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Abstract

A point-weight incidence structure is a structure of blocks and points where
each point is associated with a positive integer weight. A point-weight design is
a point-weight incidence structure where the sum of the weights of the points on
a block is constant and there exist some condition that specifies the number of
blocks that certain sets of points lie on. These structures share many similarities
to classical designs. Chapter one provides an introduction to design theory and
to some of the existing theory of point-weight designs.

Chapter two develops a new type of point-weight design, termed a row-sum
point-weight design, that has some of the matrix properties of classical designs.
We examine the combinatorial aspects of these designs and show that a Fisher
inequality holds and that this is dependent on certain combinatorial properties of
the points of minimal weight. We define these points, and the designs containing
them, to be either ‘awkward’ or ‘difficult’ depending on these properties.

Chapter three extends the combinatorial analysis of row-sum point-weight
designs. We examine structures that are simultaneously row-sum and point-sum
point-weight designs, paying particular attention to the question of regularity.
We also present several general construction techniques and specific examples of
row-sum point-weight designs that are generated using these techniques.

Chapter four concentrates on the properties of the automorphism groups of
point-weight designs with particular emphasis on row-sum point-weight designs.
We introduce the idea of a structure being “t-homogeneous with respect to its
orbital partition” and use this to derive a formula for the number of blocks a set
of points lies upon. We also discuss the properties of the orbits of subgroups of
the automorphism group.

In chapter five we extend the idea of a dual to point-weight incidence struc-
tures and, as an extension of this, develop the idea of an underlying dual. We also
examine the properties of square point-weight designs, i.e. point-weight designs
that have exactly as many points as blocks. We find that there exists a result of
a similar nature to the Bruck-Chowla-Ryser theorem of symmetric designs.
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Notation

Aut S the automorphism group of the structure S.
b the number of blocks in a (possibly point-weight) incidence

structure.
B, Bi blocks of a (possibly point-weight) incidence structure, i.e.

members of B.
B the set of blocks of a (possibly point-weight) incidence struc-

ture.
fixV (α) the set of elements of V that are mapped to themselves under

the action of the group element α.
g.c.d.(a1, . . . , an) the greatest common denominator of a1, . . . , an.
G, H a group.
Hp(M) the Hasse symbol of the matrix M with respect to the prime

p.
I the incidence set of a (possibly point-weight) incidence struc-

ture. This is a subset of V ×B that specifies which points lie
on which blocks.

I the identity matrix.
J the matrix in which every entry is 1.
k the sum of the weights of the points on any block in a point-

weight design, or the number of points on any block in a
(non-point-weight) design.

l.c.m.(a1, . . . , an) the lowest common multiple of a1, . . . , an.
n, nx the order of the structure or of the point x.
S, T a (possibly point-weight) incidence structure, usually

(V,B, I, w).
Sx the derived structure of S at the point x.
Sx the point-residue of the structure S at x.
Stab V the subgroup of elements in a group that map V onto itself.
r, rx the number of blocks with which a single point (or, more

specifically, the point x) is incident.
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t the size of the set of points for which the design condition
specifies the number of blocks with which this set must be
incident. Normally the set will have either t points or the
sum of the weights of the points in the set will add up to t.

t− (v, k, λ) a classical design.
t− (v, k, λ; W ) a point-sum point-weight design.
u the number of points of a point-weight incidence structure.
U the underlying incidence structure (V,B, I) of a point-weight

incidence structure (V,B, I, w).
v the sum of the weights of the points of a point-weight in-

cidence structure or the number of points in a (non-point-
weight) incidence structure.

V the set of points of a (possibly point-weight) incidence struc-
ture.

(V,B, I) an incidence structure.
(V,B, I, w) a point-weight incidence structure.
w the weight function of a point-weight incidence structure.

This maps every point in V to its weight.
W the weight set of a point-weight incidence structure, Im(w).
x,y,z points in a (possibly point-weight) incidence structure, i.e.

members of V .
Z+ the set of all integers greater than zero, i.e. {1, 2, 3, . . .}.
ι(S) the number of blocks that contain the set of points S.
λ a constant associated with the design condition. Generally a

set S that is, in some sense, of size t must be incident with a
number of blocks dependent only upon λ and the weights of
the points of S.

πt − (v, k, λ; W ) a row-sum point-weight design.
σ(S) the sum of the weights all the points in S.
σt − (v, k, λ; W ) a weight-sum point-weight design.
〈H〉 the group generated by the set of group elements H.
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Chapter 1

Introduction

Design theory has been studied for over one hundred years. Loosely it is concerned
with the different ways a set of points may be linked together into sets called
blocks such that some collection of points lies an identifiable number of blocks.
Central to this is the concept of a design. A design is an incidence structure
containing v points such that every block contains k points and every t points lie
on exactly λ blocks. We will refer to these designs as ‘classical designs’ in order
to differentiate them from point-weight designs.

It has been shown that there is a secret sharing scheme associated with every
classical design and that these secret sharing schemes share certain properties with
classical designs, specifically that the number of people who know any particular
secret is constant and each person knows the same number of secrets. This was
interpreted as showing that every person in the scheme was of equal importance, a
condition which is not always desirable in a secret sharing scheme. As a response
to this the concept of a point-weight design was proposed at Royal Holloway in
the mid-1990s.

A point-weight design is a point-weight incidence structure that contains u
points of total weight v, every block has total weight k and there exists some
condition which specifies how many blocks certain sets of points may lie on. We
also insist that a point-weight design with points that are all of the same weight
must be isomorphic to a classical design. These structures share the same style of
definition as classical designs but need not have a constant number of points on
any block or the same number of blocks incident with any point. This definitions
were introduced in the PhD theses of Richard Horne [9] and Tracey Powlesland
[13]. They each introduced a specific design condition: that the number of blocks
that are incident with a set of points S is constant when, in the case of Horne,
S contains t points or, in the case of Powlesland, S contains points whose total
weight is t.

This thesis introduces a third design condition: that a set S of t points should
lie on a non-constant but calculable number of blocks. In particular we concen-
trate on a design condition that gives a closed form for the matrix MMT where M
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CHAPTER 1. INTRODUCTION 7

is the incidence matrix of the structure. This is a standard property of classical
designs and hence we may analyse their structure using some previously unusable
techniques of classical design theory.

In this chapter we introduce incidence structures and classical designs, the vast
majority of the results we present in this chapter can be found in Hughes and
Piper [12] or Beth, Jungnickel and Lenz [3]. A more generalized treatment can be
found in Dembowski [7]. We also introduce point-weight incidence structures and
two classes of point-weight designs: point-sum point-weight designs, as developed
in [9], and weight-sum point-weight designs, as developed in [13].

In the second and third chapters we present a new kind of point-weight design,
termed a row-sum point-weight design, and derive some of the combinatorial
properties of that structure. We also begin to cite some examples and compare
it to the existing types of point-weight design.

The fourth chapter deals with the relationship between point-weight designs
and their automorphism or generating groups. We examine the common tech-
nique for constructing designs by picking a set of base blocks and permuting them
within the point set. We also examine the properties of the orbits of a row-sum
point-weight design under the action of a subgroup of the automorphism group.

The fifth chapter is concerned with square point-weight incidence structures
and designs. We define the notion of the dual of a point-weight incidence structure
and that of the underlying dual of a point-weight incidence structure and show
that, with one exception, the dual or underlying dual of a point-weight design can
not be a point-weight design. We then present non-existence results for square
point-weight designs similar to those of classical symmetric designs.

1.1 Incidence structures

Definition 1.1.1 (Incidence structures) An incidence structure S is a triple
(V,B, I) where V and B are disjoint sets and I ⊆ V ×B presents a binary relation
between them.

We will call the set V the point set and elements of V points. We will call the
set B the block set and elements of B blocks.

In an incidence structure S, let x be a point (i.e. x ∈ V ) and B be a block
(i.e. B ∈ B). If (x,B) ∈ I then we say ‘x is incident with B’, ‘x lies on B’, ‘x is
a point of B’, ‘x is contained in B’ and ‘B contains x’. We call (x,B) a flag. We
denote the number of points of S by v and the number of blocks of S by b.

It is possible that either V or B is empty however we shall assume that this
does not occur in this thesis. Obviously a block may be associated with the points
that it contains however it is possible for two blocks to contain the same points.
If this occurs then we say the structure has repeated blocks. If a structure has no
repeated blocks then each block is uniquely determined by the points it contains.
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Definition 1.1.2 (Point-weight incidence structures) A point-weight inci-
dence structure is a quadruple (V,B, I, w) where (V,B, I) is an incidence structure
and w : V → Z+ is a function that assigns to each point of V a positive integer.
We call w the weight function of S.

If x is a point of a point-weight incidence structure S then we say that ‘x has
weight w(x)’ or that ‘the weight of x is w(x)’.

Definition 1.1.3 The weight-set W of a point-weight incidence structure S =
(V,B, I, w) is defined to be the image of the function w.

Essentially a point-weight incidence structure is an incidence structure along
with a weight-function w. Therefore, given a point-weight incidence structure, it
is natural to consider the incidence structure from which it arose: the underlying
incidence structure.

Definition 1.1.4 If S is a point-weight incidence structure (V,B, I, w) then the
underlying incidence structure of S is the incidence structure U = (V,B, I).

These definitions are very general so it is important to tell if two structures
are basically the same but with some different labelling.

Definition 1.1.5 Two incidence structures S1 = (V1,B1, I1) and S2 = (V2,B2, I2)
are isomorphic if there exists bijections θV : V1 → V2 and θB : B1 → B2 such that
(x,B) ∈ I1 if and only if (θV (x), θB(B)) ∈ I2. The pair θ = (θV , θB) is called an
isomorphism.

Hence any incidence structure with no repeated blocks is isomorphic to an
incidence structure of the form (X,Y,∈) where Y ⊆ P(X), P(X) denotes the
set of subsets of the set X and ∈ denotes the binary set relation of “belonging
to”. Since this thesis is concerned only with structures with no repeated blocks
we will therefore generally assume that any incidence structure we refer to is of
this form.

Definition 1.1.6 Two point-weight incidence structures S1 = (V1,B1, I1, w1) and
S2 = (V2,B2, I2, w2) are isomorphic if S1 = (V1,B1, I1) is isomorphic to S2 =
(V2,B2, I2) and, for all x ∈ V1, we have w2(θV (x)) = w(x).

However this definition is a little two general as it is possible that too point-
weight incidence structures are basically the same but have different weight as-
signments.

Definition 1.1.7 Two point-weight incidence structures S1 = (V1,B1, I1, w1) and
S2 = (V2,B2, I2, w2) are equivalent if S1 = (V1,B1, I1) is isomorphic to S2 =
(V2,B2, I2) and there exists a µ ∈ Q such that, for all x ∈ V1, we have w2(θV (x)) =
µ · w(x).
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Hence any point-weight incidence structure is equivalent to a point-weight
incidence structure with g.c.d.(W ) = 1. Lastly we introduce some useful notation.

Definition 1.1.8 Let S be the point-weight incidence structure (V,B, I, w) and
let S ⊆ V then:

σ(S) =
∑
x∈S

w(x)

ι(S) = |{B ∈ B : S ⊆ B}|

1.2 Classical designs

Definition 1.2.1 A t− (v, k, λ) design is an incidence structure S with v points
that satisfies two conditions:

1. Every block contains exactly k points.

2. Every set of t > 0 points is contained in exactly λ > 0 blocks.

We will refer to condition 1 as the constant block size condition and condition
2 as the design condition. A structure that satisfies the design condition is called
a t-structure.

We have the following results for t− (v, k, λt) structures.

Result 1.2.2 If S is t− (v, k, λt) design and 0 ≤ s < t then S is a s− (v, k, λs)
design where λs satisfies:

λs

(
k − s

t− s

)
= λt

(
v − s

t− s

)
.

Proof Let S be any set of s points and consider the pairs (S ′, B) where S ′ is a
set of t points, B is a block and S ⊆ S ′ ⊆ B.

Assume that S lies on λs blocks then in each block there are
(

k−s
t−s

)
ways to

choose a set S ′ that lies on that block. Conversely, there are
(

v−s
t−s

)
ways to pick

a set S ′ that contains S and S ′ lies on exactly λt blocks. Hence

λs

(
k − s

t− s

)
= λt

(
v − s

t− s

)

and so any set S of size s lies on the same number of blocks.

¥

So in any classical design any single point is incident with the same number
of blocks. We conventionally denote this number to be r.
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Result 1.2.3 If S is a t− (v, k, λt) then:

1. bk = vr and

2. if t ≥ 2 then r(k − 1) = λ2(v − 1) where S is a 2− (v, k, λ2) design.

Proof

1. Let us attempt to count the number of flags (x,B) in S. There exists v
points and each point lies on r blocks, hence there exists vr flags but there
also exists b blocks and each block contains k points, hence there exists bk
flags. So bk = vr.

2. Pick a point x and count the flags (y, B) such that x and y are contained
B. On one hand there are v − 1 other points and there exists λ2 blocks
containing both those points, but on the other hand there are r blocks
through x and k − 1 other points on each block. So r(k − 1) = λ2(v − 1).

¥

Definition 1.2.4 An incidence structure is square if v = b (i.e. |V |=|B|). A
square classical design is called a symmetric design.

1.3 Related structures

If we start with an incidence structure there are several ways to generate useful
new yet related incidence structures.

Definition 1.3.1 (Dual structures) Suppose that S is a (V,B, I) incidence
structure. We obtain the dual structure S ′ = (V ′,B′, I ′) by ‘exchanging’ the
points and blocks, yet retaining incidence. So:

V ′ = B
B′ = V

I ′ = {(B, x) : B ∈ V ′, x ∈ B′ and (x,B) ∈ I}.

Dual structures are of particular interest to design theory due to the following
result:

Result 1.3.2 If S is a 2− (v, k, λ) design then S ′, the dual structure of S, is a
2-design if and only if S is symmetric.

The proof of this result can be found in most books on design theory, including
[3] and [12]. Two other important structures that can be constructed from any
incidence structure are:
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Definition 1.3.3 (Derived structure) Suppose S = (V,B, I) is an incidence
structure and that x is a point of S. The derived structure of S at x, denoted
Sx = (Vx,Bx, Ix), is obtained by removing the point x, all blocks not incident with
x and all points no longer incident with any block. So:

Bx = {B ∈ B : (x, B) ∈ I}
Vx = V \ ({x} ∪ {y ∈ V : there exists no block containing x and y})
Ix = I ∩ (Vx × Bx).

Definition 1.3.4 (Point-residue) Suppose S is a (V,B, I) incidence structure
and x is a point of S. The point-residue of S at x, denoted Sx = (V x,Bx, Ix), is
obtained by removing the point x, all blocks that are incident with x and then all
points that are no longer incident with any block. So:

Bx = {B ∈ B : (x, B) /∈ I}
V x = V \ ({x} ∪ {y ∈ V : (y, B) ∈ I implies (x,B) ∈ I})
Ix = I ∩ (V x × Bx)

Both of these concepts can be naturally extended from acting on a single point
to a set of points. For example the derived structure of S at a set of points S,
SS, is the structure obtained by removing the points of S, the blocks that do not
contain S and all points that no longer lie on any blocks.

Result 1.3.5 If S is a t− (v, k, λt) design with t ≥ 2 and x is a point of S then:

1. Sx is a (t− 1)− (v − 1, k − 1, λt) design.

2. Sx is a (t− 1)− (v − 1, k, λt−1 − λt) design providing v > k, where λt−1 is
the number of blocks a set of t− 1 points lies on in S.

Proof

1. As t ≥ 2, we have that for any two points there exists at least one block that
is incident with both of them. So Sx contains v − 1 points and each block
contains k− 1 points. Consider a set S of t− 1 points of Sx. The blocks of
Sx that contain S are precisely those blocks of S that contain S∪{x}, hence
there exists λ blocks that contain S in Sx and Sx is a (t−1)−(v−1, k−1, λ)
design.

2. It is obvious that each block of Sx contains k points. Suppose that a point
y only lies on blocks that also contain x, then y lies on λ2 blocks, where λ2

is the constant number of blocks that contain any two points. However, by
(1.2.2), this means that every point is contained in exactly λ2 blocks and
so v = k. Therefore there exists v − 1 points in Sx.
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Now consider a set of t − 1 points of Sx, S say. The blocks of Sx that
contain S are precisely those blocks of S that contain S but do not contain
x, hence there are λt−1 − λt blocks that contain S in Sx and Sx is a (t −
1)− (v − 1, k, λt−1 − λt) design.

¥

It is worth noting that the definitions of derived structures and point-residues
can be applied naturally to point-weight incidence structures too. If S is a
(V,B, I, w) and S ′ = (V ′,B′, I ′) is a sub-structure of (V,B, I) then we may induce
a weight function w′ on S ′ by w′(x) = w(x). Therefore we may define the de-
rived structure (respectively point-residue) of a point-weight incidence structure
as the derived structure (respectively point-residue) of the underlying incidence
structure along with the induced weight function.

1.4 Incidence matrices

Two of the most fundamental tools used in analysing incidence structures are the
incidence matrix of the structure and the automorphism group, and both of these
concepts can be extended to point-weight incidence structures. In the section we
will deal with incidence matrices and examine automorphism groups in section
1.5.

Definition 1.4.1 (Incidence matrix) Suppose S = (V,B, I) is an incidence
structure with u points and b blocks, and

V = {xi : 1 ≤ i ≤ u}
B = {Bj : 1 ≤ j ≤ b}.

Then M = [mi,j] is an incidence matrix of S if

mi,j =

{
1 if xi is incident with Bj

0 otherwise.

It is obvious that different labellings of the points and blocks of S will lead to
different incidence matrices M and M ′, however M ′ will be the same as M with
suitable column and row permutations applied to it. It is therefore unimportant
which particular incidence matrix we use for a particular incidence structure.

Result 1.4.2 Let S be a 2 − (v, k, λ) design with points x1, . . . , xv and assume
that each point is incident with r blocks. If M is an incidence matrix for S then

M ·MT = (r − λ)I + λJ (1.1)

where J is the matrix whose every entry is 1.
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Proof The (i, j) entry of M ·MT is equal to the number of blocks incident with xi

and xj. Obviously if i 6= j then this is λ and if i = j then this is r = (r− λ) + λ.

¥

The incidence matrix is a compact way of supplying all the necessary informa-
tion about an incidence structure. A matrix of the above form for a point-weight
incidence structure would not give all the information required to reconstruct the
point-weight incidence structure as it would not give the weights of the points.
We call that matrix the incidence matrix for the underlying incidence structure
or the underlying incidence matrix.

Definition 1.4.3 (Point-weight incidence matrix) Suppose S = (V,B, I, w)
is a point-weight incidence structure with u points and b blocks, and

V = {xi : 1 ≤ i ≤ u}
B = {Bj : 1 ≤ j ≤ b}.

Then M = [mi,j] is an incidence matrix of S if

mi,j =

{
w(xi) if xi is incident with Bj

0 otherwise.

We now present a result of linear algebra which is used to calculate the deter-
minants of the incidence matrices of specific classical and point-weight designs.
It should be noted that all the poles in the following calculation are removable,
so we assume that any poles that occur are removed.

Result 1.4.4 If M is a u× u matrix of the form

M = diag(α1 − λ, . . . , αu − λ) + λJ

=




α1 λ . . . λ
λ α2 . . . λ
...

...
. . .

...
λ λ . . . αu




then

det(M) =
(
1 + λ

u∑
j=1

1

αj − λ

) u∏
j=1

(αj − λ). (1.2)

Proof We reduce the matrix M to upper triangular form using row and column
operations. Note that if there exists values of j such that αj = λ then this leads
to a removable pole in (1.2). Assume that αj = λ for 1 ≤ j ≤ m.
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If m ≥ 2 then there obviously exist two rows that are exactly the same and so
det(M) = 0. However in this case (1.2) is also equal to 0. So assume that m = 0
or m = 1.

Subtract the first row from each of the other rows and then subtract from
first column a factor of λ−α1

αi−λ
of the ith column. Now we have a matrix that is of

form: 


x λ λ . . . λ
0 α2 − λ 0 . . . 0
0 0 α3 − λ . . . 0
...

...
...

. . .
...

0 0 0 . . . αu − λ




where

x = α1 −
u∑

j=2

λ
λ− α1

αj − λ

= α1 + λ

u∑
j=2

α1 − λ

αj − λ

= α1 − λ + λ

u∑
j=1

α1 − λ

αj − λ

= (α1 − λ)
(
1 + λ

u∑
j=1

1

αj − λ

)
.

Hence

det(M) =
(
1 + λ

u∑
j=1

1

αj − λ

) u∏
j=1

(αj − λ).

¥

Corollary 1.4.5 If S is a 2− (v, k, λ) design then

det(M ·MT ) = rk(r − λ)v−1

Proof We know from (1.1) that M ·MT is of the correct form to use the previous
result. Hence

det(M ·MT ) =
(
1 + λ

v∑
j=1

1

r − λ

) v∏
j=1

(r − λ)

=
(r − λ + λv

r − λ

)
(r − λ)v

= (r − λ + λv)(r − λ)v−1.

So it only remains to show that r−λ+λv = rk. But this is shown in 1.2.3, hence
we have the result.
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¥

Corollary 1.4.6 (Fisher’s Inequality) If S is a 2 − (v, k, λ) design with b
blocks and v > k then b ≥ v.

Proof We start by showing that in S we have that r−λ > 0. We know by (1.2.2)
that r is constant and equal to λ v−1

k−1
but v > k so v−1

k−1
> 1. Hence r > λ.

Now if M is an incidence matrix for S we have that

det(M ·MT ) = rk(r − λ)v−1.

All of the factors on the RHS are greater than 0. So det(M ·MT ) 6= 0, which means
that rank(M · MT ) = rank(M) = v. But M has b columns so rank(M) ≤ b,
hence v ≤ b.

¥

1.5 Automorphism groups

As promised, we now define an automorphism group.

Definition 1.5.1 (Automorphism group) Suppose S is an incidence struc-
ture (V,B, I) and let Aut S be the set of all functions θ : V ∪ B → V ∪ B such
that:

1. θ(V ) = V and θ(B) = B,

2. if x is a point and B is a block then (x, B) ∈ I if and only if (θ(x), θ(B)) ∈ I.

The set Aut S is called the automorphism group of S.

It is elementary to show that Aut S is in fact a group.
We may regard the automorphism group of a (possibly point-weight) incidence

structure as the action of the automorphism group on the set of points and blocks.
We will, in section 4.3, use the general theory of groups acting on sets to derive
a theoretic result which we then apply to automorphism groups acting on point-
weight incidence structures. It is worthwhile, therefore, to take a moment to
formally define actions and G-spaces.

Definition 1.5.2 Let G be a group and let Ω be a set. An action of G on Ω is
a map µ : Ω×G → Ω satisfying:

1. µ(µ(ω, g), h) = µ(ω, gh) for all ω ∈ Ω and g, h ∈ G,

2. µ(ω, 1) = ω for any ω ∈ Ω, where 1 is the identity element of G.
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The set Ω together with this action is called a G-space.

For further information on G-spaces the reader is referred to [5]. We will
generally write ωg for µ(ω, g).

It is easy to see that if S is a (possible point-weight) incidence structure with
a point set V and a block set B then Aut S acts on V ∪ B. This action can be
decomposed into the action of Aut S on V and the action of Aut S on B as the
action of Aut S will never map a point onto a block or vice versa. We give a few
more definitions that will be needed.

Definition 1.5.3 The orbits of the G-space Ω are the equivalence classes of an
equivalence relation ∼ defined by α ∼ β if and only if α, β ∈ Ω and there exists
an element g ∈ G such that αg = β.

Definition 1.5.4 A G-space Ω is n-transitive if for any two vectors of n distinct
elements of Ω, (α1, . . . , αn) and (β1, . . . , βn) say, there exists an element g ∈ G
such that αg

i = βi for all 1 ≤ i ≤ n.
A G-space Ω is n-homogeneous if for any two sets of n distinct elements of

Ω, S1 and S2 say, there exists an element g ∈ G such that Sg = T .

These two notions are related by a theorem of Livingstone and Wagner [11].

Result 1.5.5 If Ω is a t-homogeneous G-space and 2 < 2t ≤ |Ω| then G acts
(t− 1)-transitively on Ω.

These concepts can be applied specifically to (point-weight) incidence struc-
tures. We call Aut S transitive on points (respectively blocks) if for any two
points x, y ∈ V (respectively blocks B1, B2 ∈ B) there exists an automorphism
θ such that θ(x) = y (respectively θ(B1) = B2). We call an automorphism
group n-transitive on points if for any two vectors of n distinct points of S,
(x1, . . . , xn), (y1, . . . yn) ∈ V n, there exists an automorphism θ such that θ(xi) = yi

for all 1 ≤ i ≤ n. We call an automorphism group n-homogeneous on points if
for any two sets of n points, X,Y ⊆ V there exists an automorphism θ such that
θ(X) = Y .

1.6 Tactical decompositions

The main result of this section, Block’s Lemma, was first proposed in [4] but a
proof of it is more readily available in [3]. It is, in fact, a result in matrix theory
that can be applied to incidence matrices.

Definition 1.6.1 (Tactical decomposition) Let M be a m × n matrix over
R and let {R1, . . . , Rs} be a partition of the set of row indices {1, 2, . . . ,m}.
Similarly let {C1, . . . , Ct} be a partition of the set of column indices {1, 2, . . . , n}.
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If the |Ri| × |Cj | submatrix, Mij of M , given by taking the entries of M in the
rows indexed by Ri and the columns indexed by Cj has constant row sums ri,j and
constant column sums ci,j, for every 1 ≤ i ≤ s and 1 ≤ j ≤ t, then this partition
is called a tactical decomposition of M .

Define the column sum matrix C to be the matrix whose (i, j)th entry is ci,j

and the row sum matrix R to be the matrix whose (i, j)th entry is ri,j.

Result 1.6.2 (Block’s Lemma) Suppose M is a m × n matrix over R and
(Mi,j) is a tactical decomposition of M with 1 ≤ i ≤ s and 1 ≤ j ≤ t. If C and
R are the column and row sum matrices defined above then:

t ≤ rank(R) + n− rank(M) ≤ s + n− rank(M)
s ≤ rank(C) + m− rank(M) ≤ t + m− rank(M).

The proof of this result is mostly linear algebra and therefore unenlightening
from a design theory point of view, hence it has been omitted.

One application of tactical decompositions is in square designs where the exis-
tence of certain square classical designs is dependent on the existence of solutions
to certain diophantine equations in the complete field of p-adic numbers. We
start by considering the p-adic numbers. The following definitions and result also
hold, unless explicitly noted, for the “infinite prime” too, i.e. for Q∞ = R.

Definition 1.6.3 If α and β are non-zero p-adic numbers then we define the
Hilbert symbol to be:

(α, β)p =

{
1 if there exists a solution to αx2 + βy2 = 1 in Qp

−1 otherwise

where Qp is the complete field of p-adic numbers.

Result 1.6.4 For any prime p and p-adic numbers α, β, λ, µ the following prop-
erties hold:

1. (α, β)p = (β, α)p,

2. (αλ2, βµ2)p = (α, β)p,

3. (α,−α) = 1,

4. If p is a finite prime and co-prime to 2αβ then (α, β)p = 1.

5. (α, βλ)p = (α, β)p(α, λ)p,

6. (α, α)p = (α,−1)p,

7. (αλ, βλ)p = (α, β)p(λ,−αβ)p.
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The basics of p-adic numbers can be found in [2] and the above results can be
found in [10]. We may now use the congruence theory developed by Hasse and
Minkowski.

Definition 1.6.5 If n × n is a symmetric integral matrix and p is any prime
then we define the Hasse Symbol to be

Hp(M) = (−1,−D(n))p

n−1∏
i=1

(D(i),−D(i + 1))p

where D(i) is the determinant of the upper left i× i submatrix of M .

Definition 1.6.6 Two square integer matrices M and N are congruent if there
exists a non-singular matrix C over Q such that CMCT = N .

Result 1.6.7 If the symmetric integral matrices L and M are congruent then
Hp(L) = Hp(M) for all primes p.

The converse to this theorem is also true, that if L and M are integral symmet-
ric matrices and Hp(L) = Hp(M) for all primes p (including the infinite prime)
then L is congruent to M . However we will not use the result.

The non-existence results derived from this theory can be very powerful and
they can even be used to derive the Bruck-Chowla-Ryser theorem. This is demon-
strated in [7] but requires the following theorem (which can be found in [17]).

Result 1.6.8 The equation

aX2 + bY 2 + cZ2 = 0

where abc 6= 0 has a non-trivial solution in Q (and hence a non-trivial solution
in Z) if and only if it has a non-trivial solution in R and Qp for all primes p

1.7 Point-weight designs

A point-weight design extends the idea of a classical design to a point-weight
incidence structure. It would seem natural that any such extension would have
to have the following three properties: it must have a statement analogous to
the constant block size condition, it must have a statement analogous to the
design condition and if all the weights of the points were equal then it must
be a classical design. We present two such extensions: point-sum point-weight
designs (initially developed in [9]) and weight-sum point-weight designs (initially
developed in [13]).

Definition 1.7.1 (Point-sum point-weight designs) The point-weight inci-
dence structure (V,B, I, w) is a t− (v, k, λ; W ) point-sum point-weight design if:
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1. the sum of the weights of all the points is v (i.e. σ(V ) = v).

2. the sum of the weights of all the points on any block is k (i.e. σ(B) = k for
all B ∈ B).

3. any set of t > 0 points is contained in exactly λ > 0 blocks (i.e. if S ⊆ V
and |S|= t then ι(S) = λ).

4. W is the weight-set of the point-weight incidence structure.

We recall, from Horne [9] and Powlesland [13], a few of the more relevant combi-
natorial results.

Result 1.7.2 If S is a 1− (v, k, λ; W ) point-weight design then bk = vλ.

Proof We count weighted flags, i.e. consider the sum:

∑

(x,B)∈I

w(x).

On one hand there exists λ blocks through each point of S so the weight of
each point will be counted λ times i.e.

∑
(x,B)∈I w(x) =

∑
x∈V λw(x) = λv but

on the other hand each block contains points whose weights add to k hence∑
(x,B)∈I w(x) = bk. Hence bk = vλ.

¥

We may define all the related structures on a point-sum point-weight design
as before, in particular:

Result 1.7.3 If S is a t − (v, k, λ; W ) point-weight design with t ≥ 2 and x is
any point of S then Sx is a (t− 1)− (v−w(x), k−w(x), λ; W ′) design and either
W ′ = W or W ′ = W \ {w(x)}.

Proof Since t > 1, we have that for any two distinct points there exists at least
one block that is incident with both of them. So the sum of the weights of the
points of Sx is v − w(x), similarly the sum of the weights of the blocks of Sx is
k − w(x).

Consider any set S of t − 1 points of Sx. The number of blocks of Sx that
contain S is equal to the number of blocks of S that contain S and x, which is λ.

Lastly since Sx contains all the points of S except for x, it must contain a
point of each of the weights of S except for possibly w(x), hence W ′ = W or
W ′ = W \ {w(x)}.

¥
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In [9] it was shown that in a 2− (v, k, λ; W ) the number of blocks containing
a point was dependent only on λ, v, k and the weight of that point. Consequently
all points of the same weight were incident with the same number of points. This
was extended to the t = 3 case by [15] and using his techniques we have extended
it to the case when t ≥ 2.

Result 1.7.4 If S is a 2 − (v, k, λ; W ) point-weight design with more than 2
points then any two points of equal weight are incident with the same number of
blocks.

Proof For any point x ∈ V , the number of blocks containing x is equal to the
number of blocks in Sx. Now Sx is a 1− (v−w(x), k−w(x), λ; W ′) point-weight
design and so if rx is the number of blocks contain the point x we have

rx = λ
v − w(x)

k − w(x)
(1.3)

by (1.7.2). Hence any two points of the same weight are incident with the same
number of blocks.

¥

Result 1.7.5 If S is a 3 − (v, k, λ; W ) point-weight design with more than 3
points then any two points of equal weight are incident with the same number of
blocks.

Proof For any point x ∈ V , the number of blocks containing x is equal to the
number of blocks in Sx. We note that Sx is a 2 − (v − w(x), k − w(x), λ; W ′)
point-weight design. In Sx we attempt to evaluate the sum:

∑

(y,z,B)∈J

w(y)w(z)

where J = {(y, z, B) ∈ Vx × Vx × Bx : y 6= z and y, z ∈ B}.
We may attempt to evaluate this in two ways: firstly we may sum over all

distinct points of Sx and then over all blocks that contain those two points or,
secondly, we may sum over all blocks and all pairs of points that are contained
in that block. Firstly:

∑

(y,z,B)∈J

w(y)w(z) =
∑
y∈Vx

∑

z∈Vx\{y}

∑
B3y,z

w(y)w(z)

=
∑
y∈Vx

∑

z∈Vx\{y}
λw(y)w(z)

= λ
∑
y∈Vx

∑

z∈Vx\{y}
w(y)w(z)
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Consider the incidence structure S∗ given by changing each point x of weight
w(x) into w(x) points of weight 1 and preserving incidence in the natural way.
So:

V ∗ = {xi : x ∈ V and 1 ≤ i ≤ w(x)} (1.4)

B∗ = B (1.5)

I∗ = {(xi, B) : (x,B) ∈ I} (1.6)

For any two points y, z ∈ Vx there are w(y)w(z) ways of linking a point yi with
a point zj in S ∗

x . So if we fix a block B ∈ Bx then there are

∑
y∈B

∑

z∈B\{y}
w(y)w(z)

ways of choosing two points of that block in S ∗
x that are obtained from different

points of Sx. This is the same as picking any two points of B in S ∗
x excluding

those points which are obtained from the same point. Hence:

∑
y∈B

∑

z∈B\{x}
w(y)w(z) =

(
k

2

)
−

∑
y∈B

(
w(y)

2

)
.

So:
∑

(y,z,B)∈J

w(y)w(z) =
∑

B∈Bx

∑
y∈B

∑

z∈B\{x}
w(y)w(z)

=
∑

B∈Bx

((
k

2

)
−

∑
y∈B

(
w(y)

2

))

= rx

(
k

2

)
−

∑
B∈Bx

∑
y∈B

(
w(y)

2

)

= rx

(
k

2

)
−

∑
y∈Vx

rx,y

(
w(y)

2

)

where rx is the number of blocks in Sx (i.e. the number of blocks incident with x
in S) and rx,y is the number of blocks incident with y in Sx (which is calculable
by (1.7.4) as Sx is a 2− (v − w(x), k − w(x), λ; W ′) point-weight design).

Therefore:

rx =
1(
k
2

)
{

λ
∑
y∈Vx

∑

z∈Vx\{y}
w(y)w(z) +

∑
y∈Vx

λ
v − w(x)− w(y)

k − w(x)− w(y)

(
w(y)

2

)}

and this expression is the same for any two points x and x′ of the same weight
because there exists a bijection between the points of Vx and Vx′ such that corre-
sponding points have the same weight.
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¥

Theorem 1.7.6 Suppose S is a (V,B, I, w) point-weight incidence structure with
the following properties:

1. the sum of the weights of the points on any block is a constant, k,

2. there exists an integer t, with 1 ≤ t < u, such that any two sets of t points
with equally many points of each weight are incident with the same number
of blocks.

Then the following holds: if S1, S2 are sets of points with 1 ≤|S1|=|S2|≤ t and
both sets contain equal numbers of points of each weight then ι(S1) = ι(S2). In
particular, any two points of the same weight are incident with the same number
of blocks.

Proof We will begin with examining the properties of the derived structure. Take
a set of points T ⊆ V with 1 ≤|T|< t and consider ST . Let ιT (S) be the number
of blocks of ST that contain the set S ⊆ VT . Note that ST has the following
properties:

1. the sum of the weights of the points on any block is k − σ(T ),

2. if S1 and S2 are sets of t − |T | points with equally many points of each
weight then ιT (S1) = ι(S1 ∪ T ) = ι(S2 ∪ T ) = ιT (S2),

3. t− |T | < t− 1 = |VT |.
We use induction on the value of t.
Suppose that S is a point-weight incidence structure that satisfies the condi-

tions of the theorem with t = 2 (the case t = 1 is trivial). Pick any x ∈ V , the
number of blocks of S that are incident with x, rx say, is equal to the number of
blocks of Sx. Consider the following sum in Sx:

∑

(y,B)∈Ix

w(y) =
∑

B∈Bx

∑
y∈B

w(y)

=
∑

B∈Bx

(k − w(x))

= rx(k − w(x))

but also:
∑

(y,B)∈Ix

w(y) =
∑
y∈Vx

∑
B3y

w(y)

=
∑
y∈Vx

ιT (y)w(y)
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Hence:

rx =
1

k − w(x)

∑
y∈Vx

ιT (y)w(y)

which is independent of which particular point of weight w(x) was initially chosen.
Also if S1 and S2 are sets of points of size two and both sets contain equal numbers
of points of the same weight then ι(S1) = ι(S2) by definition.

Let t ≥ 3 and assume the following induction hypothesis. If S is a point-
weight incidence structure for which there exists an integer 1 ≤ s ≤ t − 1 such
that any two sets of s points, with exactly the same number of points of each
weight, are incident with the same number of blocks then any two sets of points
S1 and S2 with 1 ≤ |S1| = |S2| ≤ s and equally many points of each weight has
ι(S1) = ι(S2).

Now consider a point-weight incidence structure S that satisfies all of the
properties listed in the statement of the theorem and pick a set of points T ⊆ V
such that |T |= t − s. Again we note that the number of blocks that contains
T is the same as the number of blocks in the point-weight design ST and ST is
a point-weight incidence structure of the form given in the induction hypothesis
above. Let the number of blocks of ST be denoted rT and consider ST .

Let I ′ = {(S, B) : S ⊆ VT , B ∈ BT , |S |= s and S ⊆ B}, be the set of all
ordered pairs of (S, B) where S is a set of s points and B is a block that contains
S. We will attempt to evaluate the sum:

∑

(S,B)∈I′

( ∏
z∈S

w(z)
)
.

Now, if we fix S then that set of points is contained in exactly ιT (S) = ι(S ∪ T )
blocks of Bx, hence:

∑

(S,B)∈I′

( ∏
z∈S

w(z)
)

=
∑

S⊆VT :|S|=s

∑
B⊇S

( ∏
z∈S

w(z)
)

=
∑

S⊆VT :|S|=s

ιT (S)
( ∏

z∈S

w(z)
)
. (1.7)

There exists a bijection, θ : VT → VT ′ , between the points of VT and VT ′ such
that w(x) = w(θ(x)) provided T and T ′ contain the same number of points of
each weight. Hence there exists a bijection between the subsets of VT and VT ′ of
size s such that corresponding sets contain equal number of points of each weight,
which means that the expression (1.7) is the same for VT and VT ′ .

Now consider the incidence structure S∗ given by changing each point x of S
into w(x) points and preserving incidence in the natural way. So:

V ∗ = {xi : x ∈ V and 1 ≤ i ≤ w(x)}
B∗ = B
I∗ = {(xi, B) : (x,B) ∈ I}.
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Suppose S is a set of s points of ST . There are
∏

x∈S w(x) ways of choosing
a set S∗ of s elements of S ∗

T such that each element of S∗ was obtained from a
distinct point of S.

There exists rT

(
k
s

)
ways of picking the pair (S∗, B) where S∗ is a set of s

points of S ∗
T and B is a block that contains S∗. However this includes the sets

S∗ whose elements are obtained from a set of points S of Sx of size less than s.
We shall attempt to calculate how many of these “bad” pairs exist.

Let

Ji = {(j1, . . . , ji) ∈ Zi :
i∑

n=1

jn = s and jn > 0 for all 1 ≤ n ≤ i}.

Suppose S is a set of i < s points of ST and label these points z(1), . . . , z(i). The
number of ways of choosing an ordered pair (S∗, B) where S∗ is a set of s points
of S ∗

T obtained from the set S and B is a block that contains S is

p(S) = ι(S)
∑

(j1,...,ji)∈Ji

i∏

h=1

(
w(z(h))

jh

)
.

Note that this expression is the same if we are working in ST ′ and T ′ has the
same number of points of each weight as T .

If we sum this over all possible sets of points S of size less than s and all
possible blocks B that contain S then we have:

∑

(S,B)∈I′

( ∏
z∈S

w(z)
)

= rT

(
k

s

)
−

s−1∑
i=1

{ ∑

S⊆VT :|S|=i

p(S)
}

. (1.8)

Equating this expression with the expression derived in (1.7) shows that rT

is the same as rT ′ whenever T and T ′ contain the same number of points of each
weight. Hence all sets of points T with the same number of points of each weight
are incident with the same number of blocks.

¥

Corollary 1.7.7 If S is a t− (v, k, λ; W ) point-weight design with u points and
u > t ≥ 2 then any two points of equal weight are incident with the same number
of blocks.

Proof We can apply (1.7.6) as ι(S) = λ for any set S of t points.

¥

The other major results on point-sum point-weight designs that are of interest
are:
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Result 1.7.8 If S is a t− (v, k, λ; W ) point-weight design with v > k, t > 1 and
|W|≥ 2 then the underlying structure of S is not a classical design.

Result 1.7.9 If S is a t− (v, k, λ; W ) point-weight design with v > k, t > 1 and
U is the underlying incidence structure of S then Aut S = Aut U .

Result 1.7.10 Suppose S is a t− (v, k, λ; W ) point-weight design with u points.
Let U be the underlying incidence structure of S and let M be an incidence matrix
of U . Then every point-weight design with underlying incidence structure U is
equivalent to S if and only if rank(M) = u.

Proofs of all of these results can be found in [9]. Lastly we give a concrete
example of a point-sum point-weight design that will be useful later:

Result 1.7.11 If n ≥ 3 then the degenerate projective plane with n + 1 points is
the underlying structure of a 2− (2n− 1, n, 1; {1, n− 1}) point-weight design.

Proof The degenerate projective plane with n+1 points is the incidence structure
(V,B, I) given by:

V = {x1, . . . , xn, xn+1}
B = {B1, . . . Bn, Bn+1}
I = {(xn+1, Bi) : 1 ≤ i ≤ n} ∪ {(xi, Bi) : 1 ≤ i ≤ n} ∪ {(xi, Bn+1) : 1 ≤ i ≤ n}.

We extend this to a point-weight incidence structure by adding a weight function
w given by

w(xi) =

{
1 if 1 ≤ i ≤ n

n− 1 if i = n + 1.

Now the sum of the weights is obviously 2n−1 and the sum of the weights of the
points on any block is n. If we take two points of {x1, . . . xn} then both of these
points are incident with Bn+1 only but if we take one point of xi ∈ {x1, . . . xn}
and the point xn+1 then these two points are incident with the block Bi only.

Hence the structure is a 2− (2n− 1, n, 1; {1, n− 1}) point-weight design.

¥

It is worth noting that no practical uses of point-sum point-weight designs were
given in [9] and so we will exhibit a theoretical situation in which a point-sum
point-weight design might be practically useful. Suppose that we wish to test
several different courses of treatment of a certain medical condition. Suppose
further that that medical condition required the patient to take k units of a
certain drug per day but that there were many different pills that each contained
a different amounts of that drug and only a certain number of each tablet could
be taken in one day. Lastly suppose that we want to conduct the test in an
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unbiased way, i.e. that any 2 pills are only in λ treatment courses. An efficient
way of organising the treatments would be construct a 2 − (v, k, λ; W ) point-
weight design with the points corresponding to the possible pills, the weights of
the points being the amount of drug the corresponding pill contained and then
the blocks would be the different treatment courses.

The other type of point-weight design that has been developed are weight-sum
point-weight designs.

Definition 1.7.12 (Weight-sum point-weight design) A point-weight inci-
dence structure is a σt − (v, k, λ; W ) weight-sum point-weight design if:

1. the sum of the weights of all the points is v (i.e. σ(V ) = v).

2. the sum of the weights of all the points on any block is k (i.e. σ(B) = k for
all B ∈ B).

3. any set of points whose total weight is t > 0 is contained in exactly λ > 0
blocks (i.e. if S ⊆ V and σ(S) = t then ι(S) = λ).

4. W is the weight-set of the point-weight incidence structure.

Weight-sum point-weight designs are really only mentioned for completeness
as the properties of weight-sum point-weight designs are vastly different to those
of point-sum point-weight designs or row-sum point-weight designs (which will
be developed in chapter 2). They are, however, of more practical use and make
a contribution to the theory of secret sharing schemes.



Chapter 2

Row-sum point-weight designs

In this chapter we introduce a third type of point-weight design which we call
row-sum point-weight designs that are entirely consistent with the conditions laid
down for a point-weight design and exhibit some intriguing combinatorial and
algebraic properties. We begin by examining the combinatorial properties of
such structures.

2.1 Basic definitions

The motivation for the definition of row-sum point-weight designs comes from an
algebraic property of classical designs. Many of the properties of classical designs
are derived from the fact if M is an incidence matrix for a classical design then
MMT = λJ + (r − λ)I where r is the number of blocks each point is incident
with. A row-sum point-weight design is a type of point-weight design that has a
closed expression for MMT (where M is the design’s incidence matrix).

Definition 2.1.1 (Row-sum point-weight designs) A point-weight incidence
structure S = (V,B, I, w) is called a πt−(v, k, λ; W ) row-sum point-weight design
if

1. the sum of the weights of all the points is v.

2. the sum of the weights of the points lying on any one block is k.

3. if S is a set of t > 0 points then

ι(S)
∏
x∈S

w(x) = λ

where λ > 0.

4. the image of w is W .

This will commonly be referred to as a πt − (v, k, λ; W ).

27



CHAPTER 2. ROW-SUM POINT-WEIGHT DESIGNS 28

Lemma 2.1.2 If S is a π2 − (v, k, λ; W ) with u points and an incidence matrix
M then

MMT = diag(w(x1)
2rx1 , w(x2)

2rx2 , ..., w(xu)
2rxu) + λ(J − I) (2.1)

where rxi
is the number of blocks with which the point xi is incident (for 1 ≤ i ≤

u).

Hence we have found a definition for point-weight designs that is consistent
with our motivation i.e. whenever t = 2 we have a closed expression for MMT

where M is the incidence matrix for the design. Note that if S is a πt−(v, k, λ; W )
where |W |= 1 then every point has the same weight w and so every t points lie
on exactly λ

wt points. Therefore the underlying structure of S is a t− ( v
w
, k

w
, λ

wt )
block design. Thus we have shown that, similar to point-sum and weight-sum
point-weight designs, row-sum point-weight designs with weight sets of size one
reduce to classical designs.

Let us start by considering row-sum point-weight designs that are equivalent.

Lemma 2.1.3 If T is a point-weight incidence structure that is equivalent to
a πt − (v, k, λ; W ) point-weight design S with scale factor µ, then T is a πt −
(µv, µk, µtλ; µW ) row-sum point-weight design.

In particular if S is a π2 − (v, k, λ; W ) with weight function w then T is a
π2 − (v′, k′, λ′; W ′) with weight function w′ ≡ µw. If the point x ∈ VS is mapped
to the point y ∈ VT under the equivalence map then

w′(y)2ry − λ′ = µ2(w(x)2rx − λ)

where rz is the number of blocks with which the point z is incident. In particular
w(x)2rx − λ and w(y)2ry − λ′ have the same sign.

Proof Suppose that S = (V,B, I, w) and T = (V ′,B′, I ′, w′). Since the two
structures are equivalent there exists incidence preserving bijections θV : V → V ′

and θB : B → B′ such that w′(θV (x)) = µw(x). Hence

∑

y∈V ′
w′(y) =

∑
x∈V

w′(θV (x))

=
∑
x∈V

µw(x)

= µ
∑
x∈V

w(x)

= µv

and for any block B′ ∈ B′ there exists a block B ∈ B such that B′ = θB(B) and

∑

y∈θB(B)

w′(y) =
∑
x∈B

w′(θV (x))
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=
∑
x∈B

µw(x)

= µ
∑
x∈B

w(x)

= µk.

Lastly suppose that S ′ is a set of t points of T . Then there exists a set S of t
points of S such that S ′ = θV (S). So,

ι(S ′) = ι(S)

=
λ∏

x∈S w(x)

=
µtλ∏

x∈S µw(x)

=
µtλ∏

x∈S w′(θV (x))

=
µtλ∏

y∈S′ w
′(y)

.

Therefore T is a πt − (µv, µk, µtλ; µW ) and in particular if t = 2 then T is a
π2 − (µv, µk, µ2λ; µW ) point-weight design. Suppose t = 2 and pick any y ∈ V ′.
There exists a point x ∈ V such that θV (x) = y and so,

w′(y)2ry − λ′ = (µw(x))2rx − µ2λ

= µ2(w(x)2rx − λ).

The purpose of this part of the lemma will become clear when we investigate
awkward and difficult designs in (2.4).

¥

This means that whenever we consider a πt− (v, k, λ; W ) we may assume that
the weight set W has a greatest common divisor of 1, as there will always exist an
equivalent design for which this is true. Lastly we give the most obvious lemma
about the combinatorial properties of a row-sum point-weight design.

Lemma 2.1.4 If S = (V,B, I, w) is a π1− (v, k, λ; W ) with u points and b blocks
then uλ = bk.

Proof Consider the weighted flag sum

∑

(x,B)∈V×B:x∈B

w(x).
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By evaluating this sum in two different ways we have that
∑
x∈V

∑
B3x

w(x) =
∑
B∈B

∑
x∈B

w(x)

∑
x∈V

λ

w(x)
w(x) =

∑
B∈B

k

uλ = bk. (2.2)

¥

2.2 Related structures

In this section we investigate which of the point-weight structures we defined
in (1.3) are also row-sum point-weight designs. We start by considering derived
structures, see (1.3.3) and (1.7.3).

Lemma 2.2.1 If S is a set of s < t points of a πt − (v, k, λ; W ) point-weight
design S with t ≥ 2 then SS is a πt−s − (v − σ(S), k − σ(S), λQ

x∈S w(x)
; W ′) point-

weight design.

Proof Since t ≥ 2 we have that any two points must lie on at least one block.
So SS contains all the points of S except those that lie in S. Hence the sum of
the weights of all the points is v− σ(S) and the sum of the weights of the points
lying on any one block is k− σ(S). Now let T be any set of t− s points of V \S.
We have that

ι(S ∪ T )
∏
x∈S

w(x)
∏
y∈T

w(y) = λ.

However ι(T ) in SS is equal to ι(S ∪ T ) in S. Hence in SS we have for any set of
t− s points T :

ι(T )
∏
y∈T

w(y) =
λ∏

x∈S w(x)

which implies the result. Note that W \ w(S) ⊆ W ′ ⊆ W .

¥

Therefore we immediately get the following corollary.

Corollary 2.2.2 If S is a πt − (v, k, λ; W ) point-weight design with t ≥ 2 and
x is a point of S then Sx is a πt−1 − (v − w(x), k − w(x), λ

w(x)
; W ′) point-weight

design.

The concept of a derived structure at a point or set of points is a very powerful
tool and we will be using it a great deal. To begin with it allows us to prove the
following lemma:
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Lemma 2.2.3 If S is a πt − (v, k, λ; W ) point-weight design with u points, S is
a set of t− 1 points of S and t ≥ 2 then

ι(S) =
λ(u− t + 1)

(k − σ(S))
∏

x∈S w(x)

Proof From (2.2.1) we know that the derived structure of S at S is a π1 − (v −
σ(S), k−σ(S), λQ

x∈S w(x)
; W ′) point-weight design with u− t+1 points and so we

may apply (2.1.4). We also note that the number of blocks of SS is equal to the
number of blocks that are incident with S in S. Therefore:

(u− t + 1)
λ∏

x∈S w(x)
= ιS(S)(k − σ(S))

and so,

ιS(S) =
(u− t + 1)λ

(k − σ(S))
∏

x∈S w(x)
.

¥

This in turn allows us to deduce that:

Corollary 2.2.4 If S is a point-weight incidence structure that is simultaneously
a πt−(v, k, λ; W ) and a πt−1−(v, k, λ′; W ) point-weight design, where t ≥ 2, then
|W|= 1.

Proof Suppose the point-weight incidence structure S is a πt − (v, k, λ; W ) and
a πt−1 − (v, k, λ′; W ) point-weight design with |W |≥ 2. Let S be a set of t − 1
points. We have, if we use (2.2.3), two ways of calculating ι(S):

ι(S) =
λ′∏

x∈S w(x)

ι(S) =
(u− t + 1)λ

(k − σ(S))
∏

x∈S w(x)

which means that

λ′

λ
=

u− t + 1

k − σ(S)
.

However this is a contradiction as the RHS of this equation is not constant if
|W |≥ 2 as there always exists at least two sets of t − 1 points S1, S2 such that
σ(S1) 6= σ(S2). Hence we must have that |W|= 1.

¥
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Another structure we considered in (1.3) was the point-residue structure, see
(1.3.4).

Lemma 2.2.5 If S is a πt − (v, k, λ; W ) point-weight design with t ≥ 2 and x is
a point of S then the point residue of S at x, Sx, is a πt−1− (v′, k′, λ′; W ′) if and
only if |W ′|= 1.

Proof Let S be a set of t − 1 points of Sx. There exists a corresponding set of
points in S. Hence

ιSx(S) = ιS(S)− ιS(S ∪ {x})
=

λ(u− t + 1)

(k − σ(S))
∏

y∈S w(y)
− λ

w(x)
∏

y∈S w(y)

=
λ∏

y∈S w(y)

(u− t + 1

k − σ(S)
− 1

w(x)

)
.

Therefore if Sx is a πt−1 − (v′, k′, λ′; W ′) point-weight design then

λ′ = λ
(u− t + 1

k − σ(S)
− 1

w(x)

)

and this expression is constant. However this expression is constant if and only
if |W ′|= 1 for the same reasons given in the previous lemma.

¥

A discussion of the last type of related structure defined in (1.3), the dual
structure, is contained in Chapter 5. We will end this section by giving a theorem
about row-sum point-weight designs that share the same underlying structure.

Theorem 2.2.6 If S is a πt − (v, k, λ; W ) point-weight design with more than
t points that has the same underlying structure as T , which is also a πt −
(v′, k′, λ′; W ′) point-weight design then S is equivalent to T .

Proof Let S be any set of t−1 points and x and y be points not in S. Consequently
we have that:

ι(S ∪ {x})w(x)
∏
z∈S

w(z) = λ

ι(S ∪ {x})w′(x)
∏
z∈S

w′(z) = λ′

ι(S ∪ {y})w(y)
∏
z∈S

w(z) = λ

ι(S ∪ {y})w′(y)
∏
z∈S

w′(z) = λ′
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So,

w(x)

w′(x)

∏
z∈S

w(z)

w′(z)
=

λ

λ′
=

w(y)

w′(y)

∏
z∈S

w(z)

w′(z)

which implies that the weight of every point of S not in S is a multiple of the
weight of the equivalent point of T . However we can always pick different sets S
until we have shown that every point is a multiple of the weight of the equivalent
point. Hence S is equivalent to T .

¥

This tells us that the way we can assign weights to a structure and make it a
πt row-sum point-weight design is essentially unique. This fact will come in very
useful later.

2.3 A combinatorial analysis of the parameters

We have already, in (2.1.4), started a simple combinatorial analysis of row-sum
point-weight designs and we will now expand upon this. We will primarily be
concerned here with πt − (v, k, λ; W ) designs where t ≥ 2.

In (2.1.4) we derived an expression for the number of blocks in a π1−(v, k, λ; W )
point-weight design. The proof revolves around the fact that we can find an ex-
plicit formula for the number of blocks which are incident with a given point. The
question of how many blocks a given point lies upon in a πt − (v, k, λ; W ) design
has essentially already been proven in the introductory chapter where we have
shown that any two points of equal weight are incident with the same number of
blocks in a t− (v, k, λ; W ) point-weight design. This technique can also be used
in πt − (v, k, λ; W ) point-weight designs.

Theorem 2.3.1 If S is a πt − (v, k, λ; W ) point-weight design with more than t
points then any two sets of at most t points that have the same number of points
of each weight are incident with the same number of blocks. In particular, the
number of blocks incident with a point is equal for all points of the same weight.

Proof If S is a π1− (v, k, λ; W ) design then the result is trivial as each point x is
incident with λ

w(x)
blocks and if t > 1 then we may apply (1.7.6) with

ι(S) =
λ∏

x∈S w(x)

where S is any set of t points.

¥
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The converse (that two points that lie on the same number of blocks must
have the same weight) however is not generally true and we will return to this
question in (3.1). However, even if this converse is not true, the theorem itself
can be quite a lot of use. The following results use this fact and follow the lines
suggested by [1].

Lemma 2.3.2 Suppose S is a πt − (v, k, λ; W ) or a t− (v, k, λ; W ) point-weight
design with b blocks, where W = {w1, . . . wn}. Suppose further that there exists
ui points of weight wi and each of those points is incident with ri blocks. Then

bk =
n∑

i=1

uiwiri.

Proof In a manner similar to (2.1.4) we will evaluate a sum in two ways. Suppose
S is a (V,B, I, w) point-weight incidence structure. Then

∑

(x,B)∈I

w(x) =
∑
x∈V

∑
B3x

w(x)

=
∑
x∈V

rxw(x)

=
n∑

i=1

uiwiri

but also

∑

(x,B)∈I

w(x) =
∑
B∈B

∑
x∈B

w(x)

=
∑
B∈B

k

= bk.
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Hence the result.

¥

The result shown in [1] is that bk = v1r1 + . . . + vnrn for classical designs
and if we set vi = wiui in a point-weight design, i.e. that vi is the sum of the
weights of the points with weight wi, which is not an unreasonable thing to do,
then the results are identical. The next result in this section is also essentially
due to Adhikary, [1].

Lemma 2.3.3 If S = (V,B, I, w) is a π2 − (v, k, λ; W ) point-weight design then

rx + ry ≤ b +
λ

w(x)w(y)

where rz is the number of blocks with which the point z is incident.

Proof Consider the complementary structure S∗ of S given by

V ∗ = V

B∗ = B
I∗ = {(x, B) ∈ V ∗ × B∗ : (x,B) /∈ I}

Now any two points x and y must be incident with a non-negative number of
blocks in S∗, i.e. ι∗({x, y}) ≥ 0. The exact number of blocks of x and y are
incident with in S∗ is

ι∗({x, y}) = b− rx − ry + ι({x, y})
= b− rx − ry +

λ

wxw(y)

and so

b +
λ

w(x)w(y)
≥ rx + ry

¥

We also have an obvious restriction on the value of λ.

Lemma 2.3.4 If S is a set of s ≤ t points of a πt − (v, k, λ; W ) point-weight
design then

∏
x∈S w(x) divides λ.

Corollary 2.3.5 If S is a πt − (v, k, λ; W ) point-weight design where W =
{w1, . . . , wn} and each of point of weight wi is incident with ui blocks then

λ ≥ l.c.m.{wmin{t,u1}
1 , . . . , wmin{t,un}

n }.
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Proof If S is a set of points containing min{t, ui} points of weight wi, we know

that
∏

x∈S w(x) = w
min{t,ui}
i divides λ for all 1 ≤ i ≤ n. Hence the lowest common

multiple of these numbers divides λ.

¥

Lastly we note that:

Lemma 2.3.6 If S is a πt − (v, k, λ; W ) and S is a set of t− 1 points of S then

ι(S) ≥ λ

w(x)
∏

y∈S w(y)
for all x ∈ V \ S (2.3)

Proof For any x ∈ V \ S let T = S ∪ {x} then:

ι(S) ≥ ι(T ) =
λ

w(x)
∏

y∈S w(y)

¥

2.4 Incidence matrices

Now we return to the incidence matrix. The combination of (2.1.2) and (1.4.4)
gives us the following result:

Lemma 2.4.1 If S is a π2− (v, k, λ; W ) point-weight design with incidence ma-
trix M then:

det(MMT ) = (1 + λ
∑
x∈V

1

w(x)2rx − λ
)
∏
x∈V

(w(x)2rx − λ)

=
∏
x∈V

(w(x)2rx − λ) + λ
∑
x∈V

∏

y∈V \{x}
(w(y)2ry − λ). (2.4)

This allows us to sub-divide row-sum point-weight designs depending on the
values of w(x)2rx − λ:

Definition 2.4.2 A point x ∈ V is called awkward if w(x)2rx − λ = 0 and a
design is called awkward if it contains an awkward point. A point x ∈ V is called
difficult if w(x)2rx−λ < 0 and a design is called difficult if it contains a difficult
point.

Definition 2.4.3 Suppose S is a π2− (v, k, λ; W ) point-weight design with inci-
dence matrix M . S is said to be nice if det(MMT ) 6= 0.

Lemma 2.4.4 If a π2 − (v, k, λ; W ) point-weight design is neither awkward or
difficult then it is nice.



CHAPTER 2. ROW-SUM POINT-WEIGHT DESIGNS 37

Proof Since the design contains neither awkward or difficult points we have that
w(x)2rx − λ > 0 for all x ∈ V , hence every term in the calculation of the deter-
minant is positive and so the determinant is non-zero.

¥

Theorem 2.4.5 If x is an awkward point in a π2 − (v, k, λ; W ) point-weight
design S, then w(x) ≤ w(y) for all y ∈ V and if z is a point of the same weight
as x then x and z are incident with exactly the same blocks, hence z is awkward
too.

Proof We have already shown that if |W |= 1 then S is equivalent to a structure
in which every point is of weight 1 and the underlying structure is of a classical
design. We have already shown, in the proof of (1.4.6), that if rx = λ in a classical
design then k = v, i.e. there exists only one block that contains all the points.
In that case the theorem is trivially satisfied. So we may assume that |W|≥ 2.

Suppose y 6= x is a point of S. The number of blocks incident with both x
and y must be less than or equal to the number of blocks incident with x alone,
i.e.

λ
w(x)w(y)

≤ rx = λ
w(x)2

.

Hence w(x) ≤ w(y).
Now suppose z is another point of minimal weight. Every block containing

x and z, of which there are λ
w(x)w(z)

= λ
w(x)2

, also contains x. However there are

only λ
w(x)2

blocks that contain x so every block containing x also contains z.
Suppose there exists a block B ∈ B that contains z but does not contain

x. Pick a point z′ 6= z that lies on B (such a point exists because w(z) <
w(x) + w(z) ≤ k but the sum of the weights of the points in B is equal to k)
then the number of blocks containing z and z′ is greater the number of blocks
containing x and z′ because every block that x also contains z but there exists at
least one block that contains z and z′ but not x. So:

λ

w(z)w(z′)
>

λ

w(x)w(z′)

which is a contradiction as w(x) = w(z). So there can exist no block that contains
z but does not contain x, i.e. x and z must be incident with exactly the same
blocks. In particular this means that rx = rz and therefore w(x)2rx = w(z)2rz =
λ, which implies that z is awkward too.

¥

If a point lies on exactly the same blocks as another point then we can get a
kind of converse to the above theorem.
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Lemma 2.4.6 If x and y are points of the same weight of a π2 − (v, k, λ; W )
point-weight design and x lies on every block that contains y then x and y are
awkward.

Proof There exist λ
w(x)w(y)

blocks that contain both x and y, and since every

block containing y contains x, y must lie on λ
w(x)w(y)

= λ
w(y)2

blocks. Hence y is

awkward, but then so is x as they are both of the same (necessarily) minimal
weight.

¥

Corollary 2.4.7 If x and y are two points of a π2 − (v, k, λ; W ) point-weight
design such that w(x) = w(y) and this weight is not minimal then there exists a
block B that contains x but does not contain y.

Theorem 2.4.8 If x is a difficult point of a π2− (v, k, λ; W ) point-weight design
then w(x) < w(y) for all y ∈ V \ {x}.

Proof Since x is difficult we have that the number of points x is incident with,
rx, is less than λ

w(x)2
. So for any y ∈ V \ {x} we have that:

λ
w(x)w(y)

≤ rx < λ
w(x)2

Hence w(x) < w(y).

¥

Corollary 2.4.9 If a π2− (v, k, λ; W ) point-weight design is difficult then it has
a single difficult point of minimal weight.

Corollary 2.4.10 A π2−(v, k, λ; W ) design cannot be both difficult and awkward.

Proof If S is a difficult design, then it has a single difficult point of minimal
weight. Since that point is not awkward the design cannot be awkward, as all
awkward points are of minimal weight too.

¥

Lemma 2.4.11 If S is an awkward π2 − (v, k, λ; W ) point-weight design with
incidence matrix M then det(MMT ) = 0 if and only if S contains more than one
awkward point.
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Proof We have already shown (2.4.1) that the following is an expression for the
determinant of MMT :

det(MMT ) =
∏
x∈V

(w(x)2rx − λ) + λ
∑
x∈V

∏

y∈V \{x}
(w(y)2ry − λ).

So if S has any awkward points then the first part of this expression will always
be zero, however the latter part of this expression will be positive unless S has
more than one awkward point. Therefore S is nice if and only if it contains a
single awkward point.

¥

We may now present an analogy to Fisher’s Inequality, (1.4.6).

Lemma 2.4.12 (Fisher’s Inequality) Suppose S is a π2 − (v, k, λ; W ) point-
weight design with u points and b blocks.

1. If S is nice then b ≥ u.

2. If S is difficult then b ≥ u− 1.

3. If S is awkward with m awkward points then b ≥ u−m + 1.

Proof Let M be an incidence matrix for S. We know that rank(MMT ) =
rank(M) and that rank(M) ≤ b as M has b columns, so we have to find lower
bounds for rank(MMT ). We will deal with each case in turn.

1. If S is nice then det(MMT ) 6= 0 and so rank(MMT ) = u. Hence u ≤ b.

2. If S is difficult then it contains a single difficult point. If S is difficult
and nice then b ≥ u ≥ u − 1. Suppose S is not nice then we may apply
elementary row operations to MMT as in (1.4.4) to reduce it to the form




0 λ λ . . . λ
0 w(x2)

2rx2 − λ 0 . . . 0
0 0 w(x3)

2rx3 − λ . . . 0
...

...
...

. . .
...

0 0 0 . . . w(xu)
2rxu − λ




.

From this we can clearly see that rank(MMT ) = u− 1. Hence b ≥ u− 1.

3. If S is awkward with 1 awkward point then S is nice and so we have already
shown that b ≥ u. Suppose that S is awkward with m ≥ 2 awkward points
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and, without loss of generality, assume that MMT is of the form




λ . . . λ λ . . . . . . λ
...

...
...

...
λ . . . λ λ . . . . . . λ
λ . . . λ w(xm+1)

2rxm+1 λ . . . λ

λ . . . λ λ
. . . . . .

...
...

...
...

. . . . . . λ
λ . . . λ λ . . . λ w(xu)

2rxu




.

Thus, by subtracting the mth row from every other row, we may reduce this
matrix to




0 . . . 0 0 . . . . . . 0
...

...
...

...
0 . . . 0 0 . . . . . . 0
λ . . . λ λ . . . . . . λ
0 . . . 0 w(xm+1)

2rxm+1 − λ 0 . . . 0
...

... 0
. . . . . .

...
...

...
...

. . . . . . 0
0 . . . 0 0 . . . 0 w(xu)

2rxu − λ




which clearly has rank u−m + 1. Hence b ≥ u−m + 1.

¥

Lastly we define some terminology that will be of use to us later. Note that it
is entirely consistent with the standard terminology of classical designs if S has
the underlying structure of a classical design and every point is of weight 1.

Definition 2.4.13 If S is a π2−(v, k, λ; W ) point-weight design and x is a point
of S then the order of x is defined to be nx = w(x)2rx − λ.

2.5 Conclusion

In this chapter we have introduced the concept row-sum point-weight designs,
which will form the central area of study of this thesis and begun to examine
them. We have found that there is a uniqueness to row-sum point-weight designs
both in the sense of equivalence, that any design is equivalent to one with a co-
prime weight set, and in sense of (2.2.6), that any two πt−(v, k, λ; W ) point-weight
design with the same underlying incidence structure are necessarily equivalent.
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We have also shown that unlike classical designs, the incidence matrix of a
row-sum point-weight design can be singular but that if this is the case then there
must exist one or more special point with specific properties.

Furthermore we have also introduced two very powerful devices that will be
extensively used in the remaining chapters. We found the derived structure of
a row-sum point-weight design is also a row-sum point-weight design and found
its explicit parameters (2.2.1). We also found that every point of equal weight is
incident with the same number of blocks (2.3.1).

There are a couple of areas which are conspicuous by their absence. The
first is that no examples of row-sum point-weight designs have been given in this
chapter and this will be remedied in the next chapter where a whole section will be
given over to the construction of row-sum point-weight designs. It was felt that,
besides settling the question of existence of point-weight designs, there was no
advantage in including specific examples here. Secondly we have not investigated
point-weight incidence structures that admit to being both πt − (v, k, λ; W ) and
either t− (v, k, λ′; W ) or σt− (v, k, λ′; W ) point weight designs. We will also look
at some aspects of this problem in the next chapter.



Chapter 3

Further combinatorial analysis

In this chapter we will continue our combinatorial examination of row-sum point-
weight designs, specifically we will examine the two areas mentioned in the con-
clusion of the last chapter. That is to say we exhibit some constructions and con-
struction techniques that will settle the question of existence for nice, awkward
and difficult row-sum point-weight designs, and we will examine the situation
where a point-weight incidence structure is both a πt − (v, k, λ; W ) design and a
s− (v, k, λ′; W ′) design.

3.1 Regularity

We have shown in (2.3.1) that any two points of equal weight are incident with
the same number of blocks. We will now examine the converse: if two points are
incident with the same number of blocks do they have the same weight? This
is obviously true for classical designs (where we tend to think of all the points
as having the same weight) and has been shown, in [9], to be true for point-sum
point-weight designs when t = 2. This questions is linked to the problem of
regularity.

Definition 3.1.1 A point-weight incidence structure S = (V,B, I, w) is regular
if every point is incident with the same number of blocks.

So if S is a regular πt − (v, k, λ; W ) point-weight design then it is also a
1 − (v, k, r; W ) point-weight design. The focus of this section will mostly be on
π2− (v, k, λ; W ) point-weight designs and so we begin by calculating the number
of blocks a point is incident with in such a design.

Lemma 3.1.2 If S is a π2 − (v, k, λ; W ) point-weight design with u points and
x is a point of S then x is incident with rx blocks where

rx =
λ(u− 1)

(k − w(x))w(x)
.

42
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2 2 2 2 0 0 0 0
1 0 0 0 1 1 1 0
0 1 0 0 1 1 0 1
0 0 1 0 1 0 1 1
0 0 0 1 0 1 1 1




Figure 3.1: A regular π2 − (6, 3, 2; {1, 2}) point-weight design

Proof We use (2.2.3) where the set S contains the single point x.

¥

It is tempting to conjecture that there are no regular πt − (v, k, λ; W ) point-
weight designs but Figure 3.1 would provide a contradiction. In fact any design
constructed using the method given in (3.2.1) is regular. We will now examine
the conditions that a design must satisfy in order to have two points of different
weight that are incident with the same number of blocks.

Lemma 3.1.3 Suppose S is a π2 − (v, k, λ; W ) point-weight design with u > 2
points. If there exists two points x and y, with w(x) < w(y), that are incident
with the same number of blocks then:

1. k = w(y) + w(x),

2. there exists a single point of weight w(y),

3. λ = w(x)w(y),

4. if z is a point of whose weight is not w(x) or w(y) then w(z) divides
g.c.d.(w(x), w(y)),

5. if there exists more than one point of weight w(x) then w(x) | w(y).

Proof We have that

rx = ry.

So
(u− 1)λ

(k − w(x))w(x)
=

(u− 1)λ

(k − w(y))w(y)

and (k − w(x))w(x) = (k − w(y))w(y)

and (w(x)− w(y))(k − w(x)− w(y)) = 0

and so k = w(x) + w(y) since w(x) 6= w(y).

Now if there were more than one point of weight w(y) then those two points
would both have to lie on at least one block (because S is a π2 − (v, k, λ; W )
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point-weight design) and the weight of that block would therefore be at least
2w(y) > w(y) + w(x) = k. Hence there cannot exist two points of weight w(y).

As w(y) + w(x) = k and we have excluded the possibility of repeated blocks
we must have that the only block that contains both x and y is {x, y}. But then
we have that ι({x, y}) = λ

w(x)w(y)
= 1 and so λ = w(x)w(y).

Now suppose that we have a point z whose weight is neither w(x) or w(y).
By (2.3.4) we know that w(x)w(z) divides λ = w(x)w(y), hence w(z) | w(y) but
similarly w(z) | w(x) and so w(z) | g.c.d.(w(x), w(y)).

By a similar argument, if there exists a point x′ 6= x with weight w(x) then
by (2.3.4) we have that w(x)2 divides λ = w(x)w(y) and so w(x) | w(y). In
particular this means that if |W |= 2 and u ≥ 3 then there must exist a point of
weight 1 in S, as W is a co-prime set.

¥

Corollary 3.1.4 If S is a regular π2−(v, k, λ; W ) with u > 2 points then |W|≤ 2.

Proof We show above that if y is incident with the same number of blocks as x
then w(y) = w(x) or w(y) = k−w(x). So if all points are incident with the same
number of blocks as x then there can be at most two different weights.

¥

So any regular π2−(v, k, λ; W ) design with |W|> 1 has a very specific structure
and set of parameters.

Lemma 3.1.5 Suppose S is a regular π2 − (v, k, λ; W ) point-weight design with
u > 2 points, |W |> 1 and each point of S is incident with r blocks. Then S is a
π2− (λ+r, λ+1, λ; {1, λ}) point-weight design with r+1 points with an incidence
matrix of the form 



λ . . . λ 0 . . . 0

Ir A




where A is incidence matrix of a 2 − (r, λ + 1, λ) design. Furthermore k divides
r(r − 1).

Proof The above corollary shows that S has |W |= 2 and that there exists a
single point of highest weight. Let this point be y and have weight w(y). Let
{x1, . . . , xu−1} be the remaining points each of which is of the same weight. Since
there exist at least three points in S, we have that there exists more than one
point of weight w(x1) hence, by (3.1.3), we have that w(x1) divides w(y) and so
w(xi) = 1 for all 1 ≤ i ≤ u− 1 by the co-primality of W .

Therefore λ = w(x1)w(y) = w(y), k = w(y) + w(x1) = λ + 1 and W = {1, λ}.
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Now y is connected to each of the u − 1 points xi by a single block that
contains y and xi only, and there exists no blocks that are incident with y except
the ones of this form. Since y is incident with r blocks there must exist r points
x1, . . . xu−1. Hence r = u−1 and the blocks that contain y must have an incidence
matrix of the form 



λ . . . λ

Ir




This means there exist r points of weight 1 in S and one point of weight λ,
and so v = r + λ. S must be a π2 − (r + λ, λ + 1, λ; {1, λ}) and must have an
incidence matrix of the form




λ . . . λ 0 . . . 0

Ir A




The matrix A is the incidence matrix of Sy. There exist r points of Sy and each
of these points has weight 1. Consequently every block of Sy contains k points
and any two points are contained in λ blocks. Thus the underlying structure
of Sy is that of a 2 − (r, λ + 1, λ) design and since A is a 0, 1-matrix, it is the
incidence matrix of a 2− (r, λ + 1, λ) design.

Lastly we note that A also defines a 1− (r, k, r− 1) design as each point xi of
S is incident with r blocks and precisely one of these is incident with y. So the
number of blocks of Sy is

b =
r(r − 1)

k

by (1.2.2) and this is an integer. Hence k divides r(r − 1).

¥

One might be tempted to think that the family of constructions shown in
(3.2.1) are the only regular π2 − (v, k, λ; W ) point-weight designs but this is not
true. Fig 3.2 gives another example of a regular π2 − (v, k, λ; W ) point-weight
design that is not constructable using (3.2.1). This is not the only possible regular
point-weight design as the next lemma shows.

Lemma 3.1.6 If A is the incidence matrix of a 2−(u, λ+1, λ) design with λ > 1
then the matrix

M =




λ . . . λ 0 . . . 0

Iu A




defines a regular π2 − (v, k, λ; W ) point-weight design with |W|≥ 2.
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2 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0
0 1 0 0 0 0 1 1 0 0 0 1 1 1 0 0
0 0 1 0 0 0 1 0 1 0 0 1 0 0 1 1
0 0 0 1 0 0 0 1 0 1 0 0 1 0 1 1
0 0 0 0 1 0 0 0 1 0 1 0 1 1 1 0
0 0 0 0 0 1 0 0 0 1 1 1 0 1 0 1




Figure 3.2: A regular π2 − (8, 3, 2; {1, 2} point-weight design

Proof Let S be the point weight incidence structure define by M and note that
this contains points of two different weights. It is obvious that S has a constant
blocks size k = λ+1 so we have to show that S satisfies the design condition and
that this design is regular.

If we take two points x1 and x2 of weight one then these blocks are incident
with λ = λ

w(x1)w(x2)
blocks by the definition of A. If we take a point x of weight

one and the point y of weight λ then these two points are incident with only
1 = λ

w(x)w(y)
blocks. Hence S is a π2 − (u + λ, λ + 1, λ; W ) point-weight design.

The point y is clearly incident with u blocks. Any point x of weight one is
incident with one block that contains y and u− 1 blocks that don’t contain y, by
(1.2.2). Hence x is incident with u blocks and S is regular.

¥

We have now completely characterised regular π2 − (v, k, λ; W ) designs as
point-weight incidence structures with specific structures. We may extend this
to any point-weight incidence structure that is both a πt+1 − (v, k, λ; W ) and
a t − (v, k, λ′; W ) point-weight design. Figure 3.3 gives a specific example of a
point-weight incidence structure that is simultaneously a π3 − (v, k, λ; W ) and a
2 − (v, k, λ′; W ) point weight design. In fact we can produce a structure that is
a πt+1 − (v, k, λ; W ) and a t− (v, k, λ′; W ) point-weight design for any t ≥ 1.

If we start with parameters t ≥ 2 and λ ≥ 2 then the point-weight incidence
structure defined by 



λ . . . λ 0 . . . 0

A B




where A is the (λ + t + 1)× (
λ+t+1

t

)
matrix consisting of all column vectors with

t 1’s and B is equal to Jλ+t+1− Iλ+t+1, then this structure is both a πt+1− (2λ +
t+1, λ+ t, λ; {1, λ}) and a t− (2λ+ t+1, λ+ t, λ+2; {1, λ}) point-weight design.
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2 2 2 2 2 2 2 2 2 2 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0 1 1 1 1
1 0 0 0 1 1 1 0 0 0 1 0 1 1 1
0 1 0 0 1 0 0 1 1 0 1 1 0 1 1
0 0 1 0 0 1 0 1 0 1 1 1 1 0 1
0 0 0 1 0 0 1 0 1 1 1 1 1 1 0




Figure 3.3: A structure that is both a π3−(6, 4, 2; {1, 2}) and a 2−(6, 4, 4; {1, 2})
point-weight design.

Theorem 3.1.7 If S is a point-weight incidence structure that is both a πt+1 −
(v, k, λ; W ) and a t− (v, k, λ′; W ) point-weight design with |W |≥ 2 and contains
u > t + 1 points then S has an incidence matrix of the form:




λ . . . λ 0 . . . 0

A B




where A is the (λ′ + t− 1)× (
λ′+t−1

t

)
matrix consisting of all 0,1-column vectors

with t 1’s and B is the incidence matrix for a (t+1)− (λ′+ t−1, λ+ t, λ) design.
Furthermore all point-weight incidence structures of this type are πt+1− (λ+λ′+
t− 1, λ+ t, λ; {1, λ}) and t− (λ+λ′+ t− 1, λ+ t, λ′; {1, λ}) point-weight designs.

Proof We will proceed using induction on the value of t. First note that we have
already shown that the above theorem is true for t = 1 in (3.1.5), as in this case
λ′ = r. So, for an induction hypothesis, we assume that if S is a point-weight
incidence structure that is both a πs+1− (v, k, λ; W ) and a s− (v, k, λ′; W ) point-
weight design with |W|≥ 2, u > s + 1 points and 1 ≤ s < t then S is of the form
given in the statement of the theorem.

Let S be a point-weight incidence structure that is simultaneously a πt+1 −
(v, k, λ; W ) and a t − (v, k, λ′; W ) point-weight design with |W |≥ 2, u > t + 1
points and t ≥ 2.

Pick a point z of S. Sz is a πt − (v − w(z), k − w(z), λ
w(z)

; W ′) and a (t −
1) − (v − w(z), k − w(z), λ′; W ′) point-weight design with u − 1 > t points (by
2.2.1 and 1.7.3). We know that if there exists only one point of weight w(z) then
W ′ = W \{w(z)} else W ′ = W . We will try to pick z such that there exists more
than one point of weight w(z) but this will not be possible if each point of S is
of a different weight.

If every point of S is of a different weight then |W |= u. Now Sx has, by
the induction hypothesis, |W ′ |≤ 2 so |W |≤ 3. However, in this case, this is a
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contradiction as |W |= u > t + 1 ≥ 3 as t ≥ 2. So we must assume that there
exists a point z such that there exists more than one point of that weight and so
|W ′|=|W|= 2.

This means that, by the induction hypothesis, Sx has an incidence matrix of
the form 



λ . . . λ 0 . . . 0

A′ B′




where A′ is the (λ′+ t− 2)× (
λ+t−2

t

)
matrix consisting of all column vectors with

t− 1 1’s and B′ is the incidence matrix for a t− (λ′ + t− 2, λ + t− 1, λ) design.
Since W = W ′ we know that z either has weight λ or weight 1. Let x be the
point of S that has weight λ in Sz, hence x 6= z. Similarly let y be a point of S
that has weight 1 in Sz and y 6= z. Note that as u > t + 1 ≥ 3 there must exist
more than one point of weight 1 in Sz.

If we consider Sy then this structure must also be of the above form as it is a
πt − (v − 1, k − 1, λ; W ) and a (t− 1)− (v − 1, k − 1, λ′; W ) point-weight design.
However Sy contains a row that corresponds to the point z and it is not the row
that corresponds to the point x. Hence w(z) = 1. So S has an incidence matrix
of the form 



λ . . . λ 0 . . . 0 λ . . . λ 0 . . . 0
1 . . . 1 1 . . . 1 0 . . . 0 0 . . . 0

A′ B′ C ′ D′




where the first row corresponds to the point x and the second row corresponds
to the point z. Sx must have an incidence matrix of the form:




1 . . . 1 0 . . . 0

A′ C ′




and have an underlying incidence structure that is a t−(u−1, t, 1) design. Hence
it must be the trivial design and C ′ must be a (u−2)×(

u−2
t−1

)
matrix that consists

of all the remaining 0,1-column vectors of Hamming weight t− 1.
Similarly Sx has an incidence matrix of the form




1 . . . 1 0 . . . 0

B′ D′




and have the underlying structure of a (t + 1) − (u − 1, λ + t, λ) point-weight
design. We will therefore have shown that S has the given structure if we can
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show that λ′ + t − 1 = u − 1. This is an obvious consequence of the induction
hypothesis as the design that is defined by B′ in Sz contains u− 2 points and is
a (t− 1)− (λ′ + t− 2, λ + t− 1, λ) design.

Now suppose we have a point-weight incidence structure S of the form given in
the statement of the theorem. Let x be the point of weight λ and let y1, . . . , yt+1

be points of weight 1. Then

ι({x, y1, . . . , yt}) = 1 =
λ

w(x)w(y1) . . . w(yt)

ι({y1, . . . , yt+1}) = λ =
λ

w(y1) . . . w(yt+1)

and so S is a πt+1− (λ+λ′+ t−1, λ+ t, λ; {1, λ}) point-weight design. If we take
the points x, y1, . . . , yt−1 then there are (λ′+ t− 1)− (t− 1) ways to add an extra
point of weight 1 to that set and each of those sets constitutes one block. Hence

ι({x, y1, . . . , yt−1}) = (λ′ + t− 1)− (t− 1) = λ′,

whereas

ι({y1, . . . , yt}) = 1 + λ

(
(λ+t−1)−t

1

)
(
(λ+t)−t

1

)

= 1 + (λ′ − 1)

= λ′

by noting that there exists one block in A that contains y1, . . . , yt and using
(1.2.2) on the (t + 1)− (λ′ + t− 1, λ + t, λ) defined by B.
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So S is a t− (λ + λ′ + t− 1, λ + t, λ′; {1, λ}) point-weight design.

¥

The condition that the design S = (V,B, I, w) must have u > t is imposed
to avoid the trivial design on t points that consists of a single block containing
all the points. This structure is obviously a πt − (v, v,

∏
x∈V w(x); W ) and a

(t− 1)− (v, v, 1; W ) point-weight design for any weight assignment.

3.2 Constructing row-sum point-weight designs

In this chapter we discuss the issues arising from the construction of row-sum
point-weight designs. We give three general methods of construction and an
example that we will return to in chapter 4.

Lemma 3.2.1 There exists a nice π2− (2n− 2, n− 1, n− 2; {1, n− 2}) row-sum
point-weight design for all n ≥ 4.

Proof We start with n points x1, ..., xn of weight 1 and one point xn+1 of weight
n− 2, so v = 2n− 2. The block set consists of all possible combinations of points
that have weight k = n − 1 i.e. n sets of n − 1 points of weight 1 and n sets of
the form {xi, xn+1} where i = 1, ..., n.

Now if we take any two points of weight 1 then these points are incident with
n−2 blocks of the first type and if we take a point of weight 1 and the point xn+1

then these two points are incident with just one block. Hence the value λ = n−2
is correct.

We will now show that this design is nice. By (2.4.5) and (2.4.8) we only need
to consider the points of minimal weight and by (2.3.1) we only need to consider
one of them. The point x1 is incident with one block of the form {x1, xn+1} and
n − 1 blocks of the form {x1, . . . , xn} \ {xj} where j = 2, . . . , n. Hence rx1 = n
and so w(x1)

2rx1 = n > n − 2 = λ, which means x1 is not difficult or awkward
and therefore the design is nice (by (2.4.4)).

¥

An example of this method of construction is shown in Figure 3.1.
We are also interested in finding specific examples of awkward and difficult

designs, hence we will investigate designs that contain a single point of minimal
weight or where every point of minimal weight lies on exactly the same blocks.

Lemma 3.2.2 If S is a π2 − (v, k, λ; W ) point-weight design with |W|= 2 and a
single point of minimal weight then every block contains that point.
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Proof Let S be a π2 − (v, k, λ; W ) point-weight design with |W|= 2 and a single
point x of minimal weight. S must have at least two points and the only design
with two points is the trivial design consisting of one block. In this case every
block trivially contains any point so we may assume that S has at least three
points.

Since S is a design with W = {m,n} then, without loss of generality, we can
assume that m < n. Hence S contains a single point of weight m. Suppose there
exists a block that doesn’t contain the point of minimal weight, then k = αn =
βn + m. Hence n divides m, which is a contradiction as m < n.

¥

Continuing with the notation of the previous lemma, suppose that x is a point
of minimal weight in a π2 − (v, k, λ; W ) point-weight design and that S contains
α other points. Suppose that each block contains x and β other points and
that W = {m, n} with m < n. It is obvious that Sx is a 2 − (α, β, λ

n2 ) and a
1− (α, β, λ

mn
) design. Now by the reduction of order formula for classical designs

(1.2.2):

λ

mn

(
β − 1

1

)
=

λ

n2

(
α− 1

1

)
.

Hence
β − 1

m
=

α− 1

n
.

From this we can see that m divides n(β − 1) and since the gcd{n,m} = 1 we
have that m divides β − 1. Similarly n divides α − 1 and if α = γn + 1 then
β = γm + 1.

We may construct a converse to this dissection of difficult point-weight designs
with |W|= 2 which allows us to form π2 − (v, k, λ; W ) from a classical design.

Theorem 3.2.3 If S is a 2 − (α, β, λ) design with α > β ≥ 2 then we can
construct a difficult π2 − (α(α − 1) + β − 1, αβ − 1, λ(α − 1)2; {α − 1, β − 1})
design.

Proof Suppose S = (V,B, I), define a new point-weight structure (V ′,B′, I ′, w′)
by

V ′ = V ∪ {x},
B′ = B,

I ′ = I ∪ {(x,B) : B ∈ B},
w′(z) =

{
β − 1 if z = x
α− 1 otherwise.

Hence the sum of the weights of the points is α(α− 1) + (β − 1) and the sum
of the weights of the points on any one blocks is β(α− 1) + (β − 1) = αβ − 1.
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Take any two points in V \ {x}: these points lie on λ = λ(α−1)2

(α−1)2
blocks.

Now take any point y ∈ V \ {x} and consider how many blocks contain x and
y. This is equal to the number of blocks containing y, which we may calculate by
the reduction of order formula for classical designs:

ry =
λ
(

α−1
1

)
(

β−1
1

)

= λ
α− 1

β − 1

=
λ(α− 1)2

(α− 1)(β − 1)
.

Hence we have constructed a design with the required parameters. It remains

to show that x is a difficult point (note that x lies on λ
(α

2)
(β
2)

blocks):

w(x)2rx − λ(α− 1)2 = (β − 1)2λ
α(α− 1)

β(β − 1)
− λ(α− 1)2

=
λ(α− 1)

β
(β − α)

< 0 as β < α.
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2 2 2 2
3 3 3 0
3 3 0 3
3 0 3 3
0 3 3 3




Figure 3.4: A π2 − (14, 11, 18; {2, 3}) derived from a 2− (4, 3, 2).

Hence x is a difficult point and so the design is difficult.

¥

Figure 3.4 gives an example of this method of construction.
Notice that the construction as it stands does not guarantee that the weights of

the points are co-prime, however we have already shown that it will be equivalent
to a design with co-prime weights. In fact we can force the weights to be co-prime
by dividing out the common factor of α− 1 and β − 1 when we assign them. We
may generalise this construction to use classical designs that have larger values
of t.

Theorem 3.2.4 Suppose S is a t− (v, k, λ) classical design with t ≤ k < v then
we can construct a πt − (vT , kT , λT ; W ) point-weight design T with one special
point x such that:

1. |W|= 2,

2. the only point of weight w(x) is x and this weight is minimal,

3. the underlying incidence structure of Tx is S.

Proof Suppose S = (VS ,BS , IS) and let T = (VT ,BT , IT , wT ) where:

VT = VS ∪ {x},
BT = BS ,
IT = IS ∪ {(x,B) : B ∈ BS}.

It only remains to define the weight function. Since S is a t− (v, k, λ) design, it
is also a (t− 1)− (v, k, λ′) design and, since k < v, we have that λ′ > λ. Let m
and n be the unique co-prime integers such that n

m
= λ′

λ
and set:

wT (z) =

{
m if z = x
n otherwise.
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Note that |W |= 2, that the only point of weight w(x) is x and this point is
minimal because λ′ > λ. Also note that the underlying incidence structure of Tx

is S. It therefore only remains to show that T is a πt − (vT , kT , λT ; W ) point
weight design.

Obviously vT = vn + m and kT = kn + m. Set λT = λnt. If S is a set of t
points of weight n then ι(S) = λ = λT

nt and if S is a set of t− 1 points of weight n

and the point x then ι(S) = λ′ = λn
m

= λT
mnt−1 . Hence this value of λT is correct.

¥
At first glance this may seem like a contradiction. If S was a 3 − (v, k, λ)

classical design, then it is also a 2 − (v, k, λ′) design and therefore can be used
to generate π3 and π2 designs. It would seem that this would contradict either
(2.2.4), which tell us that if T is a πt − (v, k, λ; W ) point-weight design then it
cannot be a πt−1 − (v, k, λ; W ) point-weight design, or (2.2.6), which tell us that
if two πt − (v, k, λ; W ) point-weight designs have the same underlying incidence
structure then they are equivalent. Fortunately neither of these theorems provide
a contradiction. In the first case, that of theorem (2.2.4), we are required to have
that the πt − (v, k, λ; W ) and the πt−1 − (v, k, λ; W ) point-weight design have
the same weight assignment which is not the case with the πt and πt−1 designs
generated here. In the second case, that of theorem (2.2.6), we require that both
structures are πt−(v, k, λ; W ) point-weight designs and not one a πt−(v, k, λ; W )
and one a πt−1 − (v, k, λ; W ) design.

As an example consider the classical design on five points with the blocks being
all possible sets of four points. This is simultaneously a 3− (5, 4, 2), a 2− (5, 4, 3)
and a 1− (5, 4, 4) design and as such it gives rise to both a π3− (17, 14, 54; {2, 3})
point-weight design with one point of weight 2 and five points of weight 3 and
a π2 − (23, 19, 48; {3, 4}) point-weight design with one point of weight 3 and five
points of weight 4.

We now return to the discussion of difficult π2 − (v, k, λ; W ) point-weight
designs that motivated this construction.

Lemma 3.2.5 Any π2 − (v, k, λ; W ) with |W |= 2 and a single point of minimal
weight is difficult.

Proof If S is a π2−(v, k, λ; W ) with |W|= 2 and a single point x of minimal weight
then by (3.2.2) we have that every block contains that point. This means that
the underlying structure of Sx is a 2 − (u, k′, λ) design. We may then augment
this classical design in the manner of (3.2.3) to give a difficult π2 − (v∗, k∗, λ; W )
point-weight design. However this design is equivalent to S because the both have
the same underlying incidence structure (see (2.2.6)). Therefore S is difficult.

¥

Corollary 3.2.6 There exists no nice, awkward π2 − (v, k, λ; W ) point-weight
designs with |W|= 2.
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Proof By (2.4.11) we know that if S is a nice, awkward π2 − (v, k, λ; W ) point-
weight design then it has a single awkward point which must be of minimal weight.
However the above corollary gives us that that point must be difficult, which is
a contradiction as no point can be both awkward and difficult (see (2.4.10).

¥

We will examine the matrix structure of awkward π2−(v, k, λ; W ) point-weight
designs with |W|= 2. However we will need the following lemma.

Lemma 3.2.7 There exists no π2−(v, k, λ; W ) point-weight design S with v > k,
|W|= 2 and a set of points S with |S|> 1 such that every block contains S.

Proof We know, by (2.4.6) and the fact that | S |> 1, that S contains only
awkward points. Without loss of generality we may assume that S is the entire
set of awkward points, then every point that does not lie in S is of a greater
weight than the points of S, by (2.4.5).

Suppose that V \ S contains only one point y. Then there exists at least one
block that contains S and y, and that block has weight k = σ(S) + w(y) = v.
Hence k = v which is a contradiction. So we know that V \ S contains at least
two points y1 and y2 and that S contains at least two points x1 and x2.

Now
ι({y1, y2})
ι({x1, y1}) =

λw(y1)w(x1)

λw(y1)w(y2)
=

w(x1)

w(y2)

and similarly

ι({x1, y1})
ι({x1, x2}) =

λw(x1)w(x2)

λw(x1)w(y1)
=

w(x2)

w(y1)
=

w(x1)

w(y2)
.

However SS has the same underlying incidence structure as a 2 − (α, β, λ′)
design with b blocks. Hence

ι({y1, y2}) = λ′ ,
ι({x1, y1}) = ry1 = λ′ α−1

β−1
,

ι({x1, x2}) = b = λ′ α(α−1)
β(β−1)

.

Therefore

β − 1

α− 1
=

ι({y1, y2})
ι({x1, y1})

=
ι({x1, y1})
ι({x1, x2})

=
β

α
.

So k = v, which is the required contradiction.



CHAPTER 3. FURTHER COMBINATORIAL ANALYSIS 56




1 1 1 1 1 1 1 1 1 0 0
1 1 1 1 1 1 1 1 1 0 0
1 1 1 1 1 1 1 1 1 0 0
3 0 0 0 0 3 3 0 0 3 0
3 3 0 0 0 0 0 3 0 0 3
0 3 3 0 0 0 0 0 3 3 0
0 0 3 3 0 0 3 0 0 0 3
0 0 0 3 3 0 0 3 0 3 0
0 0 0 0 3 3 0 0 3 0 3




Figure 3.5: A π2 − (21, 9, 9; {1, 3}) awkward design.

¥

So if S is an awkward π2 − (v, k, λ; W ) with |W |= 2 then it must have an
incidence matrix of the form:

[
mJ 0
nM nN

]

(by (2.4.5) with m < n) and must satisfy the following rules:

1. there must exist τ > 1 points of weight m (by (3.2.6)).

2. M is a 1−(β, k1, r) design (by considering SX where X is the set of awkward
points). If S contains u points then β = u− τ and τm + nk1 = k.

3. N consists of blocks of size k2 where nk2 = k.

4.
[

M N
]

is a 2− (β, {k1, k2}, λ
n2 ) incidence structure (obtained by consid-

ering the incidence structure given by removing all the awkward points).

5. k1 < k2 as k = nk2 = nk1 + τm.

6. nmr = λ where r is defined in 2. This result is obtained by noting that if
x and y are points of different weights then w(x)w(y)ι({x, y}) = λ.

Figure 3.5 gives an example of an awkward design with |W|= 2.
If we were to look for awkward and difficult point-weight designs then it is

helpful to know some bounds for the parameters. The following lemmas show
some bounds on the block size of such structures.

Lemma 3.2.8 If S is an awkward π2 − (v, k, λ; W ) point-weight design with u
points and an awkward point x then uw(x) = k.
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Proof Since x is awkward we know that if x is incident with rx blocks then
w(x)2rx = λ and we have an expression for rx given by (3.1.2) so:

λ = w(x)2 λ(u− 1)

w(x)(k − w(x))

= λ
w(x)(u− 1)

k − w(x)

and so
k − w(x) = (u− 1)w(x)

which gives the result.

¥

Lemma 3.2.9 If S is a difficult π2−(v, k, λ; W ) point-weight design with u points
and a difficult point x then uw(x) < k.

Proof Since x is difficult we know that if x is incident with rx blocks then
w(x)2rx < λ and we have an expression for rx given by (3.1.2) so:

λ > w(x)2 λ(u− 1)

w(x)(k − w(x))

> λ
w(x)(u− 1)

k − w(x)

and so
k − w(x) > (u− 1)w(x)

which gives the result.

¥

So we know that if S is an awkward or difficult π2− (v, k, λ; W ) point-weight
design then it has a fairly large block size. Furthermore we have exhibited some
examples where |W|= 2. It is harder to find examples when |W|> 2, the following
results show the non-existence of such designs when k is very small.

Lemma 3.2.10 If S is a π2 − (v, k, λ; W ) point-weight design with |W |≥ 3 and
a single point of minimal weight then k ≥ 8.

Proof We deal with each possible weight set and value for λ in turn. Obviously
the smallest possible weight set is {1, 2, 3} so k > 4 as there must exist a block
containing a point of weight 2 and 3.

Case 1: k = 5
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Obviously in this case we must have W = {1, 2, 3} as any other weight values
would mean that two of the higher weighted points could not exist on the same
block. Furthermore there must exist a single point of weight 3 because two points
of weight 3 could not exist on the same block either. Every point of weight 2
is linked to the point of weight 3 by a single block containing exactly those two
points. Hence λ = 6, which implies that there exists only one point of weight 2
(or else 4 would have to divide λ).

Consequently there exists no design with k = 5 as there can exist no block
that contains the point of weight 1 and the point of weight 2.

Case 2: k = 6
There are two possibilities for the weight set: {1, 2, 3} and {1, 2, 4}. However

in the latter case, since there exists only a single point of weight 1, there can exist
no block that contains that point. Hence if there exists a design with k = 6 then
it must have a weight set of {1, 2, 3}.

The possible distributions of the weights of points on each block are:

• One point of weight one, one point of weight two and one point of weight
3.

• Three points of weight two.

• Two points of weight three.

So, if there exists two or more points of weight 3 then there exists only one block
connecting any two of those points, hence λ = 9 which is a contradiction as 2
must divide λ by (2.3.4). Hence there exists a single point of weight 3.

So any block containing the single point of weight 1 also contains the single
point of weight 3 and a point of weight 2. Hence there exists at most one block
connecting the point of weight 1 and any point of weight 2. So λ = 2 which is a
contradiction as 3 divides λ by (2.3.4).

Hence there exists no design with k = 6.

Case 3a: k = 7 and W = {1, 2, 4}
The possible distributions of the weights of points on each block are:

• One point of weight one, one point of weight two and one point of weight
four.

• One point of weight one and three points of weight two.

There can exist at most one point of weight 4 as no block could contain two of
them. Since there exists only one block that connects each point of weight 2 with
the point of weight 4 we must have λ = 8.

This means that there exists only 2 blocks that contain the point of weight 1
and the point of weight 4, and so there exists only two points of weight 2. This
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is a contradiction as two points of weight 2 could never lie on a block without a
third point of weight 2 existing.

Case 3b: k = 7 and W = {1, 2, 3}
The possible distributions of the weights of points on each block are:

• One point of weight one and two points of weight three.

• One point of weight one and three points of weight two.

• Two points of weight two and one point of weight three.

Since there must exist blocks connecting points of weight 1 and 3, and blocks
connecting points of weight 1 and 2 we must have more than one point of weight
2 and more than one point of weight 3.

Hence 36 divides λ.
In particular this means that there exists at least 4 blocks connecting any two

points of weight 3. However these blocks must consist of the two points of weight
3 and the single point of weight 1, which is a contradiction as we may not have
two blocks that contain exactly the same points.

Case 3c: k = 7 and W = {1, 3, 4}
There exist no block that could contain the single point of weight 1 and a

point of weight 4, which is a contradiction.

Case 3d: k = 7 and W = {1, 2, 3, 4}
The possible distribution of the weights of the points on each block are:

• One point of weight 4 and one point of weight 3.

• One point of weight 4, one point of weight 2 and one point of weight 1.

• Two points of weight 3 and one point of weight 1.

• One point of weight 3 and two points of weight 2.

• Three points of weight two and one point of weight 1.

There exists at most one point of weight 4 as no block could contains two of
them. Now there is only one block that could contain the point of weight 4 and
any one point of weight 3, hence λ = 12. This means there is at most one point
of weight 3 (as if there exists two points of weight 3 then 9 would have to divide
λ by (2.3.4)). Hence there exists no block that contains the point of weight 3 and
the point of weight 1.

Case 3e: k = 7 and W = {1, 2, 5}
There can exist no block that contains the single point of weight 1 and the

(necessarily) single point of weight 5, which is a contradiction.
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¥

Lemma 3.2.11 If S is a difficult π2−(v, k, λ; W ) point-weight design with |W|>
2 then k ≥ 9.

Proof Since a difficult design must contain a single point of minimum weight
we know from the previous lemma that k ≥ 8. Hence it only remains to deal
with the case k = 8. If W contains a point of weight 7 or more than obviously
the two highest weighted points could not exist on the same block, which is a
contradiction. So we assume that W contains at no point of weight 7 or higher
and the sum of the weights of the two highest points is at most 8. The possible
weight sets are:

{6, 2, 1} {5, 3, 2, 1} {5, 3, 2} {5, 3, 1}
{5, 2, 1} {4, 3, 2, 1} {4, 3, 2} {4, 3, 1}
{4, 2, 1} {3, 2, 1}

However we can exclude the following weight sets as there could not exist a block
that contains two points of a given weight:

• W = {6, 2, 1} as there cannot exist a block that contains a point of weight
6 and a point of weight 1.

• W = {5, 3, 2} as there cannot exist a block that contains a point of weight
5 and a point of weight 2.

• W = {5, 3, 1} as there cannot exist a block that contains a point of weight
5 and a point of weight 1.

• W = {4, 3, 2} as there cannot exist a block that contains a point of weight
4 and a point of weight 3.

• W = {4, 2, 1} as there cannot exist a block that contains the point of weight
1.

Let us consider the remaining weight sets:

Case 1: W = {1, 3, 4}
The possible distributions of the weights of points on each block are:

• One point of weight one, one point of weight three and one point of weight
four.

• Two points of weight four.



CHAPTER 3. FURTHER COMBINATORIAL ANALYSIS 61

Hence there can exist only one point of weight 3. For any point of weight 4
there exists precisely one block that contains it and the point of weight 3 (hence
λ = 12), and precisely one block that contains it and the point of weight 1 (hence
λ = 4). This gives the required contradiction.

Case 2a: W = {1, 2, 3} and there exists a single point of weight 3
The possible distributions of the weights of points on each block are:

• One point of weight one, two points of weight two and one point of weight
three.

• Four points of weight two.

Take any point of weight 2, there should be three times as many blocks that
contain that point of weight 2 and the point of weight 1 than contain that point
of weight 2 and the point of weight 3. However every block that contains that
point of weight 2 and the point of weight 1 also contains the point of weight 3,
which is the required contradiction.

Case 2b: W = {1, 2, 3} and there exists more than one point of weight 3
The possible distributions of the weights of points on each block are:

• One point of weight one, two points of weight two and one point of weight
three.

• Four points of weight two.

• One point of weight two and two points of weight three.

As there must exist a block that contains the point of weight 1, there exists more
than one point of weight 2. Hence 36 divides λ, let λ = 36α.

Take two points z1, z2 of weight 3, a point y of weight 2 and let x be the
unique point of weight 1. There exits 18α blocks that contain the points x and y.
These are all blocks of the form {x, y, y′, z} for some point y′ of weight 2 and z
of weight 3. Of these blocks there can exist at most 6α that contain the point z1

and 6α that contain the point z2 because 6α is the number of blocks that contain
both y and zi. Hence there exists at least 3 points of weight 3.

However, as x is a difficult point, the number of blocks on which x lies is less
than λ. However x lies on 12α distinct blocks for every point of weight 3, hence
x lies on at least 3 · 12α = 36α = λ blocks. This is the required contradiction.

Case 3: W = {1, 2, 5}
The possible distributions of the weights of points on each block are:

• One point of weight 1, one point of weight 2 and one point of weight 5.
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• Four points of weight 2.

Since there exists only one block connecting the unique block of weight 5 to
any point of weight two we have that λ = 10. Conversely, since there exists only
one block connecting the unique block of weight 1 to any point of weight 2 we
have that λ = 2. This is the required contradiction.

Case 4a: W = {1, 2, 3, 4} and there exists more than one point of weight 4
The possible distributions of the weights of points on each block are:

• Two points of weight 4.

• One point of weight 4, one point of weight 3 and one point of weight 1.

• One point of weight 4 and two points of weight 2.

• Two points of weight 3 and one point of weight 2.

• One point of weight 3, two points of weight 2 and one point of weight 1.

• Four points of weight 2.

Since there exists only one block that can contain two points of weight 4 we
know that λ = 16. However since there exists only one block that can contain
any one point of weight 4 and any one point of weight 3 we must have that λ = 12
which is the required contradiction.

Case 4b: W = {1, 2, 3, 4} and there exists a single point of weight 4
In this case we must again have that λ = 12 because there can exist only one

block that contains the point of weight 4 and any one point of weight 3. So there
must exist 3 blocks that contain the single point of weight 4 and the single point
of weight 1, hence there must exist three points of weight 3. Now, by (2.3.4), we
have that 9 divides λ which is a contradiction.

Case 5: W = {1, 2, 3, 5}
The possible distributions of the weights of points on each block are:

• One point of weight 5 and one point of weight 3.

• One point of weight 5, one point of weight 2 and one point of weight 1.

• Two points of weight 3 and one point of weight 2.

• One point of weight 3, two points of weight 2 and one point of weight 1.

• Four points of weight 2.
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This means there can exist only one point of weight 5 as there could exist no
block that could contain two of them. Since there exists only one block that
could contain the single point of weight 5 and any one point of weight 3 we
must have that λ = 15 but, by (2.3.4), we have that 30 divides λ which is a
contradiction.

¥

3.3 Comparing row-sum and point-sum point-

weight designs

In this section we examine point-weight incidence structures that are simultane-
ously point-sum and row-sum point-weight designs. In particular, we investigate
the values of t and s for which a point-weight incidence structure S might be
both a πt − (v, k, λ; W ) and a s− (v, k, λ′; W ) point-weight design.

Lemma 3.3.1 If S is a πt−(v, k, λ; W ) and a t−(v, k, λ′; W ) point-weight design
with more than t points then |W|= 1.

Proof Consider any two points x and y of S and let S be a set of t− 1 points in
V \ {x, y}. Since S is a t− (v, k, λ′; W ) we have that:

ι(S ∪ {x}) = ι(S ∪ {y}) = λ′

but S is also a πt − (v, k, λ; W ), so:

ι(S ∪ {x})w(x)
∏
z∈S

w(z) = ι(S ∪ {y})w(y)
∏
z∈S

w(z) = λ.

Hence w(x) = w(y) and therefore |W|= 1.

¥

We now show that it is impossible to have a point-weight incidence structure
S that is both a πt − (v, k, λ; W ) and a (t + 1)− (v, k, λ′; W ). We start with the
simplest cases.

Lemma 3.3.2 If S is a π2−(v, k, λ; W ) point-weight design and a 3−(v, k, λ′; W )
then |W|= 1.

Proof Suppose that S is a π2 − (v, k, λ; W ) and a 3 − (v, k, λ′; W ) point-weight
design and that |W|> 1. Take any x ∈ V then Sx is:

1. a π1 − (v − w(x), k − w(x), λ
w(x)

; W ′),
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2. a 2− (v − w(x), k − w(x), λ′; W ′),

where W ′ = W or W ′ = W \{w(x)} if there exists only a single point with weight
w(x). Note that λ

w(x)
is an integer by (2.3.4).

Therefore for all y ∈ V \ {x} we have that, in Sx, the point y is incident with
the following number of blocks:

1. ry = λ
w(x)

1
w(y)

and

2. ry = λ′ (v−w(x))−w(y)
(k−w(x))−w(y)

by (1.7.4).

Hence w(y) satisfies the equation:

X2 +
λ′w(x)(w(x)− v)− λ

λ′w(x)
X +

λ(k − w(x))

λ′w(x)
= 0 (3.1)

which is independent of y and w(y). So w(y) can take at most two values.
So now there exists three possibilities for the structure of S:

1. |W |= 3 and so there exists no other point of weight w(x) in S and the
above equation is of the form (X −w(y))(X −w(z)) = 0 for y, z ∈ V \ {x}
and w(y) 6= w(z).

2. |W|= 2 and there exists more than one point of weight w(x) in S. Therefore
the above equation is of the form (X−w(x))(X−w(y)) = 0 for some y ∈ V
with w(y) 6= w(x).

3. |W |= 2 and there exists only one point of weight w(x) in S. This implies
that Sx has the underlying structure of a classical design.

We will consider these possibilities in turn:

Case 1: |W|= 3
Hence there exists a single point x ∈ V of weight w(x).
Suppose W = {w(x), w(y), w(z)} and consider Sy. The above reasoning holds

for Sy as well as Sx so from this we may classify S according to the above pos-
sibilities. However since we know that |W |= 3 we must have that S is of type 1
and that there exists a single point of weight w(y). Similarly there exists only a
single point of weight w(z).

Therefore V = {x, y, z} and there exists no π2 − (v, k, λ; W ) point-weight de-
sign with this point set and weight set.

Case 2: |W|= 2 and there exist more than one point of weight w(x)
Suppose W = {w(x), w(y)}. If there exists precisely one point of weight w(y)

then examining Sy will lead to Case 3 so we may assume that there exists more
than one point of weight w(y) too. Now by examining Sy and Sx we find that
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equation 3.1 will be the same in both cases: (X −w(x))(X −w(y)). Hence, from
the constant term:

λ(k − w(x))

λ′w(x)
=

λ(k − w(y))

λ′w(y)

⇔ kw(y)− w(x)w(y) = kw(y)− w(x)w(y)

⇔ w(x) = w(y)

which is the required contradiction.

Case 3: |W|= 2 and there exists a single point of weight w(x) in S
In this case we have that there exists a single point of weight w(x) in S and

so the underlying structure of Sx a 2− (α, β, λ′) design as all the points of Sx are
of the same weight. We also know that equation 3.1 has a factor of X−w(y) but
this is not very useful, instead we will concentrate and the very specific structure
S must have.

Firstly suppose that there exists a block B that does not contain the point
x and let y be any other point, then we have that k = βw(y) + w(x) = γw(y).
Hence w(y) | w(x) and so w(y) = 1 by the primality of W . Now consider the
structure given by Sy, in this case equation 3.1 will be of the form:

X2 +
λ′(1− v)− λ

λ′
X +

λ(k − 1)

λ′
= 0

which can also be written as

(X − 1)(X − w(x)) = 0

as the points of weight w(x) and 1 must satisfy this equation. So w(x) = λ(k−1)
λ′ .

Therefore, in S, we have that

ι({x, y}) =
λ′

k − 1
< λ′

as k > 2 because 2 < w(x) + w(y) ≤ k. This is a contradiction because any set
of three point must lie on exactly λ′ blocks, so any set of two points must lie on
at least λ′ blocks.

We will therefore assume that every block contains the point x. This means
that Sx is a 3− (α, β, λ′) design because we haven’t removed any blocks from S.
However we already know, from the definition of Sx, that any two points also lie
on λ′ blocks, therefore α = β by (1.2.2). This means that there is only one block
and this block contains every point.

Let x, y and z be points such that x and y are of different weights. Each pair
of points lies on exactly 1 block so

λ

w(x)w(z)
= 1 =

λ

w(y)w(z)
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and so w(x) = w(y) which is the required contradiction.

Hence if S is simultaneously a π2 − (v, k, λ; W ) and a 3− (v, k, λ′; W ) point-
weight design then |W|= 1.

¥

We may extend this to all possible values of t ≥ 2.

Theorem 3.3.3 If S is a πt−(v, k, λ; W ) and a (t+1)−(v, k, λ′; W ) point-weight
design for some t ≥ 2 then |W|= 1.

Proof We will use induction on the value of t. Obviously we have shown that the
theorem is true if t = 2 in (3.3.2) so assume that the theorem is true whenever
S is a πs − (v, k, λ; W ) and a (s + 1) − (v, k, λ′; W ) point-weight design with
2 ≤ s < t.

Suppose S is a πt−(v, k, λ; W ) and a (t+1)−(v, k, λ′; W ) point-weight design
with |W |≥ 2. Suppose we pick a point x of S such that there exists more than
one point of weight x then Sx is a πt−1 − (v − w(x), k − w(x), λ

w(x)
; W ) and a

t − (v − w(x), k − w(x), λ′; W ) point-weight design with |W |≥ 2. However this
contradicts the induction hypothesis so we must assume that no such point exists,
i.e. that S consists only of single points of each weight.

Pick any point x of S and Sx is a πt − (v − w(x), k − w(x), λ
w(x)

; W ′) and a

t− (v − w(x), k − w(x), λ′; W ′) point-weight design where W ′ = W \ {w(x)}. If
this is not to contradict the induction hypothesis then we must have |W ′|= 1 but
then 1 =|W ′|=|W| −1 = u− 1 as each point is of a different weight. Hence u = 2
which is a contradiction as S is a (t + 1)− (v, k, λ′; W ) design for some t ≥ 2.

¥

I would conjecture that if S is a t− (v, k, λ′; W ) point-weight design for some
t ≥ 3 with |W |≥ 2 then S cannot be a πs − (v, k, λ; W ) point-weight design
for any 1 < s ≤ t. This comes down to proving that if S is a t − (v, k, λ′; W )
point-weight design with |W |≥ 2 then S is not a π2 − (v, k, λ; W ) point-weight
design. However this conjecture is as yet unproven.

3.4 Comparing row-sum point-weight designs to

experimental designs

We have examined row-sum point-weight designs in the context of combinatorial
design theory, however design theory is also used in the design and analysis of
experiments. A good introduction to the theory of experimental designs can be
found in [19]. In the theory of experimental designs a set of plots are subjected
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to treatments one of v treatments τ1, ..., τv. Such plots are also partitioned into
blocks. The incidence matrix then becomes a display of which treatments are
being used on plots that are grouped in different blocks. The use of design theory
allows a statistician to estimate certain properties of the treatments and the
blocks.

Although in most experiments a classical design (termed a “balanced incom-
plete block design” or BIBD) is used, the general definition doesn’t restrict the
choice of treatment or blocks for each plot very much. It is perfectly possible for
a treatment to be applied to plots that lie on the same block and hence, for the
incidence matrix to contain integer values greater than 1. Informally an experi-
mental design whose incidence matrix contains entries greater than one is called
an n-ary design. However the situation is more confusing when one attempts to
use a formal definition.

According to Tocher [20] an n-ary design is a design for which the incidence
matrix only contains entries from the set {0, 1, . . . , n−1}. Presumably we require
that there exists an entry of value n−1. Some papers, including [18], suggest that
every value of {0, 1, . . . , n− 1} must appear somewhere in the incidence matrix.
However, in this thesis we shall use the definitions given in [8].

Definition 3.4.1 A block design is an allocation of treatments τ1, . . . , τv onto a
finite set of plots such that every plot is associated with exactly one treatment, and
an allocation of plots into blocks such that every plot is associated with exactly one
block. A block design is said to be proper if every block is associated with the same
number of plots and is said to be equireplicate if every treatment is associated with
the same number of plots.

A block design with an incidence matrix M is said to be an n-ary block design
if the entries of M constitutes n distinct integers.

A block design is said to be pairwise balanced if MMT = D + λJ , where D is
a diagonal matrix, λ is a scalar and J is the matrix whose every entry is 1.

Under these definitions it is easy to see that a point-weight incidence structure
with weight set W is a (|W | + 1)-ary block design with the property that if a
treatment τi appears on any two blocks then it appears the same number of times
on each of those blocks. It is also not difficult to see that a point-weight incidence
structure that satisfies the constant block size condition is a proper (|W | + 1)-
ary block design and that a row-sum point-weight design is a proper, pairwise
balanced (|W |+ 1)-ary block design.

It is also worth noting that the general theory of experimental designs al-
lows two blocks to contain equal numbers of each treatment where as we have
specifically excluded the possibility of repeated blocks.

We can also show that a row-sum point-weight design is variance balanced,
see [8] and [14].

Definition 3.4.2 Suppose that M is the incidence matrix of a block design. Let
ri be the number of plots to which the treatment τi is applied, R = diag(r1, . . . , rv),
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kj be the size of the j-th block and K = diag(k1, . . . , kb). A block design is variance
balanced if the off diagonal elements of the coefficient matrix C = R−MK−1MT

are equal.

Since any row-sum point-weight design is a proper, pairwise balanced block
design we have that, in the notation above,

C = R−MK−1MT

= R−M(
1

k
I)MT

= R− 1

k
MMT

= R− 1

k
(D + λJ)

=
1

k
(R−D)− λ

k
J ,

and clearly the off diagonal elements of C are equal. However it is also fairly trivial
to see that any proper, variance balanced block design is pairwise balanced. So
any proper structure is pairwise balanced if and only if it is variance balanced.

3.5 Conclusion

In this chapter we gave examples and constructions for nice, awkward and difficult
row-sum point-weight designs. All of these examples have a weight set of size two
and the question of the existence of a row-sum point-weight design with a weight
set of size three or greater is still open.

We have also completely characterised the regular π2 − (v, k, λ; W ) as being
those designs with |W |= 2 that are constructed in a certain way. Similarly we
have also shown that the only point-weight incidence structures that are both
πt+1 − (v, k, λ; W ) and t− (v, k, λ′; W ) point-weight designs with t ≥ 2 also have
|W|= 2 and are of a similar structure. To the contrary we have shown that there
can exist no point-weight incidence structure that is both a πt − (v, k, λ; W ) and
either a t − (v, k, λ′; W ) or a (t + 1) − (v, k, λ′; W ). We know from [9] that if S
is a point-weight incidence structure then there can exist at most one value t for
which S is a t − (v, k, λ′; W ) and we conjectured that if S is a t − (v, k, λ′; W )
point-weight design then it is not a πs − (v, k, λ; W ) for any 1 < s ≤ t.

We also investigated the connection between row-sum point-weight designs
and experimental designs. Row-sum point-weight designs are specific examples of
proper, pairwise balanced n-ary designs, and as such are variance balanced. It had
been hoped that this connection would lead to further results and constructions,
however this has not been the case. This is due in part to the aesthetic restriction
of repeated blocks.
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We have not discussed the relationship between row-sum and weight-sum
point-weight designs. It is harder to investigate this relationship as the weight-
sum point-weight design might not be given any information about the number
of blocks a set of t points lies upon. There are a few examples of structures
that are both πt − (v, k, λ; W ) and σs − (v, k, λ′; W ) designs, for example the
design given in Figure 3.4 is rather trivially also a σ5 − (14, 11, 3; {2, 3}) and a
σ11− (14, 11, 1; {2, 3}) point-weight design. However the general theory is still an
open problem.



Chapter 4

Groups and point-weight designs

In this chapter we examine the relationships between groups and point-weight
designs including the automorphism group and the groups that can be used to
generate a design from base blocks.

4.1 Automorphism groups

Horne [9] has already defined the automorphism group of a point-weight incidence
structure as an automorphism of the underlying structure that preserves the
weights of points. Thus any automorphism of a point-weight incidence structure
is an automorphism of its underlying incidence structure U , i.e.

Aut S ≤ Aut U .

However it is not certain whether any automorphism of the underlying structure
would necessarily preserve the weights of the points (although it does preserve
the number of blocks a point is incident with).

It has already been shown that if S is a point-sum point-weight design then
Aut S = Aut U and hence any automorphism of the underlying structure pre-
serves the weights of the points. We will show that the same holds for row-sum
point-weight designs.

Lemma 4.1.1 If σ is an automorphism of a point-weight incidence structure S
then σ is completely defined by its effect on V if and only if S has no repeated
blocks.

Proof It is well known (see [3]) that for all τ ∈ Aut U the effect of τ is completely
defined by its effect on V if and only if U has no repeated blocks. Since σ ∈
Aut S ≤ Aut U we have that this applies to σ too as σ ∈ Aut U .

¥

The following theorem is due to Peter Cameron, [6].

70
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Result 4.1.2 If S is a πt − (v, k, λ; W ) row-sum point-weight designs with more
than t points and an underlying incidence structure U then Aut S = Aut U .

Proof Let S be a πt − (v, k, λ; W ) point-weight design with more than t points
and let U be the underlying incidence structure of S. We may assume, without
loss of generality, that W = {w1, w2, . . .} where w1 < w2 < . . ., and then define
Ui = {x ∈ V : w(x) = wi} and ui = |Ui|. Let j be the value for which

j∑
i=1

ui ≤ t and

j+1∑
i=1

ui > t.

Let U =
⋃j

i=1 Ui and m = |U |. If S is a set of t points then ι(S) is maximal if
and only if S is of the form U ∪X, where X is a set of t−m points of Uj+1.

Note that any automorphism of U preserves the value of ι.
We consider two cases. If m < t then the sets X above are non-empty and

their union is Uj+1. So if we apply automorphism of the underlying structure to
S then in order to preserve the value of ι(S) we must have that U is mapped
to itself and X is mapped to another set X ′ ⊆ Uj+1. Hence any automorphism
of the underlying structure maps points of weight wj+1 to other points of weight
wj+1.

Now consider a point x ∈ Ui, where i > j + 1, and the set S = U ∪X ∪ {x},
where X is a set of t−m− 1 points of Uj+1. If we apply any automorphism of U
to S then we have already shown that U is mapped to U , X is mapped to a set
X ′ ⊆ Uj+1 and so, in order to preserve the value of ι(S), we must have that x is
mapped to another point of the same weight. This means that any automorphism
maps points of weight at least wj+1 to other points of the same weight.

Lastly if we pick a point x ∈ Ui, where i < j + 1, and form the set S =
(U ∪X)\{x}, where X is a set of t−m+1 points of weight greater than wj. We
have already shown that, under the action of any automorphism of the underlying
group, every point of X is mapped to a point of the same weight. Again, in order
to preserve ι(S) we must have that x is mapped to a point of the same weight.
Hence every point of S is mapped to a point of the same weight under the action
of Aut U .

Now, for the second case, suppose that t = m. In this case we have that
S = U is the unique subset of size t such that ι(S) is maximal, hence for any
g ∈ Aut U we have ι(U g) = ι(U). Let y be a point of weight w1 and U ′ = U \{y}.
Furthermore let x be any point of maximal weight and let S = U ′ ∪ {x}. If
g ∈ Aut U then certainly ι(S) = ι(Sg), so

λw(y)

w(x)
∏

z∈U w(z)
= ι(S)

= ι(Sg)

=
λw(yg)

w(xg)
∏

z∈U w(zg)
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=
λw(yg)

w(xg)
∏

z∈U w(z)
.

Therefore,

w(x)

w(xg)
=

w(y)

w(yg)
.

Since w(x) is minimal we have that w(xg) ≥ w(x) (i.e. w(x)
w(xg)

≤ 1). Similarly,

since w(y) is maximal, we have that w(yg) ≤ w(y) and so w(y)
w(yg)

≥ 1. This

means that w(x) = w(xg), i.e. points of minimal weight are mapped to points
of the same weight by the action of the automorphism group of the underlying
structure. We may now repeat this argument with a point x of weight w2, noting
that w(x) ≤ w(xg) as xg cannot be a point of minimal weight as these are only
mapped to points of the same weight under the action of Aut U . This means
that any point of U is mapped to a point of the same weight under the action of
Aut U .

We now repeat the argument used in the first case to show that points of
weight greater than wj also map to points of the same weight under the action
of the automorphism group of the underlying incidence structure.

¥

4.2 Generating designs from groups

In classical design theory it is possible to take a group that acts on a set with
certain properties and create a classical design. We will investigate the possibility
of using this technique to create point-weighted designs.

According to the definition of Aut S we have that points may only be mapped
to points of the same weight. So we may partition the points according to the
orbits of Aut S and every point in an orbit of will be of the same weight. It is
not necessary for different orbits to have different weights.

Let G be a group that acts on a set V and let V = V1 ∪ V2 ∪ . . . ∪ Vd be the
orbit decomposition of V by G. Hence, for all i, V G

i = Vi and G acts transitively
on Vi. Further let {β1, β2, . . . , βe} be a set of base blocks, i.e. a set of subsets of
V . We will examine the structure create by taking a point set V and a block set
B =

⋃e
j=1 βG

j .
Firstly, if the above structure is to be a t-point-sum or a t-row-sum point-

weight design, the two obvious conditions must hold:

• Any set of t points must lie on some non-zero number of blocks. Hence for
all 1 ≤ i ≤ d there exists j with 1 ≤ j ≤ e such that βj contains at least
min{|Vi|, t} points of Vi.



CHAPTER 4. GROUPS AND POINT-WEIGHT DESIGNS 73

• If the structure is to have constant block size then there must exist a weight
assignment for the orbits V1, . . . , Vd such that each of the base blocks has
the same weight.

Obviously if βj is incident with less than t points then it may be ignored,
in the sense that if the base blocks {β1, . . . , βe} generate a t-point-sum or t-
row-sum point-weight design then the structure generated from the base blocks
{β1, . . . , βe} \ {βj} will be a point-sum or row-sum point-weight design with the
same parameters.

Since the design condition of a point-sum point-weight design does not de-
pend upon the weights of the points we may assign weights to each of the orbits
of points in any way in which the base blocks satisfy the constant block size
condition. Whether such an assignment of weights exists is an easily checkable
matrix condition: if Mβ is an incidence matrix for the base blocks then there must
exist a positive rational column vector x such that MT

β x = 1 and the weights of
the points (derived from the entries of x) must be the same for each point in an
orbit. However if we attempt to construct a row-sum point-weight design then
the design condition depends very heavily upon the weights of the points and
this will constrain our ability to chose the weights of the points so that each base
block will be of the same size (i.e. the sum of the weights of the points on any
base block is the same).

We will focus our attempts on satisfying the design condition.

Definition 4.2.1 Suppose a group G acts on a set V with orbit decomposition
V1, . . . , Vd and let S and T be subsets of V . S and T are said to have the same
structure if |S ∩ Vi|=|T ∩ Vi| for all 1 ≤ i ≤ d.

Note that if S and T have the same structure then |S|=|T|.

Definition 4.2.2 Suppose a group G acts on a set V with orbit decomposition
V1, . . . , Vd and t ≥ 1. G is said to be t-homogeneous with respect to its orbital
decomposition if for all subsets S and T of V , where S and T each contain t
points and have the same structure, then there exists a g ∈ G such that Sg = T .

So any group acting on a set V is 1-homogeneous with respect to the orbital
decomposition because G acts transitively on the orbits.

Lemma 4.2.3 Suppose a group G acts on a set V with orbit decomposition
V1, . . . , Vd and that G acts t-homogeneously on V with respect to its orbital de-
composition. Let B be the set of sets of points of V obtained by applying G to a
set of base blocks and let S be the incidence structure (V,B,∈). If S is a subset
of V containing t points and T is a subset of V that has the same structure as S
then ι(S) = ι(T ) in S.
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Proof Since G is t-homogeneous with respect to its orbital decomposition and S
and T have the same structure of t points, there exists an element g ∈ G such
that Sg = T .

Suppose S ⊆ B ∈ B then T ⊆ Bg ∈ B and Bg
1 = Bg

2 if and only if B1 = B2.

Thus ι(S) ≤ ι(T ).

However the roles of S and T in this argument can be interchanged, so ι(S) =
ι(T ).

¥

Theorem 4.2.4 Suppose a group G acts on a set V with orbit decomposition
V1, . . . , Vd and that G acts t-homogeneously on V with respect to its orbital de-
composition. Furthermore suppose that {β1, . . . , βe} is a set of base blocks of V
and that S is a set of t points. Then

ι(S) =
e∑

j=1

|G| ∏d
i=1

(|βj∩Vi|
|S∩Vi|

)

|Stab βj|
∏d

i=1

( |Vi|
|S∩V i|

) . (4.1)

Proof We will use a “counting flags” technique: we will count the number of
ordered pairs (T, B) where T is a subset of V with the same structure as S and
B is a block that contains T .

We begin by picking T and calculating the number of blocks that T lies on.
There exists

∏d
i=1

( |Vi|
|S∩Vi|

)
ways to pick a set T with the same structure as S and,

by the above lemma, each of these sets will lie on exactly ι(S) blocks.
Next we calculate how many sets T of the same structure as S can lie on

a given block. We consider the blocks generated by each base block in turn.
The number of sets T that can lie on a block generated by base block βj is∏d

i=1

(|βj∩Vi|
|S∩Vi|

)
and there are |G|

|Stab βj | blocks generated by the base block βj. Hence

there are
∑e

j=1
|G|

|Stab βj |
∏d

i=1

(|βj∩Vi|
|S∩Vi|

)
ordered pairs.

Equating these two expressions and re-arranging gives that:

ι(S) =
e∑

j=1

|G| ∏d
i=1

(|βj∩Vi|
|S∩Vi|

)

|Stab βj|
∏d

i=1

( |Vi|
|S∩V i|

)

¥

Let us attempt to construct a simple point-sum or row-sum point-weight de-
sign using this formula. The case when G acts transitively on V is trivial as
every point in the structure must have the same weight and so the structure is a
classical design. Hence assume that its orbital decomposition of V is V = V1∪V2

and that there exists only one base block β. In this case the constant block size
condition is trivially satisfied as any weight assignment will lead to blocks of the
same size.



CHAPTER 4. GROUPS AND POINT-WEIGHT DESIGNS 75

Lemma 4.2.5 Suppose G acts t-homogeneously with respect to its orbital decom-
position on a set V and that β ⊆ V is a base block. If the structure (V, βG,∈, w)
for some weight function w is a t − (v, k, λ; W ) point-weight design with v > k
and t > 1 then |W|= 1.

Proof Since there is only one base block we must have that all the blocks have
the same number of points in them, hence the underlying structure must be a
t − (u, k′, λ) design. However we know from [9] that any t − (v, k, λ; W ) design
with an underlying structure that is a classical design has |W|= 1.

¥

Hence, in the case where S has only one base block, we may restrict ourselves
to attempting to construct row-sum point-weight designs. However the following
lemma restricts the type of row-sum point-weight design that we can construct:

Lemma 4.2.6 If S is a nice π2 − (v, k, λ; W ) point-weight design that is con-
structed from a group G acting on a set of points V with d orbits, and there exists
e base blocks which are permuted by G to give the block set B then e ≥ d.

Proof We use Block’s lemma (1.6.2). We may divide the rows of M into a
partition where two points are in the same partition if and only if they lie in
the same point orbit. Similarly we may divide the columns of M into a partition
where two blocks are in the same partition if and only if they are derived from the
same base block. This forms a tactical decomposition of M with d row partitions
and e columns partitions. Hence, if M has u rows, we have:

d ≤ e + u− rank(M)

Since M is nice we have that det(MMT ) 6= 0 or that rank(MMT ) = u as
MMT is a u × u matrix. Now, by a simple result of linear algebra, rank(M) ≥
rank(MMT ) but since M has u rows, we have that rank(M) ≤ u and so
rank(M) = u. Therefore the above inequality simplifies to d ≤ e.

¥

Corollary 4.2.7 If S is a π2 − (v, k, λ; W ) point-weight design and there exists
a group G acting on V and a base block β such that V is composed of more than
one point orbit and the block set B = βG then S is either difficult or awkward
with more than one awkward point.

Proof Since S has more point orbits then base blocks we must have that S is not
nice. Hence, by (2.4.4) and (2.4.11), it must be either difficult or awkward and
have more than one awkward point.

¥
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Theorem 4.2.8 If S is a π2 − (v, k, λ; W ) point-weight design (with k < v) and
there exists a group G that acts on V and a base block β such that V is composed
of more than one point orbit and the block set B = βG then S is a difficult design
of the form of (3.2.3).

Proof Suppose S is a π2 − (v, k, λ; W ) point-weight design and there exists a
group G that acts on V and a base block β such that V is composed of more
than one point orbit and the block set B = βG. Note that β is a block. Let S be
the set of awkward or difficult points.

We have that S ⊆ β because S is necessarily a point orbit or the union of
point of orbits and in the case where S contains more than one awkward point
we know by (2.4.5) that every block that contains one point of S must contain
all the points of S.

So consider SS. As we have not removed any blocks this is still a π2 − (v −
σ(S), k−σ(S), λ; W ′) point-weight design that is generated by a single base block
β\S however none of the points of SS are awkward or difficult, so SS is nice. This
contradicts (4.2.7) unless SS is composed of a single point orbit, i.e. SS contains
points of all the same weight and has the underlying structure of a classical design.
In particular this means that |W|= 2.

Suppose |S |> 1, then S is a π2 − (v, k, λ; W ) design with k < v and more
than one point that lies on every block, which contradicts (3.2.7). Hence |S|= 1
and S must have the same underlying incidence structure as the difficult design
constructed using (3.2.3), however any two designs with the same underlying
incidence structure are equivalent by (2.2.6).

¥

The case is obviously harder when t > 2 but we can show that either we have
a construction analogous to (3.2.4) or there exists at most one value of t for which
the structure is a πt − (v, k, λ; W ) point-weight design (under certain technical
conditions).

Lemma 4.2.9 Suppose S is a point-weight incidence structure and G ≤ Aut S
is an automorphism group that partitions the point set into two orbits V1 and V2,
and acts transitively on the block set (so that there exists a single base block β with
βG = B). Then there exists no value of t such that |V1| ≤ t, |V2| ≤ t, G acts t-
homogeneously with respect to its orbital decomposition and S is a πt−(v, k, λ; W )
point-weight design with k 6= v.

Proof We know that β must contain at least min{|Vi |, t} points of Vi for all
1 ≤ i ≤ 2. However min{|Vi|, t} =|Vi| and so Vi ⊆ β for all i. Hence β = V .

¥
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Suppose we have that G acts t-homogeneously with respect to its orbital
decomposition, where t ≥ 2, on a set V whose orbital decomposition is V = V1∪V2

and on a single base block β ⊆ V . Consider the structure given by (V, βG,∈).
Furthermore let us suppose that |V1|= 1 and |V2|> t then there exists two possible
structures of sets with t points:

1. The set S which contains the single point of V1 and t− 1 points of V2.

2. The set T which contains t points of V2.

Note that β must contain at least t points of V2 and all of V1.
Hence, assuming the structure has u points and so there are u − 1 points of

V2:

ι(S) =
|G| (1

1

)(|β|−1
t−1

)

|Stab β| (1
1

)(
u−1
t−1

) ,

ι(T ) =
|G| (1

0

)(|β|−1
t

)

|Stab β| (1
0

)(
u−1

t

) .

Now let us suppose that (V,B, I, w) is a πt − (v, k, λ; W ) point-weight design
for some weight function w, that the single point of V1 has weight n and that the
points of V2 have weight m. Consequently:

ι(S)

ι(T )
=

λnmt−1

λmt

=
n

m

=

(|β|−1
t−1

)(
u−1

t

)
(

u−1
t−1

)(|β|−1
t

)

=
u− t

|β| −t
.

So if we pick n and m to be the unique co-prime integers that satisfy this
equation then we can guarantee that the structure will be a row-sum point-weight
design. As we would expect, if n = m then ι(S) = ι(T ) and the underlying
structure would be a classical design and so |W|= 1, by (2.2.6).

This construction is analogous to the construction of a difficult row-sum point-
weight design from a classical design given in (3.2.3). In this case the classical
design is constructed from a group G acting t-homogeneously on the set V2 and
a single base block β \ V1, then we add the single point contained in V1 to every
block.

Lemma 4.2.10 Suppose S is a point-weight incidence structure and G ≤ Aut S
is an automorphism group that partitions the point set into two orbits V1 and V2,
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and acts transitively on the block set (so that there exists a single base block β with
βG = B). Then there exists no value of t such that 2 ≤ |V1| ≤ t, t < |V2|, G acts t-
homogeneously with respect to its orbital decomposition and S is a πt−(v, k, λ; W )
point-weight design with k 6= v.

Proof Assume S is a πt − (v, k, λ; W ) point-weight design and that the points of
the sets V1 and V2 have weights n and m respectively. Since |V1|≤ t we have that
V1 ⊆ β and so |β ∩ V2|=|β| − |V2|.

For all 0 ≤ s ≤|V1| we may define a set Ts that contains s points of V1 and
t− s points of V2. Thus:

ι(Ts) =
|G| (|V1|

s

)(|β|−|V1|
t−s

)

|Stab β| (|V1|
s

)(|V2|
t−s

) .

So for all 1 ≤ s ≤|V1| we have that:

ι(Ts−1)

ι(Ts)
=

n

m

=
|β| − |V1| −t + s

|V2| −t + s
.

Hence, as t ≥ 2, and since

ι(T0)

ι(T1)
=

n

m
=

ι(T1)

ι(T2)

we have that

|β| − |V1| −t + 1

|V2| −t + 1
=

|β| − |V1| −t + 2

|V2| −t + 2

so (|β| − |V1| −t + 1)(|V2| −t + 2) = (|β| − |V1| −t + 2)(|V2| −t + 1)

and |β| = |V1| + |V2|
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and so β = V .

¥

Lemma 4.2.11 Suppose S is a point-weight incidence structure and G ≤ Aut S
is an automorphism group that partitions the point set into two orbits V1 and V2,
and acts transitively on the block set (so that there exists a single base block β with
βG = B). There exists at most one value of t such that t < |V1|, t < |V2|, G acts t-
homogeneously with respect to its orbital decomposition and S is a πt−(v, k, λ; W )
point-weight design with k 6= v.

Proof Suppose S is a πt− (v, k, λ; W ) point-weight design and that the points of
V1 and V2 have weights n and m respectively. Let Ts be a set containing s points
of V1 and t − s points of V2, where 0 ≤ s ≤ t. Once again we make use of the
fact that for 1 ≤ s ≤ t we have that ι(Ts−1)

ι(Ts)
= n

m
. Note that ι(T0)

ι(T1)
is enough to

uniquely determine the co-prime integers n and m.
Now, since we have that |V1|> t,

ι(Ts) =
|G| (|β∩V1|

s

)(|β∩V2|
t−s

)

|Stab β| (|V1|
s

)(|V2|
t−s

)

Hence, as t ≥ 2 and since:

ι(T0)

ι(T1)
=

ι(Tt−1)

ι(Tt)

We have that

|V1|
(|V2|

t−1

)(|β∩V2|
t

)

|β ∩ V1|
(|β∩V2|

t−1

)(|V2|
t

) =
|β ∩ V2|

(|V1|
t

)(|β∩V1|
t−1

)

|V2|
(|V1|

t−1

)(|β∩V1|
t

)

|V1| (|β ∩ V2| −t + 1)

|β ∩ V1| (|V2| −t + 1)
=

|β ∩ V2| (|V1| −t + 1)

|V2| (|β ∩ V1| −t + 1)

|V1||V2| (|β ∩ V1||β ∩ V2| −(t− 1)(|β ∩ V1| + |β ∩ V2|) + (t− 1)2)

=|β ∩ V1||β ∩ V2| (|V1||V2| −(t− 1)(|V1| + |V2|) + (t− 1)2)

This is a quadratic expression in (t− 1) but the constant terms on both sides
of the equation are the same and so we may cancel them out and then, since
t > 1, divide through by t− 1 to get a linear expression. So
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(|V1||V2| − |β ∩ V1||β ∩ V2|)t
=|V1||V2| (|β ∩ V1| + |β ∩ V2| −1)− |β ∩ V1||β ∩ V2| (|V1| + |V2| −1)

We know that |V1||V2| − |β ∩ V1||β ∩ V2|= 0 if and only if |β ∩ V1|=|V1| and
|β ∩ V2|=|V2|. This is because |β ∩ Vi|≤|Vi| for i = 1, 2. So there exists have a
linear polynomial in t and so we can conclude that there exists at most one value
of t ≥ 2 for which S is a πt − (v, k, λ; W ) point-weight design.

¥

4.3 Generating groups

In this section we will consider the inverse problem of the last section, i.e. given
a design S, which groups that are t-homogeneous with respect to its orbital par-
tition coupled with which base blocks generate S. We will do this by developing
a new technique in the field of permutation groups. Note that the definitions
of two sets having the same structure (4.2.1) and the definition of a group be-
ing t-homogeneous with respect to its orbital decomposition (4.2.2) are already
phrased in terms of groups acting on sets.

Lemma 4.3.1 Suppose Ω is a G-space and |Ω| ≥ t ≥ 1. Then there exists a
subgroup H ≤ G such that H is t-homogeneous with respect to its orbital partition.

Proof Certainly the group H = {id} is a subgroup of G and the orbits of H are
the sets {α} for all α ∈ Ω. So H is trivially t-homogeneous with respect to its
orbital decomposition.

¥

So, for every t with |Ω| ≥ t ≥ 1, there exists at least one subgroup H ≤ G
such that H is t-homogeneous with respect to its orbital decomposition. We now
consider the largest group with this property.

Definition 4.3.2 Suppose that Ω is a G-space and 1 ≤ t ≤ |Ω|. A subgroup
H ≤ G is called t-maximal if H is t-homogeneous with respect to its orbital decom-
position and there exists no subgroup H < K ≤ G which is also t-homogeneous
with respect to its orbital decomposition.

Theorem 4.3.3 Suppose that Ω is a G-space, 1 ≤ t ≤ |Ω| and H, K are sub-
groups of G that are t-homogeneous with respect to their orbital decompositions.
Then 〈HK〉 is t-homogeneous with respect to its orbital decomposition.
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Proof We begin by noting that

H, K ≤ 〈HK〉 ≤ G

Suppose that the orbits of H are V1, . . . , Vd, the orbits of K are V ′
1 , . . . , V

′
δ

and the orbits of 〈HK〉 are U1, . . . , Uγ. Since H and K are subgroups of 〈HK〉
we must have that for any 1 ≤ η ≤ γ:

Uη =
⋃

ψ∈Ψ Vψ for some Ψ ⊆ {1, 2, . . . , d}
Uη =

⋃
φ∈Φ V ′

φ for some Φ ⊆ {1, 2, . . . , δ}
Let S be any set of t− 1 elements of Ω and let x and x′ be distinct elements

of Ω \ S belonging to the same orbit of 〈HK〉. Then there exists an element
σ ∈ 〈HK〉 such that xσ = x′. Furthermore, since σ ∈ 〈HK〉, there exists group
elements h1, . . . , hm ∈ H and k1, . . . , km ∈ K such that σ = h1k1 . . . hmkm. This
means there exists a chain of elements of Uη, x = x0, x1, x2, . . . , x2m−1, x2m = x′

such that for all 0 ≤ i ≤ 2m− 1 either there exists a ψ such that xi, xi+1 ∈ Vψ (if
i is even) or there exists a φ such that xi, xi+1 ∈ V ′

φ (if i is odd).
We will show that there exists a σ′ ∈ 〈HK〉 that maps S ∪{x} onto S ∪{x′}.

We will proceed using induction on m.
If m = 1 then xh1

0 = x1, and so there exists a ψ such that x0, x1 ∈ Vψ.
Similarly there exists a φ such that x1, x2 ∈ V ′

φ. Therefore, providing x1 /∈ S, we

know that there exists an element h ∈ H such that (S ∪ {x0})h = S ∪ {x1} as
H is t-homogeneous with respect to its orbital partition. Similarly there exists a
k ∈ K such that (S ∪{x1})k = S ∪{x2} as K is also t-homogeneous with respect
to its orbital partition. Hence (S ∪ {x0})hk = S ∪ {x2}.

Now if x1 ∈ S then there exists k ∈ K such that (S ∪ {x0})k = {x0, x2} ∪ S \
{x1} because x1 ∈ S, and x1 and x2 lie in the same orbit of K. There also exists
a h ∈ H such that ({x0, x2} ∪ S \ {x1})h = S ∪ {x2} as x0 and x1 lie in the same
orbit of H. So (S ∪ {x0})kh = S ∪ {x2} and kh = (ek)(he) ∈ 〈HK〉. Thus the
case m = 1 is proven.

Now suppose that such a σ exists provided the chain defined above is of length
2m or less, and consider a chain of length 2m + 2.

If x2m is not in S then the process is very straightforward. Since there exists
a chain of length 2m between x = x0 and x2m we know there exists an element
σ ∈ 〈HK〉 such that (S ∪ {x})σ = S ∪ {x2m}. Furthermore, since there exists a
chain of length 2 between x2m and x′ = x2m+2, we know there exists an element
σ′ ∈ 〈HK〉 such that (S∪{x2m})σ′ = S∪{x2m+2}. Hence (S∪{x})σσ′ = S∪{x′}
and our induction is proven.

So suppose x2m ∈ S and let S ′ = S \ {x2m}. Note that

S ∪ {x} = S ′ ∪ {x0} ∪ {x2m}.
Since there exists a chain of length 2 between x2m and x2m+2 we have that there
exists an element σ′ ∈ 〈HK〉 such that

(
(S ′ ∪ {x0}) ∪ {x2m}

)σ′

= (S ′ ∪ {x0}) ∪ {x2m+2}.
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Furthermore, since there exists a chain of length 2m between x0 and x2m, we have
that there exists an element σ ∈ 〈HK〉 such that

(
(S ′ ∪ {x2m+2}) ∪ {x0}

)σ

= (S ′ ∪ {x2m+2}) ∪ {x2m} = S ∪ {x′}

Hence (S ∪ {x})σ′σ = S ∪ {x′} and our induction is proven.
This will be enough to show that 〈HK〉 is t-homogeneous with respect to its

orbital partition. Suppose we have two sets of points S1 and S2 with the same
structure with respect to the orbital partition of 〈HK〉. Then we may enumerate
the points of S1 = {s1,1, . . . , s1,t} and S2 = {s2,1, . . . , s2,t} so that s1,j and s2,j are
in the same orbit of 〈HK〉 and so find elements of σ1, σ2, . . . , σt ∈ 〈HK〉 such
that:

Sσ1
1 = {s2,1, s1,2, s1,3, . . . s1,t}

Sσ1σ2
1 = {s2,1, s2,2, s1,3, . . . s1,t}

...
...

...

Sσ1σ2...σt
1 = {s2,1, s2,2, s2,3, . . . s2,t}

= S2

Hence 〈HK〉 is t-homogeneous.

¥

Corollary 4.3.4 If Ω is a G-space and 1 ≤ t ≤ |Ω| then there exists a unique
t-maximal subgroup H ≤ G, and any subgroup K ≤ G which is t-homogeneous
with respect to its orbital partition is a subgroup of H.

Proof Suppose H and K are both t-maximal subgroups of G. Since 〈HK〉 is
t-homogeneous with respect to its orbital partition and H ≤ 〈HK〉 we have that
H = 〈HK〉. Similarly K = 〈HK〉, and so H = K.

Now suppose that H a t-maximal subgroup of G and K ≤ G is t-homogeneous
with respect to its orbital partition. If K is not a subgroup of H then H is a
proper subgroup of 〈HK〉. However since H is t-maximal this is a contradiction,
hence K ≤ H.

¥

Now that we have shown that these t-maximal subgroups exist and are unique
we may begin to investigate some of their properties.

Lemma 4.3.5 Suppose Ω is a G-space and 1 ≤ |Ω|. If H is t-homogeneous with
respect to its orbital partition and g ∈ G then gHg−1 is also t-homogeneous with
respect to its orbital partition.
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Proof If the orbits of Ω under the action of H are V1, . . . , Vd then orbits of Ω

under the action of gHg−1 are V g−1

1 , . . . , V g−1

d . Let S and T be two sets of t
elements of Ω that have the same structure with respect to the orbits of gHg−1.
This means that Sg and T g have the same structure with respect to the orbits of
H, hence there exists a h ∈ H such that Sgh = T g.

We may re-write this as Sghg−1
= T . Hence there exists an element of gHg−1

that maps S onto T , which means that gHg−1 is t-homogeneous with respect to
its orbital decomposition.

¥

Corollary 4.3.6 Suppose Ω is a G-space and 1 ≤ t ≤ |Ω|. If H is the unique
subgroup of G that is t-maximal then H is normal in G.

Proof Let H ≤ G be t-maximal. For any g ∈ G we have that gHg−1 is t-
homogeneous with respect to its orbital partition. So gHg−1 ≤ H as H is t-
maximal. This means that gHg−1 = H and H E G.

¥

The following result is due to Peter Cameron [6].

Result 4.3.7 Suppose Ω is a G-space and H ≤ G is t-homogeneous with respect
to its orbital partition. If Ω has d orbits under the action of H and 1 < t ≤
1
2
|Ω|−d+1 then H is also (t−1)-homogeneous with respect to its orbital partition.

Proof Let V1, . . . , Vd be the orbits of H and let S1 and S2 be sets of t−1 elements
of Ω that have the same structure under H. If |S1∩Vi| > 1

2
|Vi|−1 for all 1 ≤ i ≤ d

then

t− 1 = |S1|

=
d∑

i=1

|S1 ∩ V1|

>

d∑
i=1

(
1

2
|Vi| − 1)

=
1

2
|Ω| − d,

and so t > 1
2
|Ω| − d + 1 which is a contradiction. Hence there exists at least one

orbit, V1 say, such that |S1 ∩ V1|+ 1 ≤ 1
2
|V1|.

As H acts t-homogeneously with respect to its orbital partition we know that
there exists an element h ∈ H such that (S1 ∪ {x1})h = S2 ∪ {x2}. So h maps
S1 \V1 onto S2 \V1 but might not map S1∩V1 onto S2∩V1. We are therefore left
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with the problem of finding an element of StabH(S2 \ V1) that maps (S1 ∩ V1)
h

onto S2 ∩ V1.
Since H is t-homogeneous with respect to its orbital partition, we have that

StabH(S2 \ V1) is (|S1 ∩ V1| + 1)-homogeneous on V1. So, by 1.5.5, we have that
StabH(S2 \ V1) is |S1 ∩ V1|-homogeneous on V1. Hence there exists an element
g ∈ StabH(S2 \ V1) that maps (S1 ∩ V1)

h onto S2 ∩ V1. Hence Shg
1 = S2, and H is

(t− 1)-homogeneous with respect to its orbital partition.

¥

We can apply this general theory to automorphism groups of point-weight
designs. Suppose S is a point-weight incidence structure. Then we let the group
G = Aut S act on the set of points of S and find that there exists a unique
maximal subgroup H E Aut S that is t-homogeneous with respect to its orbital
partition. To give insight into these results we will analyse the design given in
figure 3.5 and use this to construct a new family of designs, given in (4.3.8).

Let S be the awkward π2 − (v, k, λ; W ) point-weight design given in Figure
3.5. This has an automorphism group:

Aut S = G1 × (G2 ×G3)oH

where Gi
∼= S3 and H ∼= C2 (this is actually product of G1 with the wreath

product of G2 and H). We may partition the point-set V into three parts V1, V2

and V3 as follows. Firstly let V1 contain the three awkward points, then the
remaining six points are partitioned into two sets of three points so that each of
the sets is a block. Gi acts on V by permuting the 3 points of Vi and fixing all
the other points while H acts on V by fixing the points of V1 and mapping the
points of V2 onto V3 and vice versa.

Hence if we suppose that:

V1 = {x1, x2, x3},
V2 = {y1, y2, y3},
V3 = {z1, z2, z3}

and we take some element (e, σ, e, e) ∈ Aut S then the effect of this group element
on a point p ∈ V is:

p 7→
{

p if p /∈ V2

yiσ if p = yi ∈ V2.

Whereas if we take the element (e, e, e, h) ∈ Aut S where h is the non-identity
element of H then the effect of this group element on a point p ∈ V is:

p 7→




p if p ∈ V1

zi if p = yi ∈ V2

yi if p = zi ∈ V3.
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However the maximal subgroup of Aut S that is 2-homogeneous with respect
to its orbital partition is K = G1 ×G2 ×G3, and this group generates S via the
three base blocks:

β1 = V1 ∪ {y1, z1},
β2 = V2,

β3 = V3.

Note that V1 ∪ V2 ∪ V3 is the orbital decomposition of V under the action of K
and that S has 3 point orbits and 3 base blocks. We are not required by (4.2.5)
to have at least as many base blocks as orbits because S has more than one
awkward point and is therefore not nice. However neither are we forced to have
more point orbits than base blocks just because S isn’t nice. Further notice that
K is normal in Aut S because K is a subgroup of index 2 in Aut S. This is an
example of (4.3.6).

We may extend this idea into forming a larger row-sum point-weight design.

Theorem 4.3.8 For any n ≥ 3 we can construct an awkward π2 − (3n2 −
2n, n2, n2; {1, n}) point-weight design.

Proof Define a point-weight incidence structure S = (V,B,∈, w) as follows:

V1 = {x1, . . . xn(n−2)},
V2 = {y1, . . . yn},
V3 = {z1, . . . zn},
V = V1 ∪ V2 ∪ V3,

B = {V1 ∪ {yi, zj} : 1 ≤ i, j ≤ n} ∪ {V2, V3},

w(p) =

{
1 if p ∈ V1

n otherwise.

In this structure we certainly have that the sum of the weights of all the points
is 3n2 − 2n and that the sum of the weights of the points on any block is n2.
A cursory examination will show that S is a π2 row-sum point-weight design for
λ = n2, it therefore remains to show that this design is awkward.

Note that V1 contains at least 3 points as n ≥ 3. Hence x1 and x2 are points
of the same weight and furthermore every block that contains x1 also contains x2.
This means, by (2.4.6), that x1 and x2 are awkward points and so every point of
V1 is awkward too.

Hence S is an awkward design.

¥
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Any π2− (v, k, λ; W ) point-weight design S constructed this way will have an
automorphism group of the form:

Aut S = G1 × (G2 ×G3)oH

where G1
∼= Sn(n−2) and acts on the points of V1, G2

∼= G3
∼= Sn and act on the

points of V2 (or V3 respectively) and H swaps the points of V2 and V3 over as
before. The maximal generating group of S that is 2-homogeneous with respect
to its orbital partition is G1 ×G2 ×G3 and generates S via the base blocks:

β1 = V1 ∪ {y1, z1},
β2 = V2,

β3 = V3.

4.4 Orbital tactical decompositions

This section examines tactical decompositions and in particular the tactical de-
composition given by the point and block orbits of an automorphism group acting
on row-sum point-weight design. These results will be of particular use in sections
5.2 and 5.3 , where they will be used to derived results about square row-sum
and point-sum point-weight designs.

Lemma 4.4.1 If S = (V,B, I, w) is a point-weight incidence structure and G ≤
Aut S then the orbital decomposition of V and B with respect to G form a tactical
decomposition and each point class only contains points of one weight.

Proof It is well known (see [7]) that if U is an incidence structure and G ≤ Aut U
then the orbits of G form a tactical decomposition of U . So if S is as point-weight
incidence structure with underlying incidence structure U then the orbits of any
group G ≤ Aut U form a tactical decomposition of U .

Therefore the orbits of any group G ≤ Aut S ≤ Aut U form a tactical
decomposition and, by definition of Aut S, every orbit will only contain points
of the same weight.

¥

We find that it is convenient to use orbital decompositions. However all of
the following theorems are applicable to any tactical decomposition for which all
the points contained in a particular point class are of the same weight.

Definition 4.4.2 Suppose S = (V,B, I, w) is a point-weight incidence structure
and that G ≤ Aut S. Let V1, . . . , Vd be the point orbits of G and let B1, . . . ,Be be
the block orbits of G. We may define a function

w : {V1, . . . , Vd} → Z+
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by

w(Vi) = w(xi) where xi ∈ Vi.

Let rji be the number of blocks of Bj that are incident with any one point of Vi

and let kij be the number of points of Vi that are incident with any one block of
Bj.

Define the matrices P, B, C,D by:

P = diag(|V1|, . . . , |Vd|)
B = diag(|B1|, . . . , |Be|)
C = [w(Vi)kij]

D = [w(Vj)rij]

Note that we will not differentiate between the two functions w : V → Z+

and w : {V1, . . . , Vd} → Z+ due to their similarity.

Lemma 4.4.3 If S = (V,B, I, w) is a point-weight incidence structure and
G ≤ Aut S then

BCT = DP .

Proof If we consider the incidence structure defined as having a point set Vi and
the blocks defined by the blocks of Bj in the obvious way, then this structure is
a 1− (|Vi|, kij, rji) classical design with |Bj| blocks. So, by (1.2.3), we have that

|Bj| kij = |Vi| rji and

w(Vi) |Bj| kij = w(Vi) |Vi| rji.

Hence BCT = DP .

¥

Lemma 4.4.4 If S = (V,B, I, w) is a π2 − (v, k, λ; W ) point-weight design and
G ≤ Aut S then

CD = λPJ + diag(w(V1)
2r1 − λ, . . . , w(Vd)

2rd − λ)

where ri is the number of blocks with which any single point of Vi incident.

Proof We examine the entry of CD in row i and column k. If i 6= k then:

[CD]ik =
e∑

j=1

w(Vi)kijw(Vk)rjk

= w(Vi)w(Vk)
e∑

j=1

kijrjk.
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Pick a point y ∈ Vk and consider the sum
∑
x∈Vi

ιBj
({x, y})

where ιBj
({x, y}) is the number of blocks of Bj that contain both x and y. Now

there are rjk blocks of Bj that are incident with y and each of these blocks
is incident with kij points of Vi. So the total number of flags (x,B) with
x, y ∈ B ∈ Bj is kijrjk and so

∑
x∈Vi

ιBj
({x, y}) = kijrjk.

Hence:

w(Vi)w(Vk)
e∑

j=1

kijrjk = w(Vi)w(Vk)
e∑

j=1

∑
x∈Vi

ιBj
({x, y})

= w(Vi)w(Vk)
∑
x∈Vi

e∑
j=1

ιBj
({x, y})

= w(Vi)w(Vk)
∑
x∈Vi

ι({x, y})

= w(Vi)w(Vk)
∑
x∈Vi

λ

w(Vi)w(Vk)

=
∑
x∈Vi

λ

= λ |Vi| .
The argument is very similar if i = k. We may repeat the process up to:

w(Vi)w(Vk)
e∑

j=1

kijrjk = w(Vi)w(Vk)
∑
x∈Vi

ι({x, y})

= w(Vi)
2
(
ι({y, y}) +

∑

x∈Vi\{y}
ι({x, y})

)

= w(Vi)
2
(
ri + (|Vi| −1)

λ

w(Vi)2

)

= w(Vi)
2ri + λ(|Vi| −1)

= λ |Vi| +(w(Vi)
2ri − λ).

Therefore, for any appropriate i and k,

[CD]ik = λ |Vi| +(w(Vi)
2ri − λ)δ(i, k)

where δ is the Kronecker delta. So:

CD = λPJ + diag(w(V1)
2r1 − λ, . . . , w(Vd)

2rd − λ).



CHAPTER 4. GROUPS AND POINT-WEIGHT DESIGNS 89

¥

Combining these two results we get:

Corollary 4.4.5 If S = (V,B, I, w) is a π2−(v, k, λ; W ) point-weight design and
G ≤ Aut S then

CBCT = λPJP + diag(w(V1)
2r1 − λ, . . . , w(Vd)

2rd − λ) · P .

4.5 Conclusion

This chapter gave some of the basic theory of automorphism groups and although
it concentrated mainly on row-sum point-weight designs the principles are appli-
cable to all point-weight incidence structures.

It had already been shown that a t− (v, k, λ; W ) point-weight design has the
same automorphism group as its underlying incidence structure. We exhibited
a result of [6] which proved that this was true for almost all πt − (v, k, λ; W )
point-weight designs too.

We developed the concept of a group acting on a set in such a way that it was
t-homogeneous with respect to its orbital partition. This concept is an extension
of the idea of a group acting on a set in such a way that it was t-homogeneous
and if a group acts t-homogeneously on a set and we pick a suitable set of base
blocks then it generates a classical design on that set. This is not the case with
a group that acts on a set t-homogeneously with respect to its orbital partial but
we derived a formula that allows us to calculate how many blocks a set of points
lies upon.

We also examined the abstract concept of a group acting t-homogeneously
with respect to its orbital partition and derived some interesting results. We
found that, in a G-space, there exists a unique maximal subgroup that is t-
homogeneous with respect to its orbital partition and that this subgroup was
normal

Lastly we examined some of the matrix properties of the orbits of some group
G ≤ Aut S. These result will be of particular interest in the next chapter.



Chapter 5

Dual and square designs

This chapter is motivated by the fact that a 2− (v, k, λ) design has v = b if and
only if the dual structure is also a classical design. Furthermore the incidence
matrix of the dual structure is the transpose of the incidence matrix of the original
classical design. It is therefore interesting to ask certain questions such as: “Does
a point-weight design have any special properties if the number of points is equal
to the number of blocks?” and “What sort of a structure does the transpose of
the incidence matrix of a point-weight design define?”.

5.1 Dual structures and Underlying Duals

We begin with the latter question and examine the transpose of the incidence
matrix of a point-weight incidence structure.

Lemma 5.1.1 Let S be a (V,B, I, w) point-weight incidence structure and let
M be an incidence matrix for S. MT is the incidence matrix for a point-weight
incidence structure if and only if all the points lying on any block are of the same
weight.

Proof Suppose that there exists a block B ∈ B that contains two points of
different weights. Consider the column of M that corresponds to the block B, that
column contains two non-zero entries of different weights. Hence MT contains
a row which has two non-zero entries of different weights, but in a point-weight
incidence matrix all the non-zero entries in a row are equal. So MT is not the
incidence matrix of a point-weight design.

However if S only has blocks which contains points of equal weights then the
rows of MT all contain non-zero entries of the same weight and so define a point
weight incidence structure.

¥

90
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Lemma 5.1.2 If M1 and M2 are both incidence matrices for a point-weight in-
cidence S and no block of S contains two points of different weights then MT

1 and
MT

2 are both incidence matrices of the same point-weight incidence structure.

Proof Since no block of S contains two points of different weights we know that
both MT

1 and MT
2 both define point-weight incidence structures.

Since M1 and M2 are both incidence matrices for the same point-weight in-
cidence structure there exists permutation matrices P and Q such that M2 =
PM1Q. Therefore MT

2 = QT MT
1 P T and the two matrices are incidence matri-

ces for the point-weight incidence structure as P T and QT are also permutation
matrices.

¥

We are now in a position where we may define the dual of a point-weight
incidence structure.

Definition 5.1.3 Let S be a point-weight incidence structure with an incidence
matrix M . If there exists no block of S that contains two points of different
weights then we define dual(S) to be the structure defined by the point-weight
incidence matrix MT . If there exists a block of S that contains two points of
different weights then dual(S) does not exist.

The previous two lemmas show that this definition is independent of which
incidence matrix was chosen. We may now examine the duals of point-weight
designs.

Lemma 5.1.4 If S is a t − (v, k, λ; W ) point-weight design with |W |≥ 2 and
dual(S) is the dual structure of S then t = 1 and dual(S) is not a t′−(v′, k′, λ′; W )
point-weight design for any t′ > 0.

Proof If t ≥ 2 then for any two points there exists at least one block that contains
both of them and so, by definition, dual(S) does not exist. Hence, in this case, we
must have that t = 1 and no block of S contains two points of different weights.

Consequently it is possible to partition the point set of S into components such
that each component has the underlying incidence structure of a 1 − (ui, ki, λ)
design, an incidence matrix Ai and there exists no block that is incident with
points of more than one component. Hence M must be of the form:




w1A1 0 . . . 0
0 w2A2 . . . 0
...

...
. . .

...
0 0 . . . wnAn
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Now suppose that dual(S) is a t′ − (v′, k′, λ′; W ) point-weight design. Obvi-
ously dual(dual(S)) = S so dual(S) must have the property that any block only
contains points of equal weights and so t′ = 1.

Let B be a block of S that is incident with the point x. Since every point
incident with B must have the same weight B must contain k

w(x)
points. This

means that in dual(S), B corresponds to a point which is incident with k
w(x)

blocks. However in dual(S) every point is incident with λ′ blocks and so λ′ = k
w(x)

for all points x of S, which is a contradiction as |W|≥ 2.

¥

Lemma 5.1.5 If S is a t − (v, k, λ; W ) point-weight design with |W |≥ 2 and
dual(S) is the dual structure of S then t = 1 and dual(S) is not a πt′−(v′, k′, λ′; W )
point-weight design for any t′ ≥ 1.

Proof Again we note that since dual(S) exists and dual(dual(S)) = S there are
no blocks in S or dual(S) that contain two points of different weights. Hence
t = 1 and if dual(S) is a πt′ − (v′, k′, λ′; W ) point-weight design then t′ = 1.

Assume that dual(S) is a π1−(v′, k′, λ′; W ) design. Every point in S is incident
with exactly λ blocks, so every block in dual(S) is incident with exactly λ points.
This means that the sum of the weights of the points on any block is k′ = λw
where w is the unique weight of the points on that block. This is not constant if
|W|≥ 2, hence dual(S) is not a π1 − (v′, k′, λ′; W ) point-weight design.

¥

Since dual(dual(S)) = S the above lemma also shows that there exists no
πt − (v, k, λ; W ) point-weight design with |W |≥ 2 whose dual structure is a
t− (v, k, λ; W ) point-weight design. Hence it only remains to show:

Lemma 5.1.6 Suppose S is a πt − (v, k, λ; W ) point-weight design with |W |≥ 2
and dual(S) is the dual structure of S. If dual(S) is a πt′ − (v′, k′, λ′; W ) point-
weight design then t = 1 and dual(S) is, in fact, a π1− (vλ

k
, λ, k; W ) point-weight

design.

Proof Since the dual(S) exists we know that no block of S contains two points
of different weights, hence t = 1. Now suppose dual(S) is a πt′ − (v′, k′λ′; W )
point-weight design, again since dual(dual(S)) = S exists we have that no block
of dual(S) contains two points of differing weights and so t′ = 1.

Let xB is a point of dual(S) that corresponds to the block B in S. Then xB

has weight equal to the unique weight of all the points that B contains. Let us
denote this as w(xB) and assume that, since it should always be explicit which
structure we are talking about, we hope this will not cause confusion to the reader.
Note that w(xB) = w(z) for all points z in B.
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Since each block B of S is incident with k
w(xB)

points we have that each point

xB of dual(S) is incident with k
w(xB)

blocks. Hence a value λ′ = k is correct.

Suppose Bx is the block of dual(S) that corresponds to the point x in S. Since
the point x is incident with λ

w(x)
blocks we have that the block Bx is incident with

λ
w(x)

points, each of weight w(x). Hence the sum of the weights of the points on
any block is λ.

Therefore dual(S) is a π1− (v′, λ, k; W ) point-weight design. It therefore only
remains to show that v′ = vλ

k
. We know from (5.1.1) that S is actually the disjoint

union of n classical designs S1, . . . ,Sn where each point of Si has weight wi in S
(1 ≤ i ≤ n). Let Si be a 1 − (ui, ki, λi) design where ki = λ

wi
and λi = λ

wi
. By

(1.2.3) we know that Si contains uiλi

ki
= uiλ

k
blocks and in each of these contributes

a weight wi to v′. So,

v′ =
∑
B∈B

w(xB)

=
n∑

i=1

wi
uiλ

k

=
λ

k

n∑
i=1

wiui

=
λ

k
v.

So dual(S) is a π1 − (vλ
k

, λ, k; W ) point-weight design.

¥

So we see that the obvious definition of a dual structure is not very useful. In
an attempt to alleviate this problem we define the following relationship between
structures:

Definition 5.1.7 Suppose S and T are point-weight incidence structures. S is
an underlying dual of T if the underlying incidence structure of T is the dual of
the underlying incidence structure of S.

This means that several non-equivalent point-weight incidence structures might
be underlying duals of the same structure. However this mightn’t be of much use
as the following result of Röhmel shows. For further details see [3] and presumably
[16].

Definition 5.1.8 A (point-weight) incidence structure is called normal if any
point is on at least one block but not all blocks and any block contains at least one
point but not all points.
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Result 5.1.9 If S = (V,B, I) is a normal incidence structure for which there
exists s, t > 1 and λ, µ > 0 such that

• any t point are incident with exactly λ blocks

• and any s blocks intersect at exactly µ points

then S is either a symmetric classical design or a degenerate projective plane (see
(1.7.11)).

Hence we have that:

Theorem 5.1.10 If S is a t − (v, k, λ; W ) point-weight design with k < v and
|W |> 1 then an underlying dual of S is a s − (v′, k′, λ′; W ′) point-weight design
if and only if S is a degenerate projective plane or possibly if t = s = 1 and the
underlying incidence structure of S is a classical design.

Proof Suppose t = 1 and consider the underlying incidence structure U of S.
Since each point of U is incident with the same number of blocks, we have that
each block of dual(U) is incident with the same number of points. Hence dual(U)
is a classical design, and in particular we have that each point of dual(U) is
incident with the same number of blocks. Thus every block of U = dual(dual(U)
is incident with the same number of points and U is a classical design.

Next we note that if k′ = v′ then every block of dual(U) contains every point,
which means that every point of U is incident with every block and so k = v,
which is a contradiction. So we know that k′ < v′ and therefore s = 1 by (1.7.8).

Therefore if s or t equals 1 then s = t = 1 and both U and dual(U) are
classical designs.

So if t > 1 then we must have s > 1. However in that case we may apply
(5.1.9) and we have that U is either a degenerate projective plane or a symmetric
classical design. If U is a symmetric classical design then |W|= 1 by (1.7.8) which
is a contradiction, hence S is a degenerate projective plane.

¥

5.2 Square designs

A square design is one in which there are as many points as blocks. The properties
of a square classical design are mostly derived from the idea that given information
about MMT , which is relatively abundant, we may derive properties of M . In
this sense it is sensible to examine the properties of square row-sum point-weight
design, for which there is also a relatively large amount of information known
about MMT .
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Definition 5.2.1 A point-weight incidence structure is square if there are as
many points as blocks (i.e. u = b).

A trivial consequence of this is:

Lemma 5.2.2 If S is a square π1 − (v, k, λ; W ) point-weight design then λ = k
and w divides k for all w ∈ W .

Proof Since S is square we have that u = b but, by (2.1.4), we have that uλ = bk,
hence λ = k. We also know, by (2.3.4), that for every x ∈ V we have that w(x)
divides λ. Thus w divides k = λ for all w ∈ W

¥

However we are aiming for more substantial results on square designs. We
start by giving two lemmas from [3] that need only trivial modification in order to
be applicable to point-weight incidence structures. The first is a specific example
of Brauer’s Permutation Lemma.

Lemma 5.2.3 (Brauer’s Permutation Lemma) Suppose S = (V,B, I, w) is
a square point-weight incidence structure and α ∈ Aut S. If the incidence matrix
of S is non-singular then the number of fixed points of α equals the number of
fixed blocks.

Proof Let M be the incidence matrix of S then the effect of α on M is to permute
the rows and columns. So there exists two permutation matrices P and Q such
that PMQ = M , where P describes the action of α on the points and Q describes
the action of α on the blocks.
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The number of fixed points of α is trace(P ) and, similarly, the number of
fixed blocks of α is trace(Q), but Q = M−1P−1M so trace(Q) = trace(P−1) =
trace(P T ) = trace(P ).

¥

Lemma 5.2.4 Let S = (V,B, I, w) be a square point-weight incidence structure
with a non-singular incidence matrix M and let G ≤ Aut S be an automorphism
subgroup of S. Then the number of point orbits of G is equal to the number of
block orbits of G.

Proof We have shown, (5.2.3), that for any α ∈ G

fixV (α) = fixB(α)

where fixU(σ) is equal to the number of elements of U that are fixed under the
action of σ on U .

Let oU(G) denote the number of orbits of the set U when the groups G acts
upon it. Then we have, by an application of Burnside’s lemma:

oV (G) =
1

|G|
∑
α∈G

fixV (α)

=
1

|G|
∑
α∈G

fixB(α)

= oB(G).

¥

Corollary 5.2.5 If S is a nice, square πt − (v, k, λ; W ) point-weight design and
G ≤ Aut S then S has as many point orbits under G as block orbits.

We follow the lines of [7] to prove a result about the existence of square
designs. The technique is based upon the results about Hilbert symbols (1.6.3)
and Hasse symbols (1.6.5). We use the notation developed in (4.4.2), namely
if S = (V,B, I, w) is a point-weight incidence structure and G ≤ Aut S then
V1, . . . , Vd are the point orbits of G and B1, . . . ,Be are the block orbits of G. We
let rji be the number of blocks of Bj that are incident with any one point of Vi,
ri be the number of blocks incident with any one point of Vi in total and let kij

be the number of points of Vi that are incident with any one block of Bj.
Lastly we define, as we did in 4.4, the matrices P, B,C,D by:

P = diag(|V1|, . . . , |Vd|)
B = diag(|B1|, . . . , |Be|)
C = [w(Vi)kij]

D = [w(Vj)rij]
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Lemma 5.2.6 Suppose there exists a matrix relation

CBCT = λPJP + NP

where

• B and P are non-singular diagonal matrices of the form given above,

• N is the non-singular diagonal matrix diag(n1, . . . , nd),

• C is a non-singular square matrix of the form given above,

• and λ is a non-zero constant.

Then the matrices

P ′ =
[

NP 0
0 λ

]

and

B′ =

[
B 0

0 λn(λ
∑d

i=1
n|Vi|
ni

+ n)

]

where n =
∏

ni, are congruent.

Proof Since
CBCT = λPJP + NP

we know there exists a non-singular matrix X such that

XNPXT = B − λXPJPXT

Let us attempt to find a solution to the equation Y P ′Y T = B′ where Y has
the form:

Y =

[
X b
a c

]

Hence:

Y P ′Y T =

[
XNPXT + λb bT XNPaT + cλb

aNPXT + cλbT aNPaT + c2λ

]

=

[
B − λXPJPXT + λb bT XNPaT + cλb

aNPXT + cλbT aNPaT + c2λ

]

Now there exists a non-singular matrix K such that

KJKT =




1 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0
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so if XPK−1 = [αij] then setting bi = αi1 gives XPJPXT = b bT as P = P T .
So we have two further matrix equations to solve:

XNPaT + cλb = 0, (5.1)

aNPaT + c2λ = λn(λ
d∑

i=1

n | Vi |
ni

+ n). (5.2)

We may re-arrange (5.1) as:

XNPaT = −cλb

and multiply it by its own transpose gives:

XNPaT aPNXT = c2λ2b bT

= c2λ2XPJPXT .

Therefore, and noting that NP=PN as both matrices are diagonal,

aT a = c2λ2N−1JN−1

which gives us that ai = cλ
ni

as N−1 = diag(n−1
1 , . . . , n−1

d ).
Lastly, from (5.2), we have:

aNPaT + c2λ = c2λ + c2λ2

d∑
i=1

|Vi|
ni

= cλ(c + λ

d∑
i=1

c |Vi|
ni

)

= nλ(n + λ

d∑
i=1

n |Vi|
ni

)

providing we set c = n. Hence the result is proven.

¥

Corollary 5.2.7 If S is a π2 − (v, k, λ; W ) square point-weight design and
G ≤ Aut S then the matrices:

P ′ =
[

diag(n1, . . . , nd)P 0
0 λ

]

and

B′ =

[
B 0

0 λn(λ
∑d

i=1
n|Vi|
ni

+ n)

]

where ni = w(Vi)
2ri − λ and n =

∏d
i=1 ni are congruent providing C is non-

singular and S contains no awkward points.
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Proof This is an obvious consequence of the previous lemma, (5.2.6), where N =
diag(n1, . . . , nd) (this is non-singular as S contains no awkward points, hence
ni 6= 0 for all 1 ≤ i ≤ d) and the matrix relation shown in (4.4.5).

¥

Note that B′ and P ′ are integer symmetric matrices and hence have the same
Hasse symbol for all primes p providing that C is non-singular. It is therefore
prudent to examine the determinant of C.

Lemma 5.2.8 If S = (V,B, I, w) is a π2−(v, k, λ; W ) point-weight design. Con-
sider the tactical decomposition given by the orbits of G ≤ Aut S then:

det(CD) =
(
1 + λ

d∑
i=1

|Vi|
ni

) d∏
i=1

ni

=
(
1 + λ

∑
x∈V

1

nx

) d∏
i=1

ni.

Proof Using basic theory of determinants we have that:

det(CD) = det(λPJ + diag(n1, . . . , nd)) by (4.4.4)

=
d∏

i=1

|Vi| det(λJ + diag(
n1

|V1| , . . . ,
nd

|Vd|))

=
d∏

i=1

|Vi|
(
1 + λ

d∑
i=1

|Vi|
ni

) d∏
i=1

ni

|Vi| by (1.4.4)

=
(
1 + λ

d∑
i=1

|Vi|
ni

) d∏
i=1

ni

=
(
1 + λ

∑
x∈V

1

nx

) d∏
i=1

ni.

¥

Corollary 5.2.9 If S is a nice π2 − (v, k, λ; W ) point-weight design then CD is
non-singular, i.e. det(CD) 6= 0.

Proof If S is nice then one of the following three cases holds:

Case 1: S is neither awkward nor difficult
Hence nx > 0 for all x ∈ V , hence a simple inspection of the determinant

shows that it is greater than zero.
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Case 2: S contains a single awkward point
So there exists a single point x ∈ V such that nx = w(x)2rx−λ = 0. This point

must form a singleton point class in the tactical decomposition, so let V1 = {x}.
We may expand the determinant in a manner similar to (2.4.1), thus:

det(CD) =
d∏

i=1

ni + λ

d∑
i=1

d∏

i6=j=1

nj

and the term
∏d

j=2 nj is non-zero in this sum. Hence CD is non-singular.

Case 3: S contains a single difficult point but is still nice
Since S is nice we must have that 1 + λ

∑
x∈V nx was non-zero in the original

calculation of det(MMT ), where M is the point-weight incidence matrix associ-
ated with S. We still have that ni 6= 0 by (2.4.10) so CD is non-singular.

¥

In fact unless S is difficult there always exists a group G ≤ Aut S such that
CD is non-singular as even if S is awkward with more than one awkward point
then there exists a subgroup of Aut S with an orbital decomposition that has
all the awkward points in one orbit. The proof of case 2 above shows that CD
is non-singular here as there still exists at least one non-zero term in the sum.
So, when G is chosen with care, the techniques below are applicable to all square
designs except those that are both difficult and not nice.

Lemma 5.2.10 If det(CD) 6= 0 then det(C) 6= 0

Proof This is a trivial consequence of det(CD) = det(C)det(D).

¥

Putting all of these results together we find that:

Corollary 5.2.11 If S is a nice, square π2−(v, k, λ; W ) point-weight design with
no awkward points then det(C) 6= 0 and so P ′ is congruent to B′.

and so,

Theorem 5.2.12 If S is a nice, square π2−(v, k, λ; W ) point-weight design with
no awkward points and a tactical decomposition that is the orbital partition of a
group G ≤ Aut S then

(−1, λκβdνd)p(βd, κ)p(νd, λ)p

∏

1≤s<t≤d

(|Bs|, |Bt|)p

∏

1≤s<t≤d

(ns |Vs|, nt |Vt|)p = 1
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where

βj =

j∏
i=1

|Bi| ,

νj =

j∏
i=1

ni |Vi| and

κ = nλ(n + λ

d∑
i=1

n |Vi|
ni

).

Proof Since P ′ and B′ are congruent integer symmetric matrices they have the
same Hasse symbol for all primes p.

Hp(B
′) = (−1,−βdκ)p(βd,−βdκ)p

d−1∏
j=1

(βj,−βj+1)p

= (−1,−1)p(−1, βdκ)p(βd,−βd)p(βd, κ)p

d−1∏
j=1

(βj,−βj+1)p

= (−1,−1)p(−1, βdκ)p(βd, κ)p

d−1∏
j=1

(βj,−βj+1)p.

Now

(βj,−βj+1)p = (βj,−βj)p(βj, |Bj+1|)p

= (βj, |Bj+1|)p

=

j∏
s=1

(|Bs|, |Bj+1|)p

and so

Hp(B
′) = (−1,−1)p(−1, βdκ)p(βd, κ)p

∏

1≤s<t≤d

(|Bs|, |Bt|)p.

Similarly,

Hp(P
′) = (−1,−νdλ)p(νd,−νdλ)p

d−1∏
j=1

(νj,−νj+1)

= (−1,−1)p(−1, νdλ)p(νd,−νd)p(νd, λ)p

d−1∏
j=1

(νj,−νj+1)

= (−1,−1)p(−1, νdλ)p(νd, λ)p

d−1∏
j=1

(νj,−νj+1)

= (−1,−1)p(−1, νdλ)p(νd, λ)p

∏

1≤s<t≤d

(ns |Vs|, nt |Vt|)p
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but Hp(B
′) = Hp(P

′), which is equivalent to saying Hp(B
′)Hp(P

′) = 1 as Hasse
symbols can only take the values ±1, and so,

1 = (−1,−1)p(−1, νdλ)p(νd, λ)p(−1,−1)p(−1, βdκ)p(βd, κ)p

·
∏

1≤s<t≤d

(ns |Vs|, nt |Vt|)p

∏

1≤s<t≤d

(|Bs|, |Bt|)p

= (−1, νdλ)p(−1, βdκ)p(βd, κ)p(νd, λ)p

·
∏

1≤s<t≤d

(ns |Vs|, nt |Vt|)p

∏

1≤s<t≤d

(|Bs|, |Bt|)p

= (−1, λκβdνd)p(βd, κ)p(νd, λ)p

∏

1≤s<t≤d

(ns |Vs|, nt |Vt|)p

∏

1≤s<t≤d

(|Bs|, |Bt|)p.

¥

In particular:

Corollary 5.2.13 If S is a nice, square π2−(v, k, λ; W ) point-weight design with
u points (none of which are awkward) then

(−1, nκλ)p(n, λ)p

∏
1≤s<t≤u

(ns, nt)p = 1

where

κ = nλ
(
n + λ

u∑
i=1

n

ni

)

and n1, . . . , nu are the orders of the points of S.

Proof If we let G = {id} then each point or block form there own point or block
class. Hence

|Vi| = 1 for all 1 ≤ i ≤ u

|Bi| = 1 for all 1 ≤ i ≤ u

βi = 1 for all 1 ≤ i ≤ u

νu =
u∏

j=1

nj = n

If we substitute these values into the previous equation and note that
(1, γ)p = 1 for all non-zero p-adic numbers γ then we obtain the result.

¥
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Corollary 5.2.14 If S = (V,B, I, w) is a nice, square π2 − (v, k, λ; W ) point-
weight design with the property that for any weight the number of points of that
weight is divisible by four (except for maybe one weight for which the number
of points of that weight is congruent to 1 modulo 4, the order of those points is
square and those points are not awkward) then:

(n + λ
∑
x∈V

n

nx

,−1)p = 1.

Consequently the equation:

(
n + λ

∑
x∈V

n

nx

)
X2 − Y 2 = Z2

has a non-trivial integer solution for X,Y and Z provided det(MMT ) > 0, where
M is an incidence matrix for S.

Proof Suppose there exists u points of S and the orders of these points are
n1, . . . , nu. Suppose further that |W |= d and that V ′

1 , . . . , V
′
d is the partition of

V into classes of points of the same weight. Let ui be equal to the number of
points in V ′

i , hence ui is divisible by four except for maybe in one case, say V ′
1 ,

where the u1 ≡ 1(mod 4) points have square order n′1 and none of these point is
awkward.

Note that since S is nice it can contain at most one difficult point, by (2.4.8), or
at most one awkward point, by (2.4.11). Moreover there can exist no other point
with the same weight as the awkward or difficult point. Now, unless V ′

1 is the set
of points of minimal weight, the number of points with that are awkward/difficult
must be divisible by four and so V ′

2 , . . . , V
′
d does not contain any awkward points.

Furthermore we know that V ′
1 doesn’t contain any awkward points, so S doesn’t

have any awkward points.
If the points x and y have the same weight then we know by (2.3.1) that

rx = ry and so nx = ny. Let n′i be the order of the points of V ′
i . So,

n =
∏
x∈V

nx

=
d∏

i=1

n′i
ui

= n′1
u1

d∏
i=2

n′i
ui .

Now ui is even for each 2 ≤ i ≤ d so
∏d

i=2 n′i
ui is square. Either u1 is even or n′1

is square, in either case n′1
u1 is a square number too. Hence n is a square and so

(n, λ)p = (1, λ)p = 1 as we may disregard square factors.
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Furthermore

∏
1≤s<t≤u

(ns, nt)p =
∏

1≤i<j≤d

(n′i, n
′
j)

uiuj
p ·

d∏
i=1

(ni, ni)
(ui

2 )
p

=
∏

1≤i<j≤d

(n′i, n
′
j)

uiuj
p ·

d∏
i=1

(ni, ni)
1
2
ui(ui−1)

p

= 1

as (ni, nj)p can only take the values 1 or −1, and ui is divisible by four for
2 ≤ i ≤ d and either u1 or u1 − 1 is divisible by four. If we apply this to (5.2.13)
then we get:

(−1, nκλ)p = 1

which is the same as
(−1, n2λ2(n + λ

∑
x∈V

n

nx

))p = 1

and
(−1, (n + λ

∑
x∈V

n

nx

))p = 1

as we may disregard square factors.
Now the expression n+λ

∑
x∈V

n
nx

is equal to det(MMT ) and we have assumed

that det(MMT ) > 0. So we may attempt to apply (1.6.8) to the equation

(
n + λ

∑
x∈V

n

nx

)
X2 − Y 2 = Z2

We have already shown that this has a solution in Qp for all primes p so it remains
to show that this equation has a solution in R. However if det(MMT ) > 0 then
the above equation has the solution

X = 1√
n+λ

P
x∈V

n
nx

Y = 0 Z = 1

in R. So the equation has a solution in Z.

¥

5.3 Point-sum point-weight designs

The last section concentrated on row-sum point-weight designs. However any of
the techniques used are applicable to point-sum point-weight designs because of
the following result:
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Result 5.3.1 If S is a 2−(v, k, λ; W ) point-sum point-weight design with u points
where the ith point is incident with ri blocks and MU is the incidence matrix of
the underlying incidence structure then

MUMT
U = λ(J − I) + diag(r1, . . . , ru).

Hence there exists an inherent connection between the underlying incdience
structures of point-sum point-weight designs and row-sum point-weight designs.
We may now examine square point-weight designs in a manner similar to the last
section. Since we will be using both the incidence matrix of S and the incidence
matrix of the underlying incidence structure of S, U , we will use subscripts to
differentiate between them in what we hope will be an obvious manner.

Lemma 5.3.2 If S is a square t − (v, k, λ; W ) point-weight design with a non-
singular incidence matrix MS and G ≤ Aut S is an automorphism subgroup of
S, then S has as many point orbits under G as block orbits.

Proof This is a direct consequence of (5.2.4).

¥

Result 5.3.3 Suppose S is a square t − (v, k, λ; W ) point-weight design and let
U be the underlying incidence structure of S. Suppose MU is a non-singular
incidence matrix of U and that G ≤ Aut U . Then U has as many point orbits
under G as block orbits.

Proof This is a known result of classical design theory shown in [3], [12] and [7].
It can also be seen as a corollary of the previous lemma as Aut S = Aut U and
an incidence matrix for S is singular if and only if the incidence matrix for U is
singular.

¥

Suppose that S is a square t − (v, k, λ; W ) point-weight design with a non-
singular incidence matrix MS and G ≤ Aut S is an automorphism subgroup of
S. Suppose that the point orbits of G are V1, . . . , Vd and that the block orbits
are B1, . . . ,Be. Suppose further that any block of Bj is incident with kij points
of Vi and that any point of Vi is incident with rji blocks of Bj. It is shown in [7]
that if

P = diag(|V1|, . . . , |Vd|)
B = diag(|B1|, . . . , |Be|)
C = [kij]

D = [rij]
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then the matrix relation

CBCT = λPJP + diag(r1 − λ, . . . , rd − λ) · P

holds, where ri is the number of blocks with which a point of Vi is incident.
Again we will use the idea of the order of a point and let nx = rx − λ. This

should be thought of as the order of the point x in U rather than the order of
the point in S which could be more consistently be defined as w(x)2rx − λ. We
note that if nx = 0 for any point x then we have that rx = λ. Consequently, if
t > 1, then for any other point z we have that there exists at least rx = λ blocks
that contain both x and z. So every block that contains x also contains z but our
choice of z was arbitrary so we know that any block that contains x must contain
every point. Hence k = v. Therefore the matrix diag(n1, . . . , nd) is non-singular
provided t > 1 and k < v, if either of these conditions fail then this matrix is the
zero matrix.

Let ni be the order of any point of Vi and n =
∏d

i=1 ni as before. So

Lemma 5.3.4 If S is a square 2 − (v, k, λ; W ) point-weight design with k < v
and a tactical decomposition which is the orbital partition of a group G ≤ Aut S
then the matrices

P ′ =
[

diag(n1, . . . , nd)P 0
0 λ

]

and

B′ =

[
B 0

0 λn(λ
∑d

i=1
n|Vi|
ni

+ n)

]

are congruent providing C is non-singular.

Proof This is a direct corollary of (5.2.6) where N = diag(n1, . . . , nd) and using
the matrix relation given above. N is non-singular as k < v.

¥

Unfortunately we do not have the same information about point-sum point-
weight designs that we do about row-sum point-weight designs so we cannot
reduce the condition that C must be non-singular to any specific properties of
the structure S. However as long as we remember that proviso we have that:

Theorem 5.3.5 If S is a square 2− (v, k, λ; W ) point-weight design with k < v,
a tactical decomposition that is the orbital partition of a group G ≤ Aut S and
suppose that C is non-singular for that tactical decomposition then:

(−1, λκβdνd)p(βd, λ)p(νd, κ)p

∏

1≤s<t≤d

(|Bs|, |Bt|)p

∏

1≤s<t≤d

(ns |Vs|, nt |Vt|)p = 1
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where

βj =

j∏
i=1

|Bi|

νj =

j∏
i=1

ni |Vi|

κ = nλ(n + λ

d∑
i=1

n |Vi|
ni

)

This is proven in exactly the same way as (5.2.12).

Corollary 5.3.6 If S is a square 2−(v, k, λ; W ) point-weight design with u points
and k < v then:

(−1, nκλ)p(n, κ)p

∏
1≤s<t≤u

(ns, nt)p = 1

where

κ = nλ
(
n + λ

u∑
i=1

n

ni

)

and n1, . . . , nu are the orders of the points of S.

Proof This is proven in exactly the same way as (5.2.13). We note, however, that
in this case C is the incidence matrix of the underlying incidence structure of S,
MU . Hence the condition that C be non-singular is the same as the condition that
det(MU) 6= 0. However it is shown in [9] that rank(MS) = u for all point-sum
point-weight designs with k < v and t > 1. So det(MU) 6= 0 because MS is a
u× u matrix of rank u and MU is singular if and only if MS is singular.

¥
So finally we have that

Corollary 5.3.7 If S is a square 2− (v, k, λ; W ) point-weight design with k < v
and the property that for any weight the number of points of that weight is divisible
by four (except for maybe one weight for which the number of points of that weight
is congruent to 1 modulo 4 and the order of those points is square) then:

(n + λ
∑
x∈V

n

nx

,−1)p = 1

Consequently the equation:
(
n + λ

∑
x∈V

n

nx

)
X2 − Y 2 = Z2

has a non-trivial integer solution for X,Y and Z.
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Proof This is proven in exactly the same way as (5.2.14). We may disregard
the condition that det(MUMT

U ) be greater than zero, where MU is an incidence
matrix for the underlying incidence structure, because by (5.3.1) and (1.4.4) we
have

det(MUMT
U ) =

(
1 + λ

u∑
j=1

1

rj − λ

)
u∏

j=1

(rj − λ)

and this is always greater than zero here because rj > λ.

¥

5.4 Conclusion

In classical design theory there is a link between classical designs that admit a
dual design and square designs however we have been unable to prove such a link
exists for point-weight designs. In fact we have not been able to satisfactorily
extend the concept of a dual to the field of point-weighted designs. We have
shown that the most obvious definition (5.1.1) is almost completely useless for
all point-weight designs. We attempted to improve this definition in (5.1.7) but
our success was limited: we have shown that very few point-sum point-weight
designs can admit an underlying dual and we could not provide any examples of
row-sum point-weight designs that admit an underlying dual either.

Our study of square point-weight incidence structures was more successful.
Drawing on, amongst others, the work of section 4.4 we managed to find non-
existence results for square row-sum and point-sum point-weight designs based
on the solubility of equations in p-adic number fields, subject to certain matrix
properties. We also managed to extend these to a non-existence result based on
the solubility of a Diophantine equation if we are allowed to control the number
of points of each weight there are.

Unfortunately we have not been able to exhibit any examples of square row-
sum point-weight designs and consequently their existence is still an open prob-
lem.
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