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Abstract

This thesis is divided into two distinct parts. The first part of the thesis explores
security issues in key establishment protocols, including both key distribution proto-
cols and key agreement protocols, and in both the general and the password-based
setting. The second part of the thesis explores security issues of Timed-Release
encryption schemes, especially those with a Pre-Open capability.

In the first part, we initially present a formal description of key establishment proto-
cols, and summarise the security properties that may be required of such a protocol.
Secondly, we examine existing security models for key establishment protocols. We
show that none of these security models fully capture the desired security properties.
Thirdly, we examine some existing protocols and demonstrate certain vulnerabilities.
Some of these vulnerabilities have not previously been detected because of the lack
of a formal security analysis, while others have been missed because the adopted
security models fail to address such security vulnerabilities. Fourthly, we describe a
novel security model for general key establishment protocols, and we further adapt
it for the password setting. Finally, we propose key establishment protocols which
are proved secure in our novel security model.

In the second part we start by examining an existing security model for Timed-
Release Encryption schemes with a Pre-open Capability (TRE-PC), and we demon-
strate several limitations of this model. We then propose a new security model for
such public-key encryption schemes, and establish relationships between the pro-
posed security notions. We also propose a general construction for TRE-PC schemes
and an instantiation of certain primitives.
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Chapter 1

Introduction

Contents

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2 Thesis Structure and Contributions . . . . . . . . . . . . 12

1.3 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

In this chapter, we provide the motivation for our research and describe the contri-

butions of this thesis. We also present the overall structure of the thesis.

1.1 Motivation

This thesis explores security issues in key establishment protocols and timed-release

public key encryption schemes. In this introductory section we briefly outline the

main motivations behind the research.

Key establishment plays a fundamental role in enabling other security services, such

as symmetric encryption and message authentication. The study of key establish-

ment is well established, although the modern study of key establishment protocols

can be traced back to the seminal work of Needham and Schroeder [197] in 1978.

Since then, research into key establishment has grown rapidly, especially in the two-

party setting, and a considerable number of protocols and security models have been

proposed. Despite this rich research literature, many relevant issues have not been

satisfactorily addressed. The first issue is that the security properties of key estab-

lishment protocols are still not well understood; as a result, many protocols and

security models fail to cover the properties required by key establishment in prac-

tice. Our attempts at tackling this issue leads to the results presented in Chapter 3,

where we provide a detailed analysis of the security properties of key establishment

protocols. The second issue is that many security models proposed in the literature

11



1.2 Thesis Structure and Contributions

fail to address certain practical security threats. Our contribution towards the res-

olution of this issue is given in Chapter 4, where we examine several representative

security models, and analyse their capabilities for modelling security properties. In

Chapter 6, we also propose a security model for security evaluation. The third issue

is that the authors of many protocols claim that they are secure, although they are,

in fact, insecure. Our work on this topic is described in Chapter 5, where we exam-

ine several protocols and point out their vulnerabilities. The last issue considered

is how to build efficient and secure key establishment protocols. Our contributions

on this issue are contained in Chapter 7, where we examine a protocol compiler and

also propose a more efficient such scheme. In addition, we also propose two new

compilers and several novel protocols.

Public key encryption is another fundamental part of cryptography, and plays a

fundamental role in providing many security services. Timed-release public key en-

cryption schemes, which are a special type of public key encryption scheme, have

the capability to release the plaintext after a pre-defined time. We are particularly

interested in those timed-release public key encryption schemes with pre-open capa-

bilities, which enable the message sender to disclose the content in advance of the

scheduled time if the sender wishes to. It is a challenging task to build a security

model for this type of scheme, and we give some general constructions. Our contri-

butions on this issue are given in Chapters 8 and 9, where we examine an existing

security model, propose a new model and associated security notions, and estab-

lish the relationships between these notions. We also present a hybrid construction

method for pre-release encryption schemes based on a TRE-PC KEM and a DEM,

and we further propose an instantiation of this construction method.

1.2 Thesis Structure and Contributions

In Chapter 2, we give the preliminary material needed in the subsequent chapters

of the thesis. We first review the relevant notions from complexity theory and

mathematics, and then introduce the relevant cryptographic primitives and their

security definitions. We also briefly review the security analysis methods contained

in the literature, and, in particular, emphasise complexity-theoretic methods.

12



1.2 Thesis Structure and Contributions

The remainder of this thesis is divided into two distinct parts. In Part I, we present

a study of key establishment protocols. This part of the thesis consists of Chapters

3–7.

In Chapter 3, we review the history of key establishment, describe some representa-

tive protocols, and then present a formal description for key establishment. Finally

we describe the security properties which may be required of a key establishment

protocol. In Chapter 4, we first review some representative security models for key

establishment schemes, including the Bellare-Rogaway model [24, 29], which was

the first proposed complexity-theoretical (indistinguishability-based) security model

for key establishment, the Shoup model [217], which is simulatability-based, and the

Canetti-Krawcyzk model [68], which combines the indistinguishability and simulata-

bility techniques.

In Chapter 5, we present our security analyses of the enhanced Burmester-Desmedt

protocol [61], a protocol proposed by Choi and Hwang and modified versions pro-

posed in [80, 97, 98, 253], a scheme generated by the compiler of Katz and Yung

[145], and the key agreement protocol contained in the Chinese WLAN implemen-

tation plan [1, 3, 14]. We then present some example protocols [116, 119, 217],

which suffer from dishonest partner unknown key-share attacks. Finally, we present

our analyses of the password-only authenticated key agreement protocol proposed

by Jablon [130], the password-based authenticated key establishment protocol (re-

ferred to as the Laih-Ding-Huang protocol) proposed by Laih, Ding and Huang

[162], the EKE-U and EKE-M protocols proposed by Byun and Lee [66], and the

leakage-resilient authenticated key transport protocol (referred to as the RSA-AKE

protocol) proposed by Shin, Kobara and Imai [216].

In Chapter 6, we propose a unified security model along the lines of the Bellare-

Rogaway model, and also present some associated security definitions. In Chapter

7, we first present two compilers designed to transform any key establishment pro-

tocol secure against passive attackers into another scheme secure against any active

attacker. We then present a variant of the Burmester-Desmedt protocol which is

secure under the DBDH assumption, and two password-based key establishment pro-

tocols which are secure based on DDH and KE assumptions in the random oracle

model.

13



1.3 Publications

In Part II, we present a comprehensive study of Timed-Release Encryption schemes.

This part of the thesis consists of Chapters 8 and 9.

In Chapter 8, we investigate a security model for TRE-PC schemes proposed by

Hwang, Yum, and Lee [124]. Firstly, we show that this model possesses a number of

shortcomings and fails to model some potentially practical security vulnerabilities

faced by TRE-PC schemes. Secondly, we propose a new security model for TRE-

PC schemes which models security against four kinds of attacker and avoids the

shortcomings of the Hwang-Yum-Lee model. We also establish the relationships

amongst the security notions defined in the new model. In Chapter 9, we introduce

the notion of a TRE-PC KEM, which is a special type of KEM (key encapsulation

mechanism), and propose an implementation of this notion. We then show a way to

construct a TRE-PC scheme using a TRE-PC KEM and a DEM (data encryption

mechanism).

In Section 10, we conclude this thesis, and outline some directions for further re-

search.

1.3 Publications

This thesis contains material that was previously published with Chen [228], with

Choo [229], with Dent [90, 91], and with Mitchell [195, 231, 232, 233, 234, 235, 236,

237].

The contents of [76, 195, 227, 230, 232, 233, 234, 235, 236, 237] form the basis for

Chapter 5, the content of [231] forms the basis for Chapter 7, and the content of

[90, 91] forms the basis for Chapter 8 and 9.
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Chapter 2

Preliminary Topics

Contents

2.1 General Background . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.2 Complexity Theory . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.3 Mathematical Background . . . . . . . . . . . . . . . . . . . 17

2.2 Cryptographic Primitives . . . . . . . . . . . . . . . . . . 21

2.2.1 Hash Functions and the Random Oracle Model . . . . . . . 21

2.2.2 Block Ciphers . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.3 Message Authentication Codes . . . . . . . . . . . . . . . . 24

2.2.4 Public Key Encryption . . . . . . . . . . . . . . . . . . . . . 25

2.2.5 KEMs and DEMs . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.6 Digital Signatures . . . . . . . . . . . . . . . . . . . . . . . 28

2.3 Security Analysis Methods . . . . . . . . . . . . . . . . . . 29

In this chapter we first give general background material, and then review those

cryptographic primitives relevant to this thesis. We also briefly introduce the secu-

rity proof techniques used in this thesis, and, in particular, the complexity-theoretic

methods.

2.1 General Background

2.1.1 Notation

We use “⊕” to denote the exclusive-or operator and “||” to denote the string con-

catenation operator. If x is chosen uniformly at random from the set Y , then we
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2.1 General Background

write x ∈R Y . The symbol “⊥” denotes an error message. In addition, we use ℓ to

denote the security parameter.

2.1.2 Complexity Theory

Complexity theory provides mechanisms that can be used to classify computational

problems in terms of the resources required to solve them, where the resources

involved are usually time and, occasionally, storage space.

Definition 1 An algorithm is a computational procedure which takes a variable in-

put and terminates with some output. If an algorithm follows the same execution

path each time it is executed with the same input, the algorithm is said to be deter-

ministic. Otherwise, if an algorithm’s execution path differs each time it is executed

on the same input, the algorithm is said to be randomised1.

The running time of an algorithm on a particular input is the number of steps

or primitive operations executed before the algorithm terminates. The worst-case

running time of an algorithm is an upper bound on the running time of an algorithm

for any input. The running time for any input is usually expressed as a function of

the input size, which in this thesis is usually the security parameter. The expected

running time of an algorithm is the average running time of the algorithm over all

inputs of a specific size. In security analyses, the notion of negligible probability is

widely used, and is defined as follows.

Definition 2 The function P (ℓ) : Z → R is said to be negligible if, for every poly-

nomial f(ℓ), there exists an integer Nf such that P (ℓ) ≤ 1
f(ℓ) for all ℓ ≥ Nf .

If P (ℓ) is negligible, then the probability 1− P (ℓ) is said to be overwhelming.

Because the exact running time of an algorithm is often difficult to compute, we

usually rely on approximations of the running time. In particular, we often refer to

1As the randomness is always derived from a finite domain, the execution paths of a randomised
algorithm will actually only differ with an overwhelming probability.
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the order of the asymptotic upper bound of the running time of an algorithm using

the big-O notation.

Definition 3 If f, g : R → R, then we write g = O(f) if and only if there exists a

constant c such that g(x) ≤ cf(x) for all x > K, for some constant K.

Definition 4 A polynomial-time algorithm is an algorithm whose worst-case run-

ning time is of the form O(ℓc), where ℓ is the input size and c is a constant.

In general, we regard polynomial time algorithms as efficient, and other algorithms

as inefficient. In a security analysis, an attacker (or adversary) is instantiated as an

algorithm, and a two-stage attacker refers to an algorithm that is composed of two

subalgorithms.

Definition 5 If a problem cannot be solved by any polynomial-time algorithm (by

existing techniques), then it is defined to be intractable or infeasible.

A cryptographic scheme is defined as a set of algorithms used to provide some cryp-

tographic service, a cryptographic protocol is defined as a distributed algorithm

defined by a sequence of steps specifying the actions required by two or more enti-

ties to achieve a specific security objective, and a cryptographic primitive is defined

as a basic tool used to provide certain security functionality. Note that the term

protocol is sometimes applied to algorithms which demand interaction (or commu-

nication) between entities. Nonetheless, the terms scheme and protocol have been

used interchangeably in many places (including this thesis).

2.1.3 Mathematical Background

We use the notation G to denote a group, which is a set with an associated binary

operation which satisfies the group axioms [21]. By default, we write the group

operation multiplicatively, and therefore a group is usually denoted as (G, ∗) or

simply G. The number of elements in G, denoted |G|, is called the order of G. A
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group G is cyclic if there is an element g ∈ G such that, for each x ∈ G, there is

an integer i satisfying gi = x. In this case, g is called a generator of G. A field,

denoted by (F,+, ∗), is a set with two binary operations, namely addition + and

multiplication ∗, and the elements in F satisfy the field axioms [21].

The following assumptions have been widely used in constructing a variety of cryp-

tographic primitives:

• The Discrete Logarithm (DL) assumption is as follows: Given a security pa-

rameter ℓ, there exists a polynomial-time algorithm which takes ℓ as input and

outputs a cyclic group G of prime order q. On the input of (G, q, g) and a DL

challenge ga, where g is a generator of G and a is randomly chosen from Zq, a

polynomial-time attacker can only compute a with a negligible probability.

• The Computational Diffie-Hellman (CDH) assumption is as follows: Given a

security parameter ℓ, there exists a polynomial-time algorithm which takes

ℓ as input and outputs a cyclic group G of prime order q. On the input of

(G, q, g) and a CDH challenge (ga, gb), where g is a generator of G and a, b are

randomly chosen from Zq, a polynomial-time attacker can only compute gab

with a negligible probability.

• The Decisional Diffie-Hellman (DDH) assumption is as follows: Given a se-

curity parameter ℓ, there exists a polynomial-time algorithm which takes ℓ as

input and outputs a cyclic group G of prime order q. On the input of (G, q, g)

and a DDH challenge (ga, gb, gab) and (ga, gb, gc), where g is a generator of G

and a, b, c are randomly chosen from Zq, a polynomial-time attacker can only

distinguish between the two 3-tuples with a negligible advantage.

It is straightforward to verify that the DL assumption implies the CDH assumption,

and the CDH assumption implies the DDH assumption; however, whether or not

generally DDH implies CDH, and/or CDH implies DL, remains unclear. Other com-

putational assumptions, such as the Generalised Diffie Hellman assumption [222],

are also used in the literature, but we omit the descriptions here.

Besides these computational/decisional assumptions, the Knowledge of Exponent

(KE) assumption is also used in a number of papers (e.g. [27, 87]). The KE assump-
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tion is defined as follows: Given a security parameter ℓ, there exists a polynomial-

time algorithm which takes ℓ as input and outputs a cyclic group G of prime order

q. For any adversary A that takes (G, q, g) and a KE challenge ga (a ∈R Zq) as

input, and returns (C, Y ) where Y = Ca; there exists an extractor A′, which given

the same input as A returns c such that gc = C. This assumption is denoted as

KEA1 by Bellare and Palacio [27].

We write Zn for the group of integers {0, 1, · · · , n − 1} under addition modulo n;

if n is prime, we also write Z
∗
n for the group of integers {1, 2, · · · , n − 1} under

multiplication modulo n. In the latter case, if n− 1 = 2p where p is also prime (in

which case n is referred to as a safe prime), then there is a unique cyclic subgroup

G of Z
∗
n of order p. Such a group G is widely used in the cryptographic literature.

Since the seminal work of Koblitz and Miller [150, 194], elliptic curve cryptography

has become an important part of public key cryptography. An elliptic curve is the

set of solutions (x, y) to an equation of the form y2 = x3 + Ax + B over a field F,

together with an extra point O, known as the point at infinity. The set of points on

an elliptic curve forms a group under a certain addition rule. In practice, we usually

select F to be the integers modulo a prime q.

As a special case of the DL assumption, the Elliptic Curve Discrete Logarithm

(ECDL) assumption is defined as follows: Given a security parameter ℓ, there exists

a polynomial-time algorithm which takes ℓ as input and outputs a description of

(E, F), where E is an elliptic curve over the finite field F. On the input of (E, F)

and a ECDL challenge (P,Q), where P is a point of E(F) and Q is a random element

of the additive group generated by P , a polynomial-time attacker can only compute

a satisfying Q = aP , with a negligible probability.

Bilinear pairings have become an important tool in Cryptography. Let G1, G2 be

additive groups of prime order q, and GT be a multiplicative group of order q. Let P

and Q be generators of G1 and G2, respectively. A bilinear pairing is a polynomially

computable map ê : G1 ×G2 −→ GT with the following properties:

1. Bilinearity: for any integers a and b, ê(aP, bQ) = ê(P,Q)ab.

2. Non-degeneracy: ê(P,Q) 6= 1.
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In this thesis, we always assume that G1 = G2 and P = Q. The Bilinear Diffie

Hellman (BDH) assumption is as follows: Given a security parameter ℓ, there exists

a polynomial-time algorithm which takes ℓ as input and outputs an additive group

G1 of prime order q, a multiplicative group GT of the same order as G1, and a

polynomial-time computable bilinear map ê : G1 × G1 → GT . On the input of

(G1, GT , q, ê, P ) and a BDH challenge (aP, bP, cP ), where P is a generator of G1 and

a, b, c are randomly chosen from Zq, a polynomial-time attacker can only compute

ê(P,P )abc with a negligible probability.

The Decisional Bilinear Diffie-Hellman (DBDH) assumption is as follows: Given a

security parameter ℓ, there exists a polynomial-time algorithm which takes ℓ as input

and outputs an additive group G1 of prime order q, a multiplicative group GT of the

same order as G1, and a polynomial-time computable bilinear map ê : G1×G1 → GT .

On the input of (G1, GT , q, ê) and a DBDH challenge (aP, bP, cP, ê(P,P )abc) and

(aP, bP, cP, ê(P,P )r), where P is a generator of G and a, b, c, r are randomly chosen

from Zq, a polynomial-time attacker can only distinguish between the two 4-tuples

with a negligible advantage.

Abdalla et al. [7] showed that the DDH assumption is equivalent to the following

parallel DDH assumption. The equivalence is also implicitly shown by Katz and

Yung [145]. On the input of (G, q, g), a polynomial-time attacker can only distinguish

between the following 2n-tuples with a negligible advantage.

(gs1 , gs2 , · · · , gsn , gs1s2, gs2s3 , · · · , gsns1)

and

(gs1 , gs2 , · · · , gsn , gr1 , gr2 , · · · , grn),

where s, s1, s2, · · · , sn, r1, r2, · · · , rn ∈R Zq.

Using the same techniques as those in [7, 145], we can prove that the DBDH as-

sumption is equivalent to the following parallel version of the DBDH assumption.

On the input of (G1, GT , q, ê), an attacker can only distinguish between the following

2n-tuples with a negligible advantage.

(sP, s1P, s2P, · · · , snP, ê(P,P )ss1s2 , ê(P,P )ss2s3, · · · , ê(P,P )ssns1)

and

(sP, s1P, s2P, · · · , snP, ê(P,P )r1 , ê(P,P )r2 , · · · , ê(P,P )rn),
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where s, s1, s2, · · · , sn, r1, r2, · · · , rn ∈R Zq.

2.2 Cryptographic Primitives

We now review the following cryptographic primitives and associated security no-

tions: cryptographic hash functions and the random oracle model, block ciphers

and the ideal cipher model, message authentication codes (MACs), public-key en-

cryption, key encapsulation mechanisms (KEMs) and data encryption mechanisms

(DEMs), and digital signatures.

2.2.1 Hash Functions and the Random Oracle Model

Cryptographic hash functions (hereafter simply referred to as hash functions) play

a fundamental role in cryptography. In [190], hash functions are defined as follows:

Definition 6 A hash function H is an algorithm which has, at minimum, the fol-

lowing two properties:

1. compression: H maps an input x of arbitrary finite bit-length to a fixed-length

output H(x).

2. ease of computation: given x, H(x) is easy (or efficient) to compute.

A hash function may also be required to possess some (or all) of the following security

properties:

• preimage resistance: for any pre-specified output, it is computationally infea-

sible to find any input which hashes to that output, i.e., given any y for which

no corresponding input is known, it is infeasible to find any preimage x such

that H(x) = y.
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• 2nd preimage resistance: it is computationally infeasible to find any second

input which has the same output as any specified input, i.e., given x, it is

infeasible to find a 2nd-preimage x′ (x′ 6= x) such that H(x) = H(x′).

• collision resistance: it is computationally infeasible to find any two distinct

inputs x, x′ which hash to the same output, i.e., such that H(x) = H(x′).

(Note that here there is free choice of both inputs.)

Definition 7 A one-way hash function (OWHF) is a hash function which possesses

the following additional properties: preimage resistance and 2nd-preimage resistance.

Definition 8 A collision-resistant hash function (CRHF) is a hash function which

possesses the following additional properties: preimage resistance, 2nd-preimage re-

sistance, and collision resistance.

Hash functions play an important role in the design of many cryptographic protocols,

and therefore also have a major influence over the security of such schemes. Some of

these protocols can be proved secure by assuming that the hash function is one-way

or collision resistant. However, there are many protocols for which a security proof

has not been successfully formulated using these assumptions. Bellare and Rogaway

[30] propose the random oracle model for hash functions, which attempts to capture

the concept of an ideal hash function. This model has been widely used in security

analyses. In the random oracle model, a hash function H : S1 −→ S2 is simulated as

follows. A simulator maintains a list for all queried message and their corresponding

hash values. When a message from S1 is submitted to the hash oracle, the simulator

first checks whether this message has already been queried. If yes, the simulator

returns the corresponding hash value; otherwise returns a random element of S2

and adds the new pair to the list. Proofs of security in the random oracle model are

often far easier to construct than proofs in the standard model (i.e. without random

oracles), and, in general, it seems that schemes proven secure in the standard model

tend to be less efficient than schemes that employ hash functions and which can be

proven secure in the random oracle model.

Recent work [22, 106, 199] has demonstrated that, for certain schemes, proofs of

security in the random oracle model do not necessarily mean that the actual scheme
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is secure when the random oracle is instantiated by a hash function. Despite the

doubts that have been cast over the use of random oracles, proofs of security in

the random oracle model are still widely accepted. In practice, it seems to be very

difficult to design secure hash functions, and recent work has shown that many

common hash functions are weaker than previously thought [243, 244, 245, 246].

2.2.2 Block Ciphers

Definition 9 An n-bit block cipher is a function Enc : Vn×K −→ Vn, such that for

each m-bit k ∈ K, Enc(·, k) is an invertible mapping (the encryption function for k)

from Vn to Vn, where Vn = {0, 1}n. The inverse mapping is the decryption function,

denoted Dec(·, k).

It has become conventional to model block ciphers as a set of pseudo-random permu-

tations (PRPs) [104]. By this we mean (informally) that an n-bit block cipher under

a secret randomly-chosen key is computationally indistinguishable from a randomly-

chosen permutation of the set of all n-bit vectors. However, in certain cases, we face

a similar problem to that encountered when modelling hash functions; that is, we

cannot construct a proof of security using only the PRP assumption in the standard

model. To address this problem, the so called ideal cipher model was proposed and

used in [42, 92, 101, 134, 148, 192, 247]. In the ideal cipher model, a block cipher

(Enc,Dec) : Vn × K −→ Vn is simulated as follows. For every k ∈ K, a simula-

tor maintains a list for all queried plaintexts and their corresponding ciphertexts.

When a message from Vn is submitted to the encryption oracle Enc, the simulator

first checks whether this message has already been a plaintext in the list. If yes, the

simulator returns the corresponding ciphertext; otherwise returns a random element

of Vn and adds the new pair to the list. When a message from Vn is submitted

to the decryption oracle Dec, the simulator first checks whether this message has

already been a ciphertext in the list. If yes, the simulator returns the corresponding

plaintext; otherwise returns a random element of Vn and adds the new pair to the

list. In practice, the ideal block cipher is normally instantiated with an existing

block cipher scheme, such as AES [86].
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2.2.3 Message Authentication Codes

A message authentication code (MAC) algorithm is a family of functions {hk}, pa-

rameterised by a secret key k, with the following properties:

1. Ease of computation: for a known function hk, given a value k and an input

x, hk(x) is easy to compute. This result is called the MAC-value or MAC.

2. Compression: hk maps an input x of arbitrary finite bit-length to an output

hk(x) of fixed bit-length.

Definition 10 A MAC algorithm is said to be secure against existential forgery if,

for any fixed key k (not known to the attacker), and given any number of MAC

queries hk(x), where the values of x may be chosen by the attacker after observing

the results of previous queries, it is computationally infeasible for a polynomial-time

attacker to find a pair (x∗, hk(x∗)) where x∗ (which could be chosen by the attacker)

was not in the set of MAC queries.

Definition 11 A MAC algorithm is said to be secure against selective forgery if,

for any fixed key k (not known to the attacker), and given any number of MAC

queries hk(x), where the values of x may be chosen by the attacker after observing

the results of previous queries, it is computationally infeasible for a polynomial-time

attacker to find a pair (x∗, hk(x
∗)) where x∗ (previously given and not chosen by the

attacker) was not in the set of MAC queries.

HMAC, or keyed-hash message authentication code, is a type of MAC calculated

using a cryptographic hash function in combination with a secret key. It was first

proposed by Bellare, Canetti, and Krawczyk [23], and was later specified in an RFC

[156] and ISO/IEC 9797-2 [128].
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2.2.4 Public Key Encryption

LetM be the plaintext space and C be the ciphertext space. A public-key encryption

scheme consists of a set of three algorithms, as follows:

1. A probabilistic polynomial-time key generation algorithm Gen, which takes as

input a security parameter ℓ and outputs a public/private key pair (pk, sk).

2. A (possibly) probabilistic polynomial-time encryption algorithm Enc, which

takes as input a message m ∈M and a public key pk, and outputs a ciphertext

c = Enc(m, pk).

3. A deterministic polynomial-time decryption algorithm Dec, which takes as

input a ciphertext c ∈ C and a secret key sk, and outputs either a message

m ∈M or the error symbol ⊥.

We next consider two security notions: indistinguishability against adaptive chosen

ciphertext attack (IND-CCA2) and indistinguishability against chosen plaintext at-

tack (IND-CPA). Other security notions and their inter-relationships can be found

in [25].

Definition 12 A public-key encryption scheme is said to be secure against an adap-

tive chosen ciphertext attack (IND-CCA2 secure), if any two-stage polynomial-time

attacker A = (A1,A2) has only a negligible advantage in the following game2.

1. The challenger generates a valid public/private key pair (pk, sk) by running

Gen(ℓ).

2. The attacker runs A1 on the input pk. It terminates by outputting two equal-

length messages m0 and m1, as well as some state information state. During

its execution, A1 can query the decryption oracle with any input.

3. The challenger picks a random bit b ∈ {0, 1} and computes the challenge

c∗ = Enc(mb, pk).

2Note that here and throughout we implicitly treat the advantage as a function of the security
parameter ℓ
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4. The attacker runs A2 on the input c∗ and state. It terminates by outputting

a guess b′ for b. During its execution, A2 can query the decryption oracle with

any input except for c∗.

The attacker wins the game if b′ = b, and its advantage is defined to be |Pr[b′ =

b]− 1
2 |.

Definition 13 A public-key encryption scheme is said to be secure against a chosen

plaintext attack (IND-CPA secure) if it is IND-CCA2 secure against attackers that

make no decryption query.

2.2.5 KEMs and DEMs

A KEM consists of the following three algorithms:

• A probabilistic, polynomial-time key generation algorithm KEM.Gen that, given

a security parameter ℓ as input, outputs a public/private key pair (pk, sk).

• A probabilistic, polynomial-time encapsulation algorithm KEM.Encap, which,

on the input of a public key pk, outputs a pair (k, c), where k is a symmetric

key and c is a ciphertext.

• A deterministic, polynomial-time decapsulation algorithm KEM.Decap, which,

on the input of a ciphertext c and a private key sk, outputs either a symmetric

key k or an error message ⊥.

We assume that the possible keys k are drawn from a set of fixed length binary

strings, {0, 1}KeyLen(ℓ), where KeyLen is polynomial-time computable. The formal

definitions for the security of a KEM against an adaptive chosen ciphertext attack

and a passive attack are as follows.

Definition 14 A KEM is defined to be secure against an adaptive chosen ciphertext

attack (IND-CCA2 secure), if any two-stage polynomial-time attacker A = (A1,A2)

has only a negligible advantage in the following game.
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1. Game setup: The challenger runs KEM.Gen on the input ℓ to generate a pub-

lic/private key pair (pk, sk).

2. Phase 1: The attacker runs A1 on the input of pk. During its execution,

A1 has access to a decapsulation oracle, which, on the input of c, returns

KEM.Decap(c, sk). A1 terminates by outputting some state information state.

3. Challenge: The challenger generates a challenge encapsulated pair as follows:

(a) The challenger generates an encapsulated pair (k0, c
∗) = KEM.Encap(pk).

(b) The challenger randomly selects k1 ∈ {0, 1}
KeyLen(ℓ).

(c) The challenger randomly selects a bit b ∈ {0, 1}, and returns (kb, c
∗).

4. Phase 2: The attacker runs A2 on the input of (kb, c
∗, state). During its

execution, A2 has access to the decapsulation oracle. However, A2 may not

make a query on the input c∗. A2 terminates by outputting a guessing bit b′.

In this attack game, the attacker wins if b′ = b, and the attacker’s advantage is

defined to be |Pr[b′ = b]− 1
2 |.

Definition 15 A KEM is defined to be secure against a passive attack (IND-CPA

secure) if it is IND-CCA2 secure against attackers that make no decapsulation query.

A DEM consists of the following two algorithms:

• A deterministic, polynomial-time encryption algorithm DEM.Enc, which, on

the input a message m and a key K, outputs a ciphertext C.

• A deterministic, polynomial-time decryption algorithm DEM.Dec, which, on

the input a ciphertext C and a key K, outputs a message m or an error message

⊥.

We assume that the set of possible keys K is {0, 1}KeyLen(ℓ). The formal definitions

for the security of a DEM against an adaptive chosen ciphertext attack and a passive

attack are as follows.
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Definition 16 A DEM is defined to be secure against an adaptive chosen ciphertext

attack (IND-CCA2 secure), if a two-stage polynomial-time attacker A = (A1,A2)

only has a negligible advantage in the following game.

1. Phase 1: The attacker runs A1. At some point, A1 terminates by outputting

two equal length messages m0 and m1. In addition, A1 also outputs some

state information state.

2. Challenge: The challenger randomly selects a bit b ∈ {0, 1} and a key k ∈

{0, 1}KeyLen(ℓ), and returns c∗ = DEM.Enc(mb, k).

3. Phase 2: The attacker runsA2 on the input of (c∗, state). During its execution,

A2 has access to the decryption oracle, which, on the input of c, returns

DEM.Dec(c, k). However, A2 is not permitted to make a query on the input

c∗. A2 terminates by outputting a guessing bit b′.

In this attack game, the attacker wins if b′ = b, and the attacker’s advantage is

defined to be |Pr[b′ = b]− 1
2 |.

Definition 17 A DEM is defined to be secure against a passive attack (IND-CPA

secure) if it is IND-CCA2 secure against attackers that make no decryption query.

2.2.6 Digital Signatures

Digital signature schemes provide a means by which an entity can bind its identity

(or public key) to a piece of information (usually referred to as a message). A digital

signature scheme is made up of the following algorithms [190]:

1. KeyGen: which takes a security parameter ℓ as input, and outputs a public

(verification) key pk and a private (signing) key sk.

2. Sign: which takes as input a message m and a private key sk and produces a

signature σ for the message m.
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3. Verify: which takes as input a message m, a public key pk and a signature σ,

and outputs either accept (denoted by 1) or reject (denoted by 0).

The existential unforgeability of a digital signature scheme is defined as follows:

Definition 18 A digital signature scheme is existentially unforgeable under an adap-

tive chosen message attack if the probability of success of any polynomially bounded

attacker in the following game is negligible.

The attack game is carried out between an attacker A and the hypothetical chal-

lenger C.

1. Initialisation: C runs KeyGen(ℓ) to generate a public key pk and a private key

sk.

2. Challenge: The attacker runs A on the input pk and terminates by outputting

a pair m∗, σ∗. During its execution, A can query the Sign oracle with any

input m (m 6= m∗).

The attacker wins the game if Verify(m∗, pk, σ∗) = 1, and, the attacker’s advantage

is defined to be Pr[Verify(m∗, pk, σ∗) = 1].

2.3 Security Analysis Methods

Heuristic analysis is the traditional method for security analysis [190]. This approach

involves the use of a variety of informal arguments to try to establish that a successful

protocol attack requires more resources (e.g., time or space) than the resources that

might conceivably be possessed by an attacker. This approach may uncover protocol

flaws, thereby establishing that a protocol is bad. However, claims of security may

remain questionable, as subtle flaws in cryptographic protocols typically escape ad

hoc analysis; in particular, unforeseen attacks remain a threat.
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Information-theoretic analysis is another method adopted in the literature [190].

This approach uses mathematical proofs involving entropy relationships to prove

that protocols are unconditionally secure by assuming that the attackers have un-

bounded computing resources. Whilst unconditional security is ultimately desirable,

unfortunately, most practical schemes cannot achieve this kind of security. In fact,

most existing cryptographic schemes are only computationally secure, which means

that they cannot be regarded as secure if the attacker has access to unbounded

resources.

As both the heuristic and information-theoretic approaches have shortcomings for

practical security analysis, complexity-theoretic analysis has become the most widely

used method in cryptographic research. This approach usually defines an appropri-

ate model for the underlying target primitive, and attackers are assumed to be able

to access polynomial resources. Then, if a successful protocol attack leads directly to

the ability to solve a well-studied reference problem, the primitive can be regarded

to be computationally secure in the underlying security model. Such analysis yields

so-called provably secure protocols, although the security is conditional on the ref-

erence problem being truly (rather than presumably) difficult.

Using this approach, the computation time and probabilities are of major impor-

tance: a resource-unlimited attacker can always break provably secure schemes with

probability one; or, in a shorter period of time, an attacker can guess the secret

values by chance, and thus win the attack game with possibly negligible but non-

zero probability. In this thesis, we consider only polynomial-time attackers. Bellare

and Rogaway [32] and Shoup [218] provide some helpful methods for organising

complexity-theoretic proofs.

Formal methods, such as BAN logic [64], CSP [121], and the Spi Calculus [5] have

proven to be useful in finding flaws and redundancies in protocols, and some of these

methods are automatable to varying degrees. For example, the SET protocol [219]

has been analysed using a formal methods approach in [177, 188], and some of the

web service protocols have also been formally analysed, see, e.g. [136]. However,

the proofs provided are proofs within the specified formal system, and cannot be

interpreted as absolute proofs of security. A one-sidedness remains: the absence

of discovered flaws does not imply the absence of flaws. Some of these techniques
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are also unwieldy, or applicable only to a subset of protocols or classes of attack.

Many require (manually) converting a concrete protocol into a formal specification,

a critical process which itself may be subject to subtle flaws. Recently, cryptographic

researchers have tried to combine formal methods and complexity-theoretic analysis

methods to automatically generate security proofs in computational security models

(see e.g. [6, 17, 19, 48, 47, 115, 163, 164, 193]). Despite these recent advances, we

are still a long way from automatic security proof generation.

In this thesis, we adopt the complexity-theoretic method in all the security proofs

we give. An additional objective is to design cryptographic protocols which require

the fewest cryptographic primitives, or the weakest assumptions.
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In this chapter we review the history of key establishment protocols, describe some

representative protocols, and then present a formal description for key establishment

protocols. Finally, we describe the security properties which may be required of a key

establishment protocol.

3.1 Existing Key Establishment Protocols

In the literature, a number of terms have been used to describe a key establishment

process, including key transport, key distribution, key assignment, key establish-

ment, key exchange, key agreement, and key negotiation. Though these terms refer

to slightly different (in terms of security properties) processes for sharing a key

among a group of users, we use the term “key establishment” to denote a dynamic

key generation process throughout this thesis.
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3.1.1 Brief Review

The history of key establishment goes back a long way, although the modern study

of key establishment protocols can be traced back to the seminal work of Needham

and Schroeder [197]. Over the past 30 years, key establishment research, especially

in the two-party setting, has been a very fruitful area in cryptography.

There are a number of key establishment protocols which are designed for particular

environments. For example, those of Choi et al. [79], Yacobi and Beller [251], Yacobi

[250], Park [205], Wong and Chan [248], Horn, Martin, and Mitchell [122], Horn

and Preneel [123], Jakobsson and Pointcheval [132], and Boyd and Park [55] are

designed for resource-limited devices. We next briefly summarise the literature of

key establishment protocols for general purpose; detailed discussions can be found

in [54, 190].

3.1.1.1 Protocols without complexity-theoretic proofs

Before the pioneering work by Bellare and Rogaway [29], who first analysed key

establishment protocols using complexity-theoretic methods, the security of key es-

tablishment protocols was typically evaluated using only heuristic techniques. As

a result, many protocols have been proposed which contain subtle vulnerabilities,

only discovered after the schemes were published.

The summary below of existing protocols is divided into two main classes, depending

on whether or not they use public key cryptography.

• The first category of protocols are those based purely on symmetric cryptog-

raphy, i.e., long-term shared secret keys are used to guarantee the security of

the session key. In this case, the long-term keys should possess a high entropy

so that it is infeasible for an attacker to exhaustively search for them. If a

password is used in this case, offline password guessing attacks are unavoid-

able.

Many protocols have been proposed for use in a setting where a Trusted Third
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Party (TTP) participates in the key establishment process, including by Boyd

[52], Burrows, Abadi, and Needham [64], Chen, Gollmann, and Mitchell [74],

Denning and Sacco [88], Gong et al. [108, 109, 110, 111], Bauer, Berson, and

Feiertag [20], Needham and Schroeder [197], Janson and Tsudik [133], and

Otway and Rees [204]. A number of protocols have also been proposed for

use in a setting where no TTP is required in the key establishment process,

including by Boyd [51], Burrows, Abadi, and Needham [65], Janson and Tsudik

[133], and Satyanarayanan [215].

• Since the pioneering work of Diffie and Hellman [95] a range of key establish-

ment protocols based on asymmetric techniques have been proposed, including

by Agnew, Mullin, and Vanstone [11], Ateniese, Steiner, and Tsudik [16], Beller

et al. [33, 34, 35, 36], Bird et al. [40], Burmester and Desmedt [61, 62], Carlsen

[69], Denning and Sacco [88], Dierks and Allen [94], Harkins and Carrel [93],

Hirose and Yoshida [118], Ingemarsson, Tang, and Wong [126], Johnston and

Gemmell [137], Joux [138], Just and Vaudenay [141], Klein, Otten, and Beth

[203], Lim and Lee [170], Mayer and Yung [187], Menezes, Qu, and Vanstone

[189], Needham and Schroeder [197], Orman [202], Pereira and Quisquater

[208], Pieprzyk and Li [209], Steer et al. [220], Steiner, Tsudik, and Waid-

ner [222], Tatebayashi, Matsuzaki, and Newman Jr. [196], Tzeng [240, 241],

Tzeng and Tzeng [242], Tseng [238], Yacobi and Beller [251], and Yacobi [250].

Some of these protocols (e.g. those given in [61, 126]) are only secure against

passive attackers, because no long-term keys are employed. However, in other

cases either long-term shared secret keys or other public-key techniques, such

as signature schemes, are employed to give security against active attackers.

The concept of password-based key establishment originates from the pio-

neering work of Lomas et al. [172]. Such protocols use both a secret pass-

word and public key techniques, such as Diffie-Hellman key exchange. Subse-

quently many password-based key establishment schemes have been proposed,

including by Anderson and Lomas [15], Bakhtiari, Safavi-Naini, and Pieprzyk

[18], Bellovin and Merritt [37, 38], Halevi and Krawczyk [114, 115], Jablon

[130, 131], Kwon [158], Koyama and Ohta [152, 153], Koyama [151], Kwon

and Song [159, 160, 161], Laih, Ding, and Huang [162], Lee et al. [167], Lin,

Sun, and Hwang [171], Lomas et al. [173], Lucks [178], Nguyen and Vadhan

[198], Patel [207], Steiner et al. [221], Tsudik and Herreweghen [239], Wu [249],
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and Yen and Liu [252].

In these protocols, security is typically based on computational assumptions

such as CDH, DDH, GDH, and BDH. Much less attention has been devoted to

designing protocols using other intractable problems. In [149], Ko et al. pro-

posed the first 2-party key agreement protocol based on a Diffie-Hellman-like

conjugacy problem in a braid group. Lee [113] described the first authenti-

cated group key agreement protocol based on the same problem. Lee’s protocol

has n rounds if a group of n users need to negotiate a session key. Unfortu-

nately, Cheon and Jun [77] proposed a polynomial time algorithm for solving

the Diffie-Hellman-like conjugacy problem, which means that both protocols

are vulnerable to serious attacks.

Formal methods have also been used to analyse certain properties of key establish-

ment protocols. Such work includes that of Abadi, Blanchet, and Fournet [4] and

Lowe [174, 175, 176].

3.1.1.2 Protocols with complexity-theoretic proofs

The original Bellare-Rogaway model [29] was designed to enable the analysis of en-

tity authentication and two-party key distribution in the shared secret key setting.

Subsequently, a number of variants of this model have been proposed. Blake-Wilson,

Johnson, and Menezes [43] extended the model to the public key setting. Bresson

et al. [60] extended the model to the group setting. Kudla and Paterson [157] ex-

tended Bresson et al.’s model to model key compromise impersonation resilience.

Chen, Cheng, and Smart [73] proposed another, similar, variant to model key com-

promise impersonation resilience. Bellare, Pointcheval, and Rogaway extended the

Bellare-Rogaway model to cover password guessing attacks [28]. Bellare, Canetti,

and Krawczyk [24] provide a modular approach for the construction of authenticated

key establishment protocols. They also proposed the first simulatability-based se-

curity model for key establishment. Shoup [218] refined the simulatability-based

security model and proposed a model which works under three different corruption

assumptions. Later, Bellare, Canetti, and Krawczyk [24, 68] further extended the

concept, and proposed another security model for two-party key agreement proto-

cols in the universally composable security framework. Hitchcock, Boyd, and Nieto
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[120] optimised the Bellare-Canetti-Krawczyk model. A number of papers have been

devoted to discussing the validation of, and relationships between, these various se-

curity models [81, 82, 83]

Mayer and Yung [187] proposed a compiler which transforms any 2-party proto-

col into a centralised group protocol which, however, is not scalable. Later, Katz

and Yung [145] proposed a compiler which transforms a group key exchange pro-

tocol secure (in the sense of guaranteeing key authentication and forward secrecy

properties) against any passive attacker into an authenticated group key exchange

protocol which is secure against both passive and active adversaries. The security of

the Katz-Yung compiler is rigorously analysed in an adapted version of the security

model of [60], and the protocols produced by this compiler are also more efficient

and scalable than those produced by the method given in [187]. Katz and Shin [144]

proposed a compiler which transforms a group key exchange protocol secure against

passive attackers into an authenticated group key exchange protocol secure (in the

sense of key authentication and key confirmation) against both passive and active

attackers. In addition, Katz and Shin also claim that their compiler is secure in the

Universally Composable framework [68].

We next summarise those key establishment protocols which have been analysed

using complexity-theoretic methods.

• A number of provably secure shared secret key based key establishment schemes

have been proposed, including by Bellare and Rogaway [29], Bellare, Canetti,

and Krawczyk [24].

• Provably secure key establishment protocols based on public-key techniques

include those due to Aiello et al. [13], Blake-Wilson et al. [44, 43, 46, 45], Bres-

son et al. [60], Bresson and Catalano [57], Bresson, Chevassut, and Pointcheval

[58], Krawczyk [154, 155], Boyd [53], Chevassut et al. [78], Herranz and Villar

[117], and Hitchcock, Boyd, and Nieto [119]. Identity-based key establish-

ment protocols include those of Chen and Kudla [75], Girault [103], Günther

[112], Jacobson, Scheidler, and Williams [139], Jeong, Katz, and Lee [135],

Lauter and Mityagin [165], Okamoto [200], Okamoto and Tanaka [201], Pasini

and Vaudenay [206], Mambo and Shizuya [184, 183], Saeednia [214, 213], and
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Strangio [224, 225].

A large number of provably secure password-based key establishment protocols

have been proposed, including those of Abdalla et al. [7, 8, 9, 10], Bellare

et al. [28, 30], Boyko, MacKenzie, and Patel [56], Bresson, Chevassut, and

Pointcheval [59], Byun and Lee [66], Canetti et al. [67], Dutta and Barua [99],

Gennaro and Lindell [102], Goldreich and Lindell [105], Katz et al. [142], Katz,

Ostrovsky, and Yung [143], Lee, Ha, and Kuo [166], Lee, Hwang, and Lee [168],

MacKenzie, Patel, and Swaminathan [181], MacKenzie [179, 180], MacKenzie,

Shrimpton, and Jakobsson [182], Nguyen and Vadhan [198], Raimondo and

Gennaro [211], Strangio [226].

3.1.2 Example Protocols

We next briefly introduce the Diffie-Hellman key establishment protocol [95] and

two extensions, namely the Burmester-Desmedt protocol [63] and the Joux protocol

[138]. Note that these protocols are obviously not secure against active attackers;

however, a large number of modified versions of these protocols have been proposed,

with the goal of providing additional security properties (e.g. in [44, 43, 46, 45, 96]).

3.1.2.1 The Diffie-Hellman Protocol

The Diffie-Hellman key establishment protocol [95] is very simple. Let G be a

multiplicative group with large prime order q, and g be a generator of G. If Alice

and Bob wish to establish a session key, then they exchange the Diffie-Hellman

parameters ga and gb, where a is randomly chosen by Alice and b is randomly

chosen by Bob. Then Alice and Bob can both compute the session key gab, whereas

no passive interceptor can compute this key (given that the CDH assumption holds

for G).
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3.1.2.2 The Burmester-Desmedt Protocol

Let G be a multiplicative group with large prime order q, and g be a generator of

G. Suppose that a set of users Ui (1 ≤ i ≤ n) wish to establish a session key. Each

user Ui, for 1 ≤ i ≤ n, performs the following steps. It should be noted that the

indices of users (and values exchanged between users) are taken modulo n.

1. Ui chooses si ∈R Zq, and broadcasts Zi = gsi .

2. After receiving Zi−1 and Zi+1, Ui computes and broadcasts Xi:

Xi = (
Zi+1

Zi−1
)si

3. After receiving every Xj (1 ≤ j ≤ n, j 6= i), Ui computes the session key Ki

as:

Ki = (Zi−1)
nsi · (Xi)

n−1 · (Xi+1)
n−2 · · ·Xi+n−2

= gnsi−1si · (
gsisi+1

gsi−1si
)n−1 · (

gsi+1si+2

gsisi+1
)n−2 · · ·

gsi+n−2si+n−1

gsi+n−3si+n−2

= gsi−1si+sisi+1+si+1si+2+···+si+n−2si+n−1

= gs1s2+s2s3+s3s4+···+sns1

It has been claimed that this protocol is secure against passive attackers given that

the DDH assumption holds for G [63, 145]. A number of authenticated group key

agreement schemes based on the Burmester-Desmedt protocol have been proposed,

including those in [61, 80, 97, 98, 145].

We observe that the Burmester-Desmedt protocol possesses the following property.

A malicious participant, Uj say, who can manipulate the communications in the

network, is able to make any other participant, say Ui (1 ≤ i ≤ n, i 6= j), compute

the session key to be any value K∗ ∈ G chosen by Uj .

To achieve this, in the second step, Uj intercepts the message Xi−n+2 and prevents it

from reaching Ui. Uj then waits until all the other messages have been received and

computes the session key K in the normal way. Uj now sends X ′
i+n−2 = Xi+n−2 ·

K∗

K

to Ui, pretending that it comes from Ui+n−2.
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Lemma 1 As a result of the above attack, Ui will compute the session key as K∗.

Proof. This is immediate, since Ui will compute the session key as K ·
X′i+n−2

Xi+n−2
= K∗,

by definition of X ′
i+n−2. �

3.1.2.3 The Joux Protocol

Joux [138] introduced a one-round three-party key establishment protocol in which

the session key can be generated after every party has broadcast a single message.

The protocol makes use of bilinear pairings.

Suppose that Ui (1 ≤ i ≤ 3) share the common values (G1, GT , q, ê) and P which

is a generator of the group G1. During the protocol execution, Ui, for 1 ≤ i ≤ 3,

randomly chooses xi ∈ Zq and broadcasts xiP . On receiving the messages from the

other two users, Ui computes the session key as K = ê(xi−1P, xi+1P )xi . Note that

the the indices of messages are taken modulo 3.

3.2 Formal Description of Key Establishment Protocols

We next consider the main components of a key establishment protocol, namely

the principals exchanging the messages and the component sub-protocols. We also

examine the role of session identifiers.

3.2.1 Principals in Key Establishment Protocols

In general, two types of principal may be involved in a key establishment protocol:

1. a Trusted Third Party, which may exist for many different purposes, such as

certifying users’ public keys and distributing long-term private keys;
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2. a user, which possesses a unique identifier and any other information required

by the protocol specification.

Note that any public key (for a signature scheme or a public-key encryption scheme)

that is used by any of the principals must be known to be genuine by the principals

concerned. This is typically achieved by arranging for the key to be be certified

by a TTP, and the resulting certificate should be verified by a principal before the

public key is used. In the rest of this thesis, we omit an explicit description of this

certificate distribution and validation process.

We assume that an attacker is always present, i.e. a hypothetical entity trying to at-

tack the key establishment protocol. We classify attackers into two types, depending

on their ability to access the public/private information of the principals.

1. An outsider, only has access to the messages sent via public communication

channels.

2. An insider, in addition to the information in the public communication chan-

nels, also has access to some privileged information, possibly including long-

term private keys of users, long-term private keys of the TTP, and ephemeral

secret information generated during protocol executions. The insider can be

further sub-divided into the following attacker types:

(a) An insider which has access to users’ long-term private keys.

(b) An insider which has access to users’ ephemeral secret information gen-

erated during protocol executions.

(c) An insider which has access to long-term private keys of the TTP, and

possibly also ephemeral secrets of the TTP.

It is worth noting that, in practical applications, an insider attacker may have

access to more than one type of privileged information.

In practice, an inside attacker is likely to be either a group of malicious users or an

entity which has compromised one or more users’ secrets. In particular, if users Ui
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(1 ≤ i ≤ n) run the protocol to generate a session key, then some of them may be

malicious, as we discuss in Section 5.4. In this case, we define the malicious users

to be dishonest partners, and, in the security formalisation, this type of attacker is

assumed to have access to these users’ long-term private keys and ephemeral private

keys. Without loss of generality, the term “inside attacker” henceforth excludes

dishonest partners.

Depending on whether or not it can control the messages sent over the public com-

munication channels, the attacker can be either passive or active, where a passive

attacker can only eavesdrop on the messages sent over the public channels, while

an active attacker can freely manipulate the messages. Thus, an attacker could be

either an outsider or an insider, and either passive or active. If we assume that

the protocol messages are transported over public communication channels, then, in

general, we make the stronger assumption, i.e. that the attacker is active.

3.2.2 The Role of Session Identifiers

We first show that a potential security vulnerability exists in any protocol if no ses-

sion identifier is used, and then examine a practical example of a key establishment

protocol and show how a session identifier is generated and used in this protocol.

3.2.2.1 A Potential Security Vulnerability

Let P be a two-party key establishment protocol, and Ui (1 ≤ i ≤ 2) be two user de-

vices which are both running two applications Appj (1 ≤ j ≤ 2). Suppose that both

applications rely on P to generate a session key and protect their communications.

If P does not provide a unique session identifier identifying the session key in different

applications, then the following generic potential security vulnerability exists, as

shown in Figure 3.1.

The attacker can swap the messages sent by user U1 between App1 and App2. In

the end, the session key of U1 in App1 is identical to the session key of U2 in App2,
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Session 1 Session 2

App1 App1 App2 App2

m1
m′1→ m′

1
m1→

m2← m2
m′2← m′

2

· · · · · ·

mn−1

m′n−1
→ m′

n−1

mn−1
→

mn← mn
m′n← m′

n

Figure 3.1: Potential attack in the absence of a session identifier

while the session key of U1 in App2 is identical to the session key of U2 in App1.

This example shows that a potential protocol vulnerability (or ambiguity between

concurrent protocol executions) will exist if the session key is not generated and

authenticated with respect to a session identifier. In fact, if we allow concurrent

executions, the session key should only be used with reference to a session identifier.

3.2.2.2 The IKE Protocol

IKE [93] is a well-known practical example of a key establishment protocol. Not

surprisingly, it makes use of a session identifier in the generation and application of

the session key.

In the IKE protocol [93], each session key is associated with a unique Security Param-

eter Index (SPI), which is an arbitrary 32-bit value. Together with the destination

IP address and security protocol (AH [146] or ESP [147]), the SPI uniquely iden-

tifies the Security Association (SA) between two endpoints. Since the application

protocol (AH or ESP) uses the session key by referring to the SA, the above security

vulnerability is avoided.
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3.2.3 Specifications of Key Establishment Protocols

Typically, a key establishment protocol consists of the following three sub-protocols:

a TTP initialisation sub-protocol, a user initialisation sub-protocol, and a key es-

tablishment sub-protocol. Since the TTP initialisation sub-protocol and the user

initialisation sub-protocol are usually executed once before any executions of the

key establishment sub-protocol, we always assume that they are executed in the

absence of any attacker.

1. TTP initialisation sub-protocol: Run by the TTP, this protocol generates

the long-term public/private keys for the TTP and distributes public system

parameters to all users.

2. User initialisation sub-protocol: Run by a user, this protocol generates the

user’s public/private system parameters, and possibly distributes parameters

to other parties.

3. Key establishment sub-protocol: Run by a user, this protocol enables the user

to establish a session key with a group of other users. At the end of the protocol

execution, the user obtains a session identifier and the associated session key.

In the Canetti-Krawczyk model [68], a session identifier is always required for exe-

cuting key establishment protocols, but there is no such requirement in the Bellare-

Rogaway model and its variants (e.g. [29, 43]). Nonetheless, when evaluating security

in those security models, the concept of session identifier is used to define partner-

ships. However, as long as the key establishment protocol is used in the same way

as IKE [93], the security vulnerability described above can be avoided.

3.3 Security Properties for Key Establishment Protocols

In this section we consider the properties that may be required of a key establishment

protocol. We later use this list to motivate our formal definitions of security for a

key establishment protocol.
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Menezes, Oorschot, and Vanstone [190] describe a number of possible security prop-

erties for two-party key establishment protocols. Boyd and Mathuria [54] also pro-

vide a summary of security properties for key establishment protocols. In this sec-

tion, building upon this previous work we enumerate the security properties which

may possibly be required of a key establishment protocol.

As we have shown in the previous section, the concept of a session identifier plays a

crucial role in the application and security formulation of key establishment proto-

cols. Where relevant, in the security property descriptions below we refer to session

identifiers.

1. Key authentication is defined to be the property that a user who has completed

a successful protocol execution in a certain session, can be assured that no

inside attacker can have access to the session key1.

Key authentication under this definition is also referred to as implicit key

authentication in [190].

2. Forward secrecy is defined to be the property that the compromise of the

long-term private keys of some (but not all) intended users in a successfully

ended session does not compromise the session key established in that session.

Perfect forward secrecy is defined to be the property whereby the compromise

of the long-term private keys of all intended users in an successfully ended

session does not compromise the session key in this session.

The concept of perfect forward secrecy was originally proposed by Günther

[112]. Forward secrecy under our definition is equivalent to the definition of

partial forward secrecy given by Boyd and Mathuria [54], while perfect forward

secrecy under our definition is equivalent to their definition of forward secrecy.

3. Backward secrecy is defined to be the property whereby the compromise of a

user’s long-term private key does not compromise this user’s session key in any

subsequent session.

A protocol with this property guarantees that a user which uses a compro-

mised long-term private key can still be assured that its future session keys

1It is worth noting that key authentication does not guarantee that other intended users actually
possess the session key. In fact, it does not even guarantee that any intended user actually knows
there is a key agreement process going on.
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will remain secret to the attacker. This property is very desirable in the envi-

ronments where it is hard for a user to detect that its long-term private keys

have been compromised.

4. Unknown key-share resilience is defined to be the property that an honest user

A never ends up believing it shares a key with user B, although A actually

shares the session key with another honest user C which is different from B,

and C thinks it shares the key with another user D, which may or may not

be the same as A. If B and D are malicious users2, then we call this property

dishonest partner unknown key-share resilience.

The notion of unknown key-share attacks were first discussed by Diffie, van

Oorschot and Wiener [96]. In [46], an unknown key-share attack on an authen-

ticated key agreement protocol is defined to be an attack whereby an honest

user A ends up believing it shares a key with another honest user B and, al-

though this is in fact the case, B mistakenly believes the key is instead shared

with another user E. It is easy to see that if a protocol suffers from a UKS

attack under this definition, then it will also suffer from a UKS attack under

our definition.

5. Key randomness is defined to be the property that, in any successful session for

a user, the session key is uniformly distributed amongst the set of all possible

session keys.

6. Key control is defined to be the property whereby, in any session, no strict

subset of the set of the intended users is able to force the session key to be

equal to a pre-determined value.

This definition implies that, in any session, only all the intended users acting

together are able to completely control the value of the session key.

7. Entity authentication is defined to be the property that a user who has com-

pleted a successful protocol execution in a certain session, can be assured that

the other intended users are actually involved in the same session.

8. Known-key resilience is defined to be the property that the compromise of the

session key in one session does not impose any danger to key establishment in

any other sessions.

2In this case, D is a user different from A.
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The concept of known-key attacks was discovered by Denning and Sacco [88];

Menezes, van Oorschot and Vanstone [178] use the term known key-attack for

an attack in which the compromise of past session keys allows an attacker

either to compromise future session keys, or to impersonate a user in the

subsequent protocol executions. In fact, the compromise of the session key in

one session might affect a range of possible security properties in other sessions,

not just key authentication and entity authentication, which is why we propose

the above definition. In our security formulations we take this definition into

account when evaluating other properties.

9. Key confirmation is defined to be the property that, in any session, a user who

has completed a successful protocol execution in a certain session, can confirm

that other intended users have participated in the same session and that they

have computed the same session key.

In [190], key confirmation is defined to be the property whereby one party is

assured that a second (possibly unidentified) party actually has possession of

a particular secret key.

10. Key-compromise impersonation resilience is defined to be the property that, in

any session, the compromise of a user’s long-term private key does not enable

the attacker to impersonate any other non-compromised intended user to the

user whose key has been comprised.

A key establishment protocol with this property guarantees that a user, whose

private key has been compromised can still be assured that the intended part-

ners are participating in a session (although the partners will have no such

guarantee). This property is very desirable in the environments where it is

hard for a user to detect that its long-term private keys have been compro-

mised. The term “key-compromise impersonation resilience” as defined by

some other authors, see, for example, in [157], also covers the backward se-

crecy property.

11. Denial of Service resilience is defined to be the property whereby an attacker

is unable to effectively make a resource unavailable to the intended users.

In computer security, a denial of Service (DoS) attack is an attempt to make

computing resources, especially computational resources, unavailable to its

intended users. In the design of key establishment protocols, we regard a
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protocol to be prone to DoS attack if the computational load on one or more

of the legitimate users could be very high. Matsuura and Imai [185] propose an

enhanced version of the IKE protocol to make it robust against DoS attacks.

Note that DoS attacks are of particular concern in the client-server setting,

where the server is often an attack target.

Note that any key establishment protocol cannot completely avoid DoS at-

tacks, but reducing the risk of DoS attacks is always an important design

criterion.

12. Information leakage resilience is defined to be the property whereby protocol

executions do not leak unreasonable amounts of information.

This is mainly relevant in the case where a low-entropy password is used. In

this case, we need to consider both online password guessing attacks and offline

dictionary attacks, where, in an online password guessing attack, an attacker

tries a guessed password by manipulating a protocol message without letting

the users detect any failure, while in an offline dictionary attack an attacker

tries to exhaustively search for the password by possibly manipulating the

protocol messages.

In fact, there are other situations (especially when key establishment protocols

are used together with other protocols), where information leakage could occur.

In Figure 3.2 we present a toy example of a key establishment protocol P ′,

where r is a random string, (pk2, sk2) is a sign/verify key pair of U2, and P is

a two-party key agreement protocol.

U1 U2

r
−→

Sign(r,sk2)
←−

Execution of P

Figure 3.2: The Toy Protocol P ′

It is straightforward to verify that, if (pk2, sk2) is used by U2 in other protocols,

it is very likely that this key establishment protocol will lead to those protocols

being insecure, because U1 can make U2 sign any message it selects.
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3.4 Conclusions

In this chapter we have presented a brief review of the state of the art in key

establishment. In particular we have classified the possible types of attacker, and

emphasised the role of session identifiers. Based on this analysis we have described

the properties that may be required of a key establishment protocol.
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In this chapter we review three representative security models for key establishment

protocols, including the Bellare-Rogaway model, the Shoup model, and the Canetti-

Krawczyk model. We also compare their capabilities with respect to modelling the

security properties described in section 3.3.
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4.1 Introduction

Since Bellare and Rogaway proposed the first complexity-theoretic model for entity

authentication and key establishment protocols, which applies to schemes using sym-

metric cryptography in the two-party setting [29], many papers have been published

proposing extensions to this model to cover a wide range of security properties in a

more general setting (see e.g. [24, 28, 31, 44, 60, 68, 75, 157, 225]). These security

models use an indistinguishability approach to evaluate session key security, i.e., a

key establishment protocol is said to achieve session key security if it is infeasible for

any attacker to distinguish between the session key and a randomly chosen string.

In contrast to the indistinguishability approach, another approach based on simu-

latability has also been widely discussed in the literature (see e.g. [28, 68, 217])1. In

this approach, ideal functionality for a key establishment protocol is first defined,

where the attacker’s capabilities are highly restricted (compared to the real-world).

A key establishment protocol is said to achieve session key security if it is infeasible

to distinguish between an ideal-world execution of the protocol and a real-world

execution, where the attacker’s capabilities model the threats to key establishment

protocols in practice.

The rest of this chapter is organised as follows. In section 4.2 we review the Bellare-

Rogaway model and certain extensions of this model. In section 4.3 we review the

Shoup model. In section 4.4 we review the Canetti-Krawcyzk model. In the last

section we compare the capabilities of these three models for modelling the security

properties described in section 3.3, and then conclude this chapter.

4.2 The Bellare-Rogaway model

The Bellare-Rogaway model [29] was designed to model the security properties of

entity authentication and key distribution protocols in the two-party setting, where

the protocols use symmetric cryptography. Blake-Wilson and Menezes [44] adapted

the Bellare-Rogaway model to two-party key establishment protocols which employ

1This approach was originally applied to public key encryption schemes [107], but has since been
applied to other cryptographic primitives, including key establishment protocols.
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asymmetric cryptography. The following description of the Bellare-Rogaway model

combines these two approaches.

4.2.1 Preliminary Definitions

Given any key establishment protocol, without loss of generality let Ui (1 ≤ i ≤ N)

be the set of all possible users which may run the protocol, where N is a suffi-

ciently large integer. In any protocol execution, Ui could be either an initiator or a

responder, determined by whether or not Ui initiates the protocol execution.

In the Bellare-Rogaway model, each protocol instance of a user is defined to be an

oracle, i.e. a Turing Machine that processes protocol messages. An oracle Πs
i,j de-

notes the s-th instance of user Ui involved with a partner party Uj . If the protocol

instance, represented by an oracle, ends successfully, then oracle is said to accept. If

the oracle Πs
i,j accepts, it outputs the following information (pidΠs

i,j
, sidΠs

i,j
, skΠs

i,j
),

where pidΠs
i,j

= Uj is the identifier of the user with which it assumes it is communi-

cating, sidΠs
i,j

is the session identifier, and skΠs
i,j

is the established session key. Note

that pidΠs
i,j

, sidΠs
i,j

are regarded as public information. Once created, an oracle Πs
i,j

may be in one of three states:

• active, when the oracle possesses an ephemeral state and is ready for receiving

messages;

• accepted, when the oracle has ended successfully and outputs (pidΠs
i,j

, sidΠs
i,j

,

skΠs
i,j

);

• aborted, when the oracle has failed to generate a session key and only outputs

a failed state.

In the Bellare-Rogaway model, it is assumed that an attacker is responsible for ini-

tiating protocol executions and delivering messages sent between users. In other

words, the attacker has the privilege of initiating oracles and delivering messages.

Security properties of a key establishment protocol are modelled by attack games

played between a hypothetical challenger and an attacker, where the challenger sim-

ulates the protocol execution, and the attacker intervenes in the protocol execution
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by means of certain oracle queries (answered by the challenger). The following types

of oracle queries are defined:

1. create, which on the input of (IDi, IDj , role), where role is either “initiator”

or “responder”, creates an active oracle Πs
i,j to start a session with Uj , where

s is the index of this oracle for Ui. Usually, it is required that i 6= j, i.e., a

user will not run a session with itself.

2. send, which on the input of an active oracle Πs
i,j and message m, delivers m

to Πs
i,j and responds with either a message m′ or an indication of whether or

not Πs
i,j accepts or rejects the session.

3. reveal, which, on the input of an accepted oracle Πs
i,j, returns the session key

possessed by this oracle.

4. corrupt, which, on the input of any user identifier IDi, returns Ui’s long-term

private key.

5. test, which, on the input of a fresh oracle Πs
i,j (see the definition below),

returns a string which is computed as follows: choose a random bit b from the

set {0, 1}, return the session key if b = 1, otherwise return a random string

from the session key space.

If Πs
i,j accepts, its session identifier sidΠs

i,j
is defined to be the concatenation of

the messages exchanged during the session. The concept of matching conversations

plays an important role in the security formulation.

Definition 19 Two oracles Πs
i,j and Πt

j,i are defined to have matching conversions

if the following requirements are satisfied:

1. pidΠs
i,j

= Uj and pidΠt
j,i

= Ui;

2. Each message sent by the initiator, Πs
i,j say, is received by the responder, Πt

j,i

say, and each response generated by Πt
j,i is received by Πs

i,j. Each message

received by Πt
j,i is from Πs

i,j, and each message sent by Πt
j,i is received by Πs

i,j.

53



4.2 The Bellare-Rogaway model

Intuitively, having matching conversations implies that Πs
i,j and Πt

j,i have some kind

of partnership, since protocol messages between them have been faithfully delivered

by the attacker. This concept of partnership is expressed in the notion of partner

oracles.

Definition 20 Two oracles Πs
i,j and Πt

j,i are said to be partner oracles if they have

matching conversations.

In order to facilitate the security formulation, the freshness of an oracle is defined

as follows.

Definition 21 An oracle Πs
i,j is fresh if it has accepted and satisfies the following

requirements:

1. Πs
i,j has not been issued any reveal query;

2. If a partner oracle Πt
j,i exists, Πt

j,i has not been issued any reveal query;

3. Neither Ui nor Uj has been corrupted before Πs
i,j accepts.

Note that the third requirement is not specified in [29] because, if only symmetric

cryptography is employed, the attacker will obtain all of Ui’s session keys whenever

it compromises Ui’s long-term secret keys. More explanations are given after the

definition of the session key attack game below.

4.2.2 Security Definitions

The attack game for session key security is carried out between a two-stage polynomial-

time attacker A = (A1,A2) and a hypothetical challenger C as follows:

1. Setup: The challenger C generates both the public system parameters param1

and private system parameters param2.
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2. Phase 1: The attacker A1 executes with input param1. A1 can make the

following types of queries: create, send, reveal, and corrupt. A1 terminates

by issuing a test query with a fresh oracle Πs
i,j, and outputting some state

information state.

3. Challenge: The challenger C returns the output of test(Πs
i,j).

4. Phase 2: The attacker A2 executes with input state and the output of the

challenger. A2 can make the same types of queries as A1. However, A2 is not

permitted to issue a reveal query to Πs
i,j and its partner oracle. A2 terminates

by outputting a guess bit b′.

At the end of this game, the attacker wins if b′ = b, and its advantage is defined to

be |Pr[b = b′]− 1
2 |.

The attack game for entity authentication, in which a polynomial-time attacker A

tries to impersonate another user Uj to Ui, is carried out between A and a hypo-

thetical challenger C as follows:

1. Setup: The challenger generates both the public system parameters param1

and private system parameters param2.

2. Challenge: The attacker runs A with input param1. At some point, A ter-

minates by outputting an accepted oracle Πs
i,j . During its execution, A can

make any number of create and send queries.

At the end of this game, the attacker wins if Πs
i,j has no partner oracle.

Given these preliminary definitions, secure key establishment and entity authenti-

cation protocols are defined as follows.

Definition 22 A key establishment protocol is said to be a secure authenticated key

establishment protocol, if it satisfies the following requirements:
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1. In the presence of only a passive attacker, which faithfully delivers protocol

messages, Πs
i,j will always accept and have a partner oracle Πt

j,i. Both oracles

generate the same session key which is uniformly distributed over the session

key space.

2. A polynomial-time attacker only has a negligible advantage in the attack game

for session key security.

A secure authenticated key establishment protocol is also said to be AK secure.

Definition 23 A protocol is said to achieve entity authentication, if it satisfies the

following requirements:

1. If Πs
i,j and Πt

j,i have matching conversations, then both of them accept.

2. A polynomial-time attacker only has a negligible advantage in the attack game

for entity authentication.

4.2.3 Summary of the Bellare-Rogaway model

From a corrupt query as described above, the attacker only contains a user’s long-

term private key. This corresponds to what is commonly referred to as the weak cor-

ruption model. In a strong corruption model, such a query returns all the ephemeral

states of the unaccepted and unaborted oracles, as well as the users long-term private

key.

In the Bellare-Rogaway model, the attack game for session key security covers not

only the key authentication property but also possibly the following additional se-

curity properties:

• forward secrecy and perfect forward secrecy, if the attacker is allowed to com-

promise all the users through corrupt queries in Phase 2;

• known-key resilience and unknown-key share resilience, because the attacker

is allowed to obtain other session keys through reveal queries.
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However, it does not cover the following security properties:

• backward secrecy, because the attacker is not allowed access to Ui’s long-term

private key in Phase 1, since the tested oracle Πs
i,j should be fresh;

• key control and dishonest partner unknown key-share resilience, because the

challenger will simulate the protocol execution faithfully, and no oracle queries

allow the attacker to affect these behaviours;

• key confirmation and information leakage resilience.

The attack game for entity authentication covers entity authentication; however, it

does not cover key compromise impersonation resilience because the attacker is not

allowed access to Ui’s long-term private key.

4.2.4 Variants of the Model

Since the introduction of the Bellare-Rogaway model, many variations have been

proposed to cover a wide range of security properties (e.g. [24, 28, 31, 60, 68, 75,

157, 225]). We next summarise some of the more signaficant of these.

1. Bellare and Rogaway [31] modified the Bellare-Rogaway model [29] to model

the security properties for three-party key establishment protocols, where a

server generates and distributes a session key to two users. An important

difference in this model is that partnership is defined using a special function

instead of the matching conversation.

2. Bresson et al. [60] extended the Bellare-Rogaway model to cover group key

establishment protocols. Let the participant set be U = {U1, U2, · · · , Un}. The

s-th (s ≥ 1) instance of Ui is denoted by Πs
i . The session identifier of Πs

i is

sids
i = {SIDi,j : j ∈ U}, where SIDi,j is the concatenation of all the messages

that oracle Πs
i has exchanged with an oracle of Uj during its execution. Two

oracles Πs
i and Πt

j are defined to be partnered if they accept and one of the

following two conditions is satisfied.
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• sids
i ∩ sidt

j 6= φ;

• there exist Πvx
ux

, where vx ≥ 1 and 1 ≤ x ≤ w, satisfying Πv1
u1

= Πs
i ,

Πvw
uw

= Πt
j, and sidvx

ux
∩ sid

vx+1
ux+1 6= φ for any 1 ≤ x ≤ w − 1.

The set of possible oracle queries and the notion of freshness are defined in the

Bellare-Rogaway model, as is the attack game for session key security.

Let pids
i be the set containing all the partnered oracles of Πs

i . The attack game

for entity authentication is defined in a similar way to the corresponding game

in the Bellare-Rogaway model, except that the attacker is allowed to make

reveal queries and the attacker wins if |pidt
j | 6= n− 1.

3. In the model proposed by Strangio [225], the attacker is required to issue its

test query to a KCI-fresh oracle instead of a fresh oracle in the attack game

for key authentication, where, unlike Definition 21, a KCI-fresh oracle does

not require that Ui is uncorrupted when the oracle accepts. The authors of

[75, 157] have proposed similar models.

4. Bellare, Pointcheval, and Rogaway [28] proposed a further variant of the

Bellare-Rogaway model which has considered information leakage resilience

(or resilience to password guessing attacks).

4.3 The Shoup Model

The Shoup model [217] is designed for the analysis of two-party key establishment

protocols. The model works in three different corruption modes: static corruption,

adaptive corruption, and strong adaptive corruption.

1. Static corruption means that the attacker can operate under a number of dif-

ferent aliases, but only make its decision as to whom to corrupt independently

of the execution of the protocol.

2. Adaptive corruption means that the attacker can choose to corrupt an honest

user, but can only obtain that user’s long-term private key.
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3. Strong adaptive corruption means that the attacker can choose to corrupt an

honest user, obtaining the user’s long-term private key and any internal data

that has not been explicitly erased.

4.3.1 The Shoup model for static corruption mode

In the ideal world, the attacker can make the following oracle queries (Shoup [217]

uses the term “operation” instead of “oracle query”):

1. initialize user: this operation takes the form (initialize user, i, IDi) and assigns

a unique identity IDi to the user Ui.

2. initialize user instance: this operation takes the form (initialize user instance,

i, j, rolei,j , P IDi,j) and specifies an instance (or an oracle) Πi,j for Ui, along

with the user’s role (initiator or responder) rolei,j in the protocol execution and

its partner identity PIDij . After initialisation, Πi,j is defined to be active, and

remains active until the execution of either an abort session or a start session

operation on Πi,j .

3. abort session: this operation takes the form (abort session, i, j) and aborts the

oracle Πi,j.

4. start session: this operation takes the form (start session, i, j, connection

assignment[, key]) and specifies how the session key of the oracle Πi,j is gen-

erated:

• If connection assignment is create, then the ring master sets the session

key of Πi,j to be a random string, given that Πi,j is active. After this

operation, Πi,j is said to be isolated.

• If connection assignment is (connect, i′, j′), then the ring master2 sets

the session key of Πi,j to be Ki′,j′ given that, Πi,j and Πi′,j′ are compatible

and Πi′,j′ is isolated. After this operation, Πi′,j′ is no longer isolated.

Note that Πi,j and Πi′,j′ are said to be compatible if PIDi,j = IDi′ ,

PIDi′,j′ = IDi, and rolei,j 6= rolei′,j′.

2Ring master plays the same role as the challenger in the Bellare-Rogaway model.
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• If connection assignment is compromise, then the ring master sets the

session key of Πi,j to be key, given that PIDij has not been assigned to

any user.

5. application: this operation takes the form (application, f) and specifies the

usage of the session key by a higher-level application protocol f .

6. implementation: this operation takes the form (implementation, comment) and

simply specifies a comment.

Every operation will add one record in the transcript; for example, an initialize user

operation will add (initialize user, i, IDi) to the transcript.

In the real world, the attacker can make the following oracle queries:

1. initialize user: this operation takes the form (initialize user, i, IDi) and assigns

a unique identity IDi to the user Ui;

2. register: this operation takes the form (register, ID, registration request) and

returns registration receipt.

3. initialize user instance: this operation takes the form (initialize user instance, i, j,

rolei,j, P IDi,j) and specifies an instance (or an oracle) Πi,j for Ui, along with

the user’s role (initiator or responder) rolei,j in the protocol execution and its

partner identity PIDij ;

4. deliver message: this operation takes the form (deliver message, i, j, InMsg), de-

livers the message InMsg to the oracle Πi,j, and returns a message OutMsg.

In the online-TTP setting, the attacker also has access to (deliver message to TTP,

InMsg).

5. application: this operation takes the form (application, f), and specifies the use

of the session key by a higher-level application protocol f ;

As in the ideal world, every operation will add one record in the transcript. A key

establishment protocol is secure in this model in the static corruption mode, if it

satisfies the following requirements:
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1. Any oracle should terminate after a polynomially bounded number of message

exchanges;

2. In the real world, if an attacker faithfully delivers the messages, compatible

oracles end successfully and compute the same session key;

3. For any real-world attacker, there exists an ideal-world attacker such that their

transcripts are computationally indistinguishable.

4.3.2 The Shoup model for other modes

In the Shoup model under the strong corruption assumption, a corruption user is

enabled in the real world, and such an operation adds two records (corruption user, i)

and (implementation, corruption user, LTSi) to the transcript, where LTSi is Ui’s

long-term state information. The corruption user operation is also enabled in the

ideal world, but such an operation will only add one record (corruption user, i) to

the transcript. In addition, the connection assignment compromise is valid if any of

the following is true: (1) PIDij has not been assigned to any user; (2) PIDij has

not been assigned to a corrupted user; (3) user Ui is corrupted.

If the strong adaptive corruption assumption is assumed, the main extension is that

a (strong corruption user, i) is enabled. In the real world, through this operation, the

adversary will obtain the long-term private key of Ui and all ephemeral data of Ui’s

active oracles. As a result, two records (strong corruption user, i) and (implementation,

strong corruption user, exposed data) are added to the transcript, where exposed

data is the information obtained by the adversary. In the ideal world, through this

operation, the adversary will obtain all the session keys of Πi′,j′, which is isolated

and PIDi′j′ = IDi. In addition, a record (strong corruption user, i) is added to the

transcript.

4.3.3 Summary of the Shoup model

Note that in the Shoup model under all three assumptions, when a corrupted user

(the attacker) establishes its session key with an uncorrupted user, it is assumed that
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the attacker can set the session key to be any value through the (start session, i, j,

compromise, key) query. In fact, the same assumption is adopted in [24]. It is clear

that these models provide no guarantee regarding the key control property, which

says that no user should fully control the session key. Therefore, in some schemes

proven secure in Shoup model, it may be possible to mount attacks in which a

malicious user can choose the session key.

4.4 The Canetti-Krawczyk model

4.4.1 Introduction

Canetti and Krawczyk [68] proposed a modular technique for the construction of

secure two-party key establishment protocols. This technique is derived from the

simulatability-based security approach proposed by Bellare, Canetti, and Krawczyk

[24], while the security properties of key establishment protocols are evaluated using

the indistinguishability approach proposed by Bellare and Rogaway [29]. The fol-

lowing notions play an important role in the Canetti-Krawczyk security definitions.

• The unauthenticated-links model (UM) is a model in which the attacker has full

control of the communication links and the scheduling of all protocol events.

• The authenticated-links model (AM) is a model in which the attacker is re-

stricted to only delivering messages generated by the genuine parties without

any changes or additions to them.

• A protocol P ′ is said to emulate the protocol P (secure in the AM) in the UM if,

for any attacker that interacts with P ′ in the UM, there exists an attacker that

interacts with P in the AM such that the two interactions are computationally

indistinguishable to an outside observer.

• An authenticator is defined to be an algorithm that takes an protocol P as

input and outputs the description of a protocol P ′ such that P ′ emulates P in

the UM.
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Using the Canetti-Krawczyk modular approach [24, 68], a secure key agreement

protocol in the UM can be constructed in two steps:

1. Construct a secure protocol P in the AM;

2. Apply an authenticator to P and then obtain a secure protocol P ′ in the UM.

4.4.2 The Canetti-Krawczyk model

In both the AM and the UM of the Canetti-Krawczyk model, session key security

is defined using an attack game similar to that employed in the Bellare-Rogaway

model [29]. However, an important difference between the Canetti-Krawczyk model

and other security models is that it assumes that every protocol execution will take a

unique session identifier as input. In other words, the session identifier is generated

by some program that (directly or indirectly) invokes the key establishment protocol.

Let the users be Ui (1 ≤ i ≤ N). In the UM of the Canetti-Krawczyk model, an

attacker may have access to the following types of oracle queries.

• activate, which on the input of (IDi, sidi, IDj , role), where sidi a unique ses-

sion identifier and role is either “initiator” or “responder”, creates an oracle

Πsidi

i,j to starts a session with Uj .

• send, which, on the input of an oracle Πsidi

i,j and a message m, delivers m to

Πsidi

i,j .

• session-state-reveal, which, on the input of IDi and a session identifier sidi,

returns Πsidi

i,j ’s ephemeral internal state.

• session-key-reveal, which, on the input of an accepted3 oracle Πsidi

i,j , returns the

session key possessed by this oracle.

• session-expiration, which, on the input of an accepted oracle Πsidi

i,j , erases the

session key of this oracle.

3An oracle Πsidi
i,j is defined to be accepted if its protocol execution has successfully ended.
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• corrupt, which, on the input of a user identifier IDi, returns Ui’s long-term

private key and ephemeral internal states of Ui’s oracles which have not ended

(either accepted or aborted).

• test-session, which, on the input of a fresh oracle Πsidi

i,j (see the definition

below), returns a string which is computed as follows: choose a random bit b

from the set {0, 1}, return the session key if b = 1, otherwise return a random

string from the session key space.

In the Canetti-Krawczyk model, two oracles Πsidi

i,j and Π
sidj

j,i are partnered if their

roles are different and sidi = sidj . An oracle Πsidi

i,j is said to be fresh if the following

requirements are satisfied:

1. Πsidi

i,j has accepted and it has not been issued a session-state-reveal, session-key reveal,

or session-expiration query;

2. The partner oracle of Πsidi

i,j has not been issued a session-state-reveal, session-key reveal;

3. Ui has not been issued a corrupt query, and Uj has not been issued a corrupt

query beforing the partner oracle of Πsidi

i,j is issued a session-expiration query.

The attack game for session key security is carried out between a two-stage polynomial-

time attacker A = (A1,A2) and a hypothetical challenger C, as follows.

1. Setup: The challenger C generates both the public system parameters param1

and private system parameters param2.

2. Phase 1: The attacker runs A1 on the input of param1. A1 can make the

following types of queries: activate, send, session-state-reveal, session-key reveal,

and corrupt. A1 terminates by making a test-session query on the input of a

fresh oracle Πsidi

i,j . In addition, A1 also outputs some state information state.

3. Challenge: The challenger C returns the output of test-session(Πsidi

i,j ).

4. Phase 2: The attacker runs A2 on the input of state and the output of the

challenger. A2 can make the same types of query as A1 in step 1, but neither
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session-state-reveal and session-key reveal query to Πsidi

i,j and its partner oracle,

nor corrupt query to Ui and Uj. A2 terminates by outputting a guess bit b′.

At the end of this game, the attacker wins if b′ = b, and the attacker’s advantage is

defined to be |Pr[b = b′]− 1
2 |.

Definition 24 A key establishment protocol is defined to be SK-secure if it achieves

the following properties:

1. If two uncorrupted oracles have matching sessions, then they accept and com-

pute the same session key.

2. Any polynomial-time attacker’s advantage in the attack game for session key

security is negligible.

The session key security game does not cover perfect forward secrecy, which can be

modelled by making the following modifications to the attack game for session key

security.

• In Phase 1, A1 is allowed to issue any number of session-expiration queries.

• In Phase 2, A2 is allowed to issue a corrupt query to Ui (after issuing a

session-expiration query to Πsidi

i,j ).

With these modifications, a protocol secure under Definition 24 is said to be SK-

secure with PFS.

The definitions in the AM are identical to these in the UM, except that send query is

replaced with send∗ query, which means that the attacker can only faithfully deliver

protocol messages.
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4.4.3 Summary of the Canetti-Krawczyk model

In the Canetti-Krawczyk model, the attack game for session key security covers not

only the key authentication property but also the following additional security prop-

erties: known-key resilience and unknown-key share resilience, because the attacker

is allowed access to obtain other session keys through reveal queries. However, it

does not cover the following security properties:

• backward secrecy, because the attacker is not allowed to Ui’s long-term private

key in Phase 1, since the tested oracle Πs
i,j should be fresh;

• key control and dishonest partner unknown key-share resilience, because the

challenger will simulate the protocol execution faithfully, and no oracle queries

allow the attacker to affect these behaviours;

• key confirmation and information leakage resilience.

In addition, entity authentication and key compromise impersonation resilience are

not addressed by the Canetti-Krawczyk model.

4.5 Comparisons and Conclusions

In this chapter we have presented a brief review of the main existing security models

for key establishment protocols, and shown that none of them cover all the security

properties described in Section 3.3.

The capabilities of the various security models are captured in table 4.1, where the

following abbreviations are used: KA: Key Authentication, FS: Forward Secrecy,

PFS: Perfect Forward Secrecy, BS: Backward Secrecy, UKS: Unknown-Key Share

resilience, DPUKS: Dishonest Partner Unknown-Key Share resilience, KR: Key Ran-

domness, KCL: Key Control, EA: Entity Authentication, KK: Known-Key resilience,

KCM: Key ConfirMation, KCI: Key Compromise Impersonation resilience, and IL:

Information Leakage resilience.
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BR Strangio∗ Shoup Canetti-Krawczyk Bresson∗ Bellare∗

KA yes yes yes yes yes yes
FS yes yes yes yes yes yes

PFS yes yes yes yes yes yes
BS no yes no no no no

UKS yes yes yes yes yes yes
DPUKS no no no no no no

KR yes yes yes yes yes yes
KCL no no no no no no
EA yes no no no yes no
KK yes yes yes yes yes yes

KCM no no no yes no no
KCI no yes no no no no
IL no no no no no yes

Table 4.1: Comparison between Security Models

Note that the BR stands for the Bellare-Rogaway model, Strangio∗ stands for the

security models in [75, 157, 225], Bresson∗ stands for the security model proposed by

Bresson et al. [60], and Bellare∗ stands for the security model proposed by Bellare,

Pointcheval, and Rogaway [28].

Not only none of these models is capable of covering the full list of security prop-

erties, their concepts of partnership have certain shortcomings. In the Bellare-

Rogaway model and its variants, partnership also depends on complete matching

conversations between the communicating parties, which is actually a extremely

strong requirement. The Canetti-Krawczyk model assumes a pre-distributed unique

session identifier; however, this is also a very strong requirement, which may cause

additional communication and computation complexity when implementing the key

establishment protocols.

In Chapter 6, we propose a new indistinguishability-based security model in an

attempt to address these issues.
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Chapter 5

Attacks against key establishment proto-
cols
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In this chapter we analyse a number of key establishment protocols and demonstrate

certain security vulnerabilities in these protocols. Some of these vulnerabilities have

arisen because of the lack of a rigorous analysis in a well-defined security model,

while others are beyond the security models originally used to analyse the protocols.
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5.1 Introduction

In this chapter, we provide security analyses of a number of key establishment pro-

tocols; some of these analyses have appeared in [195, 232, 233, 234, 235, 236, 237].

These security analyses reflect a number of issues in the design and security analysis

of key establishment protocols. They help us to understand the precise security

properties of existing key establishment protocols, and improve our understanding

of the existing security models and their capability to model security properties.

They also provide a motivation for the development of a new security model (in the

next chapter), which addresses some of the issues identified in existing protocols and

models.

The rest of this chapter is organised as follows. In Section 5.2, we provide a security

analysis of some extensions of the Burmester-Desmedt protocol, including the au-

thenticated version proposed by Burmester and Desmedt [61], the Choi-Hwang-Lee

protocol [80] and the Du-Wang-Ge-Wang protocol [97], and the modified versions

given in [98, 253], and a protocol generated by the Katz-Yung compiler [145]. In

Section 5.3 we provide security analyses of the second version of the Wireless Au-

thentication Infrastructure (WAI) protocol from the Chinese WLAN implementation

plan [3]. In Section 5.4 we provide some examples of protocols, namely those given

in [116, 119, 217], which suffer from dishonest partner unknown key-share attacks.

In Section 5.5, we present an analysis of certain password-based key establishment

protocols, include the Jablon protocol [130], the Lai-Ding-Huang protocol [162], the

EKE-U and EKE-M protocols [66], and the RSA-AKE protocol [216]. In the final

section we conclude this chapter.

5.2 Extensions of the Burmester-Desmedt protocol

In this section we provide security analyses of a number of authenticated versions of

the Burmester-Desmedt protocol, described in Section 3.1.2.2, including those given

in [61, 80, 97, 98, 145, 253].

69



5.2 Extensions of the Burmester-Desmedt protocol

5.2.1 Analysis of the Authenticated Burmester-Desmedt protocol

The authenticated Burmester-Desmedt protocol [61] was designed to improve the

security of the unauthenticated version (described in Section 3.1.2.2) by provid-

ing partial authentication for the protocol messages using a zero knowledge proof

scheme. We show that the authenticated protocol suffers from attacks against both

the key authentication property and the entity authentication property. Note that

these attacks appear in the work of Tang and Mitchell [235].

5.2.1.1 A proof of knowledge scheme

We first describe a scheme which is a key component of the authenticated Burmester-

Desmedt protocol.

In the initialisation stage, the system selects four large primes p1, p2, q1, q2 satisfying

p1 ≤ q2, q1|(p1 − 1), and q2|(p2 − 1). Let g1 be a generator of a multiplicative group

of order q1 in Z
∗
p1

, and g2 be a generator of a multiplicative group of order q2 in Z
∗
p2

.

The public system parameters are (p1, p2, q1, q2, g1, g2).

User Ui (i ≥ 1) chooses ai1 ∈R Zq1, ai2, ai3 ∈R Zq2, publishes its public key (βi1, βi2, βi3),

where βi1 = gai1
1 , βi2 = gai2

2 , βi3 = gai3
2 , and keeps (ai1, ai2, ai3) as its private key.

Suppose Ui wishes to prove its knowledge of z to Uj (j 6= i); the scheme operates as

follows.

1. Ui sends z and γi1 = gbi1
1 to Uj , where bi1 ∈R Zq1.

2. Ui proves to Uj that it knows the discrete logarithm base g1 of βz
i1γi1 and

the discrete logarithm base g2 of βγi1
i2 βi3, using the zero-knowledge discrete

logarithm proof scheme of Chaum et al. [72], described below.

3. Uj checks that γq1
i1 ≡ 1 (mod p1), gq1

1 ≡ βq1
i1 ≡ 1 (mod p1), gq2

2 ≡ βq2
i2 ≡ βq2

i3

(mod p2), that p1, p2 are primes, and that p1 ≤ q2. If any of the checks fail,

Uj terminates the protocol. Otherwise Uj now believes that Ui knows z.
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The zero knowledge discrete logarithm proof scheme, due to Chaum et al. [72],

operates as follows. Suppose P is a large prime, and that αx ≡ β (mod P ). Suppose

also that P,α, β are made public and x is a secret of Alice. If Alice wants to prove

her knowledge of x to Bob, she uses the following procedure.

1. Alice selects T numbers ei ∈R ZP−1 (1 ≤ i ≤ T ). Alice computes and sends

hi = αei mod P (1 ≤ i ≤ T ) to Bob.

2. Bob chooses and sends T bits bi ∈R {0, 1} (1 ≤ i ≤ T ) to Alice.

3. For each bit bi (1 ≤ i ≤ T ), if bi = 0 Alice sets si = ei; otherwise Alice

computes si = ei − ej mod (P − 1), where j is the minimal number for which

bj = 1. Finally, Alice sends (x− ej) mod (P − 1) and si (1 ≤ i ≤ T ) to Bob.

4. For each bit i (1 ≤ i ≤ T ), if bi = 0 Bob checks that αsi = hi; otherwise Bob

checks that αsi = hih
−1
j . In addition, Bob also checks that αx−ej = βh−1

j . If

all the checks succeed, Bob accepts.

5.2.1.2 Description of the Authenticated Burmester-Desmedt protocol

The TTP runs the TTP initialisation sub-protocol to generate the public parameter

(p1, p2, q1, q2, g1, g2) for the authentication scheme described in Section 5.2.1.1. In

addition, the TTP also generates its public/private key pair, as used to certify

users’ public keys. Every user Ui (i ≥ 1) runs the user initialisation sub-protocol

to generate its public/private keys (βi1, βi2, βi3) and (ai1, ai2, ai3), where ai1 ∈R

Zq1, ai2, ai3 ∈R Zq2 and βi1 = gai1
1 , βi2 = gai2

2 , βi3 = gai3
2 . Ui should get its public key

certified by the TTP. In addition, this sub-protocol generates (p, q, g), where q|p−1

and g is a generator of the multiplicative sub-group of order q in Z
∗
p.

Suppose a set of users Ui (1 ≤ i ≤ n) wish to establish a session key; the key

establishment sub-protocol is defined as follows. Note that the indices of users (and

values exchanged between users) are taken modulo n.

1. Ui chooses si ∈R Zq, and computes and broadcasts Zi = gsi .
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2. After receiving Zi−1 and Zi+1, Ui proves its knowledge of Zi to Ui+1, and

verifies Ui−1’s knowledge of Zi−1. If both the proof and the verification succeed,

Ui computes and broadcasts Xi:

Xi = (Zi+1/Zi−1)
si

3. After receiving Xj (1 ≤ j ≤ n, j 6= i), Ui computes the session key Ki as:

Ki = (Zi−1)
nsi · (Xi)

n−1 · (Xi+1)
n−2 · · ·Xi+n−2

= gs1s2+s2s3+s3s4+···+sns1

Burmester and Desmedt [61] claim that this is a secure key establishment protocol in

the sense that, in any session, it is computationally infeasible for any active (outside

or inside) attacker to mount an attack against the key authentication property.

5.2.1.3 Security Vulnerabilities of the Authenticated Protocol

We show that the authenticated Burmester-Desmedt protocol suffers from attacks

against both the key authentication property and the entity authentication property.

Note that the latter property is not considered in [61].

Attack against the key authentication property: In any target session, the

attacker replaces the message Zi+1 broadcast by Ui+1 sent to Ui with Z ′
i+1 = Z2

i−1,

for every i (1 ≤ i ≤ n). We now show that the protocol will end successfully and

the attacker can compute the session key held by Ui (1 ≤ i ≤ n).

Lemma 2 Under the above attack, if all parties follow the protocol correctly (except

for the attacker itself) and all messages are successfully delivered, then the protocol

will end successfully, and the attacker can compute the session key of Ui.

Proof. Under the attack, it is clear that the protocol will end successfully, because

it is only required that Ui (1 ≤ i ≤ n) proves his knowledge of Zi to Ui+1 (while the

attacker only changes the message that Ui+1 sends to Ui).
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It is also clear that, in the second step, Ui will broadcast Xi = (Z ′
i+1/Zi−1)

si =

(Zi−1)
si . Then, after intercepting all the broadcast values Xi (1 ≤ i ≤ n), the

attacker can compute the session key held by Ui as

Ki = (Zi−1)
nsi · (Xi)

n−1 · (Xi+1)
n−2 · · ·Xi+n−2

= (Xi)
n · (Xi)

n−1 · (Xi+1)
n−2 · · ·Xi+n−2

which involves only values broadcast by the various recipients. The result follows. �

Attack against the entity authentication property: Before describing the

attack, we first describe a vulnerability of the zero-knowledge discrete logarithm

proof scheme. The vulnerability arises from the fact that the proof scheme does not

enable the prover to specify the verifier.

Suppose Alice wishes to prove her knowledge of x to Bob; then an attacker can

concurrently impersonate Alice to prove knowledge of x to any other entity, Carol

say. The attack can be mounted as follows. The attacker intercepts the first and

third protocol messages sent by Alice to Bob in the first instance of the protocol,

and forwards them to Carol (pretending to be Alice). The second protocol message

sent by Carol to Alice is intercepted by the attacker and forwarded to Alice as if

it comes from Bob. It is straightforward to verify that Carol will believe that the

attacker knows x.

The attack against the entity authentication property can be mounted as follows. If

the attacker detects that a set S of users Ui (1 ≤ i ≤ n) start a session to negotiate

a session key, it impersonates Ui to start a second session among a set S′ of users,

where S′ contains Ui−1, Ui, Ui+1 and such that these three users are ordered in the

same way as they are in S. In the second session, the attacker impersonates Ui.

During the protocol executions, the attacker performs as follows.

1. In the first session, the attacker intercepts the messages sent from Ui−1 and

Ui+1 to Ui, and prevents them from reaching Ui. In the second session, the

attacker impersonates Ui to broadcast the value of Zi which was broadcast

by Ui in the first session. Suppose that, in the second session, the messages

broadcast by Ui−1 and Ui+1 are Z ′
i−1 and Z ′

i+1, respectively; the attacker then
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impersonates Ui−1 and Ui+1 to send Z ′
i−1 and Z ′

i+1 to Ui in the first session.

2. In the first session, when Ui proves its knowledge of Zi to Ui+1, the attacker

mounts the above attack (against the zero-knowledge discrete logarithm proof

scheme) by impersonating Ui to prove its knowledge of Zi to Ui+1 in the

second session. In the second session, when Ui−1 proves its knowledge of Z ′
i−1

to the attacker, the attacker mounts the above attack (against zero-knowledge

discrete logarithm proof scheme) by impersonating Ui−1 to prove its knowledge

of Z ′
i−1 to Ui in the first session.

As a result, in the first session Ui computes and broadcasts Xi which is com-

puted as follows:

Xi = (Z ′
i+1/Z

′
i−1)

si

The attacker intercepts this message and impersonates Ui to broadcast the

same message in the second session.

It is straightforward to verify that the second session ends successfully which means

the attacker succeeds in impersonating Ui to other users, and the first session fails,

because the proof between Ui and Ui+1 is hijacked by the attacker so that Ui+1

aborts. In this attack, Ui believes it is negotiating a session key with the users in

S withouting noticing the key establishment activity in the group S′, therefore, if

the attacker can compromise the ephemeral state (the secret si for generating Zi in

the first session) of Ui then it can obtain the session key for the second session. As

a result, it is straightforward to verify that this protocol is does not achieve session

key security.

5.2.2 Analysis of the Choi-Hwang-Lee and Du-Wang-Ge-Wang Proto-
cols

The Choi-Hwang-Lee protocol is an authenticated variant (using bilinear pairings)

of the Burmester-Desmedt protocol [80]. The Du-Wang-Ge-Wang protocol [97] is

a similar variant. Zhang and Chen [253] describe an attack against the entity au-

thentication property that can be mounted against both the Choi-Hwang-Lee and

Du-Wang-Ge-Wang protocols. They also proposed a modified scheme designed to

prevent this impersonation attack. In addition, Du et al. [98] proposed a different
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modification to the Du-Wang-Ge-Wang protocol to address the same attack. We

show that both the modified versions still suffer from attacks against the entity au-

thentication property by dishonest partners. Note that these attacks appear in the

work of Tang and Mitchell [230].

5.2.2.1 Description of the Protocols

We first describe the Du-Wang-Ge-Wang protocol. The TTP runs the TTP initial-

isation sub-protocol to generate {G1, G2, ê, q, P,H,H1, s, Ppub}, where G1 is a cyclic

additive group with generator P whose order is a prime q, G2 is a cyclic multiplica-

tive group with the same order q, ê : G1 × G1 → G2 is a bilinear map, two hash

functions H : {0, 1}∗ → Zq, H1 : {0, 1}∗ → G1, s ∈R Zq is a global master-key, and

Ppub = sP is a public key. In addition, the TTP also generates its public/private key

pair, as used to certify users’ public keys. Every user Ui (i ≥ 1) runs the user ini-

tialisation sub-protocol to retrieve a public/private key pair (Qi, si) from the TTP,

where IDi ∈ Z
∗
q is Ui’s unique identifier, Qi = H1(IDi), and Si = sQi.

Suppose a set of users Ui (1 ≤ i ≤ n) wish to establish a session key; then the key

establishment sub-protocol is as follows. Note that the indices of users (and values

exchanged between users) are taken modulo n.

1. Ui selects ri ∈R Zq, and broadcasts (Yi, Ti), where Yi = riP and Ti = H(Yi)Si+

riPpub.

2. After receiving (Yj , Tj) from Uj (1 ≤ j ≤ n, j 6= i), Ui verifies that:

ê(
∑

j∈{1,··· ,n},j 6=i

Tj , P ) = ê(
∑

j∈{1,··· ,n},j 6=i

(H(Yj)Qj + Yj), Ppub)

If all the checks succeed, Ui broadcasts Xi = ê(Ppub, ri(Yi+1−Yi−1)); otherwise

it aborts.

3. After receiving Xj from Uj (1 ≤ j ≤ n, j 6= i), Ui computes its session key Ki

as:

Ki = ê(Ppub, nriYi−1)X
n−1
i Xn−2

i+1 · · ·Xi−2

= ê(P,P )(r1r2+r2r3+···+rnr1)s
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The key establishment sub-protocol of the Choi-Hwang-Lee protocol works in a

similar way, except that the computations in step 2 and 3 are slightly different:

• In step 2, the verification equation is:

ê(Ti−1 + Ti+1 + Ti+2, P ) = ê(
∑

j={i−1,i+1,i+2}

(H(Yj)Qj + Yj), Ppub)

Then, Ui computes and broadcasts Xi = ê(ri(Yi+2 − Yi−1), Yi+1).

• In step 3, the session key is computed as:

K = ê(nriYi−1, Yi+1)X
n−1
i Xn−2

i+1 · · ·Xi−2

= ê(P,P )r1r2r3+···+rnr1r2

5.2.2.2 Existing Attacks and Improvements

Zhang and Chen [253] show that both the Choi-Hwang-Lee and Du-Wang-Ge-Wang

Protocols suffer from impersonation attacks against the entity authentication prop-

erty from dishonest partners. Because of the similarity of these attacks, we only

describe the attack on the Du-Wang-Ge-Wang protocol.

Suppose that, in a past session, users Ui (1 ≤ i ≤ n) have successfully established

a session key. Suppose also that Ui sent (Y ∗
i , T ∗

i ) in step 1, where Y ∗
i = r∗i P , and

T ∗
i = H(Y ∗

i )Si + r∗i Ppub.

With (Y ∗
i , T ∗

i ) and X∗
i , Ui−1 and Ui+1 can collude to impersonate Ui in a new session

among any group of users, as long as Ui−1, Ui, and Ui+1 are involved. Let the group

of users be Ui (1 ≤ i ≤ n). To mount the attack, Ui+1 and Ui−1 impersonate Ui to

broadcast (Y ∗
i , T ∗

i ) in step 1, and impersonate Ui to broadcast Xi in step 2, where

Xi = ê(Ppub, r
∗
i (Yi+1 − Yi−1))

= ê(r∗i P, s(Yi+1 − Yi−1))

= ê(Y ∗
i , (ri+1 − ri−1)Ppub)

It is straightforward to verify that the new session will end successfully, and all users

will compute the same session key.
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In order to avoid this attack, Zhang and Chen [253] proposed the following modified

key establishment sub-protocol.

1. Ui chooses ri ∈R Zq, and broadcasts (Yi, Ti), where ti is a time stamp, Yi = riP ,

and Ti = H(Yi||ti||ID1|| · · · ||IDn)Si + riPpub.

2. After receiving (Yj , Tj) from Uj (1 ≤ j ≤ n, j 6= i), Ui verifies that:

ê(
∑

j∈{1,··· ,n},j 6=i

Tj , P ) = e(
∑

j∈{1,··· ,n},j 6=i

(H(Yj ||tauth)Qj + Yj), Ppub) (5.1)

where tauth = ti||ID1|| · · · ||IDn.

If all the checks succeed, Ui computes and broadcasts Xi = ê(Ppub, ri(Yi+1 −

Yi−1)); otherwise it aborts.

3. After receiving Xj from Uj (1 ≤ j ≤ n, j 6= i), Ui computes its session key Ki

as:

Ki = ê(Ppub, nriYi−1)X
n−1
i Xn−2

i+1 · · ·Xi−2

= ê(P,P )(r1r2+r2r3+···+rnr1)s

It is straightforward to see that the protocol ends successfully only if the same

timestamp is used by all parties. Hence, the protocol requires a strict synchronisation

of time.

Du et al. [98] proposed another modified version of the Du-Wang-Ge-Wang protocol,

in which synchronous counters are held by every group of users which may run the

protocol to establish a session key. That is, if a user is involved in t different

groups which at some time jointly establish a session key, then that user will need

to maintain t distinct counters, one for each such user group. It is assumed that

every counter’s initial value is 1; after a successful protocol execution, the counter

is increased by 1.

Suppose a set of users Ui (1 ≤ i ≤ n) wish to establish a session key; then the

modified key establishment sub-protocol works as follows:

1. Suppose c is the current value of the counter held by Ui for the set of users
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{U1, U2, · · · , Un}. User Ui computes and broadcasts (Yi, Ti), where ri ∈R Zq,

Yi = riP , and Ti = H(Yi)cSi + riPpub.

2. After receiving (Yj , Tj) from Uj (1 ≤ j ≤ n, j 6= i), Ui verifies that:

ê(
∑

j∈{1,··· ,n},j 6=i

Tj, P ) = ê(
∑

j∈{1,··· ,n},j 6=i

(H(Yj)cQj + Yj), Ppub) (5.2)

If all the checks succeed, Ui broadcasts Xi = ê(Ppub, ri(Yi+1−Yi−1)); otherwise

it aborts.

3. After receiving Xj from Uj (1 ≤ j ≤ n, j 6= i), Ui computes its session key Ki

as:

Ki = ê(Ppub, nriYi−1)X
n−1
i Xn−2

i+1 · · ·Xi−2

= ê(P,P )(r1r2+r2r3+···+rnr1)s

and updates the value of the counter it holds for the set of users {U1, U2, · · · , Un}

to c + 1.

5.2.2.3 Further Security Vulnerabilities

Although the authors of [98, 253] have modified the Du-Wang-Ge-Wang protocol

to prevent the attacks against the entity authentication property, we show that

these modified protocols are still vulnerable to attacks from a subset of malicious

participants. In other words, these protocols cannot achieve entity authentication

in the presence of dishonest partners.

1. Firstly, in the modified Du-Wang-Ge-Wang protocol of Zhang and Chen, three

or more users can collude to impersonate another user and make all users

compute a common session key. Suppose that a set of users Ui (1 ≤ i ≤ n, n >

4) run the protocol to establish a session key. We show that Ui−1, Ui, and

Ui+1 are able to impersonate another user Uj .

In any session, if all values are exchanged successfully amongst the users, then

equation 5.1 will hold for all users other than Ui and Uj if the following equation

holds.

ê(Ti + Tj, P ) = ê(H(Yi||tauth)Qi + Yi + H(Yj ||tauth)Qj + Yj , Ppub) (5.3)
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To mount the attack, Ui−1, Ui, and Ui+1 perform as follows.

(a) In step 1, Ui impersonates Uj to broadcast (Yj, Tj), where rj ∈R Zq,

Yj = rjP , and Tj is any element in G1. Ui also broadcasts its own

message (Yi, Ti), where

Yi = −H(Yj ||tauth)Qj, Ti = H(Yi||tauth)Si + rjPpub − Tj .

It is straightforward to verify that equation 5.3 holds, so that equation

5.1 holds. As a result, in step 2, the verification by Uk (k 6= i, k 6= j) will

succeed.

(b) In step 2, Ui impersonates Uj to broadcast Xj = ê(Ppub, rj(Yj+1−Yj−1)) ,

and then broadcasts its own message Xi = ê(Ppub, r
∗
i (Yi+1−Yi−1)), where

r∗i is any value from Z
∗
q. Ui−1 broadcasts Xi−1 = ê(Ppub, ri−1(r

∗
i P−Yi−2)).

Ui+1 broadcasts Xi+1 = ê(Ppub, ri+1(Yi+2 − r∗i P )).

As a result, Um (m 6= i, m 6= i+ 1) will compute the common session key

as:

Km = ê(Ppub, nrmYm−1)X
n−1
m Xn−2

m+1 · · ·Xm−2

= ê(P,P )(r1r2+r2r3+···+ri−1r∗i +r∗i ri+1+···+rnr1)s

The use of a timestamp does not help to prevent this attack. It is worth

noting that a directly analogous attack can also be mounted on the modified

Choi-Hwang-Lee protocol of Zhang and Chen [253].

2. Secondly, the modified protocol of Du et al. [98] suffers from attacks against en-

tity authentication from dishonest partners. Let c and c′ be the counters corre-

sponding to the sets of users S = {U1, U2, · · · , Un} and S′ = {U1, U2, · · · , Un+1},

respectively. We show that an outside attacker is able to impersonate user Uj

in S′ (or S) when the counters associated with the two sets of users happen

to coincide.

In any session for S′, if all values are exchanged successfully amongst the users,

then equation 5.2 will hold, for all users other than Uj if the following equation

holds.

ê(Tj , P ) = ê(H(Yj)c
′Qj + Yj, Ppub) (5.4)

To mount the attack, the attacker records Ui’s messages (Y ∗
j , T ∗

j ) in a protocol

execution for group S, and perform as follows in a protocol execution for the

group S′ when c′ = c.
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(a) In step 1, Ui impersonates Uj to broadcast (Y ∗
j , T ∗

j ). It is straightforward

to verify that the equation 5.4 holds because c′ = c, so that equation 5.2

holds if all other users broadcast their message honestly. As a result, in

step 2, the verification by Uk (k 6= j) will succeed.

(b) In step 2, Ui impersonates Uj to broadcast Xj = (
n
∏

k=1,k 6=j

Xk)
−1. If

all other users broadcast their message honestly, then Um (m 6= j) will

compute the common session key as:

Km = ê(Ppub, nrmYm−1)X
n−1
m Xn−2

m+1 · · ·Xm−2

= ê(P,P )(r1r2+r2r3+···+rj−1r∗j +r∗j rj+1+···+rnr1)s

In summary, our attacks and the attacks proposed in [253] all arise as a result of

the lack of direct authentication of the key materials (Xi) that are used to generate

the session key. So, in all the protocols, even if a key is successfully generated,

impersonation attacks might have occurred during the key establishment process.

5.2.3 Analysis of the Katz-Yung Protocol with Key Confirmation

The Katz-Yung protocol is obtained by applying the compiler of Katz and Yung

[145] to the Burmester-Desmedt protocol, and was originally given as an example

of the use of the compiler. Katz and Yung [145] also suggested adding a message to

achieve key confirmation. We show that the resulting protocol suffers from attacks

against the key confirmation property by dishonest partners. Note that this attack

appears in the work of Tang and Mitchell [235].

5.2.3.1 Description of the Katz-Yung Protocol with Key Confirmation

The TTP runs the TTP initialisation sub-protocol to generate (G, q, g) and a pseudo-

random function F: {0, 1}k × {0, 1}ℓ → {0, 1}ℓ, where G is a multiplicative cyclic

group of prime order q, g is a generator of G, and k is the bit-length of an element of

G. In addition, the TTP also generates its public/private key pair, as used to certify

users’ public keys. Every user Ui (i ≥ 1) runs the user initialisation sub-protocol to
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generate a key pair (pki, ski) for a signature scheme (KeyGen, sign,Verify), and get

pki certified by the TTP.

Suppose a set of users Ui (1 ≤ i ≤ n) wish to establish a session key; the key

establishment sub-protocol is as follows. Note that the indices of users (and values

exchanged between users) are taken modulo n.

1. Ui chooses ri ∈R {0, 1}
ℓ and broadcasts (IDi, 0, ri).

2. After receiving (IDj , 0, rj) (1 ≤ j ≤ n, j 6= i), Ui generates its state informa-

tion as noncei = ID1||r1||ID2||r2|| · · · ||IDn||rn. Ui then chooses si ∈R Zq and

broadcasts (IDi, 1, Zi, σi1), where Zi = gsi and σi1 = Sign(1||Zi||noncei, ski).

3. After receiving (IDj , 1, Zj , σj1) (1 ≤ j ≤ n, j 6= i), Ui checks that: (1) Uj is

an intended user, (2) 1 is the next expected sequence number for a message

from Uj , and (3) Verify(1||Zj ||noncei, pkj , σj1) = 1. If any of these checks fail,

Ui terminates the protocol. Otherwise, Ui broadcasts (IDi, 2,Xi, σi2), where

Xi = (Zi+1/Zi−1)
si and σi2 = Sign(2||Xi||noncei, ski).

4. After receiving (IDj , 2,Xj , σj2) (1 ≤ j ≤ n, j 6= i), Ui checks that: (1) Uj is

an intended user, (2) 2 is the next expected sequence number for a message

from Uj, and (3) Verify(2||Xj ||noncei, pkj , σj2) = 1. If any of these checks fail,

Ui terminates the protocol. Then Ui computes the session key Ki as follows:

Ki = (Zi−1)
nsi · (Xi)

n−1 · (Xi+1)
n−2 · · ·Xi+n−2

= gs1s2+s2s3+s3s4+···+sns1

and broadcasts (IDi, 3,Mi, σi3), where Mi = F(Ki, IDi) and σi3 = Sign(Mi, ski).

5. After receiving (IDj , 3,Mj , σj3) (1 ≤ j ≤ n, j 6= i), Ui checks that: (1) Uj is an

intended user, (2) 3 is the next expected sequence number for a message from

Uj , and (3) Verify(xi, pkj , σj3) = 1. If any of these checks fail, Ui terminates

the protocol.

5.2.3.2 A Security Vulnerability

We show that the above protocol suffers from attacks against the key confirmation

property if dishonest partners exist. Specifically, we show that any n− 2 malicious
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users can make the other two users compute different keys as a result of the protocol.

However, it is important to note that insider attacks are not covered by the security

model used in the original Katz-Yung paper [145] and hence this attack is outside

the model originally used to analyse the protocol.

For simplicity we describe the attack in the three-party case. Suppose, in a finished

session of the Katz-Yung protocol involving three users Ui (1 ≤ i ≤ 3), the key

confirmation message sent by U3 is M∗
3 = F(K∗

3 , ID3) and σ∗
33 = Sign(M∗

3 , sk3). U2

can now initiate a new session among the same triple of users Ui (1 ≤ i ≤ 3) and

mount an attack as follows.

1. Ui chooses ri ∈R {0, 1}
ℓ and broadcasts (IDi, 0, ri).

2. Ui generates its state information noncei = ID1||r1||ID2||r2||ID3||r3 and

broadcasts (IDi, 1, Zi, σi1), where si ∈R Zq, Zi = gsi , and σi1 = Sign(1||Zi||noncei, ski).

3. After receiving (IDj , 1, Zj , σj1) (1 ≤ j ≤ 3, j 6= i), Ui checks the messages as

required by the protocol specification. In this step, U1 computes and broad-

casts (ID1, 2,X1, σ12), where

X1 = (Z2/Z3)
s1 , σ12 = Sign(2||X1||nonce1, sk1).

Analogously, U3 computes and broadcasts (ID3, 2,X3, σ32).

X3 = (Z1/Z2)
s3 , σ32 = Sign(2||X3||nonce3, sk3)

U2 then waits until it has received (ID1, 2,X1, σ12) and (ID3, 2,X3, σ32), and

then sends (ID2, 2,X
′
2, σ

′
22), and (ID2, 2,X2, σ22) to U1 and U3, respectively,

where

X2 = (Z3/Z1)
s2 ,K2 = Z3s2

1 X2
2X3, σ22 = Sign(2||X2||nonce2, sk2)

X ′
2 = X2 ·

K∗
3

K2
, and σ′

22 = Sign(2||X ′
2||nonce2, sk2)

As a result of steps 1–3, U1 will compute the session key as K∗
3 , and U3 will

compute the session key as K2. Hence, as a result, U2 shares the session keys

K∗
3 and K2 (K2 6= K∗

3 holds with an overwhelming probability) with U1 and

U3, respectively.
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4. U2 intercepts the confirmation messages between U1 and U3 and prevents them

from reaching their destinations. U2 computes and sends (ID2, 3,M
′
2, σ

′
23)

and (ID2, 3,M2, σ23) to U1 and U3, respectively, where M ′
2 = F(K∗

3 , ID2),

σ′
23 = Sign(M ′

2, sk2), x2 = F(K2, ID2), and σ23 = Sign(M2, sk2). In addition,

U2 impersonates U3 to sends (ID3, 3,M
∗
3 , σ∗

33) to U1

Note that U2 has forced U1 to compute the session key K∗
3 which is chosen by

U2, and also obtained U1’s confirmation message. Following the same proce-

dure, U2 initiates a new session among Ui (1 ≤ i ≤ 3), in step 3 of the new

session manipulates its message sent to U1 and forces U1 to compute the ses-

sion key as K2, and then obtains U1’s confirmation message M ′
1 = F(K2, ID1)

and σ13 = Sign(M ′
1, sk1).

In the first session, U2 impersonates U1 to send (ID1, 3,M
′
1, σ

′
13) to U3, where

M ′
1 = F(K2, ID1) and σ13 = Sign(M ′

1, sk1) to U3.

It is straightforward to verify that all the key confirmation messages will be checked

successfully by U1 and U3, and the attack will therefore succeed. The above security

vulnerability can be removed if Ui (1 ≤ i ≤ 3) is required to compute its key

confirmation message as Mi = F(Ki, IDi), σi3 = Sign(3||Mi||noncei, ski).

5.3 Analysis of the Second Version of the WAI protocol

The Wireless Authentication and Privacy Infrastructure (WAPI) scheme is the se-

curity mechanism employed in the Chinese Wireless LAN standard [1, 2, 3, 14]. The

WAPI scheme has two sub-modules: Wireless Authentication Infrastructure (WAI)

and Wireless Privacy Infrastructure (WPI). The WAI protocol realises the func-

tionality of authentication and key establishment between mobile Stations (STAs)

and Access Points (APs), while the WPI works on top of WAI to provide security

guarantees for data communication.

In this section we first describe the WAI protocol, and then show that it possesses

certain undesirable properties. Note that these attacks appear in the work of Tang

and Mitchell [227].
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5.3.1 Description of the protocol

Three types of entities are involved in the WAI protocol: Authentication Service

Unit (ASU), Access Point (AP), and Station (STA).

• ASU is a TTP for STA and AP, and it generates a verify/sign key pair

(pkasu, skasu) for a signature scheme (KeyGen,Sign,Verify).

• STA possesses a public/private key pair (pksta, sksta) for a public-key encryp-

tion scheme (Gen,Enc,Dec), and retrieves a certificate Certsta for pksta from

the ASU.

• AP possesses a public/private key pair (pkap,e, skap,e) for (Gen,Enc,Dec), and

a verify/sign key pair (pkap,s, skap,s) for (KeyGen,Sign,Verify). AP retrieves a

certificate Certap for pkap,e and pkap,s from the ASU.

In addition, the system uses two hash functions H1 : {0, 1}∗ −→ {0, 1}2ℓ and H2 :

{0, 1}∗ × {0, 1}∗ −→ {0, 1}ℓ, where ℓ is the security parameter.

When STA and AP wish to authenticate each other and establish a shared secret

session key, they perform the following procedure.

1. AP sends a authentication request to STA, where the request contains the

type information “0”, which indicates that the message is a request.

2. After receiving the authentication request from AP, STA sends its certificate

Certsta and a timestamp tsta to AP.

3. After receiving Certsta and tsta, AP sends (Certsta, Certap, tsta, σap) to ASU,

where σap = Sign(Certsta||Certap||tsta, skap,s).

4. After receiving (Certsta, Certap, tsta, σap), ASU first checks that

Verify(Certsta||Certap||tsta, pkap,s, σap) = 1

If the check succeeds, ASU sends (Rsta, Rap, σasu) to AP, where Rsta is the

validation result on Certsta, Rap is the validation result on Certap, and σasu =

Sign(Rsta||Rap, skasu).
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5. After receiving (Rsta, Rap, σasu), AP first checks the validation result. If Certsta

is valid, AP forwards (Rsta, Rap, σasu) to STA, which checks the validation re-

sults Rsta and Rap, and the signature σasu.

6. AP selects r1 ∈R {0, 1}
ℓ and sends (SPI, c1, σ1) to STA, where SPI is a

concatenation of AP’s MAC address, STA’s MAC address, and a timestamp,

c1 = Enc(r1, pksta), and σ1 = Sign(SPI||c1, skap,s).

7. After receiving (SPI, c1, σ1), STA sends (SPI, c2, σ2) to AP, where r1 =

Dec(c1, sksta), r2 ∈R {0, 1}
ℓ, k1||k2 = H1(r1 ⊕ r2)

1, c2 = Enc(r2, pkap,e), and

σ2 = H2(k1, SPI||c2). In addition, STA sets k1 as the session key.

8. After receiving (c2, σ2), AP computes r2 = Dec(c2, skap,e), computes k1, k2 in

the same way as STA, and then checks σ2. If the check succeeds, AP accepts

k1 as the session key; otherwise, AP aborts.

ASU AP STA

request
−−−−−→

Certsta, tsta
←−−−−−−−−−

Certsta, Certap
←−−−−−−−−−−−−

tsta, σap

Rsta, Rap, σasu
−−−−−−−−−−−−→

Rsta, Rap
−−−−−−−→

σasu

r1 ∈ {0, 1}ℓ

c1 = Enc(r1; pksta)
σ1 = Sign(SPI||c1, skap,s)

SPI, c1, σ1
−−−−−−−−→

Verify(SPI||c1, pkap,s, σ1)
?
= 1

r1 = Dec(c1, sksta)

r2 ∈ {0, 1}ℓ

k1||k2 = H1(r1 ⊕ r2)
c2 = Enc(r2, pkap,e)

σ2 = H2(k1, SPI||c2)

SPI, c2, σ2
←−−−−−−−−

r2 = Dec(c2, skap,e)
k1||k2 = H1(r1 ⊕ r2)

σ2

?
= H2(k1, SPI||c2)

Figure 5.1: The Second Version of the WAI Protocol

The first five steps form the authentication sub-protocol, which enables STA and

AP to authenticate each other. The final three steps form the key establishment

sub-protocol, which enables STA and AP to establish a session key.

1k1 is the first half of H1(r1 ⊕ r2), and k2 is the second half.
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5.3.2 Some security vulnerabilities

We show that, the WAI protocol is insecure in the Canetti-Krawczyk model, i.e., an

inside attacker can obtain the session key in any target session by issuing session-state-reveal

queries in other sessions, and corrupting one access point and one mobile station.

Suppose that, in step 6 of a session identified by SPI, AP sends c1 = Enc(r1, pksta),

and, σ1 = Sign(SPI||c1, skap,s) to STA, and in step 7, STA sends c2 = Enc(r2, pkap,e),

and σ2 = H2(k1, SPI||c2) to AP. The attacker mounts the attack in two steps, as

follows:

1. The attacker obtains the long-term private keys of some access point AP′

and some station STA′, where AP 6= AP′, STA 6= STA′, AP′ possesses a

key pair (pk′
ap,e, sk

′
ap,e) for (Gen,Enc,Dec) and a key pair (pk′

ap,s, sk
′
ap,s) for

(KeyGen,Sign,Verify), and STA′ possesses a key pair (pk′
sta, sk

′
sta) for (Gen,Enc,Dec).

2. In a subsequent session for AP′ and STA with identifier SPI ′ (where the

attacker impersonates AP′), in step 6 the attacker sends c′1 = c1 and σ′
1 =

Sign(SPI ′||c′1, sk
′
ap,s) to STA. It is straightward to verify that STA will succeed

in verifying the attacker’s message. The attacker then corrupts STA’s session

and obtains r1.

3. In another subsequent session for AP and STA′ with identifier SPI ′′ (where

this time the attacker impersonates STA′), after receiving c′′1 = Enc(r′′1 ; pkap,e)

and σ′′
1 = Sign(SPI ′′||c′′1 , skap,s) from AP in step 7, the attacker sends c′′2 = c2

and σ′′
2 to AP, where σ′′

2 is randomly chosen from the appropriate domain. The

attacker then corrupts AP’s session and obtains r2.

4. With r1 and r2, the attacker can compute the session key belonging to the

session identified by SPI.

It is straightforward to verify that the attacker has played a valid game for session

key security in the Canetti-Krawczyk model, which implies that the WAI protocol

is not secure in this model.

In addition to the above result, we have the following comments on the WAI protocol.
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• As noted by Li, Moon and Ma [169], the protocol does not achieve perfect for-

ward secrecy. This is because, given the private keys of both AP and STA, an

attacker can recompute any previous established session keys from intercepted

protocol messages.

However, the situation is actually worse than this. In certain circumstances, as

described below, if an inside attacker just has access to the long-term private

key of AP and the ephemeral state of STA (i.e. not to the private key of STA),

then it is possible to recover past session keys.

Suppose that, in a session identified by SPI, in step 6, AP sends c1 = Enc(r1, pksta),

and σ1 = Sign(SPI||c1, skap,s) to STA, and in step 7, STA sends c2 = Enc(r2, pkap,e),

and σ2 = H2(k1, SPI||c2) to AP. In a subsequent session for AP (imperson-

ated by the attacker) and STA identified by SPI ′, in step 6, the attacker sends

c′1 = c1 and σ′
1 = Sign(SPI ′||c′1, skap,s) to STA. It is straightward to verify

that STA will succeed in verifying the attacker’s message. The attacker then

corrupts STA’s session and obtains r1. Since the attacker can decrypt c2 to

obtain r2, it can then compute the session key k1.

• Since STA chooses r2 after seeing r1, and since the session keys are computed

as:

k1||k2 = H1(r1 ⊕ r2),

it follows that STA has full control over the input to the hash-function, i.e.

STA can arrange for k1||k2 to be equal to H1(r
∗) for any value r∗ of its choice.

Of course, given H1 is one-way, this does not mean that STA can control all

of k1, but STA can certainly choose some of the bits of k1 and/or k2, or make

k1||k2 be the same as previously used values.

5.4 Examples of DPUKS Attacks

In this section we give examples of protocols which suffer from DPUKS attacks as

defined in Section 3.3. Informally, in a successful DPUKS attack, dishonest partners

make two honest users, who participate in different sessions, compute the same

session key. We do not mean to suggest that these protocols are insecure with

respect to the security model within which they were originally proposed, because
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this type of attack has not been formalised. Note that some of these attacks appear

in the work of Chen and Tang [76].

5.4.1 Attack against the DHKE-1 protocol

The DHKE-1 protocol was proved secure in the Shoup model [217] (in both the

adaptive corruption mode and the strong adaptive corruption mode).

5.4.1.1 Description of the protocol

The TTP runs the TTP initialisation sub-protocol to generate the following pa-

rameters: a family of pair-wise independent hash functions Hk indexed by a bit

string k, a group G of prime order q, a generator g of G, and a pseudo-random

function BitGen. In addition, the TTP also generates its public/private key pair, as

used to certify users’ public keys. Every user Ui (i ≥ 1) runs the user initialisation

sub-protocol to generate a public/private key pair (pki, ski) for a signature scheme

(KeyGen,Sign,Verify), and retrieve a certificate Certi for pki from the TTP. It is

assumed that, Certi, the certificate for pki, contains a description of G and g.

Suppose Ui and Uj wish to establish a session key. The key establishment sub-

protocol is defined as follows.

1. Ui selects si ∈R Zq, and sends (gsi , σi, Certi) to Uj, where

σi = Sign(gsi ||IDj , ski).

2. Uj selects sj ∈R Zq, and sends (gsj , k, σj , Certj) to Ui, where k is a random

hash function index and

σj = Sign(gsi ||gsj ||k||IDi, skj).

3. Ui sends k1 to Uj , where (k1, k2) = BitGen(Hk(g
sisj)), and takes k2 as the

session key.
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5.4.1.2 Description of the attack

Suppose that there are two sessions: one for {U1, U2} and the other for {U2, U3}.

Suppose also that U2 is malicious. U2 can then mount a DPUKS attack, as shown

in Fig. 5.2.

Session 1 Session 2

U1 U2 U2 U3

1. gs1 , σ1, Cert1
−−−−−−−−−→

1. gs1 , σ′
2, Cert2

−−−−−−−−−→
2. gs3 , k′, σ′

3, Cert3
←−−−−−−−−−−−

2. gs3 , k′, σ2, Cert2
←−−−−−−−−−−−

3. k1−→
3. k1−→

Figure 5.2: DPUKS attack against the DHKE-1 protocol

Note that U2 sends its first message in the second session after it has received U1’s

first message in the first session, it sends its first message in the first session after it

has received U3’s first message in the second session, and it sends its second message

in the second session after it has received U1’s second message in the first session.

It is straightforward to see that, both sessions end successfully, and U1 and U3

compute the same session key k2. However, while there is no false belief in this

attack, U1 and U3 share the same key although they are not aware of it.

5.4.2 Attack against the Harn-Lin protocol

The Harn-Lin protocol [116] was shown to suffer from unknown key share attacks

in [254], and a modified version was also proposed. We show that the Harn-Lin

protocol also suffers from two different DPUKS attacks. It is straightforward to

verify that the modified version given in [254] is also vulnerable to these attacks.
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5.4.2.1 Description of the protocol

The TTP runs the TTP initialisation sub-protocol to generate the following param-

eters: a group G of prime order q and a generator g of G. In addition, the TTP also

generates its public/private key pair, as used to certify users’ public keys. Every user

Ui (i ≥ 1) runs the user initialisation sub-protocol to generate a public/private key

pair (pki, ski) for a signature scheme (KeyGen,Sign,Verify), and retrieve a certificate

Certi for pki from the TTP.

Suppose Ui and Uj wish to establish a session key; the key establishment sub-protocol

is as follows.

1. Ui selects si1, si2 ∈R Zp and sends (Certi, ri1, ri2, σi) to Uj, where ri1 = gsi1 ,

ri2 = gsi2 , and σi = Sign(ri1||ri2, ski).

2. Uj selects sj1, sj2 ∈R Zp and sends (Certj, rj1, rj2, σj) to Ui, where rj1 = gsj1 ,

rj2 = gsj2 , and σj = Sign(rj1||rj2, skj).

3. If Verify(rj1||rj2, pkj , σj) = 1, Ui computes the shared session keys Kℓ (1 ≤

ℓ ≤ 4), where

K1 = (rj1)
si1 ,K2 = (rj1)

si2 ,K3 = (rj2)
si1 ,K4 = (rj2)

si2 ;

otherwise, U1 aborts the protocol execution.

4. If Verify(ri1||ri2, pki, σi) = 1, Uj computes the shared session keys Kℓ (1 ≤ ℓ ≤

4), where

K1 = (ri1)
sj1 ,K2 = (ri1)

sj2 ,K3 = (ri2)
sj1 ,K4 = (ri2)

sj2 ;

otherwise, Uj aborts the protocol execution.

5.4.2.2 A DPUKS attack

Suppose that there are two sessions, one for {Ui, Uj} and the other for {Uj , Uk}.

Suppose also that Uj is malicious; Uj can then mount a DPUKS attack, as shown

in Fig. 5.3.
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Session 1 Session 2

Ui Uj Uj Uk

1. Certi, ri1, ri2, σi
−−−−−−−−−−−→

1. Cert2, ri1, ri2, σ
′
j

−−−−−−−−−−−−→
2. Certk, rk1, rk2, σk

←−−−−−−−−−−−−
2. Certj, rk1, rk2, σj

←−−−−−−−−−−−−

Figure 5.3: One DPUKS attack against the Harn-Lin protocol

Note that Uj sends its message in the second session after it has received Ui’s message

in the first session, and sends its message in the first session after it has received

Uk’s message in the second session.

It is straightforward to see that both sessions end successfully, and Ui and Uk com-

pute the same session keys Kℓ (1 ≤ ℓ ≤ 4). However, while there is no false belief

in this attack, Ui and Uk share the same key although they are not aware of it.

5.4.2.3 A second attack

Suppose that there are two sessions, one for {Ui, Uj} and the other for {Uj [Ui], Uk},

where the notation Uj [Ui] means that Uj is malicious and impersonating Ui. The

DPUKS attack is shown in Fig. 5.4.

Note that Uj sends its message in the first session after it has received Uk’s message

in the second session, and Uj sends its message in the second session after it has

received Ui’s message in the first session.

It is straightforward to see that both sessions end successfully, and Ui and Uk com-

pute the same session keys Kℓ (1 ≤ ℓ ≤ 4). In this attack, there is a false belief: Uk

mistakenly thinks its keys are shared with Ui; however, Ui thinks its keys are shared

with Uj . In fact, this is also an attack against the key authentication and the entity

authentication properties.
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Session 1 Session 2

Ui Uj Uj[Ui] Uk

1. Certi, ri1, ri2, σi
−−−−−−−−−−−→

1. Certi, ri1, ri2, σi
←−−−−−−−−−−−

2. Certk, rk1, rk2, σk
←−−−−−−−−−−−−

2. Certj, rk1, rk2, σj
←−−−−−−−−−−−−

Figure 5.4: The other DPUKS attack against the Harn-Lin protocol

5.4.3 Attack against the extended Joux’s protocol

The protocol (described below) of Hitchcock, Boyd, and Nieto [119] has been proved

secure in Canetti-Krawcyzk model.

5.4.3.1 Description of the protocol

The TTP runs the TTP initialisation sub-protocol to generate a cyclic group G1 of

prime order q, a multiplicative group G2 of the same order as G1, a generator P of

G1, and a polynomial-time computable bilinear map ê : G1×G1 → G2. In addition,

the TTP also generates its public/private key pair, as used to certify users’ public

keys. Every user Ui (i ≥ 1) runs the user initialisation sub-protocol to generate a

verify/sign key pair (pki, ski) for a signature scheme (KeyGen, sign,Verify), and get

pki certified by the TTP.

Suppose Ui (1 ≤ i ≤ 3) wish to establish a session key in a session identified by sid;

then the key establishment sub-protocol is defined as follows.

1. U1 selects s1 ∈R Zq, and broadcasts (sid, s1P ).

2. U2 selects s2 ∈R Zq, and broadcasts (sid, s2P ).
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3. U3 selects s3 ∈R Zq, and broadcasts (sid, s3P, σ3), where

σ3 = Sign(sid||ID1||ID2||s1P ||s2P ||s3P, sk3).

4. If Verify(sid||ID1||ID2||s1P ||s2P ||s3P, pk3, σ3) = 1, U1 broadcasts (sid, σ1),

where

σ1 = Sign(sid||ID2||ID3||s1P ||s2P ||s3P, sk1).

5. If the following two equations hold,

Verify(sid||ID1||ID2||s1P ||s2P ||s3P, pk3, σ3) = 1,

Verify(sid||ID2||ID3||s1P ||s2P ||s3P, pk1, σ1) = 1,

U2 broadcasts (sid, σ2), where

σ2 = Sign(sid||ID1||ID3||s1P ||s2P ||s3P, sk2).

6. If Verify(sid||ID1||ID3||s1P ||s2P ||s3P, pk2, σ2) = 1, U1 and U3 accept.

At the end of the protocol execution, the session key is computed as K = ê(P,P )s1s2s3.

5.4.3.2 Description of the attack

Suppose that if there are two sessions, one for {U1, U2, U3} and the other for {U2, U3, U4}.

Then U2 and U3 can collude to mount an attack, as shown in Fig. 5.5.

Note that U3 only sends its first message in the first session until it has received U4’s

message in the second session. It is straightforward to see that both sessions end

successfully, and that Ui (1 ≤ i ≤ 4) computes the session key as ê(P,P )s1s2s4.

5.5 Attacks against Information Leakage Resilience

In this section we give some examples of password-based protocols which suffer from

attacks against information leakage resilience. Since none of these protocols requires

a TTP, in every case we omit references to a TTP initialisation sub-protocol.

93



5.5 Attacks against Information Leakage Resilience

Session 1 Session 2

U1 U2 U3 U2 U3 U4

1. sid, s1P
←−−−−→

2. sid, s2P
←−−−−→

1. sid′, s1P
←−−−−→

2. sid′, s2P, σ′
3←−−−−−−→

3. sid′, s4P, σ′
4←−−−−−−→

3. sid, s4P, σ3
←−−−−−−→

4. sid′, σ′
2←−−−→

4. sid, σ1
←−−→

5. sid′, σ′
3←−−−→

5. sid, σ2
←−−→

Figure 5.5: DPUKS attack against extended Joux’s protocol

5.5.1 Analysis of the Jablon protocol

The Jablon protocol [130], and its variants appear in the standardised password-

based key agreement mechanisms specified in [127, 129]

5.5.1.1 Description of the Jablon protocol

The user initialisation sub-protocol generates two prime numbers p and q, where

p = 2q + 1, and a one-way hash function H. In addition, this sub-protocol also

generates a shared password π, which is assumed to be an integer, between a user

U with identity IDU and a server S with identity IDS .

The key establishment sub-protocol is defined as follows.

1. U generates t1 ∈R Z
∗
q, and sends m1 = gt1 mod p to S, where g = π2 mod p.

2. After receiving m1, S generates t2 ∈R Z
∗
q, and sends m2 = gt2 mod p to U . S

computes z = gt2t1 mod p, and checks whether z ≥ 2. If the check succeeds, S

uses z as the shared key material, and computes K = H(z) as the shared key.
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3. After receiving m2, U computes z = gt2t1 mod p, and checks z ≥ 2. If the

check succeeds, U uses z as the shared key material, and computes K = H(z)

as the shared key. Then U constructs and sends the confirmation message

C1 = H(H(H(z))) to S.

Note that in both the ISO/IEC 11770-4 and IEEE P1363.2 versions of the

mechanism, C1 is instead computed as:

C1 = H(3||m1||m2||g
t1t2 ||g).

4. After receiving C1, S checks that the received message equals H(H(H(z))). If

the check fails, S terminates the protocol execution. Otherwise, S computes

and sends the confirmation message C2 = H(H(z)) to U.

Note that in both the ISO/IEC 11770-4 and IEEE P1363.2 versions of the

mechanism, C2 is instead computed as:

C2 = H(4||m1||m2||g
t1t2 ||g),

5. After receiving C2, U checks that it equals H(H(z)). If the check fails, U

terminates the protocol execution. Otherwise, U confirms that the protocol

execution has ended successfully.

Finally, note that, in the elliptic curve setting, the first password-based key agree-

ment mechanism in [129] and the scheme BPKAS-SPEKE in [127] are essentially

the same as above, except that g is a generator of the group of points on an elliptic

curve.

5.5.1.2 Security Vulnerabilities of the Jablon Protocol

We describe two security vulnerabilities of the Jablon protocol, and we show that

the standardised password-based key establishment mechanisms in [127, 129] also

suffer from either one or both of these vulnerabilities. Observe also that the Jablon

protocol is not semantically secure, because C2 = H(K) is public. Note that these

attacks appear in the work of Tang and Mitchell [234].
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Firstly, depending on the implementation, the Jablon protocol potentially suffers

from an offline dictionary attack in the way that an attacker can try several possible

passwords by intervening in only one execution of the protocol.

To mount an attack, the attacker first guesses a possible password π′ and replaces the

server’s message with m′
2 = (π′)2t′2 in the second step of an ongoing protocol instance,

where t′2 is chosen by the attacker. The attacker then intercepts the authentication

message C1 in the third step of the same instance and mounts the attack as follows.

1. The attacker sets i = 1.

2. The attacker computes π′′ = (π′)i, and checks whether π′′ falls into the pass-

word set. If the check succeeds, go to the third step. Otherwise, stop.

3. The attacker checks whether C1 = H(H(H((m1)
it′2))). If the check succeeds,

the attacker confirms that π = π′′. Otherwise, set i = i + 1 and go to the

second step.

It is straightforward to verify that this attack is valid. We now give a concrete

example of how the attack could work in practice. Suppose that the password set

contains all binary strings of length at most n, where the password π is made into

an integer by treating the string as the binary representation of an integer. Suppose

that the attacker guesses a password π′ = 2; then he can try n − 1 passwords (π′)i

(1 ≤ i ≤ n− 1) by intervening in only one execution of the protocol. Of course, the

above version of the attack only works when the initial guessed password π′ satisfies

π′ < 2n/2.

Secondly, we show that a security vulnerability exists when one entity shares the

same password with at least two other entities. This is likely to occur when a human

user chooses passwords that it shares with a multiplicity of servers. Specifically we

suppose that a client, say U with identity IDU , shares a password π with two

different servers, say S1 with identity IDS1 and S2 with identity IDS2 . A malicious

third party can mount the attack as follows.

Suppose U initiates the protocol with an attacker which is impersonating server S1.

Meanwhile the attacker also initiates the protocol with server S2, impersonating U .
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The attacker now forwards all messages sent by U (intended for S1) to S2. Also, all

messages sent from S2 to U are forwarded to U as if they come from S1. At the end

of the protocol, U will believe that he/she has authenticated S1 and has established

a secret key with S1. However S1 has not exchanged any messages with U . In fact,

the secret key will have been established with S2.

The second attack demonstrates that, even if the server S1 is absent, the attacker

can make the client believe that the server is present and that they have computed

the same session key as each other. Of course, if U shares the same password with

servers S1 and S2, then S1 can always impersonate U to S2 and also S2 to U ,

regardless of the protocol design. However, the problem we have described in the

Jablon scheme applies even when U , S1 and S2 all behave honestly, and this is not

a property that is inevitable.

Based on the descriptions in Section 5.5.1.1, it is straightforward to mount the

second attack on the first password-based key agreement mechanism in [129]. In

fact, the second attack also applies to the other key agreement mechanisms in [129].

However, if the identifier of the server is used in computing g, e.g. if it is included

in the string str, then this attack will fail. The scheme BPKAS-SPEKE in [127] is

thus immune to this attack as long as the recommendation given in [127] to include

this identifier in str is followed.

5.5.2 Analysis of the Lai-Ding-Huang protocol

We show that the Lai-Ding-Huang protocol [162] suffers from offline password guess-

ing attacks. This implies that the attacker can collect the messages sent during pro-

tocol execution and use them as the basis for an exhaustive search for the password,

without initiating any new protocol instance. Note that these attacks appear in the

work of Tang and Mitchell [232].
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5.5.2.1 Description of the Lai-Ding-Huang protocol

The user initialisation sub-protocol generates a block cipher (Enc,Dec), a one-way

hash function H : {0, 1}∗ → {0, 1}ℓ where ℓ is the security parameter, a set Bn

containing strings of n elements, which are drawn from some set of characters (e.g.

all letters or all alphanumeric symbols), and a composite function ϕ(r, s) = g(p(r, s)),

where g is a distortion function and p is a picture function. Specifically, given inputs

r and s, where r is a random string of characters or bits and s is a random number,

p generates a random picture which depicts r in some way. Given an input p(r, s)

(a picture) the distortion function g generates a distorted version R′ = g(p(r, s))

such that humans have the ability to recognise r from R′ while a machine typically

cannot. In addition, this sub-protocol also generates a shared password π, which is

assumed to be an integer, between a user U with identity IDU and a server S with

identity IDS .

The key establishment sub-protocol is as follows.

1. U generates t ∈R {0, 1}
ℓ, and sends (IDU , t) to S.

2. S first generates s ∈R {0, 1}
ℓ and r ∈R Bn. Then S computes and sends C1 =

Enc(ϕ(r, s), π) and C2 = H(π||r||t) to U, where, as throughout, || represents

the concatenation operator.

3. U first computes Dec(C1, π), which should equal a distorted version of an

image depicting r. U then recovers r′ from the image, and checks whether or

not C2 = H(π||r′||t). If the check succeeds (implying that r = r′), U computes

and sends C3 = H(1||π||r′||t) to S . Otherwise U terminates the protocol.

4. S checks whether C3 = H(1||π||r||t) holds. If the check succeeds, S has con-

firmed that U is the valid user and is involved in the current protocol execution.

Otherwise, S terminates the protocol.

If the protocol ends successfully, then S and U compute their shared session key as

H(2||π||r||t).
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5.5.2.2 Claims of Laih, Ding and Huang

In their analysis, Laih, Ding and Huang [162] claim that the protocol is secure under

the condition n log2 a + log2(|Cπ|) > 70, where a is the size of the symbol set used

to construct Bn, Cπ is the set of passwords, and |Cπ| is the size of the password

set. They also recommend that |Cπ| equals 223, which can be achieved by choosing

n = 4 and a = 62, as is the case if the symbols are any lower or upper case letter or

any digit from 0 – 9. Specifically they make the following two security claims.

1. Exhaustive search by a machine

The machine first needs to compute C1
′ = Enc(ϕ(r′, s′), π) by guessing the

values of r′ and π′, and then compares C1
′ and C1 in order to verify this guess.

There are an possible values for r′, and |Cπ| possible values for π′, i.e. the total

search space is of size

an|Cπ| = 2log2 (an)+log2(|Cπ|) > 270

So, based on the assumption that n log2 a+log2(|Cπ|) > 70, it is computation-

ally infeasible for the machine to compute π.

2. Exhaustive search by a human being and a machine

If a valid message C1 = Enc(ϕ(r, s), π) is obtained, the machine first guesses

a password π′ and computes A = Dec(C1, π
′); then the human being decides

whether or not A contains a string from Bn, which indicates whether or not

π′ equals π. This process is repeated until the correct password is found. This

would require the human to check |Cπ| = 223 possible values for π′. Based

on this, Laih, Ding and Huang estimate that in this case it will take about

3.2 months for a human being and a machine to successfully search for the

password.

5.5.2.3 Security Vulnerabilities

In the Lai-Ding-Huang protocol, the protection of the password is based on the

security of the function ϕ, i.e., the assumption that a machine (without a human
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being involved) cannot effectively recognise r from ϕ(r, s). As Laih, Ding and Huang

point out [162], the string recognisation CAPTCHA schemes [12] are potentially

suitable choices for the function ϕ.

We now exhibit a number of security vulnerabilities in the Lai-Ding-Huang protocol

which exist almost regardless of the choice of ϕ. These vulnerabilities are based on

the following observations.

1. A human being must be able to easily recognise r from Dec(ϕ(r, s), π), which

implies that Dec(ϕ(r, s), π) is very different from a completely random picture.

2. If π′ 6= π then Dec(ϕ(r, s), π′) will resemble a random image. This implies

that it is possible to determine whether or not a guessed password π′ is correct

merely by deciding whether Dec(C1, π
′) is a (distorted) image or a random

pattern.

3. It is likely to be very simple to develop software to distinguish between a dis-

torted image and a random pattern (for example, a compression algorithm

should be able to compress an image whereas a random pattern will be incom-

pressible). This is certainly a much simpler problem than automatic string

recognition.

4. If humans choose passwords, then they are much more likely to choose some

passwords than others; hence if users are free to choose 4-character passwords,

then in practice, |Cπ| will be significantly less than 223.

Specifically, the following attacks might be mounted by a machine or a human being.

1. In some cases it might be feasible for a machine to mount an offline password

guessing attack. The machine works through all possible passwords and, for

each guessed password π′, the machine computes A = Dec(C1, π
′). By some

means (see fact 3 above) the machine then checks whether or not A resembles a

distorted image rather than a random bit pattern. Because of fact 2 above, the

correct password can be identified from the unique case where A is a distorted

image rather than a random bit pattern. This attack only requires a machine-

based search of size |Cπ|. If, for example, it takes a millisecond to check one
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value of A, then checking through a password space of size 223 will take only

2.3 hours.

2. The above attack does not take into account fact 4 above. Hence the process

can be made significantly faster by checking the most likely passwords first.

3. Even if the method of distinguishing random from genuine images is not per-

fect, i.e. the exhaustive search yields a small number of possible candidate

values π′, then a human can be used to check the remaining candidate values

A to eliminate all but the value corresponding to the correct password.

4. Distributed attacks are also possible. It may be possible to deploy a cooper-

ative Internet-based attack, e.g. by distributing the pattern recognition prob-

lems to users across the Internet (see, for example, [210]).

The security issues in the Lai-Ding-Huang protocol arise from the fact that the

image recognition problem (such as a CAPTCHA scheme [12]) is being used to

protect the secrecy of a password. This is not something that appears to have been

attempted before, and seems inherently risky. It is probably better to restrict use of

such techniques to guaranteeing the presence of a human during protocol execution,

rather than to protect the secrecy of passwords or keys.

5.5.3 Analysis of EKE-U and EKE-M

Byun and Lee [66] claim that the EKE-U and EKE-M protocols are both secure

against dictionary attacks, and in particular against password guessing attacks

mounted by dishonest partners. However, we show that the EKE-U protocol suffers

from offline dictionary attacks, and the EKE-M protocol suffers from undetectable

online dictionary attacks which can be mounted by any dishonest partner. For

simplicity of description, we assume that n ≥ 3 in the rest of this paper. It is

straightforward to verify that our results also apply to the case where n = 2. Note

that these attacks appear in the work of Tang and Chen [228].
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5.5.3.1 Description of the EKE-U protocol

The user initialisation sub-protocol generates a full-domain hash function H [223],

two one-way hash functions H1 and H2, a multiplicative cyclic group G of prime

order q, a generator g of G, and a symmetric-key encryption scheme (Gen,Enc,Dec).

In addition, for every 1 ≤ i ≤ n, this sub-protocol also establishes a shared password

πi between Ui with identity IDi and the server S with identity IDS .

Suppose that a set of users Ui (1 ≤ i ≤ n) wish to negotiate a session key over a

unicast network with the help of S; the key establishment sub-protocol is as follows.

1. U1 selects v1, x1 ∈R Zq, and computes T1 = {gv1 , gv1x1}. U1 then sends M1 =

Enc(T1, π1) to U2.

2. After receiving M1 from U1, U2 forwards it to S.

3. After receiving M1 from U2, S first decrypts it using the password π1 to obtain

T1 = {gv1 , gv1x1}. S then selects v2 ∈R Zq, and computes T ′
1 = {gv1v2 , gv1v2x1}.

Finally, S sends M ′
1 = Enc(T ′

1, π2) to U2.

4. After receiving M ′
1 from S, U2 first decrypts it using his password π2 to ob-

tain T ′
1 = {gv1v2 , gv1v2x1}. U2 then selects x2 ∈R Zq, and computes T2 =

{gv1v2x1 , gv1v2x2, gv1v2x1x2}. Finally, U2 sends M2 = Enc(T2, π2) to U3.

5. Recursively, Uj (3 ≤ j ≤ n− 1) and S perform the following steps.

(a) After receiving Mj−1 from Uj−1, where

Mj−1 = Enc(Tj−1, πj−1),

Tj−1 = {gVj−1·(Xj−1/x1), gVj−1·(Xj−1/x2), · · · , gVj−1·(Xj−1/xj−1), gVj−1·Xj−1},

Vj−1 = v1 · v2 · · · vj−1, and Xj−1 = x1 · x2 · · · xj−1,

Uj forwards it to S.

(b) After receiving Mj−1 from Uj , S first decrypts it using the password πj−1

to obtain Tj−1. S then selects vj ∈R Zq, and computes T ′
j−1, where

T ′
j−1 = {gVj ·(Xj−1/x1), gVj ·(Xj−1/x2), · · · , gVj ·(Xj−1/xj−1), gVj ·Xj−1}, and
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Vj = v1 · v2 · · · vj , and Xj−1 = x1 · x2 · · · xj−1.

Finally, S sends M ′
j−1 = Enc(T ′

j−1, πj) to Uj .

(c) After receiving M ′
j−1 from S, Uj first decrypts it using his password πj

to obtain T ′
j−1. U2 then selects xj ∈R Zq, and computes Tj as

Tj = {gVj ·(Xj/x1), gVj ·(Xj/x2), · · · , gVj ·(Xj/xj), gVj ·Xj},

Vj = v1 · v2 · · · vj , and Xj = x1 · x2 · · · xj.

Finally, Uj sends Mj = Enc(Tj , πj) to Uj+1.

6. After receiving Mn−1 from Un−1, Un forwards it to S.

7. After receiving Mn−1 from Un, S first decrypts it using the password πn−1 to

obtain Tn−1. S then selects vn ∈R Zq, and computes T ′
n−1, where

T ′
n−1 = {gVn·(Xn−1/x1), gVn·(Xn−1/x2), · · · , gVn·(Xn−1/xn−1), gVn·Xn−1},

Vn = v1 · v2 · · · vn, Xn−1 = x1 · x2 · · · xn−1.

Finally, S sends M ′
n−1 = Enc(T ′

n−1, πn) to Un.

8. After receiving M ′
n−1 from S, Un first decrypts it using its password πn to

obtain T ′
n−1. Un then selects xn ∈R Zq, and computes Tn as

Tn = {gVn·(Xn/x1), gVn·(Xn/x2), · · · , gVn·(Xn/xn)},

Vn = v1 · v2 · · · vn, and Xn = x1 · x2 · · · xn.

Finally, Un sends Mn = Enc(Tn, πn) to S.

It should be noted that Tn is computed differently from Tj (1 ≤ j ≤ n− 1), in

order to prevent S from computing the ultimate session key.

9. After receiving Mn from Un, S first decrypts it using the password πn to obtain

Tn. S then selects vn+1 ∈R Zq, and computes and sends Ei = Enc(gVn+1·(Xn/xi), πi)

to Ui (1 ≤ i ≤ n), where

Vn+1 = v1 · v2 · · · vn+1, Xn = x1 · x2 · · · xn.

10. After receiving Ei from S, Ui decrypts it using its password πi to obtain

gVn+1·(Xn/xi), and then computes the key material and session key as K∗ =
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(gVn+1·(Xn/xi))xi and Ki = H(clients||K∗), where clients is the concatenation

of the identifiers of Ui (1 ≤ i ≤ n).

If key confirmation is required, then Ui computes and broadcasts Authi =

H(i||Ki).

11. After receiving every Authj (1 ≤ j ≤ n, j 6= i), Ui checks whether it equals

H(j||Ki). If all the checks succeed, Ui confirms that the protocol has succeeded.

Otherwise, Ui terminates the protocol as a failure.

5.5.3.2 A security vulnerability in EKE-U

In the EKE-U protocol, any malicious user Uj , for any 1 ≤ j ≤ n − 1, can mount

offline dictionary attacks against Uj+1.

To mount the attack, Uj selects t1 and t2, and then sends M∗
j to Uj+1 instead of

Mj , where

M∗
j = Enc(T ∗

j , πj),

T ∗
j = {gt1 , gt1t2 , gVj ·(Xj/x3), · · · , gVj ·(Xj/xj), gVj ·Xj},

Vj = v1 · v2 · · · vj, and Xj = x1 · x2 · · · xj .

After receiving M∗
j , Uj+1 will forward it to S. We now have the following result.

Lemma 3 As a result of the above attack, Uj can mount an offline dictionary attack

against Uj+1.

Proof. After receiving M∗
j from Uj+1, S first decrypts it using the password πj to

obtain T ∗
j . S then selects a random number vj+1 (1 ≤ vj+1 ≤ q − 1), and computes

T ′
j , where

T ′
j = {gt1vj+1 , gt1t2vj+1 , gVj+1·(Xj/x3), · · · , gVj+1·(Xj/xj), gVj+1·Xj},

Vj+1 = v1 · v2 · · · vj+1, and Xj = x1 · x2 · · · xj .

Finally, S sends M ′
j = Enc(T ′

j , πj+1) to Uj+1.

Ui then intercepts M ′
j , and mounts an offline dictionary attack as follows.
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1. Ui guesses a possible password π∗
j+1, and decrypts M ′

j as

Dec(M ′
j , π

∗
j+1) = {α1, α2, α3, · · · , αj+1}

2. Ui checks that (α1)
t2 = α2. If the check succeeds, then Ui confirms that

π∗
j+1 = πj+1 because (Enc,Dec) is a block cipher. Otherwise, go to step 1.

The lemma follows. �

5.5.3.3 Description of the EKE-M protocol

The user initialisation sub-protocol is identical to that of the EKE-U protocol. Sup-

pose that a set of users Ui (1 ≤ i ≤ n) wish to negotiate a session key over a multicast

network with the help of S, the key establishment sub-protocol is as follows.

1. For every 1 ≤ i ≤ n − 1, S selects si ∈R Zq and then sends Enc(gsi , πi) to Ui.

Concurrently, Ui selects xi ∈R Zq, and then broadcasts Enc(gxi , πi).

2. After receiving every Enc(gxi , πi) (1 ≤ i ≤ n − 1), S decrypts each of them

to obtain gxi . S then computes the shared ephemeral key with Ui as ski =

H1(sid
′||gxisi), where

sid′ = Enc(gx1 , π1)||Enc(gx2 , π2)|| · · · ||Enc(gxn−1 , πn−1)

Finally, S selects a random secret N , and broadcasts mi = N ⊕ ski.

3. After receiving all the messages from S, Ui first constructs sid′ in the same way

as S, decrypts Enc(gsi , πi), computes ski = H1(sid
′||gsixi), and then computes

N = mi ⊕ ski. Finally, Ui computes the session key as Ki = H2(SIDS||N),

where

SIDS = sid′||sk1 ⊕N ||sk2 ⊕N || · · · ||skn−1 ⊕N

If key confirmation is required, then Ui computes and broadcasts Authi =

H(i||Ki).

4. After receiving every Authj (1 ≤ j ≤ n − 1, j 6= i), Ui checks whether it

equals H(j||Ki). If all the checks succeed, Ui confirms that the protocol has

succeeded. Otherwise, Ui terminates the protocol as a failure.
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5.5.3.4 A security vulnerability in EKE-M

In EKE-M, a malicious participant Uj , for any 1 ≤ j ≤ n− 1, can mount an online

dictionary attack against any other participant Ui (1 ≤ i ≤ n − 1, i 6= j) without

being detected by any entity.

To mount the attack, Uj initiates an instance of the protocol, and blocks all messages

sent to Ui. In the first step, Uj guesses a possible password π∗
i possessed by Ui, and

impersonates Ui to broadcast Enc(gxi , π∗
i ). In the third step, Uj impersonates Ui

to broadcast the key confirmation message Authi = H(i||Ki). We now have the

following result.

Lemma 4 As a result of the above attack, Uj can test whether π∗
i = πi, the proto-

col instance will end successfully, and all participants except Uj compute the same

session key.

Proof. In the EKE-M protocol, the session key material N is independently sent

to each participant and the session key is a function of N and other information.

It is thus straightforward to verify that the protocol will successfully end and all

participants except Ui will compute the same session key.

After intercepting Enc(gsi , πi) and mi = ski ⊕ N sent by S, Uj first computes the

guessed ephemeral session key between Ui and S as

sk∗
i = H1(sid

′||(D(Enc(gsi , πi)), π
∗
i )

xi)

Uj then checks whether N = mi ⊕ sk∗
i . Based on the properties of the block ci-

pher (Enc,Dec), if the check succeeds then Uj can confirm that π∗
i = πi; otherwise

π∗
i 6= πi. �

5.5.4 Analysis of RSA-AKE protocol

The RSA-AKE protocol, proposed by Shin, Kobara and Imai [216], is designed to

be used in an client-server environment, where the following conditions hold.
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1. A client C, who can only remember a password, wishes to communicate with

several servers.

2. C has insecure devices with very restricted computing power and built-in mem-

ory capacity. The servers have significant computing power, but they might

be compromised.

3. Neither a PKI (Public Key Infrastructure) nor a TRM (Tamper-Resistant

Module) is available.

5.5.4.1 Description of the RSA-AKE protocol

C possesses identity IDC , and S possesses identity IDS . The user initialisation sub-

protocol generates a full-domain hash function H, and four different hash functions

Hi (1 ≤ i ≤ 4) : {0, 1}∗ → {0, 1}ℓ. In addition, this sub-protocol also enables S

and U to generate the following parameters: S generates its RSA public/private

key pair (e,N) and (d,N), and sends (e,N) to C. C registers a password verifier

p1 = (α1 + π) mod N at S, where α1 is randomly selected from ZN . C stores

α1 and (e,N) on some insecure device such as a PDA, which is not necessarily

securely protected and may leak the stored information. S stores p1 and (d,N)

in its database, which is also not necessarily securely protected and may leak the

stored information (both pj and (d,N)). Note that the values of pj, j = 1, 2, · · · are

defined recursively — see step 4 below. Finally, C and S both also store a counter

j, initially set to 1.

In the j-th (j ≥ 1) execution of the key establishment sub-protocol, C and S perform

as follows.

1. C first computes the password verifier pj = αj + π mod N . Note that the

values of αj, j = 1, 2, · · · are defined recursively — see step 3 below. Then C

chooses a random x ∈R Z
∗
N and computes W = H(j, pj), y = xe mod N , and

z = y ·W mod N . Finally, C sends IDC , j, z to S.

2. S first checks whether j is the correct counter value. If the check succeeds, S

computes y′ = z·W−1 mod N , x′ = (y′)d mod N , and VS = H1(IDC , IDS , j, z, pj , x
′),

and then sends IDS , VS to C. Otherwise, S terminates the protocol execution.
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3. After receiving S and VS, C first checks whether the following equation is

valid:

VS = H1(IDC , IDS , j, z, pj , x)

If the check succeeds, C computes and sends VC to S, where

VC = H2(IDC , IDS , j, z, pj , x)

Otherwise, C terminates the protocol execution.

C computes the session key as SKj = H3(IDC , IDS , j, z, pj , x), and replaces

the stored data αj with αj+1:

αj+1 = αj + H4(IDC , IDS , j, z, pj , x) mod N

C sets the counter value to j + 1.

4. After receiving VC , S first checks whether the following equation is valid:

VC = H2(IDC , IDS , j, z, pj , x
′)

If the check succeeds, S computes the session key as

SKj = H3(IDC , IDS , j, z, pj , x
′),

and replaces the password verifier pj with pj+1:

pj+1 = pj + H4(IDC , IDS , j, z, pj , x
′) mod N

S sets the counter value to j + 1. Otherwise, S terminates the protocol exe-

cution as a failure.

5.5.4.2 Possible weaknesses in RSA-AKE

Shin, Kobara and Imai [216] claim that the RSA-AKE protocol is provably secure in

the random oracle model under the notion of LR-AKE security, where the attacker

is given the client’s stored secret and the server’s RSA private key.

However, we nevertheless show that the RSA-AKE protocol suffers from certain

potential security problems. It is, however, important to note that some of these

vulnerabilities are outside the scope of the security model used in [216]. Note that

these vulnerabilities appear in the work of Tang and Mitchell [236].
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1. We show that, given the client’s stored secret and the server’s RSA private key,

an attacker can mount an offline dictionary attack. Without loss of generality,

we suppose that the attacker is given αj and (d,N) just before the j-th run of

the RSA-EKE protocol.

During the j-th run of the RSA-EKE protocol, the attacker collects j, z, and

VS . The attacker then performs the following steps:

(a) The attacker guesses a possible password π∗, computes p∗j = π∗ +αj mod

N , x∗ = ((H(j, p∗j ))
−1·z)d mod N , and tests whether VS = H1(IDC , IDS , j, z, p∗j , x

∗)

holds.

(b) If the test succeeds, the attacker confirms that π∗ = π and stops; other-

wise go to the first step.

It is straightforward to verify that the above attack will succeed in identifying

the correct password with very high probability.

2. Observe that pj is the only secret used for authentication in the j-th run of

the RSA-AKE protocol. So, if the attacker has compromised S and obtained

pj, then he can successfully impersonate C to S in the subsequent protocol

executions without the need to have access to π. If this occurs, the legitimate

client will no longer be able to authenticate itself, because the password verifier

held by S will change. However, if the legitimate client authenticates itself

before the attacker uses the stolen pj, then the attacker cannot launch the

above attack because the stolen password verifier pj will no longer be valid.

This attack means that leakage of pj from S may enable an attacker to mount

an impersonation attack. Hence the RSA-AKE protocol does not appear to

be suitable for use in environments where the server is not securely protected.

3. As stated above, the protocol is designed under the assumption that the user’s

device is not tamper resistant. Shin, Kobara and Imai point out that measures

should be adopted to restrict an attacker’s ability to replace the RSA public

key (e,N) on the client’s device; otherwise they show that an eth-residue

attack can be mounted. They also propose a means to thwart the e-th residue

attack if the attacker does succeed in replacing the RSA public key (e,N) with

(e′, N ′). However, we show below that, in some extreme circumstances, more

serious vulnerabilities exist in this case.
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Suppose, for example, that the attacker has obtained αj and replaced the RSA

public key (e,N) with (e′, N ′), where e′ = φ(N ′), just before the j-th execution

of the RSA-AKE protocol. In this case, the attacker can exhaustively search for

the password using the intercepted message z. This is because xe′ mod N ′ = 1

for every x (since e′ = φ(N ′)), and hence z = H(j, π + αj) mod N ′. That is,

the only unknown value used to compute z is π. The measures proposed in

[216] do not eliminate this vulnerability.

4. Shin, Kobara and Imai suggest that C can use the same password π with a

number of servers. However, it is potentially dangerous to do this. Suppose

the client shares the same password with m servers Si (1 ≤ i ≤ m). Then an

attacker can successfully guess the password with a probability p by mounting

n/m dictionary attacks in parallel at each server Si (1 ≤ i ≤ m), assuming

that it would need to mount n dictionary attacks against one specific server in

order to achieve the same goal. This attack means that the client might need

to change his password much more frequently (if m is very large) in order to

prevent undetected dictionary attacks.

This attack is of particular concern in environments where m is large and the

client chooses the password from a small password set, e.g. based on personal

preferences.

5.6 Some Concluding Remarks

In this chapter we have described a number of attacks against existing schemes.

Some of these attacks, namely those in Section 5.2.1, 5.2.2, 5.3, 5.5.1, 5.5.2, and

5.5.3 are due to the lack of a rigorous security analysis. The attacks in Section 5.4

arise because the underlying security models do not cover all the security properties

that might be required in practice.
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A Novel Security Model for Key Establish-
ment Protocols
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In this chapter we propose a novel, unified, indistinguishability-based security model

for key establishment protocols, and present a number of associated security defi-

nitions. We also give a comparison between the novel model and existing security

models.

6.1 Motivation

In Chapter 4, we showed that none of the existing security models is capable of cap-

turing the full list of security properties, as described in Section 3.3. The other major

shortcoming of existing models is that the notion of partnership has been defined

too stringently in these models. In this chapter, we aim to provide a fine-grained

indistinguishability-based security model, which models all the security properties

given in Section 3.3, and also mitigates the shortcomings of the existing models.
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The main motivation for employing an indistinguishability-based approach is that

we can model the threats to each security property individually.

The rest of this chapter is organised as follows. In Section 6.2 we describe the novel

security model for key establishment protocols. In Section 6.3 we provide security

definitions for key establishment protocols, and compare them with those used in

existing models. In the final section we conclude this chapter.

6.2 A Novel Unified Security Model

6.2.1 Preliminary assumptions and definitions

Given any n-party (n ≥ 2) key establishment protocol, then, without loss of general-

ity, let the potential users be labelled as Ui (i ≥ 1), and their (unique) identities be

IDi, respectively. We assume a very general execution environment for the protocol,

where any n different users can run the protocol, multiple instances of the protocol

can be run concurrently, and the communication is over an open network.

If a user starts a session of the key establishment protocol, we assume that it knows

the identities of the partners for this session, and the session is partially determined

by the identity information of all the involved users; we refer to the set of identi-

fiers for the n participants in a session as the participant set, abbreviated to UID.

Since the same group of users may run multiple instances of the protocol concur-

rently, we assume that some (possibly random) information RSID is also available

to identify a specific session, together with the identity information UID. Hence

we assume throughout that a session identifier takes the form (UID, RSID), and

this pair uniquely identifies a session. If a user participates in a successfully-ended

session of the protocol, then we also say that the user accepts in this session. As a

result of a successfully-ended session, a user obtains a session key together with a

(public) session identifier.

The information RSID can be generated in many ways. For example, it can be

distributed before protocol execution as required in the Canetti-Krawcyzk model,

or it can be formed by the protocol messages as in the Bellare-Rogaway model.
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Following the literature, a protocol execution of Ui is defined to be an oracle Πs,sidi

i ,

where s means it is the s-th oracle of Ui and sidi is the session identifier. A threat

to a security property is evaluated by an attack game played between a hypothetical

challenger C and an attacker A, where the challenger simulates the protocol exe-

cutions and the attacker can possibly intervene in the protocol execution through

various types of oracle queries. In general, an attacker may have access to the

following types of oracle queries.

• create, which, on the input of IDi and a participant set identifier UID (IDi ∈

UID), creates an oracle Πs,sidi

i for Ui, where s means that this is the s-th oracle

of Ui.

• send, which, on the input of an active oracle Πs,sidi

i (see definition below) and

a message m, delivers m to Πs,sidi

t , and returns an outgoing message m′ or a

decision to indicate acceptance or rejection of the session.

• reveal, which, on the input of an accepted oracle Πs,sidi

i , returns the session

key held by this oracle.

• corrupt-ttp, which, on the input of the identifier of the TTP, returns the TTP’s

long-term private key.

• corrupt-user, which, on the input of the identifier IDi of a user Ui, returns Ui’s

long-term private key.

• corrupt-state, which, on the input of the identifier for an active oracle Πs,sidi

i ,

returns the ephemeral internal state of this oracle.

• test, which, on the input of the identifier sidi of a fresh oracle (see the definition

below), returns a string which is computed as follows: choose a random bit

b from the set {0, 1}, return the session key if b = 1, or otherwise return a

random string from the session key space.

During its life cycle of an oracle, Πs,sidi

i may be in one (and only one) of the following

states:

• Active: the oracle has been created by a create query, but has not ended

successfully or unsuccessfully (it is still waiting for inputs from other oracles).
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• Accepted: the oracle has ended successfully with a session key and a session

identifier, and all ephemeral internal state has been erased.

• Aborted: the oracle has stopped as a failure, and all ephemeral internal state

has been erased.

As in other security models, the concept of partnership and freshness are very im-

portant for the security formalisation. The partnership of oracles is formally defined

as follows.

Definition 25 Two oracles Πs,sidi

i and Π
t,sidj

j , for any i 6= j, are said to be partners

if and only if sidi = sidj .

Definition 26 An oracle Πs,sidi

i is fresh if it satisfies the following requirements:

1. It has accepted and has not been issued a reveal query.

2. No partner oracle of Πs,sidi

i has been issued a reveal query.

3. No user Uj , where IDj ∈ UID, has been issued a corrupt-user query before

Πs,sidi

i accepts.

4. Neither Πs,sidi

i nor its partner oracle has been issued a corrupt-state query.

In the above definition, if the attacker is allowed to corrupt Ui through a corrupt-user

query, then the oracle Πs,sidi

i is said to be semi-fresh.

As for other types of cryptographic protocols, we regard soundness as a pre-requisite

for any useful key establishment protocol. Formally, soundness is defined as follows:

Definition 27 A key establishment protocol is defined to be sound if, when the

protocol is run in the possible presence of a passive inside attacker (and all messages

are successfully delivered without error), all oracles involved in a session accept and

output the same session key and session identifier, which is unique for every user.
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6.2.2 Formulations of the Security Properties

Without loss of generality, we formalise the security properties by assuming that

the protocol is executed by a group of n (n ≥ 2) users, Ui (1 ≤ i ≤ n) say, to

negotiate a session key. The participant set is thus UID = (ID1, ID2, · · · , IDn).

With respect to the definition in Section 3.2.1, if an attacker has no access to the

private information of any of the principals Ui (i ≥ 1) and the TTP, then it is an

outside attacker; if it has no access to the private information of any of the principals

Ui (1 ≤ i ≤ n), then it is an inside attacker, and if the attacker has access to the

private information of any user Ui, for some 1 ≤ i ≤ n, then it is a dishonest partner.

All the properties are formalised as a game between a hypothetical challenger C and

an attacker A. Note that known-key resilience has been included in every attack

game, so that we do not define a specific attack game for it.

6.2.2.1 Modelling Key Randomness

For key randomness, we wish to guarantee that the session key in any session is

uniformly distributed in the key space, if the attacker is a passive outsider. Formally,

the attack game for key randomness is as follows:

1. Setup: The challenger C generates both the public system parameters param1

and the private system parameters param2.

2. Phase 1: The attacker A executes with input param1. At some point, A

terminates by outputting a fresh oracle Π
t,sidj

j , for some 1 ≤ j ≤ n and t ≥ 1.

During its execution, A can make the following types of query: create, send,

and reveal. We further require that the attacker is passive, i.e., the attacker is

not allowed to manipulate the delivered message through send queries.

The attacker wins if the distribution of the session key is not uniformly distributed

in the key space.
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6.2.2.2 Modelling Key Control

For key control, we wish to guarantee that no proper subset of the intended users in

a session should be able to force the session key to be equal to a pre-defined value.

Formally, the attack game for key control is as follows:

1. Setup: The challenger generates both the public system parameters param1

and the private system parameters param2.

2. Challenge: The attacker A executes with input param1. Before making any

other oracle query, A selects a string sk∗. At some point, A terminates by

outputting sk∗ and an accepted oracle Π
t,sidj

j , for some 1 ≤ j ≤ n. During

its execution, A can make the following types of query: create, send, reveal,

corrupt-user, corrupt-state, and corrupt-ttp.

The attacker’s advantage is defined to be Pr[sk = sk∗], where sk is the session key

held by Π
t,sidj

j .

6.2.2.3 Modelling Key Authentication

For key authentication, we wish to guarantee that an entity that is not involved in

a session can learn nothing about the session key. Since properties such as (per-

fect) forward secrecy and unknown key share resilience are also relevant to the key

authentication property, we model these properties in a single game. Formally, the

attack game for key authentication is as follows, where the attacker has two stages,

i.e., A = (A1,A2)

1. Setup: The challenger generates both the public system parameters param1

and the private system parameters param2.

2. Phase 1: The first stage attacker A1 executes with input param1. A1 can make

the following types of query: create, send, reveal, corrupt-user, corrupt-state, and

corrupt-ttp. At some point, A1 terminates by issuing a test query to a fresh
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oracle Π
t,sidj

j , for some 1 ≤ j ≤ n and t ≥ 1, and outputting some state

information state.

3. Challenge: The challenger returns the output of test(Π
t,sidj

j ).

4. Phase 2: The second stage attacker A2 executes with input state and the

output of the challenger. A2 can make the same types of query asA1. However,

the attacker is not permitted to issue a corrupt-state query to any partner

oracle of Π
t,sidj

j , and to issue a reveal query to Π
t,sidj

j and its partner oracle.

A2 terminates by outputting a guess bit b′.

The attacker wins if b′ = b, and its advantage is defined to be |Pr[b = b′]− 1
2 |.

Note that it is important to forbid the attacker to issue a corrupt-state query to any

partner oracle of Π
t,sidj

j , because, when Π
t,sidj

j accepts, its partner oracles may still

be active. Without this requirement, the attacker may trivially win the game by

issuing this type of query.

In this game, (perfect) forward secrecy is modelled because the attacker is allowed to

corrupt all users in the session identified by sidj , and unknown key-share resilience

is modelled because the attacker is allowed to issue reveal queries.

6.2.2.4 Modelling Backward Secrecy

If the backward secrecy property holds, a corrupted user can be assured that the

attacker can learn nothing about its session key in a session after corruption. For-

mally, the attack game for backward secrecy is as follows, where the attacker has

two stages, i.e., A = (A1,A2).

1. Setup: The challenger generates both the public system parameters param1

and the private system parameters param2.

2. Phase 1: The first stage attacker A1 executes with input param1. A1 can make

the following types of query: create, send, reveal, corrupt-user, corrupt-state, and
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corrupt-ttp. At some point, A1 terminates by issuing a test query with a semi-

fresh oracle Π
t,sidj

j , for some 1 ≤ j ≤ n, and outputting some state information

state.

3. Challenge: The challenger returns the output of test(Π
t,sidj

j ).

4. Phase 2: The second stage attacker A2 executes with input state and the

output of the challenger. A2 can make the same types of query asA1. However,

the attacker is not permitted to issue a corrupt-state query to any partner

oracle of Π
t,sidj

j , or to issue a reveal query to Π
t,sidj

j and its partner oracle. A2

terminates by outputting a guess bit b′.

The attacker wins if b′ = b, and its advantage is defined to be |Pr[b = b′]− 1
2 |.

6.2.2.5 Modelling DPUKS Resilience

For DPUKS resilience, we wish to guarantee that dishonest partners cannot make

two honest users, who participate in different sessions, compute the same session

key. Formally, the attack game for DPUKS resilience is as follows:

1. Setup: The challenger generates both the public system parameters param1

and the private system parameters param2.

2. Challenge: The attacker A executes with input param1. A terminates by

outputting two accepted oracles Π
t,sidj

j and Πy,sidx
x , for some 1 ≤ j ≤ n,

t ≥ 1, y ≥ 1, and x ≥ 1. During its execution, A can make the following

types of query: create, send, reveal, corrupt-user, corrupt-state, and corrupt-ttp.

However, the attacker is not permitted to issue a corrupt-user query to Ui or

Ux, or to issue a corrupt-state query to Π
t,sidj

j or Πy,sidx
x .

The attacker wins if sidj 6= sidx, and Π
t,sidj

j and Πy,sidx
x possess the same session

key.
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6.2.2.6 Modelling Mutual Entity Authentication

For mutual entity authentication, we wish to guarantee that users which have a

successfully-ended session can be assured that all uncorrupted intended users have

the same session identifier1. Since the key compromise impersonation resilience

property is also relevant to mutual entity authentication, we model both properties

in a single game. Formally, the attack game for mutual entity authentication is as

follows:

1. Setup: The challenger generates both the public system parameters param1

and the private system parameters param2.

2. Challenge: The attacker A executes with input param1. At some point, A

terminates by outputting an accepted oracle Π
t,sidj

j , for some 1 ≤ j ≤ n and

t ≥ 1. During its execution, A can make the following types of query: create,

send, reveal, corrupt-user, corrupt-state, and corrupt-ttp.

The attacker wins, if for some 1 ≤ x ≤ n, where x 6= j and no corrupt-user query

has been issued to Ux, there is no oracle Πy,sidx
x which satisfies sidx = sidj .

In this game key compromise impersonation resilience property is modelled because

the attacker is allowed to corrupt Uj .

6.2.2.7 Modelling Key Confirmation

For key confirmation, we wish to guarantee that any user which has a successfully-

ended session, can be assured that all uncorrupted intended users have the same

session identifier and session key2. Formally, the attack game for key confirmation

is as follows:

1. Setup: The challenger generates both the public system parameters param1

and the private system parameters param2.

1Note that it is not guaranteed that these sessions will successfully end.
2Note that it is not guaranteed that these sessions will successfully end.
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2. Challenge: The attacker A executes with input param1. At some point, A

terminates by outputting an accepted oracle Π
t,sidj

j , for some 1 ≤ j ≤ n and

t ≥ 1. During its execution, A can make the following types of query: create,

send, reveal, corrupt-user, corrupt-state, and corrupt-ttp.

The attacker wins, if for some 1 ≤ x ≤ n, where x 6= j and no corrupt-user query has

been issued to Ux, there is no oracle Πy,sidx
x which satisfies sidx = sidj and Πy,sidx

x

possesses the same session key as that of Π
t,sidj

j .

6.2.2.8 Modelling Password Guessing Resilience

If a password is involved in the protocol, we assume that the password is chosen

from the set PW = {π(1), π(2), · · · , π(m)}, where π(i) has an associated probability

of selection pi and pi ≤ pj if i > j. It is straightforward to compute that, if an

attacker has been permitted to have the results of h guesses regarding the password

to be established, then the probability that the attacker can successfully guess the

password is at most
∑h+1

j=1 pj.

In a session of an n-party protocol, an oracle may communicate with the other n−1

oracles, so that an attacker may test more than one password by intervening in

the input of one oracle although the ideal case is that the attacker can only test

one password. Generally, we assume that the security against password guessing

attacks is parameterised with a parameter ℓ1 (the maximum number of passwords

the attacker can test by by intervening in the input of an oracle), which is referred

to as the resilience parameter against password guessing attacks. Informally, a

password-based protocol is said to be secure against password guessing attacks if

the attacker’s advantage over the password is negligibly larger than
∑ℓ1n1+1

j=1 pj for

ℓ1 ≥ 1 and n1 ≥ 1, where ℓ1 is the resilience parameter and n1 is the total number

of aborted oracles3. It is clear that if a protocol has a smaller value of ℓ1 then it has

a higher level security against password guessing attacks.

Formally, the attack game for modelling password guessing attacks is carried out

3It is implied that the attacker’s advantage in guessing the password is (computationally )
irrelevant to the total number of accepted oracles.
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between the challenger and a polynomial-time attacker A as follows:

1. Setup: The challenger generates both the public system parameters param1

and private system parameters param2, where param2 includes a password

π ∈ PW .

2. Challenge: The attacker runs A with input param1. At some point, A termi-

nates by outputting a guessed password π′. During its execution, A can make

the following types of query: create, send, and reveal.

Suppose that there are n1 aborted oracles at the end of the game. Then the attacker’s

advantage over the password in the game is defined to be F(ℓ1n1,Pr[π = π′]), where

the function F is defined as follows. On the input of an integer a and a value b,

F(a, b) is computed as:

F(a, b) =

{

0, if b ≤
∑a+1

j=1 pj

b−
∑a+1

j=1 pj, otherwise

6.2.2.9 Modelling Key Authentication (password-based)

Formally, the attack game for key authentication (password-based) is as follows,

where the attacker has two stages, i.e., A = (A1,A2).

1. Setup: The challenger generates both the public system parameters param1

and the private system parameters param2.

2. Phase 1: The first stage attacker A1 executes with input param1. A1 can

make the following types of query: create, send, and reveal. At some point, A1

terminates by issuing a test query to a fresh oracle Π
t,sidj

j , for some 1 ≤ j ≤ n

and t ≥ 1, and outputting some state information state.

3. Challenge: The challenger returns the output of test(Π
t,sidj

j ).

4. Phase 2: The second stage attacker A2 executes with input state and the

output of the challenger. In addition to the same types of query as A1, A2
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can also make any type of corrupt queries, namely corrupt-user, corrupt-state,

and corrupt-ttp. However, the attacker is not permitted to issue a corrupt-state

query to any partner oracle of Π
t,sidj

j , or to issue a reveal query to Π
t,sidj

j or

its partner oracle. A2 terminates by outputting a guess bit b′.

Note that if there are n1 aborted oracles at the end of the game, then the probability

that the attacker knows the correct password is at most
∑ℓ1n1+1

j=1 pj before issuing

the test query. If the attacker knows the correct password, then it can trivially guess

the bit; otherwise we wish the attacker can only guess b with a probability negligibly

larger than 1
2 .

Therefore, the attacker wins if b′ = b, and its advantage is defined to be the maximum

of {0,Pr[b′ = b] −
1+

Pℓ1n1+1
j=1 pj

2 } given that there are n1 aborted oracles at the end

of the game.

In this game, (perfect) forward secrecy is modelled because the attacker is allowed to

corrupt all users in the session identified by sidj , and unknown key-share resilience

is modelled because the attacker is allowed to issue reveal queries.

6.2.2.10 Modelling Mutual Entity Authentication (password-based)

Formally, the attack game for mutual entity authentication (password-based) is as

follows:

1. Setup: The challenger generates both the public system parameters param1

and the private system parameters param2.

2. Challenge: The attacker A executes with input param1. At some point, A

terminates by outputting an accepted oracle Π
t,sidj

j , for some 1 ≤ j ≤ n and

t ≥ 1. During its execution, A can make the following types of query: create,

send, and reveal.

Note that if there are n1 aborted oracles at the end of the game, then the probability

that the attacker knows the correct password is
∑ℓ1n1+1

j=1 pj . If the attacker knows
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the correct password, then it can trivially impersonate a user; otherwise we wish the

attacker can only succeed with a negligible probability.

Let E1 be the event that, for some 1 ≤ x ≤ n, where x 6= j, there is no oracle Πy,sidx
x

which satisfies sidx = sidj . The attacker wins if E1 occurs, and its advantage is

defined to be the maximum of {0,Pr[E1] −
∑ℓ1n1+1

j=1 pj} given that there are n1

aborted oracles at the end of the game.

6.2.2.11 Modelling Key Confirmation (password-based)

Formally, the attack game for key confirmation (password-based) is as follows:

1. Setup: The challenger generates both the public system parameters param1

and the private system parameters param2.

2. Challenge: The attacker A executes with input param1. At some point, A

terminates by outputting an accepted oracle Π
t,sidj

j , for some 1 ≤ j ≤ n and

t ≥ 1. During its execution, A can make the following types of query: create,

send, and reveal.

Note that if there are n1 aborted oracles at the end of the game, then the proba-

bility that the attacker knows the correct password is
∑ℓ1n1+1

j=1 pj . If the attacker

knows the correct password, then it can trivially impersonate a user and forge any

key confirmation message; otherwise we wish the attacker can only succeed with a

negligible probability.

Let E1 be the event that, for some 1 ≤ x ≤ n, where x 6= j, there is no oracle Πy,sidx
x

which satisfies sidx = sidj and possesses the same session key as that of Π
t,sidj

j .

The attacker wins if E1 occurs, and its advantage is defined to be the maximum of

{0,Pr[E1] −
∑ℓ1n1+1

j=1 pj} given that there are n1 aborted oracles at the end of the

game.
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6.3 Security Definitions for Key Establishment Protocols

Using the attack games defined in the previous section, we now present a number

of security definitions for key establishment protocols and compare them with the

definitions given in Chapter 4.

6.3.1 Security Definitions for General Case

Informally, an authenticated key establishment protocol should guarantee that, in

any session, only the intended users can possibly compute the session key, even if

the attacker is able to corrupt users after the session ends. Formally, security is

defined as follows.

Definition 28 An authenticated key establishment protocol is AK†-secure if it is

sound and satisfies the following requirements:

1. Any polynomial-time attacker only has a negligible advantage in the attack

game for key randomness.

2. Any polynomial-time attacker only has a negligible advantage in the attack

game for key control.

3. Any polynomial-time attacker only has a negligible advantage in the attack

game for key authentication.

4. Any polynomial-time attacker only has a negligible advantage in the attack

game for backward secrecy.

5. Any polynomial-time attacker only has a negligible advantage in the attack

game for DPUKS resilience.

Informally, a secure authenticated key establishment protocol with mutual entity

authentication should be AK†-secure and further guarantee that all the uncorrupted

users in a session have the same belief regarding the identifier set UID, i.e. they all
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agree on who the other participants are in the session. Formally, security is defined

as follows.

Definition 29 An authenticated key establishment protocol with mutual entity au-

thentication is AKE†-secure, if it satisfies the following requirements:

1. It is AK†-secure.

2. Any polynomial-time attacker only has a negligible advantage in the attack

game for mutual entity authentication.

Informally, a secure authenticated key establishment protocol with key confirmation

should be AK†-secure and further guarantee that all intended uncorrupted users com-

pute the same session key and session identifier in any protocol execution. Formally,

security is defined as follows.

Definition 30 An authenticated key establishment protocol with key confirmation

is AKC†-secure, if it satisfies the following requirements:

1. It is AK†-secure.

2. Any polynomial-time attacker only has a negligible advantage in the attack

game for key confirmation.

6.3.2 Security Definitions for Password Case

Analogously to the general case, we can give a corresponding series of security defi-

nitions, namely ℓ1-PAK†-security, ℓ1-PAKE†-security, and ℓ1-PAKC†-security, for the

password case, where ℓ1 is the resilience parameter. The main difference is that we

should take into account the low-entropy property of the password and the property

of password guessing resilience.
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Definition 31 A password-based authenticated key establishment protocol is ℓ1-PAK†-

secure, if it is sound and satisfies the following requirements:

1. Any polynomial-time attacker only has a negligible advantage in the attack

game for key randomness.

2. Any polynomial-time attacker only has a negligible advantage in the attack

game for key control.

3. Any polynomial-time attacker only has a negligible advantage in the attack

game for key authentication (password-based) where the resilience parameter

is ℓ1.

4. Any polynomial-time attacker only has a negligible advantage in the attack

game for password guessing resilience where the resilience parameter is ℓ1.

Definition 32 A password-based authenticated key establishment protocol with mu-

tual entity authentication is ℓ1-PAKE†-secure, if it satisfies the following require-

ments:

1. It is ℓ1-PAK†-secure.

2. Any polynomial-time attacker only has a negligible advantage in the attack

game for mutual entity authentication (password-based) where the resilience

parameter is ℓ1.

Definition 33 An authenticated key establishment protocol with key confirmation

is ℓ1-PAKC†-secure, if it satisfies the following requirements:

1. It is ℓ1-PAK†-secure.

2. Any polynomial-time attacker only has a negligible advantage in the attack

game for key confirmation (password-based) where the resilience parameter is

ℓ1.
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Strangio∗ Shoup Canetti-Krawczyk Bresson∗ Ours

KA yes yes yes yes yes
FS yes yes yes yes yes

PFS yes yes yes yes yes
BS yes no no no yes

UKS yes yes yes yes yes
DPUKS no no no no yes

KR yes yes yes yes yes
KCL no no no no yes
EA no no no yes yes
KK yes yes yes yes yes

KCM no no yes no yes
KCI yes no no no yes

Table 6.1: Comparison of Security Models

6.3.3 Remarks and Comparisons

It is worth mentioning that the above security formulations in password-based set-

ting are aimed at protocols which have only one password. The extension to cover

other cases is beyond the scope of this thesis. Security properties such as backward

secrecy, key compromise impersonation resilience, and DPUKS resilience, have not

been discussed, because these properties cannot be achieved (at least by most of

the existing password-based key establishment protocols). Take the key compro-

mise impersonation resilience as an example. Recall the definition in Section 3.3,

where key-compromise impersonation resilience is defined to be the property that,

in any session, the compromise of a user’s long-term private key does not enable

the attacker to impersonate any other non-compromised intended user to the user

whose key has been comprised. If a password is the only shared secret (which is the

case for most of password-based protocols), clearly, it is impossible to achieve key

compromise impersonation resilience.

In Table 6.1, we provide a comparison of the security properties captured by five

existing security models (described in Sections 4.5) and the novel model described

above.

One important property of the new model is that the session identifier can be de-

fined in a more flexible way than in Bellare-Rogaway-like and Canetti-Krawczyk-like

models. Some examples of this flexibility are given in Chapter 7.
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In our security model, security is modelled in a modular way: different properties are

modelled by different games, and the security definitions are based on the attacker’s

advantages in attack games; in each game, the attacker’s privileges depend on the

types of oracle queries available to the attacker. Hence, it is easy to relax our

definitions to reflect changes in the powers of an attacker. One example is that, if

the key establishment protocol is carried out over an authenticated network, then we

can simply assume that the attacker is passive in the attack games. Another example

is that, in order to model the security of traditional key distribution protocols, where

a TTP distributes a session key to each user in a session, we may modify the attack

games in the following ways:

1. In all the attack games, the attacker is forbidden to issue any corrupt-ttp

queries.

2. Establishing the key control and DPUKS resilience properties is not required

since the session key is chosen by the TTP.

6.4 Conclusions

In this chapter we have described a novel security model for key establishment

protocols for both the general and passoword-based cases. We have compared it

with the existing models and shown that it possesses a number of merits. The

security analysis in Chapter 7 is conducted using this model.
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Construction of New Key Establishment
Protocols
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In this chapter we first describe two novel compilers for transforming key establish-

ment protocols secure against passive attackers into protocols secure against active

attackers. We then present three extensions to the Burmester-Desmedt protocol.

7.1 Motivation

As described in Section 3.1, a large number of key establishment protocols have been

proposed. In addition, a number of protocol compiliers, such as those in [145, 187],
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have also been proposed. Many of these protocols have been evaluated in existing

security models, such as those given in [29, 68, 218]. However, in Section 4, we

showed that these security models do not cover all the security properties described

in Section 3.3. It is therefore an interesting challenge to design key establishment

protocols that can be proven secure in the security model described in Chapter 6,

since this model covers all the security properties we have identified as potentially

valuable for key establishment protocols.

In Section 7.2, we review the Katz-Yung compiler [145], and propose two new com-

pilers in an attempt to improve the efficiency of the resulting protocols. The first

compiler is for environments where no TTP is involved in the key establishment pro-

cess, while the other is for environments where a TTP is involved in every protocol

execution. In Section 7.3 we propose a general extension to the Burmester-Desmedt

protocol and prove its security in the security model introduced in Chapter 6 under

the DBDH assumption in the random oracle model. In Section 7.4 we propose an

extension to the Burmester-Desmedt protocol, where a shared password is used for

authentication. The protocol is proved 2-PAKC†-secure under the DDH and KE as-

sumptions in the random oracle model. In Section 7.5 we propose a modified version

of the protocol described in Section 7.4, in which a number of techniques are used to

reduce the risk of password guessing attacks. The protocol is proved 1-PAKC†-secure

under the DDH assumption in the random oracle model.

7.2 Compilers for Protocol Transformation

7.2.1 The Katz-Yung compiler

We first review the Katz-Yung compiler [145] and discuss the security and efficiency

of the protocols it produces. We then describe an example of a key establishment

protocol output by this compiler, and show how to simplify this protocol.

130



7.2 Compilers for Protocol Transformation

7.2.1.1 Description of the Katz-Yung Compiler

Given any n-party key establishment protocol P secure against passive attackers,

the Katz-Yung compiler generates a new key establishment protocol P ′ which is

secure against active attackers. The security analysis of the Katz-Yung compiler, as

given in [145], is in a modified version of the model of Bresson et al. [60].

For P ′, the TTP initialisation sub-protocol and the user initialisation sub-protocol

are identical to those of P, except that, in the user initialisation sub-protocol, Ui gen-

erates a verify/sign key pair (pki, ski) for a signature scheme (KeyGen,Sign,Verify).

Let ℓ be the security parameter. Suppose a set of users Ui (1 ≤ i ≤ n) run the

protocol to establish a session key.

1. Ui chooses ri ∈R {0, 1}
ℓ and broadcasts IDi||0||ri. After receiving the initial

broadcast message from all the other parties, Ui sets noncei = ID1||r1|| · · · ||IDn||rn

and stores this as part of its state information.

2. Ui executes the key establishment sub-protocol of P modified in the following

ways.

• When Ui is required by P to broadcast IDi||x||mi, it broadcasts IDi||x||mi||σix,

where σix = Sign(x||mi||noncei, ski).

• When Ui receives the message IDj ||x||mj ||σjx, for any 1 ≤ j ≤ n and j 6=

i, it checks that: (1) Uj is an intended partner, (2) x is the next expected

sequence number for a message from Uj, and (3) Verify(x||mj ||noncei, pkj , σjx) =

1. If any of these checks fail, Ui aborts the protocol; otherwise, Ui con-

tinues.

Katz and Yung [145] claim that their compiler provides a scalable way of transform-

ing a key establishment protocol secure against passive attackers into an authenti-

cated protocol which is secure against active attackers. With respect to efficiency,

we make the following observations on the protocols produced by the Katz-Yung

compiler.

1. From the second round onwards, the compiler requires each user to sign all the
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messages it sends in the protocol run, and to verify all the messages it receives.

Since the total number of signature verifications in one round is proportional

to the group size, the signature verifications will potentially use a significant

amount of computational resource when the group size is large.

2. The compiler adds an additional round to the original key establishment sub-

protocol; however, it does not provide key confirmation. As Katz and Yung

state [145], in order to achieve key confirmation a further additional round is

required.

7.2.1.2 An example application of the compiler

The following authenticated group key exchange protocol was obtained by applying

the Katz-Yung compiler to the Burmester-Desmedt protocol.

The TTP runs the TTP initialisation sub-protocol to generate (G, q, g), where G is

a multiplicative cyclic group of prime order q and g is a generator of G. In addition,

the TTP also generates its public/private signature key pair, as used to certify

users’ public keys. Every user Ui (i ≥ 1) runs the user initialisation sub-protocol to

generate a key pair (pki, ski) for a signature scheme (KeyGen,Sign,Verify), and get

pki certified by the TTP.

Suppose a set of users Ui (1 ≤ i ≤ n) wish to establish a session key; the key

establishment sub-protocol is as follows. Note that the indices of users (and values

exchanged between users) are taken modulo n.

1. Ui chooses ri ∈R {0, 1}
ℓ and broadcasts IDi||0||ri. After receiving the initial

broadcast message from all other parties, Ui sets noncei = ID1||r1|| · · · ||IDn||rn

and stores it as part of its state information.

2. Ui chooses si ∈R Zq and computes Zi = gsi . Ui then computes a signature

σi1 = Sign(1||Zi||noncei, ski) and broadcasts IDi||1||Zi||σi1.

3. When Ui receives a message IDj ||1||Zj ||σj1 from user Uj (1 ≤ j ≤ n, j 6= i), it

checks that: (1) Uj is an intended partner, (2) 1 is the next expected sequence
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number for a message from Uj, and (3) Verify(1||Zj ||noncei, pkj , σj1) = 1.

If any of these checks fail, Ui aborts the protocol. Otherwise, Ui computes

Xi = (Zi+1

Zi−1
)si and the signature σi2 = Sign(2||Xi||noncei, ski), and broadcasts

IDi||2||Xi||σi2.

4. When Ui receives a message IDj ||2||Xj ||σj2 from user Uj (1 ≤ j ≤ n, j 6= i), it

checks that: (1) Uj is an intended partner, (2) 2 is the next expected sequence

number for a message from Uj, and (3) Verify(2||Xj ||noncei, pkj, σj2) = 1. If

any of these checks fail, Ui aborts the protocol; otherwise, Ui computes the

session key as:

Ki = (Zi−1)
nsi · (Xi)

n−1 · (Xi+1)
n−2 · · ·Xi+n−2

= gs1s2+s2s3+s3s4+···+sns1

It is straightforward to verify that the above protocol has three rounds. Each user

needs to sign two messages and verify 2n signatures, besides the other computations

involved in performing the protocol P.

7.2.1.3 Simplified Version of the Example Scheme

In our simplified version of the above scheme, the TTP initialisation sub-protocol

and the user initialisation sub-protocol are unchanged, while the key establishment

sub-protocol is as follows:

1. Ui chooses ri ∈R {0, 1}
ℓ and si ∈R Zq, computes Zi = gsi , and then broadcasts

IDi||0||ri||Zi.

2. Ui sets noncei = ID1||r1|| · · · ||IDn||rn and stores it as state information. Ui

computes Xi = (Zi+1

Zi−1
)si , hi = Z1||Z2|| · · · ||Zn, and σi1 = Sign(1||Xi||noncei||hi, ski).

Ui then broadcasts IDi||1||Xi||σi1.

3. When Ui receives a message IDj ||1||Xj ||σj1 from user Uj (1 ≤ j ≤ n, j 6= i),

it checks that: (1) Uj is an intended partner, (2) 1 is the expected sequence

number, and (3) Verify(1||Xj ||noncei||hi, pkj , σj1) = 1. If any of these checks
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fail, Ui aborts the protocol; otherwise, Ui computes the session key as:

Ki = (Zi−1)
nsi · (Xi)

n−1 · (Xi+1)
n−2 · · ·Xi+n−2

= gs1s2+s2s3+s3s4+···+sns1

It is straightforward to verify that this simplified sub-protocol is more efficient than

that obtained from directly applying the compiler in two respects: the protocol has

only two rounds, and each user only needs to compute one signature and verify n

signatures. To assess the security of this protocol, we first compare our simplified

scheme with that created by the Katz-Yung compiler. There are two main differences

between the key establishment sub-protocols:

1. One difference is that in the simplified algorithm we combine the first two

rounds of the original key establishment sub-protocol into one round, and

avoid the signature computation.

2. The other difference is that we require each user to compute the signature on

both Xi and Z1|| · · · ||Zn in the second round.

In summary, the main change is that, compared with the original key establishment

sub-protocol, the authentication of messages sent in the first round is conducted

in the second round. As a result, it straightforward to verify that the simplified

protocol is as secure as the example protocol. This simplification motivates the

design of the two novel compilers we next describe.

7.2.2 Compiler without Centralised Verification

In this section we describe a new compiler, which can transform a key establishment

protocol secure against passive attackers into a protocol secure against active attack-

ers, where security is analysed in the security model described in Chapter 6. The

resulting protocol is designed for use in an environment where no TTP is involved

in the key establishment process.
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7.2.2.1 Description of the compiler

Given a key establishment protocol P which is secure against passive attackers,

this compiler generates a new key establishment protocol P ′ secure against active

attackers. We suppose that, at the end of a successful session, every user outputs a

session key and a session identifier. Suppose also that if two users possess the same

session identifier and transcript then they compute the same session key.

For P ′, the TTP initialisation sub-protocol and user initialisation sub-protocol

are identical to those of P, except that, in the user initialisation sub-protocol,

Ui (i ≥ 1) also generates a verify/sign key pair (pki, ski) for a signature scheme

(KeyGen,Sign,Verify), and in the TTP initialisation sub-protocol the TTP also se-

lects two hash functions H1 : {0, 1}∗ −→ {0, 1}ℓ and H2 : {0, 1}∗ −→ {0, 1}ℓ.

Suppose a set of users Ui (1 ≤ i ≤ n) wish to establish a session key; the key

establishment sub-protocol of P ′ is as follows.

1. Ui (1 ≤ i ≤ n) executes the key establishment sub-protocol of P, in which

protocol messages are broadcast to every user.

2. After computing the session key K ′
i, Ui broadcasts its key confirmation mes-

sage IDi||sidi||H1(K
′
i)||σi, where K ′

i is the session key, sidi is the session

identifier, transi is the concatenation of all protocol messages, and σi =

Sign(IDi||sidi||transi||H1(K
′
i), ski)

3. After receiving IDj ||sidj ||H1(K
′
j)||σj , for every 1 ≤ j ≤ n and j 6= i, Ui checks

whether the following equation holds for j:

Verify(IDj ||sidi||transi||H1(K
′
i), pkj , σj) = 1.

If all the verifications succeed, Ui computes the session key as Ki = H2(K
′
i||sidi)

and sets the session identifier to sidi. If any of these checks fail, Ui aborts the

protocol.

135



7.2 Compilers for Protocol Transformation

7.2.2.2 Security and Performance Analysis

In the security model described in Chapter 6, we have the following security result.

Theorem 5 If the hash functions are modelled as random oracles, the compiler

transforms a AK†-secure protocol P secure against passive attackers into an AKC†

secure protocol P ′ secure against active attackers.

Proof. From the definitions, it is straightforward to verify that key randomness

and key control are guaranteed for P ′, given that H2 is a random oracle. We next

prove that an active attacker has only a negligible advantage in the attack games

for DPUKS resilience, key confirmation, key authentication, and backward secrecy.

• For P ′, consider an attack game for DPUKS resilience (described in Section

6.2.2.5). The attacker wins if, for some 1 ≤ j ≤ n, t ≥ 1, y ≥ 1, and x ≥ 1,

sidj 6= sidx, and Π
t,sidj

j and Πy,sidx
x possess the same session key.

According to the definition of the compiler described in Section 7.2.2.1, Kj =

H2(K
′
j ||sidj) and Kx = H2(K

′
x||sidx). It is straightforward to verify that the

attacker’s advantage is negligible given that H2 is collision-resistant.

• For P ′, consider an attack game for key confirmation (described in Section

6.2.2.7). The attacker wins, if for some 1 ≤ x ≤ n, there is no oracle for Ux

where sidx = sidj and H2(K
′
x||sidx) = H2(K

′
j ||sidj). Hence, if the attacker

wins then the probability ǫ that the pair (IDx||sidj ||transj||H1(K
′
j), σx) is

generated by Ux (simulated by the challenger) is negligible given that H1 and

H2 are collision-resistant.

According to the definition of the compiler described in Section 7.2.2.1, before

an oracle Π
t,sidj

j accepts, it needs to verify the signatures σi (1 ≤ i ≤ n, i 6= j),

where σi = Sign(IDi||sidj ||transj||H1(K
′
j), ski). Therefore, if the attacker

wins with probability δ, then we can conclude that it has successfully forged a

pair (IDx||sidj ||transj||H1(K
′
j), σx) with a probability δ′, where the value of

|δ−δ′| = ǫ is the probability that the pair is generated by the challenger. From

the previous analysis, |δ−δ′| is negligible. As a result, the attacker’s advantage
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δ is negligible given that the signature scheme is existentially unforgeable under

a chosen message attack.

Observation 1 From the above analysis, it is straightforward to verify that

the probability that Π
t,sidj

j and its partner oracle possess different transcripts

is negligible, given that the signature scheme is existentially unforgeable under

a chosen message attack.

• For P ′, consider an attack game for key authentifcation (described in Section

6.2.2.3). Let the advantage of the attacker A = (A1,A2) be δ. We construct

an attacker B = (B1,B2) for the key authentication property of P. Without

loss of generality, suppose that A initiates at most m oracles for each user in

Phase 1. B runs A as a subroutine, and proceeds as follows:

1. B runs the attack game for key authentication for P with the challenger.

In the game, B acts as a passive attacker. Let the tested oracle be Π
t,sidj

j

and the challenge be C ′
b, which is either K ′

j or a random string. Note

that B2 can obtain all the long-term credentials param2 for P by issuing

corrupt-user and corrupt-ttp queries in Phase 2.

2. B2 generates the parameters param′
1 and param′

2 for protocol P ′, where

param′
1 includes param1 and the private signing keys ski (i ≥ 1), and

param′
2 includes param2, H1, H2, and the verification keys pki (i ≥ 1).

Then B2 runs A1 with input param′
1 and honestly answers the oracle

queries issued by A1. During the simulation, for every 1 ≤ i ≤ n, B ran-

domly chooses 1 ≤ oi ≤ m, and makes Π
oj ,sidj

j output the same messages

as those of Π
t,sidj

j . In addition, Πoi,sidi

i , for every 1 ≤ i ≤ n, i 6= j, out-

puts the same messages as those of Π
t,sidj

j ’s corresponding partner oracle

which belongs to Ui. B aborts if any of the following events occur.

– The tested oracle is not in the set {Πoi,sidi

i (1 ≤ i ≤ n)}.

– There are two oracles in the set {Πoi,sidi

i (1 ≤ i ≤ n)} which are

not partner oracles to each other, possess different session keys, or

possess different transcripts.

3. B2 runs A2 with input the state information (generated by A1) and

H2(C
′
b||sidi), where sidi is the session identifier of the tested oracle Πoi,sidi

i

for some 1 ≤ i ≤ n. B2 answers the oracle queries issued by A2 fol-

lowing the protocol specification. Note that A2 is forbidden to issue a
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corrupt-state or reveal query to the tested oracle or its partner oracle,

therefore, B2 can faithfully answer any query which may be issued by A2.

4. If A2 terminates by outputting b′, then B2 terminates by outputting b′.

Let E1 be the event that B2 does not abort in step 2. Because P ′ achieves

key confirmation (and also from Observation 1), it is straightforward to verify

that Pr[E1] = 1
mn − ǫ1 where ǫ1 is negligible. If E1 occurs, B has faithfully

answered the oracle queries issued by A. If δ′ is the probability that B wins

when it does not abort in step 2, then δ′ = δ. In summary, B can win the

attack game with advantage δ′′, where

δ′′ = Pr[E1]δ
′

= (
1

mn
− ǫ1)δ

≥
δ

mn
− ǫ1

Since 1
mn is a constant, then if δ is non-negligible then so is δ′′ (given that ǫ1

is negligible). However, this contradicts the assumption that P achieves key

authentication, and hence δ is negligible.

• For P ′, consider an attack game for backward secrecy (described in Section

6.2.2.4). Let the advantage of the attacker A = (A1,A2) be δ. We construct

an attacker B = (B1,B2) for the key authentication property of P. Without

loss of generality, suppose that A initiates at most m oracles for each user in

Phase 1. B runs A as a subroutine, and runs as follows:

1. B runs the attack game for backward secrecy for P with the challenger.

In the game, B acts as a passive attacker. Let the tested oracle be Π
t,sidj

j

and the challenge be C ′
b, which is either K ′

j or a random string. Note

that B2 can obtain all the long-term credentials param2 for P, by issuing

corrupt-user and corrupt-ttp queries in Phase 2.

2. B2 generates the parameters param′
1 and param′

2 for protocol P ′, where

param′
1 includes param1 and the private signing keys ski (i ≥ 1), and

param′
2 includes param2, H1, H2, and the verification keys pki (i ≥ 1).

Then B2 runs A1 with input param′
1 and honestly answers the oracle

queries issued by A1. During the simulation, for every 1 ≤ i ≤ n, B ran-

domly chooses 1 ≤ oi ≤ m, and makes Π
oj ,sidj

j output the same messages
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as those of Π
t,sidj

j . In addition, Πoi,sidi

i , for every 1 ≤ i ≤ n, i 6= j, out-

puts the same messages as those of Π
t,sidj

j ’s corresponding partner oracle

which belongs to Ui. B aborts if any of the following events occur.

– The tested oracle is not in the set {Πoi,sidi

i (1 ≤ i ≤ n)}.

– There are two oracles in the set {Πoi,sidi

i (1 ≤ i ≤ n)} which are

not partner oracles to each other, possess different session keys, or

possess different transcripts.

3. B2 runs A2 with input the state information (generated by A1) and

H2(C
′
b||sidi), where sidi is the session identifier of the tested oracle Πoi,sidi

i

for some 1 ≤ i ≤ n. B2 answers the oracle queries issued by A2 following

the protocol specification.

4. If A2 terminates by outputting b′, then B2 terminates by outputting b′.

Let E1 be the event that B2 does not abort in step 2. When A1 issues its

test(Π
oj ,sidj

j ) query, if no corrupt-user query has been issued to Uj , then from the

security analysis of key confirmation (and also from Observation 1), |Pr[E1]−

1
mn | is negligible. Otherwise, if A1 has issued a corrupt-user query to Uj, the

probability that Π
oj ,sidj

j possesses the same transcript with its partner oracle

is also overwhelming because no user of the tested oracle’s partner oracle is

permitted to be corrupted (in the game for backward secrecy). As a result, in

both case, we can conclude that Pr[E1] = 1
mn − ǫ1 where ǫ1 is negligible.

Note that A2 is forbidden to issue a corrupt-state or reveal query to the tested

oracle and its partner oracle, therefore, in step 3, B2 can faithfully answer any

query which may be issued by A2.

If E1 occurs, B has faithfully answered the oracle queries issued by A. If δ′ is

the probability that B wins when it does not abort in step 2, then δ′ = δ. In

summary, B can win the attack game with advantage δ′′, where

δ′′ = Pr[E1]δ
′

= (
1

mn
− ǫ1)δ

≥
δ

mn
− ǫ1

Since 1
mn is a constant, then if δ is non-negligible then so is δ′′ (given that

ǫ1 is negligible). However, this contradicts the assumption that P achieves

backward secrecy, and hence δ is negligible.
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In summary, we have shown that an attacker has only a negligible probability in the

attack games for key randomness, key control, key authentication, backward secrecy,

DPUKS resilience, and key confirmation. As a result, P ′ is AKC† secure, and the

theorem follows. �

The key establishment sub-protocol of P ′ adds one round to the original protocol and

achieves key confirmation. Every participant needs to sign one message and verify

n signatures, in addition to the computations involved in performing the original

protocol. Thus this compiler yields protocols that are more efficient than those

produced by the Katz-Yung compiler.

7.2.2.3 An Example Application of this Compiler

We first introduce a modified version of the Burmester-Desmedt protocol (described

in Section 3.1.2.2). The modified protocol is identical to the original protocol

except that the session identifier is defined to be (UID,RSID), where RSID =

Z1||Z2|| · · · ||Zn||X1||X2|| · · · ||Xn, and the session key is K ′
i = H0(K

′′
i ||sidi), where

H0 is a hash function and

K ′′
i = (Zi−1)

nsi · (Xi)
n−1 · (Xi+1)

n−2 · · ·Xi+n−2

= gs1s2+s2s3+s3s4+···+sns1.

From the security of the Burmester-Desmedt protocol, the modified protocol achieves

key authentication and backward secrecy against passive attackers. The modified

protocol achieves key randomness given that H0 is a random oracle. The modi-

fied protocol achieves key control and DPUKS resilience against passive attackers,

because the session key is computed as a function of K ′′
i and the unique session

identifier sidi. As a result, the modified protocol is AK†-secure.

The following key establishment protocol is obtained by applying the compiler given

in Section 7.2.2.1 to the above protocol.

The TTP runs the TTP initialisation sub-protocol to generate (G, q, g), where G is

a multiplicative cyclic group of prime order q and g is a generator of G, and three
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hash functions H0 : {0, 1}∗ −→ {0, 1}ℓ, H1 : {0, 1}∗ −→ {0, 1}ℓ, and H2 : {0, 1}∗ −→

{0, 1}ℓ. In addition, the TTP also generates its public/private key pair, as used

to certify users’ public keys. Every user Ui (i ≥ 1) runs the user initialisation sub-

protocol to generate a key pair (pki, ski) for a signature scheme (KeyGen,Sign,Verify),

and get pki certified by the TTP.

Suppose a set of users Ui (1 ≤ i ≤ n) wish to establish a session key; the key

establishment sub-protocol is as follows. Note that the indices of users (and values

exchanged between users) are taken modulo n.

1. Ui chooses si ∈R Zq and broadcasts Zi = gsi .

2. After receiving every Zj (1 ≤ j ≤ n, j 6= i), Ui broadcasts Xi = (
Zi+1

Zi−1
)si .

3. After receiving every Xj (1 ≤ j ≤ n, j 6= i), Ui sets sidi = (UID,RSID)

where RSID = Z1||Z2|| · · · ||Zn||X1||X2|| · · · ||Xn, transi = RSID, and K ′
i =

H0(K
′′
i ||sidi), where

K ′′
i = (Zi−1)

nsi · (Xi)
n−1 · (Xi+1)

n−2 · · ·Xi+n−2

= gs1s2+s2s3+s3s4+···+sns1

and broadcasts σi, where

σi = Sign(IDi||sidi||transi||H1(K
′
i), ski).

4. After receiving σj (1 ≤ j ≤ n, j 6= i), Ui checks whether the following equation

holds for every j (j 6= i):

Verify(IDj ||sidi||transi||H1(K
′
i), pkj , σj) = 1.

If all the verifications succeed, then Ui computes the session key Ki = H2(K
′
i||sidi).

Otherwise, if any of these verifications fail, then Ui aborts the protocol execu-

tion.

The key establishment sub-protocol has three rounds. Each user needs to conduct

three exponentiations, sign one message, and verify n signatures.
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7.2.3 Compiler with Centralised Verification

In this section we describe a new compiler which can transform a key establish-

ment protocol secure against passive attackers into a protocol secure against active

attackers, where security is analysed in the model described in Chapter 6. The re-

sulting protocol is designed for use in an environment where a TTP is involved in

key establishment process.

7.2.3.1 Description of the compiler

Given a key establishment protocol P which is secure against passive attackers,

this compiler generates a new key establishment protocol P ′ secure against active

attackers. We suppose that, at the end of a successful session, every user outputs a

session key and a session identifier. Suppose also that if two users possess the same

session identifier and transcript then they compute the same session key.

For P ′, the TTP initialisation sub-protocol and the user initialisation sub-protocol

are identical to those of P, except that, in the user initialisation sub-protocol every

user Ui, for i ≥ 1, generates a verify/sign key pair (pki, ski) for a signature scheme

(KeyGen,Sign,Verify), and in the TTP initialisation sub-protocol, the TTP generates

a verify/sign key pair (pkttp, skttp) for the same signature scheme and two hash

functions H1 : {0, 1}∗ −→ {0, 1}ℓ and H2 : {0, 1}∗ −→ {0, 1}ℓ.

Suppose a set of users Ui (1 ≤ i ≤ n) wish to establish a session key; the key

establishment sub-protocol of P ′ is as follows.

1. Ui executes the key establishment sub-protocol of P.

2. After computing the session key K ′
i, Ui sends the key confirmation message

IDi||sidi||H1(transi)||H1(K
′
i)||σi to the TTP, where K ′

i is the session key, sidi

is the session identifier, transi is the concatenation of all protocol messages,

and σi = Sign(IDi||sidi||H1(transi)||H1(K
′
i), ski).

3. The TTP verifies that sid1 = sid2 = · · · = sidn, H1(trans1) = H1(trans2) =

· · · = H1(transn), H1(K
′
1) = H1(K

′
2) = · · · = H1(K

′
n), and every signature is
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valid. If all the verifications succeed, the TTP broadcasts sid1||H1(trans1)||H1(K
′
1)||σttp,

where

σttp = Sign(sid1||H1(trans1)||H1(K
′
1), skttp).

Otherwise, the TTP broadcasts a failure message.

4. Ui verifies that the signature from the TTP is valid, sid1 = sidi, H1(trans1) =

H1(transi), and H1(K
′
1) = H1(K

′
i). If all these verifications succeed, Ui com-

putes the session key as Ki = H2(K
′
i||sidi) and sets its session identifier to

sidi. If any of these verifications fail, or if Ui receives a failure message from

the TTP, then Ui aborts the protocol.

7.2.3.2 Security and Performance Analysis

In the security model described in Chapter 6, we have the following security result.

Theorem 6 If the hash functions are modelled as random oracles, the compiler

transforms a AK† secure protocol P secure against passive attackers into an AKC†

secure protocol P ′ secure against active attackers, which are not permitted to corrupt

the TTP except with respect to the forward secrecy and backward secrecy properties1.

Proof. From the definitions, it is straightforward to verify that key randomness

and key control are guaranteed for P ′, given that H2 is collision-resistant. We next

prove that an active attacker has only a negligible advantage in the attack games

for DPUKS resilience, key confirmation, key authentication, and backward secrecy.

• For P ′, consider an attack game for DPUKS resilience (described in Section

6.2.2.5). The attacker wins if, for some 1 ≤ j ≤ n, t ≥ 1, y ≥ 1, and x ≥ 1,

sidj 6= sidx, and Π
t,sidj

j and Πy,sidx
x possess the same session key.

According to the definition of the compiler described in Section 7.2.3.1, Kj =

H2(K
′
j ||sidj) and Kx = H2(K

′
x||sidx). It is straightforward to verify that the

attacker’s advantage is negligible given that H2 is collision-resistant.

1Use of corrupt-ttp is only permitted in phase 2 in the attack games for key authentication and
backward secrecy.

143



7.2 Compilers for Protocol Transformation

• For P ′, consider an attack game for key confirmation (described in Section

6.2.2.7). The attacker wins if, for some 1 ≤ x ≤ n, there is no oracle for Ux

where sidx = sidj and H2(K
′
x||sidx) = H2(K

′
j ||sidj). Hence, if the attacker

wins, then the probability that the pair (IDx||sidj ||H1(transj)||H1(K
′
j), σx) is

generated by Ux (simulated by the challenger) is negligible given that H1 and

H2 are collision-resistant.

According to the definition of the compiler described in Section 7.2.3.1, be-

fore an oracle Π
t,sidj

j accepts, it needs to verify sid1||H1(trans1)||H1(K
′
1)||σttp,

where

σttp = Sign(sid1||H1(trans1)||H1(K
′
1), skttp).

Therefore, if the attacker wins with probability δ, then we can conclude that it

has forged (IDx||sidj ||H1(transj)||H1(K
′
j), σx) or (sid1||H1(trans1)||H1(K

′
1), σttp)

with a probability δ′, where the value of |δ − δ′| is the probability that one of

these pairs is generated by the challenger. Given that the signature is exis-

tentially unforgeable under a chosen message attack, the probability |δ− δ′| is

negligible. As a result, the attacker’s advantage δ is negligible in winning the

game.

Observation 2 From the above analysis, it is straightforward to verify that

the probability that Π
t,sidj

j and its partner oracle possess different transcripts

is negligible, given that the signature scheme is existentially unforgeable under

a chosen message attack.

• For P ′, consider an attack game for key authentication (described in Section

6.2.2.3). Let the advantage of the attacker A = (A1,A2) be δ. We construct

an attacker B = (B1,B2) for the key authentication property of P. Without

loss of generality, suppose that A initiates at most m oracles for each user in

Phase 1. B runs A as a subroutine, and works as follows:

1. B runs the attack game for key authentifcation for P with the challenger.

In the game, B acts as a passive attacker. Let the tested oracle be Π
t,sidj

j

and the challenge be C ′
b, which is either K ′

j or a random string. Note

that B2 can obtain all the long-term credentials param2 for P, by issuing

corrupt-user and corrupt-ttp queries in Phase 2.

2. B2 generates the parameters param′
1 and param′

2 for protocol P ′, where

param′
1 includes param1, the private signing keys ski (i ≥ 1), and the
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private signing key skttp of the TTP, and param′
2 includes param2, H1,

H2, the verification keys pki (i ≥ 1), and the verification key pkttp of

the TTP. Then B2 runs A1 with input param′
1 and honestly answers the

oracle queries issued by A1. During the simulation, for every 1 ≤ i ≤ n,

B randomly chooses 1 ≤ oi ≤ m, and makes Π
oj ,sidj

j output the same

messages as those of Π
t,sidj

j . In addition, Πoi,sidi

i , for every 1 ≤ i ≤ n, i 6=

j, outputs the same messages as those of Π
t,sidj

j ’s corresponding partner

oracle which belongs to Ui. B aborts if any of the following events occur.

– The tested oracle is not in the set {Πoi,sidi

i (1 ≤ i ≤ n)}.

– There are two oracles in the set {Πoi,sidi

i (1 ≤ i ≤ n)} which are

not partner oracles to each other, possess different session keys, or

possess different transcripts.

3. B2 runs A2 with input the state information (generated by A1) and

H2(C
′
b||sidi), where sidi is the session identifier of the tested oracle Πoi,sidi

i

for some 1 ≤ i ≤ n. B2 answers the oracle queries issued by A2 fol-

lowing the protocol specification. Note that A2 is forbidden to issue a

corrupt-state or reveal query to the tested oracle or its partner oracle,

therefore, B2 can faithfully answer any query which may be issued by A2.

4. If A2 terminates by outputting b′, then B2 terminates by outputting b′.

Let E1 be the event that B2 does not abort in step 2. Because P ′ achieves

key confirmation (and also from Observation 2), it is straightforward to verify

that Pr[E1] = 1
mn − ǫ1, where ǫ1 is negligible. If E1 occurs, B has faithfully

answered the oracle queries issued by A. If δ′ is the probability that B wins

when it does not abort in step 2, then δ′ = δ. In summary, B can win the

attack game with advantage δ′′, where

δ′′ = Pr[E1]δ
′

= (
1

mn
− ǫ1)δ

≥
δ

mn
− ǫ1

Since 1
mn is a constant, then if δ is non-negligible then so is δ′′ (given that ǫ1

is negligible). However, this contradicts the assumption that P achieves key

authentication, and hence δ is negligible.

• For P ′, consider an attack game for backward secrecy (described in Section

6.2.2.4). Let the advantage of the attacker A = (A1,A2) be δ. We construct
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an attacker B = (B1,B2) for the backward secrecy property of P. Without

loss of generality, suppose that A initiates at most m oracles for each user in

Phase 1. B runs A as a subroutine, and works as follows:

1. B runs the attack game for key authentication for P with the challenger.

In the game, B acts as a passive attacker. Let the tested oracle be Π
t,sidj

j

and the challenge be C ′
b, which is either K ′

j or a random string. Note

that B2 can obtain all the long-term credentials param2 for P by issuing

corrupt-user and corrupt-ttp queries in Phase 2.

2. B2 generates the parameters param′
1 and param′

2 for protocol P ′, where

param′
1 includes param1, the private signing keys ski (i ≥ 1), and the

private signing key skttp of the TTP, and param′
2 includes param2, H1,

H2, the verification keys pki (i ≥ 1), and the verification key pkttp of

the TTP. Then B2 runs A1 with input param′
1 and honestly answers the

oracle queries issued by A1. During the simulation, for every 1 ≤ i ≤ n,

B randomly chooses 1 ≤ oi ≤ m, and makes Π
oj ,sidj

j output the same

messages as those of Π
t,sidj

j . In addition, Πoi,sidi

i , for every 1 ≤ i ≤ n, i 6=

j, outputs the same messages as those of Π
t,sidj

j ’s corresponding partner

oracle which belongs to Ui. B aborts if any of the following events occur.

– The tested oracle is not in the set {Πoi,sidi

i (1 ≤ i ≤ n)}.

– There are two oracles in the set {Πoi,sidi

i (1 ≤ i ≤ n)} which are

not partner oracles to each other, possess different session keys, or

possess different transcripts.

3. B2 runs A2 with input the state information (generated by A1) and

H2(C
′
b||sidi), where sidi is the session identifier of the tested oracle Πoi,sidi

i

for some 1 ≤ i ≤ n. B2 answers the oracle queries issued by A2 following

the protocol specification.

4. If A2 terminates by outputting b′, then B2 terminates by outputting b′.

Let E1 be the event that B2 does not abort in step 2. When A1 issues its

test(Π
oj ,sidj

j ) query, if no corrupt-user query has been issued to Uj , then from the

security analysis of key confirmation (and also from Observation 2), |Pr[E1]−

1
mn | is negligible. Otherwise, if A1 has issued a corrupt-user query to Uj, the

probability that Π
oj ,sidj

j possesses the same transcript with its partner oracle

is also overwhelming, because the attacker is forbidden to corrupt the user

146



7.2 Compilers for Protocol Transformation

corresponding to the tested oracle’s partner oracle and the TTP. As a result,

in both case, we can conclude that Pr[E1] = 1
mn − ǫ1 where ǫ1 is negligible.

Note that A2 is forbidden to issue a corrupt-state or reveal query to the tested

oracle or its partner oracle, therefore, in step 3 B2 can faithfully answer any

query which may be issued by A2.

If E1 occurs, B has faithfully answered the oracle queries issued by A. If δ′ is

the probability that B wins when it does not abort in step 2, then δ′ = δ. In

summary, B can win the attack game with advantage δ′′, where

δ′′ = Pr[E1]δ
′

= (
1

mn
− ǫ1)δ

≥
δ

mn
− ǫ1

Since 1
mn is a constant, then if δ is non-negligible then so is δ′′ (given that

ǫ1 is negligible). However, this contradicts the assumption that P achieves

backward secrecy, and hence δ is negligible.

In summary, we have shown that an attacker has only a negligible probability in the

attack games for key randomness, key control, key authentication, backward secrecy,

DPUKS resilience, and key confirmation. As a result, P ′ is AKC† secure, and the

theorem follows. �

The key establishment sub-protocol of P ′ has two more rounds than the original

sub-protocol, but every participant only needs to sign one message and verify one

signature, in addition to the computations involved in performing the input protocol.

The TTP needs to verify n signatures and generate one signature.

7.2.3.3 An Example Application of this Compiler

The following protocol is obtained by applying the compiler given in Section 7.2.3.1

to the modified Burmester-Desmedt protocol described in Section 7.2.2.3.

The TTP runs the TTP initialisation sub-protocol to generate (G, q, g), where G is
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a multiplicative cyclic group of prime order q and g is a generator of G, and three

hash functions H0 : {0, 1}∗ −→ {0, 1}ℓ, H1 : {0, 1}∗ −→ {0, 1}ℓ, and H2 : {0, 1}∗ −→

{0, 1}ℓ. In addition, the TTP also generates its public/private key pair, as used

to certify users’ public keys. Every user Ui (i ≥ 1) runs the user initialisation sub-

protocol to generate a key pair (pki, ski) for a signature scheme (KeyGen,Sign,Verify),

and get pki certified by the TTP.

Suppose a set of users Ui (1 ≤ i ≤ n) wish to establish a session key; the key

establishment sub-protocol is as follows. Note that the indices of users (and values

exchanged between users) are taken modulo n.

1. Ui chooses si ∈R Zq and broadcasts Zi = gsi .

2. After receiving every Zj (1 ≤ j ≤ n), Ui broadcasts Xi = (Zi+1

Zi−1
)si .

3. After receiving every Xj (1 ≤ j ≤ n, j 6= i), Ui sets sidi = (UID,RSID),

where RSID = Z1||Z2|| · · · ||Zn||X1||X2|| · · · ||Xn, transi = RSID, and K ′
i =

H0(K
′′
i ||sidi), where

K ′′
i = (Zi−1)

nsi · (Xi)
n−1 · (Xi+1)

n−2 · · ·Xi+n−2

= gs1s2+s2s3+s3s4+···+sns1 ,

and sends IDi||sidi||H1(transi)||H1(K
′
i)||σi to the TTP, where

σi = Sign(IDi||sidi||H1(transi)||H1(K
′
i), ski).

4. The TTP verifies that sid1 = sid2 = · · · = sidn, H1(trans1) = H1(trans2) =

· · · = H1(transn), H1(K
′
1) = H1(K

′
2) = · · · = H1(K

′
n), and every signature is

valid. If all the verifications succeed, the TTP broadcasts sid1||H1(transi)||H1(K
′
1)||σttp,

where

σttp = Sign(sid1||H1(transi)||H1(K
′
1), skttp).

Otherwise, the TTP broadcasts a failure message.

5. Ui verifies that σttp is valid, sid1 = sidi, H1(trans1) = H1(transi), and

H1(K
′
1) = H1(K

′
i). If all these verifications succeed, then Ui computes the

session key Ki = H2(K
′
i||sidi) and set its session identifier to sidi. If any of

these verifications fail, or if Ui receives a failure message from the TTP, then

Ui aborts the protocol.
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The key establishment sub-protocol has four rounds, and each user needs to compute

three exponentiations, sign one message and verify one signature, and the TTP needs

to sign one message and verify n signatures.

7.3 First extension to the Burmester-Desmedt Protocol

In this section we propose a modified Burmester-Desmedt protocol and establish its

security under the DBDH assumption in the security model described in Chapter 6.

7.3.1 Description of the Protocol

The TTP runs the TTP initialisation sub-protocol to generate an additive group

G1 of prime order q, a multiplicative group GT of order q, a generator P of G1,

a bilinear map ê : G1 × G1 −→ GT , and two hash functions H1: {0, 1}
∗ → G1

and H2 : {0, 1}∗ → {0, 1}ℓ. The TTP also generates its public/private key pair, as

used to certify users’ public keys, and a public key S = sP , where s is randomly

chosen from Zq. Every user Ui (i ≥ 1) runs the user initialisation sub-protocol to

generate a signature key pair (pki, ski), where ski ∈R Zq and pki = skiP , for the

aggregate signature scheme (KeyGen,Sign,Verify) proposed by Boneh et al. [49], and

gets pki certified by the TTP. Note that the signature scheme by Boneh et al. [49]

is existentially unforgeable under a chosen message attack.

Suppose a set of users Ui (1 ≤ i ≤ n) wish to establish a session key; the key

establishment sub-protocol is as follows. Note that the indices of users (and values

exchanged between users) are taken modulo n.

1. Ui selects si ∈R Zq and broadcasts Zi = siP .

2. After receiving every Zj (1 ≤ j ≤ n, j 6= i), Ui computes and broadcasts Xi,

where

Xi = ê(S, si(Zi+1 − Zi−1))

3. After receiving every Xj (1 ≤ j ≤ n, j 6= i), Ui computes and broadcasts the
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signature σi = skiH1(IDi||sidi||transi||Mi), where sidi = (UID,RSID),

RSID = Z1||Z2|| · · · ||Zn||X1||X1|| · · · ||Xn, transi = RSID, and

Mi = ê(S, nsiZi−1)

n−1
∏

ℓ=1

Xn−ℓ
i+ℓ−1

= ê(P,P )s
Pn

ℓ=1(sℓsℓ+1).

4. After receiving every σj (1 ≤ j ≤ n, j 6= i), Ui checks that:

ê(
n

∑

j=1,j 6=i

σj , P ) =
n

∏

j=1,j 6=i

ê(hj , pkj), where

hj = H1(IDj ||sidi||transi||Mi).

If this check succeeds, Ui computes the session key Ki = H2(sidi||Mi). Other-

wise, Ui aborts the protocol execution.

During the protocol execution, every participant Ui (1 ≤ i ≤ n) needs to compute 2

full-range multiplications2 and n + 4 pairings. U1 needs to compute one additional

multiplication.

7.3.2 Security Analysis

We first analyse a bilinear version of the Burmester-Desmedt protocol, which has a

similar structure to the Du-Wang-Ge-Wang protocol described in Section 5.2.2.1.

7.3.2.1 A Bilinear Version of the Burmester-Desmedt Protocol

The TTP runs the TTP initialisation sub-protocol to generate an additive group

G1 of prime order q, a multiplicative group GT of order q, a generator P of G1, a

bilinear map ê : G1 × G1 −→ GT , and two hash functions H1: {0, 1}
∗ → G1 and

H2 : {0, 1}∗ → {0, 1}ℓ. The TTP also generates a public key S = sP , where s is

randomly chosen from Zq.

2full-range multiplication means that the coefficient is randomly selected.
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Suppose a set of users Ui (1 ≤ i ≤ n) wish to establish a session key; the key

establishment sub-protocol is as follows. Note that the indices of users (and values

exchanged between users) are taken modulo n.

1. Ui selects si ∈R Zq and broadcasts Zi = siP .

2. After receiving every Zj (1 ≤ j ≤ n, j 6= i), Ui computes and broadcasts Xi,

where

Xi = ê(S, si(Zi+1 − Zi−1))

=
ê(S,P )sisi+1

ê(S,P )sisi−1
.

3. After receiving every Xj (1 ≤ j ≤ n, j 6= i), Ui computes the session key as

Ki = ê(S, nsiZi−1)

n−1
∏

ℓ=1

Xn−ℓ
i+ℓ−1

= ê(P,P )s
Pn

ℓ=1(sℓsℓ+1).

Ui sets the session identifier to be sidi = (UID,RSID) where

RSID = Z1||Z2|| · · · ||Zn||X1||X1|| · · · ||Xn.

We first recall the parallel version of the DBDH assumption as described in Chapter

2. On the input of (G1, GT , q, ê), an attacker can only distinguish between the

following 2n-tuples with a negligible advantage:

(sP, s1P, s2P, · · · , snP, ê(P,P )ss1s2 , ê(P,P )ss2s3, · · · , ê(P,P )ssns1)

and

(sP, s1P, s2P, · · · , snP, ê(P,P )r1 , ê(P,P )r2 , · · · , ê(P,P )rn),

where s, s1, s2, · · · , sn, r1, r2, · · · , rn ∈R Zq.

Lemma 7 The key establishment protocol given in Section 7.3.2.1 achieves the key

authentication property against passive attackers under the DBDH assumption.
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Proof. In a session, the transcript is

(sP, s1P, s2P, · · · , snP,
ê(P,P )ss1s2

ê(P,P )ssns1
,
ê(P,P )ss2s3

ê(P,P )ss1s2
, · · · ,

ê(P,P )ssns1

ê(P,P )ssn−1sn
).

From the parallel version of the DBDH assumption, if the transcript is replaced with

(sP, s1P, s2P, · · · , snP,
ê(P,P )s(x+r1)

ê(P,P )s(x+rn)
,
ê(P,P )s(x+r2)

ê(P,P )s(x+r1)
, · · · ,

ê(P,P )s(x+rn)

ê(P,P )s(x+rn−1)
),

where x, r1, r2, · · · , rn ∈R Zq, the attacker can only distinguish between these two

cases with a negligible advantage based on the DBDH asssumption. The session key

is equal to ê(P,P )s
Pn

ℓ=1(x+rℓ) in the second case, where x is uniformly distributed

given the transcript. As a result, in the second case, the session key is uniformly

distributed given the transcript, and an attacker can only distinguish the session key

from a random string with advantage 0. Therefore, it is straightforward to verify

that a passive attacker has only a negligible advantage in the attack game for key

authentication from the DBDH assumption. The lemma now follows. �

Backward secrecy is also achieved against passive attackers because no long-term

keys are involved. As in the case of Burmester-Desmedt protocol, if n is even then

the key authentication security of this protocol can be established under the BDH

assumption.

7.3.2.2 The Analysis

In the security model described in Chapter 6, we have the following result.

Theorem 8 The key establishment protocol given in Section 7.3.1 is AKC† secure

under the DBDH assumption in the random oracle model.

Proof. The protocol given in Section 7.3.1 achieves key randomness given that H2

is a random oracle. The protocol given in Section 7.3.1 achieves key control and

DPUKS resilience against passive attackers, because the session key is computed as

a function of Mi and the unique session identifier sidi. It is clear that the protocol

given in Section 7.3.1 is the protocol obtained by applying the compiler described
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in Section 7.2.2.1 to the protocol described in Section 7.3.2.1. Note that we avoid

hashing Mi in the computation of σi because the signature is based on a hash of

Mi, and security will not be affected from the proof of Theorem 5. The theorem

immediately follows from Theorem 5. �

7.4 Second extension to the Burmester-Desmedt Protocol

In this section we propose a modified Burmester-Desmedt protocol, which employs

only a password as the authentication secret, and establish its security under the

DDH and KE assumptions in the security model described in Chapter 6.

7.4.1 Description of the Protocol

Suppose a set of users Ui (1 ≤ i ≤ n) wish to establish a shared secret session

key. The user initialisation sub-protocol generates (G, q) where G is a multiplicative

group with large prime order q, and three hash functions H0, H1, and H2, where

H0 : {0, 1}∗ → G, H1 : {0, 1}∗ → {0, 1}ℓ, and H2 : {0, 1}∗ → {0, 1}ℓ. In addition, this

sub-protocol also establishes a shared password π ∈ PW among Ui (i ≥ 1), where

PW = {π(1), π(2), · · · , π(m)}.

The key establishment sub-protocol is as follows. Note that the indices of users (and

values exchanged between users) are taken modulo n.

1. Ui computes g = H0(π||UID||x), where x ≥ 0 is the smallest integer that makes

g a generator of G. Ui then chooses si ∈R Zq, and broadcasts Zi = gsi .

2. After receiving every Zj (1 ≤ j ≤ n, j 6= i), Ui checks that none of them equals

1. If the check succeeds, Ui sets Z = UID||Z1||Z2|| · · · ||Zn, and broadcasts

Ai,i−1 and Ai,i+1, where

Ai,i−1 = H1(i||i − 1||Z||gsi−1si ||g), and Ai,i+1 = H1(i||i + 1||Z||gsi+1si ||g).
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3. After receiving every Aj,j−1 and Aj,j+1 (1 ≤ j ≤ n, j 6= i), Ui verifies the

received values of Ai−1,i and Ai+1,i by recomputing them using si and the

stored values of Zi−1 and Zi+1. If all the checks succeed, Ui broadcasts Xi =

(Zi+1

Zi−1
)si . Otherwise, Ui aborts its protocol execution.

4. After receiving every Xj (1 ≤ j ≤ n, j 6= i), Ui sets sidi = (UID,RSID), and

computes the keying material Mi and key confirmation message σi, where

Mi = (Zi−1)
nsi · (Xi)

n−1 · (Xi+1)
n−2 · · ·Xi+n−2

= gs1s2+s2s3+s3s4+···+sns1,

RSID = Z1||Z2|| · · · ||Zn||X1||X2|| · · · ||Xn, and σi = H1(i||IDi||sidi||Mi||g).

Ui then broadcasts its key confirmation message σi.

5. After receiving every σj (1 ≤ j ≤ n, j 6= i), Ui checks whether the following

equation holds:

σj
?
= H1(j||IDj ||sidi||Mi||g).

If all the checks succeed, Ui computes its session key as Ki = H2(sidi||Mi||g).

Otherwise, Ui terminates the protocol execution as a failure.

7.4.2 Security Analysis

Lemma 9 For the password-based key establishment protocol described in Section

7.4.1, an attacker has only a negligible advantage in the attack game for password

guessing resilience if the resilience parameter ℓ1 is equal to 2 (as defined in Section

6.2.2.8), under the DDH and KE assumptions in the random oracle model.

Proof. According to the description in Section 6.2.2.8, an attacker can always simply

make a guess (without any other computation) by outputting the most probable

password π(1), and hence if the attacker follows such a strategy then it will succeed

with probability p1 but with advantage 0 under our definition. The only possible

way of achieving a greater advantage is by testing a possible password to reduce the

domain of possible passwords. According to the protocol specification, the testing

can be done either through examining the distribution of Z∗ and X∗, or through

re-computing A∗,∗, σ∗, and K∗.
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We first show that, in any session, from Zi and Xi (1 ≤ i ≤ n) an attacker can only

succeed in testing a possible password with a negligible advantage.

Claim 1 In any session, if Zi (1 ≤ i ≤ n) are faithfully delivered, from Z∗ and X∗

an attacker can distinguish between π and π′ (π′ 6= π) with a negligible advantage

under the DDH assumption.

Proof. Given Zi = gsi and Zi+1 = gsi+1, and gsisi+1, a possible password π′ could

be tested by comparing gsisi+1 with gsisi+1 logg′ g, where g′ = H0(π
′||UID||x′) and

x′ ≥ 0 is the smallest integer that makes g′ a generator of G. If these two values

are equal then π′ = π holds with overwhelming probability; otherwise π 6= π′. Since

H0 is modelled as a random oracle, the testing is at least as hard as distinguishing

between (ga, gb, gab) and (ga, gb, gabc) where a ∈R Zq, b ∈R Zq, and c is a constant

integer but randomly chosen from Zq. For any polynomial-time algorithm B, let αi,

for 1 ≤ i ≤ 3, be the probability that B outputs 1 when it takes input (ga, gb, gab),

(ga, gb, gabc), and (ga, gb, gz), where a ∈R Zq, b ∈R Zq, b ∈R Zq, and c is a constant

integer but randomly chosen from Zq. From the DDH assumption, |α1 − α3| is

negligible. From B, a new DDH distinguisher D can be constructed as follows:

Given an input (ga, gb, gd) where d = ab or d ∈R Zq, run B with input (ga, gb, gcd)

and output the response from B. It is clear that D has the advantage |α2 − α3|,

which is negligible from the DDH assumption. Hence, from the triangle inequality

theorem, |α1 − α2| is also negligible. Therefore, from Zi = gsi and Zi+1 = gsi+1 ,

and gsisi+1, an attacker can only succeed in testing a possible password π′ with a

negligible advantage under the DDH assumption.

Because the parallel version of DDH is equivalent to the DDH (described in Section

2.1.3), it is straightforward to verify the attacker can only distinguish between the

following tuples with a negligible advantage under the DDH assumption, where

(gs1 , gs2 , · · · , gsn , gs1s2, gs2s3, · · · , gsns1),

(gs1 , gs2 , · · · , gsn , gs1s2c, gs2s3c, · · · , gsns1c),

and s, s1, s2, · · · , sn ∈R Zq and c is a constant integer but randomly chosen from

Zq. In our protocol, for 1 ≤ i ≤ n, Xi = gsi+1si

gsi−1si . Therefore, if the attacker can

succeed in testing a possible password with a non-negligible advantage, then it is
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straightforward to construct an algorithm to distinguish the above two tuples. From

the DDH assumption, the claim now follows. �

It is straightforward to verify that, if Z∗ are faithfully delivered, even with Z∗ and

X∗ from more than one session the attacker can only distinguish between π and π′

with a negligible advantage.

We next focus on the case where the test is through re-computing A∗,∗, σ∗, and K∗.

For an attack game for password guessing resilience as defined in section 6.2.2.8, we

study the relationships between password test attempts and the attacker’s advantage

in the various possible cases.

• The first case is where the attacker faithfully delivers the messages for all

oracles, i.e., the attacker is passive. Because Hk (1 ≤ k ≤ 3) are modelled

as random oracles, in order to test a possible password, the attacker needs

to compute either gsj−1sj or Mj for some j ≥ 1 in some session, and then

to re-compute some A∗,∗, σ∗, or K∗. Note that, if the attacker can compute

gsj−1sj or Mj , then it can compute the corresponding session key (and we can

construct a passive attacker which wins the attack game for key authentication

of the Burmester-Desmedt protocol). In this case, from the DDH assumption,

it follows that the attacker has only a negligible probability of successfully

testing a possible password.

• The second case is where the attacker faithfully delivers the messages for all

oracles in the first step of all protocol executions. We consider the following

two possibilities.

1. Suppose that an oracle Π
t,sidj

j (j ≥ 1) computes the value Mj in the fourth

step of its protocol execution, where Mj is computed as a function of

Zj−1, sj,Xj and some other public values (namely Xj+1,Xj+2, · · · ,Xj−2).

The attacker can compute Mj with only a negligible probability from the

DDH assumption; otherwise, it is straightforward to construct a passive

attacker (with non-negligible advantage) for key authentication of the

Burmester-Desmedt protocol. Hence, the attacker has only a negligible

probability of successfully testing a possible password from the messages
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σ∗ and K∗.

2. For any oracle Π
t,sidj

j (j ≥ 1), if the attacker can compute gsj−1sj in a

session then it can also compute Mj . Hence, from the above analysis, the

attacker has only a negligible probability of successfully testing a possible

password from the messages A∗,∗.

• The third case is where the attacker can manipute all protocol messages, in-

cluding those sent in the first step of protocol executions. We consider the

following two possibilities.

1. We first consider a simple case. Suppose that, in some session, A replaces

Zj+1 sent to Π
t,sidj

j with Z ′
j+1, where Z ′

j+1 = (g′)s, g′ is computed based

on a guessed password π′, and s is chosen byA. Without loss of generality,

suppose that A postpones forging Aj+1,j until it obtains Aj,j+1. With

Aj,j+1, A can test the guessed password by checking whether the following

equation holds:

Aj,j+1
?
= H1(j||j + 1||Z ′||(Zj)

s||g′), where

Z ′ = UID||Z1||Z2|| · · · ||Zj ||Z
′
j+1||Zj+2|| · · · ||Zn.

Claim 2 If π′ 6= π, A can only succeed in testing a different password π′′

with a negligible probability, and Π
t,sidj

j accepts with a negligible probability

based on the DDH assumption.

Proof. If A wishes to test another possible password π′′, then it needs to

compute

(Z ′
j+1)

logg′′ Zj = (g′)s logg′′ g
′ logg′ Zj

= ((g′)logg′′ g
′
(g′)logg′ Zj)s

= ((g′)(logg′ g
′′)−1

(g′)logg′ Zj )s,

where g′′ is computed as a function of π′′. Since we asssumed that H0

behaves as a random oracle, g′′ is a random element from G, and Zj is

also a random element since it is generated by the challenger. Hence,

if the attacker can compute (Z ′
j+1)

logg′′ Zj from g′′ and Zj , then it is

straightforward to construct an algorithm to solve the DDH problem

(since ga = g(logg gb)−1
glogg gab

for any a, b). As a result, A can only

succeed in this test with a negligible probability.
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If the attacker’s guess is wrong (π 6= π′), the attacker needs to forge a

key authentication message σj+1 for Π
t,sidj

j to make this oracle accept.

To do this, the attacker needs to compute the value (Z ′
j+1)

logg Zj , where

g is computed as a function of π. From the above analysis, A can only

compute a forgery with a negligible probability, and, as a result, Π
t,sidj

j

accepts with a negligible probability. �

2. We then consider a general case, where A replaces Zj+1 with some Z ′
j+1 ∈

G, where Z ′
j+1 is not generated by any oracle and may be generated by the

attacker by any method. Given Aj,j+1, if A can test a guessed password

π′ with probability δ1, then it implies that A can compute (Z ′
j+1)

logg′ Zj

with probability δ1, where g′ is computed as a function of π′. From

the KE assumption (as described in Section 2.1.3), if the attacker can

compute (Z ′
j+1)

logg′ Zj then it knows logg′ Z
′
j+1. From Claim 2, if δ1 is

non-negligible then the attacker can test another possible password with

a negligible probability. From the analysis in the simple case, and we can

conclude that A can only succeed in testing at most one password π′, and

if π′ 6= π then Π
t,sidj

j accepts with a negligible probability based on the

DDH and KE assumptions.

For an oracle Π
t,sidj

j , besides modifying Zj+1, the attacker can also modify the

value of Zi−1 sent to this oracle. Using the same method as described above,

it is straightforward to verify that the attacker can test only one password

by modifying this message, and Π
t,sidj

j will abort if the guessed password is

wrong. Therefore, by intervening in the inputs to Π
t,sidj

j , the attacker can test

at most two possible passwords through re-computing A∗,∗, σ∗, and K∗.

In this case if the attacker has not guessed the correct password, then all

X∗ received by the attacker are generated based on faithfully delivered Z∗.

Therefore, from Claim 1, it is straightforward to verify that the attacker can

test a possible password through examining the distribution of Z∗ and X∗.

The above cases cover all the possible means by which the attacker might try to test

a possible password. We have shown that, by modifying the input to one oracle,

the attacker can only test two guessed passwords, and the oracle will abort with an

overwhelming probability if either of these guessed passwords is wrong. If there are
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n1 aborted oracles at the end of the attack game, the adversary can test at most

2n1 possible passwords. As a result, at the end of the game, the attacker can guess

the password with the probability δ =
∑2n1+1

j=1 pj + ǫ where ǫ is negligible from the

DDH and KE assumptions, and the attacker’s advantage F(2n1, δ) is negligible. The

lemma now follows. �

Theorem 10 The password-based key establishment protocol given in Section 7.4.1

is 2-PAKC† secure under the DDH assumption in the random oracle model.

Proof. From the definitions, it is straightforward to verify that key randomness

and key control are guaranteed. Password guessing resilience was established in

Lemma 9. We next prove that an active attacker has only a negligible advantage

in the attack games for key confirmation (password-based) and key authentication

(password-based) if the resilience parameter ℓ1 is equal to 2.

Consider an attack game for key confirmation (password-based), as described in

Section 6.2.2.11, for the proposed protocol. It is clear that an attacker A has identical

privileges to those given to the attacker in the attack game for password guessing

resilience as described in Section 6.2.2.8. Therefore, from Lemma 9, A can guess the

password with probability
∑2n1+1

j=1 pj if there are n1 aborted oracles. If Π
t,sidj

j is the

tested oracle, then let E1 be the event that, for some x (1 ≤ x ≤ n, x 6= j), there is

no oracle Πy,sidx
x which satisfies sidx = sidj and possesses the same session key as

that of Π
t,sidj

j , and the attacker has forged the message σx. Since H1 is modelled as a

random oracle, it is clear that the forgery will succeed with probability
∑2n1+1

j=1 pj +ǫ

and Pr[E1] =
∑2n1+1

j=1 pj + ǫ, where ǫ is negligible. As a result, key confirmation

(password-based) is guaranteed under the DDH and KE assumptions in the random

oracle model.

Consider the attack game for key authentication (password-based) described in Sec-

tion 6.2.2.9. It is clear that an attacker A1 has less privileges than the attacker

in the attack game for key confirmation (password-based) given in Section 6.2.2.11.

Therefore, from the above analysis, A can guess the password with probability at

most
∑2n1+1

j=1 pj in the first phase, given that there are n1 aborted oracles at the
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end of the game. If Π
t,sidj

j is the tested oracle, then let E2 be the event that Π
t,sidj

j

has n − 1 partner oracles. Then the maximum of {0, 1 − Pr[E2] −
∑2n1+1

j=1 pj} is

negligible because the protocol achieves key confirmation (password-based). If E2

occurs, |Pr[b′ = b] − 1
2 | is negligible (otherwise, it is straightforward to construct

an algorithm to solve the DDH problem). If E2 does not occur, then we assume

Pr[b′ = b] = 1 (the best the attacker can achieve). The probability b′ = b can be

computed as follows.

Pr[b′ = b] ≤ Pr[E2](
1

2
+ ǫ1) + 1− Pr[E2]

= (1−

2n1+1
∑

j=1

pj − ǫ2)(
1

2
+ ǫ1 − 1) + 1

≤
1 +

∑2n1+1
j=1 pj

2
+ ǫ1 + ǫ2,

where ǫ1 and ǫ2 are negligible. As a result, it is clear that max{0,Pr[b′ = b] −
1+

P2n1+1
j=1 pj

2 } is negligible, and key authentication (password-based) is guaranteed

under the DDH and KE assumptions in the random oracle model. �

7.5 Third extension to the Burmester-Desmedt Protocol

In this section we modify the password-based protocol described in Section 7.4.1

using CAPTCHA techniques, and establish its robustness against password guessing

attacks. We make the following heuristic assumption about the security of the

CAPCHA tests in use. Suppose a new CAPTCHA test pz is sent to an entity,

where pz has not been sent to this entity before. Then, if the entity gives a valid

response, then we can assume with probability close to 1 that the entity is a human

being.

7.5.1 Description of the Protocol

The TTP runs the TTP initialisation sub-protocol to generate a verify/sign signature

key pair (pkttp, skttp) for a signature scheme (KeyGen,Sign,Verify), and a key pair

(pk′
ttp, sk

′
ttp) for a public-key encryption key scheme (Gen,Enc,Dec). In addition,
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this sub-protocol also generates the parameters for the generation and verification

of CAPTCHA tests [12]. The user initialisation sub-protocol is identical to that

described in Section 7.4.1.

Suppose a set of users Ui (1 ≤ i ≤ n) wish to establish a shared secret session key;

the key establishment sub-protocol is as follows. Note that the indices of users (and

values exchanged between users) are taken modulo n.

1. Ui chooses ri ∈R {0, 1}
ℓ and sends it to the TTP.

2. The TTP generates a new CAPTCHA test pz and sends it to U1.

3. U1 solves pz and sends the solution, sz say, back to the TTP.

4. The TTP checks whether sz is the correct solution for pz. If the check

succeeds, it chooses S ∈R {0, 1}
ℓ, and then broadcasts (S,R, σttp,1), where

R = r1||r2|| · · · ||rn and σttp,1 = Sign(UID||R||S, skttp).

5. After receiving (S,R, σttp,1) from the TTP, Ui first verifies the signature. If the

verification succeeds, Ui continues; otherwise, Ui aborts the protocol execution.

Ui chooses si ∈R Zq, and broadcasts Zi = gsi , where g = H0(π||UID||x) and

x ≥ 0 is the smallest integer that makes g a generator of G..

6. After receiving every Zj (1 ≤ j ≤ n, j 6= i), Ui checks that none of them equals

1. If all the checks succeed, Ui chooses r′i, r
′′
i ∈R {0, 1}

ℓ, and sends

Ei = Enc(IDi||Ai,i−1||Ai,i+1||Ai−1,i||Ai+1,i||r
′
i||r

′′
i ||S, pk′

ttp)

to the TTP, where Ai,i−1, Ai,i+1, Ai−1,i, and Ai,i+1 are defined in the same

way as in the extended protocol specified in Section 7.4.1.

7. After receiving Ei, for every 1 ≤ i ≤ n, the TTP first decrypts them, and

checks that all values of S are identical and exist in its memory, and then checks

whether Ai,i+1 (provided by Ui and Ui+1) and Ai,i−1 (provided by Ui−1 and

Ui) are consistent, for all 1 ≤ i ≤ n. If these checks succeed, TTP broadcasts a

message (R′, σttp,2), where Z = UID||Z1||Z2|| · · · ||Zn, R′ = r′1||r
′
2|| · · · ||r

′
n, and

σttp,2 = Sign(Z||S||R′, skttp). Otherwise TTP broadcasts a failure message.

Simultaneously, the TTP erases S and the relevant information.

161



7.5 Third extension to the Burmester-Desmedt Protocol

8. If it receives a failure message, Ui aborts the protocol execution. Otherwise, Ui

verifies the signature σttp,2 and checks that R′ contains r′i. If the verification

succeeds, Ui broadcasts Xi = (Zi+1

Zi−1
)si .

9. After receiving every Xj (1 ≤ j ≤ n, j 6= i), Ui sets sidi = (UID,RSID), and

computes the keying material Mi and key confirmation message σi, where

Mi = (Zi−1)
nsi · (Xi)

n−1 · (Xi+1)
n−2 · · ·Xi+n−2

= gs1s2+s2s3+s3s4+···+sns1,

RSID = S||Z1||Z2|| · · · ||Zn||X1||X2|| · · · ||Xn, and σi = H1(i||IDi||sidi||Mi||g).

Ui then broadcasts its key confirmation message σi.

10. After receiving every σj (1 ≤ j ≤ n, j 6= i), Ui checks whether the following

equation holds:

σj
?
= H1(j||IDj ||sidi||Mi||g).

If all the checks succeed, Ui computes its session key as Ki = H2(sidi||Mi||g).

Otherwise, Ui terminates the protocol execution as a failure.

7.5.2 Security Analysis

Lemma 11 For the password-based key establishment protocol described in Section

7.5.1, an attacker has only a negligible advantage in the attack game for password

guessing resilience, if the resilience parameter ℓ1 is equal to 1 (as defined in Section

6.2.2.8), under the DDH assumption in the random oracle model.

Proof. As in the description in Section 6.2.2.8, an attacker can always simply make

a guess (without any other computation) by outputting the most probable password

π(1), and hence will succeed in an attack with probability p1 but with advantage 0

under our definition. The only possible way of achieving a greater advantage is by

testing a possible password to reduce the domain of possible passwords. According

to the protocol specification, the testing can be done either through examining the

distribution of Z∗ and X∗, or through re-computing A∗,∗, σ∗, and K∗.
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We first show that, in any session, from Zi and Xi (1 ≤ i ≤ n) an attacker can only

succeed in testing a possible password with a negligible advantage. The security

proof of the following claim is identical to that of Claim 1 in the proof of Lemma 9.

Claim 3 In any session, if Zi (1 ≤ i ≤ n) are faithfully delivered, from Z∗ and

X∗ a attacker can distinguish between π and π′ (π′ 6= π) with a negligible advantage

under the DDH assumption.

It is straightforward to verify that, if Z∗ are faithfully delivered, even with Z∗ and

X∗ from more than one session the attacker can only distinguish between π and π′

with a negligible advantage.

We next focus on the case where the test is through re-computing A∗,∗, σ∗, and K∗.

For an attack game for password guessing resilience as defined in Section 6.2.2.8, we

study the relationships between password test attempts and the attacker’s advantage

in the following cases.

• The first case is where the attacker faithfully delivers the messages for all

oracles. As in the first case of the proof of Lemma 9, it is straightforward to

verify that the attacker has only a negligible probability of successfully testing

a possible password from the DDH assumption. It is also clear that, even

if it is given the decryption key sk′
ttp, the attacker can only succeed with a

negligible probability.

• The second case is where the attacker faithfully delivers the messages for all

oracles in step 5 of the protocol executions. For the same reason as in the

second case of the proof of Lemma 9, the attacker has only a negligible prob-

ability of successfully testing a possible password from the DDH assumption.

As in the first case, even if it is given the decryption key sk′
ttp, the attacker

can only succeed with a negligible probability.

• The third case is where the attacker can manipute all protocol messages, in-

cluding those sent in step 5 of all the protocol executions. Suppose that, in

step 5 of a protocol execution, A replaces Zj−1 sent to Π
t,sidj

j with Z ′
j−1. We

consider the following possibilities.
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– After receiving Ej from Π
t,sidj

j , the attacker directly re-computes Aj,j−1

or Aj−1,j and compares them with those in Ej . Because the public-key

encryption scheme is IND-CCA2 secure, the attacker has only a negligible

probability of successfully testing a possible password.

– The attacker forges E′
j−1 and submits Ej and E′

j−1 to the TTP as a test.

If the guess is wrong (which means that the values of Aj,j−1 and Aj−1,j

are different in Ej and E′
j−1), then it is straightforward to verify that

Π
t,sidj

j will abort in step 8 with an overwhelming probability, since S is

randomly chosen and the signature scheme is existentially unforgeable

(the attacker can only forge a signature with negligible probability).

If the guessed password is wrong, the attacker may try to test another

possible password as in the third case of the proof of Lemma 9. Since S

will be discarded after verifications of Ei (1 ≤ i ≤ n), the attacker needs

to forge E∗
j , where S′ is another identifier generated by the TTP,

E∗
j = Enc(IDj ||Info||S′, pk′

ttp),

and Info is some information determined by Aj,j+1 and Aj+1,j, where

the attacker knows how to compute Info from Aj,j+1 and Aj+1,j
3. Then

the attacker submits E∗
j−1 and E∗

j for another test, where E∗
j−1 is com-

puted as a function of the new testing password. It is clear that the

attacker can only succeed the forgery of E∗
j with a negligible probability

because the public-key encryption scheme is IND-CCA2 secure (so that

the probability of forging E∗
j is negligible).

– There is another possibility that the attacker A may simultaneously re-

place Zj−1 and Zj+1 sent to Π
t,sidj

j with Z ′
j−1 and Z ′

j+1 which are com-

puted based on two possible passwords. From the above analysis, it is

straightforward to verify that the TTP will return a failure with an over-

whelming probability so that Π
t,sidj

j will abort. As a result, the attacker

obtains no information regarding which guess is wrong. Note that, in

the password-based protocol described in Section 7.4.1, the attacker can

simultaneously test two possible passwords by modifying Zj−1 and Zj+1.

In summary we have shown that, through re-computing A∗,∗, σ∗, and K∗,

the attacker can test only one password by modifying the input to an oracle

3The attacker can only test its guess if it knows the the computation of Info based on Aj,j+1

and Aj+1,j .
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Π
t,sidj

j , and that this oracle will abort with an overwhelming probability if the

guessed password is wrong. If an oracle Π
t,sidj

j (j ≥ 1) does not abort in step

8, then either the attacker has successfully guessed the password or the values

Zj−1 and Zj+1 received by this oracle are faithfully generated without being

modified by the attacker.

In this case if the attacker has not guessed the correct password, then all

X∗ received by the attacker are generated based on faithfully delivered Z∗.

Therefore, from Claim 3, it is straightforward to verify that the attacker can

test a possible passowrd through examining the distribution of Z∗ and X∗.

The above cases cover all the possible means by which the attacker might try to test

a possible password. We have shown that, by modifying the input to one oracle,

the attacker can only test one guessed password, and the oracle will abort with an

overwhelming probability if the guessed password is wrong. If there are n1 aborted

oracles at the end of the attack game, the adversary can test at most n1 possible

passwords. As a result, at the end of the game, the attacker can guess the password

with probability at most δ =
∑n1+1

j=1 pj + ǫ, where ǫ is negligible, and the attacker’s

advantage F(n1, δ) is negligible. The lemma now follows. �

Theorem 12 The password-based key establishment protocol given in Section 7.5.1

is 1-PAKC† secure under the DDH assumption in the random oracle model.

Proof. From the definitions, it is straightforward to verify that key randomness and

key control are guaranteed. Password guessing resilience was established in Lemma

11. Using the same method as employed in the proof of Theorem 10, it is straight-

forward to verify that key confirmation (password-based) and key authentication

(password-based) are guaranteed for the case where the resilience parameter ℓ1 is

equal to 1. The theorem then follows. �

Compared with the protocol given in Section 7.4.1, the protocol described in Section

7.5.1 has two different features. One is that it is necessary to solve a puzzle at the
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beginning of every session, and the other is that the TTP verifies A∗,∗ for all oracles

in every session.

Assuming the hardness of the CAPTCHA, the possibilities for automated online

password guessing attacks are now significantly reduced, since we assume that only

a human being is able to compute the correct response to the CAPTCHA. In other

words, we are assured that the initiator of the protocol is actually a human being,

and not just a computer program. Moreover, assuming the security of the under-

lying signature scheme, we can verify that U1 has successfully solved a CAPTCHA

if, and only if, we receive a valid signature. Therefore, an automated system is

prevented from mounting an automated online password guessing attack if the un-

derlying CAPTCHA used is sufficiently strong. Another alternative (without using

a CAPTCHA) is to require the initiator to solve a computational puzzle [140] prior

to a protocol execution with each protocol participant. However, such an approach

is computationally expensive, and it is difficult to adjust the hardness of the puzzles

if the participants have very different computing power.

In any session following a successful puzzle solution, the federated verification of

A∗,∗ ensures that A can only test at most one password. Assuming the security of

the underlying public-key encryption scheme, A is unable to recover the encrypted

messages or try its guess with the encrypted messages. In order to test a candi-

date password, A must submit forged messages to S for verification. However, if

the attacker tests two or more passwords then the verification step by S will fail,

and this failure will provide no information about which tested password is wrong.

The participants can indirectly verify the authentication messages by verifying the

signature from S, because of the presence of the value r′i in the signature. However,

they cannot identify which authentication message has gone wrong in the event that

the verification fails.

7.6 Conclusions

In this chapter we proposed two new compilers which transform key establishment

protocols secure against passive attackers into key establishment protocols secure

against active attackers. We further proposed three extensions of the Burmester-
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Desmedt protocol and proved their security in the security model defined in Chapter

6.
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Security Definitions for TRE-PC Schemes
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In this chapter we investigate the Hwang-Yum-Lee model for Timed-Release Encryp-

tion schemes with Pre-open Capability (TRE-PC schemes), and show that this model

possesses a number of defects, and fails to model certain potentially practical security

vulnerabilities faced by TRE-PC schemes. We then propose a new security model for

TRE-PC schemes which models security against four types of attacker, and avoids

the defects of the Hwang-Yum-Lee model. Finally, we establish the relationships

between the security notions defined in the new model.
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8.1 Motivation

The concept of Timed-Release Encryption (TRE), i.e. sending a message which can

only be decrypted after a certain release time, is due to May [186]. Subsequently,

Rivest, Shamir, and Wagner elaborated the concept and gave a number of possible

applications, including electronic auctions, key escrow, chess moves, release of doc-

uments over time, payment schedules, press releases, etc. [212]. Informally, a TRE

scheme is a public-key encryption scheme which achieves the following two goals:

1. An outside attacker cannot decrypt the ciphertext. An outside attacker is any

entity other than the sender and intended receiver.

2. A legitimate receiver can only decrypt the ciphertext after the release time.

It is worth mentioning that other timed primitives have been developed, for exam-

ple, “price via processing” scheme of Dwork and Naor [100], timed key escrow, as

proposed by Bellare and Goldwasser [24, 29], and timed commitments, due to Boneh

and Naor [50].

In the literature, two approaches have been used to construct TRE schemes. The

first approach is based on the time-lock puzzle technique, originally proposed by

Merkle [191] to protect communications against passive attackers. This technique

was then extended in [26, 71, 212] to construct TRE schemes. The idea of this

approach is that a secret is transformed in such a way that any computing device

(serial or parallel) will take at least a certain amount of time to solve the underlying

computational problem (puzzle) in order to recover the secret. The release time is

equal to the time at which the puzzle is released plus the minimum amount of time

that it would take to solve the puzzle. However, this means that not all users are

capable of decrypting the ciphertext at the release time, as they may have different

computational power. The other approach is to use a trusted time server, which,

at an appointed time, will assist in releasing a secret to help decrypt the ciphertext

(see, for example [70, 212]). Generally, time-server-based schemes require interaction

between the server and the users, and measures need to be put in place to prevent

possible malicious behaviour by the time server.
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In a standard Timed-Release Encryption (TRE) scheme, the receiver can only de-

crypt the ciphertext at (or after) the release time. If the sender changes its mind

after the ciphertext is sent, and wishes the receiver to decrypt the message imme-

diately, then the only thing that the sender can do is to re-send the plaintext to

the receiver in such a way that the receiver can immediately decrypt the message.

However, in some circumstances, we may need a special kind of TRE scheme, in

which a mechanism enables the receiver to decrypt the ciphertext before the release

time without requiring the sender to re-send the plaintext. Recently, Hwang, Yum,

and Lee [124] extended the concept of TRE scheme and proposed a security model

(referred to as the Hwang-Yum-Lee model) for TRE schemes with Pre-Open Capa-

bility (TRE-PC schemes). Informally, a TRE-PC scheme is a public-key encryption

scheme which achieves the following goals:

1. At any time, an outside attacker cannot decrypt the ciphertext.

2. At (or after) the release time, when the plaintext is intended to be released,

the receiver can decrypt the ciphertext. However, before the release time, the

receiver cannot decrypt the ciphertext.

3. Before the release time, the sender can enable the receiver to decrypt the

ciphertext by publishing a pre-open key.

We show that the Hwang-Yum-Lee model possesses a number of defects, and fails

to model certain potentially practical security vulnerabilities faced by TRE-PC

schemes.

The rest of this chapter is organised as follows. In Section 8.2 we review the Hwang-

Yum-Lee model. In Section 8.3, we propose a new security model for TRE-PC

schemes which models security against four types of attacker and avoids the defects of

the Hwang-Yum-Lee model. In Section 8.4, we establish the complete relationships

between the security notions defined in the new model. In the final section we

conclude this chapter.
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8.2 Review of the Hwang-Yum-Lee model and schemes

8.2.1 Description of the Hwang-Yum-Lee model

In the Hwang-Yum-Lee model, two types of entities are involved in a TRE-PC

scheme: a trusted time server and users. The trusted time server periodically pub-

lishes timestamps, and every user may act as either a sender or a receiver. The

following two types of attacker are also considered:

• An outside attacker without the receiver’s private key, which models either

a dishonest time server, or an eavesdropper who tries to decrypt the legal

receiver’s ciphertext.

• An inside attacker with the receiver’s private key, which models a legal receiver

who tries to decrypt the ciphertext before the release time without the pre-

open key.

In the Hwang-Yum-Lee model, a TRE-PC scheme consists of the following six

polynomial-time algorithms:

• Setup: The setup algorithm takes a security parameter ℓ as input, and returns

the master key mk and the system parameters param, where mk is kept secret

by the time server and param is published.

• ExtTS: Run by the trusted time server, this timestamp extraction algorithm

takes the system parameters param, the master key mk, and the release time

t as input, and returns the timestamp TSt. The time server is required to

publish TSt at time t.

• GenPK: Run by a user, this key generation algorithm takes ℓ as input, and

the system parameters param as input, and returns a public/private key pair

(pkr, skr).

• Enc: Run by a sender, this encryption algorithm takes a message m, a release

time t, and a randomly-chosen pre-open secret value v, and returns a ciphertext

C.
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• GenRK: Run by a sender, this pre-open key generation algorithm takes the pre-

open secret value v and the release time t as input, and returns the pre-open

key Vt.

• Dec: Run by a receiver, this decryption algorithm runs in two modes. Before

the release time, on input of the pre-open key Vt, the ciphertext C, and the

receiver’s private key skr, this algorithm returns either the plaintext or an error

message. Otherwise, on the input of the timestamp TSt, the ciphertext C, and

the receiver’s private key skr, this algorithm returns either the plaintext or an

error message.

In the Hwang-Yum-Lee model, three semantic security properties are modelled, al-

though we show later that certain other security properties (see Section 3) also need

to be considered. The modelled semantic security properties are: security under a

chosen ciphertext attack against outside attackers (IND-TR-CCAOS security), se-

curity under a chosen plaintext attack against outside attackers (IND-TR-CPAOS

security), and security under a chosen ciphertext attack against inside attackers

(IND-TR-CCAIS security).

Definition 34 Suppose A is a polynomial-time outside attacker; then a TRE-PC

scheme E is IND-TR-CCAOS secure if A only has a negligible advantage in the

following game.

1. Game setup: The challenger takes a security parameter ℓ as input, and runs

Setup to generate the master key mk and the system parameters param. The

challenger also runs GenPK to generate a public/private key pair (pkr, skr).

2. Phase 1: The attacker A executes with input (pkr, param), and can make the

following queries.

• A makes timestamp extraction queries for any time t. On receiving a

query, the challenger runs ExtTS and returns the output.

• Amakes decryption queries on (t, C). On receiving a query, the challenger

runs Dec and returns the output.
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3. Challenge: A selects two equal length messages m0, m1 and a release time t∗.

The challenger picks a random bit b, encrypts mb for release at time t∗, and

returns the ciphertext C∗.

4. Phase 2: A can continue to make extraction and decryption queries as in Phase

1. However, A is not allowed to make a decryption query on (t∗, C∗).

5. Guess: A outputs a guess bit b′.

In this game the attacker wins the game if b = b′, and its advantage is defined to be

|Pr[b = b′]− 1
2 |.

Definition 35 A TRE-PC scheme E is said to be IND-TR-CPAOS secure if it is

IND-TR-CCAOS secure against attackers that make no decryption queries.

In [125] the attack game for IND-TR-CCAIS security is informally defined; however,

we can reconstruct a formal definition as follows.

Definition 36 Suppose A is a polynomial-time inside attacker; then a TRE-PC

scheme E is IND-TR-CCAIS secure if A only has a negligible advantage in the

following game.

1. Game setup: The challenger takes a security parameter ℓ as input, and runs

Setup to generate the master key mk and the system parameters param. The

challenger runs GenPK to generate a public/private key pair (pkr, skr).

2. Phase 1: The attacker A executes with input (pkr, skr, param), and can make

timestamp extraction queries for any time t. On receiving a query, the chal-

lenger runs ExtTS and returns the output.

3. Challenge: A selects two equal length messages m0 and m1, and a release time

t∗ which has not been queried to the ExtTS oracle. The challenger picks a

random bit b, encrypts mb for release at time t∗, and returns the ciphertext

C∗.
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4. Phase 2: A continues to make the same types of queries as in Phase 1. However,

A is not allowed to make an ExtTS query for the time t∗.

5. Guess: A terminates by outputting a guess bit b′.

In this game the attacker wins the game if b = b′, and its advantage is defined to be

|Pr[b = b′]− 1
2 |.

8.2.2 Remarks on the Hwang-Yum-Lee model

We have the following remarks regarding the Hwang-Yum-Lee model.

1. In the Hwang-Yum-Lee model, the decryption process is described by a single

algorithm, which, however, works in two different modes depending on the

input. It would be more appropriate to formalise the decryption process as

two independent algorithms.

2. In a security model for TRE-PC schemes, it should be assumed that an outside

attacker will have access to the pre-open key for the challenge ciphertext. This

models the real-world situation where the outside attacker observes the release

key as it is being sent to the receiver, after the sender chooses to allow the

receiver to pre-open the ciphertext. However, in the Hwang-Yum-Lee model,

it is not explicitly specified that the attacker has access to the pre-open key.

3. In the Hwang-Yum-Lee model, GenRK is formalised but never used in the

security model. One possible way of eliminating this defect is to allow the

attacker to access the GenRK oracle (as a result the above defect can also be

eliminated). Alternatively, we can incorporate the functionality of GenRK into

Enc, by requiring the latter to output both the ciphertext and the pre-open

key (as in the new model given in Section 8.3).

4. In the Hwang-Yum-Lee model, the Enc algorithm does not take the receiver’s

public key as input; however, it is clear that the receiver’s public key should

be part of the input. This is probably just a typographical error.
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5. In the attack game for IND-TR-CCAIS security, the attacker A is allowed to

make ExtTS queries for any release time t except t∗. However, in reality a

receiver only needs to mount this attack before the release time t∗, since it will

be able to decrypt the ciphertext with the timestamp TSt∗ at (and after) t∗.

Therefore, the attacker A should only be allowed to make ExtTS queries for

any time t earlier than the release time t∗.

6. It is claimed that the outside attacker models either a dishonest time server or

an eavesdropper which tries to decrypt the legal receiver’s ciphertext. However,

a malicious time server has not been considered in the attack game which

is used to evaluate IND-TR-CCAOS security, because the attacker has no

knowledge of the master key mk. As a result, a TRE-PC scheme which is

proved IND-TR-CCAOS secure, might be insecure against a malicious attacker

which knows the time server’s secret key.

7. One of the objectives of a TRE-PC scheme is to allow the sender to enable the

receiver to decrypt a ciphertext before its release time. In some circumstances,

the sender may wish to make the receiver decrypt a message different from that

which was originally sent, by sending a false pre-open key to the receiver. An

example attack is shown in Section 8.2.3.2. To make the TRE-PC scheme

work properly, the possibility of malicious sender should also be considered in

the security model. In the new security model (described in Section 8.3), we

define a TRE-PC scheme to be binding if it is secure against such a malicious

sender attack.

8.2.3 Analysis of the Hwang-Yum-Lee basic scheme

8.2.3.1 Description of the scheme

Hwang, Yum, and Lee [125] proposed the following TRE-PC scheme (the Hwang-

Yum-Lee basic scheme) which is claimed to be IND-TR-CPAOS and IND-TR-

CCAIS secure. The scheme works as follows.

• Setup: Given a security parameter ℓas input, the following parameters are

generated:
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– an additive group G1 of prime order q, a generator P of G1, and a mul-

tiplicative group G2 of the same order as G1,

– a polynomial-time computable bilinear map ê : G1 ×G1 → G2,

– two cryptographic hash functions H1 : {0, 1}∗ → G1, and H2 : G2 →

{0, 1}n for some n,

– a master key s ∈R Zq for the time server, and the public key S = sP .

The message space and the ciphertext space are {0, 1}n and G1×G1×{0, 1}
n,

respectively. The system parameters param = (q, G1, G2, ê, P, S, n,H1,H2) are

published.

• ExtTS: At time t, the time server computes Qt = H1(t) and publishes the

timestamp TSt = sQt.

• GenPK: A user runs this algorithm to generate its public/private key pair

(Y, x), where x ∈R Zq and Y = xP .

• Enc: Suppose a sender wishes to send a message m; it first selects a release

time t and a secret value v ∈R Zq, and outputs the ciphertext C = (rP, vP,m⊕

H2(gt)) where gt = ê(rY + vS,Qt) and r ∈R Zq.

• GenRK: When the sender wants the ciphertext C to be decrypted before the

release time t, it computes and publishes the pre-open key Vt = vQt.

• Dec: Before the release time, given the pre-open key Vt, the receiver decrypts

C = (R,V,W ) by computing

m = W ⊕ H2(ê(R,xQt)ê(Vt, S))

Otherwise, given the timestamp TSt, the receiver decrypts C = (R,V,W ) by

computing

m = W ⊕H2(ê(R,xQt)ê(V, TSt))

8.2.3.2 Cryptanalysis

We show that a malicious sender can mount an attack to make the receiver decrypt

a false message, which is different to the message the sender originally sent.
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Suppose the sender sent the encrypted message C = (rP, vP,m⊕H2(gt)), and then

before the release time t, it publishes a false pre-open key V ′
t 6= Vt. With V ′

t , the

receiver will compute the plaintext m′ as:

m′ = m⊕ H2(gt)⊕ H2(ê(R,xQt)ê(V
′
t , S))

= m⊕ H2(ê(R,xQt)ê(Vt, S)) ⊕H2(ê(R,xQt)ê(V
′
t , S))

It is straightforward to verify that the probability that the following equation holds

is negligible

H2(ê(R,xQt)ê(Vt, S)) = H2(ê(R,xQt)ê(V
′
t , S)) ,

so that the probability that m = m′ is also negligible.

It should be noted that the other Hwang-Yum-Lee scheme (referred to as the full

TRE-PC scheme), which is claimed in [125] to be IND-TR-CCAOS/IS secure, ap-

pears to be resistant to a malicious sender attack, because the receiver checks the

validity of the plaintext at the end of the decryption procedure.

Besides this potentially undesirable property, the decryption algorithm of this scheme

does not satisfy the definition in the Hwang-Yum-Lee model. In the decryption

algorithm, t should be included in the inputs to the decryption process, because

Qt = H1(t) is used in the computation; however t is not required as an input for the

decryption algorithm in the Hwang-Yum-Lee model. In fact, this inconsistency also

applies to the full TRE-PC scheme.

8.3 New Security Model for TRE-PC Schemes

8.3.1 Description of the Model

As in the Hwang-Yum-Lee model, we assume that the following two types of entities

are involved in a TRE-PC scheme:

• The users, each of which may act as both a sender and a receiver.

• A trusted time server which is required to publish timestamps periodically.

We assume that the time server acts correctly in generating its parameters
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and publishing the timestamps. However, when discussing semantic security,

we take into account the fact that the time server may be curious, i.e. it may

try to decrypt the ciphertext. Apart from this, the time server will do nothing

else malicious.

In the new model, we consider the following four types of attackers:

• Outside attackers who do not know the master key of the time server. In the

rest of this paper, the term outside attacker refers to this type of attacker,

while the term curious time server (see below) refers to the special type of

outside attacker which knows the master key of the time server.

• A curious time server which knows the master key of the time server.

• Authorised but curious receivers which try to decrypt the ciphertext before

the release time without the pre-open key.

• Authorised but malicious senders who try to make the receiver recover a mes-

sage different from that which was originally sent.

A TRE-PC scheme consists of the following six polynomial-time algorithms1.

1. Setup: Run by the time server, the setup algorithm takes a security parameter

ℓ as input, and generates a secret master-key mk and the global parameters

param.

2. GenU: Run by a user, the user key generation algorithm takes ℓ as input, and

generates a public/private key pair (pkr, skr).

3. ExtTS: Run by the time server, the timestamp extraction algorithm takes mk

and a time t as input, and generates a timestamp TSt for the time t.

4. Enc: Run by a sender, the encryption algorithm takes a message m, a release

time t, and the receiver’s public key pkr as input, and returns a ciphertext C

1Note that we are giving here a definition for a TRE-PC scheme which is slightly different to the
definition given previously; however, it should be clear from the context which definition applies.
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and its pre-open key VC . It should be noted that, initially, the sender should

send the ciphertext C in conjunction with the release time t to the receiver,

and therefore the receiver knows the release time of C. The sender stores the

pre-open key VC , and publishes it when pre-opening the ciphertext C.

5. DecRK: Run by the receiver, the decryption algorithm takes a ciphertext C,

the pre-open key VC , and the receiver’s private key skr as input, and returns

either the plaintext or an error message ⊥. In reality, the receiver can only

run this algorithm after the sender releases the pre-open key VC .

6. DecPK: Run by the receiver, the decryption algorithm takes a ciphertext C, a

timestamp TSt which is determined by the release time accompanied with C,

and the receiver’s private key skr as input, and returns either the plaintext or

an error message ⊥.

It should be noted that param is an implicit input of all the algorithms except for

Setup.

8.3.2 Security Notions for TRE-PC

The security definitions of IND-TR-CCAOS and IND-TR-CPAOS are refinements

of those in the Hwang-Yum-Lee model, while IND-TR-CPAIS is a refinement of the

definition of IND-TR-CCAIS in the Hwang-Yum-Lee model2.

8.3.2.1 Soundness of a TRE-PC scheme

Informally, the decryption algorithms of a sound TRE-PC scheme should always

“undo” the output of the encryption algorithm. Formally, soundness is defined as

follows.

Definition 37 A TRE-PC scheme is sound if, for any time t, message m, and

2As for the definition of a TRE-PC scheme, we give here definitions for IND-TR-CCAOS and
IND-TR-CPAOS which are slightly different from the definitions given previously; however, it
should be clear from the context which definition applies.
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(K,C) where

(C, VC) = Enc(m, t, pkr),

the following two requirements are satisfied

m = DecRK(C, VC , skr),

m = DecPK(C, TSt, skr).

8.3.2.2 Binding of a TRE-PC scheme

As we have pointed out in the previous analysis, a sender may act maliciously

when it tries to pre-open the ciphertext. In order to make a TRE-PC scheme work

correctly, this type of malicious sender attack should be prevented. We give the

following definition of binding to formalise this property.

Definition 38 A TRE-PC scheme E is binding if any polynomial-time attacker A

only has a negligible probability of winning the following game.

1. Game setup: The challenger runs Setup to generate the time server’s master

key mk and the public system parameters: param. The challenger also runs

GenU to generate a public/private key pair (pkr, skr).

2. Challenge: The attacker A executes with input (pkr, param). At some point,

A generates a ciphertext C∗ for release at time t∗ and a pre-open key VC∗ ,

and then terminates by outputting (C∗, t∗, VC∗). During its execution, A has

access to the following oracles:

• An oracle for ExtTS, which, on receiving a query for time t, returns

ExtTS(mk, t).

• An oracle for DecRK, which, on receiving a query for (C, V ′
C ), returns

DecRK(C, V ′
C , skr). Note that C and V ′

C may have no relationship with

each other, i.e. V ′
C may not be the pre-open key for C.

• An oracle for DecPK, which, on receiving a query for (C, t′), where t′ may

not be the release time for C, returns DecPK(C, TSt′ , skr).
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Suppose O1 = DecRK(C∗, VC∗ , skr) and O2 = DecPK(C∗, TSt∗ , skr). In this game A

wins if O1 6=⊥, O2 6=⊥, and O1 6= O2.

It is worth stressing that we have adopted the term “binding”, which is also used

to describe a property of commitment schemes, such as that descrribed in [50].

The binding property for a TRE-PC scheme guarantees that, if the attacker has

encrypted some message, then it cannot release a pre-open key to force the receiver

to decrypt a message which is different from that which was originally sent. This is

clearly analogous to the binding property in commitment schemes. The difference

is that explicit proofs are usually required in commitment schemes, while no such

proofs are required here (as shown below). We further point out that, if the receiver

obtains ⊥ as a result of the decryption procedure, then it can confirm that the

sender has malfunctioned. The formalisation of ciphertext validity, as that in [85],

is outside the scope of this paper.

In fact, the binding property for a TRE-PC scheme also relates to the secure trans-

portation of the pre-open key, when the sender decides to open the encrypted mes-

sage before the pre-defined release time. If the TRE-PC scheme is binding, then the

pre-open key does not need to be integrity protected; otherwise, the pre-open key

should be integrity protected to guarantee that the receiver will obtain the message

which the sender intended to send.

8.3.2.3 Security against malicious outsiders

In this subsection we define the notion of semantic security against outside attackers

which do not know the time server’s master key. Specifically, we define semantic se-

curity under an adaptive chosen ciphertext attack (IND-TR-CCAOS) and semantic

security under an adaptive chosen plaintext attack (IND-TR-CPAOS).

Definition 39 A TRE-PC scheme E is IND-TR-CCAOS secure if any two-stage

polynomial-time attacker A = (A1,A2) only has a negligible advantage in the fol-

lowing game.

1. Game setup: The challenger runs Setup to generate the time server’s master
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key mk and the public system parameters param. The challenger also runs

GenU to generate a public/private key pair (pkr, skr).

2. Phase 1: The attacker A1 executes with input (pkr, param). A1 has access to

the following oracles.

• An oracle for ExtTS, which, on receiving a query for time t, returns

ExtTS(mk, t).

• An oracle for DecRK, which, on receiving a query for (C, V ′
C ), returns

DecRK(C, V ′
C , skr). Note that C and V ′

C may have no relationship with

each other, i.e. V ′
C may not be the pre-open key for C.

• An oracle for DecPK, which, on receiving a query for (C, t′), returns

DecPK(C, TSt′ , skr). Note that t′ need not be the legitimate release time

for C.

A1 terminates by selecting two equal length messages m0, m1 and a release

time t∗, and outputting (m0,m1, t
∗). In addition, A1 also outputs some state

information state.

3. Challenge: The challenger picks a random bit b ∈ {0, 1}, and returns (C∗, VC∗) =

Enc(mb, t
∗, pkr).

4. Phase 2: The attacker A2 executes with input (C∗, VC∗ , state). A2 has access

to the same types of oracle as those available in Phase 1. However, A2 is not

allowed to make the following two queries: a query to the DecPK oracle on the

input (C∗, t∗), and a query to the DecRK oracle on the input (C∗, VC∗).

A2 terminates by outputting a guess bit b′ ∈ {0, 1}.

A wins this game if b = b′, and its advantage is defined to be |Pr[b = b′]− 1
2 |.

Definition 40 A TRE-PC scheme E is IND-TR-CPAOS secure, if it is IND-TR-

CCAOS secure against attackers that make no decryption queries.
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8.3.2.4 Security against a curious time server

In this subsection we define the notion of semantic security against a curious time

server. Specifically, we define semantic security under an adaptive chosen ciphertext

attack (IND-TR-CCATS) and semantic security under an adaptive chosen plaintext

attack (IND-TR-CPATS).

Definition 41 A TRE-PC scheme E is IND-TR-CCATS secure if any two-stage

polynomial-time attacker A = (A1,A2) has only a negligible advantage in the fol-

lowing game.

1. Game setup: The challenger runs Setup to generate the time server’s master

key mk and the public system parameters param. The challenger also runs

GenU to generate a public/private key pair (pkr, skr).

2. Phase 1: The attacker A1 executes with input (mk, pkr, param). A1 has access

to the following types of oracle.

• An oracle for DecRK, which, on receiving a query for (C, V ′
C ), returns

DecRK(C, V ′
C , skr). Note that C and V ′

C may have no relationship with

each other, i.e. V ′
C may not be the pre-open key for C.

• An oracle for DecPK, which, on receiving a query for (C, t′), returns

DecPK(C, TSt′ , skr). Note that t′ need not be the legitimate release time

for C.

A1 terminates by selecting two equal length messages m0, m1 and a release

time t∗, and outputting (m0,m1, t
∗). In addition, A1 also outputs some state

information state.

3. Challenge: The challenger picks a random bit b ∈ {0, 1}, and returns (C∗, VC∗) =

Enc(mb, t
∗, pkr).

4. Phase 2: The attacker A2 executes with input (C∗, VC∗ , state). A2 has access

to the same kinds of oracle as those available in Phase 1. However, A2 is not

allowed to make the following two queries: a query to the DecPK oracle on the

input (C∗, t∗), and a query to the DecRK oracle on the input (C∗, VC∗).

184



8.3 New Security Model for TRE-PC Schemes

A2 terminates by outputing a guess bit b′ ∈ {0, 1}.

A wins this game if b = b′, and its advantage is defined to be |Pr[b = b′]− 1
2 |.

Definition 42 A TRE-PC scheme E is IND-TR-CPATS secure if it is IND-TR-

CCATS secure against attackers that make no decryption queries.

From the above definitions, it follows immediately that IND-TR-CCATS/ IND-

TR-CPATS security correspondingly implies IND-TR-CCAOS/ IND-TR-CPAOS

security, because the attacker is granted more privileges in the former security def-

initions. However, observe that the notion of IND-TR-CCATS/ IND-TR-CPATS

security is irrelevant in an environment in which users can tolerate the time server

being able to decrypt the ciphertext.

8.3.2.5 Security against a malicious receiver

If a TRE-PC scheme is to be deemed secure, then it should resist attacks in which

the legitimate receiver attempts to decrypt the ciphertext before the release time

and without the pre-open key. In this case, since the attacker will know the receiver’s

private key, it does not make sense to distinguish between the CCA and CPA notions

of security. However, for the sake of consistency, we will use the term “IND-TR-

CPAIS” to describe semantic security of a scheme against a malicious receiver (an

inside attacker).

Definition 43 A TRE-PC scheme E is IND-TR-CPAIS secure if any two-stage

polynomial-time attacker A = (A1,A2) has only a negligible advantage in the fol-

lowing game.

1. Game setup: The challenger runs Setup to generate the time server’s master

key mk and the public system parameters param. The challenger also runs

GenU to generate a public/private key pair (pkr, skr).
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2. Phase 1: The attacker A1 executes with input (pkr, skr, param). A1 has

access to an oracle for ExtTS, which, on receiving a query for time t, returns

ExtTS(mk, t). A1 terminates by outputting two equal length messages m0, m1

and a release time t∗ which is larger than all the inputs to the ExtTS oracle.

In addition, A1 also outputs some state information state.

3. Challenge: The challenger picks a random bit b ∈ {0, 1}, computes (C∗, VC∗) =

Enc(mb, t
∗, pkr), and returns C∗.

4. Phase 2: The attacker A2 executes with input (C∗, state). A2 has access to the

ExtTS oracle, which, on receiving a query for time t < t∗, returns ExtTS(mk, t).

A2 terminates by outputting a guess bit b′ ∈ {0, 1}.

A wins this game if b = b′, and its advantage is defined to be |Pr[b = b′]− 1
2 |.

8.4 Relationships between the Security Notions

We first give two definitions: “A −→ B” means that if a scheme is secure in the

sense of A then it is secure in the sense of B; “A −→\ B” means that, even if a scheme

is secure in the sense of A, it may not be secure in the sense of B. In other words, “A

−→\ B” means that we can construct a scheme which is secure in the sense of A, but

not secure in the sense of B. It is clear to see that the “−→” relation is transitive,

which means that if A −→ B and B −→ C then A −→ C.

We prove that the relationships indicated in Figure 8.1 hold for the security notions,

where the arrow represents the relation “−→” while the hatched arrow represents

the relationship “−→\ ”. Given the relationships shown, it is straightforward to

deduce the relationship between any two security notions.

From the definitions in Section 8.3.2, it follows immediately that the following rela-

tionships hold.

1. IND-TR-CCATS −→ IND-TR-CCAOS −→ IND-TR-CPAOS

2. IND-TR-CCATS −→ IND-TR-CPATS −→ IND-TR-CPAOS
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Figure 8.1: Relationships among the security notions

In the remainder of this chapter we establish the other relationships indicated in

Figure 8.1. We implicitly assume throughout that a TRE-PC scheme is sound.

8.4.1 Relationship between IND-TR-CPATS and IND-TR-CCAOS

In this section we consider the relationships between IND-TR-CPATS and IND-TR-

CCAOS for TRE-PC schemes.

Construction 1 Suppose E = (Setup,GenU,ExtTS,Enc,DecRK,DecPK) is a TRE-

PC scheme, then we can construct a new TRE-PC scheme E′ = (Setup′,Gen′U,Ext′TS,

Enc′,Dec′RK,Dec′PK), where the algorithms are defined as follows:

• The algorithms Setup′,Gen′U,Ext′TS are defined in the same way as in E.

• Enc′(m, t, pk′
r) = (C||0, VC), where (C, VC ) = Enc(m, t, pk′

r).

• Dec′RK(C||b, VC , sk′
r) = DecRK(C, VC , sk′

r), where b ∈ {0, 1}.

• Dec′PK(C||b, TSt, sk
′
r) = DecPK(C, TSt, sk

′
r), where b ∈ {0, 1}.

Lemma 13 If E is IND-TR-CPATS secure and E′ is obtained from E using Con-

struction 1, then E′ is IND-TR-CPATS secure.

Proof. Suppose an IND-TR-CPATS attacker B = (B1,B2) has advantage δ in at-

tacking E′. We show that there exists an IND-TR-CPATS attacker A = (A1,A2)

for E, which makes use of B as a subroutine, that also has advantage δ. We thus
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can conclude that δ is negligible since E is IND-TR-CPATS secure. The attacker

A1 is defined as follows.

1. A1 receives the public parameters param, the public key pkr, and the master

key mk.

2. A1 sets param′ = param, pk′
r = pkr, and mk′ = mk.

3. A1 executes B1 with input mk′, pk′
r, and param′. B1 terminates by outputting

two equal length messages m0 and m1, a release time t∗, and some state

information state′.

4. A1 terminates by outputting the messages m0 and m1, a release time t∗, and

the state information state = state′.

The challenger chooses b ∈R {0, 1} and computes the challenge (C∗, V ∗
C) = Enc(mb, t

∗, pkr).

The attacker A2 is defined as follows:

1. A2 receives the challenge ciphertext C∗, the pre-open key VC∗ , and the state

information state.

2. A2 executes B2 on the input (C∗||0, VC∗ , state). B2 eventually terminates by

outputting a bit b′.

3. A2 terminates by outputting the bit b′.

A is a legitimate IND-TR-CPATS attacker, and A’s advantage is equal to δ. Since

E is IND-TR-CPATS secure, then δ is negligible, and the lemma follows. �

Lemma 14 If E′ is obtained from a TRE-PC scheme E using Construction 1, then

E′ is not IND-TR-CCAOS secure.

Proof. To prove the claim, we only need to show that an IND-TR-CCAOS attacker

has a non-negligible advantage in attacking E′. The attack is elementary. On receiv-

ing the challenge (C∗||0, VC∗) from the challenger, A2 makes a query to the oracle
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Dec′PK on the input (C∗||1, t∗). It is easy to see that the oracle Dec′PK returns mb,

which allows the attacker to recover the bit b with probability 1. The lemma now

follows �

Theorem 15 If the set of IND-TR-CPATS secure TRE-PC schemes is non-empty,

then IND-TR-CPATS −→\ IND-TR-CCAOS.

Proof. Suppose E is an IND-TR-CPATS secure TRE-PC scheme, and generate E′

from E using Construction 1. Then E′ is IND-TR-CPATS secure (by Lemma 13)

but is not IND-TR-CCAOS secure (by Lemma 14). The result follows. �

Construction 2 Suppose that E = (Setup,GenU,ExtTS,Enc,DecRK,DecPK) is a

TRE-PC scheme and (K, E ,D) is a public key encryption scheme; we can construct

a TRE-PC scheme E′, where the algorithms are defined as follows.

1. The Setup′ algorithm takes a security parameter ℓ as input, and computes

(param,mk) = Setup(ℓ) and (pk, sk) = K(ℓ). The public parameters are

defined to be param′ = (param, pk). The master key is defined to be mk′ =

(mk, sk).

2. The Gen′U algorithm takes ℓ as input, and computes (pk′
r, sk

′
r) = GenU(ℓ).

3. The Ext′TS algorithm take as input mk′ and a release time t, and returns

ExtTS(mk, t).

4. The Enc′ algorithm takes as input a message m, a release time t and the

receiver’s public key pk′
r, and returns a ciphertext C = (C1, C2) and a pre-

open key VC , where:

C1 = E(m, pk)

(C2, VC) = Enc(C1||m, t, pk′
r)
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We assume that C1 is drawn from a prefix-free set (such as a set of strings of

a fixed length) so that it may be recovered from the arbitrary bit string C1||m.

5. The Dec′RK algorithm takes as input a ciphertext C = (C1, C2), a pre-open key

VC , and a private key sk′
r, and computes

C ′
1||m = DecRK(C2, VC , sk′

r) .

If C ′
1 6= C1, then the algorithm outputs ⊥. Otherwise it returns m.

6. The Dec′PK algorithm takes as input a ciphertext C = (C1, C2), a timestamp

TSt, and a private key sk′
r, and computes

C ′
1||m = DecPK(C2, TSt, sk

′
r) .

If C ′
1 6= C1, then the algorithm outputs ⊥. Otherwise it returns m.

Lemma 16 If E′ is obtained from IND-TR-CCAOS secure TRE-PC scheme E

using Construction 2, then E′ is IND-TR-CCAOS secure.

Proof. Consider the following game played between an attacker B = (B1,B2) and a

hypothetical challenger. The game is parameterised by two bits (b1, b2) ∈R {0, 1}
2

and ℓ, and runs as follows:

1. Game Setup: The challenger runs Setup′ to generate public parameters param′ =

(param, pk) and a private key mk′ = (mk, sk). The challenger also runs Gen′U

to generate a public/private key pair (pk′
r, sk

′
r).

2. Phase 1: The attacker B1 executes with input (pk′
r, param′). B1 has access to

the following oracles:

• An oracle for Ext′TS, which takes as input a release time t and returns

Ext′TS(mk, t).

• An oracle for Dec′RK, which takes as input a ciphertext C and a pre-open

key VC , and returns Dec′RK(C, VC , sk′
r).

• An oracle for Dec′PK, which takes as input a ciphertext C and a release

time t, and returns Dec′PK(C, TSt, sk
′
r).
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B1 terminates by outputting two equal length message m0 and m1, a release

time t∗ and some state information state.

3. Challenge: The challenger computes C∗
1 = E(mb1 , pk) and (C∗

2 , VC∗), where

(C∗
2 , VC∗) = Enc(C∗

1 ||mb2 , t
∗, pk′

r).

The challenge ciphertext is C∗ = (C∗
1 , C∗

2 ). The challenge pre-open key is VC∗ .

4. Phase 2: The attacker B2 executes with input (C∗, VC∗ , state). B2 has access

to the same types of oracle as in Phase 1; however, B2 is not permitted to

query the Dec′RK oracle on the input (C∗, VC∗) or the Dec′PK oracle on the

input (C∗, t∗). B2 terminates by outputting a guessing bit b′ for b2.

When b1 = b2, this is a legitimate IND-TR-CCAOS game for E′. Let Exp(b1, b2)

be the event that B outputs 1 in the above game. We next prove the following three

claims.

Claim 4 B’s advantage in winning the IND-TR-CCAOS game is equal to

1

2
|Pr[Exp(0, 0)] − Pr[Exp(1, 1)]|

Proof. In an IND-TR-CCAOS attack game, the attacker’s advantage is defined to be

|Pr[b = b′]− 1
2 |, where b is the bit randomly selected by the challenger in constructing

the challenge ciphertext, and b′ is the bit output by the attacker at the end of the

game. The probability Pr[b = b′] can be computed as:

Pr[b = b′] = Pr[b = b′ = 0] + Pr[b = b′ = 1]

=
1

2
Pr[b′ = 0|b = 0] +

1

2
Pr[b′ = 1|b = 1]

=
1

2
(1− Pr[b′ = 1|b = 0] + Pr[b′ = 1|b = 1])

=
1

2
+

1

2
(Pr[b′ = 1|b = 1]− Pr[b′ = 1|b = 0])

However, by inspection of the game which defines the event Exp(b1, b2), it is clear

that

Pr[b′ = 1|b = 0] = Pr[Exp(0, 0)] and Pr[b′ = 1|b = 1] = Pr[Exp(1, 1)].
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Therefore, B’s advantage is equal to 1
2 |Pr[Exp(0, 0)] − Pr[Exp(1, 1)]|. �

Note that, by the triangle inequality, B’s advantage is bounded by

1

2
|Pr[Exp(0, 0)] − Pr[Exp(0, 1)]| +

1

2
|Pr[Exp(0, 1)] − Pr[Exp(1, 1)]|

Claim 5 If E is IND-TR-CCAOS secure, then |Pr[Exp(0, 0)] − Pr[Exp(0, 1)]| is

negligible as a function of ℓ.

Proof. We show that there exists an IND-TR-CCAOS attacker A = (A1,A2) for E,

which makes use of B as a subroutine, that has advantage

1

2
|Pr[Exp(0, 0)] − Pr[Exp(0, 1)]| .

Hence, we can conclude that |Pr[Exp(0, 0)]−Pr[Exp(0, 1)]| is negligible, since E is

IND-TR-CCAOS secure. The attacker A1 is defined as follows:

1. A1 receives the public parameters param and the public key pk′
r.

2. A1 computes an encryption key pair (pk, sk) = K(ℓ).

3. A1 sets param′ = (param, pk).

4. A1 executes B1 on the input pk′
r and param′.

• If B1 makes a extraction oracle query for a time t, then A1 makes a similar

query to its own extraction oracle and returns the timestamp TSt to B1.

• If B1 queries the Dec′RK oracle with the ciphertext C = (C1, C2) and the

pre-open key VC , then A1 queries its DecRK oracle on (C2, VC). Suppose

it receives C ′
1||m from the oracle. If C ′

1 6= C1 then A1 returns ⊥ to B1.

Otherwise A1 returns the message m to B1.

• If B1 queries the Dec′PK oracle with the ciphertext C = (C1, C2) and for

the time t, then A1 queries its DecPK oracle on (C2, t). Suppose it receives

C ′
1||m from the oracle. If C ′

1 6= C1 then A1 returns ⊥ to B1. Otherwise

A1 returns the message m to B1.
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B1 terminates by outputting two equal length messages m0 and m1, and some

state information state′.

5. A1 computes C∗
1 = E(m0, pk).

6. A1 terminates by outputting the messages C∗
1 ||m0 and C∗

1 ||m1, a release time

t∗ and the state information state = (state′, C∗
1 , pk, sk).

The challenger chooses b2 ∈R {0, 1} and computes the challenge (C∗
2 , V ∗

C) = Enc(mb2 , t
∗, pkr).

The attacker A2 is defined as follows:

1. A2 receives the challenge ciphertext C∗
2 , the challenge pre-open key VC∗ and

the state information state = (state′, C∗
1 , pk, sk). It sets C∗ = (C∗

1 , C∗
2 ).

2. A2 executes B2 on the input (C∗, VC∗ , state′).

• If B2 makes a extraction oracle query for a time t, then A2 makes a similar

query to its own extraction oracle and returns the timestamp TSt to B2.

• If B2 queries the Dec′RK oracle with the ciphertext C = (C1, C2) and the

pre-open key VC , then

– If C2 = C∗
2 and VC = VC∗ then A2 returns ⊥ to B2.

– Otherwise A2 queries its DecRK oracle on (C2, VC). Suppose it re-

ceives C ′
1||m from the oracle. If C ′

1 6= C1 then A2 returns ⊥ to B2.

Otherwise A2 returns the message m to B2.

• If B2 queries the Dec′PK oracle with the ciphertext C = (C1, C2) and for

the time t, then

– If C2 = C∗
2 and t = t∗ then A2 returns ⊥ to B2.

– Otherwise A2 queries its DecPK oracle on (C2, t). Suppose it receives

C ′
1||m from the oracle. If C ′

1 6= C1 then A2 returns ⊥ to B2. Other-

wise A2 returns the message m to B2.

B2 eventually terminates by outputting a bit b′.

3. A2 terminates by outputting the bit b′.
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It is clear to verify that the decryption oracles that A perfectly simulates the decryp-

tion oracles for B, providing that A2 does not incorrectly respond ⊥ for a ciphertext

(C1, C2). There are two case in which this might occur:

• If B2 makes a DecRK query on a ciphertext (C1, C2) with C1 6= C∗
1 , C2 = C∗

2

and VC = VC∗ .

• If B2 makes a DecPK query on a ciphertext (C1, C2) with C1 6= C∗
1 , C2 = C∗

2

and t = t∗.

In either case, we would recover C∗
1 ||mb2 after we apply the TRE-PC decryption

algorithm. Hence, the ciphertext is invalid because C1 6= C∗
1 . Hence, the response

of ⊥ is correct.

Therefore, A is a legitimate IND-TR-CCAOS attacker, and its advantage is

1

2
|Pr[A outputs 1|b2 = 0]− Pr[A outputs 1|b2 = 1]| ,

and so this value is negligible, since E is an IND-TR-CCAOS TRE-PC scheme.

However, this value is equal to

1

2
|Pr[Exp(0, 0)] − Pr[Exp(0, 1)]|

The claim now follows. �

Claim 6 If (K, E ,D) is IND-CPA secure, then |Pr[Exp(0, 1)] − Pr[Exp(1, 1)]| is

negligible as a function of ℓ.

Proof. We show that there exists an IND-CPA attacker A = (A1,A2) against

(K, E ,D), which makes use of B as a subroutine, that has advantage

1

2
|Pr[Exp(0, 1)] − Pr[Exp(1, 1)]| .

Hence, we conclude that |Pr[Exp(0, 1)]−Pr[Exp(1, 1)]| is negligible since (K, E ,D)

is IND-CPA secure. The attacker A1 is defined as follows:
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1. A1 receives the public key pk from the challenger.

2. A1 computes (param,mk) = Setup(ℓ) and (pk′
r, sk

′
r) = Gen′U(ℓ).

3. A1 sets param′ = (param, pk).

4. A1 executes B1 on the input of pk′
r and param′.

• If B1 makes an Ext′TS query for a time t, then A1 computes TSt =

ExtTS(mk, t) and returns TSt to B1.

• If B1 makes a DecRK query for a ciphertext C = (C1, C2) and a pre-open

key VC , then A1 computes C ′
1||m = DecRK(C2, VC , skr). If C ′

1 6= C1 then

A1 returns ⊥; otherwise A1 returns m to B1.

• If B1 makes a DecPK query for a ciphertext C = (C1, C2) and a release

time t, then A1 computes C ′
1||m = DecPK(C2, TSt, skr). If C ′

1 6= C1 then

A1 returns ⊥; otherwise A1 returns m to B1.

B1 terminates by outputting two equal length messages m0 and m1, a release

time t∗ and some state information state′.

5. A1 terminates by outputting the messages m0 and m1, and some state infor-

mation state = (state′, pk, param,mk, pkr, skr,m0,m1, t
∗).

The challenger chooses b1 ∈R {0, 1} and computes the challenge C∗
1 = E(mb1 , pk).

The attacker A2 is defined as follows:

1. A2 receives the challenge ciphertext C∗
1 and the state information state =

(state′, pk, param,mk, pkr, skr,m0,m1, t
∗).

2. A2 computes (C∗
2 , VC∗) = Enc(C∗

1 ||m1, t
∗, pkr) and sets C∗ = (C∗

1 , C∗
2 ).

3. A2 executes B2 on the input (C∗, VC∗ , state′). If B2 makes any oracle queries,

then A2 answers them in exactly the same way as A1 would have done. B2

terminates by outputting a bit b′.

4. A2 terminates by outputting the bit b′.
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Clearly, for the same reasons as in the previous claim, A’s advantage is equal to

1
2 |Pr[Exp(0, 1)] − Exp(1, 1)]| and hence this value is negligible, and the claim fol-

lows. �

From the above three claims, we have shown that any legitimate attacker, namely B

when b1 = b2, only has a negligilble advantage in an IND-TR-CCAOS attack game

for E′, and the lemma now follows. �

We also have the following.

Lemma 17 If E′ is obtained from a TRE-PC scheme using Construction 2, then

E′ is not IND-TR-CPATS secure.

Proof. To prove the claim, we only need to show that the an IND-TR-CPATS at-

tacker has a non-negligible advantage in attacking E′. The attack is elementary.

Suppose that the challenge is (C∗, VC∗), where C∗ = (C∗
1 , C∗

2 ). Since the attacker

has access to sk, then it can immediately compute mb = D(C∗
1 , sk), which means it

can succeed in guessing b with probability 1. The lemma now follows. �

Theorem 18 If the set of IND-TR-CCAOS secure TRE-PC schemes is non-empty,

then IND-TR-CCAOS −→\ IND-TR-CPATS.

Proof. Suppose E is an IND-TR-CCAOS secure TRE-PC scheme, and generate E′

from E using Construction 2. Then E′ is IND-TR-CCAOS secure (by Lemma 16)

but is not IND-TR-CPATS secure (by Lemma 17). The result now follows. �

8.4.2 Relationship between IND-TR-CCATS and IND-TR-CPAIS

We prove that IND-TR-CCATS does not imply IND-TR-CPAIS for TRE-PC schemes.

196



8.4 Relationships between the Security Notions

Construction 3 Suppose that E = (Setup,GenU,ExtTS,Enc,DecRK,DecPK) is a

TRE-PC scheme and (K, E ,D) is a public key encryption scheme. We construct

a TRE-PC scheme E′, where the algorithms are defined as follows.

1. The Setup′ algorithm takes a security parameter ℓ as input, and computes the

public/private parameters (param′,mk′) = Setup(ℓ).

2. The Gen′U algorithm takes as input the public parameters param′, and computes

(pkr, skr) = GenU(ℓ) and (pk, sk) = K(ℓ). The user’s public key is defined to

be pk′
r = (pkr, pk). The user’s private key is defined to be sk′

r = (skr, sk).

3. The Ext′TS algorithm take mk′ and a release time t as input, and returns

ExtTS(mk′, t).

4. The Enc′ algorithm takes as input a message m, a release time t and the

receiver’s public key pk′
r, and returns a ciphertext C = (C1, C2) and a pre-

open key VC , where:

C1 = E(m, pk)

(C2, VC) = Enc(C1||m, t, pkr)

We assume that C1 is drawn from a prefix-free set (such as a set of strings of

a fixed length) so that it may be recovered from the arbitrary bitstring C1||m.

5. The Dec′RK algorithm takes as input a ciphertext C = (C1, C2), a pre-open key

VC , and a private key sk′
r, and computes

C ′
1||m = DecRK(C2, VC , skr) .

If C ′
1 6= C1, then the algorithm outputs ⊥. Otherwise it returns m.

6. The Dec′PK algorithm takes as input a ciphertext C = (C1, C2), a timestamp

TSt, and a private key sk′
r, and computes

C ′
1||m = DecPK(C2, TSt, skr) .

If C ′
1 6= C1, then the algorithm outputs ⊥. Otherwise it returns m.
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E′ is constructed in the same way as in Construction 2, except that (pk, sk) is

possessed by the receiver instead of by the trusted time server. Therefore, following

exactly the same procedure, we can establish the following lemma (the proof is

omitted because of its similarity to Lemma 16).

Lemma 19 If E′ is obtained from an IND-TR-CCATS secure TRE-PC scheme E

using Construction 3, then E′ is IND-TR-CCATS secure.

We also have the following.

Lemma 20 If E′ is obtained from a TRE-PC scheme using Construction 3, then

E′ is not IND-TR-CPAIS secure.

Proof. To prove the lemma, we only need to show that the an IND-TR-CPAIS

attacker has non-negligible advantage in attacking E′. The attack is elementary.

Suppose that the challenge is C∗ = (C∗
1 , C∗

2 ). Since the attacker has access to sk,

then it can immediately compute mb = D(C∗
1 , sk), which means it can succeed in

guessing b with probability 1. The lemma now follows. �

Theorem 21 If the set of IND-TR-CCATS secure TRE-PC schemes is non-empty,

then IND-TR-CCATS −→\ IND-TR-CPAIS.

Proof. Suppose E is an IND-TR-CCATS secure TRE-PC scheme, and generate E′

from E using Construction 3. Then E′ is IND-TR-CCATS secure (by Lemma 19)

but is not IND-TR-CPAIS secure (by Lemma 20). The result follows. �

8.4.3 Relationship between IND-TR-CPAIS and IND-TR-CPAOS

We prove that IND-TR-CPAIS does not imply IND-TR-CPAOS for TRE-PC schemes.
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Construction 4 Suppose that E = (Setup,GenU,ExtTS,Enc,DecRK,DecPK) is a

TRE-PC scheme. We can construct a TRE-PC scheme E′, where the algorithms

are defined as follows.

1. The algorithms Setup′,Gen′U,Ext′TS, Dec′PK are defined in the same way as in

E.

2. The Enc′ algorithm takes a message m, a release time t and the receiver’s

public key pk′
r as input, and returns a ciphertext C and a pre-open key VC ,

where:

(C, V ′
C ) = Enc(m, t, pk′

r)

VC = V ′
C ||m

We assume that V ′
C is drawn from a prefix-free set (such as a set of strings of

a fixed length) so that it may be recovered from the arbitrary bitstring V ′
C ||m.

3. The Dec′RK algorithm takes a ciphertext C, a pre-open key V ′
C ||m, and a private

key sk′
r as input, and returns DecRK(C, V ′

C , sk′
r).

Lemma 22 If E′ is obtained from an IND-TR-CPAIS secure TRE-PC scheme E

using Construction 4, then E′ is IND-TR-CPAIS secure.

Proof. Suppose an IND-TR-CPAIS attacker B = (B1,B2) has advantage δ in attack-

ing E′. We show that there exists an IND-TR-CPAIS attacker A = (A1,A2) for E,

which makes use of B as a subroutine, that also has advantage δ. Hence, we can

conclude that δ is negligible, since E is IND-TR-CPAIS secure. The attacker A1 is

defined as follows:

1. A1 receives the public parameters param and the public/private key pair

(pkr, skr).

2. A1 sets param′ = param, pk′
r = pkr, and sk′

r = sk.

3. A1 executes B1 on the input pk′
r, sk′

r, and param′. If B1 makes an extraction

oracle query for a time t, then A1 makes a similar query to its own extraction
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oracle and returns the timestamp TSt to B1. B1 terminates by outputting two

equal length messages m0 and m1, a release time t∗, and some state information

state′.

4. A1 terminates by outputting the messages m0 and m1, a release time t∗, and

the state information state = state′.

The challenger chooses b ∈R {0, 1} and computes the challenge TRE-PC encryption

C∗, where (C∗, V ∗
C ) = Enc(mb, t

∗, pkr). The attacker A2 is defined as follows:

1. A2 receives the challenge ciphertext C∗ and the state information state.

2. A2 executes B2 on the input (C∗, state). If B2 makes an extraction oracle query

for a time t < t∗, then A2 makes a similar query to its own extraction oracle

and returns the timestamp TSt to B2. B2 eventually terminates by outputting

a bit b′.

3. A2 terminates by outputting the bit b′.

It is clear to see that A provides perfect simulation for the oracles that B may query,

A is a legitimate IND-TR-CPAIS attacker, and A’s advantage equals δ. Since E

is an IND-TR-CPAIS TRE-PC scheme, then δ is negligible, and the lemma now

follows. �

Lemma 23 If E′ is obtained from a TRE-PC scheme E using Construction 4, then

E′ is not IND-TR-CPAOS secure.

Proof. It is straightforward to verify that an IND-TR-CPAOS attacker can identify

the random bit chosen by the challenger with probability 1, because the pre-open

key always contains the plaintext. As a result, the lemma follows. �

Theorem 24 If the set of IND-TR-CPATS secure TRE-PC schemes is non-empty,

then IND-TR-CPAIS −→\ IND-TR-CPAOS.
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Proof. Suppose E is an IND-TR-CPAIS secure TRE-PC scheme, and generate E′

from E using Construction 3. Then E′ is IND-TR-CPAIS secure (by Lemma 22)

but is not IND-TR-CPAOS secure (by Lemma 23). The result follows. �

8.4.4 Relationship between IND-TR-CCATS and Binding

We prove that IND-TR-CCATS does not imply binding for TRE-PC schemes.

Construction 5 Suppose that E = (Setup,GenU,ExtTS,Enc,DecRK,DecPK) is a

TRE-PC scheme. We can construct a TRE-PC scheme E′, where the algorithms

are defined as follows.

1. The algorithms Setup′,Gen′U,Ext′TS,Enc′ are defined in the same way as in E.

2. The algorithm Dec′RK is defined in the same way as DecRK, except that it returns

a random message from the plaintext space when DecRK returns ⊥.

3. The algorithm Dec′PK is defined in the same way as DecPK, except that it returns

a random message from the plaintext space when DecPK returns ⊥.

Lemma 25 If E′ is obtained from an IND-TR-CCATS secure TRE-PC scheme E

using Construction 5, then E′ is IND-TR-CCATS secure.

Proof. Suppose an IND-TR-CCATS attacker B = (B1,B2) has advantage δ in

attacking E′. We show that there exists an IND-TR-CCATS attacker A = (A1,A2)

for E, which makes use of B as a subroutine, that also has advantage δ. Hence, we

will be able to conclude that δ is negligible since E is IND-TR-CCATS secure. The

attacker A1 is defined as follows:

1. A1 receives the public parameters param, the public key pkr, and the master

key mk.
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2. A1 sets param′ = param, pk′
r = pkr, and mk′ = mk.

3. A1 executes B1 on the input mk′, pk′
r, and param′.

• If B1 queries the Dec′RK oracle with the ciphertext C and the pre-open

key VC , then A1 queries its DecRK oracle on (C, VC). Suppose it receives

m′ from the oracle. If m′ =⊥ then A1 returns a random message from

the plaintext space to B1. Otherwise A1 returns the message m′ to B1.

• If B1 queries the Dec′PK oracle with ciphertext C and the time t, then A1

queries its DecPK oracle on (C, t). Suppose it receives m′ from the oracle.

If m′ =⊥ then A1 returns a random message from the plaintext space to

B1. Otherwise A1 returns the message m′ to B1.

B1 terminates by outputting two equal length messages m0 and m1, a release

time t∗, and some state information state′.

4. A1 terminates by outputting the messages m0 and m1, a release time t∗, and

the state information state = state′.

The challenger chooses b ∈R {0, 1} and computes the challenge (C∗, V ∗
C) = Enc′(mb, t

∗, pkr).

The attacker A2 is defined as follows:

1. A2 receives the challenge ciphertext C∗, the challenge pre-open key VC∗ and

the state information state.

2. A2 executes B2 on the input (C∗, VC∗ , state).

• If B2 queries the Dec′RK oracle with the ciphertext C = (C1, C2) and the

pre-open key VC , then A2 queries its DecRK oracle on (C, VC). SupposeA2

receives m′ as the response. If m′ =⊥ then A2 returns a random message

from the plaintext space to B2. Otherwise A2 returns the message m′ to

B2.

• If B2 queries the Dec′PK oracle with the ciphertext C = (C1, C2) and for

the time t, then A2 queries its DecPK oracle on (C, t). SupposeA2 receives

m′ as the response. If m′ =⊥ then A2 returns a random message from

the plaintext space to B2. Otherwise A2 returns the message m′ to B2.

B2 eventually terminates by outputting a bit b′.
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3. A2 terminates by outputting the bit b′.

A provides perfect simulation for the oracles that B may query, A is a legitimate

IND-TR-CCATS attacker, and A’s advantage equals δ. Since E is an IND-TR-

CCATS secure TRE-PC scheme, δ is negligible; the lemma now follows. �

Lemma 26 If E′ is obtained from a TRE-PC scheme E using Construction 5, then

E′ is not binding.

Proof. We first construct a two-stage algorithm A = (A1,A2), and then construct a

binding attacker A′ for E′. The sub-algorithms A1 and A2 are defined as follows:

1. A1 takes (pkr, param) as input, where pkr is a string from the same space as pk′
r

and param is a string from the same space as param′, and returns (m0,m1, t
∗),

where m0 and m1 are two equal length messages randomly chosen from the

plaintext space of E′ and t∗ = 2.

2. A2 takes (m0,m1, C, VC ) as input, where C is from the ciphertext space of E′,

VC is from the pre-open key space of E′. A2 sets t† = 1 and makes a Dec′PK

query with input (C, t†). If A2 receives m† as the response, then it terminates

by outputting a bit b′ which is defined as follows: b′ = i if m† = mi (0 ≤ i ≤ 1);

otherwise, b′ is set randomly.

The attacker A′ is defined as follows. A′ receives (pk′
r, param′) from the challenger,

and then

1. runs A1 on the input of (pk′
r, param′) and get the output (m0,m1, t

∗),

2. selects b ∈R {0, 1} and computes (C∗, VC∗) = Enc(mb, t
∗, pk′

r),

3. runs A2 with input (m0,m1, C
∗, VC∗),

4. on receiving A2’s Dec′PK query, makes a Dec′PK query to its own oracle with

input (C∗, t†), returns the output to A2,
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5. gets b′ as output from A2 and terminates by outputting (C∗, VC∗ , t
†).

From the above description, it follows that A′ is a legitimate binding attacker, A′’s

advantage is δ = Pr[m† 6= mb], and |Pr[b = b′] − 1
2 | is negligible because E′ is also

IND-TR-CCATS secure.

Let E1 and E2 be the events that m† = mb and m† = mb̄ respectively, where

b̄ = |b− 1|. Let E3 be the event that neither E1 nor E2 occurs. We then have

Pr[b = b′] =

3
∑

i=1

Pr[Ei] Pr[b = b′|Ei] (8.1)

= Pr[E1] +
1

2
Pr[E3] (8.2)

= 1− Pr[E2]−
1

2
Pr[E3] (8.3)

Note that the reduction from (8.1) to (8.2) is based on the fact that Pr[b = b′|E1] = 1,

Pr[b = b′|E2] = 0, and Pr[b = b′|E3] = 1
2 , while the reduction from (8.2) to (8.3) is

based on the fact that
∑3

i=1 Pr[Ei] = 1.

As a result, |Pr[b = b′] − 1
2 | is negligible implies that |12 − δ′|, where δ′ = Pr[E2] +

1
2 Pr[E3], is also negligible, so that δ′ is non-negligible. Since δ ≥ δ′, then it is clear

that δ is also non-negligible, and the lemma now follows. �

Theorem 27 If the set of IND-TR-CCATS secure TRE-PC schemes is non-empty,

then IND-TR-CCATS −→\ binding.

Proof. Suppose E is an IND-TR-CCATS secure TRE-PC scheme, and generate E′

from E using Construction 5. Then E′ is IND-TR-CCATS secure (by Lemma 25)

but is not binding (by Lemma 26). The result follows. �

8.4.5 Relationship between Binding and IND-TR-CPAOS

We prove that binding does not imply IND-TR-CPAOS for TRE-PC schemes.
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Construction 6 Let E be a TRE-PC scheme with component algorithms as follows.

1. The Setup algorithm takes a security parameter ℓ as input, and sets the master

key mk = 1 and the public parameters param = 1.

2. The GenU algorithm takes ℓ as input, and selects a public/private key pair

(pkr, skr), where pkr = skr = 1. The plaintext and ciphertext space is {0, 1}k.

3. The ExtTS algorithm take mk and a release time t as input, and returns TSt =

1.

4. The Enc algorithm takes a message m, a release time t and the receiver’s public

key pkr as input, and returns a ciphertext C = m and a pre-open key VC = 1.

5. The DecRK algorithm takes a ciphertext C, a pre-open key VC , and a private

key skr as input, and returns m = C.

6. The DecPK algorithm takes as input a ciphertext C, a timestamp TSt, and a

private key skr, and returns m = C.

From the description, it is straightforward to verify that E is binding but not IND-

TR-CPAOS secure.

Theorem 28 For TRE-PC schemes, binding −→\ IND-TR-CPAOS.

Moreover, it is clear that, apart from binding, E is not secure in the sense of any of

the other defined security notions.

8.4.6 Relationship between IND-TR-CPAIS and Binding

We prove that IND-TR-CPAIS does not imply binding for TRE-PC schemes. Note

that we have already shown that binding −→\ IND-TR-CPAIS.

Construction 7 Suppose that E = (Setup,GenU,ExtTS,Enc,DecRK,DecPK) is a

TRE-PC scheme. We construct a TRE-PC scheme E′, where the algorithms are

defined as follows.
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1. The algorithms Setup′,Gen′U,Ext′TS,Enc′ are defined in the same way as in E.

2. The algorithm Dec′RK is defined in the same way as DecRK, except that it returns

a random message from the plaintext space when DecRK returns ⊥.

3. The algorithm Dec′PK is defined in the same way as DecPK, except that it returns

a random message from the plaintext space when DecPK returns ⊥.

Lemma 29 If E′ is obtained from an IND-TR-CPAIS secure TRE-PC scheme E

using Construction 7, then E′ is IND-TR-CPAIS secure.

Proof. Suppose that an IND-TR-CPAIS attacker B = (B1,B2) has advantage δ in

attacking E′. We show that there exists an IND-TR-CPAIS attacker A = (A1,A2)

for E, which makes use of B as a subroutine, that also has advantage δ. Hence, we

can conclude that δ is negligible, since E is IND-TR-CPAIS secure. The attacker

A1 is defined as follows:

1. A1 receives the public parameters param, the public key pkr, and the private

key skr.

2. A1 sets param′ = param, pk′
r = pkr, and sk′

r = skr.

3. A1 executes B1 with input pk′
r, sk′

r, and param′. If B1 makes a extraction

oracle query for time t, then A1 makes a similar query to its own extraction

oracle and returns the timestamp TSt to B1. B1 terminates by outputting two

equal length messages m0 and m1, a release time t∗, and some state information

state′.

4. A1 terminates by outputting the messages m0 and m1, a release time t∗, and

the state information state = state′.

The challenger chooses b ∈R {0, 1} and compute the challenge TRE-PC encryption

C∗, where (C∗, V ∗
C ) = Enc(mb, t

∗, pkr). The attacker A2 is defined as follows:

1. A2 receives the challenge ciphertext C∗ and the state information state.
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2. A2 executes B2 on the input (C∗, state). If B2 makes a extraction oracle query

for a time t < t∗, then A2 makes a similar query to its own extraction oracle

and returns the timestamp TSt to B2. B2 eventually terminates by outputting

a bit b′.

3. A2 terminates by outputting the bit b′.

A provides perfect simulation for the oracles that B may query, A is a legitimate

IND-TR-CPAIS attacker, andA’s advantage equals δ. Since E is an IND-TR-CPAIS

secure TRE-PC scheme, δ is negligible, and the lemma follows. �

Lemma 30 If E′ is obtained from a TRE-PC scheme E using Construction 7, then

E′ is not binding.

Proof. The proof of this lemma is based on the fact that, since E′ is IND-TR-CPAIS

secure (by Lemma 29), a polynomial-time attacker B = (B1,B2) has only a negligible

advantage in the following game.

1. Game setup: The challenger runs Setup′ to generate the time server’s master

key mk′ and the public system parameters param′. The challenger also runs

Gen′U to generate a public/private key pair (pk′
r, sk

′
r).

2. Phase 1: The attacker runs B1 on the input (pk′
r, param′). B1 has access to

the following types of oracles:

• An oracle for Ext′TS, which, on receiving a query for time t, returns

Ext′TS(mk, t).

• An oracle for Dec′RK, which, on receiving a query for (C, VC ), returns

Dec′RK(C, VC , sk′
r).

• An oracle for Dec′PK, which, on receiving a query for (C, t), returns

Dec′PK(C, TSt, sk
′
r).

B1 terminates by outputting two equal length messages m0, m1 and a release

time t∗ which is larger than all the inputs to the Ext′TS oracle. In addition, B1

also outputs some state information state.
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3. Challenge: The challenger picks d ∈R {0, 1}, computes (C∗, VC∗) = Enc(md, t
∗, pk′

r),

and returns C∗.

4. Phase 2: The attacker runs B2 on the input (C∗, state). B2 has access to the

same types of oracles as B1. However, B2 may not make a Ext′TS query on a

time t ≥ t∗ and a Dec′PK query on the input (C, t), where t ≥ t∗. B2 terminates

by outputting a guess bit d′ ∈ {0, 1}.

In this attack game, instead of taking the private key sk′
r as an input as required

by a legitimate IND-TR-CPAIS attack game, the attacker is granted access to the

decryption oracles. Since E′ is IND-TR-CPAIS secure, it follows that the attacker’s

advantage in the above game (i.e. |Pr[d′ = d]− 1
2 |) is negligible.

We can now construct a binding attacker A′ and an algorithm A identical to those

in the proof of Lemma 26. The proof is also exactly the same as that of Lemma 26,

except that in this case the probability |Pr[b = b′] − 1
2 | is negligible because B has

only a negligible advantage, and the lemma now follows. �

Theorem 31 If the set of IND-TR-CPAIS secure TRE-PC schemes is non-empty,

then IND-TR-CPAIS −→\ binding.

Proof. Suppose E is an IND-TR-CPAIS secure TRE-PC scheme, and generate E′

from E using Construction 7. Then E′ is IND-TR-CPAIS secure (by Lemma 29)

but is not binding (by Lemma 30). The result follows. �

8.5 Conclusions

In this chapter we have refined the Hwang-Yum-Lee model for TRE-PC schemes.

We have also established the relationships between the security notions defined in

the new model.
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Hybrid construction of TRE-PC Schemes
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In this chapter we define a novel type of KEM, which we call a TRE-PC KEM,

and propose an implementation of this new primitive. We then propose a hybrid

construction for TRE-PC schemes based on a TRE-PC KEM and a DEM.

9.1 Motivation

The use of a symmetric encryption scheme as a subroutine of an asymmetric encryp-

tion scheme has long been known as a useful technique for improving the efficiency

of asymmetric encryption. Cramer and Shoup [84] formalised one approach, namely

the KEM-DEM paradigm (KEM and DEM are defined in Section 2.2.5), for pro-

ducing such hybrid asymmetric encryption schemes. In this paradigm, the KEM is

used to encrypt/decrypt a symmetric key, and the DEM is used to encrypt/decrypt

data using the symmetric key. This KEM-DEM approach has subsequently been
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applied to various other branches of asymmetric cryptography (see, for example,

[39, 41, 89]).

In this chapter we propose a similar paradigm to construct TRE-PC schemes, where

the main difference is that the KEM is replaced with a new primitive, which we call

a TRE-PC KEM, which is a special type of KEM with timed-release and pre-open

capabilities.

The rest of this chapter is organised as follows. In Section 9.2 we define the new

TRE-PC KEM primitive, and also propose an instantiation of this primitive. In

Section 9.3 we propose a hybrid paradigm and prove relevant security claims. In the

last section we conclude the chapter.

9.2 Definition and Instantiation of TRE-PC KEM

We define a TRE-PC KEM using the same types of principals as those used in the

definition of TRE-PC schemes (defined in 8.3.1). The following two kinds of entities

are involved in a TRE-PC scheme:

• The users, each of which may act as both a sender and a receiver.

• A trusted time server, which is required to publish timestamps periodically.

We assume that the time server acts correctly in generating its parameters and

publishing the timestamps. However, when discussing semantic security, we

take into account the fact that the time server may be curious, i.e. it may try

to decapsulate the ciphertext (where decapsulation is formally defined below).

Apart from this, the time server will do nothing else malicious.

In addition, we consider the following four types of attacker:

• An outside attacker which does not know the master key of the time server. In

the rest of this paper, the term outside attacker refers to this kind of attacker,
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while the term curious time server (see below) refers to the special kind of

outside attacker which knows the master key of the time server.

• A curious time server which knows the master key of the time server.

• Authorised but curious receivers which try to decapsulate the ciphertext before

the release time without the pre-open key.

• Authorised but malicious senders which try to make the receiver decapsulate

a message different from that which was originally sent.

A TRE-PC KEM consists of the following polynomial-time algorithms:

• TRE-PC-KEM.Setup: Run by the time server, the setup algorithm takes a

security parameter ℓ as input, and generates a secret master-key mk and the

public parameters param.

• TRE-PC-KEM.ExtTS: Run by the time server, the timestamp extraction algo-

rithm takes mk and a time t as input, and generates a timestamp TSt.

• TRE-PC-KEM.Gen: Run by a user, the key generation algorithm takes a secu-

rity parameter ℓ as input, and outputs a public/private key pair (pkr, skr).

• TRE-PC-KEM.Encap: Run by the message sender, the key encapsulation al-

gorithm takes a release time t and a public key pkr as input, and outputs

(K,C, VC ), where K is a symmetric key, C is ciphertext, and VC is the pre-

open key for C. We assume that the bit length of K is a polynomial function

of ℓ, KenLen(ℓ) say.

• TRE-PC-KEM.DecapRK: Run by the receiver, the (pre-open) decapsulation

algorithm takes ciphertext C, a pre-open key VC , and the receiver’s private

key skr as input, and returns either the encapsulated key K or an error message

⊥.

• TRE-PC-KEM.DecapPK: Run by the receiver, the (standard) decapsulation

algorithm takes ciphertext C, a timestamp TSt which is determined by the

release time associated with C, and the receiver’s private key skr as input,

and returns either the encapsulated key K or an error message ⊥.
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Note that param is an implicit input to all the algorithms except for TRE-PC-KEM.Setup.

9.2.1 Security Definitions

For a TRE-PC KEM, we consider the same types of attackers as for a TRE-PC

scheme, and, analogously, we have the following security definitions.

9.2.1.1 Soundness of a TRE-PC KEM

Informally, the decapsulation algorithms of a sound TRE-PC KEM should always

“undo” the output of the encapsulation algorithm. Formally, soundness is defined

as follows.

Definition 44 A TRE-PC KEM is sound if, for any time t and (K,C, VC ) where

(K,C, VC ) = TRE-PC-KEM.Encap(t, pkr),

the following two requirements are satisfied

K = TRE-PC-KEM.DecapRK(C, VC , skr),

K = TRE-PC-KEM.DecapPK(C, TSt, skr).

9.2.1.2 Binding of a TRE-PC KEM

Analogously to the definition given in 8.3.2.2, we give the following definition of the

binding property.

Definition 45 A TRE-PC KEM is binding if any polynomial-time attacker A has

only a negligible probability of winning the following game.

1. Game setup: The challenger runs TRE-PC-KEM.Setup to generate the time

server’s master key mk and the public parameters param. The challenger also

runs TRE-PC-KEM.Gen to generate a public/private key pair (pkr, skr).
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2. Challenge: The attacker A executes with input (pkr, param). At some point,

A generates a ciphertext C∗ for release at time t∗ and a pre-open key VC∗ ,

and then terminates by outputting (C∗, t∗, VC∗). During its execution, A has

access to the following oracles:

• An oracle for TRE-PC-KEM.ExtTS, which, on receiving a query for time

t, returns TRE-PC-KEM.ExtTS(mk, t).

• An oracle for TRE-PC-KEM.DecapRK, which, on receiving a query for

(C, V ′
C ), returns TRE-PC-KEM.DecapRK(C, V ′

C , skr). Note that C and V ′
C

may have no relationship with each other, i.e. V ′
C may not be the pre-open

key for C.

• An oracle for TRE-PC-KEM.DecapPK, which, on receiving a query for

(C, t′), returns TRE-PC-KEM.DecapPK(C, TSt′ , skr). Note that t′ may

not be the release time for C.

In this game, A wins if O1 6=⊥, O2 6=⊥, and O1 6= O2, where

O1 = TRE-PC-KEM.DecapRK(C∗, VC∗ , skr),

O2 = TRE-PC-KEM.DecapPK(C∗, TSt∗ , skr).

9.2.1.3 Security against malicious outsiders

We define semantic security for a TRE-PC KEM against outside attackers which

do not know the time server’s master key. Specifically, we define semantic security

under an adaptive chosen ciphertext attack (IND-TR-KEM-CCAOS security) and

semantic security under an adaptive chosen plaintext attack (IND-TR-KEM-CPAOS

security).

Definition 46 A TRE-PC KEM is IND-TR-KEM-CCAOS secure if any two-stage

polynomial-time attacker A = (A1,A2) has only a negligible advantage in the fol-

lowing game.
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1. Game setup: The challenger runs TRE-PC-KEM.Setup to generate the time

server’s master key mk and the public parameters param. The challenger also

runs TRE-PC-KEM.Gen to generate a public/private key pair (pkr, skr).

2. Phase 1: The attacker A1 executes with input (pkr, param). A1 has access to

the following oracles.

• An oracle for TRE-PC-KEM.ExtTS, which, on receiving a query for time

t, returns TRE-PC-KEM.ExtTS(mk, t).

• An oracle for TRE-PC-KEM.DecapRK, which, on receiving a query for

(C, V ′
C ), returns TRE-PC-KEM.DecapRK(C, V ′

C , skr). Note that C and V ′
C

may have no relationship with each other, i.e. V ′
C may not be the pre-open

key for C.

• An oracle for TRE-PC-KEM.DecapPK, which, on receiving a query for

(C, t′), returns TRE-PC-KEM.DecapPK(C, TSt′ , skr). Note that t′ need

not be the legitimate release time for C.

A1 terminates by outputting a release time t∗ and some state information

state.

3. Challenge: The challenger generates the challenge as follows:

(a) The challenger computes (K0, C
∗, VC∗) = TRE-PC-KEM.Encap(t∗, pkr).

(b) The challenger randomly selects K1 ∈ {0, 1}
KeyLen(ℓ), where KeyLen(ℓ) is

a polynomial function of ℓ.

(c) The challenger randomly selects a bit b ∈ {0, 1}, and returns (Kb, C
∗, VC∗).

4. Phase 2: The attacker A2 executes with input (Kb, C
∗, VC∗ , state). A2 has ac-

cess to the same types of oracle as A1. However, A2 is not permitted to make a

TRE-PC-KEM.DecapPK query on the input (C∗, t∗) or a TRE-PC-KEM.DecapRK

query on the input (C∗, VC∗). A2 terminates by outputting a guessing bit b′.

In this game the attacker wins if b′ = b, and its advantage is defined to be |Pr[b =

b′]− 1
2 |.

Definition 47 A TRE-PC KEM is IND-TR-KEM-CPAOS secure if it is IND-TR-

KEM-CCAOS secure against attackers that make no decryption queries.
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9.2.1.4 Security against a curious time server

In this subsection we define semantic security against a curious time server for a

TRE-PC KEM. Specifically, we define semantic security under an adaptive chosen

ciphertext attack (IND-TR-KEM-CCATS security) and semantic security under an

adaptive chosen plaintext attack (IND-TR-KEM-CPATS security).

Definition 48 A TRE-PC KEM is IND-TR-KEM-CCATS secure, if any two-stage

polynomial-time attacker A = (A1,A2) has only a negligible advantage in the fol-

lowing game.

1. Game setup: The challenger runs TRE-PC-KEM.Setup to generate the time

server’s master key mk and the public parameters param. The challenger also

runs TRE-PC-KEM.Gen to generate a public/private key pair (pkr, skr).

2. Phase 1: The attacker A1 executes with input (mk, pkr, param). A1 has access

to the following oracles.

• An oracle for TRE-PC-KEM.DecapRK, which, on receiving a query for

(C, V ′
C ), returns TRE-PC-KEM.DecapRK(C, V ′

C , skr). Note that C and V ′
C

may have no relationship with each other, i.e. V ′
C may not be the pre-open

key for C.

• An oracle for TRE-PC-KEM.DecapPK, which, on receiving a query for

(C, t′), returns TRE-PC-KEM.DecapPK(C, TSt′ , skr). Note that t′ need

not be the legitimate release time for C.

A1 terminates by outputting a release time t∗ and some state information

state.

3. Challenge: The challenger generates the challenge as follows:

(a) The challenger computes (K0, C
∗, VC∗) = TRE-PC-KEM.Encap(t∗, pkr).

(b) The challenger randomly selects K1 ∈ {0, 1}
KeyLen(ℓ).

(c) The challenger randomly selects a bit b ∈ {0, 1}, and returns (Kb, C
∗, VC∗).
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4. Phase 2: The attacker A2 executes with input (Kb, C
∗, VC∗ , state). A2 has ac-

cess to the same types of oracle as A1. However, A2 is not permitted to make a

TRE-PC-KEM.DecapPK query on the input (C∗, t∗), or a TRE-PC-KEM.DecapRK

query on the input (C∗, VC∗). A2 terminates by outputting a guess bit b′.

In this game the attacker wins if b′ = b, and its advantage is defined to be |Pr[b =

b′]− 1
2 |.

Definition 49 A TRE-PC KEM is IND-TR-KEM-CPATS secure if it is IND-TR-

KEM-CCATS secure against attackers that make no decryption queries.

9.2.1.5 Security against a malicious receiver

Semantic security against a malicious receiver, i.e. IND-TR-KEM-CPAIS security,

is defined as follows.

Definition 50 A TRE-PC KEM is IND-TR-KEM-CPAIS secure if any two-stage

polynomial-time attacker A = (A1,A2) has only a negligible advantage in the fol-

lowing game.

1. Game setup: The challenger runs TRE-PC-KEM.Setup to generate the time

server’s master key mk and the public parameters param. The challenger also

runs TRE-PC-KEM.Gen to generate a public/private key pair (pkr, skr).

2. Phase 1: The attacker A1 executes with input (pkr, skr, param). A1 has access

to an oracle for TRE-PC-KEM.ExtTS, which, on receiving a query for time t,

returns TRE-PC-KEM.ExtTS(mk, t). A1 terminates by outputting a release

time t∗ which is larger than all the inputs to the TRE-PC-KEM.ExtTS oracle,

and some state information state.

3. Challenge: The challenger generates the challenge as follows:

(a) The challenger computes (K0, C
∗, VC∗) = TRE-PC-KEM.Encap(t∗, pkr).
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(b) The challenger randomly selects K1 ∈ {0, 1}
KeyLen(ℓ) .

(c) The challenger randomly selects a bit b, and returns (Kb, C
∗).

4. Phase 2: The attacker A2 executes with input (Kb, C
∗, state). A2 has access

to an oracle for TRE-PC-KEM.ExtTS for any input t < t∗. A2 eventually

terminates by outputting a guess bit b′.

In this game the attacker wins if b′ = b, and its advantage is defined to be |Pr[b =

b′]− 1
2 |.

9.2.2 An Instantiation for TRE-PC KEM

The polynomial-time algorithms of the proposed TRE-PC KEM are defined as fol-

lows.

• TRE-PC-KEM.Setup: The algorithm takes a security parameter ℓ as input, and

generates the following parameters:

– an additive group G1 of prime order q, a generator P of G1, and a mul-

tiplicative group G2 of the same order as G1,

– a polynomial-time computable bilinear map ê : G1 ×G1 → G2,

– three cryptographic hash functions H1 : {0, 1}∗ → G1, H2 : G1 × G1 ×

G2 → {0, 1}
ℓ, and H3 : G1 ×G2 → {0, 1}

KeyLen(ℓ),

– a public/private key pair (S, s), where S = sP and s is randomly chosen

from Zq,

where the master secret is mk = s and the public parameters are

param = (G1, G2, q, P, ê, S,H1,H2,H3).

• TRE-PC-KEM.ExtTS: The algorithm takes the master secret mk and a time t

as input and returns TSt = sH1(t).

• TRE-PC-KEM.Gen: The algorithm takes ℓ as input, randomly chooses skr from

Zq, and generates a public/private key pair (pkr, skr) where pkr = skrP .
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• TRE-PC-KEM.Encap: The algorithm takes a release time t and the receiver’s

public key pkr as input, and returns (K,C, VC ), which are computed as follows:

1. Randomly choose r and v from Zq, and compute Qt = H1(t), C1 = rP ,

C2 = vP , X1 = r · pkr, and X2 = ê(vS,Qt),

2. Compute C3 = H2(C2,X1,X2) and K = H3(X1,X2),

3. Set VC = vQt and C = (C1, C2, C3).

• TRE-PC-KEM.DecRK: The algorithm takes a ciphertext C = (C1, C2, C3), the

pre-open key VC = vQt, and the private key skr as input, and runs as follows:

1. Compute X1 = skrC1 and X2 = ê(S, VC), and check whether C3 =

H2(C2,X1,X2) holds,

2. If the check succeeds, return K = H3(X1,X2); otherwise, return an error

message ⊥.

• TRE-PC-KEM.DecPK: This algorithm takes a ciphertext C = (C1, C2, C3), the

timestamp TSt, and the private key skr as input, and runs as follows:

1. Compute X1 = skrC1 and X2 = ê(C2, TSt), and check whether C3 =

H2(C2,X1,X2) holds,

2. If the check succeeds, return K = H3(X1,X2); otherwise, return an error

message ⊥.

9.2.3 Security Results

It is straightforward to verify that the TRE-PC KEM is sound. We next prove that

the TRE-PC KEM is secure in the sense of binding, IND-TR-KEM-CCATS, and

IND-TR-KEM-CPAIS. Then from the security definitions, it is straightforward to

verify that the proposed scheme is also secure in the sense of the other security

notions.

Theorem 32 If H2 is collision-resistant, then the TRE-PC KEM is binding.
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Proof. Without loss of generality, suppose that at the end of the legitimate binding

attack game the attacker outputs (C∗, t∗, VC∗), where C∗ = (C∗
1 , C∗

2 , C∗
3 ). Recall-

ing the definitions of TRE-PC-KEM.DecapRK and TRE-PC-KEM.DecapPK from the

previous section, the attacker wins the game only if O1 6= O2, where

O1 = H3(X1,X
′
2), O2 = H3(X1,X

′′
2 ), X1 = skrC

∗
1 , X ′

2 = ê(S, VC∗),

X ′′
2 = ê(C∗

2 , TSt∗), C∗
3 = H2(C

∗
2 ,X1,X

′
2), and C∗

3 = H2(C
∗
2 ,X1,X

′′
2 ).

If the attacker wins, then it is staightforward to verify that X ′
2 6= X ′′

2 ; otherwise

O1 = O2. Hence, if the attacker wins the game then this implies that the attacker

can find a collision for H2, where the two inputs are (C∗
2 ,X1,X

′
2) and (C∗

2 ,X1,X
′′
2 ).

Under the assumption that H2 is collision-resistant, it follows that the attacker can

only win the game with a negligible probability. �

Theorem 33 The TRE-PC KEM is IND-TR-KEM-CCATS secure in the random

oracle model under the CDH assumption.

Proof. We prove the theorem using a sequence of games.

Game0: this game is a legitimate IND-TR-KEM-CCATS attack game, where the

hash functions are random oracles.

1. Game setup: The challenger first runs TRE-PC-KEM.Setup to generate mk = s

and param = (G1, G2, q, P, ê, S,H1,H2,H3), and then runs TRE-PC-KEM.Gen

to generate a public/private key pair (pkr, skr). The challenger simulates the

random oracle H1 as follows. The challenger maintains a list of vectors, each

of them containing a request message, an element of G1 (the hash-code for

this message), and an element of Zq. After receiving a request message, the

challenger first checks its list to see whether the request message is already in

the list. If the check succeeds, the challenger returns the stored element of G1;

otherwise, the challenger returns yP , where y is a randomly chosen element of

Zq, and stores a new vector in the list. H2 and H3 are simulated in a similar

way.
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2. Phase 1: The attacker A1 executes with input (mk, pkr, param). A1 has access

to the following decapsulation oracles:

• TRE-PC-KEM.DecapRK oracle on the input (C, VC), where C = (C1, C2, C3).

The challenger returns TRE-PC-KEM.DecapRK(C, VC , skr).

• TRE-PC-KEM.DecapPK oracle on the input (C, t), where C = (C1, C2, C3).

Since the challenger knows s, it computes TSt = sH1(t) and returns

TRE-PC-KEM.DecapPK(C, TSt, skr).

At some point, A1 terminates by outputting a release time t∗ and some state

information state.

3. Challenge: The challenger generates the challenge as follows:

(a) Randomly choose r∗ and v∗ from Zq, and K1 from {0, 1}KeyLen(ℓ),

(b) Compute Qt∗ = H1(t
∗), C∗

1 = r∗P , C∗
2 = v∗P , X∗

1 = r∗ · pkr, X∗
2 =

ê(v∗S,Qt∗), C∗
3 = H2(C

∗
2 ,X∗

1 ,X∗
2 ), and K0 = H3(X

∗
1 ,X∗

2 ),

(c) Return (Kb, C
∗, VC∗), where b is randomly chosen from {0, 1}, C∗ =

(C∗
1 , C∗

2 , C∗
3 ), and VC∗ = v∗Qt∗ .

4. Phase 2: The attacker A2 executes with input (Kb, C
∗, VC∗ , state). A2 has

access to the same types of oracle as A1, but is not permitted to make a

TRE-PC-KEM.DecapPK query on the input (C∗, t∗) and a TRE-PC-KEM.DecapRK

query on the input (C∗, VC∗). A2 terminates by outputting a guessing bit b′.

Game1: this game is identical to Game0 except that the decapsulation queries are

answered as follows.

• On receiving a TRE-PC-KEM.DecapRK(C, VC) query, where C = (C1, C2, C3),

the challenger computes the response as follows.

1. Check whether there is an input (z1, z2, z3) to H2 satisfying z1 = C2,

ê(C1, pkr) = ê(z2, P ), and z3 = ê(S, VC),

2. If the check fails, return ⊥; otherwise, set X1 = z2,X2 = z3 and continue

to check whether C3 = H2(C2,X1,X2) holds.

3. If the check succeeds, return K = H3(X1,X2); otherwise, return ⊥.
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• On receiving a TRE-PC-KEM.DecapPK(C, t) query, where C = (C1, C2, C3),

the challenger computes the response as follows.

1. Check whether there is an input (z1, z2, z3) to H2 satisfying z1 = C2,

ê(C1, pkr) = ê(z2, P ), and z3 = ê(C2, TSt),

2. If the check fails, return ⊥; otherwise, set X1 = z2,X2 = z3 and continue

to check whether C3 = H2(C2,X1,X2) holds.

3. If the check succeeds, return K = H3(X1,X2); otherwise, return ⊥.

Let E0 and E1 denote the events that b = b′ at the end of Game0 and Game1,

respectively. We next show that |Pr[E0]−Pr[E1]| is negligible in the random oracle

model.

Let F1 be the event that the challenger answers a TRE-PC-KEM.DecapRK query on

the input (C, VC ) with a valid message, where C = (C1, C2, C3) and the attacker

makes no H2 query on the input (z1, z2, z3) satisfying z1 = C2, ê(C1, pkr) = ê(z2, P ),

and z3 = ê(S, VC). Recall that, for a valid query, either C 6= C∗ or VC 6= VC∗ should

hold; therefore, at least one of the following inequalities should hold: C1 6= C∗
1 ,

C2 6= C∗
2 , C3 6= C∗

3 , and VC 6= VC∗ . Given a TRE-PC-KEM.DecapRK query with input

of (C, VC ), where the attacker makes no H2 query on the input (z1, z2, z3) satisfying

z1 = C2, ê(C1, pkr) = ê(z2, P ), and z3 = ê(S, VC), and given the assumption that

H2 is a random oracle, we can deduce the following:

1. If C1 6= C∗
1 , then X1 6= X∗

1 and C3 = H2(C2,X1,X2) occurs with probability

1
2ℓ .

2. If C2 6= C∗
2 , then C3 = H2(C2,X1,X2) occurs with probability 1

2ℓ .

3. If VC 6= VC∗ , then X2 6= X∗
2 and C3 = H2(C2,X1,X2) occurs with probability

1
2ℓ .

4. If C3 6= C∗
3 , then C3 = H2(C2,X1,X2) occurs with probability at most 1

2ℓ .

As a result, in the presence of a polynomial-time attacker, F1 occurs with a negligible

probability in Game0, i.e. Pr[F1] is negligible.
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Let F2 be the event that the challenger answers a TRE-PC-KEM.DecapPK query with

input of (C, t) with a valid message, where C = (C1, C2, C3) and the attacker makes

no H2 query on the input (z1, z2, z3) satisfying z1 = C2, ê(C1, pkr) = ê(z2, P ), and

z3 = ê(C2, TSt). For similar reasons, Pr[F2] is negligible in Game0.

It is clear that Game0 and Game1 perform identically unless one of the events F1 or

F2 occurs; therefore, Pr[E0|¬(F1∨F2)] = Pr[E1|¬(F1∨F2)]. We thus have |Pr[E0]−

Pr[E1]| ≤ Pr[F1 ∨F2]. Since Pr[F1] and Pr[F2] are both negligible, |Pr[E0]−Pr[E1]|

is also negligible.

Game2: this game is identical to Game1, except that the challenger randomly selects

C∗
3 from {0, 1}ℓ and K0 from {0, 1}KeyLen(ℓ) instead of computing C∗

3 = H2(C
∗
2 ,X∗

1 ,X∗
2 )

and K0 = H3(X
∗
1 ,X∗

2 ). Let E2 be the event that b = b′ at the end of Game2.

We next show that |Pr[E1]−Pr[E2]| is negligible in the random oracle model under

the CDH assumption..

It is clear that Game2 and Game1 perform identically unless H2 is queried with

input (C∗
2 , r∗ · pkr, ê(v

∗S,Qt∗)) or H3 is queried with input (r∗ · pkr, ê(v
∗S,Qt∗)).

Let F3 denote that the event that either of these events occurs. We now construct

an algorithm A′, which makes use of an IND-TR-KEM-CCATS attacker A as a

subroutine, that solves the CDH problem with a non-negligible probability if Pr[F3]

is non-negligible.

The attacker A′ plays the same role as the challenger plays in Game2:

1. A′ receives the parameters (G1, G2, q, ê) and a v-CDH challenge (P, aP, bP ),

and generates (H1,H2,H3), a public/private key pair (S, s), and sets pkr =

aP . A′ sets param = (G1, G2, q, P, ê, S,H1,H2,H3), and simulates the random

oracles in the same way as the challenger in Game2.

2. A′ runs A1 on the input of (mk, pkr, param) and answers A1’s decapsulation

queries as follows.

• On receiving a TRE-PC-KEM.DecapRK(C, VC ) query, where C = (C1, C2, C3),

the challenger computes the response as follows.
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(a) Check whether there is an input (z1, z2, z3) to H2 satisfying z1 = C2,

ê(C1, pkr) = ê(z2, P ), and z3 = ê(S, VC),

(b) If the check fails, return ⊥; otherwise, set X1 = z2,X2 = z3 and

continue to check whether C3 = H2(C2,X1,X2) holds.

(c) If the check succeeds, return K = H3(X1,X2); otherwise, return ⊥.

• On receiving a TRE-PC-KEM.DecapPK(C, t) query, where C = (C1, C2, C3),

the challenger computes the response as follows.

(a) Check whether there is an input (z1, z2, z3) to H2 satisfying z1 = C2,

ê(C1, pkr) = ê(z2, P ), and z3 = ê(C2, TSt),

(b) If the check fails, return ⊥; otherwise, set X1 = z2,X2 = z3 and

continue to check whether C3 = H2(C2,X1,X2) holds.

(c) If the check succeeds, return K = H3(X1,X2); otherwise, return ⊥.

3. Suppose A1 terminates by outputting a release time t∗ and some state infor-

mation state. A′ computes the challenge as follows:

(a) Randomly choose v∗ from Zq, C∗
3 from {0, 1}ℓ, and K0 and K1 from

{0, 1}KeyLen(ℓ).

(b) Set C∗
1 = bP and compute Qt∗ = H1(t

∗), C∗
2 = v∗P , and X∗

2 = ê(v∗S,Qt∗).

(c) Return (Kb, C
∗, VC∗), where b is randomly chosen from {0, 1}, C∗ =

(C∗
1 , C∗

2 , C∗
3 ), and VC∗ = vQt∗ .

4. A′ runsA2 on the input of (Kb, C
∗, VC∗ , state), and answersA2’s decapsulation

queries in the same way as in step 2.

5. After A2 terminates, A′ first randomly selects an input from the input set

composed of the following two types of inputs: the inputs to H2 in the form

(C∗
2 , ?, ê(v∗S,Qt∗)), and the inputs to H3 in the form (?, ê(v∗S,Qt∗)), where

? can be any element from G1. If an input to H2, say (C∗
2 , w′

1, ê(v
∗S,Qt∗), is

chosen, A′ sets λ = w′
1; otherwise, if an input to H3, say (w′

2, ê(v
∗S,Qt∗)) is

chosen, then λ = w′
2. A

′ terminates by outputting λ.

It is straightforward to verify that the algorithm A′ faithfully plays the role that the

challenger will play in Game2. Suppose n1 oracle queries have been made to H2 and

n2 oracle queries have been made to H3, where the queries are in the form specified

in step 5 of A′. Note that the queries to H3 are made either directly by A or by A′
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in simulating the decapsulation oracles; however, the queries to H2 are all made by

A. It follows that Pr[λ = abP ] = 1
n1+n2

Pr[F3], and hence Pr[F3] is negligible from

the CDH assumption. Next observe that Game2 and Game1 will perform identically

unless the event F3 occurs. We then have |Pr[E1] − Pr[E2]| ≤ Pr[F3], and hence

|Pr[E1]− Pr[E2]| is negligible.

It is straightforward to verify that |Pr[E2] −
1
2 | = 0 in Game2, because both K0

and K1 are randomly chosen. Therefore, it follows that |Pr[E0]−Pr[E1]|, |Pr[E1]−

Pr[E2]|, and |Pr[E2]−
1
2 | are all negligible. As a result, |Pr[E0]−

1
2 | is also negligible,

and the theorem follows. �

Theorem 34 The TRE-PC KEM is IND-TR-KEM-CPAIS secure in the random

oracle model under the BDH assumption.

Proof. We prove the theorem using a sequence of games.

Game0: this game is a legitimate IND-TR-KEM-CPAIS attack game, where hash

functions are modelled as random oracles.

1. Game setup: The challenger first runs TRE-PC-KEM.Setup to generate mk = s

and param = (G1, G2, q, P, ê, S,H1,H2,H3), and then runs TRE-PC-KEM.Gen

to generate a public/private key pair (pkr, skr). The challenger simulates the

random oracle H1 as follows: The challenger maintains a list of vectors, each

of them containing a request message, an element of G1 (the hash-code for

this message), and an element of Zq. After receiving a request message, the

challenger first checks its list to see whether the request message is already in

the list. If the check succeeds, the challenger returns the stored element of G1;

otherwise, the challenger returns yP , where y a randomly chosen element of

Zq, and stores the new vector in the list. H2 and H3 are simulated in a similar

way.

2. Phase 1: The attacker executes A1 on the input (pkr, skr, param). If A1 makes

an extraction oracle query for a time t, the challenger returns the timestamp
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TSt to A1. At some point, A1 terminates by outputting a release time t∗,

which is larger than all the inputs to the TRE-PC-KEM.ExtTS oracle, and some

state information state.

3. Challenge: The challenger generates the challenge as follows.

(a) Randomly choose r∗ and v∗ from Zq, and K1 from {0, 1}KeyLen(ℓ),

(b) Compute Qt∗ = H1(t
∗), C∗

1 = r∗P , C∗
2 = v∗P , X∗

1 = r∗ · pkr, X∗
2 =

ê(v∗S,Qt∗), C∗
3 = H2(C

∗
2 ,X∗

1 ,X∗
2 ), and K0 = H3(X

∗
1 ,X∗

2 ),

(c) Return (Kb, C
∗), where b is randomly chosen from {0, 1} and C∗ =

(C∗
1 , C∗

2 , C∗
3 ).

4. Phase 2: The attacker executes A2 on the input (Kb, C
∗, state). IfA2 makes an

extraction oracle query for a time t < t∗, the challenger returns the timestamp

TSt to A2. A2 eventually terminates by outputting a bit b′.

Let E0 be the event that b = b′ at the end of the game.

Game1: this game is identical to Game0, except that the challenger randomly selects

C∗
3 from {0, 1}ℓ, and K0 from {0, 1}KeyLen(ℓ) instead of computing C∗

3 = H2(C
∗
2 ,X∗

1 ,X∗
2 )

and K0 = H3(X
∗
1 ,X∗

2 ). Let E1 be the event that b = b′ at the end of Game1. We

next show that |Pr[E0]−Pr[E1]| is negligible in the random oracle model under the

BDH assumption.

It is clear that Game1 and Game0 perform identically unless H2 is queried on the input

of (C∗
2 , r∗ · pkr, ê(v

∗S,Qt∗)) or H3 is queried on the input of (r∗ · pkr, ê(v
∗S,Qt∗)).

Let F1 denote the event that either of the these events occurs. We now construct

an algorithm A′, which makes use of an IND-TR-KEM-CPAIS attacker A as a

subroutine, that solves the BDH problem with a non-negligible probability if Pr[F1]

is non-negligible.

Without loss of generality, we assume that the total number of H1 queries A1 may

make is bounded by n1 (n1 ≥ 1)1. Note that these queries do not include those

which are indirectly caused by the TRE-PC-KEM.ExtTS queries. The attacker A′

1For simplicity of description, it is reasonable to require that A1 query H1 only once with the
same input.
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is implemented to play the same role as the challenger in Game1 and is defined as

follows:

1. A′ receives the parameters (G1, G2, q, ê) and a BDH challenge (P, aP, bP, cP ),

and generates (H1,H2,H3), a public/private key pair (S, s) and sets S = aP .

A′ sets param = (G1, G2, q, P, S, ê,H1,H2,H3), and simulates H1, H2, and H3

in the same way as the challenger does in Game1. In addition, A′ randomly

selects j ∈ {1, 2, · · · , n1 + 1}.

2. A′ runs A1 on the input of (pkr, skr, param). If 1 ≤ j ≤ n1, A
′ answers A1’s j-

th query H1(t
′) with cP , and stores (t′, cP, null). IfA1 makes a TRE-PC-KEM.ExtTS

query for a time t, A′ first checks whether t 6= t′. If the check succeeds, A′

computes and returns the timestamp TSt to A1; otherwise, A′ terminates as

a failure. Note that if t 6= t′ then H1(t) = yP for some y, where y is known to

A′. Therefore, A′ can compute TSt = yaP , although a is unknown.

3. Suppose A1 terminates by outputting a release time t∗ and some state infor-

mation state. If one of the following events occurs, A1 terminates as a failure.

(a) t∗ has been queried to H1 as the i-th query and i 6= j,

(b) t∗ has not been queried to H1 and 1 ≤ j ≤ n1.

If j = n1 + 1 and t∗ has not been queried to H1, A
′ sets H1(t

∗) = cP . A′ then

computes the challenge as follows:

(a) Randomly choose r∗ from Zq, C∗
3 from {0, 1}ℓ, and K0 and K1 from

{0, 1}KeyLen(ℓ).

(b) Compute C∗
1 = r∗P and set C∗

2 = bP .

(c) Return (Kb, C
∗), where b is randomly chosen from {0, 1} and C∗ =

(C∗
1 , C∗

2 , C∗
3 ).

4. A′ runs A2 on the input of (Kb, C
∗, state). If A2 makes a TRE-PC-KEM.ExtTS

query on the input t, A′ computes and returns the timestamp TSt.

5. After A2 terminates, A′ first randomly selects an input from the input set

which is composed of the following two types of inputs: the inputs to H2 in

the form (C∗
2 , r∗ · pkr, ?) and the inputs to H3 in the form (r∗ · pkr, ?), where ?

can be any element from G2. If an input to H2, say (C∗
2 , r∗ ·pkr, w

′
1), is chosen,
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A′ sets λ = w′
1; otherwise, if an input to H3, say (r∗ · pkr, w

′
2) is chosen then

λ = w′
2. A

′ terminates by outputting λ.

It is straightforward to verify that the probability that A′ successfully ends is 1
n1+1 ,

i.e. the probability that A′ does not terminate in step 3 is 1
n1+1 . If A′ successfully

ends, then it faithfully plays the role that the challenger will play in Game1. Suppose

n1 oracle queries have been made to H2 and n2 oracle queries have been made to

H3, where the queries are in the form specified in step 5 of A′. Note that these

queries are all made by A. Therefore, if A′ successfully ends, the probability that

λ = ê(P,P )abc holds is Pr[F1]
n2+n3

, so that the probability that A′ can compute ê(P,P )abc

is Pr[F1]
(n1+1)(n2+n3) . From the BDH assumption, we can deduce that Pr[F1] is negligible.

Recall that Game1 and Game0 perform identically unless the event F1 occurs. We

then have |Pr[E0]− Pr[E1]| ≤ Pr[F1], and |Pr[E0]− Pr[E1]| is negligible.

It is straightforward to verify that |Pr[E1]−
1
2 | = 0 in Game1 because both K0 and K1

are randomly chosen. Therefore, it follows that |Pr[E0]−Pr[E1]| and |Pr[E1]−
1
2 | are

both negligible. Therefore, |Pr[E0]−
1
2 | is also negligible, and the theorem follows. �

9.3 Hybrid Construction of TRE-PC Schemes

In this section we first propose a hybrid method to build a TRE-PC scheme using a

TRE-PC KEM and a DEM, and then discuss the security of the resulting TRE-PC

scheme.

9.3.1 The Construction

The polynomial-time algorithms of the TRE-PC scheme are as follows.

• The Setup algorithm is the same as the TRE-PC-KEM.Setup algorithm.

• The GenU algorithm is the same as the TRE-PC-KEM.Gen algorithm.
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• The ExtTS algorithm is the same as the TRE-PC-KEM.ExtTS algorithm.

• The Enc algorithm: Taking a message m, a release time t, and the receiver’s

public key pkr as input, this algorithm returns a ciphertext C = (C1, C2) and

a pre-open key VC , where

(K,C1, VC) = TRE-PC-KEM.Encap(t, pkr), and C2 = DEM.Enc(m,K).

• The DecRK algorithm: Taking a ciphertext C = (C1, C2), a pre-open key VC ,

and the private key skr as input, this algorithm first computes K, where

K = TRE-PC-KEM.DecapRK(C1, VC , skr).

If K =⊥, the algorithm returns ⊥. Otherwise, it returns m, where

m = DEM.Dec(C2,K),

• The DecPK algorithm: Taking a ciphertext C = (C1, C2), the timestamp TSt,

and the private key skr as input, this algorithm first computes K, where

K = TRE-PC-KEM.DecapPK(C1, TSt, skr).

If K =⊥, the algorithm returns ⊥. Otherwise, it returns m, where

m = DEM.Dec(C2,K),

9.3.2 Security Results

It is straightforward to verify that if the TRE-PC KEM and DEM are sound then

the TRE-PC scheme is also sound. In the following security analysis, we make the

implicit assumption that the TRE-PC KEM and DEM are sound.

Theorem 35 If the TRE-PC KEM is binding, then the TRE-PC scheme is binding.

Proof. Suppose A is a binding attacker for the TRE-PC scheme. We construct a

binding attacker A′ for the TRE-PC KEM which makes use of A as a subroutine.

The attacker A′ is defined as follows:

228



9.3 Hybrid Construction of TRE-PC Schemes

1. A′ receives the public key pkr and the public parameters param as input, and

runs A on the input (pkr, param).

• If Amakes an extraction oracle query for a time t, then A′ makes a similar

query to its own extraction oracle and returns the timestamp TSt to A.

• If A queries the DecRK oracle with the ciphertext C = (C1, C2) and the

pre-open key VC , then A′ queries its TRE-PC-KEM.DecapRK oracle on

(C1, VC). If it receives ⊥, A′ returns ⊥. Otherwise, if it receives K, A′

returns DEM.Dec(C2,K) to A.

• If A queries the DecPK oracle with the ciphertext C = (C1, C2) and for

the time t, then A′ queries its TRE-PC-KEM.DecapPK oracle on (C1, t).

If it receives ⊥, A′ returns ⊥. Otherwise, if it receives K, A′ returns

DEM.Dec(C2,K) to A.

A terminates by outputting (C∗, VC∗ , t
∗), where C∗ = (C∗

1 , C∗
2 ).

2. A′ terminates by outputting (C∗
1 , VC∗ , t

∗).

It is straightforward to verify that A′ is a legitimate binding attacker for the TRE-

PC KEM and provides perfect simulation for the oracles that A may query. Let

E1 be the event that, given (C∗, VC∗ , t
∗), the decryption algorithms of the TRE-PC

scheme produce different non-error messages, i.e. O1 6=⊥, O2 6=⊥, and O1 6= O2,

where

O1 = DecRK(C∗, VC∗ , skr) and O2 = DecPK(C∗, TSt∗ , skr).

Let E2 be the event that given (C∗
1 , VC∗ , t

∗) the decapsulation algorithms of the TRE-

PC KEM produce different non-error messages, i.e. K1 6=⊥, K2 6=⊥, and K1 6= K2,

where

K1 = TRE-PC-KEM.DecapRK(C∗
1 , VC∗ , skr),

K2 = TRE-PC-KEM.DecapPK(C∗
1 , TSt∗ , skr).

From the definition of the TRE-PC scheme, it is clear that Pr[E1] ≤ Pr[E2]. Since

the TRE-PC KEM is binding, Pr[E2] is negligible. As result, Pr[E1] is also negligible

and the theorem follows. �
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Theorem 36 If the TRE-PC KEM is IND-TR-KEM-CCAOS secure and the DEM

is IND-CCA2 secure, then the TRE-PC scheme is IND-TR-CCAOS secure.

Proof. We prove the theorem using a sequence of games.

Game0: this game is a legitimate IND-TR-CCAOS attack game, defined as follows.

1. Game Setup: The challenger runs Setup to generate the time server’s master

key mk and the public parameters param. The challenger also runs GenU to

generate a public/private key pair (pkr, skr).

2. Phase 1: The attacker executes A1 on the input (pkr, param). A1 has access

to the following oracles:

• An oracle for ExtTS, which takes as input a release time t, and returns

ExtTS(mk, t).

• An oracle for DecRK, which takes as input a ciphertext C and a pre-open

key VC , and returns DecRK(C, VC , skr).

• An oracle for DecPK, which takes as input a ciphertext C and a release

time t, and returns DecPK(C, TSt, skr).

A1 terminates by outputting two equal length message m0 and m1, a release

time t∗ and some state information state.

3. Challenge: The challenger returns C∗ = (C∗
1 , C∗

2 ) and a pre-open key VC∗ ,

which are computed in two steps:

(a) Compute (K∗, C∗
1 , VC∗) = TRE-PC-KEM.Encap(t∗, pkr),

(b) Compute C∗
2 = DEM.Enc(mb,K

∗).

4. Phase 2: The attacker executes A2 on the input (C∗, VC∗ , state). A2 has

access to the same types of oracle as A1. However, A2 may not query the

DecRK oracle on the input (C∗, VC∗) or the DecPK oracle on the input (C∗, t∗).

A2 terminates by outputting a guess bit b′.

Let E0 be the event that b = b′ at the end of the game.
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Game1: this game is identical to Game0, except for the following.

1. In the Challenge phase, the challenger returns C∗ = (C∗
1 , C∗

2 ) and a pre-open

key VC∗ , which are computed as follows:

(a) Compute (K∗, C∗
1 , VC∗) = TRE-PC-KEM.Encap(t∗, pkr),

(b) Randomly select K† ∈ {0, 1}KeyLen(ℓ), and compute C∗
2 = DEM.Enc(mb,K

†).

2. In Phase 2, on receiving a DecRK query on the input (C, VC), where C =

(C∗
1 , C2), C2 6= C∗

2 , and VC = VC∗ , the challenger returns DEM.Dec(C2,K
†).

3. In Phase 2, on receiving a DecPK query on the input (C, t), where C = (C∗
1 , C2),

C2 6= C∗
2 , and t = t∗, the challenger returns DEM.Dec(C2,K

†).

Let E1 be the event that b = b′ at the end of Game1. We next prove the following

claims.

Claim 7 |Pr[E0] − Pr[E1]| is negligible if the TRE-PC KEM is IND-TR-KEM-

CCAOS secure.

Proof. We construct an IND-TR-KEM-CCAOS attacker A′ = (A′
1,A

′
2) for the TRE-

PC KEM, which makes use of an IND-TR-CCAOS attacker A as a subroutine, and

has advantage 1
2 |Pr[E0]−Pr[E1]|. As a result we can conclude that |Pr[E0]−Pr[E1]|

is negligible, since the TRE-PC KEM is IND-TR-KEM-CCAOS secure.

A′ takes (pkr, param), which is generated by the challenger, as input and consists

of the following sub-algorithms:

1. The sub-algorithm A′
1 executes A1 with input (pkr, param) and answers A1’s

oracle queries as follows.

• If A1 makes an extraction oracle query for a time t, then A′
1 makes a

similar query to its own extraction oracle and returns the timestamp TSt

it receives from the extraction oracle to A1.

231



9.3 Hybrid Construction of TRE-PC Schemes

• If A1 queries the DecRK oracle with the ciphertext C = (C1, C2) and the

pre-open key VC , then A′
1 queries its TRE-PC-KEM.DecapRK oracle on

(C1, VC). If it receives ⊥, A′
1 returns ⊥. Otherwise, if it receives K, A′

1

returns DEM.Dec(C2,K) to A1.

• If A1 queries the DecPK oracle with the ciphertext C = (C1, C2) and for

the time t, then A′
1 queries its TRE-PC-KEM.DecapPK oracle on (C1, t).

If it receives ⊥, A′
1 returns ⊥. Otherwise, if it receives K, A′

1 returns

DEM.Dec(C2,K) to A1.

Suppose A1 terminates by outputting two equal length messages m0 and m1, a

release time t∗, and some state information state. A′
1 terminates by outputting

t∗, and the state information state′ = (state,m0,m1).

2. The sub-algorithm A′
2 takes (Kb, C

∗
1 , VC∗ , state′) as input, where (Kb, C

∗
1 , VC∗)

is the challenge for the TRE-PC KEM. A′
2 computes C∗

2 = DEM.Enc(md,Kb)

where d is randomly chosen from {0, 1}, and sets C∗ = (C∗
1 , C∗

2 ). A′
2 executes

A2 on the input (C∗, VC∗ , state) and answers A2’s oracle queries in the same

way as A′
1 except for the following two cases.

(a) If A2 queries the DecPK oracle on the input (C, VC), where C = (C∗
1 , C2),

C2 6= C∗
2 , and VC = VC∗ , then A′

2 returns DEM.Dec(C2,Kb).

(b) If A2 queries the DecPK oracle on the input (C, t), where C = (C∗
1 , C2),

C2 6= C∗
2 , and t = t∗, then A′

2 returns DEM.Dec(C2,Kb).

If A2 eventually terminates by outputting a guess bit d′, then A′
2 terminates

by outputting a guess bit b′, where b′ = 1 if d′ = d and b′ = 0 if d′ 6= d.

It is straightforward to verify that A′ is a legitimate IND-TR-KEM-CCAOS at-

tacker, and its advantage is 1
2 |Pr[b′ = 1|b = 0] − Pr[b′ = 1|b = 1]|. If b = 0,

A′ provides perfect simulation for the oracles that an IND-TR-CCAOS attacker

may query in Game0; otherwise A′ provides perfect simulation for the oracles that

such an attacker may query in Game1. Therefore, Pr[b′ = 1|b = 0] = Pr[E0],

Pr[b′ = 1|b = 1] = Pr[E1], and the claim follows. �

Claim 8 |Pr[E1]−
1
2 | is negligible if the DEM is IND-CCA2 secure.
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Proof. We construct an IND-CCA2 attacker A′ = (A′
1,A

′
2) for the DEM, which

makes use of an IND-TR-CCAOS attacker A as a subroutine, and has advantage

|Pr[E1] −
1
2 |. As a result, we can conclude that |Pr[E1] −

1
2 | is negligible, since

the DEM is IND-CCA2 secure. A′ takes ℓ as input, and consists of the following

sub-algorithms.

1. The sub-algorithm A′
1 takes ℓ as input, runs Setup to generate mk and param,

and runs GenU to generate the public/private key pair (pkr, skr). A
′
1 executes

A1 on the input (pkr, param) and answers A1’s oracle queries as follows.

• If A1 makes an extraction oracle query for a time t, then A′
1 computes

and returns the timestamp TSt to A1.

• If A1 queries the DecRK oracle with the ciphertext C = (C1, C2) and the

pre-open key VC , then A′
1 computes K = TRE-PC-KEM.DecapRK(C1, VC).

If K =⊥, A′
1 returns ⊥; otherwise, it returns DEM.Dec(C2,K) to A1.

• If A1 queries the DecPK oracle with the ciphertext C = (C1, C2) and the

time t, then A′
1 computes K = TRE-PC-KEM.DecapPK(C1, t). If K =⊥,

A′
1 returns ⊥; otherwise, it returns DEM.Dec(C2,K) to A1.

Suppose A1 terminates by outputting two equal length messages m0 and m1, a

release time t∗, and some state information state. A′
1 terminates by outputting

m0 and m1, and the state information state′ = (state, t∗).

2. The sub-algorithm A′
2 takes (C∗

2 , state′) as input, where C∗
2 is the challenge

for the DEM. A′
2 computes (K∗, C∗

1 , VC∗) = TRE-PC-KEM.Encap(t∗, pkr) and

sets C∗ = (C∗
1 , C∗

2 ). A′
2 executes A2 on the input (C∗, VC∗ , state) and answers

A2’s oracle queries in the same way as A′
1, except for the following two cases.

(a) If A2 queries the DecPK oracle on the input (C, VC), where C = (C∗
1 , C2),

C2 6= C∗
2 , and VC = VC∗ , A

′
2 queries its DEM.Dec oracle on the input C2

and sends the result to A2.

(b) If A2 queries the DecPK oracle on the input (C, t), where C = (C∗
1 , C2),

C2 6= C∗
2 , and t = t∗, A′

2 queries its DEM.Dec oracle on the input C2 and

sends the result to A2.

If A2 eventually terminates by outputting a bit b′, then A′
2 terminates by

outputting b′.
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It is straightforward to verify that A′ is a legitimate IND-CCA2 attacker, and pro-

vides perfect simulation for the oracles that A may query. A′’s advantage is equal to

A’s advantage in the game Game1, i.e. |Pr[E1]−
1
2 |. Since the DEM is IND-CCA2

secure, |Pr[E1]−
1
2 | is negligible, and the claim follows. �

From claims 4 and 5 we have that both |Pr[E0]−Pr[E1]| and |Pr[E1]−
1
2 | are neg-

ligible. As a result, |Pr[E0]−
1
2 | is also negligible, and the theorem follows. �

Using exactly the same techniques as those used in proving the previous theorem,

we can prove the following theorem regarding IND-TR-CCATS security.

Theorem 37 If the TRE-PC KEM is IND-TR-KEM-CCATS secure and the DEM

is IND-CCA2 secure, then the TRE-PC scheme is IND-TR-CCATS secure.

We next prove corresponding results regarding the IND-TR-CPAOS security of the

TRE-PC KEM.

Theorem 38 If the TRE-PC KEM is IND-TR-KEM-CPAOS secure and the DEM

is IND-CPA secure, then the TRE-PC scheme is IND-TR-CPAOS secure.

Proof. We prove the theorem using a sequence of games.

Game0: this game is a legitimate IND-TR-CPAOS attack game, defined as follows.

1. Game Setup: The challenger runs Setup to generate the time server’s master

key mk and the public parameters param. The challenger also runs GenU to

generate a public/private key pair (pkr, skr).

2. Phase 1: The attacker A1 executes with input (pkr, param). A1 has access

to an oracle for ExtTS, which takes as input a release time t, and returns

ExtTS(mk, t). A1 terminates by outputting two equal length message m0 and

m1, a release time t∗, and some state information state.
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3. Challenge: The challenger returns C∗ = (C∗
1 , C∗

2 ) and a pre-open key VC∗ ,

which are computed in two steps:

(a) Compute (K∗, C∗
1 , VC∗) = TRE-PC-KEM.Encap(t∗, pkr),

(b) Compute C∗
2 = DEM.Enc(mb,K

∗).

4. Phase 2: The attacker A2 executes with input (C∗, VC∗ , state). A2 also has

access to the ExtTS oracle. A2 eventually terminates by outputting a guess bit

b′.

Let E0 be the event that b = b′ at the end of the game.

Game1: this game is identical to Game0, except that, in the Challenge phase, the

challenger returns C∗ = (C∗
1 , C∗

2 ) and a pre-open key VC∗ , which are computed as

follows:

1. Compute (K∗, C∗
1 , VC∗) = TRE-PC-KEM.Encap(t∗, pkr),

2. Randomly select K† ∈ {0, 1}KeyLen(ℓ), and compute C∗
2 = DEM.Enc(mb,K

†).

Let E1 be the event that b = b′ at the end of Game1. We next prove the following

claims.

Claim 9 |Pr[E0] − Pr[E1]| is negligible if the TRE-PC KEM is IND-TR-KEM-

CPAOS secure.

Proof. We construct an IND-TR-KEM-CPAOS attacker A′ = (A′
1,A

′
2) for the TRE-

PC KEM, which makes use of an IND-TR-CPAOS attacker A as a subroutine, and

has advantage 1
2 |Pr[E0] − Pr[E1]|. We can thus conclude that |Pr[E0] − Pr[E1]| is

negligible, since the TRE-PC KEM is IND-TR-KEM-CPAOS secure.

A′ takes (pkr, param) as input and consists of the following sub-algorithms:

1. The sub-algorithm A′
1 executes A1 with input (pkr, param) and answers A1’s

extraction oracle query. On receiving an extraction query for a time t, A′
1
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makes a similar query to its own extraction oracle and returns the timestamp

TSt to A1. If A1 terminates by outputting two equal length messages m0 and

m1, a release time t∗, and some state information state, then A′
1 terminates

by outputting t∗, and the state information state′ = (state,m0,m1).

2. The sub-algorithm A′
2 takes (Kb, C

∗
1 , VC∗ , state′) as input, where (Kb, C

∗
1 , VC∗)

is the challenge for the TRE-PC KEM. A′
2 computes C∗

2 = DEM.Enc(md,Kb)

where d is randomly chosen from {0, 1}, and sets C∗ = (C∗
1 , C∗

2 ). A′
2 executes

A2 on the input (C∗, VC∗ , state) and answers A2’s oracle queries in the same

way as A′
1. If A2 eventually terminates by outputting a guessing bit d′, then

A′
2 terminates by outputting a guessing bit b′, where b′ = 1 if d′ = d and b′ = 0

if d′ 6= d.

It is straightforward to verify that A′ is a legitimate IND-TR-KEM-CPAOS at-

tacker and its advantage is 1
2 |Pr[b′ = 1|b = 0] − Pr[b′ = 1|b = 1]|. If b = 0,

A′ provides perfect simulation for the oracles that an IND-TR-CPAOS attacker

may query in Game0; otherwise A′ provides perfect simulation for the oracles that

such an attacker may query in Game1. Therefore, Pr[b′ = 1|b = 0] = Pr[E0],

Pr[b′ = 1|b = 1] = Pr[E1], and the claim follows. �

Claim 10 |Pr[E1]−
1
2 | is negligible if the DEM is IND-CPA secure.

Proof. We construct an IND-CPA attacker A′ = (A′
1,A

′
2) for the DEM, which

makes use of an IND-TR-CPAOS attacker A as a subroutine, and has advantage

|Pr[E1]−
1
2 |. We can thus conclude that |Pr[E1] −

1
2 | is negligible, since the DEM

is IND-CPA secure.

A′ takes ℓ as input and consists of the following sub-algorithms:

1. The sub-algorithm A′
1 takes ℓ as input, runs Setup to generate mk and param,

and runs GenU to generate the public/private key pair (pkr, skr). A
′
1 executes

A1 on the input (pkr, param). If A1 makes an extraction oracle query for

a time t, then A′
1 computes and returns the timestamp TSt to A1. If A1
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terminates by outputting two equal length messages m0 and m1, a release

time t∗, and some state information state, then A′
1 terminates by outputting

m0 and m1, and the state information state′ = (state, t∗).

2. The sub-algorithm A′
2 takes (C∗

2 , state′) as input, where C∗
2 is the challenge for

the DEM. A′
2 computes (K∗, C∗

1 , VC∗) = TRE-PC-KEM.Encap(t∗, pkr) and sets

C∗ = (C∗
1 , C∗

2 ). A′
2 executes A2 on the input (C∗, VC∗ , state), and answers

A2’s oracle queries in the same way as A′
1. If A2 eventually terminates by

outputting a bit b′, then A′
2 terminates by outputting b′.

It is straightforward to verify that A′ is a legitimate IND-CPA attacker for the DEM

and provides perfect simulation for the oracles that A may query. A′’s advantage

is equal to A’s advantage in Game1, i.e. |Pr[E1]−
1
2 |. Since the DEM is IND-CPA

secure, |Pr[E1]−
1
2 | is negligible, and the claim follows. �

From claims 6 and 7 we have that both |Pr[E0]−Pr[E1]| and |Pr[E1]−
1
2 | are neg-

ligible. As a result, |Pr[E0]−
1
2 | is also negligible and the theorem follows. �

Using exactly the same techniques as those used in proving the previous theorem,

we can prove the the following theorem regarding IND-TR-CPATS security.

Theorem 39 If the TRE-PC KEM is IND-TR-KEM-CPATS secure and the DEM

is IND-CPA secure, then the TRE-PC scheme is IND-TR-CPATS secure.

We next prove corresponding results regarding the IND-TR-CPAIS security of the

TRE-PC-KEM.

Theorem 40 If the TRE-PC KEM is IND-TR-KEM-CPAIS secure and the DEM

is IND-CPA secure, then the TRE-PC scheme is IND-TR-CPAIS secure.

Proof. We prove the theorem using a sequence of games.
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Game0: this game is a legitimate IND-TR-CPAIS attack game, defined as follows.

1. Game Setup: The challenger runs Setup to generate the time server’s master

key mk and the public parameters param. The challenger also runs GenU to

generate a public/private key pair (pkr, skr).

2. Phase 1: The attacker executes A1 on the input (pkr, skr, param). A1 has

access to the ExtTS oracle, which takes as input a release time t, and returns

ExtTS(mk, t). A1 terminates by outputting two equal length message m0 and

m1, a release time t∗, which is larger than the the inputs to the ExtTS oracle,

and some state information state.

3. Challenge: The challenger returns C∗ = (C∗
1 , C∗

2 ) which is computed as follows:

(a) compute (K∗, C∗
1 , VC∗) = TRE-PC-KEM.Encap(t∗, pkr),

(b) compute C∗
2 = DEM.Enc(mb,K

∗).

4. Phase 2: The attacker executes A2 on the input (C∗, state). A2 has access to

the ExtTS oracle on any input t < t∗. A2 eventually terminates by outputting

a guessing bit b′.

Let E0 be the event that b = b′ at the end of the game.

Game1: this game is identical to Game0, except that, in the Challenge phase, the

challenger returns C∗ = (C∗
1 , C∗

2 ) which is computed as follows:

1. compute (K∗, C∗
1 , VC∗) = TRE-PC-KEM.Encap(t∗, pkr),

2. randomly select K† ∈ {0, 1}KeyLen(ℓ), compute C∗
2 = DEM.Enc(mb,K

†).

Let E1 be the event that b = b′ at the end of Game1. We next prove the following

claims.

Claim 11 |Pr[E0] − Pr[E1]| is negligible if the TRE-PC KEM is IND-TR-KEM-

CPAIS secure.
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Proof. We construct an IND-TR-KEM-CPAIS attacker A′ = (A′
1,A

′
2) for the TRE-

PC KEM, which makes use of an IND-TR-CPAIS attacker A as a subroutine, and

has advantage 1
2 |Pr[E0] − Pr[E1]|. We thus can conclude that |Pr[E0] − Pr[E1]| is

negligible as the TRE-PC KEM is IND-TR-KEM-CPAIS secure.

A′ takes (pkr, skr, param) as input and consists of the following sub-algorithms:

1. The sub-algorithm A′
1 executes A1 on the input (pkr, skr, param) and answers

A1’s extraction oracle query. On receiving an extraction query for a time t, A′
1

makes a similar query to its own extraction oracle and returns the timestamp

TSt to A1.

If A1 terminates by outputting two equal length messages m0 and m1, a release

time t∗, and some state information state, then A′
1 terminates by outputting

t∗, and the state information state′ = (state,m0,m1).

2. The sub-algorithm A′
2 takes (Kb, C

∗
1 , state′) as input, where (Kb, C

∗
1 ) is the

challenge for the TRE-PC KEM. A′
2 computes C∗

2 = DEM.Enc(md,Kb) where

d is randomly chosen from {0, 1}, and sets C∗ = (C∗
1 , C∗

2 ). A′
2 executes A2 on

the input (C∗, state) and answers A2’s oracle queries in the same way as A′
1. If

A2 eventually terminates by outputting a guessing bit d′, then A′
2 terminates

by outputting a guessing bit b′, where b′ = 1 if d′ = d and b′ = 0 if d′ 6= d.

It is straightforward to verify that A′ is a legitimate IND-TR-KEM-CPAIS at-

tacker and its advantage is 1
2 |Pr[b′ = 1|b = 0] − Pr[b′ = 1|b = 1]|. If b = 0,

A′ provides perfect simulation for the oracles that an IND-TR-CPAIS attacker A

may query in Game0; otherwise A′ provides perfect simulation for the oracles that

such an attacker may query in Game1. Therefore, Pr[b′ = 1|b = 0] = Pr[E0],

Pr[b′ = 1|b = 1] = Pr[E1], and the claim follows. �

Claim 12 |Pr[E1]−
1
2 | is negligible if the DEM is IND-CPA secure.

Proof. We construct an IND-CPA attacker A′ = (A′
1,A

′
2) for the DEM, which

makes use of an IND-TR-CPAIS attacker A as a subroutine, and has advantage
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|Pr[E1]−
1
2 |. We thus can conclude that |Pr[E1] −

1
2 | is negligible, since the DEM

is IND-CPA secure.

A′ takes ℓ as input and consists of the following sub-algorithms:

1. The sub-algorithm A′
1 takes ℓ as input, runs Setup to generate mk and param,

and runs GenU to generate the public/private key pair (pkr, skr). A
′
1 executes

A1 on the input (pkr, skr, param) and answers A1’s oracle queries in the same

way as the challenger will in Game1. If A1 terminates by outputting two equal

length messages m0 and m1, a release time t∗, and some state information

state, then A′
1 terminates by outputting m0 and m1, and the state information

state′ = (state, t∗).

2. The sub-algorithm A′
2 takes (C∗

2 , state′) as input, where C∗
2 is the challenge

for the DEM. A′
2 computes (K∗, C∗

1 , VC∗) = TRE-PC-KEM.Encap(t∗, pkr) and

sets C∗ = (C∗
1 , C∗

2 ). A′
2 executes A2 on the input (C∗, state) and answers A2’s

oracle queries in the same way as the challenger will in Game1. Suppose A2

eventually terminates by outputting a bit b′, then A′
2 terminates by outputting

b′.

It is straightforward to verify that A′ is a legitimate IND-CPA attacker for the DEM

and provides perfect simulation for the oracles that A may query. A′’s advantage

is equal to A’s advantage in the game Game1, i.e. |Pr[E1] −
1
2 |. Since the DEM is

IND-CPA secure, |Pr[E1]−
1
2 | is negligible, and the claim follows. �

From claims 8 and 9 we have that both |Pr[E0]−Pr[E1]| and |Pr[E1]−
1
2 | are neg-

ligible. As a result, |Pr[E0]−
1
2 | is also negligible, and the theorem follows. �

9.4 Conclusions

In this chapter we have proposed a new primitive known as a TRE-PC KEM, and

a hybrid paradigm using a TRE-PC KEM and a DEM for to construct TRE-PC
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schemes. We have also proposed an efficient instantiation of a TRE-PC KEM, which

shares some similarities with the Hwang-Yum-Lee schemes [124].

241



Chapter 10

Conclusions

Contents
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In this chapter we provide a brief summary of what we have achieved in this thesis.

We also outline some directions for further research.

10.1 Summary of Contributions

In the first part of the thesis we studied a number of aspects of key establishment

protocols, including security properties, security models, existing key establishment

protocols, and proposals for a new security model and protocols. This study has

revealed security vulnerabilities in a number of existing key establishment protocols,

some of which have been proved secure in well-known security models. This shows

that the existing security models do not cover all the potentially desirable security

properties. As a result, we have proposed a new security model that covers all the

security properties (we have described). We also proposed two compilers which are

more efficient than existing schemes, and a number of novel protocols.

In the second part of this thesis, we refined the Hwang-Yum-Lee model for TRE-PC

schemes. The refined security model covers a new security property, namely the

binding property, which we believe is a desirable property for TRE-PC schemes.

In addition, the refined model provides more appropriate definitions for semantic

security against four different type of attackers, and establishes the relationships
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between security notions. We have also proposed a hybrid paradigm for constructing

TRE-PC schemes based on a TRE-PC KEM and a DEM, and we have moreover

proposed an instantiation of a TRE-PC KEM. Although sharing some similarities

with the scheme of Hwang, Yum and Lee, our instantiation is more efficient than

this latter scheme.

10.2 Future Research Directions

Although much work has been done on key establishment, there are still many in-

teresting open research questions. One is to understand the security properties that

may be required of key establishment protocols, especially in a group environment

when a dishonest partner exists. Another possible direction is to find new ways to

construct key establishment protocols. In order to achieve forward secrecy, most

existing protocols employ a Diffie-Hellman style key agreement process; it would be

interesting to investigate other structures that can be used to achieve this desirable

property.

Since TRE-PC schemes can achieve a number of desirable properties such as binding,

it would be interesting to investigate the application of such schemes in constructing

large security systems.
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