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The quantum relative entropy is frequently used as a distar@asure between two quan-
tum states, and inequalities relating it to other distaneasures are important mathematical
tools in many areas of quantum information theory. We havizeld many such inequalities
in previous work. The present paper is a follow-up on thigl, provides a sharp upper bound
on the relative entropy in terms of the trace norm distanckddithe smallest eigenvalues of
both states concerned. The result obtained here is moreajdinan the corresponding one
from our previous work. As a corollary, we obtain a sharp uggmind on the regularised

relative entropy introduced by Lendi, Farhadmotamed amdAanderen.

PACS numbers: 03.65.Hk

I. INTRODUCTION

The quantum relative entropy of states of quantum systenasneeasure of how well one
guantum state can be operationally distinguished fromhan@nd quantifies the extent to which
one hypothesig differs from an alternative hypothesisin the sense of quantum hypothesis
testing [5/ 7| 8, 11]. Itis defined as

S(pllo) = Tr p(log p — log o)
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for statesp ando [10] whenever the support gfis contained in the support of, and is defined
to be-+oo otherwise.

In [3] we presented a number of inequalities relating thentyua relative entropy, used as a
distance measure, to the trace norm distance. The pregast isaa follow-up on this work, and
concerns a sharp upper bound on the relative ent&dp}jo) in terms of the trace norm distance
llp — o||l1/2, when the smallest eigenvalues @ndo are given. The need for these smallest
eigenvalues stems from the fact that the relative entropyoeanfinite when the kernel of is not
contained in the kernel gf. Rastegin obtained similar inequalities for the relativentropy [9].

As a special case of the main theorem proven here (ThedreneXgobtain Theorem 6 of|[3].
The proof given in|[3] was incorrect, and the proof we giveehgerves as a correction and at the
same time as a generalisation.

We also obtain an upper bound (Corollady 2) on the so-cakenlilarised relative entropy,
introduced by Lendi et. al. [6] as one possible means to mik@nt the problem of infinities of the

ordinary relative entropy. The regularised relative epyris defined as
R(pllo) = ca S(p+1ljlo+1),

wherec, is a certain normalisation constant dependingipthe dimension of state space. Note
thatS (p + I||o + I) < log 2, with equality for orthogonal pure states, hence one cdst@hoose
the normalisation constant to bé log 2.

In the following section, we introduce the notations andheatatical tools necessary for the
proofs. Then, in Sectidnlll, we derive an integral repréaton for the relative entropy between
non-normalised states (i.e. positive definite matriceslictvis also essential for the proofs. An
upper bound on the relative entropy for non-normalisecesta derived in Section 1V, which
is then used in Sectidn]V to obtain the promised sharp uppendon the relative entropy for

normalised states.

II. NOTATIONS AND PRELIMINARIES

In this paper we will work exclusively in finite dimensionallbert spaces, so that quantum
states can be represented by positive semidefinite matiiWesdenote the identity matrix bl
and scalar matricesl simply bya (for a« € R) when no confusion can arise. The matrix norms

|| - || and|| - || are the trace norm and operator norm, respectively.



The von Neumann entropy can be defined for positive definiteicea as
S(A) = —Tr Alog A, (1)

which coincides with the usual definition for density magscFurthemore, we defirtg0) = 0.

Likewise, the quantum relative entropy can be defined foitipesiefinite matricesi andB as
S(A||B) = Tr A(log A — log B). (2)

This definition still holds for positive semidefinittand B provided the support @B is contained
in the support oB; otherwise one defines(A||B) = +oo. The quantum relative entropy satisfies
the scaling property

S(aAllaB) = aS(A||B),a > 0. (3)

The logarithm appearing inl(1) andl (2) is the matrix logamthForx > 0, we have the

following integral representation for the scalar logarith

* 1 1
logx—/o ds(l—l—s_ers)' 4)
and forA > 0 we define the matrix logarithm as
lo A—/ood L—(AJF )7t (5)
s4= o \1+s ° '

The methods we will use require the derivative of the mawgarithm; see also/[1; 2]. From

the integral representation of the logarithm we get,Aor 0,

dt

log(A +tA) = /OO ds (A+s)"'A(A+ )7

t=0

As is customary, we define the following linear map for> 0:

TA(A) = /Ooo ds (A+5) " A(A+5). (6)
Thus
di log(A +tA) = Ta(A). (7)
t t=0

Again, (6) and[(I7) are also valid fot > 0 providedker A C ker A.
From the integral representation pfit follows that, for anyA > 0, 74 preserves the positive
semidefinite order: ifX <Y, then7,(X) < Ta(Y).



Forz > 0, the integral[;° ds x/(x + ) is equal tol. Hence, ford > 0,
Ta4) = [ ds(A+ s A(A+s =1 ®
0

An argument that we will use frequently is the special stitebf the Jordan decomposition of
a traceless Hermitian matrix. L&t be Hermitian, andr A = 0. The Jordan decomposition of
is given byA = A, — A_, whereA, andA_ are positive semidefinite and mutually orthogonal,
i.e. ALA_ =0.Wehavelr A =TrA, —TrA_, hencélr A, =TrA_. Thus

|AlL =TrAy +TrA_=2TrA,. 9)
It will also be clear that|A||- is bounded above byr A ,, and thus
1Al < [I1A]1/2, (10)

whenever is traceless and Hermitian.

lll. AN INTEGRAL REPRESENTATION OF THE RELATIVE ENTROPY

In this section we derive an integral representation of thentum relative entropy for non-
normalised states,
S(A||B) = Tr A(log A — log B),

in terms of a differentiable path— C/(s), whereC'(0) = A, C(1) = B andC(s) > 0.

Lemmal LetA > 0andB > 0. Let0 < s < 1 and lets — C(s) be a continuous, differentiable
path joining A and B (that is,C(0) = AandC(1) = B) and for alls € (0,1), C(s) > 0. Then

the relative entropys (A|| B) has the following integral representation:

S(A||B) =Tr(A— B) + /01 ds Tr %(logB —log C(s)). (11)

In particular, if the path is linea€)(s) = (1 — s)A + sB, then[11) becomes

S(A||B) =Tr(A— B)+ Tr(B — A)log B — /1 ds Tr(B — A)log(A+ s(B — A)). (12)



Proof. First we rewriteS(A||B) as

S(A||B) = Tr A(log A — log B)
= Tr(B—A)log B+ (S(B) — S(A)).

Both terms can be written as integrals. For the first term we ha

1

Tr(B — A)log B = Tr/ ds QlogB.
0 ds
The second term can be written as:
! dC
S(B)—S(A)=—-Tr(B—A)— [ ds TrglogC(s).
0

This can be shown as follows. Lé¢tx) = —xlogx be the function defining the von Neumann
entropyS(A) = Tr f(A). As f'(z) = —1 — log x, we have, fol) < s < 1,

d d
Ls0) = L pc(s)
- T (O
ac ac
— _TrE — TrE log C(s).

Integrating oves in the intervall0, 1] yields, indeed,

S(B) —S(A) = S(C(1)) —S(C(0))
_ /0 ds%S(C(s))

! dC ! dC
= — - 1
/o ds Tr Is /0 ds lrds ogC(s)

1
= —Tr(B—A)—/ ds TrglogC(s).
0 ds

Finally, adding the two integral representations yieldg) (1 O

IV. UPPER BOUND ON THE RELATIVE ENTROPY FOR NON-NORMALISED S TATES

In this section, we prove the main technical propositionof@sition[1) from which the
promised sharp bound will follow. The proposition providesupper bound on the relative en-
tropy for non-normalised state$ and B with equal trace, in terms of the trace norm distafice

betweenA and B, and of the minimal eigenvalues dfand 5.



We will denote the lowest eigenvalue dfby «, and the lowest eigenvalue &f by 3. First
we establish the allowed rangeBfin terms ofa andg. It turns out that the trace norm distance

betweend and B cannot be smaller thaa — 5|:

Lemma 2 Let A, B be positive semidefinite x n matrices withTr A = Tr B, and A\ ,in(A4) = «
and A\, (B) = 8. ThenT = ||A — B||1/2 > |a — f|.

Proof. We assume first that > . Let A := A — B have Jordan decompositiah= A, — A_.
SinceTr A = Tr B, we havelr A = 0, hence|A — B||; = 2Tr A,.
Denoting the vector of eigenvalues sorted in non-increpsider by the symbaol*, we then
clearly have
JA— Bl =2Tr A, > 2M(A}) = 2X{(A - B).

Now, by Lidskii’s Theorem (e.g. inequality (111.12) in/[4]jor all HermitianA and B, the vector
M(A) — X(B) is majorised by the vector'(A — B). In particular,
Ar(A = B) = max{Aj(4) = X;(B)} > X, (A4) — M (B).
J
By the hypothesis of the lemma, the last expression is equaH 5.

Hence we have shown thgtt — B||;, > 2(a — 8) whena — 8 > 0. Whena — 3 < 0 we can
just swap the roles oft and B and obtairn|A — Bl|; > 2(5 — «). O

Because of the scaling property (3) we can restrict oursdlvéhe case = 1.

Proposition 1 Let A, B be positive definite witir A = Tr B, Auin(A) = a, A\uin(B) = 1 and

T :=||A— B||1/2. ThenT > |a — 1|, and Then, forx > 0,

S(A||B) < (1+T)log(1+T) — alog(l+T/a), (13)

wherea — —alog(1 + T'/«) is monotone decreasing, are log(1 + 7'/a) =: 0 for a = 0.

Moreover, quality can be achieved for any allowed values ahdT'.

The proof relies on the following lemma:

Lemma 3 Leta andb be two positive definite matrices wilhra = Tr b, and lett = ||b — a|1/2.
If a > ~, withy a non-negative scalar, then

Talb—a) < # (14)



Proof. Let§ = b — a, which is Hermitian with trace equal tband trace norm equal . Thus,
by (20), ||0]|cc < t, 0rd < t. We also havey < ta. Combining the two inequalities yields

v0 < ta =t(b— §). Hence,
b—a=0< Lb.
v+t
Since the operatdr — Tx(Y') is order-preserving foK > 0, applying this operator to both sides

yields

Proof of Propositior L We consider strictly positive first. Let us apply Lemmi 3 to the case
a= Aandb = A+ z(B — A), with A and B the matrices of the proposition afd = < 1. Let
A =B — A. Theny = zA, t = 2T andy = «. By the lemma, we then have (after dividing by
T

Taraa(8) € ——. (15)
Likewise, by settingi = B,b = B+ (1 — z)(A — B) andy = 1, we get
Tora-z)(-n)(—A) < ﬁ
Noting thatB — (1 — 2)A = 2B + (1 —z)A = A+ zA, this yields the lower bound
Tawa(8) > - (16)
1+(1—2o)T

Again we exploit the Jordan decomposition®fA = A, — A_with A, A >0andTrA, =
Tr A_ =T, due to the facts thalr A = 0 and||A||; = 27". Combining this with[(1b) and_(16),
and exploiting the fact that fak' > 0, Y < y impliesTr XY < y Tr X, we get

Tl" An-ﬁ-IA(A) - Tl“ A+7j4+xA(A) - Tl" A_7j4+xA(A)

T T =T
- a+2T 1+(01—-2)T)
Now let s be a scalar) < s < 1. Integrating the previous inequality ovefrom s to 1 yields

Tr A(log(A+ A) —log(A+ sA)) < T'(log(a+T) —log(a + sT') +log(1 + (1 —s)T")).
Integrating a second time, now owefrom 0 to 1, yields:

1
/ ds TrA(log B —log(A+sA)) < (1+T)log(1+T)+ a(loga —log(a+1T)).
0



To finish the proof, we define the rectilinear pditlys) = sB + (1 — s)A, for whichdC'/ds =
B — A=A, and use Lemma 1 to show that the left-hand side is§st | B).

The strict positivity ofa is required to satisfy the conditions of Lemfda 3. Howevercomti-
nuity of the relative entropy in its first argument, the boumdst be valid for = 0 too. In the
limit of « tending to0, a(log o — log(a 4+ T7)) goes ta.

Finally, we show that equality can be obtained for everyvadid value ofl” anda. Indeed,

1+T 0 1 0
A= andB =
0 « 07T+«

satisfies all the requirements of the proposition and yietfsality in [13). O

taking

V. SHARP UPPER BOUNDS ON THE RELATIVE ENTROPY AND REGULARISE D
RELATIVE ENTROPY

Propositior L allows us to derive an upper bound on the orgdirelative entropy between
density operatorg ando when the eigenvalues pfando are bounded below by the valuesand

3, respectively.

Theorem 1 Consider density matrices and o, with smallest eigenvalues,;,(p) = « and
Amin(0) = B. ThenT := ||p — o||1/2 > |a — | and, fora, 5 > 0,

S(plle) < (B+T)log(1+T/B) — alog(l +T/a), (17)

and, in the limitae — 0,
S(pllo) < (B+T)log(1+1T/B). (18)

Proof. We use the scaling property and Proposifibn 1, witk- p/5 andB = o//3. The formula
of Propositior Il can be taken over completely by replacitay /3, T by T'/ 3, and multiplying
the right-hand side of each bound By O

Note that, because of the extra normalisation requireriept= Tr o = 1, equality can now
only be achieved for states of dimension at least

If a is not specified, we must take the maximum(6f+ 7') log(1 + 7'/5) — alog(1 + T'/«)
over all allowed values ofi, with 5 andT" kept fixed. In doing so we retrieve Theorem 6 [of [3].

The proof given here supplants the incorrect proof in thdiphed version ofi[3].



Corollary 1 Consider density matricesand o, whereo has smallest eigenvalug,;,(c) = 5.
LetT :=||p—ol /2. U T <p

S(pllo) < (B+T)log(1+T/3) + (8 —T)log(1 = T/B), (19)

andifT > g,
S(plle) < (B +T)log(1+T/B). (20)

Proof. Let A\yin(p) = «. To find an upper bound ofi(A||B) in the case thad is not specified,
we maximise the bound@(1L7) over all allowed Because of Lemmd 2, > |« — 3|. Hence, the
range ofa is [max(0, 3 —T'), 5+ T]. The quantity to be maximised isa log(1 + 7'/«), which is
monotonously decreasing in Thus, its maximum is attained for the minimally allowegbeing

max (0, 5 — T'). The two cases of the corollary follow. O

We immediately obtain an upper bound on the regularisetivelantropy in terms of the trace

norm distance.

Corollary 2 For d-dimensional density matricgsand o, with smallest eigenvalues,;,(p) = «
and (o) = gandT = ||p — o||1/2,

R(pllo) == cq S(p+1|jo +1) (21)
< ¢ (B+14+T)log(1+T/(B+1)) — (a+1)log(1+T/(a+1))) (22)
< ¢q Tlog(1+1T). (23)

From dimension 3 onwards, inequalify {23) is sharp. Equyatian be achieved for any allowed
value ofT’, by the diagonal states = Diag(1 — ¢, ¢,0) ando = Diag(1 — ¢, 0, t), wheret can be

any number between 0 and 1.

Proof. Upper bound[(22) is a straightforward application of Theoi® (apart from a rescaling
of p + I ando + I, which has no effect on the bound itself). When no infornrmraabouta and

S is known one can use the bound](23) which follows by explgitime fact that boths + 1 +
T)log(1+T/(8+ 1)) and—(a + 1)log(1 + T'/(a + 1)) are monotonically decreasing, hence

expression(22) is maximal fer = 5 = 0. O
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