Nonlinear resonance of superconductor/normal metal structures to microwaves

E. Kandelaki, 1 A. F. Volkov,1,2 K. B. Efetov,1 and V. T. Petrashov3
1Theoretische Physik III, Ruhr-Universität Bochum, D-44780 Bochum, Germany
2Institute of Radioengineering and Electronics, Russian Academy of Sciences, 103907 Moscow, Russia
3Department of Physics, Royal Holloway, University of London, Egham, Surrey TW20 0EX, United Kingdom

Abstract

We study the variation in the differential conductance \(G = \frac{dJ}{dV} \) of a normal metal wire in a superconductor/normal metal heterostructure with a cross geometry under external microwave radiation applied to the superconducting parts. Our theoretical treatment is based on the quasiclassical Green’s functions technique in the diffusive limit. Two limiting cases are considered: first, the limit of a weak proximity effect and low microwave frequency and second, the limit of a short dimension (short normal wire) and small irradiation amplitude.

DOI: 10.1103/PhysRevB.82.024502 PACS number(s): 74.45.+c, 74.50.+r, 85.25.Dq, 03.67.Lx

I. INTRODUCTION

Superconductor/normal metal (S/N) nanostructures, where the proximity effect (PE) plays an important role, have been studied very actively during last two decades. Interesting phenomena have been discovered in the course of these studies. Perhaps, the most remarkable one is an oscillatory dependence of the conductance of a normal wire attached to two superconductors which are incorporated into a superconducting loop.1,2 This phenomenon was observed in the so-called “Andreev interferometers,” i.e., in multiterminal SNS junctions (see Refs. 2–6 as well as reviews7–10 and references therein). The reason for this oscillatory behavior of the differential conductance \(G = \frac{dJ}{dV} \) is a modification of the transport properties of the \(n \) wire due to the PE, i.e., due to the condensate induced in the \(n \) wire. The density of the induced condensate is very sensitive to an applied magnetic field \(H \) and oscillates with increasing \(H \).

Theory11–14 was successful in explaining the experiments and predicting new phenomena, including the re-entrance of the conductance to the normal state in mesoscopic proximity structures.15,16 Studies undertaken to date concerned mainly the stationary properties of S/N structures. Experimental data on S/N structures under microwave radiation appeared only recently.5,17,18 As to theoretical studies, one can mention two papers11,17 where the ac impedance of a S/N structure was calculated. However, measuring the frequency dependence of the ac conductance is not an easy task. It is more convenient to measure a nonlinear dc response (dc conductance) to a microwave radiation. Recently, a numerical calculation of the dependence of the critical Josephson current \(I_c \) in SNS junction on the amplitude of an external ac radiation has been performed.19

In this paper, using a simple model we calculate the dc conductance of a normal (\(n \)) wire in an S/N structure (cross geometry) as a function of the frequency \(\Omega \) and the amplitude of the external microwave radiation. We consider the limiting cases of a long and a short \(n \) wire and show that the response has a resonance peak at a frequency \(\Omega \) close to \(\frac{\varepsilon_n}{\hbar} \), where \(\varepsilon_n \) is the energy of a subgap in the \(n \) wire induced by the PE. Our theory predicts resonances and can help to optimize quantum devices based on hybrid SNS nanostructures.20,21

We employ the quasiclassical Green’s-function technique in the diffusive limit. This means that we will solve the Usadel equation22 for the retarded (advanced) Green’s function \(\tilde{g}^{R(A)} \) and the corresponding equation for the Keldysh matrix function \(\tilde{g}^{K} \) (Sec. II). First, a weak PE will be considered when the Usadel equation can be linearized (Sec. III). We calculate the dc conductance of the \(n \) wire in this limit, assuming that the frequency of the ac radiation is low (\(\Omega \ll T_c \)). In Sec. IV, the opposite limiting case of a short \(n \) wire will be analyzed for arbitrary frequencies \(\Omega \). We present the frequency dependence of the correction to the dc conductance caused by ac radiation. In Sec. V, we discuss the obtained results.

II. MODEL AND BASIC EQUATIONS

We consider an S/N structure shown in Fig. 1. It consists of a \(n \) wire or \(n \) film which connects two \(N \) and \(S \) reservoirs
Green’s functions \(g(R) \) and \(g^K \) are matrices of the retarded (advanced) Green’s functions and \(g^K \) is a matrix of the Keldysh functions. The first matrices describe thermodynamical properties of the system [the density of states (DOS), supercurrent, etc.] whereas the matrix \(g^K \) is used to describe dissipative transport and nonequilibrium properties.

The matrix \(\hat{g} \) satisfies the normalization condition \(g(t,t') = \delta(t-t') \),

\[
g(t, t') = \int dt'' \int dt''' g(t, t'') g(t'', t') g(t', t'''),
\]

where \(g(t) \) denotes the integral product \(g(t, t') \).

The Fourier transform performed as \(g(\xi, \omega) = \int dt g(t) e^{i\omega t} \) yields \((\hat{g} \ast \hat{g})(\xi, \omega) = 2\pi \delta(\xi - \omega) \) where now \(\hat{g}(\xi, \omega) = \int dt g(t) e^{i\omega t} \).

The matrix of Keldysh functions \(g^K \) can be expressed in terms of the matrices \(g(R) \) and a matrix of distribution functions \(\hat{F} \),

\[
g^K = g^R \cdot \hat{F} \cdot g^A \ast \hat{F},
\]

where the matrix \(\hat{F} \) can be assumed to be diagonal \(\hat{F} = \hat{T} \cdot F \cdot \hat{T} \).

Here \(\hat{T} \) is the identity matrix and \(\hat{T} \) the third Pauli matrix.

The function \(F \) describes the charge imbalance [premultiplied with the DOS and integrated over all energies it gives the local voltage] while \(F \) characterizes the energy distribution of quasiparticles.

Due to the general relation \(g^A(\xi, \omega) = -\hat{T}_3 g^R(\xi, \omega) \hat{T}_3 \),

one can immediately calculate \(g^R \) after finding the matrix \(g^K \). That means that knowing the matrices \(g^K \) and \(\hat{F} \) we can determine all entries of \(\hat{g} \).

The Green’s functions in \(N \) and \(S \) reservoirs are assumed to have an equilibrium form corresponding to the voltages \(\pm V \) and phases \(\pm \varphi(t) \). For example, the retarded (advanced) Green’s functions in the upper \(S \) reservoir are

\[
\hat{g}^{R(A)}(t, t') = \hat{S}(t) \hat{S}^{R(A)}(t-t') \cdot \hat{S}(t'),
\]

where \(\hat{S}(t) = \exp[i\hat{T}_3 \varphi(t)/2] \) is a unitary transformation matrix and the Fourier transform of \(\hat{g}^{R(A)}(t-t') \) equals

\[
\hat{g}^{R(A)}(\omega) = \frac{1}{\xi^{R(A)}(\omega)} \left(\begin{array}{cc} \omega + \Delta & \xi^{R(A)}(\omega) \\ -\xi^{R(A)}(\omega) & \omega - \Delta \end{array} \right),
\]

with \(\xi^{R(A)}(\omega) = \pm \sqrt{(\omega \pm i0)^2 - \Delta^2} \), i.e., the matrix \(\hat{g}^{R(A)} \) describes the BCS superconductor in the absence of phase. The retarded (advanced) Green’s functions in the lower \(S \) reservoir are determined in the same way with the replacement \(\varphi(t) \rightarrow -\varphi(t) \). The matrix \(\hat{g}^{R(A)} \) in the right (left) \(N \) reservoirs is equal to \(\hat{g}^{R(A)} \) with \(\Delta \rightarrow 0 \), i.e., \(\hat{g}^{R(A)} \) \(\pm \hat{T}_3 \).

In the reservoirs the matrix \(\hat{F}(t, t') \) can be represented through the equilibrium distribution \(F_{eq}(\omega) = \tanh(\omega/2T) \) via Eq. (8).
The phase $\varphi(t)$ in the upper S reservoir is given by Eq. (1), and for $\varphi_N(t)$ in the right N reservoir, we have $\varphi_N(t)=2\pi eVt$. Therefore in the normal reservoir (at the right) the matrix distribution function has diagonal elements $F_N(e)_{1,1}$ and in the considered case of the time dependence of the normal reservoir, the matrix distribution function can be written as $F_N(e)=\tilde{\tau}_N F_N(e)+\tilde{\tau}_F N(e)$.

Thus, all Green’s functions in the reservoirs are defined.

Our task is to find the matrix \mathcal{g} in the n wire. In the considered diffusion limit it obeys the equation

$$\tau_3 \cdot \frac{\partial \mathcal{g}}{\partial t} + \frac{\partial \mathcal{g}}{\partial t} = \tilde{\tau}_3 \mathcal{g} + \tilde{\tau}_3 \mathcal{g} V_n(t) - \mathcal{g} e V_n(t') - D_{n,3} \nabla (\mathcal{g} \cdot \nabla \mathcal{g}) = 0,$$

where $\tilde{\tau}_3$ is a diagonal matrix with equal elements ($\tilde{\tau}_3)_{1,1,2}=\tau_3$, V_n is a local electrical potential in the n wire. We dropped the inelastic collision term supposing that $E_{in}=D/2^{1/2}>>T_{in}$, where D is the diffusion coefficient, $L_{max}=max[x_{3}^{2},2]$, and T_{in} is the inelastic-scattering time. This equation is complemented by the boundary condition

$$\mathcal{g} \cdot \partial_{x_{3}} \mathcal{g}^{1,2}_{1,1,1,2,3} = \pm \kappa_{N,S}(\mathcal{g} \cdot \mathcal{g}^{1,2}_{1,1,1,2,3}),$$

where $\kappa_{N,S}=1/(2\sigma_{R_{n,N,S}})$. $R_{n,N,S}$ are the nN and nS interface resistances per unit area and σ is the conductivity of the n wire. Here we introduced the commutator $[\mathcal{g} \cdot \mathcal{g}^{1,2}_{1,1,1,2,3}]=\mathcal{g} \cdot \partial_{x_{3}} \mathcal{g}^{1,2}_{1,1,1,2,3} - \mathcal{g}^{1,2}_{1,1,1,2,3} \cdot \partial_{x_{3}} \mathcal{g}$. The current in the n wire is determined by the formula

$$j = \frac{\sigma}{8e} \text{Tr}(\tau_3 \cdot 2\pi (\mathcal{g} \cdot \partial_{x_{3}} \mathcal{g})_{12}(t,t')).$$

The matrix element $(\mathcal{g} \cdot \partial_{x_{3}} \mathcal{g})_{12}$ is the Keldysh component that equals $(\mathcal{g} \cdot \partial_{x_{3}} \mathcal{g})_{12} = \mathcal{g} \cdot \partial_{x_{3}} \mathcal{g}^{1,2}_{1,1,1,2,3} + \mathcal{g}^{1,2}_{1,1,1,2,3} \cdot \partial_{x_{3}} \mathcal{g}$.

Even in a time-independent case, an analytical solution of the problem can be found only under certain assumptions. In the considered case of a time-dependent phase difference, the problem becomes even more complicated. In order to solve the problem analytically, we consider two limiting cases: (a) weak proximity effect and slow phase variation in time; and (b) strong proximity effect in a short n wire and arbitrary frequency Ω of the phase oscillations.

III. WEAK PROXIMITY EFFECT; SLOW PHASE VARIATION

In this section we will assume that the proximity effect is weak and the phase difference $\varphi(t)$ is almost constant in time. The latter assumption means that the frequency of phase variation satisfies the condition $\Omega \ll T/\hbar$. The weakness of the PE means that the anomalous (Gor'kov’s) part j^{RA} of the retarded and advanced Green’s functions in the n wire $\tilde{g}^{R,A}=g^{R,A} \tilde{\tau}_A + j^{R,A}$ can be assumed to be small

$$\left| j^{\text{RA}} \right| \ll 1.$$

The matrix j^{RA} contains only non-diagonal elements. The diagonal part obtained from the normalization is

$$g^{R,A} \tilde{\tau}_A = \pm \tilde{\tau}_A \left(1 - \frac{1}{2} \left| j^{\text{RA}} \right|^2 \right).$$

Now we can linearize Eq. (12) for the component $11,22$, that is, for the retarded (advanced) Green’s functions. Then we obtain a simple linear equation

$$\nabla \left| j^{\text{RA}} \right|^2 - \kappa^2_{N,S} \left| j^{\text{RA}} \right|^2 = 0,$$

where $\kappa^2_{N,S} = \pm \frac{1}{2} \frac{e}{D}$. The boundary conditions [Eq. (13)] for the matrices j^{RA} acquire the form

$$\left[\partial_x j^{\text{RA}} + 2 \kappa \left| j^{\text{RA}} \right| \right]_{x=x+L_3} = 0,$$

$$\left[\partial_x j^{\text{RA}} - 2 \kappa \left| j^{\text{RA}} \right| \right]_{x=-L_3} = 0,$$

$$\left[\partial_y j^{\text{RA}} + 2 \kappa \left| j^{\text{RA}} \right| \right]_{y=x+L_3} = 0,$$

$$\left[\partial_y j^{\text{RA}} - 2 \kappa \left| j^{\text{RA}} \right| \right]_{y=-L_3} = 0.$$

As follows from Eq. (8) the functions $g_{N,S} j_{S,A}$ are

$$g_{S,A}^{R,A} = \epsilon_{S,A} \left| j_{S,A}^{R,A} \right|,$$

$$f_{S,A}^{R,A} = (i \tilde{\tau}_S \cos \varphi + i \tilde{\tau}_S \sin \varphi) \Delta_{S,A} \epsilon_{S,A}^{R,A}.$$
FIG. 2. (Color online) Bias voltage dependence of the normalized variations in the resistance contributions $\delta R_{nN}/R_{nN}$ and $\delta R_{pN}/R_{pN}$. Parameter values: $\Phi = \pi/3$, $L_w/L_s = 1$, $\varepsilon_{N}/\Delta = 2.5 \times 10^{-2}$, $\varepsilon_{S}/\Delta = 5 \times 10^{-3}$, and $R_{nN}/R_{pN} = 1$.

component) of Eq. (12), multiply this component by $\tilde{\tau}_3$ and take the trace. In the Fourier representation we get [compare with Eq. (2) of Ref. 44]

\[M_{\tau}(e, \phi, \tau) \delta F_{\tau}(e, \phi) = c(e, \phi), \]

(27)

where the function $M_{\tau}(e, \phi, \tau) = 1 + \frac{1}{2}[f(e, \phi) + f^*(e, \phi)]^2$ determines the correction to the conductivity caused by the PE and $c(e, \phi)$ is an integration constant that is related to the current

\[j = \frac{\sigma}{2e} \int_{-\infty}^{\infty} \text{dec}(e). \]

(28)

It is determined from the boundary condition that can be obtained from Eq. (13)

\[M_{\tau}(e, \phi, \tau) \delta F_{\tau}(e, \phi) = \nu[F_{N} - F_{\tau}(L_s)], \]

(29)

where $\nu(e, \phi) = \Re(1 + \frac{1}{2}[F_{N}(e, \phi)]^2)$ is the density of states in the n wire near the nN interface. Finding $F_{\tau}(L_s)$ and $c(e)$ from Eq. (29), we obtain for the current density [compare with Eq. (13) of Ref. 11]

\[j(\phi) = \frac{1}{2e} \int_{-\infty}^{\infty} \text{dec}(e). \]

(30)

Here F_{N} is defined according to Eq. (11), $R_{N} = L_s/\sigma$ is the resistance of the n wire of the length L_s in the normal state, and $(M(e, \phi)^{-1}) = (1/L_s) \int_{0}^{L_s} dx M_{\tau}(e, \phi, x)^{-1}$. The first term in the denominator is the nN interface resistance and the second term is the resistance of the $(0, L_s)$ section of the n wire modified by the PE. The expressions for the DOS $\nu(e, \phi)$ and the function $(M(e, \phi)^{-1})$ are given in the Appendix.

For the differential conductance $G = dj/dV$ at zero temperature we obtain

\[G(V, \phi(t)) = [R_{nN} + R_{pN}(M(eV, \phi)^{-1})]^{-1}. \]

(31)

In Fig. 2 we show the dependence of the nN interface resistance variation $\delta R_{nN}/R_{nN}$ and the resistance variation in the n wire $\delta R_{pN}/R_{pN}(M(eV, \phi)^{-1})$ on the bias voltage V for a fixed phase difference. It can be seen that the δR_{nN} is either positive or negative depending on V while δR_{pN} is always negative, i.e., the PE leads to voltage-dependent changes in the interface resistance (caused by the changes in the DOS in the n wire) and to a decrease in the resistance of the n wire.

The conductance variation $\delta G = G(V, \phi) - G_{n}$ is shown in Fig. 3 for various values of R_{nN}/R_{N}, where $G_{n} = (R_{nN} + R_{pN})^{-1}$ is the conductance of the n wire in the normal state. These results have been obtained earlier.

We are interested in the dc conductance variation averaged in time: $\delta G_{\text{dc}} = (1/2\pi) \int_{0}^{2\pi} dt \delta G[V, \phi(t)]$. From Eqs. (25) and (26) we can extract the dependence of the function f on the phase ϕ: $f(x, \phi) = f(x, 0) \cos \phi$. Hence we obtain

\[M_{\tau}(e, \phi, \tau) = 1 + M_{\tau}(e, 0, \tau) \cos^2 \phi, \]

where $M_{\tau}(e, \phi, \tau) = M_{\tau}(e, \phi, \tau) - 1$. At the same time, $\nu(e, \phi) = 1 + M_{\tau}(e, 0, \tau) \cos^2 \phi$ with $\nu(e, \phi) = \nu(e, \phi) - 1$. These observations lead to the relation

\[\delta G[V, \phi(t)] = \delta G(0, \phi) \cos^2 \phi(t), \]

(32)

which by averaging over time yields

\[\delta G_{\text{dc}} = \delta G(0, 0) \cdot \frac{1}{2} \left[1 + J_0(2\phi_{\text{dc}}) \cos(2\phi_{\text{dc}}) \right], \]

(33)

where J_0 is the Bessel function of the first kind and zeroth order. This oscillatory behavior of the time-averaged (dc) conductance variation δG_{dc} as a function of the ac amplitude can be seen in Fig. 4.

Thus, the calculations carried out in this section under assumption of adiabatic phase variations allow us to obtain the dependence of the conductance change δG_{dc} on the amplitude ϕ_{dc}, but provide no information about the frequency dependence of δG_{dc}. This dependence will be found in the next section.

IV. STRONG PE; SHORT NORMAL WIRE

In this section we analyze the limiting case of a short n wire when the Thouless energy $E_{\text{Th}} = D/L_s^2$ is much larger than characteristic energies: $E_{\text{Th}} \gg D/2k_{S}^{2}/T, eV$. In this case all the functions in Eq. (12) are almost constant in space and we can integrate this equation over x and y. Then the term $iS_{3} \cdot \tilde{\tau}_{3} \cdot \tilde{\tau}_{3} \cdot \tilde{\tau}_{3}$ (in the Fourier representation $-ie\tilde{\tau}_{3} \cdot \tilde{\tau}_{3} \cdot \tilde{\tau}_{3}$) is consid-
Combining Eqs. (34) and (35) and the boundary conditions [Eq. (13)], we arrive at the equation

\[e \tau_R \cdot \mathbf{g} \cdot \mathbf{R} = i e S \left[\mathbf{g} \cdot \mathbf{g}_{N+}, + i e S \left[\mathbf{g} \cdot \mathbf{g}_{S+} \right] \right]. \]

(36)

Here \(e S = D(2R_{NN,S,σ}D) \) is a characteristic energy related to the interface transparency, \(L = L_{T} + L_{c} \). The energy \(e S \) determines the damping in the spectrum of the n wire and the energy \(e S \) is related to a subgap induced in the n wire due to the PE. The matrices \(\mathbf{g}_{N, S+} \) are equal to \(\mathbf{g}_{N, S+} = i \left[\mathbf{g}_{N, S-} \right] \mathbf{K} + \mathbf{g}_{S+} \).

In the limit of the short n wire considered in this section, we need to find only the retarded (advanced) Green’s functions. Indeed, let us rewrite the expression for the current [Eq. (14)] using the boundary condition [Eq. (13)] at the right \(n N \) interface and concentrating on the dc component of the current,

\[j = \frac{1}{16eR_{nn}} \text{Tr} \left\{ \mathbf{R} \cdot \int_{-\infty}^{\infty} de \left(\mathbf{g}^{R} \cdot \mathbf{g}^{K} + \mathbf{g}^{K} \cdot \mathbf{g}^{R} - \mathbf{g}^{K} \cdot \mathbf{g}^{K} \right) + \mathbf{R} \right\}, \]

(37)

where \(\mathbf{R} \) and \(\text{Tr} \left(\mathbf{R} \cdot \mathbf{g}^{R} \cdot \mathbf{g}^{K} + \mathbf{g}^{K} \cdot \mathbf{g}^{R} - \mathbf{g}^{K} \cdot \mathbf{g}^{K} \right) = 4g^{R}F_{N-} \). The distribution function \(F_{N-} \) in the \(N \) reservoir is defined in Eq. (11).

The integral over energies from the second and third terms is zero because it is proportional to the voltage in the n wire which is set to be zero. Therefore the current can be written as

\[j = \frac{1}{2eR_{nn}} \int_{-\infty}^{\infty} de \nu(e) F_{N-}(e), \]

(38)

where \(\nu(e) = \frac{1}{2} \left(g^{R} - g^{A} \right) = \Omega \left(g^{R}(e) \right) \). This formula has an obvious physical meaning—the current through the \(n N \) interface is determined by the product of the DOS in the n wire and \(N \) reservoir \((\nu = 1)\) and the distribution function in the \(N \) reservoir (the distribution function \(F_{N-} \) in the n wire is zero).

Using Eqs. (2), (11), and (38) we arrive at the following expression for the differential conductance:

\[G = \frac{1}{2eR_{nn}} \int_{-\infty}^{\infty} \frac{de}{4T} \nu(e) \left[\frac{1}{\cosh \frac{e+eV}{2T}} + \frac{1}{\cosh \frac{e-eV}{2T}} \right], \]

(39)

In order to find the matrix \(\mathbf{g}^{R} \), we can write the (11) component of Eq. (36) in the form

\[\mathbf{R} \cdot \mathbf{g}^{R} - \mathbf{g}^{R} \cdot \mathbf{R} = i e S \left[\mathbf{g}^{R} \cdot \mathbf{g}^{S+} \right], \]

(40)

Here and later all matrix Green’s functions written without arguments are functions of two energies \((e, e')\). Those of them which are diagonal in energy may be also obtained with a single energy argument, e.g., \(\mathbf{g}^{R}(e) = \mathbf{g}^{R}(e', e') \).

According to Eqs. (1) and (8) the matrix \(\mathbf{g}^{R} \) is a function of two times, \(\mathbf{g}^{R}(t, t') \), that is, in the Fourier representation it is a function of two energies: \(e, e' \). Therefore, to find the matrix \(\mathbf{g}^{R}(e, e') \) in a general case is a formidable task.

However, we can assume that the amplitude of the ac component of the phase \(\varphi_{0} \) is small and obtain the solution making an expansion in powers of \(\varphi_{0} \).

\[\mathbf{g}^{R} = \mathbf{g}^{R}_{0} + \mathbf{g}^{R}_{1} + \mathbf{g}^{R}_{2} + \cdots. \]

(41)

Here and later all matrix Green’s functions written without arguments are functions of two energies \((e, e')\). Those of which are diagonal in energy may be also obtained with a single energy argument, e.g., \(\mathbf{g}^{R}_{21} = \mathbf{g}^{R}_{21}(e) = 2\pi \mathbf{R} \delta e - \delta e' \).

Similar to Eq. (41) we represent the matrix \(\mathbf{g}^{R}_{SS} \) (up to the second order in \(\varphi_{0} \)) as \(\mathbf{g}^{R}_{SS} = \delta g_{0}^{R} + \delta g_{1}^{R} + \delta g_{2}^{R} + \cdots \), and find from Eq. (8) for the stationary part \(\delta g_{0}^{R} \), and the corrections \(\delta g_{1}^{R} \) (first order in \(\varphi_{0} \)) and \(\delta g_{2}^{R} \) (second order in \(\varphi_{0} \))

\[\delta g_{0}^{R} = 2\pi \mathbf{R} \delta \varphi_{0} \Delta \sin \varphi_{0} \left(\xi_{e}^{e} + \xi_{e}^{\prime} \right), \]

(42)

\[\delta g_{1}^{R} = -i \tau_R \frac{\pi}{2} \varphi_{0} \Delta \sin \varphi_{0} \left(\xi_{e}^{e} + \xi_{e}^{\prime} \right) \left(\delta \varphi_{0} - \delta \varphi_{0} \right), \]

(43)

where we used the notation \(\delta \varphi_{0} = \partial \varphi_{0} \partial e - \partial \varphi_{0} \partial e' \), \(\xi_{e} = \xi_{e}^{e} \) and defined the functions

\[P_{0} = \delta \varphi_{0} \left(\xi_{e}^{e} + \xi_{e}^{\prime} + \xi_{e}^{e} \right) + \delta \varphi_{0} \left(\xi_{e}^{e} + \xi_{e}^{\prime} + \xi_{e}^{e} \right), \]

(44)
Using the expressions for $\delta \hat{g}^R_{Se}$ and $\delta \hat{g}^S_{Se}$ given above we can calculate the corrections to S_0 up to the second order in $\varphi_{i\Omega}$ and the corresponding modification of the DOS ν_Ω in the n wire.

In the zeroth-order approximation, i.e., for $\varphi_{i\Omega}=0$ we obtain from Eq. (40) $g_0(e, e') = \delta \hat{g}_0(e) 2\pi \delta(e - e')$, where the matrix $\delta \hat{g}_0(e)$ obeys the equation

$$[\tau_2 E_{\Delta}^R + i \tau_2 E_{\Delta}^I/\xi_c^0] \delta \hat{g}_0(e) = 0, \quad (46)$$

containing $E_{\Delta}^R = \hat{E} + i e S g_0^S(e) = e + i e S g_0^S(e)$, $E_{\Delta}^I = i e S \cos \varphi_0 f_0(e)$, and $f_0(e) = \Delta / \xi_c^0$. The solution of this equation is $\delta \hat{g}_0^R(e) = i \tau_2 f_0^R(e)$.\hfill (47)

$$\delta \hat{g}_0^S(e) = E_{\Delta}^R i / \xi_c^0, \quad f_0^R(e) = E_{\Delta}^R i / \xi_c^0.$$\hfill (47)

where $\xi_c^0 = (k_F^0)^2/E_{\Delta}^R$. The quantity E_{Δ}^R determines a subgap induced in the n wire due to the PE. Indeed, consider the most interesting case of small energies assuming that $|e, e_0| < \Delta$; then, $k_F^0 = \Delta$, $f_0^R(e) = 0$, and $\xi_c^0 = \sqrt{(e + i e_0)^2 - (e S \cos \varphi_0)^2}$. This means that the spectrum of the n wire has the same form as in the BCS superconductor with a damping e_S and a subgap $e_S \cos \varphi_0$, which depends on the NS interface transparency and phase difference.

Note that the formula for the subgap induced in the N metal due to the PE in a tunnel superconductor-insulator-normal metal (SIN) junction was obtained by McMillan.\hfill (50)

The obtained results for the functions $g_0^R(e)$ and $f_0^R(e)$ can be easily generalized for the case of asymmetric nS interfaces with different interface resistances $R_{nS1,2}$ (correspondingly, $e_{s1,2}$). In the limit $e_{s1,2} \ll \Delta$, we obtain for the subgap e_{s2},

$$e_{s2}(\varphi_0) = \frac{1}{2} \sqrt{e_{s1}^2 + e_{s2}^2 + 2 e_{s1} e_{s2} \cos 2 \varphi_0}. \hfill (48)$$

This formula shows that the subgap as a function of the phase difference φ varies from $1/2|e_{s2} - e_{s1}|$ for $\varphi_0 = \pi/2$ to $1/2(e_{s1} + e_{s2})$ for $\varphi_0 = 0$.

We proceed finding the corrections of the first ($\delta \hat{g}^R$) and second ($\delta \hat{g}^S$) order in $\varphi_{i\Omega}$ for g_0 in a way similar to the one used in Refs. 47 and 51. The correction of the first order $\delta \hat{g}^R$ (for brevity, we drop the index R) obeys the equation

$$\xi_c^0 \delta \hat{g}_0^R(e) \cdot \delta \hat{g}_0^R(e') = \delta \hat{g}_0^S(e) \cdot \delta \hat{g}_0^S(e'), \hfill (49)$$

which contains all terms of the first order in $\varphi_{i\Omega}$ from Eq. (40). Note that we are making use of the relation $g_0(e) = g_0^R(e) \tau_2 + i e S g_0^S(e)$ evident from Eqs. (40), (46), and (47).

In order to solve Eq. (49), it is useful to employ the normalization condition [Eq. (4)] for $g = \delta \hat{g}$ for which the first-order term of $g \circ \delta \hat{g}$ yields

$$\delta \hat{g}_0(e) \cdot \delta \hat{g}_0^R(e') = 0. \hfill (50)$$

From Eqs. (49) and (50), we find

$$\delta \hat{g}_0^R(e) = \delta \hat{g}_0^S(e) \cdot \delta \hat{g}_0^S(e') \cdot \xi_c^0 + \xi_c^0. \hfill (51)$$

We determine the correction $\delta \hat{g}^S$ in the same manner. Reading off the second-order terms in Eq. (40) gives

$$[\xi_c^0 \delta \hat{g}_0^R \cdot \delta \hat{g}_0^R] = i e S [\delta \hat{g}_0^R \cdot \delta \hat{g}_0^S \cdot \delta \hat{g}_0^S] + [\delta \hat{g}_0^R \cdot \delta \hat{g}_0^S \cdot \delta \hat{g}_0^S] . \hfill (52)$$

The second-order part of the normalization condition is

$$\delta \hat{g}_0^R(e) \cdot \delta \hat{g}_0^S(e') = \delta \hat{g}_0^S(e') \cdot \delta \hat{g}_0^R(e'), \hfill (53)$$

Thus, we obtain the second-order correction

$$\delta \hat{g}^R = \delta \hat{g}_0^R(e) \cdot \delta \hat{g}_0^S(e') \cdot \xi_c^0 + \xi_c^0. \hfill (54)$$

In order to calculate the correction to the dc conductance caused by the ac radiation, $\delta \hat{g}$, we need to find $\text{Tr} \{ \hat{T}_1 \delta \hat{g} \}$ and $\text{Tr} \{ \hat{T}_1 \delta \hat{g} \}$ and take their parts proportional to $2 \pi \delta(e - e')$. By inspection of Eqs. (43) and (51) one recognizes that the first-order correction contains only terms proportional to $\delta(e - e' \pm \Omega)$ and therefore only contributes to the ac current. This is the fundamental reason why the second-order analysis is needed to determine the variation in the dc conductance.

As a result we just have to find the multiple of $2 \pi \delta(e - e')$ contained in $\text{Tr} \{ \hat{T}_1 \delta \hat{g} \}$ which we denote as $2 \delta \hat{g}(e)$, that is, $\delta \hat{g}(s) 2 \pi \delta(e - e') = 1/2 \text{Tr} \{ \hat{T}_1 \delta \hat{g} \}$. We represent the function $\delta \hat{g}(e)$ as a sum

$$\delta \hat{g}(e) = \delta \hat{g}^{(0)}(e) + \delta \hat{g}^{(0)}(e), \hfill (55)$$

then, at low energies $\epsilon << e_S$, the function $\delta \hat{g}^{(0)}(e)$ is almost independent of Ω whereas the function $\delta \hat{g}^{(0)}(e)$ depends strongly on Ω at $e = e_S \cos \varphi_0$. Assuming the validity of Eq. (56) we obtain

$$\delta \hat{g}^{(0)}(e, \Omega) = \frac{1}{4} e_S^2 \varphi_0 \cos^2 \varphi_0 \sum \varphi_0 \frac{g_0(e) f_0(e + \Omega) + g_0(e) g_0(e + \Omega)}{[\xi_c^0 + \xi_c^0 e_S \Omega]^2} \hfill (58)$$

where ξ_c^0 and ξ_c^0 are defined in Eq. (47). The sum sign index “\pm” in Eq. (58) means that the given expression is added to the same one with the negative frequency (−Ω).

Using the function $\delta \hat{g}(e, \Omega)$ we can calculate a correction to the DOS $\delta \nu(\epsilon, \Omega)$ due to the PE and with the aid of

$$\delta \nu(\epsilon, \Omega) = \frac{1}{4} e_S^2 \varphi_0 \cos^2 \varphi_0 \sum \varphi_0 \frac{g_0(e) f_0(e + \Omega) + g_0(e) g_0(e + \Omega)}{[\xi_c^0 + \xi_c^0 e_S \Omega]^2} \hfill (58)$$

where ξ_c^0 and ξ_c^0 are defined in Eq. (47). The sum sign index “\pm” in Eq. (58) means that the given expression is added to the same one with the negative frequency (−Ω).

Using the function $\delta \hat{g}(e, \Omega)$ we can calculate a correction to the DOS $\delta \nu(\epsilon, \Omega)$ due to the PE and with the aid of

$$\delta \nu(\epsilon, \Omega) = \frac{1}{4} e_S^2 \varphi_0 \cos^2 \varphi_0 \sum \varphi_0 \frac{g_0(e) f_0(e + \Omega) + g_0(e) g_0(e + \Omega)}{[\xi_c^0 + \xi_c^0 e_S \Omega]^2} \hfill (58)$$

where ξ_c^0 and ξ_c^0 are defined in Eq. (47). The sum sign index “\pm” in Eq. (58) means that the given expression is added to the same one with the negative frequency (−Ω).

Using the function $\delta \hat{g}(e, \Omega)$ we can calculate a correction to the DOS $\delta \nu(\epsilon, \Omega)$ due to the PE and with the aid of
Eq. (39) find the correction $\delta G(V, \Omega)$ to the differential dc conductance. As follows from Eq. (39), at zero temperature the normalized differential dc conductance $\tilde{G}(V, \Omega) = G(V, \Omega) R_{nN}$ is equal to

$$\tilde{G}(V, \Omega) = \tilde{G}_0(V) + \delta \tilde{G}(V, \Omega) = \nu_0(eV) + \delta \nu(eV, \Omega)$$

(59)

with the definitions $\nu_0(eV) = \Re [g_0(eV)]$ and $\delta \nu(eV, \Omega) = \Re [\delta g_0(eV, \Omega)]$.

Using the obtained formula for $g_0(e)$ and $\delta g_0(e)$ we can calculate the conductance G_0 and its correction δG due to microwave radiation for different values of parameters (damping ϵ_N, phase difference $2\phi_0$, etc.). The dependence of the conductance in the absence of radiation G_0 versus the applied voltage V is presented in Fig. 5. We see that this dependence follows the energy dependence of a SIN junction. In our case the n wire with an induced subgap plays a role of “S” with a damping ϵ_N in the “superconductor.” Since the value of the induced subgap, $\epsilon_N = \epsilon_S \cos \phi_0$, depends on the phase difference $2\phi_0$, the position of the peak in the dependence $G_0(V)$ is shifted downward with increasing ϕ_0.

FIG. 5. (Color online) Normalized stationary differential conductance \tilde{G}_0 versus bias voltage V. Parameter values: $T/\Delta = 10^{-2}$, $\epsilon_S/\Delta = 0.1$, and $\epsilon_N/\Delta = 10^{-2}$. Different cases: (a) $\phi_0 = \pi/8$, (b) $\phi_0 = \pi/4$, and (c) $\phi_0 = 3\pi/8$.

In Fig. 6 we show the bias voltage dependence of the conductance correction due to ac radiation $\delta g_0(e)$ (coefficient in front of ϕ_0) for different values of ϕ_0. The magnitude and the position of the arising peaks depend strongly on the values of the parameters, e.g., ϕ_0.

By varying the stationary phase difference ϕ_0 or the damping ϵ_S one can change the frequency dependence of the correction δg_0 considerably. This is shown in Figs. 7 and 8, respectively. One can see that if $\epsilon_S = \epsilon_N$, then the dependence $\delta g_0(eV)$ has a peak located at $\approx \epsilon_S/(\phi_0)$ and split into two subpeaks. The splitting becomes more and more distinct with increasing bias voltage V. With decreasing ϵ_N and increasing ϵ_S, the form of this dependence changes significantly. For example, the resonance curve becomes broader with increasing damping. Increasing temperature leads to a similar effect as one can see in Fig. 9.

In Fig. 10 we plot the normalized conductance correction $\delta \tilde{G}_0(\phi_0)$ as a function of ϕ_0 for different values of the bias voltage V. At large V this dependence is close to sinusoidal.

FIG. 6. (Color online) Normalized second-order correction of differential conductance $\delta \tilde{G}$ versus bias voltage V. Parameter values: $T/\Delta = 2 \times 10^{-3}$, $\epsilon_S/\Delta = 0.1$, $\epsilon_N/\Delta = 10^{-2}$, and $\Omega/\Delta = 5 \times 10^{-2}$. Different cases: (a) $\phi_0 = \pi/8$, (b) $\phi_0 = \pi/4$, and (c) $\phi_0 = 3\pi/8$.

FIG. 7. (Color online) Normalized second-order correction of differential conductance $\delta \tilde{G}$ versus ac frequency Ω. Parameter values: $T/\Delta = 2 \times 10^{-3}$, $\epsilon_S/\Delta = 0.1$, $\epsilon_N/\Delta = 10^{-2}$, and $eV/\Delta = 10^{-2}$. Different cases: (a) $\phi_0 = \pi/6$, (b) $\phi_0 = \pi/4$, and (c) $\phi_0 = \pi/3$.

Note that in an asymmetrical system ($\epsilon_S \neq \epsilon_N$) the lowest value of the subgap is not zero [cf. Eq. (48)].
We found that at small applied voltages the resistance of the wire is negligible in comparison with the radiation. Therefore, the heating would be very small if the condition $\epsilon_{hr} \ll \epsilon_T/\hbar$ is satisfied. The obtained results are useful for understanding the response of the considered and analogous SN systems to microwave radiation which can be used, for example, in Q bits.

V. CONCLUSION

We have calculated the change in the conductance in an S/N structure of the cross geometry under the influence of microwave radiation. The calculations have been carried out to the basis of quasicalssical Green’s functions in the diffusive limit. Two different limiting cases have been considered: (a) a weak proximity effect and low frequency Ω of radiation and (b) a strong proximity effect and small amplitude of radiation.

In the case (a), the conductance change δG consists of two parts. One is related to a change in the nN interface resistance due to a modification of the DOS of the n wire. At small applied voltages V_{np}, it is negative. Another part is caused by a modification of the conductance of the n wire due to the PE. This part is positive and consists of two competing contributions. One contribution, which is negative, stems from the a modification of the DOS of the n wire.

In the case (b), a short n wire was considered so that the resistance of the n wire is negligible in comparison with the resistance of the nN interface. The correction δG has been found under assumption of a small amplitude of the radiation. We found that at small applied voltages V, the dependence $\delta G(\Omega)$ has a resonance form. It has a maximum when the frequency Ω is on the order of $\epsilon_{hp} = e^2_{hp}/(c目光)$, where ϵ_{hp} is the electron-phonon inelastic-scattering time, $E = \delta V_{LRb}/R_L = \hbar \Omega/(e \epsilon_{hp})$ is the ac electric field in the n wire, and $c_{ph} = T/n \epsilon_f$ is the heat capacity of electron gas with concentration n. Taking into account that $\epsilon_{hp} = e^2_{hp}/(c目光)$, we find that $\delta G/\epsilon_{hp} = (\epsilon_{hp}/e^2_{ph})Z^2$, where Z is the dimensionless coefficient of electron penetration through the SN interface, which is assumed to be small, $I = e \epsilon_f$ is the mean-free path in the n wire. Therefore, the heating would be very small if the condition $\epsilon_{hp} \ll (e^2_{hp}/e^2_{ph})Z^2$ is fulfilled.

The obtained results are useful for understanding the response of the considered and analogous SN systems to microwave radiation which can be used, for example, in Q bits.

ACKNOWLEDGMENTS

We would like to thank SFB 491 for financial support. One of us (V.T.P.) was supported by the British EPSRC under Grant No. EP/F016891/1.

APPENDIX

The DOS in Eqs. (29) and (30) is given by the formula $n(e, \varphi) = \rho L/(1 + \frac{1}{\sqrt{2}}f(L_{sr})^2)$ with $f(L_{sr})$ defined in Eq. (25). Making use of the weak proximity-effect approximation we rewrite the function $\langle M(e, \varphi) \rangle$ in Eq. (30) as

\[
\langle M(e, \varphi) \rangle = \rho L/(1 + \frac{1}{\sqrt{2}}f(L_{sr})^2)
\]
\[\langle M(e, \varphi)^{-1} \rangle = 1 - \frac{1}{2} \langle \Re \{ f^2 + ff^* \} \rangle. \quad (A1) \]

Using Eq. (25) one can easily calculate

\[\langle f^2 \rangle = \frac{C_2 + S^2 \sinh 2 \theta_x}{2 \theta_x} + \frac{C_2 - S^2}{2} + CS \frac{\sinh^2 \theta_x}{\theta_x}, \quad (A2) \]

\[\langle ff^* \rangle = \left[\frac{C_2 + |S|^2 \sin 2 \theta_x}{2 \theta_x} + \frac{|C|^2 - |S|^2 \sin 2 \theta_x}{2 \theta_x} \right] + \Re \left\{ CS \left(\frac{\sinh^2 \theta_x}{\theta_x} + i \frac{\sin^2 \theta_x}{\theta_x} \right) \right\}, \quad (A3) \]

where \(\theta_x \) and \(\theta_x^* \) are the real and imaginary parts of \(\theta_x \), respectively, i.e., \(\theta_x = \theta_x^* + i \theta_x^* \). We use these expressions for calculating the function \(\langle M(e, \varphi)^{-1} \rangle \) and conductance \(G \).