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ABSTRACT

In this thesis we deal with the theory of unitary p-dilations
of bounded operators on a Hilbert space H, as developed by Sz.Nagy
and Foias, and a related functional on B(H), the algebra of sounded
linear operators on H.

In the first Chapter we consider the classes tgp, p>0, of
operators possessing a unitary p-dilation, and obtain their basic
properties , using an approach which adapts itself to a unified
treatment.Next in Chapter 2, we examine the behaviour of the sequence
of powers of an element T of'f% s p arbitrary and positive, and we

show that the sequence

n -]
{jr x|} n=l

converges to a non-negative limit, less than or equal to |
X :
CA Y B

' for all x in H. }

This is a generalization of a result by M.J.Crabb in which he considers
the special case p=2. We then give an intrinsic characterization of
the elements x in H, for which
. 1im NTnx" = p%"xu .
and obtain various results concerning the structure of operators Tsfg
which satisfy
I7%l= olix]
for some Ne N, xti.
For every p>0, the classes f%), turn out to be balanced, absorbing sets
of operators which contain the zero operator, and hence a generalized

Minkowski functional may be unambiguously defined on them by



w(T)=inf{a>0:-]lTeg}.
P o p

This functional, usually referred to in the literature as the Holbrook
radius of T, plays a very important role in the study of unitary

p-dilations, since the elements T of 14 are characterized by
p .

wi(T) < 1. |
The basic properties of theé Holbrook radius for a bounded operator are
studied in Chapter 3. A number of new results concerning the Holbrook
radius of nilpotent operators of arbitrary index greater than 2 are
obtained which enable us to have a clearer view of the general structure

of the ‘Q classes, in a unified framework.
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. ORIGINAL RESULTS

(i) Theorem 1.1. The equivalence of (iii) and (iv) is not
in print.

(ii) Theorem 1.5. Part (iv) is new.

(iii) Corollary 1.6 is new.

(iv) Theorem 2.1. Most of this result is contained in [8]
and [27]. The proof given is new and was prepared
without k;owledge of the work of Eckstein and Mlak.

(v) Corollary 2.2. The case p = 2 is known.

(vi) Corollary 2.4 is new.

(vii) Corollary 2.5. New proof.

(viii) Corollary 2.6 is new. |

(ix) Theorem 2.7 is new.

(x) Corollary 2.9 is new.

(xi) Theorem 2.10 is new.

(xii) Theorem 3.1. New proof.

(xiii) Remark I on p.82 is new

(xiv) The proof of Lemma 1.3 given on p.83 is new.

(xv) Theoremé 3.4 and its generalization Theorem 3.5 are both
new.

(xvi) Proposition 3.6 is new.

(xvii) Theorem 3.7 is new.

(xviii) The computational results in the Appendix are all new.



NOTATIONf'ANDf‘TERMINOLOGY'

[y

Throughout this thesis, the letters H s, K , étc. will stand
for infinite dimensional separable complex Hilbert spaces, unless

otherwise stated. As usual, (. , .), or (. , .) will denote the

R
inner product on tﬁe Hilbert space H. . Vectors will be denoted
by x ,f , g, ete..
In what follows we shall be concerned with operators, that is
bounded linear transformations from a Hilbert space into itself.
Operators will be denoted by capital letters T , S , etc. , while
¥ (H) will stand for the algebra of opefators on a Hilbert
space H . |
For an arbitrary operator T in ¥ (H) we use the standard
notation and terminology , as well as the following : spectrum spT,
approximate point spectrum apspT, spectral radius r(T) = sup{[A]:1espT},
numerical range W(T) = {(Tx,x) : ||x|| =1} and numerical radius
wW(T) = {sup|r] : A eW(T)} .
Following Sz. Nagy and Foias we introduce the important concept of a

unitary p -dilation. We say that an operator T in B H)

possesses a unitary p -dilation for some p>0, if on H

™ =pPU" , n=1,2,...,

where U denotes a unitary operator on a Hilbert space K containing
H as a subspace, and P 1is the orthogonal projection from K onto
H . We indicate this by Te E’p (H) or simply Te ‘Qp » when there
is no need for reference to the underlying Hilbert space.

The theory of unitary p -dilations for operators was developed to
provide a unified framework for two classical dilation theorems which

.

may be stated as follows :



1. Te \81 iff T 1is a contraction (i.e. ||T|] s_l) ’
and

2. Te €2 iff T 4is a numerical radius contraction

(i.e w(T) £ 1) .

The first of these results is due to Sz. Nagy and Foias
( "Sur les contractions de 1' espace de Hilbert ", Acta Sci. Math.
(Szeged) 19 (1958), pp. 26-46.) and the second to C.A. Berger

( "A strange dilation theorem", Notices A.M.S. 12, 590 (1965). )



CHAPTER 1

. THE BASIC PROPERTIES OF THE tg; CLASSES

In this Chapter we present a unified treatment of the fg;
classes p>0, consisting of operators possessing a unitary
p-dilation. Theorem 1.1, gives necessary and sufficient conditions
for an operator T to belong-to a.'éa class for some p>0.

The properties of such operators are then shown to follow
immediately from the definitions and Theorem 1.1. We then obtain
some of the ? topological " properties of the é; classes

and we conclude this Chapter by proving that an operator

possessing a unitary p-dilation is similar to a contraction.



Let T be a bounded operator on a Hilbert space H and let p >0.

Tﬁe following theorem gives necessary and sufficient conditions for

T to belong to \ep(H) .

THEOREM 1.1 [35], [yol

The following are equivalent :

(i) Te \gp(H)

(i1) (p-2)]|zTh || - 2(p-1)Re 2(Th ,b) +p||h[|?2 0, heH, |z]

: (o-2)||Th |2 - 2(°-1) Re z(Th,h) + p||n||22 0, heH, |z]
(iii){ |

r(T) < min{l,p}

(iv) || Tie-1) T-p2zI} 2t |<1, |z| 21.

(-2 [ITn [|2-2 [p-1] [(Th,n)| +p][n]®2 0
(v){

r(T) < min{l,p}

PROOF

in

The proof of the equivalence of (i) and (ii) can be found in [42],

Chapter I, section 11, Theorem 11.1 .

(i1) => (iii)

It is clear that (ii) dimplies the first part of (iii) . It thus

remains to prove that when (ii) is satisfied, then

r(T) < min{1,p}.
We in fact show that (ii) implies :

r(T) 1, p>0

and r(T) £p, O0<p <1
and this is clearly equivalent to

r(T) < min{l,p}, p > 0.



Rewrite (ii) in the equivalent form
P ‘ 2
Re ((I-2T)h,h) 2 (1-35) |[(I-2Dh [, heH,|z|g1, (1.1)
and assume first.that
r(T) > 1.

Then we can find yu € spT! , such that

lu] = o(D) > 1, (1.2)

Since p is in the boundary of spT ,u must be an approximate
eigenvalue of T, ([17], problem 63) that is, there are unit

vectors hn inH, n=1,2,... , such that

g, = (T-uDhy+0 asn+= - (1.3)
Let now

0<eglu] -1
and

_ l+e
Z - -
H

Then, clearly

|zl &1
and

(I-2T)h, = - eh, - zg -

(1.1) with h = hn s N =1,2,... , then reads :
. P 2, .5 : 2 2
- e-Re(h,zg) 2 (1-3) {e”+2Re( h ,2g ) + |z] ||gn|| }.o (1.1)
Letting now n -+ e« in (1.4), it follows that

“e':‘(l-%)EQ,



or equivalently, that

1

(1-5)s-¢ (1.5)
and this inequality becomes false if we choose € sufficiently -
small if p > 2, and is never true when 0 <p < 2, since €>0 -
Thus
r(T) g1, p>0. . (1.6)
To prove the second assertion, namely that
I‘(T)S,P, O<p<l,
assume as before that
r(T) >p, O<p<l.
Then there exist a sequence -{hh}n:l of unit vectors in H, and
p in spT ,' such that
lu] = o(T) > p » (1.7)
and
g, = (T—uI)hn—>O as p+~ .
Let now € be such that
0O<eg |ul -o " (1.8)
Then
e+p-lg|ul-1=r(T)-1<0 (1.9)
1
as in any case, r(T) &1 by (1.6) .
Put
5 = 2XE | (1.10)



Then,
|| 5'1 by (1.8),
and
(I - zT)h, = - (e+p—l)hp4- z28 s D = 1,2,... ,
(1.1) now with h =h_, n=1,2,... , and z as in (l.lO)‘

reads :
- (e +p-1) —Re(hn,zgn) 2 (- %){(e+p-l)2+2(e+p-l) Re(hn,zgn)

¢ [22 [, 1123

Letting n » e in (1.11), it follows that

- (e+0-1) 2 (1 - §) (e +p-1)?

or equivalently , since € +p-15 0 by (1.9), that
(l—%) (e+p-1)21

or what is the same thing, that

e+p-~12> 7= .

But, as O <p <1,

2
2-p >1,

and hence

e+p-1>1-

The inequality given by (1.14) is thus seen to contradict (1.9),
whence

r(T) <p , O<p<ly

as required.

(1.11)'

(1.12)

(1.13)

(1.14)



The implication (ii) => (iii) has thus been established.

(iii) => (iv)

Rewrite (iii) in the equivalent form

{u (o-1T - pzTh||z I, het, |2] =1

r(T) < min {1,p} , (1.15)
We have :

r((p—;i—)—!) <1, p>0, |z] =1 . ~ (1.16)
as l1-p <1 T if 0<p<l
and el g if  p21
and r(T) < min {1,p} .

Hence the operator
= -1 _
c(z) =T {(p-1)T-p2zI}~, |z| =1,

exists as a bounded operator and (iii) is seen to imply that

lecz)n |l < vl hen, |z =2 . (1.17)
Also, as
r( ("p;—l)T) <1 if |z] 21, (1.18)

C(z) 1is an operator valued, analytic function of the complex

variable =z, for |z|> 1,

and C(z) 0 as z +ew ,

Hence, an application of the maximum modulus principle for analytic



functions of a complex variable, gives:

Il C(z)h- | = IT{Cp-2)T-»p 21} 1h <l h‘H, heH, |z _;_1 . (1.19)
Thus, (iii) implies that

It (-7 -p21 h g lInll, heH.' lz] 21,
and consequentiy that

I T {G-1)T-p2z1} L |21, |2] g; | (1.20)

Hence
(iii) => (iv).

(iv) => (ii)

(iv) is easily seen t6 be equivaient to
lzTCC-1)zT -p1Y gl llglls |z] <1, geH , (1.21)

and hence, since the operator
' -1
{(p-1)zT - pI}

is in particular 'onto' H, it follows that

lzth|l = |l (e-1)zTh-pn ||, |z]

| )

1, heH, (1.22)

and (ii) is easily recovered from (1.22) after some very obvious

calculations.

Thus, (iv) implies (ii) -
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(iii) <=> (v)

(iii) => (v)

N

M if p2>1

ﬁet =.
|(Th,h) ]

and z = =(Th,h) if O<p<1l,
|(Th,h) |
in (iii) if Tnth

(1f (.Tﬁ,ﬁl =0, then clearly . (321] and Cyl. are equivalent) '

(v) => (iii)

Observe that if |z|=1 ,

~ |{Th,h)| < Re (zTh,h) < [(Th,h)|, heH (1.23)
and hence, if p>1 and (v) holds, that is
(0-2) ||Ta||% - 2¢p-1)[(Th,0) | +p[n|?2 0, hen
{ r(T) <1
then also,
(p-2 || [|? - 2(pfi)Re(zTh,h)+ p[[hll2 20, heH, |z[=1
{ r(T) £ 1

holds.

On the other hand, if 0< p <1 and (v) is true, that is
{(9-2) lltnll? - 2¢1-p)|(Th,0)| +pl|h]® 2 0, hen

r(T) & p y

then as
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- 2(p-1) Re z (Th,h) + 2(1-p)[(Th,h)|
= 2(1-p) [Rez (Th,h) + |(Th,h)|1 20,

(0-2)|| Th 1 - 2¢p-1)Re z-(Th,l'l) + p[lt{ll2 20,heH, |z|=1"
{ r(T) g p

is also true,

Hence, (v) => (iii), and the proof is seen to be complete.
OBSERVATIONS )
Let T be an operator of class ©p, for some pp0, on a Hilbert

space H.

Then with the usual notation:
™ = pPUR, "0 =1,2;0i0 o

Thus, for any h, h' e H and every n = 1,2,... ,

fl

(T"h,ht) = (pPU"h,h')=P(U"h,PhH')

(®h, ph') = (h , p U h")

(h, pP uiht)

(Ph , pU%"h)

On the other hand, as

(T"h,h') = (h,T*"h'), h,h'eH, n = 1,2,0.. ,
it follows that
%% = pPUS, " n = 1,2,.0.

Hence, the '12p classes, for p>0, are ¥%-closed. More precisely,

if Te QQ(H), for some p >0, then T¥¢g ﬁp(H) also.
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2. If Te Qp(H) for some p >0, then since any power of a unitary

operator is again unitary ,
k f? . .
T e ©p(H) for any positive integer k.

3. In the course of the proof of theorem 1.1, we obtained that for an

operator T of class fgp(H) ,

r(T) 5 1.
This result can also be obtained as follows { 1f Te ﬁgp(H) for
some p >0, then, with the usual notatiqn

™ =pPU%, n=1,2,... , and hence

(T [ =plle® (e, n=l2ii. .

That is, an operator of class @p s 1is
POWER BOUNDED.

In particular,

1 1
™7™ <o ™, n=1,2,...,

and consequently

1 1
r(1) = Lim [T ™ c1mp/® = 1.
n->w 1>

Thus, an operator possessing a unitary p -dilation for some p >0,

has spectral radius not greater than 1. Later on we shall show by means
of a counter example, that thereb exist power bounded operators not
belonging to any gp class , but that if T 1is an operator with
spectral radius strictly less than 1, then T belongs to ep s . for

some p sufficiently large.
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4y, If Te gp(H) for some p >0, then, any restriction of T to
an invariant subspace M of H 1is also of ep class . The
validity of this statement follows immediately from proposition (ii)
of theorem 1l.1., for if (ii) holds for any heH , it will in
particular ﬁold for any h belonging to an invariant subspace M of T .-
Thus, if Te \Qp(H) and M 1is a subspace of H invariant under T,

4

then

T] e 89 = \gp(M)‘ .

M

5. Proposition (iv) of theorem 1.1l. is due to Chandler Davis [6] and

will be referred to as the 'C. Davis criterion for membership in a

\gp - class ".

6. The classes ‘89 s P>0 are cdlosed under unitary equivalence.
More precisely, if S and T are a pair of unitarily equivalent

operators, then

Se €p implies Te ‘gp .

PROOF

Let § = U_lTU for some unitary operator U, and suppose Se gp,
for some p>0 .

Then, according to proposition (iv) of theorem 1l.1.,

lstp-1)s -pzT} Y|<1, |z| 21.

=

But, S = U—lTU , and hence ,

= ]

Notrute-1) v Tu-pz1¥ 1| <1, |2] 21 -

or equivalently ,



1y,

IIU'l[’_l‘{(p—l)T-pzl}'ljullgl, lz] 21,

and as
la{=1l5 [[, for any pair A, B of unitarily equivalent '
operators ,

T {e-T-pz13T |1, |z] 21,

and hence ,

Te gp.

The substitution p=1 in (iv) of theorem 1l.1l. yields

T .
Il iy
N

1, sz

iv

which is clearly equivalent to

il <.

Thus, the class \‘31

Te ‘Ql <= ||T || & 1.

That is €1 consists precisely of contractions.

On the other hand, substituting p=2 in (ii), it follows that

Te 82 <=> Re z(Th,h) £ “h”fheH, |z] 1,

and as the last inequality is clearly equivalent to
2
|(Th sh)l = ”h“ » hel,

it follows that the class ‘82 consists precisely of all numerical
radius contractions, that is operators of numerical radius at most

one.

admits the following very simple characterization:
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15.

Thus,

Te €2 <=>w(T) g 1.

Substituting T by uT, where u is any complex number of
modulus less than or equal to one, in (ii) of theorem 1.1., it

follows that if Te 14 p(H) for some ppOQ, then so does zT. .

for any ze€ with [z| g 1.

The condition.

r(T) £ min {1,p}
in (4iii) and (v) is indispensable.
For, the operator

T=B—g—2—I,p>2

can easily be shown to satisfy the first part of (iii) and (v) but
clearly not the second, as r(T)>1 for p=>2. On the other hand,
T cannot belong to any gp class for p>2 as it is not in

particular power bounded.

Proposition (ii) of theorem 1.l. may be rewritten as follows :

o [ ||zTh||2- 2Re z(Th,h) + 1)1 1 + 2 [Re z(Th,h) - ”Th“2]>0 »heH, |z]<l.

As the first bracket is clearly non-negative, being equal to
lzm-n|?,
and the second bracket is independent of p , we deduce that

Qpc_: \gp' if p<p! .

That is the classes 8 p, P>0, form a monotonically increasing

family with respect to set theoretic inclusion as p increases.
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Letting now T be the operator
C »p
00
on some 2-dimensional Hilbert space, it follows from the C. Davis

criterion, for example, that

Te %p for all p»0

But, as [[T[ =p, T cannot belong to any Gaclass with ‘¢ap.
(cf. (iv) of theorem 1l.l. again),

Thus, if the underlying Hilbert space is 2-dimensional the inclusion
o < Bp' for p<p!

is actually strict.
Later on we shall show that this inclusion is in fact strict in

every Hilbert space of dimension at least 2.

We now return to the remark made in observation 3, and we shew that
if T 1is an operator with spectrum situated in the interior of the
unit disc in the complex plane, then T belongs to f?p for some

p >0 sufficiently large.

PROPOSITION 1.2 [22]

Let T be an operator on a Hilbert space H, with
spT & D) = {zeC : |z] < 1}

then

Te f?p for p 1large enough

PROOF

Observe that if spT €D then

l’

| (x-zDh {2 e [[n]l | :
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for some €>0 , all ze € with lzlgl and all heH.

But fﬁen,
(p-2) [[(x~zmh [[2 + 2Re ((T-2DIh,h) 20, |2] £ 1,heH,

if p is sufficiently large.

As the-last inequality is clearly equivalent to
(0-2) || zTh [[2 - 2(p-1)Re z (Th,h) + o || [|%5 0, |z] <'1,heH

which is in turn equivalent to
T e f?p .

it follows that Te f?p for p 1large enough .

Thus, if spT,c;‘-‘Dl ’

then

T e \63-»= U \e;p .

p>0

Let now T be a bounded, invertible operator of norm greater than 1,
on a Hilbert space H, and consider the operator matrix S on H ® H

given by

It is a trivial matter to verify, that

s2=1 on HH,

and IIS " »1,

We show that S cannot belong to any f?p class with 0O<p < =,

PROOF

The following lemma, is essential for our purposes. : .
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Lemma 1.3. [35]

Let T be an involutive operator of class gp , for some p>0,
on a Hilbert space H.

Then, T 1is a symmetry, ie. T =T# =T ~ .,

Proof of Lemma

Observe first that as a result of T2

I, we have || T || 21 and
hence p2> 1, - in view of the monotonicity of the gp classes.

Secondly, we note that, as

r(T) =1,

the operator
I +2zT

is invertible for any ze € with |z| <1.
Thus, if h runs over H , then so does h' , where (I+zT)h*=h ,

Now, since Te €p .
(p~2) [| CI ~zT1h [[>+ 2Re(T ~2T)h,h) 2 0, BEH, [z] a1

=

Hence, with h = (I +zT)h*, [z[ <1, we have

(0-2) || (x-227%)n' ||? + 2Re ((T-22T?)h*,(I+2T)Ih') 20, hteH, |z] <1
and by continuity

2T2

v
o

(p-2) || (T-2°T° )n ||2+2Re ((1-221%)n' ,(1+ zD)h") 2

for all h'e H and all zeC with [z]| g1 .
But T2 = I, and hence

2
(p-2) |1-22%| ||n' |?+ 2re (1-22) ||nt|+

2Re (1-22)(h',2TH') 20, h'eH, |z| <1.
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Taking z = eie » 8e R, ||n'|]=1, it follows that

2

(p=2) [ (1- cos28)? + sin? 201 + 2(1 - cos20) + 2Re (e 1%~ 1) (n',TH)> 0,

or equivalently »

4(p-1)sin@ + 4Im(h', Th') sin@ », O

Ay

for all 6 and so T is Hermitian .

The result now follows.

Returning to the proof of the theorem, observe that if S were to
belong to some f?p class, (p 2 1) then || S || would have to
equal to 1 in view of the lemma.

As this clearly contradicts the original assumption we conclude that -

S ¢ ﬁgp for any p»O.
In particular, the matrix

o Y2

-3
1]

2 0

which satisfies the condition for the validity of proposition 1.2.

cannot belong to f?, = U \e?p .
p>0

On the other hand, it is a trivial matter to verify that T is
power bounded.
In fact
0 . 2 if n 1is odd
[ AR
’ 1 if n 1is even .
Thus, the matrix given above, provides us with an example of a power

bounded operator not belonging to any fgp class, O0<p<e ,
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* Nevertheless, the following theorem holds.

Theorem 1.4, [22]

fg~»= U %gp

prO

» 1is dense (in the uniform operator topology) in the

family of power bounded operators.

PROOF

Let T be a power bounded operator on a Hilbert space H,

Then, in particular
r(T) g1,
For any O< s <1 define the operator TS on H, by :

Ts = sT

It is then clear, that
r(Tg) = sr(T) g s <1,
and hence

Tg € é;~ = U fgp s by proposition 1.2.
p>0 '

On the other hand, it is equally clear that

T.s -+ T uniformly , as s =>1 .

The proof is thus complete,

We nowijustify the claim made in observation 10, namely that the
classes fgp , p>0, form a strictly increasing, with respect to set
theoretic inclusion, family of p , provided that the underlying
Hilbert spaces are at least 2~dimensional.

The proof of this statement is proposition 11.3. Chapter I Section li

of [42] and is included here for the sake of completeness.
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To this end, let H be a Hilbert space with
dimH > 2 .

For each p >0, we construct an operator 'I“J on H ,

such that Tp € 62 ’
and |l Il = ¢,
Let

{¢l’¢2’wv (ve)}

be an orthonormal basis for H, where § is an arbitrary indexing

set that could be empty, and define the operator Tp on H as follows:
Tp ¢y 0, s Tpdy =0, Tp¥, =0, vVeQ .

Thus, T, is the direct sum of the operator

0 O : '
on M = lin[¢., ¢,]
0o 0 1272

and the zero operator on N = lin[d’v; veQ].

It is evident that we have :

lToll =p and T,"=0, nz2.

Let K be a Hilbert space with dimension

N . dinH

and choose an orthonormal basis for K.

Its elements can be arranged in the following way :

{¢r;’(m =0, £1,...) 3 w\')m (veQ, m =0, £ 1,...)} .
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We identify

¢l' with ¢l’ ¢2' with ¢2 and wv‘o with lbv, veR.

This identification defines a canonical injection of H into K
as a subspace.
We next define a unitary operator U on K as follows i

up ' =

1 ! = -
m ¢m+l ] U‘p\)m = w\),'ﬂ‘l‘i‘l 9 veg 'Y m = 0, + l,ooo .

If as usual P denotes the orthogonal projection of K into H, then

n

PPU, PPéy =0, pPUY = pr\',,l =0, veQ,

and for n > 2 ,

n .
pPU d)i = pP¢J!.+n =0, 1i=1,2,...,
pPUnwv = ePY) =0, vea.

Thus

pPU"h = T,"h, n 21, h= 6,0, ¥y VER .

But, as ¢l, 59 wv, vef , form an orthonormal basis for H, the
same relation must hold for any heH , Hence, U as defined
above, is a unitary p-dilation of Tp on K.

On the other hand, as || Tp | =p , it is quite straightforward to
show, ‘using the C. Davis criterion for example, that T, cannot

belong to any g o - class with ¢<p
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The next theorem gives some information about the 'topological'

properties of the ep -~ classes

Theorem 1l.5.

(i) The classes \gp are closed in the strong operator topology.
(ii) The classes ‘gp with O<pg 2 are convex.
(iii) ‘@.. =U gp is not convex.
p>0
(iv) For each p >0, gp is a balanced , absorbing set, and
(v) When Te ‘80} s then’
E=(pr0r1Te Go}b - -
is a closed subset of (0,2) with respect to the usual topology of R.

PROOF

(i) follows immediately from proposition (ii) of theorem 1.1l.
To prove (ii) let T,Se ep(H) for some p, 0<p £ 2.

Then

Re ((I-2zT)h,h) ; (1- %) [¢I-2T)n ”2 s and
Re ((I-2S)h,h) 2 (1- %) JC1-25)n 2,
for all heH and all zeC with |z| < 1.
For ae€ (0,1) consider the operator
aT + (L-a)S.

Then, if heH and |z] £ 1, we have :

Re [(I-z(aT + (1L-a)S)h,h) ] >

-8y [a-zmnl? + - lT-zsm P 2
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Qa --—‘2’. y | a(I-2T)h + (1-a)(I-25)h “2 =

(@ ~5) || (T-zat + 1-ads)n[|?,

where we have used the fact, that if

Ay,u >0 with A +u=1, then

A xZ +ully 172 [1ax +w |2,

for any pair of vectors x and y in a Hilbert space. Hence, if
T and S belong to ep(H) for some O<p<2, then so doés
oT + (1-a)S, for any ae(0,1),

For the proof of (iii) observe that the operator

0 0

p O

of observation 10, and its adjoint, both belong to ep s for any
p >0, and hence if Qe were to be convex, then

0 ».

N =

ReT=%(T+T*)= .
, p O
would have to be in ‘@,, also .

But this is clearly a contradiction, the operator
Op

% not being, in particular, power bounded.
p O

This establishes the non-convexity of €.
To prove (iv) , observe that for any p> O, ‘Qp is clearly a
balanced set, in view of observation 7.

On the other hand, if T 1is a non-zero, bounded operator on a
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Hilbert space H, then, since has norm 1, —T———e el
- [l Nt

T

by observation 1, and hence
[zl

€ €p for any p>1 by virtue

of the monotonicity of the ‘ep ~classes, If now O<p<al, 'ﬁe ’
show that k

2-p) |7l
To this end, observe that for any z eC with [z] %l ;

- (D-l . T ) = l"‘P I"(T) < 1-p

== <1
20 zlltll 2p |of Il T 2
and hence the operator
(p<1)T -z T ¥
(2-p) |[z]|
ié boundedly invertible, with
-1 L] n
(LT gy oLy ( -1T
-t n=0 (2-p)z|T||
the latter series converging in norm.
In particular
lr pT (‘(p-l)PT -0zl ) u
(-0t || -7l
3 1 T ¥ (-7 ] “
(2-p) ||| Z 070 (2-p)z|[T]|
- n n+l - _. 1
L1 I ki | PR N S B
(2-p) |||l n=0 2-p Il 2-p n=0 2-p
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_ 1 1 _ L _
- . l_p - "'lo
2-p Eﬁz$ 2-p(1-p)

Tﬁus, for any 0 @ p <« 1, " the operatayr.

;E;
(ZQPI[[T[I.

. T satisfies the C. Davis criterion for

membership in a fgp-—class, and the proof is seen to be complete.’
Finally, to prove (v) let p¢E.
Then

(p-2) || (T-2T) b |12 + 2Re ((I-2T)h,,h ) <0

< 1, and this inequality remains unchanged

for some hqeli, |z|
if p 1is replaced by p+e with e>0 sufficiently small.
Whence, the complement of E is open and consequentiy E is closed

in (0,=).

Associating now with every non-zero bounded operator T on a

Hilbert space H and every p >0 the set

we have the following very important corollary to the theorem.

- COROLLARY 1.6.

For an arbitrary but bounded non-zero operator on a Hilbert space H,

and any p>0.

W £0 .

psT

PROOF

We distinguish the two cases :

(a) Q<p<1l

and (b) l<cp <=,
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N

In case (a), as it was shown during the course of the proof of

‘. Theorem 1.5., 289 . ”T“ € €p, and hence‘
T
2~p ;
228 || ew, g

and similarly in case (bl

['[T [[ ,awp’:[.

We now prove the following 1

Theorem 1.7,

Every operator T in 178 (H) is similar to a contraction.
PROOF
The following lemma is crucial for our purposes,

LEMMA 1.8. [34]

Let T be a bounded operator on a Hilbert space H. Then, a
necessary and sufficient condition for T to be similar to a
contraction is that there exists a contraction C on a Hilbe;t
space K and bounaed operators A € A(H,K) and B e ‘f5(K,H)

such that

2
ngollTn—BCnA” < . (1)

Proof of the lgpma

Sufficiency

If Te B(H) is similar to a contraction C on a Hilbert space K,

then there exists an invertible opérator X € ¥ (H,K) such that

r=xtcx . .
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But then

™= xtcx, n-=o0,1,2,...
and ﬁenCe,'letting

B=x' and A=X,

the condition is seen to be satisfied.

Necessity

Suppose (I) holds.

It will be sufficient to show, that there exists a norm on H
equivalent to the original norm, with respect.to which T 1is a
contraction,

Define for all heH ,

|h|2'=inf{|| > anhn |]2+ z -||hn||2: I T h_=h}
n>0 n>0 n20

the infimum being taken over all sequences of vectors {h }
: n>0
where all the hn eH are zero, except a finite number of

them.

It is clear that ot

|lh +h'| < || + |n'], hyh'eH, and

|a11| = |a| |h| s aeC, heH .

Thus, the application

h - [n]
is a seminorm on H .
Moreover, as

h=h+T.0+ «c0y

24




29.

we have
el Hanl®+ In |,
and hence .
SN PAUTY LFSLI Y B
Also, if
h=.-F 1%n ,
ng;O n

the Schwarz inequality gives ;

Iall =l = Tn_|l= |l = Bc"h_+z (T"-BC"A)n_||
n>»0 n n2 0 n n»0 n
< sl llz c®an fl +z [If"-Bc®all [In]
n20 n>0 ’ »

. 1 1 .
sdllsl®+ = [™°-BcmalIH72 |l = cPan, 17+ = o 172
n>0 n20 n>0

and hence, taking the infimum of both sides over all finitely

non-zero hn’ n =0,1,2,... , it follows that

’ 1
In ]l s I8+ z [IT™-Bc”all®)7’? |n] .
n>0

Thus,

h » |h

is a norm on H, equivalent to the original one, and so, H is

complete in the new norm.
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Furthermore, if h = & ™ hn s it follows that Th = & Tn.ii ‘

- 9
ngo n&l n-1

and hence, since 'C 1s a contraction, ‘we have.

Iml?c iz an 1%+ & fIn 07
n»1 n-1l n»1 n-1
2
=llcz ®an |12+ = |In_ |
n>0 . n20
sz . can |12+ = |In || < n]?.
02,0 ? na0 |

Thus, T is in fact a contraction with respect to the new norm.

We conclude the proof of the Lemma by showing that I-l is a Hilbert
space norm, that is |-| satisfies the parallelogram identity.
To this end, let € > 0 be given and h, g€ H.

We prove that
In+g|%+ |n-g|?=2 (|n| + [g]® .

There exist finitely non-zero sequences {hn} a0 30d A{gn}n>0
for which
Do ngll?+ Iz chang (12 < Inl? ve
n2>0 n>0

and

2 2 2
g ll® +0l = cPag II”<lel” +e
n>0 n2>0

where of course
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Hence,

2 ' 2
el Pag

’ 2.. 2 n
i 15+ e 1+ 1l = cPan ]
0 n ®n n> 0 n I n>0

nz

2 1
I h + + = T h -
50 I n T &, | ) n3.0 I n_ &n

2
I

1 n 2 1 n 2
+=> ||z cath_+g) ||+ 5 ||z cC"Ah_-g)
2 n>0 n" &n . 2 130 n_ &n ”

< )%+ gl?+2e .

Moreover, as

it follows that

b +g|?2+ |h-g]2 = 2(n]%+ |g]D .

The reverse inequality being easily obtained replacing h+g by h
and h-g by g , we conclude fhat H 1is an inner product space
with respect to the new norm and the proof of the lemma is seen to
be complete. Returning to the proof of the theorem now, we see
that since Te fgp, there exists a Hilbert space K containing -

H and a unitary operator U on K such that

™ = pP U, n=1,2,... ,

PH denoting as usual the orthogonal projection from K onto H.

If we now let

C=U, A be the canonical injection of H into K and

B=p Ps then all the summands in (I), except the one corresponding
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to n=0 vanish, and as this non-vanishing term contributes a
finite number to this sum, we conclude that T is similar to a
contraction in accordance with the lemma.

" As a result of theorem 1.7. we have the following :
g © ? { Operators similar to contractions }
gA{ Power bounded operators }

the inclusions being strict, for the operator
o 12
2 0

is similar to a contraction and is power bounded but (cf. Lemma 1.3),
Tyeuh
On the other hand, Foguel's operator provides us with an example of

a power bounded operator, not similar to any contraction.

NOTE

Foguel's operator is defined as foliows :

Let Ho be a Hilbertspace with an orthonormal basis'{eo,el;ez,...},
and let J be an infinite subset of the natural numbers N » Wwhich
is 'Sparse' in N , in the sense that if 1 and jedJ with _:'L<.:'| .
then -

2i < j also .
(e.g. J={3":tnepgl)

Let Q denote the orthogonal projection from HO onto the span of
the ej's with j éJ’, and consider the operator matrix A on

Ho & Ho given by,
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%
| U @
A = -
. 2
0 U+
'U+ denoting the unilateral shift on Hy - A trivial induction

argument vreveals that

*n

Y ,
A" = , N =0,1,2,... ,
T1

0 U+

i

n .
= = %N~1
where Qo 0 and Qn+l L U+ QU+ s

i=0

It can be shown that A as defined above is a power bounded
operator not similar to any contraction. For details we refer to

[13], [34] and [18] for a very elegant proof.
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CHAPTER 2

CONVERGENCE PROPERTIES OF OPERATORS OF CLASS %.

In this Chapter we are mainly concerned with the convergence
properties of the iterates of an operator T of class gp(H) .
More precisely, in Theorem 2.1 we prove that if T is an operator

of class €D(H.) for some p >0, then the sequence {f TDX“}n:I Jis

convergent for any x in H..and moreover, i- __

 lim ”E‘nx e L, ||| with 0c L 2 p? . An intrinsic characterization
n >

- 1
of the elements x of for which L, = p? then follows, and, various

Corollaries to Theorem 2.1 are discussed. We then obtain some results

concerning the structure of operators T of class \gp.( Hy satisfying
N - gt
T |l=ellxll, Nez" xe H,

and conclude this Chapter by exhibiting an operator T of class

€ p(H.) s P21, and vectors x in the underlying Hilbert space
: 1

for which 1lim “ ™% “ assumes any value between O and p* ux”

’ n->e
inclusive.
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THEOREM 2.1

Let T be an operator of class gp, for some p > 0, on a Hilbert
space H.

Then, for any xeH, the sequence

X ]
{l ™« |} g
‘n=1
is convergent, and moreover
‘ . ~0if 0<p <1
lim || ™x | = {
e Lx|| x || if 1cp<e

with

Furthermore, for p 2 1,

. 1/2 '" .
b, = o2 < || % = o2 [Ix]l yn = 1,2,...

<=> T*’ _Tnx = pX ’n = 1'2’00- .

PROOF

r

Let x be an arbitrary element of H, which without loss of generality
we may take to be of unit norm. Our method of proof extends the
technique used by M.J. Crabb in [ 5] for proving the special case of

the theorem corresponding to p =2.
We distinguish the following cases :

(a) 0<p<1l

and
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.If O<p<1l and T ¢ @p, then as

Nt ll<p <1, n=1,2,..., (cf. observation 3)

we have
It fl= I g It I ™xllee Ix]< [ x|

and hence

lim || x| = 0, (2.1)

n+w ,
the sequence {|| ™ x || -°1 being strictly decreasing and consisting

n=

of non-negative terms .

If p=1, then by a similar argument, {||T" x|} is a
n=l

1

non-increasing sequence and

lim [[Tx|[|=L with 0L <1. - (2.2)

e
. S0, assume p > 1. ‘ 7
Then, since T ¢ €p » by Theorem 1.1 we have:
(0-2) || zTh]|? - 2(p-1) Rez(Th,h) + o]l h 1220, hew, [zl 1 (2.3)
In particular with z = lv s

(0-2)|| T ||% - 2(p-1)Re(Th,b) + p|[n[|°20, heH. " (2.4)

Taking

n
= + .o + 0 Tx
h aox+a1 Tx ' n

with

a; e R, i=0,1,2,...,n in (2.4), it follows that
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+1 2
(p-2) ] @ TX + oo + unTnx [“-

: n+l . n
2(p-1) Re (aoTx+ e ta T X, aX+ ... .-l-anTx) +

n
) ||aox+...+anTAx||2;,0,,ai,elR,O<i=<_n. (2.5)

But, by observation 8,

T e Qp <=> e:Le Te\ep, for any 0 ¢ R and every p >0, and
hence we may replace T by eleT and (2.5) still holds..'v_ - Integrating
the resulting inequality with respect to 8 over [0, 2T)now, it

follows that.

: n+1 ]
(p-2)[ac2> Il T= "2 + oee t aﬁ [| T “2]

- 2(p-D)la_a. ||Tx |2+ +a__.a ||Tnx 121 + B ) (2.6)
p O LN ) l n .

11 n-

p[ag + uJQ- || Tx ”2+ ces t ur21 llTéx ”2] ;Os’ die’Rs Oii;n ’

and hence after some rearrangement ,

2

[('p—2)ml +p] a

» : 2 1.2
+ [(p—2)m2+pml] al+ .o +[(°'2)mnﬂ +eom Ja_ -

2(p-1) (e am + ... +a n (2.7)

11 n-lanmn

)20, a,e R, 0g1i

<
- [

where we have denoted

||Tix||2by m, for i=1,2,...,n+1.

But, the left hand side of (2.7) is the quadratic form associated with

the real, (n+l) x (n+l) symmetric matrix :
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p+ (p-2)m -(p-1)my 0 O
= (p-L)m, = pmy +(p-2)m, -¢p-1m, ° )
0 --(o—l)m2 pm, + .(9—2)m3 o . '
. T pmnlz + (;>—2)mn__‘l--(p—l)mn_l

O

and as this quadratic form is positive, semi-definite, D the

determinant of the above matrix must be non-negative.’

Expanding now along the last row, we obtain the following recurrence °

relation for Dn :

- 2 2.
D, = lem +(p-2)m 1D _, (p-1)"m D, » B 22
D, = [p + (p-2)m,1 [pm, + (p-2)m,] - (p-1)°m?
1 1 1 2 10
D, =p t (D-Q)ml .

Observe also, that

'

D #0.
o
For, if we assume Do = 0, we would then have
2
p+ (p-2) [|Tx [[© =0
and hence, as this is only possible if p < 2, it follows that :

|| < || = ¢ 5%;)1/2, p <.2.

-(6-l)mn_l bmn_l + (p=2)m_ - (p-1)m

0 f(pvl)mn pm_ + (p—2)mn+l

.
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But, Te¢ f?p s P > 1; and Hence with the usual notation
™ =pPU", n-= 1;2,.;. ,
so that in pérticular :
Pt =0 llpucl] = EDY2
giving

1
(p(2-p)

lpux || = >1, for 1<p<2.

2
yY
As this is clearly a contradiction, U’ being a unitary operator

and P an orthogonal projection, we conclude that our original

supposition is false, and hence

D >0.
o

If now Dn =0 for some n, let k be the smallest suffix

for which Dk = 0.

Thus, k > 0 and

_ 2 2
Depr =7 (L) mpy Dyn
But, D, ., 20, and the right hand side of (2.11) is strictly

negative, unless Moy = o.
Hence, ™o = 0 and consequently

Meei = 0, 1=1,2,ce00 ,
in which case, of course ,

% || >0 as n=>e

and we are done .

(2.10)

(2.11)

(2.12)

(2.13)
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We may therefore assume from now on, that

D >0 for all n =1,2,... .
n
Then, if Dn
a = s N =1,2,... ,
n Dn—l
we have :
o = pm_ + (p-2)m - (p-1)2m2 L n>?2 (2.14)
n n n+l =
n-1
and
2 2
[p +(p-2)m, 7 [pm, + (p-2)m,] - (p-1)"m
@, = 1 1 2 L (2.15)
1° p + (P-2)m, ' ’ :
so that :
(p —ml)2
al - (p—2)m2 =p - ml . : (2.16)
Furthermore, if
Bn e - (p—2)mn+l s, D =1,2,..., . (2.17)
then
Bn+l é_Bn . (2.18)
For,
2
B = a - (p-2)m = pm - (p-l)2 P+l
n+l n+l’ n+2 n+l -7;——-
n
(D-l)2m§+l
e T T 1

a - (p-2)mn+

1
1 "o [dn- (P-l)mn+l]

S

o - (p—2)mn+l =g .
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Now, >{mn§;d. is bounded by definition, and

a <pm + (O—Z)mn+l s by (2.1u)

.

so that {a_} . is also bounded.
n'n=1

° k ®© L) - L]
Hence, as {Bn}n‘l _1is a bounded non-increasing sequence of real

numbers , -
Bn > L' as n+> e 4 (2.19)"
with
, (p-ml)2
L S Bl =p - ml . (2.20)

It thus follows from (2.17) and (2.19), that

- - - 1 L)
@ (p 2)mn+l . L' >0 with n

or, what amounts to the same thing, that

2
m

pm_ - (p—l)2 L _L'3+0 as now (2.21)
n *n-1 :

But the sequence {an¥n=l is bounded, and hence
(pm_ - L') - (p-1)21n 2 ,0 with n. : (2.22)
n n-1 n - .
On the other hand,
: 2 _2
- 1 - - =
(m = L"e , - (p-1)" m

= (pm_ = L"[e ; - (p-2)m - L']+

(pm_ - L[(p-2)m + L'J - (p.—l)z mn2 -

. 2
(om_ - L(B, - L) = (m - LD°,
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so that
: 2
- T, - T.1) - - Tt
(bm -1L') (B _; -L')-(m -L"" >0 (2.22a)
in view of (2.22) .
Consequently, as B + L' and pmn-L' is bounded for all n, it
follows that
mo -+ L' as n+>e - (2.24)
Observe also, that
L' >0
being the limit of a non-negative sequence,vand L' < p from (2.20) .
So,
| %] = n /2 & p1/2 =g
n X

with

and the proof is seen to be complete.

If now, Lx = 91/2, that is L' = p,; then,

B; =p in view of (2.20) ,

© [ [ [ 4
and hence, as the sequence {Bn}n=l 1s non-increasing and moreover

converges to Bl = p, we have

B, =@, - (p—2)mn+1 =By TP, 0 =12, . (2.23)

On the other hand, as

2
m

= - (p-1)2 B_
a - (p=2)m ., =pem - (p-1) 5,

it follows that,
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2
m

pm_ - (p-l)2 2 - s N =1,2,... . (2.2ub)
n an—l

Substituting for « from (2.23) in (2.24)

n-1

we get :

(pmn-p)[p + (p—2)mn] = (p-l)2 n&f, n=1.2.,4y »

that is ,
m =P, n=1,2,00. & (2.25)
Thus,
lim ||Tnx | = pl/2 <=> 1lim m_=p
n->e n->e
, <=>m = Py, n=1.2.... . (2.26)

We now establish the equivalence of

1]
"

1/2
o2 |||

() || | s N = 1,2,0.. ,

and

(B8) T*P 1%

P X, n=1,2,... .

The 'only if' part follows immediately.
To prove the 'if' part.

To this end, we refer to [8 ], where a slight modification of the

argument used by the author, shows that for any xeH

I |+ o1/2 |lax] ,

where Q is the strong limit of the orthogonal projections Qn from

-(n+l+k) H

K onto 471n'= Vv U » K denoting a Hilbert space

k=0
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containing H and U a unitary p - dilation of T on K.
Thus, in particular, Q is gn orthogonal projection with range

v

nm, -
n

Also, as T = pPUn s, n=1,2,... , where P denotes as usual
the orthogonal projection from K onto H ,

we have - if
1/2
1% [[= oY2 |[x]], n=1,2,e0. s

that

Qx = x .

Hence, x¢ n’mn , and consequently
n

xe'Tnn; for all n.
But then, as (see [g 1)
Pf = T*"PU"E , for all fem

It follows that
x = Px = PQx = T#" PU"Q x = T#" PU"x :%:p':nTnx

for all n , and the proof is seen to be complete.

COROLLARY 2.2

Let T be an operator of class €p for some p#1, on a Hilbert

\ ,
space H and assume that there exists a unit vector x in H, such that
N
I =ll=»

for some positive integer N > 1.
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N-
|l

(a) ” T =p 9 k = 132’000, N“l 'y

and (b) T 1is locally nilpotent of index N+l1. at x, “that is

TN+lx = 0 and hence TN+kx =0, k=1,2,... .

PROOF

With the same notation as in Theorem 2,1 ,
™y =P
and we wish to show that :

(a) nlN_k = p ; k = 1,2,-..’N—1 9 aIld

(®) my, =0, k=1,2,... .

To this end, observe that as the sequence {Bn}n:l of the theorem is

non-increasing and moreover converges to a non-negative limit ,

Bn 20 , n=1,2,... , ‘ (2.27)
and hence, as
) 2
B =a_ - (p-2)m =m-(-1)22n—
n  n e ntl ~ P p a
n-1
we must have : 9
2 mn
pm - (p-l) r‘ z 0 9 n-= 2,3,... . (2.28)
n-1
In particular,
2

2
pmy - (p-1) 3 — 20

and hence, since

p(p-l)2 y . (2.29)
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so that

a1~ (p-2)niN ;,9(9-1)2 - (p-2)p?

Consequently, as
By =a, = (p-2)m, 2 p by (2.20)
and the sequence '{Bﬁ}n:l is non-increasing we have in view of (2.30),

P Loy ;- (9'2)"1;45- Oy o = (p-2)mN_ oo

- 1
Lo - (p.—2)m2 =B 2P (2.31)

and hence
o = (p=mg 0 TP, k =1,2,...,N-1 .. (2.32)

N-k
On the other hand, as

2
m

2 ™N-k

ay . = (p=2)m . . =pm . - (p-1)

N-k "N-k+1 N-k CR.

by (2.14), and
Oy op =Pt (p-2)my by (2.32),

we have :
m2
2 "N-k
- (p-1) o+t(p-2)m._ . ’
N-k p+(p-2 mN_k

p = pm

which gives
Nk TP s k= 1,2,0., N-L . (2.33)

Furthermore, as

aN - (p-Q)mN+l = pmN - (p_l) -



2
. = emy - (p-1)? mmf,%m}]
= p% - (p-l)2 0" ”
p+(p-2)p

N
it follows that

By = ay - (p-2)my ) =0 " (2.34)
and conéequently;

Bk = Yyex ~ (P-2)m 0, k= 1;2;..; . (2.35)

N+k+1

by virtue of the monotonicity and non-negativity of the sequence

CI

n n=

In particular ,

Byel = One1 (p_Z)mN+2 =0

and hence 2
‘ 12 TN+l ;
Py 1 (p-1) 3y =0 . (2.36)

Substituting now for . from (2.34) in (2.36), it follows that

N

2
2 "N+l _ , :
PMyy (p-1) (F’_‘?Wﬂ =0. (P#Z) (2.37)

So, if p $ 2,

Myerl = 0 | (2.38)

and therefore,

mN+k = O ’ k = 1,2,000 -. (2.39)

As the case p =2 , has been completely examined by Crabb in [ 5],



48.

where he obtains exactly the same resiilts, namely that

1]
N
L
z-'
"

£ 1,2,..., N-1

TNk

1l
(@]
-
=
|

and My ke = 1!2,... ’

the proof is seen to be complete.
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REMARKS

The case p=1 was excluded from our considerétions for there exist‘
operators of class 81 s satisfying t'ﬁe condition set in the corollary
for some unit vector x and some Ne Z.+, and yet these operatoré are
not locally nilpotent at x. E.g. the identity operator.

If the integer N in the corollary is strictly gfeater than 1, then o
is necessarily greater tﬁan or equal to 1, as the following argument
shows:

Assume that tﬁere exists an operator T of class €p ’ 0 <p<l, on

a Hilbert space H, which is such that

e

7% ll= o,

for some unit vector x in H and some integer N>1. Then, || ™ 20,
and since T is power bounded with |[TX ||<p » k = 1,2,... , it
follows that | |

I 0= o

But then, as || TN“; | T HN s We would have

N N N
I <l Tl <0

0

that is

pﬂpN with 0O<p <1l and N>1.

As this is clearly a contradiction, the result follows. On the other

hand, the operator on 5 (Rz) given by:

0

T =
: P

clearly belongs to €p for any p >0, and in particular for 0 <p <1,

2 | 1 :
and there exists xe¢ R°, ”X” =1, namely x = [0] s for which



< [[= o .

That is, the integer N can actually equal 1.

THEOREM 2.3

Let T be an operator of égp class for some p #1, on a Hilbert
space H, and assume that there exists an element x in H, [|x ||= 1,

wﬁicﬁ is sucﬁ tﬁat
==

then:

(i) T is locally nilpotent of index N+1 at x
(ii) '||'rkx|| = p1/2 s k=1,2,..., N-1,

(iii) The vectors
Xy TR yeeey TNx
are mutually orthogonal (and hence linearly independent)
and

(iv) My = lin[x ,Tx,...,TNx] » the linear span of the vectors

X, Tx,...,TNi, is a reducing subspace of T.

REMARKS

Although assertions (1) and (ii) have been proved in Corollary 2.2
it is our aim here to give an alternative proof using a technique
based on an idea of Berger and Stampfli, [33, Theorem 6, which
leans’much more heavily on the theory of unitary p-dilations.

The special case of this theorem corresponding to p =2, is theorem 2

of [5].



51.

Since Tfe.éﬁ, we have with the usual notation,

191

™ 2pPU", n=1,2,... (1)

In particular

TN:< = pE’UNx

and hence,
o= % ll=o ll2 oIl

Thus lpux|=1,

and this clearly implies that

PUNx = UNx N (*)
U being a unitary operator and P an orthogonal projection.

Consequently,

TNx = pUNx s

and hence
™1y = 1) = pruer™x) = p2 PU . (ID)
Directly, though, it follows from ( I) that

™ty = ppuN ik (III)

so that since 'p $ 1,

if (II) and (III) are to be consistent .
Thus, T is locally nilpotent of index N+1 at x and (i) has been
proved.

Next observe that, if

l1<kgN-1,
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we have:

HTkx ||2 = (Tkx,Tkx) = (p _Pka sPP u*x)

= p2 (p U]fx, ka) = 92 (UN-k P Uk . UNx)

=p pUx, PUlx)

=02 (PN Kp M . ux)

=% o PUN—k(p Pka),,p x)

= % (X%, %) = % (V% V%)
SLgNepn2al 2

=p .

Thus, if 1 <k < N-1
k 1/2
x| = o/
and hence (ii) is established.
On the other hand, if
l<ci<jgN-
we have :

(13x , %) = (pPUx, pPUK) = p2 (PUx , U'x)

= p2 ("t pulx , M) |

o2 (v pulx, P M)

}
o[~

(p PUNV (o PUIx), pUNx)

| o

=1 (Niepdey | )

©

(T, . ™x)

1
o~

©,Tx)=0.

1
|
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since j-1i.21 and T is locally nilpotent of index N+1 at x,

while a similar argument shows that
('I'kx,x) =0 forany k = 1,2,...4 N .

The vectors

X g TXgeney TNx

are thus seen to be mutually or'thogona; _(and hence linearly independent).
If we now let My be the linear span of thesée vectors, it is obvious
that Mx is an invariant subspace of T, by virtue of the local
nilpotency of T at x. To show that it is in fact reducing for T,

‘let a be a vector in H perpendicular to Mx..

Thus,

(% ,@) =0 for k = 0,1,2,e.0, N

and hence, if 1 <k & N

p2(P Uk

(T"x , Ta) %, PUa) = p2(U"x , PUQ

pz(UNx , gk PUg)

ﬂz(UNx , P U‘N_kPUd) by (%)

Wx , ™V KM,

= p (U ) = p(0F 1x, By)
=  (pP Uk—lx 48) = (Tk_lx y O

= 0, since 0gk-1gN-1.

On the other hand, by a similar argument to the one used for proving the

local nilpotency of T at x, and the fact that
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6 = fopo® Ml = o ez o xll= o,
it follows that
0 = 'I°'.‘IN+lUNx = pPU*‘NJrlUNx =p PU*x = T¢x .,
Thus,

(Te, x) = (&, T5x) = 0 .

So, if o 1is a vector in H, perpendicular to &x" then Ta is
also perpendicular to Mx- and this establishes that Mg 1s reducing.
The proof of the theorem is thus seen to be complete. Note also, that

one can easily show that for the same x as in the Theorem

0 if k=0
ety = 4 TN if k=1,2,..., N-L

o ™l ifFk=N.

COROLLARY 2.4

Let T be an operator on a Hilbert space H, which is such that

w(T) = -%7h||TN||1/N for some positive integer N and assume
2 .

that there exists a unit vector x in H such that
%0 =1
Then : (i) T is locally nilpotent of index N+l at x
(ii) ||Tkx | = 2%'%;‘ ||TN I k/N, k=142,...,N-1
(iii) The vectors
Xy TXyiaey TNx are mutually orthogonal

and (iv) M, = linlx, Tx,..., ™x1 is a reducing subspace

for T ,
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PROOF
- : 2l/NT
Let s = TFFTﬁl/N
Then
w(S) =1
and
sl = 2 .

Thus, the operator S given above, satisfies all the conditions

set in Theorem 2.3 , for p = 2 and hence

(a) S 1is locally nilpotent of index N+l at x
(b) ”Skx||= t/? » k=1,2,...,N-1

(¢) The vectors
x',Sx ,...,SNx are mutually orthogonal [and hence
linearly independent. ]
and
(d4) %x = lin[x ,Sx ,...,SNx] is a reducing subspace for S.

But, T 1is a scalar multiple of S, and hence the same conclusions

must hold true with S replaced by T. The proof is thus complete.

The following corollaries follow on immediately from Corollary 2.4

COROLLARY 2.5 [43]

The unique (up to unitary equivalence) irreducible operator T

which attains its norm and whose numerical radius Ww(T) satisfies

wn =],

T=a ' , aetC .
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COROLLARY 2.6

The unique (up to unitary equivalence) irreducible operator T which

is such that T2 attains its norm and whose numerical radius w(T),

satisfies
_ 1 211 1/2
M = 7 |l
is
0O 0 O
T=all 0O s a €.
0 1 O

THEOREM 2.7

Let T be a nilpotent operator of index N+1',

space H, satisfying

N gp= Qe "

and assume moreover that TN attains its norm

a unit vector x in H, for which

N>2, on a Hilbert

that is, there exists

N N
N =0 1=l =1T .
Then :
@ el =l il dl= T 01, 1= 1,2,.00,8
(11) The vectors
% Tx Tix TNx
’ 3 *°c O s *°° N
Izl [l | I |
form an orthonormal set, and
Tx Tix TNx
(111) M, = lin[x, s sus o - s see s 5 1
Il x| |l

is a reducing subspace for T .
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PROOF

The following lemma is essential for our purposes :

LEMMA 2.8

If A 1is a bounded operator on a Hilbert space, with
k k
A" | = Hall

for some positive integer k , then
&™) = lall™, i=1,2,0..0k .

Proof of the Lemma

Let

i
a, = Jlé—lL i=1,2,...

L al®

Then by assumption,

and trivially,

On the other hand, as

N7 I P VTN
1 al® Aty natian T natial

[_J
the sequence '{ai} is non-increasing, and consequently, if
i=1

2<igN-1,

l=a <o

j <0 < 1,

and hence,
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so that

Toat) = (1At s o= 1,245k

and the proof is complete.

Returning to the proof of the theorem now, observe that if

T
then

1S 0= s = 1,
and

st = I

= l .
N
i

Consequently, as S e€l N
i i

ST =PU, i=1,2,... ,

where U 1s a unitary operator on a Hilbert space K DH,
P denoting , as usual, the orthogonal projection from K onto H.

Therefore, since
N
1= Il = [ledx],

we conclude as in Theorem 2.3 that..
SNx = UNx .

If now

then

»
e
*
s
"

(s'x,8%x) = (PU'x, PU'X)

(e Uik, u'x) = (UV P putk, UNx)

W ipuix,putx) = (pMrruix, )

¥ 1siy), st (s¥% , s .

Ns"x 1?2 =1 .
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Is*<|| =1, 1= 1,2,...,N,

and hence

He

STk = Uk, 1= 1,2,...,N ,

On the other hand, for i = 1,2,...;N,

. i
ST a3 |
TR

and hence
”Tlx ”= ”T"1= ”Tl " ’ i=1,2,000,N,

since the operator T satisfies the assumptionsfor the validity of
the lemma.
Assertion (i) has thus been proved.

Next note that, if

we have

(ij . Six) = (ij ’ Uix) = (UN+j_ix . ny)

(U'N+j-ix s P oMx )

(p UNﬁ-ix , UNx)

n
(@]

x)

.n
~
[72)

since N+j-i >N+1l, and S is by definition, nilpotent of
index N+1.

Similarly,
(Slx ,X) = O foI‘1 any i = l,z,.-.,N
and hence the vectors

x,Sx,...,SNx N



60.

and consequently the vectors

o Ix rig My
’ ——’..‘._.’...’_N-—
Il Il |

form an orthonormal set of vectors whose span 'Mx, is clearly an
invariant subspace for T due to the nilpotency of the operator.

Finally observe that since

sxt = pyxt, i=1,2,...

we have if

lgighN,

sk g¥x = pur (U*x) = PUF Ik = 71k
while

S*x = 0,

as the following argument clearly demonstrates:

Since

galtL G

Sx=0

in view of the nilpotency of S*, we have
0= ¥l Ny = pusftgly = pusx = sx .

Thus, the linear span of

X ,'Sx 9 ooy SNx

is also invariant under S#%* ,

Replacing S by %E\ now, the result follows. The proof of the
Ti

theorem is therefore complete.

The following corollary follows immediately.
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COROLLARY 2.9

T=a ’—o 0... 0 0 |7
lOolO OO
o1... 0O > N+1 , aetC,
0 0... 10 |
—
N+1

is the unique (up to unitary equivalence) irreducible nilpotent

operator of index N+1, satisfying
N N
N Il =1l
and which is such that TN attains its norm.

Let now H be a complex Hilbert space with a countable orthonormal
basis
e, }
k k=1

and let T be the (unique) operator on H, given by

Tek T W ey k=1,2,.0.,

where

W =D .9 mk:l, k:2’3’nto 'y p>lo

That is, T is the unilateral weighted shift with weight sequence

{w, } .
K y=1

THEOREM 2.10
With these assumptions we show that Te %gp (H) for any p 21

(and not for 0 <p < 1) , T = T(p) .

PROOF

Let h be an arbitrary element of H.
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Then ,

- hs I a e, -
k=1 K K
L4 .
for suitable a, € € , k = 1,2,..., with ||h||2= z Iak|2 <w,
=1

We have

p-2)[|Th|[%- 2(P-1) [(Th,h) | +o||n ||22 0, heH
Tefp,p;l’<:> (1)

r(T) g1

(cf. Thm. E.1! part ( v)) ,

Using the formula fof the spectral radius of a (unilateral)weighted
shift ( [17] ), it is easily established that for this particular
weighted shift, ©r(T) =1 and hence, the second condition in fhe
right hand side of (I) is seen to be satisfied.

Thus, with T as above,

TeBp ,p21 <=> (p-2)||Th||?~2¢p-1) [(Th,0) | +p|n |25 0, hen .

But, if h= I o e s then

k=1 X
Th= Z a Te = I a w
i S e N N
and
«© [_J [ J .
(Th,h) = (£ a  w, e s La.e.)= Za a
kzl“k S B e Ity S S0 'L

and hence,

»
Te ‘gp w21 <=> (p-2) & Iak|2w2 2(p-1) | Z o Oy O
- k=1 k=1 k=1

o € €, k=1,2,... , kz |a | ’

or equivalently

|+p): Ia |2> 0,
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€ " l I2 2 = l “ - 2
Te ©p p> 1<=> (p-2) £ |a, |"w’ -2(p-1) £ la, |la Iw +p I > 0
- -1 k! Tk k=1 k' k41 7k -kzllcl'kI =

Kk
we €, k=1,2,..., ; Iék|2<~v.
k=1 .
But, with

w, = pl/2 s Wy T 1, k=1,2,0.. ,

(0-2) = o |22 = 20-1) 3 |a|Jor, lo 45 3 |a |? =
k=1 k=1 k=1
2 At 2 o 1/2
plp-1)]a, |“ + 2(p-1) £ |a | - 2(p-1) £ |a |[a - (p-1)|a, | ]
1 k=2 k k=2 k“ k+l| 20 | l” 2'

/

1/2

2 » 2
(D—l)[plall - 2 [al||a2| +lay 1

- 2 - 4 2
¥ -1LE o -2 2 |a || +Z |a ]
k=2 ¥ k=2l k” k+1| k:é k+1l‘
= (1) 1M 2 ay] = a2+ £ (o] - fo,, D
k=2

- which is clearly a non-negative quantity, since p 2 1, for all

possible choices of complex numbers

a k=1,2,...

k ?
Thus, the weighted shift given abéve, belongs to gp(H) for p > 1
proving the theorem.

On the other hand, it is a trivial matter to verify that for a

. [
(unilateral) weighted shift with weight sequence {mk} ,
: k=1

n

T e % 0 %1 “in-1 Sk4n 0



and

0

Wy

6l+.

if k<n

_lwk_2 .o

W e

k-n"k-n

if kxn+1

for any positive integer n and k = 1,2,... «

Hence, if
h
then
™h
and
T+'h

Lo e
k=1 k 'k

L o Tn
k=1 K

S

*n
La T ek

k=1 k

for any n e 7zt .

E oy
k=1 X

2 ..

Lo ww el

k

*»
=z
k=n+l

oy &k kerl

k+n-1 %ktn

%% Y1 -2 * Y-n S-n -

For the particular weighted shift of the Theorem,

™h
and
T+ b
Hence,
7|2

1/2

e Qlen+l

1/2

P %

1/2

e c‘n+l 1

e

+ I a,e

k

+ I a
k=2

+ I a
k=n+2

2, o 2
plag|®+ = lakl

k=2

(0-1) o |*+ T Ja
k=1

(p-1) |a

2
1

2
+ |inll

=2 k “k+n

k+n§k

e

k k—n .

2
il
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~-and

' 245 fal?
k=n+2

n 2 _
It b (122 pla_,,
from which it easily follows that ,

Il T+ h | *0 as n+ e, in view of the convergence of I Ia'kl-z'.

k=1

On the other hand, as || ™ h || is independent of n, for any heH s

Lin || 8] = o2l nll <= (™0 ll=o2[nll, n=1,20000,
= (Also by Theorem- 2.1 )

<=3 (p-l)lal|2 + ”h”2= loH2

<> (-1 e |- lInll?1=0,
and hence if p » 1 .

tn [ 5 [ = pY2[Inll <=> [a)| = [Inll<=> b = 2e;, Aece.
N>

Similarly,

lim || T™"h]|=0<>h =0, (forany p 2 1) .
n-e :

Furthermore, if

1<M<pl/2,

Lin | n = u [|a]l <> 0?-1) [[a]1? = o-D) |a, [°

N>

<=>h= I a

(M2

1) 2 e ]? = om0 a2 .
k=1
Similarly, if

0<M<l_<_pl/2,
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lim || Th |l = M |0l <=> ( 2 )|In 2=
= = p-l)|a1| +(1-M)|[n]"= 0
N-Hee

that is

Ln [ ||= ¥ (bl <> b= o

While if
M= 1< pl/?

m [|T®hl|]= [|n = h=; .
un [ nll= 5l <> h= L oae

Thus, the unilateral weighted shift with weight sequence °

1/2

', 1,1,...}

provides us with an example of an operator 4€p - class for p > 1,

and examples of vectors in the underlying Hilbert space for which

lim || Th |l = ||n]|sfor any 0 <M <p™? .

N>
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CHAPTER 3

THE OPERATOR RADII OF HOLBROOK AND THEIR PROPERTIES

In Chapter 1 we have shown (Corollary 1.6) that if T is an

arbitrary but bounded Hilbert space operator, then

Wp,T= {a>0:

€ ‘@p}#(a

R

for every O<p <e , The following non-negative functional on
B (H) defined by

wp(T). = inf W

o PsT

is therefore well defined.

In this Chapter we shall show that the family
Aw p(T) : p>0} , Te ¥ (H), includes the familiar radii of operator
theory associated with T, namely |[T] (= wi(T)), w(T) (=wy(T))

and r(T)(= w (T) = 1lim w (T)). It thus seems natural to call
pre

wp sP >0, an operator radius. We shall also refer to wp(T) as

the Holbrook radius of T, as it is J.A.R. Holbrook who first

introduced this function and obtained its basic properties. ([22])
The importance of theée radii lies in the fact that operators
T of class @p are characterized by wp(T)_g 1. We thus begin
this Chapter, by proving this last statement and proceed to obtain
some of the properties of W, in a natural way. The rest of this
Chapter is devoted to the study of the Holbrook radii associated:

with nilpotent operators of index greater than or equal to 3.
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The following theorem gives a characterization of the 6’ 0 classes -

associated with an arbitrary but bounded operator in terms of the .

operator's Holbrook radius.

THEOREM 3.1 [ 221
Let Te P (H).

Then, for any p > O,

Te €p <=> wp(T) 1.

PROOF

Necessity .follows immediately from the definition of wp(T) . To

establish the sufficiency of the condition assume that .

wp(T)_s_l s but T £ Qp,.

Then, there exist O<a gl and Z,€ €, Izol 21 such that

(1) || T {(p-1)T-p azI} T l<1 for all zee with |z] 21
and

(I || T {G-VT-pz I} [|>1,
the first inequality corresponding to wp(T) 2 1, (and hence there

exists O0<a <1l such that L:— € €p) and the second to T ¢ gp .

Let now
z
z! = 2,
o
Clearly then,
zol
|2t] = o = IZOI 21,

and hence, taking z = z' in (I) we get; -
Zo -1 -1
Lz |IT{C-1)T-pa—=1} 7| = [[ T{(p-1)T-pz I}~ |[>1

in view of (II).



69.

This being a cbntradiction, the required result follows.

Let now Te $A(H) .

If a5» 0, is such that
%Te €p for some p >0,

(such an a always exists in view of (iv], Thm.1,5) then, since

in particular %“T is bounded in norm by p, that is

it follows that
1
d;;”T” >

and hence

wp(T) = inf{a >0 ; %—Te €p} ;% ”T” .

Consequently, if for some p >0 ,
Wp(T) =0 ', ‘then T=0 .

On the other hand, as the zero operator 0, belongs to any

6?p class , immediately from the definition, it follows that

wp(O) =0, p>0,
and hence as a result of this and (3.2) we have
wp(T) =0<=>T=0.

Observe also, that by virtue of Corollary 1,6

wp(T) < -,

(3.1)

(3.2)

(3.3)
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for all p >0, and every bounded Hilbert space operator T.

In fact referring to Theorem 1.5 , we have

A

wmg G-l if o<p<1

and

W (T) Nrll, if p21. (3.4)

A

Moreover, as for every p>0, €’p is a balanced set, it is easy to

show that
LA (zT) = |z] wp(T) s zeC, - (3.5)

that is, wp( ) is a pésitivgly homogeneous functional on ¥ (H)
for any p>0 ..

On the other' hand, as by Theorem 1.5 , 6p is a balanced , convex,
absorbing set for aﬁy 0<pg 2, and wp(‘) is the associated

Minkowski functional, it follows that for p in the prescribed range,
wp(.‘) is a norm on B (H) .

Thus, for 0 <p g 2,
wp( «) is a norm on J3(H), (3.6)

but not for p > 2, for as we shall see a little later on, if

- 01
T = [0 0], then

1
Wp(T) = wp(T*) = 5-||T||= %- for p>0 ,
while
wp(T+T*) = ||T+T*||=1 for p21,
and henée

- Lo - 2 -
1= wp(T-fT*) > wp(T) + wp(T--) =5 ‘for' p>2,

\w
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that is, wp(.) fails to be be a subadditive functional on
Y¥d(H) for p>2, and thus cannot be a norm.
Observe also, that in view of Observation 1 and the ﬁomogeneity

of wp(-) s
wp(.) is a * - invariant of {§3(H), that is
wp(T) = wp(T*) for all Te 33(H), (3.7)
while in view of Observation & .
wp(-) is also a unitary invariant of J3(H), that is

wp(T) = wp(S) for all p>0, and any pair of unitarily equivalent

operators T and S . (3.8)

We next note that by virtue of theorem 3.1 and the homogeneity of

wp(~) and for an arbitrary operator Te JA(H) ,
wl(T) coincides with ||T][, and
w2(T) with the numerical radius w(T) of T .

Thus,

wl(T) = |t (3.9)

and
w2(T)‘= w(T) .

Furthermore, as
6, cg, if e<e ,

wp(-) is a non-increasing function of p, for p>0.

In other words, for Te J3(H),
wp,(T) _g_wp(T) , if p<p! (3.10)

Moreover, as from (3.1) and (3.4) we have that
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C st 2™ g (2-v It 0<p<n

and

A

1 ,
Lol g s Nl 120

by (3.1) and (3.10), it follows that, for O0<pg2, wp(p) is

a norm on ¥3 (H) equivalent to fhe USuai operatof ﬁ?rm.

For a bounded but otherwise arbitrary operator T on a Hilbert
space H, wp(T) turns out fo be a convex function of np for
pe(0,%), (for details we refer to [ 2]) and hence in particular,

a continuous function of p for p in the same range.’

Moreover, the other well known radius of operator theory, namely
the spectral radius r(T) of T, may be adjoined to the family

{wp(T) : p>0} in a natural way, by

w (T) = lim w_(T) = r(T) ' - (3.11)
pre=

To prove this statement, observe that the existence of a limit for
- ‘/‘ ‘

wp(T) as p-=+>e is guaranteed by the monotonicity and

non-negativeness of the function in question,

It thus remains only to establish the actual value of this limit,.

To this end, note that since
T .
—w—p-(ﬂea for all p>0 ,

by virtue of the homogeneity of wp(\) and Theorem 3.1, it follows

that

r(vfﬁ)) 4y 0 >0, A (see Observation 3)
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and hence
r(T) ;wp(T) s P>0,
giving

r(T) < lim w (1) .
pre P

To obtain the inequality going the other way, we distinguish the '

féllowing cases

(@), =o(T) #0
and

(6) - n(T) =0 .
If r(T) # 0, then for any e€>0,

T _ 1
rorm ) © Tee <L

" and hence

T i . s
Ao © €po s for some IS sufficiently large ,

{see Proposition 1.2)
in other words,

w. o ( T ) < 1
Po (1+e)x(T) = :

.

The monotonicity of wp(h) now implies that

T
wp ((l+ eip('r)) 1, forall p2p,
and hence

wp(T? < (Q+e)e(T) , p 2P, »
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from which the c_iesired result follows .

If r(T) =0, then for any n>»0,
r(nT) =: 0<1,

and hence as before
wp(nT) 1,

for all p greater than or equal to some Py giving

=R

wp(T)s. » P 2P, n>0

and this clearly implies that

w (T) = lim w (T) =0 = r(T) ,
p+0

and the proof is seen to be complete.

One other very important result concerning the Holbrook radii of
an arbitrary operator Te 0(H), is the so called "POWER INEQUALITY",

namely that
o . ,
wp(T ) g_wp(’r) for all p>0 and k21. , : (3.12)

This is an immediate consequence of Observation 2 , the
homogeneity of wp( «) and Theorem 3.1. Note also, that we have
equality in (3.12) at p=+ in view of the spectral mapping theorem.
Returning now to the C. Davis criterion for membership in a G 0

class, namely that

T
~ €

- ‘@p <> ||T{e-1) T-pazI} | g1, lz] 21,
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and noting that

-

le-1] = |(2-p) -1] ,

we obtain the following very useful '"reciprocity law", due to-

T. Ando [21],

pwp(T) = (2-;.:)w2_p'('T), 0<p<2 , (3.13)

and hence, in partigular, the graph of pwp(T) against p, for
0<p<2, is symmetrical about the line p=1.
Observe also, that as a consequence of Ando's reciprocity law,

we have :

lim pw (T) = 2w, (T) = 2w(T) , (3.14)
p 2
p+0 :

from which the asymptotic behaviour of wp(T) near p =0 is
obtained.
Let now T be a nilpotent operator of index 2. Then, since the

operator . has norm 1,
Izl

i S
l 9
TR

in view of Theorem 3.1 and (3.9), and hence with the usual notation,

n
Tl

T y =p0®, n=1,2,... .

(—)
Il Tl

Consequently,

n
(p—L) =pPU", n=1,2,..., and all p>0,

lITll

due to the nilpotency of T, that is
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'é.;;Z- € é? s P>0 .-
Tl °

In particular,

wp(p T )gl s p>0 Py
i
giving
W (D g %uwu 0> 0 ;
and since
wp(T) 2 %-IITII, always by (3.1) ,

we have that for a nilpotent operator T of index 2,

- .
wp(T) -p-”TH, p>0

a result first obtained by J.A.R. Holbrook [22.] .

Having obtained the basic properties of wp('), we now prove a
Theorem concerning the shape of the curve representing wp(T)
for an arbitrary operator . Te B(H) . For ease of notation we
shall write w(p) instead of wp(T) when there is no danger of

confusion.

THEOREM 3.2 [ 24

For an arbitrary but fixed operator Te ¥3(H),
EITHER

w(p) is a strictly decreasing convex function of p on (0, ]

(3.15)
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OR

-
.

there exists a value of p ,p* say, which is such that w(p)
is strictly decreasing and convex for all pe(0,p*), and is

constant and has the value
w(p*) = r(T) , for all pelp*,=].

PROOF

The following lemma, whose proof is included here because of its

simplicity, is basic to our arguments.

Lemma 3.3 [22] - .

If for some p, and P, » real and positive with Py < P, we have
wip,) = wip,) ,

then
wip) = wlp)) = o(T) (= wlp,)) forall p2p -

Proof of the lemma

If | pe(p;,py) » then

wip)) = wlp,) g wlp) Lwlpy) 4
and hence

w(p) = w(pl) for all »p e[pl, 92] .
On the other hand, if e>p > p, » then since (92 ,0) is an
interior point of the line segment joining (pl,O) to (p, 0) , there

exists A€ (0,1), such that

and consequently
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w(pl) = w(p2) = w(Apl-f(l-A)p) g.lw(pl) + (1-M)w(p),

in view of the convexity of w(p), and hence

w(p,) gwlp) with p>p .
But, by (3.1), w(p) g.w(pl) also, and hence
wlp) = wlp) =wlp,), P20,

Thus, for «>p2p, , w(p) Iis constant and equals w(p;), and
hence being in particular a continuous function of p ,

wp) = w(py) = lim w(p) = r(T), p2p, »
pre

and we are done. 4
Returning to the proof of the Theorem now, observe that in view of

the monotonicity of w(p), given any pair of positive real numbers

ol and 9, with O < ol <0, <%, then

EITHER

'w(ol) ; w(c2)'

OR

w(cl) = w(a2) .

In the second case, the lemma applies and the proof is seen to be °
complete.
Finally, note that, by virtue of Ando's reciprocity law, the real

number p* of the Theorem is necessarily greater than or equal to 1.

COROLLARY 3.4 [22]
If T is a normaloid operator, that is T has equal norm and

spectral radius, then
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_ wr(T) = -l—ﬂ%I—L Tl s >0. - (3.18)

Proof

Il = wi(T) =w (D) = (D), and the result follows

from Lemma 3.3 and Ando's reciprocity law.

FURTHER PROPERTIES - OF THE HOLBROOK RADII

‘For the reéder's convenience we list below some further properties
of tﬁe operator radii {wp(T)}p > associated with a non-zero
operator Te HB(H) .

We refer to ['2], [22], [24], [25] and [26] for proofs and

comments as well as to [H4] -for a treatment of these radii from

-

an alternative viewpoint.

. For 0<p<p' <1,
pwp(T) 2 (20" =p) wp,!:(T) , : - (3.17)

while for 1l<p < p'< e ,

pwp(T) s p'wp.(T) " | - (3.18)

Moreover, these inequalities are best possible. (See also

Remark 1 immediately after this section)
For a pair T and S of doubly commuting operators,
wpo(TS).;wp(T) w (), 0<p ogge= (3.19)

DEFINITION

Two operators T and S are said to be doubly commuting, if

TS = ST and T#S = ST*® .
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For an idempotent operator T (that is one for which ,T2 =T),

1 1 .
Wy (T) = 5 {wy (1) + le-1] } =—F{|ITI| + |p-1] } p>v0 - (3.20)
while for an involutive operator S (ie. S2 =1,
w (8) = {w_(8) + /wo(5) + p(p-2)}
p p 2 2
1 2
=5 w(s) + Y w(s) + p(p-2)} p>0. (3.21)

Let now {Tn};=l be a sequence of operators such that

Tn € %(Hn), n = l,v2,.... s Wwith sgp" T, | <= .

We may define an operator T on H = 30; Hn as follows :
An element h of H 1is identified with a sequence

{h }

. 5 -
. where hnan,rf=l,2,..., and ||n]|“=% ”hn“2<~.

=

. - .
We‘deflne Th to be {'I'nhn }n=1 .

It is then easy to see that T as defined above is a linear operator

on H, and |[|T||= su ”Tn”
n

When T 1is constructed in this fashion we shall use the notation

T=86T .
1 n
We then have :
) = - (3.22)
wp(? Tn) sgp wp(Tn) s O<px< ( )
) 3.23
w-(? T) 2 sxrxlp w (T ) ( )

while if sup dim Hn < e also; we have
n
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wp(?Tn) = S:llp w_(Tn) . ' T | (?.24)

6. Denoting the restriction of an operator Te B(H) to an invariant ‘
subspace Mof H by T IM and recalling Observation 4 we

obtain the following result:
W, (T IM?) W, (1), O<pge _ © (3.25)

On the other hand, if H is spanned by a family '{Mﬁ} of
. : acA
subspaces invariant under T _» We then have :

w(T)=supw(TM) s O<pge . (3.26)
P ac A a : ,
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REMARKS

In [2-] it is stated by the authors that the inequality"

pr(T) 2 (2p! 'P)Wpl (ry ,

is best possible provided O<p<p'g 1l
It is our aim here, to prove that there is no non-zero operator
T for which

: pwp(T) = (29 -p)wp, (1)

with O<p <p'< 1, while if p'= 1 and there is equality in
(3.17) for some O<p<l, then T 1is necessarily a normaloid
operator. |

Writing w(p) instead of wp(T) we in fact show that there is no

non-zero operator T and no €>0, however small, for which
(p-edwlp-€) = (p+e)w(p) 0O<p <1 .

To this end, observe that, if this were the case, then by Ando's
reciprocity law, we should also have that

(2-p+ €)w(2-p +€) = (p+e) . -2—;79- w(2-p) ,

or equivalently, that

w(2-p +€) - (pte)(2-p) .
w(2-p) (2-p+e)p
But
(pte)(2-p) _ 1= 2e(1-p) > 0
(2-p+e)p T (2-pte) ’
so that
w(2-p+e) 1
w(2-p) *

This being a contradiction though, the result follows. On the other
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~~hand, if-for some -O<p< 1 ,
pw(p) = (2-p) ||T] ,
fhen, again by Ando's reciprocity law,
| (2-p)w(2-p) = (2-p) [[T],

and hence w(2-p) = ||T|| o< p <1, .in which case, Lemma 3.3
applies, and we are done.
Recall that in Lemma 1.3 of the first Chapter-, it was shown that an
invo‘lutive operator T of class ‘Qp s P il s 1s necessarily a symmetry,
that is -

T=T¢#=T .
The formula for the Holbrook radii for an involutive operator T, as
given by (3.21), prox_rides us with an alternative proof of this result,
for if T 1is such an operator, .then, since wp(T) 2w (T) =r(T) =1,

in addition to wp(T) <1, we have

W2(T) + v’-wg(T)+p(p-—2) =p, P21,
and hence
w2(T) =1.
But, from (3.21) again,
- 20—
wl(T) = wy(T) + /—wz(T) -1 ,

so that, w (T) = |T]l=1, also.

So, if x 1is any vector in the underlying Hilbert space, then

- 1ax |2 = | 7x (124 || TR || - 2Re(Tx,THx)
= |l mx [[2+ || Tex [|? - 2Re(T?x,x)
= [l 1%+ [l 7o 1% - 2]lx || .
2l x [12-2)x I =0.



84,

Thus, T = T* and the proof is seen to be complete.

THE HOLBROOK RADII FOR NILPOTENT OPERATORS

Let T be a nilpotent operator of index 2.

Then, according to (3.15),

=1
Wy (T) = 3 lT]l e >0.

Conversely now, we show that if T 1is a non-zero but otherwise
arbitrary operator for which wp(T) is of the order of %-, for
p >0 sufficiently large, then T is nilpotent of index 2.

More precisely we prove:

Theorem 3.4 |

If T is a non-zero, bounded Hilbert space 6perator, with
1
T) = O(=
Wp( ) (p),’
then T  is nilpotent of index 2.

Proof

For some A >0,

wo(T) <

o[>

s for p 2P, s say .

Consequently, p -} € 'gp s for »p 2P, -

In particular, p% is power bounded by p , that is
o B
lCeg) l<e s n=1,2,0c0y P20,

and hence, taking n=2 we have that.

2

I sy pzeg s

from which the desired result follows, upon letting p + = .

The preceding Theorem admits the following generalization, in the

form of
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Theorem 3.5

Let k be a positive integer and assume that T is a bounded

non-zero operator with

_ 1
W, (T) = O‘;m’ .

Then, T 1is nilpotent of index at most- k+1 . Note that, if
k=1, then the index of nilpotency of T, is ei{actly k+1=2 by
the Theorem just proved. |

Proof

Since, wp(T) = O(%/_k) s We-conclude as before that
o :

l/kT n .
[ o 1) llse, forall pzp_,say, and all n = 1,2,...,

where A 1is a positive constant independent of p .
If we now let n = k+1 in the .ineqffality. above and then let p +e

we obtain what we _set out to prove.

Observe now, that as far as the theory of Holbrook radii for nilpotent
operators is concerned, the case where the index of nilp‘otency is

2 presents, by virtue of Theorem 3.4 and 3.5, no more interest, and
hence from now on we shall only consider nilpotent operators of index
of nilpotency k+1, where ‘k is an integer strictly greater than 1.
Let therefore T be such a nilpotent operator.

Then, if j = [—(ﬁlzﬁ‘-] s ([x] = the integer part of the real

number x) we have:

k;l if k+1 is even
j= ’
k—“213 if k+1 is odd

and hence, as in both cases,
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-2 2 k+l ,
but gk,

the operator T is nilpotent of index 2, and consequently

WD(TJ') =% I, o >0 . | C(3.2M)

An application of the 'power inequality' for the operator radii

now yields

L ydgYs |
wp(T) 2 T [T s P >0. (3.28)
p/3 : ,

On the other hand, as k > 1 ,

2k > k+1 ,

and hence Tk is also nilpotent of index 2.

Thus, working as before, we conclude that

.1
1 /k ;
w (T) > —— “Tkll s P >0 - (3.29)
P ok

If we now observe that
j=k<e= k=2, : ' (3.30)

it follows that in general, the inequalities given by (3.28) and
(3.29) will not be the same. We thus have the following important
inequalities satisfied by the Holbrook radii of a nilpotent

operator T of index k+1, k>2.

. 1l/s
1 i
W (T) 2 1 N 173,050, 5= [Q&;ﬂ] , (3.31)
and
w(T) 2 —=— || Tklll/k p->0 ' | (3.32)
¢] - pl/k s *

We now restrict temporarily our attention to those nilpotent

operators of index k+1, k>2, which are 'sucfx that
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k K
- I = (il
e.g.
-
root‘-op 1
T=a - 1 0 «s+ 00 ,aetl ,
01 «++ 00
¢ & s s > k+1
O O o ¢« 1 O J
e .
\
k+1

or for that matter any other eperator unitarily equivalent to the
one above.

Referring to Lémma 2.8 , we have that for these operators
_ lle||= llTanu. m=1,250.045 k

and hence, in particular,
fed = popd, = [l

For this special class of nilpotent operatbrs, the inequalities

(3.31)and (3.32) therefore reduce to

W (T) 2, -:—l/j Nrll, 5=k 4550

and

1
"p(T) 2 'p'j_/k ftll, e>o0.

Furthermore, as j < k, the following proposition. is easily obtained.

Proposition 3.6

If T is a nilpotent operator of index k+l, k>2, with

L=l
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then )
.wp(T) ;.% AITl] for 0<p<1, . = -
and
w(Mz % [ITllfor 120 .
g ot /k

Thus, the curve representing wp(T) ‘for such a nilpotent operator,
will lie in the region of the plane on or above the thick lined
curve in the accompanying diagram, 'passing of course, -through the

point (1, IfT[I)}‘
i N

wp(T)

i

We shall return to this particular class of nilpotent operators

later on.

One other important fact concerning the Holbrook radii associated 3
with a nilpoteﬁt operator T, is that wp(T) is a strictly
~decreasing to 0=r(T) convex function of p on (0,»]. This
follows immediately from Theorem 3.2, since for any p e (0,=),
wp(T) >r(T) =0 . |
Returning now to the inequalities given by (3.31) and (3.32), it is
fairly straightforward to see that eventuélly, i.e. when p becomes
greater than or equal to some Po s -the~inequality (3.32) will be

the dominant one.
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The next theorem proves that for a nilpotent operator T of.
index k+1, k>»2, wp(T) as a function of p tends to O as
p>w , like

- 1
- k k
A F ol (i

- 1
1/k “ Tk " /k

that is, w,(T) tends asymptotically to o as’p e,

Theorem 3.7
For a nilpotent operator T of index k+l, k»2, ’

1
1im p,]/ k I 7k

o

kwp(T) = ||t

Proof
The following lemma is essential for our purposes,
LEMMAl3.8 '
Let T be an arbitrary, non—zeré, bounded operator on a Hilbert
space H. |
Then, for any p >0,

xﬁax | T {Cp-1)T - pzw (T) I}—l|[= 1.

2] 21 | g

Proof of the Lemma

Observe firstly, that if |z] >21l, then

(p-1)T 5 _ |p-1]e(T) _ |p-1|r(T)
r( bz, (D~ Bl (M & J_%_T—pw T

P
r(T)
) (1-p) bwb(T) » O<p<d
p-1) r(T)

But, since for all p > 0 ,
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r(T) .S.Wp(T) and

Tl = w(m spw, (T),
we have
(T) .
€1-p) -ﬂ——”—r 1-p, O0<p <1
r ( (p"l)T ) < T < .
pzw (1)’ = = =, 1
e la= : ls =, 120
, P P
Thus
(p-1)T .
r ( .F’%W;TTT)Q 1 ’ p A O, IZI =>-l s

and consequently, the operator
. ) -1
{ (p-1)T - p zwp(T) I}~

is well defined, ie. the.-oper-ator { (p-1)T - pzwp(T) }ois 4

i
{

boundedly invertible for any ]zl; 1 and all p > 0.

Moreover, the operator valued function of the complex variable =z,
given by

£(z) = T { (p-1)T - p 2w (T) 1

is analytic for |z 21, and since

w_T'(T)e gp for all p>0 .
p

£ [[= [T (1T ~paw MLV f[g1, fzf 21.
Hence, an application of the maximum modulus principle for analytic
functions of a complex variable, implies that

max || T{(p-1) T- pzw (1) I} ||
z|21 e
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= lTte-01 - sy M1yt

for some 8 e[0, r), is at most one.’

The lemma claims that this maximum is actually equal to one.
To this end, consider the non-negatively valued function of the

complex variable 2z, defined by
I Lyl .
6(z) = |[T{(p-1)T -p2I}Y ||, ze .
- Since by the si)ectral mapping theorem,

sp {(p-1)T- pzI} = (p-1) spT - pz ,

0esp {(p-1)T -pzI} for suitable ze¢ .

and hence
sup G(z) = + = ,
Also, as
G(z) + 0 when z + e« , we have
0 £6(z) <=,
So,

6, (|z]) = sup || T{(p-1)T- p|z]e®P11 |
u _

which is a continuous function of |z|, takes all values in [0,=)
and in particular the value 1.

+
Now, for every p >0 and any ae R ,

gs gp <& || T {(p-1)T-p 21V <1, 2] 2o .

D

Suppose

.,

o, = inf {a> 0 : [[T{(p-D)T-pzI Y 1=1 for |z| zal.
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So,

]lT((p-l)T-—pzi}-l l=1, for z= alele for some 6.

If @ < wp(T), a contradiction follows; since

||T{(p-l)'-I‘- -sz}—l =1 on |z| = al.
implies‘tﬁat '
1B
1
thus contradictihg the definition of Qp(T).‘ If a, > wp(T) a

1

contradiction again follows, since by the maximum modulus principle.

1 = max '”T{(p-l)T-sz}-l“ < maxA ”'1‘{(;:)-1)T;r.’zI}":L ” < 1.

lzl=“1 [zl=wp(T)

So, @) F wb(T) , and the result follows

Returning now to the proof of the Theorem, we have as a consequence
of the Lemma, that *

: , i8.4=1 y _ -
(3.33)  ||T{(p-1) T~ pwp(T) e I} " ||=1 for some 8el[0,27).
But, T is nilpotent (ofn index k+l) whenever e_:l'e T 1is, -and hence
we may without loss of generality assume that 6 = 0 in (3.33).

Thus,

| T {(p-1) T- pwp(T) =1 _ | (3.3u)

On the other hand,
.

) ) -1 _ 1 o (e-1)T on
{(-1) T -pw (T I} = Fag(D) nﬁo_F“—prp 1

and hence, substituting back in (3.34) and using the fact that T

- -
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is nilpotent of index k+1, it follows that

k-1 .k
T p=-1 T p-1 T
l sy + 5 - tooee + (52 | =1
Ay T P bwi(T) P pws(T)
so that
K v -y k-1 C o p-l, k-2, :2 p-1, K7L 7).
(3.35) pw (T) = ||w. (T).T + (=) w. U(T).T+ ... + (&=) :
P <] [ P P
Letting now p -+ « in (3.35) we get :
1im pwl;(-T) = || T . o - (3.36)

P+

The desired result now follows upon taking fﬁe 'k-tﬁ root of both

. sides of (3.35)..~
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APPENDIX

The formula given by (3;35) is especially useful in that it allows
us, tﬁeoretically at least, to obtai# a polynomial equation for

the Holbrook radii of nilpotent matrices of index k+l; ké‘ 2,

Use of this equation has resulted in obtaining an expression for
wp(T) in the special cases listed below. The calculations involved

are sometimes tedious, but nevertheless straightforward.

_ _ -1/k . 2 3 ‘
T =T(p) =p subdiagonal (P%,1,...,1,p2) , P >0 , k > 3.
| —— Ny i |
K
k...l
wp(T)= %(1+ lo-1P s >0 .

N.B. Subdiagonal (xl, x2,...,xn)_ stands for the (n+l)x(n+l) matrix
whose only non-zero elements are those on the diagonal immediately

below the main one, with

33y 5.1 S XKyp 0 i=1,2,...4n+1.

Note also that this result can be obtained directly from

Theorem 2.3 .

0 0 O
T = a 0o . a,cetC-{0}),becC.
b ¢ O
Here

wp(T) = w(p) satisfies

puwu(p) - 92w2(p)(la|2+ lbl2 + [c|2) + p(2-p)[acl2

- 2 [p—l[pw@p)[4w3(2) - w2)(a|?+|b]%+]c]D1 =0,

where w(2) is the largest positive solution of the cubic equation
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42 - x (|a]2 + [b]? + [e]®) = Re b ED) .

In particular if b=0, T = subdiagonal (a,c) and

ot ﬁu(p) - p2y? (p)([a[2+ lc[2) + [ac‘[2 = (p-1)2 [ac[2 , p>0.

Hence, for |a| = |c| , that is for
0 0
T=za |l o0 o0 . aeC - {0},0eR._,
ie
e 0

W, (T) =-|-;ll- (l~+|p-ll)% s P>0 .

On the other hand if a=b = ¢ = 1, wp(T) is given by

_ 1 _ - %' '
f”b(T) =% [1+45 + 4|p-1]D31, p >0

while if a=e¢=1, b=-1,

w(T) =% [1+ (S-HIQ-II)%] p >0
P 2p * )

In general, as every 3 %3 nilpotent of index 3 matrix T is unitarily -
equivalent to a lower diagonal matrix, and wp(-) is a unitary
invariant of Y3 (H) , 1t follows that the Holbrook radius wp(T) = w(p)

satisfies a polynomial equation of the form

p4 wu(p) + A92 wz(p) + Blp-1|w(p) + Cp(2-p) =0, p >0,

for suitable constants A, B, C with A and C not equal to zero.

Taking into account the fact that 1lim pw2 (p) = ]IT2 || (by (3.36))
p>re= .
and 1lim w(p) = 0, it follows that
p e

2 2
c = [[r[° .

On the other hand, since w(1) = ||T|| and w(2) = w(T), trivial -

calculations reveal that actually we have:
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a=-dT]? + H_) and B = - 2u(D)4w’(T) + A1

Among nilpotent operators those with index of nilpotency n=2 or
n=3 seem to play an important role in the theory of Holbrook radii,
maybe because, in the notation of tﬁe previous Chapter, these areA
the only nilpotent operators for which j=k. On the other hand,

as quite a lot is known about nilpotent éper‘ators of index 2; W§ '
restrict our attention to the case where the index of nilpotency is 3,
and we make a conjecture concerm.ng the Holbrook rad:LJ. of nilpotent
operators T of index 3 for wh:.ch ”T II = [IT [|2

More pr*eusely,‘

CONJECTURE

Let T be a nilpotent operator of index 3 with || T =1t ”2

Then,

w(T) = 72 |2 Q-‘”—Af’;ll)—% p>0.

One of the reasons we think the conjecture is true, is that if T is
a 3x 3 nilpotent matrix of index 3 with ”T2 1=l T”2 sy thenas T

is unitarily equivalent to a matrix of the form

0 0
a 1 0 o s, aecC-{0}, 6eR ,
Oele 0

lo-1 2 lo-1])?
wp‘(T) = |a] (1+ zl) = “T2 H% (l+pp l)ﬁ,p >0.

Geometrical considerations also seem to support this conjecture,

though this copjebture fails for nilpotent operators

of index greater than 3, that is, it is not true that for a nilpotent

operator T if index k+1, k2 3, with ”Tk” = ||'I‘||k ’ °
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. 1 el ‘
wp(T) - “Tk “ /k (1<+Fl,p ];[}/kfspg >0 .

The following example clearly demonstrates this.

Let’ T = subdiagonal (1, 1, 1}, Then clearly ™ 2 0 and
3

Il =i

wp(T)

IT[|®. However, we can show that for this operator

w(p) satisfies’

u"

05:8(0) - 3 p** () + [3-200-1)21022(p) - 02(p-2)22 0, p > 0.

This polynomial equation for pw(p) does not admit a solution of

the form pw(p) = pz/

3, for any p >1 , which would have been the
case if the generalized conjecture were true.
Finally, it also seems plausible to conjecture that for a nilpotent

operator T ©f index 3, and for obvious reasons,

. ,
P wu(p) + Ap2w2(p) + Blp-1|pw(p) + Co(2-p) =0, p>0,

where
2 '||T2||2 © 2
A=-(lz]|” .+ e ) B = - 2uw(T)[uw(T) + Al
T
and c=[T?)? .

In conclusion note that, if T is a quasinilpotent operator, so that

lim ||Tn||l/n = 0, it is reasonable to expect, taking into account
n->e
(3.36), that for such an operator,

lim ( 1lim pl/n

n-+e pre

Wp(T) ) =0,
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