On the Relation Between the Mutant Strategy and the Normal Selection Strategy in Gröbner Basis Algorithms

Martin Albrecht\(^1\), Carlos Cid\(^2\), Jean-Charles Faugère\(^1\), and Ludovic Perret\(^1\)

\(^1\) INRIA, Paris-Rocquencourt Center, SALSA Project
UPMC Univ Paris 06, UMR 7606, LIP6, F-75005, Paris, France
CNRS, UMR 7606, LIP6, F-75005, Paris, France
malb@lip6.fr, jean-charles.faugere@inria.fr, ludovic.perret@lip6.fr

\(^2\) Information Security Group, Royal Holloway, University of London, UK
carlos.cid@rhul.ac.uk

Abstract. The computation of Gröbner bases remains one of the most powerful methods for tackling the Polynomial System Solving (PoSSo) problem. The most efficient known algorithms reduce the Gröbner basis computation to Gaussian eliminations on several matrices. However, several degrees of freedom are available to generate these matrices. It is well known that the particular strategies used can drastically affect the efficiency of the computations. In this work we investigate a recently-proposed strategy, the so-called “Mutant strategy”, on which a new family of algorithms is based (MXL, MXL\(^2\) and MXL\(^3\)). By studying and describing the algorithms based on Gröbner basis concepts, we demonstrate that the Mutant strategy can be understood to be equivalent to the classical Normal Selection strategy currently used in Gröbner basis algorithms. Furthermore, we show that the “partial enlargement” technique can be understood as a strategy for restricting the number of S-polynomials considered in an iteration of the \(F_4\) Gröbner basis algorithm, while the new termination criterion used in MXL\(^3\) does not lead to termination at a lower degree than the classical Gebauer-Möller installation of Buchberger’s criteria. We claim that our results map all novel concepts from the MXL family of algorithms to their well-known Gröbner basis equivalents. Using previous results that had shown the relation between the original XL algorithm and \(F_4\), we conclude that the MXL family of algorithms can be fundamentally reduced to redundant variants of \(F_4\).

1 Introduction

Solving systems of multivariate polynomial equations is a fundamental problem arising on a variety of scientific fields, such as cryptography, robotics, biology, error correcting codes, signal theory, among others. One of the most popular and powerful methods for solving systems of equations is the computation of Gröbner bases. A Gröbner basis is a particular set of generators of an ideal in the polynomial ring. Such basis can be used to find the solutions of the system of equations associated with the ideal (i.e. the corresponding variety). The concept of Gröbner basis and the first algorithm for their computation were introduced in Buchberger’s seminal work [8], giving rise in the past decades to an extraordinarily active area of research in computer algebra.

Although Buchberger’s original proposal provided a powerful algorithmic tool for solving systems of equations, it was not particularly suitable for solving large systems arising in applications. Much work in subsequent decades concentrated on the investigation of algorithmic and implementation strategies to speed up the computation of Gröbner bases. The most efficient algorithms currently known, namely the \(F_4\) and \(F_5\) algorithms [20, 21], reduce the Gröbner basis computation to a sequence of Gaussian eliminations on several particular matrices. These methods were motivated by the seminal work of Lazard [27]. He first made the link between the computation of a Gröbner
basis of an ideal and linear algebra operations on the corresponding Macaulay matrix. We note however that in all linear algebra-based Gröbner basis methods, several degrees of freedom are available to the designer and implementer of the algorithm to generate these matrices, and it is well known that the particular strategies selected can drastically affect the efficiency and running times of the computations.

The past few years have witnessed a growing interest from the cryptographic community in computational algebra methods, in particular Gröbner basis algorithms. This was motivated by the proposal of algebraic attacks against stream ciphers [12] and block ciphers [16, 26, 1, 2], as well as by the proposal of several public-key schemes based on systems of multivariate polynomial equations (e.g. [33]), and the corresponding cryptanalysis using the $F_5$ algorithm [24, 34, 25, 22, 6]. One particular algorithm has received considerable attention from the cryptographic community: the XL algorithm [14] (and its several variants, e.g. [15, 16, 13]) was originally proposed to tackle problems arising specifically from cryptology. Although not strictly a Gröbner basis algorithm, it used a similar idea to the one proposed by Lazard: it constructs the Macaulay matrix up to some large degree $D$ and reduces it to obtain the solution of the system. The algorithm was shown to work only under particular conditions [18], while other flaws were also shown in other high-profile variants [11, 28]. Eventually, and perhaps unsurprisingly, it was shown that the XL algorithm could be described essentially as a redundant (and less efficient) variant of the $F_4$ algorithm [3].

Yet, despite of these well-known results, the XL algorithm continues somehow to attract the attention of researchers working in cryptography [10, 35]. Perhaps because of its simplicity, it remains an attractive method for one to propose improvements and/or implementation tricks and strategies. However, many of (if not all) these proposals can be eventually described based on well-known Gröbner bases concepts and implementation techniques, such as S-polynomials and their selection strategies. These are in turn unsurprisingly often already present in many efficient linear algebra-based Gröbner basis algorithms and implementations.

In this paper we investigate a prominent recent addition to the XL family, namely the MutantXL algorithms [10, 31, 30, 9]. The concept of Mutants was first introduced in [10], giving rise to a family of algorithms and techniques [31, 30, 9], which showed to be particularly efficient against the MQQ multivariate cryptosystem [32]. Unlike the XL algorithm, some of the Mutant algorithms (e.g. MXL3 [30]) do in fact explicitly compute the Gröbner basis of the corresponding ideal, assuming it is zero-dimensional. Because of the remarkable experimental results reported in [30], a natural question arises: how do we describe mutants in terms of commutative algebra? Are mutants a new concept, or can it be described based on a well-known computational algebra concept? Likewise, are the new mutant strategies general enough, so that they can potentially be incorporated to existent Gröbner basis algorithms? To the authors’ best knowledge, there has been so far no in-depth study of the mathematical properties of mutants and related strategies, and how they are connected to other Gröbner basis algorithms.

In this work, we undertake this task. In particular, we compare the MXL family with two variants of the $F_4$ algorithm: first, the so-called simplified $F_4$ which does not use Buchberger’s criteria to avoid useless reductions to zero and second, the full $F_4$ as specified in [20]. Considering these algorithms, we show that the Mutant strategy can be understood as essentially equivalent to the Normal Selection strategy as used in Gröbner basis algorithms, such as $F_4$. Based on previous results, which showed the relation between the XL algorithm and $F_4$ [3], we conclude that MXL can too be described as a redundant variant of $F_4$. Furthermore, we also study the “partial enlargement” strategy proposed in [31] and demonstrate that it corresponds to selecting a subset of S-polynomials in Gröbner basis algorithms. As a result, we conclude that MXL2 can also be described as a variant of $F_4$, although a variant that diverges from known approaches about how to select the number of S-polynomials in each iteration. Finally, we consider the new termination criterion proposed in [30] and demonstrate that it does not lead to a lower degree of termination than using Buchberger’s
criteria to remove useless pairs in a Gröbner basis algorithm. As a result, we reach the conclusion that MXL3 can be reduced to a redundant variant of the full F4 algorithm.

The remaining of this work is organised as follows. In Section 2 we recall the well-known XL algorithm, and re-state the result showing the relation between XL and F4. In Section 3 we review well-known statements from commutative algebra. We place particular emphasis on the concept of S-polynomials and the central role they play in Gröbner bases computations. In particular, we review the fact that in XL-style algorithms any multiplication of polynomials by monomials except for those giving rise to S-polynomials is in essence redundant. In Section 4 we review the definition of Mutants, and present our pseudocode for the MXL3 algorithm. In Section 5 we state and prove our main result, namely that the Mutant strategy is a redundant variant of the Normal Selection strategy. We also treat partial enlargement and the termination condition of MXL3 in Section 5. We conclude in Section 6, where we include a brief discussion on what we view as the limitations of using running times as the sole basis for comparison between Gröbner basis algorithms.

2 The XL Algorithm

In this section we briefly recall the well-known XL algorithm. An iterative variant of the algorithm is given in Algorithm 1. We adopt the notation from [30] and, given a set of polynomials S, we denote by \( S_{(op)d} \) the subset of S with elements of degree \((op)d\) where \((op) \in \{=, <, \leq, >, \geq\}.

\[
\begin{align*}
\textbf{Input:} & \quad F - \text{a polynomial system of equations} \\
\textbf{Input:} & \quad D - \text{an integer} > 0 \\
\textbf{Result:} & \quad \text{a } D\text{-Gröbner basis for } F \\
\text{begin} \\
1 & \quad G \leftarrow \emptyset; \\
2 & \quad \text{for } 1 \leq d \leq D \text{ do} \\
3 & \quad \quad F_{=d} \leftarrow \emptyset; \\
4 & \quad \quad \text{for } f \in F \text{ do} \\
5 & \quad \quad \quad \quad \text{if } \deg(f) = d \text{ then} \\
6 & \quad \quad \quad \quad \quad \quad \text{add } f \text{ to } F_{=d}; \\
7 & \quad \quad \quad \quad \text{else if } \deg(f) < d \text{ then} \\
8 & \quad \quad \quad \quad \quad \quad M_{=d-\deg(f)} \leftarrow \text{all monomials of degree } d - \deg(f); \\
9 & \quad \quad \quad \quad \quad \quad \text{for } m \in M_{=d-\deg(f)} \text{ do} \\
10 & \quad \text{add } m \cdot f \text{ to } F_{=d}; \\
11 & \quad \quad \quad \quad G \leftarrow G \cup \text{the row echelon (or the matrix) form of } F_{=d}; \\
12 & \quad \quad \text{return } G \\
13 & \quad \text{end}
\end{align*}
\]

Algorithm 1: XL

It was shown in [3] that the XL algorithm can be emulated using the F4 algorithm. In particular, [3] proves that:

Lemma 1. Algorithm 1 can be simulated using F4 (described in Algorithm 3) by adding redundant pairs.
3 Gröbner Bases Basics

In this section we recall some basic results about Gröbner bases. For a more detailed treatment, we refer to, for instance, [17]. Consider a polynomial ring $R = \mathbb{F}[x_0, \ldots, x_{n-1}]$ over some field $\mathbb{F}$. We adopt some admissible ordering on monomials in $R$. We can then denote by $\text{LM}(f)$ the largest or leading monomial appearing in $f \in R$ and by $\text{LC}(f) \in \mathbb{F}$ the coefficient corresponding to $\text{LM}(f)$ in $f$. By $\text{LT}(f)$ we denote $\text{LC}(f) \cdot \text{LM}(f)$. In this work $\text{LV}(f)$ denotes the largest variable – ordered w.r.t. the monomial ordering – in the leading monomial $\text{LM}(f)$ of $f$, and given a set $F \subset R$, we define $\text{LV}(F, x)$ as $\{ f \in F \mid \text{LV}(f) = x \}$. The set of leading monomials of $F$ is defined as $\text{LM}(F) = \{ \text{LM}(f) \mid f \in F \}$, $M$ denotes the set of all monomials in $R$, while $M(F)$ is the set of all monomials appearing in any polynomial in $F$.

The ideal $\mathcal{I}$ generated by $f_0, \ldots, f_{m-1} \in R$, denoted $\langle f_0, \ldots, f_{m-1} \rangle$, is defined as

$$\left\{ \sum_{i=0}^{m-1} h_if_i \mid h_0, \ldots, h_{m-1} \in R \right\}.$$ 

It is known that every ideal $\mathcal{I} \subseteq R$ is finitely generated.

A Gröbner basis of an ideal $\mathcal{I}$ is a particular set of generators.

Definition 1 (Gröbner Basis). Let $\mathcal{I}$ be an ideal of $\mathbb{F}[x_0, \ldots, x_{n-1}]$ and fix a monomial ordering. A finite subset $G = \{ g_0, \ldots, g_{m-1} \} \subset \mathcal{I}$ is said to be a Gröbner basis of $\mathcal{I}$ if for any $f \in \mathcal{I}$ there exists $g_i \in G$ such that $\text{LM}(g_i) \mid \text{LM}(f)$.

We note that if a system of polynomials $f_0, \ldots, f_{m-1}$ has a unique root, i.e. the system of equations $f_0 = 0, \ldots, f_{m-1} = 0$ has a unique solution, then computation of the Gröbner basis of the corresponding ideal allows one to solve the system (i.e. the solution can be “read” directly on the Gröbner basis). More generally, if the ideal is zero-dimensional, the solutions of a system can be computed from a Gröbner basis in polynomial-time (in the number of solutions) [23].

Since the notion of Gröbner bases is defined by the existence of relatively small leading terms, the task of computing a Gröbner basis is essentially to find new elements in the ideal with smaller leading terms until no more such elements can be found. Buchberger proved in his PhD thesis [8] that Gröbner bases can be computed by considering only S-polynomials. Such polynomials are designed to cancel leading terms and thus potentially produce new elements in the ideal with lower leading terms.

Definition 2 (S-Polynomial). Let $f, g \in \mathbb{F}[x_0, \ldots, x_{n-1}]$ be non-zero polynomials.

- Let $\text{LM}(f) = \prod_{i=0}^{n-1} x_i^{\alpha_i}$ and $\text{LM}(g) = \prod_{i=0}^{n-1} x_i^{\beta_i}$, with $\alpha_i, \beta_i \in \mathbb{N}$, denote the leading monomials of $f$ and $g$ respectively. Set $\gamma_i = \max(\alpha_i, \beta_i)$ for every $0 \leq i < n$, and denote by $x^\gamma = \prod_{i=0}^{n-1} x_i^{\gamma_i}$. It holds that $x^\gamma$ is the least common multiple of $\text{LM}(f)$ and $\text{LM}(g)$, written as
  $$x^\gamma = \text{LCM}(\text{LM}(f), \text{LM}(g)).$$

- The S-polynomial of $f$ and $g$ is defined as
  $$S(f, g) = \frac{x^\gamma}{\text{LT}(f)} \cdot f - \frac{x^\gamma}{\text{LT}(g)} \cdot g.$$
Now let $G = \{g_0, \ldots, g_{s-1}\} \subset R$, and $I$ be the ideal generated by $G$. We say that a polynomial $f \in I$ has a standard representation w.r.t. $G$ if there exist constants $a_0, \ldots, a_{s-1} \in \mathbb{F}$ and monomials $m_0, \ldots, m_{s-1} \in M$ such that

$$f = \sum_{k=0}^{s-1} a_k t_k g_k,$$

with $\text{LM}(t_k g_k) \leq \text{LM}(f)$. Buchberger’s main result stated that $G$ is a Gröbner basis for $I$ if and only if every S-polynomial $S(g_i, g_j)$ has a standard representation w.r.t. $G$.

Furthermore, Buchberger showed that in the computation of Gröbner bases it is sufficient to consider S-polynomials only, since any reduction of leading terms can be attributed to S-polynomials. There are many variants of this result in textbooks on commutative algebra; we give below the statement and proof based on [17] since the presentation helps to understand the close connection between XL and Gröbner basis algorithms. The proof is included for the sake of completeness.

**Lemma 2.** Let $f_0, \ldots, f_{t-1}$ be nonzero polynomials in $R$. Given a monomial $x^\delta$, let $x^{\alpha(0)}, \ldots, x^{\alpha(t-1)}$ be monomials in $R$ such that $x^{\alpha(i)} \text{LM}(f_i) = x^\delta$ for all $i = 0, \ldots, t-1$. We consider the sum $f = \sum_{i=0}^{t-1} c_i x^{\alpha(i)} f_i$, where $c_0, \ldots, c_{t-1} \in \mathbb{F}\{0\}$. If $\text{LM}(f) < x^\delta$, then there exist constants $b_j \in \mathbb{F}$ such that

$$f = \sum_{i=0}^{t-1} c_i x^{\alpha(i)} f_i = \sum_{j=0}^{t-2} b_j x^{\delta - \tau_j} S(f_j, f_{j+1}),$$

where $x^{\tau_j} = \text{LCM}(\text{LM}(f_j), \text{LM}(f_{j+1}))$. Furthermore

$$x^{\delta - \tau_j} S(f_j, f_{j+1}) < x^\delta, \text{ for all } j = 0, \ldots, t-2.$$

**Proof.** We denote by $\text{LM}(f_i) = x^{\beta(i)}$. Thus, $\alpha(i) + \beta(i) = \delta$. Then let $d_i = \text{LC}(f_i)$. It follows that $c_i d_i$ is the leading coefficient of $c_i x^{\alpha(i)} f_i$. Furthermore, let $p_i = \frac{x^{\alpha(i)} f_i}{d_i}$ and thus $\text{LC}(p_i) = 1$. Consider the “telescope sum”:

$$f = \sum_{i=0}^{t-1} c_i x^{\alpha(i)} f_i = \sum_{i=0}^{t-1} c_i d_i x^{\alpha(i)} f_i = \sum_{i=0}^{t-1} c_i d_i p_i$$

$$= \sum_{i=0}^{t-1} \left( \sum_{j=0}^{i} c_j d_j - \sum_{j=0}^{i-1} c_j d_j \right) p_i$$

$$= \sum_{j=0}^{t-1} \sum_{i=j}^{t-1} c_j d_j p_i - \sum_{i=1}^{t-2} \sum_{j=0}^{i} c_j d_j p_{i+1}$$

$$= \sum_{j=0}^{t-1} c_j d_j p_{t-1} + \sum_{i=0}^{t-2} \sum_{j=0}^{i} c_j d_j (p_i - p_{i+1}).$$

All $c_i x^{\alpha(i)} f_i$ have $x^\delta$ as leading monomial. Since their sum has smaller leading monomial, we have that $\sum_{i=0}^{t-1} c_i d_i = 0$, leading to:

$$f = \sum_{i=0}^{t-1} c_i d_j (p_i - p_{i+1}).$$

(2)
By assumption $x^{\alpha(i)} \text{LM}(f_i) = x^\delta$ for all $i = 0, \ldots, t - 1$, and we have:

$$
x^{\delta - \tau_j} S(f_j, f_{j+1}) = x^{\delta - \tau_j} \left( \frac{x^{\tau_j}}{\text{LT}(f_j)} f_j - \frac{x^{\tau_j}}{\text{LT}(f_{j+1})} f_{j+1} \right)
$$

$$
= x^{\alpha(j)} \frac{d_j}{d_{j+1}} f_j - x^{\alpha(j+1)} f_{j+1}
$$

$$
= p_j - p_{j+1}.
$$

This is now plugged into the telescope sum (2) leading to:

$$
f = \sum_{i=0}^{t-2} \sum_{j=0}^{t-2} c_i d_j x^{\delta - \tau_j} S(f_i, f_{i+1})
$$

$$
= \sum_{i=0}^{t-2} (i+1) c_j d_j x^{\delta - \tau_j} S(f_i, f_{i+1})
$$

$$
= \sum_{i=0}^{t-2} b_j x^{\delta - \tau_j} S(f_i, f_{i+1})
$$

with $b_j = (i+1)c_jd_j$. Since the polynomials $p_j$ and $p_{j+1}$ have leading monomial $x^\delta$ and leading coefficient 1, the difference $p_j - p_{j+1}$ has a smaller leading monomial. Since we have that $p_j - p_{j+1} = x^{\delta - \tau_j} S(f_j, f_{j+1})$, this claim also holds true for $x^{\delta - \tau_j} S(f_j, f_{j+1})$. Thus the Lemma holds.

The following corollary is a simple generalisation of Lemma 2 to sums where not all summands have the same leading term.

**Corollary 1.** Let $f_0, \ldots, f_{t-1}$ be polynomials in $R$. Consider the polynomial $f$ as the sum $f = \sum_{i=0}^{t-1} c_i x^{\alpha(i)} f_i$, with coefficients $c_0, \ldots, c_{t-1} \in \mathbb{F} \setminus \{0\}$, such that $\text{LM}(f) < x^\delta = \max\{x^{\alpha(i)} \text{LM}(f_i)\}$. Without loss of generality, we can assume that there is a $\tilde{i}$ such that $x^{\alpha(\tilde{i})} \text{LM}(f_{\tilde{i}}) = x^\delta$ for $\tilde{i} < i$ and $x^{\alpha(k)} \text{LM}(f_k) < x^\delta$ for $k \geq \tilde{i}$. Then there exist constants $b_j \in \mathbb{F}$ such that

$$
f = \sum_{j=0}^{\tilde{i}-2} b_j x^{\delta - \tau_j} S(f_j, f_{j+1}) + \sum_{k=\tilde{i}}^{t-1} c_k x^{\alpha(k)} f_k
$$

$$
= \sum_{i=0}^{\tilde{i}-2} \tilde{c}_i x^{\alpha(i)} \tilde{f}_i,
$$

where $x^{\tau_j} = \text{LCM}(\text{LM}(f_j), \text{LM}(f_{j+1}))$. Furthermore, for all $0 \leq j \leq \tilde{i} - 2$, we have

$$
\text{LM}(x^{\delta - \tau_j} S(f_j, f_{j+1})) < x^\delta
$$

and thus

$$
x^{\tilde{\alpha}(i)} \text{LM}(\tilde{f}_i) < x^\delta \text{ for all } i.
$$

Corollary 1 states that whatever cancellations can be produced by monomial multiplications and $\mathbb{F}$-linear combinations, they can be attributed to S-polynomials. It follows that the only cancellations that need to be considered in a XL-style algorithm are those produced by S-polynomials.

**Example 1.** Consider the polynomials $f = xy + x + 1$, $g = x + 1$ and $h = z + 1 \in \mathbb{F}_{127}[x, y, z]$. We fix the degree reverse lexicographical term ordering. To compute a Gröbner basis, we start by constructing two S-polynomials of degree two, namely: $f - yg = x - y + 1$ and $zg - yh = -x + z$. In matrix notation, we would thus have to consider the six rows corresponding to $f, yg, zg, yh, g$ and $h$.

For comparison, XL would consider the following polynomials up to degree two.
\[ f = xy + x + 1, \quad xg = x^2 + x, \quad yg = xy + y, \]
\[ zg = xz + z, \quad xh = xz + x, \quad yh = yz + y, \]
\[ zh = z^2 + z, \quad g = x + 1, \quad h = z + 1. \]

In matrix notation we have
\[
A = \begin{pmatrix}
0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{pmatrix}
\quad \text{and} \quad E = \begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix},
\]

where \( E \) is the reduced row echelon form of \( A \). Thus, this system has rank eight. Yet, we know from Corollary 1 that six rows \((f, yg, zg, yg, g, h)\) would have been sufficient. Additionally, from Buchberger’s first criterion \([17]\) we know that in fact only the four rows \(f, yg, g, h\) need to be considered since the leading terms of \(g\) and \(h\) are coprime. Thus, in addition to the row that reduces to zero (as predicted by Buchberger’s first criterion) the matrix constructed by XL contains four rows which are redundant even though they do not reduce to zero. Conversely, any reduction that produced a new lower leading term in the matrix constructed by XL could be attributed to S-polynomials.

Note that Lemma 2 does not state that \( \text{LM}(f) = \max \{\text{LM}(S(f_j, f_{j+1}))\} \), but rather that the leading terms of summands decrease once rewritten using S-polynomials. In the following example, we consider the case when \( \text{LM}(f) < \max \{\text{LM}(S(f_j, f_{j+1}))\} \). In this case, we can reapply Lemma 2 to \( f'_i = S(f_i, f_j) \) as the following example emphasizes.

\textbf{Example 2.} Consider the polynomials \( f = xy + a, \quad g = yz + b, \quad \text{and} \quad h = ab + 1 \) in the polynomial ring \( \mathbb{F}_{127}[x, y, z, a, b] \). We consider the degree reverse lexicographical term ordering. Only one S-polynomial does not reduce to zero: \( s_0 = zf - xg = za - xb \). From \( s_0 \) we can then construct \( s_1 = bs_0 - zh = xb^2 + z \), among others, also at degree 3, which is an element of the reduced Gröbner basis. The XL algorithm at degree 3 will produce

\[ \{m \cdot p \mid m \in \{1, x, y, z, a, b\}, p \in \{f, g, h\}\}, \]

which reduces to

\[ x^2y + xa, \quad xy^2 + ya, \quad xyz + xb, \quad y^2z + yb, \]
\[ yz^2 + zb, \quad xya + a^2, \quad yza - 1, \quad xyb - 1, \]
\[ yzb + b^2, \quad xab + x, \quad yab + y, \quad zab + z, \]
\[ a^2b + a, \quad ab^2 + b, \quad xy + a, \quad yz + b, \]
\[ za - xb, \quad \text{and} \quad ab + 1 \]
by Gaussian elimination. Note that $xb^2 + z$ is not in that list. However, if we increase the degree of XL to 4, the list returned is

$$
\begin{align*}
&x^3y + xa^2, \quad x^2y^2 - a^2, \quad xy^3 + y^2a, \quad x^2yz + x^2b, \\
&xy^2z + 1, \quad y^3z + y^2b, \quad xy^2z + xzb, \quad y^3z^2 - b^3, \\
&yz^2 + z^2b, \quad x^2ya + xa^2, \quad xy^2a + ya^2, \quad xyza - x, \\
&y^2za - y, \quad y^2a - z, \quad xy^2 + a^2, \quad y^2za - a, \\
&x^2yz - x, \quad xy^2b - y, \quad y^2zb + yb^2, \\
&xyz^2 + zb^2, \quad x^2ab + x^2, \quad xyab - a, \quad y^2ab + y^2, \\
&xzab + xz, \quad yzab - b, \quad z^2ab + z^2, \quad xa^2b + xa, \\
&ya^2b + ya, \quad za^2b + xb, \quad a^3b + a^2, \quad xyb^2 - b, \\
&yab^2 + yb, \quad za^2 + zb, \\
&a^2b^2 - 1, \quad ab^2 + b^2, \quad x^2y + xa, \quad xy^2 + ya, \\
&xyz + xb, \quad y^2z + yb, \quad yz^2 + zb, \quad yxa + a^2, \\
&xza - x^2b, \quad yza - 1, \quad z^2ab - xzb, \quad za^2 + x, \\
&xyb - 1, \quad yzb + b^2, \quad xab + x, \quad yab + y, \\
&zab + z, \quad a^2b + a, \quad xb^2 + z, \quad ab^2 + b, \\
&xy + a, \quad yz + b, \quad za - xb \quad \text{and } ab + 1,
\end{align*}
$$

which does contain $xb^2 + z$. Thus, XL did produce $xb^2 + z$ in one step at degree 4 but it could not produce $xb^2 + z$ at degree 3 since this element corresponds to

$$b(zf - xg) - zh = (bz)f - (bx)g - zh,$$

but we have that $\deg(bzf) = 4$. Note that this behaviour of XL is the motivation for the Mutant concept.

## 4 Mutants and MXL algorithms

Let $F = \{f_0, \ldots, f_{m-1}\} \subset \mathbb{F}[x_0, \ldots, x_{n-1}]$, and $\mathcal{I} = \langle f_0, \ldots, f_{m-1} \rangle$ be the ideal generated by $F$. Recall that any element $f \in \mathcal{I}$ can be written as

$$f = \sum_{i=0}^{m-1} h_i \cdot f_i, \quad \text{with } h_i \in \mathbb{F}[x_0, \ldots, x_{n-1}].$$

Note that this representation is usually not unique. Following the terminology of [10], we call the level of the representation $\sum_{f_i \in F} h_i \cdot f_i$ of $f$ the maximum degree of $\{h_i \cdot f_i \mid f_i \in F\}$. We call the level of $f$ the minimal level of all its representations. We can then define the concept of a mutant [10, 31, 30].

**Definition 3.** Given a set of generators $F$ of an ideal $\mathcal{I}$, a polynomial $f \in \mathcal{I}$ is a mutant if its total degree is strictly less than its level.

A mutant corresponds to a “low-degree” relation occurring during XL or more generally during any Gröbner basis computation. It follows from the discussion in Section 3 that, in the language of commutative algebra, a mutant occurs when a S-polynomial has a lower-degree leading monomial after reduction by $F$ and if this new leading monomial was not in the set $\text{LM}(F)$ before reduction.

The concept of mutant has recently motivated the proposal of a family XL-style algorithms [10, 31, 30, 9]. We discuss below the most prominent, namely the MXL algorithm.
4.1 MXL3 Algorithm

The MXL family of algorithms improves the XL algorithm using the mutant concept. In particular, the MXL3 differs from XL in the following respects:

1. Instead of “blindly” increasing the degree in each iteration of the algorithm, the MXL algorithms treat mutants at the lowest possible degree, (cf. line 12 in Algorithm 2). This is the key contribution of the MXL algorithm [10].

2. Instead of considering all elements $F_{=d}$ of the current degree $d$, MXL3 only considers a subset of elements per iteration. It incrementally adds more elements of the current degree, if the elements of the previous iteration did not suffice to solve the system (cf. line 27 in Algorithm 2). This is called partial enlargement in [31, 30]. This is the key contribution of the MXL2 algorithm [31].

3. XL terminates at the user-provided degree $D$, while MXL3 does not require to fix a degree a priori. Instead, the algorithm will terminate once a Gröbner basis was found using some new criterion (cf. line 21 in Algorithm 2). This is the key contribution of the MXL3 algorithm [30].

In Algorithm 2 we present pseudocode for a slightly simplified variant of the MXL3 algorithm. We use this presentation in Section 5 to compare it with the $F_4$ algorithm.

Our pseudocode has some minor differences with the pseudocode presented in [30]; we list these below:

Partial enlargement. We disregard any partial enlargement strategy in the case when mutants were found. This matches the pseudocode in [30]. However, the actual implementation of MXL3 does indeed use the partial enlargement when $Mu \neq \emptyset$ (i.e. mutants exist) [29]. We note that our pseudocode and that in [10] are equivalent to MXL [10] in this case. Since our work is mainly concerned with the concept of mutants, maintaining this simplification seems appropriate.

Choice of $y$. In line 14 we set $y$ to $\max \{LV(f) \mid f \in F_{=k+1}\}$ instead of $\max \{LV(f) \mid f \in Mu_{=k}\}$ since this allows reductions among all elements of degree $k+1$ instead of only those in $Mu_{=k+1}$. Restricting reduction to the elements of $Mu_{=k+1}$ could lead to incomplete reductions and thus results. The actual implementation of MXL3 uses “partial enlargement” in this step and thus increases $y$ iteratively [29].

Incomplete reductions. In line 28 we removed the optimisation that only variables $x$ are used for multiplication in the extension step. This optimisation can lead to an incorrect result as some reductions are never performed. As an example, consider $f = ab + 1$, $g = bc + a + b$ and $h = c$. The reduced Gröbner basis of the ideal $(f, g, h)$ over $\mathbb{F}_2[a, b, c]$ with respect to a degree lexicographical term ordering is $\{a + 1, b + 1, c\}$. However, the pseudocode of MXL3 as described in [30] will not perform the necessary reductions. The leading variable of $h$ is $c$, thus $h \in LV(F, c)$ and $h$ is never extended using any variables except $c$ since $a > c$ and $b > c$. Furthermore, the S-polynomial $S(f, g) = cf - ag = (abc + c) - (abc + ab + a) = ab + a + c$ is not constructed since $ag$ requires multiplication of $g$ in $LV(F, b)$ by $a$ but $a > b$. Thus, on termination the output of MXL3 is not a Gröbner basis.

Our change matches Proposition 3 from [30], which requires that for $H \leftarrow \{t \cdot g \mid g \in G, t a \text{ term and } \deg(t \cdot g) \leq D + 1\}$ the reduced row echelon form of $H$ is $G$. However, this property is not enforced by MXL3 as presented in pseudocode in [30], since some $t \cdot g$ are prohibited from being constructed if $\deg(t) = 1$ and $t > LV(g)$. We confirmed with the authors of [30] that their implementation catches up on those missing multiplications when $\text{newExtend} = \text{True}$ [29].

We also present a simplified version of the $F_4$ algorithm in Algorithm 3. For this, we need however to introduce the required notation.
Definition 4. Let $F \subset F[x_0, \ldots, x_{n-1}]$, and $(f, g) \in F \times F$ with $f \neq g$. We denote:

$$\text{PAIR}(f, g) = (\text{LCM}(\text{LM}(f), \text{LM}(g)), m_f, f, m_g, g),$$

where $\text{LCM}(\text{LM}(f), \text{LM}(g)) = \text{LM}(m_g \cdot g) = \text{LM}(m_f \cdot f)$.

Now, let $P = \{\text{PAIR}(f, g) \mid \forall (f, g) \in P \times P \text{ with } g > f\}, p = \text{PAIR}(f, g) \in P$. We define **Left** and **Right** as:

$$\text{LEFT}(p) = (m_f, f), \quad \text{RIGHT}(p) = (m_g, g),$$

$$\text{LEFT}(P) = \bigcup_{p \in P} \text{LEFT}(p) \quad \text{RIGHT}(P) = \bigcup_{p \in P} \text{RIGHT}(p).$$
**Input:** $F$ – a list of polynomials $f_0, \ldots, f_{m-1} \in \mathbb{F}[x_0, \ldots, x_{n-1}]$ spanning a zero-dimensional ideal.

**Result:** A Gröbner basis for $\langle f_0, \ldots, f_{m-1} \rangle$.

begin
1. $D \leftarrow \max \{\deg(f) \mid f \in F\}$;
2. $d \leftarrow \min \{\deg(f) \mid f \in F\}$;
3. $Mu \leftarrow \emptyset$;
4. newExtend $\leftarrow$ True;
5. $x \leftarrow x_0$;
6. $CL \leftarrow d$;
7. while True do
8. $\tilde{F}_{\leq d} \leftarrow$ the row echelon form (or matrix form) of $F_{\leq d}$;
9. $Mu \leftarrow Mu \cup \{f \in \tilde{F}_{\leq d} \mid \deg(f) < d \text{ and } \text{LM}(f) \notin \text{LM}(F_{\leq d})\}$;
10. $F_{\leq d} \leftarrow \tilde{F}_{\leq d}$;
11. // did we find mutants?
12. if $Mu \neq \emptyset$ then
13. $k \leftarrow \min \{\deg(f) \mid f \in Mu\}$;
14. $y \leftarrow \max \{LV(f) \mid f \in F_{\leq k+1}\}$;
15. $Mu^+_{\leq k} \leftarrow$ Multiply all elements of $Mu_{\leq k}$ by all variables $\leq y$;
16. $Mu \leftarrow Mu \setminus Mu_{\leq k}$;
17. $F \leftarrow F \cup Mu^+_{\leq k}$;
18. $d \leftarrow k + 1$;
19. else
20. // does the basis contain all monomials of some degree $d_t$?
21. if $d < CL$ and $M_{\geq d_t} \subseteq \text{LM}(F)$ for some $1 \leq d_t \leq d$ then
22. // We found a Gröbner basis
23. return $F$;
24. // did we do all enlargements at this degree already?
25. if newExtend = True then
26. $D \leftarrow D + 1$;
27. $x \leftarrow \min \{LV(f) \mid f \in F_{=D-1}\}$;
28. newExtend $\leftarrow$ False;
29. else
30. // do partial enlargement and eliminate
31. $x \leftarrow \min \{LV(f) \mid f \in F_{=D-1} \text{ and } LV(f) > x\}$;
32. $F^+ \leftarrow$ Multiply all elements of $LV(F, x)$ by all variables $\leq x$ without redundancies;
33. $F \leftarrow F \cup F^+$;
34. if $x = x_0$ then
35. newExtend $\leftarrow$ True;
36. $CL = D$;
37. $d \leftarrow D$;
38. end

**Algorithm 2:** MXL₃ (simplified)
Input: $F$ – a tuple of polynomials $f_0, \ldots, f_{m-1}$
Input: $\text{SEL}$ – a selection strategy
Result: a Gröbner basis for $F$

begin
  $G, i \leftarrow F, 0$;
  $	ilde{F}_i^+ \leftarrow F$;
  $P \leftarrow \{ \text{PAIR}(f, g) \mid \forall f, g \in G \text{ with } g > f \}$;
  while $P \neq \emptyset$ do
    $i \leftarrow i + 1$;
    $P_i \leftarrow \text{SEL}(P)$;
    $P \leftarrow P \setminus P_i$;
    $L_i \leftarrow \text{Left}(P_i) \cup \text{Right}(P_i)$;
    // Symbolic Preprocessing
    $F_i \leftarrow \{ t \cdot f \mid \forall (t, f) \in L_i \}$;
    $\text{Done} \leftarrow \text{LM}(F_i)$;
    while $M(F) \neq \text{Done}$ do
      $m \leftarrow$ an element in $M(F) \setminus \text{Done}$;
      add $m$ to $\text{Done}$;
      if $\exists g \in G$ such that $\text{LM}(g) \mid m$ then
        $u \leftarrow m/\text{LM}(g)$;
        add $u \cdot g$ to $F_i$;
      // Gaussian Elimination
      $\tilde{F}_i \leftarrow$ the row echelon form of $F_i$;
      $\tilde{F}_i^+ \leftarrow \{ f \in \tilde{F}_i \mid \text{LM}(f) \not\in \text{LM}(F) \}$;
      for $h \in \tilde{F}_i^+$ do
        $P \leftarrow P \cup \{ \text{PAIR}(f, h) : \forall f \in G \}$;
        add $h$ to $G$;
  return $G$;
end

Algorithm 3: $F_4$ (simplified)
5 Relationship between the MXL Algorithms and $F_4$

In this section we discuss the relation between MXL and $F_4$. It was shown in [3] that XL can be understood as a redundant variant of $F_4$ (cf. Lemma 1). Thus, we know that the “framework” of MXL is compatible with $F_4$. Thus in order to study the connection between the two algorithms, we only have to consider the modifications made in MXL compared to XL.

5.1 Mutants

The most visible change to XL in MXL is the special treatment given to mutants. That is, instead of increasing the degree $d$ in each iteration, if there is a fall of degree, then these new elements are treated at the current or perhaps a smaller degree before the algorithm proceeds to increase the degree as normally. Thus, compared to XL, the MXL family of algorithms may terminate at a lower degree.

On the other hand, the $F_4$ algorithm does not specify how to choose polynomials in each iteration of the main loop. Instead, the user passes a function $Sel$ which specifies how to select pairs of polynomials. However, in [20] it is suggested to choose the normal selection strategy for most inputs. We recall here how the normal strategy has been adapted in $F_4$.

**Definition 5 (Normal Strategy).** Let $F = \{f_0, \ldots, f_{m-1}\}$. We shall say that a pair $(f, g) \in F \times F$ with $f \neq g$ is a critical pair. Let then $\mathcal{P} \subseteq F \times F$ be the set of critical pairs. We denote by $\text{LCM}(p_{ij})$ the least common multiple of the leading monomials of the critical pair $p_{ij} = (f_i, f_j) \in \mathcal{P}$. We also call $\text{deg}(\text{LCM}(p_{ij}))$ the degree of the critical pair $p_{ij}$. Further, let

$$d = \min\{\text{deg}(\text{LCM}(p)) \mid p \in \mathcal{P}\}$$

be the minimal degree of those least common multiples of $p$ in $\mathcal{P}$. Then the normal selection strategy selects the subset

$$\mathcal{P}' = \{p \in \mathcal{P} \mid \text{deg}(\text{LCM}(p)) = d\}.$$

We can now state our main result.

**Theorem 1.** Let both MXL and $F_4$ compute a Gröbner basis with respect to the same degree compatible ordering on the same input. Assume that until iteration $i$ (inclusive) of the main loop both $F_4$ and MXL computed the same list of polynomials. Furthermore, assume that $Mu \neq \emptyset$ in Algorithm 2 at line 12 and define $k$ to be the minimal degree of a polynomial in $Mu$. The set of polynomials $F_{\leq k+1}$ considered by MXL in the next iteration of the main loop is a superset of the polynomials considered by $F_4$ when using the Normal Selection Strategy in the next iteration $i+1$. Furthermore, every polynomial in $F_{\leq k+1}$ not in the set considered by $F_4$ is redundant in this iteration.

**Proof.** First consider the $F_4$ algorithm, and assume that $Sel$ is the Normal Selection Strategy. Then, the set $\mathcal{P}_{i+1}$ will contain the S-polynomials of lowest degree in $\mathcal{P}$. Every S-polynomial in $\mathcal{P}_{i+1}$ will have at least degree $k+1$, since the set $Mu_{\leq k}$ is in row echelon form and $k$ is the minimal degree in $Mu$. If there exists a S-polynomial of degree $k+1$ then it is of the form $t_if_i - t_jf_j$ with $\text{deg}(t_if_i) = k+1$ and $\text{deg}(t_jf_j) = k+1$, where at least one of $t_i, t_j$ has degree 1. Since MXL constructs all multiples $t_if_i$ with $\text{deg}(t_if_i) = 1$ if $\text{deg}(f_i) = k$ and all elements of degree $k+1$ in the next iteration, both components of the S-polynomial are included in $F_{\leq k+1}$. 

In the Symbolic Preprocessing phase $F_4$ also constructs all components of potential S-polynomials that could arise during the elimination. These are always of the form $f_i - t_j f_j$ where $\deg(f_i) = \deg(t_j f_j)$. Since MXL$_3$ considers all monomial multiplies of all $f_j$ up to degree $k + 1$ in the next iteration, these components are also included in the set $F_{k+1}$.

Recall from Corollary 1 that all $f = \Sigma_{i=0}^{t-1} c_i x^{\alpha(i)} f_i$ can be rewritten as

$$f = \sum_{j=0}^{t-2} b_j x^{\delta - \gamma_j} S(f_j, f_{j+1})$$

if $f < \max\{x^{\alpha(i)} f_i\}$. Note that $\deg(x^{\delta}) \leq k + 1$ for $F_{\leq k+1}$ and that $\deg(x^{\gamma_j}) = k + 1$ for all S-polynomials contained in $F_{\leq k+1}$. It follows that $\deg(x^{\delta - \gamma_j}) = 0$ if $b_j \neq 0$. That is, any $f$ with a smaller leading term than its representation $\Sigma_{i=0}^{t-1} c_i x^{\alpha(i)} f_i$ can be computed by an $F$-linear combination of S-polynomials: $f = \sum_{j=0}^{t-2} b_j S(f_j, f_{j+1})$.

It follows immediately from Corollary 1 that any multiple of $f_i$ which does not correspond to a S-polynomial is redundant in this iteration since it cannot lead to a drop of a leading monomial. □

### 5.2 Partial Enlargement

The “partial enlargement” technique was introduced in MXL$_2$ and is also applied in MXL$_3$. Instead of multiplying every polynomial $f_i \in F$ by all variables $x_0, \ldots, x_{n-1}$ only a subset $\text{LV}(F, x)$ is considered. This subset is increased in each iteration by increasing $x$. In the language of linear algebra, the algorithm first computes the row echelon form of a submatrix in the lower right corner. If that does not suffice to produce elements of smaller degree, a bigger submatrix is considered.

This corresponds to selecting a subset of S-polynomials with small least common multiple in $\text{SEL}$ instead of selecting all polynomials of minimal degree. We note that both the POLYBORI package [7] and MAGMA computer algebra system [5] accept an option to restrict the number of S-polynomials considered in each iteration. However, the strategy how the number of S-polynomials is chosen in MAGMA and POLYBORI is different from MXL$_3$. In the former ones, a constant number of S-polynomials is chosen as specified by the user; in the latter (MXL$_3$) a changeable number of S-polynomials is chosen based on the partition by leading variable. The strategy employed in MXL$_3$ will consider S-polynomials $S(f, g)$ where both $f$ and $g$ have leading variable at most $x$ (inclusive). That is, if there is an S-polynomial $S(f, g) = t f - t g g$ with $\text{LV}(f) < \text{LV}(g)$, MXL$_3$ will construct $t f \cdot f$ when considering $\text{LV}(F, \text{LV}(f))$ and $t g \cdot g$ when considering $\text{LV}(F, \text{LV}(g))$. Since $F_{\leq d}$ contains all elements of degree at most $d$, both components are included in the matrix when $\text{LV}(F, \text{LV}(g))$ are considered.

It is currently not clear which strategy for selecting subsets of S-polynomials is beneficial under which conditions. It should be noted however that if the size of the matrix is the main concern then selecting exactly the smallest S-polynomial in each iteration would be optimal; just as Buchberger’s algorithm does. On the other hand, the contribution of algorithms such as $F_3$ is to improve performance by considering more than one S-polynomial in each iteration. Thus, it is not certain that using matrix sizes as a main measure of comparison gives an adequate picture of the performance of these algorithms.

### 5.3 Termination Criterion

The key contribution of the MXL$_3$ algorithm is the introduction of a new criterion to detect when a Gröbner basis is found. Since the MXL family does not use the concept of critical pairs, standard
termination criteria such as an empty list of pairs are not immediately applicable. In Lemma 3 we give an equivalent variant of this criterion, rephrased to be more suitable for our discussion.

**Lemma 3 (Proposition 3 in [30]).** Let $G = \{g_0, \ldots, g_{s-1}\}$ be a finite subset of $\mathbb{F}[x_0, \ldots, x_{n-1}]$ with $D$ being the highest degree of its elements. Suppose that the following hold:

1. all monomials of degree $D$ in $\mathbb{F}[x_0, \ldots, x_{n-1}]$ are divisible by a leading monomial of some $g_i \in G$; and
2. if $H = G \cup \{t \cdot g_i \mid g_i \in G, t \text{ a monomial and } \deg(t \cdot g_i) \leq D + 1\}$, there exists $\tilde{H}$ — a row echelon form of $H$ — such that $\text{LM}(\tilde{H}_{\leq D}) \subset \langle \text{LM}(G) \rangle$.

Then $G$ is a Gröbner basis.

Note that condition 1 implies that the ideal generated by $G$ is 0-dimensional.

The MXL$_3$ algorithm uses a termination criterion based on Lemma 3 and thus will consider matrices up to degree $D + 1$ (where $D$ is defined as in Lemma 3). The $F_4$ algorithm, on the other hand, will terminate once the list of critical pairs is empty. It is obvious that no new pairs will be created after the Gröbner basis is found, since all reductions will lead to zero in this situation. However, if we consider $F_4$ as given in Algorithm 3, one can see that the algorithm may consider pairs of degree $> D + 1$ after a Gröbner basis is discovered, if those pairs were constructed before the Gröbner basis is found. Put differently, the simplified $F_4$ variant considered in this work does not prune the list of critical pairs based on the current basis $G$. However, the full $F_4$ algorithm as specified in [20, p. 9] does indeed prune the list $P$ by calling a subroutine called Update. In [20] a reference to [4, p. 230] is made – which applies Buchberger’s first and second criteria using the Gebauer-Möller installation – as an example of such a routine.

The question thus becomes whether Buchberger’s first and second criteria will remove all pairs of degree $> D + 1$ if the conditions (1) and (2) of Lemma 3 hold. An algorithmic variant of Buchberger’s second criterion is given in the Lemma below.

**Lemma 4 (Buchberger’s second criterion).** Let $G$ be a finite subset of the $\mathbb{F}[x_0, \ldots, x_{n-1}]$ and $p, g_1, g_2 \in \mathbb{F}[x_0, \ldots, x_{n-1}]$ be such that

$$\text{LM}(p) | \text{LCM}(\text{LM}(g_1), \text{LM}(g_2)).$$

and $S(g_1, p), S(g_2, p)$ have already been considered. Then $S(g_1, g_2)$ does not need to be considered and can be discarded.

We can now prove that the full $F_4$ algorithm will not consider pairs of a higher degree than the MXL$_3$ when applying Buchberger’s second criterion.

**Proposition 1.** We assume a degree compatible ordering on $\mathbb{F}[x_0, \ldots, x_{n-1}]$. If during a Gröbner basis computation using the full $F_4$ algorithm conditions (1) and (2) of Lemma 3 hold, then Buchberger’s second criterion will remove any pair of degree $> D + 1$ from the list of critical pairs and thus $F_4$ will consider critical pairs of degree at most $D + 1$.

Our proof follows very closely the original proof of Lemma 3 in [30].

**Proof.** Let $G = \{g_0, \ldots, g_{s-1}\}$ be a finite subset of $\mathbb{F}[x_0, \ldots, x_{n-1}]$ with $D$ being the highest degree of its elements such that:
1. all monomials of degree $D$ in $\mathbb{F}[x_0, \ldots, x_{n-1}]$ are divisible by a leading monomial of some $g_i \in G$; and
2. if $H = G \cup \{ t \cdot g_i \mid g_i \in G, t$ a monomial and $\deg(t \cdot g_i) \leq D + 1 \}$, there exists $\tilde{H}$ — a row echelon form of $H$ — such that $\text{LM}(\tilde{H}_{\leq D}) \subset \langle \text{LM}(G) \rangle$.

We denote the S-polynomial $S(g_i, g_j)$ by $f$, and let $d = \deg(f)$. We only have to consider pairs of degree $d > D + 1$.

To do so, let $m = \text{LCM}(\text{LM}(g_i), \text{LM}(g_j))$. There exist monomials $m_i, m_j$ such that $m = m_i \cdot \text{LM}(g_i) = m_j \cdot \text{LM}(g_j)$. It is clear that $\text{GCD}(m_i, m_j) = 1$.

By assumption $\deg(g_i)$ and $\deg(g_j)$ are at most equal to $D$. This implies that $\deg(m_i) \geq 2$ (resp. $\deg(m_j) \geq 2$) since $d > D + 1$. It is then possible to write $m_i = m_{i,1} \cdot m_{i,2}$ such that $\deg(g_i) + \deg(m_{i,2}) = D + 1$ and $\deg(m_{i,1}) \geq 1$. A similar decomposition can be found for $m_j = m_{j,1} \cdot m_{j,2}$. Thus, we have that all monomials $m_{i,1}, m_{i,2}, m_{j,1}, m_{j,2}$ are of degree $\geq 1$.

Now, let $m^* = \frac{m}{m_{i,1} \cdot m_{j,1}}$. By construction, we have

$$\text{LCM}(m^*, \text{LM}(g_i)) = \frac{m}{m_{i,1}} \quad \text{(resp.} \quad \text{LCM}(m^*, \text{LM}(g_j)) = \frac{m}{m_{j,1}} \text{)},$$

which divides $m$ properly. We also have $\deg(m^*) \leq D$. Since $m_1$ and $m_2$ must be distinct, we have that $m^*$ cannot be equal to either $\text{LM}(g_i)$ or $\text{LM}(g_j)$. By condition 1, there exists $g \in G \setminus \{ g_i, g_j \}$ such that with $\text{LM}(g) = m^*$. In addition

$$\deg(\text{LCM}(\text{LM}(g), \text{LM}(g_i))) < \deg(m)$$

and $\deg(\text{LCM}(\text{LM}(g), \text{LM}(g_j))) < \deg(m)$. Thus, $S(g, g_i)$ and $S(g, g_j)$ are being considered at a lower degree than $D + 1$.

Finally, $m^*$ divides $m = \text{LCM}(\text{LM}(g_i), \text{LM}(g_j))$ by construction. It then follows from Buchberger’s second criterion that $f = S(g_i, g_j)$ does not need to be considered and is discarded. \(\square\)

6 Conclusion

In this work we have studied the MXL family algorithms, and their connections to Gröbner bases theory. We demonstrated that the mutant strategy as used in the MXL algorithms is in fact a redundant variant of the Normal Selection Strategy. Furthermore, we showed that the partial enlargement strategy proposed in [31] corresponds to selecting a subset of S-polynomials of minimal degree in each iteration of algorithms such as $F_4$. As a result, we conclude that both the MXL and $\text{MXL}_2$ algorithms can be seen as redundant variants of the $F_4$ algorithm, although the latter may select critical pairs differently from usual $F_4$ implementations. Finally, we studied the novel termination criterion proposed in [30] and concluded that it does not allow the algorithm to terminate at a lower degree than $F_4$. Consequently, we conclude that $\text{MXL}_3$ too can be understood as a redundant variant of the $F_4$ algorithm.

We conclude with a brief discussion on what we view as the limitations of using running times as the basis for comparison between Gröbner basis algorithms. As noted early in this paper, linear algebra-based Gröbner bases algorithms allow several degrees of freedom to the designer and implementer of the algorithm to generate the matrices, and selection of strategies can drastically affect the efficiency of the computations. Furthermore, the specific implementation details and sub-algorithms used in the implementation (e.g. the package used for performing the Gaussian reductions, the internal representation of sparse matrices, etc.) will also have great effect on running times and memory requirements (cf. Appendix A for an example).
In fact, we claim that three almost-independent aspects will affect running times of such algorithms: the mathematical details of the algorithm itself, the strategies and heuristics used in the implementation, and the low-level implementation details. The first aspect was the main focus of interest in this paper, but it should be clear that our results do not preclude that particular implementations of MutantXL algorithms can outperform particular implementations of $F_4$/$F_5$ in some situations. On the other hand, we are aware that it is difficult to compare the complexity of Gröbner basis algorithms and strategies and that designers often have little choice but to resort to experimental data to demonstrate the viability of their approach.

7 Acknowledgements

The work described in this paper has been supported by the Royal Society grant JP090728. We would like to thank Stanislav Bulygin, Jintai Ding and Mohamed Saied Emam Mohamed for helpful comments and discussions on earlier drafts of this work.

References

29. Mohamed Saied Emam Mohamed. private communication, January 2011.
A Effect of Linear Algebra Implementations on Gröbner Basis Computations

To show the effect of the linear algebra implementation, we compare two implementations of the $F_4$ algorithm. The only difference is the linear algebra package use to perform the Gaussian elimination step. We compare the original FGb implementation with the new linear algebra package described in [19]. However, to make the comparison fair we only use a sequential version of the package described in [19]. To compare, we consider the reduction of the 7th matrix occurring in the computation of a Gröbner basis of the standard benchmark Katsura 12 over $\mathbb{F}_{65521}$, as well as the full Gröbner basis computation. Typically, it takes 326.1 sec and 250 Mbytes to reduce the 7th matrix with FGb and 83.7 seconds and 682 Mbytes using FGb with the library from [19].

Table 1. Algorithm: F4  Benchmark: Katsura 14 mod $p = 65521$.

<table>
<thead>
<tr>
<th></th>
<th>FGb/CPU</th>
<th>FGb/Memory</th>
<th>FGb/Pasco/CPU [19] (1 core)</th>
<th>FGb/Pasco/Memory [19]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matrix 7 (21,915 × 23,127) Full Gröbner basis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FGb/CPU</td>
<td>83 s.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FGb/Memory</td>
<td>250 Mbytes</td>
<td>262 Mbytes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FGb/Pasco/CPU [19] (1 core)</td>
<td>32 s.</td>
<td></td>
<td></td>
<td>151 s.</td>
</tr>
<tr>
<td>FGb/Pasco/Memory [19]</td>
<td>682 Mbytes</td>
<td>682 Mbytes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>