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Abstract

A multipartite tournament is an orientation of a complete multipartite graph.
Simple derivations are obtained of the numbers of unlabeled acyclic and unicyclic
multipartite tournaments, and unlabeled bipartite tournaments with exactly k cycles,
which are pairwise vertex-disjoint.
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Bollobds, Frank and Karoniski [1] enumerated labeled acyclic bipartite tournaments.
Rousseau [4] obtained a short elementary proof of this result; the proof is based on certain
bijections. Another proof is given by Moon [3] who also enumerated unlabeled acyclic
bipartite tournaments.

In this note, we enumerate unlabeled acyclic and unicyclic multipartite tournaments.
We partly generalize these results by counting unlabeled strictly k-cyclic bipartite tour-
naments, that is, bipartite tournaments with exactly k cycles, which are pairwise vertex-
disjoint. Our proofs are short and simple and based on certain bijections from classes
of multipartite tournaments into sets of integral sequences or other classes of multipar-
tite tournaments; unlike the proofs in [3] for the number of unlabeled acyclic bipartite
tournaments, no calculations are required in the proofs of our results.

A p-partite (multipartite) tournament [2] T is an orientation of a complete p-partite
graph G. The colour classes of T are the colour classes of G, i.e., the maximal indepen-
dent sets of vertices in G. An unlabeled p-partite tournament is an ordered (p + 1)-tuple
(T, V1,...,V,), where T is a p-partite tournament and (V1,...,V,) an ordered p-tuple of its
colour classes. (When (Vi,...,V,) can be determined from the context we shall write T
rather than (T,V1,...,V}).) If the colour classes of T are of order ny,...,n, respectively
(n; >0, i =1,...,p), then T is called an (ny,...,ny)-tournament. We say that unlabeled
(n1, ..., np)-tournaments (7, V1,...,V,) and (M, Uy, ...,Uy) are equivalent if there exists an
isomorphism f from T to M such that f(V;) = U; for every i = 1,..., p. Intuitively, this



means that vertices in the same colour class are interchangeable, but the colour classes
themselves are not.

In what follows, n = nq +... +ny. Let tx(n1,...,np) denote the number of inequivalent
unlabeled strictly k-cyclic (ni,...,np)-tournaments (k > 0). A sequence s, S2,..., Sy, is
called an (n1, ..., ny)-sequence if it contains n; elements equal to j, for every j = 1, ..., p, and
no other elements. Clearly, the number of (n4,...,n,)-sequences equals the multinomial
coeflicient (m”n ). The following result provides a graph-theoretical interpretation of
multinomial coefficients.

Theorem 1. The number to(ni,...,ny) of (inequivalent) unlabeled acyclic (ny,...,ny)-

tournaments equals the number of (n1,...,np)-sequences. Thus to(ny,...,ny) = (n1 " np).

Proof: Let T be an acyclic (n1,...,n,)-tournament with colour classes Vi,...,V,,. We
can assign to T" an (ny, ..., n,)-sequence s(T') = s1, s2, ..., s, as follows. The vertices of zero
in-degree in 1" are all in the same colour class: let them be z1,...,z;, all in V},, and set
81 = ... = 8y, = J1. Let the vertices of zero in-degree in T' — {z1, ...,z } be T 11,..., Tp,,
all in Vj,, and set s, 11 = ... = 5, = jo. Continue in this way until all elements of
s(T) = s1, ..., 8, are defined.

Conversely, given an (ni,...,n,)-sequence s = sy, S, ..., S,, we construct an acyclic
(n1, ..., np)-tournament 7'(s) as follows. For every i = 1,2, ...,n, the ith vertex z; of T'(s)
belongs to V;,, and it dominates (is dominated by) all vertices zj not in Vj; such that
kE>i(i>k).

It is easy to see that these two constructions are inverses of each other, that is,
T(s(T)) =T for each T and s(T'(s)) = s for each s. O

It is easy to see that the formula in Theorem 1 is also valid when some of the cardi-
nalities n; are zero. This remark will be used in applications of Theorem 1.

Let T be a strictly k-cyclic multipartite tournament and let C', ..., Cy be its cycles.
Contracting every cycle C; into a single vertex w; gives an acyclic digraph T'. Let
T*(Ch,...,C)) denote the digraph obtained from T by deleting all arcs between pairs
of vertices in {wy, ..., wg }.

Now we obtain a simple formula for ¢x(n1,n2),k > 0. The problem to obtain a compact
formula for tx(ni,...,np) (p > 3) for every k& > 0 seems to be much more difficult. We
prove a relatively compact formula for ¢1(n1,...,np) in Theorem 3.

Theorem 2. For every integer k such that 0 < k < %min{nl,ng}, tp(ni,ng) =



-3k
(nl—QTI:),nQ—Qk,k)) ’

Proof: For k = 0, the formula follows from Theorem 1. Thus we may assume that
k > 1. Let T be a strictly k-cyclic (n1,n2)-tournament, and let C1, ..., Cy be the cycles of
T. Every cycle Cj is of length four, since otherwise the chord joining two vertices distance
3 apart around C; would complete another cycle. Thus, the cycles are ‘interchangeable’.
Therefore, ti(n1,n2) equals to(ny — 2k, ny — 2k, k), the number of unlabeled acyclic (n; —
2k, no — 2k, k)-tournaments of the form 7*(C1, ..., Ci). The result now follows by Theorem
1. O

Let S(p, k) denote the set of all unordered k-subsets of {1,...,p}. In what follows, we
assume that ( = 0 if one of the integers m; is negative. Note that

(ml,..r.r,lmp,l) = m(m:n,:,%np) (1)

" )
mi,...,mp

ifmy+...+mp=m-—1.

Theorem 3. The number of unlabeled unicyclic (n, ...,ny)-tournaments (p > 3) is

t1(n1,mp) = (0=3) D Gopymze) T2 =2) D Gy m):

D
T€S(p,2) T€S(p,3)

where nf(m) =n; —c if j € m, and n§(r) = n; otherwise.

Proof: Let T' be a unicyclic (n, ..., np)-tournament with colour classes Vi, ...,V and
let C be the unique cycle in T'. Two vertices of C' that are not consecutive in C' must be
in the same colour class, since otherwise the chord between them would complete another
cycle. Thus C' is of length three, or of length four with vertices from two alternating colour
classes.

Let us first assume that C has four vertices from V; and Vj}, ¢ < j, and 7 = {i,j}. Then
the number of unlabeled unicyclic (n1, ..., n,)-tournaments containing C' equals the number
of unlabeled acyclic (n1,...,7—1,7 — 2,41, .00, Nj—1, 0 — 2,Mj41, ..., Np, 1)-tournaments
of the form T*(C), which is to(nf(r),...,n2(r),1). By Theorem 1 and (1), this gives the
first term in the formula for ¢;(n1, ..., np).

Now let C' be a cycle with three vertices from classes V;, V; and V}, respectively, and
in this order. Let also m = {i,j,k}. Then the number of unlabeled unicyclic (ni, ..., ny)-
tournaments containing C' equals to(n}(r), ...,n;(m),1). This fact and the possibility to
have two unlabeled triangles C' with vertices from classes V;,V; and Vj, (in this order and
in the opposite one) gives the second term in the formula for ¢;(ny,...,np). O
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