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Abstract

We study the use of games as a metaphor for building social interaction
in norm-governed multi-agent systems. As part of our research we propose
MAGE (Multi-Agent Game Environment) as a logic-based framework that
represents complex agent interactions as games. MAGE seeks to (a) reuse
existing computational techniques for defining event-based normative sys-
tem and (b) complement these techniques with a coordination component to
support complex interactions.

A game in MAGE is defined by a state, a set of normative rules describing
the valid moves at different states and a set of effect rules describing how the
state evolves as a result of a move taking place. Given a specification of the
normative rules, in the implementation of a game, we use game containers as
components that mediate the moves of players by checking their compliance
with the rules of the game and by maintaining the state of the game.

The reuse part of MAGE relates physical actions that happen in an agent
environment to valid moves of a game representing the social environment of
an application. MAGE allows to model complex interactions from simpler
atomic sub-games. In this context, we investigate how coordination patterns
can be used to dynamically play more than one game in parallel, change the
status of games or choose amongst games. For this purpose, we examine
how to define compound games from atomic sub-games. Compound games
are build by describing the conditions and the patterns that activate a sub-
game and the coordination mechanisms of MAGE ensure that sub-games are
activated according to how interactions are specified to evolve at run-time.

To illustrate the MAGE approach, we discuss how to use the framework
to specify the social interaction in two different scenarios: (i) Open-Packet-
World - a simple simulation where agents compete to collect and deliver
packets in a grid and (ii) an earth-observation application - where agents
represent services, both for clients and providers, and negotiate the provision
of these services by combining argumentation and communication protocols.

We also use the Open-Packet-World scenario to evaluate the effectiveness of
the framework. We show that we can effectively support at run-time a large-
scale multi-agent systems regulated by norms. We conclude the dissertation
by summarising our contributions and identifying areas for future work.
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Chapter 1

Introduction

With a wider use of global networks, such as the Internet, a large number of

computing applications are becoming increasingly more open, heterogeneous

and distributed. Openness in such systems means that there are no restric-

tions for the components on when to join or leave the network [39] thus, these

systems need to be able to operate in very dynamic settings. Heterogeneity

means that the components of these systems are not designed in the same

way and with the same functionalities therefore, the system should enable

interactions amongst components and yet prevent that design choices on a

single component reflect on the other components of the system. Distri-

bution means that the components are distributed over a network bringing

challenges such as the consistency of the data maintained in the system,

synchronisation and communication between the distributed components.

One way to deal with open, heterogeneous and distributed systems is to

model these systems as Multi-Agent Systems (MAS). A MAS is designed and

implemented as several interacting components called agents. An agent is

situated in an agent environment where it is capable of flexible autonomous

action in order to meet its design objectives [70]. In general, agents can

reason autonomously upon a problem and use the interaction capabilities to

take actions in the system. The autonomy and the cognitive abilities of an
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agent makes it act depending on its internal reasoning and decision making

mechanism. Because of their autonomy, agents cannot be assumed to be

acting for the best interest of the system as a whole. Therefore the need to

incentivise these agents to act according to some “standard” behaviour (i.e.

the behaviour that the designers have in mind) arises. This is why when we

develop a MAS, having a model of interaction is crucial. On one hand we

need to preserve the agent’s autonomy and on the other hand we want to

constrain interactions to be in line with the system’s purposes.

In MAS applications agents need to collaborate with other agents in order

to achieve common tasks. For this reason, they are often described as social

entities [51]. The agents of a MAS will typically have incomplete information

or capabilities to solve a problem. Their ability to have social interactions

becomes essential when we require them to work together to solve problems

that are beyond the individual capabilities or knowledge of a single agent

[44].

Moreover, very often in such MAS applications, software agents are developed

by different parties and deployed within a specific domain to achieve given

objectives [99]. In this case a MAS is said to be an open MAS. An important

characteristic other than agents being developed by different parties is that

agents can be non-cooperative [10]. Openness also often implies that it is

not possible to assume to have access to the internal reasoning of the agents

without severely undermining their autonomy [6].

Early work in MAS has focused on the representation of interactions in terms

of communication protocols that agents can use to interact with each other

[29, 28, 14, 27]. As these protocols standardise the way in which agents

partake in social activities, more recent work puts the emphasis on norma-

tive concepts such as obligation, permission, and prohibition, amongst other,

as a more elaborated specification for representing agent protocols or their

interactions in general (see [13, 94]).

Although openness of this kind may encourage many agents to participate

17



in an application, interactions in the system must be regulated so that the

overall specification of the application domain is respected.

Norm-governed multi-agent systems [13] are open multi-agent systems that

are regulated according to the normative relations that may exist between

member agents, such as permission, obligation, and institutional power [72],

including sanctioning mechanisms dealing with violations of prohibitions and

non-compliance. As a result, there are multiple challenges on how to design

norm-governed multi-agent systems and how to engineer these systems to

systematically support the vision of artificial agent societies [99] that will

arise from their deployment.

1.1 Motivation

The problem we are trying to address is how to design, specify and imple-

ment complex interactions using computational logic to support classes of

applications such as the formation of Virtual Organisations in a service grid

[56]. In an attempt to address this problem we found that there is a lack

of off-the-shelf, generic tools to develop open multi-agent systems in general

and normative multi-agent systems in particular. Many frameworks have

been proposed as knowledge representation frameworks for norm-governed

systems: such as the use of semantic concepts and ontologies to represent

norms [121, 58], temporal logic representation of normative concepts [33, 54]

and representation of coordination mechanisms [85] for distributed norm-

governed systems, are a few of the many works in the area. Despite the

proliferation of these frameworks, there is relatively less work on how to

develop systematically more complex activities that require agents to coordi-

nate their interactions in an agent environment. There is, in other words, the

need for computational frameworks that support the composition of complex

interactions and allow for their coordination.

Coordination between interacting agents is a very important aspect of social
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interaction. In agent based systems, we often use protocols as a way to define

which actions are to be exchanged during the interactions and possibly with

what order. However, since agents are autonomous, they may decide to take

actions that do not follow the system’s specification. Thus, when modeling

interactions, the coordination mechanism provides the means to anticipate

possible interactions in advance and design the system to avoid undesirable

interactions and to exploit desired ones [133]. Coordination mechanisms such

as workflow patterns [128] are important to ensure that the agents interact

by following an interaction flow.

Many existing approaches, such as [13, 7, 98], use a logic-based approach that

focuses on the definitions of normative relations between interacting agents.

The focus of these approaches is in the specification of normative relations

rather than in defining a systematic development of the interactions in a

distributed and open setting of the agent environment. Other work, such as

[48, 79, 82], focuses on combining protocols and specifying their coordination.

However, these works are often focused on the expressive power of the for-

malism proposed and typically abstract away from evaluating computational

aspects based on experimentation. As a result the computational behaviour

of many representation frameworks for norm-governed multi-agent systems

are often studied in isolation, at times theoretically only, and in many occa-

sions their experimental evaluation is left unexplored.

Our specific motivation is to extend the GOLEM platform with a method-

ology for developing agents interactions. GOLEM [21] is a multi-agent envi-

ronment platform that allows the development of agent application in terms

of distributed cognitive agents and objects that are the resources agents in-

teract with [73, 103]. Interaction in GOLEM is tackled from the physical

perspective by describing how agents can perform physical actions in a dis-

tributed agent environment. However, because its lack of the necessary social

concepts, GOLEM is not intended to model agent interactions that allow for

cooperation and coordination of agents.
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The lack of concepts that deal with the social aspects of an agent environ-

ment were more evident when we applied GOLEM to model applications

based on the notion of VOs [83], as in the ARGUGRID European project.

ARGUGRID [3] was a research project that aimed at providing a new model

for programming a service GRID at a semantic, knowledge-based level of

abstraction through the use of argumentative agent technology. Agents in

this context act on behalf of (a) users who specify abstract service requests

or (b) providers who offer electronic services on the GRID. User requests

result in agents interacting with other agents by forming dynamic VOs in

order to enable the transformation of abstract user requests to concrete ser-

vices that the GRID can support. To guarantee that interactions in VOs

are regulated, agent-oriented provision of services must conform to service

level agreements, while agent interaction more generally must be governed by

electronic contracts. A requirement of ARGUGRID is that agreements and

contracts need to be negotiated on the fly by agents. In other words, there is

a need to support protocols and workflows that enable the activities of VO

creation, operation, and dissolution. One of the issues then becomes how to

represent these complex activities at a knowledge-based level to be suitable

for argumentation-based agents that use the framework to be coordinated

during their interactions.

1.2 Approach, Aims and Objectives

We are interested in the process of social interaction between agents to sup-

port practical applications. We understand interaction as actions performed

between agents situated in a physical environment and which are mediated

by a social environment. The social environment defines mediation mech-

anisms that provide a structured interaction model based on social rules.

In this context we view agent interactions as social games played within an

agent environment. A social game is a mechanism in an agent environment

which contains the social rules of the agent environment, has its own state,
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and mediates the interaction of agents. We propose a Multi-Agent Game En-

vironment (MAGE) framework to bridge the gap between complex models of

normative systems and the dynamics of interactions in an agent environment.

In MAGE, we are interested in a systematic representation of agent inter-

actions. Protocols are a well known approach to interaction, however in-

teraction mechanisms sometimes require many protocols to be combined in

a flexible manner to form more complex protocols in a systematic way. In

MAGE, in order to be able to combine protocols into complex ones, coor-

dination of social games becomes very important as a mechanism to enable

interactions amongst agents.

The aims of our work are as follows.

• Introduce a general game-based model for modeling the concept of

social agent environment.

• Separate physical from social interactions in a MAS application. In this

context, an open multi-agent system will be seen as two concurrent

but interconnected composite structures that evolve over time: one

providing a physical environment for action execution while the other

acting as a social environment that, seen as a social game, evaluates

norms of the multi-agent system.

• Provide a framework to compute, at run-time, the norms applying to

an agent such as permissions, prohibitions, and sanctions. We assume

that agents cannot compute these normative relations on their own

because of computational constraints, and incomplete knowledge about

the application state.

• Identify mechanisms for coordinating complex interactions as com-

pound social games.

Given this set of general aims, we want to achieve them by means of the

following specific objectives.
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• We seek to provide a social environment which mediates and enables

social interactions in a MAS by means of a game-based specification

that builds on top of Event Calculus [77, 74] to regulate how the state

of the social interactions evolves.

• Extend the GOLEM [21] platform by implementing a game-based com-

ponent that supports the social aspects of an agent’s interaction. In

particular we develop an infrastructure for the coordination and the

enactment of social interactions on top of a physical environment.

• Show how to distribute the social environment and map it to a dis-

tributed physical environment by combining the Ambient Event Cal-

culus [22] with a game-based framework.

• Develop a methodology showing how to instantiate the framework for

developing practical applications.

• Evaluate the proposed framework on two scenarios: (i) the open packet

world scenario [124, 125] to explain the main functionalities of the

framework and (ii) and a more complex scenario called the Earth Ob-

servation scenario [120] which is drawn from the ARGUGRID project

and involves negotiation and composition of services.

1.3 Contribution, Scope and Significance

We identify the following contributions of the work presented in this thesis.

• Propose a knowledge representation framework for engineering agent

interactions in social environments that allows us to distribute physical

and social environments of a norm-governed application.

• Introduce the notion of social containers to capture portions of the

social environments engineered as social games.
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• Present the idea of social games in terms of existing work developed in

[115, 113] but by separating the specifications of legal moves from the

physical environment, both conceptually and during implementation.

• Integrate normative notions in the specification of valid moves, similarly

to the work presented in [13] but with the compositional part of [115,

113], thus ,making the resulting framework applicable to coordinating

complex agents interactions.

• Use the representational framework to develop a set of coordination

primitives that allow us to specify complex interactions, such as basic

workflows, to be reused in practical applications.

• Implement the framework in MAGE as an extension of GOLEM to

support the concept of social environment.

• Illustrate the functionalities through a case study.

• Evaluate the system’s efficiency to compute the physical and the social

state through experimentation.

1.4 Overview of the Thesis

The reminder of the thesis is organised as follows:

In Chapter 2 we present the background concepts upon which we base our

ideas. First we discuss the notion of social environment and we describe what

it requires if this environment is to be treated as a first class abstraction.

We then identify the components of a social environment and report on

the existing work that has been carried out in this area. We classify the

literature in terms of the kinds of social environment that arise, including

groups, institutions, virtual organisations and open agent societies. We then

report on existing work that has been done in trying to: (i) implement agent
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environments and; (ii) interpret these kind of environments using an event-

based approach to capture the interactions, which is the approach that we

inherit from GOLEM, and which we want to extend with normative concepts.

In Chapter 3 we present the GOLEM platform. We explain the three main

building blocks of the GOLEM platform: objects, agents, and containers.

Objects are reactive entities used to wrap resources of the external environ-

ment. Agents are cognitive and active entities that manipulate resources and

interact with other agents. Containers represent a portion of the distributed

agent environment containing agents and objects. We also summarise how

the agent environment in GOLEM evolves in time and how agents can query

the environment to perceive properties of entities in it. We conclude this

Chapter by arguing that despite the modularity and flexibility that GOLEM

provides to model agent environments, it does not provide the mechanisms

for defining a social environment.

In Chapter 4 we present our version of the game metaphor [115] to model

atomic interactions between agents in a multi-agent system. Under this

metaphor, agent interactions count as moves of a social game governing the

interaction between the participating agents that enact the roles of differ-

ent kind of players. The outcomes of these games will not necessarily give

rise to a winner or looser, but often to win-win situations where a num-

ber of agents achieve their goals. We illustrate how social games can be

seen as social containers which maintain the social state of the interactions

amongst agents/players. We illustrate our framework by using the Open

Packet World [124, 125], a scenario where agents interact and compete with

one another to collect packets and bring them into destination points. Chap-

ter 4 implements the following contribution of the thesis: it captures the

building blocks of the social environment in terms of social containers; it

presents the idea of social games following the work presented in [115, 113]

but by separating the specifications of legal moves from the physical environ-

ment; it integrates normative notions in the specification of valid moves and it

presents partially our proposed framework for engineering agent interactions
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for norm governed applications, further expanded in Chapter 5.

In Chapter 5 we study how to build more complex interactions as complex so-

cial games. We show that it is possible to distribute the social environment so

that the evaluation of the social rules reflects the needs of an application. In

this context we show how the social rules will be enforced. We also argue that

enforcing the rules depends on how the designer of the social environment

organises objects and the roles of agents for a specific application. Chapter 5

implements the following contribution of the thesis: it proposes a framework

for engineering agent interactions for norm governed applications by extend-

ing the model presented in Chapter 4 and it proposes a set of coordination

primitives that allow us to specify complex interactions.

In Chapter 6 we illustrate the implementation of the main functionalities of

the social environment. We first explain the GOLEM architecture and then

we show how we extend it with the MAGE architecture. We implement a

propagation mechanism so that agent’s actions are propagated to the social

environment and a coordination mechanism that evaluates if such actions

comply with the social rules defined in the social environment. We also

explain how we implement games and how agents can observe their state. In

Chapter 6 we implement the MAGE framework as an extension of GOLEM

to support the concept of social environment which is a main contribution of

the thesis.

In Chapter 7 we illustrate how we apply our framework in the ARGUGRID

project [3, 120] to propose a new model for building GRID-based applications

by supporting the formation of dynamic VOs. To demonstrate how MAGE

contributes to ARGUGRID, we use the Earth Observation scenario [119].

In such scenario agents in the environment negotiate with other agents of

the GRID to form a VO. We show how the interaction of agents is modeled

to allow them to form VOs. One of the contributions of the thesis is to

illustrate the MAGE platform using the Earth Observation Scenario whose

specification is presented in this chapter.
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In Chapter 8 we propose a methodology for defining MAGE-based applica-

tions and we evaluate the performances of the framework using the Open

Packet World scenario. Using this scenario, we define a set of tests where we

distribute the agent environment and evaluate how we can improve the per-

formances to support larger-scale, normative multi-agent systems. We also

compare the aspects of the game-based model proposed in MAGE with the

GOLEM agent framework. Chapter 8 implements the following contribution

of the thesis: it evaluates the system’s efficiency to compute the physical and

the social state of the agent environment and it develops a methodology to

show how MAGE is used to design practical applications.

Finally, in Chapter 9 we conclude with a summary of our research where we

highlight the advantages and discuss possible weak points of our approach.

We conclude with future work where we discuss the future extensions of

MAGE and its implementation.

1.5 Publications

The work and the ideas presented in this thesis have been partially presented

to scientific workshops, conferences and journals related to MAS research.

Early work in game-based interaction was presented in [81] where we studied

the idea of deliberative games to support agent argumentation and in [122,

123] where we further extend these ideas with a Multi-Agent platform for

the automation of the workflow selection and execution.

In [23] we presented a prototype Multi-Agent system whose goal was to

support a 3D application for e-retailing. We argued that these types of ap-

plications can be engineered in a flexible and reliable way by using the notion

of agent environment. We also extended the agent environment abstraction

to support the deployment and discovery of e-retailing services visualised by

a 3D virtual environment interface. We further extended this work in [25]

by introducing a game-based approach to support social interactions among
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agents and show how to combine them with semantic-web technologies to

develop an e-retailing application.

In [126] we presented MAGE as a game-based logical framework that uses

games as a metaphor for representing complex agent activities within an

artificial society. The framework supports the construction of social games

as composite games built from component sub-games. Social games use a

normative interpretation of valid moves and a set of coordination patterns

to build complex activities from simpler sub-activities. An application for

such framework is presented in [24] where we use the framework to support

service discovery, selection and negotiation in a multi-agent system.

In [26] we presented iCampus as a prototype multi-agent system whose goal is

to provide the ambient intelligence required to connect people in a University

campus and make that campus inclusive and accessible. The work outlines

how to specify iCampus in the Ambient Event Calculus and implemented it

using the agent environment GOLEM to deploy guide agents over a campus

network.

In [125] we presented a knowledge representation framework with an associ-

ated run-time support infrastructure that is able to compute, for the benefit

of the members within a norm-governed multi-agent system, physically possi-

ble and/or permitted actions current at each time, as well as sanctions. This

line of work forms the basis of the MAGE evaluation which will be discussed

later in this thesis. More precisely, in [124] we show our experimental results

on a benchmark scenario and show how by distributing norms we can pro-

vide run-time towards supporting to large-scale, norm-governed, multi-agent

systems.
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Chapter 2

Interaction in Social

Environments

In this chapter we present the state of the art of social interaction in MAS,

from the perspective of social agent environment as a first-class abstraction

mechanism. Although there is a lot of work that relates to the formulation of

social environments, our emphasis is on comparing with existing implemented

frameworks and in reviewing approaches that are event centric.

This chapter is organised as follows: In Section 2.1 we discuss the notion

of social environment. In Section 2.2 we define the components of a social

environment. An overview of the selected literature on social environments

is presented in Section 2.3. More specifically, this section discusses the con-

cept of agents organising in groups, the concept of institutions as a way to

represent normative aspects of social environments, virtual organisations as

a concept used for representing dynamic relationships and agreements in the

social environment, and the concept of agent societies as a way to organ-

ise the social environment. Section 2.4 describes how existing implemented

frameworks design the notion of social environment into these frameworks.

Section 2.5 identifies the main research works that are based on events and

discusses their main characteristics. In this section we also identify the key
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aspects that we provide in our approach compared to these works. Finally,

Section 2.6 summarises and concludes this chapter.

2.1 The Notion of Social Environment

A system constructed with two or more agents is called a Multi Agent System

(MAS) if it comprises the following elements [51]: an environment containing

the agents and objects, a set of operations used to sense, perceive the envi-

ronment or to manipulate objects and the relationships that link agents to

each other. As we argued in the previous Chapter, agents in a MAS typically

have incomplete information or capabilities to solve a problem in the environ-

ment. For this reason, agents need to work together to solve problems that

are beyond the individual capabilities or knowledge of a single agent [44]. The

need for cooperation amongst agents comes with many requirements for the

agent environment which should enable agent interaction, communication in

a common language and possibly coordination.

In general, we want to distinguish the concept of environment into physical

environment and social environment. The physical environment being the

entity that defines the principles and processes that govern and support a

population of entities [91] and the social environment being the entity that

defines a communication environment in which agents interact in a coor-

dinated manner [91]. Here we assume that agents are already situated in

a physical environment that provides a model for the physical interactions

based on physical rules and we focus on the model of social environment as

the entity which models social aspects of the agent interactions.

Following Odell’s et al definition of social environment, we define a social

environment as the mediation mechanism providing the social rules and the

coordination mechanisms that apply in “time” and “space” to actions per-

formed by agents that are situated in a physical environment.

The main focus when designing social environments is the specification of the
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social rules. The social rules specify what it is socially agreed (or not) to do,

in terms of stipulated or generally accepted standards or criteria, when agents

interact in the environment. These rules are important because they are used

to mediate agent interactions. The type of mediation we are focusing on is

a model for the social environment that, given the dynamic communicative

acts exchanged amongst interacting entities, can determine if there exists a

social meaning for these acts, and, whenever necessary, it triggers a set of

consequences which are defined as part of the mediation mechanism.

From a software engineering perspective, in order to have a platform for

defining a social environment we need to identify the building blocks [1] from

which we can build social environments. In [19], Bromuri suggests the need

to consider the concept of agent environment as a first-class abstraction. We

extend this view to social environments as a way to separate concerns of

the social environment. Separation of concerns [40] refers to the ability to

identify a distinctive piece of software that separates a computer program

into independent features that can be manipulated as first-class entities, and

integrated with a composition mechanism. Sunkle, in [117], defines a first

class abstraction exhibiting the following characteristics:

• Instantiation: First-class abstractions can be instantiated at compile-

time or run-time and possibly other stages of program execution.

• Storing: First-class abstractions can be stored in variables and data

structures.

• Manipulation: First-class abstractions allow for compile-time or run-

time structural manipulation.

• Typing: First-class abstractions can be passed as parameters to other

program elements such as methods or returned from methods.

• Composition: First-class abstractions can be composed in various

expressions and statements within a programming language.
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We will interpret the social agent environment as a first-class abstraction by

identifying a main entity from which we can build a social environment that

contains the five features proposed by Sunkle [117]. We describe next the

components of a social environment.

2.2 Components of Social Environments

Various approaches have been proposed to represent social interactions in a

MAS, all having in common that they define a rule-based medium to mediate

the interactions. We identify such a rule-based medium as the social environ-

ment. The rules are used as a way to specify a structure in the interactions

between members of such environment. Conceptually, we can identify four

main components for modeling social environments:

• Member agents which interact with each other and generate actions

in the environment. Member agents may also access and change the

state of the environment.

• Physical Territory which refers to the physical space in which the

member agents are situated.

• Social rules which are used to govern the agent’s interactions in the

physical territory.

• Social State which maintains the state and the evolution of the social

environment as a result of the actions performed by member agents in

the physical territory.

.
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2.2.1 Member Agents

Odell et al, in [91], define the social environment as an entity aimed to

provide the necessary mechanisms so that agents can collaborate or interact

in a system in a meaningful way. Thus, agents are the main component that

influences the design of agent environments (social and physical). Agents

can be designed with different goals and capabilities. In designing an agent

environment, it is not important the reasoning process and capabilities of

single agents, but it is crucial to define how agents are enabled to act in the

environment.

The JAVA Agent Development Environment (JADE) [69] is a widely known

agent platform that uses the concept of directory facilitator as the directory

where agents register so agents can find each other. Although, JADE does

not address issues of social environment, the concept of directory facilitator

defines the membership of an agent in the agent environment. Here, we

make a clear distinction between membership in the physical environment

and membership in the social environment. These two memberships are

quite different. This is due to the nature of the two environments. While

both physical and social environments occupy a space, the shape of physical

space is a designated area (or volume) while the social space can be expressed

in terms of the degree of interaction [91]. Thus, the membership of an agent

in the physical environment is determined by its situation in a physical space

that the agent occupies, while, the membership in a social environment is a

dynamic relationship caused as a result of interactions that agents have in

the social environment.

The membership of the agents in the physical environment is determined by

their physical location. The same agents, are members of the social envi-

ronment from the moment they interact in the environment. Their acts are

mediated first at a physical level where they must be physically possible to

perform an then at a social level where they are attributed a social mean-

ing. Thus, the member agents of a social environment are also members of
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a physical one. Their membership in a physical environment is essential in

order to be members of the social environment.

2.2.2 Physical Territory

The physical territory refers to the portion of the physical environment con-

taining the members of the social environment. This portion has its own

physical state whose properties change following a set of physical rules that

apply as a result of agent actions. As we stated in the previous Section, a

social environment requires a physical one. They both regulate the activities

of agents, but they regulate them with different rules and at a different level.

At the physical environment level, many actions can be defined as physically

possible, however, at a social level many of these actions might be considered

as invalid ones because they may not be in line with the social rules defined

in the environment. In other words the purpose of the social environment is

to regulate the many events that are possible to happen in the physical ter-

ritory. Although the social environment conceptually regulates the physical

territory, it is considered a good practice to separate the two, see for example

Artikis et al [13, 12, 11].

2.2.3 Social Rules

A basic form of social rules results from defining agent protocols. Pitt et al

in [97] define a protocol as the definition of structured messages exchanged

between agents which constitute a declarative agreement for communicative

behaviour. In the literature we can find protocols being used to interact

in a particular situation. For example, there are negotiation protocols that

agents use when they need to negotiate resources (see [43, 12]), or deliberation

protocols that are used when a group of agents need to deliberate a common

decision (see [80, 81]), security protocols used when the need to exchange

confidential information [17] and many others.
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Protocols have an initiator and a number of participants that are involved

in the communication, a state and rules to determine how messages should

be exchanged and when the protocol terminates. Several standard protocols

for agents communication were proposed by FIPA [2], however, despite the

existing standard protocols, new interaction protocols for specific types of

interaction (i.e negotiation protocols or argumentation protocols) continue

to be proposed. FIPA protocols are not widely used because of their point

to point nature which makes them limited to only two interacting parties.

Another reason is that their semantics assumes that agents are able to share

their mental states, see [100].

Protocols can be expressed in terms of normative aspects such as prohibition,

permission, obligation and empowerment. In the normative interpretation

of protocols, the rules of the protocol use normative concepts to define the

state or point in time when an act can occur (i.e. [101, 12, 109, 134]). The

normative concepts are used as it is possible to capture more fine grained

relationships between actions that agents perform in the environment. In

such protocols agents take a role within a protocol so that they can perform

actions using the normative relations that exist within a role.

The interaction of agents in the social environment can have different out-

comes depending on the goals that every participant has. When agents in-

teract using a particular protocol, the outcome may be different depending

on the reasoning process of the agents. If we formalise the rules of a protocol

and try to build a system that follows the rules of this protocol, we might

realise that we need to add some flexibility in the system by extending the

protocol. Extending a protocol means that we adapt it by adding new rules

so that interactions amongst agents can progress. Sometimes, it is desirable

to introduce new actions in a protocol so that agents can go beyond the rules

of a single protocol. McGinnis et al, in [38] define expansion mechanisms for

protocols where extra rules are added to allow agents to perform additional

actions. In a similar way the authors can restrict the actions that agents

can perform. In the same line of work, Stathis [112], defines how to extend
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and filter protocols is by adding extra rules to deal with the expansion and

the filtering of the protocol (see [112] for more details). These new modified

protocols can be seen as complex protocols.

Applications that require complex interactions benefit from allowing agents

to combine protocols during social interactions. In order to enable such pro-

tocols, coordination mechanism needs to be put in place so that mediation is

offered at the social environment level. In defining a coordination mechanism

we want to be able to parallelise, choose and synchronise protocols. To cap-

ture these control-flow aspects, coordination mechanism should be defined

as part of the framework to provide more complex interactions than a single

protocol. A way to synchronise, choose and parallelise processes is given by

workflow coordination patterns. In general, the term workflow refers to the

specification of a work procedure or a business process in a set of atomic

activities and relations between them in order to coordinate the participants

and the activities they need to perform [4]. The link with the definition

of the workflow here is that the participants are the agents and the atomic

activities are protocols.

2.2.4 Social State

In describing interactions in a MAS we often need to distinguish the physical

effects that an action has from the social effects of the act. For example,

in an auction house an agent raising its hand has as a consequence that the

hand is moving in an upward position. The consequences of the raising a

hand act can be stored in the physical state of the agent environment.

The social state, on the other hand, evolves according to a set of social rules.

Acts performed by agents in the environment can create social facts which

may change the social state. Guerin and Pitt, in [66] define social facts as

facts created by interactions and the rules governing their creation. In the

previous example, the same act of the agent raising its hand in an auction

house has a social meaning which modifies also the social state. In this case
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the act means that the agent is bidding in the auction (A more theoretical

treatment of the meaning of actions and the ”count as” relationship at a

social level has been discussed in [108]). Guerin and Pitt [66] believe that

the history of the agent’s acts, the domain in which the interactions took

place and the previous social facts holding in the system affect the meaning

of the acts. All these aspects are included in the social state which agents

can observe as public knowledge.

2.3 Kinds of Social Environments

In this section we look at concepts that are often used in the literature to

define social environments. In particular we focus on groups as a general

model for social environments, institution as a way to introduce normative

concepts for agent interactions, the concept of Virtual Organisation which

is commonly used to define collaborations between agents in highly dynamic

social environments and open agent society defining the rules of interaction

as norms in a social environment populated by heterogeneous agents.

2.3.1 Groups

Odell et al, in [91] define a group as a set of agents associated together to

serve a common purpose. Groups have a separate identity within the social

environment and can be composed of agents, as well as other groups [91]. In

this way, a social environment can be understood as a society containing a

set of groups that are formed to support agents interactions to solve common

goals.

In general, there are three main concepts which characterise almost all the

models that treat groups as an element of the social environment. These con-

cepts are agent, groups and roles. For this purpose a well known formalism

is the Agent-Group-Role (AGR) model [52], also known as the AALAADIN
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model, where an agent is an entity which plays roles within groups. No as-

sumption on the formalism of agents their internal architectures or constrains

is made. The aggregations of agents in sets form a group. An agent can be

a member of one or more groups at the same time. The role is an abstract

representation of an agent function, service or identification within a group.

An agent can have many roles, and a role is local to a group. The structure

of the group, called group structure in [52] describes a group as a finite set of

roles identifiers, an interaction graph specifying all the possible interactions

between two roles and the interactions within the group.

In [71], Mandami et al focus on how interaction within a group can be stored

and used to define a connected community. In this work, groups are defined

as an aggregation of connected agents. Agents are associated with personal

spaces or memories where their interaction history is kept. Individual agents

can form a community group with an associated group space. The group

space acts as a memory for the activities of the group. The group activities

are then based on roles assigned to agents in order to manage the shared

group space.

2.3.2 Artificial Institutions

Fornara et al in [53] explain the term artificial institution as a shared descrip-

tion of concepts and rules that regulate a fragment of the social environment.

The function of an institution is to guarantee that a desirable outcome is

produced if institutional norms are followed by all agents [55]. Institutional

norms can thereby delimit the behaviour of an agent by specifying what an

agent can or cannot do within the institution [84].

Earlier work on institutions, presented by Esteva et al [47, 49, 48], views

agent interactions as delimited by a set of rule based protocols called Elec-

tronic Institutions. Later works were focused mainly on modeling and ver-
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ifying institutional models 1 where artificial institutions are defined using

explicit and formal representations of institutional norms. Generally, norms

capture which actions performed by agents are allowed to be executed [53]

in the environment. Thus, using norms, it is possible to describe protocols

and general rules that apply in the social environment in terms of valid ac-

tions. Norms play an important function, in that if they are respected, they

make the behaviour of the agent partially predictable [88]. Using norms to

model interactions, agents are enabled to coordinate and plan their actions

according to the expected behaviour of the others, as studied in [88, 16].

Norms are expressed in terms of what events are permitted, prohibited,

obliged, empowered. These four elements are main concepts used and recog-

nised in the literature to define institutional norms. The first three, namely

the obligation, permission and prohibition, were identified by Searle in [108].

The formalisation of empowerment or institutional power was first introduced

by Jones and Sergot in [72] to distinguish between permission and power to

perform an act. We can informally summarise these four concepts as follows:

• Permission and Prohibition: The permission defines approval for

an event to be brought about while the prohibition defines refusal to

approve an event.

• Obligation: The definition of obligation specifies the events that agents

are ought to bring about. Searle [108] explains obligations in terms of

promises. An agent, by making a promise act, places oneself under

a corresponding obligation. Once an agent places oneself under an

obligation then (as regards this obligation), it ought to perform the

corresponding action.

• Institutional Power: Jones and Sergot define the institutional power

as, the constraints upon which the performance of a designated action

by a specified agent is a sufficient condition to guarantee some speci-

1In Section 2.4 we present some of these works
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fied (usually normative) state. In other words, the institutional power

defines the capability of an agent to bring about an event in a mean-

ingful way [72]. Without the institutional power, the event may not be

brought about and it has no effect on the state of the institution [9].

In non regimental approaches, the actions performed by agents, may or may

not follow the norms, resulting in a deviated behaviour from the one defined

by the norms [36]. Thus, along with the definition of norms, enforcement

mechanisms are required to motivate agent compliance by defining, in the

case of norm violation [86], some loss of utility for agents. The contrary is also

possible, if agents perform actions that benefit the institution, it is possible to

apply a rewards in utility to motivate further compliance. The enforcement

mechanism requires monitoring of the actions of the agents. By monitoring,

the system can observe agents actions, recognise if they are complying with

the norms or violating them and apply the proper enforcement mechanisms

[86].

The new challenges in defining norms as the rules that govern agents so-

cial interactions are on how to change norms dynamically to keep up with

the dynamic nature of the social environment. Theoretical aspects of norm

change have been studied in [65, 18] and more practical mechanisms on how

to define rule based constructs to deal with norm change have been proposed

in [118]. The models of artificial institutions are usually thought to have

norms that change very little over time. However, in other kinds of social

agent environments, such as virtual organisations the need to add flexibility

to the rules that apply in the social environment becomes essential.

2.3.3 Virtual Organisations

Other models for defining the social environment look at more dynamic ap-

proaches such as virtual organisations (VOs). Menard [84] suggests that

there is a fine line between VOs and institutions. In particular, the main
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characteristic of an institution is that it is based on well established norms

which can be considered not to change frequently. An organisation on the

other hand, is more dynamic and adapts to allow agents to achieve their

individual and/or collective goals of the organisation.

Foster and Kesselman [56] define VOs as organisations and individuals who

bind themselves dynamically to one another in order to share resources within

temporary alliances. Similarly to the artificial institutions, a VO defines in-

teraction rules (policies) for which the organisation’s members should con-

form to. The concept of organisation is mostly used in applications where

collaborations amongst agents might be shorter and more dynamic. In some

class of problems, for example ARGUGRID [3], agents that are autonomous

members of the environment may need to interact within an organisation to

achieve a common goal. There is a dynamic process for these interactions to

take place where agents create an organisation by taking agreements (in an

implicit or explicit way). The challenges here are many, from how to create

an organisation to how to define the rules in such a way that agents can

obtain agreements that are in line with their personal goals.

In order to be part of a VO, agents are required to adopt various roles em-

powering them with duties and responsibilities. Agents must act on behalf

of their organisation to make important decisions such as the VO creation

itself. In order to be able to do this effectively agents need to have an under-

lying process to support their social interactions. The process during which

a VO collaboration takes place is called VO life-cycle. The VO life-cycle was

first presented by Strader et al in [116] where the authors identify four main

phases for the VO life-cycle. The four phases are summarised as follows:

• Identification: In this phase agents identify opportunities to organise

with other agents in a way that it is suitable to achieve their goals.

During this phase, agents select which is the best opportunity to pursue.

The selection of the opportunity is the input of the formation phase.

• Formation: The formation phase defines the VO. This phase includes
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a partner identification, a partner selection, and partnership formation

as sub-phases. The partner identification sub-phase uses the informa-

tion from the identification phase to identify a set of potential partners.

Then, partner selection identifies the set of partners selected to work in

a VO. The partnership formation sub-phase involves the actual forma-

tion of the VO. During this phase agents need to engage in negotiations

to reach an agreement. Once the organisation has been formed, it can

begin its operation phase.

• Operation: During the Operation phase of a VO agents have already

an agreement. During this phase the specification of an agreement is

executed. The input into this phase is all of the information related to

the VO and the member agents gathered during the first two phases.

The output from this phase is a summary of all of the activities and

transactions that took place during the operation of the VO. The oper-

ation phase ends once the need to collaborate as a virtual organisation

has passed for the member agents. Once this occurs the termination

phase can begin.

• Termination: In the termination phase the goal of the VO has ei-

ther been completed or failed to be completed. This phase includes

operation termination and asset dispersal. In the operation termina-

tion sub-phase final information about the VO is finalised (such as

evaluation of the members or inventory of the resources). In the asset

dispersal process the agreement is terminated and any of the resources

and the members of the VO are dispersed.

In [98], Pitt et al state that the important aspects of the VO such as its

life-cycle are realised through agent interactions. Thus, agents are expected

to be able to perform important decisions which may go through reiterations

so that a there is a consensus between the interacting participants. Thus,

interactions protocols become very important for the interoperability of the

VO members [57] as they guide the interactions and support the decision
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making of agents. Many protocols for this purpose have been proposed in

the literature to ease and coordinate the decision making of agents during the

VO life-cycle from negotiation (i.e. Dung et al define a negotiation protocol

to be used during formation phase [43]) to voting protocols (i.e. Pitt et al

[98] formalise a voting protocol for shared decision making during the VO

life-cycle).

2.3.4 Open Agent Societies

In applications where agents can solve their goals in isolation, there is no need

for interaction or agent participation in agent societies. However, usually

this is not the case, especially with distributed applications. The lack of

information or resources makes an agent interact with other agents.

Pitt [96] defines an open agent society as a network requiring the interop-

erability of heterogeneous members. The heterogeneity that charachterises

open agent societies means that the agent’s internal reasoning and goals are

unknown and yet such components have to interoperate for advancing their

individual goals and/or common goals [96]. The membership of agents in the

open society is dynamic and agents may compete with each other and may

not conform to the rules of the society. Thus agents find themselves in a net-

worked environment which can change in unpredictable ways, possibly as a

result of the behaviour of other components which itself cannot be predicted

[96].

In [9] Artikis defines the characteristics of an open agent society as a system

where:

• Agents can be implemented by different parties therefore follow self-

interested strategies when they act in the environment.

• No assumptions can be made on how the agent behaves in the system.

• Agents can enter and leave the system at any time.
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Pitt et al [99] argue that the main feature of a system that enables open

agent societies is that it needs to be governed by contractual and normative

relations found in social interactions. In these systems agents are defined sep-

arately from the system itself. This decoupling implies that, when an agent

enters in a system (environment), the system itself is required to have a way

to prevent the agent from performing undesired actions and also can suggest

permitted actions (if any) to the agent. This is why modeling normative

relationships to govern agent societies is important to guarantee that the au-

tonomy of the agent is preserved and to maintain the desired functionalities

of the whole system.

Supporting Openness also implies that the social environment should have

no dependencies with the reasoning of the agent and should be able, at run-

time, to detect which agents in the network misbehave, without knowing

the reasoning mechanisms of the agent. Thus, engineering a flexible and

distributed solution to model the social interactions that includes normative

relations is an important step towards Open Systems [59].

2.4 Implemented Social Environments

In the previous section we looked at the main concepts identified in literature

for modeling Social Environments as a Norm-Governed MAS. These have lead

to a large amount of theoretical work in terms of formal models and theories.

In this section however, we consider only those frameworks and models that

address the issues of implementing systematically a social environment to

support the social interactions of agents.

2.4.1 AMELI

The Electronic Institution (EI) approach briefly described in Section 2.3.2

and presented in [48] is implemented by the AMELI framework [49] and uses
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organisational concepts to model the interaction of agents.

In [49], EIs are defined as composed of four main elements: dialogical frame-

work, scenes, performative structure and norms. In most multi-agent systems

every agent immersed in the agent environment has its own internal ontolo-

gies and languages, but in order to be able to interact with other agents, every

agent must share a dialogical framework. The activities inside a multi-agent

environment are seen in terms of multiple, concurrent dialogical activities.

The AMELI framework [49] is a tool implemented Java that offers a set of

regimentation devices to block forbidden actions performed by interacting

agents. Agent activities inside a multi-agent environment are seen in terms

of multiple, concurrent dialogical activities. An agent has its own internal

ontology and, in order to be able to interact with other agents, agents must

share a dialogical framework. A dialogical framework is composed by Scenes

and Performative Structures. Agents play a role within a protocol (Scene).

A set of behavioural rules called (Norms) determine the legal sequences of

locutions within an instance of a scene. Scenes can be connected into a

Performative Structure which defines the relationships among scenes using

transitions. The Performative Structure enables a developer to define depen-

dencies such as choice points, synchronisation and parallelism mechanisms

between scenes based on the roles of the institution, and flow policies among

scenes specifying which paths can be followed by which agent’s role.

The AMELI architecture is divided in three layers:

• An Autonomous Agent layer which represents the set of external agents

acting in the system.

• A Social layer defining the infrastructure that mediates the interactions

of agents based on the social rules.

• A Communication layer in charge of providing a reliable and orderly

transport service.
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External agents intending to communicate with other external agents need to

redirect their messages through the social layer which is in charge of forward-

ing the messages to the communication layer. Erroneous or illicit messages

may be blocked in the social layer to prevent them from arriving at their

addressees. The social layer is represented by a multi-agent system and the

agents belonging to it are called internal agents. AMELI defines a Gover-

nor agent for every external agent that acts in the system. The Governors

keep the social state and decide whether to forward an act from an external

agent to the Scene Manager or not. The Scene Manager agents maintain

the state of the environment by deciding whether an act from an external

agent is valid or not. EIs also support a performative structure that enables a

developer to define dependencies such as choice points, synchronisation and

parallelism mechanisms between scenes based on role flow policies among

scenes specifying which paths can be followed by which agent’s role.

One limitation of the AMELI framework is that for every external agent

acting in the system there is a corresponding Governor agent to mediate

the interactions of that agent. Additionally, the framework allows only for

permitted actions to happen. It has been argued that regimentation is not

always desirable or practical [72]. Therefore, in more recent works sanction-

ing (i.e. see [37]) and monitoring mechanisms (i.e. see [50, 86]) are preferred

as opposed to developing regimentation devices.

An important feature of the Social environment is that the state of the in-

teractions in the agent environment needs to be easily inspectable. In the

AMELI framework this is not easily achievable as agents playing specific roles

need to communicate to build a coherent state. It is also important that the

social environment is represented in terms of a formal framework so that

agents are enabled to reason about their actions and the effects their actions

have. This is not achieved in AMELI because the nature of the framework

is not logic based. Work presented later in this thesis tries to address some

of these limitations within the AMELI framework.
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2.4.2 AMELI+

To address the issue of maintaining a coherent state within the AMELI frame-

work, in [61] Garcia-Camino et al propose AMELI+. AMELI+ is an extended

version of the AMELI framework [49], with a mechanism to handle distri-

bution of norms and possible conflicts [59] that may arise due to normative

positions generated by the actions of agents. For example, one same action

can be simultaneously forbidden and obliged or permitted.

The AMELI architecture is extended with additional normative manager

agents which together with governor agents and scene manager agents are

in charge of the system. The Normative agents deal with conflict resolution

that can occur when applying normative transition rules.

Similarly to AMELI, AMELI+ is based on defining the agent environment

using a hierarchical structure of internal agents to deal with the enforcement

of norms. These internal agents decide how to update and propagate the

changes made in the state of the system to other internal agents interested

in these changes. The limitation here is that the AMELI+ approach requires

many internal agents being involved into propagating messages for changes

they perform locally. In a large and dynamic agent environment, where the

number of agents and the way they interact is not predictable a priory, this

solution is not practical. Agents need to be able to inspect the environment

and make decisions on their actions at run time, which is not easily achievable

here due to the hierarchical structure of the system. Another AMELI+

limitation is that the language for defining norms within the system does

not support constraints nor it is possible for agents to reason about how the

properties of the agent environment are changing in time.

2.4.3 CArtAgO

The CArtAgO (Common Artifact for Agent Open Environment) framework

(Ricci et al [105]) overcomes the limitations of having hierarchical structures
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managing the agent environment by defining the Agents and Artifacts (A&A)

[104] meta-model. The A&A meta-model introduces the concept of artifact

as a first class abstraction to model the agent environment. Artifacts are

conceived as passive, function-oriented computational entities designed to

provide some kind of function, and then to be used by agents to support

individual and collective agent activities [104]. A&A model introduces the

concept of workspace as a container of agents and artifacts. The agent envi-

ronment is conceived as a set of distributed workspaces containing dynamic

sets of agents working together by communicating and by sharing artifacts.

CArtAgO provides an API to define artifacts, an API to instantiate, use,

manipulate artifacts, and a run-time environment supporting the existence

and dynamic management of working environments. CArtAgO does not pro-

vide a specific model or architecture for agents and agent societies. Instead

CArtAgO allows a developer to build agent societies that share the same

working environments, and interact through suitable mediating artifacts be-

sides communicating via speech acts. Agents can use an artifact by triggering

the execution of an operation through a usage interface provided by the ar-

tifact and by perceiving observable events generated by the artifact itself as

observable properties.

The basic elements of CArtAgO are:

• Agent bodies, which are the entities that make possible to situate agents

inside the working environment;

• Artifacts, which are the building blocks to structure the working envi-

ronment;

• Workspaces, which are the logical containers of artifacts, useful to de-

fine the topology of the working environment.

CArtAgO offers a distributed topology by means of distributed workspaces.

By using workspaces to mediate the interactions amongst agents it is possible
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to define agent interactions in terms of protocols as we have described in

previous work in [123, 122, 81].

CArtAgO supports social constraints but its specification language for mod-

eling the artifacts, ReSpecT [92], is not as well suited for the definition of

normative concepts. This is due to the fact that with ReSpecT it is possible

only to define event-condition-actions (ECA) rules with a specific syntax,

but, it is not possible to reason about how the state of the environment

changes in time. Another limitation of the CArtAgO framework is that it

does not provide a methodology on how to define a norm based system thus,

the developer has to design the social environment without guidance on how

agent interactions can be specified using norms.

2.4.4 Moise+ Organisation Model

Moise+ [67] proposes organisational notions (like roles, groups, and missions)

to enable explicit specification of organisations in a multi-agent system. This

specification is used both by the agents to reason about their organisation

and by an organisation platform to enforce the rules of the organisation.

The specification of an organisation in Moise+ is decomposed into three

dimensions: structural, functional and deontic. The structural dimension

specifies roles, groups and links within the organisation. The functional di-

mension specifies how the global collective goals should be achieved. The

deontic dimension binds the structural dimension with the functional dimen-

sion by specifying permissions and obligations.

In a more recent work [68], the Moise+ [67] specification of organisation is

defined on top of CArtAgo [105] which, as stated in the previous section, is

based on the A&A model of Artifact [104].

The resulting framework is named ORA4MAS [68] and uses Artifacts and the

Moise+ language to define a basic set of organisational artifacts as follows:
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• The OrgBoard artifact keeps track of the state of deployment of the

organisational entity and it contains Moise+ specifications that agents

can reason about.

• The GroupBoard artifact manages the group instances of an organi-

sation by regimenting two norms that define the structural properties

that the group should have (i.e. such as an agent might be forbidden

to adopt a new role if it is incompatible with the roles that it is already

playing in the group). By observing this artifact agents can understand

available roles and their constraints, the participants of the group and

the links of the GroupBoard.

• The SchemeBoard artifacts are used to support and manage the execu-

tion of a social scheme. The execution of a scheme has three phases: i)

formation, where agents commit to the mission of the scheme; ii) goal

achievement, where each agent has to achieve the goals of the mission

they are committed to; iii) and finally it finishes when the root goal

of the scheme is satisfied and the scheme can be removed from the

organisation.

• The NormativeBoard artifacts are used to maintain information con-

cerning the agents compliance to the norms by managing permissions

and obligations defined between roles and missions. When an agent

starts playing a role within a group which is responsible for some

scheme, instances of norms are created for the agents in all related

normative boards. The instantiation process copies the norm defini-

tion and grounds the variables of the norm. The norm is initially

inactive and becomes active if the conditions defined by the norm hold.

The norm becomes fulfilled when the agent executes the action as it is

specified by the norm.

An organisational entity is then defined by one OrgBoard, one GroupBoard

for each instance of a group of agents, one SchemeBoard for each scheme be-
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ing executed by the agents and one NormativeBoard for each SchemeBoard.

These organisational artifacts are linked together to allow the synchronisa-

tion of the operations and to maintain a coherent and consistent state of the

organisation by sharing their information. The links between the artifacts

are the following ones: an OrgBoard is linked to all other artifacts of the

organisation; a GroupBoard is linked to all schemes its agents are respon-

sible for; the SchemeBoard is linked to exactly one NormativeBoard that

verifies the status of the norms related to the execution of the scheme; and

finally a NormativeBoard is linked to its SchemeBoard and all GroupBoards

responsible for the corresponding scheme.

ORA4MAS overcomes many of the limitations we first described in Section

2.3.2. Instead of the hierarchal structure of internal agents, developers can

define specialised artifacts that mediate the interactions using their own me-

diation rules. Agents can act and perceive artifacts that are distributed over

a network. They also encapsulate a state which changes as agents act upon

them and the interested agents can perceive it in a coherent way. Finally,

ORA4MAS links the distributed states of the artifacts in the environment to

maintain coherent information about the state of the environment.

There are still limitations to overcome in designing social agent environments.

In ORA4MAS the interactions cannot be combined in different ways and it is

not possible for agents to coordinate to change the rules when necessary (i.e.

by switching artifacts). This type of coordination has not been addressed

here because agents are assumed to interact withing a set of fixed schemes

defined in the organisation. The linking of artifacts in fact is rigid and de-

fined at design time, therefore adapting it to different situations that may

emerge during agent interactions is difficult. Moreover, there is no general

mechanism to query the state of distributed artifacts nor is there support

for reasoning about temporal events within artifacts. Finally, ORA4MAS

abstracts away from organisations that are part of a physical environment,

therefore, it does not provide a general framework for defining agent envi-

ronments (physical and social).
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2.5 Event-centric social interaction

We are concerned with developing an event-based approach to social inter-

action. Thus, in this section we review existing work that is most relevant

to our goal of extending GOLEM with a complementary model for a social

environment.

2.5.1 Artikis et al

Artikis et al [13] propose a model for norm-governed multi-agent systems

as executable specification of open agent societies. An Open Agent Society

is an open agent system where each agent occupies at least one social role

and where the behaviour of the members is governed by a set of social laws.

To formulate these specifications the authors use C+ [64] which has the

advantage that it can be given an explicit semantics in terms of transition

systems and allows for verification of properties. An agent enters in a society

after establishing its role. In this way, the social constrains prescribe the

behaviour of an agent occupying a specific role.

Artikis et al [13] suggest that in open agents societies there is a clear dis-

tinction between physical capabilities, institutional power, permissions and

sanctions to enforce policies.

In [9, 13] Artikis et al specify four levels of rules in an agent society:

• The rules that describe the physical capabilities of agents;

• The rules that define the institutionalised powers [72];

• The rules defining permissions, prohibitions and obligations of the

agents;

• Sanctions and enforcement policies that deal with the performance of

forbidden actions and non-compliance with obligations.
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In [10] the authors distinguish between valid and invalid actions through

the institutionalised power concept. The term refers to the empowerment of

agents within an institution to create facts that have a conventional signifi-

cance within that institution. Searle [108] was one of the first to distinguish

between brute facts and institutional facts. Later, Jones and Sergot [72]

presented a formalisation of this concept in terms of the conventional sig-

nificance of certain acts, in that they count as other kinds of acts or states

of affairs. For the actions to have an implication within the institution the

action must be performed by an empowered agent.

The social constrains in Artikis et al work define in what state of affairs

an action can initiate/terminate. To reason about social constrains, the

authors use Event Calculus [77] which is a formalism to specify and reason

about actions and their effects 2. They use an implemented version of Event

Calculus which the authors refer to as EClp and which briefly presented

in [11]. Within this approach the same action, in two different institutions

might have different semantics as it can initiate/terminate different states of

affairs. To specify the constrains of the open system the authors specify first

when an action is valid:

holds at(valid(Agent, Action)=true, T) ←
holds at(pow(Agent, Action)=true, T),

happens(action(Agent, Action)=true,T).

The above Event Calculus specification states that a valid action counts as

an action at a point in time if the agent who performed that action had the

institutional power to perform it at that point in time.

Secondly the authors specify permissions, prohibitions and obligations in an

application dependent manner. For example the constraint bellow:

holds at(permitted(Agent, Action)=true, T) ←
holds at(pow(Agent, Action)=true, T).

2The Event Calculus is extensively explained in Section 3.3.1
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is a way to expresses that an act is permitted at a point in time, if the agent

who performs it has the power to do so.

Thirdly, based on permissions, prohibitions and obligations and on the ac-

tions performed by the agents, their behaviour can be classified to social or

anti-social accordingly. To do so the authors specify sanctions and enforce-

ment policies in an application dependent manner.

Similarly to Artikis et al [12, 13], in Chapter 4, we will model executable

specifications in terms of social game using the Event Calculus formalism.

In particular we have chosen to use the Ambient Event Calculus (AEC)

formalism [22], as it extends the Event Calculus by allowing us to specify

complex events happening in a distributed agent environment 3. By using

AEC we can query properties of the state of the social games and reason

in a distributed setting. In Chapter 5, we also look at the social games in

terms of components that can be dynamically combined and executed using

coordination patterns, which are not addressed in Artikis work.

2.5.2 Alberti et al

Alberti et al [7] propose a logic-based approach for the specification and

verification of agent interaction. To express interaction protocols and to give

a social semantics to the behaviour of agents, the communicative acts of

the agents are constrained through the definition of constrains called Social

Integrity Constraints (SIC) [8].

The agent society is composed of a social infrastructure and a knowledge base,

containing information about structure and properties of the society. The

social knowledge base contains information about protocols and regulations

for entrance, exit and role assignment.

The society records in a history HAP the observable and relevant events for

the society (happened events are denoted by H). A course of events HAP

3The Ambient Event Calculus is extensively explained in Section 3.3.3.
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might give rise to social expectations about the future behaviour of its mem-

bers, the expectations are collected in a set EXP that contains events which

are expected to happen (denoted by the functor E), and events which are

expected not to happen (denoted by the functor NE).

Using SIC, the authors can describe the evolution of the expectations in

the society, based on the current history. Social integrity constraints are

used to express that expectations are raised on the behaviour of agents as

consequence of their communicative acts. For example, to express that if

an agent does accept a request, it is obliged to fulfill it by some deadline is

expressed as follows:

H(request(Agent1, Agent2, Content, Dialog, Tτ ))

∧ H(accept(Agent2, Agent1, Content, Dialog, Ta ))

∧ Tτ < Ta

→E(do(A, B, P, D, Td )) : Td ≤ Ta + τ

where do is a physical action, which fulfills the expectation of the constraint

if it matches with its content, provided that it is performed before a certain

amount of time τ has passed since the request has been accepted.

The expectations E are represented by 2 arguments: the first argument is the

event associated with the expectation, the second is a list of constraints over

the variables contained in the event. An event (defined by terms beginning

with ”do”) fulfills an expectation if the contents of the event satisfies the

constraints of the expectation. In case of negative expectations, instead of

fulfillment there is a violation.

Expectations can be viewed as obligations which we represent within a pro-

tocol as it will be explained in Chapter 4. We will also present in our ap-

proach coordination mechanisms amongst protocols which complements the

Alberti’s et al work presented in this section.
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2.5.3 Cliffe et al

In [35], Cliffe et al describe the use of Answer Set Programming (ASP) [15]

as an institutional modeling technique. ASP permits the statement of prob-

lems and queries in domain specific terms thus eliminating the gap between

specification and verification language. Similarly to Artikis et al, Cliffe et al

provide a formal Event Calculus like model for the specification of institutions

that captures all the essential properties namely empowerment, permissions,

violations and obligations and a verifiable translation to ASP resulting in a

decidable and executable model for institution. This work models an insti-

tution as a set of institutional states that evolve over time subject to the

occurrence of events. In particular, the institution is defined as a quintuple

that consist of institutional events, fluents, a consequence relation, an event

generation relation and an initial state:

• The institutional events describe events that may occur within the in-

stitution. The events can be observable events or institutional ones.

• The institutional fluents comprises the union of four distinguished sets

of fluents: the set of domain fluents that describes the domain of the

institution; the set of institutional powers that denotes the capability of

some event to be generated in the institution; the set of event permis-

sions that denotes what is permitted when an event is brought about;

and the set of obligations that denotes which event should be brought

about before the occurrence of event. Institutional fluents may be held

to be true at some instant of time.

• The consequences define a function that describes which fluents are

initiated and terminated by the occurrence of a certain event in a state

matching some criteria.

• The event generation defines an event generation function which de-

scribes when the occurrence of one event counts as the occurrence of

other events inside the institution.
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• The initial state defines the set of fluents that hold when the institution

is created.

The institution changes state due to events taking place. The start of an

institution is defined in terms of fluents that are true at a given time. The

authors define then an event generation function that describes what events

are generated at a given state of the institution (i.e events can be generated

from other events or due to violations). Events have effects on the fluents as

they may alter their truth value at a given time. For reasoning with ASP,

the authors define an ordered trace as a sequence of observable events. The

ordered traces allow the system to monitor the evolution of the institution

over time. The ASP has a one-to-one relationship with the institutional

event traces of the formal model, therefore the authors can provide executable

institutional specification so that agents can dynamically compute and query

to establish both how the current institutional state was reached and which

actions will have what consequences in the future of the current state.

An example of definition of the social rules is shown bellow:

occurred(E,T) ← observed(E,T).

occurred(viol(E),T) ← occurred(E,T),

not holds at(perm(E),T),

event(E), event(viol(E)), instant(T).

The above definition shows a way to define what occurs in the social envi-

ronment. In particular, the first clause states that an event has occurred at

a time T if it is observed at that time. The second clause states that a vio-

lation due to the event E has occurred at time T, if the event E has occurred

at time T and it was not permitted. The event(E) in the second expression

denotes the type of the event and instant(T) denotes the time instance.

There are many similarities between our work and the executable specifica-

tion of an institution as proposed in [35]. Similarly to what we stated in
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Section 2.5.1, by using the AEC formalism we can express the normative re-

lations and the evolutions of the institutions in terms of how a game evolves

due to actions taking place. However, in addition to these approaches, we

consider the distribution of the agent environment. This has as a conse-

quence that the state of the environment itself is distributed and in order to

meditate agent interactions we need ways to identify what properties hold

in the distributed state. Additionally, we define coordination mechanisms

to provide a component based mechanism for defining agent environments.

On the contrary however we cannot verify system properties as it would be

possible by using ASP.

2.5.4 Fornara et al

Another model of interaction in a multi-agent system understood in terms

of artificial institutions is that of Fornara et al, where the authors define

OCEAN (Ontology, Commitment Authorisation Norms) [54, 55]. OCEAN

describes an abstract syntax and semantics for the components of an insti-

tution. The main components of an institution in Fornara’s et al view [55]

are a core ontology for the definition of entities and their properties (such

as natural attributes, physical properties, institutional attributes), their ac-

tions and for the specification of roles and events (such as passing of time

calls, signals, change in state); a set of conventions and authorisations for

the performance of institutional actions; a set of event-condition-action rules

(ECA) that are essential for the definition of norms.

Fornara et al focus on the importance of representing commitments as the

fundamental concept of an institution. Commitments are viewed as an es-

sential concept to express the meaning of most types of communicative acts

and to define norms. A social commitment expresses a relation between at

least two agents [30] and it is defined as follows:

commitment(State, Debtor, Creditor, Content)
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which expresses a commitments in terms of a state State that keeps track of

the life-cycle of the commitment, a debtor agent Debtor that is committed

to fulfill the Content of the commitment, a creditor agent Creditor who

the debtor agent is committed to. The content is expressed using temporal

propositions. A temporal proposition is characterised by a statement about

a state of affairs or about an action. A temporal proposition is represented

as follows:

tp(Statement, [Tstart, Tend], Mode, TruthValue)

which defines a Statement about a state of affairs or about an action. The

statement is referred to a time interval with two possible different modes:

exist or for all. The Truth-value of a temporal proposition is initially un-

defined, it becomes true if the Mode is for all and the statement is true for

every instant of the associated time interval or if the Mode is exist and the

statement is true for some instant in the associated time interval, otherwise

it becomes false. For example the following statement:

commitment(pending, a1, a2, tp(open(a1, auction), [now, now+10m], ∃, ⊥)

represents the commitment of an agent a1 to the agent a2 to open an auction

within 10 minutes.

A commitment has a life cycle that evolves due to actions performed by

agents or to domain-dependent events. The events modify the truth value

of the temporal proposition in its content. If its temporal proposition be-

comes true, the commitment becomes fulfilled; if it becomes false the com-

mitment becomes violated. An agent creates a commitment by performing a

makeCommitment institutional action, which creates an unset commitment.

The debtor of an unset commitment may refuse it by executing setCancel, or

it may undertake the proposed commitment by executing setPending. A re-

fused commitment is represented with a canceled state, whereas an accepted

commitment is depicted with the pending state.
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Norms then are defined as those rules that manipulate commitments of the

agents and the general structure is defined as follows:

on E:Event-Template

if Condition then

foreach Agent in Selection-expression

do Commitment-Operations

where Agent is an identifier on the set of agents that satisfy the Selection

expression; selection-expression is a list of agent identifiers or a role defined

in a certain artificial institution; Commitment-operations is a sequence of

commitment operations (i.e cancel, set ect). Due to this kind of modeling

an obligation is represented by commitments, a prohibition is a commitment

to not perform the prohibited act and violations are commitments that have

been violated. A strongly related work to the Fornara’s et al is the work

proposed by Yolum and Singh in [134]. The authors define interaction proto-

cols where agents manipulate commitments by means of a set of operations.

The operations are namely: creating, discharging, canceling, releasing, dele-

gating or assigning commitments. The discussion provided in the following

paragraph is similar for both of these two lines of work.

Within OCEAN Fornara et al make explicit the model of commitments as

a mechanism to deal with what are the obligations, prohibitions and per-

missions of agents in the system. Commitments however need a generation

mechanism which, if it is done by agents as the author suggests, it might not

necessarily be a good solution when agents are situated in an open agent en-

vironment. Also, OCEAN does not address coordination of such agents when

creating the commitments, therefore, there is no guarantee that the system

converges towards a cooperative environment. In some complex applications,

the number of commitments generated for every agent can be high. Thus,

commitments need an ordering mechanism to define which one of the pending

commitments should be performed first by the debtor of the commitment.
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In our approach, we will view commitments as obligations, similarly to the

Artikis and Cliffe’s work.

2.5.5 Stathis and Sergot

In [113], Stathis and Sergot view interactions as a rule governed activity

which is regarded as a game. The games metaphor was originally proposed

to model human-computer interaction by Stathis and Sergot in [115] and was

subsequently applied to formulate agent interaction protocols in [113].

The basic unit of the games metaphor is the notion of an atomic game which

describes a set of rules about an initial state, a set of player roles, a set of

game moves, the effects the moves have on the state, a specification of when

a move is valid, a set of terminating states, and a set of results [113].

A move in Stathis work is represented as an Act selected by a Player as

follows:

select(Player, Act).

Stathis and Sergot describe the rules of a game using the following logic

program:

game(State, Result)←
terminating(State, Result).

game(State, Result)←
not terminating(State, Result),

valid(State, Move),

effects(State, Move, NewState),

game(NewState, Result).

Specifying the valid moves of a game corresponds to defining the precondi-

tions on the state of the environment that validates an actions in the multi-

agent system. In particular, a valid move is defined as:

60



valid(State, Move)←
available(State, Move),

legal(State, Move).

Every move in the game can produce effects which can be due to either

permitted acts or to forbidden or violations of agents. The rewards or pun-

ishment of agents are described as effects of the moves in the game. The

game terminates when the termination conditions become true. The result

of a game does not necessarily need to be zero-sum [90], by requiring a winner

and a loser, but it can also give rise to a win/win or loose/loose situations.

Given a specification of the rules, implementation of an interactive system

requires construction of an umpire, a component that enforces compliance of

the players with the rules and thereby controls the interaction. The umpire

displays the state of the game, provides means by which players select moves,

and enforces compliance of all the players with the rules.

The Stathis and Sergot framework includes a coordination component by

defining the conditions under which a sub-game becomes active. The coor-

dination mechanism specify how games interleave in a compound game and

it is specified as:

valid(State, Move) ←
active(State, SubState),

valid(SubState, Move).

The active/2 definition determines which sub-game SubState can be inter-

leaved in the compound-game.

There are various versions of this framework, the earliest versions were based

on assert retract predicates, but later versions were event based [114]. Al-

though the framework has an important idea of treating protocols as atomic

games and coordinate the protocols through use of an umpire, the framework

has not been tested in distributed applications. Like [13], we are going to
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look at how to accommodate more complex normative relations than the legal

definition provided in Stathis and Sergot’s work. In particular, we are going

to provide a clear separation between the physical and the social state of

the environment and how the moves of agents influence the two. We are also

going to extend our work with coordinations patterns to make the framework

more applicable to a MAS.

The games metaphor provides an intuitive model for representing social in-

teractions. From the engineering perspective, the developer of the social

environment has a structured mechanism to define the interaction rules as

atomic games by simply specifying the set of moves, their effects and the ini-

tial and the final state of a game. More complex interactions can be specified

by:

• expanding (adding more valid moves) and filtering (removing moves by

disabling their validity) from existing games; and

• combining simpler, component sub-games to build more complex games

and coordinate moves by using different interleaving patterns.

From the agent perspective, given the specification of a game, agents are

enabled to reason about the rules and build strategies to bring about success

in their individual goals. Agents can reason using a shared interpretation

of games or forced to play a game in the presence of an umpire. In both

cases, i.e. sharing an interpretation of the rules or playing the game via

an umpire, the framework provides a standard and flexible way with the

implementation of the actual interactions. Moreover, by being able to reason

about the evolution of games, agents are also enabled to play many games

in parallel.

As we have argued throughout this section, the current event-based ap-

proaches are not game-based approaches and these models of social inter-

action do not integrate agents interaction and coordination. Games have

the potential of combining both into a single approach with the advantages
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mentioned above.

2.6 Summary

This chapter was aimed at giving a comprehensive background on how cur-

rent literature views interactions in social environments. We presented the

concept of Social Agent Environment as a first class abstraction. Then we

looked at the components that are common to social environments, namely

member agents, physical territory, social rules and social state.

We reviewed the ideas found in literature on how to specify social environ-

ments. In particular, we looked at groups as social environment, which often

provides very general and theoretical models. Sometimes it is convenient

to describe normative aspects on how agent in a community/group interact,

thus institutions are another kind of social environment that regulate interac-

tions. The definition of an institution is based on defining normative concepts

such as the institutional power, permission and prohibitions. Another way to

represent social environments is by using organisational concepts which are

more suitable to capture operational aspects of agent interaction. Openness

is another important aspect in social environments which is not always con-

sidered. Open agent societies extend the concept of institution by (ideally)

addressing how agents enter and leave a society and how agent can interact

in multiple societies/collaboration/organisations or groups.

We then looked at existing implemented frameworks that model social envi-

ronments. We introduced AMELI/AMELI+ which are based on hierarchical

structure of agents thus making it difficult to define and maintain a coherent

social state and to define a non regimental approach to agent interaction. We

also described CArtAgo, Moise+ and ORA4MAS which introduce improve-

ments to the AMELI/AMELI+, but also them have disadvantages such as

expressiveness of the norms, dynamic coordination of different interactions

and reasoning with events time. Moreover, none of these platforms interface
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or address applications that require a model also for the physical environment

and the physical acts.

We also reviewed existing work in the area of social agents and MASs. We

focused only on those works that follow an event-based approach such as ours.

We introduced the research proposed by Artikis, Alberti, Cliffe, Fornara and

Stathis as works that provide a formal and an executable specification of

interaction, including a basic formulation of normative concepts. In all of

these works the institutional or organisational models are used as a way to

model agent societies. The interaction of agents is based on social rules

specified by organisations or institutions. Agents can enter an agent society

and take roles within it. Their roles will determine the way they interact

within the environment.

In the next chapter we introduce GOLEM. GOLEM is a platform for develop-

ing physical agent environments. In this thesis we want to extend GOLEM

with an additional social environment structure so that agent interactions

can be modeled in terms of physical and social acts.
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Chapter 3

The GOLEM Platform

The main motivation behind our work is to extend the GOLEM platform

with the notion of Social Environment. The GOLEM platform was devel-

oped as part of ARGUGRID (Argumentation over the Grid) [3], an EU

research project investigating a new model for programming a service Grid

at a semantic, knowledge-based level of abstraction through the use of argu-

mentative agent technology. In this chapter we first introduce the reader to

the GOLEM architecture and then analyse the limitations of the platform.

In particular we show how GOLEM focuses on representing physical aspects

of an agent environment but it abstracts away from the social aspects of the

environment.

The chapter is organised as follows. The functionalities of GOLEM are illus-

trated through the Distributed Packet World example as presented in Section

3.1. In Section 3.2 we present the various components of the GOLEM plat-

form and we describe their functionalities. In particular we explain the three

main components of GOLEM: containers, objects and agents. In Section

3.3 we discuss how, given a representation of the agent environment, it can

evolve in time. Finally, in Section 3.4 we discuss the limitations of GOLEM,

namely, that it is missing any form of modeling social rules within the agent

environment.
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3.1 Distributed Packet World Scenario

Bromuri and Stathis [22] and Bromuri [19] illustrate the functionalities of

GOLEM through the Packet World (PW) scenario which was originally pre-

sented in [130]. In this scenario a set of agents are situated in a rectangular

grid consisting of a number of differently coloured packets and destinations

points. Packets are delivered to destinations that have the same colour as

the packet. Each agent living in the PW has a battery that discharges as the

agent moves in different locations in the grid. The battery can be recharged

using a battery charger. This charger emits a gradient whose value is larger

if the agent is far away from the charger and smaller if the agent is closer

to the charger. The agents have the goal to bring the packets to the collec-

tion points and can communicate with other agents to exchange information

about the environment. For example, agents can coordinate by placing flags

in locations for letting other agents know that a particular area has been

explored and has no packets left.
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Figure 3.1: The Packet-World Scenario.
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Fig. 3.1 illustrates PW with a set of agents that are situated in a 8 x 8

rectangular grid consisting of a number of coloured packets (squares) and

destination points (circles). Agents (a1, a2, a3, and a4 in Fig. 3.1)) move

around the grid to pick coloured packets which they must deliver in destina-

tions that match a packet’s colour. As agents can see only part of the grid

at any one time, the red square around agent a2 represents the perception

range of this agent. The battery of the agents in the grid can be recharged

using the battery charger situated in location (7,8) of Fig. 3.1)).
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Figure 3.2: Distributed Packet-World Scenario.

Bromuri and Stathis [22] extend the original packet world with a distributed

version of the Packet-World scenario, where the world is split in many parts

and runs in multiple hosts as shown in Fig. 3.2. Every different host is

responsible for the agents and the packets deployed within it. Agents can

perceive what happens in a location that is logically nearby, independently
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of whether this location is distributed in another host.

3.2 The GOLEM Model

GOLEM (Generalised Onto-Logical Environment for Multi-agent Systems)

is an agent environment middleware that can be used to create multi-agent

system applications. GOLEM supports the deployment of agents - cognitive

entities that can reason about sensory input received from the environment

and act upon it, objects - resources that lack cognitive ability, and containers

- virtual spaces containing agents and objects and capturing their ongoing

interactions in terms of an event-based approach.

GOLEM uses the concept of affordances to describe “all the action possibil-

ities latent in the environment, objectively measurable, and independent of

an agent’s ability to recognise those possibilities” [63]. In this way, GOLEM

entities suggest how agents can interact with them in a way that can be

designed in advance and declaratively thus providing a link between the way

entities are described and the way these descriptions can be perceived by

agents.

To define an agent environment the developer describes a set of containers

where agents and objects are deployed. Agents use their sensors to perceive

the status of other entities in the agent environment and perform actions via

effectors to change the environment.

Interaction between agents or agents and other entities in GOLEM is for-

mulated in terms of events happening in the environment. According to the

happening of an event the agent environment notifies those sensors capable

of perceiving the action of the event. In GOLEM there are three types of acts

embedded in an event: speech acts - to allow agents to communicate with

other agents and users; sensing acts - to allow an agent to actively perceive

the environment; and physical acts - to allow the agent to interact with other

entities, in particular objects, but also agents as well.
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3.2.1 Objects

GOLEM objects are entities that lack of cognitive abilities. They provide

functionalities in the agent environment via their affordances and can be

interacted upon via simple sensors and effectors called receptors and emitters

respectively.

The object is described in terms of the perceived affordances. To present

these perceived affordances Bromuri and Stathis [21] use the object-based

notation of C-logic [31], a formalism that allows the description of complex

object. As we are going to keep this notation in this thesis we have included in

Appendix A a short description and explanation of C-logic. As an example

of a C-logic term consider the description of a packet in the packet world

(taken from [19]1):

packet: o1[

colour ⇒ red

receptors ⇒ { receptor:r1 },
emitters ⇒ { emitter:em1 }
position ⇒ square:sq1

].

This complex term states that o1 is a complex term describing an object

of class packet, with a red colour, with a multi-valued attribute receptors

containing one receptor sensor r1, a multi-valued attribute emitters containing

one emitter effector em1 and an attribute defining the object position. Some

of the attribute values are complex terms themselves, like the receptor and

the emitter. The C-logic syntax to represent the perceived affordances of an

object as a complex term has a first-order logic translation, see Appendix A

for an example of translation.

1The discussion of the object affordances and the discussion in appendix A is based on

Bromuri’s thesis.
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The receptor sensor of an object captures notifications of physical acts per-

formed on the object by entities in the agent environment. To represent

events that receptors can capture complex terms are used too. The term:

do:e1 [ actor ⇒agent:ag1[effector ⇒ ef1], act ⇒ drop,

object ⇒ packet:p1, location⇒square:sq1]

describes an event e1 where the effector ef1 of agent ag1 performs a physi-

cal act drop on a packet object p1 in location sq1. The event produced in

the agent environment will be captured by the receptor of the object via

notification sent to the object by the environment in order to trigger the

method of the object. A triggered method is likely to change the internal

state object state and typically will result in the output of the change trans-

mitted as another event via the object’s emitter effector. As before, emitted

events are complex terms. To simulate an object reaction to the physical act

represented by e1, the event description:

do:e2 [actor ⇒ object:o1[emitter ⇒ em1],

act ⇒ produce sound,

sound ⇒ packet drop]

showing the kind of event emitted by the object. For more details see Bromuri

[19] and Bromuri and Stathis [22].

3.2.2 Agents

In general, the agent concept is attributed to autonomous software compo-

nent demonstrating proactivity by acting without direct human intervention.

Due to their autonomy, agents have control over their actions and their in-

ternal state [70]. In this thesis, we refer to agents that are s ituated in an

environment and whose autonomy relates and depends also on their environ-

ment.
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Given a class of problems, an agent is engineered to solve it. This is why

agents need knowledge and reasoning capabilities. Agents have their own

knowledge base, a set of goals, a private state and a plan and strategies

on how to achieve the goal [132]. Generally, it is not possible to observe the

mental state of an agent (i.e an agent has a goal and a plan on how to achieve

it, this agent might have also a strategy on how to optimise the profit for a

specific goal but this is all private to the agent), however it is possible to infer

the agent behaviour from the acts the agent performs in its environment.

Agents in GOLEM are cognitive entities that can reason about sensory input

received from the environment and act upon it. An agent has a body and it is

described by affordances. Affordances then can be perceived by other agents

making possible the interactions among them. A description of the form:

agent: ag1[ understands ⇒ ontology:o1,

sensors ⇒ {sight:s1, hearing:s2, touch:s3},
effectors ⇒ {speak:ef1, arm:ef2, arm:ef3},
activity ⇒ idle

]

states that ag1 is a cognitive agent which understands the ontology o1, has

sensors of class sight, hearing and touch, and effectors of class speak and arm,

while it is currently idle. An agent attempts to execute physical actions in

the agent environment using its effectors, and it uses sensors to respond to

event notifications by the agent environment.

The body of an agent has affordances which makes the agent perceivable

in the agent environment, a set of sensors and effectors to act and perceive

actions in the environment and, additionally, it contains a mind, a cognitive

component giving the agent the ability to reason logically and make deci-

sions. GOLEM also provides mobility functionalities, which allows that the

agent migrates from one container to another. The details on the agent ar-

chitecture and the mobility features of GOLEM are beyond the scope of this
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introductory chapter; the interested reader is referred to [21, 19] for more

details.

3.2.3 Containers

In an agent environment, agents can be computationally expensive to deploy

and this can limit how many agents can be deployed in a single machine.

GOLEM tackles the scalability problem with the notion of container. A

GOLEM container supports the distribution of agents, processes and objects

in an agent environment thus enabling them to interact regardless of their

location. To define the agent environment, a set of containers is composed

at design time to link the entities distributed in different machines and syn-

thesise the environment.

A container has a state that acts as a directory of all the present agents and

objects in it, including information about their topology and configuration.

Interactions between the entities within a container are governed by a set

of physical laws. These laws specify the possible evolutions of the container,

including how these evolutions are perceived by agents and affect objects and

processes in the environment.

Every container has its own perceived affordances that include the ways

in which an agent can configure itself (or other basic objects, agents, and

containers) to became part of the container’s internal state. For example,

the term below represents the state of a 2 x 2 packet world container showing

only one agent, packet, destination and battery:

packet world:c1[

address ⇒ “container://one@134.219.7.1:13000”,

laws ⇒ physics:pw1,

type ⇒ open,

mediation services ⇒ {communication, discovery, agent registry},
entities ⇒ {agent:ag1, packet:p1, dest:d1, battery:b1}]
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describes a packet world container that has an address which is container://one

@134.219.7.1 :13000, has laws that are represented by another object pw1 of

class physics, is an open type of container in that any agent can enter it, and

has an internal state containing four entities, one agent ag1, ag2, a packet p1,

a destination d1 and a battery b1. The representation of the 8 x 8 grid of Fig-

ure 3.1 is similar but larger as it contains more agents, packets, destinations,

and squares.

The container offers mediation services which are available for all the entities

in the system: the discovery service of the container is used by the agents

to query the location of other agents, objects or containers in the agent en-

vironment; the communication service delivers exchanged messages between

agents to the destination; the connector mediation service allows agents to

move from one container to another container of the agent environment.

A set of containers connected together defines a topology of containers. The

topology relates the containers by defining how they are connected which

also determines how the containers can query the whole state of the agent

environment 2. The topology can be defined in terms of a root container,

neighbouring containers and/or super and sub containers. The root container

is the ancestor of all the containers of the topology. For every container one

or more super, sub or neighbour relationship with the other containers can

be defined as shown in Fig.3.3.

Containers that are deployed within other containers are said to be sub-

containers. The idea is that the sub-container is logically inside the super

container, but possibly physically distributed elsewhere. A container can

also be connected to one or more adjacent containers which in GOLEM are

called neighbouring containers. In Fig. 3.3, container C0 is a root container

connected to three sub-containers C1, C2, C3 that are neighbours between

each other. Moreover, also C1 and C3 have sub-containers organised in a

neighbourhood.

2The details of such mechanisms are explained in Section 3.3.3.
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Figure 3.3: Distributed Containers.

In GOLEM neighbour containers and sub/super containers can communi-

cate by means of a proxy object. Usually the communication between two

containers is bidirectional. The difference between neighbour containers and

sub-containers is that the neighbouring relationship occurs between contain-

ers at the same layer which are adjacent in the topology of the agent en-

vironment, while in the case of sub-containers these are logically contained

in other containers. When containers are organised in multiple hierarchical

layers and are composed of neighbours and super/sub-containers, then we

say that they form regions to represent the distributed agent environment.

To exemplify the discussion we can think of an agent application where a

set of agents are deployed in different buildings across an area. In each

building there are many sensors and agents connected to computer machines.

The sensors collect some specific data that agents analyse and, if necessary,

they can request additional data to sensors or to other agents in the agent
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environment. In this case, the topology of the application can be deployed

as shown in Fig. 3.4. In this example, the developer chooses to have a
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Legenda:
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Figure 3.4: Example of how an agent application can be deployed in terms of GOLEM Containers.

container for every machine where agents and sensors are connected (C0-

C7). Every building has a super container for all the other containers in

the building (C0, C3 and C5 for respectively building 0, 1 and 2 ). The

other containers of the buildings are connected as neighbours (C1-C2 and

C6-C7). Finally, the super containers of each building are related to each

other as neighbouring containers (C0-C3 and C3-C5) thus, the whole agent

environment is connected. Agents within containers can interact in the agent

environment independently from their locations. In some applications, it is

also useful to define the neighbouring containers in a way that they reflect

physical proximity in the real world. For example in Fig. 3.4 C1 and C2

can be containers corresponding to machines located in adjacent rooms. The

DPW scenario explained in Section 3.1 can be treated in a similar way. The
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grid can be partitioned in smaller grids that are contained within GOLEM

containers. Whenever these smaller grids are adjacent to another smaller

grid, the corresponding containers are connected as neighbouring containers.

3.3 Evolution of the Environment

GOLEM containers are complex objects that contain descriptions of agents,

objects and other containers. In section 3.2.3 we outlined how a container

can be represented as a set of complex terms. These complex terms evolve

over time as agents act on the environment. To define the evolution of the

environment in GOLEM we describe the evolution of containers whose states

are described as Event Calculus theories.

3.3.1 The Event Calculus

The Event Calculus (EC) was introduced in [77] by Kowalski and Sergot and

it is a formalism to specify and reason about actions and their effects. In EC,

produced events initiate and terminate properties (called fluents). Events

happen instantaneously and they are represented in terms of the time when

they happen. The axioms below define a simple version of the EC:

Clause EC1 states that a certain property P continues to hold at a particular

time T if the system was initialised with that property (at time 0) and nothing

happened between then and the time of interest T to change P from holding.

Similarly, clause EC2 states that a property holds at a time T if it has been

initiated by an event E that happened at time Ts and the holding of that

property has not been broken from the starting time Ts and the time of

interest T. To decide when a property is broken, we use the clause EC3.

This states that a property P is broken between time Ts and T, if another

event Estar has happened at a time Tstar whose effect is to terminate P from

holding. More sophisticated versions of the Event Calculus are discussed by
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(EC1) holds at(P, T)←
0 ≤ T,

initially(P),

not broken(P, 0, T).

(EC2) holds at(P, T) ←
happens(E, Ts),

Ts < T,

initiates(E, P, Ts),

not broken(P, Ts, T).

(EC3) broken(P, Ts, T) ←
happens(Estar, Tstar),

Ts < Tstar, Tstar < T,

terminates(Estar, P, Tstar).

Shanahan in [110], but these are beyond the scope of this thesis.

3.3.2 Object Event Calculus

To describe how entities change state within a container, GOLEM uses a

dialect of the EC called Object Event Calculus. The Object Event Calculus

(OEC) was described by Kesim and Sergot in [74] and assumes an object-

based data model where instances of objects are represented by unique iden-

tifiers and attribute value pairs describing the objects’ states at a given time.

Given this data model, the OEC formulates how instances of complex terms

of this kind evolve over time. OEC is used in GOLEM to describe how

entities change state within a GOLEM container.

A subset of the clauses describing the OEC is given below:

Clauses C1-C2 provide the basic formulation of OEC deriving how the value
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(C1) holds at(Id, Class, Attr, Val, T)←
happens(E, Ti), Ti ≤ T,

initiates(E, Id, Class, Attr, Val),

not broken(Id, Class, Attr, Val, Ti, T).

(C2) broken(Id, Class, Attr, Val, Ti, Tn)←
happens(E, Tj), Ti < Tj ≤Tn,

terminates(E, Id, Class, Attr, Val).

(C3) holds at(Id, Class, Attr, Val, T)←
method(Class, Id, Attr, Val, Body),

solve at(Body, T).

(C4) attribute of(Class, X, Type)←
attribute(Class, X, Type).

(C5) attribute of(Sub, X, Type)←
is a(Sub, Class),

attribute of(Class, X, Type).

(C6) instance of(Id, Class, T)←
happens(E, Ti), Ti ≤ T,

assigns(E, Id, Class),

not removed(Id, Class, Ti, T).

(C7) removed(Id, Class, Ti, Tn)←
happens(E, Tj), Ti < Tj ≤ Tn,

destroys(E, Id).

(C8) assigns(E, Id, Class)←
is a(Sub, Class),

assigns(E, Id, Sub).

(C9) terminates(E, Id, Class, Attr, )←
attribute of(Class, Attr, single),

initiates(E, Id, Class, Attr, ).

(C10) terminates(E, Id, , Attr, )←
destroys(E, Id).

(C11) terminates(E, Id, , Attr, IdVal)←
destroys(E, IdVal).

78



of an attribute for a complex term holds at a specific time. Clause C3 de-

scribes how to represent derived attributes of objects treated as method calls

computed by means of a solve at/2 meta-interpreter as specified in [75].

C4-C5 support a monotonic inheritance of attributes names for a class lim-

ited to the subset relation. In particular, C4 checks if a class has a certain

attribute while C5 checks if an attribute belongs to a superclass.

C6-C7 determine how to derive the instance of a class at a specific time. The

effects of an event on a class is given by assignment assertions; the clause

C8 states how any new instance of a class becomes a new instance of the

super-classes.

Finally, deletion of objects is catered for by clauses C9-C11. C9 deletes single

valued attributes that have been updated, while C10-C11 delete objects and

dangling references.

Event descriptions themselves are specified as complex terms. For example,

in the Packet-World, the event description below:

do:e14 [actor ⇒ ag1, act ⇒ move:m1 [destination⇒ sq3]]

represents a physical action of agent ag1 who tries to move from one location

to another. We will see later, how such an action is executed by the agent

that causes the event to happen. For the time being, we will assume that

the event has happened and we will show next how the affordances of the

agent that made the move have changed in the environment as a result of

the happening of this event. To do this we need to define domain specific

initiates/5 and terminates/5 clauses, as shown below:

initiates(E, agent, A, position, Pos) ←
do:E [actor ⇒ A, act ⇒ move:M [destination⇒ Pos]].

In this way the new position of the agent has been initiated as a result of

the move. The complete description of the event’s effects also requires to
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terminate the attribute holding the old position of the agent; this is handled

in OEC by the general rule described in clause C9.

An example of how the OEC is used in GOLEM can be illustrated using the

Packet-World scenario. Suppose that Packet-World is initialised at time 0 so

that packet p1 is in square sq1 :

happens( assigns:e0[ packet⇒ p1, position ⇒ sq1], 0).

Suppose further that the following events happen in the environment as a

result of agent ag1 acting on it:

happens(do:e1 [actor ⇒ ag1,

act ⇒ pick:M[packet⇒ p1, position⇒sq1]], 1).

happens(do:e2 [actor ⇒ ag1,

act ⇒ move:M[position⇒sq2]], 2).

happens(do:e3 [actor ⇒ ag1,

act ⇒ drop:M[packet⇒ p1, position⇒sq3]], 3).

These three events state that at time 1 agent ag1 picks packet p1 from square

sq1, at time 2 moves to square sq2 and at time 3 the agent drops packet p1

to square sq3.

To describe this kind of interaction in the environment we need domain

specific axioms for the effects of agent actions, such as pick, move, and drop.

For example, for the pick action we may specify these effects as:

initiates(Ag, agent,holding, PID, T) ←
do:E [actor ⇒ A, act ⇒ pick:C[packet⇒ PID, position ⇒ Pos]].

By describing the rest of the actions similarly, we are now in the position to

ask queries about the state of the world and get answers, as shown below:
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?- holds at(p1,packet, position, sq1, 1).

Answer: no

?- holds at(ag1, agent, holding, p1, 1).

Answer: yes.

?- holds at(ag1,agent, position, sq2, 2).

Answer: yes.

3.3.3 The Ambient Event Calculus

The Ambient Event Calculus (AEC) [22] is a formalism that allows the spec-

ification of complex events happening in the distributed agent environment

represented as a set of interconnected containers.

AEC uses the OEC to query properties of entities within a container. How-

ever it extends the OEC with a number of new concepts:

• active perception of events by accessing the environment properties via

agent sensors;

• passive perception in terms of notification of events to agent sensors;

• action execution in terms of possible attempts of actions that cause

events to happen using agent effectors;

• local queries in a container and all its sub-containers;

• neighbourhood queries over the states of a set of neighbouring contain-

ers;

• regional queries over regions of containers including sub-containers,

neighbour containers and super containers.
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In this thesis we are interested in how an environment composed of containers

is queried. To deal with local queries the definition of locally at/8 below states

that the affordances of an entity can be inferred either from the top-level

container using clause C18 or from a sub-container using clause C19.

(C18) locally at(C, Path, Path∗, Id, Class, Attr, Val, T)←
holds at(C, container, entity of, Id, T),

holds at(Id, Class, Attr, Val, T),

append(Path, [C], Path∗).

(C19) locally at(C, Path, Path∗, Id, Class, Attr, Val, T)←
instance of(SubC, container, T),

holds at(SubC, container, super, C, T),

append(Path, [C], NewPath),

locally at(SubC, NewPath, Path∗, Id, Class, Attr,Val,T).

Using the above specification we can query whether within the container C

exists an object identified as Id, with class Class that has an attribute Attr,

whose value is Val at time. In particular, the clause C18 checks whether the

object is in the local state of a containerC by using the holds at/5 to find

the object in the container’s state. The clause C19 looks for sub-containers.

If a new sub-container SubC is found, the same query is asked in the sub-

container.

In this way containers can be recursively embedded inside other containers

as objects, according to the topology needed, and implemented on different

hosts, if necessary. In applications where the topology of the environment

requires that containers are next to each other the AEC allows to query

neighbouring containers as follows:

(C20) neighbouring at(C, Path, Path∗, Max, Id, Cls, Attr, Val, T)←
Max >= 0,

locally at(C, Path, Path∗, Id, Cls, Attr, Val, T).

82



(C21) neighbouring at(C, Path, Path∗, Max, Id, Cls, Attr, Val, T)←
holds at(C, container, neighbour, N, T),

not member(N, Path),

Max∗ is Max -1,

append(Path, [C], New),

neighbouring at(N, New, Path∗, Max∗, Id, Cls, Attr, Val, T).

The rules above specify a query that refers to properties holding in neigh-

bouring containers in the agent environment. Max is the maximum number of

containers that form a neighbourhood and Path contains information about

which containers have been visited so far with a resulting path Res, while

Path∗ represents the resulting path to the neighbour where the query has

succeeded. Clause C20 then looks for the property of the object locally by

using the locally /8 predicates to query in the state of a container C whether

an object identified as Id, with class Cls, has an attribute Attr, whose value

is Val at time T. Clause C21 looks for the same property in neighbouring

containers not already visited. If a new neighbour N is found, this neighbour

is asked the query but in the context of a New path and a new Max∗.

One of the problems of neighbouring at/9 as defined before is that when

looking at a topology, if the query fails, the super-containers of the container

from where we fired the query are not checked. The regionally at/9 predicate

queries big areas of distributed topologies of the agent environment that are

referred to as region.

(C22) regionally at(C, Path, Path∗, Max, Id, Cls, Attr, Val, T)←
neighbouring at(C, Path, Path∗, Max, Id, Cls, Attr, Val, T).

(C23) regionally at(C, Path, Path∗, Max, Id, Cls, Attr, Val, T)←
holds at(C, container, super, S, T),

Max∗ is Max - 1,

Max∗ >= 0,
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append(Path, [C], New),

regionally at(S, New, Path∗, Max∗, Id, Cls, Attr, Val, T).

Assuming a large Max, clauses C22 and C23 above visit all the nodes of a

topology until a solution is found. Complex queries about the attributes of

an entity are obtained as a combination of locally at/8 and neighbouring at/9

definitions. Similar rules are defined for the generalisation of instance of/3

that are defined as local instance of/6, neighbouring instance of/7, and re-

gional instance of/7. Their definitions we omit, as these simply rely on calling

the predicates of clauses C18...C23 using instance of/3, instead of holds at/5.

For more details see [19].

3.4 Limitations of GOLEM

The GOLEM agent platform was proposed to address issues related to the

concept of agent environment: from the issue of situating agents as physical

bodies in a software environment, to the issue of making resources accessible

to them by means of objects. The resulting framework, provided an open

and distributed agent environment model to mediate the physical interactions

amongst agents, objects and containers.

Agents and objects populating the environment are encapsulated into a body

which situates these entities in the agent environment. This encapsulation

means that GOLEM is open to different entities which are integrated in the

system thanks to the body interface. The distribution of the agent envi-

ronment is another of the features provided by GOLEM. The distribution

is defined using the concept of container. Containers maintain distributed

portions of the state of the environment and relationship between containers

are defined to allow for queries on the state of the agent environment. Agents

query the state of the agent environment in order to be able to interact. For

this purpose the AEC formalism was proposed by Bromuri and Stathis in

[22] to link and mediate the interactions happening in different hosts. Addi-
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tionally, the distribution of agent environments allows to define systems that

can scale up with an increasing number of entities (agents and objects).

The GOLEM framework is a powerful model because allows the definition of

agent environment to exhibit the following characteristics:

• enables the deployment of logic-based agents over a network;

• provides a declarative model of agent environment and the representa-

tion of the interactions in it;

• mediates interactions within the environment and provides communi-

cation mechanisms to send and receive messages;

• proposes a framework and its implementation that supports querying

the state of the distributed agent environment.

In general, we want to distinguish the concept of environment into physical

environment and social environment. The physical environment defines the

physical actions that agents can perform on objects, including the definition

of when those actions are possible, and when they are, the effects that they

have on the state of the environment. The social environment on the other

hand, defines the rules that the agents share to communicate in a common

language and coordinate their actions to achieve their goals. It also describes

the roles that the agents play in the interactions and their relation to other

agents [91].

In applications such as ARGUGRID [3], in order to support the activities of

the agents, there is a need to provide both concepts of the physical and the

social agent environment. ARGUGRID agents need to collaborate and create

agreements which goes beyond the concept of physical possibility offered in

GOLEM. For example, a user requests an ARGURID agent to find a specific

service in the platform. The agent interacts with other agents that offer

the service and creates an agreement on behalf of the user. The physical

environment enables the agent to discover service providers that offer the
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requested service but, it cannot deal with the negotiation protocols that are

involved when the agent attempts to reach an agreement over s service. The

interaction here requires the involved agents to take specific roles, which

in turn make the agents have rights and duties that constrain further the

possible actions that the environment can support. As a result, negotiation

protocols ala ARGUGRID need a higher social-level that complements the

physical one in order to support the required interactions.

To summarise, the development of GOLEM aimed at modeling the physical

aspects of an agent environment, but it was not intended to support interac-

tions of a social agent environment. Despite the advantages that it offers as a

MAS platform for developing distribution of agents over a network, including

their low-level interactions, it does not provide mechanisms for representing

the responsibilities of agents according to the roles they play in agent in-

teraction protocols. More specifically, GOLEM does not support normative

notions for modeling the social interaction protocols, the communicative ac-

tions and their effects in the system. As a result, interactions in GOLEM

cannot be defined in terms of are permitted/obligated actions, their validity,

and their coordination in more complex and dynamic social settings.

Motivated by these limitations, this thesis seeks to study how to introduce

the key aspects of a social environment as part of the GOLEM framework so

that it can be used for applications that require social interaction amongst

agents. In the following chapters we incorporate in a systematic way the

concept of social environment into GOLEM, without interfering with the

GOLEM approach.

3.5 Summary

We have presented the GOLEM platform and its building blocks: namely

containers, agents and objects. We described how GOLEM uses the concept

of affordances to describe entities of an agent environment in terms of what
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can be perceived of an entity situated in such environment. GOLEM objects

are seen as reactive entities used to wrap resources of the external environ-

ment. Agents, on the other hand, are defined as cognitive and active entities

that interact with other agents and objects in containers. A container is

used to represent a portion of the distributed agent environment and can be

composed to build more complex configurations.

We then showed how the agent environment can evolve in time and this

evolution is captured in the state of every container using the OEC. We also

explained how by connecting the containers in a logical structure and using

the AEC as the underlying representation mechanism it is possible to query

the state of the whole social environment. In fact, agents can query the

state of the environment and perceive the affordances of other entities in the

environment.

Finally we showed that despite the many advantages of the GOLEM plat-

form, the system does not support social aspects of the agent environment.

The current platform only supports the enforcement of rules describing how

agents can physically act in the environment. Thus, in the current GOLEM

model, it is not possible to model agent to agent interactions other than at

a low, physical level.

In the next chapter we introduce the MAGE framework. We present the idea

behind MAGE and how we model simple social interactions (protocols) as

atomic games. The interactions within games evolve in time and stores the

changes to the state of the interaction due to agents making moves within the

atomic game. In MAGE agents are enabled to play based on their preferences

and strategies.
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Chapter 4

Atomic Social Containers

Motivated by the need to model the social interactions of an agent environ-

ment and the need to extend the GOLEM platform with social aspects of

agent interaction, in this chapter we introduce the Multi-Agent Game Envi-

ronment (MAGE) framework. MAGE extends the GOLEM container with

the notion of social container, thus dividing containers into physical and so-

cial. In this way, the agent environment is engineered to separate the social

rules of the application from the physical ones [11].

Given the separation between physical and social containers, this chapter

studies how to represent interactions in social containers using games frame-

work of Stathis [112]. More precisely the work studies how the idea of atomic

games in [113], extended here with a normative interpretation of valid moves,

can be used to formulate interactions of the most basic social containers. In

MAGE we refer to these containers as atomic social containers. To exemplify

the interactions in these type of containers, we are going to use the Open

Packet World scenario.

The chapter is organised as follows. In Section 4.1 we present the Open

Packet World scenario which is an extended version of the Packet-World

scenario presented in [130]. In Section 4.2 we explain the concept of social
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container and how this entity relates to the rest of the framework. In Section

4.3 we show how the concept of game can be used to define atomic social

containers. In Section 4.4 we formulate the rules of an atomic game to show

how to capture the evolution of the state of the game and how to model

the valid acts that agents can perform within it. Finally, in Section 4.5 we

summarise and conclude this chapter.

4.1 Open-Packet-World Scenario

For the purpose of this thesis we extend the Packet-World (PW) scenario

[130] and its distributed version (presented in Chapter 3) with a variation

that makes the world open and competitive. We call this extended version

the Open Packet World (OPW).

In the OPW, agents compete to maximise the number of packets they de-

liver to a destination. We make the agents compete by rewarding them

points whenever they deliver packets to appropriate destinations. Agents

are now antagonistic and may be developed by different parties. They can

reason based on their intentions, strategies and internal preferences. Here,

we assume that agents share an ontology which is necessary for both so-

cial and physical interaction. Unlike the PW, in this work we are making

no assumptions on what types of agents and what reasoning they perform

when they choose to act in the environment. Agents can be developed to

be norm-unaware in that agents may inadvertently violate norms. Alter-

natively, agents can be norm-aware in that they may be norm-abiding and

comply with the social rules, or ‘opportunistic’ in that they may violate a

norm if, according to the agent’s reasoning, the sanction is less ‘costly’ than

the utility gained by violating the norm. For instance an agent may try to

deceive other agents by placing a flag in an area that already has packets.

As a result of agents being competitive and possibly selfish, we want to en-

courage agents to follow rules, so we introduce norms. Violation of norms
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results in sanctions. One type of sanction, in this example, is the reduction

of the points that an agent has due to violated norms. These aspects of the

OPW scenario have already been discussed in [124, 125].

The Open Packet World (OPW) presents a number of knowledge representa-

tion challenges for a norm-governed system. Unlike other practical applica-

tions, e.g. electronic markets, it requires both speech acts for collaboration

amongst agents but also the simulation of physical actions, which in turn

necessitates the representation of physical possibility in the system. Physical

possibility requires the representation of a physical environment whose state

should be distinct from the state of the social environment. The OPW is

also convenient from the point of view of experimentation in that we can

make the experimental conditions harder by increasing the size of the grid,

the number of agents and the number of packets/destinations.

4.2 Social Environment as Social Containers

We extend the agent environment as discussed in Bromuri’s work [19] with

the notion of social environment that mediates the social interaction of the

agents. In order to model a social environment we introduce the concept

of social container as opposed to Bromuri’s physical containers. A physical

container in Bromuri’s work provides strong mediation in that agents situ-

ated in it can perform actions successfully only if these actions are physically

possible within the container. For example, in the PW, an action of an agent

moving in a position where there is another agent will fail. Social containers,

however, provide a different, weaker concept of mediation. An agent is not

physically situated in a social container. Instead, agents relate to a social

container logically, through membership. When an agent acts in the physical

container in which it is situated, this action is then governed by the rules

specified in the social container the agent is a member of. However, an ac-

tion that is invalid in the social container does not imply that the action will
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fail, rather that it will probably be sanctioned. For example, in the OPW

an agent can flag a region as being explored, even if it is not true; the so-

cial container will allow this to happen even if the act is invalid (although

the sanctioning mechanism of the social container will eventually punish the

agent as it has violated the rules).
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Figure 4.1: The Open Packet-World using Social Containers.

A social container is an entity that encapsulates the social rules of the agent

environment. The rules of the social container describe how the social state

changes as a result of agents undertaking interactions amongst each other.

Following our characterisation of social environments in Chapter 2, we view

every social container to contain:

• a set of member agents;

• a set of social rules;
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• a social state;

• a link to the physical environment.

The agents interacting in a social container are members of the social con-

tainer. The social rules capture how interactions should evolve between in-

teracting agents. The social state is updated based on the social rules and

the history of the interaction within the container. The physical environ-

ment is linked to the social environment by defining sub-super relationships

between social containers and the physical ones, in this way, the social and

the physical state are linked together with the AEC.

The link between the physical and the social environment is defined so that

the social rules of the social containers can govern acts happening in the

physical environment (where the agents are situated). For example, to rep-

resent the link between physical and social containers in the OPW scenario,

we can represent a social container as a super-container of all the physical

containers that are defined in the agent environment. In general, how the

social and physical environment are distributed depends on the scale of the

application. In OPW, if the number of agents and packets is small, we could

have one physical container mediating all the physical interaction and one

social container as a super container of the physical container mediating the

social interactions of the participating agents.

To exemplify the discussion, in Fig. 4.1 (a) we show a case were a social con-

tainer is a super-container of one physical container. The figure represents

social containers with dotted squares and physical containers with full-line

squares. The relationship between containers is represented by including the

squares into another square whenever there is a super-sub container relation-

ship amongst containers and by drawing squares next to each other whenever

they are neighbour containers.

In a case where the number of entities is big and we have a few social rules,

we can distribute the environment in many physical containers but mediate
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the social interaction from one single social container. We show this repre-

sentation in figure 4.1 (b) where we show a case where the social container

is a super container of four physical ones. There are more complex applica-

tions where the concentration of the social rules all in one container might

create a bottleneck for the application. We are going to discuss more complex

representation of the social environment in the next chapter.

4.3 Social Containers as Games

We use the game metaphor [115, 113, 114] for formulating the interactions

amongst agents in a social container. The games metaphor, construes com-

municative interactions within an agent society abstractly as game interac-

tions [113]. We focus on regulated interaction which produces a result as

in dialogues games [80]. The result can be a win/win situation or a draw

situation, not necessarily 0-sum [90] where there is always a winner or a

looser.

Agents become players in a game and can perceive how the state of the game

changes. The game is separated and updated independently from the agent

life-cycles, thus, at any time the players of a game have a consistent and

shared view of the state of the game. Therefore the game can be seen as a

shared memory between the interacting agents. A game that is contained

within a social container of the agent environment is perceivable by the play-

ers in different locations and allows for the physical distribution of these

components.

4.3.1 Link between Social Containers and Games

Using a game metaphor, we can specify the social rules of a social container

as rules of games that are played amongst players. The state of a game

has (a) a set of properties that are part of the physical environment where
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the game is played and (b) an additional description that provides a social

interpretation of the agent interactions represented separately, as if they

were giving meaning to some of the evolution taking place in the physical

environment. The state of the game is contained in the social container and

is updated as consequence of the moves of players. Agents are the players

and the moves they perform are interpreted as events happening in the game

state. The roles that agents assume as players determine what valid moves a

player can perform. We say that an agent complies to the rules of the social

containers if the moves made by this agent are valid game moves.

Within a social container, the rules of a game determine if agents’ moves are

valid as the interaction progresses. If an agent move is valid, both the physical

and social parts of a game’s state change according to the prescribed effects

the move has on these parts. If the move is not valid, however, it means

that the physical state has changed in a way that it is not meaningful (in the

sense that the rules of the game have been violated) to carry on playing the

game. In this case, we need to change the social part of the state in such a

way so that the changes in the social part can support the implementation

of the game to bring the physical state at a point where agents can continue

playing the game. Often this means that the implementation of the game

will need to rearrange the physical state or enforce possible sanctions that

the rules of the game may prescribe so that the agents that have violated the

rules are punished, so that the game can continue.

4.3.2 Atomic Social Containers

In MAGE, we represent the most basic social containers with atomic games.

These games are defined to not contain properties that are games themselves

[112]. We refer to these kind of containers as atomic social containers. Be-

cause of the way these containers are represented in terms of atomic games,

they cannot contain social sub-containers, only physical ones.

Fig. 4.2 shows a simple architecture for the social environment. In this
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Figure 4.2: A Social Environment as an Atomic Social Container.

example, the social environment is defined as one atomic social container.

The physical containers are denoted as PhCi while the social container is

denoted as Sc. The figure shows agents (denoted as Ai) from different physical

containers performing moves in the Atomic game contained within the social

container. The Atomic game in this case is the OPW game that defines a

set of social rules for when the agents perform the acts (pick, drop, move

and flag) in the environment. These moves, change the state of the physical

environment as well as the social state.

With a move action an agent changes its position in the grid, with a pick

action an agent picks a packet from the grid, with a drop action an agent

drops packets in the grid, and with a flag action the agent ‘announces’ that

the nearby cells have no packets. These acts can change physical properties
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of the environment (i.e. in the agent moves, it has a new position in the

physical space). To regulate the physical interactions a set of physical rules

define what is possible and impossible in the environment. For example,

it is impossible for an agent to move more than one square at a time or

it is impossible for an agent to pick more than a packet at the same time.

Additionally to the physical rules, the social rules specify how the agent is

expected to interact from the social perspective.

On the other hand, the OPW game defines the social rules such as it is

forbidden for an agent to move too close (adjacent) to another agent, it is

forbidden to drop packets anywhere in the grid that it is not a destination

point or it is forbidden to flag an area with one or more packets. The main

changes in the social state, in this case, happens due to reward policies that

apply as a result of agents following or not the social rules. Sanctions are

defined to remove points from agents that perform forbidden actions. In

particular, we remove 1 point for moving adjacent to another agent, 2 points

for dropping packets outside the destination points and 10 points for flagging

an area that has packets. Within this game, we also reward 10 points to picker

agents that drop a packet in the right destinations.

4.4 Representation of Atomic Games

To formulate an atomic social container as an atomic game we need to decide

how to represent the atomic game. In particular, we need to describe the

state of the atomic game, its initiating and terminating states, how players

make valid moves, and how the effects of these moves change the current

state to the next one until the terminating state is reached. We describe

these next. The representation that follows assumes the game/2 definition

presented in Chapter 2, Section 2.5.5.
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4.4.1 The State of Atomic Games

To represent the state of an atomic game we use C-Logic [31] terms identified

by a unique identifier describing the attributes of the state’s configuration.

The rationale behind this kind of representation is that in MAGE we ac-

knowledge the fact that the interaction within a multi-agent system appli-

cation can become quite complex. To cater for the complexities of practical

applications we assume that complex terms have an underlying object-based

data-model. Such a state representation will evolve over time as a result of

players making moves.

In order to give an example of an atomic game, lets consider the term repre-

senting the state of the OPW presented in Sec. 4.1 as an atomic game:

opw game state:opw1[

physical state⇒ packet world:c1,

members⇒ {agent:a1 [role ⇒ picker], agent:a2 [role⇒picker]},
sanctions⇒ {sanction:s1 [agent ⇒ a2, ticket ⇒ 5]},
result ⇒ nil,

sub process ⇒ nil

].

The identifier opw1 denotes an instance of an object whose class is the main

with one attribute physical state that refers to the state of the physical en-

vironment, an attribute members containing the agents participating in the

game and their role, an attribute sanction that identifies agent a2 as sanc-

tioned with a ticket for 5 points, an attribute result which has value nil, and an

attribute of class sub process which states that it has value nil. The last two

attributes respectively mean that this particular game has not terminated

yet as it has no result and it has no sub-games therefore it is an atomic one.

We will refer to the state of the game using a term of the form G@T to denote

the complex term representing the state of the atomic game identified as G.

The complex term describes the attributes of the state’s configuration for the
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game G. T is the system’s time which uniquely identifies the actual evolutions

of the complex term as a result of the interaction.

4.4.2 Valid Moves

The moves of a game are represented by complex terms. The complex term

below:

speech act:m1[actor ⇒ a1, act⇒move, square ⇒ sq1, role⇒ picker],

describes that a picker agent a1 utters a move action to describe its intent

to move to the square sq1. Such moves are used as to define the events that

happen at a specific time. An assertion of the form happens(m1, 12), states

that move m1 has happened at time 12. Such an event changes the state of

the game. We then use the Object Event Calculus (OEC) for queries that

are local to the social container and we use the Ambient Event Calculus

(AEC) for querying the physical state. Both AEC and OEC were presented

in Chapter 3.

Before the event of a move being made in the state of the game, we must

have a way to check if a move is valid. We check that actions performed by

agents are valid with the following specification:

(SR1) valid(G@T, E)↔legal(G@T, E).

(SR2) legal(G@T,E) ←
obligatory(G@T, E) ∨
(not obligatory(G@T, E),

permitted(G@T, E)).

The clause SR1 defines that an event E is a valid event in G@T if and only if
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it is a legal event in G@T. The clause SR2 defines an event E as legal if it is

either obligatory or not obligatory move but permitted.1

Permission, prohibition, obligation and empowerment are specilised rules

that differ from one game to another. To specify permission, prohibition,

obligation and empowerment we specify when in the state of a game a move

is permitted or forbidden or when an agent is empowered or obliged to take

an action. For example, to specify permitted actions in the OPW game we

define the following rule:

(OPW1) permitted(G@T, Action)←
empowered(G@T, Action),

not forbidden(G@T, Action).

The OPW1 rule specifies that in an OPW game, the act Action is permitted

in G@T if it is an empowered and not forbidden act in the state of the OPW

game G@T. Other definitions of permitted/2 are possible, for example it is

possible to define that an act (i.e exit) is permitted at a certain state of a

game, without need to additionally define that the agent is empowered to

perform such act 2. Forbidden actions in the OPW game are specified as

1In our definition of legal/2 we do not check if the action is empowered. When defining

legal moves, the permission to make an act and the concept of institutionalised power

seem very close concepts that makes it difficult to distinguish between the two. However

as argued by Jones and Sergot these two notions are not equivalent [72]: agents may be

permitted to make an action without being empowered to perform this action (i.e. a priest

is permitted to marry a couple that requested to be married but it might not have the

power to do so if the couple has not catholic religion) and also agents might be empowered

to perform an action but not be permitted to do so (i.e. a priest can marry a couple but

it might not be permitted to marry them without both of them having requested to be

married). This distinctions between the concept of permission and empowerment lead us to

suggest that in order for an action to be legal it has to be permitted and empowered. Often

however, it is unpractical to list all the empowered actions in the system thereby, in some

cases, we can associate the institutionalised power to the permissions (and obligations)

[11].
2An example of such specification can be found in Chapter 7
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forbidden/2 rules. The rule:

(OPW2) forbidden(G@T, Action) ←
do:Action[actor ⇒ A, act⇒drop, flag ⇒ PosA],

neighbouring at(this, [], , 1, Object, Class, position, PosB, T),

adjacent(PosA, PosB),

(Class=destination; Class=packet).

specifies that it is forbidden for an agent A to drop a flag in position PosA if

there are destinations or packets nearby.

Similarly to prohibition and permission, we can also represent a basic form

of empowerment. For example, we can express the fact that every agent in

a picker role is empowered to perform the acts move, pick, drop, flag in the

OPW game. We express this rule as follows:

(OPW3) empowered(G@T,Action)←
do:Action[actor ⇒ A, act⇒Label, content ⇒ C],

member(Label,[move, pick, drop, flag]),

holds at(A, role, picker, T).

The above OPW3 clause states that an agent A, is empowered to perform an

act of type move, pick, drop, flag if this agents holds the role of picker. In a

similar way we can define obligations. For example, in OPW, we can express

that agents that have collected a packet should deliver it to a destination

with the same colour. Such obligation is defined as follows:

(OPW4) obliged(G@T, Action)←
do:Action[actor ⇒ A, act⇒drop, obj⇒ObjId, destination⇒ Dest],

neighbouring at(this, [], Path, 1, A, agent, holding, ObjId, T),

neighbouring at(this, [], Path, 1, ObjId, packet, colour, C, T),

neighbouring instance of(this,[], Path, 1, Dest, destination,T),
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neighbouring at(this, [], Path, 1, Dest, destination, colour, C, T).

The clause above states that an agent A is obliged in G@T to drop a packet

identified as ObjId to a destination Dest if the agent A is holding the packet

and the packet has a colour C which is the same with the colour of the

destination. We use neighbouring at/9 and neighbouring instance of/7 AEC

predicates to query the information hold in the physical state of the environ-

ment. The container holding this information will be the physical container

where the agent A is situated. For our scenario, such rules provide a ba-

sic form of obligations that implicitly persist until they are fulfilled. More

complex application scenarios will require more sophisticated treatment of

obligations. However, this discussion is beyond the scope of this work.

The fulfillment of the obligations is checked using the fulfilled/3 predicate.

If the obligation is not fulfilled, the happens predicate generates a violation

event which will sanction the agent that did not satisfy the obligation. The

fulfilled/3 predicate and the generation of a violation is specified as follows:

fulfilled(G@Tj, E, T)←
obliged(G@Tj, E),

happens(E, T),

Tj ≤T.

happens(violation:E*, T)←
now(T),

this(G),

Tj is T-120,

not fulfilled(G@Tj, E, T).

The first predicate defines that an event E is fulfilled at time T if the event

E happens at a time T and it was obliged at a time Tj, with Tj being less
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or equal to T. The second predicate, determines that a violation event E

happens at a time T if there has been an unfulfilled obligation in the system

for more than 120 seconds.

4.4.3 Effects of Moves

Once a move has been determined as valid, a new state of the game must be

brought about due to the effects of the move. As by making moves players

cause events to happen, if we assume that the happening of such moves take

only one unit of time, we can specify their effects as:

effects(G@T, Move, G@NewT) ←
add(happens(Move, T)),

NewT is T + 1.

In our representation of state, once an event has happened, its effects are

added to the state implicitly, via inititiates/4 definitions that initiate new

values for attributes of a state term, terminates/4 clauses that remove at-

tribute values from a state term, and assigns/3 definitions for assigning to

objects identified as G new instances of terms. An example, of how new

values are initiated for attributes for the OPW game is given below:

initiates(E, A, role, picker)←
happens(E, T),

do:E[actor ⇒ A, act ⇒ Label, content ⇒ C],

member(Act,[move, pick, drop, flag]),

not holds at(A, role, E, T).

The above definition initiates the attribute role of an agent A to be stored

in the state of the game as a picker if the same agent performs one of the

default moves of the OPW game and it does not hold a role in this game.
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4.4.4 Enforcement Mechanisms

We can detect when agents perform invalid moves. At design time, depend-

ing on the type of application, it is possible to decide whether regimentation

mechanisms are more appropriate than enforcement mechanisms. In our

OPW scenario we found that defining an enforcement mechanism was more

realistic and flexible as it allowed to test the application with different rea-

soning mechanisms including cheating agents.

In [68] the authors foresee agents that intervene to decide on the type of

enforcement in case of violations. It is possible to design games with addi-

tional umpire or referee agents that decide how to sanction violations, how-

ever, if the application domain requires general sanction/reward mechanisms

(i.e. agents that perform forbidden actions should be punished by detracting

points from the agent who performed the action), these can become part of

the game infrastructure methods with no need of defining external observers

for every game that is played in the distributed environment. This has two

advantages: first it simplifies the definition of the framework and secondly it

provides a feedback mechanism for agents as they can inspect what happens

in the environment but they cannot do the same with autonomous agents

which have their own reasoning process.

In MAGE we define the following sanction mechanism: an agent is sanctioned

when it performs an invalid act. In order to keep a coherent view of the points

that every agent has, independently from the interactions it is performing,

we store these points as part of the social container. When a violation is

detected, a new event is created in the social containers. In turn this produces

a sanction event to sanction the agent who performed the forbidden action.

The rule below creates a sanction object when an agent performs an invalid

action.

happens(E,T)←
happens(E*, T),
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E*[actor⇒A, act⇒ Act, content⇒ Cont],

not valid(E*,T),

points for(Act, Points),

new(violation:E[sanction: S[points⇒ 5, agent⇒ A]).

The container manages the sanctions as follows:

assigns(violation:E [sanction:SID], SID, sanction).

initiates(E, A, points, Points)←
happens(E,T),

violation:E[sanction:S [points⇒ Sanctions, agent ⇒ A]],

holds at(A, agent, points, OldPoints, T),

Points = OldPoints - Sanctions.

The assigns/3 statement above associates a class to a certain object identi-

fier, given an initialisation event, while the initiates/4 statement updates the

points attribute of the agent A as a consequence of receiving a sanction S at

time T. The rationale behind the creation of a new event is to capture the

fact that an event happened in a specific game of the environment has social

implications for which we need to create a social structure (a sanction in this

case) where it can be visible to all the members of the society.

In OPW we also want to reward some of the agents actions as a way to

promote good or utilitarian behaviour from the system’s perspective. We

handle rewards in the same way as we do for the violations, with the difference

that we give points to agents performing certain acts (i.e. in OPW agents

gain points for dropping packets to the right destinations).
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4.4.5 Initial and final states of a game

For the state of an atomic game to be created, the framework discussed so

far requires the assertion of an event that will first create the term via an

assigns/3 assertion. The assertion:

assigns(E, G, opw)←
do:E[act ⇒ construct, protocol ⇒ opw, id ⇒ G].

will allow the creation of an instance for the OPW game, which can then

be queried using the AEC that we described in Chapter 3. To complete

the instantiation process we also need to specify the initial values for the

attributes of the complex term representing the social state of the OPW

game. For this we need to define separately the initiates/4 rules as the one

below:

initiates(E, G, result, nil)←
do:E[act ⇒ construct, protocol ⇒ opw].

Additional initiates/4 clauses are needed to define the whole of the initial

state, one for each attribute value.

The initial state of the game will evolve as a result of moves being made

in the state of a game. This state will eventually reach the final state from

which we can extract the game’s result. We specify this via terminating/2

predicates. For example, the definition:

terminating(G@T, Result)←
instance of(G, opw, T),

not hold at(G, result, nil, T).

specifies the conditions under which the OPW game terminates and at the

same time returns the result.
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4.5 Summary

In this chapter we presented MAGE as a logic based framework that models

the interactions of agents with atomic games. The MAGE framework has

been already partially discussed in [26, 24, 126, 124, 125]. We introduced

an extended Packet World Scenario which we call the Open-Packet-World

scenario to make the original scenario more competitive and to be able to

show how normative aspects can be included as part of the social environment

to regulate agent interactions.

The architecture of MAGE is based on the concept of social container, which

is an entity distributed over the network that mediates the social interactions

between agents, allowing them to create new collaborations and interpreting

their moves using social rules.

We introduced atomic social containers and we showed how to model these

with atomic games. We illustrated how we model an atomic game in terms

of a state that evolves in time as agents perform valid acts within the game.

We have showed a general model for defining atomic games and we have

illustrated how to apply it to the OPW scenario.

In the next chapter we are going to show how we can use many social con-

tainers in order to distribute the computation in a social environment and

how we can coordinate atomic games within complex games. We will define

coordination patterns to describe which atomic games will be running at a

given time T and at a given state of the interaction.
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Chapter 5

Complex Social Containers

In the previous chapter we showed how social environments could be seen

as social containers that augmented the physical ones. We defined social

containers as games where the state of the container is the state of the game,

the rules that govern the agent interactions are the rules of the game, the

agents are the players, the actions are the moves and the outcome is the

result of the game. The basic component we defined was the atomic game

that captures simple indivisible interactions (such as protocols). The atomic

game evolves as players make moves in order to change its state, possibly to

their advantage.

In this chapter we discuss the distribution of a social environment on top of

a physical one. We use complex social containers to link the games and the

agent environment in a complex distributed structure that can be inspected

by agents and evolve as agents act on it. We specify the notion of meta-

game as a mechanism responsible to handle the creation of new interactions

amongst agents in the social environment. The distribution allows us to

execute the games and compute normative relations at run time. We define

compound games from simpler, possibly atomic games and show how to relate

the physical and the social structure so that they can evolve in parallel.
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The reminder of the chapter is organised as follows: Section 5.1 presents the

driving scenario for this chapter. Section 5.2 identifies the need to distribute

the social environment as well as to coordinate complex interactions and

shows how this can be achieved in MAGE by using complex social containers.

Section 5.3 defines a complex social container in terms of a compound game.

Section 5.4 shows how the structure of the social environment can be changed

by defining a meta-game that manages these changes. Section 5.5 defines the

coordination mechanisms required to create compound games. Section 5.6

defines the forwarding mechanism as a way to link the social and physical

containers by forwarding the actions of the agents into the games of the social

environment. Finally, Section 5.7 summarises and concludes this chapter.

5.1 VOs in the Open Packet World Scenario

The version of OPW presented here, differs from that of Chapter 4 in that

it allows agents to be part of more organised competitions and form Virual

Organisations (VOs) [83]. Informally, a VO is a mechanism where a new

collaboration is created between two or more agents wishing to achieve a

common goal. The collaboration assigns each agent participating in the VO

with responsibilities in terms of roles and enables these agents to achieve the

common goal. In our OPW version, agents form VOs to collaborate with

other agents to deliver packets. The possible roles in such VOs are the leader

role which leads a set of agents to collect packets or a picker role which can

pick packets and bring them to a destination.

A VO collaboration goes through a process of formation, execution and dis-

solution. In the formation phase of a VO, a set of agents (members of the

VO) decide to form a VO with a specific goal. By joining the VO, each

member is assigned a role which determines its future interactions within the

VO.

We empower agents with a high number of points (i.e. ≥50 points) by al-
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lowing them to form VOs and be leaders. Giving agents the possibility of

becoming a leader is an indication of encouraging good behaviour within the

environment and ability in collecting packets. In addition, the VO goal can

be quite specific (i.e. collect all red packets). The invited agents can agree or

disagree to join the VO. An agent agrees to join a VO and becomes a picker

agent if, by collaborating with other agents members of a VO, it will gain

better knowledge of where the packets are and consequently gain more points

due to collecting more packets as a team. A VO is formed if at least two

agents agree to take part in it. Once the formation is agreed, the members

of the VO can start collaborating to collect packets.

The execution of the VO specifies the rules on how the members are expected

to act within the VO. To deal with the execution of the VO, the norms that

specify the powers, permissions and obligations of the agents are based on the

roles that the members hold in the VO and the agreements amongst members

during the VO formation (i.e. collect red packets). In other words, the norms

express how different normative rules apply to the members depending on

their role in the VO.

An agent who started the formation of the VO takes a leader role in the

system. The leader of the VO is empowered to request agents that are

looking for packets to collect a packet by indicating where it is located. It is

also empowered to dissolve the VO if the number of members in the VO drops

to 1 or if the goal of the VO has been achieved. If the leader is coordinating

well, the number of points increases, in which case it is permitted to invite

more members to join the VO.

Agents who join a VO become pickers of packets of a specific colour. An

agent holding a picker role agrees to collect pro-actively packets of the agreed

colour and coordinate with the other VO members for the collection of these

packets. To coordinate this process, agents in picker roles are permitted

to report to the leader about packets they observe but do not collect (i.e.

because it is doing other actions). A picker agent is also obliged to contact
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the leader when it has delivered a packet and it is looking for more packets

and to fulfill the request of the leader to collect a specific packet. If the

request of the leader is unfulfilled by the picker, the agent is sanctioned.

Agents are rewarded points (i.e. 10 points) to deliver packets into the des-

tination. When an agent joins a VO, the packets that are delivered by a

picker gives some of these points to the picker (i.e. 8 points) and some to the

leader (i.e. 2 points). This means that if agents are not members of a VO,

they get more points to deliver a single packet. However, in the long term,

not having a group of agents that help the coordination amongst them, also

means that agents need to search more within the world for finding a packet.

This is why, from the agent perspective, being part of an organised VO can

be more profitable than working alone.

5.2 Large Social Environments as Complex

Social Containers

Large scale multi-agent applications are typically characterised by many dis-

tributed processes requiring a high number of computational resources. In

such applications, there is a possibly a large number of agents giving rise

to different interactions. Thus, it is not feasible to design a system where

the social rules are centralised and mediate all the interactions from a single

social container (as we illustrated in the previous chapter). This would cre-

ate an inevitable bottle neck in the system that would make the interactions

more difficult rather than facilitate them. This is why, for large scale agent

applications, we seek to distribute the computation by extending MAGE in

such a way that social rules are distributed amongst many social containers.

Fig. 5.1 exemplifies how we can decentralise the social environment of OPW

with three social containers 1. This setting shows the distribution of the

1Due to space limitations, the figure is not showing a large scale application, but a
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Figure 5.1: OPW regulated by distributed social containers.

social environment in many containers to achieve parallel computation of

the social rules. The social containers are represented with a dotted line,

while the physical containers are represented with a full line. The physical

containers divide the OPW grid into four parts that relate to one another as

neighbouring containers. The figure also shows the social containers, contain-

ing the physical containers. This is to represent the fact that interactions

of the agents situated in the physical containers Phc1 and Phc2 are being

mediated by the social container Sc1 and the social interactions of the agents

situated in the physical containers Phc3 and Phc4 are being mediated by the

rather small one with only an 8x8 grid with four agents in it. However, the distribution

of a bigger grid (i.e. 1000x1000 with more than 1000 agents), would follow the same

principles.
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container Sc2. To maintain a relationship between the social containers, Sc1

and Sc2 are contained in a super social container Sc0 (or root). The final

structure of the social environment is then connected to the structure of the

physical environment. Acts produced by agents in the physical containers

Phc1 and Phc2 need to be forwarded to the social container Sc1 to evaluate

social implications, if any, and update the social state. Similarly the physi-

cal containers Phc3 and Phc4 can forward the acts of the agents in the social

container Sc2.

Figure 5.2: Social Container mediating sub-activities of agent interaction.

Another issue to consider in a large social environment is that the social

activities in a MAS application can be complex and may need to be structured

in terms of dynamic sub-activities. For example, in the OPW the agents

create VOs to coordinate amongst each other in the collection of the packets

as presented in Section 5.1. Fig. 5.2 shows the social environment as a
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social container containing a complex activity composed using various atomic

games. Within this complex activity, agents can interact in one or more

atomic games at the same time. In Fig. 5.2 the physical containers are

denoted as PhCi while the social container is containing many atomic games,

denoted as Gi. The figure shows agents from different physical containers

playing in different atomic games that are part of a more complex activity.

We define a social container able to contain and coordinate many atomic

games as a Complex Social Container 2. To exemplify further, consider the

OPW scenario presented in Section 5.1. The complex social container in this

scenario can contain a VO interaction among agents. The complex activity

refers to the fact that different participants of the VO might be trying to

achieve different things, often at the same time. Therefore we can have that

some agents are coordinating to collect packets while other agents might be

join or leaving the VO.

In summary, in order to extend the MAGE model to scale up also for large

social environments, we need to consider the high number of entities sharing

the social environment and the complexity of their interactions. A high

number of entities sharing the social environment implies that we need to

distribute the social environment in many social containers, while to handle

the complexity of the interactions, we define complex social containers as

entities that enable complex social activities in the environment. Lastly, the

interactions we want to support have a dynamic nature. To preserve this

property, we need to allow complex social containers to evolve in a life-cycle

which eventually terminates at some point in time. In other words, once the

agents involved in social interactions terminate their interactions, the social

container can be destroyed so that the system can reallocate the resources

to other agents requiring them.

Fig 5.3 shows, in more general terms, how we can structure the social envi-

2The name Complex Social Container refers to an extended version of the Atomic Social

Container. In this chapter we will refer to Complex Social Containers also simply as social

containers.
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Figure 5.3: Distributing the Social Environment in a Complex Application.

ronment of an application using distributed social containers. The bottom

containers are physical containers structured as neighbour containers 3 (rep-

resented as Pc1....Pcj). The physical containers are connected between each

other with lines to show the neighbourhood relationship between the physical

containers of the environment. The structure of the social environment con-

tains a Root container represented as Root/Sc0 and a set of sub-containers

Sc1....Sck. The Root container maintains and creates the structure of the

social environment in terms of complex social containers. The social environ-

ment can start with only the Root container, and then evolve to have many

social sub-containers (Sc1....Sck) which contain the ongoing game interac-

3Other organisations of the physical containers are possible, which for simplicity we

ignore (for more details see Chapter 4 of Bromuri’s work [19])
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tions in the social environment. In Fig. 5.3 the social containers Sc2 and

Sc3 represent containers that are created at run time. They are created from

the Root container as its sub-containers. There is no direct relationship with

the physical containers. Physical containers however are able to send asyn-

chronous messages to these containers by utilising the connector interface of

GOLEM (see [19] for more details). In some applications, there might be a

need to define a default game for the interactions of the agents.

For example, in OPW, those social containers that are represented as super

containers of the physical ones contain the OPW game (In Fig. 5.3 the social

containers Sc1 and Sck are represented as super containers of respectively

Pc1, Pcm and Pcn, Pcj.). Thus, from the system’s startup, we have a social

state that evolves as agents perform their pick, drop, move or flag actions.

On agent’s demand, the Root container can also create new social containers

to contain new VO interactions. These social containers are not defined as

super containers of the physical containers because there is no relationship

between the VO interactions and the physical location of the agents (In Fig.

5.3 these containers are represented as Sc2 and Sc3).

5.3 Complex Social Containers as Compound

Games

In order to specify complex social containers we use the notion of compound

games. A compound game is a description of the relationships between atomic

games. The compound game allows the definition of different possible in-

teractions between participants that can terminate with possibly different

outcomes and allows us to define more complex games in a component base

manner. Thus, to model a complex social activity, we can combine the rules

of various atomic games. At any time, only a subset of the atomic games

might be active in the compound game. This has the advantage that, given

a move performed by an agent, only a subset of the all possible rules of the
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compound game will be checked to determine the social consequences of such

move.

There are three main issues that have been identified in representing com-

pound games [112]:

• Meta-Game: In the social environment, we want to create and man-

age the social containers with a set of meta-moves and primitives that

allow new game interactions to be created and then subsequently started,

suspended, resumed, or terminated. We define a meta-game as a way

for agents to use meta-moves to manage their interactions within con-

tainers by activating the primitives of the meta-game.

• Coordination of moves in sub-games: In the social environment

agents interact with other agents through use of atomic games. Atomic

games are started and evolve within social containers and describe the

social rules of the environment. Often however, atomic games need

to be combined to run in different orders: sometimes in parallel or

depending on when the conditions arise. For this reason, we define a

coordination mechanism for the moves in a sub-game running within

a compound game. Such coordination assists the agent interactions by

establishing the possible games that agents can play in the container

at any time.

• Forwarding moves: In order to enable distributed norm checking in

large scale applications, the moves that the agents perform in a game

should be propagated to the right social containers where they will be

evaluated using the rules of the game.

In the reminder of this chapter we are going to explain how we represent

these three issues by exemplifying the discussion using the OPW. The repre-

sentation provided here extends the work described in [112] in two ways: (a)

we give an event-based interpretation of compound games using AEC and
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(b) we provide a set of coordination primitives based on workflow constructs

that can be reused across applications.

5.4 Meta-game aspects of Compound Games

As briefly stated in the previous Sections, a meta-game enables agents to

define new social containers to contain their interactions. Usually, these

interactions are described as compound games. The meta-moves that an

agent performs, affect the interactions by changing the state of the compound

game contained in the social container.

The Root container of Fig. 5.3 of the social environment provides the func-

tionalities of a meta-game. Within this container we include meta-game rules

to allow agents to create new game interactions, terminate game interactions

and, if necessary suspend and resume interaction games as they are being

played.

Figure 5.4: Compound-game life-cycle.
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Fig. 5.4 shows a description of how the state of a compound game and the

state of an atomic game change due to moves of agents. The figure shows

that the compound game played in a container is in the started state after a

new container move. From this state it is possible to stop or to terminate the

interactions in the container by respectively using the suspend container and

destroy container moves. Once a game is in a stopped state, it is possible to

resume it using the resume container move. These moves are all meta-moves

which are managed within the Root container. 4

Fig. 5.5 shows an example of how the structure of the social environment

evolves as result of agents performing meta-game moves. The figure shows,

in four frames, how the social environment evolves in time due to the moves

of the agents. The physical environment is distributed in four physical con-

tainers (Pc1-Pc4) 5.

• At Time=0 four agents a1-a4 are situated amongst the physical con-

tainers and the social environment contains the Root container and two

social containers Sc1 and Sc2. The physical containers Pc1 and Pc3

have Sc1 as social super-container and Pc2 and Pc4 have Sc2 as their

social super-container. These two containers relate, from the start-up

of the system, the physical space (one or more containers) to a set of

social rules. The new interactions can then generate new containers,

containing other social rules.

• At Time=1 we assume that the agent a1 performs a meta-move. Such

4We also can manipulate the life-cycle of an atomic game by directly performing a

move within the compound game where the atomic game is played. An agent can start

and stop an atomic game by respectively performing a new game or resume game move

and a suspend game move or terminate game move. These moves would follow the same

principles of what we define here for describing the meta-game. The life-cycle of the atomic

game would follow the same states, just the triggering moves would be different. The only

difference here is that these moves are not performed within the Root container but are

managed as part of the compound game
5Same structure as with the OPW shown in 5.1
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Figure 5.5: Evolving of the Social Environment Structure.

move is propagated from the container Pc1 to the Root container. As-

suming that this meta-move was requesting to create a new interaction

in terms of a complex game, the Root container generates a new con-

tainer that uses the definition of the complex game as mediating rules.

We show that the container Sc3 is created as a result of this action.

The Root container stores these changes in its own state. By dealing

with the meta-moves of the agents in such manner, we are able to know

how the structure of the social environment changes in time.

• At Time=2-6 we assume that the agents interact following the rules

of the compound game. If the agent a3 acts in the complex game

contained in Sc3, the act is forwarded from Pc2 to the social container

Sc3.
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• At Time=7, assuming that the agent a1 performs a move to destroy

the complex game, the meta-move is propagated to the Root container

which destroys the container Sc3 and the social structure returns to

the initial state. Not all the meta-moves succeed to change the envi-

ronment. In order to perform them correctly, the agent must perform

a valid move.

5.4.1 The moves of the Meta-Game

In the meta-game it is possible to define valid moves as in any other game.

This is because in practical applications we may want to be able to restrict

which agents can perform certain meta-moves. As discussed in the previous

chapter, we can use normative concepts to define whether a move is valid

in a game. We can distinguish this by defining a specific role (such as an

agent with a special role in the system which can perform meta-moves), or by

using some general rules that can evaluate at run time which of the agents in

the system will have the privilege to perform such actions. For example, in

the OPW scenario we can use the empowered/3 predicate to represent which

agent in OPW is empowered to create a new VO interaction. We can write

an empowerment rule as follows:

(Root Pow1) empowered(G@T, E)←
do:E[actor ⇒ A, act⇒new container, game ⇒ vo game],

holds at(CID, sender, E, T),

neighbouring at(CID, [], , 1, A, agent, points, Points,T),

Points≥ 50,

not holds at(A, agent, leader, T).

The above rule states that all the agents that have not already created a VO

and have more than 50 points in the social environment are empowered to

create a new vo game interaction.

120



5.4.2 Creating a new interaction game

To create a new interaction in the social environment an agent can request

the creation of a new social container to contain it. The new interaction can

specify an atomic game but we would generally expect that new interactions

are described in terms of compound games so that the full functionalities

of a complex social container are used. To define the new distributed agent

environment, we also extend the happens/2 predicates with happens/3 pred-

icates. The happens/3 predicate defines that an event E happens at time T

in a container C of the agent environment. The rule for the creation of new

interactions is specified as follows:

happens(E[actor⇒Root, act⇒ create,

container ⇒ CID, game⇒ GameId],Root, T)←
this(Root),

happens(E*,Root, T),

E*[actor⇒A, act⇒ new container, game⇒ GameId].

assigns(E, container, CID )←
E[actor⇒Root, act⇒ create, container ⇒ CID, game⇒ GameId].

initiates(E, CID, game, GameId)←
E[actor⇒Root, act⇒ create, container ⇒ CID, game⇒ GameId].

assigns(E, game, GameId)←
E[actor⇒Root, act⇒ create, container ⇒ CID, game⇒ GameId].

initiates(E, GameId, cycle, started)←
E[actor⇒Root, act⇒ create, container ⇒ CID, game⇒ GameId].

which states that in the container Root an event E is generated to cause the
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creation of a new container CID to contain a specific game GameId. The

event E can happen only if there is an event E* where an agent A requests

the creation of a new interaction regulated by the game GameId (by perform-

ing an act labeled as new container). As a result of the generated event, in

accordance with the predicates (C1-C11) presented in Chapter 3, the follow-

ing assigns/3 predicates create an object container identified as CID and an

object of type game identified as GameId. The initiates/4 predicate stores the

fact that the container CID has a property game whose value is GameId and

it stores the GameId object as having the property cycle with value started.

We perform these operations to store the structure of the social environment

within the meta-game, therefore we know which games are being played in

every container of the environment. In this way we have centralised the

management of how the structure of the social environment changes, however,

the control of the moves of the agents within games remains distributed.

5.4.3 Stopping a game

To terminate an existing interaction, an agent must request to stop an exist-

ing game. The rule to terminate existing interactions is specified as follows:

happens(E[actor⇒Root, act⇒ terminate,

container ⇒ CID, game⇒ GameId], Root, T)←
this(Root),

happens(E*,Root, T),

E*[actor⇒A, act⇒ stop container, game⇒ GameId],

instance of(CID, container, T),

holds at(CID, game, GameId, T).

destroys(E, GameId)←
E[actor⇒Root, act⇒ terminate, container ⇒ CID, game⇒ GameId].

destroys(E, CID)←
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E[actor⇒Root, act⇒ terminate, container ⇒ CID, game⇒ GameId],

not holds at(CID, game, ,T).

similarly to the creation of new game based interactions, the termination

requires the agent to specify which game is to be terminated. Consequently,

the system uses its local information to locate the container where the game

has been created and creates an event E to terminate the the specified game

interaction and its container in the case that it does not contains anymore

games.

5.4.4 Suspending and resuming game interactions

In particular cases, agents might need to suspend and resume games. We

specify the following rules for suspending and resuming games:

happens(E[actor⇒Root, act⇒ suspend,

container ⇒ CID, game⇒ GameId], Root, T)←
this(Root),

happens(E*,Root, T),

E*[actor⇒A, act⇒ suspend container, game⇒ GameId],

instance of(CID, container, T),

holds at(CID, game, GameId, T),

holds at(GameId, cycle, started, T).

initiates(E, GameId, cycle, suspended)←
E[actor⇒Root, act⇒ suspend, container ⇒ CID, game⇒ GameId].

happens(E[actor⇒Root, act⇒ resume,

container ⇒ CID, game⇒ GameId],Root, T)←
this(Root),

happens(E*,Root, T),

E*[actor⇒A, act⇒ resume container, game⇒ GameId],
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instance of(CID, container, T),

holds at(CID, game, GameId, T),

holds at(GameId, cycle, suspended, T).

initiates(E, GameId, cycle, started)←
E[actor⇒Root, act⇒ resume, container ⇒ CID, game⇒ GameId].

The first two predicates state respectively that an event E to suspend an

interaction is created in the Root container, if an agent requests to suspend

the game GameId with an E*. The game GameId should be in a started state

of the life-cycle. As result of the event E created in the container, the second

predicate changes the value cycle of the object GameId into suspended. The

last two predicates deal with the resumption of a game in a similar way. The

happens/3 predicate checks, before creating an event E to resume the game,

that the game that was requested to be resumed with a resume container act

and that the game is currently in suspended state.

5.5 Coordination of moves in Sub-Games

With a compound game we want to be able to parallelise, choose or synchro-

nise between different atomic games. To capture these control-flow aspects

of compound games we produce a coordination framework that allows us

to coordinate complex interactions built from simpler ones. The resulting

framework is then applied to support workflow activities.

Compound games in MAGE are defined using coordination mechanisms to

determine which games run at a given time of the interactions amongst

agents. In order to define the coordination mechanisms we specify work-

flow patterns to define what games should run at a given time.

In general the term workflow refers to an activity that addresses some busi-
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ness needs by carrying out specified control and data flows amongst sub-

activities [111]. A workflow procedure consists in a set of atomic activities

and relations between them. Such relations coordinate the participants and

the activities they need to perform [4]. The participants of a workflow can

be a group which share a set of tasks or a human resource, a software ap-

plication or a specific hardware with the ability to execute an activity. The

link here is that the participants are the agents and the atomic activities are

the atomic games.

By specifying the “expected” flow of work, the workflow mechanism supports

coordination of games. Given a description of a compound game, we use these

mechanisms to support the interactions between agents by coordinating their

expected behaviour.

The games are linked together to identify a logic of execution between them.

Their execution identifies the active games by using specific control patterns:

• Sequential: An activity B is sequential to the activity A when B is

executed after A.

• Parallel: Two or more tasks are parallel if they are executed in parallel.

The management of parallel activities identifies two conditions: and-

split between activities which allow them to be concurrent activities or

and-join which synchronises two or more parallel flows.

• Iteration: One or more activities are executed a certain number of

times.

• Conditional: One of the alternative activities is executed. The man-

agement of conditional activities identify two conditions: xor-join where

none of the alternative branches is executed in parallel, xor-split where

according to a condition only one branch is chosen.
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5.5.1 VO Compound Game in Open-Packet-World

In the OPW scenario, agents move into a grid to collect packets and bring

them into destinations. Additionally, in order to be more competitive in the

packet collection, we allow agents to dynamically create VOs as we described

in Section 5.1. In this section we describe how we can define a VO compound

game for OPW. Before defining the compound game, we need to decide the

atomic game interactions that are needed in the OPW scenario that supports

VOs . To this purpose, we define four additional atomic games to the OPW

game presented in the previous chapter.

To allow agents to create VOs, we extend the repertoire of actions given in

the OPW game with the following actions: create vo, invite, accept, reject,

collect, observe, leave and dissolve. Agents may decide to use these actions if

they believe that it will help them to achieve their goals. Less sophisticated

agents, can still be part of the system without being involved in a VO. With

a new game action an agent triggers the creation of a new VO game which

might result in a VO. With an invite action an agent can invite new members

to join the VO. With an accept or reject action an agent can respectively

accept or refuse to join the VO. With an observe action an agent notifies the

presence of a packet in the grid. With a collect action an agent asks another

agent to collect a packet. With a leave action the agent expresses the will

to leave the VO and finally a destroy game action an agent can dissolve the

whole VO.

In figure 5.6 we show how we can define a set of atomic games capturing

the interactions of the agents from the social perspective. For illustration

purposes we keep the games simple. The states of the game are represented

with circles and with arrows we show what moves are possible when the game

is in a particular state. With P and L we respectively denote the picker role

and the leader role of the agent performing the action and with C we denote

events being generated by the containers.

To allow agents to create a new VO, we define the Create VO game. Using
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Figure 5.6: Interactions as Games in Open Packet-World.

such game, an agent can initiate interactions with other agents. The game

define rules such as: an agent is empowered to create a new VO if it has more

than 50 points. If an agent succeeds in creating a VO, it assumes a leader role

within the created VO. Afterwards, the Execute VO is used as a game during

which agents can coordinate with one another. Picker agents are permitted

to communicate to the leader if it observes packets in the environment which

it does not collect. The leader, on the other hand, is empowered to request

agents in the VO to collect a packet. In this case, agents are obliged to

collect the packet assigned by the leader. The Change VO game is used to

invite new members to join or for the agents who are already members of the

VO, to leave the VO. And finally, in the Dissolve VO game, the agent with a

leader role is empowered to dissolve the whole VO.
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Figure 5.7: The vo game as a compound game in the Open Packet-World.

In Fig. 5.7 we show a workflow example for the OPW scenario. The figure

shows how a complex game is defined in terms of a workflow that models

the interactions in a VO. The activities are represented with cycles and the

transitions from one activity to the other are described with arrows. As these

transitions can be conditional, the vertical bar in the transition denotes that

conditions exist for the transition to happen.

With the vo game example we show a subset of all the possible patterns.

However, by varying the compound game using different patterns, the same

coordination mechanism allows sub-games to be played in different order

thus resulting in different type of interactions. In the following Sections we

illustrate how we can interpret these patterns in order to coordinate active

sub-games.

After we define these atomic games for the OPW scenario, we can combine

these games into a complex game using the workflow coordination patterns.

The complex game is started and evolves within a complex social container

that mediates the interactions. Using the defined atomic games, agents can
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change the properties of the social environment by creating temporary per-

sisting entities such as the VO itself, sanctions, rewards or obligations. We

specify the compound game using the coordination patterns, in this way, we

are able to establish the active sub-games in the compound game. The state

of a compound game is described as follows:

vo game: Id [

members ⇒ {agent:a1, agent:a2, agent:a3},
sub process ⇒ Workflow,

cycle ⇒ started,

result ⇒ nil

].

The sub-games of the vo game are specified in the Workflow value of the

sub process attribute. The Workflow is specified as a term of the form:

seq([

create vo:c1,

and split((create vo:c1, []), [change vo:ch1, execute vo:ex1]),

and join([change vo:ch1, execute vo:ex1], ([], dissolve vo:d1)),

stop

].

The vo game goes through the designed workflow process which specifies

that a create vo game should be played first. After such game terminates the

agents can play in parallel the change vo and the execute vo games. These two

games can join after their termination into the dissolve vo game termination

which is followed by the termination of the whole vo game.
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5.5.2 Active sub-games

The main issue to be considered in compound games is the coordination of

moves in active sub-games. We define coordination specifying the predicate

active at/3. Using active sub-games, we can define valid moves in a complex

game to include all the valid moves in the active sub-games:

valid(CG@T, Move) ←
active at(CG, SubG, T),

valid(SubG@T, Move).

The above valid/2 predicate checks if the action Move is valid in an active

sub-game identified as SubG@T. The active sub-games are identified using

the active at/3 predicate which is specified as follows:

active at(G, SubG, T)←
instance of(G, compound game, T),

holds at(G, process, Workflow, T),

pattern(Workflow),

runs(G, Workflow, SubG, T).

Patterns in our framework are interpreted by a runs/4 predicate that parses

the coordination structure and checks which sub-games are running.

5.5.3 Coordination of Sequence and Interaction Pat-

terns

The sequence pattern allows one activity to be executed after another. In

compound game terms, a sequence Ai+1 can start after the game Ai has

terminated as shown in Fig. 5.8.

Sequential games may or may not have conditions in the sequence, if there

is no condition we define a seq pattern, in case we have a condition between
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Figure 5.8: The sequence Workflow Operator.

sequential activities then we define an if pattern. Similarly to the sequence

pattern, the iteration pattern defines a repetition of an activity under a

certain condition, we call this pattern a repeat pattern.

runs(G, seq([A| ]), A, T)←
not pattern(A),

not terminating(A@T, ).

runs(G, seq([A|B]), C, T)←
not pattern(A),

terminating(A@T, ),

runs(G, seq(B), C, T).

runs(G, seq([A|B]), C, T)←
pattern(A),

(runs(G, A, C, T);

runs(G, seq(B), C, T)).

runs(G, if(Conditions, P), C, T)←
solve at(Conditions, T),

(pattern(P) →
runs(G, P, C, T); C=P).

runs(G, repeat(P, Conditions), A, T)←
not solve at(Conditions, T),

runs(G, P, A, T).
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pattern(P)← sequence(P).

pattern(P)← if conditional(P).

pattern(P)← repeat loop(P).

sequence(seq( )).

if conditional(if( , )).

repeat loop(repeat( , )).

The runs/4 predicate checks if in a complex game, described as seq([List]),

the head of the list is not a pattern, it checks if the activity identified as the

head of the list is still running and if this is the case the game identified in

the head of the list is considered as the running game. If the head of the

list is not a pattern (this means that it is an atomic game) and it is in a

terminating state, then the program calls recursively itself by removing the

head of the list from the description of the complex game. If the head of

the list is a pattern, then the head and tail of the list are checked calling the

runs/4 predicate to determine which games are running.

Note that the top-level game G is required as a parameter in the definition

of runs/4 as a reference to the global variables of the interaction. Note also

that the definition of the above patterns can be combined to form arbitrary

complex structures, which is indicative of the expressive power of the frame-

work.

Optionally, it is possible to define conditions Conditions for a game to become

active. The predicate solve at/2 checks these conditions which are expressed

as OEC properties existing in the state of the game. For example, in order

to activate a conditional game, we first check if the conditions to activate

such game are satisfied. For the iteration on the other hand, the game runs

until the running conditions are not true.

The solve at/2 predicate specifies how given a list of conditions for patterns

are checked and it is defined as follows:

132



solve at([], Time).

solve at([H|T], Time)←
H = instance(Id, Class),

instance of(Id,Class,Time),

solve at(T,Time).

solve at([H|T], Time)←
H = object(A,B,C),

holds at(A,B,C,Time),

solve at(T,Time).

solve at([H|T], Time)←
call(H),

solve at(T,Time).

In this way, we have a flexible mechanism to describe conditions. For example

in OPW we might want to activate an operate vo game only if there is an

instance of agreement amongst players.

5.5.4 Coordination of Parallel Patterns

To coordinate parallel games we use and split and and join patterns. In an

and split the termination of the game Ai triggers the games Ai+1....Ai+n to be

active at the same time. as shown in Fig. 5.9. A and split workflow primitive

is described as follows:

and split((A, Conditions), Activities)

which states that after activity A is completed, if the Conditions is true,

then the set of Activities (In Fig. 5.9 denoted as {Ai+1....Ai+n}) must be
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Figure 5.9: The and split Workflow Operator.

carried out in parallel. To support the parallel composition required for this

coordination pattern, we define runs/4 as follows:

runs(G, and split((A, ), ), A, T) ←
not pattern(A),

not terminating(A@T, ).

runs(G, and split((A, Conditions), Activities), C, T)←
terminating(A@T, ),

solve at(Conditions,T),

member(Activity,Activities),

not terminating(Activity@T, ),

(pattern(Activity) → runs(G,Activity,C,T); C=Activity).

The above specification of runs/4, similarly to the sequence and iteration

patterns, checks if the game preceding the split has terminated. If it has,

then it checks that the conditions for the split are true. For each new game

that should be activated antecedent to the split, it checks if they have ter-

minated. If not, it checks if they are patterns themselves. If these games

are patterns, then the runs/4 is called recursively to evaluate the additional

patterns, otherwise it activates directly the game.

In a and join pattern we need to check that the termination of different games

Ai....Ai+n−1 has completed before activating Ai+n, as shown in Fig. 5.10.

An and join workflow primitive is described as follows:
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Figure 5.10: The and join Workflow Operator.

and join(Activities, (Conditions, A))

and states that after the set of activities Activities (In Fig. 5.10 denoted as

{Ai....Ai+n−1}) are completed, if the Conditions are true, then the activity A

must be carried out (In Fig. 5.10A is denoted with Ai+n). To support the

synchronisation of parallel activities required for this coordination pattern,

we define runs/4 as follows:

runs(G, and join(Activities,( , )), A, T) ←
forall(member(A,Activities), terminating(A@T, )),

not pattern(A).

runs(G, and join(Activities, (Conditions, A)), C, T)←
forall(member(X,Activities),terminating(X@T, )),

solve at(Conditions,T),

(not pattern(A),

C=A;

runs(G,A,C,T)).

For the and join pattern, the runs/4 predicate checks first that all the games

that are defined as precedent to the join have terminated. If this is the case

and the activation conditions are true (we can also express cases where there

are no condition for the patterns by defining an empty list) we check if the

antecedent game is a pattern, if it is, it needs further investigation using the

runs/4 predicate, if not, this is the new running game.
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5.5.5 Coordination of Conditional Patterns

Similarly to the parallel patterns, we define the conditional patterns namely

the xor split and the xor join patterns.

In a xor split the condition on the result after the termination of Ai determines

the active game between several Ai+1....Ai+n games as shown in Fig. 5.11.

Figure 5.11: The xor split Workflow Operator.

A xor split workflow primitive is described as follows:

xor split(Activity,Conditions)

and states that after an activity A is completed, the Conditions set {(Conditioni+
1, Ai+1), ....(Conditionn+1, An+1)} will determine which of the activities

Ai + 1, ....An + 1 from the condition set Conditions must be carried out.

To support the conditional split required for this coordination pattern, we

define runs/4 as follows:

runs(G, xor split(A, ), A, T) ←
not pattern(A),

not terminating(A@T, ).

runs(G, xor split(A, Conditions), C, T)←
terminating(A@T, ),

member((Condition,Activity),Conditions),

runs(G, if(Condition,Activity),C,T).
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The runs/4 predicate checks if the game preceding the split has terminated.

If it has, then for every pair (Condition, Activity) it uses the if conditional

pattern to check if the game identified as Activity should be activated.

In a xor join the termination of one of several possible games Ai, Ai+1 ....

Ai+n−1 activates the next game Ai+n as shown in Fig. 5.12.

Figure 5.12: The xor join Workflow Operator.

A xor join workflow primitive is described as follows:

xor join(Conditions,Activity)

. The set of Conditions is defined as a set of pairs {(Ai,Conditioni), ....(Ai +

n − 1,Conditioni + n − 1)}. After one of the activities Ai, ....Ai + n − 1

from the condition set Conditions is completed and the associated Conditioni,

....Conditioni + n − 1 is true, the activity Activity must be carried out. To

support the parallel composition required for this coordination pattern, we

define runs/4 as follows:

runs(G, xor join(Conditions, A), C, T)←
member((Condition,X),Conditions),

terminating(X@T, ),

solve at(Condition,T),

(not pattern(A),

C=A;

runs(G,A,C,T)).
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The runs/4 predicate for the xor join pattern checks that at least one game

preceding the join has terminated. If it has and the condition associated

within such game is true, then the antecedent game in the join pattern is

activated.

5.6 Forwarding Agents Moves

Agents are situated in the physical environment. They interact in the envi-

ronment by producing events in physical containers. An event performed in

the physical environment succeeds only when the event is considered phys-

ically possible. Afterwards, we propagate the same event in the social en-

vironment so that we check if the interaction respects the social rules and

possibly if causes changes to the social state.

There is a connection between physical and social containers in the sense

that both entities mediate the same actions performed by agents but with

different rules. We represent the link between social and physical containers

by defining a structure for the agent environment as we illustrated in Fig. 5.3.

The agents are capable of perceiving both the social and physical environment

by querying the environment and by being notified of the event of interest.

The link between the social and the physical environment is defined using

the following principles:

• The social environment is organised as a two layered structure having

a Root container and a set of social containers that are defined as sub-

containers of the Root container.

• In order to apply a set of default social rules to the agent environment

every physical container can be associated with one social-container.

This association defines a relationship where the social container is a

super-container of one or more physical containers.
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• Interactions may create new social containers, where additional social

rules apply to a selected subset of agents that are involved in these in-

teractions. These interacting agents can be located in the same physical

containers or in different ones.

As agents act in the physical environment they generate events which are

propagated in the social environment. The propagation from the physical to

the social environment is based on the following happens/3 predicates:

happens(E,R,T)←
this(C),

happens(E, C, T),

do:E[actor⇒A, act⇒ Label, content ⇒ Content],

meta-move(Label),

instance of(R, root, T).

happens(E,SC,T)←
this(C),

happens(E, C, T),

do:E[actor⇒A, address ⇒ {game:GID, container:SC},
act⇒ Label, content ⇒ Content],

instance of(SC, social container, T).

The first predicate distinguishes between agent acts that are classified as

meta-moves of the social environment. These meta-moves are propagated to

the Root container which will check against its own local rules and possibly

apply the effects of the act as described in Section 5.4. The second predicate

propagates all the other moves to the social container SC where they are

addressed.

Agents might perform an act without specifying a game. Physical acts, for

example, are acts performed to manipulate objects. These acts might have

social consequences which might be applied using a set of default games that
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are active since the start of the system, as we explained in Section 5.2. In

this case agents are playing a game which they have not explicitly created for

themselves. Thus, when agents perform one of such acts they do not address

this game. To deal with the propagation of the acts, we define the default

game as part of the super social container and acts not addressing a game

are propagated to this game. We express this rule as follows:

happens(E,SC,T)←
this(C),

happens(E, C, T),

do:E[actor⇒A, act⇒ Label, content ⇒ Content],

instance of(SC, social container, T),

holds at(C, super container, SC, T).

which states that the moves generating an event E in the container C and

which do not specify where the move should be propagated, are propagated

to the super social container of the container identified as SC.

5.7 Summary

In this chapter we have further developed the MAGE framework as a compo-

nent based social infrastructure built on top of the GOLEM platform [21] to

support practical applications. We have focused on scenarios requiring the

distribution of the social environment in many social containers. We illus-

trated how we create a link between the social and the physical environment.

While the physical environment has its own complex structure, we architect

the social environment as a hierarchy of containers with a Root container as

the start point which is also in charge for the dynamic changes to the social

environment such as creating new containers to contain new game interac-

tions. We explained the meta-game as the mechanism used to define new

interactions in complex social containers. We described how by performing
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a meta-move agents are enabled to change the state of interactions at run

time.

In this chapter we also described how to build compound games from simpler

sub-games. We looked at a set of coordination patterns that allow us to build

compound games as result of coordinating atomic sub-games. We studied

how to define coordination by introducing the notion of active sub-games and

we defined what counts as valid move in a compound game. We described

seven main coordination patterns (sequence, if, return, and split, and join,

xor split and xor join) and defined how we can build compound games based on

these seven coordination patterns. We also showed how to define a vo game

as a compound game in the OPW scenario.

Events happening in the environment will be evaluated against the social

rules. We distribute the social rules into various containers, for this reason

we have presented a propagation mechanism so that events are propagated

into the right container to be evaluated as moves within a game. In the next

chapter we discuss implementation issues of the MAGE model.
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Chapter 6

Implementation

In the previous chapters we presented how to specify atomic games and how

to construct complex games within MAGE. In this chapter we present the

architecture and implementation of MAGE and how it relates to the GOLEM

reference model.

The technologies used for the implementation of MAGE are Prolog and Java.

MAGE follows a similar approach to that used in GOLEM. To allow for easy

integration between GOLEM and MAGE, a version of Prolog named tuProlog

[45] is used to define the rules of social and physical containers and the Java

programming language is used to code the rest of the platform.

The chapter is structured as follows: Section 6.1 introduces the GOLEM

reference model and Section 6.2 shows how we extended the GOLEM archi-

tecture with the MAGE functionality. Section 6.3 gives an overview of the

MAGE architecture and the main entities. Section 6.4 focuses on the imple-

mentation of the propagation and coordination mechanisms that deal with

the management of the Social Containers. Section 6.5 gives implementation

details of the social rules, how we can define enforcement policies such as pun-

ishments and rewards and how agents can actively perceive what happens in

the social environment. Finally, Section 6.6 summarises and concludes this
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chapter.

6.1 The GOLEM Reference Model

The implementation of the GOLEM framework is represented in the GOLEM

reference model shown in Fig. 6.1. The agent environment evolves as Agents

Figure 6.1: GOLEM reference model.

perform Actions in the environment. These actions are captured by the

Attempts module and are treated as attempts regulated by the Physics

component. The Physics describes how and which agents actions cause

changes to the physical state of the environment. The Laws module of the

Physics defines a set of physical Laws that determine if the actions performed

by agents are possible to happen in the environment. Once an action is

possible, this is established as an event that happens in the environment

and it is directed by the Notification Module to the Passive Perception
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module that notifies the sensors of agents and objects. Agents can also

actively perceive the environment or objects in it. This is handled by the

Active Perception module that accesses the state of the agent environment

to support agents’ requests to perceive the environment.

As containers in GOLEM can be distributed over a network, a Synchroniser

module is introduced in every container to keep the containers synchronised.

GOLEM also provides a Connector component as a service in the agent

environment that hides from the agents the complexity of interfacing with

the Transportation Layer. A Connector service uses the Transportation

Layer to send messages from the container where the connector is registered

to another container where the message is directed.

6.2 The MAGE Reference Model

MAGE adds an extra layer on top of the GOLEM platform. The refer-

ence model of MAGE extends GOLEM as shown in Fig. 6.2. By adding the

MAGE framework to the GOLEM implementation, we create a double struc-

ture of the agent environment that evolves in time: i) the physical structure

where the agents and objects are located and ii) the social structure that

checks if the actions of agents conform to the social rules.

In the integrated model of GOLEM and MAGE shown in Fig. 6.2, when

an Action is performed, this is evaluated in both the social and physical

environments: GOLEM checks that the action is possible according to the

physical laws and MAGE checks that the action is valid according to the

rules of the game.

To link the physical and the social layers of the agent environment we provide

a propagation mechanism which propagates the actions performed by agents

in a physical container to a social container that can evaluate it.

The acts performed within a social container are first evaluated using the
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Figure 6.2: GOLEM and MAGE reference model.

Coordination Mechanisms offered in the social environment. The coordina-

tion mechanism uses a Communication Mechanism to exchange information

amongst containers, an Activate/Deactivate used by containers to activate

and deactivate games and an Interleaving Mechanism that checks which

games are active. The rules of active games are used to evaluate the agents

actions.

The validity of an act is checked using a subset of the Social Rules de-

fined in the social environment. The Institutional Power, Permissions,

Prohibitions and Obligations of the agents are defined as domain specific

rules which are encapsulated as part of the games that agents play. The so-

cial rules may be based on the Physical State of the environment or/and

the Social State of the environment.

The Enforcement Policies are included as part of the games whenever

there is a need to Punish or Reward the behaviour of the agents. These rules
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may affect the social status or the resources of an agent (i.e. in the OPW

the points that an agent has), through the use of the Social Container

Interaction Module. The Social Container Interaction Module allows

agents to actively perceive the social state of the games.

6.3 MAGE Implementation Environment

We can identify three main components involved when implementing a MAGE

based application: agents, social containers and games. Each component has

the following requirements:

• Agents: Agents in GOLEM are entities with a body, sensors, effec-

tors and a mind [21]. The definition of a new agent (i.e. for OPW)

occurs in a similar manner, independently of whether the application

includes the MAGE layer or not. What changes when implementing

such agents is only the specification of the agent mind, which is a

Prolog module that has to be specialised to reason depending on the

applications needs. GOLEM supports tuProlog [45], Sicstus [46] and

SWI-Prolog [131] mind specifications. We implemented our applica-

tions using SWI-Prolog specifications of the agent mind. Agents were

defined to perceive what is happening in the social and physical envi-

ronment, reason about available moves and use their strategy to reach

their goals.

• Social Containers: Social Containers (complex or atomic) are defined

as Java thread processes with a Prolog core. The definition of social

containers is similar to the one of physical GOLEM containers. What

changes are the affordances of the container and the rules governing it.

The container is now perceived as a social container by other entities in

the agent environment. The Prolog core of social containers is specified

in tuProlog [45] which was chosen for the ability to integrate with Java.
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By using this Prolog version, it is possible to define, instantiate and

use Java objects whenever necessary in the Prolog theory. Due to this

feature of tuProlog, we can define and destroy dynamically the Social

Containers at the Prolog and Java level.

• Games: We use tuProlog to associate social containers and games

(complex or atomic). The games are loaded as the components that reg-

ulate agent interactions within containers. Depending on which games

are running at a given time, the rules of such games will be activated

to check the moves made by the agents in the state of those games.

Figure 6.3: GOLEM and MAGE Container Architecture.

In Fig. 6.3 we show the UML diagram of the extended model of GOLEM

containers. In this new model, we specialise the containers into social and
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physical containers. Every Container has a Prolog theory which describes

the rules that the container uses to mediate the interactions. The theory

ITheory is now specialised to distinguish between Physical and Social

Containers. The rules defining physical containers are Physics rules while

the rules defining the social containers are Social rules. Every container

refers to an entity called MyDeamon which provides an interface for producing

remote calls AEC calls in the container.

The Physics and the Social module mediate respectively the physical in-

teraction between the agents and objects registered within a container and

the social interactions between the communicating agents. The Physics and

the Social component contain a tuProlog engine, thus the interaction is de-

fined in a declarative way. The modules of the reference model in Fig. 6.2

are implemented using Prolog predicates. The details of how we define the

internal architecture of the Social module will be shown in the next Section.

Agents and Objects are contained within containers by registering them us-

ing the register entity or register mobile entity methods. A Container

has one or more connectors that define the agent environment as an in-

terconnected structure. The connectors are registered in containers by us-

ing the register connector method. Connectors provide a transportation

layer to the agent environment. GOLEM defines the TransportationTCP

class to hide the complexity of communicating in the agent environment.

The Container is also extended with new methods that we use during the

Coordination Mechanism. This methods deal with the destruction, the sus-

pension and the resuming of containers.

The actions of an agent are generated by default in the physical container

where the agent is situated. An agent uses its effectors and sensors to call

the following methods of the physical container:

public void act(String ActorId, String message);
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The method is called by an agent effector to produce an action in the agent

environment, being the first argument the unique identifier of the actor and

the second argument a tuple representing the action.

6.4 Social Container

The implementation of MAGE follows object oriented patterns [60], extend-

ing on the patterns that GOLEM already used and introducing two more

patterns to handle the social state (Facade and Factory patterns). The full

list of patterns utilised in MAGE are:

• Decorator Pattern: The Decorator Pattern implies encapsulating an

object or a module within another object to extend the functionalities

of the previous object. The main advantage of this pattern is that

the functionalities of an existing module/object can be extended at

runtime without modifying its code. The GOLEM platform utilised

the decorator pattern to encapsulate the state of internal objects in

GOLEM objects (see [19]). MAGE utilises the decorator pattern to

extend the current implementation of the AEC to handle social states,

by introducing further predicates to propagate events and to interleave

games.

• Mediator Pattern: The Mediator Pattern has the purpose to stan-

dardise an interface for the interaction with a set of components that

only need to be able to interact with the mediator, abstracting away

the complexity of dealing with multiple heterogeneous components.

GOLEM made use of the mediator pattern to handle the interaction

between agents, objects and containers. MAGE extends the utilisation

of this pattern by introducing a further level of mediation between the

agents and atomic and compound games. In other words, the social

containers are mediators of the interaction between the agents and the

atomic and compound games.
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• Factory Pattern: The Factory Pattern consists in a factory module

that is in charge of instantiating objects at runtime according to the re-

quest of a requester module. MAGE utilises the factory pattern in two

ways: i) a Root social container can instantiate social sub-containers

when this is required during the social interaction ii) a social container

can instantiate atomic games and compound games to handle the in-

teraction amongst a group of agents.

• Facade Pattern: The Facade Pattern consists in a module that en-

capsulate the state of one or more sub-modules to create a simplified

and coherent interface of a system. MAGE utilises this pattern when

dealing with atomic and compound games, hiding the complexity of

dealing with the state of the games behind an Interleaving Module

that provides the predicates for the coordination of the agents. In other

words, thanks to the Interleaving Module the state of the games is

transparent to the agents, that just see what are the valid moves at a

given time.

• Publish/Suscribe Pattern: The Publish/Subscribe Pattern consists

in an entity, the subscriber, subscribing to another entity, the publisher,

to observe its state changes in terms of notification of events. GOLEM

made use of this pattern to create agents able to observe the environ-

ment according to the events happening in it, thanks to their sensors

and produce events in it, thanks to their effectors. MAGE extends

GOLEM use of this pattern by having agents that are subscribed to

social containers and can observe their state changes or produce new

social events.

In Fig. 6.4 we represent the MAGE architecture. We have abstracted away

from the features represented in the physical agent environment.

In MAGE, agents rely on the physical environment to perceive and act in

the environment. MAGE provides a Propagation Mechanism to connect the
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Figure 6.4: MAGE Architecture.

social and the physical environment. The Propagation Mechanism propa-

gates the actions that the agents perform in the physical environment to the

social environment. The social environment is composed by two types of

Coordination Mechanisms specified as the Meta-Move Predicates which

can change the structure of the social environment by creating and deleting

social containers, and the Interleaving-Predicates which allows agents

to decide which atomic games to play. The interleaving predicates act upon

the state of Games. A Game can be a Compound Game meaning that it follows

the coordination patterns presented in Chapter 5. The state of the games is
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defined within the social containers and it can be observed by agents that

are playing in such games. A Compound Game contains one or more Atomic

Games which are also instances of Games and describes normative relations

between acts that agents perform.

6.4.1 Social State

As briefly explained in Section 6.3, agent actions cause updates in the state

of containers. To update the state of containers (social and physical) we use

OEC [76] which is an object-oriented optimised version of EC. Clearly EC

can be implemented in other programming languages, such as Java and C.

We adopted the logic programming approach partly because EC was origi-

nally developed as a logic programming language, and partly because of the

declarative semantics and concise representation offered by logic programs.

The implementation of OEC in tuProlog does not support efficient indexing

of clauses. To improve the performances of OEC, GOLEM was interfaced

with the Berkeley database [93] as extensively explained in [19]. The Berkeley

database stores instances of tuples of type:

instance(Obj,Class,start(Ev)).

object(Obj,Attr,Val,start(Ev)).

The instance/3 and object/4 assertions store the state of the environment

distinguishing between objects in the container by their identification Obj.

The instance/3 assertions are inserted in the Berkeley database when a new

instance of an object Obj with class Class is created. The object/4 asser-

tions are inserted in the Berkeley database whenever a new event description

is added to the container’s state. The event usually changes properties of

objects that are registered as C-Logic terms in the container. For exam-

ple, the state of the social container changes whenever the attributes of the

C-Logic term representing the state change in the database. Additionally,

time intervals are used to store how the properties of objects change their
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value in time. Time periods are denoted as start(e1) and end(e2) terms.

The event Ev initiates the attribute Attr with value Val of an Object whose

identification is Obj. Similarly, when the value of the attribute of an object

changes due to a new event, the previous value is stored as having been ended

as follows: object(Obj,Attr,Val,end(Ev)).

For example, in OPW the assertions below:

time(e1, 2).

time(e2, 7).

instance(ag1, agent, start(e1)).

object(ag1, position, [3,4], start(e1)).

object(ag1, position, [3,4], end(e2)).

object(ag1, position, [4,4], start(e2)).

describe how agent a1 moved to position [3,4] at time 2 and then moved

to [4,4] at time 7. We know that the periods in the state of a container

are either closed or open intervals which persist into the future. A new event

such as e2 either starts a new period of time (i.e. start(e2)) for a conclusion

or ends a period of time which was started by another event (i.e. end(e2)).

The optimisation is obtained now because the new event is either related to

the attributes of objects or the class membership, so we do not need to check

all the events that have happened, as with the previous OEC version. Our

implementation also uses indexing on the arguments of object/4 assertions,

so that if the first three arguments are specified, the time to retrieve the term

is O(1).

By using object/4 assertions we can store and update the necessary infor-

mation about the ongoing interactions. We use these clauses to build the

state of social and physical containers. Every container, independently if it

is social or physical, has an associated Berkeley database where the state of

the container is kept.

As explained in Chapter 3, GOLEM implements the AEC for the queries per-
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formed in the agent environment on top of the OEC which is used internally

in every container. The top-level description of the holds at/4 predicate

implementation of OEC is specified below:

holds at(Obj,Attr,Val,T):-

object(Obj,Attr,Val,start(E)),

time(E,T1), T1 =< T,

not (object(Obj,Attr,Val,end(Evstar)),

time(Evstar,T2), T2>T1, T2 <T).

The main difference between this OEC version and the one discussed in

Chapter 3 is that now we add all new properties that are initiated/terminated

as object/4 (instance/3) assertions whenever a new event description is

added to the container’s state. The distribution of the social and physical

state is handled by using the AEC features to query the distributed multiple

containers in the agent environment, As described in Chapter 3, the AEC

uses the OEC, to query C-Logic like objects and their attributes that may

be situated in different containers. The implementation of the AEC clauses

presented in Chapter 3 has a straightforward Prolog translation. We omit

them here to avoid repetition.

To distribute the physical and social state the following solve at/6 has the

effect of changing all the physical and social rules to work with distributed

containers:

solve at(C, Id, Class, Attr, Val, T) :-

neighbouring at(C, [], , 1, Id, Class, Attr, Val, T).

The [] list above states that the initial path is empty, the underscore ‘ ’,

that we are not interested in the resulting path, and the number 1 indicates

that we should look at all neighbours whose distance is one step from the

current container.
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6.4.2 The Propagate Mechanism

The propagate mechanism is defined to link the physical environment to the

social environment. Both the Physical Containers [19], and the Social

Containers mediate the interactions of agents in the environment.

Agents perform acts which are defined as attempts in the agent environ-

ment. When an agent performs an act the attempt/2 predicate queries the

physical state to check that the act is physically possible. If the act is impos-

sible, no changes are made to the physical state nor to the social state of the

agent environment. If the act is physically possible, then the add/3 predicate

specified below will update the physical state of the container where the act

was attempted and the act will be propagated to the social state of the en-

vironment. A multi-threaded implementation of attempt/2 below is used to

perform actions mediated in parallel by the social and physical environment:

attempt(Act, T):-

exec(possible(Act, T), true),

unique id(Ev),

add([Act], Ev, T),

exec(propagate(Act,T), )).

The above program will be called by an agent to perform an action Act which

generates an event Ev in the system. The unique id/1 generates a unique

identification for the event. The exec/2 has a result R that returns true or

false). If the event is concluded possible in the physical container, it will

be given in input to propagate(E,T) predicate which propagates the event

in the social environment.

The propagate/2 predicate first checks if the act is a meta-move that is

managed by the Root container (i.e. new container, destroy container,

suspend container, resume container) and, in this case, propagates the

act to the Root container. Any other acts are propagated to the game where
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the act is being addressed. As we specified in the previous chapter, in some

cases, some acts do not address a game in which case the propagation of the

act is done in the super-social container of the physical container where the

act is first performed. The propagate/2 predicates are defined as follows:

propagate(Ev, T):-

meta move(Ev), !,

instance of(RID, social container, T),

this(C),

holds at(C, root, RID, T),

connector <- send(RID, C, Ev).

propagate(Ev, T):-

Ev=do(AID, Act, Properties),

member(attribute(address,GID),Properties),

GID=game(CID,GameName),

this(C),

connector<-send(CID, C, Ev).

propagate(Ev, T):-

Ev=do(AID, Act, Properties),

not member(attribute(address,GID),Properties),

this(C),

instance of(CID, social container, T),

holds at(C, super container, CID, T),

connector<-send(CID, C, Ev).

The above predicates state that given an event Ev that occurs in a container

C, if such event can be classified as meta move then the event is propagated

to the Root container RID, otherwise the second predicate propagates the

event Ev to the container CID. The agent would have to define in its message
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the game GID where the act is directed. The games are identified in the

system by two variables: the container CID where the game is being played

and the name of the game GameName which is being played in the container.

The third case, defines a case where the agent does not specify a game, this

by default propagates the move to the super social container. In order to

send the message to another container, the send method of the connector is

used. Every container has its own connector, to use when it is necessary to

propagate an act. The “<-” sign between the connector and the send method

denotes a Java method call to the to the connector which is defined as a

Java Object.

The general assumption with the propagation mechanism is that the creation,

destruction, suspension and resumption of compound games are managed

from the Root container. This allows us to keep a separation between the

structure of the social environment and the actual game interactions between

agents. All the moves, independently if they are physical, social or meta-

moves, can have implications in the social state (i.e. an agent performing

a physically possible move such as moving to a new square, might be doing

a prohibited act because in the new square the agent is too close to other

agents in the environment. If this happens, the agent may be sanctioned).

To insert object/4 and instance/3 assertions in the Berkley database we

implement the add/3. The add/3 predicate is used to insert instance/3

assertions when some actions are performed in the environment for which

a new object has to be generated in the state of the container (i.e. a new

atomic game), or to insert object/4 assertions when the properties of objects

maintained within the state of the container change their value. The add/3

predicate is implemented as follows:

add([], Ev, T).

add([P1|Pn], Ev, T):-

P1 = instance(ID, Class, AttributeList),

berkeleydb<-putEvTime(time(Ev,T)),
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berkeleydb<-putInstanceOf(instance(ID,Class,start(Ev))),

add attributes(Ev,ID,AttributeList),

add(Pn, Ev, T).

add([P1|Pn], Ev, T):-

P1 =do(ID,Act,AttributeList),

berkeleydb<-putEvTime(time(Ev,T)),

change attributes(Ev,ID, AttributeList),

add(Pn, Ev, T).

add attributes(Ev, ID, []).

add attributes(Ev, ID, [attribute(Name, Value)|Pn]):-
berkeleydb<-putOTerm(object(ID, Name,Value,start(Ev))),

add attributes(Ev,ID,Pn).

change attributes(Ev, ID, []).

change attributes(Ev, ID, [attribute(Name, Value)|Pn]):-
ID<-getAttribute(Name) returns Attribute,

Attribute = attribute(Name, OldVal),

berkeleydb<-putOTerm(object(ID,Name,OldVal,end(Ev))),

berkeleydb<-putOTerm(object(ID,Name,Value,start(Ev))),

change attributes(Ev,OID,Pn).

At a given time T the above add/3 predicate can initiate a list of new ob-

jects [P1|Pn] and their properties AttributeList in the database or can

change existing attributes of an object within the state of the container.

The putEvTime and putInstanceOf are Java methods which are called to

insert respectively time/2 and instance/3 terms in the database. Similarly

to what we previously explained, the “<-” sign between these Java methods
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and the instance of the database here identified as berkeleydb denotes a Java

method call to the to the berkeleydb which is defined as a Java Object.

The add attributes/3 predicate adds new object/4 assertions to the database

of a container. The object/4 assertions define the value Value of one of the

properties Name of an object identified as ID in the database. The putOTerm

is the Java method which inserts the object/4 predicates in the database.

Similarly the change attributes/3 is used to change the value of an existing

attribute of an object in the state of the container. The predicate searches in

the database the attribute Name of an object ID by using the getAttribute

Java method to query the database. Based on the result of the query, the

old value OldVal of the attribute Name of the object ID is terminated and

the new value Value is inserted in the database using the putOTerm Java

method.

6.4.3 The Coordination Mechanism

The coordination mechanism refers to the rules that define what happens in

the social agent environment when the move of the agent is propagated to

the social container. Agent moves can be aimed at a specific game, in which

case the effects produced by their acts change the state of the game. Other

moves can have effects on the state of a compound game or meta-moves can

determine changes at the structure of the social environment by deploying

or destroying new social containers.

Once the act of an agent is propagated to the social container, this generates

events in the social environment. The act is perceived within the social

container which activates the social move/2 predicate, specified as follows:

social move(E, T):-

this(C),

check(C,E,R,T),

apply(E,R,T)
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The predicate social move/2 is called in the container receiving a move

E performed by an agent. The predicate uses the check/4 predicates to

determine if the event is valid and the apply/3 to apply the changes caused

by the act. The check/4 has two definitions to distinguish between agents

acts that are meta-moves in the system and acts performed within a game.

The specification of check/4 predicates is defined as follows:

% Meta Moves

check(C,E,R,T):-

meta move(E),!,

(valid(C, E, T),

R=result(valid, in(C)));

R=result(invalid, in(C)).

%Moves in a game

check(C,E,R,T):-

E=do(Aid,Act,Properties),

member(attribute(address,GID),Properties),

GID=game(C,GameName),

holds at(C, compound game, Wf, T),

runs(Wf,Games,T ),

member(GameName, Games),

holds at(GameName, player, Aid, T),

(valid(GameName, E, T),

R=result(valid, in(GameName)));

R=result(invalid,in(GameName)).

The first check/4 predicate checks if the performed act E is a meta-move

then, using the valid/3 predicate, determines if the move is a valid one.

The implementation of valid/3 is very similar to the specification presented
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in Chapter 4. The result R states if the move is valid or invalid in a social

container in(C). The second check/4, before checking if the act E is valid,

uses the member/2 predicate to find in which game GID the act is directed.

The game GID is identified by the container C where the game is created and

the name of the game GameName. The description of the compound game

Wf running in the social container C is read so that the runs/3 predicate

can determine which games Games are running in the container. We check

that the specified game GameName is running within the container (this also

avoids that from the moment the agent perceives the state of the game to

the moment it acts on it, the game has terminated).

Every act within the social environment can cause some changes to the social

state of the environment. We use the apply/3 predicate to define how the

act, depending if it was valid or not, changes the state of the container or

the state of the game where it was performed. The apply/3 predicate is

implemented as follows:

apply(E, R, T):-

R=result(valid, in(G)),

effects(G,E,T),

new state(G,T).

apply(E, R, T):-

R=result(invalid, in(G)),

sanction(G,E,T),

new state(G,T).

The above predicates define the effects that an act E has within the state

of a game G depending on the action E being valid or not. If the act was a

valid move in the game (or container in case of meta-moves), the apply/3

predicate calls the predicate effects/3 to apply a set of changes to the state

of the game G. If the act was invalid invalid the predicate sanction/3 is
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called to apply other changes to the state of the game. The two predicates,

effects/3 and sanction/3, can change the state of the game G by changing

some properties of the state or, in some other cases, new events are generated

which can update the state of other games or containers. The new state/2

predicate is called to maintain the state of a game as an attribute of the

game G. The use of this predicate becomes explicit in Section 6.5.3.

6.4.4 The effects of Meta-Moves

Using the effects/3 predicate explained in the earlier section, we can spec-

ify how meta-moves change the state of the social environment. Using the

meta-moves, agents can choose to create a new complex game. When the

interactions within games became obsolete, either due to termination of the

game or due to exceptions, the complex game may be suspended to be re-

sumed later or even canceled. The effects/3 for the creation of a new

interaction game within a container is defined as follows:

effects(Root, E, T):-

E=do(A, new container, [attribute(game,GameName)]),

create container(GameName, GID, T),

unique id(Ev),

GID=game(GameName, CID),

add([instance(CID,container,[attribute(game, GID),

attribute(cycle, started)]], Ev, T).

create container(GameName, GID, T):-

url specification(GameName, Url),

generate id(Container)

GID=game(GameName, Container),

java object(’container.Container’,

[Container,GameName,"Ontology.wsml",Url],

Container).
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The first predicate checks that the performed act is the new container meta-

move. The predicate create container/3 is called to start a new container

containing the game specification requested by the agent. The add/3 predi-

cate is called to create an additional event. Such event triggers the addition

of the new created container and the information about the game it contains,

as a new object with some properties (such as the game contained in the new

social container) in the database. Similar predicates are defined also for in-

terleaving of atomic games. The rest of the effects/3 predicates defined to

capture the changes caused by meta-moves in the structure of the containers

and in the atomic games that are played in a social container are defined in

Appendix B.

6.5 Implementation of Atomic Games

Once we have the general propagation and coordination mechanism in the

social container, we can define the atomic games. The atomic games in-

corporate the normative rules of the application in the agent environment.

They describe rules, procedures or protocols in terms of an atomic interac-

tion which can be followed by the players to achieve some specific results.

The combination of the atomic games in a compound game adds flexibility

to the normative approach and allows agents to change the rules by deciding

the games they play. The specification of the compound game is done in

terms of workflow coordination patterns which, once instantiated in a social

container, provides the mechanism for changing the interaction rules.

To implement an atomic game we need to determine what are the valid

acts (including permissions, prohibitions, obligations and empowerment) that

agents can perform and at what state of the interactions these acts are valid,

the effects of these acts in the state of the game and what sanctions or rewards

(if any) we apply to respectively not valid acts and to valid ones. We also

need to describe the initial state of the game and the terminating state.
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6.5.1 Social Rules

The implementation of the valid/3 predicate, the permission, prohibition,

obliged and empowered rules is similar to their specification which we pre-

sented in Chapter 4. In general, these rules are application dependent. For

completeness we show an example of implementation of the permitted/3

and forbidden/3 predicates:

permitted(G, Move, T):-

empowered(G, Move, T),

not forbidden(G, Move, T).

forbidden(G, Move, T):-

Move=do(AgentA, move, [Properties]),

member(attribute(position, PosA),Properties),

holds at(CID, sender, Move, T),

PosA= [X,Y],

adjacent([X,Y], [J,K]),

[J,K] = PosB,

solve at(CID, AgentB, agent, position, PosB, T),

not AgentA = AgentB.

The permitted/3 predicate specifies that all the actions that are not for-

bidden, are permitted actions. The forbidden/3 shows an example of a

forbidden action. The predicate defines that moving into a position that is

adjacent to another agent is a forbidden act. To implement the predicate,

we need to be able to identify agents in adjacent positions. This information

is held in the physical state of the physical container from where the move

Move was propagated. When we send a message to a container, we identify

also the sender of the message which is temporarily stored in the state of

the container receiving the act Move. Thus, we can query the state of the

physical container by using the solve at/6 predicate.
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Atomic games define very specific interactions in terms of application depen-

dent rules. The effects/3 predicate defines the effects a move has on the

state of a game and it is specified as follows:

effects(G, do(AID, enter, [Properties]),T):-

member(attribute(game,GID), Properties),

member(attribute(role,picker),Properties),

not instance of(AID,agent,T),

unique id(Ev),

add([instance(AID,agent,[attribute(plays, GID),

attribute(role, picker)])],Ev,T),

add attributes(Ev,GID,[attribute(player, AID)]).

The above effects/3 predicate changes the state of the container due to a

valid enter act performed by an agent identified as AID. The agent AID is a

new instance for the database of the container. The state of the container is

changed by adding the new agent AID as a player of the game GID in the role

of picker and by updating the multiple valued attribute player of the GID

game with the new player.

6.5.2 Enforcement Policies

When a not valid action occurs, the effect in the state of the social container

is to create sanctions which will then be enforced by changing some other

properties in the state of the environment. In OPW we have chosen to

define points for the agents which will increase as effect of valid acts that are

particularly desirable in the system. For example, acts such as dropping a

packet in the destination is desirable in the system specifying OPW because

it brings the agents closer to deliver all the packets that are around the grid.

We also decrease the points of the agents if they perform actions that do not
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comply with the defined social rules. An example on how we implement a

sanction within the system is specified below:

sanction(G, Move, T):-

Move=do(AID, drop, Properties),

holds at(CID, sender, Move, T),

solve at(CID,AID, agent, points, Value,T),

NewValue is Value+3,

append[(attribute(game, game(CID, reply))], Properties,P1),

append([attribute(agent, AID)], P1,P2),

append([attribute(points, NewValue)], P2,P3),

this(C),

propagate(do(C, sanctioned, P3),T).

the above predicate is called when a not valid drop move occurs. A drop

move of a packet in a position that is not a destination point is forbidden in

OPW. This act is sanctioned by reading the points of the agent Value in the

physical container where the agent is situated and by removing three points

as a sanction for such act. The new points NewValue of the agent are added

in the same database of the physical container. We use propagate/2 to send

the new event to the container. The container then uses the add/3 predicate

to add the new information in its database.

Rewards can be also defined as part of games. We use the same effects/2

predicate to reward agents points. This is because effects/2 is activated

when valid acts occur. For example, the following predicate:

effects(G,Move,T):-

Move=do(AID,drop,Properties).

holds at(CID, sender, Move, T),

solve at(CID, AID, agent, points, Value, T),

NewValue is Value+10,

append([attribute(game, game(CID, reply))], Properties,P1),
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append([attribute(agent, AID)], P1,P2),

append([attribute(points, NewValue)], P2,P3),

this(C),

propagate(do(C, rewarded, P3),T).

changes the points of an agent AID because it has performed a valid drop act

which means it has dropped a coloured packet into a destination with the

same colour.

6.5.3 Social Container Interaction

The social container interaction refers to the procedure that agents can use

to query the social state. There are many possible implementations on how

agents can query the social environment. Since the request to observe the

social state is generated in the physical containers where the agents are lo-

cated, we reuse the same propagation mechanism to propagate the agents

query in the social containers. To query the social state agents activate the

observe game/3 predicate in the physical container where they are situated.

This has as result that the agent act is propagated as a query to the social

environment. Within the act the agent performs, it also specifies its identity

AID and the game that needs to observe GID. The observe game/3 predicate

in a physical container is defined as follows:

observe game(AID,GID,State):-

current time(T),

GID=game(CID, GameName),

solve at(CID, GameName, game, player, AID, T),

solve at(CID, GameName, game, state, State, T).

The above predicate specifies that the observe game/3 predicate queries the

database of the social container about the state of the game specified as
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GameName if it finds in the same database that the agent who is trying to

observe the state is a player in this game.

The attribute state 1 of a game identified as GameName is a complex struc-

ture, the attributes of which can change as players of a game perform acts

in it. In order to maintain a coherent value State of the attribute state we

need to recalculate it at every act performed by a player within a game identi-

fied as GameName. To do this, in the we call the predicate new state/2. This

predicate can be implemented differently depending on the atomic games

implemented and the application needs. A general way to implement the

predicate is as follows:

new state(Game, T):-

holds at(Game, cycle, C, T),

findall(F, forbidden(Game, F, T), Forbidden),

findall(V, valid(Game, V, T), Valid),

findall(Player, holds at(Game, payers, Payer,T), Players),

holds at(Game, result, R, T),

State=state(C, Players, Forbidden, Valid, R),

unique id(Ev),

add([do(Game, new state, [attribute(state,State)])],Ev,T).

The new state/2 predicate calculates all the latest information on the state

and asserts it in the database as an attribute of the Game. In particular,

it finds in what cycle C the game is (i.e. started, suspended, terminated),

calculates the forbidden Forbidden and valid Valid moves within the game

Game. It also identifies the result R if any has been reached within the game.

Finally, the new sate is added to the database by using the add/3 predicate.

The operation of observing the state of the game we presented can be expen-

sive computationally. With a similar approach we can implement additional

1To not confuse with the attribute cycle which identifies if the game is in a started,

suspended or terminated life-cycle.

168



observations for the agents that are less computationally expensive. For

example agents can observe only a subset of the properties in the state of

games.

6.6 Summary

In this chapter we show how we implement the MAGE platform on top

of GOLEM. We start with the GOLEM reference model which shows the

GOLEM architecture. We use the GOLEM reference model to extend it

with the MAGE framework. In particular GOLEM and MAGE relate to each

other through the structure that is created between the physical containers

and the social containers. By connecting social containers and physical con-

tainers we define an inter connected structure regulating the agents actions

using both social and physical rules. Actions performed by the agent that

is situated in a particular container of the physical environment, are prop-

agated to the social environment which applies social rules to evaluate the

consequences of such acts.

Whenever an agent interacts within a game, the agent identifies the game

where the act is aimed to be performed. Due to this implementation choice,

the acts that are performed in physical spaces, are directly propagated to the

social container where the game is contained. The propagation mechanism

is included as a way to deal with the dynamic social structure of the social

environment but also to hide the complexity of interactions to agents and to

deal with distribution in a scalable way.

Agents are allowed to configure the structure of the environment by creating

new containers containing complex games using the a set of meta-moves.

The meta-moves are also used to act on the games’ cycle. Complex games

coordinate many atomic games which can evolve in different ways depending

on agents actions. We defined the coordination mechanism as the cycle that

is defined within containers to deal with the evaluation of acts and their

169



effects.

We showed how normative concepts are implemented as part of the atomic

games. Changes due to valid or invalid moves are added to the database of

the container. Some acts change properties of the physical state rather than

the social state. In this case, we propagate the effects that the act has to

the physical state which is then updated accordingly. Agents can perceive

all these changes by observing how the state evolves. Agents can perceive

the state of the physical container where they are situated and the state of

games where they are players (with some exception). They can consequently

decide how to act in the environment based on the perceived information.

In the next chapter we show how the MAGE approach is applied within

ARGUGRID. We illustrate this by defining game interactions within the

Earth Observation Scenario where agents can negotiate agreements about

particular services on the fly.
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Chapter 7

The ARGUGRID Platform

In the previous chapter we showed the implementation of the MAGE plat-

form. We illustrated how the GOLEM containers can be extended to deal

with a dynamic social environment and how agents can act and observe the

social environment.

In this Chapter we show how we used MAGE in the ARGUGRID project.

ARGUGRID aimed at providing argumentative agent technology for service

selection and negotiation over the GRID. More specifically, we first illustrate

how we can specify an atomic game to support agent negotiation and we

then describe how such a game can be included as part of the VO formation

process among agents. We also show how we can define compound games

that agents can use to interact within the VO.

The reminder of this Chapter is organised as follows: In Section 7.1 we

introduce the aims and objectives of the ARGUGRID project. In section

7.2 we describe the Earth Observation scenario, used throughout the project

to show the functionalities of the platform. In section 7.3 we describe the

minimal concession protocol which has been used for the negotiation process

amongst ARGUGRID agents. In section 7.4 we then show how, by using

MAGE, agents can interact to form VOs. In section 7.5 we explain how the
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agents negotiate about GRID services for the Earth Observation Scenario.

Section 7.6 summarises and concludes the work presented in this chapter.

7.1 The ARGUGRID Project

The ARGUGRID project is an European project [3, 120] aimed at develop-

ing argumentative agents [41, 42] to support reasoning and decision making

about dynamic composition of GRID based services. ARGUGRID users are

provided with a user interface where they can describe the services that they

are interested to receive. Users are represented with user agents in the agent

environment. When a user agent receives a request by the user, it searches

for the set of services that satisfy the requirements of the user. Other agents

in the platform represent service providers and the corresponding services

they offer to interested users. In this context, user agents contact service

provider agents to establish an agreement about the provided services and

interact according to the rules that govern these agreements and additional

rules specifying the application.

In ARGUGRID, MAGE and GOLEM were used to model the agent envi-

ronment of the application. On one hand, GOLEM allows to define GRID

services as separate resources from agents. On the other hand, the additional

MAGE layer allows for flexible agent interactions. Within MAGE agents can

simultaneously participate in more than one interaction with other agents

via social games. At any time, during a social game, agents can decide the

best strategy for their moves. Having MAGE mediating the interactions and

GOLEM to support the agents to find and use the resources, we remove re-

sponsibilities from the agents to check their moves thus they can reason and

make decisions about how to best achieve their goals.

Together with GOLEM and MAGE additional technologies were used to

build ARGUGRID:
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• Inforsense KDE [62], a commercial tool for integrative data analysis,

visualisation, and service composition for decision-making users. The

KDE software allows ARGUGRID users to define workflow require-

ments and translate them to high level goals for agents using an addi-

tional module named ARGUbroker [89].

• GRIA is a service-oriented infrastructure designed to support B2B col-

laborations through service provision across organisational boundaries

[5]. GRIA was used in ARGUGRID to store and partially monitor (lim-

ited monitoring capabilities were available in GRIA) SLA templates

which will result from agents interactions and the confirmation of the

user of the service. The SLA would then be stored in GRIA servers

and used during service execution.

• Platon [78] a peer-to-peer platform designed to support service discov-

ery and load balancing in ARGUGRID.

• Margo [87] is an engine defined for argumentative reasoning. It was

used in ARGUGRID to define the decision making mechanisms of

agents. In particular, Margo defines modules for reasoning with what

moves to play within a game.

In Fig. 7.1 we show the global picture of the ARGUGRID platform. The

components of the ARGUGRID platform are distributed among computers

residing in distinct locations and connected to the global Internet. ARGU-

GRID Agents may act as service requesters or as service providers (or both).

Fig. 7.1 shows the platform from the service requester’s point of view. The

main interactions that are involved when addressing the requests that users

perform in the system are the following ones:

1. An ARGUGRID User interacts in the platform by submitting an ab-

stract workflow to the KDE. The abstract workflow is realised through

the KDE workflow editing tool and reflects, at a high-level, the user
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Figure 7.1: ARGUGRID global picture.

requirements. The KDE refines the abstract workflow so that its in-

stantiation can be delegated to MAGE-GOLEM agents.

2. After the KDE communicates the abstract workflow to the agent that

represents the user within the platform. The agent searches which

GRIA services should be used in order to derive a concrete workflow, to

be executed on the GRID. The agent mind is composed by a MARGO

argumentation engine for decision-making, which in turn uses the CaS-

API general-purpose argumentation engine. The agent mind defines

a way for the agent to reason about services and make decisions on

how to deal with the abstract workflow. To interface the mind of the

agent and the environment, we have defined the Social Interaction Mod-

ule (SIM). SIM allows the agent to reason about the sequence of acts

to perform in order to solve its goals and allows it to perceive the state

of MAGE/GOLEM environment and to act on it.
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3. Using the SIM, the agent starts the Selection Process where the searches

for appropriate service provider agents that can provide the services it

needs. A registry is provided inside GOLEM that encapsulates the

PLATON++ P2P platform. Agents query this registry to find agents

providing the requested GRIA services. The query may produce many

agents providing the same service. Argumentation is used to select the

preferred agents to start negotiations.

4. The second phase of agent interaction is The Negotiation Process where

agents can negotiate with other agents, sign contracts with them and

form Virtual Organisations (VOs). In this part of the system, MAGE

plays a crucial role to support agent interactions. The user agent cre-

ates a new negotiation game and invites the service-provider agents

that has selected for negotiation. If the service provider accepts the

invitation, the agents exchange messages to first agree on their role,

then negotiate about the service and if they reach an agreement they

can sign it. These interactions are defined as combination of many

dialectical protocols that structure the negotiation game.

5. When an agreement has been reached, the user agent has selected the

services that makes the abstract workflow a concrete one. Each con-

crete service has a SLA template which is stored within the GRIA

platform. The relevant SLA templates are completed according to the

agreement performed amongst agents.

6. The abstract workflow defined by the user is now a concrete one. The

concrete workflow is sent to the KDE. The concrete workflow contains

a set of GRIA services to be executed in a certain manner/sequence

and the negotiated SLAs of the services within the workflow.

7. The KDE uses the capabilities of the ARGUbroker component to change

a concrete workflow into an executable one. The executable workflow

with an associated set of SLAs is presented to the user which has the
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choice of accepting the executable workflow, rejecting it or deciding

to modify the abstract workflow for a better solution. In the latter

case, the abstract workflow will be given again as input to the KDE,

repeating the previous steps until the user either accepts or rejects the

executable workflow solution. In the case of acceptance, the system

will follow the step below.

8. The workflow engine within the KDE will use its workflow execution

service to send the execution workflow, along with its related SLA infor-

mation, for execution on the GRID infrastructure, running the GRIA

GRID middleware. Upon successful execution of the final executable

workflow, the user is informed and the execution results/data are re-

turned back to the user via the KDE interface.

To make the functionalities of ARGUGRID more explicit we focus on the

Earth Observation Scenario.

7.2 The Earth Observation Scenario

The ARGUGRID Earth Observation scenario considers a ministry official

(the user) requiring data about the detection of an offshore oil spill [119].

In this scenario three organisations interact to create a virtual organisation

that offers to the user an oceanic oil-spill detection service.

The abstract and high-level goal of the user is provided by the user utilising

the Inforsense KDE tool. The ARGUbroker GUI translates the requirements

of the user to an agent goal and passes them to the user agent as illustrated

in Fig. 7.2. This goal cannot be immediately satisfied by the user agent itself

but it requires the help of satellite companies that observe parts of the earth

at different days. These companies publicise their services in ARGUGRID

using their service provider agents to manage the services. In this scenario,

given the abstract request of the official, the user agent tries to instantiate
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it in a detailed set of services that can be invoked in sequence to provide the

requested information.

Figure 7.2: Earth observation scenario in ARGUGRID [119].

There are two types of organisations needed in order to offer oil spill detec-

tion: image providers and providers of data processing algorithms. The image

providers are organisations that control a variety of satellites with various or-

bits, capabilities and costs where the providers of data processing algorithms

are companies that take the raw image data from the satellites and provide

a variety of services from simple format transformations to complex high-

level identification of oil spills. The agent has to solve three problems: The

first problem is the Selection Problem. There are many satellite companies

providing different services, each with different capabilities and costs, and

one satellite may be more appropriate than another given certain conditions

that the ministry sets. The user agent, based on a set of preferences over

the service requested, selects the suitable satellite companies and engages in

a contract negotiation process with provider agents to create a VO that will

instantiate the lower level services required to meet the official’s request.
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The second problem is the N egotiation Problem. Every service has a set

of negotiable properties such as price, resolution and delivery time. As an

example, possible satellites may be Envisat, ERS-1 and RADARSAT. Each

satellite provides different services, each with different capabilities and costs,

and one satellite may be more appropriate than another given certain condi-

tions. For example:

• Envisat is an optical satellite with a swath of 1150km and an orbit

frequency of 3 days.

• ERS-1 is a satellite with a radar sensor with a swath of 500km and a

frequency of 3 to 168 days.

• RADARSAT is a different kind of radar sensor with a swath between

45-500 km and a frequency of 3-24 days.

The third problem is the C omposition Problem. Whichever satellite is cho-

sen, the raw images from the satellites are not sufficient for the detection

of oil spills. The ministry must find companies that offer post-processing of

raw satellite images. The ministry may delegate this post-processing to the

satellite company or find a different company to provide this extra service.

For example, some of the possible post processing services are:

• A format conversion which does further processing of the satellite image

to convert it into one of many formats such as: CEOS, HDF, TIFF,

JPEG, etc.

• A re-projection which takes a satellite image file to reproject it into a

different coordinate system depending on the needs of the user.

• An oil spill detection which uses different pattern recognition algo-

rithms, to detect ships, buildings, oil spills.

Since the ministry is only interested in oil spill detection, it contacts a com-

pany which is able to provide the oil-spill detection as a post-processing
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service. Once the image is received from the satellite company, the ministry

sends the image file and expects the company to return images with the oil

spill identified.

The GOLEM affordances and the peer-to-peer platform, combined with ar-

gumentative reasoning handle the selection problem. The negotiation and

composition is handled using MAGE to support the negotiations between

agents and using agent reasoning so that every agent decides the best course

of actions to achieve their own goals. To mediate the interactions we de-

fine the vo formation compound game. This game is composed by four main

components. The core of the negotiation process is defined by the minimal

concession protocol which is defined as an atomic game within MAGE. Three

other atomic games are defined as part of the negotiation process, one is the

role game for agents to agree about their roles within the VO, the second

one is the sign game that is used from the agents to give the final agreement.

Finally, the general rules for ARGUGRID interactions are defined within the

argugrid game.

7.3 The Minimal Concession Protocol

To illustrate how we define atomic games for ARGUGRID we use a bargain-

ing protocol named minimal concession protocol. The minimal concession

protocol (mcp) was defined by Dung et al and it was formally described in

[43]. The protocol enables agents to reach agreements about services or prod-

ucts by deviating minimally from their optimal bargaining positions. To do

so, in conjuction to the mcp protocol, agents are expected to follow a minimal

concession strategy.

A minimal concession strategy requests that the agents start the bargain with

the optimal properties for the service/product that they offer or search. Ev-

ery opponent should concede minimally if the opponent has conceded in the
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previous step 1, and, stand still if the opponent stands still in previous step.

An agent will consider if it can concede on a property of the service/product

depending on its bargaining power. Afterwards the agent will expect the

other agent to concede as well, thus, allowing the offer to get closer to match

the request and vice versa. If the agent decides not to concede, it can stand-

still. An important property of this protocol is that if the two agents use

the protocol in conjunction with a minimal concession strategy, then every

negotiation terminates successfully and the minimal concession strategy is in

symmetric Nash equilibrium [43].

Figure 7.3: The Minimal Concession protocol [43].

The mcp is shown in Fig. 7.3. The protocol provides the following set of

locutions available to agents: request, introduce, reply, concede, standstill,

accept, reject. The protocol assumes two agent roles, a buyer (B) and a

seller (S). The avialable locutions change depending on the agent’s role and

on the state the protocol is in. The protocol starts in S0 with an introduce

1Or if it is making the third move in the mcp protocol. This is because in the mcp

protocol the first two moves can be either request and reply or offer and reply. The third

move, if it is not accept or reject which concludes the agreement, should be concede to

follow the minimal concession strategy. This is illustrated also in Fig. 7.3
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move made by the seller or with a request move made by the buyer. These

moves are used to respectively request or introduce an offer e.g. an oil spill

detection service with some properties. Afterwards, a reply move can be

made from the buyer to reply to an introduce move (S2 ), or from a seller to

reply to a request move (S1 ). After this move, standstill, reject or concede

are all moves that can be made by any of the two roles (S3, S4, S5 and

S6 ). The accept move terminates successfully the protocol (S9 and S10 )

and the accepted offer is considered the value of the result of the game.

Three consecutive standstill moves are considered as a reject move, which

terminates the protocol with no agreement (S7 and S8 ).

7.3.1 Starting MCP

To start the mcp game, within MAGE a meta-game is defined which man-

ages the creation and destruction of games within social containers. All the

interested agent has to do, is to perform a start game move and specify the

game and the players that will be participating in it. The new game is cre-

ated as effect of this move using the happens/3 predicate for the creation of

a new game 2. After the creation of the mcp, the moves of the two play-

ers will change the state of the mcp game. As described in Chapter 3, the

agents moves (such as starting the mcp game) create events in the social con-

tainer. The start game move initiates the game via an assigns/3 assertion.

The assertion:

assigns(Ev, Id, min concession)←
Ev[act ⇒ new game, game ⇒ min concession, properties ⇒ P].

The move allows the creation of an instance for the minimal concession proto-

col. To complete the instantiation process we also need to specify the initial

2As specified in Chapter 5.
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values for the attributes of the complex term representing the minimal con-

cession protocol. For this we need to define separately the initiates/4 rules

as the one below:

initiates(Ev, Id, party of, Val)←
Ev[act ⇒ construct, protocol ⇒ min concession, parties ⇒ agent: Val].

Additional initiates/4 clauses are needed to define the initial state. The initial

state of the game will evolve as a result of moves been made in the state of

a game.

From the implementation perspective, the minimal concession protocol is

started using the coordination primitives defined in Chapter 6. The move

produces the desired effects when the mcp is considered in the system as

a game that satisfies the running conditions (the runs/3 predicate checks

within the compound game state when games satisfy the compound game

specifications) and that the move is valid. To define the validity of this action,

we empower agents holding an initiator role to start the game. The initiator

role is given to the user agent when it requests to start the vo formation

game. The argument behind this choice is that the requests start from the

user and the user agent is the first agent wanting to form a vo. The same

user agent can start a new mcp specifying the service-provider agent with

which to negotiate.

7.3.2 The mcp State

The state of the mcp was represented using a complex term of the form:

min concession:mc1 [

players⇒ {agent:a1 [role ⇒ seller], agent:a2 [role⇒buyer]},
buyer position ⇒ offer:o1 [price ⇒80, resolution⇒20, delivery ⇒2],

seller position ⇒ offer:o2 [price ⇒100, resolution⇒20, delivery ⇒2],
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standstill count ⇒ 1,

result ⇒ nil

].

The state is identified by mc1 denoting an instance of an object whose class

is the minimal concession protocol with two participating agents a1 and a2,

whose role attribute is seller and buyer. The buyer, in the previous round,

has made an offer o1 (a complex term), while the seller has made another

offer o2 (another complex term). There is one standstill move that has been

encountered, and the result of the interaction is still incomplete as the value

is still nil.

7.3.3 The mcp Valid Moves and Effects

To specify valid moves, we specify when moves are permitted. For example,

we specify when a request move is legal in the minimal concession protocol

as:

permitted(Id@T, Move) ←
instance of(Id, min concession, T),

speech act:Move[actor ⇒ A, act⇒request, offer ⇒ Product, role⇒ buyer],

holds at(S, agent of, A, T),

holds at(A, role, buyer, T).

Once a move is determined as valid, a new protocol state is brought about

due to the move’s effects. We are assuming that, to handle the effects of a

move in the protocol, we use the definition of effects/3 predicate as presented

in Chapter 4. In our representation of state, once an event has happened,

its effects are added to the state implicitly, via inititiates/4 definitions that

initiate new values for attributes of a state term, terminates/4 clauses that

remove attribute values from a state term, and assigns/3 definitions for as-
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signing to objects new instances of terms. An example, of how new values are

initiated for attributes for the minimal concession protocol is given below:

initiates(Ev, Id, seller position, Offer)←
happens(Ev, T),

instance of(Id, min concession, T),

Ev[act ⇒ Act, actor ⇒ Aid, role ⇒ seller, offer ⇒ Offer],

changes seller position(Act).

changes seller position(introduce).

changes seller position(concede).

changes seller position(reply).

The above definition initiates the current position made by a seller to be

stored in the state of the game as a result of a request, reply or concede

move. The old offer is terminated and substituted by a new request because

of the way the OEC is specified.

7.3.4 Final state of mcp game

The state of the mcp game will eventually reach the final state from which we

can extract the game’s result. We specify this via terminating/2 predicates.

For example, the definition:

terminating(Id@T, Result)←
instance of(Id, min concession, T),

holds at(Id, result, Result, T),

not Result==nil.

specifies the conditions under which the minimal concession protocol ter-

minates and at the same time returns the result. Not every interaction is
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successful, thus it is possible to define termination of games due to exception,

such as there is not a sufficient number of players in the game.

terminating(Id@T, Result)←
instance of(Id, min concession, T),

holds at(Id, standstill count, Value, T).

Value>3.

The above predicate specifies that the minimal concession protocol termi-

nates if it holds in the state of the game that the standstill count value is

greater than 3.

7.4 VOs in ARGUGRID

The minimal concession protocol we described in the previous section is only a

component of the more complex activities that enable agents in ARGUGRID

to participate in VOs. In fact, an interesting feature of our framework is that

we can specify the interactions beyond the mcp by defining coordination

mechanisms which at run-time change the specification of how the games are

coordinated in a plug-and-play style.

7.4.1 The VO Life-Cycle as a Compound Game

The Fig. 7.4 shows the VO life-cycle in ARGUGRID. The VO life-cycle il-

lustrated here is based on a reinterpretation of the existing literature [56, 95]

about the VO life-cycle in terms of a compound game.

As defined in Chapter 3, the VO life-cycle can be structured in three main

phases: formation, operation, and dissolution. During the formation phase,

agents negotiate the terms of their formation within a negotiation game, here

we include the mcp protocol for agents to agree on the terms of the services

they require.
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Figure 7.4: The VO Life-cycle in ARGUGRID.

The second phase defines monitoring mechanisms as a monitoring game where

the agents actions are checked to make sure that the execution of the agree-

ments taken in the formation phase are satisfied. The monitoring game here

follows in sequence after the negotiation game. After the monitoring, the op-

eration phase follows a reportage game interaction during which agents can

identify problems encountered during the execution of their agreements.

Afterwards, in the dissolution phase, the xor split primitive allows us to con-

sider two cases: The first case is when it is necessary to go back, and renego-

tiate the agreements or improve them. The second case is when a dissolution

is required to terminate the agreements. In the first case, a reformation can

be enacted by restarting the VO from the negotiation game. In the second

case, the VO can be terminated after an evaluation game to determine the
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performances of the agents followed by a dissolution game which results in

the termination of the whole VO life-cycle.

The VO life-cycle in ARGUGRID was focused in the formation phase. In

principle, it is possible to define monitoring games by defining normative

relations in a game whose initial state is defined using the agents agreements

from the formation phase. However, in ARGUGRID, the Operation phase

of the VOs was handled within the GRIA platform. As a consequence, also

the dissolution process becomes trivial as it only requires the user-agent to

perform a meta-move to request the destruction of social container contain-

ing the VO interaction. The remaining activities of monitoring, execution,

reportage, evaluation, and dissolution, can be modeled with similar concepts

to the ones we illustrate in this Chapter. In the remainder of this chapter

we focus on how to model the control flows of activities as a complex game

defining the negotiation game.

In [83], McGinnis et al identify five phases for the VO formation. These

phases were integrated within the GOLEM/MAGE platforms and they help

us identify the required activities to complete the formation process. The 5

phases are realised as follows:

• In the Initiation Phase given a user’s query as an abstract workflow,

the user agent identifies the sub-goals it has to achieve. This phase

requires the user agent to internally reason about the sub-goals the

agent is trying to achieve, find if they can be achieved with the services

the same agent offers (if any 3) and identify what sub-goals cannot be

achieved by itself. The agent can search the missing services to solve

its goal in the GRID. In ARGUGRID, the agent that starts to interact

in a VO will assume an initiator role.

• In the Discovery Phase the agent identifies potential partners. This

phase involves querying the physical environment about specific service

provider agents (i.e. agents that provide oil spill detection services).

3Service providers can become service requesters and vice-versa.
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• In the Selection Phase the agent selects which are the most suitable

services to satisfy the abstract workflow. Agents advertise their ser-

vices and a range of properties for these services (i.e price range, de-

livery time, and other properties relevant to the particular service)

within GOLEM. The agents can query the registries from the phys-

ical container where they are located. The query can provide many

agents therefore the SIM module activates the argumentative module

of MARGO. In this module, the various properties of the services are

compared to decide for the agents to contact. The goal may require

more than one different service to be composed together, therefore the

agent can decide for a set of agents to interact with.

• In the Role Establishment Phase the agent starts to interact with other

agents. This phase is handled within MAGE with a role game that

allows agents to agree on their roles. The agents involved in the VO

formation can perceive the state of this game and decide to act accord-

ingly. Initiator agents are permitted to create new vo formation games

where they can invite service provider agents to negotiate about specific

services.

• In the Negotiation Phase agents have agreed their roles and can start

negotiating about a service. This phase is realised by defining the mcp

game for agents to follow in order to find an agreement. In this phase

we include an additional sign game for agents to sign their agreement.

7.4.2 VO Activities as Complex Games

To obtain complex interactions, such as the one required for the formation

of a VO within ARGUGRID, we specify four atomic games, role, mcp, sign

and argugrid, as it is shown in Fig. 7.5. We combine these three games using

the workflow primitives explained in Chapter 5. By using these primitives

we want to represent the formation process in such a way that, even if the
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agents fail to conclude one of the VO formation phases successfully, they still

can interact within the overall process. Using these games an agent is able

to interact with the other agents during the Role Establishment Phase and

the Negotiation Phase. The Initiation, Discovery and Selection Phase involve

respectively the agent querying the physical containers, the agent perform-

ing internal reasoning about potential partners and selecting a partners to

negotiate about VOs. These phases do not include agents interacting with

one another.

In Fig. 7.5 we show the vo formation process as a complex game. In this

game we combine the four different sub-games: the role sub-game for the

agents to determine their roles, the mcp sub-game for the agents to agree

on the terms of the contract and finally the sign sub-game where agents

sign their agreements. At any point in these three games the agents can

reiterate the game starting from the role sub-game. In parallel to these three

games there is what we call the argugrid sub-game where we define general

rules of interaction such as rules to allow interacting agents to request new

agents to join the negotiations or to specify when it is permitted to leave

the negotiation process. We can check that the agents respect these rules in

parallel to the other games that are being played to form a VO.

The game represented in Fig. 7.5 is the graphical representation of the

vo formation compound game. Compound games can be combined in differ-

ent ways. We can change the compound game by either defining different

patterns and combinations amongst such games or by changing the condi-

tions that allow these games to be activated. The C1-C7 bar-lines represented

in Fig. 7.5 define a list of conditions that should hold before a new game can

be started.

By defining argugrid, role, mcp and sign sub-games as atomic games we can

provide a modular development approach in that we can change the rules of

one atomic game without worrying about the combined interactions as these

games are independent to each other. We then add basic workflow patterns
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Figure 7.5: The vo formation game in ARGUGRID.

to enable agents to interact within a more complex interaction mechanism

viewed as a compound game. Agents situated in the physical environment

can request the creation of such game and its sub-games using the meta-game

mechanisms specified in Chapter 5 and implemented in Chapter 6.

7.4.3 Representing the VO Formation State

To give an example of how sub-games will appear in the main game of a prac-

tical application, we show next the state of the vo formation game specified

in ARGUGRID and illustrated in Fig. 7.5. The term:

vo formation: Id [

members ⇒ {agent:a1, agent:a2, agent:a3},
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sub process ⇒ Workflow,

cycle ⇒ started,

result ⇒ nil

].

defines the state of the vo formation game with two attributes, the first is the

attribute members which lists the agents taking part in the vo formation phase

and the second attribute sub process which defines the compound game which

is specified in the Workflow value of the sub process attribute, instantiated to

terms of the form:

seq([and split((start:s1, ), [argugrid:a1, P1, P2, P3, P4]),

and join([argugrid:a1, sign:s1],([object(s1, result, )], stop))

].

The above instance of the Workflow variable states that the process of the

vo formation is a sequence (seq) of sub-games involving first an and split in

two parallel games, then the argurid game with identifier a1 and finally other

games which are denoted as P1, P2, P3 and P4.

P1= seq(role:r1,if([object(r1,result, )],

seq(mcp:m1,if([object(m1,result, )],sign)))

P2= repeat([object(r1,exception, )], role:r1)

P3= repeat([object(m1,exception, )], role:r1)

P4= repeat([object(s1,exception, )], role:r1)

The pattern P1 defines a sequence of the role game with identifier r1. After

this game is played, and if there is a result in the role game indicating the

successful termination of the game, the roles of the agents in the VO have

been agreed. The if pattern following the role game defines that if the game

r1 was successful, another sub-game defined as a seq pattern can start. The
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seq pattern defines that the mcp game, identified as m1, can start and it

is followed by another if pattern stating that the successful termination of

mcp allows the sign game, identified as s1, to start. Therefore only if the

agreement attribute of m1 is set to achieved, the sign game with identifier s1

is started and played to complete the negotiation process. The pattern P2

defines a repeat pattern where if the role game has an attribute exception, the

role game is repeated again. Similarly, the pattern P3 defines a repeat pattern

where if the mcp game has an attribute exception, the role game is repeated

again. The pattern P4 defines the same repeat pattern for the case when the

sign game has an attribute exception so that the role game is repeated again.

The final and join defines that the whole compound game stops when all the

four atomic games are terminated.

7.5 Demonstration of EOS

In [24] we demonstrated how the Earth Observation Scenario, described ear-

lier in Section 7.2, is handled by a set of negotiating MAGE/GOLEM agents.

These tests included three types of runs.

The first run included a buyer and a seller agents that negotiate about the

price of an eocatalogue service. The buyer agent has a user specified prefer-

ence for finding this service with a low price and a high delivery time. Both

agents adhere to the reciprocity principle, for this reason, if possible, they

concede, otherwise they standstill. In this demo, both agents have internal

private constraints on such service. If their constraints on the attribute price

are compatible, they will eventually reach an agreement.

In the second run, the two agents were given incompatible constraints on the

price of the service. When the agent would play the mcp game, they could

not agree by simply negotiating the attribute price. In fact, if there is space

for bargaining, the agents can find an agreement, if not they can decide to

use a reward mechanism, where the agent concedes on a different attribute
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Figure 7.6: Negotiation Demo for the Earth Observation scenario.

of the eocatalogue service. When the game comes into a standstill point, the

agent can apply the reward by conceding on another attribute. In our run,

this was sufficient to allow the two agents to find an agreement.

In the third run, the two agents could not find an agreement and the mcp

would terminate without success. However, the buyer agent could continue

interacting in the same game by selecting a new service provider and starting

the negotiation from the role game.

The demonstration relied in a compound game as defined in the previous

section, in order to allow the buyer agent to engage in a negotiation process

for every service it requires, until the goal has been fulfilled and the agent can

provide a concrete service to the user. This mechanism has the advantage
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that it is possible for the agents to choose the games with which to interact.

Also, if as result of their interactions, there is a need to reiterate some of

the games or to choose another game, this is still possible within the MAGE

framework.

The atomic games allow the interactions to be mediated. This has the ad-

vantage that the agents are observing a shared state which is updated con-

sistently, independently from where the agent is situated. In other words,

every game the agents play give rise to a shared social environment between

the agents. The moves the agent make update the state of the game which

is observed consistently by all the player agents. This mechanism has two

advantages: the first is that the agents do not have to keep a consistent state

of the interaction in their knowledge base which will over complicate them,

while the second is that the shared state is updated consistently by all the

interacting members.

Fig. 7.6 shows a running demo of the minimal concession protocol used by

an agent in a seller role and an agent in a buyer role to negotiate about a

satellite service. The figure shows the two agents alternating the following

messages: request, reply, concede, concede, concede, concede, accept and result.

This sequence of messages can be different depending on the strategies of the

agents, their bargaining power and on the properties requested or provided

by them. The bargaining power and the peculiarities of the offered service

is not known to the opponent agent. In this run, the protocol starts with

a buyer agent requesting an eocatalogue service which provides images from

a satellite. With the request, the buyer agent states also the required non

functional properties of the service. By clicking over the request message the

demo visualises the full content of the message, a snapshot of which is shown

in Fig. 7.7. In this particular example the buyer agent has a bargaining

power on the price between 100 and 140 and a high priority for the attributes

of delivery time and price.

The buyer agent, starts the mcp game and requests the eocatalogue service
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Figure 7.7: Negotiation Demo for the Earth Observation scenario: The Buyer’s Request Message

for the price of 100, resolution of 100 and delivery within 24 hours. On the

other side, the service provider, who has taken a seller role, has a bargaining

power on the price between 120 and 160, and after receiving the request of

the buyer agent decides to reply by matching all the other attributes of the

service except for the price. The seller offers the same service for the price of

160 as shown in Fig. 7.8.

At any time, the participants that observe the state observe also the valid

moves within the game. For example, after the reply move made from the

agent having a seller role, the agent in a buyer role can make the following

valid moves: accept, reject, concede, standstill. In Fig. 7.6 we can see that

the buyer, after considering its valid moves in that state of the game, decides
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Figure 7.8: Negotiation Demo for the Earth Observation scenario: The Seller’s Reply Message

to concede. The other agent is unaware what is the reasoning process that

makes the other agent decide to concede instead of selecting one of the other

moves. What the interested agent can observe however is the move that was

made and decide on its own move based on the new state of the interaction.

The number of exchanged messages within the mcp game is not limited. The

negotiation can continue until either one of the agents accept the offer or

one of the agents decides to reject the offer made by the other agent. If

either buyer or seller accepts the last offer made the result of the game is the

agreement (given by the last offer made in the game). In Fig. 7.9 we show

that the seller and the buyer achieve an agreement when the price offered by

the seller for the requested service is in the bargaining power of the buyer
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Figure 7.9: Negotiation Demo for the Earth Observation scenario: The Seller’s Accept Message

agent. In the case one of the agents rejects the last offer, the mcp game has

as a result a missed agreement. To guarantee the termination of the protocol

we also define that three consecutive standstill moves means that there is

no agreement on the current offer and the fourth consecutive standstill move

counts as a reject move and, also, in this case the game has no agreement.

7.6 Summary

In this Chapter we presented the ARGUGRID project. We showed how

MAGE supports agent interactions within the ARGUGRID platform. We

197



explained the earth observation scenario and highlighted the steps that an

agent has to do before being able to find a solution for a given goal.

Agents interact with other agent using a VO formation mechanism allowing

them to negotiate an agreement, We defined a vo formation compound game

to coordinate and support these interactions. The main protocol used in the

vo formation game is the minimal concession protocol. The definition of the

minimal concession protocol is such that if agents use it in combination with a

minimal concession strategy, it guarantees termination and Nash equilibrium.

We illustrated how we specify the vo formation compound game using the

workflow coordination patterns. The coordination patterns allow agents to

play atomic games in different orders. If an agreement cannot be achieved

by playing a game, we allow agents to reiterate the same game or choose

another game until they find an agreement.

Finally, we applied these ideas to support the implementation of the earth

observation scenario. In this implementation we have demonstrated how

agents use the game framework to agree on a service which is needed to

satisfy the given users requirements. This approach illustrates how MAGE

extends GOLEM with a useful way to support social interactions in a prac-

tical applications.
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Chapter 8

Evaluation

This thesis so far has shown how to model MAGE as a mediation framework

acting as a social environment that supports interactions between heteroge-

neous self-interested agents. We have separated the physical environment

from the social environment so that they can evolve separately and with

different mediation rules. The physical and the social environments have

been connected using a propagation mechanism which makes the division

transparent to the agents. We have also exemplified the MAGE approach by

showing how to apply it to a practical application.

In this chapter we evaluate two aspects of the MAGE framework. Firstly

we define a methodology for constructing complex interaction games be-

tween agents. We argue that the game metaphor presented in this thesis is

very useful for developing social aspects of MAS applications. Secondly, we

perform an experimental evaluation to understand how distribution of the

environment improves the performance of the system. We focus on how the

increasing number of events generated within the system reflects in the time

taken within the containers to evaluate the act of the agent.

The reminder of the chapter is organised as follows: In Section 8.1 we describe

how to build an agent application using atomic and compound games in a
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methodological way. In Section 8.2 we use the Open Packet World to measure

how the time to evaluate an action with many social containers is influenced

by the number of events in the system. At first we test OPW in a centralised

setting where there are no social containers, then we see what happens when

we introduce one social container and one physical container and finally we

distribute the system and evaluate its performance. Finally, in Section 8.3

we summarise and conclude this chapter.

8.1 MAGE Methodology

In order to define MAGE-based applications we define a methodology which

follows the waterfall model of software development [106]. The reason why

we have chosen the waterfall model is because we are interested in using

MAGE to prototype MAS applications of the kind developed in this thesis.

The waterfall model designs a sequential process that follows the phases of

requirements, design, implementation, testing and maintenance.

As shown in Fig. 8.1, in the requirements phase the developer analyses the re-

quirements for the specific application that he is modeling. Afterwards, in the

design phase, the developer identifies and specifies the tasks and behaviour

of the agents, what are the possible atomic interaction needed in the sys-

tem, the roles and the responsibilities of the interacting agents and possible

coordination patterns between the various atomic interactions. In the imple-

mentation phase, the atomic interaction are implemented as atomic games

and the coordination patterns will be implemented as compound games. Fi-

nally agents that are players with specific strategies are implemented. In

the verification phase, we define the agent environment as a set of physical

and social containers and deploy the agents. We then can specify tests to

check the correct behaviour of the application. In the maintenance phase,

improvements can be identified on how to refine the application.

The waterfall model shown in Fig. 8.1 shows all the steps required to de-
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-Deploy the Agents
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Waterfall Model

-Specify the Agents

Figure 8.1: Waterfall Model in MAGE.

velop the entire functionalities that prototype a MAS application. Once the

prototype is tested, more agents with possibly different designs can be de-

ployed in the system. The MAGE methodology is mainly concerned with the

specification of the agent interaction model, which, in MAGE terms. trans-

lates to the specification and implementation of the atomic and compound

games. Once these are in place, the definition of the agents is based on how

to interface the agents with the games which is done by querying the social

containers as described in Chapter 6.

8.1.1 Specification of games

In MAGE, the social interactions within a MAS application are specified as

games. As we describe throughout this thesis, MAGE consists of atomic and
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compound games. For every atomic game identified in the design phase the

developer specifies the following:

1. The state of the game in terms of properties;

2. The initial and the final state of the game;

3. The moves of the game;

4. When these moves are legal;

5. The effects of the moves on the state of the games.

Compound games are games of games. They also have a state, a set of moves

which includes all the moves of the sub-games, the meta-moves for starting,

stopping, suspending or resuming an atomic game, coordination patterns

to specify how atomic games are coordinated at run-time and a set effects

describing how the moves change the state of the compound game. To specify

a compound game the developer defines:

1. Follow 1-5 for specifying the game;

2. The coordination patterns as part of the state;

3. The meta-moves and their effects.

We have illustrated how atomic games are specified in Chapter 4 where we

show how to specify the state of the OPW game, how to define the legal

moves in terms of permission, prohibition and obliged, how to specify the

effects of the moves and sanctions and rewards. In Chapter 7 we show again

a specification of the MCP protocol [43] in terms of atomic game. The

specification of the compound game is shown in Chapter 5 where we define

the patterns for the OPW scenario and we explain the meta-moves and the

forwarding mechanisms of MAGE.
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8.1.2 Implementation and testing

Once we have specified the games we can move to the implementation of the

application. To implement a new agent environment based on MAGE, the

developer can proceed with the following procedure:

1. Deploy the physical environment by:

• Implementing the specification of the physical rules;

• Deploying the physical containers with the specification of the

physical rules. In this way the acts that the agents perform are

mediated by the physical rules.

• Defining the distribution of the physical containers by specifying

how the physical containers relate to one another.

2. Deploy the social environment by:

• Implementing the specification of the atomic games by following

the procedure described in the previous section and the implemen-

tation details as described in Sec. 6.5;

• Implementing the specification of the desired compound games

as described in the previous section. In Chapter 5, Sec. 5.5,

we defined the runs/4 predicates. These are general predicates

to be added to the compound games to be able to coordinate

them. Additionally social move/2, check/4 and apply/3 predicates

as shown in Sec 6.4.3 are included to enable the coordination the

atomic games;

• Implementing the specification of the Root meta-game by utilising

the meta-moves as specified in Sec. 5.4.

• Deploy the social containers with the respective specification of

the social rules.

• Define how the deployed social containers relate to one another.
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3. Connect physical and social environment by:

• Adding to the specification of the physical rules defined in point 1

the propagate rules as defined in Chapter 6, Sec. 6.4.2. This con-

nects the physical and the social containers by allowing messages

to be propagated in the social environment.

• Adding to the same specification the add/3 predicates as defined

in Chapter 6, Sec. 6.4.2. These rules connect the physical and the

social containers and allow for updates to be propagated on the

properties of the physical state;

• Defining how the physical containers relate to the social contain-

ers.

4. Implement the agents by:

• Implementing agents that can query the physical and social state;

• Define their reasoning mechanisms and strategies;

• Defining how they act in the environment.

Once the steps 1-4 are completed the tests consists on running the platform

and observing and testing the behaviour of the agents on one hand and that

the games and their state is updated in a correct way on the other. Within

this thesis we haven not provided many tools for verification and testing

as it was out of the scope of the thesis. Future work however will try to

address these issues and provide a set of development tools to support such

methodology.

8.1.3 MAGE-GOLEM: A Comparative Evaluation

In this thesis we have extended the GOLEM functionalities with MAGE.

The main contribution of MAGE to the GOLEM model is that MAGE com-

plements the concept of a physical agent environment with a model of the
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social agent environment and relates the two in an agent environment for

specifying agent based applications.

In order to develop specific agent based applications we make use of both

platforms to complete the steps 1-4 described in the previous section. The

step 1 defines the physical agent environment within GOLEM, step 2 and

3 are the ones that define the social agent environment within MAGE and

connect it to the physical one. These steps add more functionalities to the

agent environment which are summarised in Fig. 8.2.

  

Features GOLEM MAGE

Event Based 
System √ √
Component Based 
System √ √
Concept of 
Available Actions √ √
Models  Physical 
Interactions √ X

Models  Social
Interactions X √
Mediation using 
Containers √ √
Mediation using 
Games X √
Containers 
Coordinate Games X √

Figure 8.2: A Comparison between MAGE and GOLEM features.

In Fig. 8.2 we show a comparative evaluation between MAGE and GOLEM.

They are based in similar approaches thereby they are both event based sys-

tems. As we have shown throughout the thesis both are based on Object

Event Calculus [74] and can reason about properties of the state of the agent
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environment that dynamically change in time. Additionally, they both are

component based and provide the concept of available actions. MAGE pro-

vides the concepts of atomic and compound games, social containers and

complex social containers, while GOLEM provides the concepts of physical

containers, agents, objects and processes. All of these components come to-

gether when a developer defines a new application. The concept of available

actions, has to do with the fact that actions within the environment change

the state (physical and social) and agents can observe within containers (so-

cial and physical) what actions they can perform as the system evolves.

GOLEM and MAGE differ when it comes to defining how the system changes

as result of agents moves and what rules apply to the actions of the agents.

While in GOLEM we find the notion of physically possible and necessary

actions, in MAGE we find the notions of permitted, forbidden, obliged and

empowered moves. In this sense, we have that while GOLEM models the

physical interactions that occur in the environment, MAGE models the so-

cial ones. The way this is done, is by mediating the actions that the agent

perform using the social and physical containers. This means that both

MAGE and GOLEM use containers to mediate the interactions. The differ-

ence however, is that MAGE has additional components within containers

which are the games. Having games as additional components that medi-

ate the interactions, implies that with an additional coordination component

within containers, we can change the games dynamically. In turn this means

that the rules of mediation within a social container change in time, while

the rules of mediations in physical containers remain unchanged.

After the step 3 of the procedure defined in the previous section, the specifi-

cation of the agent environment is now complete, therefore, following step 4

of the procedure, agents can be defined to act upon it. The additional bene-

fits that we add with MAGE means that an agent can ask MAGE whether a

move is permitted, forbidden, obliged or empowered, what are the properties

of the current social state and what are the effects of the actions within the

state. Due to the homogeneity between MAGE and GOLEM, the agent’s
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interaction with MAGE is similar to the one with GOLEM. As a result, the

agent is now able to check the implications of his actions, both, at a physical

and at a social level.

8.2 Experimental Evaluation

One of the questions that are raised by the introduction of MAGE into the de-

velopment of a MAS using GOLEM is how it affects the overall performance

of the systems. For this purpose, we conducted a number of experiments

using the OPW. This scenario was chosen as opposed to more realistic sce-

nario, such as ARGUGRID, because it allows us to increase the size of the

environment, the number of containers and agents deployed in it in a straight

forward manner. In this way we can evaluate the possible configurations of

how MAGE/GOLEM can be applied in practical applications.

The first two experiments run in a centralised agent environment. In the

first experiment we do not use social containers. We define the OPW rules

using the notion of possible/impossible actions defined in GOLEM. In the

second experiment, we separate the physical and social state in respectively a

single physical container and a single social container. In this experiment the

physical and the social rules are evaluated in parallel. The OPW is centralised

in the sense that all the agents are situated in one physical container. We then

vary the number of agents that are deployed in the environment and measure

the performances of the system. The third experiment consists in evaluating

the social and physical rules in parallel in a distributed agent environment.

Agents are distributed in more than one container and can move in the OPW

grid by changing container. We vary the number of containers into two and

four containers and, also, vary the number of agents deployed per container

to check how the performances change.

In all the experiments we run, we were interested to measure how the time to

compute the produced events relates to the total number of events produced
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in the system. In particular, we measured the time to compute if an action is

physically possible and if an action is permitted by measuring the time taken

to evaluate possible/2 and forbidden/2 rules against an action performed by

an agent in the environment 1. We then related this time to the total number

of events produced by agents in the whole agent environment.

8.2.1 Test 1: Centralised OPW in GOLEM

This test consist in defining the social rules of the OPW using the notion

of possible/impossible actions that is offered in GOLEM. For example, one

of the OPW rules states that an agent is forbidden to go too close to an-

other agent. We can define this in GOLEM only by specifying this action as

impossible to perform.

For this test we defined one physical container deployed in an Intel Centrino

Core 2 Duo 2.66GHz with 4GB of RAM. The OPW environment was rep-

resented by a 40x40 grid containing 100 packets. We deployed 10 agents to

collect the packets and bring them into one of the 8 destinations in the grid.

In all of the runs of the test, the agent minds were deployed in a separate ma-

chine and were remotely connected with their bodies deployed in the physical

container in order to avoid having reasoning process of the agents stealing

CPU resources from the agent environment.

Fig. 8.3 shows a linear curve representing the average time to compute a

query in one GOLEM container. The time to query a container grows linearly

with the number of events produced in the container. In this test, there is

no distinction between the physical and the social rules. Given an action

performed by an agent, this is evaluated if it is possible and, if it is, then

the state of the container will change. As the number of events increases, so

does the number of the records in the database that contains the information

1With exception to Test 1 where we measure only the time to compute possible/2

predicates.
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Figure 8.3: Time to query the physical state of a GOLEM container with 10 Agents.

about the state of the container. This means that, as agents perform more

acts in the system, new information is stored in the database, thus, the

evaluation of a query takes longer.

After 1500 events, the system becomes overloaded and the time to answer a

query dramatically increases. In the next section, we distribute the social and

physical state and show how this improves considerably the performances of

the system.

8.2.2 Test 2: Centralised OPW in MAGE

In the second test, we define OPW using a centralised physical and a cen-

tralised social container (MAGE model). The agent environment is again
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deployed in an Intel Centrino Core 2 Duo 2.66GHz with 4GB of RAM. The

OPW grid is the same 40x40 size and it contains 100 packets and 8 destina-

tions. We first run the test with only 10 agents and compare it to the results

shown in Fig. 8.3 where the social and physical state was not separated. In

all of the runs of this test, the agent minds were deployed in a separate ma-

chine and were remotely connected with their bodies deployed in the physical

container.

Figure 8.4: Time to query the physical state in GOLEM versus the time to query in parallel the physical

and social state in MAGE.

Fig. 8.4 shows two linear curves respectively representing:

• the average time to compute queries performed by 10 agents in a cen-

tralised agent environment where there is no separation between the

physical and social state and,
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• the average time to compute the same queries, in the same settings,

except that the physical and the social state run in parallel.

The figure shows that when we introduce MAGE and separate the social and

the physical state, the slope of the curve decreases significantly, thus, such

separation improves the performances of the system. We also noticed that

the system could now run for more than 1500 events.

We run again the same test but increasing the number of agents from 10 to 30

and then 50 to see how the number of agents impacts on the performances of

having a system defined using the MAGE model. Fig. 8.5 shows again three

linear curves representing the average time to compute a query in an agent

environment with respectively 10, 30 and 50 agents. Since the evaluation of

the physical and social states is done concurrently, the curves represent the

worst case between the computation of the social state and the computation

of the physical state.

Also in this case, the three curves follow a linear behaviour suggesting that

the time to query a container grows linearly with the number of events pro-

duced in the container. The fluctuations in the curves are explained as fol-

lows. The high peaks show the worst case where the attempted action was

either impossible or invalid or both. As we check possible and valid actions

in parallel and we wait for both threads to finish the execution, the time

shown is the one that took longer between the two. Alternatively, the lowest

peaks show the best case where the attempted action was either possible or

valid or both. As before, the one shown is the one that took longer.

The figure shows that with an increasing number of agents acting in the

system, the performances improve slightly. This is due to the fact that the

same number of events is generated by more agents. These events generate

properties in the two states that are often associated to the identification of

the agents. When an agent queries these states, the values of the properties

are accessed by agent identification. This means that, for a given number of

events in the system, the properties to explore in order to answer a query are
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Figure 8.5: Time to query the physical and the social state of a GOLEM container with 10/30/50

Agents.

distributed amongst more agents which translates to shorter times to find

the property and answer the query (we further explain this in the Results

Section 8.2.4.

8.2.3 Test 3: Distributed OPW in MAGE

In the second series of experiments we distributed the OPW grid (40x40

squares) first into two physical containers (20x40 squares) and then into four

(20x20 squares) physical containers. Each physical container was associated

to a social container. For the distribution of the containers we used an Intel

Centrino Core 2 Duo 2.66GHz with 4GB of RAM and an Intel Centrino Core

Duo 1.66Ghz with 1GB of RAM. The agents were deployed between the dis-

212



tributed physical containers and could move from a machine to another by

means of the mobility capabilities offered by GOLEM [22]. Fig. 8.6 shows

what happens when we distribute the environment in multiple containers

and use AEC to link these containers. As shown in Fig. 8.6, with a growing

Figure 8.6: The effects of distribution.

number of events if we increase the number of containers, we improve con-

siderably the performance. In Fig. 8.6 we show that in a system with a small

number of events (0-500), it is better to compute the physical and social

state using a centralised environment. With a bigger number of events, the

experiment shows that we can achieve a big difference in performance if we

distribute the environment in multiple physical and social containers.

In the distributed version the size of the grid managed by a single physical

container becomes smaller and less complex terms (agents, packets and des-

tinations) are registered in a single container. Between 500 to 3500 events,
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in average, having four or two physical containers and the respective social

containers,does not make much difference. However, after 3500 events the

performance of the application with two physical containers is better than

the performance of the application deployed in four physical containers. This

is due to the fact that with less packets on the grid (most of them after 3500

events have been delivered to the destinations), the agents moving on the

grid are more likely to change containers in search for packets. The smaller

the grid, the bigger the number of times agents try to move from a container

to another. This introduces a distribution cost related to the cost of interac-

tions between containers. For this reason, there is no improvement when we

change from two to four containers.

8.2.4 Results

We can represent the time Tc to compute the social and physical state for

the centralised agent environment with the following equation:

Tc = a ∗ E + t0 with a ∼ Ne/Na

where Ne is the number of entities in the system, Na is the number of active

entities performing events, E is the number of events in the system and t0 is

initial time to register the entities in the container. As the number of agents

increases, then Na increases, which means that a decreases, which results in

better performance. This is due to the fact that OEC is optimized to deal

with events indexed by the identifiers of entities in the agent environment.

For example, if we have 10 agents, 5000 events, and assuming that all agents

perform the same number of events, each time that we call a solve at/6 pred-

icate (e.g solve at(c1, ag1, picker, position, [3,4], 100)), the search for the value of

an agent attribute will evaluate a maximum of 500 entries (5000/10), while

when we have 50 agents and the remaining conditions are the same, the

search will evaluate a maximum of 100 entries (5000/50). Of course, if we
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consider an increasing number of agents, this also means that they produce

more events in less time, but it also means that given the same number of

changes applied to the environment, the environment responds better with

an increasing number of agents. Thus, the environment as supported by

GOLEM scales up better in situations when there are many agents rather

than few.

In general, the time to compute the physical and social state distributed over

many containers is defined by the equation:

Td = Tc
d

+ i× c ∼ Ne
d×Na × E + t0

d
+ i× c

where Tc is the time to compute the same experiment with a centralised test

where we deploy only one social and one physical container, d is number of

containers used in the decentralised version, i is the number of interactions

between containers and c is the cost of container interaction. In other words,

when we distribute the agent environment in multiple containers, the time

to compute the physical and the social state is inversely proportional to the

number of containers, thus improving the performance. However, there is an

additional delay to compute the physical and social state which is due to the

interactions between the containers.

The experiment shown in Fig. 8.6 suggests that there is a lower bound un-

der which distributing the environment further does not improve the perfor-

mances. However, once we establish the setting of the environment (grid size

and number of containers), we can improve the performances by having more

agents performing actions in the environment as in the first experiment (Fig.

8.5).

8.3 Summary

In this chapter we started by defining a methodology for developing MAGE

based applications. We summarised the definition of atomic games, pre-
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sented in Chapter 4, and the definition of compound games, presented in

Chapter 5, in terms of the necessary steps to specify such games. We defined

the procedure for implementing a whole agent based application where the

developer defines and implements a physical and social environment so that

agents can interact based on physical and social rules of the agent environ-

ment. We then provided a comparative evaluation of the two agent platform

we utilise to implement the agent environment. We show how MAGE differs

from GOLEM and to what extend they complement each other.

In this chapter we also provide an experimental evaluation of the agent envi-

ronment where the social and the physical state evolve as parallel structures.

We have used the OPW scenario to design three types of tests: the first eval-

uates what happens to the performances in the absence of social containers,

the second is an evaluation of a centralised agent environment having the

physical structure and the social structure evolving in parallel; the second

type of tests look at the performances in a distributed setting. The results

showed that the distribution of the agent environment improves consider-

ably the performances when the number of events generated by the entities

populating the environment is very big. We also found out that distribution

involves more queries amongst containers which in turn might decrease the

performances of the system. This means that there is a trade off on how much

we can distribute the agent environment and improve the performances of

the system due to the cost introduced by querying the distributed state of

the environment in many containers. The results of this work were published

in [125, 124].
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Chapter 9

Conclusions

In this thesis we presented a game-based approach for modeling interactions

in social agent environments. We used the game metaphor to define the main

features of a social environment, acting as a container of social interactions.

We used this idea to develop MAGE, a logic based framework for building

complex agent interactions based on complex games built from simpler, pos-

sibly atomic, sub-games. The usefulness of the MAGE approach has been

exemplified using two scenarios, one to illustrate the features of the frame-

work and the other to illustrate the potential of the MAGE approach to

develop practical applications.

MAGE addresses the social aspects of an agent environment, intended as

an abstraction that enables agents to perceive the environment and its rules

and to hide the complexity of the social interaction mechanism by using the

notion of social containers. MAGE defines social containers as containers

of games. Social Containers are given the mechanisms to make the state of

games evolve by means of events. The games are given a representation of

the normative aspects of the interaction. Using a set of coordination patterns

the games can evolve in many different ways thereby providing the flexibility

agents need during interaction. The agents can perceive the changes of the

game state and interact accordingly within the game framework.
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In order to apply the ideas and show the validity of the MAGE framework, we

have used the platform in two applications, the OPW scenario and the EOS

scenario from the ARGUGRID project. OPW provides many challenging

aspects due to agent mobility and the dynamics of the application. We used

OPW as a pedagogical application to exemplify the features of MAGE, from

how to express normative concepts in a game to how to define compound

games so that agents can organise themselves in a VO. We also used the

OPW to test experimentally the performance of the system. With EOS

we demonstrated the use of games to provide a flexible approach to the

negotiation process in ARGUGRID.

The reminder of this chapter is organised as follows: In Section 9.1 we give

an overview of the thesis by summarising what we achieved in the previous

chapters. In Section 9.2 we identify some of the limitations of our approach.

Finally in Section 9.3 we give directions of possible future work.

9.1 Summary

The MAGE platform was motivated by the idea of extending the GOLEM

platform with support for social interactions in a systematic way. The main

driving application was the ARGUGRID platform where we needed to sup-

port agents interactions aimed at the formation of virtual organisations.

When designing the framework, we had the issue on how to define an atomic

interaction, such as a protocol and then how to provide a mechanism to con-

struct more complex interactions from the atomic ones. The distribution of

the interactions in the agent environment was another of the issues that this

thesis has tried to address with the concept of social container. Overall we

have met the aims and objectives proposed in the introduction in this thesis

in the following ways:

• We provided a model and an implementation of a game-based frame-

work defining the concept of social agent environment. Within the
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framework we defined atomic games incorporating normative rules for

agent interactions and compound games as a combination of atomic

games and workflow coordination patterns.

• We introduced a clear distinction between the physical aspects of the

agent environment and the social interactions in a MAS application.

We did this by having two types of concurrent and interconnected evolv-

ing structures: the physical and the social container. The physical con-

tainer that evaluates acts for their physical effects in the environment

and the social container that evaluates acts using norms to determine

their social effects.

• We provided a runtime framework that can execute normative rules

about permissions, institutional empowerments, prohibitions, rewards

and sanctions. Using games we were able to organise these rules for the

agent thus easing the implementation of the agents which do not have

to reason and construct a complete knowledge about the application

state.

• We defined workflow coordination patterns for coordinating complex

interactions as complex games. This allowed us to define agent inter-

actions such as the VO formation process as a compound game.

• We defined a mediation mechanism that uses the OEC [77, 74] speci-

fication and its AEC extension [22] that deals with distribution of the

social environment.

• We extended the GOLEM platform [21] by developing social containers

as components that store the state of game interactions between agents.

We developed an infrastructure for the propagation of moves and the

coordination of such interactions.

• We evaluated the proposed framework in two scenarios: (i) the OPW

scenario [124, 125] to explain the main functionalities of the framework
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and to evaluate the performance of the system when we introduce norms

on top of the physical rules (ii) the EOS scenario [120] where we showed

how we specify the negotiation process for the VO formation phase.

In this thesis we have presented two separate background chapters. In Chap-

ter 2 we introduced the main concepts supporting interaction in social agent

environments. We argued that the autonomy model of agency implies the

possibility of having agents misbehaving in the system, motivating the need

to constrain and manage agents interactions. We also introduced the main

approaches and models of social interactions.

In Chapter 3 we introduced the GOLEM agent platform to highlight the

architecture and the features of GOLEM on which we based our MAGE

framework.

To address the problem that motivated our work, we investigated the use of

the game metaphor to model interactions: interaction is viewed as a norm-

governed activity thought of as an atomic game. In Chapter 4, we specified

a model of atomic interactions through a set of valid moves for the par-

ticipants. Valid moves incorporate the concepts of permission, prohibition,

empowerment and obligation.

The agents’ moves produce effects on the state of an atomic game and each

game has a set of initiating and terminating conditions. We have used the

OEC, and its extension AEC, as the logic programming language for the

definition of the framework.

Using Event Calculus to represent the MAGE framework has the follow-

ing advantages. First, it exhibits a declarative semantics whose advantages,

compared to procedural semantics, have been well-documented. Second, the

Event Calculus offers a formal representation of the agents’ actions and their

effects. This is in contrast to semantic web languages that offer limited tem-

poral representation and reasoning. Third, the availability of the full power

of logic programming, which is one of the main attractions of employing the

Event Calculus as the temporal formalism, allows for the development of very
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expressive social and physical laws. Fourth, we do not have to know from the

outset the domain of each variable. Fifth, the OEC and the AEC versions

used here provide an efficient and scalable reasoning mechanism, offering

the kind of runtime support that is required for norm-governed multi-agent

systems.

In Chapter 5 we defined compound games as the mechanism for providing

more complex interactions in MAGE. We identified a set of workflow patterns

that we use to specify the compound games. Using the workflow patterns

we can define control flow mechanisms between sub-games. The workflow

description of a compound game was interpreted to determine the active sub-

games in the system. We described seven main coordination patterns which

are the main control patterns identified from a control-flow perspective to

capture aspects related to control-flow dependencies between various games.

In Chapter 6 we showed the implementation of the main functionalities of

the social environment. We first illustrated how we extend the GOLEM

architecture with the games metaphor. We implemented both a propagation

mechanism so that agents acts are propagated from the physical to the social

agent environment and a coordination mechanism that can evaluate if such

acts comply with a subset of the social rules defined in the social environment.

We also showed how we implemented games and how agents can observe their

state.

In Chapter 7 we evaluated the game-based approach by testing the func-

tionalities of MAGE in the ARGUGRID earth observation scenario. We

specified an atomic game for the negotiation process in ARGUGRID and

illustrated how to combine this by specifying a workflow for a compound

game. The compound game in the earth observation scenario represents the

formation phase of the VO life-cycle. We acknowledged that the benefits

MAGE brought to ARGUGRID were to allow agents to interact in a flexible

manner to create a VO that satisfies the users’ goal and the service provider’s

goal. Having a social environment mediating the interactions, allowed us to

221



remove complexity from the agent reasoning. Agents would perceive con-

sistently the state of the game and act accordingly, thus we could focus on

defining sophisticated reasoning for the agents.

In Chapter 8 we defined the MAGE methodology which summarised the steps

that a developer needs to take to specify and implement game-base interac-

tions. We defined a comparative evaluation between MAGE and GOLEM.

And, we also evaluated the performances of the framework using the Open

Packet World scenario. With a series of tests we showed that, due to the

distribution of the agent environment, we can support applications with a

large number of events. Tests verified that with a large number of events,

the system has better performances in terms of time to respond to a query

performed in a distributed agent environment rather than in a centralised

one.

9.2 Limitations of the Approach

Evaluating the MAGE framework we have identified some limitations to our

approach that can be tackled as part of future work and can be seen as future

directions to explore. We can summarise the limitation of MAGE as follows:

• In MAGE, the social rules themselves are not first class abstractions.

The implication of this is that agents cannot observe the rules of the

atomic games and cannot change them at runtime, they can only per-

ceive how the state of the games changes due to these rules. Having the

social rules as first class abstractions would allow to rewrite, substitute

or remove these rules at run time whenever these rules become aimless

or an obstacle for the right functioning of the system.

• In MAGE the class of a game cannot evolve in time despite the fact that

the OEC, and as a consequence the AEC, supports schema evolution

(see [74] for more details). Having games that can evolve their class in
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time would allow to model normative systems where agents decide to

join and form a different institution with new rules as well as allowing to

consider institutions that are born due to bigger institutions splitting.

• In MAGE we took a bird eye perspective of the interactions and we did

not provide a specific agent cognitive model to play games. We partially

tackled this problem in ARGUGRID where we utilised argumentative

agents to play MAGE games. Agents were enabled to decide their next

act based on the state of the game they were observing. However, we

did not provide a general reasoning mechanism representing how agents

that are aware of the game environment can plan/act accordingly.

• In MAGE we allow for agents joining games at runtime, but we did not

investigate the problem of discovering games in the distributed agent

environment. This is important as in a distributed agent environment

modeled as open, agents may join and leave at runtime. When agents

join the open agent environment it could be beneficial for them to be

able to discover other agents as well as existing games at runtime. The

current implementation of MAGE relies on the AEC for the discovery

of games in the agent environment, but as already discussed, the AEC

is not suitable to perform discovery in large networks.

As far as it concerns the definition of rules as a first class abstraction, this

extension would require us to consider rules as C-logic complex structures

and as attributes of a game, which would imply that we could modify the

behaviour of the game as well as adding and removing normative rules at

runtime.

For what it concerns the schema evolution of games, we could tackle this

problem by further extending the AEC to deal with the schema evolution of

games in distributed settings.

The definition of an agent model that can play games in MAGE can be

tackled by: a) adapting existing agent models such as the Knowledge Goals
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Plans model (see [73] for more details) to handle the evolution of games; b)

defining a new agent model that plans according to the known game state.

Finally, the limitation concerning the discovery of games in distributed and

open agent environment could be tackled by publishing MAGE games as

resources in a P2P network, as it already happens for agents in ARGUGRID

(see [19] for more details).

9.3 Future Work

The work developed in this thesis provides a broad basis for future research.

We outline here some of the directions we aim to further investigate in further

supporting the use of games as a model for agent’s social interaction models.

9.3.1 A GUI for Programming MAGE Games

An extension of MAGE would be to define a GUI to assist developers with

the creation of games and the definition of complex games. Atomic games

have specific components that include the valid moves, the state, the initiate

and terminate rules and the effects that moves have in the state. We can

define a cycle which can verify that the game has in place all the components

of an atomic game thus assisting the developer to define these games. To

allow developers to define compound games we need the GUI application

to be able to interpret visual representation of workflow patterns into the

workflow coordination language we used to specify compound games.

9.3.2 Monitoring VOs

As explained in Chapter 7, the experiments that we carried out within the

ARGUGRID scenario did not include the support for the monitoring of agree-

ments. We also suggested that the monitoring of the agreement can be han-
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dled with the game mechanisms we presented in this thesis. Input from the

formation phase, instead of feeding the SLA templates as we did in ARGU-

GRID, could be given to a monitoring game that deals with the execution

of the agreement. To do so, the initial state of the monitoring game has to

contain the agreement so that the valid moves specifying the normative posi-

tions of the agents depend on the agreement negotiated and signed with the

previous interactions. The rules of the monitoring game would be defined as

contract templates [32] which once the initial state given in input from the

agreement between agents, the game is able to monitor the interactions.

9.3.3 Exception Handling

In MAGE, the compound games deal with interactions by using workflow

coordination primitives. The possibility to start a game or not is given by

the conditions defined within the workflow primitives. We would like to

investigate what happens if the compound coordination mechanism does not

work properly because none of the conditions for the workflow primitives

are satisfied (i.e. due to external exceptions such as agents disconnecting

from the agent environment or agents suspending games thereby leaving the

compound game without the possibility to progress with a new game). The

control patterns we introduced are only a few of all the possible patterns

designed in the literature (see [127]). In the current stage of the MAGE

implementation, the only way to deal with undesirable events encountered

during execution, is by giving control to agents in deciding if a game runs,

is terminated, suspended or resumed. However, to fully address the problem

we need to extend the workflow primitives with exception handling patterns

[107] that will be defined to deal with deviations from normal execution

of the compound game. These patterns would allow us to define a set of

actions as primitives that allow to remove or add a game to the compound

game pattern, force a game to restart out of the normal control flow, suspend

all the games within a compound game or rollback a game to a particular
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moment in time. These primitives and possibly other similar ones would

allow to recover part of the ongoing interactions in the system.

9.3.4 Model Checking in MAGE

Another possible future direction, implies applying model checking algo-

rithms [102] to MAGE games. This would allow us to discover if MAGE

games respect a set of properties such as demonstrating that a compound

game is deadlock free, its states are reachable, the games composing it can

run in parallel without inconsistency use of resources and that the compound

games terminate correctly. Model checking approaches could be used to com-

pare agent strategies. In particular this would allow the agents to understand

what are the strategies that allow them to reach a desired state of the world

in finite number of steps.

9.3.5 Applications

We would like to demonstrate the generality of the MAGE approach by ap-

plying to more applications. One example is the pervasive health-care [129]

is quickly becoming a hot topic also for the MAS community, as it provides

countless opportunities to apply agent technology to perform assisted living

for chronic illnesses such as Alzheimer, diabetes, cardiovascular diseases and

so on. So far, systems like the one proposed in [20] propose the diagnosis

of conditions related to an illness by means of a single personal agent as-

sociated to a particular patient. As discussed in [34], the coordination of

multiple heterogeneous expert agents to diagnose a condition can improve

the current practice by combining the knowledge of multiple agents. In or-

der to coordinate the differential diagnosis process, we may apply dynamic

MAGE games created and dissolved according to the particular needs of the

agents monitoring one or more patients.
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Appendix A

A Basic Introduction to C-logic

C-logic, first presented in [31], is a logical framework for the representation of

complex objects. C-logic provides support for the basic features of object ori-

ented programming such as object identities, single-valued and multi-valued

attributes and object types.

The reason to choose C-logic as a formalism to describe objects both in

GOLEM and in MAGE (see Chapter 2 for more details) resides in the fact

that C-logic complex terms can be represented as a conjunction of atomic

properties that can be then translated directly to first-order logic formulas.

In more detail, in C-logic terms of the following form:

person:john

person:bob

specifies that john and bob are two identifiers of the person type, where the

class is considered an unary predicate. To specify the attributes of the in-

stances, C-logic makes use of labels as follows:
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person:frank[

name ⇒ ’Frank’,

address ⇒ ’Paris’,

hobbies ⇒ { basket,piano },
children ⇒ {person:samuel, person:simon }

]

The complex term above is of type person, it has an identifier frank and a

set of labels name, address, hobbies, children. In C-logic each label is a binary

predicate and represents an attribute or a property of a complex term. Labels

may have single or multiple values. A notation of the form:

name ⇒ ’Frank’

means that the complex term has an attribute name with a single value

’Frank’, while a notation of the form:

hobbies ⇒ { basket, piano }

means that the complex term has an attribute hobbies with two values as-

sociated that are basket and piano. The main advantage of C-logic is that

these terms have a direct translation to first-order logic. A complex term as

the following one

person:frank[ name ⇒ ’Frank’, address ⇒ ’Paris’ ]

can be represented as

person:frank ∧ frank[name ⇒ ’Frank’] ∧ frank[address ⇒ ’Paris’]

229



which can be translated to

person(frank) ∧ name(frank, ’Frank’) ∧ address(frank, ’Paris’).

Since C-logic allows to model complex terms as a conjunction of atomic

formulas, one object attribute can be modified independently from the others,

facilitating the updating of the state of the object in the agent environment.

Similarly, the C-logic syntax is a convenient way to represent the events

that take place in the agent environment. For instance, the following Open-

Packet-World event (see Chapter 4 for a description of the Open-Packet-

World) performed by an agent to move from one position to another of the

environment:

event(e100).

act(e100, move).

actor(e100,a1).

position(e100, [3,4]),

happens(e100, 100).

can be specified by means of the following complex term

move:e100[actor⇒a1, position ⇒ [3,4]].

happens(e100,100).

As Kesim points out in [74], the fact that a complex term in C-logic has a

direct translation to a conjunction of atomic formulas allows us to mix C-

logic with first-order logic formulas. As a consequence, rather than writing

forbidden/2 rules using a first-order logic syntax as shown below

forbidden(G@T, Action) ←
move(Act),

actor(Act, A),
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act label(Act, drop),

flag(Act, PosA),

neighbouring at(this, [], , 1, Object, Class, position, PosB, T),

adjacent(PosA, PosB),

(Class=destination; Class=packet).

we can write such rules using the syntax of C-logic.

forbidden(G@T, Action) ←
do:Action[actor ⇒ A, act⇒drop, flag ⇒ PosA],

neighbouring at(this, [], , 1, Object, Class, position, PosB, T),

adjacent(PosA, PosB),

(Class=destination; Class=packet).

which makes C-logic a convenient formalism to specify the rules of the agent

environment in a compact form. See Chapter 4 for the meaning of these

rules.
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Appendix B

Implementation Appendix

In this appendix we show some further details on how we implement the

effects of moves that change the structure of the system. We first show

how we deal with meta-moves after they are propagated to the Root con-

tainer. We show how the state of the root container changes as effect of such

moves. Then we show how interleaving moves that are managed in every

social container by changing the state of the game. The implementation of

these predicates is quite similar, we however, for completeness show these

effects into detail

B.1 The Effects of Meta-Moves

The coordination mechanism provides the rules on how to manage changes

that happens to the state of the social environment when a move is per-

formed by an agent. Meta-Moves will change considerably the structure of

the containers or the structure of the games being played by agents. We first

consider the moves for creating, destroying, suspending and resuming social

containers. We want to allow agents to create and destroy containers because

we expect social containers to be employed mostly to contain complex game
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interactions (such as VOs).

Using the effects/3 predicate, we can specify how meta-moves change the

state of the social environment. Using the meta-moves agents can choose to

create a new complex game. When the interactions within games became

obsolete, either due to termination of the game or due to exceptions, the

complex game may be suspended to be resumed later or even canceled. The

effects/3 for the creation of a new interaction game within a container is

defined as follows:

effects(Root, E, T):-

E=do(A, new container, [attribute(game,GameName)]),

create container(GameName, GID, T),

GID=game(GameName, CID),

unique id(Ev),

add([instance(CID,container,[attribute(game, GID),

attribute(cycle,started)]], Ev, T).

create container(GameName, GID, T):-

url specification(GameName, Url),

generate id(Container)

GID=game(GameName, Container),

java object(’container.Container’,

[Container,GameName,"Ontology.wsml",Url],

Container).

The first predicate checks that the performed act is the new container meta-

move. The predicate create container/3 is called to start a new container

containing the game specification requested by the agent. The add/3 predi-

cate is called to create an additional event. Such event triggers the addition

of the new created container and the information about the game it contains,

as a new object with some properties (such as the game contained in the new

social container) in the database of the root container. Similar predicates

233



are defined also for interleaving of atomic games.

The second predicate implements the actual creation of a new container. As

we showed in Chapter 6, containers are defined using the Java programming

language. They contain Prolog theories that define how the containers man-

age the interactions. When we need to create a new container, we specify a

new instance of the class Container. We also specify the Prolog based theory

that the container uses and the affordances of the container. The affordances

defines how the containers are perceived in the agent environment. In our

case, the affordances describe a social container. Given a game description

identified as GameName, the url specification/2 calculates the url Url of

the game specification theory. The generate id/1 generates a unique iden-

tification for the container. With this information, and the description of the

affordancies of the container (which is the same for all the social containers)

a new instance of the class Container is generated. The syntax shown above

uses the default Prolog to Java integration mechanisms that are provided by

tuProlog (we refer the interested reader to [45] for more details).

The destruction of a social container is defined in a similar way:

effects(Root, E, T):-

E=do(A,stop container,[attribute(game,GameId)]),

destroy container(GameId, CID, T),

unique id(Ev),

add([do(CID,terminated,[attribute(cycle,destroyed)])],Ev,T).

destroy container(GameId, CID, T):-

GameId=game(GameName, CID),

holds at(CID, game, GameId, T),

Container ← destroy.

The first predicate states that the effects of a stop container move are to

call the destroy container/3 predicate to destroy the container. A new
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event E is then created to update the changes made in the system in the

database of the root container. The destroy container/3 predicate imple-

ments the actual destruction of the container that contains the game GameId

specified by the agent. The predicate first checks in the data-base that there

is an attribute GameId for the same container CID as identified by the move.

In other words, the root container makes sure that the container contains

the specified game. Afterwards, a Java call evokes the destruction of the

container.

The suspension and resumption of social containers requires similar imple-

mentation to the one adopted above:

effects(Root, E, T):-

E=do(A,suspend container,[attribute(game,GameId)]),

suspend container(GameId, CID, T),

unique id(Ev),

add([do(CID,suspended,[attribute(cycle,suspended)])], Ev, T).

suspend container(GameId, Container, T):-

GameId=game(GameName, CID),

holds at(CID, game, GameId, T),

holds at(CID, cycle, started, T),

Property=[attribute(game,GameId)]

propagate(do(CID, suspended, Property),T).

effects(Root, E, T):-

E=do(A,resume container,[attribute(game,GameId)]),

resume container(GameId, CID, T),

unique id(Ev),

add([do(CID,resumed,[attribute(cycle,started)])],Ev,T).

resume container(GameId, Container, T):-

holds at(CID, game, GameId, T),
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holds at(CID, cycle, suspended, T),

Property=[attribute(game, GameId)]

propagate(do(CID, resumed, Property),T).

Similarly to the creation and destruction of social containers, the coordi-

nation primitives for suspending and resuming a social container call the

respective suspend container or resume container predicates and finally

create an event which updates the new changes in the state of the root con-

tainer. The suspend container predicate suspends the container CID by

propagating the suspended event to the suspended social container (iden-

tified as CID). In this case, the notified container will change the attribute

cycle to suspended. Acts of agents do not create changes in the state of a

suspended container. When the container is in a started state changes in

the state of such container will resume. The resume method is defined in a

similar way.

B.2 Game Coordination

Atomic games contained within a social container, need to be coordinated as

well. Agents can directly act over the life-cycle of an atomic game by starting,

terminating, suspending and resuming atomic games. However, this process

has an additional coordination component provided as part of the complex

game description. For example, before agents are in a position where they

can start an atomic game, the game should be available to the players. The

availability of the game is checked using the runs/3 coordination predicates

explained in Chapter 5.

To start a new atomic game we define the following predicates in the social

containers:

effects(CID, E, T):-
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E=do(A,new game,[Properties]

member(attribute(game,GameId), Properties),

GameId=game(GameName, CID),

new game(GameId, CID, T),

append(P,attribute(cycle,started), NewP),

unique id(Ev),

add([do(CID, new game, [attribute(game, GameId)]),

instance(GameId,atomic game,[NewP]],Ev,T).

new game(GameId, G, T):-

GameId=game(GameName, CID),

url specification(GameName, Url),

consult(Url).

The first predicate deals with the case when an agent performs a new game

act. The new game/3 is called to start the atomic game. The predicate adds

the rules of the game in the social container. The add/3 predicate changes

the state of the container to be updated with the new game.

The termination of an atomic game is defined in terms of conditions that

bring a game to an end. Therefore we allow agents only to suspend and

resume atomic games but not to terminate them as they are running. The

definition of effects/3 for suspending and resuming an atomic game is de-

fined in a similar way:

effects(CID, E, T):-

E=do(A,suspend game,[attribute(game,GameId)]),

GameId=game(GameName, CID),

holds at(GameId, cycle, started, T),

unique id(Ev),

add([do(GameId,suspended,[attribute(cycle,suspended)]],Ev,T).
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effects(CID, E, T):-

E=do(A,resume game,[attribute(game,GameId)]),

GameId=game(GameName, CID),

holds at(GameId, cycle, suspended, T),

unique id(Ev),

add([do(GameId,resumed,[attribute(cycle,started)]],Ev,T).

Similarly to the creation of atomic games, the coordination primitives for

suspending and resuming a game changes the attribute cycle of the game

GameId respectively to suspended and to stared .
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