
Preemptive mobile code protection
using spy agents

Georgios Kalogridis

Information Security Group

Department of Mathematics
Royal Holloway, University of London

Thesis submitted to The University of London

for the degree of Doctor of Philosophy

2011.

Declaration of Authorship

These doctoral studies were conducted under the supervision of Prof. Chris J.

Mitchell.

The work presented in this thesis is the result of original research carried

out by myself, in collaboration with my supervisor, whilst enrolled in the

Information Security Group of Royal Holloway, University of London as a

candidate for the degree of Doctor of Philosophy. Where I have consulted

the work of others, this is always clearly stated. This work has not been

submitted for any other degree or award in any other university or educational

establishment.

Signed:

Date:

2

Abstract

This thesis introduces ‘spy agents’ as a new security paradigm for evaluating

trust in remote hosts in mobile code scenarios. In this security paradigm, a

spy agent, i.e. a mobile agent which circulates amongst a number of remote

hosts, can employ a variety of techniques in order to both appear ‘normal’

and suggest to a malicious host that it can ‘misuse’ the agent’s data or code

without being held accountable.

A framework for the operation and deployment of such spy agents is de-

scribed. Subsequently, a number of aspects of the operation of such agents

within this framework are analysed in greater detail. The set of spy agent

routes needs to be constructed in a manner that enables hosts to be iden-

tified from a set of detectable agent-specific outcomes. The construction of

route sets that both reduce the probability of spy agent detection and sup-

port identification of the origin of a malicious act is analysed in the context of

combinatorial group testing theory. Solutions to the route set design problem

are proposed.

A number of spy agent application scenarios are introduced and analysed,

including: a) the implementation of a mobile code email honeypot system for

identifying email privacy infringers, b) the design of sets of agent routes that

enable malicious host detection even when hosts collude, and c) the evaluation

of the credibility of host classification results in the presence of inconsistent

host behaviour. Spy agents can be used in a wide range of applications, and

it appears that each application creates challenging new research problems,

notably in the design of appropriate agent route sets.

3

Acknowledgments

I would like to express my gratitude to my supervisor Professor Chris

J. Mitchell, at Royal Holloway, University of London, to whom I am indebted.

His precise and generous technical feedback, extensive editorial comments, and

overall guidance have been invaluable to both me and this work.

I would also like to thank my advisor Dr. Allan Tomlinson at Royal Hol-

loway, University of London, for his support.

This part time PhD study has been supported and funded by the Telecom-

munications Research Laboratory (TRL) of Toshiba Research Europe Limited,

which has given me the opportunity to be part of a team leading in research

and innovation. I would like to express my special thanks to Professor Joe

McGeehan, Dr. Mutsumu Serizawa, and other Directors of Toshiba TRL for

all the support and encouragement, without which this work would not have

been possible.

Further, I thank my industrial supervisor Dr. Tim Farnham for this in-

sightful technical comments, Dr. Mahesh Sooriyabandara for his support and

motivation, and numerous other colleagues at TRL for the discussions that

helped this work progress.

Last, but not least, I would like to dedicate this work to my family and

in particular my parents, as well as my partner Jennifer. Their support and

understanding will always be inspirational.

4

Contents

Contents

Declaration of Authorship 2

Abstract 3

Acknowledgments 4

Contents 5

List of Figures 15

List of Tables 17

List of Acronyms 18

1 Introduction 20

1.1 Synopsis . 20

1.2 Setting the scene . 21

1.2.1 Mobile agent security issues 22

1.2.2 Host protection . 24

1.2.3 Mobile code protection 24

1.2.4 Mobile code data privacy 25

1.3 Motivation and challenges . 25

5

Contents

1.4 Thesis structure and contributions 28

1.5 Publications . 30

1.5.1 Conference papers . 30

1.5.2 Patents . 30

2 Background 32

2.1 Synopsis . 33

2.2 Cryptographic primitives . 34

2.2.1 Preliminaries . 34

2.2.2 Cryptographic functions 35

2.2.2.1 Symmetric and asymmetric encryption 35

2.2.2.2 Hash functions 36

2.2.2.3 Message authentication codes 37

2.2.2.4 Digital signatures 37

2.2.3 Key establishment, management and certification . . . 38

2.3 Mobile agents . 40

2.3.1 Introduction to mobile agents 40

2.3.2 Computing architectures 42

2.3.3 Mobile agent implementations 43

2.3.4 Mobile agent applications 45

2.4 Mobile agent security . 46

2.4.1 Analysis principles . 46

2.4.2 Security threats and requirements 47

2.4.2.1 Threats . 47

2.4.2.2 Security requirements 49

2.4.3 Security controls . 51

2.4.3.1 Collateral techniques 51

6

Contents

2.4.3.2 Prevention techniques 52

2.4.3.3 Detection techniques 55

2.4.4 Host protection controls 61

2.4.4.1 Java security 61

2.4.4.2 Agent trustworthiness 62

2.4.5 Summary: mobile agent security controls 65

2.5 Other security topics . 67

2.5.1 Data privacy . 67

2.5.1.1 Notions . 67

2.5.1.2 Regulations 68

2.5.1.3 Detection and prevention 69

2.5.2 Monitoring agents . 71

2.5.3 Deception . 72

2.5.3.1 Honeypots . 72

2.5.3.2 Software decoys 73

2.6 Combinatorial group testing 74

2.6.1 Introduction to group testing theory 74

2.6.2 Sequential group testing 75

2.6.3 Non-adaptive group testing 76

2.6.4 Group testing for complexes 78

2.6.5 Useful combinatorial structures 79

2.6.5.1 Block designs 79

2.6.5.2 Vectors . 80

2.6.5.3 Separating matrices 80

2.6.5.4 Cover-free families 81

2.6.5.5 Superimposed codes 81

7

Contents

2.6.5.6 Frameproof codes 82

2.6.5.7 Key distribution patterns 83

2.6.5.8 Some applications 83

2.7 Conclusions . 84

3 Spy agents 85

3.1 Synopsis . 85

3.2 Introduction to spy agents . 86

3.3 Developing the spy agent concept 87

3.4 Spy agent system architecture 89

3.4.1 Spy agent network components 90

3.4.2 Spy agent content framework 91

3.4.3 Spy agent routing framework 93

3.4.3.1 Path correlation 94

3.4.3.2 Path length 95

3.4.4 Trust evaluation . 95

3.5 Conclusions . 96

4 Spy agent requirements and assumptions 98

4.1 Synopsis . 99

4.2 Malicious host behaviour . 99

4.3 Spy agent dissemblance requirements 100

4.3.1 Subterfuge requirements 101

4.3.2 Statutory requirements 101

4.3.3 Protection requirements 102

4.3.4 Incentivisation requirements 102

4.3.5 Summary of dissemblance requirements 104

8

Contents

4.4 Spy agent evaluation requirements 105

4.4.1 Attack detection requirements 105

4.4.2 Attack identification requirements 106

4.4.3 Host evaluation fairness requirements 106

4.4.4 Security evaluation optimisation requirements 106

4.5 Spy agent routing requirements 107

4.5.1 Single-agent routing requirements 108

4.5.2 Multi-agent routing requirements 108

4.6 Spy agent trust services . 109

4.6.1 Services in trusted networks 109

4.6.2 Evaluation services . 110

4.7 Other assumptions . 110

4.7.1 Agent anonymity and host identification 110

4.7.2 Inter-networking assumptions 112

4.8 Conclusions . 113

5 Protocol architectures and analysis principles 114

5.1 Synopsis . 115

5.2 Scenario implementation issues 115

5.3 Fundamental spy agent protocol architectures 116

5.3.1 Single-agent-single-target scenario 116

5.3.2 Single-agent-two-target scenario 117

5.3.3 Unbalanced routing scenarios 118

5.3.4 Two-agent-two-target scenario 118

5.3.5 Three-agent scenarios 120

5.3.6 Guidance spy agent scenarios 122

5.3.7 Multiple target agent scenarios 124

9

Contents

5.4 Spy agent system parameters 125

5.4.1 Number of spy agents 125

5.4.2 Number of trusted platforms 125

5.4.3 Number of target platforms 126

5.4.4 Order of target platforms 126

5.4.5 Cost and overheads . 126

5.5 Conclusions . 127

6 Spy agent routing designs using non-adaptive group testing 128

6.1 Synopsis . 129

6.2 Introduction to the routing problem 129

6.3 Problem formulation . 130

6.3.1 Assumptions and objectives 130

6.3.2 Group testing scenario hypotheses 132

6.3.3 Definitions and fundamental results 134

6.3.3.1 Route design and incidence matrix 134

6.3.3.2 Combined set and binary vector operations . 134

6.3.3.3 Representing defective items 135

6.3.3.4 Classifier route designs 136

6.4 A spying classifier design . 137

6.4.1 Properties of classifiers 137

6.4.2 A simple block design construction 140

6.4.3 Further examples . 141

6.5 Conclusions . 143

7 Complex spy agent group testing 146

7.1 Synopsis . 147

10

Contents

7.2 Problem formulation . 147

7.2.1 Behaviour model for malicious hosts 147

7.2.2 Notation . 151

7.3 Group testing for complexes (GTC) 154

7.3.1 The notion of complex defective 154

7.3.2 Property of GTC designs 157

7.3.3 Some GTC constructions 166

7.4 Identifying individual malicious hosts 167

7.4.1 Problem representation 167

7.4.2 Host classification . 172

7.5 A rank-two Type classification algorithm 173

7.5.1 Standard classification scenario 173

7.5.2 Classification scenario with design restrictions 174

7.5.3 The algorithm . 176

7.5.4 Example implementation 180

7.6 Conclusions . 183

8 Optimal multi-stage spy agent group testing 185

8.1 Synopsis . 186

8.2 Introduction . 187

8.2.1 Scenario . 187

8.2.2 The problem . 187

8.3 Optimal spy agent sequential group testing 189

8.3.1 Assumptions . 189

8.3.2 Definitions . 189

8.3.3 Optimality properties 191

8.4 Multi-stage sub-group routing algorithm 193

11

Contents

8.4.1 Objectives . 193

8.4.2 The algorithm . 193

8.4.3 Correctness . 195

8.4.4 Efficiency . 196

8.4.5 Discussion . 197

8.5 Conclusions . 197

9 Evaluating spy agent results 199

9.1 Synopsis . 200

9.2 Introduction . 200

9.2.1 Previous discussions 200

9.2.2 Problem description 201

9.3 Credibility evaluation model 205

9.3.1 Assumptions . 205

9.3.2 The model . 207

9.3.3 Case study 1: Single spy agent route 213

9.3.4 Case study 2: A homogeneous system 227

9.3.5 Case study 3: NGT route designs 228

9.3.6 Case study 4: SGT route designs 229

9.3.7 Discussion . 233

9.4 Impact analysis of malicious behaviour 234

9.4.1 Procedure . 234

9.4.2 Case study . 235

9.5 Conclusions . 239

10 Spy agent applications 241

10.1 Synopsis . 242

12

Contents

10.2 Introduction . 242

10.2.1 Setting the scene . 242

10.2.2 Services . 243

10.2.2.1 Required services 243

10.2.2.2 Offered services 244

10.2.3 Applicability . 245

10.2.4 An application framework 246

10.3 Spy agent email honeypots . 247

10.3.1 Outline of operation 247

10.3.2 Threat detection . 248

10.3.2.1 The technique 248

10.3.2.2 Applicability 249

10.3.3 The scheme . 250

10.3.3.1 System architecture 250

10.3.3.2 Route designs 250

10.3.4 Similar applications . 251

10.4 Spy agent shopping honeypots 252

10.4.1 Outline of operation 252

10.4.2 Threat detection . 253

10.4.2.1 The technique 253

10.4.2.2 Applicability 254

10.4.3 The scheme . 255

10.4.3.1 System architecture 255

10.4.3.2 Route designs 255

10.4.4 Alternative applications 256

10.5 Conclusions . 256

13

Contents

11 Conclusions 259

11.1 Synopsis . 259

11.2 Contributions . 260

11.2.1 Spy agents . 260

11.2.2 Detailed review . 261

11.3 Future directions for research 265

11.3.1 Host testing . 265

11.3.2 Mobile code applications 268

A Code for complex group testing 269

A.1 Malicious host identification 269

A.2 Function library . 269

A.3 Resilient rank-2 classification algorithm 271

A.4 Disjunctness test . 271

Bibliography 272

14

List of Figures

List of Figures

2.1 Client-server paradigm architecture. 42

2.2 Mobile code paradigm architecture. 43

2.3 Agent execution environment architecture. 65

2.4 The idea of group testing. 76

3.1 Spy agents versus malware and viruses. 89

3.2 Fundamental spy agent system components. 90

3.3 Spy agent internal structure. 91

3.4 Spy agent system—interactions with trusted parties. 92

3.5 Spy agent routing architecture. 94

4.1 Spy agent virtual route. 112

5.1 Testing a target platform with the aid of a trusted platform. . 117

5.2 Testing two target hosts with a single agent. 117

5.3 Testing two target platforms with two agents. 119

5.4 Three-agent-three-target scenario. 121

5.5 Three-agent-three-target scenario with guidance. 122

6.1 Fano plane. 142

15

List of Figures

9.1 Markov model with two states: Non-malicious Mode (NM) and

Malicious Mode (MM). 208

9.2 CCS vs. r × π, for fixed n, ξ and different values of d. 215

9.3 CCS vs. r × π, for fixed d and different values of n and ξ. . . . 216

9.4 CCS vs. r × ξ, for fixed n, π and different values of d. 218

9.5 CCS vs. r × ξ, for fixed d and different values of n and π. . . . 219

9.6 CCS vs. r × d, for fixed ξ, π and different values of n. 222

9.7 CCS vs. r × d, for fixed n and different values of ξ and π. . . . 223

9.8 CCS vs. (r/n)× n, for fixed ξ, π and different values of d. . . . 225

9.9 CCS vs. (r/n)× n, for fixed d and different values of ξ and π. 226

9.10 CCS for a range of 2-designs (case A). 230

9.11 CCS for a range of 2-designs (case B). 231

9.12 CCM vs. d× π, for n = 20, ξ = 10. 233

9.13 Aggregated identification results for different malicious host be-

haviour patterns of two malicious hosts, based on the route de-

sign defined by the Fano Plane. 238

16

List of Tables

List of Tables

2.1 Examples of mobile agent toolkits. 44

2.2 Mobile agent security solutions. 66

6.1 Simple three-agent scenario incidence matrix. 136

6.2 2-(7, 3, 1) incidence matrix. 142

7.1 A simple route design for four hosts. 152

7.2 Outcome sets for defined scenarios. 165

7.3 The blocks of a Mathieu 4-(11, 5, 1) design. 181

7.4 Dual of a Mathieu 4-(11, 5, 1) design. 182

7.5 Evaluation results for resilient rank-2 classification algorithm. 183

17

List of Acronyms

List of Acronyms

ACL Agent Communication Language, 44
AEE Agent Execution Environment, 42, 64
AES Advanced Encryption Standard, 35
AI Artificial Intelligence, 40, 41

BIBD Balanced Incomplete Block Design, 79

CFF Cover-free Families, 79

DNA Deoxyribonucleic Acid, 77, 78, 83, 155, 156,
161, 184, 262, 267

DoS Denial of Service, 35, 101, 245, 252, 253
DSA Digital Signature Algorithm, 37

FIPA Foundation for Intelligent Physical Agents, 44,
89

GT Group Testing, 21, 74, 75, 78, 83, 129, 131,
132, 144, 150, 186–189, 197, 201, 205

GTC Group Testing for Complexes, 78, 79, 154, 155,
157, 161, 166, 171, 173, 183, 197, 256, 266

ID Identification Data, 57, 91, 102, 110, 250
ISP Internet Service Provider, 70, 111

KDP Key Distribution Pattern, 79, 161, 166, 180

MAC Message Authentication Code, 37, 58
MASIF Mobile Agent System Interoperability Facility,

43, 44

18

List of Acronyms

NGT Non-adaptive Group Testing, 76–78, 129, 133,
136, 186, 187, 197, 200, 201, 228, 234, 239,
251, 256, 266

OECD Organisation for Economic Co-operation and
Development, 67, 69

PETs Privacy Enhancing Technologies, 25, 70
PII Personally Identifiable Information, 70, 133,

247, 251, 256
PKI Public Key Infrastructure, 39
P3P Platform for Privacy Preferences, 69
PRAC Partial Result Authentication Code, 57, 60

QoS Quality of Service, 71

RSA Rivest-Shamir-Adleman, 36, 37

SAEH Spy Agent Email Honeypot, 247–251, 255
SASH Spy Agent Shopping Honeypot, 252–256
SGT Sequential Group Testing, 75, 76, 185–190,

192, 197, 200, 228, 239, 251, 256, 266
SQL Structured Query Language, 44

TSP Trust Service Provider, 65
TTP Trusted Third Party, 39, 60

VM Virtual Machine, 42, 61

19

“Every new beginning comes from some other beginning’s end.”

Seneca (4 BC – 65 AD)

1
Introduction

Contents
1.1 Synopsis . 20

1.2 Setting the scene . 21

1.2.1 Mobile agent security issues 22

1.2.2 Host protection . 24

1.2.3 Mobile code protection 24

1.2.4 Mobile code data privacy 25

1.3 Motivation and challenges 25

1.4 Thesis structure and contributions 28

1.5 Publications . 30

1.5.1 Conference papers 30

1.5.2 Patents . 30

1.1 Synopsis

This chapter provides an overview of the thesis. It discusses the rationale

for the concept of spy agents (§1.2), introduces the motivation for the work

20

1.2. Setting the scene

described and the research challenges it faced (§1.3), and outlines the structure

of the thesis along with the main contributions (§1.4).

1.2 Setting the scene

Preemptive protection of a computer network involves monitoring network and

host activity in order to detect policy violations and anomalous behaviour,

identify the origin of such activity, and make security evaluations. These eval-

uations can be used to formulate and report on an appropriate reaction, in

an attempt to address the detected security threats. For example, preemptive

host and network protection against mobile code aims to identify (or eval-

uate the risk of) software viruses, trojan horses , malware, etc. Approaches

to support such measures include intrusion detection systems , honeypots and

software decoys . Preemptive protection does not necessarily involve security

controls that thwart security attacks—it also includes measures for evaluating,

analysing and preventing their occurrence.

This thesis focuses on the protection of mobile code, inherently a harder

challenge than the protection of the mobile code hosts. We also assume that

malicious hosts are ‘intelligent’ in the sense that they mount attacks selectively

and that they are most likely to mistreat mobile code when it appears to them

that they will not be identified. Thus, the challenge is to find techniques that

‘outwit’ such malicious hosts. Spy agents, proposed in this thesis, address this

challenge through the use of Group Testing (GT) techniques.

The spy agent paradigm (see Chapter 3) involves the provision of a new

kind of security service designed to indirectly improve the overall security level.

It achieves this by using evaluation mechanisms that preemptively assess the

trustworthiness of remote hosts, before they are sent vulnerable mobile code.

21

1.2. Setting the scene

We introduce the notion of spy agents as ‘legitimate’ mobile agents which are

able to interact with remote, potentially hostile, mobile agent platforms in a

manner that helps to enable trust assessment.

Spy agents provide an auxiliary layer of defence. Such a layer is of value

since current security solutions do not offer complete protection; this issue

is discussed further immediately below, while a literature review is given in

Chapter 2. In general, spy agents may co-exist with, or even require the func-

tionality of, other security solutions; this may serve to increase the effectiveness

of each layer of defence.

Z Throughout this thesis we (by convention) use the terms ‘mobile agents’

and ‘mobile code’ interchangeably.

1.2.1 Mobile agent security issues

Mobile agents are the basis of a distributed programming infrastructure with

inherently beneficial characteristics such as autonomy, flexibility and intelli-

gence [69]. One widely cited example of an application of agent technology

is a price comparison agent which ‘visits’ a number of on-line retailer sites or

nodes and requests a price for a particular item. This agent could retrieve and

process information, including, for example, prices, from a number of different

retailers.

The two main actors in a mobile agent system are the following:

• Agent: an instance of mobile code;

• Host: a platform capable of executing an agent.

Mobile agent security has been the subject of a considerable volume of

22

1.2. Setting the scene

recent research [89] (see §2.4). As has been widely discussed (see, for exam-

ple, [18, 89]) there are three parallel sets of security issues associated with

mobile agents, namely protecting hosts (and other agents) against malicious

agents, protecting agents against malicious hosts, and protecting hosts (and

other agents) against third parties.

In a typical mobile agent system, legitimate mobile agents will interact with

hosts in a defined way, and hosts will be built to deal with expected agent be-

haviour. Viruses and other ‘illegitimate’ agents may attempt to access the

host in unauthorised ways rather than remain in the execution environment

reserved for agents (e.g. a sandbox). Such malicious agents might steal sen-

sitive information from the host, such as personal financial details, cause the

host to act in an unintended way, for example causing it to send spam emails,

or simply corrupt the host so that it no longer functions properly.

The parallel security problem, and the main focus of this thesis, arises

from the fact that agents are at the mercy of the host which executes them.

Ultimately a host can choose to carry out the functions requested by the agent

as expected, and/or it can manipulate the agent. Such manipulation might

include reading data contained within the agent which is intended to remain

private, e.g. the source address or the identity of the agent originator. This

information could then be misused for a variety of purposes, including forward-

ing spam to the originator’s email address. Other examples of inappropriate

behaviour might include reading quotes from competitor on-line retailers and

providing a more attractive quote, or changing competitor quotes to make

them less attractive.

Autonomous mobile agents, apart from obtaining price quotes or retrieving

23

1.2. Setting the scene

other information for further analysis, might also be able to complete a trans-

action remotely in accordance with the client’s instructions. For example, to

purchase an air ticket, an agent might be instructed to visit several on-line

stores before automatically making the best value purchase. The client might

only wish to pass a third party certain personal information embedded in the

agent if there is a considerable discount on the final price. Giving an agent

power to make commitments on a client’s behalf clearly permits a range of

possible abuses by a host, as further discussed in §2.4.2.

1.2.2 Host protection

In this thesis we do not address techniques for host protection; nevertheless,

host protection techniques are relevant here since they can provide input to

spy agent security evaluation scenarios. Hosts can use a variety of techniques

to protect themselves against malicious mobile code. For example, ‘safe’ pro-

gramming languages can restrict mobile code permissions; a sandbox (such

as a Java security sandbox [136, 187]) can enforce a security policy for code

execution; and proof carrying code can provide a formal (authenticated) proof

that received code will execute as expected [125].

Host protection mechanisms are reviewed in §2.4.4.

1.2.3 Mobile code protection

As mentioned in §1.2.1, in this thesis we consider the threat posed to mo-

bile code by malicious hosts. This is an important research area, and many

schemes to provide protection for code have been proposed (including tamper-

proof hardware [199], tamper-proof execution environments [189], code obfusca-

tion [10], encrypted functions [145,152], and strategic division of functionality

across multiple agents [127]). Nevertheless, none of the existing solutions is

24

1.3. Motivation and challenges

able to address the problem in both a practical and robust manner.

Previously proposed mobile code protection mechanisms are reviewed in

§2.4.3.

1.2.4 Mobile code data privacy

One particularly important threat posed by a remote host to a mobile agent

is that it might breach its data privacy policy. A personal email address is

an example of private data whose use might be protected by a privacy policy.

Infringements of email address storage and usage policies could result in a

range of undesirable effects, including the receipt of unsolicited messages, i.e.

spam, identity theft, and phishing.

The misuse of sensitive private data contained in mobile code is a passive

attack, which leaves no signs of violation in the mobile code itself and may

only be detected indirectly (e.g. by checking an email address for the receipt

of spam). Current detection systems, such as Privacy Enhancing Technologies

(PETs), monitoring agents and honeypots (discussed in §2.5), cannot be used

to identify unauthorised use of remote code/data, as in the latter case the

personal information is willingly exposed to multiple hosts.

1.3 Motivation and challenges

In order to help address the mobile code security issues discussed above,

this thesis introduces spy agents as a new preemptive mobile code protection

paradigm. The main motivation for proposing these agents is that current

security controls are limited in scope and application. We seek to design spy

agent systems that provide pragmatic remote security evaluations—one major

25

1.3. Motivation and challenges

challenge is that ‘sophisticated’ attackers may escape detection by misbehav-

ing selectively, i.e. only misbehaving when they can avoid detection.

Instead of trying to mitigate the mobile code threats discussed above di-

rectly, the challenge addressed is to develop a robust trust evaluation mech-

anism that can indirectly help to provide security for mobile agents. The

mechanism we develop employs special mobile agents to retrieve and process

security related information from target hosts. This concept was discussed

previously by Borselius et al. [19], who suggest that a security assessment can

be made when an agent migrates from a trusted platform to a target platform,

where it obtains certain information and then returns to the trusted host for

further analysis.

A wide variety of preemptive mobile code protection paradigms have been

proposed; the idea of a distributed security system made up of security agents

patrolling target hosts to monitor their behaviour is not novel. However, in

previous approaches [26,28,40,67] such security mechanisms or agents operate

in trusted environments and cannot be applied to evaluate remote, potentially

hostile, domains, where some hosts may exhibit complex malicious behaviour.

For example, in the scheme of Vogler, Spriestersbach and Moschgath [188],

part of an agent needs to run in a tamper-resistant environment, which is

trusted to perform sensitive operations.

The requirement for a trusted environment is relaxed in [19], where it is

suggested that a security assessment can be made as a result of agent migra-

tion to unknown hosts; however, this approach still has limitations. The main

problem is that it is assumed that the target hosts will adhere to their policies

and will provide the agents with all the security assessment information they

request. Hence a potentially corrupted remote host could provide security

26

1.3. Motivation and challenges

agents with apparently proper information. The host could later behave inap-

propriately when it has the opportunity to do so without being detected; also,

in order to escape detection, it might only selectively misbehave if it knows it

is being monitored.

In contrast with this previous work, spy agents are designed to be able to

obtain information that reflects the genuine character of a remote host. The

main functional constraint is that information should be acquired without

violating the hosts’ own security and privacy controls, regardless of whether

or not a host is malicious. Given this, the main challenge addressed by this

thesis can be formulated as follows. Spy agents should assess the genuine

character of remote hosts by providing the hosts with no indication of their

purpose and by interacting with visited hosts in the expected way.

Spy agents are analogous to software decoys [118] and honeypots [139] in

that they hide any indication of their purpose from a target. A spy agent

differs, however, in that it is mobile code which is fully under the control of a

remote host. It is interesting to observe that honeypots, software decoys and

other intrusion detection technologies can be used by malicious hosts against

spy agent deployments. Spy agents must address this challenge, and must

still be able to identify sophisticated malicious hosts that may adapt their

behaviour to avoid detection.

In some ways, spy agents are analogous to cryptographic tracing techniques,

which can be used to detect unauthorised modifications to an agent’s code in

a multi-host route [185]. A trace is a log of the operations performed by

an agent during its lifetime. In a tracing scenario, platforms are required

to create, maintain and exchange authenticated logs for all incoming agents.

After an agent has terminated, its owner can acquire all the logs and compare

27

1.4. Thesis structure and contributions

them against the logs produced locally to detect discrepancies. However, this

approach has the following limitations.

• If the language adopted for agents allows for the processing of very com-

plex data structures, modifications to the agent’s internal state could be

difficult to represent in a log entry and require a lot of space, rendering

the mechanism infeasible in practice [185].

• Privacy issues are likely to arise for secure log management.

• Only attacks involving illegal modification of code, state and execution

flow of a mobile agent can be detected. That is, indirect attacks, such

as misuse of a personal email address, cannot be detected.

The research challenge involved in designing the spying approach is to

allow unaware malicious hosts to abuse ‘normal’ (spy) agents (e.g. without

requesting proofs), and then to be able to infer the level of trustworthiness of

the visited hosts from the limited information (signs of abuse) available after

agent termination.

1.4 Thesis structure and contributions

The material in the remainder of this thesis is organised as follows.

Chapter 2 covers the background material necessary for the thesis.

Chapter 3 introduces the core contribution of this thesis: it presents the spy

agent concept and describes the spy agent system and framework.

Chapter 4 expands on the previous chapter by defining and analysing fun-

damental spy agent system requirements and system implementation

assumptions.

28

1.4. Thesis structure and contributions

Chapter 5 considers a number of fundamental spy agent routing protocol

architectures, and defines the main system parameters.

Chapter 6 focuses on the problem of designing spy agent routes and evalu-

ating the results from the deployment of a set of spy agents; a math-

ematical formulation of the design and analysis problem is given using

group testing theory.

Chapter 7 extends the analysis given in Chapter 6 to the case where complex

malicious behaviour and collusion by hosts may occur; a novel group

testing algorithm is described which enables hosts exhibiting complex

malicious behaviour to be detected (under certain reasonable assump-

tions about their behaviour).

Chapter 8 discusses an alternative spy agent scenario, and an optimal multi-

stage routing algorithm for host testing for this scenario is introduced.

Chapter 9 proposes and studies a probabilistic model for evaluating the cred-

ibility of spy agent host classification results on the assumption of incon-

sistent host behaviour; further, it introduces a methodology for analysing

the error-resilience properties of spy agent route designs.

Chapter 10 considers two important practical applications of the spy agent

paradigm, namely identifying data privacy infringements and identifying

code black box attacks.

Chapter 11 concludes this thesis and identifies possible directions for future

research.

29

1.5. Publications

1.5 Publications

Some of the results contained in this thesis have been published in papers and

patents, as listed below.

1.5.1 Conference papers

• G. Kalogridis. Protecting Mobile Code Privacy With Resilient Spy Agent

Group Testing. In C. A. Ardagna, S. De Capitani di Vimercati, C. D.

Jensen, and R. Küsters, editors, Proceedings of the Fifth International

Workshop on Security and Trust Management (STM ’09), Electronic

Notes in Theoretical Computer Science (ENTCS), pages 58–71, Saint

Malo, France, September 2009. Elsevier.

• G. Kalogridis and C. J. Mitchell. Using nonadaptive group testing to

construct spy agent routes. In S. Jakoubi, S. Tjoa, and E. R. Weippl,

editors, Proceedings of the Third International Conference on Availabil-

ity, Reliability and Security (ARES ’08), pages 1013–1019, Barcelona,

Spain, March 2008. IEEE Computer Society.

• G. Kalogridis, C. J. Mitchell, and G. Clemo. Spy agents: Evaluating trust

in remote environments. In Hamid R. Arabnia, editor, Proceedings of the

2005 International Conference on Security and Management (SAM ’05),

pages 405–411, Las Vegas, Nevada, USA, June 2005. CSREA Press.

1.5.2 Patents

• G. Kalogridis. Method for identification of insecure network nodes.

United Kingdom Patent Office (UKPO), GB2452555, March 2009. As-

signee: Toshiba Research Europe Limited.

30

1.5. Publications

• G. Kalogridis. Network node security analysis using mobile agents.

United Kingdom Patent Office (UKPO), GB2428315, January 2007. As-

signee: Toshiba Research Europe Limited.

• G. Kalogridis. Network node security analysis method. United Kingdom

Patent Office (UKPO), GB2415580, December 2005. Assignee: Toshiba

Research Europe Limited.

31

“Every skilled person is to be believed with reference to his own art.”

Legal maxim

2
Background

Contents
2.1 Synopsis . 33

2.2 Cryptographic primitives 34

2.2.1 Preliminaries . 34

2.2.2 Cryptographic functions 35

2.2.3 Key establishment, management and certification . 38

2.3 Mobile agents . 40

2.3.1 Introduction to mobile agents 40

2.3.2 Computing architectures 42

2.3.3 Mobile agent implementations 43

2.3.4 Mobile agent applications 45

2.4 Mobile agent security 46

2.4.1 Analysis principles 46

2.4.2 Security threats and requirements 47

2.4.3 Security controls 51

2.4.4 Host protection controls 61

2.4.5 Summary: mobile agent security controls 65

2.5 Other security topics 67

2.5.1 Data privacy . 67

32

2.1. Synopsis

2.5.2 Monitoring agents 71

2.5.3 Deception . 72

2.6 Combinatorial group testing 74

2.6.1 Introduction to group testing theory 74

2.6.2 Sequential group testing 75

2.6.3 Non-adaptive group testing 76

2.6.4 Group testing for complexes 78

2.6.5 Useful combinatorial structures 79

2.7 Conclusions . 84

2.1 Synopsis

This chapter gives the technical background for the thesis. Each section of

this chapter, as listed below, can be read independently.

• §2.2 provides key definitions and notation for the cryptographic primi-

tives used throughout this thesis.

• §2.3 provides an introduction to mobile agents and mobile code; this

gives the necessary background for the spy agent system introduced in

Chapter 3.

• §2.4 reviews the state of the art in mobile agent security, and provides

a framework for the main contributions of the thesis.

• §2.5 discusses other related work, including data privacy, preemptive

trust assessment, and deception-based security mechanisms.

• §2.6 introduces the theory of group testing, and also provides related

background material on combinatorial designs. This is used in Chap-

ters 6, 7 and 8 to help in the design of sets of spy agent routes and agent

evaluation mechanisms.

33

2.2. Cryptographic primitives

2.2 Cryptographic primitives

2.2.1 Preliminaries

In this section we introduce some fundamental information security terms used

throughout the thesis. Dent and Mitchell [41] provide the following useful no-

tions. “A security threat is something that poses a danger to the security of a

system. A security service is selected to meet an identified threat, and a secu-

rity mechanism is the means by which a service is provided or implemented.”

Definitions for standard security services and security controls for data

communication systems can be found in [87]; standard information security

terminology can be found in [61,66]; and specifications of security controls with

industrial strength can be obtained from standards published by ISO/IEC JTC

1/SC 271. We provide key definitions below, adapted from [41] and and ISO

7498–2 [83].

Definition 2.1. Entity authentication: this service is the corroboration

that the entity at the other end of a communications channel is the one claimed.

Z Entity authentication addresses spoofing threats.

Definition 2.2. Data origin authentication: this service is the corrobora-

tion that the source of data received is as claimed.

Z Data origin authentication addresses tampering threats.

Definition 2.3. Data confidentiality: this service is concerned with pre-

venting the disclosure of data to unauthorised entities.

Z Data confidentiality addresses information disclosure threats.

1Subcommittee 27 (IT security techniques) of Joint Technical Committee 1 (Information
technology) of the International Organization for Standardization (ISO) and the Interna-
tional Electrotechnical Commission (IEC).

34

2.2. Cryptographic primitives

Definition 2.4. Data integrity: this service is concerned with preventing

unauthorised alteration or destruction of data by an unauthorised entity (in

other words unauthorised tampering with data).

Z Data integrity addresses tampering threats.

Definition 2.5. Accountability or non-repudiation: this service is con-

cerned with preventing denial by an entity that it has taken a particular action,

e.g. sending or receiving a message.

Z Accountability addresses repudiation threats.

Definition 2.6. Access control: this service is concerned with preventing

unauthorised use of a resource.

Z Access control addresses elevation of privilege threats.

Definition 2.7. Availability: this service ensures that computer system as-

sets are available to authorised parties when needed.

Z Availability addresses Denial of Service (DoS) threats.

2.2.2 Cryptographic functions

Cryptographic functions are security mechanisms that can be used to provide

security services. In this section we introduce the main cryptographic functions

we use in this thesis, using definitions taken from Menezes, van Oorschot and

Vanstone [117].

2.2.2.1 Symmetric and asymmetric encryption

Encryption helps to provide confidentiality services. An encryption scheme

consists of two sets of encryption and decryption transformations {Ee : e ∈ K}

and {Dd : d ∈ K}, respectively, where K is the keyspace.

35

2.2. Cryptographic primitives

An encryption scheme is said to be symmetric-key if, for each associated

encryption/decryption key pair (e, d), it is computationally ‘easy’ to determine

d knowing only e, and to determine e from d. In most practical symmetric-key

encryption schemes e = d; examples of such schemes include block ciphers,

such as the Advanced Encryption Standard (AES) [123], and stream ciphers,

such as the RC4 algorithm [146].

In contrast with symmetric encryption, an encryption scheme is said to

be asymmetric if, for each associated encryption/decryption key pair (e, d),

it is computationally infeasible to compute d from e. Typically, encryption

will use a public key (i.e. a key e that is widely known), and decryption will

use a private key (i.e. a key d that is kept secret by its owner); examples of

such schemes include the Rivest-Shamir-Adleman (RSA) scheme [147] and the

ElGamal scheme [53].

2.2.2.2 Hash functions

A (cryptographic) hash function helps to provide integrity and authentication

services. It is a computationally efficient function that maps binary strings of

arbitrary length to binary strings of some fixed length, called message digests

or hash values, where this function has the following properties:

1. Pre-image resistance: given any output, it is computationally infeasible

to find an input which maps to that output.

2. Second pre-image resistance: given any input, it is computationally in-

feasible to find a second input which yields the same output.

3. Collision resistance: it is computationally infeasible to find two inputs

which map to the same output.

36

2.2. Cryptographic primitives

An example of a hash function is SHA-256 [133] (32-byte output).

2.2.2.3 Message authentication codes

A Message Authentication Code (MAC) function can be used to provide data

origin authentication and integrity services. A MAC function takes as in-

put a message and a secret key, and outputs a fixed length binary, called a

MAC value (or simply a MAC). The secret key can be used to recompute the

MAC and verify that the original message has not been tampered with.

Examples of MAC functions include CBC-MACs [85] and HMAC [86].

2.2.2.4 Digital signatures

A digital signature can be used to help to provide authentication, non-repu-

diation, and integrity services. Its purpose is to provide a means for an entity

to bind its identity to a message. A digital signature scheme consists of a

signing function SA and a verification function VA for an entity A. The signing

function SA is a transformation from a message set M to a signature set S.

This transformation uses a signature key which should be kept secret by A and

should only be used for the purpose of creating signatures. The verification

function VA is a transformation from the set M × S to the set {true, false}.

This transformation uses a verification key which is typically publicly known,

and which can be used to verify the signatures created by A.

Examples of digital signature schemes include the RSA signature scheme

[117, p. 433], the Fiat-Shamir signature scheme [117, p. 447], and the Digital

Signature Algorithm (DSA) [117, p. 451].

37

2.2. Cryptographic primitives

2.2.3 Key establishment, management and certification

Key establishment is the process of setting up a secret key shared by two (or

more) parties for subsequent cryptographic use. Key management refers to the

set of processes supporting key establishment and the maintenance of ongoing

keying relationships between parties, including key substitution, key recovery,

and key revocation.

Key establishment and key management schemes typically involve the use

of cryptographic protocols. A cryptographic protocol is a distributed algorithm

defined by a sequence of steps precisely specifying the actions required of two

or more entities to achieve a specific security objective. As a more general

term, a security mechanism is a technique encompassing protocols, (single-

entity) algorithms and other (non-cryptographic) controls to achieve specific

security objectives.

A key transport protocol is a special class of cryptographic protocol which

supports the secure transfer of a secret key. An example of such a protocol

using digital signatures and public-key encryption and which enables entity A

to send a secret key k to entity B, is as follows, [117, p. 510].

A → B : tA
∗, PB (iA, k) , SA (iB, tA

∗, PB (iA, k)) ,

where iA and iB are identifiers for A and B, tA is a timestamp created by

A, the asterisk denotes that tA is optional, PB is an asymmetric encryption

function that uses the public key of B, SA is a digital signature function that

uses the private key of A, and the comma denotes message concatenation.

The main purpose of the above protocol is to provide integrity, confiden-

tiality and authentication services for the communicated key. The (optional)

timestamp tA provides guarantees regarding message ‘freshness’. Further, the

38

2.2. Cryptographic primitives

identifier iA within the scope of PB prevents signature stripping. That is, it

prevents a third party C from sending B the message

tA
∗, PB (k) , SC (B, tA

∗, PB (k)) ,

thus defeating authentication by means of impersonation. We note that the

above protocol is a one-pass protocol that does not provide authentication of

B to A. For mutual authentication it is necessary to employ more advanced

protocols, such as challenge-response protocols.

The above key transport protocol depends on the existence of asymmetric

key pairs for A and B. This gives rise to one of the fundamental key estab-

lishment problems, namely the distribution of keys in such a way that the

recipients can verify that they are genuine. One well-known key establishment

scheme is the Diffie-Helman (DH) protocol [20, Chapter 5]. However, the

DH protocol does not offer authentication, and is susceptible to man-in-the-

middle attacks. Other examples of key establishment protocols can be found

in [117, Chapter 12].

When using public key cryptography (including asymmetric encryption and

digital signatures) the fundamental key management problem is the reliable

distribution of user public keys. One mechanism for achieving this is known as

a Public Key Infrastructure (PKI) [2,170]. A PKI typically involves the use of

a special purpose Trusted Third Party (TTP) called a Certification Authority

(CA). A CA is responsible for issuing (digitally signing) public key certificates,

which bind a public key to the name of its owner (together with other relevant

information). In order to validate a certificate a user must have access to a

trusted copy of the relevant CA’s public key, in order to verify the signature.

A CA may revoke a certificate by including it in an Certificate Revocation

List (CRL), or by using the Online Certificate Status Protocol (OCSP) [2]. A

39

2.3. Mobile agents

widely adopted standard for digital certificates is X.509 [88].

2.3 Mobile agents

2.3.1 Introduction to mobile agents

Mobile agents were briefly introduced in §1.2.1. They are mobile software

components in network systems, and they can be used to participate in dy-

namic multi-party interactions. Mobile agent architectures are an alternative

to ‘standard’ client-server software architectures, and they have been intro-

duced with the goal of providing more efficient networking and enhanced ap-

plication functionality.

Typical mobile agent applications include information filtering, electronic

commerce, education and entertainment. Such applications, for example, re-

quire network functionality for advertising, finding, combining, using, present-

ing, managing and updating information.

The term agent appears to have been introduced in computer science in

the context of Artificial Intelligence (AI) [74]. However, the term agent is

today used in a wide range of contexts; typically, agents are “active, persis-

tent (software) components that perceive, reason, act, and communicate” [80].

Some authors add further properties, such as autonomy, rationality, reactiv-

ity, or proactivity, whereas others limit agents to the role of representing a

user or database. Agents can also be perceived in different ways. For exam-

ple, some discuss agents as if they are conscious and cognitive entities that

have feelings, perceptions, and emotions emulating humans, whereas others

treat agents merely as automata that behave in expected ways as designed or

programmed.

Adding the term mobility to some of the above features, Braun and Rossak

40

2.3. Mobile agents

give the following two definitions [22].

AI view: “Mobile software agents are computer programs that act as repre-

sentatives in the global network of computer systems. The agent knows

its owner, knows his or her preferences, and learns by communicating

with its owner. The user can delegate tasks to the agent, which is able

to search the network efficiently by moving to the service or information

provider.”

Distributed systems view: “Mobile agents refer to self-contained and iden-

tifiable computer programs, bundled with their code, data, and execution

state, that can move within a heterogeneous network of computer sys-

tems. They can suspend their execution on an arbitrary point and trans-

port themselves to another computer system. During this migration the

agent is transmitted completely, that is, as a set of code, data, and exe-

cution state. At the destination computer system, an agent’s execution

is resumed at exactly the point where it was suspended before.”

There is an extensive literature on mobile agents. A useful collection of

papers has been put together by Bradshaw [21]; an introduction to agent topics

and applications can be found in [34]; and another useful collection of papers

is given by Huhns and Singh [80].

Agents are typically implemented as components of a multiagent system.

For example, resource agents might advertise services and user agents find and

interact with (querying or informing) the resource agents. Multiple user agents

might either collaborate in finding and combining information, or compete for

resources. Similarly, service agents may either collaborate with or compete for

(with) users, resources, and other service agents.

41

2.3. Mobile agents

Request

Reply

O OClient Server

VM VM

Host A Host B

Figure 2.1: Client-server paradigm architecture.

Further information regarding multiagent and distributed AI systems can

be found in [59] and [191].

2.3.2 Computing architectures

The traditional client-server paradigm is illustrated in Figure 2.1. The client

code (executing within a Virtual Machine (VM) of Host A) makes a request

to server code (executing within the VM of Host B). The server code may in

turn access a resource before replying to the client code. Access to a resource

is controlled by the VM, which could be an Operating System. Typical client-

server programming language constructs include the Remote Procedure Call

and the Java Remote Method Invocation.

In more complex paradigms, a client request may contain dynamic code to

be executed at the server. In this case, the dynamic code would typically be

encapsulated in the initial request message (Figure 2.1). A widely used exam-

ple of the dynamic code paradigm is provided by the PostScript R© language

for printers.

A client could also request dynamic code from a server; in such a case the

dynamic code would typically be encapsulated in the server’s reply message

(Figure 2.1). An example of this paradigm is provided by web clients fetching

and executing Java Applets.

The effect on the client-server architecture of a shift to the mobile agent

42

2.3. Mobile agents

VM VM

Host A Host B

AEE AEE

A A

A

Host x

Migration

Figure 2.2: Mobile code paradigm architecture.

paradigm, as described in §2.3.1, is illustrated in Figure 2.2. The mobile agent

is shown as an autonomous code component (A) which runs on an Agent

Execution Environment (AEE) within the VM of a host. The mobile agent

can then request to be migrated to another host, and so on.

2.3.3 Mobile agent implementations

For agents to operate, communicate, and migrate successfully it is essential

that they have a common representation, i.e. that they ‘speak the same lan-

guage’. This is usually provided by a ‘common ontology’, which is a represen-

tation of knowledge in some domain of discourse that is available to all the

agents [124]. Existing examples of ontologies and semantic mappings include

the DARPA ontology sharing project [137], and Princeton’s WordNet [119].

Complete mobile agent systems have been implemented and are available as

mobile agent toolkits—some widely discussed examples are listed in Table 2.1.

More comprehensive lists of mobile agent toolkits can be obtained from online

sources. IEEE distributed systems online2 lists available agent toolkits, while

the AgentLink project3 maintains a list of ongoing mobile agent projects.

2http://computingnow.computer.org
3http://www.agentlink.org

43

2.3. Mobile agents

Table 2.1: Examples of mobile agent toolkits.

Toolkit Organisation URL
ADK Tryllian www.tryllian.com

Aglets IBM (Open Source) aglets.sourceforge.net

Ajanta Univ. of Michigan www.cs.umn.edu/Ajanta

D’Agents Dartmouth College agent.cs.dartmouth.edu

Grasshopper IKV www.grasshopper.de

Semoa Fraunhofer Society www.semoa.org

Bee-gent Toshiba www.toshiba.co.jp/rdc/beegent

Tracy Univ. of Jena www.mobile-agents.org

The Mobile Agent System Interoperability Facility (MASIF) is a stan-

dardisation body for mobile agent systems that has been promoted by a num-

ber of organisations including IBM, GeneralMagic, GMD Fokus, and OMG.

MASIF defines interfaces for interoperable mobile agent toolkits; however, it

relies on the use of CORBA4 for agent communications.

The Foundation for Intelligent Physical Agents (FIPA)5 is a parallel stan-

dardisation body for agent technology. FIPA attempts to address a broader

range of agent interoperability issues than MASIF, including agent communi-

cation, message transport protocols, ontologies, and mobility (migration).

Interoperable mobile agents supplied by different implementors may com-

municate with each other using a common Agent Communication Language

(ACL), such as one of the following.

• KQML: The Knowledge Query and Manipulation Language (KQML)

assumes a layered architecture, using common communication proto-

cols at the bottom, common application functionality at the top (e.g.

Structured Query Language (SQL)), and, in the middle, agent specific

primitives [60].

4http://www.omg.org/spec/CORBA/
5http://www.fipa.org

44

2.3. Mobile agents

• Arcol and FIPA: Arcol was the basis for the first FIPA standard,

discussed above.

2.3.4 Mobile agent applications

In general, applications built using mobile agents could also be implemented

using traditional client-server techniques, as discussed in §2.3.2. However, the

use of mobile agents is likely to offer advantages when it can improve the

efficiency of network resource usage and reduce the complexity of developing

applications.

Mobile agents are thought to be best-suited for open information-rich en-

vironments made up of a large number of distributed heterogeneous resources,

in which applications require delegation of tasks, asynchronous processing and

service adaptation. These characteristics make agents useful for efficient re-

source discovery, information retrieval, database queries, information filtering

and data fusion.

As an example we consider theWarren system, which consists of intelligent

agents that support financial portfolio management [176]. In particular, some

agents are designed to combine market data, financial report data, technical

models, analysts’ reports, and breaking news with current prices from a ‘stock

ticker’; others integrate all the information; (ultimately) yet others present the

processed information or create alerts. Agents may also take actions based on

learned user preferences.

A review of mobile agent e-commerce applications can be found in [115].

As stated in a recent study [70], the success of mobile agents depends on their

trustworthiness, which in turn depends on the existence of adequate security

controls. This is the focus of the next section.

45

2.4. Mobile agent security

Z In this thesis we do not adhere to any specific mobile agent definition,

implementation, computing architecture, toolkit, or standard. The spy

agents we introduce in the main part of this thesis can be implemented

using a range of technologies; the exact agent functionality and imple-

mentation will depend on the context and scenario requirements. Also,

we regard a spy agent system as a multiagent system within which spying

information is acquired from untrusted agent hosts before it is combined

for analysis in a trusted computing environment.

2.4 Mobile agent security

Mobile agent security was briefly introduced in §1.2.1. In this section we

review known threats, security requirements, and security solutions, focusing

primarily on mobile agent protection and secondarily on host protection.

2.4.1 Analysis principles

The process of evaluating the security of a system typically involves identifica-

tion and analysis of applicable threats and vulnerabilities, so that appropriate

security controls can be applied. The following approaches can be used:

• Top-down approach: threats and vulnerabilities are identified for specific

scenarios.

• Bottom-up approach: ‘common’ security requirements (such as integrity,

confidentiality, authentication, accountability, availability, and anonymi-

ty) are analysed for the various system components and functions.

46

2.4. Mobile agent security

2.4.2 Security threats and requirements

2.4.2.1 Threats

Threats to mobile agent security were briefly discussed in §1.2.1. An adversary

might be able to compromise an agent using one or more of the following

approaches.

• Observing the agent’s code, data and flow control.

• Manipulating the agent’s code, data and flow control.

• Executing the agent’s code inappropriately, including re-execution.

• Returning false values to the agent’s system call functions.

• Denying execution of the agent’s code, either in part or whole.

• Masquerading as a different host.

• Eavesdropping on agent communications.

• Manipulating agent communications.

A similar and more elaborate classification of security threats for shopping

agents (and corresponding security requirements and controls) is given by

Schaefer [155]. Further discussions can be found in [17,71,75,89]. Key classes

of threats are discussed in greater detail below.

2.4.2.1.1 Attacking agent data

Yee [200] has studied the threats to mobile agent data arising in an e-

ticketing scenario, in which agents collect offers from merchants. We follow

Yee’s classification.

An agent can carry either static (unmodifiable) or dynamic (modifiable)

data, which may be either public or private. Public static data (e.g. user ticket

47

2.4. Mobile agent security

query information) require integrity protection, whereas private static data

(e.g. parameters for price negotiations) also require confidentiality protection.

Malicious hosts that access or modify such data could compromise market

competition rules as well as customer security.

The use of encryption may not suffice to protect agent private data. For

example, a malicious host might use a cut-and-paste attack in which the en-

crypted agent data is inserted into a new agent with code that instructs it

to migrate to a host authorised to access the data; the agent then instructs

the host to decrypt the encrypted data and return it (unencrypted) to the

malicious host.

2.4.2.1.2 Attacking agent code

As agent is (by definition) under the control of the host that executes it;

this makes it hard to maintain code confidentiality. A list of attacks of this

type can be found in [200].

In a black-box attack an agent is executed by a malicious host multiple

times, each time with different input parameters, with the goal of under-

standing its logic and state by observing its behaviour under a wide range of

conditions. For example, in the e-ticketing scenario, a malicious host could

gradually improve its offer until it is (marginally) better than previously re-

ceived offers (and this is revealed by the agent behaviour). Alternatively, a

malicious host might analyse the agent’s code and attempt to understand its

semantics.

A malicious host could also ‘sabotage’ the agent code by arbitrarily mod-

ifying it, or by inserting malware to cause it to behave in unintended ways.

48

2.4. Mobile agent security

Inserted malware could, for example, allow a malicious host to remotely con-

trol the agent after it migrates elsewhere. Alternatively, agent code could be

temporarily changed; for example, execution could be manipulated to omit

security checks or other conditional behaviour.

2.4.2.1.3 Truncation attacks

Truncation is an attack on agent data, code, or a combination of both, in

which a malicious host removes information from the agent that was added

by previously visited hosts (e.g. price offers). One example of such an attack

would involve two malicious hosts colluding in order to remove all data from

an agent that was inserted by hosts visited between visits to the two malicious

hosts. Such an attack may be hard to detect if the agent itinerary is not fixed

(e.g. for free roaming agents).

Specific types of truncation attacks include the following. In a growing a

fake stem attack a malicious host selectively removes genuine offers and ap-

pends fake offers [103]; in a revisiting attack a malicious host modifies the

agent’s migration logic so that the agent will revisit it (which could, for exam-

ple, allow this host to truncate all succeeding offers) [202]; in an interleaving

attack a malicious host creates a new agent that appears to originate from

a legitimate source by selectively combining information from one or more

previous hosts [149], an attack similar to the cut-and-paste attack discussed

above.

2.4.2.2 Security requirements

A summary of mobile agent security requirements is given below. This list is

based on discussions in [17, 143].

49

2.4. Mobile agent security

• Agent authentication and authorisation: the origin and integrity of mo-

bile agents should be verified, and agent access to host resources should

be subject to an authorisation check.

• Situatedness: an agent should be aware of the environment it is executing

in, and be able to apply the necessary security controls.

• Autonomy and migration: an agent should have control over its internal

state and migration. Greater degrees of autonomy and more sophisti-

cated migration capabilities require higher levels of security as a result

of the increased risks arising from agent code manipulation.

• Communication: agent communication with its environment (i.e. other

agents, hosts or humans) needs to be protected. Confidentiality, in-

tegrity, authenticity, non-repudiation and availability services must be

provided for communicated data.

• Rationality, veracity, and benevolence: the agent should act in an ex-

pected way (and not act maliciously).

• Anonymity: while knowledge of the identity of an agent may be im-

portant for certain applications and services, it may not be needed by

others.

• Trust: agents need to be capable of assessing the trustworthiness of

received information [27] (e.g. by using a reputation system [156]).

• Delegation: it must be possible for an agent to be granted rights to

carry out certain tasks on behalf of another entity. The security for such

a delegation act could, for example, be supported by the use of public

key and attribute certificates.

50

2.4. Mobile agent security

2.4.3 Security controls

We divide our discussion of security controls for mobile agents into three main

classes, as follows [22].

Collateral techniques: These controls restrict the operations of agent sys-

tems for security purposes—they neither prevent nor detect attacks.

Prevention techniques: The purpose of these controls is to prevent security

attacks from occurring.

Detection techniques: The purpose of such controls is to identify an attack

and (or) the attacker after the attack has occurred.

2.4.3.1 Collateral techniques

2.4.3.1.1 Trusted host itinerary

When using a trusted host itinerary, hosts will not accept agents coming

from, and will not despatch agents to, untrusted hosts (such functionality has

been implemented in the Aglets agent system). In some implementations this

limitation can be relaxed by allowing agents to visit untrusted hosts if they

do not contain sensitive data or code; for example, an agent could be designed

so that secure computations are only executed in trusted hosts. One major

problem of using such an approach is determining when or whether to add a

host to, or revoke a host from, the list of trusted hosts.

2.4.3.1.2 Host reputation

Rasmusson et al. [140] suggest that agents could report hosts to a central

registration agency which maintains trust assessments (reputations) of hosts,

so that hosts behaving in unauthorised ways damage their reputation. Such an

51

2.4. Mobile agent security

evaluation process uses a social control approach, in which entities are judged

according to defined behavioural rules. The problem with such an approach

is that it is very difficult to make reputation systems robust against gaming

by malicious hosts which know how reputation values are calculated. For

example, a correctly performing host could be given a poor reputation score

by a malicious agent, and a malicious host could behave correctly for a period,

thereby gaining a ‘good’ score, before misbehaving.

2.4.3.2 Prevention techniques

2.4.3.2.1 Encrypted Functions

Sander and Tschudin [152–154] and Wilhelm [193] propose a technique in-

volving executing an encrypted agent without decrypting it. The idea is to

permit a host to execute an agent carrying an encrypted function without

revealing the original function. The scheme operates as follows.

• Alice has a function f and computes the encrypted function E(f).

• Alice sends a program P (E(f)) that executes E(f) to Bob.

• Bob executes P (E(f)) using input x, and sends P (E(f))(x) back to

Alice.

• Alice ‘decrypts’ P (E(f))(x) and obtains P (f)(x) by some means not

available to Bob.

It is noted that even if the function f is encrypted, a malicious host might

still be able to mount a black-box attack, as discussed in §2.4.2.1.2. A host

could repeatedly execute P (E(f)), and in certain circumstances might then

be able to use the obtained pairs of inputs and (encrypted) outputs to recon-

struct (reverse engineer) the function f . One solution to this problem proposed

52

2.4. Mobile agent security

in [4] involves use of a third party called a secure computation service, which is

employed to execute the encrypted operations and which is trusted not to at-

tempt to learn anything about the decrypted functions and their outputs. This

technique is similar to the use of trusted execution environments, discussed in

§2.4.3.2.4.

Barak [10] propose a somewhat similar technique designed to obfuscate the

code so that it becomes difficult to analyse its functionality in real time. A

more recent study of this technique can be found in [160].

Historically, whilst the notion of computing using encrypted data is very

attractive, not least because of possible applications in the cloud, there is a

shortage of practical schemes. However, in recent years a number of possible

schemes have been proposed which come close to realising a general purpose

function of the desired type [32,135]; recent work of Gentry [65] is of particular

interest, although a truly practical scheme of universal applicability is not yet

available.

2.4.3.2.2 Time-limited black boxes

An agent is called a black box if its data or code cannot be accessed and

modified. Relaxing this definition a little, an agent is called a time-limited

black box if it is a black box for a specified time interval. Hohl [76] proposed

a scheme of this latter type that obfuscates the agent code in a manner that

makes it hard to ‘comprehend’ the code semantics, and inserts an (unforgeable)

expiration date into the code. However, the scheme has a number of practical

limitations arising from the difficulty of successfully obfuscating the code (as

discussed in §2.4.3.2.1), and the problem of choosing an appropriate block box

time interval.

53

2.4. Mobile agent security

2.4.3.2.3 Environmental key generation

Riordan and Schneier [145] proposed a technique in which a ‘clueless’ agent

is unaware of some of its possible future actions, because portions of its code

or data are encrypted with an unknown key. After an agent’s migration has

commenced, the agent receives input from its environment which enables it to

generate the secret key necessary to decrypt its code or data. Two variants

of the scheme are proposed, namely the forward-time approach, which per-

mits key generation only after a specific point in time, and the backward-time

approach, which permits key generation only before some point in time.

A recent study of this technique can be found in [192]. One limitation of

this scheme is that access to sensitive mobile code information will still need to

be protected against the entities that might be involved in the key generation

process.

2.4.3.2.4 Trusted execution environments

Agents can be protected by executing them on trusted tamper-proof hard-

ware [194] or secure co-processors [199]. The use of software-based tamper-

proof environments has also been proposed in [76, 189]. More recently, it has

been suggested that agents can be securely executed in hosts using trusted

computing technologies [72].

2.4.3.2.5 Agent spreading

Borselius et al. [19] suggest that the threats posed by a malicious host to

trading agent transactions can be reduced by spreading a single trading task

amongst multiple agents. The authors propose two possible ways of achieving

this.

• In the first scheme, agents are equipped with ‘shares’ of the means to

54

2.4. Mobile agent security

commit to a transaction. They then jointly commit to the transaction

using a threshold signature scheme, such as the scheme of Shoup [161].

• Alternatively, a trusted host can be used as the final destination for the

agents, after they have visited a number of untrusted hosts. Following

analysis of the agents, the trusted host can commit to what it believes

to be the optimal transaction.

Ng and Cheung [127] propose a similar method in which mobile agents are

divided into many independent parts, and computational tasks are distributed

among multiple hosts.

2.4.3.3 Detection techniques

2.4.3.3.1 Replication

Schneider [157] and Yee [200] discuss the use of replication to detect attacks

on mobile agents.

2.4.3.3.1.1 Replication of hosts

The host-replication approach of Schneider [157] works on the assumption

that that there are enough agent replicas to ensure that some of them will

escape attacks from, or encounters with, malicious hosts. Consider a case

where a mobile agent executes in a sequence of stage actions Si (0 ≤ i ≤ n),

and has an itinerary of hosts to visit. Stage Si is processed at host i, and

for each stage multiple hosts provide the same set of services. More formally,

at stage i, there is a set {Ai
0, . . . , A

i
n} of hosts (0 ≤ i ≤ n). Once an agent

has been executed, each host Ai
k sends a copy of the agent to all the hosts

implementing stage i + 1. Similarly, each host Ai
k receives multiple copies

of the same agent. By comparing the received agents, a host can determine

55

2.4. Mobile agent security

whether or not no more than half of the hosts in stage i − 1 are malicious.

The host can then choose to execute the agent with the most frequent state.

Details of a protocol that can be used to identify the malicious hosts in stage

i− 1 are given in [157].

One major problem with this approach is that it may be unrealistic to

assume that an agent will only be attacked by a subset of the hosts imple-

menting each stage. In addition, the scheme will not be appropriate in all

scenarios. For example, replication is difficult to apply to an e-ticketing agent

with purchasing capabilities.

2.4.3.3.1.2 Replication of agents

The agent-replication approach proposed by Yee [200] detects an attack

on the e-ticketing scenario by comparing the results of two replicated mobile

agents. These two agents follow the same predetermined itinerary but in

reverse order, and the scheme works on the assumption that there is only a

single malicious host in this itinerary. Suppose that the first agent encounters

the malicious host at state i, and this malicious host modifies the best offer

provided by a host at stage j of the route, j < i. However, the malicious host

cannot modify the offer provided by the jth host to the second agent (with the

reverse route). As a result, a comparison of the results produced by the two

agents will yield the best offer, and will also enable the attack to be detected

(but not the attacker).

2.4.3.3.2 Detecting black box attacks

Black box attacks (see §2.4.3.2) typically involve analysing how a black box

agent reacts given a range of input parameters. Hohl and Rothermel [77]

discuss how to detect black box attacks by making an agent maintain a log

56

2.4. Mobile agent security

of host responses to mobile agent requests. At each visited host the agent

sends a message to a trusted host containing a unique identification number

associated with the agent’s code call, and a hash value of the host’s data

response. The trusted host can then compare the host response hashes for

equal code calls. The trusted host will return an error to the agent if the host

response hashes for equal calls do not match. One limitation of this approach

is that a malicious host might not allow the agent to log host responses that

reveal malicious host behaviour.

2.4.3.3.3 Detection using cryptography

Standard security services (such as authentication, confidentiality, integrity

and accountability) can be offered with the use of standard cryptographic

protocols, as discussed in §2.2.3. These mechanisms can help address attacks

on the migration process of mobile agents, such as impersonation attacks (also

known as kidnapping host attacks), which involve modifying the agent’s owner

Identification Data (ID) and signing the agent with a different private key.

A malicious host could also attack a mobile agent by deleting data added

by a previous host, as well as any corresponding tracing data (e.g. a digital

signature).

Security protocols designed to address attacks on multi-hop migration

routes are discussed in [104], where append-only logs are introduced; further

proposals are given in [149]. Using such protocols, an attack can be identi-

fied after the mobile agent returns to its originator and the integrity of the

host-inserted logs is checked. However, the proposed schemes are subject to

a cut-and-paste attack in which two malicious hosts on the agent itinerary

collude [149].

57

2.4. Mobile agent security

A similar, yet simpler, technique using a Partial Result Authentication

Code (PRAC) has been proposed by Yee [200]. Rather than relying on asym-

metric encryption of partial results, this technique uses symmetric encryption,

which is faster to compute.

2.4.3.3.4 Forward integrity

Bellare [12] proposed a technique called forward integrity in which mobile

agents produce partial logs as they proceed on a multi-host itinerary. This

can be viewed as the integrity analogue of ‘forward privacy’ (also known in

the literature as ‘perfect forward secrecy’).

The aim of this mechanism is to generate a MAC for each audit log in such

a way that, even if the MAC key is compromised, data pertaining to the past

cannot be forged, i.e. the attacker cannot modify entries or create non-genuine

entries for past logging events.

2.4.3.3.5 Detection using cryptographic tracing

Vigna [184,186] proposed a technique called execution tracing that makes it

possible to save the history of execution at a host in an unforgeable way. The

protocol requires the nth host An, n ≥ 1, visited by an agent to compute an

execution trace for this agent. The trace is securely stored by An and is sub-

sequently sent to a trusted host A0. The protocol has two main components,

which are summarised below.

Secure multi-hop migration. The host An, n ≥ 1, supports execution of

the mobile agent until the agent decides to migrate to the next host An+1.

The host An then computes an execution trace for the agent, and sends

this trace along using the agent to An+1 with a protocol that supports

58

2.4. Mobile agent security

the required security services. This protocol uses hash functions and

digital signatures to offer authentication, confidentiality and integrity

(see, for example, §2.2.3).

Notification of migration. The host An+1 receives the message from An

and verifies that it was the intended recipient, that the mobile agent and

its state were actually sent by An, and that the agent and state have not

been modified. If so, then An+1 sends A0 a message that confirms receipt

of the agent and execution trace. Further details are given in [186].

When the mobile agent completes its migration, the originatorA0 can check

correct agent execution by simulating agent execution at all visited hosts using

the traces it has received from each of these hosts. The trace consists of the

values returned by all system calls made by the agent while executing on the

host.

One limitation of this method is that the size of the trace grows linearly

with the number of visited hosts. Vigna [185] proposes a number of techniques

that can help reduce the tracing overheads. The security features of the origi-

nal protocol were enhanced in [103] and [177]; however, the practicality of the

approach remains questionable.

2.4.3.3.6 Detecting itinerary manipulations

Roth [148] proposes a technique that involves pairs of agents cooperating to

detect agent migration blocking attacks. The two agents migrate and exchange

information at each host they visit. At each host, one agent sends the other

the names of the previous, current, and next host in its migration path. The

receiving agent can examine this information for migration inconsistencies.

59

2.4. Mobile agent security

One drawback of this protocol is its communication overhead. Also the

protocol assumes that the two agents are always executing on different hosts;

a pair of colluding hosts could attack the protocol by, for example, killing both

agents simultaneously.

2.4.3.3.7 Detecting truncation

In the previous sections we have discussed a number of techniques that

can be used to detect attacks on agent data, code and itineraries. Some of

these techniques can also be used to protect against truncation attacks (see

§2.4.2.1.3).

A well-established method of detecting truncation attacks is the use of se-

cure chain relation protocols. Karjoth et al. [103] introduced a chain relation

protocol that uses digital signatures and hash functions to link the result ob-

tained at the currently visited host to the result generated at the previously

visited host and the identity of the next host to be visited. This protocol

extends Yee’s forward integrity using the PRAC scheme [200] (see §2.4.3.3.3).

Similar protocols have also been proposed in [36,104]. However, none of these

protocols protect against truncation attacks in which two or more hosts col-

lude. This issue is addressed in [31], where a scheme is proposed in which

previously visited hosts jointly sign a result generated at the current host; as

a result, colluding hosts need previously visited hosts to jointly sign a fake

offer as part of any attack. This work has been further developed by a number

of authors [109, 114, 198, 202].

Other schemes protecting against truncation attacks use a TTP to record

itinerary information [36, 79]. Such schemes, however, require a mobile agent

to communicate with a TTP every time it visits a host, which introduces

60

2.4. Mobile agent security

a significant network overhead. However, this problem can be addressed by

using trusted execution environments (see §2.4.3.2.4).

2.4.4 Host protection controls

We outline below host protection methods, designed to prevent agent technol-

ogy from being used for malicious purposes.

2.4.4.1 Java security

The most widely discussed mobile agent toolkits use Java technology and se-

curity. A helpful introduction to Java security can be found in [130]. Java

security functionality is particularly useful in protecting hosts against mali-

cious agents, as discussed below.

2.4.4.1.1 Code signing

Java implements standard cryptographic functions to support agent in-

tegrity, confidentiality and authentication.

2.4.4.1.2 Bytecode verifier

The code of a Java class can be verified at the bytecode level. This enables

the structural correctness of the Java class to be verified with respect to Java

semantics.

2.4.4.1.3 Sandboxing

Sandboxing protects the VM during runtime in a number of ways. For

example, permissions specify actions that code is allowed to perform within a

protection domain, as determined by policy files defining the permissions given

to code executed within the domain. Signed code can be verified with the aid

of certificates contained in keystores.

61

2.4. Mobile agent security

2.4.4.1.4 Java security limitations

Java security is not a panacea; a properly signed agent code might still

contain malicious content and harm a host. The security limitations of Java

are discussed by Roth [150]: “Java has simultaneously been a fortune and a

misfortune. Without the many features of Java, it is undoubtedly more difficult

to develop a mobile agent toolkit—on the other hand, all these limitations and

shortcomings of Java with regard to security make it next to impossible to build

and maintain a publicly deployed and dependable mobile agent system.”

2.4.4.2 Agent trustworthiness

Code signing, discussed above, is used in almost all mobile agent toolkits

to verify the origin and integrity of an agent and to authorise certain agent

requests. We discuss below other techniques that can be used to verify the

trustworthiness of agent code.

2.4.4.2.1 Proof-carrying code

This technique, proposed by Necula and Lee [125,126], provides a host with

guarantees that it is safe to execute an untrusted piece of mobile code. The

host publishes a safety policy describing the properties which mobile code must

satisfy. The agent must then contain a proof that its code complies with this

safety policy. The proof-carrying code is a special form of intermediate code

representation containing the mobile code and an encoding of a formal proof

that the code complies with the safety policy. This approach is currently an

active and promising research topic [3, 113].

2.4.4.2.2 Path histories

Trust in a network transaction typically depends on the identity of the

62

2.4. Mobile agent security

communications partner, which is verified in an authentication process. For

a mobile agent, trust might also depend on the agent’s path history [134].

A path history enables a host to verify the sequence of hosts an agent has

previously visited. This might be important if, for example, a host maintains

a list of trustworthiness scores of other hosts. This technique is similar to the

trusted host itinerary and host reputation techniques discussed in §2.4.3.1.

2.4.4.2.3 State appraisal

Farmer et al. [58] proposed a technique that helps detect attacks on an

agent’s state. Unauthorised modifications to an agent state can be predicted,

described, and later verified using a state appraisal function provided by the

agent owner. Such a function defines a set of permissions that limit the func-

tionality of hosts that the agent visits. The function will then check that these

permissions have not been violated. For example, this might be verified by

checking that certain conditionals are true, or that certain invariants have the

expected value.

This approach can be combined with the concept of detection objects , i.e.

‘bait’ that can be inserted in agent code that does not affect the code’s main

functionality [116]. If a detection object is modified then it can be deduced

that the code has been tampered with. This technique relies on the detection

object being non-obvious; i.e. the presence of the detection object must be

concealed from executing hosts.

The state appraisal technique has also been studied by Berkovits et al. [14].

Stengel et al. [171] propose a similar method for detecting mobile agent state

manipulation by observing agent communication patterns, e.g. the repeated

transmission of the same information.

63

2.4. Mobile agent security

2.4.4.2.4 History-based access control

This technique involves maintaining a selective history of accesses requested

by the code, and using this information to distinguish between trusted and

untrusted code [52]. It is claimed [52] that in some applications it may be too

restrictive to use static privileges; e.g. if all accesses to the local file system were

to be prohibited, then it would not be possible to open a socket to a remote

host. Instead, mutually exclusive privileges could be used, e.g. the code could

be allowed to read a file but not open a network connection afterwards (and

vice versa). The scheme employs unique identifiers for programs, which are

computed using hash functions. This prevents the approach being used for

programs that use dynamic code loading during runtime.

2.4.4.2.5 Host architecture

Borselius [17] proposed a universal host architecture which can be used

to describe mobile agent functionality in remote hosts. This architecture is

depicted in Figure 2.3, and includes the following components.

• AEE: is the governing management and control function, responsible for

all agents executing on the platform.

• Communication services: provide communications facilities to agents.

• Security services: provide agent security controls.

• Mobility service: enables and controls agent migration.

• Event logging service: logs security related events for storage in an audit

trail.

• Security policy and access control database: regulates the behaviour of

security mechanisms.

64

2.4. Mobile agent security

Figure 2.3: Agent execution environment architecture.

• Storage and post processing: manages and processes log data.

• Local resources and subscription module: provides access to resources

(hardware or software).

• Trust Service Provider (TSP): provides various trust services.

• Remote resources: provides access to resources residing on other plat-

forms.

2.4.5 Summary: mobile agent security controls

We have reviewed a range of security mechanisms protecting mobile agents and

hosts. Host protection technologies have been developed to the point where

some authors consider them adequate for some applications [24] (although

there remain unresolved issues). On the other hand, there remains a lack of

65

2.4. Mobile agent security

Table 2.2: Mobile agent security solutions.

Countermeasure Subject Type Code or data
Encrypted functions Agent Prevent Both
Time-limited black boxes Agent Prevent Both
Environmental key generation Agent Prevent Both
Host replication Agent Detect Both
Agent replication Agent Detect Both
Detecting black-box attacks Agent Detect Data
Static data integrity Agent Detect Data
Forward integrity Agent Detect Data
Execution tracing Agent Detect Both
Secure itinerary recording Agent Detect Data
Secure chain relation Agent Detect Data
Sandboxing Host Prevent Code
Code signing Host Detect Code
Proof-carrying code Host Prevent Both
Path histories Host Detect Both
State appraisal Host Detect Data
History-based access control Host Prevent N/A

completely effective security measures to protect mobile agents against mali-

cious hosts [57]. Table 2.2 summarises the mobile agent security techniques

that have been discussed in the previous sections, [22]. Further information

can also be found in the outputs of the Mobile VCE project6.

It should be emphasised that the overhead (communication or computa-

tional) associated with certain mobile agent security measures needs to be

carefully considered before adoption. For example, forcing a mobile agent at

each host to securely communicate tracing logs with a trusted party (resulting

in a star-shaped communication pattern) may defeat the purpose of using mo-

bile agents to reduce the communication and computational overheads arising

from the use of standard client-server architectures.

Z This thesis focuses on mobile agent security; the objective is to use spy

6http://www.mobilevce.org

66

2.5. Other security topics

agents to identify the origin of a attack, based on information obtained

using attack detection techniques.

2.5 Other security topics

2.5.1 Data privacy

2.5.1.1 Notions

This section provides background on data privacy. We first give the following

fundamental definition.

Definition 2.8 (ISO 7498–2, [83]). Privacy is the right of individuals to con-

trol or influence what information related to them may be collected and stored

by whom, and to whom that information may be disclosed.

An alternative, somewhat more specific, definition is given by the Organi-

sation for Economic Co-operation and Development (OECD):

Definition 2.9 (OECD Glossary of Statistical Terms, [132]). Privacy is the

status accorded to data which has been agreed upon between the person or

organisation furnishing the data and the organisation receiving it and which

describes the degree of protection which will be provided.

A more functional definition of privacy is given in ISO/IEC 15408:2008,

which covers evaluation criteria for information technology security and, in

particular, security functional components [84]. This multipart standard is

also known as the Common Criteria (for Information Technology Security

Evaluation). It expresses privacy as a ‘functional class’ with four ‘member

families’: anonymity, pseudonymity, unlinkability, and unobservability. Defini-

tions for these families have also been provided by Pfitzmann and Hansen [138]

67

2.5. Other security topics

with the purpose of establishing a consistent terminology within the research

community.

Providing a privacy service often relies on other security services such as

authentication, confidentiality, accountability, and access control. For exam-

ple, the use of cryptographic mechanisms can ensure that (personal) data is

controlled by, and is only accessible to, authorised entities, and that these

entities are accountable for the exercise of such privileges. However, privacy

services might also conflict with security services. For example, the provision

of accountability could be adversely affected if anonymity is used to protect

user privacy.

2.5.1.2 Regulations

Data privacy is the subject of a wide variety of legislation. For example, in

Europe privacy is addressed by the European Union (EU) Data Protection

Directive (aka ‘the Directive’) [164]. The Directive defines ‘personal data’ as

any information relating to an identified or identifiable natural person (‘data

subject’); an identifiable person is “one who can be identified, directly or

indirectly, in particular by reference to an identification number or to one or

more factors specific to his physical, physiological, mental, economic, cultural

or social identity” [164, article 2(a)]. The Directive requires that personal data

should (among other things) a) “be collected for specified purposes and not

be further processed for other purposes”, and b) “be merely adequate and not

excessive for the purposes motivating its collection” [164, article 6(1)].

The Directive helps to protect against inadvertent disclosure of private

data to unauthorised parties. However, its scope is restricted to safeguard

68

2.5. Other security topics

other (conflicting) interests such as a) national or public security; b) police in-

vestigations; c) important economic or financial interests; and d) monitoring,

inspection or regulatory functions connected, even occasionally, with the ex-

ercise of official authority in previous cases. These exceptions (some of which

are equivocal) weaken the protection it provides.

Privacy can also be protected by requiring domains in which private data is

exposed to abide by particular data protection policies. These policies may be

based on standard privacy principles such as notice, choice and consent, collec-

tion, use and retention, access, disclosure to third parties, security for privacy,

quality, and monitoring and enforcement (see, for example, the OECD Guid-

ance on Policy and Practice, [131], or the UK Data Protection Act, [182]).

In this direction, the Platform for Privacy Preferences (P3P) [141] defines a

framework allowing a policy to be negotiated by two parties. For example, dur-

ing a registration process, a user may be requested to read the policy and opt

in if they agree with it [102]. However, such notice and consent frameworks

have been widely criticised and should not be relied upon for privacy pro-

tection [78]. For example, even though individuals may wish to protect their

privacy, they may still disclose personal information for reasons of convenience,

financial incentives, and/or a lack of understanding of the consequences.

2.5.1.3 Detection and prevention

Breaching a data privacy policy is a security threat posed by hosts that handle

mobile agents, particularly if the agents are issued by individuals. Personal

email addresses provide an example of private data which might be held by a

mobile agent whose use could be protected by a privacy policy. Unauthorised

69

2.5. Other security topics

use of an email address has a number of possible (detectable) side effects, in-

cluding the reception of unsolicited messages (spam), identity theft, phishing,

viruses, worms, malware and adware.

Information that can be used to uniquely identify, contact, or locate a single

individual is known as Personally Identifiable Information (PII). Although

data privacy is heavily regulated, the growing trend towards mass collection

and exploitation of PII (e.g. data mining, data retention) in databases, renders

regulations and security policies hard to enforce. This becomes even more

challenging in mobile agent scenarios in which PII is willingly exposed to

multiple hosts, within the scope of data protection agreements. The misuse

of PII contained in mobile agents is a passive attack, which leaves no signs

of violation in the mobile agents and may only be detected indirectly (e.g. by

checking an email address for unauthorised use).

Even though privacy attacks can be detected (e.g. by employing e-mail

filters), it might still be hard, or even impossible, to identify the origin of such

attacks. For example, spammers might use open proxies to remain anonymous

during harvesting and spamming. More specifically, spammers might collect

private data using protocol parsers (potentially both at a low level, e.g. IP

traffic monitors, and at a higher level, e.g. chattering); administration moni-

toring procedures (e.g. Internet Service Provider (ISP) procedures); or higher

level applications (e.g. email marketing, newsgroups, Web browser plug-ins

leaking information, or other spyware) [6]. Further, spammers and blackhats

might use third-party relays or compromised hosts (e.g. botnets) in order to

route large volumes of e-mail messages [91].

Privacy attacks can be prevented by employing PETs [7,23,73]. Examples

of such technologies include the use of blind signatures [1], mix networks [29],

70

2.5. Other security topics

crowd systems [144], and privacy assurance seals [13, 122, 168, 195].

Z Spy agents can help identify hosts that are responsible for email privacy

infringements; this is discussed in greater detail in Chapter 10.

2.5.2 Monitoring agents

The notion of spy agents and mobile agent preemptive security assessments,

discussed in this thesis, can be seen as techniques for providing internet se-

curity monitoring services. Strategically placed control mechanisms can per-

form service monitoring, [26,67], including monitoring of enhanced IP services,

Quality of Service (QoS) and VPN packets. Similarly, in distributed intrusion

detection systems, [28, 165], control agents can be used to protect a domain

by ‘interrogating’ suspicious agents.

Mobile agents can be used to to assist in intrusion detection; for example,

agent requests and delegation rights could be assessed by a trusted ‘security

management component’ that is concerned with the security of the host and its

execution environments [183]. As compared to the use of single-point security

systems (e.g. firewalls), agents in a distributed system might be able to handle

detected intruders more efficiently. Similar agent protection systems have

also been proposed for wireless ad hoc networks [95, 179, 201]; the systems

involve analysing audit data collected by wireless network agent sensors both

to detect intrusions and to deter intruders. Detection of misbehaviours can be

performed using a range of methods; for example, models have been proposed

that emulate natural immune systems, or evolve using machine learning and

fuzzy logic algorithms [40, 43, 92].

71

2.5. Other security topics

2.5.3 Deception

Deception in the form of social engineering and code breaking is commonly

used by hackers [121]. However, it has been observed that it can also be used

for attack detection and prevention by providing the attacker with a false

reality (fiction) [108]. Indeed, deception is one of the main requirements for

effective operation of a spy agent system.

Deception can be consistent or inconsistent. In consistent deception the

objective is to ensure that the attacker does not perceive that deception is used.

In contrast, in inconsistent deception the objective is simply to confuse the

attacker, regardless whether or not the attacker perceives an act of deception.

We next describe two security protection systems that are based on the

notion of deception.

2.5.3.1 Honeypots

The origin of remote attacks can potentially be identified with the aid of

‘honeynet’ systems [139], which “are nothing more than a security resource

whose value lies in being probed, attacked, or compromised” [166]. As such,

honeynets (aka honeypots) are designed to resemble valid systems; they use

this masquerade to collect information about attackers and their methods.

Honeypots can be used in various ways. For example, email address har-

vesting and spamming may be detected in the following ways [5].

• A honeypot installed in a web site could ‘poison’ harvesters with decoy

email addresses.

• A honeypot installed on an open proxy could discover a spammer’s iden-

tity.

72

2.5. Other security topics

• A honeypot installed on an open relay could detect and block unsolicited

emails.

The objective of a honeypot system is to collect valuable information from

unsuspecting attackers. This is not always possible; for example, an attacker

could use anti-honeypot techniques to detect the existance of a honeypot. For

example, the Send-Safe’s Honeypot Hunter “is a tool designed for checking lists

of HTTPS and SOCKS proxies for so called ‘honey pots’. ‘Honey pots’ are

fake proxies run by the people who are attempting to frame bulkers by using

those fake proxies for logging traffic through them and then send complaints

to ones’ ISPs7.”

If a honeypot can be detected, it can potentially also be attacked. For

example, a malicious user might be able to flood (poison) a honeypot with

false information [106]. By poisoning the honeypot, a malicious entity’s other

hostile activities might go unnoticed. More generally, just as spam originators

evolve new ways of bypassing spam filters, spammers are also developing ways

of combating honeypots. Hence honeypots can only continue to be a useful

security mechanism if their operators maintain technical superiority over the

adversaries of the resources being protected.

2.5.3.2 Software decoys

A decoy is intended to deceive something or someone into believing it is the

object it advertises itself to be. Therefore, the creator of a decoy must make

the decoy resemble a genuine object as much as possible in order to effect

the desired deception. Daniel and Herbig define deception as the “deliberate

misrepresentation of reality done to gain a competitive advantage” [39].

7http://www.send-safe.com/honeypot-hunter.php

73

2.6. Combinatorial group testing

Intelligent software decoys bear certain similarities to honeypot systems;

however, they differ from honeypots in a number of ways. Decoys are used

to actively defend components rather than just collect data; they are not

designed solely to attract the attention of adversaries; and they do not rely

on the concept of a perimeter of defences (in particular they might operate

autonomously) [118].

Z One of the aims of deception-based security mechanisms is to deter parties

from performing malicious acts. As compared with decoys and honey-

pots, spy agents differ in that attacks on mobile code take place in an

adversary’s environment, rather than a trusted one.

2.6 Combinatorial group testing

In this thesis we use combinatorial group testing (GT) to construct spy agent

routes. We next provide a short introduction to this mathematical theory.

2.6.1 Introduction to group testing theory

In GT a (large) population of items containing a small set of defectives is

tested in order to identify the defectives [45]. Items can be pooled together for

testing; a group test reports ‘positive’ if the tested pool contains one or more

defective elements, and reports ‘negative’ otherwise.

There are two main types of GT algorithms: sequential and nonadaptive.

Sequential algorithms allow the selection of later tests to be based upon the

outcomes of previous tests. In a non-adaptive scheme, the set of tests is

completely predetermined. Sequential algorithms require, in general, fewer

tests, since the extra information allows for more efficient designs. On the

74

2.6. Combinatorial group testing

other hand, non-adaptive algorithms allow tests to be conducted in parallel

which, in general, reduces the overall test time if not the number of tests.

The GT problem is often denoted by S(d, n) where S is the sample space

of objects to be tested, where at most d defective items from the sample space

are to be detected. If it is assumed that the sample space contains exactly d

defectives, then the GT problem is denoted by S(d, n).

2.6.2 Sequential group testing

The history of Sequential Group Testing (SGT) algorithms goes back over 60

years [44]. There are two main mathematical models for the classical GT prob-

lem [45].

• Probabilistic models assume that a certain item is defective with prob-

ability p (typically using a Bernoulli distribution).

• Combinatorial models assume that the maximum number of defective

items is known prior to testing.

In the original GT work [44,163] the problem was to determine which blood

samples from a certain population contain the syphilis antigen. When indi-

vidual blood sera were pooled in groups, the test being used had the property

that:

• if none of the sera in the pool contained the syphilitic antigen, then the

pool tested ‘negative’, and

• if one or more of the sera in the pool contained the syphilitic antigen,

then the pool tested ‘positive’.

The goal of the GT design problem as originally formulated was to detect

all the positive samples using the minimum number of tests (as a matter of

75

2.6. Combinatorial group testing

Figure 2.4: The idea of group testing.

economy). This optimisation problem is summarised in Figure 2.4.

Dorfman [44] showed that, when considering a Bernoulli probability dis-

tribution and a small p, the best group size S is approximately p−1/2 and the

resulting minimal ratio of tests to items tested is approximately 2p1/2.

In SGT, a fundamental objective is to minimise the total number of tests

required to find all the (up to) d defective items within a group of n items.

For given values of d and n, we therefore write N(d, n) for the minimum

number of tests in a SGT scheme which can identify up to d malicious hosts

from a set of n hosts. Since each test divides the sample space of hosts S(d, n)

into two disjoint sets, the following information theory bound applies [37,

Section 5.4: Bounds on the Optimal Code Length]: N(d, n) ≥ ⌈log2 n⌉. In

general, it is not easy to determine N(d, n). In fact, Du and Hwang [45] proved

that, if d = 1, then N(1, n) = ⌈log2 n⌉, and this is the only case in which

the exact value of N(d, n) is known [45]. General purpose SGT algorithms

include Hwang’s generalised binary splitting algorithm [93] and Li’s s-stage

algorithm [110].

2.6.3 Non-adaptive group testing

Non-adaptive algorithms have been studied for a shorter time: Non-adaptive

Group Testing (NGT) theory first arose in the study of superimposed codes

76

2.6. Combinatorial group testing

[105]; however the connection with NGT was only established much later in

the study of the d-complete designs [25] and the hypergeometric NGT prob-

lem [82].

Much recent NGT research has been driven by applications in Deoxyri-

bonucleic Acid (DNA) library screening in molecular biology, in which the

items are DNA subsequences (clones) and tests are performed on pools of

clones to determine which contain a particular DNA sequence [128]. In this

context NGT schemes are also known as pooling designs [8].

In the hypergeometric problem, it is also assumed the number of defectives

never exceeds d; in the strict problem, it is required to verify this assumption.

That is, a scheme will only identify a set of defective items if the assumption

has been verified.

The following tentative taxonomy of non-adaptive pooling designs is given

in [128].

• Deterministic designs: Every pool is deterministically specified.

• Random designs: Some or all of the entries are randomly determined

with parameterised probabilities that can be optimised based on certain

criteria.

• Error-tolerance designs: Deterministic or random designs with the addi-

tional ability to tolerate tests yielding erroneous outcomes (e.g. reporting

‘false positives’).

A range of NGT constructions have been proposed based on block de-

signs [35], superimposed codes [49, 50, 105], transversal designs (e.g. grid de-

signs [11]), cover-free families [54, 55, 175, 190], and other combinatorial de-

signs [9, 11, 54, 111, 129] (see §2.6.5). A recent survey of NGT can be found

77

2.6. Combinatorial group testing

in [46].

2.6.4 Group testing for complexes

In (classic) GT a set of elements possible containing defective elements is tested

in order to identify any defective elements. A test on a subset of elements gives

a positive result if and only if this subset contains at least one defective (or

positive) element. An important extension to the standard GT theory is the

theory of Group Testing for Complexes (GTC), in which elements can be

collectively positive. We call such a collectively positive element a ‘defective

complex’. In this model, a test gives a positive result if and only if the test

set contains at least one defective complex.

GTC is commonly associated with hypergraph testing. A hypergraph con-

sists of a set of vertices (corresponding to elements to be tested) and a set

of edges (i.e. sets of vertices) that correspond to the (candidate defective)

complexes. The rank of an edge is the number of vertices in it. In this

representation Du and Hwang define the following particularly important hy-

pergraphs [46, Chapter 6]:

• r-graph: a hypergraph whose edges all have rank r,

• r-graph: a hypergraph whose maximum rank is r,

• r∗-graph: the complete r-graph.

In hypergraph testing [63], the problem is to identify a hidden subgraph

using a small number of tests. This problem was first studied in the context

of identifying DNA complexes [112], in which there is a set S of molecules and

an unknown family D = {Di} of subsets of S, where each subset is a cause of

a certain disease. Hence, unlike in NGT, in hypergraph testing a combination

78

2.6. Combinatorial group testing

of a set of elements is required to induce a positive effect. This defines the

fundamental GTC problem, where we wish to identify the ‘set of defective

complexes’, D, using a small number of tests.

Chen andWei [30] showed that the GTC problem is connected to the secure

Key Distribution Pattern (KDP) problem [120] (see §2.6.5.7), generalised su-

perimposed codes [49] (see §2.6.5.5), and Cover-free Families (CFF) [175,190]

(see §2.6.5.4).

2.6.5 Useful combinatorial structures

2.6.5.1 Block designs

Combinatorial designs (block designs) are examples of set systems. The def-

initions below are taken from Colbourn and Dinitz [35]; standard set theory

and notation can be found in [90].

Definition 2.10. A Balanced Incomplete Block Design (BIBD) is a pair

(V,B), where V is a v-set and B is a collection of b k-subsets of V (blocks)

such that each element of V is contained in exactly r blocks and any 2-subset of

V is contained in exactly λ blocks. The numbers v, b, r, k, λ are the parameters

of the BIBD.

Definition 2.11. The incidence matrix of a BIBD (V,B) with parameters

v, b, r, k, λ is a v × b matrix A = (aij), in which aij = 1 when the ith element

of V occurs in the jth block of B, and aij = 0 otherwise.

Definition 2.12. A t-(v, k, λ) block design (or simply a t-design) is a pair

(V,B) where V is a v-set of points and B is a collection of k-subsets of V

(blocks) such that every t-subset of V is contained in exactly λ blocks.

Remark 2.13. A 2-(v, k, λ) design is a Balanced Incomplete Block Design

(BIBD).

79

2.6. Combinatorial group testing

For a 2-design the following equations apply [15]:

bk = vr (2.6.1a)

λ(v − 1) = r(k − 1) (2.6.1b)

Beth et al. [15] provide a thorough introduction to design theory; a com-

prehensive collection of results on combinatorial designs is given in Colbourn

and Dinitz [35].

2.6.5.2 Vectors

Let x = [x0, x1, . . . , xn−1]
T and y = [y0, y1, . . . , yn−1]

T be binary n-dimensional

vectors. The superposition sum, denoted by x∨y = [x0∨y0, x1∨y1, . . . , xn−1∨

yn−1]
T , is the element-wise logical OR of the two vectors. We say that a vector

x is contained in a vector y, if x ∨ y = y.

2.6.5.3 Separating matrices

A u× b binary matrix M with columns indexed by {1, . . . , b} is a:

• d-disjunct matrix if the superposition sum of any d columns of M does

not contain any other column of M ;

• d-separable matrix if, for every D1, D2 ⊆ {1, . . . , b} with |D1| = |D2| = d,

the superposition sum of the columns indexed by D1 and the superposi-

tion sum of the columns indexed by D2 are equal only if D1 = D2;

• d-separable matrix if, for every D1, D2 ⊆ {1, . . . , b} with |D1| ≤ d and

|D2| ≤ d, the superposition sum of the columns indexed by D1 and

the superposition sum of the columns indexed by D2 are equal only if

D1 = D2.

80

2.6. Combinatorial group testing

A family of v subsets C1, . . . Cv of a b-set X is d-disjunct if, for every subset

D of X of size at most d and for every x ∈ X−D, there exists an i (1 ≤ i ≤ v)

such that x ∈ Ci and Ci ∩D = ∅.

Theorem 2.14. (Colbourn and Dinitz [35, Section VI.56]) Every d-

disjunct matrix is d-separable. Every d+ 1-separable matrix is d-disjunct.

2.6.5.4 Cover-free families

A family of b subsets B1, . . . Bb of a v-set V is [190]:

• d-cover-free if, for every D ⊆ {1, . . . , b} with |D| = d and i 6= D,

Bi *
⋃

j∈D Bj ;

• d-weakly union-free if, for every D1, D2 ⊆ {1, . . . , m} with |D1| = |D2| =

d,
⋃

j∈D1
Bj =

⋃

J∈D2
Bj implies D1 = D2;

• d-(strongly) union-free if, for every D1, D2,⊆ {1, . . . , m} with |D1| ≤ d

and |D2| ≤ d,
⋃

j∈D1
Bj =

⋃

J∈D2
Bj implies D1 = D2.

The notion of a d-cover-free family can be generalised in the following

way [47]: A family of sets B is said to be (w, d)-cover-free if, whenever B1,B2 ⊂

B, |B1| = w, |B2| = d, and B1 ∩ B2 = ∅, it holds that
⋂

B∈B1
B *

⋃

B∈B2
B. A

d-cover-free family is (1, d)-cover-free.

2.6.5.5 Superimposed codes

A d-superimposed code of size b and length v is a collection of b binary vectors

(codewords) of length v, with the property that the superposition sum of a set

D of d or fewer codewords uniquely determines D [49].

Theorem 2.15. (Colbourn and Dinitz [35, Section VI.56]) d-Super-

imposed codes of length v and size b, d-separable v × b matrices, and d-

(strongly)-union-free families of b subsets of a set of size v are all equivalent.

81

2.6. Combinatorial group testing

A superimposed code has constant weight w if every codeword contains

exactly w ones. Equivalently, the corresponding set system is said to be w-

uniform.

2.6.5.6 Frameproof codes

An electronic object (e.g. a file) can be fingerprinted by placing marks in

locations within the object that do not affect its meaning and/or functionality.

Suppose that an object (e.g. a plaintext message) contains L possible lo-

cations for the inclusion of marks. If s values can be assigned to each of the

marks, then we define a fingerprint as the sequence of values assigned to each

of the Lmarks. Thus a fingerprint can be thought of as a word of length L over

an alphabet Σ of size s. The process of fingerprinting an object then involves

assigning a unique codeword from ΣL to each user. By colluding, users can

detect the location of a specific mark if the value assigned to it differs between

their copies; otherwise, a mark location cannot be detected.

The main property that the marks should satisfy is that users cannot

change the state of an undetected mark without rendering the object useless.

Naive redistribution occurs when a user redistributes his copy of the object

without altering it. If an unauthorised copy of the object is found containing

user’s u codeword, then user u is said to be guilty.

However, u could claim that he was framed by a coalition of users that cre-

ated an object containing his codeword. We would therefore like to construct

codes that satisfy the property that no coalition (of at most d users) can col-

lude to frame a user not in the coalition. Such codes are called d-frameproof

codes [16].

Finally, if a coalition colludes to generate an unregistered object, we would

82

2.6. Combinatorial group testing

then like (when this object is found) to be able to determine the users (or a

subset of them) that colluded to create the object. Codes that support such

traceability algorithms are said to be secure-frameproof.

Theorem 2.16. (Stinson et al. [172]) A d-frameproof code is equivalent to

a d-cover-free family.

2.6.5.7 Key distribution patterns

Suppose that n users want to communicate securely in groups of size e. If a

conventional (symmetric or secret key) cryptosystem is being used, where a

trusted authority generates and distributes a secret key to each e-set of users,

then
(

n
e

)

keys would be required, and each user would need to store
(

n−1
e−1

)

keys.

The number of keys to be stored can be considerably reduced by somewhat

weakening the security requirements. Suppose each user is equipped with a

set of secret keys. Given a subset of e members and a disjoint subset of d

non-members, we require that there exists a key owned by each member of the

e-subset and by no member of the d-subset [120].

2.6.5.8 Some applications

GT designs and related combinatorial constructions (see above) have been

used in addressing a range of information security problems, including:

• frameproof codes and traceability schemes [16, 33, 62, 169, 172–175];

• broadcast encryption [42, 64, 107, 174];

• key storage [51, 120]; and

• multi-receiver authentication [151].

83

2.7. Conclusions

Also, such combinatorial designs have been used in many other fields, in-

cluding multi-user communications, in which contemporaneous messages must

be successfully decoded [197], and DNA testing, where finding complex dis-

eases needs to be performed in an economical way (see §2.6.4).

2.7 Conclusions

This chapter has reviewed a range of background topics. It has provided an

introduction to cryptographic primitives, mobile agents, mobile agent security,

data privacy, deception, and the theory of combinatorial group testing. This

material provides the basis for the remaining chapters of this thesis.

84

“Long is the road from conception to completion.”

Moliere

3
Spy agents

Contents
3.1 Synopsis . 85

3.2 Introduction to spy agents 86

3.3 Developing the spy agent concept 87

3.4 Spy agent system architecture 89

3.4.1 Spy agent network components 90

3.4.2 Spy agent content framework 91

3.4.3 Spy agent routing framework 93

3.4.4 Trust evaluation 95

3.5 Conclusions . 96

3.1 Synopsis

In this chapter we introduce spy agents and provide a spy agent system ar-

chitecture and design methodology. More specifically, we describe how spy

agents can be deployed within a variety of network protocol architectures in

85

3.2. Introduction to spy agents

order to perform high fidelity trust assessments of remote agent hosts. The

spy agent framework consists of: a spy agent architecture that instantiates spy

agents with appropriate content; a spy agent routing framework that dictates

how spy agents are deployed; and an evaluation entity that implements the

necessary security analysis mechanisms.

Spy agents is a novel concept; most related prior art falls within the area

of mobile agent security (§2.4), while the closest (albeit different) concepts are

those of agent spreading (§2.4.3.2.5) and replication (§2.4.3.3.1).

The rest of this chapter is organised as follows: the spy agent concept is

discussed in §3.2 and §3.3, and the elements of the spy agent architecture are

given in §3.4.

Most of the material in this chapter has been published in [101].

3.2 Introduction to spy agents

Spy agents, the notion of which was introduced in §1.3, are mobile software

agents that are despatched from one (or more) secure platform(s) and migrate

through a series of potentially insecure remote hosts, before returning to a

secure location. Their purpose is to gather information to help evaluate the

trustworthiness of visited platforms. Unlike malicious agents such as viruses,

spy agents are legitimate mobile agents in the sense that they interact with

visited hosts in the way expected by the hosts. As such they are analogous to

software decoys (see §2.5.3.2) and honeypots (see §2.5.3.1).

The main objective of a spy agent system is to evaluate trust in remote

environments, where the remote hosts should be unaware that their trustwor-

thiness is being assessed. The structure of a spy agent should be no different

to that of a generic mobile agent (e.g. an agent designed to obtain the prices of

86

3.3. Developing the spy agent concept

goods from multiple e-commerce sites), as discussed in §2.3.4. A spy agent will

include decoy private data and a pre-coded routing scheme, which hosts are

typically able to access to enable migration. The evaluation of remote plat-

forms is based on the collective outcomes of the spy agents (i.e. the detectable

impacts on the agents after visiting the defined set of platforms). Each indi-

vidual agent outcome could either be negative (if there is no sign of security

violation) or positive (otherwise).

Spy agents can be used to mitigate the threats posed by malicious hosts by

preemptively assessing the trustworthiness of remote hosts. Such assessments

should take place before remote hosts are sent vulnerable mobile agents or

sensitive data.

3.3 Developing the spy agent concept

The main idea behind a spy agent is to provide a means to evaluate trust in

remote environments without the target hosts knowing that they are being

assessed. This is achieved by selecting spy agent routes in such a way that

malicious remote hosts will not suspect that they can be held responsible for

any malicious acts. As a result, spy agents have the potential to determine

the target hosts’ genuine behaviour, i.e. the degree to which a host complies

with its policies or, more specifically, with its responsibility to respect client

security and privacy requirements.

A significant part of a spy agent’s task is the extraction of security-related

information from a remote host without violating the host’s policy or security

protection mechanisms. This means that a spy agent should retrieve the in-

formation it needs from remote hosts in a legitimate way and with the explicit

permission of the host concerned; at the same time this must happen in a way

87

3.3. Developing the spy agent concept

that does not reveal the spy agent’s true objectives. The information retrieved

by a spy agent will not necessarily be directly security-related; it simply needs

to be information that can be used in some way to assess host behaviour,

possibly when combined with information retrieved by one or more other such

agents.

We identify the following fundamental principles underlying the use of spy

agents.

• Target hosts should be incapable of deciding whether they are dealing

with a spying scenario or not.

• Spy agents should appear as ‘normal’ (e.g. m-commerce) agents.

• Target hosts should be given a motive to misbehave by using spy agents

as ‘bait’.

• The results obtained from the dissemination of spy agents should be

analysed in a safe environment.

As discussed above, spy agents are unlike viruses and other ‘illegitimate’

agents in that they should not breach host security and privacy. Instead, spy

agents should interact with hosts in ways which hosts expect e.g. by complying

with the host’s ‘sandbox’ functional requirements. This concept is depicted in

Figure 3.1.

We assume that the information acquired by spy agents is willingly pro-

vided by the hosts, directly or indirectly (e.g. by the impact of host actions),

and that the use of such information for evaluation purposes is both legiti-

mate and ‘ethical’. Note that similar assumptions cannot be made about host

behaviour, as mobile code is at the mercy of the host which executes it.

88

3.4. Spy agent system architecture

Figure 3.1: Spy agents versus malware and viruses.

Z In summary, spy agents can be defined as legitimate mobile agents which

are able to interact with remote, potentially hostile, mobile agent hosts

in a manner that is expected by the hosts, and that support trust as-

sessments without host knowledge.

3.4 Spy agent system architecture

A spy agent system involves the dissemination of a number of spy agents to

target network nodes (hosts) in a network, and the retrieval of these agents

following interaction with the nodes. As further discussed in Chapter 5, the

deployment of a large number of spy agents can provide cross-referenced anal-

yses of host trustworthiness.

The spy agent system can be regarded as an extension of a standard mo-

bile agent system. We suppose that the spy agent system is based on standard

mobile agent components, interfaces, and functions, including standard com-

munication, mobility, and security protocols, as discussed in §2.3. Spy agents

89

3.4. Spy agent system architecture

Figure 3.2: Fundamental spy agent system components.

can be implemented within any mobile agent framework, such as a system

conforming to the FIPA specifications (see §2.3.3).

The rest of this section is concerned with architectural extensions to a

mobile agent system that are required by a spy agent system.

3.4.1 Spy agent network components

A fundamental requirement is to provide spy agents with anonymity. A degree

of anonymity can be achieved by associating a set of agents with a number

of different sources or transmitters. That is, spy agents can be forwarded (by

their originator) to a multiplicity of trusted nodes in the network. Each such

node modifies the received agent’s code in order to show itself as the source

of the agent, before forwarding the agent towards the target node. Such an

arrangement is shown in Figure 3.2.

For reasons that are analysed in more detail below, a spy agent should

give away as little information about its purpose as possible. In this context

it is proposed that the modified spy agent should ultimately be destined for a

trusted node different to the node that sends it to the target host. This second

trusted node will be notified by the first trusted node to expect a particular

spy agent, and on receiving the agent will be able to forward it back to its

90

3.4. Spy agent system architecture

Figure 3.3: Spy agent internal structure.

origin.

When all spy agents return to their original source, the system can then

analyse the agent interactions with the target hosts, in order to assess their

level of trustworthiness.

3.4.2 Spy agent content framework

Spy agents will contain pre-coded routing and remote execution mobile code,

and they should implement standard security protocols for access control, non-

repudiation and data encryption (see §2.4).

A schematic of a software spy agent is shown in Figure 3.3. The agent

includes an agent ID, an origin or source ID field, a final destination ID field,

a number of intermediate node IDs, and a payload. The payload includes per-

sonal data such as a name, address, email address, digital certificates, security

logs, financial information, and other information associated with a person or

client. Finally, the agent includes executable code.

The spy agent’s private data, such as ID information, email address, public

key certificates, etc., should preferably correspond to a temporary entity set

up by a mobile platform in a legitimate manner. That is, spy agents should

appear to be originated by a normal client, and their relationship with the real

client should be hidden. This helps to ensure that the target hosts will process

the spy agent in exactly the same way as they would treat any other mobile

91

3.4. Spy agent system architecture

Figure 3.4: Spy agent system—interactions with trusted parties.

(e-commerce) agent. In order to be able to disguise a spy agent in this way,

the spy agent system might need to (securely) interact with on-line services

such as e-mail providers, certification authorities and banks, who would need

to be aware of the purposes of the spy agent and be prepared to support them.

These relationships are shown in Figure 3.4.

For example, the spy agent originator might need to set up a temporary

email address or request a certificate from a certification authority for tem-

porary use in assessing a host. This certificate need not allow an agent to

perform any transaction automatically since it will be temporary. However a

target platform should not be aware of this, and should believe that the agent

will be equipped with all the ‘normal’ functions of an (m-commerce) agent.

That is, it must appear to be just another mobile agent that could, if it wishes,

decide to complete an electronic transaction.

The requirement for a spy agent to have a commonly used structure serves

both the principle of mobile agent interoperability and the spy agent principles

discussed in §3.3.

92

3.4. Spy agent system architecture

3.4.3 Spy agent routing framework

One of the most important aspects of a spy agent system is the routing mech-

anism. This determines the migration logic of each spy agent, and also influ-

ences the content of an agent, as described in the previous paragraph. The

routing logic needs to address the complexity of dealing with multiple agents,

issued from a multiplicity of trusted nodes, and routed over a variety of dif-

ferent paths. This complexity is necessary since the agent routing strategy

plays a critical role in determining how well the system requirements are met.

Amongst other things, the routing scheme should help to disguise the fact that

spy agents originate from a specific client device and are in any way related.

A typical routing scenario is shown in Figure 3.5. A number of spy agents

are created by the originator, anonymised by certain trusted platforms, routed

via a number of target platforms, and are programmed to return to specified

trusted platforms. Note that a trusted platform could, for example, be a

mobile terminal, a home computer, or a public server set up for this purpose,

although the latter option might increase network and end user costs.

In this thesis we assume that all the spy agent functionality in the trusted

network (e.g. secure communication and anonymisation mechanisms) can be

implemented using standard mechanisms. Following from this assumption,

we focus on routing protocols within the (insecure) domain of remote target

platforms. In line with the principles given in §3.3, we next discuss two funda-

mental parameters of an agent routing scheme, namely path correlation and

path length.

93

3.4. Spy agent system architecture

Agent 1 Agent 2 ... Agent n

Originator

Trusted platform Trusted platform Trusted platform

Target platform 1

Target platform 2

Target platform 3

Target platform 4

Outgoing

agent
Incoming

agent

Roaming

agent

Figure 3.5: Spy agent routing architecture.

3.4.3.1 Path correlation

A migration path for an agent is a list of the target platforms that it is in-

structed to visit during its life (starting from a trusted platform). In order to

minimise the probability of detection, peer spy agents visiting the same target

platform should have minimal correlation, including between their migration

paths.

Ideally, the information that target hosts retrieve from different visiting

agents should be uncorrelated. To achieve this, it is necessary to know the

nature of the inter-relationships between those target hosts that are to be

visited by at least one of the spy agents. For example, we could assume that

none of the target hosts will share information about visiting agents. In this

case two spy agents would only need to be uncorrelated if these agents visit a

common target host.

94

3.4. Spy agent system architecture

3.4.3.2 Path length

We assume throughout this thesis that spy agents will migrate through two or

more target hosts rather than just one. We make this assumption for two main

reasons. Firstly, we wish to try to minimise the number of spy agents required

to assess a set of target hosts. Secondly, we assume that receiving an agent

with only one destination will make a malicious host less likely to misbehave,

since it can be held accountable for whatever happens to this agent. This is

an important requirement that influences the design of agent routes.

Further, if a target host receives an agent that is programmed to migrate

to another host not known to the target host (without migrating, for example,

to a known competitor), then it will have a motive to refrain from behaving

badly, either because it believes that this incoming agent might be a spy agent,

or because it cannot identify any direct competition. Thus a malicious target

platform might behave well to avoid possible detection, and the spy agent

evaluation results will therefore be less likely to meet the system objectives.

By contrast, a target host may feel free to misbehave if an incoming agent is

programmed to migrate to a rival service provider. We also note that a trusted

platform may not be able to be used in more than one host assessment process,

lest a target host suspects that further incoming agents are spy agents, e.g. by

making use of records of past events and/or statistical analyses.

3.4.4 Trust evaluation

The assessment of the trustworthiness of a target platform could yield esti-

mates for a variety of security issues. Possible issues include the probability of

the host reading or altering private data that should not be accessed, or the

likelihood that it will block or divert migration of the agent.

95

3.5. Conclusions

These assessments could be made in a variety of ways, for example by

comparing the data retrieved by a variety of agents using different routes.

Also the returned agents could be examined to see if they have been altered

in any way other than in terms of their retrieved data, such as blocking,

delaying or changing a migration route. Alternatively, an agent could contain

a temporary (unique) email address which is monitored to see whether spam

emails are sent to this address in the future. If unsolicited emails are received

at this address, then it can be deduced that one of the hosts visited by the

agent containing this address may have violated the agent security policy by

using private data in an unauthorised way. [The above ideas are developed

further in Chapter 10.]

As discussed in the previous section, the information gathered from mul-

tiple agents visiting multiple hosts can be cross-referenced to make host as-

sessments. The idea here is that if misbehaviour is detected involving one or

more agents and the route design is selected with care, then the host plat-

form(s) responsible can be identified with high probability. Alternatively, if

an unmodified agent is returned as expected and there are no associated signs

of mishandling, then it can be assumed with high probability that all visited

target platforms have behaved properly.

The analysis of agent deployment can be either deterministic or probabilis-

tic, and depends on the assumed spy agent scenario and the spy agent route

design. Some fundamental spying scenarios are analysed in §5.3.

3.5 Conclusions

This chapter has introduced the concept of spy agents, and has described the

possible benefits of their use. We have also described a generic agent structure

96

3.5. Conclusions

and discussed route design issues for spy agents.

A key issue for the proposed framework is the manner in which spy agents

are coordinated to collect network information, from which conclusions about

the trustworthiness of network entities can be drawn. It is proposed to use

multiple spy agents coordinated by a number of trusted platforms, which will

hide the identity and association of the agents.

In the future, spy agent networks can be used to offer security services to

trusted networks, the price of which will depend on the required service cred-

ibility. Further, evaluation assessments of high quality (credibility) could be

used by other applications in order to adapt their security to existing circum-

stances, and to perform further security assessments such as remote surveil-

lance and risk analysis. Ultimately, it should be possible not only to evaluate

a target host, but also to determine the benefit of using a specific quantity of

resources within a specific spying scenario.

The remainder of this thesis expands on the introduced spy agent paradigm

as follows. Chapter 4 provides a more detailed description of the fundamental

spy agent system requirements. In Chapter 5 we introduce metrics which are

designed to try to quantify the effectiveness of a specific spy agent route design.

Techniques for designing efficient route designs for specific spy agent scenarios

are given in Chapters 6, 7 and 8. Chapter 9 considers the credibility of spy

agent results. Spy agent applications are discussed in Chapter 10, and overall

conclusions are drawn in Chapter 11.

97

“Most of the research which is done is determined by the requirement

that it shall, in a fairly obvious and predictable way, reinforce the

approved or fashionable theories.”

Celia Green

4
Spy agent requirements and

assumptions

Contents
4.1 Synopsis . 99

4.2 Malicious host behaviour 99

4.3 Spy agent dissemblance requirements 100

4.3.1 Subterfuge requirements 101

4.3.2 Statutory requirements 101

4.3.3 Protection requirements 102

4.3.4 Incentivisation requirements 102

4.3.5 Summary of dissemblance requirements 104

4.4 Spy agent evaluation requirements 105

4.4.1 Attack detection requirements 105

4.4.2 Attack identification requirements 106

4.4.3 Host evaluation fairness requirements 106

4.4.4 Security evaluation optimisation requirements . . . 106

4.5 Spy agent routing requirements 107

4.5.1 Single-agent routing requirements 108

4.5.2 Multi-agent routing requirements 108

98

4.1. Synopsis

4.6 Spy agent trust services 109

4.6.1 Services in trusted networks 109

4.6.2 Evaluation services 110

4.7 Other assumptions 110

4.7.1 Agent anonymity and host identification 110

4.7.2 Inter-networking assumptions 112

4.8 Conclusions . 113

4.1 Synopsis

This chapter defines the fundamental spy agent security requirements, and

gives our assumptions regarding the deployment scenario. Part of the work

described in this chapter has been published in [100].

The spy agent security requirements are derived from the principles dis-

cussed in Chapter 3; these provide the basis upon which the spy agent routing

problem is formulated in Chapter 6. First, the assumptions regarding ma-

licious host behaviour are given in §4.2. The spying requirements are then

classified into three groups: spy agent dissemblance requirements (see §4.3);

host evaluation requirements (see §4.4); and spy agent routing requirements

(see §4.5). Next, §4.6 discusses the security requirements for spy agent system

operations that take place in trusted environments. The chapter concludes

with a discussion of routing implementation issues and assumptions (§4.7).

4.2 Malicious host behaviour

Spy agents are intended to be used to determine whether or not a target host

is malicious by observing the outcome of the host’s behaviour towards visiting

spy agents.

99

4.3. Spy agent dissemblance requirements

One key type of misbehaviour considered in this thesis is the malicious use

of agent data (by hosts). This is defined as using agent information in an

unintended manner, including the unauthorised transfer of information. Such

misuse could include the unlawful use of, or access to, information, which

might result in data protection, copyright, or privacy infringement. We note

that in some cases it may be difficult to distinguish between deliberate (malign)

behaviour and accidental misuse of data.

For our purposes, unauthorised handling of personal data will be regarded

as malicious regardless of the intention of the host, on the basis that it is the

duty of the authority holding sensitive information or code to protect it against

unauthorised access or use (on behalf of the person or agent that the data or

code relates to). This approach is consistent with laws which state that the

data holder must take ‘reasonable precautions’ to protect sensitive data (see

§2.5.1.2). For example, sensitive data stored on a server should be encrypted,

and sufficiently strong authenticated access control mechanisms should be in

place to ensure that stored data is not accessed by malicious parties.

In this thesis we thus assume, for simplicity, that hosts are responsible

for any intended or unintended infringement of their data privacy policy and,

hence, hosts allowing such infringements are either malicious or untrustworthy.

For convenience, these terms are used interchangeably.

4.3 Spy agent dissemblance requirements

The spy agent dissemblance requirements analysed in the following subsections

cover both the appearance and behaviour of a spy agent. These requirements

are derived from the principles outlined in §3.3.

100

4.3. Spy agent dissemblance requirements

4.3.1 Subterfuge requirements

In order to be effective, spy agents need to be read and executed by remote

hosts in the same way as any other agent. Spy agents should therefore provide

remote hosts with no evidence of their purpose (see also §2.5.3).

One important subterfuge property is anonymity. Spy agents need to main-

tain their anonymity by hiding contextual information that could compromise

their identity. This can be achieved using techniques such as the inclusion of

fabricated context information.

Spy agents should operate in a non-malicious manner, as discussed in §3.3.

Hence, a spy agent should use subterfuge only to protect its true identity and

not to deceive a host into providing it with information that the host would

not wish to reveal.

4.3.2 Statutory requirements

A spy agent must comply with the privacy and security requirements of a

visited host, and conduct itself in accordance with stated policies. Software

spy agents, unlike spyware, should not attempt to compromise the security of

remote hosts, regardless of whether or not these remote hosts are malicious.

A spy agent’s task is the assessment of host behaviour without violating the

host’s policy or security protection mechanisms.

As part of these requirements, target hosts, including malicious hosts, may

have the right to deny access to mobile agents if these agents do not conform to

the host’s public policy and requirements. For example, target hosts may block

agents that exceed their computational limits in order to protect themselves

against DoS attacks. Legitimate spy agents should not exceed such agreed

limits.

101

4.3. Spy agent dissemblance requirements

A spy agent should only retrieve information from remote hosts in the

manner offered by the hosts, while the hosts should not be given any evidence

of the spy agent’s true objectives.

The statutory spy agent requirements to some extent reinforce the sub-

terfuge requirements. Any attempt to breach a host’s security might cause

the host to suspect that the mobile agent is not a ‘normal’ agent. In such a

case the malicious remote host may adapt its behaviour to avoid detection, or

simply to avoid an increased risk.

4.3.3 Protection requirements

Spy agents should comply with standard mobile code security requirements,

including the incorporation of any standard mobile agent protection controls

(see §2.4).

Protection requirements (indirectly) stem from the subterfuge require-

ments discussed in §4.3.1. If spy agents do not comply with standard mobile

code security requirements, then it may be possible to distinguish them from

other mobile agents. Also note that an abused agent may only be able to hold

a malicious host accountable for its misbehaviour if the agent incorporates all

reasonable protection precautions.

However, spy agents may not necessarily comply with all standard mobile

code requirements in interactions with trusted networks and authorities; they

only need to do so when interacting with target hosts. For example, spy agents

might carry certified credentials bound to a fabricated ID.

4.3.4 Incentivisation requirements

Reasonable motivation should be given to malicious hosts to exhibit unautho-

rised behaviour. If a host is likely to violate the security of a normal mobile

102

4.3. Spy agent dissemblance requirements

agent, then it should be given an incentive to violate the security of a spy

agent. Spy agents can use two techniques to achieve this: subterfuge (see

§4.3.1) and incentivisation.

The nature of the required incentives will be application-dependent. For

example, consider the following scenarios.

1. A malicious host with a good reputation might wish to frame an innocent

rival host (especially if the innocent host already has a bad reputation).

2. A malicious host might wish to influence the result of a shopping agent so

that the agent perceives that host more favourably than would otherwise

be the case.

3. A malicious host might have a secondary unintended use for data con-

tained within an agent.

4. A malicious host might wish to reduce its processing burden.

In the above examples, the incentive for misbehaviour can be increased in

1) by sending a spy agent to a large number of target hosts both reputable

and non reputable; 2) by including within a spy agent high value inquiries

which are potentially lucrative for the host; 3) by including within a spy agent

information that could be useful to third parties (although the inclusion of

large quantities of spurious data might arouse host suspicions); and 4) by

sending processor-intensive agent code (which, however, should still induce a

‘reasonable’ computational expense, as discussed in §4.3.2).

Subterfuge requirements reinforce the incentivisation requirements. By

encouraging hosts to believe that they can ‘safely’ misbehave, they are in

some sense given an incentive to misbehave.

103

4.3. Spy agent dissemblance requirements

4.3.5 Summary of dissemblance requirements

The fundamental dissemblance requirement is that target hosts should be un-

able to exhibit special behaviour in order to make a false positive impression.

Summarising the above analysis, we can expand the spying principles discussed

in §3.3 to obtain the following list of spy agent requirements.

• Target hosts should be incapable of deciding whether or not they are

dealing with spy agents.

• Potentially malicious target hosts should be given a motive to misbehave

by using spy agents as ‘bait’.

• Spy agents should appear to be ‘normal’ (e.g. m-commerce) mobile agents,

and use full standard mobile code protection.

• Spy agents should use pseudonymous identities and credentials created

in a legitimate manner.

• Spy agents should comply with all security requirements and behave as

expected by the hosts.

• Information or feedback should be gathered and processed by the spy

agent originator in a legitimate manner.

• Feedback should always be analysed in a safe environment.

These fundamental spy agent security requirements are analogous to those

for honeypot systems, which “are nothing more than a security resource whose

value lies in being probed, attacked, or compromised” (see §2.5.3.1), and those

for decoy systems which use the notion of deception as the “deliberate mis-

representation of reality done to gain a competitive advantage” (see §2.5.3.2).

104

4.4. Spy agent evaluation requirements

Spy agents differ in that attacks on mobile code take place in an adversary’s

environment rather than a safe one.

4.4 Spy agent evaluation requirements

The dissemblance security requirements discussed in §4.3 form one set of inputs

to the design of a spy agent system. In this and the following section (§4.5) we

consider other design constraints, namely evaluation and routing requirements.

4.4.1 Attack detection requirements

A malicious host can only be identified if the occurrence of an attack is de-

tected. Hence spy agents are only useful in scenarios where a malicious act

yields a detectable impact.

A taxonomy of possible attacks on mobile agents is given by Borselius [18]

(see also §2.4.2.1). The impact of an attack depends on the scenario. For

example, unauthorised manipulation of agent code [36] might be detectable,

or the delayed return of an agent could imply deliberate retention of an agent

for malicious processing [56]. However, it is not always possible to detect

an attack. As discussed above, spy agents are only useful in scenarios where

attacks result in detectable impacts, and the origin of such attacks (i.e. one or

more malicious host(s)) can then be inferred by examining the results of all

the spy agents.

Note that it is not necessary for all the agents to arrive back in a safe

environment in order to complete the analysis. In an appropriate scenario, a

lost agent could be considered as a positive outcome. Further, for the pur-

poses of attack detection, spy agents could be combined with state appraisal

or detection object techniques, as discussed in §2.4.4.2.3. Examples of such

105

4.4. Spy agent evaluation requirements

combinations are further discussed in Chapter 10.

4.4.2 Attack identification requirements

In a spy agent system, the outcomes of spy agent tests are combined to deduce

which hosts are (likely to be) misbehaving. The information obtained from

an attack on a single spy agent is, in general, insufficient to assess visited

hosts. Indeed, if an attack on a single agent could be linked with certainty

to a particular host then that host would have no motive to misbehave, as

discussed in §4.3.4. Hence, in order to meet both the dissemblance and attack

identification requirements, more than one spy agent will be needed. The

combined test outcomes should allow the origin of detected attacks to be

identified.

4.4.3 Host evaluation fairness requirements

Regardless of whether or not certain hosts are believed to be malicious (e.g. by

reputation or previous spy agent evaluations), we suppose that a new spy agent

evaluation analysis will be based on the assumption that all target hosts are

equally likely to be malicious. This ‘fairness’ requirement does not preclude

further uses of evaluation results by other schemes, such as reputation systems.

4.4.4 Security evaluation optimisation requirements

Spy agents should be designed to yield evaluation results that are as correct as

possible, given the resources used. An error in host trustworthiness evaluation

could arise in various ways, including:

• an assessment error, e.g. occurring from the uncertainties of a proba-

bilistic evaluation; and

106

4.5. Spy agent routing requirements

• a model error, arising when a malicious host behaves in an uncharacter-

istic way, e.g. to avoid detection.

To alleviate the above problems, a spy agent system should be designed to

minimise the probability of a) obtaining erroneous outcomes and b) making

uncertain assessments, and to maximise tolerance to such errors. For exam-

ple, if malicious target hosts misbehave inconsistently, spy agents should be

designed to either detect this inconsistency (error detection) or, if possible,

still make correct evaluations (error correction).

4.5 Spy agent routing requirements

As the outcomes of more than one agent need to be combined to identify the

origins of attacks (as discussed in §4.4.2), spy agent route selection is a critical

issue (see §3.4.2).

Z For convenience, the terms ‘routing’ and ‘migration’ are used interchange-

ably. Also the term spy agent routing is used to refer to the set of

migration paths assigned to the spy agents used in a single instance of

the system.

Spy agents are assumed to have a predetermined migration logic, which

will be available to all visited target hosts. A spy agent is expected to be

executed on visited hosts as specified by its originator, unless one of these

hosts maliciously changes the agent’s code or migration logic. That is, a spy

agent should only be accessed by the hosts it is expected to visit, unless one

of the specified hosts maliciously modifies it. This agent routing security

requirement can be guaranteed through the use of standard cryptographic

107

4.5. Spy agent routing requirements

protocols that hosts should be required to use. Violation of this protocol is

likely to be detectable (see, for example §2.4.3.3.6 and §2.4.3.3.5).

Additional routing requirements can be divided into the following two cat-

egories.

• Single-agent routing requirements: cover the security aspects of agent

communication and migration.

• Multi-agent routing requirements: cover the migration logic for each

agent in a single instance of the spy agent system.

4.5.1 Single-agent routing requirements

As discussed above, we assume that if a spy agent is misused then one of

the hosts on its predetermined migration path must be responsible. Again as

stated above, this assumption can be satisfied by requiring all hosts to use

secure communications protocols to transfer agents.

In line with the spy agent protection requirements (§4.3.3), the migration

logic of each spy agent (as provided by the originator) should be fixed. Given

this, and as above, if the migration path is in any way modified then it is

assumed that at least one visited host has misbehaved.

4.5.2 Multi-agent routing requirements

The collection of spy agents used in a single instance of the system will possess

a set of routes designed to efficiently test the trustworthiness of a predefined

group of target hosts. Hence, in theory at least, target hosts could pool infor-

mation about visited agents to try to detect such a design and hence detect the

use of spy agents. Thus sets of spy agent routes should be designed to minimise

108

4.6. Spy agent trust services

the risk of a successful analysis of this type (as stated in §4.3.5). In particu-

lar, spy agent route sets should be designed so that peer spy agents visiting

a target host have minimal common routing information (as also discussed in

§3.4.3).

Algorithms for generating spy agent route designs form the core of the

research described in this thesis.

4.6 Spy agent trust services

Spy agents should be trustworthy. That is, if spy agents do not comply with

the statutory requirements (given in §4.3.2), then they should be classified as

malicious agents. To guarantee spy agent trustworthiness, the following trust

services should be provided.

4.6.1 Services in trusted networks

As discussed in §3.4.2, the active support of a number of trusted third parties

may be required in order to set up a spy agent scenario. For example, if the spy

agents require certified decoy credentials or bank accounts, then appropriate

organisations will need to participate.

Although spy agents are anonymous (or pseudonymous), as discussed in

§3.4.2, they should still be accountable for their actions. For example, violated

target platforms should be able (with the help of trust services) to identify the

source of malicious spy agents. In general, the following trust services should

be provided.

• Spy agent accountability: spy agent originators, or any parties that ob-

tain decoy IDs and certificates, need authenticate themselves to the au-

thorities that provide them with these credentials. Spy agent originators

109

4.7. Other assumptions

should not be able to repudiate their actions.

• Integrity of spy agent results: spy agents should not be able to modify

spying outcomes.

• Confidentiality of spy agent results: spy agent outcomes and evaluation

results should only be accessible to authorised (trusted) parties.

4.6.2 Evaluation services

Spy agents constitute a passive preemptive trust assessment mechanism that

detects but does not thwart security attacks. However, the very existence of

such evaluation mechanisms can in the long run contribute towards preventing

malicious acts from taking place.

This prevention mechanism (like all schemes involving detection after the

event) will still allow target hosts to misbehave. However, our assumption

is that hosts are expected to eventually develop good behaviour regardless of

whether or not they are actually assessed.

Evaluation results can be used for post-data processing and in the provision

of other security services, such as risk management and digital insurance ser-

vices. However, care should be taken to avoid biased evaluations (see §4.4.3).

4.7 Other assumptions

4.7.1 Agent anonymity and host identification

As discussed in §3.4.1, a spy agent needs to be anonymised before it is despat-

ched to a target platform. How anonymity is provided depends on how the

spy agent is identified by a target platform. For example, if the agent ID is

supported by a public key certificate, the associated certificate chain can be

used to help authenticate the agent’s identity.

110

4.7. Other assumptions

The means that can be used to anonymise an agent will depend on the

nature of its ID. For example, if the ID is a URL (or URI) then the orig-

inator could use NAT [167], visualisation [196], dynamic DNS [178], and/or

anonymity networks such as onion routing (see, for example, [142]) to provide

anonymity. The trusted platforms (with individual URLs) through which the

originator despatches its spy agents may not necessarily be mapped to indi-

vidual physical hosts; in this case a platform ID refers to a logical rather than

a topological entity. Multiple hardware devices could share the same logical

identity within a subnet, and a single hardware platform could have multiple

logical identities belonging to different subnets. A logical platform could phys-

ically exist anywhere within a network, and a network could consist of many

logical or physical platforms.

As a result, in general, trusted platforms and spy agents will not be able

to verify the real physical identity of a platform, as this may be encapsulated

within a complex network. Hence, spy agent evaluation results will apply to

virtual hosts; in such a case the detection of a physical malicious entity may

require further network identification procedures, such as ISP enquiries. The

scope of such further procedures is outside the scope of this thesis.

It should be noted that, in order to avoid target hosts sharing informa-

tion, the identifiers of two logical target hosts should preferably correspond

to different physical hosts. If information is shared between hosts, then the

difficulty of correctly evaluating these hosts is increased. [The problem of host

collusion is discussed further in Chapter 7, where a possible solution is given.]

Since it is common practice to have multiple physical hosts and multiple local

identities for redundancy and resilience to single point failure, a spy agent

originator should ideally be aware of this network configuration information.

111

4.7. Other assumptions

Target

platform 1Agent (2)

Agent (3)

Agent (1)

Agent (5)

Trusted

network

Agent (4)
Target

platform 2

Target

platform 3

Target

platform 4

Figure 4.1: Spy agent virtual route.

In such a case such linked identifiers can be treated as a single logical host. Fi-

nally, spy agent models should take into account the possibility of other errors

in assumptions made about the network and the target hosts (see §4.4.4).

Z Henceforth, terms such as nodes, platforms, and hosts (either target or

trusted) will be used to refer to (logical) entities that have distinct public

IDs, and which can be authenticated using public key certificates or other

cryptographic credentials.

4.7.2 Inter-networking assumptions

A spy agent route (as shown in Figure 3.5) may require the agent to be routed

through a complex network before reaching the target platforms. Such a sce-

nario is depicted in Figure 4.1. Provided that secure end-to-end agent com-

munication protocols are used, as discussed in §4.5.1, it seems reasonable to

assume that intermediate routing entities do not affect agent migration.

112

4.8. Conclusions

4.8 Conclusions

This chapter has set out the spy agent system requirements and assumptions

regarding the usage scenarios. These requirements are used in the next chapter

to analyse certain fundamental spy agent protocol architectures, and are used

in Chapter 6 to motivate the design of a spy agent routing model.

113

“The value of a principle is the number of things it will explain.”

Ralph Waldo Emerson

5
Protocol architectures and analysis

principles

Contents
5.1 Synopsis . 115

5.2 Scenario implementation issues 115

5.3 Fundamental spy agent protocol architectures . . 116

5.3.1 Single-agent-single-target scenario 116

5.3.2 Single-agent-two-target scenario 117

5.3.3 Unbalanced routing scenarios 118

5.3.4 Two-agent-two-target scenario 118

5.3.5 Three-agent scenarios 120

5.3.6 Guidance spy agent scenarios 122

5.3.7 Multiple target agent scenarios 124

5.4 Spy agent system parameters 125

5.4.1 Number of spy agents 125

5.4.2 Number of trusted platforms 125

5.4.3 Number of target platforms 126

5.4.4 Order of target platforms 126

5.4.5 Cost and overheads 126

114

5.1. Synopsis

5.5 Conclusions . 127

5.1 Synopsis

This chapter analyses certain fundamental spy agent protocol architectures,

using the spy agent framework given in Chapter 3 and the spy agent system

requirements given in Chapter 4. Aspects of the work described in this chapter

have been published in [101].

The rest of the chapter is organised as follows. Section 5.2 outlines imple-

mentation principles; §5.3 analyses a number of spy agent protocol architecture

implementation scenarios; and §5.4 describes certain architectural parameters

and metrics that can be used to quantify the effectiveness of a specific routing

protocol.

5.2 Scenario implementation issues

As discussed in §4.3.4, a spy agent should be designed to encourage malicious

hosts to misbehave, in order to obtain the most accurate assessment of their

genuine behaviour. Furthermore, the very existence of spy agents seems likely

to mitigate the existence of malicious service providers, since they will be un-

able to distinguish between spy agents and normal e-commerce agents. Hence

it will not be possible for them to know if they can breach security policies

without being detected.

The design requirement that target hosts should be prevented from deter-

mining whether or not they are dealing with a spy agent, may run counter

to the requirement to make precise trustworthiness assessments of the target

platforms. A deterministic assessment could be made by sending a number

115

5.3. Fundamental spy agent protocol architectures

of spy agents to just one target host; however, such a strategy is likely to

raise suspicion in the target host, potentially resulting in atypical behaviour.

On the other hand, it seems reasonable to assume that when processing spy

agents that migrate via a large number of competitor hosts, malicious hosts

are more likely to exhibit characteristic behaviour. However, in the latter case,

assessments of individual hosts become significantly more difficult to achieve.

Clearly an optimal protocol architecture should try to balance the various

conflicting requirements to obtain the best strategy. The optimal strategy will

almost certainly vary depending on a range of factors, including: how many

trusted devices a mobile terminal has, what the computational costs are, what

the objective of the analysis is (e.g. to maintain high quality security profiles or

to perform an ephemeral test), when the results are needed (e.g. immediately

or within a fixed time period), the required accuracy of the results, and how

much the spy agent originator is willing to pay for the results.

5.3 Fundamental spy agent protocol architec-

tures

5.3.1 Single-agent-single-target scenario

In this scenario (shown in Figure 5.1) a single agent migrates to a single

target host before returning to a trusted host. The single-agent-single-target

host scenario is not interesting for our purposes, since it will be clear to the

target host that it can be held accountable for any detectable malicious act

involving the agent or its data.

116

5.3. Fundamental spy agent protocol architectures

Figure 5.1: Testing a target platform with the aid of a trusted platform.

Figure 5.2: Testing two target hosts with a single agent.

5.3.2 Single-agent-two-target scenario

If a single spy agent migrates to two (or more) target hosts (as shown in

Figure 5.2), a malicious host might reasonably decide that it can risk misusing

the agent since it will only be jointly accountable for any misbehaviour with the

other host(s); indeed, it may even be able to ‘frame’ another host. However,

this scenario does not meet the attack identification requirements (§4.4.2),

since the agent originator will be not be able to uniquely identify a misbehaving

host.

117

5.3. Fundamental spy agent protocol architectures

5.3.3 Unbalanced routing scenarios

An ‘unbalanced routing scenario’ is one in which spy agents are designed to

evaluate (deterministically or stochastically) only a subset of the target hosts.

This might result in one host being visited by more spy agents than another;

in such a case the former host might be deemed to be unfairly targeted by spy

agents.

Unbalanced routing scenarios do not meet the host evaluation fairness re-

quirements, as discussed in §4.4.3.

5.3.4 Two-agent-two-target scenario

Results regarding multiple hosts can be obtained by deploying multiple agents.

If two agents each visit two hosts, a minimum of two and a maximum of four

targets can be tested, as discussed below.

1. The two agents could visit the same two platforms. If the order of visit

is of no significance (as discussed in §5.4.4) or if the agents visit the

hosts in the same order, then this scenario is equivalent to two identical

instances of the single-agent-two-target scenario, as discussed in §5.3.2.

2. The two agents could visit four platforms. This scenario is equivalent

to two independent instances of the single-agent-two-host scenario, as

discussed in §5.3.2.

3. The two agents could visit three platforms. One platform is visited

by two agents, whereas the other two platforms are only visited by one

agent. This yields an unbalanced routing scenario, as discussed in §5.3.3.

It is interesting to further analyse case 1), if we assume that the two agents

visit the same two platforms in reverse order. This is shown in Figure 5.3. The

118

5.3. Fundamental spy agent protocol architectures

Figure 5.3: Testing two target platforms with two agents.

following subcases can be distinguished.

a. Suppose that the outcome of the spy agent SP1 is positive and the out-

come of SP2 is negative. If the two target hosts do not behave consis-

tently, then the two target platforms have an equal probability of being

malicious. If, however, the two hosts behave consistently, it follows that

the order of visit influences at least one host’s behaviour (assuming there

is no other significant difference between SP1 and SP2). The degree to

which the order of visit influences the behavioural model depends i) on

each target host’s motivation to misbehave, and ii) on each malicious

host’s level of sophistication. If, for example, we assume that the second

visited target platform has a motive to modify the previously visited

host’s input, and the first visited platform does not attempt to ‘frame’

the second visited platform, then we can infer that the second visited

platform is more likely to misbehave. Hence, in this case target platform

2 is more likely to be malicious. More general versions of this example

have been studied in the context of agent replication (see §2.4.3.3.1).

b. Suppose that both agents yield positive outcomes. This might mean

119

5.3. Fundamental spy agent protocol architectures

that both platforms have misbehaved. However, even if both hosts are

potentially malicious, it might not be the case that both hosts have

actually misbehaved if one target platform is sophisticated enough to

modify its behaviour to disrupt the evaluation analysis.

c. Suppose that there are no signs of an attack in both agent outcomes.

This suggests that both target hosts are well-behaved. However, this

may not be the case if, for example, a potentially malicious target does

not misuse an agent if the agent is due to visit just one other host, and

this host has a good reputation.

5.3.5 Three-agent scenarios

While the single-agent-two-target scenario (see §5.3.2) is the simplest scenario

that could in principle satisfy the spy agent incentivisation requirements (see

§4.3.4) and the routing requirements (see §4.5), this scenario still does not

satisfy the identification requirements (see §4.4.2). This is still the case if an

additional spy agent is introduced (see §5.3.4). However, the situation changes

with the introduction of a third target platform; this defines what we refer to

as the three-agent-three-target scenario. This is the simplest spy agent routing

scenario which can satisfy both the security and identification requirements

for spy agents.

The three-agent-three-target scenario is shown in Figure 5.4. The origina-

tor creates and disseminates three spy agents via trusted platforms within the

trusted network. Each agent migrates to two target platforms before returning

to a host within the trusted network.

We denote the three target platforms by s1, s2 and s3. We suppose that the

first spy agent, SP1 say, migrates to the first and the third target platforms,

120

5.3. Fundamental spy agent protocol architectures

Figure 5.4: Three-agent-three-target scenario.

s1 and s3, before returning to the trusted network; SP2 migrates to s2 and

s1; and SP3 migrates to s3 and s2.

Target platform s1 is visited by SP1 and SP2, and is thus able to retrieve

the following pair of migration paths: (s1, s3), (s2, s1). Assuming that target

hosts do not collude, s1 cannot observe any correlation between the routing

behaviour of SP1 and SP2 since it is the only common element in the two

routes. As a result of the symmetry of this route design, similar assertions can

be made for s2 and s3.

Assuming that the target platforms demonstrate characteristic behaviour

and do not modify their behaviour to avoid detection (e.g. as might be the case

if they suspect the purpose of one or more of the spy agents), then this routing

scenario enables us to make the following deductions. Suppose that SP1 and

SP2 yield a positive result, but SP3 does not. Then, since SP1 visited s1

and s3 and SP2 visited s2 and s1, it can be deduced that s1 is more likely

to have misbehaved. In a scenario involving greater numbers of agents and

hosts, it is envisaged that more detailed and fine-grained conclusions can be

drawn by examining all the spy agents after they have completed migration,

as long as it is possible to predict to what degree malicious target platforms

121

5.3. Fundamental spy agent protocol architectures

Figure 5.5: Three-agent-three-target scenario with guidance.

might modify their behaviour to avoid detection.

5.3.6 Guidance spy agent scenarios

The three-agent-three-target scenario (as discussed in §5.3.5) can be extended

by introducing the notion of ‘guidance spy agents’. In this scenario the orig-

inator uses three trusted platforms to support a distributed routing strategy,

as well as to maintain anonymity. The originator instantiates six spy agents,

separated into two matching groups of three (as shown in Figure 5.5):

• The first three spy agents start their migration from a single trusted

platform and then each migrate to two target platforms in turn. The

spy agents do not contain any logic dictating where they should migrate

after visiting the second target platform.

• The three spy agents in the second group, called guidance spy agents,

are in one-to-one correspondence with the spies in the first group, and

contain migration information for the corresponding agents of the first

group. They each visit the platform where their corresponding spy agent

is waiting to be instructed where to go next. This technique enables the

anonymity of the spy agents to be further enhanced.

122

5.3. Fundamental spy agent protocol architectures

This scenario is built on the assumption that two agents executing in a

remote host can inter-communicate. It is also assumed that such communica-

tions are only allowed between two mobile agents that have been instructed

in advance to do so. Hence, agent inter-communication will only be allowed

between a spy agent and its respective guidance spy agent. Mobile agents

could employ cryptographic techniques to thwart any breach of this require-

ment. For example standard cryptographic protocols can be used for mutual

authentication and integrity (see for example, Boyd and Mathuria [20]).

Let s1, s2, s3 and t1, t2, t3 denote the target platforms and trusted plat-

forms, respectively. The first spy agent, SP1, (see Figure 5.5) leaves the first

trusted platform, t1, visits the first target platform, s1, migrates to s3, and

waits for the arrival of the first guidance spy agent, SP1′, which is sent from

t2. Analogously, SP2 starts from t2 and migrates to s2, then s1, and waits

for further instructions from SP2′, which is sent from t3. In a similar way,

SP3 migrates via s3 to s2 and waits for guidance from SP3′. Finally, SP1,

SP2 and SP3 are instructed by their guidance agents to return to t2, t3 and

t1 respectively.

Target platform s1 is visited by three agents: SP1, SP2 and SP2′. Hence,

s1 is able to retrieve the following information regarding the migration paths

for SP1, SP2 and SP2′.

• SP1 : (t1, s1, s3)

• SP2 : (t2, s2, s1, t3)

• SP2′ : (t3, s1, t3)

As in the three-agent-three-target scenario, s1 cannot observe any corre-

lation between the routing behaviour of SP1 and SP2, since s1 is the only

123

5.3. Fundamental spy agent protocol architectures

common element in the two routes. It can observe that the routes of SP2

and SP2′ share t3, but this does not look suspicious since SP2 is expecting

guidance from SP2′. A similar argument applies to s2 and s3. Hence this

routing design satisfies the basic spying requirements.

An obvious potential weakness of this routing design is the fact that the

target platforms could learn about the spying scenario if they exchange infor-

mation. However, this weakness can be avoided by employing more trusted

platforms and designing the routes for each agent in such a way that the risk

of platform collusion revealing spy agent behaviour is minimised.

5.3.7 Multiple target agent scenarios

As the number of spy agents and target hosts increases, the analysis of the

results becomes increasingly difficult. This gives rise to the need for a method-

ology for designing sets of agent routes and for corresponding evaluation algo-

rithms. A formal approach to this problem is presented in §6.3, and solutions

are given in the chapters that follow.

We end this section by discussing a scenario in which two agents each visit

three target hosts. In such a case a minimum of three and a maximum of six

targets can be tested, as follows.

• The two three-target agents could visit the same three platforms. If the

two agents visit the three hosts in a different order (i.e. there is no agent

mirroring) and the order of migration has an effect on the outcome, then

this is an unbalanced routing scenario, as agents do not visit hosts in all

possible orders.

• The case where two agents visit six platforms is equivalent to two un-

correlated three-target agent scenarios.

124

5.4. Spy agent system parameters

• All remaining cases give rise to unbalanced routing scenarios.

5.4 Spy agent system parameters

The degree to which the spy agent system requirements discussed in Chap-

ter 4 are met depends on a range of variables. In this section we analyse the

parameters that determine critical properties of spy agent systems.

5.4.1 Number of spy agents

If used rationally, the larger the number of spy agents, the greater the amount

of evidence about host behaviour is generated. On the other hand, a large

number of spy agents with common elements visiting common target hosts

may trigger suspicion amongst these hosts, and may therefore compromise the

accuracy or credibility of the observed spy agent outcomes (see §3.4.3.1).

Thus selecting the number of spy agents is a trade off between maximising

the generation of information and minimising possible host suspicion. Ideally,

sufficiently many agents should be deployed to recover the desired evaluation

information whilst minimising the exposure of the hosts to spy agent informa-

tion.

5.4.2 Number of trusted platforms

As discussed above, increasing the number of trusted platforms used by a

spy agent system helps to increase spy agent anonymity. However, there is

a potential cost associated with every additional trusted platform used, and

thus it is desirable if trusted networks can be re-used by spy agents, in a way

that minimises their exposure to target hosts. In practice, however, it may be

easier to assign one trusted network to every spy agent.

125

5.4. Spy agent system parameters

5.4.3 Number of target platforms

Increasing the number of hosts a spy agent visits may provide a greater in-

centive for a malicious host to misbehave, as discussed in §3.4.3.2. However,

this might also make the evaluation analysis harder. Thus a long migration

path is likely to improve the accuracy of evaluation at the cost of increasing

the level of uncertainty about individual host behaviour. Ideally we need to

achieve a route design which has adequately long migration paths and which

can at the same time yield useful evaluation results.

5.4.4 Order of target platforms

The order in which spy agents visit target platforms may or may not be signifi-

cant, depending on the nature of the evaluation. Examples in which the order

might influence a spy agent assessment were discussed in §5.3.4 and §5.3.7.

One application where the order of host visits may be significant is e-ticketing

(see §2.4.3.3.1.2).

5.4.5 Cost and overheads

Cost is an essential factor in any kind of security evaluation. The cost of

implementing a security mechanism should not be greater than the cost of the

potential damage prevented by this mechanism. The cost of deployment of

a spy agent scenario depends on the amount of resources used. Apart from

the network and computational resources, spy agents require an infrastructure

offering a number of trust services (see §4.5). The cost of such an infrastructure

could be significant, given that the agent credentials and IDs should only be

used once.

126

5.5. Conclusions

5.5 Conclusions

This chapter has introduced a number of fundamental spy agent routing ar-

chitectures for the spy agent framework introduced in the previous chapter,

and has analysed issues arising in their use. This analysis forms the basis for

the adversarial modelling, and the spy agent routing problem formulation and

evaluation given in the next chapter.

127

“ Information is not knowledge.”

Albert Einstein

6
Spy agent routing designs using

non-adaptive group testing

Contents
6.1 Synopsis . 129

6.2 Introduction to the routing problem 129

6.3 Problem formulation 130

6.3.1 Assumptions and objectives 130

6.3.2 Group testing scenario hypotheses 132

6.3.3 Definitions and fundamental results 134

6.4 A spying classifier design 137

6.4.1 Properties of classifiers 137

6.4.2 A simple block design construction 140

6.4.3 Further examples 141

6.5 Conclusions . 143

128

6.1. Synopsis

6.1 Synopsis

This chapter introduces a methodology for constructing route designs for spy

agents. The need for this methodology was discussed in §5.3.7.

In the design problem, a network of remote agent platforms are tested by

roaming spy agents in order to identify those that are malicious, where the

results are derived from observations of the outcome of each agent. As we

discuss below, given a set of spy agent requirements (see Chapter 4), the task

of choosing the sets of platforms which each spy agent visits can be abstracted

as a GT problem (see §2.6). In particular, the applicability of NGT (see §2.6.3)

is considered in detail, and a simple combinatorial construction for a set of

agent routes is presented which combines known results from the prior art.

The rest of the chapter is organised as follows. Section 6.2 introduces the

routing problem, §6.3 gives a mathematical formulation, and §6.4 presents a

simple scalable NGT construction for sets of spy agent routes.

Most of the work described in this chapter has been published in [100].

6.2 Introduction to the routing problem

As discussed in §1.3, the main problem with remote security assessments (us-

ing roaming agents) is that a corrupted remote host could detect incoming

security agents and selectively behave well in order to escape detection. The

same host could behave inappropriately when it has the opportunity to cheat

without being detected. Careful design of route sets for spy agents can help to

address this issue, and we consider here the use of combinatorial GT methods

(introduced in §2.6) to develop good route sets.

129

6.3. Problem formulation

That is, the main focus of this chapter is the choice of sets of routes for

spy agents which efficiently identify which remote hosts misbehave. For the

purposes of the methodology presented in this chapter, a route is defined as

an (unordered) set of hosts visited by an agent. This contrasts with the more

usual definition of route, in which the order of destinations is of significance

(see §5.4.4).

As discussed in previous chapters (and, in particular, in §5.3.1), a simple

solution to this routing problem would be to send each spy agent to a single

target host. The evaluation process for such a design is trivial, since a positive

result for a spy agent implies a misbehaving host. However, improved solutions

are sought for the following reasons:

• Security : Larger test groups yield more credible results. As discussed

in §3.4.3.2, the longer the migrating route, the less likely it is that a

malign host will suspect a spying scenario, and the greater the chance

that it can cheat without being detected. As a result, it is more likely

to misbehave, revealing its true character.

• Economy : Less agents and less time are needed if hosts are tested in

groups instead of one by one. This is of particular importance when

routinely performing large scale tests.

6.3 Problem formulation

6.3.1 Assumptions and objectives

We make the following assumptions when designing sets of agent routes.

• The order in which a spy agent visits a subset of target platforms is of

no significance. Thus, the subset of target hosts to be visited defines a

130

6.3. Problem formulation

route.

• A target platform is aware of the routes of all the spy agents that visit

it.

• Potentially malicious target hosts do not share any information about

visiting agents, and will not collaborate to attempt to avoid detection.

• A compromised spy agent will always provide information, or perform an

act, which will enable the sender of the agent to detect that it has visited

a malicious platform. That is, a spy agent visiting a malicious host will

always yield a positive outcome. (This is a rather strong assumption,

which we relax in Chapter 7.)

These assumptions enable us to consider spy agent routes as unordered

sets of hosts that spy agents visit, where each set returns ‘positive’ when it

contains at least one malicious host, and ‘negative’ otherwise. Clearly the

problem of efficiently identifying the malicious (defective) hosts is identical to

the classic GT problem (see §2.6.1).

Optimal sets of spy agent routes can be designed using ‘efficiency criteria’,

‘security criteria’ or a combination of both. In terms of efficiency, the following

criteria are adapted from the GT literature (see, for example, [128]):

(Eff-1) A design is deemed optimal if it can be used to test the maximum

possible number of target hosts using a given number of spy agents.

(Eff-2) Alternatively, we can define a design to be optimal if it can reliably

detect the maximum number of malicious hosts from amongst a given

number of target hosts.

131

6.3. Problem formulation

From the spy agent dissemblance requirements listed in §4.3.5, and the

routing principles for path correlation (see §3.4.3.1) and path length (see

§3.4.3.2), the following security criteria can be derived.

(Sec-1) The number of hosts that each spy agent visits should be maximised.

The rationale for this is that the more target hosts that a spy agent

visits, the greater is the likelihood that the target host is unable to

distinguish it from a ‘regular’ agent and, hence, the more reliable the

tests are.

(Sec-2) The number of hosts in common between any pair of spy agent routes

should be minimised. This follows from the assumption that target

hosts will be less likely to be able to distinguish spy agents from ‘reg-

ular’ agents if spy agents appear to be as different from one another

as possible. Ideally, any two spy agents should visit no more than one

common target host.

From the above it is clear that the spy agent route optimisation problem

is a version of the classic GT problem, modified by the inclusion of some

additional security optimisation criteria.

6.3.2 Group testing scenario hypotheses

As described in §2.6, there are many different GT algorithms, including se-

quential and non-adaptive schemes; the choice of algorithm depends on the

application. In this chapter the following assumptions regarding the usage

scenario are made.

• Completing a single test may take a long time.

132

6.3. Problem formulation

• A test outcome that is initially negative may, after some unidentified

time, change to positive. In such cases, adaptive tests may perform

poorly from both an efficiency and a security point of view.

• The assumption that malicious hosts always process agents in a de-

tectably malicious way is more likely to be valid within a longer time

frame.

These hypotheses may characterise, for example, a scenario where each

spy agent contains a unique decoy email address and the test for target hosts

is whether there is a violation of PII privacy (see §2.5.1); this application is

discussed further in Chapter 10. In this case, the impact of the misuse of an

email address could be realised at any time after the spy agent carrying this

address has commenced its migration.

It is clear that in scenarios such as the one described above, NGT designs

are preferable. There is a rich literature on such schemes and their appli-

cations [46] (see also §2.6.5.4). Constructing optimal examples of the various

classes of design is an ongoing research topic, and comparing different schemes

is a non-trivial subject [128].

It is important to note that NGT designs are usually deemed to be ‘good’ if

they involve a relatively small number of tests. Such designs may also possess

relatively long routes, in which case they are, in addition, ‘good’ spy agent

route designs (by the above criteria). For example, Balding et al. [8] have

shown that maximum sized packings correspond to NGT designs containing a

very small number of tests.

In this chapter we propose the use of a rather simple NGT construction

based on well-known combinatorial block designs. We first give some funda-

mental notation and describe certain properties of such designs.

133

6.3. Problem formulation

6.3.3 Definitions and fundamental results

6.3.3.1 Route design and incidence matrix

We define a special class of design to represent the incidence of hosts (items)

with network routes (tests) as follows. Let S be the set of n items (hosts), i.e.

|S| = n. We define a spy agent route design, H, to be a set system H = (S,R),

where R (the set of routes) is a set of subsets of S. The route design is said

to be uniform if all routes contain the same number of hosts, i.e. |Ri| = |Rj|

for all Ri, Rj ∈ R. The cardinality of R, |R|, is simply the total number of

spy agents (i.e. one spy agent is assigned to each route).

A route design may be represented by an incidence matrix M = (mij),

whose rows are labelled by routes (tests) and columns by hosts (items), and

where mij = 1 if route Ri contains host j, and mij = 0 otherwise. The ith

row is the incidence vector, ri, of the subset {j|mij = 1} (representing route

Ri), and the jth column is the incidence vector, cj , of the subset {i|mij = 1}

(representing the jth host).

6.3.3.2 Combined set and binary vector operations

Standard set theory notation can be obtained from Jech [90]. Also, elemen-

tary binary vector notation is given in §2.6.5.2. We extend this notation by

combining set and binary vector notation in the following way.

We identify row and column vectors (ri and cj) with the routes (Ri) and

hosts, so that we refer to a route ri and a host cj . We also abuse our notation

further and apply set operations to these binary vectors. For example, the

union (intersection) of two (or more) incidence vectors corresponds to applying

the bit-wise boolean OR (AND) operation to these vectors. In the same way,

we say that a column ci contains another column cs if the column cs contains

134

6.3. Problem formulation

no row that is not contained in ci, or, equivalently, if ci∪cs = ci. For any vector

v we use v[i] to refer to the ith element of v. For example, ri[j] = cj[i] = mij .

Finally, the size of an incidence vector refers to its Hamming weight, i.e. the

cardinality of the corresponding subset, i.e. |ri| = |Ri|.

6.3.3.3 Representing defective items

Given a set S of n hosts, the set of defective items can be represented as a

binary vector δ = (δ1, δ2, . . . , δn), where δj = 1 if host cj is defective, and

δj = 0 otherwise. The outcome of all tests can also be represented by a vector

a = (a1, a2, . . . , a|R|), known in this case as the outcome vector, where ai = 1 if

route ri contains a defective host and ai = 0 otherwise, i.e. ai = {i : |ri ∩ δ| >

0}. The union of all columns corresponding to defective hosts is thus equal to

the outcome vector. This follows from the fourth assumption given in §6.3.1,

i.e. that if a host is defective then all routes containing it will yield a positive

outcome.

Example 6.1. Consider the three-agent scenario discussed in §5.3.5. In this

case S = {s1, s2, s3} and the set of spy agent routes consists of all 2-subsets of

hosts. There are thus three spy agent routes: r1 = (1, 1, 0), r2 = (1, 0, 1) and

r3 = (0, 1, 1). The incidence matrix is given in Table 6.1. Suppose that s3 is

the only defective host, i.e. δ = (0, 0, 1). Clearly, δ is only contained in r2 and

r3. Hence, the outcome vector is a = (0, 1, 1). In this simple example, given

the outcome vector of the route design it is trivial to identify the defective

host. However, this route design cannot identify the defectives if there is more

that one defective host. In such a case we will always have a = (1, 1, 1) and

we cannot determine whether {s1, s2}, {s1, s3}, {s2, s3} or {s1, s2, s3} is the

set of defectives.

135

6.3. Problem formulation

Table 6.1: Simple three-agent scenario incidence matrix.

c1 c2 c3

r1 1 1 0
r2 1 0 1
r3 0 1 1

6.3.3.4 Classifier route designs

We define two classes of spy agent route designs which are useful for host

evaluation.

Definition 6.2. Suppose that there are at most d malicious nodes in a network

of n nodes (n ≥ d). If the outcome vector, a, of the incidence matrix, M , of

a route design, H, can be used to successfully identify all the malicious and

honest nodes in the network, regardless of how they are distributed, then H is

said to be a d-classifier.

Definition 6.3. Suppose that there are exactly d malicious nodes in a network

of n nodes (n ≥ d). If the outcome vector, a, of the incidence matrix, M , of

a route design, H, can be used to successfully identify all the malicious and

honest nodes in the network, regardless of how they are distributed, then H is

said to be a d-classifier.

Lemma 6.4. If route design H is a d-classifier then H is a d′-classifier for

all 1 ≤ d′ ≤ d.

Proof. This follows immediately from Definitions 6.2 and 6.3.

In group testing terminology, a d-classifier is a (d, n) NGT design, and a

d-classifier is a (d, n) NGT design (see §2.6.1 or [46]).

Theorem 6.5. (Hwang et al. [94]) Let S be a set of n items containing

a set D of defectives. We refer to the (d, n) group testing problem if D can

136

6.4. A spying classifier design

be any d-subset of S, and the (d, n) problem if D can be any k-subset of S,

0 ≤ k ≤ d. Let q be a group testing procedure that identifies D, and let Mq be

the maximum number of tests in q. Then, for each procedure q for the (d, n)

problem, there exists a procedure q′ for the (d, n) problem such that

Mq + 1 ≥ Mq′ . (6.3.1)

From the above theorem we deduce that if a design is a d-classifier, then

there exists another design that includes at most one further test and is a

d-classifier. On this basis, in some cases below we restrict our attention to

d-classifiers or d-classifiers.

The problem of designing an optimal spy agent route design (as defined in

§6.3.1) can be summarised as follows:

Problem 6.6. For any given d and n, find a d-classifier route design H satis-

fying one or more of the following criteria (where the choice of criteria depends

on the scenario):

1. For given other parameters, maximize mini |Ri| (derived from (Sec-1)).

2. |Ri ∩ Rj | ≤ 1 for every pair of distinct routes Ri, Rj ∈ R (derived from

(Sec-2)).

3. For given other parameters, maximize n (derived from (Eff-1)).

4. For given other parameters, maximize d (derived from (Eff-2)).

6.4 A spying classifier design

6.4.1 Properties of classifiers

In order to show how to construct a d-classifier or a d-classifier, we first give

some key properties of the incidence matrix, M , of a route design, H. The

137

6.4. A spying classifier design

results in this section are adapted from §2.6.5.3, and are taken from Kautz

and Singleton [105] (who use a somewhat different terminology).

Definition 6.7. An incidence matrix M is said to be d-separable if the unions

of the subsets of exactly d columns are all distinct.

Definition 6.8. An incidence matrix M is said to be d-separable if the unions

of the subsets of at most d columns are all distinct.

Lemma 6.9. If the incidence matrix M is d-separable then M is d′-separable

for all 1 ≤ d′ ≤ d.

Theorem 6.10. A route design H is a d-classifier if and only if its incidence

matrix M is d-separable.

Theorem 6.11. A route design H is a d-classifier if and only if its incidence

matrix M is d-separable.

Example 6.12. Following from the analysis in Example 6.1, the 3×3 incidence

matrix given in Table 6.1 is 1-separable and a 1-classifier, but is neither 2-

separable nor a 2-classifier. Also, this incidence matrix is an optimal 1-classifier

for the S(1, 3) problem, i.e. the problem of identifying at most one defective

amongst a set of three hosts, in the sense that it maximises the route length.

One problem with the use of d-separable designs (i.e. route designs with a

d-separable incidence matrix) is that no efficient general decoding algorithm is

known for such designs, where a decoding algorithm takes as input an outcome

vector and gives as output the unique set of malicious hosts (of size at most d)

which could have given rise to this outcome. The trivial decoding algorithm

(involving considering every possible subset of defective hosts) has complexity

exponential in n. As a result we consider a slightly more restrictive class of

designs for which we have a simple and efficient decoding algorithm.

138

6.4. A spying classifier design

Definition 6.13. An incidence matrix M is said to be d-disjunct if the union

of any set of d columns does not contain any other column as a subset.

Lemma 6.14. An incidence matrix M is d-disjunct if, and only if, given any

column cj and any set of d other columns, there is at least one row in which

cj has a one and all the d columns have a zero.

Lemma 6.15. If an incidence matrix M is d-disjunct then M is d′-disjunct

and d′-separable for all d′ ≤ d.

Lemma 6.16. If an incidence matrix M is d-separable then M is d′-disjunct

for all d′ < d.

Theorem 6.17. The incidence matrix M of a route design is d-disjunct if

and only if, for any distribution of at most d malicious hosts, the union of all

negative rows of M (i.e. rows that yield a negative outcome) contains all the

negative columns of M (i.e. columns that correspond to non-defective hosts).

Theorem 6.17 implies that the decoding algorithm of a d-disjunct design

has complexity linear in n, since items (columns) not appearing in negative

rows are defective (positive). In other words, in a d-disjunct design, if a column

vector is contained in the outcome vector, then this column vector corresponds

to a defective host.

Corollary 6.18. The route design of a d-disjunct matrix is a d-classifier.

Given hosts cj and the route design outcome a, the binary vector δ of all

malicious hosts, |δ| ≤ d, is determined by the following decoding algorithm:

δ = {j : cj ⊆ a} .

139

6.4. A spying classifier design

6.4.2 A simple block design construction

There are numerous constructions for d-disjunct matrices [46, 190]. In this

chapter we consider constructions based on block designs (see §2.6.5.1). We

focus specifically on 2-designs (see Definition 2.12) for the following reasons.

• If we use a block design as a route design, taking blocks as hosts and

elements of V as routes, then the security requirement |Ri ∩Rj| ≤ 1 (in

Problem 6.6) is automatically satisfied by a 2-(v, k, 1) design.

• It can be shown [9, 54] that for a small number of defectives, more pre-

cisely if d ≤ 2, there are cases where 2-designs are optimal pooling designs

in that they identify the defectives using a minimum number of tests.

Such optimal pooling designs are also of interest as route designs since

they maximise the number of hosts contained in each test.

• There are many known construction methods for 2-designs (see, for ex-

ample, [15, 35]).

Theorem 6.19. An incidence matrix of a t-(v, k, 1) design, where the blocks

correspond to columns and the elements to rows, is (q − 1)-disjunct, where:

q = ⌈
k

t− 1
⌉ . (6.4.1)

Proof. By definition of a t-design and since λ = 1, two columns intersect in at

most t − 1 rows. The weight of each column is |B| = k. Hence, it takes the

union of at least q = ⌈ k
t−1

⌉ columns to cover another column [105, Theorem

6]. The result follows.

From Theorem 6.19 it follows immediately that a 2-(v, k, 1) design is a

d-disjunct route design, where:

d = k − 1 . (6.4.2)

140

6.4. A spying classifier design

This gives a simple means of constructing sets of visited hosts for spy

agents. If we assume the use of a 2-(v, k, 1) design, then the optimisation

problem given in Problem 6.6 becomes rather simpler. This is because there

is much less freedom to choose the parameters of the route design (essentially

there are only two ‘degrees of freedom’). Note, however, that the reduced

problem may exclude some optimal solutions.

Problem 6.20. Find a 2-(v, k, 1) design in the following scenarios:

1. (Security): Given the number of target hosts n [= b], find a design that

maximises the cardinality of each route r.

2. (Efficiency): Given the number of spy agents v, find the maximum num-

ber of target hosts b that can be tested. This is achieved when k is min-

imised, since, from (2.6.1a) and (2.6.1b), b = v(v−1)
k(k−1)

.

In Problem 6.20 the choice of a minimum d [= k − 1], gives a 2-design

which is optimal both from a security and an efficiency point of view. This

follows since a larger number of blocks (i.e. target platforms) implies a larger

number of blocks containing an element (i.e. larger route cardinality). How-

ever, the choice of d is critical. An underestimate for the maximum number of

malicious hosts could mean that malicious hosts will not be identified, whereas

an overestimate for the maximum number of malicious hosts will reduce the

efficiency and security of the route design.

6.4.3 Further examples

The finite projective plane of order two is known as the Fano plane, and is a

2-design with v = b = 7, k = r = 3 and λ = 1. The corresponding spy agent

system thus has seven hosts, seven tests, three hosts per test (and three tests

141

6.4. A spying classifier design

Figure 6.1: Fano plane.

Table 6.2: 2-(7, 3, 1) incidence matrix.

B1 B2 B3 B4 B5 B6 B7

v1 1 1 1 0 0 0 0
v2 1 0 0 1 1 0 0
v3 1 0 0 0 0 1 1
v4 0 1 0 1 0 1 0
v5 0 1 0 0 1 0 1
v6 0 0 1 1 0 0 1
v7 0 0 1 0 1 1 0

per host). The Fano plane is shown diagrammatically in Figure 6.1. Note that

each point has three lines on it and each line contains three points.

An incidence matrix for the Fano Plane is given in Table 6.2. This de-

sign has the following seven blocks: (V,B) : B = {B1, B2, B3, B4, B5, B6, B7},

B1 = {v1, v2, v3}, B2 = {v1, v4, v5}, B3 = {v1, v6, v7}, B4 = {v2, v4, v6},

B5 = {v2, v5, v7}, B6 = {v3, v4, v7} and B7 = {v3, v5, v6}.

It is trivial to verify that this matrix is 2-disjunct but not 3-disjunct (since

d = k− 1 = 2). Hence, this design will successfully identify two defectives but

not three.

Example 6.21. Suppose that the first two hosts in the matrix in Table 6.2 are

malicious. The outcome vector of this matrix is a = {1, 1, 1, 1, 1, 0, 0}. From

Corollary 6.18, the defectives (i.e. the hosts not appearing in all the negative

tests, i.e. r6 and r7) are c1 and c2. However, if the first three hosts are defective,

then the outcome vector is a = {1, 1, 1, 1, 1, 1, 1}. The decoding algorithm

142

6.5. Conclusions

given in Corollary 6.18 suggests that all hosts are defective, contradicting the

implicit assumption that there are most two defectives. It is thus impossible

to decide which hosts are defective. The problem of dealing with inconsistent

results is further discussed in Chapter 9.

The process of finding suitable classifier designs may be further simplified

by choosing a minimum spy agent route length. This is shown in the example

that follows.

Example 6.22. Suppose that we require each spy route to contain at least

five hosts and d = 2. Hence:

r ≥ 5
(2.6.1b)
=⇒

(v − 1)

k − 1
≥ 5 ⇒ v ≥ 5k − 4

(6.4.2)
=⇒ v ≥ 11

One set of 2-design parameters satisfying this inequality has (v, b, r, k, λ) =

(15, 35, 7, 3, 1). There are known to be at least 80 pair-wise nonisomorphic 2-

designs with these parameters [35], which could, for example, be utilised for

multiple re-evaluations of the same set of hosts.

6.5 Conclusions

Remote security evaluations are inherently unreliable. Malicious hosts may se-

lectively misbehave depending on whether or not they believe they are being

evaluated. In this chapter we have defined a way of identifying the malicious

hosts in a hostile network, while maximising the chance that they will misbe-

have. This has been achieved by applying combinatorial group testing theory

to the spy agent paradigm. A simple class of block designs is proposed for use

in constructing spy agent routes with the desired properties.

The mathematical model of agent route design that we have presented

gives rise to further challenges, including the following.

143

6.5. Conclusions

• How might the rather strong assumptions made in §6.3.1 be relaxed?

More specifically:

a. What if malicious nodes behave badly in a probabilistic fashion,

e.g. if they only misbehave when the incentive for them to do so is

maximised?

b. What if the spy agent route design is not optimal?

c. Can the requirements for maximum route size and minimum route

intersection size be justified in a practical scenario?

d. What other optimality criteria could usefully be considered?

• What practical scenarios can be devised, and what aspects of host trust-

worthiness might be evaluated?

• How can spy agents be constructed, what data could they carry, and

what operations might they run remotely, e.g. in an e-commerce sce-

nario?

• How could spy agent network scenarios be compromised by colluding

malicious hosts, and how might this be addressed?

Some of these issues are addressed in other chapters of this thesis, or in

the prior art. More specifically, we make the following observations.

• Inconsistent behaviour could be addressed by using other GT designs

such as error-tolerant GT designs (see §2.6.3). This scenario is not stud-

ied further in this thesis as the adaptation of known results (see, for

example, Balding and Torney [9]) is straightforward.

• A different class of combinatorial design that identifies malicious hosts

exhibiting other types of malicious behaviour, including collusion, is

studied in Chapter 7.

144

6.5. Conclusions

• Chapter 8 describes alternative criteria and spy agent schemes using

sequential GT.

• Chapter 9 discusses a method that can be used to evaluate the credibility

of spy agent system results.

• Chapter 10 discusses spy agent applications and scenarios in which the

requirements and assumptions specified earlier in the thesis are justified.

These issues are also possible topics for future research. This is further

discussed in Chapter 11.

145

“Good composition is like a suspension bridge—each line adds

strength and takes none away”

Robert Henri

7
Complex spy agent group testing

Contents
7.1 Synopsis . 147

7.2 Problem formulation 147

7.2.1 Behaviour model for malicious hosts 147

7.2.2 Notation . 151

7.3 Group testing for complexes (GTC) 154

7.3.1 The notion of complex defective 154

7.3.2 Property of GTC designs 157

7.3.3 Some GTC constructions 166

7.4 Identifying individual malicious hosts 167

7.4.1 Problem representation 167

7.4.2 Host classification 172

7.5 A rank-two Type classification algorithm 173

7.5.1 Standard classification scenario 173

7.5.2 Classification scenario with design restrictions . . . 174

7.5.3 The algorithm . 176

7.5.4 Example implementation 180

7.6 Conclusions . 183

146

7.1. Synopsis

7.1 Synopsis

This chapter extends the route design methodology given in Chapter 6. The

main goal is to enhance the properties of the set of spy agent routes to make the

spy agent system resilient to malicious hosts that collude with other malicious

hosts, or use information gained from observing the agents before deciding

whether or not to misbehave. The new model gives rise to a novel group

testing problem in which some defectives yield a positive test outcome only

when other defectives are included in the test. We analyse this problem and

give a range of new results, including an efficient means of analysing the results

obtained when using a particular class of spy agent route design.

The remainder of this chapter is organised as follows. The problem of group

testing for hosts that are collectively malicious is formulated in §7.2. Aspects

of the theory of combinatorial ‘group testing for complexes’ are discussed and

extended in §7.3. Building on the previous discussions, in §7.4 the problem of

spy agent testing of collectively malicious hosts is linked to the group testing

for complexes problem. A rank-2 host classification algorithm is proposed and

analysed in §7.5, and conclusions are drawn in §7.6.

Aspects of the work described in this chapter have been published in [99].

7.2 Problem formulation

7.2.1 Behaviour model for malicious hosts

In Chapter 6 it was assumed that an untrustworthy spy agent host will always

perform an act that will enable the sender of the agent to detect that it has

visited a malicious platform. That is, we have assumed that a spy agent that

visits a malicious host will always yield a positive outcome. In this chapter we

147

7.2. Problem formulation

relax this rather strong requirement. That is, we now suppose that a malicious

host may not always exhibit characteristic (malicious) behaviour, even if the

host does not necessarily know that a visiting agent is a spy agent (i.e. even

if the spy agent security requirements are met). As previously, in this chapter

we treat a spy agent route as the (unordered) set of hosts visited by the agent.

In general, malicious host behaviour can be either stochastic (where a

malicious host behaves randomly) or deterministic. In this chapter we focus on

a particular type of deterministic malicious behaviour. (Results from the prior

art applying to route designs that tolerate errors due to stochastic behaviour

were briefly discussed in §6.5.)

More specifically, in this chapter we extend the theory of Chapter 6 by

considering the case where a malicious host will only abuse a visiting spy agent

if it either colludes with, or at least recognises, one or more other malicious

hosts within the spy agent route. The idea is that a (cautious) malicious

host might employ such a selective misbehaviour model in order to escape

detection by a spy agent system (this issue was discussed in general in §1.3).

The following two types of selective malicious host behaviour are considered

here.

• Model 1. An ‘individually malicious’ host will violate all visited spy

agents (in a detectable manner) provided that the lengths of the agent

routes are above a certain threshold. (Ideally, route lengths should be

maximised, as discussed in §6.3.1—see also the first item listed in Prob-

lem 6.6). We refer to such malicious hosts as Type-1 hosts.

• Model 2. A ‘collectively malicious’ host will violate a spy agent if

and only if (a) the agent route length is above a certain threshold (in

subsequent discussions we will assume that this threshold is fixed across

148

7.2. Problem formulation

the host population), and (b) there are at least e−1, (e > 1), other hosts

in the agent route that are known by the host to be malicious. Otherwise,

the collectively malicious host will not violate the agent data. We refer

to such malicious hosts as Type-e hosts.

The discussion in the previous chapter applies to the case where all hosts

will behave according to the first model given above. In this chapter we

generalise our discussion to also cover hosts of the second type.

The second behaviour model fits a scenario in which malicious hosts collude

to manipulate visiting agents. However, this model is also applicable when

hosts decide whether or not to misbehave depending on the information they

hold about the behaviour of other hosts in a spy agent route. The rationale

for a malicious host behaving in such a manner is that a malicious host may

plausibly be able to deny abuse of a spy agent if the agent in question also

visits one or more other hosts known to be malicious. The route designs

discussed in Chapter 6 could fail to reliably identify malicious hosts exhibiting

such selective malicious behaviour. In this chapter we consider how to identity

malicious hosts behaving according to this more complex model.

Of course, the second host misbehaviour model could apply in other sce-

narios. For example, it might apply when spy agents are used to analyse trun-

cation attacks involving colluding hosts (see §2.4.2.1.3). Such applications are

further discussed in Chapter 10.

It is also important to note that, in general, the information that malicious

hosts hold about other hosts may not be correct; i.e. the fact that a host

believes another host to be malicious (or not) does not necessarily mean that

the other host is actually malicious (or not). However, in this chapter we

make the simplifying assumption that a Type-e (e > 1) host will always know

149

7.2. Problem formulation

the identities of (and may potentially collude with) other malicious hosts. For

example, malicious hosts might use spy agent technology to deploy a set of

malicious agents that aim to help identify peer malicious hosts.

Unlike in Problem 6.6, we do not assume here that the number of hosts

common to two spy agent routes will affect malicious host behaviour. This

is likely to be the case when many agents (both spy agents and ‘normal’ e-

commence agents) visit a host over a short period of time. In this case we

consider that an overlap between the route sets of visiting agents is likely to

be a typical, ‘non-suspicious’ event.

We formalise the new model in the following way.

Definition 7.1. Suppose e ≥ 1. When processing a mobile agent whose route

contains d ≥ 0 malicious hosts, a Type-e (malicious) host will behave as

follows:

• if d ≥ e then the host will handle the agent in such a way that it returns

a positive result; and

• if d < e then the host will handle the agent in such a way that a negative

result will ensue unless another host abuses the agent.

By convention, we say that a non-malicious host is a Type-0 host.

In summary, we assume that each deployment of a spy agent will yield a

result of:

• ‘positive’ if, for some e ≥ 1, its route contains at least one Type-e host

and at least e− 1 other malicious hosts, and

• ‘negative’ in all other cases.

150

7.2. Problem formulation

The problem of efficiently identifying Type-e malicious hosts in such a

scenario is a generalisation of the classic GT problem, which reduces to the

classic problem in the case e = 1.

7.2.2 Notation

Using the notation introduced in §6.3.3.1, we treat a spy agent route design

as an incidence structure H = (S,R), where S is the set of n target hosts and

R is a set of routes, i.e. subsets of S. We also let M = (mij) be the incidence

matrix of H, and we refer to a route ri and a host cj.

We suppose that each defective item is of Type-ε, for some ε ≥ 1. The set

of all defective items can thus be partitioned into the sets δε, ε ≥ 1, where

δε = {hosts cj | cj is Type-ε} . (7.2.1)

The set of all defectives (i.e. misbehaving hosts), which we denote by ∆, triv-

ially satisfies ∆ =
⋃

ε≥1 δε. From Definition 7.1 it follows that |δi ∩ δj| = 0 for

i 6= j, i.e. a defective item can only have one Type of behaviour.

We next define the outcome vector for a route design when applied to hosts

conforming to the model introduced in this chapter.

Definition 7.2. Given a particular set S of hosts (some of which may be

defective), the outcome vector of a route design (S,R) is the vector a =
(

a1, a2, . . . , a|R|

)

, where ai = 1 if the route ri ∈ R contains at least one Type-ε

host and ε−1 other malicious hosts, for at least one ε (1 ≤ ε ≤ e), and ai = 0

otherwise.

Given the above assumptions about the behaviour of malicious nodes (de-

fectives), the outcome vector indicates the outcomes of the routes (spy agents)

when used on a specific target host set, where 1 and 0 correspond to positive

151

7.2. Problem formulation

Table 7.1: A simple route design for four hosts.

c1 c2 c3 c4

r1 1 1 0 0
r2 1 0 1 0
r3 1 0 0 1
r4 0 1 1 0
r5 0 1 0 1
r6 0 0 1 1

and negative outcomes, respectively. For this reason we also refer below to the

outcome set, meaning the set of routes (spy agents) yielding a positive result.

Example 7.3. Consider the incidence matrix in Table 7.1. In this matrix

a set of six spy agents is used to test four hosts, where each pair of hosts is

visited by a unique agent. Suppose that there are two Type-2 malicious hosts,

where ∆ = δ2 = {c1, c4}. Clearly, the only agent containing δ2 is r3. Hence,

in this case the outcome vector is a = (0, 0, 1, 0, 0, 0). If the spy agent system

user knows that every malicious host has Type at most 2, then the outcome

of the route design enables the identification of c1 and c4 as malicious.

In order to address the general case, i.e. where there are mixed Types of

malicious hosts, we need the following definitions.

Definition 7.4. If the outcome vector of a route design can be used to distin-

guish between honest and malicious hosts regardless of how they are distributed,

as long as there are exactly d malicious nodes and the Type of each malicious

node is exactly e, then the route design is called a (d, e)-classifier.

Definition 7.5. If the outcome vector of a route design can be used to distin-

guish between honest and malicious hosts regardless of how they are distributed,

as long as there are at most d malicious nodes and the Type of each malicious

node is exactly e, then the route design is called a (d, e)-classifier.

152

7.2. Problem formulation

Definition 7.6. If the outcome vector of a route design can be used to distin-

guish between honest and malicious hosts regardless of how they are distributed,

as long as there are exactly d malicious nodes and the Type of each malicious

node is at most e, then the route design is called a (d, e)-classifier.

Definition 7.7. If the outcome vector of a route design can be used to distin-

guish between honest and malicious hosts regardless of how they are distributed,

as long as there are at most d malicious nodes and the Type of each malicious

node is at most e, then the route design is called a (d, e)-classifier.

In the context of this chapter, a classifier (route) design, or simply a classi-

fier, refers to a (route) design that is either a (d, e)-classifier, a (d, e)-classifier,

a (d, e)-classifier, or a (d, e)-classifier, unless otherwise stated.

The following three results are immediate from Definitions 6.2, 6.3, 7.4,

7.5, 7.6 and 7.7.

Lemma 7.8. A route design is a (d, 1)-classifier if and only if it is a d-

classifier.

Lemma 7.9. A route design is a (d, 1)-classifier if and only if it is a d-

classifier.

Lemma 7.10. A route design is a (d, e)-classifier if and only if it is a (d′, e′)-

classifier for every pair (d′, e′) satisfying 1 ≤ d′ ≤ d and 1 ≤ e′ ≤ e.

As in Problem 6.20, we are interested in constructing classifier route designs

for a range of possible values of d and e. Since we claim that routes which

contain a large number of hosts are less likely to lead to suspicion, we are

interested in route designs with a large minimum route size. Ideally, we also

wish to identify malicious hosts with the minimum effort, and therefore route

153

7.3. Group testing for complexes (GTC)

designs which minimise the number of routes (and hence agents) are also to

be preferred.

7.3 Group testing for complexes (GTC)

7.3.1 The notion of complex defective

Before we consider the construction and use of classifiers, we need to adapt

and extend certain definitions from the theory of GTC, introduced in §2.6.4.

In GTC we wish to identify items that are ‘collectively’ positive, in contrast

with GT theory where items are ‘individually’ positive. To proceed, we first

need to introduce some further notation.

Definition 7.11. Let C be a subset of the columns of an incidence matrix M

of a route design, where |C| = ε. We call C an ε-complex, and we denote the

intersection of all the columns in C by ∩C, where

∩C =
⋂

ci∈C

ci . (7.3.1)

The following Lemma follows trivially from the Definition.

Lemma 7.12. If the intersection ∩C of an ε-complex C contains a route ri

then this route contains all the columns in C.

When a route contains all the columns of a complex, we also say that the

complex appears in the route.

The notion of a complex is useful in the context of GTC designs because

the presence of a single defective column in a row will not necessarily cause the

associated test to return a positive result; instead it will be necessary for all

the elements of a complex of a certain size to be present in a row and for them

all to be defective in order for the test to return a positive result. That is,

154

7.3. Group testing for complexes (GTC)

for any tested set of items, there is an associated set of complexes (i.e. sets of

subsets of the columns) with the property that a row will give a positive result

if and only if it contains all the elements of at least one of these complexes.

We call this a set of defective complexes.

Defective complexes were introduced in [180], where it was assumed that

“for obvious reasons, no positive subset may include any other positive subset”.

Macula et al. [112] has further studied GTC in the case where all defective

complexes are k-sets, i.e. they all have cardinality k. In this case, each com-

plex is called a k-complex. In the equivalent hypergraph testing problem (see

§2.6.4), the set of defective complexes corresponds to a set of defective (hy-

per)edges, and an assumption is made that no defective edge contains another

defective edge [63]. Similar language is used by Chen et al. [30], where the

theory of hypergraph testing (and GTC) is linked with the theory of cover-free

families.

It would appear that the notion of a defective complex is rather loosely

defined in the literature. GTC is a relatively young area of research, with

applications mainly in the field of DNA testing. We therefore attempt be-

low to provide a more rigorous discussion. We first observe that, as we have

informally defined the notion above, there may be more than one set of de-

fective complexes. For example, suppose that c1 is the only defective host

(where c1 is a Type-1 host) in a set of n hosts {c1, c2, . . . , cn}. Then clearly

D = {{c1}} is a set of defective complexes. However, it is not hard to see that

D = {{c1}, {c1, c2}} is also a set of defective complexes. In order to make D

unique, we first make the following definition.

Definition 7.13. Given a set of hosts, a set of defective complexes is a col-

lection D of subsets of hosts with the property that:

155

7.3. Group testing for complexes (GTC)

1. a test chosen from the set of all possible tests (i.e. all possible routes)

will give a positive result if and only if it contains one of the members

of D;

2. the previous property does not hold for any proper subset of D.

The following remark follows trivially.

Remark 7.14. Suppose a route design is applied to a set of hosts for which

{D1, D2, . . . , Dn} is a set of defective complexes. Then the outcome vector of

the route design is the union of ∩Di, 1 ≤ i ≤ n.

We note that the second property, i.e. the minimality condition, in Defi-

nition 7.13 is consistent with the literature. This is because, in the context

of DNA testing, a set of DNA molecules is ‘defective’ if and only if all the

molecules in the set are required to cause a disease.

Example 7.15. Suppose that, as above, c1 is the only defective host (where

c1 is a Type-1 host) in a set of n hosts {c1, c2, . . . , cn}. Then, although D =

{{c1}} is a set of defective complexes, by Definition 7.13 D′ = {{c1}, {c1, c2}}

is not a set of defective complexes.

We now show that, under Definition 7.13, the set of defective complexes is

unique.

Lemma 7.16. All members of a set of defective complexes are mutually non-

inclusive.

Proof. Let D be a set of defective complexes and suppose D1 ⊂ D2, where

D1, D2 ∈ D. Any test that contains D2 will also contain D1. Hence, any test

that contains a member of D will also contain a member of D′ = D − {D2},

which contradicts Definition 7.13.

156

7.3. Group testing for complexes (GTC)

Lemma 7.17. If D is a set of defective complexes then D is unique.

Proof. Suppose that D is not unique. Let D and D′ be distinct sets of defective

complexes, and suppose (without loss of generality) that D1 ∈ D′ and D1 /∈ D.

Consider the route containing only the elements of D1. This route gives a

positive result because D1 is contained in D′. Hence, this route contains at

least one defective complex D2 ∈ D, where D2 ⊂ D1. Now consider the route

containing only the elements of D2. This route gives a positive result since D2

is contained in D. Hence, this route contains at least one defective complex

D3 ∈ D′, where D3 ⊆ D2. That is, D′ contains D3 and D1, and D3 ⊂ D1.

This contradicts Lemma 7.16, and the result follows.

From Lemma 7.17 if follows that the unique set of defective complexes in

Example 7.15 is D = {{c1}}.

7.3.2 Property of GTC designs

The primary goal of GTC theory is to find a design which enables the set of

defective complexes to be identified. That is, we wish to find a GTC design

which has the property that the outcome vectors for any two distinct sets of

defective complexes will always be different.

With this goal in mind, we next adapt and extend the notions of separable

and disjunct GTCs, as given by Du and Hwang [46, Chapter 6].

Definition 7.18. The rank of a set of complexes C = {C1, C2, . . . , C|C|} is the

size of the largest complex, i.e. max1≤i≤|C||Ci|.

Definition 7.19. A set C of complexes is said to have uniform rank if all the

complexes in C have the same size.

157

7.3. Group testing for complexes (GTC)

Definition 7.20. A route design is said to be (d, e)-separable if, given any

two distinct sets of defective complexes of size d and rank e, it yields distinct

outcome sets.

Definition 7.21. A route design is said to be (d, e)-separable if, given any

two distinct sets of defective complexes of size at most d and rank e, it yields

distinct outcome sets.

Definition 7.22. A route design is said to be (d, e)-separable if, given any

two distinct sets of defective complexes of size d and rank at most e, it yields

distinct outcome sets.

Definition 7.23. A route design is said to be (d, e)-separable if, given any

two distinct sets of defective complexes of size at most d and rank at most e,

it yields distinct outcome sets.

Definition 7.24. A route design is said to be (d, e∗)-separable if, given any

two distinct sets of defective complexes of size d and uniform rank e, it yields

distinct outcome sets.

Definition 7.25. A route design is said to be (d, e∗)-separable if, given any

two distinct sets of defective complexes of size at most d and uniform rank e,

it yields distinct outcome sets.

Definition 7.26. A route design is said to be (d, e)-disjunct if, given any set

of d+ 1 mutually non-inclusive complexes {C0, C1, C2, . . . , Cd} with rank e,

∩C0 *
d
⋃

i=1

(∩Ci) . (7.3.2)

Definition 7.27. A route design is said to be (d, e)-disjunct if, given any set

of d + 1 mutually non-inclusive complexes {C0, C1, C2, . . . , Cd} with rank at

most e, Equation 7.3.2 applies.

158

7.3. Group testing for complexes (GTC)

Definition 7.28. A route design is said to be (d, e∗)-disjunct if, given any set

of d + 1 mutually non-inclusive complexes {C0, C1, C2, . . . , Cd} with uniform

rank e, Equation 7.3.2 applies.

The following three lemmas follow immediately from the above three defi-

nitions.

Lemma 7.29. A route design that is (d, e)-disjunct is (b, e)-disjunct for 1 ≤

b ≤ d.

Lemma 7.30. A route design that is (d, e)-disjunct is (b, e)-disjunct for 1 ≤

b ≤ d.

Lemma 7.31. A route design that is (d, e∗)-disjunct is (b, e∗)-disjunct for

1 ≤ b ≤ d.

The following six theorems are from Du and Hwang [46, Chapter 6], re-

stated in our notation.

Theorem 7.32. A route design that is (d, e)-disjunct is (d, e)-separable.

Theorem 7.33. A route design that is (d, e)-disjunct is (d, e)-separable.

Theorem 7.34. A route design that is (d, e∗)-disjunct is (d, e∗)-separable.

Theorem 7.35. A route design that is (d, e)-separable is (d− 1, e)-disjunct.

Theorem 7.36. A route design that is (d, e)-separable is (d− 1, e)-disjunct.

Theorem 7.37. A route design that is (d, e∗)-separable is (d−1, e∗)-disjunct.

Example 7.38. Consider the route design H given in Table 7.1. Each of the

six routes of this design contains a distinct pair of hosts from the population

of four hosts. The following properties hold.

159

7.3. Group testing for complexes (GTC)

• H is (1, 1)-disjunct because, given any column (i.e. a 1-complex), no

other column is contained in this column.

• H is (2, 1)-disjunct for the following reason. The union of any two

columns (1-complexes) will include all but one row. This row will always

be contained in the remaining two columns. It follows that the union of

any two columns will not contain either of the other two columns.

• H is (1, 2)-disjunct. To establish this we need to show that the in-

tersection of a complex of size at most two cannot be contained in the

intersection of a distinct complex of size at most two. Consider a com-

plex containing either one or two columns. If it contains one column,

then this column is not contained in any other column and is thus not

contained in the intersection of any two other columns. If the complex

contains two columns, then the intersection of these two columns is not

contained in either of the other two columns and is thus not contained in

the intersection of any pair of columns (distinct from the complex itself).

• H is (2, 2)-disjunct. To establish this we need to show that the inter-

section of columns in a complex of size at most 2 is not contained in the

union of the intersection of any two complexes of size at most 2. Clearly,

if we can show that the intersection of columns in a complex of size ex-

actly 2 is not contained in the union of the intersection of two complexes

of size exactly 1 (not contained in the complex of size 2) then the result

will follow. However, this follows immediately since the intersection of

two columns contains a unique row, which is not contained in either of

the other two columns.

160

7.3. Group testing for complexes (GTC)

• H is (2, 2)-disjunct. This follows immediately, given that H is (2, 1)-

disjunct and (2, 2)-disjunct.

• H is (2, 2)-separable. This follows immediately from the fact that H is

(2, 2)-disjunct (see above) and Theorem 7.33.

• H is neither (3, 2)-disjunct nor (3, 2)-separable because the union of

any three distinct columns contains all rows.

• H is (5, 2∗)-disjunct, because the intersection of any 2-complex contains

only one row, which is distinct from the single row contained in the

intersection of each of the five other 2-complexes.

• H is (5, 2∗)-separable. This follows immediately from the fact that H

is (5, 2∗)-disjunct (see above) and Theorem 7.34.

The disjunct and separable properties were originally studied in two con-

texts. First, in graph testing, a hypergraph, i.e. a generalisation of the notion

of a graph in which an edge can connect any number of vertices, is tested in or-

der to identify a defective subgraph [45, Chapter 10]. Second, in the DNA com-

plex model, a set of molecules is tested to identify diseases, where each disease

corresponds to a subset of molecules [112]. More recently, the GTC prob-

lem has been connected to three further application domains, namely secure

key distribution [120], binary superimposed codes [47] and cover-free fami-

lies [190]. The importance of these connections is that known results across

all these problems can be used in the context of GTC. We adapt some existing

results to our setting below.

161

7.3. Group testing for complexes (GTC)

Definition 7.39. (Mitchell and Piper [120]) A route design is a (d, e)-

KDPif, for any set of d+ e distinct columns c1, c2, . . . , cd+e,

e
⋂

i=1

ci *
e+d
⋃

i=e+1

ci . (7.3.3)

Note that a (d, e)-KDP is the same as a (d, e)-superimposed code and a

(d, e)-cover-free family [30].

Theorem 7.40. (Chen et al. [30]) A route design is (d, e)-disjunct if and

only if the route design is a (d, e)-KDP.

The next lemma helps identify a set of defective complexes of uniform rank

given the output of a disjunct route design.

Lemma 7.41. Let S be a set of hosts, let D be the set of defective complexes

for S, which we assume have uniform rank e, and let E be the set of all possible

e-subsets (e-complexes) of S, for some e ≥ 1. Suppose that |D| = d, and that

a route design gives output vector a. If the route design is (d, e∗)-disjunct,

then all the complexes in E − D appear in a route ri that tests negative.

We can use this lemma to give a simple decoding algorithm, as follows.

Algorithm 7.42. Suppose a (d, e∗)-disjunct route design has outcome a when

applied to a specific set of hosts S and suppose that the set D of defective com-

plexes for S has cardinality d and uniform rank e. Then, D can be determined

using the following decoding algorithm:

• Step 1: Create the set E = {E1, E2, . . . , E|E|} containing all possible

e-complexes.

• Step 2: Put D = {Ei : ∩Ei ⊆ a}.

162

7.3. Group testing for complexes (GTC)

We next generalise Lemma 7.41 to the case where the rank of the set of

defective complexes is not uniform. We need this generalisation since (as shown

below) defective hosts of non-uniform Type give rise to defective complexes of

varying sizes.

Theorem 7.43. Let S be a set of hosts, let D be the set of defective complexes

for S, which we suppose has rank e, and let E be the set of all possible ε-subsets

(ε-complexes) of S, for every ε, (1 ≤ ε ≤ e). Suppose that |D| ≤ d, and that

a route design gives output vector a when applied to S. Suppose that D′ is

the superset of D containing every superset (within S) of a defective complex.

If the route design is (d, e)-disjunct, then all complexes in E − D′ appear in a

route ri that tests negative.

Proof. Suppose that the route design is (d, e)-disjunct. Then, by definition,

given any d + 1 mutually non-inclusive complexes of cardinality at most e,

there is at least one row contained in the intersection of the first complex that

is not contained in the intersections of any of the other complexes. Choose any

complex Ei ∈ (E − D′), |Ei| ≤ e. We first show that all the complexes in the

set {Ei}∪D are mutually non-inclusive. This follows because all the elements

of D are mutually non-inclusive (by definition) and Ei is not a superset of a

defective complex. It follows that there is a row, say rj, that is contained in

∩Ei and is not contained is the intersections of any of the d complexes in D.

Hence, aj = 0 (where aj is the bit in a corresponding to rj), and the result

follows.

We can use Theorem 7.43 to generalise the decoding Algorithm 7.42 in the

following way.

163

7.3. Group testing for complexes (GTC)

Algorithm 7.44. Suppose that a (d, e)-disjunct route design has outcome a

and the set D of defective complexes has cardinality at most d and rank e.

Then, D can be determined using the following decoding algorithm.

• Step 1: Create the set E = {E1, E2, . . . , E|E|} containing all possible

ε-complexes, for every ε, (1 ≤ ε ≤ e).

• Step 2: Put G = {Ei : ∩Ei ⊆ a}.

• Step 3: Put D = {Gi : Gi 6⊃ Gj, where Gi, Gj ∈ G, for all i 6= j}.

Proof of correctness. Since all the complexes that appear in a route giving a

negative result are non-malicious, each of the complexes in G contains at least

one defective complex. Step 3 guarantees that the members of D are non-

inclusive, which is consistent with the minimality property in Definition 7.13.

Example 7.45. Consider again the (2, 2)-disjunct route design in Table 7.1,

in which six spy agents visit a set of four hosts, and each spy agent visits a

different pair of hosts. Suppose that this spy agent route design is applied in

four different scenarios where the sets of defective complexes are as follows.

D = {{c1}, {c2}}

D′ = {{c1}, {c2, c3}}

D′′ = {{c1, c2}, {c2, c3}}

D′′′ = {{c1, c2}, {c3, c4}}

In each scenario, there are at most two defective complexes and each defective

complex contains at most two hosts. The outcomes a, a′, a′′, a′′′ of the

corresponding designs for the four scenarios are shown in Table 7.2. With

the (a priori) knowledge that the set of defective complexes has cardinality at

164

7.3. Group testing for complexes (GTC)

Table 7.2: Outcome sets for defined scenarios.

route label route a a′ a′′ a′′′

r1 1 1 0 0 1 1 1 1
r2 1 0 1 0 1 1 0 0
r3 1 0 0 1 1 1 0 0
r4 0 1 1 0 1 1 1 0
r5 0 1 0 1 1 0 0 0
r6 0 0 1 1 0 0 0 1

most 2 and rank at most 2, we now show how in each case the design can be

used to identify the set of defective complexes using Algorithm 7.44.

First observe that, since e = 2, we have

E = {{c1}, {c2}, {c3}, {c4},

{c1, c2}, {c1, c3}, {c1, c4}, {c2, c3}, {c2, c4}, {c3, c4}}

• In the first scenario, it is trivial to show that the only elements of E

whose intersection is not included in the outcome vector a are {c3}, {c4}

and {c3, c4}. That is, G contains all supersets of either c1 or c2. It follows

immediately that D = {{c1}, {c2}} is the set of defective complexes.

• In the second scenario, G contains {c1}, {c1, c2}, {c1, c3}, {c1, c4}, and

{c2, c3}. After applying Step 3 we obtain D′ = {{c1}, {c2, c3}}.

• In the last two scenarios, the set of defective complexes has a uniform

rank of two, and the sets D′′ and D′′′ are obtained after applying only

the first two steps of Algorithm 7.44.

It is clear that Step 2 of Algorithm 7.44 has complexity linear in |E| =
∑e

ε=1

(

n
ε

)

, where n is the number of hosts. As a result we observe that a

set of defective complexes of cardinality at most d and rank e can be readily

identified if a (d, e)-disjunct route design is used (as long as e and n are of

bounded size).

165

7.3. Group testing for complexes (GTC)

7.3.3 Some GTC constructions

Designs that satisfy Definitions 7.26 and 7.39 have been studied by a variety

of authors [48, 63, 81, 112, 120, 181, 190]. We next give two constructions from

the literature that are of potential use in our setting.

Proposition 7.46. (D’yachkov et al. [47]) Let d, e, t and w be positive

integers such that e ≤ w ≤ t− d, and suppose M is the
(

t
w

)

× t binary matrix

whose rows consist of all possible binary vectors of length t and weight w. Then

M is (d, e∗)-disjunct.

Example 7.47. The route design given in Table 7.1 is an example of Propo-

sition 7.46 for the case d = e = 2, t = d+e = 4 and w = 2. Hence, this matrix

is (2, 2∗)-disjunct, as discussed in Example 7.38.

Theorem 7.48. (Mitchell and Piper [120]) An incidence matrix of a (d+

e)-design, where the blocks correspond to rows and the elements to columns, is

a (d, e)-KDP (and, by Theorem 7.40, is (d, e)-disjunct).

Theorem 7.48 implies that we can use a (d+e)-(v, b, r, k, λ) design to find up

to d defective complexes of size at most e within a set v of hosts, by sending b

spy agents, where each host meets r spy agents and each agent visits k hosts.

However, given that b ≥ vt/2 for a t-design (if v > k/2) [15], t-designs for

t > 3 are unattractive for use in GTC since the number of tests required is

considerably greater than the number of test items. However, for spy agent

applications, we are primarily interested in maximising k (i.e. the spy agent

route length, see also §3.4.3.2). Hence, t-designs have some value for spy agent

testing. We discuss this further in the examples provided in §7.5.4.

A (d, e)-disjunct route design can be used to identify complex defectives;

166

7.4. Identifying individual malicious hosts

however, we have not discussed how individual malicious hosts can be identi-

fied, given a set of defective complexes. This is the subject of the next section.

7.4 Identifying individual malicious hosts

7.4.1 Problem representation

The objective of spy agent testing, in this chapter, is to identify individual

malicious hosts (potentially of multiple Types) by testing (large) groups of

hosts. We first consider how the characteristics of a set of malicious hosts

define the set of defective complexes.

We start by introducing some further notation. Let P (X, k) denote the set

of all k-subsets of the set X . Clearly, |P (X, k)| =
(

|X|
k

)

, |X| ≥ k. Formally we

let P (X, k) = ∅, if |X| < k.

We first observe the following trivial result.

Lemma 7.49. If all malicious hosts have Type e (for some e > 0), then the

set of defective complexes is P (∆, e), where ∆ is the set of malicious hosts.

Corollary 7.50. If all malicious hosts have Type e (for some e > 0), then

the set of defective complexes is non-empty if and only if |∆| ≥ e, where ∆ is

the set of malicious hosts.

Example 7.51. Suppose that there is only one defective host and it is of

Type-2. Then, by Corollary 7.50, the set of defective complexes is empty. That

is, a Type-2 host will only misbehave if there is at least one other malicious

host present.

The following algorithm gives a means of computing the set of defective

complexes given a particular set of malicious hosts. The reverse process, i.e.

167

7.4. Identifying individual malicious hosts

identifying the malicious hosts given a set of defective complexes, is discussed

in §7.4.2.

Algorithm 7.52. Suppose that the set ∆ of malicious hosts is partitioned into

the sets δε of the Type-ε (malicious) hosts, 1 ≤ ε ≤ e (where e is the largest

occurring Type of a malicious host). The set of defective complexes can be

constructed using the following procedure.

• Step 1: Let

D∗ =
e
⋃

ε=1

P (δε, ε) . (7.4.1)

• Step 2 (which applies only if e > 2): For every ε (2 ≤ ε < e), let

∆ε+1 =
⋃e

i=ε+1 δi. Then put

D{ε} =
ε−1
⋃

k=1

{X ∪ Y : X ⊆ δε, |X| = k, Y ⊆ ∆ε+1, |Y | = ε− k} .

(7.4.2)

• Step 3: The set of defective complexes is

D = D∗ ∪

(

e−1
⋃

ε=2

D{ε}

)

. (7.4.3)

Proof of correctness. Since (from Lemma 7.17) the set of defective complexes

is unique it is sufficient to show that D satisfies the two properties of Def-

inition 7.13. To establish the first property we need to show that a route

will give a positive result if and only if it contains an element of D. Suppose

Di ∈ D and |Di| = ε. Then, by definition, Di will contain at least one Type-ε′

malicious host (2 ≤ ε′ ≤ ε) and ε − 1 other malicious hosts. Hence any route

containing Di as a subset will yield a positive result. Now consider a route

that gives a positive result. From Definition 7.1, this route must contain a set

A containing a Type-ε host, cj and ε−1 other malicious hosts, for some ε ≥ 1.

Suppose that ca ∈ A is a Type-a host, and that this is the malicious host with

168

7.4. Identifying individual malicious hosts

the smallest Type in A, a ≤ ε. Take any a-subset of A containing ca. This

subset is contained in D since if all hosts in this subset have the same Type

then it is contained in P (δa, a), and otherwise, it is contained in D{a}. To

prove the second property it is sufficient to show that all the pairs of elements

in D are mutually non-inclusive, which follows immediately by definition.

Lemma 7.53. If D{ε} is as defined in Algorithm 7.52, then:

|D{ε}| =
ε−1
∑

k=1

(

|δε|

k

)(

|∆ε+1|

ε− k

)

. (7.4.4)

Proof. As defined, the number of complexes in D{ε} is equal to the number

of different ways of choosing the first k elements of an ε-complex from the set

δε of Type-ε hosts (1 ≤ k ≤ ε − 1), multiplied by the number of all different

ways of choosing the last ε − k elements of this ε-complex from the set ∆ε+1

of Type-(ε+ 1)+ hosts.

Example 7.54. Consider a set of hosts {c1, c2, . . . , cn} where c1 is of Type-1,

c2 is of Type-2, and the other hosts are non-defective. From Algorithm 7.52

we have D = D∗ = {{c1}}. Since there is no defective complex containing c2,

there is no way for the operator of a spy agent system to know whether or not

c2 (or, indeed, any of the hosts other than c1) is malicious of Type greater

than 1. More generally, the same problem will arise for all malicious hosts

of Type e > 1 if there are less than e malicious hosts of Type greater than 1

present.

Example 7.55. Consider a set of hosts {c1, c2, . . . , cn}, where c1 is of Type-1,

c2 and c3 are of Type-2, and the other hosts are non-defective. From Algo-

rithm 7.52 we have D = D∗ = {{c1}, {c2, c3}}. In this case the spy agent

operator can successfully deduce that c1 is a Type 1 defective and that at least

one of c2 and c3 is a Type 2 defective.

169

7.4. Identifying individual malicious hosts

Example 7.56. Consider a set of hosts {c1, c2, . . . , cn} where c1 is of Type-1,

c2 and c3 are of Type-2, c4 is of Type-x, x > 2, and the other hosts are non-

defective. From Algorithm 7.52 we have:

D∗ = {{c1}, {c2, c3}}

∆3 = {c4}

D{2} = {{c2, c4}, {c3, c4}}

D = D∗ ∪D{2}

= {{c1}, {c2, c3}, {c2, c4}, {c3, c4}}.

We observe that, in this example, the spy agent system cannot distinguish

between the case where c2, c3 and c4 are all of Type 2, and the case where

either or both of them are of Type 2 and the other (or others) have Type

greater than 2. Through this example, we can also observe that a malicious

host (c4, in this example) might still be included in defective complexes (and

be identified) even if it never misbehaves. In this example this arises when

x > 2 (c4 is of Type 3+). In this case the fact that c4 is malicious is revealed

by other malicious hosts (c2 and c3) which will generate a positive result if

and only if they are aware of the appearance of another malicious host in the

route.

The above examples motivate the following lemma.

Lemma 7.57. Suppose that the set ∆ of malicious hosts contained in a par-

ticular set of hosts is partitioned into the sets δε of Type-ε (malicious) hosts.

If there are hosts of Type greater than 1, let µ > 1 be the Type of the malicious

host with the smallest Type amongst the hosts in ∆−δ1; otherwise put µ = 1.

Then it follows that all malicious hosts are included in at least one defective

complex if and only if | ∪i≥µ δi| ≥ µ.

170

7.4. Identifying individual malicious hosts

Proof. We assume that ∆ is non-empty throughout (otherwise the lemma

holds trivially). First suppose that µ = 1, i.e. ∆ = δ1. In this case each

defective host will be contained in exactly one defective complex. Also, we

must clearly have | ∪i≥µ δi| = |δµ| ≥ 1

Now suppose that µ > 1. We consider two sub-cases. If there are no

hosts of Type greater than µ, then (using the notation of Algorithm 7.52)

D{µ} will be empty and | ∪i≥µ δi| ≥ µ if and only if |P (δµ, µ)| > 0. However,

from Algorithm 7.52 we know that a host of Type µ will be included in a

defective complex if and only if P (δµ, µ) is non-empty. The result follows in

this sub-case.

Finally suppose µ > 1 and that there are hosts of Type greater than µ. It

follows that (using the notation of Algorithm 7.52) | ∪i≥µ δi| ≥ µ if and only

if |D{µ}| > 0. If D{µ} is non-empty then, by definition, every defective host

of Type greater than or equal to µ will be included in an element of D{µ}.

Equally, if any defective host of Type greater than µ is included in a defective

complex then D{µ} must be non-empty, and the result follows.

Finally we comment on the rationale of representing the spy agent problem

as a GTC problem. Consider Example 7.55, in which the malicious hosts, c1,

c2 and c3, can be trivially identified by sending one spy agent to each host

and one to each pair of hosts. However, this trivial solution is not attractive

in our context as we are interested in maximising the route length. Also the

identification of some or all defectives becomes harder when the number of

Type-1 and Type-2 defective complexes is unknown. In the most general

case, the trivial solution would require sending a spy agent to each subset of

the set of all hosts. By using GTC designs we aim to: a) reduce the number

of tests, and b) increase the route length.

171

7.4. Identifying individual malicious hosts

7.4.2 Host classification

Algorithm 7.52 provides us with a means of identifying the set of defective

complexes given a particular set of malicious hosts. However, as discussed in

the examples in §7.4.1, this mapping is not injective; as a result, identifying

the malicious hosts (and their Types) given a set of defective complexes is not

always possible. In this section we consider this host classification problem in

greater detail.

We first consider the special case where all the malicious hosts have the

same Type; in this case we have the following simple result, which follows

immediately from Lemma 7.49.

Lemma 7.58. Suppose the set ∆ of malicious hosts contains only Type-e

hosts and |∆| ≥ e. Then ∆ =
⋃

Di∈D
Di, where D is the set of defective

complexes.

The following lemma follows trivially.

Lemma 7.59. If a route design is (
(

d
e

)

, e∗)-disjunct and e ≤ d, then it is a

(d, e)-classifier.

We note that if all hosts have the same Type then the set of defective

complexes has uniform rank (equal to the Type). However, the opposite is

not always true. For example, consider a modified version of Example 7.56

in which c1 is a non-malicious host and D = {{c2, c3}, {c2, c4}, {c3, c4}}. As

discussed above, and following the analysis in Algorithm 7.52, the same set D

would be obtained if all three of c2, c3 and c4 were of Type 2, and if two were

of Type 2 and the other of larger Type.

172

7.5. A rank-two Type classification algorithm

In the case where there are mixed Types of malicious hosts, there is gen-

erally no unique host classification. The following two lemmas follow immedi-

ately from Algorithm 7.52.

Lemma 7.60. If D is a set of defective complexes, then all the hosts in the

set {ci|ci ∈ Dj, Dj ∈ D} are defective hosts.

Lemma 7.61. If Di is a defective complex then all the elements of Di are

hosts of Type e, for some e ≥ |Di|.

Using Lemmas 7.57 and 7.61 we can classify all malicious hosts as the

following corollary suggests.

Corollary 7.62. Suppose a set of hosts contains a set ∆ of malicious hosts

and the elements of the corresponding set D of defective complexes jointly con-

tain all the malicious hosts. If a route design is (|D|, r)-disjunct (or (|D|, r)-

separable), then the route design is a (|∆|, e)-classifier, where r is the rank of

D and e is the largest Type of a host of ∆.

7.5 A rank-two Type classification algorithm

7.5.1 Standard classification scenario

In the standard rank-e Type classification problem we consider malicious hosts

with Type at most e, defective complexes with cardinality at most e, and a

set of defective complexes with rank at most e. The hosts can be classified

with the use of a GTC route design as long as the conditions established in

Lemma 7.57 are satisfied.

We focus on the simple case where the set∆ of defectives contains a mixture

of Type-1 and Type-2 defectives. As discussed in Example 7.54, if there is

only one Type-2 defective, no route design can determine whether or not this

173

7.5. A rank-two Type classification algorithm

host is malicious, as this host is not included in the set of defective complexes.

This observation follows immediately from Lemma 7.57, where in this case the

necessary condition is: | ∪i≥2 δi| = |δ2| ≥ 2.

Applying Algorithm 7.52 in this special case, we obtain:

D = D∗ = δ1 ∪ P (δ2, 2) . (7.5.1)

Observe that, in this scenario, the set of malicious hosts and their corre-

sponding Types can be trivially identified given the (identified) set of defective

complexes.

7.5.2 Classification scenario with design restrictions

In this section we consider a slightly modified rank-2 Type classification prob-

lem. We modify Definition 7.1 to the following (the changes are underlined).

Definition 7.63. Suppose e ≥ 1. When processing a mobile agent whose

route contains d ≥ 0 malicious hosts, a Type-e (malicious) host will behave

as follows:

• if d ≥ e and the route length is at least two then the host will handle

the agent in such a way that it returns a positive result; and

• if d < e then the host will handle the agent in such a way that a negative

result will ensue unless another host abuses the agent.

The rationale for the above modification is that it seems reasonable to

assume that Type-1 hosts will not misbehave if they are the only hosts included

in the spy agent route. This restriction is consistent with the path length

assumption discussed in §3.4.3.2.

The modified problem can be addressed in two different ways. Firstly,

we could simply choose route designs that are classifiers and that satisfy the

174

7.5. A rank-two Type classification algorithm

route length restriction. An example of a suitable design has been studied in

Example 7.38. Secondly, the set of defective complexes could be constructed

in accordance with the modified host behavioural model. In this section we

discuss the second approach (and its rationale).

To illustrate how the modified problem changes the situation, suppose that

a route r1 only contains one host, c1, which happens to be Type-1. In the

standard classification problem, the complex {c1} is a defective complex. In

our modified classification problem, {c1} is no longer a defective complex

because the route r1 will give a negative result.

Following from the above example, it is straightforward to show that the

set of defective complexes D is made up of the 2-subsets of hosts that include

at least one Type-1 host and the 2-subsets of Type-2 hosts. That is:

D = P (δ2, 2) ∪ (P (S, 2)− P (S − δ1, 2)) , (7.5.2)

where S is the set of all hosts.

From (7.5.2) (observing that P (δ2, 2) is disjoint from P (S, 2)−P (S−δ1, 2)),

we obtain:

|D| =

(

|δ2|

2

)

+

(

n

2

)

−

(

n− |δ1|

2

)

. (7.5.3)

In this new problem, the modified host behaviour model leads to the con-

struction of a different set of defective complexes, which has a uniform rank.

Hence, to identify D it sufficient to use a (|D|, 2∗)-disjunct or a (|D|, 2∗)-

separable route design.

One benefit of this new approach is that (d, e∗)-disjunct designs have been

studied more extensively than other classes of disjunct design and more con-

structions are known—see, for example, [112].

However, this approach clearly increases the size |D| of the set of defective

175

7.5. A rank-two Type classification algorithm

complexes, if there are Type-1 hosts. Also, it complicates the process of

identifying the individual defective hosts given a set of defective complexes,

as Lemma 7.60 no longer applies. In particular, a defective complex may now

contain a non-defective host. This problem is studied in the next section,

where we provide a naive classification algorithm.

7.5.3 The algorithm

Consider a set of n hosts containing a set of d defective hosts (0 ≤ d < n− 1)

that are of Type-1 or Type-2. Suppose also that a malicious host will only

misbehave if the route length is at least two.

The classification algorithm described below requires the use of a (|D|, 2∗)-

disjunct route design, where |D| is as in (7.5.3). This route design is used to

determine the set of defective 2-complexes, using Algorithm 7.42.

Algorithm 7.64 (Resilient rank-2 classification). Suppose a set of hosts S

contains a set ∆ malicious hosts of Type at most 2 and that a malicious host

will only mishandle an agent if the agent visits at least 2 hosts. The following

two-part algorithm partly or completely identifies ∆ (depending on the num-

ber of Type-2 defective hosts). Note that two alternatives are provided for the

second part of the algorithm.

A. Identify Type-1 hosts.

Require: A (|D|, 2∗)-disjunct route design, and |∆| < n− 1.

Using Algorithm 7.42, identify the set D of defective complexes (which, from

(7.5.2), has uniform rank 2).

for i = 1 to i = n do

176

7.5. A rank-two Type classification algorithm

Construct the set Ti of the 2-complexes that contain ci:

Ti = {{ci, cj} | j 6= i}, |Ti| = n− 1.

if Ti ⊆ D then

ci is Type-1 (otherwise |∆| ≥ n− 1).

Add ci to the set δ1.

end if

end for

B. Identify Type-2 hosts.

Require: Part A (above).

Put: B = D − (P (S, 2)− P (S − δ1, 2)).

if |B| 6= 0 then

ci ∈ ∪B are Type-2, i.e. δ2 = {ci | ci ∈ Bj , Bj ∈ B}.

ci /∈ δ1 ∪ δ2 are non-defective.

else

Within the set S − δ1 there are at least (n− |δ1| − 1) non-defective hosts

and at most one Type-2 host, which cannot be identified.

end if

B-alt. Identify Type-2 hosts (alternative).

Require: Part A (above).

for All ci in S − δ1 do

for All Dj ∈ D do

if ci ∈ Dj and Dj ∩ δ1 = ∅ then

177

7.5. A rank-two Type classification algorithm

Add ci to the set δ2.

Break inner loop

end if

end for

end for

if |δ2| = 0 then

There is at most one Type-2 host and at least n− |δ1| − 1 non-defective

hosts.

end if

Ensure: δ1 ∩ δ2 = ∅, |δ1|+ |δ2| < n− 1, and (7.5.3) hold.

End of algorithm.

Proof of correctness. In part A, the algorithm identifies the Type-1 hosts,

given the set D of positive 2-complexes obtained by Algorithm 7.42. We can

determine whether or not a host ci is a Type-1 defective as follows.

• If D contains all n− 1 possible 2-complexes containing ci, then ci is a

Type-1 host. This follows since, if ci was not a Type-1 defective then

all the n − 1 other hosts would have to be defective, which contradicts

the assumption that |∆| < n− 1.

In part B, the algorithm attempts to identify the Type-2 hosts and the

remaining non-defectives. To do so, we consider the a subset B of the set

D of defective complexes consisting of the defective complexes that do not

contain any of the Type-1 hosts identified in part A. We consider the following

subcases.

178

7.5. A rank-two Type classification algorithm

• If B is non-empty then the hosts contained in all the 2-complexes in B

must be Type-2 hosts (and there are at least two such hosts).

• Otherwise, there is at most one Type-2 host. It cannot be determined

whether or not there is a single Type-2 defective host.

In the alternative version of part B, we consider the hosts that appear in a

defective complex and that are not Type-1 hosts. If such a host appears in at

least one defective complex which does not contain a Type-1 host, then both

elements of this 2-complex must be Type-2 hosts.

Finally, the ‘Ensure’ step is present to check that the results given by the

algorithm are consistent; inconsistencies may arise if the assumptions on which

the algorithm depends regarding the number of types of malicious hosts do

not hold.

The following observations are key to the correct operation of Algorithm

7.64.

Remark 7.65. Suppose a set of n hosts contains less than n − 1 malicious

hosts, each of which are of Type at most 2. If all the 2-complexes containing

a host cj are defective complexes, then cj is a Type-1 host.

Remark 7.66. Suppose a set of n hosts contains only Type-1 or Type-2 mali-

cious hosts. If at least one (but not all) of the 2-complexes containing a host cj

are defective complexes, and at least one of these 2-complexes contains another

host ck that is not a Type-1 defective, then cj is a Type-2 defective (and so is

ck). If some (but not all) of the 2-complexes containing a host cj are defective

complexes, and all these 2-complexes contain another host that is a Type-1

defective, then cj is either non-defective or is the only Type-2 defective.

179

7.5. A rank-two Type classification algorithm

7.5.4 Example implementation

We conclude this discussion of the rank 2 case by describing a series of exper-

iments performed to demonstrate the operation of Algorithm 7.64.

Using Theorem 7.48 we can construct a (2, 2)-disjunct route design from a

4-design as follows. Consider the 4-(11, 5, 1) design derived from the Mathieu

Group M11 [38], which has b = 66 blocks, and r = 30. Associating blocks with

rows (routes) and the elements to columns (hosts) we obtain a route design

with 66 routes, 5 hosts per route, that can test 11 hosts, and in which each

host is visited by 30 agents.

The 66 blocks of the 4-(11, 5, 1) design are listed in Table 7.3. The sets of

blocks incident with each of the 11 points (i.e. the columns of the spy agent

route design) are given in Table 7.4.

Using a computer program (see Appendix A), we checked that, as expected,

the above 4-design is (5, 2)-disjunct and a (5, 2)-KDP by checking that (7.3.2)

and (7.3.3) hold for the case d = 5 and e = 2.

Software was also developed to implement the following procedure.

1. Input: choose a set of Type-1 hosts and a set of Type-2 hosts.

2. Outcome: calculate the route design outcome, for the chosen distribu-

tion of malicious hosts using the Mathieu design.

3. Decoding: identify the defective complexes using Algorithm 7.44.

4. Classification: use Algorithm 7.64 to verify the given input.

Table 7.5 summarises some results from this routine for different given

inputs. These experiments showed that, as expected, the 4-(11, 5, 1) design

180

7.5. A rank-two Type classification algorithm

Table 7.3: The blocks of a Mathieu 4-(11, 5, 1) design.

blocks 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2 2 2 2 3 3
3 3 3 3 4 4 4 5 5 6 7 8 4 4
4 5 6 9 5 6 7 6 7 9 8 10 5 7
10 8 7 11 9 8 11 11 10 10 9 11 6 9

blocks 15 16 17 18 19 20 21 22 23 24 25 26 27 28
1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 3 3 3 3 3 4 4 4 4 4 5 5 5
4 5 5 6 6 7 5 5 6 6 8 6 6 8
8 7 9 8 10 8 7 10 7 9 9 7 8 9
11 11 10 9 11 10 8 11 10 11 10 9 10 11

blocks 29 30 31 32 33 34 35 36 37 38 39 40 41 42
1 1 2 2 2 2 2 2 2 2 2 2 2 2
6 7 3 3 3 3 3 3 3 3 4 4 4 4
7 9 4 4 4 5 5 6 7 8 5 5 6 7
8 10 5 6 7 6 7 8 10 9 6 8 10 9
11 11 11 9 8 10 9 11 11 10 7 10 11 10

blocks 43 44 45 46 47 48 49 50 51 52 53 54 55 56
2 2 2 2 2 2 3 3 3 3 3 3 3 3
4 5 5 5 6 6 4 4 4 4 4 5 5 5
8 6 7 9 7 7 5 5 6 6 9 6 6 8
9 8 8 10 8 9 7 8 7 8 10 7 9 10
11 9 11 11 10 11 10 9 11 10 11 8 11 11

blocks 57 58 59 60 61 62 63 64 65 66
3 3 4 4 4 4 4 5 5 6
6 7 5 5 5 6 7 6 7 8
7 8 6 6 7 7 8 7 8 9
9 9 8 9 9 8 10 10 9 10
10 11 11 10 11 9 11 11 10 11

181

7.5. A rank-two Type classification algorithm

Table 7.4: Dual of a Mathieu 4-(11, 5, 1) design.

points 1 2 3 4 5 6 7 8 9 10 11
1 1 1 1 2 3 3 2 4 1 4
2 2 2 5 5 6 7 6 5 9 7
3 3 3 6 8 8 9 11 10 10 8
4 4 4 7 9 10 11 12 11 12 12
5 5 13 13 13 13 14 15 14 17 15
6 6 14 14 16 18 16 18 17 19 16
7 7 15 15 17 19 20 20 18 20 19
8 8 16 21 21 23 21 21 24 22 22
9 9 17 22 22 24 23 25 25 23 24
10 10 18 23 26 26 26 27 26 25 28
11 11 19 24 27 27 29 28 28 27 29
12 12 20 25 28 29 30 29 30 30 30
13 31 31 31 31 32 33 33 32 34 31
14 32 32 32 34 34 35 36 35 37 36
15 33 33 33 35 36 37 38 38 38 37
16 34 34 39 39 39 39 40 42 40 41
17 35 35 40 40 41 42 43 43 41 43
18 36 36 41 44 44 45 44 44 42 45
19 37 37 42 45 47 47 45 46 46 46
20 38 38 43 46 48 48 47 48 47 48
21 39 49 49 49 51 49 50 50 49 51
22 40 50 50 50 52 51 52 53 52 53
23 41 51 51 54 54 54 54 55 53 55
24 42 52 52 55 55 57 56 57 56 56
25 43 53 53 56 57 58 58 58 57 58
26 44 54 59 59 59 61 59 60 60 59
27 45 55 60 60 60 62 62 61 63 61
28 46 56 61 61 62 63 63 62 64 63
29 47 57 62 64 64 64 65 65 65 64
30 48 58 63 65 66 65 66 66 66 66

182

7.6. Conclusions

Table 7.5: Evaluation results for resilient rank-2 classification algorithm.

Case Input Outcome GTC alg. Alg.
(a) result (D2) result

1 δ1 = {1} {1, 2, 3, 4, 5, 6, 7, 8, {{1, 2}, {1, 3}, As Input
δ2 = {2, 3} 9, 10, 11, 12, 13, 14, {1, 4}, {1, 5},

15, 16, 17, 18, 19, 20, {1, 6}, {1, 7},
21, 22, 23, 24, 25, 26, {1, 8}, {1, 9},
27, 28, 29, 30, 31, 32, {1, 10}, {1, 11},
33, 34, 35, 36, 37, 38} {2, 3}}

2 δ1 = ∅ {1, 2, 3, 4, 5, 6, 7, 8, {{1, 2}, {1, 3}, As Input
δ2 = 9, 10, 11, 12, 13, 14, {1, 4}, {2, 3},
{1, 2, 3, 4} 15, 16, 17, 18, 19, 20, {2, 4}, {3, 4}}

21, 22, 23, 24, 25, 31,
32, 33, 34, 35, 36, 37,
38, 39, 40, 41, 42, 43,
49, 50, 51, 52, 53}

3 δ1 = {5} {2, 5, 8, 9, 13, 16, 17, {{1, 5}, {2, 5}, δ1 = {5}
δ2 = {8} 21, 22, 26, 27, 28, 31, {3, 5}, {4, 5}, δ2 =

34, 35, 39, 40, 44, 45, {5, 6}, {5, 7}, “at most
46, 49, 50, 54, 55, 56, {5, 8}, {5, 9}, one def.”
59, 60, 61, 64, 65} {5, 10}, {5, 11}}

will classify any 5 defective hosts of Type at most 2, except for the case where

there is either one Type-2 host or no Type-2 host.

7.6 Conclusions

This chapter has extended the results of Chapter 6 by weakening the assump-

tion that a malicious host will always violate a visiting spy agent. We have

applied GTC theory to a complex spy agent behavioural model in which some

defective will only yield a positive outcome in the presence of (or after collusion

with) other defectives. In particular we have looked at scenarios in which:

• some malicious hosts will always mishandle a visiting spy agent, whereas

• other malicious hosts will only violate the spy agent if they identify a

certain number of other malicious hosts in the agent’s route.

183

7.6. Conclusions

We have shown that combinatorial route designs can still be used to identify

malicious hosts that exhibit these more sophisticated types of behaviour when

certain criteria are met, and we have introduced a classification algorithm.

In this direction we have derived fundamental properties of GTC theory and

we have proposed a rank-2 classification algorithm. It seems likely that this

algorithm could be generalised for use in higher rank problems, although this

is expected to yield a larger number of cases where complete host classifica-

tions cannot be achieved. Further, we note that computer based experiments

indicate that some of the designs discussed here can also be successfully used

for malicious host classification in higher rank cases. This more effective than

expected operation may arise because of the symmetry of the defective com-

plexes that arise when analysing hosts of a range of different Types. The

study of further properties of route designs in the case where the set of defec-

tive complexes has other sets of specific properties is an interesting topic for

future research.

The results of this chapter are important as they can be used to develop

more sophisticated spy agent route designs with increased resilience to complex

malicious host behaviour, as compared with those discussed in Chapter 6.

These results also contribute to the general art of group testing for complexes

(e.g. they may be adapted for use in DNA complex group testing applications)

and could potentially become useful in future group testing applications. Such

research directions are further discussed in Chapter 11.

184

“Simplicity is the ultimate sophistication.”

Leonardo da Vinci

8
Optimal multi-stage spy agent group

testing

Contents
8.1 Synopsis . 186

8.2 Introduction . 187

8.2.1 Scenario . 187

8.2.2 The problem . 187

8.3 Optimal spy agent sequential group testing 189

8.3.1 Assumptions . 189

8.3.2 Definitions . 189

8.3.3 Optimality properties 191

8.4 Multi-stage sub-group routing algorithm 193

8.4.1 Objectives . 193

8.4.2 The algorithm . 193

8.4.3 Correctness . 195

8.4.4 Efficiency . 196

8.4.5 Discussion . 197

8.5 Conclusions . 197

185

8.1. Synopsis

8.1 Synopsis

In this chapter we take a different approach to that described in Chapters 6

and 7, in that we consider sequential group testing (SGT). We introduce an

optimal SGT algorithm that can be used to construct spy agent routes.

Basing spy agent routing on SGT schemes differs from the NGT based

approach developed in Chapters 6 and 7, in that the choice of which hosts to

test depends on the outcome of the previous test. This means that a sequential

(or multi-stage) spy agent routing algorithm is only likely to be preferable to

a NGT construction if the outcome of a test can be acquired after a relatively

short delay.

The objectives of spy agent group testing were introduced in §6.2, where

two optimisation parameters were defined, namely spy agent security and

group testing economy. Spy agent security is improved when the route length

is increased, and economy is improved when the number of spy agents (tests)

is reduced. The problem of optimising these two parameters is non-trivial for

NGT schemes. In this chapter we give a formal definition of spy agent routing

optimality, and give a simple SGT solution.

The remainder of the chapter is organised as follows. Section 8.2 introduces

the sequential spy agent GT scenario and formulates the design problem, and

§8.3 addresses optimality issues for spy agent routing in SGT schemes. Finally,

a simple optimal multi-stage algorithm is described and analysed in §8.4.

Aspects of the work described in this chapter have been published, [96].

186

8.2. Introduction

8.2 Introduction

8.2.1 Scenario

In this chapter we consider the use of adaptive, i.e. sequential, GT for con-

structing spy agent routes. This may be preferable in spy agent applications

where test outcomes are available quickly enough to enable all the tests to be

completed in a reasonable time. This scenario contrasts with that described

in §6.3.2 and considered in Chapters 6 and 7.

The choice of the general approach to spy agent route design, and how it

depends on the application scenario, is discussed further in Chapter 10.

8.2.2 The problem

As discussed in §2.6.2, a fundamental objective of a GT algorithm is to min-

imise the total number of tests required to find all the malicious hosts within

a set of hosts. In our particular application of GT our primary objective is

to select spy agent routes so as to maximise the number of hosts that each

spy agent visits, i.e. the route lengths. This objective is discussed in various

places in this thesis, including §3.4.3.2, §5.4.3, §6.3.1 and §7.2.1.

In a NGT scheme, all the routes are predetermined. A carefully chosen

route design can thus be designed to contain sufficiently long routes (see, for

example, the NGT constructions given in §6.4.2 and §7.3.3).

One major problem with using a standard SGT algorithm (see, for exam-

ple, [45]) in a spy agent setting is that it is likely to involve the use of very

short routes. This is because the a priori knowledge of a route outcome is

likely to reduce the size of the initial GT space. This, in turn, is likely to

reduce the length of the routes of spy agents deployed later in the procedure.

Thus a standard SGT algorithm may not be usable in a spy agent application.

187

8.2. Introduction

This observation is treated more formally in Lemma 8.8 below.

We next give two examples illustrating the possible use of SGT in a spy

agent scenario.

Example 8.1. Let {c1, c2, c3, c4} be a set of hosts known in advance to contain

exactly one defective. The single defective can be identified with log2 4 =

2 tests (the minimum number possible), as follows. First, test the subset

{c1, c2}: if this gives a positive result, then the defective is either c1 or c2;

otherwise, the defective is either c3 or c4. In either case, the defective can be

identified with a further single-host test. This is an efficient GT algorithm (in

terms of minimising the number of tests) but it is inappropriate for spy agent

applications as a result of the use of a single-target agent.

Example 8.2. Let {c1, c2, c3, c4} be a set of hosts known in advance to contain

exactly one defective. Suppose all 3-subsets of the four hosts are tested in

turn until a negative result is obtained. The defective host is then the one

not contained in the route giving this negative result. In this case, the route

length is 3, and superficial analysis suggests that between one and four tests

are required, with an expected number of 2.5 tests. However, more careful

analysis reveals that a fourth test will never be required since, after three

positive tests, the fact that the fourth test will yield a negative result can be

inferred. That is, this algorithm will always require between one and three

tests, with an expected number of 2.25 tests. Whilst this is not much more

than the minimum for this small case, for larger sets of hosts the worst case of

this algorithm will require n− 1 tests, i.e. no better than the trivial algorithm

in which the hosts are tested one by one.

In the sections that follow we consider possible approaches to route design

for SGT that maximise the lengths of spy agent routes. We propose a simple

188

8.3. Optimal spy agent sequential group testing

SGT algorithm suitable for use in a spy agent scenario, and prove that it is

optimal in a sense we define below.

8.3 Optimal spy agent sequential group test-

ing

8.3.1 Assumptions

We make the same assumptions as in §6.3.1. We also suppose that all ma-

licious hosts are of Type-1, as discussed in §7.2.1, i.e. a spy agent visiting

a malicious host will always yield a positive outcome. Moreover, we assume

that the number of malicious hosts is unknown, i.e. we consider the S(n, n)

GT problem.

We next consider a measure of optimality for a SGT algorithm when used

in a spy agent scenario. We first give some terminology.

8.3.2 Definitions

During operation of a SGT scheme, the choice of subsequent tests depends

on previous test outcomes, and a test outcome depends on the number and

distribution of malicious hosts but not on the order in which they are visited.

As a result, we can make the following observation.

Remark 8.3. Let S(d, n) be a sample space consisting of a set of n hosts

containing at most d defectives. Since there are at most d defectives, there

are
∑d

i=0

(

n
i

)

ways in which the defectives could be distributed amongst the set

of n hosts, and hence during the operation of a SGT algorithm designed to

cope with this number of defective hosts, up to
∑d

i=0

(

n
i

)

different sequences of

routes may be used, depending on whether individual tests give a positive or

negative result.

189

8.3. Optimal spy agent sequential group testing

As discussed in §8.2.2, given a SGT algorithm we wish to identify the

minimum length of a route generated by this algorithm for all possible sample

spaces S(d, n). This requirement is captured by the definition below.

Definition 8.4. Let S be a set of n hosts containing at most d malicious

hosts, let j be an identifier for a particular distribution of at most d malicious

hosts within S, and let A be a SGT algorithm that is capable of identifying

up to d malicious hosts. Suppose also that A, given a particular distribution

of at most d malicious hosts (with label j), uses a sequence of routes Qj =

(R1, R2, . . . , Rk), where Ri is the ith set of hosts to be tested, 1 ≤ i ≤ k. Then

a route Ri in Qj is said to be a weak route in A if |Ri| ≤ |Ri′ |, for every route

Ri′ in Qj′, for every distribution j′.

Definition 8.4 enables us to define a notion of optimality for SGT algo-

rithms when used in a spy agent setting, as follows.

Definition 8.5. Let S be a set of n hosts. Suppose that a SGT algorithm

A can identify all the malicious hosts in S, regardless of their number and

distribution, and let ρA be the length of a weak route in A. A is said to be an

optimal sequential spy agent routing algorithm, if, given any other SGT algo-

rithm B that can also identify all the malicious hosts, ρA ≥ ρB, where ρB is

the length of a weak route in B.

Z In this chapter, we use the terms optimal sequential group testing algorithm,

optimal sequential routing algorithm, and optimal algorithm interchange-

ably to mean an optimal sequential spy agent routing algorithm, as de-

fined above.

Example 8.6. In Example 8.2 the length of a weak route is ρA = 3. The

190

8.3. Optimal spy agent sequential group testing

given algorithm is optimal since the only route containing all 4 hosts cannot

help to identify the malicious host.

8.3.3 Optimality properties

In this subsection we derive some properties of optimal spy agent routing

algorithms.

Theorem 8.7. Suppose a set of n hosts is known in advance to contain at

most d defectives. Then the length ρ of a weak route in an optimal sequential

spy agent routing algorithm capable of detecting all the malicious hosts satisfies

ρ = n− d.

Proof. Consider the route design consisting of all subsets of hosts of size n−d.

This clearly has the property that the length of a weak route is n−d. We show

that this route design is capable of identifying all the defective hosts (given

there at most d of them).

There are at least n− d well-behaved hosts, and hence every well-behaved

host will appear in at least one route containing only well-behaved hosts, i.e.

a route giving a negative result. Thus the union of all routes giving negative

results contains all well-behaved hosts. However, it clearly cannot contain any

defective hosts, since the presence of a defective host will always cause a route

to give a positive result. Thus the complement of this union is precisely the

set of defective hosts, and the route design can identify up to d defectives.

Hence ρ ≥ n− d.

Now suppose that there are exactly d defective hosts. Any route of size

greater than n − d will thus always contain at least one defective host and

hence will always give a positive result. As a result, if a route design is to be

191

8.3. Optimal spy agent sequential group testing

capable of identifying the defective hosts it must contain at least one route of

size n− d, i.e. ρ ≤ n− d, and the result follows.

Lemma 8.8. Suppose a set of n hosts contains exactly d defectives and let A

be a SGT algorithm that can identify all the defectives. Suppose that for all

possible distributions of the d defectives algorithm A requires a maximum of

Nmax routes (tests). If A is optimal, then Nmax ≥
(

n
d

)

− 1.

Proof. If A is optimal then, from Theorem 8.7, all routes have length no less

than ρ = n−d. Any route that contains more than n−d hosts will always give

a positive result (because that route will surely contain at least one defective),

and, thus, such a test is redundant (because it provides no new information).

It follows that Nmax is minimised if all the routes of A have length less or

equal to n − d. Thus, for an optimal A, Nmax is minimised if all the routes

have length n− d. To identify the defective hosts for all possible distributions

it is necessary and sufficient to consider all but one of the routes containing

all the possible (n− d)-subsets of hosts. The result follows.

We note that Lemma 8.8 implies that Nmax ≥ n − 1 if 1 ≤ d < n. This

condition is to some extent inconsistent with the main objective of GT theory,

which is to design algorithms with the property that Nmax is significantly less

than n, as discussed in §2.6.2. This observation suggests that known GT

algorithms are not suitable in the context of the optimality criterion defined

above; for this reason, we propose in the next section a new optimal routing

algorithm.

192

8.4. Multi-stage sub-group routing algorithm

8.4 Multi-stage sub-group routing algorithm

8.4.1 Objectives

In this section we present a special type of SGT algorithm which we call a

multi-stage sub-group routing algorithm, and show that it is optimal.

The objective of the multi-stage sub-group routing algorithm is to construct

routes that can identify all malicious hosts within a group of hosts, regardless

of how they are distributed, in such a way that the length of a weak route

is maximised. That is, we wish to devise an optimal algorithm, as given by

Definition 8.5.

8.4.2 The algorithm

The algorithm operates as follows. As previously, we suppose that there are n

hosts and that we wish to identify up to d malicious hosts. We construct and

test routes in the following series of stages:

Stage 0: Deploy a single agent with a route containing all n target hosts.

If the outcome is negative, the algorithm terminates and all hosts are

deemed to be well-behaved.

Stage 1: Deploy a set of n agents, with routes equal to every possible (n−1)-

subset of the n hosts. If one route tests negative then the algorithm

terminates, and the single agent not in this route is deemed to be the

only defective host. (In all other cases all routes will test positive, there

are at least two defective hosts, and the algorithm continues).

. . .

Stage i (1 < i < n): Deploy a set of
(

n
i

)

agents, with routes equal to every

possible (n− i)-subset of the n hosts. If at least one route tests negative,

193

8.4. Multi-stage sub-group routing algorithm

then the algorithm terminates, and the complement of the union of the

routes giving a negative result are deemed to be the set of defective

hosts. (If all routes test positive then there are at least i + 1 defective

hosts, and the algorithm continues).

. . .

Stage n: If all the above stages complete without the algorithm terminating

then all hosts are defective.

We can describe this algorithm in a more formal way as follows.

Algorithm 8.9 (Multi-stage sub-group routing).

Require: the set S of n hosts contains some unspecified number of Type-1

defective hosts.

for i = 0 to i = n− 1 do

Deploy a set of
(

n
i

)

agents, with routes equal to every possible (n−i)-subset

of S.

if at least one route gives a negative result then

The set of well-behaved hosts is equal to the union of the routes giving

a negative result.

Stop algorithm.

end if

end for

All hosts are defective

We note that Algorithm 8.9 can be modified by always terminating at

stage k, for some k satisfying 1 ≤ k < n, if it is required that a route length

194

8.4. Multi-stage sub-group routing algorithm

should be at least n− k. If, however, such a modification is required, then it

is possible that the set of defective hosts will not be identified.

8.4.3 Correctness

We now show that Algorithm 8.9 performs as claimed.

Theorem 8.10. Suppose Algorithm 8.9 is applied to a set S of n hosts. Then

the following properties hold:

(P1) if Algorithm 8.9 does not terminate at stage i (0 ≤ i ≤ n−1), then there

are at least i+ 1 defective hosts;

(P2) if Algorithm 8.9 terminates at stage i (0 ≤ i ≤ n − 1), then there are

precisely i defective hosts, and if R (which must be non-empty) is the set

of routes giving a negative result, then the set of defective hosts is equal

to S −
⋃

r∈R r;

(P3) Algorithm 8.9 is an optimal routing algorithm, regardless of the number

of defective hosts.

Proof. We address each listed result as follows.

1) In stage i, non-termination means that every route gives a positive

result. If there were at most i defective hosts, then there would exist at least

one (n− i)-subset of hosts (i.e. a route) excluding all the defective hosts, i.e.

there would exist a route giving a negative result, contradicting our assumption

of non-termination, and hence the result follows.

2) From (P1), if the algorithm reaches stage i then there are at least i

defective hosts. If there were more than i defective hosts then the algorithm

would not terminate, since every (n − i)-subset of S would contain at least

195

8.4. Multi-stage sub-group routing algorithm

one defective host, and hence every route would give a positive result. This

contradicts our assumption of termination and thus (P2) follows.

3) From (P1) and (P2), if S contains precisely d defective hosts, then the

algorithm will terminate at stage d, and hence the smallest route used will

have size n− d. The result follows from Theorem 8.7.

8.4.4 Efficiency

Whilst the multi-stage sub-group routing algorithm described above is optimal

under our definition, it is clearly not efficient in terms of the number of tests

required to identify the defective hosts. Indeed, if there is more than one

defective host then it is clearly less efficient in this sense than simply testing

the hosts one by one. The precise performance of the algorithm is captured

by the following results.

Lemma 8.11. If Algorithm 8.9 is applied to a set of n hosts containing pre-

cisely d defectives (d < n), then the number of tests performed will be equal

to:

A(n, d) =
d
∑

i=1

(

n

i

)

. (8.4.1)

Proof. From Theorem 8.10, the algorithm will terminate at stage d. As de-

scribed above, at stage i (0 ≤ i ≤ n−1), Algorithm 8.9 will involve performing

a total of
(

n
n−i

)

=
(

n
i

)

tests. The result follows.

Lemma 8.12. If Algorithm 8.9 is applied to a set of n hosts containing pre-

cisely d defectives (d < n), then the number of agents processed by each host

will be equal to:

C(n, d) =
d
∑

i=0

(

n− 1

i

)

. (8.4.2)

196

8.5. Conclusions

Proof. From Theorem 8.10, the algorithm will terminate at stage d. As de-

scribed above, at stage i (0 ≤ i ≤ n−1), Algorithm 8.9 will involve performing

a total of
(

n
i

)

tests involving every possible (n − i)-subset of hosts. For any

particular host, a total of
(

n−1
n−i−1

)

=
(

n−1
i

)

of these tests will involve a route

that visits that host. The result follows.

8.4.5 Discussion

In this chapter we have considered optimality in route designs from one per-

spective, namely maximising the route size. However, as documented in §8.4.4

and Lemma 8.8, this has the effect that the number of tests required and the

number of agents processed by each host can become very large. As discussed

in §5.4.1, if a host is visited by a large number of spy agents then the accuracy

of the test results may be compromised. It is thus clear that optimality needs

to be considered from a variety of perspectives, and a more complex definition

of optimality would be helpful.

One alternative approach would be to use other system parameters to

evaluate the credibility of the GT identification results. We return to this

problem in Chapter 9, where we introduce a method to evaluate spy agent

results obtained from either NGT or SGT schemes.

8.5 Conclusions

In this chapter we have studied the application of SGT algorithms to the

spy agent routing problem. This work complements the spy agent NGT and

GTC problems, studied in Chapters 6 and 7 respectively.

Unlike standard NGT constructions, standard SGT algorithms yield rout-

ing schemes that are not appropriate for spy agent scenarios. This is because

197

8.5. Conclusions

SGT algorithms typically involve the use of routes containing very few hosts.

To address this problem, in this chapter the problem of spy agent routing op-

timisation is formulated, and a new type of SGT algorithm is proposed that

is optimal under the definition given.

The defined optimality criterion and the challenge of non-trivial malicious

host behaviour give rise to further challenges, including the following.

• What alternative optimality definitions can be given?

a. How can other spy agent system parameters (see §5.4) influence spy

agent security?

b. How can a GT algorithm be both (near) optimal and efficient in

terms of the number of tests and the number of agents visiting each

host?

• How can malicious hosts be identified when they behave in more complex

ways?

a. What happens if Type-e hosts are assumed?

b. What happens if malicious hosts behave inconsistently?

These issues are possible topics for future research. In the next chapter

we relax some of the assumptions made in Chapters 6, 7 and 8 by considering

how the reliability of group testing identification results might depend on a

number of spy agent system parameters.

198

“Quality is not an act, it is a habit.”

Aristotle

9
Evaluating spy agent results

Contents
9.1 Synopsis . 200

9.2 Introduction . 200

9.2.1 Previous discussions 200

9.2.2 Problem description 201

9.3 Credibility evaluation model 205

9.3.1 Assumptions . 205

9.3.2 The model . 207

9.3.3 Case study 1: Single spy agent route 213

9.3.4 Case study 2: A homogeneous system 227

9.3.5 Case study 3: NGT route designs 228

9.3.6 Case study 4: SGT route designs 229

9.3.7 Discussion . 233

9.4 Impact analysis of malicious behaviour 234

9.4.1 Procedure . 234

9.4.2 Case study . 235

9.5 Conclusions . 239

199

9.1. Synopsis

9.1 Synopsis

In this chapter we introduce a methodology for the evaluation of the credibility

of spy agent classification results. We assume that the behaviour of a malicious

host towards a visiting spy agent depends on a) the total number of hosts this

spy agent visits (as discussed in 5.4.3), and b) random choice.

The remainder of the chapter is organised as follows. Section 9.2 revisits

the spy agent evaluation problem. Section 9.3 introduces the assumptions

underlying the proposed model, presents the spy agent credibility evaluation

model, and describes its application to the NGT and SGT schemes introduced

in previous chapters. Section 9.4 analyses the impact of random malicious

host behaviour models, and, finally, §9.5 concludes this chapter.

Aspects of the work described in this chapter have been published, [97].

9.2 Introduction

9.2.1 Previous discussions

The evaluation of remote hosts is the main objective of a spy agent system. The

evaluation process involves a set of trust assessments that can yield estimates

for a variety of security issues, as discussed in §3.4.4 (and as analysed further

in Chapter 10).

In Chapters 6, 7 and 8, trust evaluation was discussed in the context of

identifying the malicious hosts from amongst a set of hosts, using the results

obtained from a set of spy agents with specified routes. In such schemes, the

fundamental spy agent security requirement is to construct spy agent routes

in a manner that ensures that malicious hosts exhibit characteristic behaviour

(see §4.4.2). The problem of designing appropriate sets of spy agent routes

200

9.2. Introduction

was considered for two main host behaviour models. More specifically,

1. in §6.3.1 and §8.3.1 it is assumed that a malicious host always yields a

positive spy agent outcome if the spy agent route length is sufficiently

large; whereas

2. in §7.2.1 it is additionally assumed that a malicious host will only exhibit

behaviour leading to a positive outcome if a certain number of other

malicious hosts appear in the spy agent’s route.

Also, as discussed in §6.5, error-tolerant GT designs can be used to identify

malicious hosts exhibiting inconsistent behaviour (at least to a certain extent).

These spy agent routing schemes can be improved in a number of ways,

as discussed in §6.5, §7.6 and §8.5. This is not the objective of this chapter;

instead we attempt here to evaluate the credibility of given host evaluation

results, i.e. the level of trustworthiness of the spy agent results acquired using

the given schemes.

9.2.2 Problem description

The trustworthiness of spy agent results depends on the validity of the under-

lying assumptions for the application scenario. In this chapter we relax some

of the assumptions previously made, and consider the following cases:

• a malicious host may not behave maliciously if the route of a visiting

agent is insufficiently long;

• a malicious host may not behave maliciously for random reasons.

Example 9.1. Consider the NGT spy agent route design given in Exam-

ple 6.21 (based on the Fano Plane) where, given a set of test results, the

201

9.2. Introduction

design can be used to identify at most two malicious hosts. Now suppose that

the first malicious host misbehaves if and only if the route length is greater

than three, and the second malicious host misbehaves if and only if the route

length is greater that two. Clearly, since all routes have length equal to three,

the first malicious host will not misbehave and the design can only be used to

identify the second malicious host.

Example 9.2. Consider again the spy agent route design given in Exam-

ple 6.21, and suppose that the spy agents are sent sequentially. Also sup-

pose that the hosts c1 and c2 are malicious and will misbehave if and only if

the route length is greater that two and they have been visited by at most

two spy agents. Although all routes have length equal to three, the routes

r3 = {c1, c6, c7} and r5 = {c2, c5, c7} will test negative regardless of the fact

that r3 contains c1 and r5 contains c2. This is because c1 = {r1, r2, r3} and

c2 = {r1, r4, r5}, which means that the agent with route r3 is the third agent

to visit c1, and the agent with route r5 is the third agent to visit c2. The

outcome will be a = {r1, r2, r4} and, using Corollary 6.18, we cannot identify

any defective. This is because, in this case, the union of all negative routes

contains all hosts: r3 ∪ r5 ∪ r6 ∪ r7 = {c1, c2, c3, c4, c5, c6, c7}.

Example 9.2 shows that, if some malicious hosts misbehave in a selective

way, then the route design can yield inconsistent results. That is, while some

routes test positive, the malicious hosts responsible cannot be identified. This

means that, in this case, it can be deduced that one or more hosts are malicious,

but that they have not mistreated all the spy agents they have processed.

More generally, when presented with an inconsistent set of spy agent test

results, the following options for addressing the issue could be considered.

202

9.2. Introduction

1. The evaluator could attempt to assess the probability that the individual

hosts are malicious.

2. The evaluator could attempt to assess the probability that the obtained

results are believable (which is discussed in this chapter).

3. The evaluator could retest the hosts using longer routes (e.g. by intro-

ducing additional hosts) and re-evaluate the new results.

Typically, retesting should only be performed after a delay long enough

to minimise the likelihood that a potentially malicious host will associate the

two tests.

Example 9.3. Let S = {c1, c2, c3, c4} be a set of hosts containing two de-

fectives c1 and c4. Suppose that c1 misbehaves if and only if the agent

route length is at least two, and c2 misbehaves if and only if the agent route

length is at least three. Now consider the application of the multi-stage sub-

group routing algorithm described in §8.4. At stage zero, the agent containing

{c1, c2, c3, c4} will test positive, implying the presence of at least one defec-

tive. At stage one, all four of the agents visiting 3-subsets of the four hosts will

test positive. This implies the presence of at least two defectives. Stage two

involves the use of six agents, each visiting a distinct 2-subset of the four hosts.

Of these, only the three containing c1 will give a positive result. Host c1 is

the only host that can tentatively be identified as malicious and the algorithm

ends.

Example 9.4. Now suppose that c1 is the only well-behaved host in the set

of hosts S = {c1, c2, c3, c4}, and that the hosts c2, c3 and c4 will always

misbehave if an agent has route length at least three. Suppose also that, if the

203

9.2. Introduction

route length is equal to two, the hosts c2, c3 and c4 will misbehave randomly.

Then the application of the multi-stage sub-group routing algorithm described

in §8.4 will reach stage two, in which six agents are despatched each visiting

a distinct 2-subset of the four hosts. Then c2, c3 and c4 might, by chance,

choose to misbehave when handling the agents {c1, c2}, {c1, c3}, and {c1, c4},

respectively, but not for any other agents. This will yield exactly the same

result that is observed in Example 9.3, i.e. the algorithm will identify host

c1 as the only malicious host. We note that malicious hosts could choose to

exhibit this behaviour through a desire to ‘frame’ c1.

In Example 9.3 it is clear that there is a discrepancy in the results, since

from stage 1 there are known to be at least two malicious hosts, but only

one (c1) can be tentatively identified. Also, from Example 9.4 we observe

that when malicious hosts behave inconsistently, the obtained result (c1 is

malicious) may be completely wrong.

Inconsistent host behaviour will not necessarily be obvious from the spy

agent results. That is, whilst in Examples 9.2, 9.3 and 9.4 the results make

it clear that at least one host has misbehaved in a selective way, scenarios

could arise in which no such evidence is available from the test results. This

possibility is highlighted in the following example.

Example 9.5. Suppose that, as in Example 9.4, S = {c1, c2, c3, c4} is a set of

hosts in which c1 is the only well-behaved host, and that the hosts c2, c3 and

c4 always misbehave if a visited agent has route length at least three. Then the

application of the multi-stage sub-group routing algorithm described in §8.4

will reach stage two. Now suppose that, at this stage, c2, c3 and c4 misbehave

when handling the agents they receive except for the one with route {c1, c2}.

The algorithm will then identify hosts c1 and c2 as well-behaved, hosts c3 and

204

9.3. Credibility evaluation model

c4 as malicious, and there is no indication of any inconsistency in the results.

More generally, there may be a variety of reasons why test results cannot be

trusted. Such a situation could arise if malicious hosts do not behave according

to the assumptions on which the routing scheme is based. For example, as in

the examples above, inconsistent results could be obtained when a malicious

host chooses whether or not to misbehave depending on the agent route length

and/or randomly.

The presence of inconsistent (or erroneous) results means that we need

to use probabilistic arguments to try to determine which hosts are (and are

not) defective. However, this is not the purpose of the assessment scheme

discussed in this chapter. Instead, in the next section, we propose a method

of evaluating the credibility of an obtained set of spy agent outcomes. That

is, we wish to evaluate the probability that all the hosts contained in a spy

agent route are non-malicious hosts when this agent yields no signs of abuse.

We note that the proposed method is based on less restrictive assumptions

about possible malicious host behaviour than have applied in previous chap-

ters. We propose a means to analyse results obtained from the application of a

spy agent scheme without requiring any additional spy agents to be deployed.

9.3 Credibility evaluation model

9.3.1 Assumptions

A spy agent GT scheme has the objective of classifying target hosts as ei-

ther malicious or non-malicious. To assess the credibility of such classification

results, we make the following assumptions about host behaviour and its in-

terpretation by the operator of the spy agent system.

205

9.3. Credibility evaluation model

(A-1) A malicious host cannot identify whether or not a visiting agent is a

spy agent. [That is, the spy agent dissemblance requirements are met,

as discussed in §4.3.5.]

(A-2) A malicious host has two modes of operation: a malicious mode and

a non-malicious mode. A malicious host is in the malicious mode of

operation with a certain probability called the Probability of Malicious

Mode (PMM).

(A-3) A host’s PMM depends only on the internal characteristics of the host.

That is, the mode of operation of a malicious host is independent of any

external events, including the existence and behaviour of other malicious

hosts.

(A-4) A malicious host estimates that it can avoid being identified as mali-

cious, if it misbehaves, with a certain probability. We call this proba-

bility the Probability of Identification Avoidance (PIA).

(A-5) A host’s PIA depends on the spy agent route length; we suppose that

the PIA increases linearly with the length of the agent route. This

assumption is in line with the assumption that the longer the agent

route, the less a malign host is likely to suspect a spying scenario, as

discussed in §3.4.3.2. We note that in deterministic host behaviour

models, such as those developed in Chapters 6, 7 and 8, we assume that

the route length is always sufficiently long and that PIA = 1.

(A-6) A malicious host processes a visiting spy agent maliciously if and only

if a) the host is in the malicious mode of operation, and b) the host

decides it can avoid identification. Building on (A-2) and (A-4) we

206

9.3. Credibility evaluation model

suppose that a malicious host processes a visiting spy agent maliciously

with a certain probability, which we call the Probability of Characteristic

Behaviour (PCB), where PCB = PMM × PIA.

(A-7) A positive spy agent outcome is always credible in the sense that it

always indicates the existence of at least one malicious host in the spy

agent route.

(A-8) A negative spy agent outcome is not credible, in the sense that it may

contain malicious hosts that do not behave maliciously. We associate

a value (between 0 and 1) with a spy agent route which is an estimate

for the probability that this route contains a malicious host and gives

a negative result. We call this value the Probability of Uncharacteristic

Result (PUR).

(A-9) We assign a value (between 0 and 1) for a set of spy agent classification

results, which depends on the degree to which the outcome set of a spy

agent routing scheme is believable. We call this value the Credibility of

Classification (CC).

9.3.2 The model

In line with (A-2) and (A-3), we assume that a malicious host is always in

either a Malicious Mode (MM) or a Non-malicious Mode (NM), and that

the transitions between MM and NM are probabilistic. I.e. a malicious node

behaves according to a Markov Model, as shown in Figure 9.1.

Based on this behavioural model, we define PMM as follows.

Definition 9.6. Suppose that a host cj is malicious and that its malicious

207

9.3. Credibility evaluation model

(πj)(1− πj)

NM MM

Figure 9.1: Markov model with two states: Non-malicious Mode (NM) and
Malicious Mode (MM).

behaviour is characterised by a discrete random process with the Markov prop-

erty. The PMM of cj (written PMMj) is the steady-state probability that cj

is in the MM state:

PMMj = πj . (9.3.1)

In line with (A-5), we define PIA as follows.

Definition 9.7. Suppose that host cj is malicious. The PIA of cj w.r.t. a

route ri that contains cj (written PIAij) is defined as follows:

PIAij =

{

|ri|/ξj if 1 ≤ |ri| < ξj,
1 if |ri| ≥ ξj.

(9.3.2)

where ξj is a fixed characteristic behaviour parameter of the host cj, called the

route length threshold.

Lemma 9.8. Let PCBij denote the PCB for a malicious host cj when pro-

cessing an agent with route ri. Then:

PCBij = πj

(

min(|ri|, ξj)

ξj

)

. (9.3.3)

Proof. From (A-6) we have PCBij = PIAij × PMMj. The result then follows

immediately from Definitions 9.6 and 9.7.

The following remarks follow trivially from Lemma 9.8 and (A-6).

Remark 9.9. Let PCBij denote the PCB for a malicious host cj when pro-

cessing an agent with route ri. The probability that cj does not misbehave is

1− PCBij.

208

9.3. Credibility evaluation model

Remark 9.10. Suppose that cj and cj
′ are malicious hosts that are visited by

spy agents ri and ri
′, respectively, where cj and ri are not necessarily different

from cj
′ and ri

′, respectively. Whether or not cj processes ri maliciously is

independent of whether or not cj
′ processes ri

′ maliciously.

In line with (A-8), we define PUR as follows.

Definition 9.11. The PUR of a spy agent route ri (written PURi) is the

probability that ri contains a non-empty set A of malicious hosts and each

host in the set A does not misbehave (i.e. ri gives a negative result).

Lemma 9.12. Let PURi denote the PUR for route ri, and let Pr(A, i) be the

probability that the set of malicious hosts in ri is A. Then:

PURi =
∑

A⊆ri,A 6=∅

Pr(A, i)
∏

cj∈A

(1− PCBij) . (9.3.4)

Proof. From Definition 9.11 we have:

PURi =
∑

A⊆ri,A 6=∅

Pr(A, i) Pr(cj does not misbehave for every cj ∈ A) .

The result follows immediately from Remarks 9.9 and 9.10.

Corollary 9.13. If a route ri contains no malicious hosts, then PURi = 0.

Proof. This follows immediately from the definition of PUR, since if ri contains

no malicious hosts, then Pr(A, i) = 0.

Corollary 9.14. If a route ri contains at least one malicious host that behaves

maliciously then PURi = 0.

Proof. This follows immediately from the definition of PUR, since if ri contains

at least one malicious host, cj , that behaves maliciously then PCBij = 1.

Moreover, if A is a subset of ri that does not contain cj then Pr(A, i) = 0.

209

9.3. Credibility evaluation model

One problem with applying Lemma 9.12 is that the probability Pr(A, i)

is generally not known, as the operator of a spy agent system will not a pri-

ori know the probability distribution of malicious hosts. We address this by

estimating this probability, using the following result.

Lemma 9.15. Suppose that a set of n hosts contains d malicious hosts, 0 ≤

d ≤ n, where each host is equally likely to be malicious. Suppose that route ri

contains r hosts (1 ≤ r ≤ n). Then the probability Pr(r, θ, n, d) that ri contains

exactly θ malicious hosts (where 0 ≤ θ ≤ min{r, d} and r ≤ n−d+θ) is given

by:

Pr(r, θ, n, d) =

(

d

θ

)(

n− d

r − θ

)

/

(

n

r

)

. (9.3.5)

Proof. There are
(

d
θ

)

ways of choosing the θ malicious hosts in ri. Also, since

there are n−d non-malicious hosts, there are
(

n−d
r−θ

)

ways of choosing the r− θ

non-malicious hosts in ri. There are
(

n
r

)

possible routes containing r hosts.

The result follows.

By convention we set Pr(r, θ, n, d) = 0 if θ > d, θ > r, or n− d < r − θ.

The following remark follows immediately from the definition of Pr(r, θ,

n, d).

Remark 9.16. If θ ≤ r, d ≤ n, and r ≤ n, then

r
∑

θ=0

Pr(r, θ, n, d) = 1 . (9.3.6)

The following two corollaries follow trivially.

Corollary 9.17. Suppose that a set S of n hosts contains d malicious hosts.

The probability that an r-subset of S contains no malicious hosts is given by:

Pr(r, 0, n, d) =

{ (

n−d
r

)

/
(

n
r

)

=
∏r−1

l=0
n−d−l
n−l

if r ≤ n− d,

0 otherwise.
(9.3.7)

210

9.3. Credibility evaluation model

Corollary 9.18. Suppose that a set S of n hosts contains d malicious hosts.

The probability that an r-subset of S contains r malicious hosts is given by:

Pr(r, r, n, d) =

{ (

d
r

)

/
(

n
r

)

=
∏k=r−1

k=0
d−k
n−k

if r ≤ d,

0 otherwise.
(9.3.8)

Using Lemma 9.15, we can obtain the following estimate for PUR.

Lemma 9.19. Suppose that a set of n hosts contains d malicious hosts, 0 ≤

d ≤ n, where each host is equally likely to be malicious. Suppose that route ri

contains r hosts (1 ≤ r ≤ n). Then, using the notation of Lemma 9.12:

PURi =

r
∑

θ=1

Pr(r, θ, n, d)

(

r

θ

)−1
∑

A⊆ri,|A|=θ

∏

cj∈A

(1− PCBij)

 . (9.3.9)

Proof. Let Pr(A, i) be as defined in Lemma 9.12, i.e. the probability that A is

the set of malicious hosts in ri. Then, if |A| = θ, it follows by definition that

Pr(A, i) = Pr(r, θ, n, d)/

(

r

θ

)

.

Now, from Lemma 9.12:

PURi =

r
∑

θ=1

∑

A⊆ri,|A|=θ

Pr(A, i)
∏

cj∈A

(1− PCBij)

and hence

PURi =
r
∑

θ=1

Pr(r, θ, n, d)

(

r

θ

)−1
∑

A⊆ri,|A|=θ

∏

cj∈A

(1− PCBij)

 ,

as desired.

Lemma 9.19, when combined with Lemma 9.15, enables us to estimate the

PUR of a route when the parameters n, d, r, πj, ξj are known.

Remark 9.20. By definition, the PUR of one route is independent of the

PUR of any other route.

211

9.3. Credibility evaluation model

We next use the notion of PUR to evaluate the CC of a spy agent classifi-

cation outcome, in line with (A-9).

Lemma 9.21. Let R be a set of spy agent routes that is used to test a set of

hosts, and let RN ⊆ R be the set of routes that yield a negative result. Then,

using the notation of Lemma 9.19, the CC of this spy agent scheme is:

CC =
∏

ri∈RN

(1− PURi) . (9.3.10)

Proof. The outcome set of this scheme is credible if and only if the outcome

of every route ri ∈ R is credible. From Definition 9.11 and Remark 9.20 it

follows that:

CC =
∏

ri∈R

(1− PURi)

=
∏

ri∈RN

(1− PURi)
∏

rj∈(R−RN)

(1− PURj) .

The result follows from Corollary 9.13.

In general, the notion of CC is useful for benchmarking the effectiveness

of spy agent route designs. We note, however, that the above result does not

capture how the an uncharacteristic outcome affects host identification results.

That is, the CC does not take account of the ability of some spy agent schemes

to successfully classify a set of hosts even in the presence of uncharacteristic

results. One example of such a spy agent scheme was proposed in Chapter 7,

where in some cases malicious hosts can be correctly identified even if they

do not always misbehave. Further, the CC does not take account of the fact

that certain types of host behaviour can give inconsistent or misleading spy

agent results, as discussed in §9.2.2 (see Examples 9.1–9.5). The study of more

complex evaluation models remains a topic for future work.

212

9.3. Credibility evaluation model

We next demonstrate the use of the above results by providing a detailed

analysis of four case studies.

9.3.3 Case study 1: Single spy agent route

In our first case study we consider a simple scenario in which a single spy

agent migrates through a set of r hosts, i.e. the route design is R = {r1 =

{c1, c2, . . . , cr}}. We further assume that all malicious hosts contained in the

route have the same PMM and PIA, i.e. πj = π and ξj = ξ for 1 ≤ j ≤ r. If

r1 contains θ malicious hosts, then these hosts can be distributed in
(

r
θ

)

ways.

Combining Lemmas 9.8, 9.19 and 9.21 we obtain the following estimate for

the CC of the system (written CCS).

CCS =
∏

ri∈R

(1− PURi)

= 1− PUR1

= 1−
r
∑

θ=1

Pr(r, θ, n, d)

(

r

θ

)−1 (rθ)
∑

k=1

θ
∏

j=1

(1− π(min(r, ξ))/ξ)

= 1−
r
∑

θ=1

Pr(r, θ, n, d) (1− π(min(r, ξ))/ξ)θ . (9.3.11)

Remark 9.22. In the above equation CCS = 1 if and only if r ≥ ξ and π = 1,

i.e. there is at least one malicious host and it always behaves maliciously.

In Figures 9.2–9.9 we illustrate the effect on CCS of a range of values for

the system parameters. We make the following observations.

(GEN) In the figures we use a colour ramp palette that interpolates between

‘red’ and ‘green’, and we associate the colours of this palette with the

values of CCS, which range from 0 (red) to 1 (green).

1. CCS is a function of five parameters: the route length r, the number

213

9.3. Credibility evaluation model

of malicious hosts, d, the number of target hosts, n, the route length

threshold of malicious hosts, ξ, and the malicious host PMM, π.

2. We consider all possible cases where three of the four parameters

d, n, ξ, π are fixed (we do not consider the case where r is fixed).

This gives four groups of evaluation results, (A)–(D), which are

discussed below.

(A) Figures 9.2 and 9.3 plot CCS against r × π, 1 ≤ r ≤ n, 0 ≤ π ≤ 1, for

fixed d, n, ξ. We first observe that, in all these figures, CCS increases

monotonically with π. In all the contour maps, greener colours are ob-

tained (meaning CCS → 1) as the PMM π increases. We also observe

that the effect of r is non-convex.

A visual comparison suggests that CCS tends to increase as r increases,

with the following three exceptions: 1) if π → 0, then CCS → 0; 2) if

π → 1, then CCS has two local maxima and one minimum for a value of

r which depends on the remaining three parameters; and 3) for smaller

values of d, the minimum value of CCS in exception 2) is obtained for

a larger r (the red zone shifts to the right). We note that, while r

is determined by the route design, π depends on inherent behavioural

characteristics of the malicious hosts. This emphasises the importance

of making accurate assumptions regarding malicious host behaviour.

We make the following additional observations regarding changes to the

other parameters.

1. Figures 9.2(c) and 9.2(d) plot CCS for smaller and larger values of

d, respectively, than the value used in Figure 9.2(b). We observe

that, as d increases, so does CCS. One way of interpreting this

214

9.3. Credibility evaluation model

(a) (b)

(c) (d)

Figure 9.2: CCS vs. r × π, for r ∈ [1, 20] and π ∈ [0, 1], for the cases where:
(a),(b) d = 5, n = 20, and ξ = 10; (c) d = 1, n = 20, and ξ = 10; and (d)
d = 10, n = 20, and ξ = 10.

215

9.3. Credibility evaluation model

(a) (b)

(c) (d)

Figure 9.3: CCS vs. r × π, for r ∈ [1, 20] and π ∈ [0, 1], for the cases where:
(a) d = 5, n = 20, and ξ = 5; (b) d = 5, n = 20, and ξ = 15; (c) d = 5,
n = 10, and ξ = 10; and (d) d = 5, n = 30, and ξ = 10.

216

9.3. Credibility evaluation model

result involves considering (9.3.5): a larger value of d increases the

probability that a route contains a larger set of malicious hosts,

which in turn reduces the probability that a route giving a negative

result contains a set of malicious hosts, none of which misbehaves.

This suggests that a spy agent outcome is more credible when more

hosts are found (or known) to be malicious.

2. Figures 9.3(a) and 9.3(b) plot CCS for smaller and larger values of

ξ, respectively, than the value used in Figure 9.2(b). We observe

that CCS increases monotonically as ξ decreases. This effect arises

from our assumption that a malicious host is more likely to behave

maliciously if it has a smaller route length threshold ξ, as follows

from (9.3.3).

3. Figures 9.3(c) and 9.3(d) plot CCS for smaller and larger values

of n, respectively, than the value used in Figure 9.2(b). A visual

comparison suggests that by, as n increases, CCS decreases. This

effect is further analysed under (D) below.

(B) Figures 9.4 and 9.5 plot CCS against r × ξ, 1 ≤ r ≤ n, 0 ≤ ξ ≤ n, for

fixed d, n, π. We first observe that, in all these figures, CCS increases

monotonically as ξ decreases. This observation is consistent with (A-

2) above. We further observe that, if r ≥ ξ, then changes in ξ have

no effect on CCS. This is because, in this case, the value of PCB, as

given in (9.3.3), is independent of ξ. As in (A) above, the effect of r is

non-convex.

We make the following additional observations regarding changes to the

other parameters.

217

9.3. Credibility evaluation model

(a) (b)

(c) (d)

Figure 9.4: CCS vs. r × ξ, for r ∈ [1, 20] and ξ ∈ [0, 1], for the cases where:
(a),(b) d = 5, n = 20, and π = 0.5; (c) d = 1, n = 20, and π = 0.5; and (d)
d = 10, n = 20, and π = 0.5.

218

9.3. Credibility evaluation model

(a) (b)

(c) (d)

Figure 9.5: CCS vs. r × ξ, for r ∈ [1, 20] and ξ ∈ [0, 1], for the cases where:
(a) d = 5, n = 20, and π = 0.1; (b) d = 5, n = 20, and π = 0.9; (c) d = 5,
n = 10, and π = 0.5; and (d) d = 5, n = 30, and π = 0.5.

219

9.3. Credibility evaluation model

1. Figures 9.4(c) and 9.4(d) plot CCS for smaller and larger values of

d, respectively, than the value used in Figure 9.4(b). We observe

that, as d increases, so does CCS. This result is consistent with the

analysis in (A-1) above.

2. Figures 9.5(a) and 9.5(b) plot CCS for smaller and larger values of

π, respectively, than the value used in Figure 9.4(b). We observe

that relatively large values of CCS are obtained with large π (that

is, for the case where malicious hosts are more likely to misbehave).

In this case, relatively large values of CCS are obtained for larger

values of r, regardless of the other parameters. This behaviour

arises because a malicious host is very likely to behave maliciously

when π → 1 and when PIA → 1, as follows from (9.3.2). This

conclusion reinforces the conclusions reached under (A) above.

3. Figures 9.5(c) and 9.5(d) plot CCS for smaller and larger values

of n, respectively, than the value used in Figure 9.4(b). A visual

comparison suggests that, as n increases, CCS decreases. This effect

is further analysed under (D) below.

(C) Figures 9.6 and 9.7 plot CCS against r × d, 1 ≤ r ≤ n, 1 ≤ d ≤ n, for

fixed n, ξ, π. In this case CCS exhibits two local minima. One arises for

a large value of d and a small value of r, and the other for a small value

of d and a large value of r. This extends the observations made under

(A) above where, for a fixed d, CCS exhibits one local minimum. These

observations reinforce the conclusions given in (A-1). For example, the

local minimum (red area) in Figure 9.2(c) appears on the right side of the

map (large r, small d), and the local minimum in Figure 9.2(d) appears

220

9.3. Credibility evaluation model

on the left side (small r, large d).

This behaviour emphasises the importance of choosing an appropriate

value of r for a spy agent routing scheme. This choice becomes more

difficult when there is no a priori knowledge of d. In such cases, it would

appear prudent to choose a relatively moderate value for r, i.e. neither

too high nor too low. The initial choice can be further refined as knowl-

edge builds up (e.g. with the help of previous spy agent evaluations). For

example, previously obtained results might suggest that a larger value

of r should be used in order to improve CCS if there are a large num-

ber of malicious hosts, and/or if the malicious hosts are more likely to

exhibit malicious behaviour. If, however, there are only a very small

number of malicious hosts, and if these hosts have a very small PMM,

then the probability that a route contains a malicious host that does not

misbehave is likely to be higher for a larger route length.

A visual comparison of Figures 9.6 and 9.7 further suggests that CCS is

more ‘unstable’ for small d, i.e. its gradient is larger; that is, it changes

faster as other parameters change. We make the following additional

observations regarding changes to the other parameters.

1. Figures 9.6(c) and 9.6(d) plot CCS for larger and smaller values

of n, respectively, than the value used in Figure 9.6(b). A visual

comparison suggests that, as n increases, CCS decreases. This effect

is consistent with (A-3) and (B-3) above, and this issue is further

analysed under (D) below.

2. Figures 9.7(a) and 9.7(b) plot CCS for smaller and larger values of

π, respectively, than the value used in Figure 9.6(b). These plots

221

9.3. Credibility evaluation model

(a) (b)

(c) (d)

Figure 9.6: CCS vs. r × d, for r ∈ [1, 20] and d ∈ [0, 20], for the cases where:
(a),(b) n = 20, ξ = 10, and π = 0.5; (c) n = 30, ξ = 10, and π = 0.5; and (d)
n = 10, ξ = 10, and π = 0.5.

222

9.3. Credibility evaluation model

(a) (b)

(c) (d)

Figure 9.7: CCS vs. r × d, for r ∈ [1, 20] and d ∈ [0, 20], for the cases where:
(a) n = 20, ξ = 10, and π = 0.1; (b) n = 20, ξ = 10, and π = 0.9; (c) n = 20,
ξ = 5, and π = 0.5; and (d) n = 20, ξ = 15, and π = 0.5.

223

9.3. Credibility evaluation model

are consistent with the discussion under (A) above.

3. Figures 9.7(c) and 9.7(d) plot CCS for smaller and larger values of

ξ, respectively, than the value used in Figure 9.6(b). These plots

are consistent with the discussion in (A-2) above.

(D) Figures 9.8 and 9.9 plot CCS against r
n
× n, 0 ≤ r

n
≤ 1, 1 ≤ n ≤ 20,

for fixed d, ξ, π. We first make two general observations. 1) If the ratio

r/n is kept fixed, increases in n seem to have a relatively small effect

on CCS, although there are some exceptions. That is, the contour lines

are predominantly vertical in the corresponding plots. 2) If π and d are

both relatively large, high values of CCS are obtained when r/n → 1

(i.e. when r is maximised).

Combining these observations with the discussions in (A-3), (B-3), and

(C-1) above, we suggest that, if n is increased while keeping all other pa-

rameters fixed, the exhibited decrease in CCS can mainly be attributed

to the decrease in the ratio r/n (rather than the increase in n). This un-

derlines the importance of selecting spy agent routes with long migration

paths.

However, as indicated above, there are a few exceptions to this picture.

That is, CCS takes a relatively low value (as marked in red) when π or d

are small. This behaviour is consistent with previous observations. By

only considering the case where π is large, the findings suggest that the

model presented in this chapter is more appropriate if malicious hosts

have a high likelihood of behaving as expected (i.e. maliciously).

We make the following additional observations regarding changes to the

other parameters.

224

9.3. Credibility evaluation model

(a) (b)

(c) (d)

Figure 9.8: CCS vs. r
n
× n, for r

n
∈ [0, 1] and n ∈ [0, 20], for the cases where:

(a),(b) d = 5, ξ = 10, and π = 0.5; (c) d = 1, ξ = 10, and π = 0.5; and (d)
d = 10, ξ = 10, and π = 0.5.

225

9.3. Credibility evaluation model

(a) (b)

(c) (d)

Figure 9.9: CCS vs. r
n
× n, for r

n
∈ [0, 1] and n ∈ [0, 20], for the cases where:

(a) d = 5, ξ = 10, and π = 0.1; (b) d = 5, ξ = 10, and π = 0.9; (c) d = 5,
ξ = 5, and π = 0.5; and (d) d = 5, ξ = 15, and π = 0.5.

226

9.3. Credibility evaluation model

1. Figures 9.8(c) and 9.8(d) plot CCS for smaller and larger values of

d, respectively, than the value used in Figure 9.8(b). We observe

that, as d increases, CCS reaches a maximum for a relatively large

value of r/n. This observation supports the conclusions given under

(D) above.

2. Figures 9.9(a) and 9.9(b) plot CCS for smaller and larger values of

π, respectively, than the value used in Figure 9.8(b). As for d, as

π increases, CCS reaches a maximum for a relatively large value of

r/n. This observation also supports the conclusions given under

(D) above.

3. Figures 9.9(c) and 9.9(d) plot CCS for smaller and larger values of ξ,

respectively, than the value used in Figure 9.8(b). We observe that

ξ significantly influences the results only when r < ξ. For larger

values of r, the effect of ξ is diminished, yielding more credible

results.

We note that the above observations will also apply for more complex

route designs. This is because from Remark 9.20 we observe that the CCS of

individual routes are independent of one another. This is further discussed in

the next case study.

9.3.4 Case study 2: A homogeneous system

In our second case study we consider the special case where all routes have

the same length, r, and the PMM and PIA of every malicious host cj is the

same, i.e. πj = π and ξj = ξ. The analysis of this case builds upon the first

case study, and the CC of this system (written CCH) can be trivially derived

227

9.3. Credibility evaluation model

from Lemma 9.21 and (9.3.11) as:

CCH = (CCS)
β , (9.3.12)

where β = |RN | is the number of routes that yield a negative result.

This case study applies to both NGT and SGT spy agent route designs,

as described in Chapters 6 and 8, respectively. Specific studies of these two

types of route design are given below.

9.3.5 Case study 3: NGT route designs

The CC of a NGT spy agent routing design can be estimated from (9.3.12) in

the case where a design with uniform route length is used. For example, this

is the case if the spy agent routes are constructed using a t-(v, b, r, k, 1) design,

as discussed in §6.4.2. This is achieved by associating the blocks and points

of the design with hosts and routes, respectively. In this case, there are v spy

agents, b hosts, k agents visiting each host and r hosts per agent.

In Figures 9.10 and 9.11 we plot estimates for the CC for certain well-

known t-(v, b, r, k, 1) designs. In these examples, the parameters r and n are

determined by the design. From Theorem 6.19 and Corollary 6.18 we know

that 2-designs are k − 1-disjunct, and k − 1-classifiers. This means that the

corresponding routing designs can only identify a limited number of malicious

hosts. For this reason, we only consider small values of d, i.e. 1 ≤ d ≤ 4. For

convenience, we set π = 0.7 (giving rise to more credible results, as discussed

in §9.3.3) and β = 1 (i.e. there is only spy agent that yields a negative result).

We make the following observations regarding these figures.

1. The value of CC is smaller for larger d and larger ξ.

228

9.3. Credibility evaluation model

2. The value of CC is larger for designs with larger r and smaller ξ. The

value of CC is maximised when r ≥ ξ. This means that ‘larger’ designs

(such as the 2-(27, 117, 13, 3, 1)) will give more credible results.

These findings are consistent with the conclusions given in §9.3.3.

We note here that our choices for β and π may not be consistent with the

choice of d. This is highlighted by the example that follows.

Example 9.23. Consider the design 2-(7, 7, 3, 3, 1) in which a single malicious

host is visited by k = 3 spy agents. If there is only one malicious host and this

host abuses all visited agents, then three routes will yield a positive result,

and 7− 3 = 4 routes will yield a negative result. This result is not consistent

with the assumption β = 1. If, on the other hand, less than three routes give a

positive result, then the outcome cannot be used to deterministically classify

the hosts, and it is 100% certain that the outcome is not credible. This result

is not consistent with our estimation of CCH.

More generally, as discussed in §9.2.2, the credibility model does not take

into account whether or not a certain combination of spy agent results yields

consistent host classification results. Instead, the simplifying assumption is

that the PUR of a route is independent of the PUR of all other routes. For this

reason, we claim that the credibility model may not be suitable for posterior

evaluations of obtained results. Instead, it provides a technique that can be

used to help choose route designs that are likely to give credible results.

9.3.6 Case study 4: SGT route designs

In this case study we wish to estimate the CC of the multi-stage sub-group

routing algorithm described in §8.4. For convenience we only consider the

229

9.3. Credibility evaluation model

Figure 9.10: CCS for 2-(7, 7, 3, 3, 1), 2-(9, 12, 4, 3, 1), 2-(16, 20, 5, 4, 1) and 2-
(21, 21, 5, 5, 1) designs. We set π = 0.9.

230

9.3. Credibility evaluation model

Figure 9.11: CCS for 2-(13, 26, 6, 3, 1), 2-(31, 31, 6, 6, 1), 2-(25, 100, 12, 3, 1) and
2-(27, 117, 13, 3, 1) designs. We set π = 0.9.

231

9.3. Credibility evaluation model

case where the algorithm reaches a final stage in which malicious hosts are

identified. In this case, if the algorithm tests n hosts and ends at stage i,

then there is only one route that yields a negative result (i.e. β = 1), the

single negative route has length r = n − i, and d = i malicious hosts are

identified. The CC of this scheme, written CCM, can then be trivially derived

from (9.3.11) and (9.15) as follows.

CCM = 1−
n−d
∑

θ=1

Pr(n− d, θ, n, d) (1− π(min(n− d, ξ))/ξ)θ

= 1−
n−d
∑

θ=1

(

d
θ

)(

n−d
n−d−θ

)

(

n
n−d

)

(

1−
π(min(n− d, ξ))

ξ

)θ

. (9.3.13)

Remark 9.24. In the above equation CCM = 1 if and only if n ≥ d + ξ and

π = 1.

Remark 9.24 suggests that n should be chosen to be sufficiently large to

allow higher values of CCM to be obtained. We note that this result gives

additional weight to the third part of Theorem 8.10, which states that Algo-

rithm 8.9 is ‘optimal’ in the sense that it identifies malicious hosts using routes

with the longest possible length.

CCM is a function of four parameters: the number of target hosts, n, the

number of malicious hosts, d, the route length threshold of malicious hosts, ξ,

and the malicious host PMM, π. In Figure 9.12 we plot CCM against d × π,

1 ≤ d ≤ n, 0 ≤ π ≤ 1 for a case in which n and ξ are fixed. We make the

following observations.

• For large values of d (large i, small r) the value of CCM is small.

• For small values of d (large r) the value of CCM depends on π. If, in this

case, π is small (i.e. the malicious hosts behave less consistently) then

the value of CCM is small.

232

9.3. Credibility evaluation model

Figure 9.12: CCM vs. d× π, for n = 20, ξ = 10.

• The value of CCM is more likely to be relatively large in the presence of

neither too many nor too few malicious hosts.

The above results are consistent with the discussions in §9.3.3.

9.3.7 Discussion

The validity of the credibility model presented in this chapter depends on:

a) the validity of the assumptions given in §9.3.1, b) the correctness of the

estimates for the parameters d, ξ, and π, and c) the choice of the parameters

n and r that characterise the route design, as discussed in §9.3.3.

In general, the credibility model will not be appropriate for use in cases

where malicious hosts behave in very complex ways (either deterministically or

stochastically). This is highlighted by Example 9.4, in which malicious hosts

attempt to frame a non-malicious host. That is, the possibility that malicious

233

9.4. Impact analysis of malicious behaviour

hosts collude to frame a non-malicious host and, at the same time, the value

of CC is misleadingly high, cannot be precluded. However, while the estimate

for CC cannot capture all the ways in which a set of malicious hosts may

choose to behave, we claim that the credibility evaluation model is still useful

in establishing a probabilistic result. Note also that the model should not be

used to make predictions in the case of selective or worst-possible malicious

host behaviour.

9.4 Impact analysis of malicious behaviour

9.4.1 Procedure

In this section we attempt to analyse the statistical properties of host identi-

fication results obtained for a range of possible of behaviour choices.

We first need to define our notion of malicious behaviour choice, as follows.

Definition 9.25. Suppose that a malicious host cj is contained in (incident

with) a set of k routes {ri, r2, . . . , rk}. We define the vector of behaviour of

cj to be the binary vector Bj = {b1, b2, . . . , bk}, where bm = 1, 1 ≤ m ≤ k, if

cj misbehaves for route rm, and bm = 0 otherwise.

In the rest of this section, we only consider NGT spy agent schemes. We

analyse the classification results obtained for all possible malicious host be-

haviour choices with the use of the following algorithm.

Algorithm 9.26. Suppose that a set S = {c1, c2, . . . , cn} of hosts is tested

using an d-classifier NGT route design, d < n. The following procedure can

be used to analyse the impact of random malicious host behaviour.

Step 1. Choose a set ∆ ⊂ S to be the set of malicious hosts, |∆| ≤ d.

234

9.4. Impact analysis of malicious behaviour

Step 2. Choose a set of vectors of behaviour B = {Bj : cj ∈ ∆} and

calculate the route design outcome vector. Identify the set I of mali-

cious hosts using Corollary 6.18 (i.e. let I be the set of hosts that are

not included in the union of all routes that give a negative result). Let

λ = |I ∩∆|/|∆|, where λ is the classification ratio of successfully iden-

tified malicious hosts.

Step 3. Repeat Step 2 for all possible choices of B. [If each malicious host is

visited by k agents then there are σ = 2kd different choices.]

Step 4. Repeat steps 2 and 3 for all possible choices of ∆. [Suppose that there

are τ such choices].

Step 5. Calculate the statistical credibility of the classification algorithm as

SC = φ/(τσ), where φ =
∑

∆

∑

B λ.

9.4.2 Case study

We now provide a simple case study of the use of Algorithm 9.26. In this case

study we consider a spy agent route design based on the Fano Plane, shown in

Table 6.2, in which there are v = 7 routes, b = 7 hosts, k = 3 routes per host

and r = 3 hosts per route. We assume that there are exactly two malicious

hosts.

We use Algorithm 9.26 to study the impact of random malicious host be-

haviour.

Step 1. Suppose we choose ∆ = {c1, c7}.

Steps 2 and 3. The two malicious hosts are contained in the following routes:

c1 = {r1, r2, r3} and c7 = {r3, r5, r6}. Suppose the vectors of be-

haviour for the two hosts are B1 = (b1, b2, b3) and B7 = (b4, b5, b6),

235

9.4. Impact analysis of malicious behaviour

where b1, b2, b3, b4, b5, b6 correspond to the routes r1, r2, r3, r3, r5, r6, re-

spectively. Clearly, there are 2kd = 26 = 64 different ways for choosing

B1 and B7. That is, there are 64 different ways in which the two hosts

can behave.

We show that a host is identified as malicious if and only if all the

(three) routes that include this host give a positive result. As discussed

in §6.4.3, the Fano Plane is 2-disjunct, and hence the union of any two

columns (hosts) does not contain any other column. Thus, a malicious

host cannot be included in three routes that test positive unless it mis-

behaves at least once. [That is, if there are no more than two malicious

hosts, then the spy agent scheme based on the Fano Plane is frame-

proof.] It follows that both hosts c1 and c7 will be identified if and only

if b1 = b2 = b5 = b6 = 1 and at least one from b3, b4 is also one. That is,

both malicious hosts are identified in 3 of the 64 different behavioural

cases. Furthermore, only one malicious host, say c1, is identified if and

only if b1 = b2 = b3 = 1 and at least one from b4, b5, b6 is zero, or

b1 = b2 = b4 = 1, b3 = 0, and at least one from b5, b6 is zero. That is,

only c1 is identified in 7+3 = 10 behavioural cases. Similarly, only c2 is

identified in a further 10 behavioural cases. If both hosts are identified

then λ = 1. If only one host is identified then λ = 1/2. If no malicious

host is identified then λ = 0.

Steps 4 and 5. As a result of the symmetry of the Fano plane, any choice

of ∆ containing two malicious hosts will yield identical results in steps

2 and 3 to those given above. We thus have:

SC =
φ

τσ
=

∑

∆

∑

B λ

τ2kd
=

∑

B λ

2kd
=

3 + 10 + 10

64
≃ 0.36 .

236

9.4. Impact analysis of malicious behaviour

We next illustrate the effect of different possible malicious behaviour choi-

ces. We group together all the behaviour patterns (vectors) for each defective

host, in which zero, one, two or all three spy agents that visit the host yield a

positive result. This clearly defines 4× 4 = 16 groups of malicious behaviour

patterns for the two malicious hosts. We then aggregate the classification

results for all the 16 malicious behaviour scenarios. The results are shown in

Figure 9.13.

We make the following observations regarding this figure.

1. We denote the occurrence of any host in the route of an abused agent by

OIAA. We also denote the occurrence of any host in three abused agents

by OI3AA. We depict OIAA with a circle, and OI3AA with a cross.

2. We use the tuple (NAAH1,NAAH7) to identify the malicious behaviour

patterns, where NAAH1 and NAAH7 represent the number of spy agents

abused by the malicious hosts c1 and c7, respectively.

3. In the bottom left box (first pattern of malicious behaviour) both c1 and

c7 abuse zero agents (NAAH1 = NAAH7 = 0), and thus OIAA is zero

for all seven hosts. In the bottom row (NAAH7 = 0) we observe only

one OI3AA, when NAAH1 = 3 (bottom right box). In the top right

box (where each malicious host abuses all three visiting agents) both

malicious hosts are correctly identified. In other scenarios (boxes), we

note that a malicious host may or may not be identified, depending on

whether the choices of the two malicious hosts result in one malicious

host being included in three routes that test positive.

4. Across all the boxes, we observe that no well-behaved host can be framed

for any malicious behaviour choice. Also, statistically, when the choice of

237

9.4. Impact analysis of malicious behaviour

Host_ID

O
IA

A
 +

 O
I3

A
A

0

1

2

3

2 4 6

NAAH1
NAAH7

NAAH1
NAAH7

2 4 6

NAAH1
NAAH7

NAAH1
NAAH7

NAAH1
NAAH7

NAAH1
NAAH7

NAAH1
NAAH7

0

1

2

3
NAAH1
NAAH7

0

1

2

3
NAAH1
NAAH7

NAAH1
NAAH7

NAAH1
NAAH7

NAAH1
NAAH7

NAAH1
NAAH7

2 4 6

NAAH1
NAAH7

NAAH1
NAAH7

2 4 6

0

1

2

3
NAAH1
NAAH7

OIAA OI3AA

Figure 9.13: Aggregated identification results for different malicious host be-
haviour patterns of two malicious hosts, based on the route design defined by
the Fano Plane.

238

9.5. Conclusions

malicious behaviour is random, a large number of occurrences of a host

in malicious routes can be linked with a high likelihood that this host

is malicious (although, this might entail statistical errors, as previously

discussed).

9.5 Conclusions

In this chapter a model designed to enable the credibility of spy agent results

to be evaluated was introduced. This model enables the evaluation of a variety

of spy agent routing schemes on the assumption of probabilistic malicious host

behaviour. Numerical results based on the model indicate that credibility is

maximised when the spy agent route is long enough to mitigate the effects of

random or inconsistent malicious host behaviour. However, there are excep-

tions where mixed results are obtained, especially when malicious hosts only

misbehave with a low probability.

The credibility evaluation results can be used to choose appropriate spy

agent route designs or algorithms. In this direction, this chapter provides a

methodology to evaluate the effectiveness of both NGT designs and SGT al-

gorithms. We have also provided a methodology for analysing the results of

all possible behaviour choices that could be made by malicious hosts.

The credibility model is probabilistic, and it can thus exhibit significant

statistical errors, especially if malicious hosts collude to try to manipulate the

results. This chapter has also shown that, under certain conditions, a careful

selection of spy agent routes might provide some protection against framing

of hosts.

In future work, spy agent frameproof and error-resilient properties could be

further tested and analysed, and more decisive/precise credibility evaluation

239

9.5. Conclusions

models could also be developed. For example, the likelihood of the mali-

cious host collusion scenarios discussed in Chapter 7 could be studied. The

probability in erroneous results can be further analysed within the context of

error-tolerant route designs.

240

“ I really believe that we don’t have to make a trade-off between

security and privacy. I think technology gives us the ability to have

both.”

John Poindexter

10
Spy agent applications

Contents
10.1 Synopsis . 242

10.2 Introduction . 242

10.2.1 Setting the scene 242

10.2.2 Services . 243

10.2.3 Applicability . 245

10.2.4 An application framework 246

10.3 Spy agent email honeypots 247

10.3.1 Outline of operation 247

10.3.2 Threat detection 248

10.3.3 The scheme . 250

10.3.4 Similar applications 251

10.4 Spy agent shopping honeypots 252

10.4.1 Outline of operation 252

10.4.2 Threat detection 253

10.4.3 The scheme . 255

10.4.4 Alternative applications 256

10.5 Conclusions . 256

241

10.1. Synopsis

10.1 Synopsis

This chapter is concerned with the practical application of spy agent systems.

In §10.2 we provide a general introduction to the application of spy agents.

We then analyse two specific examples of spy agent applications.

• In §10.3 we describe an application of spy agents designed to help address

data privacy violation attacks on mobile agents.

• In §10.4 we consider an application of spy agents designed to help address

sabotage attacks on mobile agents.

Aspects of the work described in this chapter have been published in [99],

and a UK patent has been granted [98].

10.2 Introduction

10.2.1 Setting the scene

In Chapters 6, 7, 8 we introduced and analysed a range of spy agent routing

and host classification schemes, and we observed that the choice of scheme

depends on the application. In this chapter we consider the application of

these schemes in particular practical scenarios.

A spy agent system, as introduced in Chapter 3, combines a spy agent

routing scheme with other mobile agent security functions, such as those spec-

ified in §2.4, in order to support the required services. This idea is explored

further in this section, the remainder of which is structured as follows.

• §10.2.2 outlines the security services that must be provided to support

the operation of a spy agent system, and the services that can be provided

by such a system;

242

10.2. Introduction

• §10.2.3 introduces fundamental applicability requirements for spy agent

applications; and

• §10.2.4 gives a framework which is subsequently used to specify two

examples of practical applications.

10.2.2 Services

10.2.2.1 Required services

The deployment of a set of spy agents can be used to obtain estimates for

a variety of security issues, as discussed in §3.4.4. The suitability of a spy

agent system for a particular application depends on how well the spy agent

requirements defined in Chapter 4 can be met in practice. These requirements

imply the need for the following set of services, the provision of which is

necessary for the successful application of a spy agent system.

Host security services. These mobile agent system services support secure

agent communications and mobility, as described in §4.5 and §4.6. These

services help to hold a set of hosts accountable for the secure execution

and migration of a visiting mobile agent. Security controls that can be

used to provide such security services were discussed in §2.4.4, and a

host security architecture was outlined in §2.4.4.2.5.

Mobile code security services. These mobile code execution and migra-

tion protection services can be used to detect and/or prevent security

attacks on mobile agents. Security controls that can be used to provide

such services were discussed in §2.4.3. Schaefer [155] provides an exam-

ple of such a set of services, in which known security controls are used

as building blocks to provide mobile agent e-commerce security services.

243

10.2. Introduction

In the context of spy agent applications, mobile code security services

are required to support threat detection, as described in §4.4.1. Addi-

tionally, mobile code security services can help to ensure that malicious

hosts process spy agents in the same way as they would other ‘standard’

mobile agents, as discussed in §4.3.3. The required set of mobile code se-

curity services will vary depending on the particular application. Indeed,

the applications presented in §10.3 and §10.4 themselves have somewhat

different security service requirements.

10.2.2.2 Offered services

Spy agents are designed to identify which hosts attack visiting mobile agents.

Providing this service requires a set of spy agents to be disseminated in a

manner that satisfies the spy agent dissemblance requirements, given in §4.3,

and the attack identification requirements, given in §4.4.2. Spy agent schemes

providing such services have been proposed in Chapters 6, 7, and 8. The

degree to which the spy agent services are provided will depend on the degree

to which the assumptions underlying the spy agent scheme are met.

There are a variety of ways in which a host could attack a mobile agent, as

discussed in §2.4.2.1. A particular implementation of a spy agent system might

only be capable of detecting certain categories of security attack. In order

to test for a range of different security issues, it may therefore be necessary

to deploy multiple spy agent systems, each employing a different means of

constructing and disseminating spy agents.

Host identification results could be used to provide further services. For

example, they could be used as part of the credibility evaluation approach

described in Chapter 9, or for risk management, as discussed in §4.6.2.

244

10.2. Introduction

10.2.3 Applicability

As discussed in §4.4.1, an application of spy agent techniques requires an

attack detection mechanism. A tentative list of mobile agent attack detection

mechanisms was provided in Table 2.2. We make the following observations

regarding the suitability of known attack detection mechanisms for use in spy

agent systems.

• Spy agents are likely to be most effective when the impact of an attack on

a single mobile agent does not provide sufficient information to identify

the host responsible (since malicious hosts are most likely to misbehave

in such circumstances).

• Spy agents can be useful in cases where other detection methods are

available to help identify malicious hosts; in such a case spy agents could

be used to corroborate other assessment results. More generally, a variety

of host evaluation techniques could be used in a complementary way.

Example 10.1. Consider a scenario in which agents employ secure chain re-

lation protocols (see §2.4.3.3.7) in order to help identify modification or trun-

cation attacks. Such protocols have potentially large overheads, as discussed

in §2.4.3.3.6, which runs counter to the objective of using mobile agents to

improve network efficiency. A spy agent system could be used in addition to a

secure chain relation protocol in order to corroborate the attack identification

results.

Example 10.2. Secure chain protocols, as discussed in Example 10.1, cannot

be used to detect DoS and black-box attacks (see §2.4.3.2.2 and §2.4.3.3.2).

This can be seen from an attack of the following type.

245

10.2. Introduction

a. Suppose a malicious host blocks the execution of the agent code in such

a way that this action is not recorded by the mobile agent. For example,

the host could block the execution of mobile agent logging processes.

b. The host could repetitively execute copies of the agent code until it

understands how the agent operates.

c. Using its understanding of the operation of the agent, the host pre-

computes responses for a variety of possible agent execution calls. For

example, suppose that the agent and the host are negotiating the details

of a sale, and the negotiation comprises a sequence of agent requests and

corresponding host responses. The host might, in this attack scenario,

precompute the sequence of responses that is certain to result in the

agent accepting an offer that is most advantageous to the host.

d. Finally, the host resumes the original execution of the agent and uses

its precomputed sequence of responses to answer the appropriate agent

requests without leaving any trace of the black-box attack. For example,

the host could adjust its system clock to make sure that the timestamps

do not reveal processing delays.

The deployment of detection objects (see §2.4.4.2.3) could be used to detect

such black-box attacks. This is discussed further in §10.4.4.

10.2.4 An application framework

We use the following framework to present our specific example applications

of spy agent systems.

1. Outline of operation: this involves reviewing the objectives of the

application, and the assumptions underlying its operation.

246

10.3. Spy agent email honeypots

2. Threat detection: under this heading we describe the means of detect-

ing when a malicious act has been performed on an agent, and justify

its suitability for the application concerned.

3. The scheme: this involves specifying the system architecture and the

spy agent routing scheme.

4. Alternative applications: finally, other applications for which similar

threat detection mechanisms and spy agent schemes may be suitable are

considered.

10.3 Spy agent email honeypots

10.3.1 Outline of operation

Our first example application is the Spy Agent Email Honeypot (SAEH). This

involves the use of spy agents to identify mobile data fraudsters and data pri-

vacy infringers. Spy agents are used to identify the hosts that are responsible

for either mishandling or failing to protect agent PII. This is a ‘posterior

impact scenario’, where the impact of an attack on a mobile agent is realised

(potentially a significant time) after the agent visits the malicious host that is

responsible for the attack.

Such an application is useful in an environment in which mobile agent hosts

hold private mobile agent data covered by privacy protection policies. While

thwarting passive security attacks that infringe a privacy agreement is almost

impossible if these attacks are deliberately performed by the hosts that hold

the data, it is still desirable to identify the hosts that are responsible for such

infringements. This security issue was discussed in §2.5.1.3.

The main assumption underlying SAEH is that it is the host’s responsibility

247

10.3. Spy agent email honeypots

to protect the data privacy of a visiting mobile agent. This was argued in §4.2,

where we stated that a host is held accountable for any intended or unintended

privacy violation resulting from this host accessing, processing, or retaining

agent’s data. Hence, hosts allowing such infringements can be regarded as

malicious and/or untrustworthy.

The main objective of SAEH is to use spy agents to identify malicious hosts

that violate the privacy of a visiting agent’s email address.

10.3.2 Threat detection

10.3.2.1 The technique

The data privacy violation detection technique involves the use of decoy email

addresses. This technique is adapted here from Seigneur and Jensen [158],

who describe a proactive privacy protection mechanism. In the Seigneur and

Jensen system, individuals subscribe to a number of online providers using, in

each case, a unique decoy email address associated with a unique decoy user

account. Thus each decoy email address is known by only one provider. If at

any later time emails from other providers are sent to this address, then there

is a high probability that the email address has been exchanged between the

providers involved. This system resembles a honeypot (see §2.5.3.1), in which

decoy email addresses are uniquely registered with providers in accordance

with a mutual privacy agreement, and the uniqueness of this registration is

not known to the providers.

A provider is deemed to be responsible for the reception of any unsolicited

email via the associated email address, provided that the ‘secrecy’ of this

unique email address has not been compromised in other ways. A host is

held responsible for both attacks in which it abuses the email address itself,

248

10.3. Spy agent email honeypots

and indirect attacks involving the disclosure of the decoy email address to an

unauthorised third party, knowingly or unknowingly (e.g. due to poor stor-

age security). The system enables the exchange of private email addresses

between online providers to be tracked, and will thereby provide potentially

useful information about the trustworthiness of such providers, such as which

providers respect privacy policies and how often private email leakages occur.

The use of honeypot email addresses in the way described by Seigneur et

al. [158,159] is limited by the fact that the registration process requires manual

input. For the purposes of SAEH we extend and automate this concept by

using spy agents and by exposing each decoy email address to a number of

hosts, rather than just one. Exposure to multiple hosts is essential for the spy

agent concept as it provides a malicious host with an incentive to misbehave,

as described in §3.4.3.2. The outcome of a spy agent test is determined by

whether or not a host in the agent’s route violates the confidentiality of the

spy agent’s email address. As a result, a positive outcome for a spy agent

corresponds to the reception of unsolicited email via the unique email address

associated with the agent’s route.

10.3.2.2 Applicability

The applicability of the SAEH detection method described above depends on

the security characteristics of the email addresses employed in the scheme.

Each spy agent should be equipped with a unique decoy email address.

Apart from the entities operating the spy agent system, we assume that a

decoy email address will only be known by:

• the subgroup of hosts to which the agent containing it is sent; and

• parties that acquire it illegitimately from other hosts (that themselves

249

10.3. Spy agent email honeypots

either obtain the address legitimately by receiving an agent containing

it or acquire it from another host).

The successful operation of SAEH also depends on the assumption that the

email address cannot be found in other networks, and cannot be obtained by

any other parties without a host in the agent route ultimately being respon-

sible. In order to make this assumption more tangible, the following secrecy

requirements should be met.

• It should not be possible to compromise a decoy email address by a

brute-force attack. In particular, each email address must have high

entropy.

• A decoy address should not have, or refer to, a ‘suspicious’ name.

If the above requirements hold, it can be inferred that the reception of any

unsolicited email via a decoy email address is evidence that there is at least

one untrustworthy host within the destination set of the associated spy agent.

10.3.3 The scheme

10.3.3.1 System architecture

An implementation of SAEH should use a ‘standard’ structure for mobile

agents, as described in §3.4. The spy agent originator creates a set of ‘normal’

mobile agents and equips them with pseudonymous ID credentials, including

decoy email addresses, as discussed in §3.4.2.

10.3.3.2 Route designs

The choice of the routing scheme depends on the assumed behaviour charac-

teristics of malicious hosts. A variety of spy agent routing schemes applying

250

10.3. Spy agent email honeypots

for different sets of assumptions about malicious host behaviour were given in

§6.3.1, §7.2.1 and §8.3.1.

In any application, the choice of the routing scheme depends on when the

outcome of a spy agent becomes available. In this case, if an agent’s PII (such

as an email address) is violated, we assume that the impact of this violation will

eventually become evident. As argued in §6.3.2, NGT spy agent schemes are

preferable to SGT schemes when the test outcome for a spy agent is only likely

to be available after a significant delay. This applies in the SAEH application,

as the impact of the misuse of an email address might only become evident

some significant time after the related spy agent has commenced its migration.

In addition, NGT schemes allow groups of target hosts (i.e. the hosts in a

spy agent route) to be tested at independent times. For example, in a carefully

designed spy agent routing scheme, spy agents could be despatched at random

times in order to reduce the chance of a malicious host linking them, thereby

enhancing the design’s subterfuge characteristics (see §4.3.1).

Finally, NGT schemes enable malicious host identification and credibility

results to be updated as the test outcomes change over time. For example,

if, soon after a spy agent terminates, no violation of the corresponding email

address has occurred, then all hosts in the agent route can be classified as well-

behaved, albeit with a low evaluation credibility (as analysed in Chapter 9).

Over time, the identification result can be updated if the outcome changes

following detection of the misuse of an email address. Further background on

the subject of PII violations is provided in §2.5.1.

10.3.4 Similar applications

SAEH can be adapted to detect other types of spy agent PII violation, such

251

10.4. Spy agent shopping honeypots

as the misuse of credit card information. For example, fraudulent use of credit

card details could be detected using spy agents if the spy agent originator

cooperated with issuing banks in order to establish decoy sets of credit card

details (see Figure 3.4). In such case, the spy agent system would need to

cooperate with other trusted services, as discussed in §4.6.1.

10.4 Spy agent shopping honeypots

10.4.1 Outline of operation

Our second application is the Spy Agent Shopping Honeypot (SASH). It

involves the use of spy agents to identify the misuse of mobile agent code. Spy

agents are used to identify the hosts that are responsible for delaying agent

execution as a result of either DoS or black-box attacks (see Example 10.2).

This is an ‘immediate impact scenario’, where the impact of an attack on a

mobile agent is realised shortly after the agent visits the malicious host that

is responsible for the attack.

Such an application is likely to be useful in an environment where au-

tonomous mobile agents are designed to make purchases on behalf of users,

and are protected with code obfuscation techniques (see §2.4.3.2.2).

More specifically, we consider a mobile agent marketplace in which hosts

(merchants) are visited by shopping agents (customers). Each agent executes

on each visiting host an obfuscated shopping negotiation program, which is

designed to protect the confidentiality of the agent’s negotiation semantics

from the visiting host, at least before the agent migrates elsewhere. While

it is hard to prevent a malicious host from analysing the negotiation code’s

functionality, it is, at least, important to detect such an attack.

The main assumption underlying the operation of SASH is that correctly

252

10.4. Spy agent shopping honeypots

operating hosts employ all the security controls necessary to receive, execute,

negotiate with, and despatch a shopping agent in a timely and secure manner.

A host is held accountable for delaying the execution of an agent regardless of

the reason for such a delay, such as negligence or an intention to analyse the

agent code.

The main objective of SASH is to use spy agents to identify malicious

hosts that attempt to discover the semantics of an agent (see §2.4.2.1). Many

schemes have been proposed with the goal of protecting an agent against

such attacks, such as encrypted functions (§2.4.3.2.1) and code obfuscation

(§2.4.3.2.2); however current techniques are still vulnerable to black-box at-

tacks, as discussed in Example 10.2. Given that all threat prevention mech-

anisms have practical limitations, the aim of this application of spy agent

technology is to provide a threat detection technique that can be used to

identify malicious hosts.

10.4.2 Threat detection

10.4.2.1 The technique

The SASH scheme makes the fundamental assumption that the time taken for

an agent to complete its migration and negotiation tasks can be used as an

indicator of whether or not any of the hosts in its route have attempted to

compromise it (e.g. using a DoS or black-box attack). That is, for each spy

agent we define a threshold time interval, which will need to be dependent on

the length of the agent route, the latency of inter-host communications, and

the expected time required to legitimately process the agent. If a spy agent

completes its migration in a period of time less than the threshold then the

spy agent outcome is deemed to be negative; however, if the agent takes longer

253

10.4. Spy agent shopping honeypots

than the threshold (or fails to complete) then the outcome is deemed to be

positive.

A shopping spy agent should ideally provide a malicious host with an in-

centive to mishandle it. For example, the agent could be equipped with high

value data enquiries, as discussed in §4.3.4. Also, sending an agent to a signif-

icant number of hosts helps to meet the fundamental spy agent incentivisation

requirements given in §3.4.3.2.

10.4.2.2 Applicability

The applicability of the SASH detection method described above depends on

the predictability of host behaviour. It is reasonable to assume that there are

practical scenarios in which all hosts are expected to meet well-defined agent

processing deadlines. For example, suppose a host is not able to process a

visiting spy agent within the required time period. In this case, a well-behaved

host should report the service problem, and allow the agent to migrate to the

next host rather than delay execution. In such a scenario, the delay threat

detection mechanism is likely to yield reliable outcomes.

The maximum acceptable delay for spy agent migration can be deduced by

estimating the time required by a black-box attack to analyse the semantics

of the sensitive portions of the agent code. An agent must be designed so that

the minimum time required to compromise the code semantics is significantly

greater than the maximum time that a host is normally allowed to keep an

agent.

254

10.4. Spy agent shopping honeypots

10.4.3 The scheme

10.4.3.1 System architecture

SASH spy agents emulate shopping agents equipped with e-commerce negoti-

ation functionality. The use of mobile agents in such applications was briefly

discussed in §2.3.4.

In this setting, spy agents could be used to perform comparisons across a

range of products and a set of hosts. Spy agents could use a range of different

(personalised) criteria to compare products and negotiate deals, covering issues

such as price, delivery time, customer service and returns policy [68]. We

assume that, given a set of visiting hosts and corresponding set of offers, a spy

agent will attempt to negotiate the best possible offer with each host. The

encoding of a negotiation strategy could be based on a common ontology such

as a declarative rules language [162].

The use of distinct product comparison and negotiation strategies by dif-

ferent customers helps to promote merchant differentiation. At the same time,

knowledge of agent negotiation semantics could help a malicious host to adapt

its offer and maximise its profit (unfairly) at the expense of the customer and,

more generally, of the market. This explains why it is desirable for the se-

mantics of the negotiation code in a shopping agent to remain secret. As a

result, we assume that agent code is protected using a time-limited black-box

technique (see §2.4.3.2.2).

10.4.3.2 Route designs

As with SAEH, the choice of the routing scheme for a SASH application de-

pends on assumptions about the behaviour of malicious hosts. We note that

255

10.5. Conclusions

the assumed lack of significance of the order of spy agents in a route is justi-

fied by an assumption that a malicious host is not interested in decoding other

hosts’ offers; instead, we suppose that the malicious host only wishes to anal-

yse the agent semantics. This assumption is strengthened if a shopping agent

migrates through the same set of malicious hosts at least twice (in opposite

directions). Such a migration technique will also provide a malicious host with

more opportunities (and potential incentives) to misbehave.

The choice between an NGT and a SGT scheme depends on how long

it takes for a spy agent to complete its migration. As is generally the case,

NGT is preferable when test outcomes are only available after a significant

and/or variable delay, while adaptive (sequential) GT is preferable when the

test outcomes are produced quickly enough for the tests to be completed in a

reasonable time.

10.4.4 Alternative applications

The SASH approach could be adapted to address the detection of other se-

curity threats. For example, a GTC-based spy agent scheme (introduced in

Chapter 7) could be used to detect inconsistencies in (or corroborate) results

obtained from security checks of secure chain protocols, used to detect if ma-

licious hosts have colluded to implement a truncation attack (see §2.4.3.3.7).

10.5 Conclusions

In this chapter we have considered general aspects of the practical application

of spy agent techniques. We then investigated two specific examples of possible

applications of spy agents.

In the first application, we studied the suitability of spy agent systems

256

10.5. Conclusions

for identifying malicious hosts that infringe the privacy of email addresses

of visiting mobile agents. We described a spy agent email honeypot system

in which a) the abuse may take place at some time after an agent visits a

malicious host, and b) a host may exhibit sophisticated behaviour in order

to avoid being linked to the outcome of this behaviour. For example, some

malicious hosts might always violate the PII of a visiting spy agent, whereas

other malicious hosts might only violate the PII of the spy agent if they identify

other malicious hosts in the agent’s route. We have described how spy agent

systems can be used to help identify the malicious hosts.

In the second application we considered the case where mobile agents mi-

grate between hosts to compare and negotiate quotes. In this case, a malicious

host might attempt to gain a competitive advantage by performing a invis-

ible black-box attack that compromises the privacy of the semantics of the

negotiation code embedded in the agent. Such an attack can be detected by

measuring the overall migration delay. We described a spy agent shopping

honeypot system in which spy agents are engineered so that a black-box at-

tack will take a certain amount of time; at the same time, malicious hosts are

given an incentive to mount a black-box attack in order to test how the agent

responds to a range of different quotes. A spy agent system can use the out-

comes computed from the agent migration delays to identify the responsible

host(s).

The identified spy agent applications have a number of remaining practical

limitations, and therefore need to be developed further before real-world de-

ployment. The necessary development work could benefit from, and contribute

to, further advances in other mobile agent protection and threat detection tech-

niques. For example, ongoing research findings in encrypted functions, code

257

10.5. Conclusions

obfuscation, and detection objects could be useful both in providing spy agent

applications with appropriate threat detection techniques, and in verifying spy

agent results.

258

“A researcher never really abandons his work; he merely finishes it.”

Anonymous

11
Conclusions

Contents
11.1 Synopsis . 259

11.2 Contributions . 260

11.2.1 Spy agents . 260

11.2.2 Detailed review . 261

11.3 Future directions for research 265

11.3.1 Host testing . 265

11.3.2 Mobile code applications 268

11.1 Synopsis

This chapter concludes this thesis. While specific conclusions were drawn at

the end of each main chapter, in this chapter we summarise all the research

findings and contributions of this thesis as well as identify possible future

research directions.

259

11.2. Contributions

11.2 Contributions

11.2.1 Spy agents

This thesis is concerned with the design of spy agent systems. Spy agents

were introduced in Chapter 3. They can be used to help evaluate the trust-

worthiness of remote hosts that offer services in mobile code systems, in which

programs (software agents) travel from host to host to accomplish their goals.

The main purpose of spy agents is to help identify the origin of detected

anomalies, i.e. the hosts responsible for associated attacks. This information

could be used in a variety of different ways. For example, mobile agents might

avoid identified malicious hosts, and/or law enforcement agencies could use

the information to target their investigations. In essence, spy agents help to

preemptively protect software agents against the hosts that they visit.

The benefits and significance of spy agents need to be considered within

the context of the prior art. As discussed in Chapter 2, mobile code security

has for many years been an active and challenging area of research involving

two parallel sets of security issues, namely protecting hosts (and other agents)

against malicious agents, and protecting agents against malicious hosts. The

latter problem is inherently harder to address, since mobile agents are at the

mercy of the host which executes them, and ultimately the host can misuse the

agent or the agent’s data at its discretion. To complicate this problem further,

a malicious host might (selectively) misbehave only when it perceives that it

can do so without being held accountable. Additionally, a malicious host might

(selectively) behave well in order to make a false positive impression.

Spy agents were introduced in this thesis to help address the above prob-

lems.

260

11.2. Contributions

11.2.2 Detailed review

We summarise below the contributions of this thesis on a chapter-by-chapter

basis.

• In Chapter 3 we developed the concept of spy agents and we described the

core elements of our spy agent system architecture. Such a system uses

a set of agents to obtain information reflecting the behaviour of remote

hosts, and that can therefore be used to assess their trustworthiness. We

described how spy agents could be used to identify a malicious host in

cases where common mobile agent security techniques fail through their

inability to identify the origin of a detected attack. We further described

the principles underlying the development of spy agent systems and their

contribution to mobile code security. These principles involve a) spy

agents giving malicious hosts incentives to misbehave, and b) methods

for collectively evaluating spy agent outcomes. A key issue is that host

evaluations depend on the manner in which spy agents are coordinated.

We considered a variety of aspects of the selection of both the contents

of spy agents (e.g. unique pseudo-ID credentials), and their migration

paths (e.g. paths with small correlation and large lengths).

• In Chapter 4 we further developed the spy agent concept by specify-

ing the system requirements. We divided these requirements into four

groups, namely spy agent dissemblance requirements (subterfuge, statu-

tory, protection and incentivisation), host evaluation requirements (at-

tack detection and identification, fairness, optimisation), spy agent rout-

ing requirements, and trusted services requirements. We also provided

the assumptions underlying the design of the spy agent system, covering

261

11.2. Contributions

both the nature of malicious host behaviour and network security issues

such as agent anonymity and host identification.

• In Chapter 5 we analysed a number of spy agent routing architectures

adhering to the principles given in Chapter 3 and the system require-

ments given in Chapter 4. Complementing this analysis we considered

how a set of spy agents can be designed to achieve the desired objec-

tives. This analysis provided the basis for the formulation of the spy

agent routing problem, as given in the following chapter.

• In Chapter 6 we formulated the spy agent routing and host evaluation

problem as a (combinatorial) group testing problem. In group testing

theory a (large) population of items containing a small set of defec-

tives is tested in order to identify the defectives. The analogy with spy

agents arises from the fundamental spy agent assumption that larger test

groups yield more credible results. That is, as discussed in Chapter 3,

we assume that the longer the migrating route, the less a malign host

is likely to suspect a spying scenario, and the greater the chance that

it can cheat without being detected. As a result, a malicious host is

more likely to misbehave if it is sent an agent visiting a multiplicity of

hosts, and not just one. We examined the properties of non-adaptive

group testing algorithms and we showed how these algorithms can be

used to obtain ‘good’ spy agent route sets, i.e. collections of routes that

maximise the chance that a malicious host will misbehave and that will

provide sufficient information for malicious hosts to be identified. Fi-

nally, we proposed the use of a simple class of block designs to construct

route sets with the desired properties.

262

11.2. Contributions

• In Chapter 7 we considered a generalisation of the case studied in Chap-

ter 6 in which some malicious hosts only misbehave collectively, i.e. when

they identify other malicious hosts in an agent route. We showed that the

spy agent route design problem for such a scenario can be formulated

as a non-adaptive complex group testing problem, in which defectives

yield a positive test outcome only when other defectives are included in

the test. Complex group testing, also known as hypergraph testing, is a

relatively young area of research. While in the standard group testing

problem we assume that a test result is positive if and only if there is

at least one defective item, in this case we assume that a defective con-

sists of a number of items (known as a ‘complex’). We analysed known

properties of complex group testing, and produced further results. In

particular, we developed the concept of complex defectives, and intro-

duced algorithms that can identify individual malicious hosts given an

identified set of complex defectives. Finally we proposed the use of a t-

designs to construct sets of routes with the desired complex group testing

properties. These new results allow us to construct routing designs that

are more resilient to complex host behaviour and collusion. Our results

could also contribute to the research area of DNA screening group testing

problem, which uses hypergraph testing algorithms to identify subsets of

molecules that are collectively responsible for the cause of an observed

disease.

• In Chapter 8 we considered a different class of spy agent applications,

in which malicious behaviour can be detected within a sufficiently short

time window to allow the use of sequential group testing algorithms, i.e.

algorithms that choose which hosts to test based on the outcomes of

263

11.2. Contributions

previous tests. We studied the optimisation problem for such a scenario,

in which the length of spy agent routes is maximised. We presented and

analysed a multi-stage sub-group routing algorithm for this case which

we showed to be optimal.

• In Chapter 9 we discussed a scenario in which spy agent evaluations can-

not be trusted because of inconsistent results or, more generally, because

of inconsistent host behaviour. In this case, the assumptions underly-

ing the host evaluation methods presented in Chapters 6, 7 and 8 do

not hold. We discussed the degree to which the results obtained with

such methods can be trusted, and we developed a credibility evaluation

model. This model can be used to help identify route designs that are

less likely to provide erroneous results. For example, we showed how, in

certain cases, the results obtained from using route designs containing

longer routes are more credible. This occurs because in such cases the

longer routes mitigate the effects of random or inconsistent malicious

host behaviour. Further, we developed a methodology that analyses the

impact of random or inconsistent malicious host behaviour. This pro-

vides a methodical way of analysing error-tolerance properties of spy

agent route designs.

• In Chapter 10 we discussed possible practical applications of spy agents,

and we introduced two specific examples of such applications. The first

example involves a spy agent email honeypot system designed to de-

tect email privacy infringements. The second example is a spy agent

shopping honeypot system designed to detect black-box attacks. We

discussed how these applications might be extended, so that spy agents

can be used to help detect the origin of mobile code data privacy and

264

11.3. Future directions for research

sabotage attacks. These applications highlight the benefits of the spy

agent approach developed in this thesis.

11.3 Future directions for research

We now briefly consider two areas in which further research could be beneficial.

11.3.1 Host testing

As outlined in §11.2.2, in this thesis we have considered a range of scenarios

involving specific malicious host behaviour models.

In general, malicious hosts may behave in a wide variety of different ways.

As a result, a range of different testing mechanisms, criteria for maximising

the incentive to misbehave, and optimum route set constructions are likely to

be required.

Future work on spy agent route designs could therefore be approached in

the following ways.

• Specific models of malicious host behaviour and attack detection scenar-

ios might need to be defined for individual applications. These could give

rise to new problems in spy agent design, depending on the underlying

assumptions.

• Conversely, the properties of spy agent route designs of various types

could be studied in a more abstract way. Such research might then lead

to new spy agent applications.

Elaborating on the above general approaches, we now identify specific pos-

sible future research directions.

265

11.3. Future directions for research

• The behaviour model of a malicious host might depend on a range of

factors, including the degree to which a host is incentivised to misbehave,

as discussed in Chapters 4 and 5. Chapters 6, 7 and 8 provide spy

agent route designs for specific malicious host behaviour models. In the

future it would be useful to define behaviour models based on observed

host behaviour. In this direction, it would be interesting to perform

practical experiments in which the behaviour of real world malicious

hosts is investigated using a series of spy agent evaluations. The objective

here would be to obtain a better understanding of how malicious hosts

might behave in real scenarios. For example, it might be interesting to

investigate:

a. how the contents of a spy agent can be used to incentivise a mali-

cious host to misbehave;

b. how the properties of a spy agent route design affect whether or not

a malicious host misbehaves; and

c. to what degree the behaviour of a malicious host depends on the

behaviour of other malicious hosts.

• Specific applications and malicious host behaviour models might require

particular route design properties. For example:

a. the NGT design proposed in Chapter 6 is based on the assumption

that malicious hosts are more likely to misbehave when the routes

of visiting agents are long and are not inter-correlated;

b. the GTC design proposed in Chapter 7 is based on the assumption

that some malicious hosts will only misuse a visiting agent if this

agent also visits another malicious host; and

266

11.3. Future directions for research

c. the SGT algorithm proposed in Chapter 8 is based on the assump-

tion that the impact of an attack on a spy agent can be detected

immediately.

These route designs and algorithms could be enhanced in a variety of

different ways, e.g. as follows.

a. It would be interesting to study spy agent routes with error-tolerant

and/or frameproof properties, i.e. routes that can be used to iden-

tify malicious hosts that behave in unpredictable ways, including

those that attempt to frame well-behaved hosts. Such research

could draw on and potentially contribute to work on probabilistic

or combinatorial group testing.

b. It would also be interesting to study routes with collusion-proof

properties, i.e. routes that can be used to identify malicious hosts

that are jointly responsible for an attack. This problem becomes

harder to address if a joint attack involves more than two malicious

hosts. Such research can draw on and potentially contribute to

work on complex group testing and DNA testing.

c. Optimality of a spy agent route design can be defined in many

ways depending on both application requirements and assumptions

regarding the scenario of use. For example, one possible optimisa-

tion problem would be to find spy agent route designs that give the

highest possible credibility of classification. A model for calculat-

ing credibility of classification was proposed in Chapter 9; however,

improved models might also be sought.

267

11.3. Future directions for research

11.3.2 Mobile code applications

The success of any application of spy agents depends on how well the spy

agent requirements are met in the particular application scenario. This in

turn depends on which aspect of host trustworthiness is under evaluation,

how the impact of host misbehaviour is realised, and how spy agents encourage

malicious hosts to misbehave.

The applications given in Chapter 10 could also be extended in many ways,

as previously discussed. Further, it would be useful to examine applications

in which the nature of a malicious attack can be reflected in the outcome

of a spy agent test. In this direction, advances in encrypted functions, code

obfuscation, and detection objects might be useful in providing spy agents

with the necessary threat detection techniques.

We envisage that, as digital services increase in variety and complexity,

software agents and mobile code applications will become increasingly useful.

This will provide further motivation for work on future spy agent applications.

268

A
Code for complex group testing

A.1 Malicious host identification
Calculate spy agent outcome

calcoutput <- function(design=design1,D1=c(1),D2=c(2,3)) {

complexdef <- calcdefcomplexes(D1,D2)

output <- c()

if (length(complexdef)>0)

for (i in 1:length(design[1,]))

for (j in 1:length(complexdef[1,]))

if (contained(complexdef[,j],design[,i])==TRUE)

output <- c(output, i)

if (length(output)>0)

output <- unique(output)

return(output)

}

Decoding algorithm to identify complex defectives

finddef2complexes <- function(desT=transpose(design1),

output=calcoutput(D1=c(1),D2=c(2,3))) {

defectives <- c()

complexes <- combn(length(desT[1,]), 2)

for (i in 1:length(complexes[1,]))

if(contained(disj(desT[,complexes[1,i]], desT[,complexes[2,i]]), output)==TRUE)

defectives <- c(defectives, complexes[,i])

if (length(defectives >0))

defectives <- array(defectives,dim=c(2,length(defectives)/2))

return(defectives)

}

A.2 Function library
Create the set of complex defectives

269

A.2. Function library

calcdefcomplexes <- function(D1,D2) {

All <- c()

if (length(D1)>0)

D1 <- sort(unique(D1))

for (i in 1:length(D1))

All <- c(All, D1[i], D1[i])

if (length(D2)>1) {

D2 <- sort(unique(D2))

D2 <- combn(D2,2)

for (j in 1:length(D2[1,]))

All <- c(All, D2[,j])

}

if (length(All)>0)

All <- array(All,dim=c(2,length(All)/2))

return(All)

}

Calculate conjunction

conj <- function(v1, v2) {

return(unique(sort(c(v1, v2))))

}

Calculate disjunction

disj <- function(v1, v2) {

v3 <- sort(c(unique(v1), unique(v2)))

v4 <- c()

for (i in 2:length(v3)) {

if (v3[i]==v3[i-1])

v4 <- c(v4,v3[i])

}

if (length(v4)>0)

v4 <- unique(sort(v4))

return(v4)

}

Check if a set is contained in another

contained <- function(v1, v2) {

if (length(v2>0))

if (length(disj(v1,v2))==length(unique(v1)))

return(TRUE)

return(FALSE)

}

Check if a complex defective is contained in another

complexcontained <- function(Tc, Td) {

tcc <- 0

for (m in 1:length(Tc[1,]))

for (n in 1:length(Td[1,]))

if(contained(Tc[,m], Td[,n])==TRUE)

tcc <- tcc+1

return(tcc)

}

Transpose matrix

transpose <- function(design,h=11,r=30) {

D <- c()

for (j in 1:h)

for (i in 1:length(design[1,]))

if (length(disj(design[,i],c(j)))>0)

D <- c(D, i)

return(array(D, dim=c(r,h)))

}

270

A.3. Resilient rank-2 classification algorithm

A.3 Resilient rank-2 classification algorithm
Classification algorithm and verification routine

Alg1 <- function(design=design1, h=11, r=30, D1=c(1), D2=c(2,3)) {

desT <- transpose(design=design,h=h,r=r)

output <- calcoutput(design=design,D1=D1,D2=D2)

defs <- finddef2complexes(desT=desT, output=output)

delta1 <- c()

dother <- c()

for (i in 1:length(desT[1,])) {

Tc <- c()

l <- length(desT[1,])

for (j in 1:l)

if (i!=j)

Tc <- c(Tc, c(i,j))

Tc <- array(Tc,dim=c(2,length(Tc)/2))

tcc <- complexcontained(Tc, defs)

if (tcc == length(Tc[1,]))

delta1 <- c(delta1, i)

else

dother <- c(dother, i)

}

delta2 <- c()

for (i in 1:length(dother)) {

for (j in 1:length(defs[1,])) {

if ((defs[1,j] == dother[i] && !contained(c(defs[2,j]),delta1)) ||

(defs[2,j] == dother[i] && !contained(c(defs[1,j]),delta1))) {

delta2 <- c(delta2, dother[i])

break

}

}

}

ndl = length(desT[1,])-length(delta1)

if (length(delta2)==0)

delta2 <- paste("At most 1 defective host and

at least ", ndl-1, " non-defectives", sep="")

Collate results

return(list(output=output, defs=defs, delta1=delta1, delta2=delta2))

}

A.4 Disjunctness test
Check (d,e)-disjunct property

checkDdisj <- function(D=transpose(design1),d=2,e=2) {

h <- length(D[1,]) # 11 hosts

ld <- length(D[,1]) # 30 routes

calculate union of first (e+d) columns

unions <- D[,(e+1)]

for (t in (e+2):(e+d))

unions <- conj(unions, D[,t])

calculate first e disjunctions

disjp <- D[,1]

for (t in 2:e)

disjp <- disj(disjp, D[,t])

#check contained condition

return(!contained(disjp, unions))

}

271

Bibliography

Bibliography

[1] M. Abe and E. Fujisaki. How to date blind signatures. In Proceedings of

the International Conference on the Theory and Applications of Cryptol-

ogy and Information Security: Advances in Cryptology, pages 244–251,

London, UK, 1996. Springer-Verlag.

[2] C. Adams and S. Lloyd. Understanding PKI: Concepts, Standards, and

Deployment Considerations. Addison-Wesley, 2nd edition, 2002.

[3] E. Albert, G. Puebla, and M. Hermenegildo. Abstraction-carrying code:

a model for mobile code safety. New Generation Computing, 26:171–204,

2008.

[4] J. Algesheimer, C. Cachin, J. Camenisch, and G. Karjoth. Crypto-

graphic security for mobile code. In IEEE Symposium on Security and

Privacy, pages 2–11. IEEE Computer Society, 2001.

[5] M. Andreolini, A. Bulgarelli, M. Colajanni, and F. Mazzoni. Honeyspam:

Honeypots fighting spam at the source. In Proceedings of the Steps

to Reducing Unwanted Traffic on the Internet Workshop (SRUTI ’05),

pages 11–17, Cambridge, MA, USA, July 2005. USENIX Association.

[6] Article 29—Data Protection Working Party. Privacy on the Internet—

An Integrated EU Approach to On-line Data Protection. European

272

Bibliography

Commission WP37 5063/00/EN/FINAL, November 2000. Available

at http://ec.europa.eu/justice/policies/privacy/docs/wpdocs/

2000/wp37en.pdf.

[7] T. Aura and C. Ellison. Privacy and Accountability in Certificate Sys-

tems. Helsinki University of Technology, 2000.

[8] D. J. Balding, W. J. Bruno, E. Knill, and D. C. Torney. A comparative

survey of non-adaptive pooling designs. Genetic Mapping and DNA

Sequencing, 81:133–154, 1996.

[9] D. J. Balding and D. C. Torney. Optimal pooling designs with error

detection. Journal of Combinatorial Theory, Series A, 74(1):131–140,

1996.

[10] B. Barak, O. Goldreich, Impagliazzo. R., S. Rudich, A. Sahai, S. P.

Vadhan, and K. Yang. On the (im)possibility of obfuscating programs.

In U. G. Wilhelm, L. Buttyàn, and S. Staamann, editors, Proceedings

of the 21st Annual International Cryptology Conference on Advances

in Cryptology, CRYPTO ’01, pages 1–18, London, UK, 2001. Springer-

Verlag.

[11] E. Barillot, B. Lacroix, and D. Cohen. Theoretical analysis of library

screening using a n-dimensional pooling strategy. Nucleic acids research,

19(22):6241–6247, 1991.

[12] M. Bellare and B. Yee. Forward integrity for secure audit logs. ACM

Transactions on Information and Systems Security, 23, November 1997.

[13] P. Benassi. TRUSTe: an online privacy seal program. Communications

of the ACM, 42(2):56–59, February 1999.

273

Bibliography

[14] S. Berkovits, J. D. Guttman, and V. Swarup. Authentication for mobile

agents. In G. Vigna, editor, Mobile Agents and Security, volume 1419

of Lecture Notes in Computer Science, pages 114–136. Springer Berlin /

Heidelberg, 1998.

[15] T. Beth, D. Jungnickel, and H. Lenz. Design Theory, volume I. Cam-

bridge University Press, 2nd edition, 1999.

[16] D. Boneh and J. Shaw. Collusion-secure fingerprinting for digital data.

IEEE Transactions on Information Theory, 44(5):1897–1905, 1998.

[17] N. Borselius. Multi-agent system security for mobile communication.

PhD thesis, Royal Holloway, University of London, 2003.

[18] N. Borselius. Security for agent systems and mobile agents. In C. J.

Mitchell, editor, Security for Mobility, chapter 12, pages 287–303. IEE,

London, 2004.

[19] N. Borselius, C. J. Mitchell, and A. T. Wilson. On mobile agent based

transactions in moderately hostile environments. In B. De Decker,

F. Piessens, J. Smits, and E. V. Herreweghen, editors, Advances in

Network and Distributed Systems Security, Proceedings of IFIP TC11

WG11.4 First Annual Working Conference on Network Security, pages

173–186. Kluwer Academic Publishers, Boston, November 2001.

[20] C. Boyd and A. Mathuria. Protocols for Authentication and Key Estab-

lishment. Springer-Verlag, 2003.

[21] J. M. Bradshaw. Software agents. MIT Press Cambridge, MA, USA,

1997.

274

Bibliography

[22] P. Braun and W. Rossak. Mobile Agents: Basic Concepts, Mobility

Models, and the Tracy Toolkit. Morgan Kaufmann, 2005.

[23] B. D. Brunk. Understanding the Privacy Space. First Monday, 7(10),

2002.

[24] A. Bürkle, A. Hertel, W. Müller, and M. Wieser. Evaluating the se-

curity of mobile agent platforms. Autonomous Agents and Multi-Agent

Systems, 18:295–311, 2009.

[25] K. A. Bush, W. T. Federer, H. Pesotan, and D. Raghavarao. New com-

binatorial designs and their application to group testing. Journal of

Statistical Planning and Inference, 10:335–343, 1984.

[26] J. Case, M. Fedor, M. Schoffstall, and J. Davin. A Simple Network

Management Protocol (SNMP). Technical Report RFC 2401, Internet

Engineering Task Force (IETF), May 1990.

[27] C. Castelfranchi. The Role of Trust and Deception in Virtual Societies.

International Journal of Electronic Commerce, 6(3):55–70, 2002.

[28] P. C. Chan and V. K. Wei. Preemptive distributed intrusion detec-

tion using mobile agents. In Proceedings of the 11th IEEE International

Workshops on Enabling Technologies: Infrastructure for Collaborative

Enterprises (WETICE), pages 103–108. IEEE Computer Society, June

2002.

[29] D. L. Chaum. Untraceable electronic mail, return addresses, and digital

pseudonyms. Communications of the ACM, 24(2):84–88, February 1981.

275

Bibliography

[30] H. B. Chen, D. Z. Du, and F. K. Hwang. An unexpected meeting of four

seemingly unrelated problems: graph testing, DNA complex screening,

superimposed codes and secure key distribution. Journal of Combinato-

rial Optimization, 14(2):121–129, 2007.

[31] J. S. L. Cheng and V. K. Wei. Defenses against the Truncation of

Computation Results of Free-Roaming Agents. In Proceedings of the 4th

International Conference on Information and Communications Security,

pages 12–24. Springer-Verlag, 2002.

[32] S. G. Choi, A. Elbaz, A. Juels, T. Malkin, and M. Yung. Two-party com-

puting with encrypted data. In Proceedings of the Advances in Cryptol-

ogy 13th international conference on Theory and application of cryptol-

ogy and information security (ASIACRYPT ’07), pages 298–314, Berlin,

Heidelberg, 2007. Springer-Verlag.

[33] B. Chor, A. Fiat, M. Naor, and B. Pinkas. Tracing traitors. IEEE

Transactions on Information Theory, 46(3):893–910, 2000.

[34] D. N. Chorafas. Agent technology handbook. McGraw-Hill, Inc. New

York, NY, USA, 1997.

[35] C. J. Colbourn and J. H. Dinitz. The Handbook of Combinatorial De-

signs. CRC Press, 2nd edition, 2006.

[36] A. Corradi, M. Cremonini, R. Montanari, and C. Stefanelli. Mobile

agents integrity for electronic commerce applications. Information Sys-

tems, 24(6):519–533, 1999.

[37] T. M. Cover and J. A. Thomas. Elements of information theory. John

Wiley & Sons, Inc. New York, NY, USA, 2006.

276

Bibliography

[38] H. Cuypers. The mathieu groups and designs. Technical report, Techni-

cal University of Eindhoven, 2000. Available at http://www.win.tue.

nl/~hansc/eidmamathieu.pdf.

[39] D. C. Daniel and K. L. Herbig. Propositions on military deception.

Routledge Journal of Strategic Studies, 5(1):155–177, 1982.

[40] D. Dasgupta and H. Brian. Mobile security agents for network traffic

analysis. In DARPA Information Survivability Conference and Exposi-

tion II, pages 12–16, Anaheim, California, June 2001. IEEE Computer

Society Press.

[41] A. W. Dent and C. J. Mitchell. User’s guide to cryptography and stan-

dards. Artech House, 2005.

[42] Y. Desmedt, R. Safavi-Naini, H. Wang, L. Batten, C. Charnes, and

J. Pieprzyk. Broadcast anti-jamming systems. Computer Networks,

35(2-3):223–236, 2001.

[43] J. E. Dickerson, J. Juslin, O. Koukousoula, and J. A. Dickerson. Fuzzy

intrusion detection. In Proceedings of the Joint 9th IFSA World Congress

and 20th NAFIPS International Conference, pages 1506–1510. IEEE,

July 2001.

[44] R. Dorfman. The detection of defective members of large populations.

Annals of Mathematical Statistics, 14(4):436–440, 1943.

[45] D. Du and F. Hwang. Combinatorial Group Testing and Its Applications.

World Scientific, 2nd edition, 2000.

277

Bibliography

[46] D. Z. Du and F. K. Hwang. Pooling Designs and Nonadaptive Group

Testing. World Scientific, 2006.

[47] A. D’yachkov, P. Vilenkin, D. Torney, and A. Macula. Families of finite

sets in which no intersection of l sets is covered by the union of s others.

Journal of Combinatorial Theory, Series A, 99(2):195–218, 2002.

[48] A. D’yachkov, P. Villenkin, A. Macula, and D. Torney. On families of

subsets where no intersection of l -subsets is covered by the union of s

others. Journal of Combinatorial Theory, Series A, 99:195–218, 2002.

[49] A. G. D’yachkov, A. J. Macula Jr, and V. V. Rykov. New construc-

tions of superimposed codes. IEEE Transactions on Information Theory,

46(1):284–290, 2000.

[50] A. G. D’yachkov and V. V. Rykov. A survey of superimposed code

theory. Problems of Control and Information Theory, 12(4):1–13, 1983.

[51] M. Dyer, T. Fenner, A. Frieze, and A. Thomason. On key storage in

secure networks. Journal of Cryptology, 8(4):189–200, 1995.

[52] G. Edjlali, A. Acharya, and V. Chaudhary. History-based access control

for mobile code. In Proceedings of the 5th ACM Conference on Computer

and Communications Security, pages 38–48. ACM, NY, USA, 1998.

[53] T. El Gamal. A public key cryptosystem and a signature scheme based

on discrete logarithms. In Proceedings of CRYPTO ’84 on Advances in

cryptology, volume 196 of Lecture Notes in Computer Science, pages 10–

18, Santa Barbara, California, USA, August 1985. Springer, New York,

USA.

278

Bibliography

[54] P. Erdös, P. Frankl, and Z. Füredi. Families of finite sets in which no set

is covered by the union of two others. Journal of Combinatorial Theory,

Series A, 33:158–166, 1982.

[55] P. Erdös, P. Frankl, and Z. Füredi. Families of finite sets in which no

set is covered by the union of r others. Israel Journal of Mathematics,

51(1-2):79–89, 1985.

[56] O. Esparza, M. Soriano, J. L. Muñoz, and J. Forné. A protocol for

detecting malicious hosts based on limiting the execution time of mo-

bile agents. In Proceedings of the 8th IEEE International Symposium

on Computers and Communications, pages 251–256. IEEE Computer

Society, 2003.

[57] C. F. Fang and G. Radhamani. Security in mobile agent systems. In

Mobile Computing: Concepts, Methodologies, Tools, and Applications,

pages 2600–2613. ICI Global, 2009.

[58] W. Farmer, J. Guttman, and V. Swarup. Security for mobile agents: Au-

thentication and state appraisal. In E. Bertino, H. Kurth, G. Martella,

and E. Montolivo, editors, Computer Security—ESORICS ’96, volume

1146 of Lecture Notes in Computer Science, pages 118–130. Springer

Berlin / Heidelberg, 1996.

[59] J. Ferber. Multi-agent systems: an introduction to distributed artificial

intelligence. Addison-Wesley, 1998.

279

Bibliography

[60] T. Finin, R. Fritzson, D. McKay, and R. McEntire. KQML as an agent

communication language. In Proceedings of the 3rd international con-

ference on Information and knowledge management, CIKM ’94, pages

456–463, New York, USA, 1994. ACM.

[61] W. Ford. Computer communications security: principles, standard pro-

tocols and techniques. Prentice-Hall, New Jersey, NJ, USA, 1994.

[62] E. Gafni, J. Staddon, and Y. L. Yin. Efficient methods for integrat-

ing traceability and broadcast encryption. In Proceedings of the 19th

Annual International Conference on Advances in Cryptology, CRYPTO

’99, pages 372–387, London, UK, 1999. Springer-Verlag.

[63] H. Gao, F. K. Hwang, M. T. Thai, W. Wu, and T. Znati. Construction

of d(H)-disjunct matrix for group testing in hypergraphs. Journal of

Combinatorial Optimization, 12(3):297–301, 2006.

[64] J. A. Garay, J. Staddon, and A. Wool. Long-lived broadcast encryption.

In Proceedings of the 20th Annual International Cryptology Conference

on Advances in Cryptology, CRYPTO ’00, pages 333–352, London, UK,

2000. Springer-Verlag.

[65] C. Gentry. Computing arbitrary functions of encrypted data. Commu-

nications of the ACM, 53(3):97–105, March 2010.

[66] D. Gollmann. Computer security. John Wiley and Sons, Chichester,

1999.

[67] M. Günter and T. Braun. Internet service monitoring with mobile agents.

IEEE Network Magazine, 16(3):22–29, May / June 2002.

280

Bibliography

[68] R. Guttman and P. Maes. Agent-mediated integrative negotiation for

retail electronic commerce. In Agent Mediated Electronic Commerce,

volume 1571 of Lecture Notes in Artificial Intelligence, pages 70–90.

Springer-Verlag, 1999.

[69] C. G. Harrison, D. M. Chess, and A. Kershenbaum. Mobile agents:

Are they a good idea? Technical report, IBM Research Division, T. J.

Watson Research Center, Yorktown Heights, NY, March 1995.

[70] M. B. Hasan and P. W. Prasad. A review of security implications and

possible solutions for mobile agents in e-commerce. In Innovative Tech-

nologies in Intelligent Systems and Industrial Applications (CITISIA

’09), pages 23–29. IEEE, 2009.

[71] V. Hassler and P. Moore. Security Fundamentals for E-commerce. Artech

House, 2001.

[72] X. He-qun and F. Deng-guo. Protecting mobile agents’ data using

trusted computing technology. Journal of Communication and Com-

puter, 4(3):44–57, 2007.

[73] R. Hes and J. Borking. Privacy Enhancing Technologies: the path to

anonymity (Revised Edition). Registratiekamer, Dutch DPA, A&V-11,

1998.

[74] C. Hewitt. Viewing control structures as patterns of passing messages*

1. Artificial intelligence, 8(3):323–364, 1977.

[75] F. Hohl. A Model of Attacks of Malicious Hosts Against Mobile Agents.

In Workshop ion on Object-Oriented Technology, pages 105–120, Lon-

don, UK, 1998. Springer-Verlag.

281

Bibliography

[76] F. Hohl. Time Limited Blackbox Security: Protecting Mobile Agents

from Malicious Hosts. In G. Vigna, editor, Mobile Agents and Secu-

rity, volume 1419 of Lecture Notes in Computer Science, pages 92–113.

Springer Berlin / Heidelberg, 1998.

[77] F. Hohl and K. Rothermel. A protocol preventing blackbox tests of mo-

bile agents. ITG/VDE Fachtagung Kommunikation in Verteilten Syste-

men (KiVS ’99), pages 170–181, 1999.

[78] A. Hotaling. Protecting personally identifiable information on the inter-

net: Notice and consent in the age of behavioral targeting. CommLaw

Conspectus, 16:529, 2007.

[79] G. Huanmei, M. Xuejun, and Z. Huanguo. A forward integrity and

itinerary secrecy protocol for mobile agents. Wuhan University Journal

of Natural Sciences, 11(6):1727–1730, 2006.

[80] M. N. Huhns and M. P. Singh. Readings in agents. Morgan Kaufmann,

1997.

[81] F. K. Hwang. A competitive algorithm to find all defective edges in a

graph. Discrete Applied Mathematics, 148(3):273–277, 2005.

[82] F. K. Hwang and V. T. Sòs. Non-adaptive hypergeometric group testing.

Studia Sci. Math. Hungar., 22:257–263, 1987.

[83] International Organization for Standardization, ISO 7498-2. Informa-

tion processing systems—Open systems Interconnection—Basic refer-

ence model—Part 2: Security Architecture. Geneva, Switzerland, 1989.

282

Bibliography

[84] International Organization for Standardization, ISO/IEC 15408-2:2008.

Information technology—Security techniques—Evaluation Criteria for

IT Security—Part 2: Security Functional Components. Geneva, Switzer-

land, 2008.

[85] International Organization for Standardization, ISO/IEC 9797-1. Infor-

mation technology—Security techniques—Message Authentication Codes

(MACs)—Part 1: Mechanisms using block cipher. Geneva, Switzerland,

1999.

[86] International Organization for Standardization, ISO/IEC 9797-2. Infor-

mation technology—Security techniques—Message Authentication Codes

(MACs)—Part 2: Mechanisms using a dedicated hash-function. Geneva,

Switzerland, 2002.

[87] International Telecommunication Union (ITU-T), Recommendation

X.800 (and ISO/IEC 7498-2). Data Communication Networks: Open

System Interconnection (OSI); Security, Structure and Applications—

Security Architecture for Open Systems Interconnection for CCITT Ap-

plications. Geneva, 1991.

[88] International Telecommunications Union (ITU-T), Recommendation

X.509. Information technology—Open Systems Interconnection—The

Directory: Public-key and attribute certificate frameworks, November

2008.

[89] W. Jansen and T. Karygiannis. Mobile agent security. NIST Special

Publication 800-19, National Institute of Standards and Technology, Au-

gust 1999.

283

Bibliography

[90] T. Jech. Set Theory. Springer-Verlag, 3rd edition, 2002.

[91] X. Jiang, J. I. Hong, and J. A. Landay. Approximate Information

Flows: Socially-based Modelling of Privacy in Ubiquitous Computing.

In G. Borriello and L. Holmquist, editors, UbiComp 2002: Ubiquitous

Computing, volume 2498 of Lecture Notes in Computer Science, pages

176–193. Springer Berlin / Heidelberg, 2002.

[92] H. Jin, K. Liu, F. Xian, and Z. Han. A distributed dynamic self-

immunity security architecture. In Proceedings of the 5th Interna-

tional Conference on Algorithms and Architectures for Parallel Process-

ing (ICA3PP ’02), pages 148–151, Beijing, China, October 2002. IEEE.

[93] Hwang F. K. A method for detecting all defective members in a popula-

tion by group testing. Journal of the American Statistical Association,

67:605–608, 1972.

[94] Hwang F. K., Song T. T., and Du D. Z. Hypergeometric and generalized

hypergeometric group testing. SIAM Journal on Algebraic and Discrete

Methods, 2(4):426–428, 1981.

[95] O. Kachirski and R. Guha. Intrusion detection using mobile agents in

wireless ad hoc networks. In Proceedings of the IEEE Workshop on

Knowledge Media Networking (KMN ’02), pages 153–158. IEEE, 2002.

[96] G. Kalogridis. Network node security analysis method. United Kingdom

Patent Office (UKPO), GB2415580, December 2005. Assignee: Toshiba

Research Europe Limited.

284

Bibliography

[97] G. Kalogridis. Network node security analysis using mobile agents.

United Kingdom Patent Office (UKPO), GB2428315, January 2007. As-

signee: Toshiba Research Europe Limited.

[98] G. Kalogridis. Method for identification of insecure network nodes.

United Kingdom Patent Office (UKPO), GB2452555, March 2009. As-

signee: Toshiba Research Europe Limited.

[99] G. Kalogridis. Protecting Mobile Code Privacy With Resilient Spy Agent

Group Testing. In C. A. Ardagna, S. De Capitani di Vimercati, C. D.

Jensen, and R. Küsters, editors, Proceedings of the Fifth International

Workshop on Security and Trust Management (STM ’09), Electronic

Notes in Theoretical Computer Science (ENTCS), pages 58–71, Saint

Malo, France, September 2009. Elsevier.

[100] G. Kalogridis and C. J. Mitchell. Using nonadaptive group testing to

construct spy agent routes. In S. Jakoubi, S. Tjoa, and E. R. Weippl,

editors, Proceedings of the Third International Conference on Availabil-

ity, Reliability and Security (ARES ’08), pages 1013–1019, Barcelona,

Spain, March 2008. IEEE Computer Society.

[101] G. Kalogridis, C. J. Mitchell, and G. Clemo. Spy agents: Evaluating

trust in remote environments. In Hamid R. Arabnia, editor, Proceed-

ings of the 2005 International Conference on Security and Management

(SAM ’05), pages 405–411, Las Vegas, Nevada, USA, June 2005. CSREA

Press.

285

Bibliography

[102] Y. Kalyani and C. Adams. Privacy Negotiation using a Mobile Agent. In

Canadian Conference on Electrical and Computer Engineering (CCECE

’06), pages 628–633. IEEE, May 2006.

[103] G. Karjoth, N. Asokan, and C. Gülcü. Protecting the computation

results of free-roaming agents. Personal and Ubiquitous Computing,

2(2):92–99, 1998.

[104] N. M. Karnik. Security in mobile agent systems. PhD thesis, University

of Minnesota, 1998.

[105] W. Kautz and R. Singleton. Nonrandom binary superimposed codes.

IEEE Transactions on Information Theory, 10(4):363–377, 1964.

[106] N. Krawetz and H. F. Solutions. Anti-honeypot technology. Security &

Privacy Magazine, IEEE, 2(1):76–79, 2004.

[107] R. Kumar, S. Rajagopalan, and A. Sahai. Coding constructions for

blacklisting problems without computational assumptions. In Proceed-

ings of the 19th Annual International Cryptology Conference on Ad-

vances in Cryptology, CRYPTO ’99, pages 609–623, London, UK, 1999.

Springer-Verlag.

[108] A. D. Lakhani. Deception Techniques Using Honeypots. Master’s thesis,

Royal Holloway, University of London, 2003.

[109] S. Lei, J. Liu, C. Deng, and J. Xiao. A novel free-roaming mobile agent

security protocol against colluded truncation attacks. In International

Conference on Information and Automation (ICIA ’08), pages 348–353.

IEEE Computer Society, 2008.

286

Bibliography

[110] C. H. Li. A sequential method for screening experimental variables.

Journal of the American Statistics Association, 57:455–477, 1962.

[111] A. J. Macula. A simple construction of d -disjunct matrices with certain

constant weights. Discrete Mathematics, 162(1):311–312, 1996.

[112] A. J. Macula, V. V. Rykov, and S. Yekhanin. Trivial two-stage group

testing for complexes using almost disjunct matrices. Discrete Applied

Mathematics, 137(1):97–107, 2004.

[113] S. Maffeis, M. Abadi, C. Fournet, and A. Gordon. Code-carrying au-

thorization. In S. Jajodia and J. Lopez, editors, Computer Security

(ESORICS ’08), volume 5283 of Lecture Notes in Computer Science,

pages 563–579. Springer Berlin, 2008.

[114] P. Maggi and R. Sisto. A configurable mobile agent data protection

protocol. In Proceedings of the 2nd International Joint Conference on

Autonomous Agents and Multiagent Systems, AAMAS ’03, pages 851–

858. ACM, 2003.

[115] R. M. Martins, M. R. Chaves, L. Pirmez, and L. F. R. C. Carmo. Mobile

agents applications. Internet Research: Electronic Networking Applica-

tions and Policy, 11(1):49–54, 2001.

[116] C. Meadows. Detecting attacks on mobile agents. In Proceedings of the

DARPA workshop on Foundations for secure mobile code, pages 64–65,

Monterey, USA, 1997. DARPA.

[117] A. J. Menezes, P. C. Van Oorschot, and S. A. Vanstone. Handbook of

applied cryptography. CRC press, 1996.

287

Bibliography

[118] B. Michael, N. Rowe, M. Auguston, D. Drusinsky, R. Riehle, H. Roth-

stein, L. Montiero, D. Julian, G. Fragkos, E. Uzuncaova, and T. Wing-

field. Intelligent software decoys. Naval Postgraduate School Research,

13(1SE):42–44, February (special ed.) 2003.

[119] G. A. Miller. WordNet: a lexical database for English. Communications

of the ACM, 38(11):39–41, 1995.

[120] C. J. Mitchell and F. C. Piper. Key storage in secure networks. Discrete

Applied Mathematics, 21(3):215–228, 1988.

[121] K. D. Mitnick and W. L. Simon. The art of deception: controlling the

human element of security. John Wiley & Sons, NY, USA, 2003.

[122] T. Moores. Do consumers understand the role of privacy seals in e-

commerce? Communications of the ACM, 48(3):86–91, March 2005.

[123] National Institute of Standards and Technology (NIST). Federal In-

formation Processing Standards: Advance Encryption Standard (AES).

Gaithersburg, MD, USA, November 2001.

[124] R. Neches, R. Fikes, T. W. Finin, T. R. Gruber, R. Patil, T. E. Senator,

and W. R. Swartout. Enabling Technology for Knowledge Sharing. AI

Magazine, 12(3):36–56, 1991.

[125] G. C. Necula. Proof-Carrying Code. In Proceedings of the 24th ACM

SIGPLAN-SIGACT symposium on Principles of programming languages

(POPL ’97), pages 106–119, New York, USA, 1997. ACM.

288

Bibliography

[126] G. C. Necula and P. L. Safe. Untrusted agents using proof-carrying

code. In Lecture Notes in Computer Science, volume 1419. Springer-

Verlag, 1998.

[127] S. K. Ng and K. W. Cheung. Protecting mobile agents against mali-

cious hosts by intention spreading. In H. Arabnia, editor, Proceedings

of the International Conference on Parallel and Distributed Processing

Techniques and Applications (PDPTA ’99), volume II, pages 725–729.

IEEE, 1999.

[128] H. Q. Ngo and D. Z. Du. A survey on combinatorial group testing al-

gorithms with applications to DNA library screening. In Discrete Math-

ematical Problems with Medical Applications, volume 55 of DIMACS

Discrete Math. Theoret. Comput. Sci., pages 171–182, 2000.

[129] H. Q. Ngo and D. Z. Du. New constructions of non-adaptive and error-

tolerance pooling designs. Discrete Math., 243(1-3):161–170, 2002.

[130] S. Oaks. Java Security. O’Reilly Media, Inc., 2nd edition, 2001.

[131] OECD. Privacy Online: OECD Guidance on Policy and Practice.

OECD Publishing, November 2003.

[132] OECD. OECD Glossary of Statistical Terms. OECD Publishing,

September 2008.

[133] National Institute of Standards and Technology (NIST). Federal infor-

mation processing standards: Secure Hash Standard. Gaithersburg, MD,

USA, 2002.

289

Bibliography

[134] J. J. Ordille. When agents roam, who can you trust? In Proceedings of

the 1st Annual Conference on Emerging Technologies and Applications

in Communications, pages 188–194. IEEE, May 1996.

[135] R. Ostrovsky and W. Skeith. Algebraic lower bounds for computing on

encrypted data. Cryptology ePrint Archive, Report 2007/064, 2007.

[136] J. K. Ousterhout, J. Y. Levy, and B. B. Welch. The Safe-Tcl Security

Model. In G. Vigna, editor, Mobile Agents and Security, volume 1419

of Lecture Notes in Computer Science, pages 217–234. Springer Berlin /

Heidelberg, 1998.

[137] R. S. Patil, R. E. Fikes, P. F. Patel-Schneider, D. McKay, T. Finin,

T. Gruber, and R. Neches. The DARPA knowledge sharing effort:

progress report. Morgan Kaufmann Publishers Inc., San Francisco, CA,

USA, 1997.

[138] A. Pfitzmann and M. Hansen. A terminology for talking about pri-

vacy by data minimization: Anonymity, Unlinkability, Undetectabil-

ity, Unobservability, Pseudonymity, and Identity Management, Au-

gust 2010. v0.34. Latest version available from http://dud.inf.tu-

dresden.de/Anon_Terminology.shtml.

[139] N. Provos. A virtual honeypot framework. In Proceedings of the 13th

USENIX Security Symposium, pages 1–14, San Diego, CA, USA, August

2004. USENIX Association.

[140] L. Rasmusson, A. Rasmusson, and S. Janson. Using Agents to Secure the

Internet Marketplace: Reactive Security and Social Control. In Proceed-

ings of the 2nd International Conference on the Practical Application

290

Bibliography

of Intelligent Agents and Multi-Agent Technology, London, UK, 1997.

Springer-Verlag.

[141] J. Reagle and L. F. Cranor. The platform for privacy preferences. Com-

munications of the ACM, 42(2):48–55, February 1999.

[142] M. G. Reed, P. F. Syverson, and D. M. Goldschlag. Anonymous connec-

tions and onion routing. IEEE Journal on Selected areas in Communi-

cations, 16(4):482–494, 1998.

[143] H. Reiser and G. Vogt. Security Requirements for Management Systems

using Mobile Agents. In S. Tohme and M. Ulema, editors, Proceedings

of the Fifth IEEE Symposium on Computers & Communications, pages

160–165, Washington, DC, USA, 2000. IEEE Computer Society.

[144] M. K. Reiter and A. D. Rubin. Anonymous Web transactions with

Crowds. Communications of the ACM, 42(2):32–48, February 1999.

[145] J. Riordan and B. Schneier. Environmental key generation towards clue-

less agents. In G. Vigna, editor,Mobile Agents and Security, pages 15–24,

London, UK, 1998. Springer-Verlag.

[146] R. L. Rivest. The RC4 Encryption Algorithm. Technical report, RSA

Data Security, Redwood City, CA, USA, 1992.

[147] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital

signatures and public-key cryptosystems. Communications of the ACM,

21(2):120–126, February 1978.

291

Bibliography

[148] V. Roth. Secure recording of itineraries through cooperating agents. In

Object-Oriented Technology (ECOOP ’98), volume 1543 of Lecture Notes

in Computer Science, pages 297–298. Springer-Verlag, 1998.

[149] V. Roth. On the robustness of some cryptographic protocols for mobile

agent protection. Lecture Notes in Computer Science, 2240:1–14, 2001.

[150] V. Roth. Obstacles to the adoption of mobile agents. In Proceedings of

the IEEE International Conference on Mobile Data Management, pages

296–297. IEEE, August 2004.

[151] R. Safavi-Naini and H. Wang. New results on multi-receiver authentica-

tion codes. In Advances in Cryptology (Eurocrypt ’98), volume 1403 of

Lecture Notes in Computer Science, pages 527–541. Springer, 1998.

[152] T. Sander and C. Tschudin. Towards mobile cryptography. In Proceed-

ings of the IEEE Symposium on Security and Privacy, pages 215–224,

Oakland, CA, May 1998. IEEE.

[153] T. Sander and C. F. Tschudin. On software protection via function hid-

ing. In Information Hiding, volume 1525 of Lecture Notes in Computer

Science, pages 111–123. Springer Berlin / Heidelberg, 1998.

[154] T. Sander and C. F. Tschudin. Protecting Mobile Agents Against Ma-

licious Hosts. In G. Vigna, editor, Mobile Agents and Security, pages

44–60, London, UK, 1998. Springer-Verlag.

[155] I. Schaefer. Secure Mobile Multiagent Systems In Virtual Marketplaces:

A Case Study on Comparison Shopping. Technical Report RR-02-02,

Deutsches Forschungszentrum für Künstliche Intelligenz, DFKI GmbH,

March 2002.

292

Bibliography

[156] M. Schillo, P. Funk, and M. Rovatsos. Using Trust for Detecting De-

ceitful Agents in Artificial Societies. Applied Artificial Intelligence,

14(8):825–848, 2000.

[157] F. B. Schneider. Towards fault-tolerant and secure agentry. In

M. Mavronicolas and P. Tsigas, editors, Distributed Algorithms, volume

1320 of Lecture Notes in Computer Science, pages 1–14. Springer Berlin

/ Heidelberg, 1997.

[158] J. M. Seigneur and C. D. Jensen. Privacy recovery with disposable email

addresses. IEEE Security and Privacy, 1(6):35–39, 2003.

[159] J. M. Seigneur, A. Lambert, P. Argyroudis, and C. D. Jensen. PR3 email

honeypot. Technical Report TCD-CS-2003-39, Department of Computer

Science, University of Dublin, 2003. Available at https://www.cs.tcd.

ie/publications/tech-reports/reports.03/TCD-CS-2003-39.pdf.

[160] S. W. Shah, P. Nixon, R. I. Ferguson, S. R. Hassnain, M. N. Arbab, and

L. Khan. Securing Java-Based Mobile Agents through Byte Code Ob-

fuscation Techniques. In Proceedings of the IEEE Multitopic Conference

(INMIC ’06), pages 305–308. IEEE, December 2006.

[161] V. Shoup. Practical threshold signatures. In B. Preneel, editor, Ad-

vances in Cryptology (Eurocrypt ’00), volume 1807 of Lecture Notes in

Computer Science, pages 207–220. Springer Berlin / Heidelberg, 2000.

[162] T. Skylogiannis, G. Antoniou, N. Bassiliades, G. Governatori, and

A. Bikakis. DR-NEGOTIATE—A system for automated agent nego-

tiation with defeasible logic-based strategies. Data & Knowledge Engi-

neering, 63(2):362–380, 2007.

293

Bibliography

[163] M. Sobel and P. A. Groll. Binomial group-testing with an unknown

proportion of defectives. Technometrics, 8(4):631–656, 1966.

[164] D. J. Solove, M. Rotenberg, and P. M. Schwartz. Information Pri-

vacy 900—European Union Data Protection Directive of 1995, Direc-

tive 95/46/EC. Available at http://ec.europa.eu/justice_home/

fsj/privacy/law/index_en.htm.

[165] E. H. Spafford and D. Zamboni. Intrusion detection using autonomous

agents. Computer Networks, 34(4):547–570, 2000.

[166] L. Spitzner. Honeypots: Tracking Hackers. Addison-Wesley Professional,

2002.

[167] P. Srisuresh and M. Holdrege. IP Network Address Translator (NAT)

Terminology and Considerations. Technical Report RFC 2663, Internet

Engineering Task Force (IETF), August 1999.

[168] R. P. Srivastava and T. J. Mock. Evidential reasoning for Web-

Trust assurance services. Journal of Management Information Systems,

10(3):11–32, 1999.

[169] J. N. Staddon, D. R. Stinson, and R. Wei. Combinatorial properties of

frameproof and traceability codes. IEEE Transactions on Information

Theory, 47(3):1042–1049, 2001.

[170] W. Stallings. Network security essentials: applications and standards.

Prentice Hall, 2007.

294

Bibliography

[171] I. Stengel, K. P. Fischer, U. Bleimann, and J. Stynes. Mitigating the

mobile agent malicious host problem by using communication patterns.

Information Management and Computer Security, 13(3):203–211, 2005.

[172] D. R. Stinson, T. Van Trung, and R. Wei. Secure frameproof codes, key

distribution patterns, group testing algorithms and related structures.

Journal of Statistical Planning and Inference, 86(2):595–617, 2000.

[173] D .R. Stinson and R. Wei. Combinatorial properties and constructions

of traceability schemes and frameproof codes. SIAM Journal on Discrete

Mathematics, 11(1):41–53, 1998.

[174] D. R. Stinson and R. Wei. Key preassigned traceability schemes for

broadcast encryption. In Proceedings of the Selected Areas in Cryptog-

raphy, SAC ’98, pages 144–156, London, UK, 1999. Springer-Verlag.

[175] D. R. Stinson and R. Wei. Generalized cover-free families. Discrete

Mathematics, 279(1-3):463–477, 2004.

[176] K. Sycara and D. Zeng. Coordination of Multiple Intelligent Soft-

ware Agents. International Journal of Cooperative Information Systems,

5:181–212, 1996.

[177] H. K. Tan and L. Moreau. Extending execution tracing for mobile code

security. In K. Fischer and D. Hutter, editors, Procedings of 2nd Inter-

national Workshop on Security of Mobile MultiAgent Systems (SEMAS

’02), pages 51–59, Bologna, Italy, June 2002. Deutsches Forschungszen-

trum fur Kunstliche Intelligenz, DFKI Saarbrucken.

[178] A. S. Tanenbaum. Computer Networks. Prentice Hall, 4th edition, 2002.

295

Bibliography

[179] J. Tao, L. Ji-ren, and Q. Yang. The research on dynamic self-adaptive

network security model based on mobile agent. In Proceedings of 36th In-

ternational Conference on Technology of Object-Oriented Languages and

Systems, pages 134–139, Los Alamitos, CA, USA, 2000. IEEE Computer

Society.

[180] D. C. Torney. Sets pooling designs. Annals of Combinatorics, 3(1):95–

101, 1999.

[181] E. Triesch. A group testing problem for hypergraphs of bounded rank.

Discrete Applied Mathematics, 66(2):185–188, 1996.

[182] UK Act of Parliament. Data Protection Act. The Stationery Office

Limited, July 1998.

[183] V. Varadharajan, N. Kumar, and Y. Mu. An approach to designing

security model for mobile agent based systems. In Global Telecommuni-

cations Conference (GLOBECOM ’98), pages 1600–1606, Sydney, 1998.

IEEE.

[184] G. Vigna. Protecting mobile agents through tracing. In Proceedings of

the 3rd Workshop on Mobile Object Systems. Jyvälskylä, Finland, June

1997.

[185] G. Vigna. Cryptographic traces for mobile agents. In G. Vigna, editor,

Mobile Agents and Security, volume 1419 of Lecture Notes in Computer

Science, pages 137–153. Springer-Verlag, Berlin, 1998.

[186] G. Vigna. Mobile Code Technologies, Paradigms, and Applications. PhD

thesis, Politecnico di Milano, 1998.

296

Bibliography

[187] J. Vitek and G. Castagna. Seal: A Framework for Secure Mobile Compu-

tations. In Workshop on Internet Programming Languages, pages 47–77,

London, UK, 1999. Springer-Verlag.

[188] H. Vogler, A. Spriestersbach, and M. L. Moschgath. Protecting compet-

itive negotiation of mobile agents. In Proceedings of the IEEE Workshop

on Future Trends of Distributed Computing Systems (FTDCS ’99), pages

145–150, Cape Town, South Africa, December 1999. IEEE.

[189] C. Wang, J. Hill, J. Knight, and J. Davidson. Software tamper resistance:

Obstructing static analysis of programs. Technical Report CS-2000-12,

Department of Computer Science, University of Virginia, Charlottesville,

VA, USA, 2000.

[190] R. Wei. On cover-free families, 2006. Preprint available at http://ccc.

cs.lakeheadu.ca/psfiles/CFF.ps.

[191] G. Weiss. Multiagent systems: a modern approach to distributed artificial

intelligence. The MIT Press, 2000.

[192] L. Weiwei, H. Zhen, and W. Qinglong. An Approach to the Sensitive

Information Protection for Mobile Code. In Proceedings of the The First

International Symposium on Data, Privacy, and E-Commerce, pages

289–297, Washington DC, USA, 2007. IEEE Computer Society.

[193] U. G. Wilhelm. Cryptographically protected objects. Technical report,

Ecole Polytechnique Fédérale de Lausanne, Switzerland, 1997.

[194] U. G. Wilhelm, S. Staamann, and L. Buttyan. On the problem of trust

in mobile agent systems. In Symposium on Network and Distributed

System Security, pages 114–124. ACM, 1998.

297

Bibliography

[195] M. Winslett, T. Yu, K. E. Seamons, A. Hess, J. Jacobson, R. Jarvis,

B. Smith, and L. Yu. Negotiating trust in the web. IEEE Journal of

Internet Computing, 6(6):30–37, 2002.

[196] M. Withall, I. Phillips, and D. Parish. Network visualisation: a review.

IET Communications, 1(3):365–372, 2007.

[197] J. Wolf. Born again group testing: Multiaccess communications. IEEE

Transactions on Information Theory, 31(2):185–191, 1985.

[198] D. Xu, L. Harn, M. Narasimhan, and J. Luo. An Improved Free-Roaming

Mobile Agent Security Protocol against Colluded Truncation Attacks.

In Proceedings of the 30th Annual International Computer Software and

Applications Conference, volume 2. IEEE Computer Society, 2006.

[199] B. S. Yee. Using Secure Coprocessors. PhD thesis, Carnegie Mellon

University, 1994.

[200] B. S. Yee. A sanctuary for mobile agents. In J. Vitek and C. D. Jensen,

editors, Secure Internet programming, pages 261–273. Springer-Verlag,

London, UK, 1999.

[201] Y. Zhang and W. Lee. Intrusion detection in wireless ad-hoc networks.

In Proceedings of the 6th Annual International Conference on Mobile

Computing and Networking (MobiCom), pages 275–283. IEEE, 2000.

[202] J. Zhou, J. A. Onieva, and J. Lopez. Analysis of a free roaming agent

result-truncation defense scheme. In Proceedings of the IEEE Interna-

tional Conference on e-Commerce Technology, pages 221–226, Washing-

ton, DC, USA, 2004. IEEE Computer Society.

298

Bibliography

299

