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ABSTRACT

In this paper we describe applications of functions from

GF(2) m onto GF(2) n in the design of encryption algorithms.  If

such a function is to be useful it must satisfy a set of

criteria, the actual definition of which depends on the type

of encryption technique involved.  This in turn means that it

is important to ensure that the selected criteria do not

restrict the choice of function too severely, i.e. the set of

functions must be enumerated.  We discuss some of the possible

sets of criteria and then give partial results on the

corresponding enumeration problems.  Many open problems

remain, some of them corresponding to well known hard

enumeration questions.
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1.  INTRODUCTION

Functions from GF(2) m onto GF(2) n (m ^ n) are used in a

variety of ways in the construction of encryption algorithms.

Such functions are used in both stream ciphers and block

ciphers as important components of the ciphering operation.

In all cases the functions used have to be chosen with great

care so that the resulting cipher is hard to break.

Theoretical and practical studies reveal criteria which

functions must satisfy for use (sometimes the criteria are the

same for use in very different ciphers, such as the need for

non-linearity).  Having specified criteria, it is important to

know that there exist suitable numbers of functions satisfying

them.

As a result the problem arises of enumerating sets of

functions satisfying various criteria.  We discuss a number of

such enumeration problems, many of which equate to classical

counting questions with no previous obvious application.  We

concentrate our attention here on criteria identified as being

of particular relevance to the design of stream ciphers,

although some of these criteria are also relevant to the

design of functions used in block ciphers.

In Section 2 below we describe how these functions are used,

and then discuss some of the criteria which arise from the

particular applications.  This leads on to some specific



ENUMERATING BOOLEAN FUNCTIONS

Page 4

enumeration problems and results, which are discussed in

Section 3.

2.  APPLICATIONS AND SELECTION CRITERIA

2.1  Introduction

We start by describing in general terms how functions from

GF(2) m onto GF(2) n are used in the construction of stream

cipher, and, very briefly, block cipher algorithms.  Such

functions are, in practice, often represented as a complete

listing of all 2 m n-bit outputs, and they are thus often

referred to as Look Up Tables (LUTs) .  For convenience we will

now refer to all such functions as (m,n)-LUTs , where m ^ n.

The chief component of a stream cipher encryptor is a pseudo-

random binary sequence generator; for further details on the

design and applications of stream cipher algorithms see, for

example, Beker and Piper, [5], or Rueppel, [27].  The output

from this sequence generator (which is initially "seeded"

using a secret key) is combined with the binary data sequence

using modulo 2 addition.  For such a cipher to be strong

(i.e., resist cryptanalysis) the sequence generator must

satisfy a number of properties, not least of which are that

the output sequence should appear random, and that the output

should not be a linear function of the key.  To these and

other constraints should be added the desirability of

straightforward and fast implementation.
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Sequences generated using linear feedback shift registers are

certainly easy and cheap to implement and they also have many

properties required of stream cipher generators (such as

pseudo-randomness).  However they fall down on the linearity

constraint.  One commonly used way of rectifying this problem

is to combine two or more linear sequence generators using

non-linear feed-forward logic to produce a pseudo-random non-

linear sequence.  In essence this means using the outputs from

a number of registers as the inputs to an (m,n)-LUT, and using

the output as the enciphering sequence.  For added complexity

without using LUTs of vast size, this "look up" process can be

repeated a number of times.

Block ciphers operate in rather a different way, and involve

encrypting groups of data bits simultaneously.  The basic idea

is to combine a block of plaintext data with a key to produce

a block of ciphertext, with the property that a small change

to either key or plaintext results in a large, unpredictable

change to the resulting ciphertext.  For further details on

desirable properties for block ciphers see, for example,

Section 7.3 of Beker and Piper, [5], or Feistel, [14].  There

are many ways to construct good block cipher algorithms, but

we are concerned here with just two closely-related families

of techniques, namely SP-networks and Feistel Ciphers.

Following a suggestion of Shannon, [29], SP-networks have been

proposed as good candidates for constructing block ciphers

(see Feistel, [14], Kam and Davida, [18], [19], and Andelman



ENUMERATING BOOLEAN FUNCTIONS

Page 6

and Reeds, [1]).  We do not describe the technique here, but

suffice it to say that the use of (m,n)-LUTs is fundamental to

their operation.  The same is true of Feistel Ciphers, one

particularly well-known example of which is the DES algorithm

(see, for example, [5], Section 7.3 or [9], Section 3).

For both types of application we need to be very careful about

the selection of LUTs to use.  To assist in the selection of

suitable LUTs we introduce lists of selection criteria which

LUTs must satisfy before they have the potential to be useful

in the construction of strong ciphers.  We now look at

possible sets of criteria in more detail, concentrating on the

stream cipher application.

2.2  Function selection criteria

We have already outlined the main motive for using LUTs in

constructing stream cipher algorithms in Section 2.1 above.

We now need to consider some desirable properties for stream

cipher sequences in order to appreciate how to choose these

LUTs.

As we have already mentioned, sequences used in stream cipher

applications must be both pseudo-random in appearance and non-

linear functions of the key.  In addition, every key bit

should affect the output sequence.  These simple requirements

immediately give us three conditions on any (m,n)-LUT L used

to combine linear sequence generators.  Note that throughout
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this paper all algebra uses GF(2) except where otherwise

stated.

C1  Balance.  Over the complete set of possible inputs, each

possible n-bit output should occur 2 m-n times, i.e. if y is

any n-bit vector then

|L -1 (y)| = 2 m-n.

C2  Non-linearity/affinity.  L must be a non-linear and non-

affine function for all n outputs, i.e. for every i

(1 \ i \ n) there must not exist a vector h in GF(2) m and a

fixed scalar a such that

L(x)| i  = x.h  + a for every x  in GF(2) m

where y| i  denotes the bit in the ith position in vector y .

C3  Non-degeneracy.  Each of the n outputs of L must depend on

all the m inputs; i.e. if each of the n output variables is

expressed as an equation in the m input variables, then each

equation must involve all of the m input variables.

Note that C1 is essential if the output is to appear pseudo-

random (of course C1 does not in itself guarantee pseudo-

randomness).  C2 is present to ensure the non-linearity and

non-affinity of the output sequence, and C3 ensures that every

key bit affects each bit of the output sequence.

The above criteria are widely accepted, and Beale, [4], has

given a recurrence for the number Q m of (m,1)-LUTs satisfying
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C1, C2 and C3.  Beale goes on to suggest that, since Q m grows

very quickly with m, some particular schemes he suggests are

secure.  However, although some such schemes may be secure,

conditions C1, C2 and C3 are by no means sufficient to

guarantee this.  We now consider some further criteria of

importance.

C4  Uncorrelatedness.  Given any vectors

x = (x 1,x 2,...,x m),  y  = (y 1,y 2,...,y n)

for which

L(x) = y ,

then

Pr(x i =y j ) = 0.5  for any i,j (1 \ i \ m and 1 \ j \ n).

The importance of condition C4 is clear from the recent work

of Siegenthaler, [30], [31], [32], [33], Rueppel, [26], and

Retter, [25].  Basically, if C4 is not satisfied then it may

be possible to cryptanalyse a sequence generator by attacking

one component at a time.  For a full discussion of the

correlation property the interested reader is advised to

consult the literature, since the definition of C4 above is a

rather simplified version of the criterion developed by

Siegenthaler.
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C5  Symmetry.  If P is any m by m permutation matrix then

L(x) = L(x P)

for any x in GF(2) m.

This property was introduced by Brüer, [7], who suggests that

it is important because it means that no input is of any

greater or lesser significance than any other input.  C5 means

that (given w is the Hamming weight function) if w(x) = w(y )

then L(x) = L(y ).  C5 is probably an over-restrictive

condition as we discuss in Section 3.2 below.

Many other similar "ad hoc" constraints can be devised.  Of

particular relevance are strengthened versions of C2, which

require the function to be non-affine in all non-trivial

subsets of the m input variables.  For example, if the

(m-1,n)-LUT L' obtained from L by setting one input variable

to 0 (or 1) does not satisfy C2, then the function is probably

not "non-affine enough" to form a cryptographically strong

sequence generator.  One very important point to note is that

just because a function satisfies a list of criteria (C1 - C3

say), it does not guarantee that it will produce a strong

cipher.  Other types of attack using other properties of the

LUT cannot easily be ruled out.

On the other hand, if one imposes too large a set of criteria,

it may well happen that no such LUTs exist!  It is at this

point that the question of enumeration becomes of great
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importance.  While some criteria (such as C1 - C3) are of

fundamental importance, others (such as C5) are perhaps less

vital.  The result of enumeration and classification work

should help the algorithm designer decide which set of

criteria to use.

Before proceeding, we briefly mention three criteria of

particular relevance to block ciphers.  Before considering

selection criteria in detail we need to specify exactly what

we mean by S-box functions.  As we defined them in Section 2.1

above, an S-box is a collection of 2 r  invertible (n,n)-LUTs.

If we let m = n+r, then an alternative definition of S-box is

that it is an (m,n)-LUT L satisfying C6 below.

C6.  For any

(a 1,a 2,...,a r ) in GF(2) r ,

 the (n,n)-LUT L *  defined by

L* (x 1,x 2,...,x n) = L(a 1,a 2,...,a r ,x 1,x 2,...,x n)

is one-to-one.

If we think of an S-box as consisting of 2 r  permutations on

the set of all n-bit vectors, then a further possible

criterion seems natural.  When used in an SP-network, key bits

are used to select which permutation is used, and so it might

be desirable to make the permutations as different from one

another as possible.  One way in which we might do this is by

requiring an S-box to satisfy C7 below.
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C7.  For any

(b 1,b 2,...,b n) in GF(2) n,

the function L **  mapping GF(2) r  into GF(2) n defined by

L** (x 1,x 2,...,x r ) = L(x 1,x 2,...,x r ,b 1,b 2,...,b n)

is one-to-one.

In simple terms C7 has the effect of requiring that no two

permutations agree in any position (and hence C7 can only be

satisfied if r \ n).  Alternatively, if we think of the 2 r

permutations in the S-box as forming rows in an 2 r  by 2 n

matrix, C6 and C7 are precisely the same as requiring that the

matrix form a Latin Rectangle .  As a result we call S-boxes

satisfying C6 and C7 Latin Rectangle S-boxes .

Enumerating S-boxes satisfying C6 or C7 in isolation is very

straightforward; by contrast, enumerating S-boxes satisfying

C6 and C7 in combination is equivalent to finding the number

of enumerating Latin Rectangles.  Computing this number is a

"classical" hard problem.  Asymptotes (for r small with

respect to n) are known for this number, due to Erdös and

Kaplansky, [13], and extended by Yamamoto, [35], [36].  The

van der Waerden-Egorycev theorem and the Minc-Brégman upper

bound can also be used to give bounds on the size of the

number.  For further details see Section 3.1 of Minc's update,

[24], to his earlier book, [23].
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Having looked at two possible requirements for S-boxes we next

note that conditions C1 to C4 above are also very significant

for S-boxes.  C1 is in fact guaranteed by C6 (n.b. they are

equivalent if m = n, i.e. if r = 0).  A further criterion of

relevance to S-box design is the following, originally

proposed by Webster and Tavares, [34].

C8  Strict Avalanche Criterion  Define the probability p ij  as

follows.  Let c i  be the m-vector with a one in the ith

position and zeros elsewhere.  Then, if x is any m-vector, p ij

is defined to be the probability that

( L(x) + L(x +c) )| j  = 1.

Then L satisfies the Strict Avalanche Criterion (SAC)  iff

pij  = 0.5  for every i,j  ( 1 \ i \ m, 1 \ j \ n ).

Before proceeding we briefly mention other existing work on

the enumeration of S-boxes satisfying certain criteria.  For

the combination of the two criteria C6 and C2, certain

enumerative results have been achieved by Gordon and Retkin,

[16], and Ayoub, [2], [3], albeit always for the m = n case.

The emphasis of this work has been to demonstrate that for

sufficiently large m almost all S-boxes satisfy a certain

minimal set of criteria.  Their purpose is to show that for

sufficiently large m it is safe to choose S-boxes at random.

Their results are given as corollaries of more general

enumeration results in section 3 below.  Additionally, Lloyd,

[20], [21], [22], has recently enumerated those (m,1)-LUTs
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which satisfy certain cases of Forre's generalised version of

C8, [15].

Finally we note that the criteria used to select the DES S-

boxes remain classified.  As a result a large effort has gone

into trying to deduce the criteria used, and additionally to

find weaknesses in the selected S-boxes.  Some interesting

work of this type can be found in a number of recent papers,

[6], [8], [10], [11], [12] and [28].  This work is also of

significance in selecting new S-boxes for future block

ciphers.

3.  ENUMERATION PROBLEMS

We now consider the enumeration of (m,n)-LUTs satisfying

various subsets of the criteria given in Section 2.2 above.

To some extent the results are for those subsets of criteria

for which enumerations have proved tractable, rather than

necessarily those (probably larger) sets of criteria of direct

cryptographic significance.

As we have already stated, we concentrate our attention here

on those criteria of particular relevance to stream ciphers,

i.e. C1-C5.  It is clearly of importance to know how many

(m,n)-LUTs exist satisfying combinations of conditions C1 -

C5, and in particular those satisfying all of C1 - C3 together

with one or both of the other conditions.  We consider each of

C1 to C5 in turn.
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3.1  Condition C1 - Balance

We immediately have:

Theorem 3.1.1  The number of (m,n)-LUTs satisfying C1 (i.e.

the number of balanced (m,n)-LUTs) is given by:

bm,n   =  M! / [(M/N)!] N

where M = 2 m, N = 2 n and C(n,k) denotes the binomial

coefficient n!/k!(n-k)!, as it does throughout.

Proof  Clearly

           N-1
  b m,n   =   P  C( M-i.M/N, M/N )
           i=0

           N-1
        =   P  (M-iM/N)! / [ (M/N)! . (m-(i+1)M/N)! ].
           i=0

The result follows.                                         []

3.2  Condition C2 - Non-linearity/affinity

We now enumerate those LUTs satisfying C1 and C2.

Lemma 3.2.1  The number of (m,n)-LUTs satisfying C1 and for

which some chosen set of k outputs are all affine functions of

the inputs is given by:
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                k-1
  a m,n,k   =  K . P ( M-I ) . [ (M/K)! ] K / [ (M/N)! ] N
                i=0

where I = 2 i , K = 2 k, M = 2 m and N = 2 n.

Proof  Suppose L is any (m,n)-LUT with the desired properties.

Then consider first L * , the (m,k)-LUT obtained from L by

restricting attention to the k outputs which must be an affine

function of the inputs.  L *  must be of rank k in order for L

to be balanced.  Hence there are

      k-1
  K .  P  ( M - I )
      i=0

possibilities for L * .

We now consider how many ways there are of extending L *  to a

balanced (m,n)-LUT.  If we examine the k outputs determined by

L*  over all 2 m possible inputs, each possible pattern of k

output bits occurs 2 m-k  times.  If we consider one collection

of 2 m-k  inputs all having the same k outputs, then, in order

for L to be balanced, the other n-k outputs must take each of

their 2 n-k  possibilities 2 m-n times each.  As in Theorem

3.1.1, the number of ways this can happen is simply

  N/K-1
    P   C( M/K-j.M/N , M/N ) = (M/K)! / [ (M/N)! ] N/K
   j=0

This applies equally to all 2 k possible values for the k

outputs determined by L *  and the result follows.            []
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Using Lemma 3.2.1 we can now obtain:

Lemma 3.2.2  The number of balanced (m,n)-LUTs which are

affine in precisely k of their outputs is

  n-k
   R  (-1) i  . C(n,k+i) . C(k+i,k) . a m,n,k+i .
  i=0

Proof  This result follows immediately from Lemma 3.2 on

application of the inclusion-exclusion principle (see, for

example, Section 2.1 of Hall, [17]).                        []

As an immediate corollary of Lemma 3.2.2 we now have:

Theorem 3.2.3  The number of (m,n)-LUTs satisfying C1 and C2

(i.e. the number of balanced (m,n)-LUTs non-affine in all

their outputs) is given by:

            n
  d m,n   =   R  (-1) i  . C(n,i) . a m,n,i .
           i=0

Note that the above results generalise the work of Gordon and

Retkin, [16], who studied the special case m = n.  In fact

they explicitly studied (m,m)-LUTs satisfying C6 and C2, which

in this case turns out to be the same as enumerating

(m,m)-LUTs satisfying C1 and C2.
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3.3  Condition C3 - Non-degeneracy

We next consider the number of (m,n)-LUTs satisfying condition

C3.  Before commencing note the following trivial yet useful

result:

Lemma 3.3.1  Suppose x m is the number of (m,1)-LUTs satisfying

some combination of conditions C2, C3, C4 and C5.  Then the

number of (m,n)-LUTs satisfying the same set of conditions is

simply

(x m) n.

Proof  The lemma follows immediately from the definitions of

C2 - C5.                                                    []

Using this result we now have:
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Theorem 3.3.2  Let e m,n  denote the number of (m,n)-LUTs

satisfying C3 (i.e. the number of non-degenerate (m,n)-LUTs).

Then we have the following results enabling the simple

computation of e m,n .

(i)  e m,1  satisfies the recurrence:

              m-1
em,1   =  2 M -  R  C(m,i).e i,1 ,
              i=0

where M = 2 m.

(ii)  e 0,1  = 2.

(iii)  e m,n  = (e m,1 ) n.

Proof  (i)  There are 2 M possible (m,1)-LUTs.  Each such

function will be a non-degenerate function of some subset of

the set of m input variables, and hence we have:

 m
 R  C(m,i).e i,1  = 2 M.
i=0

The desired recurrence immediately follows.  (ii) is trivial

and (iii) follows immediately from Lemma 3.3.1.             []

When we consider C3 in combination with C1 and C2, the problem

becomes rather more complex.  However, for the case n = 1 the

problem is tractable, and we have the following result

(previously obtained by Beale and Monaghan, [4]):
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Theorem 3.3.3  The number Q m of (m,1)-LUTs satisfying C1, C2

and C3 obeys the following recurrence:

                m-1
  Q m  =  d m,1  -  R  C(m,i).Q i
                i=1

where dm,1 is as in Theorem 3.2.3 above.  In addition we have

the initial condition:

Q1  =  0.

Proof  The result follows by observing that an (m,1)-LUT which

does not satisfy C3 is simply a non-degenerate (k,1)-LUT for

some subset of k of the input variables.  The recurrence then

follows immediately.  Finally note that

d1,1  = 0,

and hence

Q1 = 0.                                                   []

3.4  Condition C4 - Uncorrelatedness

We next consider condition C4.  Let u m,n  denote the number of

(m,n)-LUTs satisfying C4 (i.e. the number of uncorrelated

(m,n)-LUTs).  As for condition C3, because of Lemma 3.3.1, we

need only consider u m,1 .  However, even for this case the

enumeration problem is rather difficult.  What we can say is

as follows:
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Lemma 3.4.1  u m,1  is the number of ways the elements of GF(2) m

can be partitioned into two sets A, B (possibly empty) such

that, if

x = ( x 1, x 2, ..., x m )

is in A, and

pi  = Pr( x i  = 1 ),

then

pi  = 0.5  for every i  ( 1 \ i \ m ).

Proof  For any (m,1)-LUT L, let A and B denote the sets of m-

vectors which are mapped by L onto 0 and 1 respectively.  Then

it is clear that L satisfies C4 if and only if A and B have

the properties specified above.  The Lemma follows.         []

In the absence of a precise enumeration, a simple method of

guaranteeing uncorrelatedness is of potential interest.  We

have the following:
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Theorem 3.4.2  If an (m,1)-LUT (with m ^ 2) satisfies

L(x) = L(x +j )                                            (*)

for all m-vectors x (where j  is the m-vector of all ones) then

L satisfies C4, i.e. L is uncorrelated.  Hence

um,1  ^ 2 M' ,  where  M' = 2 m-1.

Moreover, the number bu m,n  of (m,n)-LUTs satisfying C1 and C4,

i.e. the number of balanced uncorrelated (m,n)-LUTs, satisfies

bum,n  ^ b m-1,n

where b m-1,n  is the number of (m-1,n)-LUTs satisfying C1 (c.f.

Theorem 3.1.1).

Proof  Suppose L is an (m,1)-LUT satisfying the property (*)

for all x.  Then if A is the set of m-vectors which L maps

onto zero, then x is in A if and only if x +j  is in A.  Hence

the elements of A can be divided into pairs of vectors and

their complements (where we define the complement of x to be

x+j ).  Therefore, in any of the m bit positions, exactly half

the m-vectors in A have a one in that position.  Therefore L

satisfies C4.

The number of complementary pairs of m-vectors is simply

M' = 2 m-1.

A necessary and sufficient condition for an (m,1)-LUT to

satisfy property (*) is that the set A consists of some

collection of complementary pairs.  The number of choices for

such an A is simply 2 M'  and the bound for u m,1  follows.
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A necessary and sufficient condition for an (m,n)-LUT to

satisfy condition C1 is that, for any n-vector y, the set

L-1 (y) must have cardinality precisely 2 m-n.  In addition, as

above, a sufficient condition for an (m,n)-LUT to satisfy C4

is that, for each n-vector y, the set L -1 (y ) contains only

complementary pairs of vectors.  Hence a sufficient condition

for an (m,n)-LUT to satisfy both C1 and C4 is that, for each

n-vector y, the set L -1 (y ) contains precisely 2 m-n-1

complementary pairs of vectors.  The desired bound follows. []

The condition (*) in Theorem 3.4.2 is rather restrictive.

This is illustrated by the fact that if a (2N,N)-LUT satisfies

C6 and C7 then it must also satisfy C4.  We conclude this

section by briefly considering the effect of requiring both C3

and C4.  Suppose output y j  does not depend on input x i ; then

it is clear that x i  and y j  will be uncorrelated in the sense

of C4.  This indicates that C3 and C4 are related so that any

pair (x i ,y j ) cannot be both independent and correlated.  This

suggests that enumerating (m,n)-LUTs satisfying C3 and C4 may

be a non-trivial task.

3.5  Condition C5 - Symmetry

We next consider (m,n)-LUTs satisfying C5.  This is a strong

condition, and there is a very limited set of LUTs which

satisfy it.  We first note the following trivial result,

previously quoted informally following the definition of C5:
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Lemma 3.5.1  If L satisfies C5, i.e. if L is a symmetric

(m,n)-LUT, and if w(.) is the Hamming weight function, then

w(x) = w(x ')

implies that

L(x) = L(x ').

Having observed this simple result, we can now state:

Theorem 3.5.2  The number s m,n  of symmetric (m,n)-LUTs (i.e.

the number of (m,n)-LUTs satisfying C5) is given by

sm,n  = (2 m+1) n.

Proof  Since there are C(m,i) vectors of weight i, by Lemma

3.5.1 the number of symmetric (m,n)-LUTs is simply the number

of ways the set of binomial coefficients

{ C(m,0), C(m,1), ..., C(m,m) }

can be partitioned into 2 n sets.  The result follows.       []

3.6  Conditions C1-C5

When we consider condition C5 in combination with other

conditions, the enumeration problem becomes much more

difficult.  Before attempting to enumerate those (m,n)-LUTs

satisfying some combination of conditions C1-C4 in conjunction
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with C5 we observe the following.  It is well known (and

elementary to establish) that any (m,n)-LUT can be uniquely

expressed as a set of n multinomial equations in m variables:

x1,  x 2, ..., x m

where each term is a product of between 0 and m of these

variables.  In such a multinomial equation, let the weight  of

a term be the number of variables appearing in the term (e.g.

the term x 1x5x7 has weight 3 whereas the term 1 has weight 0).

Moreover, if s is a term (i.e. a product of some subset of the

xi 's) and x is an m-vector, then s is said to be agreeable  to

x if all the variables in s have their corresponding positions

in x set to 1.  Using this notation we then have:

Lemma 3.6.1  Suppose L is an (m,1)-LUT with equivalent

multinomial equation

y1 = f( x 1, x 2, ..., x m ).

Then, if x is an m-vector of weight k,

        k
L(x) =  R  N(i)
       i=0

where N(i) represents the number of terms of weight i in f

which are agreeable to x.

Proof  If we consider f(x ) term by term, then the terms that

contribute a 1 to the result are precisely those agreeable to

x.  The Lemma follows.                                      []
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We may then state the following Lemma, a version of which was

informally stated by Brüer, [7].

Lemma 3.6.2  Suppose L is an (m,1)-LUT with equivalent

multinomial equation

y1 = f( x 1, x 2, ..., x m ).

Then L satisfies condition C5 if and only if, for every i, f

either contains all terms of weight i or no terms of weight i.

Proof  First suppose that L satisfies condition C5.  We prove

the desired result by induction on i.

If i = 0, then the result is trivially true since there is

only one term of weight 0.

Suppose the result is true for every i < k.  Suppose also that

W is the subset of {0,1,...,k-1} defined so that w is in W if

and only if f contains all terms of weight w.  Let x be any m-

vector of weight k.  By Lemma 3.6.1 we have

        k
L(x) =  R  N(i).
       i=0

     =  R  C(k,i) + d,
       ieW

where d = 1 or 0 depending on whether or not the unique term

of weight k agreeable to x is present in f.

But, by condition C5, L(x) is a constant for all x  of weight

k.  The induction follows.
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Hence, if L satisfies C5, then, for every i, f either contains

all or none of the possible terms of weight i.  The converse

is straightforward since the number of f with the property

that, for every i, f contains either all or none of the

possible terms of weight i is exactly the same as the number

of (m,1)-LUTs satisfying C5.  The result follows.           []

Using this Lemma we can now simply establish:

Theorem 3.6.3  The number of (m,n)-LUTs satisfying C2 and C5

(i.e. the number of symmetric (m,n)-LUTs for which none of the

outputs are affine functions of the inputs) is precisely

(2 m+1-4) n.

Proof  We consider the number of affine symmetric (m,1)-LUTs.

It is clear that a LUT is affine if and only if its

corresponding multinomial equation only contain terms of

weight 0 or 1.  By Lemma 3.6.2 there exist precisely 4

symmetric (m,1)-LUTs with this property.  Hence, by Theorem

3.5.2 there exist precisely

2m+1-4

non-affine symmetric (m,1)-LUTs.  The result follows on

application of Lemma 3.3.1.                                 []
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We next observe that, by Lemma 3.6.2, the only (m,1)-LUTs

which satisfy C5 and do not satisfy C3 (the non-degeneracy

condition) are the trivial functions

L(x) = 0  for all x

and

L(x) = 1  for all x

which, in addition, are both affine.  It is therefore trivial

to show:

Theorem 3.6.4  The number of (m,n)-LUTs satisfying C3 and C5

(i.e. the number of symmetric (m,n)-LUTs non-degenerate in all

their outputs) is

(2 m+1-2) n.

Moreover, if an (m,n)-LUT satisfies C2 and C5 then it also

satisfies C3, and hence the number of (m,n)-LUTs satisfying

C2, C3 and C5 is

(2 m+1-4) n.

We now consider the effect of requiring condition C1 in

addition to C5.  Since there are C(m,i) vectors of weight i,

the number of balanced, symmetric (m,n)-LUTs (i.e. the number

satisfying C1 and C5) is simply the number of ways the set of

binomial coefficients

{ C(m,0), C(m,1), ..., C(m,m) }



ENUMERATING BOOLEAN FUNCTIONS

Page 28

can be partitioned into 2 n sets so that the sum of the

coefficients in each set equals 2 m-n.  For the case n = 1, two

obvious families of examples exist (in fact these are almost

the only examples known to the author for any value of n).

These examples can be used to establish the following lower

bound:

Theorem 3.6.5  The number bs m,1  of balanced, symmetric

(m,1)-LUTs satisfies

bs m,1  ^ 2 (m+1)/2     if m is odd

bs m,1  ^ 2           if m is even.

Proof  We establish these bounds by showing how to construct

the required numbers of examples of balanced, symmetric

(m,1)-LUTs.  We write c i  for C(m,i) throughout, and consider

partitions of the values c i  into two sets A and B such that

|A| = |B| = 2 m-1.

First suppose that m is odd.  Consider the (m+1)/2 pairs

{ c 0, c m }, { c 1, c m-1 }, ..., { c (m-1)/2 , c (m+1)/2  }.

Now suppose that A and B are such that they both contain

exactly one element from each of these pairs.  It is

straightforward to see that a balanced symmetric (m,1)-LUT

results.  There are 2 (m+1)/2  such partitions, and the desired

bound follows.

Now suppose m is even.  In this case let
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A = { c 0, c 2, ..., c m }  and  B = { c 1, c 3, ..., c m-1 }

or vice versa.  It is again straightforward to see that both

partitions result in balanced symmetric (m,1)-LUTs.  The

desired bound again follows immediately.                    []

Note that there do exist examples of balanced, symmetric

(m,1)-LUTs not included in the families of Theorem 3.6.5.  Two

such examples (in fact, the only examples known to the author)

are for an (8,1)-LUT and a (13,1)-LUT.  In these cases we can

achieve the desired balance and symmetry by letting the sets A

and B be defined as follows.

For an (8,1)-LUT let

A = { c 0=1, c 3=56, c 4=70, c 8=1 }

and

B = { c 1=8, c 2=28, c 5=56, c 6=28, c 7=8 }

or any of the 8 obvious variants of the above.

For a (13,1)-LUT let

A = { c 0=1, c 1=13, c 2=78, c 3=286, c 6=1716, c 7=1716,

      c 10=286 }

and

B = { c 4=715, c 5=1287, c 8=1287, c 9=715, c 11=78, c 12=13,

      c 13=1 }

or any of the 16 obvious variants of the above.
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It is interesting to speculate whether further sporadic

examples of balanced, symmetric (m,n)-LUTs may exist, in

particular whether or not examples exist for n > 1.  Brüer

tabulates the number of balanced symmetric (m,1)-LUTs for all

odd m \ 17, and obtains

bs m,1  = 2 (m+1)/2    m odd, m \ 17, m ] 13

and

bs 13,1  = 144

which confirms that the above "sporadic" examples of balanced,

symmetric (m,1)-LUTs are the only such examples for odd m less

than or equal to 17.

We now consider which of the examples in the proof of Theorem

3.6.5 satisfy conditions C2-C4.  We first consider C3, the

non-degeneracy condition.  We already observed that the only

(m,1)-LUTs which satisfy C5 and do not satisfy C3 are the

trivial functions L=0 and L=1.  Neither of these are balanced

and hence we have:

Corollary 3.6.6  The number bns m,1  of balanced, non-

degenerate, symmetric (m,1)-LUTs, i.e. the number of (m,1)-

LUTs satisfying C1, C3 and C5, satisfies

bns m,1  ^ 2 (m+1)/2     if m is odd

bns m,1  ^ 2           if m is even.
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We also observed above that the only (m,1)-LUTs which satisfy

C5 and do not satisfy C2 are the trivial functions L=0 and

L=1, and the two functions L 1, L 2 having multinomial

equations:

L1 = x 1+ x 2 + ... + x m  and

L2 = x 1+ x 2 + ... + x m + 1.

Unfortunately both L 1 and L 2 are balanced.  If we let A i

denote the set of m-vectors which L i  maps onto 0 (i = 1, 2),

then A 1 contains all the m-vectors of even weight and A 2

contains all the m-vectors of odd weight.  Therefore, for m

even, L 1 and L 2 correspond to both the examples of Theorem

3.6.5, and for m odd, L 1 and L 2 correspond to two of the

2(m+1)/2  examples.  We therefore have:

Corollary 3.6.7  The number bans m,1  of balanced, non-linear,

non-affine, non-degenerate, symmetric (m,1)-LUTs, i.e. the

number of (m,1)-LUTs satisfying C1, C2, C3 and C5, satisfies

bans m,1  ^ 2 (m+1)/2 -2  if m is odd.

We conclude by considering C4 in conjunction with C1 and C5.

Of the examples given in the proof of Theorem 3.6.5, the only

ones which are obviously uncorrelated are the two which do not

satisfy C2, i.e. L 1 and L 2 (in the above notation).  Therefore

there are no obvious candidates for (m,1)-LUTs which satisfy

all of C1-C5.  Indeed there may well not be any such

functions; this is a matter for future research.
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In any case, it should be clear from this discussion that the

conditions C1-C5, when taken together, are too restrictive.

While the need for conditions C1-C3 (or something like them)

is difficult to dispute, the strict versions of C4 and C5

require some relaxation.  Indeed it is not clear how useful

constraint C5 is for stream cipher applications.
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