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In this paper we develop a mathematical framework for
the characterisation of separability and entanglement of for-
mation (EoF) of general bipartite states. These characteri-
sations are of the variational kind, meaning that separability
and EoF are given in terms of a function which is to be mini-
mized over the manifold of unitary matrices. A major benefit
of such a characterisation is that it directly leads to a numer-
ical procedure for calculating EoF. We present an efficient
minimisation algorithm and an apply it to the bound entan-
gled 3×3 Horodecki states; we show that their EoF is very low
and that their distance to the set of separable states is also
very low. Within the same variational framework we rephrase
the results by Wootters (W. Wootters, Phys. Rev. Lett. 80,
2245 (1998)) on EoF for 2× 2 states and present progress in
generalising these results to higher dimensional systems.

03.65.Bz, 03.67.-a, 89.70.+c

I. INTRODUCTION

A problem which has received considerable attention
in the last few years is to find necessary and sufficient
conditions under which a quantum state of a compos-
ite system is separable. The example extraordinaire of a
non-separable state is a pair of 2-level particles in a sin-
glet state, a so-called EPR-pair, named after Einstein,
Podolsky and Rosen, who used this sort of state to show
that quantum mechanics exhibits strong non-local corre-
lations which seem to violate the relativity principle.

A separable state of a composite system can be written
as the direct product of the subsystem states: |ΨAB〉 =
|ΨA〉 ⊗ |ΨB〉. A non-separable state, or entangled state
cannot be decomposed in this way; e.g., the singlet state
(| ↑〉| ↓〉 − | ↓〉| ↑〉)/

√
2 consists of a superposition of

separable states but is itself not separable.
Nowadays, the importance of entangled states goes be-

yond a mere fundamental interest, since EPR-pairs are
the basic resources of quantum techniques such as quan-
tum cryptography, quantum teleportation and quantum
error correction. A mixed state is separable iff its density
matrix can be written as a convex linear combination of
pure product states; for a bipartite system this reads:

ρ =

K
∑

k=1

wk|uk〉〈uk| ⊗ |vk〉〈vk|. (1)

The separability problem consists of finding a criterion
for checking whether such a decomposition is possible for
a given state.

Despite the simple formulation of this problem, a com-
plete solution has to this date not been found. An im-
portant achievement was the discovery by Peres of a nec-
essary condition for separability [1]. He noted that the
partial transposition of a separable state still has non-
negative eigenvalues, just as the original state. Thus, if
the partial transposition of state ρ is not a state (i.e. does
not have non-negative eigenvalues summing to one),then
ρ is not separable (i.e. is an entangled state). The im-
portance of this criterion was soon realised when M., P.
and R. Horodecki proved [2] that it is also a sufficient
criterion for 2×2 and 2×3 systems. For an introduction
to recent results on this subject, see, e.g., [3].

If a state is entangled, one could ask for a measure of
the amount of entanglement. For pure states, a measure
generally agreed upon is the von Neumann subsystem
entropy: the entropy of the partial trace of the state
projector. For mixed states, the situation is much more
difficult. Not only is there no single measure of entangle-
ment which is suited for every purpose, but calculating
the values of the different proposed measures and proving
statements about them is exceedingly difficult. Among
the proposed measures are the entanglement of forma-
tion [4], the entanglement of distillation [4] and relative
entropy of entanglement [5].

In this paper, we focus on separability, on entangle-
ment of formation (EoF) and on the related concept
of concurrence. All these subjects are related, because
states are separable if and only if their EoF is zero. A
closed form expression exists for the EoF of 2×2 systems
in terms of their concurrence [6]. A closed form expres-
sion also exists for isotropic states of general systems [7].

The purpose of this paper is to give variational char-
acterisations of separability and EoF for general (i.e. any
dimensions) bipartite states. Such a characterisation is of
the form Q(ρ) = minT f(ρ, T ), that is: the state property
under study can be found as the minimal value of some
specific function over the manifold of unitary matrices T .
In section II it will be shown how this can be done. The
language of section II is matrix analysis, not only because
this allows to state the results in a most succinct way but
also because it gives clues towards generalisations.

The greatest benefit of a variational characterisation is
that it directly yields a method for actually calculating
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the state property Q, albeit in a numerical fashion, us-
ing a minimisation procedure. In section III we describe
the procedure which we have used, and some interesting
results we have obtained with it.

II. VARIATIONAL CHARACTERISATIONS

It is well known that mixed states can be realised by
an ensemble of pure states in an infinite number of ways.
The determination of the separability of a state and the
determination of its entanglement of formation have in
common that a particular realisation of a state has to be
found such that some property holds for all pure states in
that realisation. In order to find this optimal realisation,
it is of considerable interest to have a mathematically el-
egant way of “generating” all possible realisations of a
state. In section II A we will recollect a result by Hugh-
ston, Jozsa and Wootters that any realisation of a state
is related to the eigenvalue decomposition of the state via
some right-unitary matrix.

The required property for separability is that all pure
states in the realisation must be product states. In sec-
tion II B we give a number of useful mathematical expres-
sions for this property. This then leads to a variational
characterisation of separability, the topic of section II C.
For calculating the EoF of the state, the property of the
optimal realisation is that the so-called average entangle-
ment of the realisation is minimal. This property and an
ensuing variational characterisation of EoF will be dis-
cussed in section II D.

In this way, searching all possible realisations for some
property amounts to passing through all right-unitary
matrices and test the property in question. However,
this would be a very impractical way to determine sepa-
rability or EoF if there would not be some bound on the
dimension of these matrices, or, which is the same thing,
on the number of pure states in the optimal realisation.
Luckily, such a bound exists. In the case of separabil-
ity, Horodecki proved [10] that (N1N2)

2 pure states (or
less) suffice, where N1 and N2 are the dimensions of the
subsystem Hilbert spaces. Uhlmann [11] proved that a
similar bound holds for the determination of EoF: the
number of pure states in the optimal realisation need not
be larger than the square of the rank of the state.

In section II E we discuss the so-called concurrence of a
state, a quantity which is closely related to the EoF. We
give an alternative proof of an important result on the
concurrence of 2 × 2 states by Wootters [6]. One of the
virtues of this alternative proof is that it yields an addi-
tional result on the exact amount of pure states in the
optimal realisation. We then report some progress in gen-
eralising the concurrence concept to higher-dimensional
bipartite states.

In appendix A, finally, a method is described for re-
ducing the set of unitary matrices which has to be ex-
amined, in the case of separability testing. Under some

circumstances, this method directly yields an optimal re-
alisation, without any need for searching. We have not
yet investigated whether this method is applicable to the
EoF case.

A. Relation between different realisations of a state

Consider a rank-R state ρ in an N1 ×N2-dimensional
Hilbert space, realised by an ensemble {wk, |ψk〉}K

k=1,
where the wk are the mixing weights of the K pure state
vectors |ψk〉. The number K is called the cardinality of
the ensemble. Necessarily, K cannot be smaller than the
rank R. Since there generally are an infinite number of
ensembles realising a particular mixed state, we are free
to choose K larger than R if this suits our purposes. It
will turn out that sometimes we will even be forced to
take K > R.

Thus: ρ =
∑K

k=1 wk|ψk〉〈ψk|, or ρ = ΨWΨ†, where
W is a K ×K diagonal matrix with Wkk = wk, and the
columns of Ψ are the K vectors ψk. This decomposi-
tion of ρ is reminiscent of the eigenvalue decomposition
of ρ: ρ = ΦMΦ†, where M is an R × R diagonal ma-
trix whose diagonal elements are the eigenvalues of ρ,
and the columns of Φ are the R eigenvectors. Since ρ is
Hermitian, Φ is a unitary matrix.

It can now easily be proven that these two decomposi-
tions must be related by an R×K right-unitary matrix T ;
this has been done first by Hughston, Jozsa and Wootters
[8].

Lemma 1 For a general state ρ, with eigenvalue decom-

position ρ = ΦMΦ†, there is a matrix Ψ and a non-
negative diagonal matrix W such that ρ = ΨWΨ† iff

there is an R×K matrix T such that:

ΨW 1/2 = ΦM1/2T, with TT † = 11R (2)

Right-unitarity of the matrix T means that a unitary
K × K matrix T ′ exists such that T consists of R row
vectors of T ; that is, the R row vectors of T form an
orthonormal set in CK and the K column vectors are
projections of an orthonormal basis in C

K onto an R-
dimensional subspace. Stated in matrix algebraic terms,
the proof becomes very simple:

Proof. First of all, it is obvious that ΦMΦ† = ΨWΨ†

follows directly from (2). Conversely, denoteX = ΨW 1/2

and consider the singular value decomposition ofX : X =
UΣV , where U is a unitary R × R matrix, V a right-
unitary R × K matrix and Σ a diagonal R × R matrix
with non-negative diagonal elements. From ΦMΦ† =
ΨWΨ† we get ΦMΦ† = UΣ2U †. Since bothM and Σ are
positive semidefinite, it follows that Σ = U †ΦM1/2Φ†U
so that X = ΦM1/2Φ†UV . This is precisely equation(2),
with T = Φ†UV . 2

Remark. It is noteworthy that the elements of W and
M are related to each other independently of Φ and Ψ:

wk = (T †MT )kk.
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This follows from the observations that Φ is unitary and
that the columns of Ψ have norm one.

B. Characterisation of product states

A state of an N1 × N2 system is separable iff there
exists a realising ensemble consisting solely of product
vectors ψ = ψ1 ⊗ ψ2, with ψ1 ∈ H1 and ψ2 ∈ H2 (in
this paper we use superscripts for enumerating vectors,
and subscripts for denoting vector components). Product
vectors can be characterised easily by rearranging their
components in matrix form. For an N1N2-vector x, let x̃
be an N1 ×N2 matrix such that x =

∑

i,j x̃ije
i ⊗ ej. For

product vectors this gives:

ψk = αk ⊗ βk −→ ψ̃k = αk(βk)T .

Obviously, product vectors are characterised by the con-
dition that the rank of ψ̃ is 1. A necessary and suf-
ficient condition for this is that all 2 × 2 minors of ψ̃
must be zero, or, more succinctly, that the second com-

pound matrix of ψ̃ must be zero: C2(ψ̃) = 0 [9]. The
second compound matrix of an N1 × N2 matrix is an
(N1(N1 − 1)/2)× (N2(N2 − 1)/2) matrix with elements:

C2(A)(ii′),(jj′) = AijAi′j′ −Aij′Ai′j , i < i′, j < j′.

The elements of C2 are all possible 2 × 2 minors of
A. The second compound matrix has a lot of useful
properties,such as: C2(AB) = C2(A)C2(B), C2(11n) =
11n(n−1)/2 and C2(A

−1) = (C2(A))−1 [9].
For practical applications it is sometimes better to con-

sider a (N1−1)× (N2−1) submatrix of C2, the one con-
taining the elements C2(A)(i,i+1),(j,j+1) only. It is easily
seen that the vanishing of this submatrix is already suf-
ficient for A being of rank 1.

From the expression for the second compound matrix,
which is quadratic in A, it will prove useful to construct
a bilinear function of two N1 × N2 matrices, denoted
C(A,B):

C(A,B)(ii′),(jj′) = AijBi′j′ −Aij′Bi′j , i < i′, j < j′.

Obviously, C(A,A) = C2(A), so that C(A,A) = 0 if and
only if A has rank 1. More specifically, we can apply
this to the state vectors ψk: ψk is a product vector iff
C(ψ̃k, ψ̃k) = 0.

In the following, we will only use a symmetrised version
of C, which we will denote by

C(ψk, ψl) = C(ψ̃k, ψ̃l) + C(ψ̃l, ψ̃k).

Since this is a bilinear function in the elements of Ψ, we
can express this in matrix notation:

C(ψk, ψl)(α) = (ΨTS(α)Ψ)kl,

where the notation (α) is a shorthand for the index tuple
(i, i′, j, j′). The matrices S(α), which we call indicator
matrices, are defined as

S
(α)
(ij),(i′j′) = S

(α)
(i′j′),(ij) = 1

S
(α)
(ij′),(i′j) = S

(α)
(i′j),(ij′) = −1

all other elements being zero. Note that all S have rank
equal to 4. For the case of 2×2-systems, there is only one
indicator matrix; it is equal to σy ⊗ σy , corresponding to
a spin-flip operator [6].

C. Condition for separability

We can now formulate a general necessary and suf-
ficient condition for the separability of a mixed state.
As mentioned before, the state ρ = ΦMΦ† is separa-
ble iff there exists a decomposition ρ = ΨWΨ†, with
ΨW 1/2 = ΦM1/2T , such that all ψk are product states,
or C(ψk, ψl) = 0, for all k = l.

Now:

C(ψk, ψl) = C(
√
wkψ

k,
√
wlψ

l)/
√
wkwl

=

R
∑

p,q=1

TpkTql√
wkwl

C(
√
mpφ

p,
√
mqφ

q), (3)

where we have used bilinearity of the form C.
Given the eigenvalue decomposition of ρ, the entity
C(

√
mpφ

p,
√
mqφ

q) can be calculated straightforwardly.

Let us organise its components into a set of matricesA(α):

A(α)
pq = C(

√
mpφ

p,
√
mqφ

q)α =
√
MΦTS(α)Φ

√
M. (4)

Using this notation, (3) can be written concisely as

C(ψk, ψl) = (T TA(α)T )lk/
√
wkwl.

The state is therefore separable iff we can find an R×K
matrix T , with K ≥ R, such that

{

TT † = 11R

C2(ψ̃
k) = (T TA(α)T )kk = 0, ∀α, k. (5)

Here, k ranges from 1 to K, and α enumerates all tuples
of indices (i, i′, j, j′) with 1 ≤ i < i′ ≤ N1 and 1 ≤ j <
j′ ≤ N2. As noted before, it is also sufficient to consider
only the tuples (i, i+ 1, j, j + 1).

Testing separability requires that the system (5) be
solved for T . Another approach, however, is to consider
(T TA(α)T )kk as entries of a matrix indexed by α and k
and to try to minimise a matrix norm of this matrix. The
state is then separable iff this minimum is zero. One can
use whatever matrix norm one prefers, e.g. the Hilbert-
Schmidt norm (also called Frobenius norm or l2-norm)
||A||22 =

∑

i,j |Ai,j |2 = TrAA†. Thus ρ is separable iff

min
T,K

∑

α,k

|(T TA(α)T )kk|2 = 0, (6)
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where the minimum has to be taken over all K ≥ R and
all R×K matrices T for which TT † = 11R. The minimal
K is called the cardinality of the state.

One can also use the l1 norm (sum of absolute values)
and minimise

∑

α,k |(T TA(α)T )kk|. For 2×2 systems the
l1 norm is the average concurrence of the ensemble, as
introduced by Wootters in [6], and the minimum is the
concurrence of the state ρ. Note that in the context of
separability testing it does not matter whether one uses
(T TA(α)T )kk or (T TA(α)T )kk/wk.

To end this paragraph, we derive an alternative expres-
sion for the l2 norm ||(C2(ψ̃

k))k||2. Define Bk = ψ̃k(ψ̃k)†,
with eigenvalue decomposition Bk = UkΣkUk† (with
Σk = Diag(σk

i )). Using the properties of C2 we find

||(C2(ψ̃
k))n

k=1||22 =
∑

k

Tr(C2(ψ̃
k)C2(ψ̃

k)†)

=
∑

k

TrC2(B
k) =

∑

k

TrC2(Σ
k)

=
∑

k

∑

i<j

σk
i σ

k
j

=
1

2

∑

k

(
∑

i,j

σk
i σ

k
j −

∑

i

(σk
i )2)

=
1

2

∑

k

(
∑

i

σk
i )2 −

∑

i

(σk
i )2

=
1

2

∑

k

(TrΣk)2 − Tr(Σk)2

=
1

2

∑

k

(TrBk)2 − Tr(Bk)2.

This result can be interpreted easily: a positive definite
hermitian matrix is rank 1 iff the square of its trace equals
the trace of its square.

D. Entanglement of formation

Within the same framework, we can also give a varia-
tional characterisation of the entanglement of formation
E(ρ) (EoF) of a mixed state ρ. This quantity is defined
as the average entanglement of the pure states in a real-
ising ensemble, minimised over all possible realising en-
sembles [4]. The von Neumann entropy H of a state ρ is
−Tr ρ log2 ρ; introducing the function h(x) = −x log2 x,
we can express H as a function of the eigenvalues λk of
ρ: H(ρ) =

∑

k h(λk). The entanglement of a pure state
ψ of a bipartite system (A,B) is the entropy of the par-
tial trace of the projector of |ψ〉: E(ψ) = H(ρA), with
ρA = TrB(|ψ〉〈ψ|). The average entanglement of an en-
semble {wk, ψ

k} is
∑

k wkE(ψk); the EoF is then found
as the minimal value over all ensembles realising ρ.

In this paragraph, we will derive an expression for E(ρ)
which is better suited for calculation. Let {wk, ψ

k} be
the realising ensemble with least average entanglement

and {mp, φp} the realising ensemble corresponding to the
eigenvalue decomposition of ρ. We first express the par-
tial trace of the projector of ψk in terms of ψ̃k: ψk =
∑

i,j ψ̃
k
ije

i ⊗ ej, hence |ψk〉〈ψk| =
∑

i,j,p,q ψ̃
k
ij(ψ̃

k
pq)

∗(ei ⊗
ej)(ep ⊗ eq)†, and the partial trace equals

ρk
A = TrB(|ψk〉〈ψk|)

=
∑

i,p

(

∑

q

ψ̃k
iq(ψ̃

k
pq)

∗

)

(ei)(ep)†

= ψ̃k(ψ̃k)†.

This is precisely the matrix Bk from the previous para-
graph.

Remark: The entropy of this partial trace matrix ρk
A

can be expressed in terms of the singular values of ψ̃k.
Let ψ̃k = UkΣkV k be the singular value decomposi-
tion of ψ̃k (that is, the Schmidt decomposition of ψk),
with Uk unitary and V k right-unitary (supposing that
N1 ≤ N2) and Σk a positive semidefinite diagonal ma-
trix, then ρk

A = Uk(Σk)2(Uk)† and H(ρk
A) = H((Σk)2) =

−2
∑

i(σ
k
i )2 log2(σ

k
i ).

In the present framework only the eigenvectors φp are
known, and the vectors ψk are to be sought by looking for
an appropriate T -matrix. We therefore want to express
ρk

A in terms of T and the φp. We get:

wkρ
k
A =

√
wkψ̃

k√wk(ψ̃k)†

=

R
∑

p,q=1

TpkT
∗
qk

√
mpmqφ̃

p(φ̃q)†.

Let us use the symbol ∆k(T ) as a shorthand for the right-
hand side of the previous expression:

∆k(T ) =

R
∑

p,q=1

TpkT
∗
qk

√
mpmqφ̃

p(φ̃q)†

ρk
A = ∆k(T )/wk

wk = Tr∆k(T ).

The last equation follows from the fact that ρk
A is nor-

malised.
The EoF is thus:

E(ρ) = min
T,K

K
∑

k=1

wkH(ρk
A)

= min
T,K

K
∑

k=1

G(∆k(T )), (7)

with

G(A) = −Tr(A log2(A/Tr(A))) (8)

= H(A) − h(Tr(A)).
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The minimum has to be taken over all K ≥ R and all
R × K matrices T for which TT † = 11R. Note that,
since a state is separable iff its entropy of formation is
zero, equation (7) gives an alternative for equation (6)
for testing separability.

Equation (7) can be brought in a more suitable form if

we enlarge the set of matrices φ̃p with zero matrices for
p > R. Then we can always use square, and therefore
unitary T matrices. Following a result by Uhlmann [11],
the cardinality K must lie between the rank R and the
square of the rank. This guarantees that the EoF can be
found by restricting oneself to finite sized T matrices.

E. Concurrence

The first analytic formula for calculating EoF has been
found by Wootters [6] and is valid for 2×2 systems. A ba-
sic property used in deriving the formula is the so-called
concurrence of a state. The concurrence is also useful for
testing separability, because a 2 × 2 state is separable iff
its concurrence equals zero. In this section we do two
things: first we rederive Wootters’ results in a shorter
way, based on the concepts we have introduced above
and using an interesting theorem from matrix analysis.
This rederivation gives hints toward the generalisation of
the concurrence concept to higher-dimensional systems,
which is the second topic of this section.

1. The 2× 2 case

In this paragraph we give a shorter proof of Wootters’
results on the EoF of 2 × 2 systems [6]. For the case of
2 × 2 systems, formula (5) becomes particularly simple,
since there is only one 2 × 2 minor to consider, so that
there is just a single symmetric matrix A(α).

The concurrence of a pure state ψ equals C(ψ) =
|ψTSψ|. For the pure states ψk in a decom-
position of ρ, we get C(ψk) = |(ΨTSΨ)kk| =
|(W−1/2T TATW 1/2)kk| = |(T TAT )kk|/wk.

The average concurrence of a realisation of ρ is thus
given by

∑

k |(T TAT )kk| and the concurrence of ρ is
the minimal average concurrence over all possible real-
isations, i.e. over all possible right-unitary T . Since A
is symmetric, its singular value decomposition assumes a
special form, known as the Takagi eigenvalue decomposi-
tion [9]: A = UT ΣU (again, U is unitary and Σ positive
semidefinite diagonal). Since we consider all possible T ,
the matrix U can be absorbed in T , so that the expres-
sion for the concurrence becomes minT

∑

k |(T T ΣT )kk|.
So, T T ΣT runs through all possible complex symmetric
K ×K matrices with R prescribed singular values Σ (if
K > R then K−R zero singular values have to be added
to Σ) and the average concurrence equals the sum of the
moduli of the diagonal elements.

The following theorem by Thompson gives a precise
relationship between the moduli of the diagonal elements
of a complex square symmetric matrix and its singular
values [12] (stated without proof):

Theorem 1 (Thompson) Let d1, . . . , dn be complex

numbers and s1, . . . , sn nonnegative real numbers, enu-
merated so that |d1| ≥ · · · ≥ |dn| and s1 ≥ · · · ≥ sn.

A complex symmetric matrix exists with d1, . . . , dn as its
diagonal elements and s1, . . . , sn as its singular values, if

and only if

k
∑

i=1

|di| ≤
k
∑

i=1

si, 1 ≤ k ≤ n

k−1
∑

i=1

|di| −
n
∑

i=k

|di| ≤ (

n
∑

i=1,i6=k

si) − sk, 1 ≤ k ≤ n

n−3
∑

i=1

|di| − |dn−2| − |dn−1| − |dn| ≤ (

n−2
∑

i=1

si) − sn−1 − sn.

The last inequality does not apply when n < 3.

The second inequality gives, for k = 1:

n
∑

i=1

|di| ≥ s1 − (

n
∑

i=2

si).

Applied to the problem at hand, we find that the minimal

average concurrence must be σ1−(
∑K

i=2 σi), or zero if this
quantity is negative. Here we have put K = 4. Letting
K be larger than 4 can give no improvement, since this
amounts to just adding K − 4 zero singular values, and
this does not influence the inequalities of the theorem.

If R < 4, we could try to put K = 3, but then the
third inequality comes into play:

3
∑

i=1

|di| ≥ −(σ1 − (

3
∑

i=2

σi)),

so that

C(ρ)K=3 = |σ1 − σ2 − σ3|.

Therefore, if R = 3 and σ1 − σ2 − σ3 < 0, putting K =
4 gives zero EoF, while K = 3 gives non-zero EoF. In
other words, these states are separable in (at least) four
product states (K = 4). Furthermore, a rank 3 state is
separable in three product states (K = 3) iff σ1 − σ2 −
σ3 = 0.

If R = 2, we can safely put K = 2, since then the third
inequality does not apply.

We have thus proven:
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Theorem 2 The concurrence of a 2 × 2 state equals:

C(ρ) = max(0, σ1 − (

R
∑

i=2

σi)).

where σi are the singular values of the corresponding A-

matrix, in descending order. The optimal cardinality K
equals the rank R, except in the case when R = 3 and

σ1 < σ2 + σ3, where the optimal K is 4.

Because of the statement about the optimal cardinality,
this theorem is an improvement over Wootter’s theorem.

2. Relation between concurrence and entanglement of
formation

For the sake of completeness, we rephrase the rest of
Wootters’ results of [6] in the present setting.

The entanglement of a pure state is a convex,
monotonous function E of the concurrence of the state:
E(ψ) = E(C(ψ)). Hence, the EoF, which is the average
pure state entanglement, equals

E(ρ) = min
T

∑

k

wkE(|(T TAT )kk|/wk).

Because of the convexity of E , this gives E(ρ) ≥
minT E(

∑

k |(T TAT )kk|), where equality holds only if all
quantities |(T TAT )kk|/wk are equal. Using Thompson’s
theorem again and the monotonicity of E , this minimum
is equal to E(σ1 −

∑

j>1 σj) = E(C(ρ)).
We therefore look for an optimal T matrix, yielding

minimal average concurrence (C(ρ)), and for which, ad-
ditionally, all the quantities |(T TAT )kk|/wk are equal
(and thus equal to C(ρ)). There exists a T ′ for which
∑

k(T ′TAT ′)kk is equal to C(ρ); indeed, with A =
UT ΣU , set UT ′ = Diag(1, i, i, . . . , i), then T ′TAT ′ =
Diag(1,−1,−1, . . . ,−1)Σ, and the trace of this matrix
is σ1 − (σ2 + · · · + σK). If this quantity is positive, it is
equal to C(ρ); if not, ρ is separable and we immediately
have that all |(T ′TAT ′)kk|/wk are equal (zero).

Concerning the non-separable states: for any or-
thogonal matrix O, Tr(T ′O)TA(T ′O) = TrT ′TAT ′.
As described in [6], using a suitable O we can make
all ((T ′O)TAT ′O)kk equal to a constant α times
wk (exploiting the fact that T ′TAT ′ is a real di-
agonal matrix here). Summing over k then yields
C(ρ) = |∑k((T ′O)TAT ′O)kk | = |α∑k wk| =
|α|, so that ((T ′O)TAT ′O)kk = C(ρ)wk. Then,
∑

k |((T ′O)TAT ′O)kk | = C(ρ), so that T = T ′O is the
matrix we were looking for.

3. Generalised concurrence

According to equation (5), a state is separable iff a
right-unitary T can be found such that the diagonal ele-
ments of every T TA(α)T are zero. In analogy with defin-
ing the average concurrence of a realisation of a 2×2 state

as the l1-norm of the diagonal elements of T TAT , in the
general case we can define a concurrence vector as the
vector of l1-norms of the diagonal elements of T TA(α)T :

C(α)(T ) =
∑

k

|(T TA(α)T )kk|. (9)

A state is therefore separable iff a T exist such that
the concurrence vector is zero. From the previous para-
graph,a necessary condition follows immediately:

σ
(α)
1 ≤

R
∑

i=2

σ
(α)
i , ∀(α), (10)

where the σ
(α)
i are the singular values of A(α), in descend-

ing order.
Unfortunately, this condition is not a sufficient one for

separability. Numerical experiments showed that crite-
rion (10) is weaker than the Peres criterion, which is a
non-sufficient criterion itself. The main reason for this
failure is that all the components of the vector concur-
rence (9) must be made zero by one and the same T . Typ-
ically, however, the matrices A(α) all have different sin-
gular vectors (the rows of the U matrix), so that the U (α)

matrices in the decomposition A(α) = U (α)T Σ(α)U (α)

cannot all be absorbed in T at the same time.
It is easy, however, to find a stronger criterion than

criterion (10): as equation (9) is linear in the matrices
A(α), the condition (10) must hold also for every linear
combination of the matrices A(α). Denoting the j-th sin-
gular value (descending order) of the linear combination
∑

(α) x(α)A
(α) by σj(x), it follows that another, and po-

tentially stronger, necessary condition for separability is
given by:

max
x∈CM

σ1(x)
∑R

j=2 σj(x)
≤ 1, (11)

where M is the number of tuples (α). Again, one could
choose to consider all possible A(α) or just the minimal
subset with (α) = (i, i+ 1, j, j + 1).

Numerical experiments now showed that criterion (11)
is actually stronger than the Peres criterion, provided
all A(α) are used. In the next section we will give an
example where condition (11) even seems to be sufficient
for determining separability.

III. NUMERICAL RESULTS

In this section we present an application of the vari-
ational characterisations of separability and EoF. Since
these characterisations involve looking for the minimum
of a function over a finite-dimensional manifold, it must
be possible to find a numerical algorithm that actually
calculates that minimum. As a result, it must be possible
to calculate the EoF for any bipartite state and, more-
over, to give the optimal realisation of the state (from

6



the optimal T matrix). In the following paragraphs, we
first present in some detail a practical minimisation al-
gorithm for this problem, and then apply the algorithm
to the calculation of EoF for a family of 3 × 3 states.

A. Algorithm for minimisation

Our algorithm for calculating the entanglement of for-
mation is based on a modified conjugate gradient minimi-
sation procedure. Starting from an initial point T = T0,
conjugate gradient algorithms iteratively seek a direc-
tion along which progress in minimising the objective
function is optimal and then perform a so-called line
search to actually find the minimum along that direc-
tion. In the present case, however, minimisation is over
the unitary manifold. This manifold is not Euclidean,
and the standard line search has to be replaced by a
geodesic search [13]. A geodesic on the unitary mani-
fold is a one-parameter subgroup of the unitary group:
T (t) = T0 exp(tX), with X a skew-Hermitian matrix
giving the direction (tangent vector) of the geodesic.
Through a geodesic search one looks for the optimal t
for which g(T0 exp(tX)) is minimal.

In steepest descent minimisation, the direction for the
line search is taken to be minus the gradient of the ob-
jective function in the current point. Conjugate gradient
methods improve on this by taking the direction of the
previous step also in account; if not, the progress made
in the previous step could be partly undone by the new
iteration. We have used a modification of the Polak-
Ribière formula for calculating the search direction [14];
the search direction for iteration i is based on the gradi-
ent at the current point and on the search direction for
the previous iteration i− 1:

Xi = −(∇g)i + γXi−1,

γ =
〈(∇g)i − τ(∇g)i−1, (∇g)i〉

〈(∇g)i−1, (∇g)i−1〉
,

where 〈, 〉 is the inner product of the embedding space,
being in this case the standard Hilbert-Schmidt inner
product 〈x, y〉 = Trxy†. The symbol τ denotes paral-
lel transport of the gradient vector at the (i− 1)th point
to the ith point along the geodesic [13]:

τ(∇g)i−1 = exp(Xi−1ti−1/2)(∇g)i−1 exp(−Xi−1ti−1/2).

For the line search, we have used the method described
in [14], again modified to take into account that the
search is performed along the geodesic g(Ti exp(tXi)).

Any minimisation algorithm actually finds local min-
ima. To find the global minimum, we select a number of
starting points at random and let the minimisation al-
gorithm work from these points. The minimum is then
taken over all the results. While this procedure does not
guarantee that the global minimum is actually found, we
found that trying about ten starting points gives satis-
factory results.

B. Calculation of the gradient

In this paragraph we give an analytic expression for the
gradient of the target function g(T ). Conjugate gradient
methods perform better if an explicit expression is given;
in the absence of such an expression, the gradient has to
be approximated numerically.

To calculate the gradient, we have to select an arbi-
trary direction or tangent vector X , which for the uni-
tary manifold is a skew-Hermitian matrix. The geodesic
on the unitary manifold along this direction and passing
through T0 is given by Tǫ = T0 exp(ǫX), or T0(11 + ǫX),
for small ǫ. The gradient of a scalar function on the man-
ifold can be calculated from the variation of the function
along the geodesic, using

∂f(Tǫ)

∂ǫ
= 〈∇f,X〉,

where 〈, 〉 is the Hilbert-Schmidt inner product.
The gradient of the target function g(T ) is:

Lemma 2

(∇g(T ))kp|T=11 = G(Qpk, Qpp) − G(Qpk, Qkk),

where

Qpq =
√
mpmqφ̃

p(φ̃q)†

and

G(B,A) = −TrB log2

A

TrA
.

The details of the calculation are given in appendix B.

C. Results

As a preliminary test, we have calculated the entan-
glement of formation of several states of a 2 × 2 system,
and compared the numerical values with the ones obtain-
able from Wootters’ formula. Furthermore, we consid-
ered a one-parameter family of 3×3 states called isotropic
states, and compared the numerical values with the EoF
calculated from Terhal and Vollbrecht’s formula [7]. In
all cases, agreement was complete within numerical ma-
chine precision, except for some isotropic states where
there was a very small deviation from the formula for
parameter values close to 8/9. This can be explained by
the fact that, for these parameter values, there are two
local minima of the target function which are very close
in value, and that the minimum with lowest value has a
very small “basin of attraction”.

The first interesting results were obtained on the
Horodecki 3×3 states [10]. These states were introduced
to show that the Peres criterion is not sufficient for de-
termining separability. These states exhibit bound en-
tanglement: their entanglement of formation is non-zero,
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while their entanglement of distillation is zero (they have
positive partial transposition). The density matrix of a
Horodecki 3 × 3 state is

ρ(a) =
1

1 + 8a



























a 0 0 0 a 0 0 0 a
0 a 0 0 0 0 0 0 0
0 0 a 0 0 0 0 0 0
0 0 0 a 0 0 0 0 0
a 0 0 0 a 0 0 0 a
0 0 0 0 0 a 0 0 0
0 0 0 0 0 0 b 0 c
0 0 0 0 0 0 0 a 0
a 0 0 0 a 0 c 0 b



























,

where a is a parameter between 0 and 1, inclusively, and
b = (1 + a)/2 and c =

√
1 − a2/2. Note that, since these

states are not full-rank (their rank is 7), and neither is
their partial transpose, these states lie on the boundary
of the set of states and also on the boundary of the set
of bound entangled states.

The result of the calculation is shown in Fig. 1. Here
the entanglement of formation has been calculated of
a mixture of the Horodecki states with the maximally
mixed state: eρ(a) + (1 − e)11/9. In Fig. 1, the scale is
linear, while in Fig. 2 the scale is logarithmic, so that
the borderline of the set of separable states is clearly vis-
ible. The “floor” in the logarithmic picture at -10 is an
artifact; the algorithm stops when the entanglement gets
below 10−10.

Note from these results that the Horodecki states have
a rather low entanglement of formation (about 0.0109
for a = 0.225) and that their distance to the manifold
of separable states is also small (e = 0.93 for a = 0.225;
that is: mixing the state with just 7% of the identity
destroys all entanglement). At first sight, the fact that
the appearance of the set of separable states is not convex
might seem confusing. However, the parameter a appears
in a non-linear way in the density matrix so that the
matrices lie on a non-rectilinear curve in the Euclidean
state space. The figure, on the other hand, has a as
parameter and therefore gives a distorted image.

Fig. 3 shows the entanglement of formation for the
particular value of a = 0.225 and for e going to 1. From
this figure, we are led to conjecture that the derivative
to e becomes infinite at e = 1.

The abovementioned calculations have been performed
with the cardinality K set to 14. Fig. 4 shows the effect
of using different K in the calculations; here e = 1 and
a = 0.225. It is seen that the value K = 14 is optimal for
calculating the entanglement of formation in this case.

For these same Horodecki states, we have also tested
the conjectured condition for separability (equation
(11)), based on the generalised concurrence. It turned
out, quite surprisingly, that the condition correctly pin-
pointed all separable states, which was verified by com-
paring the results to Fig. 2. This leads us to hope that
equation (11) might be an important step towards find-
ing a simple and efficient operational criterion for testing
separability.

IV. CONCLUSIONS

We have presented a matrix analytical framework
within which the questions of separability of mixed states
and calculating their entanglement of formation can be
formulated in an elegant and practical way. A main re-
sult is that, at least in principle, it is now be possible to
calculate the EoF of any state, or determining whether it
is a separable state or not. Of course, for larger dimen-
sions the subproblem of minimising the respective target
function becomes increasingly more time consuming. Not
only the EoF itself, but also an optimal ensemble realis-
ing the state can be calculated.

We have extended results on the concurrence and EoF
of 2 × 2 systems by also including the cardinality of the
optimal ensembles. More importantly, we have tried to
generalise the concept of concurrence to general systems,
and have shown that this generalised concurrence has
potential to supply a fast test for separability of general
bipartite states.

In the future, we will use the presented methods to
generate more numerical results about EoF of higher-
dimensional states, for example, to chart the “unknown
territory” of bound-entangled states, or just as a means
for testing various conjectures. Furthermore, the varia-
tional characterisation of EoF could be useful in proving
or disproving that EoF is additive. Another interesting
topic for future work is trying to prove the conjectured
sufficiency of the generalised concurrence test for separa-
bility.
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APPENDIX A: PRESELECTION OF T MATRIX

The topic of this appendix is a method for reducing
the set of T matrices over which the minimum (5) has to
be taken in a separability test. In some cases the method
already yields the optimal T matrix without need for
performing a minimization procedure. This method is
based on a method used in blind identification for array
processing [15].

Consider the expression

∑

p,q

BpqA
(α)
pq ,

where A
(α)
pq is as defined in (4), and Bij is a symmetric

matrix. When we substitute equation (2) in it, we get,
using bilinearity of C:

∑

p,q

BpqApq

=

R
∑

p,q=1

BpqC(
√
mpφ

p,
√
mqφ

q)

=

R
∑

p,q=1

Bpq

K
∑

k,l=1

T †
kpT

†
lq

√
wkwlC(ψk, ψl)

=

K
∑

k,l=1

(

R
∑

p,q=1

BpqT
†
kpT

†
lq

)

√
wkwlC(ψk, ψl)

=

K
∑

k,l=1

(T †BT ∗)kl
√
wkwlC(ψk, ψl).

Note that, just like B, (T †BT ∗) is also symmetric.
Suppose that the state ρ is indeed a separable one;

then there exist matrices T leading to a product state
decomposition, i.e. to C(ψk, ψl) being identically zero for
k = l. Consider one such T . There exist symmetric
matrices B for which (T †BT ∗) is diagonal, say equal to
some Λ. Indeed, by right-unitarity of T one just has to
take

B = TΛT T . (A1)

Using such a B in the above expression, we find

∑

p,q

BpqA
(α)
pq = 0, (A2)

for all α.
We can now reverse the reasoning and say that any T

leading to a product state decomposition can be found
from some symmetric B that satisfies (A2). That is,
instead of searching for a T in the complete set of unitary
matrices, we only have to consider T that follow, using
(A1) and (A2), from such B. If T is square (that is,
K = R), T is unitary, and since B = TΛT T ,

BB∗ = TΛT TT ∗Λ∗T †

= T |Λ|2T †.

Hence, the column vectors of T must be the eigenvectors
of BB∗. Given then all the symmetric matrices B that
satisfy equation (A2), we only have to consider T ma-
trices whose column vectors are the eigenvectors of one
such B.

We will now show that under some conditions the re-
duced search space contains nothing but the optimal T ,
so that no search has to be done at all. In that case, one
just has to take one B satisfying equation (A2), and con-
struct a T from its eigenvectors. The first requirement
for this is that the cardinality K must equal the rank R,
so that T is then unitary; the reason is that otherwise
(A1) has no unique solution. Let us suppose that the
first P (P ≤ K) statevectors in the ensemble realising
ρ are product vectors: |ψk〉 = |αk〉 ⊗ |βk〉, 1 ≤ k ≤ P .
Therefore, C(ψk, ψk) will be zero for k ≤ P . Now, the
matrices C(ψk, ψl) for k < l and k = l > P are in gen-
eral (that is: for all states except for a subset of measure
zero) linearly independent, as long as the number of ma-
trices does not exceed the number of matrix elements.
If the latter requirement is not fulfilled, then of course
a dependence must exist between the matrices. If the
requirement is fulfilled then the matrices can still be de-
pendent provided the K vectors ψk (being m = KN1N2

complex variables) satisfy a system ofN1(N1−1)N2(N2−
1)/4 − K(K − 1)/2 − K + P + 1 polynomial equations
of degree d = K(K − 1) + 2(K − P ) (each equation cor-
responds to a minor of rank K(K − 1)/2 + K − P of a
matrix containing (ΨTS(α)Ψ)kl as elements). Using the
Schwarz-Zippel theorem [16], we find that the set of vec-
tors obeying just one of those polynomial equations has
measure zero with respect to the set of all possible sets of
K vectors. A fortiori, this also holds for the set of vectors
obeying all polynomial equations. We thus get a second
requirement for the automatic optimality of T , namely
that the cardinality K must satisfy the inequality

K(K − 1)

2
+K − P ≤ N1(N1 − 1)

2

N2(N2 − 1)

2
. (A3)

It then follows that
∑

p,q BpqApq can only be zero if

(T †BT ∗)kl = 0 for all k 6= l and k = l > P . In other
words: (T †BT ∗) is necessarily a diagonal matrix for any

B satisfying (A2), and any T obeying (A1) is optimal.
We have not investigated whether this technique for

reducing the search space is also applicable for calculating
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the EoF; that is, whether some T that is optimal w.r.t.
(7) can be found in the reduced search space.

APPENDIX B: CALCULATION OF THE

GRADIENT OF THE AVERAGE

ENTANGLEMENT

The geodesic on the unitary manifold along a direction
X (skew-Hermitian matrix) and passing through T0 is
given by Tǫ = T0 exp(ǫX), or T0(11 + ǫX), for small ǫ.
The gradient of a scalar function on the manifold can be
calculated from the variation of the function along the
geodesic, using

∂f(Tǫ)

∂ǫ
= 〈∇f,X〉.

To avoid notational clutter, we have set T0 equal to 11 in
the rest of the appendix.

Let us recollect that the function of T which is
to be minimised is g(T ) =

∑

k G(∆k(T )), where
G(A) = −Tr(A log2(A/Tr(A))) and ∆k(T ) =
∑R

p,q=1 TpkT
∗
qk
√
mpmqφ̃

p(φ̃q)†.

Lemma 3 For Hermitian A and B,

∂

∂ǫ
G(A+ ǫB)

∣

∣

∣

∣

ǫ=0

= G(B,A),

where

G(B,A) = −Tr(B log2A) + Tr(B) log2 Tr(A).

Proof. We use the following formula from [17] (formula
6.6.31), which applies for a Hermitian matrix A(t) func-
tion of a parameter t with eigendecomposition A(t) =
U(t)Λ(t)U(t)†, and for analytic functions f :

d

dt
f(A(t)) = U

[

(∆f(λi, λj))ij ◦ U †A′U
]

U †.

Here, ◦ is the Hadamard product and ∆f(λi(t), λj(t))
are the “divided differences”

∆f(λi(t), λj(t)) =

{

f(λi(t))−f(λj(t))
λi(t)−λj(t)

, for i 6= j

f ′(λi(t)), for i = j.

For A(t) = A+ tB, it follows that:

d

dt
Tr f(A(t))

∣

∣

∣

∣

t=0

=
∑

i

∆f(λi(t), λi(t))(U
†BU)ii

= Tr f ′(Λ)U †BU

= Tr f ′(A)B.

Setting f(x) = h(x) = −x log2(x), so that f(A) = H(A),
we have f ′(x) = −(1 + lnx)/ ln 2 and

d

dt
TrH(A+ tB)

∣

∣

∣

∣

t=0

= −Tr(11 + lnA)B/ ln 2.

Furthermore,

d

dt
h(A+ tB)

∣

∣

∣

∣

t=0

= −(1 + ln TrA)TrB/ ln 2,

so that the lemma follows. 2

Proceeding in a similar fashion, we can expand ∆k(Tǫ)

up to first order in ǫ. Putting Qpq =
√
mpmqφ̃

p(φ̃q)†:

∆k(Tǫ) =
∑

p,q

TpkT
∗
qkQ

pq

=
∑

p,q

(

δpkδqk + ǫ(Xpkδqk + δpkX
∗
qk)
)

Qpq

= Qkk + ǫ
∑

p

(XpkQ
pk −XkpQ

kp),

where we have used the fact that X is skew-Hermitian.
Inserting this expression in ∂

∂ǫ

∑

k G(∆k(Tǫ))
∣

∣

ǫ=0
we see

that Qkk serves the role of “A” and
∑

p(XpkQ
pk −

XkpQ
kp) that of “B”. Exploiting linearity of G with re-

spect to its first argument, we arrive at the expression

∂g(Tǫ)

∂ǫ
=
∑

p,k

Xpk(G(Qpk, Qkk) − G(Qpk, Qpp))

(in the last term we have interchanged the indices k and
p). Therefore,

(∇g(T ))kp|T=11 = G(Qpk, Qpp) − G(Qpk, Qkk).
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FIG. 1. Entanglement of formation for Horodecki states in
function of a and e; linear scale.

FIG. 2. Entanglement of formation for Horodecki states in
function of a and e; logarithmic scale.

FIG. 3. Entanglement of formation for Horodecki state
a = 0.225 in function of e; linear scale.

FIG. 4. Effect of cardinality on calculation of entanglement
of formation.
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