 

by L  Let u be an arbitrary vertex of G. We show that no vertex of G is more than 

distance t  from u. Let e G E G  be an edge which is incident with u. Since L{G) is 

distance-regular, it is easy to see that e must lie on a cycle G in G which is of length g. 

Consider the case when g is odd. Choosing an edge e! which lies on G and is at distance 

i  from e, we see that ag > A — 2 -f- l =  k — 1 , since e' is adjacent to an edge e" on 

C  which is also distance t  from e. Suppose that there is a vertex w in G which is at 

distance i  + 1 from u. Let a sequence of edges e o ,e i , . .. ,eg be a path of length £ -f 1 

from u to w, and let v’ be the common vertex of eg-\ and eg and v be the common 

vertex of cq and e\. The edge eg is in Lg(eo). Therefore eg has ag adjacent edges which 

also belong to Lg(eo). Since ag > k — 2, there is a t least one edge e' in Lg(eo) fl Li (eg)
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which is not incident with v' but is adjacent to w. Let v" be the other vertex of c'. 

To be at distance I  from cq there are two possibilities. Either there is a path of length 

t  — 1 from u to v" or there is a path of length t  — \ from v to v" . The former case 

is impossible since w is in Gij^\{u). But in the latter case we obtain at v a cycle of 

length 1 4 - 1 4 - ^ = 2 f  =  gr — 1, which is also not possible. Hence d =  £ as required. 

This completes the odd case.

Consider now g even. Let e' be the edge on C  which is at distance t  from e (e' is 

opposite e). If e' =  then no edge incident with either V\ or ^2 other than the

edges of C  can be at distance less than E from e, as we would otherwise have cycles of 

length less than in G. Therefore all these edges lie in giving C£ =  2, ag == 2/; — 4

and hi =  0. Suppose there is a vertex w €  Gi^.\ («). Let (w, v) =  co ,c i, . . .  ,cg be a path 

of length  ̂-f 1 from u to w. As eg E Lg(eo) and eg =  2, there is an edge e' adjacent to 

w at distance t  — \  from cq. But the other end v' of e' is at distance t  — 1 from either u 

or V. The former case contradicts w E 6^g+i (u) while the latter gives a cycle of length

t  — \ 1  — 1 - |-1 =  2^ — 1 < ^ .

The contradiction shows that diam(G) = t  = g/2.

Finally we most show that in the even case G is bipartite. It will be sufficient to show 

th a t for any vertex w, no two vertices in Gd(u) are adjacent. Suppose e =  (v,ty) is an 

edge with v,w  E G^d(u). Let (u,uo) =  eo, c i , . . .  be a path from u to v. Then

e E Lj(co) and so as Cd — 2, there are precisely two edges closer to eo adjacent to e. 

One is e j - i ,  let the other be with eo =  ej), e^, . . .  a path from cq to

As a vertex of e'^_j is at distance d from u the edge e\ must be incident with the vertex 

uq of eo and not u. Hence if eJ,_j is incident with v we have a cycle in (7 of length 

2 g — 2, while if it is incident with w we have a cycle of length 2g — 1, in either case 

a contradiction. We conclude that when g is even G is indeed bipartite and so also a 

cage. ■
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4.8 Subdivision Graphs of Cages

So the graphs which have the required property that their line graphs are distance- 

regular are cages. The next lemma shows that they do actually behave as we would 

like.

L em m a 4 .8 .1 : I f  G is a (/;,^)-graph, then the subdivision graph S(G) of G is

distance-hiregular.

P ro o f :  Two cases must be considered.

(a) The girth g is odd. The intersection array for a vertex u G TG  in 5(G) is

♦ 1 1 1 1 . . .  1 1 2
k 1 k — 1 1 k — 1 . . .  1 k — 1 *

while the array for an edge of G in 5  (G) is

♦ 1 1 1 .
2 k — 1 1 k — 1

. . 1 1 2 2  

.. k - 1  1 k - 2  ♦

The first array is immediate from the diameter and girth of the cage, while the 

second follows from the fact that a vertex v opposite an edge e on a cycle of length 

p in G has precisely two edges incident with it and closer to e. Note that the 

diameter d of 5(G) is flf +  1, though 5(G )^+i(u) =  0 for u G TG.

(b) The girth g is even. For w G  F G we have intersection array in 5  (G)

♦ 1 1 1 1  
k 1 k — \  1 k — 1

1 1 k
k — 1 1 ♦

while for an edge the array is

♦ 1 1 1
2 k - 1  1 k - 1

1 1 2 
1 k - 1  ♦

In this case both arrays follow immediately from the girth and diameter of the 

cage and the fact that no edges are at distance p' -f 1 in 5  (G) from a given vertex 

w in G, as G being bipartite no edge can have both its ends at distance d from u 

in G. ■
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Wc can now present the more complete classification of distance-biregiilar graphs 

with 2-valent vertices as the corollary to the following theorem.

T h eo rem  4.8.3 : For a graph G the following conditions are equivalent:

(i) L(G) is distance-regular and G is not a star graph,

(ii) G and L[G) are both distance-reguiar,

(iii) 5(G ) is a distance-biregular graph, and

(iv) G is a (k,g)-graph.

P ro o f :  (i)=>(iv) This is Theorem 4.2.1.

(iv)=^(iii) This is Lemma 4.3.1.

(iii)=^(ii) The derived graphs of 5(G) are G and L(G ). These are both distance-regular 

by Proposition 3.1.1.

(ii)=4>(i) Star graphs are not distance-regular. ■

C o ro lla ry  4.8.8 : A graph G with 2-valent vertices is distance-bireguiar i f  and only

i f  either G =  K 2 ,r or G is the subdivision graph o f a (k,g)-graph.

P ro o f :  By Theorem 4.1.1 and Theorem 4.1.3 a distance-biregular graph with 2-valent 

vertices is either or the subdivision graph of some graph H . By Theorem 4.3.2, 

H  is a (/:,^)-graph in the latter case. The converse follows as i^2,r is clearly distance- 

biregular (see Example 1.2.5), while the subdivision graph of a (/:,g)-graph is distance- 

biregular by Lemma 4.3.1. ■

Theorem 4.3.2 has another interesting corollary, which excludes many distance- 

regular graphs from being the derived graphs of distance-biregular graphs.

C o ro lla ry  4 .8 .4 : Let H  be a distance-regular graph without triangles. Then H  is

the derived graph of a distance-biregular graph i f  and only i f  H  is a (k,g)-graph with 

g > 4 or H  = K 2 >

P ro o f :  If H  is a (A,gr)-graph or K 2 , it is the derived graph of 5(H^). Conversely if II  

is the derived graph of a distance-biregular graph G and H  has no triangles then in 

the notation of Theorem 4.1.1, as af =  0, either diam (if) =  1 or G is the subdivision
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graph of i f .  In the latter case by the theorem, i f  is a (A:,^)-graph and as H  has no 

trangles, g > 4. If, however, diam (if) =  1, i f  is a complete graph without triangles 

and hence K^. ■

4 .4  D erived  G ra p h s  w ith  M in im u m  E igenvalue —2

It is well known that line graphs have minimal eigenvalue —2, which in our case we 

could also deduce from Lemma 3.1.2 and the fact tha t r/ca =  2. Graphs with minimal 

eigenvalue —2 have been classified as generalised line graphs or Eg graphs [4]. It is 

therefore natural to ask if we can generalise the above result for distance-biregular 

graphs with 2-valent vertices to distance-biregular graphs with r/cg =  2, as this means 

the derived graph has minimum eigenvalue greater than or equal to —2. We begin by 

proving the following lemma.

L e m m a 4.4.1 : Let G be a distance-biregular graph with girth 4 and r/cg =  2 in

the standard notation. Then the derived graph on vertex set A  is not a line graph.

P ro o f  : The intersection array t(A) has initial entries

r* 1 r /2  . . .
Lr 8 — 1 r /2  . . .

Calculating eg of the array i[B) we obtain

r ( s -  1)
2(r -  1)

As r >  2 we must have r — l |s  — 1. Let » — 1 =  a(r — l) with a E }J. Then eg =  a r /2  

and
2 s — ar s +  1 — a

h  =  —  2 •

Note that as r >  3 we have a <  (s — l) /2 . But then

s +  l  — a s +  3 
c s > h  =    > —r -
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and

63 < g -
s 4* 3 3s — 3

So 6; =  ^ < Ü i = Ü
cg 4

and

a* — 2(s — 1) — 1 — 6*

> 2 ( s - l ) - 3 ( s - l ) / 4 - l  

. =  5(g — l) /4  — 1 

> 2 ( s - l ) / 2 - l  

=  k* j2  — 1.

Hence the derived graph is not a line graph as for line graphs a\ = k* j2  — m

The lemma tells us that all distance-biregular graphs with r/cg = 2  and derived 

graph D  a line graph have 2-valent vertices (r =  2) and so are classified by Corol­

lary 4.3.3. Next consider a distance-biregular graph with derived graph a generalised 

line graph. The only distance-regular generalised line graph which is not a line graph 

is the Cocktail Party graph, K ik \  kK^. The next theorem investigates this case.

Theorem  4 .4 .2: Let G he a distance-biregular graph with derived graph the Cock­

tail Party graph, Egr \  rA'g. Then either G is regular and a double cover of Kr^r or G 

is a graph with intersection arrays

.(H) =
♦ 1 r -  1 r

2f — 1 T — 1 r *
,(A} = * 1 r /2  2 ( r - l )  r

r 2 ( r - l )  r /2  1 * n

P ro o f: In the standard notation let the derived graph D  on vertex set A of G be the 

Cocktail Party graph. The Cocktail Party graph has intersection array

♦ 1 2(r -  2)
0 2(r -  3) 0

2(r -  2) 1 *
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B ut then 6 3 6 3  =  cg and so 6 3  =  1 as cg =  6 g =  r /2 . Also C4  =  r as

and C3 =  g — 63 =  8 — 1. Hence the array &(A) is

i(A) =

with

* 1 r /2  8 — 1 r
r 8 — 1 r /2  1 *

HA)  =  f *   ̂ (8 +  1 - a ) / 2  / a  . . .
L  r - 1  ( s - l  +  a )/2  63 . . .  

where a G  >/ is as in the proof of Lemma 4.4.1. The equation / 3(8+ l - a )/2  =  r ( 8 - l ) / 2  

and the inequality /a <  r together imply 8 —l < 8 - f l  — a o r a < 2.

If o =  2 then 8 =  2r — 1 and

t(A) = ■* 1 r /2  2 ( r - l )  r ]
r 2 ( r - l )  r /2  1 *J ’

while

■(B) =
* 1 r — 1 r

2r -  1 r - 1  r ♦ I '

If a =  1 we have r — e and so a regular graph. Hence G is distance-regular by 

Lemma 3.3.1. Its intersection array is

.(G) = * 1 r /2  r - 1  r 1
r r - 1  r /2  1 * J ’

This is a double antipodal cover of the graph F  with intersection array

•(B) =
« 1 r
r r - 1  *

Thus F  is Kr,r the regular complete bipartite graph. ■

The following result is surprising as it shows the existence of the two kinds 

of distance-biregular graphs in Theorem 4.4.2 are both related to the existence of 

Hadamard matrices (see Definition 1.1.10).
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T h eo rem  4.4.8 : I f  r ^  1 then the following are equivalent

(i) the existence of a distance-biregular graph with intersection arrays

(ii) the existence of a double cover of A’2r,2rj and

(iii) the existence of a Hadamard m atrix of dimension 2r.

P ro o f :  (i)=>-(ii) We start with a distance-biregular graph G in the standard notation 

with intersection arrays (*). We will construct a new graph G' from G and then show 

that G' is a double cover of A'2r,2r* The vertices of G', VG ' = A ' U will be the 

vertices of G except that each vertex v in jB is duplicated to two vertices v and v' in 

B '. In addition 2 vertices x and y are added to A  to give A '. The vertex x is adjacent 

to each vertex of B , while y is adjacent to each duplicate of a vertex in B . For v in 

B , the duplicate v' is adjacent to precisely the vertices in A' th a t v is not adjacent to. 

This completes the construction of G'.

We must now show that G' is distance-regular with intersection array

* 1 r 2r -  1 2r
2r 2r -  1 r 1 *

Each vertex v in B is adjacent to 2r — 1 vertices in A  and to x, so th a t deg(i;) =  2r. 

As |A '| — 4r — 2 -f 2 =  4r, the duplicate v' of v has deg(v') =  4r — 2r =  2r. A 

vertex u E A  had r neighbours in B  and r non-neighbours as |B | =  2r. Hence in G', 

u is adjacent to r original vertices and r duplicate vertices, so deg(tt) =  2r. Clearly 

deg(z) =  deg(y) =  2r. Hence G* is 2r-regular. Consider now , vg 6 B . Clearly vi and 

vg have r common neighbours (r — 1 in A and x). For v[ , vj duplicates of vertices v \ , vg

in B ,v \  and Vg have r — 1 common non-neighbours in A (the common neighbours of vi

and Vg) and each has 2r —1 neighbours in A, so they have 4r —2-fr —1 —(4r —2) = r  —1 

common neighbours in A, giving r common neighbours in all. Consider vertices v\ in 

B  and the duplicate of a vertex vg in B  with v\ ^  vg. Vertices Vi and vg have 

r — 1 common neighbours in A, and so there are 2r — 1 — (r — l) = r neighbours of 

vi in A that is not adjacent to -  these are the r common neighbours of Vi and Vg. 

Now consider two vertices u and w in A such that dG(u,w) =  2. Then they have r /2  

common neighbours in B, and 2r -  2r -f r /2  =  r /2  common non-neighbours. But the 

duplicates of these non-neighbours will be new common neighbours. Hence u and w 

have r common neighbours. We must look next at common neighbours of vertices in A
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and X or y. As x is adjacent to all of B , then any vertex in A  has r common neighbours 

with X  and as it has r non-neighbours in B it has r common neighbours with y. We 

have shown so far that columns 0, 1 and 2 of the intersection array exist and have the 

right entries. It will be sufficient to complete the proof if we show that each vertex 

determines a unique vertex at distance 4 from it, as this will force 63 =  1 and the fact 

th a t the graph is bipartite proves the existence of the intersection array. For a vertex 

V in B , it is clear that the unique vertex distance 4 from v  in G' is the duplicate v '  of 

V. Vice versa for a duplicate vertex. For a vertex u  in A, there was a unique vertex 

w in G at distance 4 from u. -Suppose that w and u have a common neighbour in G'. 

It must be a duplicate vertex v ' , for some v  E B . But then v  was adjacent to neither 

u or u;, an impossibility if we consider the intersection array t(A) and the fact that 

G{u] =  G3(tv) and vice versa. Hence w is still distance 4 from u in G '. As no edges 

have been deleted, distance can only have reduced from G to G% so no other vertices 

from A are distance 4 from u m G '.  Finally x certainly has a common neighbour with 

u as does y. For x the unique vertex at distance 4 is y and vice versa.

(ii)=>-(iii) We start with a double cover of Egr.Sr, tha t is a distance-regular graph G 

with intersection array

,(G) = ♦ 1 r 2r — 1 2r
2f 2r -  1 r 1 *

Note first that each vertex determines a unique vertex at distance 4 from it. We label 

each pair with a 1 and —1. These antipodal pairs fall into two classes determined by 

the bipartition each with 2r pairs in it. Let the pairs in one class be p i , . .  . ,P 3r and 

those in the second class q-j, . . . ,  qgr- Note that if we choose a pair p, and a pair qj, each 

vertex in p, is adjacent to exactly one vertex in qj and vice versa. We will construct 

a m atrix H  with rows indexed by the pairs of the first class and columns indexed by 

the pairs of the second class. The i , j  entry of H  will be 1 if vertex 1 of p,- is adjacent 

to vertex 1 of qj and —1 otherwise. It remains to show that H  is a Hadamard matrix. 

Clearly the inner product of a column with itself is 2r. W hat we must prove is tha t the 

inner product of different columns is 0. Consider columns ;  and These correspond 

to pairs qj and qjt. The entries in row i of these two columns will agree if the pair p,- is 

connected the same way to qj and qjt. Each such connection will give vertices 1 of qj
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and qji a common neighbour, while if the columns disagree they will have no common 

neighbours in p,-. Hence the number of rows in which the entries agree is r and the 

inner product of the two columns is r — r =  0.

(iii)=^(i) In this proof we start with a Hadamard matrix H  of order 2r and must 

construct a distance-biregular graph with intersection arrays (*). First we adapt H  by 

multiplying various rows by —1. This will not affect and so leave H a Hadamard

m atrix. In this way we can take H to have its first column the all 1 vector. This in 

turn  will mean that all subsequent columns will have half their entries 1 and half their 

entries —1. Delete from H the first column and call the resulting 2r x (2r — l) m atrix

We now construct the graph G by taking the set A to be a pair of vertices ui 

and u - i  for each column u of H' and B  to have a vertex for each row v of Vertex 

Uj in A (j G {1,—l}) is adjacent to v in B if =  j .  We must now prove that G 

is distance-biregular with intersection arrays (♦). Each vertex uj in A appears in r 

rows while each row has 2r — 1 entries so G is biregular with degrees r and 2r — 1. 

Consider first two vertices v and v' in B. These two rows had r agreements in H  and 

so r — 1 agreements in H' (they certainly agreed in the all ones column). Hence v and 

v ' have r — 1 common neighbours. This is sufficient to show that the vertices of B 

are distance-regularised with array i(B ) of (*). We now turn our attention to vertices 

in A. First consider Uj and wy  with u ^  w. The two columns u and w each have 

an equal number of I ’s and — I ’s but also agree in the same number of rows as they 

disagree. Hence exactly r /2  rows have a j in row u and j '  in row w, as required. We 

complete the proof by determining the uniqueness of the vertex at distance 4 from a 

given vertex uj in A. Clearly the only such vertex is w_y. This shows that =  1 and 

so determines that the vertices of A are also distance-regularised with the array t(A) 

of (*). This completes the proof. ■

The only other possible derived graphs with minimum eigenvalue —2 are Eg graphs. 

It is known that regular Eg graphs have at most 28 vertices, so an exhaustive search 

and check would certainly be feasible. We have not performed this task as we felt it 

was of little general interest. We finish this section by noting tha t one such Eg graph 

is the Petersen graph P. It is also a (3,5)-graph and so is the derived graph of 5(B) 

the subdivision graph of B. In this case both derived graphs have minimum eigenvalue
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- 2 .  The graph S (P ) is probably the unique non-regular distance-biregular graph with 

this property.
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5 C SR  Graphs

This section looks a t distance-biregular graphs of diameter 4 for which one derived 

graph is strongly-regular and the other is complete. These graphs are called GSR 

graphs (see Definition 1.1.6). To fix notation we will assume the standard notation for 

the GSR graph G and th a t the complete derived graph D  is on the vertex set A , while 

the strongly-regular derived graph E  is on the vertex set B .

5.1 Q uasisym m etric B lock D esigns

Let G be a GSR graph as above. Consider the block design P we obtain by taking the 

set A  as the set of points and the set of blocks as

B =  {{w €  A\u  v}|v G J3}.

Each pair of vertices in A  occurs in exactly cg blocks -  those indexed by their common 

neighbours. Hence D isa  2-(|A |,a,C3) block design. Further any pair of blocks intersect 

in exactly / j  common points or no common points. Thus P is a quasisymmetric block 

design with intersection numbers *i =  /a  and «a =  0.

Conversely if we have a quasisymmetric 2-(v, k. A) block design D with intersection 

numbers »i,»a» with »a =  0 the incidence graph G of P is biregular with degrees Ai 

(for point vertices) and k (for block vertices). Also each pair of point vertices have
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A =  Aa common neighbours, while each pair of block vertices which are at distance 2 

have i\  common neighbours. Finally consider a block vertex v and a point vertex u, 

with « </- V. We count in two ways the pairs (z, w) with x a point and w a block such 

th a t z is a common neighbour of w and v and u to. Firstly for each point x adjacent 

to r ,  there are Aa choices for to and so X^k pairs. If however we consider choosing to 

first with w ^  u and to and t; having non-empty intersection, there are for each such to, 

»i =  jto n  v] choices of x. Hence there are AAa/»i blocks to adjacent to u and distance 

2 from V . This shows th a t G is a distance-biregular graph with the intersection arrays 

of Example 1.2.9. We have thus proved the following proposition.

P ro p o sitio n 5.1.1 : There is a one to one correspondence between CSR distance-

biregular graphs and quasisynunetric block designs with one block intersection number 

zero. ■

6.2  Eigenvalues o f the D erived G raphs o f C SR  Graphs

By Lemma 3.1.2 the eigenvalues of the derived graphs D  (complete) and B  (strongly- 

regular) are related to those of the CSR graph G by the equations

\  {0} =  03(A(D) \  { - r / 03}) 4- r 

=  / 3 ( A ( E ) \ { - e / / 3} 4 - e .

As

we have

So the least eigenvalue of B  is —a, where o; =  S / /3, and the second largest eigenvalue 

is (63 — s) //3  — So the param eter being the difference between the second

and smallest eigenvalues is ^  — b^ / f 7 (see Definition 1.1.5). '
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L em m a 5.3.1 : The strongly-regular derived graph E  o f a CSR graph G is not a

conference graph (see DeSnition 1,1.5).

P ro o f  : For a conference graph we have

A =  8(r — l ) / / 2  =  2p

=  - 1)/2 

=  (^3 “  /s  1/ 2/2 •

Note also tha t 2a — ^  = 1 giving

Hence

and so

2—------ — == 1 62 =  2s — / 2«
/3 J2

As 63 <  r we have

2 / 3

f  — 2 —--------1 .
h

2 8 - / 2  <  2—----- 1
/3

2 s / 3 — / j  — 2 f  4* 1 < 0

(/s — 1) (/2 — 2« 4- 1) > 0

giving /2 <  1 or /2 >  2s — 1, neither of which is possible. ■

The following lemma is well known, see for instance [14].

L e m m a 5 .3 .3 : A ll the eigenvalues and hence also the parameters a  and ^  o f a

strongly-regular graph which is not a conference graph are integers. ■
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The two lemmas tell us tha t the parameters a  and ^  for the strongly-regular derived 

graph of a CSR graph must be positive whole numbers. Thus the arrays for a CSR 

graph G are

[r a / 2 - 1  * J

(“ )

j D .  * 1 /a o ( r - W a )  «/a
' ' [a /a  r - 1  ( a - l ) / ,  r - a ( r - 0 f j )  *

Using Lemma 3.2.2 we can calculate r  as follows

( r  -  l ) ( a -  l ) / 3  =  6 1 6 3  =  6 1 6 3  =  ^ / 3  ( a / 3  -  1 )

^  +  i  (t)

So the arrays are determined by the positive integer parameters / 3, a  and Finally 

we can find a simple expression for eg in terms of these parameters

6 3  =  r  -  ( r  -  / ^ / î ) a  =  r  -  a  -  a ^ ( / 3  -  l ) / ( a  -  l )

=  (;^a/3 — 0 -  a^j2 +  a ,^ )/(a  -  l) +  a  +  1 

=  ^  — a  +  1.
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5.S T h e  A n tip o d a l C ase

In this subsection we continue out investigation of CSR graphs by turning our attention 

to the case when the strongly-regular derived graph is antipodal. As the param eter a j 

of the strongly-regular graph is zero, we must have — l) =  0, by Proposition3.1.1. 

Hence eg =  1. From the general arrays for a CSR graph computed in the last subsection 

we see tha t 0 = a  and the intersection arrays are

l( A ) = \  * ^ ( a / g  -  l ) / ( a - 1) a / 3

 ̂ * [ ( « V a  -  l ) / ( a - 1 )  a / 3  - 1  a / 3  * .

_  f  * 1 h  a ( a /3 -  l ) / ( a - 1) a /3
 ̂  ̂ I a /3 a ( a /3 -  l ) / ( a - 1) ( a - l ) / 3  1 *

The antipodal derived graph is a complete m ultipartite graph, the parts being the

antipodal blocks. As |G4(v)| =  a  — 1, these blocks have size a  and so E  =  for

some t . We can compute I  since \B\ = la  giving

a ^/3 -  1t  =
a  — 1

If a  =  2 then E  is the Cocktail Party graph with minimum eigenvalue —a  =  —2. This 

case has already been treated in the penultimate subsection of the previous section, 

where the existence of such a CSR graph was shown to be equivalent to the existence 

of a Hadamard m atrix of dimension 4/ 3.

We now consider the general case. F irst we use f as a param eter to replace / 3. 

We can compute as ( t (a — l) +  l ) / a ^ .  Hence the arrays for G are now

* 1 (£—l ) / a  (f(a  — 1) H - l) /a
t  ( £ - l ) ( a - l ) / a  ( ^ ( a - l )  +  l ) / a  *

r * 1 ( f ( a - l ) - f  l ) /a ^  t - l  ( f ( a - l ) - f  l ) / a ]
[ ( % - l )  +  l ) / a  t - \  ( % - l )  +  l ) ( a - l ) / a ^  1 ♦ J

Note tha t
a^|^(a — 1) 4-1 — a^ 

a ^ \( i — a  — l ) ( a  — 1) 

a^|£ — a  — 1
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This condition is a generalistion of the condition th a t a non trivial Hadamard m atrix 

must have order divisible by 4.

To complete this section we will construct an infinite family of these graphs for a  

any prime power.

E x am p le  6.8.1 : Impiim itive GSR Graphs

Let a  =  g be any prime power and k some positive integer greater than one (A is no 

longer the valency of E , nor is it the exponent of the prime in ç). Consider the 

non-zero vectors of dimension A with entries from GF(q). Choose representatives 

P i , . . . ,p <  of each line through the origin (projective point) in GF(q)^.  This gives 

us t =  (q^ — l) /(g  — l) vectors, which we form as column vectors (in any order) into 

a m atrix M  of dimension k X t. The rows of this m atrix are A vectors b i , . .  .,b*. of 

dimension (, which are linearly independent as M  is easily seen to have rank A. Hence 

they generate a A-dimensional subspace A  of GE(g)^. The graph G will have vertex 

s e t V G  — A U  B,  where

B = G F ( q )  X

For u  G A and (v, t) G B , we have u  =  v. The definition is independent of the

ordering and choice of the projective point representatives as a suitable perm utation 

of the columns of the m atrix M , together with a multiplication of the vertices in each 

B, =  GF(q)  X  {*} will give an isomorphism of the first graph to the second.

It remains to show that G  is distance-biregular with the parameters a  = q and 

t  — t = (q^ — l ) / ( ?  — 1), th a t is with arrays

i(A) =
[Î] - 1

[ * 7 ‘ ]

î]-[v]
, * • - 1

♦ 1 [ l ] - l

[ ( - 1 1 *

The degree of a vertex u  G  A is clearly t  =   ̂̂  j , while tha t of a vertex ( v ,  t )  G  B is equal 
to the number of vectors having i-th coordinate v. Let Aa be the set of vectors having
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t-th  coordinate a G GE(g). Each set Aa as a ranges over GE(g) is non-empty because 

there is a vector in A  with non-zero t-th coordinate, together with all its multiples. 

Hence we can choose a representative Ug G Aa for each a G G F(g). Let

ta : A  — h A

be the translation of A by Ug. Then tg(Ao) =  Ag giving |Ao| =  |Ag | for all a G GF(q).  

Hence the degree of a vertex (v,t) G B is |A„| =  g*/g =  .

Next consider two vectors u ,u ' G A. The number of coordinates in which u  and u ' 

agree is the number of zero coordinates in u  — u '.
C la im  : The number of zero coordinates in any non-zero element of A is ^7^ ] *
Let u  G A and

k

J=1
be its expansion in the basis b i , . . . ,bjt- Then

k  k

i= i  j= i

which is the inner product of the vector x  =  [aji, . . . ,  X k \ ^  and p , . As all lines through

the origin have exactly one representative vector, the vector x  will be perpendicular 
to just [*7^] them, being those lying in a subspace of dimension A — 1. Hence

c, =  [*7*]-
To prove the existence of the param eter /g, consider two vertices (t;, i), (v', j') G B, 

with » ^  t'. Again we partition A into sets

Ag6 =  {u G A|u,- =  a and u,/ =  6}, a ,6 G GF(q).

Consider the line representatives p, and p,/. As these are different projective points 

there is a pair of coordinates / , / ,  with

(Pi)j(pi')( ¥= (pi)/(p.')j-

This means tha t for any a, b we can find a linear combination of the base vectors by 

and hi  with t-th coordinate a and t'-th  coordinate 6. Hence for all a, 6 G GF(q),
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Aab ^  0. Pick representatives Ugt G Aab and let tab be the translation of A  by Ug6- 

Then ta6(Aoo) =  Aabi and |Agt| =  |Aoo| for all a ,6 G GF{q).  Hence

and the number of common neighbours of fiji/and (v/i^s |Ay„»| =  giving /g =  

Finally for u  G A  and ( v ,t )  G B{ with u ,  ^  v there is only one ( « ; , / )  G B adjacent to 

u  but not distance 2 from (v ,i), this is (u ,- ,t) .  Hence G  is distance-biregular with the 

required intersection arrays. ■

5 .4  The P rim itive Case

It is a result of Sims, see [14], th a t strongly-regular graphs with smallest eigenvalue 

— O ', a  >  2 integral can be classified as follows.

Theorem  5.4.1 : A strongly-regular graph with smallest eigenvalue —a, a  > 2

integral is one o f the following:

(a) A complete m ultipartite graph with classes o f size a ,

(b) Latin square graphs or pseudo-latin square graphs, p =  a ( a  — 1),

(c) Steiner graphs or pseudo-Steiner graphs, p — a^,

(d) Finitely many other graphs, with 1 < p < a^(2a — 3) and a  < 0  < (a — l).  u

In the previous section we dealt with case (a). We now show that in our case p can be 

bounded below by a larger value.

P rop osition  5.4.2 : Let G be a CSR graph with E  its  derived strongly-regular

graph. Then the parameters p and a  for E  satisfy in particular p > a^.

P ro o f: From the arrays (♦♦), we can calculate the param eter p  for E  as

p  =  a ^ ( r  — 0 / 2 ) =  a ^ c g .

So oi'^\p and p > a ^ . m
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Proposition5.4.2 show that case (b) of Theorem 5.4.1 is not possible for the 

strongly-regular derived graph of a CSR graph.

We consider next case (c). Recall (see Definition 1.1.5) th a t a Steiner graph is the 

line graph of a 2- (a  4- 0(ot — l ) , a ,  l)-design with 0 > a - p l .

P ro p o s it io n  5.4.8 : Steiner graphs are precisely the strongly-regular derived graphs

o f primitive CSR graphs, such that p =

P r o o f :  Consider a Steiner graph E  and its corresponding 2-(ct-j- 0 (a  — l ) , a ,  l)-design 

P . Two blocks B i and By of this design cannot intersect in more than one point 

as otherwise a pair of points contained in any intersection would be in two blocks, 

contradicting A =  1. Hence this is a quasisymmetric block design with intersection 

numbers »i =  1 and $g =  0. By Proposition5.1.1 the incidence graph of Z) is a CSR 

graph with the given Steiner graph as its strongly-regular derived graph. Prom the 

array in Example 1.2,9, we have /g =  *i =  1, while /a  =  5A/»'i =  6 =  a, and so p =  

Also as >  a  4- Ij the graph G  is primitive.

Now consider a CSR graph G with derived graph E  having param eter p =  From 

the general arrays (**) for such a graph we have

p  =  ( r -  0 / 2)a^-

Hence in our case r — 0/ÿ  =  1, and so

b y ( t )
a  — 1

giving /g =  1. The arrays for G are thus

( A \  \  *  1 1 a ]

_ r*  1 1 ^
'  [ a  ^  Of — 1 0  —  a - \ - l  ♦ j

Thus G  is the incidence graph of a 2-(a  4- 0{oi — l ) , a ,  l)-design. As G is primitive

0  — a- 1- 1  > 2 ,  giving 0 > a - i - l . m
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It has been proved by Wilson [18] and Hanani [9] tha t 2-(v, A, l)-designs exist for 

V >  Vo (A) with A — l]v — 1 and A(A — l)|v(v — 1), for some vq(A). So CSR graphs with 

Steiner derived graphs are very numerous.

The remaining case of the Theorem 5.4.1 is case (d). In the CSR case we have by 

Theorem 5.4.1, Proposition5.4.2 and Proposition5.4.3, the following conditions on the 

parameters of the strongly-regular derived graph:

a^ |/i, 2a^ < /i <  a®(2a — 3) and a  <  ^  <  — 1).

Thus for given a  there are finitely many possible triples (ct,0,p)  of parameters of such 

graphs. For a given triple the arrays are fully determined as

=  (r -  0 h W  =  +a  — 1

and

while

r  -  - 1 )  I ,
O' — 1

by (t). For any given pair of arrays there are clearly only finitely many graphs. We 

have thus proved the following theorem.

T h e o rem  5 .4 .4  : Let G be a CSR graph with strongly-regular derived graph E

having minimal eigenvalue —a. Then a  is an integer and one o f the following holds:

(i) E  fs m ultipartite with blocksize o ,

(ii) E  is a Steiner graph with G the incidence graph o f the corresponding design,

(iii) G  is one o f Bnitely many exceptional graphs. ■

We finish this section by listing the exceptional graph (case (iii) of Theorem 5.4.4)

intersection arrays for a  =  2,3.

(a) 0  =  2.

In this case 8 <  p <  8 and 2 < 0  < 32. As
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0  — 1 contradicting 0  >  2, We conclude tha t no exceptional graphs exist when o  =  2.

(b) 0  =  3.

Here p can be one of the numbers

18,27,36,45,54,63,72,81, 

while S <  0  < 486. Note also tha t

f — 0 /2\i‘(af2  — l)

0 ( f 2 — l ) / ( a  — l) +  l |r (o /g  — l) 

or 0 [ / 2  — l ) /2  -f- l |^ (3 /g  — 1)^/2 +  3/g — 1.

Checking through all the possible choices of 0  and p and eliminating those not satisfying 

the above divisibility conditions leaves us with just three possible arrays.

(i) p =  36 ,^  =  6 ,/g  =  2 ,r  =  16. The arrays are

[i*6 5 12 ! ]  [e
1
15

12 6 
4 *

These are the arrays of Example 1.2.10.

(ii) p =  45 ,^  =  8 ,/g  =  2 ,r  =  21. The arrays arc

f *  1
[21 5

5 6
16 ♦ and [:

1
6 20

15
6 :|

These arrays are realised by the incidence graph of the Steiner system 5(3 ,6 ,22). 

In [12] this (unique) Steiner system is used to define a simple group of order 

44,352,000. Higman and Sims list some of the properties of this system, among 

others th a t two distinct blocks intersect in 2 or 0 points. Hence the system is a qua­

sisymmetric block design with second intersection number 0. By Proposition5.1.1, 

its incidence graph is a CSR graph with /g =  2. This param eter together with the 

blocksize (6) and the number of blocks a single point is contained in (Ai =  21) are 

enough to determine the intersection arrays as those given above.

(iii) p =  54 ,^  =  5 ,/g  =  3 ,r =  21. The arrays are

♦ 1 6 9
21 8 15 * and [9 2(

3 18 9 
20 6 3 *

This pair of arrays does not satisfy the simple numerical conditions of Proposi­

tion 3.2.1 (Ag is not a whole number) and so is not feasible.
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5.5 A Counter-example

Consider a bipartite graph G with vertex bipartition A U B  and set A  the row vectors 

U i, . . .  ,U i3 of the following 12 x  11 m atrix

M  =

ro 0 0 0 0 1 1 1 1 1 17
0 0 0 0 0 0 1 1 1 1 1
0 0 0 1 1 1 1 1 1 1 0
0 0 0 0 1 1 1 1 1 0 0
0 1 1 1 1 1 1 1 0 0 0
0 0 1 1 1 1 1 0 0 0 0
1 1 1 1 1 1 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0 1
1 1 1 1 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 1 1 1
1 1 0 0 0 0 0 0 0 1 1

u 0 0 0 0 0 0 1 1 1 I j

The set B  consists of a pair of vertices (/,0 ),(y , l)  for each column j  of the m atrix. 

Adjacency is between v =  (/,A) 6  B  and u,- G A if M,y =  k. Each vertex in B  has 

degree 6 and each two non paired vertices in B  are a t distance 2. Hence the derived 

graph on B  is üCgg \  l l i fg ,  the cocktail party graph. Each vertex in A has degree 11 

and each pair of vectors have common neighbours and so are a t distance 2. Hence the 

derived graph on A is JCig* The graph G is not, however, distance-biregular as for 

instance Ui and Ug have 10 common neighbours while Ui and ug have just 7. This is a 

counter-example to the conjecture th a t a biregular graph with distance-regular derived 

graphs is necessarily distance-biregular.

Note th a t in this case there is no distance-biregular graph with these derived 

graphs as by Theorem 4.4.3 it would imply the existence of a Hadamard m atrix of 

order 22.
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6 D istance-b iregular G raphs w ith  Specified  D erived G raph

In this section we consider various classes of distance regular graphs and ask 

whether they can occur as the derived graph of a distance-biregular graph. When 

the answer is affirmative, we also investigate all possible ways in which this can occur.

The following lemma relating the two derived graphs of a distance-biregular graph 

will prove central throughout this section.

L em m a 6 .0.1 : Let D  and E  be the derived graphs o f a distance-biregular graph G 

in the standard notation with V D  = A  and suppose D  is not a complete graph. Then 

a vertex o f E  corresponds to a maximal clique in D , being the set o f neighbours of that 

vertex in G. Different vertices correspond to different cliques and all edges in D  must 

be contained in a maximal clique that corresponds to a vertex o f E ,

P r o o f ;  Consider a vertex v e B = V E  as a vertex of G.  Its neighbours , . . .  

will form a clique in the derived graph D.  We must show th a t this clique is maximal. 

Suppose a further vertex u is adjacent to each of u i , . . . ,u «  in D.  We obtain a con­

tradiction by showing tha t in this case D  has diameter 1. The vertex v is distance 

3 from « in G, but every neighbour of v is distance 2 from u. Hence cg =  s and 

G4(u) =  0, so Dg (u) =  0. Now suppose two vertices v and v' determine the same 

maximal clique u i , . . . ,U g . Then all neighbours of v' are closer to v than v', giving 

/g =  s. By Lemma 3.2.2 cg =  r and G =  Kr^g, a contradiction. Finally for each edge 

(« ,« ') of £>, there is a path u ,v ,u ' of length 2 joining u to Thus the edge (u,u ') 

will be part of the maximal clique determined by v. ■
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The first proposition we will prove using Lemma 6.0.1 will tie up a loose end left 

over from section 4, namely precisely when a line graph may occur as the derived graph 

of a distance-biregular graph.

P r o p o sitio n 6.0.2 : Let G be a distance-biregular graph with derived graph D on

vertex set A  a line graph L{H) ,  Then one o f the following holds:

(a) D  is a complete graph E n (=  L (ifi,„ )),

(b) G  =  S{H) ,  where H  is a (A, g)-graph,

(c) G =  JB (2 ,n ), the Johnson biregular graph.

P ro o f ; Consider a maximal clique G of the line graph L( I f ) ,  If three edges c i , eg, eg G 

G they either have a vertex in common or they form a triangle v i , vg, vg in i f . If they 

have a vertex in common then the only maximal clique they are contained in is that 

determined by tha t common vertex (all edges incident with i t ) .

Consider first the case when I f  has no triangles. Then the vertices of B  correspond to 

vertices of H,  In order for two adjacent edges of H  to be adjacent in D  their common 

vertex must have a corresponding vertex of B,  Hence provided H  has no vertices of 

degree 1, G =  S(H) .  Also by Theorem 4.2.1 we know th a t in this case H  is a (A,g)- 

graph. The only graph with its line graph distance-regular and vertices of degree 1 is 

Ki^n- In this case D  is the complete graph Kn-

By Theorem 4.2.1 the only graphs with girth 3 whose line graphs are distance-regular 

are complete graphs. Hence in this case D  =  L{Kn)  for some n. But L[Kn)  =  J (2 ,n), 

the Johnson scheme on 2-sets. We will prove later in this section tha t J  (2,n) can occur 

as the derived graph of a distance-biregular graph G only if G is J B ( l ,n )  or /B (2 ,n ) .  

B ut J B ( l , n ]  is just 5(Ar„), which is case (b) again. ■
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6.1 Hamming Graph Derived Graphs

In this subsection we investigate when the Hamming graphs can occur as derived graphs 

of distance-biregular graphs. We also investigate the graph the complement

of the Hamming graph of diameter 2. The results obtained here will prove useful in 

the section on distance-bitransitive graphs.

P rop osition  6.1.1 : The only distance-biregular graph with Hamming derived graph

is S(Kg^g), the subdivision graph o f Kg^g. This graph is im piim itive and has derived 

graph H(2,q) .

P ro o f  ; Suppose G is a distance-biregular graph with derived graph D  on vertex set 

A  isomorphic to H(d,q) ,  By Lemma 6.0.1 the vertices of the other derived graph E  

correspond to maximal cliques of H[d,q)  as D  is not a complete graph. The maximal 

cliques of H(d,q)  are indexed by d-vectors over % U {♦} in which precisely one 

coordinate is ♦, a symbol not in the set X  used to define H(d,q) .  The clique indexed 

by c =  (t’l , . w i t h  ik =  *, consists of all the vertices of H(d,q)  which agree 

w ith c in every component except the A-th. We claim th a t every such clique must 

correspond to  a vertex of E ,  We prove this for the general clique c. The two vertices 

(»i, . .  •, • • • > (*i» • • • » *</)» where and are two distinct elements of

X ,  are adjacent in H[d,q) ,  so there must be a vertex v of B adjacent to both of them 

in G. The only maximal clique containing both of them  is c and so c must correspond 

to V. Hence the claim holds and G has vertex set the vertices of H(d,q)  together with 

its maximal cliques, with adjacency given by inclusion of a vertex in a clique.

Suppose now th a t d > 2, The clique v =  (*,*g,. . . ,  is distance 4 from v' =  

(»l, *3, *,«4,. and v" =  (♦,*3,»3i • • - J B ut every neighbour of v" is distance

3 from V,  while just one neighbour (11, 13, 43,.  ..,»<*) of v' is distance 3 from v. This 

contradicts G being distance-biregular.

If d =  2 the maximal cliques are indexed by {(»,*),(*,»’)|4 E %}. Each vertex (41, 13) 

of H (2,g) can be viewed as the edge joining (4*1, ♦) to (* ,43) in the complete bipartite 

graph with parts X \  = X  X {*} and X 2 =  {♦} X X .  Hence G =  <Ŝ (Ĵ g,g). The derived 

graphs of G are Kg^g and L(Kg^g) =  H (2 ,g). As Kg^g is bipartite G is imprimitive. ■
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P ro p o s it io n 6 .1 .3  : Let q >  2. The existence o f a distance-biregulsir graph G with 

derived graph is equivalent to the existence o f a projective plane P o f order q.

The graph G is the incidence graph of the structure P ' obtained from P by choosing 

two distinct points x and y and deleting all the lines through either o f them and all 

the pointer on the line xy. The graph G is antipodal.

P ro o f  : (=*-) Suppose G is a distance-biregular graph with derived graph D  =  U[2^qY  

on vertex set A  in the standard notation. Let X  denote the set used to define H  (2, g) 

(see Example 1.2.1) so th a t the set A  can be regarded as =  { (i,y )|i,y  G X }, with 

^<3((Ay), (^%y')) — 2 i  ^  C and j  ^  f .  Then ^^(u ) ^  0, for u in A, so by 

Lemma 6.0.1 the vertices of B  correspond to maximal cliques of D.

We claim th a t any maximal clique of D  has q elements, for suppose

c =  { (A ,y i) ,. . . ,(4 ,y ()}

is a maximal clique of £T(2,g)‘̂ . Then each pair differ in both coordinates and so 

are all distinct and likewise j i , . . . Hence t < q  — |% |. If ( <  g we can 

choose A+i E X \ { i ’i , . . . ,A }  and jg+i G X  \ { j \ , , , ,  ^je}. Then (A-HiJc+i) ~  (A ,It), 

for ( =  1, . . . ,  A contradicting the maximality of c.

We conclude tha t s =  g and as ff(2 ,g ) ‘̂ has intersection array

* 1 (g —1)(? — 2)
0 ( g - 2)2 g - 1

[ ( g - l )2 2( g - 2)

we can compute

1 Î - 2  r l
Î - 1  r ( g - 2) / ( , - l )  2

By Lemma 3.2.2, e\eg =  b\ 63 and so eg =  r (g — 2) /( r  — 1). Hence r — 1 |g — 2 and g — 1 |r . 

This forces r =  g — 1 and so

t(A) = « 1 1  g - 2  g - 1
g — 1 g — 1 g — 2 2 *

and

^ = 1 ;  g - 2  g i l  ’ 7 '  !
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The derived graph E  on the vertex set B  has intersection array

* 1 q(q — 2)
0 g(g — 3) 0

q ( q - 2 )  g - 1  ♦

This is an antipodal graph of diameter 2 with |{tt}UGg(tt)| =  g. Hence E  = 

the complete (g — l)-partite  graph with each part having g vertices. We label the parts 

of E  from 1 to g — 1. To complete the first half of the proof it remains to construct a 

projective plane P  of order g from G. The points of the plane P  will be the vertices of 

A  = V H  together with g +  1 points labelled The lines of P  will be

labelled by the vertices of B  together with 2g + 1  additional lines , m ,, t 6  X  and lçx> • 

Vertex v of B in block k of B  labels a line composed of the points { u S  A\u  v}u{pjt}. 

The line f, is the set of points {(*',/)!/ E X }u{z} while m,- is the set {(/,*)!/ E X }u{y}. 

Finally loo is the set of points {a;,y ,pi, . . .  ,p g _ i}. It is fairly straightforward to check 

th a t each pair of points lie on exactly one line and th a t each pair of lines intersect 

in exactly one point. Finally the four points ( A ( A /  E X ,t ^  /)  form a 

four-point. So P  is a projective plane of order g.

(<=) Suppose P  is a projective plane of order g. Let ® ,y ,P ' and (7 be as in the 

proposition statement. Let u be any point of P '. The point u lies on g -f 1 lines in P , 

but the line through x and the line through y (distinct because u is not on zy) have 

been deleted, so u lies on g — 1 lines in P '.  Let v be a line of P \  The line v intersects 

zy in P  in a point p ^  z or y. Hence v is incident with g points in P ' and G is a 

biregular graph. Two points lie on one line in P  so the incidence graph of P  has girth 

greater than 4. Hence girth(G) >  6. Now consider a point u of P ' and a line v of P ’ 

not incident with «. Let u ' be a point on v. The line uu' is in P ' iff z and y are not 

on uu'. Now uz and uy intersect v in two distinct points of v as u is not on xy. Hence 

precisely g — 2 points of v are coUinear with u in P '.  We thus see tha t a point vertex 

of G has the first seven intersection numbers well defined:

♦ 1 1 g - 2  . . .
g — 1 g — 1 g — 2 2 . . .

B ut in the argument above we took any line not incident with u and found it was 

distance 3 from u. So G6(«) =  0 and the point vertices of G are distance regularised

76



with array

r * 1 1 g — 2 g — 11
|_g—1 g — 1 g — 2 2 * J

Finally consider a line v of P' and a point u not incident with it. The only line 

through « which does not intersect v in P ' is the line through the point v D zy. Again 

we choose any point u not incident with v, so Gg (v) =  0 and the line vertices of G are 

distance-regularised with array

[* 1 1 9 — 2 g l
[g g - 2  g - 1  1 '

So G is a distance-biregular graph. We now investigate its derived graph on the point 

vertices. A point vertex u of G can be labelled by an ordered pair of lines (uz,uy), 

which clearly determine u as their intersection. Conversely a pair of lines (l ,m)  with z 

on I and y on m, but neither the line zy, determine a point vertex of G. We now use 

this labelling, so th a t the point vertices of G are

A  =  {(Am)|/ G G (P)(z) \  {zy} and m G G (P)(y) \  {zy}}

=  X  X X, with |X | =  g.

The distinct vertices (Am) and are adjacent in the derived graph of G iff they

are coUinear in P*, This wiU be true iff the line through them  in P  was not deleted, 

i.e. did not go through z or y. But the line (A m )((',m ') of P  is incident with z iff it is 

( =  1% while it  is incident with y iff it is m =  m \  We conclude th a t ((,m) is adjacent 

to  ( l \ m' )  in the derived graph iff f ^  T and m ^  m \  and so the derived graph is 

H ( 2 , q y , m
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6.3 Johnson Scheme Derived Graphs

We now consider distance-biregular graphs with derived graph a Johnson scheme graph, 

or the g-analoque Johnson scheme graph. In order to use Lemma 6.0.1, we must identify 

the maximal cliques in each of these graphs. F irst consider the standard Johnson 

Scheme graphs.

L em m a 6 .3 .1 : The maximai cliques o f J (d , n) are o f two types. Type 1 are the

d-subsets contained in a fixed (d +  l)-subset and type 2 are those subsets containing a 

fixed (d — l)-subset.

P r o o f :  Clearly maximal cliques of types 1 and 2 exist. Consider a maximal clique C  

of J  (d , n) and suppose C  is not of type 1. Pick any v i , vg G C . Consider a vg G C such 

th a t vg ^  U vg. But then [vg PI Vi D vg | =  d  — 1, as there is one element of vg which 

cannot be in or vg. Set u  =  v i D vg D vg and let {z, } =  v,- \  u , i  — 1,2,3. Pick any 

V G G , and suppose u v. B ut then z,- G v , i  =  1 ,2 ,3  and so v PI vi C v \  { z g ,z g }  

giving |v PI vi I <  d  — 2, a contradiction. ■

Note tha t type 1 cliques are of size d +  1 while type 2 are of size n — d +  1. If G 

is a distance-biregular graph with derived graph D  =  J (d ,n ) ,  then the vertices of E  

correspond to maximal cliques of J (d ,n ) . If the clique corresponding to a vertex v is 

of type 1 or type 2, then deg(v) =  d - f l o r n  — d + 1  respectively. Hence unless n — 2d 

the cliques corresponding to vertices must aU be of the same type. We treat the case 

n =  2d separately.

P r o p o s itio n 6.3 .3  : The only distance-biregular graphs having J (d ,n ) ,  n ^  2d, as 

a derived graph are JB (d , n) and J B ( d — l ,n ) .

P ro o f: Let G be a distance-biregular graph with derived graph D — J (d , n). We 

consider the two possible types of the cliques corresponding to vertices of E  separately. 

Case (i) The vertices of E  correspond to cliques of type 1. Consider any (d-f l)-subset 

X  of { l , . . . , n } ,  and choose two vertices u ,u ' of J (d ,n )  such th a t u U u '  = X .  Then 

|u PI u'l =  d — 1 and so u ~  u' in J(d , n). Hence they must be contained in a maximal
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clique corresponding to a vertex of E.  B ut the only type 1 clique containing u and u' 

is th a t determined by the set X .  Thus there is a vertex vx  of E  corresponding to the 

set X , adjacent to all the d-subsets contained in X . As X  was chosen arbitrarily the 

graph G  is /B (d ,n ) .

C ase (ii) The vertices of E  correspond to maximal cliques of type 2. Consider any 

(d — 1)-subset X  of { l , . . . ,  n} and choose vertices «, of J (d, n) with u D «' =  X . As 

u ~  u ' and there must be a vertex vx  of E  corresponding to X , adjacent to all the 

d-subsets containing X . Hence G is the graph J B ( d  — l ,n ) .  ■

P ro p o s it io n  6 .2 .8 : The only distance-biregular graph having J(d ,2d) as a derived

graph is /B (d ,2 d ) ^  J B { d — l,2d ).

P ro o f  : We first show that the vertices of E  cannot correspond to maximal cliques of 

different types. Suppose this is the case. Then we can find adjacent vertices in B  

corresponding to cliques of type 1 and type 2 respectively. Aa v there is a vertex

u E A  adjacent to both of them. Note th a t v corresponds to a (d -f  l)-subset X , and 

v' to  a (d  — l)-subset Y  such th a t Y  C  u C  X . There is exactly one other d-subset u' 

satisfying Y  C  tt' C  X . Then v and v' have exactly two common neighbours, u and 

u ', in G.  Now suppose there are two adjacent vertices in B  both of the same

type. These can only have one common neighbour in G (lu U it;' if of type 2, it; 11 w' 

if of type l ) . Thus E  must be bipartite with the vertices of one part corresponding 

to cliques of type 1 and the vertices of the other part to cliques of type 2. But as a 

bipartite graph is without triangles we can apply Corollary 4.3.4 to deduce tha t E  is a 

-graph with g even or Xg. In the former case G would be S(E)  and D  the line 

graph B (X ), while in the la tte r case G would be Xg,r for some r >  1 and D  the complete 

graph Kf ,  By the above adjacent vertices v and v' in E  have two common neighbours 

in G. This is not so if G is the subdivision graph of E.  Hence the only possible case is 

G =  Xg,g when we must have /(d ,2 d ) =  Xg and so d =  1, a contradiction.

Hence all vertices of E  correspond to maximal cliques of one type. A similar argument 

to th a t of Proposition 6.2.2 yields the result, together with the isomorphism

J B ( d - l , 2 d ) — . JB (d ,2d) 

defined by mapping all subsets to their complements. ■
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Hemmeter [lO] proves the following lemma for the g-analoque of the Johnson 

Schemes.

L em m a 6 .2 .4 : There are two types of maximal cliques in Jg(d^n). Type  J consists

o f all d’subspaces contained in a fixed (d-j-1)-space. Type 2 consists o f all d-subspaces 

containing a fixed (d — 1)-space. ■

The following two propositions are the g-analogues of Proposition6.2.2 and Proposi­

tion 6.2.3. The proofs are omitted as they copy exactly the method employed in those 

two propositions.

P ro p o s i t io n 6.2 .5  : The only distance-biregular graphs having the graph Jg(d, n),

n ^  2d, as a derived graph are J B q ( d — 1,ti) and JBg(d, n). ■

P ro p o s it io n  6,2 .6  : The only distance-biregular graph having Jg (d, 2d) as a derived 

graph is J B g ( d — l,2d) ^  JBg(d,2d). ■

6.8 P o la r  S pace G ra p h  D erived  G ra p h s

Finally we turn our attention to the dual polar space distance-regular graphs. The 

results prove a little disappointing as they show that many very interesting distance- 

regular graphs cannot occur as the derived graphs of distance-biregular graphs. We 

begin with a lemma characterising the maximal cliques of the dual polar space graphs, 

which is again due to Hemmeter [ll].

L em m a 6.8.1 : The maximal cliques o f a dual polar space graph consist o f all the

vertex (isotropic d-)subspaces containing a fixed (d— l)-dimensional istropic subspace. ■
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We arc now ready to consider when the dual polar space graphs can occur as the derived 

graph of a distance-biregular graph. The next proposition covers all such graphs.

P ro p o s itio n 6 .S.2 : Let G be a distance-biregular graph with derived graph D a

non-trivial dual polar space graph of diameter d on vector space V . Then d = 2 and 

G is a generalised quadrangle.

P roof : Let the exponent of the dual polar space graph D  be e. Consider any isotropic

{d — 1)-subspace v  of V . Then v  contains +  1 >  1 isotropic d-subspaces [5].

Picking two such d-subspaces u and u \  then u u' in D  and so there must be a

vertex of E  corresponding to a clique containing u and u '. But the only such clique is

th a t determined by the (d — l)-subspace u H u '  = v .  Hence all the isotropic (d — l)-

subspaces correspond to vertices of G. So now suppose th a t G is the graph with vertex

set the isotropic d-spaces and (d — l)-spaces with adjacency given by inclusion. We

must show that G is distance-biregular if and only if d =  2. We saw above tha t each

isotropic (d — l)-subspace is contained in -f 1 isotropic d-subspaces. Also each 
isotropic d-subspace contains (d — l)-subspaces all of which are isotropic. Hence 
G is biregular.

We wiU show that the d-subset vertices of G are distance-regularised. Consider two 

such vertices u and u' with =  2j. Then dimwDw' =  d —j .  An isotropic (d —l)-

subspace v adjacent to m' and closer to u must satisfy uD-u' C v C v!. Such a v is closer 

to u as the space u" =  +  flu  is an isotropic d-subspace with d im (unu") =  d —j - f  1, 

since

=  (v -f n  u)-*- 

=  n  n  w)'^

=  v-*- n  (v -f

D n  (v -f u) as D u 

=  V V"*- n  « as 1/ C

and dim — dim u" =  dimu-^ — dim u. But u" is also the only isotropic d-subspace

containing v  which is closer to u, since certzdnly any such subspace must be containec 
in V -f n  w =  u". Hence we have determined the intersection numbers C2j(u)  =  {
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and C 2 j - i ( u )  =  1. Thus u  is distance-regularised. If G is distance-biregular we can 

compute the opposite array by Lemma 3.2.2. Thus assuming u E A in the standard 

notation, we have

Hence 6 4  < and >  1. But by Proposition 3.2.1,1 =  C5 > /4 >  1, a contradiction, 

if diam(G) >  4. But if diam(G) =  4, d =  2 and as G has girth 8 (cg(u) =  =  1),

G is a generalised quadrangle. ■
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7 T h e  P ra e g e r , S ax l a n d  Y okoyam a T h eo rem

Praeger, Saxl and Yol^yama [15] recently proved a very strong result about the 

types of groups tha t can act primitively and distance-transitively on graphs. We begin 

this section by stating their result. We then give the proof of a well-known proposition 

covering the abelian socle case. Next we will present a result of O ’Nan and Scott 

which forms the basis of Praeger, Saxl and Yokoyama’s proof. Finally we will give an 

alternative proof of part of Praeger, Saxl and Yokoyama’s theorem. The proof they use 

is group theoretic, while tha t presented here is perhaps more understandable to graph 

theorists.

T h e o rem  [15] 7.0.1 : Let G be a finite primitive distance-transitive graph of

diameter d with T a group acting d/stance-transitiveiy on G. Then one of the following 

holds:

(a) G is the Hamming graph or d = 2  and G is the complement of the H a m m i n g  

graph,

(b) T is almost simple,

(c) ( r ,V G ) is a f fu ie .9
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7.1 T h e  Affine C ase

Consider first the case when the perm utation group (r,V G ) has abelian socle.

P rop osition  7.1.1 : I f  (P, X) is an affine, permutation group with socle N  — {Z^, 

then N  acts regularly on X  and P <  AG L[m ,p).

P ro o f ; F irst note th a t N  acts transitively on X  as the orbits of N  would otherwise 

be non trivial blocks of imprimitivity:

Let g in P and O an orbit of N .  Then Og is an orbit of N ,  as for n G X , z 6 O,

xgn  =  xn 'g G Og, as n' =  gng~^ G N, 

and xng =  xgn”, where n” = g~^ng E N.

Now suppose n i n  N  fixes z in X . Let z ' be any element of X  and n' in N  such that 

zn ' =  x ' . Then
/  /  /  ~  1 /X n = X n nn

=  xnn* =  zn ' =  z ', 

so n  is the identity and N  acts regularly.

Finally an element g in P acts on iV =  (Zj%y conjugation. As g~^nn'g  =  g~^ngg~^n'g, 

this gives us a map

a  : P —  ̂ GZr(m,p).

The kernel of a  is G r(X ). Let y in C r{N ),  so th a t g fixes an element z. Then as above 

for any z ' in X , choose n ' in X  so tha t xn* =  z ' and we have

X* g — xng =  xgn = xn = x ' ,

So g is the identity, Gr(iV) acts regularly and as Gr(iV) >  iV, we have Cr(iV) =  X . 

In conclusion we can write P =  P^ !X X  for some fixed z in X  and a  embeds P j into 

GL[m ,p).  Hence G < AG L[m,p). m
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7.3 P ro o f o f Praeger, Saxl and Yokoyam a

We now present O ’Nan and Scott’s theorem. As there is no published reference due to 

O ’Nan and Scott, we give a reference to a paper by Cameron [3] giving an exposition 

of the theorem. Unfortunately this exposition is deficient in the case when the wreath 

action is twisted. We merely note th a t case here.

Let r  be a primitive perm utation group on a set O, with degree n and non abelian 

socle N.  Then N  — Ti X T2 X . . .  x  2%%, where , . . .  ,Tm are all isomorphic to a fixed 

non abelian simple group T .  Moreover either

(a) r  is a normal subgroup of a primitive group To* of degree no and T <  TolSym(m)  

(with the product action) where n =  n ^ ,  or

(b) For M 6  O, X n r „  = D i X .  . . x D i  where m — kl for some k and D, is the diagonal 

subgroup of x  . ..  x  Tik and n — or

(c) the action is analagous to tha t in (a) except th a t it is twisted.

We are now ready to present a graph theoretic proof of the following proposition, 

which constitutes a major part of the proof of the Praeger, Saxl and Yokoyama Theorem 

(see the rem ark th a t follows the exposition).

P rop osition  7.2.3 ; If G is a graph on which a group T acts primitively and distance- 

transitively and further the permutation group (r,VG) satisfies case (a) of the O ’Nan 

and Scott theorem with m > 2, then G is the Hamming graph for some q, or

possibly its  complement JT (2,g)®, when m =  2.

R em ark : Before beginning our proof of this proposition we note th a t in the case when 

the perm utation group (P, YG) satisfies case (a) of the O ’Nan and Scott theorem with 

m =  1, the group T is almost simple and we thus have case (b) of the Praeger, Saxl 

and Yokoyama Theorem. If on the other hand the socle of F is abelian we have shown 

in Proposition 7.1.1 tha t (F, Y G) satisfies case (c) of the Praeger, Saxl and Yokoyama 

result. Thus we fail to deal with the twisted wreath case and socles of diagonal type 

(case (b) of O ’Nan and Scott). In the la tte r case the graph is a Cayley graph of the 

subgroup M  — E\ x  . . .  x  , where E, — x  . . .  x  T /jt- i , as Af fl G« =  {!},

for u G YG and |M | =  =  n =  |YG|.

85



P roof o f P roposition  7.2.2 : The only case of the O ’Nan and Scott Theorem 

where the socle is not a minimal normal subgroup is (b) with I =  1 and k = 2 = m.. 

Hence in our case the subgroup N  is minimal normal as well as the socle. We first fix 

notation for the proof. In our case N  is non abelian and V G  =  X "’ for some set X  on 

which a group Fq acts primitively with normal subgroup T  and F < Fq ^5ym(m) (with 

the product action) and N  =  Ti x  . . .  x , with T{ ^  T .  Let * E X  be some fixed 

element of X  and x =  (* ,. . . ,* )  G VG. Also let x{i,u) =  u, G VG

with u in the z-th coordinate. Then N  C\Tx = S\ X . . .  X 5m, where 5, =  (T,)*. We 

define the Hamming distance .between two vertices x and y in YG to be the number 

of coordinates in which they differ and denote this number by y). This function

is clearly a metric on Y G. Our proof will be divided into several lemmas. In the first 

three lemmas we incidentally do not require F to act distancc-transitivcly.

L em m a 7.2.8 ; Let a  G F, then there exists a G Sym(m) such that a~^T, a =

P ro o f :  Conjugation by a is an automorphism of X . Hence X  =  a ~ ^ T ia x . .  .xa~^T,j,a. 

But by the Krull-Remak-Schmidt theorem, since Z (X ) =  {l}, there is only one way of 

decomposing X  into a direct product up to perm utation of the factors. ■

L em m a 7 .2 .4 : The subgroup F ,  of F acts transitively on {Ti, . .  . ,Tm }  and i f u ^ *

then there exists g e T x  such that x[i,u]g  =  x[j,u ')  for some u ' G X  \  {♦}.

P r o o f ;  Let the subgroup generated by Ti under the action of I^be M . M  is then the 

direct product of some of the T,- by Lemma 7.2.3. Now X r(A f) >  F ,,  but Xp (AT) ^  F^ 

as Ti does not fix z. Hence, as F , is a maximal subgroup, Xr(Af) =  F and Af <3 F. But 

in this case as X  is a minimal normal subgroup Af =  X , tha t is F , acts transitively 

on the T{. Now choose a G Fj. so th a t a~^T{a =  Tj, Let t G T,- such th a t ( z ) t  =  z ( r , u )  

and let t* =  a~^ta G Tj. But then

x{i,u)a  =  (x)a~^ta =  (x)t*.

The vertex (z)Y has all coordinates * except the ;-th  as required. ■
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L em m a 7.3.5 : F preserves Hamming distance.

P roof: Let dff{y ,z)  = t  and g G F. Let a G Sym(m) such tha t g~^Tig =  as

guaranteed by Lemma7.2.3. Choose t, G T, so tha t (y)fi =  z, where n — t\ .. If y

and z agree in the i-th coordinate take t, =  1. Then {y)gg~^ng =  (z)g. Now

g~^ng =  g~^iig . . . g ’ ^tmg

and precisely t  of the g~^iig G T^^i) are non trivial. Hence (y)g and (z)g differ in at 

most t  coordinates. Applying g~^ to {y)g and (z)g we see tha t [y)g and [z]g differ in 

at least as many coordinates as y and z. We conclude th a t ((y)y, =  dH (vA)

and F preserves Hamming distance. ■

This lemma shows tha t the group F is always a group of automorphisms of the 

Hamming graph. We wish to show that the distance transitivity and primitivity of F 

forces the graph G to be the Hamming graph, or when m =  2 possibly its complement. 

The distance-transitivity of F gives us a simple corollary to the last lemma.

Corollary 7.2.6 : There exists a function f  from the distances of G to the set

{ l , . . . ,  m} of Hamming distances, such that

5i/(y ,^) = /(^ (y ,^ ) ) , for all y ,z  G VG.

P ro o f  : As F acts transitively on pairs of vertices a given distance k apart and at the 

same time F preserves Hamming distance by the lemma, all the pairs at distance k 

apart in G  are at the same Hamming distance. ■

In the following the function /  will be tha t referred to in this Corollary. We will 

also refer to the image of a distance in G under the function /  as its type.
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L em m a 7.2 .7  : / / a<ÿacejicy is of type J, that is f ( l )  =  1, t/ien the graph is the

Hamming graph.

P ro o f :  Consider the induced subgraph G (A vi, . . .  , 1;^ ) of G on the set of vertices 

X ( l , — 1 , ' ^ , ' ^ 1 - 1 - 1 , E X }.

We will often refer to the vertex ( v i , . . .  v^) as u if it is clear from

the context tha t it lies in the set X (A v i, . . .  By choosing t j  G Tj such that

(A' — 1), we get an automorphism n = t\ . . . tm  of G mapping the vertices 

of X ( i , v i , .  . .,Vm)  to those of X (A v i,. ..,v j„ ) . Hence

G(A v i, . . . ,  Vp,) — G ( A , • • • , — G(i)

for some graph G[i). Next consider b E such th a t b~^T{b =  Tj (such a 6 exists 

by Lem ma7.2.4) and consider the subgraphs G (A ♦ ,. . . ,♦ )  and G (y ,♦ , . . . ,* ) .  Clearly 

X [ i , * , . . . ,  *)b =  X (y ,* ,.. .,* ) so th a t 6 is an automorphism of G taking a copy of G(t) 

to a copy of G(y). Hence G($) =  D ,  for all i  and some graph D .  Let E  be the graph

E  =  G ( l ,* , . . . ,  *) X . . .  X G(m, * , . . . ,* )

and define a map

i p : G — y E

by ^

=  (v i,...,V p ,).

We will show that y? is an isomorphism.

Suppose (v i,.. .,^m ) (^i,-**,^m) G. As / ( l )  =  1 there exists some i  such that

for all y 76 2, vj — Vj and so v, ~  v*- in G {i ,v i , . . . ,  Vm). Then v,- ~  v'- in G(i, 

and so ( v i , . . . ,  v,„) ~  (v ^ ,... ,v ^ ) in E.

Now suppose { v \ , . . .  ,Vm) ^  (v { ,...,v '^ )  in E .  Then there exists some i such that for 

y A Vj — Vj and v, ~  -yj in G (i,*, . . . ,* ) ,  by the definition of the cartesian product.
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But then v, ~  -yj in G(Avi,-« *,Vm) and so (vi , . . .,1/^) (1/%.. . , 1;%,) in G.  We

conclude tha t y? is an isomorphism and tha t

G ^ D x . . . x D .

Clearly then /( t)  =  A =  1, - , m. The graph D  must be connected as G is connected.

If D  has diameter greater than one, then G has vertices at distance two but Hamming 

distance one, contradicting /(2 ) =  2. We deduce tha t D  is the complete graph and so 

G is the Hamming graph. ■

L em m a 7.2.8 ; 5,- =  (T, )* has no fixed points in X  \  {♦}, for i =  1 , . . . ,  m.

P roof; Suppose 5,- has a fixed point u E X  \  {♦}. Then 5, <  (T,)u. But |5 ,||X | =  

|T, | =  | ( T ) u | | X | ,  and so (T,)u =  5,-. As T,- acts transitively on X  we can find t E T, such 

th a t (*)t =  u. Then =  (27 )u =  •S'l, so t G N t ,  (5,) \5,-. Hence 5,- <J N t ,  (5,) ^  5,

and as 5,- N ti  (5,) ^  T{. Let W{ — Xy, (5,). The subgroup W = Wi x .. . x  Wm is 

invariant under the action of as for g G F j ,  if g~^T{g =  Tj, then g~^Sig — Sj  and 

so g~^NTi(Si]g =  NTj(Sj).  But then

F ^ < X r ( W ) ^ F ,  a s W ^ F .

Also F Xr(lY) as lY ^  F̂ .̂ Hence F^ is not a maximal subgroup, contradicting the 

primitivity of F ’s action on G. u

L em m a 7 .2 .9 : The function f  satisfies / ( l )  <  3. Also i f  / ( l )  =  2 then /(2 ) =  1.

P ro o f  : Let adjacency be of type k > 1. W ithout loss of generality

z =  ( u i u * . ,  ♦,*••,*) =  a;'.

Choose ai G 5, such tha t (ui)a,- =  uj ^  u ,, i =  l , . . . , k .  This is possible by 

Lemma 7.2.8. Then

(z')oi =  z" =  (u j, «2, ^  =  (x)ai.
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Hence d{x*,x") =  2 as =  1 ^  A. So /(2 )  =  1.

Now assume ^ > 2 and consider

(x')aia2 = z f  =  { u i , U 2 , U 3 , . . . , U i t , =  (z ja iag .

This gives d{x* ,x^) = 2  and /(2 ) =  2, a contradiction. ■

L em m a 7.2.10 : I f  m  > 2 then / ( l )  =  1.

P roof: Suppose / ( l )  ^  1. Then by Lem m a7.2.9, / ( l )  =  2. Let

X  =  ( * , . . . , * )  ~  ( « 1  , « 2 ,  ♦ , • • * ,  * )  =  x ' .

We can choose 6 G F j so tha t b~^T\b — T^. Then

(z ')6 =  (yi,va,Wi,V4,...,V p i) =  z", with u\ ^  ♦.

So z" ~  z, with one Vj not equal to * corresponding to U2, say v*.. Choose a E Sk

so th a t (vjt)a =  v'y. ^  wjt* But then z^ =  (z")a ''>• z and z^ and x* differ in 3 or 4

coordinates, while d(zA z') =  1 or 2. As / ( I )  = 2  and f (2)  =  1 by Lem m a7.2.9 we 

have a contradiction. ■

L em m a 7.2.11 : I f  f(2)  =  1 then ^  D  x  D  for some connected graph D.

P ro o f : Adapting the notation of Lemma 7.2.7, let G(Av3_,) be the induced subgraph 

of G(^) on the set of vertices

f { (u ,V2) lu  G X } ;  i f î  =  l ,
X ( i ,v ^ - i )  =  {

{ { ( v i , ? i ) | u  G X } ;  if  i  =  2.

Again

<^(A^3-i) =  G(Avg_,) =  G(i),

for some graph G (i), and by choosing 6 G F , so tha t b~^T\b =  Tg, we see that 

G (l) =  G(2) =  D. Now let E  be the graph G (l,* ) X  G(2,*) and define a map

{P : G(^) — b E
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by (p(vi,V2 ) =  (vi,V2). We again show that <p is an isomorphism. Suppose (^1,^ 2) ~  

(vj,V2) in A s  /(2 )  =  1 then either =  v\ or V2 = v^. If v\ — v\<, V2 ^  v'̂  in

G(2,v[) and so also in G(2,*). Hence (^1,^2) ~  Vg) in E .  Similarly if V2 =  Vg. 

Now suppose (vi,î;2) (^1,^ 2) Again i;! =  v[ or V2 — v^. If V\ =  v\ then V2 ^

in G (2 ,*) and so V2 ~  Vg in G (2,i;i). Hence (^1, 1/2) ^  Similarly if

V'2 = ^2 - We conclude tha t p  is an isomorphism and th a t G^^) ^  D  X D. The graph 

D  is connected as G^^) is connected by the primitivity of the action of F. ■

For the rest of this section D  will be the graph introduced in Lemma 7.2.11. We 

will also need some further notation.

D e f in it io n 7.2.12 : For two vertices x =  (z i,Z 2),y  == (y 1, 3/2) E YG we define

^ '(« ,y ) =  {^D(aJi,yi),^D («2,y2j}.

This is well defined as Sc (i ,* )(x i ,y 2 ) =  <9g(i,„)(zi, 2/2) for all v E X .

L em m a 7.2 .1s  : F preserves the function d'.

P r o o f :  Let y E  F and x =  (z i,Z 2),y  =  (y i,y 2) in Y G .  Choose ti E T\ and t 2 E T2 

so tha t (z i) ti  =  2/1 and («2)^2 =  y2- Then (x)gg~^tit2 g =  (y)y. But y“ ^fif2y =  ^1̂ 2- 

Now let 2/  =  (2/1, *2)- Then (x)gt\ =  (y')y. If g~^T\g  =  T2 then (z)y and {y')g differ 

in the second coordinate, otherwise they differ in just the first. Let j  he the coordinate 

in which they differ. Then ((y')y)j =  ((y)y)j- But (x)g and (y')g lie in G(j, ((z jy ja -j)  

as X  and y' lie in G ( l , Z 2 ) ,  while g is an isomorphism between these two copies of D .  

Hence

^D(((®)y)j, ((y)y)j) =  ^D((Wy)j,((y')y)j)
=  ^£>(«i,yi)

=  d D (x i,y i) .

Applying a similar argument for y” =  (^1, 2/2) we see th a t d*(x,y) =  ^ '((z)y , (y)y). 

Hence F preserves the function d ' . ■
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C o ro lla ry  7 .2 .14 : There is a function g from the distances in G to the set of pairs

of  distances in D  such that y (^(z ,y )) =  d'{x, y), for all x ,y  E VG,

P ro o f  ; The corollary follows from the lemma and the fact th a t T acts transitively on 

pairs of vertices a t a given distance in G. ■

In the following lemmas the function g will be th a t defined in Corollary 7.2.14.

L em m a 7.2.15 : Suppose g(i) =  {n,m} with n >  0. Then there exists j  ^  i with

|y -  <  2 and g{j) =  {n -  l,m } .

P r o o f :  Consider a vertex (tt,v) E G,•(♦,♦) with =  n and = m.

Choose u' E VjT) so that u* ^  u in D  and (*,«') =  n — 1. Let j  — ^((*, *), (wA^)). 

Then |y — i| <  2 as (w',v)) =  2 and ^  i  as g(j) = {n — l,m }  ^  g(i). ■

We can consider the situation diagrammatically as a half grid with nodes indexed 

by pairs of distances in D.  The distances of G are then assigned by the function g to 

the nodes of the grid. If distance i  is assigned to some given node then an adjacent 

node nearer the origin must be assigned a distance differing from i by at most 2. Note 

th a t the node {0,l} is assigned only the distance 2. Further note tha t vertices in 

G2j+2(®) =  are adjacent in G^^I to vertices in G3j(z ) =  Gj^^(z). Hence 2j

and 2y +  2 are assigned either to the same or adjacent nodes.

L e m m a 7 .2 .16 : I f  diam(G) > 5 then g(2i) =  {0,i}.

P ro o f :  We use an induction argument on i  including in the induction hypothesis the 

claim th a t if g(j) =  {n,m} with n +  m =  A then j  < 2 i . We know th a t y (2) =  {0, l}. 

Consider first y (4). This cannot be {0,1} as 2 is the only distance assigned to this 

node. Hence by the above y(4) =  {0,2} or { l , l} . If y(4) =  {1,1} then y (6) =  (2 ,l )  

as y(6) ^  {1,1} by Lemma 7.2.15. Hence there exists by Lem m a7.2.15 some distance 

y with |y — 6| <  3 and g(j] =  {0,2}, but then again by Lem m a7.2.15 |y — 2| < 3 as 2 

is the only distance assigned to the node {O,l}. Hence j  = 4 which is impossible as 

y(4) =  { l , l} .  Hence y(4) =  {0,2} and the induction hypothesis holds for i < 2. We 

now proceed with induction on i .  Suppose the result holds for i — 1 >  1. Then by the
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above g(2i) =  {0,î} or {l,« — l} . The possibility g(2i) =  {0,i — 1} is excluded as no 

distance assigned to {0,i — 2} can be larger than 2i — 4 by the hypothesis. Suppose 

g{2i) =  { l , i  — l ) .  By Lem m a7.2.15 there exists a distance j  with |2t — y| <  2 and 

y(y) =  {1,1 — 2}. By the hypothesis j  < 2i — 2 and so =  2i — 2, contradicting 

g{2i — 2) =  {0,2 — l} . We conclude that g(2i) =  {0, 2). Finally suppose y(y) =  {n,m} 

with n -|- m =  2* and assume without loss of generality th a t n >  0. By Lemma 7.2.15 

there exists j '  with |y — y '| < 2  and g(j')  =  {n — 1, m}. As n — 1 -f m =  » — 1 we can 

apply the induction hypothesis giving j '  < 2i — 2. B ut then j  < 2i as required, m

C oro lla ry  7.2 .17 ; diam(D) <  3.

P ro o f :  Suppose diam(J9) =  d >  3. Then diam(Gl^I) =  2d, so Fu has at least t orbits, 

where

t =  (d +  2 )(d +  l) /2

and so

diam(G) > < - 1  =  ( d + l ) ( d  +  2 ) / 2 - l  > 2 d -h 2  

as d >  3. But then by the lemma y (2d -f 2) =  {0,d -f l} , a contradiction. ■

L em m a 7.2.18 : diam(D) 2.

P ro o f :  Suppose diam(D) =  2. Then diam(Gl^I) =  4, so F« has a t least 6 orbits and 

diam(G) > 5. But if diam(G) > 6 then y (6) =  {0,3} by Lemma 7.2.16, contradicting 

diam(D) =  2. Hence'diam(G) =  5 and each node of the half grid corresponds to 

exactly one distance in G. Applying Lemma 7.2.15 we can eliminate all but two possible 

functions y. In both cases y (3) =  {1,2} and y (5) =  {2,2} while y(l) and y (4) must 

be assigned between {1,1} and {0,2}. If y (l) =  {0,2}, consider two vertices y ,y ‘ of D  

which are not adjacent. Then (y,y') ~  (y,y) ^  (y ',y) in G. But ^ '((yA y),(y,yA ) “  

{2, 2} and so ^((yAy),(y,yO) ~  y"X {2,2}) =  5 clearly contradicting their having 

a common neighbour (y,y). Now suppose y(l) =  {1,1} and again choose y and y* 

non adjacent in D  with y ^  y” y*. Now (y,y) ~  (y '\y ' ')  ^  (y,y^) in G. But 

^ '((y ,y ),(y ,y '))  =  {0’2} and so

^ ((y ,y ),(y ,y '))  =  9"M{o»2}) =  4,
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again contradicting their having a common neighbour in G. ■

It remains to consider the case when diam(Z>) =  1 so tha t G^^) =  ATg x  Kg, for 

some g >  4 and diam(G) ^  4 By simply comparing the intersection arrays for G 

and GI^A we can show th a t in this case G is the complement of the Hamming graph 

H{2,q), This completes the proof of Proposition7.2.2. ■
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8 D istance-b itransitive Graphs

This section is concerned with distance-bitransitive graphs. We start by showing 

an analogous result for distance-bitransitive graphs to those in section 3 about the 

derived graphs of a distance-biregular graph. Next there is a subsection on imprimitive 

distance-biregular graphs. The central subsection is concerned with applying Praeger 

and Saxl’s result to distance-bitransitive graphs. Finally we present some examples of 

distance-bitransitive graphs, both primitive and imprimitive.

It is shown in section 3 (Proposition3.1.1) th a t if G is a distance-biregular graph 

then G(^) is the disjoint union of two distance-regular graphs called the derived graphs 

of G. The following lemma presents an analogous result for distance-bitransitive graphs.

P ro p o s it io n  8.0.1 : Let (P,G) be a distance-bitransitive pair. Then G^^I is the

disjoint union of two connected graphs D  and E  on each of which T acts faithfully and 

distance-transitively.

P ro o f  : Let A U B  =  YG be the bipartition of G. In Ĝ Î no vertex of A  is adjacent to a 

vertex of B .  Hence G^^I is the disjoint union of two graphs D  and E  with V D  = A  and 

V E  — B .  For u ,u '  vertices in A, dQ ( i ) ( u ,u ' )  =  d G ( u , u ' ] / 2 . Similarly for v ,v '  vertices 

in B . So D  and E  are connected graphs and T  acts transitively on pairs at a given 

distance apart in both D  and E .  It remains to show th a t the action of F is faithful. 

Suppose y in F is the identity on D. Let v in B and u i , . . . ,u *  be the neighbours of 

V in G . Since y fixes u i , . . . ,u « ,  (v)g is also adjacent to precisely u i , . . . ,u « .  Suppose
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(v)g ^  V ,  Considering the intersection array for v we must have:

i(B)  = * 1 8
8 r — 1 *

So G =  Kr,s the complete bipartite graph. We cannot have r > | l  as this would mean 

th a t we have two lines being the same subset of the points (see Definition 1.1.8). But 

r =  1 means we have just one line, which was excluded in our definition of a distance- 

bitransitive pair. We conclude that g fixes every vertex of G. Hence g is the identity 

and r  acts faithfully on D.  Similarly T acts faithfully on B . ■ I
This result shows that our definition of imprimitivity for a non-regular distance- 

bitransitive graph coincides with the definition of imprimitivity when it is viewed as 

a distance-biregular graph (This follows from the result of [16] mentioned in Defini­

tion 1.1.8). It is therefore natural to tu rn  our attention to the study of imprimitivity 

in distance-biregular graphs.

8.1 Im prim itiv ity  in  D istance-b iregular G raphs

It is known that the intersection array of an antipodal distance-regular graph is ‘palin­

dromic’. To be precise if a distance-regular graph G has intersection array

 ̂ Cj • • • — 1
0 Qrl . . .  1 U j
6q b \  . . .  *

then G is antipodal if and only if b{ =  i =  0 , 1 , . . . , d, i  ^  (d /2 j. The proof of

this is in [7] though it is not explicitly stated there. This result means th a t one of the 

intersection arrays of an antipodal distance-biregular graph must be ‘palindromic’, as 

the next proposition makes explicit.

P roposition  8.1.1 : Let G he a non regular distance-biregular graph with derived

graph D  on vertex set V D  — A . Then D  is antipodal i f  and only i f  Gd(u) ^  0 for u in 

A , and l(A) satisfies 6, =  Cd-i, » =  0 ,1 , . . . ,  d, i ^  d/2.
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P ro o f  ; (=^) Suppose Gd(u) =  0 . Then Cd-i =  e and the derived graph D  has diameter 

d* — df2  — 1, as d is even by Lemma 3.3.2. Let D  have intersection array;

Then

a^i =

*  C j  . . .  Cjt

‘ p )  =
0  O j  . . .  afjt .

b*Q 6  J  . . .  *  _

( c j - 2 ( f > j - 3  —  1)  4 -  b d - 2 { c d - 1 - 1 ) )

C2

(see Proposition3.1.1).

B ut Cd-i = 8 > 1. Hence a*̂ , > 0 and so ^  c' ,̂, and D  is not antipodal. We conclude 

th a t Grf(u) ^  0 . Suppose now that bj = Cd-j for /  <  i ,  for some i ,  1 <  i  < d/2 . This 

is true for i =  1, as 6q =  cj =  r. We consider the possible parities of i  separately, 

case (Î) : i  odd. Here

b i - l b i l c 2  =  ^ ( , - - l ) / 2  =  4 / 2 - ( , - l ) / 3

=  l ) / 2  — Od-i-^lCd-ifc2

as (z — l ) /2  ^  [d '/2 j.

B ut 6,_i =  Cd-i+i and so 6,- =  Cd-i as required, 

case  (ii) ; i  even. Here

C,-C,_i/C3 =  cjy2 =  b* ij2 - i j2

=  ^ ( d - 0 /2  =  l / c 2 ,

as d/2 — 2'/2 ^  [d '/2 j.

But bi-i = Cd-i^i 90 c,_i — bd-i-\-i as

6,-1 + c ,_ i  = 8 — Cd-i4-i -\-bd-i-\-i.

We conclude th a t c,* =  bd-i and so 6, =  Cj_,. The result follows by induction. 

(4=) Let df =  d/2, the diameter of D  as G<i(u) ^  0 . Then

b j  =  62  J  6 3 ^ - 1- i / c 3  =  C r f _ 2 j C < / _ 2 j + i / c 2

- C d ' - j ,  y =  0 , l , . . . , d ' ,  y 7̂  [d '/2 j.
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We conclude this subsection by showing th a t both derived graphs of a non-regular 

distance-biregular graph cannot be imprimitive.

P ro p o s i t io n 8 .1.2 : Let G be a non regular distance-biregular graph. Then at least 

one of the derived graphs is primitive. Suppose the derived graph E  is imprimitive. 

Then one of the following holds.

(a) G is the subdivision graph o f E , which is a bipartite (k,g)-graph,

(b) E  is an antipodal, non bipartite graph with diam(E] > diam{D).

P r o o f :  We consider first the case when G has vertices of valency two.

C ase  (i) : G has vertices of valency 2. By Corollary 4.3.3 we know th a t in this case G is 

the subdivision graph of one of its derived graphs, which is a (b,y)-graph or G = K 2 ,r- 

The latter graph is primitive if r 7̂  2, so we must consider only the first possibility. 

Let E  be the derived graph satisfying G  =  5(jE7). Then in the standard notation r =  2 

and 8  = k the degree of E.  The intersection array of the second derived graph D  may 

be computed as:

*  1
0 k - 2

2(/: — 1) k — 1

if y is odd, while if y is even it is

* 1
0 k - 2

;2{k -  1) k - 1

1 1 4
k — 2 k — 1 2(6 — 3)
k — 1 k — 2  *

1 2
k - 2  2 ( k - 2 )  
k — 1 *

In no case is D  bipartite, as we must have k = 8  > 2  = r for the non regularity of G. 

The only case when the array is antipodal is when A =  3,y =  3. This means th a t E  is 

K 4  and G =  S{K 4 ). Here E  is primitive while D  is antipodal and non bipartite with 

diam[D) > diam.(E). This is case (b) of the proposition, with D  and E  interchanged. 

For all other values of k and y, D  is primitive, while the (b,y)-graph E  is imprimitive 

only if bipartite (y even). This is case (a) of the proposition.

C ase (ii) : G  has no vertices of valency 2. It is immediate th a t both derived graphs 

contain triangles and so neither is bipartite. If derived graph E  is antipodal, then 

diam(E)  =  d/2  by Proposition8.1.1. But for the second derived graph D, diam{D) <
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d/2 and so diam(E)  >  diam[D). Hence it remains to prove th a t both derived graphs 

cannot be antipodal. Suppose this to be the case. By Proposition8.1.1 both intersection 

arrays for G are ‘palindromic’ with and Gd(v) non empty for u in A, v in B .

Let

4 A ) = f ‘ ••• f  4
| _f  o i  . . .  O i - i  be e g - 1  . . .  Cl

and

A ••• A - i  f i  ••• »1
[_ ® 1̂ • • • 1 f t — 1 • • • /] * J

where t  =  d /2. Consider first f odd. Here by Proposition8.1.1 and Lemma 3.2.2 

bgCi-i =  egfi- i  and cgcg-i =  fg fe - i-  Adding we obtain

ce- 1 (be +  eg) =  fg-1 (eg -f /g)

and so fg - i /c g - i  =  s /r .  But then

bgfeg =  /g -i/cg _ i =  s /r .

For f  even bg-\bg — eg_ i eg and 6g_ % eg =  eg_i/g, by Lemma 3.2.2. Adding we have

bg- 1 (eg -f bg) — eg- 1 (eg -f /g)

and so bg-i/eg-i  =  s /r .  Now suppose th a t for some 2t +  1 <  i, 62n_i/e2,+i =  e/r .

As C 2 , + 1  4 - 6 2 , 4 - 1  =  8 and e 2 , - i - i  4- A ,-1-1 =  r, w e  have

C2i+i//2i-!-i =  (» -  62,+i)/(r -  e2,>i) =  8jr.

Then as

C2i +  lC2i‘ =  /21 +  1/21

/ 2 , / c 2 , -  =  C2,-f 1 / / 2 1  + 1 =  » / r  

and as eg, -}- A , =  », while 6 2 /  4- C2,' =  r, we have

62.762,- =  (» -  A, )/(?" -  62. ) =  »/r.

Further as

62,-162, =  62.-162,

6 2 . - 1 / 6 2 . - 1  =  6 2 , 7 6 2 ,  =  s/r.

Hence by induction 61/e i =  (s — l ) / ( r  — l) =  » /r and so r =  », a contradiction. ■
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8.2 Automorphism Groups of D istance-bitransitive Graphs

We now state and prove the main result of this section.

T h eo rem  8.2.1 : I f  (F, G) is a primitive distance-bitransitive pair and G is not

regular, then F is almost simple.

P ro o f :  By Proposition8.0.1, F acts distance transitively (and faithfully) on each of 

the derived graphs D  and E  bf G. As G  is primitive, so are both derived graphs and 

we can apply Theorem [15] 7.0.1 to each of the graphs D  and E.  We consider the three 

possible cases for the graph D:

(a) D = H[d,q) or D  =  JT(2,qr)‘̂ . By Proposition6.1.1 and Proposition6.1.2 this 

cannot occur if G is primitive.

(b) F is almost simple.

(c) (F ,F D ) is affine. In this case the socle iV of F acts regularly on F D  (see Propo­

sition 7.1.1) and so \VD\ =  jiVj. But consider the action of F on E .  As F is not 

almost simple and we can exclude the case when E  is of Hamming type, (F,F£!) 

is also affine and so E\  =  \N\. But then \VD\ =  \VE\ and so G is regular. ■
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8.8 Examples of Distance-bitransitive Graphs

We conclude with some examples of distance-bitransitive graphs some of which are 

primitive.

E x am p le  8.8.1 : The q-analoque Johnson biregular Graphs

Consider a vector space V of dimension m over the Galois field G F(g), where g is a 

prime power. The vertices of the graph G = J B g [ k , m )  are the ^-dimensional and 

(k -f l)-dimensional subspaces- of V with an edge in G if % C F .  The group

PG L(m ,q)  acts as a group of automorphisms on G  and it is not hard to check tha t 

{PG L(m ,q),G )  is a distance-bitransitive pair. The group PG L(m ,q)  has simple socle 

P SL{m ,q ).  ■

E x am p le  8.8.2 : A Distance-bitransitive Graph in PG(2,A)

For the definition of this graph see Example 1.2.10. The group P 5L (3 ,4 ) is a group of 

automorphisms of G as it is the vertex stabiliser of M 33, the automorphism group of 

the 3-(22,6,1) design. Using the fact tha t P S L (Z , i )  acts transitively on quadruples of 

points, exactly three of which are coUinear and th a t three non collinear points uniquely 

determine an oval vertex adjacent to them in G, we can check tha t the simple group 

P SL{S,4)  acts distance-bitransitively. ■

We finish by showing that Example 5.3.1 is actually distance-bitransitive.

P ro p o s it io n  8 .8.8 : Example 5.3.1 is an antipodal distance-bitransitive graph.

P ro o f :  We first consider what automorphisms the graph G of Example 5.3.1 has. We 

consider them  initially as automorphisms of the vector space A.  Consider any non-zero 

vector u G A, and the translation

Tix : A  — *■ A,

given by r„(a) =  u +  a. We extend this map to B  by defining r„(a;,2) =  (z - fu , , t). 

This preserves adjacency in G and so defines an automorphism. There is a one to one
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correspondence between the elements of A  and the translations. Hence we can view 

A as a set of automorphisms of G, This set is a subgroup acting transitively on the 

vector space A. Now consider the zero vector 0 G A, and the subgroup i f  of Aut(G) 

which fixes this vector. We have Aut(G) =  i f  Xf A.

Let O' G GL(k,q)  map the basis b i , . . . , b j t  to the basis b i , . . . ,b j^ .  No two columns 

of the matrix M ' obtained by taking b ^ , . .  ., b{̂  as rows are linearly dependent as 

otherwise those two columns would be linearly dependent in M . Hence the columns of 

MT are a set of f pairwise independent ^-vectors and so must be a set of representatives 

of the projective points of FG(q, k — l) .  Hence there exists a perm utation m atrix S of 

order t and scalars r i , . . . ,  rt such tha t

M d ia g ( r i , . .  .,r f )S  =  M '.

So by applying d ia g ( r i , . . . ,r t)S  to H in the obvious fashion (if S corresponds to 

a G Sym(i) then (a;,*) i-»- (r,a5,<r(i)) ), we can extend or to an automorphism o? of G. 

Hence GL(k,q) < i f  and T =  A xiGL{k,q)  is a subgroup of Aut(G).

Consider our original choice of projective point representatives. It is pointed out in the 

definition tha t the choice does not affect the graph obtained. Hence we can without 

loss of generality assume that p i  was chosen as [O,. . . ,  0, l]^  and pa as [O,. . . ,  1 ,0]^. 

Assume that p, =  [ z i , . . . for some i > 1. As p i  and p, are not parallel there 

exists some ê < k with X£ > 0. We will choose a specific a , G GL(k,q)  and show that 

then maps Bi  to B, . This will prove useful later. The transformation a  wUl map 

b i , . . . , b j t  to b' i , . . . ,bjj . ,  where

b j  =  b j -  x jx^^he , j ^ t , k

bj  ̂ =  Gj/g bg

bg =  b t  — XkX^^hi.

This defines a non-singular transformation and the corresponding m atrix M ' has f-th 

column equal to a p i .  Hence the corresponding perm utation m atrix S must map 1 to 

i  and the corresponding fi =  o.

We will choose another set of special transformations from GL(k,q).  Again consider 

p, =  [z i , . . .  ,35*.] ,̂ this time for some i > 2. Consider first the case when there exists
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some t  < k — 1 with X£ > 0. In this case we choose G GL(k,q)  to map b i , .. .b^  to 

b i , . . . ,b '^ ,  where

b j  =  bjÆjZg ^bg, j ^  t , k - l  

^ it- i =  ®*g t»g

bg =  bj t- i  -  X k - i x J ^ h t .

This defines a non-singular transformation and the t-th  column of M ' is opa while

the first column is p i .  Hence the corresponding perm utation m atrix S maps 2 to i,

while fixing 1 and rg =  o. If Zj =  0 for all j  < k — 1 then both Xk-i  and Xk must

be non-zero. In this case choose by =  by for ;  <  4 — 1, bJ^_j =  ax^]^^hk-i and 
bj  ̂ =  b)t — • Then in the matrix M ' again the t-th  column is a p 3 while

the first column is p i .  Hence the corresponding perm utation m atrix again maps 2 to

i while fixing 1, with fg =  a.

We now show th a t (F, G) is a distance-bitransitive pair. As F acts transitively on A  

we need consider first F q the vertex stabiliser of the 0 vector in A  and show th a t it 

acts transitively on vertices at distance 1,2 and 3 from 0. The vertices a t distance 1 

from 0 are (0,i) G H, i =  1 , . . .  ,t .  As the automorphism a,- takes (0,1) to (0 ,i), while 

fixing 0, it follows th a t F q acts transitively on G i(0 ).

Next consider vertices at distance 2 from 0. These are all the non zero vectors of A. 

As GL(k,q)  acts transitively on them, so does F q .

For the vertex 0 we must lastly consider vertices a t distance 3. These are of the form 

(z,e), with z ^  0. The automorphism a,- maps the vertex ( l, l) to (a ,i) , while fixing 0. 

By choosing all non-zero values for a we obtain the required transitivity. We conclude 

tha t GL(k,q) and so also Fo acts transitively on Gg (O).

We have seen tha t Fo acts transitively on vertices in B  with 1-st coordinate 0 and on 

those with first coordinate non-zero. To map a vertex with zero first coordinate to one 

with non-zero first coordinate we can use a translation by any non-zero u  G A. Hence 

F acts transitively on B.  Consider -y =  (0,1) G H and the subgroup F„ of F fixing 

V. To complete our proof we must show th a t F^ acts transitively on vertices of G, (v), 

i =  1,2,3 and 4. The vertices in G(v) are those whose first coordinate is zero. Clearly 

0 G A is one such vertex. Let u  G A be any other such vertex. Then translation by u  

takes 0 to u  while fixing v. Hence Ft, acts transitively on G(v).
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Vertices in Gg (i;) have the form (z,î) with i ^  1. The automorphism fixes column I 

(and so V =  (0, 1) ) while mapping (1, 2) to (a,i) and (0, 2) to (0,i) . This shows th a t Fy 

acts transitively on vertices of the form (z ,i) , z ^  0, f ^  1 and also on vertices of the 

form (0,f), 2 ^ 1. By choosing u  6 A non-zero with Ui =  0 we can also map a member 

of the first set to a member of the second while fixing v.  Hence F y acts transitively on 

G3(v). Finally G4(v) are vertices of the form (z, l ) ,  z ^  0. By choosing 7 6  GL(k,q)  

to  be scalar multiplication by a the automorphism 7 maps ( l , l )  to (o, l) while fixing 

(0, 1). Hence F y acts transitively on G4(%/) completing the proof th a t the pair (F,G) 

is distance-bitransitive. Hence G is a distance-bitransitive graph. ■
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