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Abstract
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We consider the on-line predictive version of the standard problem of lin-
ear regression; the goal is to predict each consecutive response given the
corresponding explanatory variables and all the previous observations.
The standard treatment of prediction in linear regression analysis has two
drawbacks: (1) the usual prediction intervals guarantee that the probabil-
ity of error is equal to the nominal significance level ǫ, but this property
per se does not imply that the long-run frequency of error is close to ǫ;
(2) it is not suitable for prediction of complex systems as it assumes that
the number of observations exceeds the number of parameters. We state a
general result showing that in the on-line protocol the frequency of error
does equal the nominal significance level, up to statistical fluctuations,
and we describe alternative regression models in which informative pre-
diction intervals can be found before the number of observations exceeds
the number of parameters. One of these models, which only assumes that
the observations are independent and identically distributed, is popular
in machine learning but greatly underused in the statistical theory of re-
gression.

1 Introduction

Let yn, n = 1, 2, . . ., be the sequence of response variables to be predicted and let
xn = (xn,1, . . . , xn,K), n = 1, 2, . . ., be the corresponding vectors of explanatory
variables. The standard assumption of linear regression analysis is that the
explanatory vectors xn are deterministic and

yn = α + β · xn + ξn, (1)
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where α is an unknown coefficient, β ∈ R
K is an unknown vector of coefficients

and ξn, n = 1, 2, . . ., are IID (independent and identically distributed) normal
random variables with mean 0 and variance σ2 > 0 (we will write ξn ∼ N(0, σ2)).
The model (1) will be called the Gauss linear model (following Seal’s 1967
suggestion).

The standard classes of problems associated with the Gauss linear model are
parameter estimation, testing hypotheses about parameters, and prediction; in
this paper we will be concerned only with prediction. In §2 we formally intro-
duce the on-line prediction protocol, with a more detailed discussion postponed
to §7. In §3 we note an important advantage of the on-line protocol: the true
responses fall outside the standard prediction intervals independently for dif-
ferent observations; in combination with the law of large numbers this implies
that their frequency of error is approximately equal to the nominal significance
level. In §4 this result is stated for a wide class of models and a wide class of
prediction strategies.

A major drawback of the Gauss linear model is that the corresponding pre-
diction intervals are uninformative (i.e., coincide with the whole real line) unless
the number of observations exceeds the number of parameters. The responses
of a complex system cannot be realistically expected to be modelled using a
small number of parameters, whereas the number of observations can be very
limited. Sometimes realistic models will be non-parametric, effectively involv-
ing infinitely many parameters (as in §6). In §4 we state a result (theorem 2)
suggesting that the Gauss linear model is too restrictive to permit informative
prediction intervals in such cases.

In §§5–6 we consider three alternatives to the Gauss linear model, none of
which require that the number of observations should exceed the number of pa-
rameters. We start from a regression model that has also been widely discussed
in the statistical literature (the other of Sampson’s 1974 two regressions); we call
it the MA model (with MA referring to “multivariate analysis”). This model
combines the assumption (1) with the assumption that xn are independent (be-
tween themselves and of ξ1, ξ2, . . .) and identically distributed normal random
vectors. Fisher (1973, §IV.3) emphatically defended the use of the Gauss linear
model even in the case where the distribution of the explanatory vector is known
(with or without parameters). There is also a view in the literature that the
Gauss linear model and the MA model are “essentially equivalent” (for a review
of some results in this direction, see Sampson 1974). Our conclusion, however, is
similar to Brown’s (1990): when the MA model is true, it can be far more useful
for prediction; in particular, it can start giving informative prediction intervals
long before the number of observations reaches the number of parameters.

In §6 we explore regression in what we call the de Finetti model : it is only
assumed that the sequence of pairs (xn, yn) is IID. Despite the non-parametric
nature of this model, it also allows one to obtain informative prediction intervals
before the number of observations reaches the number of parameters. The de
Finetti model, however, also has a fundamental limitation: informative predic-
tion intervals become possible only when the number of observations reaches 1/ǫ,
where ǫ is the chosen significance level. At the end of §6 we consider the com-
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MA model

Gauss–de Finetti linear model

Gauss linear model de Finetti model

?

? ?

Figure 1: The four models considered in this paper (the three main models are
given in boldface).

bination of the Gauss linear and de Finetti models, which we call the Gauss–de
Finetti linear model : in addition to (1) we assume that the explanatory vec-
tors xn, n = 1, 2, . . ., are random and IID and that the sequence ξ1, ξ2, . . . is
independent of the explanatory vectors. This model, however, appears to be of
secondary importance.

The models considered in this paper are shown in figure 1, with arrows
leading from more general to more specific models (formally, a statistical model
is more general than another statistical model if the convex hull of the second
model is a subset of the convex hull of the first model). For each model we will
define a suitable prediction strategy; it is natural to expect that more specific
models, when true, will lead to better predictions.

We will be interested in two criteria of quality of prediction strategies, which
we call “validity” and “accuracy”. For valid prediction strategies, the probabil-
ity of error equals the nominal significance level ǫ (or at least never exceeds ǫ, in
which case we will refer to them as “conservatively valid”, or just “conservative”,
prediction strategies). The second criterion is applied only to valid prediction
strategies: we want the prediction intervals to be as narrow as possible; in this
paper we, somewhat arbitrarily, measure the narrowness of a prediction inter-
val by its Euclidean length. In particular, we want the prediction intervals to
become bounded as soon as possible.

The idea of learning complex systems from a small number of observations is
familiar in machine learning and has also become popular in statistics (see, e.g.,
Lindsay et al. 2004, §3.3.4). In the context of this paper, this is a feasible goal.
First, such learning has a limited purpose: prediction of the future responses.
Many aspects of the system are irrelevant or not very important for prediction.
Second, one often has a priori information about the system: e.g., only a few
parameters might provide the bulk of the information relevant to prediction.
Whereas we might hesitate to include such a priori information in the model
explicitly, since it would destroy the validity of our prediction strategy if this
information happened to be far from the truth, we might still be able to use such
information in designing the prediction strategy provided our model is flexible
enough. A running example in this paper, introduced in the next section, will
be a linear system with 100 parameters ten of which are felt to be especially
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important.

2 On-line protocol, part I

In our prediction protocol, the task is to sequentially predict yn, n = 1, 2, . . .,
from xn and (xi, yi), i = 1, . . . , n−1. This on-line protocol is popular in machine
learning, but most statistical research (except some work on sequential analysis)
is still done in the “off-line”, or “batch”, framework, where one starts from a
complete sample (x1, y1), . . . , (xN , yN ). One of the few statisticians advocating
the on-line protocol (under the name “prequential”, or predictive sequential)
has been Dawid (1984).

Weak and strong validity and median accuracy

To explain what precisely we mean by validity and accuracy, the two criteria of
predictive performance mentioned in §1, we will need the notation introduced
in the following description of the on-line prediction protocol.

On-line prediction protocol

FOR n = 1, 2, . . .:
Predictor observes xn ∈ R

K ;
Predictor outputs Γǫ

n ⊆ R for all ǫ ∈ (0, 1);
Predictor observes yn ∈ R;
errǫ

n := Iyn /∈Γǫ

n

for all ǫ ∈ (0, 1);
lthǫ

n := length(coΓǫ
n) for all ǫ ∈ (0, 1)

END FOR.

(As usual, co E stands for the convex hull of the set E in a linear space and IF is
defined to be 1 if the condition F holds and 0 if not.) At each step and for each
significance level ǫ, Predictor outputs a prediction region (not necessarily an
interval) Γǫ

n ⊆ R. We require that, for all n, the family Γǫ
n of prediction regions

should be nested: Γǫ1
n ⊆ Γǫ2

n whenever ǫ1 > ǫ2. An error is registered, errǫ
n = 1,

if the prediction region fails to contain the true response yn, and the accuracy
of this particular prediction is measured by the length lthǫ

n of the corresponding
prediction interval coΓǫ

n (as usual, the length of an interval with end-points a
and b is defined to be |a − b|).

Let Errǫ
n := errǫ

1 + · · · + errǫn be the cumulative number of errors made up
to, and including, step n. In the following sections, we will find it convenient
to distinguish between two notions of validity, “weak validity” and “strong va-
lidity”. A measurable prediction strategy in the on-line protocol (or, as we will
say, confidence predictor) is weakly valid in some statistical model (such as (1))
if the probability that errǫ

n = 1 is ǫ, for each ǫ ∈ (0, 1) and each n under any
probability distribution in the model. (Cf. Cox & Hinkley 1974, (75) on p. 243.)
Weak validity by itself does not imply that Errn /n is likely to be close to ǫ for
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large n. A strongly valid confidence predictor is one for which, in addition, the
events errǫ

n = 1, n = 1, 2, . . ., are independent.
Figure 5 below shows the plot of Errǫ

n against n for a specific confidence
predictor constructed in this paper; it is typical of our predictors that the slopes
of the plots of Errǫn are close to the corresponding significance levels ǫ (we use
the significance levels 5%, 1% and 0.5% in all our figures). This is the only
figure in this paper illustrating the validity of our prediction strategies: such
figures, in view of the mathematical results guaranteeing validity, tend to be
uninformative.

We will measure the accuracy of the predictions made for the first n obser-
vations by the median Lthǫ

n of the sequence lthǫ
1, . . . , lth

ǫ
n; again, this measure

is arbitrary, to a large degree. A plot of Lthǫ
n against n will be called the

median-accuracy plot ; examples of such plots are given in figures 2–4 and 6.
Unfortunately, the simple notions of validity introduced earlier have to be

extended to become useful for our purpose. This is needed because, e.g., the
standard prediction intervals are uninformative before the number of observa-
tions reaches the number of parameters, and so for small n the error probability
is zero rather than ǫ. Let N be a set of positive integer numbers (we are mainly
interested in the case where N has the form {m, m + 1, . . .}). We say that a
confidence predictor is weakly valid for n ∈ N in a statistical model if the prob-
ability is ǫ that it makes an error, errǫ

n = 1, at step n under any probability
distribution in the model and for all n ∈ N and ǫ ∈ (0, 1). It is strongly valid
for n ∈ N if, in addition, errǫn, n ∈ N , are independent for any fixed ǫ.

The role of the on-line protocol

The exposition of this paper is based on the on-line protocol, but the majority of
our findings are not constrained to this specific protocol. For example, the fact
that valid and informative prediction intervals can become feasible in the MA
model before the number of observations exceeds the number of parameters does
not depend on the prediction protocol. In the absence of the on-line protocol,
however, “validity” should be understood in the standard sense of weak validity.

3 The Gauss linear model

The Gauss linear model (1) can be written as

yn = γ · zn + ξn, (2)

where

γ :=

(

α
β

)

∈ R
K+1 and zn :=

(

1
xn

)

∈ R
K+1.

For l = 1, 2, . . ., let Zl be the l× (K + 1) matrix whose rows are z′i, i = 1, . . . , l,
yl be the vector whose ith element is yi, i = 1, . . . , l, and γ̂l := (Z ′

l Zl)
−1

Z
′
l yl

be the least squares estimate of the parameter vector γ in (2) from the first l
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observations. We will sometimes refer to the first column of Zl as the dummy
column. For simplicity, we will assume that the matrix Zl has full rank (i.e.,
rankZl = min(l, K+1)) for all l; this implies that γ̂l is well defined for l ≥ K+1.

It is well known that in the Gauss linear model the ratio

Tn :=
yn − ŷn

√

1 + z′n(Z ′
n−1Zn−1)−1znσ̂n−1

, n = K + 3, K + 4, . . . , (3)

where ŷn is the least-squares prediction γ̂n−1 · zn for yn and

σ̂2
l :=

1

l − K − 1
(yl − Zlγ̂l)

′(yl − Zlγ̂l)

is the standard estimate of σ2 from Zl and yl, has the t-distribution with n−K−
2 degrees of freedom. This gives the standard weakly valid prediction interval
for the nth response,

Γǫ
n :=

{

{

y ∈ R : |y − ŷn| < t
ǫ/2
n−K−2

√

1 + z′n(Z ′
n−1Zn−1)−1znσ̂n−1

}

n ≥ K + 3

R otherwise,

(4)

where tδm is the upper δ point of the t-distribution with m degrees of freedom.
(See, e.g., Seber & Lee 2003, (5.27).)

Proposition 1 The events yn /∈ Γǫ
n, n = K +3, K +4, . . ., are independent. In

particular, the confidence predictor (4) is strongly valid for n ≥ K + 3.

Remark We have not seen proposition 1 stated explicitly in the literature,
but it and, more generally, the fact that the statistics (3) are independent, can
be regarded as known. Lemma 1 in Brown et al. (1975) asserts that (3) with
σ̂n−1 removed are independent N(0, σ2) random variables. (This can be used for
prediction when the standard deviation σ is known.) Seillier-Moiseiwitsch (1993,
Example 1) proves that (3) are independent when K = 0. It is interesting that
both papers use the independence of (3) for testing rather than for prediction.

We will illustrate the accuracy of various confidence predictors using the
following artificially generated data set with 600 observations and K = 100
explanatory variables. The components xn,k of xn are independently generated
from N(0, 1), and the responses yn are generated according to (1) with ξn ∼
N(0, 1) independent between themselves and of all xn,k, with α = 100 and with
the following components βk of β:

βk :=

{

(−1)k−110 k = 1, . . . , 10

(−1)k−1 k = 11, . . . , 100.

We will suppose the statistician analyzing these data knows, or suspects, that
the first 10 explanatory variables are much more important than the rest.

6



0 100 200 300 400 500 600
0

50

100

150

99.5%
99%
95%

Figure 2: The median-accuracy plot for the standard prediction intervals.
The three significance levels used in this and all the following figures are
ǫ = 0.05, 0.01, 0.005, shown in the form 100(1 − ǫ)% (the corresponding con-
fidence levels) in the legends.

We have already mentioned that the standard confidence predictor, (4), does
not work when there are many parameters; in particular, it is required that
n ≥ K + 3. In the next section we will see that there is hardly any way to
use the knowledge that the first 10 explanatory variables are the important
ones without abandoning the Gauss linear model: no weakly valid confidence
predictor in a very wide and natural class can produce informative prediction
intervals unless n ≥ K + 3. Figure 2 gives the median-accuracy plot for the
confidence predictor (4); the predictor works very well soon after the number of
observations reaches K +3 = 103. Since the median is plotted, the good quality
of the prediction intervals shows after n = 205.

4 Conformal prediction

In this section we define a class of confidence predictors, called conformal pre-
dictors, and state results about their validity and universality, in a certain sense.

Notions of sufficiency

Fix some observation space Ω (we will be interested in the space Ω = R
K × R

of pairs (x, y); in general, Ω is a measurable space assumed to be Borel, to
ensure the existence of regular conditional probabilities). To define conformal
predictors, we will need not only a statistical model on Ω∞ but also a sequence
of sufficient statistics Sn : Ωn → Σn; we will always assume that Σn = Sn(Ωn).
We will need a strengthened form of sufficiency; in our definitions we mainly
follow Lauritzen (1988), §II.2.
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The sequence (Sn) is algebraically transitive if there exists a sequence of
measurable functions Fn : Σn−1 × Ω → Σn, n = 2, 3, . . ., such that

Sn(ω1, . . . , ωn−1, ωn) = Fn(Sn−1(ω1, . . . , ωn−1), ωn)

for all (ω1, . . . , ωn−1, ωn) ∈ Ωn. Intuitively, Sn(ω1, . . . , ωn) is the summary of
the first n observations, and the condition of algebraic transitivity means that
the summary can be updated on-line.

The sequence (Sn) is totally sufficient for a statistical model P on Ω∞ if, for
each n = 1, 2, . . .:

• Sn is sufficient for P ;

• ω1, . . . , ωn and ωn+1, ωn+2, . . . are conditionally independent given
Sn(ω1, . . . , ωn), where (ω1, ω2, . . .) ∼ P , for any P ∈ P .

The second condition ensures that Sn(ω1, . . . , ωn) carries all informa-
tion in ω1, . . . , ωn that can be used for predicting the future observations
ωn+1, ωn+2, . . . .

A sequence of statistics that is both algebraically transitive and totally suffi-
cient will be called an ATTS sequence. In the rest of this paper we will often say
“model” to mean a statistical model P equipped with a sequence (Sn) of ATTS
statistics (this makes the word “model” ambiguous as we often omit “statistical”
in “statistical model”, but this should not lead to misunderstandings).

Each of the four statistical models considered in this paper (see figure 1)
will be complemented with an ATTS sequence; in all four cases the observation
space Ω will be R

K ×R. In particular, the ATTS statistics for the Gauss linear
model are

Sn(x1, y1, . . . ,xn, yn) :=

(

x1, . . . ,xn,

n
∑

i=1

yi,

n
∑

i=1

yixi,

n
∑

i=1

y2
i

)

.

(It is natural to have x1, . . . ,xn as components of Sn, although in principle they
are superfluous.)

Testing conformity

The main ingredient of conformal prediction is statistical testing of conformity
of a new observation ωn to the old observations ω1, . . . , ωn−1. In general, our
statistical tests will be randomized.

Fix a statistical model P with an ATTS sequence Sn : Ωn → Σn. Any
sequence of measurable functions An : Σn−1 × Ω → R, n = 1, 2, . . . , is called
a nonconformity measure; An will be our test statistics. (We define Σ0 to be
a fixed one-element set.) Given such an (An), for each sequence ω1, ω2, . . . of
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observations and each sequence τ1, τ2, . . . ∈ [0, 1]∞ we define the p-values

pn = pn(ω1, . . . , ωn, τn) := P

(

An(Sn−1(ξ1, . . . , ξn−1), ξn)

> An(Sn−1(ω1, . . . , ωn−1), ωn) | Sn(ξ1, . . . , ξn) = Sn(ω1, . . . , ωn)
)

+ τn P

(

An(Sn−1(ξ1, . . . , ξn−1), ξn)

= An(Sn−1(ω1, . . . , ωn−1), ωn) | Sn(ξ1, . . . , ξn) = Sn(ω1, . . . , ωn)
)

, n = 1, 2, . . . ,

(5)

where (ξ1, ξ2, . . .) ∼ P for some P ∈ P . (This definition uses fixed versions of
regular conditional probabilities that do not depend on P ∈ P .) We will be
interested in two cases: deterministic, where τn = 1 for all n, and randomized,
where τ1, τ2, . . . are generated independently from the uniform distribution U
on [0, 1] (such τ1, τ2, . . . model the output of a random numbers generator).

Theorem 1 Suppose that the observations ωn ∈ Ω, n = 1, 2, . . ., are generated
from a probability distribution P ∈ P and that the random numbers (τ1, τ2, . . .) ∼
U∞ are independent of the observations. The p-values (5) are then independent
and distributed uniformly on [0, 1]:

(p1, p2, . . .) ∼ U∞.

For a proof of this theorem, see the appendix. The fact that pn ∼ U is well
known, at least in the continuous case (see, e.g., Cox & Hinkley 1974, p. 66; (5)
is a version of Cox & Hinkley’s (1)).

Conformal prediction

We start by extending, and spelling out in a greater detail, the notion of a
confidence predictor: in the general theory of this section and in its application
to the de Finetti model in §6 we will need an element (typically quite small)
of randomization in confidence predictors. A randomized confidence predictor
is a measurable function which maps every significance level ǫ ∈ (0, 1), every
data sequence x1, y1, . . . ,xn−1, yn−1, every vector xn of explanatory variables
and every number τ ∈ [0, 1] to a set Γǫ

n = Γǫ(x1, y1, . . . ,xn−1, yn−1,xn, τ) ⊆ R;
we will use the notation Γǫ

n when the data sequence, the vector of explanatory
variables and the number τ are clear from the context.

Let the observation space be Ω = R
K ×R. Once the p-values (5) are defined,

we can use them for confidence prediction (this is a standard procedure; cf. Cox
& Hinkley 1974, (76) on p. 243): we set

Γǫ(x1, y1, . . . ,xn−1, yn−1,xn, τn)

:= {y ∈ R : pn((x1, y1), . . . , (xn−1, yn−1), (xn, y), τn) > ǫ} . (6)

This randomized confidence predictor is called the smoothed conformal predictor
determined by the nonconformity measure (An); a smoothed conformal predictor
is a smoothed conformal predictor determined by some nonconformity measure.
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Corollary 1 If the observations (xn, yn) are generated by a probability distri-
bution P ∈ P and a smoothed conformal predictor is fed with random num-
bers (τ1, τ2, . . .) ∼ U∞ independent of the observations, the error sequence
errǫ

1, err
ǫ
2, . . . at any significance level ǫ is Bernoulli with parameter ǫ.

This immediately follows from theorem 1 and asserts that smoothed conformal
predictors are strongly valid.

The adjective “smoothed” refers to using random numbers; if we take τn = 1
for all n = 1, 2, . . . , we will obtain the definition of a deterministic conformal
predictor, or just conformal predictor (in this case we omit τn from our nota-
tion). Notice that when a conformal predictor makes an error, the corresponding
smoothed conformal predictor also makes an error. In combination with corol-
lary 1, we can see that conformal predictors are conservative, in the sense that,
for each ǫ, their error sequence errǫ

1, err
ǫ
2, . . . is dominated by a Bernoulli se-

quence with parameter ǫ. In particular, whereas we have limn→∞(Errǫ
n /n) = ǫ

a.s. for smoothed conformal predictors, we only have lim supn→∞(Errǫ
n /n) ≤ ǫ

a.s. for conformal predictors.
There is no difference between conformal predictors and the corresponding

smoothed conformal predictors for the Gauss linear model and n ≥ K + 3 since
the second addend on the right-hand side of (5) is then zero. There is also no
difference for the MA model and n ≥ 3; however, the difference is important
(although usually barely noticeable on error and accuracy plots) for the de
Finetti model.

Proposition 1 is a special case of corollary 1 corresponding to the noncon-
formity measure

An (Sn−1 (x1, y1, . . . ,xn−1, yn−1) , (xn, yn)) :=
|yn − ŷn|

√

1 + z′n(Z ′
n−1Zn−1)−1znσ̂n−1

(7)
(cf. (3); the goodness of the definition follows from the formulas given at the
beginning of §3). The expression on the right-hand side of (7) can be replaced
by other natural expressions, such as |yn − ŷn|—see Vovk et al. (2005), §8.5.

A natural question is whether there are other ways to achieve validity, except
conformal prediction. The following theorem will give a negative answer to a
version of this question.

We say that a confidence predictor is invariant if Γǫ
n, n > 1, depends on the

first n − 1 observations only through the value of Sn−1. (The use of invariant
confidence predictors is natural in view of the sufficiency principle; see, e.g., Cox
& Hinkley 1974, §2.3 (iii).) Let N be a set of positive integers. We say that a
confidence predictor Γ† is at least as accurate as another confidence predictor
Γ for n ∈ N if

(Γ†)ǫ(x1, y1, . . . ,xn−1, yn−1,xn) ⊆ Γǫ(x1, y1, . . . ,xn−1, yn−1,xn)

for all ǫ, all n ∈ N and P -almost all x1, y1, . . . ,xn−1, yn−1,xn, under any prob-
ability distribution P ∈ P .
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Theorem 2 Let N be a set of positive integers. Suppose the ATTS statistics
Sn are boundedly complete for n ∈ N . If a confidence predictor Γ is invariant
and weakly valid for n ∈ N , then there is a conformal predictor that is at least
as accurate as Γ for n ∈ N .

This theorem is also proved in the appendix. In some form it was known already
in the late 1970s to Kei Takeuchi.

The condition of bounded completeness holds for the Gauss linear model and
the MA model by the standard completeness result for exponential statistical
models (see, e.g., theorem 4.1 in Lehmann 1986), and it is also known to hold for
the de Finetti model (see the theorem on p. 797 in Bell et al. 1960 or theorem 1
in Mattner 1996).

Therefore, it is not a coincidence that the standard confidence predictor (4)
does not work until n exceeds K + 2: since the conditional distributions Pn are
concentrated at one point for n ≤ K + 1 and at two points for n = K + 2 with
probability one, no conformal predictor and, therefore, no weakly valid invariant
confidence predictor can give a bounded prediction region Γǫ

n for ǫ < 0.5 and
n ≤ K + 2.

5 The MA model

Remember that the MA model assumes, besides (1), that xn are generated
independently from the same multivariate normal distribution on R

K , with the
noise random variables ξ1, ξ2, . . . independent of x1,x2, . . . . The ATTS statistics
in the MA model are

Sn :=

(

n
∑

i=1

xi,

n
∑

i=1

yi,

n
∑

i=1

xix
′
i,

n
∑

i=1

yixi,

n
∑

i=1

y2
i

)

(equivalently, the ATTS statistics can be defined to be the empirical means and
covariances of all variables, i.e., the response and the explanatory variables).

In the MA model, there is a great flexibility in choosing a nonconformity
measure for use in conformal prediction. Suppose, e.g., that the number of
explanatory variables K is too large for us to estimate all the βk and α. We be-
lieve, however, that the first K†

n ≪ K of the explanatory variables are especially
important, and it is feasible to estimate the corresponding βk, k = 1, . . . , K†

n,
and α.

Fix a positive integer number n. We will write y for yn, Z for Zn and K†

for K†
n. Let U be the submatrix of Z consisting of the first K† + 1 columns

of Z (those that correspond to the explanatory variables deemed to be useful
at this stage plus the dummy column 1). To test the conformity of the nth
observation to the first n− 1 observations, we will first fit a hyperplane to all n
observations using the relevant explanatory variables. Applying a small “ridge
coefficient” a to avoid the need to invert singular matrices, we obtain the vector
of residuals

e := y −U (U ′
U + aI )

−1
U

′y = y −U c; (8)

11



notice that c := (U ′
U + aI )−1

U
′y is a known vector when the value of the

statistic Sn is known. Since the joint distribution of y and the non-dummy
columns of U is invariant w.r. to rotations around the vector 1, the distribution
of e will also be invariant w.r. to such rotations. (It might help the intuition to
notice that knowing the value of Sn is equivalent to knowing the lengths of and
the angles between the following K + 2 vectors: the K + 1 columns of Z and
y.)

In the rest of this section we will assume n ≥ 3 (with arbitrary conventions
for n = 1, 2). A standard statistical result (stated in §7; see (14)) allows us to
conclude that

√

n − 1

n

en − en−1
√

1
n−2

∑n−1
i=1 (ei − en−1)2

, (9)

where e1, . . . , en are the components of the vector (8) of residuals and en−1 is
the average of e1, . . . , en−1, has the t-distribution with n−2 degrees of freedom.

Let us see how to implement the conformal predictor corresponding to the
nonconformity measure

An (Sn−1(x1, y1, . . . ,xn−1, yn−1), (xn, yn)) :=
en − en−1

√

∑n−1
i=1 (ei − en−1)2

(10)

(proportional to (9); the fact that the right-hand side of (10) depends on the
first n − 1 observations only through the value of Sn−1 can be seen from the
representation (8), where c is a known vector). First we replace the true value
yn by variable y ranging over R. Each residual ei becomes a linear (according
to (8), where c also depends on y) function ei(y) of y, and the prediction region
can be written as

Γǫ
n :=







y ∈ R :

√

n − 1

n

|en(y) − en−1(y)|
√

1
n−2

∑n−1
i=1 (ei(y) − en−1(y))2

< t
ǫ/2
n−2







.

The inequality in this formula is quadratic in y, so Γǫ
n is easy to find. We can see

that the prediction region for yn is an interval (empirically, this is the typical
case), the union of two rays, the empty set or the whole real line.

For use in our experiments with the artificial data set described in §3, we
define U as the first 11 columns of Z if n < 103 and as the full Z otherwise.
Our chosen value for the threshold, 103, appeared to us slightly less arbitrary
than other choices (it is the first step when the standard prediction intervals (4)
become bounded), but the quality of the estimates of α and the 100 components
of β is still poor when n is close to 103. This affects the quality of our prediction
intervals but does not show on the median-accuracy plots. The value of the ridge
coefficient is always a = 0.01.

For each model considered in this paper except the Gauss linear model we
define a nonconformity measure involving the matrix U defined in the previous
paragraph. In the case of the MA model, we use the nonconformity measure

12
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Figure 3: The median-accuracy plot for the MA predictor.

(10) and call the corresponding conformal predictor with Γǫ
n replaced by coΓǫ

n

the MA predictor. Of course, this brief term is somewhat misleading: it should
always be borne in mind that the conformal predictor leading to the MA pre-
dictor is only one of many conformal predictors that can be defined in the MA
model. Similarly, in the next section we will introduce the de Finetti predictor
(called “Ridge Regression Confidence Machine” in Vovk et al. 2005) and the
Gauss–de Finetti predictor, which will also correspond to specific nonconfor-
mity measures. In the same spirit, the confidence predictor (4) will be called
the Gauss predictor.

The median-accuracy plot for the MA predictor and our artificial data set
is shown in figure 3. Before the threshold 103 the predictor quickly learns
α and the first 10 parameters βk, and its performance more or less stabilizes
before quickly improving again when it starts learning the other parameters
from n = 103 onwards (the second improvement in the performance shows on
the median-accuracy plot from n = 205).

The performance of the MA predictor is better than the performance of any
other confidence predictor considered in this paper, but this, of course, should
not be taken to mean that the other predictors are worse. Different predictors
are based on different information about the data set. None of the predictors
“knows” that the components of xn are realizations of independent standard
normal variables; even the MA model, the narrowest model considered in this
paper, allows arbitrary means of and arbitrary correlations between different
explanatory variables for the same observation. The Gauss predictor does not
know that the xn are IID and normal. In the following section we will introduce
the de Finetti predictor, which only knows that the observations (xn, yn) are
IID, and the Gauss–de Finetti predictor, which knows, in addition, that the yn

are generated by (1).
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6 The de Finetti model

The statistical model considered in this section is non-parametric: we simply
assume that the observations (xn, yn) are IID. Notice that this does not involve
the assumption of linearity of the “true” regression function or the assumption
of a normal noise. The ATTS statistics are

Sn := *(x1, y1), . . . , (xn, yn)+, (11)

where we use *a1, . . . , an+ to denote the bag, or multiset, consisting of a1, . . . , an

(some of these elements may coincide). For each n, the conditional distribution
of (ξ1, . . . , ξn) given that

*ξ1, . . . , ξn+ = *(x1, y1), . . . , (xn, yn)+,

where ξi are IID random elements taking values in R
K ×R, assigns (with proba-

bility one) the same probability, 1/n!, to every ordering (xπ(1), yπ(1)), . . . , (xπ(n), yπ(n))
of the bag *(x1, y1), . . . , (xn, yn)+.

We attach de Finetti’s name to this model since de Finetti, in his study of
exchangeability, was the first to understand the role of the statistics (11).

In the case of the de Finetti model, we will be interested in the conformal
predictor determined by the nonconformity measure

An (Sn−1 (x1, y1, . . . ,xn−1, yn−1) , (xn, yn)) := |en|, (12)

where we continue to use e1, . . . , en for denoting the components of the vector
of residuals (8). (Deleted and, especially, studentized residuals would also be a
natural choice—see, e.g., Vovk et al. 2005, pp. 34–35; in our experience, how-
ever, the difference is not significant, and we stick to the simplest choice.) As
usual, we call the confidence predictor obtained from this conformal predictor
by replacing the prediction regions Γǫ

n with the prediction intervals co Γǫ
n simply

the de Finetti predictor.
The de Finetti predictor can be implemented fairly efficiently. First notice

that for the de Finetti model the formula (5) for p-values can be simplified to

pn =
|{i : αi > αn}| + τn |{i : αi = αn}|

n
, (13)

where αi := An(*ω1, . . . , ωi−1, ωi+1, . . . , ωn+, ωi), i ranges over {1, . . . , n}, and
|E| stands for the size of the set E. In the case of the nonconformity measure
(12), αi = |ei|. The residuals (8) can be written in the form

e = y −U (U ′
U + aI )

−1
U

′y = Cy,

where C is the matrix I −U (U ′
U + aI )

−1
U

′, not depending on the response
variables. If we fix the first n − 1 response variables yi and vary the last one,
y, the residuals ei = ei(y) become linear functions of y (this fact was already
used in the previous section). By (13) with τn := 1, the p-value is the fraction

14
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Figure 4: The median-accuracy plot for the de Finetti predictor.

of i = 1, . . . , n satisfying |ei(y)| ≥ |en(y)|; therefore, as y varies from −∞ to
∞, the p-value can change only at the at most 2n points (called critical points)
which are solutions to the linear equations ei(y) = en(y) and ei(y) = −en(y).
This divides the real line into at most 4n + 1 intervals (the critical points,
considered as degenerate closed intervals, the open intervals bounded on both
sides by adjacent critical points, and the two unbounded open intervals to the
left of the leftmost critical point and to the right of the rightmost critical point;
if there are no critical points, this collapses into one unbounded open interval
R). We can compute the p-value for one point in each of these intervals and
then compute Γǫ

n as the union of the intervals with p-values exceeding ǫ. The
computation of the de Finetti prediction interval co Γǫ

n can be simplified if we
notice that the set Γǫ

n is closed (which is opposite to what we have for the Gauss
linear and MA models): assuming that the set of critical points is non-empty,
coΓǫ

n is bounded if and only if the two unbounded intervals have p-values at
most ǫ, in which case the end-points of co Γǫ

n can be found as the leftmost and
rightmost critical points with p-values exceeding ǫ. Computing Γǫ

n and coΓǫ
n

from scratch (e.g., without using the results of computations from the previous
steps of the on-line protocol) takes time O(n log n) (see Vovk et al. 2005, p. 33).

As figure 4 shows, the de Finetti predictor works well for our data set if
the significance level is not too demanding: it is clear that for the de Finetti
prediction interval co Γǫ

n to be bounded the number of observations n has to
be at least 1/ǫ. The median-accuracy plot for ǫ = 5% is almost as good as the
corresponding plot for the MA predictor. For the significance level ǫ = 0.5%, the
de Finetti predictor requires 200 observations to produce bounded predictions,
and this shows on the median-accuracy plot at n = 399. At the significance
level ǫ = 1% the de Finetti predictor performs about the same as the Gauss
predictor, but for a different reason: 1/ǫ just happens to coincide with K.

The de Finetti model is non-parametric but we can see that it still admits
valid predictors (or conservative predictors if one insists on using deterministic
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Figure 5: The cumulative numbers of errors made by the de Finetti predictor:
Errǫn is plotted against n.

predictors). The threshold 1/ǫ can be said to play the role of the number of
parameters, and the non-parametric nature of the model is reflected in the fact
that 1/ǫ → ∞ as ǫ → 0. Since 1/ǫ tends to ∞ relatively slowly, such an
infinite-dimensional model may be better for the purpose of prediction than a
high-dimensional model with a very large K.

Theorem 2 is not directly applicable to the de Finetti model, since only
smoothed conformal predictors are valid, as the latter term is used in this paper.
In Vovk et al. (2005), §2.4, we state two results of the same nature about the
de Finetti model.

There are two sources of conservativeness for the de Finetti predictor as de-
scribed above (and used for producing figures 4). First, we used a deterministic
predictor (taking τn = 1 for all n), and second, we replaced each prediction
region by its convex hull. Our experiments (see, e.g., figure 5) show that we
still have approximate validity.

The Gauss–de Finetti linear model

As defined in §1, the Gauss–de Finetti linear model is the combination of the
Gauss linear and de Finetti models: we assume both that the observations are
IID and that the responses are generated by (1) with ξ1, ξ2, . . . independent of
x1,x2, . . . . Correspondingly, the ATTS statistics are

Sn :=

(

*x1, . . . ,xn+,

n
∑

i=1

yi,

n
∑

i=1

yixi,

n
∑

i=1

y2
i

)

.

Using the nonconformity measure (12) and replacing the prediction regions
output by the corresponding conformal predictor with their convex hulls, we
obtain the Gauss–de Finetti predictor. Its performance on our usual data set
is shown in figure 6. We do not know whether the Gauss–de Finetti predictor
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Figure 6: The median-accuracy plot for the Gauss–de Finetti predictor.

can be implemented efficiently, and figure 6 was produced using Monte-Carlo
sampling from the conditional distributions given Sn. However, comparing fig-
ure 6 to figures 4 (to the left of n = 205) and 2 (to the right of n = 205), we
can see that the following simple prediction strategy will work almost as well
as the Gauss–de Finetti predictor on our data set: predict using the de Finetti
predictor if n < 103 and predict using the Gauss predictor if n ≥ 103. (As in
all other cases in this paper where the threshold n = K + 3 = 103 appears, the
best switch-over point will be slightly greater than K + 3, but the question of
when exactly to switch is outside the scope of this paper.)

7 On-line protocol, part II

Theorem 1 sheds new light not only on the main topic of this paper, predictive
linear regression, but also on some more classical corners of statistics. In this
section we will discuss, in particular, Fisher’s fiducial prediction and Wilks’s
non-parametric prediction intervals. At the end of the section we discuss relax-
ations of the on-line protocol.

The Gaussian model

Let us consider the model (1) with the xn absent (i.e., K = 0); in other words,
yn is an IID sequence with yn ∼ N(α, σ2) and unknown α and σ2 > 0. This
model will be called the Gaussian model. Notice that the MA model and the
Gauss–de Finetti model also reduce to the Gaussian model when K = 0.

The fact that

Tn :=

√

n − 1

n

yn − yn−1

σ̂n−1
, (14)
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where

yl :=
1

l

l
∑

i=1

yi and σ̂2
l :=

1

l − 1

l
∑

i=1

(yi − yl)
2,

has the t-distribution with n − 2 degrees of freedom (Fisher 1925) allows us to
conclude that yn ∈ Γǫ

n with probability 1 − ǫ, where the prediction interval Γǫ
n

for yn is defined by

Γǫ
n :=

{

y ∈ R :
∣

∣y − yn−1

∣

∣ < t
ǫ/2
n−2

√

n

n − 1
σ̂n−1

}

, n = 3, 4, . . . , (15)

and ǫ ∈ (0, 1) is the chosen significance level. This prediction interval is a special
case of (4).

Fisher discussed (15) and related confidence predictors in his last book
(Fisher 1973, §§V.3–4) under the rubric of “fiducial prediction”. It appears
that the idea of fiducial prediction is less controversial (and less often discussed)
than the related idea of fiducial inference for parameter values; besides, we will
be interested in the least controversial aspects of fiducial prediction. Fisher’s
comments about fiducial prediction in §§V.3–4 are all applicable to the predic-
tor (15), although in §V.3 he discusses prediction of exponentially rather than
normally distributed random variables.

To some extent answering his critics (“some teachers assert that statements
of fiducial probability cannot be tested by observations”), he writes that “fidu-
cial statements about future observations” (such as (15), although this passage is
about exponentially distributed responses) “are verifiable by subsequent obser-
vations to any degree of precision required”. The following is our reconstruction
(we believe the only possible reconstruction) of Fisher’s verification protocol, as
applied to the prediction intervals (15). Fix a significance level ǫ ∈ (0, 1) and
l ∈ {2, 3, . . .} (the sample size; we might consider samples of different sizes, but
we will stick to the simplest case). For m = 1, 2, . . ., generate the mth sample

y(m−1)(l+1)+1, y(m−1)(l+1)+2, . . . , ym(l+1)−1

and the mth test observation ym(l+1). Register an error if the mth prediction
interval computed from the mth sample according to (15) fails to contain the
mth test observation:

err†m :=

{

0 if |ym(l+1) − y| < t
ǫ/2
l−1

√

l+1
l

√

1
l−1

∑m(l+1)−1
i=(m−1)(l+1)+1(yi − y)2

1 otherwise,

where

y :=
1

l

m(l+1)−1
∑

i=(m−1)(l+1)+1

yi.

As in the on-line protocol, the errors err†m, m = 1, 2, . . ., are independent. The
frequency of error gets arbitrarily close to ǫ with an arbitrarily high probability
as the number of observations increases.

The verification protocol has a serious drawback: as Fisher puts it,
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In carrying out such a verification [. . . ], it is to be supposed that
the investigator is not deflected from his purpose by the fact that
new data are becoming available from which predictions, better than
the one he is testing, could at any time be made. For verification, the
original prediction must be held firmly in view. This, of course, is a
somewhat unnatural attitude for a worker whose main preoccupation
is to improve his ideas.

Indeed, when making his prediction for the mth test observation, the “inves-
tigator” is asked to ignore the first m − 1 samples. The protocol seems to be
an artificial device rather than a description of what “a worker whose main
preoccupation is to improve his ideas” might do in reality. Let us see, however,
what happens if all the previous observations are used when making the mth
prediction; in this case, the sequence of errors becomes

err‡m :=

{

0 if |ym(l+1) − y| < t
ǫ/2
m(l+1)−2

√

m(l+1)
m(l+1)−1

√

1
m(l+1)−2

∑m(l+1)−1
i=1 (yi − y)2

1 otherwise,

where

y :=
1

m(l + 1) − 1

m(l+1)−1
∑

i=1

yi.

As err‡m, m = 1, 2, . . ., is a subsequence of the sequence of errors errǫ
n, n =

1, 2, . . ., in the on-line protocol, the errors are still independent. Theorem 1
cures the drawback.

Fisher’s theory of fiducial prediction is based on the fact that a value such as
(14) has a known distribution for each n; therefore, it can be used as a “pivot”
to project this known distribution onto the future observation yn. This idea
may be difficult to formalize, but Fisher’s observation that (14) has a known
distribution can be strengthened: theorem 1 (applied to the nonconformity
measure (14)) implies that the random variables Tn, n = 3, 4, . . ., have the t-
distribution with n − 2 degrees of freedom and are independent in the on-line
protocol. Therefore, not only the individual Tn have known distributions, but
also the whole sequence (T1, T2, . . .) has a known distribution (the product of
t-distributions).

The univariate de Finetti model

The de Finetti model is different from all the other models in this paper (see
figure 1) in that it gives a univariate model different from the Gaussian model
in the case where the explanatory variables are absent. The construction of
prediction and tolerance intervals in the univariate de Finetti model, which
says that y1, y2, . . . form an IID sequence, was undertaken by many authors
following the pioneering paper by Wilks (1941). (This work was later extended
to the multivariate case: see, e.g., Fraser 1957; this extension, however, is not
directly related to our de Finetti predictors.) For simplicity, let us assume in this
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subsection, as is customary in literature, that the distribution of one observation
is continuous. Correspondingly, we will assume that the realized values of yn,
n = 1, 2, . . ., are all different.

For each n = 1, 2, . . ., define Tn ∈ {1, 2, . . . , n} as the smallest i such that
yn < y(n−1,i), where y(n−1,1), . . . , y(n−1,n−1) is the sequence of the first n − 1
observations y1, . . . , yn−1 sorted in the ascending order; if yn > y(n−1,n−1),
set Tn := n. Each Tn is a “pivot”, being distributed uniformly on the set
{1, . . . , n}. Wilks suggested the following prediction intervals based on this

fact: fix a number r ∈ {1, 2, . . .} and define Γ
2r/n
n , n = 2r + 1, 2r + 2, . . ., to

be the interval (y(n−1,r), y(n−1,n−r)); the probability of error, yn /∈ Γ
2r/n
n , is

then 2r/n. Now theorem 1 implies that the whole random sequence (T1, T2, . . .)
has a known distribution: namely, it is distributed according to the product
U1 × U2 × · · · of the uniform distributions Un on {1, . . . , n}. In particular,

Wilks’s prediction intervals Γ
2r/n
n , n = 2r + 1, 2r + 2, . . ., lead to independent

errors.

Relaxations of the on-line protocol

This paper concentrates on the on-line prediction protocol. Smoothed conformal
predictors lead to independent errors in the on-line protocol, and theorem 2
suggests that conformal predictors are the most natural weakly valid confidence
predictors. This is why we included the requirement of independence in the
definition of strong validity, despite the fact that the error frequency can be
shown to approach the error probability ǫ with probability approaching one
even when the requirement of independence is relaxed in certain ways.

The situation changes when we move outside the on-line protocol. The on-
line protocol is natural, but in one respect it is overly restrictive: the true
response yn becomes known before the prediction for the next response yn+1 is
made. It can be shown that the error frequency will still converge to ǫ if the
true response is only given for a small fraction of observations, and even for
those observations it can be given with a delay (Vovk et al. 2005, §4.3). The
independence of errors, however, will be lost (we can still have “approximate
independence”, but this is a much more elusive notion than ordinary indepen-
dence).

8 Conclusion

In this paper we considered the problem of prediction in three main models for
linear regression. One of these models, the Gauss linear model, is the standard
textbook one. The MA model seems to have been somewhat neglected, partly
because of philosophical reasons (one conditions on the observed values of the
explanatory variables to make the prediction, or estimate, etc., more relevant).
In this paper we took a pragmatic approach, studying which models permit one
to produce informative prediction intervals in different circumstances without
being restricted a priori by general principles. (We did use the sufficiency
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principle in our interpretation of theorem 2, but we accept that this makes the
theorem less convincing.) It remains a mystery to us why the de Finetti model
has been completely neglected in the field of regression, even in non-parametric
statistics, where the value of the de Finetti model is in principle well understood.
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Appendix: Proofs of the theorems

In this appendix we will prove the two main results stated in this paper, theo-
rems 1 and 2. A version of theorem 1 was proved in §8.7 of Vovk et al. (2005),
but we reproduce the principal points of the proof to make our exposition self-
contained. A special case of theorem 2 (namely, for the de Finetti model) was
proved in §2.6 of Vovk et al. (2005).

Proof of theorem 1

In this proof, ω1, ω2, . . . will be random observations generated by P ∈ P ,
(ω1, ω2, . . .) ∼ P , and τ1, τ2, . . . will be random numbers, (τ1, τ2, . . .) ∼ U∞. For
each n = 0, 1, . . . let Gn be the σ-algebra generated by the random elements

Sn(ω1, . . . , ωn), ωn+1, τn+1, ωn+2, τn+2, . . . .

So G0 is the most informative σ-algebra and G0 ⊇ G1 ⊇ G2 ⊇ · · · . It will be
convenient to write PG(E) and EG(ξ) for the conditional probability P(E | G)
and expectation E(ξ | G), respectively, given a σ-algebra G.

Lemma 1 For any step n = 1, 2, . . . and any ǫ ∈ (0, 1),

PGn
(pn ≤ ǫ) = ǫ. (16)

Proof For a given value of the summary Sn(ω1, . . . , ωn) of the first n obser-
vations, consider the conditional distribution function F of the random vari-
able η := An(Sn−1(ω1, . . . , ωn−1), ωn) (because of the total sufficiency, it does
not matter whether we further condition on ωn+1, τn+1, ωn+2, τn+2, . . .). De-
fine F (x−) to be supt<x F (t). Therefore, our task reduces to showing that the
conditional probability of the event

1 − F (η) + τn(F (η) − F (η−)) ≤ ǫ (17)

is ǫ (since the left-hand side of (17) coincides with the right-hand side of the
definition (5)). The latter fact is usually stated in statistics textbooks for con-
tinuous F (see, e.g., Cox & Hinkley 1974, §3.2), but it is also easy to check in
general.
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Lemma 2 For any step n = 1, 2, . . ., pn is Gn−1-measurable.

Proof This follows from the definition: pn is defined in terms of ωn, τn and
the summary of the first n − 1 observations.

Now we can easily prove the theorem. First we demonstrate that, for any
n = 1, 2, . . . and any ǫ1, . . . , ǫn ∈ (0, 1),

PGn
(pn ≤ ǫn, . . . , p1 ≤ ǫ1) = ǫn · · · ǫ1 a.s. (18)

The proof is by induction on n. For n = 1, (18) is a special case of lemma 1.
For n > 1 we obtain, from lemmas 1 and 2, standard properties of conditional
expectations, and the inductive assumption:

PGn
(pn ≤ ǫn, . . . , p1 ≤ ǫ1) = EGn

(

EGn−1

(

Ipn≤ǫn
Ipn−1≤ǫn−1,...,p1≤ǫ1

))

= EGn

(

Ipn≤ǫn
EGn−1

(

Ipn−1≤ǫn−1,...,p1≤ǫ1

))

= EGn
(Ipn≤ǫn

ǫn−1 · · · ǫ1)

= ǫnǫn−1 · · · ǫ1 a.s.

The “tower property” of conditional expectations immediately implies

P (pn ≤ ǫn, . . . , p1 ≤ ǫ1) = ǫn · · · ǫ1.

Therefore, the distribution of the first n p-values p1, . . . , pn is Un, for all n =
1, 2, . . . . This implies that the distribution of the infinite sequence p1p2 . . . is
U∞.

Proof of theorem 2

In this proof, Ω := R
K × R and ωi stands for (xi, yi). Let n ∈ N .

For each summary s ∈ Σn let f(s) be the conditional probability given
Sn(ω1, . . . , ωn) = s that Γ makes an error at a significance level ǫ when predict-
ing yn from ω1, . . . , ωn−1 and xn, the observations ω1, ω2, . . . being generated
from P ∈ P . We know that the expected value of f(Sn(ω1, . . . , ωn)) is ǫ under
any P ∈ P , and this, by the bounded completeness of Sn, implies that f(s) = ǫ
for almost all (under PS−1

n for any P ∈ P) summaries s. Define E(s, ǫ) to be
the set of all pairs (s′, ω) = (s′, (x, y)) ∈ Σn−1 × Ω such that Fn(s′, ω) = s
(where Fn is the function from the definition of the algebraic transitivity of
the Sn) and Γ makes an error at the significance level ǫ when predicting y and
fed with ω1, . . . , ωn−1 satisfying Sn(ω1, . . . , ωn−1) = s′ and with x (since Γ is
invariant, whether an error is made depends only on s′, not on the particular
ω1, . . . , ωn−1). It is clear that

ǫ1 ≤ ǫ2 =⇒ E(s, ǫ1) ⊆ E(s, ǫ2)

and

P ((Sn−1(ω1, . . . , ωn−1), ωn) ∈ E(s, ǫ) | Sn(ω1, . . . , ωn) = s) = ǫ a.s.,
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where (ω1, ω2, . . .) ∼ P ∈ P .
In this proof we say “conformity measure” to mean a nonconformity measure

which is used for computing p-values in the opposite way to (5): the “>” in (5)
is replaced by “<”. Let us check that the conformal predictor Γ† determined
by the conformity measure

An(s′, ω) := inf {ǫ : (s′, ω) ∈ E(Fn(s′, ω), ǫ)}

is at least as accurate as Γ. By the monotone convergence theorem for condi-
tional expectations,

P (An(Sn−1(ω1, . . . , ωn−1), ωn) ≤ ǫ | Sn(ω1, . . . , ωn) = s)

= lim
δ↓ǫ

P (An(Sn−1(ω1, . . . , ωn−1), ωn) < δ | Sn(ω1, . . . , ωn) = s)

≤ lim
δ↓ǫ

P ((Sn−1(ω1, . . . , ωn−1), ωn) ∈ E(s, δ) | Sn(ω1, . . . , ωn) = s) = lim
δ↓ǫ

δ = ǫ a.s.,

where (ω1, ω2, . . .) ∼ P ∈ P and δ is constrained to be a rational number.
Therefore, at each significance level ǫ and for all (ω1, . . . , ωn) ∈ Ωn,

yn ∈ (Γ†)ǫ(ω1, . . . , ωn−1,xn) ⇐⇒ P

(

An(Sn−1(ξ1, . . . , ξn−1), ξn)

≤ An(Sn−1(ω1, . . . , ωn−1), ωn) | Sn(ξ1, . . . , ξn) = Sn(ω1, . . . , ωn)
)

> ǫ

=⇒ An(Sn−1(ω1, . . . , ωn−1), ωn) > ǫ

=⇒ (Sn−1(ω1, . . . , ωn−1), ωn) /∈ E(Sn(ω1, . . . , ωn), ǫ)

⇐⇒ yn ∈ Γǫ(ω1, . . . , ωn−1,xn) a.s.,

where (ξ1, ξ2, . . .) ∼ P ∈ P .
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