ON THE SYNTACTIC CHARACTERIZATION OF SOME MODEL THEORETIC RELATIONS

By

David A. Bryars

ProQuest Number: 10107758

All rights reserved

INFORMATION TO ALL USERS

The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest 10107758
Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author.
All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346

ABSTRACT

In this thesis we consider binary
relations over the class of L - structures, for some fixed language L. Such a binary relation R, induces a binary relation R^{*} between the class of theories in L; in the following natural way. If T_{1} and T_{2} are theories in L then $T_{1} R * T_{2}$ iff $\exists A, B \quad A F T_{1}, B F T_{2}$ and $A R B$ We characterize syntactically those pairs of theories related by R^{*} by introducing the concept of a notion of goodness for R. This consists of a set of ordered pairs of sentences in L, Δ, with the property that for theories T_{1} and T_{2} * $T_{1} \mathrm{R}^{*} \mathrm{~T}_{2}$ iff for no $\left\langle\dot{\psi}_{1}, \phi_{2}\right\rangle \in \Delta$ do we have $\mathrm{T}_{1} \vdash \phi_{1}$ and $\mathrm{T}_{2} \vdash \phi_{2}$.

Provided Δ is defined in a syntactically simple way, we find , by negating both sides off * and restricting the theories to sentences that the property * closely resembles an Interpolation $:$ Theorem for R. Actually, a notion of goodness is more complicated than this and our results are more general.

In the established approaches to find Interpolation Theorems, the weak point has been in the understanding of "syntactically simple". We show, by considering certain relations which can be "described " by a theory in a particular language extending I, that a notion of goodness can often be found immediately from such a theory . Indeed we find a model theoretic

(3)

condition on R for which this is possible. It turns out to be a "union of chains " condition.

Using this approach we obtain many Interpolation Theorems by analysing the structure of the theories used to "describe " R . In particular the methods are used to prove a version of Feferman's Interpolation Theorem in a many-sorted language.

We give a characterization of those theories with the Amalgamation Property and the Strong Amalgamation Property . We conclude with a solutzaon of an open problem of G. Grytzer.

To my wife :

```
but for whom this thesis would not
be in its present state.
```


Contents

Chapter 1 page 6
Chapter 2 page 11
Chapter 3 page 37
Chapter 4 page 56
Chapter 5
page 87
Bibliography page 106

CHAPTER 1

1.1 Notation

1.11 Set Theoretic

We use the standard notation
for set theoretic concepts .
e.g. \cap (intersection) , U (union)

- (difference), X (cross product) and ϕ for the empty set. We write $X \subset Y$ if X is a (not necessarily proper) subset of Y.

We use m, n etc. for integers and ω for the
order type of the integers . Other ordinals will be denoted by μ, ν, κ etc. S_{0} is the cardinality of the integers, $\operatorname{Card}(\omega)$.

A sequence of objects a_{1}, \ldots, a_{n} will sometimes be thought of as the set $\left\{a_{1}, \ldots, a_{n}\right\}$. The context will decide which case holds. The length of the above sequence, denoted by $\lg \left(a_{1}, \ldots, a_{n}\right)$ is n.

1.12 Languages and Theories

We consider First Order
Predicate Languages L , with equality, whose logical connectives are $n, \cup, 7, \rightarrow, \longleftrightarrow$ and quantifiers are \forall and \exists. L may contain functions and individual constants as well as predicate letters. Terms, formulae, sub - formulae, sentences and other notions are defined as usual. (See e.g. [B.S] chapter 3.)

We use ϕ, ψ, θ, Φ etc. for formulae
and write $\phi \in \mathrm{L}$ if ϕ is a formula in L.
A set of sentences (in L) T is called a theorg (in L) ; we write $T \vdash \phi$ if we can poove ϕ from T. If T is a theory we wri也e $L(T)$ for the language of T, and $L(\phi)$ for $L(\{\phi\})$.

If L is a language and \hat{B} is a set of individual constant symbols, $L(E)$ is the language obtained from L by the addition of the individual constant symbols in \mathbb{E}. Const(L) is the set of individual constant symbols in L. Other notation used for extending languages will be defined or it will be obvious what is meant.

If ϕ is a formula in L and U is a unary predicate symbol, then ϕ^{U} is the relativization of ϕ to U. For a definition see e.g. [B.S] page 249.

We use t for some arbitrary true sentence and f will denote $7 t$:

If $\phi\left(v_{1}, \ldots, v_{n}\right)$ is a formula and for $1 \leqslant i \leqslant n$ \vec{a}^{i} is a sequence of terms s.t. $\lg \left(\overrightarrow{a x}^{i}\right)=m$ (say) then

$$
\Lambda \Lambda \phi\left(\vec{a}^{1}, \ldots, \overrightarrow{a_{n}}\right) \text { means } f \sum_{m} \phi\left(\vec{a} \frac{1}{j}, \ldots, \vec{a}_{j}^{n}\right) .
$$

If X is a sequence 0 variables, \vec{a}_{X} is a sequence of individual constants s.t. $\lg \left(\vec{a}_{x}\right)=\lg (\vec{x})$. If the variables in ϕ (free or bound) include X, then $\phi\left(\vec{a}_{x}\right)$ is obtained by replacing each variable x_{j} in ϕ by $\left(\vec{a}_{x}\right)_{j}$, and in case \vec{x}_{j} was a bound variable in ψ then the quantifiers of \mathbb{x}_{j} are omitted, for $j \in \lg (\mathbb{X})$.
e,g. $\exists x_{1}\left(x_{1}<x_{2}\right)\left(\vec{a}_{x_{1} x_{2}}\right)$ is $a_{x_{1}}<a_{x_{2}}$.

1.13 Models and L - structures

$$
\text { We use } A, B, C, D
$$

and E as names for L - structures. The lamguage of $A, L(A)$ is L. We assume the reader is familiar with the notion of satisfaction of formulae $\psi \in L$ in the L - structure A. In particular, for a theory T in $L, A F T$ iff $A F \psi$ for $\psi \in T$. $\operatorname{Th}(A)$ is the theory of A i.e.
$\{\psi: A \vDash \psi \psi$ a sentence in $L(A)\}$
Sometimes we do not distinguish between A and $\operatorname{dom}(A)$, the domain of A. Thus, for instance, $a \in A$ means $a \in \operatorname{dom}(A)$. If A is an L - structure, A^{+}is the $L(\operatorname{dom}(A))$ - structure (Aa) $a_{a \in A}$.

We write $A \simeq B$ if A is isomorphic to B;
$A \subset B$ if A is a substructure of B and $A \leqslant B$ if A is an elementary substructure of B. If $X \subset \operatorname{dom}(C)$ then $C \| X$ is the structure whose domain is the smallest subset of C extending X closed under the n-ary functions of. C for $n \geqslant 1$ and for atomic formulae $\theta(\vec{v})$ in $L(C)$ whose individual constants belong to Const($L(C \| X)$)

$$
C \| x \neq \theta(\vec{a}) \quad \text { iff } \quad C \& \theta(\vec{a})
$$

where $\vec{a} \in \operatorname{dom}(C \| X)$ and $L(C \| X)$ is the same as $L(C)$ except that individual constants whose interpretations in C are not in $\operatorname{dom}(C \| X)$ are omitted. In particular if Const(L(C)) ${ }^{C} C X$ then $C \| X$ is the substructure of C generated by X.

C|L is the L - structure obtained from C by omitting all the interpretations of symbols not occurring in L. ($L(C)$ will always extend L when this notation is used).

If $\psi\left(v_{1}, \ldots, v_{n}\right)$ is a formula in $L(C)$ then $\psi^{C}\left(v_{1}, \ldots, v_{n}\right)$ is the nary relation over C defined by $\left\langle c_{1}, \ldots, c_{n}\right\rangle \in \underset{\psi}{\mathcal{W}}\left(v_{1}, \ldots, v_{n}\right)$ eff $C F \psi\left[c_{1}, \ldots, c_{n}\right]$.

1.14 Canonical Structures.

A theory T is consistent.
if for no $\psi \in L(T)$ do we have $T \vdash \psi$ and $T \vdash T \psi$,
it is s.t.b. (said to be) complete if for all
sentences $\psi \in L(T) \quad T \vdash \psi$ or $T \vdash T \psi$ -
We call a theory T a Henkin Theory of (if and only if $)$ for all $\psi\left(v_{0} A_{1} \ldots, \omega_{n}\right) \in L(T)$ there is a $c \in \operatorname{Const}(L(T)$) s.t. (such that) the sentence $\left(\exists \mathrm{v}_{0} \psi\left(\mathrm{v}_{0} a_{1}, \ldots, a_{n}\right) \longrightarrow \psi\left(c, a_{1}, \ldots, a_{n}\right)\right) \in T$.

It is well known that every consistent theory T can be extended to a consistent Henkin Theory, T'. Where for some set of individual constants \hat{E}

$$
L\left(T^{\prime}\right)=L(T)(\hat{\mathbb{N}}) .
$$

We call sích a theory T^{\prime} a Henkinization of T. If T is a consistent theory, there is a complete extension, T^{\prime} s.t. $L(T)=L\left(T^{\prime}\right)$ and if T is a Henkin Theory so is T^{\prime}.

We call T^{\prime} a H.C.C. extention of T if T^{\prime} is a complete consistent extention of T which is a Henkin Theory . It suffices that T be consistent for such to exist.

If ${ }^{\prime \prime} \mathrm{T}^{\prime}$ is a H.C.C. extention of ${ }^{\prime} \mathrm{T}$ then T^{\prime} is a conservative extension of T, i.e. for any sentence $\psi \in L(T) \quad T^{\prime} \vdash \psi \Longrightarrow T \vdash \psi$

Let T be any consistent complete Henkin Theory, we define the canonical model [T] of T to be the $L(T)$ structure whose domain is the set of closed terms in $L(T)$ factored by the equivalence relation \sim defined by $\tau \sim \sigma$ iff $T \vdash \tau=\sigma$. For $c \in C o n s t(T) \quad \hat{c}$ is the equivalence class under
~ containing c. The relations and functions of
[T] are defined as usual, e.g.
if $R(\nabla) \in L(T)$ then
$[T] \vDash R[\vec{\tau}]$ iff $T ト R(\vec{\tau})$.
It can easily be shown that $[T] F T$.
For any L - structure $A, \operatorname{Th}\left(A^{+}\right)$is a Henkin Theory which is complete and consistent and

$$
\left[\operatorname{Th}\left(A^{+}\right)\right] \mid L \simeq A
$$

1.2 Acknowledgments

I would like to take this
opportunity of thanking the S.R.C. for the financial support given to me for three years. I would also like to thank the staff of Bedford College, in particular my thesis advisor Dr. Wilfrid Hodges for their advice and encouragenent during my undergraduate and postgraduate work .

CHAPTER 2

2.1 Introduction

Let L be a First Order Language and R be a binary relation between E-structures.

We say that R has a Preservation Theorem
if we can define in some syntactically "simple"
way a set of sentences Δ in L sot.
for any sentence $\phi \in \mathrm{L}$
$\forall A \forall B(A$ and B L-structures $A \neq \phi$ and $A R B$ imply

$$
B \notin \phi)
$$

iff ϕ is equivalent to some member of Δ
There are many generalizations of the above given in the literature, for example
a) We introduce a theory T in L and in the above add the further condition " $A \neq T$ and $B F T$ " to the L.H.S. (left hand side) and replace " logically equivalent" by " equivalent under T" in the R.H.S.
b) We obtain an Interpolation _Theorem_ for R if under the above conditions for Δ,
for any sentences $\phi, \psi \in \mathrm{L}$ we have
$2.11 \forall A \forall B(A, B$ L-structures $A F \phi$ and $A R B$ imply $B \vDash \psi$)
iff there is $\sigma \in \Delta$ sot. $\phi \vdash \theta$ and $\theta \nmid \psi$ In the above case θ is s.t.b. an interpolant for ϕ and ψ.

Many relations R have an interpolation theorem and hence a preservation theorem by substituting ϕ for ψ

For example if R is the relation between
L-structures given by
$A R B$ iff there is an embedding of A into B then letting Δ be the set of existential sentences in L we obtain, as is well known, an interpolation theorem for this R

Suppose we rewrite, 2.11 by negating both sides to obtain
$\exists A \exists B(A, B$ L-structures s.t. $A F \phi$ and $A R B$ and $B \vDash\urcorner \psi$)
iff for no $\theta \in \Delta$ do we have $\phi \vdash \theta$ and $\boldsymbol{7} \psi \vdash \boldsymbol{\vdash} \theta$

This reformulation makes sense if we

1) replace sentences $\phi, 7 \psi$ by theories T_{1}, T_{2} in L 2) replace Δ by a set of ordered pairs of senteñes (but still maintaining a similar condition on the simplicity of Δ)
to obtain a property that R might possess. Namely

2,12 For all theories $T_{1} \quad T_{2}$ in L
$\exists A \exists B$ (A, B-structures s.t. $A R B$ and $A \neq T_{1}$ and $B=T_{2}$) iff for no $\left\langle\theta_{1}, \theta_{2}\right\rangle \in \Delta$ do we have $T_{1} f \theta_{1}$ and $T_{2} \nmid \theta_{2}$

This reformulation is now suitable for considering n-ary relations P, for by letting Δ be a set of n-tuples of sentences in L we pbtain a meaningful property of P in the obvious way.

It is a further generalization of 2.12 that we shall consider in this thesis.

Since we have weakened the original condition on Δ, it might be supposed that for all relations R there is a Δ satisfying 2.12. The following

Lemma suggests otherwise.

2.13 Lemma

There exists a binary relation R s.t.
for no Δ does 2.12 hold.
Proof:
Let L be any language.
We define a binary relation R between L-structures as follows
$A R B$ iff A is finite.
Suppose a set of ordered pairs of sentences Δ exists set. 2.12 holds with this Δ.

We let $\left.T_{1}=\left\{\exists x_{0} \ldots x_{n} \nsubseteq \Lambda_{\substack{i \in n_{j} \in n \\ i \neq j}}^{\Lambda} x_{i} \neq x_{j}\right) n \in \omega\right\}$
$\mathrm{T}_{2}=\{\exists \mathrm{x}(\mathrm{x}=\mathrm{x})\}$
Since the L.H.S. of 2.12 cannot hold for this choice of T_{1}, T_{2} there must be $\left\langle\theta_{1}, \theta_{2}\right\rangle \epsilon \Delta$ s.t. $T_{1} \mid-\theta_{1}$ and $T_{2} f \theta_{2}$
So there is a finite subset, say $T_{1}{ }^{\prime}$ of T_{1} s.t. $\mathrm{T}_{1}, \mid \theta_{1}$
But clearly T_{1} has a finite model.
It follows easily that we have a contradiction.

2.2 Simple Relations

Let L be any First Order Language.
For simplicity we consider binary relations in this section. The following definitions can be extended to include nary relations if required.
A relation R between pairs of L-structures A, B often asserts the existence of a finite number of relations R_{i} : ie m st.
$\dot{R}_{i} \subseteq A^{n_{i}} X B^{n_{i}}$ for some n_{i} i $\in m$
together with certain simple conditions on the R_{i} For example
i) R-1 is a function from A^{3} to B^{3}
ii) R_{2} is an embedding of A into B For such relations we can define a useful new language.

Let B be a set of individual constants sot. Bn Const $(L)=\phi$, for which there is a bijection

$$
I: \text { Const }(L) \rightarrow \hat{B}
$$

If L^{\prime} is the language obtained from L by omitting all the individual constants in Const(L) then 1 induces in the natural way a bijection between the class of L-structures and the class of $L^{\prime}(B)$ structures.

When the context permits we shall not distinguish between L-structures and $L^{\prime}(\hat{B})$-structures. However, the reason for introducing the new set of individual constants will be seen from the next two definitions.

Def

We define $L^{n_{1}}, n_{2}, \ldots, n_{m}\left(L^{n}\right)$ to be the
language extending L by adding
the new individual constants B
two new unary predicates $U_{1} U_{2}$ m new predicates $R_{1}^{n_{1}}, \ldots, R_{m} n_{m}$ where for $1 \leqslant i \leqslant m \quad R_{i} n_{i}$ is $2 n_{i}-\operatorname{ary}$.

For many binary relations R between L-structures there are $m \in \omega$ and $n_{1}, \ldots, n_{m} \in \omega$ s.t. $L^{n_{1}, \ldots, n_{m}}$ is a suitable language for discussing R. The next definition defines the class of those relations we shall be interested in.

2.21 Def

A binary relation R between L-structures
is s.t.b. ($n_{1}, n_{2}, \ldots, n_{m}$)-simple (or just \underline{n} - simple)
if there is a theory T in I^{n} sot.
i) For any L-structures A and B
$A R B$ iff $\exists \mathrm{C}$ an L^{n} structure sot.
a) $C \neq T$ and U_{1}^{C}, U_{2}^{C} are closed under the functions in L.
b) $\mathrm{C} \| \mathrm{U}_{1}^{\mathrm{C}} \mid \mathrm{L}=\mathrm{A}$
c) $C \| U_{2}^{C} \mid L^{\prime}(B)=B$ -

For any $I^{\underline{n}}$-structure D we set $D_{1}=D \| U_{1}^{C} \mid L$ and $D_{2}=I \| U_{z}^{C} \mid I^{\prime}(\hat{B})$.
ii) Whenever C and D are $L^{\underline{n}}$-structures sit. $C \neq T$ and U_{1}^{C}, U_{2}^{C} are closed under the functions in $L, f: C_{1} \simeq D_{1}$ and $g: C_{2} \simeq D_{2}$
and for $1 \leqslant i \leqslant m$
$\left\langle a_{1}, \ldots, a_{n_{i}}, b_{1}, \ldots, b_{r_{i}}\right\rangle \in R_{i}^{n_{i} C} \cap\left(\left(U_{4}^{C}\right)^{n_{i}} X\left(U_{2}^{C}\right)^{n_{i}}\right)$ if $\left\langle f a_{1}, \ldots, f a_{n}, g b_{1}, \ldots, g b_{n_{i}}>\in R_{i}^{n_{i} D} \cap\left(\left(U_{1}^{D}\right)^{n_{i}} X\left(U_{2}^{D}\right)^{n_{i}}\right)\right.$, then D F T.

Though the above definition is a little long, we claim that it is a natural definition to consider, indeed similar and related definitions can be found in $[L]$ and $[M]$, chapter 11.

Part 1) of the definition demands that if $A \simeq A^{\prime}$ and $B \simeq B^{\prime}$ and $A R B$ then $A^{\prime} R B^{\prime}$. Part ii) says that what is " going on " outside of C_{1} and C_{2} is irrelevant. Indeed we can make this more precise by demanding that in the definition T contains the set of sentences Σ which says " U_{i} is nonempty and closed under the functions whose names occur in L. (for $i=1,2$) U_{1} contains the individual constants in L, U_{2} contains the individual constants in B and for $1 \leqslant i \leqslant m$
$R_{i}^{n_{i}} \subset\left(\left(U_{1}\right)^{n_{i}} X\left(U_{2}\right)^{n_{i}}\right) "$ in part i) of Def 2.21. Clearly Σ is a theory in L^{n}. Demanding that T contains $\Sigma_{\lambda}^{i n}$ i) the effect of tidying up the definition (and our picture) without altering the concept of \underline{n}-simple. In particular if an I^{n}-structure C is sot. $C F \Sigma$ then the $\operatorname{dom}(C)=U_{i}^{C}$ for $i=1,2$ If T is a theory in $I^{\underline{n}}$ and a binary relation R is n-simple by virtue of $T \cup \Sigma$ in Def. 2.21 then we call it T_{R}. (there may be more than one such T_{R}) Conversely, if T is a theory in I^{n} and we define a binary relation R between L-structures A, B by.
$A R B$ inf \exists an L^{n-} structure C s.t.
c盾TU
$\mathrm{C}_{1}=\mathrm{A}$
$\mathrm{C}_{2}=\mathrm{B}$
then if R is n-simple and some $T_{R}=T$ then we shall call $R \quad R_{T}$.
Thus for \underline{n}-simple relations we have defined theories T_{R}, and for certain theories T we have defined a binary relation R_{T} which is n-simple. Infect one can give a syntactic condition on T for which R_{T} is defined, see 3.4 .
For such T there is clearly a $T_{R_{T}}$ sot.

$$
T=T_{R_{T}}
$$

The relation of c is not $n-s i m p l e$ for any n but the relation of embedding is; as is isomorphism, homomorphism, end-extension (when suitably defined) and many other relations.

For the rest of this section let R be a fixed ${ }^{n-s i m p l e y ~} \lambda^{\text {impletion }}$ and choose some $T_{T P}$.

Def

We write $A, R_{1}, \ldots, R_{m}, B \neq T_{R}$ if for some I^{n}-structure C

C $\boldsymbol{F}_{\mathrm{T}_{\mathrm{R}} \cup \Sigma} \cup$
$C_{1}=A$
$\mathrm{C}_{2}=\mathrm{B}$
for $1 \leqslant i \leqslant m$
$R_{i}=R_{i}^{n_{i} C}$
It then follows from $D \in f .2 .21$ that $A R B$

Def
We say $\mathbb{T}_{1}, R_{1}, \ldots, R_{m}, T_{2}$ is an \underline{n}-sequence (in L)
if for some set of indivual constants $\hat{\dot{B}}$
$\mathrm{T}_{1}, \mathrm{~T}_{2}$ are theories in $\mathrm{L}(\hat{\mathrm{E}})$
and for $1 \leqslant i \leqslant m$
q $\subset \operatorname{Const}\left(L\left(T_{1}\right)\right)^{n_{i}} X \quad \operatorname{Const}(L(T 2))^{n_{i}}$
Def
If $T_{1}, R_{1}, \ldots, R_{m}, T_{2}$ is an \underline{n}-sequence we
write $T_{1}, R_{1}, \ldots, R, T$, $F T_{R}$ of
T_{1} and T_{2} are H.C.C. theories s.t.
$\left.\left[\mathrm{T}_{1}\right] \mid \mathrm{R}_{1}^{\prime}, \ldots, \mathrm{Rm}^{\prime},\left[\mathrm{T}_{2}\right]\right] i \neq \mathrm{T}_{\mathrm{R}}$
where for $1 \leqslant i \leqslant m$

$$
\bar{a} R_{i}^{\prime} \bar{b} \text { iff } \bar{a} R_{i} \bar{b}
$$

If γ is an n-sequence $T_{1}, R_{1}, \ldots, R_{m}, T_{2}$
we write $T_{1}{ }^{\gamma}$ for $T_{1} R_{1}{ }^{\gamma}$ for R_{1} and so on.

Def
If γ and δ are n-sequences we write
$\gamma \subset \delta \quad$ iff $T_{i}^{\gamma} \subset \quad T_{i}^{\delta} \quad i=1,2$
and $R_{i}^{Y} \subset R_{i}^{\delta} \quad 1 \leqslant i \leqslant m$.

2.22 Def

We say an n-sequence γ is an approximation to T_{R} if there is an n-sequence δ set. $y \subset \delta \quad$ and $\quad \delta \neq T_{R}$

If γ is an approximation to T_{R} and T is another possible choice of T_{R} then γ may not be an approximation to T. For consider the (1)-simple
relation P for which $A P B$ iff A, B are
I-structures. A suitable T_{P} is

$$
T_{1}=\left\{\exists v_{0} \in U_{1} \exists v_{1} \in U_{2}\left(v_{0} P_{1}^{1} v_{1}\right)\right\}
$$

but so also is

$$
T_{2}=\left\{7\left(\exists \mathrm{v}_{0} \in \mathrm{U}_{1} \quad \exists \mathrm{v}_{1} \in \mathrm{U}_{2}\left(\mathrm{v}_{0} \mathrm{P}_{1}^{1} \mathrm{v}_{1}\right)\right)\right\}
$$

Let y be $a=a,\{\langle a, b\rangle\}, b=b$.
Then y is an approximation to T_{1} but not T_{2}.

This problem does not arise, however , for those n-sequences whose relations are empty. More precisely if γ is an \underline{n}-sequence of the form $T_{1}, \phi, \ldots, \phi, T_{2}$ and G_{1} and G_{2} are two possible choices for T_{R} then γ is an approximation to G_{1} iff γ is an approximation to G_{2}. For if γ is an approximation to G_{1} then there are $A \vDash T_{1} \quad B \neq T_{2}$ and suitable $\mathrm{R}_{1}, \ldots, \mathrm{~K}_{\mathrm{m}}$ set.

$$
A, R_{1}, \ldots, R_{m}, B \vDash G_{1}
$$

So AR B
Hence there is $C F G_{2} \cup \Sigma$ s.t.

$$
C_{1}=A \text { and } C_{2}=B \text {, }
$$

So $A,\left(R_{1}^{n_{i}}\right)^{C}, \ldots,\left(R_{m}^{n_{m}}\right)^{C}, B \vDash G_{2}$
and so γ is an approximation to G_{2}
Symmetry gives us our result.
2.3 n - sets

We suppose that $I^{\underline{n}}$ has the variables of the form $v_{\text {jikp }}$ for

$$
\begin{aligned}
& 0 \leqslant j \leqslant 1 \quad, 0 \leqslant i \leqslant m, 1 \leqslant k \leqslant n_{i} \text { vihen } 1 \leqslant i \leqslant m \\
& k=0 \text { when } i=0, \emptyset \in \omega .
\end{aligned}
$$

For variables of the form $v_{\text {oik }}$ we write $x_{i k p}$ and refer to them as x-variables.

For variables of the form $v_{1 i k \rho}$ we write $y_{i k \rho}$ and refer to them as y-variables.
\vec{X} with or without subscripts denotes a sequence of x-variables. Similarly for \vec{y}.
We say \vec{x} corresponds to \vec{y} if they are of the same length and for $j<I g(x)$ if $x_{j}=v_{\text {oik }}$ then $y_{j}=v_{1 i k \rho}$.
If we use \vec{X}, \vec{y} (with the same, subscripts) in the same context then they will correspond.

We say \vec{X} is a complete sequence if whenever
$x_{i t \rho} \in \vec{x}$ where $1 \leqslant i \leqslant m$ and $1 \leqslant t \leqslant n_{i}$
then $\quad x_{i_{s} \rho} \in \mathbb{X}$ for $1 \leqslant s \leqslant n_{i}$
We say \vec{x} is similar to \vec{x}_{1} if

$$
\lg (\vec{x})=\lg \left(\vec{x}_{1}\right)
$$

and for some function $f ;\{1, \ldots, m\} X \omega \longrightarrow \omega$ for $j<\lg (\vec{x})$, if the $j^{\text {th }}$ element of \vec{x} is $x_{i} \rho$ then the $j^{\text {th }}$ element of \vec{x}_{1} is $x_{i t} f(i \rho)$. The above definitions enable us to simplify later definitions.

If $\phi_{1}(\vec{x}), \phi_{2}\left(\vec{x}_{1}\right)$ are formulae in L then we write $\phi_{1}(\vec{x}) \sim \phi_{2}\left(\vec{x}_{1}\right)$ if \vec{x} is similar to \vec{x}_{1} and $\phi_{2}(\vec{x})$ is obtained from $\phi_{1}(\vec{x})$ by (possibly)
changing bound variables, in such a way that no free variable becomes bound and no bound variable occurs among the \vec{x}_{1}. For further information on the notions involved here see [B.S] page 53.
A similar definition is assumed for formulae containing y-variables free, rather than x-variables.

We give now an important definition of a class of ordered pairs which represents the possible choices of those Δ occurring in 2.12 . The justification for this will be seen in Theorem 2.42 below.

2.31 Def

A set of ordered pairs of formulae (in L) Δ is called an n-set (in L) if
i) If $\left\langle\phi_{1}(\vec{\nabla}), \dot{\phi}_{2}\left(\vec{\nabla}_{1}\right)\right\rangle \in \Delta$ where $\vec{v}, \vec{\nabla}_{1}$ are precisely the free variables occurring in ϕ_{1}, ϕ_{2} respectively then $\vec{\nabla}$ are x-variables and ∇_{1} arey-variables and \vec{v} corresponds to \vec{v}_{1}
ii) If $\left\langle\phi_{1}(\vec{x}), \dot{\phi}_{2}(\vec{y})\right\rangle \in \Delta$ then \vec{x} is complete and if $x_{i t \rho} \in \mathbb{X}$ then $1 \leqslant i \leqslant m$.
by i) \vec{x} corresponds to \vec{y}, though this also follows from our convention.
iii) $\{\langle t, f\rangle,\langle f, t\rangle\} \subset \Delta$
iv) If $\left\langle\phi_{1}, \phi_{2}\right\rangle \in \Delta$ and $\left\langle\theta_{1}, \theta_{2}\right\rangle \in \Delta$ then $\left\langle\phi_{1} \cap \theta_{1}, \phi_{2} \cup \theta_{2}>\epsilon \Delta\right.$ and $\left\langle\phi_{1} \cup \theta_{1}, \phi_{2} \cap \theta_{2}>\in \Delta\right.$
vt If $\left\langle\phi_{1}(\vec{x}), \phi_{2}(\vec{y})\right\rangle \in \Delta$ and $\theta_{1}\left(\vec{x}_{1}\right), \theta_{2}\left(\vec{y}_{1}\right)$ are set. $\phi_{1}(\vec{x}) \sim \theta_{1}\left(\vec{x}_{1}\right)$ and $\phi_{2}(\vec{y}) \sim \theta_{2}\left(\vec{y}_{1}\right)$ then $\left\langle\theta_{1}\left(\vec{x}_{1}\right), \theta_{2}\left(\vec{y}_{1}\right)\right\rangle \in \Delta$.
(By our convention i) still holds).
If such is the case we write $\left\langle\phi_{1}(\vec{x}), \phi_{2}(\vec{y})\right\rangle \sim\left\langle\theta_{1}\left(\vec{x}_{1}\right), \theta_{3}(\vec{y} \hat{l})\right\rangle$ The following facts are easily proved.
a) The intersection of a set of \underline{n}-sets (in L) is an $n \operatorname{set}$ (in L).
b) Any set of pairs of formulae satisfying i), ii) of the definition can be extended to a unique smallest n-set.
c) $\{\langle t, f\rangle,\langle f, t\rangle\}$ is considered to be an n-set for any n.

2.4 Goodness

We now link n-sets even more closely with 2.12. Def

If y is an n-sequence and X a sequence of x-variables, then we say \vec{Z} and \hat{b} are γ consistent for \vec{x} if
i) $\vec{a} \in \operatorname{Const}\left(L\left(T_{1}^{Y}\right)\right)$ set. $\lg (\vec{a})=\lg (\vec{X})$
ii) $\forall \in \operatorname{Const}\left(L\left(T_{t}^{Y}\right)\right)$ set. $\lg (\forall)=\lg (X)$
iii) whenever $v_{j 1}, \ldots, v_{j n_{i}}$ contained in \vec{X} isof the form $x_{i 1 \rho}, \ldots, x_{i_{n_{i}}} \rho$ where $1 \leqslant i \leqslant m \quad$ then $<a_{j 1}, \ldots, a_{j n_{i}}, b_{j 1}, \ldots, b_{j n_{i}}>\in R_{V}^{Y}$
2.41 Def

If Δ is an \underline{n}-set, an n-sequence γ is s.t.b.
Δ good if whenever $\left\langle\phi_{1}(\vec{x}), \phi_{2}(\vec{y})\right\rangle \in \Delta$ and \vec{a} and \vec{b} are y consistent for \vec{x}
we do not have

$$
T_{1}^{y} \vdash \phi_{1} \vec{a} \quad \text { and } \quad T_{2}^{y} \vdash \varphi_{2} \nabla b
$$

If γ is not Δ good we say γ is Δ bad.
The following Theorem collects up some of the facts following from the definitions.

2.42 Theorem

Let Δ be any n-set (in L)
a) If y and δ are \underline{n}-sequences set. $y \subset \delta$ then if δ is Δ good, y is Δ good
b) If the n-sequence $\gamma=T_{1}, R_{1}, \ldots, R_{m}, T_{2}$ is Δ good then there is an extension of y of the form $T_{1}^{2}, R_{1}, \ldots, R_{m}, T_{2}^{2}$ which is Δ good, where T_{1}^{2} and T_{2}^{2} are H.C.C. theories in some $L(\hat{\mathrm{E}})$.
(See Chapter 1 for the definition of H.C.C)
c) If $\left\{\gamma_{\alpha}\right\}_{\alpha<\mu}$ is a sequence of \underline{n}-sequences sot. $\gamma_{\alpha} \subset \gamma_{\beta}$ for $\alpha \leqslant \beta<\mu \quad$ and γ_{α} is $\Delta \operatorname{good} \alpha<\mu$ then

$$
\alpha<\mu_{\alpha}=\alpha<\mu^{T_{1}^{Y \alpha}}, \alpha<\mu^{\mathrm{R}_{1}^{\gamma \delta}}, \ldots \alpha \cup \bigcup^{\mathrm{R}_{\mathrm{m}}^{Y \alpha}}, \bigcup_{\alpha<\mu^{2}}^{\gamma \alpha} \text { is } \Delta \text { good }
$$

Proof

Part a) follows from the definition 2.41
Part. b); Since y is Δ good T_{1}^{y}, T_{2}^{y} are
both consistent (See 2.31 iii))
We can Henkinize T_{1}^{y}, T_{2}^{y} to obtain T_{1}^{0}, T_{2}^{0} say.
It can easily be checked that $T_{1}^{0}, R_{1}, \ldots, R_{m}, T_{2}^{0}$ is
Δ good, by the conservative property of Henkinization.
We can complete T_{1}° and T_{2}^{0} resp. still, remaining good by 2.31 iv)

For suppose $T_{1}^{1}, R_{1}, \ldots, R_{\text {f }}, T_{2}^{1}$ is Δ good and for some sentence $\phi \in L_{(}\left(T_{1}^{1}\right)$

$$
\mathrm{T}_{1}^{1} \not \models \phi \text { and } \mathrm{T}_{1}^{1} \not \subset T \phi
$$

I claim that

$$
\begin{aligned}
& y_{1}=T_{1}^{1} \cup\{\phi\}, R_{1}, \ldots, R_{m}, T_{2}^{1} \text { is } \Delta \text { good or } \\
& y_{2}=T_{1}^{1} \cup\{T \phi\}, R_{1}, \ldots, R_{m}, T_{2}^{1} \text { is } \Delta \text { good. }
\end{aligned}
$$

For if not there will be $\left\langle\phi_{1}(\vec{x}), \phi_{2}(\forall)\right\rangle \in \Delta$ and
$<\sigma_{1}\left(\vec{x}_{1}\right), \theta_{2}\left(\vec{y}_{1}\right)>\in \Delta$ and constants
\vec{a}, y_{1} consistent for \vec{x} and
\vec{c}, $\vec{a} \quad y_{2}$ consistent for $\overrightarrow{\mathrm{x}}_{1}$ set.
$\mathrm{T}_{1}^{1} \cup\{\phi\} \mid \phi_{1} \vec{a}$ and $\mathrm{T}_{2}^{1} \mid \phi_{2} \vec{b}$
$T_{1}^{1} \cup\{\neg \phi\} f \theta_{1} \mathrm{c}$ and $T_{2}^{1} f \theta_{2} \vec{\alpha}$
and hence
$\mathrm{T}_{1}^{1} \mid \phi_{1} \overrightarrow{\mathrm{a}} \cup \theta_{1} \overrightarrow{\mathrm{c}} \quad$ and $\quad \mathrm{T}_{2}^{1} \mid \phi_{2} \overrightarrow{\mathrm{~J}} \therefore \theta_{2} \overrightarrow{\mathrm{O}}$
w.l.o.g, we may suppose $\vec{x} \cap \overrightarrow{\mathrm{y}}_{1}=\phi$
it then follows easily that
$T_{1}^{1}, R_{1}, \ldots, R_{m}, T_{2}^{1}$ is not Δ good which contradicts our supposition, hence the clair follows.

Repeated application of the above proceedure for both T_{1}^{1} and T_{2}^{1} ensures our result.

Part c) again follows from the definition 2.41

Remark
I was tempted to say that the n-simple ..
binary relation R was Syntactically Characterizable if there was a T_{R} and an n-set \triangle defined in a syntactically simple way set, for any n-sequence y 2.43γ is an approximation to T_{R} iffy γ is Δ good. However, in the above, the word "simple : is very loose. That care must be exercised so as not to obtain a trivial result is shown by the following :

2.44. Lemma

If R is a (1)-simple binary relation, for any T_{R} there is a (1)-set Δ set. 2.43 holds.

Proof

Let Δ_{1} be the set of pairs of formulae

$$
\left\langle\phi_{1}(\vec{x}), \phi_{2}(\vec{y})\right\rangle \quad(\text { in } L) \quad \text { where }
$$

$T_{R} f \forall \vec{x} \in U_{1} \forall \vec{y} \in U_{2}\left(\left(\phi_{1} \vec{x}\right)^{U_{1} \cap} \quad \Lambda \Lambda \not R_{1} \vec{y} \rightarrow\left(\neg \phi_{2}(\vec{y})\right)^{U_{2}}\right)$
where \vec{X} corresponds to $\vec{\forall}$ (ie. our convention holds even for bound variables in the same context)
and each variable in \vec{x} is of the form $x_{11 \rho}$ for $f \in \omega$
With these restrictions Δ_{1} satisfies 2.31 if ii)
and so can be extended to a unique smallest (1)-set Δ say. That 2.43 holds for this Δ follows by a simple compactness argument and definition 2.31.

Fortunately it is possible to give a very precise definition of " simple " . Indeed the next section is devoted to this. It will be seen later that the definition is a nice extension of the usual vague ideas of "simple".

2.5 Operators

Let $I L$ be the language obtained from
L by the addition of a set $\left\{X_{n}: n \in \omega\right\}$ of propositional variables. We are not interested in these variables other than. as markers. They behave just like atomic formulae in the formation of formula n

2.51 Def

An s - operator in L is an ordered s-tuple of formulae in IL. < $\Phi_{1}, \ldots, \Phi_{s}>$
We shall be interested only in the cases when $s=1,2$
2.52 Def

$$
\text { If } s=1,2 \text { and } \Delta \text { is a set of s-tuples, }
$$

where in case $s=2 \Delta$ is an \underline{n}-set for some \underline{n} and K is a set of s - operators in L then $K[\Delta]$
is defined to be the least set Δ^{\prime} of s-tuples of formulae in L s.t.
i) $\Delta \subset \Delta^{\prime}$
ii) If $\left\langle\Phi_{1}\left(X_{1}, \ldots, X_{p}\right), \Phi_{S}\left(X_{1}, \ldots, X_{\rho}\right)\right\rangle \in K \quad$ where for $1 \leqslant j \leqslant s \quad X_{1}, \ldots, X_{p}$ include all the propositional variables in Φ and if $\left\langle\phi_{1}^{i} \phi_{S}^{i}\right\rangle \in \Delta^{\prime}$ for $1 \leqslant i \leqslant p$
then $\left\langle\Phi_{1}\left(\phi_{1}^{1}, \ldots, \phi \phi_{1}\right), \Phi_{S}\left(\phi_{S}^{1}, \ldots, \phi_{S}^{\rho}\right)\right\rangle \in \Delta^{\prime}$
iii) If $\left\langle\dot{\phi}_{1}, \phi_{s}\right\rangle \in \Delta^{\prime}$ and $\left\langle\phi_{1}, \phi_{S}\right\rangle \sim\left\langle\theta_{1}, \theta_{s}\right\rangle$
(where $\left\langle\theta_{1}, \theta_{2}\right\rangle$ is an s-tuple) then $\left\langle\theta_{1}, \theta_{2}\right\rangle \in \Delta^{\prime}$ For the notion of \sim in case $s=1,2$. see 2.31.

As an example, the set of existential formulae (in L can be described as

$$
\left\{\langle\exists \mathrm{vX}\rangle,\left\langle\mathrm{X}_{1} \cap \mathrm{X}_{2}\right\rangle,\left\langle\mathrm{X}_{1} \cup \mathrm{X}_{2}\right\rangle\right\}[\mathrm{z}]
$$

where z is the set of atomic and negated atomic formulae in L.

In case $s=1$ this definition extends notions introduced by Keisler in [K_{1}]
In case $s=2$ this will enable us to describe new \underline{n}-sets from certain theories and old n-sets. As the following suggests.
2.53 - Sentences

Suppose L is our fixed language and $I^{\prime}(\hat{B})$ is as defined in 2.2 . Assume a $I^{\underline{n}}$ has been chosen for some n. We assume in what follows all the variables are in $L^{\underline{n}}$ (see 2.3)

A formula of type 1 is a formula of form

$$
(\theta(\vec{x}))^{U_{1}} \text { where } \theta(\vec{x}) \in L
$$

A formula of type 2 is a formula of form

$$
(\theta(\vec{y}))^{U_{2}} \quad \text { where } \theta(\vec{y}) \in L^{\prime}(\hat{B})
$$

Just as we make the convention that if \vec{X} and \vec{y} occur in the same context they correspond, so we make the convention that if the type 1 formula $(\theta(\vec{x}))^{U_{1}}$ and the type 2 formula $(\theta(\vec{y}))^{U_{2}}$ occur in the same context, then $\theta(\dot{y})$ is obtained from $\theta(x)$ by replacing each individual constant a in $\theta(\vec{x})$ by $I(a)$ (defined in 2.2) and replacing \bar{x}. by the corresponding sequence \Downarrow.

A formula of type 3 is any finite conjunction of formulae of the form $n_{i}^{n_{i}}\left(x_{i, \rho}, \ldots, x_{i_{n_{i}} \rho}, y_{i_{1 \rho}}, \ldots, y_{i_{x_{i}}, \rho}\right)$ for $1 \leqslant i \leqslant m$. Thus if $\psi(\vec{x}, \vec{y})$ is a formula of type 3 then \vec{X} corresponds to \vec{y} and \vec{X} is complete.

Let w be the set of formulae of the form

where $\vec{x}_{k_{1}}, \vec{y}_{k_{2}}$ occur in $\theta_{k_{3}}$ for $k \epsilon^{t}$ and we assume through out that $\theta_{K_{1}} U_{1}$ is a formula of type 1 $\theta_{k_{2}} \mathrm{U}_{2}$ is a formula of type 2 and $\theta_{k_{3}}$ is a formula of type 3 .

Let S_{1} be the set of 1-operators of the form a) or b) viz:
a) $\underset{k \in \epsilon_{t}}{y}\left(\exists x_{k_{1}} \in U_{1} \exists y_{k_{2}} \in U_{2}\left(\theta_{k_{1}}^{U_{1}} \cap \theta_{k_{2}}^{U} \cap \theta_{k_{3}} \cap X_{k}\right)\right)$
where if a variable in \vec{x}, \vec{y} of form $v_{j i t \rho}$ for $i \geqslant 1$ occurs, then it occurs in $\theta_{k_{3}}$ Note that a variable of form $\mathrm{v}_{\text {lop }}$ cannot occur in a formula of type 3 .
b) $\forall \vec{x}_{1} \in U_{1} \forall \vec{y}_{2} \in U_{2} \quad\left(\theta_{1} U_{1} \cap \theta_{2} U_{2} \rightarrow X_{1}\right)$
where $\theta_{1} U_{1}$ is a formula of type 1 and
$\theta_{2} \mathrm{U}_{2}$ is a formula of type 2 .
Let S_{2} be the set of 1 -operators of the form $\forall \vec{X}_{1} \in U_{1} \forall \vec{y}_{2} \in U_{2}\left(\theta_{3} \rightarrow X_{1}\right) \quad$ where θ_{3} is of type 3 .

2.54 Def

$$
\begin{aligned}
& \text { A } I \text {-sentence (in L) is a sentence in } \\
& S_{2}\left[S_{1}[W]\right] \Phi \text { set. whenever a variable of form } \\
& v_{j i k \rho} \text { where } 1 \leqslant i \leqslant m \text { occurs in such a sentence } \\
& \text { then it occurs in a sub-formula of type } 3 \text {; } \\
& \text { where sub-formulae of form } t^{\mathbb{U}_{1}}, t^{U_{2}} \text { may be omitted, } \\
& \text { and if } \Phi \text { is if the form } \forall \vec{x}_{1} \in U_{1} \forall \vec{y}_{1} \in U_{2}\left(\theta_{3} \longrightarrow\right. \text { (@) } \\
& \text { then every variable in } \theta_{3} \text { occurs free in } \Theta \text {. } \\
& 2.55 \text { Remark }
\end{aligned}
$$

$$
\text { If } T \text { is any set of } \Pi \text {-sentences in } L \underline{n}
$$

then R_{T} is defined, as can be seen from the fact that all quantifiers are bounded. For the definition of R_{T} see 2.21. In such a case we write T for $T_{R_{T}}$ As an example we describe the relation of embedding between L-structures as a (1)-simple relation defined by:
$\forall \mathrm{x}_{111} \in \mathrm{U}_{1} \quad \exists \mathrm{y}_{111} \in \mathrm{U}_{2} \quad\left(\mathrm{x}_{111} \mathrm{R}_{1}^{1} \mathrm{y}_{111}\right)$
$\forall \vec{x} \in U_{1} \forall \vec{y} \in U_{2}\left(\Lambda \Lambda \vec{X} R_{1}^{1} \vec{y} \longrightarrow\left(\theta \vec{X}_{1}^{U_{1}} \rightarrow \theta \vec{y}^{U_{2}}\right)\right) \quad$ where $\Lambda \Lambda \overrightarrow{X R} R \frac{1}{1} \vec{y}$ is a formula of type 3 and $\theta(\vec{x})$ is an atomic or negated atomic formula in L. Ofcourse each of the above sentences are II -sentences in $L^{(1)}$ if we allow ourselves to omit $t^{U_{1}}$ and $t^{U_{2}}$ from the formulae, which we do.

It is not at all clear as to why we have been so painstakingly precise with the variables. Part of the reason is so that from II -sentences we can define 2- operators with which we define n-sets which in turn have a good chance of satisfying 2.59 below.

2.56 The OP Function

Let Φ be a formula in $S_{2}\left[S_{1}[w]\right]$: we define $O P(\Phi)$ to be a 2 - operator by induction on the complexity of $\bar{\Phi}$.

Case $1 \quad \Phi$ is of the form

$$
\forall \vec{x}_{1} \vec{x}_{2} \in U_{1} \forall{\underset{J}{3}}^{3} \vec{y}_{4} \in U_{2}\left(\theta_{3} \rightarrow(0)\right.
$$

where $\Theta \in S_{2}[S[W]] \quad \theta_{3}$ is a formula of type 3 and we suppose \vec{x}_{1}, \vec{y}_{3} occur in θ_{3} and \vec{x}_{2}, y_{4} do not.
Then $\quad \mathrm{OP}_{1}(\Phi)=\exists \mathrm{X}_{2}\left(\mathrm{OP}_{1}(\oplus)\right)$

$$
\begin{aligned}
& \mathrm{OP}_{2}(\Phi)=\exists y_{4}\left(\mathrm{OP}_{2}(\Theta)\right) \\
& \mathrm{OP}(\Phi)=\left\langle\mathrm{OP}_{1} \Phi, \mathrm{OP}_{2} \Phi\right\rangle
\end{aligned}
$$

Case $2 \quad \Phi$ is of the form

$$
k{\underset{E}{t}}^{y_{t} \exists x_{k_{1}} \in U_{1} \exists \exists k_{2} \in U_{2}\left(\theta_{k_{1}}^{U_{1}} \cap \theta_{k_{2}}^{U_{2}} \cap \theta_{k_{3}} \cap \theta_{k}\right)}
$$

where for $k \epsilon^{t} \Theta_{k} \in S_{1}[W]$
Then

$$
\begin{aligned}
& \mathrm{OP}_{1}(\Phi)={ }_{k} \hat{\epsilon}_{t} \forall \mathrm{x}_{\mathrm{k}_{1}}\left(\theta_{\mathrm{k}_{1}} \rightarrow \mathrm{OP}_{1}\left(\Theta_{\mathrm{k}}\right)\right) \\
& \mathrm{OP}_{2}(\Phi)={ }_{k} \hat{\epsilon}_{t} \forall \mathrm{y}_{2}\left(\theta_{\mathrm{K}_{2}} \longrightarrow \mathrm{OP}_{2}\left(\Theta_{k}\right)\right) \\
& \mathrm{OP}(\Phi)=\left\langle\mathrm{OP}_{1}(\Phi), \mathrm{OP}_{2}(\Phi)\right\rangle
\end{aligned}
$$

Case $3 \quad \Phi$ is of the form

$$
\forall \vec{x}_{1} \in U_{1} \forall \Psi_{2} \in U_{2}\left(\theta_{1}^{U_{1}} \cap \theta_{2}^{U_{2}} \rightarrow \Theta\right)
$$

where © © $\in \mathrm{S}_{1}[\mathrm{~W}]$

$$
\begin{aligned}
& \mathrm{OP}_{1}(\Phi)=3 \mathrm{X}_{1}\left(\theta_{1} \cap \mathrm{OP}_{1}(\Theta)\right) \\
& O P_{2}(\Phi)=\exists \mathrm{Y}_{2}\left(\theta_{2} \cap \mathrm{OP}_{2}(\Theta)\right) \\
& \mathrm{OP}(\Phi)=\left\langle\mathrm{OP}_{1}(\Phi), \mathrm{OP}_{2}(\Phi)\right\rangle
\end{aligned}
$$

Case $4 \quad \Phi$ is of the form

$$
\begin{aligned}
& \mathrm{y}_{\mathrm{t}} \exists \mathrm{x}_{\mathrm{k}} \in \mathrm{U}_{1} \exists \mathrm{y}_{\mathrm{k}} \in \mathrm{U}_{2}\left(\theta_{\mathrm{k}_{1} \cap}^{U_{1}} \cap \theta_{\mathrm{k}}^{\left.\mathrm{U}_{2} \cap \theta_{3}\right)}\right. \\
& O P_{1}(\Phi)={ }_{k}\left\langle\forall \vec{t}_{\mathrm{t}}\left(\theta_{1} \rightarrow \mathrm{X}_{\mathrm{k}}\right)\right. \\
& O P_{2}(\Phi)={ }_{k} \hat{\epsilon}_{\mathrm{t}} \forall \mathrm{y}_{\mathrm{k}}\left(\theta_{2} \rightarrow \mathrm{X}_{\mathrm{k}}\right) \\
& O P(\Phi)=\left\langle O P_{1}(\Phi) \quad O P_{2}(\Phi)\right\rangle
\end{aligned}
$$

If formulae of type 1 or 2 of form $t^{U_{1}}, t^{U_{2}}$ occur or have been omitted in Φ, then $O P_{1} \Phi$ and $O P_{z} \Phi$ omit the formulae and the logical connective immediately following. Thus for instance the 2 - operators obtained from the sentences in Remark 2.55 become :

$$
\left\langle\exists x_{111}\left(x_{1}\right), \forall y_{111}\left(x_{1}\right)\right\rangle \quad \text { and }\left\langle\theta \mathbb{x} \cap X_{1}, \quad \ominus y \rightarrow X_{1}\right\rangle
$$

As a more complicated example let Φ be the I-sentence in $L^{(1)}$
$\forall x_{111} \in U_{1} \forall y_{111} \in U_{2}\left(x_{111} R R_{1}^{1} y_{111} \rightarrow\left(\forall x_{112} \in U_{1}\left(\left(x_{111}<x_{112}\right)^{U_{1}} \rightarrow\right.\right.\right.$ $\left.\left.\rightarrow \exists y_{112} \in U_{2}\left(\left(y_{111}<y_{112}\right)^{U_{2}} \cap x_{112} R_{1}^{1} y_{112}\right)\right)\right)$
then $O P(\Phi)$ is
$<\exists x_{112}\left(x_{111}<x_{112} \cap \mathrm{X}\right), \forall y_{112}\left(y_{111}<y_{i 12} \rightarrow X\right)>$

A point to note is that if Φ is any Π-sentence then the free individual variables in $O P_{1} \Phi$ correspond to the free individual variables in $O P_{2}(\Phi)$ and each firms a complete sequence.

If T is a set of Π - sentences in I^{n} then $O P(T)=\{O P(\Phi): \Phi \in T\}$

2.57 Lemma

If T is a set of Π-sentences in $I^{\underline{n}}$ and
Δ is an \underline{n}-set then

$$
\mathrm{OP}(\mathrm{~T}) \cup\left\{<\mathrm{X}_{1} \cap \mathrm{X}_{2}, \mathrm{X}_{1} \cup \mathrm{X}_{2}>,\left\langle\mathrm{X}_{1} \cup \mathrm{X}_{2}, \mathrm{X}_{1} \cap \mathrm{X}_{2}\right\rangle\right\}[\Delta]
$$

is also an \underline{n}-set.
We write $O P(T)\left[\left[\Delta_{i}^{j}\right]\right.$ for the above set.

Proof

We sketch the proof.
iii) of Def 2.31 follows since Δ is an \underline{n}-set iv) and v) of def 2.31 follow trivially from Def 2.52 .
i) and ii) follow from the following facts. From Def 2.54 every variable of the form $\mathrm{v}_{\mathrm{jikp}}$ for $1 \leqslant i \leqslant m$ occurs in a formula of type 3 Since we are dealing with sentences in 2.54 it follows from the definition of formulae of type 3 that the variables of the form $v_{o i k p}$ for $1 \leqslant i \leqslant m$
form a complete sequence as do the variables of form $\mathrm{v}_{\text {fikp }}$, which clearly correspond. In view of the point made prior to the lemma the x-variables and y-variables which are quantified in $O P_{1}(\Phi)$ and $O P_{2}(\Phi)$ resp. form complete and corresponding sequences. Thus it follows that if $O P(\Phi)$ is applied to pairs of formulae satisfying i), ii) of 2.31 then so does the resulting pair of formulae. Induction will give the result.

2.58 SYNTACTIC CHARACTIRIZATIONS DEF

We say that an n-simple binary relation R between L-structures is Syntactically Characterizable (written S.C.) if there is a T_{R} which is a set of $I I$ - sentences in L^{n} s.t. for any n-sequence γ
2.59 y is an approximation to T_{R} iff
y is $O P\left(T_{R}\right)[[\{\langle t, f\rangle,\langle f, t\rangle\}]]$ good.
If T is a set of Π - sentences in I^{n} then we
write $[[O P(T)]]$ for the $\underline{n}-\operatorname{set} O P(T)[[\{\langle t, f\rangle,\langle f, t\rangle\}]]$

The reader may care to return to section 2.1 and the end of section 2.4 to compare the above with the notions developed there.

As an example, if R is the relation of embedding between I-structures, T_{R} is chosen as in 2.55 then $\left[\left[\operatorname{OP}\left(T_{R}\right)\right]\right]$ becomes the set of pairs of formulae $\left\langle\theta_{1} \vec{X} \quad \theta_{2} \vec{y}\right\rangle$ where $\theta_{1} \vec{X}$ is existential and $\theta_{2} \vec{y}$ is the negation normal form of $7 \theta_{1} \vec{X}$ (with suitable conditions on the variables) .

2.510 Remark

In order to show that every approximation to T_{R} is $\left[\left[0 \mathrm{PT}_{\mathrm{R}}\right]\right]$ good it suffices to show that every n-seqrence γ s.t. $\gamma \neq \mathrm{T}_{\mathrm{R}}$ is $\left[\left[0 \mathrm{PT}_{\mathrm{R}}\right]\right]$ good by Theorem 2.42 a) .

If Δ is an \underline{n}-set satisfying 2.59 for some T_{R} then Δ is called a notion of goodness for R.

The main problem for the rest of Chapter 2 and Chapter 3 is to characterize a large class of n -simple binary relations which are S.C.

In the usual proofs of Interpolation Theorems there is in proving the corresponding assertions to 2.59 an "easy" direction and a "hard" direction. This remains true in our case. The next section is devoted to proving a result about the "easy" direoiion.

2. 6 Theorem

If T is a set of I - sentences, Δ is an \underline{n}-set and y is aT approximation which is Δ good then is $O P(T)[[\Delta]]$ good.

Proof

For an understanding of" T approximation " see Remark 2.55,

It suffices to show that if $\gamma \neq T$ and γ is Δ good then γ is $O P(T)[[\Delta]]$ good. Suppose γ is not $O P(T)[L \Delta]]$ good, then there will be $\left\langle\theta_{1} \vec{X}, \theta_{2} \ddot{y}\right\rangle \in \operatorname{OP}(T)[[\Delta]]$ and constants \vec{a}, \vec{b} s.t. \vec{a} and \vec{j} are y consistent for \vec{X} where $T_{1}^{y} \vdash \theta_{1} \vec{a}$ and $T_{2}^{y} \vdash \theta_{2} \underset{\sim}{y}$ -
It is easy to see that we can assume that $\left\langle\theta_{1} \vec{X}, \theta_{2} \vec{y}\right\rangle$ is of the form:
$\left\langle O P_{1} \Phi\left(X_{1}, \ldots X_{\rho}\right)\left[\phi_{11}, \ldots, \phi_{\rho_{1}}\right], O P_{2} \Phi\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{\rho}\right)\left[\phi_{12}, \ldots, \phi_{\rho 2}\right]\right\rangle$
for some $\Phi \in T$ where $\left\langle\phi_{i}: \phi_{i, 2}\right\rangle \in \operatorname{OP}(T)[[\Delta]]$
for $1 \leqslant i \leqslant p$. We shall show that for some $i, 1 \leqslant i \leqslant p$, constants $\mathbb{~} \mathbb{Z} \gamma$ consistant for some \vec{X}_{1} can be found s.t. $T_{1}^{y} f \phi_{\mathrm{i}_{1}}(\vec{\alpha}, 己)$ and $T_{2}^{y} \mid \phi_{\mathrm{i}_{2}}(\forall, \overrightarrow{\mathrm{u}})$ where $\left\langle\phi_{i_{1}}, \phi_{i_{2}}\right\rangle$ is of the form $\left\langle\phi_{i_{1}}\left(\vec{x}, \vec{x}_{1}\right), \phi_{i_{2}}\left(\vec{y}, \vec{y}_{1}\right)\right\rangle$ Thus reducing the complexity of $\left\langle\theta_{1}, \theta_{2}\right\rangle$. Having proved this it follows easily that γ is not Δ good contradicting the choi ${ }^{a_{e}}$ of γ. The method we employ is to show that infact we can reduce the complexity of Φ.

We must in general deal with an arbitraxy formula in $S_{2}\left[S_{1}[W]\right]$ (which will be a sub-formula of Φ) Suppose For our induction hypothesis we have
i) $\Omega\left(\vec{X}_{1} \vec{y}_{2}\right)$ is a formula in $S_{2}\left[S_{1}[W]\right]$
ii) $\gamma \neq \Omega(\vec{u} \forall)$ (this makes sense as $\Omega(\vec{d} \forall)$ is a sentence and so a T_{R} for some R) and $\vec{d} \theta$ are y consistent for those variables in \vec{x}_{1} of form $v_{1 i k p}$ for $1 \leqslant i \leqslant m$ which do not occur in a sub-formula of Ω of type 3 .
iii) $T_{1}^{y} \vdash O P_{1} \Omega\left(\overline{\phi_{i 1}}\right)\left(\vec{d} \vec{a}_{x_{3}}\right)$
iv) $T_{z}^{y} \vdash \mathrm{OP}_{2} \Omega\left(\overline{\phi_{i 2}}\right)\left(v{\partial_{y_{4}}}^{y}\right)$
where we assume the free variables of OP_{1} תare $\mathrm{X}_{1} \mathbf{x}_{3}$ and the free variables of $O P_{2} \Omega$ are $\ddot{y}_{2} \ddot{y}_{4}$ and $\vec{a} \vec{a}_{x_{3}} \vec{\nabla} \vec{b}_{y_{4}}$ are γ consistant for those variables in $\mathrm{X}_{1} \vec{x}_{3}$ of form $\mathrm{v}_{1} i k p$ for $1 \leqslant i \leqslant m$ which do not occur free in a sub-formula of Ω of type 3

Clearly i) ii) iii) iv) hold for Φ in place of Ω. We now show how to reduce Ω by induction.

Suppose Ω is of form
$\forall \vec{x}_{3} \vec{x}_{5} \in U_{1} \forall \vec{y}_{4} \ddot{y}_{6} \in U_{2}\left(\theta_{3} \rightarrow \Theta\right) \quad$ where Θ is in $s_{2}\left[s_{1}[W]\right]$
$\vec{x}_{3} \vec{y}_{4}$ occur in the formula of type $3 \quad \theta_{3}$ and $\vec{x}_{5} \vec{y}_{6}$ do not.
Then by iii) and iv)
$\mathrm{T}_{1}^{y} \nmid \exists \mathrm{x}_{5}\left(\mathrm{OP}_{1}(\Theta)\left[\overline{\phi_{\mathrm{i}_{1}}}\right]\left[\begin{array}{ll}\mathrm{a} & \mathrm{z}_{\mathrm{x}_{3}}\end{array}\right]\right.$
$T_{2}^{Y} \vdash \exists \ddot{y}_{6}\left(\mathrm{OP}_{2}(\Theta)\left[\bar{\phi}_{\mathrm{i}_{2}}\right]\left[\begin{array}{lll}\nabla & \nabla_{y_{4}}\end{array}\right]\right.$
Hence we can find $\vec{a}_{x_{5}} \in \operatorname{Const}\left(T_{1}^{\gamma}\right)$ and $H_{y_{6}} \in \operatorname{Const}\left(T_{2}^{\gamma}\right)$
set.
$\mathrm{T}_{1}^{y} \vdash \mathrm{OP}_{1}(\Theta)\left[\overline{\phi_{i_{1}}}\right]\left[\mathrm{za}_{x_{3}} \vec{a}_{x_{5}}\right]$
$\mathrm{T}_{2}^{Y} \vdash \mathrm{OP}_{2}(\Theta)\left[\overline{\phi_{i 2}}\right]\left[\operatorname{trv}_{y_{4}} \mathrm{~b}_{y_{6}}\right]$.
Since Ω is a subformula of Φ a Π-sentence, the variables $\vec{X}_{5} \vec{y}_{6}$ of form $v_{j i k p}$ for $1 \leqslant i \leqslant m$ occur free in a subformula of Θ of type 3 . So iii) iv) hold for Θ in place of Ω.
It is easy to see that i) ii) hold for Θ in place of Ω, since $y \neq \Theta\left[\operatorname{rga}_{x_{3}} \vec{a}_{x_{5}} \forall \nabla_{y_{4}}{\overrightarrow{b_{y}}}_{6}\right]$

Case 2

$$
\begin{aligned}
& \quad \text { Suppose } \Omega \text { is of the form } \\
& { }_{k} \mathrm{E}_{\mathrm{t}} \exists \mathrm{X}_{k_{1}} \in U_{1} \exists \ddot{y}_{k_{2} \in U_{2}\left(\theta_{k_{1}} U_{1} \cap \theta_{k} U_{2} \cap \theta_{k_{3}} \cap \Theta_{k}\right)}^{\text {where } \Theta_{k} \in S_{1}[W] \text { for }{ }^{k} \epsilon_{t}} \\
& \text { Then by assumption }
\end{aligned}
$$

a) $\quad \mathrm{T}_{1}^{\gamma} \vdash_{K} \hat{\epsilon}_{\mathrm{t}} \forall \mathrm{X}_{\mathrm{k}_{1}}\left(\theta_{\mathrm{K}_{1}} \rightarrow O \mathrm{P}_{1}(\Theta)\right)\left[\overline{\phi_{i_{1}}}\right][\vec{a}]$
b) $\quad \mathrm{T}_{2}^{\gamma} \vdash_{k} \hat{\epsilon}_{\mathrm{t}} \forall \ddot{\mathrm{y}}_{2}\left(\theta_{\mathrm{K}} \rightarrow \mathrm{OP}_{2}(\Theta)\right)\left[\overline{\phi_{i}}\right][\nabla]$
and since ii) holds, for some $m \in i$
$\gamma \vDash \exists \mathrm{x}_{m_{1}} \in U_{1} \exists \ddot{y}_{m_{2}} \in U_{2}\left(\theta_{m_{1}} U_{1} \cap \theta_{m_{2}}^{U_{2}} \cap \theta_{m_{3}} \cap \Theta_{m}\right)$ [$\left.\vec{a} \overrightarrow{0}\right]$
So we may chose ${\stackrel{\rightharpoonup}{a_{x_{m_{1}}}}}^{\left({ }_{\mathrm{H}_{m_{2}}}\right) \in \operatorname{Const}\left(T_{1}^{\gamma}\right) \quad\left(T_{2}^{\gamma}\right)}$
set.
$y \vDash\left(\theta_{m_{1}}^{U_{1}} \cap \theta_{m_{2}}^{U_{2}} \cap \theta_{m_{3}} \cap \Theta_{m}\right)\left[\vec{a} \vec{a}_{x_{m}}{\vec{b} \vec{b}_{y_{m}}}^{m_{2}}\right]$

As in Case 1 those variables in $\vec{x}_{m_{1}} \quad \vec{y}_{m_{2}}$ which do not occur in $\theta_{m_{3}}$, occur free in some subformula of \oplus of type 3 . So by induction hypothesis ii)
holds for \oplus, as does i).
It follows from a) b) that iii) iv) hold,

$$
\begin{array}{lll}
\text { since } & \mathrm{T}_{1}^{y} \vdash \mathrm{OP}_{1}(\Theta)\left[\overline{\phi_{i_{1}}}\right]\left[\mathrm{cax}_{x_{m}}\right] \\
& \mathrm{T}_{2}^{y} \vdash \mathrm{OP}_{2}(\Theta)\left[\overline{\phi_{i_{2}}}\right]\left[\mathrm{m}_{\mathrm{m}}\right]
\end{array}
$$

Case 3

Suppose Ω is of the form
$\forall \vec{x}_{1} \in U_{1} \forall \vec{y}_{2} \in U_{2}\left(\theta_{1}{ }^{U_{1}} \cap \quad \theta_{2} \mathrm{U}_{2} \rightarrow \Theta\right) \quad$ where $\Theta \in \mathrm{S}_{1}[\mathrm{~W}]$,
so
a) $T_{1}^{y} \vdash \exists \mathrm{X}_{1}\left(\theta_{1} \cap O P_{1}(\Theta)\right)\left[\overline{\phi_{i_{1}}}\right][z]$
b) $T_{2}^{y} \vdash \exists y_{2}\left(\theta_{2} \cap \mathrm{OP}_{2}(\oplus)\right)\left[\overline{\phi_{i}}\right][\forall]$.

So we may choose $\vec{a}_{x_{1}} \quad\left(\partial_{y_{2}}\right) \in \operatorname{Const}\left(T_{1}^{\gamma}\right) \quad\left(T_{2}^{\gamma}\right)$ set.
$T_{1}^{\gamma} f\left(\theta_{1} \cap O P_{1}(\Theta)\right)\left[\overline{\phi_{i_{1}}}\right]\left[\ddot{q a}_{x_{1}}\right]$
$\mathrm{T}_{2}^{\gamma} \vdash\left(\theta_{2} \cap \mathrm{OP}_{2}(\Theta)\right)\left[\overline{\phi_{\mathrm{i} 2}}\right]\left[\mathrm{H}_{2}\right]$
so

and since the variables $\vec{X}_{1} \vec{y}_{2}$ occur in a subformula of Θ of type 3 , i) ii) iii) iv) clearly hold.

Case 4

$$
\begin{array}{rlll}
\text { Suppose } \Omega & \text { is of } & \text { the form } \\
\underset{k}{V} \exists x_{k} \in U_{1} \exists y_{k} \in U_{2} & \left(\theta_{k} U_{1} \cap\right. & \left.\theta_{k} U_{2} \cap \theta_{k_{3}}\right)
\end{array}
$$

then
a) $\quad T_{1}^{y} \vdash_{k} \hat{\epsilon}_{t} \forall x_{k_{1}}\left(\theta_{k_{1}} \rightarrow \phi_{k_{1}}\right)[z]$
b) $\quad T_{2}^{y} \vdash_{k} \hat{\epsilon}_{t} \forall y_{k_{2}}\left(\theta_{k_{2}} \rightarrow \phi_{k_{2}}\right)[v]$
where $\phi_{k_{1}}^{*} \in \overline{\phi_{\mathrm{i}_{1}}}$
Again since ii) holds, for some $m^{\epsilon} \cdot \mathrm{t}$
$\gamma \vDash \exists \mathrm{x}_{\mathrm{m}_{1}} \in U_{1} \exists \mathrm{y}_{\mathrm{m}_{2}} \in \mathrm{U}_{2}\left(\theta_{\mathrm{m}_{1}} U_{1} \cap \theta_{\mathrm{m}_{2}}^{U_{2}} \cap \theta_{\mathrm{m}_{3}}\right)$

So we may choose $\vec{a}_{x_{m_{1}}}\left(\delta_{y_{m_{2}}}\right) \in \operatorname{Const}\left(T_{1}^{y}\right) \quad\left(T_{2}^{y}\right)$

 x-variables y-variables resp. of the form $\mathrm{v}_{\mathrm{jik}}^{\boldsymbol{R}}$ where $1 \leqslant i \leqslant m$. They form a complete corresponding sequence, as can be seen from the fact that Φ is a II -sentence and the reduction in the proof. It can also be seen from the proof that $\overrightarrow{a d} \vec{x}_{m_{1}}$ and $\overrightarrow{\delta B}_{y_{m_{2}}}$ are $\quad \gamma$ consistent for the variables corresponding to $\operatorname{cax}_{x_{m_{1}}}$. It thus follows by induction that our result is proved.

CHAPTER 3

3.1

In this chapter we give a model theoretic description of those n-simple relations which we can show have a S.C. (See 2.58). First we prove some theorems.

Def
In section 2.53 we defined S_{1} as a set of (1)- operators of form a) and b). Let $S_{1} b$ be the set of form b).

A Π_{2}-sentence is a Π-sentence in $S_{2}\left[S_{1} b[W]\right.$. For example:-
$\forall x_{111} \in U_{1} \forall y_{111} \in U_{2}\left(x_{111} R_{1} y_{111} \rightarrow \forall x_{112} \in U_{1}\left(\theta\left(x_{111} x_{112}\right)^{U_{1}} \rightarrow\right.\right.$
$\left.\left.\rightarrow \exists y_{112} \in U_{2}\left(x_{112} R_{1} y_{112} \cap \theta\left(y_{111} y_{112}\right) U_{2}\right)\right)\right)$
is a Π_{2}-sentence. Externally it is an $\forall \exists$ sentence,
as the 2 in" Π_{2} " is to suggest, though it can
be very complex when one considers θ.

3.11 Theorem

Lett Δ be an reset and Φ be a
Π_{2}-sentence . If γ is an \underline{n}-sequence which is $O P(\Phi)[[\Delta]]$ good, then $\exists \delta$ s.t.
i) $y \subset \delta$
ii) $\delta \mathcal{F} \Phi$
iii) δ is $O P(\Phi)[[\Delta]]$ good.

Proof
I) and ii) say γ is an approximation to Φ,
which by Remark 2.55 is meaningful .
Since Φ is a Π_{2}-sentence we may suppose w.I.o.g. that $\bar{\Phi}$ is of the form :-
$\forall \vec{x}_{1} \in U_{1} \forall \vec{y}_{1} \in U_{2}\left(\theta_{3} \vec{x}_{1} \vec{y}_{1} \rightarrow \forall \vec{x}_{3} \in U_{1} \forall \vec{y}_{4} \in U_{2}\left(\theta_{1}^{U_{1}} \cap \theta_{2}{ }^{U_{2}} \rightarrow\right.\right.$
$\rightarrow{ }_{k} \epsilon_{t} \exists \mathrm{x}_{k_{1}} \in U_{1} ¥ \vec{y}_{k_{2}} \in U_{2}\left(\theta_{k_{1}} U_{1} \cap \theta_{k_{2}} U_{2} \cap \theta_{k_{3}}\right) ;$;
This has the effect of tidying up our proof without significantly altering $O P(\Phi)[[\Delta]]$.

Claim

Suppose β is an i-séquence which is $\operatorname{OP}(\Phi)[[\Delta]]$ good, s.t. for some $\vec{a}_{x_{1}} \vec{a}_{x_{3}} \in \operatorname{Const}\left(T_{1}^{\beta}\right)$ and $\forall_{y_{1}} \nabla_{y_{4}} \in \operatorname{Const}\left(\mathrm{~T}_{2}^{\beta}\right)$,
$\vec{x}_{x_{1}}$ and $v_{y_{1}}$ are β consistent for \vec{x}_{1}
and

$$
\mathrm{T}_{1}^{\beta}+\theta_{1}\left(\vec{a}_{x_{1}} \vec{a}_{x_{3}}\right) \quad \text { and } \quad T_{2}^{\beta} \vdash \theta_{2}\left(\vec{t}_{y_{1}} \vec{u}_{y_{1}}\right) \text {. }
$$

Then choosing , for ${ }_{k} \epsilon_{\mathrm{t}}$, new distinct constants $\vec{x}_{x_{k}}, \vec{a}_{y_{k}}$, we have for some ${ }_{k} \epsilon_{t} \quad \beta^{k}$
is $\operatorname{OP}(\Phi)[[\Delta]]$ good ; where β^{k} is $T_{1}^{\beta} \cup\left\{\theta_{k_{1}}\left(\vec{a}_{x_{1}} \vec{a}_{x_{3}} \vec{c}_{x_{k}}\right)\right\},\left(R_{1}^{\beta}\right)^{\prime}, \ldots,\left(R_{m}^{\beta}\right)^{\prime}, T_{z}^{\beta} \cup$ $\cup\left\{\theta_{k}\left(\frac{1}{B_{y}} \overrightarrow{1}_{y_{4}} \vec{a}_{y_{k}}\right)\right\}$,
where for $1 \leqslant i \leqslant m \quad\left(R_{i}^{\beta}\right)^{\prime}$ is formed from R_{i}^{β} by adding the subset of $\left(\vec{a}_{x_{3}} \cup \vec{c}_{x_{k}}\right)^{n_{i}}{ }_{X}\left(\vec{b}_{y_{4}} \cup \vec{a}_{y_{k}}\right)^{n_{i}}$ consisting of those sequences of constants for which the corresponding variables are of the form $x_{i_{1 \rho}}, \ldots, x_{i n \rho}, y_{i_{1 \rho}}, \ldots, y_{i_{n}} \rho$ for some $\rho \in \omega$

Suppose not, there will be, for ${ }_{k} \epsilon_{t}$

$$
\left\langle\chi_{1}^{k} \vec{x}_{k_{3}}, \chi_{2}^{k} \vec{y}_{k_{4}}\right\rangle \in O P(\Phi)[[\Delta]] \text { sot. }
$$

$$
T_{1}^{\beta} f \theta_{1}\left(\vec{a}_{x_{1}} \vec{a}_{x_{3}}\right) \cap\left(\theta_{k_{1}}\left(\vec{a}_{x_{1}} \vec{a}_{x_{3}} \vec{c}_{x_{k}}\right) \rightarrow \chi_{1}^{k}\left(\vec{x}_{x_{3}}\right)\right)
$$ where $\vec{I}_{x_{k}}$ and $\overrightarrow{g_{y_{k}}}$ are $\beta^{k}{ }^{2}$ consistent ${ }^{{ }^{k}}$ for $\vec{x}_{k_{3}}$, we thus have

$$
\mathrm{T}_{1}^{\beta} \vdash \exists \mathrm{x}_{3}\left(\theta_{1}\left(\vec{a}_{x_{1}}\right) n_{k} \hat{\epsilon}_{t} \forall \overrightarrow{\mathrm{x}}_{k_{1}}\left(\theta_{k}\left(\vec{a}_{x_{1}}\right) \rightarrow \chi_{1}^{k}\left(f_{x_{k_{3}}}-\left(x_{k_{1}} \cup x_{3}\right\}\right)\right)\right.
$$ $\mathrm{T}_{2}^{\beta} \vdash \exists \ddot{y}_{4}\left(\theta_{2}\left({\dot{y_{y}}}_{1}\right) n_{k} \hat{\epsilon}_{t} \forall \vec{y}_{k_{2}}\left(\theta_{k_{2}}\left(\vec{b}_{y_{1}}\right) \rightarrow x_{2}^{k}\left(g_{y_{k_{4}}}^{3}-\left(y_{k_{2}} u y_{4}\right)\right)\right)\right.$ which shows that β is not $\operatorname{OP}(\Phi)[[\Delta]]^{4} \operatorname{good}^{2}$.

We now proceed as follows.
Suppose β is $O P(\Phi)[[\Delta]]$ good, we well-order those sequences of constants $\vec{a}_{x_{1}} \quad \vec{y}_{y_{1}} \quad \vec{a}_{x_{3}} \vec{b}_{y_{4}}$ which satisfy the conditions of the above claim, as $\mathrm{t}_{\alpha}: \alpha<\mu$ for some ordinal μ.
We define a sequence $\beta_{\alpha}: \alpha \leqslant \mu$ of \underline{n}-sequences
s.t. a) $\quad \beta_{\alpha} \subset \beta_{\gamma} \quad \alpha: \leqslant \leqslant \leqslant \leqslant \mu$
b) β_{α} is $O P(\Phi)[[\Delta]]$ good for $\alpha \leqslant \mu$ by
i) $\quad \beta_{0}=\beta$
ii) If β_{α} is defined, then $\beta_{\alpha+1}$ is obtained from β_{α} using t_{α}, as β^{k} was obtained from β in the claim.
iii) If α is a limit ordinal and β_{γ} is defined for $y<\alpha$ then $\beta_{\alpha} \overline{\bar{\gamma}}_{<_{\alpha}}^{U \beta_{y}}$ (See 2.42 (c) for def.)

It is easy to see that a) and b) hold.
(For iii) use 2.42 (c))
By Theorem 2.42 (b) we can extend β_{μ} to β^{*} which is $O P(\Phi)[[\Delta]]$ good, where $T_{1}^{\beta^{*}}$ and $T_{2}^{\beta^{*}}$ are H.C.C. theories. Thus we have defined an operation from β to β^{*}.

We now define a denumerable sequence $y_{n}: n \in \omega$ by $y_{0}=\gamma$

$$
y_{n+1}=\left(y_{n}\right) *
$$

Let $\delta={ }_{n}=\epsilon_{\omega}^{U} \quad \gamma_{n}$

$$
\begin{aligned}
\text { 1) } y \subset \delta: & \text { The operation } \beta \text { to } \beta^{*} \text { has the } \\
& \text { property that } \beta \subset \beta^{*}
\end{aligned}
$$

2) $\delta \vDash \Phi$: The whole point of our claim and construction was to guarantee that this held. The details are left to the reader .
3) δ is $O P(\Phi)[[\Delta]]$ good : Each γ_{n} for $n \in \omega$ is $\mathrm{OP}(\Phi)[[\Delta]]$ good, so by Theorem 2.42 (c) the result follows.

Def

Suppose $\left\{\gamma_{\alpha}\right\}_{\alpha<\mu}$ is a sequence of n-sequences s.t. for some T_{R} of an n-simple relation R,
a) $\gamma_{\alpha} \subset \gamma_{\beta} \quad \alpha \leqslant \beta<\mu$
b) $\gamma_{\alpha} \neq \mathrm{T}_{\mathrm{R}} \quad \alpha<\mu$

Then we say $\left\{\gamma_{\alpha}\right\}_{\alpha<\mu}$ is a T_{R} - sequence. Notice that there is a natural elementary embedding of $\left[T_{i}{ }^{\gamma} \alpha\right]$ into $\left[\bigcup_{\beta<\mu} T_{i}{ }^{\gamma} \beta\right]$ for $\alpha<\mu \quad i=1,2$

Def
We say R is preserved in T_{R} sequences if the union of every T_{R} sequence is a model of T_{R}.

3.12 Theorem

Let T be a set of Π_{2}-sentences (in I^{n}):
let R_{T} be the relation defined by T.
(which is defined, see Remark 2.55)
Then
i) R_{T} is \underline{n} - simple
ii) R_{T} is preserved in T sequences ($T=T_{R_{T}}$)
iii) R_{T} is S.C. with a notion of goodness $[[O P(T)]]$.
i) This is a restatement of Remark 2.55.
ii) This is left to the reader .
(See the definition of Π_{2}-sentences .)
iii)

Let y be a n-sequence which is $[[O P(T)]]$ good.
We show that γ is an approximation to T.
Well-order T as $\left\{\Phi_{\mu}\right\}_{\mu<\kappa}$
For $\mu<\kappa$

$$
\mathrm{OP}\left(\Phi_{\mu}\right)[[[\mathrm{OP}(\mathrm{~T})]]]=[[\mathrm{OP}(\mathrm{~T})]]
$$

Suppose β is $\mathrm{OP}\left(\Phi_{\mu}\right)[[[\mathrm{OP}(T)]]] \operatorname{good}$.
By Theorem 3.11 we can extend β to β^{μ} s.t.
$\beta^{\mu} \vDash \Phi_{\mu}$
β^{μ} is $[[O P(T)]]$ good.

We define γ_{μ} for $\mu<\kappa$ s.t.
a) $\quad \gamma_{\mu} \subset \gamma_{\nu}$ for $\mu \leqslant \nu<\kappa$
b) $\quad \gamma_{\mu+1}=\Phi_{\mu} \quad \dot{\mu}<\kappa$
c) γ_{μ} is $[[\operatorname{OP}(T)]]$ good for $\mu<\kappa$.
by

$$
\begin{aligned}
\gamma_{0} & =\gamma \\
\gamma_{\mu+1} & =\left(\gamma_{\mu}\right)^{\mu}
\end{aligned}
$$

fol limit μ

$$
y_{\mu}={ }_{\alpha<\mu} \gamma_{\alpha}
$$

Let $\quad \gamma^{*}={ }_{\mu<k} \gamma_{\mu}$
So γ^{*} is $[[\mathrm{OP}(\mathrm{T})]]$ good by Theorem 2.42 (c).

We now define $\left\{_{n} y\right\}_{n \in \omega}$ by

$$
\begin{aligned}
o y & =y \\
n+1 & =\left(y_{n}\right) *
\end{aligned}
$$

Then set

$$
\delta=u_{n \in D^{\prime}} Y
$$

Clearly $\delta \gamma y$ and is $[[O P(T)]]$ good.
We claim that $\delta \mathcal{F T}$.
It can easily be seen that T_{1}^{δ} and T_{2}^{δ} are H.C.C. theories .

For each $\mu<\kappa$
$\delta={ }_{n \in \omega} n\left(\gamma_{\mu+1}\right)$ where $n\left(\gamma_{\mu+1}\right)$ is the $\mu+1^{\text {th }}$ element in the chain used to construct ${ }_{n} \gamma$.

This is a Φ_{μ} - sequence, and since Φ_{μ} is a Π_{2}-sentence we have by ii) of this theorem that $\delta \vDash \Phi_{\mu}$. Hence $\delta \vDash T$ so γ is an approximation to T.

Suppose now that γ is an approximation to T. We show that y is $[[O P(T)]]$ good.

It suffices to show that if $y \dot{F} T$ then γ is $[[\mathrm{OP}(\mathrm{T})]]$ good.

By $\left\{\operatorname{OP}\left(\Phi_{\mu}\right)\right\}_{\mu<\eta^{\prime}}[[\Delta]]$ we mean the union of $\operatorname{OP}\left(\Phi_{\alpha_{1}}\right)\left[\left[\operatorname{OP}\left(\Phi_{\alpha_{2}}\right)\left[\left[\ldots\left[\left[\operatorname{OP}\left(\Phi_{\alpha_{s}}\right)[[\Delta]]\right]\right] \ldots\right]\right]\right.\right.$
for all finite subsets $\left\{\alpha_{1}, \ldots, \alpha_{s}\right\}$ of η where

$$
\alpha_{1}>\alpha_{2}>\ldots>\alpha_{s} .
$$

$y \neq \Phi_{0}$ and is $\{\langle t, f\rangle,\langle f, t\rangle\} \operatorname{good} \cdot$
By Theorem $2.6 \quad \gamma$ is $O P\left(\Phi_{0}\right)[[\{\langle t, f\rangle,\langle f, t\rangle\}]]$ good.
If $\eta<\kappa$ and we assume y is
$\left.\left.\left\{\operatorname{OP}\left(\Phi_{\mu}\right)\right\}_{\mu<\eta}[[\{<t, f\rangle,<f, t\rangle\}\right]\right]$ good, then since
$y \vDash \Phi_{\mu}$, again by Theorem $2.6, \gamma$ is
$\left\{\operatorname{OP}\left(\Phi_{\mu}\right)\right\}_{\mu \leqslant \eta}[[\{\langle t, f\rangle,\langle f, t\rangle\}] \operatorname{good}$.

It follows by transfinite induction that γ is $\left\{O P\left(\Phi_{\mu}\right)\right\}_{\mu<\kappa}[[\{\langle f, t\rangle,\langle t, f\rangle\}]]$ good.

Iterating with $\left\{O P\left(\Phi_{\mu}\right)\right\}_{\mu<K}[[\{\langle f, t\rangle,\langle t, f\rangle\}]]$ in place of $\{\langle t, f\rangle,\langle f, t\rangle\}$, we find that γ is $\left\{\operatorname{OP}\left(\Phi_{\mu}\right)\right\}_{\mu<\kappa}\left[\left[\left\{\operatorname{OP}\left(\Phi_{\mu}\right)\right\}_{\mu<\kappa}[[\{\langle f, t\rangle,\langle t, f\rangle\}]]\right] \operatorname{good}\right.$. Repeating this denumerably many times gives our result.
3.2

Theorem 3.12 is syntactic in nature. It allows us to find a great many n-simple relations which are S.C. . We now prove that if R is n-simple and preserved in T_{R} - sequences for some T_{R} then R is S.C. .

By Theorem 3.12 it suffices to show that if R
is n-simple and preserved in T_{R} - sequences for some T_{R} then we can find a $T_{R}{ }^{*}$, say, which is a set of $\quad \Pi_{2}$-sentences .

As might be expected we rely heavily on our previous results. We also adapt a type of proof developed by Keisler in [K_{1}] Theorem 6 .
3.21

We need to consider two binary relations,
N_{1} and N_{2} between L^{n} - structures, (rather than L - structures) . They will be (1,1) - simple relations.

To avoid confusion we suppose that the unary predicates added to $I^{\underline{n}}$ to obtain ($\left.I^{\underline{n}}\right)^{(1,1)}$ are V_{1} and V_{2}, and the added relation predicates are F_{1}^{1} and F_{2}^{1}.
N_{1} is the (1,1) - simple relation asserting the existence of two relations F_{1} and F_{2} s.t.
i) F_{1} is functional from U_{1}^{C} to U_{1}^{D}
ii) F_{2} is functional from U_{2}^{C} to U_{2}^{D}
iii) F_{1} "preserves " L formulae from U_{1}^{C} to U_{1}^{D}
IV) F_{2} "preserves " $L^{\prime}(B)$ formulae from U_{2}^{C} to U_{2}^{D}
v) for $1 \leqslant i \leqslant m$ if

$$
\begin{aligned}
& \mathrm{F}_{1} \text { relates } \overrightarrow{\mathrm{a}} \text { to } \overrightarrow{\mathrm{c}} \text { (pointwise) } \\
& \mathrm{F}_{2} \text { relates } \overrightarrow{\mathrm{B}} \text { to } \overrightarrow{\mathrm{a}} \text { (pointwise) }
\end{aligned}
$$

3.22 If for an I^{n} - structure $C \neq \Sigma \quad$ (See 2.21)
we define an \underline{n} - sequence

$$
y_{C}=\operatorname{Th}\left(C_{1}^{+}\right),\left(R_{11}^{n}\right)^{C}, \ldots,\left(R_{m m}^{n}\right)^{C}, \operatorname{Th}\left(C_{2}^{+}\right)
$$

then for $C, D \vDash \Sigma$
$C N_{1} D$ iff γ_{c} is included in some "copy" of γ_{d}. (By "copy" we mean , obtained from γ_{d} by changing individual constants .)

As is to be expected N_{1} is (1,1) - simple. In fact a suitable $\mathrm{T}_{\mathrm{N}_{1}}$ is the following set of sentences in $\left(I^{n}\right)(1,1)$.

$$
\forall x_{k 11} \in V_{1}\left(U_{k}\left(x_{k 11}\right)^{V_{1}} \rightarrow \exists y_{k+1} \in V_{2}\left(U_{k}\left(y_{k 11}\right)^{V_{2}} \cap x_{k 11} F F_{k}^{1} y_{k 11}\right)\right),
$$

$$
\forall \mathrm{x}_{\mathrm{k} 1 \bar{\rho}} \in \mathrm{~V}_{1} \forall \mathrm{y}_{\mathrm{k}_{1} \overline{\bar{\beta}}} \in \mathrm{~V}_{2}\left(\Lambda \Lambda \mathrm { x } _ { \mathrm { k } 1 } \overline { \rho } ^ { \mathrm { F } } \mathrm { K } _ { \mathrm { k } 1 \overline { \rho } } \rightarrow \left(\left(\phi_{\mathrm{k}}\left(\mathrm{X}_{\mathrm{k} 1 \bar{\rho}}\right)\right)^{V_{1}} \rightarrow\right.\right.
$$

$$
\left.\left.\rightarrow\left(\phi^{U_{k}}\left(y_{k 1 \bar{\rho}}\right)\right)^{\mathrm{V}_{2}}\right)\right)
$$

where $k=1,2$, and if $k=1 \quad \phi \in L$

$$
k=2 \quad \phi \in L^{\prime}(\hat{B})
$$

Our conventions stated in 2.53 hold for ϕ in $\left(I^{n}\right)^{(1,1)}$.
** By $x_{k_{1} \bar{\rho}}$ we mean a sequence of variables of form $x_{k 1 \rho_{1}}, \ldots, x_{k 1 \rho_{t}}$.
For each $1 \leqslant i \leqslant m$
$\forall x_{11 \bar{\rho}} x_{21 \bar{\rho}} \epsilon V_{1} \forall y_{11 \bar{\rho}} \quad y_{21 \bar{\rho}} \epsilon V_{2}\left(\Lambda \Lambda x_{11} \bar{\rho} F_{1}^{1} y_{11} \bar{\rho} \cap \Lambda \Lambda x_{21 \bar{\rho}}-F_{\frac{1}{2}} y_{21 \bar{\rho}} \rightarrow\right.$

$$
\left.\rightarrow\left(\left(x_{11} \bar{\rho}^{R_{i} i_{x_{21}} \bar{\rho}}\right)^{V_{1}} \rightarrow\left(y_{11} \bar{\rho}^{R_{i}^{n} i^{y_{21 \bar{\rho}}}}\right)^{V_{2}}\right)\right)
$$

It is easy to see that each of the above sentences is a Π_{2} - sentence and so N_{1} is S.C. -
We have that $\left[\left[O P\left(T_{N_{1}}\right)\right]\right]$ is :-
$\frac{3.23}{}$ It is not difficult to see that $\left[\left[\operatorname{OP}\left(T_{N_{1}}\right)\right]\right]$ is the set of those pairs of formulae of the form $\left\langle\theta_{1}\right.$, n.n.f. $\left.\left(T \theta_{1}\right)\right\rangle$ where

$$
\begin{aligned}
& \left\{\left\langle\exists \mathrm{x}_{111}\left(\mathrm{U}_{1}\left(\mathrm{x}_{111}\right) \cap \mathrm{X}_{1}\right), \forall \mathrm{y}_{111}\left(\mathrm{U}_{1}\left(\mathrm{y}_{111}\right) \rightarrow \mathrm{X}_{1}\right)\right\rangle,\right. \\
& <\exists \mathrm{x}_{211}\left(\mathrm{U}_{2}\left(\mathrm{x}_{211}\right) \cap \mathrm{X}_{1}\right), \forall \mathrm{y}_{211}\left(\mathrm{U}_{2}\left(\mathrm{y}_{211}\right) \rightarrow \mathrm{X}_{1}\right)>, \\
& <\phi^{U_{1}}\left(x_{11 \bar{p}}\right) \cap X_{1}, \phi^{U_{1}}\left(y_{11 \bar{\rho}}\right) \rightarrow X_{1}>, \\
& <\phi^{U_{2}}\left(x_{21 \bar{\rho}}\right) \cap X_{1}, \phi^{U_{2}}\left(y_{21 \bar{\rho}}\right) \rightarrow X_{1}>, \\
& <\mathrm{X}_{11 \bar{p}} R_{i}^{n}{ }^{i} \mathrm{X}_{21 \bar{\rho}} \cap \mathrm{X}_{1}, y_{11 \bar{\rho}} \mathrm{R}_{\dot{\mathrm{i}}}^{n} \mathrm{i}_{21 \bar{\rho}} \rightarrow \mathrm{X}_{1}> \\
& \text { for } 1 \leqslant i \leqslant m \text { with the relevant conditions } \\
& \text { on } \phi\}[[\{\langle t, f\rangle,\langle f, t\rangle\}]] \text {. }
\end{aligned}
$$

$\theta_{1} \in\left\{\left\langle\exists x_{111} \in U_{1}\left(X_{1}\right)\right\rangle,\left\langle\exists x_{211} \in U_{2}\left(x_{1}\right)\right\rangle\right\}[[z]]$
where Z is the set of $a \xi 1$ formulae of the form $\phi^{\mathrm{U}_{1}}\left(\mathrm{x}_{11} \bar{\rho}\right)$ for $\phi \in \mathrm{L}, \phi^{\mathrm{U}_{2}}\left(\mathrm{x}_{21} \bar{\rho}\right)$ for $\phi \in \mathrm{L}^{\prime}(\hat{B})$
and for $1 \leqslant i \leqslant m \quad x_{11}-R_{i}^{n} i x_{21} \bar{\rho}$ Where n.n.f. (ψ) is the negation normal form of ψ, and in this case, we make suitable changes of the constants and the variables. (egg. $x_{11 \rho} \rightarrow y_{11 \rho}$ etc.)

We now describe N_{2}, the reason for considering this relation will be seen shortly . N_{2} is the (1, 1)- simple binary relation between I^{n} - structures C and D asserting the existence of two relations F_{1} and F_{2} sst.
i) F_{1} is functional from U_{1}^{C} to U_{1}^{D}
ii) F_{z}^{\prime} is functional from U_{2}^{C} to U_{2}^{D}.

If F_{1} relates $\underset{d}{ }$ and C (pointwise) and F_{z} relates \forall and \mathbb{a} (pointwise) then ;
iii) For $1 \leqslant i \leqslant m$

If $C \vDash \overrightarrow{a R_{i}^{n} i \vec{b}}$ then $D \vDash \subset R_{i}^{n} i a$ and if $D F C R_{i}^{n} i \vec{a}$ then $C F \overrightarrow{d R_{i}^{n} i \psi}$.
iv) If $\left\langle\theta_{1}\left(\mathrm{x}_{11 \bar{\rho}} \overline{\mathrm{p}} \mathrm{x}_{21 \overline{\mathrm{~s}}}\right), \theta_{2}\left(\mathrm{y}_{11} \overline{\mathrm{p}} \mathrm{y}_{21 \overline{\mathrm{~s}}}\right)\right\rangle \in\left[\left[\operatorname{OP}\left(\mathrm{T}_{\mathrm{N}_{1}}\right)\right]\right]$ and $c \vDash \theta_{2}(\vec{w})$ then

$$
\left.D \vDash \theta_{2}(c \mathbb{C}) \text { (equivalently } D \vDash\right\urcorner \theta_{1}(c \mathbb{C}) \text {) }
$$

Again N_{2} is (1,1)-simple, it is easily shown that there is a set of H_{2} - sentences (in ($\left.I^{n}\right)^{(1,1)}$ $\mathrm{T}_{\mathrm{N}_{2}}$ describing N_{2}
We find that $\left[\left[\mathrm{OP}\left(\mathrm{T}_{\mathrm{N}_{2}}\right)\right]\right]$ can be described as the set of all pairs of formulae of the form $\left\langle\psi_{1}, \psi_{2}\right\rangle$ where $\psi_{2}=$ n.n.f. $\left(7 \psi_{1}\right)$ (again with suitable changes of the variables and constants,
and ψ_{1} is any formula in
$\left.\left.\left\{<\exists \mathrm{x}_{111} \in \mathrm{U}_{1}\left(\mathrm{X}_{1}\right)\right\rangle \quad\left\langle\exists \mathrm{x}_{211} \in \mathrm{U}_{2}\left(\mathrm{X}_{1}\right)\right\rangle\right\}\left[\left[\delta<7 \mathrm{X}_{1}>\right\}[\mathrm{V}]\right]\right]$
where V consists of all formulae θ where
for some $\left\langle\theta_{1} \theta_{2}\right\rangle \in\left[\left[\operatorname{OP}\left(T_{N_{1}}\right)\right]\right]$

$$
\theta=\text { n. n.f. }\left(\jmath \theta_{1}\right) \text { (i.e. } \theta \text { is } \theta_{2} \text { with }
$$

suitable changes of the variables and individual
constants.)
We leave the details to the reader .

3.24 Remark

In both N_{1} and N_{2} the relations F_{1} and F_{2} are 1 to 1 functional from U_{1}^{C} to U_{1}^{D} and U_{2}^{C} to U_{2}^{D} resp. (This is because in both cases $\left(x_{111} \neq x_{112}\right) U_{1}$ is "preserved " etc.) If the (1,1)-sequence (in I^{n}) γ is
s.t. $\quad \gamma \neq \mathrm{T}_{\mathrm{N}_{2}} \quad$ then $\mathrm{T}_{2}^{y},\left(\mathrm{~F}_{1}^{y}\right)^{-1},\left(\mathrm{~F}_{2}^{y}\right)^{-1}, \mathrm{~T}_{1}^{y}$ is an approximation to N_{1} (Since it is $\left[\left[O P\left(T_{N_{1}}\right)\right]\right]$ good by iv) in the definition of N_{z}) .
Where by $\left(F_{k}^{\gamma}\right)^{-1}$ we mean $\left\{\langle\mathrm{ba}\rangle:\langle\mathrm{ab}\rangle \in\left(F_{k}^{Y}\right)\right\}$ for $k=1,2$ (i.e. the inverse relation). This property is the main point of the definition of N_{2}. Notice that $\left(F_{k}^{\gamma}\right)^{-1}$ will also be 1 to 1 functional for $k=1,2$.

Def
We let $\Delta_{0}=\left\{\phi:\right.$ for some sentences ψ_{1}, ψ_{2} s,t.

$$
\begin{aligned}
& \left\langle\psi_{1}, \psi_{2}\right\rangle \in\left[\left[\mathrm{OP}\left(\mathrm{~T}_{\mathrm{N}_{2}}\right]\right]\right. \\
& \phi=\text { n.n.f. }\left(\neg \psi_{1}\right)
\end{aligned}
$$

3.3 Lemma

Let Γ be any I^{n} theory. Let A be any I^{n} - structure sit. $\quad A \neq \Gamma \cap \Delta_{0}$
then the $(1,1)$-sequence
$\operatorname{Th}\left(A^{+}\right), \phi, \phi, \Gamma$ is $\left[\left[0 P\left(\mathrm{~T}_{\mathrm{N}_{2}}\right)\right]\right] \operatorname{good}$.

Proof

Suppose not, there will be sentences θ_{1} and θ_{2} where $\left\langle\theta_{1}, \theta_{2}\right\rangle \in\left[\left[\mathrm{OP}\left(\mathrm{T}_{\mathrm{N}_{2}}\right]\right]\right.$ and $A F \theta_{1}$ and $\Gamma \nmid \theta_{2}$
but θ_{2} is equivalent to a member of Δ_{0}
(infect modulo change of bound variables $\theta_{2} \in \Delta_{0}$)
So $A \neq \theta_{2}$, but this is not possible since $A F \theta_{1}$ and $f \theta_{1} \longleftrightarrow \neg \theta_{2}$

Def

If $\left\{A^{i}\right\}_{i \in \omega}$ is a sequence of (I^{n}) structures where for $i \in \omega A_{A^{i}} \neq \Sigma$ (For def. of Σ see 2.21) $A^{i} N_{1} A^{i+1}$ and the relations
asserted to exist F_{1} and F_{2} are the inclusion functions $F_{1}: U_{1}^{A^{i}} \rightarrow U_{1}^{A^{i+1}}$ and $F_{2}: U_{2}^{A^{i}} \rightarrow U_{2}^{A^{i+1}}$ then $\left\{A^{i}\right\}_{i \in \omega}$ is called an N_{1}-chain.
(Notice the similarity to the Def. given prior to Theorem 3.12 and the Remark in 3.22.) Its union is defined to be any $L^{\underline{n}}$ - structure

$$
\begin{array}{ll}
C \text { s.t. } \quad & C_{1}=n \in \omega\left(A^{n}\right)_{1} \\
& C_{2}={ }_{n \in \omega}\left(A^{n}\right)_{2} \\
& \left(R_{i}^{n}\right)^{C}={ }_{n \in \omega}\left(R_{i}^{n}\right)^{A^{n}} \quad \text { for } \quad 1 \leqslant i \leqslant m \quad .
\end{array}
$$

Notice that this is a reasoable definition since $\left\{\left(A^{n}\right)_{k}: n \in \omega\right\}$ is an elementary chain for $k=1,2$

Def

We say a $L^{\underline{n}}$ theory Γ is preserved in
N_{1} - chains if whenever $\left\{A^{i}\right\}_{i \in \omega}$ is a_{n}
\mathbb{N}_{1} - chain sot. $A^{i} F \Sigma \cup \Gamma$ for $i \in \omega$ then (all of) its union(s) is (are) also a model of Γ.

3.31 Theorem

If r is a theory in $I^{\underline{n}}$ which is
preserved in N_{1} - chains, then there is a set of
sentences $\Gamma^{\prime} \subset \Delta_{0}$ sit.

$$
\Sigma \cup \Gamma f \Gamma^{\prime} \quad \text { and } \quad \Sigma \cup \Gamma^{\prime} \vdash \Gamma \text {. }
$$

Proof

Suppose there is no such set of sentences Γ^{\prime} so that the above conditions hold.

Let $\Gamma^{\prime \prime}=\left\{\phi: \Sigma \cup \Gamma \vdash \phi\right.$ and $\left.\phi \in \Delta_{0}\right\}$
Clearly

$$
\Sigma \cup \Gamma \vdash \Gamma^{\prime \prime}
$$

so

$$
\Sigma \cup \Gamma^{\prime \prime} \not \nvdash \Gamma
$$

hence there is $\phi \in \Gamma$ s.t.

$$
\Sigma \cup \Gamma^{\prime \prime} \not \not \not \emptyset
$$

Now ($\Sigma \cup \Gamma) \cap \Delta_{0} \subset \Gamma^{\prime \prime}$ so

$$
\Sigma \cup\left((\Sigma \cup \Gamma) \cap \Delta_{0}\right) \not \not \nLeftarrow \phi
$$

Let A be an L^{n} - structure sit.

$$
A \neq \Sigma \cup\left((\Sigma \cup \Gamma) \cap \Delta_{0}\right) \cup\{\neg \phi\}
$$

By Lemma 3.3
$3.32 \operatorname{Th}\left(\mathrm{~A}^{+}\right), \phi, \phi, \Sigma \cup \Gamma$ is $\left[\left[0 P\left(\mathrm{~T}_{\mathrm{N}_{2}}\right)\right]\right] \operatorname{good}$.

So we can find ${ }_{1} A, F_{1}, F_{2}$ and ${ }_{1} B$ sot.
$3.33 \mathrm{Th}\left({ }_{1} \mathrm{~A}^{+}\right), \mathrm{F}_{1}, \mathrm{~F}_{2}, \operatorname{Th}\left({ }_{1} \mathrm{~B}^{+}{ }_{\lambda}\right)=\mathrm{T}_{\mathrm{N}_{2}}$ by 3.12 iii), which extends 3.32.

Since F_{1} and F_{2} are 1 to 1 functional over $U_{1} 1^{A}$ to $U_{1}{ }^{1} B$ and $U_{2}{ }^{1} A$ to $U_{2}{ }^{1} B$ resp. we may assume wolo.l.g. that F_{1} and F_{2} are infect functions from

$$
\begin{aligned}
& F_{1}: U_{1}{ }^{1} A \rightarrow U_{1}{ }^{1} B \\
& F_{2}: U_{2}{ }^{1} A \rightarrow U_{2}{ }^{1} B
\end{aligned}
$$

$A \leqslant{ }_{1} A$ and ${ }_{1} B$ is chosen so that F_{1} and
F_{2} are infect inclusion maps.

Since 3.33 holds, it follows from Remark 3.24 that : $\operatorname{Th}\left({ }_{1} \mathrm{~B}^{+}\right),\left(\mathrm{F}_{1}\right)^{-1},\left(\mathrm{~F}_{2}\right)^{-1}, \operatorname{Th}\left({ }_{1} \mathrm{~A}^{+}\right)$is $\left[\left[\mathrm{OP}\left(\mathrm{T}_{\mathrm{N}_{1}}\right]\right]\right.$ good which, therefore, is an approximation to $\mathrm{T}_{\mathrm{N}_{1}}$, so there is an extension of the form :$\operatorname{Th}\left({ }_{2} B^{+}\right), G_{1}, G_{2}, \operatorname{Th}\left({ }_{2} A^{+}\right) \neq T_{N_{1}}$
Where, again wdo.1.g. we may assume ${ }_{1} A \leqslant{ }_{2} A$ and ${ }_{1} B \leqslant{ }_{2} B$,
and since G_{k} extends $\left(F_{k}\right)^{-1}$ (still considered as relations) $k=1,2, \ldots$ we may suppose that $G_{k}: U_{k}{ }^{B} \rightarrow U_{k}{ }^{2} A \quad k=1,2$ and are inclusion maps \cdot

We thus have the following situation :-

Where all the maps
are inclusion maps
on their domain.
From the definition of N_{1} it easily follows
that ${ }_{1} \mathrm{~B} \mathrm{~N}_{12} \mathrm{~A}$ where the relations asserted to exist
by $\quad N_{1}$ are simply
$G_{1} \cap\left(U_{1}{ }^{1} B \mathrm{XU}_{1} 2^{A}\right)$ and $G_{2} \cap\left(U_{2}{ }^{1} B \mathrm{X}_{2} 2^{A}\right)$
which we continue to call G_{1} and G_{2} resp.
Hence from the fact that
$\operatorname{Th}\left(A^{+}\right), \phi, \phi, \Sigma \cup \Gamma$ is $\left[\left[\mathrm{OP}\left(\mathrm{T}_{\mathrm{N}_{2}}\right)\right]\right] \operatorname{good}$
and the preceding argument we have
334

Clearly

$$
\begin{equation*}
\operatorname{Th}\left({ }_{2} A^{+}\right), \phi, \phi, \Sigma \cup \Gamma \text { is }\left[\left[\mathrm{OP}\left(\mathrm{~T}_{\mathrm{N}_{2}}\right)\right]\right] \text { good, } \tag{52}
\end{equation*}
$$

since

$$
\operatorname{Th}\left(A^{+}\right), \phi, \phi, \Sigma \cup \Gamma \text { was. }
$$

Repeating the above argument with ${ }_{2} \mathrm{~A}$ in place of A, we again obtain a situation similar to 3.34 .

Iterating we find :-

It is easy to check that $\left\{i_{i} B\right\}_{i \in \omega}$ is an N_{1} - chain .

Let $\omega A=\underset{n \in \omega}{U}{ }_{n} A$
ωA is a union of $\{i B\}_{i \in \omega}$
This fact is the whole point of the construction. The details are left to the reader .

Since $A \leqslant \omega A$ and $A \neq \neg \phi$ $\omega_{A}, \ldots \quad \Gamma$
but $i B \neq \Gamma$ for $i \in \omega$.
It follows that Γ is not preserved in N_{1} - chains.

ㅁ

3.35 MAIN THEOREM

If R is a \underline{n} - simple binary relation such
that there is a T_{R} which is preserved
in N_{1} - chains, then R is Syntactically
Characterizable .

Proof
By Theorem 3.31 we may suppose T_{R} is a set of Δ_{0} sentences (See Def 2.21)

In view of Theorem 3.12 it suffices to show that for each $\phi \in \Delta_{0}$ there are a finite number of sentences $\phi_{1}, \ldots, \phi_{s}$ in Π_{2} s.t.

$$
f \phi \underset{1 \leqslant i \leqslant s}{\longleftrightarrow} \psi_{i}
$$

Now Δ_{0} is the set of sentences in

$$
\left\{\left\langle\forall x_{111} \in U_{1}(x)\right\rangle,\left\langle\forall x_{211} \in U_{2}(x)_{>},\left\langle x_{1} \cap x_{2}\right\rangle 0\left\langle x_{1} \cup x_{2}\right\rangle\right\} \ldots\right.
$$

$$
\left[\{ < 7 \mathrm { X } > \} \left[\left\{<\exists \mathrm{x}_{111} \in \mathrm{U}_{1}(\mathrm{X})_{>}><\exists \mathrm{x}_{211} \in \mathrm{U}_{2}(\mathrm{X})_{>\rho}<\mathrm{X}_{1} \cap \mathrm{X}_{2}>,\right.\right.\right.
$$

$\left.\left.<X_{1} \cup X_{2}>\right\}[W]\right]$]
where W is the set of all formulae of the form

$$
\begin{aligned}
& \theta_{1} U_{1}\left(x_{11 \bar{\rho}}\right) \quad, \quad \theta_{2}^{U_{2}\left(x_{21 \bar{\rho}}\right) \quad, \quad x_{11-\bar{\rho}} R_{i}^{n} i_{x_{21 \bar{\rho}}}} \\
& \text { for } 1 \leqslant i \leqslant m \quad(\text { see Def after } 3.24)
\end{aligned}
$$

By the usual normal form theorems, see Keister $\left[\mathrm{K}_{1}\right]$, this set is the same as the sentences in $\left\{\left\langle\mathrm{X}_{1} \cap \mathrm{X}_{2}>\right\}\left[\left\{\left\langle\forall \mathrm{X}_{111} \in \mathrm{U}_{1}(\mathrm{X})\right\rangle,\left\langle\forall \mathrm{x}_{211} \in \mathrm{U}_{2}(\mathrm{X})>\right\} \ldots\right.\right.\right.$ $\left[\left\{\left\langle\mathrm{X}_{1} \cup \mathrm{X}_{2}>\right\}\left[\left\{\ll \mathrm{X}_{>}\right\}\left[\left\{<\mathrm{X}_{1} \cup \mathrm{X}_{2}>\right\} \ldots\right.\right.\right.\right.$ $\left.\left.\left.\left.\left[\left\{\left\langle\exists x_{111} \in U_{1}(x)\right\rangle,\left\langle\exists x_{211} \in U_{2}(x)\right\rangle\right\}\left[\left\{\left\langle X_{1} \cap X_{2}\right\rangle\right\}[w]\right]\right]\right]\right]\right]\right]$.

Which in turn can be seen to be the set of sentences in

$$
\left\{\left\langle x_{1} \cap x_{2}\right\rangle\right\}\left[\left\{\left\langle\forall x_{111} \in U_{1}(x)\right\rangle,\left\langle\forall x_{211} \in U_{2}(x)>\right\}[T]\right]\right.
$$

where T is the set of formulae of the form

$$
\psi \rightarrow x \quad \text { where }
$$

$$
\left.\psi \in\left\{<x_{1} \cap x_{2}\right\rangle\right\}[w]
$$

$$
x \in\left\{<x_{1} \cup X_{2}>\right\}\left[\left\{<\exists x_{111} \in U_{1}(x)>,<\exists x_{211} \in U_{2}(x)>\right\} \ldots\right.
$$

$$
\left[\left\{\left\langle x_{1} \cap x_{2}\right\rangle\right\}[w]\right] .
$$

Which is equivalent to the finite conjunction of the sentences in
3.36

$$
\left\{\left\langle\forall x_{111} \in U_{1}(x)\right\rangle,\left\langle\forall x_{211} \in U_{2}(x)\right\rangle\right\}[T] .
$$

Claim
Each of the sentences in 3.36 is equivalent to a Π_{2} - sentence.

The proof of this fact is left to the reader. We only have to change the variables $x_{21 \rho}$ to $y_{11 \rho}$ and check that sub-formulae of the form $X_{11 \bar{\rho}} R_{i}^{n} i^{y_{11} \bar{\rho}}$ have their variables changed suitably.

Example:

$$
\forall x_{114} \in U_{1} \forall x_{214} \in U_{2}\left(x_{114} x_{114} R_{1}^{2} x_{214} x_{214} \cap \theta^{U_{1}} x_{114} \rightarrow \phi^{U_{2}}{x_{214}}\right)
$$

becomes

$$
\begin{aligned}
& \forall x_{114} x_{124} \in U_{1} \forall y_{114} y_{124} \in U_{2}\left(x_{114} x_{124} R_{1}^{2} y_{114} y_{124} \rightarrow\right. \\
& \left(\left(\left(\theta x_{114} \cap x_{114}=x_{124}\right)^{\left.U_{1} \cap y_{114}=U_{124}\right) \rightarrow}\right.\right. \\
& \left.\left.\rightarrow \phi U_{Y_{114}}\right)\right)
\end{aligned}
$$

With the claim we have proved our result.

The natural question to ask now is whether the converse holds. That is : If R is \underline{n} - simple and S.C. then is there a T_{R} which is preserved in N_{1} - chains?

Alternatively, is there any subset Ω of Π s.t. if R is \underline{n} - simple and S.C. then T_{R} can be chosen to be a set of sentences in Ω ?

3.4

After Def 2.22 we suggested that we could give a syntactic condition on those T for which R_{T} is defined : this is left as an exercise for the reader.

CHAPTER 4

4.1 Introduction

Suppose Δ is a notion of godliness
for some binary \underline{n} - simple relation R in L, st.
whenever $\quad\left\langle\theta_{1}, \theta_{2}\right\rangle \in \Delta \quad \theta_{2}=$ n.n.f. $\left(\eta \theta_{1}\right)$
(with the usual suitable conditions on the variables and individual constants . (See eg. 3.23))

Let $\pi_{1} \Delta=\left\{\theta_{1}: \theta_{1}\right.$ is a sentence and $\left.\exists \theta_{2}\left(\left\langle\theta_{1}, \theta_{2}\right\rangle \in \Delta\right)\right\}$

Provided $\pi_{1} \Delta$ can be described in a syntactically simple way, we have an interpolation theorem for R. (See 2.1 b))

For let ψ, χ be any sentences in L.
If the L.H.S. of 2.11 holds, then

$$
\psi, \phi, \ldots, \phi, \neg x \quad \text { is } \Delta \text { bad . }
$$

So :there are sentences θ_{1}, θ_{2} sot. $\left\langle\theta_{1}, \theta_{2}\right\rangle \in \Delta$ and

$$
\psi \vdash \theta_{1} \quad \text { and } \quad 7 x \vdash \theta_{2}
$$

but $\theta_{2}=$ n.n.f. $\left(7 \theta_{1}\right)$ (We have suppressed mention of the individual constants, as we shall continue to do)

Therefore

$$
\psi \vdash \theta_{1} \text { and } \neg x \vdash \neg \theta_{1}
$$

ie. $\psi \vdash \theta_{1}$ and $\theta_{1} \vdash x$ where $\theta_{1} \in \pi_{1} \Delta$
So the R.H.S. holds.
If the R.H.S. holds then clearly

$$
\psi, \phi, \ldots, \phi, \neg \chi \quad \text { is } \Delta \text { bad . }
$$

So the L.H.S. holds .
It follows that we have an interpolation theorem.

In this chapter we use our previous results, and the above comments, to obtain interpolation theorems.

In particular we consider :Direct Roots of Direct Powers. Direct Factors (See [$\left.\mathrm{K}_{3}\right]$) A new interpolation theorem concerning "cofinal" embeddings. An extended version of Craig's Interpolation Theorem .

Towards the end of the chapter we consider certain ternary relations.

4.2

The following sentences have nice properties, as we shall see .

Symmetric Sentences

Let V be the set of all formulae in L of the form $\underset{\forall \vec{X} \in U_{1}}{:-}\left(\phi^{U_{1}} \rightarrow \exists \vec{y} \in U_{2}\left(\phi^{U_{2}} \cap \theta\right)\right)$ or
$\forall \vec{y} \in U_{2}\left(\phi^{U_{2}} \rightarrow \exists \vec{x} \in U_{1}\left(\phi^{U_{1}} \cap \theta\right)\right)$
where ϕ is a formula in L (of type 1 when relativized to U_{1} and type 2 when relativized to U_{2} (See 2.53))
θ is a formula of type 3 in L and the variables in θ are precisely the variables $\overrightarrow{\mathbf{x}} \vec{y}$.

Let T_{1} be the set of (1) - operators (in L)
of the form

$$
\begin{aligned}
& \forall \vec{x} \in U_{1}\left(\phi^{U_{1}} \rightarrow \exists \exists \dot{y} \in U_{2}\left(\phi^{U_{2}} \cap \theta \cap x_{1}\right)\right) \\
& \forall \vec{y} \in U_{2}\left(\phi^{U_{2}} \rightarrow \exists \vec{x} \in U_{1}\left(\phi^{U_{1}} \cap \theta \cap X_{1}\right)\right)
\end{aligned}
$$

where the above conditions on ϕ and θ hold, and the variables in θ are precisely the variables in $\vec{X} \not \subset$ of the form $v_{j i k p}$ where $1 \leqslant i \leqslant m$.
(There may be variables of the form $\mathrm{v}_{\text {lop }}$ in $\overrightarrow{\mathbf{x}} \overrightarrow{\mathbf{y}}$.)

Let T_{2} be the set of (1) - operators of the form

$$
\forall \vec{x} \in U_{1}, \forall \vec{y} \in U_{2}\left(\theta \rightarrow X_{1}\right)
$$

where θ is a formula of type 3 in L and the . variables in θ are precisely the variables $\vec{x} \forall$ (Our usual conventions still hold so , for example, in all cases \vec{X} corresponds to $\vec{\forall}$.)
4.21 Def

Symmetric Sentences are all the sentences
in $T_{2}\left[T_{1}[\mathrm{~V}]\right]$

4.22 Remark

Comparing the above Def. with Def 2.54
of II - sentences , we see that every Symmetric Sentence is also a Π - sentence. In consequence Theorem 2.6 holds for Symmetric Sentences.

It is not difficult to see that for a Symmetric Sentence Φ we have $\quad O P_{2}(\Phi)=$ n.n.f. $\left(7 O P_{1}(\Phi)\right)$ where again we have to change the variables and individual constants but also $7 X_{k}$ is replaced by X_{k}.

Example

$$
\begin{aligned}
& \text { Consider the Symmetric Sentence } \Phi \text { :- } \\
& \forall y_{001} \in U_{2} \exists x_{001} \in U_{i} \forall x_{111} \in U_{1}\left((x _ { b 0 1 } \leqslant x _ { 1 1 1 }) \xrightarrow { U _ { 1 } } \exists Z _ { 1 1 1 } \in U _ { 2 } \left(\left(y_{001} \leqslant y_{111}\right) U_{2}\right.\right. \\
& \text { ก } \left.\mathrm{X}_{111} \mathrm{R}_{1}^{1} \mathrm{y}_{111}\right) \text {) } \\
& O P_{1}(\Phi)=\forall \mathrm{x}_{001} \exists \mathrm{x}_{111}\left(\mathrm{x}_{001} \leqslant \mathrm{x}_{111} \cap \mathrm{X}_{1}\right) \\
& O P_{2}(\Phi)=\exists y_{001} \forall y_{111}\left(y_{001} \leqslant y_{111} \rightarrow X_{1}\right) \\
& \text { So n.n.f. }\left(70 P_{1}(\Phi)\right)=J x_{001} \forall x_{111}\left(x_{001} \leqslant x_{111} \rightarrow 7 x_{1}\right) \\
& \text { and with our conventions this becomes :- } \\
& \exists y_{001} \forall y_{111}\left(y_{001} \leqslant y_{111} \rightarrow X_{1}\right) \\
& \text { which is } \mathrm{OP}_{2}(\Phi) \text {. }
\end{aligned}
$$

4.23 Remark

From now on we make the further
convention, for ease of reading, that provided there is no ambiguity we omit the symbols U_{1} and U_{2}. There is no real problem since all x-variables are relativized to U_{1} and all y-variables are relativized to U_{2}. Thus, for example, the above Φ becomes :-
$\forall \mathrm{y}_{001} \exists \mathrm{x}_{001} \forall \mathrm{x}_{111}\left(\mathrm{x}_{001} \leqslant \mathrm{x}_{111} \rightarrow \exists \mathrm{y}_{111}\left(\mathrm{y}_{001} \leqslant \mathrm{y}_{111} \cap \mathrm{x}_{111} \mathrm{R}_{1}^{1} \mathrm{y}_{111}\right)\right)$
We shall also be fairly loose with our subscripts.
The reader will be able to substitute more
suitable subscripts easily . For example, we might
have written the above as :-

$$
\forall \mathrm{y}_{0} \exists \mathrm{x}_{0} \forall \mathrm{x}_{1}\left(\mathrm{x}_{0} \leqslant \mathrm{x}_{1} \rightarrow \exists \mathrm{y}_{1}\left(\mathrm{y}_{0} \leqslant \mathrm{y}_{1} \cap \mathrm{x}_{1} \mathrm{R}_{1}^{1} \mathrm{y}_{1}\right)\right.
$$

4.3 Def

Let R be any \underline{n} - simple binary relation in L; we say there is an Interpolation Theorem for R if for some set Γ of symmetric sentences $[[O P(\Gamma)]]$ is a notion of goodness for R.

If Γ is as above, then $\pi_{1}[[O P(\Gamma)]]$ is described syntactically and simply. It thus serves as the set required in the usual definition, (See 2.1 and 4.1) to show that R has an interpolation theorem.
4.31

It is easy to check that every sentence in $\mathrm{T}_{2}[\mathrm{~V}]$ is also a H_{2} - sentence . (See 3.1) It follows from Theorem 3.12 that for any set of sentences Γ in $T_{2}[V], R_{\Gamma}$ is defined and is S.C. with a notion of goodness $[[O P(\Gamma)]]$. It follows from Def 4.3 that R_{f} has an Interpolation Theorem. (Both in our sense and the usual sense)

Example

Consider the relation H of "onto homomorphism" between L - structures. It can be thought of as the (1)-simple relation with a T_{H} :-

$$
\begin{aligned}
& \forall \mathrm{x}_{1} \exists \mathrm{y}_{1}\left(\mathrm{x}_{1} \mathrm{R}_{1}^{1} \mathrm{y}_{1}\right) \\
& \forall \mathrm{y}_{1} \exists \mathrm{x}_{1}\left(\mathrm{x}_{1} \mathrm{R}_{1}^{1} \mathrm{y}_{1}\right) \\
& \forall \overrightarrow{\mathrm{x}}_{1} \overrightarrow{\mathrm{y}}_{1}\left(\Lambda \Lambda \overrightarrow{\mathrm{x}}_{1} R_{1}^{1} \overrightarrow{\mathrm{y}}_{1} \rightarrow\left(\theta\left(\overrightarrow{\mathrm{x}}_{1}\right) \rightarrow \theta\left(\vec{y}_{1}\right)\right)\right)
\end{aligned}
$$

for $\theta(\vec{v})$ any atomic formula in L.

These sentences are all in $\mathrm{T}_{2}[\mathrm{~V}]$, so H has an Interpolation Theorem.

$$
\begin{aligned}
& {\left[\left[O P\left(T_{H}\right)\right]\right]=\left\{\left\langle\exists x_{1}\left(x_{1}\right), \forall y_{1}\left(x_{1}\right)\right\rangle,\left\langle\forall x_{1}\left(X_{1}\right), \exists y_{1}\left(x_{1}\right)\right\rangle,\right.} \\
& \left.\left\langle\theta\left(\vec{x}_{1}\right) \cap X_{1}, \theta\left(\vec{y}_{1}\right) \rightarrow X_{1}\right\rangle\right\}[[\{\langle t, f\rangle,\langle f, t\rangle\}]]
\end{aligned}
$$

It is easy to check that $\pi_{1}\left[\left[O P\left(T_{H}\right)\right]\right]$ is simply the set of positive sentences in L_{j} together with f:

Def 4.3 is not suitable if we replace "interpolation" by "preservation". For in view of Lemma 2.44 it is not difficult to see that all n-simple relations would have a preservation theorem under this definition, in quite a trivial way .

In the case of Interpolation Theorems, there appears to be no cause for treating Def 4.3 as trivial.

In [MO], Proof Theory is used to obtain many interpolation theorems in a wide class of languages. The work which refers to First Order Languages is roughly equivalent to 4.31 ; though the proof is, of course, much different.
4.32 Def

Let Δ and Δ^{\prime} be two n-sets, we say
$\Delta \Rightarrow \Delta^{\prime}$ if whenever $\left\langle\theta_{1}, \theta_{2}\right\rangle \in \Delta$ there is

$$
\left\langle\phi_{1}, \phi_{2}\right\rangle \in \Delta^{\prime} \quad \text { s.t. }
$$

$$
\vdash \theta_{1} \longrightarrow \phi_{1}
$$

$$
r \theta_{2} \rightarrow \phi_{2}
$$

We say that

$$
\Delta \equiv \Delta^{\prime} \text { if } \Delta \Rightarrow \Delta^{\prime} \text { and } \Delta^{\prime} \Rightarrow \Delta
$$

4.33 Theorem

If Δ is a notion of goodness for
the n-simple binary relation R by T_{R} in L and Δ^{\prime} is an $\underline{n}-$ set, then $\Delta \equiv \Delta^{\prime}$ iff Δ^{\prime} is a notion of goodness for R by T_{R}.

Proof

Suppose $\quad \Delta \equiv \Delta^{\prime}$
If γ is a T_{R} approximation then γ is Δ good, but then γ is Δ^{\prime} good (since $\Delta^{\prime} \equiv \Delta$) If γ is Δ^{\prime} good then γ is Δ good, so γ is a T_{R} approximation .

Suppose now Δ^{\prime} is a notion of goodness
for R by T_{R}.
Let $\left\langle\theta_{1} \vec{x}, \theta_{2} \vec{y}\right\rangle \in \Delta$
Choose new individual constants \vec{y}_{y}, for $1 \leqslant i \leqslant m$ let R_{i} be the set of those $2 n_{i}$ sequences in $\vec{d}_{x}{ }_{y}{ }_{y}$ whose corresponding variables are of the form :-

$$
x_{i_{1 \rho}}, \ldots, x_{i_{n_{i}} \rho}, y_{i_{1 \rho}}, \ldots, y_{i_{n_{i}} \rho}
$$

Then $\delta=\theta_{1} \vec{a}_{x}, R_{1}, \ldots, R_{m}, \theta_{2} \vec{b}_{y}$ is not Δ good, so is not an approximation to T_{R} and hence is not Δ^{\prime} good.

So there is $\left\langle\phi_{1} \overrightarrow{\mathrm{x}}_{1}, \phi_{2} \vec{y}_{1}\right\rangle \in \Delta^{\prime}$ and some

$$
\begin{aligned}
& \vec{a}_{\mathrm{x}_{1}} \subset \overrightarrow{\mathrm{~d}}_{\mathrm{x}} \quad \quad \nabla_{\mathrm{y}_{1}} \subset \nabla_{\mathrm{y}} \quad \text { set. } \\
& \vec{a}_{X_{1}} \text { and } \nabla_{y_{1}} \text { are } \delta \text { consistent for } \vec{x}_{1} \text { set. } \\
& \theta_{1} \vec{a}_{x} \vdash \phi_{1} \vec{a}_{x_{1}} \\
& \theta_{2} \mathrm{~b}_{\mathrm{y}} 1-\phi_{2} \mathrm{~b}_{\mathrm{y}_{1}}
\end{aligned}
$$

w.l.o.g. we may suppose that the variables corresponding to $\vec{a}_{X_{1}}$ in \vec{a}_{X} are in fact \vec{X}_{1}
and those corresponding to $\vec{y}_{y_{1}}$ in \forall_{y} are \vec{y}_{1}. We thus have

$$
r \theta_{1} x \rightarrow \phi_{1} x_{1} \quad \text { and } \quad r \theta_{2} y \rightarrow \phi_{2} \vec{y}_{1}
$$

So $\Delta \Rightarrow \Delta^{\prime}$
Symmetry gives the result.

Suppose R is $a_{n} \underline{n}$ - simple binary relation between L - structures which has an Interpolation Theorem. So there is a set of Symmetric sentences Γ s.t. $[[O P(\Gamma)]]$ is a notion of goodness for
R. It follows easily that R has an interpolation theorem, in the usual sense, between models of T (a theory in L).
That is to say
4.34 For all ψ, χ sentences in L $\forall A \forall B(A, B \vDash T$ and $A R B$ and $A \vDash \psi$ imply A $F \chi$) inf there is $\theta_{1} \in \pi_{1}[[O P(\Gamma)]]$ set. $T \cup\{\psi\} \vdash \theta_{1}$ and $T \cup\left\{\theta_{1}\right\} \vdash x$

Now the L.H.S. of the above describes an \underline{n} - simple relation $R(T)$
i.e.

$$
A R(T) B \text { iff } A R B \text { and } A, B F T
$$

We cannot in general expect $R(T)$ to have an Interpolation Theorem (in our sense, 4.3). We extend our earlier definitions.

By $T^{U_{k}}$ we mean $\left\{\phi^{U_{k}}: \phi \in T\right\}$ for $k=1,2$.
4.35 Def

We say a binary \underline{n} - simple relation R
between L -structures has an Interpolation Theorem between models of T if for some Symmetric Theory Γ, [[OP($\left.\left.\left.\Gamma \cup T^{U_{1}} \cup T^{U_{2}}\right)\right]\right]$ is a notion of goodness for $R(T)$.

In order to show that we can deduce 4.34 from this definition we need to know that we can simplify (suitably) a notion of goodness in the correct way.
4.36 Theorem

Let Δ be an \underline{n}-set and Γ be a set
of Π - sentences. Suppose $\phi^{U_{1}} \in \Gamma$ where ϕ is
a sentence in L. Then
$\mathrm{OP}(\Gamma)[[\Delta]] \equiv\{<\phi \rightarrow \mathrm{X}, \mathrm{X}>\}\left[\mathrm{OP}\left(\Gamma-\left\{\phi^{\mathrm{U}^{1}}\right\}[[\Delta]]\right]\right.$.

Proof

R.H.S. C L.H.S.

It suffices to show that L.H.S. \Rightarrow R.H.S. This can easily be shown by induction on the complexity of the formulae involved, by using the following obvious facts :
 Where we suppose for (say) $\mathrm{m} \in \mathrm{t} \oplus_{\mathrm{m}}$ is of the form $\phi \rightarrow \Theta_{m}^{\prime}$ and for $k \neq m$ Θ_{k}^{\prime} is $\Theta_{k} ;-$ and if $\quad \mid \oplus_{1} \rightarrow \oplus_{2}$

$$
\left[\exists \vec{x}_{1}\left(\psi n_{k \in t} \forall \vec{x}_{k}\left(\psi_{k} \rightarrow \Theta_{1}\right)\right)\right] \rightarrow\left[\exists \dot{x}\left(\psi n_{k \in t} \forall \vec{x}_{k}\left(\psi_{k} \rightarrow \Theta_{2}\right)\right)\right] .
$$

The above Theorem, with its obvious corollary for sentences of form $\phi^{\mathrm{U}_{2}}$, where ϕ is a sentence in L, allows us to "pull" a theory out of the notion of goodness.

4.37 Theorem

Suppose R has an Interpolation Theorem
between models of T, and $\left[\left[O P\left(\Gamma^{\prime} \cup T^{U_{1}} \cup T^{U_{2}}\right)\right]\right]$
is a notion of goodness for $R(T)$, where
Γ^{\prime} is a Symmetric theory . Then 4.34 is
satisfied for R and T by $\pi_{1}\left[\left[O P\left(\Gamma^{\prime}\right)\right]\right]$:

Proof
The proof is straightforward and relies heavily on Theorem 4.36.

We can also simplify \underline{n} - sets, and so notions of goodness in another direction.

4.38 Theorem

Let Δ be $a^{n} \underline{n}$ - set in L and Γ be
a $I I$ - theory . Let Φ be of form
$\forall \vec{x}_{1} \vec{y}_{1}\left(\theta \rightarrow\left(\phi^{U_{1}} \rightarrow \phi^{U_{2}}.\right) \quad\right.$ where θ is a
formula of type 3 containing precisely the
variables $\vec{x}_{1} \vec{y}_{1}$.
Then if $\Phi \in \Gamma$
$\mathrm{OP}(\Gamma)[[\Delta]] \equiv \mathrm{OP}(\Gamma-\{\Phi\})[[\Delta \cup\{\langle\phi, 7 \phi>\}]]$.

Proof

```
Trivial
```


4.4 Interpolation Theorems

4.41

Consider the binary relation $D R$ between
L - structures A , B st.
$A D R B$ inf $A X A \simeq B X B$.
In [K_{3}] Keisler calls this relation Direct Roots
of Direct Powers. He uses infinitely long formulae to obtain his results and expresses the difficulty experienced in finding the necessary sentences to obtain an interpolation theorem .
$D R$ is the (2) - simple relation defined by the following sentences Γ.

$$
\begin{aligned}
& \forall x_{1} x_{2} \exists y_{1} y_{2}\left(x_{1} x_{2} R_{1}^{2} y_{1} y_{2}\right) \\
& \forall y_{1} y_{2} \exists x_{1} x_{2}\left(x_{1} x_{2} R R_{1}^{2} y_{1} y_{2}\right) \\
& \forall \vec{x}_{1} \vec{x}_{2} \vec{y}_{1} \dot{y}_{2}\left(\Lambda \Lambda \vec{x}_{1} \vec{x}_{2} R_{1}^{2} \dot{y}_{1} \vec{y}_{2} \longrightarrow\left(\theta \vec{x}_{1} \cap \theta \vec{x}_{2} \longrightarrow\left(\theta \vec{y}_{1} \cap \ominus \vec{y}_{2}\right)\right)\right) \\
& \forall \vec{x}_{1} \vec{x}_{2} \ddot{y}_{1} \dot{y}_{2}\left(\Lambda \Lambda \vec{x}_{1} \vec{x}_{2} R_{1}^{2} \bar{y}_{1} \ddot{y}_{2} \longrightarrow\left(\theta \dot{y}_{1} \cap \ominus \dot{y}_{2} \longrightarrow\left(\theta \vec{x}_{1} \cap \theta \vec{x}_{2}\right)\right)\right) \\
& \text { where } \theta \text { is an atomic formula in } L \text { and all the } \\
& \text { variables in } X_{1} x_{2} y_{1} y_{2} \text { are supposed to be of the } \\
& \text { form } \mathrm{v}_{\mathrm{j} 1 \mathrm{k} \rho} \text { for } j, k=1,2 \quad p \in \omega
\end{aligned}
$$

Clearly $\Gamma \subset T_{1}[V]$ so R has an Interpolation Theorem.
Indeed a notion of goodness for R is the set of pairs of formulae of the form :
$\left\langle\phi_{1}, \phi_{2}\right\rangle$ where $\phi_{2}=$ n.n.f. $\left(7 \phi_{1}\right)$
(with the usual conditions on the variables and constants)
and $\phi_{1} \in\left\{<\exists x_{1} x_{2}\left(x_{1}\right)>\rho<\forall x_{1} x_{2}\left(x_{1}\right)>\right\} \ldots$
$\left.\left.\left.\left.\left.\left[\left[\left\{<\theta \mathrm{X}_{1} \cap \theta \mathrm{X}_{2}\right\rangle,<\right\urcorner \theta \mathrm{X}_{1} \cup \neg \theta \mathrm{X}_{2}\right\rangle,<t\right\rangle,<f\right\rangle\right\}\right]\right]$
(We have used Theorem 4.38)
Translating this into the usual form , we obtain Keister's Theorem [K_{3}] Cor. 4.2.

We use the following Theorem to simplify the proof of a new Interpolation Theorem .

4.42 Theorem

Let $R(\mathbb{T})$ be an \underline{n} - simple binary relation defined by a set of Π_{2} - sentences. $T_{R(T)}$. Let Γ be a Symmetric Theory sot.
a) $\left[\left[O P\left(T_{R(T)}\right)\right]\right] \Rightarrow\left[\left[O P\left(\Gamma \cup T^{U_{1}} \cup T^{U_{2}}\right)\right]\right]$
b) $T_{R(\mathbb{T})} \vdash \Gamma$

Then $R(T)$ has an Interpolation Theorem between models of T (See 4.34 for def. of $R(T)$)

Proof

It suffices to show that if y is any \underline{n} - sequence which is $\left[\left[0 P\left(T_{R(T)}\right)\right]\right]$ good, then γ is $\left[\left[O P\left(\Gamma \cup T^{U_{1}} \cup T^{U_{2}}\right)\right]\right]$ good. That this is so follows from b) and Theorem 2.6

Let L contain in particular a binary relation \leqslant. Let $T(\leqslant)$ state that \leqslant is a partial ordering .
4.43 Let COF be the binary relation between models A, B of $T(\leqslant)$ s.t.
A COF B inf $\exists \mathrm{f}: A \rightarrow B$ which is an embedding and for $b \in B \quad \exists a \in A \quad \exists c \in B$ where

$$
f(a)=c \quad \text { and } \quad b \leqslant c \text { in } B
$$

i.e. f is a "co-final " embedding.

A $\mathrm{T}_{\mathrm{COF}}$ is :-

$$
\begin{aligned}
& \forall \overrightarrow{\mathrm{x}}_{1} \vec{y}_{1}\left(\Lambda \Lambda \vec{x}_{1} R_{1}^{1} \vec{y}_{1} \rightarrow\left(\theta \mathrm{x}_{1} \rightarrow \theta \vec{y}_{1}\right)\right) \\
& \forall \mathrm{x}_{1} \exists y_{1}\left(\mathrm{x}_{1} R_{1}^{1} \mathrm{y}_{1}\right) \\
& \forall \mathrm{y}_{0} \exists \mathrm{x}_{1} \mathrm{y}_{1}\left(\mathrm{x}_{1} R_{1}^{1} \mathrm{y}_{1} \cap \mathrm{y}_{0} \leqslant \mathrm{y}_{1}\right) \\
& \mathrm{T}(\leqslant)^{U_{1}} \\
& \mathrm{~T}(\leqslant)^{U_{2}} \\
& \text { negated atomic formula in } \mathrm{L}
\end{aligned}
$$

So $\left[\left[\mathrm{OP}\left(\mathrm{T}_{\mathrm{COF}}\right)\right]\right]$ is :-
$\{\langle\phi \rightarrow X, \phi \longrightarrow X\rangle: \phi \in T(\leqslant)\}\left[\left\{<\exists x_{1}(X), \forall y_{1}(X)>, \ldots\right.\right.$ $\left.\left.<\forall \mathrm{x}_{1}(\mathrm{x}), \exists \mathrm{y}_{0} \forall \mathrm{y}_{1}\left(\mathrm{y}_{0} \leqslant \mathrm{y}_{1} \rightarrow \mathrm{x}\right)>\right\}\left[\left[\left\langle\theta \mathrm{x}_{1}, 7 \theta \mathrm{y}_{1}\right\rangle\right]\right]\right]$

Where $\theta \mathbf{X}_{1}$ is atomic or negated atomic in L.

It is easy to see that this \Rightarrow
$\{\langle\phi \rightarrow X, \phi \rightarrow X\rangle: \phi \in T(\leqslant)\}\left[\left\{\left\langle\exists x_{1}(X), \forall y_{1}(X)\right\rangle, \ldots\right.\right.$
$\left.\left.<\forall \mathrm{x}_{0} \exists \mathrm{x}_{1}\left(\mathrm{x}_{0} \leqslant \mathrm{x}_{1} \cap \mathrm{x}\right), \exists \mathrm{y}_{0} \forall \mathrm{y}_{1}\left(\mathrm{y}_{0} \leqslant \mathrm{y}_{1} \longrightarrow \mathrm{X}\right)\right\rangle\right\} \ldots$ $\left.\left.\left[\left[\left\langle\theta \vec{X}_{1}\right\urcorner \ominus \overrightarrow{\mathbf{y}}_{1}\right\rangle\right]\right]\right]$
Working backwards we see that the above n-set is $\left[\left[O P\left(\Gamma \cup T(\leqslant)^{U_{1}} \cup T(\leqslant)^{U_{2}}\right)\right]\right]$ where Γ is

$$
\forall \mathrm{x}_{1} \exists \mathrm{y}_{1}\left(\mathrm{x}_{1} \mathrm{R}_{1}^{1} y_{1}\right)
$$

$$
\forall \overrightarrow{\mathrm{x}}_{1} \overrightarrow{\mathrm{y}}_{1}\left(\Lambda \Lambda \overrightarrow{\mathrm{x}}_{1} \mathrm{R}_{1}^{1} \overrightarrow{\mathrm{y}}_{1} \rightarrow\left(\theta \overrightarrow{\mathrm{x}}_{1} \rightarrow \theta \overrightarrow{\mathrm{y}}_{1}\right)\right.
$$

$$
\forall \mathrm{y}_{0} \exists \mathrm{x}_{0} \forall \mathrm{x}_{1}\left(\mathrm{x}_{0} \leqslant \mathrm{x}_{1} \rightarrow \exists \mathrm{y}_{1}\left(\mathrm{y}_{0} \leqslant \mathrm{y}_{1} \cap \mathrm{x}_{1} \mathrm{R}_{1}^{1} \mathrm{y}_{1}\right)\right)
$$

Clearly $\quad T_{\text {OOF }} F \Gamma$
4.44 It follows from Theorem 4.42 that the relation of co-final embedding 4.43 has an Interpolation Theorem between models with a Partial Ordering •

We have the new interpolation theorem using the above notation

4.45 Theorem

$$
\begin{aligned}
& \forall \phi, \psi \text { sentences in } L \\
& \forall A \forall B(A, B F T(\mathbb{A}) \quad A \operatorname{coF} B \text { and } A F \phi \\
& \text { imply } B F \psi \quad) \\
& \text { inf there is a } \theta \in \Delta_{\text {COl }} \text { set. } \theta \text { is a sentence } \\
& \text { and } T(\leqslant) \vdash \phi \rightarrow \theta \cap \theta \rightarrow \psi \\
& \text { Where } \Delta_{\text {oOF }} \text { is the least set of formulae set. }
\end{aligned}
$$

a) If θ is atomic or negated atomic in L then $\theta \in \Delta_{C O F}$
b) if $\theta_{1}, \theta_{2} \in \Delta_{\mathrm{COF}}$ so does $\theta_{1} \cap \theta_{2}, \theta_{1} \cup \theta_{2}$
c) if $\theta \in \Delta_{\mathrm{COF}}$ then $\exists x \theta \in \Delta_{\mathrm{COF}}$ and

$$
\forall x_{0} \exists x_{1}\left(x_{0} \leqslant x_{1} \cap \theta\right) \in \Delta_{\mathrm{COF}} \quad \text { providing }
$$

x_{i} does not occur in θ.
Proof
This is a simplification of 4.44

It should be fairly clear that a large portion of the known interpolation theorems will be amenable to our methods, Indeed all the interpolation theorems expressable in a First Order Language in $\left[\mathrm{K}_{1}\right],\left[\mathrm{K}_{3}\right]$ and $[\mathrm{Ma}$.$] are$ easily proved by our methods, except the next result.

The following variant of Keisler's Theorem on Direct Factors (See $\left[K_{3}\right]$) is given here. It is the only Interpolation Theorem I have attempted and found difficulty with. I have been unable to prove the original result .

Let $A D F B$ iff $\exists C$ A $X C \cong B$ and the cardinality of the $\operatorname{dom}(\dot{A})$ (Card A) is equal to Card B, where A, B and C are L-structures.

4.46 Theorem

where $\theta \vec{X}$ is an atomic formula in L.
Hence DF has an UInterpolation Theorem .

Proof
Suppose $f: A X C \rightarrow B$ is an isomorphism
and Card $A=$ Card B
Case 1: Card B is finite.
Then Card C is 1 so
$g: A \longrightarrow B$ defined by
$g(a)=b$ iff $\exists c$ set. $f(a c)=b$ is a
bijection.
Let R be defined by
abRcd iff $g(a)=c$ and $g(b)=d$

It is a simple matter to check that
$A R B \quad F \quad T_{D F} \quad$.

Case 2: Card B is infinite.
Define $h: B \rightarrow C$ by
$h(b)=c \quad$ iff $\exists a \in A$ s.t. $f(a c)=b$

We define an equivalence relation \sim over B by

$$
\begin{aligned}
& b \sim b^{\prime} \quad \text { of } h(b)=h\left(b^{\prime}\right) \\
& \text { Let } \hat{b}=\left\{b^{\prime}: b \sim b^{\prime}\right\} \text { for } b \in B \\
& B^{h}=\{\hat{b}: b \in B\} \quad \text { and } \\
& \\
& h: B^{h} \rightarrow C \quad \text { be the induced map } \hat{h}(\hat{b})=h(b) \quad .
\end{aligned}
$$

Let $g: A \rightarrow B^{h}$ be any onto function sot. for $\hat{b} \in B^{h}$ $\operatorname{Card}\{\mathrm{a}: \mathrm{g}(\mathrm{a})=\hat{b}\}=\operatorname{Card} \mathrm{A}$
Such a function exists because by assumption
$\operatorname{Card} B^{h} \leqslant \operatorname{Card} B=\operatorname{Card} A \geqslant \$_{0}$

For $b \in B$ let

$$
j_{\hat{b}}:\{a: g(a)=\hat{b}\} \longrightarrow B \text { be any bijection }
$$

(which clearly exist)

We define R by
abRed of $f(a, \hat{h}(g(b)))=c$ and $j_{\hat{c}}(b)=d$

Claim
$A, R, B \vDash T_{D F}$.

Consider sentence
Suppose $a, b \in A$ then

$$
\operatorname{abR}(f(a, \hat{h}(g(b))))\left(j \frac{\left.j^{\prime}(a, \hat{h}(g(b)))\right)}{(b)}\right.
$$

Consider sentence 2*.
Suppose $c, d \in B$
$\exists \mathrm{b}$ s.t. $\mathrm{j}_{\hat{\mathrm{c}}}(\mathrm{b})=\mathrm{d}$
$\exists \mathrm{a}$ s.t. $\mathrm{f}(\mathrm{a}, \hat{\mathrm{h}}(\mathrm{g}(\mathrm{b})))=\mathrm{c} \quad($ since $\mathrm{g}(\mathrm{b})=\hat{c} \quad)$
So abRcd.
Consider a sentence of form 3*.
If $\quad f\left(\vec{x}_{1}, \hat{h}\left(g\left(\vec{x}_{2}\right)\right)\right)=\vec{y}_{1}$
then $B F \theta\left[\vec{y}_{1}\right] \Rightarrow A F \theta\left[\vec{x}_{1}\right]$ for θ atomic.
Consider a sentence of form 4*.
If $f\left(\vec{x}_{1}, \hat{h}\left(g\left(\vec{x}_{2}\right)\right)\right)=\vec{y}_{1} \quad$ and
$f\left(\vec{x}_{3}, \hat{h}\left(g\left(\vec{x}_{4}\right)\right)\right)=\vec{y}_{3}$
and $\quad \vec{x}_{2}=\vec{x}_{4} \quad$ then

$$
\Lambda \Lambda\left(\hat{h}\left(g\left(\vec{x}_{2}\right)\right)=\hat{h}\left(g \vec{x}_{4}\right)\right)
$$

So $\overline{\hat{y}}_{1}=\overline{\mathrm{y}}_{3}$
Now since
$\Lambda \Lambda\left(j_{\vec{y}}\left(\vec{x}_{2}\right)=j_{\widehat{\hat{y}}}\left(\vec{x}_{4}\right)\right) \quad$ and
$\Lambda \Lambda\left(j_{\hat{y}_{1}}\left(\vec{x}_{2}\right)=\vec{y}_{2}\right) \quad$ and $\quad \Lambda \Lambda\left(j \bar{y}_{3}\left(\vec{x}_{4}\right)=\vec{y}_{4}\right) \quad l$
we have $\quad \vec{y}_{2}=\vec{y}_{4}$
Suppose further $B F \theta\left[\vec{y}_{1}\right] \cap 7 \theta\left[\vec{y}_{3}\right]$ it follows fairly easily from the definitions that

$$
A F \theta\left[\vec{x}_{1}\right] \cap \neg \theta\left[\vec{x}_{3}\right]
$$

(Hint

$$
\begin{aligned}
B F \theta\left[\vec{y}_{1}\right] & \Longrightarrow C F \theta\left[\hat{h}\left(\mathrm{~g}\left(\vec{x}_{2}\right)\right)\right] \\
& \Longrightarrow C F \theta\left[\hat{h}\left(\mathrm{~g}\left(\vec{x}_{4}\right)\right)\right]
\end{aligned}
$$

Now $B F T \theta\left[\vec{y}_{3}\right] \Longrightarrow A \neq 7 \theta\left[\vec{x}_{2}\right]$

$$
\text { or } \left.c F-1 \theta\left[\hat{h}\left(g\left(\vec{x}_{4}\right)\right)\right] \quad * *\right)
$$

Suppose now $A R B F T_{D F} \quad$.
We show $A D F B$ and Card $A=\operatorname{Card} B$

For each $a \in A$ define $B_{a}=\{b \in B: \exists c d$ (caRbd) $\}$
By 1* for $a \in A \quad B_{a} \neq \phi$
We now define an equivalence relation $\boldsymbol{\tau}$ over
A by
a $\tau \mathrm{b}$ iff $\quad \mathrm{B}_{\mathrm{a}}=\mathrm{B}_{\mathrm{b}}$.

For

$$
\mathrm{a} \in \mathrm{~A} \quad \text { let } \hat{a}=\{\mathrm{b}: \mathrm{a} \tau \mathrm{~b}\}
$$

We now define the L - structure C as follows . $\operatorname{dom} C=\{\hat{a}: a \in A\}$

For $\theta \overrightarrow{\mathrm{v}}$ atomic in L we let:
$\theta \overline{\hat{a}}$ holds in C iff $\exists \vec{b} \vec{C} \vec{d}$ st.

In order to check that this is a well - defined definition, it suffices to show that if $\vec{a} \tau \vec{e}$ then $C F \theta \bar{a}$ inf $C F \theta \bar{e}$

But suppose $\Lambda \Lambda \vec{a} \tau$ е
$c \vDash \theta \bar{a} \Longrightarrow \exists \vec{b} \vec{c} \vec{a}$ sit.

$$
\begin{aligned}
& \Lambda \Lambda \vec{b} \vec{d} R \overrightarrow{C d} \text { and } B \vDash \in \vec{C} \\
& \Longrightarrow \quad \Lambda \Lambda \vec{c} \in B_{\vec{a}} \text { and } B \neq \theta \vec{C} \\
& \Longrightarrow \quad \Lambda \Lambda \vec{C} \in B_{\vec{e}} \quad(\text { since } \Lambda \Lambda \vec{a} \tau \vec{e} \quad) \\
& \text { and } B \text { F } \theta \text { } \\
& \Longrightarrow \quad \exists \vec{m} \quad \text { set. } \\
& \Lambda \Lambda \text { मेerncn and } B \neq \theta C \\
& \Longrightarrow \quad C \neq \theta \overline{\hat{e}}
\end{aligned}
$$

Symmetry gives the result .

We define a function $f: A X C \rightarrow B$ by
$f(a \hat{b})=c$ iff $\exists a($ abRcd $)$
This is a valid definition for if $b \tau e$ and $\exists \mathrm{d}$ (abRcd) then $\exists \mathrm{a}^{\prime} \mathrm{d}\left(a^{\prime}\right.$ Rcd $)$, and so by 3^{*} we have $a^{\prime}=a$ (taking equality for $\quad \forall X_{1}$)

Claim $f ; A X C \rightarrow B$ is an isomorphism.
i) f is a function by 4^{*}
ii) f is a function from $A X C$ to B

For let $a \hat{b} \in A X C$, by $1 * \cdot \exists c d$ set. abRcd
sc by definition $f(a \hat{b})=c$
iii) f is onto, for let $c \in B$ and $d \in B$
by 2* $\exists \mathrm{ab}$ s.t. abrcd and $f(a \hat{b})=c$. by definition.
iv) f is 1 to 1 for suppose

$$
f\left(a_{1} \hat{b}_{1}\right)=c=f\left(a_{2} \hat{b}_{2}\right)
$$

In pictures

Where a sequence $a-n--b-n-c-n-d$
"means" abRed
By $\quad 3 * \quad a_{1}=a_{2}$
It suffices to show $b_{1} \tau b_{2}$
Suppose $c_{1} \in B_{b_{2}} \quad$ sc we have

$$
\begin{gathered}
a_{1} a_{2}=1-b_{1}-1=c<1-d^{d^{1}} \\
a_{3}-3-b_{2}<3-c_{1}-3-d_{3}
\end{gathered}
$$

To show that $c_{1} \in B_{b_{1}}$ it suffices to show that $\exists \mathrm{d}_{4}$ st. $a_{3} \mathrm{~b}_{1} R c_{1} \mathrm{a}_{4}$ By $1^{*} \quad \exists$ eff s.t. $a_{3} b_{1} \operatorname{Ref}$ Suppose if possible e $\neq c_{1}$.
We have

$$
\begin{aligned}
& a_{1} b_{1} \text { Red and } a_{1} b_{2} R c d_{2} \\
& a_{3} b_{1} \operatorname{Ref} \text { and } a_{3} b_{2} R c_{1} d_{3} \\
& \text { and } c=c \text { and } e \neq c_{1} \text { and } b_{1}=b_{1} \text { and } b_{2}=b_{2}
\end{aligned}
$$

Hence by $4^{*}, a_{1}=a_{1}$ and $a_{3} \neq a_{3}$. Contradiction.
Therefore $e=c_{1}$
By symmetry it follows that

$$
\mathrm{b}_{1} \tau \mathrm{~b}_{2}
$$

v) f is an isomorphism.

Suppose $\Lambda \Lambda f(\vec{a} \bar{b})=c$ and $B F \theta c$ then by $3 *$
$A F \theta \vec{a}$ and $C F \theta$ by definition.
Suppose $\Lambda \Lambda f(\vec{d} \bar{b})=\tau$ and $A F \theta$ and $C F \theta$, and assume $B \vDash 7$ Oc
Since $C F \theta \bar{b}$, by definition, there are \vec{a}_{1}, \vec{C}_{1} sot. $\Lambda \Lambda f\left(\vec{a}_{1} \bar{b}\right)=\vec{C}_{1}$ and $B \vDash \theta \vec{C}_{1}$.
Then by 4* * AF 7θ a which gives a contradiction.
Claim

We have only to show that Card $A=\operatorname{Card} B$.
Since Card C \leqslant Card B, it follows that
Card $A \leqslant$ Card B so it is sufficient to
show that there exists a 1 to 1 function $g: B \rightarrow A$, which follows easily using 2* and 4*。

Let $\left\{x_{1 \rho}: p \in \omega\right\}$ and $\left\{x_{2 \rho}: p \in \omega\right\}$ be sets of variables sot.

$$
\left\{x_{1 \rho}: p \in \omega\right\} \cap\left\{x_{2 p}: p \in \omega\right\}=\phi .
$$

Let $F_{D F}$ be the least set of formulae containing :
$7 \theta\left(\mathrm{X}_{1}\right)$ where θ is atomic in L
$x_{2 \rho}=x_{2 r} \cap\left(7 \theta\left(X_{1 \rho}\right) \cup \theta\left(\vec{x}_{1} r\right)\right)$ where θ is atomic in L s.t. if $\theta \in F_{D F}$ then
$\exists x_{1 \rho} x_{2 \rho} \theta \in F_{D F} \quad$ and $\quad \forall x_{1 \rho} x_{2 \rho} \theta \in F_{D F} \quad$ and $F^{{ }_{D F}}$ is closed under conjunction and disjunction.

4.47 Theorem

The binary relation DF defined above has an interpolation theorem in the usual sense (See 2.11) , where the set of interpolants consist of the sentences in $F_{D F}$.

Proof

This is a simplification of Theorem 4.46 .
4.5

In [F] Feferman using Proof Theoretic techniques in a many-sorted infinitary language proves an extended variant of Craig's Interpolation Theorem. We shall look at the problem in the case of First Order languages.

Let L be a First Order Language not
containing function symbols (for simplicity) ,
Let $\mathbb{M}_{1}, \ldots, M_{s}$ be new unary predicate symbols. ϕ 는 will denote a sentence in $L \cup\left\{M_{1}, \ldots, M_{s}\right\}$ where $\phi \underline{M}$ is obtained from the sentence ϕ in L,
by relativizing each occurrence of a quantifier in ϕ to one of M_{1}, \ldots, M_{s}.

For simplicity we assume w.l.o.g. that ϕ is taken in negation normal form . That is each negation symbol occurring in ϕ negates an atomic formula of ϕ and the implication sign does not occur .

Clearly, in general, for each $\phi \in L$ there will be several $\phi^{\underline{M}}$ obtainable from ψ.

Let $J_{1}\left(\phi^{M}\right)$ be the set of those $i \in\{1, \ldots, n\}$ s.t. some universal quantifier in ϕ is relativized to M_{i} in ϕM.

Let $J_{2}\left(\phi^{M}\right)$ be the set of those $i \in\{1, \ldots, n\}$ s.t some existential quantifier in ϕ is relativized to M_{i} in ϕ^{M}.

Thus, for instance, if $\phi^{\underline{M}}=$ n.n.f. $\left(T\left(\phi^{M}\right)\right)$ then $J_{1}\left(\theta^{\underline{M}}\right)=J_{2}\left(\phi^{\underline{M}}\right)$.

Suppose $\mathcal{F}^{\underline{M}} \rightarrow \psi^{\underline{M}}$ then Craig's Interpolation Theorem states that there will be a $\theta \in L \cup\left\{M_{1}, \ldots, M_{s}\right\}$ s.t. $\quad \mid\left(\phi^{M} \longrightarrow \theta\right) \cap\left(\theta \rightarrow \psi^{M}\right)$
** where the relation symbols and constants in θ occur in both $\phi^{\underline{M}}$ and ψ^{M}. ie. $L(\theta) \subset L\left(\phi^{\underline{M}}\right) \cap L\left(\psi^{\underline{M}}\right)$.

We cannot deduce directly that we can find such a θ of the form $\chi^{\underline{M}}$ for some $x \in \mathrm{~L}$.

That this is indeed the case was proved by Feferman using proof theory in a many-sorted language. He expresses some doubt that this theorem is amenable to single sorted First Order methods . Feferman's Theorem 4.2 in [F] in the First Order case amounts to the following :-

4. 51 Theorem

Suppose $\phi^{M} \longrightarrow \psi^{M}$ then there is
an interpolant of the form $\theta^{\underline{M}}$ satisfying
the conditions ** above and further

$$
\begin{aligned}
& J_{1}\left(\theta^{M}\right) \subset J_{1}\left(\phi^{M}\right) \\
& J_{2}\left(\theta^{M}\right) \subset J_{2}\left(\psi^{M}\right) .
\end{aligned}
$$

We prove this theorem using our methods. Let A, B be $L \cup\left\{M_{1}, \ldots, M_{s}\right\}$ structures and $J \subset\{1, \ldots, n\}$.
We say $A \xrightarrow[J]{L} ; B$ if $\exists f: A \rightarrow B$ sot.

1) f is an embedding of $A|L \longrightarrow B| L$
2) $f\left[M_{i}{ }^{A}\right] \subset M_{i}{ }^{B}$ for $1 \leqslant i \leqslant n$.
3) For $i \in J \quad f\left[M_{i}{ }^{A}\right]=M_{i}{ }^{B}$

4.52 Theorem

Suppose $\chi^{M}(\vec{v})$ is given, where $\chi \in L$, $f: A \xrightarrow[J]{L} B$ and $J_{1}\left(\chi^{M}\right) \subset J$ then for $\vec{a} \in A$ $A \vDash \chi^{M}[\vec{a}]$ implies $B F \chi^{\underline{M}}[f \vec{a}]$.

Proof

By induction on the complexity of $x^{\underline{M}}$.

Consider the following relation F defined by T_{F} :-

$$
\forall x\left(M_{i} x \rightarrow \exists y\left(M_{i} y \cap x F_{1}^{1} y\right)\right) \quad \text { for } \quad i \in J_{2}\left(\psi^{M}\right)
$$

$$
\forall y\left(M_{i} y \rightarrow \exists x\left(M_{i} x \cap x_{1}^{1} y\right)\right) \quad \text { for } \quad i \in J\left(\phi^{M}\right)
$$

$$
\forall^{\prime} \vec{x} \vec{y}\left(\Lambda \Lambda \vec{X} F_{1}^{1} y \rightarrow(\theta(\vec{x}) \rightarrow \theta(\vec{y}))\right) \quad \text { where } \quad \theta \text { is }
$$

an atomic or negated atomic formula in $L(\phi) \cap L(\psi)$.

Clearly F is (1)-simple with a S.C. by $\left[\left[O P\left(T_{F}\right)\right]\right]$

Claim

$$
\phi^{M}, \dot{\phi}, 7 \psi^{M} \text { is }\left[\left[O P\left(T_{F}\right)\right]\right] \text { bad. }
$$

For otherwise we can find A, F_{1}, B sot. $A F B$ and $A F \psi^{M}$ and $B F 7\left(\psi^{M}\right)$ where $L(A)=L(\phi) \cup\left\{M_{1}, \ldots, M_{s}\right\}$
$L(B)=L(\psi) \cup\left\{M_{1}, \ldots, M_{s}\right\}$
and since F_{1} is al to 1 function we may assume it is the inclusion map on its domain. We may also assume

$$
\operatorname{dom}(A) \cap \operatorname{dom}(B)=\operatorname{dom} F_{1}
$$

We define an $L(\phi \cap \psi) \cup\left\{M_{1}, \ldots, M_{s}\right\}$ structure as follows .

$$
\operatorname{dom}(C)=\operatorname{dom}(A) \cup \operatorname{dom}(B)
$$

and for atomic $\theta \vec{v} \in L(C)$ amd $\vec{a} \in \operatorname{dom}(C)$
$C \neq \theta \vec{a} \quad$ iff $\vec{a} \in \operatorname{dom}(A) \quad \theta \vec{v} \in L(A)$ and $A F \theta \vec{d}$ or $\vec{a} \in \operatorname{dom}(B)$ and $\theta \vec{v} \in L(B)$ and $B F \theta \vec{a}$

It is easy to check that this is a valid definition of C.

It also follows easily that

$$
\begin{aligned}
& A \xrightarrow[J_{1}\left(\phi^{M}\right)]{L(\phi)} C \mid L(\phi) \cup\left\{M_{1}, \ldots, M_{s}\right\} \\
& B \xrightarrow[J_{2}\left(\psi^{M}\right)]{L(\Psi)} C \mid L(\psi) \cup\left\{M_{1}, \ldots, M_{s}\right\}
\end{aligned}
$$

For if $i \in J_{1}\left(\phi^{M}\right)$ then from the definition of F and C we have :

$$
\begin{aligned}
& M_{i}{ }^{B} \subset M_{i}^{A} \\
& M_{i}{ }^{C}=M_{i}^{A} \cup M_{i}^{B}=M_{i}^{A} .
\end{aligned}
$$

If $i \in J_{2}\left(\psi^{M}\right)$ then a similar argument hold.

Now since $A F \phi^{M}$ and $B \vDash 7 \psi^{M}$ it follows from Theorem 4.52 that $C \neq \phi^{M} \cap 7 \psi^{M}$,
which gives us our contradiction.
It follows that for some pairs of sentences

$$
\left\langle\theta_{1} \theta_{2}\right\rangle \in\left[\left[O P\left(T_{F}\right)\right]\right]
$$

$$
f \phi^{M} \rightarrow \theta_{1}
$$

$$
r \neg \psi^{M} \rightarrow \theta_{2}
$$

A closer inspection of T_{F} will give us our theorem.
4.6

If R is a binary relation which is S.C. then we shall denote a notion of goodness of R by Δ_{R}. In particular if R is the relation asserting the existence of an embedding, we denote it by c and Δ_{C} is the "natural" notion of goodness .

If R and S are binary relations which are S.C. and (for simplicity) are (1) - simple, then by
$R(S)$ we mean the binary relation defined by $T_{R} \cup\left\{\forall \vec{x}_{1} \nabla_{1}\left(\Lambda \Lambda \vec{x}_{1} R_{1}^{1} \ddot{y}_{1} \longrightarrow\left(\theta_{1} \vec{x}_{1} \longrightarrow 7 \theta_{2} \vec{y}_{1}\right)\right)\right\}$ for $\left\langle\theta_{1} \vec{x}_{1}, \theta_{2} \vec{y}_{1}\right\rangle \in \Delta_{S}$.
(To be $\Delta_{R}(S)$ good is to be an approximation to R which is Δ_{S} good.)

It follows that if T_{1}, ϕ, T_{2} is $\Delta_{R}(S)$ good then there are A, B, C and D sot.

C	S	D
V/		v/
A		R

where R_{1}, the relation asserted to exist by R between A and B is included in S_{1}, the relation asserted to exist by S between C and D.

In $\left[K_{1}\right]$ Keisler proved that a sentence ψ is equivalent to a $\forall \exists$ sentence iff whenever

then $A \leqslant \psi$

We can easily obtain this result, for ψ is not equivalent to a $\forall \exists$ sentence iff $\psi, \phi,\rceil \psi$ is $\Delta_{\supset(c)}$ good , ff there are A, B, A^{\prime} and B^{\prime} sot.

(We can assume c are really inclusions since one of the embeddings "extends" the other .)
iff
there are A, B and B^{\prime} s.t.
B^{\prime}
$A_{k}{ }^{\prime} \quad \rightarrow \quad B \quad k T \psi$
Which is Keister's result.
It will be remembered that these ideas were employed in Chapter 3.

It is a well-known fact (See [R] page 232)
that if ψ is a sentence containing at least one constant which is equivalent to both an existential sentence and a universal sentence, then ψ is equivalent to an open sentence (one not containing any quantifiers).

Indeed if R is defined by

$$
\begin{aligned}
\forall x(x=\sigma \rightarrow & \exists y\left(x R_{1}^{1} y \cap y=\sigma\right) \quad \text { for each } \\
& \text { closed term } \sigma \text { in } L(\psi)
\end{aligned}
$$

$\forall X X Y\left(\Lambda \Lambda X R \frac{1}{1} \vec{y} \rightarrow(\theta X \longrightarrow \theta)\right)$ for θ atomic or negated atomic in $L(\psi)$.

Then it is easy to see that if

$$
\psi, \phi, 7 \psi \text { is } \Delta_{R} \text { bad (not } \Delta_{R} \text { good) }
$$

then ψ is equivalent to an open sentence .
(Simply eliminate quantifiers)

Thus if ψ is not equivalent to an open sentence we can find A and B s.t.
$A R B \quad$ where $A \not F \psi$ and $B \vDash 7 \psi$.
Consider the minimal substructure A^{\prime} and B^{\prime} of A and B respectively. (These exist, i.e. are not empty since Const $(L(\psi)) \neq \phi)$

Clearly

$$
A^{\prime} R B^{\prime}
$$

and the natural relation to take R_{1} is an isomorphism of A^{\prime} onto B^{\prime}.

Now since ψ is equivalent to both an existential and a universal sentence we have

$$
A F \psi \Longrightarrow A^{\prime} F \psi \Longrightarrow B^{\prime} \vDash \psi \Longrightarrow B \vDash 7 \psi \cap \psi
$$

A contradiction -
We can easily prove many simple results of this kind. For example :

4.61 Theorem

If ψ is equivalent to a $\forall \exists$ sentence and a positive sentence, then ψ is equivalent to a sentence which is at the same time a $\forall \exists$ sentence and a positive sentence.

Proof

.We sketch the proof .
Assume ψ is positive but ψ is not equivalent to a sentence which is both positive and $\forall \exists$.

Consider the relation R defined by

$$
\forall y \exists x \text { (} x R \neq y)
$$

$$
\forall \dot{x} \vec{y}\left(\vec{x} R_{1}^{1} \vec{y} \rightarrow(\theta \dot{x} \longrightarrow \theta \vec{y})\right)
$$

where $\theta \vec{X}$ is both existential and positive .

Clearly $\psi, \phi, 7 \psi$ is Δ_{R} good.
So there are A, B and C sot.

where $\operatorname{Th}\left(A^{+}\right), f_{1}, \operatorname{Th}\left(C^{+}\right)$is Δ (homomorphism) good .

So we have D, E and f_{2} sit.

$$
\begin{aligned}
& f_{2} \subset f_{2} \\
& f_{2}: A \xrightarrow[\text { onto }]{\text { where }}
\end{aligned}
$$

D

That $C \subset D$ follows since $f_{1} \subset f_{2}$. We thus have

$D \mathcal{F} \psi$ since ψ is positive and $A F \psi$ So ψ is not equivalent to an $\forall \exists$ sentence. (A picture helps to follow the proof!) The theorem follows:.

Suppose R is a ternary relation s.t. for some binary relations R_{1} and R_{2} we have $\langle A, B, C\rangle \in R$ inf $A R_{1} B$ and $B R_{2} C$.

If R_{1} and R_{2} are preserved in $T_{R_{1}}$ - sequences and $T_{R_{2}}$ - sequences resp, and are n - simple, then R has a notion of goodness. In fact by generalizing the results of chapter 2 and 3 we could prove that R has a "S.C.". However, this is unnecessary as the following shows .
4.62 Theorem

$$
\begin{aligned}
& \text { If } R_{1} \text { and } R_{2} \text { are } n \text {-simple binary } \\
& \text { relations preserved in } T_{R_{1}} \text { - sequences and } \\
& T_{R_{2}} \text { - sequences respectively, then a notion } \\
& \text { of goodness for the ternary relation } R \\
& \text { defined by : } \\
& \qquad\langle A, B, C\rangle \in R \text { inf } A R_{1} B \text { and } B R_{2} C \text { is : } \\
& \Delta_{R}=\left\{\left\langle\theta_{1}, \theta_{2} \cup \phi_{1}, \phi_{2}\right\rangle:\left\langle\theta_{1}, \theta_{2}\right\rangle \in \Delta_{R_{1}}\right. \text { and } \\
& \left.\left\langle\phi_{1}, \phi_{2}\right\rangle \in \Delta_{R_{2}}\right\}
\end{aligned}
$$

Proof

Strictly Δ_{R} is not $a n \underline{n}$ - set, we ignore this complication.

Suppose $\gamma=T_{1}, \bar{R}_{1}, T_{2}, \bar{R}_{2}, T_{3}$
(We have extended the notion of an n - sequence
in the natural way)
If γ is an R approximation then clearly γ
is Δ_{R} good.
Suppose now γ is Δ_{R} good.
We may assume w.l.o.g. that T_{2} is complete -
(c.f. the proof of Theorem 2.42)
Now $T_{1}, \bar{R}_{1}, T_{2}$ is $\Delta_{R_{1}}$ good and $T_{z}, \bar{R}_{2}, T_{3}$ is $\Delta_{R_{2}}$ good.
So we may find A_{1}, B_{1} set.
$A_{1} R_{1} B_{1}$ where the relations asserted to exist are $\overline{\mathrm{R}}_{1}^{1}$ (say) where
$A_{1} \vDash T_{1}, \quad B_{1} \vDash T_{2}$ and $\bar{R}_{1}^{1} \supset \bar{R}_{1} \quad$ (pointwise)
Now $\operatorname{Th}\left(B^{+}\right), \bar{R}_{2}, T_{3}$ is $A_{p_{2}}$ good.
(Since T is complete.)
(86)

So we can find $\mathrm{B}_{2}, \mathrm{C}_{2}$ s.t.
$B_{2} R_{2} C_{2}$ where the relations asserted to exist are \bar{R}_{a}^{a} (say) where
$\mathrm{B}_{1} \leqslant \mathrm{~B}_{2} \quad, \quad \mathrm{C}_{2} \vDash \mathrm{~T}_{3}$ and $\overline{\mathrm{R}}_{2}^{2} \supset \overline{\mathrm{R}}_{2}$.
We thus have

$$
\begin{array}{lllll}
& B_{2} \quad R_{2} \quad C_{2} \leqslant T_{3} \\
& \\
& \\
A_{1} / & &
\end{array}
$$

But $\operatorname{Th}\left(\mathrm{A}_{1}{ }^{+}\right), \overline{\mathrm{R}}_{1}^{1}, \operatorname{Th}\left(\mathrm{~B}_{2}^{+}\right)$is $\Delta_{\mathrm{R}_{1}}$ good.
Thus we may iterate this process denumerable often. Since R_{1} and R_{2} are each preserved in $\boldsymbol{R}_{R_{1}}$ - sequences and $T_{R_{2}}$ - sequences resp, it easily follows that y is an R approximation.

CHAPTER 5

5.1

We consider in this chapter the characterization of those theories, which have models satisfying various complicated relations between several L - structures. We show that the results of the previous chapters can be successfully applied to a range of such problems.
5.11 The Amalgamation Properties We say that a
theory T has the Amalgamation Property (A.P.)
if whenever

$\mathrm{C} F \mathrm{~T}$
there is $D \vDash T$ and embeddings
$f: B \rightarrow D \quad g: C \longrightarrow D \quad$ set.
the " diagram commutes". (That is ; if a $\in A$ then $f a=g a$.

In view of the fact that there are many conditions on a theory T of a similar "shape" as above, we generalize the above as follows.

For simplicity we restrict our attention to (1) - simple binary relations between L structures.

5.12 Def

A (1)-simple binary relation R is s.t.b. Diagrammatic if there is a T_{R} consisting of sentences of the form :

$$
\forall \vec{x}_{1} \vec{y}_{1}\left(\Lambda \Lambda \vec{x}_{1} R_{1}^{1} \dot{y}_{1} \rightarrow \forall \vec{x}_{2}\left(\theta_{1} \vec{x}_{1} \vec{x}_{2} \longrightarrow \exists \dot{y}_{2}\left(\Lambda \Lambda \vec{x}_{2} R_{1}^{1} \vec{y}_{2} \cap \theta_{2} \vec{y}_{1} \vec{y}_{2}\right)\right)\right)
$$

With our conventions these are all Π_{g} sentences .

If the above sentence is in T_{R} we simply say

$$
\left(\theta_{1} x_{1} x_{2}, \theta_{2} y_{1} y_{2}\right) \text { is in } T_{R} \text {. }
$$

So, for example, to say ($\left.x_{2}=x_{2}, y_{z}=y_{2}\right)$ is in T_{R}, means

$$
\begin{aligned}
& \forall \mathrm{x}_{2}\left(\mathrm{x}_{2}=\mathrm{x}_{2} \rightarrow \exists \mathrm{y}_{2}\left(\mathrm{x}_{2} \mathrm{R}_{1}^{1} \mathrm{y}_{2} \cap \mathrm{y}_{2}=\mathrm{y}_{2}\right)\right) \text { or } \\
& \text { equivalently } \forall \mathrm{x} \exists \mathrm{y}\left(\mathrm{xR}_{1}^{1} \mathrm{y}\right), \quad \text { is in } \mathrm{T}_{\mathrm{R}} .
\end{aligned}
$$

We have the following basic facts about Diagrammatic relations .
5.13

1) If $A R B$ and $C \leqslant A$ then $C R B$, the natural relation to take being $R_{1} \cap$ (CXC) . As usual R_{1} is the binary relation included in $A X B$ asserted to exist by R.
2) If R is Diagrammatic and A is an L-structure we let $\operatorname{Diag}[R, 2](A)$ (the notation is supposed to be suggestive) be ;
$\left\{\phi_{2} \vec{a}:\left(\phi_{1}, \phi_{2}\right)\right.$ is in T_{R} and $\left.A F \phi_{1}[\vec{a}]\right\}$. If there is a B, an I-structure, sit. for some $f: A \rightarrow B \quad(B f a)_{a \in A} \neq \operatorname{Diag}[R, 2](A) \quad$ then AR B.

The converse, in practice, will often occur • (We need ($\mathrm{x}_{2}=\mathrm{x}_{2}, \mathrm{y}_{2}=\mathrm{y}_{2}$) and ($\mathrm{x}_{1}=\mathrm{x}_{1}, \mathrm{y}_{1}=\mathrm{y}_{1}$) in T_{R})

These results follow easily from the definitions. Keister's Generalized Subsystems and Homomorphisms (see $\left[K_{1}\right]$) are Diagrammatic.

In particular if R is C or a homomorphism then R is Diagrammatic.

The relation $C_{\text {poss }}$ defined by

$$
\forall \vec{x}_{1} \vec{y}_{1}\left(\Lambda \Lambda \vec{x}_{1} R_{1}^{1} \vec{y}_{1} \rightarrow\left(\theta \vec{x}_{1} \rightarrow \theta \vec{y}_{1}\right)\right) \text { for } \theta \text { atomic }
$$

or negated atomic is Diagrammatic.
Note that for any L - structures A and B
$A C_{\text {poss }} B$ since $\operatorname{Th}\left(A^{+}\right), \phi, \operatorname{Th}\left(B^{+}\right) \vDash T C_{\text {poss }}$
5.14 Def

We say $\left(T_{1}, T_{2}, T_{3}, T_{4}\right)$ has the
($R_{1}, R_{2}, R_{3}, R_{4}$) - A.P. iff whenever $B_{1} T_{2}$
R_{1}
${ }^{A} \vDash \mathrm{~T}_{1}$

$$
\mathrm{R}_{2} \quad \mathrm{C}_{\mathrm{T}}
$$

$\exists \mathrm{D} F \mathrm{~T}_{4} \quad$ sot.
$B R_{3} D$ and $C R_{4} D$ and the diagram commutes. i.e. if $a R_{1} b$ and $a R_{2} c$ then there is $a d \in D$ s.t. $b R_{3} d$ and $c R_{\text {between }}^{d}$ We do not distinquish between the binary relation $R_{1} \mathcal{L}$ - structures and the relation R_{1} asserted to exist by R_{1}.

If R is a binary relation between I - structures then R^{-1} is the relation defined by

$$
A R^{-1} B \text { iff } \quad B R A
$$

If R_{1} and R_{a} are binary relations, then $\left(R_{1}, R_{2}\right)$ is the ternary relation defined by ;
$\langle A, B, C\rangle \in\left(R_{1}, R_{2}\right)$ inf $A R_{1} B$ and $B R_{2} C$.

5.15 Theorem

$$
\begin{align*}
& \text { If } R_{3} \text { and } R_{4} \text { are Diagrammatic and } \\
& R_{1} \text { and } R_{2} \text { are S.C. then the following are } \\
& \text { equivalent ; } \\
& \text { 1) (} \left.\left.T_{1}, T_{2}, T_{3}, T_{4}\right) \text { has the (} R_{1}, R_{2}, R_{3}, R_{4}\right) \text { - AtP. } \\
& \text { 2) Whenever } \\
& { }^{\mathrm{B}} \vDash \mathrm{~T}_{2} \\
& R_{1} \\
& { }^{A} \leqslant T_{1} \tag{A}\\
& \mathrm{R}_{2} \\
& { }^{C} \vDash_{T_{3}} \\
& \text { then } T_{h}\left(B^{+}\right), S_{1}, T_{4} \cup\{e=e: e \in \mathbb{E}\}, S_{2}, T h\left(C^{+}\right) \\
& \text {is a }\left(R_{3}, R_{4}^{-1}\right) \text { approximation. Where } S_{1}, S_{2} \text { and } \\
& E \text { are set. whenever } a R_{1} b \text { and } a R_{2} c \text { then } \\
& \text { a new constant } e \text { is chosen and } \\
& e \in \& \quad \text { <b e> } \in S_{1} \quad \text { <e c> } \in S_{2} \\
& \text { Thus } \mathrm{X}_{\mathrm{i}}=\text { Range } \mathrm{S}_{1}=\text { Domain } \mathrm{S}_{2} \text {. }
\end{align*}
$$

3) Whenever $T_{4} f \forall \vec{x}\left(\phi_{2} \vec{x} \cup \theta_{2} \vec{x}\right)$ where

$$
\left\langle\phi_{1} \vec{x}, \phi_{2} \vec{y}\right\rangle \in \Delta_{R_{3}} \quad \text { and } \quad\left\langle\theta_{1} \vec{x}, \theta_{2} \vec{y}\right\rangle \in \Delta_{R_{4}}
$$

then there are $\left\langle\gamma_{1} x, \gamma_{2} y\right\rangle \in \Delta_{R_{1}}$ and $\left\langle\tilde{q}^{x}, \delta_{2} y\right\rangle \in \Delta_{R_{2}}$

$$
\text { sit. } \begin{align*}
& \mathrm{T}_{1} \vdash \forall \vec{x}\left(y_{1} \vec{x} \cup \delta_{1} \vec{x}\right) \\
& \mathrm{T}_{2} \vdash \forall \vec{x}\left(\neg \dot{\varphi}_{1} \vec{x} \cup \gamma_{2} \vec{x}\right) \\
& \mathrm{T}_{3} \vdash \forall \vec{x}\left(T \theta_{1} \vec{x} \cup \delta_{2} \vec{x}\right) \tag{B}
\end{align*}
$$

Proof

That $1 \Leftrightarrow 2$) is trivial , 2) was written by way of explanation.
Note that we use strongly the fact that R_{3} and R_{4} are Diagrammatic.
3) $\Rightarrow 2$):

Suppose (A) holds but
** $\quad \operatorname{Th}\left(\mathrm{B}^{+}\right), \mathrm{S}_{1}, \mathrm{~T}_{4} \cup\{\mathrm{e}=\mathrm{e}: \mathrm{e} \in \mathrm{E}\}, \mathrm{S}_{2}, \operatorname{Th}\left(\mathrm{C}^{+}\right)$
is not an ($\mathrm{R}_{3}, \mathrm{R}_{4}^{-4}$) approximation.
So for some $\left\langle\phi_{1} \vec{X}, \phi_{2} y\right\rangle \in \Delta_{R_{3}}$ and some

$$
\left.\left\langle\theta_{1} \vec{x}, \theta_{2} \vec{y}\right\rangle \in \Delta_{R_{4}} \text { (this holds iff }\left\langle\theta_{2} \vec{x}, \theta_{1} \vec{y}\right\rangle \in \Delta_{R_{4}}^{-1}\right)
$$

we have $T_{4} \vdash \dot{\phi}_{2} \vec{E} \cup \theta_{2} \overrightarrow{\mathrm{E}}$ and
$\left.\begin{array}{cc}B \vDash \dot{\psi}_{1} \nabla & C \vDash \theta_{1} c \\ \text { where } \Lambda \Lambda \nabla S_{1} \mathrm{e} & \Lambda \Lambda E S_{2} c\end{array}\right\}$
since ** is $\Delta\left(R_{3} R_{4}^{-1}\right)$ bad : (See Theorem 4.62)

We thus have $T_{4} \vdash \forall \vec{X}\left(\phi_{2} \mathbb{X} \cup \theta_{2} \mathbb{X}\right)$, because Cont($\left.L\left(T_{4}\right)\right) \cap E=\phi$.
In view of 3) it is clear that (B) holds ;
so as $A \not F T_{1}$, we have $A \vDash \forall \vec{x}\left(y_{1} \vec{x} \cup \delta_{1} \vec{x}\right)$.
Now by the definition of S_{1} and S_{2} there are स $\in A$ st. $\Lambda \Lambda \vec{a} R_{1} \vec{D}$ and $\Lambda \Lambda \overrightarrow{a_{2}} R_{2}$ (by (c)).

So $A \vDash \gamma_{1} \vec{a} \cup \delta_{1} \vec{a}$.
W.I.o.g. suppose $A \vDash \gamma_{1} \vec{a}$
$A R_{1} B \quad B \neq 7 \gamma_{2} B$ and since $B \neq T_{2}$ $B \vDash 7 \phi_{1}$ which contradicts (C) .
It follows that 3) $\Longrightarrow 2$; .
2) $\Rightarrow 3$):

Suppose for some $\left\langle\phi \overline{\mathbb{Z}}, \phi_{2} \vec{y}\right\rangle \in \Delta_{R_{3}}$ and
$\left\langle\theta \mathrm{I}, \theta_{2} \vec{y}\right\rangle \in \Delta_{R_{4}} \quad T_{4} \mid-\forall \vec{x}\left(\phi_{2} \vec{X} \cup \theta_{2} \vec{X}\right) \quad$ but (B)
does not hold.
It is not difficult to see that for new constants \vec{a}

$$
\begin{gathered}
T_{2} \cup\left\{\phi_{1} \vec{a}\right\},\{<a a>: a \in \vec{a}\}, T_{1} \cup\{\Lambda \Lambda \vec{a}=\vec{a}\}, \ldots \\
\left\{\langle a a>: a \in \vec{a}\}, T_{3} \cup\left\{\theta_{1} \vec{a}\right\}\right. \text { is } \\
\Delta\left(R_{1}^{-1}, R_{2}\right) \text { good . So we can find :- } \\
R_{1} \quad B \in T_{2} \cup\left\{\phi_{1}[\vec{a}]\right\} \\
A \neq T_{1} \\
R_{2} \quad C \not F T_{3} \cup\left\{\theta_{1}[\vec{a}]\right\} \text {, } \\
\text { but then by construction } \\
\text { 2) cannot hold. . }
\end{gathered}
$$

$$
\begin{aligned}
& \text { Clearly } T \text { has the A.P. iffy } \\
& (T, T, T, T) \text { has the }(C, C, \vec{A}, \vec{A})-A . P .
\end{aligned}
$$

5.16 Corollary

$$
T \text { has the A.P. iff }
$$

whenever

$$
T \vdash \forall \vec{x}(\phi \vec{x} \cup \theta \overrightarrow{\mathrm{x}})
$$

where $\phi \vec{X}$ and $\theta \vec{X}$ are universal formulae, then there are existential formulae $\gamma \overrightarrow{\mathrm{x}}$ and $\delta \overrightarrow{\mathrm{x}}$ set.

$$
\begin{aligned}
& \mathrm{T} \vdash \forall \overrightarrow{\mathrm{x}}(\gamma \overrightarrow{\mathrm{x}} \cup \theta \overrightarrow{\mathrm{x}}) \\
& \mathrm{T} \vdash \forall \overrightarrow{\mathrm{x}}(\gamma \overrightarrow{\mathrm{x}} \rightarrow \phi \overrightarrow{\mathrm{x}}) \\
& \mathrm{T} \vdash \forall \overrightarrow{\mathrm{x}}(\delta \overrightarrow{\mathrm{x}} \rightarrow \theta \overrightarrow{\mathrm{x}}) .
\end{aligned}
$$

We say injections are transferable in T if (T, T, T, T) has the ($C, \xrightarrow{\text { nom }}, \xrightarrow{\text { nom }}, C$)-A.P. ,
where $A \xrightarrow{\text { nom }} B$ iff there is a homomorphism of A into B. Clearly we can characterize such T, as was pointed out to me by Paul Bacsich. He also suggested consideration of the following problem.

5.17 Def

We.say T has the Congruence Extension
Property (C.E.P.) iff
(T, T, T, T) has the ($C, \frac{\text { hom }}{\text { ont }}, \xrightarrow[\text { hom }]{\text { onto }}, C$) - A.P. where $A \xrightarrow[\text { onto }]{\text { hom }} B$ iff there is a homomorphism of A onto B.

The problem here, of course, is that $\xrightarrow[\text { onto }]{\text { hom }}$ is not Diagramatic.

We ask ourselves, under what conditions on T do we have, whenever $f: A \xrightarrow{\text { hom }}_{B}$ where $A, B F T$ that the image of A under f is a model of T ? That is, what conditions on T prevents :
for some $\psi \in T$
$T, \phi, 7 \psi, \phi, T$ is ($\frac{\text { hom }}{\text { onto }}, C$) good ?
The answer easily pops out that T is the union of a positive theory and a universal theory .
Which was, perhaps, the expected answer .

5.18 Theorem

Lat T be the union of a universal
theory and a positive theory.
T has the C.T.P. iff

* (T,T,T,T) has the $(c, \xrightarrow{\text { ontom }}, \xrightarrow{\text { hom }}, c)$ - A.P. .

Proof

Obvious from the definitions and our restriction on T.

Thus. we can easily find a characterization of such T.
What is not so obvious is :
5.19 Theorem

Let T be the union of a universal
theory and a positive theory.
T has the C.E.P. iff
** ($\mathrm{T}, \mathrm{T}, \mathrm{T}, \mathrm{T}$) has the $\left(\mathrm{C}, \xrightarrow{\text { nom }}, \xrightarrow{\text { nom }}, c_{\text {poss }}\right)-\mathrm{A} . \mathrm{P}$.

Proof
** \rightarrow *
Suppose we have

such that the diagram commutes .
It follows that each member of C is mapped to some member of D, so we may assume $C \subset D$.

C.E.P. $\rightarrow * *$

Suppose

It suffices to show
$T \cup\{\phi \overrightarrow{\mathrm{~B}}: \phi \overrightarrow{\mathrm{V}}$ is positive and $\mathrm{B} F \phi[\overrightarrow{\mathrm{~B}}]$ for $\overrightarrow{\mathrm{B}} \in \mathrm{B}\}$
$U\{\phi f \vec{a}: \phi \vec{v}$ is atomic or negated atomic $\vec{a} \in A$ and $C F \phi[f \vec{a}]\}$ is consistent.

In view of the condition on T

$$
C^{\prime}=C \mid\{f a: a \in A\} \vDash T
$$

So it suffices to show that
$T \cup\{\phi \vec{B}: \phi \vec{v}$ is positive and $B \neq \phi[\vec{b}]$ for $\vec{b} \in B\}$
U Diag C^{\prime} is consistent, but this follows
from C,E.P.

\square

5.110 Assuming T is the union of a positive theory and a universal theory,
T has the C.E.P. if whenever $T \vdash \forall \vec{X}(\theta \vec{X} \cup \phi \vec{X})$ where $\theta \overrightarrow{\mathrm{X}}$ is the negation of an existential positive formula and $\phi \vec{X}$ is quantifier free, there are $y \vec{x}$ and $\delta \vec{x}$ s.t. $y \vec{x}$ is existential and $\delta \vec{X}$ is existential positive set.
$T \vdash \forall \vec{x}(y \vec{x} \cup \delta \vec{x})$
$T \vdash \forall \vec{X}(\gamma \vec{x} \rightarrow \phi \overrightarrow{\mathrm{x}})$
$T \vdash \forall \vec{x}(\delta \vec{x} \rightarrow \theta \vec{x})$
5.2 The Strong Amalgamation Property

5.21 Def

We say that a theory T has the Strong Amalgamation Property (S.A.P.) if whenever

BF T

$A F T$
$C_{k T}$
there is $D F T$ sot.
$B \subseteq D$ and $C \subseteq D$.
Here, by \subseteq, we really mean inclusion, so again
the diagram commutes.

If T has the S.A.P. then T has the A.P. . The S.A.P. is a stronger condition than the A.P. In fact the theory of Fields has the A.P. but not the S.A.P. .
5.22

For convenience we define

$$
\begin{array}{r}
\operatorname{Meet}\left(\theta_{1} x y, \theta_{2} \overrightarrow{x z}\right) \quad \text { to be } \\
\forall x y z\left(\left(\theta_{1} x y \cap \theta_{2} \overrightarrow{x z}\right) \longrightarrow \vec{y} \in_{\underset{z}{ } \in \mathbb{Z}}^{V} y=z\right)
\end{array}
$$

5.23 Theorem

A theory T has the S.A.P. iff
whenever $T \vdash \operatorname{Meet}\left(\theta_{1} \overrightarrow{X X}, \theta_{2} \overrightarrow{X Z}\right)$ where
$\theta_{1} X y$ and $\theta_{2} X z$ are the conjunctions of atomic and negated atomic formulae in $L(T)$, there are quantifier free formulae $\phi_{1} X t$ and $\phi_{2} X{ }^{\prime}$ in $L(T)$

$T \vdash \operatorname{Meet}\left(\theta_{1} \overline{y y}, \phi_{1} \overline{x t}\right)$
$T \vdash \operatorname{Meet}\left(\theta_{2} \overrightarrow{X z}, \phi_{2} \vec{X} \mathbb{U}^{\prime}\right)$

Proof

Suppose T has not the S.A.P., so there are A, B and $C F T$ s.t. $A=B \cap C$ and Diag (B) $\cup \operatorname{Diag}(C) \cup T \cup\{b \neq c: b \in \operatorname{domB-domA,~} c \in d o m C-d o m A\}$ is inconsistent. That is to say , there are conjunctions of atomic and negated atomic formulae, $\theta_{1} x y$ and $\theta_{2} x z$ in $L(T)$ and constants $\vec{a} \in A$, vedomB-domA and $ट \in \operatorname{domC-domA}$ set.

TF Meet $\left(\theta_{1} \overrightarrow{X y}, \theta_{2} \overrightarrow{X z}\right)$ where $B \vDash \theta_{1}[\overrightarrow{d r}]$ and $\mathrm{C} F \theta_{2}$ [$\left.\overrightarrow{d c}\right]$ 。

I claim there are no quantifier free formulae $\phi_{1} \overrightarrow{X U}$ and $\phi_{2} \vec{X} \vec{U}^{\prime}$ in $L(T)$ s.t. * holds.

For otherwise, since $A \neq \exists \mathbb{t} \phi_{1}[\vec{a}] \cup \exists \mathbb{t}^{\prime} \phi_{2}[\vec{a}]$? there are \vec{a}_{t} and \vec{a}_{t}, in A s.t.

W.I.o.g. we assume $A \neq \phi_{1}\left[\overrightarrow{a a_{t}}\right]$.

It follows that $B \vDash \phi_{1}\left[\mathrm{ca}_{\mathrm{t}}\right]$, and since $B \vDash T$ and $T \vdash \operatorname{Meet}\left(\theta_{1}, \theta_{2} X z\right)$ and $B F \theta_{1}$ there is $d \in \vec{a}_{t} b \in t$ s.t. $B F d=b$. This gives us a contradiction since $b \in d o m B-d o m A$ and $d_{t} \in A$.

Assume that there are conjunctions of atomic and negated atomic formulae $\theta_{1} x y$ and $\theta_{2} x z$ in $L(T)$ s.t. Tト Meet $\left(\theta_{1}\right.$ 对, $\left.\theta_{2} \overline{\mathrm{x}} \mathrm{y}\right)$, but no open formulae \& $\phi_{1} \overline{X U}$ and $\phi_{2} X \mathbb{X t}^{\prime}$ in $L(T)$ set. $*$ holds.
ie. st.

Choose sequences of new distinct constants \vec{a}_{x}, \vec{y}_{y} and \vec{c}_{z}. Consider the binary relation $R_{r_{y}}$ between $L(T)\left(\vec{a}_{x} \vec{x}_{y} \vec{C}_{z}\right)$ - structures, claiming the existence of an embedding f

$$
f: A\left|L(T)\left(\vec{a}_{X}\right) \longrightarrow B\right| L(T)\left(\vec{a}_{x}\right) \text { s.t. for all }
$$

$a \in A \quad f a \notin \vec{b}_{y}$.
Clearly the above relation has a s.C. ; it is
not difficult to see that a notion of goodness for $R_{\vec{b}_{y}}$ consists of those pairs of formulae of
 where $\theta \vec{X}$ is an open formula $Y_{n} L(T)\left(\vec{a}_{x}\right)$.
(In fact letting $\Delta_{\gamma_{y}}$ be the above notion of goodness , $\Delta_{\mathrm{r}_{\mathrm{b}_{\mathrm{y}}}} \supset \Delta_{\mathrm{Z}_{\mathrm{y}}}$, so it suffices to show that $\left.\Delta_{R_{o_{y}}} \subset \Delta_{\delta_{y}}.\right)$

Similarly we define R_{c}.
We now consider the ternary relation $\left(R_{D_{y}}^{-1}, R_{c_{z}}\right)$. By Theorem 4.62 we see that a notion of goodness for R is Δ_{R} consisting of triples of the form:
$\left\langle\psi_{2}, \psi_{1} \cup \chi_{1}, \chi_{2}>\right.$ where
$\left\langle\psi_{1} \psi_{2}\right\rangle \in \Delta_{\delta_{y}} \quad$ and $\quad\left\langle\chi_{1} \chi_{2}\right\rangle \in \Delta_{\vec{c}_{z}}$.
I claim that
$T \cup\left\{\theta_{1} \vec{a}_{x} \partial_{y}\right\}, \phi, T \cup\left\{a=a: a \in \vec{a}_{x}\right\}, \phi, \ldots$
$T \cup\left\{\theta_{2} \vec{a}_{X} \vec{C}_{Z}\right\} \quad$ is Δ_{R} good.
For otherwise, there are open formulae
$\dot{\zeta}_{1} \vec{X} \vec{t}$ and $\phi_{2} \overrightarrow{X t}{ }^{\prime}$ in $L(T)$ sot.
$T \vdash \exists \vec{t}_{1} \vec{a}_{x} \tau \cup \mathbb{t}^{\prime} \phi_{2} \vec{a}_{x} t^{\prime}$

$T \cup\left\{\theta_{2} \vec{a}_{x} \vec{c}_{z}\right\} ; \forall \vec{t}^{\prime}\left(\Lambda_{t^{\prime} \in \vec{t}^{\prime}} \quad c \hat{c} \vec{C}_{z} \quad t \neq c \rightarrow T \psi_{2} \vec{a}_{x} \vec{t}^{\prime}\right)$
Which is easily seen to contradict *** .
It follows that we can find $L(T)$ structures
A, B and C s.t. w.l.o.g.
A, B and $C F T$
$A=B \cap C, B \neq \theta_{1}[\overrightarrow{d \vec{b}}]$ and $C F \theta_{2}[\vec{a} \vec{C}]$ where
$\vec{a} \in A \quad, \vec{b} \in \operatorname{domB-domA}$ and $\vec{c} \in \operatorname{domC-domA}$.
So, by construction, T does not have the S.A.P.
5.3

We turn now to an open problem of G. Grater, (see [G] page 299, 74) stated as follows : 5.31. Which sentences Θ have the property that the substructures satisfying © of a structure A form a sublattice of the lattice of all substructures of A?"

In [R] A. Robinson defines a sentence Θ to be convex if whenever
${ }^{\mathrm{A}} \mathrm{F}_{\mathrm{B}}$
BF
C_{F} ©
then if $A \cap C$ is a structure i.e. nonempty , we have $A \cap C \vDash$.

He proves the important result that if Θ is convex then Θ is $\forall \exists$.

Let us say that a sentence Θ has the join property if whenever * holds, $[A \cup B]_{C} \neq \oplus$ where $[A \cup B]_{C}$ is the substructure of C generated by dom u dom.

It is easy to see that Θ has the property in the open problem iff \oplus is convex and has the join property .

In [Ra $]$ M.O. Rabin gives a syntactic
characterization of a sentence to be convex . In a further paper $\left[R a_{2}\right]$, he proves an alternative characterization. We give here a further characterization.

Let Θ be a given sentence, which we assume is of the form $\forall \vec{x}_{1} \exists x_{2} A\left(\vec{x}_{1} \vec{x}_{2}\right)$ where $A\left(\vec{x}_{1} \vec{x}_{2}\right)$ is open. Consider the (2)-simple relation R_{Θ} defined by :
3) $\forall \vec{x}_{1} \vec{x}_{2} \vec{y}_{1} \vec{y}_{2}\left(\Lambda \Lambda \vec{x}_{1} \vec{x}_{2} R \vec{y}_{1} \ddot{y}_{2} \rightarrow\left(\left(\Lambda \Lambda \vec{y}_{1}=\vec{y}_{2} \cap \phi \vec{y}_{1}\right) \longrightarrow\right.\right.$
$\left.\left(\Lambda \Lambda \mathrm{X}_{1}=\mathrm{X}_{2} \cap \phi \mathrm{X}_{1}\right)\right)$) for ϕ atomic
or negated atomic in $L(\oplus)$.
4) $\forall \vec{x}_{1} \vec{x}_{2} \vec{y}_{1} \vec{y}_{2}\left(\Lambda \Lambda \vec{x}_{1} \vec{x}_{2} R \vec{y}_{1} \vec{y}_{2} \longrightarrow \exists \mathrm{x}_{1}^{\prime} \vec{x}_{2}^{\prime} \vec{y}_{1}^{\prime} \vec{y}_{2}^{\prime} \quad .\right.$.

$$
\left.\left(\Lambda \Lambda \vec{x}_{1}^{\prime} \vec{x}_{2}^{\prime} R y_{1}^{\prime} \vec{y}_{2}^{\prime} \cap A\left(\vec{y}_{1} \vec{y}_{1}^{\prime}\right) \cap A\left(\vec{y}_{2} \vec{y}_{2}^{\prime}\right)\right)\right)
$$

5) $\quad \forall \vec{x}_{1} \vec{x}_{2} \vec{y}_{1} \ddot{y}_{2}\left(\Lambda \Lambda \vec{x}_{1} \vec{x}_{2} R y_{1} \vec{y}_{2} \rightarrow \exists x_{1}^{\prime} x_{2}^{\prime} y_{1}^{\prime} y_{2}^{\prime}\left(x_{1}^{\prime} x_{2}^{\prime} R y_{1}^{\prime} y_{2}^{\prime} \cap\right.\right.$

$$
\left.\left.\cap t y_{1}=y_{1}^{\prime} \cap t y_{2}=y_{2}^{\prime}\right)\right) \text { for } t y_{1} \text { a term in } L(@)
$$

Clearly R_{Θ} has a S.C. with a notion of goodness $\quad \Delta_{R_{\Theta}}$.

We consider now a further (2)-simple relation $R_{\text {con }}$, defined by :

1) $\quad \forall \mathrm{x}_{1} \mathrm{x}_{2}\left(\mathrm{x}_{1}=\mathrm{x}_{2} \rightarrow \exists \mathrm{y}_{1} \mathrm{y}_{2}\left(\mathrm{x}_{1} \mathrm{x}_{2} \mathrm{R} \mathrm{y}_{1} \mathrm{y}_{2} \cap \mathrm{y}_{1}=\mathrm{y}_{2}\right)\right)$
2) $\quad \forall \vec{x}_{1} \vec{x}_{2} \nabla_{1} \vec{y}_{2}\left(\Lambda \Lambda \vec{x}_{1} \vec{x}_{2} R \vec{y}_{1} \vec{y}_{2} \rightarrow\left(\psi_{1} \vec{x}_{1} \vec{x}_{2} \rightarrow 7 \psi_{2} \vec{y}_{1} \vec{y}_{2}\right)\right)$ where $\left\langle\psi_{1} \vec{X}_{1} \vec{x}_{2}, \psi_{2} \ddot{y}_{1} \vec{y}_{2}\right\rangle \in \Delta_{R_{\Theta}}$.
To justify these relations we show ;

5.32 Theorem

Θ is convex jiff $7 \Theta, \phi, \Theta$ is $R_{c o n}$ bad.

Proof

Suppose T^{\oplus}, ϕ, © is $R_{\text {con }}$ good, then there are A, B and $R \subset A^{2} \times B^{2}$ sot.
$A F 7 \oplus$
BF ${ }^{(1)}$
$A R_{\text {con }} B$ by R.
W.l.o.g. we may assume that if bRed then $a=b$ and $c=$. (Simply cut R down to size!)
It follows that $\operatorname{Th}\left(A^{+}\right), R \operatorname{Th}\left(B^{+}\right)$is $\Delta_{R_{\Theta}}$ good, and so we can find

$$
A_{1} \leqslant A_{1} \quad B \leqslant B_{1} \quad R_{1} \supset R \quad \text { s.t. } \quad A_{1} R_{\oplus} B_{1} \text { by } R_{1} .
$$

We define S_{1} and S_{2} as follows．

$$
\begin{array}{lllll}
a S_{1} b & \text { iff } \exists c d & \text { s.t. } & a c R_{1} b d, \\
c & S_{2} d & \text { ff } & \exists a b & \text { s.t. } \\
& a c R_{1} b d .
\end{array}
$$

A picture might help．

Which we now explain．
By 5） RgS_{1} is closed under functions in B_{1} ，so
$\mathrm{B}_{1} \mid \mathrm{KgS}_{1} \subset \mathrm{~B}_{1}$ with domain RgS_{1} ；similarly
$\mathrm{B}_{1} \mid \mathrm{RgS}_{2} \subset \mathrm{~B}_{1}$ with domain RgS_{2} 。
By 4）$B_{1} \mid \mathrm{RgS}_{\mathrm{i}} F \oplus$ for $\mathrm{i} \in\{1,2\}$ 。
It was here，of course，that we required Θ to be $\forall \exists$ 。
By 3）the domain of $B_{1}\left|\operatorname{RgS}_{1} \cap B_{1}\right| \mathrm{RgS}_{2}$ corresponds to $\operatorname{Rg}\left(S_{1} \cap S_{2}\right)$ ，and since $S_{1} \cap S_{2} \supset\{\langle a, b\rangle: a a R b b\}$＊ $\operatorname{Rg}\left(s_{1} \cap s_{2}\right) \neq \phi$.
Again by 3）and 5）$S_{1} \cap S_{2}$ represents an isomorphism from some $C \subset A_{1}$（ see picture）onto $B_{1}\left|R g S_{1} \cap B_{1}\right| R g S_{2}$ 。 That $C \supset A$ follows from＊•

$$
\text { Since } \left.A \leqslant A_{1} \quad A, A_{1} \vDash\right\rceil \oplus \text { and } A \subset C \subset A_{1} \text { and } \Theta
$$

is $\forall \exists$ ，it follows that $C F 7 \oplus$（see 4．6）and hence that $B_{1}\left|\mathrm{RgS}_{1} \cap \mathrm{~B}_{1}\right| \mathrm{RgS}_{2} \leqslant 7 \oplus$ ，but then Θ is not convex！

Suppose © is not convex, so there are
A, B, C, D s.t. $A F T \Theta, A=B \cap C$ and $B, C, D \vDash \Theta$ where

Let $S_{1}=\{\langle a a\rangle: a \in A\} \cup\{\langle a b\rangle: A \in A \quad b \in(\operatorname{domB}-\operatorname{dom} A)\}$

$$
S_{2}=\{\langle a a\rangle: a \in A\} \cup\{\langle a c\rangle: a \in A \quad c \in(\text { domC-domA) }\}
$$

we define

$$
\text { abRcd iff } a S_{1} c \text { and } b S_{2} d
$$

I claim that

$$
7 \Theta, \phi, \Theta \text { is } R_{c o n} \text { good. }
$$

It suffices to show that $A R D \vDash \Sigma$ where
Σ consists of all the sentences 1) 3) 4) 5) . Which is not at all difficult to prove.

It follows that if Θ is convex there will be a universal existential sentence $\tau \theta_{1}$ and a universal sentence θ_{2} s.t. $\left\langle\theta_{1}, \theta_{2}\right\rangle \epsilon \Delta_{R_{c o n}}$ and $7 \theta_{1}+\Theta \vdash \theta_{2} \quad$..

The reader may wonder how we came upon such a result. In fact the method was quite simple. We drew the picture and described it using 1) 2) 3) 4) 5) quite naturally . We then separated, again naturally, into two relations in order to ensure that in the above ** $\quad \theta_{1}$ could be chosen existential universal . For the detailed proof we simply had faith!
5.33

We turn now to the condition that © should have the join property. Once again we assume © Θ is $\forall \exists$ and so of the form $\forall X_{1} \exists x_{2} A\left(x_{1} x_{2}\right)$ where $A\left(x_{1} x_{2}\right)$ is open.

Consider the ($1,1,1$)-simple relation $R_{\text {join }}$ defined by :

1) $\forall x_{1} \exists y_{1}\left(x_{1} R_{1} y_{1}\right)$
2) $\forall x_{2} y_{2} x_{1}\left(x_{2} R_{2} y_{2} \cap x_{1}=x_{2} \rightarrow \exists y_{1}\left(x_{1} R_{1} y_{1} \cap y_{1}=y_{2}\right)\right)$
3) $\forall x_{3} y_{3} x_{1}\left(x_{3} R_{3} y_{3} \cap x_{1}=x_{3} \rightarrow \exists y_{1}\left(x_{1} R_{1} y_{1} \cap y_{1}=y_{3}\right)\right)$
4) $\forall \vec{x}_{1} \bar{y}_{1}\left(\Lambda \Lambda \vec{x}_{1} R_{1} \vec{y}_{1} \cap\left(\phi \vec{x}_{1} \rightarrow \phi \vec{y}_{1}\right)\right)$ where ϕ is atomic or negated atomic in $L(\Theta)$.
5) $\exists x_{2} y_{2}\left(x_{2} R_{2} y_{2}\right)$
6) $\quad \exists x_{3} y_{3}\left(x_{3} R_{3} y_{3}\right)$

7) $\forall \vec{x}_{3} y_{3}\left(\Lambda \Lambda x_{3} R_{3} y_{3} \rightarrow \exists \vec{x}_{3}^{\prime} y_{3}^{\prime}\left(\Lambda \Lambda \ddot{x}_{3}^{\prime} R_{3} \vec{y}_{3}^{\prime} \cap A\left(y_{3} y_{3}^{\prime}\right)\right)\right)$
8) $\forall \vec{x}_{2} y_{2}\left(\Lambda \Lambda \vec{x}_{2} R_{2} \vec{y}_{2} \rightarrow \exists x_{2}^{\prime} y_{2}^{\prime}\left(x_{2}^{\prime} R_{2} y_{2}^{\prime} \cap t y_{2}=y_{2}^{\prime}\right)\right)$ for tg_{3} a term in $\mathrm{L}(\mathbb{O})$.
9) $\forall \vec{x}_{3} y_{3}\left(\Lambda \Lambda \vec{x}_{3} R_{3} y_{3} \rightarrow \exists x_{3}^{\prime} y_{3}^{\prime}\left(x_{3}^{\prime} R_{3} y_{3}^{\prime} \cap t y_{3}=y_{3}^{\prime}\right)\right)$ for ty_{3} a term in $\mathrm{L}(\oplus)$.

5.34 Theorem

(1) has the join property ff for all
sequences of terms of length $\lg \left(\vec{x}_{1}\right)=n$ (say), $t_{1}\left(\vec{z}_{1} y_{1}\right), \ldots, t_{n}\left(\vec{z}_{n} y_{n}\right)$ and all sequences of new distinct constants ${\overrightarrow{z_{z_{1}}}}, \ldots, \vec{x}_{z_{n}},{ }_{y_{y_{1}}}, \ldots, b_{y_{n}}$ $\forall \vec{x}_{2} A\left(t_{1}\left({\overrightarrow{z_{z_{1}}}} \nabla_{y_{1}}\right), \ldots t_{n}\left(\vec{a}_{z_{n}}{ }_{y_{n}}\right), \vec{x}_{2}\right), \phi, R_{2}, R_{3}$, © is $R_{\text {join }}$ bad. Where $R_{2}=1 \leqslant 1 \leqslant n\left\{\right.$ <aa> : $\left.a \in \vec{a}_{z_{l}}\right\}$ and $R_{3}=1 \leqslant I \leqslant n\left\{\langle b b\rangle: b \in \vec{y}_{y_{i}}\right\}$.

Proof \Rightarrow

Suppose the R.H.S. does not hold, so
there $L(\oplus)$-structures A and B s.t.
$A \vDash \forall \vec{x}_{2} A\left[t_{1}\left(\vec{a}_{z_{1}}{ }_{y_{y_{1}}}\right), \ldots, t_{n}\left(\vec{a}_{z_{n}}{ }_{y_{y_{n}}}\right), \vec{x}_{2}\right]$
$B \vDash \oplus$ where w.l.o.g. we may assume $A \subset B$.
Since, for $i \in\{2,3\}, \operatorname{Rg}\left(R_{i}\right) \subset B$ is closed under
functions
$B \mid \operatorname{Rg}\left(R_{i}\right) \subset B$ with domain $\operatorname{Rg}\left(R_{i}\right)$.
In fact it is easy to see that
$B \mid \operatorname{Rg}\left(R_{i}\right) F \Theta$ and $B \mid \operatorname{Rg}\left(R_{i}\right) \subset A$ for $i \in\{2,3\}$.
We thus have the following situation,

$$
\begin{aligned}
& B \mid \operatorname{Rg}\left(R_{2}\right) \leqslant A \leq B \\
& B \mid \operatorname{Rg}\left(R_{3}\right) \quad A
\end{aligned}
$$

It follows that

$$
\left[B\left|\operatorname{Rg}\left(R_{2}\right) \cup B\right| \operatorname{Rg}\left(R_{3}\right)\right]_{B} F \boldsymbol{7}^{\oplus} \quad \text { by } * \quad \text { and }
$$

hence that Θ has not the join property .

\longleftarrow

Suppose now that Θ has not the join property .
So for some A, B and C we have
$A \vDash \Theta$

$$
[A \cup B]_{C \vDash} \neq \Theta \subseteq C \vDash \Theta
$$

$\mathrm{B}_{\mathrm{B}} \mathrm{@}$

Let R_{1} be the identity over $[A \cup B]{ }_{C}$
R_{2} be the identity over A and
R_{3} be the identity over B.

It is now easy (though tedious) to show that the R.H.S. of the theorem fails.

It follows that we can now characterize the sentences satisfying 5.31 . It is not a very enlightening result, but does show the existence of a solution. We think that the methods employed are more important than the results themselves, and hope that they will be further developed.

Bibliography
[B.S] J.L.Bcll and A.B.Slomson, Models and Ultraproducts . North-Holland , Amsterdam , 1969 •
[F] S.Feferman, Lectures on Proof Theory, Procevdings of the Summer School in Logic, Leeds, 1967, Springer Verlàg , p.p. 1-107.
[G] G.Gratzer, Universal Algebra, Van Nostrand, Princeton, 1968 .
[K_{1}] H.J.Keisler, Theory of Models with Generalized Atomic Formulas, J. of Symbolic Logic 25(1960), p.p. 1-26.
$\left[K_{2}\right]$, Finite Approximations of infinitely long formulas, The Theory of Models, Proceedings of the 1963 International Symposium at Berkley , Amsterdam , 1965 , p.p. 158-169.
$\left[K_{3}\right]$, Some applications of infinitely long formulas, J. of Symbolic Logic, 30 (1965) p.p. 339 - 349 .
[Ma] M.Makkai, On the model theory of denumerably long formulas with finite strings of quantifiers, J. of Symbolic Logic, 34 (1969) , p.p. 437-459.
[M] A.I.Mal'cev, The Metamathematics of Algebraic Systems , North-Holland , Amsterdam , 1971 •
[Mo] N. Motohashi, Interpolation Theorems and Characterization Theorems , Unpublished.
[Ra1] M.O.Rabin, Characterization of Convex Systems of Axioms, Notices of American Maths Society, 7 (1960) p. 503 .
[$\left.\mathrm{Ra}_{2}\right]$, Classes of Models and Sets of Sentences with the Intersection Property, Unpublished .
[R] A.Robinson, Introduction to Model Theory and the Metamathematics of Algebra, North-Holland, Amsterdam , 1963 .
[L] P. Lindström, On Relations between structures, Theoria (2 and), 1966, pp. 172-185.

