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FULL RADIATION.

Part 1,

Historical Introduction.

The study off Pull Radiation goes back,rou”ly to 1791,
at which time the”Fluid Theory of Heat" was still believed. The
first important investigations seem to have been carried out
by Prévost,of Geneva. Of course,there is no mention of such
terms as "FulljPrdietion"in Provost's work,but his investigations
seen to be a starting point from which to build up a history
of the subject. Experiments on losses of heat had been done
previously by Newton, in 1664 and at the beginning of the 18th
century. In 1701, he had made experiments on the rate of cooling
of a hot body, finding that it to be proportional to the excess
of temperature of the body over the surroundings. This law of
Newton's was later found to be erroneous when dealing with
great temperature differences. In fact Hersohel, basing his
calculations on this law,estimated the temperature of the sun
many tiaes too great.

In 1791-2, Prévost oublir-hed his famous "Theory of Exchanges"
to explain the effect observed”n 1783,by Pictet,commonly called
"the Reflection of Cold". This was ,that when a lump of ice 1is
placed at the centre of curvature of a concave mirror, and a
thermometer is placed symmetrically at the focus of concave
mirror placed symmetrically opposite,this thermometer indicated

a fall in temperature.
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The following is roughly the main line of Prévost's

argument,translated from his paper. He first considered equi-
libriun”s applied to "un fluid tel que le feu". He claimed
not to be considering the actual nature of the heat,"whether
material or immaterial, contiguous or otherwise the mobility
of the "moles de feu",or their means of motion,whether this

is vibratory or progressive". All these things he says are
not important and tend to make the imaginationrrun wild and to
lose sight of yhe important and true causes. The real con-
stitution/of the fluid is based on the theory of 'discrete
fluids',already known. Heat is a discrete fluid,elastic on
account of its expensive force and affects the movements of
the particles caused by the impulse of the fluid. Heat trans-
ference is instantaneous,and sensibly rectlinear. Light
radiation 1s a particular kind of fluid. It never stops the
path of another beam of light,because beams of light can cross
one another without interference,and therefore the particles
thereof must be far apart compared with the diameters of the
molecules. What is true of light is true of all radiation
fluids. Free heat radiation is a very raee kind of fluid,
since the particles of it do not mutually interact. It wurannot
conform to ordinary physical principles,for one says normally
that heat itself is coercible and yet one says that contiguous
portions, when their temperatures are the same,are mutually
restrained. These expressions are not exact. Really the heat

from one portion can never stop the heat of another,since two
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"feu"give each other mutual passage. We must therefore conclude
that the two portions give and receive mutually to and from
one andther in the same way that tv;o masses rebound from toe
another,after ela,stic impact.

Exactly what Prevosjymeans by coercible is not clear. It
seems that a coercible fluid is one which can,in general language
be made to go where one v/ants. Heat radiation cannot be
exactly made to go in the direction one would wish. However,
the main thing for our purpose ,is that he realised the presence
of a nearby similar "fluid" could not prevent the flow of the
"fluid",and he assumed therefore that the apparent equilibrium
between two bodies at the same temperature does not mean a
state of absolute equilibrium but more a state of statistical
equilibrium betv/een the two bodies,

Prévost illustrates his remarks further by this example...
"suppose we have two cubes,enclosed in an impermeable enclosure
with the two adjacent sides placed together to form a parrllel-
opiped,the six sides of which are solid and without spaces.

The outside lspace is perfectly evacuated ,and into one cube
is placed some heat. It makes continuous exchanges and one
can confirm,at any instant hov/ much heat is being received

by each pary,and the state of the heat. Y/hile things are so
there is no question of anything but equilibrium, ’relative
equilibrium’. Now suppose into one cube is poured some more
heat.The exchanges are not unequal,and one receives,say,eleven

”»n

particles while it gives back ten. .”"absolute equilibrium"

1s where one receives exactly whs.t the other 'laisse ecshapper’
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Relative equilibrium is equilibrium between two parts only.."
Later he goes on to say "the 'feu'at of several portions at
the same temperature is in equilibrium.

Prévost's ideas were the first on the subject of
"Statistical Equilibrium". Previous to this work ,a radiating
bodjj4t a higher temperature had been considerec”s giving heat
to the surruondings, but not to be receiving ty it from the
suriuvundiiigs ,and when by virtue to the heat lost to the
surroundings, the body at the higher temperature reached the
same tenpeireture as that of the surroundings, then heat ceased
to flow from the body to the su'-roundings. Prévost pointed
out th;ttlsheat posse”.ssed by the surroundings could not possibly
prevent the body from giving out more heat ,even when the
body and the surroundings were at the same temperature, and
it was on account of tliis v/ork by Prévost ,that equilibriijim
of this kinetic kind was thought of for the first time.
Althou” Prévost does not say so in so man): words, it is clear
that he considers the radiation from a body,as depending only
on the temperature of the body and the nature of the body,
and not in any way on the presence”f any neighbouring bodies.
It is very difficult to make out exactly v/hs.it is in Prévost's
mind at the time of v/riting. Obviously he considered heat
as a fluid consisting of particles,and as temperature as a
kind of pressure which”the fluid to flow from a hot body to
a cooler one. This idea of temperature is very interesting

for it is still now sometimes said that"Temperature is that



5.

which causes heat to flov/ from a hotter body to a colder one"/
His paper must have a great impression on the minds of phyic-
ists*”t the time, for in text-books,"Prévost's Theory of Ex-
changes" is still quoted.

His view of exchanges does not quite coincide with the
present day ong,that the emission from a body depends entirely
on what takes[%g?ithin the body,a&)sis not influenced by the
surroundings.

After Prévost had published his work, Herschel made
a very interesting experiment,which was the first attempt
to determine the distribution”f energy in a spectrum,
although it is doubtful whether Hersche]lmade the experiment
with any object in view,or if he did not do it more to see
whether the individual components of the sun’s raysjexhibited
heating properties when considered independently as they did
when altogether. Y/hat he did was to put e themmometer in each
of the seven colours of the spectrum, and to observe the temp-
eratureto which the thermometer rose. He found that the temp-
erature indicated by the therm4>meter[was different for each
of the seven colours,the maximum lying in the red-half of the
spectrum. He, noted, also, that the maximum was not definite])
fixed,in fact it lay sometimes uutside the visible part of the
spectrum altogether. It was in this wayy by placing the therm*
ometerfDutside the Msible part that the invisible radiation,

now known as the infra red,was found to exist.

The existence of any‘visible radiation was emphatically
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denied by John LeElEe, who asserted that refreagibility must
be connected with Visibility, .and that the idea of invisible
radiation was utterly impossible. His view was that the heat-
in”in any spectrum was "direct",and thah one part actually
"passed on "its heat to the next,perhaps even to the air itself,
thus causing a heating effect outside the visible part. He
thought that one part was warmed, and then i1t expanded and passe”
on its heat to the next part, and when it had given up its heat
it contracted again, v;hile the warm part,in its turn,passed
on its heat and so on,thus getting a sort of undulatbry process.
Thus a body radiated heat by the undulations of the air. In
spite of the indisputable,discorery ,by Ritter of Germany,
confirmed by Wollaston,in England that silver muriat”is
blackened by the invisible rays which extend outside the
prismatic spectrum, thus putting beyond all doubt the existence
of invisible radiation,Leslie still miantained that his views
were correct,in opposition to Herschel,untiljI813 when Davy
showed that in ordinary air, which had been exhausted tol/jg"

density of atmospheric air radiation wss transmitted
three times mere as strongly as i1A”itmospheric air,instead
of correspondingly more weakly, as it should%{é)n Leslie s theory.

Althuugh Leslie ’s|views on this subject were wrong,

yet his v/ork is of importance and value, because he v/ae the
first to give any quantitive informatjiom about radiation. He "j
invented two pieces of apparatus named after him, the differ-
ential thermometer,and the Leslie-cube, both too v/ell knovm

to need any description.
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It was about this time that the fluid thoery of heat v/as
abandoned. In I803,Rumford made his famous observation on the
boring of a cannon-ball and about that time,Davy rubbed two
pieces of ice together,and melted them by the process. These
tv/o experimenters proveddecisively that heatj*vas not a fluid.
Unfortunately,no other theory came into being to take the
place of the fluid theery and one of the most important questions
to be answered at t)%is period was as to the nature of heat.
Gradually the similarity between radiant heat and light began
to be realised although it v/as a good many years before the
similarity was generally accepted. The following is an
extract from Young’s Lectures in the year 1807...

"Dr Herschel’s experiments have shown us that radiant heat
consists of different parts which are differently refrangible
and that generally heat is less refrangible than light. This
discovery must be allowed to be one of the greatest that have
been made since the days of Newton probable that those
black,or invisible rays ,the vbblet,blue,green,perhaps the
yellow and the red rays of light,and the invisible heat rays
constitute seven degrees of the same scale,distinguished from
each other into this limited number not by material diMsions
but by the effects on our senses,and we may conclude that
there is some similar relation betweeb the heat and luminous
bodies of different kinds..."

Later in the same paper. Young says ."If heat is not a

substance 1t must be a quality and this can only be motion.It
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was Newton’s opinion that heat consists in a minute vibratory
motion of the particles of bodies, and that this motion id
communicated through an apparent vacuum by the undulations of
an elastic medium which is also concerned in the phenomenon
of light. If the arguments which have lately been advanced
in favour of the undulatory theory of light be deemed valid,
there will be still stronger reasons for admitting this doctrine
respecting heat, and it will only be necessary to suppose the
vibratory undulations pnincipally constituting it to be larger
and stronger than those of light,while,at the same'j*'the smaller
vibrations of light and even of the blackening rays, derived
from still more minute vibrations,may perhaps when sufficiently
condebsed be concerned in the producing of the effects of heat.
These effects,beginning from the blackening rays,which ere
invisible,are little more perceptible in (\yvhi(':'h still possesses
but a faint power”illumination; the green yellow -green affords
the most light ;the rd6d gives less light but more heat, while
the still larger and less frequent vibrations|v;hich have no
effect on the senses,may be supposedto give rise to the less
refrangible rays,and to constitute the invisible heat,"..

Much experimental work was now done on the absorption
and transparency of material-in connection with which the
names of Melloni,Nobili and Forbes are outstanding. Ini831
Nobili and Melloni published their work on the absorption

in the sunVs spectrum and on the transparency of substances

to the invisible radiations,a subject on v/hich Seebeck had
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already been wording . Tvo years later,Melloni found that
differentjsubstances had quite different degrees of transparency
and on account of this diathermanous property,he exylainedjthe
different maxima observed by Herschel in his experiment to
determine the temperatures of the different colours of the
sun’s spectrum. At this time then,it v/as realised that the
different maxima in Herschel's experiment v/ere due to the
"selective properties" of the thermometer bulb, and also to the
fact that the radiator (the sun) was not a full one(in our
sense of the word), since in I814 Fraunhoffer had discovered
the spectral lines”iamed after him. No attempt seems to have
been made,however, to find a source which gave a complete
spectrum, or a receiver which absorbed all the incident radiation
although i1t might be,of course,that in measuring the absorbing

SoYop i<s

rof the various materials, these experimenters hoped to find

a material which was a perfect absorber. Melloni showed ex-
perimentally ,that absorption was roughly proportional to the
thickness of the material. He also compared the quantities
of radiation received from different sources, finding generally
that different sources of heat gave rise to different amounts
of radiation. He was the first to show that the different
reflecting powers depend on the kind of surface, and was id-
dependent of the kind bf radiation. He also showed that it
depended to some extent on the absorbing power of the reflecting
eurfaee substance. He verified tha.t heat radiation obeys the

same laws of reflection and refraction as light rays, that is.
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that heat radiation could be bent and reflected aadording
to the laws of light. This similarity was furtherconfirmed
by Bartoli,who found that heat radiation could bepolarised.

All this experimental work,though no doubt of practical
importance, seems tclfg\vlc;eg\gnarking time while the wave-theory of
light wa]sojul\)}gerfected,and reading the works of the different
people v/ritten about that time,gives one the impression that
they did not v/ish to commit themselves by expressing a definite
opinion. For example this extract from Sir W,Herschel,in 1830,.,
"Solar'""Wossess at least three powers,those of heating,
I[lluminati on,and effecting chemical constitutions,and these
powers, distributed”the differently refrangible raysin such a
manner as to show their complete independence of one another"..

The question of the nature of radiant heat now became
very important. The undulatory theory of light v/as almost gen-
erally accepted, and on account of the similarity between
heat and light ,it seemed to follow that heat radiationsjshould
also be a vibratory process. Physicists were divided into
two groups, those holding the view that they were similar,
and those believing they were not. Amper“belonged to the former
and Melloni v/ho had demonstrated their similarity,held the view
that they were different.

Melloni’s experimental work was continued by Knoblauch.

He dealt whth it in the subject in exactly the smme v/ay as

Melloni,but with greater caution in considering sources of

error. He worked with better apparatus. His ghief works v/ere

b
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on the passage of heat through a diathermanous body", "the

emission powers of bodies","the warming of a body by toe

passage of radiant heat","the creation of heat radiation given
out from different surfaces at different temperatures", "the
creation of different heat sources from light radiation",
"different reflecting powers of surfaces"and many more similar
subjects. Especially of note &mong his results is " that the
passage of radiation through a diathermanous substance is not
dependent on the source" and many other similar results which
nov/ seem obvious, were at this time experimentally verified.
It was fully realised that different sources of radccution
gave rise to quite different spectra. We are, with this real-
isation slowly approachingﬂ/\fv/hen the possibility of"Fu13|1Radiation"
is being realised.

In 1#33,Ritchie devised a simple experiment to demon-
strate the relationship between emissive and absorptive powers.
A Leslie-cube is placed betv/een two bulbs of a differential
thermometer and it was shevm that when opposite faces of the
cube were,say,blackened and silvered,that no movement®n the
liquid of the differential thermemoter resulted,if the face
of the thermometer opposite to the black face of the cube were
silvered,and the one opposite to the silver face blackened.

In 1847 ,much experimental work was done by Bernard,
Pizeau”nd Foucault on the refraction of heat. All this work
was of an experimental nature,and tended to show the Similarity

betv/een heat radiation and light, although i1t was not definitely
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accepted until about 1850.

In 1852, Stokes wrote as follows,
" Now according to the undulatory theory the nature of light
is defined by two things. Its period of vibration and its
state of polarisation.To the former corresponds its refrang-
ibility and as far as the eye can judge its colour..."
In the same year Thomson writes...
"...Assumed in this communication that the undulatory thoery
of radiant heat and light,according to which the vibrations
are performed between certain limits of duration,is true.
The chemical rays beyond the violet end of the spectrum consist
of undulations of which the full visible vibrations are executed
in periods shorter than those of the extreme visible light or
than about the eight hundred million-millionths of a second.
The periods of vibration of visible light lie betweennthis
point and another about double as great, corresponding to
the extreme visible red light. The vibrations of the obscure
radiant heat beyond the red end are executed in longer periods
than this. The longest which has jJet been experimentally
tested being aboiutthe eighty million- millionths of a second"..

This communication of Thomson’s sets beyond all doubt
the question of the nature of radiant heat, and the view that
heat radiation formed a part of the spectrum of which light

was another part,was how generally accepted, as thEs quotation

from Lloyd's"Theory of Light"(I887) shows...
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It a,ppears then, that seneibility of the eye is confined
between much narrower limits than that of the ear. The ratio
of the extreme vibrations which effect the eye being only
that of 1'58 :1... There is no reason to supposethat the
vibrations themselves confined to these limits..."

A law having an indirect bearing on the subject was
given in 1856,by Helmholtz withjthe enunciation of the law of
"Reciprocity",t6at"%&e loss M intensity of a ray of definite
colour and polarisation suffered bv;Ke; igp[ég-y travelling 'in one
direction through a medium is exactly equal to that suffered
by an exactly similar ray travelling in the opposite direction,
and pursuing the opposite path."

It was now that the theoreticalAwas extended. The
names associated with”are Angstrom,Balfour Stewart and Hirclilioff.
In 1855,the first named stated "that a glowing substance
must send out all the light which it absorbs at a lower temp-
erature",which statement is the beginning of Prévost’s theory
carried further some four years later by the other two named.
In 1859,Balfour Stewart published a paper entitled" the
Absorption of a Plate equals its Radiation,and that for
every description of Heat", To explain this, he made the
assumption that it is at least possible for a body to emit
and absorb the same wavelength and,moreover,that it is possible

for a mirror to reflect perfectly all wavelengths, the

following is from his paper...
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"A more vivid demonstration may be given thus. Let AB ,
D BC,be tv/o contiguous ,equal and
similarpplates in the interior
of a substance of indefinite extent,
B kept at a uniform temperature.The
C accumulated radiation from the
interior impinges on the upper
plate ; let us take the portion v/hich falls on the particlesA
in the direction DA. This ray in passing from A to B will
have been partly absorbed by the substance between A and 3;
but the radiation of the upper plate,being equal to its absorb-
tion since the temperature remains the same,the ray will
have been Just as much recruited by the united radaation of
the particles between A and B as it was diminished by their
absorption. It v/ill therefore reach B with the same intensity
as it had at A. But the quality of the ray at B will also
be the same as the quality at A. For if it were different
then either a greater or less portion v/ould be absorbed in
its passage from B to C than v/as absorbed of the equally
intense ray at A in its passage between A and B. The amount
of heat absorbed by the particles between B and C would there-
fore be different from the amountaabsorbed by the particles
between A and B. But this cannot be ,for on hypothesis of an
equal and independent radiation of each particle,the radiation
of the particles between B and C is equal to that of the partic-

les between A and B and their absorption equals their radiation.
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Hence the radiation impinging ob B in the directionDB must
be equal in quality as v/ell as quantity to that impinging
on A and consequently the radiation of the particles between
A and B mustkeequal to the absorption as regards quality as well
as quantity. That id this equality between radiation and
absorption must hold for every description of heat.

Balfour Stewart and Ktrchhoff individually extenaée
Prévost's theory to include the components of the radiation”
A”sly/e knov/,Prévost considered the equilibrium of the radiation
as a whole and thought nothing about the individual components.
The following is an extract from the former's "Elementary
TreoLise on Heat",containing,incidently,one of the first ref-
erences to a constant temperature enclosure, "We have
seen that the stream of radiant heat v/hich strikes a thermometer
in our constant temperature enclosure is independent of both
the materials and the shape of the walls of the enclosure,
so that 1f the instrument be carried from one psrt to another
there v/ill be no change to the radiation falling upon it.
Something more is necessary for we must not only have the
quantity of the heat the same throughout, but the quality of
the radiationjraust also be the same",.. ..."Nov/ the woM
qu&iéy quality is here taken to denote any specific pecularity
whether of v/avelength or polarisation,whichjbauses the
rays to be differently absorbed by any substance,..."

n

..Suppose out thermometer is covered with some substance

which displays this selective absorption for certain kinds
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of heat,and that we carry i1t about fronjone part of the enclos-
ure to another. It will no) only be necessary that the quantity
of ra.diant heat which beats upon our thermometer shall be the
same throughout the enclosure in order that the instrument
may preserve its constancy of temperature,but the quality
of the radiation must be the same; if it is not we might
suppose that in one place the heat is of a kind that is greed-
ily absorbed bjc the coating of the bulb,and that for another
place,it is of the kind that is reflected back from this coat-
ing; thus,although the quantity of the heat falling on the bulb
in both places might be the same,yet the thermometer would
absorb more injthe first placejthan in the second,and its constanc]
of temperature would not be observed. Therefore it is clearly
necessary tha.t the stream of radiant heat which beats against
the thermometer as it is carried about the enclosure should
be the same at both places as to quantity and quality..."
"...Such a surface (coating of the thermometer) must not only
give back as much as i1t withdraws by absorption,but what it
gives bac% must be of the same quality as it v;ithdraws"...

Kirchhoff's treatment v/as mathematical. His result
was expressed]Iln the form of a well known law,named after him,
namely :-

, 4 =E

where e i1s the emitting power of a surface, a the absorbing
power of the same surface, tha.t is to say, e means the quantity” M

emitted froirJ?, given surface or volume of unit area in unit ]

time 1n certain directions, a means the rati oof the heat ab-
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sorbed to the total quantity falling on the same surface in
the same time and at the same temperature,and E the emitting
power of a perfectly "black"surface or volume at the same
temperature.

These two investigators were probably the first ¢b
realise the significance of radiation itv equilibrium inside
a constant temperature enclosure and the fact that this
radiation does not display the selective properties which
the radiation form a material body displays. It might be
thought that this realisation might call for a special paper
on the subject from one of them, but we have been unable to
find any such evidence, and the inference is that although
they realised the importance of the constant temperature
enclosure, they did not realise that the distribution >f
energies among the different frequencies was so important.

It was Balfour Stewart v/ho in 1871, suggested that
movement inside such an enclosure,the v/alls of which are main-
tained at the same temperature throughout,would produce a
"Doppyer" effect,but he did not work out his suggestion,
and 1t v/as left to V/ien,as we shall see,to make use of the
idea,

The work of these two people,Balfour Stewart and
Kirchhoff,lead to further studies of relationships between
radiation and temperature. Working on the results obtained
by Tyndall on the emission of radiation ffom hot v/ires,Stefan

found tha.t the heat given out was (roughly) proportional to
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the fourth power of the temperature difference, between
the wires and the surroundings. This empirical discovery
was made in I87I.

In 1873=,Maxwell deduced thoeretically the existence
of "radiation pressure", that is v/hen radiation falls on a
surface, it exerts a pressure. This pressure was not exper-
imentally demonstrated until 1900,v/hen it was observed and
measured by Nicholls and Hull,and by Lebede#"$:n the follov/-
ing year, the tangential pressure measured by PoyAting,and
others. Attempts had been made long before this ¢h detect
the presence of a light pressure. As early as 1753(i.e.
before Prévost’s time) attempts were made tb demonstrate it
when”Lhe expected pressure would have been attributed to the
arresting of the cotpuscles of light.

In \S%/Sa very important piece of work wrs done by Barjsoli
who suggested that the equilibrium radiation should be used
as the wotking substance in a Carnot cycle.

The year 1884 was a very important bne,for it marked the
taking up of the subject by Boltzmann,who applying the methods
used by Bartoli(i.e. using radiation as the v/orking substance
of a Carnot cycle) deduced theoretically the lav/ observed
by SteDhan. This law and the experimental determination of
the constant have been|juhe subject of much experimental v/ork.
The first verifications were carried out in 1897,by Lumner
and Dringsheim,and the first determination bf the constant

in 1898,by Kurlbaum,
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Since then, many investigatSele have worked on the law. Their
work will be described later.

In 1893, a big step towards the solutMn of the problem
was made by Wien, Yforking on the suggestion of Balfour Stewart,
that movement inside a constant tenperature enclosure would
produce a Doppler effect,Wien calculated the effect that a
"reversible" expansion of the constant temperature enclosure
would produce on the constitutuents of the radiation within,
and found that each individual wavelength would be charged,
by reflection at t. e moving v/alls. He found also, that afto<r
expansion( reversible”®”, the radiation remained full, or black-
body radiation,corresponding to a different tenperature of
the walls of the enclosure. He obtainedthe expression

E*-aX =)SA.F(X.T) dX
where is the radiant energy in the small range of fre-
quencies \to (\-t-d\ ), \being the wavelength,and T is the tem-
perature, measured on the Kelvinwork-scale. From thbs he
deduced that if Is to be a maximum, for aparticular freq-
Max} and TYEES corresponding temperature, then
(T, \"-X) must be a universal constant.
The form of the function F, he was unable to determine from
thermodynamical considerations, but in 1896,he published a
paper in which he made arbitary assumptions as to the nature
of the processes by which radiation was emitted,and obtained
a form for the function F. He assumed that \, the v/avelength

of the radiation emitted by a molecule moving about v/ithin the

constant temperature enclosure to be a function of the velocity
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of the molecule,V,and that E” was proportional to the number
of molecules whose velocities were between v and (vt dv).
Using the classical expression for the distribution of velocities

Wien found that

Rubens and Kurlbaum extended the practical investigations
of Lummen and Pringsheim to the infra red regions, and it was
shovm that although the formula held for wavelengths less
than a certain value, that it was not true for greater values
than this.

Rayleigh, using statistical methods, and applying the
principle of equipartition of energy( that is, if we have a
system of paryicles ,each with one or more degrees of ‘freedom,
then the final state of energy equilibriumi is one for which
the kinetic energy i1s equally divided betv/een the degrees of
freedom). On these assumptions, Rayleigh deduced a different
distributton of energy in the spectrum, namely that

E~d =8iikT3\ *.d
[f the aether is supposed tohave a perfectly continuous struct-
ure, then can be made to approach to zero, andas 7 —0, 1
E* v/ill tend very rapidly to infinity. Thus”as Rayleigh
appreciated, the energy will be distributed among the shorter
v/avslenghhs, and E* will ~# without shov/ing a maximum
value as ezperiment indicated that i1t should. Thus the energy
should be distributed in the shorter wavelengths.

This expression shows no maximum, and Jeans suggested
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tha.t the formula should only represent the state of affairs
in equilibrium. The equilibrium is reached he supposed ,
only at the infinitely slow rate (that i1s,it takes an infinite
time to be established ). This view did not te seem 7o be
experimentally supported, as the experimental agreement with
different "black-bodies" v/as perfect.

Then, in 1900,came Planck,of whom it may almost be
said that he gave the final word on full radiation. It might
with equal tbuth be said, that he gave the first word on the
subject, so important have proved his assumptions.

Realising that the correct gormula must be one which
approximated to Wien's for short wavelengths (that is ,small
values of(4T) ), and to Rayleigh's for long wavelengths, he
set out to find a formula which would do this. For some
years previously,he had been trying to determine the form of
the function F,by some new assumptions as to the nature of
the interaction between "oscillators" and the radiation.

He considered the possibility of the oscillator being able to
exert ai "irreversible" action on the radiation,(much to the
consternation of Boltzmann). In the course of his work,he
had occasion to dbe a function,8, given by:-

| =
where j6 is the entropy and E the energy.
He worked out the value of S for Rayleigh's and Wien's formula”
From Wien,namely BE6t = A v/here A=

he obtainedS S, = -S.B A abLlute temp.
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and from Rayleigh's formula,
E = C.T. where C

he got

is correct for short wave lengths,i.e. S is proportional
to E, and for long wavelengths,i.e. 8 prop/l to E2.
Planck added the two values for 8, thinking that for small
energies, the E2 term would be negligible, and for large
energies, E"™ would be more important than in the formula than
E, and thus the value tend to &8p.
hence 8(Planck) =Sp =

that 1s

dEH" B

which gives

where the constants have the values stated
previously. Planck now had to find
some "physical basis" fotrthe adoption of this formula, v/hich
was verfied as experimentally correct. He supposed that the
radiating body consisted of a large number of "dipole oscill-
ators", each with its ov/n period of vibratiob. Kirchoff's
law indicates ,that the nature of the body is immaterial to
nature of the radiation,and sx> Planck chose the simplest possible
form of oscillator, namely a"siinj)le harmonic one". By adopt-
ing the view that the smallest quantity of energy which could
take part in the process of emission or absorption was #h))

(where [1/)/ is the period of the vibrator), so tha.t energy.
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interchanges took ;c*ace only in integral multipples of the
quantity hV,Planck worked out the most likely distribution of
the vibrators from statistical considerations, and by
associating with this state,the condition of maximum entropy
% Boltzmann's law),he succeeded in obtaining the formula for
the energy distribution of the spectrum of a full radiator.

This idea of quanta was extended by Einstein who con-
sidered light as being made up of "bundles of energy" or light
quanta. On this basis,he explained certain photo-electric
phenomena. The compromise betweenothis "energy bundle" theory,
( which seemed to be a reversion to the corpuscular theory)
and the "wave-theory" was made by de Broglie v/ho imagined
the quanta as being"guided by the waves " in some v/ay. Out
of this conception of de Broglie grew the modern "Wave ‘'e.Rv niC:

Mechanics".



Part Two

The THEORY OF FUEL RADIATION

The notion of full radiation originated,( as the term

” hlack-hody radiation” suggests), in the study of surfaces
which look black. It was early discovered that surfaces which
look black are good emitters and good absorbers - that is

to say they emit radiation copiously in the form of electro-
magnetic waves and the energg falling on them in the form

of these waves is completely absorbed and converted into

heat. It was experimentally noticed, that however black a
surface appeared to the eye, it did not %baorb quite complete-
ly all the radiation which fell upon it and hence arose the
question of hocj to make a surface which would absorb all the
incident radiation. This was ultimately achieved by the

device of an enclosure with a small orifice. Radiation falling
on this orifice, will pass through it into the enclosure, where
it will be reflected many tmmes at the walls of the enclosure
and at each reflection, it will be piirtly absorbed and

partly reflected, so that any of it which does strike the orif- i
ice again will be greatly reduced in intensity,- to the vanishing
point if the dimensions of the orifice are small by comparison
with the size of the walls. In such a case, therefore, all

29

the electromagnetic radiation which passes the surface” -
shall we aay the plane surface bounded by the periphery of

the orifice - all this radiation will be completely converted

into heat, in other words, completely absorbed.



When the orifice 1s very small, it is reasonable tp suppose
that the state of the radiation i1s the same, within the
enclosure, as it would be if the enclosure were completely
closed.

Our artificial ”"black surface", if we may be permitted so
to call i1t, will radiate in virtue of the temperature of the
walls of the enclosure. We are extremely interested in this
radiation - the radiation from an enclosure every part of the
walls of viThich maintained at the same temperature. Suppose
that the radiation cannot get into or out of the enclosure.
Then a state of equilibrium i1s set up within it, equilibrium

between the walls and the radiation.

We can Bompare this enclosure v;ith a material enclosure
containing materiaIWa gas for example. This giateri-al sn”lros-

would be exchanging energy copiously with the walls of the
enclosure - giving and receiving energy to and from them.
We caiSr subject the gas in the enclosure to changes of temper-
ature and volume and if we make the changes so slowly that at
any instant the gas may be considered as being in a state of
equilibrium, then we say that we have made the changes "revers-
ibjty". If we allow no heat to get into or out of the enclosure
during such a reversible change, we say that the gas has under-
gone a reversible adiabatic change. If we maintain the enclosure
at the same temperature throughout the dhange, we say it 1is
isothermal and reversible. In an exactly comparable way, v/e

say that the radiation has undergone a reversible isothermal

change if the walls of the enclosure are allowed to expand,



and are maintained at the same temperature; and a reversible
adiabatic change if no heat is allowed to gaesifirom the walls
to the radiation, or vice versa. We can, moreover, apply the
two laws of thermodynamics th the radiation, and in the state
of equilibrium we say that the entropy of the radiation i1s a
maximum. The chief difference between the gas enclosure and
the one containing radiation, is concerned with the internal
energy of the radiation. For a perfect gas, the internal ener”
remains constant during a reversible isothermal change. That is
to say, the total internal energy is independent of the volume
of the enclosure. In the case of the radiation, the total
internal energy is changed by a reversible isothermal change
in volume, but hhe energy/- per unit vélume remains the same.
This amounts to saying that the energy density i1s indepenalert
of the volume of the enclosure, and is dependant: on the
temperature of the walls of the enclosure only. Thus in apply-
ing the lav/s of thermodynamics to radiation, we write for the
total internal energy, U, u'r uVv
where u is the energy density c*and V is the volume of f

the enclosure.

The energy density i1s defined thus; - The energy/ in a
small volume element surrounding the ppint in question,
divided by the volume of the element,- and u is independent
of V.

We shall see that the analogy between the radiation enclos-
ure and the similar one contakning a gas can be pushed further

The gas exerts a pressure on the walls of the vessel, due to
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the continual hombardment of the walls by the molecules of the
gas. The magnitude of this pressure we shall see is twice as
great as that exerted by the radiation on the walls. This latter
we shall calculate to be equal to one third of the energy densly
of the radiation. Recent devejopments have brought out that the
partiizles of v/hich the radiation is composed” called "Photons"
move about in the enclosure carrying with them energy in a very
similar way to that in which the m¢élecules of the gas .Garry <ney.
In fact, radiation is often fefe]*ed to as a " Photon Gas", and
has propertied very similar to those of a gas in a very

degenerate state

Sinee there is to be complete absorption at our

artificial black surface - that is, the surface bounded by the
edge of the orifice, - it follows that the medium on both
sides of th”orifice must be the same, or have the same
optical properties. Thus, if we want the surface to be black
with respect to water, we must fill the enclosure v/ith
water, and so on.

We are mainly concerned with the radiation in
vacuo, a”nd generally we shall define Black-body Radiation

as - The Radiation filling a Vacuous Enclosure, the Walls

of vvhich, are, at every part, maintained at the same Temperature



(2)

Intensity of Radiation.

The term Intensity of Radiation can he used in two senses
Firstly, when as we are considering, the radiant energy in our
enclosure 1is 1isotropic, if u he the energy density, then the
quantity of radiant energy per unit volume travelling within
the limits of the unit solid angle, will he ; -

ua .,

ds . .
Assuming, as we must, that the radia-

tion is isotropic, the amount within
the limits of the small solid angle d%
will he
u«dSl
41T
Row suppose we consider a surface dS in the enclosure,(see fig$)
We can easily get an expression for the energy travelling with
velocity £ through the element dS, in the sense indicated hy the
arrow N, from one side of dS to the other, and confined, as
regards directions, to those parallel to the limits of the

solid angle dSI . We construct on dS as hase, a cylinder,ahcd,

of length c¢.dt. Evidently the radiation passing through dS,

dS.tos &

h
in tine time dt, will he the
amount within the cylinder,
0-dt that is, the product of
figure (*)

("ount per unit volume) *(volikme;j

that 1is
u.d$l. c¢,dt,d8,cos ©

4ir
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The amount of radiation passing through a surface dS,
in the directions included within dcE in the time dt, 1s
proportional to : - dv/i, dt, dS cos e. If we call this
factor of proportionality 1?, we may write for this amount,
(3) It,cos #, dSS. d&E* dt

and if we equate this to (2), it follows that I» is
(4) "z AT
This It 1s one of the two quantities which are called
the Intensity of Radiation
The other quantity so called, is obtained from the total
quantity passing through dS, in the sense indicated by R, in
the time dt, in all directions. This is got by integrating
over the appropiate limits, where
dJL 2: sin e.de. doO
where e varies from 0 to
0 " 0 to 2"
That is, the total quantity passing through, 1is
(3) I1*,d8,dt, / / <cos e.sin e,de, dO.
If we write this quantity as
(7 ! 1,dS.dt,

Then, integrating (3 ) and equating it to (7), it follows that

(8) T, It - 1
but, since 17 is u.C/ (see (40.)
9) then, I ~ n,c

This quantity 1 1s also used as a measure of the Intensity

of Radiation,



(10)

(1)

(12)
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If however, we are dealing with quantities which do not
refer to the radiation as a whole, but to a particular freq-
uency V and a small range of frequencies between Vand Vi-dy
( where d}J is so small that the difference between y and Vfdy
may be neglected by comparison with YJitself, ) then, since in
our enclosure we have all frequencies from zero to infinity,

we definr, the intensity for a particular frequency y so as

to make
It -/ [.t"dy
0/*
I -/ Ij.ay

where 1j and I* are the intensities refering to the frequency

By analogy with this, we define the density for a frequency )/

given
to be by
nm - / Ujdy - A4TfI
0
hence 1I' c . / u.dV
4ar 9 >
and 1z c
4ir

The energy per unit volume between the limits of wavelength
X and A dX , we define so as to make
u dil - - EMJdA

(where E " is the energy density so defined. The minus sign
merely indicates that Vincreases as A decreases, and vice vers”

We see, from expressions (11) and (12), that as dy and dA
approach zero, the energy in the range also tends to zero.
This indicates that we cannot have a purely monochromatic wave
carrying energy, i.e., we cannot have light which is exactly
monochromatic and the transference of radiant energy by a

-Anurelv plane wave. Eouruer*s analysis would indicate theh_same
thing.



(a).

(12)

(13)

(14)

(13)
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Emission and Absorption of Radiation.
Surface Emission and Absorption.
We shall begin with the vacuous enclosure, which has every
part of the boundary at the same temperature. We may write
for the (electromagnetic or radiant) energy falling on some
element,dS, of the boundary, in the time dt, and confined to
the limits of direction included within a small solid angle dI&
u.dfl .c.dt.dS cos 0
4TT
or [''d& .dt.dS cos G ( see equations (2) and (3).)
Of this energy, the fraction a is absorbed by dS, while the
remainder r is reflected; so that
.dsi.dt .dS.cos e =z a. Il dIZ.dt.dS cos e +r dfi. dt .dS cosa
We shall term athe absorbing power ofthe surface
and r its reflecting 7
Row, we have, by hypothesis, a state of equilibrium, and
therefore, the amount of energy represented by (12) will be
leaving dS, along the directions included within the limits dit
in the time dt. Of this, the fraction r has been reflected,
and the rest emitted. Therefore : -
1'.d9,.dt.d8 cps e ~ e.d*.dt.dS cos 0 t r.I''d&.dt.dS cos G
where e is the emitting power of the surface
On comparing the equations (13) and (14), we see that
e Ma.l*
This result 1issimply a consequence'ofthe assumption of

equilibrium. It was first given by Eirchhoff. Of course, we

might have defined the reflecting and absorbing power in terms

of the total quantity absorbed, instead, as we have done, of



17)

(18)

19)

expressing it in terms of the fractionsr and a.In this way,

we should get A a.l
R - r.l
( where R and A are the reflecting and absorbing powers expressed
in terms of these quantities)
In such a case, Eirchhoff's law becomes
e A.
However, it 1is more convenient to define the quantities in the
way vie described at first.
When the surface 1s black; 1in other wordsv/hen it absorbs
completely, r is zerp, and the equation (13) yields : -
I. - a.l'
So this definition of absorbing power makes that of a black
surface equal to unity
In the special caue oi a perfect reflecting surface, a is
zero and we find, as we should expect, that r is unity.
We learn, finally, from (13), that for a black surface,
® (tlaok) -
or writing E for the emitting pov/er of a black surface
E I'

But, we know that for adefinate temperature, E 1is constant
and therefore it follows that the rqtio
Emitting power of a surface
Absorbffing powerof the surface
where, in (1$), E has aconstant value, namelythe emitting

power of a black surface.



(b) Body Emission and Absorption
We shall try to obtain and expression for the'body'
emission and absorption, ‘that is to say, the r. diant energy
emitted and absorbed by a volume of the medium under consider-
ation, by working on the same lines as in the previous case of

surface emission and absorptio.

The radiant energy travelling through the volume shown in
the figure, will be proportional : - ( per unit time)
the energy density; - d*tj - and the volume.
In fact, we may write for it : -
(20) u.dZE. dS cos 0. dl
41T
This will be composed of two parts ; that emitted by the

volume, and that scattered. Calling s the coefficient of

scattering, and £ the emitting power, we may write, as in the

previous vase for the surface : - ( per unit time)
21) e.d*.dS cos 6.dl. + s.u. d51.dS sos 6.dl i
41T

Equating expressions (20) gnd (21), we get :-

/u \d51.d8.cos e.dl - e.d".dS.cos e.dl + s/u \dil.dS.cos 0.dl.
[W Utt/

(22) or, writing B forZuX , and cancelling out, we get
(4TxJ
(23) B - e + s.#
Similarily, if a is the absorbing power of the medium,
the expression (20) must be composed of the part which is

absorbed, and that which 1s scattered.

Therefore u. d$2.dS.cos 0.d1 n ( t s ).u4Ad8 cos G.dl
47T 41T

(24) i.e. B zi aB ” s.B



From (23) and (24), we get
e a.B

(25) ie e-B
a

Suppose that s is zero, that is to say, there is no scattering )
within the medium. Then, from (24), a is unity and the medium L[
is perfectly absorbing. This is the case for a perfedtly black |
medium. In this case, then, as in the parallel case for surface
emission and absorption, we have, that the absorbing power
of a black medium is unity. !
Substituting the value gero for s in the equation (23) to
get the emitting power of a b&ack medium, we get : -
E — B
where as before, E is the emitting pov/er 6f a black medium.
Bp. substitution for B in (25), we get
(26) e - E
From the expresgions (I9) and (26), we have then, that
emitting power

———————————————— A the emitting power of a perfect
absorbing power emitter.
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Radiation Pressure.

As we said, when we were comparing our enclosure with a

similar one
pressure on
just as the

Let us

this in two

containing a material gas, the radiation exerts a

the walls of the containing vessel (the enclosure)

gas exerts a pressure on iys surround$ng<b

calculate the magnitude of this pressure. We can do

ways : - either by considering the components of the

stress tnnsor in the electromagnetic field, ( considering the

radiation as an, electromagnetic waves), or by considering the

change in momentum of the particles on striking the walls,

(considering the radiation as a photon gas.)

B A

Ift 1s the component of the tens

which th*iedium A exerts on the medium
B in the sense of direction indicated
by the arrow R, then tXX (measured 1in

Lorentz-Heaviside units for empty space

will be ; -
- - I -
(4 4

where E is the electric intensity

"

> H " " magnetic

For isotropic radiation, the average of E* ( call ijf )

will be

Similarity,

where E" i1s the average of the total intensity

E Bu 1# E
X 2

A

and therefore t~ will be equal to Er - X

: -



3L
E p H| is the energy density of the wa#e, and

therefore z: -(energy density) ~ - x.u
3 3
whence the pressure, p* y. u
3

Considering the pressure from the point of view of its
being due to the bombardment of the walls of tire containing vessel
by the corpuscles - just as the walls of the gas encloaure expen.
ience a pressure - the kinetic theory og gases shows that the
magnitude of this pressure is

R.m.u”
where R is the number of particles in the unit volume,

m is the mass of the particle, and u is (shall we say)
the X .component of the velocity, ¢ ( * u,v,w)

For isotropic radiation, this pressure will be

P n 1.E.m,?
3

where ¢ i1s thn average value of ¢ and

u" - A _ 1 A

3

The expression R.m.c* may be written as R.W
where, since the particles are moving abeut with velocities
of the order of that of light, we may say that their energy is
E Z mec
and since R is the number per unit volume, R.E will be equal
to u the energy density.

Therefore, p will be u
3



Thermodynamic Considerations.

The Boltzmann Law.

By the aid of the second law of thermodynamics, we can
find an expression for the energy per unit volume of the radiai-
tion within our enclosure,( every part of the walls of which
are maintained at the same temperature.), in terms of the
temperature of the walls, T.

We will subject the enclosure to reversible changes of
volume and temperature, that 1is, we will suppose the changes
thke place so slowly, that at any instant a state of equilibrium
may be supposed to be existing
Firstly consider isothermal changes - that is to say changes
where the temperature of the walls of the enclosure remains
constant throughout the process. We know- that the energy per
unit volume, u, remains the same, since this depends only on
T and we are keeping T constant. We have, moreover, shown that
the pressure p of the radiation isequalto one third of u
and hence itfollows that for isothermal changes, the pressure

of the radiation remains constant.

- I Ona p-v diagram therefore,
p I _ -] g--——————- isothermals are represented hy
S — straight lines parallel to the

volnme axis, as the figmre shows
A\

(isothermals for temps
, Ilg, and
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volume which remains unaltered, and i1t follows then, that if
the enclosure expand, an amount of heat must pass from the v/alls I
to the enclosure, to make up, as it were, the space left empty
where the v/alls have expanded. This amount of heat will be
u.( V_ V)

where (V - V ) is the change in the volume.

For adiabatic changes, we must have the walls of the enclosure
perfectly reflecting, so that the walls cannot absorb from the

n

radiation gas'', or reflect to it, if the temperature of the
" gas" 1is changed by the alteration of the volume.

In an adiabatis change, 1t follows therefore, that the quantify
U remains unchanged, that is, the quantity (u.V) remains the
same for this adiabatic and reversible change.

But, if (u.V) remains unchanged, then

d (u.V) must be zero ( where d(u.V) is the increment in uvji
I

i.e. udvV + V.du - 0 ]
]

and since dV is not 0, it follows that du is not zero ( as it

was for the isothermal case)

Hence - for adiabatic changes u and therefore T changes. f 4
To sum up:

For reversible isothermal changes u,and% are constant; and U var-

(ieF
adiabatic " U is constant* and u and 2 vary



Follov;ing the analogy of a gas or material enclosure, we will
subject the radiation in the enclosure to the reversible

changes of a Carnot cycle.

c (T £ dT) d Suppose we have the radiation
T A A enclosed within a cylinder with a
w
. } movable piston. If this has the.
W initial volume VW and temperature
Vol A (T-rd'1)this state will correspond to

the point a on the p-v diagram.
Subjecting the radiation to the reversible Carnot cycle,
c d ab, in the usual manner, we can apply Carnot”s
principle the arnnTifi 1py, nf th nrmntlyira to the
process.
In the p-v diagram, c¢d represents isothermal expansion
of the radiation at the temper ature ( T dT )
d ~ a represents adiabatic expansion of the radiation,
the temperature falling from ( T f dT) to T
a 4b represents isothérmal compression from the
volume V” to the volume Y ', the temperature being maintained
at the value T.
Finally, b ~ c pepresents adiabatic compression causing
increase in T to (T t dT)
For this reversible cycle, Carnot”s theorem
I-vr of - M4ul! mT™ req.ulre5 that the ratio

work done

Heat supplied



shall be eq.ual to dT

T + (&M
that 1s, that
arca abed A
heat supplied T "

(where we have neglected dT by comparison with T.)

The eq.uation (30) may be written

(V. _ V) dn - M i
heat supplied T |
The heat supplied will consist of tvm parts, J

(1), that required to fill up the space {Y' -V) with radiation ;
of energy density u ( equals ux»{Y" -V).)

(2). to do work against the pressure of radiation. ( ~ V~-V.p.)
Substitute 1a]j these values, we get

du.(V'-V) ~di
31) u.(V'-V) f p.(V'-V) T

where, p, the radiation pressure, is equal to u

and therefore, dp equals *

Therefore, (31) becomes,

1. a1
5 - ai

uii.u
3

and therefore

M

3 - Al
4u
3

1.€e. to - dT
4u T

integrating this, we get

log u J. 4 log T (plus a constant)



or u A a.T4 "

where a 1s a constant.

We |hA an expression for the intensity, namely,

1* - u.c
41T
1
4 (see equations (4) and (9).)
and therefore, we may write,
4
a T - u
4
cr*T .
(32) 4
c T - I

where a a» and cr are all constants.

The constant o; 1s called the Stefan-Boltzmann Constant

and this fourth power law is called the Stefan-Boltzmann Law.

It follows, moreover, from equations (4), (9), and (32),

(33) that cr a.c and cn a.c

and o "cr
4 4N
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We have seen that i1sothermals are represented '"by lines parallel
to the Y-axis on a p-v diagram Let us now consider the shape
oy the fao'tihérmals . In the same way that the ‘former are
distinguished by some numerical quantity, which we call
temperature, So the adiabatics are distinguished by another
numerical quantity, entropy, generally denoted by the letter
The measure adopted for 0 is f heat and for a change

Ntemperature/
in 0 of dO, as |d*j] where dQ is the hoat communicated during
a reversible adiabatic change at a temperature T.
The second law of thermodynamics requires that dO0 be a

perfect differential.
That is to say, if 0 ~*A.dx f B.dyj

then MA) 1s equal to
dx (y being kept constant)
a_(B) :
dy (x being kept constant)

Applying the first law of thermodynamics to the radiation
dQ ~ dU + p.dV (just as for a material)
- d(u.Y) f p.dV
A Ti.dV 4 v.du 4 p.dV

- Y.du 4 4u.dV ( since the pressure p % u 1
r 5

For an ad-iabatic change, dQ is zero, and therefore, putting

dQ 0. we get : -
(34) —4*N
4/\
But, by Stefan”s law, u B
therefore du 4 uTh

and by substitution in (34), we get for the adiabatic,

3Y.dT - -p.dY



A

T .V ~ constant.

integrating this, we get

Since u - 3P, we could have written (34) in the form

3V.3dp + 4.3P-a.V - 0
and therefore the slope of the adiabatics,/dp\is

la.Y)

- 4.2
3 V.
Summarizing then for adiabatics, wehhave

3

% .V is constant

0~ VApMN 1a

dpi is - 1-2

dv/ 3 V.
Going back to the expression for the first law of
thermodynamics, , dQ d(u.V) 4 p.dv
if we substitute for dQ,(T.d0"and fpr p, " uj

we get do * 2(du.V 4 u.dV) 4 i.u.dV
T 3T

—I'V.du f A*P*dV
T 3T

and since dO0 is a perfect differential-,

é- .It.v) - cL/4.U
dv. \T / dl’ 3 Ty
that 1is, z. 4¥IL - A'P 'dT
T 5 T 31 du
i.e. dl - 1
du 4u

Integrating this expression, we again get the Stefaii-Boltzmann
4
law, p n s,.T

this time, without using the a“rtificiality of the Carnot engine.



Let us now try to find an expression for the entropy 0
associated with the radiation in a volume V at temperature T.

We had do - 1-V.du f 1,4u.dV
T T 3

-V.. 4aTrdT + 1) _.alr.dV
T 15

4
( by substituting u ~ aT )

that 1is d0 - 4a.(vV.T").dl -f-1.TA.dV. 4a.
T 5

and therefore integrating, we get
0 ~ 4.aT*AV (plus a constant)
This cons”tant we choose our scale of measurement to make zero

and hence 0\ ~.aT™ .V
3

if we agree to call the entropy per unit volume, s

then 8 ~ A~ -4, aT"
\Y 3

0 4. aT™.V



Wien#s Law

The chief theoretical problem of full radiation 1is that
of the spectral distribution of energy in it. If we employ u”
in the sense already described above, that is to say, so that
u” dl) means the energy in the limits of freq.uency V and fd))
per unit volume, then the distribution problem is that 0¢f
of the expression of u ~as a function of Mand T, where T is
the temperature measured on the Kelvin scale.

VAen made the first important advance in this direction,by
applying the principles of thermodynamics to full radiation
and thus discovered something of the natnne M the function |,
without, however, finding its exact form.

Suppose we have full radiation enclosed in a cavity
the v;alls of which are, for the sake of argument, perfectly
reflecting. Lei us suppose further, that this enclosure 1is
expanding very slowly and adiabatically. In this particular
case,"slowly" means tgtat the velocity of the radiation, (the
velocity of light),is large compared with the velocity of the
walls, although these may be moving with a velocity of a high
order compared with what is usually dedcribed as high veloc-
ities, for example that of an express train, so long as the
velocity of the walls is small compirrdt with that of light,

then we may consider their motion as reversible in the

thermodynamic sense.

Let a - b be a section of the movin

b wall and let a»- b» be its position

b: after a short



(35)

inteval of tim8,dt. If ab is moving with the velocity v, then
the distance i1t will have travelled will be (v.dt)
If dS is the area of afe, then the corresponding increase in the

volume will be
dv. - v.dt.dS

We h*ave in the first place, to investigate the effect
that the movement of the mirror will have on the frequency of

the radiation.

N Imagine a wave passing through S and travell-

_______ ing towards the point 0 inab, v;ith a velocity

: WL g If it take a time dt totravel the distance
SO, then the number of waves in SO, is )/.dt

where y is the frequency of the radiation,

'“T 1.e. the number of v;aves passing a point in

\

T4 unit time.

a T Y If ab were not moving, these wavvs would all
¥ VEO! be reflected back at ab and the number

’ > returning to S, per unit time, would be )/.it

and in the time, dt dt”~ But on account ofthe motion of al®

( say awa” from S) the waves which vmuld have been reflected
back at ab, have to go a further distance equal totwice o0’
i.e. 2v.dt.

Thus the number returning to S in the unit time, will be

reduced by )e2v
C

and therefore the number returning, /), will be given by

yaoalvQa - A
C

If ab were approaching S, the number would beincreased, and

oz a4+

C
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Suppose, now we have radiation incident at an angle e-

the extra distance that the
radiation has to travel, onaccount
of the motion of the mirrmr is
obviously, from the figure, (%"y)
where AA* i1s a section of the wave-
front before reflection, and BC
after reflection. AA» 1s moving
towards the mirror which after a
time dt will be in the position abf.
From thefigure, x.cos 6 - v.dt, and it can easily be shown
that theangle OQG is26,therefore, y X.cos 26

and therefore (x%y) - v.dt 47~,dt .cos 26
\' cos e

2v.dt .cos 0
therefore the number of waves reaching BC in time dt is

lessened by V.dt.2r.cos 6
C

or V’>.dt * y (1l - gv.cos 0 )dt
C

V y(1-7" cos e
c

Inf this we have assumed that the "Jaws of reflection are not
altered by the motion of the mirror.

We must now find an expression for the amount of radiant
energy falling on the area dS in the time dt, and confined to
the limits of direction within the small cone of directions dil.
where, as usual dSZ may be written

($6) d®. z 8in 6.d0. dO

where 0 is the azimouth angle.
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(37»)

For a small/ range of frequencies, lying between Vand Vf Ay

the energy will be

u.aA)).dSl.c .dt .cos 0 dS
4TT (see equation (2).)

Equation (*7) is the expression for the energy reaching the
surface ab (dS). But, dS is moving, and therefore the frequency
Mis changed by reflection, and consequently the radiation
which previously wasin the range Ay will enter someother range
while radiationfrom another range v”ill enter thisranged V.

Suppose that this latter is ujl Then

A0S Ayt (90 ) e

lay/ vary .
by Taylor*s theoram)

That is, neglecting higher powers,

Ti;, - /duo)( )
: . (ay/ : :
In this, since ) is the change in frequency of the wave,

) means”™2T cos

This enters the range a , and so the expression corresponding
to (37) for the energy entering the range betv/een * and™ ™ Nij
in the direction dSZ becomes

ul ,dil.c .dt .cos 6 dS
41

or u’ .d*z.c.dt .COS 6 dS
\d y/ A AT
therefore the excess of energy entering the range o Jover that
leaving 1s : -
) *aik o.dt .cos 6dS.Ay

[dVj 4TT
which 1is equal to

Ay /duj\2v cos 0.dil.dt.cos 6 dS.c.'i.
4Tr\d" / ¢



4

T AD /duji2cLV,cos™e«3in
4T [d))J

( ty sulDstituting for dJL and for dV from (36) and (35)

When we sum for all the possible values of 6 andl 0

we get Yy y 2
/ /duJdV.cos 0.sin G.de,dO.y
/o { 2ir\d),;
— cos™e .sin G.d© .d0.d¥
2ir(Mdyy
39) - i.du”AV. il.dv
nody;

We may now obtain another expression for this incre-
ment, (39), by applying the first law of thermodynamics. It

is simplest to proceed by regarding

(40) - 1/ Mydve y
) (ay/
as the decrement in the range " y associated with the
change in volume dV. W nuC we dnt m lt« eV,

how in the reversible adiabatic process : -

(40) 0 n d(u.V) 4 p.dV
as the equation which deals with the change in the total
dnergy. Its corresponding equation in which we are more
particually interested is, of course that dealing with the
energy for a particular range of frequencies Ay, and for
the freq.uency y

M0 ™) the eg uation becomes 0 n a f A Jurd))

and the energy decrement with which we are especially

concerned 1is - ,d( UyV)-*wKicK is Me woK dont la tU
(42) or, -A)/.(V.dUo-* Ujd?)

equating (40) %nd (42), we get




0

-v.auj.u”dv
5\
(43) or - V.dUj c.

[t should he pointed out here that the du” used here really

means 1"dn*"W  f < ¥ = fir]

IdT /
since we are investigating over a small range of frequencies

so that we may think of fdgjidU as zero,

\ dW
and since u is independant of the volume,/du™5V is also zero
" 1idv7
(44 ) Froga (J3) therefore, ' - V/dujdT ~* u - .duj.vdVv
(diy \ 3 ay /

how, dV is the change in V for a reversible change
( adiabatic) in volume, and we may, with the aid of (41 ), re-
place it by an expression containing the corresponding
expression for dT, the corresponding' temperature increment.
We have, namely, that -
0 c. w.dV 4 V.du f p.dV

v.du f (utp)dVv
- 4V.air.dT t 4.aT*.dV  ( using u

5 .
- VAT +1.T.dV
3
So that dV - 3Vv.dT
T

On substituting this expression for dV in (44), we get

- v/dup\ dT ~ -i*yduj. 351
(dT / "3 dy/ T
or finally, / /0
43) 50 - 1 -IMA + vy
( dTA (,cLy/r

The term ” 3u”" in the expression (43), suggests how

Mfe should proceed# Wc introduce a function f, defined by



1,(40)

141)

so that, AT i

( where f is a so far uiiknown function of f/and )) )

Substatt-ting this expression in the equation for u,j

A + y f yr"T/M'l
Uiy
and therefore, )/df\ f TIdf] 0
[dyj (dT/

In this equation it may be point d out that

df'
dy<
means the differentiation carried out under the condidions

that T is not altered. We may, if we wish, mark this specially

by v~ rriting /If|
T

Similarily, | means here the differentiation when ) is
U?/ 9 b
constant, and may be written, /df
[dT/™N)

We can make progress by witting the differential equation (46)
in the form T £ /df\efdT" A

hw tdiirl
Mow df is fdf\ .dT j (dfUy
idfi A m

and if weconsiderfor a moment, a change when f does not alter,
i.e., for which df* 0,

0 - Vdfrd))
(dTjo.  IdVA

n 4 /df\./dy) ( by dividing by dT and remembering
\dT/'r  (dyy IdT/f f is constant)

or, /df] -/M)*
1dT/o idV/r [a-TI*

substituting thid in equation (47 > we have



61

or i - Vfel]
UylJf

since /df\ */dA 1

So long as f is constant, therefore,

i/ -1
ar T

or dj)
T

This means that ( by integrating) log jyi and hence
remains constant, so long as the fimstion f remains constant.
Mle may, in other words, say that the function f is a

function of the single variable/ 1A or
[ 1/ N/

and 1f we v/rite as x,
(49 ) then u ~ ~ ~.f(x)
This 1s one form of the expression for Wien's law.
If we wxpcBss the energy in terms of the wavelength, }
instead of in terms of ~, we shall get another expression

for Wien*s lavv.

If ¢ is the velocity of light, c z Vo
A -2
\%
dA z. ~ 0'7iL
y/\

and since E d| ~ -u~dp
substituting for u”from (4?7), we get
(50) E dA - O".F(AT)

A
where [ is an unknown function o f[ AfT]



51)

2)

If we differentiate the expressions for u and E
and equate the result to zero, to find condition
must hold for a maximum or minimum value of the energy, we

get, differentiating (30)

dE - -5A + A “-~NT-rMA.T)
aj
Putting dE equal to gero for a stationary value,
dA
0 - A.I. F'(A.T) - 5E(A.T)

whence it follows that for the value of the waveleng#!

for which the energy has a stationary value, say )|
(Xm,i] ishconstant.

Substituting thid in the equation (50), we get for this

stationary value for E”

A m
which may be written”!,
- 0 F( A nil').
and since IA m'lj constant,
E~* is proportional to T

The expressions (31) and (32) are respectively known

as Wien's Displacement law, and the Fifth power law



The formula of Wien at which we arrived, namely
A v .f(x), where x

and f is a so far uhknovm function of x,
is the limit to which thermodynamical arguments will take
us towards the solution of the problem of full radiation.
To make further progress, we may regard the radiation in
the enclosure as a super-position of Jlane harmonic waves,
travelling in all directions and of all wavelengths. Fourier»s
theorem would, in fact, express the Estate of affaisrs in the
enclosure in much the seme way.

The method may be illustrated by applying it to the case

of a stretched string or cord.

Each of its simple modes of vibration may be regarded
as the superposition of harmonic wajces travelling in opposite
senses, so that the nodes are produced at distances apart.
In the fundamental mode of vibration there is a node at each

end and no nodes inbetween, (see figure

figure(2) figure (3) figure (4)

In the next mode of vibration,there is a node just
half way inbetween the two end nodes( figure 3); in the
next, two equally spaced nodes inbetween the end ones (fig4)
and so on.

If 1 is the length of the cord and n is the number of

inte®als,( that is to say there are “nflj nodes altogether)



(H)

(33)

(33)

if Vis the velocity of the wave, and ) its frequency, then

vV oz ))*

and ~ 1

or' y -V
21.n

It follows that the different modes of vibration, 1f we
include frequencies up to )) and no further, are, in number

21.)/
\Y

In any one of these modes of vibration, the motions of the
different parts of the cord are not independant. Then the
number O0f independant modes of vibration of frequencies

between zero and ) is 21. )
v

and finally, the number associated with the ra.nge between

) aneL W f du), is 21. d)
v

or if we consider ahl the fibrations of the cord tuut #>"

»e 41.d))

Bow the statistical mechanical theory, (and in particular
the mechanical theory of gasts), establishes that the state
of statistical equilibriuml/;Aassociated with an average
kinetie energy of(kTIl per degree of freedom.

Bow simple harrionic vibrations, to which category these
simple modes of vibration belong have the average kinetic
energy equal to the average potential energy, and therefore
the average energy of a vibration is FIIS
If we multiply the expression (33 ) by kT, vie get for the ener

[ od
Al.kT.cLV

T



pur problem for railation is slightly more complex, because
v/e have to consider the states of motion of a medium extended
in space in three dimensions, whereas our cord had only one
dimension.
Let us consider a cubical region of out enclosure, the
sides of which we will, for simplicity, take to be unity.
Our cubical region will be filled with waves (stationary v/aver®

the nodal planes of which are shown by the diagonal lines in the

Suppose that OV and VO are
the directions of propagation
of the progressive waves,
giving rise to the stationary
waves. (The arrow OV is not
necessarily confined to the
plane of the'paper.

If there are nd intevals in the edge OA ( in the X-axis)

nO 2 1] n n OB
n n || n 1 00 7-"

and 1f cos 0”,cps 07 and cos O3 are the direction cosines of
the line OV, then Oa - 1
and cos 0~ .Oa
therefore AMI1 2 cos 0
and similaaily /vVn* z. 2cos 07

jm 2 cos 0j

and since cos 6 cos 0 and cos (are diredtion cosines of the

line OV, the s of their sg.uares is nnity,and therefore
M -
4,



i

since | 0 , then ¢ A

By giving n, n”and. n"different positive integral values
we obtain the different modes of vibration for a medium, (“-e.
in this case, the ether.)

If vle represent n*n”and n”"by distances measured along
rectangular axes of coordinates, then the points representing
the various modes of vibration will be at the corners of

the unit cubes.

for example, P would repres-
ent the point for v/hich
n was one and n* also 1
1 A
Each other Conner of @ unit
axis. cube will represent a mode
of vibration.
Consider the totality of vibrations, the frequencies of

v;hich lie between 0 and i . Clearly the number of them will

be the number of unit cubes in the octant of the sp&ere

of radius ( njtn*fn*)* - ~2)) ( using (55)
The volume will therefore be J. 2V
8 5 1Tc
AT T
3 v

and the number in the range of frequencies between i and (i)+d))

will therefore be A
47711) tdy
156)
C/\
If we remember,(just as in the case of the cord) that we are
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(58)

(58)

dealing v/ith trhnsverse vibrations, the mhtions of which may
be resolved into parts at right angles to one another, and
which are independant of each other, we have for the number
of vibrations

cIT.
If we call the average energy for pach degree of freedom M

as in the parallel case for the cord, then the expression

AN

gr.a”0dV . .kT --ujav . gTi)' kT

for the energy becomes

which is known as Rayleigh”s formula.
Expressing it in terms of E”and /\ , we get

8T.kT.dA _ E,d/\
A 4 A

Let ud investigate how these formulae agree with
Wien's law. This law requires that u”shall be expressible
in terms of a function such that
M) ¢ VvV~ (x)
EN - A" F(x)
where x and % i1s (A.T] ( see equations (49) and (50)
and, moreover, the displacement law requires that

/A ,T 2. constant { that is, shall have the same values
for all temperatures.)

Rayleigh's formula may be put
u. -8T. V2~x _ 8ir.k. ".T\

comparingthe two formulae then

u - BI'lk (Rayleigh)

u ° f j (Wien's law)
we see that the formula of Rayleigh is in agreement v/ith

fe K T WHMI JRVe



(58")

59)

(60)

H
Similarily, comparing

Ex 1II 6T kT 21 STk (A*I) ( Rayleigh)
A* ~ 17

( Wien)
and E"*-"F(A.T)

We see, a gain, that a function can be found such that the two
expressions are in agreement.

But we shall see that; although Rayleigh's formula can be
made to fit Wien's law, in spite of this formal agreement,
it does not agree with experiemhtal observations.
The displacement law requires that the maximum values for
E~ at different temperatures, shall be such that th"w-avelength
where the maximum occurs shall obey the law

m f 0 r all temperatures.
Let us find the maximum or minimum given by (58')
Differentiating the expression (58') with respect to \ and
equating dE”to zero, we get

0 dEi 21 - (constant). /T \
4n I Afl

which gives an infinite value for jk for a maximum or minimum.

If we differentiate a second time, we get, (apart from constsnke

Ls 2

dA2
and as we are meas™mé p on the Kelvin work scale,

the expression (60) must always be greater than 0 for all

values of \ It follows therefore, that as x tends to oo

E” tends not to a maximum ( as experiment indicates i1t should

but to a minimum. Figure (8) shows a rough form of the curve.

Moreover, we have seen that the total energy E is equal to

the integral of E~d)\over all possible values of |



&
that is E J Ed/\

- fcoriotanty y LYX
o

E is therefore equal to A

(constantL - f1 - F 00
U
But it is inconceivable that E should be infinLte and so the

expression for the energy cannot be correct.

A~ A different formula was given by Wien for the energy
. . . . . . £fVI' H .
distribution. As we indicated earlier, he made assumptions

about the velocities of the molecules and arrived at the formula

"o
A e AN

where a; and a”are constants
From (61) uy - - a,.D"
*V 2 04 g-Ar

From (61) and (62) it can be seen that the expressions satisify

Wien”s law, as they are expressible in the forms

\% and A~F(A.T)

Differentiating (61), we get

M — -5 . e ai ag ,e~ " f
and for a stationary value, " N0
dA
therefore 5 - a2 or /\t - a,
4

Thus Wien's formula shows a stationary value, which, incidently
is not very different from the one calculated from the acceptedifer

correct formula. It was found experimentally that the agreement
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of Wien’s formula , whllejbelng good for siiott wavelengths,
was not good for longer Wavelengths, v/hereas Rayleigh's
formula was in agreement for long wavelengths, with
experimental observations, but that it did not rgree for
the short wavelenghts, as the rough figure shows

_ VWEW's Qv -W
T - &771511])

. Z Y
cvRi/e
f b G

it seems then that the correct formula must approach
Rayleigh's as \becomes large, and approach Wien's as

A becomes smaller.

If we write Wien’s formula as

We see, that i1f we put instead difffd this,

2]
c(eh- 1)

we shall be very near what we want, for as A becomes small,

becomes very big, and we may write for“e”- 1j, e”
without appresiable error for these small values of A
Consequently, equation (65) becomes

aj whichis Wien's formula.

eP
On the other hand, as A becomes big, e” becomes small,
and we may expand e as ( 1 4 P4grfP”, , .)
and neglecting powers higher than the first, (e -1) p

and substituting in (65)»



u.
at

X-"*Pp which is, substituting for p,

a, XT T

| & ®2 >4
which 1s Rayleigh’s formula.
It seems that the expression (65) will meet the case for the
extreme values for \“of X-0 and X—
Without enquiring into the agreement of the intermediate values
of the function, let us see “hat value we must give to the

average energy, E, associated with a single vibration.

We know( from equation (57)*) that the number of vibrations

between frequencies )) and d').) per unit volume, is
(57) SEJLI J1J
C/\

and if 'Ki1s the average energy, then the product of
(64) the expressiom (57) and E must be u”~dV.

Since v/e are assuming E. dX z aid/
A o -1) j’e N

" then} u di will be aic.dV n n at ) ~d}/
: ! =l
y , ¢-5(eP -1) c' e -1) «r
Substituting this in the expression (64)
o.&IF. ) "Tl.a)) _  aiy”~d))
/ (e P -1)
(t¢) 1'® E . ai
8"0,(eP-1)

Kow, for large values of A (i.e. small values of ) ), we know

that this must approach Rayleigh's formula, i.e. g-*

As A becomes big, (e® -1 )-y-~ P , where p is age a2y



13.

and thei-efore as X, * , v;e have

{66' ) B 2al.V _a»
81Tc.( p) ag 81T
and this must approach the classical ( Rayleigh's) value, kT
therefore a'.T _ kT
Ig 8TT
(66") or - 8Tk
ag

Consider now the expfession for E, We had

E at )) 1

8rc (e®- 1)

. , 2%V SR
Thue E is expressed as a function of e * — e T
(since p is ap))

cT )

"¢ have haW similar sorts of expressions for the energy
, for example, in the Mascwellian distribution, we have that the
energy is a funetion df J

Let us put our expression for the energy in a similar sort of

way. We had it as a function f - A% TI/
This index, - a2*V
cT
i
may be put as - Za2
A kT
where the part @* i1s constant. 1"
-Tttkevl” we have the energy as a function of g- "
where h i1s given b
ShE Y h &k
(62) o
Let us investigate more of its value. Substituting for Ng
14t AO (
(66) E - sj .V

BTc (eP-1)

and from (66" )/utl _
uz2/ «



therefore, using (67)

— h.G
k

and ar "85

(e' -t)

where p

[t now remains to justify theoretically, the assumption
that we may write

a-X c. Qf *X

AS5.{eP -1)
or Ujdy - a,
e™( -1)
or in other words
A A

where p a2))

VAN
8lyo(el 1) T

- h. V p 2. ILI

and where a, 8 /fch

The two Expressions for the number of vibrations or
vibrating systems between * and())-dil (see (56) and (57).)
iTgenot open to any question and consegently the expression
kT for the aver ge energy is suspect. This amounts to saying
that the principle of equit>artiytion of energy id" faulty.
This equipaTbition of energy principle is, however a necessary
consequence of the classical dynamics, and the removal of

this equipartition of energy principle would cause the

shattering of classical mechanics. Hence, the only way to



to make further progress, as Planck appreciated at the close
of the last centurv. was to modify them. The exponential in
equation (66), " , and other formulae above, suggests
how we should- proceed. In Maxwell's distribution formula in
the kinetic theory of gases, we have the exponential : -

— energy of a molecule

e kT
and we are lead to contemplate oily such eneurgy transferences
of amounts equal to n,hV at a time (where n is an integer).

Before making this vital step, Planck considered very

carefully the expression for the number of vibrations : -
2

N

and being satisfied that it v/as correct, tried to find an

assumption which would justify writing the average energy E as

(where p ~ iy )
e® - 1 kT

To do this, he supposed that the walls of the enclosure

were made up of oscillators, each of which could vibrate with
its own particular frequqncy, )/, and the energy of which
was an integral multiple of A)»

In this way, he succeeded in arriving at the formula fort

E , giben above, namely

E -JUL _
1



u.
Planck’s Formula for the Distribution of Energy in the

"Spectrum of a Black-Body.
.L i

-1

We shall not arrive at the formula for the distribution
of energy, in exactly the same way as that in which Planck
arrived at ite

We shall suppose that we have a definite number of
systems, (say H ,) and that B is made up of numbers of
systems of different energy values, say we have,

with the energy H
272 7 " ” E2
etc:
and in general
Hs with the energy Es

We shall then consider the the various ways En which
the distributions of these numbers can be made, so that
the total number E remains the same, and so that the
total energy remains constant. The total energy, E ,
must be equal to the sum of Eg.Eg ., and IT will be the

sum of E_.. That 1is

8
N -'AMif- Kg-/ . Kg +
and E ~~K "+ KgEg-/ K'"E* '""'KgEg
so that E -~ K .Eg _ f E
K E~ “ 4. s s

where fghas been written for *
K
E is the average energy, - E
a

and since f i1 ; f2 r.12;
K K



it follows that
5

(70) .4 [t >eeete 4 fgd eeell A o A

S. .
I E E E
(70°) since @S

Let us consider the various ways in which the
energy of these systems may be distributed among them, and
which distribution is most likely to occur. Then having
found the distribution which is mc-:st probable, we must
assume that this distribution is ultimately established.
It will be the distribution corresponding to statistical
equilibrium, namely the state with which we agreed to
associate maximim entropy.

Let us compare the distribution with the placing of
balls in receptacles. If we have a definite number of
balls - say six'V and two boxes,A abd B and let us fix on
a particular distribution, say we would have four in A,

and S in B. Then the number of ways in which this distribution

can be made, 1is

6 J
4 12 1

different ways.

We are going to assume that the receptacles are exactly

A pYioi
alike, and that the””“probabilities associated v/ith them are
the same. We are also assuming that the presence of a ball

already in a box does not prevent another ball from coming

into the same box. We could have other distributions, such as

6 in A and 0 iri B, which could be done in only one way.



(72)

(75)

(74)

(75)

or, we might havehad 5 in A and 1lin Bf 6 W"s)

4 in A and 2in B \
and so on. I 2 /
Therefore the total number of different ways in which

we can make the distribution, 1is

1 t 61 6.3/ 6.%.4 4. .. t 1 n 27
\ 21 5°

different ways. Therefore, 1f we distribute the balls at
random the chances of a 4 in A and 2 in B.,distribution, 1is
as the ratio of(the Wways of distributing 4 in A and 2 in B)
to (the total number of ways). That i1s the ratio 1is

( the expression (71).) to( the expression (72)."

That is 61  -f 27
41 21
In the general" case of E balls and n boxes, the chance of

a particular distribution is

K X (n~")
Hi'. Hgl .. I

In this we have agreed to let "certainty' be represented
by unity. If we agree to let certainty be "9
then the probability ( used in this sense, generally called

29

the thermmdynamic probability"), P, becomes
P - El
E| « Eg,.* «E]"™
It follov/s, then that
log P - log El -( logk<|! + log Eg! . . . -flog E*)
By Stirling’s theorem, that log El E.log E,
when E is very big, ﬁth follows that
log P E log E - X Eg log 1Sg

- L log E- J *
7 0 0



i.e 10~ P - E log E_iE fg log fg _¥ [J.fg log E

-5
- Elog E -\ E.fg log fg @ E logE I fg
0 c

J) , o~ ( using (70).0
©) If we wriyte log p J- vy
then I A fg log
It follows that the most probable distribution is that
for which P Zand hence yjis a maximum
Differentiating (76) and equating dy to zerp
77) alJ -0 - - E.y (log 4 1 1).dfg
This differentiation must be carried out under the conditlonr
of constant energy and constant E, that is
z. 0 and dE =0 z ~ Eg.dfg

Therefore we must have the three following equations holrving

ns) 2 log 0
179) I\ ES .dfS -0
160) y df - 0

In order that these three hold simultaneuusly, we must have
@l log fg "pg -~ - 0

and consequently, on integrauing
(82) f8 _

where 1, | , and B are all constants

This value of f* in (62) corresponds to a maximum of V.

Substituting for f* in (76') and writing for the max. of ¥
(85) - -EiBe“i*S( log B - |iEg) - -E log B j)E

since*fg ~ 1

thus we have
is -E log B



(84)

fo
duppose, now, that we change E by a small amount dE, and

that dy” is the resulting change in
Differentiating (85), to find dU”, we get ; -

b

afjj n -MdB t ~ dE f E.dp

(since B andpwill no longer remain constant if E changes.)
We are aaauming that K suffers no change, i.e. that*fy remains

the same. Therefore,

2

&IYAfg -0 - dBl/r_ ® B ; E °e_Es}i d3
i.e. 0 - &B - E.dfi
B I 7

substituting this for O3 in the expression for aEm, we get

djyr - -E.d"K f pdE E.dj) - ) dE
We must now find something out about the constantsand B
If we associate with the state of maximum entropy, the
state of greatest probability, then let us put : -
g'Vm - 7
where g is some constant and 0 is the corresponding entropy.

Differentiating this, and substituting for dE , ve get : -
m

do gl .dE
and thereforepg do
¢ dE

which, by the definition of entropy, is a measure of the
reciprocal of temperature

therefore, g". zi [

This g is IWb identically the same as k, Boltzmann's

constant, and the law that the entropy is proportional to
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the logarithm of the probability is known as Boltzmann's law.

We can further demonstrate that this constant is an
equivalent of the reciprocal of temperature, by considering
the statistical equilibrium of two assemblages A and B, the
total energy of which, E, remains constant, while their
individual energies vary, subject to this condition,

(86) E - E~ + EA .
where E” i1s the energy of the assemblage A and E that off B

If and Pb are the probabilities that A and B are
in certain states, then the combined probability that
they are so at the same instant is

F -
(86’) and hence B z. Vg + W)
Differentiating (86) and (86")

d? -dVa + %

(87) and dE ~ dEg* 4 dE
B ut the condition for equilibrium ( statistical)
of the two systems is that
d? - 0
dE - 0
and therefore, substituting in (8?)
(87°) dE i dE - O
a D
and, by (84)

&Va - aEa.f a
d”"B z. b

and therefore, substituting.



(88)

a - Pb - 0

whence i N %

statistical

If

This 1s then the condition th

P 1
I kl

then this conation for statistical

That

"a - b

is to say if the temperatures

are the same, then there will be a

eq.iulibrium between them.

at two assemblages be

eguilibrium with one another.

equilibrium 1is that

of the two assemblages

state of statistical

Suppose, now that the two systems have not reached

eci.uilibrium, then, by the second law of thermodynamics,

0 must increase, or d0 must be greater than zero. That is

to say, dV must be greater than zero, and therefore
dEa']%yF dEal6b’ must be greater than B
Suppose that dEg" is positive,
then, (fa>ph "
i.e, energy will flow to the system with the greater »

or to the system with the lesser *

flow th the system with the lesser

, 1.e. energy will

temperature, T.

We have thus found an expression for »~ . To find

a value for the other constant, B,

of eg.uation (83), we

consider the expression that we had for f”, namely

f
S -

If we sum fo for all values of s from o to ®, , we get

1n



(89)

(89")

90' )

92)

1
and therefore B — -

|

10 evaluate the of this expression, we

have to make use of Planck’s q.uantum condition, that the
energy exchanges can only take place in integral multiples
of the quantity, hV .That is to say, for , we substitute
OMh),) j EI as 1.hy | etc:, in general Eg as s.h)"

and therefore ~» g'f"s n (1 +e“f*n 2 A

1

writing pas 1 and substmtiting in (89), we get

¢ kT _h"
B - I - e
The average energy, E, is equal to ~ “s”s
and is therefore equal to " B,sh”. wherep z *
D *2p

"B.hy.e— I + 2e £ 3® o o )

therefore, substituting for B, we get
l -A
tlqat 1s E - hv
-1

Substituting this value for g the radiation formula, we get

2

c3 g«NkT

E dA X d”.ob. d%
A \ t1CZ
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Thus we see that the ” required condition” to obtain
a formula which agrees with the experimental oloservations
is that the energy is an integral multiple of AhjJ
where h is Planck”™ s constant and is the frequency of
the radiation.

We can, from Planck’s law of energy distribution,
obtain a value for cI, the coefficient of total radiation,
or, 1f we assume the experimentally observed value for cr
and also the experimental value for the constant of Wien”s
displacement law, we can calculate the value for h and k,
(Planck’s and Boltzmann’s constants).

We defined u, the energy density, as the integral
u -
and, from Planck:s law,

u,dV a Sffhlj ~.dV

and therefore, by the Stefan-Boltzmann law, u aT”

- where x - hjy
h c¢* * e -1 kT

hence, we have

a - 8TO* y (xM.dx.( S™- €7 - )]
48TT.kK'MA
7 J -
C.90
VANSS
. ’i -nx. QO
Since v @ dx - 6

and Y 1 .X



S u
therefore AN a.ce A2 T.K
4 19

-27
giving h the value (6.947). 10 erg.sec"”’
and k " " 1.9708).10 erg.deg””

" c " " (2J994). 1070 cm !

we calculate c¢Tas (9-719).10"-* erg.cm"” .deg'*”*.sec'"’

Wien”s constant, is according to the displacement law
equal to A *.T, and we can get from equating dE*
to zero.
dA
From Pla«inck's law, therefore, differentiating, we get
e“r ¢. 9( 1 -e~M) where, as before x * h"'".cL
and therefore
X - 4.9691.
or b _ch— _ .2869 (using the value 1.4917 for ch ,
k. 4.9691 . >

The experimental values of these constants are given here ;

Calculated value Experimental value
f . (- I1ri-xk. - 9.713 . to"” 5.799. 10"~
15  hrf
b. (n Sb = .2869 .2940

k. 4.9691
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Einstein»s Deduction of Planck’s Law

When Planck first deduced the law for the distribution
of Energy in the spectrum of a black-body, he had to intro-

29

duce the idea of an "oscillator” as the go-between” of the
radiation and the matter within the uniform temperature
enclosure. He was forced to introduce this idea of a » dipol.e
oscillator”, because the mechanism of emission and absorption
of energy by atoms was not known at the time. It was not
until about 1912 or 1915, that Bohr published his theories
about spectral radiation. He associated in atoms, different
levels of energy the electron orbits, and he supposed
that when an electron was transferred from one orbit
another, that an amount of energy equal to Ah)J was radiated,
where Mis the frequency of the radiation emitted. That is
to say[, in the transference from an orbit of energy Eji to
one of energy E”, radiation of frequency is emitted,
such that
%n - Em :: k'Xam

Einstein supposed that a number of these Planck vibrators

were placed in a constant temperature enclosure, and invest-

igated the nature of the energy exchanges due to the emission

and absorption of energy by them, in a v/ay implied by equation
(92).

Let be the number having the energy E”
It ”? r Ir Ir 1T
& ” ” 7 density of the radiation of frequency Vma*

Then, i1f the radiation of thid frequency fall on an atom in

the state E , it may be absorbed by it, and raised to the
m



(94)

(95

level E~. If Is the probability that the radiation
be absorbed, then the amount of the radiation absorbed will
be equal to the product
m' nm' mn A peni unit time.)
The amount of radiation emitted will be divided into two
parts. Firstly, that emitted spontaneously by the atoms
(equal to multiplied by the probability factor that the
atoms will emit, i.e."n'"m ) and secondly, that emithcdvnhr
nfdKice ¢

the/radiation already present,( equals n nmnm. inhere
Rnm 1is the probability factor of emission and is not, as
far as we know, yet, equal to T'mn.)

Since we have assumed a state of equilibrium to exist

within the constant temperature enclosure, we must therefore

equate the amounts of radiation emitted and absorbed.

i.e. —n("mn t “nm' nm)
An'*mn - \'feim'V < \-Anm'V'~?
that is utg - T n-"mn
'm/ 1% * — Bhr Oy
3-mm
mn* — ~ nm
n

If we assume the canonical law of distribution to hold,
tben. ANOALE A.e® /KT
and therefore, EV™ - ™M-(I"n-"gm

%

and therefore, using (99),



h)

Nm
n

Substituting this in (95), we get : -
A
b am

i - hmn h

-1
nm

Since we have been considering only radiation of a particul-

ar frequency, y~, it follows, that the equation (96) is the
expression for the variation of the energy density u” with
temperature. If therefore, we makk T— pq we know that Unm
must also approach qd, and for this, the denmominator of (<"
must approach zero.

v AYW/VT

Since —7 0, ( because e ey » aS T2 od

then b” must be equal to b”, and we may write u“m 3

— “m/"b,
nm

e2 1

where as usual, p stands for
kT

But for small values of V, the equation (97) must

approach the classical formula, and, therefore, making )/'—" 0
'nm/ N

and therefore

Poam L griny A
3

nm

and on substituting this in (97) we get Planck» s formula,

u. - BTihy #



(98)

(98»)

W)

199}

n
These considerations by Einstein, which are chiefly of
historical importance, lead to an interesting paper by
Strum , v/herein he considers the possibility of generalising
Planck’s law, by widening the considerations of Einstein,
and he deduces a possible variation in the value of cI, the
Stefan-Boltzmann radiation cons”tnt.

Strum considered that th” probability of emission, which
we have called b” in the previous pages, should, instead of
menely being proportional to the density v , should be some
function of the density, F(u), where F is given by

F(u) A+ Bu y Cut (neglecting higher powers)
and the ptobqgbility of absorption should be

f(u) ~ a + but cu®
basing his calculations on these assuptions, he deduces
that the density of radiation of a particular frequency V,

shall be, A A
'I,-
(cP-1) (ep_1 )2 where p - hj
kT

and where k and f are constants.

Strum integrates this expression for u” to get u

u - / u,d)) al4 -

0
( Where we have written ¢ for the velocity of light to

distinguish it fron the »c» of equation (98»).)

From (99) and (99°), he gets for 6’

ST k* f(6.47568.kK' T*
A'h) A h? A

The value for” he maintains can he calculated fifvm (99 )
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He obtained, from the Physikalsch Technischen Reichsantalt

an average value of o, as 0 *~ 5.77 xio""" erg.sec"’ deg”4 om"
He maintained that the calculated value for cC is

- {5.715. - 0.009) xio"".
The difference between these two, ha maintains is of the
order of the second term of the expression for o ( where
the first term gives the usual Planck formula value.)

He asserts, that on these assumptions, that the energy

will be given by E, A cJ + C?Y *
(fi1l )

where the value of thid third constant ¢ can be calculated

from the difference between the experimental and theoretical

-5
values of (s Calling this difference do' ( 06 x 1C )

then ¢% must he ("°/k I'Mder

g " lt6.47568
A1.82 X 10"
The <criticism of this conclusion is that, in the
first place no indication is given of the way in Virhich the
theoreticalvalue for ¢ was obtained®, of the possible
errors in thevalues of the constants from which it was
obtained. Secondly, that the more recent values of cr
show a variation of much less than the earlier values,
- a variation of about .0OS xIO“ and the mean value of
the measurements ( as calculated by Hoare, see later.)
gives the mean experimental value of Cas (I 5.735 x10

which differs from the value calculated from values of

h, k, and ¢, giver earlier (z. 5.713 x 10 ™) by .022 x10 »

ad compared with the value for dd' of 0.06, given by Strum.



About the same time as this paper of Strum’s w,-s

published, another one was given mn the same subject
by Majumdar and Kothari , which criticised both Einstein’s
deduction and also Bose’s , the former on the grounds that
the ratio a fom cannot be directly calculated, and
the latter because of assumptions v/hich the writers class
as " arbitary*% for example, that he uses the mathematical
probability instead of the thermodynamical one, and also
that the Bose formula does not reduce to the classical one
as it should.

The writers claim to obtain Planck's formula without
assumptions of this kind, but although interesting, their

paper is mot worth considering in further detail, for

our present purpose.
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We have arrived at Planck’s formula by adopting the undulatory
theory of the nature of radiation and applying the methods

of Statistical Mechanics combined with the hypothesis
borrowed from the early form of the quantum theory that

the energy of a simple harmonic system is an integral multiple
of hjy. In recent times, however, there has been a tendency

to revert in some degree to views about the nature of light
or electromagnetic radiation resetobling those of Newton. This
has resulted from the study of photoelectric phenomena more
especially. The vall known experimental fact that the maximum
velocity of ejection of photoelectrons is independent of the
intensity of the exciting radiation, 1is entirely incompatible
~ith the naive undulatory theory. Bragg’s early experiments
on X-rays convinced him that they were a corpuscular phenomena.
On the other hand, a naive corpusculat theory of radiation

1s just as unsatisfactory aa an undulatory one, since it 1is-
inadequate to deal with the phenomena of interference. It
appeared, in fact at one time, that an undulatory theory was
necessary to explain many optical phenomena, and some sort of
corpuscular theory for photoelectric pk,enomena. More than a
quarter of a century ago, Einstein suggested that light
consisted of small bundles of energy, each equal to hj)

that is, it consisted of small particles, now called photons
with each of which a definite frequency and energy proportion-
al to it was associated. Indeed, hewton found it necessary to

2 n

endow his rays with a periodic phenomenon, the fits of

east reflection and transmission. Louis de Broglie introduced
in 1924 a sort of hybrid theory in which he imagined light to
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*9
be made up of Einsteinian bundles(photons) which he imagined

to be guided by waves. Out of this theory has emerged the
present day Wave Mechanics which associates with the ultimate
particles; photons,electrons etc: trains of waves, or groups
of waves. These waves are not, it would seem, themselves
physical entities. The square of the amplitude, for example
does mot measure the”“nergy or energy flow,(except when deal-
with things on Ird)? macroscopic scale), but the probability
of the presence of photons. Interference fringes receive now
a slightly modified explanation. The bright fringes are form-

at places where the probability (measured by the square,
of the amplitude) for the arrival of photons is large ; dark
fringes v/here it is small or zero. The rules for determining
these positions happen to be i1dentical with those for deter-
mining or calculating places of reinforcement or destructive
interference of waves.

The further development is largely due to Schroedinger,
who widened dynamics by extending the analogy which Hamil-
ton had discovered between classical dynamics and geomet-
rical optics, so that dynamics became analogous to

optics.
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Before giving an acoiunt of de Broglie’s work,let us obtain
an expression for the Phase Velocity of a Wave, and obtain
one for the Group Velocity of a superposition of waves#

Consider again the case of a stretched cord, fixed at bnth
ends. Suppose this i1s given a sudden jerk at one end, causing
a displacement there. This displacement will travel along the
cord without change of shape or change of velocity,(to a
first approximation.), and we may write for the displacement,

3 f(nt - x)

where u is the velocity v;hth which the displacement travels,

and X i1s the distance travelled,(see figure.).

A 113

ut

For a simple harmonic disturbance, S will be given by : -

S A~ A cos w(t - YQ )
where, if T is the period, w
At any given instant, the value of S for different values
of X will be given by
S A.cos (u.t.w. - )
A A.cus (constant - )

If Ais the wAiie-length of the disturbance then

S - &CO08 2°.( t - X )
T A

Differentiating this expression, we get ; -
_QB-__ ' 1113 A - 4”/<\_{7B

dx A



(1QU)

therefore d»S - d*S - 1.d"S

dx? dr 2 4R

or the more general expression for a plane wave travelling

in any direction is V73 4~ 1 d”Sl
dte”

where u is the phase velocity.

twio ha'oofuc

Suppose now vre consider the superposition of*waves. Then
the outline of the \A/*v:elreSujti ago fr-rpsuperposition

wOT«s will travel with a different velocity from the
phase velocity of the individual components of the group.

This velocity ve call the group velocity.

The group velocity with which the point b in the figure is
moving forward we will® for simplicity suppose, results
from the superposition of fvw plane waves, the amplitudes
of v/hich are eq.ual to A and the periods and wavelengths of
which differ by a small amount, only. If T and T’ are the
periods, thenjT -T™,( dT ) we suppose very small by compar-
ison with T itself,and similarily d,\ ( z (A- A'")) small
compared with

The displacement will be giben by the sum of the individual
components, namely,

S - A cos 2TT(t -x) + A cos 2If(t -x)
T X r'



0l)

101a)

2: 2A cos 2/° .4ps%_1,112f_4At

r

2A.C0S T cL/i\t - d . cos 2lfft - X
T IT

where v/e have written
R &
and 1 -JL - d/n etc:
T T AT/

The expression (101) may be written thus : -

2a. cos 2T - X\
7\)

which is an expression for a wave of phaseT]ib
T

> X

and amplitude 2a, where

2a "Acos irJd/ijAMM

The expression (10la) will itself have the form of a
wave and its outline will represent, at any instant, the

amplitude of the resultant of the superposition of the two

waves. If the outline ---—---- represent the position of the
at an instant t1 and --——-- represent it at a later instant
and suppose that and X" are the positions of a point at

these times.

then O'X* and O"X* will be given by substituting the

grou
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appropiate values for t and X in (101), and since OX* - O"Xg

and therefore the velocity with which the Tgavti moves forward,

V, will be Xp - X, - dfl)
fcr - A

This then is the group velocity

A specially interesting case of a group is one which,over
a limited region, and during a limited time, 1s identical, or
nearly so, with a plane harmonic v/ave of constant ajnplitude.

Even 1f this group possessed at a given instant® the form

y ¢ A cos 27T |t

exactly ever a wide hut limited spegtraf region, it would
obviously not rethin such a form; but would in the course of
time, spread out and behave physically as a superposition of
plane harmonic waves of slightly varying amplitude, frequency
and wavelength and travelling in ~.lightly different directions
which we might regard as contained v/ithin the limits of the
solid angle djl . In fact, we should, in order to make it satis-

ify the partial differential equation

be obliged tt represent it as such a superposition by Fourier's

theorem.
This group will travel almost li.e a rigid configuration

witbjthe velocity v, v;here



(101c)

while the individual harmonic waves of which it 1s constituted

will travel with the phase velocities approximately equal to

C A
T

in directions making small angles with the axis of Z.
Mathematical investigation of such a group by means of

Fourier’s-theorem, (see, L. de Broglie’s ” Wave Mechanics")

shows that
VANEVAN

is of the order o?unity, where represents the extreme
variation of the reptprocal of the wavelength, and A z
represents the linear range of the group along the z-axis.

The wav€-mechanical significance of the group 1is that
the particle ( electron or what not) travels with the velocity
y~d therefore always remains within the group, the probability
of its being in any given small volume being proportional to
the squate of the amplitude of the approximately harmonic wave.

If we multiply (101c) by h, we get

zp. Uz /V h
an equation which expresses the indeterminancy pointed out
by Heisenberg#

The year 1922 was that in which de Broglie first pub-
lished any suggestion that Full Radiation might be treated as
a sort of gas, made up of light quanta or photons. Photoelectric
phenomena, and associated things, had convinced him that light

must be off a corpuscuaar nature, and he tentatively introduced

the idea of a"quantum gas", neglecting altogether at first, the



wave side of light. His success in his first paper was such that
he developed his theory further, introducing the hypothesis that
the particles of the quantum gas were moving about in such a way
that their motions were governed by v/aves in some way.

Some years earlier, Davisson had noticed that when dealing witA
streams of electrons, he had obtained effects which he thought
to be due to some fault in his experimental method. Working in
association with Germer, he set out to re-obtain the effects and
he succeeded in demonstrating thep diffraction of electrons,
shov”*ing that\\waveshcould be associated with streams of moving
"particles", and g”ve indirect evidence that de Broglie’d idea,
that light was of a "particle" nature, was correct.

In his first paper, bcused on the assumptiongf that radia-
tion was a particle phenomena, de Broglie supposed that the
photons were all moving about in the uniform temperature enclos-
ure, each with a velocity c ( the velocity of light in empty
space). He supposed that all the photons were identical with
each other in every way, except as regards the period and energy
associated with each one. He adopted the relativistic formula,
that the energy, E, of each photmn, was E ~ m.c*-

"

where m is the supposed mass" of the photon.

The energy,E, hw wrote as E ~ h. ( where ) being the
IT) period.)

In his first paper, he neglected all the pnotons, the energy

of which was a higher integral multiple of (h)).) than \inity.
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The momentum of the phoyon, on this basis, is : -

p - hpy *~E
C C

Using these assumptions, and the canonical law of distribu-
tion, de Broglie managed to obtain an expression similar to
Wien”s expression for the distribution of energy in the spect-
rum. (See equation (61).)

He sums up his paper in the following words.

" By means of the quantum theory of light, coupled with
the laws of statistical mechanics, we can re-obtain all the
results of the thermodynamics of radiation, and even of the
Wien-Planck law of distribution. These results however, express'
ly assume that the formulae of relativity dynamics are used
forelight..."

In a subsequent paper, tvio years later, which de Broglie
called " A Tentative Theory of Light", he revised this
earlier paper, and pushed hid ideas still further. He obtained
Planck’s formula for the energy distribution in the spectrum
of a black-body radiator, on this important assumption -

" that each atom of velocity Be, may be considered as linked
with a group of waves, whose phase velocity u o/B,
whose frequency V is m&c . and whose group velocity, v Bo
(He supposes that the photons have not all the same velocity
¢, but some fraction, B, of ¢, where B varies for the
individual photon.)

Turning back to equation (64 ). let us reconsider the

expression for the number of vibrations in our enclosure,

which we thought of as baing filled with stationary vfaves.



103)

il

The diffei'ence between the earlier proceedure and the present
one being that we can no longer endow the waves with a
constant velocity, c, except in the limiting case of B 1.
The earlier part of the calculation will be identical with
that oy finding the number of waves in a unit cube of our
enclosure, the frequencies of which lie between y and gerd).

This number we found to be

j (see equ/n (36). )

In the present instante; however, we can no longer write
¢ for the velocity of the wave, but we must write u, the
phase velocity of the wave,( and u B.c, where Bvaries.)

Proceeding'as in the earlier instance, we differentiate the

expression for the number of vibrations in the unit cube, whose
frequencies rqnge form " fo zero, in order to get the number
in the saall range from (> +dV)to .

This will be given by

u

This time we must introduce a term which wes zero in
the previous case, v/
Differentiating the right hand side of 102)
njd)) - 4?7 SINdU - j) ~.4Tr./M\.d))

U’ u ap.

[t now remains to find an expression for/du)
(dVv )

We can do this by considering the relativistic equation for tk
energy



hV - mp.o" _ c2.{ 1 -
1 - °

Differentiating this : -

h.d)/ - mQ.c2, ag(® 1 - of) .20f.
u
(104) . 2
. C .du
ANCL - cf)
u2 ”
and since hy ”* mp.o2
(1 -
uﬂ)
It follows from (104) that ; -
p./*\ ¢S5 .(cr-ur) mul 1
c2
therefore Y AR
uldvl]] q2
and substituting in (103), we get
103 nd) A 47LA.u2 A 47iDA))
ur 0 2
u.ch
The energy of each photon is
E - h)7 - moc2Y
so that if the kinetic energyof a photon is
2
) then  mQC# + W E
so that EmgCn. (1 & a)
where a A\
moc?2

now 7y - m”cM t - b2) -%

whence B - Malia t ml
1 + a

du
u® )
%2
N 4TVAB.dV
3
c

where Y - (1 - B")

W
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and V L (1 fa)

h
dv. - M
h
and substmtliting from (109), (110) and (111) in (105)
n*d)j * m*crd 4 a)? Ja( tva).dW
o~ (1 4 a)h

- ilT. mocd+a)-*. Ja(2fa).dW

De Broglie, now in the papjier quoted, says . . ,
Every phase wave can carry with it, one, two, or more atoms,
so that according to the canonical law of distribution, the

number of these atoms whose energy i1s hy , will be proportional

CD

to n? o 1+a). Va(2f& dW.dx.dy.dz. A

. . . —nhyy
By summing this series ( 1.7, \ e kT
de Broglie finds that the radiant energy density is proportional

g
to oW S Mi-V &)
3
77" .,1
and the factor of proportianality he has already shown to be 1

Thus on the basis of these further assumptiore, he manager’

to arrive at a formulante Planck’s, for tne energy Irtribution

in the spectrum of a black-body.



Louis de Broglie’s efforts to represent Full Radiation
as a Photon Gas, mark the initiation of Wave Mechanics.
He vifas forced, as we have scen, to make use of certain
relativistic formulae, in particular, the well known
relationship between mass and energy. The assumption of

the relationship )
v.u c

of which he also made use, has a relativistic basis. He
came to the conclusion that light, an undulatory phenomenon ,
was constituted of particles, or something very like particles

"

and he suspected that electrons, a characteristically par-
ticle” phenomenon might be associated with waves, and with
each electron, as with each photon, a periodic phenomenon
of frequency J could be associated, so that the energy of an
electron would, like that of a photon, be hV. If this particle
phenomenon be represented in the case of an electron at rest,by
y 7~ A cos 2IT "t
it will become
i A cos 211 (- 127
when refered to axes travelling relatively to the
electron with the velocity (-vjt or if the electron is moving
relatively to the axes with a velocity v

The formula (116) may be written

y i A cos 2F /t’ - 2LL)
A u /

where §° n V.V

and u jn 0_2
v



A
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the velocity y, it is easy to show, happens to be the
group velocity of the waves, whose period is in the

neighbourhood of

have shown that the group velocity is equal to

A i ("

(117) ”
d/i

(A)

but, since h” or“h”is the energy E and

ANis the momentum p

It would seem that we can write the equation (117) as

118y vV oo- dE
dp

We can justify this substitution from the corpuscular
point of view in the following way.
The energy of a moving particle is E m*c Y
and the momentum, p is m™(Yv)

therefore, * A m .c2.dY
dp -5.

'9) - ch, a,i

Y.di f Y.dv

where V means ( 1 -
c

%
and thus, dY - %(l - Z )~ , 2(v )
C c?2

y). v«dv
c2

and therefore substituting for dY in (119)
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2)
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Y&T [ Y.av y21I/ _  1j

We can show that Hamilton's princijfil function,S» in

dynamics, i1s ectuivalent to the phase 1in a wave, in wave

propagation. S is given by
S ~y (2T -E)dt.
In the case of a photon, moving in the X direction only,
and for which we shall suppose the potential energy is constant
S - (px - Et)
where x is the positional coordinate.
For the phase of a wave, we had : -
0 - 2Tr (t - Xx)
T A
If we put 0 equal to, say |[iH
then, from (121)

uH - 2ir/t _ x\
'T A A

and by (100) [iIK -"P-Ftt "“p.x
therefore , comparing (122) and (123)
fip - - 20/A
yiE 21 # 21T/

If we now put - 2710 h

p
we get p  h/"

E .

B will be h/t - X\
\ "A) compare with (121)



and for the phase velocity, u, we shall have
u 2 E
P
Considering again the ex”ession for a plane wave

y n Acos 2IT(t - X))
I

We may write this as

U2. A cos TO ( h#t- h.x )
h T ZANA

Following de Broglie's idea that we may associate with
a particle, av/ave, wemay write (124) in the form

(125 ¥ 21 A cos £I[ ( Et - px)
h

where E is the energy of the particle, and p its momentum,
and E 2.1V and pc h/ *

The equation (123) is now the equation of the wave
associated with the moving particle of energy E and momentum p.

Bifferentiating the equation (125) twice, we get

d ¥ Jl A4TT. ~ Jf m- 41T
dx® u A
and N AT,
dt2 h¢
2
26) therefore d'W .d™N¥ - 1 u
dx” dt” dt2
where 2. 1
e?2

To solve this equation, let us apply Bernoulli's method.

Suppose y 2 UW

where U is a function of x only, and Wis a funcion of t only

Substituting in (126), ‘then, we get



Hz,)

W. d*u = j_ .u.
U

and therefore 1 . d"W 2 X«
W.1l dt D dx

The 17ft-hand-side of this equation is expressed in terms of

t only, and the right-hand-side in terms of xonly.
In order that they may he equal therefore,both sides must be
equal to a constant, say n

Then, . W N mooor 2 nu.W
W dth dtn

and a solution 1is

f/n.ut
- € Where C is some sonstant

i.e. /n.u 2 2'"M.)j

or n 2 ~43L/\2J%
U
but since n is also e-qual to j * AyU
¥ dx»
ib follows that A
A -7 A
Putting kim.(E-?)

where E is the energy of the particle, V its potential enengy,

and m its mass, we get therefore
dfu + 8'*tm.(E-Y).u A0

dx:

The equation (I27), when generalised for three spacial
co-ordinates, (x,y,andjp,, ), becomes

t §TT .m.(E-V) .U _ 0
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and is sometimes called the Amplitude Equation, since U
1s the amplitude in
? - UW
In order that U may he one-valued and vanish at co it
is necessary that E should have particular values, (Eigenwert)

These are the energy levels of the older Quantum Theory.

The develppment of Wave Mechanics is largely due to the
work of E. SchFoedinger, who expended the anology between
classical dynamics and geometrical optics, discovered in 1828,
by Hamilton. So that Schroedinger's dynamics may be described
as analogous to optics ( not merely geometrical optics).

Thdsc analogyes appear most clearly by comparing the principles
of Fermat and Maupertuis. The former determines the path of
a ray of light, or a photon, from a point A to another, B, by

B

where d” is an element of the optical path and u is the

phase velocity. In the variation, T, the frequency,i.e.

1S constant.

Maupertuis' principle, (the principle of least action),

for a single particle, has the form,

1/ p.dz 2. 0

and comparison with Fermat's principle brings out the analogy

between p and "



(129)

130)

151)

bn)
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Both principles fail under exactly analogous circumstancei
That of Fermat's fails when | is very great by compatison
with the dimensions of the lenses,apertures, etc: while
Maupertuis' principle fails vthen E and * are very small and
the essence of Wave Mechanics lies in the principle of amend-
ing classical dynamics in the same way as v amplify the

optival theory when the laws of geometrical optics fail.

We will now apply Schroedinger's equation,( equation
(1£8),~ to a Planck ascillator. This, we shall suppose, is
vibrating in one dimension only, and for this simple harmonic

osci&lator, the potential energy, V will be a function of the

displacement only, and will be equal to 2”\”‘VQ2 2
where £ is the displacement and is the proper mechanical
frequency. Equation (128) bedomes therefore,
Tt (5 - 2".m. ., ). U 2 0
Writing, A
&~ muE as a ; and 8" .m. 2TT. ,m as "

in eq,nation (129}, we get

d*U + (a - ). u”r o0
or dMU + (A - xM).U — 0
dSEz- A
where,from (130), A ~ a - 24
" h))

and where x 7~ qW
The solutions of the equation (131) are of the type known
as Eermite's orthogonal functions. The first of these function)

is exp(:*) 2
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Differentiating this, we get

au - -x.egp(-x.2) ; and dflJ - D.exp(-x*)
dx o diF ?

and therefore substituting in (13V)» A turns out to

have the value
1

The next of these functions of Hermite

Bfx.exp(-x")
2

gives OT 2 (-2X),exp(-x") f 2.exp(-x")
dx 2 2

and d*"U - (Ex* -6x) .exp(-x")
a? * A

and therefore A 2 i

The next function, (4x2 - 2).exp(-x2)
2

gives A A "

and so to.

In general, A will he (2y +1) (where n is any positive
integer)
and from (132), therefore,

E -  (2n +1).hl

2

17 ) n. (n + %) "b)
These are the " Bigenwerte) to which reference has already

been made.

we will now substitute this value for the "Eg" which we used
in dereving Planck's formula for the distribution of energy
in the spectrum of a black-hody.

We had,(see equations (89),etc: )
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1

where now, instead of giving 's' integral values, we
must put (n+t3¢) for s and give n integral values.

Hence vie get,

Xfg X 1 -
-APV
e “where p py
kT
(1 )
~/£P
_oe
1 - e,«P
therefor e, B 2 -1
o
For the average energy E x"Wp.hv.fg
- n.hy.fg 4
-kp *V -nn
- ® .hV.B/"n.e A %h)/
-kP
e ,hy.B. e P
P 4
1- ¢
—hIW— 4 %h)y ( substituting for
P
e - 1 B )
and therefore for E” we get
EA$TTL) k y JSUL
3 S

This formula is only different from Planck's original one

infte rhe —
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k1”
2

which 1s acclecl. on#

This will,1Lowever, not affect the distribution of the
energy in the spectrum of a black-body, since we shall not
be able to detect its presence, for it will affect the
radiatof and receiver alike. Moreover, if we consider
" differences of energylevels”, between two levels, this
" %h)9 " term will again not be detectable, as i1t will
disappear when differences are taken.

The presence of this temm in the expression for -
the energy, indicates that at the absolute gero of temperatu
the energy of the oscillator is not itself zero. That is t%)ra

say, when I 0° absolute, the energy will be

since the first term hV will have vanished.
eP -1



t04.
Matrix Mechanics#

Ve shall now consider the problem from a totally differ-
ent point of view, namely that of Heisenberg's Uncertainty
Principle, wusing for the purposes of calculation, certain
quantities, called matrices and we shall find that we arrive
at the same series of proper values (Elgenwerte) for the energy.

Heisenberg's principle affirms that it is impossible to
measure, simultaneously and with precision, the position and tJx
momentum of an elementary pedicle, sucft as an electron or photon
The more accuratel"” i1id the momettttm measured, the more uncertain
do we become of its exact position at that particular instant,
and vica versa# If We make the measurement of p, the mem”ntum,
and if ~ is the uncertainty in the value of p, that is, the
value of p lies between p and (p + dp) and similarily, if is
the uncertainty in the positional co-ordimate g, then

Heisenberg's principle requires that the product

(dp).(dq) shall be of thr order of h (Planck's
constant)

Heisenberg regarded p and q not as mere numbers, but as

mattiees. A matrix is a set of numbers, usually arranged in the

following way#
S.,

a3 a,, a,3a™ eee
##.

and the rules for multiplication, addition etc; are set out he”

The term a™" of a matrix, means the term accuring in the

n™" row and the column,
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If a and b are matrices,

a - b means x V
Addition. afb-0 " an — Cnm
M ultiplication, a.b 2 means
a”.bkm — @m
k

The following ardinarjr algebraical laws hold : -
a+b 8 + a; (afb) f o a ™ (b + ¢)
(a -(b).0 zz ae + be ; (a.b).c A a.(b.c)
But in general a.b is not equal to b.a.

A matrix in which all the terms are zero except those for

which n jz ® la called a diagonal matrix

a, 0 0 0 O..
0 a, 00 0.,
0 0 83,0 0"
0 0 0 a*rr0.*
0 0 0 0 a.,.

and a very spectal ease fif a diagonal matrix is that for which
S N, X) -, 733 - e e ® Y\ -
This is called a UNIT matrix, and has the special property
a.l 2 1 - a.
A differential function of a matrix

is ° °
A — % im

and d .(a.b) 2 a#b 4§ a.t
dt

fs not equal to a.b t>,a
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Suppose that isa matrix,

0.1 1,;Q, %

Q B o'

We are partiouiarily interested in the form of matrix

w ®m exp(2]n}it.-c )
Where a”* is a complex sjnpiltude, (on Bohr's theory

representing the transition probability from an energy level

' ' ' '

n' to a level 'm'.;j

It"ollows that

and hence V n 0

Differentiating (134), we geii

dqmm

dt

' E - 7a\ A\
and d' g-nm 4.11 )/.\] q,

The energy E of am oscillator, is also a matrix, a typical
constituent of v/hich is, let us suppose,

®nm - N )

E is a constant for these s*“tems which we are considering,

that 1is, Enm does not vary with the time, t, and thus the

factor in the expression for E
nm

exp(l]Ti.
h

must be zero.



to*/.
It follows therefore that must he zero, and as we have

seen, this is so when n z

E is therefore the diagonal matrix

1) 0

co o o
cgo o

0
0
D

S O FH*

Heisenberg fo-onded his mechanics on an assumption equivalent

to

Pnk 3an - Yhk Pkm X h. if m- n

2 # " m” n

we shall make use of thus condition for the ~Planck oscill.
ator * T"he equation of motion for such an oscillator is
m.q - Jig 2 0

v/here |1 2 4" A and J) is the freqeuncy in the ordinary
° © mechanical sense.

For q in equation (138), we must put the matrix whose typical

constituent 1is , and therefore substituting from equ/ns

(134),(133), & (13b), we get

and therefore, 2 X
o
Thus caxjanlj have the values +1* and
Shall we put - ,

The eqeiirgy equation for a simple harmonic vibrator is

+ %p.q* - E

In this system of mechanics, this amounts to
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Agm.2iTiyrqr. 2TH) A A . A 1 o n - A

Ve can simplify this by wtiting m— N , and since can only
have the values specified above, it follows that k can only ha»

two values, the simplest of which will be ( *-1) and(nfl),

we get ; -
o|fr. Mo (N -1 “*n-1,K Jo
l\ o.("n,n n-1,K ) (qn,ntl q](Lﬂ,n %1
+ 2H 'C*r,n-1 "n-1,n Aontl o ¥+ n)j
- E
nn
that E
nn
E
"k,n-T k-1 ,n * n+1,n) nn
Turning back uo equation (13/),
Ank* km " Ank'“km - h or 0
and substituting in this
Bnk— "*Anle — Ink
dt
we get
2"i#m,~ Aik *Anpk*Akm"* Mon'AAnk'Akm }  — h or 0
27
giving k the two values ( Jp-1 ) and (nf1l)
2"1*"((Hx,n.1tan,n-1 V1 om) " ("n,n+lk,n+l V 1 ,m)
— Jifi.m (*n-1 ,m *n,n-1 ~L1"m) " (“n+t,m”n,n|-1 ~nfl,m)] 2 2}"}Ti
or 0
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vjubstituting In this, m” n and remembering )) - - j/'k etc*
_ r n [

we get, putting in the value
M0 Wn,n TV i n* ~ **An,n+iVi,n AIAM'MTm
that 1s to say,

A\,n-iVi,n ~m "k,n+tVl,n * ~ e

and putting in the other values for n, (n-1 ),(n-%), etc:

'we get the series : -

_ - - -hi).
(qn,n-i Aol ,n) (qn,n—i-i qn+i ,n ) )
- - -hw
(qn-l ,n-2 n-2,n-1 ) (qn-l ,nqn,n-l ) 2
SV"
AS1-i,n-3S1-3,n-2 ~ ”~Si-i,n-1 Si1-1 ,n-2 ~ —;
1 _ rn O Ai 0 > _ _
S"' m

and adding these up, we get : -

- <Vn*oV,on 'o® "'O.-.I-IOI, > - .
8" . P " .m
0

Calling the smallest one zero, for simplicity, we get, if

we substitute these values in equation (I3y), with appropiate

' '

values for 'n',

nh'). + (n+1 ).h"» Z. Vi
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that 1is

Which i1s the same result as v/ie obtained by the aid of

Wave Mechanics#
We have already discussed the effect that this extra " ~#h)/ "

will have on the distribution formula, (see page 101.;

This agreement is no mere coincidence. It can be shown

that the basic equation

X JU_

p - - q ‘pa
e {”an nk © ki > Th

can be deduced from Wave Mechanics#



Part 5.

EXPERIMENTAL METHODS OF DETERIV.INING THE RADIATION CONSTANTS.

We have already obtained the following expression for the
relationship between the absolute temperature of the radia-

tion and the energy density,(or the intensity of radiation.

A a.l 4
™ CIT 4
I ~ ¢, T (see equation {yd).)

Suppose that we have two enclosures at temperatures T and
T», having very small orifices of area and aj, at a dist-

ance D apart.

(1) (2)
The amount of radiation coming from (1), in the directions

within the small solid angle ©~ , through the orifice a
12
in the unit time, will be

['.a. Jg

which, using the above equations, will be

O'.a.a’.T"

Similarity, the amount of radiation coming from the enclos-

ure (2), in the directions within the small solid angle a_t

D

though the orifice a”, will be cN,a,at. T"
D
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If the enclosure (1) is at a higher temperature than the enclos-

ure (2), then the eccess of radilLation received by (2) over that
lost to (1), will be
[.* A 4,
I » - f

[f we make a,a* and D all equal to unity, we see that
R, the excess of radiant energy leaving an enclosure at a
temperature T, through an ofifice of unit area, towards a
similar orifice of an enclosure at a temperature T», placed
unit distance away, over the energy received from the second
black-body by the first, will be ; -

R - T'A) 0 TA)ff
This excess of radiant energy received over that
radiated can be measured, and thus the constant ¢ or
can be found,

This " fourth-pover law" is easily demonstrated,(within
the limits of experimental error). It was in fact, as we know,
first discovered experimentally. But - the precise determin-
ation of the value of the constant oris not at all easy, as
a study of the range of the values obtained by.the various
investigators v/ould indicate. The measurement of this constant
has been undertaken by about a score of investigators, and the
range of the values given for C varies from
a - 5.30 (ergs.cms"“.sec“”.degrees™"”" )x to
o - 6.51 ”? " ” " "o

The former value was obta;Aned by Bauer and Moulin in 1979 #
Diic.
and the latter by Fery, in 1911.
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The différence between these two extreme values - about 20" -

seems to point to many sources of error to be overcome in the

détermination.

The earliest methods were, naturally, very rough,

and corrections now thought to be necessary were neglected.

For example, no correction was made for the absorption of the
radiation by the water-vapour mn by carbon di-oxide, and

the degree of perfection of the black-body was not at all good,
In the early determinations of Lebnebach and Christiansen,

" black-bodies' were used which were made of such things as
blackened plates, blackened balls of copper and glass, and

so forth.

In many of the earliest forms of apparatus, the radiators
were operated at tmmparatures too low to v”rarrant the neglect
of the effects of the shutters, etc: and to justify disregard-"
the loss of heat by conduction away from the receiver. 6n
the other hand, however, too high a temperature of the radiat-

"

or necessitates that the receiver shall not be sluggish" in
its response to the radiation, and although attempts were
were made to overcome this, the experiments using a radiator
at high temperatures were not a success as they were accom-

panied by too slow a response, and the receiver could not be "

properly calibrated.

Radiation from a material body, in the ordinary way,
has a more or lass determinate spectrum which is characterist-

ic of the material. The spectrum of radiation from an orifice,



on the other hand, is determined solely loy the temperature

of the walls of the enclosure, and it is entirely independent
of the natxtne of the material of the walls* It is therefore
the same for every material enclosure. The present-day black-
-body used in practise is a development of the early, simple
experiments of St.John, Draper, and Christiansen. Draper found
that the interior of a rifle barrel became lumineaoent when
heated to certain temperatures. Christiansen observed that the
scratches and holes on the surface of a heated metal box were
brighter than the plane surface, while St.John observed that
the selective emission of certain oxides disappeared when
these were heated in an enclosure.

From these and similar observations, grew the "Black-Body"
which is used in more modern times, in practice, for the
determination of the constants (T, etc :, which characterise
full radiation. Actually it was an invention of Wien and Lummer
in about 1855» with improvments added later by Coblentz.

A diagram of the black body of Vifien and Lummer is shown in
figure (1A). It consists essentially of a porcelain tube, with
a diaphram at one end. The tube is electrically heated, being
wound with platiaum ribbon through which an electric current
passes. Coblentz modified the instrument by having two more
porcelain tubes outside this one. The inner tube,(A), consists
of Marquardt porcelain, uniformly wound with platinum ribbon,
which 1s uniformly thick, but varies in v/idth from 10mm at the

ends, to 20 mm at the centre. Thus, when an eclectric current

passes through tne windings, there will be more heat developed



iiLSC N or Ul in?nvef "91/qOf 1°)S " [ y N'TS - t-vM M ft ~1
pKii/ae r.

C
a tOfr/Qtr/Cfi
«we TV
(A).
A 16 ppA&E 11
TU . ’7)\9\\«5-4’»~I‘J- h\i6 f
Tt<v.pt<rCu<l-t- blcteJt- 60" _

coin™ev Si-ivrf£4?- ( OoiHer"rz)

Byif

N kY @ a3

K,

|

57



in the navvoiv part of the windings, on account of the greater
resistance, than in the centre, and this will compensate thus,
the greater loss of heat at the edges. The tube outside (A),

(B in the figure,) is WounVleAt&lniformly with platimum ribbon,

but the windings are nearer together at the ends than in the
centre. By regulating the currents through these windings,the
enclosure can be maintained at a uniform temperature throughout,
as was experimentally demonstrated by Waidner and Burgess.

2

Black-body radiators of this type, develop a ”sag” at high
temperatures, and to overcome this, Coblentz introduced a small
wedge of porcelain to support the inner tube, when operating
the radiator at temperatures over 1200 degrees centigrade.
Further improvments were «wade by painting the inside walls
and front sides of the diaphram with a composition of chromium
and cobalt oxides. This becomes conducting at temperatures over
120070, so that the thermocouple had to enclosed in an insul-
ating porcelain tube, and the part immédiately ii*front ¢f the
diaphram painted lith the paint, to prevent ~direct radiation».
The question of deficiency in ™blackness” in the receiver
was discussed thoroughly by Wien and Lummer, who gave a method
for computing the correction for the opening in the receiver,
on the assumption that it is spherical and diffusely reflecting.
The amount of energy that can escape through the orifice, is

practically determined by the size of the orifice in comparison

with the size of the Enclosure. Coblentz, in his determination,

makes use of this.

The experimental determination of the constant, consists
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essentially in, either measuring the heat transferred from

one black body to another, both being at known temperatures,

or, in measuring the difference in the heat transferred when
the receiver is exposed to first one black-bady and them another
both at known temperatures. The radiator at the loiver temperat-
ure can be, and in fact, generally is, used as a shutter, w"hich
stops the radiation frcm the hot black-body reaching the former.
If the temperature of the shutter is lower than that of the
receiver, the latter radiates to the former, and consequently
it 1s important to have the receiver face of the shutter, a
large, (say v/ater-cooled) diaphram, which can be maintained at
constant temperature in spite of*radiation from the receiver.
At the back of this water-cooled face, is placed the shutter,
and behind that, the radiator. Thus arranged, the surrounding
conditions facing the receiver are not changed v/hen the shutter
is open or shut. The figure(b;)hows the shutter used by Coblentz
in his determination of O .

The water-cooled shield consists of a tank A, 2”cms in
diameter and 1,*cm thick, and a tank B which faced the receiver.
The water-cooled shutter,S, sonsisted of a thin metal box, of
dimentiods 3.5 by 3.5 by U.8 cms. A mercury thermometer was
placed at th to measure the temperature of the shutter, which
was the temperature of the water circulating 1in the shutter.
The side facing the radiometer was blackened v/ith a sperm candle
and the* “conical opening in the shutter formed a black-body, the

temperature of which remained constant throughout the experiment

as the temperature of the w”ater could easily be kept constant.
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The openings in B were defined by a series of holes in a brass
disc, with accurately cut knife edges.. The size of B could eas-
ily be changed by substiti“ng another disc at B.

The first serious attempt at measuring the radiation
constant, was made by Kurlbaum, in 1898. Since that time, about
a score of other experimenters habeAlRefﬁ\gde » serious » attempts.
Thh follovfing table shows a chronological list of the measure-
ments, but, in describing them, we shall divide them into
three gDUups, : -

( 1).Bolometric methods ( using blackened strips as receivers)
( 11) Thermometric " ( 7 woblack»receivers.)

(ii1) Substitutinn ”?

Throughout the following description, we

n

shall merely give the significant figirres»» for o', without
writing the power of ten which shpuld multiply it, and
writing the "units" every time.

For example,-' cl 5*735%

means,

d - 5.735* 10" ergs. cm“”.degrees”™.seO**



Observer Method experimental corrected value
value for cr
Kurlbaum  Bolometer 5.32 (2fo.correction ,Coblentz,
atmospheric abs.) 5

® Fery Fery pyrometer 6.30
IP Bauer and Thermoelectric 6.0 ( corr, experimenters 5.3

Moulin  recej.ver Further, for atmos.abs. 5.9
® Todd Thermal conduct- 5.48

1vity

10 Valintiner Bolometer 5.56 (2.59%* reflection at bolom.

surface ".AP
later, to 5.75

1 Fery and Thermoscope 6.51
Brecq
2 Mo Fery pyrometer 6.2
5.57 (.82% corr,by observers for
absorption””"too small)]
(2% by Bauer, 5-68.)
2 Shakespere Ratio of emiss- 5 67
ions
2Puccianti Bolometer 5 .#6
Thermoscope 60 -6.3

6 Westphall Ratio of emissions3+54

5.57 ( at higher temperatures)
3.7

6 Gerlack Bolometer 3.85 ( corrections by subsidiary

o experiments.)
0 Modified Angstrom 3 .B0
pydieliometer
3 Keene Thermoscope 5-89
5 Coblentz Mod: Angstrom 5-722 (I.29& for relection losses)
pyyhel: (5.70 - 5.75) 5TZ1

I? Kahanowicz " 5.61

15 N3 1 I 1 5.61

‘3 Kussmann I I 5-764

A Hoffmann  Ration of
5-795

emissions

Hoar( Radio balance 5.735



Hoare Radio balance 5 «735
Mendenhall Ratio of 3..79
emissions
p a:-
vir
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(i ) 30LOMETER METHODS.

The principle of the method is roughly the following.
Three hramches of a Wheatstone "bridge are composed of thick
manganin strips or wires, which do not change in resistance
in consequence of heating '"by an electric current which passes
through them, or as the current heating them is altered.
The fourth "branch of the bridge is made of thin strips of
platinum, the resistande of which is readily affected '"by
changes in the bridge currents. The bridge is carefully
balanced, and then this fourth bafxmch is exposed to radiation
the energy of v/hich it 1is required to measure. The change in
the resistance of this bolometer strip 1is noted, or simply
the galvamomeéter deflection is noted. The bolometer strip
is then shielded from the radiation and the brigge current
altered until the galvannmeter shows the same deflestion
as when the strip was exposed th the radiation. By measure-
ment of the current in this strip, the energy of the radiati%
can be computed. The difficulty of this method is that the
bolometer strip is mot a perfect absorber, and corrections
have to be made for this. These estimations are not at all
easy to make accurately, - in fact, in the earliest determin-
ations, they were what might be described as " rough guessesV

Kurlbaum”™ s measurement
Figure (1) shows the arrangement of his apparatus.

G and Cg are turn cylinders with openings at 0" and Og.

q 1is blackened, and C2is left unblackened.
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They are placed in a boiler in which the v;ater boils under
atmospheric pressure. Z and A are the inlets and outlets for
the steam to the boiler. Between the receiver and the source are
rows of blackened diaphrams, to prevent the radiation reflected
from the walls of the radiator from reaching”the receiver (the
bolometer strip.) B is a diaphram with acircular hole in it,
with sharp edges and the radius of vyhich is accurately known,
B is placed exactly in/front of the source,0,and the bolometer
strip placed in lone with these two. The diaphram 0 can be clos-
edjwith a shutter V which prevents the radiation from reaching
the strip. In his early experiments, Kurlbaum took no precaut-
ions to ensure that the temperature of the shutter was the same
as that of the bolometer strip, although he later remedied this.
By measuring the eiergy in the radiation (- by measuring
the current mn the bolometer strip required to produce the same
deflection - ) Kurlbaum obtained a value for the radiation
constant.

Sources of error in his measurement,
Kurlbaum himself admitW that the bolometer

strip was not a perfect absorber, and toovercome this diffi-

culty, he baackened the strip with such substances as lamp-
black and platimum black, and with a deposit of the latter over
the former. He admits of two further sources of error.

Fiftstly that the bolometer"s temperature may be different when
it 1s electrically headed from when it is heated by the

radiation. That is to say, the latter method of heating will

affect the nearest surface first and then the whole strip by
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conduction away from this surface, whereas, by the electrical
heating, the whole strip will be warmed more or less uniformly,
and thus, the electrical input may not be the same as the radia-
tion energy received, which causes the same change in the resis-
tance of the strip, Kurlbaum realised that ” the better the
blackening deposit, the worst the conduction capabilities of the

2

blackened surface, and he allowed a différente of about for
a temperature difference between the actual surface, and the
outer surface of the blackening.

Kurlbaum made, at first, no correstion for the lack of
blackness in the receiver and for absorption of the radiation
by the atmosphere. He arranged two bolometer strips, one behind
the other, as the figure shows, and in his earliest determination
merely blackened them with surface baackening. In a later
experiment, however,he made a further determination of the const-
ant in which he allowed for loss by reflection of about 2."%
from the surface of the bolometer strip. Later investigations
by Coblent7, who, using the blackest obtainable deposits, found *
that the reflecting power is about Zo for wavelengths up to
about 2”. A microscopic examination of the surfaces shuwed that
there were patches of bright platimum on even the blackest
obtainable surface.

The final average value of all his radiators and receivers

was gitren by Kurlbaum as ¢ - Jp.32. This was corrected later

to .



m.
Valintiner”s Determination.

Kurlbaum”s method was carried further by Yalintiner
some years later,(in 1909) He used essentially the same appar-
atus as Kurlbaum, but workeci to much higher temperatures, and
used much larger bolometer strips. He took his observations up
to temperatures of UOOMC. The essential difference, therefore,
in the methods 1s that of the heating of the full radiator. In
the "“igh temperature d”t"minations, he used the electrically-

heated black body, previously described. The value that he gave

for ¢I'was a - 5.56

On further considerations, he added corrections for reflection
from the bolometer, of 2.5, making c 2. 5.68. Allowing a further
correction for atmospheric absorption, the final value was given

as T D from 5.68 to 5 *75.

The third name associated v/ith this method of determining
cl, is that of GKRLACH. Although his method is not, strictly
speaking a bolometric one in exactly the same way that the
previously described ones were, we shall include it in this
group because, firstly, it is of a very similar nature,consist-
ing in the balancing of the change in resistance of a strip
against the change in resistance of a similar strip, caused by
a temperature change in it ; and secondly, because a description
of Gerlach”s work must necessarily be placed adjacent to that of
Kurlbaum and Valintiner, on account of the hhmerous communicat-

ions that were published by them, as to sources of error in

each others N work.
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G-erlach used, instead of a bolometer strip, a form of
Ai?strom P~ rJarliometere In the origitoal form of this apparatus
the receivers are two thin strips of manganin, to each of which
is attached one junction of the thermoelement, which is joined
through a galvanometers One of these strips 1s exposed to the
radiatior"while the other is heated with an electric current,
Eq.uality of temperature in the strips i1s indicated by no
current in the galvanometer.

Gerlach”s instrument consisted of only one mangamM
strip, at the back of which is placed a thermopile consisting
of fourty-five thermoelements,(joined through a galvanometer).
The pile i1s heated by the radiation from the strip. Gerlach used
so many elements in order to eléminate the effect of inequality
of the receiver# The receiver i1d blackened el”trolytically
with paatiJEum black and the manganin strip is heated electriLéally
to such a temperature that the effect on the pile is the same
as when it 1s heated with radiation from the black-hody. By
knowing the resistance of the strip and the electric current, the
electrical energy can be calculdted and hence the radiant energy
computed.

Gerlach had great difficulty in knowing exactly when he had
compensated the receiver with the electrical heating. He found
that covering the sides of the receiver with knife edged slits
had no effect on the final value, but that covering the ends of
the manganin wires to shield them from the radiation caused an

increase 1n the value of ¢éI' from 5.85 to 6.14, when the ends
were covered 1 more.
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He attributed this to the conduction of heat from the
receiver to the heavy copper electrodes# In pnactice, he
exposed the whole the length of the strip t6 the radiation,
claiming that the heat conducted from the ends of the strip
will be the same when it is electrically heated as when it 1is
heated by the radiation#

His work arroused considerable discussion among the
other experimenters and it was very vigorously attacked by
Valintiner and Kurlbaum# The outcome of these attacks was
that G-erlach went to a great deal of trouble to determine
independently the various correction factors, such as the effects
of absorption of the water vapour in the air, and the carbon
di-oxide, and the reflecting power of the various blacj;ening
materials, etc: and to eliminate the sources of error pointed
out to hiiji# Finally, he operated his apparatus in a bolometric
way, similar tofthe method used by Kublbaum, and he showed that
he obtained the same value for clas when he used the apparatus
in the other way#

The initial value given for & was 5*83» which was subsequent-

ly corrected, after many experiments, to 3 #80.

C.oblf£ntzls determination of the constant

The most important investigation of this type, up to
this time (13135- was made by iioblentz, after a careful study
of the work of the three previous investigators. He tried to
eliminate the bad points in their apparatus, and to embody the

good ones, and so th eliminate the sources of error#

Firstly, as we indicated in describing it, Coblentz



improved the black-body radiator of Wien and Lummer to make it
as”blaok” as possible. Secondly, he greatly improved the shutter
and thirdly, he tried to employ a perfectly black receiver.
Vi/ith regard to the radiator. He heated uniformly the inter-
ior ofer a range of 8 - 10 cms, although he used only a length
of 2.3 cms. The total srea of the enclosure was 37.6 sq.cms, and
that of the opening was 3*1 sq.cns. He assumed that the reflec-
ting power of the interior of the potunted receiver v/as 7fo and
the loss of energy of the receiver by diffuse reflection at
the orifice wWas .639". Using a painted karquardt porcelain
radiator, the coefficient of total radiation, 0¥ was decreased
by about I/o, and this demonstrates the importance of the

radiator
blackness” in the radéater.

n

question of

The employment of the water-cooled shutter was a new
feature, not previously employed, the former investigators hay
ing- given littii attention to this question. This feature we
have already described.

For the redéiver, 1t was decided to use a form of modified
Angstrom pyrheliometer, embodying further improvments not
tried out before. To provide better insulation and to reduce
the heat capacity of the manganin strip, the thermopile was
placed a short distance to the back of the receiver as shown
in the figures (3&4) in a way similar to that used by G-erlach.
The difference between trieir methods lay in the fact that in
Coblentz”s apparatus, the potential terminals were mounted

actually on the receiver R and at a sufficient distance from

its ends to avoid the difficulty encountered by Gerlach of the



conduction of heat to the electrodes# The potential wires
were from .003 - .023 in diameter and accurately defined

the central part of the receiver which v/as used for the meas
urement. By exposing the whole of the receiver to the radiation
in this way, the conduction losses from its ends do not enter
into the question. The actual effects of the terminals were
determined by using a third terminal P» and found to be neglig-
ible, viz about .3/0. This method mf finding the potential diff-
erence between the two terminals attached to the receiver seems
more obtain than finding the potentaal difference between two
heavy electrodes, as used by Gerlach,

Coblentz at first used the receiver in conjunction with a
hemispherical mirrar, placed injfront of the receiver, but after
some discussion as to whether this caused further "soufceg of
error when the receiver is electiically heated, and on deciding
that it would, he dropped this feature of the apparatus. Subse-
quently this mirror was used to determine the diffuse reflection

deposits *

from lamp-blackened surfaces and platimum black and
finally for determining the losses by reflection of some of the
receivers actually employed in the determinations. As a result
of these experiments, he was able to correct for the energy
losses fromjthe receiver-surface on account of its lack of black-
ness, to such a degree of accuracy, that had he actually used
a*black-body» he would have obtained the sanie value for a/

To test further the accuracy of the various corrections tiitf*

had been made for eliminating the losses by reflection, a series

of observations were made of one receiver. In this case the slits
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in front of the receiver and all other conditions remained,
unchanged. The only variation v/as the smoking of the platimum
receiver with a sperm candle after making the first set of
observations. The reflecting power of the platinum receiver,
blackened! with platimum black was taken as 1?", and with
lamp-black, as 1 . The respective determinations”™ for the loss-
es of energy by reflection were ~.814 and 5.822, differing bylfo.

Figure (/f) shows as assembled formjofthe apparatus. A addB
are water-cooled diaphrams, S the shutter, F the radiometer, and
B the telescoped tubes containing phosphorus pentoxide for drying
the tubes. The absorption by the intervening air was estimated
at .1%, which was confirmed by Gerlach.

The thermopile was connected tb a well-shielded galvanometer
which served as a null instrument for indicating the rise in
temperature, for the electrical and radiant heating.

The method of taking observations consisted in exposing the
receiver to the radiation, noting- the deflection of the galvano
meter and then heating the strip to {give the same deflection.

The electric power ifi the strip, was measured with a potentiomet-
er, which was also used for measuring the temperature of the
radiator. Coblentz experienced no difficulty in determining

when the electric and radiant heating were compensated.

The exact amount of electrical energy necessary to produce
the same defection of the galvanometer as the radiation was obt
tained by the ratio of the deflections. He followed the previous

investigators in reducing the data. The area of the receiver ex”

posed to the radiation, A and the areas of the diaphrams of the



12ff.

wated-oooled shuttergj must be known accurately. If this latter
is Aj, and B is the distance between these two surfaces, then

equating the electrical energy to the radiant energy, we get : -

E.I - 0-(T4_.14 ).A .A

3)2
w*here T and T are the temperatures of the radiator and receiver
respectively.

If the distance B is small compared with the diameters of the

orifices, a correction term must be applied to the equation,

namely : - A& AS( 1 -1

where a,b,alb} are the sides of the rectangular openings
in the diaphrams.

This latter correction can be reduced to

Av A»*(1 - 1.
4

Coblentgg: found that this second correction term was sufficiently
accurate, as 1t amounted to less than .2"#

He operated |%is receiver at temperatures of 8CO - 1000".
He used 10 different receivers, applying to them a correction
of I.2fo for losses by reflection. He gave cr as 5.722.

In this value there is no correction for the atmospheric
absorption. Allowing for this, the value for cris increased to
T - 5.7).

The method of determination id unsymmetrical in that, when
exposed to the heating, the heating is produced in the lamp-black
surface, while the electric current generates heat within the
receiver. Coblentz made a separate determination to find the

effect of this and he found that 1t was negligible.
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For any one receiver, the results agreed to within while
for the different receivers, the agreement was about .5 - 27,
The result seemed independant of the length and width of the

receiver, and of the slits used.

Kahanpwicz” s apparatus was essentially a form of modified
Angstrom pyrheliometer.

The receiver was placed in the middle of a s|3iterical mirror
with an opening at one side to admit the radiation. The correc-
tions for reflection are thus eliminated. The shutter is placed
close up to the receiver. If its temperature were different from
that of the water-cooled shutter, errors would occur, and so the
shutter 1s placed in between the diaphram and the radiator, to
avoid changes in the surroundings facing the radiator w'hen the
shutter 1s closed, or raised.

The temLeratures ranged 3rom 260 - 5)0 G. The distance
from the radiatoigthe teceiver was 55 cms. A series of 25 meas-
urements gave eras J and 11 of them gave 5.7. Later deter-

minations with higher temperatures gave 5-61. He made no correa

tion for the absorption of the intervening air, which is not

negligible for these temperatures. It appears necessary to make

a correction of 1.7 - 2~ for this source of error, and a total

correction of 1.7 - 27, which will bring o to the value ( 5.69 -
5.72.)

Puccianti employed tne opposite method from the usual one
in his determination of the constant. The weak point in his work

is the oompaftively large losses, due to convection and conductim
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The bolometer was constructed in the form of a black-body which
is kept at room temperatures, and the other black-body, instead
of being at a higher temperature #£ at a lower one,- that of
snow, liquid carbon dioxide or liquid air. He measured the power
necessary to maintain the former black-body at a constant temper-
ature, to compensate it for losses to the second black-body. He
had -two bolometer branches exactly alike, and one was exposed to
the radiation, whole the other was protected form At. Each of the
biack-bodies consisted of a copper vessel, made in the form of
a frustum of a cone, uniced at the boutom, as shown, (3-j and Bgin
the figure ). The length of B, and B was 12 cms and the maximum
internal diameters were 1 cms. The internal surface was blackened
with smoke and the external polished, and on it v/ere wound thin,
insulated wires. One of these wires was used as the bolometer
branch, while the other, made of manganin, formed the heating
resistance. The other two branches of the bridge were fArmed
of resistance coils. The two sensitive branches of the bridge
were placed in the evacuated vessel (G which was kept in a tank
ofwater. The receiver was a blackened glass bulb,Hi, immersed
in liquid air, and the bolometer was allowed ta radiate to this.
The constant K of the instrument, ( which depends on the dimensiorél
of tire apertures etc: ) was determined from the diameters and B*
4see fig.) A correction for the energy interchange between these
two, 1s necessary.

Puccianti assumed that the shutter and the bolometer were at

the temperature of the water bath. The resistance of the manganin

heating coil surrounding the black-body B* was its resistance



at the temperature of the water bath,T. In the course of the
test, Puccianti measured the compensating voltage,E, when the
receiver E;
branch Bg was exposed to the at the temperature T".
fie gave his final value for cas
T - 5.96.

The fault of the apparatus lies in the fact that it
should have been aonstruufeed so that both branches could have
been used as radiators. From the figure, it seems that the '
radiation from one branch falls on theother branch. Another
unoertaiiity id" the temperature of the bath, and also the method
of oper®ion of the shutter.It was suggested that Puccini should
test whether a balance was maintained when a heating current
was passed through both branches, vi/ithout either branch being
allowed to radiate to the receiver and that a heating coil
should be put inside the radiator tempora%y, tio determine the
energy input, asjcompared v/ith the energy required to sustainjthe
balance.

The device is unsymmetrical in that the heating coil is
not put on the proper place to operate mogt efficiently.
The sources of error indicated should give a too big a
value. Indeed, it 1is 4" higher than Coblentz”s value.
A recent determination ( in 1922) of this type was made by
FIJISBMM. fiis apparatus i1s shown in the figure.i
P is a water-cooled diaphram through which the radiation passes

to the receiver R, the temperature ff which can be determined

by the radiomicrometer, M. fie used four black-bodies, as radiat-

ors, (S.K.1 ,2,5,4, in the figure.) The smallest one was made of



copper and could be used up to temperatures of 50070, while the
other three were of the usual LummerZurlbaum type, heated in the
usual way by passing a current through platimum windings. Between
the radiator and the diaphram was a water-cooled trough, T maint-
ained at room temperature, the mouth of which could be closed with
a lid K. Ehen this lid is closed, Kussmann says, " it is equival-
ent to a small black-body at room temperature, and thus if the
receiver 1s also at room temperature, radiation from the lid will
not affect the receiver. The temperatures of the radiators could,
be measured with a thermoelement, th, and their temperatures could
be”ept constant over a long period of time. Round the lid were
placed a row of sheet projktters", not shown in the diagram, to
protect it from the radiation, from the surroundings. The distance
between the radiator and the diaphram was 54 cms.

The receiver was made of manganin or Constantin, and placed 1in
a vulcanite support of dimenlsions,( 10.6 x 5.8 x .5) The actual
receivers were blacl:ened in various ways. This table shows the

kinds of receivers employed.

Receiver Kind of Metal Length Breadth Thickness Method of blacking

1 Constantin 4.0250cm 2,9428cm 6 u " Berussung ”
2 ? 4U027 ft 2.9602 "u ” Crovaruss "
5 manganin  2.7559 &5.0690 5"
4 Constantin #0369 ft2.8867 ”
c I 2.9804 a 29156 » 7 ”

7  manganin 4.0555 fi5*0058 >~ 10 "

The strips had very small temperature coefficients, and
their edges were accurately defined and cut to suitable shapes,

being made exactly parallel to one another.

Kussmann hrated the strips by allowing radiation to fall on
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them from the black-hohy and cencentrated the radiation emitted
from the scrips onto the radiometer, hy means of the lens,L#
V/hen steady conditions were established, he noted the deflect-
ion tfff the radiometer, and then closed the shutter K. He heated,
the receiving strip in the same way as his predecessors had
done and so obtained a comparison between the electrical heat-
ing, and that by the radiation. The rest of his determination
is very similar to that of Goblentg and he made similar correct!
iohs for lack of blackness etc: ¢ The final value he gave for cr

was f 5.79%
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(ii)  THERI/iOMETRIC METHODS, DSIDG » BLACK. » RECEIVERS.
Feix evolved a method to eliminate the (Question of reflection
attthe surface of the receiver. His receiving thermojunction
was formed from a long conical-shaped metal receiver, blackened
on the inside. Outside was wound an insulated heating coil, of
known resistance, to calibrate the receiver. This was done, by
noting the temperature,( or galvanometer deflection”s) with
energy input into the heating cpml. The receiver id then exposed
to the radiation, at temperatures varying from 300 - 1200"C
and the galvanor®er deflections noted. His method was, however,
not accurate, and he obtained a large value for cr, namely
a jz 6.30

The work was carried on by EEB¥ and DRECO. Their apparatus is
show/i/in figure (7). They used two receivers of brass cones
of apertures of 30°, placed v/ithin a sphere of brass surmounted
by a glass tube of cajillary bore, v/hich would indicate a temper-
ature change as small as .003”"e Surrounding the outside was a c¢
coil of wire, through which an electric current passes, and the
energy input which caused the same rise in temperature as that
indicated when the receiver was exposed to the radiation,noted.
The mean value for o was o 6.31%

The individual determinations are consistent with one another
but not with the resulfei obtained by the previous investigators.
This seems to indicate that there is a systematic error running

throughout the determinations. Various suggestions have been raac"

to account for this,one being the unsymmetrical operation of

the receiver. It is calibrated with the heating coil in associa
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tion with the ythermometer and this can he warmed by conduction
as well as by radiation of energy. On the other hand, the
incoming radiation must be transformed byabsorption in the.con”f,
and reached the alcohol in the thermometer principally by
conduction. It was also suggested that the heating coil should
be placed within the receiver, and constructed so that very
little or none of the radiation entering the cone or the energy
radiated from yhe heating coil a:an escape through the opening
in the receiver. This could have been done by putting the
heating coil inside, and using a double cone as Puccianti did.
Later they made further determinations, using the radiation
from an electric furnace, and allowing it to fall on a platimum

n

strip. The radiation measurements were made by sighting" on
the front and rear surfaces with a Fery pyrometer at an angle
of incidence of 30°.

The mean value obtained for a was 0 — 6.2
Measurements on the posterior surface gave o as 3-57 which
is said to correspond to the anterior surface i1f this 1is plane.
Correcting this value by gives c 3-68, but the experimenters
themselves only allov*ed.82 - .84"6 for losses by reflection,
which seems very low considering the values obtained later by
Coblentz. Attention was called to the point by Bauer, who
estimated that their value must lie between 3.1 & 3.8.
The value given by Fery and Drecq themselves was

NIl 6.2

which, v/hen corrected by for reflection, gives

- 3.68.



Bauer and Moulin used a similar method tb that of Fery and Drecg.

hut to overcome the difficulty of calibration, they sighted
themr receiver on a platimum strip, heated to different temper-
atxtnes by electric currents. To determine the radiation falling
on the receiver, it was necessary to eliminate the errors
caused by the conduction and convection losses from th”/strip,
and so they hvaded it in vacuo, paving calibrated the instrument
they sighted onja black body, heated to different temper-tures
and noted the galvanimeter deflections. Firstly, they got

' - 6.0

bljL$ the” corrected this to

This correction of 12” seems to be rather large. They made
no correction for atmospheric absorption, which v/ould increase
their value to

O ~ 3% - 37
Puccianti continued his studies of the radiation constant
and gave the following method gor the determination of 6
wherby the temperature changes are measured by a toluene
thermometer bulb, made in the form of a hollow cone that is allo-
to radiate to a black-body receiver at the temper®ature of li/glel?bd
the thermometer

air. The heat to compensate the loss of energy by”z'0f1jg01”0h/was
measured by the application of an electric current. The apparat-
us is not differential, and so the bath must be kept at exactly

the same temperature. The response tb the radiation was sluggish

The criticisms that were earlier applied to the Fery and Drecq

experiftabt may be applied here alse. In this case, however, the



compensating heating is applied by heating a coil which is
in cone¢act with liq.uid air on the v/all opposite tb that on
which the incoming radiation impinges. In this the receiver
is unsymmetrical and more symmetriaal heat interchanges could
have been obtained by having the coil within the receiver, if
care 1s taken that none of the heat escapes through the open-
ing. The way that the apparatus 1is used provides ample
opportunity for loss of energy, so that in the compensating,
the tendancy would be to give too high a value for <
Puccianti himself considered that the precision of the
instrument was as high as that of the bolometer. His values
rahge form t.0O0 - 6.3» and the average O is

(f 6.13.

All the values obtained by this method seem to be
higher tham,those obtained b the bolometer method, all being
in the region of tt.O whereas the bolometer way gave about 3.7.
and therefore, 1in 1913, KEEBE undertook a measurement of this
kind, with an improved form of apparatus. =

His suurce 6f radiation was an electric furnace which could
be used up to temperatures of 1000°. For receiver, he used a
hollow spherical, double-walled thermometer bulb, provided with
a small aperture to admit the radiation, (see figure (9).)

The thbcmometer was filled with an&line. Variations in the room
temperature were eliminated by using two tc¢uarmometere differ-

entially. The radiant energy id admitted yo one of them,and

the difference in the levels indicates the energy input
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In this apparatus, the calibration *as done by having the
heating coil vvithin the thermometer bulb. The bore of the
aayilijary tube was such that a iléssz of imm division, indicated
a temperature difference of .O0OCAMC.

Keene found that he had to make a correction for the energy
interchange between the two radiating coaxial circular openings,
for which he found the approximate formula which is (brdmnarily
used for corrections, was not accurate enough.

Sources of error in Keends measurement. As the radiator and
receiver are fairly close together, and the time for attaining
eg uilibrium rather long, there is a possibility of diffusion of
hot gases into the receiver, when the shutter is raised to admit
the radiation. It was suggested that a determination should
have been made with the oopening closed to prevent the possible
escape of hot gases while calibrating the device, and to see if
th this case, it would have req,uired less power In the heating
device.

The value obtaihéd for o was
5.89

which agrees fairly well with that obtained by Gerlach, bolomet-

ricaily, of J.8
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(iii) IEDIRECT and 3UB3TITUTIOE kETEODU.

Ve come, now th the third group of methods for }EetermijuA,V
the radiation consuant, by experiments wherein, instead, of dir-
ectly attempting to measure the heat radiated from one black-body
to another, the heat is compared with emiasivities under differ-
conditions and the emassion for a black-body estimated. ent

The earliest experimenter in this group was SHAXEgPERE in
1912. His value for (7was obtained on the principle that a bédy
loses heat, when suspended in the air, by three methods, namely
conduction, convection and radiation. If the lfosses observed
in tv/o instances, the only difference being the?tAt&e emissivities
of the two surfaces, then, as the losses by conduction and con-
vection are to remain the same, the ratio of the losses will be
as the ratio of the emissivities .If therefore, these two sur-
faces be exposed in turn, at the temperature of boiling v\rater,
to the face of a radiomicrometer, at room temperature, we shall
get the emissivities of the two surfaces!

Shakespere had a plate of meiit with a silvered surface
heated electrically to a temperature of 100O"C and close to it
another plate, blackened with soot, keyt cool with water. Betwe”
the two plates was air at atmospheric pressure. The energy input
required to keep the plate at 1G0°, was measured with a radio-
meter. He then compared the emissivity of the soot-blackened
layer with that of a blacktbody at 100" and was thus able to

calculate a value for <§ which he gave as

d SenT e
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At

Todd”s experiments on the thermal conductivity of gases, he

was able, as a subsidiary experiment, able to make a determin-

ation of the radiation constant. He enclosed a thin layer of/feiir

between two horizontal plates, maintained at different tempera-

tures

The colder plate receives heat by radiation, and by con-

duction thruugh the air from the hotter plate, which is placed

above

it. The plates are cut off in comitiUnication from the sur-

rounding air and convettior*urrents were eliminated by having

the I"'wo plates close together. He determined the energy lost,

with different distanc.es between the plates, x, noting -the dif-

feren

plate

t

quantities of heat,Q, passing from the upper to the lower

The values of x and Q were graphed and the horizontal

asymptote to the rectangular“drav/n, to give the value R of the

radaation. The energy input was determined, and by comparing

the emissivity of the plate v/ith that of a black-body at the

same temperature, the value for ¢ could be found.

The sources of error in this determination are chiefly in

the bad conductivity of the layer of soot.

Todd gave as his value of cr,

cr 5.48.

Observations of Westphall.

Wesiphall0 compeared the emissivity of a black-body

with that of a cylindrical copper block, when the latter was

firstly polished and secondly, blackened on the surface.

AThe figure”"shaws the arrangement of the apparatus. The black

body

18

contained within the cylinder and the cylinder could be

electrical”/heatea. To reduce energy losses, the who" e war
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suspended in a glass vessel v/hich could be exhausted. The cylin-
der was first highly polished to give a low emmlsivity, Ei and
then blackened to give high emissivity Eg, the end surfaces
remaining undhanged. The losses by conduction and convection are
therefore the same throughout the experiment a# the difference

of energy ipput was therefore the loss by emission.

If the temperature,!, of the glass flask is kept constant
throughout the experiment, and the blackened cylinder heated
electrically to T', then the energy ipput req.uiredtomaintain
the copper at constant temperature,T', is

- Od.Er ( I"*'-1") f £(T,T’)
where O is the area of the surface of thecylinder,and f(T,T")
is unknown,.being the lass by conduction and convection, Wis
the energy '11':1'1put

Similarily, when the cylinder is polished,

4 4
- 0,5E] (T: ~5 )t f(T,T)

and therefore O -

OCEi -Eg ).( T'* - T»)
The value given by Westphall for <J, over a range of temperature
350° - 425? was a - 5.54

Later he extended his work to higher temperatures and gave

- 5.57.

After still further dtferminations, he got

a - 5.7

Gerlach criticised the work on the grounds that the lajer of soot

tad not the oa«a temperature an the .etal eurfao, on .hloh it .as
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deposited, which would give too low a value for the radiation
constant# All three attempts by this ” indirect” method have
given values which are very much lower than those by the
thermometric methods, and a more recent attempt by this method
of Westphall, was made in 1923, by Hoffmann. The arrangement
of his apparatus was essentially the same as that of Vi/estphall
( see figure for Wesyphall®s apparatus)

Hoffmann used a massive copper block, cylindrical in
shape and with a spiral grove running round it, in which he
wound the heating coil. This was eledtrically insulated from
the cppperblack itself, and it% resistance was of the order of
11 ohms.Over the cylindrical block was placed an accurately
fitting copper tube, fixed at the cormer by a metal screw.
A fine longtitudinal hole bored into this tube, admitted the
thermoelements into the tube. These were made of manganin-con-
stantin, and arranged in this way, were very near to the surface
of the mantel tube. The whole radiating body was hung inside a
glass flask, the walls it w"hich were blackened inside with a
special preparation lamp-black. Care was taken to hang it in
the centre of the flask, so that it could always be replaced in
the same position, and so that the same external conditions
would hold for when the outside was polished as for when it was
blackened. The flask was evacuated to what was found by trial,
to be the optimum pressure,- .Imm of mercury.

Hoffmann took special precautions to eliminate the error

which might arise from the difference in the temperature between



the metal and the radiating surface. He pointéd out that a
difference of 1° would affedt the result by as much as 1#
and on making measurements on these temperature differences,
he found that they might be as much as .4## He put the flask
in ice, and the energy measurements were carried out exactly
similarily to Westphall*s measurements, by estimating

the energy input into the heating wire, and measuring the
temperature with the thermoelements. The following is a list

of his results for the various temperatures of the radiator.

temp?G 0) temp.°C cr temp.°G 0}

90.0 5.78 140.95 5.72 166.5 5.79
915.4 5.75 150.0 5.80 181 .5 5.80
100.4 5.74 150.85 5.78 191 .7 5.78
106.8 5.74 154.6 5.72 200.5 5.74
119.0 5.78 164.25 5.79 206.2 5.74'
1°2.9 AT5 170 .1 575 216.6 5.78
115.4 5.78 174.7 5.80 217.5 5.78
137.65 5.76 18).7 5.80 195.7 5.78

He made the following corrections.
Firstly, since there is a layer of soot of about 60]i, this will
radiate sideways. This, he estimates will affect the result by
4 .2fo
Secondly, for thejtemperature difference between the metal and
surface, he allowed .02”, and between the outside of the glass
flask and the inside, .079\
A further correction of was allowed for the inside of the
flask not being a* perfect absorber.

Altogether, he allowed a correction of 4.0*"*, giving 6 the
value ".764.

The accuracy of his determination, he says is - for he
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maintains that the maximum error in each of the energy determin-
ations is .2fo; the temperature is at the most in error by ,2fo,
affecting the result by the errors in the wattmeters is
also not more tnan .2”; hence, he calculates the maximum error
at .9”". He writes his fanal value as

(5.7641 .052.)
Twx5 very recent determinations have been made by HQARE]J? using
a CALLEHPAR RADIO BALAEfCE. In this apparatus, the heating effect
caused by the passing of an electric current through the junction
of two dissimilar metals, and the corresponding cooling*effect
and the other junction, i1s balanced by the heating effect of
the radiation which is allowed to fall on the cooled jui“ion,
and to heat it to the same temperature as the other junction.
Eq,uality in the temperature of the two Junctions id indicated
by no curnieht in a galvanometer which is connected to the two
junctions, in such a way that the Peltier current cannot pass
through it.

The arrangement of a radio balance in shown in figure (/0).
Radiation passes through the circular aperture and is caught in
the cup, which is about lcm in length and Jmm in diameter. The
Peltier couple, of iron and Constantin, is soldered to the bottom
of the cup, which id mounted on a tubular pile consisting of
twelve elements. These are insulated from electrical contact
with the cup, by very thin paper and shellac as it is reg”uired
to make good thermal contact without making electrical contact.

The lower junction of the pile is screwed into a thick copper

of a hoblow cylinder of 5 x 5 sq..cms internal diameter.
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The current tlirough this Peltier couple is adjusted until
the galvanometer, in series with the thermopiles, shows no
deflection; then the cups are interchanged# This eliminated the
Joule effect of the current# In practice, there is alvwtaysa aligtt
current in interchanging the cupsbut this can be allowed for
by shielding both cups from radiation”jfi and noting the deflection
on interchanging a known current through the cups. It was found
in experiments to determine the ” blackness®” of the cups as
receivers, that the cups, when in the highly polished state in
which they came from the spinner, gave an absorbing power of
about 94”, as compared with about3Cfo for a similar metal disc.
This latter, when blackened, can be made to absorb up to 96",
and assuming therefore thfit blackening the inside of the cups
would increase the absorbing power of the cups correspondingly,
it seems that they may be regarded as practically f*black”.

To calibrate the balance, it 1s necessry to find the value of
the Peltier coefficient under conditions similar to those under
which the measurement is made. Hoare made, very carefully, two
resistance coils, equal to nine ohms and accurate to one part in
a thousand. Tl"se were fitted into the cups, a little oil being
intrmduced to better the thermal contact. He placed the top of
the coil at least 2 nmm below the top of the cup, and,,were arranged,
so that the heating current passed through one coil at a time, but
through both leads, so that the compensating effect due to the
leads was eliminated. The heating effect of the Peltier coeffic-
ient for both cups was balanced against the heating effect of the

coils and Hoare found the relation for the variation in the tern-
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erature of the surroundings, for temperatures up to

It ~ 1700 +0.066,(t - 20"

where t°C 1s the temperature of the surroundin S, and P the coef.
p g
ficie”

In his first determination, Hoare used electrical means of
heating as his source of radiation, (see figure ()
IThe measurements of the diameters of the apertures were to
.0001 cm, and he took the mean of readings.

In his suhse¢Luent determination, he arranged his
receiver a little differently, having the copper block enclosed
in a large aluminium box. He used a steam heater for this deter-
mination, but the novel part of the apparatus being the receiver
we will describe this in detail.

The figure (/% 8hov"% the arrangement of the receiver,
Al. 1s an aluminium cylinder of 7.2cm diameter and 3 .2cm long.
The ends of it are cut in steps, so that by means of vurcanite
rings screwed into the aluminium, the brasn cylindeical ring, A,
3.3cm in diameter is kept in position in the aluminium. C is a
copper cylinder, .Jem thick and closed with another copper ring
P, to which the thermopile mountings are brought, and v/hich
supports the copper receiving cups. Atthe other end of this
cylinder is another plate of copper,E, with conical holes,black-
ened on the inside. Behind these two holes are screwed discs
of stainless steel with bevelled apertures of about 2mm diameters
arranged exactly in front of the cups. The edges of the e are
accurately cut, and foil put over themto give a final “sharpness

F is a brass tube let into the apparatus to take a thermometer
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It is very important that the temperature of the cups is taken
right in the middle of the apparatus.

The tvm holes in front of the cups admit the radiation to the
cups, and the radiation can he screened from either cup hy a
double shutter,G. The separation of the shutter and the cups is
exae”rated in the figure. This double shutter is made of two
pieces of brass, separated from one anuther by a piece of fibre.
The radiation passes through the conical holes in the shutter,
to either cup. The tinjnee screens 1in front of the apparatus shield
it from stray radiation, and also give »direction” to the radia-
tion coming in. The thermopiles were made of copper-constantin
to prevent rust. The receiver was built to have a veiy large
space between the cups themselves and also betweem them and the
brass cylinder. It was found that arranged in this way, the
temperatures of the surroundings were maintained at very
constant temperatures.

A fter a series of measurements, Hoare gave

Mendenhall attempted to measure cr, bycomparing the
emissivity from an enclosure with an orifice, when this is
closed with when it is ipen, that is to say, comparing the
emission from the enclosure whenlthis 1s emitting as a black-body

with when the enclosure is losing heat only by emission fromthe

w%lls ( the conduction and convection effects remaining thesame

in both cases.)

The author himself thinks that this method is capable of

gg%at experimental accuracy.
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In the figure 1,(3)the experimental arrangement can be seen.

The radiator is made of copper, in three parts. The inner wall

is .Ilmm thick and blackened on the inside. It the top is a
circular aperture with a gold rim. The otter surface is entirely
covered with wire, the two ends of which are at the closed end
of the radiator. They are coated with shellac to insulate them
from the outer vessel. The part of the radiator round the apertuie
is made frim soliLd gold. The inside edges are carefully bevelled
while the putside ones are ground and polished to almost optical
flatness.

Eickel wire was used as the resistance thermometer, because of
its large temperature coefficient, and because it made a reliable
re distance thermometer. The outer surface of the radiator was
made of polished gold, to reduce the external heat losses#

The lid was, first of all, made of copper and gold paated, but,
later 1t was made of solid gold, because the emissivity of solid
gold could be reproduced with greater accuiKEcy, and it made better
contact with the rim of the radiator# The edge of the lid was grou
and polished to give good contact. The inner surface was blaaken(::lz(i1
with lamp4black and shellac# The receiver could be evacuated to
10"*mm of mercury. The lid was suspended with a silk thread and
could be raised or lowered by external application of a lever.

The receiver and bath were both brass vessels, blackened internal”

with lamp-black and shellac# The temperature of the bath could
be kept constant, with ice, or by means of a thermostat.

The e-qg-uation for (I 1is

- jfi - -T; ) f



ip-

where - equilibrium current with the 1lid open

A " ” 7 shut
R resistance of the radiator coils at the temperature
_ TA°C, 1n ohms
— aiinauction loss by thermocouple when used to operate
%4 Temperature of receiver lid,

2

Z radiator
”? lid

zi emissivity of gold

a area of aperture,
AAd " ” exposed surface of lid
The low emissivity of the external gold surffiee has two advan-
tages,(a) that the radiation through the aperture is relatively
large -from one third to one half of the totE& loss which takes
place when the aperture is closed,(b), that the term depending
on 0% is only small so that it need not be known foh high degree
of accuracy.

Measurements of the resistance coils were made with a
Wheatstone?s bridge,( 10 : 1).

Current measurements were made with a Taisley potentio-
meter, measuring the voltage drop over a 10 ohm coil inserted
in series vi/ith the* radiator.

To determine 6". It was at first intended to measure o from
the area of the closed radiator and the energy ipput required to
maintain equilibrium. This Method 1s subject to unavoidable
errors, due to the crevices where the two parts of the outer
join, and to the variable contact between the outer sheil and
the coil. Also the effect of plating the gold on copper causes
some variation. Therefore a solid gold lid was used, gmm in
diameter, and 1.)mm thick. It was made in the ¥yarts, with silk
enamel nickel coil stuck in between the two parts with shellac.
All the cracks were carefully sealed. With this arrangement, a
very constant value for was got, namely

0~ - 1.496; and 2.372 x 10~"" watts .cm*** . deg"".It was found that

the concordance between these two values was sufficient.

A different emissivit,/ was obtained by using a receiver and lid



v;hich v/as platinum plated, in v;hich case the emissivity of the
lid was found fron the total area of the lid, and the total
emissivity of the closed radiator.

The aperture had to be measured accurately. Its value ranged
from.7 to 1,3mm in diameter. The edges were extremely sharp,
being formed by the intersection of cohical and external flat
surfaces, this latter being ground and polished.

The degree of accuracy of the measurement was

temperature to within .03°C
resistance greater than 1 pawt in 3000
current " " 1 part in 10,000.

It was found that any one radiator would give very con-
sistant results.

The following are the chief sources of error in the measurement
Firstly, of course that the radiator is not a perfectly black-body
If E is the emissive power,R the reflecting power of a black-body
aperture, then, A 1
and R =z .ds f R7y/e'.ds f .
where Rg is the intrinsic reflecting power of the inner surface,
e: 1s the percentage of the radiation striking an element which,
reflected more than once, according to Lambeth»s law, escapes the
aperture, e” is the percentage after two reflectiohs, etc;

Since R can be made quite small, the higher powers are practic-
ally negligible. In practice, the integration is replaced by
summation, which is done graphically. Mendenhall allowed R z. .0011
and therefore E z. .99"9.

Correction also had to be made for the fact that the receiver

was not a perfectlyjblack-body. For this, he put A z <999%



Thirdly there is the temperature drop between the coil and
the radiating surface, through the silk insulation of the coil

and the blackening of the walls, to be corrected.

A fter allowing for all these corrections, the value

given for the constant was

(T - 3.79



4 OF THE VALUES OBTAILEL FOR THE CQFSTAHT T
was published recently by Hoare 1in a paper in which he expresses
his views on the relative merits of the various values obtained
experimentally for the radiation constant,(the Stefan-Boltzmann
constant,) O.

He says that the variuus investigators have made attempts to
improve the constancy for the value, by application of correction”
( as we have seen in the foregoing account.) Hoare maintains that
these proceedings are ” dangerous", for not only, he ssys, are
the published details usually insufficient for such a correction
to be applied v/ith certain]:y, but alec, there will be , quite
uhconscieusly, a bias in favour of a correction which will bring
the results of the other investigators in substantial agreement
with one» s own »', .

He then proceeds to give » weights»» to the values obtained
by the previous workers, and he allots equal weights under the

following headings

(1).Design ofRadiator
» » Receiver
(3).Efficiency of receiving apparatus,(i.e. whether good or poor
absorber, abd method of applying correction).
(4).Method ofoperatmon of water-cooled shutters
(3). » » » » receiver,(symmetrical or unsymmetrical)
(6).Accuracy of susbidiary measurements,(e.g.lengths, areas, elect-
rical measurements ,etc ;)
(7). Range of conditions taken
(8). Flamber of results and the individual variation.

Vi/ithout details of the actual calculation, he gives the foll-
owing table for the results and the " weights»' as he has calculate

n

them. The maximum weight "for any determin tion is A4

Phil.hag. 14.445. 1952.
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Kurlbaum 5%jr5 i
Fery 6.50
Bauer & Moulin 5 ;5
n o 1 '
5.7 1
Todd 5.45 A
Valintiner 5.58 1
Fery & Drecq.
R R A8 v
Shakespere 5 67 )
Puccianti 5.76 1
I 6.15 |
Gerlach 5.8®) 2
5.80J
Westpl{lall 5.541
5 .57/ 2
Keene 5. 89 1
Coblentg 5.722
Kahrov/icz 5.611
I 2
5.61/
Hoffmann 5.764 2
Kussmann 5.795 )
Mendenhall 5.79 1
Hoare 5.7551 13n
5.755/

Weighted mea.-n z: 5*74270.27

Birge” puts the most probable value as
A- 5*T735 t *011
Hoare calculates the value for Planck™ s constant, h from
the value for o z.(5 *942 f *019)> and the generally accepted
values for the constants, "k" and "c¢", and obtains
h - (6.5561.011 ) X

The following table shows the vaines calculated by Birge ;

rjef. Birge, rev.mod. phys. 1.1. 1929.
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Method of calcuaating. value of h

Rydberg» s constant 6.297 - .011
[onisation potentials 6.560 ~ .015
X-rays 6.550 1 .0 09
Planck's radiation constant c¢c° 6.598 - .0 15
Photoelectric 6.545 - .010

[t. is interesting to notice that the limiting
values of cr, given by Birge, by calculation from other
constants,, namely

d - 5746 to O " 5.724
are completely contained within the limits of the values

given by Hoare, from experimental values,

a - 5.761 to oa - 5.723

If Birges limits of error are correct, them this
vmuld seem to indicate that the correct value lies between

az. 5%746 and cr 5*724.



