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Abstract.  1.  Arbuscular mycorrhizal (AM) fungi can increase a number of plant traits to 

which pollinating insects are known to respond.  These include total plant size, flower 

number, flower size, and amount of pollen produced. 

2.  It was hypothesised that these effects would lead to a different visitation rate of 

pollinating insects on mycorrhizal and non-mycorrhizal plants.  To test this idea, three species 

of annual plants (Centaurea cyanus, Tagetes erecta and T. patula) were grown with and 

without AM fungi and the visits by pollinating insects were recorded over a two month 

period. 

3.  In all three species, mycorrhizal plants experienced a greater number of pollinator visits 

per flower per unit time.  Diptera and Hymenoptera were the predominant insects and the 

latter order showed the strongest response. 

4.  Here, it is suggested that mycorrhizal fungi increase floral visitation rates by insects, but 

that the mechanism varies from one plant species to another.  In C. cyanus, it appears to be 

due to flower number per plant, in T. patula it is individual inflorescence size, and in T. 

patula it is nectar standing crop per inflorescence.  
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Introduction 

 
Arbuscular mycorrhizal (AM) fungi form symbiotic relationships with about 70% of all 

vascular plants (Hodge, 2000).  In most environmental conditions, these fungi are beneficial 

to their host plants, by providing access to limiting soil nutrients, or increasing drought 

resistance, photosynthetic rate and resistance to insect herbivores and fungal pathogens 

(Smith & Read, 1997).  A number of studies have investigated the interactions between AM 

fungi and invertebrates, in the quest to understand plant-mediated links between above- and 

below-ground organisms (Wardle et al., 2004). 

Virtually all the experiments with insects and AM fungi have been laboratory based, 

(reviewed by Gange & Brown, 2002 and Gehring & Whitham, 2002).  In most cases, these 

experiments have involved insects confined upon their host plants, whereupon positive or 

negative effects on insect growth and survival have been recorded.  There are very few 

instances in which host plant selection by phytophagous insects was considered and when it 

has, mycorrhizal presence seemed to have no effect on insect choice, even though the 

mycorrhizal plants were larger than non-mycorrhizal individuals (Gange & Nice, 1997; 

Gange et al., 2003).  Furthermore, most of the insect species used have been phytophagous, 

with the potential to harm the plant in some way by their feeding.  However, many insects are 

of great benefit to plants, by facilitating the process of pollination.  Pollinating insects have 

been a major factor in the evolution of angiosperm diversity (Crepet, 1983), and, like 

mycorrhizal fungi, can be considered as plant mutualists. 

To date, only one study has examined whether AM fungi can affect the behaviour of 

pollinating insects (Wolfe et al., 2005).  These authors found that mycorrhizal colonization of 

fireweed (Chamerion angustifolium L. Holub) increased pollinator visitation rate to plants, 

probably caused by the fact that mycorrhizal plants were larger and bore more flowers.  This 

provides an interesting contrast to the lack of herbivore choice of mycorrhizal plants (above) 
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and suggests that the belowground mutualism may have positive influences on plant selection 

by above ground mutualists.  As Stanton (2003) points out, most studies of mutualisms 

involve two species or trophic levels only and these must be extended now, so as to 

understand the importance of multitrophic interactions at the ecological and evolutionary 

scales (Strauss & Irwin, 2004). 

Wolfe et al. (2005) comment that more studies are needed to assess whether plant traits 

other than size affect pollinating insects.  Indeed, it is likely that pollinating insects will show 

different plant choice responses to those of herbivores, because a number of floral parameters 

known to be altered by AM colonization are important determinants of pollinator behaviour.  

For example, mycorrhizas are known to increase the size of individual flowers (Gange et al., 

2005) and the honey bee (Apis mellifera L.) preferentially selects larger flowers (Waser, 1983; 

Martin, 2004).  Mycorrhizas increase the number of flowers per plant (Koide, 2000) and 

pollinator visits may be positively correlated with floral display size (Thompson, 2001).  

Finally, mycorrhizas may increase the floral rewards for insects, through enhanced pollen 

production (Poulton et al., 2002) or nectar quality.  It is therefore hypothesised that 

mycorrhizal plants would experience greater numbers of pollinator visits and this idea was 

tested with three species of annual plants, all of which are attractive to pollinating insects 

(Comba et al., 1999). 

 

 

Materials and methods 
 

Plant propagation 

 
Three species of annual flowering plant, Cornflower Centaurea cyanus L., French 

marigold Tagetes patula L. and African marigold Tagetes erecta L. were chosen for this 
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study, due to their known associations with AM fungi and their attractiveness to pollinating 

insects (Comba et al., 1999; Linderman & Davis, 2004).  In April 2002, seeds of each species 

were germinated in sterile sand.  Seedlings were transplanted singly into 5 cm diameter pots, 

containing 150 g of John Innes No. 1 sterilised compost (Gem Gardening, Accrington, U.K.) 

and grown in a constant environment room (18:6 L:D) at 20°C for five weeks. 

Mycorrhizal inoculum was prepared by the method described in Gange et al. (2003).  

Briefly, a field site was sown with a wildflower meadow seed mixture in spring 1996.  C. 

cyanus was one of the dominant members of the vegetation in 1996 and persisted in the 

community until 1998.  Spores of mycorrhizal fungi were isolated from the site in summer 

1998 and single spore cultures of the two commonest species, Glomus mosseae (Nicol. & 

Gerd.) and G. intraradices Schenck & Smith, were established on the roots of Plantago 

lanceolata L. seedlings, grown in inert expanded clay granules (Seramis®, Pedigree Petfoods, 

Melton Mowbray, U.K.).  Bulk inoculum was prepared over a three year period by 

continually sub-culturing on to new P. lanceolata seedlings.  At the end of this time, plants 

were allowed to die and the dry granules, containing roots, spores, and hyphal fragments were 

used as the inoculum.  Observations of soil surrounding C. cyanus roots in 1997 showed that 

G. mosseae and G. intraradices were consistently found together and so a mixed inoculum 

was used for this experiment. 

In May 2002, after 5 weeks of growth, 20 even-sized seedlings of each plant species were 

selected and each transplanted into a 13 cm pot, containing 450 g John Innes No. 2 sterilised 

compost.  Plants were inoculated with AM fungi by spreading 1.5 g of mixed (0.75 g of each 

species) dry inoculum in a layer 5 cm beneath the final surface of the compost, adjacent to the 

periphery of the root system.  There were two experimental treatments, inoculation with 

mycorrhizas and inoculation with autoclaved granules (control).  There were ten replicates of 

each treatment for each plant species, giving 60 plants in total. 
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Observations 

The 60 plants were placed in a glasshouse and watered twice daily with 50 ml water for a 

further 8 weeks, by which time all plants were flowering.  They were then transferred to an 

outdoor observation area, measuring 5.5m x 4m, and bordered on all sides by a 1.6m high 

metal mesh fence to deter mammalian herbivores.  Every plant was placed in a plastic tray, 

half filled with Horticultural Grade Lime-Free Washed Quartzite grit (Sinclair Horticultural, 

Gainsborough, U.K.) to prevent any mycorrhizal colonization of roots from the surrounding 

soil, while maintaining drainage.  Plants were placed in a randomised block arrangement, with 

a 30 cm gap between each pot. 

Pollinator visits were recorded on 48 separate occasions during June and July 2002.  

Observations were only made on calm, warm, sunny days that provided optimum foraging 

conditions for pollinating insects.  On each day, recording took place between 13.00 – 14.00, 

coinciding with the time of peak nectar production and pollinator activity (Comba et al., 

1999).  Within this recording interval, each plant was observed for a one minute period, in 

which the number and identity (to insect order) of visiting insects was recorded.  Insects were 

not identified to species because of the need to not disturb individuals visiting flowers during 

each recording period.  The order in which plants were observed was randomised on each 

recording day.  This gave a total of 48 minutes recording time for each individual plant, or 16 

h per species.  The total number of open flowers was recorded on each plant on each sampling 

occasion.  No inflorescences were removed from the plants during the observation period. 

Nectar standing crop and secretion rate were measured on three separate occasions at the 

start, middle and end of the observation period, following the method of Comba et al. (1999).  

On each occasion, three separate flowers on each plant of C. cyanus were sampled, while for 
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the two species of Tagetes, three disc florets (which contain the nectar) were sampled at 

random within each of three capitula per plant and a mean calculated for each capitulum.  

Nectar was withdrawn into a glass microcapillary and sugar content measured with a hand 

held refractometer (Corbet, 2003).  Flowers that had been emptied for the standing crop 

measurements were marked with a quick-drying indelible pen and immediately bagged in 

muslin.  These were then re-sampled after 120 min, to estimate nectar secretion rate, as 

recommended by Comba et al. (1999).  Flower (C. cyanus) or capitulum size (Tagetes) was 

measured on four separate occasions by recording the diameter of three randomly selected 

mature inflorescences on each plant.  At the end of August, plants were harvested and the 

total number of flowers or capitula produced over the season was recorded.  Five intact dry 

inflorescences were randomly picked from each plant and all seeds in each counted and 

weighed.  Mean total seed number per inflorescence and individual seed weight per plant was 

calculated for analysis.  Each plant was carefully excavated and the roots washed free of soil.  

A 2 g sample of roots was taken from each plant and stained to reveal mycorrhizal 

colonization using the acidified ink method (Vierheilig et al., 1998).  Colonization was 

measured using the cross-hair eyepiece method of McGonigle et al. (1990), with a minimum 

of 200 intersections per slide.  Total dry root and shoot biomass was recorded for each plant, 

after correction for the loss of 2 g of root. 

 

 

Statistical analyses 

 
All analyses were conducted using plants as replicates.  Insect visits were standardized by 

calculating the number of visits per flower per plant on each sampling occasion.  These data 

were summarised over the season by taking an average of the 48 observations and then 

subjected to factorial ANOVA using plant species, AM fungi and Block as the main effects.  
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The same ANOVA model was used to examine mycorrhizal effects on root and shoot 

biomass, total inflorescence number, inflorescence diameter, seeds per inflorescence and seed 

weight.  Biomass measurements were log transformed while other plant parameters were 

square root transformed prior to analysis.  Nectar sugar content and secretion rate were 

subjected to a Repeated Measures Analysis of Variance, employing mycorrhizal treatment 

and date as main effects.  Multiple linear regression was used to examine whether the 

frequency of insect visits was a function of flower number, flower size or nectar quantity.  

These analyses were performed using only the replicate control plants, to remove any 

potential bias of treatment.  All analyses were performed with the UNISTAT® statistical 

package. 

 

Results 

 
Plant traits 

 
No mycorrhizal colonization was detected in any of the control plants, while all plants in 

the inoculated treatments showed evidence of colonization.  For C. cyanus, the mean percent 

root length colonized (% RLC) was 15.4 ± 2.8 %, for T. patula it was 14.1 ± 0.9 % and for T. 

erecta it was 11.9 ± 1.5 %.  These levels compared well with plants of C. cyanus extracted 

from the wildflower meadow, which had a colonization range of 0 – 26%, with a mean of 

13.8 ± 4.9%. 

Mycorrhizas had a positive effect on above ground biomass (Table 1), although the effect 

was only significant in C. cyanus, with control plants having a mean of 5.42 ± 1.3 g, 

compared with 11.2 ± 0.9 g for colonized plants.  In T. patula, mycorrhizal plants weighed 9.7 

± 1.7 g, 20% larger than controls, while in T. erecta  mycorrhizal plants (21.3 ± 4.6 g) were 

only 10% larger.  An identical pattern was found for root biomass (data not shown). 
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Mycorrhizas had a considerable effect on total flower number in C. cyanus, increasing this 

by nearly 70% (Fig. 1, Table 1).  In T. patula, there was a small but significant increase in the 

number of capitula on mycorrhizal plants, but no effect was seen in T. erecta (Fig. 1). 

In contrast to flower number, flower size was unaffected in C. cyanus, but increased by 

mycorrhizas in the two species of Tagetes (Fig. 2, Table 1).  In T. patula, flowers on 

mycorrhizal plants were, on average, 4 mm greater in diameter than those on control plants 

(an increase of 7%), while in T. erecta, this difference was nearly 10 mm, (an 11% increase). 

Mycorrhizas had no effect on nectar sugar content in either C. cyanus or T. patula, but in 

T. erecta, sugar content was increased by colonization (F1,18 = 10.9, P < 0.01).  Control plants 

had an average of 0.042 ± 0.005 mg sugar per floret, while the value for mycorrhizal plants 

was 0.065 ± 0.009.  Meanwhile, mycorrhizal fungi increased the nectar secretion rate in both 

species of Tagetes.  In T. patula, control plants had an average rate of 0.027 ± 0.0016 mg 

sugar floret-1 h-1, while mycorrhizal plants produced nectar at the rate of 0.049 ± 0.0021 mg 

sugar floret-1 h-1 (F1,18 = 15.2, P < 0.001).  Meanwhile, in T. erecta, control plants had an 

average rate of 0.062 ± 0.0011 mg and mycorrhizal plants a rate of 0.093 ± 0.024 mg sugar 

floret-1 h-1 (F1,18 = 6.8, P < 0.05). 

All three plant species produced a greater number of seeds per flower or capitulum when 

mycorrhizal (Table 2).  A significant interaction between species and mycorrhiza was found 

(Table 1), because the effect was most clearly seen in C. cyanus, where mycorrhizal plants 

produced nearly twice as many seeds as uncolonized individuals.  Mycorrhizas also increased 

the average seed weight in C. cyanus (Table 2) but had no effect on this parameter in either 

species of Tagetes, leading to another significant interaction term in the analysis (Table 1). 
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Insect visits 

 
Insect pollinators were dominated by Hymenoptera (particularly A. mellifera and some 

individuals of Bombus spp.) and Diptera.  A few individuals of Lepidoptera and Coleoptera 

were also noted.  In all three plant species, the total number of insect visits flower-1 minute-1 

was significantly increased by mycorrhizal presence (Fig. 3a, Table 1).  In C. cyanus, the 

effect was considerable, with flowers on mycorrhizal plants receiving twice as many visits as 

control plants (F1,16 = 17.6, P < 0.001).  In T. patula, mycorrhizas increased visits by 62% 

(F1,18 = 9.7, P < 0.01), while the most dramatic effect was seen in T. erecta, with mycorrhizal 

plants having over three times the number of visits per flower recorded on control plants.  The 

fact that the strength of the effect differed between plant species was shown by a significant 

species x mycorrhiza interaction term in the ANOVA (Table 1). 

Visits by Hymenoptera were most common and to an extent, effects on this order were 

responsible for those seen in the total number of visits, with the mycorrhizal effect being  

strongest on C. cyanus and T. erecta (Fig. 3b, Table 1).  A significant interaction term was 

again found, because the mycorrhizal effect was not consistent across plant species.  

Meanwhile, mycorrhizas only caused an increase in visits by Diptera to C. cyanus and no 

effect was seen in either species of Tagetes where visits by these insects were far fewer (Fig. 

3c). 

In C. cyanus, plants with more flowers received more visits by all insects per flower (Table 

3), while no such effect of plant size could be found in either species of Tagetes.  In T. patula, 

floral visits were related to flower size in that larger flowers attracted more visits per unit 

time.  There was a similar weak relationship in T. erecta (P = 0.066), but in this species a 

significant positive relation was found between floral visits and nectar sugar content (Table 

3).   
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Discussion 

 

It is clear that the effects of AM fungi on floral parameters vary from one plant species to 

another.  In C. cyanus, flower number was increased by mycorrhizas, but flower size 

unaffected.  The flowers of T. erecta were relatively large, but far fewer in number and this 

plant responded to mycorrhizas by increasing flower size, rather than number.  Meanwhile, T. 

patula, with intermediate numbers and size of flowers, responded to colonization with an 

increase in both these traits. 

The levels of mycorrhizal colonisation in this study were comparable with field conditions, 

but lower than some other reports (Linderman & Davis, 2004).  What is interesting is that 

despite these levels, mycorrhizas increased insect pollinator visits in all three species of 

plants.  The effect was particularly noticeable with Hymenoptera, which showed a consistent 

pattern of increase across all three plant species.  Diptera pollinators were relatively rare in 

this study, but mycorrhizal C. cyanus still experienced three times the number of visits by 

these insects, compared with non-mycorrhizal plants of this species.  Insect pollinators may 

respond to a variety of floral parameters, including colour, size of inflorescence, and floral 

reward (quality and quantity of nectar).  Some of the earliest experiments involving pollinator 

attraction were reviewed by Waser (1983), where it is shown that target size is more 

important than exact colour in attracting an insect to flowers on a plant.  Insects respond 

positively to large floral displays (Thompson, 2001) and in C. cyanus non-mycorrhizal plants, 

a significant relationship was found between visits per flower and the total number of flowers 

on a plant.  It is therefore likely that the greater number of flowers on mycorrhizal plants was 

responsible for the increase in pollinator visits.  Wolfe et al. (2005) found that mycorrhizal 

plants of C. angustifolium also attracted more pollinator visits, though there are several 
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interesting differences between their data and those reported here.  Firstly, Wolfe et al. (2005) 

did not detect any difference in visits per flower on mycorrhizal and non-mycorrhizal plants.  

Their conclusion was that AM fungi caused plants to be larger, thus bearing more flowers and 

so attracting more pollinators.  It has been shown in this study that the mechanism is more 

subtle than this and that mycorrhizas increase the frequency of visits to individual flowers as 

well.  A second difference is that Wolfe et al. (2005) only recorded Hymenoptera and these 

data show that other floral visitors such as Diptera respond in a similar way, thus showing a 

generality in the effect.  

Wolfe et al. (2005) did not measure individual flower size, but pollinating insects are 

known to select larger flowers (Elle & Carney, 2003; Martin, 2004).  A significant relation 

between capitulum size and visitation rate was found, this is likely to be the reason why 

mycorrhizas increased visitor frequency to T. patula.  In this plant species, no relation 

between flower number and floral visits was found.  Although AM fungi did cause a small, 

but significant increase in flower number, it is less likely that this factor resulted in the 

increased visitation rate.  Capitulum size in T. erecta was also increased by AM colonization, 

though the relation between this trait and visitation rate was less clear.  Mycorrhizas are 

known to increase individual flower size in other plant species (Koide, 2000; Gange et al., 

2005) and this may have important consequences for the behaviour of pollinating insects. 

Nectar reward is also important in the floral selection process (Comba et al., 1999) and in 

this study, mycorrhizas were found to increase the sugar content and secretion rate in T. 

erecta.  To present knowledge, this is the first report of mycorrhizas affecting nectar quantity 

and quality, and it may also have contributed to the increased visitor number on mycorrhizal 

plants.  T. erecta was the only plant in which a significant relation was found between 

visitation rate and nectar standing crop, showing that the mycorrhizal effects on pollinating 

insects may be very subtle indeed.  The original hypothesis was therefore upheld, although the 
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mechanism by which AM fungi affect pollinating insects seems to vary from one plant to 

another. 

The mycorrhizal-induced increase in quantity and quality of resource for pollinators may 

be important for these beneficial insects.  AM fungi are known to increase the size of pollen 

grains and the total amount of pollen per flower (Lau et al., 1995; Poulton et al., 2002) and it 

has been shown that flowers on mycorrhizal plants are more attractive to insects that require 

pollen.  Thus the process of gathering pollen by a bee or hoverfly may be more efficient on a 

mycorrhizal plant and it would be rewarding to measure pollen loads of insects visiting 

mycorrhizal and non-mycorrhizal plants.  The fact that mycorrhizas appear to alter nectar 

sugar content is also important, and may be due to an enhancement of carbon fixation in 

mycorrhizal plants (Smith & Read, 1997).  Stabentheiner (2001) has shown that honey bees 

returning to a hive communicate the location of high quality nectar sources through their 

dancing patterns.  If mycorrhizal plants provide higher quality sources, then this may result in 

more efficient foraging and more visits per plant. 

Mycorrhizal effects on pollinating insects may also have important consequences for the 

reproduction of plants.  In all three of the study plants, seed production was increased on 

mycorrhizal plants.  This phenomenon has been reported before (Koide, 2000) and has been 

explained by the mycorrhiza providing an enhanced supply of limiting nutrients, particularly 

phosphate.  These results suggest that increased visits by pollinating insects may also be a 

reason for enhanced seed set.  It would be interesting to perform controlled experiments 

involving pollen addition to mycorrhizal and non-mycorrhizal plants, similar to that 

performed by Nuortila et al. (2004) but with and without insect pollinators, to really tease 

apart the direct and indirect effects of the fungi and insects. 

These results may also have significant implications for plant community structure.  It is 

accepted that the plants studied here do not co-occur in nature and it would be instructive to 
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repeat this study with co-occurring plants in natural communities.  Clearly, certain plants in a 

population that are mycorrhizal could be visited more by pollinators and have an enhanced 

seed set, compared with non-mycorrhizal conspecifics.  Given that these mycorrhizal plants 

are likely to be larger and may have reduced herbivore attack (Gehring & Whitham, 2002, 

though see also Gange et al., 1999) and that their offspring may be more vigorous (Koide & 

Lu, 1995) they could provide a disproportionate contribution of genetic material to the next 

generation (Shumway & Koide, 1995; Koide & Dickie, 2002).  It is known that mycorrhizas 

can change the structure of plant communities through differential effects on growth and 

competition (Hartnett & Wilson, 2002) but these results suggest that they may have other, 

more subtle effects on plant population genetic structure also.  That these effects are mediated 

by higher trophic level organisms emphasises the intricacy of the multitrophic interactions 

that exist in communities. 
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Table 1.  Results of statistical analyses of plant and insect parameters  d.f. for plant species effect = 3, 54, for AM fungi = 1, 54 and interaction 

term = 2, 54.  Bold values indicate significant differences (P < 0.05). 

 

 Plant species  AM fungi  Interaction (species x fungi) 

Parameter F P  F P  F P 

Root biomass 91.3 < 0.001  0.79 0.376  2.76 0.072 

Shoot biomass 73.5 < 0.001  10.63 0.002  2.35 0.104 

Total inflorescence number 50.51 < 0.001  18.86 < 0.001  15.11 < 0.001 

Inflorescence diameter 331.9 < 0.001  8.39 0.0054  1.44 0.245 

Seeds per inflorescence 1198.5 < 0.001  12.54 < 0.001  5.99 0.004 

Seed weight 5.57 0.006  14.4 < 0.001  7.42 0.001 

Total insects visits per inflorescence 7.64 0.001  39.57 < 0.001  7.39 0.001 

Hymenoptera visits per inflorescence 9.55 < 0.001  31.06 < 0.001  9.92 < 0.001 

Diptera visits per inflorescence 6.84 0.002  7.71 0.008  2.08 0.134 
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Table 2.  Seed production of the three plant species.  Values tabulated are means ± one 

standard error.  For statistical results, see Table 1. 

 

 Seed number per inflorescence  Seed weight, mg 

Plant Control Mycorrhizal  Control Mycorrhizal 

C. cyanus 14.8 ± 3.3 22.2 ± 0.9  1.88 ± 0.51 5.48 ± 0.72 

T. patula 76.8 ± 1.8 83.3 ± 1.9  2.39 ± 0.17 2.53 ± 0.14 

T. erecta 347.9 ± 12.6 401.5 ± 13.5  3.55 ± 0.63 3.95 ± 0.41 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 19 

Table 3.  Summary of results from multiple regression analysis, examining effects of plant 

traits on total insect visits per flower.  All degrees of freedom:  1, 8.  Bold values indicate 

significance (P < 0.05). 

 

 F r2 P 

C. cyanus    

Flower number 12.24 0.605 0.008 

Flower size 0.68 0.078 0.434 

Sugar content 0.45 0.086 0.462 

T. patula    

Capitulum number 0.934 0.104 0.366 

Capitulum size 8.08 0.502 0.022 

Sugar content 1.53 0.266 0.251 

T. erecta    

Capitulum number 0.866 0.097 0.379 

Capitulum size 4.51 0.363 0.066 

Sugar content 7.54 0.444 0.038 
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Figure legends 

 

Fig. 1.  Mean total number of inflorescences produced by Centaurea cyanus, Tagetes patula 

and  T. erecta, grown with mycorrhizas (shaded bars) or without mycorrhizas (open bars).  

Vertical lines represent ± one standard error.  Asterisks above bars indicate significant 

pairwise differences between means, * P < 0.05, ** P < 0.01, *** P < 0.001. 

 

Fig. 2. Mean inflorescence size of C. cyanus, T. patula and T. erecta with mycorrhizas 

(shaded bars) or without mycorrhizas (open bars).  Vertical lines represent ± one standard 

error.  Asterisks above bars indicate significant pairwise differences between means, * P < 

0.05, ** P < 0.01, *** P < 0.001. 

 

Figure 3 (a) Mean total insect pollinator visits per flower (or per capitulum) per minute, (b) 

visits by Hymenoptera and (c) visits by Diptera, over a two month observation period, with 

mycorrhizas (shaded bars) or without mycorrhizas (open bars).  Vertical lines represent ± one 

standard error.  Asterisks above bars indicate significant pairwise differences between means, 

* P < 0.05, ** P < 0.01, *** P < 0.001. 
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Figure 1 
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Figure 2 
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Figure 3 
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