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ABSTRACT

( 2)

In this thesis we consider binary

relations over the class of L - structures ,

for some fixed language L

. Such a binary

relation R , induces a binary relation R*

between the class of theories in L ; in the

following natural way . If

T, and T, are theories

in L then T,R*T, iff 3A,B AF T,,BE T, and AR B

We characterize syntactic

theories related by R¥ Dy

ally those pairs of

introducing the concept

of a notion of goodness for R . This consists

of a set of ordered pairs of sentences in L ;

A, with the property that

* T,R*T, iff for no «<¢.;,

for theories T; and T,

¢o> € A do we have

T, F ¢4 and Tz" /P

Provided A is defined

in a syntactically

simple way , we find , by negating both sides off *

and restricting the theorie
the property #* closely res
Theorem for R . Actually , a
more complicated than this

more general .

s to sentences that
embles an Interpolation
notion of goodness is

and our results are

In the established approaches to find

Interpolation Theorems , the
in the understanding of s
Ve show , by considering ce

which can be "described "

weak point has Dbeen
yntactically simple " .
rtain relations T

by a theory 1in a

particular language extending L , that a notion

of goodness can often be

such a theory . Indeed we

found immediately from

find a model theoretic
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condition on R for which this 1is possible . It
turns out to be a "union of chains " condition .

Using this approach we obtain many Interpolation
Theorems by analysing the structure of the
theories wused to '"describe " R . In particular
the methods are wused to prove a version of
Feferman's Interpolation Theorem in a many-sorted
language .

We give a characterization of those theories
with the Amalgamation Property and the Strong
Amalgamation Property . We conclude with a solutyon 6/

of an open problem of G. Gritzer .
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CHAPTER 1
1.1 Notation

1.11 Set Theoretic
We use the standard notation
for set theoretic concepts .
e.g€ N ( intersection ) , U ( union )
- ( daifference ), X ( cross product ) and ¢
for the empty set . We write X c Y if X 1s a
( not necessarily proper ) subset of Y .

We use m , n etc. for integers and w for the
order type of the integers . Other ordinals will
be denoted by u » v, k etc. SNo is the cardinality
‘of the integers , Card(w) .

A sequence of objects a;,..058, will sometimes
be thought of as the set { 8,5e0058, | » The
context 'will decide which case holds . The 1length
of the above sequence , denoted by 1g( 8y5e.058, )

is n .

1.12 Languages and Theories
We consider First Order
Predicate Languages L , with equality , whose
logical connectives are n , U, 9 ,—>, &> and
quantifiers are v and 3 . L may contain
functions and individual constants as well as
predicate letters . Terms , formulée s sub - formulae ,
sentences and other notions are defined as usual .
( see e.g. [B.S] chapter 3 . )

We use ¢ , ¢, 6, O etce. for formulae

and write ¢ e L if ¢ is a formula in L .
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A set of sentences (in L ) T is called a theory
(in L) ;, we write T | ¢ if we can poove ¢
from T . If T is a theory we wrise L(T) for
the language of T , and L(¢) for L({¢}) .
If L is a language and ® 1is a set of individual
constant symbols , L(E) is the 1language obtained
from L by the addition of the individual constant
symbols in £ . Const(L) is the set of individual
constant symbols in L ., Other notation used for
extending 1languages will Dbe defined or it will
‘be obvious what is meant .
If ¢ is &a formula in L and U 1s a unary
predicate symbol, then ¢U is the relativization of
¢ to U. For a definition see e.g. [B.S] page 2L9.
We use t for some arbitrary true sentence
and f will denote -t .
If ¢(Viseeasvy) is a formula and for 1 <i g<n
2t is a sequence of terms s.t. 1g(zt) =m ( say )

then
AM@(Er,...,8") means ij¢(ag,...,a?).

Ir » is a sequence of variables , §k is a
sequence of individual constants s.t. lg(ﬁk) = 1g(R) .
If the variables in ¢ ( free or bound ) include
® , then ¢(§i) is obtained by replacing each variable
X; in ¢ by (Qk)j , and in case R; was a bound

varieble in ¢ then the quantifiers of X; are

omitted , for j e 1g(R) .

esB8e 3, ( X, < Xg )(Qkixz) is a_, <a_ .
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1.1 Models and L - structures

We use A,B,C,D
and E as names for L - structures . The lamguage
of A, L(aA) is L . We assume the reader is
familiar with the notion of satisfaction of
formulae ¢ € L in the L - structure A . In particular,
for a theory T in L, AE T iff ARy for ye T,
Th(A) is the theory of A i.e.
{v: AF ¢y ya sentence in L(A) 1}
Sometimes we do not distinguish between A
and dom(A) , the domain of A . Thus ,for instance ,
ae€A means a € dom (A) . If A is an L - structure ,

At is the L(dom(A)) - structure (Aa)

ach

We write A =B if A 1is isomorphic to B ;

AcB if A 1is a substructure of B and A €£3B
if A 1is an elementary substructure of B . If
X c dom(C) then C | X is the structure whose
domain is the smallest subset of C extending X
closed under the n-ary functions of C for n 21
énd for atomic formulae 6(®) in L(C) whose
individual constants bélong to Const( L(C||X))

cix k= e(2) iff cC k e(2)

where @ ¢ dom(C||lX) and L(C||X) is the same as L(C)
except that individual constants whose interpretations
in C are not in dom(C||X) are omitted .
In particular if Const(L(C))Cc X then C|IX is
the substructure of C generated by X .
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Cl|L is the L - structure obtained from C by omitting
all the interpretations of symbols not occurring
in L . ( L(C) will always extend L when this

notation is wused).
If y(Vysee.sVv,) is a formula in L(C) then
¢C(v1,...,vn) is the n-ary relation over C defined

bY <CyseeesCy> € %(vl,...,vn) iff C E ylegsenescn]

1.14 Canonical Structures .

A theory T is consistent.

if for noy € L(T) do we have Tt y and Tk Ty,
it is s.t.b. ( said to be ) complete if for all
sentences y € L(T) Ty or T« ¢ .
We call a theory T a Henkin Theory iee ( if and
only if ) for all y(vyo&..,8,) € L(T) there is
a c e Const(L(T)) s.t. ( such that ) the sentence

(VY (Voly s eees@p)—> Y(CRgs---58 ) € T
It is well known that every consistent theory T
can be extended to a consistent Henkin f@ory , T'.
Where for some set of individual constanfs B |

L(T') = L(T)(E) .

We call siich a théory T' &a Henkinization of T .
If T is a consistent theory, there 1s a complete
extension , T' s.t. L(T) = L(T') and if T is a
Henkin Theory so is T'.
We call T' a H.C.C. extenfion of T if T' is s/
a complete comsistent extenfion of T which is {/
a Henkin Theory . It suffices that T be consistent

for such to exist .
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If T' is a H.C.

a conservative

sentence y ¢ L(T)

Let T be any co
we define the canoni
the L(T) structure

extension of T ,

whose

(10)

C. extention of T then T'

i.,.e. for any

T'%’¢1==§ﬂ?k v

complete
[T]

domain 1is

nsistent

cal model of T to be

the set of

is

Henkin Theory ,

closed terms in L(T) factoeed by the equivalence

relation ~ defined By ™ 7T ~ o iff Tl 7=0 .
For c e Const(T) & is the equivalence class wunder
~ containing ¢ . The relations and functions of

[T] are defined as usual , e.g.

if R(¥) ¢ L(T) then

[T] F rR[?] iff T R(7) .

It can easily be shown that [T] ET.
For any L - structure A , Th(A+) is a Henkin Theory
which is complete and consistent and

[Th(a™)]jL =~ 4 .
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CHAPTER 2

2.1 Introduction

Let L be a First Order Language and R be a
binary relation between k-structures.
We say that R has a Preservation Theoren
if we can define in some syntactically "simple"
way a set of sentences A in L s.t.
for any sentence ¢ € L
VAYB ( 4 and B L-structures Ak ¢ and AR B imply
BEg)
iff ¢ 1is equivalent to some member of A
There are many generalizations of the above given
in the literature, for example
a) We introduce a theory T in L and in the
above add the further condition " A F T and B f ™
to the L.H.S. ( left hand side ) and replace
" logically equivalent" by " equivalent under T "
in the R.H.S.
b) We obtain an Interpolation _Theorem_ for R
if under the above conditions for A,
for any sentenceS8 ¢ , 4y € L we have
2:11YAVYB (A, B L-structures A F¢ and ARB
imply B Fy )
iff there is Be A s.t. ¢ F 6 and 8 b ¢
In the &gbove case 6 1is s.t.b. an interpolant
for ¢ and ¥ .
Many relations R have an intérpolation theorem and

hence a preservation theorem by substituting ¢ for ¢
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For example if R is the relation between
L-structures given by
ARB iff there is an embedding of A into B
then letting A be ;he set of existential sentences
in L we obtain, as is well known , an interpolation

theorem for this R .

Suppose we rewrite. 2.71 by negating both sides
to obtain
4 4 3B (A, B L-structures s.t. A F¢ and AR B
and B F1y )
iff for no 6 ¢ A do we have ¢ + 6 and Iy [ 96

This reformulation makes sense 1f we
1) replace sentences ¢ ,Jy by theories T, , T, in L
2) replace A by a set of ordered pairs of
sentepces ( but still maintaining a siqilar condition
on the simplicity of A )
to obtain a property that R might possess,
Namely
2,12 For all theories T, T, in L
24 43R ( A,B L-structures s.t. AR B and AFT, and BF T, )
iff for no <6 , 6;> € A do we have T, } 6, and T, | 6

This reformulation is now suitable for considering
n-ary relations P , for by 1letting A be a set of
n-tuples of sentences in L we pbtain a meaningful

property of P in the obvious way.

It 1is a further generalization of 2.12 thab we

shall consider 1in this thesis.
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Since we have weakened the opiginal condition on A
it might be supposed that for all relations R
there 1is a A satisfying 2.12. The following

Lemma suggests otherwise.

2.15 Lemma

There exists a binary relation R s.t.
for no A does 2.12 hold.

Proof:

i

Let L be any language.
We define a binary relation R Dbetween L-structures
as follows
ARB iff A 1is finite.
Suppose a set of ordered pairs of sentences A

exists s.t. 2.12 _holds with this A .

We let T, = {3XgeeeXn { ?enA x #x )ne ol

i€En
LFJ

T, = {3x ( x= x) }
Since the L.H.S. of 2.12 cannot hold for this
choice of T, ,T, there must “be <6y , 02> € A s.t.

T, 6, and Tz} 6,
So there 1is a finite subset,say Ty' of T, s.t.
T,' }'e:l.
But clearly T} has a finite model.
It follows easily that we have a contradiction.

0

2.2 Simple Relations
Let L be any PFirst Order Language.
For simplicity we consider %binary relations 1in this
section., The following definitions can be extended

to 1include n-ary relations if required,
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A relation R Dbetwwen pairs of L-structures A, B
often asserts the existence of a finite number

of relations R ie m s.t.

i H

RL c aA™x B™ for some n;

iemn
together with certain simple conditions on the Ry
For example

i) R, is a function from A3 to B®

ii) R, is an embedding of A into B

For such relations we can define a useful

new language.

Let B be a set of 1individual constants s.t.
Bn Const(L) = ¢, for which there is a bijection

1l: Const(L)—> B
If L' is the 1language obtained from L by
omitting all +the individual constants in Const(L)
then 1 induces in the natural way a Dbijection
between the class of L-structures and the class of
L'(B) structures.
When the context permits we shall not distinquish
between L-structures and L'(B)-structures.
However, the reason for introducing the new set of
individual constants will ©be seen from the next

two definitions.

Def
We define LP12P2secesfm (1B ) o be the
language extending L by adding

‘the new individual constants B



( 15)
two new unary predicates U, U,
m new predicates R1n=L sese ,Rmn"‘ where for

1 <1 <m RLnL is 2n;-ary .

For many %binary relations R between L-structures
there are me w and N se.. 0y € w 8S.t. LPeseeesln
is &a suitable language for discussing R .

The next definition defines +the class of those

relations we shall be interested in .

2.21 Def

A bPinary relation R between L-structures
is s.t.b. (B, sD5,.04,0q)-simple ( or just n - simple )
if there 1is a theory T 1in 2 s.t.
i) For any L-structures A and B
ARB iff 3 C an L*structure s.t.
a) C ‘=T and US ’ Ug are closed wunder the
functions in L .
b) cllvf|L = A c) olluf|L'(8) =B .
For any I~ -structure D we set D, =D||U?|L and
D, = DILS|L' (B) .
ii) Vhenever C and D are IR -structures s.t.
C“:T and Uf , Ug' are closed under the functions
in L , £:Cy = Dy and g:0; = Dy
and for 1 <i<m
<a1,..o,ant,bi,...,pr>eR?LC n ((U5)Px(uS)®)y)  ier
<fai,.,..,fanfgbi,,..,gbni>eRfl"D n (V)R x(uR)y™) ,
then D |=T .
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Though the above definition is a 1little long, we
claim that it is a natural definition to consider,
indeed similar and related definitions can Dbe

found in [L] and [M], chapter 11.

Part 1) of the definition demands that if
A~A' and B ~ B' and A RB then A' RB'.
Part ii) says that what is " going on " outside of
C, and C, 1is irrelevant. Indeed we can make this
more precise by demanding that in the definition
T contains the set of sentences 3 which says
" U; 1s nonempty and closed under the functions
whose names occur in L, ( for i=12 )
U, contains the individual constants 1in L,
U , contains the individual constants in 8
and for 1 €1 <nm
B e (U )™ X (U )™) " in part i) of Def 2.21 .
Clearly Y is a theory in L, Demanding that
T contains zlihé)s the effect of +tidying up the
definition (and our picture) without altering the
concept of n-simple. In particular if an LE -structure
C is s.t. CE 3 then the dom(G) = UC for i = 1,2
If T is a theory in 12 and a binary relation
R 1is n-simple by virtue of T U 3 in Def. 2.21
then we call it TR' (there may be more than one such TR)
Conversely, if T 1is a theory in 12 and we define

a binary relation R between L-structures A, B by
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ARB iff I an I structure C s.t.

ckTy 2
C, =A
C; =B
then 1if R 1is n-simple and some T, = T then we

R
shall call R RT.

Thus for n -simple relations we have defined theories
TR s and for certain theories T we have defined

a binarg relation Rp which 1is p-simple.

Infact one can give a syntactic condition on T

for which RT is defined, see 3.4 .

For such T there 1is clearly a TR S.te
T

The relation of < is not n -simple for any n
but the relation of embedding is; as 1s disomorphism,
homomorphism, end-extension (when suitably defined) and

many other relations.

For the rest of this section let R be a

fixegif%?gégy relation and choose some Tp.

Def

We write A,Ry,e..,Rp,B fs T, if

for some Lg—structure C

CFry Uz
Ci = A
Cg =

for 1 €£1i<m
RL = RLnLC
It then follows from Def.2.21 that A RB
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Def
e 88y B ;Riy...5Rn,Te 1is an n -sequence (in L)
if for some set of indivual constants B
T, ,T are thepries in L(R)
and for 1 < isnm
R c Const(L(T&))n& X Const(L(T= )%
Def
If Ty4,R15.0.5Rn,T2 1s an n-sequence we
write Ti,Ri,...,B6,T f b Ty  iff
T+ and Tz are H.C.C. theories s.t.
(e 4R, ..o oRE, (B2 )L F Ty
where for 1 < i <nm

—

. ar b iff aRr b .

If y 1is an pn-sequence T1,R1,...,Rm,T2

we write Tiy for T4 R1y for R4+ and 80 on,

Def
If y and b are pn-sequences we write
y c b irr 7y c T i=1,2

5
and R{ € Ri 4 €i< n.

2,22 Def

We say an n-sequence Y 1s an approximation

to T, if there is an p-sequence O s,t.

R

y c 6 and GFTR
If y is an approximation to TR and T 1is another
possible choice of T then ¥ may not be an

R
approximation to T, For consider the (1)-simple

.2 n
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relation P for which A PB 1iff A , B are
L-structures . A suitable TP is

T, = | 3v, €U, 3v, €Uy (v, P vy )}
but so also 1is

T, = | 7 (3vg €U, 3v, €Uy (vo Pt vy ))}
Let y be a=a, {<a,b>},b=b .

Then y 1is an approximation to T, but not T; .

This problem does not arise , however , for those
n-sequences whose relationsv are empty. More precisely
if y 1is an n-sequence of the form Ti;Pseeces?d T2
and G and G, are two possible choices for TR
then y 1is an approximation to G iff vy 1is an
approximation to G, . For if y 1is an approximation
to G, then there are A kT, B FT, and suitable
RyseeesRy s.t.

AsRyyevesRp sB F Gy
So ARB
Hence there 1is C F Gy U 2 s.t.

Cs = A and C; = B ,

so 4,(R™C,...,@MC°,8 ke,
and so y is an approximation to G

Symmetry gives us our result.

2.3 n - sets
We suppose that 2 has the variables of the
form Vjikp for

0 £ J <1 sy 0 si<m , 1<k €n; vhen 1<1 <m
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For variables of the form vq;k, we write Xk,
and refer to them as x-variables,
be variables of the form v, we write Yigkp
and refer to them as y-variables.,
® with or without subscripts denotes a sequence
of x-variables., Similarly for ¥ .
We say X correspénds to ¥ if they are of the
same length and for J < 1g(R) if x; = Voikp then
Y; = Viikp -
If we use 3,¥ (with the _same. subscripts) in the
same context then they will correspond.
We say ® 1is a complete sequence 1if whenever

X, tp € X where 1 <i<m and 1 <1t <y

then e X for 1 <8 < p

Yigp

We say R is similar to R, if

1g(®) = 1g(®)

and for some funetion f;{1,...,m} X w:«—a )

for j < lg(R) , if the 3P

element of R 1s X .,

The above definitions enable us to simplify

later definitions.

If ¢, (R) , ¢2(R,) are formulae in L then we write
¢y (R) ~go(R,) if R is similar to R, and
¢ () 1is obtained from ¢,(R) by (possibly)

changing bound variables, in such a way that no

free variable becomes bound and no bound variable
occurs among the R, .For further information on the
notions involved here see [B.S] page 53.
A similar definitior s assumed for formulae containing

y-variables free, rather than x-variables.
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give now an important definition of a class of

ordered pairs which represents the possible choices of

those A occurring in 2.12 . The Justification for

this will be seen in Theorem 2.42 below.

2.31 Def

A set of ordered pairs of formulae (in L) A
is called an p-set (in L) if

i) If <¢,(?), ¢5(F,)s € A where ¥ ,¥, are

precisely the free variables occurring in ¢;, ¢

respectively then ¥ are x-variables and v, arey-variables

and

and

By

¥V corresponds to ¥,
ii) If <¢,(R)s ¢o(¥)> € A then X 1is complete
if Xxy4p € then 1 <1 < m.

i) ® corresponds to ¥ , though this also follows

from our convention.

Ve

1ii) | <t,f> 5 < £,t> )} < A
iv) If <¢y s> € A and <6,,60,> € A then

<P N6y P2 UGy > €A and <¢,UB; ;¢53N0g>e A

If <¢, (R) 5 ¢5(¥)> € A and o6,(R) , 6,(F¥,) are s.t.
¢, () ~ 6,(%,) and do (¥) ~ 6, (¥,) then
<0, (Ry) , 6,(F,) > € 4 .

( By our convention i) still holds ).

Irf
The
a)

is

such 1is the case we write <¢,(R),¢s(F)>~<06(R,),04F)>
following facts are easily proved.
The intersection of a set of n -sets (in L)

an n _set (in L).
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b) Any set of pairs of formulae satisfying i), ii)

of the definition can be extended to a unique
smallest n-set.
c) { <t,f>, <f,t> } 1is considered to be an n-set

for any n.

2.4 Goodness

We now 1link n-sets e¢ven more closely with 2.12.
Def
iIf y 1is an n-sequence and X a sequence
of x-variables, then we say
# and ¥ are y consistent for X if
i) @ e Const(L(TY)) se.t. 1g(@) = lg(R)

ii) B € Const(L(TZ)) s.t. 1lg(®) = 1g(2)
iii) whenever vji,...,vjnL contained in R isof the
form Xtip"ﬂ"xintp ~where 1 <1 <m then

< aji,...’ajni‘,bji y.'o,bjni'> € R’l'y

2.41 Def
If A is an n-set , an n-sequence vy 1is s.t.b.
A good if whenever <¢,(R),¢,(?)> € A and
2 and B are <y consistent for X
we do not have
™ }¢,2 and  T§ } g8 .
If vy is nbt L good we say vy is A bad.

The following Theorem collects up some of the

facts following from the definitions .
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2.42 Theorem

Let A be any p-set (in L)
a) If y and & are n-sequences s.t. 1y c & then
if o6 1is A good, y 1is A good »
b) If the pn-sequence y = T,»R,,.-»R T, is A good
then there 1is an extension of vy of the form

2

2 2 2
T,sRys5...3R,, T, which is A good, where T, and T,

are H.C.C. theories in some L(B) .

( see Chapter 1 for the definition of H.C.C)

c) If zyaga<u is a sequence of p-sequences  s.t.
Yo C yﬁ for oa<pB <u and Yo, is A good a<u
then

a<Hya =agu
Proof
Part a) follows from the definition 2.1
Part Db); Since 1y is A good TZ ,Tg are
both consistent ( See 2.31 1iii))
- Y my . o 0
We can Henkinize T ,T% to obtain T, ,T, say.

o (o]
It can easily be checked that T,,Ryj,...3Rp,T; 1is

A good , by the conservative property of Henkinization.

We can complete Ti and TZ resp. still remaining
good by 2.31 iv)
For suppose Ti,Ri,...,Rm,T: is A good and for
some sentence ¢ € I.ﬂi)
£ s e f 1
I claim that
Yi = ToU {¢},RyseeerRy,Ty is A good  or

i 9 1
T, U T¢isR 5e0.5Ry,T, 1is A good .

Ya
For if not there will be <¢,(R),¢,(F)> € 4 and

<oy (,),6,(F,)> € A and constants
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2,8 vy, consistent for X and

¢ ,d 1y, consistent for R, s.t.
T U gl b g2 wna 15 Fogm
. U kel Fe,e ana T F e

and hence

T, }, $,2 U 6,2  and T, | ¢.B 2 052
w.l.o.g. we may suppose XN = ¢
it then follows easily that

Ti,Rl,,..,Rm,T; is not A good which contradicts
our supposition, hence the eclu’n follows .
Repreted application of the above proceedure for
both Ti and T; ensures our result.

Part c¢) again follows from the definition 2.41

(m]

Remark
I was tempted to say that the n-simple
binary relation R was Syntactically Characterizable

if there was a T, and an n-sct ) defined in a

hzd
syntactically simple way s.t. for any n-sequence vy
2.43 v is an approximation to Tp iff y is A good.

However, in the above , the word "simple ' is very
loose. That care must be exercisced so as not to

obtsin a trivial result is shown by the following :

2 o LI‘LI_' L.-e.m
If R is a (41)-simple binary relation, for
any T there is a (1)-sét iy s.t. 2.43 holds.

Proof
Let Ay be the set of pairs of  formulae
<ps (R)592(F)> (in L) where
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. U U
Tob V2eUN €U, ((g,2) 10 an 2R, —> (=18, (3))2)
where R corresponds to ¥y ( i.e. our convention holds
even for bound variables in the same context )

and each variable in ® 1is of the form x,,, for Few

P

With these restrictions A, satisfies 2.31 i3 ii)
and so can be extended to a unique smallest (1)-set
A say. That 2.43 holds for this A follows by a
simple compactness argument and definition 2.31 .
o

Fortunately it 1s possible to give a very precise

" simple " . Indeed the next section

definition of
is devoted to this., It will be seen later that

the definition is a nice extension of the usual

vague ideas of ‘simple " .

2.5 Operators

Let IL be the 1language obtainecd from
L by the addition of a set { X, : new } of
propositional variables. We are not interested in

these variables other than.. as markers . They behave

just 1like atomic formulae in the formation of formulse

2.51 Def

An s - operator in L is an ordered s-tuple

of formulae in IL. <®i,...,¢8>

We shall ©be interested only 1in the cases when s = 1,2

2.52 Def
If s=1,2 and A is a set of s-tuples,
where in case s =2 A is an n-set for some n and

K is a set of s - operators in L then K[aA]

* - : H ) o
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is defined to be the 1least set A' of s-tuples of
formulee in L s.t.
i) A c A
ii) If <¢1(Xi,...,Xp),®S(X1,..n,Xp)> e K where
for 1 < j < s Xi,...,Xb include all the propositional
variables in ¢ and if «<g¢f g¢h>eA' for 1 <i <p
then <@1(¢§,.”,¢g),@s(¢;,,.,,,¢08)> e A'
iii) If <¢1,¢S> € A" and <py,p >~ <0;50>
( where <0, ,6.,> is .an s—tuple) then <6,,6,> € A'

For the notion of ~ in case s =1, 2 * see 2.31.

As an example) the set of existential formulae ( in L~

can be. described as
{ <3AvX > ,< XN X> 5, < XU Xp> $[2Z]
where Z is the se¢t of atomic and negapéd atomic
formulae in L .
In case s = 1 this definition extends notions
introduced by Keisler in | K, ] |
In cace & = 2 this will enable us to describe new
n-sets from certain theories and old p-sets. As ‘the

following suggests.

2.53% Ii_= Sentencezs
Suppose L is our fixed 1language

and L'(B) is as defined in 2.2 ..Assume a IR has
been chosen for some n .We assume in what follows
all the variables are in I~ ( See 2.3)
A formula of type 1 is a formula of form

(e(i))Ui, where ©6(R) ¢ L
A formula of type 2 ié a formula of form

(6(9))%  where -~ 6(3) € L'(B)
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Just as we make the convention that if X and ¥
cccur in the same context they correspond , so we
make the convention that if the +type 1 formula

(e(x))Ui and the type 2 formula (e(y))U2 occur
in the same context , then o6(y) is obtained from

6(®) by replacing each individual constant a in ()
by 1(a) (defined in 2.2 ) and replacing . by the
corresponding sequence ¥ .
A formula of type 3 1is any finite conjunction of

fOI‘m‘ulae of the fOI‘m R.{li' (XLlp’oco’XLan’yLip,..n,yLm_p)
for 1< i <m . Thus if ¢ (*,¥) is a formula: of

type 3 then R corresponds to J and R 1is complete.

Let W be the set of formulae of the form
<Y (3 €U, T, €U, (6,946, 20y )
t 1 2 1 2 3
where R, ,¥ occur 1in @, for k ¢t and we assume

i 2 3
through out that ekUi is a formula of type 1
1

ekU2 is a formula of +type 2 and 6 is a formula
3

2
of type 3.
Let 8, be the set of 1- operators of the form
a) or b) via:
- U, U
a) V (3x, eU,3y, €Uy ( 6 *n 6 2nB N Xx ))
kK€t 1 2 1 2 3
where if a variable in X ,¥ of form Vji,
for i =>1 occurs , then 1t occurs in 6
3
Note that a variable of form V;,qp cannot occur in
a formula of type 3 .
U U
where 61U1 is a formula of type 1 and
62U2 is a formula of type 2 .
Let S, be the set of 1 - operators of the form

Y Ry €U, ¥ P2eU0, (6,7 X, ) where 6, is of type 3 .
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A 1 -sentence (in L) is a sentence in
Sz [s,[W]] & s.t. whenever a variable of form
Viikp Where 1 <1 <m occurs 1in such a sentence
then it occurs in a sub-formula of type 3 ;

where sub-formulae of form tui ,tU2 may be omitted,
and if ® is of the form V=R, eU,V ¥,eU, (65— @)

then every variable in 605 occurs free 1in ® .
2.55 Remark

If T 1is any set of II-sentences in LE
then RT is defined , as can be seen from the fact
that all quantifiers are bounded . For the definition

of RT see 2.21 .In suci a case we write T for TR
T

As an example we describe the relation of embedding
between L-structures as a (1)-simple relation defined

by
V X111€U0y 3y444€0; (X111R%y111)_

¥V %eU,Y¥eU, (AA RRET —>(ex"t—369%2))  where
A XRYY is a formula of type 3 and 6(R) is

an atomic or negated atomic formula in L .

Ofcourse each of +the above sentences arec II -sentences
in L(1) if we allow ourselves to omit U1 and tU2
from +the formulae, which we do.

It is not at all clear &as to wRy Wwe have been
so painstakingly precise with the variables. Part of
the r.ason is so that from II -sentences we can

define 2- operators with which we define n-sets which

in turn have a good chance of satisfying 2.59 below.

2.56 The OP Function

Let & be a formula in Sy[S,[W]]:
we define OP(®) to be a 2 - operator by induction on

the complexity of @ .
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Case 1 ¢ is of - the form
YR, %,eU, V3,7,¢U,(6;,—20)
where ©® € S,[{§[W]] 6g5is a formula of type 3
and we suppose 3%,,¥, occur in 6; and R,, ¥, do not.
Then OP, (&) = 3%, (0P, (®))
OP, (@) = 3¥,(0P,(@))
OP(®) = <OP, §,0P, &>

i}

Case 2 ® 1is of the form
¥ T €U, Tk € U, (631 n ekgz n 8 N & )
where for K et @ e S, [W]
Then OP, (@) =kétvxki(eki-=>opi(@k))
OP, () =thvyk2(6k2—-~> OP; (& ))
OP(®) = <OP, (&), OP,(®)>
Case 3 ® is of the form
Y 2 eU, Ve Ua( ef-i n er9——) ®@ )
where ® € S, [W]
OP, (&) = 3%, ( 6,n OP,(@))
0Pz (¢) =3 y.(6; n OP;(@))
OP(®) = <OP, (%), 0P, (@) >
Case _4 ¢ is of the form
VI <UAP € U (8 67N 65 )
0P, (2) = 1Y% (64— %)
OP, (&) Kéy?kg(ez %k )
OP (¢) = <0P, (&) 0P(&)>

If formulae of type 1 or 2 of form tUi,tU9 occur
or have been omitted in ® , then OP,® and OP,& omit
the formulae and the 1logical connective immediately
following. Thus for instance the 2 - operators obtained

from the sentences in Remark 2.55 become

<3x.1.11(xi)3vy111(xi) > and <6 X n X, , O 92X, >
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As a more complicated example let ¢ be the [-sentence

in L(1)

4 x111€U1VY111€U2(3111R%3'11{1J“>(VxiizeUx( (x111<x1.12)U1""‘>
—> 11260z ( (¥111<¥112) 2 N Xy12R1V412)))

then OP(®) is

< 3Xy452(X344<%445 0 X), VY112(Y111<¥§.13 -2X) >

A point to note is that if ¢ 1is any II -sentence
then the free individual variables in OP,®
correspond to the free individual variables in

OP,(®) and each furms a complete sequence .

If T is a set of 0 - sentences in L2 then
"OP(T) = | OP(®) :d € T }

2.57 Lemma
If T 1is a set of I-sentences in L2 and

A is an n-set then
OP(T) U { <Xyn X55% U Xp >,<Xy U Xp,y Xy n Xp> }[4]
is also an n-set.

We write OP(T)[[A]] for the above set.

Proof
We sketch the proof,.

iii) of Def 2.31 follows since A is an n -set
iv) and v) of def 2.31 follow trivially from

Def 2.52 .
i) and ii) follow from the following facts .

From Def 2.54 every variable of the form v;;.,
for 1 €i<m occurs in a formula of type 3 .
Since we are dealing with sentences in 2,54 it
follows from the definition of formulae of type 3

that the varisbles of the form Vo kp for 1 < i <m
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form a complete sequence as do the variables of

form V4ikp » Which clearly correspond . In view of

the point made prior to the 1lemms the =x-variables
and y-variables which are quantified in OP,;(@) and
OPZ(@) resp. form complete and corresponding
sequences, Thus it follows that if OP(®) is applied

to pairs of formulae satisfying i) ,ii) of 2.31

then so does the resulting pair of formulae.

Induction will give the result.

2.58 SYNTACTIC CHARACTERIZATIONS DEF.

We say that an pn- simple binary relation R
between L -structures is Syntactically Characterizable
( written S.C. ) if there is =& T, which 1is a
set of II — sentences in LE s.t. for any n-sequence y

2,59 y 1is an sapproximation to TR iff
y is OP(TR)[[E< t,f>,<Fyt> §]] good.
If T is a s8set of II - sentences in I2 then we

write [[ op(T)]] for the n -set OP(T)[[{<t,f>,<f,t>}]]

The reader may care to return to section 2.1 and
the end of section 2.4 to compare the s&bove with
the notions developed there .

As an example, if R 1is the relation of embedding
between L-structures TR is chosen as in 2.55
then [[OP(TR)]] becomes the set of pairs of formulae

<6, 69> where 6,2 is existential and 6, is

the negation normal form of 16,% ( with suitable

conditions on the variables ) .
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2.5 10 Remark

In order to show that every approximation
to Tp is [[OPT,]] good it suffices to show that
every p-seqnence y s.t. y}:TR is [[OPTR]} good
by Theorem 2.42 a) .

If A is an n -set satisfying 2.59 for some TR
then A is called a notion of goodness for R .
The main problem for the rest of Chapter 2 and
Chapter 3 is t o characterize a large class of
n —-simple binary relations which are 8.C.
In the wusual proofs of Interpolation Theorems there
is in -proVing the corresponding assertions to 2.59
an "easy" direction and a "hard" direction . This remains

true in our case . The next section 1is devoted to

]
proving a result about the ’easy“ direcgsion.

2 .6 Theorem

If T is a s8et of II- sentences , A is an
n -set and y 1isaT approximation which is A good

theny is  OP(T) [A]] good .

Proof

For an understanding of" T approximation "

see Remark 2.55:
It suffices to show that if y§T and

y is A good then y is OP(T)[[A]] good .

Suppose y is not OP(T)[lA]] good , then there will

be <612 ;eay> ¢ OP(T)[[A]] and constants ® , ¥ s.t.
g2 and B are y consistent for X where

™ | e,z and Y Foe® .

It is easy to see that we can assume that

<6, ,6,9> is of the form :



(33 )

<OPy &(XyseeeXo)[@yyneeesps]sOPL0(XyseeesXp)[Bypseresdpel>
for some @ €T where «<g;, ¢ o> OP(T)[[al]
for 1< i <p . We shall show that for some i,1 < i < p,
constants ¢ ,@ y consistant for some W can be found
S.t. TY !- ¢4 (2:T) and  TY | ¢ ,(B2)
where <@y s¢ > 1is of the form <«g, (2,2, )s ¢ 2(F¥y ) >
Thus reducing the complexity. of <6,565>
Having proved this it follows easily that y 1s
not A good contradicting the choi® of vy .
The method we employ is to show that infact

we can reduce the complexity of &,

We must in general deal with an arbitrary formula
in S,[s,(W]] (which will be a sub-formula of & )
Suppose For our induction hypothesis we have
i) o (,¥,) is a formula in S,(s,[w]]
ii) vy (z (2 B) (this makes sense as (2 B) is
a sentence and so a Ty for some R )
and @B are vy consistent for those variables
in %, of form vV ik, for 1< i <m which do
not occur in a sub-formula of Q of +type 3.
iii) T |} or, a(F.)(@ 2 )
iv) 1) & 0P, a(Fe)(® By,)
where we assume the free variables of OP,Qare R, X;
and the free variables of OP,Q are ¥, ¥, and
22, BT

y
8 4
in %, ®, of form vV kp for 1 <1 < B which do

are 7y consistant for those variables

not occur free in a sub-formula of f of type 3

Clearly i) ii) iii) iv) hold for & in place of Q.

We now show how to reduce 2 by induction .
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Case 1
Suppose N 1is of fo~m
anxs eU,V3,7, €U, (6, @) where @ is in g,[s,[W]]
®R; ¥, occur in the formula of type 3 04
and X, Vg do not .
Then by 1iii) and 1iv)
Y b3, (0P, (@) [ 3, 12 2 ]
T} F 39, (0P, (0) [T 1[® B, ]
Hence we can find axs ¢ Const(TY) and ﬁuee Const(TY)

R A
T b op, (o) [7, Dy 2 ]

TY | 0P, (@) [T 2] [m:ryébys] .

Since 1l is a subformula of & a [-sentence ,
the variables 2,7, of form Vg for 1 <1 <m
occur free in a subformula of ® of type 3,
So iii) div) hold for @ in place of 0 .

It is easy to see that 1) ii) hold for @® 1in

place of Q , since vy ]‘ o[z, =, vB, B, ]
3 5 4 6

Case 2
Suppose  is of +the form
¥ T €U TP €Up( 6t n 6% n 6 n6)
t 1 2 1 2 3
where @, € S,[W] for Key
Then by assumption
a Ty ®. (6, — 0P, (®))[ ¢ 41[2]
) 1)’kétv ki( Ki 1( ))[¢L1][
y - ——
p)  TEF AW Tk (6, > OP, (@)) [¢1z](P]
and since 1ii) holds , for some g € g
yE 3 0,390 cU( Ot 0 602 0 Gy 0 €)(e0]
So we may chose 3, ( By )e Const(TY)  (TY)
m m
1 2

s.t.

U U
y E (n * N 6% N BN @m)[a*a‘xmﬁagm]
1 2
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As in Case 1 those wvariasbles in X%, b/ which
do not occur in ems, occur free in 1somez subformula of
® of type 3 . So by induction hypothesis 1ii)
holds for ® , as does i) .
It follows from a) b) that iii) iv) hold ,
since T [ Op, (®)[7¢'{1][vasrxm] and
T4 b 0P, (@) (g, lomy 1 .

Gase 3
Suppose 1 1is of the form
\/ 2, €U, v ¥2¢€U; (elUin GQUB——)®) where ® €S, [W] ,

Y2y W (e, n op, (0)) 7, I[2]
b) TY} 3y,(6, n OP,(@))[F1[B] .
So we may choose ¥y By )« Const(TY)  (T¥)

S.t, ___
1Y b (e, n 0P, (0)) [, Iz ]

Tt (8, n 0P, (0)) (%, 10y, ]

SO
y ol w3y ]

and since the variables R, ¥, occur in a subformula

of ® of type 3, i) ii) iii) iv) clearly hold .

Case L4
Suppose Q 1is of the form
V 3% €U, 39 €Up (6020 602 n 6 )
k€t 4 2 1 2 )

then
a) TZ }‘kétvxki(eki-—) %1)[3]

b) Tzkkétvykz(ekz_—ewz)[v]

———

where ¢, ,€ ¢4
Again since ii) holds , for some Mgt

y F 3», eu, 3y, eUQ(e,“Ui n emU2 n 6y )
i 2 1 2 3
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So we may choose By ) e const(TY)  (T¥)
m m

1 2
s.t.
U 8] e

= On * N 6 2 N B #a, bB
y F o (en, m n, ) (2 1 ”"‘1
so T bgaalmy 1 and T b ogenlomy 1

. My "2

Now the variables corresponding to g, B, are

m
m 2

x-variables y-variables resp. of the form <V ikp

where 1< i <m . They form a complete corresponding

sequence , as can be seen from the fact that @

is a @I -sentence and the reduction in the proof.
It can also be seen from the proof that

gy, and TB, are y consistent for the variables

m m

1 2 . X
corresponding to @&, . It thus follows by induction
m

1
that our result is proved.
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CHAPTER 3
3.1
In this chapter we give a model theoretic
description of those n-simple relations which we
can show have a 8.C. ( see 2.58 ) .
First we prove some theorems .
Def
In section 2.53 we defined S, as a set of
(1)- operators of form a) and b). Let S,b be
the set of form ©b).
A I, -sentence is a [I-sentence in S,[S,b[W] .
For example:-
V'X111€U1Vy1115U2(X11131y111_ﬁ¥x11zeui(6(X111X112)U1“9

5]
-2 3Y,426U0,(X 4R V342 N O(Y111Y112) 2)))

is a I,-sentence. Externally it is an V 3 sentence,

as the 2 in" [," is to suggest, though 1t can

be very complex when one considers 6 .

3.11 Theorem

Let A be al n-set and & Dbe 2
I,-sentence . If y 1is an p-sequence which 1is
or(e)[[a]l good, then 3 & s.t.
i)  yco
ii) 6 F @
iii) & is OP(@)[[a]] gooad .
Proof

I) and ii) say y 1is an approximation to

which by Remark 2.55 1is meaningful .
Since @ is a Il;—-sentence we may suppose W.l.o.g.

that ¢ 1is of the form :-

@
’
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ineU.iv yieUz(eaxiyf'"leaEUi V' 3.eU,( 6?"” 62U2 -
—-—)k‘eftﬂkieqiyykzwz(ek?i n Gkgz n @ka))} .

This has the effect of tidying wup our proof

without significantly altering OP(@)[[a]] .

Claim

Suppose B is an g-scqucnce Wwhich is
oP(e)[[al] good, s.t. for some #, Z, ¢ Const(Tf)
1 3
and By, By « Const(Tg) s
1 &

2 and B, are B consistent for X,
1 1 : '

and B8 8
™ | e, (axiaxa) and  T% ]’62(1'3’“1'6“4) .
Then choosing , for j ey, hnew distinct constants

K
Cx sd,; » we have for some ey B

1 2
is OP(®)[[al] good ; where

kK . 3
poas TP Ul o B % )L @D E) T Y
U {6, (B, By 2
i Ké Yy 9, gk:; ’
where for 1< i <m (Rf)' is formed from R? by
adding the subset of (Z; U €xk YHx (v, U ahk )R
3 T4 i

1 2
consisting of those sequences of constants for

which the corresponding variables are of the form

XLip,o-.,XLne,ytip"oo.,yLan fOI‘ some p € W

Suppose not , there will be , for yey
. <x‘§3?ka,x',§,yké> e oP(a)[[al] s.t.
f oo (3 % ) n (6 (B B 2 ) —=xi(Tr )
™ ez(b’y;ﬁ‘g*) n (8 (By Bu By, 1)-—’)x'5(g_uks )
where rik and ggk are ¢ ®consistent for 2%3 s

3 4
we thus have

Tf }'Bza(ei(gxi)nkétv ?ki(ekggxi)"’)Xg(ix‘(a_(xkiuxaa))
TE "‘ 3374_(62 (ﬁyi)nkétv ykz(ekéﬁui)'—) X‘é(guk*-(ukzuuﬁ))
which shows that g8 is not OP(@)[[a]] "good .

Contradiction, so c¢laim holds . Claim g
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We now proceed as follows.
Suppose g is OP(®)[[A]] good , we well-order those
sequences of constants 2y ‘ﬁg 2y Bg which

1 1 3 4
satisfy the conditions of the above claim , as
t, ‘to<py for some ordinal p .
We define a sequence ﬁa tosu of n-sequences
s.t. a) BOL C ﬂy o<y < U
b) B, is oP(@)[[A]] good for o<y

by
i) Bo =B

ii) If B, 1is defined, then p , 1s obtained
from g using t_ ,as p< was obtained from g in
the claim.

iii) If o is a 1limit ordinal and B, is

defined for 1y < a then g > Uﬁy (see 2.L2 (c) for def.)

“a

It is easy to see that a) and b) hold .

( For iii) wuse 2.42 (e¢) )

By Theorem 2.42 (b) we can extend ﬁ# to pB*

which is OP(@)[[Aa]] good, where Tf* and Tg* are
H.C.C. theories . Thus we have defined an operation

from g to p* .

We now define a denumerable segquence vy, N € w
by vo = ¥
Yng = (vn)*
Let 6 =_U Yn
new
1) ycd : The operation B to B¢ has the

property that B c g *
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2) & F ® : The whole point of our claim and
constructicn was to guarantee that
this held . The details are left to
the reader .
3) 6 is OP(®)[[a]] gocd : Each y, for new is
orP(e)[[a]] good , so Dby Theorem 2.42 (c)
the result follows .
a
Def
Suppose iya}a<p is a sequence of p-sequences
s.t. for some Ty of an n-simple relation R,
a) Yo € Vg a < B <y
b) ya"'TR a < u
Then we say iya}a<p is a Tp - sequence .
Notice that there is a natural elementary embedding
of [T,Ya] into EQ#TLyﬁ] for a<u i=1,2
Def

We say R 1is preserved in TR seguences if

the union of every TR sequence 1is a model of TR.

3,12 Theorem

let RT be

( which is

Then i) R,
ii) Rp 1
iii) R

T

Le

t T be a set of Ill;-sentences ( in 2 ):

the relation defined by T.

defined , see Remark 2.55 )

is
s

is

n - simple
preserved in T sequences ( T = Ty )

T
S.C. with a notion of goodness [[0P(T)]].
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i) This is a restatement of Remark 2.55 .
ii} This 1is 1left to the reader .

( See the definition of I,-sentences .)

1ii)

Let y be a g—séquéhce which is [[0oP(T)]] good.
We show that y 1s an approximation to T .

Well-order T as i?#}H<K

OP@#)[ [[op(T)]] ] = [[op(T)]]
Suppose B is OP(?M)[ [[or(T)]] ] good .
By Theorem 3.11 we can extend g to ﬁ“ Se.t.

#E 2,
A  is [[op(T)]] good .

For u <«

We define yp for pu < k s.t.

a) v, © Y, for L <V <K
b) y/.L+1 §= ® /*L < K
c) Y, is [|oP(T)]] good for p < K .
by
Yo =Y
©
Yurt = (V)
for 1limit 4
Let yE =#<% yﬂ

So y* is [[0P(T)]] good by Theorem 2.42 (¢) .

We now define i"y}new by
oY =V

Then set

8 = Ypv
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Clearly 6« y and is [[0P(T)]] good .
We claim that & FT.
It can easily be seen that T? and TS are
H.C.C. theories .
For each oy <«
is the

o where

=n9w n (y,u+1 ) n (V#_,_»] )

p+1th element 1in the chain wused to construct ,y.

This 1is a @M- sequence , and since @u is a
Il,-sentence we have by 1ii) of this theorenm
that o k @u . Hence § % T so y 1s an approximation

to T.

Suppose now that y is an approximation to Te
We show that y is [[0P(T)]] good .
It suffices to show that if y F T then 1y is

[[op(T)]] good .

By | OP(@”) ;#<r[[A]] we mean the union of
0p(a, )[[0P(s, )([...[[0P(, )[41] 1] ...]]

1
for all finite subsets loyse..sag} Of 75 where

ai >a2> o0 >O(5 L]

y F ¢, and is { <t,f> , <f,t> ! good .
By Theorem 2.6 y is  OP(&)[[{ <t,f>,<f,t> }]1]good.

If 7 <k and we assume y 1is

{ OP(Q#) 3#<W[[ | <t,f>,<Ff,t> }]lgood , then since
y k gu ,again by Theorem 2.6 , y is

tor(e) b [0 T <tyf>,efyts } } good .

7S
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It follows by transfinite induction that vy is

{ OP(¢ﬁ) I#<K[[ { <f,t>,<t,f> } 1] good.

Iterating with | OP((I)u)- ;um[[ f «Potss<t,f> } ]] in
place of | <t,f5,<f,t> } , we find that 1y is

' op .

Lop(a) 1, [0 lor(e) |, [[ 1 <t,t5ct,05 1111 good.
Repeating this denumerably many times gives our

result .

3.2

Theorem 3.12 1is syntactic in nature . It allows
us to find a great many n-simple relations which
are 8S.C. . We now prove that if R 1is Dn-simple
and preserved in TR - sequences for some TR then
R is 8.C. .
By Théorem 3.12 it suffices to show that if R
is n-simple and preserved in TR - sequences for some
T then we can find a TR*) say , which 1is a set
of I, -sentences .

As might be expected we rely heavily on our

previous results . We also adapt a type of proof

developed by Keisler in [ K,] Theorem 6 .
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. 27
We need to consider two binary relations ,
N, and N, between IF - structures, ( rather than

L - structures) . They will be (1,1) - simple relations.

To avoid confusion we suppose that the unary

predicates added to =

to obtain (LQ)(1’1) are
V, and V, , and the added relation predicates

are Fi and F} .

N, is the (1,1) - simple relation asserting
the existence of two relations F, and Fy s.t.
1) F, 1is functional from U to U-
ii) F, 1is functional from Ug to UE
iii) P, ‘"preserves " L formulaec from US to U?
IV) F, ‘'preserves " L'(B) rformulac from Ug to Ug
v) for 1 <ism if
F, relates @ to 2 ( pointwise )
F, relates B to @ ( pointwise )
and CF #RD;B then DF TR1, T

3,22
If for an IF - structure C F 3 ( see 2.21 )

we define an pn - sequence

ve = T(C,* ), (R1)C, ..., (RR)7,m0(C.")
then for C, D [ 3

CN, D iff Yo is included in some ‘'copy" of Yqe
{ By "cop¥ " we mean , obtained from vy4 by

changing individual constants . )
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As is to be expected N, is (1,1) - simple.
In fact a suitable ’l‘Ni is the following set
of sentences in (LQ)(151) .
¥ Xic14€Vy (U (ini)vi"’Eykiievz(Uk(-qu)va N X1 FEYa4)) s
V %15Vl Tkap Vo (M Xy 5P25 15 -2 (% (x5 N2 o
- @5 Faz)T2))
where k = 1,2 , and if k = 1 ¢ €L
k

i

2 ¢ eL'(B)
Our conventions stated in 2.53 hold for ¢
in (12)(11)
*¥ By Xk1p W€ mean a sequence of wvariables

of form xkipi"°"xkipb .

For each 1 <i <m

iniﬁ X21'p'€V1V Y115 yzi'ﬁevz(M X11p5F1Y115 NAA X5, 5F385245 —
= ( (KaapRi " Kasp) ' * = (F1apR1 Wa1p) 2 )

It 1is easy to see that each of the above sentences
is a II,- sentence and so N, is S.C. .
We have that [[OP(TNA)]] is -
< 3x,,, (U (x44) NXy) 5 V111U (¥314) 9 %) >
< By (Up(Xpgq) N X)) 5 V 9214 (Up(¥204) 2 X)) >
< ¢U1(X115‘) n X o ¢U1(y11‘5) 2% >
< ¢U2(X215) nxX ¢U2(y215)—%>xi >
< XiiFR?LX21§ n X yiiﬁRgLy21§~.>X1 >
for 1 <i ¢m with the relevant conditions

on ¢ } [[{<tsfo,<fyts 111 .

3,23
It is not difficult to see that [[OP(TNi)]]

is the set of those pairs of formulae of the

form < 8y 5 Den.f. (76,)> where
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01 € l< 3x,,,€U,(X)> ,< 3xy,, €U, (X [[2]]
where 2Z 1is the set of all formulae of the form
¢U1(x115) for g¢el ¢U2(x215) for ge L'(B)

and for 1 ¢ i gn xiiERngz‘E .
Where n.n.f.(y) is the negation normal form of v,

and in this case, we make suitable changes of

)

the constants and the variables . ( e.g. X etc. )

1107 Yi1p

We now doscribe N, , the reason for considering
this relation will %be seen shortly . N, 1is the
(1, 1)- simple binary relation between LE - structures
C and D asserting the existence of two relations
¥, and F, s.t.
i) P, is functional from U’ to UD
ii) ¥, 1is functional from Ug to UE.
If F, relates & and © ( pointwise ) and
F, relates B and @ ( poimtwise ) then ;
iii) Por 1 <i < m
If Ck @R ‘b then D kTR ‘A
and if DF ©R '@ then C | 2R ‘B .
iv) If <8, (Xy15%a13) s 6(Vi15Y215)> € [[OP(TN;)]]
and C F 6,(ZB) then
D b 6,(22)  ( equivalently D E 7o, (ca) )

Again N, is (1,1)-simple , it is easily shown that
there is a set of I,- sentences ( in (LE)(1’1)

| TNb describing N, .
We find that [[OP(TNg]] can be described as the
set of all pairs of formulae of the form

<Yy s Yo > where ¢ = n.n.f.(1 yy) ( again with
suitable changes of the variables and constants )

- ate ’ ° )
2
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and Yy 1is any formula in
t< 3%, €U0 (X )>  <3x,,,eU,(X,)> [ cax, >3[v] 1]
where V consists pf all formulae 6 where
for some < 6, 6,> € [[OP(TNi)]]
® = n.n.f.(76,) (i.e. ® is g, with
sultable changes of the variables and individual
constants .)

We leave the details to the reader .

3.24  Remark

In both N, and N, the relations F, and
F, are 1 to 1 functional from US to U? and
Ug to UE resp. ( This is because in Doth
cases (%44 # Xi42)°t is " preserved " ctc. )
=)

If the (1,1)-sequence ( in Ir= y is

s.t. Y F TN2 then
4 ,(FZ)-1,(FX)_1,TZ is an approximation to N,
(Since it 1is [[OP(TNE)]] good by iv) in the
definition of N, ) .
Where by (FZ)_1 we mean |(<ba> : <ab> e (FY) }
for k = 1,2 ( i.e. the inverse relation ). This
property is the main point of the definition of N; .

Notice that (FY)”' will also be 1 to 1 functional

for k =1,2 .

We let A, = { ¢ ¢ for some sentences ¥y, ¥ S»t.
<Py P> € [[OP(TNz]]
¢ = n.n.f.(¢y) {
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3.3 Lemma
Let T Dbe any 12 theory . Let A Dbe
any IF - structure s.t. A # ' N 4
then the (1,1) -sequence

Th(a *) ,¢ ,¢ ,0 is [[OP(TNZ)]] good .

Proof
Suppose not , there will be sentences
8, and 6, where <6,,6,> E[[OP(TNé]] and
AF o, and T } e,
but 6, 1s equivalent to a member of A
( infact modulo change of bound variables 6, € A, )
So AfZ O, s but this is not possible

since A F‘ei and } 0,27 162

Def

e {at} is a sequence of ( IR ) structures

ilew
where for 1ew
A"z ( For def. of 3 see 2.21 )

At w, att and the relations

asserted to exist F;y and I, are the inclusion

functions i i1 i i1
F, : U —U; and Fp : Us —> Uh

then 1Ai} is called an N, - chain .

iew
( Notice the similarity to the Def. given prior
to Theorem 3.412 and the Remark in 3.22 . )
Its union 1is defined to be any I2 - structure
n
n
Cz =ngw (A )z
(Rn")C = U (R-n")An for 1 <i<sm .
L “new ‘U
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Notice +that this 1is a vreasoable definition since

I A
{ (A" )k : new } is an elementary chain for k = 1,2

Def
We say a = theory T 1is preserved in
N, - chains if whenever iAi}iew is ap
N, - chain s.t. A'F 3 UT for iew then ( all of )

its union(s) 1is (are) also a model of T .

3.31  Theorem

If © is a theory in I® which is
preserved in N, - chains , then there 1s a set of
sentences T/ c A, S.t.

sur | and surpkr .

Proof
Suppose there 1is no such set of sentences
I'' so that the above conditions hold .
Let I = {¢: SUT|F¢and ¢e by |

Clearly
ur oo

{
U r{)ﬁ T

hence there is ¢ € T s.t.

2 U PC}L @

Now (3 uT) n'Ao c I 80
2U((2UT )N A {)/ ¢

M b

80

Let A Dbe an 1® - structure s.t.
AfFzu((z2uUr)nb )ufqr¢}

By Lemma 3.3

3,32 Th(a ¥ ) ,¢6 6 ,3UT is [[OP(TNé)]] good .
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So we can find 4A , P, , F, and ,B Bet,
3.33 Th(;A %), F, , F,, Th(,B %) [=TN2 by 3.12 i1i) ,
which extends 2.32 .

Since F; and F, are 1 to 1 functional over

Ui1A to UiiB and U21A to Ua1B resp. we may
.
assumé Ww.o4l.g. that F, and F, are infact functions

from
Fi H UiiA’a UiiB 9

Fp ¢ UziA—pUziB ’
AS ,A and ,B is chosen so that F; and

¥, are infact inclusion maps .

Since 3.33 holds , it follows from Remark 3,24 that :
Th(,B %) ,(F) 1, (F) T,Th(,a *) is [[OP(TNi]] good
which , therefare , is an approximation to TN1 ’
so there 1is an extension of the form :-
Th(zB *) , G 5 G, Ta(ea ) f Ty
Where, again wjodJl,g. Wwe may assume
JA< A and 4B <B,

and since G extends (Fk)—1 (still considered

as relations ) k=1,2, .. we may suppose that
Gg Uk23—7lk2A’ k=1,2 and are inclusion
maps .

We thus have the following situation :-
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A
A
\V4 N
F, 2 5
A A
v Ny
¢ G,
&
Gy Where all the maps

are inclusion maps
on their domain .
From the definition of N, it easily follows
that ;B N;,4A where the relations asserted to
by Ny are simply
¢, n (Ut xued) and e, n (Ut x Ued )
which we continue to call G, and G, resp.
Hence from the fact that
Th(a *) ,¢ ,6 , SUT is [[OP(TNg]] good

and the preceding argument we have

3 34
A
A\
\ Nz
A~ BFzuUT
7
Fy Where all the maps
A are inclusion maps
G
Ny on their domains .
V(L

2A (G

exist
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Clearly +
Th(z4 ™) ,¢ ;6 , 3UT is [[OP(TN )11 good ,
2 .

since +
Th (A ) s s s ZUT w&s.

Repeating the above argument with 2A 1in place
of A , we again obtain a situation similar
to 3.34 .

Iterating we find :-

A
A
\‘I N2
14 2 4B F2UT
B FaurT
/& N Where all the maps
‘ are inclusion maps
v N, on their domains .
ah ?; sBF 3UT

It is easy to check that { B Iiew is an
N, - chain .

Let wa = U pA
new
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WA is a i
union of | LB}iew
This fact is the whole point of the construction .

The details are left to the reader .

Since A < wA and A F 9 ¢
WA *f T
/
but (B E I for iew.

It follows that T 1is not preserved in N, - chains .

5.35 IN THEOREM

If R is a n - simple binary relation such
that there 1is a TR which 1is preserved
in N, - chains , then R 1is Syntactically

Characterizable .

Proof
By Theorem 3.31 we may suppose TR

is a set of A, sentences ( See Def 2.21 )

In view of Theorem 3.12 it suffices to show

that for each ¢ € A, there are a finite number

of sentences ¢ 4000995 1iin O; s.t.

f—¢<"“>A¢L

1<igs

Now 4, is the set of sentences in
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U<V Ry12€U; (X)W Xyy s €U (X)55<X, 0 KysocX, U Xps § eus
[ 1< X 51 [ <3x,,, €0, (X)5,< 3x,,, €0, (X)5,<X, n X5,
<X, uX; siw] ] ]
where W 1is +the set of all formulae of the form

eiUi(XuS’) ’ 62U2(x215) s x.:LiERPLXB.‘LE

for 1 <ig<m . ( sece Def after 3.24 )

By the usual normal form theorems , sce Keisler[K1]7
this set 1is the same as the sentences in

D <Xy n Xy > [ 1 «Vx,€0, (X)> o<W x5,,€U0,(X) 5} ...
[T <X uX st [ v [ X uX 51 ...

[ <3%,,e0, (X)> 5< 3xg,, €U, (X)> 3 X n X, >I[WIIIIIIT

Which in turn can be seen to be the set of

sentences 1in

<« X, n X >t [} <V3&_11€U1(X)> ,<-|;/ Xg,4 €U0, (X) >3[T] ]

where T is the set of formulae of the form
v~ X where

v o€ {< X n Xy s>} [w]
x € 1< X UXy >b [ f< 3xp4,€U0;(X)> 5< 3xp,,€U(X) >i.n.

[ I« X nXxy 58 (W] ]

Which 1is equivalent to the finite conjunction of

the sentences in

3.36 [ <Y %2 €3 (0> » <Y Xaascla(0) 5] (7] .

Claim

Bach of the sentences in 3.36 1is equivalent

to a II;- sentence .
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The proof of this fact is 18ft to the

reader . We only have to change the variables Xz1p
to ¥i4p and check that sub-formulae of the

form xiiaRgiyiia have their variables

changed suitably .

Example:

U

.U
Vx114€U1 VX214€U2( X114%114RFX014%014 N O 1K 4,7 D¢ 2Xpyy)

becomes

V x114x1245U1V V114912402 ( X4 0X24R3Y140V124 -~
U - U
(CC 0Xy4a N Xygy = Xypg) N Yi14 = T12a )=
U
— ¢ F11a ))

With the claim we have proved our result .

O

The natural question to ask now 1is whether

the converse holds . That is
If R is n - simple and S.C, then 1s there
a Tp which 1is preserved in N, - chains ?
4lternatively , is there any subset 0 of 1 s.t.
if R is n - simple and S.C. then T, can be

chosen to be a set of sentences in 0 7%

3.4
After Def 2.22 we suggested that we could give

a syntactic condition on those T for which RT is

" defined - this is 1left as an exercise for the

reader .
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CHAPTER L

4.1 Introduction

Suppose A is a notion of godiness
for some binary n - simple relation R in L , s.t.
whenever <6, 56,5 € A 6, = n.n.f.(% g,)
( with the wusual suitable conditions on the

variables and individual constants . ( See eg. 3.23 ) )

Let m A = iei : 6, 1s a sentence and 3 62(<61,62> € A)}

Provided #,;A can be described in a syntactically
simple way , we have an interpolation theorem
for R . ( See 2.1 b) )

For let y , x be any sentences in L.

If the L.H.S. of 2.11 holds , then

Y osP seeesd 51X is A bad .
So - .there are sentences 6,5, 6 8.t. <0;,65> € 4
and
7 A and "7 x f &
but 6, = n.n.f.(7 6,) ( we have suppressed mention

of the individual constants , as we shall continue
to do )
Therefore

vFe, and TIxf 16
ie, y} 6, and 6, F x where 6, € mA
So the R.H.S. holds .
If the R.H.S. holds then clearly

Y s secesd 51X is A bad .
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So the L.H.S. holds .

It follows that we have an interpolation theorem .

In this chapter we use our previous results s and

the above comments , to obtain interpolation theorems.

In particular we consider :-
Direct Roots of Direct Powers .
Direct Factors ( see [K3] )
A new interpolation theorem concerning "cofinal
embeddings .
An eXtended version of Craig's Interpolation
Theorem .

Towards the end of the chapter we consider

certain ternary relations .

4,2
The following sentences have nice properties ,
as we shall see .

Symmetric_Sentences

Iet V be the set of all formulae in L of the

form ;-

Vzeu, ( ¢Ut—33FeU, ¢’z ne ) ) or
VyeU, ( pl2— 3Rt ( ¢t n 6 ) )
where ¢ is a formula in L ( of type 1 when

relativized to U, and type 2 when relativized

to U, ( See 2.53) )
) is a formula of type 3 in L and the wvariables

in ® are precisely the variables 27 .
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Let T, %be the set of (1) - operators ( in L )
of the form
v %eU, ( ¢U1-—->3yeU2( ¢U2n o6n X ) ) or
¥yeu,( ¢"2—3ReU, ( ¢%n 6 n X, ) )
where the above conditions on ¢ and 6 hold ,
and the wvariables in ¢ are precisely the variables

in RyY of the form v.

Jitkp where 1 <i gm.

( There may be wvariables of the form Vioop inzy.)

Let T, be the set of (1) - operators of the
form

\/ ®eU, V9eU, ( 6—X, )
where 6 1s a formula of +type 3 in L and the .
variables 1in 6 are precisely the variables R ¥
( Our usual conventions still hold so , for example ,

in all cases ® corresponds to ¥ . )

L.21 Def

Symmetric Sentences are all the sentences
in T, [T,[V] ]
LL,22 Remark

Comparing the above Def. with Def 2.54
of I - sentences , we see that every Symmetric
Sentence 1is also a JI - sentence ., In conssquence

Theorem 2.6 holds for Symmetric Sentences .

It is not difficult to see that for a Symmetric
Sentence & we have OP,(®) = n.n.f.(10P,(8) )
where again we have to change the variables and

individual constants but also "1X, is replaced by X, .



( 59)
Example
Consider the Symmetric Sentence & 31—
vyoo,1€U23X001€U,*VX1116U1((Xboj_.'l\{xiii)}iiEWiiiEUz (:(yooisyiii)Uz
N X314RIVy44) )
OP, (®) = vxoo13xi11( Xo01<X411 N Xy )
0P, (@) = 33’0017/3’111( Yo01V111~>%y )
So n.n.f.(7 0P (@) ) = 3X001\V/X111( Xo01$X111—>T1% )

and with our conventions this becomes :-

337001\0/57111( Yoo1 V111 —Xy )
which is O0P,(¢) .

4L.23 Remark

From now on we make the further
convention , for ease of reading , that provided
there 1is no ambiguity we omit the symbols U, and TU,.
There 1s no real problem since all x-variables
are relativized to U; and all y-variables are
relativigzed to U, . Thus , for example , the above 1)
becomes :-

Vyoo:LBXom. ‘/X111( Xoo1<X111—73y111(Y001@111 N X344R1V144))
We shall alsc be fairly loose with our subscripts.
The reader will be able to substitute more
suitable subscripts easily . For example , we might
have written the sgbove zas e

Vyoa:)(o in( XOSX1—'>35’1( Yosy1 N xiR}.yi )
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4.3 Def
Let R be any n - simple binary relation
in L ; we say there is an Interpolation Theoren
for R 1if for some set T of symmetric sentences

[[oP(r)]] is a notion of goodness for R .

If T 1is as above , then q,[[OP(r)]] is
described syntactically and simply . It thus serves
as the set required in the usual definition ,

( see 2.1 and 4.1 ) to show that R has an

interpolation theorem .

L.31

It 1is easy to check that every sentence
in T,[V] is also a II,- sentence . ( See 3.1 )
It follows from Theorem 3.12 that for any set of

sentences I in T,[V] , R, is defined and is S.C.

T
with a notion of goodness [[OP(T)]] . It follows

from Def 4.3 that Rr has an Interpolation

Theorem . ( Both in our sense and the usual sense )

Example

Consider the relation H of "onto homomorphism"
between L - structures . It can be thought of as

the (1)-simple relation with a Ty :-

¥x, 3y, (x, R4y, )

¥y, 3%, (%, REy, )

V2,7, ( Ar %, REY, — ( 6(%,) —0(F:) ) )
for ©(¥) any atomic formula in L .
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These sentences are all in T,[V] , so H has

an Interpolation Theorem .

[LOP(T) ] = 1 <3 (X)), Vi, ()s »<¥ %, (X,),3y, (X, )> »
<0(R) n X ,0(3,)=3% > [{<tyPs,cfyts]]

It is easy to check that ﬂl[[OP(TH)]] is simply
the set of positive sentences in LB together with
£+
Def L.3 is not suitable if we replace ”interpolatioﬁ"
by '"preservation" . For in view of Lemma 2,44 it
is not difficult‘ to see that all pn-simple
relations would have a preservation theoren under
this definition , in quite a trivial way .
In the case of Interpolation Theorems , there appears

to be no cause for treating Def UL.3 as trivial .

In [Mo]} Procf Theory is used to obtain many
interpolation theorems 1in a wide class of languages .
The work which refers to First Order Languages 1is
roughly equivalent to L4.31 ; though the proof 1is ,

of course , much different .

L.32 Def
Let A and A’ be two n-sets , we say
A =y A" if whenever <0,,03> € & there is
<Py s> € A s.t.
V6, ¢,
Fo, —>¢s
We say that
A=A if A=) A and A D L.
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L.33  Theorem

If A is a notion of goodness for
the pn-simple binary relation R by TR in L
and A’ is an n - set , then A = A’ iff A’
is a notion of goodness for R by TR .
Proof
Suppose A = A
iIf y 1is a TR approximation then 3y is 4  good ,
but then y is A’ good ( Since A A )
If y is A’ good then vy 1is A good , so y

is a TR approximation .,

Suppose now A’ is a notion of goodness

for R by T .

Let <6, R ,60,F> € A
Choose new individual constants ax ﬁ& s for

1 <i1i<m 1let R, be the set of those 2n
sequences in ﬁxﬁy whose corresponding variables

are of the form :-

xLip’--e’XLanﬁytipf'-°’yLan
Then § = 61§k sRyseensBpys GZB& is not A good ,

so 1is not an approximation to TR and hence
is not A/ good .

So there is <¢.R,,9:¥,> € A’ and some

s.t.
§k1 C ék 3&1 c ﬁ&
2 and Lo} are & consistent for X, S.te.
Xy Y1
6,7, b ¢1§X1

szy }/ ¢2by1
W.l.0.g. we may suppose that the variables

corresponding to ax1 in ﬁx are in fact R,



and those corresponding to ﬁy in By are ¥, .
1

We thus have
Vo, -> ¢, %, and PO ¥—¢,7,
So A $, A’
Symmetry gives the result .
o
Suppose R 1is ap n - simple ©binary relation
between L - structures which has an Interpolation
Theorem . So there is a set of Symmetric sentences
I s.t. [[oP(r)]] is a notion of goodness for
R . It follows easily that R has an interpolation
theorem , in the usual sense , between models
of T (a theory in L ) .

That 1is to say
4,34

For all vy , X sentences in L

VaVB ( A,BFT end ARB and AF y imply

Ak x) iff there is 6, € m[[OP(T)]] s.t.
TU fylb e, end TUle b x

Now the L.H.S. of the above describes all p - simple
relation R(T)
i.e.
AR(T) B iff aRB and 4, BFT.
We cannot in general expect R(T) to have an
Interpolation Theorem ( in our sense , 4.3 ).

We extend our earlier definitions .

By Tk we mean { ¢Uk : ¢ T} for k=1,2 .
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b.35  Def

We say a Dbinary n - simple relation R
between L - structures has an Interpolation
Theorem between models of T if for some
Symmetric Theory T , [[oP(r U T u T2 )]] is

a notion of goodness for R(T) .

In order to show that we can deduce L.3L
from this definition we need to know that
we can simplify ( suitably ) a notion of goodness
in the correct way .

L., 36 Theorem

Let A be an n-set and T be a set
of II - sentences . Suppose gbU1 e I' where ¢ is
a sentence in L . Then

op(r)[[al] = f<¢ = X,X >1[0P(D-{p " }([a]] ] .

Proof
R.H.S. ¢ L.H.S.

It suffices to show that L.H.S.3 R.H.S. .
This can easily be shown by induction on
the complexity of the formulae involved , by using
the following obvious facts :
[ Ry ngy ¥ o8)) 172 [ D TW gy ¥ R (he—>0k) ]
Where we suppose for (say) me t O, is of the
form ¢—>®@, and for k #m o is @& ;-
and if ke, =0,

[ 3, (4 g VR ( 9m0:)) 1230y 02 C @)

[wi



(65)

The above Theorem , with its obvious corollary
for sentences of form ¢ % , where ¢ 1is a sentence

in L, allows us to "pull" a theory out of

the notion of goodness .

4,37 Theorem

Suppose R has an Interpolation Theorenm
between models of T , and [[OP(P’ U Vs y V2 )11
is a notion of goodness for R(T) , where
'’ is a Symmetric theory . Then LUL.,34 is

satisfied for R and T by w [[0P(r*)]] .

Proof
The proof is straightforward and relies
heavily on Theorem L4.36 .
u]
We can also simplify n - sets , and so notions
of goodness in anofher direction .
4,38 Theorem
Let A be aBn-set in L and T be
a II - theory . Let & be of form
\‘/3!1371(6—->( ¢U1-—-9¢U2 -) where ©6 1is a
formula of type 3 containing precisely the
variables %, ¥, .
Then 1if & e T
op(r)[[al] = op(r-{el)[[a U f<¢ , Vg >} 1] .
Proof

Trivial
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L.4  Interpolation Theorems

L4

Consider the binary relation DR between
L - structures A, B s.t.

ADRB iff AXa~ BXB .
In [Ks;] Keisler calls this relation Dircet Roots
of Direct Powers . He wuses infinitely 1long formulae
to obtain his results and expresses the difficulty

experienced 1in finding the necessary scntences

to obtain an interpolation theorenm .

DR is the (2) - simple relation defined by

the following sentences T .

\/x1x23y1y2( Xy XoR3Y,Ys )

V., 3%, %, ( %, %,B2y,5, )

vxixzyiyz (AN R 2,37, 7, —( 62, n 6= ( 69, N 6¥2)))

Vzlxzyiyz(AA R, R, R37, 7, —( 67, n 6¥,—>( 6%, n 6%;)))
where ©6 is an atomic formula in L and all the
variables in %2 7,¥, are supposed to be of the

form Viikp for j , k =1,2 P € w

Clearly T ¢ T,[V] so R has an Interpolation Theorem,
Indeed a notion of goodness for R 1s the set
of pairs of formulac of the form :

<Py spg> Where ¢, = nen.fe () ¢y )

( with the wusual conditiuns on the variables

and constants )
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and ¢, € §<3X1X2(X1)>y<V/xixz(Xi)>} ‘oo

[[{<ez, n 6X2>5< BR; U T\ 6Ry>,<ts <51 1]
( We have used Theorem L.38 )

Translating this intoc the wusual form s we obtain

Keisler's Theorem [K,] Cor 4.2 .

We wuse the following Theorem to simplify the

proof of a new Interpolation Theorem .

4.42 Theorem

Let R(T) be an n - simple binary
relation defined by a set of [,- sentences
TR(T) . Let T be a Symmetric Theory s.t.

a) [[0P(Tp(py)1] 2 [Lor( 1 ut™ U % )]]

b) Tppy & T

Then R(T) has an Interpolation Theorem
between models of T ( See L4.34 for def.
of R(T) )

Proof

It suffices to show that if y 1is
any n - sequencé which is [[OP(TR(T>)]] good ,
then y is [[0P(r U T% U T% )]] good . That
this is so follows from b) and Theorem 2.6
o
Let L contain in particular a binary relation
< . Let T(<) state that < is a partial

ordering .
L3 Let COF be the binary relation between

models A , B of T(s<) 8. t.
ACOFB iff 3 f : A—B which 1is an

embedding and for beB 3a € A 3Jc e€ B where



(68 )

f(a) = ¢ and b gec in B
i.e. £ is a " co-final " embedding .
A TCOF is -

\/21?1 (An R, RV, — ( 6x, — 67, ))
inayi( X, Ry, )
VyoEixiyi( RV, N Yo < ¥y )
(<)l
Uz L] -
T(<) for 6 an atomic or
negated atcomic formula in L .

so  [[op(T is -

COF)]]
{<p—=X,0—3%> 1 ¢ € T(g) [i<3x1(X),V/y1(X) S5 eae
< V/xi(X), o Vi ( ¥o < y,—X)53[[ <o%, ;718 3,5 1] ]

Where ©®, 1is atomic or negated atomic in L .

It is easy to see that this D
l<p 2X,6—>%X> 2 ¢ € (<)< 3 (X) , ¥y, (X)> 5 ...
< V3%, (%, <%, 0 X,y V5, (¥, < ¥, —3X)> | ...
[[< ex, 7169, >1] ]
Working backwards we see that the above n-set
is  [[op(r U (<)% uT()U2 )]] where T 1is
VX13V1(X1R%Y1)
\/‘5{13’71(1\1\ 2, R19,—> ( e, —>6¥, )
‘VlyOEXO Vx, ( X < x3—33y,( ¥ € ¥y 0 X4REy, ))

Clearly TCOF}: T
Lohh It follows from Theorem L4.42 that the relation

of co-fimal embedding U4.43 has an Interpolation

_ Theorem between models with a Partial Ordering .
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We have the new interpolation theorem using

the above notation

L.45 Theorem

V/¢ ’ ¥ sentences in L
VadB ( 4, B F T(k) 4 COFB and AFEg

imply BE ¢ )
ifff there is a @ ¢ ACOF s.t. 6 1is a sentence
and  T(<) F ¢—=0 n 60—y
Where ACOF is the 1least set of formulae s.t.

a) If 6 is atomic or negated atomic in L
then 6 € ACOF
b) if  B,,6, € Agop S0 does 6, n 6, , 6, U 6
c) if o6 € bsop then 3x6 € Aygp and
\/x°3x1( X €% N6 ) e Acor providing
X5 does not occur in .
Proof
This is a simplification of L.4k4
| O
It should be fairly clear that a large
portion of the known interpolation theorems will
be amenable tc our methods , Indeed all the
" interpolation theorems  expressable in a First
Order Language in [Ki] , [Ks] and [Ma,] are

easily proved by our methods , except the next

result .

The following variéant of Keisler's Theorem
on Direct Factors ( See [K;] ) is given here .
It is the only Interpolation Theorem I have
attempted and found difficulty with . I have been

unable to prove the original result .
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Let ADFB iff 3IC AXCoB and
the cardinality of the dom(a) ( Card A ) is

equal to Card B, where A s B and C are IL-structures .

L.u6 Theoren

DF is a (2) - simple binary relation

with =& TDF -

1%V X %3y, 7, ( xXR8y, 5, )

2%V y,¥23% % ( X, ,R2y, 5, )

3 VR, ( M R RB29,5,— ( 67, — o, ) )

b VYRR, T VeV, (AL R, REY, T, 0 ANR R RV, Y, —>
( F=k, —T2=Fs 0 (09, n T16I3—> 62, n V6%, )))

where 6X 1is an atomic formula in L .

Hence DF has an Ulnterpolation Theorem .

Proof
Suppcse f : A X C~B 1is an isomorphism
and Card A = Card B
Case 1. Card B 1is finite .
Then Card C is 1 so
g : A—»B defined by
g(a) =b iff 3¢ s.t. f(ac) =D is a
bijection .
Let R be defined by
abRed iff g(a) =c and g(b) =4

It is a simple matter to check that

ARB ¥ Ton -
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Case 2 : Card B is infinite .

Define h:B-—C by

h(b) =c iff Jae i s.t. flac) =D

We define an equivalence relation ~ over B by
b~ D' iff h(b) = n(b')
let B ={Db' :bD~Db'"1 for beBd
B = {B:beB | " and

f Bh-—§C be the induced map H(B) = h(b) .

Let g : A-;Bh be any ontc function Sete
for B e B
Card { a : g(a) =B} = Card A
Such a function exists Dbecause by assumption

Card Bh £ Card B = GCard A 32 9{9

For B e B let
ig ¢ {f a:gla) =D }—B be any bijecticn

( which clearly exist )

We define R by
abRed iff f(a,A(g(b))) =c and ja(b) =d

gl'éll} A’RSB l: TDF ¢

Consider sentence 1%
Suppose a , b € A then

abR(f(a,ﬁ(g(b))))(j(m)(b)
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Consider sentence 2%,
Suppose ¢ , d € B
Ib s.t. ja(b) =d
3a s.t. f(a,A(g(v))) = ¢ ( since g(b) =& )
- 80 &bRcd .
Consider a sentence of form 3%.
Ir  £(%,0(8(%))) =3,
then Bk o[y,] = a4 F 6[2,] for 6 atomic .
Consider a scntence of form L%
Ir (% ,0(e(R,))) =9, and
£(25,8(8(2,))) = ¥,
and 2, = X, then
ad ( B(g(®)) = A(ex,))
So §, = F,
Now since
A (3 () = 3 (%) )  and
MCItR) = %) ana ol T = v, )
we have'Yi Y2 = V.
Suppose further B F 6[¥,] n 16[¥;] it follows
fairly easily from the definitions that
alF e[z, ] n T6[R]
( Hint BEo6l7,] => ¢k olf(a(X))]
= cF olf(g(Re))] o
Now B g T16[¥] = AF T6[%]
or CF Tle[f(eg(R))] ** )

Claim o
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Suppocse now AR BF TDF .

We show ADFB and Card A = Card B.

For each a e A define B_ = { be B : 3cd (caRbd) }
By 1% ¢ .
y or a € A B, £ ¢
We now define an cquivalence relation T over
A D i 2 = .
y aTh iff Ba = Bb

For aehA let d={b:iasb]l

We now define the L - structure C as follows .
dom C = {38 :ac€a}d
For 6V atomic in L we 1let :
62 holds in C iff 3BT s.t.
A\ BEREE  and B F 2.

In order to check that this 1is a well - defined
definition , it suffices to show that if 3r @
then C F68 iff C [ 68
But suppose AA B T E
Ckea = 3BTA s.t.
A\ BaRE® and B F eC
—) A TeBy and B Foe
— AL T € By ( since mpa 7 )
and B Fe2
— ImnR  s.t.
AL BEROE  and B F 62
- ¢ ]: o8

Symmeyry gives the result .

We define a function f : AX C—JB by



()
f(ab) = ¢ iff 3 a ( abRed )
This 1is a wvalid definition for if b T e and
34 (abRed ) then I a'd ( a'eRed ) , and so by 3*

we have a' = a ( teking equality for 6y, )

Claim f; AXC—B is an isomorphism .
i) £ is a function by UL*
ii) £ is a function from A X C to B
For let ab e 4XC , by 1% 3 cd s.t. abRecd
so by definition f(ab) = c
iii) £ is onto , for let c € B and 4 ¢ B
by 2% 3J ab S.b. abRcd and
f(ab) = ¢. by definition .
iv) £ is 1 to 1 for suppose
f(a;8;) = ¢ = £(ayb;)

In pictures

8.1"""1_“1)1\1\ 1.~

Pl N
fp— 2 — by -° SN

Where a sequence a—n—b-—n-—c —n~—d4
"mcans" abRed

By 3% a; = 8,

It suffices to show Dby 7 by

Suppose ¢, € Bbz sc Wwe have

for some az; dz .
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To show that c, ¢ By, 1t suffices to show
1

that 3 4, st. azb;Reyd, By 1%  3Jef s.t. agb,Ref

Suppose if possible e # c,.
We have
a,b;Red  and  a,byRed,
azb, kef and agbyRe,d,

and c=cande#c, and b, =Db

1 1 and b2= bz.

Hence by L* a, =a, and a, # a, . Contradiction.

Therefore € = C,
By symmetry it follows that
b, 7 by
v) f is an isomorphism .

Suppose AA £(&B) =T and B bk ee  then by 3#*

AFoeg and CF 60 by definition .

Suppose A F£(3B) = and A F 62 and ck 6F ,

and assume BE Jec
Since CE 6b , by definition, there are
2, , ¢ s.t. AA£(2,D) =T and B | ez, .
Then by L¥ Ak Tlea which gives a
contradiction .
Claeim o
We have only to show that Card A = Card B.
Since Card € < Card B y it fcllows that
Card A < Card B so it 1is sufficient to
show that there exists a 1 to 1 Tfunction
g :+ B—2A ’ which follows easily using

2% and TN
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Let Xip 2 Pe€w} and | Xzp D €w] be
sets of variables s.t.
{ %0 tpewlnl Xgp PP ewl = ¢.
Let FDF be the 1least set of formulae
containing :
16(®,,) where © is atomic in L
Rep = Xor 0 (T 6(2,,) U 6(X .)) where 6 is
atomic in L s.t. if @ ¢ Fpp then
Xy pX550 € FDF and V/X19X2p6 € Fpp and

EDF is~ closed wunder conjunction and disjunction .

L.,47 Theorem

The binary relation DF defined above
has an interpolation theorem in the usual
sense ( See 2,11 ) , Where the set of
interpolants consist of the sentences in :EDF .
Proof

This is a simplification of Theorem L.U6 .
m]
L.
In [F] Feferman using Proof Theoretic

techniques in a many-sorted infinitary language
proves an extended variant of Craig's Interpolation

Theorem . We shall look at the problem 1in the
case of PFirst Order languages .

et L be a First Order Language not

containing function symbols ( for simplicity )
Let M;,...,Ms be new unary predicate symbols .

¢M will denote a sentence in L U {Mj,...,M}

where ¢M is obtained from the sentence ¢ 1in L,
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by relativizing each occurrence of a quantifier
in ¢ to one of Myseee,M

For simplicity we assume wel.0.g. that ¢ is
taken 1in negation normal form . That is each
negation symbol occurring in ¢ negates an atomic
formula of ¢ and the implication sign does not
occur .

Clearly , in general , for each ¢ ¢ L there will

be several ¢M obtainable from ¢.

Let J1(¢M) be the set of those i€ {1,...,n}
s.t. some wuniversal quantifier in ¢ 1is relativized
to My in ¢ M.

Let J,(¢%) be the set of those i € {1,...,n}

s.t some existential quantifier 1in ¢ is

relativized to M in ¢M .

. - 7 M
Thos , for instance , 1if @M = n.n.f.(77(¢=))

then Ji(GM) = J2(¢M) .

Suppose k ¢M —¢¢g then Craig's Interpolation
Theorem states that there will be a © € L U {My,.,M}
M

s.t.  (¢f—0)n (0—y")

*% where the relation symbols and constants in

M
6 occur in both ¢¥ and Y .

i.e. L(o)c L(¢¥) n L) .

We cannot deduce directly that we can find such

a ©6 of the form XM for some x € L .
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That this 1is indeed the case was proved by
Feferman using proof theory in a many~sorted
language . He expresses some doubt that this
theorem 1s amenable to single sorted First Order
methods . Feferman's Theorem 4.2 in [F] in the

First Order case amounts to the following e

L., 51 Theorem

Suppose ¢M,__%¢M

then there is
an interpolant of the form GM satisfying
the conditions #** agbove and further

7. (%) c 7, (%)

T (%) ¢ 7, ().

We prove this theorem wusing our methods .
Let A, B be LUY{MW,...,M; } structures and
T C {1yeeesn }

We say A—-—L—j.-?B if I F : A—B  s.t.

1) £ is an embedding of A|L—B|L

B for 1<ic<n.

B

2) £t c 1
3) For 1ied f£lt] =M

L4.52 Theorem
Suppose XM(V) is given , where x € L ,
£ A-*Lﬁr)B and Ji(XM) cJ then for & e A

A kA7) implies BE »ilfal .

Proof

. M
By dinduction on the complexity of x= .

a



(79)
Consider the following relation F defined by T

F
V/X( Mix— 3y( Myy n xFiy )) for i€ Jg(wM)

V y(Myy— 3x( M x n xFiy )) for ie J (¢F)

V 29( ar ®PtyP—3( 6(R)—0(y) ) ) where o is

an atomic or negated atomic formula in L(¢) n L(w) .
Clearly F is (1)-simple with a 8.C. by [[0P(Tg)]]

Claim

¢M s @5 1 ¢M is [[OP(TF)]] bad .

For otherwise we can find A , F, , B s.t.
AFB and AFE ¢M and B F-'](wM) where
L(g) U (M 500a,M}
L(y) U {M;y00. M}

and since ¥, 1is a1 to 1 function we may

L(a)

1}

L(B)

assume it 1is the inclusion map on 1its domain .
We may also assume

dom(A) N dom(B) = dom F,

We define an L( ¢ny ) U {My,...,Mg} structure
as follows .
dom (C) = dom(A) U dom(B)
and for atomic 6% ¢ L(C) amd & € daon(C)
CE e  iff @ e dom(a) 6V e L(4) and A [ ed
or # ¢ dom(B) and 6V € L(B) and B F ez

It is easy to check that this 1is a valid

definition of C .
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It also follows easily that

L(g) 5
PTG T C e vl
p —L(¥) F——> O | L(y) U {My,eca,lg }
Io (y=) ’ )

For if i ¢ J1(¢M) then from the definition of P
and C we have :

ML BC ML A and

M C A B A.

= N = N

U M;

If 1ie J2(¢M) then a similar argument holda .

Now since AL ¢M and BF 'in it follows
from Theorem 4,52 that Ck ¢f n T4
which gives wus our contradiction .
It follows +that for some pairs of sentences
<B, B> € [[OP(TF)]]
P’¢M”_?61
r~7¢M_$62
A closer inspection of TF will give wus our theoren.

o

If R is a Dbinary relation which is S.C. then
we shall denote a notion of goodness of R
by AR . In particular if R is the relation
asserting the existence of an embedding) we denote
it by c and A_ is the " natural " notion of
goodness .
If R and S are binary relations which are B8.C.

and ( for simplicity ) are (1) - simple , then by
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R(S) we mean the binary relation defined by

T, Ul V =,7, (a R R1Y,—> ( 6,%, —>76,7, ) ) |

for <6;%,,0,¥,> € A

S
( To ©be AR(S) good is to be an approximation
to R which ia Ay good . )

It follows that if T,, ¢ , T, is A (s) good

then there are A,B,C and D S.te

C S D
N/, 4
A R B
where R1) the relation asserted to exist

by R TDbetween A and B 1is included in S,, the

relation asserted to exist by S %between C and
In [K,] Keisler proved that a sentencé

is equivalent to a \7/3 sentence 1iff

whenever
~ .
N ¢ then A F ¢

We can easily obtain this result , for

¥ 1is not equivalent to a V/B sentence 1iff

v @ 51V is A:(c) good , iff
there are A, B, A' and B' Set.
A' < B
v v/
A >, B
Fy Ely

( We can assume c are really inclusions since

the embeddings "extends" the other . )

one

of
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iff
there are A , B and B' Sete
B!
7N

A o B

3 By

Which 1is Keisler's result .

It will %bve remembered that these ideas were

employed in Chapter 3,

It is a well-known fact ( See [R] page 232 )
that 1if ¢ 1is a sentence containing at least
one constant which is equivalent to both an
existential sentence and a universal sentence ,

then ¢ 1is equivalent to an open sentence ( one

not containing any quantifiers ).

Indeed if R 1s defined by
Vx(x:o-——)By(XR}yny=o) for each
closed term o in L(y)
V/xy'(AA,xniy>-a( 6% — 6y ) ) for © atomic or
negated atomic in L(y) .
Then it is easy to see that if
R &) is 4p bad ( not Ay good )
then y 1is -equivalent to an open sentence .

( simply eliminate quantifiers )

Thus if ¢ 1is not equivalent to an open sentence

we can find A and B s.t.
ARB where A F ¥ and BE Ty.
Consider the minimal substructure A' and B! of

A and B respectively. ( These exist , i.e. are not

empty since Const( L(y) ) # ¢ )
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Clearly
A' R B!

and the natural relation to take Ry is an
isomorphism of A' onto B' .
Now since ¢ is equivalent to both an
existential and a universal sentence we have
AFYy = Avy =3 B'Ey = BE Iyny
A contradiction .
We can easily prove many simple results of this
kind . For example :

L,61 Theorem

If ¢ 1is equivalent to a V’B sentence
and a positive sentence , then ¥ 1s equivalent
to a sentence which 1is at the same time a
VB sentence and a positive sentence .

Proof
We sketech the proof .
Assume Y 1is positive but ¥ is not gquivalent
to a sentence which is both positive and V 3 .
Consider the relation R defined by
Vyax ( xRty )
Vzy ( 2riy—s( 6x—6y ) )
where 6% 1is both existential and

positive .

Clearly ¢, ¢ ,71¢ 1is Ay good .
So there are A , B and C s.t.

ARy = CFy

/
Y . 8838 hism
B-,///f’;" h orp

*) good .

where Th(a*) , £,, Th(C 18 8(nomomorphism)
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So we have D, E and f, s.t.

fs c £,
. homomorphism
£, A STES s D
where
& y
D /4
\
C

That C c D follows since f, c f, .
We thus have

By

Dj= ) since ¢ 1is positive and Ak y

So ¢ is not equivalent to an V 3 sentence .
( A picture helps to follow the proof!| )

The theorem follows ;.

n]

Suppose R 1is a ternary relation s.t. for
some binary relations Ry and R; we have

<A,ByC> e€e R iff AR, B and BR; C .
If R, and R, are preserved in.TRi- sequences and
TRz - sequences resp., and are n - simple, then R
has a notion of goodness . In fact by generaliging
the results of chapter 2 and 3 we could prove
that R has a "S.C.". However , this 1is unnecessary

as the following shows .



(85)
L.62 Theorem
If Ry and R, are n - .simple binary
relations preserved in TRi - sequences and
TR2 — sequences respectively , then a notion
of goodness for the ternary relation R
defined by :
< A,B,C> e R iff AR, B and BR, C is :
Bp = 1 <6;50; U @y o> ¢ <By,0> € AR and

1

<Pir¢a> € AR=3 }

Proof
Strictly AR is not ahpn - set , we ignore
this complication .
Suppose y =T,, R, , T, » Ry , Ts
( We have extended the notion of ah n - sequence
in the natural way )
If y is an R ‘approximation then clearly Y
- is AR
Suppose now 1y 1is AR good .

good .

We may assume w.l.o.g. that T, is complete .
( c.f. the proof of Theorem 2,42 )
Now T, , R, , T, 1is by, good  and
T, 5 Rg » Tz 18 b, good .
So we may find A, , By s.t.
A, R, B, where the relations asserted to
exist are R} ( say ) where
A,FT, » B ET, and RiO R, ( pointwise )
Now Th(B*) , R, » Ts is 4 good .
( since T is complete. )

.
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So we can find B, , G, s.t.

BzR; C; where the relations asserted to
are R2 ( say ) where

By <By , CokT; and REoOR, .

We thus have

B Ry Cp Ty
v/
fapr, B2 Biopp

exist

But Th(4,") , Rt , Th(B2+) is Ay  good .
1

Thus we may iterate this process denumerably

often . Since R, and R, are each preserved 1in

%, R

follows that y 1s an R approximation .

m]

- sequences and T, - sequences resp, it easily
2
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CHAPTER 5

2.1

We consider in this chapter the characterization
of those theories, which have models satisfying
various complicated reiations between several
L - structures . We show that the results of the
previous chapters can be successfully applied to

a range of such problems .

5.11 The Amalgamation Properties

We say that a
theory T has the Amalgamation Property ( A.P. )
if whenever

Ak

BEq

C sz

there is D ET and embeddings
f : B—3D g+ C—D S.t.
the " diagram commutes " . ( That 1is ; if a € A

then fa = ga . )

In view of the fact that there are many conditions

on a theory T of a similar " shape as &bove ,

we generalize the above as follows .

For simplicity we restrict our attention to

(1) - simple binary relations between L  structures.
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5.12 Def
A (1)-simple binary relation R is s&.t.b.
Diagrammatic if there is a T consisting of

R
sentences of the form :

V"XJ’,_ (A-A- ‘21 R%‘yj__‘; sz (61%%—>32 (-A-A- XgR?f-yz N eg-yiyz ) ))

With our conventions these are all I, sentences .

If the above sentense is in TR we simply say

( 6,2,%,,6,7,%, ) is in Ty -
So , for example , to say ( X, = Xp,¥, = ¥ ) is
in T

R? means

Vg%( Xp=Xp —3 3V ( XzR}y, N ¥o=y, )) or
equivalently VxBy(xR%y) » is in Tp.

We have the following ©basic facts about
Diagrammatdic relations .

2213
1) If ARB and C <A then CRB , the

natural relation to take %being R, n (CXC) . As
usual R, is the binary relation included in AXB
asserted to exist by R .

2) If R is Diagrammatic and A is an L-structure
we 1let Diag[R,2](A) ( the notdétion is supposed
to Dbe suggestive ) Dbe ;

{ g2 ¢ (¢g,02) is in T, and Al ¢, (2] 1 .
If there is a B , an L-structure , s.t. for
some £ : A—B (B fa), , I Diag[R,2](a)  then
ARB.

The converse , in practice , will often occur .

( We need ( Xp=Xg,¥a=dz) and (X4=X;,¥,=y1) in Tp )
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These results follow easily frem the definitions .
Keisler's Generalized Subsystems and Homomorphisms
( see [K, ] ) are Diagramgtic.
In particular if R is c or a homomorphism
then R 1is Diagramgsfic.

The relation cposs defined by

vj{iyi (A R, REY, — (0%, —6Y, )) for 6 atomic
or negated atomic is Diagrammatic.
Note that for any L - structures A and B

. + +
A Coogg B since Th(a"), ¢ , TH(B") E T c

poss
5.14 Def
We say ( T,,T,,T5,T, ) has the

( Ry sRyyR3sR, ) = AP, iff whenever
BL-.TQ

C ko,

3 DET, S.t.
BR;D and CR, D and the diagram commutes .
i.e. if a R, b and a Ky ¢ then there is a 4 €D
s.t. 5 R, d and ¢ R, 4 . We do not distinguish between
between

the binary relation Ry{ L - structures and the

relation R, asserted to exist by Ry .

If R is a binary relation between L- structures

then R-| is the relation defined by
ArR1TB iff BRA.
If R, and R, are binary relations, then

(R4,R,) 1is the ternary relation defined by
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< 4,B,C>¢ (Ry,R;) iff AR, B and BR,C .

5.15 Theorem

If R; and R, are Diagrammatic and
R, and R, are 8.C. then the following are
equivalent ;
1) (T4sT5sTg,T, ) has the ( R,,R,,Ry,R, ) - A.P.

2) Whenever

B E T,
Ri
Agr, (a)
R2
C i T

3

then Tp(B*), S; , T, U {e=e:ecE} , S, , Th(c™)

is a (Ra,R;1 ) approximation . Where S, , S, and
E are s.t. whenever a R,b and aR, ¢ then

a new constant e 1is chosen and

€ e o <b e> € 5, <€ C> € 5,
Thus i = Range S, = Domain S; .
3) Whenever T, } V (4, U 6,8 ) where
<R 5¢. F> € &y and  <HX 367> € ARQ

3

then there are <y,;X ,y.¥> € Ay

; and <§X ’62y> € AR
p 2

s.t.
T, FVR(y,® U 5,2 )

T, F v 2(q 1R U yaR ) (B)
T, bV (0,2 U 6,2 )

Proof

That 1)&»2) is trivial , 2) was written

by way of explanation .
Note that we use strongly the fact that R; and

R, are Diagrammatic.
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3)=p2)
Suppose (A) holds but
#%  Th(B*) , s, , T, U le=e : ecE] , § , Th(c)
is not an ( RB,R;L“) approximation .
So for some «<¢,;R ,8,9> € ARs and some
<6, % ,0,¥> ¢ b, ( this holds iff <6,% ,06,¥> ¢ AR;U
we have T, | ¢, U 6,8 and
Bk ¢,B C kot g
where  AADS, 2 AN BS T ©)

since #** ig bad . ( See Theorem 4,62 )

Arar7")

. ‘. . : e
R . s ) PR

We thus have T, V¥ (¢, u 6, ) , because
Const(L(T,)) NE = ¢ .
In view of 3) it is clear that (B) holds ;
so as AFT, , We have A E V}t(y{i u &) .

Now by the definition of S, and S; there are
ZeA s.t. AAER,T  and AA BRT ( by (C)).
So A Eky,Bu 6,3,
Wel.o.g. suppose A k vy,2
A R, B Blr y,8 and since BF T,

B F 1¢,8 which contradicts (C) .
It follows that 3)=2} .

2)=3) :
Suppose for some <¢Rr 9> € AR‘3 and

<6%, 6,¥> € A T, FVR($® U 6,8 )  Ddut  (B)
' 4

does not hold .
It is not difficult to see that for new constants
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T, u lg,2} , | <aa>: aed] , 7, U AN 3=31, ...
{ <aa> : aeB} , T, U {6,2} is

A(R:1,R2) good . So we can find :-

PET U ¢, [2]}

Ry
A,
Rz
CF 1 U le(a]}
but then by construction 2) cannot hold .

Clearly T has the A.P. iff
emb emb
(T,T,T,T) has the (c,c,%,és - A.P.

5.16 Corollary

T has the A.P. irf
whenever
TV (¢ T U BR)
where ¢R® and ©6X are wuniversal formulae ,
then there are existential formulae Y® and OF

s.t.

Tt V 2(yR v 6)
TV R( yR— ¢R)
TY ‘/x'( OX —20R) .

We say injections are transferable in T if

hom  hom
(T,T,T’T) haS the (C, o \), },C) h A.Po 9

where A-Qgng iff there 1is a homomorphism of
A imto B . Clearly we can characterize such T , as
was pointed out to me by Paul Bacsich .He also

suggested consideration of the following problem .
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5.17 Def ‘

We .say T has the Congruence Extension

Property ( C.E.P. ) iff

hom hom
(T,T,T,T)h has the (c, ShES * “SRES sC) = AP,
om

where A'BEfS’B iff there 1s a homomorphism of

A onto B .

hom

The i
problem here , of course , is that onto

is not Diagrammatic.

We ask ourselves , under what conditions on
T do we have , whenever f : ABY s where ABET
that the image of A under f 1is a model of T ¢
That 1is , what conditions on T prevents
for some ¢ € T
T, ¢é,0¢ ¢, T is (2Bs, ) good ?
The answer easily pops out that T 1is the union
of a positive theory and a universal theory .

Which was , perhaps , the expected answer .

.18 Theorem

Iet T be the union of a universal
theory and a positive theory .

T has the C,=8.P. iff

* (T,T,T,T) has the (c, ggﬁa», hom),c) - AP, .
Proof
Obvious from the definitions and our
restriction on T .

o
Thus. we can eagily find a characterization of

such T .

What is not so obvious 1is @
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2.19 Theorem

Let T be the union of a universal
theory and a positive theory .

T has the C.E.P. iff

~
-

** (T,T,T,T) has the (c,2%%, , Bom,

Proof
Rk~

Suppose we have

BE
& h,
m
Apr D
h s
Ontom 008
S o
Cg o

such that the diagram commutes .
It follows that each member of C 1is mapped to

some member of D, so we may assume Cc D .

C- E.P.—? *¥

Suppose

B T

Mo .
It suffices to show
TU{ ¢8 : ¢v is positive and B F ¢[B] for TeB |
U | ¢fd : ¢¥ is atomic or negated atomic
ZeA and C E ¢[f2] | 1is consistent .
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In view of +the condition on T
C' = ¢l fa : aeal F T
So it suffices to show that
T U} ¢8 : ¢¢ is positive and B kE ¢[B] for BeB }
U Diag C' is consistent , but this follows
from GC,E.P.
o

5.119” Assuming T 1is the wunion of a positive

theory and a wuniversal theory ,

T has the C.&P. iff whenever TFV R( 6% U ¢2 )
where X 1s the negation of an existential |
positive formula and ¢X is quantifier free ,
there are yX “~and O&X s.t. yX 1is existential
and O 1is existential positive s.t.

T ¥V 2( yR U o)
T YV R( y2— %)
TV R( ox—6R)

=3
)

e Strong Amalgamation Property

2.2
5221

|\
H

e

We say that a theory T has the Strong

Amalgamation Property (S.A.P.) if  whenever

B
%
A E T

N
N Cpog

there is Dk T s.t.
BgD and C¢D.

Here}'by c  we really mean inclusion , so again

the diagram commutes .
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If T has the S.A.P. then T has the A.P. .
The ©S.A.P. is a stronger condition than the A.ﬁf
In fact the theory of #®ields has the A.P. but 5
not the S.A.P. .

22
For convenience we definé

Meet(6, XY , 6,22 ) to be
Y2y2( (6,27 n 6,22 ) V y=
1 2 "?X K Z )

5e23 Theorem
A theory T has the §8S.A.P., iff
whenever Tt Meet(e,®y , 6,%2 ) where
6, XY and ©,X2 are the conjunctions of atomic
and negated atomic formulae in L(T) , there are
quantifier free formulae ¢,Xt and ¢,X¢' in L(T)
s.t. T F Vx( 3ty xt u Tt e xe' )
T - Meet(6,2¥ ,¢,Xt ) *
T b Meet(6,X2 ,¢,XT' )

Proof ¢

Suppose T has not the S.A.P. , so there

are A , B and CFT s.t. A=BNC and
Diag(B) u Diag(C) U T U {b#c : be domB-domA , cedomC-domA }
is inconsistent . That 1is to say , there are
conjunctions of atomic and negated atomic formulae ,
6, and 0,%2 in L(T) and constants &ed,
BedomB-domA and TedomC-domA s.t.

T} Meet(o,R®Y ,6,%2 ) where B E o,[a#8] and
C Feglae] .

I claim there are no quantifier free

formulae ¢, Xt and ¢,Xt' in L(T) s.t. * holds .

B . i .
] . ' . N

s -
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For otherwise , since Al Itg, (2] u 3Ft'¢, (7] iy
there are at and dt. in A s.t.
Ak g [za] or a4 Foglaa,.] .
W.l.0.g. we assume A ¢1[ﬁdt] .
It follows that B & ¢, [2d,] , and since BE T and
T v Meet(o, %y ,6;12 ) and Bk 0,28 there is ded, beB
s.t. BF d=b . This gives wus a contradiction
since bDedomB-domA and dteA . |
==:§;ume that there are conjunctions of atomic
and negated atomic formulae 6,Xy and ;X2 in L(T)
s.t. T Meet(6,RX¥ ,0,%2 ), but no open formulae
.z ¢, % and ¢,®¥E' in L(T) s.t. * holds.
i.e. s.t.

T+ V R(Itp, Xt U Tt g 2" )
«} TH V2@ nby (hyit)—giT )

VT Y R (0,32 n by phpRft' )= g RT')

Choose sequences of new distinct constants
éx s B& and 62 . Consider the ©binary relation
RBy between L(T)(ﬁiﬁycz) - structures , claiming
the existence of an embedding T
£ A|L(T)(3,) — B|L(T)(8,) s.t. for all
acA fa £ By .
Clearly the above relation has a S.C. , it 1is

not difficult to see that a notion of goodness

for RB consists of those pairs of formulae of
¥y

the form <3%,6%,%; V?1§691Ugaé& yAb—>"167.72 >
where 6® is an open formula in L(T)(ﬁx) i
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( In fact letting Ay be the above notion of
y

goodness , ARg > By » so it suffices to show
y y
that bp < by - )
y

y

Similarly we define R3 .
Z

We now consider the ternary relation (R§1,Rﬁ ).
By Theorem 4.62 we see that a notion of yooE
goodness for R 1is AR consisting of triples
of the form :
< ¥zs ¥1 U X4 s Xg > Where

< Yy ¥g> € AB and < XiXz> € by .
y z
I claim ‘that

T U ¢ eiﬁkﬁ& i, ¢ » T U la=a : ae'éX i, @ s oes
T U {eaakﬁz 1 is A, good .
For otherwise , there are open formulae
T+ 3f¢1§#1 U 3f'¢23kﬁ’
TU ieiﬁxb*y } t-V’ t( A o t#£b —", T )
t €T y
i ! 1 ——, ™} ?
TU {6,322, Y T (ﬁé\f' .céaztf-‘c >7 g2, )
Which 1is easily seen to contradict — #%% |
It follows that we can find L(T) structures
A ,B and C s.t. w.l.0.8. A,B and CE T

A=BNnC , BEo6[aB] and C 6:[3@] where

]

de¢A , B e domB~-domA and ©T € domC-domA .

So , by construction , T does not have the S.A.P.
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5.3

We turn now to an open problem of G.Gr#tzer ,

( see [G] page 299 »74 ) stated as follows

231
" Which sentences ® have the property that

the substructures satisfying ® of a structure A
form a sublattice of the lattice of all

substructures of A ? "

In [R] A.Robinson defines a sentence ® to be

convex 1if whenever
AF ®

B\:@ *

& %

Cg @

then if An C 1is a structure i.e. non—-empty ,
we have An CE @.
He proves the important result that if ©® is

convex then @ is VE.

Let us say that a sentence ® has the join

property if whenever * holds , [AU B]Cﬁ-’-®

where [A y B]C is the substructure of C generated
by domA y domB .

It is easy to see that ® has the property
in the open problem iff ® is convex and has the

join property .

In [Re ] M.O.Rebin gives a syntactic
characterization of a sentence to be convex . In

a further paper [Ray], he proves an alternative

characterization . We give here a further characterization.
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Let @ be a given sentence , which we assume

is of the fornm \/‘x13X§A(X125) where A(X ;)
is open . Consider the (2)-simple relation Ry
defined by :

3) inxzvivz (A 2,2, B9, 9, — ((AA 9,=F, n ¢F,)—>
(AL R, =%, n ¢R,))) for ¢ atomic
or negated atomic in L(®) .
L) VR23,3, (0 %2R, 7, AT ..
(AN R{RRYV, n A7) )n 4,97) )
5)  Va2,7,7, (0 2,2,89,7,— 2x! x}vv3 (x| x}Ry}¥) n
n ty,=y; n ty,=ys )) for ty, a term in L(®) .

Clearly R® has a 8.,C. with a notion of

goodness Ay .

®
We consider now a further (2)-simple relation

Rcon s defined by :

1) Vg (% =%, — 3, ¥, (X, KR, ¥, 0 Fy=,))

2)  V2,%,9,7, (A0 2R, T, (4R X—3 ) 427, T2))
where <y R, Ry »9p¥y Vo> € bRy °

To Jjustify these relations we show ;

5.32 Theorem
® is convex iff 7@, ¢ » ® is R, Dad.

Proof =

Suppose 1@, ¢ » ® 1is Rcon good , then there
2

2
are A, B and Rc A" XB S.t.

AF e BF ® AR,,B by R
W.l.0.g8. we may assume that if abRcd then a=b and

c=d . ( Simply cut R down to size h
It follows that Th(a%), R T™h(B") is AR® good , and

so we can find
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B, by Ry

®

A; < Ap B < By R, o R s.t. A, R
We define 8§, and S; as follows .
a Syb iff I cd s.t. acR;bd ,
¢c S;d iff Jab s.t. acR,bd .

A picture might help .

Which we now explain .

By 5) RgS, is closed under functions in B, , 80

B, |RgS; ¢ B, with domain RgS, | similarly

B, |RgSy ¢ B, with domain RgS, .

By L) B,|ReS F © for i e {1,2}.

It was here , of course , thast we required ® to be
Va.

By 3) the domain of B,|RgS, N B,|RgS, corresponds

to Rg(S, N S;) , and since S; N S, o { <a,b> : aaRbb } *#

Rg( S; NSx) £ ¢ -

Again Dby 3) and 5) S, NS, represents an isomorphism

from some Cc A, ( see picture ) onto B,|RgS; N B, |RgS, .

That C > A follows from #* .

Since A< A A, A FT1® and AcCc A and @
is V3, it follows that CET1® ( see 4.6 ) and
hence that B,|RgS, N B, |Rgs, kK @ , but then @

is not convex 3
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<=

Suppose ® 1s not convex , so there are

A,B,C,D s.t. AFTV® A=BNC and B ,C ,DE @

where

% ®
s o
C
Let S, = { <aa> : aeal U { <ab> : AeA be(domB-domA)}
S = { <aa> : aeA} U { <ac> : aeA ce(domC-domA)}

we define
abRed iff aS,c¢ and bS,4 .

I claim that
19, ¢ » ® is R good .

con
It suffices to show that ARDE 3 where
3 consists of all the sentences 1) 3) 4) 5) .
Which is not at all difficult to prove .
[n]
It follows that if ® 1is convex there will Dbe
a universal existential sentence 16, and a
universal sentence 6, s.t. < 0150, > €dp *k
‘ con
and 16, F @ k6
The reader may wonder how we came upon such
a result . In fact the method was quite simple .
We drew the picture and described it |using
1) 2) 3) 4) 5) quite naturally . We then separated,
again naturally] into two relations in order to
ensure that in the above ** 6, could be chosen
existential universal . For the detailed proof we

simply had faith !
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We turn now to +the condition that @ should
have the Jjoin property . Once again we assume ®
is ¥3 and so of the form V2, 3%, 4(%,%,) where
A(%{R,) 1is open.

Consider the (1,1,1)-simple relation Rjoin

defined by :

1) V¥V x,3y, (x,R,y,)

2) Vx5.% (X,R9, 0 %, =Xp =3y, (XR,¥s 0 ¥4=55))

3) V/ngaxi(xeRsya N X, =X, =3y, (X,R,¥; N ¥4=Y3))

) V&mMA&&&n(¢&~me where ¢ 1is atomic
or negated atomic in L(®) .

5)  FX¥a (%3Rp¥e)

6)  3x3¥3(X3Rs¥s)

7) V2.9, (AL R;R.¥, —IRIPL AL KBS 0 A(TLTE)))

8) V 2,7, (AN R,R ¥, —>IRITL(AA RIRYE 0 A(YLTS)))

9) W27, (A %R, ¥, —3x}y4 (K3Ro53 N t¥,=y4 )) for
ty, a term in L(O) .

10) V2,7, (A 2 R¥s —>3x}y3 (x3Ro¥S 0 t¥o=yd ) for
ty, a term in L(®).

H.34 Theorem
® has the Join property iff for all

sequences of terms of 1length 1g(X,) = n (say) ,
t, (2,31 )seeestn(Zy¥,) and all sequences of new

distinct constants in,...,azn,ﬁyi,...,ﬁ&n

¥ RA( (2, By )seentn(@, By )5%a), ¢ 5 R 5 Ro 5 @

is Rjoin bad .Where Ry =1<sti <aa> aeﬁzL }

and Rs =1<st§ <bb> beB&L } .
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Proof =3
Suppose the R.H.S. does not hold , so
there L(®)-structures A and B s.t.

AE VstzA[ti(a*Zivyi),...,tn(ﬁzntryn),xz] *

B k ® where w.l.0.g. WwWe may assume A c B .
Since , for ie{2,3} , Rg(R,) ¢ B is closed under
functions B|Rg(Ry) ¢ B with domain Rg{Ry).

In fact it 1is easy to see that
B|Rg(R)F @ and B|Rg(R ) c A for i e {2,3}.

We thus have the following situation ,

B|Rg(Ry)
| Re(R, IS |
A< B

B|Reg(ks) <=
It follows that
[ B|rg(R:) U B|Rg(Rs) l; F1@ by * and
hence that ® has not the Jjoin property .
Suppose now that ® has not the join property .

So for some A, B and C we have

Ak@ -
AN .
[AUBJCk":@) = C ko

&

B g

Let R, be the identity over [A UB],

Ry be the identity over A and

R; be the identity over B .

It is now easy ( though tedious ) to show that

the R.H.S. of the theorem fails . O
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It follows that we can now characterize the
sentences satisfying 5.31 . It 1is not a very
enlightening result , but dJdoes show the existence
of a solution . We think that the methods employed
are more important than the results themselves , and

hope that they will ©be further developed .
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