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Abstract
Recent models of monetary policy can have indeterminacy of equilibria, which

is often viewed as a di±culty of these models. We consider the signi¯cance of
indeterminacy using the learning approach to expectations formation. We employ
expectational stability as a selection criterion for di®erent equilibria and derive the
expectational stability and instability conditions for forward-looking multivariate
models, both without and with lags. The results are applied to several monetary
policies.
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1 Introduction
In recent years there has been a large amount of research studying the performance of
alternative monetary policies in dynamic macroeconomic settings; for example, see the
survey (Clarida, Gali, and Gertler 1999) and the papers in the 1999 Special Issue of
the Journal of Monetary Economics and in the volume (Taylor 1999). A di±culty has
emerged in this literature: many recent models of monetary policy are plagued by the
problem of indeterminacy, i.e. there are multiple, even continua of rational expectations
equilibria (REE).1

¤The research was to a large extent done while the ¯rst author was a±liated with the Research Unit
on Economic Structures and Growth, University of Helsinki. Support from the Academy of Finland,
YrjÄo Jahnsson Foundation, Bank of Finland and the Nokia Group is gratefully acknowledged. We thank
Ben McCallum, Hans Gersbach, Mark Gertler and an anonymous referee for helpful comments.

yCorresponding author: Faculty of Economics and Politics, University of Cambridge, Sidgwick Av-
enue, Cambridge, CB3 9DD, UK; email: smsh4@cam.ac.uk; (tel. +44-1223-335251, fax +44-1223-
335299).

1These include bubbles or sunspots, see e.g. the discussions in (Kerr and King 1996), (Bernanke and
Woodford 1997), (Woodford 1999), (Clarida, Gali, and Gertler 1999), (Bullard and Mitra 2002), and
(Carlstrom and Fuerst 2000). See (Evans and Honkapohja 2003a) for a review.
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The issue of indeterminacy can be important from a practical point of view. Pursuit
of optimal monetary policy on the part of the central bank or, °exible in°ation targeting
in the sense used by (Svensson 1999), implies that the instrument of monetary policy, the
short-term nominal interest rate, should respond to in°ation forecasts; see (Clarida, Gali,
and Gertler 1999). (Clarida, Gali, and Gertler 1998) provide evidence that monetary
policy in a number of industrialized countries (like Germany, Japan, and the U.S.) has
been forward-looking since 1979.2

A number of theoretical studies have considered the issue of indeterminacy with
interest rate rules and di®erent views have been taken on this problem. (Bernanke
and Woodford 1997) have argued against in°ation forecast targeting on the basis of
indeterminacy - these rules may lead to too much volatility in in°ation and output which
any central bank ought to avoid; see also (Woodford 2003b) and (Woodford 2003a). At
the other end of the spectrum, indeterminacy is viewed as an unimportant curiosum.
For instance, in (McCallum 2001a), (McCallum 2001b) and (McCallum 2003) the use
of the minimal state variable (MSV) solution is advocated for applied analysis. To
¯x terminology, we will use the terms fundamental vs. non-fundamental equilibria to
distinguish between the MSV and other REE.

A recent paper taking indeterminacy as an empirically relevant possibility is (Clarida,
Gali, and Gertler 2000). They estimate a forward-looking policy reaction function for
the postwar U.S. economy, both before and after the appointment of Paul Volcker as
Fed Chairman in 1979. They conclude that monetary policy in the pre-Volcker era
was compatible with the possibility of bursts of in°ation and output that resulted from
self-ful¯lling changes in expectations of the private sector. In this way monetary policy
of the Federal Reserve contributed to the high and volatile in°ation of the 1960s and
1970s. Analytically, the pre-Volcker period is modelled as a non-fundamental REE. In
contrast, monetary policy in the Volcker-Greenspan era is compatible with the existence
of a unique fundamental equilibrium delivering low and stable in°ation.

In this paper we take a new perspective on the problem of indeterminacy induced
by monetary policy by introducing a selection criterion among the REE to narrow down
the set of plausible equilibria. We use the adaptive learning approach to expectation
formation that has recently gained some popularity.3 In general terms the learning
approach suggests that expectations might not always be fully rational, and the REE of
interest should satisfy a natural stability criterion in expectations formation. If economic
agents make forecast errors and adjust their forecast functions over time, the economy
will reach an adaptively stable or learnable REE asymptotically where these forecast
errors eventually disappear. In contrast, adaptively unstable REE will not emerge as an
outcome from such adjustment processes.

Even though our motivation is primarily an analysis of recent models of monetary
2Recent evidence by (Alesina, Blanchard, Gali, Giavazzi, and Uhlig 2001) also suggests that the

European Central Bank (ECB) may have been forward-looking. Moreover, a number of in°ation-
targeting central banks like those in England, Canada, and New Zealand are forward-looking in practice.

3(Evans and Honkapohja 2001) provides a comprehensive treatment of the learning approach. See
also the surveys (Evans and Honkapohja 1999) and (Marimon 1997).
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policy, we in fact do more as we provide general results that are applicable to a wide
variety of multivariate linear models. Our applications to monetary policies illustrate
how to use the results in an economic framework. We ¯rst consider models without lags
of endogenous variables for which general theoretical results can be obtained. We then
develop stability conditions for models with lags. The latter can be used in numerically
calibrated models even though general analytical results are not obtainable.

As our application, we develop stability/instability conditions of non-fundamental
REE under learning for versions of the New Keynesian model of monetary policy.4
Learnable non-fundamental REE can be ruled out if the structural and policy parameters
of the model satisfy certain speci¯c conditions that have an economic interpretation and
yield important insights about speci¯c interest rate rules. We also assess the plausibility
of the (Clarida, Gali, and Gertler 2000) explanation of the Pre-Volcker and Volcker era
from the learnability view point.

We remark that expectational errors can naturally arise in practice. The economy
might be subject to changes in its basic structure or in the practices of policy makers.
The assumption that agents somehow have rational expectations (RE) immediately after
such changes is clearly strong and may not be correct empirically. The policy maker
would naturally like to adopt policy that is conducive to coordination by the private
sector on a desirable equilibrium entailing low in°ation and output volatility.

The key general message of our paper is that the monetary policy rule used by
the central bank plays a pivotal role in determining the equilibrium selection. Good
policy design should ensure that (i) the fundamental equilibrium is stable under adaptive
learning and (ii) that possible non-fundamental REE are not stable under learning.

The paper is organized as follows. Section 2 develops a general linear bivariate model
without lags, the di®erent types of REE for such models and the conditions for stability
under least squares learning for these REE. Section 3 applies the results to the standard
New Keynesian model when monetary policy is conducted either through a forward-
looking Taylor rule or an optimal discretionary rule proposed by (Clarida, Gali, and
Gertler 1999). Section 4 incorporates lagged endogenous variables to the general model
of Section 2. Section 5 applies the generalized framework to the issues analyzed by
(Clarida, Gali, and Gertler 2000). Conclusions and appendices follow.

2 A General Model Without Lags
Consider a general bivariate linear model

xt = ­Êtxt+1 + ©wt (1)
wt = ªwt¡1 + vt; (2)

where xt; wt 2 R2 are, respectively, the vectors of endogenous and exogenous variables
and all constants have been eliminated by centering the variables. The exogenous vari-

4Stability of the fundamental REE under adaptive learning is studied by (Bullard and Mitra 2002)
for variants of Taylor rules. (Evans and Honkapohja 2003d) analyse the learnability of the fundamental
REE for di®erent ways of implementing optimal monetary policy under discretion.
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ables follow a stationary vector autoregressive process, so that the eigenvalues of ª are
inside the unit circle. vt is iid. Êt(:) is a general notation for expectations and the same
notation without the \^" denotes RE. The limitation to a bivariate model is not crucial,
as many results extend to general multivariate frameworks. These will be noted below.
For the main part we assume that the 2£ 2 matrix ­ is invertible, but we will take note
of the necessary modi¯cations when ­ is singular.

2.1 Characterization of Non-Fundamental Solutions
2.1.1 Autoregressive Solutions

In this and the next subsection we impose RE, so that Êtxt+1 = Etxt+1, the mathematical
conditional expectation. A very common way to obtain non-fundamental solutions is
to represent classes of solutions in terms of arbitrary (unanticipated) innovations to
the expectations. Thus let ´t+1 = xt+1 ¡ Etxt+1 be any innovation process, so that
it satis¯es Et´ t+1 = 0 i.e. it is a (vector) martingale di®erence sequence (MDS). The
innovations can depend on extraneous variables and the term \sunspot equilibria" (or
sunspot solutions) is then used.

The general class of solutions of (1)-(2) can be written in the form5

xt = ­¡1xt¡1 ¡ ­¡1©wt¡1 + ´t (3)
wt = ªwt¡1 + vt

or, introducing the notation yt = (x0t; w0t)0, ut = (´0t; v0t)0 in the VAR form

yt = Byt¡1 + ut; where B =
µ

­¡1 ¡­¡1©
0 ª

¶
: (4)

Since there are many ways of specifying the innovation process ´t it is evident that in
general there are indeterminacies of REE. The only restriction we have on ´t is that it
must be a MDS. However, a common further restriction is stationarity of the process
(4) and we consider this next.

We diagonalize the coe±cient matrix of (4), so that B = Q¤Q¡1 and introduce
the notation Q¡1 = (Qij). We note that ¤ is a diagonal matrix with the eigenvalues
of B along its diagonal, i.e. ¤ = d¸1; :::; ¸4c. Since B is block-triangular, the last
two eigenvalues are those of ª and they are inside the unit circle. The remaining two
eigenvalues of B (¸1 and ¸2) are then given by those of ­¡1: If both ¸1 and ¸2 are inside
the unit circle, then (3) forms a stationary class of solutions. However, it may also be
the case that one or both roots of ­¡1 are outside the unit circle. If both roots of ­¡1
are outside the unit circle, we have the so-called regular case and only the fundamental
solution is stationary and takes the form yt = fwt, where f satis¯es f = ­fª + ©.

5There is a large literature on representing solutions to linear RE models, see e.g. (Broze and
Szafarz 1991) or Part III in (Evans and Honkapohja 2001).
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If just one of the roots is outside the unit circle, there exist stationary non-fundamental
solutions that can be derived by using an extension of the diagonalization technique orig-
inally developed in (Blanchard and Kahn 1980). This procedure is normally applied to
the original structural model (1)-(2). Since invertibility of ­ has been assumed, the
same procedure can equally well be applied to the form (4). The following proposition
represents the class of non-fundamental stationary solutions to (1)-(2) in this case.

Proposition 1 Assume without loss of generality (w.l.o.g) that j¸1j < 1, j¸2j > 1 for
the two eigenvalues of ­¡1. The class of stationary autoregressive solutions takes the
form

µ
Q11 Q12

Q21 Q22

¶µ
x1;t
x2;t

¶

=
µ
¸1Q11 ¸1Q12

0 0

¶ µ
x1;t¡1
x2;t¡1

¶
¡

µ
Q13 Q14

Q23 Q24

¶µ
w1;t
w2;t

¶

+
µ
¸1Q13 ¸1Q14

0 0

¶ µ
w1;t¡1
w2;t¡1

¶
+

µ
Q11 Q12 Q13 Q14

0 0 0 0

¶
0
BB@

´1;t
´2;t
v1;t
v2;t

1
CCA : (5)

Proof. See Appendix A.1.
Examining (5) it can be seen that the second equation is a linear restriction between

the current state and exogenous variables. This limits the degrees of freedom in choosing
the components of the innovation ´t as indicated in Appendix A.1.

Two further remarks are worth making at this point. First, if ­ is singular, the
representation (4) does not exist. Using an analogous diagonalization procedure on the
coe±cient matrix of the system

µ
xt
wt

¶
=

µ
­ ©ª¡1

0 ª¡1

¶ µ
xt+1
wt+1

¶
+

µ
I 0
0 ª¡1

¶µ
´ t+1
vt+1

¶
;

where ´t+1 = xt+1 ¡ Etxt+1, the stationary RE solutions can be obtained; see Chapter
10, Appendix 2 of (Evans and Honkapohja 2001). Second, if the system (1)-(2) is higher-
dimensional, the same techniques can be used. However, di®erent classes of stationary
solutions may emerge when the procedure is applied to the general solution class (4).

2.1.2 Markov Solutions

The representation of the non-fundamental REE will turn out to be critical in the
study of learnability and the standard methodology above does not readily yield all
representations of stationary REE to (1)-(2). A di®erent representation of some of the
stationary REE can be constructed as follows.6 These solutions can be derived from the

6These kinds of solutions generalize, for a linear framework with AR(1) exogenous variables and
shocks, the class of sunspot equilibria introduced in (Chiappori, Geo®ard, and Guesnerie 1992).
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general form (3) by suitably de¯ning the innovation process ´t, as shown in Appendix
A.2.7

Suppose that economic agents condition their expectations on a sunspot process st,
which is an ergodic Markov chain taking values in a ¯nite set f1; :::;Kg, K ¸ 2. We
denote its transition matrix by ¦ = (¦ij), where ¦ij is the probability that the sunspot
will be in state j next period if it is in state i in the current period. At time t and with
sunspot in state s at that time we consider a solution of the form

yt;s = as+ fwt; (6)

where yt;s denotes the vector of endogenous variables at time t and state s. The intercept
vector is thus made dependent on the state of the sunspot process st. The following result
shows that this kind of equilibria exist:

Proposition 2 There exist Markov RE solutions of the form (6) if at least one eigen-
value of ¦ is equal to the inverse of an eigenvalue of ­, i.e. jI4 ¡ ¦­ ­j = 0;8 and
where matrix f solves the equation f = ­fª+ ©.

Proof. Consider solutions of the form (6). Computing the conditional expectation

Et;syt+1 = fªwt +
KX

i=1

¦siai; (7)

where Et;s denotes the conditional expectation at time t and state s. The structural
model (1) with conditioning on the state of the sunspots can be written as yt;s =
­Et;syt+1 + ©wt:

Substituting in the expectations we get

yt;s = (­fª+ ©)wt +­
KX

i=1

¦siai; (8)

so that in the REE the equations

f = ­fª+ © (9)

as =
KX

i=1

¦si­ai, s= 1; :::;K (10)

must hold. Letting a = (a01; :::; a0K)0 2 R2K; (10) can be re-written in matrix form as

(I ¡ ¦­ ­)a = 0;

7(Evans and Honkapohja 2003c) discuss this relation for scalar models without exogenous variables.
8The term \resonant frequency" is sometimes used for sunspots that satisfy jI4 ¡ ¦ ­ ­j = 0: Note

that the equation means that at least one eigenvalue of ­ is outside the unit circle (so that these
solutions can arise in either irregular case where one or both eigenvalues of ­ are outside the unit
circle) since, except for a single eigenvalue of 1; all other eigenvalues of ¦ are inside the unit circle.
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which must have a non-trivial solution by assumption.

These Markov sunspot equilibria form a continuum of solutions, since the equilibrium
value of a = (a01; :::; a0K)0 is not unique. This non-uniqueness disappears in nonlinear
models for which the model (1) is the linearization or log-linearization; see the discussion
by (Evans and Honkapohja 2003b) and (Evans and Honkapohja 2003c) in the scalar case.

2.2 Learnability of Non-Fundamental REE

We now consider how the learnability of the non-fundamental equilibria developed above
can be analyzed for general forward-looking models (1)-(2). We employ the methodology
explicated in (Evans and Honkapohja 2001) as it is by now standard. In this approach
the conditions for learnability of REE are given by E-stability conditions.

From the literature it is known that in most cases E-stability provides precisely the
conditions of the stability under least-squares (and related) learning schemes. However,
this theoretical connection sometimes fails for technical reasons. The main case of failure
are the continua of RE solutions in linear models and we are indeed facing this situation
here. Simulation studies suggest that the connection between E-stability and conver-
gence of least squares learning does hold for solution continua.9 We note that E-stability
is also sometimes interpreted as a highly stylized learning process; see (Evans 1989).

With these remarks in mind we employ the E-stability criterion in our analysis of
learnability of the REE. The analysis of E-stability of the di®erent types of REE for the
general model (1)-(2) can generally be developed as follows.

2.2.1 E-Instability of Autoregressive Solutions

We begin with the classes of REE taking the form (3) or (5). The analysis of E-stability
begins with the (in general non-rational) perceptions of the agents. We thus introduce
the perceived law of motion (PLM)

xt = a+ bxt¡1 + cwt¡1 + d´ t + evt; (11)

where a, b, c, d and e are parameter matrices or vectors of appropriate dimensions. Note
that this form of the PLM is the same as (3) and (5), but with parameter values that
are in general di®erent from any REE. Note also that we have allowed for a possible
intercept in the PLM.

E-stability of REE of the form (3) or (5) is sensitive with respect to the infor-
mation available in the updating of the parameters of the PLM. We ¯rst note that
non-fundamental equilibria cannot be E-stable if the period t values of the endogenous
variables are included in the information set when agents update the PLM parameters,

9See (Evans and Honkapohja 1994a) and Part III of (Evans and Honkapohja 2001) for a discussion
of these questions and for further references. The simulations use univariate models, but there appears
to be no reason why the situation would be di®erent for multivariate models.
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see Chapter 10 of (Evans and Honkapohja 2001). Here we outline the intuition behind
this result. Under this assumption, we get from (11)

Êtxt+1 = a + bxt + cªwt:

The key to the instability result is that the future forecast, Êtxt+1, is independent of the
sunspot ´t and hence, the ALM is also independent of this term. Put di®erently, the
agents' belief in the sunspot ´t with coe±cient d is invalidated by the actual data that
is generated as a result of this belief. Consequently, as agents accumulate more data
over time, they learn not to believe in this sunspot and converge to an equilibrium with
d = 0:

Henceforth, we assume that, when making forecasts at time t; agents can only ob-
serve the endogenous variables at time t¡1 but they observe the values of the exogenous
variables (including shocks) at time t. This is natural in economic contexts since agents
rarely observe contemporaneously dated endogenous variables while making their fore-
casts. Agents make forecasts using the PLM (11) with given values of the parameters,
so that these forecasts are given by

Êtxt+1 = a + bÊtxt + cªwt¡1 + cvt
= a + ba + b2xt¡1 + (bc + cª)wt¡1 + bd´ t + (be + c)vt: (12)

Substituting these forecasts into (1) leads to the actual law of motion (ALM) of the form

xt = ­[a+ ba+ b2xt¡1 + (bc+ cª)wt¡1 + bd´t + (be + c)vt] +©ªwt¡1+ ©vt: (13)

The ALM describes the temporary equilibrium of the economy when agents use the
PLM with the speci¯ed parameter values when forming expectations. Note that unlike
the previous case (when t dated endogenous variables were included in the information
set), the sunspot ´t a®ects Êtxt+1 as in (12) and hence xt as in (13). This means that
sunspots can potentially be E-stable now.

We have obtained a mapping

(a; b; c; d; e) ! T (a; b; c; d; e)

from the PLM to ALM, where

T (a; b; c; d; e) = (­(I + b)a;­b2;­(bc + cª) +©ª;­bd;­(be + c) +©):

The di®erent REE are ¯xed points of the T mapping and satisfy the matrix equations

a = ­(I + b)a (14)
b = ­b2 (15)
c = ­(bc + cª) +©ª (16)
d = ­bd (17)
e = ­(be + c) + ©: (18)
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It can be seen that the equation for matrix b is a quadratic matrix equation. Clearly,
b = ­¡1 solves this equation, but in general it has other solutions. Some of the solutions
can be singular matrices and this possibility will be illustrated below.

Given a solution ¹b, equations (14) and (16) generically uniquely determine a and c
(¹a and ¹c): Given ¹b; ¹c, (18) solves e uniquely. For sunspot equilibria, equation (17) has
non-trivial multiple solutions for d when, given ¹b; the matrix I ¡ ­¹b is singular. This
happens e.g. when b = ­¡1.

Letting »0 = (a; b; c; d; e); E-stability of a ¯xed point ¹»0 = (¹a; ¹b; ¹c; ¹d; ¹e) is de¯ned using
the ordinary di®erential equation

d»
d¿

= T(»)¡ »: (19)

A ¯xed point ¹» of T(») is E-stable if it is locally asymptotically stable under (19).10
Formally, this di®erential equation describes partial adjustment in continuous (arti¯cial)
time ¿ between the PLM that the agents use in forecasting and the actual outcome
of the economy under these forecast functions. Since we will analyze continua of RE
solutions, E-stability of a class of equilibria must also be de¯ned and we follow (Evans
and Honkapohja 2001), p. 245. Let S(¹b) be the set of ¯xed points # = (a; b; c; d; e) of
T(:) when b = ¹b. The class S(¹b) is E-stable if, for some neighborhood N of S(¹b) the
solution #(¿) of (19) for any initial condition #0 2 N converges to #1, where #1 2 S(¹b).

Intuitively, E-stability of a solution depends on the strength of the feedback from
expectations of the endogenous variables, Êtxt+1, to their actual values xt in the model
(1). E-instability of a solution results when an initial shift in Êtxt+1 away from the REE
leads to actual changes in xt which deviate further (in some metric) than the initial
change in Êtxt+1 from equilibrium, thereby inducing further divergent changes in Êtxt+1
under learning and divergence from the REE. In contrast, E-stability results when a
shift in Êtxt+1 leads to changes in actual xt that are closer to the REE than the initial
shift in Êtxt+1, which implies gradual convergence back to the REE.

To derive the E-stability and E-instability conditions we linearize (19). Since the
system is matrix-valued, it must be vectorized. We use standard results from ma-
trix algebra and analysis of multivariate linear models, see Chapter 10 of (Evans and
Honkapohja 2001), to obtain the coe±cient matrices of the linearized and vectorized
form of (19). This yields the necessary E-stability condition that the real parts of the
eigenvalues of the following matrices

DTa(¹a; ¹b) = ­(I +¹b)
DTb(¹b) = ¹b0 ­ ­ + I ­ ­¹b (20)
DTc(¹b; ¹c) = ª0 ­ ­ + I ­ ­¹b
DTd(¹b) = ­¹b

10A ¯xed point ¹» of (19) is said to be stable if for every neighborhood V of ¹»; there exists a neigh-
borhood V1 ½ V such that every solution »(¿) with »(0) 2 V1 lies in V for all ¿ > 0: If, in addition,
V1 can be chosen so that »(¿) ! ¹» as ¿ ! 1; then ¹» is said to locally asymptotically stable; see e.g.
(Guckenheimer and Holmes 1983), pp. 3-4.
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must have real parts less than one. The su±cient condition for E-instability is that at
least one eigenvalues of these matrices has a real part greater than one.

We have the result that the class of non-fundamental REE (3) for the structural
model (1)-(2) is not E-stable:11

Proposition 3 The solution class (3) is not E-stable.

Proof. Using (20), if we evaluate DTb(b) at b = ­¡1; we get (­¡1)0 ­ ­+ I4; where
I4 denotes the 4 £ 4 identity matrix. Using the properties of the eigenvalues of the
Kronecker product of two matrices, we observe that the eigenvalues of DTb(­¡1) include
an unstable root (with value 2), which proves the result.

Remark: This proposition also holds in higher dimensional forward-looking models.

This proposition has a limitation. In the analysis of E-stability we have not imposed
the requirement that the RE solutions and the possible PLM be stationary. Of course,
if both eigenvalues of ­ are outside the unit circle, then (3) forms a class of stationary
sunspot solutions (SSE) and the requirement is satis¯ed. If only one eigenvalue of ­ is
outside the unit circle, then (3) does not form a class of stationary sunspot solutions.
One class of SSEs are given by the class (5) in Proposition 1 and we now consider its
E-stability.

First we note that, since E-stability is local concept, all non-rational PLM's su±-
ciently near these REE must be stationary. We have the following result.

Proposition 4 The class of stationary REE (5) is not E-stable.

Proof. We will show that instability arises from the eigenvalues of the matrixDTb(b)
evaluated at this REE. We ¯rst need to compute the solution ¹b which is given by

¹b =
µ
Q11 Q12

Q21 Q22

¶¡1 µ
¸1Q11 ¸1Q12

0 0

¶
: (21)

The eigenvalues of ¹b are 0 and ¸1 so that this solution is stationary. A necessary condition
for ¹b to be E-stable is that the eigenvalues of the matrix

DTb(¹b) = ¹b0 ­ ­ + I ­ ­¹b

have real parts less than 1: However, one of its eigenvalues is always 2, which proves the
result. Appendix A.3 outlines a Mathematica routine to calculate the roots of DTb(¹b).

Intuitively, E-instability of the autoregressive non-fundamental equilibria, the solu-
tion classes (3) and (5), arises from strong e®ects of expectations on the current values
of the endogenous variables. These solutions are of higher order than the MSV solution
and, in particular, include feedback from the lagged endogenous variables. In either case,

11(Evans 1989) analyzed E-instability of the solution class (3) for univariate forward-looking models.
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past values of xt have a strong in°uence on expectations Êtxt+1, (12), and hence, current
xt in (13) leading to instability; see the proofs of Propositions 3 and 4. For example,
with solution class (3), ¹b = ­¡1; DTb(b) has an eigenvalue of 2. The strong feedback
means that changes in Êtxt+1 lead to changes in actual xt which are (in some metric)
even larger and lead to a divergence from these types of non-fundamental equilibria
under learning dynamics.12

We remark that in the formulation of learning, we have endowed agents with knowl-
edge of the form of the REE, compare (11) with (3) or (5). If agents are not able
to converge to the REE under such favorable conditions, then one cannot expect con-
vergence when they have less a priori knowledge of the REE. Consequently, these non-
fundamental equilibria would continue to be E-unstable under more general conditions.13

Summing up, Propositions 3 and 4 show that the autoregressive classes (3) and (5)
of non-fundamental REE in purely forward-looking models are E-unstable. Proposition
4 is currently limited to bivariate models, but we conjecture that it also holds generally.

2.2.2 E-Stability of Markov Sunspots

Finally, we analyze E-stability of the Markov sunspot REE of the form (6).14 Thus
assume that agents have PLM of that form but as and f do not take the REE values given
by equations (9) and (10). The right-hand sides of (9) and (10) de¯ne the T¡mapping
used in the analysis of E-stability in the standard way. Thus denote

Ta(a) = (¦ ­ ­)a (22)
Tf(f) = ­fª +© (23)

in matrix form. Introducing the notation » = (a; f ); T(») = (Ta(a); Tf(f )); E-stability
is de¯ned as usual by the di®erential equation

d»
d¿

= T(»)¡ »:

For these non-fundamental equilibria, a su±cient condition for E-instability is:15

Proposition 5 The class of sunspot equilibria of the form (6) are not E-stable if ­ has
an eigenvalue with real part > 1.

Proof. Consider the component Ta(a) = (¦­ ­)a of the T¡mapping constructed
in the proof of Proposition 2. Its eigenvalues are the products of the eigenvalues of ¦

12We will see below that this feature does not arise with MSV or the Markov sunspots since trivially
¹b = 0 in these cases. In addition, note that one can't expect any necessary link between Propositions 3
and 4: E-stability is a local concept and the value of ¹b is di®erent for the two solution classes.

13In the parlance of the learning literature, if an REE is not weakly E-stable, then it can not be
strongly E-stable; see (Evans and Honkapohja 2001) p. 42 for an intuitive discussion.

14E-stability of the Markov sunspots for univariate models without exogenous shocks was considered
in (Evans and Honkapohja 1994b), (Evans and Honkapohja 2003c) and (Evans and Honkapohja 2003b).

15This result was ¯rst obtained in (Evans and Honkapohja 1994b) for scalar models without shocks.
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and ­. Since 1 is an eigenvalue of the probability matrix ¦, the matrix ¦ ­ ­ has an
eigenvalue with real part greater than one.

What about the possibility of E-stable Markov sunspots? For the non-stochastic
scalar model (where in our notation ­ < ¡1) and a two-state sunspot process, (Evans
and Honkapohja 2003c) recently discovered that there are E-stable Markov sunspot
solutions. Here we extend that result for the multivariate stochastic setup (1)-(2):

Proposition 6 Assume that (i) all eigenvalues of ª0 ­ ­ have real parts < 1 and that
(ii) with the exception of a single eigenvalue equal to 1 (which exists by Proposition 2)
the other eigenvalues of ¦­ ­ have real parts < 1. Then the class of Markov sunspot
equilibria are E-stable.

Proof. We ¯rst vectorize the matrix-valued di®erential equation
df
d¿

= ­fª +© ¡ f:

This yields

d(vecf)
d¿

= (ª0 ­ ­ ¡ I)vecf + vec©;

which is stable by assumption (i).
Next consider the (linear) di®erential equation for a. Its coe±cient matrix ¦­­¡ I

has a single eigenvalue equal to zero while the others are, by hypothesis, stable. The
mathematical lemma in Appendix A.4 shows that for such systems we have convergence
to the set of equilibrium points.

The di®erent E-stability properties of the Markov sunspot and autoregressive solu-
tions may seem surprising, since an appropriate speci¯cation of ´t in the latter gives
the same RE solution as the former. However, this is reconciled by observing that the
parametric form of the PLM matters for the learnability properties; see (Evans and
Honkapohja 2003c) for a further discussion.

Intuition for Proposition 6 is developed below in Section 3.1. Propositions 2, 5 and
6 show the following corollary:

Corollary 7 There may exist E-stable SSEs when the parameter matrix ­ has a real
eigenvalue < ¡1.

This is accomplished by selecting the transition matrix ¦ so that (i) and (ii) of Propo-
sition 6 can be met.16

As was pointed out in the introduction, it is important to consider whether an equilib-
rium is robust to small expectational errors and learning mechanisms to correct them.
When the model exhibits indeterminacy, stability under learning (or E-stability) can
provide a selection criterion between the fundamental and non-fundamental REE. In
the next section we will apply these general results on E-stability of non-fundamental
REE to a standard New Keynesian model of monetary policy.

16If ­ has more than one real eigenvalue < ¡1, one selects ¦ so that the inverse of just one of these
eigenvalues is an eigenvalue of ¦.
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3 Applications to Monetary Policy
We conduct the analysis using the framework in Section 2 of (Clarida, Gali, and Gertler
1999). The structural model consists of two equations:

zt = ¡'(it ¡ Êt¼t+1) + Êtzt+1 + gt; (24)
¼t = ¸zt + ¯Êt¼t+1 + ut; (25)

where zt is the \output gap" i.e. the di®erence between actual and potential output, ¼t
is the in°ation rate, i.e. the proportional rate of change in the price level from t¡ 1 to t
and it is the nominal interest rate. Êt¼t+1 and Êtzt+1 denote private sector expectations
of in°ation and output gap next period. All the parameters in (24) and (25) are positive.
0 < ¯ < 1 is the discount rate of the representative ¯rm.

(24) is a dynamic \IS" curve that can be derived from the Euler equation associated
with the household's savings decision. (25) is a \new Phillips curve" that can be derived
from optimal pricing decisions of monopolistically competitive ¯rms facing constraints
on the frequency of future price changes.
gt and ut denote observable shocks following ¯rst order autoregressive processes

gt = ¹gt¡1 + ~gt; (26)
ut = ½ut¡1 + ~ut; (27)

where 0 < j¹j < 1; 0 < j½j < 1 and ~gt » iid(0; ¾2g); ~ut » iid(0; ¾2u). gt represents shocks
to government purchases as well as shocks to potential GDP. ut represents cost push
shocks to marginal costs.

Monetary policy is conducted by means of control of the nominal interest rate it. A
number of di®erent types of control have been analyzed in the literature and consider
two well-known interest rate rules.

3.1 Forward-Looking Taylor Rules
The nominal interest rate is assumed to be adjusted in accordance with expectations of
output gap and in°ation next period. For simplicity, we assume that the expectations
of private agents and policy makers are identical.17 Then

it = Â¼Êt¼t+1 +ÂzÊtzt+1 (28)

and the structural model becomes
µ
zt
¼t

¶
=

µ
1 ¡ 'Âz '(1 ¡ Â¼)
¸(1¡ 'Âz) ¯ + ¸'(1 ¡ Â¼)

¶µ
Êtzt+1

Êt¼t+1

¶
+

µ
1 0
¸ 1

¶ µ
gt
ut

¶
: (29)

17See (Honkapohja and Mitra 2003) for an analysis of the model when the central bank uses its own
internal forecasts in interest rate setting.
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This model may be determinate or indeterminate. (Bullard and Mitra 2002) show that
the conditions for determinacy are Âz < '¡1(1+¯¡1), ¸(Â¼¡1)+(1+¯)Âz < 2'¡1(1+¯)
and ¸(Â¼ ¡ 1) + (1 ¡ ¯)Âz > 0. These conditions show that central bank policy may
easily lead to indeterminacies, which caused (Bernanke and Woodford 1997) to argue
against them. However, this leaves open the question as to whether these sunspots
may be learnable by private agents, especially for plausible values of parameters. If
these sunspots are either never learnable or are learnable only under very implausible
parameter speci¯cations while the MSV solution turns out to be stable for plausible
values, then arguably the policy can still lead agents to coordinate on the MSV solution.18

We, therefore, turn to the implications for E-stability results on non-fundamental
equilibria associated with (28). We know that non-fundamental equilibria of the form (3)
and (5) are never E-stable. One can show that, depending on the structural parameters
and policy coe±cients, there may exist eigenvalues which are more than 1 or less than
¡1 in the indeterminate case. Proposition 5 implies that non-fundamental equilibria of
the form (6) are not E-stable when the \irregular" eigenvalues are greater than 1.

Nevertheless, it is easy to show that a set of su±cient conditions for ­ to have
one eigenvalue less than ¡1 (and the other in the interval (¡1; 1)) are Â¼ > 1 and
Âz ¸ 2'¡1. Proposition 6 and Corollary 7, hence, show that E-stable sunspots do exist
and in fact they do so for plausible values of parameters, e.g. when '¡1 = :157; as
in (Woodford 1999). The learning perspective, therefore, strengthens the worries of
(Bernanke and Woodford 1997).

A theme that we will elaborate further in Section 6 is the connection between E-
stability and the \Taylor principle", see Chapter 4 of (Woodford 2003b) for a de¯nition.
Intuitively, the Taylor principle means that nominal interest rates rise by more than the
increase in the in°ation rate in the long-run. (Bullard and Mitra 2002) showed earlier this
connection for the fundamental REE/MSV solution: rules ful¯lling the Taylor principle
are learnable and rules violating the principle are unlearnable. Our results indicate that
the connection partly extends to the set of non-fundamental REE under the forward-
looking Taylor rule (28). Policies violating the Taylor principle lead to indeterminacy
and the MSV as well as all of the non-fundamental REE are then unlearnable. However,
when the policy (28) conforms with the Taylor principle but also implies indeterminacy,
then both fundamental and non-fundamental Markov REE are learnable.

Some intuition for the results on Markov SSEs can be developed as follows. The
MSV equilibrium is of the form yt = a + fwt, which is formally a special case of the
solution (6) with as = a for all s. In (Bullard and Mitra 2002) the constant term was
the key to E-stability/instability of the MSV solution and the mapping from the PLM
to the ALM for the constant term in their case was a! ­a, where ­ is the coe±cient
matrix of the expectations term in (29). E-stability requires the eigenvalues of ­ to have
real parts less than one, which is equivalent to the Taylor principle.

For Markov SSEs it is again the mapping of the constant term(s) which determines
E-stability; see Proposition 6. The constant term takes di®erent values depending on
the state of the sunspot and the conditional expectation (7) (which are a®ected by the

18This is the crux of the argument in (McCallum 2001a), (McCallum 2001b) and (McCallum 2003).
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probabilities in ¦) in°uence the model in the way shown in (8). The T mapping for the
sunspot-state dependent constant term is (22) and E-stability requires the eigenvalues
of ¦­ ­ to have real parts less than one. This generalizes the E-stability condition for
the MSV solution: ¦ ­ ­ takes the role of ­. Since one is always an eigenvalue of ¦,
instability obtains as soon as ­ has an eigenvalue with real part more than one, which
means a violation of the Taylor principle. However, even though the Taylor principle
continues to be necessary for E-stability of Markov SSEs, it is no longer su±cient. To
simplify, let us focus on the case K = 2: If the eigenvalues of ­ are denoted !1 and !2,
then for the existence of these sunspots, ¦ must have eigenvalues 1 and !¡11 (w.l.o.g.)
by Proposition 2. The eigenvalues of ¦­ ­ are then 1; !1, !2; and !2!¡11 . The Taylor
principle merely ensures the real parts of !1and !2 to be less than 1 but not that of
!2!¡11 : In fact, one can show (we omit the details for brevity) that the Markov sunspots
can be unstable when the response to output Âz in the rule (28) is small enough (in
particular, when Âz < '¡1): However, if this response becomes large (Âz > '¡1), these
sunspots are E-stable. Our perspective, therefore, supports a modest reaction to output
since it rules out learnable sunspots.19

3.2 Optimal Monetary Policy Under Discretion
Optimal monetary policies under discretion can also lead to purely forward-looking struc-
tures of the form (1)-(2). Postulating a standard quadratic objective function20

min
1
2
Et

( 1X

i=0

¯i
£
®z2t+i + ¼

2
t+i

¤
)
; (30)

we consider optimal monetary policy under discretion. In the fundamental equilibrium
optimal monetary policy without commitment can be characterized in several di®erent
ways. (Clarida, Gali, and Gertler 1999) show the formula

it = (1 + (1¡ ½)¸
½®'

)Et¼t+1 +'¡1gt; (31)

for the optimal interest rate under RE. We can think of (31) as a speci¯ed interest rate
rule and consider the resulting structural model. It takes the form

µ
zt
¼t

¶
=

µ
1 ¡(1 ¡ ½)¸=½®
¸ ¯ ¡ (1¡ ½)¸2=½®

¶µ
Êtzt+1

Êt¼t+1

¶
+

µ
0
1

¶
ut:

19This will also lead to learnability of the MSV solution even when indeterminacy obtains. We note
that relatively modest responses, particularly to the output gap, are also supported in the very di®erent
model of (Christiano and Gust 1999). Similarly, (Orphanides 2003) argues for prudent policies owing
to the di±culties in measuring the output gap. Existence of parameter uncertainty can also support a
less activist optimal policy for a central bank, see (Wieland 1998).

20® is the relative weight for output deviations and ¯ is the discount rate. The policy maker is
assumed to discount the future at the same rate as the private sector. Allowing for a deviation of
socially optimal output from potential output and a non-zero target for the in°ation rate would not
a®ect the results.
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(Evans and Honkapohja 2003d) point out that in this case themodel is either determinate
or indeterminate, depending on the values of structural parameters and ½. If ¡1 < ½ < 0;
there is necessarily indeterminacy since in this case there are two positive eigenvalues
with one exceeding 1: On the other hand, when 0 < ½ < 1; indeterminacy obtains if ½ <
¸2[¸2+2®(1+ ¯)]¡1 since in this case the characteristic polynomial has a root less than
¡1 (the other being between ¡1 and 0).

It follows that the non-fundamental REE are not learnable if the autoregression
parameters of the cost push shock satis¯es ¡1 < ½ < 0. However, in the empirically
plausible case 0 < ½ < 1 there are situations of indeterminacy and by Proposition 6,
E-stable sunspots are possible. The same general intuition based on the eigenvalues
holds as in the case of the Taylor rule in the preceding section.

Most central banks have some concerns for output even when they pursue a policy
of in°ation targeting. These banks are often said to practice °exible in°ation targeting;
see (Svensson 1999). This means a positive value of ® in terms of (30): On the other
hand, a policy which aims to only target in°ation is called strict in°ation targeting and
this corresponds to ® = 0: When ® is close to 0, the policy is almost certain to lead to
indeterminacies when ½ > 0 (by our previous arguments). A policy of strict in°ation
targeting is typically believed to increase the volatility of output even when it leads to
less volatility in in°ation. The usual reasoning presumes that the economy is in the MSV
solution. We provide an additional reason to avoid this policy: it may lead the private
sector to believe in sunspots entailing a (potentially) large volatility in both in°ation and
output. Furthermore, the private sector may even learn to converge on these sunspots.
Our perspective, therefore, provides additional support for a policy of °exible in°ation
targeting.

4 A General Model with Lags
In this section we discuss the stability of stationary sunspot equilibria in models with
lags. Some recent models of monetary policy lead to such formulations. We consider
the general class of models

xt = ­Êtxt+1 + ±xt¡1+ ©wt (32)
wt = ªwt¡1 + vt; (33)

where xt; wt are, respectively, the vectors of endogenous and exogenous variables. The
exogenous variables follow a stationary VAR, so that the eigenvalues of ª are inside the
unit circle. vt is iid.

4.1 Characterization of Non-Fundamental Solutions

In this subsection we impose RE, so that Êtxt+1 = Etxt+1. Let ´t+1 = xt+1 ¡ Etxt+1
be any innovation process, so that it satis¯es Et´t+1 = 0: For the main part we assume
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that the matrix ­ is invertible, but we will also encounter the case where ­ is singular
and will point out the modi¯cations to the technique.

The general solution of (32)-(33) can be written in the form

xt = ­¡1xt¡1 ¡ ­¡1±xt¡2 ¡­¡1©wt¡1 + ´t (34)
wt = ªwt¡1 + vt

or, introducing the notation yt = (x0t; x0t¡1; w0t)0; ut = (´ 0t; v 0t)0, in the form

yt = B1yt¡1 + Lut; where B1 =

0
@

­¡1 ¡­¡1± ¡­¡1©
I 0 0
0 0 ª

1
A ;L =

0
@
I 0
0 0
0 I

1
A : (35)

Note that this formulation does not assume invertibility of ±: Since there are many ways
for specifying the innovation process ´t, there can be indeterminacies of REE as before.
A very common further restriction on (35) is stationarity of the process. The general
characterization (35) will form a stationary class of solutions if all eigenvalues of B1 are
inside the unit circle. However, it may also be the case that one or more roots of B1
are outside the unit circle and one can obtain stationary solutions using diagonalization
techniques similar to the ones in Section 2.

4.2 Learnability of Non-Fundamental REE
Using the concept of E-stability, learnability of the non-fundamental REE can be ana-
lyzed as before. Thus only a summary discussion will be given.

We proceed from the structural model (32)-(33) and begin with the PLM

xt = a + b1xt¡1+ b2xt¡2 + cwt¡1 + d´t + evt;

where a, b1, b2; c, d and e are parameter matrices or vectors of appropriate dimensions.
The form of the PLM is the same as (34) but with di®erent coe±cients. Assuming that
agents observe the time t values of the exogenous variables and shocks but not of the
endogenous variables to form forecasts21, the PLM yields an ALM and the mapping
from the PLM to ALM, (a; b1; b2; c; d; e) ! T(a; b1; b2; c; d; e), which is

T(a; b1; b2; c; d; e) = (­(I + b1)a;­(b21 + b2) + ±;
­b1b2;­(b1c + cª) +©ª;­b1d;­(b1e + c) + ©):

21As in the case of no lags, the equilibria will be E-unstable if the information set includes period t
values of the endogenous variables. The intuition remains the same.
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The di®erent REE are ¯xed points of the T mapping and satisfy the equations

a = ­(I + b1)a (36)
b1 = ­(b21+ b2) + ± (37)
b2 = ­b1b2 (38)
c = ­(b1c+ cª)+ ©ª (39)
d = ­b1d (40)
e = ­(b1e + c) +©: (41)

It can be seen that the equation for matrices b1 and b2 form an independent sub-system
and involve matrix quadratic equations. Clearly, the values b1 = ­¡1 and b2 = ¡­¡1± in
(34) solve this sub-system, but in general there are other solutions. Some of the solutions
can be singular matrices.

Given a solution ¹b1; ¹b2, equations (36) and (39) generically uniquely determine a and
c (¹a and ¹c). Given ¹b1 and ¹c; (41) uniquely determines e. For sunspot equilibria the
matrix I ¡ ­¹b1 must be singular (which occurs e.g. when ¹b1 = ­¡1), in which case the
equation for d has nontrivial solutions and sunspot equilibria exist.

E-stability of a ¯xed point is de¯ned by means of the ordinary di®erential equation

d
d¿

(a; b1; b2; c; d; e) = T(a; b1; b2; c; d; e) ¡ (a; b1; b2; c; d; e): (42)

To derive the E-stability and instability conditions we linearize (42). The necessary E-
stability conditions are that the real parts of all the eigenvalues of the following matrices

­(I +¹b1);
ª0 ­ ­ + I ­ ­¹b1;
­¹b1;µ ¹b01 ­ ­ + I ­ ­¹b1 I

¹b02 ­ ­ I ­ ­¹b1

¶
: (43)

have real parts less than one. On the other hand, a solution or a class of solutions is
E-unstable if any of the eigenvalues of these matrices has a real part exceeding one.

In this case, clear-cut theoretical results for E-instability are generally not available
since, for example, the eigenvalues of (43), when evaluated at b1 = ­¡1; b2 = ¡­¡1±; de-
pend on ±: Nevertheless, these conditions can readily be applied to numerically speci¯ed
models as will be illustrated below.22

5 Application to Clarida, Gali, and Gertler (2000)
We now consider the model analyzed in Section 4 of (Clarida, Gali, and Gertler 2000),
which is similar to the one considered in Section 3. The structural model contains the

22(Evans and McGough 2003) have recently analyzed numerically di®erent variants of models of
monetary policy with lags, including a further analysis of the model of (Clarida, Gali, and Gertler 2000).
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IS curve (24) but (25) is replaced by a slightly modi¯ed equation, namely,

¼t = ¸zt + ¯Êt¼t+1 ¡ ¸ut; (44)

where the parameters are the same as in Section 3 and the shocks gt and ut continue
to follow the processes (26) and (27). (Clarida, Gali, and Gertler 2000) use an interest
rate rule of the form

it = µit¡1 + (1¡ µ)Â¼Êt¼t+1 + (1¡ µ)Âzzt; (45)

which has an inertial component captured by µ and reacts to the contemporaneous
output gap and the forecast of future in°ation.

Plugging this rule into (24) and (44) yields the reduced from
0
@
zt
¼t
it

1
A = ­

0
@
Êtzt+1

Êt¼t+1

Êtit+1

1
A+ ±

0
@
zt¡1
¼t¡1
it¡1

1
A+ ·

µ
gt
ut

¶
, where (46)

­ =

0
@

k0 k0'f1 ¡ (1¡ µ)Â¼g 0
¸k0 ¯ + ¸k0'f1 ¡ (1¡ µ)Â¼g 0

k0(1 ¡ µ)Âz k0(1¡ µ)('Âz + Â¼) 0

1
A ;

± =

0
@

0 0 ¡k0'µ
0 0 ¡¸k0'µ
0 0 k0µ

1
A ; · =

0
@

k0 0
¸k0 ¡¸

k0(1¡ µ)Âz 0

1
A ;

k0 = f1 + (1¡ µ)'Âzg¡1: (47)

It is possible to show that indeterminacies can arise in this model. This model ¯ts
the general framework (32)-(33), where xt is now three-dimensional. In this case neither
± nor ­ are invertible and for computing the indeterminate equilibria we need to apply
the diagonalization technique directly on (46) rather than the autoregressive form used
previously (See e.g. Chapter 10 of (Evans and Honkapohja 2001).) The E-stability
analysis is not a®ected.

De¯ne the free variables as x1t = xt = (zt; ¼t; it)
0 and the predetermined variables

as x2t = (it¡1; w1t; w2t)
0 where w1t = gt and w2t = ut. The technique starts from the

following general form (et = (~gt; ~ut)
0 below)

x1t = B1Etx1t+1 + Cx
2
t ; (48)

x2t = Rx1t¡1 +Sx
2
t¡1 + ·1et; (49)

where in our case we have B1 = ­;

C =

0
@

¡k0'µ k0 0
¡k0¸'µ k0¸ ¡¸
k0µ k0(1 ¡ µ)Âz 0

1
A ;

R =

0
@

0 0 1
0 0 0
0 0 0

1
A ; S =

0
@

0 0 0
0 ¹ 0
0 0 ½

1
A ; ·1 =

0
@

0 0
1 0
0 1

1
A :
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and k0 is de¯ned in (47). Having put the model in this form we compute the matrix J :

J =
·
I ¡C
R S

¸¡1 ·
­ 0
0 I

¸
(50)

(see Chapter 10, Appendix 2 of (Evans and Honkapohja 2001) for the details). Equi-
librium will be unique if exactly 3 (of the 6) eigenvalues of J are inside the unit circle,
while it will be indeterminate if fewer than 3 eigenvalues are inside the unit circle.

We now compute and examine the learnability of indeterminate equilibria in (Clarida,
Gali, and Gertler 2000). They have suggested that monetary policy in the pre-Volcker
era (i.e., 1960¡ 1979) led the economy to stationary sunspot equilibria. The calibrated
parameter values they use are ' = 1; ¸ = :3; ¯ = :99; µ = :68; Âz = :27; ¹ = ½ =
:9: Â¼ was consistently found to be less than one in this period and is the cause for
indeterminacy. If we use the baseline estimate of Â¼ = 0:83 in Table 2 of their paper,
we ¯nd that exactly 2 eigenvalues of J are inside the unit circle.

Appendix A.5 shows that the ¯nal solution for xt = (zt; ¼t; it)
0 is a process of the

form (34) with the corresponding solutions for ¹b1;¹b2 given by (60) and (61) in Appendix
A.5. This (sunspot) solution will be stationary if all the eigenvalues of the matrix

µ ¹b1 ¹b2
I 0

¶
(51)

are inside the unit circle. For the period 1960¡ 79, the ¹b1 and ¹b2 matrices are

¹b1 =

0
@
:41 :50 ¡1:5
:44 :54 ¡:82
:12 :15 :45

1
A ; ¹b2 =

0
@

0 0 1:02
0 0 1:10
0 0 :30

1
A :

The maximum eigenvalue of (51) is :95 so that this solution is stationary. However, the
eigenvalues of (43) have a pair of complex conjugates with real parts 2:1 so that the
solution is not E-stable. This shows that even though there exist stationary sunspot
equilibria in the pre-Volcker period, they are not learnable by private agents.

It can also be shown that even the fundamental equilibria are not E-stable for these
parameter con¯gurations. The MSV (fundamental) solutions take the form

xt = bxt¡1 + cwt

and solving the matrix quadratic, ­b2 ¡ b+ ± = 0; yields two stationary MSV solutions
for b given by

0
@

0 0 ¡1:5
0 0 ¡:82
0 0 :45

1
Aand

0
@

0 0 :19
0 0 1:01
0 0 :95

1
A : (52)

If agents have a PLM of the form

xt = a + bxt¡1 + cwt (53)

20



then a necessary condition for E-stability is that the eigenvalues of the matrix ­ + ­¹b
have real parts less than one if agents use last period data on output, in°ation, and
interest rates to form their forecasts. However, it is easy to check that this condition is
violated for both the solutions given in (52). We note here that the estimated rule in the
pre-Volcker era fails the Taylor principle and we (again) ¯nd all types of RE solutions,
both MSV and SSEs, unstable under learning.23

These results o®er a novel explanation for the high in°ation in the pre-Volcker era.
Since neither the fundamental nor the non-fundamental equilibria are E-stable, the high
in°ation of the 1960s and 1970s may have been due to the persistent learning dynamics
of private sector agents. The forecasting errors made by agents did not disappear over
time owing to the monetary policy being pursued by the Federal Reserve. On this
interpretation, these errors were not due to the economy being in a sunspot equilibrium,
as suggested in (Clarida, Gali, and Gertler 2000).

In contrast, in the Volcker-Greenspan era the monetary policy followed was not
compatible with the existence of a stationary sunspot REE. Using the baseline estimates
of Â¼ = 2:15; Âz = :93 and µ = :79 in Table 2 of (Clarida, Gali, and Gertler 2000) for
this period, one can check that there exists only one stationary MSV solution, namely

0
@

0 0 ¡1:22
0 0 ¡0:64
0 0 0:43

1
A ;

which is E-stable if agents have a PLM of the form (53). This monetary policy satis¯es
the Taylor principle and was conducive to learnability of the unique MSV solution, which
may in fact have contributed to the low in°ation during this period.

6 Discussion and Concluding Remarks
We have carried out a general analysis of learnability of non-fundamental equilibria for
multivariate forward-looking linear models with and without lags. Our results apply
to models of monetary policy that are being used to give advice to policy makers.
Learnability of the fundamental REE and unlearnability of non-fundamental REE are an
important constraint that good monetary policy design should aim to meet. Otherwise
undesirable °uctuations may result.

While it is clearly desirable to achieve learnability of the MSV REE by appropriate
choice of the policy rule, the assessment of the °uctuations arising as non-fundamental
REE is less clear-cut. While these endogenous °uctuations are usually inferior to MSV
REE, their normative comparison is ambiguous with respect to cases where the economy
°uctuates as a result of there being no learnable REE. Nevertheless, it would seem
possible to conduct a positive analysis between stable SSEs and non-rational °uctuations
due to non-learnable equilibria.

23This rule is inertial but it fails the Taylor principle; see Chapter 4 of (Woodford 2003b) for the
de¯nition of the Taylor principle in this case. Similar conclusions follow if agents use contemporaneous
information on output and in°ation to form their forecasts.

21



The scenario in (Clarida, Gali, and Gertler 2000) illustrates the possibilities for a
positive analysis. Clarida et al suggest that the high and volatile U.S. in°ation in the
1960s/70s may have been indeterminate equilibria caused by the policy. Our analysis has
shown that neither the fundamental nor the non-fundamental REE were learnable during
this period. The volatile period was perhaps a situation of agents trying unsuccessfully
to ¯nd some equilibrium and not necessarily a sunspot equilibrium.

A further analysis of this issue would seem worth while. The (Clarida, Gali, and
Gertler 2000) explanation is based on RE and it would be consistent with agents not
making systematic errors in their forecasts of in°ation and output gap. Our explanation
has agents making forecast errors that do not disappear over time. Agents might believe
in PLMs corresponding to the fundamental REE but, since errors do not disappear
over time, they might also entertain the possibility of PLM matching the form of some
non-fundamental REE. However, even in the latter case, the forecast errors would not
disappear over time as all REE are unstable under learning. Thus, one way to test the
competing hypotheses is to study the behavior of forecast errors in in°ation and output
gaps in the pre-Volcker era.

We have also found policy rules and domains for policy parameters which satisfy
the Taylor principle but are nevertheless associated with indeterminacy and existence of
learnable non-fundamental REE. Both fundamental and some non-fundamental REE,
are potentially learnable for some domains of policy parameters under the rules con-
sidered in Sections 3.1 and 3.2. This result shows the Taylor principle does not al-
ways guarantee determinacy and it is important to avoid indeterminacies when forward-
looking policy rules conform to the Taylor principle. Indeterminacy can be avoided with
moderate aggression to in°ation and/or output gap forecasts. Furthermore, even when
indeterminacies exist, a modest response to output leads to instability of all types of
sunspots (as in Section 3.1) and to learnability of the MSV solution.

A further way to reduce indeterminacy is to make the interest rule react directly to
its own past values which makes it easier to satisfy the Taylor principle. These inertial
rules have been found to have desirable properties: they can lead to the existence of
a unique learnable fundamental equilibrium and also have the potential to implement
optimal policy of the central bank; see (Bullard and Mitra 2001) and (Rotemberg and
Woodford 1999). The U.S. interest rule estimated since the 1980s by (Clarida, Gali, and
Gertler 2000) has such an inertial component that, in conjunction with an appropriate
response to the in°ation forecast and output gap, leads to a unique learnable fundamental
REE.

In summary, we do not advocate policies that violate the Taylor principle. Policies
satisfying the Taylor principle are recommended as long as they do not lead to indeter-
minacy. In addition, our results in Section 3.2 suggest that in°ation-targeting central
banks should adopt a policy of °exible in°ation targeting instead of strict in°ation tar-
geting since the latter can lead to the existence of learnable, indeterminate equilibria.
This is what most in°ation-targeting central banks seem to do in practice.
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A Appendices: Derivations

A.1 Proof of Proposition 1

De¯ne the new variables pt = Q¡1yt.24 This allows us to write the system (4) in the
form

pt = ¤pt¡1 +Q¡1ut: (54)

The second equation of (54) can then be written as

p2;t = ¸2p2;t¡1+ Q21´1;t +Q22´2;t + Q23v1;t +Q24v2;t;

where the notation Q¡1 = (Qij) has been used. Stationarity implies the restriction
p2;t = 0 or

Q21x1;t +Q22x2;t +Q23w1;t + Q24w2;t = 0: (55)

The ¯rst equation is

p1;t = ¸1p1;t¡1 +Q11´1;t + Q
12´2;t + Q

13v1;t + Q14v2;t: (56)

These imply that one of components of the martingale di®erence sequence ´t is a linear
combination of the other component and the iid shocks to the exogenous variables.
Using the de¯nition

p1;t = Q11x1;t + Q12x2;t + Q13w1;t +Q14w2;t

we can write (56) as

Q11x1;t +Q12x2;t = ¸1Q11x1;t¡1 + ¸1Q12x2;t¡1 ¡Q13w1;t ¡Q14w2;t
+¸1Q13w1;t¡1 + ¸1Q14w2;t¡1 +
Q11´1;t + Q12´2;t +Q13v1;t + Q14v2;t:

This equation and (55) make up the system (5) in the text.

A.2 Relation Between Markov and Autoregressive REE
First, we note that solutions to linear model (1)-(2) can be thought as the sum of a
particular solution and a general solution to the homogenous equation. We take the
MSV solution

xMt = fwt, where f = ­fª+ ©;

24This is a modi¯cation of the well-known Blanchard-Kahn technique for obtaining stationary solu-
tions to regular (i.e. \saddle-point stable") multivariate linear RE models. See, Appendix 2 of Chapter
10 in (Evans and Honkapohja 2001) for the extension of the technique to irregular models.
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as the particular solution. The general solution to the homogenous equation is any
process xHt satisfying xHt = ­EtxHt+1. Introducing an arbitrary innovation, we write

xHt = ­¡1xHt¡1 + "t; (57)

where "t is a MDS. Let xGt = xMt + xHt . Then

xGt = ­¡1xGt¡1 + "t + fwt ¡ ­¡1fwt¡1:

Using the equation f = ­fª+ © and (2), the last terms can be written as

"t + fwt ¡ ­¡1fwt¡1 = "t + fvt ¡ ­¡1©wt¡1:

It follows that xGt has the same form as (3), when we set ´t = "t + fvt. ´t is a MDS
since "t is a MDS and vt is iid.

Second, the relationship between the autoregressive andMarkov solutions is obtained
by choosing the ¯nite-state Markov process as a speci¯c solution to the homogenous
equation. We set xHt = xH(i) if st = i where xH(i) = ­

XK

i=1
¦ijxH(j) and use the

well-known result that Markov chains can be written in autoregressive form (57) with
an MDS innovation.

A.3 Mathematica Routine used in Proposition 4
We give a brief description of the Mathematica routine (available on request) used in
computing the eigenvalues of DTb(¹b): For computing ¹b; we need only the top left 2£ 2
block of the diagonalization matrix for B, namely Q. In addition, since B is block
triangular, this matrix corresponds to the diagonalization of ­¡1: Denote the 2£2 matrix
­ = (­ij): The Jordan decomposition on ­¡1 yields the following diagonalization matrix

M =

Ã
­11¡­22+

p
­2
11+­2

22¡2­11­22+4­12­21

2­21

­11¡­22¡
p

­2
11+­2

22¡2­11­22+4­12­21

2­21

1 1

!
:

Note that, as mentioned above, M coincides with the top left 2 £ 2 block of Q: The
eigenvalues of ­¡1 are

¸1 =
­11 + ­22 ¡

p
­2

11 + ­2
22 ¡ 2­11­22 + 4­12­21

2 (­11­22 ¡ ­12­21)
;

¸2 = ­11 + ­22+
p

­2
11 +­2

22 ¡ 2­11­22 + 4­12­21

2 (­11­22 ¡ ­12­21)
:

In general, we do not know whether ¸1 or ¸2 has the smaller modulus. Assume for now
j¸1j < 1, j¸2j > 1:With this,

¹b =M
µ
¸1M¡1

11 ¸1M¡1
12

0 0

¶

where M¡1
ij denotes the (i; j) element of M¡1 and ¹b coincides with (21). It is then easy

to check that one of the eigenvalues of DTb(¹b) = ¹b0 ­ ­ + I ­­¹b is 2:
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A.4 Mathematical Lemma used in Proposition 6

Consider the following linear system of di®erential equations

_x = Ax (58)

with x an n dimensional vector. We assume that A can be written in the form A =
Q¤Q¡1, where the matrix of eigenvalues takes the form

¤ =
µ

¤1 0
0 0

¶
(59)

and all n¡ 1 eigenvalues of ¤1 have negative real parts. ¤1 is thus invertible. Partition
Q¡1 = (Qij) as

Q¡1 =
µ
Q11 Q12

Q21 Q22

¶

where Q11 is (n¡ 1)£ (n¡ 1), Q12 is (n¡ 1)£1, Q21 is 1£ (n¡1) and Q22 is a non-zero
scalar. We assume that the matrix Q11 ¡Q12(Q22)¡1Q21 is invertible.

We state the following auxiliary result:

Lemma 8 For any initial condition x(0) the trajectory x(t j x(0)) of (58) converges to
the set of equilibrium points fx̂ j Ax̂ = 0g :

We have not discovered this result in the mathematics literature, though we suspect
that it is a known result. A proof is available on request.

A.5 Details on Section 5

For the computation of irregular equilibria in the model of (Clarida, Gali, and Gertler
2000), we follow the technique illustrated in Chapter 10, Appendix 2 of (Evans and
Honkapohja 2001). We factor J as ¤ = Q¡1JQ; where Q¡1 = fqij; i; j = 1; ::; 6g and ¤
are correspondingly partitioned as

Q¡1 =

0
@
Q11(1; 1) Q11(1; 2) Q12(1)
Q11(2; 1) Q11(2; 2) Q12(2)
Q21(1) Q21(2) Q22

1
A ;¤ =

0
@

¤¤1 0 0
0 ¤#

1 0
0 0 ¤2

1
A :

Note that the diagonal matrix ¤¤1 above contains the eigenvalues of J with modulus less
than one whereas ¤#

1 and ¤2 are diagonal matrices containing the eigenvalues of J with
modulus more than one. The free variables are also partitioned into the sets

x1t =
µ
x1¤t
x1#t

¶
:
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If we use the baseline estimates in Table 2 of (Clarida, Gali, and Gertler 2000) for
the period 1960 ¡ 79, the eigenvalues of J happen to be ¸1 = 0, ¸2 = :63, ¸3 = 1:05,
¸4 = 2:21, ¸5 = ¹¡1, ¸6 = ½¡1; i.e., exactly 2 eigenvalues of J are inside the unit circle.
Assume that ¤¤1 = f¸1; ¸2g;¤#

1 = f¸3g; and ¤2 = f¸4; ¸5; ¸6g. Here we have x1¤t =
fzt; ¼tg; x1#t = fitg. It can be checked that the ¯nal solution for xt = (zt; ¼t; it)

0may be
written as (omitting the shocks)

xt = ¹b1xt¡1 +¹b2xt¡2 + ::

which is a vector ARMA process. Introducing the notation (Q11)¡1 = fqij; i; j = 1; ::; 3g,
we have

¹b1 =

0
@
¸¡13 q13q31 ¸¡13 q13q32 q13(¸¡13 q33 ¡ q34)¡ q11q14 ¡ q12q24
¸¡13 q23q31 ¸

¡1
3 q23q32 q23(¸

¡1
3 q33 ¡ q34)¡ q21q14 ¡ q22q24

¸¡13 q33q31 ¸¡13 q33q32 q33(¸¡13 q33 ¡ q34)¡ q31q14 ¡ q32q24

1
A (60)

¹b2 =

0
@

0 0 ¸¡13 q13q34

0 0 ¸¡13 q23q34
0 0 ¸¡13 q33q34

1
A : (61)
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