
Dynamic Frameproof Codes

Maura Paterson

Technical Report

RHUL-MA-2005-12

13 December 2005

Royal Holloway
University of London

Department of Mathematics
Royal Holloway, University of London
Egham, Surrey TW20 0EX, England

http://www.rhul.ac.uk/mathematics/techreports

DYNAMIC FRAMEPROOF CODES

Maura Beth Paterson

Royal Holloway and Bedford New college,
University of London

Thesis submitted to

The University of London

for the degree of

Doctor of Philosophy

2005.

Abstract

There are many schemes in the literature for protecting digital data from

piracy by the use of digital fingerprinting, such as frameproof codes, which

prevent traitorous users from colluding to frame an innocent user, and traitor-

tracing schemes, which enable the identification of users involved in piracy.

The concept of traitor tracing has been applied to a digital broadcast setting

in the form of dynamic traitor-tracing schemes and sequential traitor-tracing

schemes, which could be used to combat piracy of pay-TV broadcasts, for

example. In this thesis we explore the possibility of extending the properties

of frameproof codes to this dynamic model.

We investigate the construction of l-sequential c-frameproof codes, which

prevent framing without requiring information obtained from a pirate broad-

cast. We show that they are closely related to the ordinary frameproof codes,

which enables us to construct examples of these schemes and to establish

bounds on the number of users they support.

We then define l-dynamic c-frameproof codes that can prevent framing more

efficiently than the sequential codes through the use of the pirate broadcast

information. We give constructions for schemes supporting an optimal number

of users in the cases where the number c of users colluding in piracy satisfies

c ≥ 2 or c = 1.

Finally we consider sliding-window l-dynamic frameproof codes that pro-

vide ongoing protection against framing by making use of the pirate broadcast.

We provide constructions of such schemes and establish bounds on the number

of users they support. In the case of a binary alphabet we use geometric struc-

tures to describe constructions, and provide new bounds. We then go on to

provide two families of constructions based on particular parameters, and we

show that some of these constructions are optimal for the given parameters.

2

Acknowledgements

I wish to thank to my supervisors Prof. Simon Blackburn and Prof. Peter

Wild for their many helpful suggestions, their patient reading of my work and

their generosity with their time.

Thanks to Alex, Amy, Chris, Geraint, Illana, James, Laurence, Livi, Paula,

Roger and Su-Jeong for all the super-happy-fun, and especially to Thomas for

his kindness and support, and his assistance with proofreading.

Thanks to Dad, Ailsa, and Fiona for their inspiration and encouragement,

and for proofreading a draft.

I am very grateful to the Commonwealth Scholarship Commission whose

financial assistance enabled me to undertake this research.

3

Contents

Abstract 2

Acknowledgements 3

Contents 4

1 Introduction 6

1.1 Digital Data Requires Piracy Protection 6

1.2 Outline of the Thesis . 7

2 Schemes for the Prevention of Piracy 11

2.1 Mechanisms for Discouraging Piracy 11

2.1.1 Digital Fingerprinting 12

2.1.2 Decoder Boxes for Encrypted Broadcasts 14

2.2 Traitor Tracing . 16

2.2.1 Traceability Codes . 17

2.3 Frameproof Codes . 21

3 Piracy Prevention in a Dynamic Setting 29

3.1 The Dynamic Model . 30

3.2 Sequential Traitor Tracing . 32

3.3 Dynamic Traitor Tracing . 35

4 Sequential Frameproof Codes 40

4.1 Definitions . 41

4.2 The Connection Between c-Frameproof

Codes and Sequential c-Frameproof Codes 43

4.3 l-Sequential (n − 1)-Frameproof Codes 48

4

5 Dynamic Frameproof Codes 53

5.1 Definitions . 53

5.2 Construction of l-Dynamic Frameproof

Codes . 56

6 Sliding-Window Dynamic Frameproof Codes 62

6.1 The Sliding-Window Model 63

6.2 The Binary Case . 71

6.2.1 Geometric Constructions 78

6.3 Geometric Constructions for Prime Power Values of q 91

7 Improved Constructions of Sliding-Window Dynamic Frame-

proof Codes 98

7.1 A Unifying Family of Constructions 98

7.2 A New Family of Constructions 99

7.3 The Case where a = 1 . 106

7.4 The Case where b = 0 . 108

7.5 Improved Constructions of Sliding-Window Dynamic Frame-

proof Codes . 108

7.5.1 Improved Constructions with b = 0 109

7.5.2 General b . 113

7.6 Asymptotic Results . 117

7.7 Future Possibilities . 117

7.8 Conclusion . 118

Bibliography 120

5

Chapter 1

Introduction

1.1 Digital Data Requires Piracy Protection

Over the past few decades there have been significant advances in the capacity

to store and transmit digital data, leading to a substantial increase in the

amount of material that is being provided in this form. Many types of data,

including movies, music, images and text are stored in a digital format and

are made available to consumers through media such as CDs, DVDs and the

internet. Such data are potentially worth a lot of money to their owners, with

an increasing number of consumers being willing to pay for access to data.

Storing data in a digital format has the advantage that the data can readily

be reproduced or transmitted without any degradation or loss of information.

However, the ease with which digital information can be copied makes it po-

tentially vulnerable to piracy, the production of illicit copies for which the

owner of the content has not been paid. Suppliers are interested in ways in

which they can protect their intellectual property from being stolen; there is

thus a desire for schemes that can discourage piracy of digital data.

6

1.2 Outline of the Thesis

In this section we give a synopsis of the thesis, describing the contents and

the main results of each chapter. We also discuss its aims and the motivation

behind the problems investigated.

Chapters 2 and 3 of this thesis contain a survey of certain aspects of the

theory of piracy prevention present in the literature. Two commonly dis-

cussed mechanisms for implementing piracy-prevention schemes, the use of

digital fingerprinting and the strategic distribution of keys in decoder boxes,

are described in Chapter 2. This is followed by an examination of two types

of codes designed for use with such systems: c-traceability codes, which allow

coalitions of up to c traitors involved in piracy to be traced and incriminated,

and c-frameproof codes, which prevent coalitions of at most c traitors from

falsely incriminating innocent users. We give precise definitions of these codes

as well as examples of how they are constructed, and we discuss known bounds

on the number of users they can support.

In Chapter 3 we introduce the dynamic setting in which information is

continually broadcast to its recipients; this setting models such real-world

scenarios as pay-TV broadcasting. We then describe sequential traitor-tracing

schemes and dynamic traitor-tracing schemes, which result from applying the

concepts of fingerprinting and traitor tracing in the dynamic setting. Again

we give examples of such schemes, and discuss bounds on the time taken to

implement them relative to the number of users that they support, and we

mention an observation of Fiat and Tassa [12] that leads to a limitation on

when such schemes can be applied.

The aim of this thesis is to examine the possibility of extending the prop-

erties of frameproof codes to the dynamic broadcast setting. Doing this would

7

afford a degree of piracy protection in cases when the full strength of a traitor-

tracing scheme is not required, or when there are insufficient resources for the

implementation of such a scheme. In Chapter 4 we consider the sequential

model, in which access to the pirate’s broadcast is not available. We propose

a definition of l-sequential c-frameproof codes, schemes that ensure that coali-

tions of up to c traitors cannot falsely incriminate an innocent user over any

l consecutive time segments. We make some observations on how to simplify

the construction of such schemes and we show that l-sequential c-frameproof

codes are closely related to the standard c-frameproof codes. These schemes

are influenced by several parameters, namely q, the number of different ways

in which a segment of the data can be marked, the number of users, denoted by

n, the number c of traitorous users, and l, the size of the windows of adjacent

time segments over which framing is to be prevented. We use the connection

between sequential frameproof codes and frameproof codes to establish bounds

on some of these parameters, and to describe constructions that are optimal

with respect to these bounds in the case where c = n− 1. We are particularly

interested in finding bounds for certain parameters such as l or n once the

values of the other parameters have been fixed. Since we wish our schemes

to be as efficient as possible in terms of implementation time and cost it is

natural to seek the maximum number of users that a scheme can support, or

the minimum time required for its implementation using a given quantity of

resources. The ultimate aim is to reconcile the upper and lower bounds for

these extremal quantities and to find ways to construct schemes meeting these

bounds, as such constructions would result in schemes of optimal efficiency.

In the case of c-sequential frameproof codes, however, we are constrained by

our incomplete knowledge of the equivalent bounds for c-frameproof codes.

8

In Chapter 5 we consider the situation when feedback from the pirate

broadcast is available. In this chapter we investigate schemes that require l

time segments in order to ensure no innocent user is framed, which we refer to

as l-dynamic frameproof codes. We prove a bound on the maximum number

of users supported by these schemes and provide a method of constructing

schemes that meet the bound. Dynamic frameproof codes differ from sequen-

tial frameproof codes in that they are applied once to prevent framing over a

particular choice of l consecutive time segments, whereas the sequential codes

are applied continuously and prevent framing over any l consecutive segments.

This difference between the sequential and dynamic frameproof codes leads

to the definition of the sliding-window model of framing prevention, discussed

at the start of Chapter 6. The rest of the chapter is devoted to making use

of the dynamic setting to construct sliding-window dynamic frameproof codes;

as the name suggests these schemes are applied in the dynamic setting with

access to information from the pirate broadcast, but have the same sliding-

window frameproof properties as sequential frameproof codes. The use of the

pirate broadcast information results in these schemes being more efficient than

the corresponding sequential schemes, protecting a given number of users over

much shorter windows. Examples of these schemes are given, and bounds on

some of their parameters are established, but a discrepancy remains between

the known upper and lower bounds. In an effort to reduce this gap we proceed

to concentrate on the case where q = 2. We give a sufficient condition for the

existence of sliding-window l-dynamic frameproof code and find that a bound

on the possible window-lengths arises from that condition. A construction of

a code meeting that bound is given.

We then turn our attention to the use of geometric concepts in constructing

9

new sliding-window dynamic frameproof codes. We reinterpret some of our

previous results in a geometric notation, and give a lower bound on the possible

window lengths of codes arising from geometric constructions that is very close

to the upper bounds resulting from previously-discussed constructions.

In attempting to generalise these geometric constructions to make use of

alphabets of size q > 2, however, we soon discover that the resulting construc-

tions are not optimal. In Chapter 7 we attempt to find both better construc-

tions for q > 2 and ways of comparing the different constructions we have

discussed previously. These goals are achieved by the construction of a new

family of codes that provides a common description for all the sliding-window

dynamic frameproof codes constructed so far, and which provides parameters

that can be selected in order to optimise the number of users supported by

the resulting code. We then go on to describe a new construction that yields

more-efficient schemes than the above family of constructions when the same

parameters are used. We show that this new construction protects a number

of users that is optimal for the given parameters. We then consider some

asymptotic bounds on the number of users protected when the alphabet size

becomes large. The thesis concludes with a discussion of future possibilities.

10

Chapter 2

Schemes for the Prevention of

Piracy

A great deal of valuable intellectual property, such as software, music and so

on, is stored in digital form. Digital data can easily be copied and transmitted,

and this facilitates the distribution of material by its owners. Unfortunately it

has the further implication that unscrupulous people can readily make illicit

copies of the data, something which the owners naturally wish to prevent.

Many different methods for discouraging such piracy have been proposed. In

this chapter we describe two of the most commonly discussed mechanisms

through which piracy prevention measures can be delivered. We then consider

two types of codes that can be applied in either setting, namely traceability

codes and frameproof codes, which each have slightly different piracy-deterring

properties. We give examples of how such codes are constructed and discuss

known bounds on their sizes, and we consider the piracy protection afforded

by these codes.

2.1 Mechanisms for Discouraging Piracy

The methods used to prevent piracy will naturally depend on the form in

which the protected data is stored and distributed. The first mechanism we

11

discuss is used in the case where the data is transmitted to the recipient in a

single instance. This could include CDs carrying software or music, or DVD

movies. The second setting we discuss involves decoder boxes, as used by pay-

TV stations to enable legitimate users to decrypt encrypted broadcasts. In

this case the goal is to deter those who have not paid to watch the broadcast

from constructing illicit “pirate” decoder boxes. Most of the piracy prevention

schemes discussed in the literature are designed to fit one of these two scenarios

(apart from the dynamic schemes, which we will discuss in the next chapter).

2.1.1 Digital Fingerprinting

When data is distributed on CDs or DVDs little action can be taken to stop

pirates from making illegal copies. If, however, the source of the illegal copies

can be detected then action can be taken against the pirates. This in itself

will act as a deterrent to pirates as it increases the risk of being caught, and

makes piracy less attractive as a result. The idea behind digital fingerprinting

is somehow to mark the data that is given to each user so that an illegally-

made copy will contain information about the user who made the copy, much

as ordinary fingerprints can be used to identify the person who left them.

The actual method for embedding marks in the data lies beyond the scope of

this thesis; some proposals are discussed in [17]. We require that the marks

satisfy two properties; the first, in the terminology of Fiat and Tassa [12], is

that of similarity , namely that the presence of the mark should not affect

the functioning of the data. For instance, if the data consists of a movie

then a person watching the movie should be unable to distinguish between

a marked and an unmarked version. The second property that we require,

termed robustness [12], is that it should be impossible for the pirate to alter or

12

remove a mark without causing noticeable damage to the actual data. There

is some debate, however, over whether it is possible to create marks of this

type. For the purposes of what follows we assume it can be done; this is known

as the watermarking assumption (see [17] for a discussion of issues associated

with watermarking).

If every user receives a copy of the data that has been uniquely marked

then any pirate copies can be traced back to the user responsible. It may be

infeasible to produce this many different variations of the data, however. One

solution is to split the data into a finite number of sections, each of which is

marked. If there are l different sections and you produce q differently-marked

variants of each section then that enables you to produce ql different versions

of the entire data set. We will think of the q different versions of a segment

as corresponding to the letters of an alphabet Q of size q; each version of the

data is then associated with a word of Ql. The set C ⊆ Ql of words used to

mark the data is then a length l, q-ary code.

If a pirate makes a copy of a single version of the data then it can be

traced to the user who owned that version. If a pirate has access to more than

one version, however, it can combine different sections from different versions

to try and escape being identified. Recall that we are assuming the pirate is

unable to remove or change any given mark, but there is nothing to stop it

replacing a section in one version with a section from another version.

Example 2.1 Suppose the data is marked using words of length 3 and an

alphabet Q = {0, 1, 2}. If a pirate possesses versions marked by the words

(0, 0, 1) and (1, 0, 2) then by combining the various sections it can produce

any of the words in the set {(0, 0, 1), (0, 0, 2), (1, 0, 1), (1, 0, 2)}. �

If a pirate has access to a particular set S of marking words then the set of

13

new words it can form in such a manner is referred to as the set of descendents

of S.

Definition 2.1. Suppose S ⊆ Ql. We define the set of descendents of S,

denoted desc(S), by

desc(S) = {x ∈ Ql|∀ i = 1, 2, . . . , l ∃y ∈ S with xi = yi}.

We wish to be able to deter piracy even when users collude by combining

their different versions in this manner. This can be achieved by allocating

marking words from a code C ⊆ Ql with particular properties. Two such

types of code are described later in this chapter.

2.1.2 Decoder Boxes for Encrypted Broadcasts

Pay-TV stations encrypt their broadcasts so that only paying users are able to

view their programs. This is frequently done by providing paying users with

decoder boxes that attach to their televisions and decrypt the data once it is

received. In what follows we assume that the encryption used is sufficiently

secure that pirates cannot break the cryptosystem unless they have access to

the decryption keys contained within the boxes. A pirate with access to a

decoder box could make a replica of the box, however, thus enabling someone

who is not a paying user to decrypt the programs. In order to prevent this

we wish to be able to trace any pirate decoder box back to the legitimate box

that was copied in its construction. One way of doing this is to place a unique

set of l keys k1, k2, . . . , kl in each box. If each key ki comes from a set of q

possible keys there are ql possible boxes. The program to be broadcast is then

split into l sections, b1 to bl, each of which is encrypted using a temporary

key s1, s2, . . . , sl. The temporary key s1 is then encrypted with each of the q

14

possible keys k1
1 to kq

1, the key s2 is encrypted with each of the q possibilities

for ki
2 and so on. The encryptions of all the si are placed together in an

enabling block, which is transmitted before the encrypted program is broadcast

(Fig. 2.1). When a paying user receives the broadcast they can then use their

enabling block encrypted movie

β1 β2 · · · βl

κ
1

1
κ

1

2
· · · κ

1

l

.

.

.

.

.

.

.

.

.

κ
q
1

κ
q
2

· · · κ
q

l

k
1

1

.

.

.

k
q
1

k
1

2

.

.

.

k
q
2

· · ·

· · ·

k
1

l

.

.

.

k
q

l

@
@R

@
@R

@
@R

s1 s2 · · · sl

temporary keys b1 b2 · · · bl

movie

s1 s2 sl

? ? ?

Figure 2.1: Encryption of a movie for broadcast on pay-TV

key ki for i = 1, 2, . . . , l to retrieve the keys si from the enabling block, which

allows them to decrypt the program (Fig. 2.2). The set of keys for each decoder

box can be thought of as a word of length l over an alphabet Q of size q. The

set of words C ⊆ Ql that are used in the boxes is thus a q-ary, length l code.

As we saw in the case of digital fingerprinting, if the pirate copies a single

box it is easy to see which user is responsible. If the pirate combines keys from

boxes whose keys correspond to words from a set S ⊆ Ql, however, then it is

capable of reproducing any box whose keys correspond to a word from the set

15

κ
1

1
κ

1

2
· · · κ

1

l

.

.

.

.

.

.

.

.

.

κ
q
1

κ
q
2

· · · κ
q

l

'

&

$

%
k1 k2 · · · kl

s1 s2 · · · sl

?

?

enabling block

decoder box

temporary keys

Figure 2.2: Retrieving temporary keys from the enabling block

desc(S) ⊆ Ql. In the following section we describe codes that can be applied

in this situation, as well as in a fingerprinting context, in an attempt to limit

the pirate’s ability to evade detection by combining keys in this manner.

2.2 Traitor Tracing

Ideally, when a pirate decoder box or a pirated CD or DVD is discovered,

we would like to be able to identify at least one of the users, referred to as

traitors, who have contributed to its manufacture. This concept is known

as traitor tracing and was first introduced by Chor, Fiat and Naor in [9].

There are many different definitions of traitor tracing in the literature, and an

abundance of schemes have been proposed ([9, 10, 12, 7, 15, 2, 18, 3, 19, 8, 14]),

16

which have widely varying properties. For example some support black-box

traitor tracing, in which the tracing process uses the pirate decoder box as a

“black box” without requiring a knowledge of the details of its construction

(see [9, 10]). Some schemes use public key encryption ([7]), others, known

as threshold schemes have a certain probability of failure ([9, 10, 2]). Chor,

Fiat, Naor and Pinkas [10], working in the decoder-box setting, define a traitor-

tracing scheme to consist of a user initialisation scheme, an encryption scheme

and a traitor-tracing algorithm. The user intialisation scheme determines how

the keys are distributed to the users. The encryption scheme controls how

the data is encrypted, and the traitor-tracing algorithm takes the keys from a

pirate decoder box as input, and outputs at least one of the users responsible

for the piracy. They define a fully c-resilient tracing scheme to be one in which

a pirate box made by c or fewer traitors can be used as a black box to trace at

least one of the traitors, provided that the encryption scheme is not broken.

In this section we will assume that the encryption is secure, and focus on the

code used to distribute the keys, and on corresponding algorithms that will

trace a traitor given the codeword from the pirate decoder. We note that these

codes and tracing algorithms can also be applied in the digital fingerprinting

setting.

2.2.1 Traceability Codes

If a pirate possesses a set S of codewords then it can produce any of the words

in the set desc(S). In order to limit the pirate’s ability to evade detection, it

is natural to use codes where there is some sort of limitation on the potential

descendants of sets of codewords. An example of such a code is a c-traceability

code.

17

Definition 2.2. A set C ⊆ Ql is a c-traceability code (c-TA code) if given

any subset S ⊂ C with |S| ≤ c and any x ∈ desc(S) it follows that when a

codeword y ∈ C satisfies d(x, y) ≤ d(x, z) for all z ∈ C then y lies in S. (Here

d(x, y) = |{i ∈ 1, 2, . . . , l|xi 6= yi}| is the Hamming distance.)

This means that if a word x ∈ Ql is a descendent of a particular set of

size at most c then the codewords nearest to x (with respect to the Hamming

metric) are members of that set. Therefore if we use a c-traceability code

(either to fingerprint data or to distribute keys in decoder boxes) then when

a pirate CD or decoder box is found we can examine the corresponding word

and we know that the nearest codewords correspond to some of the users

responsible for the piracy.

Example 2.2 The length 3 code C over the alphabet Q = {0, 1, 2} whose

words are (0, 0, 0), (1, 1, 1), and (2, 2, 2) is a 2-TA code. This is trivially true

since any descendent of two codewords must contain two letters from one of

those words. This descendent will have a distance of at most 1 from this

parent, a distance of at least 2 from the other parent, and a distance of 3 from

any other codeword. Hence the closest codeword is necessarily a member of

the original parent set. �

The concept of a traceability code first appeared in Chor et al. [9, 10]

under the name of an open one-level k-resilient traceability scheme, although

an explicit construction was not given. Stinson and Wei [15] studied slightly

more general structures, which they refer to as traceability schemes; here we

restrict our attention to traceability codes as they relate more closely to the

schemes we will discuss later.

Staddon et al. [14] compare TA codes with frameproof codes and other

related structures, and provide constructions as well as bounds on the sizes of

18

such codes. In particular they give the following bound.

Theorem 2.3. [14] Let C be a q-ary, length l, c-TA code. Then

|C| ≤ q⌈ l
c⌉ + 2c − 2.

Proof. Suppose C is a q-ary, length l, c-TA code with |C| > q⌈ l
c⌉+2c−2. Let

A = (aij) be the |C|×l matrix whose rows are the codewords of C and divide A

into c submatrices by letting A1 be the |C| ×
⌈

l
c

⌉

matrix consisting of the first
⌈

l
c

⌉

columns of A, letting A2 consist of the next
⌈

l
c

⌉

columns and so on, with

A1, . . . , At having size |C| ×
⌈

l
c

⌉

and At+1, . . . , Ac having size |C| ×
⌊

l
c

⌋

where

t ∈ {1, 2, . . . , c} satisfies t ≡ l (mod c). Now A1 has more than q⌈ l
c⌉ + 2c − 2

rows, hence there exist two rows of A, say i1 and j1, with the corresponding

rows of A1 being identical. Let A′
2 be the matrix obtained from A2 by removing

rows i1 and j1. Then A′
2 has more than q⌈ l

c⌉+2c−4 rows, hence there exist two

rows i2 and j2 identical in A′
2, and these are distinct from i1 and j1. Continue

this procedure, at each step finding identical rows iα and jα in the matrix A′
α,

the matrix obtained by deleting rows i1, i2, . . . , ıα−1 and j1, j2, . . . , α−1 from

matrix Aα. Once this has been performed for matrices A1, . . . , Ac the result is

two disjoint sets of rows (corresponding to codewords) I = {i1, i2, . . . , ic} and

J = {j1, j2, . . . , jc} with i1 and j1 agreeing in the first
⌈

l
c

⌉

positions, i2 and j2

agreeing in the next
⌈

l
c

⌉

positions, and so on. Let x ∈ Ql be the word whose

first
⌈

l
c

⌉

coordinates match those of i1 and j1, and whose next
⌈

l
c

⌉

coordinates

match those of i2 and j2 and so on. Then x is a descendent of both I and

J . By the c-TA property if y is the closest codeword to x then y lies in each

parent set of size at most c, hence y ∈ I and y ∈ J . But I and J are disjoint

by construction, which leads to a contradiction. �

One way to construct c-TA codes is by using error-correcting codes. This

19

is made possible by the following observation of Chor et al.

Theorem 2.4. [9][10] Let C be a q-ary, length l code containing n codewords

whose minimum (Hamming) distance d satisfies d > l − l
c2

for some positive

integer c. Then C is a c-TA code.

Proof. Suppose C is such a code. The distance between any two codewords

being greater than l− l
c2

it follows that any two codewords agree in fewer than

l
c2

coordinates. Let x ∈ Ql, and suppose x ∈ desc(S) for some S ⊂ C with

|S| ≤ c. Let z ∈ C be a closest codeword to x, so that d(x, z) ≤ d(x, w) for all

w ∈ C. Then x and z have at least l
c

coordinates in common; denote the set

of coordinates in which they agree by I. As S is a parent set of x containing

c codewords there exists some codeword y ∈ S agreeing with x in at least

|I|
c

> l
c2

of the coordinates in I. But y also agrees with z in these coordinates;

because of the minimum distance this implies that y = z, so z ∈ S. Hence C

satisfies the c-TA condition. �

Blackburn [5] observes that this result is still true in the case where the

minimum distance satisfies d > l−
⌈

l
c2

⌉

. Examples of codes with an appropriate

minimum distance are provided by Reed-Solomon codes (see [5]), as in the

following construction.

Construction 2.5. Let q be a prime power, and l be a positive integer with

l ≤ q. Let α1, α2, . . . , αl be distinct elements of the field F = GF (q). We

define a code C by setting

C =

{

(

f(α1), f(α2), . . . , f(αl)
)

∣

∣

∣

∣

f ∈ F [x], deg f <

⌈

l

c2

⌉}

.

(This is a specific example of the Reed-Solomon construction.)

The number of distinct polynomials over f with degree less than
⌈

l
c2

⌉

is

20

q⌈ l

c2
⌉; as l ≥

⌈

l
c2

⌉

each choice of polynomial will give rise to a distinct code-

word, hence |C| = q⌈ l

c2
⌉. We observe that no two distinct codewords agree

in
⌈

l
c2

⌉

or more positions, for by interpolation the corresponding polynomials

would then be equal. Thus the minimum distance of C is at least l −
⌈

l
c2

⌉

. By

Theorem 2.4 we have that C is a c-traceability code.

Note that as for Construction 2 of [6] the condition that l ≤ q can be

weakened to l ≤ q+1 by allowing the αi to be distinct elements of GF (q)∪{∞},

where f(∞) is defined to be the coefficient of x⌈ l

c2
⌉−1 in f .

The code described in Example 2.2 is in fact a Reed-Solomon code. Here

we give a less-trivial example of this construction.

Example 2.3 Let l = 5, c = 2 and q = 5; then
⌈

l
c2

⌉

= 2. Let α1 = 0, α2 = 1,

α3 = 2, α4 = 3 and α5 = 4. There are 25 polynomials over GF (5) of degree

less than two, so the code resulting from Construction 2.5 contains 25 words.

For instance, the polynomials 3, x, x + 1 and 2x + 3 give rise to the words

(3, 3, 3, 3, 3), (0, 1, 2, 3, 4), (1, 2, 3, 4, 0) and (3, 0, 2, 4, 1) respectively. This code

has minimum distance 5 − 2 = 3, and is a 2-TA code. �

Blackburn [5] poses the open problem of whether this Reed-Solomon con-

struction provides optimal c-TA codes for large alphabet sizes.

2.3 Frameproof Codes

It may be the case that two or more users involved in piracy attempt to avoid

detection by combining their codewords to produce a word corresponding to

another user, in the hope that the innocent user will be blamed for the piracy.

Frameproof codes were designed to prevent framing of this nature; they were

first proposed by Boneh and Shaw [8]. We use the following definition of a

21

frameproof code, which appears in [12]. Note that this is slightly different from

the original Boneh and Shaw definition, as that definition allows pirates with

the ability to completely efface marks, which are prohibited by our robustness

requirement.

Definition 2.6. A code C ⊆ Ql is a c-frameproof code if every set S ⊂ C

with |S| ≤ c satisfies desc(S) ∩ C = S.

Thus when a frameproof code is used to fingerprint data (or to assign keys

to decoder boxes) no set of c or fewer traitors can collude to frame a user

outside of that set.

Example 2.4 The binary length 3 code C whose words are listed below has

the property that any two distinct words agree in at most one position.

(0, 0, 0)
(1, 1, 0)
(0, 1, 1)
(1, 0, 1)

This implies that it is a 2-frameproof code. For, if x ∈ C is framed by

S = {y1, y2} ⊂ C then x 6= y1 means x and y1 agree in at most one coordi-

nate. This implies that x and y2 must agree in the remaining two coordinates,

which in turn implies that x = y2, so x is framed by S if and only if x ∈ S. �

In fact we have already seen several examples of c-frameproof codes, as

shown by the following theorem.

Theorem 2.7. [14] If C ⊂ Ql is a c-TA code, then it is also a c-frameproof

code.

Proof. Let C ⊂ Ql be a c-TA code, but suppose that it is not c-frameproof.

Then there exists some set S ⊂ C with |S| ≤ c and some x ∈ C \ S with

x ∈ desc(S). But x ∈ C and d(x, x) = 0 so d(x, x) ≤ d(x, z) for all z ∈ C, yet

22

x /∈ S thus the c-TA property is contradicted. Hence we conclude that every

c-TA code must be c-frameproof. �

Therefore we see that the c-TA property is a stronger condition than the

c-frameproof property, and all the c-TA codes described in the previous section

are also c-frameproof codes.

Given values of q, l and c we would like to know the largest possible size

of a q-ary, length l, c-frameproof code. The literature contains many bounds

on this quantity, some of which we state below.

Theorem 2.8. Let l ≥ 2 and c ≥ 2 be integers, and let t ∈ {1, 2, . . . , c}

satisfy t ≡ l (mod c), so that l = t
⌈

l
c

⌉

+ (c − t)
⌊

l
c

⌋

. If C is a q-ary, length l,

c-frameproof code then

1. [6] |C| ≤ max
{

q⌈ l
c⌉, t

(

q⌈ l
c⌉ − 1

)

+ (c − t)
(

q⌊ l
c⌋ − 1

)}

;

2. [16, 6] |C| ≤
(

l

l−(t−1)⌈ l
c⌉

)

q⌈ l
c⌉ +

(

l
⌈

l
c

⌉

− 1

)

q⌈ l
c⌉−1.

Proof. (1) Let C be a q-ary, length l, c-frameproof code. With each subset

S ⊆ {1, 2, . . . , l} we associate a subset US ⊆ C by setting

US = {x ∈ C|∄y ∈ C with xi = yi for all i ∈ S}.

Thus every word x in US is determined uniquely by its components xi with

i ∈ S, so |US| ≤ q|S| as there are at most q|S| possible choices for these xi. If

the set C \US is non-empty then at least one of these choices belongs to words

in C \ US and hence does not correspond to a word of US. Thus if |C| > q|S|

then |US| is at most q|S| − 1.

Partition the set {1, 2, . . . , l} into c disjoint subsets S1, S2, . . . , Sc where

|Sj| =
⌈

l
c

⌉

when j ≤ t and |Si| =
⌊

l
c

⌋

when j > t. Then
∣

∣

∣

∣

c
⋃

j=1

USj

∣

∣

∣

∣

≤ t
(

q⌈ l
c⌉ − 1

)

+ (c − t)
(

q⌊ l
c⌋ − 1

)

.

23

The proof of the theorem results from the fact that C =
⋃c

i=1 USi
. Suppose

that there exists a word x ∈ C \ ⋃c

i=1 USi
. Then for each j = 1, 2, . . . , c there

exists another word yj 6= x in C that agrees with x in all the positions i ∈ Sj,

as x /∈ USj
. From this it follows that x ∈ desc({y1, y2, . . . yc}), in contradiction

of the c-frameproof property of C. Hence we conclude that C =
⋃c

i=1 USi
, so

|C| ≤ t
(

q⌈ l
c⌉ − 1

)

+ (c − t)
(

q⌊ l
c⌋ − 1

)

.

(2) From the proof of (1) we know that if S1, S2, . . . Sc are non-empty sets

partitioning {1, 2, . . . , l} then C =
⋃c

j=1 USj
. Let k =

⌈

l
c

⌉

and let D ⊆ C be

the set of codewords that are not defined uniquely by any choice of k − 1 of

their coordinates, so if S = {S ⊆ {1, 2, . . . , l}||S| = k − 1} then

D = {x ∈ C|∀S ∈ S ∃y ∈ C \ {x} with xi = yi for all i ∈ S}.

From the definition we see that D = C \⋃

S∈S US; together with the fact that

|S| =
(

l

k−1

)

this gives us |D| ≥ |C|−
(

l

k−1

)

qk−1. Thus any bound on the size of

D translates into a bound on the size of C; we now proceed to establish such

a bound.

For any set S ⊆ {1, 2, . . . , l} we define VS = US ∩D, and we define the set

V by V = {VS|S ⊆ {1, 2, . . . , l}, |S| = k}. A bound on the size of D can be

derived by counting in two ways the number of pairs (x, S) for which VS ∈ V

and x ∈ VS. Since |S| = k we have |VS| ≤ |US| ≤ qk, so for a given S there

are at most qk possible x ∈ VS, and there are
(

l

k

)

possible choices of S with

|S| = k. Hence the number of such pairs is at most
(

l

k

)

qk.

There are |D| possible choices for x; let χ be the maximum possible size

of a family F of sets VS ∈ V not containing x. It follows that the number of

sets Vs ∈ V with x ∈ VS is at least |V| − χ =
(

l

k

)

− χ, hence the number of

possible pairs (s, VS) with x ∈ Vs is at least |D|
((

l

k

)

− χ
)

.

24

Combining these two bounds implies that

(

l

k

)

qk ≥ |D|
((

l

k

)

− χ

)

,

therefore

|D| ≤ qk

(

1

1 − χ/
(

l

k

)

)

.

We observe that if S1, S2, . . . , St are pairwise disjoint k-subsets of {1, 2, . . . , l}

then D =
⋃t

j=1 VSj
. For, as the Sj are pairwise disjoint we have

|{1, 2, . . . , l} \
t

⋃

j=1

Sj| = l − tk = (c − t)(k − 1).

Thus it is possible to construct (c− t) disjoint (k−1)-subsets St+1, St+2, . . . Sc

partitioning {1, 2, . . . , l}\⋃t

j=1 Sj , so C =
⋃c

j=1 USj
. However for t+1 ≤ j ≤ c

we have VSj
= D ∩ USj

= ∅ by definition of D as |Sj| = k − 1. Hence

t
⋃

j=1

VSj
=

c
⋃

j=1

VSj

= D ∩
c

⋃

j=1

USj

= D ∩ C

= D.

This implies that there do not exist t pairwise-disjoint subsets in F , for the

union of any t disjoint sets in V is D, which implies that x is contained in

at least one of them. A family of subsets of a set is said to be t-colliding

if there do not exist t pairwise-disjoint subsets in the family; F is therefore

t-colliding. The following lemma, due to Blackburn [6] gives a bound on the

size of t-colliding families.

Lemma 2.9. [6] Let l,t and k be positive integers with tk ≤ l. A t-colliding

family of of k-subsets of {1, 2, . . . , l} contains at most
(

l

k

) (t−1)k
l

elements.

25

Thus χ ≤
(

l

k

) (t−1)k
l

and |D| ≤ qk
(

1

1− (t−1)k
l

)

= qk
(

l
l−(t−1)k

)

. From this we

deduce |C| ≤ qk
(

l
l−(t−1)k

)

+
(

l

k−1

)

qk−1 hence proving the result. �

A lower bound on the maximum size of a frameproof code is provided, in

the case where q is a prime power, by a result due to Cohen and Encheva [11].

Theorem 2.10. [11] Let Q = GF (q). A length l linear code C (i.e. a code

whose codewords form a vector space over Q) of dimension
⌈

l
c

⌉

and minimum

distance l −
⌈

l
c

⌉

+ 1 is a c-frameproof code.

Proof. Let C be such a code. As C has minimum distance l−
⌈

l
c

⌉

+1 it follows

that any two codewords agree in at most
⌈

l
c

⌉

− 1 positions. This implies that

no c codewords can frame any other, since c codewords could contribute to at

most c
(⌈

l
c

⌉

− 1
)

≤ l − 1 positions of a further codeword, thus at least c + 1

codewords would be required for framing. �

Linear codes with minimum distance d, dimension k and length l that sat-

isfy d = l − k + 1 are known as MDS codes; Reed-Solomon codes provide

an example of codes known to meet this bound. Therefore, as in the case of

c-TA codes, it is possible to construct c-frameproof codes from Reed-Solomon

codes of suitable parameters. Taking Construction 2.5 but requiring that the

polynomials have degree less than
⌈

l
c

⌉

instead of
⌈

l
c2

⌉

will give codes of the

required parameters; this technique appears as Construction 2 of [6]. These

codes contain q⌈ l
c⌉ codewords instead of the the q

⌈

l

c2

⌉

codewords of the cor-

responding c-TA code, demonstrating that the weaker c-frameproof condition

enables the construction of much larger codes than are possible with the c-TA

condition.

We therefore have the following lower bound on the size of c-frameproof

codes.

26

Corollary 2.11. Let q be a prime power, and let l ≤ q + 1. Then there exists

a q-ary, length l, c-frameproof code of size q⌈ l
c⌉.

The following example is the c-frameproof parallel of Example 2.3.

Example 2.5 Let l = 5, c = 2 and q = 5; then
⌈

l
c

⌉

= 3. There are 125

polynomials over GF (5) of degree less than three, so the 2-frameproof code

resulting from the modified Construction 2.5 contains 125 words. This is five

times as many words as in the 5-ary, length 5, 2-TA code in Example 2.3. �

There are other constructions in the literature that yield larger codes in

certain cases [6, 16], but most of these are concerned with achieving good

asymptotic results as q goes to infinity, and there are still discrepancies between

the absolute upper and lower bounds for most choices of parameter. In the

case where l ≤ c, however, precise results are known.

Theorem 2.12. [6] There exist q-ary, length l, c-frameproof codes of size

l(q − 1) when q ≥ 2 and 2 ≤ l ≤ c, but no larger code with these parameters is

possible.

An upper bound on the size of such codes is provided by Theorem 2.8.

The lower bound required to prove this theorem comes from the following

construction, which yields codes that are c-frameproof for any c ≥ 2, regardless

of their length.

Construction 2.13. Let Q = {0, 1, . . . , q − 1}. For i = 1, 2, . . . , l define the

set Ci by Ci = {x ∈ Ql|xi 6= 0 and xj = 0 for j 6= i}. Let C =
⋃l

i=1 Ci. The

sets Ci are disjoint and have size (q − 1), therefore the size of C is l(q − 1).

We claim that C is a c-frameproof code for any c with 2 ≤ c ≤ l(q − 1) − 1.

Proof. This construction appears as Construction 1 in Blackburn [6]. A word

27

x ∈ Ci has a symbol in position i that is shared by no other word in C.

Therefore no combination of other words can frame x, since no descendent

of any set of other words matches x in position i. As each word lies in Ci

for some i it follows that no word can be framed by a set of other words, no

matter what the size. Hence C is indeed c-frameproof for any c ≥ 2. �

Example 2.6 Let Q = {0, 1, 2, 3}. Construction 2.13 can be used to obtain

the following length 4 code of size 4(4 − 1) = 12.

(1, 0, 0, 0)
(2, 0, 0, 0)
(3, 0, 0, 0)
(0, 1, 0, 0)
(0, 2, 0, 0)
(0, 3, 0, 0)
(0, 0, 1, 0)
(0, 0, 2, 0)
(0, 0, 3, 0)
(0, 0, 0, 1)
(0, 0, 0, 2)
(0, 0, 0, 3)

�

We have now seen how traceability codes and frameproof codes can be

applied in an effort to thwart piracy. In the following chapters we will see sit-

uations in which these schemes cannot be applied successfully; new approaches

will have to be adopted as a result. Nevertheless we will see that some of the

new schemes relate in substantial ways to those we have seen in this chapter.

28

Chapter 3

Piracy Prevention in a Dynamic

Setting

In the previous chapter we discussed schemes for preventing piracy of pay-

TV broadcasts. By controlling how decryption keys are allocated to users we

are able to trace pirate decoder boxes back to the users responsible, thereby

discouraging traitors from giving away copies of their keys. A traitorous user

may decide, however, to use his or her keys to decrypt the program and then

rebroadcast it in the clear instead, essentially acting as a pirate TV station.

If this occurs then we can no longer use the key distribution as a means of

tracing the culprits. Ideally we would like to be able to gain information

about the traitors from the pirate broadcast: this suggests that it might be

useful to adapt the fingerprinting techniques discussed previously for use in a

broadcast situation. This idea was first proposed by Fiat and Tassa in [12].

In the following sections we describe this dynamic model and discuss schemes

for tracing traitors within this model. We will refer to previously-discussed

scheme as static schemes to distinguish them from the dynamic ones.

29

3.1 The Dynamic Model

The basic scenario in which we are interested involves valuable digital data,

such as the output of a pay-TV station, being broadcast continuously to a

set of users U = {u1, u2, . . . , un} who pay to receive it. A pirate is a set

T = {t1, t2, . . . , tc} ⊂ U of users, known as traitors, that illegally rebroadcasts

the data. Fiat and Tassa, in their paper on dynamic traitor tracing [12],

were the first to apply fingerprinting techniques similar to those discussed in

Section 2.1.1 in such a setting. As in the static case the content, such as a movie

or TV program, can be split into sections each of which might correspond to

a few minutes of the program. We assume that it is possible to mark each

segment in a robust way, with the presence of the marks being undetectable

by the viewer. If q differently-marked variants of each segment are produced

we can think of them as corresponding to letters of an alphabet of size q. We

then wish to distribute differently-marked variants to different users; in the

following sections we discuss schemes for determining how to distribute the

marks. As for the distribution itself, Fiat and Tassa suggest a couple of ways

in which this might be carried out. Their first suggestion requires that each

user share a unique symmetric key with the broadcaster. For segment t of the

program, version i of that segment is encrypted with a randomly-chosen key

ki
t, for each i = 1, 2, . . . , q. The key ki

t is then individually encrypted and sent

to each user who is to receive version i of this segment, then at the appropriate

time all q differently-encrypted versions of the segment are broadcast. This

ensures that each user can only decrypt the marked version that is intended

for them. Fiat and Tassa mention that broadcast encryption could be used to

send the appropriate keys to the users, thereby eliminating the need to send

individual messages to each user; see [12] for other suggestions in making this

30

distribution process more efficient.

We have a set U = {u1, u2, . . . , un} of n users, and a marking alphabet Q

of size q. During time segment j user ui is allocated a segment with the mark

mij ∈ Q. At this time the pirate can only broadcast a version of segment j

marked with mtjj for some tj ∈ T .

Definition 3.1. A pirate broadcast sequence corresponding to a pirate T is a

sequence {ξj}i
j=1 where for each j ∈ {1, 2, . . . , i} we have ξj = mtjj for some

tj ∈ T .

Such a sequence represents a possible output by the pirate between times

1 and i.

Example 3.1 Suppose we have four users {u1, u2, u3, u4} and an alphabet

Q = {a, b, c}, and that users u3 and u4 decide to collude in piracy. If the

marks on the first three segments are distributed as in the following table:

1 2 3
u1 a b c
u2 a c a
u3 a b b
u4 b a b

then the possible pirate broadcast sequences corresponding to T = {u3, u4}

are:
a, b, b
a, a, b
b, b, b
b, a, b.

�

A mark that is received by precisely one user at some time is referred to as

a unique mark. If the symbol broadcast by the pirate at any time is a unique

mark then we can deduce the identity of one of the traitors, as only one user

is capable of contributing that mark to the pirate broadcast.

31

Producing and then broadcasting a large number of different variants is

very expensive, so ideally q is kept as small as possible. The number of seg-

ments required to implement a particular scheme relates directly to the time

that it takes to run, so schemes which require fewer segments are more ef-

ficient. In the following sections we consider specific traitor-tracing schemes

that work in this dynamic setting, and we discuss their efficiency based on

these considerations.

3.2 Sequential Traitor Tracing

In a static traitor-tracing scheme marks are distributed to the users, then

the marks from pirate copies are used to trace the traitors. In the dynamic

model there is the potential for feedback from the pirate broadcast to be used

in determining the mark distribution, as well as in the tracing. The pirate

could attempt to thwart this, however, by delaying the start of the pirate

broadcast until the legitimate broadcast containing the mark distribution was

completed. This is referred to as the delayed rebroadcast attack, and sequential

traitor-tracing schemes were proposed by Safavi-Naini and Wang to counter-

act it [13]. In their conception of sequential traitor-tracing schemes the marks

are distributed according to a predetermined mark allocation table, and trac-

ing commences as soon as information from the pirate broadcast is received;

here we restrict our attention to the case in which this occurs after the mark

distribution is complete. In constructing sequential traitor-tracing schemes we

assume that the pirate coalition has size at most c for some known integer c.

The mark allocation table is an n×l array M =
(

mij

)

with entries from the

mark alphabet Q, where n is the number of users, and l is the number of time

segments needed to implement the scheme. The marks are then distributed

32

to the users according to this table, with user i receiving the symbol mij at

time j. The rows of the matrix M can be thought of as the words of a q-ary,

length l code C and the corresponding pirate broadcast will be a word in Ql

that is a descendent of the set of at most c words belonging to the traitors.

In order for a matrix to be the mark allocation table of a sequential traitor-

tracing scheme we require that there exists a deterministic algorithm taking

as input a pirate broadcast sequence coming from a set of c or fewer traitors

and outputting the identity of at least one of those traitors. (Note that in

general it is only possible to guarantee the identification of one of the traitors,

since the pirate set can always elect to broadcast the versions corresponding

to a single traitorous user.) This requirement places a condition on the code

C that is equivalent to C being a c-IPP code.

Definition 3.2. Let C ⊂ Ql be a code. A set S ∈ C is a parent set of a word

x ∈ Ql if x ∈ desc(S). Denote the set of all parent sets of x of size less than

or equal to c by Hc(x); thus Hc(x) = {S ⊆ C||S| ≤ c, x ∈ desc(S)}. We say

that the code C is a c-IPP code if for all words x ∈ Ql either Hc(x) = ∅, or

⋂

S∈Hc(x)

S 6= ∅.

If a mark allocation table is a c-IPP code then given any pirate broadcast

Ξ there exists at least one user u who is a member of every set of c or fewer

users capable of producing Ξ, which implies that u is necessarily a traitor.

If, however, the code does not have the c-IPP property then there exists a

potential pirate broadcast x ∈ Ql that will not allow us to trace any traitor,

since for each user u capable of having contributed to x there exists a pirate

set T ⊂ U \ {u} of size at most c that could also have produced x.

We have already seen examples of c-IPP codes:

33

Theorem 3.3. [14] Every c-TA code is a c-IPP code.

Proof. Let C ⊂ Ql be a c-TA code. If x ∈ desc(S) for some S ⊂ C containing

at most c words (i.e. if Hc(x) 6= ∅) then the (nonempty) set Y of codewords

closest to x is contained in S. As this is true for any parent S of x, so Y

is contained in the intersection of all parent sets S with |S| ≤ c, hence this

intersection is nonempty. Therefore C satisfies the c-IPP property. �

There exist c-IPP codes that are not c-TA codes (see, for example, [14]).

What the c-TA property provides, however, is a natural algorithm for finding

a parent: simply take the closest codeword(s). Using a c-TA code as a mark

allocation table thus yields a scheme capable of tracing at least one traitor.

Once one traitor has been traced and disconnected, a similar scheme as-

suming the existence of at most c − 1 traitors can be run in order to catch

another traitor and so on in sequence, hence the name sequential.

As the mark allocation table of a sequential traitor-tracing scheme corre-

sponds to a c-IPP code any bounds on the number of words in such a code will

serve to bound the number of users that can be accommodated by a sequential

traitor-tracing scheme. The following bound is due to Alon and Stav [1].

Theorem 3.4. [1] Define

s(c) =

{

c2

4
+ c when c is even,

c2

4
+ c − 1

4
when c is odd.

A q-ary, length l, c-IPP code has at most s(c)q⌈
l

s(c)⌉ codewords.

This allows us to bound the minimum l for which there exists a sequential

traitor-tracing scheme that supports n users and uses l segments.

Corollary 3.5. A sequential traitor-tracing scheme that supports n users

and assumes the existence of at most c traitors requires the use of at least

34

s(c) logq
n

s(c)
− s(c) + 1 segments for its implementation.

Proof. We know that the words of the mark allocation table form a c-IPP

code, and therefore by Theorem 3.4 we have n ≤ s(c)q⌈
l

s(c)⌉. From this we

deduce that

logq

n

s(c)
≤

⌈

l

s(c)

⌉

.

Therefore

s(c) logq

n

s(c)
≤ s(c)

⌈

l

s(c)

⌉

≤ l + s(c) − 1.

The result follows directly. �

We see therefore that to implement a sequential traitor-tracing scheme

requires around c2

4
logq

4n
c2

or more segments to catch one traitor; when c = 2,

for instance, this is approximately logq n.

3.3 Dynamic Traitor Tracing

It is through schemes such as dynamic traitor-tracing schemes that the dy-

namic model really comes into its own. In these schemes the feedback from

the pirate broadcast sequence is used not only for traitor tracing but also for

determining the mark allocation, which is altered on the fly in response to

the pirate’s broadcast. This extra information means that dynamic traitor

tracing can be carried out in a much shorter time than sequential tracing.

Furthermore, unlike the sequential schemes these schemes do not require prior

knowledge of the number of traitors. It is with such schemes in mind that the

dynamic model was first proposed by Fiat and Tassa [12]. They define a wa-

termarking scheme to be deterministic if it traces all traitors without falsely

35

incriminating any innocent users; the following example of such a scheme

comes from their paper [12].

Construction 3.6. [12] This algorithm requires the use of c + 1 different

variants and runs in time at most
(

n

c

)

+2
∑c−1

t=0

(

n

t

)

. Note that prior knowledge

of the value of c is not assumed.

Suppose there exists a set U of n users and a mark alphabet Q ⊆ {1, 2, . . . , n}.

Proceed as follows.

1. Set t = 1.

2. (a) Choose a set W = {w1, w2, . . . , wt} ⊂ U of t users, give user wi

the mark i, and all users in U \ W the mark 0. Unless situation

2b occurs, choose another set of t users and distribute the marks

similarly. Repeat until each t-subset of users has been chosen once,

then increase t by one and proceed as before.

(b) If the pirate broadcasts a unique mark then the corresponding user

is guilty. Disconnect that user, subtract one from the value of t and

continue from step 2a.

3. When the final traitor is eliminated the value of t becomes 0 and piracy

ceases. The algorithm terminates at this point.

The goal of this algorithm is to assign unique marks to all the traitors,

thus forcing one of them to incriminate his or herself. The parameter t acts

as a lower bound on the number of traitors: initially set to 1 it is gradually

increased until a traitor is caught, at which point it decreases by 1. We note

that the value of t never exceeds c, for if t = c one of the c-subsets of U is the

pirate, T . When this subset is chosen, each traitor receives a unique mark,

36

hence the pirate broadcast is necessarily a unique mark that incriminates one

of the traitors, and t decreases to c − 1. As only c − 1 traitors remain so one

of the choices of (c − 1)-subset will result in all remaining traitors receiving

unique marks, and so on. Thus this algorithm traces all traitors yet never

requires more than c + 1 differently-marked variants.

Example 3.2 The following table demonstrates a possible run of this algo-

rithm for four users u1, u2, . . . , u4, where users u1 and u3 are pirates.

1 2 3 4 5 6 7 8 9
u1 1 0 0 0 1 1

u2 0 1 0 0 2 0 1 0
u3 0 0 1 0 0 2 0 1

u4 0 0 0 1 0 0 0 0
T 0 0 0 0 0 1 0 1

t 1 1 1 1 2 2 1 1 0

During the first four time segments the value of t is one; as no traitor is

uncovered in that time t is increased to two, and sets of two users are given

unique marks at each time. At time 6 user u1 is incriminated and subsequently

disconnected; the value of t is decreased to one. The remaining traitor u3 is

incriminated at time 8. �

In devising dynamic traitor-tracing schemes we wish to minimise both the

number of marks needed and the implementation time. The above scheme

catches c traitors with the aid of c+1 marks; in fact it is impossible to reduce

this figure any further.

Theorem 3.7. [12] A deterministic watermarking scheme that can trace a set

of c colluding traitors requires the use of a marking alphabet of size at least

c + 1.

Proof. If every member of a pirate coalition is assigned a unique mark at some

time then the pirate has no choice but to broadcast one of those marks and the

37

corresponding traitor is thus incriminated. If, however, some traitor receives

a mark that is shared with another user then by broadcasting this mark the

pirate can avoid incrimination. If there are c colluding traitors but only c

symbols available then, by the pigeon-hole principle, at each time some traitor

receives a symbol that is also received by another user. By broadcasting

this symbol the pirate can avoid detection in each time segment. Hence a

watermarking scheme using c or fewer symbols cannot be deterministic. �

The scheme described in Construction 3.6 demonstrates the existence of

dynamic traitor-tracing schemes using the minimal number c + 1 of symbols;

its running time, however, is exponential in c. In [12] Fiat and Tassa present

two additional schemes, one running in time O(c logn) but requiring 2c + 1

symbols, and one using c+1 symbols with a running time of O(3cc log n): still

exponential in c, but an improvement on the initial scheme. They pose the

problem of whether there exists a deterministic scheme using c+1 symbols that

runs in a time polynomial in c. This question is answered in the affirmative

by Berkman, Parnas and Sgall in [4], who provide an algorithm using c + 1

variants and requiring time Θ(c2 + c log n). They show that this running time

is optimal.

We have seen that it is possible to find algorithms for tracing traitors

that are polynomial in the number c of traitors provided that at least c + 1

differently-marked variants are used. If the number of traitors is high, how-

ever, the broadcaster may not have sufficient resources to implement such a

scheme. Nevertheless, the broadcaster may still wish to make use of dynamic

digital fingerprinting in some fashion. We have seen how static c-TA codes

relate to sequential traitor-tracing schemes, and how dynamic schemes can

be used to provide even more-efficient traitor tracing. In the static case we

38

have also seen how c-frameproof codes can be used to ensure innocent users

are not falsely incriminated by pirates, without actually having to trace the

traitors responsible. In the following chapters we will see how similar ideas

can be translated into the dynamic setting, thus providing protection for in-

nocent users in situations where there are insufficient resources to implement

a deterministic traitor-tracing scheme.

39

Chapter 4

Sequential Frameproof Codes

In Chapter 3 we saw how the concept of traitor tracing applied in a dynamic

context lead to the development of sequential and dynamic traitor-tracing

schemes. If you are lacking the resources to trace traitors but still wish to

prevent pirates from framing innocent users you might hope to translate the

concept of frameproof codes in a similar fashion to the dynamic setting. In this

chapter we explore how to prevent framing without recourse to the information

contained in the pirate’s broadcast. We begin by proposing a definition for

l-sequential c-frameproof codes, which prevent framing by up to c traitors over

l consecutive time segments, then describe closely-related functions that can

be used to simplify their construction. We then show that in fact sequential

c-frameproof codes are closely connected to ordinary c-frameproof codes, with

the existence of one implying the existence of the other and vice versa. Finally

we consider sequential frameproof codes that protect users from any number

of pirates. We provide a construction of such an l-sequential code that uses

an alphabet of size q to protect n users with l =
⌈

n
q−1

⌉

and show that this is

optimal, in that it is not possible to protect n users when l <
⌈

n
q−1

⌉

.

40

4.1 Definitions

In a sequential traitor-tracing scheme code marks are broadcast one at a time

and the information contained in the pirate broadcast is used to disconnect

traitorous users, hence the set of users decreases with time.

In the context of frameproof codes, however, our goal is somewhat different.

In this instance we do not seek to identify the traitors from their broadcast,

rather we wish solely to prevent the pirate from broadcasting a sequence of

segments corresponding to that allocated to some innocent user. We propose

the following definition of a sequential frameproof code:

Definition 4.1. An l-sequential c-frameproof code is a function M mapping

N+×U to Q with (j, u) 7→ Mj(u), such that for any pirate T with |T | ≤ c, and

for any sequence of marks {ξj}i+l−1
j=i broadcast by that pirate over l consecutive

time segments, there is no legitimate user u ∈ U \ T with Mj(u) = ξj for all

j = i, i + 1, . . . , i + l − 1.

During time section j the function M assigns to user u the segment marked

with mark Mj(u); the sequential c-frameproof property ensures that over the

course of any l consecutive time segments the sequence of marked segments

broadcast by any pirate T with |T | ≤ c will differ from that allocated to

any innocent user. We refer to this as the l-sequential c-frameproof condition.

If M is an l-sequential c-frameproof code for all c ≥ 1 then we refer to it

simply as an l-sequential frameproof code. The integer l will be known as the

convergence time of the code.

If at some time t a user u receives a mark received by no other user at that

time we refer to this as a unique mark. If the pirate broadcast ξt is a unique

mark then we know that the user who received the mark must be part of the

41

pirate coalition.

Example 4.1 Let U = {u1, u2, . . . un} and Q = {1, 2, . . . , n}, and define M

by setting M(i, uj) = j for all i ∈ N+. Then M is an l-sequential frameproof

code for any l ≥ 1, since the fact that no two users get the same mark at any

time means that no user can be framed during any time interval. �

The code described above is rather trivial, and has a particularly simple

description. In general we might expect to have more difficulty in describing

the function M. Our task is made somewhat easier, however, by observing

that we can construct an appropriate function M by simply specifying the

values that it takes on the first l time segments.

Lemma 4.2. Suppose there exists a user set U of size n, a mark alphabet

Q, and a function f c
l : {1, 2, . . . , l} × U → Q. Then f c

l can be thought of as

a function for distributing marked segments for the first l time intervals of

a broadcast and it is possible to extend it to a function M : N+ × U → Q as

follows. Given f c
l let M : N+×U → Q be defined by setting M(i, u) = f c

l (i
′, u),

where i′ is the unique element of {1, 2, . . . , l} with i ≡ i′ (mod l). If f c
l obeys

the l-sequential c-frameproof condition over this time then M is an l-sequential

c-frameproof code.

Proof. Consider the segments broadcast between times i and i + l − 1. Sup-

pose there is a pirate T of size at most c capable of framing some innocent

user u ∈ U \ T over this interval, so that for each j ∈ {i, i + 1, . . . , i + l − 1}

there exists tj ∈ T such that mj(u) = mj(tj). By the definition of M,

we have mj(u) = mj′(u) whenever j ≡ j′ (mod l). As such, for each time

j′ ∈ {1, 2, . . . l}, there exists j ∈ {i, i + 1, . . . , i + l − 1} for which we have

mj′(u) = mj(u) = mj(tj) = mj′(tj). It follows that the pirate T can frame

42

user u in the first l time segments, which contradicts the assumption that f c
l

has the sequential c-frameproof property in this time, since for j ∈ {1, 2, . . . l}

we have mj(v) = f c
l (j, v) for any v ∈ U . �

Thanks to this lemma we know that to construct l-sequential c-frameproof

codes we need only define their behaviour over the first l time segments. We

will make use of this fact in subsequent constructions, including our demon-

stration of how sequential c-frameproof codes can be constructed from ordinary

c-frameproof codes.

4.2 The Connection Between c-Frameproof

Codes and Sequential c-Frameproof Codes

We have defined sequential c-frameproof codes, but as yet have seen few ex-

amples. It turns out, however, that they are essentially familiar objects under

a new guise: since neither the set of users, nor the allocation of marked seg-

ments are affected by the pirate broadcast the sequential setting is in fact

closely related to the static case, as detailed in the following lemmas. First we

show that by restricting an l-sequential c-frameproof code to any window of l

consecutive time segments we can obtain an ordinary c-frameproof code.

Theorem 4.3. Suppose M is an l-sequential c-frameproof code over an al-

phabet Q of size q protecting a set U of users with |U | = n. Fix some integer

j ≥ 1 and associate a word xu =
(

Mj(u), Mj+1(u), . . . , Mj+l−1(u)
)

∈ Ql with

each user u ∈ U . Then the set Γ = {xu|u ∈ U} ⊂ Ql is a length l c-frameproof

code over Q of size n.

Proof. By definition Γ is a length l code over Q. There is a one-to-one corre-

spondence between users u ∈ U and words xu ∈ Γ since if there are two users

43

u, v ∈ U with u 6= v but xu = xv then for each i = j, j+1, . . . , j+l−1 we have

Mi(u) = Mi(v). This implies that u is capable of creating a pirate broadcast

with marks Mi(u) = Mi(v) for all i = j, j + 1, . . . , j + l − 1 and hence fram-

ing v over the length l window starting at time j, thereby contradicting the

sequential c-frameproof property of M. Thus we conclude that the number of

codewords in Γ is n.

We now proceed to prove that Γ is c-frameproof. Suppose there exists

a word xu ∈ Γ and set S ⊆ Γ with |S| ≤ c such that xu ∈ desc(S). Let

T ⊆ U be the set of users in U corresponding to the words of S. For each

i = j, j +1, . . . , j + l− 1 we know that xi
u = xi

ti
for some ti ∈ T , which implies

that Mi(u) = Mi(ti). If the users of T decide to commit piracy, they have

the capacity to broadcast the segments with sequence of marks {Mi(ti)}l
i=1.

As these each agree with the marked segments given to u this contradicts the

sequential c-frameproof property of M unless u ∈ T . Hence we conclude that

u ∈ T and thus xu ∈ S. It follows that Γ is a c-frameproof code. �

We see therefore that the output of a sequential c-frameproof code over

any window of l consecutive time segments gives rise in a natural fashion to

an ordinary c-frameproof code. By Lemma 4.2 we know that we can construct

a sequential c-frameproof code by specifying its behaviour over the first l

segments; this suggests that it may be possible to construct sequential c-

frameproof codes based on ordinary c-frameproof codes. Indeed this is the

case, and we describe this construction explicitly in the following theorem.

Theorem 4.4. Suppose Γ = {x1, x2, . . . xn} ⊂ Ql is a c-frameproof code. We

define a function f c
l : {1, 2, . . . , l} × U → Q, where U = {u1, u2, . . . un}, by

setting f c
l (i, uj) = xi

j for i = 1, 2, . . . , l and j = 1, 2, . . . , n. The function

M : N+ ×U → Q obtained by extending f c
l as in Lemma 4.2 is an l-sequential

44

c-frameproof code.

Proof. We prove this lemma by showing that the function f c
l satisfies the

l-sequential c-frameproof condition over the first l time segments; the result

then follows by Lemma 4.2. Suppose there exists a pirate set T ⊂ U with

|T | ≤ c capable of broadcasting segments with mark sequence {ξi}l
i=1 and

an innocent user uk ∈ U \ T with f c
l (i, uk) = ξi for all i = 1, 2, . . . l. Let

S = {xj ∈ Γ|uj ∈ T}. For each i = 1, 2 . . . l,

xi
k = f c

l (i, uk)

= ξi

= f c
l (i, uj) for some uj ∈ T

= xi
uj

where xj ∈ S.

Hence the set S is capable of framing xk, which implies that xk ∈ S, and thus

uk ∈ T , thereby contradicting the assumption that uk ∈ U \ T . Therefore

no such T and uk exist, so f c
l is sequential c-frameproof on the first l time

segments, whence the associated M is an l-sequential c-frameproof code by

Lemma 4.2. �

Thus we see that known examples of c-frameproof codes can be effectively

translated into the dynamic setting to yield sequential c-frameproof codes.

The following example illustrates how this works in practice.

Example 4.2 Example 2.4 contained a binary, length 3, 2-frameproof code Γ

with

Γ = {x0 = (0, 0, 0), x1 = (1, 1, 0), x2 = (0, 1, 1), x3 = (1, 0, 1)}.

As Γ contains four words, it can be turned into a 3-sequential 2-frameproof

code for four users. Let U = {u0, u1, u2, u3} and Q = {0, 1}. Define a

45

function f 2
3 : N+ × U → Q by setting f 2

3 (i, uj) = xi′

j , where i′ ∈ {1, 2, 3}

and i′ ≡ i (mod 3). Using Lemma 4.2 we can extend f 2
3 to a 3-sequential

2-frameproof code M. The following table indicates how the marks would be

distributed according to M over the first nine time segments.

1 2 3 4 5 6 7 8 9
u0 0 0 0 0 0 0 0 0 0
u1 1 1 0 1 1 0 1 1 0
u2 0 1 1 0 1 1 0 1 1
u3 1 0 1 1 0 1 1 0 1

If we consider any three consecutive time segments we observe that the marks

received by each user correspond to words in Q3 that are either the words of Γ,

or a cyclic shift of those words. Such a shift does not affect the 2-frameproof

property that Γ possesses therefore it is not possible for any two colluding

users to frame a third user over any length 3 window of consecutive segments.

Thus we conclude that M is indeed a 3-sequential 2-frameproof code. �

Theorems 4.3 and 4.4 provide us with a description of the structure of an

l-sequential c-frameproof code, namely that the sequences of marks distributed

to each user correspond to successive c-frameproof codes of length l. In the

codes constructed according to Theorem 4.4 the c-frameproof codes derived

from the various length l windows of the l-sequential c-frameproof code are

essentially all equivalent. This is not always true of the c-frameproof codes

arising from a sequential c-frameproof code, as the following example demon-

strates; however, sequential codes of this form benefit from being easier to

describe and construct.

Example 4.3

1 2 3 4 5 6
u0 0 0 0 0 0 0 · · ·
u1 1 1 1 1 1 1 · · ·
u2 0 1 2 3 3 3 · · ·
u3 3 0 2 4 4 4 · · ·

46

The table above shows the mark distribution over six time segments of a 5-ary,

3-sequential 2-frameproof code protecting four users. Inspection of the symbols

received by any two users over any three consecutive segments reveals that at

most one of these symbols is common to both users. Hence at least three

users are required to frame a fourth over three consecutive segments. The

2-frameproof code corresponding to the first three segments has minimum

distance two and thus differs from that corresponding to segments 4, 5 and 6,

which has a minimum distance of three. �

The fact that there is this close connection between sequential frameproof

codes and ordinary frameproof codes means that we can apply known re-

sults about ordinary frameproof codes to the case of the sequential frameproof

codes. In particular we are interested in finding the minimum l for which there

exists an l-sequential c-frameproof code protecting n users or, conversely, find-

ing the maximum number of users that can be supported by an l-sequential

c-frameproof code. The connection with ordinary frameproof codes means

that bounds on the size of these codes lead directly to bounds on the number

of users supported by the corresponding sequential frameproof codes.

Example 4.4 Suppose we have an alphabet of size 5, and wish to construct an

l-sequential 4-frameproof code protecting sixteen users with as small a value of

l as possible. Construction 2.13 yields a q-ary c-frameproof code of cardinality

l(q − 1) provided that l ≤ c. Thus it is possible to construct a 5-ary, length 4,

4-frameproof code containing sixteen words, for example. This in turn gives

rise to a 5-ary 4-sequential 4-frameproof code protecting sixteen users. Fur-

thermore, by Theorem 2.12 there can be no 5-ary 3-sequential 4-frameproof

code protecting sixteen users, as we know that the maximum possible size

for a length 3, 4-frameproof code is 3(q − 1) = 12. Thus we see that the

47

4-sequential 4-frameproof code derived via Construction 2.13 has the mini-

mum possible convergence time for a sequential 4-frameproof code protecting

sixteen users. �

In Section 2.3 we described the known bounds on the sizes of frameproof

codes. For many choices of parameter, however, precise bounds are still not

known. One case in which more-precise results are available is the case where

the number of traitors is not bounded; essentially this is equivalent to c being

equal to n− 1. In the following section we show how to construct l-sequential

(n − 1)-frameproof codes supporting an optimal number of users.

4.3 l-Sequential (n − 1)-Frameproof Codes

In the case where there is no restriction on the number of traitors (essen-

tially when c = n − 1) precise results are known about the maximal sizes

of c-frameproof codes. In what follows we describe the construction of a
⌈

n
q−1

⌉

-sequential (n− 1)-frameproof code, and then use known bounds on the

size of the related ordinary (n−1)-frameproof codes to show that the resulting

code has the minimum possible convergence time given the number of users

and the alphabet size. We begin with a lemma that will be used to motivate

our construction.

Lemma 4.5. Let M : N+ × U → Q, (i, u) 7→ Mi(u), let u ∈ U and fix an

integer j ≥ 1. Suppose that for each i = j, j +1, . . . j + l−1 there exists a user

ti ∈ U \ {u} with Mi(u) = Mi(ti). Then M is not an l-sequential frameproof

code.

Proof. Suppose T = {tj, tj+1, . . . , tj+l−1} is a pirate. Then T can broadcast the

sequence {ξi}j+l−1
i=j with ξi = Mi(ti). But then for each i = j, j +1, . . . , j + l−1

48

we have Mi(u) = ξi; hence T can frame u, and thus M is not an l-sequential

l-frameproof code. This implies that M is not an l-sequential frameproof code

either. �

Thus we see that in order for a mark distribution to be an l-sequential

frameproof code it is necessary for each user to receive a unique mark at some

time in every length l window, for otherwise they risk being framed. This re-

quirement gives rise to a natural construction of a sequential (n − 1)-frameproof

code.

Construction 4.6. Let Q = {0, 1, . . . q − 1}, and U = {u0, u1, . . . un−1}.

Define f⌈ n
q−1⌉ : {1, 2, . . . ,

⌈

n
q−1

⌉

} × U → Q by setting

f⌈ n
q−1⌉(i, uj) =

{

j + 1 − (q − 1)(i − 1) if (q − 1)(i − 1) ≤ j ≤ (q − 1)i − 1,

0 otherwise.

Extending f⌈ n
q−1⌉ with the aid of lemma 4.2 to a function M results in a

⌈

n
q−1

⌉

-sequential (n − 1)-frameproof code.

This description of f⌈ n
q−1⌉ is perhaps deceptively complicated; it can be

more clearly illustrated by an example.

Example 4.5 Suppose you have ten users u0, u1, . . . , u9 and an alphabet

{0, 1, 2, 3}. Then
⌈

n
q−1

⌉

= 4, and the function f4 resulting from the above

construction distributes marks to the users as in the following table.

1 2 3 4
u0 1 0 0 0
u1 2 0 0 0
u2 3 0 0 0
u3 0 1 0 0
u4 0 2 0 0
u5 0 3 0 0
u6 0 0 1 0
u7 0 0 2 0
u8 0 0 3 0
u9 0 0 0 1

49

We see that each user receives a unique mark in one of these four segments;

extending f4 to M will thus result in a mark distribution with the property

that every user receives a unique mark at some time during every length 4

window. �

Knowing that each user receives a unique mark in each window of length
⌈

n
q−1

⌉

we see that M is indeed a
⌈

n
q−1

⌉

-sequential (n − 1)-frameproof code.

Proof. The function f⌈ n
q−1⌉ allocates a unique mark to the first q − 1 users

during the first time segment, the next q−1 users during the second time seg-

ment and so on, until each user has received a unique mark at some time. This

procedure takes
⌈

n
q−1

⌉

time intervals; f⌈ n
q−1⌉ is then extended to a sequential

frameproof code as usual. Since each user has been allocated a unique mark at

some time during every interval of
⌈

n
q−1

⌉

time segments no user can be framed

by a pirate coalition irrespective of its size. �

The above construction shows that for an l-sequential (n − 1)-frameproof

code protecting n users the minimum possible convergence time is at most
⌈

n
q−1

⌉

. In order determine this minimum value exactly, we turn our consid-

eration to ordinary (n − 1)-frameproof codes. The (n − 1)-frameproof code

obtained from the sequential (n−1)-frameproof code above as in Theorem 4.3

corresponds to a subset of the (n − 1)-frameproof code given in Example 2.6.

Theorem 2.12 shows that there is no larger q-ary, length l, (n− 1)-frameproof

code, which leads us to the following theorem.

Theorem 4.7. The
⌈

n
q−1

⌉

-sequential (n − 1)-frameproof code of Construc-

tion 4.6 has an optimal convergence time, in the sense that there does not

exist a sequential (n − 1)-frameproof code protecting n users with a conver-

gence time less than
⌈

n
q−1

⌉

.

50

Proof. Suppose there exists a
(⌈

n
q−1

⌉

− 1
)

-sequential (n − 1)-frameproof code

protecting n users. The q-ary, length
⌈

n
q−1

⌉

− 1, (n − 1)-frameproof code

derived from the first
⌈

n
q−1

⌉

− 1 time segments of the sequential code has

size n. According to Theorem 2.12, however, the maximum possible size of a

(n − 1)-frameproof code of these parameters is in fact

(⌈ n

q − 1

⌉

− 1
)

(q − 1) = (q − 1)
⌈ n

q − 1

⌉

− (q − 1)

< n + (q − 1) − (q − 1)

= n.

This results in a contradiction, so our original supposition must be false. Thus

the smallest possible l for which there exists an l-sequential (n−1)-frameproof

code is
⌈

n
q−1

⌉

, hence the code resulting from Construction 4.6 has an optimal

convergence time. �

We have now seen several examples of how we can make use of the connec-

tion between sequential c-frameproof codes and ordinary c-frameproof codes.

Essentially we can regard sequential c-frameproof codes to be a useful new

manifestation of c-frameproof codes that enables their framing-preventing prop-

erties to be extended to the dynamic model. We have seen examples of choices

of parameters q, c and n for which we know the optimal convergence time l,

although in the majority of cases there is still a discrepancy between the best

known upper and lower bounds for the minimum possible l. In Chapter 3

we saw that dynamic traitor-tracing schemes proved to be considerably more

efficient than sequential traitor-tracing schemes, which is to be expected given

the extra information available. In the context of framing protection it is not

unreasonable, therefore, to expect that dynamic schemes that make use of the

information contained in the pirate’s broadcast to prevent framing should be

51

able to achieve shorter convergence times than even the best sequential frame-

proof codes. Indeed this is the case; such possibilities are explored in the two

subsequent chapters.

52

Chapter 5

Dynamic Frameproof Codes

In Section 3.3 we saw how dynamic traitor-tracing schemes are capable of

catching traitors more quickly than the corresponding sequential traitor-tracing

schemes thanks to the ability to use the information provided by the pirate’s

broadcast in determining the mark distribution. In this chapter we show how

this information can be used in the prevention of framing. We give a definition

of l-dynamic frameproof codes that take l time segments to prevent framing

by any number of traitors, and we provide a construction that is optimal with

respect to the number of time segments required to implement it. We demon-

strate that for n users and an alphabet of size q an l-dynamic frameproof code

preventing framing by a coalition of up to c traitors exists for any c > 1 if and

only if n ≤ ql−1(q − 1), and that a similar code preventing framing by a single

traitor exists if and only if n ≤ ql.

5.1 Definitions

The dynamic setting differs from the sequential case in that we wish in this

instance to make use of the information present in the pirate’s broadcast.

This should allow us to find more-efficient ways of distributing marks so as to

prevent framing.

53

Suppose we have a set of users U = {u1, u2, . . . un} and a mark alphabet

Q of size q, and suppose there exists a pirate T = {t1, t2, . . . , tc} ⊂ U . We

wish to distribute marked segments as in the sequential case, only this time

our distribution of marks at a particular time may depend on a pirate’s pre-

vious broadcast. We assume that at any given time α we know the sequence

{ξj}α−1
j=1 of marks previously broadcast by the pirate and we use this sequence

to determine how to allocate marks to the users. The pirate T responds by

broadcasting a marked segment received by one of the tj ∈ T ; this mark is

then taken into account when distributing the marks at time α+1, and so on.

Definition 5.1. A sequence {ξj}α
j=1 is a valid pirate broadcast sequence for a

particular mark distribution if there exists a set T ⊂ U (the pirate) such that

for all i = 1, 2, . . . , α the mark ξi was received by some user t ∈ T and is not

a unique mark.

If the pirate broadcasts a unique mark we can take action against the

user who received that mark and remove them from the set of users, hence

weakening the pirate. As such a user is part of the guilty coalition they can

not be said to have been framed. In defining dynamic frameproof codes we

consider only valid pirate broadcast sequences, which ensures that framing can

be prevented even when traitors do not incriminate themselves in this fashion.

For the sake of brevity we represent the pirate sequence {ξj}α−1
j=1 by the word

Ξα = (ξ1, ξ2, . . . ξα−1) ∈ Qα−1.

Definition 5.2. An l-dynamic c-frameproof code is a finite family of functions

{Dα}l
α=1 where D1 : U → Q and Dα : Qα−1 × U → Q for α > 1, with the

property that for any valid pirate broadcast sequence {ξj}l
j=1 corresponding to

a pirate T with |T | ≤ c there is no user u ∈ U \ T with Dj(Ξj, u) = ξj for all

54

j = 1, 2, . . . , l.

At time α > 1 the sequence of marks Ξα previously broadcast by the pirate

is used as an input to the function Dα in order to determine how the marked

segments are distributed among the users. Recall that at time α the pirate T

is capable of broadcasting precisely those marks in the set {Dα(Ξα, t)|t ∈ T}.

An l-dynamic frameproof code guarantees that no matter which of these marks

the pirate chooses to broadcast at each time α ≤ l once l segments have been

broadcast the pirate broadcast sequence will not match the sequence allocated

to any innocent user.

Example 5.1 If M is a q-ary l-sequential c-frameproof code for user set U

we can define a q-ary l-dynamic c-frameproof code by setting D1(u) = M1(u)

and Dα(Ξα, u) = Mα(u) for all u ∈ U and α = 2, . . . , l. �

An l-sequential c-frameproof code guarantees that no innocent user can be

framed over l time segments, and thus can be used as a dynamic frameproof

code. The use for the dynamic codes is somewhat different from that of the

sequential frameproof codes, however. The latter, if used continuously, prevent

framing for any time intervals of length l or greater whereas the dynamic codes

are designed to be put into use over a specific interval once there is a suspicion

that framing is occurring. At this time the broadcaster starts to distribute

marks in a manner corresponding to a dynamic frameproof code with α set

to 1. If the broadcaster suspects framing is occuring the use of such a code

will prevent that framing from continuing. This is accomplished within a time

l which, to be of practical use, is less than that achieved by any sequential

frameproof code with the appropriate parameters. In Chapter 6 we go on to

55

define sliding-window l-dynamic frameproof codes, which are perhaps more-

closely related to the l-sequential frameproof codes; their construction builds

on ideas obtained from the study of l-dynamic frameproof codes, however,

much as l-sequential frameproof codes were obtained from the functions f c
l in

Section 4.1.

5.2 Construction of l-Dynamic Frameproof

Codes

In the case of sequential frameproof codes improved convergence times can

be achieved when the number of traitors is limited. In a dynamic situation,

however, we will see that once we suppose there is more than one traitor we

do not in fact gain anything by considering limits on the number of traitors:

two traitors can do as much damage as n − 1 traitors.

An l-dynamic frameproof code that uses an alphabet Q = {0, 1, . . . , q−1},

and works for users U = {u0, u1, . . . , un−1} and any number c < n of traitors

in time l =
⌈

logq

(⌈

n
q−1

⌉)⌉

+ 1 ≈ logq(n) is constructed as follows:

Construction 5.3. Let l =
⌈

logq

(⌈

n
q−1

⌉)⌉

+ 1; let Q = {0, 1, . . . , q − 1} and

U = {u0, u1, . . . un−1}. Denote by qj
i the jth digit in the q-ary expansion of the

integer i ≥ 0. We define functions D1 : U → Q and Dj : Qj−1 × U → Q for

2 ≤ j ≤ l − 1 as follows:

Dj(Ξj, ui) = qj
i′ ,

where i′ ∈
{

1, 2, . . .
⌈

n
q−1

⌉}

and i′ ≡ i (mod
⌈

n
q−1

⌉

).

This ensures that each q-ary sequence of length l − 1 will have been received

by up to q − 1 users over the first l − 1 time segments. At most q − 1 users

will have received sequences of marks matching the pirate broadcast sequence

Ξl = {ξi}l−1
i=1; denote these users (if they exist) by w1, w2, . . . wq−1. We then

56

define

Dl(Ξl, ui) =

{

x if ui = wx,

0 otherwise.

This ensures that any user whose sequence matches the pirate’s over the

first l − 1 segments receives a unique symbol at time l. This is illustrated by

the following example.

Example 5.2 Suppose there are 18 users u0, u1, . . . , u17, and a mark alphabet

{0, 1, 2}. The following table shows how the marks are allocated to the users

according to the above construction, based on a particular pirate broadcast

sequence.
1 2 3

u0 0 0 1
u1 1 0 0
u2 2 0 0
u3 0 1 0
u4 1 1 0
u5 2 1 0
u6 0 2 0
u7 1 2 0
u8 2 2 0
u9 0 0 2
u10 1 0 0
u11 2 0 0
u12 0 1 0
u13 1 1 0
u14 2 1 0
u15 0 2 0
u16 1 2 0
u17 2 2 0
T 0 0 0

Users u0 and u9 have been framed over the first two segments so at time

3 user u0 is given the symbol 1 and u9 the symbol 2 while all other users

receive 0. A valid pirate broadcast sequence for this distribution will satisfy

ξ3 = 0, therefore in this case the pirate broadcast sequence is 0, 0, 0, which

57

does not correspond to the sequence received by any user. Hence framing has

not occurred.

This construction does not depend on the potential size of the pirate coali-

tion. If we compare the code of this example with the sequential frameproof

code resulting from Construction 4.6 we see that in the latter case 18
3−1

= 9 time

segments are required to prevent framing, instead of the log3

(

18
3−1

)

+ 1 = 3

required here. Thus the extra information available in the dynamic setting

allows us to prevent framing much more quickly than when using sequential

constructions. �

In the example framing was prevented in time
⌈

logq

(⌈

n
q−1

⌉)⌉

+ 1; we now

show that the construction indeed achieves this in general.

Theorem 5.4. The functions resulting from Construction 5.3 constitute an

l-dynamic c-frameproof code for any c ≥ 0.

Proof. By the construction of Dl any user whose sequence matched the pirate

broadcast over the first l − 1 segments (i.e. any user who was framed over

that time) is given a unique mark at time l. For any valid pirate broadcast

sequence none of these users’ received marks matches the pirate’s at time l,

thus there is no user who is framed over the entire interval. The functions

defined in this construction hence constitute a
(⌈

logq

(⌈

n
q−1

⌉)⌉

+ 1
)

-dynamic

c-frameproof code for any c ≥ 0, as the construction is independent of the

value of c. �

If the number of users is n = qk(q − 1) then the convergence time of the

code yielded by this construction is l = k + 1. This is in fact optimal for this

number of users, a result which is a corollary of the following lemma.

Lemma 5.5. Let k ≥ 1, q ≥ 2. A (k + 1)-dynamic 2-frameproof code that

58

protects n users from framing using an alphabet of size q exists if and only if

n ≤ qk(q − 1).

Proof. In the case where n ≤ qk(q − 1) the existence of a (k + 1)-dynamic

2-frameproof code is demonstrated by Construction 5.3. To prove the converse

we use induction on k.

Let P (k) be the proposition that the existence of a q-ary (k + 1)-dynamic

2-frameproof code protecting n users implies n ≤ qk(q − 1).

We prove P (1) is true: suppose the number of users is greater than q(q−1).

By the pigeon-hole principle there exists some set S of at least q users who

receive the same marked segment during the first time interval. As we have

q(q−1) users but our alphabet only has q marks, some user u ∈ S will receive

the same marked segment as some other user t2 (not necessarily in S) during

the second time interval. Let t1 ∈ S \ {u}, but note that t1 and t2 are not

necessarily distinct. Then the sequence D1(t1), D2(D1(t1), t2) is a valid pirate

broadcast sequence for the pirate T = {t1, t2}, which can thus frame u /∈ T as

D1(u) = D1(t1) and D2(D1(t1), u) = D2(D1(t1), t2). Therefore no matter how

the functions D1 and D2 allocate the marks it is impossible to guarantee that

framing will not occur when n > q(q − 1). Hence P (1) is true.

Assume that P (j) is true for some j, then each (j+1)-dynamic 2-frameproof

code requires the number of users to be less than or equal to qj(q − 1). Sup-

pose there exists a (j + 2)-dynamic 2-frameproof code {Dα}j+2
α=1 for more than

qj+1(q − 1) users and an alphabet of size q. Then there is some subset S of

users who will be given the same marked segment m during the first time

interval, with |S| > qj(q − 1). After this time interval, define a new family

of functions {Eγ}j+1
γ=1 with E1 : S → Q and Eγ : Qγ−1 × S → U by setting

Eγ(Ξ̄γ, u) = Dγ+1|S(Ξγ+1, u), where if Ξγ+1 is the sequence m, ξ2, ξ3, . . . , ξγ+1

59

then Ξ̄γ is the sequence ξ2, ξ3, . . . , ξγ+1. We claim that the family of functions

{Eγ}j+1
γ=1 is a (j + 1)-dynamic 2-frameproof code for user set S, for otherwise

there exists a valid pirate broadcast sequence {ξ2, ξ3, . . . ξj+2} corresponding

to a pirate set T with |T | ≤ 2, and some user u ∈ S \ T with E1(u) = ξ2

and Ei(ξ2, ξ3, . . . , ξi, u) = ξi+1 for i = 2, 3, . . . j + 1. As the members of T are

in S then during the first segment they must have received the symbol m,

as did user u. Hence the pirate T is capable of framing user u over all time

segments from t = 1 to j + 2. This contradicts the assumption that {Dα}j+2
α=1

is (j + 2)-dynamic 2-frameproof. Thus we conclude that {Eγ}j+1
γ=1 is in fact

(j + 1)-dynamic 2-frameproof. However S has more than qj(q − 1) members,

which contradicts our inductive assumption. Hence P (j) ⇒ P (j + 1), and

therefore P (k) is true for all k ≥ 1. �

Construction 5.3 demonstrates the existence of a (k + 1)-dynamic frame-

proof code protecting qk(q−1) users from any number 1 ≤ c ≤ n−1 of traitors.

By the above lemma we see that a (k + 1)-dynamic c-frameproof code exists

only if n ≤ qk−1(q − 1) for any c with 2 ≤ c ≤ n − 1. Hence we obtain the

following theorem.

Theorem 5.6. An l-dynamic c-frameproof code protecting n users with c > 1

exists if and only if n ≤ ql−1(q − 1).

If the number of users exceeds qk−1(q − 1) the convergence time must be

at least k + 1, from which we deduce:

Corollary 5.7. The convergence time of the code resulting from Construc-

tion 5.3 is optimal for the given number of users and alphabet size.

The case where there is known to be precisely one traitor differs slightly.

In this situation a pirate is some user t, who can only frame an innocent

60

user u if they have received the same sequences, so Di(t) = Di(Ξi, u) for all

i = 1, 2, . . . l. From this we deduce the following theorem.

Theorem 5.8. A q-ary l-dynamic 1-frameproof code protecting n users exists

if and only if n ≤ ql.

Proof. If the marked segments are distributed so that each user receives a dis-

tinct sequence of l symbols then no user can frame another. There are exactly

ql length l sequences with symbols from an alphabet of size q; if there are ql

users it is therefore possible to allocate a unique sequence to each user. This

demonstrates the existence of q-ary l-dynamic 1-frameproof codes protecting

ql users.

Now suppose that the number of users is at least ql + 1. At time 1 sup-

pose the pirate broadcasts the symbol that was received by the largest num-

ber of users. Denote the set of users receiving this symbol by S1. Then

|S1| ≥
⌈

ql+1
q

⌉

= ql−1 + 1 (for l ≥ 1). Suppose that at time 2 the pirate broad-

casts the symbol received by the largest number of users in set S1. Denote by

S2 the set of users whose received sequence corresponds with the pirate broad-

cast over the first two segments. Then |S2| ≥ ql−2 +1. Repeating this process,

at time l − 1 there is a set Sl−1 of size q + 1 whose sequences correspond to

the pirate broadcast over the first l time segments. At time l, therefore, two

of the users in Sl−1 receive the same mark. If the pirate broadcasts this mark

at this time it follows that either of these users is capable of having produced

the entire pirate broadcast, so that one of them may be the pirate who has

thus framed the other user. Thus we claim that when the number of users

exceeds ql it is impossible to guarantee that a single traitor will not frame an

innocent user. �

61

Chapter 6

Sliding-Window Dynamic

Frameproof Codes

In this chapter we undertake to apply the extra information provided in the dy-

namic setting to create schemes similar to the sequential frameproof codes but

having shorter convergence times; sliding-window l-dynamic frameproof codes

are the result. We start by observing that such schemes can be constructed

from dynamic frameproof codes and provide a bound on the convergence time

that is tight for certain numbers of users. After giving a new construction

for these schemes we then restrict our attention to schemes using a binary

alphabet, and describe another construction which provides a model that is

exploited by later constructions. We discuss a sufficient condition for a mark

distribution to constitute a sliding-window l-dynamic framproof code and de-

rive a bound on the convergence time of schemes satisfying this condition,

showing that it is tight in many cases. This is followed by an examination

of a geometric model that facilitates the study of a particular class of these

schemes; finally, we determine a bound on the convergence times of schemes

constructed geometrically.

62

6.1 The Sliding-Window Model

The dynamic frameproof codes described in the previous chapter can be used

to prevent framing over one particular length l window. Sequential frameproof

codes, on the other hand, have the property that they can be applied contin-

uously to ensure protection from framing over any window of l consecutive

time segments; we refer to this as the sliding-window model. This difference

between the sequential and dynamic frameproof codes reflects a difference in

how they might be used: a sequential frameproof code can be used throughout

the broadcast and the broadcaster can be confident that framing will not occur,

whereas a dynamic frameproof code may be applied at a particular time once

the broadcaster suspects that framing is occurring. Using a dynamic frame-

proof code from time t to time t+ l−1 the broadcaster can reassure each user

that he or she will not have been framed over this time interval; this is perhaps

not so useful if the pirate simply decides instead to frame some user from time

t+1 onwards. The main difference in the construction of dynamic frameproof

codes compared with schemes that work in the sliding-window model is that in

the latter case the broadcaster does not know in advance over which interval

the pirate might frame some user. The dynamic frameproof codes described

in the previous chapter will no longer protect all users if the first segment over

which they are applied is ignored, whereas a sliding-window frameproof code

will not only protect users from being framed from time t to t+ l−1, but also

from time t + 1 to t + l and so on.

Example 6.1 Suppose U = {u0, u1, u2, u3} and Q = {0, 1} and let l = 3. The

following table shows a potential mark distribution and pirate broadcast over

63

five time segments with a dynamic frameproof code resulting from Construc-

tion 5.3 applied over the first three.

1 2 3 4 5
u0 0 0 1 0 0
u1 0 1 0 0 1
u2 1 0 0 1 0
u3 1 1 0 1 1
T 0 0 0 1 0

The use of a dynamic frameproof code prevents framing over the first three

segments; however, the pirate is able to frame user u2 over segments 2 to 5,

indicating that this mark distribution does not prevent framing in the sliding-

window model. �

So far we have seen sequential frameproof codes that work in the sliding-

window model and dynamic frameproof codes that do not. It would be ad-

vantageous if we could use the dynamic setting to create schemes offering

sliding-window frameproof protection but having shorter convergence times

(i.e. having shorter window length l) than sequential codes; it is not immedi-

ately clear that this is possible, however. Consider an l-dynamic c-frameproof

code. In an analogue to Lemma 4.2 it can be applied repeatedly starting at

times 1, l+1, 2l+1 and so on. This will ensure that framing cannot occur over

any 2l − 1 consecutive time segments, since a time interval of that size nec-

essarily includes one complete application of the code. Hence sliding-window

functionality is acheived. The following example shows that greatly improved

convergence times can be obtained by such methods.

Example 6.2 Suppose there are 2 × 310 users (slightly more than 105 users),

and you wish to use an alphabet of size three to prevent framing by any num-

ber of traitors. Construction 4.6 results in a ternary l-sequential frameproof

code with l = 310. Construction 5.3, however, yields an l-dynamic frameproof

64

code with l = 11. As per the argument above applying this code repeatedly

enables the prevention of framing over any intervals of length 2l − 1 = 21.

Thus we see that making use of the information in the pirate broadcast se-

quence can allow us to continually prevent framing much more efficiently for

a given alphabet size. �

In order to further explore this idea we introduce the concept of a sliding-

window l-dynamic frameproof code.

Definition 6.1. A sliding-window l-dynamic frameproof code is a countable

family of functions {Dα}∞α=1 where D1 : U → Q and Dα : Qα−1 × U → Q for

α > 1 with the property that for any valid pirate broadcast sequence {ξj}α
j=1

corresponding to a pirate T there is no legitimate user u ∈ U \ T and time

i ≤ α − l with Dj(Ξj, u) = ξj for all j = i, i + 1, . . . i + l − 1.

A sliding-window l-dynamic frameproof code therefore prevents each user

from being framed over any window of l consecutive time segments. The

code described in the above example, which protects qk(q − 1) users, is thus a

sliding-window (2k + 1)-dynamic frameproof code.

As in the case of sequential codes we refer to l as the convergence time

of the code. It would be natural to wonder what is the smallest convergence

time lq,n for which a sliding-window lq,n-dynamic frameproof code exists for

an alphabet of size q and user set U with |U | = n. The above discussion

implies that lq,qk(q−1) ≤ 2k+1. Furthermore, since restricting a sliding-window

lq,qk(q−1)-dynamic frameproof code to the first lq,qk(q−1) time intervals gives an

ordinary lq,qk(q−1)-dynamic frameproof code, we have that

lq,qk(q−1) ≥ k + 1.

65

We show in Theorem 6.2 that this bound can be improved to lq,qk(q−1) ≥ k + 2.

This is tight when k = 1 and hence lq,q(q−1) = 3, as shown in Corollary 6.3.

Theorem 6.2. Let q ≥ 2. If there exists a q-ary sliding-window l-dynamic

frameproof code protecting qk(q − 1) users then

l ≥ k + 2.

Proof. We know that l ≥ k + 1. Suppose {Dα}∞α=1 is a sliding-window

(k + 1)-dynamic frameproof code protecting n = qk(q − 1) users. We refer

to a segment in which at least one user receives a mark not received by any

other user at that time as a protection segment. Suppose that at each time

t prior to the first protection segment the pirate broadcast consists of the

marked segment that ensures that the greatest possible number of users have

been framed over segments 1 to t. Then the first protection segment must oc-

cur within the first l segments, or else at least one user will have been framed

over this time, as in the proof of Lemma 4.5.

Suppose that the first protection segment occurs at some time j0 and sup-

pose the pirate broadcast at this time is the symbol ξj0 received by the greatest

number of users at this time. Denote the set of users who received this symbol

by S0, and let h0 = |S0| ≥
⌈

n−1
q−1

⌉

= qk. At time j0 + 1 there exists a mark

ξj0+1 received by at least h1 =
⌈

h0

q

⌉

≥ qk−1 users; denote the set of such users

by S1 and suppose the pirate broadcast at this time consists of this mark.

Continuing in this manner we find that at time j0 + k − 1 there are hk−1 ≥ q

users who have been framed over the k segments from j0 to j0 + k − 1. As

the number of users is greater than k, at least one user u ∈ Sk−1 will receive

a mark at time j0 + k that has been received by some other user t1; suppose

the pirate broadcast at this time consists of this mark. Also, there exists a

66

user t2 ∈ Sk−1 \ {u}, not necessarily distinct from t1. The set T = {t1, t2}

is capable of having produced the pirate broadcast from time j0 to jk and

thereby framing u over this period. We note further that the set T ′ = U \ {u}

is capable of having produced the entire broadcast from time 0 to j0 +k, since

the fact that no segment prior to j0 was a protection segment implies that

each mark broadcast by the pirate was received by at least one user in T ′,

as |T ′| = n − 1. Thus for any sliding-window (k + 1)-dynamic frameproof

code protecting qk(q − 1) users there exists a pirate T ′ capable of framing a

user u /∈ T ′ over some window of k + 1 consecutive time segments, which is

a contradiction. Hence we conclude that for any sliding-window l-dynamic

frameproof code protecting qk(q − 1) users we require l ≥ k + 2. �

In the case where k = 1, Theorem 6.2 allows us to determine the exact

value of lq,qk(q−1).

Corollary 6.3. Suppose q > 2. Then

lq,q(q−1) = 3.

Proof. We know that k + 2 ≤ lq,q(q−1) ≤ 2k + 1 by the intial observations of

this section and by Theorem 6.2, but for k = 1 we have k +2 = 2k +1 = 3. �

For k > 1, however, there is still a discrepancy between the upper and

lower bounds for lq,qk(q−1). The following new construction requires q > 2

but yields a convergence time lq,n = ⌈logq−1(n)⌉ + 1, which results in a re-

duction of the upper bound for lq,qk(q−1) when k > 1
2−logq−1 q

, since we have

that ⌈logq−1(q
k(q − 1))⌉ + 1 < 2k + 1 if ⌈logq−1(q

k)⌉ < 2k − 1. This holds if

⌈logq−1 q⌉ < 2 − 1
k
, thus k > 1

2−logq−1 q
.

Now logq−1 q is a decreasing function when q > 2 and approaches a limit

of 1 as q → ∞; we observe that 1
2−log2 3

≈ 2.41 and that 1
2−logq−1 q

approaches

67

1 as q → ∞. Hence we conclude that for k > 2 Construction 6.4 leads to a

bound on lq,qk(q−1) that is an improvement on that arising from Example 6.2.

Construction 6.4. Suppose q > 2 and let Q = {0, 1, . . . q − 2} ∪ {∞} and

U = {u0, u1, . . . un−1}. Let l = ⌈logq−1(n)⌉ + 1. Denote by qj
i the jth digit in

the (q−1)-ary expansion of the integer i ≥ 0. We define functions D1 : U → Q

and Dj : Qj−1 × U → Q for j > 1 as follows:

D1(ui) = q1
i

Dj(ui) =

∞ if Dα(Ξα, ui) = ξα for all α = j − l + 1, j − l + 2, . . . j − 1,

qj′

i otherwise, where j′ ∈ {1, 2, . . . , l − 1}
and j′ ≡ j (mod l − 1).

When this construction is used, a user ui receives the l − 1 digits of the

(q − 1)-ary expansion of the integer i repeatedly, unless that user has been

framed over the l − 1 previous segments, in which case he or she receives the

protection symbol ∞. This is illustrated in the following example.

Example 6.3

1 2 3 4 5 6 7 8 9
u0 0 0 0 0 0 0 0 0 0
u1 0 1 ∞ 1 0 1 0 1 0
u2 0 2 0 2 0 2 0 2 0
u3 0 3 0 3 0 3 0 3 0
u4 1 0 1 0 1 0 1 0 1
u5 1 1 1 1 1 1 1 ∞ 1
u6 1 2 1 2 1 2 1 2 1
u7 1 3 1 3 1 3 1 3 1
u8 2 0 2 0 2 ∞ 2 0 2
u9 2 1 2 1 2 1 ∞ 1 2
u10 2 2 2 2 2 2 2 2 2
u11 2 3 2 3 2 3 2 3 2
u12 3 0 3 0 ∞ 0 3 0 3
u13 3 1 3 ∞ 3 1 3 1 3
u14 3 2 3 2 3 2 3 2 3
u15 3 3 3 3 3 3 3 3 3
T 0 1 3 0 2 1 1 1 0

68

Suppose there are sixteen users u0, . . . u15, and an alphabet Q = {0, 1, 2, 3,∞}.

The table above demonstrates how marks are allocated by the functions con-

structed above over the first nine time intervals based on a particular example

of a sequence broadcast by some pirate.

For q = 5 and n = 16 we have ⌈logq−1(n)⌉ + 1 = 3. The symbol ∞ is

broadcast whenever a user has been framed over consecutive time intervals. �

The functions arising from Construction 6.4 define a q-ary sliding-window

(⌈logq−1(n)⌉+1)-dynamic frameproof code. To prove this we need the following

lemma.

Lemma 6.5. If marks {0, 1, . . . , q−2}∪{∞} are allocated to n users according

to the functions defined in Construction 6.4 then at every time i ≥ 1 at most

one user receives the symbol ∞.

Proof. We use strong induction on i. As before, we let l = ⌈logq−1(n)⌉ + 1.

Let P (i) be the proposition that at time i at most one user receives the

symbol ∞.

Then P (i) is true for i = 1, 2, . . . , l since no user receives the symbol ∞ in

the first l−1 time segments; during this time the user ui receives the sequence

of numbers corresponding to the (q − 1)-ary expansion of i. As such, no two

users have received the same sequence of marks over the first l time intervals.

This implies that at most one user has received a sequence corresponding to

that broadcast by the pirate; such a user receives ∞ at time l and the others

all receive the first number of their (q − 1)-ary expansion.

Assume P (h−l+2), P (h−l+3), . . . , P (h) are true. If the pirate broadcasts

∞ at some time between h − l + 2 and h no innocent user is framed at that

time, hence no user receives ∞ at time h + 1.

69

We now assume that the pirate has not broadcast ∞ at any time during that

interval. Any user who has received ∞ during that time can not be framed

over time h− l + 2, h− l + 3, . . . , h and thus will not receive ∞ at time h + 1.

Any user ui who did not receive ∞ at any time during that interval received

a cyclic shift of the (q − 1)-ary expansion of i. No two users have the same

such expansion, thus at most one user has received a sequence corresponding

to that broadcast by the pirate, and hence receives ∞ at time h + 1.

Thus P (h− l + 2), P (h− l + 3), . . . , P (h) ⇒ P (h + 1), and so P (i) is true

for all i ≥ 1. �

We are now in a position to prove the desired result.

Theorem 6.6. The functions defined in Construction 6.4 constitute a sliding-

window (⌈logq−1(n)⌉ + 1)-dynamic frameproof code.

Proof. Suppose that between times i and i + ⌈logq−1(n)⌉ there exists a set

S of users who receive sequences of marks equal to those broadcast by the

pirate. By the definition of Di+⌈logq−1(n)⌉+1 these users receive symbol ∞ at

time i + ⌈logq−1(n)⌉ + 1; by Lemma 6.5 there is at most one user in S. No

user in U \ S can be framed over the interval from i to i + ⌈logq−1(n)⌉ + 1;

assume therefore that there exists a user u ∈ S. At time i + ⌈logq−1(n)⌉ + 1

the user u receives the symbol ∞. As no other user receives this symbol at

this time it is impossible for u to be framed by any pirate coalition of which

it is not a member over the time interval i to i + ⌈logq−1(n)⌉ + 1. Hence our

functions define a sliding-window (⌈logq−1(n)⌉+ 1)-dynamic frameproof code,

as required. �

We now turn our attention to the binary case in an effort to determine

some more-precise bounds.

70

6.2 The Binary Case

When one considers sliding-window dynamic frameproof codes over binary

alphabets it becomes apparent that the situation is slightly different from

that of general q: Construction 6.4 can no longer be used, for instance. By

restricting our attention to this case, however, we obtain new bounds for the

minimum convergence time. We also provide examples of constructions whose

properties will be exploited by later more-general constructions.

When there are 2k users the repeated use of a k + 1-dynamic frameproof

code as in Example 6.2 yields a sliding-window (2k + 1)-dynamic frameproof

code. We can, however, do better than this: the following construction pro-

vides an example of a sliding-window 2k-dynamic frameproof code.

Construction 6.7. Let Q = {0, 1} and U = {u0, u1, . . . u2k−1}, for some

k ≥ 4. Denote by bγ
i the γ′th bit in the binary expansion of the integer i where

γ′ ≡ γ (mod k) and γ′ ∈ {1, 2, . . . , k}. At each time segment marks will be

distributed in one of two ways: either at most one user will receive the mark

1 and all others will receive 0, or exactly half the users will receive 1 and half

0. A time segment in which precisely one user receives a 1 will be known as a

protection segment, as this distribution protects the user receiving the 1 from

being framed; the segments in which half the users receive 1 will be referred to

as ordinary segments.

We define functions D1 : U → Q and Dj : Qj−1 × U → Q for j > 1 by

setting

D1(ui) = b1
i ,

and, for j > 1, by setting

71

Dj(Ξj , ui) =

bγ
i if (k − 1) ∤ j, where ui received bγ−1

i in the last

ordinary segment.

1 if (k − 1)|j and ui has been framed over the

previous k ordinary segments.

0 otherwise.

Essentially what happens is that a user ui repeatedly receives the sequence

of 0s and 1s corresponding to the binary representation of i, except that at

each time j where j is a multiple of k−1 he receives a 1 if he has been framed

over the previous k ordinary segments (those segments in which he is receiving

the bits of his binary expansion), and a 0 otherwise. As there are 2k users each

user thus corresponds to a unique k-bit binary number, so over the course of k

non-protection segments precisely one user will have a sequence corresponding

to the pirate broadcast and hence be framed. This ensures that when k − 1

divides j, exactly one user will receive the bit 1, thus these segments are pro-

tection segments.

Example 6.4 Suppose there are sixteen users u0, u1, . . . , u15, and an alphabet

Q = {0, 1}. The table below demonstrates how marks are allocated accord-

ing to the above construction over the first twelve time intervals based on a

particular example of a sequence broadcast by some pirate T .

In this example, time segments 6, 9 and 12 are protection segments with

users u4, u7 and u3 respectively being protected. The remaining segments are

ordinary segments, except for segment 3, in which no user is protected since

no user has yet been framed for k = 4 sections. The time interval from 1 to 12

includes five windows of length 2k = 8: those starting at times 1, 2, 3, 4 and

5. Inspection shows that the pirate sequence over any of these windows does

72

not match that received by any user.

1 2 3 4 5 6 7 8 9 10 11 12
u0 0 0 0 0 0 0 0 0 0 0 0 0
u1 1 0 0 0 0 0 1 0 0 0 0 0
u2 0 1 0 0 0 0 0 1 0 0 0 0
u3 1 1 0 0 0 0 1 1 0 0 0 1
u4 0 0 0 1 0 1 0 0 0 1 0 0
u5 1 0 0 1 0 0 1 0 0 1 0 0
u6 0 1 0 1 0 0 0 1 0 1 0 0
u7 1 1 0 1 0 0 1 1 1 1 0 0
u8 0 0 0 0 1 0 0 0 0 0 1 0
u9 1 0 0 0 1 0 1 0 0 0 1 0
u10 0 1 0 0 1 0 0 1 0 0 1 0
u11 1 1 0 0 1 0 1 1 0 0 1 0
u12 0 0 0 1 1 0 0 0 0 1 1 0
u13 1 0 0 1 1 0 1 0 0 1 1 0
u14 0 1 0 1 1 0 0 1 0 1 1 0
u15 1 1 0 1 1 0 1 1 0 1 1 0
T 0 0 0 1 0 0 1 1 0 0 0 0

�

In fact this property illustrated above is true in general: for any k the code

resulting from the above construction is sliding-window 2k-dynamic frame-

proof, as shown by the following theorem.

Theorem 6.8. The functions defined in Construction 6.7 constitute a sliding-

window 2k-dynamic frameproof code.

Proof. Let I be any time interval of length 2k. For k ≥ 4 we have ⌊ 2k
k−1

⌋ = 2

and ⌈ 2k
k−1

⌉ = 3 so there will be either two or three protection segments occur-

ring during time interval I. Denote by t the last protection segment occurring

within I. In the case where there are three protection segments, I must contain

a sequence of a protection segment followed by k−2 non-protection segments,

another protection segment, k − 2 more non-protection segments and then

segment t. Since k ≥ 4 it follows that 2(k − 2) ≥ k, so the k non-protection

73

segments preceding t all lie within I. Similarly, if I contains two protection

segments we know that t must occur within the last k − 1 segments of I and

hence is preceded by at least k + 1 segments of I, at most one of which is

a protection segment. Thus in this case too, the k non-protection segments

preceding t lie within I. Let S be the set of time segments consisting of t and

the k non-protection segments preceding t. During those k segments a user

ui receives a cyclic shift of the bits in the binary expansion of i; each user

thus receives a unique sequence over these k segments, and hence one user

will have a sequence corresponding to that broadcast by the pirate. That user

will be the only user to receive the symbol 1 in segment t, and hence cannot

be framed by any coalition of other users at that segment. Therefore it is

impossible for a pirate coalition to frame any user on every time segment in

S. Since S is a subset of the interval I we can therefore conclude that no user

can be framed over the interval I. Since this is true for any length 2k time in-

terval I we can conclude that our functions do indeed define a sliding-window

2k-dynamic frameproof code. �

Construction 6.7 uses regularly-spaced protection segments to construct a

sliding-window l-dynamic frameproof code with at least two protection seg-

ments in every length l time interval. It is natural to wonder whether a scheme

using more protection segments per interval could produce codes with smaller

values of l. Indeed this is the case, as will be demonstrated in the subse-

quent discussion. But first it pays to consider more closely the properties of

the above construction. The method of allocating marks leads to each seg-

ment being either a protection segment or an ordinary segment. Any dynamic

frameproof code must make use of protection segments as otherwise there will

exist pirate sets capable of framing some user indefinitely (cf. Lemma 4.5).

74

Ordinary segments do not eliminate framing altogether, rather they can serve

to restrict the size of the set of users who are framed over a particular in-

terval. Assigning binary sequences to each user as in Construction 6.7 allows

you to halve the size of such a set with each ordinary segment; when a binary

alphabet is used this is the best reduction that can be guaranteed in a single

segment.

The proof that the code produced in Construction 6.7 is indeed sliding-

window 2k-dynamic frameproof relies on the fact that each length 2k time

interval contains some protection segment t and the k preceding ordinary

segments. This condition is sufficient for constructions of this type to yield

sliding-window dynamic frameproof codes. We show in Theorem 6.10 that in

order for this condition to hold it is necessary that l ≥ k+⌈2
√

k⌉. This theorem

is expressed in terms of sequences of zeros and ones, with 1 representing a

protection segment, and 0 an ordinary segment. Its proof makes use of the

following lemma.

Lemma 6.9. Let l, k, b ∈ N with k < l < k + 2
√

k and b < l − k. Then
⌈

k
l−k−b

⌉

> b.

Proof. Consider b2 − (l − k)b + k to be a quadratic in b. It is positive

definite when the discriminant is less than 0, which occurs when we have

(l − k)2 − 4k = l2 − 2kl + k2 − 4k < 0. Considering the discriminant to be

a quadratic in l we find it has zeros
2k±

√
4k2−4(k2−4k)

2
= k ± 2

√
k, thus for

k < l < k + 2
√

k the discriminant is negative. So b2 − (l − k)b + k > 0, and

we deduce that k
l−k−b

> b, as l − k − b > 0. �

Theorem 6.10. Let {xi}∞i=1 where xi ∈ {0, 1} be a sequence with the property

that every window of l consecutive elements contains at least one 1 and at least

75

k 0s before the final 1 in that window. Then l ≥ k + ⌈2
√

k⌉.

Proof. Suppose there exists a sequence S = {xi}∞i=1 satisfying the above prop-

erty for l ≤ k+⌈2
√

k⌉−1 (we note that this implies l < k+2
√

k, and that triv-

ially l ≥ k+1). Consider a window {xi, xi+1, . . . , xi+l−1} with i > l(⌈2
√

k⌉−1)

that ends with b consecutive 0s for some b ≥ 1 (such windows necessarily ex-

ist). If b ≥ ⌈2
√

k⌉− 1 there are not enough elements remaining in the window

to satisfy the desired property, hence we can assume b < ⌈2
√

k⌉ − 1. The

remaining l − b elements of the window must include at least k further 0s,

hence the window contains at most l − k − b 1s. By the pigeon-hole principle

one of these 1s must be preceded by at least b1 =
⌈

k
l−k−b

⌉

0s, hence we can

find another window ending in b1 0s, and b1 > b by Lemma 6.9. By repeating

this process up to ⌈2
√

k⌉ − 2 times we find there must exist a window ending

in ⌈2
√

k⌉ − 1 0s; such a window does not have enough remaining elements

to allow the desired property to be satisfied, thus our original assumption is

contradicted. �

This result implies that in order for every window of a sliding-window l-

dynamic frameproof code to contain at least one protection segment with k

ordinary segments occurring prior to the final protection segment we require

l ≥ k + ⌈2
√

k⌉.

The following construction, which parallels Construction 6.7 but requires k

to be a square, results in a code satisfying the above condition with l = k + 2
√

k,

which is thus a sliding-window (k + 2
√

k)-dynamic frameproof code. This im-

plies that for k square the codes resulting from this construction are optimal in

the sense of having the smallest convergence time possible for codes satisfying

that condition; the bound of Theorem 6.10 is therefore tight in this case.

76

Construction 6.11. Let k be a square, let Q = {0, 1} and let the set of users

be U = {u0, u1, . . . u2k−1}. As before denote by bγ
i the γ′th bit in the binary

expansion of the integer i ≥ 0 where γ ≡ γ′ (mod k) and γ′ ∈ {1, 2, . . . , k}.

We define functions D1 : U → Q and Dj : Qj−1 ×U → Q for j > 1 as follows:

D1(ui) = b1
i

Dj(Ξj , ui) =

bγ
i if (

√
k + 1) ∤ j, where ui received mark bγ−1

i

in the previous ordinary segment.

1 if (
√

k + 1) | j and ui has been framed over

the previous k ordinary segments.

0 otherwise.

In an analogue of Construction 6.7, every (
√

k + 1)th segment will be a

protection segment, and all the others will be ordinary segments. In intervals

with
√

k+1 protection segments the final protection segment must be preceded

by at least
√

k ×
√

k = k non-protection segments, and in intervals with
√

k

protection segments the final one must be preceded by at least

(
√

k − 1)
√

k + (l − (
√

k − 1)
√

k −
√

k −
√

k) = (
√

k − 1)
√

k +
√

k

= k

non-protection segments. We can then apply the proof of Theorem 6.8 mutatis

mutandis to show that Construction 6.11 really does afford a sliding-window

(k + 2
√

k)-dynamic frameproof code.

Example 6.5 In the case where k = 4 we have that
√

k +1 = k− 1. As such,

the code resulting from this construction will be identical to that illustrated

in Example 6.4. �

Hence we now have a sufficient condition for codes to be sliding-window

l-dynamic frameproof that implies the bound l ≥ ⌈k + 2
√

k⌉, which is tight

77

at least when k is a square. It is certainly not a necessary condition, how-

ever: for q = 2 and |U | = 2k the code resulting from Construction 4.6 can

be thought of as a sliding-window 2k-dynamic frameproof code, yet for this

code every segment is a protection segment and hence the given condition is

not fulfilled. Therefore we would like to know whether in general there exist

sliding-window l-dynamic frameproof codes not satisfying this condition that

achieve l < k + 2
√

k. We begin by turning our attention to a particular class

of codes, those given by a geometric construction, and show that for these

codes there is not much room for improvement, with l required to be greater

than or equal to k + ⌈2
√

k⌉ − 1 (see Theorem 6.17).

6.2.1 Geometric Constructions

In preceding sections we have given definitions for dynamic and sliding-window

dynamic frameproof codes, as well as constructions of such codes. In what

follows we consider examples of these codes that can be given by geometric

constructions. The geometric setting has the advantage that it is frequently

easier to visualise the structures involved, which can lead to simpler argu-

ments. These are not the most general constructions possible but in subse-

quent sections we will make use of results obtained in studying them. Our

aim in this section is to show that geometric codes protecting 2k users require

l ≥ k + ⌈2
√

k⌉ − 1; we first present some results analogous to those of prior

sections in order to introduce the geometric notation.

Suppose there is a set U of 2k users. We can then associate with each

user one of the 2k points of the k-dimensional affine space AG(k, 2) obtained

by removing a hyperplane Σ∞ of the k-dimensional projective space PG(k, 2).

Denote by Pu the point of AG(k, 2) associated with the user u ∈ U .

78

The hyperplanes of AG(k, 2) (i.e. the intersections of AG(k, 2) with hy-

perplanes of PG(k, 2) other than Σ∞) fall into 2k − 1 parallel classes, with

two hyperplanes in each class. Specifying a hyperplane in a particular paral-

lel class partitions the set of users into two subsets of size 2k−1: those users

corresponding to points in that hyperplane, and those whose points fall in the

other hyperplane of that parallel class.

We can use geometric ideas to construct optimal dynamic frameproof codes

as follows:

Construction 6.12. In PG(k, 2) it is possible to find a set of k + 1 linearly-

independent hyperplanes, Σ∞, Σ1, Σ2, . . . , Σk say.

We define functions Dα for α = 1, 2, . . . , k by

Dα(u) =

{

1 if u ∈ Σα,

0 otherwise.

We also define a function Dk+1 that depends on the pirate broadcast sequence

{ξi}k
i=1 where ξi ∈ GF (2). Consider the set S = {Σ′

1, Σ
′
2, . . . , Σ

′
k}, where

Σ′
i = Σi if ξi = 1 and Σ′

i = Σpar
i , the hyperplane parallel to Σi, if ξi = 0. For

each i we have Σpar
i = Σi + Σ∞ as these three hyperplanes form a pencil about

a secundum. Thus the k hyperplanes in S are linearly-independent and will

therefore intersect in a unique point P . We then define Dk+1 by:

Dk+1(Ξk+1, u) =

{

1 if Pu = P ,

0 otherwise.

The user P is the unique user whose allotted marks correspond to the pi-

rate broadcast sequence over the first k segments; as P is the only user to

receive symbol 1 at time k + 1 it is thus impossible for an innocent user to

be framed over the entire k + 1 time segments. Hence the functions {Dα}k+1
α=1

form a (k + 1)-dynamic frameproof code. By Lemma 5.6 this is optimal when

79

the number of users is 2k.

Example 6.6 Suppose you have sixteen users, u0, u1, . . . , u15. Construc-

tion 6.12 can be implemented as follows. For k = 4 we are working in a

five-dimensional projective space that has coordinates (x0, x1, x2, x3, x4) with

the xi ∈ {0, 1} not all zero. Let Σ∞ be the hyperplane given by the equa-

tion x4 = 0, and represent each user by a point of PG(4, 2) \ Σ∞ by set-

ting u0 → (0, 0, 0, 0, 1) and u1 → (0, 0, 0, 1, 1), u2 → (0, 0, 1, 0, 1) and so on

up to u15 → (1, 1, 1, 1, 1). We let the hyperplanes Σ1, Σ2, Σ3, Σ4 be given by

equations x3 + x4 = 0, x2 + x4 = 0, x1 + x4 = 0 and x0 + x4 = 0 re-

spectively. The point (0, 0, 0, 0, 1) corresponding to user u0 does not lie in

Σ1 : x3 + x4 = 0, hence at time 1 the user u0 receives the symbol 0, whereas

the point (0, 0, 0, 1, 1) corresponding to u1 does lie in this hyperplane and thus

u1 receives a 1 at this time. The following table shows the marks received by

each user according to Construction 6.12 at times 1, 2, . . . , k + 1 = 5 based on

a particular choice of pirate broadcast.

1 2 3 4 5
u0 0 0 0 0 0
u1 1 0 0 0 0
u2 0 1 0 0 1
u3 1 1 0 0 0
u4 0 0 1 0 0
u5 1 0 1 0 0
u6 0 1 1 0 0
u7 1 1 1 0 0
u8 0 0 0 1 0
u9 1 0 0 1 0
u10 0 1 0 1 0
u11 1 1 0 1 0
u12 0 0 1 1 0
u13 1 0 1 1 0
u14 0 1 1 1 0
u15 1 1 1 1 0
T 0 1 0 0 0

80

The symbols broadcast by the pirate at times 1 through 4 correspond to

the four hyperplanes given by Σ′
1 = Σ1 + Σ∞ : x3 = 0, Σ′

2 = Σ2 : x2 + x4 = 0,

Σ′
3 = Σ3 + Σ∞ : x1 = 0, Σ′

4 = Σ4 + Σ∞ : x0 = 0. These hyperplanes intersect

in the point

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x0 x1 x2 x3 x4

0 0 0 1 0
0 0 1 0 1
0 1 0 0 0
1 0 0 0 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= (0, 0, 1, 0, 1) → u2.

Hence the user u2 has been framed for the first four segments (as is shown by

the table), and therefore receives a 1 at time 5, with all other users receiving 0

at this time. This ensures that no user has been framed over the first k+1 = 5

segments. �

Similar ideas can be used in the construction of sliding-window l-dynamic

frameproof codes. Informally, during each time segment the broadcaster se-

lects either a hyperplane or a point of AG(k, 2) based on the pirate’s previous

broadcasts, and transmits segments marked with a 1 to the corresponding

users with the other users receiving 0s. This is made more precise in the

following construction and lemma.

Construction 6.13. Let Γ be the union of the set of points of AG(k, 2) with

the set of hyperplanes of AG(k, 2), let G1 be an element of Γ and suppose there

exists a countable family of functions {Gα}∞α=2, where Gα : GF (2)α−1 → Γ.

We construct a countable family of functions {Dα}∞α=1 with D1 : U → GF (2)

and Dα : GF (2)α−1 × U → GF (2) for α > 1. The sequence broadcast by the

pirate prior to time α will be denoted Ξα = {ξi}α−1
i=1 . We set

D1(u) =

{

1 if u ∈ G1

0 otherwise,

81

and, for j > 1,

Dα(Ξα, u) =

{

1 if u ∈ Gα(Ξα)

0 otherwise.

This link between functions Gα associating subspaces of AG(k, 2) with

pirate broadcast sequences and functions Dα assigning marked segments to

users allows us to set geometric conditions for {Dα}∞α=1 to constitute a sliding-

window l-dynamic frameproof code. In order to express these conditions we

define PL = {i ∈ L | Gi(Ξi) is a point of AG(k, 2)} for any time interval L.

We will refer to time segments i ∈ L\PL, for which Gi(Ξi) is a hyperplane, as

ordinary segments, and we will use the notation Σi = Gi(Ξi). Time segments

i ∈ PL will be called protection segments, and the point Pi = Gi(Ξi) will be

said to have been protected during segment i, since the corresponding user has

received a unique mark and thus cannot be framed by any other users at that

time. For i ∈ L\PL set Σ′
i = Σi if ξi = 1 and Σ′

i = Σi +Σ∞ if ξi = 0. Then at

time i ∈ L \PL the hyperplane Σ′
i contains those users whose received symbol

matches that broadcast by the pirate at that time.

Lemma 6.14. The family of functions {Dα}∞α=1 resulting from Construc-

tion 6.13 is a sliding-window l-dynamic frameproof code if and only if for

every valid pirate broadcast sequence {ξi}∞i=1 we have that for every length l

interval L the set

SL =
⋂

i∈L\PL

Σ′
i \ {Pj|j ∈ PL}

is empty.

Proof. Based on the above construction the set SL consists of those users

who have received symbols matching the pirate’s broadcast on all ordinary

segments of L but who have not been protected in any protection segment,

that is precisely of those users who have received a sequence of marks agreeing

82

with that broadcast by the pirate. It then follows trivially from the definition

of a sliding-window l-dynamic frameproof code that the code obtained from

the above construction is sliding-window l-dynamic frameproof precisely when

this set is empty. �

As an example of a geometric sliding-window l-dynamic frameproof code we

describe a code analogous to that of Construction 6.11, recast in the geometric

setting.

Example 6.7 Suppose there exists a set U containing 2k users, where k is

square. Choose a set S = {Σ∞, Σ1, Σ2, . . . , Σk} of k + 1 linearly-independent

hyperplanes in PG(k, 2) and associate each user u ∈ U with a point Pu in

PG(k, 2) \ Σ∞.

For i with (
√

k + 1) ∤ i define the images of Ξi under Gi to be succes-

sive hyperplanes from S, so that G1(Ξ1) = Σ1 and G2(Ξ2) = Σ2, and then

G√
k+2(Ξ

√
k+2) = Σ√

k+1 and so on.

When i < k +
√

k and (
√

k + 1) | i let Gi(Ξi) = Pu1. (This choice of point is

arbitrary.)

For i ≥ k +
√

k with (
√

k + 1) | i, define

Gi(Ξi) =
⋂

j∈{i−k−
√

k+1,...,i−1|(
√

k+1)∤j}

Σ′
j .

By construction Gi(Ξi) is the intersection of k linearly-independent hyper-

planes and is thus a point of AG(k, 2).

Therefore {Gi}∞i=1 consists of
√

k ordinary segments followed by a protec-

tion segment, and during protection segments occurring after time k +
√

k the

user who has been framed over the previous k ordinary segments is protected.

For instance, in the case k = 4 if the coordinates are chosen as in Ex-

ample 6.6 and the same set of hyperplanes is used then the resulting code

83

is the same as that described in Example 6.5 and Example 6.4 (comparing

the mark distribution tables of Example 6.6 and Example 6.4 reveals that the

distributions are the same during the corresponding ordinary segments).

We claim that the Gi thus defined constitute a geometric sliding-window

(k + 2
√

k)-dynamic frameproof code.

Proof. At each time i ≥ k +
√

k where (
√

k + 1)|i a user is allocated a unique

mark, as for such i we have that Gi(Ξi) is a point corresponding to the only

user who may have been framed over the previous k +
√

k − 1 time segments.

Consider any time interval I of length k + 2
√

k. There will be a time i with

(
√

k + 1)|i within the last
√

k + 1 segments of that interval; the k +
√

k − 1

segments prior to i will be contained in I. These k +
√

k− 1 segments contain

precisely k ordinary segments so the corresponding hyperplanes Σ′
i are linearly-

independent and thus intersect in a point. Hence over those k +
√

k segments

at most one user has been framed. That user is protected at time i, and thus

can not be framed at that time. Therefore we conclude that no user can be

framed for the entirety of I, and hence the code defined by our Gi is indeed

sliding-window k + 2
√

k-dynamic frameproof. �

Thus we see that there exist geometric codes with a convergence time of

k + 2
√

k. In an effort to bound the smallest possible convergence time that

can be achieved we consider here a particular strategy that might be adopted

by a pirate; the need to ensure that a code prevents framing by such a pirate

will allow us to deduce a bound for this minimal value.

Definition 6.15. We will use the term clever pirate to refer to a set of users

forming a pirate coalition that broadcasts marked segments according to the

84

strategy described below. (The description being necessarily somewhat convo-

luted the strategy is perhaps better illustrated by Example 6.8.)

• At any protection segment broadcast a 0.

• If an ordinary segment lies in a block of consecutive ordinary segments

contained in a window whose kth ordinary segment falls in that block, and

if the point that is the intersection of the k hyperplanes corresponding to

the pirate’s broadcast in those segments has not been protected during that

window then broadcast the symbol pertaining to the hyperplane containing

that point.

• At an ordinary segment that follows a non-empty block of consecutive

protection segments choose a symbol corresponding to a hyperplane con-

taining at most half of the points protected in those segments. In any sub-

sequent ordinary segments broadcast the symbol whose hyperplane con-

tains at most half of those protected points lying in the previously chosen

hyperplane, unless you are in the situation mentioned in the previous

rule. If the previously chosen hyperplane contains none of those pro-

tected points, consider the previous non-empty block of consecutive pro-

tections segments and choose the hyperplane containing at most half of

those points thus protected that lie in the intersection of the hyperplanes

coming from all subsequent ordinary segments. If none of the points lie

in this intersection consider the previous block of protected segments and

so on, until you reach a block lying at least l segments prior to the current

one or until you reach the first time segment; if this happens broadcast

a 0.

The following example shows a clever pirate’s broadcast in response to the

85

distribution of marks from a (supposed) sliding-window 7-dynamic frameproof

code for 23 users.

Example 6.8

1 2 3 4 5 6
u1 0 0 0 1 0 0 . . .
u2 0 0 1 0 0 0 . . .
u3 0 1 0 0 0 1 . . .
u4 0 1 1 0 0 1 . . .
u5 1 0 0 0 1 0 . . .
u6 1 0 1 0 1 0 . . .
u7 1 1 0 0 1 1 . . .
u8 1 1 1 0 1 1 . . .
T 0 0 0 0 1 0 . . .

Segment four is a protection segment, the others are all ordinary segments.

During the fourth segment the pirate is using the first of the above rules, and in

the fifth segment he is using the third rule: broadcasting a 1 here is equivalent

to choosing the hyperplane which does not contain the point belonging to u1,

who was protected in segment four. In the sixth time segment rule two is

being invoked: segment five is the third (i.e. the kth) ordinary segment of

the window commencing at segment two. The pirate broadcast in the three

ordinary segments 2, 3 and 5 corresponds to hyperplanes intersecting in u5’s

point, so in segment six the pirate broadcasts a 0 (the symbol received by u5

at this time). This second rule essentially ensures that any user who is framed

over the first k ordinary segments of a window continues to be framed unless

explicitly protected by a protection segment. �

We note that for any geometric sliding-window dynamic frameproof code

there will always be some set of users capable of acting as a clever pirate as

the set of all users is certainly able to do so. Also (provided there are more

than two users) any set consisting of all but one user is also able to behave as

a clever pirate.

86

The following lemma describes a consequence of a clever pirate’s actions,

and will play a role similar to that of Lemma 6.9 in allowing us to prove

Theorem 6.10, which gives us a bound for the convergence time of binary

geometric sliding-window l-dynamic frameproof codes.

Lemma 6.16. Let b be a positive integer, and suppose there are 2k users

for some k ≥ b. Suppose also that there exists a geometric code with the

property that when faced with a clever pirate at most b ordinary segments

occur consecutively at any time after some time t0. Then for any interval of

k+⌈k
b
⌉−2 consecutive segments occurring after t0 there exists some pirate set

T capable of behaving as a clever pirate and some user u /∈ T who is framed

over those segments.

Proof. Consider any length k+⌈k
b
⌉−2 interval occurring after time t0. Suppose

that a ≥ 0 ordinary segments occur within the interval. First we observe that

0 < a < k. If there were no ordinary segments then 2k protection segments

would be required to protect all the users, but k + ⌈k
b
⌉ − 2 < 2k − 2 < 2k for

all k. Furthermore, if there were k or more ordinary segments, the fact that

they can occur in blocks of at most b segments implies there would have to be

at least ⌈k
b
⌉ − 1 protection segments to separate them, which is impossible in

an interval of this size.

We assume therefore that there are 0 < a < k ordinary segments within

the interval. As these can occur in groups of at most b there must be at least

⌈a
b
⌉ − 1 protection segments separating them. For each of these separating

protection segments there is a corresponding nonempty block of consecutive

ordinary segments occurring at a later time within the interval; in the first or-

dinary segment of each block the clever pirate uses rule three and thus excludes

87

at least one protected point from the intersection of the pirate’s chosen hyper-

planes. There are then k + ⌈k
b
⌉ − 2 − a − ⌈a

b
⌉ + 1 further protection segments

whose protected points may lie in this intersection.

Now a hyperplanes intersect in a space of dimension k− a containing 2k−a

points of which up to k + ⌈k
b
⌉ − 1 − a − ⌈a

b
⌉ are protected.

We observe that

2k−a − (k +
k

b
) + a +

a

b
= 2k−a − (k − a)

b + 1

b

≥ 2k−a − 2(k − a) (as b ≥ 1)

≥ 0.

Hence 2k−a + a + a
b
≥ k + k

b
and therefore 2k−a + a + ⌈a

b
⌉ ≥ k + ⌈k

b
⌉, and

2k−a − (k + ⌈k
b
⌉ − 1 − a − ⌈a

b
⌉) ≥ 1. Thus we conclude that there is at least

one user who is framed over the entire interval. If we denote this user by u

then the set U \{u} is capable of behaving as a clever pirate and thus framing

u. �

By definition a sliding-window l-dynamic frameproof code must be able to

protect every potentially-innocent user from being framed regardless of which

users form the pirate coalition and which marks it chooses to broadcast; it

must therefore be able to protect all users from a clever pirate. We use this

fact to obtain the following result.

Theorem 6.17. A binary geometric sliding-window l-dynamic frameproof code

protecting 2k users must satisfy l ≥ k + ⌈2
√

k⌉ − 1.

Proof. The proof of this result is analogous to that of Theorem 6.10. Suppose

there exits a binary geometric sliding-window l-dynamic frameproof code with

l ≤ k + ⌈2
√

k⌉ − 2. Suppose the code is applied against a clever pirate, and

consider a length l window W starting after time t = l(2
√

k−1) that ends with

88

b consecutive ordinary segments, for some b ≥ 1. As before we can assume

b < 2
√

k. Prior to these b segments the window contains l−b segments, ending

with a protection segment. However l−b < k+⌈2
√

k⌉−1−b. This is less than

k + ⌈k
b
⌉ − 1 for any k and b > 0 since (

√
k − b)2 ≥ 0, implying k + b2 ≥ 2b

√
k

and thus k
b
≥ 2

√
k − b. Suppose that these l − b segments have the property

that at most b ordinary segments occur consecutively. By Lemma 6.16 at

least one user has been framed over those l − b segments. We claim that the

clever pirate continues to frame one or more of these users over the remaining

b ordinary segments of the window. At the first of these ordinary segments

the third clever pirate rule is invoked, so the pirate chooses the hyperplane

whose intersection with the previously-chosen hyperplanes contains the least

number of points protected by the most recent block of protection segments.

Lemma 6.16 implies that at least one point in this intersection is not protected,

hence the intersection with the newly-chosen hyperplane must also contain at

least one unprotected point. During the remaining segments either the third

rule is used again, in which case there is at least one user who continues

to be framed as before, or else the second rule is required. In this case the

intersection of the first k hyperplanes chosen by the pirate is an unprotected

point, which will lie in any further hyperplanes chosen. Hence the intersection

of all the hyperplanes chosen by the pirate in the window W contains at least

one unprotected point. Thus some user is framed over the entire window,

contradicting the fact that the code was sliding-window l-dynamic frameproof.

From this we deduce that the first l − b segments of the window must in fact

have included some block of b′ > b consecutive ordinary segments.

Repeating this process as in the proof of Theorem 6.10 leads to a con-

tradiction as before, thus implying that l is in fact greater than or equal to

89

k + ⌈2
√

k⌉ − 1. �

This result yields a much-improved lower bound on l for most values of

k. There is still a slight discrepancy between the upper and lower bounds for

l, as the best known construction have l = k + ⌈2
√

k⌉, one greater than the

above lower bound. Thus a problem remains open: does there exist a binary,

geometric, sliding-window l-dynamic frameproof code with l = k + ⌈2
√

k⌉ − 1?

Also, the above bound applies only to geometric codes. Attempts to extend

the concept of a clever pirate to the setting of general binary sliding-window

dynamic frameproof codes encounter the problem that whereas in the geo-

metric setting exactly half the users received each symbol during an ordinary

segment, in the general case this is not necessarily so. This causes the dilemma

that whereas choosing one mark might result in more users being framed in

a particular segment, choosing the other might enable the pirate to continue

framing a larger group than would otherwise be the case. Thus it is not always

immediately clear which choice of broadcast mark most benefits the pirate. (In

practice the pirate will be unaware of the mark distribution and will there-

fore not be consciously making such choices; as we wish to protect against all

pirates, however, we need to make sure our schemes are proof against pirates

who by chance choose to broadcast those symbols that benefit them most.)

Example 6.9 Suppose the mark distribution and pirate broadcast over four

time segments are as follows.

1 2 3 4
u0 0 0 0 0
u1 0 1 0 1
u2 1 0 0 0
u3 0 0 1 1
u4 1 1 1 1
T 0 0 0 ?

At time 4, by broadcasting a 1 the pirate can frame three users instead of

90

two, increasing its potential to continue framing in successive segments. By

broadcasting a 0, however, the pirate ensures that two users instead of no users

are framed over segments 2 to 4, and similarly ensures user u0 is framed over

all four segments, whereas no user would have been thus framed had 1 been

chosen. �

This leads to a second open problem: do there exist binary sliding-window

dynamic frameproof codes protecting n users with a convergence time l less

than that of any geometric binary sliding-window dynamic frameproof code

protecting n users?

We now proceed to describe geometric constructions for sliding-window

dynamic frameproof codes using alphabets of size q > 2. We will see that

when q > 2 the geometrically-constructed codes certainly do not achieve the

optimum possible l.

6.3 Geometric Constructions for Prime Power

Values of q

The geometric constructions of binary sliding-window dynamic frameproof

codes in the previous section generalise readily to yield q-ary sliding-window

dynamic codes where q is a power of a prime. In this section we describe

these generalisations and discuss certain limitations of codes constructed in

this manner.

For every prime power q and for every positive integer k there exists a

k-dimensional affine space AG(k, q) containing qk points. The hyperplanes

of AG(k, q) are partitioned into parallel classes, each containing q pairwise

disjoint hyperplanes. Given a parallel class ∆ the hyperplanes within that

class can therefore be labelled H∆
i where i ∈ GF (q). We use this fact in

91

constructing mark distributions from sequences of elements in Γq,k by the

following method, which is a generalisation of Construction 6.13.

Construction 6.18. Let q be a prime power. Suppose there are qk users; we

identify these users with the points of AG(k, q). Define the set Γq,k by setting

Γq,k = {points of AG(k, q)} ∪ {parallel classes of hyperplanes of AG(k, q)}.

Suppose there exists a countable family of functions {Gα}∞α=2 where the

function Gα : GF (q)α−1 → Γq,k, and let G1 be an element of Γq,k.

We construct a family of functions {Dα}∞α=1 with D1 : U → GF (q) and

Dα : GF (q)α−1 × U → GF (q) for α > 1 by setting

D1(u) =

1 if G1 = u,

i if u ∈ HG1
i ,

0 otherwise,

and

Dα(Ξα, u) =

1 if Gα(Ξα) = u,

i if u ∈ H
Gα(Ξα)
i ,

0 otherwise,

for α > 1.

As in the binary case, if Gα(Ξα) is a point, then the corresponding user

receives a 1 and all others receive a 0; this is a protection segment. If Gα(Ξα)

is a parallel class then the users are partitioned by the hyperplanes of this class

into q pair-wise disjoint sets of qk−1 users, with all the users in a set receiving

the same symbol. Segments where this occurs are called ordinary segments, as

before. The difference from the binary case is simply that in ordinary segments

the users are split into q sets instead of 2 by the distribution of the symbols.

As previously, if L is a time interval we define the set of time segments

PL = {i ∈ L|Gi(Ξi) is a point of AG(q, k)} and we denote Gi(Ξi) by Pi when

i ∈ PL. If the pirate broadcast is {ξi}∞i=1 then for i ∈ L \ PL we set

92

Σ′
i = Σ

Gi(Ξi)
ξi

; this is the hyperplane in class Gi(Ξi) whose points correspond

to the users whose marks match the pirate’s broadcast at time i. Then we see

that Lemma 6.14 remains valid in this context too:

Lemma 6.19. The family of functions {Dα}∞α=1 is a sliding-window l-dynamic

frameproof code if and only if for every valid pirate broadcast sequence {ξi}∞i=1

we have that for every length l interval L the set

SL =
⋂

i∈L\PL

Σ′
i \ {Pj|j ∈ PL}

is empty.

In the case where q is a prime power and k is a square we can use this lemma

to generalise the construction of Example 6.7 to yield a q-ary geometric sliding

window (k + 2
√

k)-dynamic frameproof code protecting qk users, as described

below.

Example 6.10 Suppose that there are qk users with q a prime power and k

square. Choose a set S = {Σ∞, Σ1, Σ2, . . . , Σk} of k + 1 linearly-independent

hyperplanes in PG(k, q), and associate each user u ∈ U with a point Pu in

the space AG(k, q) = PG(k, q) \ Σ∞. The hyperplanes of AG(k, q) given by

Σi ∩ AG(k, q) for i ∈ 1, 2, . . . , k each lie in distinct parallel classes, since the

set of hyperplanes {Σi|i = ∞, 1, 2, . . . , k} is linearly independent. Denote the

parallel class containing Σi by ∆i, and let D = {∆i|i = 1, 2, . . . , k}.

For i with (
√

k + 1) ∤ i define the images of Ξi under Gi to be successive

parallel classes from D, so that G1(Ξ1) = ∆1 and G2(Ξ2) = ∆2, and then

G√
k+2(Ξ

√
k+2) = ∆√

k+1 and so on.

When i < k +
√

k and (
√

k + 1) | i let Gi(Ξi) = Pu1. (This choice of point

93

is arbitrary.) For i ≥ k +
√

k with (
√

k + 1) | i, define

Gi(Ξi) =
⋂

j∈{i−k−
√

k+1,...,i−1|(
√

k+1)∤j}

Σ′
j .

By construction Gi(Ξi) is the intersection of k hyperplanes from different par-

allel classes, which are therefore linearly independent, hence this intersection

is a point of AG(k, q). The proof that Example 6.7 yields a sliding-window

(k + 2
√

k)-dynamic frameproof code can now be applied to show that this

construction also produces a sliding-window (k + 2
√

k)-dynamic frameproof

code, except that in this case the alphabet is of size q, and the number of

users protected is qk. �

It is possible to generalise Construction 6.12 in the same manner, yielding

a (k + 1)-dynamic frameproof code protecting qk users. This is described in

the following example, which may also serve to elucidate Example 6.10.

Example 6.11 Suppose there are nine users and you wish to construct a

3-ary, 3-dynamic frameproof code. In this case k = 2 so PG(k, 3) is the

projective plane of order 3, whose hyperplanes are lines and whose points have

coordinates (x, y, z) with x, y, z ∈ GF (3) not all zero. The lines Σ∞ : z = 0,

Σ1 : x = 0 and Σ2 : y = 0 are linearly independent. We choose Σ∞ to be

the line at infinity and associate points of Pu ∈ PG(2, 3) \ Σ∞ with each

user by setting u0 → (0, 0, 1), u1 → (0, 1, 1), u2 → (0, 2, 1), u3 → (1, 0, 1),

u4 → (1, 1, 1), u5 → (1, 2, 1), u6 → (2, 0, 1), u7 → (2, 1, 1) and u8 → (2, 2, 1).

The parallel class ∆1 contains the lines H∆1
0 : x = 0, H∆1

1 : x + z = 0

and H∆1
2 : x + 2z = 0; the parallel class ∆2 contains lines H∆2

0 : y = 0,

H∆2
1 : y + z = 0 and H∆2

2 : y + 2z = 0.

We define functions Dα for α = 1, 2 by

Dα(Ξα, u) = i when u ∈ H∆α

i .

94

We also define a function D3 by setting

D3(Ξ3, u) =

{

1 if u = Σ′
1 ∩ Σ′

2,

0 otherwise.

At time 1 the point (0, 1, 1) corresponding to user u1 lies on the line H∆1
0 , so

this user receives the symbol 0 at this time, and so on. The marks received

by the users, given a particular pirate broadcast, are shown in the following

table.
1 2 3

u0 0 0 0
u1 0 2 0
u2 0 1 0
u3 2 0 0
u4 2 2 0
u5 2 1 0
u6 1 0 0
u7 1 2 0
u8 1 1 1
T 1 1 0

The marks broadcast by the pirates at times 1 and 2 correspond to the lines

H∆1
1 and H∆2

1 respectively, which intersect in the point
∣

∣

∣

∣

∣

∣

x y z
1 0 1
0 1 1

∣

∣

∣

∣

∣

∣

= (2, 2, 1) → u8,

hence user u8 receives a 1 at time 3, with the other users receiving 0. �

We have thus seen how geometric constructions yield (k + 1)-dynamic

frameproof codes protecting qk users using an alphabet of size q. We know,

however, from Theorem 5.6 that this is not optimal when q > 2, as there exist

q-ary, (k + 1)-dynamic frameproof codes protecting up to qk(q − 1) users. We

will see in the following chapter that the sliding-window dynamic frameproof

codes of Example 6.10 are also suboptimal in the number of users they sup-

port. This points to a weakness in the geometric construction when q > 2,

which is quickly seen to arise from the protection segments. In the binary

95

case it was only possible to protect one user in any given segment. When

q > 2 it is possible to assign up to q − 1 unique marks and thereby protect up

to q − 1 users in one segment. The geometric constructions described above

only permit one user to be protected, however, thereby losing this potential

flexibility. One might be tempted to modify the definition of the geometric

construction to enable q − 1 users to be protected in each protection segment.

The problem with this, however, is that the set of users framed over a series of

γ ordinary segments is a subspace of AG(k, q) and consequently contains qk−γ

users. Thus if more than one user is in danger at a protection segment then

at least q users are, so it is impossible to protect all of them in one segment.

The number q − 1 of possible unique marks in any one segment does not fit

efficiently with the fact that the number of users is restricted to being a power

of q; consider the fact that l-dynamic frameproof codes can protect at most

ql−1(q − 1) users. One might consider using a subset of AG(k, q) of an appro-

priate size, but in doing so one loses the symmetry that made the geometric

constructions attractive in the first place.

A restriction to protecting at most one user per segment might not in

fact be a problem (see Section 7.3); the real disadvantage of the geometric

constructions described above is the fact that in protection segments only two

symbols are used, hence q − 2 potentially-useful symbols are wasted. It is

possible to distribute q − 1 symbols amongst the users and still give a unique

mark to one user. Examples of this were seen in Construction 6.4, which

yields shorter convergence times than the geometric constructions for certain

numbers of users.

Lastly, there is also the objection that the geometric construction is re-

stricted to cases where q is a prime power. In the following chapter we will

96

investigate q-ary sliding-window dynamic frameproof codes for general q that

draw their inspiration from the geometric constructions, but which overcome

the abovementioned shortcomings to protect greater numbers of users for a

given value of l.

97

Chapter 7

Improved Constructions of

Sliding-Window Dynamic

Frameproof Codes

In this chapter we investigate a family of constructions of sliding-window

l-dynamic frameproof codes, and show that all our previous constructions can

be interpreted as members of this family. We make use of this connection to

compare our existing constructions and consider optimal choices of certain pa-

rameters. We then demonstrate that it is possible to construct sliding-window

dynamic frameproof codes that protect more users than those resulting from

previous constructions when the same parameters are used. We show that

the schemes arising from these new constructions are optimal for the given

parameters. After a brief consideration of the asymptotic properties of these

codes as the alphabet size is increased we conclude with a discussion of some

unresolved issues.

7.1 A Unifying Family of Constructions

So far we have seen several constructions for q-ary sliding-window dynamic

frameproof codes such as Construction 6.4, the construction of Example 6.10,

98

and the construction arising from the repeated application of dynamic frame-

proof codes (see Example 6.2). In general it can be hard to say conclusively

whether one of these constructions is better than another; quick calculations

serve to demonstrate that for certain values of l, q and n one of these con-

structions is more efficient than the others, whereas other choices of parameter

may lead to a less-efficient code resulting from the same construction.

Example 7.1 Suppose there are qk users, where q = 3 and k = 25. Then Con-

struction 6.4 yields a sliding-window 41-dynamic frameproof code, whereas

Example 6.10 yields a more-efficient sliding-window 35-dynamic frameproof

code. If, however, q is increased to 20 then the tables are turned, with the code

resulting from Construction 6.4 being sliding-window 27-dynamic, making it

more efficient then the sliding-window 35-dynamic frameproof code resulting

from Example 6.10. �

These constructions all have certain elements in common, however, such

as their use of unique marks, the necessity of which can be shown by adapting

the proof of Lemma 4.5. In fact we will see that these separate constructions

can instead be thought of as members of a larger family of constructions.

7.2 A New Family of Constructions

Section 6.3 contained a discussion of some of the limitations inherent in geo-

metric constructions when the alphabet size is greater than two. This forces us

to go beyond the restrictions of the geometric setting if we wish to construct

more-efficient schemes. In what follows we discuss several heuristic princi-

ples that can be used to inform the design of such schemes, and we present a

construction based on these principles.

In general we observe that any time segment can be either a protection

99

segment (in which at least one user receives a unique mark) or an ordinary

segment. It would seem desirable in an ordinary segment to divide the q

available symbols as evenly as possible among the users, as this ensures that

that at most
⌈

n
q

⌉

users will receive a symbol matching the pirate broadcast at

that time.

In a protection segment it is possible to protect up to q − 1 users, since

an alphabet of size q allows at most q − 1 unique symbols to be distributed.

Inflexibility in this respect was one of the limitations of the geometric schemes

discussed in Section 6.3. To overcome this, we introduce a parameter a, with

1 ≤ a ≤ q−1 being the number of users protected in each protection segment.

Choosing to protect the same number of users in each protection segment not

only simplifies the description of the scheme but permits us to choose the

number a that leads to the most efficient schemes, given particular values of l

and q. Once a users are protected q − a symbols remain at the disposal of the

broadcaster; as in the case of the ordinary segments these remaining marks

will be distributed evenly among the remaining users. Thus at most
⌈

n−a
q−a

⌉

users can be framed in such a segment.

It would be possible to envisage a scheme in which the distribution of

protection segments was determined as a reaction to the pirate broadcast.

In the construction described below, however, the distribution of the protec-

tion segments will be predetermined, with the information from the pirate

broadcast being used instead to determine which users are protected in each

such segment. We introduce a second parameter b ≥ 0, being the number

of ordinary segments occurring between successive protection segments. As

discussed above this simplifies the description of the schemes and allows an

optimal spacing of the protection segments to be determined. We observe that

100

any ordinary segments occurring after the final protection segment cannot be

relied upon for framing prevention. If there are b ordinary segments between

protection segments, then a window ends in at most b ordinary segments. In

this case the final protection segment is preceded by l−b−
⌈

l−b
b+1

⌉

ordinary seg-

ments and
⌈

l−b
b+1

⌉

− 1 protection segments that fall within that window. Every

length l window can thus be guaranteed to have at least this many ordinary

and protection segments occurring before the final protection segment of the

window.

Having decided how many unique marks to allocate in a protection seg-

ment, and how many ordinary segments will lie between those segments, it

is necessary to decide how to determine the mark distribution within each

segment, given the condition that non-unique symbols are evenly distributed

among the users. We wish to avoid the case where the same mark distribution

is used in adjacent ordinary segments as the pirate could then broadcast the

same symbol each time, thus continuing to frame a particular set of users,

without yielding any new information that would help prevent this framing.

Example 7.2 Of the tables below, the one on the left illustrates two ordinary

segments using the same distribution. Here the pirate frames three users over

both segments.
1 2

u0 0 0
u1 0 0
u2 0 0
u3 1 1
u4 1 1
u5 1 1
u6 2 2
u7 2 2
u8 2 2
T 0 0

1 2
u0 0 0
u1 0 1
u2 0 2
u3 1 0
u4 1 1
u5 1 2
u6 2 0
u7 2 1
u8 2 2
T 0 0

101

In the table on the right, however, the pirate is only able to frame one user,

no matter what marks it decides to broadcast, as each user has received a

different pair of marks. �

In the geometric constructions we used linearly independent hyperplanes

in successive ordinary segments. This ensured not only that each symbol was

distributed evenly among the users in each ordinary segment, but also that in

every i succesive ordinary segments, for i = 1, 2, . . . , k all the possible length i

sequence of symbols were evenly distributed among the users over that time.

We will make use of this property in our subsequent construction.

Taking the above considerations in mind we now present a construction of

a family of q-ary sliding-window l-dynamic frameproof codes.

Construction 7.1. Let q ≥ 2 and Q = {0, 1, . . . , q − 1}, with 1 ≤ a ≤ q − 1,

and b ≥ 0 with l ≥ 2b + 1. We will construct a sliding-window l-dynamic

frameproof code supporting n = ql−b−⌈ l−b
b+1⌉(q − a)⌈ l−b

b+1⌉−1a users.

Consider the set S of all words of length l− b− 1 whose first l − b −
⌈

l−b
b+1

⌉

letters come from Q and whose remaining letters are restricted to the set

{0, 1, . . . , q − a − 1}. Then S contains ql−b−⌈ l−b
b+1⌉(q − a)⌈ l−b

b+1⌉−1 = n
a

words.

Define an n × (l − b − 1) array M = (mij) by letting the first a rows of M

be given by a particular word from S, the next a rows be given by a different

word of S, and so on. We partition M into an array MO = (gij) of size

n×
(

l− b−
⌈

l−b
b+1

⌉)

and an array MP = (hij) of size n×
(⌈

l−b
b+1

⌉

− 1
)

by letting

MO consist of the first l − b −
⌈

l−b
b+1

⌉

columns of M , and MP the rest.

M =

g11 · · · g
1

„

l−b−
⌈

l−b
b+1

⌉

« h11 · · · h
1

„

⌈

l−b
b+1

⌉

−1

«

...
...

...
...

gn1 · · · g
n

„

l−b−
⌈

l−b
b+1

⌉
« hn1 · · · h

n

„

⌈

l−b
b+1

⌉

−1

«

102

The entries of MO come from Q, and those of MP lie in {0, 1, . . . , q − a − 1}.

We will now use these arrays in the construction of the mark distribution for

a sliding-window l-dynamic frameproof code.

• Segments occurring at times j where (b+1) ∤ j will be ordinary segments.

We define a function D1 : U → Q by

D1(ui) = gi1.

• We define the distribution at successive ordinary segments by using suc-

cessive columns of MO. So if at some ordinary segment the column γ−1

of MO was used
(

mod l − b −
⌈

l−b
b+1

⌉)

and the next ordinary segment oc-

curs at some time j we define Dj : Qj−1 × U → Q by

Dj(Ξj , ui) = giγ.

• In protection segments occurring before time l−b we will protect the first

a users; this choice is arbitrary (see note below). In the first protection

segment, occurring at time b + 1, we define Db+1 by

Db+1(Ξj , ui) =

{

i + q − a when j = 0, 1, . . . , a,

hi1 otherwise.

• In subsequent protection segments occurring prior to time l − b we con-

tinue to protect the first a users, and distribute the rest of the marks

according to successive columns of MP .

• At the first protection segment occurring at time l − b or later, we con-

sider the l−b−1 previous time segments. We observe that l−b−
⌈

l−b
b+1

⌉

of

these are ordinary segments, and the remaining
⌈

l−b
b+1

⌉

− 1 are protection

segments. Because of the way the marks have been allocated these seg-

ments represent a permutation of the columns of M and the sequences of

103

marks received by each user will be such that each possible sequence will

have been received by up to a users. As each row in M matched exactly

a − 1 other rows of M we see that the pirate will have framed at most a

users (it may be the case that some of the a users whose sequences would

otherwise have corresponded to that row of M were actually previously

protected during this time). The symbols q−a, q−a+1, . . . , q−1 are al-

located to these users as unique marks; the other users have their marks

allocated according to the next column of MP .

• This same procedure is followed at all future protection segments.

We note that the choice of users who are protected in the first l−1 segments

does not affect the functioning of the scheme: there is no danger of a user

having been framed over l segments as there aren’t enough previous segments.

Each window of l consecutive segments must include some sequence of l − b

segments ending with a protection segment, due to the fact that the last

protection segment of any window is at most b segments from the end of the

window. Therefore each window contains a sequence of l − b segments over

which no user has been framed; hence the resulting scheme is a sliding-window

l-dynamic frameproof code.

Example 7.3 Suppose q = 4 and l = 5, and that a = 2 and b = 1.

0 0 0
0 0 0
0 0 1
0 0 1
0 1 0
...

...
...

3 3 0
3 3 1
3 3 1

104

Then the above construction yields a code protecting 64 users; the correspond-

ing array M appears above.

The following table demonstrates how the marks are allocated to some of

the 64 users over the first nine segments, based on a particular pirate broad-

cast.
1 2 3 4 5 6 7 8 9

u0 0 0 0 0 0 0 0 0 0
u1 0 0 0 0 0 0 0 0 0
u2 0 1 0 1 0 1 0 1 0
u3 0 1 0 1 0 1 0 1 0
u4 0 0 1 2 0 0 1 0 0
u5 0 0 1 3 0 0 1 0 0
u6 0 1 1 1 0 2 1 1 0
u7 0 1 1 1 0 3 1 1 0
u8 0 0 2 0 0 0 2 2 0
u9 0 0 2 0 0 0 2 3 0
...

...
...

...
...

...
...

...
...

...
u64 3 1 3 1 3 1 3 1 3
T 0 0 1 1 0 0 2 1 3

Unique marks have been written in bold, the odd-numbered segments are

ordinary segments and the even-numbered segments are protection segments.

Any user who is framed over the three segments prior to a protection segment

receives a unique mark in that segment, which ensures that no user is framed

over four segments that commence with an odd-numbered segment. As any

length 5 window contains such a sequence of segments this mark distribution

corresponds to a sliding-window 5-dynamic frameproof code. �

In fact all the previously-discussed constructions of sliding-window dy-

namic frameproof codes, except for the sub-optimal Example 6.10, can be

thought of as members of the family of such codes created in the above man-

ner. In Table 7.1 we list all these constructions, as well as the lengths, alphabet

sizes and values of a and b that give rise to them.

105

Construction q l a b n

Example 6.2 3 21 2 10 2 × 310

Construction 6.4 q l 1 0 (q − 1)l−1

Construction 6.7 2 2k 1 k − 1 2k

Construction 6.11 2 k + 2
√

k 1
√

k 2k

Example 6.7 2 k + 2
√

k 1
√

k 2k

Table 7.1: parameters of the known constructions of sliding-window l-dynamic
frameproof codes

The fact that all these constructions can be viewed as members of a com-

mon family gives us a framework in which to compare them, and they can be

related to each other through the parameters a and b. Given particular values

of q and l the broadcaster can choose the values of these parameters in order

to maximise the number of users supported by the resulting scheme.

In the following sections we look more closely at special cases corresponding

to particular choices for the parameters a and b and consider situations in

which it is beneficial to use these values.

7.3 The Case where a = 1

Sliding-window l-dynamic frameproof codes arising from the above construc-

tion can support up to ql−b−⌈ l−b
b+1⌉(q − a)⌈ l−b

b+1⌉−1a users. In the case where

l = 2b + 1 this reduces to qba, which is maximised with respect to a when

a = q − 1. If l > 2b + 1, however, we have

n(a) = ql−b−⌈ l−b
b+1⌉(q − a)⌈ l−b

b+1⌉−1a,

the derivative of which is

dn

da
= ql−b−⌈ l−b

b+1⌉
(

(q − a)⌈ l−b
b+1⌉−1 − a

(⌈

l−b
b+1

⌉

− 1
)

(q − a)⌈ l−b
b+1⌉−2

)

,

= ql−b−⌈ l−b
b+1⌉(q − a)⌈ l−b

b+1⌉−2
(

q −
⌈

l−b
b+1

⌉

a
)

.

106

The first two factors of this expression are positive, hence the derivative is

zero only when a = q

⌈ l−b
b+1⌉ . Therefore n(a) has a single stationary point, which

is a local maximum, thus n is maximal when a takes this value. When l is

sufficiently large with respect to b and q this quantity is less than one, hence

the optimal value for a (which has to be a positive integer) is 1. This is a

plausible scenario, since the broadcaster is likely to wish to use a small value

of q to reduce costs, which will necessitate a larger value of l. Furthermore, in

the case of a binary alphabet a is necessarily equal to 1. When a = 1 we have

that n = ql−b−⌈ l−b
b+1⌉(q − 1)⌈ l−b

b+1⌉−1. Ignoring the ceilings and treating this as a

continuous function we see that

n(b) = ql−b− l−b
b+1 (q − 1)

l−b
b+1

−1,

= eln q(l−b− l+1
b+1

+1)+ln(q−1)(l+1
b+1

−2).

Taking the derivative with respect to b yields

dn

db
=

(

ln q
(

−1 + l+1
(b+1)2

)

− ln(q − 1) l+1
(b+1)2

)

ql−b− l−b
b+1 (q − 1)

l−b
b+1

−1,

=
(

l+1
(b+1)2

(ln q − ln(q − 1)) − ln q
)

ql−b− l−b
b+1 (q − 1)

l−b
b+1

−1.

The final two factors in this expression are non-zero, hence n(b) has stationary

points when

(b + 1)2 = (1 − logq(q − 1))(l + 1).

This equation has two solutions, one with b > 0 that corresponds to a local

maximum, the other with b < 0. Hence when b is restricted to the region

0 ≤ b ≤ l−1
2

the value of n is maximised when b satisfies the above equation.

In the binary case this amounts to (b + 1)2 = l + 1. This accords with what

we have seen with Construction 6.11 where a code with minimal l = k + 2
√

k

was found to result from b =
√

k, since (
√

k + 1)2 = k + 2
√

k + 1.

107

In practice numerical calculations can be used to determine the optimal

value of b for a particular q and l, but this analysis at least gives an idea of

the expected results.

7.4 The Case where b = 0

The quantity n is of the form ql−b+1 + O(ql−b−2). The degree of the leading

term is maximal when b = 0, hence for sufficiently large q choosing a scheme

with b = 0 will result in the greatest number of users being protected. In

this case the slight gain represented by having more ordinary segments with q

symbols to divide among the users instead of the q−a available in a protection

segment is offset by the fact that there are up to b ordinary segments at the

end of a window that cannot guarantee protection, which means there are

fewer multiples of (q − a) or q contributing to the value of n.

When b = 0 we have n = (q − a)l−1a. This is maximised when a = q

l
,

which leads to n = (l−1)l−1

ll
ql.

7.5 Improved Constructions of Sliding-Window

Dynamic Frameproof Codes

We have a framework in which to analyse known constructions of sliding-

window l-dynamic frameproof codes; we now wish to determine whether there

exist constructions that can protect more users for given values of q and l. In

fact better constructions do exist, as we will see in the following section. The

codes resulting from Construction 7.1, while having many beneficial properties,

are still inefficient in certain respects. For example they rely on the last

protection segment of each window to protect any previously-framed users,

without taking into account any protection resulting from protection segments

108

occurring earlier in the window. On account of this, in some windows the

number of users framed prior to the final protection segment may be less than

a, in which case to protect a users at that time is to fail to use the available

resources with maximal efficiency. Information from the pirate broadcast is

only used to determine which users are protected in the protection segments;

in the following section we will see constructions in which this information is

used not only for this purpose, but also for determining how non-unique marks

are distributed at each time.

7.5.1 Improved Constructions with b = 0

In the interest of simplicity we begin by considering the case in which precisely

a users receive unique marks in every segment. We find that it is possible to

construct sliding-window l-dynamic frameproof codes with this property, that

protect up to a
(

(q−a)l−1+(q−a)l−2+· · ·+(q−a)+1
)

users. This construction

relies on the trivial observation that if the pirate broadcast at time t is ξt then

any users requiring protection at time t+1 must also have received the symbol

ξt at time t. In later sections we generalise it to the case where b > 0.

Construction 7.2. This construction uses the alphabet Q = {0, 1, . . . , q − 1}

to protect n = a
(

(q− a)l−1 +(q − a)l−2 + · · ·+(q − a)+ 1
)

users over windows

of size l, with a users receiving unique marks in each segment.

• In the first time segment, give the marks q− a, q− a+1, . . . , q− 1 to the

first a users. The remaining marks are to be distributed evenly among

the remaining a
(

q − a)l−1 + (q − a)l−2 + · · ·+ (q − a)
)

users; we observe

that each mark is received by a
(

(q−a)l−2 +(q−a)l−3 + · · ·+(q−a)+1
)

of those users.

109

• Denote the pirate broadcast at time 1 by ξ1. In the second time segment

give the marks q− a, q − a + 1, . . . , q− 1 to the first a users who received

the mark ξ1 at time 1. Distribute the first q−a symbols evenly among the

rest of the users who were framed at time 1; each mark is thus received

by a
(

(q − a)l−3 + (q − a)l−4 + · · · + (q − a) + 1
)

of these users. Then

distribute those symbols evenly among the remaining users.

• Repeat this process for the first l−1 segments as follows: at time t protect

the first a users who have been framed over the first t − 1 segments.

Distribute the first q − a symbols evenly among the remaining users who

have been framed over those segments. Then consider the set of users

who have been framed over segments 2 to t − 1; give the symbols 0 to

q − a− 1 to any users of this set who have yet to be allocated a mark so

that these symbols are distributed evenly among the users in this set other

than those protected at time t. Note that the number of users framed over

this time is a
(

(q−a)l−1−(t−2) +(q−a)l−2−(t−2) + · · ·+(q−a)+1
)

and a of

them have been protected at time t, hence each of the first q − a symbols

is received by a
(

(q−a)l−2−(t−2) +(q−a)l−3−(t−2) + · · ·+(q−a)+1
)

users

in this set. Then repeat this process with the set of users who have been

framed over segments 3 to t − 1 and so on until all users have received

marks.

• The number of users who have been framed over the first l−1 segments is

a; at time l give these users the unique marks q − a, q − a + 1, . . . , q − 1.

Then consider any remaining users who have been framed over the pre-

vious l − 2 segments and allocate the first q − a symbols to them so that

these symbols are evenly distributed on the set of all unprotected users

110

framed over these segments. Then repeat this process with the set of users

who have been framed over the previous l − 3 segments, and so on until

all users have received marks.

• Repeat this process in all subsequent segments.

This construction ensures that precisely a users are framed over the first

l − 1 segments of each window; these users are then protected in the final

segment of the window, hence the resulting mark distribution constitutes a

sliding-window l-dynamic frameproof code. This example shows how it works

in practice.

Example 7.4 Let l = 3 and q = 4, with a = 2. Then the resulting scheme

will protect 2(22 +2+1) = 14 users. The following table shows an example of

the above construction being applied over 7 segments given a particular choice

of pirate broadcast.
1 2 3 4 5 6 7

u0 2 0 0 2 0 0 0
u1 3 0 0 3 0 0 0
u2 0 2 0 0 2 0 0
u3 0 3 0 0 3 0 0
u4 0 0 2 0 0 1 0
u5 0 0 3 0 0 1 0
u6 0 1 0 1 0 1 1
u7 0 1 0 1 0 1 1
u8 1 0 1 0 1 2 1
u9 1 0 1 0 1 3 1
u10 1 1 1 1 1 0 1
u11 1 1 1 1 1 0 1
u12 1 1 1 1 1 1 2
u13 1 1 1 1 1 1 3
T 0 0 0 0 1 1 0

We observe that it does not matter how the symbols are distributed among

users who have not been framed, except that an overall even distribution of

symbols in each segment must be achieved. Hence users u10 to u13 receive the

111

same sequence on the first five segments without ill effect, as none of them are

framed on any of those segments. �

This construction is clearly more efficient then Construction 7.1, since with

the same parameters it can protect a
(

(q−a)l−1 +(q−a)l−2 + · · ·+(q−a)+1
)

users, compared with a(q − a)l−1. In fact no greater number of users can be

protected by a scheme in which precisely a users receive unique marks in each

segment:

Theorem 7.3. Suppose there exists a q-ary sliding-window l-dynamic frame-

proof code protecting n users, in which a users receive unique marks during

each segment, with 1 ≤ a ≤ q − 1. Then n satisfies

n ≤ a
(

(q − a)l−1 + (q − a)l−2 + · · ·+ (q − a) + 1
)

.

Proof. Suppose there exists such a code protecting n users where n satis-

fies n ≥ a
(

(q − a)l−1 + (q − a)l−2 + · · ·+ (q − a) + 1
)

+ 1. Suppose a pirate

adopts the strategy over the first l time segments of always broadcasting a sym-

bol that ensures that the greatest possible number of users has been framed

over those segments. During the first time segment a users receive unique

marks, which leaves q−a marks to be distributed among the remaining users.

By the pigeon-hole principle one such mark is received by at least h1 users,

where h1 = a
(

(q − a)l−2 + (q − a)l−3 + · · ·+ (q − a) + 1
)

+ 1; hence at least h1

users are framed at this time. In the second time segment, there exists some

symbol that is received by at least h2 of the users framed at time 1, where

h2 is equal to
⌈

h1−a
q−a

⌉

= a
(

(q − a)l−3 + (q − a)l−4 + · · · + (q − a) + 1
)

+ 1.

Thus the pirate broadcasts a symbol ensuring that at least h2 users have

been framed over the first two symbols. Applying this reasoning to the first

l − 1 time segments ensures that over the first i of these segments at least

112

hi = a
(

(q − a)l−i−1 + (q − a)l−i−2 + · · · + (q − a) + 1
)

+ 1 users have been

framed, hence at least a + 1 users are framed over the first l − 1 segments.

As only a users are protected in segment l, however, there exists at least one

user who has been framed over the first l − 1 segments yet is not protected

at time l. If the pirate broadcasts the symbol received by that user then that

user is framed over the entire window, contradicting the assumption that the

code was sliding-window l-dynamic frameproof. Thus we conclude that for a

sliding-window l-dynamic frameproof code of the desired properties we have

n ≤ a
(

(q − a)l−1 + (q − a)l−2 + · · ·+ (q − a) + 1
)

. �

7.5.2 General b

It is possible to generalise the above construction to achieve codes that are

more efficient than those of Construction 7.1 in the case where b > 0.

Construction 7.4. This construction is a modification of Construction 7.2;

it protects aqr
(

(

(q − a)qb
)⌈ l−b

b+1⌉−1
+

(

(q − a)qb
)⌈ l−b

b+1⌉−2
+ · · · + (q − a)qb + 1

)

users, where r =
(

l− (b + 1)
⌈

l−b
b+1

⌉)

. At each time the marks are distributed as

in Construction 7.2, with two differences. Firstly, during ordinary segments

(those occurring at times j where (b+1) ∤ j) no users are protected. Secondly,

a sliding-window l-dynamic frameproof code for which b > 0 will guarantee

that every window includes a sequence of l− b segments ending in a protection

segment, of which l−b−
⌈

l−b
b+1

⌉

are ordinary segments and
⌈

l−b
b+1

⌉

−1 are protec-

tion segments occurring prior to the last protection segment. We are interested

in preventing framing over these sequences. Such a sequence will start with

the
(

l − (b + 1)
⌈

l−b
b+1

⌉)th
ordinary segment prior to a protection segment; we

denote this quantity by r. Whereas in the case b = 0 symbols were allocated

evenly to users who had been framed over l− 1 segments, then l− 2, l− 3 and

113

so on, in this case it is only necessary to consider sets of users who have been

framed over sequences of up to l− b consecutive segments that commence with

the rth ordinary segment prior to a protection segment. This is illustrated in

the example below.

In order to show that the scheme resulting from this construction is indeed

sliding-window l-dynamic frameproof we observe that each length l window

contains an interval of l − b consecutive segments ending in a protection seg-

ment, and show that no users can be framed over such an interval.

Consider an interval of l − b consecutive segments ending in a protection

segment. Let n0 be the total number of users, and denote by ni the number

of users who are framed over the first i segments of the interval.

The first r segments are ordinary segments. Therefore in segment i, for

1 ≤ i ≤ r the q symbols are divided evenly among the users who were framed

for the first i−1 segments (the fact that qr | n0 ensures this is possible). Thus

we have ni = ni−1

q
, hence nr = n0

qr and

nr = a
(

(

(q − a)qb
)⌈ l−b

b+1⌉−1
+

(

(q − a)qb
)⌈ l−b

b+1⌉−2
+ · · ·+ (q − a)qb + 1

)

.

Segment r + 1 is a protection segment so a of the users who have been

framed so far receive unique marks, and the remaining q−a marks are divided

evenly among the remaining framed users. Thus nr+1 = nr−a
q−a

, so

nr+1 = a
(

(

(q − a)qb
)⌈ l−b

b+1⌉−1
+

(

(q − a)qb
)⌈ l−b

b+1⌉−2
+ · · ·+ (q − a)qb

)

(q − a)−1.

The following b segments are protection segments, and qb | nr+1 so in

each of them the marks are distributed evenly among the framed users, which

implies nr+1+b = nr+1

qb , thus

nr+b+1 = a
(

(

(q − a)qb
)⌈ l−b

b+1⌉−2
+

(

(q − a)qb
)⌈ l−b

b+1⌉−3
+ · · · + (q − a)qb + 1

)

.

114

Each subsequent sequence of b+1 segments consists of a protection segment

followed by b ordinary segments, so nr+γ(b+1) =
nr+(γ−1)(b+1)−a

(q−a)qb . Thus after the

γth such sequence following the first r segments we find

nr+γ(b+1) = a
(

(

(q−a)qb
)⌈ l−b

b+1⌉−γ−1
+

(

(q−a)qb
)⌈ l−b

b+1⌉−γ−2
+ · · ·+(q−a)qb +1

)

.

The (l−b−1)th segment of the interval occurs after
⌈

l−b
b+1

⌉

−1 such sequences,

therefore nl−b−1 = a
(

(

(q − a)qb
)⌈ l−b

b+1⌉−(⌈ l−b
b+1⌉−1)−1

)

= a. These remaining a

users are protected in the final protection segment, hence no users have been

framed, irrespective of which marks the pirate chooses to broadcast.

Therefore we conclude that the code constructed above will indeed protect

up to

aqr
(

(

(q − a)qb
)⌈ l−b

b+1⌉−1
+

(

(q − a)qb
)⌈ l−b

b+1⌉−2
+ · · ·+ (q − a)qb + 1

)

users. Note that in the case b = 0 this reduces to

a
(

(q − a)l−1 + (q − a)l−2 + · · ·+ (q − a) + 1
)

as before.

Example 7.5 Let l = 5 and b = 1 with a = 1 and q = 3. Then
⌈

l−b
b+1

⌉

= 2, so

the code resulting from the above construction protects 21 users. The table

below is an example of a mark distribution that results over six time segments.

In segment 3 each of the three users u4, u5 and u6 who have been framed

over the first two segments gets a different symbol and then the symbols are

distributed evenly among the rest of the users. In time 4 the unique user u5

who was framed over the first three segments is protected, the symbols 0 and

1 are distributed evenly among the remaining users u9 to u14 who were framed

115

in segment 3, then they are distributed evenly among the remaining users.

1 2 3 4 5 6
u0 0 2 0 0 0 0
u1 0 0 0 0 0 0
u2 0 0 0 0 0 0
u3 0 0 0 0 0 0
u4 0 1 0 0 0 0
u5 0 1 1 2 0 0
u6 0 1 2 0 1 0
u7 1 0 0 0 1 1
u8 1 0 0 1 1 1
u9 1 0 1 0 1 1
u10 1 0 1 0 1 1
u11 1 0 1 0 1 1
u12 1 0 1 1 0 1
u13 1 0 1 1 1 1
u14 2 1 1 1 2 2
u15 2 1 2 1 2 0
u16 2 1 2 1 2 0
u17 2 1 2 1 2 0
u18 2 1 2 1 2 1
u19 2 1 2 1 2 1
u20 2 1 2 1 2 1
T 0 1 1 1 2 0

�

This construction is in fact optimal for the given parameters: the proof of

Theorem 7.3 can be modified to show

Theorem 7.5. Suppose there exists a q-ary sliding-window l-dynamic frame-

proof code in which every b+1th segment is a protection segment where a users

receive unique marks and the remaining segments are ordinary segments. If

this code supports n users then n satisfies

n ≤ aql−(b+1)⌈ l−b
b+1⌉

(

(

(q−a)qb
)⌈ l−b

b+1⌉−1
+

(

(q−a)qb
)⌈ l−b

b+1⌉−2
+ · · ·+(q−a)qb +1

)

.

116

7.6 Asymptotic Results

If we consider the behaviour of the above upper bound as q → ∞ we see that

the degree of the leading term is l − b− 1, which is maximised when b = 0, in

which case the leading term reduces to a(q−a)l−1. In the case where q | l this

is maximised by setting a = q

l
; this results in a leading term of size (l−1)l−1

ll
ql.

Hence we have the following.

Theorem 7.6. A sliding-window l-dynamic frameproof code that uses evenly-

spaced protection segments and protects the same number of users in each

protection segment with an alphabet of size q can protect at most n users,

where

n ≤ (l − 1)l−1

ll
ql + O(ql−1),

as q → ∞ with l fixed.

Also, since the restriction of a q-ary sliding-window l-dynamic frameproof

code to the first l time segments yields a dynamic frameproof code that can

support at most ql−1(q − 1) users we have the following:

Corollary 7.7. A sliding-window l-dynamic frameproof code using an alphabet

of size q can support at most n users where

n ≤ ql + O(ql−1),

as q → ∞ with l fixed.

7.7 Future Possibilities

In order to study sliding-window dynamic frameproof codes of complete gen-

erality, it would be necessary to consider codes in which the value of a varied

117

with each segment. By letting a range between 0 and q− 1 this would encom-

pass all possible sliding-window dynamic frameproof codes. The discussion

of Section 6.2 gives some indication of the difficulties inherent in attempting

to bound the sizes of such codes. There remains the open problem do there

exist q-ary sliding-window l-dynamic frameproof codes supporting more users

than the ones discussed above? Also, there is a discrepancy between the two

asymptotic results given in the previous section: the degree of the leading

term is the same in each case, but the coefficient differs. Thus we have the re-

lated question do there exist q-ary sliding-window l-dynamic frameproof codes

of size cql + O(ql−1) where c > (l−1)l−1

ll
?

In the case where a = 1 and b = 0 the above construction yields a code pro-

tecting (q−1)l−1 +(q−2)l−2 + · · ·+(q−1)+1 users. When q is one more than

a prime power this is equal to the number of points in the (l − 1)-dimensional

projective space PG(l − 1, q − 1). This raises the question of whether a geo-

metric interpretation of this construction is possible.

The sequential frameproof model assumes complete ignorance of the pi-

rate broadcast, whereas the dynamic model assumes total knowledge of this

broadcast. All of the sliding-window dynamic frameproof schemes described

so far require the knowledge of the most recent l − 1 segments of the pirate

broadcast. Is it possible to construct schemes that only require knowledge of

the most recent m segments for some m < l − 1? Such schemes would fit

between the sequential and dynamic models.

7.8 Conclusion

In this thesis we set out to investigate whether the concept of a frameproof

code could be applied in a dynamic setting to prevent pirates from framing

118

innocent users when fingerprinting is used with digital broadcasts. We have

shown that this is indeed possible. We now have a good understanding of

the behaviour of sequential frameproof codes, dynamic frameproof codes, and

sliding-window l-frameproof codes with regular protection. Further study will

be needed to determine the optimal size of a set of users protected by a general

q-ary sliding-window l-dynamic frameproof code, and as discussed above, other

interesting problems remain open in this area.

119

Bibliography

[1] Noga Alon and Uri Stav. New bounds on parent-identifying codes:

The case of multiple parents. preprint, 2002. available from

www.math.tau.ac.il/~nogaa/.

[2] Alexander Barg, G. Robert Blakely, and Gregory Kabatiansky. Digital

fingerprinting codes: Problems statements, constructions, identification

of traitors. Technical Report 2001-52, DIMACS, December 2001. available

from http://dimacs.rutgers.edu.TechnicalReports.

[3] Alexander Barg and Gregory Kabatiansky. A class of I.P.P. codes with

efficient identification. Technical Report 2002-36, DIMACS, September

2002. available from http://dimacs.rutgers.edu.TechnicalReports.

[4] Omer Berkman, Michal Parnas, and Jǐŕı Sgall. Efficient dynamic traitor

tracing. SIAM Journal on Computing, 30:1802–1828, 2001.

[5] Simon R. Blackburn. Combinatorial schemes for protecting digital con-

tent. In C. D. Wensley, editor, Surveys in Combinatorics 2003, volume

307 of LMS lecture notes series, pages 43–78. Cambridge University Press,

2003.

[6] Simon R. Blackburn. Frameproof codes. SIAM Journal on Discrete Math-

ematics, 16(3):499–510, 2003.

[7] Dan Boneh and Matthew Franklin. An efficient public key traitor trac-

ing scheme. In M. Wiener, editor, Advances in Cryptology -Crypto ’99,

volume 1666 of LNCS, pages 338–353. Springer-Verlag, 1999.

120

[8] Dan Boneh and James Shaw. Collusion-secure fingerprinting for digital

data. IEEE Transactions on Information Theory, 44(5):1897–1905, 1998.

[9] Benny Chor, Amos Fiat, and Moni Naor. Tracing traitors. In Advances

in Cryptology -Crypto ’94, volume 839 of LNCS, pages 257–270. Springer-

Verlag, 1994.

[10] Benny Chor, Amos Fiat, Moni Naor, and Benny Pinkas. Tracing traitors.

IEEE Transactions on Information Theory, 46(3):893–910, May 2000.

[11] Gérard D. Cohen and Sylvia B. Encheva. Efficient constructions of frame-

proof codes. Electronics Letters, 36:1840–1842, 2000.

[12] Amos Fiat and Tamir Tassa. Dynamic traitor tracing. In Advances in

Cryptology -Crypto ’99, volume 1666 of LNCS, pages 354–371. Springer-

Verlag, 1999.

[13] Reihaneh Safavi-Naini and Yejing Wang. Sequential traitor tracing. IEEE

Transactions on Information Theory, 49(5):1319–1326, 2003.

[14] Jessica N. Staddon, Douglas R. Stinson, and Ruizhong Wei. Combinato-

rial properties of frameproof and traceability codes. IEEE Transactions

on Information Theory, 47:1042–1049, 2001.

[15] Douglas R. Stinson and Ruizhong Wei. Combinatorial properties and con-

structions of traceability schemes and frameproof codes. SIAM Journal

on Discrete Mathematics, 11:41–53, 1998.

[16] Roger James Stockwell. Frameproof Codes: Combinatorial Properties and

Constructions. PhD thesis, Royal Holloway University of London, 2002.

121

[17] Mitchell D. Swanson, Mei Kobayashi, and Ahmed H. Tewfik. Multimedia

data-embedding and watermarking technologies. Proceedings of the IEEE,

86:1064–1087, 1998.

[18] Dongvu Tonien and Reihaneh Safavi-Naini. Recursive constructions of se-

cure codes and hash families using difference function families. Cryptology

ePrint Archive, Report 2005/184, 2005. http://eprint.iacr.org/.

[19] Tran van Trung and Sosina Martirosyan. On a class of traceability

codes. preprint, University of Essen, 2002. available from www.exp-math.

uni-essen.de/~trung/.

122

