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The quantum relative entropy is frequently used as a distance measure between two quan-

tum states, and inequalities relating it to other distance measures are important mathematical

tools in many areas of quantum information theory. We have derived many such inequalities

in previous work. The present paper is a follow-up on this, and provides a sharp upper bound

on the relative entropy in terms of the trace norm distance and of the smallest eigenvalues of

both states concerned. The result obtained here is more general than the corresponding one

from our previous work. As a corollary, we obtain a sharp upper bound on the regularised

relative entropy introduced by Lendi, Farhadmotamed and van Wonderen.

PACS numbers: 03.65.Hk

I. INTRODUCTION

The quantum relative entropy of states of quantum systems isa measure of how well one

quantum state can be operationally distinguished from another and quantifies the extent to which

one hypothesisρ differs from an alternative hypothesisσ in the sense of quantum hypothesis

testing [5, 7, 8, 11]. It is defined as

S(ρ||σ) = Tr ρ(log ρ− log σ)
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for statesρ andσ [10] whenever the support ofρ is contained in the support ofσ, and is defined

to be+∞ otherwise.

In [3] we presented a number of inequalities relating the quantum relative entropy, used as a

distance measure, to the trace norm distance. The present paper is a follow-up on this work, and

concerns a sharp upper bound on the relative entropyS(ρ||σ) in terms of the trace norm distance

||ρ − σ||1/2, when the smallest eigenvalues ofρ andσ are given. The need for these smallest

eigenvalues stems from the fact that the relative entropy can be infinite when the kernel ofσ is not

contained in the kernel ofρ. Rastegin obtained similar inequalities for the relativeq-entropy [9].

As a special case of the main theorem proven here (Theorem 1),we reobtain Theorem 6 of [3].

The proof given in [3] was incorrect, and the proof we give here serves as a correction and at the

same time as a generalisation.

We also obtain an upper bound (Corollary 2) on the so-called regularised relative entropy,

introduced by Lendi et. al. [6] as one possible means to circumvent the problem of infinities of the

ordinary relative entropy. The regularised relative entropy is defined as

R(ρ||σ) = cd S (ρ+ I||σ + I) ,

wherecd is a certain normalisation constant depending ond, the dimension of state space. Note

thatS (ρ+ I||σ + I) ≤ log 2, with equality for orthogonal pure states, hence one could also choose

the normalisation constant to be1/ log 2.

In the following section, we introduce the notations and mathematical tools necessary for the

proofs. Then, in Section III, we derive an integral representation for the relative entropy between

non-normalised states (i.e. positive definite matrices), which is also essential for the proofs. An

upper bound on the relative entropy for non-normalised states is derived in Section IV, which

is then used in Section V to obtain the promised sharp upper bound on the relative entropy for

normalised states.

II. NOTATIONS AND PRELIMINARIES

In this paper we will work exclusively in finite dimensional Hilbert spaces, so that quantum

states can be represented by positive semidefinite matrices. We denote the identity matrix byI,

and scalar matricesaI simply bya (for a ∈ R) when no confusion can arise. The matrix norms

|| · ||1 and|| · ||∞ are the trace norm and operator norm, respectively.
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The von Neumann entropy can be defined for positive definite matrices as

S(A) = −TrA logA, (1)

which coincides with the usual definition for density matrices. Furthemore, we defineS(0) = 0.

Likewise, the quantum relative entropy can be defined for positive definite matricesA andB as

S(A||B) = TrA(logA− logB). (2)

This definition still holds for positive semidefiniteA andB provided the support ofB is contained

in the support ofB; otherwise one definesS(A||B) = +∞. The quantum relative entropy satisfies

the scaling property

S(aA||aB) = aS(A||B), a > 0. (3)

The logarithm appearing in (1) and (2) is the matrix logarithm. For x > 0, we have the

following integral representation for the scalar logarithm:

log x =

∫ ∞

0

ds

(

1

1 + s
−

1

x+ s

)

. (4)

and forA > 0 we define the matrix logarithm as

logA =

∫ ∞

0

ds

(

1

1 + s
− (A + s)−1

)

. (5)

The methods we will use require the derivative of the matrix logarithm; see also [1, 2]. From

the integral representation of the logarithm we get, forA > 0,

d

dt

∣

∣

∣

∣

t=0

log(A+ t∆) =

∫ ∞

0

ds (A+ s)−1∆(A + s)−1.

As is customary, we define the following linear map forA > 0:

TA(∆) =

∫ ∞

0

ds (A + s)−1∆(A+ s)−1. (6)

Thus
d

dt

∣

∣

∣

∣

t=0

log(A+ t∆) = TA(∆). (7)

Again, (6) and (7) are also valid forA ≥ 0 providedkerA ⊆ ker∆.

From the integral representation ofT it follows that, for anyA > 0, TA preserves the positive

semidefinite order: ifX ≤ Y , thenTA(X) ≤ TA(Y ).
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Forx > 0, the integral
∫∞

0
ds x/(x+ s)2 is equal to1. Hence, forA > 0,

TA(A) =

∫ ∞

0

ds (A+ s)−1A (A+ s)−1 = I. (8)

An argument that we will use frequently is the special structure of the Jordan decomposition of

a traceless Hermitian matrix. Let∆ be Hermitian, andTr∆ = 0. The Jordan decomposition of∆

is given by∆ = ∆+ −∆−, where∆+ and∆− are positive semidefinite and mutually orthogonal,

i.e.∆+∆− = 0. We haveTr∆ = Tr∆+ − Tr∆−, henceTr∆+ = Tr∆−. Thus

||∆||1 = Tr∆+ + Tr∆− = 2Tr∆+. (9)

It will also be clear that||∆||∞ is bounded above byTr∆+, and thus

||∆||∞ ≤ ||∆||1/2, (10)

whenever∆ is traceless and Hermitian.

III. AN INTEGRAL REPRESENTATION OF THE RELATIVE ENTROPY

In this section we derive an integral representation of the quantum relative entropy for non-

normalised states,

S(A||B) = TrA(logA− logB),

in terms of a differentiable paths 7→ C(s), whereC(0) = A, C(1) = B andC(s) > 0.

Lemma 1 LetA ≥ 0 andB > 0. Let0 ≤ s ≤ 1 and lets 7→ C(s) be a continuous, differentiable

path joiningA andB (that is,C(0) = A andC(1) = B) and for all s ∈ (0, 1), C(s) > 0. Then

the relative entropyS(A||B) has the following integral representation:

S(A||B) = Tr(A−B) +

∫ 1

0

ds Tr
dC

ds
(logB − logC(s)). (11)

In particular, if the path is linear,C(s) = (1− s)A+ sB, then (11) becomes

S(A||B) = Tr(A− B) + Tr(B −A) logB −

∫ 1

0

ds Tr(B −A) log(A+ s(B − A)). (12)
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Proof. First we rewriteS(A||B) as

S(A||B) = TrA(logA− logB)

= Tr(B − A) logB + (S(B)− S(A)).

Both terms can be written as integrals. For the first term we have

Tr(B −A) logB = Tr

∫ 1

0

ds
dC

ds
logB.

The second term can be written as:

S(B)− S(A) = −Tr(B −A)−

∫ 1

0

ds Tr
dC

ds
logC(s).

This can be shown as follows. Letf(x) = −x log x be the function defining the von Neumann

entropyS(A) = Tr f(A). As f ′(x) = −1− log x, we have, for0 < s < 1,

d

ds
S(C(s)) =

d

ds
Tr f(C(s))

= Tr f ′(C(s))
dC

ds

= −Tr
dC

ds
− Tr

dC

ds
logC(s).

Integrating overs in the interval[0, 1] yields, indeed,

S(B)− S(A) = S(C(1))− S(C(0))

=

∫ 1

0

ds
d

ds
S(C(s))

= −

∫ 1

0

ds Tr
dC

ds
−

∫ 1

0

ds Tr
dC

ds
logC(s)

= −Tr(B −A)−

∫ 1

0

ds Tr
dC

ds
logC(s).

Finally, adding the two integral representations yields (11). �

IV. UPPER BOUND ON THE RELATIVE ENTROPY FOR NON-NORMALISED S TATES

In this section, we prove the main technical proposition (Proposition 1) from which the

promised sharp bound will follow. The proposition providesan upper bound on the relative en-

tropy for non-normalised statesA andB with equal trace, in terms of the trace norm distanceT

betweenA andB, and of the minimal eigenvalues ofA andB.
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We will denote the lowest eigenvalue ofA by α, and the lowest eigenvalue ofB by β. First

we establish the allowed range ofT in terms ofα andβ. It turns out that the trace norm distance

betweenA andB cannot be smaller than|α− β|:

Lemma 2 LetA,B be positive semidefiniten× n matrices withTrA = TrB, andλmin(A) = α

andλmin(B) = β. ThenT = ||A− B||1/2 ≥ |α− β|.

Proof. We assume first thatα ≥ β. Let∆ := A− B have Jordan decomposition∆ = ∆+ −∆−.

SinceTrA = TrB, we haveTr∆ = 0, hence||A−B||1 = 2Tr∆+.

Denoting the vector of eigenvalues sorted in non-increasing order by the symbolλ↓, we then

clearly have

||A−B||1 = 2Tr∆+ ≥ 2λ↓
1(∆+) = 2λ↓

1(A−B).

Now, by Lidskii’s Theorem (e.g. inequality (III.12) in [4]), for all HermitianA andB, the vector

λ↓(A)− λ↓(B) is majorised by the vectorλ↓(A−B). In particular,

λ↓
1(A− B) ≥ max

j
{λ↓

j(A)− λ↓
j (B)} ≥ λ↓

n(A)− λ↓
n(B).

By the hypothesis of the lemma, the last expression is equal to α− β.

Hence we have shown that||A− B||1 ≥ 2(α− β) whenα− β ≥ 0. Whenα− β ≤ 0 we can

just swap the roles ofA andB and obtain||A−B||1 ≥ 2(β − α). �

Because of the scaling property (3) we can restrict ourselves to the caseβ = 1.

Proposition 1 Let A,B be positive definite withTrA = TrB, λmin(A) = α, λmin(B) = 1 and

T := ||A−B||1/2. ThenT ≥ |α− 1|, and Then, forα > 0,

S(A||B) ≤ (1 + T ) log(1 + T )− α log(1 + T/α), (13)

whereα 7→ −α log(1 + T/α) is monotone decreasing, and−α log(1 + T/α) =: 0 for α = 0.

Moreover, quality can be achieved for any allowed values ofα andT .

The proof relies on the following lemma:

Lemma 3 Leta andb be two positive definite matrices withTr a = Tr b, and lett = ||b− a||1/2.

If a ≥ γ, with γ a non-negative scalar, then

Tb(b− a) ≤
t

γ + t
. (14)
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Proof. Let δ = b − a, which is Hermitian with trace equal to0 and trace norm equal to2t. Thus,

by (10), ||δ||∞ ≤ t, or δ ≤ t. We also havetγ ≤ ta. Combining the two inequalities yields

γδ ≤ ta = t(b− δ). Hence,

b− a = δ ≤
t

γ + t
b.

Since the operatorY 7→ TX(Y ) is order-preserving forX > 0, applying this operator to both sides

yields

Tb(b− a) ≤
t

γ + t
Tb(b) =

t

γ + t
.

�

Proof of Proposition 1.We consider strictly positiveα first. Let us apply Lemma 3 to the case

a = A andb = A + x(B − A), with A andB the matrices of the proposition and0 ≤ x ≤ 1. Let

∆ = B −A. Thenδ = x∆, t = xT andγ = α. By the lemma, we then have (after dividing byx)

TA+x∆(∆) ≤
T

α + xT
. (15)

Likewise, by settinga = B, b = B + (1− x)(A− B) andγ = 1, we get

TB+(1−x)(−∆)(−∆) ≤
T

1 + (1− x)T
.

Noting thatB − (1− x)∆ = xB + (1− x)A = A+ x∆, this yields the lower bound

TA+x∆(∆) ≥
−T

1 + (1− x)T
. (16)

Again we exploit the Jordan decomposition of∆, ∆ = ∆+ −∆− with ∆+,∆− ≥ 0 andTr∆+ =

Tr∆− = T , due to the facts thatTr∆ = 0 and||∆||1 = 2T . Combining this with (15) and (16),

and exploiting the fact that forX ≥ 0, Y ≤ y impliesTrXY ≤ yTrX, we get

Tr∆TA+x∆(∆) = Tr∆+TA+x∆(∆)− Tr∆−TA+x∆(∆)

≤ T

(

T

α + xT
−

−T

1 + (1− x)T

)

.

Now let s be a scalar,0 ≤ s ≤ 1. Integrating the previous inequality overx from s to 1 yields

Tr∆(log(A+∆)− log(A+ s∆)) ≤ T (log(α + T )− log(α + sT ) + log(1 + (1− s)T )).

Integrating a second time, now overs from 0 to 1, yields:
∫ 1

0

ds Tr∆(logB − log(A+ s∆)) ≤ (1 + T ) log(1 + T ) + α(logα− log(α + T )).
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To finish the proof, we define the rectilinear pathC(s) = sB + (1 − s)A, for which dC/ds =

B − A = ∆, and use Lemma 1 to show that the left-hand side is justS(A||B).

The strict positivity ofα is required to satisfy the conditions of Lemma 3. However, byconti-

nuity of the relative entropy in its first argument, the boundmust be valid forα = 0 too. In the

limit of α tending to0, α(logα− log(α + T )) goes to0.

Finally, we show that equality can be obtained for every allowed value ofT andα. Indeed,

taking

A =





1 + T 0

0 α



 andB =





1 0

0 T + α





satisfies all the requirements of the proposition and yieldsequality in (13). �

V. SHARP UPPER BOUNDS ON THE RELATIVE ENTROPY AND REGULARISE D

RELATIVE ENTROPY

Proposition 1 allows us to derive an upper bound on the ordinary relative entropy between

density operatorsρ andσ when the eigenvalues ofρ andσ are bounded below by the valuesα and

β, respectively.

Theorem 1 Consider density matricesρ and σ, with smallest eigenvaluesλmin(ρ) = α and

λmin(σ) = β. ThenT := ||ρ− σ||1/2 ≥ |α− β| and, forα, β > 0,

S(ρ||σ) ≤ (β + T ) log(1 + T/β)− α log(1 + T/α), (17)

and, in the limitα → 0,

S(ρ||σ) ≤ (β + T ) log(1 + T/β). (18)

Proof. We use the scaling property and Proposition 1, withA = ρ/β andB = σ/β. The formula

of Proposition 1 can be taken over completely by replacingα by α/β, T by T/β, and multiplying

the right-hand side of each bound byβ. �

Note that, because of the extra normalisation requirementTr ρ = Tr σ = 1, equality can now

only be achieved for states of dimension at least3.

If α is not specified, we must take the maximum of(β + T ) log(1 + T/β) − α log(1 + T/α)

over all allowed values ofα, with β andT kept fixed. In doing so we retrieve Theorem 6 of [3].

The proof given here supplants the incorrect proof in the published version of [3].
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Corollary 1 Consider density matricesρ andσ, whereσ has smallest eigenvalueλmin(σ) = β.

LetT := ||ρ− σ||1/2. If T ≤ β

S(ρ||σ) ≤ (β + T ) log(1 + T/β) + (β − T ) log(1− T/β), (19)

and ifT ≥ β,

S(ρ||σ) ≤ (β + T ) log(1 + T/β). (20)

Proof. Let λmin(ρ) = α. To find an upper bound onS(A||B) in the case thatα is not specified,

we maximise the bound (17) over all allowedα. Because of Lemma 2,T ≥ |α − β|. Hence, the

range ofα is [max(0, β−T ), β+T ]. The quantity to be maximised is−α log(1+T/α), which is

monotonously decreasing inα. Thus, its maximum is attained for the minimally allowedα, being

max(0, β − T ). The two cases of the corollary follow. �

We immediately obtain an upper bound on the regularised relative entropy in terms of the trace

norm distance.

Corollary 2 For d-dimensional density matricesρ andσ, with smallest eigenvaluesλmin(ρ) = α

andλmin(σ) = β andT := ||ρ− σ||1/2,

R(ρ||σ) := cd S (ρ+ I||σ + I) (21)

≤ cd ((β + 1 + T ) log(1 + T/(β + 1))− (α + 1) log(1 + T/(α + 1))) (22)

≤ cd T log(1 + T ). (23)

From dimension 3 onwards, inequality (23) is sharp. Equality can be achieved for any allowed

value ofT , by the diagonal statesρ = Diag(1− t, t, 0) andσ = Diag(1 − t, 0, t), wheret can be

any number between 0 and 1.

Proof. Upper bound (22) is a straightforward application of Theorem 1 (apart from a rescaling

of ρ + I andσ + I, which has no effect on the bound itself). When no information aboutα and

β is known one can use the bound (23) which follows by exploiting the fact that both(β + 1 +

T ) log(1 + T/(β + 1)) and−(α + 1) log(1 + T/(α + 1)) are monotonically decreasing, hence

expression (22) is maximal forα = β = 0. �



10

Acknowledgments

This work was supported by the European Commission (Qessence, Compas, Minos) and the

European Research Councils (EURYI). We gratefully acknowledge the referee for many invaluable

comments.

[1] K.M.R. Audenaert, “Telescopic Relative Entropy”, arXiv:1102.3040. Presented at TQC2011, May 22

2011, Madrid (2011).

[2] K.M.R. Audenaert, “Telescopic Relative Entropy–II: Triangle Inequalities”, arXiv:1102.3041 (2011).

[3] K.M.R. Audenaert and J. Eisert, J. Math. Phys.46, 102104 (2005).

[4] R. Bhatia,Matrix Analysis, Springer, Heidelberg (1997).

[5] F. Hiai and D. Petz, “The proper formula for relative entropy and its asymptotics in quantum proba-

bility”, Comm. Math. Phys.143, 99–114 (1991).

[6] K. Lendi, F. Farhadmotamed and A.J. van Wonderen, J. Stat. Phys.92(5/6), 1115–1135 (1998).

[7] T. Ogawa and H. Nagaoka, “Strong converse and Stein’s lemma in quantum hypothesis testing”, IEEE

Trans. Inform. Theory47, 2428–2433 (2000).

[8] M. Ohya and D. Petz,Quantum Entropy and its Use, Springer, Heidelberg (1993).

[9] A.E. Rastegin, “Upper continuity bounds on the relativeq-entropy forq > 1”, arXiv:1010.1355

(2010).

[10] H. Umegaki, Kodai Math. Sem. Rep.14, 59 (1962).

[11] A. Wehrl, Rev. Mod. Phys.50, 221 (1978).

http://arxiv.org/abs/1102.3040
http://arxiv.org/abs/1102.3041
http://arxiv.org/abs/1010.1355

	I Introduction
	II Notations and preliminaries
	III An integral representation of the relative entropy
	IV Upper bound on the relative entropy for non-normalised states
	V Sharp upper bounds on the relative entropy and regularised relative entropy
	 Acknowledgments
	 References

