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1. Introduction

Let d(n) denote the number of positive divisors of n, and let f(x) be a polynomial
in x with integer coefficients, irreducible over Z. Erdos[3] showed that there exist
constants Aj,A2 (depending o n / ) such that

^ 2 d(f(n)) ^ A2xlogx.

For the case where/(x) = ax2 + bx + c is a quadratic polynomial, one has in fact

2 d(f(n)) ~ Axlogx, (1)
n^x

for some constant A (depending on a, b and c). Apparently this is due to Bellman and
Shapiro (unpublished), and Bellman describes the proof as 'not elementary, although
not difficult' [1]. The first published proof seems to be that of Scourfield[7]. For the
case a = 1,6 = 0, Hooley [5] gives an excellent description of the error. His expression
for A in (1) is
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(d, 2)=1 (i ,2)-l

where p is defined below and (p/q) is the Legendre symbol. In this paper, we consider
the case a = 1,62 — 4c = A < 0, and give a more compact expression for A, namely

_ 12H*(A)
A~^V^' (3)

where H*(A) is the Hurwitz class number, defined below. Using the analytic class
number formula, it is not difficult to check that these two expressions for A agree
when b = 0, c > 0. The proof of (3) is completely elementary. The appearance of a
class number is not surprising (the connection with class numbers was noted by
Hooley in [4] and [6] (p. 32)), but the precise relationship (3) seems not to have been
formulated before.

The proof makes use of binary quadratic forms, so in Section 2 we recall the results
which are needed. The proof of (3) is given in Section 3. More precisely, we show

THEOREM. If b,eel. with A = b2 — 4c < 0, then

where the implied constant in the O(x) depends on A.
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2. p and representations by quadratic forms

Let b,c be integers, with A = b2—4c < 0. For positive integers d, let p(d) be the
number of solutions to the congruence

n2 + bn + c = 0(modd), 0^n<d. (4)

p is multiplicative, but not totally multiplicative. Multiplying (4) by 4, and writing
m = 2n + b, we see that p(d) is the number of solutions to the congruence

w2 = A(mod4d), b^m<b + 2d. (5)

The proof of (3) will involve binary quadratic forms, so we now recall the essential
facts (cf. [2]).

Let/(a;, y) = Ax2+Bxy + Cy2 be a positive definite binary quadratic form, so that
A,B, Celt with the discriminant A = B2 — 4AC < 0, and A > 0. Given

define fa(x, y) = f(px + ry,qx + sy). Then fa has the same discriminant a s / . Forms
related in this way are called equivalent. The form/ is called reduced if \B\ ^ A ^ C,
with B ^ 0 if either A = \B\ or A = 0. Each positive definite binary quadratic form
is equivalent to precisely one reduced form. The number of reduced forms with
discriminant A is finite, and is denoted H(A). The subgroup of SL2(Z.) consisting of
those a such tha t / " = / is called the automorphism group of/.

We shall write (A,B,C) as a shorthand for Ax2+Bxy + Cy2. Let w(A,B,C) denote
the size of the automorphism group of (A,B,C). Then w(A,A,A) = 6, w(A,0,A) = 4,
and otherwise, if (A,B, C) is reduced, we have w(A,B, C) = 2. Define

H*(A)= S 2/w(A,B,C). (6)
(A,B, C)reduced,

B2-4AC-A

Then H*(A) usually equals B(A), and the two never differ by more than §.
We say that (A, B, C) properly represents d if there exist co-prime integers p and

q with Ap2 + Bpq + Cq2 = d. Given suchp and q, one can find r,seZ with ps — qr = 1.

Setting a = I I, one checks that (A, B, G)a = (d, m, I) for some TO and I depending

on a. Then m2-4dl = B2-4AC = A, so that

TO2 = A (mod4d). (7)

Given p and q, there is some choice for r and s. Indeed if ps0 — qro= 1, then the general
solution to ps — qr = 1 is s = so + fiq,r = ro + fip, for /?eZ. If (r,s) = (ro,so) leads to
m = TO0 in (7), then (r,s) = (ro + fip,so + fiq) leads to m = mo + 2fid. Thus given any
integers b and d, and any co-prime p and q with Ap2 +Bpq + Cq2 = d, we have defined
a unique meZ satisfying

= A(mod4d), b^m<b + 2d. (8)
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Conversely, a solution m2 — 4dZ = A satisfying (8) implies (d, m, I) properly represents
d(x = l,y = 0). If (A,B, C) is the unique reduced form equivalent to (d,m,l) then
(A,B, C) also properly represents d, and if (A,B, C) = (d,m, l)a then a determines the
representation of d by (A,B,C). a. is unique up to multiplication by an automorphism
of (A,B,C). Hence this solution to (8) defines w(A,B,C) distinct ways in which
(A,B,C) properly represents d. If we count each representation with weight
l/w(A,B, C) then the total number of ways of representing d by some reduced form
of discriminant A is precisely the number of solutions to (8).

If A = b2 — 4c < 0, then comparing (5) and (8), the above discussion implies

P(d)= 2
(A,B,C)reduced, «>l-<*>-», W Ap2+Bvq+Cq2-d,

2 gcd(p, «)-l

This expression for p(d) is the main ingredient in the proof of (3).

3. Proof of Theorem

Suppose 6,ceZ with A = ft2 — 4c < 0. In what follows, the implied constant in all
0 estimates may depend on A.

Positive divisors of n2 + bn + c generally pair off, by pairing a factor less than
\/(n2 + bn + c) with its co-factor (which is greater than \/ (n2 + bn + c)). The exception
is if n2-\-bn + c is a square, when its square root is not paired off. Hence

2 d(n2 + bn + c) = 2 £ S l + O(x). (10)
n<x d\n2+bn+c,

2

Now reverse the order of summation in (10):

2 S £ i + O(x)
nix ^ ( ) ( ) ^ ^

d\n*+bn+c

= 2 S S 1 + O(x). (11)
d^x d+O(l)in^x,

d\n*+bn+c

Consider the inner sum in (11). We know that p(d) out of every d consecutive
values of n satisfy d\n2 + bn + c. Hence the inner sum is xp(d)/d + O(p(d)). Therefore
(11) gives

2 d(n2 + bn + c) = 2x 2 p(d)/d + O( 2 p(d)) + O(x). (12)

To evaluate (12), we shall show that

2 p(d) = 6H*{A).x + 0(Vxlogx). (13)
d^x 7TV-A

Then summation by parts gives

2 p(d)/d = ^ ^ l o g z + 0(l). (14)
7T\/— A

Substituting (13) and (14) into (12) proves the Theorem.
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It remains to prove (13). For this we use the expression for p(d) from Section 2,
namely (9).

2 P(d) = £ 2 ,, * n S i
d«a: (^,B,C)reduced, w ^ , ^ , ^ ; Ap2+Bpg+Cg'i-d,

B*-iAC-A gcd(p,q)-l

S 1
 S !

(/1,B, C) W(-4,ZJ, C ) ^ p 2 + J

where fi is the Mobius function. Here p and q can be any integers, but / is always
positive.

Now we interchange the inner two sums in (15). Given f\gcd(p,q), write p =fs,
q =ft. Then As2 +Bst + Ct2 ^ x/f2. We h a v e / ^ ^x (actually/< y/{x/A)), so that

= S -T rVrn S M/) S I- (16)

The inner sum is the number of non-trivial integer points within an ellipse of area
2TTX//2-\/ —A, circumference O(y/x/f). Thus (16) gives

(A,B,ow(A,-B>C)f^vx

?r v —A

from (6). This proves (13), as desired.
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