THE STUDY OF NOVEL ELECTROSTATIC ELECTRON LENSES

Thesis submitted for the degree of PhD
by Carol Trager
Physics Department
Royal Holloway and Bedford New College
ABSTRACT

This thesis is concerned with the investigation, both numerically and experimentally of novel electrostatic lenses.

The properties of a five-element lens are described. This lens allows the variation of the magnification of an image of fixed position with fixed overall energy, and can be therefore considered a 'zoom' lens. This lens can also be constrained so that it is afocal and the separation between any pair of conjugate points is constant, and therefore independent of V_5/V_1, with the magnification related very simply to V_5/V_1.

A numerical technique involving matrix multiplication is used to compute the properties of the five-element lens from the tabulated properties of two-element lenses. Manipulation of the calculated data revealed that it is possible to define two 'universal' curves to summarise its properties. The calculated lens properties are compared with those previously obtained by experiment, (Heddle and Papadovassilakis 1984 †).

The aberration behaviour of a five-element lens was investigated. In particular, the dependence of the spherical aberration coefficient C_s on V_3/V_1 where $V_5/V_1 = 1$, and $V_2/V_1 = V_4/V_5$. C_s was also investigated for a number of afocal lenses. Finally, C_s was investigated for the lens where $V_5/V_1 = V_3/V_1 = 1$, V_2/V_1 is the variable and $\neq V_4/V_5$. This lens was found to have a minimum value for the product $MAG \times C_s$, therefore, optimum values of V_2/V_1 and the magnification exist for this lens. The values for C_s obtained by experiment are compared with those calculated by my supervisor Professor Heddle using the Bessel Function Expansion Method ‡, and the Fox-Goodwin Method §.

Finally, the properties of a three-element lens constructed from 31 discs electrically insulated from each other, and sandwiched between two ordinary cylindrical elements was investigated. Voltages were applied to this lens so that it simulated a three-element lens with a 'movable' centre element of variable length. The obtained experimental properties are also compared with those calculated by Professor Heddle.

TABLE OF CONTENTS

CHAPTER ONE: INTRODUCTION

Section (1.1) General 19

Section (1.2) The Optical Analogy 20

Section (1.3) Fundamental Properties of Electron Lenses
- (a) Cardinal Points 23
- (b) Other Lens Parameters and Lens Equations 26

Section (1.4) Lens Fields and Related Lens Properties
- (a) The Electrostatic Lens 31
- (b) Magnetic Lens 42
- (c) Comparison of Electrostatic and Magnetic Lenses 50

References: Bibliography 51

(The References to this Introductory Chapter form the Bibliography. The Bibliography is also to be found at the end of the Thesis)

CHAPTER TWO: METHODS FOR CALCULATING THE PROPERTIES OF ELECTRON LENSES

Section (2.1) Introduction 56

Section (2.2) The Finite Difference Method or Relaxation Method 56

Section (2.3) The Charge Density Method 60

Section (2.4) The Separation of Variables Method 62

Section (2.5) The Finite Element Method 66

Section (2.6) Comparison of the various methods available for calculating the lens potential 71

Section (2.7) The Calculation of charged particle trajectories 73

References 81

CHAPTER THREE: METHODS FOR DETERMINING EXPERIMENTALLY THE PROPERTIES OF ELECTRON LENSES

Section (3.1) General Introduction 87

Section (3.2) Description of Experimental Methods other than those used in the present work 87

Section (3.3) Introduction to Experimental Methods used in the present work 93

Section (3.4) Description of the Lens Elements 93

Section (3.5) Description of the method used to determine the focal and magnification properties of a lens
- (a) Lens System 95
- (b) Electronics 96

Section (3.6) Description of the method used to determine the spherical aberration coefficient 103

References 110
LIST OF TABLES

CHAPTER FOUR
Table 4.1 Table listing Matrix Elements for an Accelerating Lens 119
Table 4.2 Table listing Matrix Elements for a Decelerating Lens 120
Table 4.3 Table comparing the values obtained for V_2/V_1 using the Matrix and Bessel Function Expansion Methods for the symmetric three-element einzel lens, where $L_2 = L_3 = 2.0D$ and $0.5 \leq L_2 \leq 2.0D$ 123

CHAPTER FIVE
Table 5.1 Table listing calculated lens properties illustrating the consistency of the calculations 142
Table 5A.1 Table defining the points A through to H 188
LIST OF FIGURES

CHAPTER ONE

Figure 1.1 Snell’s Law for Light 21
Figure 1.2 Snell’s law for Electrons 22
Figure 1.3 Cardinal Points 25
(a) Principal Rays
(b) Location of Focal Points
(c) Location of Principal Planes and Principal Points
(d) Location of Nodal Planes and Nodal Points
Figure 1.4 Diagram Demonstrating that $A H_1 = B H_2$ 24
Figure 1.5 Diagram Summarising Properties of Electron Lenses 27
Figure 1.6 Diagram for the Derivation of the Abbé Sine Rule 28
Figure 1.7 Examples of Electrostatic Electron Lenses 32
Figure 1.8 Diagram for Computing the electron trajectories in an axially symmetrical electric field 34
Figure 1.9 Diagram for proving that any axially symmetric electrostatic lens has the properties of an ideal lens 37
Figure 1.10 A Diverging Lens 39
Figure 1.11 Diagram for the proof that electrostatic lenses are always convergent when bounded by regions of constant potential 39
Figure 1.12 Crossed Nodal Points 41
Figure 1.13 Crossed Principal Points 41
Figure 1.14 Magnetic Lens 43
Figure 1.15 Components of the vector B near the axis 42
Figure 1.16 Diagram showing force and field vectors for computing electron trajectories in an axially symmetrical magnetic field 48

CHAPTER TWO

Figure 2.1 A five-point grid of equal mesh width 57
Figure 2.2 A nine-point grid of equal mesh width 60
Figure 2.3 Simple coaxial cylinder lens represented by a large number of circular strips in order to obtain the potential distribution by the charge density method 61
Figure 2.4 Schematic diagram of a two-cylinder lens showing the dimensions, the coordinate system and the regions to which different expressions for the potential apply in the Bessel function expansion method 63
Figure 2.5 Cross section of a typical magnetic lens 67
Figure 2.6 The finite element mesh for analysing the pole piece region 68
Figure 2.7(a) A general finite element for the scalar potential calculation.

Figure 2.7(b) Diagram for the generation of the finite element equations.

CHAPTER THREE

Figure 3.1 Diagram illustrating the Parallel Beam Method.

Figure 3.2 Schematic Diagram of lens from which the Focal Distances F_1 and F_2 and the Focal Lengths f_1 and f_2 can be deduced.

Figure 3.3 Diagram illustrating how the Cardinal Points of a lens can be deduced by extrapolating the paths of pencil rays from where they hit a target after they have passed through the lens.

Figure 3.4 Diagram illustrating the Shadow Method for location of the cardinal points.

Figure 3.5 A typical lens element.

Figure 3.6 5-element lens system.

Figure 3.7 Schematic diagram of 5-element lens system.

Figure 3.8 Schematic Diagram of Aperture discs used to obtain the magnification of an electron lens.

Figure 3.9 A lens element with deflection plates.

Figure 3.10 Photograph of image displayed on display scope from which the lens magnification is deduced.

Figure 3.11 Block Diagram of Electronics used to Operate and Display the image of the Lens.

Figure 3.12 Diagram illustrating the effect of spherical aberration.

Figure 3.13 Schematic diagram of 5-element lens system used to obtain Δr in order to obtain the spherical aberration coefficient C_s.

Figure 3.14 Schematic Diagram of Aperture disc with five apertures whose use enables Δr and hence C_s to be determined.

Figure 3.15 Photograph of image displayed on display scope from which Δr_1 and Δr_2 and hence C_s is deduced.

Figure 3.16 Diagram comparing the distances at which a beam will cross a plane perpendicular to the lens axis when unaffected by lens action and when under the influence of a lens.

CHAPTER FOUR

Figure 4.1 Diagram illustrating the object and image sizes, angle of inclination at the object and angle of inclination at the image for a typical lens system.

Figure 4.2 Schematic diagram of a two-tube electrostatic lens showing the focal points F_1 and F_2, focal lengths f_1 and f_2, principal planes H_1 and H_2, and coordinates p, P, q, Q in object and image space respectively.
Figure 4.3 The dependence of the matrix elements on voltage ratio
(a) for accelerating lenses
(b) for decelerating lenses

CHAPTER FIVE

Figure 5.1 Five-element Electrostatic lens

Figure 5.2 Ray Diagram for 5-element Afocal Lens with constant separation between Conjugate Points

Figure 5.3 \(V_5/V_1\) Versus \(V_2/V_1\) as obtained from calculation using the matrix technique, for the lens with \(L_1 = L_2 = L_4 = L_5 = 1.5D\) and \(L_3 = 3.0D\)

Figure 5.4 \(V_5/V_1\) Versus \(V_2/V_1\) as obtained from experiment, \(\text{(Heddle and Papadovassilakis (1984))}\)
for the lens with \(L_1 = L_2 = L_4 = L_5 = 1.5D\) and \(L_3 = 3.0D\)

Figure 5.5 \(V_5/V_1\) Versus the Magnification \(M\) as obtained from experiment, \(\text{(Heddle and Papadovassilakis (1984))}\)
for the lens with \(L_1 = L_2 = L_4 = L_5 = 1.5D\) and \(L_3 = 3.0D\)

Figure 5.6 \(\alpha\) Versus The Separation of the Conjugate Points

Figure 5.7 \((V_5/V_1)^\alpha\) Versus \((V_2/V_1)^\alpha\) as obtained from calculation using the matrix technique, for the lens with \(S=1.5\)

Figure 5.8 Lines of constant magnification \(M\), angular magnification \(M_\alpha\), and overall voltage ratio \(V_5/V_1\), drawn on axes of \(V_2/V_1\) and \(V_4/V_1\), as obtained by experiment by Heddle and Papadovassilakis (1984)

Figure 5.9 Lines of constant magnification \(M\), angular magnification \(M_\alpha\), and overall voltage ratio \(V_5/V_1\), drawn on axes of \(V_2/V_1\) and \(V_4/V_1\) as obtained from calculation using the matrix technique, for the lens with \(L_1 = L_2 = L_4 = L_5 = 1.5D\) and \(L_3 = 3.0D\)

Figure 5.10 \((V_2/V_1)/((V_5/V_1)^Q)\) Versus \((V_4/V_5)/((V_1/V_5)^Q)\)

as obtained from calculation using the matrix technique, for the lens with \(L_1 = L_2 = L_4 = L_5 = 1.5D\) and \(L_3 = 3.0D\)

for various values of \(V_5/V_1\)

Figure 5.11 \(Q\) Versus \(V_5/V_1\) as obtained from calculation using the matrix technique, for the lens with \(L_1 = L_2 = L_4 = L_5 = 1.5D\) and \(L_3 = 3.0D\)

Figure 5.12 \((V_2/V_1)/((V_5/V_1)^Q)^{\text{ZETA}}\) Versus \((V_4/V_5)/((V_1/V_5)^Q)^{\text{ZETA}}\)
as obtained from calculation using the matrix technique, for the lens with \(L_1 = L_2 = L_4 = L_5 = 1.5D\), and \(L_3 = 3.0D\)

Figure 5.13 \((V_5/V_1)^Q\) Versus \(V_5/V_1\) as obtained from calculation using the matrix technique, for the lens with \(L_1 = L_2 = L_4 = L_5 = 1.5D\) and \(L_3 = 3.0D\)

Figure 5.14 \(\text{ZETA}\) Versus \(V_5/V_1\) as obtained from calculation using the matrix technique, for the lens with

\(L_1 = L_2 = L_4 = L_5 = 1.5D\) and \(L_3 = 3.0D\)
Figure 5.15 \((V_2/V_1)/(V_5/V_1)^Q\) as obtained from calculation using the matrix technique, for the lens with \(L_1 = L_2 = L_4 = L_5 = 1.5\text{D}\), and \(L_3 = 3.0\text{D}\) for \(V_5/V_1 = 10\).

Figure 5.16 \((V_2/V_1)/(V_5/V_1)^Q\) as obtained from calculation using the matrix technique, for the lens with \(L_1 = L_2 = L_4 = L_5 = 1.5\text{D}\), and \(L_3 = 3.0\text{D}\) for \(V_5/V_1 = 36\).

Figure 5.17 \((V_2/V_1)/(V_5/V_1)^Q\) as obtained from experiment, \((\text{Heddle and Papadovassilakis (1984)})\) for the lens with \(L_1 = L_2 = L_4 = L_5 = 1.5\text{D}\), and \(L_3 = 3.0\text{D}\) for various values of \(V_5/V_1\).

Figure 5.18 \((B \times (\text{MAG}))^A\) as obtained from calculation using the matrix technique, for the lens with \(L_1 = L_2 = L_4 = L_5 = 1.5\text{D}\) and \(L_3 = 3.0\text{D}\) for \(V_5/V_1 = 10\).

Figure 5.19 \((B \times (\text{MAG}))^A\) as obtained from calculation using the matrix technique, for the lens with \(L_1 = L_2 = L_4 = L_5 = 1.5\text{D}\) and \(L_3 = 3.0\text{D}\) for \(V_5/V_1 = 36\).

Figure 5.20 \((B \times (\text{MAG}))^A\) as obtained from calculation using the matrix technique, for the lens with \(L_1 = L_2 = L_4 = L_5 = 1.5\text{D}\) and \(L_3 = 3.0\text{D}\) for \(V_5/V_1 = 10\).

Figure 5.21 \(A\) as obtained from calculation using the matrix technique, for the lens with \(L_1 = L_2 = L_4 = L_5 = 1.5\text{D}\) and \(L_3 = 3.0\text{D}\).

Figure 5.22 \(B\) as obtained from calculation using the matrix technique, for the lens with \(L_1 = L_2 = L_4 = L_5 = 1.5\text{D}\) and \(L_3 = 3.0\text{D}\).

Figure 5.23 \(C\) as obtained from calculation using the matrix technique, for the lens with \(L_1 = L_2 = L_4 = L_5 = 1.5\text{D}\) and \(L_3 = 3.0\text{D}\).

Figure 5.24 \(D\) as obtained from calculation using the matrix technique, for the lens with \(L_1 = L_2 = L_4 = L_5 = 1.5\text{D}\) and \(L_3 = 3.0\text{D}\).

Figure 5.25 \((B \times (\text{MAG}))^A\) as obtained from experiment, \((\text{Heddle and Papadovassilakis (1984)})\) for various values of \(V_5/V_1\).

Figure 5.26 \((V_2/V_1)/(V_5/V_1)^Q\) as obtained from calculation using the matrix technique, for the lens with \(L_1 = L_2 = L_4 = L_5 = 1.5\text{D}\), and \(L_3 = 3.0\text{D}\).
Figure 5.27 Photograph of display scope showing six dots
for aberration measurements 176

Figure 5.28 C_a Versus V_5/V_1, where $V_5/V_1 = 1,$
$V_2/V_1 = V_4/V_5 > V_3/V_1$, for the lens where
$L_1 = L_5 = 1.5D, L_2 = L_4 = 1.0D$ and $L_3 = 3.0D$ 177

Figure 5.29 C_a Versus V_5/V_1, for the afocal lens where
$L_1 = L_5 = 1.5D, L_2 = L_4 = 1.0D$ and $L_3 = 3.0D$ 178

Figure 5.30 C_a Versus V_2/V_1, where $V_5/V_1 = V_3/V_1 = 1,$
$V_2/V_1 = V_4/V_5$, for the lens where
$L_1 = L_5 = 1.5D, L_2 = L_4 = 1.0D$ and $L_3 = 3.0D$ 179

Figure 5.31 $MAG \times C_a$ Versus $V_2/V_1,$
where $V_5/V_1 = V_3/V_1 = 1,$
$V_2/V_1 = V_4/V_5$, for the lens where
$L_1 = L_5 = 1.5D, L_2 = L_4 = 1.0D$ and $L_3 = 3.0D$ 180

Figure 5.32 $MAG \times C_a$ Versus $MAG,$
where $V_5/V_1 = V_3/V_1 = 1,$
$V_2/V_1 \neq V_4/V_5$, for the lens where
$L_1 = L_5 = 1.5D, L_2 = L_4 = 1.0D$ and $L_3 = 3.0D$ 181

Figure 5A.1 Diagram showing Afocal Locus,
Defining the Points A through to H 187

CHAPTER SIX

Figure 6.1 Read's Movable Electrostatic Lens 205

Figure 6.2 Photograph of Discs sandwiched between
two Cylindrical Lens Elements 207

Figure 6.3 Diagram showing how the Voltages are stepped between
L_1 and L_2 and L_3 respectively 208

Figure 6.4 Photograph of a disc 209

Figure 6.5 Schematic Diagram of a disc 210

Figure 6.6 Diagram showing how discs were stacked
to form the Disc Lens 212

Figure 6.7 End View of Disc Lens Sandwich 213

Figure 6.8 Schematic Diagram of Switching Unit 215

Figure 6.9 Photograph of Front Panel of Switching Unit 216

Figure 6.10 Diagram showing that if the change in voltage in the
regions of 'stepping' voltage are approximated by a linear
voltage variation, then the effective length of L_2 is
$(\text{no. of discs connected together to form } L_2 - 1) \times 0.1D$ 217

Figure 6.11 Typical Example of the 'image' displayed on the
Display Scope from the Disc Lens 219

Figure 6.12 Example of a 'bad' image from the Disc lens 220
Figure 6.13 Lines of constant V_3/V_1 and lines of Constant magnification M plotted on axes of n_e Versus V_2/V_1 for various values of V_3/V_1 for the Disc Lens with a Centre Element length of 0.6D as obtained from the calculated data of Heddle 224

Figure 6.14 Lines of constant V_3/V_1 and lines of Constant magnification M plotted on axes of n_e Versus V_2/V_1 for various values of V_3/V_1 for the Disc Lens with a Centre Element length of 1.0D as obtained from the calculated data of Heddle 225

Figure 6.15 Lines of constant V_3/V_1 and lines of Constant magnification M plotted on axes of n_e Versus V_2/V_1 for various values of V_3/V_1 for the Disc Lens with a Centre Element length of 2.0D as obtained from the calculated data of Heddle 226

Figure 6.16 V_2/V_1 Versus n_e for various values of V_3/V_1 for the Disc Lens with a Centre Element length of 0.6D as obtained from experiment 228

Figure 6.17 V_2/V_1 Versus n_e for various values of V_3/V_1 for the Disc Lens with a Centre Element length of 1.0D as obtained from experiment 229

Figure 6.18 V_2/V_1 Versus n_e for various values of V_3/V_1 for the Disc Lens with a Centre Element length of 2.0D as obtained from experiment 230

Figure 6.19 Experimentally obtained and calculated values of V_2/V_1 Versus n_e for $V_3/V_1 = 0.6$, 1.0 and 3.0 for the Disc Lens with a Centre Element length of 0.6D 232

Figure 6.20 Experimentally obtained and calculated values of V_2/V_1 Versus n_e for $V_3/V_1 = 0.6$, 1.0 and 3.0 for the Disc Lens with a Centre Element length of 01.0D 233

Figure 6.21 Experimentally obtained and calculated values of V_2/V_1 Versus n_e for $V_3/V_1 = 0.6$, 1.0 and 3.0 for the Disc Lens with a Centre Element length of 2.0D 234

Figure 6.22 Experimentally obtained and calculated values of Magnification M Versus n_e for $V_3/V_1 = 0.6$ for the Disc Lens with a Centre Element Length of 0.6D 236

Figure 6.23 Experimentally obtained and calculated values of Magnification M Versus n_e for $V_3/V_1 = 1.0$ for the Disc Lens with a Centre Element Length of 0.6D 237

Figure 6.24 Experimentally obtained and calculated values of Magnification M Versus n_e for $V_3/V_1 = 3.0$ for the Disc Lens with a Centre Element Length of 0.6D 238

Figure 6.25 Experimentally obtained and calculated values of Magnification M Versus n_e for $V_3/V_1 = 0.6$ for the Disc Lens with a Centre Element Length of 1.0D 239

Figure 6.26 Experimentally obtained and calculated values of Magnification M Versus n_e for $V_3/V_1 = 1.0$ for the Disc Lens with a Centre Element Length of 1.0D 240
Figure 6.27 Experimentally obtained and calculated values of Magnification M Versus n, for $V_3/V_1 = 3.0$ for the Disc Lens with a Centre Element Length of 1.0D

Figure 6.28 Experimentally obtained and calculated values of Magnification M Versus n, for $V_3/V_1 = 0.6$ and 1.0 for the Disc Lens with a Centre Element Length of 2.0D

Figure 6.29 Experimentally obtained and calculated values of Magnification M Versus n, for $V_3/V_1 = 0.6$ and 3.0 for the Disc Lens with a Centre Element Length of 2.0D
ACKNOWLEDGEMENTS

I would like to thank Professor Heddle for proposing and supervising the work that is presented in this thesis, and also for his patience and support during the time I have been his supervisee. I would like to thank Dr Susan Kay for her help and advice and support with both the experimental work and with the preparation of the thesis, and for being a very sympathetic listener. I would like to thank Dr Ron Miller and Prof Milne Karage for their help and advice during their time as visiting Fellows in the Physics Department. I would like to thank Dr Janet Webster for her help and advice on Numerical Methods. I would like to dedicate this thesis to my family and friends whose help, support and encouragement have made the presentation of this thesis possible.

I would like to thank all the staff in the electronics and mechanical workshops, without whose help the work in this thesis would have never even been started. In particular, I would like to thank Lesi Ellison, Reg Jordan and Rick Bemb for designing and building the electronics I needed in order to investigate the losses, and for their patience when things ‘blew up’. I will be eternally grateful for their uncomplaining help and advice when I had a ‘wee problem’. I would also like to thank Reg Elson, Steve Porsman, Brian Porter, John Taylor and John Nokes for producing electron beam elements, etc yesterday. I would also like to thank John Nokes for keeping me supplied with liquid nitrogen.

I would like to thank Mike Tynan for his work, help and advice with the vacuum systems, and for his help with ‘tidying’ the lab.

I would like to thank Mary Wells and Pearl Olliff for typing these thesis it was impossible to produce on the computer.

I would like to thank Sue May for producing the diagrams in this thesis, in particular, I would like to thank her for the work she did in her own time.

I would like to thank the SERC for supplying the money for the two year research assistantship which enabled me to do this work, and I would also like to thank the College for the award of the Amy Lady Tate postgraduate studentship, which helped support me in my third year.
ACKNOWLEDGEMENTS

I would like to thank Professor Heddle for proposing and supervising the work that is presented in this thesis, and also for his patience and support during the time I have been his supervisee. I would like to thank Dr Susan Kay for her help and advice and support with both the experimental work and with the preparation of the thesis, and for being a very sympathetic listener. I would like to thank Dr Ron Miller and Prof Milan Kurepa for their help and advice during their time as visiting Fellows in the Physics Department. I would like to thank Dr Janet Webster for her help and advice on Numerical Methods. I would like to thank Dr Eric Munro for the helpful discussion I had with him on his work and on general techniques used to calculate lens properties.

I would like to thank Dr Andrew Wroot, Sylvia Marshall, and Dr Leslie Morgan of the Computer Centre for their advice and help.

I would like to thank all the staff in the electronics and mechanical workshops, without whose help the work in this thesis would have never even been started. In particular, I would like to thank Leon Ellison, Ray Jordan and Rick Sams for designing and building the electronics I needed in order to investigate the lenses, and for their patience when things ‘blew up’, I will be eternally grateful for their uncomplaining help and advice when I had a ‘wee problem’. I would also like to thank Reg Elton, Steve Foreman, Brian Porter, John Taylor and John Nodes for producing electron lens elements, etc yesterday. I would also like to thank John Nodes for keeping me supplied with liquid nitrogen.

I would like to thank Mike Thyer for his work, help and advice with the vacuum systems, and for his help with ‘tidying’ the lab.

I would like to thank Mary Walls and Pearl Olliff for typing those items it was impossible to produce on the computer.

I would like to thank Sue May for producing the diagrams in this thesis, in particular, I would like to thank her for the work she did in her own time.

I would like to thank the SERC for supplying the money for the two year research assistantship which enabled me to do this work, and I would also like to thank the College for the award of the Amy Lady Tate postgraduate studentship, which helped support me in my third year.
Finally, I would like to thank Amanda Nelson whose friendship has kept me sane.
CHAPTER ONE

INTRODUCTION
CONTENTS : CHAPTER ONE

Section (1.1) General ... 19
Section (1.2) The Optical Analogy 20
Section (1.3) Fundamental Properties of Electron Lenses (a) Cardinal Points 23 (b) Other Lens Parameters and Lens Equations 26
Section (1.4) Lens Fields and Related Lens Properties (a) The Electrostatic Lens 31 (b) Magnetic Lens .. 42 (c) Comparison of Electrostatic and Magnetic Lenses ... 50

References : Bibliography 51 (The References to this Introductory Chapter form the Bibliography. The Bibliography is also to be found at the end of the Thesis)
LIST OF FIGURES: CHAPTER ONE

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1</td>
<td>Snell's Law for Light</td>
<td>21</td>
</tr>
<tr>
<td>Figure 1.2</td>
<td>Snell's law for Electrons</td>
<td>22</td>
</tr>
<tr>
<td>Figure 1.3</td>
<td>Cardinal Points
 (a) Principal Rays
 (b) Location of Focal Points
 (c) Location of Principal Planes and Principal Points
 (d) Location of Nodal Planes and Nodal Points</td>
<td>25</td>
</tr>
<tr>
<td>Figure 1.4</td>
<td>Diagram Demonstrating that $AH_1 = B H_2$</td>
<td>24</td>
</tr>
<tr>
<td>Figure 1.5</td>
<td>Diagram Summarising Properties of Electron Lenses</td>
<td>27</td>
</tr>
<tr>
<td>Figure 1.6</td>
<td>Diagram for the Derivation of the Abbé Sine Rule</td>
<td>28</td>
</tr>
<tr>
<td>Figure 1.7</td>
<td>Examples of Electrostatic Electron Lenses</td>
<td>32</td>
</tr>
<tr>
<td>Figure 1.8</td>
<td>Diagram for Computing the electron trajectories in an axially symmetrical electric field</td>
<td>34</td>
</tr>
<tr>
<td>Figure 1.9</td>
<td>Diagram for proving that any axially symmetric electrostatic lens has the properties of an ideal lens</td>
<td>37</td>
</tr>
<tr>
<td>Figure 1.10</td>
<td>A Diverging Lens</td>
<td>39</td>
</tr>
<tr>
<td>Figure 1.11</td>
<td>Diagram for the proof that electrostatic lenses are always convergent when bounded by regions of constant potential</td>
<td>39</td>
</tr>
<tr>
<td>Figure 1.12</td>
<td>Crossed Nodal Points</td>
<td>41</td>
</tr>
<tr>
<td>Figure 1.13</td>
<td>Crossed Principal Points</td>
<td>41</td>
</tr>
<tr>
<td>Figure 1.14</td>
<td>Magnetic Lens</td>
<td>43</td>
</tr>
<tr>
<td>Figure 1.15</td>
<td>Components of the vector B near the axis</td>
<td>42</td>
</tr>
<tr>
<td>Figure 1.16</td>
<td>Diagram showing force and field vectors for computing electron trajectories in an axially symmetrical magnetic field</td>
<td>48</td>
</tr>
</tbody>
</table>
1.1 GENERAL†

Electron optics is the name given to the subject which describes the production, propagation and focusing of beams of electrons and ions. An electron lens is a device which manipulates beams of charged particles using electric and/or magnetic fields, where the word electron is generally understood to apply to any charged particle. Electron lenses are important in many fields, such as electron physics, electron microscopy, surface physics, high energy physics, plasma physics; and are found in such devices as the cathode ray tube, electron and ion microscopes and microscopes, mass and beta spectrometers, image intensifiers. . . . The diversity of the uses of electron optics is aptly illustrated by considering the range of energies of the electric and magnetic fields used. Energies of only a few eV are used by the atomic and molecular physicists, while the electron microscopist will use 100 KeV or so, while the high energy physicist may encounter many GeV.

Today research in electron optics is concerned with improving the performance of existing devices, for example the understanding and elimination/minimisation of aberration effects. High powered computers have greatly facilitated the study of electron optics, as it has become possible, using various techniques, to calculate numerically the properties of lenses and lens systems and hence predict the optimum.

New fields in which electron optics is becoming important are the semiconductor industry where they are used in the analysis and production of semiconductor materials, for example in metal ion guns, secondary ion mass spectrometry (SIMS), and electron and ion lithography; and positron physics, where lenses are now being used to control and manipulate positron beams.

The problems encountered by the different users of electron lenses will differ, for example the aberration problems encountered by the atomic physicist, because he must work with low energy electron beams−, will probably not be met by the semiconductor physicist using much higher energy ion beams. However, the semiconductor physicist may have problems with space charge, due to the size of the ions and the intensity of the beam used−, a problem with which the atomic physicist will rarely need be concerned. However, THE BASIC LAWS OF OPTICS AND THE LAWS GOVERNING ELECTRIC AND

† References : See Bibliography
MAGNETIC FIELDS ARE THE SAME IN ANY FIELD, AS LONG AS THE DEVICE USED TO MANIPULATE THE CHARGED PARTICLES CAN BE CONSIDERED TO BE A LENS.

With the previous statement in mind, the remainder of this chapter will be concerned with outlining the basic principles of electron optics.

As implied by the word optics there is a close analogy between light rays and electron beams; electrons can in fact be reflected, refracted and focused very much as can light rays. It should therefore be possible to describe an electron optical system using the ideas of light optics, in fact the laws and principles as observed for light optics can be applied to electron lenses.

1.2 THE OPTICAL ANALOGY†

The fundamental theory of electron optics is based on the concept of Hamilton, that there exists a strong analogy between a light ray traversing a medium of continuously varying index of refraction and a mass point travelling through a potential field. This concept originated from a comparison of Fermat's principle of least time as applied to the path of a light ray, with Maupertuis' principle of least action as applied to any mechanical movement.

The principle of least time states that a light ray will assume a path such that the time taken between any two points of its path will be a minimum compared to that for all other possible paths between the same two points. Thus

\[T = \int \frac{1}{v} \, ds = \frac{1}{c} \int n \, ds = \text{min} \]

(1.1)

where \(s \) is the distance, \(T \) is the time, \(v \) is the velocity of light in a medium of refractive index \(n \), and \(c \) is the velocity of light in a vacuum.

The principle of least action states that a particle will assume a path such that the action, \(-\) that is the integral of momentum \(mv \) with distance\(-\), is a minimum, i.e.,

\[\text{Action} = m \int v \, ds = \text{min} \]

(1.2)

Comparison between the above two integrals clearly illustrates the correspondence between the two principles. It is also possible to deduce from the above that, excluding the constants

† References : See Bibliography
the refractive index of a medium in the optical case can be considered the equivalent of the corresponding velocity in the dynamical case. This implies that the path taken by a massive particle is the same as that taken by a light ray, in a medium whose refractive index at every point of motion is proportional to the velocity of the particle.

Another fundamental optical law which illustrates the analogy between light and electron optics, is Snell's law. Snell's law in light optics is illustrated in figure 1.1 below.

![Figure 1.1](image)

A beam travelling through a medium of refractive index n passes into another medium of refractive index n', as shown in figure 1.1. The angle of incidence α and the angle of incidence α' are related by;

$$n \sin \alpha = n' \sin \alpha' \ldots \ldots \text{Snell's Law} \quad \text{(1.3)}$$

Similarly, an electron travelling with uniform speed u through a space of constant potential V, which then passes a potential step into a space of constant potential V', will have its path abruptly changed, as shown in figure 1.2 below.

Assuming that as in figure 1.2, V' is greater than V, the normal velocity component u_y is increased and the electron will be accelerated. The tangential component u_x will remain unchanged, so that $u'_x = u_x$. The velocity of the electron is proportional to the square root of the potential as

$$\frac{1}{2} m u^2 = -eV \quad \text{(1.4)}$$

and from figure 1.2

$$\sin \alpha = \frac{u_x}{u}$$

$$\sin \alpha' = \frac{u'_x}{u'}$$

21
The electron path through the field thus coincides exactly with the path of a light ray incident at an angle \(\alpha \) separating media whose refractive indices are in the ratio \(\sqrt{\frac{V}{V'}} \). The electronic refractive index thus depends only on the position in the potential field. A continuously varying field will cause the divergence of an incident ray to decrease with the increase in refractive index, and may ultimately cause the ray to converge to a point, i.e., an appropriate continuously varying field can be used to 'focus' an electron beam and can therefore be regarded as an electron lens. This suggests that the action of an electron lens is similar to that of a thick optical lens, the electric field corresponding to an optical system of an infinite number of lenses of different refractive index in contact.

This discussion has so far been concerned with the similarities between light and electron optics. However, it must be pointed out that the analogy does have its limitations, and that there are principal differences between the two optics. For example, light rays are generally refracted by a finite number of refractive surfaces where the refractive index changes abruptly, whereas in electron optical systems there are no sharp changes in refractive index, but a continuous variation. Other differences exist between the two optics, such as the difference in the number of materials available to construct lenses.

In light optics there is a wide choice of materials available with which a lens can be built, for example various types of glass, plastics, quartz... in fact any transparent material can be used to construct a lens. It is therefore relatively easy to construct a light lens which will satisfy required specifications. The ability to change the properties of a given lens by

\[
\sqrt{\frac{V}{V'}} = \frac{\sin \alpha'}{\sin \alpha} = \frac{n}{n'} \quad (1.5)
\]

Therefore

\[
\sqrt{\frac{V}{V'}} = \frac{\sin \alpha'}{\sin \alpha} = \frac{n}{n'}
\]
simply choosing lens elements of the right material and the right shape, allows for example, aberrations due to one lens element to be corrected by another.

In electron optics however, electric and magnetic fields are the only media available with which it is possible to produce lens action. The ability to change the properties of a given lens element by changing its shape is also limited in electron optics, as varying the shape of the electrodes cannot change the basic interaction between electron and field. The aberrations encountered with electric fields are generally of the same sign as those due to magnetic fields, so it is therefore not possible to correct the aberrations due to one medium by using the other, as is possible in light optics.

Although we are limited to only two media with which to construct an electron lens, the fact that refractive indices can be varied by the control of voltage or current makes an electron lens a lot more flexible than a light lens. The magnitudes of refractive indices which are frequently dealt with in electron lens systems would never occur in light optics. Ratios of refractive indices of the order of 10^6 are possible, compared to an upper limit of about 10 in light optics.

Even though there are differences between the two optics, as discussed above; the analogy between electron and light optics provides the foundation to introduce the concepts of electron optics and also to define the fundamental geometrical properties of electron lenses. The next section describes some of the fundamental parameters used to characterise electron lenses, and some of the laws they obey.

1.3 FUNDAMENTAL PROPERTIES OF ELECTRON LENSES

A. Cardinal Points†

When considering the imaging of objects by an electron lens, it is inconvenient to have to trace the ray paths from a particular point on the object to find the resulting point on the image. As in light optics it is possible to define six points known as the cardinal points, from which all the required imaging information can be deduced. The procedure is only exact however, for paraxial rays, that is those rays that move close to the axis and make a small angle with it, so that the angle can be equated to its sine. This approximation

† References: See Bibliography, in particular Hall 1953
is known as the Gaussian or first order approximation. The cardinal points are defined by figure 1.3 and the following discussion.

In order to define the cardinal points it is first necessary to define what are known as the principal rays of the lens. The principal rays are the two rays which enter and leave the lens parallel to the axis respectively, (see figure 1.3(a)). The ray which approaches the lens parallel to the axis from the right side of the lens is known as the first principal ray, the ray which approaches the lens parallel to the axis from the left side of the lens is known as the second principal ray. Any general ray can be expressed as a combination of these two rays.

FOCAL POINTS: The focal points F_1 and F_2 (see figure 1.3(b)), are defined as the points where the principal rays intersect the axis.

PRINCIPAL POINTS: The principal points H_1 and H_2 (see figure 1.3(c)), are defined as the points where the principal planes h_1 and h_2 cross the axis, where the principal planes are the planes of unit lateral magnification and can be located, (as shown in figure 1.3(c)) by asymptotically extending the straight line sections of the principal rays until they intersect, the points of intersection lying on the principal planes.

NOTE: All rays which converge to a point A on the first principal plane must, after passing through the lens, diverge from a point B on the second principal plane such that $AH_1 = BH_2$. This is illustrated by the two examples of figures 1.4(a) and 1.4(b) below, where figure 1.4(b) shows the principal points crossed as is the case for electron lenses, a point which will be discussed later.
2nd Principal Ray

(a) Principal Rays

(b) Location of the Focal Points

(c) Location of Principal Points (H₁ and H₂) and Principal Planes (h₁ and h₂)

(d) Location of Nodal Points (N₁ and N₂) and Nodal Planes (n₁ and n₂)

Figure 1.3

Note: In this figure F₁ and F₂ are used to denote the 1st and 2nd focal points respectively. F₁ and F₂ will be used later to denote focal distances. Where both focal point and focal distances are referred to or used in the same diagram, F₁ and F₂ will be used to denote the 1st and 2nd focal distances respectively, and the words 1st Focal Point and 2nd Focal Point will be used to denote the 1st and second focal points respectively, so as to prevent any ambiguity.
NODAL POINTS: The nodal points N_1 and N_2 are defined as the points having the property that any ray in object space passing through N_1 will, after passing through the lens, appear to have come from N_2, and in the same direction as the original ray (see figure 1.3(d)). The nodal points are also the points where the nodal planes cross the axis, the nodal planes being planes of unit angular magnification.

NOTE: From geometry it can be seen that the distances $N_1N_2 = H_1H_2$ are equal.

B. Other Lens Parameters and Lens Equations†

The focal lengths f_1 and f_2 (see figure 1.5), are defined as the distance from the principal planes of the lens to the points at which the corresponding principal rays crosses the axis, i.e., the focal points. The focal distances F_1 and F_2 are defined as the distances between the reference plane, normally defined as the mid-plane of the lens, but can be any convenient plane — and the focal points.

The lateral magnification $M = \frac{r_2}{r_1}$, where r_o and r_i are the object and image distances respectively, and from figure 1.5

$$M = \frac{r_i}{r_o} = -\frac{f_1}{p} = -\frac{q}{f_2}$$

(1.6)

implies ‡

$$f_1f_2 = pq \ldots \text{Newton's Equation}$$

(1.7)

where p is the distance between the object plane and the first focal point, and q is the distance between the image plane and the second focal point.

Also from figure 1.5,

$$P = F_1 + p \quad \text{and} \quad Q = F_2 + q$$

(1.8)

where P and Q are the object and image distances respectively.

† References: See Bibliography, in particular Grivet 1972, Hall 1953.
‡ Note: the sign convention used above and in the rest of this text is as follows. All quantities above the optic axis are positive, all quantities below the optic axis are negative. All quantities to the left of the reference plane of the lens are negative, all quantities to the right of the reference plane are positive, and the focal lengths are negative if the focal point is to the left of its corresponding principal plane.
The angular magnification, \(M \), or \(\frac{\theta_i}{\theta_o} \), where \(\theta_i \) and \(\theta_o \) are the angles made with the axis at the object and image respectively. From figure 1.5 it can be seen that

\[M = \frac{\theta_i}{\theta_o} \]

Substituting for \(\theta \) from equation 1.7 one has

\[\tan \theta_i = \frac{q}{f_1} \]

and from equation 1.5

\[\tan \theta_o = \frac{q}{f_2} \]

When \(\alpha_i \) and \(\alpha_o \) are small, i.e., the angles are approximately equal, the tangents, \(\alpha_i \) and \(\alpha_o \), can be substituted for \(\theta_i \) and \(\theta_o \) in the above equation and the above equation then reduces to

\[\frac{\alpha_o}{\alpha_i} = \frac{f_2}{f_1} \]

Figure 1.5

Alston's Slits Rule (see 1.1.2). If a physical slit is considered as a limit, the system must be compared with a mathematical lens slit, or, in the case of light, Fermat's Principle. Consider the figure below.

Figure 1.6 (from Hall 1958, figure 1.11)
The angular magnification \(M_\alpha = \frac{\tan \alpha_i}{\tan \alpha_o} \), where \(\alpha_o \) and \(\alpha_i \) are the angles made with the axis at the object and image respectively. From figure 1.5 it can be seen that

\[
M_\alpha = \frac{\tan \alpha_i}{\tan \alpha_o} = -\frac{(p + f_1)}{q + f_2}
\]

Substituting for \(q \) from equation 1.7 gives

\[
M_\alpha = \frac{\tan \alpha_i}{\tan \alpha_o} = -\frac{p}{f_2}
\]

and from equation 1.6

\[
r_o f_1 \tan \alpha_o = r_i f_2 \tan \alpha_i \quad \ldots \quad \text{Lagrange’s Rule}
\]

When \(\alpha_o \) and \(\alpha_i \) are small, i.e., the angle is approximately equal to its tangent, \(\alpha_o \) and \(\alpha_i \) can be substituted for \(\tan \alpha_o \) and \(\tan \alpha_i \) in the above equation and the above equation then reduces to

\[
r_o f_1 \alpha_o = r_i f_2 \alpha_i
\]

Finally, note from equations (1.6) and (1.9)

\[
M M_\alpha = \frac{f_1}{f_2}
\]

Abbé’s Sine Rule (Hall 1953) If any physical system is to be considered as a lens, the system must be consistent with the principle of least action or, in the case of light, Fermat’s Principle. Consider figure 1.6 below.

![Lens Diagram](image-url)
Applying Fermat's principle to a small finite area imposes the condition that the path length from a point \(Q_0 \) a small distance \(y_0 \) from the axis, to a point \(Q_i \) a small distance \(y_i \) from the axis, is the same as the path length from the point \(P \), the normal projection of \(Q_0 \) on the axis, and \(P_i \) the normal projection of \(Q_i \) on the axis. i.e.,

\[
(Q_0 F) + (FT) + (TQ_i) = (P_0 F) + (FP_i)
\]
(1.13)

where \(F \) (see figure 1.6), is located on the second focal plane of the lens, and is the point where the two parallel rays passing through points \(P_0 \) and \(Q_0 \) respectively will cross. The brackets indicate optical paths, i.e., index of refraction \(\times \) length. Since \(P_i \), \(Q_i \) the angle subtended at \(F \) is small it follows that

\[
(FP_i) \approx (FT)
\]

and also

\[
(TQ_i) = n_i y_i \sin \alpha_i
\]

where \(n_i \) is the refractive index in image space.

Substituting the above two equations into equation 1.13 gives

\[
(Q_0 F) + n_i y_i \sin \alpha_i = (P_0 F)
\]
(1.14)

As \(F \) is located on the focal plane it is the image of a point at infinity. Since the paths from this point at infinity to \(R \) and \(P_0 \) must be equal, \((RQ_0 F) \) and \((P_0 F) \) must also be equal, therefore

\[
n_o y_o \sin \alpha_o + (Q_o F) = (P_0 F)
\]
(1.15)

where \(n_o \) is the refractive index of object space.

Combining equations 1.14 and 1.15 gives

\[
n_o y_o \sin \alpha_o = n_i y_i \sin \alpha_i \quad \ldots \quad \textit{Abbé's Sine Rule}
\]
(1.16)

When \(\alpha_0 \) and \(\alpha_i \) are small the above equation reduces to

\[
n_o y_o \alpha_o = n_i y_i \alpha_i
\]
(1.17)

Combining Abbé's Sine Rule and Lagrange's Rule for small angles, i.e., equations 1.11 and 1.17 gives

\[
\frac{f_1}{f_2} = \frac{n_o}{n_i}
\]
(1.18)
and from equation (1.5),
\[\frac{f_1}{f_2} = \sqrt{\frac{V_1}{V_2}} \]

(1.19)

Resolving Power : The Abbé Formula If a lens system is perfect in that it does not suffer from aberration effects, the resolving power is fixed by the wavelength of the radiation used and by the aperture of the system, i.e., the system is diffraction limited. The resolving power of such a system is given by the general formula due to Abbé, which states that
\[\rho = \frac{0.61 \lambda}{n \sin \alpha} \]

where \(\lambda \) is the wavelength of the radiation, \(n \) is the refractive index and \(\alpha \) is the semi-angle subtended at the object by the objective lens of the system. In practice, the resolving power of any system incorporating electron lenses will be aberration limited. The theoretical limit of the resolving power of an electron microscope for example, is determined mainly by spherical aberration effects. An electron microscope with an accelerating voltage of 100 KeV will have a resolving power \(\rho \) of about 2Å.

This introductory chapter has thus far been mainly concerned with the optical analogy and the fundamental optical properties of electron lenses, very little has been said about the form of the electric and/or magnetic fields that make electron lenses possible. The next section will outline the fundamental rules and equations which determine the electric and magnetic fields which produce lens action.

1.4 Lens Fields and Related Lens Properties

It has already been stated that both electric and magnetic fields can be used to obtain lens action in electron optics. However, as the the lenses being studied in this work are electrostatic lenses, most of the subsequent discussion will be concerned with this type of lens, although, for completeness, a short description of the properties of magnetic lenses has been included in this section.
A. The Electrostatic Lens

Electron lenses are made from two or more elements separated by a small gap to which different voltages are applied. The equipotential lines at and near the gaps between the elements will be curved, as shown in figure 1.7, like the curved surface of a glass lens. These curved equipotentials cause the path of an electron to 'bend' just as the path of a light ray bends when it enters a glass lens, in fact, the curved equipotentials have all the properties of a lens with respect to electrons, a parallel beam of electrons will be focussed at a point F, and a beam of electrons diverging from a point O on the axis will be focussed at a point I on the axis.

The elements are typically metal cylinders or discs with a hole in the centre through which the electron beam passes. Two examples of simple electrostatic lenses are shown in figure 1.7.

Axially Symmetric Electric Fields and the Laplace Equation In general, rotationally symmetric fields are used to form electron lenses. The potential \(\phi \) of a rotationally symmetric electrostatic field expressed in cylindrical coordinates \((z, r, \theta)\), is a function of \(z\) and \(r\) only, i.e., it is independent of \(\theta\) so \(\phi = \phi(z, r)\). The dependence of \(\phi\) on \(z\) and \(r\) is given by the Laplace equation which is

\[
\frac{\partial^2 \phi}{\partial z^2} + \frac{\partial^2 \phi}{\partial r^2} + \frac{1}{r} \frac{\partial \phi}{\partial r} = 0
\]

(1.20)

To determine the electric field in a given electron lens it is therefore necessary to solve the Laplace equation with boundary conditions determined by the geometry of the electron lens. It is generally not possible to do this analytically, only in geometrically simple cases and in the absence of space charge is an analytical solution possible, where the problem is essentially the same as the determination of the capacity of a given arrangement of conductors considered as a capacitor; parallel infinite planes, concentric spheres, an infinite cylinder, for example. For practical electrode configurations, numerical calculations or experimental measurements must be used to determine the distribution of the electric field.

The potential can be expanded around the \(z\)-axis into an even power series in \(r\) (Ximen Jiye 1986)

\[
\phi(z, r) = \sum_{k=0}^{\infty} a_k(z) r^{2k} \quad k = 0, 1, 2, \ldots
\]

(1.21)

EXAMPLES OF ELECTRON LENSES

\[v_1 \quad \quad \quad v_2 \]

EQUAl DIAMETER TWO CYLINDER LENS

PHYSICAL EQUIVALENT

DOUBLE APERTURE LENS

PHYSICAL EQUIVALENT

Figure 1.7
\[\frac{\partial^2 \phi}{\partial z^2} = \sum_{k=0}^{\infty} a_k' a_k z^{2k} \]

(1.22)

\[\frac{\partial^2 \phi}{\partial r^2} = 2 \sum_{k=0}^{\infty} 2k (2k - 1) a_k (z) r^{2k-2} \]

(1.23)

\[\frac{1}{r} \frac{\partial \phi}{\partial r} = 2 \sum_{k=0}^{\infty} 2k a_k (z) r^{2k-2} \]

(1.24)

Since the sum of equations 1.22-1.24 is identically zero from equation 1.20, the coefficients for all powers of \(r \) in the sum must be zero. Setting the coefficient of the general term \(r^{2k-2} \) to zero gives:

\[a''_{k-1}(z) + 2k a_k(z) + 2k(2k - 1) a_k(z) = 0 \]

implies

\[a''_{k-1}(z) + (2k)^2 a_k(z) = 0 \]

(1.25)

From the above equation the recursion formula can be obtained:

\[a_k(z) = -\frac{1}{(2k)^2} a''_{k-1}(z) \quad k = 1, 2, \ldots \]

(1.26)

where the prime indicates the derivative with respect to \(z \).

The coefficients \(a_k(z) \) in the potential expansion can be given for a definite boundary condition. For a known axial potential distribution:

\[\phi(z, 0) = a_0(z) = V(z) \]

(1.27)

all coefficients \(a_k(z) \) are determined. \(a_0(z) \) is determined by \(V(z) \). The remaining coefficients \(a_k \) are then given by the recursion formula equation 1.26:

\[a_0(z) = V(z), \quad a_1(z) = -\frac{1}{2^2} V''(z) \]

\[a_2(z) = \frac{1}{2^2 \times 4^2} V(z), \quad a_3(z) = -\frac{1}{2^2 \times 4^2 \times 6^2} V^{(6)}(z), \ldots \]

The general equation for \(a_k(z) \) is then

\[a_k(z) = (-1)^k \frac{1}{2^{2k} (k!)^2} V^{2k}(z), \quad k = 0, 1, 2, \ldots \]

(1.28)

Substituting this into equation 1.21 gives

\[\phi(z, r) = \sum_{k=0}^{\infty} (-1)^k \frac{1}{(k!)^2} \left(\frac{r}{2} \right)^{2k} V^{2k}(z), \quad k = 0, 1, 2, \ldots \]

(1.29)
Knowing the axial potential distribution allows rotationally symmetric electric fields to be expressed in a power series.

When the Gaussian dioptics of an electron optical system are to be investigated, the first two terms of equation 1.29 suffice. If third order aberrations are of interest, the third term must also be included:

\[\phi(z, r) = V(z) - \frac{1}{4} V''(z) r^2 + \frac{1}{64} V^{(4)}(z) r^4 - \ldots \]

(1.30)

The components of the electric field can be deduced from equation 1.30:

\[E_r(z, r) = -\frac{\partial \phi}{\partial r} = \frac{1}{2} V''(z) r - \frac{1}{16} V^{(4)}(z) r^3 + \ldots, \]

\[E_z(z, r) = -\frac{\partial \phi}{\partial z} = -V'(z) + \frac{1}{4} V^{(3)}(z) r^2 - \ldots \]

(1.31)

Thus in the rotationally symmetric electric field, \(E_r \) is odd in \(r \) and \(E_z \) is even in \(r \).

Paraxial-Ray Equation (Hall 1958) To obtain the equation of motion of an axially symmetrical field, it is assumed that the potential is constant except in the region \(0 < z < l \). The problem then reduces to finding the differential equation for the rays in the region \(0 < z < l \), as outside this region the rays are straight lines, see figure 1.8. There is no restriction in this assumption as \(l \) is arbitrary.

![Diagram](adapted from Hall 1958, figure 4.3)
Certain assumptions are made which are similar to those used in first order lens theory in light optics:

1. The discussion is confined to meridional rays, i.e., rays in planes containing the axis.

2. \(r \) is assumed to be small (i.e., the rays are paraxial) and it is assumed that high powers of \(r \) can be neglected.

3. The angle \(\alpha = \tan^{-1} r' \) which rays make with the axis is so small that \(\tan \alpha \approx \alpha \), where \(r' \) is the differential of \(r \) with respect to \(z \). [This approximation is equivalent to neglecting terms containing powers of \(\alpha \) equal to 3 and greater with respect to \(\alpha \), since \(\tan \alpha = \alpha + \left(\frac{\alpha^3}{3} \right) + \left(\frac{2\alpha^5}{15} \right) + \cdots \).] It follows that if \(ds \) is an element of the trajectory, \(ds \approx dz \).

Applying Newton's second law, the rate of change of momentum is equal to the force acting, i.e.,

\[
\frac{d}{dt} (mr) = e \frac{\partial \phi}{\partial r}
\]

where \(\dot{r} \) indicates differentiation with respect to time. Substituting \(\dot{r} = \frac{dr}{dt} \), \(\ddot{r} = \frac{d\dot{r}}{dt} \), and \(\dddot{r} = \frac{d\ddot{r}}{dt} \), implies

\[
\sqrt{\frac{2e\phi}{m}} \frac{d}{dz} \left(r' \sqrt{\frac{2e\phi}{m}} \right) = \frac{e}{m} \frac{\partial \phi}{\partial r}
\]

and finally

\[
r'' + \frac{\phi' r'}{2\phi} - \frac{1}{2\phi} \frac{\partial \phi}{\partial r} = 0
\]

(1.32)

From equation 1.30 and neglecting higher order terms:

\[
\phi \approx V \quad \phi' \approx V' \quad \frac{\partial \phi}{\partial r} \approx -\frac{V''}{2} r
\]

Substituting the above into equation 1.32 gives

\[
r'' + \frac{V'}{2V} r' + \frac{V''}{4V} r = 0
\]

(1.33)

Equation 1.33 is the paraxial ray equation and defines all possible rays near the axis of any axially symmetrical electrostatic field. The solutions of this equation, \(r \) as a function of \(z \), are the equations of possible trajectories in the region \(0 < z < l \).
The Reduced or Pitch Equation It is often convenient to express the paraxial-ray equation in a simpler form by introducing a new variable R through the substitution

$$ R = r \phi^4 $$

(1.34)

The curve $R(z)$ is referred to as a reduced ray. With the substitution, the reduced paraxial-ray equation is obtained, i.e.,

$$ R'' + \frac{3}{16} \left(\frac{V'}{V} \right)^2 R = 0 $$

(1.35)

Note that this equation has no R' term. This equation also displays an interesting feature in that it possesses a single expression characteristic of the lens. All the paraxial properties of the lens are determined by the characteristic function

$$ T(z) = \frac{V'}{V} $$

(1.36)

General Solution of the Paraxial-Ray Equation (Hall 1958) The paraxial-ray equation is a linear differential equation of the second order and therefore must have two linearly independent solutions $r_1 = f_1(z)$ and $r_2 = f_2(z)$. The general solution is therefore

$$ r = c_1 f_1(z) + c_2 f_2(z) $$

(1.37)

where c_1 and c_2 are arbitrary constants to be determined by two boundary conditions, i.e., for $z = 0$, (1) $r = r_0$ and (2) $r' = r_0'$. Applying the first condition gives

$$ r_0 = c_1 f_1(0) + c_2 f_2(0) $$

If c_1 and c_2 are to be kept arbitrary (independent), either $f_1(0)$ must equal zero or $f_2(0)$ must equal zero. If this is not the case, there would be a numerical relation between c_1 and c_2, and equation 1.37 would be a particular solution instead of a general solution. If $f_2(0)$ is chosen to be zero then:

$$ c_1 = \frac{r_0}{f_1(0)} $$

Similarly, c_2 may be determined by differentiating equation 1.37 with respect to z and applying the condition that $r' = r_0'$ when $z = 0$. Thus

$$ r_0' = c_1 f_1'(0) + c_2 f_2'(0) $$
Here again either $f'_1(0) = 0$ or $f'_1(0) = 0$. Otherwise there is a numerical relation between c_1 and c_2. But $f'_1(0)$ cannot be zero because if it were, c_2 would be indeterminate. Therefore, f_1 must be zero and
\[c_2 = \frac{r'_0}{f'_2(0)} \]

Therefore, the general solution is
\[r = r_0 f_1(z) + r'_0 f'_2(z) \]

or
\[r = r_0 P(z) + r'_0 Q(z) \]

where $P(z)$ and $Q(z)$ are functions of z only.

Lens Action (Hall 1958) It may be shown that to the order of approximation used to derive the paraxial-ray equation, any axially symmetrical electrostatic field has the properties of an ideal lens. Referring to figure 1.9 below, take through any point A on an object a ray 1 parallel to the axis and another arbitrary ray 2 with a slope r'_0. For z greater than zero the general solution of the paraxial ray equation becomes:

For ray 1: \[r = yP(z) \]

For ray 2: \[r = (y + r'_0 z_0)P(z) + r'_0 Q(z) \]

The point A_i where the two rays cross on the image is located from the condition that r is the same, (i.e., $r = y_i$) for both rays at this point.
Therefore, equating the right-hand sides of the above two equations

\[yP(z_i) = (y + r_0'z_0)P(z_i) + r_0'Q(z_i) \]

which becomes

\[z_0P(z_i) + Q(z_i) = 0 \]

Note that \(r_0' \) has divided out, therefore, the above equation states that \(z_i \) is independent of the arbitrary ray 2. This means that all rays through a point \(A \) regardless of their slope, reunite at the same point on the image. Note also that \(z_i \) is independent of \(y \). The following conclusions can be drawn:

(1) All rays leaving \(A \) will converge at \(A_i \)

(2) \(z_i \) is independent of \(y \) for all points \(A \). Therefore, the image of a plane perpendicular to the axis at \(z_0 \) is a plane perpendicular to the axis at \(z_i \).

(3) The lateral magnification \(y_i/y = P(z_i) \) depends only on \(z_i \) and is therefore a constant throughout any pair of conjugate planes perpendicular to the axis.

These three conditions are sufficient to specify an ideal lens, therefore, it has been shown that any axially symmetrical field has the properties of an ideal lens to the order of approximation used for the derivation of the paraxial-ray equation.

Consequences of the Paraxial-Ray Equation on the Properties of the Electrostatic Lens

(1) **The paraxial equation is independent of** \(e_m \). The ratio \(e_i \) does not appear in the paraxial equation, so the path is the same for any charged particle, provided it enters the field with the same potential energy. The particles with different charges come to the same focus but arrive there at different times, hence an electrostatic field alone cannot separate charges in space, only in time.

(2) **An electron lens is always convergent** (e.g., see Hall 1953, Zworykin et al 1945)

By definition a divergent lens is one for which an initially parallel ray, after passing through the lens, diverges from the axis without having crossed the axis, as indicated in figure 1.10 below:

However, it is found that if an electrostatic lens is bound by regions of constant \(V \), i.e., \(V_0' = V_i' = 0 \), the lens is always convergent. This can be illustrated if the reduced
equation is rewritten as

\[R'' = -\frac{3}{16} \left(\frac{V'}{V} \right)^2 R \]

It can be seen that \(R'' \) is always negative when \(R \) is positive because of the square term. In regions where \(R = \text{constant} \), \(R' = r' V_{\text{constant}} \), and therefore when \(r' = 0 \) in such regions, \(R' \) is also zero.

It can be seen that as the voltage ratio is increased, \(r' \) increases without limit, whereas \(R' \) approaches the value 2. Thus the positive component is always stronger than the negative, therefore the overall effect of the lens must be convergent.

As illustrated in figure 1.11 above, since \(R'' \) is always negative, the initially parallel \(R \) ray must be concave to the axis as drawn and must cut the axis at some point \(F \) to the right of the lens. For \(R \) rays the lens is obviously always convergent. But the corresponding \(r \) ray must always be parallel to the axis in object space, though its slope within the lens is not.
at all apparent. At the boundary of the lens in image space, however, the slopes are simply
related again, i.e., \(R_1' = r'_1 V_1^\frac{1}{2} \). Therefore at this plane, both slopes must be of the same sign.
Hence, the \(r \) ray must also cut the axis to the right of the lens, therefore the lens must always
be convergent. However, the action of an electron lens is not wholly convergent, electron
lenses can in fact be thought of as consisting of two component lenses, a diverging lens and
a converging lens. In order that the overall action of the lens is convergent, the converging
component of lens must be greater than the diverging component. This can be illustrated
by a simple example (Coslett 1950). If a lens consists of two cylinders separated by a small
gap with \(V_1 \) applied to the first cylinder and \(V_2 \) applied to the second, with \(V_2 > V_1 \), the
first cylinder has a converging and the second a diverging action on the electron beam. The
power of any lens component depends on the voltage ratio across it, and the potential of
the mid-plane is \(V_M = \frac{1}{2} (V_1 + V_2) \). Hence the power of the positive semi-lens depends on
the ratio
\[
\frac{V_M}{V_1} = \frac{(V_1 + V_2)}{2V_1}
\]
and that of the succeeding negative semi-lens on the ratio
\[
\frac{V_2}{V_M} = \frac{2V_2}{(V_1 + V_2)}
\]
It can be seen that as the voltage ratio is increased, \(\frac{V_M}{V_1} \) increases without limit, whereas \(\frac{V_2}{V_M} \)
approaches the value 2. Thus the positive component is always stronger than the negative,
therefore the overall effect of the lens must be convergent.

(3) The nodal planes are crossed (e.g., see Hall 1953, Zworykin et al 1945) If \(V_o \) and
\(V_1 \) are constant, the nodal points are crossed so that \(N_1 \) is to the right of \(N_2 \). Since \(R'' \) is
always opposite in sign to \(R \), the \(R \) rays are always concave to the axis and it is evident
from figure 1.12 that for \(R \) rays the nodal points
must be crossed. Showing that the nodal points are crossed for the \(R \) rays implies that they
are also crossed for the \(r \) rays, as the nodal points must be the same for both the \(R \) and
the \(r \) rays, as both types of ray converge to or diverge from the same points on the axis.

(4) The principal planes are crossed (e.g., see Hall 1953, Zworykin et al 1945) Consider
a ray aimed at \(N_1 \) and emergent parallel to itself and therefore diverging from \(N_2 \) as shown
in figure 1.13.
At whatever point A the incident ray or its extension cuts the first principle plane, the corresponding point of unit magnification on the second part of the ray must always be to the left of A. Therefore the second principal plane must be 'behind' the first principal plane, so the principal planes are crossed.

B. The Magnetic Lens†

No discussion on electron optics would be complete, even one on electrostatic lenses, without at least a summary of the properties of magnetic lenses, thus allowing for some comparison of the two types of lenses and a discussion, if only superficial, of the appropriateness of the use of one type of field in preference to the other, in a given situation. It may even be found that a combination of both types of lenses (or even both types of field in the same lens), would give the best solution to a problem.

A typical magnetic lens is shown in figure 1.14 and consists of a short coil fitted with an iron shield with a narrow gap; the gap has the effect of concentrating the field into a small region.

The field of the lens of figure 1.14 is symmetrical about the z-axis and therefore there is no component of the magnetic field B normal to the plane of z. This means that at any point the magnetic field can be represented by two components, an axial one B_z, and a radial one, B_r. The distribution of the two components along a line parallel and near to the axis is plotted in figure 1.15 below.

As an electron enters the field of the lens of figure 1.14, (point A) parallel to the axis, it encounters no force due to B_z as the electron is moving parallel to it, but it will encounter a relatively strong radial component B_r. An application of the left-hand rule

Figure 1.14 (adapted from Pierce 1954, figure 6.9)
shows that B_x will produce a force in a direction mutually perpendicular to the direction of the electron and B_r, i.e., a force directed out of the figure and towards us will act on the electron. This force F_x, (see figure 1.14) accelerates the electron giving it a sideways velocity v_s, which increases as the electron approaches the mid-plane of the field (point O of figure 1.15). As shown in figure 1.15 beyond the mid-plane B_r reverses, and this gradually reduces the sideways velocity of the electron until it again becomes zero when the electron emerges from the lens. Because the sideways velocity v_s is perpendicular to the axial component of the field B_z, a second application of the left-hand rule shows that B_x will produce a force F_d which will act on the electron, urging it towards the axis with an increasing velocity v_d, (point B in figure 1.14) so that the electron eventually crosses the axis at point F as shown in figure 1.14.

All electrons entering a non-uniform magnetic field such as that of figure 1.14 will pass through the same point F on the axis, so that a parallel beam of electrons will be focussed at F. Similarly, electrons diverging in a narrow beam from a point O on the axis will be focussed at a point I on the axis. From the previous two statements, -some justification of which will be given below -, it can be concluded that the short coil of figure 1.14 with its iron shield can be considered to constitute a lens.

Axially Symmetric Magnetic Fields To obtain the paraxial ray equation for the electrostatic electron lens it was first necessary to find an approximation ϕ for the potential near the axis, and then express all the results in terms of ϕ rather than in terms of E the vector field strength. Similarly, the vector B can be expressed in terms of the magnetic vector potential A, but A is only used to find a relation between B_x and B_r near the axis, as the magnetic vector potential A is not particularly useful in magnetic lens theory. Therefore, all subsequent expressions will be expressed in terms of B only.

The magnetic field in a vacuum is non-divergent, i.e., $\nabla \cdot B = 0$. This allows the introduction of the magnetic potential A which relates to the magnetic induction B:

$$B = \nabla \times A$$

In cylindrical coordinates (z, r, θ), the above equation can be written ($Ximen Jiye 1986$):

$$B_z = \frac{1}{r} \left(\frac{\partial (r A_{\theta})}{\partial r} - \frac{\partial A_r}{\partial \theta} \right)$$

$$B_r = \frac{1}{r} \left(\frac{\partial (r A_z)}{\partial \theta} - \frac{\partial (r A_{\theta})}{\partial z} \right)$$ \hspace{1cm} (1.40)
The rotationally symmetric magnetic vector potential A is a function of z and r only and is independent of θ, i.e.,

$$\frac{\partial A_r}{\partial \theta} = \frac{\partial A_z}{\partial \theta} = \frac{\partial A_\theta}{\partial \theta} = 0$$

Equation 1.40 then gives

$$B_z = \frac{1}{r} \frac{\partial (rA_\theta)}{\partial r}$$
$$B_r = -\frac{1}{r} \frac{\partial (rA_\theta)}{\partial z}$$
$$B_\theta = \frac{\partial A_r}{\partial z} - \frac{\partial A_z}{\partial r}$$

Because the rotationally symmetric magnetic field is generated by currents flowing in circular conductors about the axis of symmetry, the vector potential has only an azimuthal component A_θ, i.e.,

$$A_\theta = A(z, r) \equiv A, \ A_r = A_z = 0$$

So finally:

$$B_z = \frac{1}{r} \frac{\partial (rA)}{\partial r}$$
$$B_r = -\frac{1}{r} \frac{\partial (rA)}{\partial z}$$
$$B_\theta = 0 \quad (1.41)$$

Furthermore, in current free regions, the magnetic field is irrotational, i.e.,

$$\nabla \times \mathbf{B} = 0 \quad (1.42)$$

Substituting equation 1.41 into 1.42 gives the partial differential equation obeyed by the vector potential A i.e.,

$$\frac{\partial^2 (rA)}{\partial z^2} + \frac{1}{r} \frac{\partial}{\partial r} \left(\frac{1}{r} \frac{\partial (rA)}{\partial r} \right) = 0$$

or

$$\frac{\partial^2 A}{\partial z^2} + \frac{\partial^2 A}{\partial r^2} + \frac{1}{r \frac{\partial}{\partial r}} - \frac{A}{r^2} = 0 \quad (1.43)$$

Using the above equation, and following the same procedure used in the case of the rotationally symmetric electric field, the spatial magnetic vector potential can be expanded into the following series:

$$A(z, r) = \sum_{k=0}^{\infty} (-1)^k \frac{1}{(k!)(k+1)!} \left(\frac{r}{2} \right)^{2k+1} B^{(2k)}(z) \quad k = 0, 1, 2, \ldots \quad (1.44)$$
From equation 1.41, the components of magnetic induction are

\[B_z(z, r) = \sum_{k=0}^{\infty} (-1)^k \frac{1}{(k!)^2} \left(\frac{r}{2} \right)^{2k} B^{(2k)}(z) \]

\[B_r(z, r) = \sum_{k=0}^{\infty} (-1)^{k+1} \frac{1}{(k+1)!} \left(\frac{r}{2} \right)^{2k+1} B^{(2k+1)}(z) \]

where \(B(z) = B_z(z, 0) \) is the axial distribution of the magnetic induction. Hence, it is possible to obtain, by using the axial magnetic induction distribution, the spatial distribution of the vector potential \(A \) or magnetic induction \(B \) of the rotationally symmetric field expressed in a power series. Thus equations 1.44 and 1.45 are the basic formula of the rotationally symmetric magnetic field.

Again, for the study of Gaussian dioptics and aberrations, only the first two terms of the above two equations are required, i.e.,

\[A(z, r) = \frac{1}{2} B(z) r - \frac{1}{16} B''(z) r^2 + \ldots \]

\[B_z(z, r) = B(z) - \frac{1}{4} B''(z) r^2 + \ldots \]

\[B_r(z, r) = -\frac{1}{2} B'(z) r + \frac{1}{16} B^{(3)}(z) r^3 - \ldots \]

Thus for rotationally symmetric magnetic fields, \(B_z \) is even in \(r \) and \(B_r \) is odd in \(r \).

Paraxial-Ray Equation \((\text{Hall} 1958)\) The force \(F \) on an electron moving with a velocity \(v \) in a magnetic field of strength \(B \) is given by the equation

\[F = -e v \times B \]

The magnitude of \(F \) is

\[F = B e v \sin \chi \]

where \(\chi \) is the angle between \(B \) and \(v \). Since the force is always at right angles to the velocity and to \(B \), the velocity changes in direction but not in magnitude.

In cylindrical coordinates \(r, \theta, z \) for a field of axial symmetry, equation (1.47) may be written as the determinant of a matrix,

\[\begin{vmatrix} i_r & i_\theta & i_z \\ -e r & -e r \dot{\theta} & -e z \\ B_r & 0 & B_z \end{vmatrix} \]
where \(i_r, i_\theta, i_z \) are unit vectors as shown in figure 1.16 below.

Then, from equation 1.48
\[
F_r = -e r \dot{\theta} B_z \\
F_\theta = -e \dot{z} B_r + e r \dot{B}_z
\]

Substituting \(F_r \) into Newton’s second law in the \(r \) direction i.e., \(F_r = \frac{d}{dt} m v_r \) gives
\[
m \frac{d}{dt} r = -e r \dot{\theta} B_z + m \dot{\theta}^2 r
\]
(1.49)

In the \(\theta \) direction, equating the rate of change of angular momentum to the moments of the forces acting (i.e., \(F_\theta \)), gives
\[
\frac{d}{dt} (m r^2 \dot{\theta}) = -e \dot{z} B_r r + e r \dot{B}_z r
\]

Substituting \(- \frac{r}{2} \frac{\partial B_z}{\partial z} \approx B_r \) deduced from equation 1.46 for \(B_r \) in the above equation, gives
\[
m r^2 \ddot{\theta} = \frac{er^2 B_z}{2} + \text{a constant}
\]
(1.50)

It is useful to eliminate the time from the equations of motion and obtain equations locating rays in space. Using the approximation that
\[
\dot{z} \approx v = \sqrt{\frac{2eV}{m}}
\]
giving
\[
\ddot{\theta} = \dot{\theta} \dot{z} = \dot{\theta} \sqrt{\frac{2eV}{m}}
\]
allows the time dependence in equation 1.50 to be eliminated, and equation 1.50 becomes
\[
\theta' = \sqrt{\frac{e}{8mV}} B_z + \frac{C}{r^2}
\]
(1.51)

The integration constant \(C \) in the above equation is not zero for all rays, and it is not possible in general, to do any further integration, without a relation between \(r \) and \(z \). \(C \) is zero however, for all rays such that \(\theta' = 0 \) when \(B_z = 0 \). These are rays contained in meridional planes in any region where \(B_z = 0 \), for example, before they enter the lens field. Therefore, confining the discussion to meridional rays, \(C \) can be assumed to be zero.

When \(C \) is zero, integrating equation 1.51 yields
\[
\theta = \sqrt{\frac{e}{8mV}} \int_{z_1}^{z_2} B_z \, dz
\]
(1.52)
Rays passing through the lens are turned through an angle which does not depend on the distance of the rays from the axis. All electrons in a given meridional plane before entering the field are contained in a rotating meridional plane as they pass through the lens, and they leave the lens contained.

Equating the constant in equation 3.50 to zero, and substituting the resultant expression for \(i \) into equation 1.49 and replacing \(\theta \) and \(\beta \) in equation 1.49 through the relations

\[
\frac{2eV}{m} \frac{d}{ds} \sqrt{\frac{2eV}{m} \frac{d}{ds}}
\]

and equation (1.53) becomes

\[
F_{\theta} = F_{r} = B_{\theta} = B_{r}
\]

This is the paraxial-ray equation for a magnetically focused lens under cylindrical symmetry as seen the paraxial-ray equation for an electrostatic lens. Therefore, the general solution for the paraxial-ray equation for the magnetic lens must have the same form as the solution of the paraxial-ray equation for an electrostatic lens, i.e.,

\[
r = g(\theta, \phi) \pm \delta(\theta, \phi)
\]

The form of equation (1.53) is identical to the form of the respective paraxial-ray equation (in \(r \)) for the electrostatic lens, therefore conclusions made on the basis of the electrostatic lens with respect to the reduced equation for the magnetic lens, can be adopted for the magnetic lens without proof and are listed below.

1. Any axially symmetric field has the properties of an ideal lens to the approximations made in deriving the paraxial-ray equation.

2. Magnetic lenses are always convergent. Since \(r^2 \) is always negative for positive \(r \), this conclusion holds whether the object is in the magnetic field or not.

3. In the absence of electrostatic fields, the refractive index is the same in object and image space, and therefore \(f_1 = f_2 \). The nodal points coincide with the principal points.

4. The nodal points are crossed.

5. \(r^2 \) is dependent on the magnitude of \(\theta_0 \). Therefore, the focusing properties depend on \(\theta_0 \). The cardinal points depend on \(\theta_0 \).
Rays passing through the lens are turned through an angle which does not depend on the distance of the rays from the axis. All electrons in a given meridional plane before entering the field are contained in a rotating meridional plane as they pass through the lens, and they leave the lens coplanar.

Equating the constant in equation 1.50 to zero, and substituting the resultant expression for $\dot{\theta}$ into equation 1.49 and replace \dot{r} and $\frac{d\theta}{dt}$ in equation 1.49 through the relations

$$\dot{r} = r' \sqrt{\frac{2eV}{m}} \quad \text{and} \quad \frac{d}{dt} = \sqrt{\frac{2eV}{m}} \frac{d}{dz}$$

and equation 1.49 becomes

$$\ddot{r} = -\frac{e}{8mV} B^2 \frac{d^2}{dz^2}$$

(1.53)

This is the paraxial-ray equation in a magnetic field of axial symmetry. The paraxial-ray equation for a magnetic lens is a second-order differential equation as was the paraxial-ray equation for an electrostatic lens, therefore, the general solution for the paraxial-ray equation for the magnetic lens has the same form as the solution of the paraxial-ray equation for an electrostatic lens, i.e.,

$$r = r_0 P(z) + r'_0 Q(z)$$

The form of equation 1.53 is identical to the form of the reduced paraxial-ray equation (in R) for the electrostatic lens, therefore conclusions reached on the optics of the electrostatic lens with respect to the reduced equation for the electrostatic lens, can be adopted for the magnetic lens without proof and are listed below.

(1) Any axially symmetrical field has the properties of an ideal lens to the approximations made in deriving the paraxial-ray equation.

(2) Magnetic lenses are always convergent. Since \ddot{r} is always negative for positive r, this conclusion holds whether the object is in the magnetic field or not.

(3) In the absence of electrostatic fields, the refractive index is the same in object and image space, and therefore $f_1 = f_2$. The nodal points coincide with the principal points.

(4) The nodal points are crossed.

(5) \ddot{r} is dependent on the magnitude of $\frac{e}{m}$. Therefore the focusing properties depend on $\frac{e}{m}$. The cardinal points will in general be different for different $\frac{e}{m}$. 49
Comparison of Electrostatic and Magnetic Lenses

The ratio $\frac{q}{m}$ does not appear in the paraxial ray equation for the electrostatic lens, however, it does appear in the paraxial equation for the magnetic lens. This means that any charged particles of the same sign, which enter an electrostatic lens with the same kinetic energy, will follow the same path. Particles with different charges come to the same focus but arrive there at different times, therefore, they are separated in time, but not in space. Because of this independence of the $\frac{q}{m}$ ratio, the electrostatic lens is favoured to focus heavy particles, i.e., ions.

The kinetic energy of a particle can be changed considerably by an electrostatic lens, particles can even be reflected; a fact which is utilised to form electron mirrors. However, the kinetic energy of a particle in a magnetic lens remains unchanged after passing through a magnetic lens.

The above two paragraphs can be summarised by simply stating that electrostatic lenses are energy dispersive devices, whereas magnetic lenses are momentum dispersive devices and the choice of lens in a given situation will reflect which type of device, i.e., energy dispersive or momentum dispersive is preferred. Electrostatic lenses are in general easier to manufacture than magnetic lenses. However, it is very difficult to build a satisfactory electrostatic lens to act as an objective lens for an electron microscope, as a very high voltage lens with a very short focal length is required, therefore electrostatic lenses are rarely found in the imaging lens system of a high voltage electron microscope, but are confined to the electron gun part of the instrument.
REFERENCES : CHAPTER ONE

BIBLIOGRAPHY

Gabor D 1945 The Electron Microscope (Hutton : London)

Harting E and Read F H 1976 Electrostatic Lenses (Amsterdam : Elsevier)

Jacob L 1950 An Introduction to Electron Optics (Methuen : London)

Meyers L M 1939 Electron Optics (Chapman and Hall : London)

Paszkowski B 1968 Electron Optics (Iliffe : London)

51

Ximen Jiye 1986 *Aberration Theory in Electron and Ion Optics; Suppl. Advances in Electronic and Electron Physics* 17

CHAPTER TWO

METHODS FOR CALCULATING THE PROPERTIES OF ELECTRON LENSES
CONTENTS : CHAPTER TWO

Section (2.1) Introduction .. 56
Section (2.2) The Finite Difference Method or Relaxation Method 56
Section (2.3) The Charge Density Method 60
Section (2.4) The Separation of Variables Method 62
Section (2.5) The Finite Element Method 66
Section (2.6) Comparison of the various methods available for calculating the lens potential 71
Section (2.7) The Calculation of charged particle trajectories 73

References ... 81
LIST OF FIGURES: CHAPTER TWO

Figure 2.1 A five-point grid of equal mesh width ... 57
Figure 2.2 A nine-point grid of equal mesh width ... 60
Figure 2.3 Simple coaxial cylinder lens represented by a large number of circular strips in order to obtain the potential distribution by the charge density method ... 61
Figure 2.4 Schematic diagram of a two-cylinder lens showing the dimensions, the coordinate system and the regions to which different expressions for the potential apply in the Bessel function expansion method ... 63
Figure 2.5 Cross section of a typical magnetic lens ... 67
Figure 2.6 The finite element mesh for analysing the pole piece region 68
Figure 2.7(a) A general finite element for the scalar potential calculation Figure 2.7(b) Diagram for the generation of the finite element equations ... 69

2.2 THE FINITE DIFFERENCE METHOD OR RELAXATION METHOD

To find the solution of the the Laplace equation \(\nabla^2 \phi = 0 \), it can be replaced by set of difference equations. In its simplest form, the potential \(\phi \) in a cylindrical lens at a point \(P_0 \), is expressed in terms of the potentials \(\phi_1, \phi_2, \phi_3 \) and \(\phi_4 \) at the four points \(P_1, P_2, P_3 \) and \(P_4 \), where \(P_1, P_2, P_3 \) and \(P_4 \) are the four nearest points to \(P_0 \) on a square mesh surrounding the point \(P_0 \), see figure 2.1 below.

The potentials at points \(P_1, P_2, P_3 \) and \(P_4 \) are expanded as a Taylor series in the neighbou...

55
METHODS FOR CALCULATING THE PROPERTIES OF ELECTRON LENSES

2.1 INTRODUCTION

The computation of the properties of electron lenses can normally be separated into two parts, – the determination of the potential distribution of the lens followed by the calculation of the electron trajectories through the lens.

This chapter will summarise the techniques most commonly used to determine the potential distribution, i.e., solution of the Laplace or Poisson equation, for a given electron lens. From the potential distribution the electric or magnetic field distribution can be derived and the electron lens trajectories through the lens calculated. Once the lens trajectories have been obtained, the imaging properties of the lens can be deduced.

There exist four main techniques for determining the potential distribution of an electron lens, these are,

(1) The finite difference method or relaxation method,

(2) The charged density method,

(3) The Separation of variables method, and

(4) The finite element method.

2.2 THE FINITE DIFFERENCE METHOD OR RELAXATION METHOD

To find the solution of the the Laplace equation \(\nabla^2 V = 0 \), it can be replaced by set of difference equations. In its simplest form, the potential \(V_0 \) in a cylindrical lens at a point \(P_0 \), is expressed in terms of the potentials \(V_1 \), \(V_2 \), \(V_3 \) and \(V_4 \) at the four points \(P_1 \), \(P_2 \), \(P_3 \) and \(P_4 \), where \(P_1 \), \(P_2 \), \(P_3 \) and \(P_4 \) are the four nearest points to \(P_0 \) on a square mesh surrounding the point \(P_0 \), see figure 2.1 below.

The potentials at points \(P_1 \), \(P_2 \), \(P_3 \) and \(P_4 \) are expanded as a Taylor series in the neigh-

bourhood of the point \(P_0 \) with cylindrical coordinates \((z_0, r_0)\) as follows,

\[
V_i = V_0 - h \left(\frac{\partial V}{\partial z} \right)_0 + \frac{h^2}{2} \left(\frac{\partial^2 V}{\partial z^2} \right)_0 - \ldots,
\]

\[
V_2 = V_0 + h \left(\frac{\partial V}{\partial z} \right)_0 + \frac{h^2}{2} \left(\frac{\partial^2 V}{\partial z^2} \right)_0 + \ldots,
\]

\[
V_3 = V_0 - h \left(\frac{\partial V}{\partial r} \right)_0 + \frac{h^2}{2} \left(\frac{\partial^2 V}{\partial r^2} \right)_0 - \ldots,
\]

\[
V_4 = V_0 + h \left(\frac{\partial V}{\partial r} \right)_0 + \frac{h^2}{2} \left(\frac{\partial^2 V}{\partial r^2} \right)_0 + \ldots
\]

where \(h \) is the mesh width. From the above it can be deduced that

\[
V_1 + V_2 + V_3 + V_4 - 4V_0 = h^2 \left(\frac{\partial^2 V}{\partial r^2} + \frac{\partial^2 V}{\partial z^2} \right)
\]

(2.2)

The right hand side of equation 2.2 can be replaced by

\[-\frac{h^2}{r_0} \frac{\partial V}{\partial r}\]

using the Laplace equation expressed in cylindrical coordinates, i.e.,

\[
\frac{\partial^2 V}{\partial z^2} + \frac{\partial^2 V}{\partial r^2} + \frac{1}{r} \frac{\partial V}{\partial r} = 0
\]

which, from taking the difference of the last two equations of 2.1 is found to equal

\[-\frac{h}{2r_0} (V_4 - V_3)\]

so finally,

\[
V_1 + V_2 + V_3(1 - \frac{h}{2r_0}) + V_4(1 + \frac{h}{2r_0}) = 0
\]

(2.3)
When the point \(P \) lies on the axis \(r_0 = 0 \), and the above formula no longer applies. However symmetry dictates that \(\frac{\partial V}{\partial r} \bigg|_{r_0=0} = \frac{\partial^2 V}{\partial r^2} \bigg|_{r_0=0} = 0 \) so that
\[
\left(\frac{1}{r} \frac{\partial V}{\partial r} \right)_{r_0=0} = \frac{\partial^2 V}{\partial r^2} \bigg|_{r_0=0} = 0
\]
and from the last two equations of equation 2.1
\[
V_4 = V_0 + \frac{h^2}{2} \left(\frac{\partial^2 V}{\partial r^2} \right)_{r_0=0}
\]
Hence
\[
\left(\frac{1}{r} \frac{\partial V}{\partial r} \right)_{r_0=0} = \frac{\partial^2 V}{\partial r^2} \bigg|_{r_0=0} = \frac{2(V_4 - V_0)}{h^2} = \frac{2(V_3 - V_0)}{h^2}
\]
which implies that \(V_3 = V_4 \) and equation 2.2 becomes
\[
V_1 + V_2 + 2V_4 - 4V_0 = 2V_0 - 2V_4
\]
implies
\[
V_1 + V_2 + 4V_4 - 6V_0 = 0 \quad (2.4)
\]
Difference equations 2.3 and 2.4 are linear algebraic equations relating the potential at arbitrary mesh points to the potentials of neighbouring mesh points. Suppose the total number of mesh points is \(N \), therefore, there exist \(N \) linear equations in \(N \) unknowns, where the potentials at the mesh points are the unknowns. The assembly of equations for the whole lattice is normally solved by 'the method of relaxation', however, the finite difference equations can be assembled into a 'band' matrix, the inversion of which yields a direct solution for the potential at each lattice point (Hawkes and Armstrong 1970). Unfortunately very large computer memories are required to contain the elements of a band matrix, therefore, relaxation is the most commonly used way of solving the finite difference equations, which is why this method of finding the potential distribution is often referred to as the relaxation method.

The relaxation method consists of making repeated estimates of the values of \(V \) at all the mesh points using the set of difference equations, until the difference between \(V_i^{(k+1)} \) and \(V_i^{(k)} \) is less than a preselected amount, in the manner outlined below.

The difference equations 2.3 and 2.4 can be written in a more general form, i.e.,
\[
c_1V_1 + c_2V_2 + c_3V_3 + c_4V_4 - c_0V_0 = 0
\]
the above can then be rewritten as
\[
V_0 = (c_1V_1 + c_2V_2 + c_3V_3 + c_4V_4)/c_0 \quad (2.5)
\]
Initially, arbitrary values for the potentials at the mesh points are assumed, which satisfy the boundary conditions imposed by the geometry of the lens. These potentials \(V_0^{(0)}, V_2^{(0)}, V_4^{(0)}, \ldots \), the zeroth approximation for the potentials, are then substituted into equation 2.5 to give a first approximation, i.e.,

\[
V_0^{(1)} = \left(c_1 V_1^{(0)} + c_2 V_2^{(0)} + c_3 V_3^{(0)} + c_4 V_4^{(0)} \right)/c_0
\]

(2.6)

This process is repeated \(k \) times for every mesh point until the required precision is obtained, i.e.,

\[
V_0^{(k+1)} = \left(c_1 V_1^{(k)} + c_2 V_2^{(k)} + c_3 V_3^{(k)} + c_4 V_4^{(k)} \right)/c_0
\]

(2.7)

This process is called simultaneous displacement, i.e., for each cycle all the potentials are calculated from the potentials of the previous cycle and after each cycle all the potentials of the previous cycle are displaced simultaneously by the potentials of the cycle just calculated. Alternatively it is possible to displace successively the previous potentials by the new ones as soon as they have been calculated. This method is known as successive displacement. \(V_0^{(k+1)} \) is then given by

\[
V_0^{(k+1)} = \left(c_1 V_1^{(k+1)} + c_2 V_2^{(k)} + c_3 V_3^{(k+1)} + c_4 V_4^{(k)} \right)/c_0
\]

(2.8)

if the iterative procedure is running from left to right in the \(z \) direction, and from bottom to top in the \(r \) direction.

After \(k \) cycles the error at each mesh point is given by

\[
E_0^{(k+1)} = V_0^{(k+1)} - V_0^k
\]

(2.9)

For the method of successive displacement, it is possible to speed up the rate of convergence by multiplying the error of equation 2.9 by a factor \(\omega \) and adding it to the potential \(V_0^{(k)} \), to obtain the potential at point 0 to the \(k + 1 - th \) approximation:

\[
V_0^{(k+1)} = (1 - \omega)V_0^{(k)} + \omega \left(c_1 V_1^{(k+1)} + c_2 V_2^{(k)} + c_3 V_3^{(k+1)} + c_4 V_4^{(k)} \right)/c_0
\]

(2.10)

This is the five-point difference formula in successive overrelaxation, and \(\omega \) is the overrelaxation factor, and its optimum value is lens dependent.

The above has been a basic outline of the relaxation method for calculating the potential distribution of a lens. In practice, the mesh used may not be square but rectangular, and the density of the mesh can be variable, e.g., where the potential is changing rapidly a denser mesh may be used. The technique is also not restricted to five points, more accurate
difference equations can be derived to include terms with potentials at points P_5, P_6, P_7, and P_8, i.e., a nine-point difference formula can be derived, see figure 2.2 below.

2.3 THE CHARGE DENSITY METHOD

In the charge density method of calculating the lens potential, the surfaces of the electrodes which make up a given lens are divided up into rings, each of which carries a uniform surface charge density. Each electrode is considered as the superposition of N rings, each with a different charge, so that the sum of the potentials created by the rings is, for each electrode, equal to the potential applied to that electrode.

A ring i has an area s_i and carries a uniform surface charge density σ_i and therefore has a total charge $q_i = \sigma_i s_i$. The potential at a point $R_j = (\rho_j, z_j)$ on a ring j due to the charges on the N rings is

$$V(R_j) = V_j = \sum_{i=1}^{N} A_{ji} q_i$$

where

$$A_{ji} = \frac{1}{4\pi \varepsilon_0 s_i} \int_{s_i} \frac{d\tau_i}{|R_j - r_i|}$$

In order to obtain the lens potential the matrix A must be evaluated. Once A has been calculated the column vector q is obtained by inverting A and using

$$q = A^{-1} V$$

The potential at any point \(r \) that is not on a boundary ring is then given by

\[
V(r) = \sum_{i=1}^{N} \frac{q_i}{4 \pi \varepsilon_0} \int_{r_i}^{r} \frac{dr'}{|r - r'|}
\]

To illustrate the method, consider a simple electrostatic lens consisting of two coaxial cylinders, (Read et al. 1971). The cylinder walls are assumed to have negligible thickness so that the potential in regions which are not very close to the cylinders is determined simply by the algebraic sum of the inner and outer charge sheets. Consider the lens shown in figure 2.3 below.

\[\text{Figure 2.3 (from Mulvey and Wallington 1973 figure 8)} \]

The cylinders of radius \(R \) have length \(20R \) so that the cylinder ends have a negligible effect on the potential distribution in the neighbourhood of the gap. The first step in the solution is to divide the cylinders into a total of \(n \) rings of variable width, which are made narrowest near the gap where the charge density changes most rapidly. The potential \(V_i \) at a point \(A \) on the \(j \)th element with coordinates \((R, z_j)\) due to a charge \(q_i \) uniformly distributed around a circle of Radius \(R \) lying in the plane \(z = z_i \) is given by the expression (Weber 1950)

\[
V_i(R, z_j) = \frac{q_i k_i}{4 \pi \varepsilon_0 R} K(k_i)
\]

where

\[
k_i^2 = \frac{4 R^2}{4 R^2 + (z_j - z_i)^2}
\]

and \(K(k_i) \) is the complete elliptic integral of the first kind. The charge density \(\sigma_i \) on the upper and lower surface of the element of width \(\Delta z_i \) is given by

\[
\sigma_i = \frac{q_i}{4 \pi R \Delta z_i}
\]

(2.11)
The potential at point A due to the summed contributions from all the elements of the two cylinders is therefore

\[V(R, z_j) = \frac{1}{\pi \varepsilon_0} \sum_{i=1}^{n} \sigma_i k_i K(k_i) \Delta z_i + I_{i=j} \] \hspace{1cm} (2.12)

where \(I_{i=j} \) is the term for the region of integration \((z_i = z_j) \) at which the elliptic integral has a singularity. The lens is completely specified by \(n \) such equations each of which specifies the potential on a particular ring. Now since the strip potential is the applied potential and therefore known, the assembly of equations is a soluble system of \(n \) linear equations where the \(n \) unknowns are the charge densities of the rings. Once the charge density has been determined the potential at any point \((r, z) \) within the lens can be calculated from equations similar to equations 2.11 and 2.12 in which \(R \) is replaced by \(r \) and \(z_j \) by \(z \). These equations can be solved by matrix inversion (Cruise 1963) or by relaxation (Mautz and Harrington, Singer and Braun 1970). Read (1971), Read et al (1971) and Adams and Read (1972) have solved using an iterative technique where an initial guess is made of the charge density of each ring and then the potentials on the electrode surfaces calculated using equations 2.11 and 2.12. The errors between the calculated potentials and the applied potentials were then used in an empirical formula to obtain improved estimates of the charge densities. By repeating this process, convergence to the true values was achieved.

2.4 THE SEPARATION OF VARIABLES METHOD †

In the separation of variables method the solution of the Laplace equation is written as a product of functions, each of which contains only one of the variables of the coordinate system employed. In the case of cylindrical symmetry, the solution can be expressed as the product of two functions, one depending on the radial component \(r \) and the other on the axial component \(z \). This solution can be expressed as an infinite Fourier series, (Bonjour 1979, Cook and Heddle 1976, Read 1969a,b,1970, Renau and Heddle 1986)

\[V(r,z) = \sum_n A_n \exp(k_n z) J_0(k_n r) \]

where \(J_0 \) is the Bessel function of order zero and the constants \(A_n \) must be determined so as to satisfy the boundary conditions. A method defined by Cook and Heddle (1975), using the variational principle and the expansion of Bessel functions, and is therefore referred

† References: Bertram 1940,1942, Bonjour 1979, Cook and Heddle 1976, Grivet 1972, Fink and Kisker 1980, Read 1969a,b,1970, Renau and Heddle 1986
A solution ψ of Laplace's equation $\nabla^2 \psi = 0$ in a volume Ω can be found which satisfies the condition that $\psi = \psi_B$ on some closed boundary of Ω. Initially an approximate solution ϕ is assumed and a functional $W(\phi)$ defined, i.e.,

$$W(\phi) = \frac{1}{2} \int_{\Omega} (\nabla \phi)^2 \, d\Omega$$

The variational principle indicates that

$$W(\psi) \leq W(\phi)$$

The approximate solution is constructed so that

$$\phi = \sum_{i=1}^{n} \alpha_i \phi_i$$

and the coefficients α_i determined by minimising $W(\phi)$. In other words, the appropriate potential distribution is the one of minimum potential energy.

Consider the geometry shown in figure 2.4. The potential in the three labelled regions is as follows

$$\phi_i(r, z) = V_i + \sum_{n=1}^{\infty} A_n \exp(k_n z) J_0(k_n r)$$

(2.13a)
\[
\phi_{II}(r, z) = \frac{V_1 + V_2}{2} + \left(\frac{V_2 - V_1}{g}\right) z + \sum_{n=1}^{\infty} [B_n \exp(-k_n z) + B'_n \exp(k_n z)] J_0(k_nr) \\
\phi_{III}(r, z) = V_2 + \sum_{n=1}^{\infty} C_n \exp(-k_n z) J_0(k.nr)
\]
\(2.13b\)
\(2.13c\)

Each term of equation (2.13) is a formal solution of Laplace’s equation with unspecified boundary conditions. \(A_n, B_n, B'_n\) and \(C_n\) are coefficients to be determined, \(J_0(t)\) is the Bessel function of order zero and cylindrical polar coordinates are used with the origin at the centre of the lens. The cylinder potentials are \(V_1\) and \(V_2\) and the signs of the arguments of the exponentials were chosen by Cook and Heddle (1976) to satisfy the boundary condition at \(z = \pm \infty\). The boundary condition at the cylindrical surfaces is satisfied if the values of \(k_n\) are restricted to those for which \(J_0(k_n D/2) = 0\). This restriction implies, from equation 2.13b, that the potential in the gap between the cylinders at \(r = D/2\) changes linearly with \(z\). This is known to be an approximation, however, Bonjour (1979) has shown how a more realistic dependence may be incorporated into the variational method but the effect is small for a lens having a small gap and thick walls.

The relationship between the coefficients can be found from

1. Symmetry about the origin
 Symmetry about the origin implies that
 \(A_n = -C_n\) and \(B'_n = -B_n\)

2. The condition at the boundary between regions I and II,
 \(\phi_I(r, \frac{D}{2}) = \phi_{II}(r, \frac{D}{2})\) for \(0 \leq r \leq \frac{D}{2}\)
 leads to the relation
 \[A_n \exp\left(-\frac{k_n g}{2}\right) = B_n [\exp\left(\frac{k_n g}{2}\right) - \exp\left(-\frac{k_n g}{2}\right)]\]

The potential can now be expressed in terms of a single set of coefficients, \(B_n\), as

\[
\phi_I(r, z) = V_1 + \sum_{i=1}^{\infty} B_n [\exp(k_n g) - 1] \exp(k_n z) J_0(k_n r) \\
\phi_{II}(r, z) = \frac{V_1 + V_2}{2} + \left(\frac{V_2 - V_1}{g}\right) z + \sum_{i=1}^{\infty} B_n [\exp(-k_n z) - \exp(k_n z)] J_0(k_n r) \\
\phi_{III}(r, z) = V_2 - \sum_{i=1}^{\infty} B_n [\exp(k_n g) - 1] \exp(-k_n z) J_0(k_n r)
\]
\(2.14a\)
\(2.14b\)
\(2.14c\)
The functional to be minimised is therefore
\[
\pi \left\{ \int_0^{D/2} \int_{-s/2}^{s/2} \left[\left(\frac{\partial \phi_I}{\partial x} \right)^2 + \left(\frac{\partial \phi_I}{\partial r} \right)^2 \right] r \, dr \, dz \right. \\
\left. + \int_0^{D/2} \int_{-s/2}^{s/2} \left[\left(\frac{\partial \phi_{II}}{\partial z} \right)^2 + \left(\frac{\partial \phi_{II}}{\partial r} \right)^2 \right] r \, dr \, dz \right. \\
\left. + \int_0^{D/2} \int_{-s/2}^{s/2} \left[\left(\frac{\partial \phi_{III}}{\partial r} \right)^2 + \left(\frac{\partial \phi_{III}}{\partial r} \right)^2 \right] r \, dr \, dz \right. \\
\right.
\]

When the condition \(\partial W / \partial B_n = 0\) it is found that
\[
B_n = (V_2 - V_1) \exp \left(-\frac{k_n g}{2} \right) / \left(\frac{g}{2} \right) \, k_n D J_1 \left(\frac{k_n D}{2} \right)
\]
where \(J_1\) is the Bessel function of order one. The dimensions are all expressed in terms of the cylinder diameter, \(D\), as
\[
G = \frac{g}{D}, \quad Z = \frac{z}{D}, \quad R = \frac{2r}{D}
\]
with
\[
K_n = \frac{k_n D}{2}
\]
Values of \(K_n\) and the corresponding values of \(J_1(K_n)\) to ten decimal places are given in the British Association Mathematical Tables (1958) for \(1 \leq n \leq 150\). It is convenient for calculation to write
\[
Q_n = \frac{1}{2K_n J_1(K_n)} \quad (Note : D = \frac{2r}{R} = 1 \text{ when } \frac{r}{R} = 1)
\]
and
\[
B_n = \frac{(V_2 - V_1)Q_n \exp(-K_n G)}{G}
\]
The potentials can then be expressed as
\[
\phi_I(R, Z) = V_1 + \frac{V_2 - V_1}{G} \sum_{n=1}^{\infty} Q_n \{ \exp[K_n(2Z + G)] - \exp[K_n(2Z - G)] \} J_0(K_n R) \quad (2.15a)
\]
\[
\phi_{II}(R, Z) = \frac{V_1 + V_2}{2} + \frac{V_2 - V_1}{G} Z + \frac{V_2 - V_1}{G} \times \sum_{n=1}^{\infty} Q_n \{ \exp[-K_n(2Z + G)] - \exp[-K_n(2Z - G)] \} J_0(K_n R) \quad (2.15b)
\]
\[
\phi_{III}(R, Z) = \frac{V_2 - V_1}{G} \sum_{n=1}^{\infty} Q_n \{ \exp[-K_n(2Z - G)] - \exp[-K_n(2Z + G)] \} J_0(K_n R) \quad (2.15c)
\]
For the limiting case of a lens having zero gap an exact analytic expansion exists (Grivet 1972). The expressions for \(\phi_I \) and \(\phi_{III} \) reduce to this exact expression as \(G \rightarrow 0 \).

Cook and Heddle (1976) found that the evaluation of the potential from the expressions of equations 2.15 required a little care. For values of \(Z \) close to \(\pm G/2 \) the convergence was found to be extremely slow. Successive terms alternate in sign, however, and it was found that a greatly improved approximation was obtained by taking the means of the sums to \(N \) and \(N + 1 \) terms.

Another method used to obtain the solution of the Laplace equation, using the method of separation of variables, involves expressing the solution of the Laplace equation as a Fourier integral, (rather than an infinite Fourier series, Bertram 1940,1942, Fink and Kisker 1980) as,

\[
V(r, z) = \frac{1}{2\pi} \int_{-\infty}^{\infty} a(k) I_0(\kappa r) e^{ikz} dk
\]

where \(I_0(\kappa r) = J_0(i\kappa r) \) is the Bessel function of order zero with imaginary argument and where \(a(k) \) is a function of the arbitrary parameter \(k \), where \(a(k) \) must be chosen so that \(V(r, z) \) satisfies the boundary conditions. The above integral can be approximated to give an analytical expression for the lens potential, (Bertram 1940,1942, Fink and Kisker 1980). Approximating the integral gives a very rapid method of calculating the potential, however, the Bessel function expansion method gives a more accurate solution.

Finally, Read 1969a,b,1970 used the separation of variables method to obtain the potential of two and three aperture immersion lenses, using Bessel series for the potentials, chosen to satisfy the boundary condition at \(z = \pm \infty \), and restricting the values of \(\kappa_n \) to those values for which \(J_0(\kappa_n D/2) = 0 \), (i.e., the same boundary conditions as applied in the Bessel function expansion method of solution described above). The boundary conditions which remain to be satisfied are that the radial and longitudinal components of the field are continuous across the lens apertures. The application of this boundary condition alone was found to be insufficient to obtain convergence, and a 'least squares' criterion had to be applied to finally obtain a satisfactory solution. This method gives good results, however, the Bessel function expansion method is a more rapid method of obtaining a solution.

2.5 THE FINITE ELEMENT METHOD

To obtain the potential of a lens using the finite element method, as with the relax-

† References: Ximen Jiye 1986, Mulvey and Wallington 1973, Munro 1973

66
The finite element method, like the variational or Bessel function expansion method, uses the variational principle, i.e., a functional is defined whose minimisation is equivalent to solving the original differential equation. As the potential is assumed to vary linearly across each triangular finite element, the potential over each element is uniquely determined by the potential at its vertices, so that the contribution from the functional can be expressed in terms of the potentials at the corners of the triangles. The condition that the functional be minimised is used to derive a set of simultaneous algebraic equations, which when solved give the potential at each mesh point.

To illustrate the method, consider the unsaturated magnetic lens of figure 2.5, (Munro 1973).

Suppose the field distribution in the pole-piece region ABCD is to be computed. The region ABCD encloses no currents and the magnetic field B may be represented by a scalar potential V, defined such that

$$B = \nabla V$$

where V satisfies the differential equation

$$\nabla \cdot (\mu \nabla V) = 0$$

(2.16)
where μ is the permeability at any point. The solution of equation 2.16 subject to prescribed boundary conditions, (listed below) can be obtained by minimising the functional

$$F = \int \int \int \frac{1}{2} \mu \nabla V \cdot \nabla V \, dV$$

subject to the same boundary conditions. For a rotationally-symmetric lens, the equation 2.17 becomes

$$F = \int \int \frac{1}{2} \mu \left[\left(\frac{\partial V}{\partial z} \right)^2 + \left(\frac{\partial V}{\partial r} \right)^2 \right] 2\pi r \, dz \, dr$$

The entire region in the rz is divided into small quadrilaterals, which are subdivided into small triangular finite elements, (figure 2.6).

The contribution from such an element to the functional F in equation 2.18 is

$$F_{\Delta} = \int_{\Delta} \int \frac{1}{2} \mu \left[\left(\frac{\partial V}{\partial z} \right)^2 + \left(\frac{\partial V}{\partial r} \right)^2 \right] 2\pi r \, dz \, dr$$

which is evaluated over the element Δ. For the finite element approximation, V is assumed to vary linearly across the element, and is thus given by

$$V(z,r)|_{\Delta} = \alpha_z + \alpha_z z + \alpha_r r$$

(2.20)
where α_i, α_j, α_k can be expressed in terms of three vertex potentials V_i, V_j, V_k as follows (figure 2.7)

$$\alpha_i = \frac{1}{2\Delta} (a_i V_i + a_j V_j + a_k V_k)$$

$$\alpha_j = \frac{1}{2\Delta} (b_i V_i + b_j V_j + b_k V_k)$$

$$\alpha_k = \frac{1}{2\Delta} (c_i V_i + c_j V_j + c_k V_k)$$ \hspace{1cm} (2.21)

In the above formula Δ is the area of the triangular element

$$\Delta = \frac{1}{2} \begin{vmatrix} 1 & z_i & r_i \\ 1 & z_j & r_j \\ 1 & z_k & r_k \end{vmatrix}$$ \hspace{1cm} (2.22)

while the coefficients become

$$a_i = z_j r_k - z_k r_j, \quad b_i = r_j - r_k, \quad c_i = -z_j + z_k$$

and so forth. Substituting equation 2.21 into equation 2.20 gives

$$V_i \mid_{\Delta} = \frac{1}{2\Delta} \sum (a_i + b_i z + c_i r) V_i$$ \hspace{1cm} (2.23)

where summation is performed with respect to i, j, k in permutation.

Figure 2.7 (courtesy of E. Munro 1978 figures 3 & 4)

The gradient of the scalar potential in each finite element is given by

$$\frac{\partial V}{\partial z} = \frac{1}{2\Delta} \sum (b_i V_i), \quad \frac{\partial V}{\partial r} = \frac{1}{2\Delta} \sum (c_i V_i)$$ \hspace{1cm} (2.24)
Substituting into equation 2.19 gives the contribution from such an element \(\Delta_e \) to the functional \(F \)
\[
F_{\Delta_e} = \frac{1}{8\Delta^2} \int \int \mu \left[(b_i V_i + b_j V_j + b_k V_k)^2 (c_i V_i + c_j V_j + c_k V_k)^2 \right] 2\pi r \, dr \, dz
\]
The above can be rewritten as follows
\[
F_{\Delta_e} = \frac{\pi \mu}{4\Delta} \sum \left[(b_i V_i)^2 + (c_i V_i)^2 \right]
\]
where \(\bar{r} \) is the value of \(r \) at the centroid.

Differentiating equation 2.25 with respect to \(V_i \) gives the following matrix formula
\[
\frac{\partial F_{\Delta_e}}{\partial V_i} = [F_{ij}][V_j] \quad (i,j,k)
\]
where
\[
F_{ij} = \frac{\pi \bar{r}}{2\Delta} (b_i b_j + c_i c_j)
\]
For each element of the mesh the \(3 \times 3 \) matrix \([F_{ij}] \) is computed using equation 2.27. For example, in figure 2.7b, let the node 0 be a general mesh point, and let the adjacent elements be \(\Delta_1, \Delta_2, \Delta_3, \Delta_4, \Delta_5, \Delta_6 \), with the corresponding vertex potentials \(V_0, V_1, V_2, V_3, V_4, V_5, V_6 \). Using equations 2.25 and 2.26 to sum up the contributions from each element, and inserting the total contributions into equation 2.18 gives the condition for minimizing the functional
\[
\sum_{\epsilon} \frac{\partial F_{\Delta_e}}{\partial V_0} = 0
\]
where \(\sum_{\epsilon} \) is the summation with respect to all elements. Substitution of equation 2.26 into equation 2.28 finally leads to a finite element equation of the form
\[
\sum_{m} P_{m0} V_m = 0
\]
where \(\sum_m \) is the summation over all mesh points, and the coefficient \(P_{m0} \) is the sum of the appropriate terms of \(F_{ij} \) with respect to the node 0. A finite element equation is generated in this way for each mesh point, a seven-point equation being obtained for each non-axial mesh point, and a five-point equation for each axial mesh point. The resulting linear algebraic equations for scalar potentials of mesh points leads finally to the matrix equation
\[
[P][V] = 0
\]
and this set of linear algebraic equations can be solved by Gaussian elimination or iteration.

2.6 COMPARISON OF THE VARIOUS METHODS AVAILABLE FOR CALCULATING THE LENS POTENTIAL

There are pros and cons to all the methods described above. In choosing which method to use to calculate the potential distribution of a given lens, it is necessary to consider,

1. the geometry of the lens, as some methods are restricted to certain geometries,
2. is the potential to be evaluated at every point of the lens, or is it sufficient to only know the potential at discrete points, (i.e., the nodes of a mesh) or is it only necessary to know the axial potential,
3. what accuracy is required,
4. how much computer memory is available,
5. how much time is available to do the calculations.

With these points in mind, the following lists the good and bad points of the methods described above.

Finite Difference Method

Good Points

This is an accurate method, where the accuracy depends on the density of the mesh. Natali et al (1972) quote that "the accuracy of the relaxation technique using five point formulas, is usually taken to be of the order $1/N$ where N is the number of mesh points." Since they used the more accurate nine-point formulas, Natali et al believe that the accuracy of their calculated potentials is considerably better than 10^{-4} of the maximum potential.

The finite difference method can be used to calculate the potential of lenses of any geometry.

Bad Points

The potential is obtained only at discrete points, i.e., the node of a mesh, and interpolation is necessary if the potential is required at points lying between the mesh points. Interpolation must be done with extreme care if the accuracy of the method is to be maintained.
The finite difference method requires a lot of computing time and computer memory because of the need for iteration or the inversion of a large matrix.

Charge Density Method

Good Points

This is an accurate method, where the accuracy depends on the number of segments into which the lens is divided which are assumed to carry a uniform charge density. Harting and Read (1976) obtained accuracies of (≈ 0.1%).

The potential is obtained at all points in the lens.

This method can be used to calculate the potential of lenses of any geometry, provided that it is possible to divide the lens into segments, where each segment has a uniform charge density.

Bad Points

The axial potential can be found quite simply, but the calculation of the potential at off axis points requires the numerical evaluation of elliptical integrals.

The charge density method requires a lot of computing time and computer memory because of the need for iteration or the inversion of a large matrix.

Separation of Variables Method (Bessel function Expansion Method)

Good Points

This is a fast and accurate method for computing the potential of cylindrical lenses of constant diameter where the cylinders are separated by a small gap (≤0.1D), or when the potential in the gap is known. It requires a very simple computer program; no iteration or matrix inversion is necessary. The precision of the Bessel function technique depends on the number of terms considered in the infinite sum of Bessel functions. To test the accuracy of this method the results obtained are compared with those obtained using other methods. The lens potentials obtained using the Bessel function expansion method, were compared with the potentials calculated by Natali et al (1972) using the finite difference method, (Cook and Heddle (1976), Edwards 1983) and with those calculated by Read et al (1971) using the charge density method, (Edwards 1983). The agreement was found to be within 0.01%.
The potential is obtained at all points of the lens.

Bad Points

This method is limited to cylindrical lenses where the cylinders are of the same diameter D, and the cylinders are separated by a small gap, or the potential in the gap is known and can be approximated by some function.

Finite Element Method

Good Points

This method can be used to calculate the potential of a lens of any geometry, and is particularly useful where the lens geometry is complicated, and the lens boundaries have peculiar shapes.

Bad Points

This method is not as accurate as the previous three methods, Munro (1973) obtained accuracies of ($\approx 1\%$).

The finite element method requires a lot of computing time and computer memory because of the need for the inversion of a very large matrix.

2.7 THE CALCULATION OF CHARGED PARTICLE TRAJECTORIES

Once the potential distribution within a lens has been calculated, by whatever method, in order to finally find the focal properties of the lens, the trajectories of charged particles through the lens have to be determined. To obtain the charge particle trajectories it is necessary to solve the trajectory equation. This equation is an ordinary differential equation, the solution of which can be found by numerical integration.

Consider a first order differential equation inside a region G in the $x\ y$ plane:

$$\frac{dy}{dx} = f(x, y)$$

The initial condition is

$$y(x_0) = y_0$$

The independent variable is \(x \), and the dependent variable is \(y \). If inside the region \(G \), the function \(f(x,y) \) is sufficiently differentiable or possesses continuous derivatives of all orders with respect to \(x \) and \(y \), then a unique and well behaved solution satisfying the above two equations does exist inside the region \(G \). Numerical integration can then be performed in the following way to find a solution. If an initial value \(y(x_0) \) at the initial point \(x = x_0 \) is known, using the slope \(y'_0 \) at this point it is possible to move forward by a step of length \(h \) to the next value \(y(x_1) \) at the next point \(x = x_1 \). Repeating this process allows the approximate values \(y(x_2), y(x_3), \ldots, y(x_n) \) at the consecutive points \(x = x_2, x_3, \ldots, x_n \), thus a numerical approximation to the solution of the differential equation can be generated.

The methods available to obtain the solution of ordinary differential equations by numerical integration may be grouped into two broad classes:

1. **Single-step methods.** In these methods the value of \(y(x_{n+1}) \) is obtained from a knowledge of the previous \(y(x_n) \) and the calculation of \(f(x, y) \) within the interval \((x_n, x_{n+1}) \). The Runge-Kutta method is of this type, as is the method described by Renau and Heddle (1986), both methods will be described below.

2. **Multi-step methods.** In these methods the value \(y(x_{n+1}) \) is obtained from a knowledge of a number of previous points, i.e., \(y_n, y_{n-1}, \ldots \) and \(y'_n, y'_{n-1}, \ldots \). The predictor-corrector formulae is of this type and will be described below. Finally, if only the Gaussian approximation of trajectory equation is considered, i.e., the paraxial equation, a simpler method than either of the above, known as the Fox-Goodwin method (or Numerov-Manning-Millmann method) can be used, and this method is also described below.

RUNGE-KUTTA SINGLE STEP METHOD†

The Runge-Kutta method estimates the value of \(y_{n+1} \) from \(y_n \) and a weighted average of values of \(f(x, y) \) where \(x \) and \(y \) lie between \(x_n \) and \(x_{n+1} \), and \(y_n \) and \(y_{n+1} \) respectively. Where the values of \(f(x, y) \) are chosen so that the truncation error is comparable to that of a \(p \)th order Taylor series, i.e., (to fourth order)

\[
y(x_{n+1}) = y(x_n) + h[aK_1 + bK_2 + cK_3 + dK_4] + O(h^5)
\]

Expanding both sides of equation 2.29 into Taylor series at the point \(x = x_n \) and comparing

† References: Ximen Jiye 1986
corresponding terms gives
\[y_{n+1} = y_n + \frac{h}{6} (K_1 + 2K_2 + 2K_3 + K_4) + 0(h^5) \]
(2.30)

where \(h \) is the step length and,

\[
\begin{align*}
K_1 &= f(x_n, y_n) \\
K_2 &= f(x_n + \frac{h}{2} \cdot y_n + \frac{hK_1}{2}) \\
K_3 &= f(x_n + \frac{h}{2} \cdot y_n + \frac{hK_2}{2}) \\
K_4 &= f(x_n + h \cdot y_n + hK_3)
\end{align*}
\]

The advantages of the Runge-Kutta method are its high accuracy, self-starting and stability, and also its ease in changing step length in numerical integration. Its main disadvantage is the number of function evaluations required per step, which means that considerable computer time may be needed to finally compute trajectories.

RENAU-HEDDLE SINGLE STEP METHOD

Renau and Heddle (1986) described a single step method for calculating the trajectories through an electrostatic lens. The electron trajectories were calculated by numerically integrating the Newtonian equations of motion, using the power series expansion of the electron co-ordinates in terms of time

\[
\begin{align*}
z(t) &= z_0 + \left(\frac{dz}{dt} \right)_0 t + \frac{1}{2} \left(\frac{d^2z}{dt^2} \right)_0 t^2 + \frac{1}{6} \left(\frac{d^3z}{dt^3} \right)_0 t^3 + \ldots \\
r(t) &= r_0 + \left(\frac{dr}{dt} \right)_0 t + \frac{1}{2} \left(\frac{d^2r}{dt^2} \right)_0 t^2 + \frac{1}{6} \left(\frac{d^3r}{dt^3} \right)_0 t^3 + \ldots
\end{align*}
\]

(2.32)
(2.33)

where \(z(t) \) and \(r(t) \) are the co-ordinates of an electron, with initial coordinates denoted by suffix 0 after a short time interval, \(t \). The accuracy of the trajectories depends on the number of terms used and on the value \(t \) used for integration. Renau and Heddle (1986) found that very accurate results could be obtained by considering (for each step) variation in potential up to the second order and therefore the first four terms of equations 2.32 and 2.33.

The electron velocities at the end of a step are given by

\[
\frac{dz(t)}{dt} = \left(\frac{dz}{dt} \right)_0 + \left(\frac{d^2z}{dt^2} \right)_0 t + \frac{1}{2} \left(\frac{d^3z}{dt^3} \right)_0 t^2
\]

† References: Renau and Heddle 1986
The second differentials of \(z\) and \(r\) with respect to \(t\) are given by Newton's equations, i.e.,

\[
\left(\frac{d^2 z}{dt^2} \right)_0 = -\frac{e}{m} \left(\frac{\partial V}{\partial z} \right)_0
\]

\[
\left(\frac{d^2 r}{dt^2} \right)_0 = -\frac{e}{m} \left(\frac{\partial V}{\partial r} \right)_0
\]

and the third differentials of \(z\) and \(r\) with respect to \(t\) are found by differentiating the above two equations with respect to \(t\) where \(\frac{d}{dt} = \frac{\partial}{\partial x} \frac{dx}{dt} + \frac{\partial}{\partial x} \frac{dr}{dt}\), i.e.,

\[
\left(\frac{d^3 z}{dt^3} \right)_0 = -\frac{e}{m} \left(\frac{\partial^2 V}{\partial z^2} \right)_0 \left(\frac{dz}{dt} \right)_0 - \frac{e}{m} \left(\frac{\partial^2 V}{\partial z \partial r} \right)_0 \left(\frac{dr}{dt} \right)_0
\]

\[
\left(\frac{d^3 r}{dt^3} \right)_0 = -\frac{e}{m} \left(\frac{\partial^2 V}{\partial r^2} \right)_0 \left(\frac{dr}{dt} \right)_0 - \frac{e}{m} \left(\frac{\partial^2 V}{\partial z \partial r} \right)_0 \left(\frac{dz}{dt} \right)_0
\]

where \(e/m\) is the charge to mass ratio for an electron. The final expressions can be simplified if the parameter \(T\) is used to replace \(t\), where \(T\) is given by,

\[
T = -\left(\frac{2e}{m} \right)^{\frac{1}{2}} t
\]

Finally, the recurrence relations for the position and velocity of the electron become

\[
z(t) = z_0 + \left(\frac{dz}{dT} \right)_0 T + \frac{1}{4} \left(\frac{\partial V}{\partial z} \right)_0 T^2 + \frac{1}{12} \left[\left(\frac{\partial^2 V}{\partial z^2} \right)_0 \left(\frac{dz}{dT} \right)_0 + \left(\frac{\partial^2 V}{\partial z \partial r} \right)_0 \left(\frac{dr}{dT} \right)_0 \right] T^3
\]

\[
r(t) = r_0 + \left(\frac{dr}{dT} \right)_0 T + \frac{1}{4} \left(\frac{\partial V}{\partial r} \right)_0 T^2 + \frac{1}{12} \left[\left(\frac{\partial^2 V}{\partial r^2} \right)_0 \left(\frac{dr}{dT} \right)_0 + \left(\frac{\partial^2 V}{\partial z \partial r} \right)_0 \left(\frac{dz}{dT} \right)_0 \right] T^3
\]

\[
\left(\frac{dz(t)}{dT} \right)_0 = \left(\frac{dz}{dT} \right)_0 + \frac{1}{2} \left(\frac{\partial V}{\partial z} \right)_0 T + \frac{1}{4} \left[\left(\frac{\partial^2 V}{\partial z^2} \right)_0 \left(\frac{dz}{dT} \right)_0 + \left(\frac{\partial^2 V}{\partial z \partial r} \right)_0 \left(\frac{dr}{dT} \right)_0 \right] T^2
\]

\[
\left(\frac{dr(t)}{dT} \right)_0 = \left(\frac{dr}{dT} \right)_0 + \frac{1}{2} \left(\frac{\partial V}{\partial r} \right)_0 T + \frac{1}{4} \left[\left(\frac{\partial^2 V}{\partial r^2} \right)_0 \left(\frac{dr}{dT} \right)_0 + \left(\frac{\partial^2 V}{\partial z \partial r} \right)_0 \left(\frac{dz}{dT} \right)_0 \right] T^2
\]

The values of \(\left(\frac{dz}{dT} \right)_0\) and \(\left(\frac{dr}{dT} \right)_0\) at the beginning of a trajectory are derived from the angle \(\theta\) that the trajectory makes with the optic axis, where

\[
\left(\frac{dz}{dT} \right)_0 = v_0 \frac{1}{2} \cos(\theta_0)
\]

\[
\left(\frac{dr}{dT} \right)_0 = v_0 \frac{1}{2} \sin(\theta_0)
\]

76
Better results will be obtained from either of the above methods if a variable step length is used. If the step length is taken to be equal to a small value \(h \) and moving forward by this step gives \(r^{(h)} \) and \(z^{(h)} \). Going back to the starting point and moving forward two steps of length \(h/2 \), gives \(r^{(h/2+h/2)} \) and \(z^{(h/2+h/2)} \). Therefore a relative error can be defined as follows

\[
\delta = \max \left[\frac{(r^{(h)} - r^{(\frac{h}{2} + \frac{h}{2})})}{r^{(\frac{h}{2} + \frac{h}{2})}}, \frac{(r^{(h)} - r^{(\frac{h}{2} + \frac{h}{2})})}{r^{(\frac{h}{2} + \frac{h}{2})}} \right]
\]

If \(\delta \) is greater than a prescribed amount \(h \) is halved, if it is less than a prescribed amount \(h \) is doubled. An alternative way of choosing the step length by is considering the energy of the electron. The change in electron kinetic energy during a step is given by

\[
\Delta K.E = -\frac{m(v_1^2 - v_0^2)}{2}
\]

which should be equal but of opposite sign to the change in potential energy

\[
\Delta P.E = -\varepsilon(V_1 - V_0)
\]

if the calculation was exact. An error \(\varepsilon \) can therefore be defined as the apparent change in the total energy of the electron, i.e.,

\[
\varepsilon = |\Delta P.E| - |\Delta K.E|
\]

Again, if \(\varepsilon \) is greater than a prescribed amount \(h \) is halved, if it less than a prescribed amount \(h \) is doubled.

PREDICTOR-CORRECTOR MULTI-STEP METHOD †

In order to improve the accuracy and stability of numerical integration, the predictor-corrector method can be used. However, the predictor-corrector method is not self starting, and a single-step method must be used to compute the first few trajectory values.

To find a solution \(y_{n+1} \) of a differential equation of the form

\[
\frac{dy}{dx} = f(x, y)
\]

using the predictor-corrector method, involves making an initial prediction of \(y_{n+1} \) from a knowledge of \(y_n, y_{n-1} \ldots \), where the value of \(n \) is the order of the approximation. An

† References : Hamming 1973, Ralston 1965
iterative formula is then used to correct the prediction, until the difference between two corrected values is sufficiently small; hence the name predictor-corrector. An example of a fourth order predictor-corrector system using corresponding open and closed Newton-Cotes integration formulae is given by

Predictor: \(y_{n+1}^{(0)} = y_{n-3} + \frac{4h}{3} (2y' - y_{n-1} + 2y'_{n-2}) \)

\[(y_{n+1}^{(0)})' = f(x_{n+1}, y_{n+1}^{(0)}) \]

Corrector: \(y_{n+1}^{(i+1)} = y_{n-1} + \frac{h}{3} ((y_{n+1}^{(i)})' + 4y_{n}' + y_{n-1}') \) (2.34)

The precision of the predictor-corrector system can be improved by modifying the predictor by adding a term \(T_n^{(0)} \) to it, where \(T_n^{(0)} \) is an estimate of the truncation error in the predictor, i.e., the error incurred because the Predictor formulae is not of infinite order but is truncated after a finite number of terms. \(T_n^{(0)} \) can be written in terms of the difference between the predicted and corrected values as

\[T_n^{(0)} = c(y_n - y_n^{(0)}) \]

where \(c \) is a constant and for the system given above, it can be shown that, (Ralston 1965) \(c = 28/29 \). Equation 2.34 then becomes

Predictor: \(y_{n+1}^{(0)} = y_{n-3} + \frac{4h}{3} (2y' - y_{n-1} + 2y'_{n-2}) \)

Modifer: \(y_{n+1}^{(0)} = y_{n+1}^{(0)} + \frac{28}{29} (y_n - y_n^{(0)}) \)

\[(y_{n+1}^{(0)})' = f(x_{n+1}, y_{n+1}^{(0)}) \]

Corrector: \(y_{n+1}^{(i+1)} = y_{n-1} + \frac{h}{3} ((y_{n+1}^{(i)})' + 4y_{n}' + y_{n-1}') \) (2.35)

The above is just one example of a predictor-corrector system. When deriving predictor and corrector formulae, it is necessary to consider (1) the truncation error, and (2) stability, and to a lesser extent (3) roundoff errors and (4) the ease with which they may be computed. Natali et al (1972), used the following formulae (defined by Hamming)

Predictor: \(y_{n+1}^{(0)} = y_{n-3} + \frac{4h}{3} (2y' - y_{n-1} + 2y'_{n-2}) \)

Modifer: \(y_{n+1}^{(0)} = y_{n+1}^{(0)} + \frac{112}{121} (y_n - y_n^{(0)}) \)

\[(y_{n+1}^{(0)})' = f(x_{n+1}, y_{n+1}^{(0)}) \]

Corrector: \(y_{n+1}^{(i+1)} = \frac{1}{8} (9y_n - y_{n-2}) + \frac{3h}{8} ((y_{n+1}^{(i)})' + 2y_{n}' + y_{n-1}') \) (2.36)
to calculate z, r, $u = \frac{dz}{dr}$ and $v = \frac{dz}{dr}$, where $r^2 = \frac{2ke^2}{m}$, and $\frac{dz}{dr} = u(r,z)$, $\frac{dr}{dr} = v(r,z)$, $\frac{du}{dr} = -\frac{1}{2}E_u(r,z)$ and $\frac{dv}{dr} = -\frac{1}{2}E_r(r,z)$. Natali et al (1972) iterated the corrector formulae until the required precision was reached; they then calculated ultimate values using formulae of the form

$$y_{i+1} = y_{n+1}^j + T_n$$

where T_n is the truncation error, and in this case is given by

$$T_n = \frac{9}{121} (y_{n+1}^j - y_{n+1}^0)$$

A variable step length h was used, where the value of h was chosen so that the Hamming stability condition $hk < 0.4$ was satisfied, where

$$k = \left| \frac{\partial u}{\partial z} + \frac{\partial v}{\partial r} + \frac{\partial E_z}{\partial r} + \frac{\partial E_r}{\partial v} \right|$$

Before calculating the ultimate values z_{i+1}, r_{i+1}, u_{i+1} and v_{i+1}, the step length h was checked against the above stability criterion. If satisfied, the next trajectory point was calculated with the same h. If not, h was divided by two until the stability criterion was satisfied. Vice versa, if the stability criterion could be satisfied with a value for the step length twice as large, h was doubled.

FOX-GOODWIN or NUMEROV-MANNING-MILLMANN METHOD†

This method is only applicable to the Gaussian trajectory equation, i.e., the paraxial equation of motion, i.e.,

$$r'' + \frac{V'}{2V} r' + \frac{V''}{4V} r = 0$$

(i.e., equation 1.33, the paraxial ray equation for the electrostatic lens)

or

$$r'' + \frac{e}{8mV} B_r^2 r = 0$$

(i.e., equation 1.53, the paraxial ray equation for the magnetic lens)

Since the paraxial equation is a linear and homogeneous second order differential equation, a simpler method than those described above, known as the Fox-Goodwin or Numerov-Manning-Millmann method, can be used. Its application to the paraxial equation

† References: Buckingham 1966, Kisker 1982

79
for an electrostatic lens will be described below. This method uses the reduced paraxial equation or Picht equation, i.e.,

\[R'' + TR = 0 \quad (\text{i.e., equation 1.38}) \]

where

\[R = rV^\frac{1}{4} \]

and

\[T = \frac{3}{16} \left(\frac{V'}{V} \right)^2 \]

\(R_{n+1} \) is given by a Taylor series expansion from \(R_n \), i.e.,

\[R_{n+1} = R_n + \frac{\hbar}{dz} + \frac{\hbar^2}{2} \frac{d^2R}{dz^2} + \frac{\hbar^3}{6} \frac{d^3R}{dz^3} + \frac{\hbar^4}{24} \frac{d^4R}{dz^4} + \ldots \] \hspace{2cm} (2.37)

similarly, \(R_{n-1} \) is given by

\[R_{n-1} = R_n - \frac{\hbar}{dz} + \frac{\hbar^2}{2} \frac{d^2R}{dz^2} - \frac{\hbar^3}{6} \frac{d^3R}{dz^3} + \frac{\hbar^4}{24} \frac{d^4R}{dz^4} + \ldots \] \hspace{2cm} (2.38)

Adding \(R_{n-1} \) to \(R_{n+1} \) and then subtracting \(2R_n \) gives

\[R_{n+1} - R_{n-1} - 2R_n = \frac{\hbar^2}{2} \frac{d^2R}{dz^2} + \frac{\hbar^4}{24} \frac{d^4R}{dz^4} + O(\hbar^6) \] \hspace{2cm} (2.39)

From equation 1.38

\[\frac{d^2}{dz^2} = -TR \] \hspace{2cm} (2.40)

and

\[\frac{d^4}{dz^4} = \frac{d^2(-TR)}{dz^2} \]

and from equation 2.39, neglecting the fourth order term

\[\frac{d^4}{dz^4} = \left[\frac{T_{n+1} R_{n+1} + T_{n-1} R_{n-1} - 2T_n R_n}{\hbar^2} \right] \hspace{2cm} (2.41) \]

Substituting equations 2.40 and 2.41 into equation 2.39 finally gives

\[R_{n+1} = \frac{2R_n - R_{n-1} - \frac{\hbar^2}{12} [T_{n-1} R_{n-1} + 10T_n R_n]}{\left[\frac{14+\hbar^2}{12} \right]} \hspace{2cm} (2.42) \]

Note: Because this method uses the paraxial equation of motion for the electrons, it implicitly only takes into account the first order terms of the lens potential, so the ray tracing does not take place through the true lens potential, but through a first order approximation to it, i.e., the axial potential. It is also worth noting at this point, that the accuracy of the trajectories obtained in a given ray trace, not only depend on the precision of the numerical integration technique used to solve the trajectory equation, but also on how close the calculated potential used in the solution, approximates the real potential of the lens.
REFERENCES : CHAPTER TWO

Bertram S 1940 Determination of the Axial Potential Distribution in Axially Symmetric Electrostatic Fields Proc. IRE 28 418-20

Bertram S 1942 Calculation of Axially Symmetric Fields J. Appl. Phys. 13 496-502

British Association Mathematical Tables 6 1958 (Cambridge Royal Society)

Buckingham R A 1966 Numerical Methods (Pitman : London)

Grivet P 1972 Electron Optics (Pergamon : Oxford)

Hamming R. W 1973 Numerical Methods for Scientists and Engineers (MacGraw Hill : London)

Harting E and Read F H 1976 Electrostatic Lenses (Amsterdam : Elsevier)

Hawkes P W and Armstrong R J 1970 Note on the Calculation of Potential and Field Functions in Electron Optics Optik 30 546-548

81

Ximen Jiye 1986 Aberration Theory in Electron and Ion Optics; Suppl. Advances in Electronic and Electron Physics 17
CHAPTER THREE

METHODS FOR DETERMINING EXPERIMENTALLY THE PROPERTIES OF ELECTRON LENSES
<table>
<thead>
<tr>
<th>CONTENTS : CHAPTER THREE</th>
<th>Page No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section (3.1) General Introduction</td>
<td>87</td>
</tr>
<tr>
<td>Section (3.2) Description of Experimental Methods other than those used in the present work</td>
<td>87</td>
</tr>
<tr>
<td>Section (3.3) Introduction to Experimental Methods used in the present work</td>
<td>93</td>
</tr>
<tr>
<td>Section (3.4) Description of the Lens Elements</td>
<td>93</td>
</tr>
<tr>
<td>Section (3.5) Description of the method used to determine the focal and magnification properties of a lens (a) Lens System</td>
<td>95</td>
</tr>
<tr>
<td>(b) Electronics</td>
<td>96</td>
</tr>
<tr>
<td>Section (3.6) Description of the method used to determine the spherical aberration coefficient</td>
<td>103</td>
</tr>
<tr>
<td>References</td>
<td>110</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>3.1</td>
<td>Diagram illustrating the Parallel Beam Method</td>
</tr>
<tr>
<td>3.2</td>
<td>Schematic Diagram of lens from which the Focal Distances F_1 and F_2 and the Focal Lengths f_1 and f_2 can be deduced</td>
</tr>
<tr>
<td>3.3</td>
<td>Diagram illustrating how the Cardinal Points of a lens can be deduced by extrapolating the paths of pencil rays from where they hit a target after they have passed through the lens</td>
</tr>
<tr>
<td>3.4</td>
<td>Diagram illustrating the Shadow Method for location of the cardinal points</td>
</tr>
<tr>
<td>3.5</td>
<td>A typical lens element</td>
</tr>
<tr>
<td>3.6</td>
<td>5-element lens system</td>
</tr>
<tr>
<td>3.7</td>
<td>Schematic diagram of 5-element lens system</td>
</tr>
<tr>
<td>3.8</td>
<td>Schematic Diagram of Aperture Discs used to obtain the magnification of an electron lens</td>
</tr>
<tr>
<td>3.9</td>
<td>A lens element with deflection plates</td>
</tr>
<tr>
<td>3.10</td>
<td>Photograph of image displayed on display scope from which the lens magnification is deduced</td>
</tr>
<tr>
<td>3.11</td>
<td>Block Diagram of Electronics used to Operate and Display the image of the Lens</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>3.12</td>
<td>Diagram illustrating the effect of spherical aberration</td>
</tr>
<tr>
<td>3.13</td>
<td>Schematic diagram of 5-element lens system used to obtain Δr in order to obtain the spherical aberration coefficient C_s</td>
</tr>
<tr>
<td>3.14</td>
<td>Schematic Diagram of Aperture disc with five apertures whose use enables Δr and hence C_s to be determined</td>
</tr>
<tr>
<td>3.15</td>
<td>Photograph of image displayed on display scope from which Δr_h and Δr_v and hence C_s is deduced (courtesy of N Papadovassilakis)</td>
</tr>
<tr>
<td>3.16</td>
<td>Diagram comparing the distances at which a beam will cross a plane perpendicular to the lens axis when unaffected by lens action and when under the influence of a lens</td>
</tr>
</tbody>
</table>

Figure 3.16 (from Gjessing 1972, Fig. 5.2)
METHODS FOR DETERMINING EXPERIMENTALLY THE PROPERTIES OF ELECTRON LENSES

3.1 GENERAL INTRODUCTION

This chapter will describe some of the experimental methods used to determine the properties of electron lenses. It will outline those methods which have been used by other workers, and will then go on to describe in more detail the methods used in the present work.

3.2 DESCRIPTION OF EXPERIMENTAL METHODS OTHER THAN THOSE USED IN THE PRESENT WORK

The simplest method, known as the parallel beam method (Grivet 1972), involves a parallel beam of electrons being incident on the lens, where \(r_0 \), the radius of the beam, is small in comparison with the radius of the lens. Once the beam has passed through the lens it produces a spot of radius \(R_1 \) on a fluorescent screen at \(E_1 \) (see figure 3.1 below). The screen is then moved to a new position \(E_2 \) a distance \(D \) away from \(E_1 \), where the radius of the spot is \(R_2 \).

\[\tan \beta = \frac{R_2 - R_1}{D} \]

It is now possible to deduce the semi-aperture \(\beta \) of the beam, and the 'image' focal length \(f_2 \), i.e.,

\[\tan \beta = \beta = \frac{R_2 - R_1}{D} \]
\[f_2 = \frac{r_0}{\beta} = \frac{r_0 D}{R_2 - R_1} \]

The position of the 'image' principal plane \(H_2 \) is a distance \(h_2 \) from the reference plane \(P_0 \), whose position is arbitrary, but will be positioned, for convenience, in the symmetry plane of a symmetrical lens. \(h_2 \) is then given by

\[h_2 = H_2 P_0 = H_2 F_2 - P_0 F_2 \]

and as \(f_2 = H_2 F_2 \),

\[h_2 = f_2 - (P_0 E_2 - F_2 E_2) \]

denoting the distance \(P_0 E_2 \) as \(g \), and noting that \(F_2 E_2 = R_2 / \tan \beta \) gives finally

\[h_2 = f_2 - \left(g - \frac{R_2}{\tan \beta} \right) \]

The lens is then turned round, leaving the plane \(P_0 \) fixed, so that values for \(f_1 \) and \(h_1 \) can be deduced. Once values for \(f_1, f_2, F_1 \) and \(F_2 \) have been found, it is possible, (see Chapter One) to deduce the position of all the cardinal points of the lens, and hence its paraxial properties.

A second method (Epstein 1936, Klemperer 1953, Klemperer and Barnett 1971) involves the illumination with electrons of a wire mesh target which acts as an object, where its image is found by means of a sliding fluorescent target.

If the mesh is a distance \(P \) from the midplane of the lens, and its image is a distance \(Q \) from the midplane of the lens, from figure 3.2 it can be deduced that

\[P = J_0 R = p + F_1 = \frac{r_o}{r_i} f_1 + F_1 = \frac{f_1}{M} + F_1 \]

\[Q = J_2 R = q + F_2 = \frac{r_i}{r_o} f_2 + F_2 = M f_2 + F_2 \]

where \(M \) is the lateral magnification. If \(P_1, Q_1 \) and \(M_1 \) correspond to one position of the wire mesh, the resultant position of its image on the fluorescent target, and the subsequent magnification, and \(P_2, Q_2 \) and \(M_2 \) correspond to a second position of the wire mesh, etc, it follows that

\[f_1 = \frac{P_1 - P_2}{M_1 - M_2} \quad (3.1a) \]

\[f_2 = \frac{Q_1 - Q_2}{M_1 - M_2} \quad (3.1b) \]
A third method devised by Klenopser and Wright (Klenopser and Wright 1949) involved the use of a 'penetron dot-diaphragm' to select a number of narrow pencil rays from an incident parallel beam, which then pass through the microscope under investigation. The emerging pencil rays which are once again travelling in straight lines, i.e., having traversed all the lenses in field free space, are then detected with a slit. The image of the target and the image of the projection are observed by means of a calibrated microscope. The radial points of the same spots are then calculated from the separation of these spots by means of extrapolation of straight lines formed at the spots made through the lens, i.e., see Figure 3.2.

The point at which the pencil rays intersect is the point F_2. The principal plane is the plane where the extra principal point F_1 lies. The image point is the point F_3, the point F_4 through the lens, and the prolongation of the principal point is the principal point F_3. The image point F_2 intersects the principal point F_1. Knowing the lens allows the position of the first focal point F_2 and the position of the last point plate F_3 to be deduced. From F_1, F_2, F_3, and F_4, the position of the nodal points N_1 and N_2 can be deduced, hence the location of all the cardinal points of a lens can be found, and the optical properties of the lens can be deduced. Using the 'penetron dot-diaphragm', parallel pencils of monochromatic rays can be.
A third method devised by Klemperer and Wright (Klemperer and Wright 1939, Klemperer 1953, Klemperer and Barnett 1971) uses a ‘pepperpot-diaphragm’ to select a series of narrow pencil rays from an initially parallel beam, which then pass through the electron lens under investigation. The emerging pencil rays which are once again travelling in straight lines, (i.e., having emerged from the lens they once again travel in field free space) are then detected with a sliding fluorescent target. The fluorescent spots are observed from the back of the target and their mutual separation measured by a scale in the eyepiece of a calibrated microscope. The cardinal points of the lens can be deduced from the separation of these spots by extrapolation of straight lines from the spots back through the lens, i.e., see figure 3.3.

![Figure 3.3](Klemperer 1953, figure 2.1)

The point at which the pencil rays intersect is the focus F_2. The principal plane is the plane where the extrapolation of the straight part of the pencil rays back through the lens, cut the prolongation of the original parallel pencil rays, and this plane intersects the lens axis at the principal point P_2. Reversing the lens allows the position of the first focal point F_1 and the position of the first principal plane P_1 to be deduced. From F_1, P_1, F_2 and P_2, the position of the nodal points N_1 and N_2 can be deduced, hence the location of all the cardinal points of a lens can be found, and the paraxial properties of the lens can be deduced. Using the ‘pepper-pot diaphragm’, parallel pencils of marginal rays can be
produced, allowing the 'third order, fifth order,...' properties of the lens to be investigated, where the 'third order, fifth order,...' properties of the lens are commonly referred to as the aberration properties of the lens.

Finally, a method based upon the observation of the shadows of two grids \(G_1 \) and \(G_2 \), which are illuminated by a point source and placed in front of and behind respectively the lens being investigated, was used by Spangenberg and Field (1942, 1948), see figure 3.4.

The grids are composed of parallel wires, where the wires of one grid are perpendicular to the wires of the other, so that their shadows on the target (fluorescent screen), can be distinguished from one another. The method uses equation 3.1, i.e., in order to determine \(f_1, f_2, F_1 \) and \(F_2 \) it is necessary to find two sets of associated values of the object distance \(P \), the image distance \(Q \) and the magnification \(M \) for the same lens voltage ratio \(V_f/V_i \). In this method the magnification \(M \) is deduced from the angular magnification \(M_\alpha \), using Lagrange's rule \(MM_\alpha = (V_i/V_f)^{1/2} \), where \(M_\alpha \) is found using the images of the grids \(G_1 \) and \(G_2 \) in the manner described below.

The angular magnification \(M_\alpha \) is given by \(\alpha_\alpha/\alpha_o \) and for small angles (see figure 3.4)

\[
\frac{\alpha_\alpha}{\alpha_o} = \frac{ad}{bc}
\]

where \(a \) is the distance from the point source at \(J_o \) to the first grid \(G_1 \), \(b \) is the separation of the wires of grid \(G_1 \), \(d \) is the separation of the images of the wires of \(G_1 \) on the fluorescent screen, and \(c \) is the distance between the fluorescent screen \(FL \) and \(J_i \), the point at which a ray originating from the point source at \(J_o \) will focus. When the focus is beyond the fluorescent screen, \(c \) is given by

\[
c = \frac{e}{1 - \frac{s}{g}}
\]

For focus between \(G_2 \) and the fluorescent screen

\[
-c = \frac{e}{1 + \frac{s}{g}}
\]

where \(s \) is the separation of the wires of grid \(G_2 \) and \(g \) is the separation of the images of the wires of \(G_2 \) on the fluorescent screen.
3.3 INTRODUCTION TO EXPERIMENTAL METHODS USED IN
THE PRESENT WORK

The following is concerned with the description of the 'apparatus' used in the present
work to investigate the properties of electron lenses. The basic elements, i.e., the basic
components, used to build a given lens are described, and this is followed by a description of
the techniques used which allow the lens properties to be determined.

Figure 3.4 (Spangenberg and Field, 1969, figure 8)

A lens can be built in a number of wires, such as the choice of the number of

3.3 INTRODUCTION TO EXPERIMENTAL METHODS USED IN THE PRESENT WORK

The following is concerned with the description of the 'apparatus' used in the present work to investigate the properties of electron lenses. The basic components, i.e., the lens elements, used to build a given lens are described, and this is followed by a description of the techniques used which allow the lens properties to be determined.

3.4 DESCRIPTION OF THE LENS ELEMENTS†

The lens elements are made from 310 stainless steel, and they are cylindrical with an outside diameter of 30mm and an inside diameter of 13.5mm. Figure 3.5 shows a typical lens element, where both sides of the lens element have been photographed.

As can be seen from figure 3.5, the lens element is not simply a thick walled cylinder, but a thick walled cylinder of constant internal and external diameter, sandwiched between two cylinders of approximately 2mm in length. One of these cylinders has the same outside diameter as the thickwalled cylinder, but with an inside diameter of approximately 26mm, the other cylinder has the same inside diameter as the thickwalled cylinder but with an outside diameter of approximately 18.5mm. This is so that when a lens is constructed from placing a number of these elements together nose to tail, the gap between them can be screened, therefore minimising the effect of any stray charge on the electric field within the gap.

A lens can be built from two or more of these elements, the choice of the number of elements used will depend on what the resultant lens is required to do.

† References: Heddle and Kurepa 1970
3.5 DESCRIPTION OF THE METHOD USED TO DETERMINE THE FOCAL AND MAGNIFICATION PROPERTIES OF A LENS

A. Lens System‡

The system used to measure the focal and magnification properties of a given lens, basically consists of the lens itself, an oxide coated flat cathode used to produce the electrons, and a Faraday cup to collect the electrons once they have traversed the length of the lens.

The lens system is aligned by mounting the lens elements on a pair of parallel ceramic rods supported on a stainless or aluminium frame. The lens system is then contained within a mumetal shield inside a vacuum system at pressures below 2.0×10^{-6} Torr.

Figure 3.6 shows a typical lens system, where the lens being studied is a five-element lens, the properties of which will be described in a future chapter. Figure 3.7 is a schematic diagram of the same lens system, showing the location of the aperture discs and deflection plates whose presence enable the properties of the lens to be measured.

Figure 3.7 shows the location of the aperture discs (see figure 3.8) and deflection plates, (figure 3.9 shows deflection plates mounted inside a lens element) whose use enable a picture to be displayed on the screen of a display scope when the lens is focussed. From this picture the magnification of the lens can be deduced. A pair of apertures in the disc X (refer to the schematic diagram, figure 3.7) located at the object plane of the lens, are imaged onto disc Y located on the image plane of the lens, in which there is a second pair of apertures. The pair of apertures of disc X are arranged so that the line joining their centres is vertical and at right angles to the optic axis of the lens. The pair of apertures of disc Y are arranged so that the line joining their centres is at right angles to the line joining the centres of the apertures of disc X, i.e., horizontal and at right angles to the optic axis of the lens. The image of the two apertures of disc X is scanned over disc Y by scanning voltages applied to the deflection plates. Electrons will pass through one of the apertures in the disc Y when the image of one of the apertures of disc X is scanned across it, and this will occur four times in the course of a scan. The electrons passing through disc Y are collected in a deep Faraday cup and the resultant signal from the Faraday cup is then used to modulate the intensity of the picture displayed on an display scope when the scanning voltages are applied to its X and Y plates. The picture consists of four dots sited on the

corners of a rectangle; the magnification can be deduced from the ratio of the separation of the dots in the X direction to that of the separation of the dots in the Y direction, (see figure 3.10).

B. Electronics

A block diagram of the power supplies, scanning unit, amplifiers, etc used to operate the lens, and display and analyse the 'image' from the lens is given in figure 3.11.

1. Power Supplies

The voltages to the individual lens elements and to the Faraday cup are derived from floating stabilised power supplies, (stabilised to 0.1% of the output voltage) designed and built in the department's electronics workshop. The power supplies produced voltages of between 0 and 700 volts which could float at a common voltage of between −1000 and 1000 volts. The power supplies were built so that they could float so that it would be possible to have the Faraday cup at 'earth' potential, and the cathode therefore at a negative potential and the power supplies which supply the voltages to the lens elements floating at the cathode potential.

2. Scanning Unit

The scanning unit supplies a 'fast' ramp at $1 K H z$ to the x-deflection plates of one of the lens elements, (the first element in the case of the disc lens described in chapter six, the third element in the case of the five-element lens described in chapter five) and a 'slow' ramp at $10 H z$ to the y-deflection plates of the same lens element. Great care was taken to ensure that the magnitudes of the x and y ramps were the same, so that the deflection of the electrons would be the same in both the x and y directions. The magnitude of the ramps could be set at between 7 and 30 volts. The x and y ramps both float at the DC voltage applied to the lens element in which the deflection plates are sited. Both ramps were also applied to the x and y plates respectively of the display scope.

It was also possible to apply small DC offset voltages of between -12 and 12 volts to the deflection plates to 'steer' the electron beam if required. In the five-element lens described in chapter five, in addition to the deflection plates incorporated into the third element of the lens, to which the scanning voltages were applied, a further set of deflection plates were contained within the first element; small DC deflection voltages could be applied
FIVE - ELEMENT ELECTROSTATIC LENS.

- Elements Containing Deflection Plates
- Electrode at Potential
- Faraday Cup

Figure 8.6

Elements of Lens
FIVE - ELEMENT ELECTROSTATIC LENS.

- Elements Containing Deflection Plates
- Electrode at Potential
- Faraday Cup

Elements of Lens

1st Cathode
2nd Cathode
3rd Cathode
4th Cathode
5th Cathode
Figure 5.7

Schematic Diagram of Five-element Lens System
Schematic Diagram of Aperture Discs

Figure 8.8
A Lens Element with Deflection Plates

figure 3.9

100
Block Diagram of Electronics

Figure 3.11
to these plates for added control of the electron beam.

3. Pre-amplifier, Amplifier and Display Scope

The 'signal' which is used to modulate the intensity of the picture displayed on the display scope, is derived from the current collected by the Faraday cup, which sits at a voltage slightly higher than that applied to the last element of the lens (≥ 20 volts). The output of the Faraday cup is a current 'signal', which is converted to a voltage 'signal' by the pre-amplifier. The gain of the pre-amplifier is around one, as its main purpose is not to amplify the signal from the Faraday cup, but to convert a current signal coming from a very high impedance source which is floating at a DC voltage equal to that applied to the Faraday cup, to a voltage signal with a DC level of 0 volts. The AC voltage signal output by the pre-amplifier then receives the required amplification from the amplifier to modulate the intensity of the picture displayed on the display scope in order that four dots appear on the screen as shown in figure 3.10. In order to determine the magnification of the lens, the x and y coordinates of each dot displayed on the screen were obtained. Each dot was centred in the middle of the screen by applying positive or negative offset voltages, via multi-turn potentiometers, to the x and y plates of the display scope. The x and y coordinates were then read from the dials of the multi-turn potentiometers.

3.6 DESCRIPTION OF THE METHOD USED TO DETERMINE THE SPHERICAL ABERRATION COEFFICIENT

The image obtained from an electron lens will only be perfect if the rays which form the image are confined to paraxial rays. If marginal rays contribute to the image, the image formed by a lens will not be a magnified replica of the object, but may for example, appear distorted or may not be confined to one plane. The 'defects' are said to be caused by what are known as the aberrations of the lens. If marginal rays contribute to the image, α, the angle the rays make with the lens axis, is no longer sufficiently small for the Gaussian approximation to be valid, (i.e., the Gaussian approximation is only valid for paraxial rays) and α can no longer be equated to its sine, neglecting higher order terms in the expansion,

$$\sin \alpha = \alpha - \frac{\alpha^3}{3!} + \frac{\alpha^5}{5!} - \ldots$$

the higher order terms must be included if an accurate description of the resultant image is to be obtained.

103
Aberrations are referred to as third-order aberrations, fifth-order aberrations, etc., depending on which term in the above expansion they are a consequence of. Only third-order aberrations will be considered here, as their effect is sufficiently large in comparison to the fifth-order aberrations for the fifth-order aberrations to be neglected. The total 'error' of a point on the image due to third-order aberrations, can be expressed as a number of terms in a series, the separate terms are named individually, after the similar aberrations which occur with glass lenses. For electrostatic lenses there are five third-order aberrations just as there are for glass lenses, and these are spherical aberration, distortion, curvature of field, astigmatism and coma.

Spherical aberration is the most important of the third-order errors mainly because it is the only geometric defect which occurs even for axial objects, and it is the aberration whose effect is investigated in the present work. The effect of this aberration on the image of an axial point \(P \) is illustrated in figure 3.12 below.

The power of the lens is greater for rays the larger the distance \(r_\alpha \) at which they pass through the lens. Rays contained within the launch angle \(\alpha \) i.e., the angle at which rays leave the lens axis at the object plane, are spread over a disc of radius \(\Delta r_\alpha \) at the image plane, where \(\Delta r_\alpha \propto r_\alpha \). The point \(P \) therefore appears to have an apparent diameter \(\Delta r = \Delta r_\alpha / M \), where \(M \) is the magnification. Now, \(r_\alpha \propto \alpha \) and therefore to third order \(\Delta r \propto \alpha^3 \). Writing the constant of proportionality as \(C_r \),

\[
\Delta r = C_r \alpha^3
\]

In order to obtain the spherical aberration coefficient \(C_r \) it is necessary to determine \(\Delta r \) and \(\alpha \), and they are obtained in the manner described below.
Figure 3.13 is a schematic diagram of the lens system used to obtain Δr by experiment for a five-element lens.

In the lens denoted by the schematic diagram of figure 3.13 the single hole in the disc X located at the object plane of the lens will be imaged onto the disc Y located at the image plane of the lens. If there is a pair of apertures in disc Y and the image of this single hole is scanned across disc Y in the manner described in the last section, a picture of two dots will be obtained on the display scope screen. If however, the rays which traverse the lens from the object to form the image at Y encounter a further disc A in which there are five apertures arranged as shown in figure 3.14, the image of the single hole of disc X will appear as five dots in the image plane, as the rays constrained to pass through the off-axis holes of disc A will form an image in the image plane which is displaced from the true image by a distance dictated by the degree of aberration suffered by the rays forming the image. If this image of five dots is scanned across the pair of apertures located in the image plane, a picture like that depicted in figure 3.15 will be obtained. It is not possible to determine at precisely what voltages the lens is focussed from pictures on the display scope like that of figure 3.15. Focussing voltages and the corresponding magnification M must first have been obtained using the method described in the last section. However, it is possible to verify that the lens is correctly focussed from the ratio v/h, where v is the vertical separation of dots as shown in figure 3.15, and h is the horizontal separation of dots as shown in figure 3.15. v/h should equal the ratio y^3/x^3, where x and y are separation of the holes in the disc A (see figure 3.14). Once the lens is focussed, Δr_{h}, (i.e., Δr due to the off-axis rays which passed through the horizontal off-axis holes of disc A) is then found by dividing h by the value of M previously obtained, and Δr_{v} (i.e., Δr due to the off-axis rays which passed through the vertical off-axis holes of disc A) is found by dividing v by M.

The launch angle α is equal to the ratio r_{a}/L, where r_{a} is the distance a ray launched at an angle of α unaffected by any lens action, (see figure 3.16) will cross a plane P_{a} perpendicular to the lens axis. L is the distance of the plane P_{a} from the object plane.

Now,

$$\alpha = \frac{r_{a}}{L} = \frac{r_{c}}{L} \times \left(\frac{r_{a}}{r_{c}} \right)$$

r_{c} is the distance at which a ray launched at α under the influence of the lens, will cross the plane P_{a}. In the present case r_{c} equals the distance of the off axis holes (either x or y) from the lens axis. The ratio r_{a}/r_{c} is deduced from ray tracing using the Fox-Goodwin method described in the last chapter.
DISC A

Schematic diagram of aperture Disc whose use enables Δr and hence C_s to be determined

figure 3.14

107
REFERENCES : CHAPTER THREE

CHAPTER FOUR

CALCULATION OF MULTIPLE ELEMENT LENS PROPERTIES USING MATRIX TECHNIQUES
LIST OF FIGURES: CHAPTER FOUR

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page No</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Diagram illustrating the object and image sizes, angle of inclination at the object and angle of inclination at the image for a typical lens system</td>
<td>115</td>
</tr>
<tr>
<td>4.2</td>
<td>Schematic diagram of a two-tube electrostatic lens showing the focal points F_1 and F_2, focal lengths f_1 and f_2, principal planes H_1 and H_2, and coordinates p, P, q, Q in object and image space respectively</td>
<td>117</td>
</tr>
<tr>
<td>4.3</td>
<td>The dependence of the matrix elements on voltage ratio (a) for accelerating lenses (b) for decelerating lenses</td>
<td>121</td>
</tr>
</tbody>
</table>
LIST OF TABLES: CHAPTER FOUR

Table 4.1 Table listing Matrix Elements for an Accelerating Lens

Table 4.2 Table listing Matrix Elements for a Decelerating Lens

Table 4.3 Table comparing the values obtained for V_2/V_1 using the Matrix and Bessel Function Expansion Methods for the symmetric three-element einzel lens, where $L_2 = L_3 = 2.0D$ and $0.5 \leq L_2 \leq 2.0D$

Typically, in either light or electron optics

\[
\begin{pmatrix}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{pmatrix}
\]

(1.1)

where r_o and r_i are the object and image sizes respectively, ω_i is the inclination of the ray leaving the object, and ω_i is the inclination of the ray arriving at the image, (see figure 4.1).

The matrix \(\begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \) is known as the object-image matrix, and as illustrated by equation (4.1) transforms a ray with position and angle coordinates \((r_o, \omega_o)\) to a ray with coordinates \((r_i, \omega_i)\).

\(A_{11} \) is equal to the lateral magnification \(M \),

\(A_{12} \) equals zero,

\(A_{21} \) is equal to \(-n_o/f = n_i/f'\), where \(n_o \) and \(n_i \) are the refractive indices of the media of object and image space respectively, and \(f \) and \(f' \) are the corresponding focal lengths,

\(A_{22} \) is equal to the angular magnification \(M_o \).

Note that in light optics, the media of object space and image space respectively, are, in most cases, the same, usually air, so that the refractive indices are the same, i.e.,

\(n_i = n_o = n \),

so that,

\[A_{21} = \frac{-1}{f} \]

therefore,

\[f' = f \]
CALCULATION OF MULTIPLE ELEMENT LENS PROPERTIES USING MATRIX TECHNIQUES

Matrices may be used to calculate the imaging and focal properties of electron and/or ion lenses, and can therefore be a powerful tool in the design of electron/ion lens systems. In the present work, the parameters of lenses of three or more elements have been calculated by a process of matrix multiplication, using matrix elements calculated by DiChio et al. (1974a) for two-element lenses. The physical principles involved are similar to those used in light optics, and are outlined below.

Typically, in either light or electron optics

\[
\begin{pmatrix}
 r_i \\
 \alpha_i
\end{pmatrix} =
\begin{pmatrix}
 A_{11} & A_{12} \\
 A_{21} & A_{22}
\end{pmatrix}
\begin{pmatrix}
 r_o \\
 \alpha_o
\end{pmatrix} \quad (4.1)
\]

where \(r_o \) and \(r_i \) are the object and image sizes respectively, \(\alpha_o \) is the inclination of the ray leaving the object, and \(\alpha_i \) is the inclination of the ray arriving at the image, (see figure 4.1).

The matrix \(\begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \) is known as the object-image matrix, and as illustrated by equation (4.1) transforms a ray with position and angle coordinates \((r_o, \alpha_o)\) to a ray with coordinates \((r_i, \alpha_i)\).

- \(A_{11} \) is equal to the lateral magnification \(M \),
- \(A_{12} \) equals zero,
- \(A_{21} \) is equal to \(-n_o/f - n_i/f'\), where \(n_o \) and \(n_i \) are the refractive indices of the media of object and image space respectively, and \(-f\) and \(f'\) are the corresponding focal lengths,
- \(A_{22} \) is equal to the angular magnification \(M_\alpha \).

Note that in light optics, the media of object space and image space respectively, are, in most cases, the same, usually air, so that the refractive indices are the same, i.e.,

\[n_o = n_i = 1 \]

so that,

\[A_{21} = -\frac{1}{f} = \frac{1}{f'} \]

therefore,

\[-f = f' \]
As shown in Chapter two. Lagrange's rule implies that \(\Phi_e = f_f^\pi \) and in this case, as \(|f| = |f_f^\pi| \), Lagrange's rule for this particular case is therefore equal to the wavelength of the second magnitude, i.e., \(\lambda = \lambda_0 = \lambda f_f^\pi \).

In electron optics, in the absence of a magnetic field, an electron lens typically consists of a number of sections in which different voltages can be applied; the resulting electric field within the lens is then a function of the length of the lens. The nature of the electric field depends on the ratio for the voltage applied to the first section of the lens to the voltage applied to the overall lens. The voltage ratio for the overall electron lens is therefore given by (see Dvors et al., 1974a)

\[
\frac{V}{V_0} = \frac{r_f}{r_i}
\]

where \(V_0 \) is the voltage applied to the first section of the lens, and \(r_f \) and \(r_i \) are the overall electron lens and the first section length, respectively.

In contrast, when considering the use of matrices for the description of the \(P \) and \(Q \) and \(\theta \) in terms of the incident angles, the incident angle at the object plane is given by (see Dvors et al., 1974a)

\[
\theta = \frac{r_f}{r_i}
\]
As shown in Chapter One, Lagrange’s rule implies that $MM_\alpha = f/f'$ and in this case, as $|f| = |f'|$, Lagrange’s rule becomes $|MM_\alpha| = 1$, and the angular magnification is therefore equal to the reciprocal of the lateral magnification, i.e., $A_{22} = M_\alpha = 1/M$.

In electron optics, in contrast to the above typical case for an optical lens, it is rare to find an electron lens where $n_o = n_i$ and $|f| = |f'|$. An electron lens typically consists of a number of coaxial discs or cylinders to which different voltages can be applied, the resulting electric field within the lens being effectively the medium through which the electrons travel. The refractive index changes continuously along the length of the lens, the nature of this variation being dependent on the electric field distribution. For an electron lens the overall ratio for the indices of refraction $n_i/n_o = \sqrt{V_n/V_1}$, where V_1 is the voltage applied to the first element of the lens and V_n is the voltage applied to the final element, V_n/V_1 is therefore the overall voltage ratio. The ratio of the focal lengths f/f' is also equal to this ratio.

In electron optics the object-image matrix may be expressed as follows (see DiChio et al., (1974a));

$$
\begin{pmatrix}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{pmatrix} = \frac{1}{f'} \begin{pmatrix}
-(Q - F') & (P - F)(Q - F') - ff' \\
(P - F) & (P - F)
\end{pmatrix}
$$

(4.2)

where F and F' are the focal distances, f and f' are the focal lengths, and P and Q are the object and image distances respectively.

Figure 4.2 shows the above parameters for a typical two-element electron lens. From figure 4.2 it can be seen that $Q - F' = q$, and $P - F = p$. As $M = -q/f' = -f/p$, and from the Newton lens equation $pq = ff'$, $A_{11} = M$, $A_{12} = 0$, $A_{21} = -1/f'$, and $A_{22} = M_\alpha$, (Lagrange’s rule), so that the above object-image matrix is of the same form as the object image matrix of equation (4.1).

The above matrix is the most obvious first choice when considering the use of matrices in electron optics. However, it contains the distances P and Q, and it is more useful to represent the properties of a lens with no reference to P and Q. DiChio et al. (1974a) discuss this, and initially considered a matrix which transforms rays from the first principal plane to the second, i.e;

$$
\frac{1}{f'} \begin{pmatrix}
-(H - F') & (H - F)(H' - F') - ff' \\
(P - F) & (P - F)
\end{pmatrix}
$$

(4.3)

The free space transfer matrix

$$
\begin{pmatrix}
1 & \Delta Z \\
0 & 1
\end{pmatrix}
$$

(4.4)
would then translate rays to and from the principal planes. For entering rays $\Delta x = P - P'$, and for exiting rays $\Delta x = Q - Q'$.

However, DiChio et al. (1974a) rejected this approach for two reasons, (i) the focal properties are not as included in the matrix, and (ii) for lenses for voltage ratios near unity or with very large voltage ratios, P' and Q' become very large.

DiChio et al. (1974a) concluded that the following matrix contained all the essential properties of the lens, transforming entering asymptotic rays at the reference plane to exiting asymptotic rays at the reference plane.

$$
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
$$

The matrix elements s_{11}, s_{12} and s_{21} as defined in section 4.2.2 were calculated from the focal properties of two-element lenses calculated by Hasting and Head (1976) for voltage ratios of between 1.5 and 6, and from the calculated focal properties of two-element lenses of DiChio et al. (1974a) for voltage ratios between 1.5 and 1.8. Tables 4.1 and 4.2 list the voltage ratios and the matrix elements calculated for accelerating and decelerating lenses respectively. Figure 4.2a and 4.2b show graphically the relationship between the matrix elements and the voltage ratio for voltage ratios of 1 to 1.5 as calculated by DiChio et al. (1974a).
would then translate rays to and from the principal planes. For entering rays $\Delta Z = P - F$, and for exiting rays $\Delta Z = Q - F'$.

However, DiChio et al (1974a) rejected this approach for two reasons, (i) the focal properties are not all included in the matrix, and (ii) for lenses for voltage ratios near unity or with very large voltage ratios, H and H' become very large.

DiChio et al (1974a) finally concluded that the following matrix contained all the essential properties of the lens, it transforms entering asymptotic rays at the reference plane to exiting asymptotic rays at the reference plane,

$$M_R = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = \begin{pmatrix} f'/f' & (FF' - ff')/f' \\ -1/f' & -F/f' \end{pmatrix}$$ (4.5)

Note that this matrix involves the quantity $FF' - ff'$ which has been shown (DiChio et al 1974b) to be nearly constant for weak lenses. Also note that the determinant of the matrix is $-f/f'$.

It is then simple to calculate the imaging properties of a lens from equation (4.5). For example, the matrix which propagates rays from a point z in object space to any point z' in image space for a lens comprising two elements is

$$\begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} = \begin{pmatrix} 1 & Q \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} 1 & -P \\ 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} a_{11} + Qa_{21} & -Pa_{11} + a_{12} - PQa_{21} + Qa_{22} \\ a_{21} & -Pa_{21} + a_{22} \end{pmatrix}$$ (4.6)

This matrix is the object-image matrix, and again

$$a_{11} + Qa_{21} = A_{11} = M$$

$$-Pa_{11} + a_{12} - PQa_{21} + Qa_{22} = A_{12} = 0$$

$$a_{21} = A_{21} = -1/f'$$

$$-Pa_{21} + a_{22} = A_{22} = M_o$$

The matrix elements a_{11}, a_{21}, a_{12} and a_{22} as defined in equation (4.5) were calculated from the focal properties of two-element lenses calculated by Harting and Read (1976) for voltage ratios of between 1.5 and 50, and from the calculated focal properties of two element lenses of DiChio et al (1974a) for voltage ratios of between 1.1 and 1.5. Tables 4.1 and 4.2 list the voltage ratios and the matrix elements calculated for accelerating and decelerating lenses respectively. Figures 4.3a and 4.3b show graphically the relationship between the matrix elements and the voltage ratio for voltage ratios up to 1000 as calculated by DiChio et al (1974a).
TABLE 4.1
MATRIX ELEMENTS FOR AN ACCELERATING LENS

\[
\begin{array}{cccccc}
\frac{V'}{V} & a_{11} & a_{21} & a_{12} & a_{22} \\
1.00000 & 1.00000 & 0.0000000E+00 & 0.0000000E+00 & 1.00000 \\
1.10000 & 0.9764606 & -1.4383999E-03 & 6.8237998E-05 & 0.9764692 \\
1.20000 & 0.9553902 & -5.1453034E-03 & 2.4287000E-04 & 0.9554931 \\
1.30000 & 0.9363202 & -1.0429051E-02 & 4.9510000E-04 & 0.9367269 \\
1.40000 & 0.9188472 & -1.6809838E-02 & 8.0799999E-04 & 0.9197875 \\
1.50000 & 0.9026574 & -2.3940627E-02 & 1.1655000E-03 & 0.9045008 \\
1.70000 & 0.8738229 & -3.9566353E-02 & 1.9827001E-03 & 0.8775817 \\
2.00000 & 0.8365273 & -6.4308681E-02 & 3.3821000E-03 & 0.8449517 \\
2.50000 & 0.7558491 & -1.0482180 & 5.5370888E-03 & 0.8398322 \\
3.00000 & 0.7443214 & -1.4196480 & 9.7038122E-03 & 0.7738501 \\
3.50000 & 0.7091801 & -1.7519270 & 1.1454784E-02 & 0.7508759 \\
4.00000 & 0.6786079 & -2.0470830 & 1.3940434E-02 & 0.7324463 \\
5.00000 & 0.6272264 & -2.5445290 & 2.0582864E-02 & 0.7048346 \\
6.00000 & 0.5847557 & -2.9429080 & 2.6273474E-02 & 0.6848146 \\
7.00000 & 0.5491990 & -3.2690420 & 3.0691151E-02 & 0.6698267 \\
8.00000 & 0.5180467 & -3.5385700 & 3.5951179E-02 & 0.6578202 \\
9.00000 & 0.4905874 & -3.7656600 & 4.1189775E-02 & 0.6475904 \\
10.0000 & 0.4663766 & -3.9556960 & 4.5335460E-02 & 0.6392405 \\
12.0000 & 0.4245524 & -4.2625750 & 5.3756990E-02 & 0.6257460 \\
14.0000 & 0.3890386 & -4.4923630 & 6.2795229E-02 & 0.6145552 \\
16.0000 & 0.3591779 & -4.6707140 & 6.9505416E-02 & 0.6053246 \\
18.0000 & 0.3333333 & -4.8100050 & 7.5999990E-02 & 0.5974026 \\
20.0000 & 0.3098869 & -4.9188390 & 8.3135754E-02 & 0.5902607 \\
22.0000 & 0.2892893 & -5.0050050 & 8.8399388E-02 & 0.5840841 \\
26.0000 & 0.2539764 & -5.1308360 & 9.8562323E-02 & 0.5726014 \\
30.0000 & 0.2251173 & -5.2110480 & 1.0709985E+00 & 0.5622720 \\
34.0000 & 0.1998948 & -5.2603890 & 0.1157107 & 0.5533929 \\
38.0000 & 0.1782126 & -5.2882070 & 0.1232628 & 0.5452142 \\
42.0000 & 0.1595125 & -5.2994170 & 0.1292544 & 0.5373609 \\
46.0000 & 0.1426299 & -5.3022270 & 0.1355127 & 0.5296925 \\
50.0000 & 0.1275807 & -5.2938060 & 0.1409502 & 0.5230280 \\
\end{array}
\]
TABLE 4.2

MATRIX ELEMENTS FOR A DECELERATING LENS

<table>
<thead>
<tr>
<th>$\frac{V'}{V}$</th>
<th>a_{11}</th>
<th>a_{21}</th>
<th>a_{12}</th>
<th>a_{22}</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0000000E-02</td>
<td>3.700375</td>
<td>-3.745318</td>
<td>0.9972098</td>
<td>0.9026217</td>
</tr>
<tr>
<td>2.1739131E-02</td>
<td>3.593525</td>
<td>-3.597122</td>
<td>0.9193419</td>
<td>0.9967259</td>
</tr>
<tr>
<td>2.3809524E-02</td>
<td>3.484536</td>
<td>-3.486426</td>
<td>0.8381547</td>
<td>1.034364</td>
</tr>
<tr>
<td>2.6315790E-02</td>
<td>3.358306</td>
<td>-3.257329</td>
<td>0.7592508</td>
<td>1.097720</td>
</tr>
<tr>
<td>2.9411765E-02</td>
<td>3.226994</td>
<td>-3.067485</td>
<td>0.6747423</td>
<td>1.165644</td>
</tr>
<tr>
<td>3.3333335E-02</td>
<td>3.082857</td>
<td>-2.857143</td>
<td>0.5872056</td>
<td>1.234286</td>
</tr>
<tr>
<td>3.8461540E-02</td>
<td>2.921466</td>
<td>-2.617801</td>
<td>0.5028743</td>
<td>1.295812</td>
</tr>
<tr>
<td>4.5454547E-02</td>
<td>2.739437</td>
<td>-2.347418</td>
<td>0.4146056</td>
<td>1.356808</td>
</tr>
<tr>
<td>5.0000000E-02</td>
<td>2.637363</td>
<td>-2.197802</td>
<td>0.3714615</td>
<td>1.386415</td>
</tr>
<tr>
<td>5.5555556E-02</td>
<td>2.534694</td>
<td>-2.040816</td>
<td>0.3224571</td>
<td>1.414286</td>
</tr>
<tr>
<td>6.2500000E-02</td>
<td>2.422430</td>
<td>-1.869159</td>
<td>0.2781516</td>
<td>1.437383</td>
</tr>
<tr>
<td>7.1428575E-02</td>
<td>2.299160</td>
<td>-1.680672</td>
<td>0.2349280</td>
<td>1.455462</td>
</tr>
<tr>
<td>8.3333336E-02</td>
<td>2.168390</td>
<td>-1.477105</td>
<td>0.1862835</td>
<td>1.471197</td>
</tr>
<tr>
<td>0.1000000</td>
<td>2.022528</td>
<td>-1.251564</td>
<td>0.1434394</td>
<td>1.475595</td>
</tr>
<tr>
<td>0.1011111</td>
<td>1.943503</td>
<td>-1.129943</td>
<td>0.1236159</td>
<td>1.472316</td>
</tr>
<tr>
<td>0.1250000</td>
<td>1.860861</td>
<td>-1.001001</td>
<td>0.1016997</td>
<td>1.465465</td>
</tr>
<tr>
<td>0.1428571</td>
<td>1.772491</td>
<td>-0.865019</td>
<td>8.1214733E-02</td>
<td>1.453287</td>
</tr>
<tr>
<td>0.1666667</td>
<td>1.677222</td>
<td>-0.720980</td>
<td>6.4357175E-02</td>
<td>1.432588</td>
</tr>
<tr>
<td>0.2000000</td>
<td>1.575654</td>
<td>-0.568828</td>
<td>4.6012886E-02</td>
<td>1.402161</td>
</tr>
<tr>
<td>0.2500000</td>
<td>1.465193</td>
<td>-0.409500</td>
<td>2.7886679E-02</td>
<td>1.357494</td>
</tr>
<tr>
<td>0.2857143</td>
<td>1.404765</td>
<td>-0.327714</td>
<td>2.1430321E-02</td>
<td>1.326778</td>
</tr>
<tr>
<td>0.3333333</td>
<td>1.340300</td>
<td>-0.245815</td>
<td>1.6806899E-02</td>
<td>1.289157</td>
</tr>
<tr>
<td>0.4000000</td>
<td>1.271341</td>
<td>-0.165750</td>
<td>8.7567950E-03</td>
<td>1.242665</td>
</tr>
<tr>
<td>0.5000000</td>
<td>1.194998</td>
<td>-0.095042</td>
<td>4.7831000E-03</td>
<td>1.183083</td>
</tr>
<tr>
<td>0.5882353</td>
<td>1.144243</td>
<td>-0.058893</td>
<td>2.5851999E-03</td>
<td>1.139342</td>
</tr>
<tr>
<td>0.6666667</td>
<td>1.107765</td>
<td>-0.032121</td>
<td>1.4275000E-03</td>
<td>1.105527</td>
</tr>
<tr>
<td>0.7142857</td>
<td>1.088320</td>
<td>-0.019454</td>
<td>9.5592003E-04</td>
<td>1.087180</td>
</tr>
<tr>
<td>0.7692308</td>
<td>1.068015</td>
<td>-0.018074</td>
<td>5.6842002E-04</td>
<td>1.067551</td>
</tr>
<tr>
<td>0.8333333</td>
<td>1.046692</td>
<td>-0.016666</td>
<td>2.6604999E-04</td>
<td>1.046579</td>
</tr>
<tr>
<td>0.9090909</td>
<td>1.024107</td>
<td>-0.015385</td>
<td>7.1567003E-05</td>
<td>1.024098</td>
</tr>
<tr>
<td>1.000000</td>
<td>1.000000</td>
<td>0.000000E+00</td>
<td>0.000000E+00</td>
<td>1.000000</td>
</tr>
</tbody>
</table>

120
The matrix elements for accelerating lenses

The matrix elements for decelerating lenses

Figure 4.8 (DiChio et al 1974, figures 2 & 3)
Another factor in favour of using matrices to represent the imaging and focal properties of electron lenses, is that the matrix elements have a more regular dependence on voltage ratio than do the focal properties themselves, and are therefore more amenable to calculations involving iteration techniques such as would be used in computer calculations, for example.

A matrix which can be used to describe a lens of more than two elements is obtained by expanding the matrix of equation (4.6). For example, for a three-element lens equation 6 becomes:

\[
\begin{pmatrix}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{pmatrix}
= \begin{pmatrix}
1 & Q' \\
0 & 1
\end{pmatrix}
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{pmatrix}
\begin{pmatrix}
1 & 0 \\
1 & 1
\end{pmatrix}
\]

This means that it is possible to calculate the properties of lenses of more than one element simply by a process of matrice multiplication. This technique is simpler and faster than the lengthy procedure involving the calculation of the electric fields and trajectories in the lens to obtain its properties. The only limitation to this technique is that it must be confined to lenses where the focusing action of the gaps between the lens elements must not overlap. This means that the properties of lenses with elements shorter than one diameter in length cannot be accurately calculated using this technique. To illustrate this, consider a symmetric three-element einzel lens, i.e., \(L_1 = L_3 \) and \(V_3/V_1 = 1 \). Using the matrix technique to find the value of \(V_2/V_1 \) required to focus the lens, with the value of \(L_1 = L_3 \) specified, but \(L_2 \) chosen to have a range of values; implies that the focusing voltage \(V_2/V_1 \) is independent of the value of \(L_2 \); i.e., \(V_2/V_1 \) is found to be the same regardless of the length of the centre element \(L_2 \). Heddle (private communication) calculated the values of \(V_2/V_1 \) required to focus the symmetric three-element einzel lens where \(L_1 = L_3 = 2.0D \) using the Bessel function expansion method described in Chapter Two. Using this method, he found that \(V_2/V_1 \) was independent of \(L_2 \) for \(L_2 \) greater than 2.0D, but for values of \(L_2 \) less than 2.0D \(V_2/V_1 \) was found to vary inversely with the length of \(L_2 \). Table 4.3 lists the values Heddle obtained for \(V_2/V_1 \) for a range of values of \(L_2 \) between 0.5 and 2.0D, and the percentage differences between these values of \(V_2/V_1 \) and the value obtained from the matrix method, i.e., the ‘error’ of the matrix method.

The use of matrices to calculate the properties of five-element lenses is described in the next chapter.
TABLE 4.3
COMPARING THE VALUES OBTAINED FOR \(V_2/V_1 \)
USING THE MATRIX AND BESSEL FUNCTION EXPANSION METHODS
FOR THE SYMMETRIC THREE-ELEMENT EINZEL LENS, WHERE
\(L_1 = L_3 = 2.0D \) and \(0.5 \leq L_2 \leq 2.0D \)

\(V_2/V_1 \) was calculated to be 7.23 using the matrix method

<table>
<thead>
<tr>
<th>(L_2)</th>
<th>(V_2/V_1)</th>
<th>%DIFF</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0</td>
<td>7.23</td>
<td>0.00</td>
</tr>
<tr>
<td>1.5</td>
<td>7.26</td>
<td>0.41</td>
</tr>
<tr>
<td>1.4</td>
<td>7.28</td>
<td>0.67</td>
</tr>
<tr>
<td>1.3</td>
<td>7.32</td>
<td>1.23</td>
</tr>
<tr>
<td>1.2</td>
<td>7.37</td>
<td>1.90</td>
</tr>
<tr>
<td>1.1</td>
<td>7.44</td>
<td>2.82</td>
</tr>
<tr>
<td>1.0</td>
<td>7.55</td>
<td>4.24</td>
</tr>
<tr>
<td>0.9</td>
<td>7.72</td>
<td>6.35</td>
</tr>
<tr>
<td>0.8</td>
<td>7.98</td>
<td>9.40</td>
</tr>
<tr>
<td>0.7</td>
<td>8.37</td>
<td>13.62</td>
</tr>
<tr>
<td>0.6</td>
<td>8.98</td>
<td>19.49</td>
</tr>
<tr>
<td>0.5</td>
<td>9.99</td>
<td>27.63</td>
</tr>
</tbody>
</table>
REFERENCES : CHAPTER FOUR

Harting E and Read F H 1976 Electrostatic Lenses (Amsterdam : Elsvier)
CHAPTER FIVE

FIVE-ELEMENT LENSES
CONTENTS : CHAPTER FIVE

<table>
<thead>
<tr>
<th>Section (5.1) Why Five Elements?</th>
<th>Page No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section (5.2) The Afocal Five-element lens with constant separation between conjugate planes</td>
<td>134</td>
</tr>
<tr>
<td>Section (5.3) Calculation of the Properties of the Afocal lens</td>
<td>136</td>
</tr>
<tr>
<td>Section (5.4) Five-element lens of Variable Magnification</td>
<td>143</td>
</tr>
<tr>
<td>Section (5.5) The Derivation of a ‘Universal Curve’ for the Voltage Ratios Required to Focus the Lens</td>
<td>148</td>
</tr>
<tr>
<td>Section (5.6) The ‘Universal Curve’ for the Magnification</td>
<td>161</td>
</tr>
<tr>
<td>Section (5.7) The ‘Universal Curve’ for the Angular Magnification</td>
<td>163</td>
</tr>
<tr>
<td>Section (5.8) The Investigation of the Aberration Behaviour of a Five-element Lens</td>
<td>163</td>
</tr>
</tbody>
</table>

References

Appendix

References: 182

Appendix: 183
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page No</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Five-element Electrostatic lens</td>
<td>135</td>
</tr>
<tr>
<td>5.2</td>
<td>Ray Diagram for 5-element Afocal Lens with constant separation between Conjugate Points</td>
<td>137</td>
</tr>
<tr>
<td>5.3</td>
<td>V_5/V_1 Versus V_2/V_1 as obtained from calculation using the matrix technique, for the lens with $L_1 = L_2 = L_4 = L_5 = 1.5D$ and $L_3 = 3.0D$</td>
<td>140</td>
</tr>
<tr>
<td>5.4</td>
<td>V_6/V_1 Versus V_2/V_1 as obtained from experiment, (Heddele and Papadovassilakis (1984)) for the lens with $L_1 = L_2 = L_4 = L_5 = 1.5D$ and $L_3 = 3.0D$</td>
<td>144</td>
</tr>
<tr>
<td>5.5</td>
<td>V_5/V_1 Versus the Magnification M as obtained from experiment, (Heddele and Papadovassilakis (1984)) for the lens with $L_1 = L_2 = L_4 = L_5 = 1.5D$ and $L_3 = 3.0D$</td>
<td>145</td>
</tr>
<tr>
<td>5.6</td>
<td>α Versus The Separation of the Conjugate Points</td>
<td>146</td>
</tr>
<tr>
<td>5.7</td>
<td>$(V_5/V_1)^\alpha$ Versus $(V_2/V_1)^\alpha$ as obtained from calculation using the matrix technique, for the lens with $S=1.5$</td>
<td>147</td>
</tr>
<tr>
<td>5.8</td>
<td>Lines of constant magnification M, angular magnification M_2, and overall voltage ratio V_5/V_1, drawn on axes of V_2/V_1 and V_4/V_1, as obtained by experiment by Heddele and Papadovassilakis (1984)</td>
<td>149</td>
</tr>
<tr>
<td>5.9</td>
<td>Lines of constant magnification M, angular magnification M_2, and overall voltage ratio V_5/V_1, drawn on axes of V_2/V_1 and V_4/V_1 as obtained from calculation using the matrix technique, for the lens with $L_1 = L_2 = L_4 = L_5 = 1.5D$ and $L_3 = 3.0D$</td>
<td>150</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page No</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td>---------</td>
</tr>
<tr>
<td>5.10</td>
<td>(\frac{V_2}{V_1}/\frac{V_5}{V_1}) Versus (\frac{V_4}{V_6}/\left(\frac{V_1}{V_5}\right)^2) as obtained from calculation using the matrix technique, for the lens with (L_1 = L_2 = L_4 = L_5 = 1.5D) and (L_3 = 3.0D) for various values of (V_6/V_1)</td>
<td>152</td>
</tr>
<tr>
<td>5.11</td>
<td>(Q) Versus (V_6/V_1) as obtained from calculation using the matrix technique, for the lens with (L_1 = L_2 = L_4 = L_5 = 1.5D) and (L_3 = 3.0D)</td>
<td>153</td>
</tr>
<tr>
<td>5.12</td>
<td>(\left(\frac{V_2}{V_1}/\frac{V_6}{V_1}\right)^2) Versus (\left(\frac{V_4}{V_6}/\frac{V_1}{V_5}\right)^2) as obtained from calculation using the matrix technique, for the lens with (L_1 = L_2 = L_4 = L_5 = 1.5D), and (L_3 = 3.0D)</td>
<td>154</td>
</tr>
<tr>
<td>5.13</td>
<td>(V_6/V_1) Versus (V_6/V_1) as obtained from calculation using the matrix technique, for the lens with (L_1 = L_2 = L_4 = L_5 = 1.5D) and (L_3 = 3.0D)</td>
<td>155</td>
</tr>
<tr>
<td>5.14</td>
<td>ZETA Versus (V_6/V_1) as obtained from calculation using the matrix technique, for the lens with (L_1 = L_2 = L_4 = L_5 = 1.5D) and (L_3 = 3.0D)</td>
<td>156</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page No</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td>---------</td>
</tr>
<tr>
<td>5.15</td>
<td>(\frac{V_2}{V_1} \left(\frac{V_5}{V_1} \right)^{Q}) (\zeta^A) vs. (\frac{V_4}{V_5} \left(\frac{V_1}{V_5} \right)^{Q}) (\zeta^A) as obtained from calculation using the matrix technique, for the lens with (L_1 = L_2 = L_4 = L_5 = 1.5D), and (L_3 = 3.0D) for (V_5/V_1 = 10)</td>
<td>157</td>
</tr>
<tr>
<td>5.16</td>
<td>(\frac{V_2}{V_1} \left(\frac{V_5}{V_1} \right)^{Q}) (\zeta^A) vs. (\frac{V_4}{V_5} \left(\frac{V_1}{V_5} \right)^{Q}) (\zeta^A) as obtained from calculation using the matrix technique, for the lens with (L_1 = L_2 = L_4 = L_5 = 1.5D), and (L_3 = 3.0D) for (V_5/V_1 = 36)</td>
<td>158</td>
</tr>
<tr>
<td>5.17</td>
<td>(\frac{V_2}{V_1} \left(\frac{V_5}{V_1} \right)^{Q}) (\zeta^A) vs. (\frac{V_4}{V_5} \left(\frac{V_1}{V_5} \right)^{Q}) (\zeta^A) as obtained from experiment, (Heddle and Papadovassilakis (1984)) for the lens with (L_1 = L_2 = L_4 = L_5 = 1.5D), and (L_3 = 3.0D) for various values of (V_5/V_1)</td>
<td>159</td>
</tr>
<tr>
<td>5.18</td>
<td>(B \times (MAG)^A) vs. (C \times \left(\frac{V_2}{V_4} \right)^D) as obtained from calculation using the matrix technique, for the lens with (L_1 = L_2 = L_4 = L_5 = 1.5D) and (L_3 = 3.0D)</td>
<td>164</td>
</tr>
<tr>
<td>5.19</td>
<td>(B \times (MAG)^A) vs. (C \times \left(\frac{V_2}{V_4} \right)^D) as obtained from calculation using the matrix technique, for the lens with (L_1 = L_2 = L_4 = L_5 = 1.5D) and (L_3 = 3.0D) for (V_5/V_1 = 10)</td>
<td>165</td>
</tr>
<tr>
<td>5.20</td>
<td>(B \times (MAG)^A) vs. (C \times \left(\frac{V_2}{V_4} \right)^D) as obtained from calculation using the matrix technique, for the lens with (L_1 = L_2 = L_4 = L_5 = 1.5D) and (L_3 = 3.0D) for (V_5/V_1 = 36)</td>
<td>166</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page No</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td>---------</td>
</tr>
<tr>
<td>5.21</td>
<td>A Versus V_5/V_1 as obtained from calculation using the matrix technique, for the lens with $L_1 = L_2 = L_4 = L_5 = 1.5D$ and $L_3 = 3.0D$</td>
<td>167</td>
</tr>
<tr>
<td>5.22</td>
<td>B Versus V_5/V_1 as obtained from calculation using the matrix technique, for the lens with $L_1 = L_2 = L_4 = L_5 = 1.5D$ and $L_3 = 3.0D$</td>
<td>168</td>
</tr>
<tr>
<td>5.23</td>
<td>C Versus V_5/V_1 as obtained from calculation using the matrix technique, for the lens with $L_1 = L_2 = L_4 = L_5 = 1.5D$ and $L_3 = 3.0D$</td>
<td>169</td>
</tr>
<tr>
<td>5.24</td>
<td>D Versus V_5/V_1 as obtained from calculation using the matrix technique, for the lens with $L_1 = L_2 = L_4 = L_5 = 1.5D$ and $L_3 = 3.0D$</td>
<td>170</td>
</tr>
<tr>
<td>5.25</td>
<td>$(B \times (MAC)^A$ Versus $(C \times (V_2/V_4))^D$ as obtained from experiment, for the lens with $L_1 = L_2 = L_4 = L_5 = 1.5D$ and $L_3 = 3.0D$ (Heddle and Papadovassiliakis (1984)) for various values of V_5/V_1</td>
<td>171</td>
</tr>
<tr>
<td>5.26</td>
<td>$((V_2/V_1)/((V_5/V_1)^Q))^{ZETA}$ Versus $(V_4/V_5)/((V_1/V_5)^Q)^{ZETA}$ (plotted on linear axes) as obtained from calculation using the matrix technique, for the lens with $L_1 = L_2 = L_4 = L_5 = 1.5D$, and $L_3 = 3.0D$</td>
<td>172</td>
</tr>
</tbody>
</table>
LIST OF FIGURES (cont) : CHAPTER FIVE

Figure 5.27 Photograph of display scope showing six dots for aberration measurements 176

Figure 5.28 C_e Versus V_5/V_1, where $V_5/V_1 = 1$, $V_2/V_1 = V_4/V_5 > V_3/V_1$, for the lens where $L_1 = L_5 = 1.5D, L_2 = L_4 = 1.0D$ and $L_3 = 3.0D$ 177

Figure 5.29 C_e Versus V_5/V_1, for the afocal lens where $L_1 = L_5 = 1.5D, L_2 = L_4 = 1.0D$ and $L_3 = 3.0D$ 178

Figure 5.30 C_e Versus V_2/V_1, where $V_5/V_1 = V_3/V_1 = 1$, $V_2/V_1 \neq V_4/V_5$, for the lens where $L_1 = L_5 = 1.5D, L_2 = L_4 = 1.0D$ and $L_3 = 3.0D$ 179

Figure 5.31 $MAG \times C_e$ Versus V_2/V_1, where $V_5/V_1 = V_3/V_1 = 1$, $V_2/V_1 \neq V_4/V_5$, for the lens where $L_1 = L_5 = 1.5D, L_2 = L_4 = 1.0D$ and $L_3 = 3.0D$ 180

Figure 5.32 $MAG \times C_e$ Versus MAG, where $V_5/V_1 = V_3/V_1 = 1$, $V_2/V_1 \neq V_4/V_5$, for the lens where $L_1 = L_5 = 1.5D, L_2 = L_4 = 1.0D$ and $L_3 = 3.0D$ 181
List of Tables: Chapter Five

Table 5.1 Table listing calculated lens properties illustrating the consistency of the calculations: 141-42
FIVE ELEMENT LENSES

5.1 WHY FIVE ELEMENTS?

The argument regarding the choice of the number of elements which a given lens will
comprise, is most easily approached by considering a simple optical lens. A single optical
lens has three interdependent parameters. These are the object distance, the image distance
and the magnification. If for example the object distance is fixed, for the single lens the
image distance and the magnification are also fixed i.e., by $1/u + 1/v = 1/f$, and $M = v/u$,
where u and v are the object and image distances respectively, and M is the magnification.
To be able to change either the image distance or the magnification and leave the object
distance fixed, requires the use of a second lens, to be able to change all three independently
would require the use of three lenses.

We have a similar situation in electron optics. However, in electron optics there is
one extra parameter, the ratio of the energy of the electrons leaving the lens to the energy
of the electrons entering it, which is equal to the overall voltage ratio of the lens, V_n/V_1,
where V_1 is the voltage applied to the first element, and V_n is the voltage applied to the
last element of the lens. A two element lens allows the choice of one parameter which may
for example be the energy ratio, a three element lens allows the choice of two parameters,
which may be the energy and the image distance and so on. In general n elements are
required to allow the choice of $n - 1$ properties of the lens.

In the application of electron optics, such as in atomic physics or in solid state
physics, it is often necessary to form an image in a fixed position, for example, forming an
image on a target or on a detector. If this constraint is imposed, then the simplest lens
comprising two elements can only be used if the electrons being manipulated are confined
to one energy. However, if an image has to be formed in a fixed position over a wide range
of electron energies, then an electron lens built from more than two elements is required.
Three element lenses have been widely used to form images in a fixed position over a wide
range of electron energies, and their properties have been well documented, (see for example
Hedle (1969), Hedle (1970), Hedle and Kurepa (1970), Harting and Read (1976)), and
Hedle et al (1982)).

However, it may be necessary to maintain two properties of an image constant, for
example the position and the magnification; in this case three elements are not enough.
Another constraint which could be imposed that would require a lens with more than three
elements, would be that the lens not only produces one image in a position which does not

133
depend on the voltage ratio, but also forms a second image in a fixed position, independent of the first, of another object in the lens system such as an angle stop or an exit pupil, and it is often desirable to have such a second image at infinity.

It is now possible to sum up the reasons for choosing a five-element lens. The choice of five elements allows the energy, the image position, and the magnification all to be changed independently so this lens is the ‘true zoom’ lens of electron optics. This would also be true for an electron lens of four elements but with a five-element lens it is also possible to construct a lens as described by Heddle (1971), with two very useful and interesting properties. Heddle (1971) described the properties of a lens constructed from a pair of identical three-element lenses, with the third element of the first lens joined to the first element of the second lens, forming one element, thus creating a five-element lens, (see figure 5.1). This lens, as shown by Heddle (1971), (and will be shown in the next section), is afocal or telescopic, with the separation of the conjugate planes independent of the position of the object, and the magnification dependent only on the overall voltage ratio.

5.2 THE AFOCAL FIVE-ELEMENT LENS WITH CONSTANT SEPARATION BETWEEN CONJUGATE PLANES

A lens system, (see figure 5.2) arranged so that the second focal point of the first lens and the first focal point of the second lens coincide, is necessarily afocal, as a ray incident parallel to the axis will pass through this common focal point and leave the lens system still parallel to the axis. From figure 5.2 and from Newton’s equation the first lens will produce an image I of the object O at a distance \(q \) from the common focal point i.e.,

\[
q = \frac{f_1 f_2}{p}
\]

(5.1)

where \(p \) is the distance of the object from the first focal point of the first lens and \(f_1 \) and \(f_2 \) are the first and second focal lengths respectively of this first lens. This image I then becomes the object \(O' \) for the second lens so \(p' = q \) where \(p' \) is the distance from \(O' \) to the first focal point of the second lens. Again from figure 5.2 and Newton’s equation,

\[
q' = \frac{f'_1 f'_2}{p'} = \frac{f'_1 f'_2}{q}
\]

(5.2)

where \(f'_1 \) and \(f'_2 \) are the first and second focal lengths respectively of the second lens. From equations (5.1) and (5.2)

\[
q' = \left(\frac{f'_1 f'_2}{f_1 f_2} \right) p
\]

(5.3)
FIVE - ELEMENT ELECTROSTATIC LENS.

Faraday Cup

Elements Containing Deflection Plates

Electrode at Cathode Potential

5th 4th 3rd 2nd 1st Cathode

Elements of Lens

Figure 5.1
FIVE - ELEMENT ELECTROSTATIC LENS.

Elements Containing Deflection Plates
Electrode at Cathode Potential
Faraday Cup

5th 4th 3rd 2nd 1st Cathode

Elements of Lens
If the two lenses are further constrained to be identical, (i.e., \(f_1 = f'_1 \) and \(f_2 = f'_2 \)) \(q' = p \).

The distance between the object \(O \) and the final image \(I' \) is equal to

\[
p + F_1 - q - F_2 + p' + F'_1 - q' - F'_2 = 2(F_2 - F_1)
\]

as \(p' = q, q' = p, F_1 = F'_1, \) and \(F_2 = F'_2, \) the negative signs are due to sign convention.

N.B The separation between the reference planes of the two identical lenses is equal to \(F_2 - F_1, \) (see figure 5.2), which is a constant, therefore the separation of the conjugate planes is equal to a constant and therefore independent of object position.

The magnification of the lens system is given by \(f_1/f_2. \) The angular magnification is given by

\[
M_\alpha = \frac{\alpha'}{\alpha} = \left(\frac{h}{f'_2} \right) / \left(\frac{h}{f_1} \right) = \frac{f_1}{f'_2} = f_1/f_2 = M
\]

(see figure 5.2 for definition of \(\alpha, \alpha' \) and \(h \))

The law of Helmoltz and Lagrange relates the magnification, the angular magnification and the overall voltage ratio by;

\[
MM_\alpha \left(\frac{V'}{V} \right)^{1/2} = 1
\]

therefore,

\[
M = M_\alpha = \left(\frac{V'}{V} \right)^{-1/4}
\]

therefore the magnification of the lens is dependent only on the overall voltage ratio.

5.3 CALCULATION OF THE LENS PROPERTIES

Because of the constraints imposed on this lens, for a given value for the overall voltage ratio \(V_5/V_1, \) the only parameter which has to be calculated is \(V_2/V_1, \) where \(V_2/V_1 = V_4/V_3. \) The magnification can be immediately deduced from \(V_5/V_1, \) as \(M = (V_4/V_1)^{-1/4}, \) and once \(V_2/V_1 \) is known the remaining voltage ratios can be immediately found. To summarise,

\[
V_5/V_3 = V_8/V_1 \text{ implies } V_3/V_1 = (V_5/V_1)^{1/2}
\]

\[
V_2/V_1 = V_4/V_3
\]

136
Common Focal Point, i.e. 2nd focal point of 1st Lens
1st focal point of 2nd Lens

Figure 5.2
$$\frac{V_3}{V_2} = \left(\frac{V_3}{V_1} \right) / \left(\frac{V_2}{V_1} \right) \quad (5.7)$$

$$\frac{V_3}{V_4} = \left(\frac{V_3}{V_5} \right) / \left(\frac{V_4}{V_3} \right) = \frac{V_3}{V_2}$$

$$M = \left(\frac{V_5}{V_1} \right)^{-1/4}$$

A five-element lens can be represented by the following object-image matrix:

$$\begin{pmatrix}
1 & L_2 \\
0 & 1
\end{pmatrix}
\begin{pmatrix}
\alpha_{11} & \alpha_{12} \\
\alpha_{21} & \alpha_{22}
\end{pmatrix}
\begin{pmatrix}
1 & L_4 \\
0 & 1
\end{pmatrix}
\begin{pmatrix}
\alpha_{11} & \alpha_{12} \\
\alpha_{21} & \alpha_{22}
\end{pmatrix}
\begin{pmatrix}
1 & L_3 \\
0 & 1
\end{pmatrix}$$

$$X = \begin{pmatrix}
1 & L_2 \\
0 & 1
\end{pmatrix}
\begin{pmatrix}
\alpha_{11} & \alpha_{12} \\
\alpha_{21} & \alpha_{22}
\end{pmatrix}
\begin{pmatrix}
1 & L_1 \\
0 & 1
\end{pmatrix}$$

$$= \begin{pmatrix}
\alpha & \beta \\
\gamma & \delta
\end{pmatrix} \quad (5.8)$$

where

- the matrix elements α_{1133}, α_{1231}, α_{2131}, and α_{1121},
- the matrix elements α_{1132}, α_{1232}, α_{2132}, and α_{1132},
- the matrix elements α_{1143}, α_{1243}, α_{2143}, and α_{1143},
- and
- the matrix elements α_{1144}, α_{1244}, α_{2144}, and α_{1144},

can be considered as representing the gaps between elements 1 and 2, 2 and 3, 3 and 4, 4 and 5 respectively. In the case of the afocal lens, as $V_2/V_1 = V_4/V_3$, $\alpha_{1121} = \alpha_{1143}$, ..., and as $V_3/V_2 = V_5/V_4$, $\alpha_{1132} = \alpha_{1134}$, ...

The matrix elements for any given voltage ratio V'/V, where $0.02 \leq V'/V \leq 50.0$, (i.e., lenses with overall voltage ratios ranging between 1 and 50 and the equivalent reciprocal lenses) are derived from tables 4.1 and 4.2 of voltage ratios and matrix elements, using cubic splines to interpolate between the tabulated data points. For conjugate points the matrix element β of equation (5.8) equals 0, (see discussion in Chapter Four) and this fact was used to obtain the matrix elements and hence the voltage ratios for the focussed lens. An iterative procedure was used, whereby for a given value of V_6/V_1 values for V_2/V_1 were chosen until a value for β found which was sufficiently close to zero ($< 10^{-4}$).

Consistency of Calculation

It was possible to check the consistency of calculation in a number of ways.

1. As matrix element α is equal to the magnification (see again the discussion of the last chapter), which in this case is equal to $(V_5/V_1)^{-1/4}$, a check of the accuracy of the final choice of V_2/V_1 is possible, by comparing the values obtained for α and $(V_5/V_1)^{-1/4}$.

138
(2) As mentioned above, α is equal to the magnification, and as matrix element δ is equal to the angular magnification, a value for f_2/f_1 can be deduced, as $1/(MM\alpha) = f_2/f_1$, (Lagrange’s rule). As $(V_5/V_1)^{1/2}$ should also equal f_2/f_1, comparing the values obtained for f_2/f_1 in both cases will give a check on the accuracy of the calculation.

(3) Finally, it is possible to extract the matrix elements for the three-element lens from which the five-element lens is constructed as

$$
\begin{bmatrix}
1 & M_2 \\
0 & 1
\end{bmatrix}
\begin{bmatrix}
1 & L_2 \\
0 & 1
\end{bmatrix}
$$

where a_{121}, a_{122}, a_{2121}, and a_{2221} are the matrix elements for the three-element lens, and as the focal distances F_3, and F_5, for the three-element lens can be deduced from these matrix elements, $F_5 - F_3$, can be calculated and compared to $L_2 + L_3$, where L_2 and L_3 are the lengths of the second and third elements of the five-element lens.

Figure 5.3 shows V_5/V_1 versus V_2/V_1 for the five-element lens where $L_1 = L_2 = L_4 = L_5 = 1.5D$ and $L_3 = 3.0D$, and Table 5.1 lists some of the calculated results.

As the programs written to obtain the properties of the afocal lens are typical of those written to calculate lens properties using the matrix technique, a description and copies of these Fortran programs are included in an appendix to this chapter, entitled ‘Examples of programs used to calculate lens properties’.
<table>
<thead>
<tr>
<th>$L_1 = L_2 = L_4 = L_5 = 1.5$ D</th>
<th>$L_3 = 3.0$ D</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_5 / V_1</td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>0.0001</td>
<td>0.0001</td>
</tr>
<tr>
<td>0.00001</td>
<td>0.00001</td>
</tr>
<tr>
<td>0.000001</td>
<td>0.000001</td>
</tr>
<tr>
<td>0.0000001</td>
<td>0.0000001</td>
</tr>
<tr>
<td>0.00000001</td>
<td>0.00000001</td>
</tr>
<tr>
<td>0.000000001</td>
<td>0.000000001</td>
</tr>
<tr>
<td>0.0000000001</td>
<td>0.0000000001</td>
</tr>
<tr>
<td>0.00000000001</td>
<td>0.00000000001</td>
</tr>
<tr>
<td>0.000000000001</td>
<td>0.000000000001</td>
</tr>
</tbody>
</table>

Figure 5.8

TABLE 5.1

TASTE LIFTING CALCULATED LENS PROPERTIES

Illustrating the consistency of the calculations

$L_1 = L_2 = L_3 = L_4 = 1.5$ D and $L_5 = 3.0$ D, $L_6 + L_0 = 4.6$ D

<table>
<thead>
<tr>
<th>L_6/L_0</th>
<th>N_D</th>
<th>N_A</th>
<th>V_5/V_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0000</td>
<td>0.500</td>
<td>0.500</td>
<td>0.500</td>
</tr>
<tr>
<td>0.0001</td>
<td>0.499</td>
<td>0.499</td>
<td>0.499</td>
</tr>
<tr>
<td>0.001</td>
<td>0.498</td>
<td>0.498</td>
<td>0.498</td>
</tr>
<tr>
<td>0.01</td>
<td>0.497</td>
<td>0.497</td>
<td>0.497</td>
</tr>
<tr>
<td>0.1</td>
<td>0.496</td>
<td>0.496</td>
<td>0.496</td>
</tr>
<tr>
<td>1.0</td>
<td>0.495</td>
<td>0.495</td>
<td>0.495</td>
</tr>
<tr>
<td>10.0</td>
<td>0.494</td>
<td>0.494</td>
<td>0.494</td>
</tr>
<tr>
<td>100.0</td>
<td>0.493</td>
<td>0.493</td>
<td>0.493</td>
</tr>
<tr>
<td>1000.0</td>
<td>0.492</td>
<td>0.492</td>
<td>0.492</td>
</tr>
</tbody>
</table>

AFOCAL 5-ELEMENT LENS

140
TABLE 5.1
TABLE LISTING CALCULATED LENS PROPERTIES ILLUSTRATING THE CONSISTENCY OF THE CALCULATIONS

\[
L_1 = L_2 = L_4 = L_5 = 1.5D \text{ and } L_3 = 3.0D, \quad L_2 + L_3 = 4.5D
\]

<table>
<thead>
<tr>
<th>$\frac{V_2}{V_1}$</th>
<th>$\frac{V_3}{V_1}$</th>
<th>MAG</th>
<th>$(\frac{V_2}{V_1})^{-\frac{1}{2}}$</th>
<th>$\frac{I^2}{I_1}$</th>
<th>$(\frac{V_3}{V_1})^{\frac{1}{2}}$</th>
<th>$F_{0,3} - F_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.030</td>
<td>1.003</td>
<td>2.403</td>
<td>2.403</td>
<td>0.173</td>
<td>0.173</td>
<td>-4.500</td>
</tr>
<tr>
<td>0.040</td>
<td>1.150</td>
<td>2.236</td>
<td>2.236</td>
<td>0.200</td>
<td>0.200</td>
<td>-4.500</td>
</tr>
<tr>
<td>0.050</td>
<td>1.275</td>
<td>2.115</td>
<td>2.115</td>
<td>0.224</td>
<td>0.224</td>
<td>-4.500</td>
</tr>
<tr>
<td>0.060</td>
<td>1.381</td>
<td>2.020</td>
<td>2.021</td>
<td>0.245</td>
<td>0.245</td>
<td>-4.500</td>
</tr>
<tr>
<td>0.070</td>
<td>1.490</td>
<td>1.944</td>
<td>1.944</td>
<td>0.265</td>
<td>0.265</td>
<td>-4.500</td>
</tr>
<tr>
<td>0.080</td>
<td>1.567</td>
<td>1.880</td>
<td>1.880</td>
<td>0.283</td>
<td>0.283</td>
<td>-4.500</td>
</tr>
<tr>
<td>0.090</td>
<td>1.646</td>
<td>1.826</td>
<td>1.826</td>
<td>0.300</td>
<td>0.300</td>
<td>-4.500</td>
</tr>
<tr>
<td>0.100</td>
<td>1.719</td>
<td>1.778</td>
<td>1.778</td>
<td>0.316</td>
<td>0.316</td>
<td>-4.500</td>
</tr>
<tr>
<td>0.200</td>
<td>2.239</td>
<td>1.495</td>
<td>1.495</td>
<td>0.448</td>
<td>0.447</td>
<td>-4.500</td>
</tr>
<tr>
<td>0.300</td>
<td>2.578</td>
<td>1.351</td>
<td>1.351</td>
<td>0.548</td>
<td>0.548</td>
<td>-4.500</td>
</tr>
<tr>
<td>0.400</td>
<td>2.841</td>
<td>1.257</td>
<td>1.257</td>
<td>0.633</td>
<td>0.632</td>
<td>-4.500</td>
</tr>
<tr>
<td>0.500</td>
<td>3.041</td>
<td>1.189</td>
<td>1.189</td>
<td>0.707</td>
<td>0.707</td>
<td>-4.500</td>
</tr>
<tr>
<td>0.600</td>
<td>3.207</td>
<td>1.136</td>
<td>1.136</td>
<td>0.774</td>
<td>0.775</td>
<td>-4.500</td>
</tr>
<tr>
<td>0.700</td>
<td>3.348</td>
<td>1.094</td>
<td>1.093</td>
<td>0.836</td>
<td>0.837</td>
<td>-4.500</td>
</tr>
<tr>
<td>0.800</td>
<td>3.471</td>
<td>1.058</td>
<td>1.057</td>
<td>0.894</td>
<td>0.894</td>
<td>-4.500</td>
</tr>
<tr>
<td>0.900</td>
<td>3.579</td>
<td>1.027</td>
<td>1.027</td>
<td>0.948</td>
<td>0.949</td>
<td>-4.500</td>
</tr>
<tr>
<td>1.000</td>
<td>3.676</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>-4.500</td>
</tr>
<tr>
<td>2.000</td>
<td>4.295</td>
<td>0.841</td>
<td>0.841</td>
<td>1.415</td>
<td>1.414</td>
<td>-4.500</td>
</tr>
<tr>
<td>3.000</td>
<td>4.634</td>
<td>0.760</td>
<td>0.760</td>
<td>1.731</td>
<td>1.732</td>
<td>-4.500</td>
</tr>
<tr>
<td>4.000</td>
<td>4.858</td>
<td>0.707</td>
<td>0.707</td>
<td>1.999</td>
<td>2.000</td>
<td>-4.500</td>
</tr>
<tr>
<td>5.000</td>
<td>5.020</td>
<td>0.669</td>
<td>0.669</td>
<td>2.235</td>
<td>2.236</td>
<td>-4.500</td>
</tr>
<tr>
<td>6.000</td>
<td>5.142</td>
<td>0.639</td>
<td>0.639</td>
<td>2.448</td>
<td>2.449</td>
<td>-4.500</td>
</tr>
<tr>
<td>7.000</td>
<td>5.239</td>
<td>0.615</td>
<td>0.615</td>
<td>2.645</td>
<td>2.646</td>
<td>-4.500</td>
</tr>
<tr>
<td>8.000</td>
<td>5.318</td>
<td>0.595</td>
<td>0.595</td>
<td>2.827</td>
<td>2.828</td>
<td>-4.500</td>
</tr>
<tr>
<td>9.000</td>
<td>5.383</td>
<td>0.577</td>
<td>0.577</td>
<td>2.999</td>
<td>3.000</td>
<td>-4.500</td>
</tr>
<tr>
<td>10.000</td>
<td>5.438</td>
<td>0.562</td>
<td>0.562</td>
<td>3.162</td>
<td>3.162</td>
<td>-4.500</td>
</tr>
<tr>
<td>20.000</td>
<td>5.702</td>
<td>0.473</td>
<td>0.473</td>
<td>4.473</td>
<td>4.472</td>
<td>-4.500</td>
</tr>
<tr>
<td>30.000</td>
<td>5.764</td>
<td>0.427</td>
<td>0.427</td>
<td>5.478</td>
<td>5.477</td>
<td>-4.500</td>
</tr>
<tr>
<td>40.000</td>
<td>5.769</td>
<td>0.398</td>
<td>0.398</td>
<td>6.325</td>
<td>6.325</td>
<td>-4.500</td>
</tr>
<tr>
<td>50.000</td>
<td>5.727</td>
<td>0.376</td>
<td>0.376</td>
<td>7.071</td>
<td>7.071</td>
<td>-4.500</td>
</tr>
<tr>
<td>60.000</td>
<td>5.665</td>
<td>0.359</td>
<td>0.359</td>
<td>7.750</td>
<td>7.746</td>
<td>-4.500</td>
</tr>
<tr>
<td>70.000</td>
<td>5.515</td>
<td>0.346</td>
<td>0.346</td>
<td>8.366</td>
<td>8.367</td>
<td>-4.500</td>
</tr>
<tr>
<td>80.000</td>
<td>5.505</td>
<td>0.334</td>
<td>0.334</td>
<td>8.942</td>
<td>8.944</td>
<td>-4.500</td>
</tr>
<tr>
<td>90.000</td>
<td>5.410</td>
<td>0.325</td>
<td>0.325</td>
<td>9.486</td>
<td>9.487</td>
<td>-4.500</td>
</tr>
<tr>
<td>100.000</td>
<td>5.306</td>
<td>0.316</td>
<td>0.316</td>
<td>9.909</td>
<td>10.000</td>
<td>-4.500</td>
</tr>
<tr>
<td>110.000</td>
<td>5.169</td>
<td>0.309</td>
<td>0.309</td>
<td>10.485</td>
<td>10.488</td>
<td>-4.500</td>
</tr>
<tr>
<td>120.000</td>
<td>5.047</td>
<td>0.302</td>
<td>0.302</td>
<td>10.950</td>
<td>10.954</td>
<td>-4.500</td>
</tr>
<tr>
<td>130.000</td>
<td>4.913</td>
<td>0.296</td>
<td>0.296</td>
<td>11.398</td>
<td>11.402</td>
<td>-4.500</td>
</tr>
<tr>
<td>140.000</td>
<td>4.762</td>
<td>0.291</td>
<td>0.291</td>
<td>11.830</td>
<td>11.832</td>
<td>-4.500</td>
</tr>
<tr>
<td>150.000</td>
<td>4.585</td>
<td>0.286</td>
<td>0.286</td>
<td>12.247</td>
<td>12.247</td>
<td>-4.500</td>
</tr>
<tr>
<td>160.000</td>
<td>4.367</td>
<td>0.281</td>
<td>0.281</td>
<td>12.650</td>
<td>12.649</td>
<td>-4.500</td>
</tr>
<tr>
<td>170.000</td>
<td>4.045</td>
<td>0.277</td>
<td>0.277</td>
<td>13.042</td>
<td>13.038</td>
<td>-4.500</td>
</tr>
<tr>
<td>(\frac{V_2}{V_1})</td>
<td>(\frac{V_1}{V_1})</td>
<td>MAG</td>
<td>(\left(\frac{V_2}{V_1} \right)^{\frac{1}{3}})</td>
<td>(\frac{f_2}{f_1})</td>
<td>(\left(\frac{f_2}{f_1} \right)^{\frac{1}{3}})</td>
<td>(F_{32} - F_{31})</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>30.000</td>
<td>0.946</td>
<td>0.427</td>
<td>0.427</td>
<td>5.478</td>
<td>5.477</td>
<td>-4.500</td>
</tr>
<tr>
<td>40.000</td>
<td>1.101</td>
<td>0.398</td>
<td>0.398</td>
<td>6.325</td>
<td>6.325</td>
<td>-4.500</td>
</tr>
<tr>
<td>50.000</td>
<td>1.241</td>
<td>0.376</td>
<td>0.376</td>
<td>7.071</td>
<td>7.071</td>
<td>-4.500</td>
</tr>
<tr>
<td>60.000</td>
<td>1.382</td>
<td>0.359</td>
<td>0.359</td>
<td>7.746</td>
<td>7.746</td>
<td>-4.500</td>
</tr>
<tr>
<td>70.000</td>
<td>1.514</td>
<td>0.346</td>
<td>0.346</td>
<td>8.367</td>
<td>8.367</td>
<td>-4.500</td>
</tr>
<tr>
<td>80.000</td>
<td>1.645</td>
<td>0.334</td>
<td>0.334</td>
<td>8.944</td>
<td>8.944</td>
<td>-4.500</td>
</tr>
<tr>
<td>90.000</td>
<td>1.777</td>
<td>0.325</td>
<td>0.325</td>
<td>9.487</td>
<td>9.487</td>
<td>-4.500</td>
</tr>
<tr>
<td>100.000</td>
<td>1.911</td>
<td>0.316</td>
<td>0.316</td>
<td>10.000</td>
<td>10.000</td>
<td>-4.500</td>
</tr>
<tr>
<td>110.000</td>
<td>2.049</td>
<td>0.309</td>
<td>0.309</td>
<td>10.488</td>
<td>10.488</td>
<td>-4.500</td>
</tr>
<tr>
<td>120.000</td>
<td>2.188</td>
<td>0.302</td>
<td>0.302</td>
<td>10.954</td>
<td>10.954</td>
<td>-4.500</td>
</tr>
<tr>
<td>130.000</td>
<td>2.322</td>
<td>0.296</td>
<td>0.296</td>
<td>11.402</td>
<td>11.402</td>
<td>-4.500</td>
</tr>
<tr>
<td>140.000</td>
<td>2.460</td>
<td>0.291</td>
<td>0.291</td>
<td>11.832</td>
<td>11.832</td>
<td>-4.500</td>
</tr>
<tr>
<td>150.000</td>
<td>2.592</td>
<td>0.286</td>
<td>0.286</td>
<td>12.247</td>
<td>12.247</td>
<td>-4.500</td>
</tr>
<tr>
<td>160.000</td>
<td>2.726</td>
<td>0.281</td>
<td>0.281</td>
<td>12.649</td>
<td>12.649</td>
<td>-4.500</td>
</tr>
<tr>
<td>170.000</td>
<td>2.861</td>
<td>0.277</td>
<td>0.277</td>
<td>13.038</td>
<td>13.038</td>
<td>-4.500</td>
</tr>
<tr>
<td>180.000</td>
<td>2.997</td>
<td>0.274</td>
<td>0.274</td>
<td>13.411</td>
<td>13.411</td>
<td>-4.500</td>
</tr>
<tr>
<td>190.000</td>
<td>3.134</td>
<td>0.271</td>
<td>0.271</td>
<td>13.771</td>
<td>13.771</td>
<td>-4.500</td>
</tr>
<tr>
<td>200.000</td>
<td>3.272</td>
<td>0.268</td>
<td>0.268</td>
<td>14.120</td>
<td>14.120</td>
<td>-4.500</td>
</tr>
<tr>
<td>210.000</td>
<td>3.411</td>
<td>0.265</td>
<td>0.265</td>
<td>14.458</td>
<td>14.458</td>
<td>-4.500</td>
</tr>
<tr>
<td>220.000</td>
<td>3.551</td>
<td>0.263</td>
<td>0.263</td>
<td>14.785</td>
<td>14.785</td>
<td>-4.500</td>
</tr>
<tr>
<td>230.000</td>
<td>3.692</td>
<td>0.261</td>
<td>0.261</td>
<td>15.101</td>
<td>15.101</td>
<td>-4.500</td>
</tr>
<tr>
<td>240.000</td>
<td>3.834</td>
<td>0.259</td>
<td>0.259</td>
<td>15.407</td>
<td>15.407</td>
<td>-4.500</td>
</tr>
<tr>
<td>250.000</td>
<td>3.976</td>
<td>0.257</td>
<td>0.257</td>
<td>15.704</td>
<td>15.704</td>
<td>-4.500</td>
</tr>
<tr>
<td>260.000</td>
<td>4.119</td>
<td>0.256</td>
<td>0.256</td>
<td>16.001</td>
<td>16.001</td>
<td>-4.500</td>
</tr>
<tr>
<td>270.000</td>
<td>4.261</td>
<td>0.254</td>
<td>0.254</td>
<td>16.298</td>
<td>16.298</td>
<td>-4.500</td>
</tr>
<tr>
<td>280.000</td>
<td>4.403</td>
<td>0.253</td>
<td>0.253</td>
<td>16.594</td>
<td>16.594</td>
<td>-4.500</td>
</tr>
<tr>
<td>290.000</td>
<td>4.545</td>
<td>0.252</td>
<td>0.252</td>
<td>16.890</td>
<td>16.890</td>
<td>-4.500</td>
</tr>
<tr>
<td>300.000</td>
<td>4.687</td>
<td>0.251</td>
<td>0.251</td>
<td>17.186</td>
<td>17.186</td>
<td>-4.500</td>
</tr>
<tr>
<td>310.000</td>
<td>4.829</td>
<td>0.250</td>
<td>0.250</td>
<td>17.482</td>
<td>17.482</td>
<td>-4.500</td>
</tr>
<tr>
<td>320.000</td>
<td>4.971</td>
<td>0.249</td>
<td>0.249</td>
<td>17.777</td>
<td>17.777</td>
<td>-4.500</td>
</tr>
<tr>
<td>330.000</td>
<td>5.113</td>
<td>0.248</td>
<td>0.248</td>
<td>18.073</td>
<td>18.073</td>
<td>-4.500</td>
</tr>
<tr>
<td>340.000</td>
<td>5.255</td>
<td>0.248</td>
<td>0.248</td>
<td>18.369</td>
<td>18.369</td>
<td>-4.500</td>
</tr>
<tr>
<td>350.000</td>
<td>5.397</td>
<td>0.247</td>
<td>0.247</td>
<td>18.665</td>
<td>18.665</td>
<td>-4.500</td>
</tr>
<tr>
<td>360.000</td>
<td>5.539</td>
<td>0.247</td>
<td>0.247</td>
<td>18.960</td>
<td>18.960</td>
<td>-4.500</td>
</tr>
<tr>
<td>370.000</td>
<td>5.681</td>
<td>0.246</td>
<td>0.246</td>
<td>19.255</td>
<td>19.255</td>
<td>-4.500</td>
</tr>
<tr>
<td>380.000</td>
<td>5.823</td>
<td>0.246</td>
<td>0.246</td>
<td>19.550</td>
<td>19.550</td>
<td>-4.500</td>
</tr>
<tr>
<td>390.000</td>
<td>5.965</td>
<td>0.245</td>
<td>0.245</td>
<td>19.845</td>
<td>19.845</td>
<td>-4.500</td>
</tr>
<tr>
<td>400.000</td>
<td>6.107</td>
<td>0.245</td>
<td>0.245</td>
<td>20.140</td>
<td>20.140</td>
<td>-4.500</td>
</tr>
<tr>
<td>410.000</td>
<td>6.249</td>
<td>0.244</td>
<td>0.244</td>
<td>20.435</td>
<td>20.435</td>
<td>-4.500</td>
</tr>
<tr>
<td>420.000</td>
<td>6.391</td>
<td>0.244</td>
<td>0.244</td>
<td>20.730</td>
<td>20.730</td>
<td>-4.500</td>
</tr>
<tr>
<td>430.000</td>
<td>6.533</td>
<td>0.243</td>
<td>0.243</td>
<td>21.026</td>
<td>21.026</td>
<td>-4.500</td>
</tr>
<tr>
<td>440.000</td>
<td>6.675</td>
<td>0.243</td>
<td>0.243</td>
<td>21.321</td>
<td>21.321</td>
<td>-4.500</td>
</tr>
<tr>
<td>450.000</td>
<td>6.817</td>
<td>0.242</td>
<td>0.242</td>
<td>21.616</td>
<td>21.616</td>
<td>-4.500</td>
</tr>
<tr>
<td>460.000</td>
<td>6.959</td>
<td>0.242</td>
<td>0.242</td>
<td>21.911</td>
<td>21.911</td>
<td>-4.500</td>
</tr>
<tr>
<td>470.000</td>
<td>7.101</td>
<td>0.242</td>
<td>0.242</td>
<td>22.206</td>
<td>22.206</td>
<td>-4.500</td>
</tr>
<tr>
<td>480.000</td>
<td>7.243</td>
<td>0.241</td>
<td>0.241</td>
<td>22.501</td>
<td>22.501</td>
<td>-4.500</td>
</tr>
<tr>
<td>490.000</td>
<td>7.385</td>
<td>0.241</td>
<td>0.241</td>
<td>22.796</td>
<td>22.796</td>
<td>-4.500</td>
</tr>
<tr>
<td>500.000</td>
<td>7.527</td>
<td>0.241</td>
<td>0.241</td>
<td>23.091</td>
<td>23.091</td>
<td>-4.500</td>
</tr>
</tbody>
</table>

142
Comparison of the Calculated and Experimental Results
Obtained for the Afocal Lens

Heddle and Papadovassilakis (1984) investigated experimentally the properties of a
five-element lens where \(L_1 = L_2 = L_4 = 1.5D \) and \(L_3 = L_1 + L_5 = 3.0D \), this lens
will subsequently be referred to as the HP lens. Figures 5.4 shows the values of \(V_5/V_1 \)
and \(V_2/V_1 \) obtained experimentally for the HP lens; the solid line represents the calculated
values. Figure 5.5 shows \(V_5/V_1 \) versus the magnification \(M \), as obtained from experiment
for the HP lens; the solid line corresponds to \(V_5/V_1 \) versus \((V_5/V_1)^{-1/4} \).

Representation of the Lens Properties of the Afocal Lens
with Constant Separation between Conjugate Points
with Graphs of \((V_s/V_i)^\alpha \) Versus \((V_2/V_1)^\alpha \)

As this lens is the sum of two identical three-element lenses its properties can be
represented by a single graph of \((V_s/V_i)^\alpha \) versus \((V_2/V_1)^\alpha \) where \(\alpha \) is a function of the
separation between the conjugate points, (see figure 5.6) using the property of three-element
lenses found by Heddle (1970 and 1971). He discovered that all three-element lenses with
the same centre element length \(S \) could be represented by a single graph of \((V_s/V_i)^\alpha \) versus
\((V_2/V_1)^\alpha \) where \(\alpha \) is a function of the sum of the focal distances of each lens. Therefore
all five-element lenses whose second element (and therefore fourth element, i.e., the second
element and the fourth element of the five-element lens are the centre elements of the three-
element lens) are of the same length can similarly be represented by the one curve. Figure
5.7 shows \((V_s/V_i)^\alpha \) versus \((V_2/V_1)^\alpha \) for lenses where \(S = 1.5D \) as calculated using the
matrix technique.

5.4 FIVE-ELEMENT LENS OF VARIABLE MAGNIFICATION

In the above case \(V_2/V_1 \) was constrained to equal \(V_4/V_3 \), (i.e., equation (1)) when
this constraint is relaxed the lens can be operated as a lens of variable magnification. For
this lens, of variable magnification, for every value of \(V_5/V_1 \) there exists a set of pairs of
values of \(V_2/V_1 \) and \(V_4/V_3 \) which will focus the lens, and for each pair of values of \(V_2/V_1 \)
and \(V_4/V_3 \) there will be a corresponding value for the magnification.

From the above it can be seen that by simply relaxing the one constraint to give
a lens of variable magnification, the representation of the lens parameters becomes rather
more complicated than it was in the afocal case. It is no longer possible to represent all
the parameters of the lens by a simple graph of \((V_s/V_i)^\alpha \) versus \((V_2/V_1)^\alpha \), instead, for
$L_1 = L_2 = L_4 = L_5 = 1.5D \quad L_3 = 3.0D$

AFOCAL 5-ELEMENT LENS

Figure 5.4
$L_1 = L_2 = L_3 = 1.5 \text{D}$

AFOCAL 5-ELEMENT LENS

$V_5 \leq V_1$

Figure 5.5

SEPARATION OF CONJUGATE POINTS
SEPARATION OF CONJUGATE POINTS

adapted from Heddle 1971, figure 4

Figure 5.6
every possible value of \(V_L/V_1 \) a three-dimensional graph of \(V_L/V_2 \) versus \(V_L/V_3 \) versus the magnification; for example, is required to represent the lens. Hockley and Papadopoulos (1984) represented the lens properties they had obtained experimentally, i.e., the HP lens, with a graph (figure 5.8) showing lines of constant magnification \(M \), angular magnification \(M_a \), and overall voltage ratio \(V_2/V_1 \). Three lines of constant magnification \(M \), angular magnification \(M_a \), and overall voltage ratio \(V_2/V_1 \) drawn in sets of \(V_L/V_1 \) and \(V_L/V_2 \). In the present work, values of \(V_L/V_1 \) were calculated for each dataset value of the magnification \(M \), angular magnification \(M_a \), and overall voltage ratio \(V_2/V_1 \). Using the matrix technique, figure 5.9 shows lines of constant magnification \(M \), angular magnification \(M_a \), and overall voltage ratio \(V_2/V_1 \) drawn in sets of \(V_L/V_1 \) and \(V_L/V_2 \). Table 5.7 shows calculated data for the HP lens.

5.5 The Derivation of Universal Curves for the Voltage Ratios Required to Focus the Lens

To solve the problem of having to produce a three-dimensional graph of \(V_L/V_1 \) versus \(V_L/V_2 \) versus \(V_L/V_3 \), it was decided to look for some universal curves or curves which could be used to represent the lens. It was found that a universal curve could be obtained for lenses with an overall voltage ratio \(V_L/V_1 \) ranging between 0.05 and 1.0 for \(V_L/V_2 \). The limiting pairs of values of \(V_L/V_1 \) and \(V_L/V_2 \) are deduced from a single curve with a binomial law, after the form of the universal curve has been described. Suffice to say for the moment that the range includes those lens values which would be expected to show the best aberration behaviour, i.e., those lenses which in practice would be used.

The universal curve was obtained by first plotting the computations of

\[
(V_L/V_1)(V_L/V_2) = V_{21D} \quad \text{and} \quad (V_L/V_2)(V_L/V_3) = V_{23D}
\]

giving a set of (nearly) concentric curves. Figure 5.101 between the pairs of limiting values of \(V_{21D} \) and \(V_{23D} \), (see points A and B of figure 5.12), where \(V \) is a function of \(V_L/V_1 \) (figure 5.13). Comparing \(V_{21D} \) and \(V_{23D} \) to reveal symmetry between them. If they are compared for the lens reversed, the binomial part of the lens is regarded as its first element and \(V_1/V_2 \) is then equivalent to \(V_L/V_1 \), and for the lens reversed \(V_2/V_1 \) becomes \(V_L/V_2 \). Note that figure 5.16 is similar to the figure of Hockley and Papadopoulos (figure 5.8) but in a more condensed form.

A 'universal curve' is then obtained relating these functions of \(V_L/V_1 \) and \(V_L/V_2 \) for all values of the overall voltage ratio \(V_L/V_1 \). If these nearly concentric curves are expanded by using a scaling factor \(2 \times 2 \) (2 \(\times \) \(2 \) being a function of \(V_L/V_1 \)), which is chosen to make the curves overlap exactly on the axes. The curves do not scale exactly, but...
every possible value of V_2/V_1 a three dimensional graph of V_2/V_1 versus V_4/V_3 versus the magnification for example, is required to represent the lens. Heddle and Papadovassilakis (1984) represented the lens properties they had obtained experimentally, (i.e., the HP lens) with a graph (figure 5.8) showing lines of constant magnification M, angular magnification M_a, and overall voltage ratio, V_5/V_1 drawn on axes of V_2/V_1 and V_4/V_1. In the present work, values of V_2/V_1 were calculated for constant values of the magnification M, angular magnification M_a, and overall ratio V_5/V_1, using the matrix technique. Figure 5.9 shows lines of constant magnification M, angular magnification M_a, and overall voltage ratio V_5/V_1, drawn on axes of V_2/V_1 and V_4/V_1 obtained from calculated data for the HP lens.

5.5 THE DERIVATION OF A 'UNIVERSAL CURVE' FOR
THE VOLTAGE RATIOS REQUIRED TO FOCUS THE LENS

In order to get round the problem of having to produce $n \times 3$-D graphs of V_2/V_1 versus V_4/V_3 versus the magnification to represent the lens, it was decided to look for some universal curve or curves which could be used to represent the lens. It was found that a universal curve could be obtained for lenses with an overall voltage ratio V_5/V_1 ranging between 0.02 and 50, over a limited range of values of V_2/V_1 and V_4/V_3. The limiting pairs of values of V_2/V_1 and V_4/V_3 are deduced from an argument which will be given later, after the form of the universal curve has been described; suffice to say for the moment that the range includes those lenses which would be expected to show the best aberration behaviour, i.e., those lenses which in practice would be used.

The universal curve was obtained by firstly plotting the computed values of $$(V_2/V_1)/(V_5/V_1)^Q = V2IND \text{ versus } (V_4/V_3)/(V_1/V_5)^Q = V4IND$$
giving a set of (nearly) concentric curves, (figure 5.10) between the pairs of limiting values of V2IND and V4IND, (see points A and B of figure 12), where Q is a function of V_5/V_1 (figure 5.11). Comparing V2IND and V4IND reveals a symmetry between them if they are compared for the lens reversed, the last element of the lens is then regarded as its first element and V_4/V_5 is then equivalent to V_2/V_1, and for the reversed lens V_5/V_1 becomes V_1/V_5. Note that figure 5.10 is similar to the figure of Heddle and Papadovassilakis (figure 5.8) but in a more condensed form.

A 'UNIVERSAL CURVE' is then obtained relating these functions of V_2/V_1 and V_4/V_5 for all values of the overall voltage ratio V_5/V_1, if these nearly concentric curves are expanded by using a scaling factor $ZETA$ ($ZETA$ being a function of V_5/V_1), which is chosen to make the curves overlap exactly on the axes. The curves do not scale exactly, but
are consistent to better than 2% in the worst case plotted.

To sum up, a universal curve is obtained if \(\left[(V_d/V_r)/(V_d/V_r)^{\text{VAULT}} \right]^{\text{EST}} \) is plotted against \((V_d/V_r)/(V_d/V_r)^{\text{EST}} = \text{VAULT} \), for all values of \(V_d/V_r \) where \(Q \) and \(\text{EST} \) are functions of \(V_d/V_r \) between limiting pairs of values of \(\text{VAULT} \) and \(\text{VAULT} \), say figure 5.13, i.e., \(\text{UNIVERSAL CURVE} \).

The two limiting pairs of values of \(\text{VAULT} \) and \(\text{VAULT} \), i.e., \(\text{VAULT}_{\text{LOW}} \) and \(\text{VAULT}_{\text{LOW}} \), were set equal to zero. \(\text{VAULT}_{\text{LOW}} \) was set equal to \(\text{VAULT}_{\text{LOW}} \), the value of \(\text{VAULT} \) and \(\text{VAULT} \) for the lower limit of maximum \(V_d/V_r \) and \(V_d/V_r \), for the upper limit greater than one, and \(\text{VAULT} \) and \(\text{VAULT} \) for the lower limit of \(V_d/V_r \) and \(V_d/V_r \) and \(V_d/V_r \) for the upper limit greater than one. As the value of \(V_d/V_r \) increased, the values of \(\text{VAULT} \) and \(\text{VAULT} \) increased with overall voltage.

Figure 5.13 shows \(\text{VAULT} \) plotted versus \(V_d/V_r \) for the same range of \(V_d/V_r \). It was found that if \(\text{VAULT} \) curves for different values of \(V_d/V_r \) were plotted for the agreement between the curves for \(V_d/V_r = 1 \) and \(V_d/V_r = 2 \). It is possible to trace the two curves when \(\text{VAULT} \) versus \(V_d/V_r \) is plotted by \(V_d/V_r = 1 \) and \(V_d/V_r = 2 \). However, for larger values of \(V_d/V_r \), it is possible to see a difference between the two curves. This difference increases with increasing \(V_d/V_r \).

Figure 5.15 shows \(\text{VAULT} \) plotted versus \(\text{VAULT} \) for \(V_d/V_r = 1 \) and \(V_d/V_r = 2 \) for the HP lens, and figure 5.16 shows \(\text{VAULT} \) plotted versus \(\text{VAULT} \) for \(V_d/V_r = 1 \) and \(V_d/V_r = 2 \) for the HP lens.

\(\text{VAULT} \) and \(\text{VAULT} \) are derived from the values of \(V_d/V_r \), \(V_d/V_r \) etc., obtained...
are consistent to better than 2\% in the worst case plotted.

To sum up, a universal curve is obtained if \((\frac{V_2}{V_1})/(\frac{V_5}{V_3})^Q\)\(^{ZETA} = V2ULT\) is plotted against \((\frac{V_4}{V_3})/(\frac{V_1}{V_5})^Q\)\(^{ZETA} = V4ULT\), for all values of \(V_5/V_1\) where \(Q\) and \(ZETA\) are functions of \(V_5/V_1\), between limiting pairs of values of \(V2ULT\) and \(V4ULT\), see figure 5.12, i.e., UNIVERSAL CURVE;

\[(\frac{V_2}{V_1})/(\frac{V_5}{V_3})^{ZETA} \text{ versus } (\frac{V_4}{V_3})/(\frac{V_1}{V_5})^{ZETA}\] (5.10)

The two limiting pairs of values of \(V2ULT\) and \(V4ULT\), i.e., \(V2ULT_{lima}\) and \(V4ULT_{lima}\), and \(V2ULT_{limb}\) and \(V4ULT_{limb}\) were set equal to \(V2ULT_{maxmag}\) and \(V4ULT_{maxmag}\), and \(V2ULT_{minmag}\) and \(V4ULT_{minmag}\) respectively. \(V2ULT_{maxmag}\) and \(V4ULT_{maxmag}\) are the values of \(V2ULT\) and \(V4ULT\) for the lens of maximum magnification where \(V_2/V_1\) and \(V_4/V_3\) are both greater than one, and \(V2ULT_{minmag}\) and \(V4ULT_{minmag}\) are the values of \(V2ULT\) and \(V4ULT\) for the lens of minimum magnification where \(V_2/V_1\) and \(V_4/V_3\) are both greater than one. As the values for the above will be different for different values of \(V_5/V_1\), \(V2ULT_{lima}\) and \(V4ULT_{lima}\), and \(V2ULT_{limb}\) and \(V4ULT_{limb}\) were set equal to the appropriate values of \(V2ULT_{maxmag}\) and \(V4ULT_{maxmag}\) for \(V_5/V_1 = 1\) and \(V2ULT_{minmag}\) and \(V4ULT_{minmag}\) for \(V_5/V_1 = 50\) respectively, as \(V_5/V_1 = 1\) has the maximum magnification for lenses with overall voltage ratios ranging between 1 and 50, for values of \(V_2/V_1\) and \(V_4/V_3\) greater than 1, and \(V_5/V_1 = 50\) has the minimum magnification for the same range.

Figure 5.12 is the universal curve for the HP lens, for lenses with overall voltage ratios of between 1 and 50. Figure 5.13 shows \((V_5/V_1)^Q\) plotted versus \(V_5/V_1\) for the HP lens, and figure 5.14 shows \(ZETA\) plotted versus \(V_5/V_1\). This universal curve is the UNIVERSAL CURVE FOR VOLTAGE RATIOS and will be referred to subsequently as UCV as a second universal curve has been derived for the magnification.

It was found that if UCV is drawn for different values of \(V_5/V_1\) the agreement between the curves for \(V_5/V_1 = 1\) and \(V_5/V_1 \neq 1\) is very good for small values of \(V_5/V_1\); for values of \(V_5/V_1 < 10\) it is not possible to resolve the two curves when \(V2ULT\) versus \(V4ULT\) is plotted for \(V_5/V_1 = 1\) and \(V_5/V_1 \neq 1\). However, for larger values of \(V_5/V_1\) it is possible to see a difference between the two curves, this difference increasing with increasing \(V_5/V_1\). Figure 5.15 shows \(V2ULT\) plotted versus \(V4ULT\) for \(V_5/V_1 = 1\) and \(V_6/V_1 = 10\), for the HP lens, and figure 5.16 shows \(V2ULT\) plotted versus \(V4ULT\) for \(V_5/V_1 = 1\) and \(V_5/V_1 = 36\), for the HP lens.

\(V2ULT\) and \(V4ULT\) as derived from the values of \(V_2/V_1, V_4/V_3\) etc, obtained
\(L_1 = L_2 = L_4 = L_5 = 1.5D\) \(L_3 = 3.0D\)

Figure 5.10
Figure 5.11

$L_1=L_2=L_4=L_5=1.5D$
$L_3=3.0D$
\[\frac{V_2}{V_1} / \left(\left(\frac{V_5}{V_1} \right)^Q \right) \]

Figure 5.12

L_1 = L_2 = L_4 = L_5 = 1.5D L_3 = 3.0D
Figure 5.13

$L_1 = L_2 = L_4 = L_5 = 1.5D \quad L_3 = 3.0D$
Figure 5.14
\[L_1 = L_2 = L_4 = L_5 = 1.5D \quad L_3 = 3.0D \]

\[V_5 \parallel V_1 = 1 \text{ AND } V_5 \parallel V_1 = 10 \]

Figure 5.15
Figure 5.16

\[L_1 = L_2 = L_4 = L_5 = 1.5D \quad L_3 = 3.0D \]

\[V_5 \bigg/ V_1 = 1 \quad \text{AND} \quad V_5 \bigg/ V_1 = 36 \]
by experiment, are plotted in Figure 5.17 for the IIIP lens. The solid line represents the calculated values of V_{AULF} and V_{AULG}.

The agreement between calculation and experiment is within 10% for the experimental points plotted in Figure 5.17. The agreement is best for data where $V_{V}/V_{S} = 1$ and close to 1. Where $V_{V}/V_{S} < 1$, the agreement between calculation and experiment becomes progressively worse; the experimental values of V_{AULF} becomes progressively less than the calculated values where $V_{AULP} > V_{AULF}$. Where $V_{V}/V_{S} > 1$, the agreement between calculation and experiment becomes progressively worse; the experimental values of V_{AULF} becomes progressively greater than the calculated values where $V_{AULF} > V_{AULP}$.

Figure 5.17

159
by experiment, are plotted in figure 5.17 for the HP lens. The solid line represents the
calculated values of $V_{2U\ell T}$ and $V_{4U\ell T}$.

The agreement between calculation and experiment is within 10% for the experi­
mental points plotted in figure 5.17. The agreement is best for data where $V_{5}/V_{1} > 1$
and close to 1. Where $V_{5}/V_{1} < 1$ the agreement between calculation and experiment be­
comes progressively worse; the experimental values of $V_{4U\ell T}$ becoming progressively less
than the calculated values where $V_{4U\ell T,\text{calc}} > V_{2U\ell T,\text{calc}}$. Where $V_{5}/V_{1} > 16$, the
agreement between calculation and experiment becomes progressively worse; the exper­
imental values of $V_{2U\ell T}$ becoming progressively less than the calculated values where
$V_{2U\ell T,\text{calc}} > V_{4U\ell T,\text{calc}}$. The disagreement between calculation and experiment is con­
sistent in the above two cases, as the disagreement becomes the same for both cases if
the lenses where $V_{5}/V_{1} < 1$ are considered in reverse, i.e., L_{5} becomes L_{1}, and the overall
voltage ratio of the lens becomes > 1.

The fact that for some lenses the experimentally obtained values of $V_{2U\ell T}$ are less
than those expected from calculation for $V_{5}/V_{1} > 1$, mean that these lenses are weaker than
expected. Spherical aberration effects will weaken a lens, and spherical aberration is a likely
candidate for the discrepancy between calculation and experiment in this case, particularly
as spherical aberration effects will be most apparent where $V_{5}/V_{1} < 1$ or the lens is strong.

Obtaining Voltage Ratios For The Reciprocal Lenses

The appropriate values of V_{2}/V_{1}, V_{3}/V_{2}, V_{4}/V_{3} and V_{4}/V_{5} for lenses whose overall
voltage ratios range between 0.02 and 1, i.e., the reciprocal lenses can be obtained by
finding V_{2}/V_{1}, V_{3}/V_{2}, V_{4}/V_{3} and V_{4}/V_{5} for the lens where $(V_{5}/V_{1})_{R} = 1/(V_{5}/V_{1})$, where
$(V_{5}/V_{1})_{R} > 1$, and applying the following:

$$V_{2}/V_{1} = (V_{4}/V_{5})_{R}$$
$$V_{3}/V_{2} = (V_{3}/V_{4})_{R}$$
$$V_{4}/V_{3} = (V_{2}/V_{3})_{R}$$
$$V_{4}/V_{5} = (V_{2}/V_{1})_{R}$$

also

$$MAG = (1/MAG)_{R} \quad (5.11)$$
5.6 THE 'UNIVERSAL CURVE' FOR THE MAGNIFICATION

Figure 5.12 i.e., UCV, the universal curve for the voltage ratios for the HP lens, enable all the possible useful values of V_2/V_1 and V_4/V_3 for conjugate points to be deduced. However, it is also necessary to be able to deduce the magnification for the lens for given values of V_5/V_1, V_2/V_1 and V_4/V_3. A second universal curve was therefore derived relating the magnification to V_3/V_4 for a given value of V_5/V_1, and hence via UCV to V_2/V_1 and V_4/V_3.

It was found that plotting

$$B \times (MAG^A) \ versus \ (C \times (V_2/V_4))^D$$

(5.12)
gave a universal curve over the same range of values of V_2/V_1 and V_4/V_3 as UCV.

A value for A for values of $V_5/V_1 \neq 1 = W$ is obtained by causing the difference between $(MAG_{\max})^A$, (i.e., maximum magnification, V_2/V_1 and $V_4/V_3 \geq 1$) and $(MAG_{\min})^A$, (i.e., minimum magnification, V_2/V_1 and $V_4/V_3 \geq 1$) to be the same as the difference between MAG_{\max} and MAG_{\min} for $V_5/V_1 = 1$, $(V_2/V_1$ and $V_4/V_3 \geq 1$) on a \log_{10} scale; i.e.,

$$\log_{10} \left((MAG_{\max})^A \right) - \log_{10} \left((MAG_{\min})^A \right)$$

$$= \log_{10} \left(MAG_{\max, V_5/V_1=1} \right) - \log_{10} \left(MAG_{\min, V_5/V_1=1} \right)$$

$$\Rightarrow A = \frac{2 \log_{10} \left(MAG_{\max, V_5/V_1=1} \right)}{\log_{10} \left(MAG_{\max, V_5/V_1=W \neq 1} \right) - \log_{10} \left(MAG_{\min, V_5/V_1=W \neq 1} \right)}$$

(5.13)

as $MAG_{\max, V_5/V_1=1} = \frac{1}{MAG_{\min, V_5/V_1=1}}$.

A value for B is obtained by offsetting the resultant curve of $(MAG^A) \ versus V_2/V_4$ so that

$$MAG_{\max, V_5/V_1=W \neq 1} = MAG_{\max, V_5/V_1=1}$$

so that

$$MAG_{\min, V_5/V_1=W \neq 1} = MAG_{\min, V_5/V_1=1}$$

(5.14)
i.e., the curve of $(B \times (MAG^A)) \ versus V_2/V_4$ for $V_5/V_1 = W$ and the curve of $MAG \ versus V_2/V_4$ for $V_5/V_1 = 1$ are 'parallel' on a \log_{10} scale.
A value for C is obtained by offsetting the curve of \((B \times (MAG^A))\) versus \(V_2/V_4\) so that the curve of \((B \times (MAG^A))\) versus \((C \times (V_2/V_4))\) passes through the origin (log10 scale).

Finally D is used to scale \((B \times (MAG^A))\) versus \((C \times (V_2/V_4))\) so that the curves of \((B \times (MAG^A))\) versus \((C \times (V_2/V_4))^D\) where \(V_6/V_1 = W\) and MAG versus \(V_2/V_4\) where \(V_6/V_1 = 1\) lie on top of one another (or nearly so), we thus have a universal curve. Figure 5.18 shows UCM. The curves obtained from plotting \((B \times (MAG^A))\) versus \((C \times (V_2/V_4))^D\) for different values of \(V_6/V_1\) for values of \(V_6/V_1\) are indistinguishable for values of \(V_6/V_1\) between 1 and 10. Figure 5.19 shows \((B \times (MAG^A))\) versus \((C \times (V_2/V_4))^D\) for \(V_6/V_1 = 1\) and \(V_6/V_1 = 10\), for the HP lens. and Figure 5.20 shows \((B \times (MAG^A))\) versus \((C \times (V_2/V_4))^D\) for \(V_6/V_1 = 1\) and \(V_6/V_1 = 36\), for the HP lens. Again, as for figures 5.15 and 5.16 i.e., for the voltage ratio universal curves for different values of \(V_6/V_1\), the agreement is almost perfect for the smaller value of \(V_6/V_1\) but is not quite as good for the larger value of \(V_6/V_1\). Figures 5.21 to 5.24 show A, B, C and D as functions of \(V_6/V_1\) for the HP lens.

\((B \times (MAG^A))\) versus \((C \times (V_2/V_4))^D\) as derived from the values of MAG and \(V_2/V_4\) obtained from experiment, are plotted in figure 5.25 for the HP lens. The solid line represents the calculated values of \((B \times (MAG^A))\) and \((C \times (V_2/V_4))^D\). The agreement between calculation and experiment is within 10% for most of the experimental points plotted, however where the value of \(V_6/V_1\) is large i.e., \(\geq 16\) the discrepancy between calculation and experiment was found to be up to as much as 40% for large values of \((B \times (MAG^A))\) and \((C \times (V_2/V_4))^D\). As with the voltage data, i.e., figure 5.17, the agreement between calculation and experiment is best for data where \(V_6/V_1 \geq 1\) and close to 1. The disagreement between calculation and experiment occurs when the magnification is at its largest, i.e., when the lens is strong. The magnification is found to have larger values than those predicted by calculation. The fact that it is difficult to judge when the lens is focussed using the method described in Chapter Three when the lens is strong, may possibly explain the discrepancy between calculation and experiment. When the lens is strong, lens action occurs close to the object plane, i.e., far away from the image plane. This means that the angle at which rays reach the image plane is shallow, causing the depth of field to be large, making it difficult to judge focus.

Deducing the values of \(V_2/V_1\) and \(V_4/V_3\) when the values of \(V_6/V_1\) and the Magnification are Specified

Using UCV followed by UCM allows a value for the magnification to be deduced
once the values of V_b/V_j, V_2/V_1 and V_4/V_3 have been chosen. However, to obtain values for V_2/V_1 and V_4/V_3 for a lens where V_b/V_j and the magnification are both known, it first is necessary to find the value of V_2/V_4 using UCM i.e., figure 5.18 and figures 5.21 to 5.24. V_2/V_1 and V_4/V_3 can then be deduced from UCV plotted on linear axes (figure 5.26) using the argument given below. The tangent of the angle θ_u of UCV, i.e., $V_{2\text{ULT}}/V_{4\text{ULT}}$ plotted on linear axes is equal to $(V_2/V_4)/(V_b/V_j)^{(2Q-1)})^{ZETA}$, i.e.,

$$\tan\theta_u = (V_2/V_4)/(V_b/V_j)^{(2Q-1)})^{ZETA}$$

therefore the values of

$$((V_2/V_1)/(V_b/V_j)^Q)^{ZETA}$$ (i.e., $V_{2\text{ULT}}$) and $((V_4/V_3)/(V_b/V_j)^Q)^{ZETA}$ (i.e., $V_{4\text{ULT}}$)

can be read off UCV once the value of the angle θ_u is known and is found by calculating the arctangent of $(V_2/V_4 \times (V_b/V_j)^{(2Q-1)})$, obtaining the appropriate value of Q from figure 5.11. The values of V_2/V_1 and V_4/V_3 may then be deduced by using the values of Q, $(V_b/V_j)^Q$ and $ZETA$ obtained from figures 5.11, 5.13, and 5.14, and remembering that V_3/V_1 is constrained to equal $\sqrt{V_b/V_j}$.

5.7 THE ‘UNIVERSAL CURVE’ FOR THE ANGULAR MAGNIFICATION

It was found that plotting $(B' \times (MAG_{a} A'))$ versus $(C \times (V_2/V_4))^D$ gave a universal curve for the angular magnification over the same range of values of V_2/V_1 and V_4/V_3 as UCV and UCM, where

$$A' = -A$$

$$B' = \frac{B}{(V_b/V_j)^{\frac{1}{2}A}}$$

5.8 THE INVESTIGATION OF THE ABERRATION BEHAVIOUR OF A FIVE-ELEMENT LENS

The aberration behaviour of a five-element lens with $L_1 = L_5 = 1.5D$, $L_2 = L_4 = 1.0D$ and $L_3 = 3.0D$ was investigated. It was decided to study the aberration behaviour of this lens in preference to the HP lens as it is slightly shorter, a shorter lens perhaps being easier to use as it requires less vacuum space, a slightly shorter lens is also slightly stronger which may also be useful. The aberration behaviour of this particular lens is also slightly better than the HP lens because the lengths of its second and fourth elements L_2 and L_4 are shorter than the lengths of the second and fourth elements of the HP lens.
Figure 5.10

$$L_1 = L_2 = L_4 = 1.5 \text{D}, L_3 = 3.0 \text{D}
V_5 / V_1 = 1 \text{AND} V_6 / V_1 = 10$$

$$(V_2 / V_4) \times C_D$$

$$(\psi \times \text{MAG})$$

B
$$L_1 = L_2 = L_4 = L_5 = 1.5D \quad L_3 = 3.0D$$
$$V_5 \mid V_1 = 1 \quad \text{AND} \quad V_5 \mid V_1 = 36$$

Figure 5.20
Figure 5.21

$L_1 = L_2 = L_4 = L_5 = 1.5D$ $L_3 = 3.0D$
Figure 5.22

\[L_1 = L_2 = L_4 = L_5 = 1.5D \quad L_3 = 3.0D \]
Figure 5.23
Note on figure 5.24

The curve of D versus V_5/V_1 as produced from calculations has a 'bump' as shown by the dashed line in the above figure. The 'bump' may be due to an anomaly in the calculations, therefore a curve (full line) has been drawn which ignores the 'bump'.
Figure 5.25
The vibration behaviour of this line as a function of V_2/V_1 was investigated, where V_2/V_1 was constrained to equal 1 and V_4/V_1 and V_5/V_1 were constrained to be equal, and equal to or greater than V_3/V_1, i.e., the magnification was 1. It was found that the mode increased with V_2/V_1, C_2 changing most rapidly where V_2/V_1 is small and less that is, the rate of change of C_2, increasing as V_2/V_1 is increased to values greater than 1 up to a maximum value. The maximum value of V_2/V_1 is reached when the values of $V_2/V_1 = V_4/V_5$ required to force the focus equal V_2/V_1, i.e., the three-element lens reduces to a three-element lens. For that lens the maximum value of $V_4/V_5 = 1.1$ (deduced from calculation, see below). C_2 was deduced from the measured values of Δ_0 and α for $0.5 \leq V_2/V_1 \leq 1.2$, from pressure on the cathode anode screen by that shown in figure 5.27. Figure 5.27 differs from figure 8.18 in that it shows only six dots instead of ten. This is because it was found that for an overall voltage ratio of 2.7, it was not possible to illuminate three of the five holes of the apparatus (see Chapter Two). However, it was possible to deduce values for both Δ_0 and α with greater accuracy than that of figure 8.18, i.e., values of C_2 could be obtained and measured from the independently obtained values of Δ_0, where $\Delta_0 = \alpha$ or β for each value of V_2/V_1. It was not possible to obtain three of the five holes at the same time (see Chapter Two). However, it was possible to deduce values for both Δ_0 and α with greater accuracy than that of figure 8.18, i.e., values of C_2 could be obtained and measured from the independently obtained values of Δ_0, where $\Delta_0 = \alpha$ or β for each value of V_2/V_1. It was not possible to obtain three of the five holes at the same time (see Chapter Two).

$L_1 = L_2 = L_4 = L_5 = 1.5D, \quad L_3 = 3.0D$

![Diagram](image)

Figure 5.26

172
The aberration behaviour of this lens as a function of V_5/V_1 was investigated, where V_5/V_1 was constrained to equal 1 and V_2/V_1 and $V_4/V_5 > V_3/V_1$ were constrained to be equal, and equal to or greater than V_5/V_1; i.e., the magnification was 1. It was found that C_s varied inversely with V_3/V_1, C_s changing most rapidly where V_3/V_1 is small and less than 1, the rate of change of C_s decreasing as V_3/V_1 is increased to values greater than 1 up to a maximum value. The maximum value of V_3/V_1 is reached when the values of $V_2/V_1 = V_4/V_5$ required to focus the lens equal V_3/V_1, i.e., the five-element lens reduces to a three-element lens. For this lens the maximum value of $V_3/V_1 = 11.8$ (deduced from calculation, see below). C_s was deduced from the measured values of h and v for $0.5 < V_3/V_1 < 1.2$, from pictures on the oscilloscope screen like that shown in figure 5.27. Figure 5.27 differs from figure 3.15 in that it shows only six dots instead of ten. This is because it was found that for an overall voltage ratio of 1 and a magnification of 1 it was only possible to illuminate three of the five holes of the aperture disc A placed in the centre of the lens (see Chapter Three). (The disc used had a separation of 2.5mm between its central hole and the off-axis holes in horizontal direction, and a separation of 3.5mm between its central hole and the off-axis holes in the vertical direction.) However, as it was possible to deduce values for both Δr_h and Δr_v from pictures like that of figure 5.27, (i.e., values of C_s could be obtained and compared from two independently obtained values of Δr_i, where $i = h$ or v for each value of V_3/V_1) it was felt that the results obtained could be accepted with reasonable confidence. Values of C_s were not obtained for values of $V_5/V_1 > 1.2$, as it was not possible to measure Δr_h for values of $V_3/V_1 > 1.2$, as it was not possible to resolve the dots from which Δr_h would be deduced. The results obtained are shown in figure 5.28. The crosses show the experimentally obtained values of C_s, the agreement between the values of C_s obtained from Δr_h and Δr_v for a given value of V_3/V_1 is within 7% for all values of V_3/V_1. The asterisks correspond to the values of C_s calculated by Heddle, (private communication) using the Bessel function expansion method and the Fox-Goodwin method, (see Chapter Two) the agreement with experiment is shown to be within 22% which is within experimental error.

It was attempted to obtain experimentally the values for C_s as a function of V_5/V_1, where V_5/V_1 was constrained to equal 1 and V_2/V_1 and $V_4/V_5 > V_3/V_1$ were constrained to be equal, but less than V_3/V_1. The values of C_s for lenses where $V_2/V_1 = V_4/V_5 < V_3/V_1$, are expected to be higher than the values of C_s for lenses where $V_2/V_1 = V_4/V_5 > V_3/V_1$, this was confirmed by experiment. Because the values of C_s were large, it was only possible to measure Δr_h, Δr_v being too large to allow the vertical dots to be displayed on the oscilloscope screen. The value of Δr_h for a given V_3/V_1 was found to be very sensitive to the value of $V_2/V_1 = V_4/V_5$, this fact coupled with the fact that only Δr_h could be measured
made it impossible to obtain values of C_s with any degree of confidence. However, they were within 50% of the values of C_s calculated by Heddle. The calculations by Heddle showed that as with the lens where $V_2/V_1 = V_4/V_5 > V_3/V_1$, C_s varies inversely with V_3/V_1, changing most rapidly where V_3/V_1 is small and less than 1, the rate of change of C_s decreasing as V_3/V_1 is increased to values greater than 1 up to a maximum value, the maximum value of V_3/V_1 occurring when $V_2/V_1 = V_4/V_5 \approx (V_3/V_1)^{1/2}$.

The aberration behaviour of the afocal lens was also investigated. C_s was obtained experimentally for $V_6/V_1 = 0.5, 0.666, 1.5$ and 2.0. Figure 5.29 shows the experimentally obtained values of C_s as a function of V_6/V_1, and shows how they compare with those obtained from calculation, again the experimental results obtained are within experimental error of those calculated. Both experiment and calculation show that C_s varies inversely with V_6/V_1. Note that $C_s = C_{sr}$ for lenses where $V_6/V_1 < 1 = (V_6/V_1)_r$, can be expressed in terms of $C_s = C_{sa}$ for the lenses where

$$
\frac{V_6}{V_1} = \frac{1}{(V_6/V_1)_r}
$$

i.e.,

$$
C_{sr} = C_{sa} M^4 \left(\frac{V_6}{V_1} \right)^{3/2}
C_{sa} \left(\frac{V_6}{V_1} \right)^{1/2} \text{ for the afocal lens}
$$

Heddle's calculations show that C_s changes most rapidly where V_6/V_1 is small, the rate of change of C_s decreasing as V_6/V_1 is increased to larger values.

Finally, C_s was investigated for the lens where $V_6/V_1 = V_3/V_1 = 1, V_2/V_1 \neq V_4/V_5$. Figure 5.30 shows the experimentally obtained values of C_s as a function of V_4/V_1 and shows how they compare with those obtained from calculation, and again the experimental results obtained are within experimental error of those calculated.

When considering the overall performance of a lens the important parameter is not C_s but the product of C_s and the magnification $MAG \times C_s$, as it is this product which determines by how much the aberrated image differs from the perfect image. In the case where C_s was investigated as a function of V_3/V_1 the magnification was equal to 1 in all cases. However, for the afocal lens the magnification is a function of the overall voltage ratio V_6/V_1, in fact it is inversely proportional to V_6/V_1. As C_s is also inversely proportional to V_6/V_1, the product $MAG \times C_s$ is therefore also inversely proportional to V_6/V_1. In the last case considered, i.e., $V_6/V_1 = V_3/V_1 = 1, V_2/V_1 \neq V_4/V_5$, the magnification is
proportional to V_2/V_1. As C_s is inversely proportional to V_2/V_1, the product $MAG \times C_s$ will reach a minimum i.e., optimum value (see figures 5.31 and 5.32). From calculation the optimum value of $MAG \times C_s$ is found to correspond to a value of $V_2/V_1 \approx 4.7$, and a value of $MAG \approx 1.4$.
Figure 5.28
Figure 5.28

L_1 = L_5 = 1.5D, L_2 = L_4 = 1.0D, L_3 = 3.0D

AFOCAL LENS

G_0

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

V_5 / V_1
REFERENCES : CHAPTER FIVE

Harting E and Read F H, 1976 Electrostatic Lenses (Amsterdam : Elsevier)

Heddle D W O 1970 JILA report No.104 University of Colorado, Boulder, Colorado

Numerical Algorithms Group 1984 Subroutines E01BAF and E02BBF NAg Library Manual Mark 11 2
APPENDIX TO CHAPTER FIVE

EXAMPLES OF PROGRAMS USED TO CALCULATE LENS PROPERTIES

LIST OF TABLES

Table 5A.1 Table Defining the Points A through to H
CONTENTS

Section (5A.1) Description of Program CR5AFOCALLOCUS 185

Section (5A.2) Listing of CR5AFOCALLOCUS 191

Section (5A.3) Listing of FNDV51D 196

LIST OF FIGURES

Figure 5A.1 Diagram showing Afocal Locus, Defining the Points A through to H 187

LIST OF TABLES

Table 5A.1 Table Defining the Points A through to H 188
DESCRIPTION OF PROGRAM CR5AFOCALLOCUS

WHICH PRODUCES A GRAPH OF $\log(V_5/V_1)$ VERSUS \(\log(V_2/V_1)\)

FOR AN AFOCAL FIVE-ELEMENT LENS WITH A SEPARATION

OF CONJUGATE POINTS INDEPENDENT OF OBJECT POSITION

This program finds the values for V_5/V_1 and V_2/V_1 so that the locus, i.e., the graph of $\log(V_5/V_1)$ versus $\log(V_2/V_1)$ can be drawn, for a five-element lens comprising two identical three-element lenses. The program is written in Fortran and incorporates two NAg Library Subroutines E01BAF and E02BBF. E01BAF is used to fit a cubic spline curve to the voltage ratio V'/V versus matrix element, (this routine therefore needs to be called eight times once for each matrix element $a_{11}, a_{12}, a_{21},$ and $a_{22},$ where V'/V is greater than one, and once for each matrix element $d_{11}, d_{12}, d_{21},$ and $d_{22},$ where V'/V is less than one), and E02BBF finds the value of a matrix element for a specific value of V'/V. A more complete description of these routines can be found in the NAg FORTRAN Library Manual, Mark 11, Volume 2. The program was run on the VAX/780 VMS4.2 mini-computer at RHBNC.

The program consists of two nested DO loops. In the inside DO loop the value of V_2/V_1 is incremented until the program converges on a value of V_2/V_1 which will focus the lens along with the current value of V_5/V_1. The value of V_5/V_1 is set in the outside DO loop. It was found that to obtain values of V_5/V_1 which would cover the range of possible values of V_6/V_1 (10^{-3} to 10^3) in a smooth and even manner, it was better to increment $\log(V_5/V_1)$ rather than simply V_5/V_1 itself.

The locus may be divided into 8 sections, (see figure 5A.1) denoted as A to B, B to C, C to D, D to E, E to F, F to G and G to H. The values of $V_5/V_1 = (V_5/V_1)^2$ and $V_2/V_1 = V_4/V_3$ at the beginning and end of these sections, i.e., at the points A, B, C, D, E, F, G and H, can be deduced from the properties of appropriate two-element lenses, or may be deduced during the running of the program. At point D $V_2/V_1 = V_4/V_3 = 1$, and the two identical three-element lenses which the five-element lens comprises, with a constant value of $F_2 - F_1 = SUMF$, (where F_2 and F_1 are the first and second focal distances of the three-element lens, and their sum, $SUMF$ (the minus sign is due to the sign convention used) is equal to the separation of the reference planes of the two three-element lenses), reduce to two identical two-element lenses with constant $F_2 - F_1 = SUMF$. The voltage ratio of such a two-element lens, i.e., a two-element lens with $F_2 - F_1 = SUMF$ can easily be derived from the tabulated data of Harting and Read (1976), by interpolating between values of V'/V until the value of V'/V found which corresponds to the desired value of
\(F_2 - F_1 = \text{SUMF} \). The value of \(V_5/V_1 \) for the five-element lens with \(V_2/V_1 = V_4/V_3 = 1 \) is equal to this value of \(V'/V \), and \(V_5/V_1 \) equals \((V'/V)^2 \). The same argument can be applied at point H where the value of \(V_2/V_1 \) is the same as that at point D i.e., \(V_2/V_1 = V_4/V_3 = 1 \), however, at point D \(V_5/V_1 \) has a value which is greater than 1, whereas at point H \(V_5/V_1 \) has a value which is less than 1, in fact, at point H the value of \(V_5/V_1 \) is the reciprocal of its value at point D. At points B and F the voltage ratio \(V_3/V_2 = V_5/V_4 = 1 \), and again the arguments used at point D can be applied. \(V_5/V_1 \) at point B therefore equals \(V_5/V_1 \) at point D and \(V_5/V_1 \) at point F is the reciprocal. \(V_2/V_1 \) at points B and F equals the reciprocal of the respective values of \(V_2/V_1 \). Points A and E are the points where \(V_5/V_1 = 1 \), the corresponding values for \(V_2/V_1 \) can be found during the course of running the program. The values for both \(V_5/V_1 \) and \(V_2/V_1 \) at points C and G can be deduced during the running of the program. Point C corresponds to the maximum value of \(V_5/V_1 \). If a value of \(V_2/V_1 \) is set in the outside loop which is greater than the maximum possible value of \(V_5/V_1 \), then no corresponding value of \(V_2/V_1 \) can be found by the inside loop which will focus the lens, and convergence will not occur. Therefore, a test for non-convergence will allow the maximum value of \(V_5/V_1 \) to be deduced, and therefore the values of \(V_5/V_1 \) and \(V_2/V_1 \) at point C. Point G corresponds to the minimum value of \(V_5/V_1 \), again the values of \(V_5/V_1 \) and \(V_2/V_1 \) at point G can be deduced from a test for non-convergence. The table listed on the next few pages summarises how the values of \(V_5/V_1 \) and \(V_2/V_1 \) can be deduced.
Table 5A.1

Table Defining the Points A Through to H

<table>
<thead>
<tr>
<th>Point</th>
<th>V_A/V_1</th>
<th>V_5/V_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>$V_A/V_1 =$</td>
<td>$V_5/V_1 =$</td>
</tr>
<tr>
<td>B</td>
<td>$V_B/V_1 =$</td>
<td>$V_5/V_1 =$</td>
</tr>
<tr>
<td>C</td>
<td>$V_C/V_1 =$</td>
<td>$V_5/V_1 =$</td>
</tr>
<tr>
<td>D</td>
<td>$V_D/V_1 =$</td>
<td>$V_5/V_1 =$</td>
</tr>
</tbody>
</table>

The corresponding value of $V_A/V_1 > 1$ can be found in the course of running the program.

$$V_5/V_1 = (V_A/V_1)(V_B/V_1)$$

where $V_A/V_1 = 1$ (taken from the data of Harting and Read (1976))

and is equal in the voltage ratio of a 2nd and 3rd solution of the 8-circle lens respectively.

(Figure 5A.1)

The corresponding value of $V_A/V_1 > 1$ will be found in the course of running the program.

AB

V_A/V_1House point 5

AF

V_A/V_1 at point D
TABLE 5A.1

TABLE DEFINING THE POINTS A THROUGH TO H

<table>
<thead>
<tr>
<th>Point</th>
<th>V_b/V_1</th>
<th>V_2/V_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>$V_b/V_1 = 1$</td>
<td>V_2/V_1</td>
</tr>
<tr>
<td>B</td>
<td>$V_b/V_1 = (V'/V)^2$</td>
<td>$V_2/V_1 = (V_2/V_3)(V_3/V_1)$</td>
</tr>
<tr>
<td></td>
<td>$(V_3/V_1)^2 = V'/V$</td>
<td>$= 1(V_3/V_1) = (V_6/V_1)^{(1/2)} > 1$</td>
</tr>
<tr>
<td></td>
<td>where $V'/V > 1$, and is equal to the voltage ratio of a 2-element lens with $F_2 - F_1 = L_2 + L_3$, where L_2 and L_3 are the lengths of the 2nd and 3rd elements of the 5-element lens respectively (deduced from the data of Harting and Read (1976))</td>
<td>(deduced from the data of Harting and Read (1976))</td>
</tr>
<tr>
<td>C</td>
<td>$V_b/V_1 = V_b/V_{max}$</td>
<td>The corresponding value of $V_2/V_1 > 1$ will be found in the course of running the program</td>
</tr>
<tr>
<td></td>
<td>and will be found in the course of running the program</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>V_b/V_1 equals the V_b/V_1 at point B</td>
<td>$V_2/V_1 = 1$</td>
</tr>
</tbody>
</table>
The corresponding value of $V_2/V_1 < 1$ will be found in the course of running the program.

V_2/V_1 equals the reciprocal of V_2/V_1 at point B.

The corresponding value of $V_2/V_1 < 1$ will be found in the course of running the program.

$V_2/V_1 = 1$
For convenience in the program the locus is actually divided into four sections which are:

1. \(H \rightarrow A \rightarrow B \rightarrow C\)
2. \(D \rightarrow C\)
3. \(D \rightarrow E \rightarrow F \rightarrow G\)
4. \(H \rightarrow G\)

A listing of the program is given in the next few pages. The value of \(V_5/V_1\) at point B which equals \(V_5/V_1\) at point D and equals to the reciprocal of \(V_5/V_1\) at points F and H is derived from the data of Harting and Read (1976) in a separate program FNDV51D, a listing of which follows the listing of CR5AFOCALLOCUS.
PROGRAM CRBAFOCALLUS

C THIS PROGRAM PRODUCES THE LOCUS I.E., THE GRAPH OF LOG(V2/V1) VERSUS
C LOG(VB/V1) FOR A FIVE-ELEMENT LENS WHICH COMPRIS ES TWO IDENTICAL
C THREE-ELEMENT LENSES. IT USES NAG LIBRARY ROUTINES E01BAF AND E02BBF.
C E01BAF FITS A SPLINE TO V'/V VERSUS MATRIX ELEMENT, AND E02BBF FINDS
C THE SPECIFIC VALUE OF A MATRIX ELEMENT FOR A GIVEN VALUE OF V'/V.
C THE MATRIX ELEMENTS WERE DERIVED FROM THE DATA OF HARTING AND READ (1)
C AND ALSO FROM DATA CALCULATED BY DICHIO ET AL (2). THE MATRIX ELEMENTS
C ARE AS DEFINED BY DICHIO ET AL (2). THE PROGRAM CONSISTS OF TWO NESTED
C DO LOOPS, IN THE OUTSIDE DO LOOP A VALUE FOR LOG(TO THE BASE 10) OF VB/V1
C IS INCREMENTED AND IN THE INSIDE LOOP THE CORRESPONDING VALUE OF V2/V1
C IS SOUGHT. LOG(10)(VB/V1) IS INCREMENTED INSTEAD OF VB/V1 BECAUSE OF THE
C RANGE OF VALUES OF VB/V1, I.E., 1E-3 < VB/V1 < 1E+3.

C INTEGERS NEEDED BY NAG ROUTINES
INTEGER NO,LCK,LWRK,IFAIL

C INTEGERS NEEDED BY REST OF PROGRAM
INTEGER COUNT, CHECKSEC

C REAL VALUES NEEDED BY MY ROUTINES
REAL*8 LVA
REAL*8 A11A,A21A,A12A,A22A
REAL*8 A11B,A21B,A12B,A22B
REAL*8 A11D,A21D,A12D,A22D

REAL V2I,A, V3I, LV3I, V2I, LV2I
REAL ADD, INCR
REAL Li,L2,L3,L4,LB

REAL*8 V2I, V3I, V4I, V5I

C COUNT KEEPS A COUNT OF THE VALUE OF J FOR
C THE INSIDE DO LOOP, I.E., THE INSIDE DO
C LOOP WHICH FINDS THE APPROPRIATE VALUE OF
C V2/V1 FOR THE CURRENT VALUE OF VB/V1, AND
C ALLOWS A CHECK TO BE MADE AS TO WHETHER
C CONVERGENCE TO A SOLUTION IS ACTUALLY
C OCCURRING, AND THEREFORE WHETHER A
C SOLUTION EXISTS FOR THE CURRENT VALUE
C OF VB/V1

C CHECKSEC KEEPS A CHECK ON MICH SECTION
C OF THE LOCUS IS BEING CALCULATED

C ACCELERATING VOLTAGES
REAL*8 A11A,A21A,A12A,A22A

C MATRIX ELEMENTS FOR ACCELERATING VOLTAGES
REAL*8 A11B,A21B,A12B,A22B

C DECELERATING VOLTAGES
REAL*8 A11D,A21D,A12D,A22D

C MATRIX ELEMENTS FOR DECELERATING VOLTAGES

C END POINTS
REAL*8 V2I, V3I, V4I, V5I

C ARRAYS NEEDED BY NAG ROUTINES
REAL*8 WRK(210)
REAL*8 CNA1(210), CNA2(210), CNA3(210), CNA4(210)
REAL*8 CND1(3B), CND2(3B), CND3(3B), CND4(3B)
REAL*8 KA1(3B), KA2(3B), KA3(3B), KA4(3B)
REAL*8 KD1(3B), KD2(3B), KD3(3B), KD4(3B)

C ARRAYS IN WHICH TABLES OF VOLTAGE RATIO, LOG OF VOLTAGE RATIO AND THE
C CORRESPONDING MATRIX ELEMENTS ARE STORED
REAL*8 RV(3B), LV(3B), Av(3B), A2v(3B), Av2(3B)
REAL*8 RVD(3B), LVD(3B), Dvd(3B), Dvd2(3B), Dvd3(3B)

C STARTING VALUES
REAL*8 V2I, V3I, V4I, V5I, V6I, V7I

C INCREMENTS FOR LOG(V2/V1) AND V2/V1 RESPECTIVELY
REAL*8 ADD, INCR

C LENGTHS OF LENS ELEMENTS
REAL L1, L2, L3, L4, L5

C DERIVED MATRIX ELEMENTS
REAL*8 A11D, A21D, A12D, A22D

C DERIVED QUANTITIES
C THE FINAL OBJECT-IMAGE MATRIX HAS FINAL ELEMENTS ALPHA, BETA, GAMMA AND DELTA.
C Beta=0 FOR A FOCUSED LENS; BETATEST IS SET TO ALLOW A CHECK OF THE
C PREVIOUSLY CALCULATED VALUE OF BETA.
C MAG = MAGNIFICATION

191
RF : f_2/f_1 WHERE f_1 AND f_2 ARE THE FOCAL LENGTHS OF THE FIVE-ELEMENT LENS

RV$\sqrt{V_b/V_1}$ SHOULD EQUAL RF FOR FOCUSED LENS.

CF31 : f_1 FOR THE THREE-ELEMENT LENS

CF32 : f_2 FOR THE THREE-ELEMENT LENS

SUNCF = RF - F1

NEWV21 IS AN INTERMEDIATE VALUE FOR V2/V1 OBTAINED WHEN USING THE METHOD OF FALSE POSITION TO SPEED UP CONVERGENCE.

REAL*8 ALPHA, BETA, GAMMA, DELTA, BETATEST
REAL*8 MAG, RF, RV$\sqrt{V_b/V_1}$, CF31, CF32, SUNCF, NEWV21

C INTERMEDIATE VALUES WHEN CALCULATING FINAL MATRIX ELEMENTS

C OUTPUT FILE

C ACCELERATING VOLTAGES
OPEN(UNIT=1,FILE='ACCMATPL',STATUS='OLD',READONLY)
DO I=1,31
READ(I,*) RV(I), A11(I), A12(I), A21(I), A22(I)
END DO

C DECELERATING VOLTAGES
OPEN(UNIT=2,FILE='WDECMATPL',STATUS='OLD',READONLY)
DO I=1,31
READ(I,*) RVD(I), D11(I), D12(I), D21(I), D22(I)
END DO

PRINT*, 'WHAT DO YOU WISH TO CALL THE OUTPUT DATA FILE?'
READ(B,'(A)') TITLE
OPEN(UNIT=3,FILE=TITLE,STATUS='NEW')

C PROMPTING FOR THE LENGTHS OF THE LENS ELEMENTS
PRINT*, 'PLEASE INPUT THE VALUES FOR L1,L2,L3,L4,LB'
READ(B,*) L1, L2, L3, L4, LB
WRITE(3,*) L1, L2, L3, L4, LB

C READING IN THE VALUES FOR VB/V1 AT POINT D AS DERIVED FROM THE TWO-ELEMENT DATA OF HARTING AND READ, (CALCULATED IN PROGRAM FNDVBID).

OPEN(UNIT=4,FILE='INFOVBID',STATUS='OLD',READONLY)
READ(4,*) VB1D

VB1H = 1.0/VB1D
V21D = 1.0
V21H = 1.0

C SETTING VALUES FOR CONSTANTS FOR NAG ROUTINES
N0 = 31
IFAIL = 0
LCK = 36
LWRK = 210

C SETTING UP THE SPLINE CURVES
CALL EOIBAF(NO, LRV, A11, KA11, CHA11, LCK, LWRK, IFAIL)
CALL EOIBAF(NO, LRV, A21, KA21, CHA21, LCK, LWRK, IFAIL)
CALL EOIBAF(NO, LRV, A12, KA12, CHA12, LCK, LWRK, IFAIL)
CALL EOIBAF(NO, LRV, A22, KA22, CHA22, LCK, LWRK, IFAIL)
CALL EOIBAF(NO, LRV, A11, KA11, CHA11, LCK, LWRK, IFAIL)
CALL EOIBAF(NO, LRV, A21, KA21, CHA21, LCK, LWRK, IFAIL)
CALL EOIBAF(NO, LRV, A12, KA12, CHA12, LCK, LWRK, IFAIL)
CALL EOIBAF(NO, LRV, A22, KA22, CHA22, LCK, LWRK, IFAIL)

C SETTING STARTING VALUES
CHECKSEC = 0
10 CHECKSEC = CHECKSEC + 1
IF(CHECKSEC .EQ. 1) THEN
V21 = V21H
V61 = V61H
ELSE IF(CHECKSEC.Eq.2) THEN
V21 = V21D
V51 = V51D
ELSE IF(CHECKSEC.Eq.3) THEN
V21 = V21D
V51 = V51D
ELSE IF(CHECKSEC.Eq.4) THEN
V21 = V21H
V51 = V51H
END IF

C SETTING VALUE FOR INCREMENT OF LOG(V5/V1)
INCR = 0.01
C INITIALISING LOG(V5/V1)
IF(CHECKSEC.LT.3) THEN
LV51 = DLOG10(VB1) - INCR
ELSE
LV51 = DLOG10(V51) + INCR
END IF

FOR CONVENIENCE AND THE NEED TO SET STARTING VALUES FOR V5/V1 AND V2/V1
THE LOCUS IS DIVIDED INTO 4 SECTIONS
(1) H->A->B->C (2) D->C
(3) D->E->F->G (4) H->G

C START OF OUTSIDE LOOP
DO 1 = 1, 10000
IF(V21 .LE. 0.5) THEN
ADD = 0.01
ELSE
ADD = 0.1
END IF
C INITIALISING VALUES
BETA = -100
BETATEST = BETA
C0UNT = 0
C
TESTS ARE MADE ON BETA AND THE PREVIOUS VALUE BETA = BETATEST TO CHECK ON CONVERGENCE OF BETA TO ZERO. FOR THE FIRST TIME ROUND THE INSIDE LOOP, BETA AND BETATEST HAVE TO BE ASSIGNED VALUES WHICH ARE NOT CLOSE TO ZERO

C INCREMENTING LOG(V5/V1)
C DEPENDING ON WHICH SECTION OF THE CURVE IS BEING CALCULATED IT IS NEEDED TO INCREMENT IN POSITIVE STEPS OR NEGATIVE STEPS
C THE VALUE OF CHECKSEC ALLOWS CHECK TO BE MADE AS TO WHICH SECTION OF THE CURVE IS BEING CALCULATED
IF(CHECKSEC.LT.3) THEN
LV51 = LV51 + INCR
ELSE
IF(VB1 .LE. 0.07) LVBl = LVBl - 0.002
LVBl = LVBl - INCR
END IF
VB1 = 10**LVBl
C INITIALISING OF V2/V1
V21 = V21 - ADD
C START OF INSIDE DO LOOP
ADD IS SUBTRACTED FROM V2/V1 AT THIS STAGE
SO THAT THE FIRST VALUE OF V2/V1 USED IN THE FOLLOWING LOOP WILL EQUAL V2/V1 AND NOT V2/V1+ADD
DO J=1,500
COUNT=COUNT+1
V21=V21+ADD
LV21=DLG10(V21)
V32=DSQRT(V51)/V21
LV32=DLG10(V32)

C FINDING THE MATRIX VALUES FOR A GIVEN VOLTAGE RATIO
IF(V21.GE.1.0) THEN
CALL CALLAMAT(LV21, A1121, A2121, A1221, A2221)
ELSE
CALL CALLDMAT(LV21, A1121, A2121, A1221, A2221)
END IF
IF(V32.GT.1.0) THEN
CALL CALLAMAT(LV32, A1132, A2132, A1232, A2232)
ELSE
CALL CALLDMAT(LV32, A1132, A2132, A1232, A2232)
END IF

C FINDING THE MATRIX ELEMENTS
A=A1121+(L2*A2121)
B=(L1*A1121)+(L1*L2*A2121)+(L2*A2221)
C=A2121
D=(L1*A2121)+A2221
V=(A1132+(L3*A2132)+(L1*L3*A2132))+(C+(A1222+(L3*A1222)))
=\beta_1=(A_{1132}+(L_3A_{2132})+(C+(A_{1222}+L_3A_{1222})))
T=(A2132)+(L2A2232)
Z=(B2A2132)+(0+2232)
B=(V+L4A2121)+(L4A2221))
S=(X+L4A2121)+(X+L4A2221))
T=(Y+L4A2121)+(Y+L4A2221)

C THE MATRIX VALUES OF THE THREE-ELEMENT LENSES CAN BE DERIVED, ALLOWING
C THE FOCAL DISTANCES F1 AND F2 TO BE CALCULATED, AND F2-F1 = CONSTANT
C CAN BE CHECKED

A_{2131}=A_{2132}+(A_{1121}+(L_2A_{2121}))+A_{2232}+(L_2A_{2221})
A_{1131}=A_{1132}+(A_{1121}+(L_2A_{2121}))+A_{1232}+(L_2A_{1221})-(L_2/2.0)*A_{2131}
A_{2231}=A_{2132}+(A_{2121}+(L_2A_{2221}))+A_{2232}+(L_2A_{2221})-(L_2/2.0)*A_{2131}
A_{1231}=A_{1132}+(A_{1121}+(L_2A_{2121}))+A_{1232}+(L_2A_{1221})-(L_2/2.0)*A_{1131}

C CHECK SIGN OF BETA SO THAT ADD HAS CORRECT SIGN OF CONVERGENCE
IF(BETA.LT.0.0 AND COUNT.EQ.1) ADD=-ADD

C TEST FOR CONVERGENCE USING METHOD OF FALSE POSITION
IF(COUNT.EQ.1) THEN
BETATEST=BETA
ELSE IF(((BETA*BETATEST).LE.(0.0)) THEN
NEWV21=\beta_1=((V21-ADD)*BETA-V21+NEWV21)/(BETA-BETATEST)
V21=NEWV21+ADD/2.0
ADD=-ADD/2.0
BETATEST=BETA
ELSE IF(ABS(BETATEST).LT.ABS(BETA)) THEN
ADD=-ADD/2.0
BETATEST=BETA
ELSE
BETATEST=BETA
END IF
PRINT*, "BETA =", BETA, " V2/V1 = ", V21
IF(ABS(BETA).LE.1E-04) GOTO 20

ONCE BETA IS EQUAL TO A VALUE
IF (CHECK.GT.50) THEN
IF (CHECKSEC.EQ.4) STOP
END IF

END DO

SUBROUTINES USED TO FIND APPROPRIATE MATRIX ELEMENTS

REAL*8 CNA1K210), CNA21(210), CNA12(210), CNA22(210)
REAL*8 KA11(35), KA21(35), KA12(35), KA22(35)
COMMON /A/ CNA11, CNA21, CNA12, CNA22, KA11, KA21, KA12, KA22
CALL E02BBF(35, KA11, CNA11, LVA, A11A, IFAIL)
CALL E02BBF(35, KA21, CNA21, LVA, A21A, IFAIL)
CALL E02BBF(35, KA12, CNA12, LVA, A12A, IFAIL)
CALL E02BBF(35, KA22, CNA22, LVA, A22A, IFAIL)
END

REAL*8 CND1K210), CND21(210), CND12(210), CND22(210)
REAL*8 KD11(35), KD21(35), KD12(35), KD22(35)
COMMON /B/ CND11, CND21, CND12, CND22, KD11, KD21, KD12, KD22
CALL E02BBF(35, KD11, CND11, LVA, A11A, IFAIL)
CALL E02BBF(35, KD21, CND21, LVA, A21A, IFAIL)
CALL E02BBF(35, KD12, CND12, LVA, A12A, IFAIL)
CALL E02BBF(35, KD22, CND22, LVA, A22A, IFAIL)
END

C SUBROUTINES USED TO FIND APPROPRIATE MATRIX ELEMENTS

SUBROUTINE CALAMAT(LVA, A11A, A21A, A12A, A22A)
REAL*8 CNA1K210), CNA21(210), CNA12(210), CNA22(210)
REAL*8 KA11(35), KA21(35), KA12(35), KA22(35)
COMMON /A/ CNA11, CNA21, CNA12, CNA22, KA11, KA21, KA12, KA22
CALL E02BBF(35, KA11, CNA11, LVA, A11A, IFAIL)
CALL E02BBF(35, KA21, CNA21, LVA, A21A, IFAIL)
CALL E02BBF(35, KA12, CNA12, LVA, A12A, IFAIL)
CALL E02BBF(35, KA22, CNA22, LVA, A22A, IFAIL)
END
C PROGRAM FNDV51D
C THIS PROGRAM FINDS THE VALUE OF V5/V1 AT THE POINT D, I.E., AT THE
C POINT WHERE V2/V1 = 1.0 AND V5/V1 > 1.0. FOR THE LOCUS I.E.,
C THE GRAPHS OF LOG(V5/V1) VERSUS LOG(V2/V1) FOR A FIVE-ELEMENT
C LENS WHICH COMPARES TWO IDENTICAL THREE-ELEMENT LENSES. THE DATA
C OF HARTING AND READ (1976) FOR TWO-ELEMENT LENSES IS USED TO GIVE A
C FIRST APPROXIMATION TO V5/V1. THIS VALUE OF V5/V1 IS THEN CHECKED
C BY OBTAINING THE OBJECT-IMAGE MATRIX FOR THIS LENS. THE MATRIX ELEMENT
C BETAS SHOULD BEAL ZERO FOR A FOCUSSED LENS. IF THE VALUE OF V5/V1 AS
C DERIVED FROM THE DATA OF HARTING AND READ GIVES A VALUE FOR BETA
C SUFFICIENTLY CLOSE TO ZERO, I.E., < 1E-04, THEN THE PROGRAM STORES
C THIS VALUE AND STOPS. IF THE VALUE FOR BETA IS NOT SUFFICIENTLY CLOSE
C TO ZERO THE VALUE OF V5/V1 IS ITERATED BY A DO LOOP UNTIL A VALUE FOR
C V5/V1 FOUND WHICH GIVES A VALUE OF BETA < 1E-04.
C THE PROGRAM USES NAG LIBRARY ROUTINES E01BAF AND E02BBF. E01BAF FITS
C A SPLINE TO V'/V VERSUS MATRIX ELEMENT, AND E02BBF FINDS THE SPECIFIC
C VALUE OF A MATRIX ELEMENT FOR A GIVEN VALUE OF V'/V. THE MATRIX
C ELEMENTS WERE DERIVED FROM THE DATA OF HARTING AND READ (1976) AND
C ALSO FROM DATA CALCULATED BY DICCHIO ET AL (1974). THE MATRIX ELEMENTS
C ARE AS DEFINED BY DICCHIO ET AL (1974).
C INTEGERS NEEDED BY NAG SUBROUTINES
 INTEGER NO,LCK,LWRK,NF,LCKF,LWRKF,IFAIL
C INTEGERS NEEDED BY REST OF PROGRAM
 INTEGER COUNT
C COUNT KEEPS A COUNT OF THE VALUE OF I
C FOR THE DO LOOP
C REAL VALUES NEEDED BY MY SUBROUTINES
 REAL*8 RVA
C ACCELERATING VOLTAGES
 REAL*8 A11A,A21A,A12A,A22A
C MATRIX ELEMENTS FOR ACCELERATING VOLTAGES
C ARRAYS NEEDED BY NAG SUBROUTINES
 REAL*8 WRK(210)
 REAL*8 CHA1(210),CHA2(210),CHA1(210),CHA2(210)
 REAL*8 KA11(35),KA21(35),KA12(35),KA22(35)
 REAL*8 KL1(30),KL1(30),KL1(30),KL1(30)
 REAL*8 CNW(210),CNW(210),CNW(210),CNW(210)
C ARRAYS IN WHICH TABLES OF VOLTAGE RATIO, LOG OF VOLTAGE RATIO AND THE
C CORRESPONDING MATRIX ELEMENTS ARE STORED
 REAL*8 KV(35),LVV(35),A11(35),A21(35),A12(35),A22(35)
C ARRAYS IN WHICH TABLES OF VOLTAGE RATIO, LOG VOLTAGE RATIO, F1, F2,
C F2, F2 + F1 AND LOG(F2/F1) ARE STORED, (MINUS SIGN IS SIGN CONVENTION)
 REAL*8 SVV(25),SVV(25),SF21(25),SF22(25),CF21(25),CF22(25)
 REAL*8 SUMCF2(25),LSUMCF2(25)
C STARTING VALUES
 REAL*8 V32,LV32,V21,LV21,VB1,LVB1
C INCREMENT FOR LOG(V5/V1)
 REAL*8 ADD
C LENGTHS OF LENS ELEMENTS
 REAL L1,L2,L3,L4,L5
C DERIVED MATRIX ELEMENTS
 REAL*8 A1132,A2132,A1232,A2232
C DERIVED QUANTITIES
C THE FINAL OBJECT-IMAGE MATRIX HAS FINAL ELEMENTS ALPHA, BETA, GAMMA AND DELTA
C BETA=0 FOR A FOCUSSED LENS. BETALEFT IS SET TO ALLOW A CHECK OF THE PREVIOUSLY
C CALCULATED VALUE OF BETA
C NEWV51 IS AN INTERMEDIATE VALUE FOR V5/V1 OBTAINED WHEN USING THE METHOD
C OF FALSE POSITION TO SPEED UP CONVERGENCE.
C CF31 : 1ST FOCAL LENGTH OF THE THREE-ELEMENT LENS
C CF31 : 1ST FOCAL LENGTH OF THE THREE-ELEMENT LENS
C CF32 : 2ND FOCAL LENGTH OF THE THREE-ELEMENT LENS
C CF32 : 2ND FOCAL LENGTH OF THE THREE-ELEMENT LENS
C SUMCF3 : CF32-CF31, LOG(SUMCF3)
C SUMCF3 : CF32-CF31, LOG(SUMCF3)
C V51D : V5/V1 AT POINT D, LV51D : LOG(V5/V1D).
C V51D : V5/V1 AT POINT D, LV51D : LOG(V5/V1D).
C V3IDPSTAP : 1ST APPROX TO V3/V1IDPSTAP DERIVED FROM THE TWO-ELEMENT DATA
C V3IDPSTAP : 1ST APPROX TO V3/V1IDPSTAP DERIVED FROM THE TWO-ELEMENT DATA
C OF HARTING AND READ.
C 196
REAL*8 ALPHA, BETA, GAMMA, DELTA, BETATEST, NEV61
REAL*8 CF31, CF32, SUMCF3, LSUMCF3
REAL*8 V31DFSTAP, V51DFSTAP, V21D

C INTERMEDIATE VALUES WHEN CALCULATING FINAL MATRIX ELEMENTS
REAL*8 A, B, C, D

C FILE IN WHICH VS/VID IS STORED
CHARACTER*20 TITLE

COMMON /A/ CNAll, CNA21, CHA12, CNA22, KA11, KA21, KA12, KA22

C OPENING DATA FILES IN WHICH TABLES OF VOLTAGE RATIOS AND MATRIX ELEMENTS
C ARE STORED.

C ACCELERATING VOLTAGES
OPEN(UNIT=1, FILE='ACCMATPl', STATUS='OLD', READONLY)
DO 1=1,31
READ(1,*) RV(I), All(I), A21(I), A12(I), A22(I)
LRV(I)=DLOG10(RV(I))
END DO

C DATA FOR TWO-ELEMENT CYLINDER LENS (HARTING AND READ)
OPEN(UNIT=2, FILE='ACCFOCAL', STATUS='OLD', READONLY)
DO 1=1,2B
READ(2,*) VV(26-I), SF21(26-I), CF21(26-I), SF22(26-I), CF22(26-I)
SUMCF2(26-I)=CF21(26-I)+CF22(26-I)
LVV(26-I)=LOG10(VV(26-I))
LSUMCF2(26-I)=LOG10(SUMCF2(26-I))
END DO
PRINT*, 'WHAT DO YOU WISH TO CALL THE OUTPUT DATA FILE?
READ(B, '(A)') TITLE
OPEN(UNIT=3, FILE=TITLE, STATUS='NEW')

C PROMPTING FOR THE DIMENSIONS OF THE LENS
PRINT*, 'PLEASE INPUT THE LENGTHS OF THE LENS ELEMENTS'
READ(B,*) L1, L2, L3, L4, LB
SUMCF3=L2+L3
LSUMCF3=LOG10(SUMCF3)

C SETTING VALUES FOR CONSTANTS FOR NAG ROUTINES
N0=31
NF=2B
IFAIL=0
LCK=36
LCKF=30
LWKX=210
LWKXF=200

C SETTING UP THE SPLINE CURVES
CALL EOIBAF(NO, LRV, All, KA11, KA12, KA21, KA22, LCK, LWKX, LWKXF, IFAIL)
CALL EOIBAF(NO, LRV, A21, KA21, CNA21, LCK, LWKX, LWKXF, IFAIL)
CALL EOIBAF(NO, LRV, A12, KA12, CNA12, LCK, LWKX, LWKXF, IFAIL)
CALL EOIBAF(NO, LRV, A22, KA22, CNA22, LCK, LWKX, LWKXF, IFAIL)
CALL EOIBAF(NO, LRV, A21, KA11, CNA21, LCK, LWKX, LWKXF, IFAIL)
CALL EOIBAF(NO, LRV, A12, KA21, CNA21, LCK, LWKX, LWKXF, IFAIL)
CALL EOIBAF(NO, LRV, A22, KA12, CNA22, LCK, LWKX, LWKXF, IFAIL)
CALL EOIBAF(NO, LRV, A21, KA22, CNA22, LCK, LWKX, LWKXF, IFAIL)

C FINDING A FIRST APPROXIMATION FOR VS/VID FROM HARTING AND READ DATA
CALL EOIBAF(HF, LSUMCF2, LVV, KL2V, CHL2V, LCKF, LWKXF, LWKXF, IFAIL)
V31DFSTAP=(10**LSUMCF3)**2.0
V51DFSTAP=(10**LVV)**2.0
PRINT*, 'THE FIRST APPROXIMATION OF VS/VID = ', V31DFSTAP
PRINT*, 'THE FIRST APPROXIMATION OF VS/VID = ', V51DFSTAP

C SETTING STARTING VALUES
COUNT=0
BETA=-100
BETATEST=BETA
ADD=0.1
V21D=1.0
V61=V61+ADD
V32=DSQRT(V61)
LV32=DLG10(V32)

C FINDING THE MATRIX VALUES FOR A GIVEN VOLTAGE RATIO
CALL CALAMAT(LV32,A1132,A2132,A1232,A2232)

C FINDING THE MATRIX ELEMENTS
A=A1132+(L3+L4)*A2132
B=(L1+L2)*A1132+A1232+(L3+L4)*A2132+(L5+L6)*A2323
C=A2132
D=((L1+L2)*A2132)+(L5+L6)*A2232

ALPHA=(A+(A1132*(L5+L6)+A2132))+(C*(A1232*(L5+L6)+A2232))
BETA=(B*(A1132*(L5+L6)+A2132)+(D*(A1232*(L5+L6)+A2232))
DELTA=(A*A2132)+(C*A2232)

C CHECK SIGN OF BETA SO THAT ADD HAS CORRECT SIGN OF CONVERGENCE
IF(BETA.LT.0.0.AND.COUNT.EQ.1)ADD=-ADD

C TEST FOR CONVERGENCE USING METHOD OF FALSE POSITION
IF(COUNT.EQ.1)THEN
BETATEST=BETA
ELSE IF((BETA=BETATEST).LE.(0.0))THEN
NEWVB1=((VBl-ADD)*BETA-VB1*BETATEST)/(BETA-BETATEST)
VBl=NEWVBl+ADD/2.0
ADD=ADD/2.0
BETATEST=BETA
ELSE IF(ABS(BETATEST).LT.ABS(BETA)) THEN
VB1=VB1-ADD
ADD=ADD/2.0
BETATEST=BETA
ELSE
BETATEST=BETA
END IF
PRINT*, 'BETA = ', BETA, ' Vb/Vl = ', VBl
IF(ABS(BETA).LE.1E-04)THEN
WRITE(3,'(3,F8.2)') VBl
STOP
END IF
END DO
END

C SUBROUTINE USED TO FIND APPROPRIATE MATRIX ELEMENTS
SUBROUTINE CALAMAT(LVA, A11A, A12A, A21A, A22A)
REAL*8 CA11(310), CA21(310), KA12(310), KA22(310)
REAL*8 KA11(35), KA21(35), KA12(35), KA22(35)
COMMON /A/ CA11, CA21, KA12, KA22
CALL EC32BF(35, KA11, CA11, LVA, A11A, IFAIL)
CALL EC32BF(35, KA12, CA12, LVA, A12A, IFAIL)
CALL EC32BF(35, KA21, CA21, LVA, A21A, IFAIL)
CALL EC32BF(35, KA22, CA22, LVA, A22A, IFAIL)
END
CHAPTER SIX
MULTI-DISC LENS
CONTENTS: CHAPTER SIX

Section (6.1) Introduction ... 204

Section (6.2) Construction and Operation of the Multi-Disc Lens 206

Section (6.3) Acquiring data for the Multi-disc Lens
 (a) Experimental Data .. 214
 (b) Calculated Data ... 218

Section (6.4) Presentation and Discussion of the Data for
 the Multi-Disc Lens ... 218

Section (6.5) Concluding Remarks 222

References .. 244
LIST OF FIGURES: CHAPTER SIX

Figure 6.1 Read’s Movable Electrostatic Lens 205

Figure 6.2 Photograph of Discs sandwiched between two Cylindrical Lens Elements 207

Figure 6.3 Diagram showing how the Voltages are stepped between L_1 and L_2 and L_2 and L_3 respectively 208

Figure 6.4 Photograph of a disc 209

Figure 6.5 Schematic Diagram of a disc 210

Figure 6.6 Diagram showing how discs were stacked to form the Disc Lens 212

Figure 6.7 End View of Disc Lens Sandwich 213

Figure 6.8 Schematic Diagram of Switching Unit 215

Figure 6.9 Photograph of Front Panel of Switching Unit 216

Figure 6.10 Diagram showing that if the change in voltage in the regions of ‘stepping’ voltage are approximated by a linear voltage variation, then the effective length of L_2 is

$$(\text{no. of discs connected together to form } L_2 - 1) \times 0.1D$$ 217

Figure 6.11 Typical Example of the ‘image’ displayed on the Display Scope from the Disc Lens 219

Figure 6.12 Example of a ‘bad’ image from the Disc lens 220

Figure 6.13 Lines of constant V_3/V_1 and lines of Constant magnification M plotted on axes of n_e Versus V_2/V_1 for various values of V_3/V_1 for the Disc Lens with a Centre Element length of 0.6D as obtained from the calculated data of Heddle 224

Figure 6.14 Lines of constant V_3/V_1 and lines of Constant magnification M plotted on axes of n_e Versus V_2/V_1 for various values of V_3/V_1 for the Disc Lens with a Centre Element length of 1.0D as obtained from the calculated data of Heddle 225
Figure 6.15 Lines of constant V_3/V_1 and lines of Constant magnification M plotted on axes of n_c Versus V_2/V_1 for various values of V_3/V_1 for the Disc Lens with a Centre Element length of 2.0D as obtained from the calculated data of Heddle

Figure 6.16 V_2/V_1 Versus n_c for various values of V_3/V_1 for the Disc Lens with a Centre Element length of 0.6D as obtained from experiment

Figure 6.17 V_2/V_1 Versus n_c for various values of V_3/V_1 for the Disc Lens with a Centre Element length of 1.0D as obtained from experiment

Figure 6.18 V_2/V_1 Versus n_c for various values of V_3/V_1 for the Disc Lens with a Centre Element length of 2.0D as obtained from experiment

Figure 6.19 Experimentally obtained and calculated values of V_2/V_1 Versus n_c for $V_3/V_1 = 0.6, 1.0$ and 3.0 for the Disc Lens with a Centre Element length of 0.6D

Figure 6.20 Experimentally obtained and calculated values of V_2/V_1 Versus n_c for $V_3/V_1 = 0.6, 1.0$ and 3.0 for the Disc Lens with a Centre Element length of 0.10D

Figure 6.21 Experimentally obtained and calculated values of V_2/V_1 Versus n_c for $V_3/V_1 = 0.6, 1.0$ and 3.0 for the Disc Lens with a Centre Element length of 2.0D

Figure 6.22 Experimentally obtained and calculated values of Magnification M Versus n_c for $V_3/V_1 = 0.6$ for the Disc Lens with a Centre Element Length of 0.6D

Figure 6.23 Experimentally obtained and calculated values of Magnification M Versus n_c for $V_3/V_1 = 1.0$ for the Disc Lens with a Centre Element Length of 0.6D

Figure 6.24 Experimentally obtained and calculated values of Magnification M Versus n_c for $V_3/V_1 = 3.0$ for the Disc Lens with a Centre Element Length of 0.6D

202
LIST OF FIGURES: CHAPTER SIX (cont)

Figure 6.25 Experimentally obtained and calculated values of Magnification M Versus n_e for $V_3/V_1 = 0.6$ for the Disc Lens with a Centre Element Length of 1.0D

Figure 6.26 Experimentally obtained and calculated values of Magnification M Versus n_e for $V_3/V_1 = 1.0$ for the Disc Lens with a Centre Element Length of 1.0D

Figure 6.27 Experimentally obtained and calculated values of Magnification M Versus n_e for $V_3/V_1 = 3.0$ for the Disc Lens with a Centre Element Length of 1.0D

Figure 6.28 Experimentally obtained and calculated values of Magnification M Versus n_e for $V_3/V_1 = 0.6$ and 1.0 for the Disc Lens with a Centre Element Length of 2.0D

Figure 6.29 Experimentally obtained and calculated values of Magnification M Versus n_e for $V_3/V_1 = 0.6$ and 3.0 for the Disc Lens with a Centre Element Length of 2.0D
6.1 INTRODUCTION

In this chapter the properties, construction and operation of a lens built from 31 discs electrically insulated from each other and sandwiched between two ordinary cylindrical lens elements will be discussed.

The focal properties of a given cylindrical electrostatic electron lens are dependent on a number of its physical properties. These are

(1) The number of lens elements.

(2) The ratio of the length to diameter of each element.

(3) The length of the gap between a pair of lens elements.

Once (1), (2) and (3) have been chosen, the lens is constructed and placed in vacuum. It is usually not possible to change (1), (2) and (3) without opening the vacuum system, removing the lens, and constructing a new lens. However, the method used to construct the lens studied in the present work, in principle allows (1), (2) and (3) to be changed without any physical change being made to the lens itself, and so the lens does not need to be removed from the vacuum system. Any alterations which are required can be made externally, via the electrical connections to the discs which make up the lens.

In 1983 Read proposed a lens constructed from several short closely spaced cylinders sandwiched between two longer ones. He suggested that it should be possible to connect a number of neighbouring discs to the same voltage V_2 while connecting the remaining discs on the left (including the left-hand long cylinder) to a voltage V_1 and those to the right to a voltage V_3, thus making a three-element lens whose element lengths are variable within a range dictated by the number of discs and by the number and position of discs chosen to be connected together to form the middle element. Read investigated the properties of a three-element lens constructed using the discs, in the manner described below, using the three-cylinder lens data of Harting and Read (1976) calculated using the charge density method. The data used was that calculated for a three cylinder lens having $A/D = 1$ and $g/D = 0.1$, where A is the distance between the lens gaps, D is the diameter of the lens elements and g is the length of the gaps between the cylinders. Where the data of Harting and Read was insufficient, i.e., when $V_3/V_1 > 30$, additional data was calculated.
using the charge density method. The lens was envisaged as being constructed from 22 short lengths of thickwalled cylinders insulated from each other and sandwiched between two longer lengths of cylinders of the same internal diameter D, where 10 of these short cylinders were chosen to be connected together to form the centre element (see figure 6.1).

The spacing a of the mid-points of the gaps between the short cylinders was equal to $0.1D$ and the length of each gap was $0.02D$. The system therefore acts as a three-element lens with $A/D = 1$. Read proposed that a trapezoidal voltage distribution with sloping sides of width s could be applied to the short elements, and that $V(z)$ would be given by

$$V(z) = V_1 \quad \text{for } z < z_o - \frac{1}{2}A - \frac{1}{2}s$$

$$V(z) = V_1 + \frac{V_2 - V_1}{s} \left[z - (z_o - \frac{1}{2}A - \frac{1}{2}s) \right] \quad \text{for } z_o - \frac{1}{2}A - \frac{1}{2}s \leq z \leq z_o + \frac{1}{2}A - \frac{1}{2}s$$

$$V(z) = V_2 \quad \text{for } z_o - \frac{1}{2}A + \frac{1}{2}s \leq z \leq z_o + \frac{1}{2}A - \frac{1}{2}s$$

$$V(z) = V_2 + \frac{V_3 - V_2}{s} \left[z - (z_o - \frac{1}{2}A - \frac{1}{2}s) \right] \quad \text{for } z_o + \frac{1}{2}A - \frac{1}{2}s \leq z \leq z_o + \frac{1}{2}A + \frac{1}{2}s$$

$$V(z) = V_3 \quad \text{for } z < z_o + \frac{1}{2}A + \frac{1}{2}s$$

Read chose to take $s = a$ so that the properties of the disc lens could be deduced from the focal properties of a three cylinder lens as described above, as the focal properties of the
disc lens with $s = a$ do not differ significantly from the three cylinder lens with $A/D = 1$ and $g/D = 0.1$.

The lens investigated in the present work was similar to the lens proposed by Read in that as described at the beginning of this chapter, it was constructed from 31 discs electrically insulated from each other and sandwiched between two ordinary cylindrical elements (see figure 6.2).

The lens was operated so as to simulate a three-element lens. The two ordinary cylindrical lens elements sandwiching the discs act as the first L_1 and final L_3 elements of the lens, and therefore the lengths of the first and final elements were fixed. The centre element however, was 'movable' and of variable length, and the 'gaps' between the first and centre element and between the centre and final element were necessarily also of variable length, their length being dependent on the length and position of the centre element. The above was achieved by connecting together a number of the discs at a voltage V_2 to form the centre element L_2. The voltages on the discs on either side of L_2 were stepped between V_1, the voltage applied to the first element L_1 and V_2, and between V_2 and V_3 the voltage applied to the third and final element L_3 of the lens respectively. Figure 6.3 illustrates this, the regions on either side of L_2 where the voltages are stepped, act as the 'gaps' between L_1 and L_2 and L_2 and L_3.

As the voltage is stepped in the 'gaps', the 'gap' voltage is therefore known and controllable irrespective of the size of the 'gap', i.e., the voltage in the 'gap' is not affected by the presence of stray fields as can be the case with ordinary lenses with large 'air gaps' between elements. A fuller description of the methods used to construct the lens are discussed in the next section. From the above description of the lens it can be seen that this lens differs from the lens proposed by Read in that instead of the lengths of the first and final elements of the three-element lens being variable and the 'gap' size fixed, the lengths of the first and final lens elements were fixed and the 'gaps' between the first and middle element and between the middle and final element were variable.

6.2 CONSTRUCTION AND OPERATION OF THE MULTI-DISC LENS

The discs used to construct the lens are 0.86mm thick and have an external diameter of 30mm and an internal diameter of 13.5mm. Figure 6.4 is a photograph of a disc, and a schematic diagram of a disc is given in figure 6.5.
The discs are inserted from each other and from the ordinary cylindrical elements sandwiching the discs, using ruby ball bearings 3.38 mm in diameter in the stamen described below. Each disc has three sets of three holes, where the three holes in a set are offset by 120° from each other, i.e., each disc has five holes, where each hole is at 45° to the previous hole. Two of these holes have a diameter of 1.5 mm, where one set is offset by 45° to the other, and the remaining set is offset by 90°. The two sets of the larger diameter holes can be used alternately to allow the discs to be threaded onto three tie rods (6 BA studs) held in place by being screwed into three holes at 120° intervals tapped into the discs of the cylindrical element which sandwich the discs. (Note: holes in the discs clear the studs, so the tie rods do not make contact with the discs.) The first cylindrical element has an inner and outer diameter of 35 mm, and has a length of 150 mm, where the 13.5 mm inner discs are packed into the concentric shoe in figure 6.6.

As shown in figure 6.5, a set of ruby ball bearings are inserted in the discs where the spacers for the tension elements are fitted, to keep a disc on top. Ruby ball bearings are inserted on the front and back spacers in the disc assembly so that there is no contact between the length of the disc and the spacers. The position of the tension element is shown in figure 6.10. The resulting eccentricity of the disc assembly is shown in figure 6.7. Therefore, the second cylindrical element and the second tension element are packed into the concentric shoe in figure 6.6. Figure 6.5 shows the side view of the concentric shoe, where figure 6.7 shows an end view of the second cylindrical element and the 3.38 mm ruby ball bearing.
The discs are insulated from each other and from the ordinary cylindrical elements sandwiching the discs, using ruby ball bearings 2.38mm in diameter in the manner described below. Each disc has three sets of three holes, where the three holes in a set are offset by 120° from each other, i.e., each disc has nine holes, where each hole is at 40° to the previous hole. Two sets of these holes have a diameter of ≈ 3mm, where one set is offset by 40° to the other, and the remaining set have a diameter of 1.5mm. The two sets of the larger diameter holes are used alternately to allow the discs to be threaded onto three tie rods (8 BA studding) held in place by being screwed into three holes at 120° intervals tapped into the first of the cylindrical elements which sandwich the discs. (Note, the holes in the disc clear the studding, i.e., the tie rods do not make contact with the discs.) The first cylindrical element has the same external and internal diameters as the discs and has a length of 1.5D, where D is 13.5mm. The discs are stacked in the manner shown in figure 6.6.

As shown in figure 6.6 a trio of ruby balls separates alternate pairs of discs where the smaller diameter holes are used to locate a disc on top of the trio of ruby balls resting on the previous disc-1, while a set of the larger diameter holes clear the ruby balls resting on the previous disc for the location of the next disc. Using this arrangement, the gap between the discs was 0.49mm and the distance between the beginning of one disc and the beginning of the next disc is 1.35mm or 0.1D. The sandwich of ordinary cylindrical element, ruby balls and discs and ordinary cylindrical element was held together by using nuts to screw down the second cylindrical element on top of the sandwich, ceramic washers were used to insulate the second cylindrical element from the tie rods so that the first and second cylindrical elements were not connected together via the tie rods. Figure 6.2 shows the side view of the completed sandwich, and figure 6.7 shows an end view. The second cylindrical element is 1D in length.

The voltages are applied to the discs in the manner depicted by figure 6.3, by a switching unit which incorporates two 23-way switches and thirty-two 100K resistors in a chain. As shown in the schematic diagram of the switching unit, (figure 6.8) the first switch allows the voltages to the discs to be stepped between \(V_2 \) and \(V_3 \) across \(n_1 \) of \(R_1 \) to \(R_{23} \), i.e., 23 resistors, the second switch allows the voltages to the discs to be stepped between \(V_2 \) and \(V_3 \) across \(n_2 \) of \(R_0 \) to \(R_{32} \), i.e., 23 resistors. LEDs are used to indicate the switch positions. A line of red LEDs numbered 1 to 23 are coupled to the first switch, and a line of green LEDs numbered 9 to 31 are coupled to the second switch. If for example, the voltages \(V_1 \) and \(V_2 \) are stepped across \(R_1 \) and \(R_4 \), the fourth LED in the line of red LEDs will light.
Figure 6.6
up to indicate that the centre element \(L_2 \) begins at disc 4; and if the voltages \(V_2 \) and \(V_3 \) are stepped across \(R_{15} \) and \(R_{32} \) the 7th LED in the line of green LEDs (numbered 15) will light up to indicate the centre element \(L_2 \) ends at disc 15. Figure 6.9 is a photograph of the front panel of the switching unit, the LEDs show that a lens with a centre element 11 discs long, starting at disc 10 and ending at disc 20 is being investigated.

6.3 ACQUIRING DATA FOR THE MULTI-DISC LENS

Experimental Data

It was decided to investigate three lenses out of the many possible three-element lenses incorporating the 31 discs. All three lenses had a first element length \(L_1 \) of 2.72D and a final element length \(L_3 \) of 1.80D. As the ordinary elements which sandwich the discs are shorter than 2.72D and 1.80D respectively, an additional cylindrical element was placed in front of and electrically connected to the first ordinary cylinder of the ‘sandwich’, and a second additional cylinder was placed behind and connected to the second ordinary cylindrical element of the ‘sandwich’. An aperture disc with a single central hole of 1.5mm, was placed between the two cylindrical elements which make up \(L_2 \) to act as an angle stop. The three lenses differed in the number of elements which were chosen to be connected together to form the centre element \(L_2 \). The first lens studied had an \(L_2 \) of 0.6D, the second had an \(L_2 \) of 1.0D and the third had an \(L_2 \) of 2.0D.

For each lens, experimental data was obtained by finding for fixed values of \(L_2 \) and \(V_3/V_1 \), the value of \(V_2/V_1 \) which focussed the lens, and the resultant magnification \(M \), for a given position of the central disc \(n_c \) of the centre element \(L_2 \), using the method described in chapter three. Once \(V_2/V_1 \) and \(M \) had been noted, new values of \(V_2/V_1 \) and \(M \) were found for the next value of \(n_c \). This process was repeated until the values of \(V_2/V_1 \) (where \(V_2/V_1 > V_3/V_1 \)) and \(M \) had been found for all possible values of \(n_c \) for a given \(V_3/V_1 \). The process was then repeated for the next value of \(V_3/V_1 \). Data was taken for \(V_3/V_1 \) equal to 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 2.0, 3.0, 4.0 and 5, for each of the three values of \(L_2 \). \(n_c \) had values of between 6 and 26 for the lens with a centre element of length \(L_2 \) of 0.6D, (i.e., 7 discs, see figure 6.10) and values of between 8 and 24 for the lens with an \(L_2 \) of 1.0D, (i.e., 11 discs) and values of between 13 and 19 for the lens with an \(L_2 \) of 2.0D, (21 discs).

Figure 6.11 shows a typical example of the type of ‘image’ appearing on the display scope screen when the disc lens was focussed, and from which the focussing voltage \(V_2/V_1 \)
SCHEMATIC DIAGRAM OF SWITCHING UNIT

Figure 6.8
If the voltage across the capacitor is changed by a certain amount, the magnitude of the gap between the two metal plates, to which *V_1* is applied, and the effective potential of the upper and lower plates to which *V_2* is applied,

Figure 6.9

Therefore, the distance between the centers of two gaps is 0.5 ft; the effective length of the upper plate, *L_2*, will be 1.5 ft. These two plates are connected from an element with an effective length of 1.5 ft.
If the voltage 'steps' are approximated by a linear change in voltage as shown above, then the middle element will effectively begin at the centre of the gap between the first and second disc, to which V_2 is applied, and will end at the centre of the gap between the last and second last disc to which V_3 is applied. Therefore, as the distance between the centres of two gaps is 0.1D, the effective length of the centre element L_2 will be

\[(\text{no. of discs connected together to form } L_2 - 1) \times 0.1D\]

i.e., 11 Discs connected together form an element with an effective length of 1.0D.
and M were determined. Figure 6.12 shows another example of an 'image' from the disc lens, but in this case, the 'image' is not good, making the determination of the magnification difficult. 'Bad images' occur when

1. The signal to noise ratio is small, due to the current collected at the Faraday cup being small. If the voltage V_1 is small, as it must be when the voltage ratio V_3/V_1 is large, the current entering the lens will be small, causing the current leaving the lens to be small.

2. Aberrations will also cause 'distortion' of the image, particularly when the lens acts as a retarding lens, i.e., $V_3/V_1 < 1$ or the lens is strong, i.e., V_3/V_1 is large.

Calculated Data

Heddle (unpublished) calculated the values of V_2/V_1 and M for given values of V_3/V_1 and n_c for lenses with L_2 between 0.2D and 2D using the Bessel Function Expansion Method, (see Chapter 2 and Cook and Heddle (1976)).

6.4 PRESENTATION OF THE DATA FOR THE MULTI-DISC LENS

As discussed in the previous chapter on the five-element lens, when a lens has more than two independent parameters, the presentation of the data in a clear and concise and useful form is not easy. For the disc lens it was decided that the most useful way of presenting the data was to draw a graph with lines of constant overall voltage ratio V_3/V_1 and lines of constant magnification M, on axes of n_c, the position of the central disc of the centre element L_2, versus V_2/V_1. An electron lens is normally required to be operated at a given overall voltage ratio, (V_3/V_1) in the case of the disc lens) and a given magnification M. The information that remains to be found in the case of the disc lens once V_3/V_1 and M have been specified, are the values of V_2/V_1 and n_c necessary to focus the lens. From the graph described above it is possible to find the values of V_2/V_1 and n_c for given values of V_3/V_1 and M. Figures 6.13 to 6.15 show lines of constant V_3/V_1 and M drawn on axes of n_c versus V_2/V_1 as obtained from the calculated data of Heddle for the three lenses which were investigated experimentally.

Lines of constant V_3/V_1 drawn on axes of n_c versus V_2/V_1, can also easily be produced from the experimentally obtained data, as the method used to obtain the data, as described
in the last section, produces tables of n_e, V_2/V_1 and M for constant values of V_3/V_1 for a given lens, i.e., for a given value of L_2. In figures 6.16 to 6.18 the experimentally obtained values of n_e and V_2/V_1 are plotted for the same constant values of V_3/V_1, as figures 6.13 to 6.15 i.e., the same values of V_3/V_1 as used for the calculated data. Figures 6.19 to 6.21 show both the calculated and experimentally obtained values for n_e and V_2/V_1 for V_3/V_1 equal to 0.6, 1.0 and 3.0 for the three values of L_2, and from these figures it can be seen that the agreement obtained between the calculation and experiment is very satisfactory. The worst agreement occurs when the lens acts as a retarding lens and V_3/V_1 has its smallest values, or when the lens is at its strongest, i.e., when V_3/V_1 has its largest values. The agreement is particularly bad where the first 'gap', i.e., the region between L_2 and L_1 is large. This is because for accelerating lenses, i.e., those lenses where $V_3/V_1 > 1$, the lens is particularly strong when the first 'gap' is large, and the second 'gap' small, i.e., when the action of the lens is due predominately to the second gap.

That the worst agreement between calculation and experiment occurs for those lenses described above, is not surprising, as it is for these lenses that lens aberrations would be expected to have their greatest effect. The experimentally obtained values of V_2/V_1 tend to be lower than the calculated values of V_2/V_1, is this is consistent with the argument that the differences between calculation and experiment are the effect of spherical aberration, as spherical aberration will cause a lens to appear to be focussed at a value of V_2/V_1 lower than would be expected for the ideal lens, and the calculated data refers to the ideal lens.

Experimentally, there is no straightforward method to obtain values of n_e and V_2/V_1 for constant M, therefore to present the experimentally obtained magnification data n_e was plotted versus M for constant values of V_3/V_1. Figures 6.22 to 6.29 show both the calculated and experimentally obtained values for n_e and M for V_3/V_1 equal to 0.6, 1.0 and 3.0 for the three values of L_2. From these figures it can be seen that the agreement obtained is satisfactory, the worst agreement occurring again for the retarding and strongest lenses. They also illustrate the 'zoom' action of this lens, i.e., for a given V_3/V_1 it is possible to vary the magnification from between 0.5 to 1.3. The agreement between calculation and experiment is not as good for the magnification data as for the voltage data, and this is a reflection of the relative ease with which it is possible to judge focus and measure the magnification using the technique described in chapter three, i.e., it is easier to decide from the 'image' of four dots when the lens is focussed than it is to determine the magnification, particularly when the 'image' is poor, it is impossible to determine with confidence the separation of dots such as those shown in figure 6.12, the error incurred in measuring the
the magnification from such an image is therefore larger, (≈ 15% of the measured value) than the error incurred (≈ 6%) when a good ‘image’ is obtained. From figures 6.22 to 6.29 it can be seen that the experimentally obtained values of M tend to go from being smaller than the calculated values of M where the ‘gap’ between L_2 and L_1 is small, i.e., n_2 is small, to being larger than the calculated values where the ‘gap’ between L_2 and L_1 is small, i.e., n_2 is large. There is no obvious reason why this should be so, however, the experimental values of M being lower than the calculated values of M at small values of n_2, is consistent with them being higher at large values of n_2. There is also no easy way to explain why for large values of V_3/V_1, the experimentally obtained values of M lie consistently below the calculated values. Although, as aberrations tend to cause a lens to appear to be focussed at voltages lower than those expected if only paraxial rays are considered, (i.e., the ideal lens) as is the case for the calculated data, then it could be argued that aberrations cause the lens to behave as an apparently weaker lens than the ideal lens, and will therefore have a smaller magnification than the ideal lens.

6.5 CONCLUDING REMARKS

A three-element lens with a ‘movable’ centre element of variable length has been studied. Experimental data has been compared with data calculated using the Bessel function expansion method and the agreement was found to be satisfactory.
FIGURES 6.13 TO 6.15

LINES OF CONSTANT \(V_3/V_1 \) AND CONSTANT MAGNIFICATION \(M \) DRAWN ON AXES OF \(n_z \) VERSUS \(V_2/V_1 \), FOR THE DISC LENS WITH CENTRE ELEMENT \(L_2 \) OF LENGTH 0.6, 1.0 AND 2.0D RESPECTIVELY; AS OBTAINED FROM THE CALCULATED DATA OF HEDDLE.
FIGURES 6.16 TO 6.18

V_2/V_1 VERSUS n_c FOR VARIOUS VALUES OF V_2/V_1 FOR THE DISC LENS WITH CENTRE ELEMENT OF LENGTH 0.6, 1.0 AND 2.0D RESPECTIVELY; AS OBTAINED FROM EXPERIMENT.
Figure 6.16
EXPERIMENTAL AND CALCULATED VALUES OF V_2/V_1 VERSUS n_c FOR $V_3/V_2 = 0.6, 1.0$ AND 1.5 FOR THE DISC LENS WITH CENTRE ELEMENT OF LENGTH 0.5, 1.0 AND 1.5 RESPECTIVELY.

Figure 6.18

KEY TO FIGURES 6.13 TO 6.17

A CALCU LATED POINTS

EXPERIMENTAL POINTS

(vertical error bars are 4% of experimentally obtained values of V_3/V_2)
FIGURES 6.19 TO 6.21

EXPERIMENTALLY OBTAINED AND CALCULATED VALUES OF V_2/V_1 VERSUS n_∞ FOR $V_3/V_1 = 0.6, 1.0$ AND 3.0 FOR THE DISC LENS WITH CENTRE ELEMENT OF LENGTH 0.6, 1.0 AND 2.0D RESPECTIVELY.

KEY TO FIGURES 6.19 TO 6.21

* CALCULATED POINTS

| EXPERIMENTAL POINTS

(Vertical error bars are 4% of experimentally obtained values of V_2/V_1)
Figure 6.21

\[\frac{V_3}{V_1} = \text{const} \]

\[L_2 = 2.0D \]
FIGURES 6.22 TO 6.29

EXPERIMENTALLY OBTAINED AND CALCULATED VALUES OF THE MAGNIFICATION M VERSUS n_e FOR $V_3/V_1 = 0.6, 1.0$ AND 3.0 FOR THE DISC LENS WITH CENTRE ELEMENT OF LENGTH $0.6, 1.0$ AND $2.0D$ RESPECTIVELY.

KEY TO FIGURES 6.22 TO 6.29

※ CALCULATED POINTS

| EXPERIMENTAL POINTS

(vertical error bars are 7% of experimentally obtained values of V_3/V_1)
Figure 6.2c

Harari R. and Read F. H. 1983 Annular diaphragm design (University of Florey)

Figure 6.29
REFERENCES : CHAPTER SIX

Harting E and Read F H 1976 Electrostatic Lenses (Amsterdam : Elsevier)
REFERENCES: ALL

Bertram S 1940 Determination of the Axial Potential Distribution in Axially Symmetric Electrostatic Fields Proc. IRE 28 418-20

Bertram S 1942 Calculation of Axially Symmetric Fields J. Appl. Phys. 13 496-502

British Association Mathematical Tables 6 1958 (Cambridge Royal Society)

Buckingham R A 1966 Numerical Methods (Pitman : London)

245

Gabor D 1945 The Electron Microscope (Hutton : London)

Hamming R W 1973 Numerical Methods for Scientists and Engineers (MacGraw Hill : London)

Harting E and Read F H 1976 Electrostatic Lenses (Amsterdam : Elsevier)

Hawkes P W and Armstrong R J 1970 Note on the Calculation of Potential and Field Functions in Electron Optics Optik 30 546-548

Heddle D W O 1970 JILA report No.104 University of Colorado, Boulder, Colorado

Meyers L M 1939 Electron Optics (Chapman and Hall : London)

Numerical Algorithms Group 1984 Subroutines E01BAF and E02BBF NAg Library Manual Mark 11 2

Paszkowski B 1968 Electron Optics (Iliffe : London)

Ximen Jiye 1986 Aberration Theory in Electron and Ion Optics; Suppl. Advances in Electronic and Electron Physics 17

248
BIBLIOGRAPHY

Gabor D 1945 *The Electron Microscope* (Hutton : London)

Harting E and Read F H 1976 *Electrostatic Lenses* (Amsterdam : Elsvier)

Jacob L 1950 *An Introduction to Electron Optics* (Methuen : London)

Meyers L M 1939 *Electron Optics* (Chapman and Hall : London)

Paszkowski B 1968 *Electron Optics* (Iliffe : London)

250

Ximen Jiye 1986 *Aberration Theory in Electron and Ion Optics; Suppl. Advances in Electronic and Electron Physics 17*
