The problems discussed in this thesis arise in the geometry of numbers, a part of the theory of numbers which originated under the inspiration of Minkowski at the turn of the last century.

The first chapter is introductory and provides the background to the main part of the thesis. The well-known theorems which are needed later are stated in an appendix.

In each of the remaining three chapters a different problem is considered and is preceded by a short summary. The theorems are numbered according to the chapter in which they occur.

The subject matter of this thesis has been suggested by my supervisor, Dr. J.H.H. Chalk. I am very deeply indebted to him for all his invaluable help and encouragement throughout its preparation.

I am very grateful to D.M.E. Foster for his help in the solution of the problem discussed in Chapter 3 and for making a number of suggestions leading to the improvement of Chapter 4. My thanks are also due to Professor M. J. Bailey for suggesting the theory of numbers as a subject for research, and to the University of London for their award of a postgraduate studentship for fifteen months.

(Thesis submitted to the University of London for the degree of Doctor of Philosophy.)

MAY 1960
ProQuest Number: 10098050

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest

Published by ProQuest LLC (2016). Copyright of the Dissertation is held by the Author.

All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway
P. O. Box 1346
Ann Arbor, MI 48106-1346
The problems discussed in this thesis arise in the geometry of numbers, a part of the theory of numbers which originated under the inspiration of Minkowski at the turn of the last century.

The first chapter is introductory and provides the background to the main part of the thesis. The well known theorems which are needed later are stated without proofs, references being given in the appendix. In each of the remaining three chapters a different problem is considered and is preceded by a short summary. The theorems are numbered according to the chapter in which they occur.

The subject matter of this thesis has been suggested by my supervisor, Dr. J.H.H. Chalk. I am very deeply indebted to him for all his invaluable help and encouragement throughout its preparation.

I am very grateful to Dr. G.L. Watson for his help in the solution of the problem discussed in Chapter 3 and for making a number of suggestions leading to the improvement of Chapter 4. My thanks are also due to Professor H. Davenport and to the Referee of the Quarterly Journal of Mathematics (Oxford) for their kind assistance in improving the presentation of Chapters 2 and 3, respectively. Finally I should like to thank Professor W.N. Bailey for suggesting the theory of numbers as a subject for research, and the University of London for their award of a postgraduate studentship for fifteen months.


D.M.E.F.
CONTENTS

Preface

Chapter 1. Introduction. 1 - 16

Chapter 2. Inequalities are obtained for an indefinite quadratic polynomial in n variables. 17 - 23

Chapter 3. A problem of Macbeath on a class of quadratic polynomials in n variables is considered and solved in certain cases. 24 - 47

Chapter 4. Conditions are obtained for a three-dimensional lattice to have a set of generating points in the region 

\[ |x_1^2 + x_2^2 - x_3^2| \leq 1. \] 48 - 67

References and Bibliography. 68 - 71
The geometry of numbers is that part of the theory of numbers which is concerned with the solubility of various types of inequalities in integers. For instance, given a function \( f(u_1, \ldots, u_n) \) of \( n \) real variables \( u_1, \ldots, u_n \) it is sometimes possible to find constants \( \lambda_n, \mu_n \) depending upon \( n \) and possibly upon some invariant of \( f(u_1, \ldots, u_n) \) such that the inequalities
\[
\lambda_n \leq f(u_1, \ldots, u_n) \leq \mu_n
\]
are always soluble in integers \( u_1, \ldots, u_n \). There are certain functions for which the best possible constants \( \lambda_n, \mu_n \) are known, for example quadratic forms with real coefficients in a small number of variables. In particular, the cases when either one of \( \lambda_n \) or \( \mu_n \) is zero or \( \lambda_n = -\mu_n \) have been extensively studied. We shall consider, in this thesis, slightly more general functions of the form
\[
\varphi(u_1, \ldots, u_n) = q(u_1, \ldots, u_n) + \ell(u_1, \ldots, u_n)
\]
where
\[
q(u_1, \ldots, u_n) = \sum_{\lambda=1}^{n} \sum_{s=1}^{n} a_{\lambda s} u_\lambda u_s \quad \text{ (} a_{\lambda s} = a_{s \lambda} \text{)}
\]
is a quadratic form in the variables \( u_1, \ldots, u_n \) with real coefficients \( a_{\lambda s} (\lambda, s = 1, \ldots, n) \) not all zero, having determinant
\[
D_n = \|a_{\lambda s}\|_{\lambda,s=1,\ldots,n}
\]
and
\[
\ell(u_1, \ldots, u_n) = 2 a_{n1} u_1 + \cdots + 2 a_{n1} u_n + a_{n1,n1}
\]
is a real linear polynomial in \( u_1, \ldots, u_n \). Such a function \( \varphi(u_1, \ldots, u_n) \) we will call a quadratic polynomial.
We now introduce the idea of an integral unimodular substitution of the variables \( u_1, \ldots, u_n \).

**Definition 1.1.** A substitution of the form

\[
\begin{aligned}
\nu_n &= \sum_{s=1}^{n} p_{r,s} u_s + p_{n,n+1} \\
\end{aligned}
\]

where the \( p_{r,s} \) (\( r = 1, \ldots, n \); \( s = 1, \ldots, n+1 \)) are integers with determinant \( \| p_{r,s} \|_{r,s=1}^{n} = \pm 1 \), is said to be an integral unimodular substitution of the variables \( u_1, \ldots, u_n \).

**Definition 1.2.** Two functions \( f(u_1, \ldots, u_n) \) and \( g(u_1, \ldots, u_n) \) are said to be equivalent, or \( f(u_1, \ldots, u_n) \sim g(u_1, \ldots, u_n) \), if one can be transformed into the other by an integral unimodular substitution of the variables.

To illustrate our methods, we indicate briefly the type of inductive argument which leads to inequalities of the form (1.1.) for the polynomial \( \xi(u_1, \ldots, u_n) \). Some knowledge about small values of the quadratic form \( q(u_1, \ldots, u_n) \) may allow us to suppose, after applying a suitable unimodular substitution to the variables \( u_1, \ldots, u_n \), that

\[
0 < q(u_1, 0, \ldots, 0) = a_n < S,
\]

where \( S \) depends only upon the determinant of \( q(u_1, \ldots, u_n) \). Thus, on completing the square for \( u_1 \), we may rewrite

\[
\begin{aligned}
\tilde{g}(u_1, \ldots, u_n) &= a_n (u_1 + \alpha_2 u_2 + \ldots + \alpha_n u_n)^2 + \tilde{g}(u_2, \ldots, u_n),
\end{aligned}
\]

* When considering values of quadratic forms the integral unimodular substitutions which are used are always homogeneous, that is

\[
p_{1,n+1} = \ldots = p_{n,n+1} = 0.
\]
where $\alpha_1, \ldots, \alpha_{n+1}$ are appropriate real numbers and $g(u_1, \ldots, u_n)$ is a quadratic polynomial in the variables $u_1, \ldots, u_n$. If we can now use an inductive hypothesis for $g(u_1, \ldots, u_n)$ to establish the existence of integers $u_1, \ldots, u_n$ satisfying

$$\lambda_{n-1} \leq g(u_1, \ldots, u_n) \leq \mu_{n-1}$$

for appropriate constants $\lambda_{n-1}, \mu_{n-1}$ we still have one variable, namely $u_1$ at our disposal. We will show that a suitable choice of the integer $u_1$ will lead to inequalities of the type required in each of the cases considered. Hence, provided that we can find $\lambda_{n_0}, \mu_{n_0}$ for some integer $n_0$, an inductive argument will give a result for general $n \geq n_0$.

To give a geometrical interpretation of the inequalities (1.1) we are led naturally to the introduction of an $n$-dimensional lattice. Referred to a rectangular Cartesian system of axes in some $n$-dimensional Euclidean space $E_n$, every point is uniquely determined by a set of $n$ inhomogeneous coordinates $(x_1, \ldots, x_n)$, and the aggregate of all points with integral coordinates is said to form the fundamental lattice $\Lambda_n^{(\infty)}$. Thus if we denote by $K$ the set of points $(x_1, \ldots, x_n)$ in $E_n$, defined by

$$\lambda_n \leq g(x_1, \ldots, x_n) \leq \mu_n$$

it is clear that the solubility of (1.1) in integers implies the existence of a point of $\Lambda_n^{(\infty)}$ in $K$ and conversely.

More generally, an $n$-dimensional lattice $\Lambda_n$ in $E_n$ consists
of a set of all points whose coordinates \((x_1, \ldots, x_n)\) satisfy a relation of the form
\[ x_\lambda = \sum_{s=1}^{n} \alpha_{\lambda s} u_s \quad (\lambda = 1, \ldots, n) \]
where the \(\alpha_{\lambda s} (\lambda, s = 1, \ldots, n)\) are fixed real numbers whose determinant \(\lVert \alpha_{\lambda s} \rVert, s = 1, \ldots, n \neq 0\) and \(u_1, \ldots, u_n\) are allowed to take the values \(0, \pm 1, \pm 2, \ldots\). The determinant \(\Delta_n\) of the lattice is given by the absolute value of \(\lVert \alpha_{\lambda s} \rVert, s = 1, \ldots, n\). Clearly a homogeneous, integral, unimodular substitution applied to the variables \(u_1, \ldots, u_n\) leaves the lattice \(\Lambda_n\) invariant.

With the usual vector notation, if \(A_1, \ldots, A_n\) are the \(n\) points of \(\Lambda_n\) having coordinates \((\alpha_{1n}, \alpha_{2n}, \ldots, \alpha_{nn}), \ldots, (\alpha_{1n}, \alpha_{2n}, \ldots, \alpha_{nn})\) respectively, then every point of \(\Lambda_n\) may be expressed in the form
\[ u_1 A_1 + \ldots + u_n A_n \]
and \(A_1, \ldots, A_n\), together with the origin \(0\), are said to generate \(\Lambda_n\). This particular set of generating points of \(\Lambda_n\) is not unique.

It may be proved that a necessary and sufficient condition that \(n\) points of \(\Lambda_n\) should generate the lattice is that the \(n \times n\) determinant formed by their \(x\)-coordinates should be \(\pm \Delta_n\) or equivalently, that the \(n \times n\) determinant formed by their corresponding \(u\)-coordinates should be \(\pm 1\). We observe finally that \(\Lambda_n\) is affinely equivalent to \(\Lambda_n^{(c)}\) since the non-singular linear transformation of coordinates given by
\[ x_\lambda = \sum_{s=1}^{n} \alpha_{\lambda s} z_s' \quad (\lambda = 1, \ldots, n) \]
transforms \(\Lambda_n\) into \(\Lambda_n^{(c)}\).
The foundations of the geometry of numbers were set by Minkowski who introduced ideas of considerable generality. His theorem on convex bodies in $E_n$, for example, occupies a central position in the subject and can often be used to give a crude estimate for the types of inequalities required. A convex body may be defined as follows:

**Definition 1.3.** A convex body $K$ in $E_n$ is a closed and bounded set of points, having at least one inner point, and such that if $P, Q$ are any two points of $K$ then the mid-point, $\frac{1}{2}(P+Q)$, of the segment $PQ$ also belongs to $K$. If a convex body $K$ contains some point, say the origin $0$, which is such that if $P+0$ belongs to $K$, the point $0 - P$ also belongs to $K$, then $K$ is said to be symmetrical about $0$. It is known that every convex body has a volume in the Jordan sense. We can now state the fundamental theorem of which there are several proofs by Minkowski and others, $[16]$. Although we shall not give any of these proofs, it is perhaps interesting to observe that some of them depend only on ideas of elementary geometry and convexity.

**THEOREM 1.1.** If $K$ is a convex body which is symmetrical about the origin $0$ and has volume $\forall(\zeta) > 2^{\sqrt{n}}$, then $K$ contains a point of $\Lambda_n$ other than $0$.

We shall only be directly concerned with two of the many applications of Minkowski's theorem. These are stated explicitly in Corollaries 1.1 and 1.2.
COROLLARY 1.1. If \( \lambda_1, \ldots, \lambda_n \) are \( n \) positive real numbers satisfying
\[
\lambda_1 \cdots \lambda_n = \Lambda_n
\]
there is a point of \( \Lambda_n \), other than \( 0 \), in the \( n \)-dimensional rectangular parallelepiped consisting of all points \( (x_1, \ldots, x_n) \) whose coordinates satisfy
\[
|x_1| \leq \lambda_1, \ldots, |x_n| \leq \lambda_n.
\]

Proof. The proof is immediate, since the volume of the rectangular parallelepiped under consideration is
\[
2^n \lambda_1 \cdots \lambda_n = 2^n \Lambda_n.
\]

Now suppose that \( q(u_1, \ldots, u_n) \) is a positive definite quadratic form, so that in particular \( D > 0 \). Denote by \( \gamma_n \) the least upper bound of the minima of all positive definite quadratic forms in \( n \) variables of determinant 1 for integral values of the variables, not all zero.

COROLLARY 1.2.
\[
\gamma_n \leq \frac{4}{n!} \left\{ \left( 1 + \frac{1}{2^n} \right) \right\}^{\frac{n^2}{2}}.
\]

Proof. Again the proof follows easily when we observe that
\( q(u_1, \ldots, u_n) \) may be written in the form
\[
q(u_1, \ldots, u_n) = x_1^2 + \cdots + x_n^2
\]
where
\[
\lambda_\infty = \sum_{s=1}^n \alpha_{\infty_s} u_s^2 \quad (\lambda = 1, \ldots, n)
\]
for appropriate real \( \alpha_{\infty_s} \). On comparison of determinants, we see that
\[
D_n = \| \alpha_{\infty} \|_{\lambda = 1, \ldots, n}.
\]
An application of Minkowski's fundamental theorem to the \( n \)-dimensional sphere
\[
x_1^2 + \cdots + x_n^2 \leq \frac{4}{n!} \left\{ \left( 1 + \frac{1}{2^n} \right) \right\}^{\frac{n^2}{2}} D_n^{\frac{1}{n}}
\]
which has volume \( 2^n D_n^{\frac{1}{n}} \) now gives the result.
Although Corollary 1.2 is only best possible when \( \eta = 1 \), in which case \( \delta_1 = 1 \), the following values of \( \chi_\eta \) for \( 2 \leq \eta \leq 8 \) are known, by theorems of Lagrange, Gauss, Korkine and Zolotareff [33], Blichfeldt [5] (see Van der Waerden [27] for further references).

\[
\begin{align*}
\chi_2 &= 2/3^{1/2}, \\
\chi_3 &= 2^{1/3}, \\
\chi_4 &= 2^{1/2}, \\
\chi_5 &= 2^{3/5}, \\
\chi_6 &= 2/3^{1/6}, \\
\chi_7 &= 2^{4/7}, \\
\chi_8 &= 2.
\end{align*}
\]

For values of \( \eta > 9 \) the problem becomes more difficult and remains unsolved, although Corollary 1.2 has since been superseded by theorems of Blichfeldt, Rankin and Rogers [26] who have shown that, for large values of \( \eta \), \( \frac{\chi_\eta}{\eta} \leq 1/(\eta^2) \) [It may be verified that this is an improvement of Minkowski's asymptotic estimate by a factor \( 1/2 \)].

At present the best known result in the opposite direction, \( \lim_{\eta \to \infty} \left( \frac{\chi_\eta}{\eta} \right) > \frac{1}{(2\eta^2)} \) is a consequence of a theorem of Hlawka [17].

We now turn our attention to indefinite quadratic forms, and suppose henceforth that \( q(u_1, \ldots, u_\eta) \) is indefinite. A classical theorem ( [15], Theorem 59 ) due to Meyer states that if \( q(u_1, \ldots, u_\eta) \) has integral coefficients, then it assumes the value zero for integral values of the variables, not all zero, provided that \( \eta \geq 5 \). This suggested the following conjecture.

**CONJECTURE.** If the coefficients of \( q(u_1, \ldots, u_\eta) \) are not all in a rational ratio, then \( q(u_1, \ldots, u_\eta) \) can be made arbitrarily small for integral values of the variables, not all zero, provided that \( \eta \geq 5 \).

Until recently no substantial progress on this problem had been made except in two or three special cases considered by Davenport and Heilbronn [12], Watson [30] and Oppenheim [23]. In particular we
mention the following two theorems of Oppenheim as they will be required for Chapters 3 and 4.

**THEOREM 1.3.** Let $\mathcal{G} > 0$. If $q(u_1, \ldots, u_n)$ is an indefinite quadratic form in $\geq 4$ variables whose coefficients are not all in a rational ratio and which represents zero non-trivially, the inequalities

$$0 < |q(u_1, \ldots, u_n)| < \varepsilon$$

are always soluble in integers $u_1, \ldots, u_n$.

**THEOREM 1.4.** If $q(u_1, \ldots, u_n)$ is an indefinite quadratic form such that, for every $\varepsilon > 0$, the inequalities

$$0 < q(u_1, \ldots, u_n) < \varepsilon$$

are soluble in integers $u_1, \ldots, u_n$, then if $n \geq 3$, the inequalities

$$0 < -q(u_1, \ldots, u_n) < \varepsilon$$

are also soluble in integers $u_1, \ldots, u_n$ for every positive $\varepsilon$.

Although the proof of Theorem 1.4 is fairly straightforward, the proof of Theorem 1.3 is not elementary. For it depends upon properties of quadratic forms with integral coefficients, and the following simple case of a general theorem [31] of Weyl on the uniformity of distribution of the values $(n \mod 1)$ of a polynomial in a single integral variable.

**THEOREM 1.5.** If at least one of $\Theta_1, \Theta_2$ is irrational and $\varepsilon$ is any assigned positive number, the inequalities

$$|\Theta_1 x^2 + \Theta_2 x + y + \Theta_3| < \varepsilon$$

have an infinity of solutions in integers $x, y$. 
Returning to the conjecture a very considerable advance has been made during the last four years by Davenport, Birch and Ridout, using analytical methods \([27], [32]\).

We now consider the minimum value of \(|q(u_1, \ldots, u_n)|\) for all integers \(u_1, \ldots, u_n \neq 0, \ldots, 0\) in the cases when \(n = 2, 3\) and state two classical results due to Markoff \([35]\) and Korkine and Zolotareff \([34]\).

**Theorem 1.6.** The inequalities
\[
|q(u_1, u_2)| \leq \left(\frac{A}{\sqrt[3]{|D_2|}}\right)^2
\]
are always soluble in integers \(u_1, u_2 \neq 0, \ldots, 0\) with strict inequality unless \(q(u_1, u_2) \sim A(u_1^2 + u_2^2 - u_1 u_2^2)\).

**Theorem 1.7.** The inequalities
\[
|q(u_1, u_2, u_3)| \leq \left(\frac{2}{\sqrt[3]{|D_3|}}\right)^3
\]
are always soluble in integers \(u_1, u_2, u_3 \neq 0, \ldots, 0\) with strict inequality, unless \(q(u_1, u_2, u_3) \sim A(u_1^3 + u_2^3 + u_1 u_2^2 - 2u_1 u_2^3)\).

Proofs of these are given in Dickson's books; \([13], \text{Theorem 119}\) and \([15], \text{Theorem 83}\), respectively. A recent theorem of Watson, which gives an inequality for the values of a non-zero binary quadratic form and depends partly upon Theorem 1.6, is also needed in Chapter 4.

**Theorem 1.8.** If \(P, N\) denote the lower bounds of the positive values of \(q(u_1, u_2), q(u_1, u_2)\) respectively for all integers \(u_1, u_2 \neq 0, \ldots, 0\), then
\[
P \leq \frac{4}{5} |D_2|.
\]
provided that \( q(u_1, u_2) \) does not represent zero non-trivially.

The equality sign is required when \( q(u_1, u_2) \sim \lambda (u_1^2 + u_2^2 - u_3^2) \).

A more general result, obtained by Blaney (\([3]\), Lemma 1) and stated in the next theorem, provides an estimate for the upper bound of the least positive value of \( q(u_1, \ldots, u_n) \) and will be useful in Chapter 2.

**Theorem 1.9.** There exists a constant \( k_n \) depending only on \( n \), such that for any indefinite quadratic form \( q(u_1, \ldots, u_n) \) of determinant \( D_n \), there are relatively prime integers \( u_1, \ldots, u_n \) satisfying

\[
0 < q(u_1, \ldots, u_n) \leq k_n |D_n|^{1/n}.
\]

This holds in particular with \( k_n = 2^{n-1} \).

The best possible value of \( k_n (= 2) \) is well known \( [2, 8] \).

Davenport \([10]\) and Oppenheim \([24]\) later found the best possible values of \( k_3 = (2^{7/4})^{1/3} \) and \( k_4 \geq 2 \). For values of \( n \geq 5 \), the inequalities are probably soluble with any \( k_n \) however small, if the coefficients of \( q(u_1, \ldots, u_n) \) are not all in a rational ratio; otherwise the problem of finding the best possible value of \( k_n \) has been solved by Watson, as we shall show presently.

It is well known that an indefinite quadratic form in the variables \( u_1, \ldots, u_n \) may be expressed in an infinity of ways as a sum of signed squares of real linear forms \( u_1, \ldots, u_n \). By Sylvester's law of inertia, the numbers \( \nu \) and \( \varepsilon \) say, of positive and negative signs, respectively, are invariant; hence so also are the signature
and rank of the form, namely $s = n - t$ and $p = n + t$, respectively.

Consider the special case where $a_{\lambda, \eta}$ ($\lambda = 1, \ldots, n$) and $a_{\lambda, \eta}$ ($\lambda < \eta$; $\lambda, \eta = 1, \ldots, n$) are integers. Then the indefinite form $q(u_1, \ldots, u_n)$ has integral coefficients, determinant $D_n$ and signature $s(q)$, say. We write

$$d_n(q) = \begin{cases} 2^n |D_n|, & \text{if } n \text{ is even} \\ 2^{n-1} |D_n|, & \text{if } n \text{ is odd} \end{cases}$$

A weaker form of the following theorem [24] of Watson, whose proof depends upon the classical theory of integral quadratic forms, is essential in the solution of the problem considered in Chapter 3, (see Lemma 3.4).

**Theorem 1.10.** There exists integers $u_1, \ldots, u_n$ satisfying

$$0 < \frac{|q|}{d_n(q)} \leq \begin{cases} 1 \\ \left(\frac{1}{2}\right)^n \\ \left(\frac{1}{3}\right)^n \\ \left(\frac{1}{4}\right)^n \end{cases} \quad \text{if } s(q) = \begin{cases} +3 \\ -2 \\ +4 \end{cases} \pmod{8}$$

If we introduce the quadratic form in $n+1$ variables

$$Q(u_1, \ldots, u_{n+1}) = \sum_{\lambda=0}^{n+1} \sum_{s=1}^{n+1} a_{\lambda, s} u_\lambda u_s \quad (a_{\lambda, s} = a_{s, \lambda})$$

with determinant $D_{n+1}$, say, clearly $Q(u_1, \ldots, u_n)$ may now be written

$$Q(u_1, \ldots, u_n) = Q(u_1, \ldots, u_n, 1).$$

In Chapter 2, we consider the case when $q(u_1, \ldots, u_n)$ is an indefinite quadratic form, whence $D_n \neq 0$. Thus we may define $\Omega = |D_{n+1} D_n^{1/4}|.$
The following theorem, significant only for large values of $\Omega$, was first obtained by Blaney ([3] Theorem 2), in a slightly different form.

**THEOREM 1.11.** There exist constants $C_n, C'_n$ depending only on $n$, such that the inequalities

$$0 < |D_n|^{-\frac{1}{2}} Q(u_1, \ldots, u_n, 1) < C_n \sum_{\alpha} \nu_{\alpha} + C'_n$$

are always soluble in integers $u_1, \ldots, u_n$ with $\nu_{\alpha} = 1/2$.

The special case $n=2$ was later studied by Blaney, [4], who obtained an improved value of $\nu_{\alpha} = 1/3$, a result which can also be deduced from a theorem [20] of Macbeath. We shall show that the theorem is true, possibly for different constants $C_n, C'_n$ with $\nu_{\alpha} = 1/2^n$. The proof, which is by induction on $n$, is similar to that of Blaney, and in fact makes use of his Theorem 1.9.

The remaining case $D_n=0$ is considered separately in Chapter 3. In fact we suppose that the rank of $Q(u_1, \ldots, u_n)$ is $n-1$, so that

$$Q(u_1, \ldots, u_n) = \frac{1}{l_1} + \frac{1}{l_2} + \ldots + \frac{1}{l_n} + c$$

where $l_1, \ldots, l_n$ are $n$ homogeneous real linear forms in the $n$ variables $u_1, \ldots, u_n$ having a non-zero determinant of coefficients $\Delta$, say, and $c$ is an arbitrary constant.

The polynomial $Q(u_1, \ldots, u_n)$ in (1.2) has already been studied in some detail by Macbeath. In 1950, he proved the following two theorems relating to the case $n=2$ ([12], Theorems 1 and 2).
THEOREM 1.12. There exists integers $u, u_1$ satisfying
\[ \left| \mathcal{P}(u, u_1) \right| < \left( \frac{13}{8} |\Delta| \right)^{2/3} \]
unless $\mathcal{P}(u, u_1)$ is equivalent to one of the following:
\[ \mathcal{P}_1 = \left( \frac{1}{2} |\Delta| \right)^{2/3} \left( u_1^2 + u_1 + 2u_2 + c' \right), \]
\[ \mathcal{P}_2 = \left( \frac{1}{6} |\Delta| \right)^{2/3} \left( u_1^2 + u_1 + 6u_2 + c' \right), \]
\[ \mathcal{P}_3 = \left( \frac{1}{4} |\Delta| \right)^{2/3} \left( u_1^2 + 4u_2 + c' \right) \]
for some real number $c'$. If $c' = 1$, $\left| \mathcal{P}_1 \right| > \left( \frac{1}{2} |\Delta| \right)^{2/3}$; if $c' = 4$,
$\left| \mathcal{P}_2 \right| \geq \left( \frac{2}{3} |\Delta| \right)^{2/3}$; and if $c' = 5/2$, $\left| \mathcal{P}_3 \right| \geq \left( \frac{3}{8} \sqrt{2} |\Delta| \right)^{2/3}$.

THEOREM 1.13. Given $\epsilon > 0$, there is a finite set of polynomials $\mathcal{P}_1, ..., \mathcal{P}_N$ such that if $\mathcal{P}$ is not equivalent to a multiple of a polynomial of the form $\mathcal{P}_i + c$ ($i = 1, ..., N$)
then integers $u, u_1$ exist such that
\[ \left| \mathcal{P}(u, u_1) \right| < \epsilon . \]

The proof of Theorem 1.12 is arithmetical while that of Theorem 1.13 depends upon two important lemmas, one of which has already been mentioned as Theorem 1.5. The other lemma, which is concerned with the approximation to an irrational number by a fraction with a square denominator was first proved by Hardy and Littlewood and subsequently improved by Vinogradov and Heilbronn (see [18] and references given there).

A later theorem of Macbeath [19], considerably more general in scope, and yielding information about the position of those points

\[ \dagger \] For a simple proof of Macbeath's theorem, see Rogers [36].
of a non-homogeneous lattice in $E_n$ (that is one which does not necessarily contain the origin), which are near the boundary of a given convex region leads, in particular, to an inequality for a general polynomial, provided that the signature of its quadratic section is $n - 1$:

**Theorem 1.14.** The inequalities

$$|L_1^2 + \ldots + L_{n-1}^2 + L_n + c| \leq (C_n |\Delta|)^{2/(n+1)}$$

are always soluble in integers $u_1, \ldots, u_n$ with

$$C_n = 2^{1/2(n-r)} \frac{1}{\sqrt{\pi}} \left( \frac{1}{2} \right)^{1/2(n+1)} \left\lfloor \frac{1}{2} \left( \frac{1}{n+1} \right) \right\rfloor.$$

It is our object in Chapter 3 to establish two further theorems, analogous to Theorems 1.12, 1.13 for the general polynomial $\phi(u_1, \ldots, u_n)$.

**Theorem 1.15.** If the coefficients of $\phi - c$ are not all in a rational ratio, $\phi$ assumes arbitrarily small values for integers $u_1, \ldots, u_n$.

**Theorem 1.16.** If the coefficients of $\phi - c$ are in a rational ratio, then there are integers $u_1, \ldots, u_n$ satisfying

$$|\phi(u_1, \ldots, u_n)| \leq \left( \frac{1}{2} |\Delta| \right)^{2/(n+1)}$$

except possibly when $|s| = n-1$ and $n \geq 10$; the equality sign being required when $\phi \sim \lambda \phi_0$ where

$$\phi_0 = \pm u_1 (u_1 + 1) \pm \ldots \pm u_n (u_n + 1) + 2u_{n+1}.$$ 

The proof of Theorem 1.15, although based upon Weyl's result
as stated in Theorem 1.5, is not immediate in the cases where the quadratic section of $Q(u, \ldots, u_n)$ represents zero non-trivially, and has signature $\frac{1}{2} + \frac{1}{2}(n-1)$. These arise only when $n > 3$ and our treatment (ad hoc for $n = 3, 4$) requires theorems of Oppenheim \[2,3\] and \[4\] on the representation of arbitrarily small numbers by indefinite zero quadratic forms in four or more variables. Theorem 1.16 is proved by induction on $n$; the case $n = 2$ being contained in Theorem 1.12. As we need this special case in Chapter 4, we include a version of Macbeath's proof.

The remaining problem, considered in Chapter 4, is concerned with the values of an indefinite quadratic form $q(u, u_k, u_i)$ of determinant $D_3$. It is shown that $q(u, u_k, u_i)$ is equivalent to a form, each of whose diagonal coefficients is bounded above in terms of $|D_3|$. A result of this type clearly gives some information about generating points of $\Lambda$ in the three-dimensional region $|x_1^2 + x_2^2 - x_3^2| \leq 1$ and may indeed be stated in geometrical terms. Problems of a similar type have already been considered by Minkowski and others. In particular, Minkowski \[22\] proved by simple geometrical arguments that the region

$$|x_1, x_2| \leq \frac{1}{2} \Lambda_2$$

always contains two generating points of $\Lambda$. This result was extended by Chalk \[15\] who in a later paper \[8\] gave the following conjecture, proving it for $n = 3$ and $4$. 
16.

**CONJECTURE.** There exist \( n \) lattice points, generating \( \mathcal{L}_n \)
in the region

\[
|x_1, \ldots, x_n| \leq \frac{1}{2^n} \Delta_n
\]

In terms of quadratic forms the two theorems of Chapter 4 are as follows.

**THEOREM 1.17.** If \( q(u, u_2, u_3) \) represents zero non-trivially, it is equivalent to a form for which

\[
|a_{1:1}^c| \leq |D_3|^{1/3} \quad (c = 1, 2, 3)
\]

with strict inequality unless \( q \sim \lambda_{q, c}^c \) or \( \lambda_{q, c}^c \) where

\[
q(u, u_2, u_3) = 2u + u_2 + u_3^2
\]

and

\[
q(u, u_2, u_3) = 2u_1 + u_2^2 + u_2 u_3 + u_3^2.
\]

**THEOREM 1.18.** If \( q(u, u_2, u_3) \) does not represent zero non-trivially, it is equivalent to a form for which

\[
|a_{1:1}^c| \leq \left( \frac{27}{25} |D_3| \right)^{1/3} \quad (c = 1, 2, 3)
\]

with strict inequality unless \( q \sim \lambda_{q, 2}^2 \) where

\[
q(u, u_2, u_3) = u_1^2 + u_2 u_3 + \frac{5}{2} u_3^2.
\]

The proof of Theorem 1.17 is not difficult, and depends on an elementary result in the theory of continued fractions and on the case \( n = 2 \) of Theorem 1.16. In order to prove Theorem 1.18 we use Theorems 1.6, 1.7 and 1.8 together with an extension of Minkowski's theorem [22] on generating points of \( \mathcal{L}_c \).
2.1 Let \( q(u_1, \ldots, u_n) = \sum_{\lambda=1}^{n} \sum_{\gamma=1}^{n} a_{\lambda\gamma} u_\lambda u_\gamma \) denote an indefinite quadratic form in \( n \) variables with real coefficients and with determinant \( D_n \neq 0 \). Blaney ([3], Theorem 2) proved that for any \( \gamma \geq 0 \) there is a number \( \Gamma = \Gamma(\gamma, n) \) such that the inequalities

\[
\gamma |D_n|^{\frac{1}{n}} < q(u_1 + \alpha_1, \ldots, u_n + \alpha_n) < \Gamma |D_n|^{\frac{1}{n}}
\]

are soluble in integers \( u_1, \ldots, u_n \) for any real \( \alpha_1, \ldots, \alpha_n \).

The object of this chapter is to establish an estimate for \( \Gamma \) as a function of \( \gamma \). The result obtained, which is naturally only significant if \( \gamma \) is large, is as follows.

**Theorem 2.1.** The inequalities (2.1) are always soluble in integers \( u_1, \ldots, u_n \) if

\[
\Gamma(\gamma, n) = \gamma + C_n \gamma^{\frac{1}{2n}} + C'_n,
\]

where \( C_n, C'_n \) are suitable positive numbers depending only on \( n \).

The value of \( \Gamma \) obtained by Blaney depends on an arbitrary parameter \( \gamma \) and is not given explicitly, but examination of the proof shows that any value so found would exceed \( \gamma \) by an amount of order at least \( \gamma^{1/n} \) when \( \gamma \) is large. The more precise estimate (2.2) is obtained by a refinement of Blaney's argument. His proof is by induction on \( n \) and falls into two cases. In one case, after a reduction of the homogeneous form \( q(u_1, \ldots, u_n) \) not depending on \( \gamma \), the choice of only one of \( u_1, \ldots, u_n \) in (2.1) is made to depend on \( \gamma \). At the corresponding stage in our proof, we allow at least one more...
variable to depend on \( Y \). The other case is treated on different lines from Blaney's and avoids the use of the arbitrary parameter \( c \).

The case \( n=2 \) was considered by Blaney in a later paper ([4], Theorem 3), and the value

\[
\Gamma(Y, 2) = Y + 2Y^{1/3} + O(1)
\]

was obtained by methods of the geometry of numbers. The same estimate can be deduced from a result of Macbeath [20].

It is convenient to express Theorem 2.1 in a slightly more general form in terms of quadratic polynomials. Let \( Q(u_1, \ldots, u_n) \) be a real quadratic form in \( n+1 \) variables, of determinant \( D_{n+1} \) and suppose that the section \( Q(u_1, \ldots, u_n, 0) \) is an indefinite form in \( u_1, \ldots, u_n \) of determinant \( D_n + \sigma \).

Let

\[
\Omega = |D_{n+1} D_n^{-1/2}|. \tag{2.3}
\]

**THEOREM 2.2.** There exist integers \( u_1, \ldots, u_n \) satisfying

\[
0 < |D_n|^{-1/2} Q(u_1, \ldots, u_n, 1) < C_n \Omega^{1/2} + C_n. \tag{2.4}
\]

Theorem 2.1 is an easy consequence of Theorem 2.2, as will be shown in §2.2 below.

2.2. The deduction of Theorem 2.1 from Theorem 2.2 is elementary. Given the indefinite form \( Q(u_1, \ldots, u_n) \) of determinant \( D_n \), and the numbers \( a_1, \ldots, a_n, Y \), we apply Theorem 2.2 to the form

\[
Q(u_1, \ldots, u_n) = Q(u_1 + a_1 u_n, \ldots, u_n + a_n u_n, 1) - Y(D_n)^{1/2} u_n^2.
\]

This form has determinant

\[
D_{n+1} = -D_n Y |D_n|^{1/2},
\]

so that \( \Omega = Y \) from (2.3). Theorem 2.2 asserts the existence of
integers $u_1, \ldots, u_n$ such that
\[ 0 < \left( \frac{\mathcal{D}_n}{L} \right)^{1/n} \left\{ q(u_1, \ldots, u_n) \right\} < c_n \gamma^{\frac{1}{2n}} + C_n, \]
and this is (2.1) with $\Gamma$ as in (2.2).

2.3. For the proof of Theorem 2.2 we need two lemmas. The first is Lemma 1 of Blaney [3].

**Lemma 2.1.** There exists $p_n$ such that, for any indefinite quadratic form $q(u_1, \ldots, u_n)$ of determinant $\mathcal{D}_n$, there are integers $u_1, \ldots, u_n$ with highest common factor 1 satisfying
\[ 0 < q(u_1, \ldots, u_n) < p_n |\mathcal{D}_n|^{1/n}. \]
This holds in particular when $p_n = 2^{n^2}$.

**Corollary.** If $q(u_1, \ldots, u_n)$ is such that $q(u_1, \ldots, u_n, 0)$ is indefinite and has determinant $\mathcal{D}_n$, and if $\epsilon > 1$ is given, then there exists an integral unimodular substitution on $u_1, \ldots, u_n$, such that the coefficient of $u_n^\epsilon$, say $a_n$, in the transformed form satisfies
\[ 0 < c a_n^\epsilon < p_n |\mathcal{D}_n|^{1/n}. \]

**Lemma 2.2.** For any real $\alpha$, $\alpha > 0$, $\beta > 0$, there exists an integer $u$ such that
\[ 0 < \alpha(u+\alpha) - \beta \leq 2(\alpha \beta)^{1/2} + \alpha, \]
and provided $\beta > \alpha$ there also exists an integer $u$ such that
\[ 0 < -\alpha(u+\alpha) + \beta \leq 2(\alpha \beta)^{1/2}. \]

**Proof.** (2.7) holds if
\[ (\beta/\alpha)^{1/2} < u + \alpha \leq (\beta/\alpha)^{1/2} + 1, \]
and (2.8) holds if
\[ (\beta/\alpha)^{1/2} - 1 \leq u + \alpha < (\beta/\alpha)^{1/2}. \]
assuming \( \beta > \alpha \).

### 2.4. Proof of Theorem 2.2 when \( n = 2 \)

If \( D_3 = 0 \) then \( \mathcal{Q}(u, v, 1) \) is the product of two inhomogeneous linear forms of determinant \( \lambda^{1/2} \). In this case, \( \mathcal{Q}(2.4) \) is known to be soluble for any \( \epsilon^3 > 2 \) (see [13], Theorem 1). Hence we may suppose \( D_3 \neq 0 \).

Since \( \mathcal{Q}(u, v, 0) \) is indefinite we have \( D_2 < 0 \).

By the Corollary to Lemma 2.1 we may suppose, without loss of generality, that

\[
0 < \left| a_n \right| < 2 \left| D_2 \right|^{1/2} \quad a_n D_3 < 0. \tag{2.9}
\]

We have, identically,

\[
\mathcal{Q}(u, v, u_3) = a_n \left( u_1 + \alpha_2 u_2 + \beta_3 u_3 \right)^2 + \frac{D_2}{a_n} \left( u_2 + \epsilon_3 u_3 \right)^2 + \frac{D_3}{D_2} u_3^2
\]

for appropriate \( \alpha_1, \alpha_2, \beta_3 \). Hence

\[
\mathcal{Q}(u, v, u_3, 1) = a_n \left( u_1 + \alpha_2 u_2 + \beta_3 u_3 \right)^2 - \frac{D_3}{a_n} \left( u_2 + \epsilon_3 u_3 \right)^2 - \frac{1}{D_2} a_n D_3^2 \left( u_2 + \epsilon_3 u_3 \right)^2.
\]

If \( a_n > 0 \), we choose the integer \( u_3 \) so that

\[
u_2 + \epsilon_3 = \frac{|a_n D_3|^{1/2}}{|D_2|} + \Theta, \tag{2.10}
\]

where \( 0 < \Theta \leq 1 \). Then

\[
\mathcal{Q}(u, v, u_3, 1) = a_n \left( u_1 + \alpha \right)^2 - \beta,
\]

where \( \beta > 0 \) and

\[
a_n \left( \beta \right) \leq |D_2| + 2 \left| a_n D_2 \right|^{1/2} \leq \left| D_2 \right| + 2 \left| \left| D_2 \right|^{1/2} \left| D_3 \right| \right|^{1/2} = \left| D_2 \right| \left( 1 + 2 \left| D_2 \right| \right) \left( \frac{1}{\sqrt{2}} \right)
\]

by (2.9) and (2.3). By Lemma 2.2 there exists \( \nu \) such that

\[
0 < \mathcal{Q}(u, v, u_3, 1) < a_n + \frac{1}{\left| a_n \right|} \left( \frac{1}{\left| a_n \right|} \frac{1}{\left| a_n \beta \right|} \right) < 2 \left| D_2 \right|^{1/2} + 2 \left| D_2 \right|^{1/2} \left( 1 + 2 \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \right),
\]

which is of the form (2.4).
If \( a_n < 0 \) we choose \( u \) so that \( 2 < \Theta \leq 3 \) in (2.10). This gives
\[
Q(u, u, 1) = -|a_n| (u_1 + u_2)^2 + \beta,
\]
where \( \beta > 0 \) and
\[
|a_n| \beta = \Theta \left( 2 |a_n| D_3^{1/2} + |D_2| \Theta \right).
\]
Since
\[
|a_n| \beta > 4 |D_2| > a_n^2,
\]
by (2.9), we have \( \beta > |a_n| \) and the second part of Lemma 2.2 is applicable, giving
\[
0 < Q(u, u, 1) < 2 \left( |a_n| \beta \right)^{1/2}.
\]
As before, this is of the form (2.4), but with different constants.

Since we do not know whether the exponent of \( \Theta \) in (2.4) is best possible or not, there is little point in working out good values for the constants \( c_1, c_2, c_3 \).

2.5. Proof of Theorem 2.2 when \( n \geq 3 \). We proceed by induction and assume the truth of the result when \( n \) is replaced by \( n - 1 \). Let the form \( Q(u_1, \ldots, u_n, 0) \) be expressed as a sum of \( n \) signed squares of real linear forms, and consider two cases according as (i) there are at least two positive signs, or (ii) there is just one positive sign.

Case 1. By the Corollary to Lemma 2.1 we can suppose that
\[
0 < \varepsilon_n < \frac{1}{n} |D_n|^{1/n}.
\]
(2.11)
We have, identically,
\[
Q(u_1, \ldots, u_n) = a_n (u_1 + \ell_{n_1} u_2 + \cdots + \ell_{n_{n-1}} u_{n-1})^2 + Q'(u_1, \ldots, u_{n-1})
\]
for appropriate \( \ell_{n_1}, \ldots, \ell_{n_{n-1}} \) where \( Q' \) is a quadratic form in \( n \) variables of determinant \( D_{n-i} a_n^{-1} \). Also \( Q'(u_1, \ldots, u_{n-1}, 0) \) is indefinite, by the hypothesis of the present case, and has determinant \( D_{n-i} a_n^{-1} \). By the
inductive hypothesis, applied to $-Q^1(u_2, \ldots, u_n, 1)$, there exist integers $u_2, \ldots, u_n$ such that $-Q^1(u_2, \ldots, u_n, 1) = \beta$ where

$$0 < \beta < \left(\frac{|D_n| a_{n-1}}{|D|^{1/(n-1)}} + \frac{C}{n^{1/2n}}\right),$$

where

$$\Omega = \left|D_{n-1} \cdot \frac{D_n}{n^{1/(n-1)}} a_{n-1}^{1/(n-1)}\right|$$

$$\leq |D_n|^{1/(n-1)} \frac{|D_n|^{1/(n-1)}}{n^{1/2n}} = |D_n|^{1/(n-1)} \Omega,$$

by (2.11) and (2.3). Hence, again by (2.11),

$$a_n \beta < |D_n|^{1/(n-1)} \left(\frac{p_n |D_n|^{1/(n-1)}}{n^{1/2n}} \left(\frac{F_n}{\Omega} + \frac{F_n}{\Omega}\right)\right),$$

for suitable constants $F_n, F_n, F_n, F_n$. By Lemma 2.2 we can choose $u_n$ so that

$$0 < Q(u_1, \ldots, u_n, 1) = a_n (u_1 + a)^2 - \beta \leq 2 \left(a_n \beta\right)^{1/2} + a_n,$$

and by (2.11) and the above estimate for $a_n \beta$, this gives a result of the form (2.4).

Case 2. By the Corollary to Lemma 2.1 we can suppose that

$$0 < -a_n \leq |D_n|^{1/n} \quad (2.12)$$

As in Case 1,

$$Q(u_1, \ldots, u_n, 0) = -\lambda_n a_n (u_1 + \lambda_2 u_2 + \cdots + \lambda_n u_n)^2 + Q'(u_2, \ldots, u_n),$$

and the determinant of $Q'(u_2, \ldots, u_n)$ is again $D_{n-1} a_{n-1}^{-1}$. The form $Q'(u_2, \ldots, u_n, 0)$ is indefinite, by the hypothesis of the present case, and its determinant is $D_{n-1} a_{n-1}^{-1}$. Let

$$Q''(u_1, \ldots, u_n, 0) = Q'(u_2, \ldots, u_n, 0) - |D_n|^{1/n} u_n^2.$$

Plainly $Q''(u_2, \ldots, u_n, 0) = Q'(u_2, \ldots, u_n, 0)$ and is therefore indefinite with determinant $D_{n-1} a_{n-1}^{-1}$. We require the determinant of the form

$$Q''(u_2, \ldots, u_n)$$

since this differs only from that of $Q'(u_2, \ldots, u_n)$ by
having an amount \(-p_n|D_n|^{1/n}\) added to the element in the bottom right hand corner, its value is

\[D_{n+1}a_n^{-1} - p_n|D_n|^{1/n}D_n a_n^{-1}.
\]

By the inductive hypothesis, applied to \(Q\), we can satisfy

\[0 < Q(x_1, \ldots, x_n, 1) < |D_n a_n^{-1}|^{1/(m-1)} (C_n \Omega_2^{1/2^{n-1}} + C_n'),
\]

where

\[
\Omega_2 = |D_{n+1}a_n^{-1} - p_n|D_n|^{1/n}D_n a_n^{-1}|.|D_n a_n^{-1}|^{-n/(m-1)}.
\]

Now

\[
\Omega_2 \leq |a_n|^{1/(m-1)}|D_n|^{-n/(m-1)}(|D_{n+1}| + p_n|D_n|^{1+1/n})
\]
\[
\leq p_n|D_n|^{-1-1/n}(|D_{n+1}| + p_n|D_n|^{1+1/n})
\]
\[
= p_n^{n/(m-1)} + p_n^{1/(m-1)}\Omega_2,
\]

by (2.12) and (2.3).

Thus \(Q(x_1, \ldots, x_n, 1) = \beta\) where

\[p_n|D_n|^{1/n} < \beta < p_n|D_n|^{1/n} + |D_n a_n^{-1}|^{1/(m-1)} (C_n \Omega_2^{1/2^{n-1}} + C_n'),
\]

for suitable constants \(C_n, C_n'\). Now

\[Q(x_1, \ldots, x_n, 1) = |a_n| (u_1 + 2)^2 + \beta,
\]

and since the condition \(\beta > |a_n|\) is satisfied by (2.12), it follows from the second part of Lemma 2.2 that there is an integer \(u_1\) such that

\[0 < Q(x_1, \ldots, x_n, 1) < 2(|a_n|/\beta).
\]

We have

\[
|a_n|\beta < p_n|D_n|^{1/n}|a_n| + |D_n|^{1/(m-1)}|a_n|^{-1/(m-1)} (C_n \Omega_2^{1/2^{n-1}} + C_n')
\]
\[
< |D_n|^{2/n} (H_n \Omega_2^{1/2^{n-1}} + H_n'),
\]

and we again obtain a result of the form (2.4). This completes the proof.
3.1. Let \( L_1, \ldots, L_n \) denote \( n \) homogeneous linear forms in \( n \) variables \( u_1, \ldots, u_n \) with real coefficients and determinant \( \Delta \neq 0 \), and let \( c \) be any real number. We write

\[ \gamma = \gamma(u_1, \ldots, u_n) = \pm L_1 + \cdots + \pm L_{n-1} + L_n + c, \]

where \( \gamma \) is a singular quadratic form with rank \( n-1 \) and signature \( s = 2n+1-\alpha \), \( \alpha \) being the number of positive signs in (3.2). If \( \gamma \) and \( \gamma' \) are any two such polynomials, we say that they are equivalent, writing \( \gamma \sim \gamma' \), if they can be transformed into one another by an integral, inhomogeneous, unimodular substitution of the variables \( u_1, \ldots, u_n \). From his general theorem [19] on infinite convex regions Macbeath has deduced, with a slightly different normalization, that, if \( |s| = n-1 \), the inequality

\[ |\gamma| < (C_n |\Delta|^{1/2(n+1)}) \]

is soluble in integers \( u_1, \ldots, u_n \) with

\[ C_n = 2^{n+1} \left( \sum_{j=0}^{n-1} \left( \begin{array}{c} n \\hat{\ }\ 1 \\ j \end{array} \right) \right)^{1/(n+1)} \]

This constant is not best-possible and indeed, for large values of \( n \), a substantial improvement can be obtained by a modification of his argument.† In this chapter we prove the following two theorems.

**THEOREM 3.1.** If the coefficients of \( \gamma - c \) are not all in a rational ratio, \( \gamma \) assumes arbitrarily small values for integers \( u_1, \ldots, u_n \).

† See next page.
THEOREM 3.2. If the coefficients of $\Omega - c$ are in a rational ratio, then there are integers $u_1, \ldots, u_n$ satisfying

$$|\delta| \leq \left(\frac{1}{2} |\Delta|\right)^{2/(n+1)}$$  \hspace{1cm} (3.5)

except possibly when $|s| = n-1$ and $n \geq 10$.

We observe that when

$$\delta = \delta_0 = \pm u_1 (u_1 + 1) \pm \cdots \pm u_{n-1} (u_{n-1} + 1) + 2u_n + 1,$$

the equality sign in (3.5) is necessary. For $\delta_0 \equiv 1 (\mod 2)$ when $u_1, \ldots, u_n$ are integers, and so

$$|\delta_0| \geq 1 = \left(\frac{1}{2} |\Delta|\right)^{2/(n+1)}.$$

The proof of each theorem is to a large extent by induction on $n$, starting with the case $n = 2$. This was studied by Macbeath [18], who obtained, in addition, some isolation results for the minimum of a quadratic polynomial in two variables. For completeness, we prove both theorems for $n = 2$ in §3.2. As in the general case these proofs depend on Lemmas 3.1 and 3.2. Lemma 3.1 is stated without proof and is a consequence of a general theorem [31] due to Weyl on the uniformity of distribution of the quadratic polynomial $\Theta_1 x^4 + \Theta_2 x + \Theta_3 (\mod 1)$. Lemma 3.2, which gives an inequality for a quadratic in a single integral variable, is a corollary of Lemma 5 given by Davenport [11], but

† An application of Macbeath's theorem [19], combined with Blichfeldt's classical estimate for the critical determinant of an $n$-dimensional sphere, leads to a constant $C_n^{\prime}$ such that $C_n^{2/(n+1)} < 1/2 C_n^{2/(n+1)} \sim \frac{n}{2\pi e}$ as $n \to \infty$. 


for convenience a proof is given in §3.2. The proof of Theorem 3.2, for general \( n \) [see §3.3], is based upon the fact that a suitable integral unimodular substitution of the variables \( u_1, \ldots, u_n \) reduces \( q(u_1, \ldots, u_n) \) to a non-singular quadratic form in \( n - 1 \) variables of determinant \( D \) say, with the property that its first coefficient (say \( a \)) satisfies

\[
0 < |a| \leq 2 |D|^{1/(n-1)}.
\]

In the final section §3.4 we prove Theorem 3.1, the proof depending mainly on Lemmas 3.1 and 3.5, and at one point on Theorem 3.2.

### 3.2. Lemma 3.1

If at least one of \( \Theta_1, \Theta_2 \) is irrational, and \( \varepsilon \) is any assigned positive number, the inequality

\[
|\Theta_1 x^2 + \Theta_2 y^2 + \Theta_3| < \varepsilon
\]

has an infinity of solutions in integers \( x, y \).

### 3.2. Lemma 3.2

If \( n \geq 2 \) and \( a, \alpha, \varepsilon \) are any real numbers satisfying

\[
0 < a \leq 2
\]

\[
0 \leq \varepsilon^2 \leq \frac{1}{4} a^2 - a + 2 a^{-1/n}
\]

then there is an integer \( u \) for which

\[
|a(u + \alpha)^2 - a^{-1} \varepsilon^2| < \varepsilon^2.
\]

**Proof.** Put \( f(u) = a(u + \alpha)^2 - a^{-1} \varepsilon^2 \) for convenience. Since

\[
2a^{-1/2}(\varepsilon^2 + a)^{1/2} \geq 2a^{-1/2} \geq \sqrt{2} > 1,
\]
by (3.6) and (3.7), we can choose an integer $u$ which satisfies

$$|u + \alpha| < a^{-1}(\epsilon^2 + \alpha)^{1/2},$$

and then $f(u)$ satisfies

$$-a^{-1}\epsilon^2 < f(u) < 1.$$

Hence, if $\epsilon^2 < a$, (3.8) is valid with strict inequality. Suppose now that $\epsilon^2 > a$ and let $u$ denote the integer for which

$$a^{-1}(\epsilon^2 + \alpha)^{1/2} - 1 \leq u + \alpha < a^{-1}(\epsilon^2 + \alpha)^{1/2}.$$

Clearly, if it also satisfies

$$u + \alpha > a^{-1}((2 - a)^{1/2}),$$

(3.8) is again satisfied with strict inequality. Hence we may suppose that

$$a^{-1}(\epsilon^2 + \alpha)^{1/2} - 1 \leq u + \alpha \leq a^{-1}(\epsilon^2 - \alpha)^{1/2},$$

where

$$a^{-1}(\epsilon^2 + \alpha)^{1/2} - 1 \leq a^{-1}(\epsilon^2 - \alpha)^{1/2}.$$  (3.9)

The condition (3.9) combined with (3.7) gives us a lower bound for $\alpha$: for on rearranging (3.9) and squaring we have

$$2(\epsilon^4 - \alpha^2)^{1/2} \geq 2(\epsilon^2 - \alpha^2),$$

where

$$2(\epsilon^2 - \alpha^2) \geq 2\alpha - \alpha^2 = \alpha(2 - \alpha) \geq 0.$$

Squaring once again, we then have

$$\epsilon^2 \geq 1 + \frac{1}{4}\alpha^2$$

and so, on using (3.7),

$$2a^{1-1/\pi} - a^2 \geq 1,$$

which gives

$$\alpha \geq 1.$$  (3.10)

The statement of the lemma remains true if we replace (3.7), (3.7) by

$$0 \leq \epsilon^2 \leq \frac{1}{4}\alpha^2 - \alpha + 2\alpha^{1/2}$$

for $0 < \alpha \leq 1$

and

$$0 \leq \epsilon^2 \leq \frac{1}{4}\alpha^2 + \alpha$$

for $1 < \alpha \leq 2$. 
since \( n \geq 2 \). Consider now \( f(u-1) \). From our present choice of \( u \), we have

\[
a^{-1} \left( \frac{x^2 + a}{1} \right)^{1/2} - 2 \leq u - 1 + \alpha \leq a^{-1} \left( \frac{x^2 - a}{1} \right)^{1/2} - 1,
\]

where

\[
a^{-1} \left( \frac{x^2 - a}{1} \right)^{1/2} - 1 \leq \left( \frac{1}{4} - \frac{1}{a} + \frac{2}{a^{1+1/n}} \right)^{1/2} - 1 \leq \frac{1}{2} - 1 < 0,
\]

by (3.10). Hence

\[
a \left\{ a^{-1} \left( \frac{x^2 - a}{1} \right)^{1/2} - 1 \right\}^2 - a^{-1} a^2 \leq f(u-1) \leq a \left\{ a^{-1} \left( \frac{x^2 + a}{1} \right)^{1/2} - 2 \right\}^2 - a^2 \epsilon^2,
\]

where

\[
a \left\{ a^{-1} \left( \frac{x^2 + a}{1} \right)^{1/2} - 2 \right\}^2 - a^{-1} \epsilon^2 = 1 + 4 \left\{ a - \left( \frac{x^2 + a}{1} \right)^{1/2} \right\} \leq 1,
\]

since \( x^2 \geq a \geq a^2 - a \)

follows from \( a \leq 2 \), and where

\[
a \left\{ a^{-1} \left( \frac{x^2 - a}{1} \right)^{1/2} - 1 \right\}^2 - a^{-1} \epsilon^2 = a - 1 - 2 \left( \frac{x^2 - a}{1} \right)^{1/2} \geq -1
\]

since \( a + \frac{1}{4} a^2 \geq \frac{1}{4} a^2 + 2a^{1-1/n} \geq \epsilon^2 \)

follows from (3.7) and (3.10).

Note that equality in (3.8) occurs only when

\[
a^2 = \frac{5}{4}, \quad a = 5, \quad \alpha = \frac{1}{2} (\mod 1),
\]

either

\[
x^2 = 1 + \frac{a^2}{4}, \quad \frac{a^2}{\alpha} = 0 (\mod 1),
\]

or

\[
x^2 = 2, \quad a = 2, \quad \alpha = 0 (\mod 1), \quad n \geq 3.
\]

Proof of Theorems 3.1 and 3.2 \((n = 2)\). By considering a suitable multiple of \( \mathcal{C} \) in place of \( \mathcal{C} \) if necessary we may assume that

\[
|\Delta| = 2 \quad (3.11)
\]

Then it is sufficient to show that \( \mathcal{C}(u, u_2) \) assumes arbitrarily
small values for integers $u_1, u_2$ unless the coefficients of $\mathfrak{g} - c$ are in a rational ratio; in which case, we show that $|\mathfrak{g}| \leq 1$ is soluble in integers $u_1, u_2$. Let $c > 0$. Then, by Minkowski's theorem on linear forms, there are coprime integers $u_1^*, u_2^*$ satisfying

$$|L_1| \leq \varepsilon^{1/2}, \quad |L_2| \leq 2 \varepsilon^{-1/2}.$$  \tag{3.12}

After applying a suitable integral unimodular substitution to the variables $u_1, u_2$, we can ensure that $(u_1^*, u_2^*) = (1, 0)$, and then $\mathfrak{g}$ can be expressed as

$$\mathfrak{g} = \alpha (u_1 + \lambda_2 u_2 + \lambda_3)^2 + c_1 u_1 + c_2 u_2 + c_3$$  \tag{3.13}

for suitable real $\alpha, \lambda_2, \lambda_3, c_1, c_2, c_3$, where

either (i) $0 < \alpha \leq \varepsilon, \quad c_1 > 0$

or (ii) $\alpha > 0, \quad \lambda_2 = \lambda_3 = 0$.

Note that (i) is an obvious consequence of (3.12) provided that $\lambda_1 \neq 0$, while (ii) arises naturally when $\lambda_1 = 0$.

**Case (i).** By (3.11), we have $\alpha^{1/2} |c_2| = 2$. Choosing $u_1, u_2$ successively, and writing $c_2 u_2 + c_3 = -\lambda$, we can ensure that

$$0 \leq \lambda < |c_2| = 2 \alpha^{-1/2},$$  \tag{3.14}

$$|u_1 + \lambda_2 u_2 + \lambda_3 - \lambda^{1/2} \alpha^{-1/2}| \leq \frac{1}{2}.$$

Then

$$|\mathfrak{g}| \leq (\alpha \lambda)^{1/2} + \frac{1}{4} \alpha < (2 \alpha^{1/2})^{1/2} + \frac{1}{4} \alpha,$$

by (3.14), and, since $\alpha \leq \varepsilon$, where $\varepsilon$ is arbitrary, it follows that $\mathfrak{g}$ assumes arbitrarily small values for integral $u_1, u_2$.

**Case (ii)** We may apply Lemma 3.1 directly to
where \( a^{\frac{1}{2}} |c_2| = 2 \), by taking
\[
\Theta_1 = ac_2^{-1}, \quad \Theta_2 = c_1 c_2^{-1}.
\]
Thus, unless the coefficients of \( \varphi - c_3 \) are in a rational ratio, \( \varphi \) assumes arbitrarily small values. Otherwise, on writing \( \pm \varphi \) in the alternative form
\[
\pm \varphi = \alpha (u_1 + \alpha)^2 + c_2 u_1 + \beta
\]
with appropriate \( \alpha, \beta \) we can establish the required inequality \( |\varphi| \leq 1 \).

For, if \( |c_2| < 2 \), we may select any value of \( u_1 \) and then choose \( u_2 \) to satisfy \( |\varphi| \leq \frac{1}{2} |c_2| < 1 \). If \( |c_2| > 2 \), we apply Lemma 3.2; note that since \( a^{\frac{1}{2}} |c_1| = 2 \), we have
\[
\alpha \leq 1.
\]
Writing \( -\lambda = c_2 u_2 + \beta \) for convenience, we choose \( u_2 \) first to satisfy
\[
\frac{1}{4} a - 1 < \lambda < \frac{1}{4} a - 1 + 2a^{-1/2}.
\]
Then, if \( \lambda < 0 \), the integer \( u_1 \) may be selected so that
\[
|u_1 + \alpha| \leq \frac{1}{2}
\]
and then
\[
|\varphi| < \frac{1}{4} a + (1 - \frac{1}{4} a) = 1.
\]
But, if \( \lambda > 0 \), we may introduce \( c^2 = a \alpha \) and then the choice of \( u_1 \) in Lemma 3.2 ensures that \( |\varphi| \leq 1 \), by (3.15) and (3.16); and in fact we again have strict inequality unless
\[
\varphi \sim c(u_1^2 + u_1 + 2u_2 - 1).
\]

3.3. For the proof of Theorem 3.2 when \( n > 2 \) we require two
further lemmas.

**Lemma 3.3** If \( q = q(u_1, \ldots, u_n) \) is a singular quadratic form in the \( n \) variables \( u_1, \ldots, u_n \) with rational coefficients and rank \( n-1 \), it is equivalent to a non-singular quadratic form in \( n-1 \) variables with rational coefficients.

**Proof.** By Lagrange's reduction of a quadratic form we can express \( q \) in the form

\[
q = a_1 l_1^2 + \cdots + a_{n-1} l_{n-1}^2,
\]

where \( a_1, \ldots, a_{n-1} \) are rational non-zero numbers and \( l_1, \ldots, l_{n-1} \) are \( n-1 \) independent linear forms in \( u_1, \ldots, u_n \) with rational coefficients. If we write

\[
l_{n} = \sum_{s=1}^{n} \alpha_{n-s} u_{s} \quad (s=1, \ldots, n-1),
\]

where the \( \alpha_{n-s} \) are rational, we may suppose, by permuting the variables, that

\[
\| \alpha_{n-s} \|_{n-s=1}^{n-1} \neq 0.
\]

Then there exist rational numbers \( u_1, \ldots, u_{n-1} \) satisfying the equations

\[
l_1 = \cdots = l_{n-1} = 0 \quad (3.17)
\]

for any prescribed rational value of \( u_n \). Since the equations (3.17) are linear, it follows that they have a solution in coprime integers.
apply a suitable unimodular substitution to the variables \( u_1, \ldots, u_n \), we may suppose that \((u_1, \ldots, u_n, u_\ell) = (0, \ldots, 0, 1)\). Hence \( l_1, \ldots, l_{n-1} \) reduce to linear forms in \( n-1 \) variables with rational coefficients, and \( q \) is of the required form.

**Lemma 3.4.** If \( q = q(u_1, \ldots, u_n) \) is an indefinite quadratic form in \( n \) variables \( u_1, \ldots, u_n \) with rational coefficients and determinant \( D_n \), then there are integers \( u_1, \ldots, u_n \) satisfying

\[
0 < q \leq 2 |D_n|^{1/n}.
\]

**Remark.** We give the proof in two parts. The first is elementary and gives the required inequality for forms with small signature. This partial result interested Dr. G.L. Watson and he has recently found a proof of a rather better inequality valid for any signature. A brief outline of his argument is given in the second part of the proof. [See G.L. Watson, *Quart. J. of Math.* (Oxford) (2) 9 (1958) 99 - 108 for details.] This proof is not elementary and it would be of interest to find a direct proof \( \dagger \) of Lemma 3.4.

**Proof.** Let the signature be \( s \).

(i) Suppose \( |s| \leq 8 \). The lemma has been established for \( n = 2, 3, \ldots, 4 \) by Segre [28], Davenport [10], and Oppenheim [24], without the restriction that the forms be rational. Thus it is sufficient to consider values of \( n \geq 5 \), and the proof is inductive, depending on the cases \( n = 3 \) and \( 4 \). By considering a suitable multiple of \( q \) in place of \( q \), if necessary, we may suppose that \( |D_n| = 1 \).

\( \dagger \) It seems difficult to modify our argument for \( |s| \geq 9 \).
and it suffices to show that the inequalities

$$0 < q_1 < 2$$

are soluble in integers $u_1, \ldots, u_n$. By a classical theorem of Meyer's, $q_1$ represents zero for relatively prime integers $u_1, \ldots, u_n$ and after applying a suitable integral unimodular substitution to the variables $u_1, \ldots, u_n$ we can take $(u_1^*, u_2^*, \ldots, u_n^*) = (1, 0, \ldots, 0)$. Then

$$q_1 \sim q_1 (u_1, \ldots, u_n)$$

for appropriate rational $a \neq 0$, relatively prime integers $\alpha_1, \ldots, \alpha_n$, and $q_1$. By a further integral unimodular substitution of the type

$$u_2 = \alpha_2 u_2 + \ldots + \alpha_n u_n,$$

$$u_3^\lambda = \alpha_2^\lambda u_2 + \ldots + \alpha_n^\lambda u_n \quad (\lambda = 3, \ldots, n),$$

we see that

$$q_1 \sim a u_1 u_2 + q_1 (u_3, \ldots, u_n),$$

or

$$q_1 \sim a u_2 \left( u_1 + \beta_2 u_2 + \beta_3 (\beta_2 u_2 + \ldots + \beta_n u_n) \right) + q_3 (u_3, \ldots, u_n),$$

for appropriate $\beta_2, \beta_3$, relatively prime integers $\beta_2, \ldots, \beta_n$ and $q_3$. With a third integral unimodular substitution, on the variables $u_3, \ldots, u_n$ we have

$$q_1 \sim a u_2 \left( u_1 + \beta_2 u_2 + \beta_3 u_3 \right) + q_4 (u_3, \ldots, u_n),$$

where $q_4 = q_4 (u_3, \ldots, u_n)$ is a quadratic form in the $n-2$ variables $u_3, \ldots, u_n$ with rational coefficients and determinant $|D|$ say.

Comparing determinants we see that

$$|D| = 4a^{-2}.$$  \hfill (3.20)

By changing the sign of $u_2$, if necessary, we can ensure that $a > 0$. 

If \( a \leq 2 \), let \((u_1, u_3, \ldots, u_\kappa) = (1, 0, \ldots, 0)\) and choose \( u_i \) to be an integer satisfying
\[
0 < a (u_1 + u_2) \leq a,
\]
which gives (3.18). If \( a > 2 \), then
\[
\left| \begin{bmatrix} D \end{bmatrix} \right| < 1,
\]
by (3.20). Since the signature of \( q \) is an algebraic invariant, it follows, by (3.19), that \( q_4 \) has the same signature as \( q \). Since the lemma holds for \( n = 2, 3, 4 \), we suppose that it is true for indefinite quadratic forms in at most \( n - 1 \geq 4 \) variables, and then prove it true for indefinite quadratic forms in \( n \) variables. Thus the result will follow by induction on \( n \). Since \( |s| \leq 8 \), \( q_4(u_3, \ldots, u_\kappa) \) is a quadratic form in \( n - 2 \) variables which is indefinite for \( n > 11 \) but may be either indefinite or definite when \( 5 \leq n \leq 10 \). If \( q_4(u_3, \ldots, u_\kappa) \) is indefinite, there are integers \( u_3, \ldots, u_\kappa \) satisfying
\[
0 < q_4(u_3, \ldots, u_\kappa) \leq 2 \left| \begin{bmatrix} D \end{bmatrix} \right|^{(n-1)/2} \leq 2
\]
by the inductive hypothesis, which gives (3.18) with \( u_1 = u_2 = 0 \).

If, however, \( q_4(u_3, \ldots, u_\kappa) \) is definite, in which case \( 5 \leq n \leq 10 \), it is well known by classical estimates that there are integers \( u_3, \ldots, u_\kappa \) satisfying (3.22) with \( q_4 \) replaced by \( \left| q_4 \right| \). Then (3.18) is again true with \( u_1 = u_2 = 0 \) unless \( q_4 \) is negative definite.

In this case there are relatively prime integers
\[
(u_1, u_3, u_5, \ldots, u_\kappa) = (0, 0, u_3, \ldots, u_\kappa)
\]
for which \( q = -l \) say, where
\[
0 < l \leq 2.
\]
(3.23)
If we now apply a suitable unimodular substitution to \( u_1, \ldots, u_n \), we may write

\[
q = -\mathcal{L}(u_1 + \alpha u_2 u_3 + \cdots + \alpha_n u_n)^2 + q'(u_1, \ldots, u_n),
\]

where \( q' = q'(u_1, \ldots, u_n) \) is an indefinite quadratic form in \( u_1, \ldots, u_n \) of determinant

\[
\mathcal{D}' = \pm \lambda^{-1}.
\]

Then there are integers \( u_2, \ldots, u_n \) for which \( q' = \lambda \), where

\[
0 < \lambda < 2 \mathcal{L}^{-1/(m-1)},
\]

by the inductive hypothesis. Hence

\[
q(u_1, u_2^k u_3, \ldots, u_n^k u_n) = -\mathcal{L}(u_1 + \alpha u_2 u_3)^2 + \lambda u_2^2,
\]

for some \( \alpha^2 \). By the case \( n = 2 \) of the lemma we can satisfy

\[
0 < -\mathcal{L}(u_1 + \alpha^2 u_2)^2 + \lambda u_2^2 < 2 (\lambda \mathcal{L})^{1/2}
\]

in integers \( u_1, u_2 \); this is sufficient for our purpose unless

\[
\lambda \mathcal{L} > 1
\]

Thus we suppose \((3.26)\) true. If \( \lambda \leq 2 \), we choose an integer \( u_1 \) to satisfy

\[
|u_1 + \alpha| \leq \frac{1}{2}
\]

and, since \( \lambda - 2 \leq 0 \),

\[
\frac{1}{4} \leq \mathcal{L}^{-2} \leq \mathcal{L}^{-1} \lambda,
\]

by \((3.23)\) and \((3.26)\), we have

\[
\mathcal{L}^{-1}(\lambda - 2) \leq (u_1 + \alpha^2)^2 < \mathcal{L}^{-1} \lambda,
\]

which gives \((3.18)\) with \( u_3 = 1 \). If \( \lambda > 2 \), \((3.25)\) implies that

\[
0 < \mathcal{L} < 1.
\]

We therefore have the inequality

\[
(\lambda + 2)^2 > 8 \mathcal{L}^{-1/(m-1)}, \quad \forall \ n \geq 5,
\]
and so, by (3.25), \( \lambda < \frac{(b+2)^2}{4b} \).

Thus
\[
\lambda^{1/2} + (\lambda-2)^{1/2} < \frac{b+2}{2} + \frac{2-\lambda}{2} = b^{1/2},
\]
and so
\[
\lambda^{1/2} - (\lambda-2)^{1/2} = 2\sqrt{\lambda^{1/2} + (\lambda-2)^{1/2}} > b^{1/2}.
\]
Hence there is an integer \( u \) satisfying (3.27). The lemma is now established when \( |s| > 8 \).

(ii) General case. Let \( \varphi \) be expressed in the form
\[
\varphi = \sum_{i=1}^{s} \xi_i^2 + \cdots + \xi_n^2 - \sum_{j=i+1}^{s} \xi_j^2 - \cdots - \xi_n^2 \quad (n = r + s, s = \lambda - c),
\]
where \( \xi_1, \ldots, \xi_n \) are real linear forms in the variables \( u_1, \ldots, u_n \).
Then we say that \( \varphi \) is of type \((r, c)\). Let \((r', c')\) be any positive integers satisfying
\[
r' \equiv r \pmod{4}, \quad c' \equiv c \pmod{4}, \quad r' + c' = n.
\]
Then the following principle due to Watson is sufficient for our purpose.

For \( n > 4 \), there exists a form \( \varphi' \) in the \( n \) variables \( u_1, \ldots, u_n \) with the same determinant as \( \varphi \) and of type \((r', c')\) with the property that it represents, for integral values of the variables, the same set of values as \( \varphi \).

Thus, in particular, there is such a form \( \varphi' \) with signature \( s' \) satisfying \( s' \leq 4 \), and clearly it must be indefinite.

Proof of Theorem 3.2 when \( n > 2 \). We suppose that the theorem is valid for polynomials in \( n-1 \) variables, and then prove it valid for \( n \) variables. Since the theorem has been established for two variables, the result follows by induction.
There is again no loss of generality in taking $|\Delta| = 2$, and it now suffices to show that there are integers $u_1, \ldots, u_n$ for which

$$|\delta| \leq 1$$

provided that $n \leq 9$ when $|s| = n - 1$. By Lemma 3.3, we may suppose that $L_1, \ldots, L_{n-1}$ are linear forms in the $n-1$ variables $u_1, \ldots, u_{n-1}$ with determinant $\Delta' = 0$. If $|s| = n - 1 \leq 8$, it is well known [5] that we can apply a further unimodular substitution to the variables $u_1, \ldots, u_{n-1}$ to ensure that the coefficient of $u_i^2$, say $a_i$, satisfies

$$0 < \kappa a_i \leq 2 |\Delta'|^{2/(n-1)}$$

where

$$\kappa = \begin{cases} 1 & \text{if } s = n - 1, \\ -1 & \text{if } s = -(n-1). \end{cases}$$

Otherwise, if $|s| = n - 1$, we can ensure that $a_i$ satisfies (3.29) with

$$\kappa = \begin{cases} 1 & \text{if } -(n-3) < s \leq n - 3, \\ -1 & \text{if } s = -(n-3), \end{cases}$$

by Lemma 3.4.

Thus in either case we may suppose, by considering $-\delta$ in place of $\delta$ if necessary, that

$$0 < a_i \leq 2 |\Delta'|^{2/(n-1)}.$$ 

We write

$$\delta = a_1 \tilde{L}_1 + a_2 \tilde{L}_2 + \ldots + a_{n-2} \tilde{L}_{n-1} + a_n + c,$$

where

$$\tilde{L}_i = \sum_{s=1}^{n-1} \alpha_{s} u_s \quad (s = 1, \ldots, n-1), \quad \tilde{L}_n = \sum_{s=1}^{n} \alpha_{s} u_s,$$

$$\alpha_n = 1, \quad \alpha_{n-1} = 0 \quad (s = 2, \ldots, n-1).$$
To evaluate the absolute value of the determinant \( \Lambda \), say, of the linear forms \( a_1 \xi_1, \xi_2, \ldots, \xi_n \) we consider the quadratic form

\[
\xi_1^2 + \xi_2^2 + \cdots + \xi_n^2 + a_{n+1} \xi_{n+1} + c \xi_{n+1}^2
\]

in the original \( n \) variables \( \xi_1, \ldots, \xi_n \) and a new variable \( \xi_{n+1} \). Its determinant \( \pm 1 \) is clearly left invariant under unimodular substitutions applied to \( \xi_1, \ldots, \xi_n \). Thus the quadratic form

\[
a_{1} \xi_1^2 + a_{2} \xi_2^2 + \cdots + a_{n} \xi_n^2 + a_{n+1} \xi_{n+1} + c \xi_{n+1}^2
\]

also has determinant \( \pm \frac{1}{4} \Lambda^2 = \pm 1 \), and so \( |\Lambda| = 2 \). Hence, comparing determinants,

\[
|\Delta'\alpha_{\infty}| = 2.
\] (3.33)

It is convenient to express \( \mathcal{G} \) in the form

\[
\mathcal{G} = a \left( \eta_1 + \xi \right)^2 + \eta_2^2 + \cdots + \eta_{n-1}^2 + \eta_n + c',
\]

where the absolute value of the determinant of \( \eta_1, \ldots, \eta_n \) in the \( n-1 \) variables \( \eta_1, \ldots, \eta_n \) is

\[
a^{-\frac{1}{2}} |\Delta'\alpha_{\infty}| = 2 a^{-\frac{1}{2}},
\]

by (3.33). The theorem is trivial if \( |\alpha_{\infty}| \leq 2 \) since for any values of \( \eta_1, \ldots, \eta_{n-1} \) we can always choose an integer \( \eta_n \) so that

\[
|\mathcal{G}| \leq \frac{1}{2} |\alpha_{\infty}| \leq 1.
\]

We therefore suppose that \( |\alpha_{\infty}| > 2 \), which implies that \( |\Delta'| < 1 \), by (3.33), and hence

\[
0 < a < 2.
\] (3.34)

Consider the polynomial

\[
\mathcal{G} = \mathcal{G}(\eta_1, \ldots, \eta_n) = \frac{1}{2} \eta_1^2 + \cdots + \frac{1}{2} \eta_{n-1}^2 + \eta_n + c'.
\]
If \(|s| = n-1 \leq 8\), the quadratic section of \(\tilde{\phi}\) is a definite quadratic form in \(u_2, \ldots, u_n\), while, if \(|s| = n-1\), our choice of \(a\) in (3.29) and (3.31) ensures that the quadratic section of \(\tilde{\phi}\) is an indefinite quadratic form in \(u_2, \ldots, u_n\). In either case, therefore, we can apply the inductive hypothesis to \(\tilde{\phi}\) to establish the existence of integers \(u_1, \ldots, u_n\) for which

\[\tilde{\phi} = -\lambda,\]

where

\[\frac{1}{4} a - 1 < \lambda \leq \frac{1}{4} a - 1 + 2 \left( \frac{1}{2} \right)^{\frac{1}{2^n}}.\]

With these values of \(u_1, \ldots, u_n\) we have

\[\|\phi\| = a(u_1 + \omega)^2 - \lambda,\]

for an appropriate value of \(\omega\). If

\[\frac{1}{4} a - 1 < \lambda < 0,\]

we can always choose an integer \(u_1\) so that

\[|u_1 + \omega| \leq \frac{1}{2},\]

and then

\[|\phi| < \frac{1}{4} a + (1 - \frac{1}{4} a) = 1.\]

Thus we can suppose that

\[0 \leq \lambda \leq \frac{1}{4} a - 1 + 2 a^{1/2^n},\]

or, if \(\xi^2 = a\lambda\), that

\[0 \leq \xi^2 \leq \frac{1}{4} a^2 - a + 2 a^{1/2^n}.\] \hspace{1cm} (3.36)

Hence, by Lemma 3.2, there is an integer \(u_1\) satisfying

\[|a(u_1 + \omega)^2 - a^{1/2} \xi^2| \leq 1,\]

by (3.34), (3.35), (3.36). This completes the proof of the theorem.

Remark. If \(|s| = n-1 \geq 9\), the argument above gives a constant

\[\left\{ \frac{1}{2} \left( \frac{\sqrt{n-1}}{2} \right)^{\frac{1}{2}} \right\}^2 \left( \frac{\sqrt{n+1}}{2} \right)^{2(n+1)}\]


in place of $a^{2/(n-1)}$ on the right-hand side of (3.5). This is asymptotically equivalent to Macbeath's constant $\zeta_n^{2/(n-1)}$ in (3.3), for large values of $n$, when we introduce Blichfeldt's estimate for $\gamma_{n-1}$.

3.4. Before proving the general case of Theorem 3.1 we require a further lemma.

**Lemma 3.5.** For $n \geq 3$ suppose that the equations

\[ L_1 = \ldots = L_{n-1} = 0 \]

have no solution in integers other than $0, \ldots, 0$. Then the singular quadratic form

\[ \pm L_1^2 + \ldots + L_{n-1}^2 \]

in the variables $u_1, \ldots, u_n$ assumes an arbitrarily small non-zero value for integers $u_1, \ldots, u_n$.†

**Proof.** If we write

\[ \Lambda_n = \sum_{s=1}^{n} \alpha_{\ell s} u_s \quad (\ell = 1, \ldots, n-1), \quad (3.37) \]

the matrix $(\alpha_{\ell s})_{n \times n}$ has rank $n-1$ by the hypothesis, and we may suppose, without loss of generality, that

\[ \Delta_1 = \|\gamma_{\ell s}\|_{\ell = 1, \ldots, n-1} \neq 0. \]

For any $c > 0$, there are an infinity of integers $u_1, \ldots, u_n$ satisfying

\[ |\Delta_1| \leq c (n-1)^{1/2} \quad (\ell = 1, \ldots, n-1), \quad |u_n| \leq c (n-1)^{-(n-1)/2} \quad |\Delta_1|, \quad (3.38) \]

by Minkowski's theorem on linear forms and our hypothesis concerning $L_1, \ldots, L_{n-1}$. Hence

\[ |\pm L_1^2 + \ldots + L_{n-1}^2| \leq c \]

† It is assumed that $L_1, \ldots, L_{n-1}$ are linearly independent.
for integers \( u_1, \ldots, u_N \) and, unless
\[
\pm l_1^2 + \cdots + l_N^2 = 0,
\]
when
\[
\pm l_1^2 + \cdots + l_N^2 = \pm (l_1^2 + \cdots + l_N^2),
\]
there is nothing further to prove. Suppose that there are integers
\[
(u_1, \ldots, u_N) = (0, \ldots, 0)
\]
for which
\[
\pm l_1^2 + \cdots + l_N^2 = 0.
\]
Consider first the cases \( n = 3 \) and \( 4 \).

If \( n = 3 \), it is well known (II, Theorem 3) that there are integers \( u_1, u_2, u_3 \) satisfying
\[
0 < (l_1 - l_2)(l_1 + l_2) < \varepsilon.
\]

If \( n = 4 \), each of the integer-vectors \( u_1, \ldots, u_4 \) satisfying (3.38) gives rise to a point \((x_1, x_2, x_3) = (l_1, l_2, l_3)\) in 2-dimensional projective space \( \mathbb{P}^2 \). Two at least of these points, say \( P(\xi_1, \xi_2, \xi_3) \) and \( Q(\eta_1, \eta_2, \eta_3) \) must be distinct, and, unless they both lie on the conic
\[
\alpha_1^2 = (\alpha_2^2 - \alpha_3^2) = 0,
\]
there is nothing further to prove. If, however, they both lie on this conic, then \( P + Q \) does not, for we cannot have three collinear points on a conic, and hence
\[
0 < \left| (\xi_1 + \eta_1)^2 - (\xi_2 + \eta_2)^2 - (\xi_3 + \eta_3)^2 \right| < 4\varepsilon.
\]
In other words, there are integers \( u_1, \ldots, u_4 \) satisfying
\[
0 < \left| l_1^2 + (l_2^2 - l_3^2) \right| < 4\varepsilon,
\]
which is again the required result.
We now suppose that \( n \geq 5 \) and, by interchanging the \( \ell_1, (\ell = 1, \ldots, n-1) \) if necessary, that
\[
\pm \ell_1^2 \pm \cdots \pm \ell_{n-1}^2 = \ell_1^2 \pm \cdots \pm \ell_{n-1}^2 = 0
\]
for relatively prime integers \( (u_{n}, \ldots, u_{n}) \). By applying a suitable integral unimodular substitution to \( u_{n} \), we may assume further that
\[
(u_{1}, u_{2}, \ldots, u_{n}) = (1, 0, \ldots, 0).
\]
If we again write
\[
L_{\alpha} = \sum_{s=1}^{n} \alpha_{\alpha s} u_{s} \quad (\alpha = 1, \ldots, n-1),
\]
where the \( \alpha_{\alpha s} \) are not necessarily the same as before, the rank of the matrix \( (\alpha_{\alpha s})_{n \times n} \) is \( n-1 \) by hypothesis. Let \( a_{i} \) \( (i = 1, \ldots, n) \) denote the column vector in \( (\alpha_{\alpha s})_{n \times n} \) and let \( A_{i} \) \( (i = 1, \ldots, n) \) denote the \( n-1 \times n-1 \) matrices formed from \( (\alpha_{\alpha s})_{n \times n} \) by omitting the \( i \)th column. Since the rank of \( (\alpha_{\alpha s})_{n \times n} \) is \( n-1 \), at least one of \( |A_{i}| \) \( (i = 1, \ldots, n) \) does not vanish. Consider the effect on \( (\alpha_{\alpha s})_{n \times n} \) of a substitution of the type
\[
u_{\alpha} = \nu_{\alpha} + \delta_{\alpha i} u_{j} \quad (\alpha = 1, \ldots, n), \tag{3. 39}
\]
where \( 1 \leq i, j \leq n \) \( (i \neq j) \), \( \delta_{\alpha i} = 1 \) if \( \alpha = i \), \( \delta_{\alpha i} = 0 \) otherwise, \( (3. 40) \)
applied to the forms \( L_{1}, \ldots, L_{n-1} \). For convenience of notation, denote the new matrix of coefficients by \( (\alpha'_{\alpha s})_{n \times n} \) and use \( a'_{i}, A'_{i} \) with their natural meanings. Then clearly \( a'_{k} = a_{k} \) for \( k \neq i \), and \( a'_{i} = a_{i} + a_{j} \) and so
\[
|A'_{k}| = |A_{k} | \quad (k \neq i), \quad |A'_{i}| = (|A_{i}| \pm |A_{j}|).
\]
If, for any \( i \geq 2 \), \( |A_i| = 0 \), we can find \( j \) so that \( |A_j| = \sigma_j \), and then the substitution (3.39) makes \( |A_i'| = 0 \).

We are allowed to perform any substitution of type (3.39) with \( i \geq 2 \), and so it follows that the set of forms given by (3.37) may be replaced by an equivalent set for which

\[
\sum_{u=1}^{\sigma_n} - \sum_{u=1}^{\sigma_n} = 0 \quad |A_b| = 0 \quad (b = 2, \ldots, n)
\]

If we put \( u_n = 0 \), \( l_{1n}^2 \ldots - l_{n1}^2 \) is a quadratic form in \( n-1 \geq 4 \) variables \( u_1, \ldots, u_{n-1} \) with determinant \( |A_n| = 0 \). Moreover, it represents zero for integers \((u_1, u_2, \ldots, u_{n-1}) = (0, 0, \ldots, 0) \pm (0, \ldots, 0)\) and so it is indefinite. Hence, by theorems given by Oppenheim ([23], II and III), it represents arbitrarily small non-zero values unless it is a multiple of a form with rational coefficients. In the latter case, all the terms in the original form \( + (l_{1n}^2 \ldots - l_{n1}^2) \) which do not involve \( u_n \) are in a rational ratio. If we repeat the argument with \( u_{n-1} = 0 \) and with \( u_{n-2} = 0 \), since there is no term in \( + (l_{1n}^2 \ldots - l_{n1}^2) \) involving three variables, we deduce that either 

\[
+ (l_{1n}^2 \ldots - l_{n1}^2)
\]

assumes an arbitrarily small non-zero value for integers \( u_1, \ldots, u_n \) or it is equivalent to a multiple of a rational form in \( n \) variables. In the latter case, by Lemma 3.3, \( + (l_{1n}^2 \ldots - l_{n1}^2) \) is equivalent to a multiple of a non-singular rational quadratic form in \( n-1 \) variables, and we now show that this is impossible by our hypothesis concerning \( l_{1n}, \ldots, l_{n1} \). For, after applying a suitable unimodular substitution to the variables \( u_1, \ldots, u_n \) we may assume that 

\[
+ (l_{1n}^2 \ldots - l_{n1}^2)
\]

is a non-singular quadratic form in the \( n-1 \) variables \( u_1, \ldots, u_{n-1} \). We may write

\[
\sum_{s=1}^{n} l_{ns} = \sum_{s=1}^{n} u_s
\]

(\( n = 1, \ldots, k \)).
where \( \Delta = \prod \alpha_{i,j} \forall \alpha_{i,j}, i = 1, \ldots, n \neq 0. \) Then, by differentiating
\[ \sum_{i=1}^{n} \left( \alpha_{1,n} l_1 + \alpha_{2,n} l_2 + \cdots + \alpha_{n,n} l_n \right) \]
partially with respect to \( u_n \), we have
\[ \alpha_{1,n} l_1 + \alpha_{2,n} l_2 + \cdots + \alpha_{n-1,n} l_{n-1} = 0 \]
since the quadratic form, when expressed in terms of the \( u_i \) \( (i = 1, \ldots, n) \), is independent of \( u_n \). Hence

\textit{either} (i) \( l_1, \ldots, l_{n-1} \) are linearly dependent
\textit{or} (ii) \( \alpha_{1,n} = \alpha_{2,n} = \cdots = \alpha_{n-1,n} = 0 \).

Clearly (i) is impossible since \( \Delta \neq 0 \). In (ii), none of the forms \( l_1, \ldots, l_{n-1} \) involve \( u_n \) and so the equations \( l_1 = \cdots = l_{n-1} = 0 \) are soluble with
\[ (u_1, \ldots, u_{n-1}, u_n) = (0, \ldots, 0, 1), \]
which is contrary to the hypothesis of the lemma. This completes the proof.

\textbf{Proof of Theorem 3.1 when } \( n > 2 \). As in the proof of Theorem 3.2 we suppose that the theorem is true for \( n-1 \) variables and then prove it is true for \( n \) variables, the case \( n=2 \) having been established independently. The proof divides into two parts according as the \( n-1 \) equations
\[ l_1 = \cdots = l_{n-1} = 0 \quad (3.41) \]
have, or do not have, a non-trivial solution in integers \( u_1, \ldots, u_n \).

If the equations (3.41) have a non-trivial solution in integers \( u_1^*, \ldots, u_n^* \) which we may take to be relatively prime, we may suppose, by applying a suitable unimodular substitution to the variables
that
\[(u_1^v, \ldots, u_{n-1}^v, u_n^v) = (0, \ldots, 0, 1)\].

Then \(L_1, \ldots, L_{n-1}\) are linear forms in the \(n-1\) variables \(u_1, \ldots, u_{n-1}\) only. We may write
\[\\Phi = q(u_1, \ldots, u_{n-1}) + L_n + c, \tag{3.42}\\]
where
\[q(u_1, \ldots, u_{n-1}) = \sum_{i=1}^{n-1} \alpha_{iS} u_i u_S, \quad (\alpha_{iS} = \alpha_{S_i}),\]
\[L_n = \sum_{S=1}^{n-1} \alpha_{N\alpha} u_S,\]
and, if \(D = \left| \alpha_{N\alpha} \alpha_{S\alpha}, \ldots, \alpha_{n-1}\alpha_{\alpha S} \right|\) comparing determinants we see that
\[\Delta = \left| D \right| \alpha_{\alpha n}.\]

Since \(\Delta \neq 0\), by hypothesis, it follows that \(\alpha_{\alpha n} \neq 0\). If we take all the variables to be zero except \(u_n, u_S, u_{\alpha}\) where \(1 \leq \alpha, S \leq n-1\), we have
\[\\Phi = \alpha_{N\alpha} u_n^2 + 2\alpha_{N\alpha} u_n u_S + \alpha_{S\alpha} u_S^2 + \alpha_{N\alpha} u_n + \alpha_{NS} u_S + \alpha_{NN} u_n + c.\]

Now put \(u_S = 0\). Then, by Lemma 3.1 with
\[\Theta_1 = \alpha_{NN}^{-1} \alpha_{N\alpha}, \quad \Theta_2 = \alpha_{NN}^{-1} \alpha_{\alpha N},\]
it follows that \(\Phi\) assumes an arbitrarily small value for integers \(u_n, u_{\alpha}\) unless the ratios
\[\alpha_{NN}^{-1} \alpha_{N\alpha}, \quad \alpha_{NN}^{-1} \alpha_{\alpha N} \quad (n = 1, \ldots, n-1)\]
are all rational. We therefore suppose that this is the case and now take \(u_n = u_{\alpha}\). By a further application of Lemma 3.1 with
\[\Theta_1 = \alpha_{NN}^{-1} (\alpha_{NN} + 2\alpha_{NS} + \alpha_{SS}), \quad \Theta_2 = \alpha_{NN}^{-1} (\alpha_{NN} + \alpha_{NS}),\]
we deduce that \(\Phi\) again assumes an arbitrarily small value for
integers $u_n, u_h$ unless the ratios
\[ \alpha_{n-s} \alpha_{n-h} \quad (s, h = 1, \ldots, n-1) \]
are all rational. However, this is impossible since the coefficients of $c - \alpha$ are not all in a rational ratio, and we therefore have the required result.

If the equations (3.41) have no solution in integers $(u_1, \ldots, u_n)$ other than $(0, \ldots, 0)$, then, by Lemma 3.5, $L_1^2 + \cdots + L_{n-1}^2$ assumes an arbitrarily small non-zero value for integers $(u_1^*, \ldots, u_n^*)$, say. We may assume that these integers are relatively prime, and by applying a suitable unimodular substitution to the variables $u_1, \ldots, u_n$ we may suppose further that $(u_1^*, \ldots, u_n^*) = (1, 0, \ldots, 0)$. Thus, for any $\epsilon > 0$, we may write
\[ \frac{1}{} \bar{\alpha} = \alpha (\bar{L}_1 + \alpha)^2 + \bar{\beta}(u_2, \ldots, u_n), \]
where $0 < \alpha < \epsilon$.

Here $\bar{L}_1$ is a linear form in $u_1, \ldots, u_n$ with the coefficient of $u_1$ equal to unity and $\bar{\beta} = \bar{\beta}(u_1, \ldots, u_n)$ is a polynomial of the form
\[ \bar{\beta} = \bar{L}_1^2 + \cdots + \bar{L}_{n-1}^2 + \bar{L}_n + \bar{c}, \]
$\bar{L}_1, \ldots, \bar{L}_n$ being linear forms in $u_1, \ldots, u_n$ of determinant $\pm \frac{1}{2} \Delta$.

If the coefficients of $\bar{\beta} - \bar{c}$ are not all in a rational ratio, by our inductive hypothesis, there exist integers $u_1, \ldots, u_n$ satisfying
\[ |\bar{\beta}| < \frac{1}{2} \epsilon. \]

If we now choose an integer $u_1$ so that
\[ |\bar{L}_1 + \alpha| < \frac{1}{2}, \]
we have, for these values of $u_2, \ldots, u_n$
\[ |\beta| < \frac{1}{2} \epsilon + \frac{1}{2} \epsilon = \epsilon. \]
Alternatively, if the coefficients of $\tilde{p} - \bar{c}$ are all in a rational ratio, we apply Theorem 3.2 or Macbeath's theorem [19] for polynomials in $n$ variables. Thus there are integers $u_2, \ldots, u_n$ for which $\tilde{p} = -\lambda$, where

$$0 \leq \lambda \leq 2 \left( C_n |\Delta| a^{-\frac{1}{2}} \right)^{\frac{1}{2n}},$$

$$0 \leq a \lambda \leq 2 a^{-1/n} \left( C_n |\Delta| \right)^{\frac{1}{2n}}$$

for some constant $C_n$ depending only on $n$. For these values of $u_2, \ldots, u_n$, we have

$$\pm \tilde{p} = a (u_1 + \alpha)^2 - \lambda.$$  

We can always choose an integer $u_1$ such that

$$u_1 + \alpha = (a^{-1} \lambda)^{\frac{1}{2}} + \Theta,$$

where $\Theta$ is a suitable real number satisfying

$$|\Theta| \leq \frac{1}{2}.$$  

(3.44)

With this value of $u_1$, we have

$$\pm \tilde{p} = 2 (a \lambda)^{\frac{1}{2}} \Theta + a \Theta^2,$$

and hence

$$|\tilde{p}| \leq (a \lambda)^{\frac{1}{2}} + \frac{1}{4} a = O(a)$$

by (3.43) and (3.44). Since $0 < a < 0$ and $\epsilon$ is arbitrary, it follows that $|\tilde{p}|$ can be made arbitrarily small for integers $u_1, \ldots, u_n$. This completes the proof of the theorem.
4.1. Let $\Lambda_n$ be a lattice of determinant $\Delta_n > 0$ in some $n$-dimensional Euclidean space $\mathbb{E}_n$. The problem of finding infinite regions in $\mathbb{E}_n$ which contain the origin and $n$ further generating points of $\Lambda_n$ has already been considered by Minkowski. In particular, Minkowski [22] proved by simple geometrical arguments that the region

$$|x_1, x_2| \leq \frac{1}{2} \Delta_2$$

always contains two generating points of $\Lambda_2$. Chalk [7] obtained a generalisation of this result, and later suggested the following conjecture [8], which he proved for $n = 3$ and $4$.

**Conjecture.** There exist $n$ lattice points, generating $\Lambda_n$ in the region

$$|x_1, \ldots, x_n| \leq \frac{1}{2} \Delta_n.$$

Clearly the conjectured inequality, if true for general $n$, would be best possible when the lattice $\Lambda_n$ is of the form

$$x_i = u_i + \frac{1}{2} u_n \quad (i = 1, \ldots, n-1), \quad x_n = u_n.$$

Further results of a slightly different nature concerning generating points in $\mathbb{E}_2$ and $\mathbb{E}_3$ have also been obtained by Chalk and Rogers [9], Barnes [13] and Oppenheim [25].

Our object is to prove the following two theorems, which
yield information about sets of generating points of $\lambda_3$ in the three dimensional region $|x_1^2 + x_2^2 - x_3^2| \leq 1$.

**THEOREM 4.1.** If $\lambda_3$ has a point, other than the origin, on the surface $x_1^2 + x_2^2 - x_3^2 = 0$, the region

$$|x_1^2 + x_2^2 - x_3^2| \leq \Delta_3^{2/3}$$  \hspace{1cm} (4.1)

contains a set of three generating points of $\lambda_3$.

**THEOREM 4.2.** If $\lambda_3$ has no point, other than the origin, on the surface, $x_1^2 + x_2^2 - x_3^2 = 0$, the region

$$|x_1^2 + x_2^2 - x_3^2| \leq \left(\frac{27}{25} \Delta_3^2\right)^{1/3}$$  \hspace{1cm} (4.2)

contains a set of three generating points of $\lambda_3$.

We shall show that the inequalities (4.1) and (4.2) are best possible. Before doing so, however, it is convenient to restate Theorems 4.1 and 4.2 in terms of indefinite quadratic forms in three variables. For, if $\lambda_3$ is given by equations of the form

$$x_\lambda = \sum_{s=1}^{3} \alpha_{\lambda,s} u_s \hspace{1cm} (\lambda = 1, 2, 3),$$

where $\Delta_3 = \prod_{s=1}^{3} x_{\lambda,s}$, clearly $x_1^2 + x_2^2 - x_3^2$ may be expressed as an indefinite quadratic form

$$\varphi(u_1, u_2, u_3) = \sum_{s=1}^{3} \sum_{s=1}^{3} \alpha_{s,s} u_s u_s \hspace{1cm} (\alpha_{s,s} = \alpha_{s,s})$$

for appropriate $\alpha_{s,s}$ ($\lambda, s = 1, 2, 3$), with determinant

$$D = \prod_{s=1}^{3} x_{\lambda,s} \hspace{1cm} (\lambda, s = 1, 2, 3).$$

On comparison of determinants, we see that

$$D_3 = -\Delta_3^2 < 0.$$ 

The following Theorems 4.1, 4.2, which are expressed in terms of
quadratic forms, contain the assertions of Theorems 4.1, 4.2 respectively, and we prove them in this form.

**THEOREM 4.1**. If \( q(u_1, u_2, u_3) \) represents zero non-trivially, it is equivalent to a form for which

\[
|a_{ccc}| \leq \left( \frac{D_3}{3} \right)^{1/3} \quad (c = 1, 2, 3) \tag{4.1}
\]

with strict inequality unless \( q \sim \lambda q_2 \) or \( \lambda q_1 \) where

\[
q_2 (u_1, u_2, u_3) = 2u_1u_2 + u_3^2
\]

and

\[
q_1 (u_1, u_2, u_3) = 2u_1u_2 + u_1^2 + u_1u_3 + u_3^2.
\]

**THEOREM 4.2**. If \( q(u_1, u_2, u_3) \) does not represent zero non-trivially, it is equivalent to a form for which

\[
|a_{ccc}| \leq \left( \frac{2}{2^2} \left| D_3 \right| \right)^{1/3} \quad (c = 1, 2, 3) \tag{4.2}
\]

with strict inequality unless \( q \sim \lambda q_2^* \) where

\[
q_2^* (u_1, u_2, u_3) = u_1^2 + u_1u_2 - u_2^2 + \frac{3}{2} u_3^2.
\]

The proof of Theorem 4.1 \( \star \) in \S 4.2 divides into two cases, in one of which we use an elementary result in the theory of continued fractions (Lemma 4.1) to replace the inequalities (4.1) \( \star \) by

\[
|a_{ccc}| < \varepsilon \quad (c = 1, 2, 3)
\]

\( \dagger \) We observe that the unimodular substitution

\[
u_1 = u_1, \quad u_2 = u_1 + u_3, \quad u_3 = u_3
\]

transforms \( q_2 \) into \( q_2^* \) where

\[
q_2 (u_1, u_2, u_3) = u_1^2 - u_2^2 + \frac{3}{2} u_3^2 + u_1u_2 + u_1u_3 - 2u_2u_3.
\]
for any $c > 0$. The other case is less trivial and the proof depends upon a theorem ([18], Theorem 1) of Macbeath (Lemma 4.2) on values of a quadratic polynomial in two variables.

The proof of Theorem 4.2 is rather different and is based upon four further lemmas. Lemma 4.3, which is needed as a starting point for the proof of the theorem, is classical and gives the first 'minimum' for an indefinite quadratic form in three variables. Lemma 4.4 is a straightforward extension, to a two-dimensional asymmetric hyperbolic region, of Minkowski's original theorem on generating points of $A^2$. The result stated in Lemma 4.5 is a special case of a recent theorem of Watson on values of a non-zero binary quadratic form. Finally, Lemma 4.6 gives a useful inequality for a quadratic in a single integral variable, and its proof is contained in that of Lemma 3.2.

4.2. For the proof of Theorem 4.1 we require the following two lemmas.

**Lemma 4.1.** If $\alpha$ is a given positive irrational number and $c > 0$, the inequalities

$$0 < |p_\alpha - p_n| < c \quad \text{and} \quad 0 < |q_n \alpha - p_n| < c$$

are always soluble in integer pairs $(p_n, q_n)$ and $(p_n \mu, q_n \mu)$ with

$$p_n q_n \mu - p_n q_n = 1.$$

**Proof.** Take $p_n / q_n \to p_n \mu / q_n \mu$ to be successive convergents to the continued fraction for $\alpha_j$ with $n$ odd and sufficiently large.
**Lemma 4.2.** If \( L_1, L_2 \) are two real linear forms in the variables \( u_1, u_2 \) with determinant \( \Delta \neq 0 \), and \( c \) is any real number, the inequalities
\[
|L_1^2 + L_2 + c| < \left( \frac{1}{2} |\Delta| \right)^{2/3}
\]
are always soluble in integers \( u_1, u_2 \) unless
\[
L_1^2 + L_2 + c \sim \lambda (u_1^2 + u_1 + 2u_2 + 1).
\]
The proof is contained in Theorems 3.1 and 3.2.

**Proof of Theorem 4.1.** By considering a positive multiple of \( \varphi = \varphi (u_1, u_2, u_3) \) in place of \( \varphi \), if necessary, we may assume that \( |D_3| = 1 \). Then it suffices to prove that, unless \( \varphi \sim \lambda \varphi_0 \) or \( \lambda \varphi_1 \), the inequalities
\[
|\varphi(u_{1s}, u_{2s}, u_{3s})| < 1 \quad (s = 1, 2, 3)
\]
are soluble in integers \((u_{1s}, u_{2s}, u_{3s})\) with \( \|u_{1s}\|, \|u_{2s}\|, \|u_{3s}\| = 1 \), since the integral unimodular substitution
\[
u_s = \sum_{s=1}^{3} u_{1s} u_s \quad (s = 1, 2, 3)
\]
will transform \( \varphi \) into a form each of whose diagonal coefficients is less than 1 in absolute value.

As \( \varphi \) represents zero non-trivially, we may suppose, after applying an integral unimodular substitution to the variables, that \( q_{11} = 0 \) and hence \( \varphi \) now takes the form
\[
\varphi (u_1, u_2, u_3) = 2 (q_{12} u_2 + q_{13} u_3) u_1 + q_{22} u_2^2 + 2q_{23} u_2 u_3 + q_{33} u_3^2.
\]
Since \( D_3 \neq 0 \), the coefficients \( q_{12}, q_{13} \) cannot both be zero.

By interchanging \( u_2, u_3 \) if necessary we may suppose that \( q_{12} \neq 0 \).
Two cases now arise according as the ratio $a_{13}/a_{12}$ is irrational or rational.

Suppose first that $a_{13}/a_{12}$ is irrational and let $c > 0$. By changing the signs of $u_2, u_3$ if necessary we may assume that $a_{12} > 0$, $a_{13} < 0$.

Choose $(u_{11}, u_{21}, u_{31}) = (1, 0, 0)$. By Lemma 4.1, since $(c/a_{12}) > 0$ there exist integer pairs $(u_{22}, u_{32})$ and $(u_{23}, u_{33})$ with $u_{22}u_{33} - u_{32}u_{23} = 1$ satisfying

$$0 < |u_{2s} + \frac{a_{13}}{a_{12}}u_{3s}| < \frac{c}{a_{12}} \quad (s = 2, 3).$$

For each pair $(u_{2s}, u_{3s})$ ($s = 2, 3$) we can always choose a corresponding integer $u_1 = u_{1s}$ ($s = 2, 3$) satisfying

$$|q(u_{1s}, u_{2s}, u_{3s})| \leq c$$

and (4.3) follows, with the triads $(1, 0, 0)$, $(u_{12}, u_{22}, u_{32})$ and $(u_{13}, u_{23}, u_{33})$, since $c$ may be arbitrarily small.

Now suppose that $a_{13}/a_{12} = p/q$, where $p, q$ are integers with $(p, q) = 1$. It is known that there exist integers $p', q'$ with $(p', q') = 1$ satisfying $|p'q' - p'q| = 1$. Then the integral unimodular substitution given by

$$u'_1 = u_1, \quad u'_2 = pu_2 + qu_3, \quad u'_3 = p'u_2 + q'u_3$$

will reduce $q$ to the form

$$q(u_1, u_2, u_3) = 2l_{12}u_1u_2 + l_{22}u_2^2 + 2l_{13}u_2u_3 + l_{33}u_3^2$$

for appropriate $l_{12}, ..., l_{33}$. Comparing determinants we see that

$$|l_{12}|l_{33} = (D_3) = 1.$$  (4.4)
If $|\mathcal{L}_{12}| < 1$ the result is easily proved. For we choose the triads $(1, 0, 0)$, $(\mathcal{L}_{12}, 1, 0)$ and $(\mathcal{L}_{13}, 1, 1)$ where $(\mathcal{L}_{12}, \mathcal{L}_{13})$ are the integers satisfying

$$ |2 \mathcal{L}_{12} u_{12} + \mathcal{L}_{12}| \leq |\mathcal{L}_{12}| < 1 $$

and

$$ |2 \mathcal{L}_{12} u_{13} + \mathcal{L}_{12} + 2 \mathcal{L}_{23} + \mathcal{L}_{33}| \leq |\mathcal{L}_{12}| < 1. $$

Now suppose that $|\mathcal{L}_{12}| > 1$ and hence $|\mathcal{L}_{33}| < 1$, by (4.4).

We first choose the triads $(1, 0, 0)$ and $(0, 0, -1)$. Then taking $u_2 = u_3 = 1$ we have on rearranging,

$$ q(u_1, 1, u_3) = \mathcal{L}_{33}(u_3 + \frac{\mathcal{L}_{23}}{\mathcal{L}_{33}})^2 + 2 \mathcal{L}_{12} u_1 + \mathcal{L}_{22} - \frac{\mathcal{L}_{33}^2}{\mathcal{L}_{13}}. $$

By Lemma 4.2, there are integers $u_{13}, u_{33}$ satisfying

$$ |q(u_{13}, 1, u_{33})| < \left(\frac{1}{2} \sqrt{|\mathcal{L}_{33}|} \cdot 2 |\mathcal{L}_{12}|\right)^{2/3}, $$

by (4.4). Thus (4.3) now follows with the triads $(1, 0, 0)$, $(0, 0, -1)$ and $(u_{13}, 1, u_{33})$.

It remains to consider the case when $|\mathcal{L}_{12}| = 1$, $|\mathcal{L}_{33}| = 1$.

By changing the signs of $q$, $u_1$, if necessary we may suppose that

$$ q(u_1, u_2, u_3) = 2u_1 u_2 + \mathcal{L}_{22} u_2^2 + 2 \mathcal{L}_{23} u_2 u_3 + u_3^2. $$

Further by absorbing integral multiples of $u_2, u_3$ into $u_1$ and changing the sign of $u_3$ if necessary we may suppose that

$$ |\mathcal{L}_{12}| \leq 1 \quad \text{and} \quad 0 \leq 2 \mathcal{L}_{23} \leq 1. $$

If $|\mathcal{L}_{12}| < 1$, the congruences

$$ \mathcal{L}_{12} \pm 2 \mathcal{L}_{23} \equiv 0 \pmod{2} $$

together imply that $\mathcal{L}_{22} = \mathcal{L}_{23} = 0$. Thus if $u_{13}, u_{33}$ are
integers satisfying
\[ |2u_{13} + b_{22} + 2b_{23} + 1| \leq 1 \]
and
\[ |2u_{13}' - b_{22} + 2b_{23} - 1| \leq 1 \]
respectively, it follows that \(|q| < 1\) for the triads \((1,0,0), (0,1,0)\) and \((u_{13}, 1, 1)\) or \((u_{13}', -1, 1)\) unless
\[ q = q_0 = 2u_1u_2 + u_3^2. \]
If \(|b_{23}| = 1\), then \(q\) is equivalent to the form
\[ q(u_1, u_2, u_3) = 2u_1u_2 + u_2^2 + 2b_{13}u_2u_3 + u_3^2. \]
Let \(u_{13}\) be an integer satisfying
\[ |u_{13} + b_{23} - 1| \leq \frac{1}{2}. \]
Thus \(|q| < 1\) for the triads \((1,0,0), (-1,2,-1)\) and \((u_{13}, -1, 1)\) unless \(2b_{23} = 1\), in which case
\[ q = q_1 = 2u_1u_2 + u_2^2 + u_2u_3 + u_3^2. \]

4.3. In this section we prove Theorem 4.2*. The proof is independent of Theorem 4.1* and uses the following four lemmas.

**Lemma 4.3.** The inequalities
\[ |q(u_1, u_2, u_3)| \leq \left(\frac{2}{3} |D_3| \right)^{1/3} \]
are always soluble in integers \((u_1, u_2, u_3) \neq (0, 0, 0)\).

For a proof of this classical result, which is the first of a sequence of minima of an indefinite quadratic form in three variables, see \(§5\) Theorem 83. We observe, in passing, that the particular form relating to the fourth minimum arises as the critical form \(q_1(u_1, u_2, u_3)\) in Theorem 4.2*.
**Lemma 4.4.** For any \( \Gamma > 0 \), the region
\[ -\Gamma \Delta_2 \leq x_1, x_2 \leq \frac{1}{\Lambda\Gamma} \Delta_2 \]
always contains two generating points of \( \Lambda_2 \).

**Proof.** Consider the tangent parallelogram \( \Pi_\varepsilon \) defined by
\[ |\varepsilon^{-1}x_1 + \varepsilon x_2 | \leq \sqrt{\frac{\Delta_2}{\varepsilon}} \quad |\varepsilon^{-1}x_1 - \varepsilon x_2 | \leq 2\sqrt{\Gamma \Delta_2} \].
Clearly \( \Pi_\varepsilon \) is symmetrical about the origin, and since it may be transformed by a linear substitution of determinant 2 into a rectangle having area \( 8\Delta_2 \), its area is \( \Lambda\Delta_2 \). By Minkowski's fundamental theorem, \( \Pi_\varepsilon \) contains a point of \( \Lambda_2 \), other than the origin 0. Further, by varying \( \varepsilon \) continuously, we can obtain a parallelogram \( \Pi_\varepsilon' \) which contains two independent points \( P, Q \) say of \( \Lambda_2 \) other than 0. Let \( P', Q' \) be the reflections of \( P, Q \) respectively in 0. If the parallelogram \( PP'Q'Q' \) contains points of \( \Lambda_2 \), other than 0, we simply replace it by a smaller parallelogram. Thus we assume that \( PP'Q'Q' \) does not contain any point of \( \Lambda_2 \), other than 0.

Since \( P, Q \) are lattice points, it follows that the area of the parallelogram with sides \( OP, OQ \) is an integral multiple of \( \Delta_2 \), say \( m\Delta_2 \). The area of the parallelogram \( PP'Q'Q' \) is \( 2m\Delta_2 \leq \Lambda\Delta_2 \) and so two possibilities arise according as \( m = 1 \) or \( 2 \). If \( m = 1 \), the parallelogram with sides \( OP, OQ \) has area \( \Delta_2 \) and hence \( P, Q \), together with 0, generate \( \Lambda_2 \).

If \( m = 2 \), the parallelogram \( PP'Q'Q' \) coincides with the original tangent parallelogram \( \Pi_\varepsilon \) and \( Q, \frac{1}{2}(P+Q) \) together with 0, generate \( \Lambda_2 \).
We observe that the two generating points obtained lie entirely inside the region considered if there is no point of \( \Lambda_2 \) on either bounding hyperbola. However if there is a point of \( \Lambda_2 \) on one of these hyperbolae the tangent parallelogram \( \Pi_\ell \), for suitable \( \ell \), through that point will have on its boundary two basis points lying inside the region unless there is a primitive point of \( \Lambda_2 \) on the other hyperbola. In this case \( \Lambda_2 \) is of the form

\[
\chi_1 = \frac{\ell}{2} \sqrt{\frac{\Delta_2}{2}} u_1 - \ell \sqrt{\frac{\Delta_2}{\Gamma}} u_2,
\]

\[
\chi_2 = \frac{1}{\sqrt{\ell}} \sqrt{\frac{\Delta_2}{2}} u_1 + \ell^{-1} \sqrt{\frac{\Delta_2}{\Gamma}} u_2.
\]

Restating the result, with \( \mu = \frac{1}{2\Gamma} \), we obtain the following corollary.

**COROLLARY.** If \( \mu > 0 \) and if \( q(u_1, u_2) = (\alpha u_1 + \beta u_2) (\delta u_1 + \gamma u_2) \) is an indefinite quadratic form in \( u_1, u_2 \) of determinant \( d = \frac{1}{4} (\alpha \delta - \beta \gamma)^2 \), the inequalities

\[
-\frac{1}{\mu} |d|^{1/2} < q(u_{15}, u_{25}) < \mu |d|^{1/2} \quad (s = 1, 2)
\]

are always soluble in integers \( (u_{15}, u_{25}) \) \( (s = 1, 2) \) with \( \|u_{15}\| \gamma s = 1, 2 \) unless

\[
q(u_{15}, u_{25}) \sim |d| \left( \mu u_{15}^2 - \mu^{-1} u_{25}^2 \right).
\]

A proof of the next lemma, due to Watson, is given for convenience as his has not been published. Let

\[
q = q(u_1, u_2) = a u_1^2 + 2b u_1 u_2 + c u_2^2
\]
denote an indefinite quadratic form in $u, u_2$ which does not
represent zero non-trivially and has determinant
\[ d = ac - b^2 < 0. \]

Denote by $\mathcal{P}, \mathcal{N}$ the lower bounds of the positive values of $\varphi, -\varphi$ respectively for all integers $(u, u_2) \neq (0, 0)$.

**Lemma 4.5.** $\mathcal{P} \mathcal{N} < (4 |d|)/5$,
with equality when $\varphi (u, u_2) = \lambda (u_1^2 + u_2 u_3 - u_3^2)$.

**Proof.**† We suppose $\mathcal{P} \mathcal{N} > 0$, for otherwise the result is obvious. Also if $\mathcal{P} = \mathcal{N}$ the result is well known (Theorem 119) since
\[ \mathcal{P} = \mathcal{N} \leq \frac{4}{\sqrt{5}} |d|. \]

By changing the sign of $\varphi$, if necessary, we may suppose that
\[ N < \mathcal{P}. \]

Hence
\[ N \leq \frac{4}{\sqrt{5}} |d|. \quad (4.5) \]

If we consider a suitable multiple of $\varphi$, instead of $\varphi$, we may take $\mathcal{P} = 1$, and it now suffices to prove that
\[ N \leq \frac{4}{5} |d|. \quad (4.6) \]

Let $\varepsilon > 0$. After applying an appropriate unimodular substitution to the variables $u, u_2$ we may assume that
\[ |1 - \varepsilon| < 1 + \varepsilon, \quad \frac{1}{2} \varepsilon \leq \delta \leq \varepsilon. \quad (4.7) \]

† The proof given here is an adaptation of that of Dr. Watson, who has very kindly let me include it in my thesis.
By our hypothesis concerning \( P \) and \( N \), it follows that either \( \varphi > 1 \) or \( \varphi < -N \) for all integers \((u_1, u_2) \neq (0, \infty)\).

The inequality (4.6) follows easily if \( |d| \geq \frac{5}{4} \). For in this case we have

\[
N \leq \sqrt[4]{\frac{2}{5} |d|} \leq \frac{4}{5} |d|
\]

by (4.5). Thus suppose now that

\[
|d| < \frac{5}{4}
\]

Since \( ac - \lambda^2 = d < 0 \) we have

\[
a \varphi < \lambda^2 \leq a^2
\]

by (4.7), and hence

\[
\varphi < a \quad \text{(4.9)}
\]

Thus either (i) \( |e| \leq \varphi < 1 + e \)

or (ii) \( e < 0 \).

In the first case

\[
\varphi(-1, 1) = a - 2 \lambda + e
\]

and by (4.7), (4.9) and the choice of \( e \), we have

\[
1 - 2(1 + e) + 1 < \varphi(-1, 1) < 1 + e - 2 + 1 + e \quad \text{since, using (4.7), } a > \frac{1}{2} a > 0
\]

or

\[
-2e < \varphi(-1, 1) < 2e,
\]

which is impossible if \( e \) is sufficiently small. Thus only the second case can arise, and we have therefore

\[
e \leq -N \quad \text{(4.10)}
\]

Now
\begin{align*}
|d| &= a|c| + \ell^2 > AN + \frac{1}{4} \ell^2, \text{ by } (4.10), \\
&> N + \frac{1}{4}, \text{ by } (4.1),
\end{align*}
so that
\[ N \leq |d| - \frac{1}{4} \leq \frac{4}{5} |d|, \]
by (4.8).

**Lemma 4.6.** If \( \alpha, \ell, \xi \) are any constants satisfying
\[
0 < \alpha < 1, \quad 0 < \ell^2 < |1 + \frac{1}{4} \ell^2|,
\]
the inequalities
\[
|\alpha (u + \alpha)^2 - \alpha^{-1} \ell^2| < 1
\]
are always soluble for an integer \( u \).

The proof follows immediately from Lemma 3.2.

**Proof of Theorem 4.2.** By considering a suitable positive multiple of \( q = q(u, u_1, u_3) \) in place of \( q \) if necessary, we can take \( D_3 = -2\ell / 2\gamma \). Then, as in the proof of Theorem 4.1, it suffices to prove that, unless \( q \sim \lambda \xi_2 \), the inequalities
\begin{equation}
|q(u_{1s}, u_{2s}, u_{3s})| < 1 \quad (s = 1, 2, 3) \tag{4.11}
\end{equation}
are always soluble in integers \( (u_{1s}, u_{2s}, u_{3s}) \), \( (s = 1, 2, 3) \), with \( \|u_{1s}\|_{1, s = 1, 2, 3} = 1 \).

If \( M \) denotes the lower bound of \( |q(u, u_1, u_3)| \) over all
integer triads \((u_1, u_2, u_3) \neq (0, 0, 0)\), then by a weaker form of Lemma 4.3 we have

\[ 0 < M < 9/10. \]

Suppose first that \(M > 0\). Then, for any \(\epsilon > 0\), the inequalities

\[ 0 < \|\{u_1, u_2, u_3\}\| < \epsilon \]

are always soluble in integers \(u_1, u_2, u_3\), and it follows that the inequalities

\[ 0 < \|\{u_1, u_2, u_3\}\| < \epsilon \]

are also soluble for any \(\epsilon > 0\) by Theorem 1.4 of Oppenheim ([23], I).

Now suppose that \(M = 0\) and choose \(\epsilon\) so that

\[ 0 < \epsilon < 1/81. \]

By the definition of \(M\), there are coprime integers \(u_1, u_2, u_3\) satisfying

\[ 0 < M < |\gamma| < M/(1-\epsilon) < 1. \]

Thus, if the inequalities \(0 < \|\{u_1, u_2, u_3\}\| < 1\) are insoluble in integers \(u_1, u_2, u_3\), then the inequalities \(0 < -\|\{u_1, u_2, u_3\}\| < 1\) are soluble in integers \(u_1, u_2, u_3\).

In either case, therefore, after applying a suitable unimodular substitution to the variables \(u_1, u_2, u_3\) we may ensure that

either (i) \(0 < a_{11} < 1\)

or (ii) \(0 < -a_{11} < M/(1-\epsilon) < 1\)

and the inequalities \(0 < \|\{u_1, u_2, u_3\}\| < 1\) are insoluble in integers \(u_1, u_2, u_3\).
Case (i). We may write

\[ q(u_1, u_2, u_3) = a_{ll} (u_1 + c_2 u_2 + c_3 u_3)^2 + q_1(u_2, u_3), \]

for suitable constants \( c_2, c_3 \) and \( q_1(u_2, u_3) \) which is an indefinite quadratic form in \( u_2, u_3 \) of determinant \( -25/(2\gamma a_{ll}) \).

By the corollary to Lemma 4.4, with \( \mu = \{(4-a_{ll})/2\gamma a_{ll} \}^{1/2} \), there are integer pairs \((u_{2s}, u_{3s})\) and \((u_{3s}, u_{3s})\) with \( u_{2s} u_{3s} - u_{2s} u_{3s} = 1 \) satisfying

\[ - \frac{100}{(4-a_{ll}) 2\gamma a_{ll}} < q_1(u_{3s}, u_{3s}) < \frac{4-a_{ll}}{4} \quad (s = 2, 3) \quad (4.12) \]

unless

\[ q_1(u_2, u_3) \sim (\mu u_2^2 - \mu^2 u_3^2) 25/(2\gamma a_{ll})^{1/2}. \]

If

\[ 0 < q_1(u_{2s}, u_{3s}) < \frac{4-a_{ll}}{4} \]

for some \( s = 2, 3 \), we choose an integer \( u_{1s} \) satisfying

\[ |u_{1s} + c_2 u_{2s} + c_3 u_{3s}| \leq \frac{1}{2}, \]

and then

\[ |q(u_{1s}, u_{2s}, u_{3s})| < \frac{1}{4} a_{ll} + \frac{1}{4} (4-a_{ll}) = 1. \]

Now suppose that \( q_1(u_{2s}, u_{3s}) = \lambda \) for some \( s = 2, 3 \) where

\[ 0 < \lambda < 100 / \{2\gamma a_{ll} (4-a_{ll}) \}, \quad \text{by (4.12),} \]

or

\[ 0 < a_{ll} \lambda < 100 / \{2\gamma (4-a_{ll}) \}. \]

In this case we have

\[ q(u_1, u_{2s}, u_{3s}) = a_{ll} (u_1 + c_2 u_{2s} + c_3 u_{3s})^2 - a_{ll}^{-1}(a_{ll}, \lambda). \]

Since \( 0 < a_{ll} < 1 \), we have successively,
\[(3a_{ii} - 2)^2 (3a_{ii} - 8) \leq 0,\]
\[2\ gamma \ a_{ii}^3 - 108a_{ii}^2 + 108a_{ii} - 32 \leq 0,\]
\[400 - 2\ gamma (4 - a_{ii}) (4 + a_{ii}^2) \leq 0,\]
\[\frac{100}{(4 - a_{ii})^2} \leq \frac{4 - a_{ii}}{4}.\]

By Lemma 4.6, with \(q = a_{ii}, c^2 = a_{ii} \lambda\), there is an integer \(n\) satisfying

\[|q(u_{13}, u_{33}, u_{35})| < 1.\]

Thus the inequalities (4.11) follow with the triads \((1, 0, 0), (u_{12}, u_{22}, u_{32})\)
and \((u_{13}, u_{33}, u_{35})\).

It remains to consider the case when

\[q(u_{1}, u_{3}) = (\mu u_{2}^{1} - \mu^{-1} u_{3}^{1}) \left\{ \frac{25}{(2\gamma a_{ii})} \right\}^{1/2},\]

where \(\mu = \left(\frac{4 - a_{ii}}{(2\gamma a_{ii})^{1/2}}ight)^{2/5}\). If we choose \((u_{12}, u_{32}) = (0, -1)\)
and \((u_{23}, u_{33}) = (1, 1)\) then

\[-\frac{100}{(4 - a_{ii})^2} \leq q_{1}(u_{23}, u_{33}) \leq \frac{4 - a_{ii}}{4}, \quad (s = 2, 3),\]

and (4.11) again follows with the triads \((1, 0, 0), (u_{12}, 0, -1)\) and
\((u_{13}, 1, 1)\) unless \(a_{ii} = 2/3\). In this case \(\mu = (\sqrt{2}\) and \(q\)
is equivalent to

\[q(u_{1}, u_{2}, u_{3}) = \frac{2}{3} (u_{1} + c_{2} u_{2} + c_{3} u_{3})^2 + \frac{2}{3} (u_{2}^2 - 2u_{3}^2)\]

for some constants \(c_{2}^{1}, c_{3}^{1}\). By absorbing integral multiples of
\(u_{1}, u_{3}\) into \(u_{1}\) and changing the sign of \(u_{2}\), if necessary, we
may assume that

\[0 \leq c_{2}^{1} \leq \frac{1}{2} \quad \text{and} \quad 0 \leq c_{3}^{1} < 1.\]
We shall show that there are three triads of determinant 1 for which \(|q| < 1\) unless \(c_1' = \frac{1}{2}\) and \(c_3' = 0\).

If \(c_1' \neq \frac{1}{2}\) and \(c_3' \neq 0\), we choose the triads \((1, 0, 0)\) and \((0, 1, 0)\); if \(c_1' = \frac{1}{2}\) and \(c_3' = 0\), we choose the triads \((1, 0, 0)\), \((1, 1, -1)\) and \((0, 1, 1)\); finally if \(c_1' \neq \frac{1}{2}\), \(c_3' = 0\), we choose the triads \((1, 0, 0)\), \((1, 1, -1)\) and \((0, 1, 0)\).

In the remaining case when \((c_1', c_3') = (\frac{1}{2}, 0)\), the unimodular substitution

\[
\begin{align*}
u_1 &= U_1 + U_3, \\
u_2 &= U_1 - 2U_3, \\
u_3 &= U_1 - U_3
\end{align*}
\]

will transform \(q\) into the equivalent form \(Q = Q(u_1, u_2, u_3)\), where

\[
\frac{3}{2} Q(u_1, u_2, u_3) = u_1^2 + 2u_1u_2 - u_2^2 + \frac{5}{2} u_3^2.
\]

It may be verified that \(\frac{3}{2} Q\) does not represent zero and has absolute minimum 1, attained only when \(u_2 \equiv 0 \pmod{2}\).

**Case (ii).** In this case we write

\[
q(u_1, u_2, u_3) = -|a_n|(u_1, d_1u_1 + d_3u_3)^2 + q_2(u_2, u_3),
\]

for suitable constants \(d_1, d_3\) and \(q_2(u_2, u_3)\), which is a **positive definite** quadratic form in \(u_2, u_3\) of determinant \(25/(2^4|a_n|)\), and

\[0 < |a_n| < 1.
\]

After applying an integral unimodular substitution to the variables \(u_2, u_3\), it is known (Theorem 51) that we can ensure that

\[
q_2(u_2, u_3) = Au_2^2 + 2Bu_2u_3 + Cu_3^2.
\]
where
\[ A^2 = \frac{25}{27a_n}, \quad |2B| \leq A \quad \text{and} \quad 0 < A \leq \min \left\{ C, \frac{25}{27a_n} = \frac{100}{81a_n} \right\}. \tag{4.13} \]

We again choose \( (u_1, u_2, u_3) = (0, 0, 0) \). We next choose \( (u_{21}, u_{22}) = (1, 0) \), so that
\[-q(u_1, 1, 0) = |a_n| (u_1 + d_2')^2 - |a_n|^{-1} \left( |a_n| A \right),\]
for appropriate \( d_2' \), where
\[ 0 < |a_n| A < \sqrt{\frac{5}{4} |a_n|}, \quad \text{by (4.13)}, \]
\[ < \frac{5}{8} + \frac{1}{2} |a_n|, \]
by the inequality of the arithmetic and geometric mean. Since \( 0 < |a_n| < 1 \), we have
\[ |a_n| \left( 2 - |a_n| \right) < \frac{3}{2} \]
or
\[ \frac{5}{8} + \frac{1}{2} |a_n| < 1 + \frac{1}{4} a_n^2, \]
and hence
\[ 0 < |a_n| A < 1 + \frac{1}{4} a_n^2. \]

By Lemma 4.6, with \( a = |a_n|, \quad \ell = |a_n| A \), we can always choose an integer \( u_{12} \) satisfying
\[ |q(u_{12}, 1, 0)| < 1. \]
Finally we take \( (u_{23}, u_{33}) = (0, 1) \), so that
\[-q(u_1, 0, 1) = |a_n| (u_1 + d_3')^2 - |a_n|^{-1} \left( |a_n| C \right),\]
for some constant \( d_3' \). We now show, with the help of Lemma 4.5, that \( A \) cannot be too small, and then deduce that \( |a_n| C \) is bounded above in terms of \( |a_n| \).
Consider the quadratic section
\[
q(u_1, u_2, 0) = -|a_{11}|(u_1 + d_1 u_2)^2 + A u_2^2
\]
of \( q(u_1, u_2, 0) \). This is an indefinite quadratic form in \( u_1, u_2 \)
of determinant \( -|a_{11}|A \), which does not represent zero non-trivially.
Thus if \( P, N \) denote the lower bounds of the positive values of
\( q(u_1, u_2, 0) \), \( q(u_1, u_2, 0) \) respectively, it follows, by Lemma 4.5,
that
\[
P N \leq \frac{4}{3} |a_{11}| A .
\] (4.14)
By hypothesis
\[
P > 1 \quad \text{and} \quad N > M > l_{11} \ell (1-c) .
\] (4.15)
Thus by (4.14) and (4.15) we have
\[
|a_{11}| (1-c) < M \leq N \leq PN \leq \frac{4}{3} |a_{11}| A ,
\]
and hence
\[
A \leq \frac{5}{4} (1-c) .
\]
But since \( 2B \leq A \leq C \), by (4.13), we have
\[
\frac{3}{4} \cdot \frac{5}{4} (1-c) C \leq \frac{3}{4} AC \leq AC - B^2 = \frac{25}{27} |a_{11}| C ,
\]
which leads to
\[
|a_{11}| C \leq \frac{80}{81} (1 - c) < \left( 1 + \frac{1}{4} a_{11}^2 \right)
\]
since \( c < 1/81 \). A final application of Lemma 4.6, with \( Q = |a_{11}| \),
\( \ell^2 = |a_{11}| C \) shows that
\[
|q(u_3, 0, 1)| < 1
\]
for some integer $u_{13}$. The inequalities (4.11) now follow with the triads $(1,0,0)$, $(u_{12},1,0)\text{ and } (u_{13},0,1)$.

**Note.** If $M'$ denotes the lower bound of the positive values of $q(u_{12},u_{13},u_{1})$ taken over all integer triads $(u_{12},u_{13},u_{1}) \neq (0,0,0)$, by a theorem [2] of Barnes, we have

$$M' \leq \left(\frac{4}{3} \cdot \frac{25}{27}\right)^{\frac{1}{3}} = \left(\frac{100}{81}\right)^{\frac{1}{3}}.$$  

It may be remarked that this is inadequate to ensure $0 < q_{11} < 1$, and thereby exclude case (ii) of Theorem 4.2.
REFERENCES AND BIBLIOGRAPHY.


28. B. Segre, "Lattice points in infinite domains and asymmetric diophantine approximations", Duke Math. J. 12 (1945), 337-65; an alternative proof is given by K. Mahler, ibid. 367-71; see also [6], (I), Theorem 1.


32. H. Davenport, "Indefinite quadratic forms in many variables" (I) and (II), Mathematika 3 (1956), 81-101 and Proc. London Math. Soc. (3) 8 (1958), 109-26; see also B.J. Birch and H. Davenport, "Indefinite quadratic forms in many variables", Mathematika 5 (1958), 8-12.


