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: A B S T R A C T

This thesis looks at finite subgroups of the pro= 
jective group of 2 x 2 matrices over a skew field and 
the invariants of these subgroups.

Chapter 0 recalls most of the preliminary results 
needed in subsequent chapters. In particular the con= 
struction of K^(x) is. outlined briefly.

Chapter 1 establishes an isomorphism between the 
group of tame automorphisms in one variable over the 
skew field K and the projective group of 2 x 2 matrices 
over K, PGL2 (K). It shows that if K is of suitable 
characteristic, then any element A of PGL2 (K) of finite 
order has either two or else infinitely many fixed 
points in some extension of K. In particular this means 
that such A can be diagonalized.

Chapter 2 is divided into three sections. The first 
section deals with finite subgroups of PGI^CE) whose 
elements may have infinitely many fixed points. The 
second section analyses finite cyclic subgroups whose 
elements have only two fixed points. The third section 
finds the finite non-diagonal groups in PGL2 (K) whose 
elements have exactly two fixed points. In particular a 
complete classification is given of the finite subgroups 
of PGI^CR) when the centre k of K is algebraically 
closed.

Chapter 3 shows that if the centre k of K is algebrai= 
cally closed, then- any finite subgroup of PGL2 (%) is in



fact conjugate to one in PGL2 (k). It finds the fixed 
fields in K^(x) of the finite subgroups of PGL2 (K) and 
shows that their respective generators are the same as 
in the commutative case.
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INTRODUCTION

Let k be a commutative field. There is a well known 
matrix representation of the automorphisms of k(x) over

ax-fbk , i.e. o( ; X ^ is represented uniquely up to a
/a b\

scalar multiple by A = I I . Moreover if A is of
\c d/

finite order n in PGL2 (k) (and char k^a), then it can be 
diagonalized over some extension of k. It is mainly 
these two facts which make possible a complete classifi= 
cation of the finite subgroups of PGLgCC), where C denotes 
the complex numbers (or indeed of any PGL2 (k), where k is 
commutative and algebraically closed). It is possible to 
determine explicitly the fixed fields of these finite 
subgroups in their action on k(x) (this was done by Felix 
Klein over a hundred years ago in [6]).

The object of this thesis is to generalize these facts 
as far as possible to the case where k is not commutative.

Let K be a skew field with centre k. In the first 
chapter we shall find that all known automorphisms in one 
variable over K can be represented by a 2 x 2 matrix A 
(as above) which is unique up to a central scalar multiple. 
As in the commutative case we shall also see that any 
A C PGL2 (K) of finite order n can be diagonalized over 
some extension of K, provided char K -k n. One main differ= 
ence between the skew and the commutative case lies in the 
occurence of non-central scalar matrices. These, as well
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as their conjugates in PGLgC^), we call quasiconjugations.
Chapter 2 deals with finite subgroups in PGLgCK). In 

particular a classification up to finite groups of 
diagonal matrices is given of those finite subgroups 
which do not contain any quasiconjugations. Indeed when 
the centre k of K is algebraically closed this will 
amount to a complete classification.

Chapter 5 proves that when k is algebraically closed, 
every finite group in PGL2 (K) is conjugate to a group in 
PGLgCk)" This allows the adaptation of. some of the 
methods used in the commutative case to find the fixed 
fields of the finite subgroups of PGL2 (K). It turns out 
that their generators are in fact the same as in the 
commutative case.

Detailed summaries of the content of the various 
chapters axe given at the beginning of each chapter. 
Chapter 0 does not contain any original work and such 
results in the later chapters as are known not to be 
original will be credited to their sources.

The author wishes to record his gratitude to Prof. 
P.M. Cohn for his patient guidance and encouragement 
without which this work would not have been achieved.

A. Gruza

Bedford College 
London
November 1978
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0. PRELIMINARIES

In this chapter we assemble some of the facts and 
definitions which will be needed in the following 
chapters. Most of the theorems given here are due to 
P. M. Cohn and unless their proof is of special interest 
in our work later on we shall omit the latter but give 
appropriate references. VJhere the most general form of 
these results is not required we shall sometimes recall 
them in terms of the more specialized setting relevant .. 
to us. This will save us from making definitions which 
are not used afterwards.

Let K be a skew field with centre k. Denote by 
K^<x> the ring obtained by adjoining to K the indeter= 
minate x, with defining relations xc = cx for all c € k. 
The general element of has form

a + b^xc^ + ... + hpXC^ + d^xe^xf^ + ... + d^xe^xf^ + ..,

where a,b^,...€E.
In the commutative case, i.e. when K = k, we have 

Kj^<x> = k[x] , the polynomial ring over k in one variable. 
Then kfxj has field of fractions k(x) , the field of 
rational functions over k, which is fairly easy to 
construct from kjxj , mainly because the elements of k(x) 
can all be written in the form fg~ , where f,g£kfxj, 
g f 0. In the non-commutative case even the existence 
of a field of fractions of K^<x> is not obvious and its
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construction requires very different methods. The 
following is a sketch of this construction; further 
details and proofs can be found in chapter 7 of [3].

Essentially we shall find that the elements of a 
field of fractions of K^<x> are obtained as components 
of solutions of matrix equations. We shall also quote 
a criterion for the existence of a "universal" field of 
fractions of any general ring.

Let R,S be any rings and 2  a set of square 
matrices over R. A homomorphism f; R — ^8 is said to ■ 
be 2  - inverting if every matrix in 2  is mapped by f 
to an invertible matrix over S. Assume f is 2  - 
inverting, then the 2  - rational closure of R in S 
(under f) is defined as the set Rg(8) of all entries of 
inverses of elements of f(2) (the image of 2] under f). 
Z  is called multiplicative if and if A , B € ^  ,

then ^j 6 2 ,  where C is any matrix of suitable size.

The next result characterizes the 27 - rational closure 
in three v/ays. Denote by e^ the column vector with 1 in 
the i-th place and O ’s elsewhere.

Theorem 0.1 (cf. thm.7.1*2 in C^H)* Bet R be a ring 
and 27 8- multiplicative set of matrices over R. Given 
any 21 “ inverting homomorphism f : R — >S , then the 
2  - rational closure R^(8) is a subring of S containing 
im f, and for any x £ 8 the following conditions are 
equivalent;
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a) xeRg(S) ;
b) X is a component of the solution u of a matrix 

equation
. Au + a = 0 , 

where A € f(2) snd a is a column vector with 
components in im f;

c) X is a component of the solution u of a matrix 
equation

Au - e. = 0 ,u
where A £ f(2)•

This theorem shows that every element of E^(8) can be 
obtained as some component u^ of a matrix equation 
Au = a. Here A is called the denominator of u^, and A^ 
(the matrix obtained by replacing the i-th column of A 
by a) is called numerator of u^. This definition has 
its justification in the next result which strongly 
resembles Cramer's Rule of the commutative case.

Theorem 0.2 (cf. thm.7.1.5 in [3]). Let u^ be the 
i-th component of the solution of Au = a , where A is

invertlbl,. Ih,n Is a {“ g,j If ««d

only if the numerator of Uĵ  has the same property in the 
matrix ring.

Next we recall the precise definition of the universal 
field of fractions of a ring R. Given a ring R, an 
R - ring refers to a ring L with a homomorphism from R 
to L. An epic R - field is an R - ring K which is a
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skew field and such that K is the smallest field con= 
taining the image of R. We shall refer to epic R - 
fields simply as "R - fields" since no others occur in 
what follows. Note that R - fields need not exist for 
every ring R. If the canonical mapping R — is inject= 
ive, we call K a field of fractions of R. Given R - 
fields K,L, let f be an R - ring homomorphism from Kq to 
L, where Kq is an R - subring of K such that every 
element of Kq not in ker f has an inverse in Kq. Such 
f is called a specialization between K and L. It 
follows that Eq is a local ring with maximal ideal ker f ; 
hence KQ/ker f is isomorphic to a subfield of L, namely 
im f. But since L is an R - field we find that im f = L. 
Hence any specialization of R - fields is surjective.
Two specializations from K to L are considered equal if 
they agree on a subring Eq of K and the common 
restriction to Eq is again a specialization.

The R - fields and specializations are easily shown 
to form a category. An initial object in this category 
is called a universal R - field. Clearly if a universal 
R - field exists it will be unique up to isomorphism. 
Suppose R has a universal R - field U. Then R has a 
field of fractions if and only if U is a field of 
fractions; in that case U is called the universal field 
of fractions of R.

Let 2  Be a set of square matrices over R as before. 
Let X : R — »Rg be a ring homomorphism which is £  - 
inverting and such that any Z7 - inverting homomorphism
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f : R"— ►S can be factored 
uniquely by X (i.e. such 
that the diagram commutes).
\  is called the universal 
2  - inverting homomornhism and R is called the 
universal S  - inverting ring.

Theorem 0.3 (cf. thm.7.2.1 in fsj ). Let R be any 
ring and 27 8ny set of square matrices over R. Then 
there is a universal Z7 - inverting homomorphism 
X ; R — ^Rg, where R^ is unique up to isomorphism.
X  is injective if and only if R can be embedded in a 
ring over which all the elements of 2  have inverses.

The next result shows that any R - field is deter= 
mined completely by the multiplicative set of matrices 
which become invertible.

Theorem 0.4. (cf. thm.7*2.2 in [3] ). Let R be any 
ring.
1. If 27 is a set of matrices such that the universal 

27 - inverting ring R^ is a local ring, then the 
residue-class field of R^ is an R - field.

2. If K is an R - field and 27 is the set of all 
matrices over R whose images in K are invertible, 
then 27 is multiplicative and R^ is a local ring 
whose residue-class field is isomorphic to K.

Next we shall give the promised criterion for the 
existence of a universal field of fractions. To this
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end we need some definitions. Let A,B be two matrices 
over a ring R. Then the diagonal sum of these matrices 
is defined to be

[A 0 
A + B = (

\0 B.

Note that this sum is always defined. Given two n x n 
matrices A = (a..), B = (b.,.) such that a. . = b . . forJ J-d
all i = 2,3,...,n and j = 1,2,...,n , then the
determinantal sum of A and B with respect to the first
row exists; it is defined to be the matrix C whose first
row is the sum of the first rows of A and B, and whose
other rows agree with those of A and B. Similarly one 
defines the determinantal sum with respect to another 
row or column, if it exists. Let A,B be two matrices 
over R, not necessarily of the same size. A and B are 
said to be stably associated if there exist invertible 
matrices P,Q such that

= P

for unit matrices I of suitable size. An n x n matrix A 
over R is said to be full if it cannot be written as a 
product of matrices P,Q , where P is an n x r matrix and 
Q is r X n, and r< n. If this condition is not satis= 
fied, A is said to be non-full. If A is non-full, then 
its diagonal sum with any square matrix B is non-full,

for if A = PQ, then ^ “ (o b)(o l) * However if

A is full, then it does not follow that its diagonal sum
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with another full matrix is again full. We are now in 
the position to state the key result referred to above.

Theorem 0.5 (of. thm.?.6.4 in ). A ring R has a 
universal field of fractions over which every full matrix 
can be inverted if and only if
1. 1 i 0 and the diagonal sum of any full matrices is 

full ;
2. the determinantal sum of any non-full matrices, 

whenever defined, is non-full.

From this follows

Theorem 0.6 (cf. thms.y.6.5&8 in [sj). Let R be any 
ring in which the set of all full matrices is 
multiplicative.
1. Iff; R — >S is aZ7 - inverting homomorphism (where 

8 Ï 0), then f is injective and the - rational
closure is a field of fractions of R.

2. The universal 2  - inverting homomorphism X ; R — >R^ 
is an embedding of R into the universal field of 
fractions of R.

Thus we come to the result most relevant to us;

Theorem 0.7» E^<x^ has a universal field of fractions,
obtained as the universal ring inverting all full 
matrices.

Without going into any further details we just
mention that the proof of this theorem rests on the fact
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that K^<x> is a free ideal ring ("fir" for short).
We shall denote the universal field of fractions of 

K%<x> by K^(x).

Early in chapter 1 we shall use the following

Theorem 0.8 (cf. p.152,202 in [4J ). Let K be a skew
field with centre k and let A = A(x) be a square matrix
over K^<x>. Then A is stably associated to Bx + C,
where B,C are square matrices over K.

The proof is essentially the process of "linearization 
by enlargement". To elucidate this process we suppose 
that the (n,n) entry of an n x n matrix has the form 
f + ab. We enlarge the matrix by taking its diagonal 
sum with a 1 X 1 unit matrix and then apply a series of 
elementary operations, as follows:

f + ab 0 f + ab a f a
f + ab — >

0 1 0 1 -b 1

It is clear that this amounts to stable association
between the original matrix A and its enlarged form A*#
By repeated application we can enlarge A to the form 
A* = Aq + AyjX as required.

The linear matrix Aq + A^x thus obtained is called a 
companion matrix for A(x). Of course Aq and Âj are not
unique. We note the following fairly obvious

Lemma 0.9. If a matrix A(x) over K^<x> is invertible, 
or full, then any companion matrix of A(x) has the same 
property.
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Let K be a skew field and let A be a square matrix 
over K. A singular eigenvalue of A is an element a £ K  
such that A - al is singular. It is not known whether 
every square matrix has a singular eigenvalue (in some 
extension of K). However this question forms part of a 
general conjecture quoted at the beginning of chapter 1 
and which entails a positive answer, as shov/n by Cohn in

, p.204.
An element a£ K is called a right eigenvalue of A if 

there is a non-zero column vector u, the eigenvector 
corresponding to a, such that

Au = ua

Similarly a left eigenvalue is an element b £ K such that 
for a row vector v we have vA = bv. It is not difficult 
to see that left, right and singular eigenvalues in the 
centre of K coincide. Generally however there seems to be 
little connection between left and right eigenvalues on 
the one hand and singular eigenvalues on the other. It 
can be shown that a square matrix A over K always has a 
right (and left) eigenvalue in a suitable extension of K. 
One consequence of this fact is the following

Theorem 0.10 (cf. thm.8.4.1 in C^J). Let K be a skew 
field, then any equation

x^ + a^x^"^ + ... + a% = 0 (a^£K) (1)

has a solution in some extension of K.

The proof rests on the fact that any companion matrix
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of this equation (considered as 1 x 1 matrix over K^<x>) 
has a right eigenvalue c in some extension of K. This c 
is easily seen to satisfy (1),

There is one other result on a particular type of 
equation (over K) which we shall need:

Theorem 0.11 (cf. thra.8.4.4 in [4]). Let K be a skew 
field which is a k-algebra, and consider the equation

ax - xb = c (a,b,c€K). (2)

1. If a,b are both transcendental over k, (2) has 
infinitely many solutions in a suitable extension 
of K.

2. If one of a,b is transcendental over k and the other 
algebraic, then (2) has a unique solution in K or 
any extension of E.

3. If a,b are both algebraic over k but with different 
minimal equations over k, then (2) has a unique 
solution in E or indeed in any extension of E.

4. If a,b have the same minimal polynomial f over the 
centre k of E, then (2) has a solution in E (or in 
any extension of E) if and only if either c = 0, or 
(t - cbc"^)(t - a) divides f in E[t].

We shall in fact only make use of parts 3 and 4. The 
condition in part 4 becomes clearer with the ne:cfc

Theorem 0.12 (cf. thm.8.5*2 in £4j)* Let E be a skew 
field with centre k. Two elements a,b £ E are conjugate
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in K (i.e. cac” = b for ceK, c 4= 0) if and only if a 
and b satisfy the same minimal polynomial over k.

From this we can deduce another useful result, i.e.
j

Theorem 0.13 (cf. thm.8.3*4 in [4])• In a non - |
commutative field K, every element is contained in an 
infinite commutative subfield.

In particular this means that the centraliser of any 
element of K is infinite.

It will be necessary to have a non-commutâtive 
analogue to commutative algebraically closed fields.
This is problematic since not all properties of commuta= 
tive algebraically closed fields can be carried over • 
into the skew case. For instance over a commutative

Ifield every equation has a solution in some extension 
and in the algebraic closure of that field in particular.
As theorem 0.11, part 4, shows this need not be true in 
general. So what we shall define is a closure condition gI
on a (skew) field K to the effect that if a system of
equations over K has a solution in some extension of K,
then it has already a solution in K itself. More |
formally.

Definition : Any sentence of the form

3 â j, ... , a^ P(a^,...,a^) ,

where P is an expression obtained from equations by
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negation, conjunction and disjunction is called an 
existential sentence. By an existentially closed field, 
EC - field for short, we understand a field K such that 
any consistent existential sentence (i.e. one which 
holds in some field extension of K) already holds in K.

If K has centre k, then k is existentially closed if 
and only if k is algebraically closed. But if K is 
existentially closed it does not follow that k is 
algebraically closed. We have an embedding theorem as ■ 
in the commutative case; '

Theorem 0.14 (cf. thm.6.2.2 in ). Let K be any 
(skew) field, then there exists an EC - field L 
containing K, in which every finite consistent set of 
equations over K has a solution.

Note however that L in this theorem will not be 
unique in any way, even when assumed minimal over K.
It is therefore not possible to speak of "the 
existential closure" of a skew field.

This concludes the preliminary chapter. Any other 
non-original results that we shall use will be recalled 
(with appropriate references) in the context of the work 
that follows.
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1. TAME AUTOMORPHISMS;
THEIR REPRESENTATIONS AND FIXED POINTS

Introduction

Throughout this chapter K will denote a skew field 
with centre k. Let Gq be the set of all automorphisms 
of K^(x) over K (i.e. which keep K fixed). Gq clearly 
forms a group.

In the commutative case, i.e. when K = k, each 
element of Gq has the form of a linear fractional trans= 
formation

where a,b,c,d£k are unique up to a common factor and 
ad - be + 0. Every such automorphism can be represented 
by a matrix

a b ' 
c di

which is unique up to a non-zero constant of k and which 
in turn determines oC uniquely. Furthermore it is not 
difficult to see that every o< of finite order n (such 
that the characteristic of k does not divide n) has 
exactly two fixed points in an appropriate extension of 
E(= t), for instance in the algebraic closure, and that 
with the help of these fixed points <X can be put into 
the normal form x i—» u) x, where w  is a primitive n-th



root of 1 (in terms of A this amounts to diagonalization).
The aim of this chapter is to generalize these 

results as far as possible to the non-commutative case,
i.e. when E * k.

We encounter a major stumbling block virtually before 
the beginning because in the skew case it is not clear 
whether every element of Gq is in fact a linear fractional 
transformation, i.e. of the form oC : x^—>(ax + b)(cx + d)~ 
as in the commutative case. A distinction must therefore 
be made between wild and tame automorphisms (the latter 
being of form ), although the existence of the former 
is uncertain.

After a brief remark on wild automorphisms we shall 
turn to tame automorphisms exclusively. Eenz showed in 
[Qj that these form a group. Giving a new proof we show 
in addition that it is precisely the tame automorphisms 
which are representable as 2 x 2 matrices which are 
unique up to a central multiple - as in the commutative 
case." The main result of chapter 1 will tell us that 
every tame automorphism whose order is not divisible by 
the characteristic of E has either two or else infinitely 
many fixed points (in some extension of E, e.g. in some 
existentially closed field containg K). This will mean 
that all the normalization results mentioned above for 
the commutative case can be carried over to the non- 
commutative case.
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a) On Wild and Tame Automorphisms of K^(x) over K

Let K be a skew field with centre k and let Gq be 
the group of all automorphisms of Kj,̂ (x) over K. Denote 
by G the subset of Gq consisting of all transformations 
of the form

(X : X»— »(ax + b)(cx + d)~^ , (2)

where a,b,c,d£K are such that the matrix is
invertible.

The elements of G are called tame automorphisms, all 
others correspondingly wild automorphisms. It is not 
known whether wild automorphisms exist at all, i.e. 
whether G is a proper subset of Gq .

In the special case where the centre k of K is 
algebraically closed vre can describe the wild automor= 
phisms (if any exist) more explicitly if the eigenvalue 
conjecture by P. M. Cohn (f^J , p.204) has an affirmative 
solution.

The conjecture says the following: Let K be a field
which is a k-algebra and assume that k is algebraically 
closed in K. Then every square matrix A over K has a 
non-zero singular eigenvalue in some extension of K 
unless A is conjugate over k to a triangular matrix.

If this were shovm to be true, then if wild automor= 
phisms exist at all of Ê (̂x) over K, they will have to • 
be conjugate to

X k— > a + b/| + c^xc 2 + ••• (a,b^,c^,#..£E) (3)

2(



To see this let be an automorphism of K^(x) over 
K. Clearly c<(x) will generate E^(x). We claim that 

(x) is conjugate to some u^ £ K.<x> (necessarily also 
a generator of K^(x) ), and that x£Ej^<u^>, If this holds, 
then for polynomials f,g£K^<x> we have f(u^) = x and 
g(x) = u^, i.e. f(g(x)) = X. But if w = deg .f, v = deg g, 
then viv = 1, so v = w = 1. Hence f and g have form as 
indicated on the right hand side of (3) and <x is as in 
(3). Note that if it turned out that there is only one 
summand of degree 1 in (3) we would have a tame automor= 
phism. The conjecture does not therefore entail the 
existence of wild automorphisms, it just limits the form 
they might take.

To prove the claim we note that u^ (like any other 
element of E^(x) ) can be obtained as the first component 
of the solution to a matrix equation Au = a , where A 
(the denominator) is a full square matrix over Kj^<x>. 
Using theorem ^.4 ("On Universal Denominators") from a 
paper of P. M. Cohn ("The Universal Field of Fractions 
of a Semifir", to appear) we can say even more about A.
The relevant part of the theorem may be restated as 
follows:

Given any p£K^(x), there is a representation for p 
with a denominator which is non-singular over any 
K^<x>-field in which p is defined. (In fact the theorem 
holds for more general rings than K^<x>) .

Clearly K is a Kj^<x>-field, with homomorphism e.g. 
p(x)v~^p(C) from K^<x> to K.

ID.



Returning to u^ we note that u^ may not he defined at
a certain value (the value being the image of the point
"at infinity" under o( ). Without loss of generality we
may take that value to be the point "at infinity" itself,
for if the value is finite,-say x = d, we change

—1variables by putting y = (x - d) •
So Uyj is defined at all finite values and according 

to the theorem above we may take A to be invertible for 
any finite value of x in K, and in particular for x = C.

We want to show that A is in fact invertible in Kj^<x> 
for then u = A~^a , giving the claim. We know A is 
stably associated to Aq + xA^ , where Aq ,A^£K^ for 
some n by theorem 0.8. But A(0) is non-singular, there= 
fore so is Aq , by putting x = 0 in Aq + xA^. Multiplying

/Iout by Aq gives us A in the form A = I - xA^ without 
loss of generality since multiplication by Aq obviously 
does not affect the possible invertibility of A. By 
hypothesis I - xA^ is non-singular for any finite xGK. 
This is equivalent to saying Ix - A^ is non-singular 
for any non-zero xeK, i.e. A^ does not have a singular 
eigenvalue in any extension of K. By the conjecture A^ 
is triangularizable over k, say P A^P = T , where P has 
its entries in k. If T has a non-zero diagonal element 
t , then I - Tt” is singular, contrary to the hypo= 
thesis. So the diagonal entries of T are all zero.
Hence P~^(I - A^x)P = I - Tx and A is (conjugate to) 
a triangular matrix with 1's on the main diagonal. 
Therefore A is invertible in E^<x>. Thus u^£ E^^<x> and

2.3



by symmetry x€K^<u^>, giving the claim.

In what follows we shall consider tame automorphisms 
only. For the remainder of this chapter we shall not
impose any conditions on K or on its centre k.

Let o( be a tame automorphism as given in (2), Then

we obtain a representation by mapping Bo or

rather, by mapping oc to the set of central multiples of 
this matrix:

To see this v/e talce another automorphism 
: X»—»(Ax + B)(Cx + where A,B,C,D€K, and we

shov/ that oCyû is represented by the matrix product

Q m s ) ’

maps X to
(a(Ax + B)(Cx + + b)(c(Ax + B)(Cx + + d)“^

= ((aAx -f aB) + (bCx + bD))((cAx + cB) + (dCx + dD))~^
= ( (aA + bC)x + (aB + bD))((cA + dC)x + (cB + dD))~^

/ aA + bC aB + bD \ 
which is represented by ( I as desired.

\cA + dC cB + dD/

We also need to show the uniqueness of this 
representation, i.e. the uniqueness up to a central 
factor. To this end we note the following

Lemma 1.1. Every tame automorphism o< (as in (2) )
can be written in one of the forms

Ÿ  : X ‘— >a 'xb' + c ' , a*,b' # 0
4  : X *— >a*'(x-p)*’"^b'’ + q  , a'*,b''  ̂0
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according as c = 0 or c t 0.
Conversely any automrphism of the form f or f is tame.

Proof : If oC : x»— »(ax + b)(cx + d)“ and c = 0,
then cA is of form Ÿ with b' = d“^ , a* = a and c ' = bd~^
Conversely any f  is obviously always of form o<. with 
c = 0. If c f 0, then <A is of form Ÿ  with 
a ’' = b - ac~ d, b'‘ = c" , p = -c~ d, q = ac . We

note that a*' f 0 since is non-singular.

Conversely, given then this can be brought into the
— i —'Iform of c< by taking a = qb*'" , b = a'' - qb*' p,

c = b * ,  d = b '’~^p.

Nov/ we show the uniqueness of the representation by 
showing the uniqueness of the maps f  and i.e. by 
determining how far the constants of f  and ^  can be 
changed without altering the mappings themselves. We 
begin with Ÿ:

Let a(x - p)"^b + q = A(x - P)~^B + Q , 
where a,b,A,B t 0. Then

(b-^xa-1 - + q = (B~'’xA~'' - so

( B-'’ xA-1 -B-1PA-^. )+(b-1 xa-1 -b"'’ p a " h  Q ( B"'’ xA"'’ -B"'’ PA""̂  )
= (b-1 xa-1 -b-1pa-1 )+(b-1 xa-1 -b-^pa-^ ) Q( B"'’ xA"'' -B'^ PA"'' ).

Compare the terms of degree 2 in this ;

b-^xa-IqB-^xA-l = b"''xa"''QB"''xA-'' .

This shows that Q = q, leaving us with

B-1xA"1'- B"''PA"'' = b-^xa-1 - b~''pa-'' .
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Compare the terras of degree 1 in this :

Let =. a~^X , for some X e E. Then

a"^(x - AxjL\)b”  ̂ = 0 , 

so X = Xx|4 and hence X**̂  = jÔ Gk. Substitute this in

B~^PA-^ - b-1pa"1 = 0

for A and B, then

b-'"A P A"''a"'' - b-1pa"1 = 0

hence P = p.

Similarly one shows for Ÿ  that the constants cannot 
be changed without affecting the transformation except 
where a',b* are simultaneously replaced by a ’X , X “"̂ b' 
respectively, where X € k.

The matrix for 4̂ : xt-+a(x - p)”^b + q is therefore

a - q(bA-h“% \  _  \ /qb"
\ (b\-1)-1 - (bX-b“% /  \ b"

—'1 .-1 a - qb“ p ' 

 ̂ ~ b"1p I

and the matrix for f : x w  axb + c is similarly

aX q(bX~h"^ \ ■ \ /a qb"^
0 (bX-h"^ / ~  \0 b"'’

This shows that the representing matrix of ^  and f , 
and hence of is unique up to a central scalar 
multiple.
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Let GL2 (E) be the group of invertible 2 x 2  matrices 
over K. Let Z be the centre of GL2 (K). Z is in fact 
the group of central scalar matrices in GL2 (K)• Define 
PGL2 (X), the projective group of invertible 2 x 2  
matrices by

PGL2(K) = GL2(K)/Z .

Then we have proved

Theorem 1.2. Let Gq be the group of all automorphisms 
of Eĵ (x) over K and let G be the subset of all tame 
automorphisms. Then the bijection between G and PGL2 (X) 
is a homomorphism from the latter into Gq.
Hence G is a group.

This last result can also be found in [sj ; however 
the argument presented here seems both simpler and more 
illuminating.

Note : 1) Similarly the transformation
X*— >(xa + b)(xc + d)"^ has a matrix representation

But here if oC has matrix A and has matrix B, then 
would have representing matrix BA. The isomorphism 
between PGLgCX) and G in theorem 1.2 would become an 
antiisomorphism. We shall therefore choose to write our 
transformations as before, x having its coefficients on 
the left.

2) Strictly spealving the transformations (2) are not 
represented by one matrix, but rather by an equivalence
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class of matrices, namely those matrices differing by a 
central scalar factor, "matrix" shall therefore mean 
"class of matrices" as described.

b) Normal Forms

The object of what follows is to find out how many 
fixed points the automorphism

<X : XI— > (ax + b)(cx + d)“  ̂ (2)

has when it is of finite order.
is said to have a fixed noint (in K') if it has a 

fixed point in K ’uf'=̂ ], where K ’ is some extension field 
of K.. In other words, if Xq lies on the projective line 
of some extension K' of K, and Xq satisfies

Xq = (aXg + b)(cxQ + a) ;

then Xq is called a fixed point of (sometimes we 
shall-add; in K'). More accurately, Xq is a fixed point 
of the action of <X on the projective line of K*.

Lemma 1.3. has the same number of fixed points as 
any of its conjugates.

Proof : If o< Xq = Xq and "C c PGL^^E), then
X  o< = X X q . If %Q 4 Xyj » then T X q ^
since 77 is an automorphism.

It follows that in order to show the existence of a
fixed point for K we only need to show the existence of
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a fixed point for an appropriately chosen conjugate of
cA • We remark once more that the point "at infinity"
will also be eligible as fixed point, since we can

—1always change variables, e.g. y = x~ , to transform it 
to a finite fixed point and vice versa.

Lemma 1.4. Let be as in (2), not necessarily of 
finite order. Then has at least one fixed point (in 
some extension K' of K)•

Proof ; We may assume that c 4  0 in for otherwise 
is of form Ÿ  which has a fixed point at infinity.

I —IBut if c 4  0, then o< is of form T: x«— ►a(x - p)" b + q.
Put XxjX = X - q and X^x = xb and "C = 77^ Note
that Xyj, und therefore X  are tame automorphisms, 
hence in PGL2 (K). Then is a map of the form

'f'’: x*— >A(x - P)""̂  ,

where A = ab"^, P = b~^(q - p). But f  has a fixed
—1point Xq if and only if Xq = A(Xq - P) . Such Xq is

2known to exist since the equation x - xP - A = 0 has 
a solution in some extension K* of K by theorem 0 .1 0 .

It will be useful to fix some terminology: When we
mean the matrix (class) representing c< we shall simply 
refer to "the matrix of oc ". Conversely if Ae PGLgCK) 
is given will sometimes be called the "map of A".
When a matrix is conjugate to a triangular matrix we 
shall say it is triangularizable. Similarly when it is



conjugate to a diagonal matrix we say it is 
diagonalisable.

The next theorem will show why we can use the terms 
"fixed point" (of ) and "eigenvector" (of A, the 
matrix of c< ) interchangeably. In this theorem we do 
not need oi to be of finite order. However we shall see 
later (in theorem 1 .1 5 ) that for <K of finite order 
there will always be at least two fixed points (over a 
sufficiently large field of appropriate characteristic).

Theorem 1.5» Let be as in (2) and let AePGL 2 (K) 
be the matrix of ^ .

1. Let be an eigenvector of A, corresponding to' a

right eigenvalue. If Xg t 0, then x^Xg^ is a fixed 
point of X , and if Xg = 0 , then oC has a fixed 
point at infinity.

2. Conversely, if Xq is a finite fixed point of , and

Xy|, X2  € E are such that Xq = x^x^^, then ^^lj is an

eigenvector of A corresponding to a right eigenvalue; 

if (K has a fixed point at infinity, then is an 

eigenvector of A, corresponding to right eigenvalue
/Iaz, where z is an arbitrary non-zero element of K. 

The eigenvector obtained from a fixed point is thus 
unique up to right multiples.

3. Eigenvectors of A (with right eigenvalues) which are
linearly dependent on the left yield conjugate fixed 
points of. o<, whereas eigenvectors linearly dependent
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on the right correspond to the same fixed point. 

Proof : 1. Suppose A has right eigenvalue X, i.e

Xg X  •
Then ax^+ hXg = and cx^ + dx2  = ^2 ^ .

If X2   ̂ 0, then

(axx| + bX2 )(cx^ + dxg)"^ = (x^X )(x2 /^)"^ = x^Xg^, and
— 1  — 1  — 1(ax^ -f bx2 )(cx^ + dX2 )" = (ax^ + bXg)^^ &X2 )

1  —1  — 1= (ax^X2  + b) (0 x^X2  + d) ,

so x^X2  is a fixed point of (K as claimed. When X2  = 0, 
then c = 0  and the point at infinity is clearly a fixed 
point of
2. If Xq is finite and (axQ + b)(cxQ + d)“ = XQ, then

:  : )  ( ? )  ;  ( ? )  < “ » - >  •

But if X q  =  X^X2 ^, then x^^ and so we find

that (4) holds with A = x^^(0 x^X2  ̂+ d)x2 *

If Xq is the point.at infinity, then c = 0, so

for any z 4  0 in K.
Note that if Xq = x^x^ , then

-1z az ,
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Xq = x^ee“^X2 ^-= x^e(x2 e)~^, so Xq yields eigenvector

(x!^e) “ G , where e is an arbitrary non-zero constant

in K; in other words the eigenvector is unique up to .
right multiples.
5 . Suppose two eigenvectors (with right eigenvalues) 
are linearly dependent on the left. Then their lower 
entries are either both zero or both non-zero. If they 
are zero, then by part 2. both eigenvectors correspond 
to the fixed point at infinity. We may assume therefore

that the eigenvectors are and ^^1^, where Xg,y2  are

non-zero. We may talce x^,y^ to be non-zero similarly.

Then for some r,s 4  0 r j  + 8^1 j = 0, so

i) rxxj + sŷ  ̂ = 0 and ii) rx2  + sy2  = 0. Since Xg 4 0

we have by ii) r = . Substitute this for r in i) ;

-sygX^^^i + syyj = 0. So since s 4  0, x^^x^ = 7̂ 2
1  1  1  ■ 1  ■But then x̂ij’ x^x^ = ŷj y^y2  and hence

= 7 /1^ 2 ^. So x^xp^ and y^y^^ are

conjugate and by part 2 . this means that the fixed points
yielded by the eigenvectors are conjugate.
If two eigenvectors (with right eigenvalues) are linearly 
dependent on the right, then we may assume as before that 
their entries are all non-zero. Then for some r,s 4  0

^%ljr + = 0  and i) x^r + y^s = 0 , ii) % 2 r + yp̂I - - -   ̂ — 1- • - ^ - 0 .
2 /

As before we replace r by -X2 *̂ y2  ̂ la i) and find
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—1 —1XyjXp = 1 i*e. that the fixed points yielded by
both eigenvectors are in fact identical.

The converse of part 5 of this theorem does not in 
general hold, i.e. if are conjugate fixed points
of (X it does not follow that all the eigenvectors 
obtained from XQ,yQ are linearly dependent on the left. 
What we can say however is the following

Corollary 1.6 : x^,y^ are conjugate fixed points of

if and only if there exist two eigenvectors ^^1 j , ^^lj

for A which are linearly dependent on the left and such
1 —1 that XxjXg = Xq and y^y“ = yQ,

Proof : If yQ = cXqC~^, then we take Xq to have

eigenvector and yQ to have eigenvector ,

where e is an arbitrary non-zero constant in K. Then

c - (ce^^ ” 0  shows the linear dependence on the

left ‘of these particular eigenvectors derived from the 
fixed points.
The converse is part 5 of theorem 1.5*

We observe that if we choose different constants e in 
the vectors for Xq and yQ, then we cannot establish 
linear dependence on the left of these eigenvectors.

A noteworthy feature of part 5 of theorem 1.5 is the 
fact that linear depe^e on the right and*on the left 
are not symmetrical properties; linear dependence on the
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right of eigenvectors with right eigenvalues turns out 
to be a stronger condition than linear dependence on the 
left (though the former property does not quite imply 
the latter). The reason for this lies in the particular 
representation we chose for (X • For instance if

A = (q were to represent <x in the form

xh-»(cx + d)“ (ax + b) , then part 1  would have to be 
modified to show that an eigenvector (with right eigen=

value) of form yields a fixed point Xp'x^. Then

the argument for part 5  would malie linear dependence on 
the left the stronger property.

The following lemmas show how fixed points are used 
to achieve a normal form for c< and its matrix.

Lemma 1.7* The matrix A of is triangularizable 
(in some extension of K). Equivalently, is always
conjugate to a. map of form 'P.

Proof ; By lemma 1.4 has a fixed point, so by
theorem 1.5 A has a column eigenvector, u say,
corresponding to a right eigenvalue, z say. Then 
Au = uz. Let V be a column vector linearly independent 
of u on the right. Then for some t,y 6 E, Av = ut + vy. 
Now take P = (u v), then P is invertible and

p - h p  = (g J) .
p~^AP has map x zxy"'' + ty, I.e. a map of form r.
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Proposition 1.8, Suppose (X has two inconjugate 
fixed points. Then the matrix of c< is diagonalizable.

Proof : By lemma 1.6 <X is conjugate to a map of
form f . Since o( has two inconjugate fixed points, Ÿ  
must have a finite fixed point (the other fixed point of 
Ÿ  being at infinity). Let "P be the map y = axb + c 
and denote the finite fixed point by Xq. Then 
Xq = axQb + c. Change variables, y = y' + Xq and 
X = x' + Xq. Then y ' + Xq = a(x* + x)b + c
= ax'b + axQb + c = ax'b + Xq . Hence y ' = ax'b which

/a 0  \
has matrix I ^ •

\ 0  b ~ 7

An alternative proof runs along the lines of lemma 1.6: 
Since the fixed points of c< are inconjugate they yield 
two right linearly independent column eigenvectors for 
the matrix A of ol. These are used in place of u and v 
in the proof of lemma 1.6. P*" AP will then be diagonal.

Note that diagonalizing A amounts to transforming the 
fixed points Xq,x^ of cX to 0  and OQ respectively, and 
indeed one could also prove proposition 1 . 8  by replacing

/IX in (X by (x - Xq )(.x - x^)~ and calculating the 
resulting form of this conjugate of <X.

If we have a set of matrices of PGLgCK) whose maps 
share the same two fixed points, then the diagonalization 
procedure described above can be applied to all the 
matrices in the set simultaneously. In particular we 
have
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Corollary 1.9» Let G be a group in PGL2 (K) all 
elements of which have at least two inconjugate fixed 
points in common. Then G is conjugate to a group in 
PGL2 (K) all elements of which are diagonal.

If we were able to prove the existence of a second 
fixed point for every matrix in PGL2 (K) of finite order, 
then we would have shown that every such matrix is 
diagonalizable, just as in the commutative case. To 
this end we note that we have a normal form for 
triangular matrices:

Lemma 1.10. In PGL2 (K) any (non-unit) upper 
triangular matrix is conjugate to an upper triangular 
matrix with 1  as its (1 ,2 ) entry.
Equivalently any (non-unit) map Ÿ: x axb“  ̂ + q is 
conjugate to a map

: X axb”  ̂ + b"*̂  . (5)

Proof : Let A = (q b)’ ^here c 4 0, then A has map
/Iy = axb“ + cb~ . Change variables: y = cy', x = ex';

— 1

then y ' = c'^acx'b”  ̂ + b“  ̂which has matrix .

If c = 0, i.e. A is diagonal, choose an element p 6  K 
such that ap - pb 4 0 . This will always be possible 
unless a = b€k, which is ruled out since A is not the 
unit matrix. Put d = ap - pb. Then noting that

a /a-1 -a-ip. , we find
0 1/ \ 0 1
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0  b / \ 0  1

d ^ad 1

0

c) The Existence of the Second Fixed Point

By lemmas 1.3» 1.4, 1.7 and 1.10 we know that every
as in (2 ) is conjugate to a map of the form (5 )» 

Throughout the remainder of this chapter c(, or f  as
in (3), will be assumed of finite order. Moreover we
shall assume that the characteristic of our field K does 
not divide the order of , i.e. if = 1 , then
char K 'f n.

The following lemma describes the fact that f  is of 
finite order in terms of its constants.

Lemma 1.11. f  : x axb"'̂  + c is of finite order n
n - 1  .

if and only if a^ = b^ = X  6 k and a^cb”  ̂ = 0  .
i= 0

Proof : If Ipx = axb + c, then we claim that

f X  = a^xb-^ + ̂  a^ch-i .
If this holds, then f^x = x if and only if = b” = X e k

n-1 i
and ^  a cb = 0 . 

i= 0

We show the claim by induction on n. For n = 1 it is 
obvious. Assume the claim holds for n - 1 .  Then we have

+ g  a^cb-i .
n_ 2

But then ''(axb  ̂ + c)b ''̂ + a'cbi= 0
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= a%xb-n + a%-1 cb-(%-1 ) + g  a^cb-^
1=0

= a'̂ xb-'̂  + g  a^cb-i ,
1=0

proving the claim.

It follows that Ÿ: x>-> axb“  ̂ + b~^ will be of finite
n—1

order n if and only if a^ = b^ = A & k  and :> 1 a^b~^ = 0.
i=0

Now (5) will have a finite - the second - fixed point 
—1 —1if Xq = axQb" + b“ for some Xq , i.e. if

ax - xb = -1 • (6)

has a solution in some extension of K. Since oC is of 
finite order we know from lemma 1.13 that a^ = b^ = Aek, 
i.e. that a and b are algebraic over the centre k of K.
We recall the relevant parts of theorem 0 . 1 1  :

Consider the equation

ax - xb = c (a,b,c€K) (7 )

3. If a,b are algebraic over k, but a,b have different 
minimal equations over k, then (7) has a unique 
solution in K or any extension of K.

4. If a,b have the same minimal polynomial g over k,
then (7 ) has a solution in K (or in any extension of
K) if and only if either c = 0, or (t - cbc )(t - a)
divides g in K[tJ , where K [tj is the polynomial ring 
over K with central indeterminate t.

For our case (where c = —1) this means that if a and b
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do not have the same minimal equation over k, a unique 
second fixed point exists for (5 )*

If a and b do have the same minimal equation over k 
we distinguish two cases :

1) The minimal equation of a (and b) is not t^ - X » 
i.e. t^ - \  is reducible over k (A 6 k).

Let g = 0 be the minimal equation of a and b over k. 
Then we have the following

Lemma 1.12. Assume the characteristic of K does not 
divide n. Then (t - b)(t - a) divides g in K[tJ if and 
only if (t - b)(t - a) divides t^ - \ in K [tJ .

Proof : If (t - b)(t - a) | g, then clearly
(t - b)(t - a) I t^ - X since t^ - X  = gB for some 
hcKftJ, by definition of g.
Conversely assume (t - b)(t - a) [ t^ - \ • Since the 
characteristic of K does not divide n we know that t^ - X
must be separable. Moreover since t^ - X  is reducible
in K[t] we have t^ - X = gh, where g and h must be 
coprime. This means that there exist polynomials 
u ,V € K[t] such that gu + hv = 1 . It follows that 
g^u + ghv = g . But by definition gekftj , so

= g(t - b)g2 
= (t - b)gg2 
=(t - b)(t - a)g^g2  

for some g-̂ »gg ̂  M  * By hypothesis also •
(t - b)(t - a) I gh, therefore (t - b)(t - a) { g .
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It is interesting to observe why the condition on the 
characteristic of K is necessary in lemma 1.12 : If
char K 1 n, then t^ - \  is no longer separable, for

t* - X . (t - + t%-2 b + ... + tb" " 2  + (8 )

since t is a central variable. Put A
f(t) = t̂ "*̂  + t^”^b + ... + b^~^, then the equation
f(t) = 0 now has the solution t = b. So t - b is a
factor of f(t). Hence for some h e K [tj , ■-
t^ - /\ = (t - b)^h(t) and lemma 1 . 1 2  need no longer be
true.

With lemma 1.12 the treatment of case 1) becomes the 
same as that of case 2 ), i.e. we may assume without loss 
of generality that t^ - X  is irreducible over k.

2 ) The minimal equation of a and b is t^ - X.
Then (6 ) has a solution if and only if (t - b)(t - a)
divides t^ - \ in K[t] . But t^ - X  = (t - b)f(t) as 
in (8 ). So by the division algorithm in K[t] we know 
that

f(t) = (t - a) h(t) + f(a)

for some h£K[t] . f(a) is obtained by writing all 
coefficients of f on the right of t and then substituting 
a for t. But (6 ) was derived from (5) which is of finite

order n. By lemma 1.11 this means that a. b~ = 0 ,
i= 0

i.e. f(a) = 0. Hence f(t) = (t - a) h(t) , i.e. f(t) 
is divisible on the left by t - a . By (8 ) therefore we
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must have

t^ - A = (t - b)(t - a) h(t) (9 )

which shows that (6 ) has a solution and (5 ) has a second
fixed point.

There is also a more direct way of showing that 
(t - b)(t - a) divides t^ - A (and hence g in case 1 ) ), 
which does not use the division algorithm of K[t] and 
which gives h(t) of (9 ) explicitly : We show that

(t - b)(t - a) ( ë ( 2 2  a^b3) ) = (1 0 )
r ^  i+j=r

by evaluating the coefficients on the left hand side : 
First we note that (t - b)(t - a) = t '+ t(a + b) + ba. 
Next we observe that the coefficient of t^ on the left
hand side of (10) is 1. The term of degree n - 1 is
t^t^~^(a + b) - t(a + b)t^’’̂  which vanishes. Then we 
evaluate the absolute term :

ba Z  a^bJ = b 2 : al+1 bj + b% _
i+j=n- 2  i+j=n- 2

= b 2 :  a^bj - Xi+j=n- 1  

= - X by lemma 1 .1 1 .
n — 1

Note that a^b“^ = 3 ^  a^b^ in this.
i= 0  i+j=n- 1

Finally we find the coefficient of the general term of
degree n - r, where n - 2 >r >0. The general term is

^2 tn-r- 2  ^  a^b^ - t(a+b)t’̂“^^“*̂ ^  * â b̂ *
i+j=r i+j=r- 1

+ bat%-(r-2 ) - 2  ^  a^bj .
i+ ^ - 2
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Thus the general coefficient of t^ ^ is

2 ] - a 2 ] - b a^b^ + ba a^b^
i+d=r i+j=r- 1  i+j=r- 1  i+j=r- 2

which is easily seen to be identically zero. Thus we
have proved

Theorem 1.13» Let be an element of PGL2 (K) of 
finite order n and assume that the characteristic of K 
does not divide n. Then C< has at least tv/o inconjugate 
fixed points in some extension of K.

The only remaining questions are now, when does o< 
have more than two fixed points, and how many fixed 
points can oC have? To answer this we need the following

Definition : Let A€PGL 2 (K) be such that A 4  I.
We call A a quasiconjugation if it is conjugate to a 
scalar matrix.

The reason for this name becomes clearer when we
consider the map of a quasiconjugation.. It will be

—1conjugate to a map of the form x » axa which itself 
acts as conjugation on . We shall also call the
map of A a quasiconjugation.

Thus we come to the main result of this chapter.

Theorem 1.14. Let be a tame automorphism of K^(x) 
over K of finite order n and assume the characteristic 
of K does not divide n.
1. If (X is not a quasiconjugation, then cK has
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precisely tv/o fixed points in some extension of K 
and these will not be conjugate.

2. If # is a quasiconjugation, then has infinitely 
many fixed points in some extension of K, amongst 
which there are at least two inconjugate fixed 
points.

Proof : By theorem 1.1$ every tame automorphism
of finite order has at least two inconjugate fixed 
points. We claim o< has more than these tv/o fixed 
points if and only if it is a quasiconjugation :
If o( is a quasiconjugation, then by lemma 1.$ o( has as 
many fixed points as the scalar matrix sl of which X. is 
a conjugate ( s 6  K- - k). . But si has map x sxs~ , so
the fixed points are precisely those contained in the\
centraliser of s in E v , C(s) v . But C(s) is known 
to be infinite by theorem 0.1$ (and when char E = 0 this 
is obvious anyway), showing one half of our claim.
Since C(s) contains at least three inconjugate elements, 
i.e. 0 ,1 ,s, this also proves part 2  of the theorem. 
Conversely suppose c< has other fixed points besides the 
tv/o inconjugate ones cK is known to have by theorem 1 .1 $ 
We transform these inconjugate fixed points to 0 and oo 
to bring into the form ex' : x a x b ~  by proposition 
1.8. Since c< has more than two fixed points so does 
by lemma 1.$. A third fixed point for ex' will have to 
be non-zero and finite. Denote this fixed point by p, 
then p = apb"^ , or pbp""̂  = a. So the third fixed point
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exists if and only if a and b are conjugate. To see
that (X' is in fact a quasiconjugation, change variables 

— 1in y = axp“ ap : y = y'p and x = x'p. Then y'p =
—1 —1ax'pp ap and hence y' = ax'a~ . This proves the claim

and the theorem.

We note finally that the extension of K referred to in 
theorems 1.1$ and 1.14 is in fact the skew field K* of 
lemma 1.4. In other words, given an extension K' of K 
in which we can find the first fixed point of o( , then 
we can find the second fixed point in that same K' (as= 
suming of course that K and K' have the right 
characteristic).

If if



2. FINITE SUBGROUPS OF FGLnCK)

Introduction

Whereas the previous chapter dealt with elements of 
PGLgC^) of finite order, in this chapter we shall be 
concerned with finite subgroups of PGLgCK). Ideally one 
would aim at a complete classification of these groups 
(as has been done for the complex numbers). But the 
problems arising appear to be very considerable and only 
a few results will be given - in section a) - for the 
general finite groups. A complete classification is 
attempted of those finite groups which do not contain 
any quasiconjugations, although even here we meet only 
with partial success. The classification is complete 
only when the centre k of K satisfies certain closure 
conditions, for instance algebraic closure. Here the 
classification uses a similar method as in the well

.. ■>
known case of the complex numbers (section c) ).
Section b) deals with the main obstacle to the classifi= 
cation over a field K with general centre k : finite
groups of diagonal (non-scalar) matrices in PGL2 (K).

Throughout we shall assume that the characteristic 
of the skew field K does not divide the order of the 
group in question. K will be assumed large enough to 
contain the two fixed points of any non-quasiconjugation 
of finite order that occurs in bur discussion.

a.



a) Groups with Quasiconjugations

Although, a quasiconjugation is defined to be a 
matrix (class) conjugate to a scalar matrix (class), 
it does not follow that a diagonal quasiconjugation is a 
scalar matrix.

Lemma 2.1. Let A € LGL2 CE) he diagonal. Then A has 
conjugate diagonal entries if and only if A is a quasi= 
conjugation.

Proof : Suppose the diagonal entries of A are

(a 0 \
conjugate, i.e. A = I . . Then

\ 0  c~ acy
h  O U a  0 W 1 0 \

A = I .11 11 I , so A is a quasiconjugation.
\ 0  C^VVO a / \ 0  0 /

Conversely suppose A is a diagonal quasiconjugation.
Then for some invertible B€PGL 2 (K), B"^AB is a scalar

/b o\ A
matrix al. Put A = I ) , B = ( , |, then

\ 0  c/ ^

b o\ U  (3,1
.0 o j U  U  s

a 0

VO a

Since B is invertible not both oC and ji can be zero.
Say ^ 4  0, then b = oCacx”" . Similarly we may assume 
S 4 0, in which case c = 5"a (f \  But then 
b = c = (<f"̂ oC )’"^c( ), i.e. b and c are
conjugate.
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Let Q be the»set of quasiconjugations of a group in 
PGLgCx) (not necessarily finite) and let S be the fixed 
point set of the elements of G - Q (i.e. of the non- 
quasiconjugations). Then we have a group action of G on 
the set S. To see this we note

Lemma 2.2. Let G be a subgroup of PGL2 (K) and let Q
be the set of quasiconjugations in G. Then the group
generated by the elements of Q is a normal subgroup of G.

Proof ; By lemma 1.3 Q is a normal subset of G, so 
that the subgroup generated by Q must necessarily be 
normal.

Let x€S, then there is an element h€ G - Q such that
h(x) = X. Then for any g € G, g(x) is a fixed point of

»» i — ighg“ , and by lemma 2.2 ghg“ s G - Q. Hence for any g c G
g(x)€ S, i.e. G acts on S.

This simple fact has a number of consequences :

Example ; Call an element of PGLg(E) antidiagonal if
it has zeros on the main diagonal (the entries off the 
main diagonal are then necessarily non-zero).

If the non-quasiconjugations of a group G in PGL2 (E) 
are diagonal, then the quasiconjugations of G are either 
diagonal or antidiagonal.

Proof ; Let S and Q be as before. Since the elements 
of G - Q are all diagonal, S consists of just two points,
i.e. 0 and oo. let g € G  - Q, Xg 6  5, scQ. Then g(xp)=XQ
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«. iand sgs e G - Q has fixed point s (x q ). So the fixed 
—1points of sgs~ must be s(0) and s(oo). But since G acts 

on S we must have either s(0) = oo or s(0) = 0. Write

s = (px + q)(rx + t)“\  then s has matrix , Now if

s(0) = 0, then clearly also s(oo) =oo. It follows that 
q = r = 0, i.e. that s is diagonal. On the other hand if 
s(0 ) = oo, then s(oo) = Q and then p = t = 0  which means 
that 8  is antidiagonal.

Note that any group whose non-quasiconjugations share 
the same two fixed points can be transformed into a group 
of the above form.

In the non-commutative case it is conceivable that 
there is only one G - orbit to the action of G on S, i.e. 
that the action is transitive. If G is also finite, then 
we have

Proposition 2,3. let G be a finite subgroup of PGIgfE) 
and let Q be the set of quasiconjugations in G. Let S be 
the set of fixed points of the elements of G - Q. If the 
action of G on S is transitive, then G is generated by 
its quasiconjugations.

Proof : If there is only one orbit in the action of G
on S, then by the orbit formula

|G| = 9(g) ,
where 0(g) is the 'number of fixed points of g 6  G in S. 
Every element outside Q fixes two points, so there must
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be at least as jnany elements inside Q fixing none. 
Moreover the unit matrix fixes all points of S, so if we

put q = [s] then there must be - more elements in Q not
2

fixing any points. Hence 1q[>Ig(-(q1. It follows that 
< Q  > = G .

Unfortunately the converse of this proposition does 
not hold :

•2 PLet u) e K - k be such that = 1 . Then u) and cj 
2both have t + t + 1 = 0  as their minimal equation over 

k and hence must be conjugate. By lemma 2.1 therefore 
^ w 0

9  , is a quasiconjugation. And now we have 
0  tr

the right hand side of which is clearly not a quasicon= 
gation. If we consider the group generated by

CJ 6 \ fu> 0\
g I and I ) , then G contains non-quasiconju=0 ur/ \0 CJ/

gâtions and G is generated by quasiconjugations. Since G 
consists of diagonal matrices the fixed-point-set of 
G - Q is S = { 0 ,oo} and there are two orbits of one point 
each.

Note also that the generators of this (abelian) group 

are by no means unique. For instance w)

alternative pair of gener#ators, one of which is no

43



longer a quasiconjugation.
(1 ) also illustrates the fact that the product of two 

quasiconjugations is not necessarily again a quasiconju= 
gation. It is therefore a fairly strong condition if we 
assume that the quasiconjugations of a group G- form a 
subgroup. In this context we can say a little more :

Proposition 2.4» Let K be a skew field with centre k 
and let a be non-zero element of K. Let G be a finite 
subgroup of PGLgCk)^" Then the following statements are 
equivalent :
a) al 6 G shares its fixed points with all its conjugates 

in G.
b) The cyclic group N generated by alC G is normal in G.
c) If Xq€ C(a), the centraliser of a including oo , then 

the G-orbit of Xq is a subset of C(a).

Proof : Put A = al.
b)=»c) : Let Xq be a fixed point of A. Then for any

—1B€G, BXq is a fixed point namely of BAB" . Since N is
generated by A and N is normal in G, we must have

—1 —1BAB" € N. But A»— >BAB" is an automorphism of the cyclic
group N. So BAB"^ = A^ and both A and A^ generate N.
But since BXq is a fixed point of A^, it must be a fixed
point of A, for any B € G.
c)=^a) ; Assume ABXq = BXq for all Be G whenever Axq = Xq . 
Then B"^ABxq = Xq whenever Axq = Xq .
a)=>b) ; We are given that B ^ABXg = Xq for all B € G
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whenever AXq = Xq , Since 0 and oo are in the fixed- 
point-set of A, B"^AB must he a diagonal matrix, C say. 
Since 1 is also in the fixed-point-set of A, the diagonal 
entries of C must he equal, say C = B“^AB = cl, where 
c € K depends on B. Moreover a and c are conjugate in K,

for if B = h / • then some h^ is non-zero, say h^+0,

( s  V ' 'Then 1 '

implies that h^^ah^ = c. We form the subgroup N of G 
which is generated by all conjugates of A under G, i.e.

N = <B"^AB 1 B CG>.

This group is clearly normal in G. Furthermore since its 
elements are scalar matrices (modulo central multiples),
N is isomorphic to a finite subgroup N* of i.e. of
the multipilcative group of K modulo that of k. All the 
elements of N* are conjugate in E*/k*. Hence

NS' N* = ^p~^apî I F"^aF = p"^ap f I for some P€ G, f 6  k ^

We note that aeN*. By hypothesis the elements of H* are 
fixed points of A, hence every element of N* is a fixed 
point of every element of H. It follows that N is abelian. 
But then so is N*. How any finite abelian subgroup of K 
is contained in a commutative subfield of K. It must 
therefore be cyclic, and so must its homomorphic image in 
E*/k*. So N* and hence N is cyclic.
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It may be worth observing that when the quasiconjuga= 
tions of G do form a cyclic subgroup N, then G acts on 
several sets :

Note first that by lemma 2.1 N is normal in G, so con= 
dition c) of proposition 2.4 holds. Let S be the fixed- 
point-set of elements of G - N (we assume here that G 4= N 
so that S is non-empty). There is no loss of generality
in assuming the fixed-point-set to be C(a), where al 
generates N, Put = S A C(a) and Sg = S - S^.

If S-j is non-empty, then G acts on : For if Xq € ,
then for some A € G, Axq = Xq . But if we choose A to be 
the generator of N, i.e. A = al, then by proposition 2.4, 
part c), Bxq is also a fixed point of A for any B€G.

Similarly we have a group action on Sg. Note that the 
elements of G - N fix one or two points in (and Sg).

The following result illustrates that to some extent 
questions about quasiconjugations in PGL2 (K) can be 
reduced to problems in E*/k*:

Proposition 2.5. Let G be a finite group in PGL2 (K) 
suppose ale G for some acK.
Let M - (P e G jp"^aP = a^ &^I for some r and some e k} 
be the normaliser of al in G.
Let C = {pe G I P~^aP = a&gl some 
be the centraliser of al in G,
Let = {xeK* I x“^ax = a^&^ some r such that

there is P 6 G with P"^aP = a^^^l}
Let = {x€E*l xa = ax for some f^ek]  . Then



^ / c  =

Proof ; First we note that C is obviously normal in M
and C is normal in . Let P. ,P_€G be such that a a 1 c
P^^aP^ = a^ (i = 1,2) for some r and f k. Then 
aP̂ jP̂  ̂ = aP^P“"*<T , so P^Pg^E 0  and P^,P2  belong to the
same (left) coset in M/C, Similarly 0 if
xT^^aXf = a^&^ (i = 1 ,2 ) and then x̂  and X 2  belong to the
same (left) coset in K / Q  . Given P€M, we obtain xcM^cl & 9,
by taking a non-zero entry of P. We define the isomorphism 
of the proposition by mapping those cosets to each other 
whose elements conjugate a (or al) to the same power of 
al (or a).

Several things remain to be remarked in connection 
with proposition 2 . 5  :

1. If a has order m, and r is as in M or M^, then r 
and m are coprime. If in the definition of there is 
P G G  such that P”^aP = a^Sl for every r < m  subject to
coprimality, then is the normalizer of a in K .

2. If < al > is a normal subgroup of G, then M = G.
5. C = GnPGL 2 (Ĉ -) since al is a scalar matrix.
4. Although the finite subgroups of K* are known (cf. 

[1]), the same cannot be said for finite subgroups of 
K*/k^ and there seems to be no easy way of deriving them. 
However when E = IH, the real quaternions, then the finite 
subgroups of IH*"/ 1^ turn out to be the cyclic, dihedral, 
tetrahedral, octahedral and icosahedral groups.
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This concludes what we have to say on groups which 
contain quasiconjugations.

h) Cyclic Diagonal Groups without Quasiconjugations

The remainder of chapter 2 will he devoted to finite 
groups of PGLgfE) which contain no quasiconjugations and 
from here onwards the expression "finite ^roup of PGl^fE)" 
will always he short for "finite ^roup of PGLgfE) without 
quasiconjugations".

Obviously to obtain a complete classification of 
finite subgroups of PGL^Ck ) (without quasiconjugations), 
we need to know what kinds of diagonal such groups there 
are. In the commutative-case this problem is trivial :
All diagonal groups are cyclic since multiolicative 
subgroups of commutative fields are cyclic. In the 
general case it turns out that - somewhat surprisingly 
perhaps - finite diagonal subgroups are the main obstacle 
to a complete classification. Indeed we shall only deal 
here with cyclic diagonal groups.

Let G be a finite diagonal subgroup of PGL2 (K) of 
order n. Since G contains no quasiconjugations we know 
by lemma 2.1 that the elements of G must have inconjugate 
diagonal entries. We shall write the elements of G in 
the form '(a,b), where a is the top left-hand entry and b 
the bottom right hand entry. We note that given such an 
element of G, a and b are not unique, a and b are unique
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only up to a common central multiple. Put

H = { b e K  I râTFJcGj

and define an equivalence relation on H :

~ A for some A e k  .

Let G2  be a set of representatives of the set of equiva=
lence classes, i.e. let G2  be a transversal for the 
equivalence classes. Define

Gyj = {aGK I there exists b € G 2  such that (a,b)'£ Gj

When K is commutative (i.e. K = k), then we can take 
^ 2  “ in. which case G^ is a (necessarily cyclic)
subgroup of k^. In particular this illustrates that G^
will not in general be a transversal.

V/hat follows will be concerned with finding an 
appropriate choice of G 2 , and hence of G^.

Prom its equivalence class we shall pick 1 to be in 
6 2 # It follows from the definition that then also 1 G Ĝj 
Since G is finite we can choose G2  to be finite and

— ? r-

hence also G^. If A  € k, then (a,bA) = (a A ,b), so 
w.é may stipulate that G2  contains no central multiples. 
Next suppose G2  is a subgroup of K and let a,c G Gxj. 
Then there are b,dcG 2  such that (a,b) , (c,d) c G. Hence 
(a7b)(c73^) = (ac ,bd) and by assumption bd G G2 . So 
ac CG/| and it follows easily that G^ is also a group. 
Summing up,
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Lemma 2.6. ^Let G be a finite diagonal 'group of 
PGLgCK). Let and G2  be as defined above. Then we 
can choose G^ and G2  such that
1  ) 1  € G^ and 1  e G2  ,
2 ) G2  contains no central multiples ,
5) Gyj and & 2  are finite.
In this case if G2  is a group, so is G^.

Essentially G^ and G2  are just the 1-1 and 2-2 entries 
respectively of elements of G.

Given (a,b)G G of order m, both a and b satisfy the
equation t^ - X = 0  for some Xck. Since a,b are
inconjugate, t^ - \ must be reducible.

At this stage we recall the following well knov/n 
result ;

Theorem X • Let P be any field, p a prime number and 
consider the equation

= c ' (ceP) (1 )

Either (1) has a linear factor or (1) is irreducible 
over P, according as c is or is not a p-th power in P.

This gives us the important

Corollary 2.7. If G is a finite diagonal group in 
PGL2 (K) of prime order p (without quasiconjugations), 
then (G is cyclic and) the elements of G^ and G2  can be 
taken to be roots of 1 .
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Proof : As .shown before, if (aTH) is the generator
of G with a € Gyj and b € G2 , then a,b satisfy t^ - \ = 0 
for some A c k .  Hence t^ - X is reducible and by 
theorem X has a linear factor. This means X has a p-th
root ^  in k. So instead of choosing a^G^, b CG 2  we

—1 —1take a ̂  € Ĝj and b ̂  " € G2  and these will satisfy
- 1 = 0. The representatives of the other elements

— 1  — 1will be powers of a and b ̂ " respectively which 
satisfy the corollary.

Clearly G^ and G2  are cyclic subgroups of E* and if 
(ajb) generates G, then a generates G^ and b generates ■ 
6 2 ' Now if b = 1, then G ̂  G^, i.e. G is isomorphic to 
a finite, cyclic subgroup of E^. If b * 1 but aek, then 
there is no loss of generality in assuming a = 1  since

(a,b) = (1 ,ba“ ). So we may assume that a ̂  k and b f 1, 
Now a,b satisfy t^ - 1 = 0. Since a,b + 1, a,b satisfy

p-^ -i .f(t) = t^ = 0

i= 0

But a,b are not conjugate, so f(t) must be reducible 
over k and a,b have different minimal equations over k. 
Let the minimal equation of a be g(t) and assume deg g = 
m. Then g will have at most m roots in k(a) since k(a) 
is a commutative field. In particular g will have at 
most m solutions in G^ = since G^Ck(a). But g is
a factor of f, so g must have exactly m roots in G^ 
since otherwise fg"^ would be a polynomial of degree 
p _ M 1  with more than p - m - 1  roots in G^.
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Clearly the elements of satisfy the same minimal 
equations as the elements of G^ (but a^ and b^ have 
distinct minimal equations for i = So a is
conjugate to some b^G G2  (i.e. a must have the same 
minimal equation as some b G.G2 ), say b = c" ac. Since

h  o\ /1 0 \ .
we may take I G I ^ ) instead of G and b\o cj \o c - y
generates G2  for any i = 1 ,...,p-1 , we find that 
G/| = G2  = <^a^. Thus we have proved

Proposition 2.8. Let G be a finite diagonal subgroup 
of prime order p in PGL2 (K) (without quasiconjugations). 
Then precisely one of the following three possibilities 
will hold :
We can choose Ĝj and G2  such that
^ i  ^ 2  = Cp , or
2 ) Gŷ = Cp , G2  = {.1 } ? or
3 ) = Gg = Cp ^

where C^ is a cyclic group in K* of order p.

Cases 1) and 2) in proposition 2.8 are quite trivial
case(just as the commutative^ where 5 ) does not occur) and 

we shall not consider these any further. So when G is
of prime order, we shall assume that the elements of G

are of form (a^,a^); in particular the generator of G

can be taken to be of form (a,a^), where asK* and 
j = 2 ,•..,p—1 •

- What follows now is an investigation into what a^ are



eligible to be paired with a. In other words, given the 
prime order p of G, we ask for which j are a and a^ not 
conjugate. This is equivalent to determining the 
conjugacy class 0 ^̂ of a (under the action of K’̂) in the 
cyclic group < a >  (generated by a) for any given prime 
(order) p (of a).

This investigation will be justified by

Lemma 2.9. Let G be any diagonal group of prime 
order p in PGL2 (K). Then G contains no quasiconjugations 
if and only if its generator is not a quasiconjugation.

Proof : Note that this statement makes sense since G,
being of prime order, is necessarily cyclic. If G is

generated by (a,a^), then the general element of G is

(a,a^)^ = (a^,aJ^) for i = 1,...,p-1. Now if (a^,a^^)
i i “ 1  iis a quasiconjugation for some i, then a^ = c“ a c. 

Let i' be such that a^^ = a. Then a^.= a^^^

= (c"^a^c)^' = c“^a^^'c = c"^ac. So (a,a^) must be a 
quasiconjugation and the lemma follows.

We shall now attempt to determine the conjugacy class 
of a when a has prime order p. In fact we shall reduce 
the determination to a problem about primitive roots 
mod p.

Lemma 2.10. Let a c K  be of prime order p and denote 
by the conjugacy class of a in <  a > under the action 
of K’*’. Then there is an integer s, 0 < s < p ,  such that



~ a ZL = 0 , # * # ,r— 1  , 

where r is the order of 0 ^̂.

In fact = c"^ac^ for some c€K* and i = 0,.,.,r-1.

Proof ; Let = {a  ̂| j = 0,1,...,r-1; 1^=1] . We

note first that if a  ̂,a then a  ̂ Put
E = |i^(mod p) I j = 0,...,r-l] . Then 1 (mod p) 6 . E since 
1q = 1, and E is closed under multiplication; being 
finite, E must be a (finite) subgroup of (2̂ /p)’* = Cp_^.
Hence E is cyclic, with generator i '(mod p). Pick any
element s s î  (mod p) such that 0 < s < p ,  then s will 
satisfy the lemma.
We prove the last part of the lemma by.induction ;
Since a and a^ are conjugate by assumption there is c c K’̂

such that c"^ac = a®. Assume now a^\ = c“^^“^^ac^“^ •

Then a^' = (c"^ac)^ = c"^a^ c = c"^ac^ by induction
hypothesis.

Proposition 2.11. Let a.»p?Cĝ  be as in lemma 2.10.
Then

Kl ■=

for any j = 1 ,...,p-1 , where |c^j denotes the order of

^a-

Proof : By lemma 2.10,

0 ^ = {c~^ac^ I i = 0 ,1 ,...,r-lj ,
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where r = |c^|,and c"^ac^ = a® . So the conjugacy class 
0   ̂ of in < a > contains the set

Q = (c"^ac^ I i = 0 ,...,r- 1  j .
a^

We claim Q contains r distinct elements : Suppose it
0 ***̂ 0 ^does not. Then without loss of generality a = c a c

0 0 A Ü *1 q ®for some ig< r. So a = (c ac ) = , hence
io • i-j _ /; ̂ This holds if and only if js ^ ^j(mod p).

Since p is prime and 0 < j < p  this is equivalent to
±Qs s  1(mod p). But by definition r is the smallest 

integer satisfying s ^ s  1 (mod p), contrary to our 
assumption that i^c r. This proves the claim.
So C . contains at least r distinct elements. Suppose

a
C . ■ contains more than r elements for some Jq , i.e. 
a • ^

I I v QC . = r' >r. Since p is a prime, a also
aJ*|

generates <^a>. It follows by the same argument as 
before that contains at least r' distinct elements, 
a contradiction. Hence the proposition.

Corollary 2.12. If a has minimal equation of degree 
r, then for i = 1 ,...,p-1 ^a^ has minimal equation of 
degree r.

Proof : We know from the remarks preceding propos=
ition 2 . 8  that the degree of the minimal equation of a 
is equal to the order of its conjugacy class in < a > .



The same must obviously hold for every element in < a >  
(other than 1 ) since p is a prime and every element of 
< a >  is a generator. By proposition 2.11 the orders of 
the conjugacy classes of < a >  are all equal and the 
corollary follows.

The next result is well kno\m in elementary number 
theory but follows independently from proposition 2 . 1 1  

(cf. theorem 8 8  ̂ p.?1 ).

Corollary 2.13» If r is the order of the conjugacy 
classes in a ̂  and a is of prime order p, then r 
divides p-1 ,

Proof : We know that [<^a -1} is divided into t
conjugacy classes say, each class containing r elements. 
Hence tr = p - 1 .

A direct consequence of this is

Corollary 2.14. If a is of prime order p and r is 
the order of the conjugacy classes in <  a> , then there 
are inconjugate (diagonal) groups G of order p in
PGL2 (K) such that Gŷ = G2  = ^  a ̂ .

Proof : Suppose G is generated by (a,a^) and a^ and
a^ are conjugate for some j  ̂ i. Then for some c€K*^,

c-h^c = so r  I )  (  J  I  J  = L  J  I •

group generated by (a,a^) is conjugate to G.
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On the other hapd if a,a^,a^ are pairwise inconjugate in

K but (a,a^) and (a,a^) are conjugate in PGLgCK), then

there are u,v,x,y€K such that is invertible and
0 | _ %  0 W „  V

^ 0  a y \ 0  B?J \x y,
1  i "1But then va = av, so v = 0, and ya = a^y, so y = 0.

This contradicts the invertibility of Q  . So (a,a^)

and (a,a^) must be inconjugate in PGBgC^).
Thus we have shorn that for every conjugacy class in <a)> 
there is precisely one conjugacy class of diagonal groups 
G in PGBgC^) such that By corollary 2,14

■D- 1there are conjugacy classes in <Ca)> , hence
corollary 2.14 follows.

At this stage our problem is best described in 
number-theoretic terms and we shall therefore recall 
some definitions from fd*} (p.yi, §6 .8 ) ;

Let a,m be integers. Then the smallest positive 
value of X for which a^ H i  (mod m) is called the order 
of a(mod m). Denote this order by d, then v/e say that a 
belongs to d(mod m). We note that d ( Y (m), where Y  is 
Euler^s function. If d = Y (m), then we say that a is a 
primitive root of m.

It is clear then that in lemma 2.10 r is the order of 
s(mod p) or equivalently that s belongs to r^od p), and 
that if r = p - 1  , then s will be a primitive root of p. 

So the question now is : Given that the conjugacy
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class of a in a)> contains r elements, which

integers s are such that C = {a^ | i = 0 ,1 ,...,r-l] ?
Or in number-theoretic terms : Given a factor r of p-1,
which integers s belong to r(mod p) ?

If we knew what these integers s were (for any given
prime p), then we could check that a^ is not of form
i s^ ---T= a , so that (a,a^) is not a quasiconjugation,
A complete answer to this problem is not known, so we 

shall quote one or two familiar results and give an 
example as illustration.

Theorem ([s’] , p.85, thm.109):

H  1 (mod p) (5 )

has r solutions for s.

. This does not in fact offer new insights. Applied in 
our context it just says that if a^£ and r = |C^],

then a = a.

Theorem ([sr], p.85, thm.110): Of the r integers
satisfying (5 ) for s, f  (r) belong to r(mod p) (where f  
is Euler's function). . ~

So although we do not know what these s are (for any 
given p and r), at least we know how many there are. 
However a special case is resolved by
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Lemma 2.13» Let p be an odd prime. Then s = p - 1

if and only if 2 is the order of s(rnod p). (Or in our
context : . s = p- 1  iff |G^| = 2  )

Proof : If s = p - 1 , then s^ = (p-1)^\ and either
(p-l)^'s 1  (mod p) - when i is even - or else 
( p - 1 ^  p-1(mod p) - when i is odd. So only p-1 
belongs to 2 (mod p), v/hich means p- 1  has order 2 . 
Conversely assume s(mod p) has order 2, i.e.
8  •=: 1(mod p). Then (s+1)(s-1) s  O(mod p) and either 
p I s+1 or p I 8-1. But since s <p, only p | s+1 can hold, 
v/ith s = p - 1 .

Generally the - unsolved - problem is to find those 
integers s < p  which satisfy s^"^+ s^"^+...+ 1  5  O(mod p) 
for a given odd prime p and integer r such that r | p-1 •

Note that we can leave the case p = 2 out of our 
considerations since p is just the order of the group G 
and a diagonal group of order 2  cannot fall into the 
third category of proposition 2 .8 , the only one under, 
discussion here.

Example : Let G be a (cyclic) diagonal group of
order 15 without quasiconjugations in PGL2 (K). Assume 
G is of type 5) iu proposition 2.8, i.e. assume
Gyj = G 2  = <  a >, where a e K satisfies a^^ = 1 .

2
1 ) 8 = 2  : Then a is conjugate to a and hence to all

elements of <  a >  since 2  is a primitive root of 1 5 .
Similarly 6,7,11 are primitive roots of 15 (and note
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Y  (12) = 4 ). feo for G to have no quasiconjugations, 
a must not be conjugate to a^,a^,a^, or a^^.

2) 8  = 5 : Then a is conjugate to a^ and to a^ and no
other elements in < a > .  So = {a,a^,a^j (=C %=C q )

I I  a a^and jC^I = 5 , i.e. 5 and 9  belong to 5 (mod 1 5 ).
5) s = 4 : Then = {a,a^,a^,a^^,a^,a^^}, so | | = 6

and we find that 4 and 10 belong to 6 (rcod 15).
4) s = 5 Î Then = {a,a^,a^^,a^j and 5 and 8  belong

to 4(mod 15).
5) s = 12 ; Then = [a,a^^ ] and 12 belongs to 

2 (mod 1 5 ), as promised by lemma 2 .1 5 .

This concludes what we have to say about groups of 
prime order (without quasiconjugations) in PGL2 (K).
Turning to general cyclic (diagonal) groups we find that 
the entries need no longer be roots of unity in K and in 
particular that Gyj and G2  are not necessarily subgroups 
of K*.

If we make the assumption that the diagonal entries 
of the (diagonal) group G are roots of 1, i.e. that Gŷ 
and G 2  consist of roots of 1 , then,we can show that if 
such a group is abelian it must in fact be cyclic.
First we need

Lemma 2.16. Let G be a cyclic (diagonal) subgroup of
PGLo(K) (without quasiconjugations) of order p^, where p

r r
is a prime. If (a%b) is the generator of G and a^ = b^ =1, 
then one of G, and G^ is a cyclic subgroup of K* of order



3?p and the other is conjugate to a (possibly trivial) 
subgroup of the former.

Proof : Clearly if G is generated by (a%"5), then
either a^ = 1 or b^ = 1 for all j<p^. Assume then that
Gŷ = <  a )> is of order p^. The remainder of this lemma
is proved in a way similar to that of proposition 2 . 8

and v;e shall only sketch the proof :
r

a,b satisfy t^ - 1 = 0  and by assumption a is of order 
p^. If b = 1 there is nothing to prove, so we assume 
b j: 1. Then a,b satisfy

if(t) = > 7  t^ = 0  .

But a,b are not conjugate, so f(t) must be reducible.
Let g be the minimal equation of a, and put deg g = s. 
Then g(t) = 0 will have exactly s solutions in Gyj = <a>. 
Now the elements of G2  = <^b satisfy minimal equations 
which are also satisfied-by some elements of Gyj. So in 
particular b satisfies the same minimal equation as a® 
for some e > 1 , i.e. b is conjugate to some a^GGyj which 
is what we v;anted to show.

We note that lemma 2.16 is a generalization of propos=
ition 2 .8 .

Theorem 2.17. Let G be an abelian diagonal group of 
order m, without quasiconjugations, in PGL2 (K). If Gŷ 
and G2  (can be taken to) consist of roots of 1, then G
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is cyclic.

Proof : Let m = p̂j ... p^ , v/here the p̂  ̂are distinct
o<

primes. For every prime power p̂  ̂ there will be
o(.

precisely one subgroup of G of order p̂  ̂ , necessarily 
cyclic. By assumption the (diagonal) entries of 
elements of are roots of 1  which commute with each 
other. So and .(Hĵ ) 2  can be taken to be finite
cyclic subgroups of K^. By lemma 2.16 one of (Hĵ )yj and

^i(H.)o ia of order p. and the other has order dividing

Pĵ  . Let (Eĵ ) 2  be generated by a^. Then a^ = 1 for

some ^ ^  Put Pĵ  = q^. We. claim that G2  is a
group generated by TTa^ : Firstly we note that the
elements of & 2  commute since G is abelian. Secondly if 
a E G2 , then we may take a ^ G G 2  for all j less than the 
order of a. Thus we need to find a of the sane order 
as G2 « But clearly

IG2 I =TT((Hi)| =-g-qi

and so we are reduced to showing that TTa. has order 
TTq^. Put n = TTqj_ ana

Hi 'If a has order n, then â  ̂= a . To prove the converse 
(and hence the claim) we have to show that 2 1 ^^ is 
coprime to n, i.e. our problem is to show that

and q̂yj...Qĵ _.-,qj__̂ _y,...q̂  are coprime :

fr
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Suppose they are not coprime. Then they must share a

prime factor, p̂j say. Now also
i= 2

has factor p̂ ,̂ so

1 =  I 1,-cL

r

must have a factor p̂ j, contradicting our assumption that 
the Pĵ  are distinct. This proves the claim.
Clearly now n [ m and similarly (using lemma 2.6) we show 
that Gyj is a cyclic group (of order dividing m). But if 
both Gŷ  and G2  are cyclic, then G must be cyclic.

Corollary 2.18. Let G be a cyclic group of order m 
in PGL2 (E) (diagonal and without quasiconjugations).
Then if Gyj and G2  are subgroups of of orders myj ,m2  

respectively, m is the lowest common multiple of myj and

“2 - '

Proof : We have already shown that if m^ = | Ĝ ĵ for
i = 1,2, then m^ | m. If (a",b) is the generator of G,

"tj *t* \ * Iand (a ,b ) = I for some t, then m | t. Hence the 
corollary.

The main application of theorem 2.17 is
. . . I

Corollary 2.19. Let G be an abelian diagonal group 
of squarefree order m in PGL2 (K) (without quasiconjuga= ['

I
fI
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tions). Then G is cyclic and if (a,b) is the generator 
of G, then a^ = = 1.

Proof : All we have to show is that the hypothesis 
of theorem 2 . 1 7  is satisfied, i.e. that Gyj and Gg (can 
be talcen to) consist of roots of 1. Let m = TTp^ be a 
decomposition of m into distinct primes. Then for every 
p^ there will be precisely one subgroup of G of order
p^. Hence any two of these subgroups intersect trivially 
So we can apply proposition 2.8 and talce the (non-zero) 
entries of their generators to be roots of 1. This 
proves the corollary.

Turning to general cyclic groups, let be a cyclic 
diagonal group of order n (without quasiconjugations) 
in PGL2 (K). If (a,b) is the generator of C^, then a,b 
satisfy t^ - X  = 0  for some X  ek. Let p be a prime

dividing n and put q = g . Then (a,b)^ = (a^,b^) 
generates a cyclic subgroup of order p in C^. a^ and 
b^ both satisfy t^ - X  = 0 . Since a^ and b^ are incon= 
jugate this must be reducible, so by theorem X, X has 
a p-th root in k. This gives us

Proposition 2.20. Let 0^ be a cyclic group of order 
n (v/ithout quasiconjugations) in PGL2 (K), with generator 
(a,lb). Then a,b satisfy an equation t^ - X = 0  for 
some X  € k such that X  has a p-th root in k for every 
prime p dividing n.
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Example ; Let G be a diagonal group of order 4 
(without quasiconjugations) in PGL2 (K). Then G is 
cyclic : For otherwise every element (a,b)€ G (except
I) would be of order 2. But then for some A  € k , a,b 
would satisfy an equation t^ - X = 0  which must be 
reducible since a,b are inconjugate. It follows that 
both a and b satisfy linear equations over k, i.e. 
a,b€k. But then G c PGL2 (k). Being diagonal this means 
that G is cyclic, contradicting our assumption. So G is 
cyclic. If (a,b) is the generator of G = C^, then a,b 
satisfy t^ - X = 0 . By proposition 2 .2 0 , X  has a 
square root yx in k, so t^ - X = (t^ + ^ )(t^ - /< ).
Assuming that X does not have a 4-th root in k we see

? ? 2 that t + ^ and t - ^ are irreducible and a = ^
p __________and b = - ̂  . Noting that (- ̂  , ̂  ) = (-1,1) we find 

that = {(i75) , (-1 ,1 ) , (-a,h) , (T/T) ] .

This concludes our remarks on cyclic diagonal 
groups without quasiconjugations.

c) The Classification of Finite Groups without 
Quasiconjugations

In this section we shall determine the finite 
subgroups of PGL2 (K) which contain no quasiconjugations. 
It turns out that diagonal groups are essentially the 
only ones which need further analysis. The method used 
here is a generalization of the well known treatment for
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the complex numbers.
First we need some terminology ; Let G be a finite 

group of order n (without quasiconjugations) in PGLgCK). 
By hypothesis (and theorem 1.14) every non-unit element 
of G has exactly two fixed points in some extension of E. 
Let us assume throughout that K is large enough to con= 
tain these fixed points. Let S be the fixed-point-set 
of G - {l]. Note that S may include the point at 
infinity. A fixed point Xq€ S is said to have multi= 
plicity è, or to be e-tuple, if it is a fixed point of 
exactly e matrices in G including I. We recall from

chapter 1  that if d) ’ then the map c< cor=
— 1responding to A is given by o; : x«— ^(ax + b)(cx + d)“ , 

and vice versa. If Xq 6  S is e-tuple, then the 
stabilizer of Xq,

^ G I o<(Xq ) = Xq } ,
0

has order e, and the G - orbit of Xq ,

G(Xq ) = {«<(Xq )( € G }  ,

has ~ members since |g (x q )| = Ig I/|g^^1 . All these

members of G(x^) are fixed points, i.e. G(x q )c S :
If Xq is a fixed point of (X , then ^ ( x q ) is a fixed 
point of ^  o< ^. So we have an action of G on S.
Let S fall into t orbits, and let the i-th orbit have r^ 
points. For each i let m̂  ̂be such that n = ^i^i •
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Then the points of the i-th orbit have in their stabili= 
zers elements, i.e. they must be m^,-tuple. Since by 
assumption there are no quasiconjugations in G, every 
non-identity matrix in G fixes precisely two points, 
while the identity fixes all points (of S), i.e.
Tyj +...+ r^ • Thus by the orbit formula

Hence 2(1 ~ -) = 5^1 ( 1 - % ) (^)^ i= 1  “i

Excluding the trivial group, we have n>1, hence 
2 ( 1  - > 1, but 2(1 - <2. Now m^'^2 since all
matrices fix two points .except the identity, so for

1 1  1each i, 1  but 1 - - <  1. So there are at leastm^ ^ m^
two terms on the right hand side of (4), but no more
than three. We take these cases separately :

1. There are two terms, i.e. t = 2, so there are two 
orbits. Then

2 - I = (1 - + (1 - ,

hence r̂j + r2  = 2. By assumption ryj,r2 > 0 , so ryj=r2 =1 , 
hence m̂j = m2  - n. This means that all elements of G 
share the same two fixed points. Since these are 
inconjugate this means by corollary 1.9 that G is 
conjugate to a diagonal group.

In the special case where the centre k of K is
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algebraically closed v/e can in fact say more :

Lemma 2.21. Let K be a skew field with algebraically 
closed centre k. Then any finite subgroup of K* lies in 
k^ and hence is cyclic.

Proof : Denote the finite subgroup of K* by C and
assume it is of order n. Then every element of C satis= 
fies an equation of the form t^ - 1  = 0  , v/here m \ n,
i.e. every element of C satisfies an equation of some 
degree m over k. Since k is algebraically closed k v/ill 
contain m solutions of this equation. Because of the 
unique factorization property of K[t] K will not contain 
any other solutions. This means that every element of C 
lies in k, so C lies in k . It is a well known fact 
that every finite subgroup of a commutative field is 
cyclic.

As a consequence we obtain

Proposition 2.22. Let K have algebraically closed 
centre k. Then any finite diagonal group G in PGL2 (K) 
is cyclic.

Proof : Let (a,b) be any element of G. Since (a,b)
is of finite order, a,b satisfy the equation t^ - A  = 0  

over k, for some s. Since k is algebraically closed X 
will have on s-th root in k, so we may talce X = 1 . By 
lemma 2.21 it follows that a,bek. But this means that 
G is a finite diagonal subgroup of PGL2 (k), hence G is
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cyclic.

Note that when the centre k of K is algebraically 
closed PGhgCK) does not contain any quasiconjugations of 
finite order, since these would only amount to the unit 
matrix.

Note also that we do not really need the full force
of algebraic closure in lemma 2 . 2 1  and proposition 2 .2 2 .
All we have used in fact is that for A € k, k contains 
all roots of A . So the condition we need on k is that 
for any A ^ k  (including A = 1 ) A has one (primitive) 
n-th root in k, for any n (k will then contain all other 
n-th roots), i.e. that k is root-closed.

Returning to our classification,

2. There are three terms in (4), so there are three 
orbits. Then

2 - 5 = (1 - 5^) + (1 - Sg) + (1 - 5^)

Each m. is at least 2, but not all m. are greater
1

because .^ + ^ + ^ ^ 1 < 1 + | .  Hence we may talce m^ = 2

and then
1 ^  1 1 . 2  
mg + = 2  + n

Not both of m 2 ,m^ are greater than 3, so we may talce m2  

to be 2 or 5 . We consider these cases in turn :
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a) = 1 ^ 2  — 2  , ^
We note that in this case the order n of G is even. 

One orbit consists of ^ - tuple fixed points, Xq and x^ 
say. The other two orbits consists of ^ double fixed
points each. The stabilizer G„ of x^ is a subgroup ofX q  u

G of index 2 such that any element outside G„ maps x^

to x^. Clearly all the elements of G share the same
. 0

two fixed points, so G can be taken to be a diagonal

group. Let yQ be a double fixed point in one of the 
other orbits. Then G is a group with two elements.

Let T be the non-identity element of G • If S € G  ,

then TS(Xp.) = T(x^) = x^ , so TS^G_ , hence G andU  U  I X q  X q

TG partition G into two sets with S elements each;Xq cL

in other words, G = (G^ ,TG^ } . There is no loss of
^ 0  ^ 0

generality in taking G^ to be diagonal and ^ q ) ’

In the special case where the centre of K is
algebraically closed, G is cyclic by proposition 2 .2 2 ,

0
so G turns out to be the dihedral group which has

5 2 2
defining relations 8  = T = (ST) = I.

In the remaining cases we have m^ = 2, m2  = $, m^ 3 
and we get

1 1 . 2  5-‘5
This holds when = 5 and n = 12; when = 4- and
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n = 24; when = 3 and n = 60 and for no other values*

b) = 2  , ^ 2  = = 3
Then G has order n = 12. Two orbits consist of four 

3-tuple fixed points. Then the stabilizer G of one of

them will contain three elements and hence must be cyclic, 
generated by A say. But then G„ (and A in particular)

fixes another point, x^ say. Note that any element out= 
side G^ maps Xq to x^ and x^ to Xq . Similarly there is

one other stabilizer of order 3 , G say, which fixes y^

and y/j and which is generated by B say. Again any ele = 
ment outside G maps ŷ . to y^ and vice versa. The third

orbit has six double fixed points, so their stabilizers 
are of order 2. This means that the cyclic subgroups 
(and hence all the elements) of G are of order 2 and 3 
only. We claim that AB is of order 2 : For suppose AB
is of order 3. Then AB is contained in <  A > or in <B>. 
So AB keeps either Xq or Jq fixed. But AB(xq) = A(x^)
= Xxj and AB(y^) = A(y^) = y^. Hence AB is outside < A >  
and < T B ^ , a contradiction, and the claim follows. This 
gives us the defining relations for G ; A^ = B = (AB)
= 1. G is also loi own as the tetrahedral group, or as 
alternating group on four letters, Alt^.

c ) m^ — 2 , m2  — 3 î — 4
Then G has order 24. We obtain stabilizer groups of

orders 2,3 and 4,. The stabilizer groups of order 4 must
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be cyclic as shorn in the example following proposition 
2 . 2 0  (that these stabilizers are diagonal follows from 
the fact that all the elements of a stabilizer share at 
least one fixed point, which is impossible in the 
dihedral group, the only other kind of group of order 4). 
The rest of the argument goes as in the previous case.

% pThus we obtain defining relations A = = (AB) = I
for G. G in this case is the symmetric group on four 
letters, Sym^ ; it is sometimes referred to as the 
octahedral group.

d ) m̂j = 2  , m^ — 3  , m^ = 3

Then G has order 60. All the stabilizer groups are 
cyclic because they are bf prime order. As before we 
obtain defining relations A^ = B^ = (AB)^ = I. This is 
the alternating group on five letters, Alt^ , also 
called the icosahedral group.

Call a skew field K "closed under quadratic equations"
2if for any p,q€K the equation x + px + q = 0  has a 

solution in K. Then we can sum up the result of this 
section in

Theorem 2.23. Let K be a skew field which is closed 
under quadratic equations and which is root-closed. Let 
G be a finite group in PGL2 (K) without quasiconjugations 
and such that the characteristic of K does not divide 
the order of G. Then G is conjugate to one of the 
following types of groups :
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1. The diagonal group.
2. The diagonal group with ^^ adjoined.
3. The tetrahedral group.
4. The octahedral group.
3. The icosahedral group.

Note that the assumptions on K in this theorem are 
weaker than existential closure. We need closure under 
quadratic equations because of lemma 1.4 which ensures 
the existence of the first fixed point in K (and indeed 
also of the second fixed point).

If in addition the centre k of K is algebraically 
closed, then the condition that G contain no quasiconju= 
gâtions becomes redundant as vie have seen. Moreover by 
proposition 2 . 2 2  the diagonal groups are all cyclic. 
This gives us

Theorem 2.24. Let K be as in theorem 2.23. Assume 
furthermore that the centre k of K is algebraically 
closed. Then PGL2 (K) contains only cyclic, dihedral, 
tetrahedral, octahedral, and icosahedral groups.

In fact we shall see in chapter 3 that any finite 
group of PGL2 (K) is conjugate to one in PGL2 (k) (of. 
theorem 3.43).
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3. FIXED FIELDS

Introduction

Throughout this chapter the centre k of the skew 
field K will be assumed algebraically closed unless 
stated otherwise. K itself will be taken to be large 
enough to contain the two fixed points of every matrix 
involved (note that there are no quasiconjugations of 
finite order in PGL2 (K) ).

Whereas chapter 1 dealt with the action of a finite 
subgroup G of PGL2 (K) on a general skew field K, this 
chapter will be concerned with the action of G on E.(x), 
where k is algebraically closed. The object then is to 
determine the fixed fields in E^(x) of the finite sub= 
groups of PGL2 (K). This ^as beee. done for the complex 
numbers by Felix Klein around 1870 [&]. We shall 
modify (and sometimes simplify) the treatment of this as 
given by Weber [l] to apply to our more general setting. 
In doing so we shall prove the other main result of this 
chapter, i.e. that every finite subgroup of PGL2 (K) is 
conjugate to a finite subgroup of PGL2 (k).

Section a) on invariants and groundforms does not 
contain any original work. It is not included in chapter 
0  because its understanding requires some of the facts 
and definitions given in the two previous chapters. 
Appropriate references will be given. Section b) pre= 
pares the ground for the subsequent determination of the



fixed fields. Essentially what we shall show there is 
that if a finite subgroup of PGEgCK) is conjugate to one 
in PGEgCh), then we can find its fixed field.

After this we shall deal with each type of group 
separately. In each case we show that the group in 
question has a conjugate in PGI^C^O* For the cyclic and 
dihedral groups this fact leads us straight to their 
fixed fields (and groundforms). For the remaining 
groups we have to determine their groundforms first.
Over the complex numbers this is found in Weber's book 
f7 j (which does not however derive the fixed fields).
We shall employ more direct methods in places. For 
instance in the octahedral group Weber derives the 
invariant W as Hessian of the groundform f and the 
invariant H as Jacobian of f and W. We shall obtain W 
and M by a straight calculation using the fact that the 
octahedral group contains the tetrahedral group as 
normal subgroup of index.2. Or finding the groundforms 
of the icosahedral group represents a considerable 
simplification of Weber's treatment which requires 
knowledge about polars and invariants of quartics. And 
showing that these groundforms are in fact absolute 
invariants is done by virtue of the fact that the 
icosahedral group is simple, also a shortcut compared 
with Weber's treatment.

We conclude this chapter with a brief outlook on 
finding the fixed field of the cyclic group when the
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centre k of K is not algebraically closed.

a) Groundforms and Invariants

The treatment of groundforms given below roughly 
follows the account given by Weber in [^]. Throughout 
this section k will denote an algebraically closed 
commutative field.

Let G be a finite group of order n in PGL2 (k). By a 
relative invariant of G v/e shall understand a polynomial 
f(x)ek[x] such that for all AEG, we have

f(A(x)) = cf(x)

for some c c k. When c = 1 we call f an absolute 
invariant.

Let ae k be an m - tuple fixed point of G in k (i.e. 
a fixed point of m elements of G in k). The stabilizer
of a clearly forms a group, so m divides n. Put r = ^ ,
then the G - orbit of a consists of r fixed points, 
{a=aQ,a^,...,a^_^j say. Recall that for any AEG,

{ A(aQ),.*.,A(a^_^)} = * * *’^r-1 i *

let A G O  be of form x + B ) ( j ’x + <T) and
assume det A = 1, i.e. ^ (T = 1 .  Put

f(x) = TT(% - a.) .1=0 ^
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Then ( + ^)^f(A(x)) has roots A~^ (a^) ,... ,A“^
i.e. aQ,...,a^_^. Hence f(x) and ( ^ x  + f)^f(A(x)) 
differ only by a constant c.

Let x^,X2  be parameters such that —  = x. Define

X
x|'f(~) = f(x^ ,Xg) . (1)

Then f(x^,X2 ) is a form of degree r (i.e. for any X e k ,  
f(Ax^, X X 2 ) = f (x..j ,X2 ) ) which is invariant under 
transformations A of G :

Since >̂ (5^) = ( (X x^ + X 2 )( Q'Xyj + <TX2 )"'̂  , we have2
A(x./| ,X2 ) = (o<x^ + 1^ X 2 , X̂yj + X2 ). Furthermore

f(x) = c(^x + <S )^f(A(x)) (2)

for some cek. So

fCx^.xg) =

x^
= c(^X^ + 5  X2 )

x^
= cA(x2 )f(A(— ))

= cf(A(xy| 9 X2 )) (3)

Summing up (of. [1] , §70, p.267): For every orbit we
have a (relative) invariant form whose degree is the 
order of the orbit and whose roots consist of the ele= 
ments of that orbit.



If G is not cyclic there is more than one such f. We 
call these f's (as defined by (1) ) groundforms of G.
We shall need two lemmas about groundforms (cf. [7], §7 0 , 
p.2 6 7 ,2 6 8 ) :

Lemma A . If some invariant form of G, F(x^,Xg) say, 
shares a factor with a groundform f(x^,X2 ), then f(x^,X2 ) 
divides F(x^,X2 ).

. Proof : If F(x,1) and f(x,1) have a root in common,
then all roots of f must be roots of F ; For by 
assumption if AEG, then F(x,1) and F(A(x),1) have the 
same roots. If therefore F(a^,1) = 0, where a^ is a 
root of f(x,1), and A(a.) = a. , then F(A(a.),1) =

1  J X
F(a.,1) = 0. This proves the lemma.

0

Lemma B . A non-zero invariant form F of G whose 
degree is lower than the order of G is a product of 
groundforms (and a constant).

Proof : Clearly the restriction on the degree of F
is necessary. Let y^ be a root of the invariant form 
F(x,1). Then for all AEG, A(y^) are roots of F(x,1) = 0. 
Since de g F<|Gf, not all A^y^) can be distinct, so for 

GG, A^Cjq) = AgCyp or Jq = A^AgCjo^ • means
that yQ belongs to the fixed-point-set of G. It follows 
from lemma A that F is divisible by a groundform, and 
lemma B follows since the same holds for the quotient 
of this division.
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V/e can rephrase lemma B as follows ;

Lemma _C. If F(xy| sn invariant form of G whose
degree is lower than the order of G and ? is not repre= 
sentable (up to a constant) as a product of groundforms, 
then it must vanish identically,

b) Some Technical Results from Galois Theory

To make our aim more precise we recall the following

Definition : Let P be any skew field and A the group
of all its automorphisms. For any subgroup H of A let

H* = {x € F | x ^ = X for all <T c H } .

H* is called the fixed field of H.
For any subfield E of F let

E ' = { c T € A ( x ^  = X for all x e E J .

If E'' = E, then E' is called the Galois group of F 
over E.

Let K be a skew field with algebraically closed _ 
centre k. Let G be a subgroup of PGL2 (K). Then we have 
an action of G on K^(x) defined by f(x) »f( x), where 

E G, f(x)eKj^(x). Our task is to find the fixed fields 
of the action on K^(x) by the cyclic, dihedral, tetra= 
hedral, octahedral, and icosahedral groups, these being 
the only types of finite groups occuning in PGL2 (K), 9 -s
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demonstrated in chapter 2 ,
To do this we note that the mapping — >K^(o<x)

induced by ^ e G is an automorphism of Kĵ (x) over K (i.e. 
keeping K fixed) which will be of the same order as o( . 
There will be no ambiguity in this chapter in calling 
this automorphism of K,(x) as well. We need a pre= 
liminary result which is easily seen to be a weaker 
version of theorem 3.3.4 in [4 ].

Theorem. Let G be a finite group of automorphisms of 
K^̂ (x) over K. Then

: G'Ji = (G : (^)

(if either side is finite), where Gq denotes the group 
of inner automorphisms in G, and C is the centralizer of 
G' in E^(x); : G'j^^ is the left degree of K^(x)
over G '; (G : Gq ) is the index of Gq in G.

Now an inner automorphism of E^(x) induced by o< C G 
is such that for any h c K^(x) we have

h(oCx) = f“"^h(x)f , (3),

where fEK^(x) is fixed in the the sense that it depends 
only on c< but not on h. In particular (3) holds for 
h = X. Then

c< X = f~^xf . (6)

We may assume without loss of generality that f is
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defined and finite and non-zero at 0 ,1 , oo ; For if f or
f has a pole at 0 , 1  or oo we only need to change
variables to rectify the situation. For instance if
f(x) has a pole at x = 0 , put x = y - e, where e t 0 ,1 .
Then f(y) has a pole at y = e, and now o(y = f"^(y)yf(y),
where f satisfies the requirements.

We claim « x has a pole at oo; For suppose x is
—1finite at OQ, Since f is non-zero at^oo, f“ will be

— 1finite at oo, so focxf" is finite at , a contradiction 
since x is not finite at oo, and proving the claim.

Now if

—1(X X = (ax + b)(cx + d)~ (a,b,c,dE%),

then c = 0 since x has a pole at oo. Similarly since
f and f" are finite and non-zero at 0 , vanishes at 0  

by (6). Hence b = 0. Since c< is of finite order it 
follows by lemma 2 . 2 1  that cK (x) = w x  for some w € k. 
Since f is non-zero and finite at 1, we have << (1) = 1, 
so w = 1. It follows that is the identity in G and
hence that Gq is trivial.

So (G ; Gq ) = /G/ and (4) becomes

[%%(%) : = |G|[C :k] (7)

Suppose that hEKj^(x) generates the fixed field G' of
a subgroup G of PGL2 (K)* Then for any <?< EG, h = h.

<rçr“"̂ occr <rHence for any <r e. GL2 (H) , = h = h and so h
is contained in the fixed field (G ) * of (T ^G0~. Since

81



cr is an automorphism of IC (x) over K, h must in fact 
be the generator of (G^)' in K,(x). Thus we obtain

Lemma 3.1. Let G be a finite group in PGL^CK) and 
assume its fixed field in K^(x) is of the form K^(h) for 
some hEK^(x). Then the fixed field of cr~^G <r for any 
creGL^(K) is K^(h^).

Therefore if we find the (generator of the) fixed 
field of any one group of a conjugacy class of groups, 
then we can easily find the fixed field of any other 
group in that class. . -

The next proposition shows how our general case can 
be reduced to the commutative case :

Proposition 3.2. Let G be a finite group in PGL2 (k), 
where k is the algebraically closed centre of K. Assume 
hek(x) generates the fixed field of G in k(x) over k. 
Then h generates the fixed field of G in K^(x) over K, 
i.e. then K^(h) is the fixed field of G in K^(x).

Proof : First we note that h is indeed in the fixed
f i e l d  of G in K, (x). Let G be of order n, then 
dog h = n. Let Fq be the fixed field of G in K^(x).
Then clearly K,(h)&FQ. Moreover because hEk(x), the 
elements 1 ,x,...,x^~^ form a left as well as right basis 
for Kj (̂x) over K^(h), so
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Since Fq is Galois in K^^(x), [%^(x) ; Fq]ĵ =
[^K^(x) : And now we use formula (7) to see that
[k ^̂ (x ) : = n. It follows that we must have
K%(h) = PQ.

The proof shows also that C = k in (7), & fact which 
can be verified directly.

One of the objects in what follows will be to show 
that all our finite groups meet the condition of pro= 
position 3 .2 , i.e. that any finite group in PGL^C^) is 
conjugate to a group in PGL2 (k).

c) The Cyclic Group of Order n , Cn

Let oc be an element of PGL^CK) and assume f e k ^(x )
belongs to the fixed field of o( in K^(x). Then f ̂  = f. 

i
Hence f* = f for any i. So the fixed field of is 
contained in the fixed field of any power of o<. In. 
particular this gives

Lemma 3 .3 . The fixed field in K^(x) of a cyclic group 
of automorphisms is that of its generator.

Suppose € PGL2 (K) is of finite order n. Then we
know that is conjugate to x H-»axb  ̂, where a^ = b^ =
X  Ck. Since k is algebraically closed it follows that 
a,b€k. Hence is of form

X »— > w x (8)
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where coe k is a primitive n-th root of 1 . Note that 
(8 ) is in fact an element of PGL^Ck). So by lemmas 3.1 
and 3*3 snd proposition 3 * 2  we need only find the fixed 
field of (8 ) to determine the fixed field of any cyclic 
group 0 ^ of order n in PGL2 (lO*

The next lemma is a consequence of Galois theory and 
used to form part of the exposition of Galois theory 
before Dedekind.

Lemma 3.4. Let cK 6  PGL2 (k) be of finite order n,
Then the f c k(x) such that f ^ =  f are precisely those 
generated by the elementary symmetric functions in the

elements x,x ,...,x .
n- 1

Proof : Put p ^ ( x ) = x + x  + . . . + X

. n — 1P^Cx) = ) (9)

.
OCP%(x) = X X ... X ,

where the are the elementary symmetric functions. 
Clearly all these p^ satisfy p^ = Pĵ . Denote by Pq the 
fixed field of oc in k(x) , and by the subfield of k(x) 
generated by all the p^. Then P^ GPg by the last remark. 
Also [k(x) ; Pq] = n since o( has order n. And we must
have [k(x) : P ^ ^ n ,  hence P^ = Pq .

In particular if any of the Pĵ  is of degree n in x,
then this will generate the fixed field of U  over k.
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lîore generally if h Gk(x) is any function of degree n 
which is contained in the fixed field (in k(x) ) of 
then k(h)GFg and [k(x) : k(h)] s n = [k(x) : , so

k(h) = Fq . Note that if h = ^  for some gy, ,gg e k[x] ,

then deg h is defined here as max(deg g^, deg 8 2 •̂

For the cyclic group generated by (8 ) we just need
a of (9) to be of degree n. Clearly

^ n - 1 ^
Pjj(x) = X (X»

is of degree n. So Pj^(x), and hence x^ generates the
fixed field of C^ over k. It follows that K^(x^) is the
fixed field C^* of C^ in K^(x).

There is an alternative and in some, respects more
convenient way of describing this fixed field :

Consider the subfield E of K^(x) generated by all
x'^Kx^ (i E 2') and x^. This is clearly contained in the
fixed field of (in H^(x) ). V/e recall lemma 3*5.4,
p . 1 2 0  of [4 ] which says that the subfield of K^(x)

—i igenerated by all x“ Ex is their field coproduct,
L = (3^g^x~^Ex^. L has an automorphism 9: a*—>x~^ax 
for all a € E, so we can form the skew polynomial ring 
L(x; 0j (where qx = xq^ for all q£L), which has field 
of fractions L(x; 0), and L(x; 0) = K^(x)* Now E is 
generated over L by x^, so E = E(x^; 0). It is clear 
then that [l (x ; 0) : L(x^; 0 )] = n and hence 
L(x^) ^E^(x^). Since E(x^)GE^(x^), equality must hold. 
Summing up.
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More generally if h Ek(x) is any function of degree n
which is contained in the fixed field Fq (in k(x) ) of
then k(h) S F q and [k(x) : k(h)] A n = [k(x) : fJ  , .bo

\  i
k(h) = Fq . Note that if h = gi for some ĝ j,g^ e k [x] ,

\  ^ /then deg h is defined here as max(deg g^, deg g^).
For the cyclic group C generated by (8 ) we just need

a p. of (9) to be,of degree n. Clearly /
\  z-h ;/\pji(x) = CO

\is of degree n. So P^(x), and hence x^/generates the
\ / ' fixed field of C over k.\ It follows/that K, (x^) is the\ ./ ■

fixed field C^' of C^ in E^(x). /
\There is an alternative and in/some respects more
\ /convenient way of describing this fixed field :
/\Consider the subfield E of K;̂ (x) generated by all 

x*”̂ Kx^ (ie2^) and x^. This is clearly contained in the 
fixed field of <a  (in K^(x) ). recall lemma 3*5.4,
p. 1 2 0  of [4 ] which says that the su\)field of Ki_(x) 
generated by all x'b Kx is their field coproduct,
L = O  .mX~^I{x^. /L has an automorphism 9: a x""^ax

// \ for all aEK, so we .can form the skew polynomial ring
Lfx; 0 J (where qx = xq^ for all q£L), which has field
of fractions L(x; 0), and L(x; 0) = K^(x) .'̂ v̂ Now E is
generated over L by x^, so E = L(x^; 0). It\is clear
then/that [L(x; 0 ) : L(x^; 0  )J = n and hence \
L(x^) ^  %(x^). Since E(x^)GK^(x^), equality must hold.

■ \Summing up, \
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Proposition 3*5» The fixed field of the cyclic group 
with generator o( : x\— »cox, where is a primitive n-th 
root of 1, is given by L(x^; 0), where L = x~^Ex^
and 0 ; an-»x"^ax for all a € K.

fe 0  \
Note that oc : x i— ► cOx has matrix ! y,/, where

1  Vo ery
2S = 6 0  , which is of determinant 1 .

Note also that C^has two orbits, consisting of one 
fixed point each (cf. chapter 2). So has two ground= 
forms of degree 1. Since is assumed to have generator 
as in (8 ), 0  and are the two points in the orbits;
so one groundform is f^ = x^ and the other is f2  = X2 *

d) The Dihedral Group of Order 2n, Dp^

First v;e find a normal form for p2n’ PGl^C^) •

Lemma 3*6. . Any dihedral group in PGL2 (K) of order 2n 
is conjugate to the (dihedral) group generated by

0  \ /O 1  

0  £~ / ’ \ 1  0

2where & & k  is such that 6  is a primitive n-th root 
of 1 .

Proof ; Suppose A,BePGL 2 (K) are the generators of 
any dihedral group of order 2n. Then A^,B^,(AB)^c kl 
(where kl denotes the group of central scalar matrices 
in GL2 (K) )• So we know that A can be diagonalized.
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Asay A = I I ,  where ^ E k . Since k is\o '
algebraically closed it follows that X , ^  ek. But

1
-1 x2

1  1  /( Xj^"7" 0  ^
( | u A " V0

Note that \", ^  €.k and put 6  = ( then A is
of the required form.

a b\ / Ea eb
Let B = 1  I , then AB = I .  .

ic di \ e~^c eT^d

B^ = a + be ab + bd 
ca + dc cb + d'

Since

(10)

and B € kl, we have ab + bd = 0. Similarly since
P p(AB) € kl we obtain & ab + bd = 0. Together these

P Pequations give us ( 1  - 0  )bd = 0 . Now if £, = 1 , then
^  = +1 and A E kl which is trivial and we may exclude
this case. So either b = 0 or d = 0. By a similar
argument we must have either a = 0 or c = 0. Since A is
invertible we cannot have a = b = 0, nor c = d = 0.
b = c = 0 cannot hold since then AB = BA which is im=
possible in a dihedral group. Hence a = d = 0, i.e. B

'O b
(C 0

is of form Since B 6 kl we find that be = cb Ek. 

-1b 0

Put T = 1 1 and note that T ‘A T = A. Then
0 1
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- 1  / o  1 \ - 1  „T B T = I I . Write ^  = (be) , then f  ck since
° 1  fok is algebraically closed and f T B T = t . = B'
fs o\ ^

say. Put 8  = I , then S A 8  = A and
\ 0  1 /

-1 fo 1\
8  B* 8  = I I as required.

V  0 /
Proposition 3.7. The fixed field of (in the form

of lemma 3 .6 ) over K is E^{x^ + x~^), or L(x^ + x*”̂ ; 0 ), 
where L = O j _ ^ 2  with y = x^ + x“^, and
0  : a »—» y"^ ay for all a £ E.

Then A,B

generate Now the map oc of A is x >cox, where co
is a primitive n-th root of 1, and the map of B is

X»—»x~ . We already know the generator of the fixed 
field of o< : it is g(x) = x^. To find the generator of 
the fixed field of we look at the symmetric poly= 
nomials (9) again. Since ^  is of order 2 there is only 
p^(x) = X + x“  ̂ and P 2 (x) =1. So p^(x) generates the 
fixed field of ^  . Now every element of B 2 1 1  the
form for i = 0,1,...,n-1 and j = 0,1. Next we
have

g(x^) = ( g(x) )^ , (1 1 )

Proof : Put A =

where g(x) = x^. Hence
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i

= P^Cs ' ) (for if j = 0 , then = 1 ,
^ SO we take j = 1)

= P^(e) (by (1 1 ) )

= p^(s)

Therefore P^(g(x)) = + x ^ is the generator of the
fixed field of D 2 ^ (in the form of lemma 3 .6 ) over k and 
thus over K.
As before we can write E^(x^ + x“^̂ ) in the form L(y; 9) 
with y = x^ + x““̂ , L = y'^Hy^ and’ 0: a »y~^ay
for all a€K.

To determine the groundforms of we recall from 
chapter 2  that Dp^ has three orbits, two consisting of n 
double fixed points each and the third having two n- 
tuple fixed points. If D2 ^ is talien in the form of 
lemma 3«6 , then the n-tuple points are 0 and oo. Thus 
the groundform corresponding to the third orbit is 
f^ = Xy|X2 * To find the double fixed points (and hence 
the other two groundforms) we note that
e o V  /o i\ fo which has map xv-^ -

r = 0,1,...,n-1. So + are the 2n elements in the 
first two orbits. Thus one groundform arises from 
(x + 1 )(x + e) ... (x + = X* - 1 , hence it is

= x^ - Xg. Similarly the other groundform turns out 
to be fg = x^ + Xg .
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e) The Tetrahedral Group, Alt,

Vi/e show first that any tetrahedral group in PGLgCE) 
is conjugate to one in PGLgCh)» where k is the 
algebraically closed centre of K.

Lemma 3.8. Any tetrahedral group in PGL2 (K) is 
conjugate to the group generated by

A =
i- 1 i- 1  \ 1 i- 1 i+ 1

"T" -
, B =

" 2 “ — " 2 "“

i+ 1 i+ 1 i- 1 i+ 1

\

/
where i = -1 .

Proof : The defining relations of Alt^ are A^ = f I, 
^ I, (AB)^ = ÇI, where ^ ^  ek. We may take 

(̂  = ju. = 1  without loss of generality for otherwise we

consider the matrices A & B ^  which is possible 
since k is algebraically closed.
With 6 ”, thus fixed it remains to be seen what ^  
comes to. Without loss of generality we may take

P , where \ + i'fT ) and
0 X ;
- 2 ^ - 1  + i-JT) (i.e. Then

A = 

2
-Â  0

BAB = VA""’ = I .

Put B = ( / , where a,b,c,d£K, then
c

Xa^ + X he y\ab + A  hd
BAB = I p . \ 2  n 2Aca + X  àc Acb + A d
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so equating entries: be =

Now

— X  n and. — X^a =bdb  ̂•

a
be bdb-1

X - A V  - A ^ a '

2
Also B-1 a -1

and B' a^+ y-
2.2

■a -1

(1 - A  )n 
2 2( A a )(1- A )a A a + Aa

Since B = B , this gives us four equations :

1 ) + ^  - = X^a

2 ) ( 1  - A b a  =

3) - A^a5 - + Aa^ = 1 - A^a^
-14) - A^a^ + Aa^ = - a ^

Of these equations 2) gives us a and it remains to 
specify y :

By 1), -2.

% ( 1  - A^)a'^ + - X^a = 0

^ + %'

2

2\.2
a-(1 - X ) + ^  = X a2 -1

.2 \2

by 2 ), 2  _ A^a = 0

and

a(1 - A^) + = 0

= —1

37



Equation 3) is equivalent to equation 2), and equation 
4) is equivalent to equation 1). This gives us three 
choices for jj': ^  = -1 , ^  = - A , and ^  = -
Trying ^ = -1 first and hence a = (1 - and
substituting these in (1 2 ) gives us

- 5 ( 3  + if" )
B = 2

? - 5 ( 5  - iV^)
(13)

Note that this has determinant 1. Put

I , T U. 2 , , T Tâ
c =

and note that C is invertible. Then

C~^AC =
i- 1

“2 “
i+ 1

i- 1

“ 2 “
i+ 1

i- 1

C"^BG
i+ 1  \ — —'2 ~~ '

i- 1

“2 ~
i+ 1

“2 ~ /
which.proves the lemma.

The other two choices of ^ offer nothing new : 
Denote the matrix (13) by B_yj and the matrix obtained
when

Then

— 1^  = - A by B_^ (note that then a = ( 1  - A ) )

B-1 (14)

Note that A remains unaffected by this conjugacy trans= 
formation of Alt^. This means that Alt^ with ^ - A

?
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is conjugate in PGL^Ck) to Alt^ with ^ = - 1  and hence to 
Alt^ as given in lemma $.8 . Moreover by (14) and since 
det = 1, we must have det B ^
The case ^  is similar.

Bemma $ . 8  and proposition $ . 2  reduce the search for 
the fixed field of Alt^ to a problem in commutative 
algebraically closed fields. To settle this problem v/e 
need to determine the groundforms of Alt^ first.

Since Alt^ has three orbits there must be three 
groundforms. We recall from chapter 2  that the first 
orbit contains 6  double fixed points. If we take Alt^ 
to be generated by A and B as in lemma $.8 , then 

/-i 0 \
AB = I I v/hich is of order 2 with map x »—* -x. So

■ fo 1
are two double fixed points. Next BA = I

—1which is of order 2 with map x «— ►x" • So +1 are two
; - - f-± 0\f0 ±\ f 0

more double fixed points. Finally [ ( I = I
V 0 1/\1 0/

which is of order 2 with map xf-^-x" . So the last two 
double points are +i. Note that these really are double 
fixed points since Alt^ only has double and triple fixed 
points. All these fixed points are obtained as roots of

/| /|f(x^,Xg) = - Xg)

which is our first groundform, of degree 5.
We observe that all other fixed points are $-tuple 

and we recall that there are 4 such points in each of
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the two remaining orbits. We start by determining the

fixed points of A of lemma 5.8. A has map x»~>i ,
pso its fixed points must satisfy x + (i+1 )x - i = 0 .

The two solutions are Xq = ^(i+1)(-1-/5^) and

yQ = 2 ^i+ 1  ) (“1 + '/5* ). Obviously Xq and y^ are not in the

same orbit. We determine the orbit of Xq ; Apply AB
which has map x»— »-x, then -Xq is in the orbit. Next

apply BA H x~^, then XQ^ = ^(i-1 ) ) is in the

orbit. Finally applying AB A = -x~ gives us -Xq .
Thus our groundform is

(x-Xq)(x+Xq)(x-Xq*^)(x+x“"̂) = x^ - x^(x”^+Xq) + 1

= x^ - 21'^ x^ + 1  ;

or in parameters, x̂j" - 2 i-^x^x^i +

Denote this groundform by ^ .
Similarly we find the other groundform,

f  (x) = x^ + 2±{^x^ + 1  ;

or in parameters, x^ + 2i'^ x^x| + x^

It is interesting to observe a relation between f, , f :

1 2 i { F f 2  = v(/5 - cj>̂  .

Next we note that the constant c in (3) turns out to 
be a cube root to of 1  in the case of We see this
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by applying A (of lemma 3.8) to (j) . Similarly we find |
1 2 • I P ^that c = CO v/hen A is applied to Y , c = co when B is !"
applied to and c = co when B is applied to 'f' (expli= ï

citly : (x) = w ( ^ ^  x - (Bx) ). Hence we see
' A

that by (5) is a function of degree 1 2  which is |

an element of the fixed field of Alt^^ By the remark
after lemma 5.4 it will generate the fixed field of Alt^. |

ISumming up : \f

As before we can write this in the form L(y; Ô), 

^itZwhere L = O-îey y~^^y^ and, 0 : a>—»y ay (for all aeK)

f) The Octahedral Group, Sym^

Lemma 5.10. Any octahedral group Sym^ in PGL2 (K) is 
conjugate to the (octahedral) group generated by

0
A =

y 0  —i-̂ iV
B =

Proposition 5.9. If Alt^ is in the form of lemma 5.8, 
then its fixed field is

Proof ; This follows from lemma 5.2 . ?
f'
I

with y = t
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, and

pwhere, i = -1 .

Proof : The proof of this lemma is very similar to
that of lemma 5 .8 , so we shall omit some of the details. 
The generating relations of Sym^ are = fl, ^ I,
(AB) = ^ I. Without loss of generality we may assume 
that ^  ^  = - 1 , We have to determine yak. We may

0\
also assume A to he diagonal, i.e. A =(  ̂/ , where

\o 6 - y
0 ^ = -1. So 6  = -V? and = - i ^  which is as

/a b'
given in the lemma. Write B = I ) , then

\c d
y  -1

BAB = ^ A  ̂ =

fea^ + er'̂ hc gab + £ “"'bd
BAB = 1  p j . This gives us

ySca + £“ dc £cb + d
p p pbe = ^  - 0 a and bdb" = - 0  a. Since

1 0 \ / 1 0 \ fa. 1

• B ( y, I = f /| I, B can be taken to be
O b /  \o b~^y ^bc bdb-^/

of form B = / o o o ) • (15)
d^a‘̂ - £^a/

? P P 2
P  /a^+y- C^a^ a - S  a

Then B = —B is | o o p p p p( ^ -  e a^)(1 -€^)a îf- &  a"=̂+ £a

/- E^a '1 ,  ,i.e. o o  ̂ /I / . The (1,2) entries give us
V e " a 2 ^ - ^ - 1  a x ' 7

a = - g. )~^ and the (1 ,1 ) entries give us
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+ y = - 6  ̂ a, or = -1. The other
entries contain no further information. Choose = -1 ,

then a = ^(i+1 ). Substitute this in (15)» then

B =

Put £ = ^(i-1 ), then 

0  \

-1J
B

^(i+1 )

^(i+1 ) - ^(i“1 )y

as desired.

As before the other two choices of y  do not give 
det B = 1.

In determining the invariants of Sym^ we note first 
of all that Sym^ (in the form of lemma 5 .1 0 ) is

0 \
generated by A = I • I (which has man x t—»ix) and

\o - i ^ y
Alt^ (as given by lemma 5 *8 ), i.e. Sym^ contains Alt^ as
normal subgroup of index 2. Next we recall that Sym^
has three orbits, one of them consisting of 6  quadruple
fixed points. Hence there is a groundform f of Sym^ of
degree 6 . Now A has map x»— »ix and is of order 4, so

%0 , cKi are quadruple fixed points. Secondly BA^ has map 

x*-^2^ and is of order 4, so +1 are quadruple fixed 

points. Finally AB^ has map x •— and is of order 4,
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so +i are quadruple fixed points. Hence

fCx^^x^) = x^X2 (x^+X2 )(x^-X2 )(x^+ix)(x^-ix2 )
, 4  4\= x^%2 (xi - x p

is our first groundform.
Recall the groundforms <Sj> and of Alt^ and put 

W = . This is obviously an invariant of Alt^, so if
W stays invariant under XK->ix, then it must be an 
invariant of Sym^. But

W = x^ + 14x^X2 + x|

which is clearly an absolute invariant of xi— »ix. We 
claim that W is in fact the second groundform of Sym^, 
belonging to the orbit containing 8  triple fixed points: 
First we note that the third groundform M (belonging to 
the third orbit containing 1 2  double fixed points) is of 
degree 12. So M cannot be a factor of W. On the other 
hand, since W is a non-zero invariant of Sym^, by lemma 
B it must be a product (up to a constant) of groundforms. 
But f cannot be a factor of W, for if W = fg, then g is 
an invariant of degree 2  and which is therefore not re= 
presentable as a product of groundforms. By lemma C 
this is impossible. It follows that W must itself be a 
groundform, as claimed.

Similarly we find that is an invariant
of Sym^, and hence the third groundform. M is given 
explicitly by

( 0^



2 M = _ 22x8^4 _ 22%4x8 +

= (x^ + Xg)^ - 56x^%2(x^ + X2 )

Write W in the form W = (x^ + x^)^ + 12x^x^ , then we 
obtain the following relation for f,M, and W :

w5 _ 4jj2 ^

Put TT 4M^"% = V and — = L, then we can regard V and L as 
f f^

X/1functions in one variable x = — - . Clearly V,L are

(relative) invariants of Sym^,i,e. if Ae Sym^, then 
V(A(x)) = c^V(x) and L(A(x)) = C2 p(x). But then 
V(x) - L(x) = CyjV(x) - C2 p(x) = 108, hence c^ = C2  = 1 • 
This means that V,L are in fact absolute invariants of 
Sym^. Since.both are of degree 24, either will generate 
the fixed field of Sym^ over k (and hence over K).
Thus v/e have proved

Proposition 5.11. Let Sym̂  ̂be the octahedral group 
as given by lemma 5.10. Then the fixed field of Sym^ in 
Kjj.(x) is

^k(^) = Kk( )

As before we can write this in the form I r ( V ;  9 ) ,

(OS'



5where L = Q_e2 and 0: a*->V"^aY, V = for all
aeK.

g) The Icosahedral Group, Alt,

First we shall derive a normal form for Alt^, in 
PGL^Ck), A presentation for Alt^ is given by Weber [?], 
as for the previous groups. We shall here give a different 
presentation, which arises more naturally from the relations 
obtained in chapter 2 .

Lemma 3*12. Any icosahedral group in PGL2 (K) is con= 
jugate to the (icosahedral) group in PGL2 (k) generated by

A =
0

0
1 B

O  \ 
6 - 1

w - a »

of 1 and w = e + e"'' .

= -I, b5 = I, and
(AB) = y 1 for some ^ £ k. Moreover we may assume that A 
is in the form given by the lemma, 

a b
Put B = Then BAB = -1

c d

BAB =

r P 1 1
2  2  “ 2a £ ̂  + be 6  ^

1 1
ca £ + dc 6

1

ab £ ̂  + bd £
1 p 1
2  “2  cb 6  ̂  + d £

1

\
, and

"p —p ^So a <£ “ + be £ = ^ £ or be = ^ - a & , and
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2 "2 -1ab £ + bd C  = 0  or -a 6 = bdb , assuming b 4  0,
Then we can take B to be of the form

be bdb-1 2

using the above equalities.
We note that this matrix is contained in PGL^CkCa)) and 
k(a) is a commutative subfield of K. So if we insist on 
det B = 1, then we must have ^ = -1. Moreover B satisfies 
its characteristic equation, so

+ Ba( £ - 1) + 1 = 0  (16)
B^ + B^a( £ - 1) + B = 0
I + (1 - Ba(£-1))a( £ - 1) + B = 0 by (16)
I + a( £ - 1) - B(a2(£-1)2 - 1) = 0

In this the (l,2)-entries give a^( £ - 1 ) ^ - 1  = 0 ;
the (1 , 1  )-entries give 1 + a( 6  - 1 ) - a^( - 1 )̂  - a = 0 .

1Hence we have -1 + a( £ -* 1 ) = 0 or a = .

Substitute for a in B, then

B =
1

6-1

- 1-
(£-1 )

where w  = £ + 0

B

1
£ - 1

&
(6-1)

- £  
£ - 1 /

CÔ
£-1

-  ee-1
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Since these transformations leave A unaffected we have 
proved the lemma.

Summing up the results of lemmas 3.6, 3.8, 3.10, 3.12 
we have proved a main result of this chapter, i.e.

Theorem 3.13. let K be skew field with algebraically 
closed centre k. Then any finite subgroup of PGlgfk) is 
conjugate to one in PGlgfk).

Next we turn to the invariants of the icosahedral 
group, Alt^. Alt^ has three orbits, one of them consisting 
of 1 2  quintuple fixed points, so its groundform f must be 
of degree 12 in x^yXg. Now A of lemma 3.12 has map x»— v£x, 
where £ is a primitive fifth root of 1 ; and Alt^ contains

A^BA^BA^B e [ ) which has map x^-^-x” .̂ f must have a 
\1 0/

factor x^Xg since 0  and oq are the fixed points of xi— > £^x 
(i = 0,1,...,4). To be an invariant of x*— »£x it is 
necessary that the remaining factor is expressed by fifth 
powers in x̂  and x^ ; and to be an invariant of x*— >-x  ̂
this remaining factor must have summands x!j ̂  and x^^ with 
different signs. Since a groundform is a homogeneous 
polynomial in x^,Xg it must be of the form

f(x^,X2 ) = x^X2 (x] 0  + mx^x^ - Xg^),

where m remains to be determined.
Now the points of the orbits other than 0 ,c>o must be the

(0^



1 0  5  X jroots of X + mx - 1 = 0, where x = —  . So we have
1  " 2

x5 = - | i ( S ! ^ ) ^  (17)

2  3
But A^B has order 5 with map x>--» " ̂  - — . So its(8 + &4)x+i
fixed points, which are necessarily quintuple, are the

p proots of X + Ex - 0 = 0 .  This has solutions

X = ^ (-1 + ). Raising this to the fifth power enables

us to equate the result to (17). In this way we shall 
obtain m :

We take x = ^ (-1 - '\[5 ) :

(f(-1 --/^))^ = - ^(11+5{T )

So now - i(11+5if5' ) = i(-m+-jm^+4' )

(m-1 1 -S'/s’)^ = m^+4 

(-22-10-fDm+242+1 levs’ = 0

m = 1 1

Thus our first groundform is

f(x^,X2 ) = x^X2 (x^^ + 1 1 x^X2  - x]^) .

To determine the other two groundforms we need Hessian
and Jacobian determinants, the relevant facts about which 
we shall briefly recount :

Let k be a commutative algebraically closed field and
let A be a non-singular m x m matrix over k, with
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determinant r 4  0- Let F(x) = F(x^,...,x^) be a form of
degree n. If the variables x are changed to 9 • • • by
A, i.e. X = Ay, then F(x) becomes G(y) for some form G.

c) F(x. ,... ,x ) J G(y)
Put F__ =  r------ and G = -r— --- . ThenjxT

F
T

F.
n

(18)

Twhere A is the transpose of A.

Given m forms F^^\...,F^^\ put

/f(i)

A
X. F(i)\

?Um) P

m

(m)
X.m /

and let be the corresponding matrix for G^^^,...,G^^^. So
A * = A ^ A  by (18) (and A‘̂ 'A=Aa ). In particular we haveT

= r I A (  . (1 9 )

|A| = det A  is the Jacobian determinant of F̂ ** \  ... ,F^^^.
D F(x^ > • • •

Given some form F, put F.
=i=j x^ ̂  Xj and

H
% 1 = 1

F
V i

F
=1=2

F
=m=2

=1=m

=m=m /
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Let H* be the corresponding matrix for G. Then

H' = H A (20)

In particular we have |H'( = r^(H|. |H| = det H is called
the Hessian determinant of F.

Now we take the form F to be our groundform f and A 
any matrix of Alt^, then (f =) F = G and formula (20) 
shows that the Hessian H of f must be a relative invariant 
of Altr. We find

= 1 2 1  (-(x^^+Xg^) + 228(x^^x^-x^^x^) - 494x^^X2^)

As before it follows from lemma B that this must in fact be 
our second groundform. As groundforms are only determined 
up to a constant we may omit the factor 1 2 1 .

Next we form the Jacobian T of f and H. By formula (19) 
this will again be an invariant of Alt^.

^ "* " ^=2 ^ = 1

= 2 0  ((x^°+x^°)+522(x^5x5-x5x2^)-10005(x^°X2°+x]°X2°))

Again lemma B ensures that this is our third and last 
groundform; and again we may omit the factor 20. Then we 
have the following relation between the groundforms :

= 1728

m  :



Now groundforms ? are relative invariants :
= cFfx^pXg), which is (3), and A is an element of 

Alt^. Let N he the set of all elements of Alt^ such that 
c = 1. Clearly IC N, If A,B e N, then A~\aB^N. So N is 
a subgroup of Alt^. Moreover if A € N, then C"\AC<N for 
all C 6  Alt^. Hence N must be a normal subgroup of Alt^.
But it is a well known fact that Alt^ is simple, so N is 
either I or the whole group. It is easily checked that 
N 4 If e.g. A^BA^BA^B has map x»—-►-x"^ which is in N.
Hence N = Alt^. This means that f,H,T are all absolute 
invariants of Alt,

=1
6  Altj- and x = —  . Then we recall (2) :Put A = X 2

P(x) = ( yx + S P(A(x)), where P stands for f,H, or T.
F(x) m2 rp2

Hence P(A(x)) = ------— and it follows that —?(A(x) ) = —^(x)
t 2i.e. "T? is an element of degree 60 which belongs to the 
H^

fixed .field of Alt^. Thus we have proved

Proposition 3.14. Let Alt^ be the icosahedral group as 
given by lemma 3.12. Then the fixed field of Alt^ in 
is

|2 , r-OOnr25_-1 -I p,p.p,tr„1 0- % ( (x +522x'^^-: OOOSx -10005% ' ̂ +522x?+1 ) ̂ \ 
^ (-x^°+228x''5-494x’'°-228x^-1

,m2

We may write this in the form L(— 0) as usual.
H^
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This completes our investigation into the fixed fields 
of finite subgroups of PGLgCK) when the centre k of K is 
algebraically closed.

h) Outlook on the General Case

Finally we make some remarks about fixed fields in the 
general case, i.e. when k is no longer algebraically closed. 
To illustrate the problems that arise there we confine our 
considerations to the case of the cyclic group of order 
n which is assumed not to contain any quasiconjugations. 
Without loss of generality can be taken to be diagonal, 
with generator cC: x«— »axb"^. Now when k is algebraically 
closed we have lemma 3 .4 ; and since the generator of the 
fixed field of must be of degree n, those symmetric 
functions Pĵ  of lemma 3 . 4  which have degree less than n 
must vanish identically. The following result might lead 
one to expect a similar situation in the general case of 
(without quasiconjugations).

Proposition 3.13. Let K be a skew field with centre k. 
let a,b€K be such that a^ = b^ = A for some \ ^ 0 in k 
and some positive integer n. If a and b are not conjugate, 
then

Pi (x) = ^ 2  u^xb”  ̂= 0  . (2 1 )
' i= 0

Proof : Consider the automorphism oc : x«— >axb~^ of K^(x)
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over K. By assumption = 1, so any conjugate of o( has 
order n. Change variables in y = axb“ , say y* = y - Xq,
X* = X - Xq, where XqCK remains to be specified. Then

—• 1 "1 1y* + Xq = a(x* + XQ)b“ = ax'b~ + axQb“ . Hence
y* = ax'b + axQb"^ - x^. If we pick Xq such that

" *  1 1axQb" 4  Xq, then by lemma 1 .1 0 , c = axQb" - Xq is a
non-trivial solution of (21). Now since a and b are not 
conjugate, a,b do not have the same minimal equation over k 
by theorem 0.12. To prove the proposition we need to show 
that any c € K  is a solution of (21). Thus given c € K we 
want Xq such that axQb”  ̂ - Xq = c, or axQ - XQb = cb. By 
hypothesis and theorem 0 . 1 1  this always has a (unique) 
solution for Xq. So y* = ax*b"^ + c is of finite order for 
any c e K  and by lemma 1 . 1 0  c is a solution of (2 1 ).

This means that the first symmetric polynomial p̂  always
vanishes; however we are disappointed in our expectations
when we consider the second symmetric polynomial (and assume 
n >2) .* We have

Po(x) = X 2  o<^(x) oc^(x) = a^xb“^a^xb“^
, i,j^n - 1  ' i,j^n - 1

i + j i 4= j
2  ^ " 1  i -i 2So Pg(x) = p-j (x) - ̂ 2  (^ xb” ) . But we know p^(x) = 0, so

n— 1 • _ T pPp(x) = 0 if and only if >2(^ xb“ ) =0. As the

following example shows, this is not true in general :
Take K to be the real quaternions IH. Then k = IR.
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Take a = , then a^ = 1 ; and = j, then b^ = 1.

So a and b are not conjugate. Take x = 1. We can check

that %>I( )̂ j*̂ = 0 , confirming proposition 3 .1 5 , but

2  " - 2

So in the general case there may be functions of degree 
less than n in the fixed field of C^.

There also seems no reason to suppose that the fixed 
field of (without quasiconjugations) is still generated 
over K by a single element of K^(x). Finally, though this 
looks plausible enough, it remains to be proved that the 
field generated over K by the elementary symmetric 
functions is indeed the whole fixed field of (this would 
be the generalization of lemma 3.4). For the reasons given 
above, the arguments used when k is algebraically closed 
can no longer be applied in the general case.
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