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ABSTRACT

This thesis looks at finite subgroups of the pro=
Jjective group of 2 x 2 matriceé_over a skew field and
the invariants of these subgroups.

Chapter O recalls most of the preliminary results
needed in subsequent chaptefs.' In pérticular the cons=
struction of Kk(x) is outlined briefly. |

Chapter 1 establishes an isomorphism between the
group of tame automorphisms in one variable over the
skew field K and the projective group of 2 x 2 matriceé
over K, PGL2(K). It shows that if XK is of suitable
characteristic, then any element A of PGLz(K) of finite
order has either two or else infinitel& rany fixed
points in some extension of K. In particular this means
that such A can be diagonalized.

Chepter 2 is divided info three sections. Thé first
section deals Qith finite subgroups of PGL2(K) whose
elerents may have infinitely many fixed points. The
'second section analyses finite cyclic subgroups whose
elements have only two fixed points. The third section
finds the finite non-diagonal groups in PGLZ(K) whose
elements have exactly two fixed points. In particular a
complete classification is given of_thg_finite subgroups
of PGL, K) when the centre k of K is algebraically
closed. _ '

Chapter 3 shows that if the centre k of K is algebrai=
cally closed, then any finite subgroup of PGLZ(K) is in



fact conjugate to one in PGL2(k). It finds the fixed
fields in Kk(x)'of'the finite subgroups of PGL,(X) aad
shows that their respective generators are the same as

in the commutative case.
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INTRODUCTICN

Let k¥ be a commutative field. There is a well known
matrix representation of the automorphisms of k(x) over

ax+b

k, i.e. d.:3<~+3§:a is represented uniquely up to a
a b

scalar multiple by A = . Moreover if A is of
c d

finite order n in PGLg(k) (and char k4 n), then it can be
diagonalized over some extension of k. It is mainly
these two facts which make possible a complete classifi:
cation of the finite subgroups of PGL2(C), where C denotes
the complex numbers (or indeed of any PGLg(k), where k is
commufative and algebraically closed). It is possible to
determine explicitly the fixed fields of these finite
subgroups in their action on k(x) (this was done by Felix
Klein over a hundred years ago in [6]).
The object of this thesis ié to generalize these facts
as far as possible to the case‘where k is not commutative.
Let K be a skew field with centre k. In the first
chapter we shall find that all known automorphisms in one
variable over K can be represented by a 2 x 2 matrix A
(as above) which is ﬁnique up to a central scalar multiple.
As in the commutative case we shall also see that any
AAEPGL2(K) of finite order n can be diagonalized over
some extension of K, provided char K%’n. One main differs=
ence between the skew and the commutative case lies in the

occurence of non-central scalar matrices. These, as well

A



as their conjugates in PGL,(K), we call quasiconjugations.

Chapter 2 deals with finite subgroups in PGLe(K). In
particular a classification up to finite groups of

diagonal matrices is given of those finite subgroups

which do not contain any quasiconjugations. Indeed when

the centre k of X is algebraically closed this will
amount to a complete classification.

Chapter 3 proves that when k is algebraically closed,
every finite group in PGLQ(K) is conjugate to a group in
_PGL2(k). This allowé the adaptation of. some of the
methods used in the commutative case ‘o find the fixed
fields of the finite subgroups of PGL2(K). It turns out
that their generators are in fact the same as in the
comnmutative case.

Detailed summaries of the content of the various
chapters’are given~at the beginning of each chapter.
Chapter O does not contain any original work and such
results in the later chépters as are known not to be
original will be credited to their sources.

The author wishes to record his gratitude to Prof.
P.M. Cohn for his pat;ent guidance and encouragement

without which this work would not have been achieved.
A, Gruza

Bedford College
London

Novenber 1978
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0. PRELIMINARIE

In this chapter we assemble some of the facts and
definitions which will be needed in the following
chaptérs. ost of the theorems given here are due to
P. M. Cohn and unless their proof is of special interest
in our work later on we shall omit the latter but give
appropriate references. Where the most general form of
these results is not required we shall sometinmes recall
then in terms of the more specialized setting relevant .
to us. This willkSave us from making definitions which

are not used afterwards.

Iet K be a skew field with centre k. Denote by
Kk<x> the ring obtained by adjoining to K the indeter=
minate x, with defining relations =xc = ¢x for all c€k.

‘The general element of K, <x> has form

a + b,]xc,l + eee + brxcr + dqxeqqu + eee + dsxesxfs + ooy

. where a,bi‘,... € X,

In the commutative case, i.e. when K = k, we have
Ky <x> = k[x], the polynomial ring over k in one variable.
Then k[x] has field of fractions k(x), the field of
rational functions over k, which is fairly easy to
construct from k[x], mainly because the elements of k(x)
can all be written in the form fg'q, where f,z€ k4],
g ¥+ O. In the non-commutative case even the existence

of a field of fractions of Kk<x> is not obvious and its




construction requires very different methods. The
following is a sketch of this construction; further
details and proofs can be found in chapter 7/ of [3].
Essentially we shall find that the elements of a
field of fractions of Kk<x>'are obtained as components
of solutions of matrix equations. We shall also quote
a criterion for fhe existence of a "universal" field of

fractions of any general ring.

Let R,S be any rings and 2. a set of square
matrices over R. A homomorphism f: R-—S 1is said to

be ! - inverting if every matrix in 2 is mapped by f

to an invertible matrix over S. Assume f is 22 -

inverting, then the 2. - rational closure of R in S

(under f£) is defined as the set RZ(S) of all entries of

inverses of elements of £(3,) (the image of >, wunder f).

-2, is called multiplicative if I€2, and if A,B€S,,

AC

?hen (O B

)62, where C is any matrix of suitable size.

The next result characterizes the 2. - rational closure
in three ways. Denote by ey the column vector with 1 in

the i-th place and 0O's elsewhere.

Theorem 0.1 (cf. thm.7.1.2 in Ei]). Let R be a ring

and.éj a multiplicative set of matrices over R. Given
any . - inverting homomorphism f: R—>S , then the

>, - rational closure RE(S) is a subring of S containing
| im £, and for any x&€S the following conditions are

equivalent:



a) 'XERE(S) ; |
b) x is a component of the solution u of a matrix
equation
. Au +a =0,
where A€ £() ) and a is a column vector with
components in im f;
¢) x is a component of the solution u of a matrix
“equation
A -e, =0,

J
where A€ f())).

This theorem shows that every element of RZ(S) can be

obtained as some component u, of a matrix equation

i
Au = a. Here A is called the denominator of u,, and A,

(the matrix obtained by replacing the i-th column of A
by a) is called numeretor of Uy . This definition has
its Justification in the next result which strongly

resembles Cramer's Rule of the commutative case.

Théorem 0.2 (cf. thm.7.1.3 in [3]). Let u; be the

i-th component of the solution of Au = a , where A is

left }[zero divisor} if and

invertible. Then u. is a {right wnit

i
only if the numerator of uy has the same property in the

" matrix ring.

Next we recall the precise definition of the universal
field of fractions of a ring R. Given a ring R, an
R - ring refers to a ring L with a homomorphism from R

to L. An evic R - field is an R - ring K which is a

e



skew field and such that X is the smallest field con=
taining the image of R. We shall refer to epic R -
fields simply as "R - fields" since no others occur in
what follows. Note thatAR - fields need not exist for
every ring R. If the canonical mapping R-—aK is inject=

ive, we call K a field of fractions of R. Given R -

fields K,L, let f be an R - ring homomorphism from KO to
L, vhere KO is an R -~ subring of K such that every
element of KO not in ker £ has an inverse in KO. Such

f is called a specialization between K and L. It

follows that KO is a local ring with maximal ideal ker f;

hence Ko/ker f is isomorphic to a subfield of L, namely

im f. But since I is an R - field we find that im f = L.

Hence any specializaﬁion of R - fields is surjective.
Two specializations from K to L are considered equal if
they agree on a subring Ko of K and the comnmon
restriction to KO is again.a sﬁecialization.

The R -~ fields and spgcializationS'are easily shown

to form a category. An initial obJject in this category

" is called a universal R - field. Clearly if a universal
R - field exists it will be unique up to isomorphism.
Suppose R has a unifersal R -~ field U. Then R has a

field of fractions if and only if U is a field of

fractions; in that case U is éalled the universal field

of fractions of R.

Let 3] be a set of square matrices over R as before.
Let AN: R—Rj, be a ring homomorphism which is 2. -

inverting and such that any Z:e inverting homomorphism



f: R— S can be factored R >\ S R
2.

uniquely by A (i.e. such
that the diagram commutes). f l

)\ is calléd the universal

2. - invertine homomorphism and R is called the‘

universal 2. - inverting ring.

Theorem 0.3 (c¢f. thm.7.2.1 in [3]). ILet R be any
Ting andqzj any set of square matrices over R. Then
there is a universal 2: - inverting homomorphism

A R——*Rg, where RE is unique up to isomorphism,

A\ is injective if and only if R can be embedded in a

ring over which all the elements of 2, have inverses.

"‘The next result shows that any R - field is deter=
mined completely by the multiplicative set of matrices

which become invertible.

Theorem 0.4 (cf. thm.7.2.2 in [3]); Let R be any

ring. | | |

1. If Z: is a set of matrices such that the universal
3 - inverting ring Ry is a local ring, then the
residue-class field of Ry is an R - field.

2, If K is an-R - field and 2, is the set of all
matrices over R whose images in K are invertible,
then 2, is multiplicative and R is a local ring

2
whose residue-class field is isomorphic to K.

Next we shall give the promised criterion for the

existence of a universal field of fractions. To this

[



end we need some definitions. TLet A,B be two matrices

over a ring R. Then the diagonal sum of these matrices

is defined to be

. A O |
A+B= .
0O B
Note that this sum is always defined. Given two n x n
matrices A = (aij)’ B = (bij) such that aij = bij for
all i = 2,34e0e9yn and j = 1,2,..,0n 4, then the

determinantal sum of A and B with respect to the first

row exists; it is defined to be the matrix C whose first
row is the sum of the first rows of A and B, and whose
other rows agree with those of A and B. OSimilarly one
defines the determinantal sum with respect to another
row or column, if it exists. TITet A,B be two matrices
over R, not necessarily of the same size. A and B are

said to be stably associated if there exist invertible

matrices P,Q such that

63) -7 (3) e

for unit matrices I of suitable size. An n x n matrix A
over R is said to be full if it cannot be written as a
product of matrices P,Q , where P is an n x r matrix and
Q is r x n, and r<n. If this condition is not satis=
fied, A is said to be non-full. If A is non-full, then

its diagonal sum with any sgquare matrix B is non-full,

for if A = PQ, then A + B = (g %)(8 %) . However if

A is full, then it does not follow that its diagonal sum

8]



with another full matrix is again full. We are now in

the position to state the key result referred to above.

Theorem 0.5 (¢f. thm.7.6.4 in [3]). A ring R has a

universal field of fractions over which every full matrix

can be inverted if and only if

1. 1 % O and the diagonal sum of any full matrices is

full;

2. the determinantal sum of any non-full matrices,

whenever defined, is non-full.
From this follows

Theorem 0.6 (cf. thms.7.6.5%6 in.f3]). Let R be any

ring in which the set Z: of all full matrices is

multiplicative.

1. If f: R—S is a 2o = inverting hoﬁomorphism (where
S ¥ O), then f is injective and the Z: - rational
closure is a field of fractions of R.

2. The universal 2 - inverting homomorphism A R-—,‘-Ra
is an embedding of R into the universal field of

fractions of R.

Thus we come to the result most relevant to us:

Theorem 0.7, Kk<x> hes a universal field of fractions,

obtained as the universal ring inverting all full

matrices.

Without going into any further details we Jjust

mention that the proof of this theorem rests on the fact



that K, <x> is a free ideal ring ("fir" for short).
We shall denote the universal field of fractions of
Kk<x> by Kk(x).
Early in chapter 1 we shall use the following

Theorem 0.8 (c¢f. p.152,202 in [4]). Tet K be a skew

field with centre k and let A = A(x) be a square matrix
over K,<x>. Then A is stably associated to Bx + C,

where B,C are square matrices over K.

The proof is essentially the process of "linearization
by enlargement". To elucidate this process we suppose
that the (n,n) entry of an n x n matrix has the form
- f + ab. Ve enlarge the matrix by taking its diagonal
sum with a 1 x 1 unit matrix and then apply a series of

elementary operations, as follows:

f+ab O f 4+ ab a f a
f + ab —>
-b 1

It is clear that this amounts %o stable association
"between the original matrix A and its enlarged form A'.
By repeated apprlication we can enlarge A to the form
A' = AO + Aqx as required.

The linear matrix Ay + A x thus obtained is called a

companion matrix for A(x). Of course A, and A, are not

unique. We note the following fairly obvious

Temma 0.9. If a matrix A(x) over KE<X> is invertible,
or full, then any companion matrix of A(x) has the same

property.




~Let K be a skew field and let A be a square matrix

over K. A singular eigenvalue of A is an element a€K

'such that A - al is singular. It is not known whether
every square matrix has a singﬁlar eigenvalue (in some
extension of K). However this question forms part of a
general conjecture quoted at the beginning of chapter 1
and which entails a positive answer, as shown by Cohn in
(4], p.oox.

An element a€ K is called a right eigenvalue of A if

‘there is a non-zero column vector u, the eigenvector

corresponding to a, such that
Au = va .

Similarly a left eigenvalue is an element b€ K such that

for a row vector v we have vA = bv., It is not difficult
to see that left, right and singular eigenvalues in the
centre of K coincide. Generally however there seems to be
little connection bétween left and right eigenvalues on
the one hénd and singular eigénvalues on the other. It
‘can be shown that a square matrix A over K always has a
right (and left) eigenvalue in a suitable extension of K.

One consequence of this fact is the. following

Theorenm 0.10 (cf. thm.8.4.1 in [4]). ILet K be a skew

field, then any equation
}(n + a,lxn—/l + eee -+ 311 = O (ai€K> (1>

has a solution in some extension of X.

The proof rests on the fact that any companion matrix

S



of this equation (considered as 1 x 1 matrix over Kk<x>)
has a right eigenvalue ¢ in some extension of K. This ¢

is easily seen to satisfy (1).

There is one other result on a particular type of

equation (over K) which we shall need:

Pheorem 0.11 (cf. thm.8.4.4 in [4]). Iet K be a skew

field which is a k-algebra, and consider the equation
ax - Xb = ¢ (a,b,c€K). (2)

1. If a,b are both transcendental over k, (2) has
infinitely many solutions in a suitable extension
of K. ‘

2. If one of a,b is transcendental over k and the other
algebraic, then (2) has a unique solution in X or
any extension of X. |

3. If a,b are both algebraic over k but wifh different
minimal equations over k, then (2) has a unique

' solution in K or indeed in any extension of K.

4, If a,b have tﬁé same minimal polynomial f ovef the
centre k¥ of K, then (2) has a solution in K (orvin
any extension of K) if and only if either ¢ = 0, or

(t -= cbe™ 1) (% - a) divides £ in K[t].

Ve shall in fact only make use of parts 3 and 4. The

condition in part 4 becomes clearer with the next

Theorem 0.12 (cf. thm.8.5.2 in [4]). Iet K be a skew

algcbraic .
field with centre k. Two elements a,b& K are conjugate

[é



1

in X (i.e. cac™ = b for ce X, ¢ ¥ 0) if and only if a

end b saltisfy the same minimal polynomial over k.
From this we can deduce another useful result, i.e.

Theorem 0.13% (cf. thm.8.5.4 in [4]). In a non -

commutative field K, every element is contained in an

infinite commutative subfield.

In particular thié means that the centralizer of any

_element of K is infinite.

It will be necessary to have a non-commutative
analogue to commutative algebraically closed fields.
This is problematic since not all properties of coeommuta=
tive algebraically closed fields can bé carried over .
into the skew case. For instance over a commutative
_field every equation has a solution in some extensionr
and in the algebraic closure of that field in particular.
As theorem 0.1%, part 4, shows this need not be true in
.general. So what we shall define is a closure condition
on a (skew) field K to the effect that if a system of
equations over K has a solution in some extension of K,
then it has already a solution in K itself. More

formally,

Definition : Any sentence of the form

3&1, e v e [ %P(aqg'."an) 2

where P is an expression obtained from equations by

7



negation, conjunction and disjunction is called an

existential sentence. By an existentially closed field,

EC -~ field for short, we understand a field X such that f

any consistent existential sentence (i.e. one which

holds in some field extension of K) already holds in X.

If K has centre k, then k is existentially closed if
and only if k is algebraically closed. But if X is
existentially closed it does not follow that k is
algebraically closed. We have an embeddihg thecrenm as

in the commutative case:

Theorem 0.14 (cf. thm.6.2.2 in.[QJ). Let K be any

(skew) field, then there exists an EC - field L
containing K, in which every finite consistent set of

equations over K has a solution.

Note however that L in this theorem will not be
unique in any way, even when assumed minimal over K.
It is therefore not possible to speak of "the

‘existential closure" of a skew field.

This concludes the preliminary chapter. Any other
non-original results that we shall use will be recalled
(with appropriate reférences) in the context of the work

that follows,



1. TAME AUTOMORPHISMS;

THETR REPRESENTATIONS AND FIXED POINTS

Introduction

Throughout this chapter X will denote a skew field
" with centre k. Tet GO be the set of all automorphisms
of Kk(x) over K (i.e. whichvkeep K fixed). G, clearly
forms a group. ‘

In the commutative case, i.e. when K = k, each
element of GO has the forﬁ of a linear fractional trans=

formation

e )

where a,b,c,d €k are unique up to a common factor and

ad ~ bc $# O. Every such automorphism can be represented

a b
A =
¢ d

which is unique up to a non-zero constant of k and which

by a matrix

" in turn determines « uniquely. furthermore it is not
difficult to see that every « of finite order n (such
that the characteristic of k does not divide n) has
exactly two fixed points in an appropriate extension ofv
K(= kL for instance in the algebraic closure, and that
with the help of these fixed points &« can be put into

the normal form X WX, where W is a primitive n-th

 ——



root of 1 (in terms of A this amounts to diagonalization).

The aim of this chapter is to generalize these
results as far as possible to the non-comrutative case,
i.e. when K # k.

We encounter a major stumbling block virtually before
the beginning because in the skew case it is not clear
whether every element of GO is in fact a linear fractional
transformation, i.e. of the form o : x> (ax + b)(cx + d)"/l
as in the commutative case. A distinction must therefore
be made between wild and tame automorphisms (the latter
being of form « ), although the existence of the former
is uncertain.

After a brief femark on wild automorphisms we shall
turn to tame automorphisms exclusively. Benz showed in

[QJ that these form a group. Giving a new proof we show

in addition that it is precisely the tame automorphisms
which are representable as 2 x 2 matrices which are I
unique up to a centrai multiple - as in the commutative - |
case. The main result of chapter 1 will tell us that |
every tame automorphism whose order is not divisible by
the characteristic of K has either two or else infinitely :
- many fixed points‘(in some extension of K, e.g. in some
existentially closed field containg K). This will mean
that all the normalization results mentioned above for
the commutative éase can be carried over to the non-

commutative case.



a) On Wild end Tame Automorphisms of K, (x) over K

Let K be a skew field with centre k and let GO be
the group of all automorphisms of Kk(x) over K. Denote
by G the subset of GO consisting of all transformations

of the form
& : x—>(ax + b)(ex + ci)"’l R (2)

where a,b,c,d € K are such that the matrix {g B) is

invertible.

The elements of G are called tame autcemorphisms, all

others correspondingly wild automornhisms. It is not

known whether wild automorphisms exist at all, i.e.
whether G is a proper subset of GO. |

In the special case where the centre k of K is
algebraically closed we can describe the wild automor=

- phisms (if any exist) more explicitly if the eigenvalue

conjecture by P. M. Cohn ([4], p.204) has an affirmative.

solution.

The conjecture says the following: ILet K be a field
which is a k-algebra and assume that k is algebraically
closed in K. Then every square matrix A over K has a
non-zero.singular.eigehvalue in some extension of K
unless A is conjugate over k to a triangular matrix.

If this were shown to be true, then if wild automor=

phisms exist at all of Kk(x) over K, they will have to *©

be conjugate to

XHa + b/le2 + C,]:{'02+ e e (a,bi,ci,oao GK) (5)

2



To see this let « be an automorphism of Kk(x) over
K. Clearly «(x) will generate Kk(x). We claim that
& (x) is conjugate to some uqeiKk<x> (necessarily also
a generator of Kk(x) ), and thatlxész<u4>. If this holds,
then for polynomials f,ge K, <x> we have f(uq) = x and
g(x) ="uy, i.e. £(g(x)) = x. But if w = deg £, v = deg e,
then vw = 1, so v = w = 1, Hence f and g have form as
indicated on the right hand side of (3) and « is as in
(3). Note that if it turned out that there is only one
summand of degree 1 in (3) we would have a tame automor=
phism. The conjecture does not therefofe entail the
existence of wild automorphisms, it Just limits the form
they might take.

To prove the claim we note that u, (like any other
element of Kk(x) ) cean be obtained as the first component
of the solution to a matrix equation Au = a s, Where A
(the denominator) is a full square matrix over K <x>.
Using theorem 4.4 ("On Universal Denominators") from a
paper of P. M. Cohn ("The Universal Field of Fractions
of a Semifir", to appear) we can say even more about A.
The relevant part of the theorem may be restated as

.follows:.

Given any pé&K#(x), there is a representation for p
"~ with a denominator which is non-singular over any
Kk<x>~field in which p is defined. (In fact the theorem
holds for more general rings than Kk<x>),

Clearly X is a Kk<x>-fie1d, with homomorphism e.g.

p(x) > p(0) from K, <x> to K.




Returning to u, we note that u, may not be defined at
a certain value (the value being the image of the point
"at infinity" under o« ). Vithout loss of generality we
may take that value to be the point "at infinity" itself,
for if the value is finite,.say x = d, we change
variables by putting vy = (x - d)-q.

So u, is defined at all finite values and according
to the theorem above we may take A to be invertible for
any finite value of x in K, and in particular for x = C.

We want to show that A is in fact invertible in K <x
for then u = A™la , giving the claim. Ve know A is
stably associated tq AO + XA,l s Where AO’A1E‘Kn for

some n by theorem 0.8. But A(O) is non-~singular, there=
fore so is Ay, by putting x = O in'AO + xA . Multiplying
out by Aaq,gives us A in the form A = I - xA, without
loss of generality since multiplication by A51 obviously
does not affect the,poséible invertibility of A. By
hypothesis I - qu is non-singular for any finite x€X.
This is equivalent to saying Ix - A,I is non-singular
for any non-zero x€K, i.e. A,l does not have a singular
eigenvalue in any extension of K. By the conjecture A1

1

is triangularizable over k, say P~ AqP = T , where P has

its entries in k. If T has a non-zero diagonal element

%, then I = Tt~

is singular, contrary to the hypo=
thesis. So the diagonal entries of T are all zero.
Nence P~1(I - A,;x)P = I - Ix -and A is (conjugate to)
a trisngular matrix with 1's on the main diagonal.

Therefore A is invertible in Kk<X). Thus RIS Kk<x> and

&




by symmetry X€]%51M>, giving the claim.

In what follows we shall consider tame automorphisms
only. For the remainder of this chapter we shall not
impose any conditions on K or on its centre k.

Let « be a tame automorphism as given in (2). Then

we obtain a representation by mapping « to 3 3) or

rather, by mapping &« to the set of central multiples of

this matrix:
To see this we take another automorphism

B : x—(Ax + B)(Cx + D)"/‘, vhere A,B,C,D€X, and we
show that m/3 is represented by the matrix product

(a b)(A B) . ’

c d/\C D/ °
«/3 maps x to 4
(a(Ax + B)(Cx + D)"1 + b)(e(ax + B)(Cx + D)'1 + d)'1
((ahx + aB) + (bCx + bD))((cAx + ¢B) + (aCx + dD))~

((aA + BC)x + (aB + BD))((ch + dG)x + (cB + ap))™"

aA + bC aB + bD

which is represented by ( ) ‘as desired.

cA + dC ¢cB + 4D

We also need to show the uniqueness of this
representation, i.e. -the uniqueness up to a central

factor. To this end we note the following

Temna 1.1. Every tame automorphism « (as in (2) )

can be written in one of the forms

P: x—ra'xbh' +¢' , a',h' £ 0

Vi x—a''(x - p)’qb" +q , a''"yb'' 4+ 0

e
¢

B i s



’according as ¢ = Oorc % O.

Conversely eny automrphism of the form Y or Y is tare.

Proof : If o« : x+—(ax + b)(cx + d)"ll and ¢ = O,
-1

then & is of form ¥ with b' = d~', a' = a and ¢' = bd~

Conversely any P is obviously alwajs of form & with

c =0, Ifc4¢ O, then & is of form ¥ with

1 1 1

d, b" = c- 9 P = "'C_ /l

a'' = b - ac” d, ¢ = ac” . Ve

note that a'’ + O since (i 3) is non-singular.

Conversely, given YV, then this can be brought into the

1 -1

form of « by teking a = gb''" ', b = a'' - gb''" 'p,

c = b"-q, d = b"-qp.

NQw we show the uniqueness of the representation by
showing the uniqueness of the mapsiﬂo and ‘f, i.e. by
determining how far the constants of ¥ and ‘f can be
changed without altering the mappings themselves. We

begin with Y.

Let a(x - p)-qb +q = A(X - P)-qB +Q
where a,b,A,B # O. Then

(b"’]xa"lI - b-qpa_q)_q +q = (B'qu'q - 37

3 1xa~ 1o e Y+ (6™ Txa b T pa Nya (3 a2 Tea™)
= 0 ka1 Tpa Y+ (b k™ T-v" Tpa~ YB3 a3 e,
Compare the terms of degree é in this :
b-’|>ca"'1<;113-’|XA-/l = b-qxa-qQB-qu-q .
This shows that Q = q, leaving us with
B lsea™ - p~lpa~1 = v Txa™ - b-qpa"q .

pA~ N4 so



‘ Compare the terms of degree 1 in this

1 1

1 xa; .

xA” ' = b—/‘

B~
Let A"'1 = a"ll)\ R 51 - r(b'/] for some X,/ueK. Then
a'll(x - /\xla)b'q =0,

S0 X = >\qu and hence )\"1 = {Aek. . Substitute this in

~1 1 =1

B~ pa~1 _ b pa” =0

for A and B, then
"IN PA e - v - 0
hence P = p.

Similarly one shows for ‘P that the constants cannot
be changed without affecting the transformafion except
where a',b' are simultaﬁeously repiaced by atA R NTpe
respectively, where >\€ k. A

The matrix for ¥: xHa(x - p)'qb + q is therefore

'(q<b>\'“>” @ - qcbx”r“.p) - ) (qb-1 a - ap)

(s~ - (X H Ty b~ ~ b 1p

and the matrix for Y: xw—raxb + ¢ is similarly

al q(b}\'/i,)'/l ' \ a qb'q
= / o 1

0 (xxH b

This shows that the representing matrix of 7!’ and ‘F,
and hence of &« is unique up to a central scalar

multiple.
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Let GLZ(K) be the group of invertible 2 x 2 matrices

~over K. Let Z be the centre of GLo(K). 2 is in fact

the grbup of central scalar matrices in GL2(K). Define |
PGL2(K), the projective group of invertible 2 x 2 |

matrices by . l
‘ |
Then we have proved

Theorem 1.2. Let GO be the group of all automorphisms

of Kk(x) over K and let G be the subset of all tame
automorphisms. Then the bijection between G and PGL2(K)
is a homomorphism from the latter into GO‘

Hence G is a group.

I
This last result can also be found in EQJ; however ;
the argument presented here seems both simpler and more 5

illuminating.

Note: 1) Similarly the transformation

x+—(xa + b)(xc + d)—’l has a matrix representation (i g) .

But here if « has matrix A and f3 has matrix B, then df3
- would have representing matrix BA. The isomorphism

- between PGLE(K)’and G in theorem 1.2 would become an

. antiisomorphism. We shall therefore choose to write our
transformations as before, x having its coefficients on

the left.

2) Strictly speaking.the transformations (2) are not

represented by one matrix, but rather by an equivalence

27



class of matrices, namely those matrices differing by a
central scalar factor} "matrix" shall therefore mean

"class of matrices" as described.

b) Normal Forms

The obJject of what follows is to find out how many

fixed points the automorphism
&+ x—> (ax + b)(cx + d)“q (2)

has when it is of finite order.

& 1is said to have a fixed voint (in K') if it has a

fixed point in K'Uf*}, where X' is some extension field
of K. In other words, if Xg lies on the projective line

of some extension K' of K, and %4 satisfies

Xg = (axo + b)(cxO + d)"1 5

then X0 is called a fixed point of & (sometimes we
shall-add: in K'). DMNore accurately, xy is a fixed point

of the action of &K on the projective line of K',

Temma 1.%3. o has the same number of fixed points as
any of its conjugates.
Proof : If x5 = Xq and Te€ PGL2(K), then
-1 : | —_—

gsince T is an aubtomorphism.

It follows that in order to show the existence of a

fixed point for & we only need to show the existence of

WAY



a fixed point for an appropriately chosen conjugate of !
& . VWe remark once more that the point "at infinity"
will also be eligible as fixed point, since we can ’

/]

always change variables, e.g. 'y = x ', to transform it ‘

to a finite fixed point and vice versa.

Lemma 1.4. TLet & be as in (2), not necessarily of
finite order. Then & has at least one fixed point (in

some extension K' of K).

Proof : Ve may assume that ¢ + O in « for otherwise
o« is of form ¥ which has a fixed point at infinity.
But if ¢ # O, then « is of form Y: xrsa(x - p)"qb + Q.

Put Tyx = x - g and 'ng = xb and T= T, T Note

2.

that ‘C,],"Cz and therefore T are tame automorphisms,

hence in PGLz(K). Then ‘C'1'f"C is a map of the form

Y x> A(x - P.)"l R |

-1

where A = ab ', P = b'q(q - p). But ¥' has a fixed

‘point x4 if and only if x4 = A(xo - P)"q. Such x, is —
known to exist since the equation x2 - xXP - A =0 has

a solubtion in some extension K' of K by theorem 0.10.

It will be useful to fix some terminology: VWhen we
mean the matrix (class) representing « we shall simply
refer to "the matrix of « ". Conversely if AePGL2(K)
is given « will sometimes be called the "‘map of A",
Vhen a matrix is conjugate to a triangular matrix we

shall say it is triangulerizable. Similarly when it is
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conjugate to a diagonal matrix we say it is
diagonalizeable.

The next theorem will show why we can use the terms
"fixed point" (of « ) and "eigenvector" (of A, the
matrix of « ) interchangeably. In this theorem we do
not need & to be of finite order. However we shall see
later (in theorem 1.13) that for « of finite order
there will always be at least two fixed points (over a

sufficiently large field of appropriate characteristic).

Theorem 1.5. Let & be as in (2) and let AJEIGLE(K)
be the matrix of . ’

1. Tet (i;) be an eigenvector of A, corresponding to a
right eigenvalue. If x, # O, then x1x51 is a fixed
point of X, and if x, = O, then o has a fixed
point at infinity.

2. Conversely, if Xg is a finite fixed point of «&«, and

Xq,xzeiK are such.that XO'= X1X§1, then (ﬁg) is an
eigenvector of A corresponding to a right eigenvalue;

if ® has a fixed point at infinity, then (8) is an

cigenvector of A, corresponding to right eigenvalue
z“qaz, where z‘is an arbitrary non-zero element of K.
The eigenvector obtained from a fixed point is thus
unique up to right multiples.

3. Eigenvectors of A (with right eigenvalpes) which are

lincarly dependent on the left yield conjugate fixed

points of . &, whereas eigenvectors linearly dependent
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on the right correspond to the same fixed point.

Proof ¢+ 1. OSuppose A has right eigenvalue X, i.e.
a b X | X
1 1
= /\ . (4)
¢ d X5 X5

Then ax1+ bx2 = qu and cx, + dx2 = X2>\-

If x5, + 0, then

(axq + bxp)(exy + axp) ™! = (g )(X2>\)'1 = x%;, and

(ax,I + bxg)(cx1 + dxz)—/I v (axq + bxg)xéqxz(qu + dxz)-1

-1 -1 -1
(ax1x2 + b)(cx1x2 + 4d) 7,
S0 x1x51 is a fixed point of X as claimed. VWhen x, = O,
then ¢ = 0 and the point at infinity is clearly a fixed

point of « .
. ‘s -1
2. If x5 is flnlte and (axo + b)(cxO + 4) = Xgs then

<a,b) (XO) ) xo) x s )
¢ d 1 . 1

x
1

%2
th . A =1 -1

~that (4) holds with = X5 (cx,lx2 + d)xz.

But if x4 = quéq, then (f0)= ( ) ng and so we find

is the point.at infinity; then ¢ = 0, so

o)) - G)

for any z ¢ O in K.

If XO

. : -1
Hote that if x, = qug , then



1

Xq = xqee' x51~= xqe(xge)"q, 50 X, yields eigenvector

(i;g) = (;c;)e, where e is an arbitrary non-zero constant
in K3 4in other words the eigenvector is unique up to
right multiples. |

3. DBuppose two eigenvectors (with fight eigenvalues)
are linearly dependent on the left. Then their lower
entries are either both zero or both non-zero. If they

are zero, then by part 2. both eigenvectors correspond

to the fixed point at infinity. We may assume therefore

that the eigenvectors are (Xﬂ) and |91 y Where X,,y~ are
X5 Yo 22

non-zero. We may take X497 to be non-zero similarly.
Then for some r,s ¥ O r(?ﬂ) + s yﬂ) = 0, so

, x2 Jol - |
i) rxq + sy, = 0 and ii) TX, + sy, = O. Since x5, ¥ 0

we have by ii) T = -syzxgq. Substitute this for r in i):

1 1

-sy2x51x1 + 874 = 0. So since s % O,vxg xd = yé T4

L qydygqya and hence

/i

-1 =1 -
But then. X que X4 = J4

(quqq)"qqugq(xdyqq) = yqygq. So x,%5 and y,]y;l are
conjugate and by part 2. this means that the fixed points
yielded by the eigenvectors are conjugate.

If two éigenvectoré (with right eigenvalues) are linearly

dependent on the right, then we may assume as before that

their entries are all non-zero. Then for some r,s { O

(ig)r + (?;)s = 0 and i) xqT + y48 = 0, 1i) x> + yys = O.

As before we replace r by -ngygs in i) end find

(o
fo




1

x1x5 = yqygq, i.e. that the fixed points yielded by

both eigenvectors are in fect identical.

_The converse of part 3 of this theorem does not in
general hold, i.e. if XnTo are conjugate fixed points
of « it does not follow that all the eigeavectors
obtained from X5eTo are linearly dependent on the left.

What we can say however is the following

Corollary 1.6 : Xns¥g are conjugate fixed points of

& if and only if there exist two eigenvectors (ig), (;;)

for A which are linearly dependent on the left and such
-1 _ «T1 _

that XXy = X and T4I2 = Tge

1

Proof : If y, = cxob- » then we take x, to have

eigenvector (goe) and Jo to have eigenvector (;goe),
where e is an arbitrary non-zero constant in K. Then

o] (ge) - (gge) = 0 shows the linear dependence on the

left of these particular eigenvectors derived from the
fixed points.

The converse is part 3 of theorem 1.5.

We observe that if we choose different constants e in
the vectors for x, and Yoo then we cannot establish
linear dependence on the left of these eigenvectors.

A‘noteworthy feature of part 3 of theorem 1.5 is the
fact thet linecx depeﬁ%e on the right and-on the left

are not symmetrical properties; linear dependence on the




right of eigenvectors with right eigenvalues turns out
to be a stronger condition than linear dependence on the
left (though the former property does not quite imply
the latter). The reason for this lies in the particular

representation we chose for «. For instance if

A = (i g) were to represent « in the form

xr=(Ccx + d)fq(ax + b) , then part 1 would have to be

modified to show that an eigenvector (with right eigen=
valve) of form (§1) yields a fixed point xéqxq. Then
5 :

the argument for part 3 would meke linear dependence on
the left the stronger property.
The following lemmas show how fixed points are used

to achieve a normal form for x and its matrix.

Lerma 1.7. The matrix A of K is triangularizable
(in some extension of K). Equivalently, x is always

conjugate to a map of form ‘P.

Proof : By lemma 1.4 « hés a fixed point, s0 by
theorem 1.5 A.has a column eigenvector, u say,
corresponding to a right»eigenvalue, z say. Then
Au = uz. Let v be a column vector linearly independent
of u on %he right;A Then for some t,yeK, Av = ut + vy.

Now take P = (u v), then P is invertible and
-1 _(z t) |

P AP = oyl:®
1

PT'AP has map x&e>zxy-1 + ty, i.e. a map of form ‘P._
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Proposition 1.8. Suppose « has two inconjurate

fixed points. Then the matrix of « is diapgonalizable.

Proof : DBy lemma 1.6 «£ is conjugate to a map of
form Y. Since & has two inconjugate fixed points, g
must have a finite fixed point (the'other fixed point of
f’ being at infinity)., ILet ¥ be the map y = axb + ¢
and denote the finite fixed point.by Xge Then
Xg = 8Xgb + c. Change variables, y = y' + Xq and
X = x' + Xge $hen '+ xg = a(x' + x)b + ¢

= ax'b + axob + ¢ = ax'b + Xg e Hence y' = ax'b which

a o
has matrix -1/ -
0D

An alternative proof runs along the lines of lemma 1.6:
Since the fixed pbints of x are inconjugate they yield
two right linearly independent column eigenvectors for
the matrix A of & . These are used in place of u and v
in the proof of lemma 1.6. P~ 14P will then be diagonal.

Note that diagonalizing A amounts to transforming the
fixed points X51%4 of « to O and o respectiﬁely, and
indeed one could also prove proposition 1.8 by replacing
x in & by (x - XO)(x - X1>-1 and calculating the
resulting form of this conjugate of .

If we have a set of matrices of PGLa(K) whose maps
share the same two>fixed points, then the diagonalization
procedure described above can be applied to all the

matrices in the set simultaneously. In particular we

have

et e e



Corollary 1.9. Let G be a group in PGLE(K) all
elements of which have at least two inconjugate fixed
points in common. Then G is conjugete to a group in

PGL2(K) all elements of which are diagonal.

If.we were able to prove the existence of a second
fixed point for every matrix in PGLZ(K) of finite order,
then we would have shown that every such matrix is
‘diagonalizable, Just as in the commutative case. To
this end we note that we have a normal form for

triangular matrices:

Temrma 1.10. In PGLg(K) any (non-unit) upper

triangular matrix is conjugate to an upper triangular

matrix with 1 zs its (1,2) entry. .
1

Equivalently any (non-unit) map ¥: xw axb~ + g is
‘conjugate to a map
. x — axb~ 1 + b1 . - (5)

Proof : Let A = (g g , where ¢ ¥ O, then A has map

+ cb T, Change variables: y = ¢y', X = ¢X';

-1
~1 which has matrix (c Oac g) .

y = axb™

then y' = ¢ Tacx v + b

If ¢ = O,'i.e. A is ‘disgonal, choose an element p€K
such that ap - pb # O « This will always be possible
unless a = b€k, which is ruled out since A is not the

unit matrix., Put 4 = ap - pb. Then noting that

a -1 il _d-ﬂp :
= , we find
0 1 0 1 :
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a pY fa o) [a p aTaa 1
o 1 o v/.\o 1]/ c b

¢c) The Existence of the Second Fixed Point

By lemmas 1.3, 1.4, 1.7 and 1.10 we know that every

K as in (2) is conjugate té a map of the form (5).
Throushout the remainder of this chapter «, or P es
in (5), will be assumed of finite order. Moreover we
shall assume that the chai‘acteristic of our field K does
not divide the order of &, i.e. if «™ = I, then
char K«f’n. .

The following lerma describes the fact that ‘P is of

finite order in terms of its constants.

Temza 1.11. ¥: x~>axb™| + ¢ is of finite order n
n-1 . . '
" if and only if &% = b = Nek and > a'cht =0 .
: i=0
Proof : If Px = axb™ 1 4 ¢, then we claim that

n-,

"an = a’xb P ¢ § ' atepr™t .
1=

If this holds, then Y"x = x if and only if & = b = Aek
n--1 ‘

and aicb"i = 0.
ii%

We show the claim by induction on n. For n = 1 it is

obvious. Assume the claim holds for n - 1. Then we have
» ' T n-2 . .
\fn'qx = an',lxb"(n"]) + > ateb”™t .
. 1=0, 5
D= . .
- - -(n- i .~1i
But then P™x = a® Taxb™! + ¢)b (=13 :ITASO. atch




n-2 . .
= axb™! 4 an—ﬂcb-(n~1) + E atep™t
i=0
n-1, . .
= a%xp™ + S atevt
; i=0

proving the claim,

-1

It follows that P: xm—> axb™ ! + b~ will be of finite

' ' n-1 . .
order n if and only if a® = b" = Aek and > a’b™t = O,
o)

Now (5) will have a finite - the second - fixed point

if x4 = axob"’| + b1 for some Xgs i.e. if

ax - xb = -1 - (6)

has a solution in some extension of K. Since o« is of
finite order we know from lemma 1.13 that &= = bd° = )usk,
i.e. that a and b are algebraic over the centre k of K.
We recall the relevant parts of theorem 0.11 :

Consider the equation
ax - xb = ¢ (a,b,c €K) (7)

3. If a,b are algebraic over k, but a,b have different

minimal equations over k, then‘(7j has a unique
- solution in K or any extension of K. |

4. 1If a,b have the'same minimal polynomial g over k,
then (7) has a solution in K (or in any extension of
K) if and only if either ¢ = 0, or (t - cbc'1)(t - a)
divides g in K[t] , where K[t] is the polynomial ring
over K with central indeterminate t.

Tor our case (where ¢ = =1) this means that if a and b
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do not have the same minimal equation over k, a unigue
second fixed point exists for (5).
- If a and b do have the same minimal equation over k

we distinguish two cases :

1) The minimal equation of a (and b) is not % - \,
i.e. % - A\ is reducible over k¥ (A €k).
Let g = O be the minimal eguation of a and b over k.

Then we have the following

Lemma 1.12. Assume the characteristic of X does not

divide n. Then (t - b)(t - a) divides g in K[t] if and
only if (t - b)(t - a) divides t© - A\ in K[t].

Proof : If (t - b)(’q - a) I g, then clearly
(t - b)(t - a) ,tn - >\ since t% - A\ = gh for some
heX([t], by definition of g.
Conversely assume (% - b)(t - a) Itn - A . Since the

characteristic of K does not divide n we know that t% - )\

must be separable. DMoreover since £ - >\ is reducible
in X[t] we have t" - A = gh, where g and h must be
coprime. This means that there exist polynomials

u,ve K[t] such that gu + hv = 1 . It follows that

geu + ghv = g . But by definition gek[t], so
& = g(t - blgs
= (t - b)eg,

_ =(t - b)(t - 3)8182
for some g,],ggeK[t] . By hypothesis also -
(t -~ b)(t - a) l gh, therefore (t - b)(t - a) l g o

Av)



It is interesting to observe why the condition on the
characteristic of K is necessary in lemma 1.12 : If

charvK |n, then t% - >\ is no longer separable, for
L N T TG iR i PR o I L S €)'

since t is a central variable. Put - -

A YT T bn-ﬂ, then the equation

£f(t) = ¢
£(%)

factor of f£(%). Hence for some heK[t],

O now has the solution t = be So t - b is a

2 - N\ = (% —_b)2h(t) and lemma 1.12 need no longer be
true. .

With lemma 1.12 the treatment of case 1) becomes the
same as that of case 2), i.e. we may assume without loss_

of generality that t® - A\ is irreducible over k.

2) The minimal equation of a and b is t® = A.

Then (6) has a solution if and only if (t - b)(t - a)

divides t% - N\ in K[g . But t® = N = (t - b)£(t) as
in (8). So by the division algorithm in X[t] we know

that
f(t)‘= (t - a) h(t) + £(a) -

for some heX[t]. £(a) is obtained by writing all
coefficients of f£f on the right of t and then substituting

a for t. But (6) was derived from (5) which‘is of finite
' n-1

order n. By lemma 1.11 this means that :E% a
1=

i.e. f(a) = 0. Hence f£(t) = (t - a) h(t) , i.e. £(t)

is divisible on the left by t - a . By (8) therefore ve

ib-l -0,
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must have
2= A= (t - b)(t - a) h(%) (9

which shows that (6) has a solution and (5) has a second
fixed point.

There 1s also a more direct way of showing that
(t - b}(t - a) divides t" - A\ (and hence g in case 1) ),
which does not use the division algorithm of K[t] and

which gives h(t) of (9) explicitly : Ve show that

-2 a
(- B)(t - a) ( n% B2 ¢ > a b3> ) =% -\ (10)
Ir=0.

i+j=r

by evaluating the coefficients on the left hand side :

First we note that (t+ - b)(t - a) = t2‘

+ t(a + b) + ba,
Next we observe that the coefficient of t% on the left
hand side of (1C) is 1. The term of degree n - 1 is

2

-3 -
£t%77(a + b) - t(a + b)th 2 4hich venishes. Then we

evaluate the absolute term :

ba SO alvd v SO &l 4 pP o\

i+j=n-2 i+j=n-2
i+j=n-1 : A
= - X\ by lemma 1 11.
. n-"1 . .
Note that EZ: atb™t = E a'bd in this.
i=0 i+Jj=n-1

Finally we find thetoefficient of the general term of

degree n - v, where n - 22r>0. The general term is

520 T2 > 7 adnd - g(asp)tT (r-1)-2 E alpd

itj=1 i+j=r-1
+ batn'(r -2)-2 alpd .
i+g=r-2
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Thus the general coefficient of 7T is
el ca > el o ST ated wba ol albd
i+j=r i+j=r-1 i+j=r-~1 i+j=r-2
which is easily seen to be identically zero. Thus we

have proved

Theorem 1.1%3. Let & be an element of PGLz(K) of
finite order n and assume that the characteristic of K
does not divide n. Then & has at least two inconjugate

fixed points in some extension of K.

The only remaining questions are now, when does «

have more than two fixed points, and how many fixed

points can « have? To answer thistwe need the following.

Definition : TLet A<EPGL2(K) be such that A ¥ I.

We call A a quasiconjugation if it is conjugate to a

scalar matrix.

The reason for this name becomes clearer when we
consider the map of a quasiconjugation.. It will be
conjugate to a map of the form.xf—eaxa“q which itself
acts as conjugation on Kwvi{=f. We shall also call the
map of A a quasicongjugation.

Thus we come to the main result of this chapter.

Theorem 1.14. Let « be a tame automorphism of Kk(x)

over X of finite order n and assume the characteristic

of K does not divide n.

1. If &« is not a quasiconjugation, then « has
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precisely two fixed points‘in some extension of XK
and thece will_ndt be conjugeate.
2. If  is a quasiconjugation, then « has infinitely
many fixed points in some extensicn of K, amongst
© which there are at least two inconjugate fixed

points.

Froof : By theorem 1.13 every tame automorphism
of finite order has at least two inconjugate fixed
points. W%We claim « has more than these twe fixed
points if and only if it is a quasiconjugation :
If « is a quésiconjugation, then by lemrma 1.5 « has as
many fixed points as the scalar rmatrix sI of which «. is
a conjugéte (s €K - k). But sI has map xr—ésxs"1, s0
the fixed points are precisely those containe§ in the
centralizer of s in Kuw, C(s)vo, But C(s) is known
to'be infinite by theorem 0.13 (and when char K = O this
is obvious anyway), showing one half of our claim.
Since C(s) contains at least three inconjugate elements,
i.e. 0,1,s, this also pfoves part 2 of the theorem.,
Conversely suppose « has other fixed points besides the
two inconjugate ones o« is known to have by theorem 1.13.
We transform these inconjugate fixed points to O and o

1 by proposition

to bring « into the form «': x+raxb’
1.8. Since « has more than twb fiked points so does «'
by lemma 1.3. A third fixed point for «' will have to
be non-zero and finite. Denote this fixed point by p,

then p = apb'q, or pbp—q = a. So the third fixed point

43



exists if and only if a and b are conjugate. To see
that o' is in fact a quasiconjugation, change variables
iny = axp-qap : y=y'pand x = x'p. Then y'p =
ax'pp“qap and hence y' = ax'a™1; This proves the claim

and the theoren.,

Ve note finally that the extension bf K referred to in
theorems 1.1% and 1.14 is in fact the skew field K' of
lemma 1.4. In other words, given an extension K' of K
in which we can find the first fixed point of «, then .
we can find the second fixed point in that same K' (as=
éuming of course that K and K' have the right

characteristic).

q.L%



2. FINITE SUBGROUPS OF PGLe(K)

Introduction

Whereas the previous chapter dealt with elements of
PGL,(K) of finite order, in this chapter we shall be
éoncerned with finite subgroups of PGLz(K). Ideally one
would aim at a complete classification of these groups
(as has been done for the complex numbers). But the
problems arising appear to be very considerable and only
a few results will be given - in section a) - for the
general finite groups. A complete classification is
attempted of those finite groups which do not contain
any quasiconjugations, although even here we meet only
with partial success. The classification is complete
only when the centre k of K satisfies certain closure
conditions, for instance algebraic closure. Here the
classification uses a similar method &s in the well .‘
known case of the complex numbers (sectioﬁ c) ). "
Section b) deals with the main obstacle to the classifi=
cation over a field K with general cenﬁre k ¢ finite

groups of diasonal (non-scalar) matrices in PGLE(K).

Throughout we shall assume that the charécteristié‘
of the skew field K does not divide the order of the .
group in question. KX will be assumed large enough to
contain the two fixed points of any non—quasigonjugation
of finite order thaﬁ occurs in our discussion.

{
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a) Groups with Quasiconjugations

Although a gquasiconjugation is defined to be a
matrix (class) conjugate to a scalar matrix (class),
it does not follow that a diagonal quasiconjugation is a

scalar matrix.

Lemma 2.1, TLet A€ PGLZ(K) be diagonal. Then A has
conjugate diagonal entries if and only if A is a quasi=s

conjugation,

Proof : Suppose the diagonal entries of A are

0 ¢ 'ac

1 O a O 1 0\ '
A = -1 s SO A is a quasiconjugation,
O0c O a 0 ¢ )

Conversely suppose A is a diagonal quasiconjugation.
-1

a 0
conjugate, i.e. A = y . Then

Then for some invertible BeiPGLZ(K), B™'AB is a scalar

b 0 < f
matrix al. Put A = y B = , then
: 0 c¢ ¥ §

o o)) GRS

Since B is invertible not both « and 3 cen be zero.

Say « #+ O, then b = o(ao<—1. Similarly we may assume

§ % 0, in which case ¢ = §a ™1, But then

b = 8"18 c {lx = (8-10( )"10( $1x ), i.e. b and c are

conjugate,



Let Q be the,set of quasiconjugations of a group in
PGLZ(K) (not necessarily finite) and let S be the fixed
point setvof the elements of G - Q (i.e. of the non-
gquasiconjugations)., Then we have a group action of G on

the set S. To see this we note

Lemma 2.2, Let G be a subgroup of PGLZ(K)'and let Q f
_be the set of quasiconjugations in G. Then the group |

generated by the elements of Q is a normal subgroup of G.

Proof : By lemma 1.3 Q is a normal subset of G, so ) !
that the subgroﬁp generatéd by Q must necessarily be

normal.,.

Tet x €S, then there is an element he G - Q such that
h(x) = x. Then for any g€ G, g(x) is a fixed point of

-1, and by lemma 2,2 ghg'1e G - Q. Hence for any g€G

ghg
g(x)eS, i.e. G acts on S.

This simple fact has a number of consequenceskz

Example : Call an element of PGLZ(K) antidiagonal if
it has zeros on the main diagonal (the entries off the
main diagonal are then necessarily non-zero).

If the non-quasiconjugations of a group G in PGLZ(K)
are diagonal then the qaa31con3ugatlons of G are either

diagonal or antidiagonal.

Proof : TLet S and Q be as before., Since the elements
of G - Q are all diagonal, S consists of just two points,

i.e. 0 and oo, LetgeG-—Q, 0€5, S5€Q. angh%ﬁmo
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1

and sgs” € G - @ has fixed point s(xo). So the fixed

1

points of sgs™ ' must be s(0) and s(ee), But since G acts

on S we must have either s(O) = oa or s(0) = 0. Vrite
s = (px + q)(rx + t)_1, then s has matrix (E %) . DNow if

s(0) = 0, then clearly also s(m) = ., It follows that
g=1r=0, i,e, that s is diagonal. On the other hand if
s(0) = o0, then s(o=) = 0 and then p = t = O which means

that s is antidiagonal.

Note that any group whoée non-quasiconjugations share
the same two fixed points can be transformed into a group
of the above form.

In the non-commutative case it is conceivable that
there is only one G - orbit to the action of G on S, i.e.
that the action ié transitive, If G is also finite, then

we have

Proposition 2.3, Let G be a finite subgroup of PGLZ(K)-

and let Q be the set of quasiconjugations in G, TLet S be
the set of fixed points of the elements of G - Q. If the
action of G on S is transitive, then G is generated by

its quasiconjugations,

Proof : If there is only one orbit in the action of G

on S, then by the orbit formula

‘Gi = deG_ 9(8) ’

where O(g) is the number of fixed points of g€G in S.

Every element outside Q fixes two points, so there must

l&g



be at least as many elements inside Q fixing none.

Moreover the unit matrix fixes all points of S, so if we

q
put q = lS} then there must be - more elements in Q not
’ 2

fixing any points; Hence lQl)-\Gl—tQ‘. It follows that
<e>=c¢.

Unfortunately the converse of this proposition does

not hold :

ILet weX - k be such that w3 =1, Then W and wz

2

both have t° + t + 1 = 0 as their minimal equation over

k and hence must be conjugate. By lemma 2.1 therefore

w 0
( wz) is a quasiconjugation. And now we have

0
Ww 0)\/w O w2 g
o w\o w 0 1 |

the right hand side of which is clearly not a quasicon=

gation, If we consider the group generated by

W 0 w 0 ‘
and "}, then G contains non-quasiconju=

0. W 0

gations and G is generated by quasiconjugations. Since G

‘consists of diagonal matrices the fixed-point-set of
G -Qis S = {0,50} and there are two orbits of one point
”each.

Note also that the generators of this (abelian) group

w . .
are by no means unique. For instance (O(g)’(é 8) is an

alternative pair of genereators, one of which is no
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- longer a quasiconjugation.

(1) also illustrates the fact that the producf of two
quasiconjugations is not necessarily again a quasiconju=
gation. It is therefore a fairly strong condition if we
assume that the quasiconjugations of a group G form a

subgroup. In this context we can say a little more :

Préposition 2.4, TLet K be a skew field with centre k

andvlet a be non-zero elg@ent}of K. Let G be a finite

sﬁbgroup of PGL2(§322wah:n the following statements are

equivalent :

a) al& G shares its fixed points with all its conjugates
in G,

b) The cyclic group N generated by al€ G is normal in G.

c) If Xg€ Cla), the centralizer of a including oo, then

-the G-orbit of x4 is a subset of C(a).

Proof ¢« Put A = al.

0 be a fixed point of A, Then for any”
is a fixed point namely of BAB™!. Since N is

b)=c) : Tet x

B &G, BXO

generated by A and N is normal in G, we must have

e N. But A—3Bap~]

1

BAB™ is an automorphism of the cyclic

group N. So BAB™' = AT and both A and AT generate N.

. But since on is a fixed point of Ar, it must be a fixed
point of A, for any Bé& G.

c)=ra) : Assume ABx, = Bx, for all Be&G whenever Ax, = Xq.

1

Then B~ ABXO = X, whenever Axo = Xg.

1ABx =

a)=>b) : We are given that B~ o = ¥o for all BEG
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whenever Axo = Xge Since O and ©o are in the fixed-

1

point-set of A, B” 'AB must be a diagonal matrix, C say.

Since 1 is also in the fixed-point-set of A, the diagonal

entries of C must be equal, say C = B~

AB = cI, where

c € K depends on B. Moreover a and ¢ are conjugate in K,

b, b :
for if B = 1.2 s then some b, is non-zero, say b,#0.
. b3 b4 i 1
-1

: b, b a O b, b c O
Then 1 2) ( 172 = ] )

. b3 b4 0 a‘ b3 b4 0 c

-1

“implies that b1 ab1 = C. We form the subgroup N of G

which is generated by all conjugates of A under G, i.e.
N = <B 'AB|BeGD.

This group is clearly normal in G. Fur%hermore'since its
elements are scalar matrices (modulo central multiples),
N is isomorphic to a finite subgroup N' of K*/k*, i.e. of
the multipilcative group of X modulo that of k. All the

elements of N' are conjugate in K*/k*. Hence
NeN' = <p"'1apg l P lap = p-1ap€I for some P& G, §e k>

We note that aeN!'. By hypothesis the elements of N' are
fixed points of A! hence every element of N' is a fixed
point of‘évery element of N. It follows that N is abelian.
But then so is N'. Now any finite abelian subgroup of K
is contained in a commutative subfield of K. It must
therefore be cyclic, and so must its homomorphic image in

K*/x*. So N' and hence N is cyclic.
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It may be worth observing that when the quasiconjuga=
tions of G do form a cyclic subgroup N, then G acts on.
several sets :

Note first that by lemma 2.1 N is normal in G, so con=
dition c) of proposition 2.4 holds. TLet S be the fixed-
point-set of elements of G - N (we assume here that G & N
so that S is non-empty). There is no loss of generality
in assuming the fixed-point-set to be C(a), where al

generates N. Put S1 = SnC(a) and S, = S - S

2 1°
If S1 is non-empty, then G acts on S1 : For if xoe.S1,

then for some AE€G, Axo = Xge But if we choose A to be
the generator of N, i.e. A = al, then by proposition 2.4,
part c), Bxy is also a fixed point of A for any BEG.

Similarly we have a g?oup action on 82. Note that the
elements of G - N fix one or two points in S1 (and Sz).

The following result illustrates that to some extent
questions about quasiconjugations in PGLz(K) can be

reduced to problems in K*/kx*:

Proposition 2.5. ILet G be a finite group in PGLZ(K)

suppose al € G for some a €KX,

Let M= {Pec IP'1aP = a’ 81I for some r and some g1e k}
be the normalizer of al in G.

Let © = {PGGIP"1aP = aSZI for some 82€ k}

be the centralizer of al in G.

Let M, = {XGK* l x lax = ar83 for some r such that
there is P& G with P7'aP'= a® §,1}

Let C, = {xeK*‘xa = ax 85 for some 8\56 kx} . Then

i~
0
L



M Y
/C=Ma/Ca

Proof : TFirst we note that C is obviously normal in M

and Ca is normal in Ma' Let P,,P. € G be such that

1772
1 |

P'i' aP; = a¥ <§i (i = 1,2) for some r and gie k. Then |
. -1 - . -1 .-1 "
aP,P; = aP,P7'§ , so P,P, € C and P,,P, belong to the “
same (left) coset in M/C. Similarly x1x£1e c, if

x'i'1axi = arSi (i = 1,2) and then x, and x, belong to the
same (left) coset in Ma/ca‘ Given P€ M, we obtain xe€lM,
by taking a non-zero entry' of P. We defir}e the isomorphism
of the proposition by mapping those cosets to each other
whose elements conjugate a (or al) to the same power of

al (or a).

Several things remain to be remarked in connection
with proposition 2.5 @

1. If a has order my and r is as in M or Ma’ then r
and m are coprime, If in the definition of Ma there is

1aP =af81I for every r<m subject to

Pe€ G such that PT
coprimality, then Ma is the normalizer of a in K .

2., If <aI> is a normal subgroup of G, then M = G.

3, C =GN PGLz(Ca-) since al is a scalar matrix.

4. Although the finite subgroups of K* are known (cf.
[1]), the same cannot be said for finite subgroups of
K*/x* and there seems to be no easy way of deriving them.
However when X = [H, the real quaternions, then the finite

subgroups of ¥/ R turn out to be the cyclic, dihedral,

tetrahedral, octahedral and icosahedral groups.



This concludses what we have to say on groups which

contain quasiconjugations.

b) Cyclic Diagonal Grouvs without Quasiconjusations

The remainder of chapter 2 will 5e devoted to finite
groups of PGLZ(K) which contain no quasiconjugations and
from here onwards the expression "finite ggoup of PGLZ(K)"
will always be short for "finite Eﬁoup of PGLZ(K) without
quasiconjugations",

Obviously to obtain a complete classification of
finite subgroups of PGLZ(K) (without quasiconjugations),
we need to know what kinds of diagonal such groups there
are. In the commutative-case this problem is trivial :
All diagonal groups are cyclic‘since multiolicative
subgroups of commutative fields are cyclic. In the

general case it turns out that - somewhat surprisingly

perhaps - finite diagonal subgroups are the main obstacle -

to a complete classification. -Indeed we shall only deal
here with cyclic diagonal groups.

Let G be a finite diagonal subgroup of PGL2(K) of
order n., Since G contains no quasiconjugations we know
by lemma 2.1 that tﬂe elements of G must have inconjugate
‘diagonal entries. We shall write the elements of G in
the form {a,b), where a is the top left-hand entry and b
the bottom right hand entry. We note that given such an

element of G, a and b are not unique. a and b are unique



only up to a com.mon central multiple. “Put
- perl e
‘and define an equivalence relation on H
by~b, iff by = byA for some Aek .,

Let G2 be a set of representatives of the set of equiva=
lence classes, i.e. let G2 be a transversal for the

-equivalence classes. Define
G, = {a€K | there exists b €G, such thet (&,b) € cJ

When K is commutative (i.e. X = k), then we can take
G2 = {1}, in which case G,l is a’(necessarily cyclic) '
subgroup of x*., In particular this illustrates that G1
will not in general be a transversalf

What follows will be concerned with finding an
appropriate choice of G2, and hence of G1.

From its equivalenée class we shall pick 1 to be in
G2. It follows from the definition that then also 1€:G1.

Since G is finite we can choose G, to be finite and

hence also G4. If A €k, then (a,bA) = (a/\“/],b), S0
wé may stipulate that G2 contains no central multiples.

. Next suppose G2 is a subgroup of K*.and let a,c€Gy.

Then there are b,de G2 such that (a,b),(c,d)&G. Hence
(a3b)(c,d) = (8c,bd) and by assumption bd &€G,. So
ac eG,] and it follows easily that Gr,I is also a group.

Summing up,

I



Lemma 2.6. ILet G be a finite diagonal=§%oup of
PGL2(K). Let G, and G, be as defined above. Then we
can choose G1 and G2 such that
1) 1€G, and 1€G, , |
2) G, contains no central multiples ,

3) G, and G, are finite.

In this case if G2 is a group, so is Gq.

Essentially Gq and G, are just the 1-1 and 2-2 entries
respectively of elements of G.

Given (&,b) €G of order m, both a and b satisfy the
equation L O~, for some >\€k. Since a,b are
inconjugate, £ - X must be reducible.

At this stage we recall the following well known

result :

Theorem X . ILet F be any field, p a prime number and

consider the equation
¥ = ¢ - (ceF) M

Either (1) has a linear factor or (1) is irreducible

over F, according as ¢ is or is not a p-th power in F. f
This gives us the important

| Corollary 2.7. If G is a finite diagonal group in

PGL2(K) of prime order p (without quasiconjugations),
then (G is cyclic and) the elements of G1 and G2 can be

taken to be roots of 1.



Proof : As.shown before, if (&,b) is the generator

of G with a€G, and beG,, then a,b satisfy tP - A\ = 0
for some >\€k. Hence tP - )\ is reducible and by
theorem X has‘a linear factor. This means ‘X has a p-th
root 8 in k. So insﬁead of choosing ae€ G,], b€62 we
take alu"q €G, and blu"/'e Gy and these will satisfy

tP =1 = 0. The representatives of the other elements

t]

will be powers of ar‘" and blu"'] respectively which

satisfy the corollary.

Clearly G,] and G2 are cyclic subgroups of k* and if
(2,b) generates G, then a generates G, and b generates -
G2. Now if b = 1, then G & Gq, i.e. G is isomorphic to
a finite cyclic subgroup of K*. If b + 1 bubt aek, then

there is no loss of generality in assuming a = 1 since

(a,b) = (1,ba"1). So we may assume that adk and b % 1.
Now a,b satisfy tP = 1 = 0. Since a,b % 1, a,b satisfy

f(t):%g)ti=o

But a,b are not conjugate, so f£(t) 'must be reducible
over k and a,b havé different minimal equations over k.
Let the minimal equation of a be g(t) and assume deg g =
m. Theﬁ g will haw}e at most m roots in k(a) since k(a)
- is a commutative field. In particular g will have at
most m solutions in G,] = < a> since G,]Cl«:(a). But g is
a factor of f, so g must have exactly m roots in G,l

/l

- since otherwise fg~  would be a polynomial of degree

p -m~- 1 with more than ‘p-m- 1 roots in G,].

g



Clearly the elaments of G2 satisfy the same minimal
equations as the elements of G, (but at and bt have
distinct minimal equations for i = 1,...,0-1). So a is
conjugate to some bie G2 (i.e. a must have the same

minimal equation as some bIEiGE), say bl = ¢ lac. Since

| 1 0 1 0 n

we may take G -1 instead of G and b
' , O ¢ Oc .

generates G, for any i = 1,...,p-1, we find that

Gy = G, = <a)>. Thus we have proved

Proposition 2.8. ILet G be a finite diagonal subgroup

of prime order p in PGLE(K) (without quasiconjugations).
Then'precisely one of the following three possibilities
will hold : )

We can choose G1 and G2‘such that

2) 64 = C, s Gp = {1}, or
3) G',I = G2 = Cp ,

where Cp is a cyclic group in K* of order p.'

. Cases 1) and 2) in proposition 2.8 are quite trivial
(just as the commutativg??where 3) does not occur) and
we shall not consider these any further. So when G is
of prime order, we shall assume that the elements of G

. ————
are of form (al,aa);v in particular the generator of G

Srmp—

can be taken to be of form (a,ad), where a €K™ and
'j .= 2,0--,p"’1.

.What follows now is an investigation into what ad are
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eligible to be paired with a. In other words, given the
prime order p of G, we ask for which j are a and aj not
- conjugate. This is equivalent to determining the
conjugacy class Ca of a (under the action of K*) in the
- cyclic group < a> (generated by a) for any given prime
(order) p (of 3).

This investigation will be justified by

Lemma 2.9, ILet G be any diagonal group of prime
order p in PGL2(K). Then G contains no quasiconjugations

if and only if its generator is not a quasiconjugation.

Proof : Note that this statement makes sense since G,

being of prime order, is necessarily cyclic. If G is

S mcam— .

generated by (a,ad), then the general element of G is

(a,aa)i = (al,ajl) for i = 1400.,0-1. Now if (at,adt)

is a quasiconjugation for some i, then adl = c‘qalc.
. ' ° . IO"

Let i' be such that ali = a., Then ad = adt?

= (c"jaic)i' = ¢ 1att'e 2 ¢ Mae. S0 (a,a9) rust be a

quasiconjugation and the lemma follows.

We shall now attempt to determine the conjugacy class
of a when a has prime order'p. In fact we shall reduce
. the determinatidn to a problem about primitive roots

mod pe.

Temma 2.10. Iet»aJsK be of prime order p and dencte

by Ca the conjugacy class of a in <a> under the action

of K*. Then there is an integer s, 0< s<p, such that
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C, = h i=0 -]
- - ,.0., 9

a
where T is,thé order of Ca'
si -i_i *
In fact a” = ¢ "ac™ for some c€K and i = Oy...,4,0-1.

i.

i11s

' 1 1
note first that if a ',a 2€C_, then a | “€ C_. Put

a?
" E = {ij(mod D) 'j = O,...,r-1} . Then 1(mod p) €& E since
io =1, and E is closed under multiplication; being
finite, E must be a (finite) subgroup of (Z/p)* = Cp_q.
Hence E is cyclic, with generator i'(mod p). Pick any
element s€i'(mod p) such that 0<s<p, then s will
satisfy the lemma.

We prove the iast part of the lemma by.induction :

s

Since a and a° are conjugate by assumption there is ceK”

_ : i-=1 . .
such that c_qac = a°, Assume now & . = c-(1—1)a01-1.
i i-1 i-1 . :
Then a° = (c"qac)S o= ¢ 185" ¢ = ¢~iact by induction
hypothesis.

Proposition 2.14. Iet a,p,C, Dbe as in lemma 2.10.

Pl -

for any Jj = 14.0¢40=1, where lcal denotes the order of

Then

C

59
Ca‘
Proof : By lemma 2,10,

o, = {ctact |1 = 0,1,.00,21)
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where r = |Cal,and ¢ "ac” = a” . Bo the conjugacy class

C 3 of ad in <a> contains the set
o .

Q=f{ctact |1 -0,.0.,01].

We claim Q contains r distinct elements : Suppose it

‘ . o9 =i d g

does not. Then without loss of generality a =c “ac

3 i, i, 3 4

for some iy<r. So a = (c O 0) = ad® °
jsi°-j . 10

a Y = 1. This holds if and only if Jjs ~ =j(nod p).

ac , hence

Since p is’prime and O0<Jj<p this is equivalent to

i _

s O= 1(mod p). But by definition r is the smallest
integer satisfying s® = 1(mod p), contrary to our
assumption that io<:r. This proves the claim,

So C . contains at least r distinct elements. Suppose

ad _

C j& contains more than r elements for some jo, i.e.
J

suppose 0 also

C .|=2r">r. Since p is a prime, a
ade . : ,

generates <a». It follows by the same argument as
before that Ca contains at least r' distinct elements,

a contradiction. Hence the proposition.

Corollary.2.12. If a has nminimal equation of degree

r, then for i =_1,{..,p—1}a1 has minimal equation of

"~ degree r.

Proof : We know from the remarks preceding DProposs=
ition 2.8 that the degree of the minimal equation of a

is equal to the order of its conjugacy class in < a .



The same must opviously hold for every element in <a>
(other than 1) since P is a prime and every element of
<a> is a generator. By proposition 2.11 the orders of
the conjugacy classes of <:a;>Aare all equal and the

corollary follows.

The next result is well known in elementary number
theory but follows independently from proposition 2.11
(cf. [5]), theoren 88ﬂ'p.71).

Corollary 2.13. If r is the order of the conjugacy

classes in <a» and a is of prime order p, then r

2

divides p-1.

Proof : We know that {(a)-’l} is divided into t
conjugacy classes say, each class containing r elements.

Hence tr = p - 1 .
A direct consequence of this is

Corollary 2.14. If a is of prime order p and r is

the order of the conjugacy classes in <a> , then there
are 9%1 incbnjugate (diagonal) groups G of order p in

PGL,(X) such that G, = G, = <a>.

Proof : Suppose G is generated by (a,ai) and al and

ad are conjugate for some j # i. Then for some cek”,

ﬁ . . 1 0 /a 0 f1 © a 0 )
¢ 'atec = ad, so 5 4l = 5] - BSo the
O ¢ 0 a 0 c 0 a

group generated by (a,aa) is conjugate to G.
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On the other hapd if a,ai,aj ‘are pairwise inconjugate in

K but (a,a) and (a,a’) are conjugate in PGL2(K), then

u v
%y

) - Call o)

But then va®l = av, so v = 0, and yai = aay, soy = 0.

there are u,v,x,y € K such that ( ) is invertible and

This contradicts the invertibility of (g ;) So (a,a™)

and (a,aj)Amust be inconjugate in PGL2(K).

Thus we have shown that for every conjugacy class in <:a:>'
there is precisely one conjugacy class of diagonal groups

G in PGLE(K) such that G, = G, = <a>. By corollary 2.14
there are P§1 conjugacy classes in <a)>, hence |

corollary 2.14 follows. '

At this stage our problem is best described in
number—theorefic terms and we shall therefore recall
some definitions from (5] (p.71, §6.8) :

Let a,m be integers. Then the smallest positive
value of x for which a* =1(mod m) is called the order
of a(mod m). Denote this order by 4, then we say that a
belongs to d(mod m). Ve note that d [ P (w), where 9 is
Euler's function. If d = P (m), then we say that a is a

" primitive root of m.

It is clear then that in lemma 2.10 r is the order of
s(mod p) or equivalently that s belongs to réod p), and
that if r = p - 1 , then s will be a primitive root of p.

So the question now is : Given that the conjugacy
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class C, of a in < a)> contains r elements, which

i
S .
integers s are such that C, = {a ll = O,ﬂ,...,r—1} ?

Or in number-theoretic terms : Given a factor r of péﬂ,’

which integers s belong to r(mod p) ?
If we knew what these integers s were (for any given

prime p), then we could check that ad is not of form

aY = a° , so that (a,aY) is not a quasiconjugation.

A complete answer to this problem is not known, so we
shall quote one or two familiar results and give an

example as illustration.
Theorem ([5], p.85, thm.109):
. _
st = 1(mod p) (3)

"has r» solutions for s.

. This does not in fact offer new insights. Applied_in

our context it just says that if aie Ca’ and r = Ical’

ir
then a = 8.

Theorem (E?], p;85, thm.110): Of the r integers |
satisfying (3) for s, P (r) belong to r{mod p) (where P

is Euler's function).

So although we do not know what these s are (for amy
given p and r), at least we kmow how many there are.

' However a special case is resolved by
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Lemma 2.15. Let D be an odd prime. Then s = p ~ 1

if and only if 2 islthe order of s(mod p). (Or in our

context : . s = p-1 iff ,Ca| =2 )

Qgggg : If s =p - ﬁ, then s¥ = (p—ﬁ)i, and either
(p-1)izs 1(mod p) - when i is even - or else
(p-ﬂ)i“ssp-1(mod p) - when i is odd. So only p-1
belongs to 2(mod p), which means p-1 has order 2.
Conversely assume s(mod p) has order 2, i.e. |
52 = 1(mod p). Then (s+1)(s-1) = 0(mod p) and either

p|s+1 or p|s-1. But since s<p, only p| s+1 can hold,

with s = p - 1.,

Generally the~— unsolved - problem ié_to find thosér
integers s<p which satisfy sy sr-2+...+ ﬁ = O(mod p)
fdr a given odd prime p and integer r such that r | p-1.

Note that we can leave the case p = 2 out of our
considerations since p is just'the ofder of the group G
end a diagonal gfgup of order 2 cannot fall into the

third category of proposition 2.8, the only one under.r

discussion here.

Example : Let G be a (cyclic) diagonal group of
order 13 without qﬁasioonjugations in'PGLg(K).A Assume
G 1s of type 3) in proposition 2.8, i.e. assume
G’I=
1) s = 2 : Then a is conjugate to a

G2 = £ a>, where a €K satisfies a/]3 = 1. .
2 and hence to all
elements of < a) s:ane 2 is a prlml’clve root of 13%.

Similarly 6 ,7,11 are prlmltlve roots of 13 (and note
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P (12) = 4 ). Bo for G to have no quasiconjugations,
a must not be cpnjugate to a2,a6,a7, or a11.

2) s = 3 : Then a is conjugate to a? and to a’ and no
other elements in <aD>. So C, = {a,aa,ag} (=C
and )oa‘ = 3, i.e. 3 and 9 belong to 3(mod 13).

3) s = 4 : Then C, = {a,a,a%,a7%,a9,a"%}, 50 [c | = 6

8.5= 39)

and we find that 4 and 10 belong to 6(mod 13).
4) s = 5 : Then C_ = {a,a5;a12,a8} and 5 and 8 belong
to 4(mod 13). :
- . m 12
5) s = 42». Then C,_ = {a,a } and 12 belongs to

2(mod 1%), as promised by lemma 2.15.

This concludes what we have to say about groups of
prime order (without ngsiconjugations) in PGL2(K).
Turning to general cyclic (diagonal) groups we find that
the entries need no longer be roots of unity in K and in
particular that Gﬂ and G2 are not necessarily subgroups
Of K*. . . . L. .o

If.we meke the assumption that the diagonal entries
of the (diagonal) group G are roots of 1, i.e. that G,
and G2 consist of roots of 1, then we can show that if
such a group is abelian it must in fact be cyclic.

First we need'

Temma 2.16. Iet G be a cyclic (diagonal) subgroup of

PGL2(K) (without quasiconjugations) of order pT, where D

is a prime. If (&,b) is the genérator of G and

then one of Giand Gz is a cyclid subgroup of K* of order

T T
a? = vP =1,

4
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p" and the other is conjugate to a (possibly trivial)

subgroup of the former.

Proof : Clearly if G is generated by (z,b), then
either ad - 1 or bd = 1 for all j<p-. Assume then that
G1 = £ a> is of order pr. The reméinder of this lemma
is proved in a way similar to that of proposition 2.8

and we shall only sketch the proof :

4 — r
a,b satisfy t? -1 =0 and by assumption a is of order
pr. If b = 1 there is nothing to prove, so we assume
b + 1. Then a,b satisfy |

r

p o
£(t) = tt =0 .
i=

\J

But a,b are not conjugate; so £(%) must be reducible.
Let g be the minimal eQuation of a, and put deg g = s.
Then g(t) = 0 will have exactly s solutions in G% = <a>.
Now the elements of Gy = <b> satisfy minimal equations
which are also satisfied by some elements of G4. So in
particular b satisfies the same minimal equation as a®

for some e >1, i.e. b is qonjugate to some aee;(},l which

is wvhat we wanted to show.

We note that lemma 2.16 is a generalizatidn of propos=

ition 2.8.

Theorem 2.17. Let G be an abelian diagonal group of

order m, without quasiconjugations, in PGLz(K)f If G4

end G, (can be taken to) consist of roots of 1, then G



is cyclic,

&£ o

Proof : Iet m = P4 ...prr, where the p; are distinct
&,
primes. For every prime power pi1 there will be

.
precisely one subgroup Hi of G of order pil, necessarily

cyclic. By assumption the (diagonal) entries of
elements of Hi are roots of 1 which commute with each
other. So <Hi)ﬁ and .(H;), can be teken to be finite

cyclic subgroups of kY. By lemma 2.16 one of (Hi)1 and

. . L. ‘
(Hi)2 is of order pi1 and the other has order dividing

3; .
« ‘
pii. Let (Hi)2 be generated by a;. Then ail = 1 for

. B

o« i ; i i
some (Sié ;¢ Put py q;- We.claim that G, is a
group generated by llai,: Firstly we note that the

elenents of G2 commute since}G is abelian. Secondly if

a€Gy, then we may take a’e Gy for all j less than the
order of a. Thus we need to find a of the same order J

as G2. But clearly.
6| = ":”(Hi)l = TTa

and so we are reduced to showing that TTéi has order

= = B _ o )
Trq;. Putn = TTqi and n; = o QqeeeQq 495,97 e
n. o T 1
If a has order n, then a; = a . To prove the converse

(and hence . the claim)'we have to show that §:ni is

coprime to n, i.e. our problem is to show that

T _ :
gg%gi and.Eé%qq...qi_qqi+j...qr are coprige P . }

i
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Suppose they are not coprime} Then they must share a

prime factor, P, say. Now ;g%qq...qi_qqi+4...qr also

has factor Pqs SO
T T , '
Eé%q4‘°‘qi—1qi+1"'qr "‘Ezéqﬂ"'qi-ﬂqi+4"‘qr
= Qoeeed,

must have a factor Pqs contradicting our assumption that
the p; are distinct. This proves the claim.

Clearly now n| m and similarly (using lemma 2.6) we show
that G, is a cyclic group (of order dividing m). But if
both G, and G, are cyclic, then G must be cyclic.

Corollary 2.18. Let G be a cyciic group of order m
in PGL, (K) (diagonal and without quasiconjugations).
'Then if G1 and G2 are subgroups of K* of orders M, 405 ;
respectively,.m is the lowest common multiple of mﬁ and i

m2.

Proof : We have already shown that if_mi’= IGilfor
i= 1,2, then mil m. If (a,b) is the generator of G,

and (at,b?) = I for.éome t, then m [t. Hence the

corollary.

The main application of theorem 2.17 is

Corollary 2.19. ILet G be an abelian diagonal group

of squarefrece order m in PGLE(K) (without quasiconjuga=

Ealanani(e < Ret it b i 4t e L ot s

.v._.,‘.,“....,-
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tions). Then G is 'cyclic and if (&,b) is the generator
of G, then a™ = bv™ = 1,

Proof : All we have to show is that the hypéthesis
of theorem 2.17 is satisfied, i.e. that Gﬁ and G, (can
be taken to) consist of roots of 1. ILet m = TTpi be a
decomposition of m into distinct primes. Then for every
Py there will be precisely one subgroup Hi of G of order
p; Hence any two of these sgbgroups intersect trivially.
So we can apply proposition 2.8 and take the (non-zero)
entries of their generators to be roots-of 1. This |

proves the corollary.

Turning to general cyclic groups, let Cn be a cyclic .
diagonal group of order n (without quasiconjugations)
in PGL2(K). If (2,b) is the generator of C , then a,b

satisfy t° - A = O for some A ek, Tet p be a prime

dividing n and put q = %'. Then (;:g)q_= (a%,p9)
generates a cyclic subgroup Cﬁ of order p in Cn' a? and
b2 both satisfy t2 - N = 0. ®Since a% and Bq are incon=
jugate this must be reducible, so by theorem X, A has

a p-th root in k. This gives us

_ ‘Propoéition 2.20. Let Cn be a cyclic group of order

n (without quasiconjugations) in PGL2(K), with generator
(a,b). Then a,b satisfy an equation t% - A = O for
some X\ €k such that A\ has a p-th root in k for every ,

prime p dividing n. _ o ,



| Ixample : Let évbe a diagonal group of order 4
(without quasiconjugations) in PGLE(K). Then G is
cyclic : For otherwise every element (ETB)EZG (except
I) would be of order 2. But then for some A€k, a,b
would satisfy an equation t2 - A = 0 which must be
reducible since a,b are inconjugate. It follows that
both a and b satisfy linear equations over k, i.e.
.a,bek. But then G CPGLg(k'). Being diagonal this means
that G 1s cyclic, contradicting our assumption. So G is
cyclic. If (Z,b) is the generator of G = Cy, then a,b
satisfy t4 - A =0. By proposition 2.'20, )\ has a
square root s in k, so t4 -\ = (t2 + (4)(‘02 - ,«).
Assuming that A does not have a 4-th root in k we see

that t°

+ rt and t2 - /4 are irreducible and a2 = r«
and b° = ek Noting that ("f"f*) = (fﬁ,ﬁ) we find

that ¢, = {(&;B) , (7,7 , (=&,5) , (T,1) }.

This concludes our remarks on cyclic diagonal

groups without quasiconjugations.

¢) The Classification of Finite Groups without

Quasiconjucations

- In this section we shall determine the finite
subgroups of PGL2(K) which contain no quasiconjugations.
It furns out that diagonal groups are‘essentially the
only ones which need further analysis. The method used

here is a generalization of the well known treatment for



the complex numberé.

First we heed some terminology : Iet G be a finite
gfoup of order n (without quagiconjugations) in PGLZ(K);
By hypothesis (and theorem 1.14) every non-unit element
of G has exactly two fixed points in some extension of K.
Let us assume throughout that K is large enough to con=
tain these fixed points. Iet S be the fixed-point-set
of G - {I}. Note that S may include the point at
infinity. A fixed point X € S is said to have multi=
plicity é; or to be e-tuple, if it is a fixed point of

exactly e matrices in G including I. We recall from

chapter 1 that if A = (g b

) ; then the map « cor=

responding to A is given by «: x»—+(ax + b)(ex + &)~ 1
and vice versa. If XOGS is e-tuple, then the
stabilizer of X5 |

Cry = {x€e 1 xCxp) = %0}

has order e, and the G - orbit of X,

G(XO) = {d(xo)‘ X €G},

o’

has members since IG(XO)‘ = \Gl/lGXO[ . A1l these

members of G(xo) are fixed points, i.e. G(xO)CS :
If x4 is a fixed point of & , then F’(x0> is a fixed
point of [30({5"1. So we have an action of G on S.

Let S fall into t orbits, and let the i-th orbit have ry

points. For each i let my be such that n = Tymy e
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Tﬁen the points of the i-th orbit have in their stabili=
zers my elements, i.e. they must be mi—tuple. Since by
assumption there are no Quasiconjugations in G, everyA
non-identity matrix in G fixes precisely two points,
while the identity fixes all points (of S), i.e.

Tq +eeot Ty Thus by the orbit formula

+
g = 2(o=1) % :E;ri )

n =
Hence . 2(1 - Ay = im _1 ) (&)
1 IA B

Excluding the trivial group, we have n >1, hence
2('.1 - %)>’I, but 2(1 - %)<2. Now m, »2 since all
matrices fix two points,except'the identity, so for

. }%i>/%’ but '] - %i<’l. So there are at least
two terms on the right hand side of (4), but no more

each i, 1 -

than three. We take these cases separately :

1. There are two terms, i.e. t:= 2, so there are two

orbits. Then

2 1 1
2-S=(1=2)+(1=-2)
n. mi . m2 ’

hence T4 + Tp = 2. By assumption r,,T,>0, S0 T, =Ty=1,
hence m, = O, = N, This means that.all elements of G
share the same two fixed points. Since these are
inconjugate this means by corqllary 1.9 that.G is

conjugate to a diagonal group.

In the special case where the centre k of X is
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algebraically closed we can in fact say more :

Lemma 2.21. Let K be a skew field with algebraically
closed centre k. Then any finite subgroup of K* lies in

k¥ and hence is cyclic.

Proof : Denote the finite subgroup of K* by C and
assume it is of order n. Then every element of C satis=
fies an equation of the form t® - 1 = O , where m\|n,
i.e. every element of C satisfies an equation of some
degree m over k. Since k is algebraically closed k will
contain m solutions of this equation. Because of the
unique factorization property of K[t] K will not contain
any other solutions. This means that every element of C
lies in k, so C lies in k . It is a well known fact
that every finite subgroup of a commutative field is

cyclic.
As a consequence we obtain

Provosition 2.22. Tet K have algebraically closed

centre k. Then any finite diagonal group G in PGLQ(K)

is cyclic.

ggggﬁ : Let (5?3) be any element of G. Since (a,Db)
is of finite order, a,b satisfy the equation t° - A= 0
over k, for some s. Since k is algebraically closed A
will have an s-th root in k, so we may take A= 1. By
lemma 2.21 it follows that a,bek. But this means that

G is a finite diagonal subgroup of PGLZ(k), hence C is
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cyclic,

Note.that when the centre k of K is algebraically
closed PGLg(K) does not contain any éuasiconjugations of
- finite order, since these would only amount to the unit
matrix.

Note also that we do not really need the full fbrée
of algebraic closure in lemma 2.21 and proposition 2.22.
A1l we have used in fact is that for Ajik, kX contains
all roots of A. So the condition we need on k is that
for any Aex (including )\=’i) A has one (primitive)
n-th root in k, for any n (kx will then cbntain all other

n-th roots), i.e. that k is root-closed.

Return#ng to our classification,

2. There are three terms in (4), so there are three

orbits. Then

o AN AN, a1

2 -S=(1=-=)+U1==)+01-=)
n I, I, ny
1 1 2
SO ' E+“+E—1+E .
* Each my is at least 2, but not all m, are greater
1.9 A4 _ a2 5

because gty ty= 1<1 + g Hence we may take m, =

| and then

Not both of Dy, Dz 8Te greater than 5, so we may take m,

to be 2 or 3. We consider these cases in turn :

Y



- - . n
a) my = m, = 2 ) Iz = %

We note that in this case the order n of G is even.
One orbit consists of g -~ tuple fixed points, Xq and kq
say. The other two orbits consists of % double fixed

points each. The stabilizer GX of-xo is a subgroup of
0

G of index 2 such that any element outside G, maps X,
(0]

to xq; Clearly all the elements of G# share the same
0

two fixed points, so G, can be taken to be a diagonal
0

group. Let Jo be a‘double fixed point in one of the

other orbits. Then Gy is a group with two elements.
0

Let T be the non-identity element of G . If S€G_ ,
J0 *0

then TS(XO) = T(xo).= éq , SO TS‘#G hence GXO and
TG, partition G into two sets with % “elements each;
0 .

in other words, G = {G TG }. There is no loss of
X Xg

XO’

generality in taking G_ %o be diagonal end T = (3 g) .
0 .

In the special case where the centre of K is

algebraically closed, GX is cyclic by proposition 2.22,
0 .

so G turns out %o be the dihedral group which has’

"L 2 2
Cal
~ defining relations 8~ =T = (sT) = I.

In the remaining cases we have m, = 2, m, = 3, Wz > 3

and we get

1 _ 1 2
E5 =g tn

This holds when myz = 3 and n = 12; vhen my = 4 and
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n = 24; when Dy = 5 and n = 60 and for no other values.

b) my =2, mn, = my = 3
Then G has order n = 12. Two orbits consist of four

3-tuple fixed points. Then the stabilizer GX of one of
: 0

them will contain three elements and hence must be cyclic,
generated by A say. But then G, (and A in particular)

: ‘ 0

fixes another point,~x1 say. Note that any element out=

side GX

maps X, to x, and X4 to Xoe Similarly there is

0

one other stabilizer of order 3, Gy say, which fixes Yo
. , 0]

and y, and which is generated by B say. Again any ele=

ment outside Gy maps yq to b and vice versa. The third
0

orbit has six double fixed points, so their stabilizers
are of order 2. This means that the cyclic subgroups
(and hence all the elements) of G are of order 2 and 3
only. We claim that AB is of;drder 2 : For suppose AB
is of order 3.' Then AB is cont_ainea in < A> or in <B).
So AB keeps either x5 or y, fixed. But AB(XO) = A(xﬁ)

= x;l and AB(yqy) = A(yg) = y,i. Hence AB is outside <A >
and <B>, alcontradiction, and the claim follows. This
gives us the defining relations for G : A5 = 33 = (AB)2
= i. G is also knoﬁn as the tetrahedral group, or as

alternating group on four letters, Altq.

c) m/.]::2’m2=3,m4=4

Then G has order 24. We obtain stabilizer groups of

orders 2,% and 4., The stabilizer groups'of order 4 must

T



be cyclic as shown in the example following proposition
2.20 (that these stabilizers are diagonal follows from
the fact that all the elements of a stabilizer share at
least one fixed point, which is 1mp0881b1e in the
dihedral group, the only other kind of group of order 4)
The rest of the argument goes as in the previous case.
Thus we obtain defining relations A4 = B3 = (AB)2 =
for G, G in this case is the symmetric group on four

letters, Sym4 ; it is sometimes referred to as the

octahedral group.

| a) my =2 ,m =3, mz = 5

Then G has order 60. All the stabilizer groups afe
cyclic because they are ‘of prime order. As before we
obbain defining relations A = B> = (AB)Z = I. This is
the alternating group on five letters, Alts s also

called the icosahedral group.

Call a skew field K "closed under quadratic equations”
if for any p,q€ X the equation x2 + px + q =0 has a
solution in K. Then we can sum up the result of this

section in

Theorem 2.23. Let K be a skew field which is closed
under quadratic eéuations and which is root-clesed. TLet
G be a finite group in PGL2(K) without quasiconjugations
and such that the characteristic of K does not divide
the order of G. Then G is conjugate to one of the

following types of groups
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1. The diagonal‘gfoup. '

2. The diagonal group with <,(]) g) adjoined.
5. The tetrahedral group.

4. The octahedral group.

5. The icosahedral group.

vNote that the assumptions on K in this theorem ére
weaker than existential closure.- We need élosure under
- quadratic equations because of lemma 1.4 which ensures
the}existénce of the first fixed point in XK (and indeed
also of the second}fixed point).

If in addition the centre k of K is algebraically
closed, then the condition that G contain_no duasiconju:
gations becomes redundant as we have seen. Noreover by
proposition 2.22 the diagonal groups are all cyclic.

This gives us

Theorem 2.24, }Lef K be as iﬁ theorem 2.23. Aésume

furthermore that the centre k of K is algebraically -
closed. Then PGLa(K) contains only cyclic, dihedral,

tetrahedral, octahedral, and icosahedral groups.

In fact we shall see in chapter 3 that any finite
~ group of'PGLg(K) is conjugate to one in PGLZ(k) (cf.
“theorem 3.13).



5. FIXED FIELDS

Introduétion

Throughout this chapter the centre k of the skew
field K will be assumed algebraically closed unless
.stated otherwise. K itself will be taken to be large
enough to contain the two fixed points of every matrix
involved (note that fhere are no quasiconjugations of
finite order in PGLg(K) D

Whereas chapter 1 dealt with the action of a finite
subgroup G of PGLZ(K) on a general skew field K, this
chapter will be concerned with the action of G on Kk(x),
whgre'k is algebraically closed. The object then is to
determine the fixed fields in Kk(x) of the finite sub=
groups of PGL2(K). This Was keew done for the complex
numbers by Felix Klein around 1870 [6]. Ve shall
modify (and sometimes simplify) the treatment of this as
given by Weber F?] to apply to our more general setting.
In doing so we shall prove the other main result of this
chapter, i.e.-that every finite subgroup of PGLE(K) is
conjugate to a finite subgroup of PGLz(k).

Section a) on invariants and groundforms does not
contain any original work. It is not included in chapter
O because its understanding requires some of the facts
and definitions given in the two previous chapters.
Approprate references will be given. Section b) pre=

pares the ground for the subsequent determination of the
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fixed fields. Essentially what we shall show there is
that if a finite subgroup of PGLE(K)'is conjugate to one
in PGLe(k), then we can find its fixed field.

After this we shall deal with each type of group
separately. In each case we show that the group in
question has a conjugate in PGL2(k). For the cyclic and
dihedral groups this fact leads us straight to their
fixed fields (and groundforms). For the remaining
groups we have to determine their groundforms first.
Over the complex numbers this is found in VWeber's book
[?] (which does not however derive the fixed fields).
We shall employ more direct methods in places; For
instance in the octahedral group Weber derives the
invariant W as Hessian of the grouﬁdform f and the
invariant ¥ as Jacobian of f and W. Ve shall obtain W
and vay a straight calculaticn using the factAthat the
octahedral group contains the tetrahedral group as |
normal subgroup of index.2. Or finding the groundformns
of the icosahedral group represents a considerable
simplification of Weber's treatment which requires
knowledge about polars and invariants of guartics.' And
showing that.theseAgroundforms are in fact.absolute
invariants is done by virtue of the fact that the
icosahedral group is simple, also a shortcut compared‘
- with Weber's treatment. , _

We conclude this chapter with a bpief putlook on

finding the fixed field of the cyclic group when the
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centre k¥ of X is not algebraically closed.

a) Groundforms and Invariants

The treatment of groundforms given below roughly
follows the account given by Weber in f7]. Throughdut
this section_k will denote an algebraically élosed
comnmutative field.

Iet G be a finite group of order n in PGLZ(k). By a

relative invariant of G we shall understand a polynomial

£(x) € x[x] such that for all A€G, we have
f(A(x)) = cf(x)

 for some c€k. When ¢ = 1 we call £ an absolute
invariant. |

Let a€k be an m - tuple fixed point of G in k (di.e.
a fixed point of m elements of G in k). The stabilizer
of a clearly forms a group, so m divides n. Put r = % ’
then the G - orbit of a éonsists of r fixed points,

{a=ao,a1,...,ar_1} say. Recall that for any A €G,

{A(ao),...,A(ar_q)} = {agseeesapq} -

~Let A€G be of form xra(ax +/3 Y(y=x + {)-1 and
assume det A = 1, i.e. «§ - ﬁb' = 1. Putb

-1 ' .

2G) = TT(x -8 o
i=0
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Then (Kx + g)rf(A(x)) has roots A’q(ao),...,A"q(ar_.,])
l.e. 8400058, 4. Hence f(x) and (z{x + §)Tr(A(x))

differ only by a constant c.

X
Let x,,%X, be parameters such that - X. Define
1272 X5
X
ol 1

. Then f(x1 ,xg) is a form of degree r (i.e. for any Aek,
i‘()\x,],v,\xe) = A\ f(x,l,xe) ) which is invariant under

transformations A of G :
, ¥ | -1
Since A(%) = (o(x,] + /3X2)(Kx,l + cfx2) . we have
A<x1’X2) = (& Xq + /3x2, §¥q + 5:{2). Furthergxore
£(x) = c(gx + §)TE(Ax)) (2)

for some cek. So

X
i‘(x,],xe) = ng(;{—;)

n-

xBe( 7 + § T2(GD)

]

Qg + § 1) s (AGD)

i

ACEIE(AGED)
= of(A(xq,%p)) )

Summing up (ecf. [3]1, 8§70, p.267): TFor every orbit we
have a (relative) invariant form whose degree is the
order of the orbit and whose roots consist of the ele=

ments of that orbit.
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If G is not cyclic there is more than one such f. Ve

call these f's (as defined by (1) ) groundforms of G.

Ve shall need two lemmas about groundforms (cf. [?], §70,

P.267,268) :

TLemma A, If some invariant form of G, F(Xq,X2> say,
shares a factor with a groundform f(xq,xz), then f(xq,xg)

divides F(xq,xz).

Proof : If F(x,1) and f(x,1) have a root in common,
then all roots of f must be roots of F : For by
assumption if AAsG,'then F(X,ﬁ) and F(A(x),1) have the
same roots. If therefore F(ai,ﬂ) = O, where a; is a
root of f(x,ﬂ), and A(ai) = a'j , then F(A(ai),1) =

F(aj,1) = 0., This provés the lemma.

Lemma B. A non-zero invariant form F of G whcse
‘degree is lower than the order of G is a product of

- groundforms (and a constant).

Proof : Clearly the restriction on the degree of F

is necessary. Let'yo be a root of the invariant form

"F(x,1). Then for all AeG, A(yo) are roots of F(x,1) = 0.

Since deg F<|[G[, not all A(y,) cen be distinct, so for
S -1 .

A A €G, A (yg) = A2(yo) or yo = A As(yg) ihls means

that Jo belongs to the fixed-point-set of G. It follows

from lemma A that F is divisible by a groundform, and

lemma B follows since the same holds for the quotient

of this division.



We can rephrase lemma B as follows :

Lemma C. If F(x,,%X,) is an invariant form of G whose
degree is lower than the order of G and F is not repre=
sentable (up to a constant) as a product of groundforms,

then it must vanish identically.

b) Some Technical Results from Galois Theory

To make our aim more precise we recall the following

E]

Definition : TLet F be any skew field and A the group

of all its automorphisms. For any subgroup H of A let
H' = {xeP|x = x for all CeH]}.

H' is called the fixed field of H.

For any subfield E of F let
E'='{GeAlx¢=:xfaraM_er}.

If E'' = E, then E' is called the Galois grouv of F

over E,

Let K be a skew field with algebraically closed .
‘centre ki Let G be a subgroup of PGL,(K). Then we have
an action of G on Kk(x) defined by f(x)—>f(&x), where
&% € G, f(x)eKk(x). Our task is to find the fixed fields
of the action on Kk(x) by the cyclic, dihedral, tetra=
hedral, octzhedral, end icosahedral groups, these being

the only types of finite groups occuming in PGL2(K), as

1)



demonstrated in chapter 2.

To do this we note that the mapping Kk(x)——eKk(o(x)
induced by € € G is an automorphism of Kk(x) over K (i.e.
keeping K fixed) which will be‘of the same order as «.
There will be no ambiguity in this chapter in calling
this automorphism of Kk(x) o as well. We need a pre=
liminary result which is easily seen to be a weaker

version of theorem 3.%.4 in [4].

Theorem. Iet G be a finite group of automorphisms cof

Kk(x) over K. Then
[£.(x) : 6] = (6 : &) [c: k] (&)

(if either side is finite), where G, denotes the group
of inner automorphisms in G, and C is the centralizer of
G' in K (x); [K(x) : G']L is the left degree of K, (x)
over G'; (G : GO) is the index of Gy in G.

Now an inner automorphism of Kk(x) induced by £ € G

is such that for any htZKk(x) we have
h(atx) = £ h(x)E (5)

where feaKk(x) is fixed in the the sense that it depends
only on o« bubt not on h. In particuler (5) holds for
h = x. Then '

-1

Ve may assume without loss of generality that f is

86

T Fm



defined and finite and non-zero at 0,1,00 : For if f or

£ has a pole at 0,1 or ® we only need to change

-variables to rectify the situation. For instance if

f(x) has a po‘le at x = 0, put x = y - e, where e % 0,1,

Then f(y) has a pole at y = e, and now Ay = f"q(y)yf(y),

‘where f satisfies the requirements. |
We claim K x has a pole at ™: For suppose & X is

T will be

finite at o0, Since f is non-zero at_ oo, £~
finite at oo, so fa :cf""l is finite at ¢, a contradiction
since x is not finite at oo, and proving the claim.

Now if
o x = (ax + b)(cx + d)"l (a,b,c,d €X),

then ¢ = O since &« x has a pole at‘ O, Sinmilarly since

£ andg £~

are finite and non-zero at O, « vanishes at O
by (6). Hence b = O. Since & is of finite order it
follows by lemma 2.21 that & (x) = wx for some wek.
Since f is non-zero and finite at 1, we have « (1) = 1,

so & =1, It follows that &« is the identity in G and

hence that G, is trivial.

So (G : GO) = [G] and (4) becomes

[x.(x) : 6] = |6][c :x] )
Suppose that héKk(x) generates the fixed field G' of
) L3
a subgroup G of PGLZ(K). Then for any X €G, h = h.

, LT kT xT a «
Hence for any & & GL,(K), h =h =h and soh

is contained in the fixed field (G¢)' of cr“'1G ¢. Since



G is an automorphism of X, (x) over K, h must in fact

be the generator of (G¥)' in K (x). Thus we obtain

Lemma 3.1. Let G be a finite group in PGL,(K) and

assume its fixed field in K, (x) is of the form Kk(h) for

N
some thKk(x). Then the fixed field of <T“1G g for any

¢ e GL,(X) is Kk(h"').

' Therefore if we find the (generétor of the) fixed
field of any one group of a conjugacy class of groups,
- then we can easily find the fixed field of any other
group in that‘class; |

The next proposition shows how our general case can

be reduced to the commutative case :

Provosition 3.2. ILet G be a finite group in PGL2(k),

N Qﬁere k is the algebraically closéd centre of K. Assune
h e k(x) generates the fixed field of G in k(x) over k.
Then h generates thé fixed field ofﬁG in Kk(x) over K,
“i.e. then Kk(h) is the fixed field of G in Kk(x).

Proof : First we note that h is indeed in the fixed
field of G in K, (x). Let G be of order n, then
dog h = n. Iet Fo be the fixed field of G in Ky (x).
| Then clearly Kk(h)é;FO. Moreover because h €k(x), the
i elenments 1,x,,..;xn’1 form a left as well as right besis

for Kk(x) over Ik(h), S0

. N [_'Kk(x) : Kk(h)JL = [Kk(x): :' Kkgl;)JR =n .
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Since Fy is Galois in K (x), [K.(x) : Fy]p =
[Kk(x) : FO]L‘ And now we use formula (7) to see that
[Kk(x) : Fd]LE:lG‘ = n, It follows that we mugt have

K, (h) = Fo-

The proof shows also that C = k in (7), a fact which
lcan be verified directly.

One of the objects in what follows will be to show
that all our finite groups nmeet the condition of pro=
position 3.2, i.e. that any finite group in PGLQ(K) is

conjugate to a group in PGL2(k).

c¢) The Cyclic Group of Order n, C,

Iet « be an element of PGLE(K) and assume ftaKk(x)
belongs to the fixed field of &« in Kk(x). Then £% = f.
A
Hence £° = f for any i. So the fixed field of « is
contained in the fixed field of any power «» of «. In.

~particular this gives

Temma 3.3, The fixed field in Kk(x) of a cyclic group

of automorphisms is that of its generator.

Suppose d.eIGIé(K) is of finite order n. Then we

) - n
know that « is conjugate to xr—>axb 1, where at = b" =

.X ck. Since k is algebraically closed it follows that

a,bek. Hence « is of form
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where ¢ k is a primitive n-th root of 1. Note that
(8) is in fact an element of PGLE(k). So by lemmas 3.1
and 3.3 and proposition 3.2 we need only find the fixed
field of (8) to determine the fixed field of any cyclic
group C, of order n in PGL2(K).

The ne:it lemma is a consequence of Galois theory and
used to form pa:ét of the expositiqn of Galois theory

before Dedekind.

Temna 3.4, Tet o(ePGLe(k) be of finite order n.
Then the fe k(x) such that £% = £ are precisely those

generated by the elementary symmetric functions in the

n-1
elements ’x,x“,.. . ,x‘* .
. . P Rt
Proof : Put p,](x)=x+x + eee + X
) ' '«n—’l
Pi(x) = Gi(xa"°ax ) (9)
‘ ' : *® «n-1
pn(X) = X X e X 3 1

where the (Ti are the elementary symmetric functioris. \
Clearly all these P; satisfy p‘__’.t = Dy ‘Denote by FO the

fixed field of « in k(x), and by F, the subfield of k(x)
generated by all the j Then F, SFO by the last remark.

Also [x(x) : FO] = n since « has order n. And we mus#

have [k(x) : F,J <n, hence F, = Fy. '

In particular if any of the 1< is of deg_ree n in x,

then this will generate the fixed field of o over k.
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More generally if h €k(x) is any function of degree n
which is contained in the fixed field FO (in k(x) ) of «,
then k(h) &Fy and [k(x) : k()] = n = [k(x) : B, so

. - , &4
k(h) = Fy. Note that if h = = for some g,l,ggek[x],

2
then deg h is defined here as max(deg 84y deg gg).

For the cyclic group Cn generated by (8) we Jjust need

a p; of (9) to be of degree n. Clearly
: ‘ n-1.
p,(x) = x" =t

is of degree n. So pn(x), and hence x° generates the
fixed field of C, over k. It follows that Kk(xn) is the
fixed field C.' of G, in Kk(x).

There is an alternative and in some. respects more
coﬁvenient way of describing this fixed field :

Consider the subfield E of Kk(x) generated by all

x-ini (i€%) end x*. This is clearly contained in the

fixed field of . « (in Kk(x) ). We recall lemma 5.5.4,
p.120 of [4] which says that the subfield of K, (x)
generated~by all x-ini is their field coproduct,
L = (:%ezx'iKii. L has an automorphism ©: 8 x Vax
for all a€K, so we can form the skew polynomial ring
L{x; 0] (where gx = qu for all q €L), which has field
of fractions L(x; 8), and L(x; B) = Kk(x). Now E is
generated over L by x*, s0 E = L(x%;6). It is clear
then that [L(x; 8) : L(x";0)] = n and hence
LG Q"Kk(xn). Since L(xn)QKk(xn), equality must hold.

Sunming up,
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I’lere generally if h €k(x) is any function of degree n -

whlch is contained in the fixed field Fo (in k(x) ) of o,
then k(\h) STy and [e(x) : k(h)] an = [k(x) : FO] ,/so

| . &4
= FO.\ Note that if h = & for some g,,8, ek[x] ,
then deg h ::.s defined here as max(deg 819 deg ga)

k(h)

For the cycllc group C, generated by (8) we’ “just need

/

a p; of (9) to be \ef degree n. Clearly /

\ Zn-']i .
'\*pn( x) = X% W //

/

."
o/
i
7

. \
is of degree n. So pn(x), and hence x % generates the

fixed field of C, over kB\ It follows that Ky (x®) is the

. . . N /
fixed field C,' of C in z{k\(x). /
There is an alternative and in/some respects more

N/
convenient way of describing this fixed field :

/"A\
Consider the subfield E of’ Kk(x) generated by all
// \
x~Igxd (i€%) end x*. This is clearly contained in the

4

/
fixed field of « (in Kk('x) ). w\e recall lemma 5.5.4,

p.120 of [4] which says that the subfield of K, (x)

generated by all x /lKX is their field coproduct,
L

— "'iT i
II - Q-LGZX L{X L4

for all a€k, so we can form the skew polynomial ring

has an automorphism : arsx 1ax

L[x; 0] (whe’ée ax = qu for all q €L), which has field
of fractions L(x; 8), and L(x; ) = k(x). Now E is
generated over L by x*, so E = L(x"; 0). It\is clear
then/that [L(x- B) : L(x*;0)] = n and hence\

L(*cn) "’Kk(*c ). Since L(x™)cXK L<X ), equality nnist hold.

Sunming up, \\

’
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Proposition 3.5. The fixed field of the cyclic group
with generator o : X+ cwx, where @ is a primitive n-th

n
root of 1, is given by L(x"; 6), where L = (:l

~i,_ 1
i€7Z x "EKx

and O: arsx lax for all a€K.

€ 0
Note that o«: x+-> @x has matrix _q]s where
0O €
2
€ = W, which is of determinant 1.

Note also that Cn'has two orbits, consisting of one

fixed point each (cf. chapter 2). So C, has two ground=

forms of degree 1. Since Cn is assumed to have generator .

as in (8), 0 and o are the two points in the orbits;

so one groundform is f1 = X, and the other is f2 = X5e

d) The Dihedral Group of Order 2n, Do,

First we find a normal form for D, , in PGL,(k) :

- Lemma %.6. . Any dihedral group in PGL2(K) of order 2n

is conjugate to the (dihedral) group generated by

() ,2<3 )

where €ek is éuch that €7 is a brimitive n-th root

of 1.

Proof : Suppose A,BEEPGL2(K) are the generators of
any dihedral group of order 2n. Then An,Bg,(AB)geikI
(where kI denotes the group of central scalar matrices

in GL2(K) ). So we know that A can be diagonalized,

Sp



A O
say A = s Where ,\n = ‘unek. Since k is
o

algebraically closed it follbws that .\,r« €k, But

1
) R
0 K [ 0 (pATHT
1 1

1
Note that )\Q, {-(Zek'and put € = ( }\Iu-’l)?

5 then A is

of the required form.

, a b €ta EDb
Let B = , then AB = 1 . Since

c d ele gla
5 .
5 a~ + bc ab + bd
B~ = > (10)
ca + dec cb + 4
and Bge kI, we have ab + bd = O, Similarly since

(AB)€ kT we obbain g2

ab + bd = 0. Together these
equations give us (1 - 62)bd = 0. Now if &2 = 1, then
E = +1 and A€kI which is trivial and we may exclude
this case. So either b = O o:;' d = 0. By a similar
-argument we must have either a = 0 or ¢ = O. Since A is
invertible we cannot have a = b = 0, nor ¢ = 4 = O,

b = ¢ = O cannot hold since then AB = BA which is im=

possible. in a dihedral group. Hence a =4 =0, 1.e. B

0 b 5

is of form [ ) Since B €kI we find that bc = cb &k.

¢ O

b 0
Put T = ( ) and note that T~ 1A T = A. Then
o A
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/I

0 1 * -
BT = (b O) . Write § = (be) 2, then § €k since
c

T-1

' )
k is algebraically closed and § T 1B T =(8'1 = B!

say. Put S = , then S 'A S = A and
0 1
- 0 1
S B' S = as required.
1 0

Proposition 3.7. -The fixed field of Do, (in the form

of lemma 3.6) over X is Kk(xn + x ), or L(x® + x2; 8),

n

where L = CDieZ vy %Kyt with y = x%+ x™7, and

0 : ai—-—»y—,]ay for all a€KXK.

€ O 0 1
Proof : Put A = ( _JQ, B = . Then A,B

0 € 1 O
gerierate'Dgn. Now the map « of A is x +—*@x, where w
is a primitive n-th root of 1, and the map of B is
(5: xr—»x_q. We already know the gengrator of the fixed
field of X : it is g(x) = x*. To find the generator of
the fixed field of f3 wé look-at the symmetric poly=
nomials (9) again. Since /3 is of order 2 there is only
pq(X) = x + x ) and pg(x) = 1. So pq(x) generates the
fixed field of /3. Now every element of D, has the
form oci(ij for i = 041,.0.,0=1 and j = 0,1. Next we

have
. ey = Ce ) . ()

where g(x) = x°. Hence
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[}

Pq(g@a)

pq(g ﬁ) (for if j = O, then /33 =1,
‘ so we take j = 1)

o@" vy (1))

]

= Pq(g)

n

Therefore pq(g(x)) = xt 4+ xR

is the genefator of the

fixed field of D2n (in the form of lemma 3%.6) over k and

thus over K. |

As before we can write Kk(xn + x ) in the form L(y; 8)
. n -n -i, 1 . -

withy = x° + x , L=Oiezleyl and’ Q: ar>y 1ay

for all a&€Kk.

‘To determine the groundforms of D2n we recall from
chapter 2 that D2n has three orbité, two consisting of n
double fixed points each and the third having two n-
tuple fixed points. If D,, is taken in the form of
lemma 3.6, then the n-tuple points gré 0O and . Thus
the groundform corresponding to the third orbit is
f3 = X,X5. To find the double fixed points (and hence

the other two groundforms) we note that

= . which has map Xv> =,
o &/ .\1 O -\&€~ O :

r=0,1,ee.4n=1. SO i;er are the 2n elements in the
first two orbits. Thus one groundform arises from
(x + D(x + E) eee (x + 89-1) = x% = 1, hence it is

fq = x? - xg. Similarly the other groundform turns out

]

n
to be f2 = X + X5 e

(e
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e) The Tetrahedral Grouv, Alt,

We show first that any tetrshedral group in PGLg(K)
is conjugate to one in PGLg(k), where k is the

algebraically closed centre of K.

Lemma 3.8. Any tetrahedral group in PGLe(K) is

conjugate to the group generated by

i-1 _ i1 i-1 i+1
2 2 2 -T2
A_ = ’ B = )
_ i i i-1 i+
2l 2l ' -T2 -T2
where 3‘_2 = -1,

Proof : The defining relations of A1t4 are A5 = §1I,
5
B

luI, (AB)2 = § I, where g,{-t, Kek. We may tske

S - lu = 1 without loss of generality for otherwise we
' A ] :
consider the matrices A § 3, B[u 3, which is possible

since k is algebraicaily closed. .
With g, /~4 thus fixed it remains to be seen what ¥
comes to. Without loss of generality we may take
. A O _
'A=( 2),where ,\=—%(’l+i€)and
0 X ,
A2 = = 21+ 13) (dee. AT = X7, Then
» KAE 0
BAB = KA =
o YA

a b \ ‘

Put B = , where a,b,c,d €K, then

/\a2 + Mbve Aab + A°ba
Aca + }\ch Acb + /\2d2

]

BAB =
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s0 equating entries: be = Y - A2a2 and - )\2a =bab~",
1 0\ fa b\ /1 oY a 1
Now - A
0 b c d 0 b : be bdb~
a 1 12)
= 12
K _ /\28.2 _ A2a
2 -1 -1
-1 A ¥y & ¥
Also B 2 9 1 -1
1- N2~ -a ¥

5 a2+ - Na? (1- N)a

and B = 2.2 2 2.2 y.2/)
(¥~ Aa)(1- XA%a K- A%+ Aa

Since B~1 = B . this gives us four equations :

1.) a2+x__)\22 >\2aK

Of these equations 2) gives us a and it remains to
specify ¥:

By 1), a2(1 - A%+ X = N2 gg""a

X1 - 22)a2 4 XZ" N2a = 0
by 2),. | a+ Kz_ M%a =
a1l - X% + x2 =0

and | K-,] + 52 =
-



Equation 3) is equivalent to equation 2), and equation
4) is equivalent to equation 1). This gives us three
choices for y: Y = -1, K:-A,and K=->\2.
Trying X = -1 first and hence a = (1 - }\2)_1 and
substituting these in (12) gives us

- 23 + iy7") 1
B = ) . (13) |
-3 - 6(5 - l'ﬁ-‘) )
Note that this has determinant 1. Put

1+ 1 g+'{5"+1[§—i

1e4F -3 G

" and note that C is inveftible. Thén

AW

i1 _ i1 i1 _ i

-1 2 -T2 -1 2 -T2
C AC = , C BC =
i+1 141 i-1 i+
- =5 -

2 | -T2 T T2
vhich, proves the lemma. ' : . —_
The other two choices of ¥ offer nothing new :

Denote the matrix (13) by B_, and the matrix obtained
 when K = -X by B_x (note that then a = 1 - )"lI )e

1 0 10
Th B = B (1)

Note that A remains unaffected by this conjugacy trans=

formation of Alt,. This means that Alt, with Y = - A

()
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is conjugate in PGLg(k) to Alt, with d = -1 and hence to
Alt, as given in lemma 3.8. Koreover b& (14) and since
det B_, = 1, we mist have det B_, = A2

 The case X = —>\2 is similar.

Lemma 5.8 and proposition 3.2 reduce the search for
the fixed field of Alt4 to a problem in commutative
algebraically closed fields. To settle this problem we
need to determine the groundforms of Alt, first.

Since Alt4 has three orbits there must be three
groundforms. We recall from chapter 2 that the first
orbit contains 6 double fixed points. If we take Alt4

to be generated by A and B as in lemma 3.8, then

-i O
AB = ( ) which is of order 2 with map x+» -x. So
O i

0O 1i
0,9 are two double fixed points. Next BA = ( )
i O
which is of order 2 with map X —sx"1. So +1 are two
CUE s - 7 - [-1 0O\/O 1 0 1
more double fixed points. Finally =
: 0 i/\i O -1 O
which is of order 2 with map x+—>-x—1. So the last two
double points are +i. Note that these réally are double

fixed points since Alt, only has double and triple fixed

points.i All these fixed points are obtained as roots of
4 4

which is our first groundform, ofAdegree 6.

We observe that all other fixed points are 3-tuple

and we recall that there are 4 such points in each of
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the two remaining orbits. Ve start by determining the

fixed points of A of lemma 3%.8. A has map x+—>1i %f% )

so its fixed points must satisfy x2 + (i+1)x - 1 = 0.
The two solutions are Xg = %(i+1)(—1—{3') and
Yo = 3(i+1)(~1+{3"). Obviously x, and y, are not in the

same orbit. We determine the orbit of Xg 3 Apply AB
which has map x+—-x, then -xy is in the orbit. Next

=1, then x5 = A(1-1)(~1445") is in the

apply BA = x
. . . 2, = =1 _. -1
orbit. Finally applying AB™A = -x gives us -Xg .

Thus our groundform is

-(x—xo)(x+xo)(x-x61)(x+x61) = %t - xZ(X62+Xg) + 1
= xt - 21 3 x° + 1 3

~or in parameters, x% - 2143 Xq¥%5 + X5 .

Denote this groundfdrm by #.

Similarly we.find the other groundform,
+‘(x) = x + 21{—’x + 1
or in parameters, 21J~1x1x2 + x2 .
It is interesting to observe a relation between f,4>,+:
121312 = V2 - 2

Next we note that the constant ¢ in (3) turns out to

be a cube root w of 1 in the case of <#. Ye see this



by applying A (of lemma 3%.8) to ¢ o« Sinmilarly we find
that ¢ = @ when A is applied to ¥, ¢ = 032 when B is

applied to & and ¢ = w when B is applied to V¥ (expli=

citly : P (x) = oo(j-i-fE X i+1)‘P(B ) ). Hence we see

that by (3) (é;)3 is a function of degree 12 which is

an element of the fixed field of Al%,. By the remark
after lemma 3.4 it will generate the fixed field of Alt4.

Summing up :

. Proposition %.9. If Alt4 is in the form of lemma 3.8,

then its fixed field is

( (x -21J;’x +'D5 )
k (x +21{§1¥ +’l)-5

Proof : This follows from lemma 3.2 .

As before we can write this in the form I(y; 8),

-1ay (for all a€ek

iﬁlere L = Oiez y"iKyi and Q: ar»y
23,
¥

with 3 =

f) The Octahedral Group, Sym,

Lemma 3.10. Any octahedral group Sym, in PGL2(K) is

conjugate to the (octahedral) group generated by

i+1 i-1
JE' 0 == =
= B = |-
A P isd i1 ] ?
0] -1{1’ - B T

(Ol
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where. i2 = -1,

 Proof : The proof of this lemma is very similar to
that of lemma 3.8, so we shall omit some of the details.
The generating relations of Sym4 are A4 = &I, B3 = p I,
(AB)2 = ¥ I. VWithout loss of generality we may assume
that & = [R = =1, We have to determiné gék. e may

: € O
also assume A to be diagonal, i.e. A =( ), where
0 €

g% = 1. 50 € =41 ana &1 = -1 which is as

, a b "
given in the lemma. Write B = ( ) s then
c d

-1
GA—/] = <XE ° , and
o Y&

BAB =
8a2 + 8_1bc €ab + &'1bd

BAB = 1 1.2 ) « This gives us
€Eca + E 'dc €Ecb + g d

bc = Y - 52a2 and bdb~ ! = - E,ga. Since

1 0 1 0 a 1
: B 1= 1]+ B can be taken to be
O b 0 b bc bdb

. . : k a . 1 -
of form B = S A ' . : (15)
(6" €242 _£2a>
5 - a2+ - €2a2 a- s.2a
- Then B~ = -B is 5 o 5 5 o 5
\(g-€a)(1-€%)a  ¥-ega"+¢€a
- x"’/l 828. - K"/l . . .
i.e. 5o 1 1|+ The (1,2) entries give us
€a ¥ -1 ay

a = -K-q(’l - 6,2)'/1 and the (1,1) entries give us
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32(’1 —€2) + X = -x—qe2a, or KB = -1

e« The other

entries contain no further information. Choose K’: -1,

then a

Put §

o &7 0 §

2(i+1). Substitute this in (15), then

%(i+1) 1

B =

-3 -

%(i-ﬂ), then

0. 1 0 F(141)

B

]

as desired.

%éi—ﬂ)

3(a+1) = 5(3-1)

As before the other two choices of ¥ do not give

det B = 1

In determining the invariants of Sym4 we note firsﬁ

of all that Sym, (in the form of lemma 3.10) is

generated by A =

S FAe

0 -i{?

) (which has map x —>ix) and

Alt4 (as given by lemma 3.8), i.e. Sme contains Alt4 as

normal subgroup of index 2.

Next we recall that Sym,

has three orbits, Qné of them consisting of 6 quadruple

fixed points.

degree 6.

Hence there is a groundform f of Sym,+ of

Now A has map x+—ix and is of order 4, so

0, ™ are quadruple fixed points. Secondly BA5 has map

XFﬂ~XIq and is of order 4, so +1 are quadruple fixed

X+

points.

Finally AB2 has map x—

1+x

= =

d is of order &4,
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s0 1 are quadruple fixed points. Hence

f(xq,x2) qug(x1+x2)(xq-xg)(x1+ix)(x1-ix2)

m
= }c,]xg(x,1 - xg)

is our first groundform.

Recall the groundforms ¢> and. %’ of Alt4 and put
W= #ﬁf « This is obviously an invariant of Alt,, so if
W stays invariant under x+>ix, then it must be an
invariant of.Sym « But |
8 8

_ et
W = X1 + 14x1x2 + X5

vhich is clearly an absolute invariant of xr—ix. Ve
claim that W is in fact the second groundform of Sym4,
belonging to the orbit containing 8 triple fixed points:
First we note that the third groundform M (belonging to
the third orbit containing 12 double fixed points) is of
degree 12. ©So M cannot be a factor of We On the other
hand, since W is a non-zero invariant of Symy , by lemma
B it must be a product (up to a constant) of groundforms.
But f cennot be a factor of W, for if W = fg, then g is
an invariant of degree 2 and which is therefore not re=
presentable as a prOduct of groundforms. By lemma C
this is impossible. It follows that W must itself be a
groundform, as claimed.

Similarly we find that M = <#5 + 4’5 is an invariant
of Symy, and hence the third groundform. M is given

explicitly by

[0%



e 4.8 12
2M = X4 - 55}:1 2 - 5)x1 5> + X5

"

(x,I + x2) - 56x (xl + x2) .

Write W in the form W = (x,I + x2) + 12xﬁx§ , then we

obtain the following relation for f£,M, and W :

w? - 4w - q08et
or w3 41
- —=~ = 108
e
Put E; = V and &gr = L, then we can regard V and L as
b by '
*1
functions in one variable x = = Clearly V,L are
. 2

(relative) invariants of Sym,,i.e. if A€ Sym,, then
V(A(x)) = 01V(x) and L(A(x)) = C2L<X). But then

V(x) - I(x) = cqv(x) - ceL(x) = 105, hence ¢ = ¢, = 1.
This means that V,L are in fact absolute invariants of
Sym,. Since'both are of degree 24, either will generate
the fixed field of Sym, over k (and hence over K).

Thus we have proved

Proposition 3.11. ZILet Sym, be the octahedral group

as given by lemma 3.10. Then the fixed field of Sym4 in

Kk(x) is

( (X + ']4}{4 + 1)3 )

Kk(v? ) X (x - 1)

As before we can write this in the form L(V; 8),

(o5



where I = <:) 1

) 7 v™ixvl ana 9: a—V

av, V = ;Z’ for all

a€k.

g) The Icosahedral Grouvp, Alt

5

First we shall derive a normal form for Alt5, in

PGLZ(k). A presentation for Alt. is given by Weber [7],

5
as for the previous groups. We shall here give a different
presentation, which arises more naturally from the relations

obtained in chapter 2.

Lemma 3.12. Any icosahedral group in PGLZ(K) is con=

jugate to the (icosahedral) group in PGLz(k) generatedlby

1 ‘ A <
€2 0 €-1 E-1
A = 1 ’ B = ]
0 -5 I L =£
E £-1 -1 T
where € is a primitive 5-th root of 1 and w = € + e,

Proof : We may assume that A5 = =T, B3 I, and

(AB)2 = X-I for some Y € k. Moreover we may assume that A

is in the form given by the lemma. 1
a b -1 f€ ° o
Put B = . Then BAB = XA = 5] s and
c d - \O €
o 1 -1 1 -1
a €2+ beg ? ab €2 + bA g °
BAB = 1 A 1 o _1
cagl + dce 2 chel +d & 2
1 1 1 : ~
2 5 -5 2

So a£“+bc52=§.5 or bo=2§—a€.,ahd
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1 1

5 3 -1
abe” + bd € =0 or -aé& = bdb

, assuming b 4 O.

"Then we can take B to be of the form

(10)ab)10 a 1 " a 1
o v/ \c a/ \o b'1)— (bc vav™ (K—aze -ae)

using the above equalities., ‘

We note that this matrix is contained in PGLZ(k(a)) and
k(a) is a commutative subfield of K., So if we insist on
det B = 1, then we must have K = -1, Moreover B satisfies
its characteristic equation, so

2 4 Ea( € ~1)+1=0 : (16)

B
B> + B?a( € - 1) + B=0
I+ (1-Ba(e=-1))a(& -=1) +B =0 Dby (16)

I+a(é-1)-32(e-1)2-1)=0

In this the (1,2)-entries give a2( & = 1) =1 =0 ;
the (1,1)-entries give 1 + a( € = 1) = a’( €-1)%2 - a = 0.

Hence we have -1 + a(g - 1) =0 or a = Eéﬁ-.

Substitute for a in B, then

1 . 1
£ ! £ !
B = ) = 5 ’
S (€-1)2 g1 (e-1)% €1
-1 '

where W = &€ + & .

1 A
1 0\ L ) )
B = .
€-1 wE - £
0 ~ 0 = =1
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Since these transformations leave A unaffected we have

proved the lemma.

Summing up the results of lemmas 3.6, 3.8, 3.10, 3.12

we have proved a main result of this chapter, i.e.

Theorem 3.13. Let K be skew field with algebraically

closed centre k. Then any finite subgroup of PGLZ(K) is
conjugate to one in PGLZ(k).

Next we turn to the invariants of the icosahedral
group, Alfs. Alt5 has three orbits, one of them consisting
of 12 quintuple fixed points, so its groundform f must be
of degree 12 in Xy 9Xye Now A of lemma 3,12 has map x—— £ X,
- where & is a primitive fifth root of 1; and Alt5 contains

0 -1

Ateadeats s( ) which has map x— -x~1. £ must have a

1 0
factor X4%o since 0 and oo are the fixed points of xv—e-eix
(i =0,1,¢00,4). To be an invariant of xw——€x it is

necessary that the remaining féctor is expressed by fifth

powers in X4 and X5 3 and to be an invariant of xr~+-x-1

this remaining factor must have summands x}o and X;O with
different signs. Since a groundform is a homogeneous

polynomial in X4 9%y it must be of the form
» 10 10
f(x1,x2) =.x1x2(x1 + mx?xg - X5 )y

where m remains to be determined.

Now the points of the orbits other than O, ¢ must be the

OR



e 10 5 *4
roots of x + mx” - 1 = 0, where x = = So we have
2

1
' 2 , 2

>_..nI m_+4

X7 = 2::(4) , (17)

-£2x+&3+€_

7 . So its
(€+ &7)x+1

But ABB has order 5 with map xw»

fixed points, which are necessarily quintuple, are the

2 + €x - 62 = 0 . This has solutions

roots of x
X = % (-1 + 45' ). Raising this to the fifth power enables

us to equate the result to (17). In this way we shall

- obtain m

We take x = % (-1 - 431)
(§(-1-457))°
So now - %(11+5ﬂ§‘)

(m-11-5¢{5")% = m%+4

- 2(1145{5)
2

%(—mi m-+4 )

(-22-10¢5" )m+242+11095° = O

m = 11
Thus our first groundform is

- X

5.5
2

10 10
f(x1,x2) = x1x2(x1 + 11x3x 1') .

To determine the other two groundforms we need Hessian
- and Jacobian determinants, the relevant facts about which

we shall briefly recount @

Let k be a commutative algebraically closed field and

let A be a non-singular m x m matrix over k, with
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determinant r ¢ 0. Let F(x) = F(x1,...,xm) be a form of

degree n., If the variables x are changed to Yqseees¥y by
4, i.e. x = Ay, then F(x) becomes G(y) for some form G.

()F(X1,...,Xn) a G(Y)
Put Fx = % and G = 5T Then
X i I3 Vi
G F
¥y X1 :
: = AT : ) (18)
G
In FXn

where AT is the transpose df A,

Given m forms F(1),...,F(m), put

O (D

x4 X,
A = | |

O NI

1 %m

o (1)

AN =‘AT£l by (18) (and A?L§=Z§A). In particular we have

G(m). So

and let A'! be the correspondlng matrlx for gecey

lz&'l . PAY (19)

l[&l = det/\ 1is the Jacobian determinant of F(1),...,F(m).
aF(X1,000,Xm)

Given some form F, put F = and
' xixj 0 xiaxj
. {
F F F !
H = : : :
F F . . . F :
™1 X2 Xn*m ‘

|10



Let H' be the corresponding matrix for G. Then

H' = AT g A (20)

In particular we have |H'| = r?(H|. |H| = det H is called

the Hessian determinant of F.

Now we take the form F to be our groundform f and A
any matrix of Alt;, then (f =) F = G and formula (20)
shows that the Hessian H of f must be a relative invariant

of Alt We find

5 L]
A 2
H=T7~ f - (f )
.X1 X1 X2X2 X1 X2

121 (=(x5%+x5°) + 228(x15 Z-x;5 2) - 494x;%x0)

As before it follows from lemma B that this must in fact be
our second groundform. As grounéforms are only determined
up to a constant we may omit the factor 121.

Next we form the Jacobian T of f and H. By formula (19)

this will again be an invariant of Alt5.

T = fx Hx - fk Hx
1 72 2 ™M

20 ((x?o+xgo)+522(x$5xg—x5 25) 10005(x20xgo+x10xgo

Again lemma B ensures that this is bur third and last
groundform; and again we may omit the factor 20. Then we

have the following relation between the groundforms :

1% + B = 1728 1’

I



Now groundforms F are relative invariants :
F(x4,%,) = cF(xy,%,), which is (3), and A is an element of |

Al Let N be the set of all elements of Alt

5° .
¢ = 1. Clearly I€ N. If A,B€N, then A™

5 such that

,ABEN., So N is

a subgrdup of Alts. Moreover if A€ N, then C"1AC‘€N for

all CeAlt Hence N must be a normal subgroup of Alt

5° 5°
But it is a well known fact that Alt5 is simple, so N is

either I or the whole group. It is easily checked that

4

N+ I, e.g. A*BATBA%B has map x+— -x~! which is in N.

Hence N = Alt.. This means that f,H,T are all absolute

5.
invariants of A1t5.

« Xy
Put A = s eAlt5 and x = =— . Then we recall (2)
b 2

F(x) = (yx + £ )F F(A(xj), where4E‘stands for f,H, or T.
F(x) p2

Hence F(A(x)) = =————— and it follows that ——(A( )) = 3(x)
(xx+8)F |

i.e. 3 is an element of degree 60 which belongs to the

fixed field of A1t5. Thus we have proved

Proposition 3.14. Let Alt. be the icosahedral group as

5
given by lemma 3.12. Then the fixed field of Alt5 in Kk(x)

is

(T ) = K ( (x394522%x2%-10005%2°-10005x% 1 0+522x°+1)?2 )
B T (20 008x P -404x 1 0-228x0-1)

' A o 2
We may write this in the form L(gg;E)) as usual.
~H
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- This completes our investigation into the fixed fields
of finite subgroups of PGLZ(K) when the centre k of X is
algebraically closed.

h) Outlook on the General Case

Finally we make some remarké about fixed fields in the
general case, i.e. when k is no longer algebraically closed.
To illustrate the problems that arise there we confine our
considerations to the case of the cyclic group Cn of order
n which is assumed not to contain any quasiconjugations.
Without loss of generality Cn can be taken to be diagonal,
with generator «: Xh*DaXb-1. Now when_k is algebraically
closed we have lemma 3.4; and since the generator of the
fixed field of Cn must be of degree n, those symmetric
functions 1 of lemma 3.4 which have degree iess than n

must vanish identically. The following result might lead

one to expect a similar situation in the general case of Cn

(without quasiconjugations).

Proposition 3.15. Let K be a skew field with centre k.

Let a,b €X be such that a™ = b = A for some A\ % O in k
and some bositive ihteger n. If a and b are not conjugate,
then 4
IR |
p4 (x) = > axb " =0 . (21)
i=0 =

Proof : Consider the automorphism o : x&—eaxb'1 of Kk(x)

13



over K. By assumption.<xn'= 1, so any conjugate of &« has

order n. Change variables in y = axb-1, say y' =y - X

x' = x - X5 where XOGZK remains to be specified. Then

1

-1 - -1
] — ] —
y' o+ xg = a(x' + xo)b = ax'db™ + axyb . Hence

y' = ax'b + axob_1 - Xg. If we pick Xq such that
axyb™| 4 x5, then by Lemma 1.10, ¢ = axgb™! - x, is a
non-trivial solution of (21). Now since a and b are not
conjugate, a,b do not have the same minimal equation over k
by theorem 0.12. To prove the proposition we need to show
that any c€XK is a solution of (21). Thus given c € K we

-1
want X4 such that axob - X3 = C, Or ax, - xob = cb., By
hypothesis and theorem 0.11 this always has a (unique)
1

solution for x5. So y' = ax'b”

any ¢ €K and by lemma 1.10 ¢ is a solution of (21).

+ ¢ is of finite order for

This means that the first symmetric polynomial o always
vanishes; however we are disappointed in our expectations
when we consider the second symmetric polynomial (and assume
n >2).. We have

PZ(X) = ST «H(x) «9(x) = ‘ > a'xptadxpTY

i,j<sn-1. i,j<n-1
£ 3 3

J ’
1 1

. n-1 . .
So pz(x) p%(x) - E;(alxb-l)z. But we know p1(x) = 0, so
. l:
o=l i -iy2
pz(x) = 0 if and only if >.(a"xb™")° = 0. As the
1= .

following example shows, this is not true in general :

Take K to be the real quaternions IH. Then k = IR.

[1&



Take a = —% - iﬁ? , then a’ = 1 ; and p~ 1

= j, then bt = 1.

So a and b are not conjugate. Take x = 1. We can check

that j%%(_% - iJgj)nj"= O, confirming proposition 3.15, but.
n=

11
SF- M - s

So in the general case there may be functions of degree
less than n in the fixed field of Cn‘

There also seems no reason to suppose that the fixed
field of Cn (without quasiconjugations) is still generated
over 'K by a single element of Kk(x). Finally, though this
looks plausible enough, it remains to be proved that the
field generated over K by the elementary symmetric ‘
functions is indeed the whole fixed field of Cn (this would
be the generalization of lemma 3.4). For the reasons given
above, the arguments used when k is algebraically closed

can no longer be applied in the general case.
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