Ninja : Non Identity Based, Privacy Preserving
Authentication for Ubiquitous Environments

Adrian Leung* and Chris J. Mitchell

Information Security Group
Royal Holloway, University of London
Egham, Surrey, TW20 0EX, UK
{A.Leung,C.Mitchell}@rhul.ac.uk

Abstract. Most of today’s authentication schemes involve verifying the
identity of a principal in some way. This process is commonly known
as entity authentication. In emerging ubiquitous computing paradigms
which are highly dynamic and mobile in nature, entity authentication
may not be sufficient or even appropriate, especially if a principal’s pri-
vacy is to be protected. In order to preserve privacy, other attributes
(e.g. location or trustworthiness) of the principal may need to be authen-
ticated to a verifier. In this paper we propose Ninja: a non-identity-based
authentication scheme for a mobile ubiquitous environment, in which the
trustworthiness of a user’s device is authenticated anonymously to a re-
mote Service Provider (verifier), during the service discovery process. We
show how this can be achieved using Trusted Computing functionality.

Keywords: Security, Privacy, Ubiquitous, Trusted Computing.

1 Introduction

In the Mobile VCE! Core 4 research programme on Ubiquitous Services, it is
envisaged that in a mobile ubiquitous environment (as shown in figure 1), users
(through one of their mobile devices and via some network access technologies)
will be able to seamlessly discover, select, and access a rich offering of services
and content from a range of service providers. To realise this vision, security and
privacy issues must be addressed from the outset, alongside other technological
innovations. Only if users are confident that their security and privacy will not
be compromised, will we see the widespread adoption of ubiquitous services.
As shown in figure 1, one of the primary aims for a user is to access the
various services that are offered. But, before any services can be accessed and
consumed, they must first be located via a process known as service discovery.
Many service discovery schemes [8, 12, 30] have recently been proposed for ubig-
uitous environments, but few [32, 33] have addressed security and privacy issues,

* This author is supported by the British Chevening/Royal Holloway Scholarship, and
in part by the European Commission under contract IST-2002-507932 (ECRYPT).
! http://www.mobilevce.com/

Network

N . Service and Content
Devices Technologies

Providers

g pAr
n < ,
..... =
‘.\,”; ’ IP Backbone _‘@
e
ST 3
N

\

%H(

Pervasive User Environment

Fig. 1. A Ubiquitous Computing Environment

despite their fundamental importance. It is imperative that the process of service
discovery is conducted in a secure and private way, in order to protect the secu-
rity and privacy of both users and service providers. One fundamental security
requirement is mutual authentication between a user and service provider.

Authentication is important for several reasons. Firstly, it is a basic secu-
rity service upon which a range of other security services (e.g. authorisation)
can be built. Secondly, it gives users and service providers assurance that they
are indeed interacting with the intended parties, and not some malicious enti-
ties. Unfortunately, conventional entity authentication [15] may not be adequate
for a ubiquitous environment [10], because an identity may be meaningless in
such a setting. Instead, other user attributes [10] may need to be authenti-
cated to a service provider. Furthermore, consumers are becoming increasingly
concerned about their privacy [3,4], and the potential risks (such as identity
theft) of leaving any form of digital trail when making electronic transactions.
Given a choice, users may prefer to interact with service providers anonymously
(or pseudonymously). Under these circumstances, it may in fact be undesirable
to authenticate the identity of a user. Preserving user privacy can be particu-
larly challenging in a ubiquitous environment [7,29], and if privacy is preserved
(through user anonymity), how can we then convince a service provider that an
anonymous user is trustworthy? This is the challenge addressed in this paper.

We thus propose Ninja: a non-identity based, privacy preserving, mutual au-
thentication scheme designed to address the service discovery security and pri-
vacy challenges in a mobile ubiquitous environment. During service discovery, a
service user and service provider are mutually authenticated, whilst preserving
the privacy of a user. Instead of authenticating the user identity to a service
provider, the user’s trustworthiness is authenticated. Our scheme employs two
key functionalities of Trusted Computing (TC) technology [2, 18], namely, the In-
tegrity Measurement, Storage and Reporting Mechanism, and the Direct Anony-
mous Attestation Protocol. We therefore implicitly assume that a user device is
equipped with TC functionality; current trends suggest that this is a reasonable
assumption for the near future. Ninja is an application layer solution, and pos-

sesses many desirable security and privacy properties, such as: user anonymity,
service information confidentiality, unlinkability, and rogue blacklisting.

The remainder of the paper is organised as follows. In section 2, we discuss
various service discovery security and privacy issues. Section 3 describes the
relevant Trusted Computing functionality. In section 4, we present the Ninja
authentication scheme, and in section 5 analyse its security. In the penultimate
section, we discuss related work, and finally, conclusions are drawn in section 7.

2 Service Discovery Security & Privacy Issues

In this section, we focus on the security and privacy issues arising from the
service discovery process in a ubiquitous computing environment.

2.1 Adversary Model

Service discovery typically involves interactions between a user, the user’s device,
a service provider, and at times, a trusted third party. Unfortunately, these
entities may be malicious, and pose a variety of threats to the service discovery
process and to the participating entities. Against this backdrop, we identify eight
adversary settings, covering both active and passive adversaries. They are:

1. Innocent User with Malicious Device (IUMD) Unbeknownst to a user,
his/her device is compromised (e.g. with malware, keystroke-logger, etc).

2. Malicious User with Trustworthy Device (MUTD) A malicious user
who has taken physical control of (e.g. stolen) another entity’s device.

3. Malicious User with Malicious Device (MUMD) The combination of
IUMD and MUTD.

4. Malicious Service Provider(s) (MSP) A MSP’s main motive is to mas-
querade to a user as a legitimate service provider.

5. Curious Service Provider(s) (CSP) A CSP is not malicious, but seeks
only to learn more about the behaviour of its users.

6. Malicious Man-in-the-Middle (MitM) A MitM’s actions are intended
to disrupt the proper operation of the service discovery process.

7. Curious Trusted Third Party (CTTP) A CTTP performs its role cor-
rectly, but also seeks to learn about the activities and habits of a user.

8. Passive Eavesdropper (PE) A PE does not disrupt the communication,
but monitors it to learn the content and the entities involved.

2.2 Security and Privacy Threat Model

‘We now consider possible service discovery threats. We also consider what threats
are posed by each of the above adversarial settings, and present them in a Threats
versus Adversary Matrix (in Table 1). The service discovery threats are:

1. Spoofing A malicious entity may masquerade as a legitimate service provider
or service user either by sending false service advertisements/requests, through
replay, or by man-in-the-middle attacks.

2. Information Disclosure

(a) User’s Personally Identifiable Information (PII) During the process
of service discovery, a user’s PII, such as his/her identity (e.g. in the form
of a long lived key) or physical location, may be revealed (either willingly
or unwillingly) to a service provider or passive eavesdropper.

(b) Service Information (SI) By observing the service information ex-
changed by a user and service provider (e.g. the service request types),
a passive adversary may build up a profile of the user. This information
may later be used to predict future patterns and habits of the user. The
privacy of the user is potentially compromised as a result.

3. Profile Linking Colluding service providers may buy, sell or exchange infor-
mation about their users or customers. This could not only provide service
providers with monetary benefits, but also enhance their business intelli-
gence and gain competitive advantage, e.g. if they are able to build more
comprehensive user profiles (with or without their permission). Finally, the
consequences for user privacy could be even more serious if a trusted third
party colludes with service providers.

4. Encouragement of Rogue Behaviour With the knowledge that privacy
enhancing technologies are employed to protect their identities, users may
be tempted to “misbehave” or act maliciously, since it may be difficult or
even impossible for service providers to determine who is misbehaving.

Table 1. Threats and Adversary Matrix

[Threats vs Adversary _[[LTUMD[MUTD[MUMD]MSP[CSP[MitM][CTTP[PE]

Spoofing v v v v v

User Identity Disclosure v v v v IV v v v
SI Disclosure v v v v v
User Profile Linking v v v
Rogue Behaviour Denial|| v v

2.3 Specific Security and Privacy Requirements

From the above threat analysis, we derive the corresponding security and privacy
requirements:

e Mutual Authentication This is one of the most important requirements,
as it can prevent spoofing (by malicious users or service providers). The
mutual authentication scheme should also be designed to prevent replay and
man-in-the-middle attacks. To protect privacy, a user may want to remain
anonymous to a service provider. So, instead of authenticating his identity
to a service provider, the user may want to somehow prove or authenticate
his “trustworthiness” to the service provider.

e User Anonymity Unique user identifying information (e.g. an identifier or
a long lived key) should not be divulged to a service provider during service
discovery. A user may interact with service providers using a pseudonym.

e Service Information Confidentiality To further preserve the privacy of
the user, service information originating from the user may be encrypted.

e Unlinkability Colluding service providers should not be able to link the
activities of a user. Similarly, when a trusted third party colludes with a ser-
vice provider, they should not be able to correlate the actions of a particular
user. In other words, it should be impossible for colluding service providers
to tell if two sets of prior service transactions (made with different providers)
involved the same or different user(s).

e Transaction Linkability /History For billing or other purposes, it may
be necessary for a service provider to maintain the transaction histories of
its users. A service provider may thus need to be able to determine whether
a particular user is a repeat user (and, if so, which one) or a first time user,
whilst still being unable to determine the unique identity of the user. This
is not always a requirement, and providing it may require user consent.

¢ Rogue Blacklisting Service providers should be able to identify and black-
list malicious and untrustworthy hosts.

2.4 Challenges

We therefore need to devise a mutual authentication scheme that meets all these
requirements. This is particularly challenging for several reasons. Conventional
mutual authentication schemes normally require the user identity to be authen-
ticated to a verifier. But here, user privacy is a priority, and so user anonymity
is required during authentication. How then can we convince a service provider
that an anonymous user is trustworthy? Also, if user anonymity is provided,
can we detect malicious or illegitimate users? We are, in fact, trying to achieve
security and privacy concurrently, whilst protecting the interests of both users
and service providers. This is the challenge addressed here.

Our scheme, Ninja, allows a user to authenticate the service provider, whilst
simultaneously allowing a service provider to anonymously authenticate a user’s
trustworthiness. The scheme is so called because the process is to some extent
analogous to the process of a ninja assassinating a person in Japanese folklore?.

3 Trusted Computing Overview

Trusted Computing, as developed by the Trusted Computing Group® (TCG),
is a technology designed to enhance the security of computing platforms. It in-
volves incorporating trusted hardware functionality, or so called “roots of trust”,
into platforms. Users can thereby gain greater assurance that a platform is be-
having in the expected manner [2,18,26]. The trusted hardware, in the form of

2 A ninja is asked to assassinate someone (Bob) whom he has never met; he is only
given Bob’s photograph. When they meet, the ninja authenticates Bob physically.
Bob, on seeing a ninja with a sword, knows (trusts) that the ninja wishes to kill him,
but does not need to know the ninja’s real identity, whose anonymity is preserved.

3 http://www.trustedcomputinggroup.org/

a hardware component called the Trusted Platform Module (TPM), is built into
a host platform. The TPM provides the platform with a foundation of trust, as
well as the basis on which a suite of Trusted Computing security functionalities
is built. The TPM and its host are collectively referred to as a Trusted Platform.

We next introduce the keys used by a TPM, as well as the Trusted Computing
functionality used in our scheme, i.e. the Integrity Measurement, Storage and
Reporting Mechanisms, and the Direct Anonymous Attestation (DAA) Protocol.
The descriptions below are based upon v1.2 of the TCG TPM specifications [26].

3.1 TPM Keys and Identities

Each TPM has a unique 2048-bit RSA key pair called the Endorsement Key
(EK). The EK is likely to be generated by the TPM manufacturer, and the EK
private key, together with a certificate for the corresponding public key, can be
used to prove that a genuine TPM is contained in a platform. However, since a
TPM only has one such key pair, a TPM can be uniquely identified by its EK.
The EK is therefore only used in special circumstances. A TPM can, however,
generate an arbitrary number of 2048-bit RSA Attestation Identity Key (AIK)
key pairs, which are used for interacting with other entities. AIKs function as
pseudonyms for a trusted platform, and platform privacy can be achieved by
using a different AIK to interact with different entities. In order to prove that a
particular AIK originates from a genuine TPM, a platform has to prove that the
ATK public key is associated with a genuine trusted platform; this involves using
the EK with a trusted third party in such a way that the AIK cannot be linked
to a particular EK, even by the trusted third party that sees the EK public key.
The DAA protocol (discussed in Section 3.3) is used to support this process.

3.2 Integrity Measurement, Storage and Reporting

Integrity Measurement, Storage and Reporting (IMSR) is a key feature of Trusted
Computing that builds on the three Roots of Trust in a trusted platform: a root
of trust for measurement (RTM), a root of trust for storage (RTS), and a root of
trust for reporting (RTR). Together, they allow a verifier to learn the operational
state of a platform, and hence obtain evidence of a platform’s behaviour. This
functionality is extremely important, as a platform may potentially enter a wide
range of operational states, including insecure and undesirable states.

Integrity Measurement Integrity measurement involves the RTM, a comput-
ing engine in the TPM, measuring a platform’s operational state and charac-
teristics. The measured values, known as integrity metrics, convey information
about the platform’s current state (and hence trustworthiness).

Integrity Storage Details of exactly what measurements have been performed
are stored in a file called the Stored Measurement Log (SML). Using the RTS, a

digest (i.e. a cryptographic hash computed using Secure Hash Algorithm 1 (SHA-
1) [19]) of the integrity metrics is saved in one of the TPM’s internal registers,
called Platform Configuration Registers (PCRs). The SML contains the sequence
of all measured events, and each sequence shares a common measurement digest.
Since an SML may become fairly large, it does not reside in the TPM. Integrity
protection for the SML is not necessary, since it functions as a means to interpret
the integrity measurements in the PCRs, and any modifications to the SML will
cause subsequent PCR verifications to fail.

There are only a limited number of PCRs in the TPM. So, in order to ensure
that previous and related measured values are not ignored/discarded, and the
order of operations is preserved, new measurements are appended to a previous
measurement digest, re-hashed, and then put back into the relevant PCR. This
technique is known as extending the digest, and operates as follows:

PCR;[n] < SHA-1(PCR;_;[n] || New integrity metric),

where PC R;[n] denotes the content of the nth PCR after ¢ extension operations,
and || denotes the concatenation of two messages.

Integrity Reporting The final phase of the IMSR process is Integrity Report-
ing. The RTR has two main responsibilities during Integrity Reporting:

1. to retrieve and provide a challenger with the requested integrity metrics
(i.e. the relevant part of the SML, and the corresponding PCR values); and

2. to attest to (prove) the authenticity of the integrity metrics to a challenger
by signing the PCR values using one of the TPM’s AIK private keys.

To verify the integrity measurements, the verifier computes the measurement
digest (using the relevant portion of the SML), compares it with the correspond-
ing PCR values, and checks the signature on the PCR values. The process of
integrity reporting is also often referred to as Attestation.

3.3 Direct Anonymous Attestation

Direct Anonymous Attestation (DAA) [5, 18] is a special type of signature scheme
that can be used to anonymously authenticate a TCG v1.2 compliant platform
to a remote verifier. The key feature that DAA provides is the capability for a
TPM (a prover) to convince a remote verifier that:

e it is indeed a genuine TPM (and hence it will behave in a trustworthy man-
ner) without revealing any unique identifiers;

e an AIK public key is held by a TPM, without allowing colluding verifiers to
link transactions involving different AIKs from the same platform.

The above-mentioned features help to protect the privacy of a TPM user.
Another important feature of DAA is that the powers of the supporting Trusted
Third Party (DAA Issuer) are minimised, as it cannot link the actions of users
(even when it colludes with a verifier), and hence compromise the user’s privacy.

DAA allows a prover to anonymously convince a remote verifier that it has
obtained an anonymous attestation credential, or DAA Certificate (a Camenisch-
Lysyanskaya (CL) signature [6]), from a specific DAA Issuer (Attester). The
DAA Certificate also serves to provide the implicit “link” between an EK and
an AIK. The DAA scheme is made up of two sub-protocols: DAA Join and DAA
Sign. We now provide a simplified description of these two sub-protocols [5].

DAA Join Protocol The Join protocol enables the TPM to obtain a DAA
Certificate (also known as an anonymous attestation credential) from the DAA
Issuer. The Join protocol is based on the CL signature scheme [6].

Let (n, S, Z, R) be the DAA TIssuer public key, where n is an RSA modulus,
and S, Z, and R are integers modulo n. We assume that the platform (TPM) is
already authenticated to the DAA Issuer via its Endorsement Key, EK.

The platform (TPM) first generates a DAA secret value f, and makes a
commitment to f by computing U = Rf 5" mod n, where v’ is a value chosen
randomly to “blind” f. The platform (TPM) also computes N; = C}c mod I,
where (; is derived from the DAA Issuer’s name, and I is a large prime. The
platform (TPM) then sends (U, Ny) to the DAA Issuer, and convinces the DAA
Issuer that U and Nj are correctly formed (using a zero knowledge proof [13,
14]). If the DAA Issuer accepts the proof, it will sign the hidden message U,
by computing A = (%)1/6 mod n, where v” is a random integer, and e is
a random prime. The DAA Issuer then sends the platform (i.e. the TPM) the
triple (A4, e,v"), and proves that A was computed correctly. The DAA Certificate
is then (A, e,v =v" +v").

DAA Sign Protocol The Sign protocol allows a platform to prove to a verifier
that it is in possession of a DAA Certificate, and at the same time, to sign and
authenticate a message. The platform signs a message m using its DAA Secret
f, its DAA Certificate, and the public parameters of the system. The message
m may be an Attestation Identity Key (AIK) generated by the TPM, or an
arbitrary message. The platform also computes Ny = ¢f mod I' as part of the
signature computation (the selection of ¢ will be discussed in the next section).
The output of the Sign protocol is known as the DAA Signature, o.

The verifier verifies the DAA Signature o, and on successful verification of
o, is convinced that:

1. the platform has a DAA Certificate (A, e, v) from a specific DAA Issuer, and
hence it is a genuine TPM containing a legitimate EK; this is accomplished
by a zero-knowledge proof of knowledge of a set of values f, A, e, and v such
that A°RfSY = Z (mod n);

2. a message m was signed by the TPM using its DAA secret f, where f is the
same as the value in the DAA Certificate (used in step 1); if m includes an
AIK public key, then the AIK originates from a genuine TPM.

In summary, once a platform (TPM) has obtained a DAA Certificate (which
only needs to be done once), it is able to subsequently DAA-Sign as many ATKs
as its wishes, without involving the DAA Issuer.

Variable Anonymity Anonymity and unlinkability are provided to a user by
using two parameters: (, also referred to as the Base, and the AIK. The choice
of the base directly affects the degree of anonymity afforded to a TPM user. If
perfect anonymity is desired, then a different, random, base value should be used
for every interaction with a verifier. Conversely, if the same base value is used
for every interaction with a verifier, then the verifier can identify that this is the
same TPM. In addition, if the same base value is used to interact with different
verifiers, then they are able to correlate the activities of a particular TPM. (A
more detailed discussion of the effects of choices of base values is given in [25]).

As discussed in Section 3.1, a TPM is capable of generating multiple platform
identities, simply by generating different AIK key pairs. Different AIKs may
therefore be used to interact with different verifiers so as to remain unlinkable
(provided the base is different).

4 The Ninja Authentication Scheme

In this section, we present the Ninja authentication scheme, designed to mutually
authenticate a user (via his platform) and a service provider, whilst preserving
the privacy of the user. The Ninja scheme is intended to be used during the
service discovery process, immediately prior to service provisioning. It is designed
to meet all the security and privacy requirements set out in Section 2.3.

First, we introduce the entities participating in the protocol. Next, we state
the assumptions upon which the scheme is based. Finally, we describe the oper-
ation of the scheme.

4.1 The Entities

The entities involved in the protocol are as follows.

The Service User, often a human, is the end consumer of a service.

The trusted platform, or Platform in short, is the device which a service
user will use to interact with other entities.

The DAA Issuer issues DAA Certificates to legitimate platforms.

e The Service Provider is an entity that provides service(s) or content
(e.g. music, videos, podcasts) to service users (via the platform). A service
provider also acts as the verifier of a platform’s DAA Signatures.

4.2 Assumptions
The correct working of the scheme relies on a number of assumptions.

e The service user is already authenticated to the platform.
e The platform running the Ninja protocol is equipped with TC functionality
conforming to v1.2 of the TCG specifications [26].

e Each service provider possesses one or more X.509 v3 [17] public key certifi-
cates, issued by trustworthy Certification Authorities (CAs). The platform
is equipped with the root certificates of these trusted CAs, and is capable of
periodically receiving Certificate Revocation List (CRL) updates.

e Service users and service providers have loosely synchronised clocks (e.g.
within an hour of each other). This enables service users and service providers
to check that a service advertisement message or a service reply message is
fresh (or recent enough).

e Service providers have set up system parameters, p and g, for the Diffie-
Hellman (DH) key agreement protocol [11], prior to the protocol run. The
(large) prime p is chosen such that p — 1 has a large prime factor ¢ (e.g. p =
2g + 1), and g is chosen to have multiplicative order ¢, so that it generates
a multiplicative subgroup of Z7 of prime order gq.

Finally note that the scheme is independent of the underlying transport and
network layer protocols, as it is purely an application layer solution.

4.3 The Scheme

Before describing the scheme, we first introduce some notation (see Table 2).

Table 2. Notation

[Notation[Description

P| The Platform
SP| The Service Provider
I| The DAA Issuer
f| A non-migratable DAA secret value generated by the TPM
v’, v e| DAA parameters (described in Section 3.2)
p, g| System parameters for DH-key agreement
SrvAdv| Service Advertisement Message
SrvRep| Service Reply Message
SrvInfo| Service Information
AdvID| An Advertisement ID number
ta| A Timestamp generated by a principal, A
N| A Nonce (a random value)
ID,4 | The identity of a principal, A
(EKpi, EK,)| The pair of Public and Private Endorsement Keys
(AIK,i, AIK)| A pair of Public and Private Attestation Identity Keys
(PKa,SK4)| The Public and Private Key pair of a principal, A
Certa| An X.509 v3 Public Key Certificate for a principal, A
H| A cryptographic hash-function
Enckg(M)| The encryption of a message, M, using the key K
Decg (M)| The decryption of a message, M, using the key K
MACK(M)| The message authentication code (MAC) of a message, M, computed
using the key K
Sigk (M)| A signature on a message, M, signed using the key K

The Ninja scheme involves three distinct phases, the Join Phase, the Mutual
Authentication Phase, and the Verification Phase, described below.

Join Phase The Join Phase enables a platform to obtain a DAA Certificate
from a DAA Issuer. The platform later uses this DAA Certificate, in the mutual
authentication phase, to anonymously authenticate itself to a service provider.
The entities involved are the Platform, P, and the DAA Issuer, I. Note that the
Join Phase is identical to the DAA Join Protocol specified in [5]; it may have
taken place before a device is shipped to the user. The sequence of events is as
follows (see also figure 2).

1.

The platform (TPM) generates its DAA Secret value f, and a random value
v'. It computes U and Ny (as described in Section 3.3), and then sends U,
Ny, and its Endorsement Public Key, EKpj, to the DAA Issuer.

To verify that U originates from the TPM in the platform that owns FK;,
the DAA Issuer engages in a simple Challenge-Response protocol with the
platform. It generates a random message m, and encrypts m using EKpy. It
sends the challenge, Chl = Encgg,, (m) to the platform.

If the platform owns EKpy, it should have the corresponding EKg;, and
hence be able to decrypt Encgg,, (m), to retrieve m. The platform (TPM)
then computes and sends the response r = H(U||m) to the DAA Issuer.
The DAA Issuer computes H(U||m) using the value of m it sent in step 2,
and compares the result with the value of r received from the platform. If
the two values agree, then the DAA Issuer is convinced that U originated
from the TPM that owns EK,.

Finally, the DAA Issuer generates v” and e, and then computes A (as de-
scribed in Section 3.3). The DAA Issuer then sends (4, e, v”) to the platform.
The DAA Certificate is (A, e,v), where v = v/ 4+v”. The DAA Issuer does not
have full knowledge of the DAA Certificate, since the certificate was jointly
created by the platform and the DAA Issuer. This property helps preserve
the anonymity of the user/platform.

Platform DAA Issuer
1.| generates f,v’
U«RS", N «=¢!
EK,, U, N;
2. generates m
Chl < Encpk,, (m)
Chl
3.| m' < Decpxk, (Chl)
r< HU||lm')
T
4. If: r = H(U||m)
5. Then: generates v/ &
Z N1/
A<= (Usv”) ¢ mod n
(A, e,v")
6. DAA Cert:=(A, e, v)
where v = v’ + 0"’

Fig. 2. Join Phase

Mutual Authentication Phase Service discovery typically involves the ex-
change of service advertisement and service reply messages between the user and
service provider. To avoid increasing the communication overheads, we incorpo-
rate the authentication mechanisms into these messages. In other words, service
discovery and mutual authentication take place concurrently. We now examine
how the messages are constructed to achieve our aim of mutual authentication.

The service provider, SP, initiates the service discovery and mutual authen-
tication processes by constructing and sending an authenticated service adver-
tisement message, as follows (also shown in figure 3).

1. SP generates a random number b and computes g® mod p. These values are
used later as part of a Diffie-Hellman key agreement protocol to establish a
shared key with the user.

2. SP constructs the service advertisement message,

SrvAdv = (IDgp, SrvInfo, AdvID, N, ts,, g, p, g” mod p).

3. SP signs SrvAdv, using its private key, SKgp, and obtains the signature,
Sigsigp (SrvAdv). SP then broadcasts SrvAdv, Sigsk,, (SrvAdv), and Certgp
to the platforms of prospective service users:

SP — platforms : SrvAdv, Sigsk, (SrvAdv), Certsp.

Suppose that a prospective user receives the above service advertisement (via
his platform), and is interested in the advertised service. The user’s platform
then authenticates the service provider by retrieving PKgp from Certgp, and
then using it to verify Sigsk,, (SrvAdv), and checking to see if the timestamp is
valid. If the verification outcome is satisfactory, then, at this point, the service
provider is authenticated to the user.

Using the platform, the user now anonymously authenticates itself (i.e. its
trustworthiness) to the service provider, as follows (see also Protocol 3).

1. The platform generates an AIK key pair (AIKy, AIK).

2. The platform sends its SML and the corresponding PCR values to the service
provider for validation. To further prove that the PCR values originate from
the TPM, the TPM signs the PCR values (from SrvAdv), using AIKg, (from
step 1), to create:

SigAIKsk (PCRHN)

The Nonce N is included to prevent replay attacks.

3. The platform computes ¢ = H(IDgp). It then creates a pseudonym, N, = ¢/
(where f is the DAA Secret generated during the join phase) for use when
interacting with the service provider.

4. To prove that the AIK (from steps 1 and 2) originates from a genuine TPM,
the platform DAA-Signs AIK,; using f, DAA Certificate, and the other
public parameters of the system. The output is the DAA Signature o (which
also includes ¢ and N,).

To complete the Diffie-Hellman key agreement protocol, the platform gener-
ates a random number a, and computes:

g*modp and K = (¢°)* mod p.
The platform constructs the Service Reply message as:
SrvRep = (Advld, SrvInfo, AIK,, SML, Sigaik, (PCR||N),0,t,).

The platform encrypts SruRep using the key K7, and then computes a MAC
of the encrypted SrvRep using the key Ky, where K = K1|| K>, to give:

Encg,(SrvRep) and MACk,(Enck, (SrvRep)).

The user sends Encg, (SrvRep), MACk,(Enck, (SrvRep)), and g* mod p to
the service provider.

P — SP: Encg, (SrvRep), MACk, (Enck, (SrvRep)), g® mod p.

Platform Service Provider

generates b, x < gb mod p

constructs SrvAdv:=(IDgp,

Srvinfo, AdvID, N, t,, g, p,)

Sy < SigSKSP(ST'UAdv)
SrvAdv, S, Certsp

generates AIK,;,, AIK,
retrieves SML & PCR,
Sy = SigAlek (PCRHN)
¢ < H(IDsp), N, < ¢f
o <= DAA-Signs (AIKyy)
generates a, y < ¢g® mod p
K < (¢%)* mod p
constructs
SrvRep:=(Advld, Srvinfo, Sy,
SML, AIK;, o, t,)
E, < Enck, (SrvRep),
MACk, (Ex)

E., MACk, (E;),y

Fig. 3. Mutual Authentication Phase

Verification Phase On receiving a service reply message from a platform, the
service provider SP performs the following steps to verify its trustworthiness.

1.

SP computes K = (¢%)® mod p and hence obtains K; and Ky (where K =
K1||K2). SP then checks the integrity of the received value of Encg, (SrvRep)
by recomputing the MAC using K» and comparing it with the received value.
SP extracts SrvRep by decrypting Encg, (SrvRep) using K;. SP also checks
that the timestamp ¢, extracted from SrvRep, is valid.

3. SP verifies the DAA Signature o, and is thus convinced that the platform
is in possession of a legitimate DAA Certificate from a specific DAA Issuer,
which implies that a genuine TPM is contained in the platform.

4. SP is also convinced that AIK,;, was signed using the platform’s DAA Secret
f. Even though the value of f is never revealed to SP, SP knows that the
value is related to a genuine DAA Certificate.

5. SP checks that the nonce N is the same as that sent in SrvAdv.

6. SP verifies the trustworthiness of the platform by examining the platform in-
tegrity measurements. This involves recursively hashing the values contained
in the SML, and comparing them with the corresponding PCR values.

7. If SP is satisfied with the integrity measurements, then the platform (and
hence the user) is authenticated to SP.

To authenticate to another service provider, the user platform should gen-
erate a new AIK key pair, but only needs to repeat the mutual authentication
phase, i.e. it does not need to perform the join phase again. The user platform
should also use a different N, value.

5 Security Analysis and Discussion

We now assess the scheme against our security and privacy requirements.

Mutual Authentication Mutual authentication is achieved in the following

way. A service provider is first authenticated to a prospective service user through

a service advertisement message, protected using conventional cryptographic

mechanisms (e.g. as enabled by a PKI). If a prospective user is interested in

the service, then the trustworthiness of the user platform is anonymously au-

thenticated to the service provider via a service reply message, using DAA.
The scheme is also resistant to the following attacks.

e Replay: The use of the timestamps ts, and ¢, in the SrvAdv and SrvRep
messages allows the recipients to check that they are fresh or recent (enough).
An adversary which knows an old session key K may be able to decrypt an
old SrvRep message, and could try to use the corresponding old signature,
Sigark,, (PCR||N), to reply to a new SrvAdv message. This will fail because
the signature is computed as a function of the nonce N from SrvAdv, and a
replayed signature will have been computed using a different value of N.

e Man-in-the-Middle (MitM): Since SrvAdv is authenticated, a MitM can-
not masquerade as an SP to a user. A MitM can make a response on its own
behalf (as can anyone receiving SrvAdv). However, a MitM cannot masquer-
ade as a legitimate user by manipulating the SrvRep message. If it tries to
generate a SrvRep with a different Diffie-Hellman parameter y, then it can
only generate a completely new response, since it cannot decrypt a SrvRep
generated by another user. If it leaves y unchanged, then any modifications
to SrvRep will be detected by the service provider, since it is integrity pro-
tected using a MAC computed as a function of the Diffie-Hellman key.

User Anonymity The public part of the Endorsement Key, FKpy, is never
disclosed to a service provider, since it would function as a permanent identifier
for the platform. Users instead interact with service providers using AIKs, which
act as pseudonyms. Since it is computationally infeasible for service providers,
or even the DAA Issuer, to link two AIK public keys from the same platform
(see Section 3.3), users will remain anonymous to service providers (e.g. CSPs),
as well as curious DAA Issuers (i.e. CTTPs) and passive eavesdroppers.

Service Information (SI) Confidentiality A SrvRep message contains ser-
vice information which, if disclosed, could reveal a user’s service preferences and
habits, thereby compromising user privacy. To prevent such a disclosure (e.g. to
eavesdroppers or a MitM), SruRep is encrypted using a secret key known only
to the service user and the service provider. Whilst there is nothing to prevent
a MSP from divulging the SI of an anonymous user, the user’s SI confidentiality
is still preserved, as the MSP is unable to determine which SI corresponds to
which user.

Unlinkability /Collusion Resistance User platforms should interact with dif-
ferent SPs using different AIK public keys and NV, values. It is computationally
infeasible for colluding service providers to link these keys (see Section 3.3), i.e.
a user’s service activities with different service providers are unlinkable. This
remains true even in the case of a colluding DAA Issuer (i.e. a CTTP), again
as discussed in Section 3.3. Our scheme is therefore resistant to two or more
colluding SPs (the CSP case), as well as a DAA Issuer colluding with one or
more SPs (the CTTP case).

Transaction History For business reasons (e.g. to support customer loyalty
rewards or discounts), it may be necessary for service providers to link a repeat
service user. This can be achieved without compromising a user’s privacy or
anonymity if a service user always uses the same value of N, to interact with a
particular service provider. A service user will not need to store IV, as it will be
recovered during re-computation (since ¢ and f should remain unchanged).

Blacklisting malicious parties A detected rogue service provider can be
added to the appropriate CRL, enabling users to avoid known fraudulent SPs.
Similarly, an SP may want to blacklist a misbehaving or malicious user, to bar
this user from future service interactions. This requires a means for the SP
to recognise a malicious platform, whilst it remains anonymous. This can be
achieved by blacklisting platform pseudonyms, i.e. the N, values of such plat-
forms. Blacklisting the AIK will not work, as a rogue user can simply generate
a new AIK, DAA-Sign it, and then interact with the service provider again.

A rogue user could only avoid detection by obtaining a new pseudonym, IN,,.
This would involve using a new value for f (the DAA secret). Although a TPM
could generate a new f value, it is unlikely that it will be able to obtain a DAA

Certificate for it. DAA certificate issue is expected to be subject to careful checks,
and a platform is not expected to possess more than one DAA Certificate from
a DAA Issuer. Also, if a DAA Certificate (i.e. a triple of values A,e,v) and the
value f are found in the public domain (e.g. on the Internet), then they should
be sent to all potential service providers for blacklisting. The service providers
can then add them to privately maintained lists of rogue keys.

6 Related Work

Apart from being unsuitable for ubiquitous computing environments [30], exist-
ing service discovery approaches (such as Java Jini [23], UPnP [28], SLP [16],
DEAPspace [20] and Salutation [22]) do not address the privacy issues raised
here. Zhu et al. describe a privacy preserving service discovery protocol [31, 32],
where users and service providers progressively reveal Personally Identifiable In-
formation (PII) to each other. A user’s PII is eventually divulged to a service
provider, and so service providers could still collude and link user activities.
Abadi and Fournet proposed a private authentication scheme [1], which protects
two communicating principals’ privacy (identity and location) from third parties.
This only protects a user’s PII against eavesdropping third parties, and not from
the service providers. Ren et al.’s privacy preserving authentication scheme [21]
uses blind signatures and hash chains to protect the privacy of service users.
This scheme requires a mobile user and service to authenticate each other via
some out of band mechanisms, prior to a privacy-preserving service interaction.
This may not be a realistic approach for a mobile ubiquitous environment.

In the k-Times Anonymous Authentication scheme [24], a user can anony-
mously access a service a predetermined number of times (as decided by the
service provider). This approach is extremely inflexible for a ubiquitous envi-
ronment. For instance, a service provider cannot prevent a malicious user from
having future service interactions. In the Chowdhury et al. Anonymous Authen-
tication scheme [9], users interact with different service providers using different
surrogates (one-time values) every time, to preserve user anonymity. However,
the trusted ‘Issuing Authority’, can still link user activities. Similarly, in v1.1 of
the TCG specifications [2,27], a user’s activities are unlinkable by different ser-
vice providers, but if the trusted ‘Privacy CA’ colludes with the service providers,
then the activities of a user are linkable, and his/her privacy will hence be com-
promised. In the Ninja scheme, the trusted third party, i.e. the DAA Issuer, is
unable to collude with service providers and link the activities of a user.

7 Conclusions

We identified security and privacy threats that may arise during service discov-
ery in a ubiquitous computing environment; we also derived corresponding se-
curity and privacy requirements. We presented the Ninja mutual authentication
scheme, using Trusted Computing functionality, which preserves user privacy.
Apart from being communications-efficient (only two messages are required), the

scheme also satisfies all the identified security requirements. To a service user
and service provider, security and privacy are both desirable. However, they are
potentially conflicting requirements, and it is challenging to achieve them both.
However, this is achieved by the Ninja mutual authentication scheme presented
here, enabling services to be discovered securely and privately.

In future work we plan to integrate anonymous payment mechanisms into
the scheme, and to explore ways to secure the process of service provisioning
between a user and a service provider, whilst (again) protecting user privacy. A
formal security analysis of the scheme is also being performed.

Acknowledgements. We would like to thank Liqun Chen, Marc Langhein-
rich, Rene Mayrhofer, Kenny Paterson, and the anonymous reviewers for their
valuable comments.

References

1. M. Abadi and C. Fournet. Private authentication. Theoretical Computer Science,
322(3):427-476, 2004.

2. B. Balacheff, L. Chen, S. Pearson, D. Plaquin, and G. Proudler. Trusted Computing
Platforms: TCPA Technology in Context. PH PTR, Upper Saddle River, NJ, 2003.

3. F. Bao and R. H. Deng. Privacy protection for transactions of digital goods. In 3rd
Int’l Conf. on Information & Communications Security (ICICS’01), LNCS 2229,
pages 202-213. Springer-Verlag, 2001.

4. B. Berendt, O. Gnther, and S. Spiekermann. Privacy in e-commerce: Stated pref-
erences vs. actual behavior. Communications of the ACM, 48(4):101-106, 2005.

5. E. Brickell, J. Camenisch, and L. Chen. Direct anonymous attestation. In 11th
ACM Conf. on Computer €& Communications Security, pages 132—145. ACM Press,
2004.

6. J. Camenisch and A. Lysyanskaya. A signature scheme with efficient protocols.
In 3rd Conf. on Security in Communication Networks (SCN 2002), LNCS 2576,
pages 268-289. Springer-Verlag, 2003.

7. R. Campbell, J. Al-Muhtadi, P. Naldurg, G. Sampemane, and M. D. Mickunas.
Towards security and privacy for pervasive computing. In Int’l Symposium on
Software Security, pages 1-15, 2002.

8. D. Chakraborty, A. Joshi, Y. Yesha, and T. Finin. Toward distributed service
discovery in pervasive computing environments. IFEFE Transactions on Mobile
Computing, 5(2):97-112, 2006.

9. P. D. Chowdhury, B. Christianson, and J. Malcolm. Anonymous authentication. In
12th Int’l Workshop on Security Protocols, LNCS 3957, pages 299-305. Springer-
Verlag, 2006.

10. S. Creese, M. Goldsmith, B. Roscoe, and 1. Zakiuddin. Authentication for pervasive
computing. In Int’l Conf. on Security in Pervasive Computing, LNCS 2802, pages
116-129. Springer-Verlag, 2004.

11. W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Transactions
on Information Theory, 22(6):644-654, 1976.

12. A. Friday, N. Davies, N. Wallbank, E. Catterall, and S. Pink. Supporting ser-
vice discovery, querying and interaction in ubiquitous computing environments.
Wireless Networks, 10(6):631-641, 2004.

13

14.

15.

16.

17.

18.
19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

O. Goldreich, S. Micali, and A. Wigderson. Proofs that yield nothing but their
validity or all languages in NP have zero-knowledge proof systems. Journal of the
ACM, 38(3):690-728, 1991.

S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive
proof systems. SIAM Journal on Computing, 18(1):186—208, 1989.

D. Gollmann. What do we mean by entity authentication? In IEEE Symposium
on Security and Privacy, pages 46-54. IEEE Computer Society, 1996.

E. Guttman, C. Perkins, J. Veizades, and M. Day. Service Location Protocol,
Version 2. RFC 2608, The Internet Engineering Task Force (IETF), June 1999.
R. Housley, W. Polk, W. Ford, and D. Solo. Internet X.509 Public Key Infrastruc-
ture. RFC 3280, The Internet Engineering Task Force (IETF), April 2002.

C. J. Mitchell, editor. Trusted Computing. IEE Press, London, 2005.

National Institute of Standards and Technology (NIST). Secure Hash Standard.
Federal information processing standards publication (FIPS) 180-2, 2002.

M. Nidd. Service discovery in DEAPspace. IEEE Personal Communications,
8(4):39-45, 2001.

K. Ren, W. Luo, K. Kim, and R. Deng. A novel privacy preserving authenti-
cation and access control scheme for pervasive computing environments. IEEE
Transactions on Vehicular Technology, 55(4):1373-1384, 2006.

Salutation Consortium. Salutation Architecture Specification, June 1999.
http://www.salutation.org/.

Sun Microsystems. Jini Architecture Specification. Version 1.2, Sun Microsystems,
Palo Alto, CA, USA, December 2001. http://www.sun.com/software/jini/specs/.
I. Teranishi, J. Furukawa, and K. Sako. k-times anonymous authentication. In
ASIACRYPT 2004, LNCS 3329, pages 308-322. Springer-Verlag, 2004.

Trusted Computing Group (TCG). TPM v1.2 Specification Changes. A summary
of changes, Trusted Computing Group, Portland, Oregon, USA, October 2003.
Trusted Computing Group (TCG). TCG Specification Architecture Overview.
Version 1.2, The Trusted Computing Group, Portland, Oregon, USA, April 2004.
Trusted Computing Platform Alliance (TCPA). TCPA Main Specification. Version
1.1b, Trusted Computing Group, Portland, Oregon, USA, February 2002.
Universal Plug and Play (UPnP) Forum. UPnP Device Architecture. version 1.0,
December 2003. http://www.upnp.org/.

M. Wu and A. Friday. Integrating privacy enhancing services in ubiquitous com-
puting environments. In Ubicomp 2002: Security in Ubiquitous Computing, 2002.
F. Zhu, M. Mutka, and L. Li. Service discovery in pervasive computing environe-
ments. IEEE Pervasive Computing, 4(4):81-90, 2005.

F. Zhu, M. Mutka, and L. Ni. Prudent Exposure: A private and user-centric service
discovery protocol. In 2nd IEEE Conf. on Pervasive Computing € Communica-
tions, pages 329-328, 2004.

F. Zhu, M. Mutka, and L. Ni. A private, secure and user-centric information
exposure model for service discovery protocols. IEEE Transactions on Mobile
Computing, 5(4):418-429, 2006.

F. Zhu, W. Zhu, M. W. Mutka, and L. Ni. Expose or not? A progressive exposure
approach for service discovery in pervasive computing environments. In 3rd IEEE
Conf. on Pervasive Computing €& Communications, pages 225-234, 2005.

