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ABSTRACT

In this thesis we deal with the theory of unitary p-dilations 
of bounded operators on a Hilbert space H, as developed by Sz.Nagy 
and FoiaSj and a related functional on B(H), the algebra of bounded 
linear operators on H.

In the first Chapter we consider the classes , p>0, of 
operators possessing a unitary p-dilation, and obtain their basic 
properties , using an approach which adapts itself to a unified 
treatment.Next in Chapter 2, we examine the behaviour of the sequence 
of powers of an element T of , p arbitrary and positive, and we 
show that the sequence

{ I t"x I 1
converges to a non-negative limit, less than or equal to | 

for all X in H.

This is a generalization of a result by M.J.Crabb in which he considers 
the special case p=2. We then give an intrinsic characterization of 
the elements x in H, for which

. lim |t\|| = p2||x|| , 
and obtain various results concerning the structure of operators

n=l

which satisfy
t\||= pllx

for some Ne iH
For every p>0, the classes , turn out to be balanced, absorbing sets 

of operators which contain the zero operator, and hence a generalized 
Minkowski functional may be unambiguously defined on them by



w (T) = inf {a > 0: —T } •
P ÇX p

This functional, usually referred to in the literature as the Holbrook 
radius of T, plays a very important role in the study of unitary 
p-dilations, since the elements T of are characterized by

Wp(T)<l.
The basic properties of the Holbrook radius for a bounded operator are 
studied in Chapter 3. A number of new results concerning the Holbrook 
radius of nilpotent operators of arbitrary index greater than 2 are 
obtained which enable us to have a clearer view of the general structure 
of the classes, in a unified framework.



ORIGINAL RESULTS

(i) Theorem 1.1. The equivalence of (iii) and (iy) is not 

in print.
(ii) Theorem 1.5. Part (iv) is new.
(iii) Corollary 1.6 is new.
(iv) Theorem 2.1. Most of this result is contained in [s] 

and [27J. The proof given is new and was prepared 
without knowledge of the work of Eckstein and Mlak.

(v) Corollary 2.2. The case p = 2 is known.
(vi) Corollary 2.4 is new.
(vii) Corollary 2.5. New proof.
(viii) Corollary 2.6 is new.
(ix) Theorem 2.7 is new.
(x) Corollary 2.9 is new.
(xi) Theorem 2.10 is new.
(xii) Theorem 3.1. New proof.
(xiii) Remark I on p.82 is new
(xiv) The proof of Lemma 1.3 given on p,83 is new.
(xv) Theorems 3.4 and its generalization Theorem 3.5 are both 

new.
(xvi) Proposition 3.6 is new.
(xvii) Theorem 3.7 is new.
(xviii) The computational results in the Appendix are all new.
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NOTATION ' AND - "TERMINOLOGY

Throughout this thesis, the letters JH. , W  , etc, will stand 
for infinite dimensional separable complex Hilbert spaces, unless 
otherwise stated. As usual, (. , .)^ or (. , .) will denote the 
inner product on the Hilbert space j-L . Vectors will be denoted 
by X , f , g , etc. .

In what follows we shall be concerned with operators, that is 
bounded linear transformations from a Hilbert space into itself.
Operators will be denoted by capital letters T , S , etc. , while 

( H. ) will stand for the algebra of operators on a Hilbert 
space -H, .

For an arbitrary operator T in 26 (H) we use the standard
notation and terminology , as well as the following ; spectrum spT,
approximate point spectrum apspT, spectral radius r(T) = sup{ |X|:XespT} , 
numerical range W(T) = {(Tx,x) : ||x||=l} and numerical radius 
w(T) = {sup |X I :XeW(T)} .
Following Sz. Nagy and Foias we introduce the important concept of a 
unitary p-dilation. We say that an operator T in (H.) 
possesses a unitary p - dilation for some p > 0 , if orv H.

T* = pPU* , n = 1,2....

where U denotes a unitary operator on a Hilbert space K* containing 

M  as a subspace, and P is the orthogonal projection from K* onto 

J4. . We indicate this by Te (H) or simply T e , when there

is no need for reference to the underlying Hilbert space.
The theory of unitary p - dilations for operators was developed to 
provide a unified framework for two classical dilation theorems which 
may be stated as follows :
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1. Te iff T is a contraction (i.e. || T || ^1) ,

and

2. Te iff T is a numerical.radius contraction
(i.e w(T) ^  1) .

The first of these results is due to Sz. Nagy and Foias 
( "Sur les contractions de 1* espace de Hilbert ", Acta Sci. Math. 
(Szeged) 19 (1958), pp. 26-46.) and the second to C.A. Berger 
( "A strange dilation theorem". Notices A.M.S. 12, 590 (1965). )
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CHAPTER 1

THE BASIC PROPERTIES OF THE 'ê CLASSES
P

In this Chapter we present a unified treatment of the 
classes p>0, consisting of operator's possessing a unitary 
p-dilation. Theorem 1.1, gives necessary and sufficient conditions 

for an operator T to belong to a ^  class for some p>0.
The properties of such operators are then shown to follow
immediately from the definitions and Theorem 1.1. We then obtain

I» n ^some of the topological properties of the classes
and we conclude this Chapter by proving that an operator 
possessing a unitary p-dilation is similar to a contraction.
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Let T be a bounded operator on a Hilbert space H and let p >0. 
The following theorem gives necessary and sufficient conditions for 

T to belong to ^p(H) .

THEOREM 1.1 [35] » [42]
The following are equivalent :

(i) T € 'êp(H)

(ii) (p-2)||zTh 11̂  -2(p-l)Rez(Th,h)+pI|h||^^0, h e H  , |z| < 1

r(p-2)||Th 11^- 2(P-1) Re z(Th,h) + p||h 0 , h sH ,|z| = 1
(iii)S

r(T) 4 min{l,p}

( i v )  II T{(p-1) T-pzI}'^ II < 1 , | z | > l .

p(p-2)||Th||^-2 |p-l| |(Th,h)| +p||h||2> 0 
(v)j

^r(T) ^min{l)p}

PROOF
The proof of the equivalence of (i) and (ii) can be found in [42] , 
Chapter I, section 11, Theorem 11.1 .

(ii) => (iii)
It is clear that (ii) implies the first part of (iii) . It thus 
remains to prove that when (ii) is satisfied, then

r(T) ^  min{l,p} .

We in fact show that (ii) implies :

r(T) < 1 , p > 0 
and r ( T ) ^ p ,  0 < p < 1

and this is clearly equivalent to

r(T) 4  mind,p} , p > 0 .
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Rewrite (ii) in the equivalent form

Re (d-zT)h,h) i  (1- II (I-zT)h 11̂ . h c H ,  lz| < 1 , (1.1)

and assume first•that
r(T) > 1 .

Then we can find y e spT:. , such that

|v| = r(T) > 1 , (1.2)

Since y is in the boundary of spT , y must be an approximate 

eigenvalue of T , (Ci?] , problem 63) that is, there are unit 
vectors h^ in H , n = 1,2,... , such that

g^=(T-yI)hn-*-0 asn-»-«»* (1.3)

Let now

and

Then, clearly

and

z < 1

(I-zT)h = - eh - zg . n n

(1.1) with h = h  , n = 1,2,... , then reads :n

- e - Re (h^,zg^) (1 - y) {e^ + 2 Re ( h^,zg^) + |z|^ ||ĝ ||̂  } . (1.4) 

Letting now n->-“ in (1.4), it follows that

- e ^  (1 - |) e^ ,
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or equivalently, that

(1 - f ) < - (1.5)

and this inequality becomes false if we choose e sufficiently • 
small if p > 2 , and is never true when 0 < p ^  2 , since e > 0 •

Thus

r(T) < 1 , p > 0 , (1.6)

To prove the second assertion, namely that

r(T) ^  p , 0 < p < 1 ,

assume as before that

r(T) > p , 0 < p < 1 .
. «»Then there exist a sequence {h of unit vectors in H , andn n—1

]i in spT , such that

|y[ = rCT) > p , (1.7)

and

= (T - yl)h^ -> 0 as n -> •» ,

Let now e be such that

0 < e ^  |y| - P " (1.8)

Then

G + p - 1 ^  |y| - 1 = r(T)-l ^ 0  (1.9)
/

as in any case, r(T) ^ 1  by (1.6) .

Put

z = . (1.10)
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Then,
lz[ 4  1 by (1 ,8),

and
(I - zT)h^ = - (E+ p - l)h^ - zg^ , n = 1,2,... ,

(1.1) now with h = hĵ , n = 1,2,... , and z as in (1.10)
reads :

- (e + p - 1) - Re(h^,zg^) ^  (1- ^){(e+p-l)^ + 2(e + p-1) Re(h^,zg^)

+ lz[^ [lg„ll̂  } (1.11)

Letting n -> •» in (1.11), it follows that

- (e + p -1) ^  (1 ~ ■̂ ) (e + p-1) 

or equivalently , since e + p-1 4  0 by (1.9), that

(1 - -|) (e + p - 1) 4  1 (1.12)

or what is the same thing, that

e + P - 1 > 0^  • Cl.13)«  2 - p

But, as 0 < p < 1 , 
2

2-p

and hence

> 1 ,

e + p - 1 > 1 • (1.14)

The inequality given by (1.14) is thus seen to contradict (1.9), 
whence

r(T) 4 P ,  0 < p < 1 »

as required.
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The implication (ii) => (iii) has thus been established.

(iii) => (iv)

Rewrite (iii) in the equivalent form

It {(p-l)T - pzl}h|| > ||Th|| , heH, |z| = 1

r(T) < min {l,p} (1.15)

We have :

r( < 1 . P > 0. z = 1 (1.16)

as

and

and

1 - p < 1 if 0 .< p < 1

if p >1 

r(T) 4  min {l,p} .

Hence the operator

C(z) = T { (p - D T - p  zl}'^ , |z| = 1 ,

exists as a bounded operator and (iii) is seen to imply that

C(z) h II 4 ||h II , h e H , |z| = 1 (1.17)

Also, as

r( < 1pz if z > 1 (1.18)

C(z) is an operator valued, analytic function of the complex 

variable z , for |z| 4 1 ,

and C(z) 0 as z ,

Hence, an application of the maximum modulus principle for analytic
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functions of a complex variable, gives:

II C(z) h II = ||T {(p-l)T- p z 1} II 4  II h II, h e H , |z| 4  1 . (1.19)

Thus, (iii) implies that

II T {(p-l)T-pzir^h ||< ||h|| , h e H ,  |z| > 1  ,

and consequently that

II T ((p-l)T -pzl}-l II < 1  , |z| & 1  . ' Cl.20)

Hence
(iii) => (iv).

(iv) => (ii)

(iv) is easily seen to be equivalent to

||zT{(p-l)zT -Pir\||< II g II , |z| < 1 , g e H  , (1.21)

and hence, since the operator 

{(p-l)zT - pl}"l 

is in particular 'onto* H, it follows that

II zTh II < II (p-1) zTh-ph II , |z| < 1 , h e H  , (1.22)

and (ii) is easily recovered from (1,22) after some very obvious 
calculations.

Thus, (iv) implies (ii) '
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(iii) <=> (v)

(iii) => (y)

Let ; =. ilhj-bl if p>l
|(Th,h)|

and z = -.llilih), if o < p < 1 ,
|(Th,h)l

in (iii) if Th^h

Clf CTh.,hi = 0, then clearly and Cvi- are équivalent!

(v) => (iii)

Observe that if |z| = 1 ,

- |(Th,h)| < Re (zTh,h) < |(Th,h)| , h e H  (1,23)

and hence, if p 4 I and (v) holds, that is

.(p-2) ||Th||^- 2(p-l)|(Th,h)| +p||h|f > 0 , h e H

r(T) < 1

then also,

(p-2 ||Th 11̂  - 2(p-l)Re(zTh,h) + p||h ||̂  >0 , h e H  , |z| = 1 

r(T) < 1

holds.
On the other hand, if 0 < p < 1 and (v) is true, that is 

(p-2) ||Th||^- 2(l-p)|(Th,h)| +p||hl|^ > 0 ,  heH

r(T) < p ,

then as
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- 2(p-l) Rez(Th,h) + 2(l-p)|(Th,h)|

= 2(l-p) CRez(Th.h) + |(Th,h)|]>0 ,

(p-2) II Th 11̂  - 2(p-l)Re z (Th,h) + p||h||̂  4  0 ,heH , |z|=l 

r(T) < p 

is also true.
Hence, (v) => (iii) , and the proof is seen to be complete,

OBSERVATIONS
1, Let T be an operator of class , for some p ̂ 0 , on a Hilbert 

space H,
Then with the usual notation;

Thus, for any h, h* e H and every n = 1,2,... ,

( T ^ h , h H  = (pPU^h,h') = P(lf h,Ph* )

= (U*h, ph') = (h , p U*^h')

= (Ph,pU*"h) = (h , pPU*"h*) ,

On the other hand, as

(T^h ,h*) = (h ,T*^h») , h ,h»eH , n = 1,2,,., ,

it follows that

T*’̂ = p  , ■ n = 1,2,,,. ,

Hence, the 'êp classes, for p >0 , are * - closed. More precisely, 

if Te '€p(H) , for some p >0 , then T* e 'êp(H) also.
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2. If Te ^p(H) for some p >0 , then since any power of a unitary

operator is again unitary , ■

T^ e €p(H) for any positive integer k .

3. In the course of the proof of theorem 1.1, we obtained that for an

operator T of class ^p(H) ,

r(T) 4 1.

This result can also be obtained as follows ; if Te 'êp(H) for 

some p >0 , then, with the usual notation

T^ = p P , n = 1,2,... , and hence

II t"" (I = p II PU"" ||<p , n = 1,2,... .

That is, an operator of class € p  , is

POWER BOUNDED.

In particular,

II t” IÎ '̂ ” < . n = 1 .2 . . . .  ,

and consequently

r(T) = lim ||t̂  || 4 lim p = 1 .
n-vw n^^

Thus, an operator possessing a unitary p -dilation for some p >0 , 

has spectral radius not greater than 1. Later on we shall show by means
of a counter example, that there exist power bounded operators not
belonging to any €  p class , but that if T is an operator with 
spectral radius strictly less than 1, then T belongs to '€p , for 
some p sufficiently large.
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4. If T e ^p(H) for some p >0 , then, any restriction of T to 
an invariant subspace M of H is also of ^  p class . The 
validity of this statement follows immediately from proposition (ii) 

of theorem 1.1., for if (ii) holds for any h e H  , it will in 
particular hold for any h belonging to an invariant subspace M of T . 

Thus, if Te 'êp(H) and M is a subspace of H invariant under T, 

then
T e €*p = ^p(M) .

M

5. Proposition (iv) of theorem 1.1. is due to Chandler Davis [6 ] and 

will be referred to as the ’C. Davis criterion for membership in a
'êp - class * .

6. The classes p , p >0 are dlosed . under unitary equivalence.
More precisely, if S and T are a pair of unitarily equivalent 
operators, then

Se 'ê p implies Te ^  p ,

PROOF
Let S = U ^ T U  for some unitary operator Ü , and suppose Se '^p, 
for some p > 0 .
Then, according to proposition (iv) of theorem 1.1.,

lls{(p-i)s -pzir^ii< 1 , |z| > 1 .

But, S = U TU, and hence ,

II U'^TU{(p-X) U ' ^ T U - p z l T ^  II < 1, | z | i l ,

or equivalently ,
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U"^[T{(p-l) T- pz i r ^ ] U  II < 1 , |z| > 1

and as

[| A [[ = [| B [[ , for any pair A, B of .unitarily equivalent 

operators ,

||T {(P-l)T -pzl}'^ II < 1 ,  |z| > 1 ,

and hence ,
T e € p  .

7, The substitution p  =1 in (iv) of theorem 1.1. yields

Izl

which is clearly equivalent to

11 T II < 1 .

Thus, the class "ê. admits the following very simple characterization. 

Te <=> Il T II < 1.

That is o. consists precisely of contractions.

On the other hand, substituting p  = 2 in (ii), it follows that

Te € 2  <=> Re z(Th ,h) 4  ||h ll^h e H , |z| 4  1 ,

and as the last inequality is clearly equivalent to

|(Th ,h)| < ||h|l^ , h e H  ,

it follows that the class 2 consists precisely of all numerical 
radius contractions, that is operators of numerical radius at most 

one.
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Thus,

T e 'é 2̂ <=> w(T) 4  1 .

8. Substituting T by uT , where u is any complex number of
modulus less than or equal to one, in (ii) of theorem 1.1., it
follows that if Te €pCH) for some p p- 0 , then so does zT.

for any z e C with | z | 4  1.

9. The condition.

r(T) 4  min {l,p}

in (iii) and (v) is indispensable.

For, the operator

T = ^  I. P > 2

can easily be shown to satisfy the first part of (iii) and (v) but 
clearly not the second, as r(T) >1 for p >2 . On the other hand,
T cannot belong to any ^ p  class for p >2 as it is not in 
particular power bounded,

10. Proposition (ii) of theorem 1.1. may be rewritten as follows :

p [ ||zTh||^- 2Rez(Th,h)+ ||h||̂  ] + 2 [Re z(Th,h) - )|Th ||̂  ] > 0 , h e H, |z|4 l

As the first bracket is clearly non-negative, being equal to

l|zTh-hl|2 ,

and the second bracket is independent of p , we deduce that

'é̂ p ̂  'êp ̂ if p < p ̂ .

That is the classes ^  p , p > 0, form a monotonically increasing 
family with respect to set theoretic inclusion as p increases.
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Letting now T be the operator
T o  p-

T =
0 0

on some 2-dimensional Hilbert space, it follows from the C. Davis 
criterion, for example, that

T e € p  for all p > 0 ,

But, as 11 T [[ =  p , T cannot belong to any ^q\class with o^op. •

(cf. (iv) of theorem 1,1, again).
Thus, if the underlying Hilbert space is 2-dimensional the inclusion 

'ê p ^  ^ p  * for p < p * 

is actually strict.

Later on we shall show that this inclusion is in fact strict in
every Hilbert space of dimension at least 2.

We now return to the remark made in observation 3, and we show that 

if T is an operator with spectrum situated in the interior of the 
unit disc in the complex plane, then T belongs to ^ p  for some 
p > 0 sufficiently large.

PROPOSITION 1.2 [22]

Let T be an operator on a Hilbert space H, with

sp T C  = {ze € : |z| < 1}

then
Te ^ p  for p large enough

PROOF

Observe that if sp T Ç  D^ , then

(I-zT)h II > e IIh
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for some e > 0 , all z e C with | z | 4  1 and all heH .

But then,

(p-2) II (I-zT)h + 2Re ((I-zT)h.h) 4  0, |z| 4  1 ,heH , 

if p is sufficiently large.

As the last inequality is clearly equivalent to

(p-2) 11 z T h  11̂  - 2(p-l)Rez(Th,h) + p II h 0, | z | < l , h e H

which is in turn equivalent to 

T e 'é̂ p ,

it follows that Te ^ p  for p large enough .

Thus, if sp T . g  ,
then

T e = U
p > 0

Let now T be a bounded, invertible operator of norm greater than 1 , 
on a. Hilbert space H, and consider the operator matrix S on H ® H 
given by

0 T 
T 0

S =
-1

It is a trivial matter to verify, that

sf = I on H ® H,

and II s II > 1 .

We show that S cannot belong to any o p class with 0 < p < 

PROOF
The following lemma, is essential for our purposes.
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Lemma 1.3. [35]

Let T be an involutive operator of class , for some p >0 ,
on a Hilbert space H.
Then, T is a symmetry, ie. T = T* = T ^ .

Proof of Lemma

Observe first that as a result of T = I, we have || T || 4 I and

hence p ̂  1 , in view of the monotonicity of the '^p classes.
Secondly, we note that, as

r(T) = 1 , 

the operator

I + zT

is invertible for any ze C with |z| < 1 .
Thus, if h runs over H , then so does h* , where Cl+zT)h^=h ,

Now, since T e l?p ,

(p-2) [[Cr-zTlh[[^ + 2ReCl-zT)h,hl ^0, héH,[z[ <^1 

Hence, with h = (I + zT)h* , [z[ < 1 , we have

(p-2) II (I - z^ T^ )h' 11̂  + 2Re ((I-z^ T^)h\(I + zT)h*) 4 0 , h» eH, |z| <1

and by continuity

(p-2) II (I-z^T^ )h' ||̂  + 2Re ((I-z^T^)h^ , (1+ zT)h») > 0

for all h* e H and all z eC with |z| 4  1 ,
2But T = I , and hence

(p-2) |l-z^| ||h'||^+ 2Re (1-z^) ||h'||\

2Re d-z^)(h', zTh') i  0, h' eH , |z| < 1 .



19.

Taking z = , 9 e IR , ||h* ||= 1, it follows that

(p-2) [ ( 1 - cos20)^ + sin^ 20] + 2(1 - cos20) + 2Re (h* ,Th)^ 0 ,

or equivalently »

M-(p-l)sin^0 + 4Im (h*, Th’) sin0 ^ 0

for all 0 and so T is Hermitian .

The result now follows.

Returning to the proof of the theorem, observe that if S were to 
belong to some € p  class, (p ^  1) then || S || would have to 
equal to 1 in view of the lemma.
As this clearly contradicts the original assumption we conclude that

S  ̂€  p for any p J> 0 .

In particular, the matrix

T =
0 V 2
2 0

which satisfies the condition for the validity of proposition 1.2, 
cannot belong to = U ^ p  .

p>0

On the other hand, it is a trivial matter to verify that T is 

power bounded.
In fact

2 if n is odd
is even ,

p 2 if n ii

Thus, the matrix given above, provides us with an example of a power 
bounded operator not belonging to any €  p class, 0 < p < *» .
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Nevertheless, the following theorem holds.

Theorem 1.4. [22]

'ê » = u 'êp .p^Q , is dense (in the uniform operator topology) in the 
family of power bounded operators.

PROOF

Let T be a power bounded operator on a Hilbert space H.
Then, in particular

rCTi « 1 .

For any 0 < s < 1 define the operator T^ on H, by 

Tg = sT 

It is then clear, that

r(Tg) = s r(T) ^  s < 1 ,

and hence

T^ e = U 'êp , by proposition 1.2.
p?>0

On the other hand, it is equally clear that 

T^ T uniformly , as s 1 

The proof is thus complete.

We now justify the claim made in observation 10, namely that the 
classes 'êp , p > 0, form a strictly increasing, with respect to set 
theoretic inclusion, family of p , provided that the underlying 
Hilbert spaces are at least 2-dimensional.

The proof of this statement is proposition 11.3. Chapter I Section 11 
of [%2] and is included here for the sake of completeness.
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To this end, let H be a Hilbert space with

dim H > 2 ,

For each p > 0 , we construct an operator Tp on H , 

such that Tp e ^p ,
a n d  II Tp II =  P ,

Let

cO)}

be an orthonormal basis for H, where is an arbitrary indexing 

set that could be empty, and define the operator T^ on H as followsi

Tp #2 " * To = 0 , To - 0 , V e .P '*'2 P

Thus, Tp is the direct sum of the operator 

0 0
P 0

on M = lin[#^, (fig]

and the zero operator on N = lin[^^; V. e .

It is evident that we have :
n= p and Tp = 0 , n ^ 2  .

Let K be a Hilbert space with dimension

and choose an orthonormal basis for K.

Its elements can be arranged in the following way

{ (|)̂ (m = 0, ± 1 ,... ) ; (VEO, m = 0, ± 1,...)} .
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We identi:^

4»2̂* with 4*2* with (p̂ and with 4»^, véfi.
o

This identification defines a canonical injection of H into K 

as a subspace.

We next define a unitary operator U on K as follows ;

"L ' = V + l • “C  = ^.m+l • V . m = 0. ± 1 ,

If as usual P denotes the orthogonal projection of K into H, then 

pPU*i = p P *2 = P *2 = Tp *1 '

pP U4>2 = pP*^ = 0 , pPU^y = pP*^^^ = 0 , veO , 

and for n > 2 ,

PPU**^ = pP<f>|+n “ °» i = 1,2,... ,

Thus

p P u " h = T p " h ,  n > l ,  h = *1, ,  v e O

But, as Og, UEO , form an orthonormal basis for H, the

same relation must hold for any h e H , Hence, U as defined 

above, is a unitary p-dilation of T^ on K ,

On the other hand, as || || = p , it is quite straightforward to
show, using the C. Davis criterion for example, that Tp cannot
belong to any 'ê a - class with (? < p ,
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The next theorem gives some information about the 'topological* 
properties of the '^p - classes

Theorem 1.5.

(i) The classes 'êp are closed in the strong operator topology,

(ii) The classes '^p with 0 < p 2 are convex.

(iii) ^ « = u ^  p is not convex.
p>0

(iv) For each p >0, 'êp is a balanced , absorbing set, and

Cv) When Te Xo* , then

E = {p > 0 ; T G 'Gp} -

is a closed subset of (0,«>) with respect to the usual topology of R. 

PROOF

(i) follows immediately from proposition (ii) of theorem 1.1.
To prove (ii) let T, S e ^p(H) for some p, 0< p ^  2 .
Then

Re ((I - zT)h,h) i  (1- |) ||( I-zT )h 11̂  , and

Re (d-zS)h,h) > (1 - | ) ||( I-zS)h ||̂  ,

for all h e H  and all z e (C with |z| ^  1.

For a e (0,1) consider the operator

@ T +  (l-a)S.

Then, if h e H  and | z | ^  1 , we have :

Re [(I-z(aT + (l-a)S)h,h) ] >.

(1- f ) [O ||(I-zT)h 11̂  + (1-a) ||(I-zS)h Ip] >
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Cl - ) l|aCl-zT)h + (l-a)(I-zS)h [['

Cl ^ ̂  ) Il (I-z(aT + (l-a)S))h ||̂ ,

where we have used the fact, that if

X , V ^  0 with X + y = 1 , then

X H X 11̂  + y|| y 11̂  > II Xx + yy ||̂  ,

for any pair of vectors x and y in a Hilbert space. Hence, if 

T and S belong to ^?p(H} for some 0 < p ̂ 2 , then so does 
aT + (l-a)S, for any aeCO,l),

For the proof of (iii) observe that the operator

T =
0 0 
P 0

of observation 10 , and its adjoint, both belong to ^ p  , for any 
p > 0 , and hence if «» were to be convex, then

0
ReT = ^  (T + T*) = -|

P 0

would have to be in also .
But this is clearly a contradiction, the operator 

0 p
P 0

not being, in particular, power bounded.

This establishes the non-convexity of
To prove (iv) , observe that for any p > 0 , ^ p  is clearly a 
balanced set, in view of observation 7 .
On the other hand, if T is a non-zero, bounded operator on a
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Hilbert space H , then, since _ _ has norm 1 , — -— c
llTl[ I|t|I

by observation 1, and hence — ——  e o  p for any p > 1 by virtue
[[t [1

of the monotonicity of the op  ^classes. If now 0«p <i 1, we ' 
show that

(2 -p)IIt 1[
Te op'êp .

To this end, observe that for gny zc-(t with. [z[ 

r (HZI . -- 1_) = llP _ 2 (T) ■ < izP < 1
2-p z| T| 2-p z T 2-p

and hence the operator

Cp-1)T
C2-p)llll[

z T

is boundedly invertible, with

cl£li2l - z T) 
(2-p )|1t 11

-1
= - i  I [( -1)T

n
n=0 C2-p )z |1t ||

]

the latter series converging in norm. 

In particular

PT
(2-p)111 II (2-p)[It II

(lp^l)pT . pgi f^ll
( 0_« ̂ II O' II II

(2-p)NT
I  V r(p-l)T ] 
^ n=0 C2-p )z ||t ||

n

_ i _  w l i P ) “ l a  < _i_ z (i^)
(2-p )||t || n=0 2-p ||T||̂  2-p n-0 2-p
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• ; jr -   = 1 .
2-P 2-pCl-p)

Thus, for any 0 < p < 1 , the operator

. T satisfies the C. Davis criterion forC2vpl[[T[[

membership in a €p-class, and the proof is seen to be complete. 
Finally, to prove (v) let p^E,

Then

(p-2) II (T- zT) 11̂  + 2Re ((I-zT)h^,h^ ) < 0

for some h e H ,  | z | ^  1 , and this inequality remains unchanged 
if p  is replaced by p + e  with e  > 0  sufficiently small.
Whence, the complement of E is open and consequently E is closed 
in (0 , **) .

Associating now with every non-zero bounded operator T on a 
Hilbert space H and every p > 0 the set

T = (a> 0 : ^  E êp}H, i a

we have the following very important corollary to the theorem. 

COROLLARY^ 1,6,

For an arbitrary but bounded non-zero operator on a Hilbert space H , 

and any p >  0 .

«P.T

PROOF

We distinguish the two cases :
(a) 0 < P < 1

and (b) 1 < p < - ,
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In case (a), as it was shown during the course of the proof of 
0 TTheorem 1.5., ,   e , and hence

2-p II T II

4 ^  II Til

and similarly in case Cbi

[[Xtt-cV/p^T

We now prove the following j 

Theorem 1.7,

Every operator T in (H) is similar to a contraction.

PROOF

The following lemma, is cpucisl for our purposes,

LEMMA 1.8. [34]

Let T be a bounded operator on a Hilbert space H. Then, a 
necessary and sufficient condition for T to be similar to à 

contraction is that there exists a contraction C on a Hilbert 

space K and bounded operators A e 26(H,K) and B e (K,H) 

such that

^^0 II t” - Bc”a ||2 < - . (I)

Proof of the lemma 

Sufficiency
If Te 26(H) is similar to a contraction C on a Hilbert space K , 
then there exists an invertible operator X e ÏBCH,KÎ such that

T = C X .
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But then

T* = C*X , n = 0,1,2,... ,

and hence, letting

B = X ^ and A = X ,

the condition is seen to be satisfied.

Necessity

Suppose (I) holds.
It will be sufficient to show, that there exists a norm on H 
equivalent to the original norm, with respect to which T is a 
contraction.

Define for all h e H  ,

|h|2 = infill Z C^Ah ||^+ E ||h ||̂  : E T^h = h}
n^O n^O n^O ^

the infimum being taken over all sequences of vectors
n ^O

where all the h^eH are zero, except a finite number of 
them.
It is clear that '

|h + h'| ^  |hI + |h'| , h,h*eH, and

|a h I = |a I |h I , a  e € , h e H .

Thus, the application

h *+ |h|

is a seminorm on H .
Moreover, as

h — h t T .0 + ... ,
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we have

|h|2 < II Ah ||2 + II h ||2 ,

and hence

|h| <  ( H  A  +  1 ) ^ / 2  II h  M .

Also, if

the Schwarz inequality gives ;

|[hll =11 Z. T^h II = II Z BC^Ah + Z  (T^- BC^A) h 
n> 0 “ n>0 ^ n>0 *

< ||b II II E C^'Ah^ II + E ||f-BC'^A II II h II 
n>0 n>0

,n „ „H. ||2 ,1/2 ,11 „ „n.,. ii2 . „ i.̂  ii2,l/2< (||B ir+ Ï iiT'^-Bc^Air)/^(ii z c"Ah^ w + r iih ir)
n^O n^O n>0

and hence, taking the infimum of both sides over all finitely 

non-zero h^, n = 0,1,2,... , it follows that

h 11 < (|| B ||2 + E ||t"-Bc“ a ||2 )^2 |j,| ,
n > 0

Thus,
h H- |h|

is a norm on H, equivalent to the original one, and so, H is 

complete in the new norm.
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Furthermore, if h = E h , it follows that Th = X T̂ .h ' , .
n >0 ^ n>l

and hence,'since ’ C is a contraction, we have.

1 Th |2 < H E C" Ah ||2+ E ||h II 
n>l n>l ^

|C E c"Ah ||2 + II h ||2 
n > 0 n^O

< II E , C“ Ah ||2 + E II h ||2 < |h| 
n>0 "

Thus, T is in fact a contraction with respect to the new norm.

We conclude the proof of the Lemma by showing that | • | is a Hilbert 
space norm, that is |*| satisfies the parallelogram identity.

To this end, let e > 0 be given and h , g e H. .
We prove that

|h + g|^+ I h- g 1̂  = 2 (|h| + |g|^) .

There exist finitely non-zero sequences {h^} and ^S^^n>0 
for which

X II h f  + II Ï c"Ah ||2 < |h|2 +c
n >0 n>0

and

Ï II ggll^ +. II X c " A g  ||2 < |g|2 + e
n>0 ^ n> 0

whehe of course

Z Th = h and E Tg = g 
n > 0 " n> 0 ^
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Hence,

E U |h 11̂ + Il gg 11̂ ) + Il Z c"Ah ||2 + Il z c"Ag
n >0 n>0 * n>0 ^

+ i | | E  C°A(h + g^) ||2 + i  II s c"A(h -g^)|| 
n>0 n -n n>0 n ^

< |h|2 + |g|2 + 2 e .

Moreover, as

h ± g =, Z T(h ± g^ ) ,

it follows that

|h + s |2 + |h-g|^ < 2(|h|2 + |g|2) ,

The reverse inequality being easily obtained replacing h + g by h 
and h - g by g , we conclude that H is an inner product space 
with respect to the new norm and the proof of the lemma is seen to 
be complete. Returning to the proof of the theorem now, we see 
that since T e '^p, there exists a Hilbert space K containing • 
H and a unitary operator U on K such that

T = p Pj^U , n = 1,2, >

P^ denoting as usual the orthogonal projection from K onto H.

If we now let

C = U , A be the canonical injection of H into K and

B = p P„ , then all the summands in (I), except the one corresponding H
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to n = 0 vanish, and as this non-vanishing term contributes a 

finite number to this sum, we conclude that T is similar to a 
contraction in accordance with the lemma.
As a result of theorem 1.7. we have the following :

^  { Operators similar to contractions }

^ .{ Power bounded operators }

the inclusions being strict, for the operator

T =
0 ^2

is similar to a contraction and is power bounded but (cf. Lemma 1.3), 

Ti/ .
On the other hand, Foguel's operator provides us with an example of 
a power bounded operator, not similar to any contraction.

NOTE
Foguel's operator is defined as follows :
Let be a HilberCspace with an orthonormal basis eg,...},

and let J be an infinite subset of the natural numbers N , which
is 'Sparse* in N , in the sense that if i and j eJ with i<j ,

then
2i < j also .

(e.g. J = { 3 ^ : n e ^ } )

Let Q denote the orthogonal projection from onto the span of

the e.*s with j eJ , and consider the operator matrix A on

H ® H given by,0 0
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A =
U.

denoting the unilateral shift on . A trivial induction 
argument reveals that

u*n On

u,n

n
where Q = 0  and 0 = E Qui .o -hi+l 1=0 + +

It can be shown that A as defined above is a power bounded 
operator not similar to any contraction. For details we refer to 
[13], [34] and B.8] for a very elegant proof.
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CHAPTER 2

CONVERGENCE PROPERTIES OF OPERATORS OF CLASS ^  .-----------   — - p

In this Chapter we are mainly concerned with the convergence 
properties of the iterates of an operator T of class ( H.) , 

More precisely, in Theorem 2.1 we prove that if T is an operator 
of .class for some p > 0, then the sequence {|| is

convergent for any x in H, .and moreover, 
lim II T^x II = L IIX II with 0 < L < p^ . An intrinsic characterization

n 4- . ^ ^
1of the elements x of for which L^ = p^ then follows, and, various

Corollaries to Theorem 2.1 are discussed. We then obtain some results 

concerning the structure of operators T of class 'ê (H-) satisfyingP

T̂ lx II = P II X II , N e Z'*’ X e K  ,

and conclude this Chapter by exhibiting an operator T of class 

'êp(K) , p ̂  1 , and vectors x in the underlying Hilbert space 
for which lim || T^x || assumes any value between 0 and p^ ||x||

n -»«*
inclusive.
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THEOREM 2.1

Let T be an operator of class € p , for some p > 0, on a Hilbert 
space H.
Then, for any x e H  , the sequence

{||t" x ||}
n=l

is convergent, and moreover
0 if 0 < p < 1

lim ||t^ x ||={
n->« L̂ ll X II if 14P <-

with

0 < Lx < .

Furthermore, for p ^ 1,

<=> II t"x|| = p ^ 2 ||̂ || = 1,2,... ,

<=> T&^.T^x = px ,n = 1,2,... .

PROOF

Let X be an arbitrary element of H, which without loss of generality

we may take to be of unit norm. Our method of proof extends the

technique used by M.J. Crabb in [ 5 ] for proving the special case of
the theorem corresponding to p = 2.

We distinguish the following cases ;

(a) 0 < p < 1
and

(b) 1 < P < - .
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If 0 < p < 1 and T e Top , then as

II < 1 * n = 1, 2,... , (cf. observation 3)

we have

II X II = II T(t” x) II < II T II II t"x II < p II t” x II < II t"x II

and hence

lim II X II = 0 , (2.1)
n4- *»

the sequence { || x || being strictly decreasing and consisting
n=l

of non-negative terms .
If p = 1 , then by a similar argument, { || x || } is a

n=l
non-increasing sequence and

lim II X II = L. with 0<L, < 1 .  (2.2)II II V Bx y CBSn+- ^

So, assume p > 1. '

Then, since T e ê̂̂p , by Theorem 1.1 we have:

(p-2)|| zTti||2-2(p-l) Rez(Th.h) + p||h ||2^ 0 , h e H  , |z| < l (2.3)

In particular with z = 1 ,

(P-2)|| Th 11̂  - 2(p-l)Re(Th,h) + pl|h 11^^ 0 , heH .  ' (2.4)

Taking

h = a X + a. Tx + ... + a T̂ x̂ o 1 n

with
a£ e R  , i = 0, 1, 2,... ,n in (2.4), it follows that
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(p-2) Il a Tx + ... + o  T^x^ 11̂  " O '  n "

n+1 n
2(p-l) Re (a Tx + ... + a T x , o x  + ... + o T x ) + o n o  n

p II OqX +  ... + o^T X II ^  0 , Oi E P- , 0 4  i i n  . (2.5)

But, by observation 8,

T e '^p <=> e^^ T e '^p, for any 0 e IR. and every p > 0 , and
i.0hence we may replace T by e T and (2.5) still holds.. Integrating 

the resulting inequality with respect to 0 over [0, 2!̂) now, it 
follows that. ,

n+1
(p-2)[o2 II Tx ||2 + ... + ||Tx ||2 ]

n
- 2(p-l)[o^ai||Tx||2+ ... + o^_iaj^||T x||2] + (2.6)

p[«o + I|Tx ||2 + ... + «2 ||2 ] i  0 , OjC IR, 0 < i i  n ,

and hence after some rearrangement ,

2 2 2 [(p-2)m^ -hp] o^ + [(p-2)mg +pm^] o^ -h ... + “n

2(P-l)(0g0^m^ + ... + ®n-l“n%^ — a^elR, O ^ i ^ n  (2.7)

where we have denoted

II T^ X 11̂ by m^ , for i = 1,2 ,..., n + 1 .

But, the left hand side of (2.7) is the quadratic form associated with 

the real, (n+1) x(n+1) symmetric matrix :
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p + ( p-2)m^ -(p-l)m^ 0

- (p -l)m^ pniĵ + Cp-2)mg “.(p-l)mg *

0 -(p-lÏBg pnig + (p-2)mg

O -((5-l)ra T pm T + (p-2)m - (p-l)mn-1 n-1 n n

Q vCp^Dm^ pm^ + (p-2)m^^^

and as this quadratic form is positive, semi-definite, , the 
determinant of the above matrix must be non-negative.
Expanding now along the last row, we obtain the following recurrence

relation for D : n

= [ P %  + ( P - 2 ) V 1 ^  V l  ■ i  ^
2 2= [p + (p-2)m^] [pm^ + (p-2)mg] - (p-1) m^ ,

= p + (p-2)m^ .

Observe also, that

For, if we assume = 0 , we would then have

p + (p-2) II Tx 11̂  = 0

and hence, as this is only possible if p < 2 , it follows that

II Tx II = ( P < 2.
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But , Te Xop ,p > 1, and hence with the usual notation

T* = pPlfi, n = 1,2,... ,

so that in particular ,

Tx II = p II FUx II =

giving

II P Ux II = --------------1 » for 1 < p < 2 .
(p(2-p)r ̂

As this is clearly a contradiction, U being a unitary operator 

and P an orthogonal projection, we conclude that our original 
supposition is false, and hence

D > 0 . (2.10)o

If now D = 0  for some n , let k be the smallest suffix n ’
for which D. = 0. k
Thus, k > 0 and

\ + l  ■  ”  * k + l  \-l  * ( 2 . 1 1 )

But, ^  0, and the right hand side of (2.11) is strictly
negative, unless m^^^ = 0 .

Hence, m̂ ^̂  ̂= 0 and consequently

m ^ ^ — 0 , 1 — 1,2,... , (2.12)

in which case, of course ,

II T^x II 4- 0 as n 4- •« (2.13)

and we are done .
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We may therefore assume from now on, that

> 0 for all n = 1,2,... .

Then, if ^
Ô » n = 1,2,... ,
n-1

we have :

a = pm + (p-2)m - (p-l)^m^ -—i—  • n > 2 (2.14)n n n+1 n o_ .n-j.

and
2 2[p + (p-2)mi] [pmL+(p-2)m_]-(p-l) m 

“1 = ; p f T p - 2) ^ --------  —  '

so that ;
(p - m.)^

“ l  -  <‘>-2)^2 =  P  -  pt(p-2)mi • (2.16)

Furthermore, if

3^ = - (p-2)m^^^ , n = 1,2,... , (2.17)

then

Gn+l &  9n '

For,
2

*0+1 = “n+1 - (P-2)mn+2 = '”"n+l ‘ "”+1
(p-l)2mf^i

= 2(P-l)"'n+i â---------“n + “n " (P'2>"’n+1n

= “n - (P-2>"’n+l - f - '̂“n ■ (P-^^^n+lfn
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Now, ^^nn~l bounded by definition, and

“n ^ (0-2)^%+! • by (2.14)

so that {a } , is also bounded,n n—1

Hence, as is a bounded non-increasing sequence of real

numbers , '

3^ + L' as n + - (2.19)

with
( p - m u ) ^

*1 = P - p+(p-2)mi • <2.20)

It thus follows from (2.17) and (2.19), that

a - (p-2)m - L* 4- 0 with nn n+1

or, what amounts to the same thing, that
2

2 %pm - (p-1)   - L* 4- 0 as n 4- «» (2.21)
“n-1

But the sequence ^®n\i=l bounded, and hence

2 2(pm - L') a T - (p-1) m 4-0 with n . n n-1 n

On the other hand.

(pm - L*)a - (p-1)^ m^ n n-1 n

= (pm - L’)[a , - (p-2)m - L*] +n n-1 n

(pm - L')C(p-2)m + L* ] - (p-1)^ m ^n n . n

(pm^ - L')(3n_i - L*) - (m^ - L') ,

(2.22)
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so that

(pm^ - L') (8̂ _i - L>) - (m^ - L')^ ->■ 0 (2.2Za)

in view of (2.22) .

Consequently, as 3^ + L* and pm^-L’ is bounded for all n, it 
follows that

4- L* as n 4- «> . (2.24)

Observe also, that

L* ^  0

being the limit of a non-negative sequence, and L* ^  p from (2.20) .

So,

II t’xII = m 4- = L" " n X

with

0 < L* < pl/^

and the proof is seen to be complete.

If now, = p^^^, that is L' = p  ̂ then,

3^ = P in view of (2.20) ,

and hence, as the sequence non-increasing and moreover
converges to 3^ = P , we have

3% = - (p-2)m^^^ = 3^ = P , n = 1,2,... . (2.23)

On the other hand, as
2 %

“n ■ <P'2)”n+l = P %  ■ (P-1) •n-1

it follows that.
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22 m
pm^ - (p-1) -—  = p , n = 1,2,... . (2.24 b)

n-1

Substituting for from (2.23) in (2.24)
we get :

2 2( p m ^ - p ) C p  +  ( p - 2 ) m ^ ]  =  ( p - 1 )  m ^  , n =  1 . 2 . , , ,  ,

that is ,

m ^  =  p , n = 1,2,... . (2.25)

Thus,

lim II T^x II = p^/^ <=> lim m = p
n->«* n 4-«# ^

<=> m^ = p , n = 1.2.... . (2.26) 

We now establish the equivalence of

(A) II t"x II = pl/2 IIX II  ̂ n = 1,2,... ,

and
(B) T&* T*x = px, n = 1,2.....

The 'only if part follows immediately.

To prove the 'if part.

To this end, we refer to [ 8 ], where a slight modification of the 

argument used by the author, shows that for any xeH

II T»x II + pl/2 II Q x|| ,

where Q is the strong limit of the orthogonal projections from
K onto ̂ iTl = V U (n+l+k) pj  ̂ K denoting a Hilbert space 

k=0
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containing H and U a unitary p - dilation of T on K.

Thus, in particular, Q is an orthogonal projection with range

n

Also, as T = pPU^, n = 1,2,... , where P denotes as usual 
the orthogonal projection from K onto H , 

we have'; if

m  II _ 1/2II T X II = ||x|l , n = 1,2.....

that

Qx = X .

Hence, x e /I 'Dl , and consequently 
n

X e TH , for all n . n

But then, as (see [g ])

Pf = T**PU^f , for all f ,

It follows that
X = Px = PQ X = PU*Q X = P X = —  t" x n n p

for all n , and the proof is seen to be complete.

COROLLARY 2.2

Let T be an operator of class for some p /1, on a Hilbert

space H and assume that there exists a unit vector x in H, such that

II T**x II = p

for some positive integer N ^  1.
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Then :
(a) II II = pl/2^ k = 1,2,..., N-1 ,

and (b) T is locally nilpotent of index N+1. at x, that is 

T^^^x = 0 and hence T^^^x = 0, k = 1,2,... .

PROOF

With the same notation as in Theorem 2,1 ,
2

= P

and we wish to show that ;

(a) m^_^ - P i  k = 1,2,...,N-1 , and

) ^N+k # k — 1,2,... .

To this end, observe that as the sequence (3 } Ü, of the theorem is 
non-increasing and moreover converges to a non-negative limit ,

3% > 0 , n = 1,2.....  (2.27)

and hence, as
2 "n 

n-1
we must have : 2

2 %pm^ - (p-1) -—  ^  0 , n = 2,3,... . (2.28)
n-1

In particular,
2 .

•” ”n -  V l  “

and hence, since

"'N

=N_1 i  . . (2.29)
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so that

- (p-2)m^ ^  p(p-l)^ - (p-2)p^

= P . (2.30)

Consequently, as

- (p-2)mg 4 P by (2.20) 

and the sequence ^^n^n”l non-increasing we have in view of (2.30),

, P i  V l  ■ (P-2)m,,< «H_2 ■ (0-2)Vl ^  ' '

- (p-2)mg = 3^ 4 P (2.31)

and hence

^N-k ” (p-2)m^_^^^ - p , k - 1,2,...,N-1 -. (2.32)

On the other hand, as
21

V k  - ‘p-^N-k+i = p V k  - â
2 *N-k

N-k-1 

by (2.14), and

V k - i  = " + (p’^ N - k  (2-32) »

we have :

p = pm„.^ - (p-l)2 .

which gives
niN-k = P , k = 1,2,..., N-1. (2.33)

Furthermore, as

2 4
°H - = -'-H ■ (--I) 5N-1
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2
-  (P-1)

p̂ ' - (p-l)2  2I
p+(p-2)p^

= p^ - p^ = 0

it follows that

= “n ■ *̂’-2% + !  = 0 (2.39)

and consequently,

^N+k ” °*N+k - (P-^)\+k+l “ ° ^ " 1*2,... , (2.35)

by virtue of the monotonicity and non-negativity of the sequence

In particular ,

^N+1 " *N+1 ~ (P"2)^+2 ' ° 

end hence 2
pm^ - (p-1) = 0 . (2.36)

N
Substituting now for from (2.34) in (2.36), it follows that

2
P^N+l - (P-1)' = ° -  • (2.37)

So, if p I 2 ,

= 0 (2.38)

and therefore,

^N+k ~ ^ *  k — 1,2,... . (2.39)

As the case p = 2 , has been completely examined by Crabb in [ 5 ].
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where he obtains exactly the same results, namely that

m̂ _̂  ̂= 2 , k = l,2,..., N-1

and = 0 , k = 1,2...

the proof is seen to be complete.
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REMARKS

1. The case p = 1 was excluded from our considerations for there exist
operators of class , satisfying the condition set in the corollary

-J-for some unit vector x and some N e Z . , and yet these operators are 
not locally nilpotent at x. E.g. the identity operator.

2. If the integer N in the corollary is strictly greater than 1, then p
is necessarily greater than or equal to 1, as the following argument 
shows :

Assume that there exists an operator T of class ^ p  , 0 < p < l , o n  

a Hilbert space H, which is such that

I|t”x ||=p .

for some unit vector x in H and some integer N > 1. Then, || T^ || 4 p ,
and since T is power bounded with || T^ II ^  P , k = 1,2,... , it
follows that

II II = p .

But then, as || T || i  || T ||̂  , we would have

P = I|t“ |I< IIt II'* <p"

that is
Np 4  p with 0 < p < 1 and N > 1 .

As this is clearly a contradiction, the result follows. On the other 

hand, the operator on 20 given by:

T = 0 0 
P 0

clearly belongs to 'êp for any p > 0, and in particular for 0 < p < 1 , 
and there exists xe ^  , ||x|| = 1 , namely x = , for which
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Il Tx II = p .

That is, the integer N can actually equal 1.

THEOREM 2.3

Let T be an operator of € p  class for some P i» on a Hilbert 
space H, and assume that there exists an element x in H, ||x ||=1, 
which is such that

I|t" x ||=p

then :

(i) T is locally nilpotent of index N + 1 at x

(ii) ||t''x || = p3-/2 , k = 1,2,..., N - 1  ,

(iii) The vectors
NX , Tx , ... , T X

are mutually orthogonal (and hence linearly independent)
and

(iv) Mjj = linCx , Tx,,..,T^x] , the linear span of the vectors
N . .X, Tx,...,T X, is a reducing subspace of T.

REMARKS

1. Although assertions ( i) and (ü) have been proved in Corollary 2.2 
it is our aim here to give an alternative proof using a technique 
based on an idea of Berger and Stampfli, [3], Theorem 6, which 
leans much more heavily on the theory of unitary p-dilations.

2. The special case of this theorem corresponding to p = 2, is theorem 2 
of [ 5].
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Since T e '^p, we have with the usual notation,

T* a pPu" , n = 1,2,... (I)

In particular

T^x = pPU^x

and hence,

p = II T»x W=P II PU»x W .

Thus ||Pu”x|| = 1 ,

and this clearly implies that

PU^x = u \  , (*)

U being a unitary operator and P an orthogonal projection. 

Consequently,

A  = p U^x ,

and hence

T^*^x = T(t\ ) = pPU(pU^x) = p^ PU^‘‘'^x (II) 

Directly, though, it follows from ( I ) that 

T^+^x = pPU^^^x (III)

so that since p  ̂1 ,

X = 0 ,
if (II) and (III) are to be consistent .
Thus, T is locally nilpotent of index N + 1 at x and (i) has been 
proved.

Next observe that, if 

1 < k < N - 1  ,
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we have;

||t^x||^= (T^x.T^x) =  ( p  PU^x , p  PU^x)

= p^ (PU^x, U^x) = p^ (U^-^ PU^x, ifx)

= p^ (U^“^ PU^x , PU^x)

= p^ (PU^-^PU^x , U^x)

= %  (-P P u^”^(p P U^x) , pU^x)

^  (T^"^(t\),T^x) = j  (T^XiT^x)

= p .

Thus, if 1 4  k 4  N-1

II l ’exil = pl/2

and hence (ü) is established.
On the other hand, if

1 < i < j < N

we have :

(T^x , T^x) = (p P U^x , p P U^x) = p^ (P U^x , U^x)

= p^ ( PU^x , U^x)

= p^ (U^-^PU^x , Plfx)

= i  (p PU^"^(p PU^x), pU^x)

= -  (T^“^(T^x) , T^x)P

= i  (TW+j-ix . T^x)

= — ( 0 , T x ) - 0 .
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since j-i 4 I and T is locally nilpotent of index N + 1 at x,
while a similar argument shows that

(T^X , x) = 0  for any k = 1,2,.,., N .

The vectors
X , Tx,..., T^x

are thus seen to be mutually orthogonal (and hence linearly independent) 

If we now let be the linear span of these vectors, it is obvious
that is an invariant subspace of T, by virtue of the local
nilpotency of T at x. To show that it is in fact reducing for T,
let ot be a vector in H perpendicular to 
Thus,

(T^x ,a) = 0  for k = 0,1,2 N

and hence, if 1 4  k 4 N

(T^x , Ta) = p2(P U^x , P Ua) = p^(U^x , P Ua)

= p^(U^x ,U^"^ PUa)

= 0^(lfx , P[f"^PUa) by (*) 

= (U^x , T^-^'^^a)

p ( A  ,

p (U^’V,a) = p(U^"^x , Pet)

CpPU^"^x ,01) = (T^-^x , a)

= 0 , since 0 4 k-1 4 N-1 .

On the other hand, by a similar argument to the one used for proving the 

local nilpotency of T at x, and the fact that
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H't*“ ü" x 11 = 11 p P ü ^ u “x|| = p 11 Px|I = p H X II = p ,

it follows that

0 = T& N +l _ p p y * N + l y N ^  -  p p u * x  = # x  .

Thus,

( T  a ,  x) = c 'a ,  Tfex.) = 0 .

So, if a is a vector in H ,  perpendicular to , then Td is 

also perpendicular to and this establishes that is reducing.

The proof of the theorem is thus seen to be complete. Note also, that 

one can easily show that for the same x as in the Theorem ,

r 0 if k = 0
T*T^x = < T^"\ if k = 1,2,..., N-1

N-1P t'" X if k = N .

COROLLARY 2.4

Let T be an operator on a Hilbert space H , which is such that

w(T) - — IIT̂  11̂ ^̂  for some positive integer N and assume 
that there exists a unit vector x in H such that

||t”x II = IIf II .

Then : (i) T is locally nilpotent of index N+1 at x

(ii) ||T̂ x II = 2^ " n IIT̂  II k=l,2,...,N-l

(iii) The vectors
NX , Tx,..., T X are mutually orthogonal

and (iv) = lin[x, Tx,..., T^x] i.s a reducing subspace
for T ,
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PROOF
2I/ 4Let S = -
l|f|| l/N

Then

and

w(S) = 1

Ŝ xll = 2 .

Thus, the operator S given above, satisfies all the conditions 
set in Theorem 2.3 , for p = 2 and hence

(a) S is locally nilpotent of index N+1 at x

(b) ||s’'x II = 2^/2  ̂ k = 1,2,...,N-1

(c) The vectors
NX , Sx , ...,S X are mutually orthogonal [and hence 

linearly independent'. ]
and

(d) M = lin[x , Sx, ... ,S^x] is a reducing subspace for S.X
But, T is a scalar multiple of S, and hence the same conclusions
must hold true with S replaced by T. The proof is thus complete.

The following corollaries follow on immediately from Corollary 2.4 
COROLLARY 2.5 [43]

The unique (up to unitary equivalence) irreducible operator T 
which attains its norm and whose numerical radius w(T) satisfies

w(T) = i  II T II ,

is
'’0 0

T = a
1 0

, a e C .
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COROLLARY 2.6

The unique (up to unitary equivalence) irreducible operator T which 
2is such that T attains its norm and whose numerical radius w(T), 

satisfies

”(T) = II T̂ ll

IS

T = a
0 0 0 
1 0  0 
0 1 0

, a e C

THEOREM 1.7

Let T be a nilpotent operator of index N + 1 , N ^ 2  , on a Hilbert 
space H , satisfying

II II = II T f
Nand assume moreover that T attains its norm that is, there exists 

a unit vector x in H, for which

II t “x  II = II t” II II X II = II f  II .

Then ;
(1) IIt̂ x II = ||t̂  II ||x II = ||t̂  II , 1 = 1,2 N

(11) The vectors

Tx T^x
# e # # m * % • • • % XT

IITII I|t II ||t“

form an orthonormal set, and 

Tx(111) M^ = linCx , f x>•••• J > • • • •  XT
II T II I|t x|| ||t II

is a reducing subspace for T .
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PROOF

The following lemma is essential for our purposes ; 

LEMMA 2.8
If A is a bounded operator on a Hilbert space, with

11a’' II = 'IIA ||k

for some positive integer k , then

IIâ II = 1|a 11̂ , 1 = 1,2....... k .

Proof of the Lemma

Let

“i =

Then by assumption.

«k = 1 '

and trivially.

On the other hand, as

i+1 _
“i l|A|r+  ̂ IIA'II llA'IlllAll -  iKllllAll

AÎlhL WA||1 _ MAl+l|t , llÂ llllAll . ^* .. 4 .. .. <  =  .. -Î....  *

the sequence {a.} is non-increasing, and consequently, if 
 ̂ i=l

2 < i  < M-1 ,

1  =  “ k  -  “ i  -  “ l  ^  ^  •
and hence,

oi£ — 1 , 1 — 1,2,...,k ,
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so that

IIâ II = IIaT . i = 1,2,....k

and the proof is complete.

Returning to the proof of the theorem now, observe that if

s = - J L -  ,

then

and

11 Til

l|s“ ||= ||sf = 1 .

Consequently, as S e ̂  ,

= PU^ , i = 1,2,... ,

where U is a unitary operator on a Hilbert space K O  H ,

P denoting , as usual, the orthogonal projection from K onto H. 
Therefore, since

1 = ||s“x|| = ||pfx|| ,

we conclude as in Theorem 2.3 that v 

S^x = U^x .

If now

then

1 < i < N ,

S^x||^ = (S^x,S^x) = (PU^x, PU^x)

= (P U^x , U^x) = (U^“^ PU^x , u \ )

= (U^-^PU\ ,PU^x) = ( P U ^ " ^ P U \  , U^x) 

= (S^"^(s\), S^x) = ( s \ , s \ )

= lls^x 11̂  = 1 .
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Thus,

and hence

S^x II = 1 , i = 1,2,...,N ,

S x  — U X , 1 — 1,2,...,N »

On the other hand,, for i = l,2,...iN ,

: - II»'- II

and hence

||t\  II = II T 11̂  = II ?! II , i = 1,2 N ,

since the operator T satisfies the assumptions for the validity of 

the lemma.

Assertion (1) has thus been proved.

Next note that, if

1 < i < j < N ,

we have

(S^x , s\)  = (U^x , U^x) = (u^+i"^x , U^x)

= , Pcfx) = (P U^+î-^x , U^x)

= (s^+i-ix , S \ )  = 0

since N + j- i ^ N  + l, and S is by definition, nilpotent of 

index N + 1.

Similarly,

(S^x , x) = 0 for any i = 1,2,...,N

and hence the vectors

X , Sx , ... , S X ,

f
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and consequently the vectors
i N^ Tx T X T X

||t || II T l̂l ||t” |

form an orthonormal set of vectors whose span is clearly an

invariant subspace for T due to the nilpotency of the operator. 
Finally observe that since

S*^ = PU*^ , i = 1,2,...

we have if

1 < i < N ,

S* S^x = PU* (U^x) = P U^-^x = S^“^x

while
S*x = 0 ,

as the following argument clearly demonstrates:

Since
g*N+l = 0

in view of the nilpotency of S* , we have

0 = S*^^l S^x = P U^x = PU*x = S*x .

Thus, the linear span of
NX , Sx , ..., S x

is also invariant under S* .
Replacing S by ZE now, the result follows. The proof of the IITH
theorem is therefore complete.

The following corollary follows immediately.
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COROLLARY 2.9 
T = a 0 0

1 0
0 1

0 0

0 0 
0 0 
0 0

1 0
— V —N + 1

is the unique (up to unitary equivalence) irreducible nilpotent 
operator of index N + 1 , satisfying

II f  II = II T II»

and which is such that t attains its norm.

Let now H be a complex Hilbert space with a countable orthonormal 
basis

'• ‘ C  ■

and let T be the (unique) operator on H, given by

■ “k ®k+l » k = 1,2,...,

where
1/2Wi = P , ü)ĵ =l, k = 2,3,... , p > 1

That is, T is the unilateral weighted shift with weight sequence

k=l

THEOREM 2.10

With these assumptions we show that T e '^p (H) for any p >,1 
(and not for 0 < p < 1) , T = T(p) ,

PROOF

Let h be an arbitrary element of H.
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Then ,

h î= E a e. 
k=l ^ ^

for suitable a, e C , k = 1,2.....  with ||h|| = E |a, < - .
k=l ^

We have ;
(p-2)||Th||^-2(p-l)|(Th,h)| +pl|h ||^> 0 , h e H  

T E €p , p >,1 <=>< (I)
^r(T) < 1

(cf. Thm. 1.11 part ( v)) . 

Using the formula for the spectral radius of a (unilateral)weighted 
shift ( [17] ) f it is easily established that for this particular
weighted shift, r(T) = 1 and hence, the second condition in the 
right hand side of Cl) is seen to be satisfied.

Thus, with T as above,

Te'^p ,pil <=> (p-2)||Th||2-2(p-l)|(Th,h)| +p|Ih iP^O, h e H  .

But, if h = E a e. , then 
k=l ^

and

(Th.h) = ( Z J/k=k+l''k.k=l 3=1 '' k=l

and hence,

*" ** **Te Top ,P4 1  <=> (p-2) E |a | V - 2(p-l)| E a  a o),|+pE 0,
k=l k=l k=l ^

" 2
k = 1,2,... , E I a, I ^ ,

^ k=l

or equivalently
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T e € p  P 4  !<=> (p-2) E |a, -2(p-l) E lo^lla |w. +p E l o u p ^ O ,
k=l k=l ^ k=l

But, with

oi. £ C, k — 1,2,... , E Iot, I < •• •
k=l *

1/2“i = P , = 1, k = 1,2,... ,

(p-2) E |a. - 2(p-l) E l»]̂ ! + P % =
k=l ^ ^ k=l * ^ k=l *

p(p-l)|a^|2 + 2(p-l) E |oĵ |̂  - 2(p-l) E "2p ^^^(P“D  hj»I 1̂ 2
k—2 k—2

= (p-l)[p|a^p- 2p3-/2 |a^||c^| + |„^|2]

+ (P-1)[ E |oJ2_2 e l=kll*k+il+ Z|=k+il^] 
k=2 k=2 * k=2

= (p-1) - logj): + Ï (|o^| - |o^+i|)2}

which is clearly a non-negative quantity, since p 4  1 , for all 

possible choices of complex numbers

Oĵ , k - l , 2 , . . . .

Thus, the weighted shift given above, belongs to €^p(H) for p 4 1 
proving the theorem.
On the other hand, it is a trivial matter to verify that for a
(unilateral) weighted shift with weight sequence {w } ,

k=l

^k ^k ^k+1 * * * ^k+n-1 ®k+n *
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and r 0 if k < n
.nT*' = <

 ̂ V lV 2 -"V n® k-n  k>n + l

for any positive integer n and k = 1,2,... .

Hence, if

then

T“ h = T"e^= J ^ “k “k “k + r " “k+n-l®k+n

and

T*"h = Z = 1  . A V i \ - 2 " -V n V nk=l k=n+l

for any n e Z  ,

For the particular weighted shift of the Theorem,

= P '/' =l*n+l + °ke)cm

and

:*^h= a t  E an+1 1 ĵ_2 k+n k

1/2
°"n+l ^k-n .

Hence,

|lT"h|P = p lo |2+ I |a I
k=2

(p-1) |o p  + Z |0L p
k=l

= (p-1) |ô | +
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and

||T*"h|P= p]a p  + î l a p  .
k=n+2 ^

from which it easily follows that ,

II T*^h II 0 as n , in view of the convergence of E |a, |̂  .
k=l

On the other hand, as \\ T^h || is independent of n, for any h e H  ,

lim II A l l  = pl/2|| h|| <=> II T“ h 11 = pl/2||h|| , n = 1,2,... ,
(Also by Theorem g.l )

<=> (p-l)|o^|2 + ||h||^= pHh 11̂

<=> (p-1) [ |ô |2 -||h||2 ] = 0 ,

and hence if p > 1 ,

lim II T^h 11= p II h II <=> |â | = ||h || <=> h = ^ , %eC .
n->̂

Similarly,

lim II T^ h II = 0 <=> h = 0 , (for any p 4  1) .
n-H»

Furthermore, if

lim II l"h II = M ||h|| <=> (M^-1) ||h|P = (p-1) |â |‘
n ^

Similarly, if

<=> h = E a, e, with
k=l '' k

(M^-i) Ï [oL p  = (p-1) |a I
k=l

0 < M < 1 < pl/2 ,
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lim II T’̂ h 11= M ||h II <=> (p-l)|a^|^ + (l-M^)||h||^= 0
n->«*

that is

lim [[ h II = M 11 h [\ <=> h = 0 • 
n-»**

While if
M = 1 < pl/2 ^

lim ||T^h||= II h|| <=> h = E a e, .
n->-r k=2 ^ ^

Thus, the unilateral weighted shift with weight sequence

provides us with an example of an operatorofop - class for p ^  1 ,

and examples of vectors in the underlying Hilbert space for which

lim II T^h II = M ||h || t for any 0 < M < p^^^ . 
n ^
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CHAPTER 3

THE OPERATOR RADII OF HOLBROOK AND THEIR PROPERTIES

In Chapter 1 we have shown (Corollary 1.6) that if T is an 
arbitrary but bounded Hilbert space operator, then

T = 0 ; €  > 4 0p , i  a  P

for every 0 < p < •• . The following non-negative functional on 
Î6 (H.) defined by

Wp,T

is therefore well defined.

In this Chapter we shall show that the family

(wp(T) ; p>0} , Te (H ) , includes the familiar radii of operator

theory associated with T , namely || T || (= w^(T)), w(T) (= WgCT))
and r(T)(= w^(T) = lim w (T)) . It thus seems naturàl to call

P-»- -  ^
Wp ,p >0 , an operator radius. We shall also refer to Wp(T) as 
the Holbrook radius of T , as it is J.A.R, Holbrook who first 
introduced this function and obtained its basic properties. (C,223) 

The importance of these radii lies in the fact that operators 
T of class are characterized by Wp(T) 4  1 . We thus begin
this Chapter, by proving this last statement and proceed to obtain 
some of the properties of w^ , in a natural way. The rest of this 
Chapter is devoted to the study of the Holbrook radii associated 
with nilpotent operators of index greater than or equal to 3.
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The following theorem gives a characterization of the ^ ^  classes 
associated with an arbitrary but bounded operator in terms of the 
operator's Holbrook radius.

THEOREM 3.1 Czz]

Let Te #b(H).
Then, for any p > 0^

Te <=> w^CT) < 1 .P P ™

PROOF

Necessity follows immediately from the definition of w^CT). To 
establish the sufficiency of the condition assume that

w (T) < 1 , but T  ̂ .P P

Then, there exist 0 < a 4 1 and z^e C, |ẑ | 4 I such that

(I) II T {(p-l)T - pazi} ^ II 4  1 for all z e C with |z| 4 I
and

(II) 11 T {(p-l)T-p z^I 11 > 1 ,

the first inequality corresponding to w^CT) 4  1 , (and hence there 

exists 0 < a 4 I such that ^  e and the second to T it ,

Let now
z' = a

Clearly then,

\̂ ' I = i  |Zq| > 1 .

and hence, taking z = z' in (I) we get;

1 4 ||T{(p-l)T-pa-^ I}"̂ || = II T{(p-l)T-p z^I}"^ || > 1 

in view of (II) .
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This being a contradiction, the required result follows.
Let now T e 33(H) .
If a > 0 , is such that

e for some p > 0 ,

(such an a always exists in view of (iv), Thm.i^s) then, since
in particular is bounded in norm by p, that is

II è TII i  p •

it follows that

and hence

WpCT) = inf{c(>0 ; I  Te gp} > i  II T II . (3.1)

Consequently, if for some p >0 ,

Wp(T) = 0 , then T50 . (3.2)

On the other hand, as the zero operator 0 , belongs to any 
^  p class , immediately from the definition, it follows that

Wp (O) - 0 , p> 0 ,

and hence as a result of this and (3.2) we have

w (T) = 0 <=> T = 0 . (3.3)P

Observe also, that by virtue of Corollary 1»6 ,

Wp(T) < - , .
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for all p > 0 , and every bounded Hilbert space operator T. 
In fact referring to Theorem 1* 5 , we have

«p(T) < (| - 1) ||t II . if 0 < p < 1

and

Wp(T) < ||t|| , if p > 1 . (3.4)

Moreover, as for every p >0 , io is a balanced set, it is easy to
show that

Wp (zT) = |z| Wp(T) , z e C, (3.5)

that is, Wp( •) is a positively homogeneous functional on K>(H) 
for any p > 0 .
On the other hand, as by Iheorem 1,5 ,  ̂ is a balanced , convex,

absorbing set for any 0 < p ̂  2 , and Wp(*) is the associated 

Minkowski functional, it follows that for p in the prescribed range,

w_(*) is a norm on 33(H) .P
Thus, for 0 < p 4 2 ,

w_(") is a norm on 33(H) , (3.6)P
but not for p > 2 , for as we shall see a little later on, if 

T = r° then

while

Wp(T) = Wp(T*) = i  ||t|| = i  for p >0 ,

w (T + T*) = ||t + T*||=1 for p ^l .

and hence

1 = w (T + T*) > w (T) + w (T*) = -  for p >2 , P p p p
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that is, Wp(%) fails to be be a subadditive functional on 

%  (H) for p >2 , and thus cannot be a norm.

Observe also, that in view of Observation 1 and the homogeneity

of Wp(.) ,

Wp(.) is a * - invariant of ^(H) , that is

Wp(T) = Wp(T*) for all Te 33(H) , (3.7)

while in view of Observation 6 ,

Wp(.) is also a unitary invariant of 33(H), that is 

Wp(T) =Wp(S) for all p >0 , and any pair of unitarily equivalent 

operators T and S . (3,8)

We next note that by virtue of theorem 3.1 and the homogeneity of 

Wp( •) and for an arbitrary operator Te 33(H) ,

w^(T) coincides with || T [| , and

Wg(T) with the numerical radius w(T) of T .

Thus,

WjCT) = IITI (3.9)

and
Wg(T) = %(T)

Furthermore, as

CZlgp' if P<P' .

Wp(') is a non-increasing function of p, for p > 0.

In other words, for Te 33(H) ,

Wp,(T) < Wp(T) , if p<p' (3.10)

Moreover, as from (3.1) and (3.4) we have that
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T  II T II S«o(T) < (|  -1) ||t || , 0 < p < l

and

~  Il T II < «p(T) < llTll . l<p

by (3.1) and (3.10), it follows that, for 0 < p ^ 2 ,  Wp(.) is 
a norm on 33 (H) equivalent to the usual operator norm.

For a bounded but otherwise arbitrary operator T on a Hilbert 

space H, w^d) turns out to be a convex function of p for
p e (0 ,*) , (for details we refer to [ g]) and hence in particular, 
a continuous function of p for p in the same range.
Moreover, the other well known radius of operator theory, namely 

the spectral radius r(T) of T, may be adjoined to the family 
(Wp(T) : p > 0} in a natural way, by

w^(T) = lim w (T) = r(T) (3.11)
p ^

To prove this statement, observe that the existence of a limit for 
Wp(T) as p is guaranteed by the monotonicity and
non-negativeness of the function in question.
It thus remains only to establish the actual value of this limit,

To this end, note that since

 ̂ all p > 0 ,

by virtue of the homogeneity of w^( \) and Theorem 3.1, it follows
that

Tr(^j-^)) <1, p > 0 , (see Observation 3)
P
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and hence

r(T) < Wp(T) , p >0 ,

giving

rCT) < lim w^(T) .
p ^

To obtain the inequality going the other way, we distinguish, the 

following cases :

(a) r(T) i 0
and

(b) r(T) = 0  .

If r(T) i- 0, then for any e >0 ,

^^Cl+e)r(T)  ̂ " T+F ^ ^ »

and hence

(l+e)r(T) ®

Csee Proposition 1.2) 

in other words.

lo _ , for some p sufficiently large ,

The monotonicity of w^C*) now implies that

and hence

Wp(T) < (l + e)r(T) , P ^  ,
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from which the desired result follows . 

If r(T) = 0 , then for any n > 0  ,

r(nT) =: 0 <1 ,

and hence as before

Wp(nT) < 1 ,

for all p greater than or equal to some p^ , giving

"p(T) P > P p , n > 0

and this clearly implies that

w (T) = lim w (T) = 0 = r(T) , 
p-vO P

and the proof is seen to be complete.

One other very important result concerning the Holbrook radii of 

an arbitrary operator Te 33(H) , is the so called "POWER INEQUALITY", 

namely that

Wp(T )̂ 4  Wp(T)  ̂ for all p > 0 and k ^ l  . (3.12)

This is an immediate consequence of Observation 2  ̂ the

homogeneity of w^( •) and Theorem 3.1 . Note also, that we have 

equality in (3.12) at p = •* in view of the spectral mapping theorem. 

Returning now to the C. Davis criterion for membership in a 

class, namely that

^ e lop <=> ||t { (p- 1) T- paz I } ”  ̂ II < 1 . IzI ^ 1 ,
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and noting that

I p -11 = I (2 -p ) - 1 I ,

we obtain the following very useful "reciprocity law", due to 

T. Ando C 2 ] ,

pWp(T) = (2-p) Wg_p(T) , 0 < p < 2  , (3.13)

and hence, in particular, the graph of pWp(T) against p , for 
0 < p < 2 , is symmetrical about the line p = 1.
Observe also, that as a consequence of Ando's reciprocity law, 

we have :

lim pw (T) = 2Wg(T) = 2w(T) , (3.14)
p +0 P

from which the asymptotic behaviour of Wp(T) near p = 0 is 

obtained.
Let now T be a nilpotent operator of index 2. Then, since the 

Toperator  has norm 1 ,
llTll

T
I|t||

in view of Theorem 3.1 and (3.9 ),and hence with the usual notation ,

II T||

Consequently,

T ^ n (— !— ) = PIT , n = 1,2,...

T ^ n(p ) = p P U  , n = 1,2,..., and all p > 0 ,
I|t||

due to the nilpotency of T , that is ̂
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' i M i '  •

In particular.

giving

«p(T) < i  IIT II p > 0 i

and since

Wp(T) ,> ^  II t || , always by (3.1) ,

we have that for a nilpotent operator T of index 2,

w (T) = j ||t ||, p >0 (3.15)

a result first obtained by J.A.R. Holbrook [22 ] .

Having obtained the basic properties of Wp("), we now prove a 
Theorem concerning the shape of the curve representing Wp(T)
for an arbitrary operator Te 26(H) . For ease of notation we
shall write w(p) instead of Wp(T) when there is no danger of 
confusion.

THEOREM 3.2 [zi+l

For an arbitrary but fixed operator Te 33(H) ,
EITHER

w(p) is a strictly decreasing convex function of p on (0,*]
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OR

there exists a value of p,p* say, which is such that w(p) 

is strictly decreasing and convex for all pe(0,p*) , and is 
constant and has the value

w(p*) = r(T) , for all p e Cp*,«*] .

PROOF

The following lemma, whose proof is included here because of its 
simplicity, is basic to our arguments.

Lemma 3.3 [zz"]

If for some p^ and Pg , real and positive with p^ < Pg we have

w(pj^) = wCpg) ,

then

w(p) = w(p^) = r(T) (= wCpg)) for all p ^  p̂

Proof of the lemma 

If p e (p^ , pg) , then

w(p^) = w(pg) ^w(p) ^  w(p^) ,

and hence

w(p) = w(p^) for all p e [p̂  , p^] .

On the other hand, if - > p >Pg , then since (p2#0) is an 
interior point of the line segment joining (p^,0) to (p,0) , there 

exists Xe(0,l) , such that

P2 =  ̂Pi + P »

and consequently
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w(p^) = wCpg) = w(Xp^ + (l-X)p) 4  Xw(p^) + (l-X)w(p), 

in view of the convexity of w(p), and hence 

w(p^) 4w(p) with p > (̂  .

But, by (3.1) , w(p) 4  w(p^) also, and hence

w(p) = w(p^) = w(Pg) , p^Pg.

Thus, for " > P 4 P2 » w(p) is constant and equals w(p^) , and 
hence being in particular a continuous function of p ,

w(p) = w(p^) = lira w(p) = r(T) , pj>p. ,

and we are done. '

Returning to the proof of the Theorem now, observe that in view of 
the monotonicity of w(p) , given any pair of positive real numbers 

and Gg with 0 < G^ < Gg < ~ , then

EITHER
w ( g  ) <  w ( g „ )1  ̂ ,

OR
W(G^) = w(Gg) .

In the second case, the lemma applies and the proof is seen to be 
complete.
Finally, note that, by virtue of Ando's reciprocity law, the real 
number p* of the Theorem is necessarily greater than or equal to 1,

COROLLARY 3,4 [zz]
If T is a normaloid operator, that is T has equal norm and 

spectral radius, then



79.

W p ( T )  = l ± - k z l l  || t  || , p  >  0  . ( 3 . 1 6 )

Proof

II T II = Wĵ (T) = w_(T) = r(T) , and the result follows

from Lemma 3.3 and Ando's reciprocity law.

FURTHER PROPERTIES OF THE HOLBROOK RADII

For the reader's convenience we list below some further properties 
of the operator radii {w (T)} _ associated with a non-zerop p > 0
operator T e 33(H) .
We refer to [ 2 ]  ̂ [22] , [^4]  ̂ [25] and [-26] for proofs and 

comments as well as to [*+̂ ] 'for a treatment of these radii from 
an alternative viewpoint.

1. For 0 < p < p ' 4 1 ,

PWp(T) 4  (2p'-p) Wp,(T) , (3.17)

while for I 4 P < p'< «* ,

PWp(T) 4  p'Wp,(T) . (3.18)

Moreover, these inequalities are best possible. (See also 
Remark 1 immediately after this section)

2. For a pair T and S of doubly commuting operators,

Wp^(TS). 4 Wp(T) Wg(S) , 0 < p a 4 - (3.19)

DEFINITION

Two operators T and S are said to be doubly commuting, if 

TS = ST and T*S = ST* .
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23. For an idempotent operator T (that is one for which T =T),

Wp(T) = ^  (w^(T) + |p-l| } =-^{ ||t || + |p-l| } p > 0 (3.20)

2while for an involutive operator S ( i e . S = I ) ,

Wp(S) = —  {w2(S) + /^^(S) + p(p-2)}

“ ^  tw(S) + /^^(S) + p(p-2)} p >0 . (3.21)

Let now {T } __ be a sequence of operators such that n n-JL

T e 3J(H^), n = 1,2,... , with sup|| T || < •• •
n

We may define an operator T on H = ® H as follows :I n
An element h of H is identified with a sequence

{h } where h eH , n = l,2,,.. , and || h 11̂  = Z II h 11̂  < " n n n ’ ' ’ u n  _ " n "

We define Th to be {T h } _ .n n n=i

It is then easy to see that T as defined above is a linear operator
on H , and || t || = sup || T̂ || .

n
When T is constructed in this fashion we shall use the notation

T = 1 T .1 n

We then have :

4. w (® T ) = sup w ( T ) ,  0 <p<" (3.22)P i n  p n

5. w (5T ) > sup w (T ) (3.23)" i n  =   ̂ " n* n

while if sup dim H < " , also we haven » ■ -n
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= sup w^(T^) . (3.24)
n

6. Denoting the restriction of an operator T e 33(H) to an invariant 

subspace M of H by T and recalling Observation 4 we 
obtain the following result:

Wp(T |h ) 4 Wp(T) , 0 < p < -  (3.25)

On the other hand, if H is spanned by a family {M } of
* aeA

subspaces invariant under T , we then have :

w (T) = sup w (TL ) , 0<p<.« . (3.26)
aeA I a
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REMARKS

1. In [2-] it is stated by the authors that the inequality 

PWp(T) 4 (2p' - p) Wp, (T) ,

is best possible provided 0 < p < p'4 1
It is our aim here, to prove that there is no non-zero operator 
T for which

pw (T) = (2p’ -p)w^, (T)P P

with 0 < p < p*< 1 , while if p'= 1 and there is equality in 
(3.17) for some 0 < p < 1 , then T is necessarily a normaloid 
operator.

Writing w(p) instead of Wp(T) we in fact show that there is no 
non-zero operator T and no e >0 , however small, for which

(p-e)w(p-e) = (p+e)w(p) 0 < p <1 .

To this end, observe that, if this were the case, then by Ando's 
reciprocity law, we should also have that

(2-p+ e)w(2-p+e) = (p+e) . -- - w(2-p) ,

or equivalently, that

w ( 2  -  p  +  e )  _  ( p + g ) ( 2 - p )  . 
w ( 2  - p ) ( 2 - p + e ) p

But
( p + e ) ( 2 - p )  _  _  2 g ( l - p )
( 2 - p + g ) p  “  ( 2 - p + g )  *

so that
w ( 2 - p + g )  
w ( 2 - p  )

This being a contradiction though, the result follows. On the other
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hand, if-for some--U<p < 1 ,

pw(p) = (2 - p) ||t|| ,

then, again by Ando’s reciprocity law,

(2 - p)w(2 - p) = (2 - p) II T II ,

and hence w (2- p ) = | | t || 0 < p < l ,  in which case. Lemma 3.3
applies, and we are done.

2. Recall that in Lemma 1.3 of the first Chapter, it was shown that an 
involutive operator T of class ^  , p 4 I , is necessarily a symmetry, 
that is

T = T* = t"^ .
The formula for the Holbrook radii for an involutive operator T, as
given by (3.21), provides us with an alternative proof of this result,
for if T is such an operator, then, since w^(T) 4  w^(T) = r(T) = 1 ,
in addition to w ( T ) < l ,  we have P —

w^(T) + /"M2(T)+p(p-2) = p , P 4 I ,

and hence
w^(T) = 1 .

But, from (3.21) again.

w^(T) = Wg(T) + /Ifg(T) - 1 ,

so that, ML(T) = II t|| = 1 , also.

So, if X is any vector in the underlying Hilbert space, then 

II Tx-T*x 11̂  = II Tx 11̂  + II T*x 11̂  - 2Re(Tx,T*x)

Tx |[2 + II T*x 11̂  - 2Re(T^x,x)

Tx 11̂  + II T*x 11̂  - 2||x 11̂

< 2II X 11^- 2II X II = 0 .
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Thus, T = T* and the proof is seen to be complete.

THE HOLBROOK RADII FOR NILPOTENT OPERATORS 

Let T be a nilpotent operator of index 2.
Then, according to (3.15),

Wp(T) = J  I|t || P > 0 .

Conversely now, we show that if T is a non-zero but otherwise 
arbitrary operator for which w^(T) is of the order of , for 

p >0 sufficiently large, then T is nilpotent of index 2.
More precisely we prove:
Theorem 3.4

If T is a non-zero, bounded Hilbert space operator, with

Wp(T) = 0 (i) .
then T is nilpotent of index 2.
Proof 
For some A > 0 ,

Wp(T) < ^  , for P 4  Pq > say .

Consequently, p ^  G '6^ , for P 4  P^ •
TIn particular, p —  is power bounded by p , that is 

T ^
W(P II 4P , n = 1.2..  PiPo .

and hence, taking n = 2 we have that.

II I l 4 ^  . P^Po .

from which the desired result follows, upon letting p .

The preceding Theorem admits the following generalization, in the 
form of
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Theorem 3.5

Let k be a positive integer and assume that T is a bounded 
non-zero operator with

"p(') = .

Then, T is nilpotent of index at most k + 1 . Note that, if 

k = 1 , then the index of nilpotency of T, is exactly k +1 = 2 by 
the Theorem just proved.
Proof

Since, w (T) = O  ("IT ) » we conclude as before that 
P p-L/k

II (p II 4  P » for all p 4  p^ , say, and all n = 1,2....

where A is a positive constant independent of p.
If we now let n = k+1 in the inequality above and then let p 
we obtain what we set out to prove.

Observe now, that as far as the theory of Holbrook radii for nilpotent 
operators is concerned, the case where the index of nilpotency is 
2 presents, by virtue of Theorem 3.4 and 3.5, no more interest, and 
hence from now on we shall only consider nilpotent operators of index 
of nilpotency k+1, where k is an integer strictly greater than 1.
Let therefore T be such a nilpotent operator.
Then, if j =  ̂ ( [x] = the integer part of the real

number x) we have;

r. k + 1 . _— =—  if k + 1 is even
3 = <

k
2

and hence, as in both cases,

^ ̂  ̂  if k + 1 is odd
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2 j ^  k + 1 ,

but Î 4  k ,

the operator is nilpotent of index 2, and consequently

w (t4  = i ||t2|1 , p > 0 . (3.27)

An application of the ’power inequality* for the operator radii
now yields

1
w (T) > 11?] M ''i , p > 0 . (3.28)

P /]
On the other hand, as k > 1 ,

2k > k + 1  ,

and hence T is also nilpotent of index 2.
Thus, working as before, we conclude that

Wp(T) > llT̂ li , P > 0 (3.29)

If we now observe that

j = k <=> k = 2 , (3.30)

it follows that in general, the inequalities given by (3.28) and 

(3.29) will not be the same. We thus have the following important 
inequalities satisfied by the Holbrook radii of a nilpotent 
operator T of index k+1, k > 2.

Wp(T) > -37. I|T̂  ll̂ '̂ p̂ >0 . i = , (3.31)

and

WqCT) 4 p ̂ O . (3.32)
 ̂ p /k

We now restrict temporarily our attention to those nilpotent 
operators of index k+1, k>2, which are such that
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K

e.g.

T = a
0 0 » * * 0 Ô
1 0  • • • 0 0 
0 1 • • • 0 0
• • » • • 
» * • • • 
« » % * *

0 0 • • • 1 0
I— -------V----------- '

k + 1

> k + 1

or for that matter any other operator unitarily equivalent to the 

one above.
Referring to Lemma 2.8 , we have that for these operators

II T̂ ll = II T 11̂  m = 1,2 k ,

and hence, in particular,

I I I I  = HT IP. i = .

Por this special class of nilpotent operators, the inequalities 

(3.31) and (3.32) therefore reduce to

W p(T) > _ | |T  II ,  j = [ & ± ^ ]  .  p > 0

and
«pCT) > ||t || ,  p > 0 .

Furthermore, as j < k , the following proposition.is easily obtained. 

Proposition 3.6
If T is a nilpotent operator of index k + 1, k>2, with

11?'' II = llTll" .
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Wp(T) ^  I|t II for 0 <p <1 ,

and
w.(T) > \  IIT II for 1 < p .

" p V k

Thus, the curve representing w^CT) for such a nilpotent operator, 

will lie in the region of the plane on or above the thick lined 
curve in the accompanying diagram, passing of course, .'through the 
point (1, II T II ) .

w_ (T)

We shall return to this particular class of nilpotent operators 
later on.

One other important fact concerning the Holbrook radii associated
with a nilpotent operator T, is that w^CT) is a strictly
decreasing to 0 = r(T) convex function of p on (O,*»]. This
follows immediately from Theorem 3.2, since for any pe(0,*),
w^(T) > r(T) = 0 .P
Returning now to the inequalities given by (3.31) and (3.32), it is 
fairly straightforward to see that eventually, i.e. when p becomes 

greater than or equal to some p^ , the inequality (3.32) will be 
the dominant one.
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The next theorem proves that for a nilpotent operator T of . 

index k + 1, k > 2 , Wp(T) as a function of p tends to 0 as
p , like

p - V k  ||T>C||l/k

that is, Wp(T) tends asymptotically to p || || ^^as p +»« .

Theorem 3.7
For a nilpotent operator T of index k + 1 , k ̂  2, 

lim p^^w (T) = II T^ 11^^ .

Proof

The following lemma is essential for our purposes,

LEMMA 3.8

Let T be an arbitrary, non-zero, bounded operator on a Hilbert 
space H.

Then, for any p > 0 ,

~1max II T {(p-l)T - p zw (T) 1} ||= 1 .
|z|>l

Proof of the Lemma
Observe firstly, that if (z| ^  1 , then

_ , (p-l)T < . |p-l|r(T) ' |p-l|r(T)
pzw.(T) p|z|w (T) —  pw IT)

P Wp 

But, since for all p > 0 ,
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r(T) ^Wp(T) and

T|| = W^CT) < p w  (T) ,

we have
r(T)

Thus

( 1 . 0 > °» 1̂ 1 .

and consequently, the operator

{ (p-l)T - p zWp(T) I

is well defined, ie. the operator { (p-l)T - pzw^CT) } is 
boundedly invertible for any ]z| > 1 and all p > 0. '

Moreover, the operator valued function of the complex variable z , 
given by

f(z) = T { (p-l)T - p zWp(T) I 

is analytic for | z | 1 , and since

wTt)  ̂ ^ p  all p >0 .
P

[[f (z) [1= [[t (Cp-llT - p z W p C T U r ^  II < 1 , |z| >1.

Hence, an application of the maximum modulus principle for analytic 
functions of a complex variable, implies that

max II T{(p-1) T- p zw„(T) I}'^ II 
|z|>l "
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= l | T { ( p - l ) T -  p e ^ ® w  (T)I}"^

for some @ e [ 0 , 2ïï.), is at most one.

The lemma claims that this maximum is actually equal to one.

To this end, consider the non-negatively valued function of the 
complex variable z, defined by

G(z) = ||t {(p-1)T -  p z i r ^ l l  , z e C .

Since by the spectral mapping theorem,

sp {(p-l)T- pzl} = (p-1) spT - pz ,

0 e sp {( p -1) T -pzl} for suitable z e (p , 

and hence
sup G(z) = + * .

Also, as

G(z) -♦'0 when z -*- «* , we have 

0 ^  G(z) < •• .

So,

Gg ( | z | )  = sup II T { ( p - 1 )  T -  p lz |e^®l} '^  II

which is a continuous function of |z|, takes all values in [0,*) 
and in particular the value 1.
Now, for every p > 0 and any a e ,

I  e lo <a> II T {(p-l)T-p zl}'^ || < 1 . |z|  >.a -

Suppose

= inf { o > 0 ; || T {(p-l)T - p z l }  ^||= 1 for | z | ^  «}.
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So,

Il T{(p-1) T - p zl} ^ Il = 1 , for z = for some 0 .

If < Wp(T), a contradiction follows, since

||t{(p-1) T- p zl}”^ 11=1 on |z| =

implies that 

T

thus contradicting the definition of w^CT). If > w^CT) a 

contradiction again follows, since by the maximum modulus principle.

^ ^ Izt-n llT((p-l)T-pzir^|| < niM ||T{(p-1)T-P zl}'^ II < 1.
' ' 1 |z|=WpCT)

So, ,= Wp(T) 9 and the result follows

Returning now to the proof of the Theorem, we have as a consequence 
of the Lemma, that

(3.33) 1It {(p-1) T- pw (T) I}"^ || = 1 for some 0 e [0,2.) .

But, T is nilpotent (of index k+1) whenever e ^ T is , and hence 
we may without loss of generality assume that 0 = 0  in (3.33).
Thus,

II T {(p-l) T- pw (T) ir^ II = 1 . (3.34)

On the other hand,

((p-l) T - pw^(T) !}-" = - ^ T )  j ,  [ ^ )  •

and hence, substituting back in (3.34) and using the fact that T
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is nilpotent- of index k +1 , it follows that 

so that

(3.35) p Wp (T) = II Wp"^(T) . T + ( ^ )  Wp"^(T). T^+ ... + ( ^ ) ^  ^

Letting now p in (3.35) we get ;

lim pw^ (T) = II II . (3.36)
p

The desired result now follows upon taking the k-th root of both 
sides of (3.36) .
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APPENDIX

The formula given by (3,35) is especially useful in that it allows

us, theoretically at least, to obtain a polynomial equation for
the Holbrook radii of nilpotent matrices of index k + 1, k ̂ 2,
Use of this equation has resulted in obtaining an expression for
w (T) in the special cases listed below. The calculations involved P
are sometimes tedious, but nevertheless straightforward.

1* T = T(p) = p subdiagonal (p2^i,...,i,p2) , p > 0 , k > 3.

Wp(T) = i ( l + [ p - l | ) ^  , p >0 .

N.B. Subdiagonal (x^y Xg,...,*^) stands for the (n+l)x(n+l) matrix 
whose only non-zero elements are those on the diagonal immediately 
below the main one, with

» i - l » 2,..,,n + l.

Note also that this result can be obtained directly from 
Theorem 2.3 .

2.
T =

0 0 0
a 0 0
b c 0

a, c e C - {0} , b e C

Here w (T) = w(p) satisfies P

p^w^(p) - p*̂ w‘̂(p)( lal*̂  + |b|  ̂+ [c|̂ ) + p(2-p)|ac|2 2

- 2p 1 p-l|pw(p)C‘tw^C2) - w(2)(|a|^+ Ibl^+ |c|2)] = 0 ,

where w(2) is the largest positive solution of the cubic equation
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4x^ - X (lal^ + Ibl^ + Icl^) = Re b Cac) .

In particular if b = 0 , T = subdiagonal (a , c) and

w^(p) - p^ (p)( [a|̂  + \c[̂ ) + [ac[̂  = Cp -1)^ |ac|^ , p > 0 .2 2 2 _ ,2 |._|2

Hence, for |a| = |c| , that is for

T = a
0 
1
0 e

0
i0

a e C - {0} , 0 e R. ,

w (T) = (1 + |p - l| , p > 0 .

On the other hand if a = b = c = 1, w^CT) is given by 

w^(T) = [1+ (5 + 4|p - l()^] , p > 0

while if a = c = l, b = -l,

Wp(T) = ip [1 + (5-4|p- l | ) b  , P > 0 .

In general, as every 3x3 nilpotent of index 3 matrix T is unitarily 

equivalent to a lower diagonal matrix, and w^C*) is a unitary 
invariant of X3(H) , it follows that the Holbrook radius w^CT) = w(p) 
satisfies a polynomial equation of the form

p^ w^(p) + Ap^ w^(p) + b|p-1|w(p)+Cp(2-p)=0, p > 0,2 2

for suitable constants A, B, C with A and C not equal to zero.

Taking into account the fact that lim pw^(p) = ||T̂ || (by (3.36))
P

and lim w(p) = 0, it follows that
p

c = II t̂ ||2 .

On the other hand, since w(l) = || T || and w(2) = w(T), trivial • 

calculations reveal that actually we have:
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A = -_(||T + !! ̂ ,J| ) and B = - 2w(T)[4w^(T) + A] .
II T r

Among nilpotent operators those with index of nilpotency n = 2 or 
n = 3 seem to play an important role in the theory of Holbrook radii, 
maybe because, in the notation of the previous Chapter, these are 
the only nilpotent operators for which j =k. On the other hand, 
as quite a lot is known about nilpotent operators of index 2, we 
restrict our attention to the case where the index of nilpotency is 3, 

and we make a conjecture concerning the Holbrook radii of nilpotent 
operators T of index 3 for which || || = [| T [|̂  .
More precisely,
CONJECTURE
Let T be a nilpotent operator o.f index 3 with || T^ || = ||t ||̂  . 
Then,

WpCT) = l|T̂ [|i p > 0 .

One of the reasons we think the conjecture is true, is that if T is 
a 3 X 3 nilpotent matrix of index 3 with || T^||= || T || ̂  , then as T 
is unitarily equivalent to a matrix of the form

0 0 0 
1 0  0 
0 0

a e C- {0} , 0 e R

%
(T) = |a| = IIt̂  \\i (1 + jp-l|)=.p > 0.

Geometrical considerations also seem to support this conjecture, 
though this conjecture fails for nilpotent operators

of index greater than 3, that is, it is not true that for a nilpotent 
operator T if index k+1, k ̂  3 , with || T^ || = || T ||̂  ,
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Wp(T) = ll'Î  Il p > 0 .

The following example clearly demonstrates this.
Let T = subdiagonal Cl, 1, 11, Then clearly T^ = 0 and 

II T̂ ll = ||t||^ . However, we can show that for this operator 

Wp(T) = w(p) satisfies

p^w^(p) - 3 p\^(p) + [3 - 2(p-l)^] p^w^(p) - p^(p-2)^= 0, p > 0 .

This polynomial equation for pw(p) does not admit a solution of
2/3the form pw(p) = p , for any p >1 , which would have been the 

case if the generalized conjecture were true.

Finally, it also seems plausible to conjecture that for a nilpotent 
operator T Of index 3 , and for obvious reasons,

p^w^(p) + Ap^w^(p) + B|p-l|pw(p) + Cp(2-p) = 0 , p >0,

where

A = -(||t ||̂  .+ -U -■■ 1  • ) B = - 2w(T)[i*w^(T) + A]
I|t||2

and C = II T^ll^ .

In conclusion note that, if T is a quasinilpotent operator, so that
lim IIT̂  II = 0 , it is reasonable to expect, taking into account 
n-»"*
(3.36), that for such an operator,

lim ( lim p^^^ Wp(T) ) = 0 . 
n p
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