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ABSTRACT

A historical review of the use of powder patterns, 
polarised light and interferometry to examlim small 
vibrations is given. Suitably cut quartz crystals are 
used for an examination by these methods of the longitudinal 
vibrations of thin isotropic discs. Previous calculations 
of the frequencies and displaceoents for these modes of 
vibration are extended and the distribution of stress is 
computed numerically. The theory underlying the use of 
the three msthods of observation is discussed with 
particular reference to the examination of these stresses 
and displacements.

It is found that for sufficiently thin discs the 
primary stresses and displacements are substantially in 
agreement with theory, except for the presence in all cases 
of a coupled flexural mode having a particular symmetry 
dependent upon the symmetry of the longitudinal mode. 
Moreover, for those modes which do not have circular 
symmetry about the disc axis, there are always two 
frequencies of vibration for which the orientations of the 
vibratory systems have a particular relation, again dependent 
upon the particular modal symmotiy. A theory is given which



adequately explains the coupling phenomena by reference to 
the cross shear strains which are due to the particular 
crystal symmetry of quartz and are not possible for isotropic 
media.

In connection with the polarized li^t experiments, 
a theory of the dependence of the apparent rotatory power 
of quartz upon stress is developed and agrees well with an 
experimental test; some phenomena observed by earlier workers 
are explained on the basis of this theory.

It is stown that there is good correlation between 
the three methods of observation but that the inforraation 
yielded by any one method separately is likely to give an 
oversimplified representation of the state of vibration.
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(1)
CHAPTER 1 

GENERAL INTRODUCTION,

The theoretical analysis of the modes of vibration 
of solid bodies has been completed for a comparatively few 
cases only, mostly involving one or two dimensional motions. 
Many of the theoretical results regarding the nodal lines 
in such cases have been verified experimentally. Some workers 
have investigated the free vibration of bodies where there is 
no known theory to predict tha motion and have worked out 
empirical criteria for the types of vibration.

In the case of piezoelectric crystal oscillators for 
electronic uses , exact solutions of the equations of motion 
are rarely possible. A great deal of experimental work has 
been carried out, mostly in the decade 1926-36, with somewhat 
variable success. Most of these experiments were of an 
empirical nature and, as the theoretical basis of some of the 
imthods of observation had not been investigated fully, it 
would be rash to deduce too much about the vibration of a 
crystalline bo^y therefrom.

The purpose of the present work is to examine 
systematically a few comparatively simple modes of vibration 
of a solid body by three of the more prominent methods of 
observation and to correlate the results as far as possible.
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The material chosen for these studies is crystalline quartz; 
this may easily be excited piezoelectrically into any of its 
characteristic vibrations, provided the applied alternating 
electric field is appropriate* In practice this means that 
as long as the field is not precisely symmetrical, any mode 
may be excited by increasing the magnitude of the field 
sufficiently.

The problem will be treated throughout as one of free 
vibrations with little, if any, reference to the piezoelectric 
properties of the crystal* This is justified since the 
coupling coefficient in quartz is small. The forced vibrations 
of a quartz crystal at a frequency far removed from resonance 
are so exceedingly minute that even the use of multiple-beam 
interference under the most favourable conditions would be 
quite inadequate for their detection. At resonance, the 
amplitude of vibration is increased by many orders of magnitude 
and a large alternating electric field is set up within the 
crystal, by virtue of the direct piezoelectric effect* The 
resultant potential difference is many times greater than that 
applied to the crystal but, as it is considerably smaller than 
that required to force vibrations of the same amplitude and 
therefore results in second order effects only, its effect 
on the form of the vibration may be ignored* The experiments 
of Colwell and Hill (1937) are interesting in this connection
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as these workers found that, at a given frequency, a quartz 
plate displayed the same Chladnl figures whether excited 
piezoelectrically or mechanically (by contact with a rod 
excited by the magnetostriction effect).

Although a study of the vibrations of quartz crystals 
is of interest for its own sake, owing to the technological 
importance of such vibrations, in the present studies every 
endeavour is made to simulate isotropic conditions by cutting 
the quartz normal to the optic axis and choosing an appropriate 
series of characteristic vibrations. The reason for this is 
that, although the ultimate purpose of this work is to advance 
the knowledge of the vibrations of crystalline bodies, the 
author feels that there is scope for a great deal of preliminary 
work on isotropic bodies. Were it transparent, and capable 
of taking an optical polish, a homogeneous piezoelectric 
substance, such as barium titanate,would bo in many ways 
superior to quartz. Thus a large part of the work is concerned 
with trying to isolate the effects of crystal structure from 
those due to the phenomena under investigation.

The modes of motion chosen for this investigation are 
the longitudinal vibrations of thin circular discs, first 
discussed theoretically by Love (1927). They have been 
investigated quite successfully by Petrzllka (1932,193fa\ 
although he observed certain discrepancies which will be
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discussed later. The methods of observation used by the 
present author are;

1) By scattering lycopodium powder on the surface
2) By polarized light
3) By inultiple-beam interferometry

The first method is more mechanical than optical, but since 
it gives a visual picture of the motion, it falls within the 
scope of the thesis title. To avoid confusion the three 
methods will usually be treated separately, until the final 
chapter. Historically, they were developed in the order 
listed above but it will be more convenient to vary this 
order in the theoretical and experimental sections.



PAHT I

fart I HISTORICAL WSTLSH! OP PREVIOUS STUDIES 

OP SMALL VIBRATIONS.
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CHAPTER 2

THE USE OF PO?mERS TO INDICATE MODES OF VIBRATION

2.1 Flexural vibrations
The use of fine powders to reveal the motion of a 

vibrating body dates back to the classic experiments of 
Chladnl (1787) who sprinkled sand on vibrating brass plates 
and thus revealed the nodal systems. His experiimnts have 
been repeated on many occasions and have gained additional 
interest from the theoretical calculations (by Kirchoff (1850), 
Rltz (1909), and others) of the modes of flexural vibration 
of circular and rectangular plates.

Various methods for the excitation of vibrations 
have been used in these investigations. For example, Chladnl 
and others used bowing. Schulze (1907) excited a circular 
microscope coverslip, resting on a wire gauze, by sounding 
a Galton whistle beneath It, the nodes being indicated by 
fine sand.

'̂ âchsmuth and Auer (1928) and Doorffler (1930) used 
piezoelectrically excited flexural waves in ouartz plates to 
show the transition from flexural to shear wave propagation 
as the wavelength became small compared with the thickness 
of the plate. Petrzilka (1932) used circular tourmaline 
plates cut normal to the and excited piezoelectri­
cally, to examine flexu^af^vibrations. Krista (1939) carried out

i i Ay/
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a similar study using rectangular ?-cut quartz plates. The 
patterns observed in these cases were very similar to those 
of isotropic plates, in agreeœnt with theory.

Colwell (1931) excited vibrations by a telephone 
receiver, or a moving coil loudspeaker unit, in an extensive 
investigation of the flexural vibrations of circular and 
rectangular plates. As mentioned in Chapter 1, Colwell and 
Hill (1937) showed that the patterns observed on a vibrating 
quartz plate were the same whether the plate was excited 
piezoelectrically or by external means. Pavlik (1936) used 
a stainless steel disc and excited it directly by virtue of 
the magnetostriction effect, using a very high frequency 
magnetic field (up to 700 Kc/s).

Finally valler (1937,1949} excited flexural vibrations 
in variously shaped steel plates by contact with a piece of 
solid carbon dioxide. Most of the papers quoted here are 
parts of series by their respective authors and many other 
workers have also studied flexural vibrations.

In tha case of flexural vibrations, the observed 
patterns have agreed closely with theory, although they are 
often distorted when the particular flexural mode under 
examination is coupled to another of slightly different 
natural frequency. However, this apparent distortion is due 
to the failure of the mathematical theory to predict the
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motion, not of the experimental method to depict the nodes.
The reason for the sand or other powder moving to the nodes
has been discussed at some length by Andrade and Smith (1931),
but the views of Rayleigh (1894) on this subject seem to be
quite adequate, namely^If a grain be situated elsewhere than
at a node it is made to jump by a sufficiently vigorous
transverse motion. The result may bo a movement either
towards or from a node; but after a succession of such .jumps
the grain ultimately finds its way to a node as the only

?place where it can remain undisturbed.

2.2 Longitudinal vibrations
The experiTOntal work on the investigation of 

longitudinal vibrations by powder methods has been less 
aiccessful than that on flexural vibrations and anomalies are 
the rule rather than the exception. As long ago as 1820 
Savart found that a horizontal glass strip vibrating in the 
fundarmntal longitudinal mode showed more than the solitary 
central node which he expected from theory. Furthermore the 
pattern produced on the other side, when the glass strip was 
turned over, was different, the two sets of nodes alternating 
along the length, with certain exceptions. Savart postulated 
the existence of a flexural mode of high order coupled to the 
longitudinal mode and producing tbs anoiîmlous nodes, although 
his explanation of their formation is far from clear. It
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contains, however, tte essence of the complementary nature 
of the patterns on the two sides, namely, that at a particular 
point on the length of the strip a given longitudinal movement, 
e.g, away from the centre of the strip, is accompanied by a 
motion normal to the plane of the strip, due to the flexure, 
which is outwards on one side and inwards on the other,

Terquem (1858) repeated Savart*s work and gave a 
clearer explanation of the motion of the sand particles.
Lissajous (1858) also observed the same type of patterns on 
a bar which was clamped at each end.

The study of longitudinal waves in quartz or other 
piezoelectric crystals has been mainly empirical and directed 
towards the ascertainment of the types of motion rather than 
a verification of theoretically predicted vibrations. This 
is inevitable in view of the difficulty of the theoretical 
treatment of anisotropic bodies.

Harding and %lte (1929) studied the longitudinal 
vibrations of quartz blocks empirically and were able to 
relate certain general types of lycopodium pattern to the air 
currents emitted from the corresponding faces of the block. 
Wright and Stuart (1931) also used the lycopodium method to 
study the vibrations of rectangular and circular quartz 
plates, cut either normial to the X-axis or normal to a line 
in the xy-plane making an angle of 30^ with the X-axis # 
that is, the Y-axis.

8
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They made an empirical examination of some of the modes of 
vibration, mainly longitudinal, of those plates and noticed 
that tlie nodes indicated b- the lycopodium were not all of 
the saœ nature, as the powder tended to move along some of 
them. It is not possible to comment further on this work 
as there is no theory to predict the displacements involved 
in the modes which they studied.

By using crystals cut in such a way as to behave as 
if Isotropic towards particular types of stress, Petrzilka 
was able to apply the theory of longitudinal vibrations in 
thin isotropic circular discs given by Love (1997). Using 
Z-cut tourmaline discs (1959) Petrzilka successfully showed 
the existence of Love*s dilatational (type A) and rotational 
(type B) modes and later (1956 a), using Z-cut quartz discs, 
was able to excite vibrations at the expected frequencies 
of the composite (type C) modes. The frequencies were in 
good agreement with theory for the ouartz, and a few percent 
in error for the tourmaline. In all cases, however, the 
lycopodium patterns showed too many nodes and were so complex 
for the type C nK>des that he did not think the calculation of 
the displacements for the latter modes worthwhile. In the 
case of the tourmaline experiments, he noticed that the 
patterns on the two faces of the crystal were complementary, 
but did not say whether this was so for the quartz. In the

9
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1959 paper he had also examined the flexural inodes, which 
should be the saine as those for isotropic discs, as already 
mentioned. The nodes were found to consist solely of diameters 
and circles as given by Kirchoff*3 theory (1850) but the 
frequencies were badly in error. Petrzilka carried out 
further experiments (1956 b) on longitudinal vibrations using 
rectangular Z-cut quartz crystals, Ltssiitin (1930) having 
already published a theoretical paper on the subject. These 
plates may again vibrate in dilatational, rotational or 
composite modes, and althou^ the frequencies were in good 
agreement with theory the patterns were disturbed in much the 
same way as before.

In a critical review of Petrzilka*s work, Lonn (1937) 
considered the sources of error in the calculated frequencies 
and concluded that the frequency errors for the flexural 
vibrations of tourmaline were primarily due to the fact that 
the crystals were too thick for secondary effects (e.g. 
rotational inertia) to be Ignored. He considered that for 
the longitudinal vibrations, the crystals, both quartz and 
tourmaline, were thin enough for the frequencies to be correct 
within the experimental errors, and that the errors in the 
case of the tourmaline were due to inaccurate values for the 
elastic constants. Finally he considered that the observed 
lycopodium patterns were complicated by flexures and referred

10
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to Terauom*s work (1858).
In 1938 Petrzilka (in collaboration with Zacok) 

published a further paper on the longitudinal vibrations of 
Z-cut quartz crystals, this time using circular annul!.
Once more, althougji the frequencies were correct, the 
lycopodium patterns were complicated by extra nodes, super­
fluous to the theory. Petrzilka referred to Lonn's comments 
but did not agree that the supposed coupled flexure could 
account for all the observed discrepancies.

11
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CHAPTER 3
THE USE OF POLARIZED LIGHT

The stress-optic effect was discovered by Brewster 
(1815), who found that glass became biréfringent under stress, 
and suggested examining glass models of mechanical structures 
by polarized light to determine tl̂  stresses. In 1841 Neumann 
gave a satisfactory explanation of the stress-optic effect in 
isotropic media. Although Brewster (1818) had recorded the 
stress-optic effect in crystals, soon after his first 
experiments with glass, and many other workers including 
Moigno and Soleil (1850) and Bucking (1883) obtained further 
results with crystalline media, it was not until 1889 that 
Pockels gave the mathematical theory for the effect. He 
assumed that the changes in the optic parameters of the index 
ellipsoid were linear functions of the six components of stress 
or strain In the medium, and discussed the effect of crystal 
symmetry on the number of stress-optic coefficients required 
to express these relationships.

The linear electro-optic effect, that is a change 
in optical properties caused by an electric field which changes 
sigoL with sign of the field, was discovered almost 
simultaneously by Rbntgen (1885) and Kundt (1883). Again 
Pockels (1890) gave a mathematical theory involving a linear

12
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relation between the change in the optical parameters and the 
three components of electric polarization.

Tawil (1996) made the first application of the 
stress-optic effect to the examination of a vibrating body.
An X-cut quartz crystal was placed between crossed polarizer 
and analyser and observed along the X-axis,the natural 
birefringence being compensated for by a second X-cut quartz 
plate with its axes at right angles to those of the first.
On exciting the quartz into vibration by means of a valve 
oscillator connected to transparent electrodes on the X-faces, 
the Initially dark field lit up in certain regions and as the 
frequency was varied a different pattern was seen for each 
mode of vibration. Tawil also examined the crystal along the 
Z-axis; initially the field had a uniform tint, due to the 
rotatory dispersion of quartz (presumably no compensating 
plate of opposite hand being used) and on exciting the quartz, 
the field lit up in patches with substantially white light, 
thus reducing the saturation of the colouration already present 
in these regions. Tawil assumed the effects to be due to 
the superposition of an additional birefringence upon the 
natural birefringence of quartz. Later, in 1929, he used the 
stress-optic effect to show that quartz can be excited 
piezoelectrically into vibrations along the 2-axis. This work 
is open to serious objection, however, since his reasoning 
depends upon a comparison of the optical effects produced by

13
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stresses in different crystallographic directions and he 
takes no account of the anisotropy of the quartz*

Ny Tsi Ze (1927) carried out a series of experiments 
to test the mechanical and optical effects of electric 
stress in quartz, using various interferometric methods of 
observation* The field was always applied along the X-axis 
by two semi-transparent silver coatings on the major faces*
He made allowances for the effect of the change of dimensions, 
due to the field, on the observed retardations but did not 
allow for the contribution of the stress-optic effect due to 
these changes of dimension* Pockels (1890) had previously 
found the true electro-optic and the induced stress-optic 
effect to be of the aamd order of magnitude when quartz is 
subjected to an electric field. Moreover Ny Tsi Ze found a 
variation of the extraordinary refractive index, an effect 
which the symmetry of quartz does not allow, according to 
Pockels.

Moens and Verschaffelt (1927) performed some experiments 
on vibrating quartz using a different method from T a w i l A n  
X-cut quartz plate excited into vibrations along the X-axis 
was mounted between crossed Nicola and illuminated by white 
light, the emergent light being examined by a spectrometer.
Vhen observations were made along the X or Y-axes the spectrum

14
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was channelled by dark bands, these corresponding to wave­
lengths for which the retardation between the two waves was a 
whole number of wavelengths. "?hen the quartz vibrated, these 
broadened and grew less distinct, as might have been expected. 
%en observing along the 2-axls, however, a most striking 
effect was noticed. Due to the rotatory dispersion of quartz, 
a broad extinction band was seen in the middle of the spectrum 
(for the 12 mm thick crystal used there would be two others 
in the extreme red and the extreme blue). On vibration of the 
quartz, this band became less distinct and moved bodily 
towards the red. The band could be restored to its initial 
position by rotating the analyser. The effect was remarkable 
as it indicated an increase of rotation which did not change 
sign with reversal of the stress directions. ?̂ oens and 
Verschaffelt were at a loss to explain the effect, except for 
saying that the fading was due to a change of birefringence, 
but Cady (1946) considered that it was due to the change in 
birefringence under stress and not to a change in true 
rotatory power, this being unaffected by stress. Moons and 
Verschaffelt said in conclusion that the effect could not be 
produced by either a static stress or a static electric 
field and that the failure of the electric field to produce 
any effect probably confirmed Ny Tsi 2e*s observation that 
the length parallel to the Z-axis hardly alters #ien an electric

15
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field la applied. This phenomenon will be discussed more fully 
in Chapter 17.

Gunther (1952) carried out a similar investigation to 
that of Ny Tsi Ze and his results were in fairly good agreement 
with those of Pockels. Petrzilka (1951) repeated Tawil•s 
experiments using a rectangular X-cut quartz plate and showed 
that in the neighbourhood of the thickness vibration there was 
a multitude of modes,none of which could be definitely identified 
as the true thickness vibration. He also observed the 
vibrating quartz in the direction of the optic axis by means 
of the interference rings formed in convergent plane polarized 
light. According to Kundt (1885), these rings are deformed 
into ellipses by the application of an electric field in the 
XY-plane, their axes being parallel to the X and Y-axes when 
the field is along the Y-axis, but at 45^to these directions 
when the field is along the X-axis, the major and minor axes 
interchanging when the field is reversed. For an oscillating 
electric field the axes interchange periodically to give 
diffuse lemniscates. Petrzilka considers that the observed 
figures are due to the electric field but, as has already been 
mentioned in Chapter 1, in the case of resonant vibrations 
the electric field is of secondary importance only. This 
nathod of observation, using convergent polarized light, can 
only give an idea of the direction of principal stresses in

16
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very simple cases, as the observed figures are the integrated 
result of the transmission of light through the whole crystal.

Pan Tcheng Kao (1935’) published the results of an 
investigation made some years previously. He observed a ouartz 
plate by plane polarized light along the optic axis and' 
compensated for the rotation of the plane of polarization 
by reflecting the light back through the quartz. The original 
plane of polarization was thus restored, irrespective of the 
wavelength of the illuminâtion,so that a dark field could be 
obtained by using a crossed analyser. On exciting the quartz 
by a field along the X-axis, the quartz became illuminated 
in certain regions, this Illumination being coloured. For 
high order modes the colouration took the form of red and 
green spots in regular alignment. It was claimed that this 
regularity was upset by any slî rht lack of homogeneity in the 
quartz. However,no explanation was given for these phenomena, 
which were substantially the same as those observed by Tawil,

Bruninghaus (1935) carried out a fairly systematic 
investigation of the modes of vibration of X-cut cpaartz plates, 
using Tawil*s method, the length and breadth being parallel 
to the Z and Y-axes, He considered pure longitudinal vibrations 
parallel to the edges of the plate, the frequency constants 
being given by Hund*s formulae (1926), Where the frequencies 
of overtones of the vibrations in two or more directions

17
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approached each other, Bruninghaus expected to find 
combination modes• The vibrations were generally more 
complicated than expected and the frequencies were not very 
close to the predicted ones • This was not surprising in view 
of the fact that he had taken no account of elastic coupling 
between vibrations in the three dimensions.

Bichhorn (1936) made an investigation of the flexural 
vibrations of X-cut quartz bars, their lengths being in the Y- 
direction and the flexural displacements occurring in the Z- 
direction. The bars were observed along the X-axis by Tawil’s 
method, using similar bars with length along the Z-axis to 
compensate for the natural birefringence. The crystals used 
resonated at frequencies of the order of 20 Kc/s, and so 
it was possible to make an efficient stroboscope using a Kerr 
cell and a phase shifter, enabling the vibrations to be 
examined at any time in the cycle. île observed the isoclinlc 
along the neutral axis and by-using an Ehringhaus compensator 
with a white light source, the variation of stress was shown 
up as a variation of tint over the surface of the crystal.
Ho was thus able to make an estiimte of the variation of 
stress although had he used monochromatic light, the stress 
would presumably have been too small to cause the appearance 
of the first order stress fringe, Ke showed the difference

18
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between the types of stress at the centre and outer nodes 
when the bar was vibrating in the first overtone ; he also 
showed that the longitudinal stress was a linear function of 
tlie distance from the neutral axis and gave a graph showing 
the variation of the longitudinal stress along the length 
of the bar. Using Pockelŝ  data he made an estimate of the 
magnitude of these stresses.

Ny Tsi Ze and others (1936) examined the vibrations 
of hollow quartz cylinders with their axes in the Z-direction , 
a reflection system being used similar to that of Fan Tcheng 
Kao (1935). The observed patterns for radial, circumferential 
and longitudinal modes were very much as they expected from 
theory. As the crystals were very thick in the direction of 
the light path (often several centiirmters) nothing corres­
ponding to isoclinlcs would have been indicated (see 
sections 7.5*, 14.4 on this point).

îfîurray (1941) carried out a similar investigation to 
Eichhom^s using stroboscopic illumination, but he used a 
bakelite cantilever excited mechanically at very low 
frequencies, retardations of several wavelengths being set 
up.

Bergmann (1949) investigated the vibrations of thick 
glass cylinders by plane and circularly polarized light.
The cylinders were observed along their axes and the vibrations

19
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were excited by resting the curved surface on a suitable 
quarts vibrator. Of the large number of modes observed, 
Bergmnn selected the pure radial vibrations for a comparison 
with the mathematical theory worked out by Airey (1913)» The 
observed zero order stress fringes wore in good agreement 
with tiie calculated values and Borgtmnn also explained the 
formation of the dark cross which delineates the Isoclinie 
for a given setting of polariser and analyser.

20
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CHAPTER 4 
THE USE OF INTERPEROMETRY

4.1 Two-beam interference
The method was first used by Dye in 1927, this work 

being published posthumously in 1932. He examined the 
piezoelectric vibrations of circular and rectangular X-cut 
quartz plates by observing the two-beam interference fringes 
localized in the gap between one polished face of the crystal 
and a slightly inclined glass reference flat. On setting the 
crystal into vibration, the fringes broadened, owing to the 
normal displacement of the surface, the nodal regions of the 
latter being clearly defined. Alternatively, by using very 
flat crystals and adjusting the dispersion of the fringes 
until a minimum of intensity covered the whole surface of the 
crystal, the antinodal regions alone were illuminated when the 
crystal vibrated, thus giving a striking presentation of the 
nodes as black lines on a bright background. By using a.helium 
discharge lamp driven from the same oscillator as that used to 
drive the crystal, the resulting stroboscopic illumination 
showed the distorted fringes at maximum displacement.

Thomas and Warren (1928) used the interference fringes 
forined between a reference flat and a glass coverslip cemented 
to a reed to examine tlie vibrations of the latter. They
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argued that on vibration the visibility of the broadened 
fringes becomes zero when t!% amplitude is (2n+l))/8 , n being 
an integer and X the light wavelength, and reaches a maximum 
again for amplitudes of n//4. By counting the reappearances 
of the fringes as the amplitude increased they were able to 
measure the amplitude of the reed to an accuracy of 1% or more 
up to about 8 \  after which the general visibility deteriorated

Osterberg (1929,1952) used two-beam interference in 
reflection to examine the vibrations of a quartz crystal, but 
he obtained the fringes by using the polished quartz face as 
one mirror of a Uichelson interferometer. He noticed the 
complexity of the patterns and found a non-linear relationship 
between the crystal amplitude and the exciting voltage. The 
amplitude was measured by Thomas and Warrens * method but 
Osterberg used a theoretically calculated formula for the 
critical amplitudes corresponding to maximum and minimum 
visibility and showed the previous authors* empirical formula 
to be incorrect.

Later (1955) Osterberg used a compound "ichelson 
interferometer in which he was able to observe the relative 
motion of different faces of a quartz block by an ingenious 
system of mirrors. He also used a refracting interferometer 
(1934) in which the quartz crystal under investigation was 
placed in one arm of a Michelson interferometer so that
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changes of refractive index duo to the vibrations produced 
a fringe broadening. The broadening due to the change of 
refractive index was found to be large compared with that 
produced by the change of thickness, which could therefore 
be ignored. He hoped to find a value for some of the stress- 
optic coefficients by comparing the observed fringe shift with 
the measured surface amplitude (found by using his earlier 
interferometric methods) for a known type of motion and then 
to compare these results with Ny Tsi Ze*s static determinations
(1927), but this work was not followed up. He also found 
that it was impossible to excite true longitudinal vibrations 
along the thickness of thin X or Y-cut crystals.

Cortez (1934) used Osterberg*s original method (1999) 
to examine the vibrations of a quartz crystal, but he used 
white light illumination so that only a central black fringe 
could be seen when the crystal was at rest. The angle of 
the quartz surface relative to the incident light beam having 
been adjusted until this fringe was very narrow, the latter 
split into two faint brown fringes when the quartz vibrated, 
and Cortez assunfâd that these corresponded to the extreme 
normal excursions of the surface. By positioning the quartz 
crystal suitably, the black fringe could be shifted to any 
region of the surface, thus allowing the amplitude to be 
measured there by comparing the fringe shift with that produced
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when the quartz surface was advanced a known distance by a 
calibrated screw. He roeasured the amplitude for various 
strengths of excitation and found this to be proportional to 
the R.F. current flowing in the oscillatory circuit across which 
the crystal was connected.

Straubel (1933) also used Osterberg*s method but he used 
a very flat quartz crystal and adjusted the angle of the face 
until it was exactly normal to the light beam and in such a 
position as to give darkness over the whole face when*at rest.
On vibration,the nodal system was revealed as black lines on a 
bright background, as in Dye *s case. In a further paper (1934) 
he used Osterberg*s method (1929) for calculating the amplitude 
of vibration and, like Osterberg, found that the amplitude was 
not proportional to the applied voltage, although he did not 
make very extensive measurements.

Schumacher (1937) used Dye*s arrangement to investigate 
the compressional vibrations of Y-cut quartz plates. He 
discussed the effect of boundary conditions and showed that 
a given interference pattern was distorted if the quartz was 
clamped in an antinodal region.

Kotlyarevski and Pumper (1941) reviewed the previous 
work on interference and, by using Dye *s method of exardnation, 
showed that similar quartz plates had the same set of vibratory 
modes and that the symmetry or otherwise of the observed
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patterns indicated the hosmsgeneity of the crystal. Furthermore 
these patterns were little altered by external conditions.

Borodovskaya and Salomonovich (1951) used Osterberg*s 
method (1929) to measure the amplitude of a vibrating quartz 
crystal but, contrary to the results of Osterberg and Straubel, 
found a linear relationship between crystal amplitude and 
applied voltage.

4.2 miltiple-bearn Interference
Tolansky and Bardsley (1948,1951) made the first 

application of multiple-beam interference to the study of 
vibrations. The multiple-beam method offers imny advantages 
over the two-beam methods; the fringes,being very narrow 
compared with their separation, retain a sharp envelope when 
vibrating, even if they overlap. Bards ley (1951) made an 
estimate of the probable error in the amplitude of vibration 
as measured by the width of the moving fringe envelope and 
this will be discussed in Section 6.3. He used the multiple 
beam method in an examination of the vibrations of variously 
cut quartz plates and bars and 2-cut quartz rings. He also 
investigated the amplitude of vibration as a function of the 
crystal current and obtained a linear relationship between 
them.
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By placing reference flats on each side of a quartz 
disc two sets of fringes were formed and, if the fringes 
wore arranged to be approximtely at right angles to one 
another, the field of view was covered by bright spots where 
they intersected. On vibration, the spots traversed lines 
Joining the extreme positions of the intersections of the 
moving fringes. Knowing the direction of increasing wedge 
gap on either side of the crystal, the orientations of these 
short lines showed the relative phases of the two surfaces 
at various points on the crystal and by this means Bards ley 
was able to distinguish between flexural and compressional 
vibrations.

Stroboscopic observations were made by using a 
mercury discharge lamp or Kerr cell illumination. More 
interesting, however. Is a phenomenon noticed by Bardsley 
in which the crystal acts as its own stroboscope. TThile 
endeavouring to observe strain patterns in the vibrating 
quartz, {which was still set up for interference observations) 
by placing it between two polaroids, he noticed that for 
certain orientations of the polarizer and analyser, one side 
or the other of the oscillating fringe envelope could almost 
be removed, and near these settings the strain pattern could 
be seen either as dark lines on a bright background or vice
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versa. Although no explanation of the effect was offered, 
a qualitative explanation is simple when it is remembered that 
althou^i the change of optical properties is equal and opposite 
for alternate extrerres of the vibratory cycle, the resultant 
birefringence is not, since no compensation for the natural 
birefringence was used. Hence a setting of the polaroids 
may always be found for which the intensity of the transmitted 
light will be greater at one extreme© of the cycle than at the 
other, thus producing a partial stroboscopic effect.

Bardsley made a multiple-beam version of Osterberg*s 
refracting interferometer by forming interference fringes 
between the two silvered surfaces of a crystal. He found that 
on vibration, the fringes, which were double owing to the 
birefringence of quartz, had a different intensity distribution 
from that of the vibrating fringes formed between one surface 
of the crystal and a reference flat. An interpretation of the 
interferometric picture obtained would be difficult, as he 
used an obliquely cut plate (GT) and a large number of stress- 
optic coefficients would have to be considered.

Apart from one observation on a composite metal-quartz 
vibrator, Bardsley used transynitted multiple-beam fringes

mr

exclusively. The reflected fringes suffer from the 
disadvantage that the visibility decreases as soon as the
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fringes oscillate. Bruce,Macinante and Kelly (1951) have 
used multiple-beam interference in reflection to measure 
the amplitude of vibration of a tuning fork but, by removing 
the first reflected beam, transmission like fringes were 
obtained. This method, however, can be used easily only 
where the whole surface moves parallel to itself, as otherwise 
the first reflected beam is dispersed as soon as vibration 
sets in.
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CHAPTER 5
THE MATHEMATICAL THEORY OF LONGITUDINAL VIBRATIONS IN

CIRCULAR DISCS

5.1 Plane stress in an isotropic medium, and In quartz.
For an isotropic medium, the six components of strain 

at any point may be expressed in terms of the six components 
of stress by two independent elastic constants;
5.1 Xx* [x,t- cr(Yy+ Zx)J/E (1 ) y, =r 2 (li-o-)y,/E (4)

yy = [Ya- er(Zz-<-Xx)]/E (2) z. = 2(1^ f )Z,/E (5)
[Zz- <t(Xx*-Yy)]/E (3) Xa = 2(1+ <r)Xy/E (6 )

where E and or are Young*s modulus and Poisson*s ratio.
Considering now a thin lamina parallel to the XY-plane, 
if there are no external tractions acting over the faces, 
the stresses having components parallel to the E-axis^ namely 
2z#Y*,Zx, become vanishingly snail as the thickness decreases, 
as also do the differential coefficients, with respect to z,, 
of the remaining stresses. These conditions define a state 
of plane stress and eqns 5.1 reduce to;
5.2 X,= S(Xxtcry, )/(l-a*) (1)

Y,= E(<rxz+ yy)/(l-o-M (2 )
Xy= &EXj/(H-<r) (3)
Zz= -<r(Xx+ %  )/(l-«r) (4)

Before proceeding further, the application of the

29



(5.1)

theory to Z-cut auartz laminae will be discussed. In general, 
21 Independent coefficients are needed to express the strain 
components of an anisotropic medium iii terms of the stress 
components, or vice versa. This number is reduced by crystal 
symmetry, and for quartz only six independent coefficients 
are required, the equations equivalent to 5.1 being:
5.3 X)& - S||X|f ̂  Stzl̂  ̂  S/̂Yar ( 1 )

Yy — S|2.X* + Sfi3l̂ S|̂ Yx (2 )
Zz — Sj3X|t+‘ SijŶ @33̂ % (3 )
Yz • S|/|Xx““ (4)
&y - 2shX^ (5)

— 28t4Z)t'F 2 (St|*- S|x)X̂  (6 )
Applying the conditions for a plane stress system,we find
5.4 Xx - (Xx-(Sii/«.ihr«»)/B„(l-(s„/b„)* ) (1)

Yy = (-(Sg/Sw )x,c+yi»)/8|,(l- (s.v's,,)̂  ) (2)
% =  Sjz/si;) (3)
Z% = (Bo/sii)(x,t+JTy )/(l + Sia/Si( ) (4)
Yz - — Yy ) (5) Zx = 2SjfX, (6 )

Since l/s„ = E and-(s,a/s„ )s <r for stresses In the XY-plane, 
the conditions as regards the latter stresses are the same 
as for an isotropic medium but the extensional strain normal 
to the lamina is proportional to (s,j/S|,)/(l+So/s„) instead 
of to (So/S|i )/(l + 8o/s„), the value required for equivalence 
to the isotropic case. Numerically, 8,3/3,,=-0,121 and 
S|j/S|i* -0.133. In the derivation of tiœ equations of
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vibration (Section 5.2), the kinetic energy associated with 
the displacements in the Z-direction is Ignored, so that 
the theory for an isotropic lamina is directly applicable as 
regards these equations. It is seen, however, that the shear 
strains y% and acting in planes normal to that of the 
lamina, do not vanish, and these result in mechanical coupling 
between the longitudinal modes of vibration under discussion 
and flexural modes. This effect will be disregarded until 
Chapter 17, the vibrations of a truly isotropic lamina being 
considered until then. Lonn (1937) has shown that for a 
quartz disc with a ratio of thickness to diameter as large 
as 0.15 (used by Potrzilka, 1935a), the effect of all the 
disregarded strains can alter the frequency of the lower modes 
by only 0 .:

5.2 Longitudinal vibrations of a lamina
The differential equations of motion for small 

displacements u,v, w of an element of an elastic body are
5.5 ax^/^y +^%y/8 z + pX= çô^u/ôt^
together with two similar equations obtained by changing 
X,x,u, etc. cyclically. In these equations ç is the density 
of the medium and X,Y,Z are body forces, for example,

gravitational forces. Ignoring these body 
forces, the only operative forces in the present case are 
X, , Yy and X^; considering an element Sxxâyx 2h of a lamina.
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thickness 2h, we have ;
5.6 2h^a*u/9t* = +c)Sxyï>y (l)

ahçôN/at’" = 'bSi^x+èlÿ/Ôj (2)
where T% ,3̂  are the stress resultants, that is, the
tractions acting over unit length of the cross section due 
to the stresses ,Ŷ  and Xy. Using the values of these 
stresses given by oqn 5.2 and expressing the strains 
x% = 3u/ox,x^= ôv/8x+^u/Ôy etc. in terms of the areal dilatation 
A  = t)u/dx4 ̂ v/dy and the rotation a)--|*(àv/ûx-3u/ôy), eqns
6.6 become:
5.7 ÔA/Ôx- (1 - - {^/E)(1 (1 )

^A/ùy -h (l-4T)^&y3x = (ç>/e)(1 -<r‘*')ô̂ v/ôt̂  (2 )
Differentiating these with respect to x and y respectively 
and adding;
5.8 V'A = (ç>/£)(l-<rMô^/^t*^ (1 )
and by differentiating with respect to y and x and subtracting;
5.8 V̂ tc = 2(ç/£)(l+0')ô\û/ôt*' (2 )

where V*= + B^Dy^
Since the solution will be periodic in t we may write :
5.9 V A  + k*A = 0 (1) + k,*tJ = 0 (2 )
where k^= (ç/E)(1-cr*)p*,k*=2(ç>/E)(l+o-)p^and p la tlis 
angular frequency of vibration. A and <*) may be found from 
eqns 5.9, and substituting these values in eqns 5.7 gives 
u and V. Finally, substituting u and v in eqns 5,5 and
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using the requisite boundary conditions for the stresses,
namely, that at the periphery of the lamina the shear stress
Xy and the component normal to the periphery of the tensile 
stresses X% and Yy vanish, the frequency equation for 
longitudinal vibrations in the plan© of the lamina is 
obtained.

5.3 Application to a circular disc
In this case it is convenient to use cylindrical 

coordinates (r,6 ,z), the axis of the disc being the z-axis 
and the middle plane the r0-plane. If U and V are the 
displacements along and perpendicular to the radius at (r,<9), 
the equations for the stress resultants in the %^-plane 
may be transformed as follows (see Love,1927 p.56);
5.10  Tf » 2Eh[9T j/B r + CT(ü/p+ { l / r ) ô v / ô 6 ) J / ( l - < r * )  ( 1 )

T# = 2Sh[<r9u/Bp 4 -(U /p  + ( 1/ r )à v /ô & ) ] / (  1-  cr‘  ) (2 )

Sr0 - E h {3 v /B r -  V /p  -  ( l / r ) B v / i)6 j /C l-K T )  ( 3 )

and In cylindrical coordlnatca, eqn 5.9(1) becomes!
5.11 dW«>r‘+ (l/p)c)A/0p + (l/p̂ )B*̂ A/dê -»-k*A = 0
Now A is periodic In 6 and may therefore be written as 
rAnCOs(n0+-®‘n) where Aq is a function of r only. Substituting 
this value in eqn 5.11, the resulting differential equation 
can only hold good if it Is satisfied for each value of n 
separately; hence :
5.12 0Mn/0r‘ -f- ( 1/r )dA^r + ( k*" - ( n/r )A_ = 0
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giving as a solution;
5.13 AnJn (kr)oos(h6  ̂ (1), and similarly:

o)n = BrtJn (k,r)sin(n0/ (2) where A„and
Bn are arbitrary constants.
The relative phase of ando3#i as regards 6 is arbitary 
at the moment, but it will be seen that the value chosen 
fits the boundary conditions. On expressing eqns 5.7 in 
cylindrical coordinates and substituting the values of A„and 
Qn from oqns 5.13 we find;
5.14 Ü * LA3Jr,{kr)/dr f-(n/r)BJo(k, r)Jcos(nÔ) (1)

V- -‘[(n/r)AJn(kr) *f“ BÔJrt (k,r)/3r sin(n6) (2)
where A and B are arbitrary constants, connected with Aa 
and Bn in such a way that :
5.16 (kr) Qos(nÔ) (1 )

2 <̂ a“ k^BJn (k,r)sin (n&) (2 )
Substituting for V and V in the expressions for Tr and SrS 
and equating the latter to zero at r = a, the radius of the 
disc, gives;
5.16 A[(l/a)(l-o)dJ„(ka)/da+ (k*̂ - (nV»* )(1-<r ))j;j[ka)]

-nB(l-<r)[(l/a)dJn(k,a)/da-(l/a^)J„(k,a)J = 0 (1)
8nA[(l/a)dJM (ka)/da - (l/a* )j„(ka)J 

-B[(2/a)dJ„(k,a)/da -f (k‘-SnV»*^ )Jn(l£ia)J = 0 (2 )
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Since k,* kjg/Xl- <y), these equations may be used to find 
possible values of k and hence the natural frequencies of 
vibration (using the relations given after eqn 5.9). The 
value of A/B for these frequencies may also be found, and 
used to calculate the displacements and stresses,

This completes the forizml solution to the problem, 
the method and notation used here being substantially those 
used by Love (1927). The form of the vibration for the 
various modes is only briefly discussed in the next section; 
a fuller account is given in the relevant experimental 
chapters.

5.4 Types of vibration
a) Symmetrical modes. If n = 0, then either A or B 

must be zero to satisfy eqns 5.16. If 0, then V = 0 and U 
is independent of B , the frequency equation being:
5.17 (l/a)(l-cr )dJo(ka)/daf-kVo(ka) - 0
The displacements in the r6-plan© are entirely radial and 
the shear stress resultant vanishes. The motion involves 
no rotation about the z-axis.

If B ̂ 0, then U ~ 0 and V is independent of Û , The 
frequency equation is:
5.18 (2/a)dJo(k,a)/da4-k*J*(k,a) = 0
The displacements in the r0-plane are everywhere tangential 
and only the shear stress resultant is finite; there is no 
areal dilatation.
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In each of -esc cases tho nodes of the longitudinal 
lif̂ plnce entG are a series of concentric circles. Pollorlng 
Potrzilka*3 nomenclature they v/lll he referred to as tvpos 
A and B respectively,

h) Oonpound -oees (Potrzilka's typo C). Jhen n is not 
zero the -'otlcn ray be regarded as coripoundod of both types 
a and B. The r itio A/B has a different value for each mode 
and is determined froi tho frequency oouation as already 
mentioned. 'he nodal ayatoms of U and V each consist of a 
set of circles to ;éthur -ith n dia leters, so arranged that 
a a oh set of dla letors bisects the angles between the divyieters 
of the Ooher set. Both dilatation and rot-jtion are pr-ĉ sont 
and all the stress résultants are finite, Ihe oti 'n is very 
complex and is discussed in the cxperi iiontal chapters.
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CHiiPTER 6
THE USE OF TOLTIPLE-BSAM INTgRFEROMviiTHY

Of the methods of examination employed in the present 
work, the use of the multiple-beam Fizeau fringes foim©d 
between the crystal and a reference flat is of outstanding 
interest in that the results obtained depend on a single 
variable - the normal surface displacement. The general 
principles of interference techniques have been fully described 
previously, but a brief review of the relevant details will 
facilitate the discussion of their application to the 
particular problems encountered here.

6.1 A&iltiple-beam interference
If two, nearly parallel, highly reflecting surfaces, 

in close proximity, are illuminated by parallel monochromatic 
light, the nmltiply-reflooted beams interfere, giving rise to 
a set of interference fringes localized in the plane throu^ 
the line of intersection of the surfaces which is normal to 
tho incident light beam (Bross0l,1947). If viewed in trans­
mission, fine, bright fringes are seen against a nearly dark 
background, the distribution of intensity being given by
6.1 I == Io/(l+Psld.S/2 ) (Alry,1831)
where 8 la the phase difference between successively reflected 
beams and P= 4R/(1-R)^, R being the Intensity reflecting
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coefficient. !<, is the peak intensity and depends on the 
transmission coefficient of the surfaces, hut the distribution 
of I does not.

Equation 6.1 is based on a constant path difference 
between successive beamg, this being the case when the 
surfaces are parallel; for a finite wedge angle and normal 
incidence, which results in fringes localized in the interfero­
meter gap itself, the path difference between the direct and n^ 
reflected beam is approximately 2nt- 4n̂ tê  /5, where e is the 
small angle between the surfaces. For hi^ values of n, the 
second term may become so great as to be of the order of a half 
wavelength of light, in which case the fringe definition will 
suffer. Tolansky (1948) has given the maximum tolerable values 
of t for various wedge angles and, for most of the wedge angles 
used in the present work, the separation of the surfaces was 
well below the corresponding critical value.

6.2 Dielectric multilayers as reflecting coatings
Owing to the use of 2-out crystals in this work, the 

exciting electrodes were arranged round the periphery of the dis os g 
and would have been short-circuited by metallic reflecting 
coatings on the major surfaces. For this reason, dielectric 
multilayers were used exclusively as reflecting coatings. 
Mechanically, they are far superior to silver coatings and some
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of them hardly deteriorated after months of use, whereas 
silver coatings become scratched as soon as the interferometer 
surfaces are brought into contact.

The properties and production of such layers have been 
fully described by BeIk, Tolansky and Turnbull (1954).
Fig.6.1 shows how the correct phase relation is achieved 
for the variously reflected beams; obviously these conditions 
hold good for a particular angle of incidence only. For the 
work described in Ohapters 13 and 15, three layers of zinc 
sulphide (highy^) were used, alternating with two layers of 
cryolite (lowytt). The theoretical reflectivity of this 
arrangement is 87^, at noimial incidence, but as the thicknesses 
of the layers were estimated by the colour change method 
(described in Chapter 11) it is doubtful whether the 
reflectivity ever exceeded 80^. For some of the photographs 
included in this work the reflectivity was evidently less than 
this.

6.5 Oscillating multiple-beam fringes
If one surface of the interferometer is moved parallel 

to itself with a periodic sinusoidal displacement, the observed 
fringes move across the surface in synchronism, and the effect 
recorded by a photographic plat© or the naked eye is a set 
of broadened fringes of reduced intensity. Owing to the 
extreme sharpness of multiple-beam fringes, the fringe
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envelopes are clearly defined, and since the velocity of a 
moving fringe is zero in the ©xtreiiie position, the intensity 
is greater near the edge. The outlines of the envelopes 
retain their identity even when the amplitude is sufficient 
for them to overlap, as shown in Fig 6.2. It is tempting 
to interpret the regions of peak intensity near the edges 
as the extreme positions of the peak of the moving fringe, 
and thus to measure the amplitude by comparing the distance 
between these regions with the fringe spacing. Bardsley (1951) 
has made an empirical estimate of the maximum divergence of 
the intensity peak from the true extreme position of the 
peak of the moving fringe and concludes that it can be no 
more than twice the half width of the stationary fringe.
In view of the false conclusions reached by Thomas and varren
(1928) regarding the intensity distribution of oscillating 
two-beam fringes, it was thought worthwhile to check this 
result mathematically.

The calculation is made by putting ̂  = 4Tr(e x f Ysinpt )//\ 
in eqn 6 .1 , where x is the distance from the wedge apex, 
measured along the line of greatest slope and Y the amplitude 
of the vibration normal to the surface, and finding the mean 
intensity over a period pt * 2TT, but the resulting expression 
cannot be integrated directly. However, members of the 
Mathematics Group of the Admiralty Research Laboratory have
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kindly computed the intensity distribution near the maxima 
for two particular cases. The value of Y is 3A/16 in each 
case so that tîie intensity distribution of the fringes is 
roughly as shown in Fig 6.4; Fig 6.3 shows the fringes under 
static conditions. ‘ The chosen value of Y gives a phase change 
of ±135^at the extremes of the cycle. The phase change 
corresponding to the intensity peaks is±12^ for R = 0.7 
and approximately 1132^ for 0.9. The half-width of a 
static fringe, that is the distance between the points at 
which the intensity has half its maximum value, is given 
approximately by 6.2 W = (1 - R)/rJW as a
fraction of the distance between orders. Expressing this 
as the corresp onding phase change gives W - 40̂  or 12^ in the 
two cases. The displacements of the intensity peaks are thus 
much less than the maximum discrepancies allowed for by 
Bardsloy, but this may not be so when the fringes just overlap,

6.4 The effect of dispersion
Although a high dispersion (that is, very few fringes 

per centimetre) gives the greatest sensitivity and the biggest 
lateral shift for a given normal displacement, it is generally 
undesirable in the study of vibrations for two reasons.
Firstly, the fringes can only give information concerning 
the regions they cross; if the number of fringes is small
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the mnount of information is correspondingly limited. The 
presence of a node of vibration falling betvveen two widely 
spaced fringes would be undetected. Secondly, widely spaced 
fringes broaden asymmetrically on vibration, and this is 
undesirable if a clear idea of the surface displacements is to 
be gathered from a single photograph.

The reason for this asymmetry is shown in Figs 6.5 and 6 . 
If Oo is the surface under investigation and R the reference 
flat, then the fringes are traced out by the intersections of 
Co with planes parallel to R and spaced at multiples of A/2 from 
the latter in the direction of the incident light (here assumed 
vertical). On vibration, the surface distorts between 0, 
and Cl and the fringes move between P, and as shown. It is 
clear that the greater the tilt of the reference flat, the more 
i^mmotrical is the broadening and the more similar are the 
broadenings of adjacent fringes. When the latter condition 
holds good, the amplitude of vibration is substantially constant 
along the line traced out by a given point of an oscillating 
fringe, and only under this condition may the fringe broadening 
be taken as a measure of the surface displacement. In spite 
of these considerations, very high dispersion fringes were 
often used to facilitate the detection of extremely weak 
modes; then, having found the frequency accurately, the lower
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dispersion was used to examine the vibrations.

6.5 Interference of light reflected from the two crystal faces 
For convenience, this type of interference will 

hereafter be called internal interference, as opposed to the 
simple interference occurring between one ai rface of the 
crystal and a reference flat. For such interference, owing 
to the great path difference between successive beams, the 
mono chromât ism and parallelism of the incident illumination 
are critical, necessitating a low pressure mercury arc source 
and a very small aperture at the focus of the collimator 
lens. For non-normal incidence the fringes are localized in 
a plane through the intersection of the interferometer surfaces 
perpendicular to the light beam, as already mentioned. For 
small gaps any slight deviation from normality has a negligible 
effect on the plane of localization, but in the present case 
the line of intersection of the surfaces may be a few Tr̂ tros 
away from the specimen, so that a very small deviation from 
normality shifts the plane of localization by several 
centimetres, thus preventing the fringes and the specimen 
from being focussed upon simultaneously, Since the crystal 
must have a finite wedge angle to secure a suitable fringe 
dispersion, the crystal used for most of the esq? a riment» did 
not fulfil the critical conditions (mentioned earlier) for
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obtaining sharp fringes, owing to its large thickness {2 ?mi).
In spite of this, however, the fringes obtained were vastly 
superior to two beam fringes.

For internal interference, the optical path difference 
between successive beams depends on both the thickness and 
the refractive index. On vibration, the change in this path 
difference is :
6.3 2 (l^t) r 2 t̂ -fr ̂ St ^being the refractive index. 
Considering first an isotropic body, the effect of stress is
to make it biréfringent.. Hence the fringes split into two 
components for which the refractive indices are:
6.4 ju, - K(P4 Q) - G(P-Q) f /L (1)

>*.1 = £(P+Q)+C(P-Q)+/c (2)
P and Q being the principal stresses and K and C stress-optic 
coefficients. The stress-optic effect is discussed more fully 
in Chapter 7. For the type of vibration considered in this 
work the change of thickness is
6.5 9hZĝ = h(P + Q)xConst so that the changes of the 
path difference between successive beams are
6.6 S{2fA.th = 2h[K'(P + Q)-C(P-Q)J (1)

5(^t)î = 2h[K'(P+q)4 C(P- Q)] (2)
The motion of the fringes may be visualized as a

bodily displacement proportional to P-fQ (and to the surface 
displacement) with an additional splitting of the fringe
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proportional to P*^Q. If Pf Q = 0 , the fringe is split 
syiîïmetrically, while if F-Q =0, the fringe does not split 
but is merely displaced. Since the effects due to both the 
change of thickness and the sum of the principal stresses are 
additive, the bodily displacement of the fringe will usually 
be large compared with the splitting. In the case of a 
vibrating body the general appearance would be similar to that 
observed by simple interference but the fringes would nK>stly 
have a double envelope.

Considering now the particular case of quaintz cut 
normal to the optic axis, certain difficulties arise. /hen 
the quartz is stressed,an analysis of the intensity distribution 
of the broadened fringes is complicated,owing to the Combination 
of rotatory power and birefringence, and has not so far been 
accomplished. The best approach in the circumstances would 
have been to observe the behaviour of the fringes formed 
between the surfaces of a statically stressed bar, similar to 
that used for the experimental check on the stress-optic 
effect (Section 14.1). Failing this, the following argument 
will give some idea of the expected behaviour.

In an unstressed Z-cut plate, each plane polarized 
element of an incident unpolarized beam suffers a rotation 
on each passage through the crystal which is annulled whenever
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it is reflected in the reverse direction, so that the mltiple- 
beams due to each element are in a condition to interfere 
in the normal way. If the plate is now subjected to a static 
isotropic stress, that is, so that P- Q = 0, in the XY-plane, 
the mean refractive index alters, but, due to the relation 
between the stress-optic coefficients in quartz, it does not 
become biréfringent in the Z-direction (see Section 7.4) and 
so the fringes are unaltered except for a shift proportional 
to P + Q. If now the alternative state is c.onsidered, in 
which P-Q. is finite but P+ o is zero, whatever the effect 
of this stress, the resultant fringes will be symmetrical 
about their original positions. The most that the effects, 
not yet known, of elliptic polarization in the crystal could do, 
would be to spoil the phase conditions and blur the fringes.
The general case, in which P and Q have arbitrary values, is 
a superposition of these two effects. It see s likely, 
therefore, that the general appearance of the fringe pattern 
would be sorffâwhat similar to the isotropic case, although 
the polarization state of the emergent light is uncertain.
It will be seen in Chapter 15 that this is, in fact, the case.
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CHAPTER 7
THE THEORY OF THE STRESS-OPTIC EFFECT

7#1 The effect of stress on the optical properties of 
an isotropic medium

Neumann gave the first quantitative explanation of 
the stress-optic effect in isotropic n^dia and based it on 
two assumptions, namely:

1) Fresnel*s laws hold good for the propagation of 
light in a homogeneously deformed medium, the principal 
polarization axes coinciding with the principal axes of 
strain (and, of course, with those of stress, for an 
isotropic medium)

2) The principal velocities of light in the strained 
medium, a,b,c, are linear functions of the principal strains, 
giving:
7.1 a = Vf qx^fp%+pZz (1)

b - v-h pXxtqyyFpZa (2 )
G - Vf PXxtpyy-1-gẑ  (5)

where v is the velocity of light in the unstrained medium,
p and q are constants characteristic of the medium and x*
etc. are the principal strains. v,p and q are all functions 
of the light wavelength.
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Since stress and strain are linearly dependent and 
their principal axes coincide for an isotropic itfâdiuiïi, the 
principal velocities imy also be expressed in terms of the 
principal stresses by the smm set of equations (7.1) but 
with different constants p*,q*, the two pairs of constants 
p,q and p*,q* being connected by relations involving the 
elastic constants of the medium.

It may easily be shown that the axes of a section of 
the index ellipsoid defined by the velocities a,b,c are 
parallel to the secondary principal stresses In the plane 
of the section (the secondary principal stresses in any 
plane are the principal stresses resulting when stress 
components acting normally to the plane are disregarded).
Thus the difference between the propagation velocities In 
any direction^ at a given point in an isotropic medium is 
(p*-q*)(P-Q), F and Q being the secondary principal stresses 
in the plane normal to this direction; moreover, the vibration 
directions of the two waves are parallel to the axes of the 
section of the ellipsoid and thus to the secondary principal 
stress directions.

7.2 laoclinicB and isochromats
The intensity transmitted by a lamina of biréfringent 

material between crossed polarizer and analyser and
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illuminated by parallel light is;
7.2 I = I^sinSo(sii^S/2 where is the acute angle
between the polariser axis and a vibration direction in the 
specinen and 8 the phase difference between t M  two waves 
emerging from the specimen. The Intensity will be zero if 
D< = 0 orTT/2, or if 8 - 2nlT. In the general case of a stressed 
lamina both'»' and S vary from point to point and so two 
systems of dark fringes are seen in the field of view. These 
join points whore a) the polarizer and analyser are parallel 
to the directions of the principal stresses or b) the phase 
difference is a whole number of periods. Fringes (a) are 
known as isoclinics; their configuration alters with the 
setting of the polarizer and analyser relative to the 
specimen, but is independent of the wavelength of the incident 
light. Fringes (b) are known as isochromats or stress 
fringes, and are independent of the setting of the polarizer 
and analyser, but dependent upon the wavelength.

It is convenient to be able to examine these fringe 
systems separately and the stress fringes can be eliminated 
by using white light and photographing with panchromatic 
plates (The zero order fringe, for which S= 0, remains, as 
this is common to all wavelengths). The isoclinics may be 
eliminated by using circularly polarized light ; a quarter 
wave plate immediately after the polarizer, with its axes
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at 45^ to those of the latter, results in circularly polarized 
light falling on the specimen and, if the phase difference 
between the waves after the passage through the crystal is a 
whole number of periods, the etmrgent light is also circularly 
polarized. Thus a second quarter wave plate, with axes at 90^ 
to those of the first, produces plane polarized light again, 
which is stopped by the crossed analyser. Alternatively, 
the same result may be achieved by setting the second quarter 
wave plate parallel to the first and the analyser parallel 
to the polarizer. Since circularly polarized light is 
incident on the specimen, any effects due to the orientation 
of the latter are eliminated and the isoclinlcs entirely 
removed.

7.3 Effects due to vibration
If the specimen is set into vibration, assuming that 

the stress-optic effect is instantaneous compared to the 
frequency of vibration, new stress fringes appear at the 
regions of maximum stress and move towards the zero order 
regions, as the stresses are increasing, and conversely as 
the stresses decrease. This is repeated for each half-cycle, 
irrespective of the sign of the stresses. Unless stroboscopic 
illumination is used, it is not possible to see the stress 
fringes as such but, as in the case of Straubel*s ihterforo- 
metric experiments (1933), the intensity has maximum or
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minimum values for certain critical amplitudes of vibration.
II* the phase difference is written as S z Bsinpt in eqn 7.8, 
then the mean transmitted intensity over a period of the 
vibration is:
7.3 I^ Io(l-JoB)/8

This expression has its first maximum for B = 3,832 
radians, that is for a peak phase difference of somewhat 
over half a wavelength. Eqn 7.3 will not hold good in the 
case of quartz crystals since, as shown later in Pig 7.1, 
the phase difference is not proportional to the stress and 
will not, therefore, vary sinusoidally. However, the 
qualitative results will be the same, and since a diminution 
of intensity with increasing amplitude of vibration has only 
once been observed, and then for a thick crystal vibrating 
very strongly, it is concluded that the first order stress 
fringe does not normally make an appearance, so that 
stroboscopic illumination would not be worthwhile. Eichhom*s 
compensator method (1936) would be difficult to apply in 
the present work, owing to the variable stress direction* 
further, since the frequencies used here are 10-30 times as 
groat as those used by Bichhorn, the electrical difficulties 
involved in making a suitable stroboscope are not easily 
overcome. Thus for all practical purposes the zero order 
stress fringes, for which 5 = 0 throughout the cycle are the
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only ones available for study.
Since the stresses maintain their amplitude and phase 

relationship relative to one another throughout the cycle, the 
directions of the principal stresses at any point remain 
fixed. Thus the isoclinics are entirely unaffected by the 
vibration. This is true only for isotropic media* in the case 
of quartz crystals other factors must be considered, and these 
are discussed in Section 7.5.

7.4 The stress-optic effect in crystals* Pockelŝ  theory
Neumann*3 theory cannot be applied to crystalline 

media since, in general, the original principal polarization 
axes will not be parallel to the principal axes of stress or 
strain, nor will t^e axes of stress and strain be parallel to 
each other. Pockels^ theory assumes:

1) Fresnel*s laws hold good (as in Neumann’s theory)
2) The differences between the original and deformed 
optic parameters are linear, homogeneous functions of 
the stress or strain components.

The optic parameters are the six constants required to express 
the equation of the index ellipsoid when its principal axes 
do not coincide with the coordinate axes,this being:
7.4 a„x*+ Ssâ yz-h 2%, sx + 2a,aXy = 1
Thus the stress-optic effect may be expressed by six
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equations giving the changes in each optic parameter (%**<- 
as linear functions of the six components of stress or strain. 
The two sets of coefficients required are connected by 
relations involving the elastic properties of the medium.
For a particular crystalline symmetry, the array of stress- 
optic coefficients q,,,̂ is similar to that of the elastic 
constants except that since the energy consider­
ations requiring do not apply in the case of the stress*
optic coefficients. Hence 56 constants, not 21, are required 
for a crystal which is devoid of symmetry.

In the case of quartz, if the usual orthogonal axes
are taken as axes of coordinates, only 8 independent stress- 
optic coefficients are required; further â t, a^ and a^ vanish
and = a^= ô  and a,, = ê  , o and e being the ordinary and
extraordinary velocities of light in the undeformed crystal. 

Thus, in terns of the stress components the optic 
parameters become :
7.5 a„ = o* + (q„ X, + q^Yy t q^Z, + q,̂ Y. ) (1 )

a»t = o* + (q,iX* + q„ïy + q„Zz - q.̂Y* ) (2 )
®S» - ® (q̂ iXx ̂  q3|Yy + ) (3)
®»>- (q,,X%- q ,̂Yy +■ q^^z.) (4 )

(q,V2x-»-2qL,JCy) (5)
a,a= (q„Zx+ (q„-q„)Xy) (6 )
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The shape and orientation of the deformed index
ellipsoid may be found from these parameters; assuming that

o oa,,-a„ etc. are all small compared with a„ etc and with
c oa,,- sl̂ x etc, it may easily be shown that the new position of 
the ellipsoid is attained by rotating the original ollipsoid 
through small angles about each coordinate axis in turn.
The magnitudes of these angles are given by:
7.6 tanSfpc. * 2a (a%2- 2a^(a^-a^)

and((>3 are found from similar expressions, the suffixes 
being changed cyclically. For quartz, since a^, cp̂  is 
large and independent of the actual magnitude of the stress. 
Provided this rotation is made first, however, eqns 7.6 still 
hold good. Moreover, since q,, - q^# it is easily shown 
that for stresses perpendicular to the optic axis cpi = ̂ , where 
G is the angle between the X and Y-axes and the principal 
stress directions, so that the principal axes of the section 
of the index ellipsoid by the XY-plane are parallel to 
the principal axes of stress in this case. It may further 
be shown that for such stresses the resultant effect of the 
rotations cp, and is that the ellipsoid is turned througji 
a small angle about an axis in the XY-plane making an angle 
of -26 with the X-axis. Using Pockels’ values for stress- 
optic coefficients of quartz, this angle is found to be about
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1 or 2% of the angle between the optic axes of the now 
biaxial quartz, for a stress of 1 Kg.mm , and will therefore 
be ignored. The resulting index ellipsoid rriay be expressed 
as follows, when the principal stress directions and the 
original optic axis are taken as axes of coordinates:
7.7 x*(o*+ q„P+-q,zQ) + y‘(o*+q„P + qs,(P+Q)) = l'
Thus for the type of stress considered, and for propagation
of light along the Z-axis, the quartz behaves very similarly 
to an isotropic medium as regards the pure stress-optic effect.

7.5 The effect of optical activity
Drude (190éT) has shown that the effect of optical 

activity on the properties of biréfringent media is to alter 
the equation giving the velocity of propagation in any direction 
from:
7.8 2v^ =: a*4 c^+ (a* - c* )cos(g, 1  ĝ ) to:
7.9 2v^« c %  ĉ  )G08g%oosgt

± o'*" )̂ sin̂ g, sin^4i^^
Here v is the velocity in the given direction, g, and 
are the angles between the wave-normal and each optic axis, 
a,b and c are the principal velocities and 7 is a parameter 
depending upon the rotatory power of the medium. Eqns 7.8 and
7.9 are identical when *7 :̂0 . As a result of this theory, a 
plane polarized wave travels through the medium as a pair of
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oppositely-handed elliptically polarized waves, their 
velocities being given by eqn 7.9; these ellipses have equal 
axial ratios and lie oppositely, the major axis of one being 
equal to the minor axis of the other.

An Incident plane polarized wave must first be resolved 
into plane polarized components along the principal axes of 
the section of the ellipsoid and then each of these is 
further resolved into a pair of elliptically polarized waves. 
Drude gives the axial ratio h in the form:
7.10 hf 1/h = )*̂ 3in*-g,sln*̂ ĝ + / 7

Considering propagation along the original optic axis 
of quartz, we have :
7.11 aing,,ga = ±J(a*-- c^)
7 .1 2  coag, = cosgx = J (b * -  o ^ ) / ( a ^ -  )

30 that eqns 7.9 and 10 m y  be written as ;
7 .1 3  h f  1 /h  = 2J1 + ( a - b f / ( l y / a ) *

7 .1 4  V, -  V. = ( T ? /a ) j l+  { a - b f / ( i f / a ) * ^

Preston has considered the general case of an optically 
active crystal between polarizer and analyser. If the axes 
of these make angles of and respectively with one axis 
of the section of the ellipsoid by the wave front and, for 
convenience, the incident light amplitude is taken as 1-f h^, 
then Preston gives for the transmitted light intensity:
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7.15 I = [(1 + )cos(c<'-/̂  )cos8/2**2hsln(®*=̂ '“/)sinS/2j
4 (1~ h^)^cos^ (®^4^) s±n^S/2 where S is the 

phase difference between the emergent elliptically polarized 
components. Since both terms in this expression are essentially 
positive, the intensity can be zero only when they arc both 
zero, thus leading to the conditions:
7.16 - 77/2 + tan *£(2h/(14 h^ ))tanS/2j
and either 7.17 )= 77/2, or 7.18 S = 2nTT

As (^-oc) must always be equal to the value given 
in eqn 7.16 for extinction, the apparent rotation is
7.19 p = tan”* [(2h/(l+kf))tanS/^
Assunilng that the polarizer and analyser have the relative 
orientation given by eqn 7.16, then extinction occurs when 
either eqn 7.17 or 7.18 is satisfied, that is, when a) the 
bisector of the angle between the polarizer and analyser axes 
is parallel to the bisector of the angle between the axes of 
the section of the index ellipsoid, the latter axes being 
parallel to the principal axes of stress in the prosent case ; 
or b) the phase difference is a whole number of periods, 
irrespective of the absolute orientation of polarizer and 
analyser.

Since the apparent rotation varies with the retardation, 
it will generally not be possible to achieve the condition
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necessitated by eqn 7.16 for all points in the field of 
view sizraxltaneously. It may be achieved automatically, 
however, by reflecting the light back along its path. In 
general, this leads to a very complicated expression for 
the intensity, since a right-handed elliptic wave on incidence 
is a left-handed wave on reflection; but where the transmitted 
intensity would have been zero, that is, at just those regions 
in which we are interested, the light falling on the analyser 
would necessarily have been plane polarized and so, on 
reflection, will retrace its path and leave the crystal in 
the same polarization state as that in which it entered. It 
may thus be stopped by an analyser whose axis is perpendicular 
to that of the polarizer.

If a statically stressed quartz lamina is viewed 
under these conditions, two sets of fringes will be seen.
One set joins points where the principal stress directions 
differ from those of polarizer and analyser by half the 
apparent rotation at those points; the other set joins points 
where the phase difference is a whole number of periods (for 
the single path through the crystal). These two sets 
correspond to isoclinics and stress fringes with these 
exceptions: 1) The rotation must be known at any point on 
the iaoclinic to find the principal stress directions.
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Since the rotation depends on phase difference the 
interpretation will he difficult. It will he shown, however, 
that for the cases encountered in the present work, the 
apparent rotation hardly varies from the static value and 
hence the polarizer and analyser settings differ by a 
constant angle from the stress directions. 2) The fringes 
correspond to equal increments in the phase difference but 
this does not depend linearly on the stress, as seen from 
eqn 7.14. The stress could easily be found, however, by 
using the graph given later in Fig 7.1. In the present work 
we are restricted to the zero order fringe, so this question 
does not arise. It is interesting to note that at points 
on this zero order fringe the phase difference is finite 
although the stress difference is zero; since, however, the 
sections of the index ellipsoids at these points are circular, 
the incident light is unresolved and darkness prevails.

Turning now to the numerical magnitude of the 
apparent rotation in quartz, the phase difference between 
the two elliptic waves is ;
7.20 5 = (2Tïfc/T )(V, - Vi )/v, v^ ^  (21Tty/â T )jl+- (a- "bŸ/{,rf/&Ÿ 
(from eqn 7.14) where t is the thickness and T the period.
The rotation of the unstressed crystal is:
7.21 0*= Sq/2 = TTty/a^T Hance ;
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7.22 b = where e = (a-h^Cy/a)
and using eqn 7.13 for (14 h^ )/h we have:
7.23 ç = tarî  [(tan^jl )/Jl4€^]

Fi g 7.1 shows S and ç plotted against €r together 
with the asymptotes of ^ . The two sets of curves are for 
thicknesses of 0.5 mm and 0.306 mm, the static rotations for 
A = 5461A being 12.7^ and 78^ respectively. An experimental 
test of the theory for the thicker crystal is described 
in Chapter 14. It should be noted that, while and 8 are 
directly proportional to the thickness^ç> is definitely not.
For the smaller value of t the rotation hardly varies from 
its static value since (tan CÇo)/C-^Ço asç^^O. Thus for 
thin crystals the rotation may be assumed constant, and equal 
to the static value for all practical purposes; owing to the 
flatness of the curve near the origin, the same will be true 
for thicker crystals, provided the stresses are small enough.

7.6 The electro-optic effect
The linear electro-optic effect, that is, a change 

of optical properties due to an electric field which reverses 
sign with the field direction — as opposed to the Quadratic, 
or Kerr effect which does not change sign - is possible with 
all piezoelectric crystals and with them only (see Cady,1946). 
There are, in general, 18 electro-optic constants relating
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the six optic paran^ters to the three components of electric 
intensity. Some of these vanish due to crystal symnotry 
and^ for a given crystal, the resultant array of coefficients 
is the same as that of the piezoelectric constants. For this 
reason it is difficult to detect the electro-optic effect, 
since every component of electric intensity which can cause 
an optical change, also causes an elastic deformation due 
to the converse piezoelectric effect which produces a further 
optical change by virtue of the stress-optic effect. However, 
Pockels (1890) allowed for these complications and concluded 
that, for quartz, there is a genuine electro-optic effect 
of the same order of magnitude as that caused by the 
piezoelectrically induced strain. When considering the 
optical changes due to stress, however, the secondary changes 
due to the electro-optic effect may be ignored since, as 
already mentioned in Chapter 1, the electric field caused by 
a given stress or strain by virtue of the direct piezoelectric 
effect is much smaller than the field required to produce 
the same stress or strain by virtue of the converse 
piezoelectric effect.

Summarizing this discussion, it may be said that 
if a thin Z-cut quartz plate, vibrating longitudinally 
in its own plane be examined in reflection by a plane or 
circular polariscope, initially set for extinction, the

61



(7.6)

Isocllttle fringes and zero order stress fringes aay be 
obaerred Just as In e statically stressed. Isotropic body, 
wscept that the Isoclinlcs correspond to principal stress 
directions differing from the directions of the axes of 
polariser and analyser by half the naturel rotation In the 
quarte for the light wavelength In use.

.a
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CHAPTER 8
THE MQTIQH OF POWDER PARTICLIsS ON A VIBRATING SURFACE

The motion of the particles on a surface vibrating 
flexurally has already been mentioned in Chapter 2, and is 
relatively simple. When the flexural motion is combined 
with a longitudinal motion, the movements of the particles 
are imch more definite, the frictional force between a 
particle and the surface being of great importance.

Suppose that a particle is on a horizontal surface 
at a point where the horizontal and vertical displacements 
are u and w. As we are considering a free vibration of the 
body, these displacements are in phase♦ Thus :
8.1 u - Usin^ (1) w - Wsin&)t [2)

The accelerations are:
8.2 - Uw^sinut (1) and~Wco‘sino>t (2) respectively.
If the particle is not to slip relative to the surface, then:
8.5 (ntĴ sinwtl < ><(g-Wa)*̂ sint*3t) being the
coefficient of friction. Thus slipping occurs if the 
two curves shown in Pig 8.1 intersect at any time, and 
continues during the time that they overlap, shown by the 
shaded region in the figure.

If U=0 then a)% ̂  g for a particle to remain absolutely 
at rest relative to the surface, this being the necessary
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condition in the caee of pure flexural modes. In a typical
O 6case U or W may be lOOOA and w  imy be 10 sec » giving the

7 -2.aoceleration of the siirfaoe as 10 em«seo or about 10,000g*
This is 60 great that for all praotioal purposes the particle 
will only remain completely at rest, relative to the surface, 
where 0 and W- O. When this is not so, the particle will 
leave the surface when -ui*-5ainot is negative (i.e. w positive), 
and will slip when it is positive (i#e# w negative) unless 
^  7 ̂ |ül (nogloating the small effect due to gravity)♦

If the particle does not slip when w is negative, 
then it moves horizontally with the surface as the latter 
moves upwards to Its equilibrium position. At the equilibrium 
position (i.e. O, w=0) tîie particle Is projected from the 
surface with horizontal and vertical velocities equal to 
CJÜ and coy respectively. If < lUI , the horizontal velocity 
of projection would be less than wu but the subsequent motion 
would be qualitatively the same. The particle then describes 
sane sort of trajectory and reaches another part of the 
surface where the process is z^peated, ultimately reaching a 
point udiere conditions are favourable for it to remain.

For the typical amplitude and frequency m&nttoned above, 
the peak velocity of the surface is only 10 cm.sec *, in spite
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of the great acceleration. The terminal velocity of 
lycopodium spores when falling freely in air is approximately 
S c m . s o c 30 that for a vertical projection velocity of 
10cm.sec** the height of the trajectory is approximately 
0^22vm and the time of flight 0.014 sec. If the horizontal 
projection velocity Is equal to the vertical, then the 
horizontal distance travelled by the particle in this time 
is 0.47 mm. For certain types of vibration, notably the 
thickness vibrations of X-cut quartz crystals (Wachsmuth and 
Auer,1928), air currents are set up which may carry the 
lycopodium powder 60 cms above the surface. However, 
in the present work such effects have not.been observed 
and the simple projection theoiy will suffice.

In general, the surface of a vibrating body will be 
crossed by a set of nodes of the vertical displacement and 
a set of nodes of the horizontal displacement. Unless a 
node of either sort is parallel to the horizontal displacement, 
there is always a component of the latter acting towards it.
If the displacements near to a node are such that an upward 
displacement of the surface is in phase with a horia> ntal 
displacement towards the node, then as the surface passes 
throu^ the equilibrium position in the upward direction 
the particle is projected towards the node. Near the other

65



(8)

side of the node, since the phase of either the horizontal 
or the vertical displacement is reversed according as the 
node is associated with the former or the latter displacement, 
the direction of projection of a particle is opposite to the 
previous case, that is, towards the node once more. Thus 
such a node would collect the powder. Alternatively, the 
conditions near a node may be such that an upward displacement 
is in phase with an outward horizontal displacement, in which 
case the lycopodium would be dispersed.

It should be pointed out that the lycopodium is 
rarely at rest in these cases, even at those nodes at
which the powder accumulates. For, if the node is one of
horizontal displacement, the particles are continually 
projected vertically into the air, while if the node is one 
of vertical displacement then slipping of the surface beneath 
the particle occurs for most of the cycle. It will be seen 
in Chapter 16 that of the two types of node, the latter is 
usually the more clearly defined. In either case, however, 
the particles encounter powerful restoring forces if they 
stray too far from the favoured nodes.

If the vertical displacement is due to a flexure,
then the corresponding nodes on opposite surfaces of the 
body will not both be indicated. This follows since a
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given displacenfônt in the horizontal direction corresponds 
to a displacement normal to the surface which is outwards 
on one aide and inwards on the other, so that if the node on 
one surface accumulates powder, that"on the other surface 
will disperse it, when the body is turned over; thus the 
nodal patterns indicated on the two sides will be compleiTien- 
tary. If, however, the vertical displacement is due to a 
longitudinal type of strain, the vertical displacements on 
opposite surfaces will be symmetrically distributed with 
respect to the n^dian plane and similar nodes will be 
Indicated on both surfaces. In general, the vertical 
displacenscnt is a combination of the two types and the nodes 
will be of symmetrical (i.e. indicated on both surfaces) 
or asymmetrical type, according as the longitudinal or 
flexural displacement has the greater magnitude.

The effect of a component of displacement parallel 
to a node, is to cause creeping of the powder along the 
node, the motion of the powder being oppositely directed 
on each aide of the node. If the node is precisely parallel 
to the horizontal displacement, there will be no motion of 
the powder towards the node and it will hardly be made 
visible.
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Finally, if a node of vertical displacement coincides 
with one of horizontal displaceimnt, it will hardly be 
indicated. This follows because if there is any horizontal 
displacement towards the node, the powder will move towards 
the node on one side and away on the other, stopping 
momentarily at the node itself. The node is, in fact, a 
position of unstable equilibrium for, althou^ it is an 
absolute node, the slightest jostling by the incoming 
particles is sufficient to push the particles already there 
to the other side, where they are swept away. If, on the 
other hand, the horizontal displacement is parallel to such 
an absolute node, then particles which stray however slightly 
from the node are swept along parallel to it, in the same 
direction whether they stray to one side or the other.

These theoretical conclusions may be summarized by 
describing a simple method by which the direction of motion 
of the powder may be determined at any point on a vibrating 
surface, the horizontal and vertical displacements being 
known.

The two sets of nodes are drawn on the surface of 
the body; the surface is thus divided into regions which 
are bounded on all sides by nodal lines or by the boundary 
of the surface. Arrows are drawn representing the horizontal
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displacements In these regions, for any given instant of 
the vibratory cycle. If now one of these arrows is regarded 
as a starting point, the directions of all the others are 
reversed once for each node of vertical displacement which 
is crossed in reaching the region in which they are drawn.
Then the direction of motion of the powder is given completely, 
either by the resulting system of arrows, or by the system 
in which the directions of all these arrows are reversed.
The correct system may be decided if the direction of nxition 
is known at any point. For exanqple, at a node of pure 
longitudinal horizontal displacement, in which the only 
vertical displacement is due to the cross strain, the powder 
motion is always towards the node since a compression, that 
is a horizontal displacement towards the node, results in a 
dilatation of the plane which is nonwl to the stress, and 
hence in an upward vertical displacement.
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CHAPTER 9
APPARATUS USED FOR OPTICAL EXAMINATION

9.1 General degerlption
The complete optical arrangeant Is shown in Fig 9.1, 

various components being removed according to the method of 
observation in use. The collimating system consists of 
the condenser lens G focussing an image of the source A 
(usually a mercury arc) on the adjustable iris diaphragm D 
which is situated at the focus of a large, well corrected 
lens E (focal length SO cms, aperture f/2.9). B is a 7ratten 
filter used to select the mercury green line, when required, 
and F is a barrier layer photocell, connected to a spot 
galvanometer, which may be swung into the light beam to 
monitor the intensity. G is a front aluminized mirror and 
E the specimen stage. %en observing by reflected light,
G is moved to the alternative position G* and used in 
conjunction with the fully aluminized mirror L and half 
aluminized mirror J. M and K are pieces of Polaroid sheet 
in rotatable mounts, used as polarizer and analyser and I 
is a mica quarter wave plate. The camera has an f/4.5 lens 
of 12 cms focal length; the microscope coverslip 0 and lens 
R focus an auxiliary image of the specimen on the ground 
glass screen S, which may be observed by means of the eyepiece
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T even while actually exposing the photographic plate Q, 
since 0 is placed before the shutter P.

9.2 Interferometric observation
When using simple interferometry, the quartz crystal, 

coated on the lower surface by a dielectric reflecting layer 
(see Chapter 11), rests on a glass reference flat, similarly 
coated on the upper surface, in a suitable electrode jig 
on the speciiwn stage. The illumination is from below and 
the optical components between H and the camera are removed. 
The aperture of the camera lens is sufficient to collect all 
the nailtiply^reflected beams coming from the entire crystal 
surface. For these observations the source is a hi^ 
pressure mercury arc, sufficiently monochromatic to produce 
sharp fringes yet not sufficiently so to show up the 
secondary fringes due to internal interference. The alignment 
and focussing of the collimator is carried out by back 
reflection from the specimen itself, this method also being 
used for all the other types of observation.

The same arrangement is used for internal interference, 
except that in this case the crystal is coated on both sides 
and a low pressure D.G. mercury arc replaces the high pressure 
one for the reasons given in Chapter 6. At first the crystal
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rested on an uncoated glass flat, but in later experiments 
this was replaced by two stretched hairs, to avoid secondary 
interference fringes. It was stated in Chapter 6 that the 
collimation and normality of the incident illumination are 
critical for this type of interference. The aperture D 
has to be less than 1 nan for sharp fringes and the jig 
supporting the crystal rests on three levelling screws.
The camera is first focussed on the specimen itself and 
the plane of localization of the interference fringes can 
then be made to coincide with the specimen by adjusting the 
screws until the image of the fringes is as sharp as possible.

9.5 Observation by polarized light
In this case G is moved to G* and the crystal examined 

by reflection; the crystal is coated on the under surface 
for this purpose and rests on an uncoated flat. When using 
plane polarized light, all the optical components are 
present except the quarter wave plate I. Since L and J 
would cause the plane polarized light emerging from M to 
become elliptically polarized, unless the plane of polariz­
ation is parallel or perpendicular to the plane of incidence, 
the orientation of M has to be attended to first. With K 
removed, M is rotated until the field of view is as bright 
or as dark as possible, as seen in the eyepiece. The
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analyser K Is now replaced and rotated for extinction; this 
is not usually obtained at once, but, by slightly adjusting 
K and M alternately, the desired condition is easily 
achieved.

A simple device using a half shade plate is used for 
marking the vibration direction of the polarized light on 
the photographs. A sheet of Polaroid was cut by a straight 
line at a small angle to the axis of vibration of the 
transmitted light. One piece was turned over and the two 
pieces mounted side by side between glass plates, the cut 
edges being adjacent to each other and separated by about 
^ mm. %en this device is placed at H instead of the specin^n, 
and illuminated from below, the two halves of the field are 
equally bri^t when the line of division is parallel or 
perpendicular to the analyser axis, the setting being quite 
critical for the latter condition. Having adjusted the 
half shade plate to the latter condition, if a suitable 
exposure is made on the same photographic plate as that used 
to record the stress pattern of th€ specimen, the analyser 
remaining undisturbed, the light coming through the gap 
between the two halves marks the vibration direction of the 
incident light.

"%Gn making observations by circularly polarized li^t.
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a quarter wave plate cannot be placed directly after the 
polarizer M as the resultant circularly polarized lii^t
would be elliptically polarized after reflection at L and
J. Hence it is placed at I and, as the light passes throu^
it again after reflection, no second quarter wave plate is
needed. Under these conditions the analyser must be set
with its axis parallel to that of the polarizer; in fact a
single sheet of Polaroid placed directly above I with its
axis at 45^ to those of I could replace both II and K. It
is more convenient, however, to use separate polarizer and
analyser. The method of adjustment is first to remove I
and set M and K for extinction as before ; I is then replaced
and rotated until extinction occurs once more, when its axes
will be parallel to those of M and K. I is now rotated
through 45̂  and K thrwgh 90^ ; this results in circularly
polarized light falling on the crystal. If the crystal is
unstressed the light is polarized at 9cf to its original
direction after being reflected back throu^ the quarter
wave plate and is thus not transmitted by the analyser,
which is set parallel to the polarizer.

9.4 Observation of lycopodium powder patterns
The lycopodium powder patterns are photographed 

very simply by using transmitted light, as in the case of
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In ta r fe r o r a e t r lc  o b s e rv a tio n . The m ercury a rc  is  re p la c e d

by a w h ite  P o in t o l i t e  source to  a v o id  any in te r fe r e n c e  e f f e c t s .
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CHAPTER 10  

RLBCTRONIC APPARATUS

1 0 ,1  D r iv in g  O s e l l la t o r

The o s c i l l a t o r  used f o r  e x c i t in g  v ib r a t io n s  is  

a s t r a ig h t fo r w a r d  p u s h -p u ll typ o  u s in g  two 807 te t r o d e s ,  

th e  c r y s ta l  b e in g  connected d i r e c t l y  ac ro ss  th e  o s c i l l a t o r y  

c i r c u i t ,  as shown in  P ig  1 0 ,1 ,  The fre q u e n c y  range is  

2 0 -2 0 0 0  K c /s  and th e  maximum o u tp u t about 800v  peak to  p e a k .

The somewhat unorthodox feed b a ck  c i r c u i t  i s  due to  th e  f a c t  

th a t  th e  o s c i l l a t o r  was c o n s tru c te d  fro m  components a t  h an d .

By u s in g  f ix e d  g r id -b ia s  and a d ju s t in g  t h is  u n t i l  o s c i l l a t io n s  

a re  o n ly  ju s t  m a in ta in e d , a low  g r id  c u rre n t  r e s u l ts  and th e  

o u tp u t w aveform , as seen by a cathode i*ay o s c i l lo g r a p h ,  is  v e ry  

good. I t  is  n e a r ly  im p o s s ib le  to  e x c i te  even a v e ry  a c t iv e  

mode o f  v ib r a t io n  by a harm onic o f  th e  o s c i l l a t o r  fre q u e n c y  

u n d er th ese  c o n d it io n s , a lth o u g h  t h is  is  d e f i n i t e l y  n o t th e  

case when th e  v a lv e s  are a llo w e d  to  draw > e x c e s s iv e  g r id  c u r r e n t  

By d is c o n n e c tin g  Gg ,  th e  fee d b a ck  may be in c re a s e d  to  m a in ta in  

o s c i l la t io n s  a t  th e  h i ^ e r  fre q u e n c ie s ,

A p a i r  o f  te le p h o n es  can be connected  acro ss a s m a ll  

re s is ta n c e  in  one cathode le a d  (n o t shown in  F ig  1 0 . 1 ) ,  so  

th a t  th e  'c l i c k *  method may be used f o r  th e  d e te c t io n  o f  

weak modes o f  v ib r a t io n .  The p r in c ip le  o f  t h is  method l i e s
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in  th e  f a c t  th a t  i f  th e  o s c i l l a t o r  fre q u e n c y  is  c o n tin u o u s ly  

v a r ie d  y as i t  approaches t h a t  o f  a v ib r a t o r y  mode th e  c r y s t a l  

ta k e s  charge o f  th e  o s c i l l a t o r  fre q u e n c y  and h o ld s  i t  c o n s ta n t ,  

even a f t e r  th e  o s c i l l a t o r y  c i r c u i t  has been  c o n s id e ra b ly  

d e tu n e d . When t h is  d e tu n in g  is  e f f i c i e n t ,  h o w ev er, th e  

c r y s ta l  can no lo n g e r  c o n tr o l  th e  fre q u e n c y  and th e  o s c i l l a t o r  

re v e r ts  to  i t s  p ro p e r fre q u e n c y , r e s u l t in g  in  a c l i c k  o r  

heterod yne n o te  b e in g  h e a rd  in  th e  te le p h o n e s . The 

e x p la n a t io n  o f  t h is  a u d ib le  sound* is  t h a t  th e  e x p o n e n t ia l ly  

d ecay in g  fro o  v ib r a t io n s  o f  th e  q u a r tz  c r y s t a l  g iv e  r i s e ,  by  

v i r t u e  o f  th e  d i r e c t  p ie z o e le c t r ic  e f f e c t ,  to  an a l t e r n a t in g  

v o lta g e  w h ich  b e a ts  w ith  th e  o s c i l l a t o r  o u tp u t ,  th e  v a lv e  

a c t in g  as a d e te c to r .

1 0 .2  D é te rm in a tio n  o f  th e  fre q u e n c y

The fre q u e n c ie s  a re  found  a p p r o x lm te ly  by u s in g  

an e x -A d n iira lty  G67 w avem eter. T h is  c o n s is ta  o f  a tuned  

a m p l i f ie r  fo llo w e d  by a t r io d e  d e te c to r  w ith  a m icro -am m eter  

in  th e  anode c i r c u i t  to  in d ic a te  re s o n an c e . I t  e n a b le s  th e  

fre q u e n c ie s  to  be d e te rm in ed  to  about 0 .5 ^  o r b e t t e r  and is  

u s e fu l  f o r  s e t t in g  th e  o s c i l l a t o r  fre q u e n c y  to  th e  e x p e c te d  

v a lu e  f o r  a g iv e n  mode o f  v ib r a t io n .

The p re l im in a ry  use o f  t h is  w avem eter is  e s s e n t ia l  

when m aking more a c c u ra te  fre q u e n c y  d e te rm in a tio n s  w ith  an
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ex-A m erican  S ig n a l Corps h e te ro d yn e  fre q u e n c y  ra s te r , ty p e  

B G -2 2 i-A P , In  t h is  In s tru m e n t th e  b e s t n o te s  betw een a 

harnm nio o f  th e  in t e r n a l  o s c i l l a t o r  and th e  fre q u e n c y  to  be 

a s c e r ta in e d  a re  used to  tune th e  fre q u e n c y  m e te r to  a  

s u b n u lt ip le  o f  th e  l a t t e r  fre q u e n c y . T h is  fre q u e n c y  must be 

known q u ite  c lo s e ly  b e fo re h a n d , as o th e rw is e  c o n s id e ra b le  

co n fu s io n  a r is e s  fro m  th e  m u lt itu d e  o f  e o n ib in a tlo n s  o f  harm onica  

o f  th e  tw o fre q u e n c ie s .  The fre q u e n c y  o f  th e  h e te ro d y n e  

o s c i l l a t o r  can be checked a g a in s t a b u i l t  in  c r y s t a l  o s c i l l a t o r ,  

th u s  a llo w in g  fre q u e n c y  d e te rm in a tio n s  to  be made t o  much 

b e t t e r  th a n  0 .1 ^ ,  w h ich  i s  more th a n  adequate f o r  th e  p re s e n t  

e x p e rim e n ts . The use o f  t h is  fre q u e n c y  m e te r is  even more 

v a lu a b le  th a n  th e  ' c l i c k '  method f o r  th e  d e te c t io n  o f  w eak  

modes o f  v ib r a t io n .  The s m a ll fi*equency jump o c c u r r in g  when 

a .c r y s t a l  resonance is  passed th ro u g h , re p re s e n ts  a much 

la r g e r  change o f  p i t c h  o f  th e  h e te ro d y n e  b e a t n o te ;  i f  th e  

l a t t e r  is  a rra n g e d  to  be v e ry  lo w , by s u i t a b ly  a d ju s t in g  th e  

h etero d yn e  o s c i l l a t o r  fre q u e n c y , th e  e x tre m e ly  s ia a ll change 

o f  fre q u e n c y  a s s o c ia te d  w ith  v e ry  weak modes o f  v ib r a t io n  

can be d e te c te d .
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CHAPTER 11

PREPARATION OF SFi^IMEMS AHD EXPERIMENTAL PROCEDURE

1 1 .1  P o lis h in g  o f  specimens

A l l  th e  c r y s ta ls  used in  t h is  work w ere s u p p lie d  

by th e  Post O f f ic e  R esearch  S ta t io n  and were c u t norm al 

to  th e  o p t ic  a x is  to  a to le ra n c e  o f  d S ' o f  a r c ,  a t  i w s t .

They were a l l  n o m in a lly  1" in  d ia n œ te r and o f  v a r io u s  

th ic k n e s s e s  betw een 0 .5  and 3 .0  tmn. As s u p p lie d , th e y  had  

th e  u s u a l e tch ed  f i n i s h  o f  h ig h  q u a l i t y  q u a r tz  v ib r a to r s  

used f o r  fre q u en c y  c o n tr o l o r  o th e r  e l e c t r i c a l  a p p l ic a t io n s .

A few  o f  th e  c r y s ta ls  w ere p o lis h e d  c o m m e rc ia lly  b u t  

th e  m a jo r ity  were p o lis h e d  by th e  a u th o r , u s in g  c o n v e n tio n a l  

te c h n iq u e s . E very  e f f o r t  was made to  g r in d  th e  s u rfa c e  e v e n ly ,  

p r io r  to  p o l is h in g ,  b u t in e v i t a b ly  th e  p o lis h e d  s u rfa c e s  w ere  

n o t p a r a l l e l  to  th e  o r ig in a l  o n e s . I n  f a c t ,  th e y  c o u ld  n o t  

b oth  be so in  th e  case o f  a 2 nan c r y s t a l  w h ich  was s p e c ia l ly  

p rep a red  f o r  o b s e rv a tio n  by in t e r n a l  in t e r f e r e n c e ,  as a 

d e f in i t e  an g le  had to  be in tro d u c e d  betw een th e  s u rfa c e s  

to  ac h ie v e  th e  r e q u is i t e  f r in g e  d is p e r s io n .  T h is  c r y s t a l  

was ground in  th e  u s u a l way w it h  s u c c e s s iv e ly  f i n e r  g rad es  

o f  a lo x i t e  g r in d in g  pow der, and w h ile  u s in g  th e  f i n e s t  grade  

th e  a p p ro p r ia te  wedge an g le  was in tro d u c e d , th e  th ic k n e s s  

b e in g  checked w ith  a m ic ro m e te r. I t  was th e n  f u l l y  p o lis h e d
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on ono s id e  and s u f f i c i e n t l y  p o lis h e d  on th e  second f o r  th e  

o b s e rv a tio n  o f  two-beam  ln te z *n a l in te r fe r e n c e  f r in g e s ,  i n  

r e f l e c t i o n .  A f t e r  two o r  th re e  re g r in d in g s  o f  th e  second  

s id e ,  fo llo w e d  by rough p o l is h in g  each t im e ,  th e  d is p e r s io n  

was seen to  be s u ita b le  and th e  f i n a l  p o l is h in g  was c a r r ie d  

o u t .

I t  i s  d e s ir a b le  th a t  th e  s u rfa c e s  shou ld  be as f l a t  

as p o s s ib le ,  n o t o n ly  because th e  r e s u l ta n t  i n i t i a l l y  s t r a ig h t  

f r in g e s  a re  e a s ie r  to  in t e r p r e t  when th e y  a re  broadened by  

th e  v ib r a t io n s  o f  th e  c r y s t a l  W t ,  more im p o r ta n t ,  because  

th e  d is p e rs io n  is  th e n  c o n s ta n t o v e r th e  w hole c r y s t a l ,  and  

eq u a l f r in g e  broaden ings re p re s e n t e q u a l a m p litu d e s  o f  

v ib r a t io n .  The f la tn e s s  is  more im p o rta n t f o r  in t e r n a l  

in te r fe r e n c e  th en  f o r  s im p le  in t e r f e r e n c e .  In v a r ia b ly  th e  

c r y s t a l  s u rfa c e s  were s l i g h t l y  convex a f t e r  p o l is h in g ;  

i f  b o th  s u rfa c e s  have th e  san» degree o f  c o n v e x ity  t h e n ,  s in c e  

th e  r e f r a c t iv e  in d e x  o f  q u a r tz  i s  a p p ro x im a te ly  1 , 5 ,  th e  

v a r ia t io n  o f  o p t ic a l  th ic k n e s s  o f  th e  c r y s t a l  is  3 tim e s  th e  

d e v ia t io n  o f  e i t h e r  s u rfa c e  fro m  f la t n e s s .  Hence th e  

c o m p a ra tiv e ly  t h ic k  c r y s t a l  a lre a d y  m entioned  was used  f o r  

th e  in t e r n a l  in te r fe r e n c e  e x p e r im e n ts , s in c e  i t  was n o t fo u n d  

p o s s ib le  to  a c h ie ve  a h i ^  degree o f  f la tn e s s  f o r  t h in  

c r y s t a ls ,  owing to  th e  d is t o r t io n  o c c u rr in g  when cem enting
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them to  m e ta l d is c s  f o r  ease o f  h a n d lin g  d a r in g  p o l is h in g ,

1 1 ,2  R e f le c t iv e  c o a tin g s

F o r th e  reason  m entioned  in  C h a p te r 6^ e v a p o ra te d ,  

d ie le c t r ic  m u lt i la y e r s  were used as r e f l e c t i v e  c o a t in g s .

These c o n s is te d  o f  a l t e r n a t e  q u a r te r  wave la y e r s  o f  z in c  

8 u l# i id e  and c r y o l i t e  d e p o s ite d  on th e  s u r fa c e  u n d e r o h s e rv a tio n j  

th e  f i r s t  and l a s t  la y e r s  b e in g  z in c  s u lp h id e . These la y e rs  

a re  more troub lesom e to  d e p o s it  th a n  ev a p o ra te d  s i l v e r  la y e r s ,  

s in c e  th e  r e f l e c t i v i t y ,  b e in g  due to  re in fo rc e m e n t o f  th e  

l i ^ t  r e f le c t e d  fro m  su c ce ss iv e  la y e r s ,  depends c r i t i c a l l y  

on t h e i r  th ic k n e s s ,

Â s m a ll vacuum c o a tin g  p la n t  was u s e d , w it h  s e p a r a te ,  

b o at-sh ap ed  f i la m e n ts  f o r  e v a p o ra tin g  th e  two s u b s ta n c e s ;  

th e  la y e r  th ic k n e s s  was e s tim a te d  by w a tc h in g  th e  r e f l e c t i o n  

o f  an o pa l e l e c t r i c  b u lb  in  a g la s s  m o n ito r p la te  a t  n e a r  

norm al in c id e n c e . As th e  la y e r  th ic k n e s s  in c re a s e s , th e  

r e f le c t e d  l i g h t  goes th ro u g h  a c h a r a c t e r is t ic  s e r ie s  o f  c o lo u r  

changes, t h is  sequence b e in g  d i f f e r e n t  f o r  th e  two ty p e s  o f  

l a y e r ,  s in c e  f o r  a c r y o l i t e  la y e r  th e re  is  no a d d i t io n a l  phase 

change o f r r  a t  th e  c r y o l i t e - g la s s  i n t e r f a c e .  The c r y s ta ls  

o r  re fe re n c e  f l a t s  to  be co a ted  were mounted in  a h o r iz o n t a l  

p lan e  above th e  f i la m e n ts ,  as n e a r  as p o s s ib le  to  th e
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m o n ito r g la s s  I  t h is  oou ld  be exposed to  th e  f i la m e n ts  in  

su ccess ive  s t r ip s ,o n e  f o r  each la y e r  d e p o s ite d , by a m ovable 

s h u t t e r .

F o r maximum r e f l e c t i v i t y  in  th e  m ercury g ree n  r e g io n ,  

th e  c h a r a c t e r is t ic  c o lo u r  o f  a z in c  s u lp h id e  la y e r  on g la s s  

goes th ro u g h  b lu is h -w h ite  to  w h ite  a t  th e  q u a r te r  wave 

th ic k n e s s , fo llo w e d  by y e l lo w , th e s e  changes b e in g  q u ite  easy  

to  o b s e rv e . The c o lo u r  o f  a c r y o l i t e  la y e r  on g la s s  goes 

th ro ug h  y e llo w  to  magenta a t  th e  q u a r te r  wave th ic k n e s s ,  

fo llo w e d  by b lu e ;  s in c e  a s in g le  q u a r te r  wave la y e r  o f  

c x y o l i t e  on g la s s  form s an a n t i - r e f l e c t i o n  c o a t in g ,  th e s e  

changes a re  more d i f f i c u l t  to  observe and most o f  th e  

e r r o r s  i n  th e  r e f l e c t i v i t y  o f  th e  f in is h e d  c o a tin g  a re  

p ro b a b ly  due to  in c o r r e c t  th ic k n e s s  o f  th e  c r y o l i t e  la y e r s .

As p re v io u s ly  m en tio n e d , th e  t h e o r e t ic a l  r e f l e c t i v i t y  o f  a  

5 - la y e r  c o a t in g , as used on a l l  th e  specimens in  t h is  w o rk ,  

is  875È, f o r  m ercury g reen  l i g h t .

The Z -c u t  q u a r tz  b a r  used f o r  th e  s t a t i c  b en d in g  

exp erim en ts  d e s c rib e d  in  C h ap ter 1 4 ,  was co a te d  on one 2 - fa c e  

w ith  an opaque la y e r  o f  ev ap o ra te d  s i l v e r ,  as th e  c o n d u c t iv i ty  

was n o t o b je c t io n a b le  in  t h is  c a s e .

1 1 .3  j exp erim en ta l procedure

The c r y s t a l  und er o b s e rv a tio n  was mounted on a c le a r
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Or coated  g la s s  f l a t  in  a j i g  w hich  c o u ld  foe p ro v id e d  w ith  

v a rio u s  e le c tro d e  system s, t h is  foeing shown in  P ig  1 1 .1  

w ith  th e  s ix -e le c t r o d e  system  in  p o s i t io n .  F o r th e  o b serv ­

a t io n  o f  in t e r n a l  In te r fe r e n c e ,  th e  g la s s  f l a t  was re p la c e d  

by two h a ir s  in  l a t e r  e x p e rim e n ts , as m entioned in  C h a p te r 9 .  

In  th e  case o f  th e  sym m etrica l modes (Types A and B) s ix  

e le c tro d e s  were u sed ; th e  o r ie n t a t io n  o f  th e  c r y s t a l  r e l a t i v e  

to  th e  e le c tro d e s  f o r  maximum e x c i t a t io n  was found b y  t r i a l ,  

and was s u b s ta n t ia l ly  d i f f e r e n t  f o r  th e  two ty p e s . In  th e  

case o f  typ e  G modes, a two e le c tro d e  system gave th e  

s tro n g e s t e x c i t a t io n ;  a t  f i r s t  th e  e le c tro d e s  were  

d ia m e t r ic a l ly  opposed (as  shown in  P ig  1 1 .1 )  b u t i t  was fo und  

l a t e r  th a t  v e ry  weak ty p e  C modes were e x c ite d  more s t r o n g ly  

by two e le c tro d e s  p laced  v e ry  c lo se  to g e th e r  on th e  

c ircu m feren ce  o f  th e  c r y s t a l  so as to  g iv e  an in te n s e ,  

lo c a l iz e d  f i e l d .  The e le c tro d e s  used f o r  th e  C modes co u ld  

be ro ta te d  r e la t i v e  to  th e  c r y s t a l ,  w ith o u t d is tu r b in g  

I t ,  to  s e le c t  th e  most s u ita b le  o r ie n t a t io n ,  t h is  b e in g  

d i f f e r e n t  f o r  each in d iv id u a l  mode.

The f i r s t  exp erim en ts  c a r r ie d  out used th e  s im ple  

in te r fe r o m e t r ic  method o f  o b s e rv a tio n . The f r in g e s  w ere  

watched c a r e f u l ly  w h ile  s lo w ly  v a ry in g  th e  o s c i l l a t o r  

fre q u en c y  about th e  c a lc u la te d  v a lu e  f o r  a p a r t i c u la r  mode

83



F ig  1 1 .1



(11.3)

o f  v ib r a t io n »  In  th e  case o f  ty p e  A and B modes th e  

c h a r a c t e r is t ic  n o d a l p a tte rn s  (v e ry  d i f f e r e n t  fro m  th e  

t h e o r e t ic a l  ones) were soon re c o g n iz e d , and ^landmarks^ in  

th e  fre q u e n c y  spectrum  were thus e s ta b lis h e d »  W h ile  s e a rc h in g  

f o r  weak modes w ith  f u l l  o s c i l l a t o r  o u tp u t ,  th e  fre q u e n c ie s  

o f  th e  more e a s i ly  e x c ite d  modes had to  be a v o id e d , b u t ,  

i n  s p ite  o f  a l l  p re c a u t io n s , many c r y s ta ls  were s h a tte re d  

by in a d v e r te n t ly  passing  th ro ug h  such fre q u e n c ie s »  A p a rt 

fro m  th e  modes under in v e s t ig a t io n  and th e  e a s i ly  re c o g n ize d  

f l e x u r a l  modes (h a v in g  any number o f  c i r c u la r  and d ia m e tr a l  

n o d e s ), th e re  is  a m u lt itu d e  o f  o th e r  im des , and f o r  t h is  

reason  th e  type C modes co u ld  n o t be id e n t i f i e d  by t h is  

n^thod  o f  o b s e rv a tio n »

When o b s e rv in g  by p o la r iz e d  l i g h t ,  h ow ever, th e re  was 

v e ry  good agreem ent betw een th e  observed and t h e o r e t ic a l  

p a t te r n s ,  and so , h a v in g  e s ta b lis h e d  th e  freq u en c y  o f  a 

ty p e  C mode, i t  co u ld  th e n  be observed  by in te r fe r e n c e »  

M o reo ver, th e  p o la r iz e d  l i g h t  method is  v e ry  s e n s i t iv e ,  

s in c e  th e  b r i e f  f la s h e s  o f  l ig h t  seen as a mode is  passed  

th ro u g h , a re  more e a s i ly  d e te c te d  th an  th e  momentary 

b ro ad en in g  o f  th e  in te r fe r e n c e  f r in g e s »  F o r t h is  re a s o n , 

th e  w eakest modes were u s u a lly  s e t in to  v ib r a t io n  w h ile  

o b s e rv in g  by p o la r iz e d  l i ^ h t ,  and th e  o p t ic a l  system  

th e n  a l t e r e d  to  th a t  re q u ire d  f o r  in te r fe r e n c e  w ith o u t
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d is tu r b in g  th e  c r y s t a l *  As i t  was more co n ven ien t to  make 

such p r e l im in a r y  p o la r iz e d  l i g h t  o b s e rv a tio n s  in  tra n s m is s io n ,  

to  a v o id  moving th e  m ir r o r  &  ( F ig  9#1 ) ,  a p o la r iz e r  was 

h e ld  te m p o ra r ily  u n d er th e  specimen f o r  t h is  purpose*

In  th e  case o f  o b s e rv a tio n s  by in t e r n a l  in te r fe r e n c e  

th e r e  was no doubt as to  th e  mode o f  v ib r a t io n ,  th e  

t h e o r e t ic a l  p re d ic t io n s  b e in g  q u ite  w e l l  f u l f i l l e d *  F o r th e  

reasons m entioned in  th e  p rev io u s  p a ra g ra p h , h o w ever, i t  

was s t i l l  d e s ir a b le  to  s e t th e  c r y s t a l  in to  v ib r a t io n  w h ile  

o b s e rv in g  i t  by p o la r iz e d  l i ^ t *

B e fo re  making lycopodium  powder o b s e rv a tio n s , th e  

c r y s t a l  was th o ro u g h ly  degreased in  a c e to n e * V ib r a t io n s  w ere  

th e n  s t a r t e d ,  w h ile  o b s e rv in g  by p o la r iz e d  l i g h t ,  and th e  

powder was s p r in k le d  on u n ifo r m ly *  T h is  was ac h ie ve d  by 

draw ing  a p ie c e  o f  c o tto n  w o o l, d ipped  in  th e  d r ie d  pow der, 

across a p ie ce  o f  s tre tc h e d  le n s  t is s u e  h e ld  about S^-IO cms 

above th e  c r y s t a l *  The photogra%Aiy o f  th e  r e s u l t in g  p a t te rn s  

was e x tre m e ly  s im p le , as i t  cou ld  be c a r r ie d  out a f t e r  th e  

c r y s ta l  had stopped v ib r a t in g *  S in ce  th e  lycopodium  p a t te r n s  

were form ed on th e  u p p er s u rfa c e  o f  th e  c r y s t a l ,  zh e re a s  th e  

s im ple  in te r fe r e n c e  p a tte rn s  were view ed th ro u g h  th e  c r y s t a l ,  

on th e  lo w er s u r fa c e , some o f  th e  p ho to g rap h ic  p la te s  c o rre s ­

ponding t o  a g iv e n  s id e  o f  th e  c r y s t a l  had to  be p la c e d
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e n u ls lo n  s id e  up d u r in g  p r in t in g ,  to  secure c o r r e c t  

r e g is t r a t io n  o f  co rresp o n d in g  fe a tu re s  o f  th e  two typ es  

o f  p a t t e r n .
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CHAPTER 12
CALCULATlOH AND MEASUREMENT OF THE PRE UENCIE8 OF VIBRATION

All the experimentally observed frequencies listed 
here are for a quartz disc of diameter 2.64± 0.005cm and 
thickness 0.85+0.01 mm. The disc was truly circular within 
+ 0.005cm. The other discs used for the work described in 
the next few chapters had the same diameter within the 
limits given and were circular to the same degree of accuracy. 
The various vibratory modes for which the frequencies are 
given were identified by polarized light observation, sL nee 
this method is »K>st sensitive and the observed patterns are 
in very good agreement with theory.

12.1 Type A and B modes (n = 0).
The frequency equation for type A modes (eqn 5.17) 

may be re-arranged as :
12.1 J, (ka)-kaJ^(ka)/(l-<r) = 0
Dïhere k = 2irjç( 1 - er*)/E X f, f being the frequency of
vibration. For quartz 2,65gm,cm^,E • l/s„ = 78,&'/0dyne cm"^ 
and f 5 -Sia/sii= 0.133. These values are taken from Cady 
(1946) and are based on static measurements ; he considers 
that the value of s„ is probably correct to better than 1% 
but that 8,j is less reliable. Hence :
12.2 f = 87,57k Kc/s where (ka) is a root of
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eqn 12.1. This function is plotted in Pig 12.1 and the 
roots, which were interpolated from eqn 12.1 by simple 
proportion, are given in Table 12.1 together with the 
calculated and observed frequencies for the disc already 
mentioned. The fractional excesses of the calculated 
frequencies over the observed frequencies, shown in the 
last column, are given in parts per thousand.

For type B modes, eqn 5.18 reduces to;
12.3 J^(k,a) = 0, where k,= 2ir^2ç(l+o")/E ̂ f 
Using the numerical values given above ;
12.4 f = 57.65k, Kc/s.
Eqn 12.3 is plotted in Fig 12.2 and Table 12.2 gives the 
roots and frequencies as before.

12,2 Type C modes (n>0 )
For graphical solution, eqns 5.16 are most conveniently 

arranged in the form;
12.5 /M. n(l-«r)[fk,a)Jn-.(k.a)- (n-H)J..(k.a)] (1)

\B/," (1 -<r)(ka)J„.,(ka) + [{kaT- n(n+ l)(l-<r)JJn(ka)
2(k,a)J„w(k,a) +[(k,a)^- 2n(n + 1)1 Jn (k, a) (2)til,-  2n[(ka)J„.;trar-(n+ljJ,,(fea7j ' '

These two values A/B are plotted against (ka) in
Pigs 12,3 and 4 for the two cases n= 1 and n=2. The values
of (ka) and (A/B) corresponding to a given mode are given
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Tables 12.1-2

TABLE 12.1 TYPE A MODES

Order
m

0
1
2

3

(ka)

1.939
5,362
8.552
11.717

Calculated
frequency
133.7
369.7
589.7
807.9

Observed
frequency
133.8
558.8
589.6
805.9

Error

-1
2
0
2

TABLE 12.2 TYPE B MODES

Order
m

(k,a) Calculated
frequency

Observed
frequency

Error

0 5.135 233.1 232.5 3
1 8.417 382.0 380.1 5
2 11.620 527,4 525,5 4
3 14.796 671.6 669.7 3
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by the various intersections. Accurate values for these 
quantities were found by interpolation. These are given in 
Tables 12.3 and 12.4 together with calculated and observed 
frequencies and the differences between these, as before.

There were two frequencies of vibration for nearly 
all of these modes, separated by 0 .1-0 .2^ of the vibration 
frequency. The differences between the types of vibration 
associated with these double resonances will be discussed 
in the following chapters (13-17).

The first four roots for the typo A and B modes and 
the first five for n = 1 and n - 2 type modes have been 
calculated previously by Petrzilka. The present calculations 
confirm those of Petrzilka except for throe of the type C 
modes. In each of these cases he found large discrepancies 
(1 or 2^) between the observed and calculated frequencies.
The present calculated values agree very well with his 
observed values.
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Tables 12.5-4

TABLE 12.3 TYPE (3 MODES n=l
Order (ka) A Calculated Observed Error
m B frequency frequency % o
0 1,715 0.8127 118.1 117.6 5

117.8 3
1 5.557 2.848 243.9 243.4 2

243.7 1
2 4.452 0.3517 307.0 305.2 6

305.6 5
3 6.512 0.4696 449.0 447.3 4
4 6.936 3.305 478.2 476.7 3

477.0 3
5 8.668 0.1267 597.7 595.2 4

595.8 3
6 10,080 7.981 695.0 694.0 1

7 10.769 0.1579 742.5 741.1 2

TABLE 12.4 TYPES C MODES n= 2
Order (ka) A Calculated Observed Error
m B frequency frequency
0 1.542 0.4480 106.3 105.6 7

105.7 6
1 2.645 1.263 182.2 181.4 4

181.9 2
2 4.712 1.500 324.9 324.3 2

324.5 1
3 5.547 0.7944 382.5 380.8 4
4 7.463 0.4158 514.6 512.4 4

513.0 3 *

5 8.339 3.506 575.0 573.7 2
573.8 2

6 9.647 0.2370 665.2 663.3 3
664.2 2

7 11.462 2.182 790.3 790.0 0

8 11.826 0.6708 815.4 814.4 1
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CHAPTER 15
CALCULATION OF THE NORMAL DISPLACEMENT AND EXPERIŒHTAL 
RESULTS

The normal displacement is, in general, more simply 
expressed mathematically than either the longitudinal 
displacement or the stress system. Further, since the 
interferometric method of observation indicates the nonml 
displacement only, the observed patterns should be readily 
interpretable•

Since the strains are constant throughout the thickness 
of the crystal, the normal displacement relative to the 
median plane is w = hz%. From eqn 5.2(4):
13.1 2% = -cr(x^+ y^)/(l''<^)= -cr4/(l-0'). Thus:
13.2 w =  Gonst>cj„(kr)cosn6 from eqn 5.15(1).
The causes of the discrepancies between the displacements 
given by the above theory and the experimentally observed 
displacements will be discussed empirically in this 
chapter, although since performing the experiments it has 
been found possible to explain them on a firm mathematical 
basis; the theory of this explanation will be given in 
Chapter 17.

The optical arrangement used for these experiments 
was that described in Chapter 9 for multiple-beam interference
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In transmission. The crystals were all 9.54cm in diameter 
but of various thicknesses.

15.1 Symmetrical modes (n- O)
a) Type A. Here the displacement is given by:

13.3 w - A*Jo(kr) The profile of the surface
between centre and circumference is given by that part 
of the graph of J^(kr) lying between 0 and (ka), the root 
of the frequency equation for the mode concerned. The 
profiles of the first four modes are shown in Pig 13.1(a) 
ani Table 13.1 gives the radii of the nodal circles as 
fractions of the disc radius.

The experimental patterns for these modes are in all 
cases more complex than predicted. None show circular*
symmetry and most show trigonal symmetry about the axis of
the disc. Pigs 13.2-5 and 13.6-9 show the modes A.0-3 for 
a 1,0 ram and 2.0 ram crystal respectively. (Note that the 
nodal regions show up most clearly when the photographs are 
viewed obliquely in a direction perpendicular to the 
interference fringes). All of these patterns show trigonal 
ŝ rinraetry. The larger number of ’circular* nodes in the case 
of the thinner crystal is very noticeable. This suggests 
that the observed motion may be predominantly flexural. None 
of the observed nodes crosses the centre of the crystal; 
the theory requires maximum displacement here.
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Fig 13.1(a)-(c)
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Table 13.1

# #

Table 13.1 Type A ..loclea
Radli|" of Nodes of Hownal Dlsplaoement

a 0 1 2 3 4
(ka) 1.939 5,362 8.552 11,717 14.873

0,449 0.281 0.205 0.162

’̂s 0.645 0.471 0.371

^3 0.739 0.582
V, 0.793



Figs 1 3 .F - 5

13.2 13.3

1 3 .4 1 3 .5



Fias 1 3 .6 -9

A modes, side 2

13.6 13.7

1 3 .8 13.9
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Certain of the nodal features are coTnplementary on 
the two sides of the crystal, and if the two nodal patterns 
are superposed, a pattern with six-fold symmetry results.
This holds good for all the patterns mentioned so far and 
is most strikingly demonstrated by the A..1 mode of the S.O mm 
crystal. Figs 13.10 and 13.11 show the patterns on the 
other side of this crystal for the A.l and A.2 modes. These 
have been reversed in printing so that they are both viewed 
from the same side of the crystal as are Figs 13.7 and 13.8.

Although all the patterns for the 1.0 and 2.0 mm crystals 
show trigonal symmetry, this is not always the case. The 
trigonal symmetry is presumably favoured by the crystal 
structure of the quartz, but if an A mode has a frequency 
which is very close indeed to some other mode, then the latter 
will almost certainly combine with it. To illustrate this 
point. Figs 13.12 and 13.13 show the interferometric patterns 
on the two sides of a 3.0 mm crystal for the A.O mode, 
both seen from the same side of the crystal. These patterns 
have digonal symmetry about the axis of the disc. The 
amplitude is very small at the centre, indicating that the 
coupled mode is very strong compared with the A mode.

It is simple to deduce the qualitative nature of the 
nodal pattern resulting from the superposition of two vibratory
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modes. If, for example, a positive normal displacement is. 
superposed on a region of a vibrating surface which is 
crossed by a node of the existing normal displacement, then 
provided the additional displacement is not too large, the 
node will bo moved to a new position in that region which 
formerly had a negative displacement, such that the former 
negative displacement equals the superposed positive 
displacement. To find the nodal pattern resulting from the 
superposition of two modes, each with its own set of nodes, 
these two sets are first drawn on the crystal surface. The 
signs of the displacen»nts, at a particular phase of the 
vibratory cycle, due to each mode are then marked in each 
of the regions so formed; these regions are of two types 
for which the displacements due to each mode are of like 
or unlike sign. Clearly the resulting nodes must lie entirely 
in regions of the second type and will indicate points where 
the displacements due to the two modes are equal and opposite.

Considering now the A.l mode of the 2.0 mm crysteO., 
the observed normal displacement may be synthesized by the 
superposition of the theoretical normal displacement on the 
displacement due to a flexural mode having three diametral 
and two circular nodes, but the latter do not have the same 
radii as the circular nodes of a pure, uncoupled flexure.
Pigs 13.14 and 13.15 show the pure flexural modes with three
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diametral nodes and two and three circular nodes occurring 
at frequencies of 273.0 and 417.6 Kc/s respectively. The 
radii of the circular nodes for the first of these are within 
1^ of Kirchoff*s values, quoted by Petrzilka (1932), in spite 
of the comparatively largo thickness of the crystal and the 
different value of Poisson’a ratio (Kirchoff*s theory is 
for <r= ̂ ). Now if it were possible to force flexural 
vibrations of this type at any frequency between the two 
just given, as the frequency increased from the lower value 
one would expect the two nodal circles to contract, and 
finally a new one would appear at the circumference and move 
in to the required radius at the hi^er resonant frequency.

Thus the flexure coupled to the A.l mode, frequency
368.4 Kc/s, has circular nodes somewhere in between those 
of the two flexures shown, and from the observed resultant 
pattern it would seem that the third node has not yet appeared 
at this frequency, although the two circular nodes present 
have much smaller radii than have those of the free flexure 
with two circular nodes. Fig 13.16 shows the superposed 
flexural and A type displacements with the appropriate signs 
and Fig 13.17 shows the resultant nodal system. This type 
of coupling explains most of the obsewed type A modes with 
the exception of the one already mentioned; it is probable
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that this mode is also coupled to a flexure with three 
diameters but as the coincident flexure with two diameters 
has such a large amplitude it is difficult to decide if 
this is so.

b) Type B. Here A - o = w everywhere, so that 
there should be no noimial displacement whatever. Sxperimentally 
this is far from the case and strong patterns could be excited 
at all the appropriate frequencies. Those are shown in 
Figs 13.18-21 and 13.22-25 for 1.0 and 2.0 mm crystals 
respectively. These patterns, which must be entirely due to 
coupled modes, all show three nodal diameters and a number 
of circular nodes, the number increasing with mode order.
Once again the thinner crystal shows more nodes than the 
thicker one. For the 1.0 mm crystal the patterns are more 
regular than those for the type A modes and have the 
appearance of perfect flexures. The patterns on the reverse 
side of the crystal appear to be identical.

For the 2.0 mm crystal the displacements again seem 
to be flexural but the patterns are not so perfect, particularity 
B.l, Fig 13.23. As the pattern on the reverse side of this 
crystal appeared to be identical to the latter pattern, it 
is possible that the observed pattern is a combination of 
two flexures, one with three nodal diameters and one with
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only one diameter. The frequency of this mode is nearly 
the same as that of the n=2, m = 3 mode and it will he shown 
in Section 13.2(h) that n— 2 modes are often coupled to 
fleures with one diametral node. The nodal radii for the
B.O m>de of the 2.0 mm crystal, which is the only one that 
can be checked against Kirchoff’s theory, are substantially 
larger than the theoretical values.

13.2 Type C modes
a) n = l modes. Here the normal displacement is:

13.4 w =  CJ|(kr)cos0
There are thus a diametral node plus a number of circular 
nodes. Fig.13,1(b), after page 91, shows the profile of 
the surface for the first 8 modes and Table 13,2 gives the 
nodal radii as fractions of the disc radius.

For all these modes two frequencies of vibration were 
found, separated by a few hundred cycles per second, as 
mentioned in Chapter 12. The observed interferometric 
patterns are different for the two frequencies, but, as 
will be described in Chapter 14, the stress patterns are 
the same apart from a reorientation relative to the crystal. 
If, however, there were a coupled mode which takes up a 
different orientation relative to the primary mode in the 
two cases, the combined normal displacements would bo quite
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different in the two cases.These modes were usually fairly 

weak and a 2 .0mm crystal was used to 76t sufficient amplitude 
for a clear indication of the nodal system.

Figs 13.26-29 show the patterns on the two sides of the 
crystal (as viewed form the same side) for the m - 0  and m- 1 
modes,Figs 13.30 and 13.31 show the alternative patterns at 
slightly different frequencies on the first side only.

Qualitatively,this type of pattern nay be explained by 
assuming the presence of a coupled flexural mode having two 
diametral nodes.It is found,however,that detailed correspondence 
is not achieved unless the circular nodes of the flexure are 
distorted.Figs13.32 and 13.33 show how such a distorted flexure 
can combine to give the observed resultant displacement of 
Fig 13.30.The flexural mode itself is the resiultant of two 
flexures,one having two diametral and one circular node and the 
other,of smaller aiplitude,having four diametral nodes only.
By rotating those flexures through 45^and 22^^respectively, 
relative to the type C mode,the alternative patterns of Pigs 
13.26 and 15.28 may be accounted for.For some n = 1 nodes,such 
as the m = 3 mode,Fig; 13.34,the flexure with four diametral 
nodes is obviously stronger th m  that with two ; in every ce se 
however,the presence of both flexures is necessary to account 
for the observed displacement.

b ) n - 2 modes,Here the normal displace mmt is:
13,5 w c (kr )cos20
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There are thus two diametral nodes plus a number of circular 
nodes. The profiles of the surface for the first 9 modes 
are shown in Pig 13.1(c), after page 91, and Table 13.3 
gives the nodal radii as fractions of the disc radius.

Once more there were two frequencies of vibration 
for each mode, and the corresponding interference patterns 
are different from each other. Farther, the patterns on 
the two sides of the crystal at a given frequency are 
complementary. Figs 13.3&-38 show the patterns on the two 
sides of the crystal for the m - 0 and m = 1 modes. Figs 13.39 
and 13.40 show the altei*native patterns for these modes, on 
one side only.

These patterns are very much complicated by coupled 
modes and it is not possible to explain them by the assumption 
of a single coupled flexure. However, all the patterns 
shown can be synthesized from the primary mode together with 
two flexural modes, one having a solitary diametral node and 
the other having five diametral nodes; for example, the 
patterns for the m= 0 mode. Figs 13.35,13.36 and 13.39 can be 
produced by a combination of the primary motion with suitably 
orientated flexures having one circular and one diametral 
node, and no circular and five diametral nodes respectively.

98



Table 13,3

CO

tt)§•HiH
§ Sc-

o

toCO
O i

o

I
*rHH O

I toC-
o

5
<0«o  o>

02 i * #o  o

J- I
to CO

tofHto

#
*s5

to §to
o  o

02
ua
«0

1
to

§
to

02fHl>
02

5to
02

O

to02O)•o

to•toH
02•H«

O

a

S
M

a



Figs 13.37-40
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The reasons for the various particular types of 
flexure being coupled to specific types of longitudinal 
mode will be discussed theoretically in Chapter 17.
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CHAPTER 14
CALCULATION OF STRESS PATTERNS AHD UCP5RII4EHTAL RESULTS

14.1 Experimental test of the stress-optle effect in quartz 
Before describing the experiments on the modes of 

vibration, an account will be given of an experimental 
test of the conclusions reached at the end of Chapter 7 
with regard to the effect of optical activity on the 
stress-optic effect in quartz.

Fig 14.1 shows the jig used to subject a 2-cut quartz 
bar (thickness 3.06 imn) to uniform bonding in the XY-plane. 
The thrust applied to the bending jaws by the thumbscrew 
acts via a phosphor bronze strip mounted between similar 
jaws, the bending of the strip being proportional to this 
thrust. The bending of the strip was previously calibrated 
in terms of thrust by mounting the jig in a vertical plane 
and replacing the thrust from the screw by the thrust from 
known weights. The actual bending stresses in the bar were 
calculated directly from the thrust, knowing the dimensions 
of the bar and bending jaws.

The optical arrangement was that described in 
Chapter 9 for using plane polarized light in reflection, 
Eofloction took place at the silvered lower surface of the 
bar, the jig being mounted horizontally and adjusted so
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that the Z-faces of the bar were normal to the incident 
monochromatic light*

On applying a small stress by means of the thumb 
screw, the field brightened at the edges of the bar. At a 
sligjitly hi^er stress, the central black band could be split 
into three by rotating the bar relative to the polarizer 
and analyser, the separation depending upon the actual angle 
turned through. When the stress had been increased 
sufficiently, the first order stMss fringes appeared at the 
extreme edges of the bar. The stress was increased slightly 
until these were clear of the edges and then the series of 
photographs shown in Pigs 14.2-7 was taken; the applied stress 
is the same for each but the jig was gradually turned relative 
to the polarizer and analyser axes. The dark line across 
each photograph gives the direction of the polarizer axis 
and was marked by the method described in Chapter 9.

It will be noticed that the zero and first order fringes, 
at the centre and edges of the bar respectively, retain their 
position throughout the series, and also that the split 
"isoclinic” is approximately symmetrical, although one side 
of the bar is in compression and the other in tension. If 
the bar were isotropic, there would be a solitary isoclinic 
fringe blacking out the whole bar (or at least the whole of 
the region over which the stress was sensibly parallel to
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the axis). This would occur when the bar was parallel to 
the polarizer or analyser axis. But, as explained in 
Chapter 7, the effective rotation of quartz for propagation 
along the optic axis depends on the stresses in the XY-plane, 
and for a given stress, darkness is only attained when there 
is a certain relation between polarizer orientation and 
principal stress directions.

Now the stress in a uniformly bent bar increases 
linearly from zero at the neutral axis to a maximum at the 
edge; for a given applied stress the "isoclinic” fringe 
consists of two lines parallel to the neutral axis and, 
as the orientation of the bar is altered, these lines move 
to regions of appropriate stress. Alternatively, for a 
given orientation, variation of the applied stress causes 
the fringes to move to regions where the stress is the 
same as previously. Although in these experiments the 
absolute stress is not known accurately, due to the 
rudimentary nature of the bending jig, a graph of rotation 
against relative stress may be plotted, knowing that the 
stress is a linear function of the distance from the neutral 
axis.

Pig 14.8 shows part of the theoretical curve of 
Pig 7.1 and the circles show the experimental points.
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The point for which ç = 180*̂  is based upon the first order 
stress fringe and this has been set on the theoretical curve; 
all the other points have correct abscissae relative to this 
point.

The agreeioent between theory and experiment is 
sufficiently good for the implications of Chapter 7 to be 
accepted in interpreting the experiments on nK>des of vibration. 
It would have been desirable to extend the observations to 
retardations greater than one wavelength, but, at stresses 
very slightly in excess of that used for the photographs, 
three bars similar to the one shown here were broken, during 
a preliminary investigation.

As the stress was known approximately, an estimate 
of the value of (q.- q,J was made.

This was 10.1"̂  10*Kg mm^ (for 546lA)
as against 13.7x10*Kg"*ram* (for A - 5893^)

from Fockels' data.

14.8 Calculation of stress patterns
The principal stress difference in the XY-plane is 

connected with the stress resultants ,T. and by the 
relation;
14,1 2h(P-Q) = J(Tf - Tg )V 4Sro
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Thus the zero order stress fringe, for which this difference is 
zero, joins points satisfying the conditions:
14#2 (T,- T^) = 0 (1) and Ŝ e 0

The principal stress directions make an angle with 
those of T, , where :
14.5 tan2qp= 2Sfa/(Tg. - T^)
Since the stress resultants are referred to axes parallel
and perpendicular to the radius at any point, the angle 
between the principal stress directions and the fixed 
directions 6 - 0 ,6 =TT/2 is y) = (<p + 6). The iooclinic fringes, 
observed by plane polarized light, join points for which ly 
has a constant value; this value will be referred to as the 
parameter of the isoclinic.

14.3 Symmetrical modes (n=0)
a) Type A. Here 3̂ % = 0 everywhere, so that

14.4 P-Q « T,- = A ’jjtCkr) (Note that A’ is not
the same as the constant in eqn 13.3. In this and the 
following chapters, A*,B* and C’ will bo used indiscriminately 
as unknown arbitrary constants whereas A and B have the 
special significance of Chapter 5 and the ratio a/b assumes a  

definite value for each particular mode). The variation
of the principal stress difference between the centre and 
circumference of the disc is shown in Pig 14.9(a) for the
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first four modes and the radii of the circular zero order 
stress fringes are given in Table 14.1 as fractions of the 
disc radius.

Since Sre = 0,<^is zero and hence ÿ = ^ , that 
is, the principal stress directions are parallel and 
perpendicular to the radius at any point; hence the isoclinic 
for the pararrfâter ip is the pair of diameters 9 ̂  ip and 
g =‘\pi-Tr./2,

Figs 14.10-13 and 14.14-15 show the patterns obsenred 
by plane and circularly polarized li^t respectively for a 
cx*ystal 0.5 mm thick, 8.54 cm diameter,when vibrating in the 
modes A.O to A.3. The A.O mode was extremely difficult to 
excite and was too weak to photogra^di by circularly polarized 
li^t. As is the case for isotropic media, the isoclinic 
fringes vanish when using circularly polarized light, 
leaving the circular zero order stress fringes required by 
theory. The radii of these circles agree well with the 
theoretical values. The photographs are similar to Borgmann’s 
photographs (1949) of thick isotropic cylinders vibrating 
radially.

b) Type B. Here (Tf - T@ ) = 0 everywhere, giving:
14.5 P-Q. = 2%*= B ’Ja(k,r)
This is the same function as for type A but, since the values
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Table 14.1 Type A Medes

Radll of Zero Order Stress Fringes

m
(ka)
r.

"4

0
1.939
0

1
5,362
0
0,958

2

8.552
0
0,600
0.984

3
11.717
0
0,438
0.718
0.992

4
14.873
0
0,345
0.566
0.781
0,995



Figs 14.10-13

14.10 14.11

14.12 14.13



Pigs 14.14-16

mm-:.

- Z « »

14.14

14.15 14.16



(14*3-4)

of (k,a) are derived from a different frequency equation 
the radii of the zero order stress fringes are different from 
those for the corresponding type A modes; in particular, there 
is always a dark fringe at r = a* The variation of P-Q with 
r is shown in Fig 14.9(h), after page 104, and the radii of 
the zero order stress fringes are given as fractions of the 
disc radius in Table 14.2.

Since (Tr - T̂  ) is zero, cç = 7T/4; hence the isoclinic 
for the parameter is the pair of diameters 6 = f 7T/4 and 

^ 3nr/4.
Figs 14.17-20 and 14.21-24 show the appearance of 

type B modes when illuminated by plane and circularly polarized 
li^t respectively; these are again for the 0.5 mm crystal.
The agreement between experimental and theoi*etical values of 
the radii of the circles is again good.

14.4 Disturbing influences
a) Effect of optical activity. It will be noticed 

that in both the sets of photographs taken by plane polarized 
light, the isoclinic cross is twisted sli^tly anti-clockwise 
away from the theoretical position (the polarizer and analyser 
axes are approximately vertical and horizontal in the photo­
graphs). The quartz crystal used for these experiments was 
right-handed, that is, it rotated the light vector anti-
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Table 14,S Type B Modes

Radil of Zero Order Stress F:pingea

m 0 1 2 3 4
[k, a) 5.135 8.417 11.620 14.796 17.960

'1 C 0 0 0 0

**2 1.0 0.610 0,442 0.547 0.236
1.0 0.724 0.569 0.469

^4 1.0 0.785 0.647

^5 1.0 0.824
1.0
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clockwise when looking In the direction of propagation 
of the ll^t.

To Illustrate this point further. Figs 14.25 aai 14.26 
show the A.l and B.l modes for. a 0.5 nan left-handed crystal 
and Figs 14.27 and 14.28 show the A.l and B.2 modes for a
2.0 mm crystal, also left-handed, the direction of the 
polarizer axis being marked In the usual way. The 
mlsorientatlons of the Isocllnio cross, away from the 
theoretical positions, are about 7° and 26® for the 0.5 and
2.0 mm crystals respectively, the optical rotations of these 
crystals for A * 5461Â being 13® and 51® .

The theoretical prediction of Chapter 7, namely 
that the observed laocllnlc Is that corresponding to 
principal stress directions differing by half the optical 
rotation of the crystal from the directions of the axes of 
polarizer and analyser. Is thus substantiated.

b) jiiffect of thickness. Considering now the effect 
of the crystal's not being extremely thin. It will already 
have been noticed that the B.2 mode of the 2.0 mm crystal.
Fig 14.28, Is not perfect. The types A and B modes were 
examined for a 3 mm crystal and Irregularities were vary 
pronounced, often rendering the patterns unrecognizable.
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Figs 14.29-32 show the A.2 and B.2 modes by plane 
and circularly polarized light; both modes are recognizable 
from the latter patterns. Of the other type A modes, A.O 
and A.l were recognizable but A.3 was too badly distorted 
to be identified. Although departing greatly from the 
theoretical appearance, the patterns for the B modes were 
much more regular than for the A modes. In particular, 
the central feature of Fig 14.30 re-appears in all the plane 
polarized li^t patterns, while the central spot of the 
circularly polarized light pattern is in each case three 
branched as in Fig 14.32. The zero order stress fringes 
are no longer circular or even continuous. This dis­
continuity of the zero order stress fringe is the rule 
for the vast majority of possible vibration modes.

The isoclinic fringes do not retain their shape when 
the parameter ifJ is varied, since the stress system no longer 
has circular symmetry. In Fig 14.30 the conditions were 
adjusted to.obtain the most symmetrical pattern possible, 
so as to make comparison easier; this was not possible for 
the A.2 mode as it was so distorted.

In Figs 14.33-36 the B.l mode is shown for various 
isoclinic parameters, the polarizer axis being marked in the 
usual manner. For a stress distribution with no symmetry
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about an axis normal to the plane of stress, a given isoclinic 
pattern is repeated when the parameter gJ increases by 90^.
In the present case an increase of 30^ in Kp results in a 
given pattern being repeated, but turned through 120  ̂relative 
to the crystal. Fig 14,36 is the same as 14.33 but turned 
through 1 2 0  ̂anti-clockwise, while the polarizer axis has 
turned just over 30^ anti-clockwise relative to the crystal. 
(The position of the crystal may be identified by the chip 
at the .edge). Thus the stress distribution shows three­
fold symmetry and this is doubtless influenced by the 
trigonal symmetry of the crystal.

c) Effect of large amplitude. In all the photographs 
shown so far, the excitation was deliberately small, to avoid 
changes in the effective rotatory power. Pigs 14.37-40 show 
the B.l mode for the 3 mm crystal with progressively 
increasing strength of excitation.

In Pig 14,37 the amplitude is very small and the 
isoclinic cross is misorientated by about 40^ clockwise 
relative to the theoretical position. This is in accordance 
with theory, since the rotation for a 3 mm crystal is 78^.
As the amplitude is increased, parts of the iso clinic 
cross move in a direction corresponding to increased rotatory 
power, the displacement depending on the magnitude of the
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stress at a given point. It is perhaps surprising that the 
displaced 'isoclinic' is so clearly defined, for it is 
actually oscillating to and fro at twice the frequency of 
vibration. The reason is that in the extreme position the 
displaced isoclinic is momentarily at rest, the intensity 
of the rest of the field being then at a maximum and 
momentarily constant; thus the system effectively acts as its 
own stroboscope and the non-linear relation between stress and 
birefringence enhances this effect. In the case of the 0.5 mm 
crystal there was no sigi whatever of the stress being 
sufficient to cause increased rotation; this was also true 
for the 1.0 ram crystal except at dangerously large amplitudes. 
Thus for thin crystals we n«y examine the more complex 
modes without fear of the patterns being affected by anything 
other than the stress distribution.

14.5 Type C modes
a) Numerical calculation of the stress fringes and 

isoclinics. By substituting the values TJ and V given by 
eqns 5,14 in the equations for the stress resultants, eqns 5.10, 
we find:
14.6 (];. - Tg ) = (i;. - Tg )'cos(n0) (1)

Sfg = Ŝ l sin(nG) (2 )
where (T̂ - Tg)' and are functions of r only. The actual

110



(14.5)

functions aj?e too long and cumbersome for inclusion hare.
Thus (Tf- Tg ) is zero along certain circles and diameters and 
so also is Ŝ g. Since the two sets of diameters alternate 
and the two sets of circles do not generally coincide, the 
zero order stress fringe is given by the intersection of 
the diameters of each set with the circles of the other set 
and is thus a series of discrete points.

For the isoclinics:
1 4 .7  tanS<p = 2Sre /{T p  -  T g ) = tan (n 6 )K S 8  Ve /{T ^  -  Tg ) •

TMs may be re-arranged in the form
14.8 2S/g/(Tp - Tg ) * = tan(2V>— 28)/tan(n6)
The n^thod of calculation was to evaluate the right-hand 
side of eqn 14,8 for various values of 0  and a particular 
value of (f*. Then, from a graph of the left-hand side against 
r, the value of r for each value of 6 could be found. Each 
point so fixed was a point on the isoclinic for the chosen 
value of , If y/ is replaced by 7T/n -y) and 6 is replaced by 
Tl/n-df the value of the right-hand side of eqn 14.8 Is 
unaltered. Thus the isoclinic pattern for tiM parameter 
TT/n-q̂  is the same as that for reflected in the plane 
8=7T/2n,

The calculations were extremely long and laborious 
even with the aid of a Brunsviga calculating machine, for
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the expressions involved were such that no approxiimtloos 
could he nmde at any stage. For this reason the calculations 
were restricted to two modes for n = 1 and two for n - 2 .

h) n = 1 modes « Using the appropriate values of 
(ka) and A/b, taken from Table IS ,3, graphs of (Tp - Tg) ' 
and SSp'g were plotted against r and are shown in Figs 14,41 
and 14,43 for the m- 4 and m = 5 modes respectively,while 
Pigs 14,^ and 14,44 show the ratio of these quantities. 
Values of tan(sy- SG)/tan^ were calculated and could be used 
for both modes; since this expression is unaltered by 
substituting (0 t v) for B , only half of each pattern had to 
be calculated. Figs 14.45-48 and 14,53-56 show the 
theoretical appearance of tl% isoclinlcs for various values 
of ip between 0® and 45® , The isoclinlcs for ^ = 45® to 90® 
are the same as those for (p - 46® to 0® reflected in the 
plane B = 90®, In each case the zero order stress fringe 
or isotropic points are nmrked on the 0® isoclinic.

As m ight have been expected  fro m  th e  alm ost random  

n a tu re  o f  th e  ro o ts  to  th e  fre q u e n c y  e q u a tio n , the is o c l ln io  

f r in g e s  fo rm  a v e ry  co m p lic a te d  p a t te r n ,  and a lth o u g h  th e re  

a re  some c h a r a c t e r is t ic  fe a tu r e s  w hich  re c u r  as m in c re a s e s ,  

th e re  i s  no r e g u la r  s e r ie s  as f o r  ty p e  A and B modes.

Figs 14,49-52 end 14,57-59 show the observed.isoolinies
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for the two modes. No precise measuremait of the parameter 
V was made and the photographs are arranged to correspond 
to the theoretical isoclinics which they most nearly 
represent. The m= 4 mode was examined using a 0.85 mm crystal 
and all the others shown after this were examined for a 1.0 ran 
crystal; the exposures were often as long as an hour, even 
with fast plates, as the intensities ware so low.

At the two possible frequencies of vibration for those 
modes, which are not allowed for by the theory but have been 
mantioiKd in Chapters 12 and 13, the isoclinics for any value 
of were identical in form but turned through 90° relative 
to their previous positions. This implies that the whole 
vibratory system with its attendant stresses and strains 
turns through 90® also. Rayleigh (1894) has shown that 
if an isotropic disc vibrates in a mode having n-fold 
symmetry about its axis, then if the disc is perfect there 
is nothing to fix the orientation of the vibratory system; 
if, however, there is some is^rfection which defines a 
singular direction in the disc, then there are two stable 
orientations of the vibratory system relative to this direction 
differing bylT/Bn. This is in accordance with the present 
observations, except that since the trigonal symmetry of the 
quarts probably provides the necessary 'imperfection* it
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might he argued that there are three singular directions 
and hence six stable orientations; however, the influence 
of the single pair of exciting electrodes probably fixes 
one of the three possible directions in this case.

The isotropic points seen by circularly polarized 
light seenœd to agree with the configurations shown in 
Figs 14.45 and 14.53. They were usually very diffuse, 
however, since their visibility depends on the rate of change 
of the principal stress difference in their neighbourhood 
and this is often smll over a considerable region; moreover, 
their distribution is often very erratic, as seen from 
Fig 14.45, and it is impossible to resolve them when they 
are very close together. For these reasons they add very 
little information to that yielded by the isoclinie patterns 
and their separate photography was not undertaken.

Although the isoclinics for other n = 1 modes were 
not calculated, an experimental test showed that, of the 
first 8 modes, most were similar to the m = 5 mode and the 
others to m = 4. No theoretical reason for the difference 
between these modes can be given; it is dependent on the 
random nature of the values of a/B and a different value 
of Poisson*8 ratio could alter the type of pattern appropriate 
to a given order of m.
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c) n-2 modes. The values of (Tr " T^)^ s/g and 
their ratio were calculated as before and are shown in 
Pigs 14.60-66^ for the m-1 and m = 5  modes. The isoclinlcs 
have tetragonal symmetry about the axis of the disc and 
planes of symmetry at 8 =_ (<̂ /2 fa/8 ) and {((̂/2-f 3tr/8 ). For 
values of ̂  between 46® and 9(f the patterns are the same 
as those for if between 46*̂  and 0  ̂reflected In the plane 
6 = 4 6 %

The Isoclinlcs are rather more complicated than 
for n = 1 and in some regions alter rapidly for very small 
changes in ip • For this reason a large number has to be 
calculated to give an overall picture of the stress 
directions. Since, however, the polarized light system 
is insensitive to changes of a degree or two in the stress 
directions, it is impossible to show these subtle changes 
in thQ isoclinic pattern experimentally. Regions where 
the stress directions differ only slightly from the isoclinie 
direction appear uniformly dark.

Pigs 14.64-76 and 14.77-89 show the theoretical 
and experimental isoclinics for m - 1 and 6 . The isotropic 
points are shown on the calculated 0  ̂ isoclinic. These 
modes were much more easily excited than the n = 1 modes. As 
in the case of n= 1 modes there were two orientations for

115



Pin:s 14.60-61

1 0

-8-0

14.60

10~r~A'
O 05 10

'10

20 14.61



Pigs 14.32-63

rr =5
re

0-

05 1 0

-120 —

-240
14.62

05

14.63

io



Figs 14.64-67 
(overleaf)

W v : ' -

» oe <i - v

i:'

>jmr



n =2 m= I

o
Y = 0 Y=0°20'

14.64 14.65

Y =2*30' Y =5

14.66 14.67



Pigs 14.68-69

14.68

L

14.69



\ 3 n

Pigs 14.70-73 
{overleaf)

Q ^ m

i



n - 2 m = I

o Iy =7 30 Y = IO

14.70 14.71

Y= 2 5 Y = 4 5

14.73



Pigs 14,74-76

14.74 14.75

14.76



Pigs 14,77-80
(overleaf)

à

A # @ @

::

 ̂ 'I ]

m. #1



n = 2 m = 5

Y = 0

14.77 14.78

Y = 5

14.79 14.80



Pigs 14.81-82

14.81 14.82



■ Pigs 14.83-86
(overleaf)

M S é ®

ri' j j ,  I

m m

.:-:wâ



n=2 m = 5

Y  =  l O Y  = 25

14.83 14.84

Y  = 35 Y  = 4 5

14.85 14.86



Pigs 14.87-89

1^.87 14.88

14.89



(14.5)

each mode, this time differing by 45**. These were not quite 
so definite as previously, however, and there seemed to be 
unstable orientations between these two extremes. Other 
n- 2 modes were also examined and, of the first 9 , most 
were like the m = l mode and the rest like the m= 5 mode.

Summarizing this ehapter, it may be said that there 
is every reason for supposing that Lovers theory adequately 
describes the stress distribution of these modes, provided 
the crystal is sufficiently thin.
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CEAPÜRR 15 
OBSERVATIONS BY IM‘ERî3AL INTERFERENCE

For the reasons mentioned in Chapter 6 , the work 
described in this chapter is necessarily of an empirical 
nature. The effects due to the ma^itude of the sum of the 
principal stresses will be regarded as the primary cause of 
the observed fringe shift and other effects will be regarded 
as modifying influences. The experimental arrangements have 
already been fully described in Chapters 9 and 11.

15.1 Symmetrical modes (n - 0)
a) Type A. Here the nodal system is that summarized 

in Table 13.1; the radii given there are those at which the 
sura of the principal stresses, the areal dilatation and the 
normal displacement all vanish. Now any fringe splitting 
effects are due to the difference between the principal 
stresses, and the radii at which this is zero have been given in 
Table 14.1. Since the roots of Ĵ >(kr), apart from the first, 
are near to those of JjCkr), it follows that the nodes, 
apart from the first, should be fairly clearly defined.

Figs 15.1-4 show the first four modes of the 
specially worked 2.0 mm crystal. There is, in fact,very 
little evidence of any fringe splitting, even for the first
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node, or indeed anywhere on the whole surface. The nodal 
radii agree well with the expected values.

It was hoped to compare the fringe displacement 
observed by simple interference with that due to internal 
interference, This did not prove worthwhile, however, as 
the former fringe displacement is extremely small compared 
with the latter. Fig 15.5 shows the two types of interference 
simultaneously for the A.l mode. This was achieved by 
resting the doubly coated crystal on a similarly coated 
reference flat. It is seen that for a substantial displace­
ment of the internal interference fringes, the displacement 
of the simple interference fringes is negligible.

This result is in agreement with a subsequent 
calculation based on Fockels* values for the stress-optic 
coefficients. The change of mean path difference between 
successively reflected beams, due to the stress-optic effect, 
was found to be about 2.5 times that due to the change of 
thickness of the crystal. Since these effects are additive 
and the change of optical thickness of the crystal is about 
3 times the displacement of either surface relative to the 
median plane, it follows that the displacement of the 
Internal interference fringes is more than 10 times as great 
as that of the simple interference fringes over the same
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region. Moreover it has been calculated that if the quartz 
were devoid of rotatory power, the distance between the two 
components of a split fringe due to a given principal stress 
difference would be less than one third of the bodily 
displacement of the fringe due to a principal stress sum 
of the same magnitude.

b) Type B. Here (P+Q) = 0, so the movement of the 
fringes is entirely due to the biréfringent effect. The 
fringe splitting is thus symmetrical about the rest position 
and the fringes should be completely undisturbed where 
{P-Q)-0. This occurs in the isotropic regions and the 
nodes are thus found from the roots of J^(ky ) and coincide 
with the zero order stress fringes. The radii are those 
shown in Table 14.2.

Pigs 15.6-9 show the experimental patterns for the 
B.0 - 3 modes of the 2.0 mm crystal. The observed nodal 
radii agree well with the theory. There is, however, some 
evidence of fringe doubling, showing that the fringe 
splitting is not quite symmetrical and Implying that (P+-Q) 
is not zero. This is particularly noticeable for the B.l 
mode. It will be remembered that the surface displacement 
for this mode (Fig 13.23) showed a much imre distorted 
pattern than the other type B modes.
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The general appearance of the oscillating fringe 
envelopes for these modes is little different from that of 
simple interference fringe envelopes. This is surprising 
in view of the fact that the birefringence present in the 
crystal when vibrating with the amplitude shown in the 
photographs must have caused a considerable change in the 
apparent rotatory power of the quartz.

15.2 Type C modes
a) 1 modes. The nodes of (3? f ) consist of a

single diameter and a number of circles whose radii have been
given in Table 13.2. Figs 15.10-12 show the observed 
patterns fbr the 2.0 mm crystal. These were the only modes 
strong enough to show any noticeable fringe displacement.
The values of m are 0, 1 and 4, respectively. The nodal
radius for m-4 agrees well with theory. Fringe splitting
is very slight for this mode but is comparable with the 
displacement for the m= 1 mode.

b) n= 2 modes. Here there are two diametral nodes 
and various circular nodes, the radii having already been 
given in Table 13.3. These modes were more readily excited 
than the n= 1 modes. Figs 15.15—17 show the modes for 
which m«0, 2, 5, 5 and 7 respectively. The nodal radii 
fit the theoretical values very well. The amount of fringe
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splitting varies from mode to mode, but a precise analysis 
of the behaviour of multiple-beam fringes under these 
conditions is required before the magnitude of the fringe 
splitting may be interpreted quantitatively.
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CHAPTER 16
CALCULATION OF THE LONGITUDINAL PIS PLACE:#: NT AND 
LYCOPODIUM POWDER PATTERNS

16.1 Synrnetrlcal modes (n=0)
a) Type A. Here the tangential displacement is 

everywhere zero. The radial displacement, as given by 
eqn 5.14 is:
16.1 U = A %  (kr)
Fig 16.1(a) shows the variation of the radial displacements 
with r for the first four modes. The nodes are a series of 
circles, their radii being given in Table 16.1 as fractions 
of the disc radius.

For this type of vibration the normal displacement is 
entirely due to the Poisson contraction; it follows, from 
the reasoning of Chapter 8, that all of the nodes of 
longitudinal displacement should be indicated by the 
lycopodium powder and none of the nodes of normal displacement.

Figs 16.2-5 show the lycopodium patterns on a 2.0 imn 
crystal for the m-0 - 3 modes. The patterns are very little 
like the theoretical ones. As thinner crystals gave still 
more complex patterns than those shown, only the experiments 
with this crystal will be described, in order that the 
interpretation may not be too involved. The patterns on the
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Table 16.1

Table 16.1 Type A Modes V = 0

Radii of Nodes of Lateral Dtaplaeement

m 0 1 2 3 4
(ka) 1.939 5.362 8.552 11.717 14.873

0 0 0 0 0
Pg 0.715 0.448 0.327 0.258
Pg 0.%0 0.599 0.472
P^ 0.868 0.684
Pg 0.890
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reverse side are complementary, and when the two patterns 
for a given mode are superposed a figure with six-fold 
symmetry results. Figs 16.6 and 16.7 show the patterns on 
the other side for the a.O and A,1 modes, as viewed from 
the same side of the crystal as Figs 16.^ and 16.3.

To interpret the motion, reference will he made to 
the results of the previous chapters. In Chapter 14 
(see Fig 14.27, A.l mode) it was shown that even in the 
cause of this comparatively thick crystal the primary stress, 
namely radial compression,was nearly perfect. In Chapter 13 
we saw that the displacements normal to the surface were 
invariably complicated by what wore assumed to be flexural 
modes. In the interference patterns shown by the doubly 
coated crystal, which should not show up the effects of 
flexural motions, the observed patterns were very much as 
expected.

It is assumed from those observations that the 
theoretical mode of vibration with all its attendant stresses 
and strains does in fact occur, but that a flexural mode, 
with its own system of stresses and strains, is superposed. 
For the A.l mode. Pig 16.3, which will now be discussed in 
detail, this flexure has three diametral nodes and two 
circular ones and accounts satisfactorily for the observed
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interferomotric pattern.
At the centre, the flexural amplitude must he zero, 

and the motion of the powder near the centre should be 
towards the centre, on both sides of the crystal, as in the
case of the pure uncoupled motion discussed previously.
Using this fact as a starting point, the direction of 
movement of the powder will be reversed every time a node of 
either normal or lateral displacement is crossed. Fig 16.8 
shows a tracing of the nodes of the normal displacement, 
as revealed by the interferons trio pattern. Pig 13.10, 
with the theoretical nodes of the longitudinal displacement 
superposed. Arrows are shown directed toward the centre to 
indicate tlie motion of the powder there and all the other 
arrows have been drawn to conform to the rules given. This
diagram explains the presence of all the lines shown up by
the lyGOpodium powder. Of particular interest is the fact 
that scwne of the regions where the powder remains undergo 
large normal displacements. This emphasises the danger of 
using the lycopodium powder method to indicate nodes without 
any corroborative evidence, as numerous previous workers 
have done.

The pattern on the reverse side of the crystal can 
be explained similarly. It is partly complementary to that 
on the first side, owing to the complementary nature of the
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normal displacements on the two sides, the latter being a 
fundamental property of a combination of longitudinal and 
flexural displacements.

b) Type B. Here. Ü is everywhere zero and the 
longitudinal displacement is tangential, that is:
16.2 V =5 (k,r)
Fig 16.1(b), after page 122, shows the variation of V with 
r and Table 16.2 gives the nodal radii for the first four 
modes.

Since the normal displacement w is everywhere zero, 
the lycopodium spores will slip for all but the extremely 
small fraction of the cycle when V| The particles
will slither about aimlessly but will be at the msrcy of 
air currents and in any case will inevitably find themselves 
at a node, after a sufficient lapse of time, and remain 
there. However, this idealized version of the motion is 
nullified by the presence of the coupled modes.

Figs 16.9-12 show the first four modes of this type. 
As was the case for type A, many more nodes are shown than 
predicted by theory. As the longitudinal displacement 
is parallel to its nodes, these nodes are shown up only 
faintly, as there is no direct motion of the powder towards 
them; in fact they are rendered visible mainly by the
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Table 16.2

Table 16.5 Type B Modes ü= 0

Radll of Modes of Lateral Dlaplaeemenfc

m 0 1 2 5 4
(k,a) 5.135 8.417 11,620 14.796 17,960

'l 0 0 0 0 0

*•2 0.746 0,455 0.330 0.259 0.213

'3 0.834 0.604 0.474 0.391

'4 0.875 0.688 0.566

*•5 0.903 0.743
P- 0.917
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discontinuities in the radial nodes. The latter are 
superfluous to the theory and are assumed to be due to 
flexural modes as for Type A. This is again supported by 
the complementary nature of the pattern on the reverse side. 
Figs 16.13 and 16.14 show the reverse side of the crystal 
for the B.O and B.l modes, as seen from the same side of 
the crystal as Pigs 16.9 and 16.10. In Fig 16,15 the nodes 
of the lateral displacement for the B.O mode are superposed 
on the observed nodes of the normal displacement and arrows 
are drawn to indicate the motion of the lycopodium powder. 
This completely explains the observed lycopodium pattern and 
doubtless all the other patterns may be analysed in the 
same way,

16.2 Type C modes
Here we have to contend with two components of 

longitudinal displacement, parallel and perpendicular to the 
radius vector at any point, each one having its own nodal 
system.

a) n - 1 modes. The longitudinal displacements may 
be written in the form:
16.3 U = U ’cos6 (1)

V = V'sinô (2)
The nodes of each consist of a single diameter plus

126



Pigs 16.13-15

B modes, side 2

iliiiSI
16,13 16.14

Radii of nodes of tangential displacement 0 and 074ba

16.15



(16.2)

a sot of circles whose radii are found from the roots of 
Ü* and V*. The diametral nodes of the two dlsplaceimnts are 
mutually perpendicular and in general the circular nodes 
do not coincide. The circular nodes have to be found 
graphically by plotting U* and V* against r.

The displacements have been calculated for the first 
two modes only and are shown in Pigs 16.16 and 16.17. The 
radii of the nodal circles do not form a regular series as 
in the case of the type A and B modes. All that can be said 
is that the number of circles increases with mod© order and 
for a given mode there are usually more nodes of the 
tangential than of the radial displacement. At first 
sight the centre would appear to be an absolute node of 
longitudinal displacement, as the nodal diameters of U 
and V intersect there. But the graphs of ÏÏ* and V* against 
r have a maximum at r = 0 and by considering the displacements 
at points on the circumference of a limitingly small circle, 
it may be shown that the centre of the disc has a large 
amplitude of longitudinal displacement.

Pigs 16.18-21 show the patterns on the two sides of 
the crystal for the two different m= 0 modes. They agree 
well with the normal displacement patterns shown in 
Figs 13.26, 13.28 and 13.30. The nodes which are actually
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shown up by the lycopodium powder may be explained In the 
same way as for the A and B modes. Fig 16.22 shows a 
tracing of the nodes of one of the normal displacement 
patterns (Fig 15.30) with the nodes of longitudinal motion 
added and arrows showing the direction of motion of the 
powder. It was found that the lycopaiium powder streamed 
continuously along certain parts of the pattern (Fig 16.19), 
the reason for this being obvious from the diagram. The 
other pattern for this mode can be explained in the same ivay. 
Pigs 16.23-26 show the pattern on both sides of the crystal 
for the two types of vibration corresponding to m = 1.

b) n=»2 modes. Figs 16.27-^0 show the patterns 
observed on the two sides of the crystal for the two modes 
corresponding to m-0. No analysis is given here but, in 
general, the nodes correspond to parts of the nodal system 
of the normal displacement and the rules given for the 
motion of the lycopodium powder apply in these cases also.
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CHAPTER 17 
DISCUSSION OP RESULTS

17 #1 Meohanism of the coupling between modes
a) General theory. Since performing these experiments 

it has been found possible to explain most of the observed 
coupling effects by considering the nature of the secondary 
shear strains due to the pairbicular synanetry of crystalline 
quartz which have, so far, been ignored. Prom eqn 5.5 these 
strains are:
17.1 (1) Zx = (2)

and are equivalent to a shear strain of magnitude /y^V Zj 
acting in a plane normal to an axis in the Xy-plane at an angle
~tan~'(zx/% ) to the X-axis. If the stresses %x ,Ŷ  and Xy

are expressed in terms of the stress resultants and the latter 
are written in the form;
17.2 (T^- T^)/2h = Tcos(ne) (1) 2^2h = Ssin(n6) (2)
then it may easily be shown that ;
17.3 T, , (s^/S) [(T4 S)coa(n+2) + (T -S)cos(n - 2)J (1)

*x = (s„/2) [(Tt S )sln(n+2) - (T-S)sln(n-2^ (2)
the X-axis of the quartz crystal being taken as initial line.

At any point on a circle for which T - S =0, the 
resultant shear strain is and the axis of shear
(i.e. the line normal to the plane of shear) makes an angle
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-(n+2)0 with the X-axis, that is -(n + 5)8 with the radius 
vector. Thus the resulting strain system has (n+ 5)-fold 
symmetry and there are (n+3) values of 6 for which the axis 
of shear is parallel to the radius vector. These directions 
are favourable for the formation of the diametral nodes of 
a flexural vibration, since the shear strain about the radius 
vector has a maximum value in these diroctions.

Alternatively, at any point on a circle for which
T+ 8= 0, the resultant strain is S) and the axis of
shear makes an angle-f (n — 2)0 with the X-axis,that is 
f (n - 3)6 with the radius vector. In general, when T and S 
have any values, there will be a tendency for coupling to 
flexural modes (or shear modes in the case of thick crystals) 
having (n±5) diametral nodes, and a number of circular nodes 
which depends upon the frequency of vibration In the way 
already discussed in Section 15.1(a).

b) Symmetrical modes (n=0). For type A m)des
S= 0, and the axis of shear makes an angle -30 with the X-axis.
Thus the axis of shear is parallel to the radius vector 
along the three X-axes and conditions are favourable for a 
coupled flexure having three diametral nodes along these axes. 
It is seen from Figs 13#17 and 16.8 that the axes of symmetry 
of the interferomtric and lycopodium powder patterns for
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the A type modes bisect the angles between the nodes of the 
coupled flexure and should thus lie along the Y-axes. This 
Is precisely what has been observed and commented upon by 
Petrzilka (1935a).

For the type B modes, it is found that the axis of 
shear makes an angle u/2-50 with the radius vector and is thus 
parallel to it along the three Y-axes. This favours a coupled 
flexure having three diametral nodes along the Y-axes. For 
these nodes the axes of synmetry of the interference or 
powder patterns are coincident with the flexural nodes and 
thus lie along the Y-axes, as for Type A. Petrzilka observed 
this effect also.

c) Type G modes. For the symmetrical modes the 
choice of initial line is arbitrary, but for Type C modes 
a more general theory is required. If the initial line 
of the cylindrical coordinates to which the vibratory system 
is referred nmkes an angle «x with the X-axis of the crystal, 
then it is easily shown that the coupled shear strain system 
with (n f 3)-fold symmetry is turned throu^ an angle 
npy(n+ 3) and the system with (n-3)-fold synmetry through en 
angle iW(n-3) relative to their former positions; if the 
angle between the initial line and the X-axis alters by <x 
then the shear strain systems change their orientations by
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these angles also.
According to this theory, the flexures favoured by the 

n * 1 modes have two or four diametral nodes. The relative 
magnitudes of these flexures depend upon the way in which T- S 
and T+ S vary throu^out the crystal for the particular mode 
concerned; the radii of the circular flexural nodes depend 
upon the value of the frequency of vibration in relation to 
the frequencies of free flexures having these numbers of 
diametral nodes. If we accept the fact that there are two 
possible vibration states for each of the type C modes, whose 
orientations relative to the crystal differ by 90*, then it 
follows automatically from the theory just given that whatever 
are the orientations of the coupled flexures for the one state, 
those for the other will differ by -45* and +22^* respectively 
It has already been mentioned in Chapter 13 that flexures 
with two and four diametral nodes are in fact coupled to the 
n a 1 modes and there was also evidence that the two diametral 
nods flexure turned throu(^ an angle of 45* for the second 
vibratory state.

When n = 2, the favoured flexures have one or five 
diametral nodes. This is precisely what was observed in 
Chapter 13. Moreover, if the primary longitudinal mode changes 
its orientation by 45* for the second vibratory state.
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which has been observed experimentally and is supported by 
Rayleigh*s theory (see Section 14.5), then the coupled flexures 
turn through -90* and +18* respectively. In general, for 
the two vibration states of any type C mode which are allowed 
by Rayleigh*8 theory, the two coupled flexural modes take up 
orientations which differ by the angles allowed for by the 
same theory, supposing that they were free.

There is a gi?eat deal of information inherent in this 
theory which is capable of direct verification by observation 
with single interference. The relative orientations of the 
primary longitudinal vibration and the coupled flexural 
vibration may be further cheeked by using the other methods 
of observation. The theory shows great promise of explaining 
most of the observed coupling phenomena,

17.2 Some comments on phenomena observed by previous workers
a) Polarized light phenomena. Itoens and Verschaffelt 

(1927) found that a vibrating quartz bar showed an increase 
in the apparent rotatory power, this manifesting itself by a 
shift of the extinction band in the spectrum transmitted by the 
crystal when placed between crossed polarizer and analyser and 
illuminated by white li^t. They attributed this to some 
peculiar property of the quartz when vibrating, since they 
could not produce the effect by static mechanical or electric
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stress. They considered that this failure confirmed 
ily Tsi Ze*a observation (1927a) that a quartz crystal is hardly 
strained in the Z-direction when subjected to an electric 
field in the XY-plane. This remark is irrelevant, however, 
since there is no connection between the strain in the 
Z-direotion and the change of the optical propezrfcles for 
light propagated in this direction.

Their failure to observe the static effect was 
probably due to their not appreciating the truly enormous 
stresses, both mechanical and electrical, present in a 
resonating quartz crystal. Using the theory of Chapter 7 
and the value of (q,, - q,̂ ) given in Chapter 14, the stress 
necessary to produce their quoted change of 20*-30* in the 
rotation would necessitate a foMS of at least 200Kg applied 
to the face of the crystal which they used, as they attempted 
to produce the effect by uniform compression. From Pookels* 
values of the electro-optic constants of quartz, a potential 
difference of lOKV between the crystal faces would be required 
to produce the same effect. They do not mention the order 
of magnitude of the stresses which they applied but evidently 
they did not go to these extremes. It has already been shown 
in Chapter 14 that the requisite stresses are easily produced 
by simple bending.
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Pan Teheng Kao {1955) jMtloed that the high order
modes of a vibrating rectangular '̂ -aut quartz crystal had the
appearance of a regular ari«y of red and green spots when the
crystal was examined In reflection by white plane polarized
lig^t, using a crossed analyser, Sow under these conditions
he was, although he did not realize it, observing the isoclinie

*patterns corresponding to principal stress directions differing 
by half the optical rotation of the quartz from the directions 
of the axes of polarizer and analyser. Since he used white 
li^t, the iso clinic pm rams ter varied for each colour, owing 
to the rotatory dispersion of the quartz. Thus at any point 
of the crystal where there was the correct relation between 
the principal stress directions and the rotation for a 
particular colour, this colour would be stopped by the analyser 
and the eonqjlementary colour would show up. Thus the general 
appearance was that of diffuse isoclinies coloured red on one 
side end green or blue on the other.

b) Petrzilka's observations of longitudinal vibrations 
by tto lycopodium powder method. In Petrzilka's experiments 
on tourmaline (1952), sL nee the electric and optic axes 
coincide, the electrodes consisted of two discs parallel to 
the circular faces of the crystal. He noticed that althou^ 
the type A modes were easily excited, the B modes were excited
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with great difficulty unless the disc protruded slightly from 
the electrodes, in which ease excitation was as easy as for 
type A, He did not offer an explanation for this effect but 
the reason is obvious on inspecting the piezoelectric constants 
for tourmaline (See, for example, Cady (1946) p.225). An 
electric field along the Z-axis produces only longitudinal 
stresses along X,Y or Z, To produce the shearing stress in 
the XY-plane necessary for type B modes, a field component 
along the X or Y-axis is required. If the disc is displaced 
sli^tly, so that part of it lies in the curved field between 
the edges of the electrodes, then such a component conms into 
play, Piezoelectric effects have been largely ignored in 
this woik but since the alternating electric field between 
the electrodes provides the driving force, then however 
slight its effect on the resulting motion, it must have a 
component which produces the right type of stress before 
resonance can occur.

For the type C anodes the radial and tangential 
displacements are;
17,4 Ü - U*cos(n6) (1) V = V'sin(nG) (2)
Petrzilka (1935a) interpreted these equations by saying that, 
at the frequency corresponding to any given mods, there are 
three possible nodal patterns, given by;
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17.5 U* - 0, sin(n0) = 0 (1)
V* =r 0, oos(n0) = 0  (2)
U' r 0, V* = 0 (5)

This is entirely incorrect. The two relations (1) 
and (8), taken together, define all possible absolute nodes 
of longitudinal displacement* They exist simultaneously and 
cannot bo established separately. The third relation is 
impossible, in general, although it is occasionally possible 
that a root of 0 nearly coincides with a root of V*= 0.
It would have been just as logical to give sin(nfl)= 0,cos(n6)- 0 
as a fourth nodal system, which is clearly meaningless.
But what rm&t be explained Is the fact that Petrzilka actually 
did obtain three different nodal patterns at the expected 
frequencies of the type C modes.

As described in Chapter 16, the present author has 
found two patterns for each mode and these fit in with 
the normal displacement patterns shown in Chapter 13, the 
origin of which has already been discussed. These account 
for two of Petrzilka*s observed powder patterns and are in 
fact very similar to his. The third pattern which he observed 
was of an entirely different character from the first two, 
usually consisting of discrete heaps of powder. It was found 
in the present experiments that if, having established one

137



(17.2-3)

/

of the two patterns for a given mode, the frequency was 
altered to the value required for the production of the 
alternative pattern, the powder rearmnged itself into heaps 
whose configuration was similar to that of the third type of 
pattern shown by Petrzilka and seeirwd to indicate points 
common to both patterns. This jdienoiænon could be produced 
by a transition in either direction. If the surface was 
subsequently sprinkled with lycopodium powder the rest of 
the pattern could, of course, be defined.

17.5 Further comments on the methods of observation
a) Multiple-beam interference. This Is the only 

method capable of giving the mmerical magnitude of one of 
the variables associated with vibrations. Although it has 
not actually been used for measurement in the present work, 
but only to indicate the nodal regions, it is capable of a 
high degree of accuracy and requires no calibration, all 
the information necessary for a calculation of amplitude 
being present on one photographic plate. As there is no 
possible doubt as to the meaning of the fringe displacement, 
apart from the small uncertainty of the amplitude, mentioned 
in Section 6.3, the results given by the other methods of 
observation must be so interpreted as to conform with the 
results of the interferometric study.
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.fhlle the imltIple-heam method offers great advantages 
for the pirpoae of amplitude nmasurement, the author considers 
that a dark field two-beam method such as that of Straubel 
(see Section 4.1) gives a better indication of the nodal regions 
It sometimes happens, when two modes are coupled, that large 
areas of the surface have only a small amplitude of normal 
displacement and it is difficult to say just where the fringe 
displacement is zero. In the case of the dark field two-beam 
method, however, only the nodes remain completely dark and it 
is much simpler to see the general configuration of the nodal 
pattern. These patterns have the same type of intensity 
distribution as the stress patterns of Chapter 14 but are more 
sharply defined as the phase differences between the two 
interfering beams are generally much larger,

b) Polarized li^t. This method has been used very 
successfully in this work but theire are still a number of 
features which require a fuller explanation. In the special 
case of the Z-out crystals used here, the general principles 
of photo-elastic stress analysis may be applied, with the 
reservations mentioned at the end of Chapter 7, when examining 
longitudinal vibrations in the Xï-plane.

For very thin crystals there is practically perfect 
agreement between the theoretical and observed stress patterns.
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while for thicker crystals the patterns are distorted, 
those for the A and B modes no longer indicating circular 
symmetry of the stress system. Now the cross shear strains 
discussed in Section 17.1 serve merely as a means of 
excitation of the favoured flexural modes. The additional 
normal displacement, superfluous to Love’s theory, is not 
the manifestation of these strains, since the distribution 
of the normal displacement due to these is independent of 
the crystal thickness, and we have seen that the nature of 
the coupled normal displacement varies with this thickness. 
The coupled flexural modes are complete in thenselves, 
although forced, and consequently additional stresses must 
exist, their magnitude depending upon the differences between 
cross shear strains due to the primary longitudinal stresses 
and the strains, both longitudinal and shear, due to the 
flexural vibrations. These stresses give rise to the 
discrepancies between tho calculated and observed stress 
patterns.

It is, perhaps, surprising that the stress patterns 
for the thin crystals should not be distorted, in spite of 
the fact that the coupled flexural displacements are as 
great as, or greater than, those of the thicker crystals.
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The reason for this lies in the nature of the flexural 
vibrations. It is well known that when lateral waves are
propagated in a lamina, if the frequency is increased until «
the wavelength is no longer very great compared with the 
thickness of the lamina, there is a gradual transition from 
pure bending waves, for which the stresses are entirely I
longitudinal, to shear waves, which are accompanied by shear j
stresses acting about axes in the lamina parallel to the 
wavefronts. Experiments on this subject tsv previous workers ‘
have been mentioned in Section 2.1.

Now the overall bire.fringenco of an isotropic lamina ,, 
to light traversing it normally is zero, when vibrating :
flexurally, since the retardations due to the longitudinal 
stresses in alezants which are symmetrically disposed about 
the median plane are equal and opposite, and moreover no 
birefringence is produced by shear stress acting in planes 
parallel to the direction of propagation.

In quartz there is bound to be a small net retardation 
due to the longitudinal stresses, on account of the optical 
activity, Ihis Is difficult to discuss analytically but is 
simply explained qualitatively by reference to the Poincaré 
sphere; Jerrard (1954) has given a concise account of the theory 
and uses of this elegant method for representing the properties 
of biréfringent, optically active media. These effects are of
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the second order only, however, the main difference between 
quartz and an isotropic medium being the presence of the stress 
optic coefficients q̂ =̂ q,̂ .

The effect of these coefficients, considered alone, 
is that if a given shear stress acts about an axis in the 
xy-plane at an angle 0 to the X-axis, then the resultant 
birefringence in the 3-direction is independent of 0, but one 
axis of the section of the Index ellipsoid by the XY-plane 
makes an angle -36/2 with the axis of shear. As a consequence, 
the shear stresses due to the ccwipled flexural modes alter the 
configuration of the stress patterns. The ’isoclinics* in 
this case will not represent points at which the principal 
stresses have a fixed direction, but points at which there is 
a particular relation between the mgnitudes and directions of 
the primary longitudinal and secondary shear stresses.

o) Lycopodium powder patterns. This method, although 
regarded by the author with some suspicion, at H rst, has 
proved to be as valuable as the other methods for establishing 
the true nature of a given vibratory system. It can be used 
to find the phase relation between the longitudinal and normal 
components of displacement, and thus proves useful for empirical 
investigation in cases where the nature of a coupled mode is 
not known. The simple theory of the motion of the lycopodium
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spores, outlined in Chapter 8, has proved adequate for an 
explanation of all the patterns so far observed.

17.4 Conclusions and future work
From the experinrental evidence presented here, it is 

true to say that Love's theory satisfactorily describes the 
longitudinal vibrations of thin isotropic discs. The 
anomalies observed by Petrzilka, and confiimied by the present 
author, are entirely due to the crystal structure of the quartz 
and may be explained adequately in terms of the cross shear 
strains due to the primary plane stress system. There is 
scope for a more extensive c: ' mathematical study of the 
phenomenon of coupling and it may be possible to calculate 
the amplitude of the coupled modes in terms of the amplitude 
of the longitudinal modes.

It will be interesting to extend the calculations 
of frequencies, stresses and displacen»nts to type C modes 
for which n is greater than two. The n = 3 modes are 
particularly interesting, as these favour coupled flexural 
modes having no diametral nodes or six diametral nodes and 
may be simpler to interpret than the others. An investigation 
of the longitudinal vibrations of rectangular Z-cut quartz 
crystals, already studied by Petrzilka using lycopodium 
powder (1935b), should also be worthwhile, and it would be
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Interesting to determine the nature of the coupled flexural 
modes in this case. It may be possible to study the free 
flexural vibrations of Z-cut quartz laminae by laeans of the 
optical effects caused by the shear stresses, discussed In 
the previous section.

As regards the correlation between the various methods 
of observation, which was the primary object of the work 
described here, there has been excellent correspondence of 
the results, and no serious discrepancies have been observed.
The three methods have been regarded as complentary throu^out 
and the empirical explanation of the coupling phenomenon was 
the logical outcome of a constant comparison of the information 
yielded by them.

Finally, these experiments have shown that it Is 
generally unreasonable to expect any one method of observation 
to give a reliable guide to the type of motion of a vibrating 
body. This has been one of the pitfalls of previous 
experimenters. Most of the optical methods of investigation 
present the results in an extremely elegant manner but, by 
themselves, such results are of limited value. When 
discussing the results of empirical experiments, previous 
workers have emphasised the need for applying their methods 
to large numbers of crystals, in order to recognize the
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various types of vibration and the influence of crystal 
shape on the nodal patterns . The author is of the opinion 
that this point of view should be reversed, and the largest 
possible number of methods of observation should be applied 
to the examination of a single type of vibratory mode, using 
the same crystal for all the experiments.
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