A note on the cardinality of certain classes of unlabeled multipartite tournaments

Gregory Gutin
Department of Mathematics and Statistics
Brunel University
Uxbridge, Middlesex, UB8 3PH, U.K.

Abstract

A multipartite tournament is an orientation of a complete multipartite graph. Simple derivations are obtained of the numbers of unlabeled acyclic and unicyclic multipartite tournaments, and unlabeled bipartite tournaments with exactly k cycles, which are pairwise vertex-disjoint.

Keywords: Multipartite tournaments; Bipartite tournaments; Enumeration

Bollobás, Frank and Karoński [1] enumerated labeled acyclic bipartite tournaments. Rousseau [4] obtained a short elementary proof of this result; the proof is based on certain bijections. Another proof is given by Moon [3] who also enumerated unlabeled acyclic bipartite tournaments.

In this note, we enumerate unlabeled acyclic and unicyclic multipartite tournaments. We partly generalize these results by counting unlabeled $strictly\ k$ -cyclic bipartite tournaments, that is, bipartite tournaments with exactly k cycles, which are pairwise vertex-disjoint. Our proofs are short and simple and based on certain bijections from classes of multipartite tournaments into sets of integral sequences or other classes of multipartite tournaments; unlike the proofs in [3] for the number of unlabeled acyclic bipartite tournaments, no calculations are required in the proofs of our results.

A p-partite (multipartite) tournament [2] T is an orientation of a complete p-partite graph G. The colour classes of T are the colour classes of G, i.e., the maximal independent sets of vertices in G. An unlabeled p-partite tournament is an ordered (p+1)-tuple $(T, V_1, ..., V_p)$, where T is a p-partite tournament and $(V_1, ..., V_p)$ an ordered p-tuple of its colour classes. (When $(V_1, ..., V_p)$ can be determined from the context we shall write T rather than $(T, V_1, ..., V_p)$.) If the colour classes of T are of order $n_1, ..., n_p$ respectively $(n_i > 0, i = 1, ..., p)$, then T is called an $(n_1, ..., n_p)$ -tournament. We say that unlabeled $(n_1, ..., n_p)$ -tournaments $(T, V_1, ..., V_p)$ and $(M, U_1, ..., U_p)$ are equivalent if there exists an isomorphism f from T to M such that $f(V_i) = U_i$ for every i = 1, ..., p. Intuitively, this

means that vertices in the same colour class are interchangeable, but the colour classes themselves are not.

In what follows, $n = n_1 + ... + n_p$. Let $t_k(n_1, ..., n_p)$ denote the number of inequivalent unlabeled strictly k-cyclic $(n_1, ..., n_p)$ -tournaments $(k \ge 0)$. A sequence $s_1, s_2, ..., s_n$ is called an $(n_1, ..., n_p)$ -sequence if it contains n_j elements equal to j, for every j = 1, ..., p, and no other elements. Clearly, the number of $(n_1, ..., n_p)$ -sequences equals the multinomial coefficient $\binom{n}{n_1, ..., n_p}$. The following result provides a graph-theoretical interpretation of multinomial coefficients.

Theorem 1. The number $t_0(n_1,...,n_p)$ of (inequivalent) unlabeled acyclic $(n_1,...,n_p)$ -tournaments equals the number of $(n_1,...,n_p)$ -sequences. Thus $t_0(n_1,...,n_p) = \binom{n}{n_1,...,n_p}$.

Proof: Let T be an acyclic $(n_1, ..., n_p)$ -tournament with colour classes $V_1, ..., V_p$. We can assign to T an $(n_1, ..., n_p)$ -sequence $s(T) = s_1, s_2, ..., s_n$ as follows. The vertices of zero in-degree in T are all in the same colour class: let them be $x_1, ..., x_{r_1}$, all in V_{j_1} , and set $s_1 = ... = s_{r_1} = j_1$. Let the vertices of zero in-degree in $T - \{x_1, ..., x_{r_1}\}$ be $x_{r_1+1}, ..., x_{r_2}$, all in V_{j_2} , and set $s_{r_1+1} = ... = s_{r_2} = j_2$. Continue in this way until all elements of $s(T) = s_1, ..., s_n$ are defined.

Conversely, given an $(n_1, ..., n_p)$ -sequence $s = s_1, s_2, ..., s_n$, we construct an acyclic $(n_1, ..., n_p)$ -tournament T(s) as follows. For every i = 1, 2, ..., n, the *i*th vertex x_i of T(s) belongs to V_{s_i} , and it dominates (is dominated by) all vertices x_k not in V_{s_i} such that k > i (i > k).

It is easy to see that these two constructions are inverses of each other, that is, T(s(T)) = T for each T and s(T(s)) = s for each s.

It is easy to see that the formula in Theorem 1 is also valid when some of the cardinalities n_i are zero. This remark will be used in applications of Theorem 1.

Let T be a strictly k-cyclic multipartite tournament and let $C_1, ..., C_k$ be its cycles. Contracting every cycle C_i into a single vertex w_i gives an acyclic digraph T'. Let $T^*(C_1, ..., C_k)$ denote the digraph obtained from T' by deleting all arcs between pairs of vertices in $\{w_1, ..., w_k\}$.

Now we obtain a simple formula for $t_k(n_1, n_2), k \geq 0$. The problem to obtain a compact formula for $t_k(n_1, ..., n_p)$ $(p \geq 3)$ for every $k \geq 0$ seems to be much more difficult. We prove a relatively compact formula for $t_1(n_1, ..., n_p)$ in Theorem 3.

Theorem 2. For every integer k such that $0 \le k \le \frac{1}{2} \min\{n_1, n_2\}, t_k(n_1, n_2) =$

$${n-3k \choose n_1-2k, n_2-2k, k}.$$

Proof: For k=0, the formula follows from Theorem 1. Thus we may assume that $k \geq 1$. Let T be a strictly k-cyclic (n_1, n_2) -tournament, and let $C_1, ..., C_k$ be the cycles of T. Every cycle C_i is of length four, since otherwise the chord joining two vertices distance 3 apart around C_i would complete another cycle. Thus, the cycles are 'interchangeable'. Therefore, $t_k(n_1, n_2)$ equals $t_0(n_1 - 2k, n_2 - 2k, k)$, the number of unlabeled acyclic $(n_1 - 2k, n_2 - 2k, k)$ -tournaments of the form $T^*(C_1, ..., C_k)$. The result now follows by Theorem 1.

Let S(p,k) denote the set of all unordered k-subsets of $\{1,...,p\}$. In what follows, we assume that $\binom{m}{m_1,...,m_p} = 0$ if one of the integers m_i is negative. Note that

$$\binom{m}{m_1, \dots, m_p, 1} = m \binom{m-1}{m_1, \dots, m_p} \tag{1}$$

if $m_1 + ... + m_p = m - 1$.

Theorem 3. The number of unlabeled unicyclic $(n_1,...,n_p)$ -tournaments $(p \ge 3)$ is

$$t_1(n_1, ..., n_p) = (n-3) \sum_{\pi \in S(p,2)} {n-4 \choose n_1^2(\pi), ..., n_p^2(\pi)} + 2(n-2) \sum_{\pi \in S(p,3)} {n-3 \choose n_1^1(\pi), ..., n_p^1(\pi)},$$

where $n_j^c(\pi) = n_j - c$ if $j \in \pi$, and $n_j^c(\pi) = n_j$ otherwise.

Proof: Let T be a unicyclic $(n_1, ..., n_p)$ -tournament with colour classes $V_1, ..., V_p$ and let C be the unique cycle in T. Two vertices of C that are not consecutive in C must be in the same colour class, since otherwise the chord between them would complete another cycle. Thus C is of length three, or of length four with vertices from two alternating colour classes.

Let us first assume that C has four vertices from V_i and V_j , i < j, and $\pi = \{i, j\}$. Then the number of unlabeled unicyclic $(n_1, ..., n_p)$ -tournaments containing C equals the number of unlabeled acyclic $(n_1, ..., n_{i-1}, n_i - 2, n_{i+1}, ..., n_{j-1}, n_j - 2, n_{j+1}, ..., n_p, 1)$ -tournaments of the form $T^*(C)$, which is $t_0(n_1^2(\pi), ..., n_p^2(\pi), 1)$. By Theorem 1 and (1), this gives the first term in the formula for $t_1(n_1, ..., n_p)$.

Now let C be a cycle with three vertices from classes V_i, V_j and V_k , respectively, and in this order. Let also $\pi = \{i, j, k\}$. Then the number of unlabeled unicyclic $(n_1, ..., n_p)$ -tournaments containing C equals $t_0(n_1^1(\pi), ..., n_p^1(\pi), 1)$. This fact and the possibility to have two unlabeled triangles C with vertices from classes V_i, V_j and V_k (in this order and in the opposite one) gives the second term in the formula for $t_1(n_1, ..., n_p)$.

Acknowledgement. I would like to thank Douglas Woodall, Anders Yeo, and the referees for numerous helpful remarks and suggestions.

References

- [1] B. Bollobás, O. Frank, and M. Karoński, On 4-cycles in random bipartite tournaments, J. Graph Theory 7 (1983) 183-194.
- [2] G. Gutin, Cycles and paths in semicomplete multipartite digraphs, theorems and algorithms: a survey, J. Graph Theory 19 (1995) 481-505.
- [3] J.W. Moon, On the number of acyclic bipartite tournaments, Congr. Numer. 119 (1996) 173-184.
- [4] C.C. Rousseau, Elementary proof of a counting formula for acyclic bipartite tournaments, J. Graph Theory 20 (1995) 319-322.