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ABSTRACT

This work examines structural properties of dynamic 
linear models (DLMs) and considers their implications for 
predictors and minimum-variance estimators of these models 
The techniques employed are those of statistical time 
series analysis and modem control theory, and particular 
use is made of the concept of observability.

Structural properties are derived and considered 
for the constant forecast model, the polynomial model of 
arbitrary degree, both with and without a forward shifted 
forecast function, and for the more general non-seaspnal 
models with an asymptotic forecast function. Several 
equivalence theorems are established for these DLMs. It 
is shown that the invertibility of the time series model 
is equivalent to the stability of the estimation scheme 
for the DLM in the equilibrium state. It follows that 
all predictors of a stable DLM are identical in the steady 
state to those of the Box-Jenkins forecasting schemes. 
Furthermore, the observability requirement yields an upper 
bound on the dimension of the state vector, and a lower 
bound is necessary to avoid specified restrictions on 
the equivalences. Examples are considered which show that 
the practical requirement that the system error covariance 
matrix be diagonal can further restrict the equivalence.

In addition, the Cramer-Rao bound is considered for 
estimators of the state vector. It is shown that the 
information matrix is invertible, and there is a unique 
estimator which achieves the Cramer-Rao bound if and 
only if the DLM is observable. This result is also 
discussed in varying degrees of generality.
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CHAPTER 1 

INTRODUCTION

The analysis of data collected on processes which evolve 
in time has occupied the attention of scientific workers for 
several decades. Many of the data series published by 
Government departments are examples of time series. In 
general, observations of such time series are dependent, as 
in population series, where the size of a population in any 
one year is dependent on population figures in previous years 
In many cases, this dependence is due to some underlying 
process, which may be known to the analyst. For example, 
the observed position of an aircraft at any time t may 
be dependent on the position and velocity at previous 
times through the equations of motion. Similarly, the 
sales of an item in a particular month may depend on demand 
in previous months, and on the rate of increase of demand.
If the structure of the underlying process is unknown, 
then a model is fitted from consideration of the data only.
If the structure is known., then this can be used in the 
formulation of a model, and the elements of the underlying 
process (e.g. velocity, rate of change of demand) can be 
estimated from the observations. The model can be verified 
from the data and is then available for the prediction of 
future observations.

Most time series are not purely deterministic, hence 
accurate modelling requires the use of random processes.
In particular, the classical statistical models for 
describing time series data are the linear stationary 
processes which are defined in Chapter 2. For example.
Wold (19 38) discusses in detail the



autoregressive (AR), moving average (MA) and autoregressive- 
moving average (ARMA) models. Many naturally occuring 
time series (e.g. population statistics) are not stationary, 
but other workers were able to describe these series by 
suitably transforming the data to yield a stationary series. 
The autoregressive integrated moving average (ARIMA) model 
seems to be the most popular model for non-stationary time 
series (Box and Jenkins 19 70). Here the data is rendered 
stationary by differencing. Other forms of non-parametric 
transformation are sometimes used, such as the taking of 
logarithms. Recently, attempts have been made to 
generalize the ARIMA models to certain non-linear models, 
for example Tong and Lim (19 80) and Priestley (19 80).

As a general rule, the statistician has been concerned 
primarily with the prediction of future observations.
The estimation of the underlying process has usually been 
of secondary importance. For this reason, a typical 
approach might be to fit the 'best' linear stationary model 
to the data, transformed if necessary, without special 
regard for the underlying process. One of the drawbacks 
of this approach, however, is that the parameters of the . 
model are not always straightforward to interpret. In 
particular, if there should be any change in the underlying 
process, it is not necessarily clear how this would affect 
the parameters of the model.

The use of random processes for the analysis of time 
series data is also of concern to the control engineer. 
Traditionally, he exploits the underlying process to obtain, 
the model, which is based on physical considerations and 
is written in the so-called state-space formulation. —
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Each component of the state space is intended to have 
some physical meaning: for example, distance , velocity, 
acceleration when modelling the movement of-an aircraft. 
Indeed , the control engineer is primarily interested in 
the estimation and prediction of the state of the underlying 
process from the observations available. In general, he 
is less concerned with the prediction of future observations 
Several state estimation schemes, usually known as filters, 
have been proposed. One of the most popular, and one 
which appears most meaningful is the recursive filter 
suggested by Kalman and his co-workers (e.g. Kalman, 1960, 
Kalman and Bucy 1961, Kalman 1963a,.Kalman,,19 63b) which is
now known as the Kalman filter.

In their pioneering work, Harrison and Stevens (1976) 
proposed using the state space representation together 
with the Kalman filter for time series analysis in a 
Bayesian framework. The state vector can be chosen in a 
way which is meaningful, and thus any changes in the 
process are more easily incorporated into the model. For 
example, in modelling sales of a product which is slowly 
increasing in popularity, it seems sensible to choose a 
linear growth model, which can be expressed in terms of 
a level and a slope. These authors call their models 
'dynamic linear models' (DLMs) and they assume normality 
of the noise components. This assumption is not required 
for the basic results, but it enables distributional 
results to be obtained, which are helpful in decision 
making.

The principal objective of the work in this thesis 
is to investigate the properties of the DLM as a
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representation for time series. Most of the work will 
be confined to univariate time series models. Much of 
the emphasis will be on the comparison of the predictors 
of the DLMs with those of the ARIMA models introduced by 
Box and Jenkins. It should be noted that the ARIMA models 
have constant parameters, which are estimated from all 
the available data, while the parameters produced by the 
Kalman filter algorithm vary as more data become available. 
This makes it difficult to compare the two approaches.
However, it is shown in what follows (Chapter 5) that in 
some circumstances the parameters of the DLM converge to 
constants as t ^ This is the equilibrium state t)f
the filter, and in these conditions, comparisons of the 
two approaches can take place.

In Chapter 2, we define a stationary time series, 
and introduce the most widely used examples, namely the 
autoregressive, the moving average and the autoregressive- 
moving average models. The autocovariance function and 
the spectral density function are defined, and the 
relationship between the parameters of the model and the 
autocovariances is illustrated. To satisfy the need for 
more general.models, we introduce the ARIMA model ,which 
is non-stationary. We then discuss some of the methods 
available for estimating parameters of the models defined, 
and mention attempts to fit these models to real data.

Chapter 3 discusses methods for forecasting the models 
defined in Chapter 2.

In Chapter 4, we introduce the state-space representation 
for linear models. In particular, we define the DLM

-9-



introduced by Harrison and Stevens and discuss in what 
respects it may be more meaningful than the conventional 
time series models. We also discuss the estimation 
method defined by the Kalman filter, and consider some 
of the classes of models which can be expressed as DLMs.
We consider the question of forecasting DLMs and discuss 
some aspects of fitting DLMs to time series data. V7e 
conclude this chapter with a comparison given by Akaike 
(19 74a) of the state-space representation and the classical 
time series model. The state-space representation for 
linear models has been used by control engineers for 
some time. In the analysis of the model, we shall draw 
on some control theory concepts and tools. These are 
introduced in Chapter 5. The z-transform and the concept 
of stability play an important part in this respect, as 
does observability. .'tTury's criterion for stability 
(Jury, 1964) is included in Chapter 5.

The constant forecast model is considered in Chapter 6. 
This, being not only the simplest case, but also one of 
the most widely used models, is given separate attention.
In particular, we discuss the implication of constant 
forecasts on the structure of the DLM. The Harrison-Stevens 
(1976) steady model is considered, and it is shown that 
the predictors of the models are the same as the predictors 
of a subset of the ARIMA (0,1,1) models. Methods of 
extending the model to include all ARIMA (0,1,1) models 
are discussed. It is shown that the dimension of the model 
needs to be increased for generality. We investigate the 
effects of assuming that the covariance matrix is diagonal.

-10-



and produce a model with a diagonal covariance matrix 
for which the predictors are identical to those of any 
ARIjyA (0,1,1) model. The effects of a possible restriction 
on the model are also discussed.

In Chapter 7 , we discuss the general polynomial model, 
where all of the forecasts follow a polynomial of degree 
d - 1. It is shown that if the DLM converges to an 
equilibrium state, then the predictors of the model are 
identical to those of the ARIMA (0,d,q) model (q ^ d) if 
and only if the model is stable (or invertible). The 
intuitively obvious choice for the dimension of this model 
is d, but we find that this implies that the class of 
ARIMA (0,d,q) models for which the identity holds is rather 
restricted. From this, and the concept of observability, 
we conclude that a model of dimension d + 1 is preferred. 
We also have the result, which is surprising from an 
intuitive viewpoint, that if the range of the parameters 
is to be unrestricted, then the model must be singular;

Several of the results of Chapters 6 and 7 are 
described briefly in the paper by Godolphin and Stone (1980)

These ideas are extended in Chapter 8, where the 
forward-shifted polynomial model is discussed. Here the 
first few predictors seem to follow no particular pattern, 
but all subsequent predictors follow a polynomial path. If 
the degree of the polynomial is d - 1, and the shift is 
r, then we find that the dimension of the DLM must be 
d + r + 1. This means there is no non-singular model 
which can possibly describe this situation.

Chapter 9 contains a further extension of these ideas 
to the general case. We discuss conditions for the
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equivalence of the predictors of DLMs and ARIMA. Cp,d,q) 
models. It is shown briefly that the results are easily 
extended to cover seasonal models.

By definition,the Kalman filter provides linear 
minimum variance estimators of the state variables. If 
the distribution is normal, then the minimum variance 
estimators are linear functions of the observations, hence 
in this case the Kalman filter provides the minimum variance 
estimator. A useful insight into this topic is obtained 
by deriving the Cramer-Rao bound for this problem, and 
where possible, the estimator which attains the bound.
This is the subject of Chapter 10. As expected, we find that 
in the special case of normal distribution and no plant 
noise, the estimator produced by the Kalman filter is 
indeed the minimum variance estimator. This is also true for 
multivariate observations.
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CHAPTER 2 “ ■;

TIME SERIES

2.1 Introduction

This chapter is devoted to univariate time series 
models. It is assumed we have a data series Y ^ / Y 2 f ••• 
and we require a model which fits the data so that 
inferences and predictions can be made. We shall only 
be concerned with linear models, although recently 
theories of non-linear time series models have been 
proposed by several authors, for example , Tong and Lim 
(1980) and Priestley (1980).

We first define stationary models, and then relax 
some of the assumptions of stationarity. Most of the 
models of interest will be non-stationary, but it is 
usual to consider inference questions for stationary 
models only.

2.2 Stationary Time Series

A time series {y^} is said to be strictly stationary
r1 "2

if y. ,y. ,...y. has the same joint distribution as
1 2 ^ 

yti+k'^tg+k'-'-yt^+k for time points
any integer k (positive or negative).

If we also assume that y. ,y. ,...y, has a finite
1 2  N

autocovariance matrix, then the above definition implies 
that E(y^) is a constant, and cov(y^,y^^b.) is equal 
to cov(yg,yg^^^ for all s,t,h and is therefore a 
function of h only. We adopt this as our definition 
of a stationary time series. This is sometimes defined 
as a weakly stationary time series, or a time series
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stationary to the second order.
We define the autocovariance function h integer}

and the autocorrelation function {p^y h integer} for {y^^ 
as follows:

Yh = cov(y^,y^^^) i.e. ŷ  ̂ is the auto covariance
of {y^} of lag h

i.e. pĵ is the autocorrelation of 
{y^} of lag h.

These moments satisfy

= Y_h, Ph = P_h' Po = !'• I Phi < 1, b + 0-
Three examples of stationary time series are often quoted 
in the literature.

The moving average model of order q:MA(q) model

The moving average model of order q is defined by

+ ® l H - l + v  + V t - q  (2-1)
where {e^} is a sequence of uncorrelated random variables
with a common variance var(e) i.e.

E(e^) = 0, E(e^E^) = (S^^^var(e) ,

where 5^ ^ is the Kronecker delta. Thus E(y^) = 0 and
the autocovariances of ,{ŷ } are given by

Yq = (l+3^+...+3g)var(e)

Yh = ( 6 h + B i e h + l + - - - + S q - h V “ '^^ l < h < q

Yjj = o h > q .

The autoregressive model of order p:AR(p) model

The autoregressive model of order p is defined by
- / t — l^t-l"^*"’t-p^t-p ^t (2.2)

—14—



where is a sequence of uncorrelated random variables
defined as above. This model is stationary provided the 
roots of the polynomial

a(z) = 1 + a^z+...+OpZ^ (2.3)
are greater than one in modulus. The autocorrelations 
of {y^^ satisfy the Yule-Walker equations :

+ ^ZPl+'-'+OpPp-i ='0

P2 + «iPi + %2+---+apPp_2 = 0

! ! (2.4)
Pp + “lPp-1 + “2Pp-2+-"+“p = 0

Ph + “lPh-1 + “2Ph-2+*---^“pPh-p = °  h > p .

The autoregressive-moving average model of order (p,g)

This is sometimes referred to as the ARMA. (p,q) model 
and is defined by

Yt + " lY t - l+ ' - '+ G p r t -p  = + S lP t - l+ ” - + V t - q  • (2.5)

This model is stationary provided a(z) defined in 
equation (2.3) has all roots outside the unit circle.
It is assumed that the roots of a(z) and 3(z), where

3(z) = 1 + 3^z+...+3gZ^, (2.6)

do not have a common factor. The autocorrelations satisfy

Pk.+ J i “jP|k-j| = : I k < q
(2.7)

= 0 k > q .
To evaluate the right hand side of this equation, we need 
to use the Wold decomposition theorem, which states that 
if {y^^ is a discrete stationary process with finite 
variance, then there are two mutually uncorrelated

-15-



processes such, that + n^, where

1. is deterministic
2. is a (purely non-deterministic) moving

average
''t = bjCt-i ("o = 1j=ooo

where H < “ and the e. are a sequencej=o 2 t
of uncorrelated random variables as described above

The processes are uniquely specified, and either
one may be absent.

Thus every stationary process can be written as an 
infinite moving average, possibly plus a deterministic 
term. In particular, the purely non-deterministic ARMA (p,q) 
model has the representation

where the b^ are uniquely specified and b^ = 1. We
define . (2.8)B (z) = I b . z 

i=o ^
Writing y^_^ in this form, E(y^_^,E^_^) becomes
— °° —IE E. . Z b . E. , . , so that equation (2.7) can be written
_  j=o  ̂ J

P var f E) ^
p k + 4  “jp|k-j| = ;5FWT 4- B i V k  1 i k < q

1-K (2.9)
= 0 k > q ,

If all the roots of 8(z) = 1 + 3^z+...+3gZ^ are
greater than one in modulus then the process also has an
infinite autoregressive representation

OCX
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where a = 1. When this, representation exists, the model
" iis called .invertible. We write A(z). = Z a.z . It

i=o ^
is well known that when a stationary process is invertible,
this generating function and (2.8) are related by
A(z)B (z) = 1.

It is clear that for the finite MA(q) model, the
and hence the p, are easily found from the 3.. To

^ ]
obtain y, for the AR and ARMA models is more difficult.^ I
It is possible to invert the Yule-Walker equations, but
this is again difficult for ARMA (p,q) models if q is
moderately large. An alternative generating function
approach is given in an algorithm due to Quenouille ■*(19 47a)
First, we need to define the autocovariance generating
function ^ -

r (z) = y + Z y, (ẑ  + z )̂ (2.10)
° k=l ^

which satisfies
r(z) = V(£)B(z)B(-z"^)-= V.(£)./A.(z)Aiz7^) . (2.11)

Then considering first the AR(p) model and applying 
Quenouille's algorithm, the expression r(z)/V(e) is uniquely 
determined by

. (K,z+K,z ^+...+K^zP) - (K.z"^+^,.+K_z"P)
= K + —  ---- ■ --- E  + — ---;--- — -E--, (2.12)a(z) a(z )̂ ° “ (z) a (z  ̂)

where K^,K^,...K^ are found by equating powers of 
z^,z^,...z^. Comparing equations (2.10) and (2.12) we
find that

Yo = KoV(e)
V

a(z) Z y.z = (K.z + K-z^ + .. .+K z^)v(e) . k=l k J- 2 p
For the ARMA(p,q) model, the generating function (2.8) is 
B(z) = 3(z)/a(z) and the generalisation of Quenouille's 
algorithm states that r(z)/V(£) is given by

-17-



T,-! = K + (KtZ+.,. .K_z^)/a(z) + CKTZ ^+...K_z )/a(za(z)a(z"^) o 1 -L 1 L '
(2.13)

where L = max (p,q).
Example 2.1

The ARMA (1,2) model is given by

Yt + “Yt_i = Et + h^t-1 + ®2=t-2 •
Using equation (2.13)

(1+ 63 2̂ +^2 2 )̂ (1+Bt_z"-‘-+B22"^) _ (?-l-S?2 “;l (Kpz’^+K^z"^)
(1+az) (l+ctz-̂ ) ° 1+az"^

Multiplying this equation by (1+az)(1+az )̂ and then equating
powers of z we obtain

%2 " 2̂
K^(l + a^)+ 2K^a = 1 + 6^ + 6|

KqO + Ki = 6 i + 6 1 6 2 - ®2“ 
which has the solution

(1 -  a ^ =  1 +  + ^2 ~ 2a(#2 + ^1^2 " ^2^^

K^(l - â ) = (1 + a*) 3^(1 + 32̂  “ ~ ^(1 + 3^ + 3̂ ) “ ^^^2
from which

Yo =
y 2 = K^V(e)

Yk = (̂ 2 - aK^)(-a)k-2v(E) k ^ 2 .

We-now turn to the converse problem that of finding the 
model parameters from the autocorrelations, which is perhaps 
more frequently encountered in practice. For the 
autoregressive model of order p, the solution is 
straightforward. From the Yule-Walker equations

—18—



1 Pi , . pp-1 ai 0

. * p 1
pp-1 ' ^ “p 0

(2.14)

so that
a.

a

-1
• Pn_P-1

P-2

P-1 • *

. (2.15)

Equation (2.15) shows that are readily obtained
from p^,...,Pp. The solutions for the moving average 
and ARMA models are more complicated, and require the 
Cramer-Wold factorization. Consider the moving average 
model of order q. Then

z^r(z) = K3(z)z^3(z“ )̂ (2.16)

where K is independent of z. If z^ is a root of
a -1z^r(z), then by the symmetry of the representation, z^
is also a root. Thus z^T(z) can be expressed 

CT 9 -1z^r(z) = K3 n (z-z.)(z-z_^)
% i=l

which means there may be as many as 2^ possible solutions. 
In practice, it is usually required that the model is 
invertible, so that all the roots of 3(z) are greater 
than one in modulus. This defines the 3's uniquely. 
Methods for factorising (2.16) are discussed in Godolphin 
(1976a) . A matrix approach is. described by Tunnicliffe- 
Wilson (1969).
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The corresponding problem for ARMA models is treated 
similarly, by first transforming the problem to. that for 
a moving average model and then applying the above 
approach. Details for both MA and ARMA models can be 
found in Godolphin (19 76a).

The spectral density function of a time series {y^^ 
with autocovariance function is defined by

00

f(X) = ir z _.„■ < X £ nk=_= k -
f(X) is an even function of X, and is continuous, 
positive, real valued and periodic with period 2tt. It 
is possible to consider the prediction problem in terms 
of the spectral density, and to formulate some of the 
problems of this thesis accordingly. However, this approach 
is only valid for stationary models, so it will not apply to 
the non-stationary models we shall consider. Hence we shall 
make little use of the spectral density in this work.

2.3 Non-stationary Time Series ARIMA models.

The stationary processes described in Section 2.2 have 
proved to be unacceptable for modelling many time series 
that occur in practice. Consequently, many attempts have 
been made to modify the concept of a stationary model 
to be more in keeping with observed time series and yet 
keep some of the properties of stationarity. Possibly 
the simplest of such modifications is the deterministic 
trend with stochastic stationary disturbance model

Yt = 3^. (2.17)
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This appears to be essentially an extension of the 
representation used in the Wold decomposition theorem, 
for m^ is a deterministic expression, perhaps a 
polynomial or a cycle or an asymptotic expression, or 
any combination of these three, while the stochastic 
element is a stationary time series. Often, is
assumed to be just the purely random process e^. The 
most successful workers in this field appear to be 
R.G. Brown and his co-authors. The works of Brown (1959, 
1962), Holt (1957),Winters (1960), Brown and Meyer (1961) 
and D'Esopo (19 61) introduced the topics of exponential 
smoothing and exponentially weighted regression to fit 
the deterministic component m^.

Whittle (1963, Chapter 8) suggested that a more 
realistic approach to non-stationary time series is given 
by a model which becomes stationary on the application 
of a suitable transformation. In particular. Whittle 
proposed that differencing was a suitable transformation.
This idea, which was first considered by Yaglom (1955) 
is at the heart of the work of Box and Jenkins (1970).
Their approach is now widely used for modelling time 
series data. The model, known as the autoregressive 
integrated moving-average model of order (p,d,g), usually . 
abbreviated to ARIMA (p,d,q) is given by

9̂yt+«l?̂Vt_i+-..+Op7̂Yt-p = ,-(2.18)
where Vy^ = y^ - Y^-q and it is assumed that the 
polynomials a(z), 3(z) defined by equations (2.3) and
(2.6) have no common zeros, and have all zeros strictly 
outside the unit circle. This is equivalent to stating
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that differencing the data d times leads to an ARMA(p,q) 
model, for which the theory of the previous section ' . . 
applies. The model (2.18) has been described in three 
different ways by Box and Jenkins (19 70).

The most widely used representation is the difference 
equation form given by equations (2.18). The inverted form

. (2.19)
j = l

always exists because we have assumed the process in V^y^ 
to be invertible. This representation can sometimes be 
useful for describing predictor weights in forecasting 
situations. Box and Jenkins also define a random shock 
representation *

but this form seems doubtful because the do not
necessarily decrease as j + This 'Wold representation'
was criticized by Godolphin (1975).

2.4 Estimation of Parameters of an ARMA process

The Box-Jenkins approach requires that a model is 
specified in terms of unknown parameters, which are then 
estimated from the data. Substantial literature exists 
on the estimation of parameters for stationary models, 
but there appears to be no similarly detailed theory of 
estimation for non-stationary models. However, Box-Jenkins 
models do not require such theories, for they can first 
be transformed to stationary models by differencing. In 
this section, we assume that the time series {y^} is 
a stationary ARMA(p,q) process, with p and q known.

-22-



and . the are independent and identically distributed
normal random variables. We consider the problem of 
estimating a^,...ap, 3-j_/* • • 3g/V (e) .

The special case q = 0 (purely autoregressive process) 
was considered by Mann and Wald (1943). For large samples 
the maximum likelihood solutions for a.^,. . are found
by the intuitively reasonable approach of solving the 
Yule-Walker equations (2.4) , with replaced by
and replaced by the sample serial correlation r̂ ^
defined by

= Ck/Co . (2.20)-
where Cv is the sample - serial covariance of lag k

^k " ^t^t+k' (2.21)

With these substitutions, the solution is given by 
equations (2.15). These were adapted by Durbin (1960)

/N . /%.

to yield a stepwise method of estimating a^,. ..â  ̂ from 
k -1 estimates derived from a previous step (k = 2,...p).
This method is particularly useful if p is unknown.
These estimates were proved consistent by Mann and Wald 
(1943) and efficient in large samples by Whittle (1953).

The other special case, that of the MA(q) model was 
considered by Whittle (1951, 1953) from the maximum likelihood 
principle. His solution, which is consistent and efficient, 
but not in closed form, can be found by an iterative 
process. A direct representation of the iterative solution 
in terms of the sample serial correlations has been found 
by Godolphin (1977, 1978) and a computer implementation 
published by Ange11 and Godolphin (1978).

The generalisation of the maximum likelihood approach
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to the ARMA(p,q) process was also considered by Whittle
(1953/ 1954). He derived the variance-covariance matrix
Z of the maximum likelihood parameter estimators
^l'***^p' ^l'***^q concluded that these estimators
are efficient, in that the generalised variance det L is
smaller than the corresponding generalised variance of
any other set of estimators. An alternative method of
computing the elements of L has also been given by Box
and Jenkins (19 70, Chapter 7).

Expressions for the maximum likelihood estimators
for the ARMA(p,q) process have been given by Pham-Dinh
(1979) and Godolphin (19 80b). The log likelihood for-the

Tobservations Y - (yj_/...Yĵ ) is given by

logL = -%{Nlog2nü= + logdetT^ + a“^Y^r^^Y} (2.22)

where is the covariance matrix of Y. Differentiating
(2.22) with respect to and 6, where 9 is any element
of (a^,...Up, 6-]_/---3q)f we obtain the following
approximaton to the likelihood equations

le 0 (2.23)
and

(2.24)

where the contribution of det^ has been ignored. To
obtain the solution for a = (a,,...a ) and 3 = (3i,...3 )— 1 p —  L q
to (2.23), it is possible to adopt a further approximation, 
originally proposed by Whittle. We replace by I^,
where is the covariance matrix for N consecutive
values of the stationary ARMA(q,p) process

^t ^l^t-l'^'**'^^q^t-q* ̂ t
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where N(0,1) (see Shaman, (1976)). Using this
approximation, the likelihood equations (2.22) become

Ï6 = °
which simplify to

m
30 + 2 I TT.r.} = 0

]--L
where r^ is defined by equation (2.20) and m is 
sufficiently large.

Solutions for the likelihood equations can be 
expressed as iterative equations for a and £ together
with the non-iterative solution

- 1  N.' m .= N . 2 y?(7T + 2  S TT.r.).t=i t o  j=l ] ]
Pham-Dinh has also given an approach which enables the
iterative procedure to converge quadratically.

Several other attempts have been made to estimate 
the parameters of MA or ARMA processes. Durbin 
(1959) approximated the stationary MA process by a large 
but finite autoregression, and then used the approach of 
Mann and Wald. This procedure is prone to bias, but is 
shown by Bhansali (19 80) to.be asymptotically efficient 
in estimation of moving average parameters, relative 
to the maximum likelihood procedure. It also appears 
to be the only non-iterative procedure. The generalisation 
of this approach to the mixed ARMA model is given by 
Durbin (I960)-.;

Another interesting approach is that of Walker (1961, 
1962) who estimates not the a Vs and 6 Vs but the a 's 
and p's taking the sample serial correlation r^ as 
the initial estimate of p^. The 8's are then found 
from the Cramer-Wold factorization. This approach requires

— 25 —



the theory of the distribution of the r^, due to 
Bartlett (1946) and Lomnicki and Zaremba (1957).

Other methods are due to Anderson (1975a), .Hannan 
(1969) and Box and Jenkins (1970). These last two are 
computational procedures for obtaining the maximum 
likelihood estimator directly.

2.5 Specification

If the observed time series is non-stationary, it
may be decided to fit an ARIMA model. The first step
is to determine d, the number of times the data should
be differenced, and this must be done before estimating
any other parameters. The method suggested by Box and
Jenkins (19 70) to do this is to compute the sample
serial autocorrelations r^ defined in equation (2.20).
When the data are stationary and N is large, the sample
serial correlation function {r^y k=l,2,...} follows
closely the behaviour of.the theoretical autocorrelation
function {p^, k=l,2,...}, indeed asymptotically
E(r^) = p^ (Lomnicki and Zaremba 1957). For this reason
it is assumed that the degree of differencing , d,
necessary to achieve stationarity has been reached when

dthe estimated autocorrelation function of w^ = V y^ 
dies away fairly quickly. See Box and Jenkins (1970, P.174- 
175) for a fuller discussion. A plot of the correlogram 
(r^ against k) is usually helpful.

Having achieved a stationary ARMA (p,q) model by 
this process, it seems reasonable that p and q should 
be. determined before estimating the a's and g 's However, 
many practicioners tend to overfit a stationary model.
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in the hope that estimates insignificantly different 
from zero will effectively determine the order of the 
process. For example, in applying Durbin's method for 
the estimation of parameters of an autoregressive process, 
p is taken to be the number of parameters significantly 
different from zero. In general, VCe) can be estimated 
at each iteration, and only minor reductions in V(e) 
imply that estimating further parameters will not improve 
the fit.

Akaike ( 1974'b) attempts to formalize this idea in 
the autoregressive case, assuming the are normally
distributed. He defines an information criterion

AIC (p) = N log VU) + 2p
where p

Vie) = Z a C. 
i=o

and the a^ are the solution of the Yule-Walker equations 
(2.4) with replaced by the sample serial correlation
r^, and is the sample serial covariance defined
in (2.21). The order of the model, p, is taken as the 
value of p which minimizes AIC(p) for p = 0,1,...L, 
where L is a preassigned upper limit. A Bayesian approach 
is also described by Akaike (1979). A critical examination 
of Akaike's method is given by Bhansali and Downham (1977) 
and Shibata (1976).

Several authors have proposed methods for testing the 
goodness of fit of a stationary ARMA model. Quenouille 
(1947b) provided a test of fit of an autoregressive process, 
using partial autocorrelations. This was extended by 
Bartlett and Diananda (1950). Walker (1952) compares the
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power of these two tests. Wold (1949) and Durbin(1959) 
give goodness of fit tests for a moving average process 
which yields a statistic under the null hypothesis.
Durbin’s test was generalised to ARMA models by Durbin (1960).

One test which is reported to have good power properties
is due to Whittle (1951, 1952) and is based upon the
likelihood ratio principle. In practice, however, a simple
test which is often used is the Box-Pierce test (1970),
or its modification by Ljung and Box (19 78). The Box-
Pierce test requires the computation of

T
N Z r!

j=l ]
where r^ is the sample serial correlation defined by 
equation (2.20) and T is a sufficiently large integer 
less than N. This statistic has a limiting distribution
on T-p-q degrees of freedom. However, this simple test 
has the reputation of being unable to distinguish between 
several models which could be fitted to the data. The 
modification of Ljung and Box (1978) gives a test statistic

N(N+2) I (N-rk) -̂ rZ
k=l

which is a closer approximation to on T-p-q degrees
of freedom. Davies and Newbold (1979) have compared these 
two tests with regard to forecasting accuracy.

Another approach which contains the Box-Pierce test 
as a special case has been proposed by Godolphin (19 80a)
This method requires rather more computation than the 
Box-Pierce test, but has greater power properties. It 
is based on Walker’s idea that we should test the p ’s 
rather than the g ’s, using the Godolphin (1978) estimation 
procedure described in section 2.4. The set of sample
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serial correlations (r^,...,r^) are transformed to a
set w = which is partitioned into
(w* ,w^_^l,.. .Wt_ĵ) / with transformed covariance matrix

- 1 1 - 1 2

^ 1 2 - 2 2
Tw* = (w^^...w^^ is then estimated by Walker's iterative 

procedure. The test statistic

^^T-k-m ^ ^^ll“ îl2-2 2- 1 2 ^
has a central distribution on m degrees of freedom
under the null hypothesis that the parameters of the ARMA 
model have been correctly specified.

2 .6 Fitting models to data

Several papers have been written which attempt to 
apply the theory of Sections 2.2 - 2.5 to real time series 
data. For example, Chatfield and Prothero (19 73) consider 
one data series in some detail, while Newbold and Granger 
(19 74) and Prothero and Wallis (19 76) both compare the 
Box-jenkins models to other models over several data sets. 
Several papers describing the application of the Box-Jenkins 
methods to specialised problems have now appeared in 
the applied journals, suggesting that the use of these 
methods is widespread. In general, p and q are found 
to be quite small, generally not more than 3.

An attempt at fitting a deterministic term plus a 
stationary model to the so called lynx data has been made 
by Campbell and Walker (19 76). These data have also been 
examined by Tong (1976) who fitted an AR model based on 
Akaike's criterion.
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CHAPTER 3 

PREDICTION OF TIME SERIES MODELS

3.1 Introduction

In this chapter, we are concerned with the prediction 
of linear time series models defined in Chapter 2; that 
is, we wish to predict k > 0 from the data available
at time t. This is clearly useful in many contexts 
to enable decisions to be made, for example in sales 
forecasting.

Methods of prediction have occupied many workers, 
but some of these methods appear not to interest practitioners, 
for example, the work of Yaglom (1962, Chapter 6 ) and 
the general form of what is now known as the Wiener- 
Kolmogorov approach.

The approaches discussed in this chapter are due to 
several authors. The material of Section 3.2 is discussed 
in Whittle (1963) and Box and Jenkins (1970), where 
references to relevant workers can be found. The major 
source of the material of Section 3.3 is Godolphin (1975).

These approaches assume that the model is known. In 
practice, it is first necessary to specify the order of 
the ARMA or ARIMA process, and estimate the parameters.
In the sequel, we shall assume this has been done.

3.2 Prediction of Stationary Time Series

We assume that the time series {y^^ is stationary 
and non-deterministic. Then by the Wold decomposition 
theorem, .'ŷ  has an infinite moving average representation
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't ■ jfo ‘j't-l

with = 1. It is required to predict Y-t+k time t from 
a linear combination of past and present values of {y^}.
Thus the predictor y^(k) of y^^^ is given by

oo

y (k) = L q.(k)y . . (3.1)
^ i=o ] ^ ]

We wish to choose the weights qj (k) such that the
prediction error variance E 
Minimising this quantity gives

(Yt(k) - Yt+k) is minimised.

Yt'k) = .1^ bj+kCt-i• (3-2)

This result seems reasonable, since the predictor is the
texpectation of Y^+k conditional on y = (y^,y^_^,...),

i.e. y^(k) is obtained from the expression for ŷ ^̂ ^
by setting future values of to their expected

tvalue, zero. The notation y for (y^,y^_^,...) has 
been adopted from Harrison and Stevens (1976).

Also, the prediction error y^^^-y^(k) is a finite 
moving average

yt+k-yt(k) = ct+k+BiCt+k-i+'-'+Gk-iEt+i'
with prediction error variance

k- 1
var(s) Z bu, 

i=o ^
which increases monotonically with k.

However, the formulation (3.2) for the predictor 
is not very useful because the are not observed.
If we write

y (k) = Z 4^(k) e 
j=o
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and define the generating functions
oo . œ

(z) = X ^.(k)z3 and Q, (z) = X qj(k)z^
j=o 3 j=o ^

then the relationship between these functions is given by

%k(z) = B(z)Q^(z) .
Hence

00 . 0 0
Q, (z) = X b. , z^/ X b.z^ '(3.3)j=o j=o 3 •

The qj(k) can be determined from (3.3) so that the
predictor y^(k) can be found in terms of the previous
yg from (3.1).

It should be noted that the qj(k) can only be
determined if (3.3) can be expressed as a power series
in z. For the three models discussed in Section 2.2,
B(z) = g(z)/a(z). Hence it is clear from (3.3) that
the roots of g(z) must be greater than one in modulus,
i.e. if a predictor of the form (3.1) is to exist, then
the model must be invertible.

Example 3.1

Consider a first order autoregressive model
Yt " P?t-1 = =t '

Then œ . .
B(z) = Z p^z^ ,

j=o
hence 00 , , . 0°

(z) = Z 7 ?/ z p^z^ = P .
j=o j=o

Thus
y^(k) = .

In this case, the predictor for any lead time depends 
only on the last observation, and since |p| < 1 , it 
converges to zero for large lead times.

Qk
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Relation between predictor weights and autocorrelations

Another approach is to examine the relation of the 
predictor to the autocorrelation function {py}. Here 
it is assumed that the available data set is of finite 
length. Suppose ^t'^t-1 ' ’*''^t-N is available,
and define

1 D-, cu

&

. PN
^N-l

N N- 1  ^N- 2

is positive definite and hence invertible. As
before, we wish to define the predictor of as
a linear combination of past and present observations, i.e.

N
y (k) = X q.:(k)Y._. . 

j=o  ̂ ^
Notice that we keep the same notation as above, though 
the values taken may differ because of the finite 
approximation to the infinite series.

Defining

we have „
Yt(k) = q I ^  ■

Minimising the prediction error variance E 
we find that

(3.4)

^ 2 k - &k (3.5)
where D£-k " I Pk'Pk+1 ' •••Pk+N
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Since is positive definite, there is a unique
solution for 0 ^, hence y^(k) is uniquely defined by
(3.4). The prediction error variance is given by

2: Qyt+k-y (k) = To c-^kSk' •
Inverting G^ may be difficult, but sometimes it 

is possible for a solution to be hypothesised. If this 
solution fits equation (3.5), then it must be the unique 
solution.

Prediction by the spectral density function

It is also possible to predict from the spectral 
density function. This involves factorisation of the 
spectral density to find B(z), and then proceed in'I
the manner described earlier to give equation (3.3) as 
before.

3.3. Prediction of ARIMA models

Since an ARIMA (p,d,q) process is not stationary,
the predictors cannot be defined from the Wold canonical
form as in Section 3.2. However, the predictor of y^^^
at time t can still be defined as the expectation of
ŷ _̂  ̂ conditional on y as in the previous section.
Thus we replace t by t+k in equation (2.18) and

t •take expectations conditional on y using
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ŷ t+j |y^

_^t+j

yt-j Y ^

"t-j Y ^

1 4  j < k 

1 < i < k 

0 ^  j ^ p+d-k

0 1  j £ q-k .

(3.6)

This procedure results in a difference equation in the 
predictors y^(j), y^_j(l), and the observations Yt-j' 
which can be solved to find y^(k) in terms of the Y^_j• 
Again, we use the same notation, although the predictor 
y^(k) is now defined by conditional expectation, not 
minimum mean square error. Unless otherwise stated, 
predictor will be taken to mean conditional expectation 
predictor defined by (3.6).

Example 3.2

The ARIMA (0,1,1) model is given by

- y^.y = + gSfl where |g| < 1 ,
Replacing t by t+1 and taking conditional expectations 
as in (3.6) ,

y^(l) + gYt-i(l) = (3+1) Y^-
This has solution

y. (1) = (1+g) I (-3) Yt_4 j=o
(3.7)

and for k ^ 2
y^Ck) - Yt (k-1 ) = 0  

i.e. y^(k) = y^(l) for all k > 1 .

Thus the predictor of this model is the same for all lead 
times. In this work, a model whose predictor satisfies

(3.8)
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(3.8) is called a steady model. The expression (3.7) 
is known as the exponentially weighted moving average 
(EWMA), and is widely used in industrial forecasting. It 
should be noted that the condition |g| < 1  is a natural 
one for the representation (3.7) to be valid.

In general, the difference equation is very difficult 
to solve. Godolphin (1975) produced what he called the 
direct basic form, which produces forecasts of y^^^ 
without requiring forecasts of yt+i''"''yt+k-l' 
is fairly straightforward to find if p is small. . It is 
convenient to consider first the case p = 0 .

Given an ARIMA (0,d,q) model, we define the updating 
series

] - J--L
(3.9)

(3.10)
and the component series

Ct = ?t - %t-l 
from which

\  = Yt + * (3.11)
Then we have d- 2

y. (1) = U. + Z VC. (3.12)
i=o

where the last term vanishes if d is one. If we define

f. = E  

it can be shown that

j > 0 (3.13)

q-] d- 1
Gi+i? \ - i

= 0 j ^ q+ 1

From this, the predictor is found to be
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y (k) = \  2), k > 2 (3.14)
^ 1 = 0  ^ “

where
^it = 'd-Üi'fj 0 < 1 < d- 1

and
r = min(q,k+d-l).

Here
^ 1 ^ 0^+Ct+'''+ d > 2 .

Clearly equation (3.14) defines a polynomial in k of 
degree d-1. When q £ d, r = q, so that the are
independent of k, and the y^^k) describe a polynomial path for 
all lead times k. When q > d, A^^ does not become
independent of k until k > q-d. Thus the predictor
has q-d discontinuities, then settles to a forward shifted 
polynomial of degree d- 1 and shift q-d.

Godolphin and Harrison (1975) give an equivalent 
representation in Lemma 1 of their paper which uses a 
matrix updating procedure.

Example 3.3. (The Steady Model)

Consider'again the ARIMA (0,1,1) model

Yt - Yt-1 = :t + ®®t-l •
Applying the above algorithm,

"t = ?t + ect

Ct = yt - "t-1
so that

\  + 6%t-l = (1 + 9)Yt 
i.e. is the exponentially weighted moving average.
Also

f . = 0 . j ^ 2 ,J
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Thus

and
Y^(k) = a-11 k ^ 2

thus confirming our previous result.

Example 3.4 (Linear Growth Model)

A natural definition of linear growth is
i‘ -

= a + bt.

It is easily shown that in this case, V^y^ =0. In practice, 
a true straight line seldom arises, but close approximations, 
where V^y^ is stationary seem to be met frequently.
For example, if V^y^ is a moving average of order 2, 
we have an ARIMA (0,2,2) model, which is widely known 
as the linear growth model:

9'Yt = Et + + 2̂ ®t- 2 •
For this model, the above algorithm yields

. += ?t + G
= Yt - 0

^ 2 = GgVCt
f J = 0J

(3.12) and (3.14)
y^d) = « 2 = °t '

Yt (k)
= ^ 2 + (k-

j > 3.

,k—1 ,
'It

= + (k-1 ) (VU^+g^VC^)

= + C^+(k-l) (l+gj^+g2 ) C^.
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Thus the predictor grows linearly, with slope
(l+g^+g2 )C^.

Example 3.5 (Forward shifted linear growth model)

An example of a forward shifted model is given by 
the ARIMA (0,2,3) process:

V^Yt = Et+BiEt-l+62Et-2+B3Et-3 '
Applying the above algorithm, we have

\  = yt+9lCt+B2Ct-l+B3Ct-2 

Ct = yt - %t-i 

^ 2 =
f3 = e^vct

f . = 0 j > 4.J
From this,

yt (b) = °t +

Yt'k) = ^ot + (k-l)Ait
= + (k-1)(70^+12+1])

= - ggVC^ + (k-1 ) ( 1 + 3 ^ + 0 2 + 3 2 k ^ 2 .

Thus y^(k) defines a straight line of slope
(1+ 3 ^+0 2+ 3 3 )0 ^ for k ^ 2. Clearly, there is a 
discontinuity of (-g^VC^) between y^(l) and y^(2 ), 
illustrating the reason for the term of forward-shifted 
polynomial model.

Godolphin (19 75) generalised this approach to the 
case p ^ 0, and also to seasonal processes. Given an
ARIMA (p,d,q) model, the expressions for the updating and
component series (3.10) and (3.11) remain unaltered, as
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does the definition (3.13) of f^. The one step ahead 
predictor is now given by

y,(l) = Ü, + g  V \  -

where the central term vanishes when d = 1. It can be 
shown that

9""̂  d- 1  d- 1
h  = j L  'j+i' "t-i -

q-i p d- 1  p-i d
"i = lEo “b’ V i - L  - yt-i

j- 1£ a.f. . j = 2 , ---,q (3.15)
i=l ^

and subsequent f . satisfyJ
fj + "ifj-i+'-'+Gpfj-p = ° . j > q+ 1

where, if j > p, the second term of equation (3.15) 
vanishes, and the upper limit on the final summation 
changes from j- 1  to p.

From this, the k-step ahead predictor is found to be
d- 1  i_. . o ,• k— 2

y.-' . .
where

(k) = (k > 2 ) ■^ i=o ^ j=o J ^ J

d- 2 . p  ̂ 1
= "t + y Ct - “j’ ^t+i-j i 2 .1=0 1=1]

Example 3.6

The ARIMA (1,1,2) model is given by

Vy^ + a?yt_i = Ct+9lSt-l+ ®2 ^t- 2  
For this model

= Yt + + 6 2 '̂ t-l

Ct = yt - \ - i
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as for the linear growth model. However

- aC.

so that

= SlCt +■ SzCt

^ 2 = (®2 “
ag^ +

fr = (-a)f'" ^ 2

(1 ) = "t - clC^ 
k— 2

Yt (k) — ^^2 + £ 
j=o

= °t -

= ^t - aC^

(r > 3)

k _
M + â )C. £ (-a)^ ^

^ r= 2
_2 \ .\k_k-l. . _\-l.

We see that this process is neither a constant foreca^st 
model nor a linear growth model, but is something between 
the two, for the predictor converges in a geometric fashion 
towards a constant forecast. Indeed, as k + y^(k)
tends towards a ceiling value of

- aC^ + — -----  C^. If a is negative, then the
predictor will converge monotonically towards this ceiling 
forecast, while if a is positive, the predictor'will, 
oscillate towards the limit.

3.4 Equivalence theorems for the predictors of non-stationary
models

In the previous sections, we have defined predictors 
of ARMA and ARIMA: models. It is quite possible that 
other univariate models,,.for example those of Brown (1962) 
or Holt-Winters (Winters, 1960) or the DLM to be defined 
in Chapter 4, have the same predictors as the Box-Jenkins 
models.

— 41—



Example 3.7

Consider the simplest form of model (2.17)

Yt = + St

where is a completely random process.: and m^ = m^_^ = m,
i.e. a constant model with observation error. Here m^,
the estimate of m after t observations, is t
y. = £ y./t. The k-step ahead predictor y. (k) isi=l  ̂ t
found by taking expectations of y^^^ conditional on

= (Yi f • • • /YJ so that
y^(k) = E 

= E
‘]

mlyb]
^t+k'y

= m^ for all k .

Thus we see that this model is a steady model in that
(3.8) is satisfied, so that the predictor is the same for 
all lead times.

In the remainder of this chapter, we consider conditions 
under which predictors of various types of model are 
equivalent to those of the Box-Jenkins models. Godolphin 
and Harrison (19 75) proved the following theorem.

Theorem 3.1

Suppose the predictor Cy.j. (k) ;k=l,2 , ♦. . } satisfy

£ (-l)](?)y^(k-i) = 0 . k > d+1. (3.16)
j=o  ̂ ^

Then y.|_(k) is identical to the k-step ahead predictor
of an ARIMA (0,d,q) process, where q ^ d, for each
k = 1 ,2 ,... if and only if there is a real finite sequence

= l , & i , s u c h  that
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where e. =t - - y^_2 (T) is the one-step
ahead prediction error

d(ii) the zeros of g(z) = 1 + g^z+... + ĝ
lie strictly outside the unit circle, where

] i dgj = Z (-1)^(i) 1 < i < d . (3.18)

Applying this theorem to the above example, we see that

y^(k) - y^(k-l) = 0 for k ^ 2 , hence d = 1
/\ t— 1
“t-i " Yi/t-it b=i

t - Yi/t = + (Yt -m. = E 
i=l

which is equation (3.17) with = 1/t for all k. But 
it is implicitly assumed in the theorem that the .do
not vary with time. As t °°, ->■ 0, but this means
that g^ + -1 , so that in the limit, g(z) has a root
on the unit circle. Thus the predictor of this model is
not at any time equivalent to that of the ARIMA (0,1,1)
model.

The result can be extended as follows:

Theorem 3.2

Let r ^ 0, s > 0.
Suppose the forecast function {y^(k);k=l,2,...} satisfies

s
E #.y.(k-j) = 0  k ^ r + s + 1  (3.19)

. j = o  3  «

where the (̂ . are real scalars, with cj)̂ = 1 and the
S i

roots of $(z) = E (j).z are greater than one in modulus.
i=o ^

It is assumed that s is the smallest integer for which
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such a representation exists, and that 
s
E (k-j) =1= 0 1 < k < r+s .j=o 3 t =  =

Then y^(k) is identical to the k-step ahead predictor 
of an ARtlA (s,r+s) process for each k = 1,2,... if and 
only if there is a real finite sequence = l,#^,...a^^^
such that

(i) y^(k) = y^_^(k+l) + 1 ^ k ^ r+s (3.20)
where e^ is the one-step ahead prediction
error, defined as above

^ C2(ii) the zeros of g(z) = 1 + g^z+...+g^^gZ
lie strictly outside the unit circle, wherQ

j
g. = E (j). a . . 1 < j < s , (3.21)
3 i=o 3-1 = -

Gj+s - I 4  j ^ r .  , (3.22)
1=0

Proof

From equation (3.20)

y^(r+s) = y^.i/r+s+l) +

Substituting for y.̂ _̂  (r+s+1) from equation (3.19) 
we obtain,

y^(r+s) = - 4)]^y^_(r+s) +. . - + "'"°̂ r+ŝ t * (3.23)
Using equation (3.20) repeatedly, we obtain 

y^(i) = yt_i(2 ) +

=-yt-2(3) + “2®t-l °̂ l®t
m

= \®t+l-i > 1 . (3.24)
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In particular,
r+a- 1

Yt(l) = Y t + l - s - r “i^t+l-i
1 — X .

and using equation (3.23), this becomes

YtCl) = - Vt-s-r (r+s) + --- + Vt-s-r
r+s

+ ifl “‘i^t+l-i ‘ (3.25)

It is required to find expressions for g_^(k) in
terms of y. .(1) and e. ,, .. To this end, we use t-i t+1 — 1
equation (3.24) to find

r+s- 1  
E 

i=lyt-s-r'r+s) = y^.id) - d, one^.i

(3.26)
# • ■ • . '

yt-s-r(r+l) = yt-s'b) - ,2 “i®t-s+l-iv1=1
Substituting equations (3.26) into equation (3.25)

s s r+s-i r+s
^t^l) ^i^t-i^^) ^ ^i °^j®t+l-j-i ‘̂i^t+l-i1=1 1=1 i=i 1=1

■ J l  •« ! - “ 4
r+s s

+ E ®++l—k  ̂ ^i^k—i ' (3.27)k=s+l ^ ^ j = o  3 3
Siince^y^(l) is the one-step ahead forecast ^t+l^^t+l'
(3.27) can be written

s s
^t+l + ^i^t+l-i ^ ®t+l .^,^i®t+l-i •1=1 1=1

s k-1 r+s s
" k=l^b+l-k + k=s+l=t+l-k +j"k_i

r+s
= (3-28)

1=0
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where = 1o
i

3^ = E 1 1  i 1  s
j=o -*

®s+i = 4]"s+l-i 1 < i 4  r.j=o
Thus interpreting the e^ as purely random variables, 
equation (3.28) is the conventional form of the ARMA (s,r+s) 
model, with the 3^ given by (3.21) and (3.22). It is, 
however, essentially a formulation of the one step ahead 
predictor. We should ensure that the equations for the 
predictors of all lead times result in the same ARMA (s,r+s) 
model. In fact , this only needs to be checked for 
1 £ k ^ r+s, then the results for lead times greater 
than r+s follow from equation (3.19).

Let 2 ^ m ^ s, and replce t by t+m-1 in equation
(3.27) to give

yt+m-l'b) +

r+s s
^ k=s+l®b+m-k ■ (3.29)

m—j— 1
since Yt+m-j-ld) “ Yt(®~3) + .L 3 <m- 2
from equation (3.24), and invoking (3.22), equation (3.29)
can be written

yt(m)+*iyt(m-l) + .. .+*m-2yt(3)+*m-iyt(b)+*myt-l(b) +
•• •+<('3̂ 1+111-1-3 (b)

m- 1  m- 2 m-j- 1
i=l“i®t+”-i ■ j=l 1 = 1  “i^t+m-l-j

s k- 1 r+s
ik=i^t+m-k + k=i+l*t+m-k9k '
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Noting that y^_jd) = Yt-j+l ~ ®t-j+l j ^ O, we
have
m— 1 s s in— 1
i=o + .^*iYt+m_i = j^*i^t+m-l ‘ J ,  -“i^t+m-i

m- 1  k- 1 s k- 1  r+s
■ k= 2 ^t+m-k *j“k-j + ®t+m-k + k=Ll^b+m-k8k

and using equation (3.21) we obtain 
m - 1  s r+s
_Z ^.y^(m-i) + X ^lYt+m-i = /  ^t+m-k^k <3.30)r=o r=m k=m
which is the difference equation formula specified by 
Box and Jenkins (1970, p.129).

Similarly, when 2+s £ m ^ r+s, the corresponding 
equation to (3.29) is
s s m-i- 1
_X *.yt(m-l) = - _x X oyet+m-i-i "
1 = 0  1 = 0  j = l ■ -

s k- 1 r+s s
" k=l ^b+m-k +j*k-j + ®t+m-k *j“k-j

r+s
= J  ^t+m-k^k (3.31)k=m

and when m = s+1 , we have 
s s m-i- 1
ï *iYt(n>-i) = - ,2 * 1

1 = 0 1 = 0  ] = 1

s k- 1 r+s s
+ k=l ^b+m-k .Eg *i"k-j + ®t+m-k ^j“k-j

r+s
" ,  ̂ ®t+m-k8k • k=m

Thus we have shown that for 1 ^ k ^ r+s, if the k-step 
ahead predictor y^(k) satisfies conditions (i) and (ii) 
above, then it is identical to the k-step ahead predictor 
of an ARMA (s,r+s) process. Hence from equation (3.19), 
the predictors are identical for all k ^ 1 .
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Conversely, If y^(k) is the k-step ahead predictor 
of an ARMA (s,r+s) process, then there is a sequence 
“l'^2 ' ‘ * *°̂ r+s such that (3.20) holds (Box and Jenkins,
19 70, P.134). Hence we can follow the argument of the 

first half of the proof to equation (3.27), Replacing 
t by t+1 in the expression for the ARMA model (2.5), 
we have

s r+s
1=0 1=0

is the one step ahead prediction error 
^t+l-l ■ yt-Jb)' hence

s s r+s
^i^t-i^^) " “ ^i®t+l-i ^i®t+l-i1=0 1=0 1=0

s r+s
= E (^i“^i^®t+l-i ^ . ̂ i®t+l-i- (3.32)1=0 1=S+1

1 < i < s

Comparing (3.27Ï: with (3.32), we find that
*o = Bo = 1 

i-1 i
^ ^ j=o  ̂  ̂  ̂ j=o J ^ J

and s .

3. = E (b .a. . s+1 < i < r+s
^  j=o : = =

which is (3.21) and (3.22).
Since we have an ARMA (s,r+s) model, the roots of 3 (z) 
are greater than one in modulus, thus conditions (i) and 
(ii) are satisfied.

From the proof of this theorem, it can be seen that 
equivalences exist for other Box—Jenkins models. For 
example, if d of the roots of $(z) are unity, and the 
remainder lie outside the unit circle, then the following 
theorem c^. be proved.
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Theorem 3.3

Let r ^ 0, p > 0, d > 0. Suppose the forecast 
function satisfies

P+d
Z 4iYt(k-i) = 0  k > p+d+r+I (3.33)j=o J

where the are real scalars with c|) = 1 and

where
$(z) = (l-z)^a(z) ji-
a(z) = l+a^z+...tUpZ^

has all roots greater than one in modulus. It is assumed 
that p,d are the smallest integers for which such a 
representation exists and that (3.33) is not satisfied 
for 1 ^ k ^ p+d+r. Then y^^k) is identical to the 
k-step ahead predictor of an ARIMA (p,d,p+d+r) process 
for each k = 1 ,2 ,... if and only if there is a real 
finite sequence ^1 '* *’^r+p+d such that

(i) y^^k) = y^_^(k+l) 1 ^ k ^ r+p+d (3.34)
where e. is the one step ahead prediction error

(ii) the zeros of 3 (z) = 1 + 3 ^z+...+gp^^^^zP^^^^ 
lie strictly outside the unit circle, where
3j is given by (3.21) and (3.22).

Proof
This is proved in the manner of Theorem 3.2.

In a similar manner, the proof of Theorem 3.2 will also 
provide conditions for equivalence to seasonal Box-Jenkins 
models.
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CHAPTER 4

THE LINEAR MODEL

4.1 Introduction

The models considered in the previous two chapters 
are among the most popular for describing univariate time 
series. The extensive literature on this topic in both 
the theoretical and applied statistical journals is an 
indication of this. Many specialised applied journals, 
including the Journal of Accounting Research, Management 
Science, Journal of the Institute of Actuaries, Journal 
of Operations Research, IEEE proceedings and IEEE transactions 
on Automatic Control regularly contain papers on the use 
of ARIMA models in these fields.

However, it is widely accepted that there are 
difficulties with these models, the greatest of which seems 
to be the question of interpretation. In particular, 
the degrees of differencing and the autoregressive and 
moving average parameters have no intuitive interpretation.
It is perhaps for this reason that attempts have been made 
to describe time series data in a way which is more 
intuitively acceptable. The linear model attempts to achieve 
this purpose. R.E. Kalman together with his co-workers 
(e.g. Kalman, 1960, Kalman and Buoy, 1961, Kalman, 1963a) 
is a major contributor to the extensive work on linear 
filters,, much of which has accumulated in the control 
engineering literature. Some statistical papers e.g. those 
of Wishart (1969) and Whittle (1969), mention Kalman's 
work, and the contributions of Harrison (1967) and Harrison
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and Stevens (1971, 1975, 1976) were also aimed primarily 
at statisticians. One of the achievements of these 
contributions is to give some meaning to the components 
of the time series. However, it turns out there may be 
some difficulty in selecting the appropriate dimension 
of the model, and this is bound up with the question of 
interpretation. Much of the remainder of this thesis will 
be concerned with the dimension of the models, primarily 
the Harrison-Stevens dynamic linear models (DLMs), 
their interpretation and their relationship to the ARIMA 
models described in (Chapters 2 and 3.

We now consider some basic results on linear filters, 
and in particular on DLMs. The major sources of the material 
in this chapter and the next are Gelb (1974), Jacobs (1974), 
Sorenson (1966) , Price (1974) and Harrison and Stevens (1976)

4.2 The Basic Model

We consider models of the form

Zt = Itit +
(4.1)

it = itit-1 + Stit
where is a process vector varying in time, subject
to the random term H^w^. The observations of the
function are made at discrete, not necessarily
regular, intervals of time, and are subject to a random
measurement error. The vectors y^,y^ are of order m x 1,
6 . is of order n x 1 and w is of order r x.l. F^,G.—t —t —t —t
and H^ are matrices assumed known at time t, of 
dimension m x n, n x n and n x r respectively. We
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shall assume that the random vectors satisfy

e[^^J=o, e|"v^J= 0 ,

E Zt^t+I^ = it*Q,k ^ 2 tït+!^ = Mt®0 ,k t,k

E ^t-t+]^ = 9. for all t,k (4.2)

In particular, if is independent of t, and
= I, and with the additional assumption that y^,w^ 

are normally distributed, the model (4.1) is a DLM of the 
form given by Harrison and Stevens (1976). The assumption 
of normality is often made, and while it is not essential 
for the results of this chapter, it is often helpful-in 
the interpretation of results.

In general, we are interested in at time t,
or in predicting, at time t, the values of or
£̂ _j_ĵ (k 2  1) . These quantities have to be estimated from 
the available data y^ = (Y.q'Z2 ' " ' "

Given an estimate of a.t time t-1, we
can form an intuitive estimate of by taking
expectations of the 'system equation' of (4.1) to give

it = • (4-3)
But this takes no account of the information in y^. Given

*this estimate we expect the current observation y^
* ^to have the value F. 9. = F.G.8 . ., so that the discrepancy—t—t —t—t—t—I

between the observed and the expected observation is

Zt - I t M t - l  •
It seems intuitively obvious that the estimate of 
should be modified in proportion to this discrepancy. Since 
we are only concerned with linear filters, the estimator 
is formed by the intuitive estimator (4.3) plus some
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weighting matrix times this discrepancy. Expressed 
mathematically

-t ^ -t-t- 1  -t ̂ ^t ” ^-t^t- 1  ̂■ (4.4)
Depending on what is required of the estimator, may
be a fixed constant matrix, or may vary in time according 
to some rule.

Example 4.1
A so-called constant velocity model used by engineers

is given by X.
X, + V,

^t 1 T *t-l + T'72
0 1 *t-l T

whe re T is the interval between measurements, and a^ is
random acceleration, E(a^) = 0. When t is constant, the
estimators of x ^  are commonly found using the a-g
filter, which is (4.4) with A^ given by j^t' In
many contexts, and 3^ are chosen as fixed constants
throughout, usually between O and 1. If a least-squares 
fit through the first t data points is required, then the 
components of the A^ matrix are given by

= 2 (2 t-l)/t(t+1 ), 3^ = 6 /t(t+l).

In this case, the filter is known as the expanding memory 
filter. If the random acceleration is thought to make a 
significant difference, we may choose to weight the 
observations, so that more attention is paid to the more 
recent data. In this case, a fading memory filter may be 
used. The detailed discussion of this and similar filters 
is given in Morrison (1969).

Kalman (196 3a) suggested we should choose A^ to 
minimise E . We note that
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E|ât-it)^(it-ît>] = trace E|le^-8 )̂ (8^-8 )̂"̂ ]
and define

St = M.s)

Assuming is an unbiased estimator of
is the covariance matrix of 0.. Further discussion on.the—t
properties of 0_̂ takes, place later in this section.

Choosing A^ such that trace (Ĉ ) is minimised yields

At = + Y^)-t (4.6)
where

£t = t «AHfc ' (4-7)
and

Notice that P. is the covariance matrix of the intuitive—"C
estimate (4.3).

If is positive definite, then A^ can be
expressed in a form more open to interpretation. First 
note that

c;^ =

This is easily checked by multiplying together the expessions
(4.8) and (4.9) for and Premultiply the right
hand side of equation (4.6) by to obtain

At = c ^(f ;^+f^ Y ; \ ) p^f^(f ^p ^f^+v^)-i

= ÇtF^(i+V;^F^P^F^) (F^P,^F^+V^)-1

= Gt^t^t^ • (4-10)
F. is merely a coefficient matrix, so suppose for simplicity —t
that F\ = I and V. is diagonal. Then each element of

— t  —  — t

A^ is proportional to the uncertainty of the estimate and
inversely proportional to the measurement noise. It follows
that if the measurement noise is large and estimation errors
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are small, then is small. Thus little attention is
paid to the- most recent observation because we have more 
confidence in the previous estimator. Conversely, if 
measurement noise is small and estimation errors are 
large, then A^ is large, demonstrating the need for 
more information.

From equations (4.4) - (4.8) we see that we need an 
initial estimate of together with its initial covariance
matrix C^. If we define

0 = E—o —o
with

C_ =—O
then 0 . is an unbiased estimator of 0 . for all t, and — t  — t

is by definition the minimum variance estimator. A proof 
of this result is given in Sorenson (1966). In practice, 
it is not always possible to define in this way. But
it has been shown that for large t, the effects of the 
initialisation are negligible, so that can be regarded
as an unbiased estimator of for all sufficiently large t.

The Harrison-Stevens DLMs assume that is normally
distributed, and since y^, w^ are also normally distributed, 
it can be shown by Bayes theorem that all subsequent |y^ ,
are normally distributed with mean and covariance matrix
C^ as defined in equations (4.4) - (4.8). In this case, 
the Kalman updating procedure yields the minimum variance 
estimator of 0 ..—t

If the model is not a DLM, for example if any distribution 
is not normal, then the Kalman filter yields the minimum ; 
variance linear estimator of In theory, the distribution
of Iy^ can be found from Bayes' theorem , but unless all
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the distributions involved are normal, the analysis is likely 
to become quickly intractable. In general, we know only
that the mean is 0 . and the covariance matrix is Ĉ _.— r. — t

Example 4.2

The steady model given by Harrison and Stevens (1976) 
can be used whenever the 'level' of the process is more 
or less constant. It can be written as

?t = + =t

"t = "t-i + •
Here' u^ is the true level of the process at time t, and
y^ is the observed level. In DLM notation, we have,
m = n = 1, F ^ = G = 1  for all t and = var(e^),

= var(ôu^). Applying the Kalman filter equations
(4.4) - (4.8) yields

"t = "t-l + - "t-l)
where

A^ = (C^_^+var ((Sû ) )/(C^_^+var (ôu^)+var (ê ) )
and  ̂ '

Ct = A^var(e^) .
Two of the most often quoted uses of this model are 

for sales of an established product , where demand is almost 
constant, and for the position of a supposedly stationary 
object. It should however be noted that it is possible 
to describe this situation as a DLM with G having 
dimension greater than one. This is discussed in Chapter 6 . 
It is also possible to introduce a 'slope' term, so that 
the 'level' is increasing (or decreasing) at a fairly 
constant rate. Intuitively, this involves two state 
variables and is often called a linear growth model. It
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corresponds to a polynomial model of degree one, while the 
steady model corresponds to a polynomial of degree zero.
It is possible to define polynomial models of degree d-1, 
and Harrison (1967) has pointed out that intuitively, these 
require d state variables. It is argued here that more 
than d state variables are preferable to describe a 
polynomial of degree d-1. The reasons for this are discussed
in Chapter 7. Forward shifted polynomial models, where

. . i:
the model behaves like a polynomial model ohly after a 
certain lag has passed, can also be defined. These are 
described in Chapter 8. More generally, we can define DLMs 
which are asymptotically polynomial models, and othejrs 
which are seasonal in nature.

4.3 Forecasting DLMs

In this section, we shall derive the forecasts y^(k) 
of Zt+k. time t for the DLM. From (4.1) and the
following discussion, the DLM at time t+k is given by

Zt+k = ^t+k^+k +

.^t+k " Sit+k-i + «t+k •

Taking expectations of conditional on y^.

(4.11)

we have

with associated covariance matrix
T̂T fl I 17̂  Xcov | i t + k = G I + w

Thus the mean and covariance matrix of can be
calculated recursively, using E | y ^  ~ — t as defined 
in equation (4.4). By induction
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E 2t+kl%
with covariance matrix

cov

= G^e
—  — t

—t+k

Moving on to the statistically more interesting problem 
of prediction, of Z-t+k time t ,

Zt+klZ
and

cov

 ̂- ^t+k
zt+k I = :

^t+kI % = :t+kS it (4.12)

t+kcov -t+k it+kit+klZ

is known at time t . Inwhere it is assumed that F\,.—t+k
fact, in many applications, and for the major part of 
this thesis, will be a constant matrix, usually a
row vector.

Having obtained the mean and covariance matrix of 
y^+klz.^/ we now consider what to take as the predictor y^(k) 
of The loss function is defined as the real-valued
function L(Z^+k' ) which represents the cost if
y^(k) is not an accurate estimate of Z^+k" must 
therefore satisfy

L(%t+k' Zt/k)) = ° = %t+k
> 0  i^(k) + .

It is required to choose the predictor y^(k) so as to 
minimise the expected loss.

Although quadratic loss functions have been criticised 
as being unsuitable for many practical purposes, they 
are perhaps the best compromise in the absence of further 
information. Assuming a quadratic loss function, the 
expected loss is

(Zt+k-Zt (k) ) (%t+k-̂ t  ̂'̂ t+k 1::̂) "̂It+k
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= ° ° ^ ( Z t+ k - E [^ t+ k  l2 ^ ] )  + ( E [ z t+ k l2 ^ ] - % t ( k ) ) ^ ( s [ z t+ k l2 ^ ] - % t ( k )

where I ^ the probability density function of
Zt+kIZ • Ite expected loss is clearly minimised when

y (k) = E (4.13)

This result is valid whatever the distribution of

%t+kl%^ •

Another result due to Sherman (1955) sh.ows that if
(i) the loss function is symmetric about Zj-+k 

non-decreasing in |y^^^-y^Ck)|
(ii) the distribution of Zt+k^^^ Is symmetric 

about the mean and unimodal 
then the expectation of the loss function is minimised when 
the predictor is given by the conditional expectation
(4.13). Condition (ii) is satisfied by some of the most 
frequently used distributions, in particular the normal 
distribution is of this nature.

These two results both indicate that a sensible 
value for the predictor y_̂  (k) is the conditional 
expectation of Z^+k' ' y^ (k) will be defined by

y^(k) = . (4.14)

Premultiplying the Kalman updating equation (4.4) by 
FG^, we have

or from (4.14)

Yt(k) = • (4.15)

This will be referred to as the predictor updating equation.
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Example 4.3

The predictor of the Harrison-Stevens steady model is 
y^(k) = for all k, where is as defined in
Example 4.2. The variance, of course, increases as k 
increases:

= var(6wt+i)+var(ct+k).

Thus the predictor y^^k) is a constant, or in other words, 
the forecast function {y^ (k); k=l,2 ,...} is a polynomial 
of degree zero.

Similarly the Harrison-Stevens linear growth model has 
a forecast function

y^(k) = a + bk 

for all k, where a,b are quantities which are
4-independent of k, but derived in terms of y , with 

b =j= 0 , so it projects a straight line of non-zero gradient. 
By analogy, the polynomial projecting models of degree 
d- 1  have forecast functions which are themselves polynomials 
of degree d-1 , i.e.

+ a^k+...+a^_^k^”  ̂ k > 1

where the a^ are functions of y and independent of k,
and a, , + O. There are also models whose first r a- 1
predictors seem to follow no particular pattern, but for 
k > r, the predictors form a polynomial of degree d-1 .
It is convenient to call these models forward shifted 
polynomial models of degree d-1 with shift r. The 
forecasts satisfy

y^^k) = &Q+&ik+...+a^_^k^  ̂ k ^ r+1 (4.16)

but (4.16) is not satisfied for
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The above discussion has assumed univariate observations, 
but clearly could apply equally well to the elements of 
a vector of observations.

Smith (19 79) considered the simplest form of Harrison- 
Stevens model, the steady model of Examples 4.2 and 4.3, 
when the normality assumption is relaxed. However, Key 
and Godolphin (1981) point out that his approach can lead 
to difficulties. In particular, the Kalman filter predictor 
updating equation (4.15) may not hold, and the forecasts 
do not necessarily behave in the manner expected of a 
'steady model'.

4.4 Fitting DLMs to Time Series Data

It will be clear from Sections 4.2 and 4.3 that with 
a model of tiie form (4.1), forecasts can be made when there 
is little or even no data, using subjective values of

and C^. This is most useful: for example, if a new 
product is being launched, forecasts of demand will be 
needed at the beginning of the project. Similarly, in 
tracking aircraft, the position and velocity need to be 
roughly known immediately for control purposes.

Subjective information can be used at any time to 
modify the parameters of the system, not just for the 
initial estimates. For suppose it is thought, perhaps 
as the result of an advertising campaign, that will
be increased by an amount Z-t+q More than would usually 
be expected. Then E produced by the Kalman
updating equation can be overridden, and increased by

together with an increase in the covariance matrix 
to reflect the increased uncertainty. In this way, 
is increased, giving extra weight to the next few

-61-



observations. The estimates should soon settle around 
the new true mean, and the effects of the increase in 
variance will soon fade away, but without this interference, 
the filter would take much longer to adjust for the 
increase and may not adjust completely for some time if 

remains small.—t
Evidently, this type of information is more easily 

incorporated if the model is formed in a meaningful way, 
so that any subjective information can be expressed in 
terms of its effects on the state variables and observations

In much of the literature, it is stressed that the 
matrices F, G ,V and W need to be specified with care.
For example, Jacobs (1974, p.310) states that the Kalman 
filter has been found to be sensitive to these matrices.
The use of inaccurate matrices can. cause the filter to 
diverge or 'learn the wrong state too well', a quotation 
from Jazwinski (1970, §8 .8 ), where this form of divergence 
is discussed. The coefficient matrices are often known 
from the physical situation (at least to a linear 
approximation), but the specification of variances and 
covariances would be more difficult. Harrison and Stevens 
(1976) suggest that in commercial situations, these 
quantities usually have to be specified by non-statisticians 
Although it may be possible for them to suggest the presence 
of correlation, it seems unlikely that they will be able 
to quantify the covariances. Because of the sensitivity of 
the Kalman filter to these quantities, it seems advisable 
to try to choose a model for which a diagonal system 
covariance matrix can be specified.

This may not be very difficult in practice, for more 
than one interpretation of the system may be available,
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and it may be that one of these has a diagonal covariance 
matrix. Indeed, in theory, every model has a DLM 
representation for which a diagonal system covariance 
matrix is applicable. For example, consider the model

Yt =

®t = ’''t- 1  + "it

'i't = -®t-l + + « 2 t
where

Hi
var(w^^) covfw^^/Wg^)

cov(w^^,W2^) vartWg^)

is independent of time.
This model satisfies

and
= 2"lt - 3"lt-l - " 2 t + 2"2 t-l + ^ = t (4.17)

E

E (V^y^)(V^y^_2 )

M  = 13var(w^^)

)+7cov(Wit,W2t

(V^y^)^

(V^y^)(7%y^_i)
-16cov (Wit'*2 t 

-6 var (w^^) -2 var (Wg^ 

var(e^)

) +5var (Wg^) +6 var (ê )

-4var

At first sight, this looks very different from the linear . 
growth model described by Harrison and Stevens (19 76), which 
will be discussed in more detail in Chapter 7. This model 
has var (<Sû )

0

O

var(53^)
and satisfies

and
■ŷ  = (S3.j. + V6u^ + (4.18)
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I jV^y^)   ̂ = v a r  (63^) + 2 v a r (6 u ^ )  + 6 v a r (e ^ )

(V^y^) (V^y^_^^j = - v a r ( 6 u ^ )  -  4 v a r (e ^ )  

(V^y^) (V^y^__2 |J = v a r ( e ^ )  .

However, there is at least one set of values var(w^^), 
var(w2 t)' cov(w^^,W 2 ^) for each set var(63^), var(6u^) 
such that the two models have identical covariance structure 
and hence are different representations of the same model. For 
example,let v a r (63^), var(6u^)be given and suppose w^^,

W 2 ^ are such that

var(w^^) = var(ôu^) + var (6 3^)

var(w 2 ^) = var(ôu^) + 4var(6 3^)

cov(w^^,W 2 ^) = var(ôu^) + 2var(63^).

Then we see that every linear growth model satisfying 
(4.18), where cov(ôu^,ô3^) = 0 , can be written as the 
above example which leads to (4.17). The converse is 
not true, for cov(w^^,W2^) must be strictly positive.

Different representations of this sort are possible 
because the behaviour of the system is not determined by 
F and G themselves, but by some of their properties.
The important properties, listed by Jacobs (19 74) for
deterministic models, and shown here to be applicable
to stochastic models are:

(a) the number of state variables, n
(b) the eigenvalues and eigenvectors of G
(c) the linear dependence/independence of

n- 1F, FG,...FG“
(d) for stochastic models, the rank of W.
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All the above properties, are invariant under linear
invertible transformations of the state vector 6 .̂ For—t
suppose

St = Hit
where L is non-singular. Then

Zt = E'^t + Zt

St = H'St-1 + "t
where

F ' = FL ^, G ' = LGL ^ and w ' = Lw..

Thus F ’CG')^= F G ^  The Harrison-Stevens linear growth
model was formed from the first by

” 2 -1
L =

|_-1 1

Since any positive definite W can be diagonalised by an
Tappropriate non-singular transformation LWL , every 

model has a DLM representation with diagonal W. There 
are two problems .

1. It is possible that this representation has no 
meaningful interpretation, making it difficult 
to use subjective information.

2. The matrix L may involve the covariances, so 
the above method may fail to be directly 
applicable in practice.

Section 4.1 of Harrison and Stevens (1976) gives an 
indication of a possible method of estimation of V and 
W using several values together with their probabilities 
and updating their probabilities at each stage.

In their paper, Harrison and Stevens verify that a 
linear combination of models is itself a linear model.
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Thus a complex system can be broken down into simple DLMs 
and then combined into a whole. The obvious application 
is a simple growth process with seasonal effects. In 
this case, the growth process and the seasonal process 
can be modelled separately and then combined into one 
model.

Suppose the two models are given by

i = 1 , 2

Zit - lilit

lit = liilit-1'+ "it •

the complete model is

Zt = Zlt + Z2t + 4 51

lit” 111 1 ” ii.-r

l2t 1 I22 -21-1

-It
- 2 t

-It

^2 t

+ Zt

If there is interaction between ^2t' then
non-zero matrices 6 ^2 ; §.21 could be introduced, or 
non-zero covariances between the elements of the system 
noise vector. This leads us back to the problem of how 
to specify the covariance matrices V and W.

4.5 Comparison of Linear Control Theory Models and 
Classical Time Series Models

In this thesis we shall be concerned with the 
comparison of the predictors of the linear control theory 
model with those of the univariate time series models 
considered in the previous two chapters. Thus in this 
section and in Chapters 6-9, we shall assume m = 1, 
that is y^, v^ are scalars. The coefficients of the
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time series models do not change with time, so if the 
linear models given by (4.1) are to be comparable, then 
F,G,H,y and W must be independent of time. For 
simplicity, and without significant loss of generality, 
we shall assume H = I, thus (4.1) becomes

y^ = F 0t + v^

-t ^ -t-1 -t ' (4.19)
It has been argued by Akaike (19 74a) that the set of 

models given by (4.19) and the set of ARMA models given, 
by (2.5) are equivalent, subject to certain conditions 
which we discuss here.

Akaike considers the restricted model

Zt — t (4.20)
0, — G0. -I + w (4.21)— t  — t — 1  — t

i.e.(4.19) with the observation noise absent. The 
characteristic polynomial of G is

det(XI - G) = 2 (4.22)
k=o

with a^ = 1. Then by the Cayley-Hamilton theorem that 
every square matrix satisfies its own characteristic equation

g" + 2 a-G*"^ = 0 . (4.23)k=l k- -
Also, substituting (4.21) successively into itself we
obtain for O £ k ^ n-1

V k  = i V k - i  -, . (4-24)

Therefore using equation (4.20) and a^,...,a^ defined 
by equation (4.22)

Zt + ° njlt + •
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Substituting for 0 ^ k n-1 from equation (4.24),
the right'hand side becomes
n- 1

F E a. 
i= 0

n-i- 1  .
+ a F 6 . _ n— t-n

= F
n- 1 k , . n
E w , E a.G^“  ̂+ Z a.G^'“̂ e^ 

k=o i=o i=o -t-"

so that from equation (4,2 3) 
n

Yt + %i=l = EWt + F^Wt-l+-"+En-lZt+l_n
where

(4.25)

(4.26)

Equation (4.25) provides a representation for tfie 
univariate time series {y^} which can be expressed as 
an ARMA process under restrictive conditions on (4.20) 
and (4.21). For example, if F = Ql 0 0.. . o] and G 
is lower triangular, then the right hand side of (4.25) can 
be expressed as a moving average of order n-1. Other 
representations for F,G,W which yield a scalar moving 
average for the right hand side of (4.25) exist, but it 
seems these need to be rather specialised and interdependent. 
Further restrictions on (4.20) and (4.21) are required 
if (4.25) is to be stationary and invertible, but this 
point is not discussed in detail by Akaike. However 
Akaike does give a converse argument showing that an ARMA 
model (2.5) can be written in the form (4.20) and (4.21) but 
this argument relies upon the Wold decomposition theorem, 
hence it does not apply to the interesting non-stationary 
ARIMA models, which we wish to consider.

Furthermore, our main interest lies not in the various 
models which could be employed, but in the observations
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themselves and in the prediction of future observations. 
Demonstrating that two different forms of model are 
equivalent does not necessarily mean that the predictors 
will be identical because this will also depend on the 
prediction methods used for the model. For example, the 
ARMA models use a minimum mean square error prediction 
criterion, but the dynamic linear models can give a variety 
of different forecasts if subjective information is 
employed consistently. We adopt the conditional expectations, 
based on a minimum variance estimate of 6_̂ , i.e.
— /\ —I

E I —t ' where 8 .̂ is given by (4.4), as a forecasting
criterion for dynamic linear models. The emphasis will 
be placed on demonstrating equivalence of predictors, 
not models.
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CHAPTER 5

SOME CONTROL THEORY TOOLS AND CONCEPTS

5 . 1  z-transform theory and stability

We now consider a tool which will be frequently 
used in this work, namely the z-transform. This useful 
device converts linear difference equations such as 
equation (4.4) into algebraic equations, which are much 
easier to manipulate. It has many uses other than those 
to be discussed here , for example, Ray and Wyld (1965) 
used z-transform theory when investigating the presence 
of bias in certain polynomial projecting predictors. This 
topic is also discussed in Moon (1977) , where the bias 
is called systematic error.

Definition
Let {x^} be a sequence defined for t = 0,1,2,... . 

Then the z-transform X(z) of x.̂  is defined as

X (z) = E X. z (5.1)
t= 0

where z is a complex variable. It will sometimes be 
helpful to use the notation z(x^) to denote X(z),

The z-transform is effectively the discrete version 
of the Laplace transform, in fact it can be derived as 
the Laplace transform of a continuous process x^ sampled 
at discrete intervals T to give a sequence {x^}.
This can be written mathematically as

‘ QO
X. = E x*cS(t-iT) 

i= 0
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where ô(t) is the Dirac delta function. Taking Laplace 
transforms of the discrete process we have

_̂ t_ = I x*(5 (t-kT)e“®^dt 
0 k= 0  ^

= E 
k= 0 0

x*5(t-kT)e'^^dt

sT

-ksT

Writing z = e , we obtain

X, -k= E x^^z = X(z) as required.
k= 0

In many books, for example, Oppenheim and Schafer (1975, 
Chapter 2), equation (5.1) defines the one sided z-transform, 
while the two sided z-transform is given by

X(z) = E X zt=—CO
-t (5.2)

Obviously, if. x^ = 0 for all t < 0, then the two forms 
are identical, but not otherwise. In the applications 
used in this thesis, all the filters are physically realizable, 
that is x^ = 0  for all t < 0 , so that the one- and 
two-sided z-transforms are identical. Since z-transforms 
are often written as a quotient of two polynomials, we need 
a test of physical realizability. The criterion we apply 
is given in Lindorff (1965) and can be written

lim z ^X(z) = 0 (5.3)

if and only if the filter is physically realizable.
This criterion is easily seen to be valid because (5.2) 
reduces to (5.1) when (5.3) holds.
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Properties of z-transforms

1. Linearity
z(ax^+3y^) = az(x^) + gz(ÿ̂ )

= aX(z) + 3Y(z) (5.4)

where a,3 are arbitrary constants.

2. Shift of sequence
z(x^^^) = z^X(z) for a < 0 . (5.5)

3. Multiplication by an exponential sequence
z(a^x^) = X(z/a) . (5.6)

4. Convolution of sequencesoo
Let X = Z 3i-Y+. V where 3./ y . = 0 for i < O ^ k= 0

Then X(z) = 3(z)Y(z) , (5.7)

5. Initial Value Theorem
If X(z) denotes the z-transform of x^, then
the initial value x^ is given by
X = lim X(z) . 

z-^

6 . Final Value Theorem
If X(z) denotes the z-transform of x^, and 
(z-l)X(z) has no poles on or outside the unit 
circle, then 
lim X m = lim (z-l)X(z).k->oo k -L 2-4-1

The first five properties follow directly from the defining 
equation (5.1). However, the sixth requires a little more 
subtlety, and a proof is given in Lindorff (1965, p.51).
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From equation (5.5), it is easily shown that the 
z-transform of VX^ is (1-z ^)X(z). By repeated
application, we find that z(V^X^) = (l-z~^)^X(z).

Suppose the output of a filter is related to
the input y^ by a difference equation

where {3 ĵ } form known sequences, and p,q are
any positive integers. The form of equation (5.8) is 
similar to that of the ARIMA process (2.5), but this 
similarity is only apparent, because the sequences {y^},
:{x. } in equation (5.8) are meant to denote any time sequence 
while the sequences and {y^} of equation (2.5)
have a specific structure. Let the z-transforms of 
k̂' ^k' Zk given by a(z) , 3(z), X(z) and Y(z)
respectively. Then using property (4) of z-transforms, 
we find that

a(z)X(z) = 3 (z)Y (z)

X( z )  = f i l l  Y ( z ) . ( 5 . 9 )

The ratio G(z) = 3(z)/a(z) is known as the transfer 
function of the filter, and the denominator a(z) is 
known as the characteristic polynomial. It sometimes happens 
that the sequence and the transfer function G(z)
are known, hence the z-transform of the output sequence 
X(z) is known, and it is required to find the output
sequence {x^^ (or some part of it) from X(z). This
is done by means of the inversion integral, which is given by
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^kT " 2 ^  I X(2 )z(̂ "̂ dz (5.10)

where c is a closed curve enclosing all the poles of 
k-1X(z)z . This can also be expressed as

X, rn = E residue X(z) z^”  ̂ . poles
One useful application of the transfer function is to 
determine whether or not the filter is stable, in the 
sense defined below.

Definition

A discrete linear filter is defined as stable if and 
only if the output is bounded in response to every bounded 
input (Lindorff 19 65).

Expressed in terms of the filter defined in equation 
(5 .8 ), when all the y^ are finite, then if the filter 
is stable it follows that all the x^ are necessarily 
finite. This appears to be a most important property 
for a filter to have, for it seems unlikely that a 
process which becomes infinite can be useful in practice. 
The following criterion for stability of a discrete linear 
filter can be found in Lindorff (1965, p.43).

Theorem 5.1

Given a linear discrete physically realizable filter
with transfer function G(z), a necessary and sufficient
criterion for stability is E |ĝ | < ™ .t= 0
An equivalent criterion for stability can be obtained 
from Theorem 5.1 as follows ;
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ThAorem 5.2
A linear discrete ph-ysically realizable filter is 

stable if and only if its transfer function G(z) contains 
no poles on or outside the unit circle.

This criterion will be used throughout this work. The 
proof can be found in Lindorff (1965, p.44). An alternative 
formulation is that the characteristic polynomial has all 
roots inside the unit circle.

Comparing equation (5.8) with the ARIMA model (2,5) 
and using Theorem 5.2 on equation (5.9), we see that 
stability of the model in control theory is equivalent 
to stationarity in time series analysis, since the roots

P _iof the characteristic polynomial a(z) = L a.z which
1=0 1

must be less than one in modulus, are the inverse of the 
P iroots of E a.z , which must be greater than one in 
i= 0  ^

modulus for stationarity.
The z-transform of a vector or matrix can be defined 

by taking z-transforms of each of the elements. Suppose

J o  ■ J o
where are known sequences of matrices, A^ is
m X is m x n, , w^ are vectors of dimension m,
n respectively. Applying z-transforms

A(z)Y(z) = B(z)Y(z)
or

Y(z) = (A{z) )“^B(z)W(2) (5.11)
so that the transfer function is

G(z) = (A(z))"^(z) .
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It is clear that the denominator of the transfer function 
is the same for all elements of the matrix (i.e. the 
determinant of A(z)), hence we only need to find one , 
element of the transfer function to determine whether or 
not the whole filter is stable.

The z-transform theory described in this section 
does not enable us to apply z-transforms to equation (4.4) 
directly, since this involves the z-transform of A^y^.
This can be found, using the complex convolution theorem, 
as in Oppenheim and Schafer (1975, §2.3.9), but this is 
somewhat complicated. It turns out that we need only
consider equation (4.4) in the steady state when A^ ~ h  ■*

for all t, and this simplifies the analysis considerably. 
Thus assuming the equilibrium state, the z-transform 
equation corresponding to (4.4) is

_0(z) = z"^G6 (z) + A(Y(z) - z"^FG9(z) ) .
Consequently

9/z) = z(zl - (1-M) G)"^AY(z) , (5.12)

so for stability, all eigenvalues of (I-AF)G must be less 
than one in modulus.

In many applications, the transfer function is the 
quotient of two polynomials as in equation (5.9), (5.11)
and (5.12). From Theorem 5.2, if the model (as in 5.9) or
filter (as in 5 .1 2 ) is to be stable, then the transfer 
function should have no poles on or outside the unit circle. 
Therefore, we have to determine whether or not the roots

a. polynomial

Y(z) = + 4^ 2 %+. . .+^^z^
= (z-z^) . .. (z-z^) (5.13)
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are less than one in modulus. Thus in (5.9), Y(z)
will be a(z), with r = p, while in (5.12) Ÿ(z) is the
determinant of (z^ - (I-AF)G) and r is the dimension 
of _0(z), i.e. r = n. This problem and its continuous 
time equivalent, that the roots of a polynomial should 
have negative real parts, have occupied many workers in 
several fields for over a century. These include Routh 
(1905), Schur (1917), Cohn (1922), Wold (1938), Wise (1956), 
Gantmacher (19 59), Astrom (19 70), Pagano (1973) and 
Anderson (1975b,1977). The text of Jury (1964) provides 
possibly the most comprehensive solution to the problem.

5.2 Jury's Stability Criterion

Jury gives three methods for testing whether or not 
the roots of a given polynomial ¥{z) lie within the unit
circle. These methods can be described as the determinant
method, the table method and the division method. The 
determinant method seems to be the most applicable for 
small or moderately large r, while the table method 
seems appropriate for numerical work, because it requires 
evaluation of only second order determinants, and is easily 
programmable on a digitial computer.

Jury's Determinant Method

To discuss th; 
two matrices

method, we first need to define the

'i'r-l & - 2  . • •• -k+ 1

0 ■̂ r-l ’*'r-k+ 2
0 0 .
• • » •
• , « » •
0 0 0 r _l
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Ik

*k-l ^k- 2  

*k-2 *k-3

4̂0

o

0 o 0 0

where the i{ĵ  are the coefficients of Y(z) given by
(5.13). Jury then proves the following:

Theorem 5.3

When r is even, all the roots of the polynomial 
Y(z) lie within the unit circle if and only if

(i) Y(l) > 0

(ii) y(-l) > 0

(iii) det(X^±Yj^) > 0

We also have

Corollary

An alternative to (iii) is
(iii)' det(X^iYj^) > 0

and  ̂° '

k = 1,3,.. .r-1 .

k = 2,4,...r-2

Use of the corollary means only one determinant of order 
r- 1  needs to be evaluated, while the theorem requires 
two such evaluations.

Theorem 5.4

When r is odd, all the roots of the polynomial 
¥(z) lie within the unit circle if and only if 

(i) - Y(l) > 0

(ii) Y(-l) < 0

(iii) det(X^±Y^) > O k — 2,4,...r-1 ,

— 7 8—



Again, there is an alternative to (iii), so that only 
one (r-1 )X(r-1 ) determinant needs to be evaluated

Corollary

An alternative to (iii) is
(iii)' det(X^±Yj^) > 0  k = 1,3,...,r-2

and > 0  .

Example 5 .1
a(z) = z^+a^^+Œg

is required to have all roots inside the unit circle. 
Comparing this equation with (5.13) we see that

= <̂2 / “ *̂1 ' = 1. Using Theorem 5-3 and its
corollary, the constraints are

1 + + & 2 > 0

1 —  +  0̂ 2 ^ 0

det(^2 -to) ” I-G2 ̂  ^ *
These three inequalities specify completely the triangular
stability region in (a^,a2 ) space.

In general, using the theorems without their 
corollaries, it is easily seen by writing out (X^_^±Y^_^) 
in full , that this matrix contains all the other 
(X^±Y^) required. For example, when r = 8 , (Xy±Yy) 
is given by Table 5.1.

Jury's Table Method

We now consider the table method given by Jury for 
determining whether or not the roots of a polynomial are 
less than one in modulus. Given the polynomial
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Table 5.1
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where \jĵ > O, construct the following table.

Row 2z z3 z^-k zt- 2 zt-1 z^
1 <l'2 ^3 . •I'r-k . '(’r -2 *r-l ^r

2 •I'r-l •l'r-2 ^r_3 . . 1'2 h ^ 0

3 '"o ^ 2 ^3 tr -2 tr -1

4 - 1 ^r- 2 -3 tr-4 1 ti
i

bo

5 “̂ 0 ^ 2 °3 1 ( ^ - 2
-

6 ‘̂ r-2 =r-3 tr-4 ^r-s = 0

2r-5 ^ 0 ti ^ 2 ^3

2r-4 ^3 ^ 2 tl to

2r-3 = 0 = 2

2r - 2 .
2r-l to H

Row 2j is formed from row 2j-l by writing the elements 
in reverse order. The elements b^, Cĵ ,...,tĵ  are found 
from the appropriate 2 x2 determinant from the preceeding 
two rows
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I.e.
^ 0 :̂r-■k to b• r-•1 -k

' tfc =
% tr- 1

= 0 ^ 2 ® 0 ^ 1

tl = '
= 0 ® 2 ® 1

Theorem 5.5 (Jury)

All the roots of Y(z) lie within the unit circle 
if and only if

W(l) > 0

l)^W(-l) > 0

b < 0o
c > 0o

> 0
>

(r-1 ) constraints ,

s > 0  o
to > ° V

Example 5.2
Y(z)
W(l)

(-l)^T(-l)

2+5z+7z^+6z s+3z* 
2+5+7+6+S > 0  

2-5+7-6+3 > 0 .

Thus the first two conditions are satisfied. Setting 
up the table
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Row z" z^ z^ 4z

1 2 5 7 6 3
2 3 6 7 5 2

3 -5 — 8 -7 -3
4 -3 -7 — 8 -5
5 16 19 1 1

6 1 1 19 16
7 135 95

From the above table

^o = -5 < 0

c = 16 > 0o

^o = 135 > 0 .

Thus all constraints are satisfied and the polynomial 
has all roots inside the unit circle

5.3 Observability

The concept of observability introduced by Kalman 
(1961) is an integral part of modern control theory.
Many important theorems depend on this idea, and on its 
dual concept of controllability. Briefly a system or 
model can be defined as observable if every change of 
the state vector eventually affects tiie output (observation) 
To fix ideas, consider first the purely deterministic system

(5.14)
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which is the model (4.1) with the random terms missing.
As before, is mxl, is nxl. The model is said
to be completely observable if for any t^ there is a
finite t^ > t^ such that every state can be

O
expressed as a function of the observations y ...y 
Because of the deterministic nature of the model, this
is equivalent to expressing 
in terms of the observations 
Let

at some time k > 0

I = ....

(FqIo  ̂ f ̂ -1-1^ / • • • /

where
=

M. = —k

(5.15)

(5.16)

We assume m(k+l) ^ n, for we cannot expect to learn much 
about an n dimensional parameter from less than n 
observations.

From the theory of the general linear model, we know 
that if the m(k+l)xn matrix ^  is of full rank, then

9o = . (5.17)
The inverse matrix exists if and only if rank(^) is n. 
Thus it follows that the model is observable if and only 
if rank(]Ĵ ):- is n. When F^ and are both time
independent, this observability criterion reduces to
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must have rank n . (5.18)

The characteristic,equation of the matrix G has degree 
n so, by the Cayley-Hamilton theorem that every square 
matrix satisfies its own characteristic equation, FG  ̂
can be expressed in terms of F, FG,... ^ for every
j ^ n. Thus the observability criterion (5.18) reduces
to rank F7' (FG)"'’. . . = n . ' (5.19)

When m > 1, so that k could be less than n-1, it
seems possible that (5.19) could be satisfied while (5.18)
is not. However, the criterion for observability given
by Jacobs (1974) is that the set of matrices {F,FG,...,FG^
is a linearly independent set, which is the same as
criterion (5.19). The matrix in (5.19) is often called
the observability matrix.

In the time varying case, it is clearly not possible
to simplify the Criterion in this way. Returning to
equation (5.17), an alternative criterion for observability

Tis that the matrix ^  should be non-singular, or, 
assuming for simplicity that G is constant, the quantity

Z (Gl)^F.^F,G^ (5.20)i=o -
is positive definite.

Now consider the model with observation noise, but 
still without system error. For simplicity, we also assume 
G is constant. The model is given by

Zt = £tlt + It
(5.21)

it = iit-1
where = O = «o,)cIf
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It is no longer possible to determine exactly from
the observations, but we can of course, estimate 
using the probability density function P

Again, if at time t we can estimate the state at 
one time, say 8^, then we can estimate for all
i 4 t . If Y = . ../V̂ ) as before, then

where

%

lo
III %
Egg/ *

and e^ •
• •

-k

S ince E £k£j'j = 2 for k + j.

Î A  ’]  -

%
^1

-2

-k

= % '

(5.22)

From the theory of the generalised linear model (see, 
for example, Goldberger, Chapter 5), the minimum variance 
linear unbiased estimator of ^  is given by

. (5.23)

If this estimator is to exist, then must be
positive definite, or

k i T T -1 i L (G ) FTV. F.Gi=o “  -1- (5.24)
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is positive definite. In particular, when the observations
are scalar and the observation noise is the same for all 

-1so that v^ = 1/v for all i, then the condition
(5.24) reduces to (5.20), and if is also constant,
it further reduces to (5.19). The matrix (5.24) is also 
sometimes called the observability matrix, or the information 
matrix.

If we now add plant noise, i.e. w,̂  to the model 
(5.21), we have returned to the DLM (4.17). In this case, 
knowledge of at any time point i does not determine
any other 6_j exactly, because of the plant noise. 
Observability of this model is considered in several 
texts, for example, Aoki (1967, p.209-221). From the 
general definition of observability, as given at the 
beginning of this section, the model is - found to be 
observable if two subsystems are observable in the sense 
described above. Thus, even in this most general case, 
many of the important theorems rely only on observability 
in the sense of the deterministic model, i.e. it is merely 
required that rank(Mj^) is n, where is defined
in equation (5.16). In most of what follows, we shall be 
concerned only with this simpler criterion. Until the 
end of Chapter 9, observability of the model will mean 
observability of the appropriate deterministic model. 
Furthermore, we shall prefer to assume F and G constant. 
In Chapter 10, however, we shall return to the model (5.21) 
and time varying F and G.
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5.4 Some consequences of observability

It is helpful for what follows to look at the asymptotic 
properties of the model (4.1) and the estimation method 
defined by the Kalman filter algorithm given in equations
(4.4) to (4.8). In many cases, the filter settles to 
an equilibrium state, where the Kalman gain matrix 
and the covariance matrix are constant. The comparison
of the dynamic Kalman filter approach with the static 
ARIMA approach is only applicable when the estimation 
scheme converges to one which is independent of time.
For this to be possible, F, G, H, V and W must be 
independent of time, and the time interval between 
observations must be constant. Given this situation, 
sufficient (but not necessary) conditions for the covariance 
matrix (and hence the Kalman gain matrix) to converge
to a steady .state value are given by Kalman (196 3a).
We shall express this result in a form due essentially 
to Kushner (1971, §9.5).

Theorem 5.6

Let the model be given by (4.1) , with = I and
F, G, V and W independent of t, and let the system

Tcovariance matrix W be written . If the model is
observable, and if the DLM

+ It
±t.= g \ - l  . (5.25)

is observable, then the covariance matrix
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converges to a constant matrix 
C = P - PF^(FPF^ + ,V”^)FP

where
P = GCG^ + W

independently of the initialisation. This C is unique 
and positive definite.

Corollary

If W is positive definite and the model is 
observable, then converges to a constant matrix
3-s above.

For if W is positive definite, then M has rank n, 
thus the model (5.25) is observable, and the result 
follows from the theorem.

It should be noted that if a DLM does not satisfy 
the conditions of the theorem, it could still have an 
equilibrium solution. There do not appear to be any 
known necessary and sufficient conditions for the existence 
of a steady state solution. However, since the steady 
state is essential to the major part of this work, we 
shall require all our models to be observable. Since 
we do not wish to investigate the system error covariance 
matrix, we shall also assume that this matrix is positive 
definite. Then we can assume the equilibrium model and 
apply z-transforms, as described in Section 5.1.
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CHAPTER 6

THE CONSTANT FORECAST MODEL

6.1 Discussion

The constant forecast model is defined by the fact 
that the predictor at time t is constant for all lags,
i.e.

y^^k) = y^(l) for all k ^ 1. (6.1)

Models satisfying (6.1) have the appearance of being 
'trend free' and hence have a special place in prediction 
theory. They are among the most widely used models in 
forecasting, for a 'trend free' or steady model often 
appears to be an adequate description of time series 
data in the short term. Many representations exist, 
notably those of Holt (1957), Muth (1960), Brown (1962), 
Box and Jenkins (1970) and Harrison and Stevens (19 76). 
Several authors have looked in detail at these models; 
recently these have included Smith (1979), Godolphin and 
Stone (1980) • and Key and Godolphin (1981).

We shall investigate the properties of the DLMs 
proposed by Harrison and Stevens (1976). In Section 4.3, 
the predictor y^(k) for a DLM was defined as the 
expectation of y^^^ based on the observations up to 
time t. Thus in DLM notation, we have

y^(k) = FG^ê^ (6.2)
so that from (6.1)

It -FG^e^ = FG0^ for k ^ 1. (6.3)
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Since this should hold for all values of we require

FG^ = FG for k ^ 1

and in particular
FG^ = FG. (5.4)

Any DLM satisfying (6.4) is a constant forecast model,
i.e. (6.1) will be satisfied for all k ^ 1.

i
6.2 Examples of Constant Forecast Models 

Example 6.1

The natural model to use for this situation appears 
to be the purely scalar model, i.e. n = 1 and

Yt = "t + Et
(6.5)

"t = "t-1 + ''t

where are uncorrelated random variables with means
zero. This example and its predictor are discussed in 
some detail by Harrison (1967), and it is the steady model 
used by Harrison and Stevens (1976).

Using equations (4.4) - (4.8), the Kalman updating 
equation for the model (6.5) is given by

= "t-l + ■ "t-l) (6.G)
where

A^ = (C^_^ + var(w^) )/(Ĉ __̂  + var(w^) + var(e^)) (6.7)
and

C^ = var (û  - u^) = A^var(e^). (6.8)
Clearly

0 < A^ < 1 for all t. (6.9)
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Since F = G = 1, the predictor of at time t
is with prediction error variance increasing
steadily with k. It is assumed that var(w^), var(e^) 
are independent of time, and that the observations are 
made at regular intervals. Since this model is observable 
and "W" is positive definite, then by Theorem 5.6, there 
is an equilibrium state where = C, and hence = A
for all large enough t. For this example, this can be 
verified directly as follows :

From equation (6.7) and (6.8)

A^ = 1 - var(e^)/(A^_j^var(e^) + var(w^) + var(e^)) 
so that

Hence
(1-A^)  ̂= A^_^ + 1 + var(w^)/var(e^).

(1-A^)”  ̂- A^_^ = 1 + var(w^)/var(e^) 

(1-A^_^)“  ̂- A^ _ 2  = 1 + var(w^)/var(e^).

Subtracting, we find that
-1 /T , \-1

so that
(1-At) - ^t-1 “ ^t-2

^t-1 “ \ - 2 (6.10)At - (^"^t-1^
Since 0 < (1-A^) < 1 for all t from (6.9), the right 
hand side of (6.10) is positive, so that A_^ - A^_^ has 
the same sign as A^_^ - A^_2 . Thus the sequence A^ is 
monotonie, and is bounded above and below, therefore it 
tends to a limit, A. The limit must satisfy

A = 1 - var (e^)/(Avar (£,j.) + var(w^) + var(e^))
or
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A^var(e^) + Avar (ŵ ) - var(w^) = O 

which has exactly one positive solution 

A = Cl-var(w^) + {var (ŵ ) (var (w^)+4var (ê ) ) } ̂ J/2var (ê ) .

Thus for large t, (6.6) becomes

"t = "t-l +
or

u^ - (1-A)u^_^ = Ay^.

This is the familiar expression for the EWMA, which for 
|1-a | < 1, has solution

4u. = A E (1-A) Jy. . .  ̂ (6.11)
j=0 ^ ]

From (6.9) it follows that u^ assumes only a subset
of its possible values , since it restricted by O < A < 1,
whereas the series (6.11) is valid for 0 < A < 2. Thus
any constant forecast model should allow A to take all
values in the range 0 < A < 2. Godolphin (19 76) pointed
out that this can be accomplished for the Example 6.1 by
the introduction of covariances, but this means that the
model is no longer strictly a DLM. For example, set
cov(w^,e^) = X O. Then the Kalman updating equations
(4.4) - (4.8) cannot be applied as they stand, since they
rely on the independence of system and observation noise.
We shall derive the updating formulae for this dependent
case. u^ will now be given by

where K^ is chosen to minimise
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Gt =

))

= (1-K^) ̂ (C^_^+var (ŵ ) ) - 2K^(l-K^)cov(w^^c^)

+ K^%var(E^)).(6.12)

Differentiating this equation for with respect to

^t
3C = “2 (1-K^) (C^_^+var (ŵ ) ) - 2(l-2K^)cov(w^,c^)

+ 2K^var(E^).
9CtFor a minimum, = 0, thus

-C^_^-var(w^)-cov(w^,

+ K^CC^_^+var (w ^)+2c o v (w ^,e )̂ + var(E^O = O
or

Ct_l+var(Wt)+c°v("t'=t) (6.13)
t C^_i+var(w^+E^)

Substituting this value of into (6.12) yields

var(E.)(C. T+var(w.))-(cov(w.,E.))^
■ = V c;',.var(wj.^) ■ '

It appears that can be positive or negative,
depending on the value of c o v (w ^,e^). It remains to 
be shown that, at least in the steady state situation, 
it can take any value in the range 0 < < 2. is
positive for all values of cov(w^,E^).

Assuming the existence of a steady state solution, 
then for large enough t
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var(e^)(C+var(w^))-(cov(w^,e^))^
^ ” C+var(w^+E^)

or
C^+C (var (ŵ )+2cov(w,j. ,E^) ) - ’ {var (ŵ ) var (ê ) - (cov(w^, ê ) ) ̂  } = 0 

This has solutions 

C = -%(var(w^) + 2c o v (w ^, e ^))

±h( var(w^)+2cov(w^,e )̂ + 4 var (ŵ ) var(E^) - (c o v (w ^,e )̂ )

These two solutions are real and of opposite sign, hence 
the admissible positive solution is

C = (var(w^)+2cov(w^,E^))+%{var(w^)var( w^+2e^)} \

Substituting this value into the expression for 1-K,

1-K = (cov(w^,E^)+var(E^))/(C+var(w^+E^))

2(c o v (w ^, e^) + var(E^))
var(w^+E^)+var(£^)+{var(w^)var(w ^+2e )̂

As var(w^) ->-0, 1 - K 1 .
As var(w^+2E^) ^ 0, 1 - K + - 1.

Thus the predictor of a model of this form is equivalent 
in the steady state to that of any ARIMA (0,1,1) model, 
since O < K < 2. However, as previously stated, the 
Kalman filter equations do not apply strictly when the 
observation and system noise are dependent, and the above 
method of deriving the relevant equations is somewhat 
more difficult for models of larger dimension. We 
therefore write the model in another form, so that the 
standard Kalman filter equations can be used.
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Example 6.2
Consider

y 4- =
=

4>4- =

Ut +

"t-1 + "t

E f

(6.15)

It is easily seen that this model is effectively the same 
as (6.5), despite the introduction of the extra "state
variable" . It has dimension two, with

1 O 
0 0 (6.16)

and
=—t

var(w^) 
cov(w^,£^) var(e^)

cov(w^,E^)

Notice the absence of observation noise. Clearly,
FG^ = FĜ  = Ql for all k ^ 1, so that (6.15) is a
constant forecast model.

Applying the Kalman filter equations (4.4) - (4.8), 
we find that

"t = "t-1

jt 0
+At(Yt-Ut_i) (6.17)

with

Alt =
and

where

It = [Alt' Ag^^ given by

c^_^+var(w^)+cov(w^,E^) 
c^_^+var(w^+E^) and A

cov(w^,E^)+var(Ê ) 
2t ” c^_^+var(w^+e^)

Gt = ^t
1 -1

-1 1

c. =
var(E^)(c^_^+var(w^))-(c o v (w ^,e^))

't c^_^+var (w^+E^) (6.18)

Since we are primarily interested in the predictor of

t+k FG^e^, we premultiply equation (6.17) by FG^ = [l
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Thus
^ ^t-1 “ ^t-1^ (6.19)

with and as for the model (6.5) . As expected,
the predictor of this 2 x 2  DLM is the same as the 
predictor of the scalar model with dependent system and 
observation noise. This seems to be an improvement, 
because we can now use the standard Kalman filter equations, 
but if the 'smoothing constant' is to be able to take 
its full range of values, then we need to specify covariances 
between the elements of the system error matrix. However, 
the Kalman filter is sensitive to the matrices and

so it is important that they are accurately determined. 
It seems likely that even experienced forecasters who can 
usually specify means and variances, and whether there 
is any correlation between the state variables, may well 
be unable to evaluate the covariances accurately. Hence 
it is advisable to find a model for which it is possible 
to specify a diagonal covariance matrix and still enable 
the Kalman gain matrix for the predictor, FGA, to take 
all values in the range O < FGA < 2.

We investigate several examples in an attempt to find 
such a model.

Example 6.3
Consider

= I a O I + Vt

W
f  o]it +

it = [i 3  it-i
where

W • =

It
*2t (6.20)

w^ 0
0 Wg

is diagonal and independent of time, v - var(v^) and
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a is a fixed but arbitrary positive number. 
Applying the Kalman updating procedure,

where

and

it = G9t-1+It<^t-A01t-1> (6-21)

= jÿit A2 -H bs given by 

A^^ = a(c^_i+ w^)/(a%(c^_^+w^)+v)

Aat “ ac^_y (â  (c^_j^+w^)+v)

Ct = var(8it-Glt)-

We now turn our attention to the predictor of the model 
(6.20), by premultiplying equation (6.21) by FG =[ja (0

+ 3Alt(yt-a8it-l)
SO that the 'smoothing constant' = FGA,̂  = aÂ ,̂  is

aMct_i+Wi)
a‘ (b^_^+w^) +v ■

Thus \i^ lies between 0 and 1 whatever the value 
of a. Indeed, as v ^ 0, ^ 1, however small a
may be. We conclude that this model is no more general 
for forecasting purposes than the previous one.

Example 6.4

Now consider a DLM with more complicated structure

it = ^[i/a f| it-1 +
(6 .22)

where var(v^) = v and

W =
w^ 0
0 Wg

are time independent and a > O as before.
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Applying the Kalman updating procedure

it = G%̂ _i+At(yt-%(8it_i+a82t-l))' <6 "231
where A^ = Q^it given by

^It (f^^t-1  ̂̂ a  ̂^l)/^t

Azt = (^Pt_i+2(a-l)W2)/Dt.
Here

= a/p^_^ + '-y —̂  w^ + (a-1) ̂ w^ + v
and

_ =2_ , (1+a)^

Pt - var((0j_^ - 8^^)/a + Ojt " Gat'' '

Turning our attention to the predictor, by premultiplying 
equation (6.2 3) by = ^[j. and writing

">t = + ^®2t> ' ''t = %(Ait + aA2^)
we find that

”t = "'t-i + '"t - ®t-i’

where is given by

U.. =
or

t = (^'Pt-l + -̂4^  '•'l + a(a-l)W2)/D^

1 - w^ + (l-a)W2^/D^. (6.24)

It is clear that for 0 < a £ l ,  1 - y ^  is positive,
while for a > 1, 1 - can be negative if

1+a ,,
2 a2 (a-1)' 1 •

For example, when a = 1,
1-^t = 2w^/(p^_i + 4w^ + v)

so that
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0 < 1 - ^

When a. ~ hf

1-U^ = (6w^+%W2)/(%p^_^+9w^+%W2+v)
s o th at

0 < 1 - < 2 ,

Thus when a = the model (6.22) does not have
its 'smoothing constant' within the bounds specified by 
the ARIMA (0,1,1) model for all t. This bound, however, 
was only specified in the steady state, and it will be 
shown in Section 6.3 that because of the value of p, 
the equilibrium value of y lies in the range 0 < y < 2 
as required. When a = 2,

l-y^ = (%w^-W2)/(4p^_^+9w^/4+W2+v)

which takes values between -1 and 1/3.
Thus for the model (6.22) , the quantity a is 

crucial to the range of forecasts that can be achieved, 
for as the value of a changes, the range of values taken 
by y^ changes accordingly.

Example 6.5

A similar but somewhat simpler DLM is given by

y^ = [l + a + v^ (6.25)

it = [-a o] it-1 + ït
where var(v^) = v and

W =
w^ 0
0 Wg
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are time independent, and a is any real number. When 
a = 0, this reduces to Example 6.2.

Applying the Kalman updating equations

it = à t - l  + it<^t - (6.26)

where A^ = ĵ ]_t i-S given by

A^^ = (c^_^+(l+a)w^)/(c^_^+(l+a)%w^+W2+v)

^2t ^ (-ac^-l
and

Ct-= variait - 8lt) •

The corresponding predictor equation, found by 
premultiplying equation (6.26) by FG^ ~ [̂  *C1

®lt ®lt-l ^It^^t ” ®lt-l^ 
a(l+a) w,+w^+v 

l-Alt = Ct_i+(l+a/%wi+w;+v ' (6-27)

The values taken by = Â ^̂  clearly depend on a, 
as well as the values of w^, W2  ̂v and c^. When
a > 0 or a £ -1, then 1 - A^^ is positive for all t,
but if -1 < a < 0, then it is possible that 1 - A^^
is negative. Consider some particular values .

(i) a = 1
1-A^^ = (2w^+W2+v)/(c^_^+4w^+W2+v) 
which lies between 0 and 1 for all t.

(ii) a = -2
1-A^^ = (2w^+W2+v)/(c^_^+w^+W2+v)
which lies between 0 and 2 for all t.

(iii) a =
1-A^^ = (-3w ^/16+W2+v )/(c _̂_̂ +9w ^/16+W2+v )
In this case -1/3 < 1  - A^^ < 1 for all t.
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(iv) a = -2/3
1-A^^ = (-2w^/9+W2+v)/(c^_^+w^/9+W2+v) .

Here -2 < 1 - A^^ < 1 for all t.
On closer consideration of equation (6.2 7) we 

find that if (1-Â ^̂ ) can take positive values only 
(a ^ -1, or a ^ 0), then the lower bound on 1-A^^ 
is O and the upper bound is max(l ,a/(l+a)).

For a > 0, the maximum is one, as in (i), but for
I:

a < - 1, the upper bound is strictly greater than one, 
as in (ii).

When 1-A^^ can take negative values, then the 
upper bound is one, and the lower bound is a/(l+a) •* 
which is negative for -1 < a < 0. It is greater than 
-1 only for -% ^ a < O, hence (iv) can fall outside 
the region (-1,1), whilst (iii) lies within it.

Although the region (-1,1) has only been derived 
for the steady state, it seems desirable that the parameter 
should lie within the region for all t, which means 
a ^ It seems preferable that it should cover the whole
region, and this requires a =

The steady state solution is not difficult to 
derive for the model (6.25); after some straightforward 
algebra, we obtain

c = -^Wj^(l+2a) + %{w^^(l+2a)^ + 4w^(w2+v)}^
hence

2|^ d+a)w^+W2+'^
1-A^ ( 1+2 a+2a^ ) w^+2 (w^+v) +{w^^ ( 1+2a) +4w^ (w2+v) } ̂

which lies between -1'and 1. It is , clear that as w^ 0, 
1-A^ approaches 1. It is not so clear that the lower
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bound of -1 can be attained. To find the minimum of 
1-A^ for different values of a, we differentiate the 
expression for 1-A^ with respect to a, and set the 
result equal to zero. The numerator of the derivative 
is

2(l+2a)w^^ll-2w^a(l+a)/r)w^-2(w2+v)w^/r+rj
where

r = {w^^ (l+2a) ̂ +4w^ (W2 +V) .

This is zero when a = and it can be shown that
this is a minimum.

Hence if a = the model (6.25) can cover the
full range of values 0 < A^ < 2  in both the time
dependent and the equilibrium case with W diagonal.
We consider this model in even more detail. Writing out
(6.25) in full

Yt = + ®2t ’"t

It ®lt-l * '"it

'2t = %®lt-l + "2t

Let 6 2^ = Then we can write the model as

Yt = Gst + ®2t + ^t 

®3t ^ ®3t-l ^3t (6.28)

®2t ®3t-l ^ *2t

Thus we have
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Example 6.6
't = D  d i t  + '̂ t

it = [i o] it-i + It
2t

Let
E ^Itlr— -1 w^ 0

J2tj[Jit ^2^ 0 ^2 ■

Note the similarity of this model to that of Example 6.3 
with a =! 1.

The predictor updating equation is

where

and

^®lt ^®lt-l ^^It^^t " ^®lt-l^ 

Alt = (2c^_^+w ^)/(4c^_^+w ^+W2+v )

Ct_i = varOit - 0it).

It is required that 0 < 2A^^ < 2, which is clearly true 
In fact, in the steady state

c = %{w^ (ŵ  + v) }
so that

1-2A, =
—w^+W2+v

_ r .
2{w ^(w 2+v )} +w^+W2+v

Thus the parameter can take the full range of values, 
0 < 2A^ < 2, for when

(w2 + v) 0, 1 - 2A^ - 1
while when

Wĵ  0 f 1 — 2A^ 1.

Example 6.6 is an example of a DLM which does contain 
all ARIMA (0,1,1) models in the sense of the predictors 
being equal, and also has a diagonal covariance matrix. In
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fact, the Examples 6.4, 6.5 and 6.6, without the 
observation error term, can be obtained from Example 6.2 
by an invertible transformation L of the state vector 
2^, as described in Section 4,4. For the model (6.22),

n al /var(w
- ^ L v a  -ij "bere a =

while for Example 6.5
cov(w. ,v )

a = ----- 7 r—var(w^)

To obtain the model (6.26), we effectively applied a 
further transformation

= [o 3
to the model (6.24), making the total transformation 
from Example 6.2 to Example 6.6

k  = k 2 k i = [j 3 ■
For the model given by (6.15), write

lo = F, = G, Wgt = Et

and then apply a transformation L. Using the Kalman 
updating equations (4.4) - (4.8), we can find expressions 
for A^, for general invertible L. We find that

At =
and

where

and

2t = LQttI - ^
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We wish to investigate the properties of the predictor,
hence we wish to find FGA^ and FGC^G^F^.

 1  1—  —

and
EGCtG^FT =

SO the properties of the predictors are unchanged by 
any invertible transformation of the state vector.
Clearly, a good choice of L will make W diagonal, 
as in Example 6.6.

6.3 The General Constant Forecast Model

We have given examples of 2 x 2 DLMs, whose 
predictors are equivalent in certain cases to those of 
the ARIMA (0,1,1) models. We now wish to investigate 
the general theory of such models, including those of 
possibly larger dimension. To do this, we shall assume 
that there is a steady state solution of the model, i.e.

it is assumed that v = var(v^) and W - are
independent of t, and that as t becomes large, the 
covariance matrix C^ and hence the Kalman gain matrix 
A^ tend to constant matrices C and A respectively.
The model is given by

= F9 ^ + Vt

it = ^t-1 + îit (6-29
where G is of size n, and FG^ = We require an
expression for the predictor y^(k) = ~FG9^, so we 
premultiply the Kalman updating equation (4.4) by FG 
to yield
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Ziit = + FGA^ (y^ - FG8^ (6.30)

where it should be noted that all terms are scalars, 
regardless of the size n. Writing m^ = FG6 ^ and 

and invoking (6.4) we have

”t " “t-l - ®t-l' (6.31)
as in (6.19). In order to find the range of values taken 
by u^, it is helpful to introduce some simplifying 
notation. We define

a 2 = fWf"̂ , a| = FGWG^F^, po^Og = FGWF*^
and

= FGC^g '̂f '̂ = var(m^).

Using equations (4.4) - (4.8) and (6.4), we have

FGC^G^F^" = FG(P - A (FP. F^ + v)AJ^)gV

T —t— T T= FG GC, .G^ + W   — =r-^)G-^F^

1;g (gc g7̂ +W)f7’f (GC ^^G^+W) gV= FGC ,G+^ + FGWG^F^-------   =---------- .
 ^-------------  FGC^ .cFpT + FWF̂  ̂+ V

Hence

Steady State Theory

We now move to the steady state situation, so that 
q^ = q^  ̂= q for all large enough t. Thus (6.32) 
becomes

.2

or
q = q + - (q + pâ â̂ ) (q + + v)

q^ + q(2pa^a2 - cr̂ ) + " ^2^ “ 0. (6.33)
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Lemma 6.1

If both FG = F and v = 0, then the only solution 
to (6.33) is q = 0.

Proof
The expression

CFn (V + Un (1 - p̂ ) )
/ V^+Fw\

|s the generalised variance of f ), which is
positive unless FĜ  = F and v^ is absent. In this case.
a2 = Cg and p = 1 and equation (6.33) reduces to 
q(q + a|) for which the only admissible solution is q = ( 
It can also be zero if a| = O. This implies q = O _and 
FGWG^F̂  ̂=0. If W is positive definite, then it follows 
that = 2 which means that y = 0 and the predictor
is identically zero.

Lemma 6.2
For a non-trivial DLM, the discriminant of (6.33) 

is strictly positive.

Proof
The discriminant is

+ 4a| - 4po^G2 + 4v)

= q^(EjjGw^ - 2FwQ ̂ + 4v) 
which is non-negative.

When this expression is zero, which happens when 
either

or
1. ^2 = 0.
2. FGw  ̂- 2Fw^ = 0 and v = O

then equation (6.33) has two equal roots 

q = %0 2 (c2 ~2 P^i)'
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1. If = 0, then q = 0. If W is also
positive definite, then FG = 0, so that
y = 0 and the predictor is zero with probability 
one. From the proof of Lemma 6.1, = 0
implies that FG = F, so that F = 0.

2. If FGw. = 2F'w. for all w , , and v = 0, then
 1 — t — t

FG = 2F, whence = 4a^ and 2po^02 = 4c^,
hence p = 1 and q = 0. But from the proof
of Lemma 6.1, v = O and p = 1 implies that
FG = F hence F = 0.

Thus when the discriminant is zero, the observations 
are of the random term only, and even this may be absent.

For a non-trivial DLM, the discriminant of equation 
(6.33) is strictly positive, thus there are two real 
roots. Since '-4ac' is non-negative, the two solutions 
are of opposite sign. By definition, q must be positive, 
so we require the positive solution, that is

q = (̂72 (c72“2pcJ2)+̂ { (2pa^a2”a2) ̂ +4a| (v+(l-p^) â ) (6.34)

= ^C2 ja2“2pcr̂  + {c2+4 (v-pa^a2+a^) .

Now using equations (4.4) - (4.8) 

y = FGA = FGPF^/(FPF^ + v)

= FG (GCG*̂  + W) f '̂ XF(GCg'̂ + W) iJ + v )

or
= (q + pa^Q2 )/(q + + v)

1 - y = (â  + V - pUĵ a2 )/(q + + v)

Substituting for q from equation (6.34), we have
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2 (a| + V - 
2 (a^+v)+a2 {G2 “2 pa^+(a|+4(v-pa^a2+a^)) }̂

This lies within the region -1 < 1 - y < 1.

6.4 Restrictions

It is clear from the examples in Section 6.2, that 
not all models satisfying = FG can cover the full
range of the ARIMA (0,1,1) model, i.e. 0 < FGA < 2, 
but from Section 6.3, all models have the parameter 
lying within' the region, at least in the steady state.

Theorem 6.3

If FG =1= F , then any value for y in the range 
0 < y < 2 is possible.

Proof

If FG =}= F , . then the expression for 1 - y is given 
by (6.35) . If GI is small, compared with G^ and v, 
then 1 - y ^ 1, while if the variances are such that 
V - PG^G2 + G^ is close to the minimum value of
-^G^/ then 1 - y approaches -1. Thus 1 - y can
take all values in the range (-1,1) as required.

Theorem 6.4

If 12 - F f then y is restricted by O < y ^ 1.
If in addition, v = 0, then y = 1 and q = 0.

Proof

If FG = F, then G^ = G^ and p = 1. Hence
equation (6.35) reduces to
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2v1 - y = ---------   ;------ roj + 2v + (a^ + 4v) ^

which clearly lies between 0 and 1.
If in addition v = 0, then 1 - y = 0 or y = 1.

In this case, equation (6.34) reduces to

q = + (a^ + 4v)^) = 0

In fact, the restrictions imposed by FG = F 
and V = 0 also apply in the time dependent case. For

y^ = FGA^ = FGP^F^/(FPF^ + v).

If FG = F, then 0 < y^ < 1 , and from equation (6.32)

(9t-i +
■ït + V •

Clearly, if v = 0, then y^ = 1 and q^ = 0. Thus from
equation (6.31), when both FG = F and v = 0, the
predictor is the last observation with probability 
one, as in Example 6.1.

Thus if a constant forecast model is to be able
to cover the full range of an ARIMA (0,1,1) model , then
it must satisfy FG F . However it should be pointed 
out that for many models with FG F, it will be necessary 
to specify covariances between elements of the system 
covariance matrix as in Example 6.2 if the model is to 
cover the full range. Example 6.6 is a constant forecast 
DLM which does fulfil the complete range with a diagonal 
covariance matrix.

Also, when FG ^ F, there is no guarantee that 
y^ will lie in the region O < y^ < 2, even if the 
steady state jyalue y does so (see Example 6.4 with a = %)
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In Example 6.1, we have EG = F. Clearly, when 
n := 1, the only models satisfying fg^ = fg have g = 1, 
which means that fg = f, or g = O, which is a trivial 
model. So there is no scalar model which can cover the 
full range.

Lemma 6.5

A consequence of FG 4" F is that G must be 
singular.
Proof

Consider FG^ = which is equivalent to assuming
a constant forecast model. If G is non-singular, 
then G exists, so that

, -1 -1FG^G = FGG
or

FG = F .

Hence if FG ^ F, then G is singular.

6.5 Implications of Observability

The theory of Sections 6.3 and 6.4 was derived 
for general n, hence it would seem that models of 
any dimension greater than one, satisfying FG  ̂ = FG 
and 12 t F are appropriate. We shall show that there 
is also an upper limit on the dimension of such models.

In Section 5.3, the observability of a DLM was 
defined as the ability to estimate the state 
from the past observations y^_j j ^ 0. But Theorem 5.6 
due to Kalman (1963a) means that observability 
together with positive definite W is sufficient 
condition for the equilibrium state to exist. Since
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the theory depends on the existence of the steady state, 
it is desirable that all our models are observable.
The criterion for observability given in that section 
is that the matrix

p'̂ (FG)'̂ (FĜ )'̂ . . . (6.36)

should be of rank n, where n is the dimension of 
G. Hence we have

Lemma 6.6

If the DLM is observable, then n = 1 or n = 2. 

Proof.

Since FG^ = it is clear from (6.36) that for
n ^ 3, the matrix has rank less than n, hence result.

We have shown in Section 6.4 that models with 
n = 1 cannot cover the full range.

When n = 2/ we see from (6.36) that the requirement 
FG 4= F is equivalent to stipulating that the model be 
observable. Example 6.3 is not observable, and hence 
may not have an equilibrium solution. Examples 6.2 and
6.4 - 6.6 are all observable, since they all satisfy 
FG + F.
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CHAPTER 7 

THE POLYNOMIAL MODEL

7.1 Representation of the Model

We now consider the more general case, where the 
forecast function k = 1,2,...} is a polynomial of
degree d - 1, that is

y^(k) = a^ + a^k + a^k^ +...+ a^_^k^"^ k ^ 1 (7.1)

where a^_^ t 0*
It is convenient to represent the polynomial (7.1) in 

an alternative formulation. For any given function f(x) , 
we define the backward shift operator V by 
Vf(x) = f(x) - f(x - 1). It is well known that 
V f(x) = 0  if and only if f(x) is a polynomial of 
degree n defined on the integers. Using this result, 
the representation (7.1) is equivalent to

V^y.(k) = 0

or
d
2 (f) (-1) V(k-i) 5 0 k > d + l .  (7.2)
1=0 1

Since the predictor y^(k) derived in Section 4.3 is 
given by

y^(k) = ^or all k ^ 1

equation (7.2) becomes

S (f) (-1)^Fg’̂“^^ 5 0 k ^ d + 1 .
1=0 ^

This must hold for all values of 6. , so we have— t
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2 {'?) = 0 k > d + 1
1=0 1

or
F G ^ CG-I)^ = 0 . j > 1 •

In particular,
FG(G-I)^ = 0 . (7 .3 )

Notice that because a^_^ ^ 0, then | 0, or
by the above argument,

(7.4)FG(G-I)^  ̂+ 0 .
It is clear that if we can find y^(l),...y^(d), then we can 
find y^(k) for k ^ d + 1 recursively from equation 
(7.2). For some purposes, it may be easier to find Some 
invertible transformation of these quantities. In this 
discussion, we shall find it convenient to consider the 
quantities FG8^, FG(G-I). 8^ ,. . . ,FG(G-I) We define

FG
FG(G-I) 
FG(G-I)2

FG(G-I)
FG(G-I)

d-2
d-1

(7.5)

Since FG(G-I)^ = E (^^(-1)^"^FG^+1, we have
1=0
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%  =

1 0 0 0
-1 1 0 0
1 -2 1 0

-1 3 -3 1

. .

(-1)^ (-1)^ ^(d-1)

O . . . .

1 0 
-(d-1) 1

FG
FG'
FG'

FGd-1

(7.6)

The (i,j)th term of this transformation matrix is

1 à i
0 i < j .

The matrix is invertible, thus R.8, is an invertible— a — t

transformation of y^^l),...y^(d). None of the rows of 
the (d X n) matrix R^ can be zero, because by (7.4), 
this would imply that the forecast function is a polynomial 
of degree less than d - 1 .

Lemma 7.1
The matrix R^ has rank d ,

Proof
Suppose R^ has rank less than d. Then the rows

of R^ are linearly dependent, and we can find coefficients
a., not all zero, such that i d , . 1

E a.FG(G-I) = O .
i=l ------

Suppose that k (1 ^ k ^ d - 1) is the smallest integer
such that a^ ^ 0. Then .

d
E a.FG(G-I) = 0 .

i=k ^-------
Postmultiply by (G-^) , which from (7.4) is not zero,
to yield
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Z a.FG(G-I)^+Â-k-l ^ 0 .
i=k ^------

Using (7.3), this reduces to

a^FG (G-I) = 0 .
d-1But FG (G-I) =4 2. (7.4) and a^ =j= 0 by construction.

This contradiction shows that the rows of ^  are not 
linearly dependent, hence the matrix has rank d.

We now premultiply the Kalman updating equation (4.4) 
by ^  to give

Sdit = • (7-7)
Using the fact that

FG^(G-I)^”  ̂= FG (G-I) ̂  + FG(G-I)^"^

and equation (7.3), we find that

R jG — 
— d —

FG^ 1 1 0 0 . - 0 FG
FG2(G-I) 0 1 1 0 . .0 ^(G-I)

•
. 1

.

FG^ (G-I) 0 0 0 0. . 1 FG(G-I)

(7.8)

Writing
Uit = fgcg-i)^ \  i =1,. d (7.9)

and

-t ^ (“it'• • •“dt)'̂ ' )̂ t ^ (Wit'---Udt) '
equation (7.7) becomes

Ht = ™t_i + Et(Yt - “it-i)
where

K = 1 i = i, i = j - 1
0 elsewhere

(7.10)

which is exactly the same formulation as equation (3.2)
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of Godolphin and Harrison (19 75) (It should be noted 
that the definition of K given there is incorrect, since 
the transpose of K is given, although K itself is 
derived). We can also show

Lemma 7.2

,k: S ,k-ly^{k) = FG 6^ = (j-l)®jt k > 1 , {7.11)

This is equation (3.1) of Godolphin and Harrison (19 75) 
and leads to the conjecture that m̂ .̂. defined in equation 
(7.9) is the same as the of Godolphin and Harrison
(1975) .
Proof

j=l J ^ 3^ j=i 7 J- ^

= z ('5"|)fg ^z (97^) (-1) 
j=l 9-1 —  1=0 ^

1 = 0  ^ r=o "  ̂1 f

When k = d
d—i—1
X  t i :  )

SO that

= Ft(4) •

When k < d, (^_^) = O for j > k, so that

d k-1E ( . -|)m. becomesj=l
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1=0 r=o

which by the above argument is FG = y^(k) . Thus (7.11) 
is proved for 1 £ k ^ d, hence by (7.2) it is true for 
all k ^ 1.

Comparison of equations (7.10) and (7.11) with the 
work of Godolphin and Harrison (19 75) suggests we are 
dealing with an ARIMA (0,d,q) process, where q ^ d.
Before we can say this however, we need to know about the 
range of values that can be taken by jj_̂ in this model.

7.2 Steady State Theory

We assume steady state conditions, since it is only 
in the equilibrium state that comparisons with ARIMA 
processes are applicable. Thus we assume ]î  = for 
all t, however M.̂  and y.̂  continue to change with 
t. Hence we have from equation (7.10)

Ët = + lL(yt " “ it-l*.......... (7.12)
We can now apply z-transform theory, and the concept of 
stability, as discussed in Section 5.1. Taking z-transforms 
of equation (7.12), we have

M(z) = z ^KM(z) + y(Y(z) - z M̂. (z) ) . (7.13)

This set of d equations must be solved to find (M^(z))/y(z) 
in terms of y^,...y^. For a stable system, the 
characteristic polynomial of the filter, which is the 
denominator of M^(z)/Y(z) must have all roots less than 
one in modulus. Writing out (7.13) in detail, we have
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M^(z) = z”^(M^(z) + M^^^(z)) + .ŷ (.Y(z) - z“^Mj_Cz))
1 = 1 /...d-1

M^(z) = z"^M^(z) + y^(Y(z) - z'^M^(z)), (7.14)

Lemma 7.3
Equations (7.13) satisfy

r (zY(z) -M (z) )
Md_r(z) = ,2 ^d_r+j ' j+i----  r = 0,1,...d-1 . (7.15)] = 0 -* (z-l)J
Proof

From (7.14)
(zY(z)-M^ (z) )

M, (z) = yd'"' *"d z-1

which is (7.15) with r = 0.
We now proceed by induction. Suppose (7.15) is true for 
a particular value of r. Then using (7.14)

Md-(r+l)(z) = z"^'(Md-r-l(z) + Md-r(=)) + (z)-z"\ (z) ).

But M^_^(z) is given by (7.15), hence
r (zY (z) -M, (z) )

(z-l)Md_r_i(z) = 2 ■---j+i---- + %d-r^l -Ml (:))
3 = 0  Cz-1)

r (zY(z) -M., (z) )
= E y ^j=-l d-r+j (z_i)i+l

Thus
r+1 (zY(z)-M,(z))

_ n(z) = E y.‘d-r-l'- .7^ "d-r-l+i (z_i)i+l

which is (7.15) with r replaced by r + 1 .  Thus the 
induction is proved and (7.15) holds for r = 0,1,...d-1. 
Lemma 7.4

The characteristic polynomial of the filter is given by
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B(z) = E g . z 
i=o

d-i

where
e_ = 1, e. = (f) (-1)^ + 2j=l J -L J

(7.16)

(7.17)

Proof
The characteristic polynomial for the model is the 

denominator of M^(z)/Y(z). Putting r = d-1 in equation 
(7.15), we have

d-1
M, (z) = E y .

=o

Collecting terms

M^(z)
d—1 . -

= zYCz) E y.,./(z-l)]+^
j=o 3

or

M^(z)
d—1 ^

= zY(z) Z M. (z-1)‘̂■9
j=o ^

so that
d-1

M^(z) _  ̂  ̂ ^
Y(z)

(z-1)^ + Z u.(z-l)^ 9
7=1 7

Hence the characteristic polynomial g(z) is given by
. d .

6(z) = (z-1) + E y . (z-1) ^
j=l ^

= Z if) + Z y . *̂ Ẑ  (^^9)(_i)lzd-j-i
1=0 A j=l 9 i=Q i

= Z (?^(-l)izd-l + Z u. Z (kZi)(-l)^"iz^"^1=0  ̂ j=l 9 K 7

= 2 (̂ ) (-l)^z^-A + 2 z^^k Z y . (^"?X-1)'^“9 .
1=0 ^ lc=l j=l 9 K-]
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Thus the coefficient of is 1, and for 1 ^ i ^ d,
d-ithe coefficient of z is

j=i 9 1 - 7

This expression for the is not always helpful for
the derivation of results. An alternative formulation 
is derived in the following lemma.
Lemma 7.5

g can be expressed as

e, = (f)(-l)^+ 2 (̂ ) (-1) 9fg^-9a (7.18)
9- ^  j = o  9  —  -

where A is the limit of A^ in the steady state. "
Proof

We need to show that

E (-1)^  ̂ is equal to E (f) ( - 1 ) ^A .
j=l  ̂ ^ J j=o J
First substitute y ̂ = FG (G-I) ̂ ^A into the left hand
side. Then this becomes

2 (f“ )̂ (-l)^"9pG ■’2 (7-1) (-i)kQj-l-k^
j=l ^"9 k=a

Z (f-9) (7^) (_i) i-j+kpgj-k^
j=l k=o 1-7 k —  -

Z Z (^-9) (9^) (_i)9--7+kj^j-k^
k=o j=k+l ^

^Z^ ^Z^ (-l)^-^FG^A
k=o r=l ^ ----

2 (-i)^-^FG^A V  (̂ :̂ :ĵ ) (̂ ■̂ l̂ -c-).
r=l k=o ^ ^ k
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A well known identity from combinatorial analysis is

y ,a+j-k-lt ,b+k-l. _ ,a+b+j~l.
 ̂ i-k '( k ) - ( j )

(Feller, 1968, p.65).
Putting b = r, j = i ~ r  and a = d - i + 1 in this
identity, we have the inner summation above. Hence

2 U.j = Z )j=l 9 1 3 r=l ----

i-1 . J . .= Z (-1)9(“)fG 9a
j = 0  9  —  -

as required, thus equation (7.18) holds. Notice that 
(7.18) is exactly the definition of 6^ given by Godolphin 
and Harrison (19 75) (see equation (3.18), where the
of Theorem 3.1 are given by Uj = F G A  for j = l,...,d.J

Collecting all these results together we have the following

Theorem 7.6
Suppose the DLM satisfies FG(G-I)^ = 0,

FG(G-I) ̂   ̂ 0. Then in the steady state situation", the
k'̂predictor y^(k) = 22 2 ̂  identical to the k-step ahead 

predictor of an ARIMA (0,d,q) process (q ^ d) if and 
only if the model's estimation scheme is stable in the 
steady state.

Proof
The proof of this theorem follows directly from 

Theorem 3.1. Equation (3.17) is, in the notation of 
the DLM

til V ^
FG it = FG it-l + FG - FGit-l) '

which is the Kalman updating equation (4.4) premultiplied
Ic d.by FG , which clearly holds. If 1 + 6^z+...+3^z has
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all zeros strictly outside the unit circle, then
^+. ..+3^ has all zeros strictly inside the 

unit circle, which is the stability condition for the 
DLM, with 6^ given by (7.18).

Thus we see that in general, the stability conditions 
for the estimation scheme of the DLMs described in this 
chapter are equivalent to the invertibility conditions 
of the ARIMA (0,d,q) (q £ d) models.

In the following example of a polynomial model of 
degree one, we shall investigate the range of values taken 
by 3 2 and compare this to the invertibility region
of an ARIMA (0,2,2) process.
Example 7.1

Consider the model given by

Yt = [l

where

and

-t

1 0 1 0
1 0 1 0
0 0 1 0
0 0 1 0

it-i + ft

W =
w.

w.
w.

w

is diagonal

V = var(s^).
This satisfies

FG(G-I): = 0, FG(G-I). + 0, F(G-I)^ + 0

hence is a polynomial model of degree one.
From (5.19), the observability criterion requires that 

F , FG, FG^, FG^ are linearly independent. But FG(G-I)^ = 0,
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so that this model is not observable, hence we do not know 
whether or not an equilibrium solution ejcists. We shall 
assume its existence, an.d derive the values of '
1 + + ^2 f 1 - 6 ^ + ^2 *

Applying the Kalman updating equations (4.4) - (4.8) 
we find that ^ 2 t ^ 3 t ^̂ 4 ^*^ is given by

Alt = (2Pt-l + Wl)/Dt

A2t = (2Pt-l + W2>/Dt

^3t = (2St-l + W3>/Dt

^4t = (2St-l + "4)/Dt
where
p^ = var (e^^-0 j_̂ )+3 cov(e^^“e^^,0 2^“e2^)+2 var(0 2 ^-0 2 )̂

9t = cov(63^^-6^^,e3 ^-e3^)+2var(6 3 ^-e3 )̂ 
and
°t “ 4(Pt_i+gt_l)+*l+W2+W3+W4+v

=  4varj“ (03^^_3^-6^^._j^)+2(03^_j^-e3^_3^^+W 3 + W 2 + W 3 + W 4 + V  .
From equation (7.18)

3^ = -2+FGA = -2+2A^+4A.2

&2 = 1“2FGA+FG^A = 1-2(A^+A^)

where A^, A^ are the steady state values of A^^, A^^. 
We wish to show

(i) I EL, I < 1
(ii) 1 + + gg > 0

(ill) 1 - @ 3 + & 2 > 0  -

We shall use the time dependent values of , A 3 , for
if the inequalities are satisfied for all t, they are
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satisfied in the steady state .
(i) @ 2 = 1 - - ZAst

4 (Pt-i+gfl’ +W2+W2+W3+W4+V- 2  (2p^_3_+W3) -2 (2q^_3+W3)
°t

4 Cp^_^+q^_3_)+w^+W2 +W2+w^+v 

which clearly lies between -1 and 1.

(ii) 1+3^+32 = l-2+2A^^+4A2t+l-2A^^-2A2^

= 2A3t

= 2 (2 q^_2^+W2 ) /D^ ,

If cov(e^^-e^^,0 3 ^-e2 ^)+var(e^^-S^^) is positive, 
then q^ is positive, hence l+g^+g2  ̂0 ,

(iii) I-3 1 +B2 = l+2-2A^^-4A2^+l-2A^t-2A2^

= 4-4A3t-6A3t 

= 2 (2-2A3^-3A3^) .
Dt(2-2A^^-3A3^,) = 2 p  (p̂ _j_+q^_j_)+w^+vf2+W3+w^+^

- 2 (2p^_^+Wj^)-3(2q^_^+W2)

= 4p^_j_+2q^_^+2w2”W2^2w^+2v.

If cov(0^^-0 ^^,0 3 ^-0 3 ^)+var(0 2 ^-0 3 )̂ is positive, as 
required for (ii), and also

2 (w2 +w^+v) > W 3

then 1 -3 ^ + 6 2  > O'
Even if these conditions are satisfied, so that the 

parameters lie within the invertibility region, it is not
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clear from the above whether or not the whole region can 
be covered. To examine this, we consider the second 
backward differenced series

V = Wit-"lt-2+"3t+2V3t_l-*3t-2+?

which has the same correlation structure as the ARIMA (0,2,2) 
model

V=yt = at+9iat-l+9 2 ^ : - 2  "
Multiply V^y^ in turn by V^y^, V^y^_^ and ^^Yt-2' 
and take expectations, then equating the results obtained 
from the two equations we find that

sj^V^y^)^ = 2w^+6w 3 + 6  (w2 +w^+v) = (l+g^+g^) var (a)

E |7v^y^) (V^y^_^^ = -4 (w2 +w^+v) = 3j. CI+B2 ) var (a)

E jjV̂ ŷ ) (V̂ ŷ _2)J = -w^+W2~W2+w^+v = 32var(a) .
Since we know ^ 2  ̂-1, the second equation implies >

Solving these equations 

^2w^+w^+v = -&i(l+32)Y3f(a)/4

W 3 = (1 + 3 j_+3 2 ) ̂ var (a)/4

= ^j(l+3^+32)^~8i(l+82)"43^^var(a)/4 .
Since this expression for w^ should be positive, we have 

3 2 + 3 2 (39i+6)+3i+33i+l < 0 ,

Thus the range covered by this model is given by the shaded 
region in Figure 7.1.
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2

FIGURE 7-1 :STABILITY REGION FOR EXAMPLE 71

7.3 Size and Structure of G

Intuitively, we expect a model with, a polynomial 
forecast function of degree d- 1  to have d system 
variables, that is, we expect G to have dimension d. 
The results for the constant forecast model in the 
previous chapter suggest that the dimension of the 
system vector 0^ should be increased.
Example 7.2

We examine the 'linear growth' model used by 
Harrison and Stevens (19 76)

“t = "t-l + Gt +

't •

That isLs, F = [l o], G = J and

(7.19)
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var C<5û +53̂ ) var ( 6 6 ^)+cov (5û / 6 3 )̂
W =

var (ô3^)+cov(ôu^,(5^^) varC<S3 )̂

The model satisfies FG (G-I) ̂  = 0, FG(G-I) =j= 0. From 
equation (5.19), the criterion for observability is that 
ranklj;”̂ FG*^ = 2. Since FG = [l Î] ^ aF for any a, 
the model is observable. Hence if we also assume W 
is positive definite, the corollary to Theorem 5.6 implies 
that this model will converge to an equilibrium state, 
thus the theory of Section 7.2 is applicable. We shall 
assume that the model is stable in the steady state, 
then by Theorem 7.6, its predictor is identical to the 
predictor of an ARIMA (0,2,2) process. In fact, we can 
write the model (7.19) as an ARIMA (0,2,2) process as 
follows:

V^y^ = V3^+VSu^+V^e^

= ÔB^+V5u^+V^e^ (7.20)

which has the same autocorrelation structure as the 
ARIMA (0,2,2) model

V ^ t  = V b ^ t - l + ^ 2 ^t- 2 • (7-21)
Multiply V^y^ in turn by V^y^, ^^Yt-2
take expectations, then equating the results obtained from 
equations (7.20) and (7.21), we have 
sjjV^y^)^ = (l+3 ^+3|) var (a)

= var (6 g)+2var (<Su) +2cov(5u,6g) +6var(c)
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E |7v ^Y^)
= -cov(ôu,ô3)-var(ôu)-4var(e)

E |7v^Y^) = 3 2 var(a) = var(e) ,
where it is assumed that the variances are independent
of t, e.g. var(63^) = var(6 3 ) for all t .
Solving these three equations

var(c) = B^varCa)

cov(ôUy6 3)+var(ôu) = - (32_ (1+^2 ) “■̂6 2 ) var (a)

var(63) = (l+3^+3|+23^(I+3 2 )+8 3 2 ~6 3 2 )var(a)

= (1+ 3 j_+3 2 ) ̂ var (a) .

ObviouslY/ these results implY 3^ 2 0* If/ in 
addition, we require cov(6u ,6 3 ) = 0 , then it follows 
that

3j_ Cl+3 2 ) “432 = ^
or

3ĵ ^ -4 ^2 /( 1+^2 ) ' 
3n

(7.22)

- 4 3
1+3

3i

FIGURE 7.2 :STABILITY REGION FOR THE LINEAR
GROWTH MODEL
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The inequality (7.22) is an even greater restriction 
than that noted by Godolphin (19 76b) in his discussion of 
Harrison and Stevens paper. In fact, this restriction 
also holds whenever var(ôij) ^ var(6 g), and this includes 
the other case of interest, namely W diagonal. For

var(ôy) ^ var(6 3 )
implies that

var(ôy) + cov(ôy,63) var(6 3) + cov(6y,63).
But

{var(6 y)+cov(6 y,63)} + {cov(ôy,ô3)+var(ô3) } 2 ^ 
so that

var(6 y)+cov(6 y,63) ^ 0  
from which the restriction follows.

Thus we see that the stability region for this model , 
given by the shaded region in Figure 7.2, is rather 
restricted, in fact more restricted than that for Example 7.1 
By analogy with the constant forecast model, it is 
reasonable to suppose that the dimension of G should be 
increased. We confirm this conjecture by investigating 
the dimension and rank of several matrices.

Lemma 7.7
The dimension of G is not less than d.

Proof
This is a direct consequence of Lemma 7.1, where the 

d X n matrix was shown to have rank d . This implies
that n, the dimension of G, is greater than or equal 
to d.

This lemma has the intuitively sensible interpretation 
that any model which has a forecast function which is a 
polynomial of degree d - 1  must have at least d system 
variables.
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To ensure th.at th.e model converges to an equilibrium 
state, and hence th_at the -theory of Section 7.2 is 
applicable, we require that tie model is observable, i.e. 
we require

~ n-lF, FG,. ..FG to have rank n.
Lemma 7 .8

rp r f n hasf  Sa-ÎThe DLM is observable if and only if 
rank n .
Proof

Referring back to equation (7.6), it is clear that
:r :̂rank(^) = rank I (FG) (FG^ ) "̂ . ..(FG^l^

since the transformation is non-singular. Thus rank 
is n if and only if the rank of the observability 
matrix is n.
Lemma 7.9

If the DLM is observable, then n ^ d+1 .
Proof

If the DLM is observable, then rank F^ R_ ?! is n.
The last row of % Is FG (G-I) ̂  ^. From equ a t i o n  (7.3),
FG(G-^)^  ̂ = O if n-2 ^ d. Hence if the model is 
observable, n- 2 < d or n ^  d+1 .

Lemmas 7.7 and 7.9 imply that there are two possible 
dimensions for observable DLMs given by n = d and 
n = d+1. In Section 5.4, we gave a result due to Kalman. 
From this we found that if the model is observable, and 
W is positive definite, then the system converges to an 
equilibrium state. Thus we see that observability is a 
desirable - property for DLMs. Hence in the sequel, we 
assume that n can only take one of these two values.
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Lemma 7.10
The (d+1) X n matrix has rank d if

and only if ECG-^)^ = 0 and otherwise has rank d+1 .
Proof

must have rank at least d, since R,—a
has rank d from Lemma 7.1.

Suppose it has rank d. Then the rows of the matrix 
are linearly dependent, and there are constants a^, not 
all zero, such that

a^FG(G-I)^“^ + a ^ F G ( G - I ) ...+a^ ^FG+a^F = 0 . (7.23)

a^ ^ 0 , since otherwise (7.23) would imply that R^ has 
rank less than d. Postmultiply (7.23) by G, noting 
that G and (G-^) commute, and that

G^(G-I)^“  ̂= G(G-I) S g (G-I)^“  ̂ .

Then equation (7.2 3) becomes

Sq (EG (G-I) ̂ +FG (G-I) ̂ ” )̂+aj_( FG(G-p ̂ "^+FG (G-I) ̂ "^) + . . .

. ..+a^ 2 (EG ( G-I ) +FG) +a^FG — 0̂ .
Thus
(ao+ai)FG(G-I) ̂ "^+(ai+a2 )FG(G-I) ̂  • *‘̂^^d-l'‘‘̂ d^—  = 2  "

Since all these terms are row vectors of R^, it follows 
from Lemma 7.1 that they must be linearly independent, 
hence all the coefficients must be zero. Thus

In general
 ^o' ^ 2 --------- ^o" "  •
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Since = (-1) =1= 0, then a^ ^ 0. Substituting
the values of a^ given by (7.24) into equation (7.23)

=  0

or a^F (G-^) = 0 which implies that

F(G-I)^ = 0
since a 4 0 . o
Conversely, if F (G-^) ̂  = 0, then

FG(G-I)^”^-FG(G-I)^”^+...+ (-l)^“^FG+(-l)‘̂F = 0 .
T are linearly dependent, .andThus the rows of 

the matrix has rank less than d+1. But since it contains 
a matrix of rank d, it must itself have rank d.. 
Corollary

The condition F (G-̂ ) ̂  0 implies that n ^ d+1.
Proof

F (G-^)^ ^ O means that the (d+1) x n matrix
T has rank d+1 , hence n must be greater -than

or equal to d+1 .
Notice that n ^ d+1 does not imply that F (G-^) =)" 9.*

When n = d+1, has the same rank as the observability
matrix, and Lemma 7.8 can be rewritten as:
Corollary

When n = d+1, the system is observable if and only 
if F(G-I)^ + 0 .

We now investigate the effect of the condition 
F (G-I)^ = 0  on the range of the gs. .

Consider 3., which being the product of d factors
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each less than one in modulus, must itself have modulus 
less than one. From equation (7.18),

^ i=o ^ ~
d— 1

= (-D^-(-l)^FA + L (?) C-1)^FG^“^A + (-l)^FA

= (-l)d(l-FA) + E (f) C-1)^FG^“^A

= (-D^^d-FA) + F (G-I) ̂ A 

so that when F (G-^)^ = 0, 3. reduces to (-1)^(1-FA).
Now

FA = FPfV (FPf '̂+V) ,
hence 0 < FA < 1. Thus we have shown the following:
Lemma 7.11

dIf F (G-I) = q, then
if d is even, 0 < 3 ^ < 1 • ■

while if d is odd, - 1 < 3 ^ < 0 .

We see that the range of values taken by 3^ is effectively 
halved by the condition F (G-d ^ = 0. This is obviously
a restriction we would wish to avoid, hence the ideal choice
of model will be observable, with F (G-̂ ) ̂  4" 9. ^ “ d+1
Example 7.2 has n = d, and hence is restricted as in
Lemma 7.11. The next result is surprising, since it
eliminates several intuitive models.
Theorem 7.12

If G is non-singular, then the 3 parameters cannot 
cover the complete stability region.
Proof

From (7.3), FG(G-I)^ = 0.
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If G is non-singular, then G exists, and we can 
postmultiply equation (7.3) by G to give

FCG-I)^ = 0

since G and (G-^) commute. Hence from Lemma 7.11, the 
parameters are restricted.

For an unrestricted model, G must be singular.
In fact we have 
Lemma 7.13 i

If F (G-I) ̂  4" 2. 3.nd n = d+1, then

rank(G) = n-1 = d .
Proof

From equations (7.8) and (7.10)

F FG
G =

KR._yd — d

— "b 1 1

K

= P
%

where K is the matrix defined after equation (7.10). 
Since I F* * is non-singular by Lemma 7.10,

rank(G) = rank(P) = n-1 = d
Corollary

If n = d, rank (G) = d ,
Proof

^ G  = ^  .
Since ^  is non-singular, rank(G) = rank(K) = n.
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Example 7.3
An example of a polynomial . model of degree d-1 is

given by 

where

T
- -d+1 ' - U ^ + 1  -d ••• - 2 -

ir =

d+ X-r

Thus G can be written 

where
1 0 . .
1 1 . .

0
0

1 1

g satisfies (g-%) ̂   ̂+ 0 , (g-I) = 0 and a.(Q-I) ^ 0 .
Notice that is the transpose of the polynomial model
proposed by Harrison and Stevens (19 76). It is easily 
shown that

d- 1

2 /2 -1 ) =

so that FG(G-I)^-^ + 2 - 
It can also be shown that

(G-I)^ =

fi(Q-I)^  ̂0

O 0

(-l)^'*'^l^'^g ^ (-1)<
Hence F (G-I) ̂  =f= 2 and G (G-I) ̂  = 0.
Thus this model is a polynomial model of degree d-1, and 
since F (G-^) ̂  4" 2  and n = d+1 , the model is observable. 
Hence if is positive definite, the model converges
to an equilibrium solution, and the theory of Section 7.2 
is applicable.
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Example 7.4

Putting d = 2 in Example 7.3 yields a polynomial

where

one, .with G Of dimension

^t = 5 1 ÿ it + Et

1 . 0 0

it = 1 1 0 ^t- 1 +
J. 1 0

w-
w.

w.

is diagonal and var(e^) = v. Hence
FG = [3 2 Oj

FG(G-I) = Q  0

F (G-I)2 = [Ô -1 ^  .

FromExample 7.3, there is an equilibrium solution. Under 
steady state conditions, the Kalman updating equation is

where
it = Git-I + - mit-l)

A = [a , a ., .1 2  3
From equation (7.17)

3^ = -2+FGA = -2+3A^+2A2

32 = 1-FGA+FG(G-I)A = 1-3A^-2A2+2A^ = 1 -A^-2A 2 .

Referring back to Example 5.1, the stability conditions 
for this model are
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(i) l + ^ j + ^ 2  ^ 0

(ii) l-32^&2  ̂0

(iii) B2 < 1 .

The steady state equation for the covariance matrix 
is difficult to solve analytically for this model, so 

we shall attempt to find conditions under which (i), (ii) 
and (iii) are satisfied for all time t.

For convenience, we write

a b c
b d e
c e f

Using the Kalman updating equations (4.4) - (4.8), we find 
that A^^ A^^"^ is given by

A^^ = (3a+2b+w^)/D^

Â ĵ. = (3a+5b+2d+W2)/D^

where
Â .̂  = (3a+5b+2d+W2)/D^

= 9a+12b+4d+w^+W2+W2+v

Thus in the time dependent case,

(iii) 6 2 =

-W2+W2+V
9a+12b+4d+w^+W2+W2+v

which clearly lies between - 1 and 1 .
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(i) l+^j+^2 "

- . Z(3a+2b+Wj^]
9a+12b+4d+Wj^+W2+W2+v

4(3a+5b+2d+Wg+v)
^2 9a+12b+4d+W2+W2+Wg+v

It is not clear whether constraints (i) and (ii)
are satisfied.

Using equation (4.8), we can find expressions for
the elements of C, in terms of those of C, ,. In the—t —t- 1
following, (expression)^ is taken to mean the expression 
at time t. Where the subscript (t-1) appears on^the 
right, it is suppressed. From these values, we find that

( 3a+2b+Wj^) ̂  =

8 (ad-b^)+8w^(a+2b+d)+w^(9 a+1 2 b+4 d+w^+2w2 +4 (w^+v))

+4a(w^+v)+ (a+2b)(W2+V-W2 ) . (7.25)

All these terms are positive, except possibly the last 
one, which we examine in more detail.

Dt-i (a+2b) t- 1  = (3a+2b+Wj_ ) ^ _ 2 (W2+V-W2 )

so that if (3a+2b+w^ ) ^ _ 2  Is greater than zero, then 
(a+2b)^_^ has the same sign.as (w^+v-W2 ) and the last 
term of (7.25) is positive.

Thus sufficient conditions for l+3j_+62  ̂0 for 
all t is given by

(3a+2b+Wj^) Q > 0  

(3a+2b+w-]_) 2 > 0
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Similarly

D^(3a+5b+2d+V2+v)^ =

4 (ad-b^)+4w^(a+2b+d)+4w^(w^+v)

+(W2+v)(19a+21b+6d+W2+v)+W2 Ca+3b+2d+3(w^+v)).

We see that the first four terms are positive, and by 
the same method, the fifth term is positive if 
(3a+5b+2 d+W2+v) ̂ _ 2  is positive. Thus the Example 7.4 
has its parameters inside the triangular stability region 
for all t if the following initial conditions apply

(3a+2b+w^)g > 0

(3a+2b+Wj^)^ > 0

(3a+5b+2d+Wg+v)Q > 0

(3a+5b+2d+W2+v)^ > 0

The only term which could be negative in any of these 
inequalities is the. cdvariance b, since all the other 
variables are variances and hence positive. Hence it 
seems that these conditions are not very restrictive. 
Indeed, in many cases, the initial estimate of b is 
zero. Note that the conditions for stability given above 
are sufficient, and not necessary.

As before, we can write the model in the form of a 
Box-Jenkins model,

which has the same correlation structure as

V^Yt = ^t+q^t-l+®2 ^t- 2 •
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Multiply Y^y^ in turn by Y^y^y ^^^t-l' ^^^t-2'
take expectations, then equating the results of the two
equations

E j^Y^y^) ̂  = 2Wj_+2w 2 + 6  Cw^+v) = (l+g^+g^) var (a)

E j7Y^y^) CY^y^_^) = w^-4 (w^+v) = ( 1 +^2 ) var (a)

-w^+w^+v = ggVarfa) •

These have solution

w 2 = var(a) (l+g^+g^) ̂ /4

^ 2  = var (a) (-3 2 +(l"3 ^+3 2 ). /16) 

Wg+v = var(a)(l-g^+g^)^/13
from which

(l-g^+gg)^ > IGgg .

This appears to be a somewhat larger region than 
that covered by the Harrison-Stevens linear growth model, 
but in the steady state it still does not cover the 
complete region. g

FIGURE 7-3;STABILITY REGION FOR EXAMPLE 74
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CHAPTER 8

FORWARD-SHIFTED POLYNOMIAL PREDICTOR MODELS

.1 Definition of Model.

We now extend the ideas of the previous chapter to 
include DLMs for which the forecast function 
{y^(k);k=l,2 ,...} does not describe a polynomial path for 
short lead times, but for all lead times greater than some 
positive integer r, the forecast function is a polynomial 
of degree d-1. We assume that r is the smallest such 
integer. Thus for k > r > 0, the k-step ahead forecast 
is given by

'y^(k) = a^ + a.^k+,..+a^_^k^  ̂ (8 .1 )

where a^_^ ^ 0 , while for i 4  k < r,
there is no representation for y.(k) of the form 
m
E a.k^ where m is any positive integer and a^ ^ O.

Thus y^(k) is given by a curve of degree d-1
passing through the points y^ (r+l);,, .. ,y^ (r+d) -, All 
the polynomial models of chapter 7 correspond to this 
description with r = 0 , so that in these cases the 
polynomial curve passes through the points y^(l),...,y^(dX... , 
In the models of this chapter, however, the polynomial is 
shifted by an amount r > O and y^(1),.../Y^(r) are 
not on the curve. For example, consider a linear forecast 
model (d = 2) with shift r = 1. Then the curve is a 
straight line, as in Figure 8.1.
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FIGURE 8-1: EXAMPLE OF AN EVENTUAL FORECAST FUNCTION FOR
AN ARIMA (0,2,3) PROCESS.

This line passes through the points Y.,. (2) (3) ,. ..
but Y^(l) is not on the line. Thus there is a ‘jump' 
from Y^(l) to y^(2 ) which cannot be expressed in terms 
of the linear formulation

yt(k) = + *1% :

which holds for k ^ 2 .
As in Chapter 1, the representation (8.1) is 

equivalent to
v'̂ ŷ .(k) E 0

or
(8.2)

1=0

Since the predictor of the DLM (4.17) is given by

y^(k) = FG^e^,

equation (8 .2 ) becomes 
d
1=0

(̂ ) S 0 k > d + r + 1  •

This holds for all values of so we have
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In particular

As before, a^_^ =f 0 implies that

FĜ '*'̂ (G-I)̂ '"̂  4 0_. (8.4)

Since r is the smallest integer for which (8 .3)holds,

FG^(G-p^ + 0 • (8.5)
Equation (8.3) is clearly an extension of equation (7.3). 
Notice that G must be singular, otherwise (8.5) cannot 
hold. In order to find y^(k) for all k ^ 1 ,  it Is 
necessary only to find y^(l),y^(2 ),...y^(d+r). y^(k),
k ^ d + r + 1 can then be found recursively from equation 
(8.2). It is convenient to consider instead an invertible
linear transformation of these quantities, namely

^  ̂ r+l'^ r+1 ^ r+1FG9^,FG _0^,...,FG-^^ 0^,FG •^(G-I)_e^,...,FG^^-^(G-p^
Define
-r,d " [jFG) (FG^ ) '̂. . . (FĜ ""̂ )̂ (FĜ "''̂  (G-I) ) '̂. . . (FĜ '"'̂  (G-I)

(8.6)
Then R ,0, is an invertible transformation of —r, a—t
y^(1),...,y^(d+r). None of the rows of ^ can be zero, 
because this would imply that y^(k) is a polynomial of 
degree less than d-1 .
Lemma 8.1

The rank of the (r+d) x n matrix R^ ^ is r+d. 

Proof.

This is proved in the same manner as Lemma 7.1. The 
equation to be postmultiplied is slightly more complicated,
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and there are two distinct cases, k < r and k ^ r + 1 , 
where k is defined, in the proof of Lemma 7.1.

We now premultiply the Kalman updating equation(4.4) 
by to obtain

= Sr,d^t-1 +^r,dAt(yt-EGât_l) (8.7)

Furthermore, using
,r+2 ,_ i _ r+ 1FG^^^ (G-I) ̂  = FG^^^ (G-I) + FG^^^ (G-I) ̂  ,

R^ ^G can be expressed as

FG^ 0 1 0 • • . 0 FG'
FG^ • FG^

•
. 1

•

0 1 FG^
fg''+2 = 1 1 FG^+^
F G ^ + 2 (G-I) FĜ '̂  ̂(G-I)

•
. 1

•

(G-I)*^-^ 0 0  1 FĜ ~̂  ̂(G-I_)
— —

Writing
i = 1 ,...,r

r+l/_ i-r- 1 A. i=r+l,...,r+d
and

It'"' "'^d+r,t)-t ^^It'* *’'^d+r,t^ ' -t
we find that (8.7) becomes

ët = Mt-l + üt (Yt - mit-l)
where the elements of K = (K^j) are given by

(8.8)
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r 1 i = j-l j=2,...d+r
1 i = i j ^  r+ 1

0 elsewhere

Comparing (8 .8 ) with the work of Godolphin and Harrison 
(19 73), we see that the first r rows and the last d 
rows of this equation have the same formulation as 
equations (3.10) and (3.12) respectively of the above 
paper. We now consider equation (3.11) of Godolphin and 
Harrison (1973) in the terminology of this chapter. Thus 
we derive 
Lemma 8 .2

y^(k) = Fg’̂ Î^ = k > r + 1 •

Proof

\ = S k > r + 1
j=l j = l

which is the same expression as that which occurs in 
Lemma 7.2, with k replaced by k - r, and FG. replaced 
by FG "̂̂ .̂

For k - r < d, the summation reduces to

Following the argument of Lemma 7.2 we have for 
r + l £ k ^ r  + d

j = l 1 = 1  j=o -*

= y^(k) .
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The lemma follows, for all k ^ r + .1 from equation (8.2).
These results suggest that we are dealing with an 

ARIMA (0,d,d+r) process, r > 0, but before we can state 
this, we need to check the range of values that can be 
taken by in this model.

8 .2 Steady State Theory

As before , since we wish to compare the DLM with the 
static ARIMA model, we assume steady state conditions, so 
that equation (8 .8 ) becomes

\  = Mt-i + iL(Yt “ ^it-l) ' " (8^9)

Taking z-transforms of equation (8.9), we have
M(z) = z ^KM(z) + y (Y(z) - z ^M,(z)). (8 .10)

We need to solve this set of d + r equations to find 
M^(z)/Y(z) in terms of the elements of jj .

Lemma 8.3

Equations (8.10) satisfy 

M^(z) = (zY(z) - M^(z))
1 = 1  i=k •

1 4  k 4  r (8 .1 1 )
—d+r

M^(z) = (zY(z) - M^(z)) 2 y. (z-l)k-l-i
i=k

r+l<k£d+r (8 .1 2 )

Proof

From equation (8.10), we have
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M^(z) = z + .y^(Y(z) - z ^M^(z)) 1 < i < r

M^(z) = z“^(M^(z) + .M̂ _j_̂ (z)) + .y^(Y(z) - z“^M^(z))
r + l ^ i ^ r  + d - 1  

Md+r(z) = z + ̂ d+r(^(%) “ z“^M^(z)).

From the last of these equations (8.12) holds for k = d + r.
We can then prove by induction as in Lemma 7.3 that (8.12) 
holds for r + l ^ k £ d + r ,  and in particular

d+r r-iM 1 (z) = (zY(z) -M,(z)) Z- y.(z-1)
+ i=r+l 1

Substituting this value into the above expression for 
M^(z), we have

d+r r-izM (z) = (zY(z) -M,(z)) Z y.(z-1) +y„(zY(z) -M,(z))
^ ^ i=r+l ^ ^

d+r .
M (z) = (zY(z) - M_(z)) Z y.(z-l) z

^ i=r
which is (8.11) with k = r. We proceed by induction to 
prove (8 .1 1 ) for 1 4  k £ r, and the result follows;

Lemma 8.4.

The characteristic polynomial of the model, is given by
d+r d+r-iB(z) = 2
i=o

r . , d
= z^(z-l)^ + 2 y.z^“^(z-l)‘̂ + 2 y _  . (z-l)‘̂“ .̂ (8.13)

i=l i=l
Proof

The characteristic polynomial of the model is the 
denominator of M_(z)/Y(z). Putting k = 1 in equation (8.11)
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M^Cz) = (zY(z)-M^(z) )r- d . _ r 7
z U_..(z-1)■ z ^ + E u  z"^ 

i=l ^ 1 = 1  1

M^(z) 1 +
Collecting terms

rd _ r  r
Z U . (z-1) z + E U z 
1=1 1=1 ^

- 1

= zY(z)
-d _ r _7
Z y (z-l)"^z ^ + Z y.z“^ 

1 = 1  1 = 1  1
or
M^(z) 
Y (z)

z^^^lz-l)^ r d  _i _r r _i E . (z-1 ) z ^ + E u,z 
1 = 1 1 = 1  ^

z^(z-l)'^ d _i _r r _ n  
1 + E u , . (z-1 ) z + S UjZ 

1 = 1  1 = 1  ^

Thus the characteristic polynomial of the model Is ,

g(z) = z^(z-l)d + E u.zf'^Xz-l)^ + E U^.. (z-1)'^"^
1= 1 . 1=1

as required.
Lemma 8.5

Is given by 
1-1

3 = (^)(-l)^+ Z (^)(-1)^FG^"^A 1=1,...d+r
^ ^ i=o J

(8.14)

where 6 ^ = 1 , and we adhere to the convention that 
(̂ ) = o for b > a.

Proof
We need to express (8.13) as

(8.13) term by term

(z-1)^ = Z (̂ ) (-1)̂  
j=o 3

(8.15)
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r-1 r d
z y.z^ = Z Z i

1 = 1  ^ 1 = 1  1 = 0  ^ ]

r d+i d , . .
= I E Ul(k-l)(-l) iz^+r-k 

1 = 1  k=l ^ K ^

= E z^^r-k (-1)’̂'^. (8.16)
k=l i=max(1 ,k-d)

Assume r < d. Then the right hand side of (8.16) can 
be written

d+r-k E u (^.) ^ E z4+r-k ^  (y\) (-1)
k=l 1 = 1   ̂^  ̂ k=r+l 1 = 1  ^
E z'

+ T  z^+-k I yi( a )(-l)k-\
k=d+l l=k-d (8.17)

The final term of equation (8.13) Is

d
E
1=1

d- 1 d- 1
E u (z-l)“ ^ = E u E (".")(-l)Jz

^ ^ 1 = 1  j=o ]

(8.18)

Substituting the expressions (8.15)/(8.17) and (8.18) Into
(8.13), then for r < d , 

r
g(z) = z^+r + Ê z^+r-k 

k=l

+ E z 
k=r+l

d+r-k
(k) (-1 )^ + %i(k!i)(-i)^"^ +i—J.

k-r . . 1 .
j ,  ^r+l(k-I-r) (-1 )
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k=d+l

Consequently

where = 1 and

d+r ., 
6 (z) = E

1=0 ^

6 i = (f)(-l)^+ E FG^A( .'̂ .) (-1)^"^j = l  ^"3

8. = (f)(-l)^+ E FG^A(/y (-1)^ 3

+ ^E^ Fcf+k(G_i)i-dA( d- 3 )(_i)i-3 -r ^ ^ r+l,...,d
j=l —  - - - ^ 3 r

gj. = ^ FG:A(^f.) (-i)^-i + T  fg^‘'^(g-iP-1a(j_^7^) (-i)i-i-r

i = d+1 ,...,d+r.

Using a similar argument to that used in the proof of Lemma 7.5,

FG^"^^ E (G-I)^”^A(ĵ ^T2 ) (-1)^"^"^ =^ E (-1)3f g ^"3a .
3=1 3=0 ^

Also
S FG^A(.‘̂.)(-1 )^"^ = ^E (̂ ) (-1 )^FG^"^A . j=l—  - 1-3 j=i_r 3 —  -

Hence is given by (8.14) for all i, as stated in the
lemma.

If we follow the same arguments for r = d and r > d, 
we arrive at the same result. This definition of g^ is 
exactly the same form as for the non-forward shifted 
polynomial case (although if the same number of gs are to 
be found, then of course their values will be different, 
since d is different).
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We are now in a position to prove 
Theorem 8 . 6

Suppose the DLM (4.17) satisfies (G-I) ̂  = O,
(G-1) ̂  + 0, FG^'’'^(G-I) + 0. Then in the steady

state situation, the predictor y^(k) = FG is
identical to the k-step ahead predictor of an ARIMA (0,d,d+r) 
process (r > 0 ) if.and only if the model’s 
estimation scheme is stable in the steady state.
Proof

The proof of this theorem follows directly from 
Theorem 3.3. Setting p = 0 in this theorem yields

<t>j = (j)(-i)^

so that equation (3.33) is identical to equation (8.2).
Also, the values of in that theorem are
given by

i d i
6 . = 2 (?) (-l)hi-i 1 < i < di=o / -*

d
E

i=o
which, with Àj = FG^A (1 ^ j £ d+r) and = 1 , are
identical to equation (8.14). Substituting this value 
for Xj into equation (3.33), we have, in DLM notation

Fçkêt = FGk+^ê^_j_ + FGkA(y^ - FGS^.i)

which is the Kalman updating equation (4.4) premultiplied
by FG^, and hence holds for all k 2  1- Thus the stability
condition for the estimation scheme for the DLM, that the 

d+t a+r-iroots of E g.z should lie inside the unit circle,
1=0 ^
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are equivalent to the invertibility condition of the
d+r .

ARIMA (0,d,d+r) process, that all zeros of E g.z
i=o ^

should lie outside the unit circle.

8.3 Size and Structure of G

From Lemma 8.1, the dimension of G must be greater 
than or equal to d + r .  Thus if the first r forecasts 
do not follow a polynomial path, then there must be r 
more system variables than we would expect from the degree 
of the polynomial.
Lemma 8.7

The (d+r+1) x n matrix T
:  Sr,d' has rank d+r+1 .

Proof
We know that T must have rank at least d+r.

since it contains R^ ^ which has rank d+r. Suppose 
the matrix has rank d+r. Then the rows of the matrix 
are linearly dependent, and there are constants a^, - not 
all zero, such that

r . d
2 a.FG^ + 2 a^^.FG^+l(G-I)l"l = 0 . .

1=0 1=1
(8.19)

Notice that a^ 0, otherwise (8.19) implies that the rows 
of R^ ^ are linearly dependent, which contradicts L.emma 8.1. 
Postmultiplying equation (8.19) by G, we obtain

Fcf+^XG-I)^ + FG^+1 (G-I)^"^r d2 a.FG + 2 a ..
1=0 1=1

= O

from- which
^"*"1 < d— 1 r+ 1  i - ^  ̂ r+ 1  -,E a, ,FG^ + E a_ .FG^^-^(G-I)^ + E a ,FG^ (G-I)^ = O
1 = 1  1 = 1  r+1-- -■- 1 = 0  r+1 +1-
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so that
^ i d— 1

• ai-lEG + .2^ (3;+^ + (G-I) ̂  = O.

But all these terms are row vectors of R , and it—r ,d
follows from L.emma 8.1, that they are linearly independent, 
hence all the coefficients must be zero. In particular.

= 0 , so that (8.19) cannot be true, and
must have rank d+r+1 . V
Corollary

The dimension of G is not less than d+r+1-
Proof

f  £r,d
T has rank d+r+1 .The (d+r+1) x n matrix 

which implies that n, the dimension of £, is greater 
than or equal to d+r+1 .
Theorem 8 .8 .

Suppose the DLM (4.17) satisfies (8.3). Then the 
model is observable if and only if n = d+r+1 - 
Proof

The observability matrix (FG)^... (FG^ ^)^^ given

CT T ItF R ^ ^ T , since — —r,n-r-lj
the rows of one matrix are linear combinations of rows of

[T TF R. _ ^ T — —r ,n—r—X
must have rank n. But the last row of this matrix is 
FĜ '*’̂ ( G - I ) , which from equation (8.3) is zero for 
n-r-2^d, hence if the model is observable, n<d+r+ 2 or 
n^d+r+1 .

From the corollary to Lemma 8.7, n^d+r+l, hence 
n=d+r+l.

Conversely, if n=d+r+l, the observability matrix 
has the same rank as 
full rank.
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Leimna 8.9
When n = d+r+1, rank (G). = d + r .

Proof
The proof of this result is different from that of 

Lemma 7.13, only in that is replaced by Thus
we postmultiply Sr.d

T by G, to obtain

F
G —

—r, d

O'l 0 ... 0  “ 1--------
O'—  I K -r,d

where (here) K is defined by (8 .8 ). From this, 
rank (G) = rank (K) = n-1.

It follows that the forward shifted model is not a 
direct generalisation of the polynomial model. There is 
only one possible dimension for an observable model, and 
we have found no general restrictions on the stability 
region. However, this does not mean that the stability 
region will necessarily be unrestricted.
Example 3-1

We can verify this point by the following illustrative 
example with r = 1 ,
Take

F =[l 1 f], G =
0 1 0  

0 0 0 
0 0 1

W diagonal

and V > 0 .
The DLM described by these quantities satisfies FG^ (G-I) = 0, 
FG^ 4= O, FG (G-I) =1= O. In this case, r = 1 and d = 1.
Since n = 3 = r+d+1, the model is observable.
Let

a b c
b d e
c e f
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Then

£t = + E =

and

At = + V) =

d+w^ 0 e
0 '"2 0

e 0 f+W3

+ e +

''2 / (d+2 e+f+w
+ f + ''3_

®2 is given by

- 1 o] à t
= —w^/(d+2 e+f+w ̂ +W2+Wg+v).

Clearly^ -1 ^ 3-11 t , thus this model cannot
-cover the full region.

Example 8.2

.As in Example 8.1, r = 1, d = 1. We take

G =
0 1 O
0 0 1
0 0 1

with W diagonal, and var(e^) = v > 0.
From Lemma 8 .8 , the model must be observable, and this 
implies f^ ^ O. For simplicity, let

a b c

Gt-i b d e
c e f

Then

£t = GC^-iS. + E =

d e e " 1

e f f + '^2

e f f ^3_
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Using equations (4.4) to (4.8),

Then

= p i t  & 2 t  = £ t ^ V ( F P ^ r  + V)

= f^(dtw^) + f^e + f^e/D 

^2 t “ ^1 ^ + (f+w^) + fgf/D

Ast = + f3(f+w^)/D
where
D = f^d + 2(f^f2+f 2.̂ 3 ) e + (fg+fgï^f + f^w^+f^w^+f3 W3 + V

Assuming steady state conditions, so that A^ = A fpr 
all t, and the theory of Section 8 . 2 is applicable, we 
have

6 2 = £G(G-I)A

= [° “h  ̂ 3 -
= - A2 )

= fl(f3*3 - f2* 2 )/D-

Clearly, if becomes large compared to the other
variances, then

8 2 ^ -^1/^2 -
Similarly, if becomes large, then

^2 ^ ^1/^3 *
For a flexible DLM, we normally want g2 to be able to 
take all values between -1 and 1. Hence either

(a) fj_ = =- £3
or

(b) fj_ = -fg = -fg.
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First consider(a).
F = fi [l 1 l]

6 , = FGA - 1
= (Â  + 2A ) - 1.

Hence

and
= 3f^(e + ,2f + V7^)/D

1 - Bl + @ 2 = 2 - 2 f^A2 - f^Ag
= 2 - f^(3e + 6 f + 2 W2 + w,)/D. 

Now considering(b)
F = f^jl - 1  -1 ]

SO that

and
= FGA -1 = ^ 1( ^2 " 2^ 3 ) - 1

Hence
1 + g^ + &2 " ”^1‘̂3 ” “f ̂ (e-2f-W3)/p

and
1 - gl + g2 = 2 - 2f^A2 + 3f^A3 = 2 + f|(e-2f+2w2-3w3)/D,

Unfortunately, in neither case is it possible to draw 
precise conclusions about the range of g^ from DLM 
considerations alone, but either of these cases seems to 
be a significant improvement on E;xample 8.1, since g2 can 
take the full range of values.

We consider case (a) in more detail by adopting the 
covariance argument of Harrison (1967) as in Chapter 7.
For simplicity, let f̂  ̂= 1. We can write the DLM in 
the form
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V^t = ’®lt + + V8jt + VCt

VWit + ^2t “ ^2t-2 """ *3t ^3t-l ^3t-2 (8.20)

which has the same correlation structure as. an ARIMA (0,1,2) 
model

VYt = + g^a^_^ + g2 ^t- 2 * (8 .2 1 )

As in previous examples, we multiple Vy^ in turn by
Vy^y ^^t-1' Vy^ _ 2 and take expectations. Equating the
results from equations (8 .2 0 ) and (8 .2 1 ), we obtain

E |7vy^)^ = 2 w^ + 2 w2 + 3 W3 + 2 v = (1 + 3^ + $2 )var(a)

E^Vy^)(Vy^_^Tj = -w^ + 2 W3 - V  = 3^ (1 +^2 ) var (â

E jjVy^) (Vy^_2 ^  = -w^ + W3 = g2var(a).

Solving these three equation yields
+ V = (2 CltfL].+g:2 )̂  7§" - + 8 2 ) ) var (a) I:.?'

W 2 = (( 1 + + 8 2  ̂̂ /9 - 3 2 )var(a)

W 3 = (1 + g^ + 3 2 )^var(a)/9, 

from which we see that

2(1 + g]_ + 3 2 )= - 9gj_(l + 3 2 ) > O
and

(1 + - 982 4 ° -
2 ( 1  + B, + - 9Bĵ (l + 8 3 ) = 0  can be reduced to the
two straight lines

2 g2 “ g2 "* 1 " 0 and ^g^ * ^2 "  ̂ ^ '

Thus the stability region covered by this model is given 
by the shaded area of Figure 8.2.
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FIGURE 8-2: STABILITY REGION FOR EXAMPLE S-2.

Example 8.3
Another interesting if inconclusive example is given by

where

Then

—t
1 0 0
1 0 0 i f l  +
1 1 0

w
W = = W

w
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FG = [~3 1
FG  ̂= [̂ 4 0

FG^ (G-I) = 0
FG (G-I) = jj. -1 .

Thus this example represents a forward shifted polynomial 
model, with d = 1, and r = 1. F> FG, and FG^ are 
linearly independent, hence the model is observable, so 
that an equilibrium state exists and the theory of 
Section 8.2 is- applicable. Assuming the steady state, 
with Kalman gain matrix

A = 2̂. '
FGA = 3A^ + Ag

FG^A = 4A_.
From equation (8.14),

= -1 + FGA = 3A^ + Ag - 1

^2 ^ FG^A - FGA = - Ag.
Thus

1 + 8 2 ^ 2 “ 4A^

1 - 3i + ^ 2 = 2 (1 - Ai - A 2 ) .

If the model is to cover the full stability region, then 
it is required to show

(i) A^ > 0

(ii) 1 - A^ - A^ > 0

(iii) - 1  < A^ - A^ < 1 ,
Since it is difficult to solve the steady state equations,
we shall attempt to find conditions under which (i), (ii)
and (iii) are satisfied for all t, and hence also in

— 162 —



the steady state. For simplicity we write

Ct-l

a b c
b d e
c e f

Then using equations (4.4) - (4.7) we find that

where

= (3a + b +

= (3a + b + Wg)/^^

A3t = (3a + 4b + d + W^)/D^

— 9a + 6 b + d + w  ̂ + W^ + w ^  + v
Thus the above conditions become

(i)
(ii)
(iii) - 1 < (w.̂  - W 2 )/D^ < 1 .

3a + b + W^ > 0
3a + 4b + d + + v > O

Condition (iii) is clearly satisfied, and all values in 
the range (-1 ,1 ) are possible, since if w^ is large.
then -*■ 1 , while if w_ is large. a. -1. Using
equation (4.8), it is possible to find expressions for
the elements of C, in terms of those of C. ,.—t —t- 1

It turns out that if we set

(3a + b + Wj_)q ^  O 

(3a + b + Wĝ ) ^ 0
and

then
(33a + 23b + 4d + 3w, + 4(w_ + w_ + v)) > Or1 z 3 o =

(3a + b + w^)^ > 0 for all t.
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Unfortunately, it appears difficult to draw a positive 
conclusion about condition (ii). The only covariance 
involved is b, all other terms are variances and hence 
positive, so it seems likely that (ü) is satisfied.

Following the same argument as in the previous 
example, we find that

This has the same correlation structure as the ARIMA (0,1,2) 
process

Thus we have 
E|(Vy^)"

■VYt = + Bia^_l+S2 â _ 2  •

= 6w^+2w 2 +2 (w^+v) = (l+g^+B^)var(a)

E jjVy^) (Vy^_^)J = 4w^-(w2+v) = 3^(l+32)var(a) 

E[(Vy^)(VY^_2^  =

Solving these equations
i6w^ = (1 +

4 (w^+v) = (1 -

I6W 2 = (1 + 3^ - 163^

Thus we see that the stability'region is restricted by 
(1 + - 1632 = ^

as shown in Figure 8.3.

—16 4—



FIGURE 8 .3 :STABILITY REGION FOR EXAMPLE 8 3.

e

This is a larger region than that of Example 8.2. Since 
we have been unable to find conditions for ^ 0 ,
it is possible that this model is not stable, i.e. the 
3 's could fall outside the triangular region.
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CHAPTER 9

GENERALISATION

9.1 Representation of Model

In this chapter, we move away from systems which 
yield a polynomial predictor and consider a more general 
case. The general model is defined by

Yt ^ — t ■^^t (9.1)
= G8 t._i + . (9.2)

As before, y^ is the single observation, is the
n X 1 state vector, v^, w^ are random variables of*
dimension one and n respectively, with zero means, variance
V and covariance matrix W. F is a 1 x n row vector, 
and G an n x n matrix, both known and independent of 
t. These matrices will usually be very different from 
those in the preceeding chapters.'in particular, G will 
involve real-valued parameters. In principle, G could 
involve complex-valued parameters, but this situation 
appears to be unrealistic for practical purposes, and we 
will always attempt to avoid models of this kind.

Again from section 4.3 we take the linear predictor 
of y^^^ at time t to be

ŷ .(k) = (9.3)

where is given by the Kalman updating equation

it = G 0^_i + - içit-i)- (9-4)
A^ is of t h e same form as in Ç hapter 4, namely
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èt = + V) (9.5)
where

£t = + w (9.6)
and

TC. = E —t

= (i - h t D i - t * (9-7)
To generalise the theory of the preceeding chapters 

in a way which can be useful in practice, it is necessary 
to make more specific assumptions about some of the 
parameters of the system. We attempt to achieve this 
•generality by investigating the structure of the matrices 
F and G, and the following two very general conditions 
will be assumed.

For some given r ^ 0, s > 0:-

Assumption 1

The row vectors FG, FG^ ,. . . ,FĜ ~̂ ^
are linearly independent.

Assumption 2 
rtstlFG belongs to the vector space

t*4-1 T"+c;spanned by ^  , ...,FG . - •

Assumption 2 implies that there are real constants 

^1/^ 2 '" ""'^s such that
.r+s+1 ., „^r+s. , . „„r+lFG " +0_FG +...+(j) F̂G = 0 . (9.8)

The values assumed by the (j)̂ turn out to be crucial to 
■the basic properties of the model, and it is helpful to 
introduce the notation $(z) by

$(z) = ẑ +(J)̂ ẑ “^+.. .+(j)g_̂ z+(})g. (9 .9 )
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It is suggested here ttiat a useful class of statistical 
models is derived if $(z) factorises into two polynomials, 
one with d repeated roots of unity, and the other a 
polynomial a(z) with all its p = s-d roots strictly 
inside the unit circle. Accordingly, we make the following 
assumption about the polynomial (9 .9 ).

Assumption 3

$(z) = (z-l)^a(z) I (9.10)
I

where
a(z) = z^+a^z^ ^+...+ap 

with p = s-d, and all roots of a(z) are less 
than one in modulus.

The motivation for this assumption stems from the comparison 
of the general DLMs of this chapter with the ARIMA models 
of Box-Jenkins.

To ensure that steady state theory can be applied, 
we shall require all the models we use to be observable.
This means we make a further assumption.

Assumption 4

The model defined by (9.1) and (9.2) is 
observable, ie,the n vectors

n~l ■F,FG, . . . ,FG 
are linearly independent.

Under assumptions 1,2 and 4, there are constraints on 
n, the dimension of the system vector in terms of
r and s. We have
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Lemma 9.1

Under assumptions 1,2 and 4, 

r+s ^ n ^ r+s+ 1

Proof
The r+s linearly independent row vectors FG,

FG^,...,FG^^^ are 1 x n, hence the maximum number of 
these vectors which can be linearly independent is n, 
thus s+r £ n.

From assumption 4 , F, FG,...FG^~^ are linearly
independent. But from assumption 2 , FG^^^, FĜ "''̂   ,FG^^^^^
are linearly dependent. Hence n-1 < r+s+1, and the 
lemma follows.

The three assumptions leading up to Lemma 9.1 have 
clearly left us in a similar position to that of the 
previous three chapters, where there is a choice of only 
two dimensions for the system vector. We now investigate 
this situation further, with the object of generalising 
the results obtained for polynomial DLMs. Firstly, we 
obtain a matrix representation for the relationships 
between the predictors y^(k) = FG of various lead 
times k, at times t and t-1. To this end, we
premultiply the Kalman updating equation (9.4) by

k •FG (k > 0) to obtain
v+i ^

FG^^e^ =  f g " ^ / e ^ - l  + F G  A t ( y t  - I M t - l )  • (9.11)

If, for simplicity in what follows, we write
k̂ 'f, . for the k step ahead forecast FG 8 ,JC, "C —  —t

k\i^ ^ for the 'smoothing constant' FG A^
and

e^ for the one step ahead prediction error
(y^-FG8^ j) then equation (9.11) becomes
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(9.12)

This is valid for all k. > 0, and in particular for 
1 £ k £ r+s-1. When k = r+s.

+ %r+s,t=t •
r+s+ 1Now using assumption 2 and substituting for FG 

from (9.8)

.. . + *gFG=:+̂ ) it-l+U^+s, t^t

r+s

Combining (9.12) and (9.13), we find that

0 1 0  0
0 0 1 O

it =
0 0
0 . 0 -(f) ” ^ 2

ffc-l + üt®t (9-14)

where f^, are the 'prediction' and 'smoothing',
vectors respectively, given by

.......^ r + s , ^it [fit'

ü t = f l t ' - - .......^r+s,[] •

Equation (9.14) is compactly represented by

it = iit-l + lit®t

where K = (k̂ j) has elements given by

(9.15)
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defined , but this

^1 j = i+1 1 £ i £ s+r-1

^ij " y^s+r+l-j i = s+r, r+ 1  < j < r+s

elsewhere

Equation (9.15) is analagous in many respects to the
predictor updating equations of previous chapters, for
example, equation (8 .8 ). However, it is worth pointing 
out that this is not a straightforward generalisation 
of the polynomial results. In the above, we have effectively

(FG) (FG^ ) "̂ .. . (FĜ "̂  ̂) 
construction is very different to that of Chapters 7 
and 8 . For a genuine analogy with the polynomial case,
R^^g would have involved the roots of $(z), which may 
be complex. In this case, the form of K would have been 
simpler than that of (9.15), but the matrix would have 
contained complex elements. Moreover, the matrix K will 
play a role in the construction of a suitable G matrix, 
which would have implied that some elements of are
complex linear functions of elements of This is
difficult to interpret realistically when confined to 
real-valued data. Thus the approach outlined above is 
considered more appropriate for the general case.

It is interesting to note that the matrix in (9.14) 
has been considered in a related context by Kalman 
(1963b); see, for example, the discussion by Priestley 
(1 9 8 0 ) where it is described as one of the canonical 
forms for a minimal realisation of the linear model

^t " ^t ^l^t-l"^* • •■^^q^t-q*
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The characteristic equation of the matrix K is
X -1 0 0
0 X -1 0

det(AI - K) =

0
0 0

Expanding by the last row
r+s- 1

X
(j)̂ . . cj).

-1
A + (j) .

=0 .

r+s- 2 2,r+s-3

= X' Î A +^2  ̂ ^+...+^g

= X $(X) (9.16)
where 0(z) is defined by equation (9.9). This interesting 
connection between the predictor updating equation (9.14) 
and the coefficients of equation (9.8) can be summarised 
in the following result:
Lemma 9.2

The characteristic equation of the matrix K is given
3Tby X 0(X) =0, i.e. K has eigenvalues

0  (r times)
1 (d times)

and the p zeros of a(z) .

9.2 Steady State Theory

In previous chapters, we found that in the steady state, 
the DLMs considered were comparable to the ARIMA models 
described by Box and Jenkins. To find out whether this 
applies to the general model defined by (9.1) and (9.2) , 
we must assume steady state conditions, so that A^ = A 
for all t. .
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We can now apply z-tranaforms to equation, (9.15), giving 

F(z) = z")-ra;̂ (z) + ,p(Y(z) - z'^F^tz)).

In component form, tkia becomes

F%(z) = z" Fk+i(z) + U]̂ (ï(z) - z'-'-F̂ Cz)) 1 < k £ r+s- 1

^r+s(^) ^ + Uj.̂ .g (Y(z)-z'^'F^ (z) ) .

Rearranging, we have

Fk+l(z) = zF^Xz)-t^(zY(z)-F^(z)) 1 1  k < r+s-1 (9.17)

zFr+s(:) + £  *lFr+s+l-l(:) = U^ + 3 (^)-F^ (z) ) , (9.18)1=1

To determine whether or not the model is stable, we need 
to find the denominator of Fj^(z)/Y(z), which, however, is 
the same for all k = l,...,r+s, since it is given by 
the determinant of (z I- (I-AF) G) , as discussed in Section 
5.1. We first prove 
Lemma 9.3

k- 1  v-i-n k- 1  , _. - - •F, (z)=F,(z) E y.z -Y(z) E y.z k = 2,..., r+s (9.19)
^ ^ 1=0 ^ 1=1 ^

where = i.
Proof (by induction on k)

If we put k = 1 in equation (9.17), we find 

Fgfz) = zF^(z)-y^(zY(z)-F^(z))

= (z+y^)F^(z)-y^zY(z).

Putting k = 2 in equation (9.19) yields

F^(z) = F^(z) Cz+y^)-Y(z) y^z .
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This confirms the validity of (9.19) when k = 2.
Now suppose that (9.19) is true for some given value 

of k. Then from equation (9.17),

= zFj^(z)(zY (z)-F^ (z) )
k -1 v-i-i k - 1  .= zF-, (z) E y.z -zY(z) E y.z -y. (zY(z)-F^(z))

^ i=l ^ ^ ^

= F^(z)

1=0

k-i -zY (z)

k . k
= F,(z) Z p.zk-i-Y(z) Z p.z^+l"^

4- 1 = 0  ^ 1 = 1  ^

which is (9.19) with k replaced by k+1. Since (9.17) 
is valid for 1 £ k £ r+s-1, equation (9.19) is valid 
for 2 £ k £ r+s.

Lemma 9.4

The characteristic polynomial of the model is given

z^^s+ 2 y.z^^s-i+ 2 (j). E y.zS+r-i-j
1 = 1  1 = 1  +  j=o 9

Proof

(9 .20)

The characteristic polynomial of the model is the 
denominator of F^(z)/Y(z), so we need to solve equations 
(9.17), (9.18) to express F^^z)/Y(z) in terms of the 
elements of jj.

Substitute for F^(z) r+1 £ k £ r+s from Lemma 9.3
into equation (9.18). This yields

or
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r+s- 1  , . r+s- 1
F, (z) Z y.z -ï(z) I y_J- i=o ^ l=x ^

-■̂  j=o  ̂ j=l : ,

= U^^g(zY(z)-F^Cz)) . 
Collecting terms 

r+s- 1
Fĵ (z) S y.^r+s-l+ I * . ^ ^ 2  "y.zS+r-i t y

1 = 0  1 = 1  j=o

= zY(z) 
Consequently

F^(z)

Wr+s+^^z"^ E *."+E"'y zS+r-i-ji=o ^ i=l 1 i=l ]

T v - ” * -  •
Jr. =0

s+r- 1

Y (z)

s+r-l-j

Z y.z^+s-i+ z ()). z ^.z^+r-i-i 
1 = 0 1 = 1   ̂ j=o ^

The characteristic polynomial of the model Is the denominator 
of this expression, which Is the same as (9.20) as required.

The final term of (9.20) can be expressed In a more 
convenient form as follows:

I yjsT+s-i-i = .E
1 = 1  j=o . 1 = 1  k=l

r+s mln(k,s)
= Z z^+s ^ Z 'î>î k-lk=l 1 = 1  1 K 1

k=l

+ T  ,r.s-k ^
k=s+l

Then the characteristic polynomial becomes
1>=1
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g(z) =
S _.r- i

, Z y .+ . Z 4.y._.
i = l L ^ ,j = i 3 ^ 2

* r  -  •
i=s+l

or

where
g(z) = z^+s+ Z g.zT+s ^ (9.21)

i=l ^

8x = Wx + T  1 < i < s
(9.22)j=l

®s+i = ^s+i + '.T'Oĵ 's+i-j 1 4 i i ^ •3 = 1
From Chapter 5, if the model is to be stable, then the 
zeros of the characteristic polynomial g(z) must be 
less than one in modulus. We are now in a position to 
prove
Theorem 9.5

Suppose that assumptions I , 2 and 4 hold,
where the zeros of $(z) are less than one in modulus.
Then under steady state conditions the k-step ahead 

k''predictor 0_̂ of the DLM coincides with the k-step
ahead predictor of an ARIMA (s,0,r+s) process with moving 
average parameters 3 2 / • - • as defined in (9.22)
if and only if the estimation scheme for the DLM is 
stable in the steady state.
Proof

Equation (9.11) can be rewritten as

Yt(k) = •

So let of Theorem 3.2 be replaced by Then the
predictor updating equation (9.12) is equivalent to 
equation (3.20). The theorem then follows from Theorem 3.2
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i ̂For if we postmultiply (9.8} by G i ^ 0, and then
replace FG _9̂  by y^(k), we have equation (3.19). The
definitions of the given by (3.21), (3.22) and (9.22)
are the same,hence Theorem 3.2 can be applied, and the
predictors of the DLM are identical to the predictors of
the ARIMA (s,0,r+s) model if and only if the roots of 

r+s-iZ g.z are less than one in modulus i.e., if and
i= 0
only if the estimation scheme of the DLM is stable.

Corollary
Under assumptions 1, 2, 3 and 4, the k-step ahead

k'̂predictor FG of the DLM is identical to the k-step
ahead predictor of an ARIMA (p,d,p+d+r) process if and 
only if the estimation scheme is stable in the steady state

Proof
If 0(z) can be factorised into (z-l)^a(z) as in 

assumption 3, then the proof follows from Theorem 3.3 in 
the same way as Theorem 9.5 follows from Theorem 3.2.

These two results are the weakest generalisation of 
the equivalence Theorem 7.6.

9.3 Size and Structure of G
We already know from Lemma 9.1 that n is either 

r+s or r+s+1. To get a clearer picture of the problem* 
we first investigate a model with r=s=],, which was 
discussed briefly by Harrison and Stevens (19 76) and in 
the discussion following their paper by Godolphin (19 76b)
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Example 9.1

®t = ®t-l +

where we assume |g| < 1, g ^ O, and cov(6 y^,6 ĝ ) = 0. 
Following the covariance argument as in Section 7.3, we 
find that

Vy^-gVy^_j_ = 5g^+ôy^-ôu^_j_+V£^-gVe^_^ 

which has the same correlation structure as

Vyt~gVyt_i = t̂'’’̂ l^t-l'‘'̂ 2 ^t- 2 "

Let = Vy^-gVy^_^. Postmultiplying in turn by
X^r X^_^ and X^_g and taking expectations, we find that

e [x^  = (l+g^+g|) var (a)
= var(Ô3 )+2var(dy)+2 (1+g+g^)var(e)

E ^ X ^ _ ^ =  B^fl+ggivarfa)
= -var(ôy)- (1+g)^var(e)......................

A - 2]= Ggvarta)
= gvar(e) ,

From these equations, ^2 h.as the same sign as g, while 
is necessarily negative (assuming ^2 ^ -1 ).

var(ôy) = (1+ 3 2 ) + (1 +g) ̂ 3 3 /^ var (a)

which implies that
3^ (1+ 32) + (1+g) ̂ 32/g =10

or
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6^ ^  “ (1+g)^^2/?(1+62)•
The lines

Bi (1+ 0 2  ̂+ ^6 2 /9" = 0 and l+g^+gg = 0

meet when 0 2 " 9 ' hence the maximum modulus, attained 
by $ 2 i-s |g|, thus confirming the conjecture of 
Godolphin (19 76b) that these models are even more 
restricted than the corresponding polynomial models.

g..

FIGURE 9.1 :INVERTIBILITY REGION FOR EXAMPLE 91, WITH 0 < g  <1.

g -

FIGURE 9.2:INVERTIBILITY REGION FOR EXAMPLE 9-1,WITH - l < g < 0 .
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We seek to enlarge the region in which the parameters can 
lie. By analogy with, previous work, it is reasonable to 
suppose that the dimension of the model should be 
enlarged by one. First we prove

Lemma 9 .6

Under assumptions 1 , 2 and 4 , the characteristic
polynomial of the matrix G coincides with the minimal 
polynomial of G.

Proof
The minimal polynomial g(X) of any matrix A is

defined as the monic polynomial of least degree such that 
g (A) E 0. (A monic polynomial is one for which the
coefficient of the highest power is one). We first give
some results from linear algebra.

1. Any polynomial h(X) for which h(A) E O has 
a factor g (X).
For h(X)' can be written

h(X) = g(X)a(X) + r(X) 
where r(X) has degree less than that of 
g(X) and r(X), a(X) are unique. Then 
h(A) E 0 implies that r(A) E 0 since g (A) E 0.
But this contradicts the minimality of gCX) 
unless r(X) E 0. Hence g(X) is a factor of 
h(X) .
We write g(X) |h(X) .
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2. The minima.1 polynomial is unique. For if 
, 9 2 %̂) are both minimal polynomials 

of A, then
9l(%)|92(A) 92 (-X) |gj_(A) ,

hence g^CX) is a simple scalar multiple of 
g2 (X). Since both have leading coefficient 
unity, we have g^(X) = 9 2 (X).

From assumption 4 , it is clear that there is no polynomial 
g(X) of degree less than or equal to n-1 such that 
g (G) = 0. Hence the minimal polynomial has degree ^ n.
But the characteristic polynomial f(X) = det(XI-G) 
has degree n and f(G) = 0. Hence the minimal polynomial 
has degree n, and since it is unique, is identical to 
the characteristic polynomial.

Lemma.9.7

The matrix G satisfies

s+r £ rank(G) £ n .
Proof

The linearly independent set {FG,FG^,...FG^^^} 
can be regarded as a set of mappings on G,
{F(G),FG(G),...FG^^^ ^(G)}, hence this is a subset of 
the image space of G. The set can be extended to a basis, 
the dimension of which is defined as the rank of G.
Thus we have s+r £ rank (G) . But G has dimension n, 
so that its rank cannot exceed n, and the-result follows. 
Theorem 9.8

(i) When n = s+r, r is necessarily zero, and the
characteristic polynomial of G is g(X) = $(X). 

(ii) when n = s+r+1, g(X) = X̂'*’̂ $(X).
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Proof

First vre note that if hCXi is. any real polynomial 
such that F̂ h(G) = 0, then h(X) factorises into g(X)
times some other polynomial in X, i.e. g(X)|h(X). In 
particular, from equations (9 .8 ) and (9 .9 )

I t*-4- 1g(%)|x $(X). (9.23)

(i) Suppose n = s+r, then from Lemma 9.7, rank(G)
is n, which implies that zero is not an
eigenvalue of G, and X is not a factor of
the characteristic polynomial of G. Hence
g(X)|#(X), where g(X) has degree nr. .and
$(X) has degree s. It follows that
n = s+r £ s, so r must equal zero and the
characteristic polynomial is 0 (X).

(ii) Now suppose n = s+r+1. From Lemma 9.7,
rank (G) is n or n-1. Using (9.23), the

1characteristic polynomial g(X) = X 0 (X) 
since both are monic of the same degree.-- -

Corollary
(i) When r > 0, n must take the value r+s+1,

the characteristic polynomial is
t*-4- 1g(X) = X 0 (X) and rank(G) is n-1.

(ii) When r = 0, n can be s or s+1. When
n = s+1, g(X) = X0(X), and when n = s, 
g(X) = 0(X): In both cases, rank (G) = s.

For if the characteristic polynomial of G is 
r+ 1X 0 (X), then zero is an eigenvalue of G, so that" 

rank (G) = n-1 - s+r, while if the characteristic 
polynomial is 0 (X), then zero is not an eigenvalue, and 
rank (G) is n.
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By analogy with, previous work, it would seem interesting 
to investigate the range of the when r = O and
G is of dimension s. From equations (9 .2 2 ), we have

Bs = + .5.]--L
S S“1 .= FG A + Z cj) .FG “"a + d)

 j=i ^

s s-i= F(G + Z G 3) A + 0
j=l ^

s  ̂ s—i= F(G^ + Z *.GT J)A + cj)̂ (l-FA) j=l - S --

= F0(G)A + 4)2 (1-FA) .

When G is of dimension s,0(X) is the characteristic 
polynomial of G,. hence 0(G) = 0, yielding

B3 = .^^d-FA).

From equation (9.5) , 0 ^ FA ^ 1, hence 0 ^ (1-FA) ^ 1,
thus |gg| lies between 0 and |4^| and takes the
sign of This restriction seems somewhat severe in
view of the permissible range for g ( - 1 < g < 1 ),S s
and should be avoided if possible. It would therefore
appear that an improved dimension for G is n = s+1.
Thus, even when r = 0, where there is a choice of
dimension for G, we shall consider only models of
dimension n = r+s+1. Thus the. characteristic polynomial

r+ 1of G is g(X) = X 0 (X), i.e. X times the characteristic 
polynomial of K (equation (9.16)). This suggests that 
one choice for a formulation of the matrix G is given 
simply by enlarging the dimension of K by one.
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rememhering that the extra eigenvalue must he. zero, and 
that the rank of G must be n-1. Thus

0 ' 1 0 . . . 0

G = 1
1

0 1 K
•

Example 9.2

Let the characteristic equation of G be given by
X(  ̂ ~ X(X—l) (X-+a) = X̂  + (a-l)X  ̂—aX, where
|a| <1. Thus p=l, d=l and r=0 . Then we take

“ 0 1  0 ■*
G = 0 0 1 

0 a 1 -a
•

We assume W is diagonal and positive definite and let 
F = 1 2 ^ 2  ^3 ]" From the observability criterion (5.19), 
we see that this model is observable if and only if 
f2 =1= 0. Thus, assuming f^ ^ 0, there is an equilibrium 
solution, so that the theory of Section 9.2 is applicable. 
In particular,

gg = -a (1-FA) + F(G+aI) (G-I)A.
We define

at = var(0 2 t-e2 t>

bt = cov((62t-e2t)/(93t-03t))

dt = var(e3t-03t).

Then using the time dependent equations (9.5) and (9.6)
ITwe find that A^ = ^2 t Is given by
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A l t  "  ( a t - l ( f l + " f 3 ) + b t _ i ( f 2 + ( l - o ) f 3 ) + ( j W i ) / D t

^ 2 t  " ( b t _ i ( f i + g f 3 ) + d t _ i ( f 2 + ( l - a ) f 3 ) + f 2 W 2 ) / D t  

A 3 î = (at_ia(f i+afj)+bt_i (1 -a) fi+af2+2 a(l-a) £ 3  

+dt_i (1 -a) ̂ £3+ (1-a) f2 +f 3W 3 )/Dt
where

l>t =  ( f i + a f 3 )  ^ a t ^ i + 2 ( f i + a f 3 )  ( f 2 + ( l - a ) f 3 ) b t _ i

+(£3 + (1-a)f3 )^dt_i+f|wi+f|w2 +f3W 3 +V, 

Therefore, the time dependent value of ^2 i-s

@2t = ^  + fl(-oAit + (a-1 ) Agt + A 3t)

= (-av - af^w^ + (a-Df^fgWg + f^f^w^j/D^.

We would like to be able to take all values in
. he range (-1,1). We see that

(a-1 ) fi
. lim g.w^4<D 2 t ^ 2

and
lim g« - .w ̂ ^00 -^3

If g is to take all values in the range (-1,1) then2
either

(a) f 2 = (a-l)f^ and f ̂ = “f]_
or

(b) f2 = (l-a)f^ and f^ = f^ .

We shall consider the second of these models in more detail
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Example 9.3

Put = 1  in Example 9.2(b) . Then the model is
given by

Yt = d  l-a + Ct

—t

matrix of w. is —t

0 1 0

0 0 1

0 a 1 -a

0 , var(s^)
— — i,

it-i + îît

where |a| < 1 , a =|= 0 , var(e^) = v and the covariance
w.

w.
w.

Following the same arguments as in Example 9.2,
IT .= I A^^ A ^ 0  is given byAt = [a

= (a^_^(l+a)+2b^_^(l-a)+w^)/D^

^2 t ^ (b^_^(l+a)+2 d^_^(l-a)+(l-a)w2 )/D^

^3t “ (a^_]_a(T+a)+b^_^ (1-a) (l+3a)+2d^_^ (1-a) ̂ tw^)/D^
where

= (1+a)^a^_^+4(l+a)(l-a)b^_^+4(l-a)^d^_^+w^+(l-a)^W2 +W2+v.
Thus

3 2 t “ (-av-aw^-(a-1 ) ̂ 2+^^)/D^ 
Clearly

and

lim 3 - = - 1

lim 0 2 t ^ *« 3 ^
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Thus 32t take all values in the range (-1,1), as
we would expect by the. construction of the model from that 
of Example 9.2. From equation (9.22), the steady state 
value of is given by

3i = FGA+&^ = FGA + a-1
so we have

1 + + 2̂ = (3-a) (A^a+Ag)
and

1 - 3^ + & 2 = 2 (1-a)-A2 (a^-a+2 )+A2 (3a-l).

The time dependent values .of these quantities are given by 

(l+32+&2^t ” (3-a)[a^_^aCl+a)tb^_^Cl+3a-2a^) -

+2 d^_^Cl-a) + a(l-a)w2 + w ^  /D^

(1-32+82)t ~ [a^_2 (l+a) Ca^-a+2) + b^_2 (5-8a + â  - 2o?)

+ 2 d^_2 (l-a)(l-3a)+2(1-a)(w^+v)

+ W 2&(1 —a) (a-3) + W 2 (a+1 ^/D^
Unfortunately, it is difficult to determine whether these 
values satisfy 1+ 8 2 + 0 2   ̂^ and 1 -8 2 + 0 2   ̂ 0 - It Is' 
conjectured that these inequalities are satisfied in the 
steady state.

Assuming the estimation scheme of the model is stable, 
in the steady state, we follow the covariance argument, 
as in previous examples.

= 8it+(l-a)e2t+83t+Ct-
Let

\  = yt+*iyt-i+*2yt- 2  

= yt+(“-i)yt-i"“yt- 2 •
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Writing
^it " i- = 1/2,3

yields

From the system equations

'('it = *2 t-l+"lt+(G-l)"lt-l-o"lt- 2  

'<'2 t = ^3t-l+"2t+("-l)"2t-l-°"2t-2 

^3t = ""2t-l+*3t • . .

Writing u^ = some straightforward algebra
yields

= u^+(a-l)u^_^-au^_2+W2t(l-a)+W2t_2(3-a)a

+{a-l)w2^_2+W3^+(l-a)w3t_i+W3t_2 •
Thus has the same correlation structure as an
MA(2) process

Multiplying X^ in turn by X^, X^_^, X^ _ 2  and taking 
expectations

= (1+3 2 + 0 2  ̂var (a)

= 2 (1 -a+a^)u+(2-4a+lla^ - 6 a^+o^)Wg+(3 -2 a+a/)w. 

E^X^X^_^ = 8 2 (1+0 2 ) var (a)

= - (1 -a)^u+2 (l-a)w2 

e|^X^X^_2̂  = 0 2var(a)

= -au-(1 -a.) ̂ W2+W^ 

where u = var (W2 +̂S.|.) •
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This set of equations implies no obvious restrictions 
on 3  ̂ and 8 2 / so it seems possible that this model, 
could cover the complete stability region.
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CHAPTER 10
%

CRAMER-RAO BOUNDS

10.1 Discussion

We now turn our attention to a related problem, which 
is currently of interest to control engineers, namely the 
application of the Cramer-Rao bound to state-space models. 
This provides a lower bound on the variance of an estimator, 
which is clearly useful in determining the quality of the 
estimators used, and whether a 'better' estimator could be 
found. This topic seems to have received very little 
attention in the literature, in particular, the Cramer-Rao 
bound appears not to have been applied to DLMs. In this 
chapter , the bound and conditions for it to be attained, 
will be investigated in the context of the DLMs defined in 
Chapter 4, where all distributions are assumed to be normal.

However, in contrast to previous work, the system 
matrix G is required to be non-singular. It is usually 
assumed in the control theory literature that the inverse 
of G exists, although it appears that this assumption is 
not always necessary. It is possible that the results given 
below can be extended to a singular G by a suitable choice 
of generalised inverse, but this raises problems of 
uniqueness. The possibility that G may be singular will 
not be considered here.

We first give a very brief description of Cramer-Rao 
bound theory.

Suppose are observed random variables
with known joint density function h(y^,y2 ^ i n v o l v i n g
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a vector parameter _0. It is required to estimate a function 
aC9_) by a function ' of the observations. Then
subject to some regularity conditions, the Cramer-Rao bound 
gives a lower bound on the variance (or covariance matrix) 
of any unbiased estimator of a W  . We shall not consider 
here the form of the bound for biased estimators. The 
§_r a(_e) , and t(Z]_̂  • • • may be vector or scalar valued.

It has been suggested in several texts that the Cramer- 
Rao bound is attainable if and only if the joint density 
function of the belongs to the exponential family. A
paper of Joshi (1976) gives an example of a non-exponential 
density for which the Cramér-Rao bound is achieved, but 
general necessary conditions for attaining the bound seem 
not to have been established at this time. However, if the
density function of the y^ is known to be normal, and the
Cramer-Rao lower bound exists, then the bound can be attained 
under suitable conditions on a(0_) and its estimator
È.(Zi 'Z2 ' • • • /Z])̂) •

All the results pertaining to DLMs will assume'that the
density function of the y^ is multivariate normal. For
this reason, the details of Cramér-Rao theory given in the
following sections assume that the density function is 
normal. Thus the likelihood belongs to the exponential 
family, which enables the order of differentiation and 
integration to be reversed. This simplifies many calculations, 
in particular, it means that all but one of the regularity 
conditions for the Cramer-Rao bound are automatically •
satisfied.
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10.2 Application to the DLM

The DLM has the form
= F9t + (1 0 .1 )

it = iit-l + ^t (1 0 .2 )

where, in general, y^, y^ are vectors of dimension m, 
and e_̂ , w.j_ are (n x 1) vectors. The y^ are the 
observations, F and G are coefficient matrices, assumed 
known, of dimensions m x n and n x n respectively and 

is the unknown 'parameter' to be estimated, y^, w^ 
are random variables, each with zero mean and satisfying:

ill/] = Ii«ij , = W.6.. , = 0 for all i,j

From equation (10.2) , is a function of a random variable,
and hence is a random variable itself , and thus cannot be 
considered a parameter for the purpose of applying the 
Cramer-Rao bound to its estimator. However, it is reasonable 
to consider a constant (that is, “ E(^^) with
probability one) , and hence as a parameter. From (10.2)

t- 1  t.-2 20. = G^ 0, + E G w. . (10.3)—t — —j. . — —t— 11=0

so that E (2̂ ) = G^ —̂1* For-simplicity in what follows 
the application of the Cramer-Rao bound will be restricted 
to functions which do not involve random variables, that 
is, we shall estimate (t > 1 ) only when the 'plant
noise' is absent. Thus we confine our attention to models 
of the form

Zt = lit + it
it = iit-l • (10.4)
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This enables us to write

it = + it CIO.5)

where y^ N(0,V.^) . It is, of course, possible to estimate 
6.2 whether or not plant noise is present.

It turns out that under these restrictive conditions 
on the DLM (G singular, w.̂  absent, y^ normally 
distributed) , the bound can be achieved if and only if the 
model is observable. This provides us with an additional 
reason for requiring models to be observable.

10.3 The Scalar Case

Here it is assumed that m = n = 1, that is both the
observations y^ and the parameter 0 are scalar.

The joint probability density function of y 2 /»»wY^
is denoted by L.

If we wish to estimate aC0)'̂ . then the lower bound
on the variance of any unbiased estimator t(y^,...,y^)
of a(0 ) is given by

^  2
var(t) \> (a*̂ (0))^/E 

The equality in (10.6) is satisfied only when

91ogL 
90 (10.6)

^ 0^^ = f (0 ) t(y^,... ,ŷ )̂ + g(0 ). (10.7)

(Rao 1973, p.325), where f(0), g(0) are functions of 
0 . only.

Since our assumptions imply that the order of
differentiation and integration can be reversed,

2
E 19logL\

\  98 j
= -E 9 loqL 902 (10.8)

the second expectation being usually much easier to evaluate 
±haiL_t_he__firsh. E-or_the_ same reason.^ ____
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r 9 loqIi~1 _
L  36 J  -

and by definition, E(t) = a(0 ), hence taking expectations 
of (10.7) we have

g (8 ) = -f (9>a1e)'' '

so that (10.7) becomes

= f(0) (t(Yj_,. - a(6 )). (10.9)

Example 10.1

The restricted DLM for the scalar case is given by 
y^ = f8^ + v^ and 0^ = g 0^_^, where

^ and E = 0, t :|= j. Thus^t
^t

= a"
= f = fg^ ^0  ̂ and

t=j
E[jyt-E(Yt))(yj-E(yj))] = t+j.

Thus the y^ are independent, with mean fg^ ^0^, variance 
and the joint probability density function L of 

y 2 f"'',yQ is the product of the density functions of the y^
If we make the additional assumption that v^ N(0,a^)
for all t , then y^ 'v N(fg^ ^0 ^,a^) and

1 N/2 1 N 2
L = (2i^) Gxp{- ^  (y.-fg 0 )̂ }.

i— 1
Taking logs, we have

N
log L = - I log 2Trâ - Z (y|-2 fg^"^0 2y2 ‘’’

i=l
In what follows, it is assumed that is known. This
somewhat unrealistic assumption yields the same results as 
those obtained when is unknown.

We wish to estimate 0^ = g^ hence

a'(0 )̂ = g^ ^
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^  fg^ - 1-i- 1 —J.

: ( f g - Y .
1 1 = 1

implying equations (1 0 .6 ) and (1 0 .8 ), we find that the 
Cramer-Rao bound for 6^ is given by

var(t) > _

i=l
where t is any unbiased estimator of 6^. Equation (10.9) 
implies that

a  ̂ I (y -fgi"le.)fg^"l = f (8 ,)(t-g“"^0.). 
i=l ^ ^ ^

Equating coefficients of we find that

a’  ̂ Z (fgi'l)^ = f (0 )g^"^. 
i=l -L

N—1Thus the estimator of 0^ = g 0^ which attains the 
Cramer-Rao bound is given by.

"  ^
i=l

^ 1 = 1  ^  "
N . _ 2which is a function of the sufficient statistic Z g y..
i=l ^

IVhen £ = g = 1 , this example becomes the familiar steady
model. The minimum variance estimator 0^ is then given by

N _
t = Z y./N = ÿ i=l 1

with variance a^/N.
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10.4 Vector parameter 0, scalar observations

In this section, it is assumed, that m = 1 and n
is greater than or equal to one. The generalisation of
±he Cramer-Rao bound to this vector case, which is described 
in both the statistical (e.g. Rao, 19 73) and engineering
(e.g. Eykhoff, 19 74) literature, is as follows;

Let a(^) = 1^2 ' • • • (8.̂  be the vector function
of _0 to be estimated (in general, r £ n, where n is

9 a , which is the r x n 

, exists for all 0.

the dimension of _0) , and suppose
9e"̂9a

matrix whose (i,j)th element is
90
i

9 0 j
If t(y^,...,y^) is an unbiased estimator of a(_0) , then 
subject to some regularity conditions

F [ct-a) (t-a) -
90T - 90

(10.10)

is non-negative definite, where

J = E 91oqL 91ogL 
9 0 9 8"̂ (10.11)

and L is the joint probability density function of
Yi z -.-zYn * If as before, it is assumed that L is a
member of the exponential family, then although the- existence 

-1of J is not guaranteed, all the other regularity conditions

are satisfied, and
91ogL 91ogL = - E 9^loqL
90_ " T 9_09̂ (10.12)

is the n X 1 vector with ith element ,

while the (i,j)th element of the n x n matrix
2 T T  ̂2,T given by ^ 2 2 ^  .9 logL 

90_9_0*
Equation (10.10) implies that the generalised variance 

det (EHt-a) (t-a) ̂ ) > det .
\9i 9i /

Considering the diagonal elements of (10.10) in the case 
a(0_) = 0_, we have
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E Qt^ - > (j-1)...
This is greater than or equal to

= f-E 9^logL
^ 96?

1-1

(Rao, 1973 , p.327) which is the limit in the scalar case.
However, this smaller bound on the variance of an

estimator of 0^ was derived for the case 0  ̂ 1 £ j <. n,
i f ]  known; if all the 0  ̂ must be estimated, then to
achieve this lower bound, the estimator of 6^ must be
independent of the other 0 ., otherwise the bound is3-1increased to (J

We give two conditions for the bound to be attained;
9a

1. If — — is non-singular, then the minimum 
90.

generalised variance is attained, i.e.
, r   - "fl -'/9a , 9a'^\ (10.13)det(E [(t-a) (t.a)^) = detf-= )

if and only if v — 90. /
g 2 i = C ( t - a )  (10.14)

where C is an n x n matrix independent of the
observations (Zacks, 19 71, p. 195).

9a
If £(£) •= 8.f so that — — = then the minimum

9 0.
variance for an estimator of is attained if
and only if

t.-e. = 2 1. (10.15)
j=l 3

where the X. are independent of the y.. (Rao,J 11945, equation (4.9)).
Clearly, if E|jt^-9^)/ = (J )ii' for some i, then

)2 j for all j, otherwiseE|lti-ei) (tj-6j)1 = (J
the matrix (10.10) is not non-negative definite.
If (10.15) holds for all i, then the matrix
(10.10) is zero. That is the complete bound is
attained if and only if
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t-i = A (10.16)

where A is an n x n matrix independent of

It is evidently preferable that the estimator t ( y ^ . ,ŷ )̂ 
has covariance matrix equal to the lower bound, rather than 
the generalised variance equalling the determinant of the 
bound. However, when a(^) f £, only condition (1) can 
be applied.

Example 10.2

Using the model given by equations (10.4) with m = 1, 
let v^ 'Xj N(0,a^). Then

E |ly^-E (ŷ ) ) (yj-E (ŷ  ) jj =

t = j 
t + j

so that the y^ are independent and normally distributed. 
The joint likelihood function of y^z-^-zYj^ is therefore

^ = (^)^/^ a7^exp{- ̂  g  (Yi-FG^'^ii) ' }

Taking logs , we obtain
-N NlogL = T log27T - g logo?

1=1 ^
- j j i ^  (yf-Zii .

From the factorisation theorem, Z — ^  (FG^ ^l^y. is
i=l ^i ^

a sufficient statistic for Differentiating with
respect to
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4 # ^  = - g[-2(FG^"^)g+2(FG^-^)^FG^-leJ

^ii^ii i=l i

Hence, using equations (10.11) and (10.12)

J = I 77^ (FG^"^)'^FG^"^. (10.17)i=l i
We wish to estimate 6.̂ = .̂8̂ , hence from (10.10) , if
t is any estimator of '

E (t-8^) (t-8^) ^ (10.18)

is non-negative definite.
Using equation (10.14), the generalised variance is 

attained if and only if

2 g  r(FG^-^)% - (FG^-l) ̂ FG^-^9 n  = C(t-G*'"\) ,i=l i L .
where C is an n x n matrix independent of the observations
Equating coefficients of .

J = CG^'^

hence t is given by

t 2 g  (EG^-^)%
1—J. 1

= G^"^j“  ̂ 2 ^  (FGf"^)Ty (10.19)
“ ■ i=l ~  ^ ■

which is a function of the sufficient statistic. It is
easily shown that the variance of t given by (10.19)

>» ■is equal to the Cramer-Rao bound (10.18).
For

t-E(t) = G^"^J”  ̂ 2 ^  (FG^'l)^(y.-E(y.)).- - - - 1=1 —  1 1

Thus the covariance matrix of t
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E jlt-E (t) ) (t-E (t) )'^ =

E

N N
1=1 1 1=1 1

- i

1=1 ^i ^  J -(G- '

which from (10.17) reduces to 
g N - 1 j - 1 ( g N - 1 j T

which is the Cramer-Rao bound derived in (10.18) as required.
It is easy to see that when erf = for all i1

and is unknown, the same results are obtained.

Example 10.3

Consider again the constant velocity model described 
in Example 4.1, without the plant noise. This is a special 
case of Example 10.2, with m = l , n = 2 , F _ = [ l < ^ ,

-  = [o 3 ' and for all i, where t is the
time between measurements, assumed constant. It can be 
shown that the sequence of estimators given by the expanding 
memory a^3 filter described in Example 4.1 is identical 
to that produced by the Kalman filter with zero plant noise, 
(see Morrison, 1969, Chapter 12). The covariance matrix 
of the estimator 6^ after N- observations is derived 
in Moon (1977) to be
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2a 2N-1
3 / t

3/t
6/(N-1)t ^N(N+1)

Applying equation (10.17), after N measurements 

1 5 I-, . , ,  s T

(10.20)

E [l ■ (i-l)3 H  (i-Dx]i=l
N
E

i=l
1 (i-l)T

(i-l)x (i-l)^T^
N N(N-1)'t/2'
N(N-1)t/2 N(N-l) (2N-1)t ^/6

Thus
r-1 12g:______

N(N-l) (N+1)T<

and the lower bound on the covariance matrix of an 
estimator of ^  is given by

2N-1 3/t
3/t 6//N-1)T^

which is the same as equation (10.20). This.indicates
that the estimator given by the expanding memory a-B
filter for this model attains the Cramer-Rao lower bound.

Using equation (10.19) to find the estimator which
achieves the bound, we obtain

N
2 (FGi-l)Tyi 

i=l ^

12
-(N-1) (N-2)T= (N-l)f 

6 2 N ^i
N(N-l) (N+1)t ^ -(N-1) T , n J-

E
i=l (i-1) Ty^

N(N+1)

— CN—2 )

-3/t

" 3/ t

6/(N-1)t ^

N

N
T E (i-l)y. 
i=l 1

—201—



N  (N+1)

N N -
-(N+1) t y. + 3 t iy.

i=l ^ i=l ^

We shall return to this example, to verify that this value 
of t does indeed coincide with the estimator of the 
Kalman filter.

10.5 Vector 8, vector observations

Up to this point, attention has been confined to 
scalar observations. However, there are many occasions 
when more than one measurement is taken at one time. One 
frequently used model is the coupled Kalman filter, where 
position and velocity in both the x and y directions 
are estimated from measurements of position in both directions 
Often these 'measurements' are calculated from actual 
measurements of range and bearing, hence the covariance 
matrix for the observation noise is not diagonal.

For air traffic control, measurements of range, bearing 
and elevation may be used, from which measurements in the 
X, y and z directions can be calculated. Again, the 
covariance matrix for the observation error will not usually 
be diagonal.

Thus in this section, it is assumed that m and n 
are both greater than one. The model is defined by (10.4), 
and the Cramer-Rao bound is given by (10.10) and (10.11) 
exactly as for scalar observations, but the joint likelihood 
of the ŷ  ̂ is more difficult to find for vector observations. 
We shall assume immediately that

Z t ~ K(0, V^), = 0 t + j.
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Then the are independently distributed as multivariate
normal

and the likelihood function of Y.]_'Y_2 given by

(|_)”/2 (act Vj_) "^exp{-% (Zi-FG^"hi)^x/ >
N

L = n 
i=l

In this case^ it is necessary to assume that the covariance
are known for all t.matrices = E l̂ t̂—t ^

Taking logs we obtain 
N

log L = E 
i=l

- ^ log2IT -%log(detV^)

from which Z (FG is a sufficient statistici=l ~  ^
for by the factorisation theorem. Differentiating
with respect to

= - 1  2 r-2 (FG^” )̂'̂ v 7 V  +2 (FG^"^)^v"^FG^"^0,il 2 a=i L    - 1 - 1  —  - 1 ------ -1_
91ogL
9

9 ̂ logL _ _
90i99iT

N
i=l

Hence from (10.11) and (10.12), J is given by

J = E (FG^“ )̂'̂ v 7^FG^“  ̂ .
- i=l —  —

(10.21)

If the function of 0, to be estimated is
9a

' then ---= = G^ and from (10.10) , if t
ail

is any estimator of _0̂ ,̂ then
-  GN-lj-l(GH-l)T (10.22)

is non-negative definite.
From equation (10.14), the minimum generalised variance 

is attained if t satisfies
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^  - £(£ -

where C_ is an n x n matrix independent of the observations 
Equating coefficients of we have

E = J = CG^’  ̂ .

Thus C”  ̂= G^"^J“  ̂ and

t = G^ E (FG^ (10.23)

which is a function of the sufficient statistic. Again, 
it is easily verified that the estimator given by (10.23) 
achieves the Cramer-Rao bound, that is (10.22) is the 
zero matrix.

Example 10.4

Consider the very simple example given if the observations 
^It' ^2t time t are measurements of the distance of 
some stationary object in the x^ and X2 directions 
subject to random measurement errors v^^, Vg^. Mathematically, 
this is

^ I t ^ I t ' ^ I t
— +

J 2 t _ ^ 2 t ^ 2 t

It is assumed that the measurement error |v^^ Vg^^^ 
is distributed as multivariate normal, with mean zero 
and covariance matrix V for all t. The state equation 
is represented by

■-It' *lt-l
*2t *2t-l
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that is, F = G = ' Hence from (10.21)
N

J = E 
i=l

-1 -1V = NV

and from (10.22) 
E (t-^) T -1- N V

is non-negative definite, where t is any unbiased 
estimator of Assuming y^ -is...normally distributed, t
is defined by equation (10.2 3) as the estimator

N
yN

E V i=lt = n ”^v -1
li

2i
1
N

i=l
N

li

i=l 2i
Comparing the results of this section with those of Section 
10.4, and in particular with Example 10.2 (which merely 
assumes normality), it is clear that equations (10.17), (10.18) 
and (10.19) are special cases of (10.21), (10.22) and 
(10.23) re-spectrively. Example 10.1 is a further special 
case.

All further results will be derived in time of the 
general vector model of this section.

'10.6- -Properties of models for which the Cramer-Rao bound 
is achieved

Assuming y^ is normally distributed, t is 
defined by equation (10.23) as the estimator of 8^ for 
the model (10.4) after N observations, and has 
covariance matrix J defined by (10.21). For clarity 
these quantities will be denoted by ^  and respectively

Theorem 10.1

There is a unique unbiased estimator of 0̂, based on 
N observations whose variance achieves the Cramer-Rao
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bound if and only if the model (10.4) is observable,, 
where all the distributions are assumed to be normal.
Proof

The inverse of is required both to find the
Cramer-Rao bound, and for the estimator t^ which achieves 
the bound. Thus there is a unique estimator which achieves 
the bound if and only if exists.

 ̂ It is clear from the definition (5.24) that the 
matrix defined by (10.21) is the observability matrix
for the model (10.4). The model is observable if and only 
if the observability matrix (5.24) is non-singular, hence 
result.

Theorem 10.1 shows in a separate context from previous
results that observability is a useful property of DLMs.

It will now be shown that and its covariance
matrix ^)^ defined by equations (10.23) and
(10.22) respectively satisfy the Kalman updating equations
(4.4) - (4.8). Thus if the estimator of after k
measurements is given by (10.23), and hence has a covariance
matrix equal to the Cramer-Rao lower bound, then for all
i > k, the estimator t. of 0. after i measurements= —i —]_
produced by the Kalman filter is an unbiased estimator of 

with covariance matrix equal to the Cramer-Rao lower 
bound.

Theorem 10.2

Given the model (10.4) where ^ (0,V^) and is
positive definite, let t^ given by (10.23) be an 
unbiased estimator of _0̂  for some k ^ 1, and let t^
. have covariance matrix
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Qĵ  = ^ wh.ere is defined by (10.21)
Then t.j, Q j satisfy the Kalman updating equations (4.4)- 
(4.8) for all 3 > K

Proof
The Kalman updating procedure is given by

ik = si^-i + ^(Zk-zeik-i)
where

and
Ck = (I-AkDik '

£k = GÇk_iZ^ •

For some k ^ 1, let t^ = and = C^. From the
definition of ^k+1 given by

=

= [(G
•k + -l(Gk)T

-1

From the Kalman updating equations

so that

and hence

£k+i = - Çk+iI^Zk+iEiEk+i (10-24)

£k+i(i + fZk+iE2k+i) = Ek+i

Zk+i = Zk+id + Z % + i % + i )
This can be written

Ok+i = ( d  + :%+ink+i)E;+i)"^
= + f^v-i^f) - 1
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and since so that (Ĝ ) this .
expression for is identical to that for

From the Kalman updating equations,

-k+1 ^ ^-“^+1-^— k - k + A + l

= + £k+iz'"z;tiZk+i-

Since t^ = , substitute for _6̂  from (10.2 3) to obtain
VT -1 k -1 i-1 T -1ik+l = (I-£k+lI Zk+lF)G i  (FG ) V. %.
r— i.

= ( I - G k + i E % i F ) P k + l ( 0 - h ^  2 ( F G l - l ) % \
1 = 1

Using equation (10.24), this becomes

i + l  = £k+i(^'")'' . Y E o i - i ) % i y .  + G’̂Jk+iG'^) V v “iiZk+i
1—1

and since = % + !  = have

ik+l = G % 1 ^  j^(FGl-l)%ly. + G % l , ( G h V v ; k ^ ^ ^ ^

- G % | ^  "^YFGl-l)%ly^,
i — JL

which is the expression for given by (10.2 3). Thus
by induction, t^, satisfy the Kalman updating equations
for all i ^ k.

Example 10.5

Reconsider the model of Example 10.3 -

= *t + Zk 

= *t-i + ?*t-i
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Let the estimator t2 of
be given by

X, after two measurements

(Y2“yi)A

This estimator has covariance matrix

a'
1 1 / t

_ 1 / t 2 / t ^

Comparison with Example 10.3 shows that this estimator 
must achieve the Cramer-Rao bound.

Applying the Kalman updating equations.

^3 =
5/6

, Ch = 5/6 1/2 T
_1/2 t_ —J _1/2 t 1 / 2 t ^

and

-3 ■
1 T 1 + 5/6
_P 1_ ^2-^1 _1/2t_L T J

(Ys-ZYz+yi)

(5y2+2y2-y^)/6
(y3-yi)/2T

As expected from T.heofem 10.2, these are exactly the values 
obtained by setting k= 3 in the expressions for t^ 
and in Example 10.3.

Thus the estimators produced by the Kalman filter 
have been shown to achieve the Cramer-Rao bound when there 
is no plant noise, provided the information matrix J 
is non-singular, and this is coincident with the 
observability of the model.
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CHAPTER 11

SUMMARY

The purpose of this work is to examine structural 
properties of the dynamic linear models (DLMs) proposed 
by Harrison and Stevens (19 76). In these models, the 
observations {y^} are described by the observation 
equation given by

Zt = H t  + Zt''

where has the Markovian representation given by the
system equation

it = £6^-1 + K f

Properties of the DLMs are investigated chiefly in 
relation to the predictors for univariate time series, 
and also with regard to minimum-variance estimators. 
Techniques employed for this purpose are those of 
statistical time series analysis and modern control 
theory, which are described in Chapters 2-5. In particular, 
considerable use is made of the unifying concept of 
observability and its implications.

In Chapter 6, the constant forecast model is 
considered. It is pointed out that the intuitive steady 
DLM in its equilibrium state is equivalent to a proper 
subset of the class of ARIMA (0,1,1) models, in the sense 
that their predictors are equivalent. The same steady 
model is generalised by increasing the dimension of the 
system vector 0_̂ to two, and then the model may be 
equivalent to any ARIMA (0,1,1) model, depending on the
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Tvalues of the system error covariance matrix W = E w.w^
—  — t — t

Furthermore, it is shown that whatever the dimension of
_6̂ , the constant forecast DLM is equivalent in the
steady state to any ARIMA (0,1,1) model, provided ^ F .
However, this result may require the use of covariances in
the system error covariance matrix. It is often required
that this matrix is diagonal. Several examples of
2 x 2  DLMs with diagonal covariance matrices are
investigated, and one of these is found to be equivalent
to the complete class of ARIMA'(0,1,1) models. Observability
is invoked to show that the ideal dimension of 6, for—u
the constant forecast, model is two. It follows that "the 
constant forecast model is a significant generalisation 
of the ARIMA (0,1,1) models. Advantages of the DLM over 
the classical model include the ability to predict from 
little data, to make good use of prior intelligence and 
subjective information, to take into account changes in 
the variances of the observations, and also to use unequally 
spaced observations.

Chapter 7 generalises these ideas to the polynomial 
model of degree greater than zero, say d-1. Here it 
is shown that the invertibility of an ARIMA (0,d,q) model 
for q ^ d is equivalent to the stability of the estimation 
scheme for the DLM in the equilibrium state. Hence if 
the DLM is stable in the steady state, then its predictors 
are identical to those of the ARIMA (0,d,q) model. However, 
it turns out that if G is non-singular, then only a subset 
of the ARIMA (0,d,q) models are admissible. This conclusion, 
together with the observability requirement yields a necessary
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condition for the DLM to be equivalent to all such ARIMA 
models viz. that n, the dimension of G, should be 
equal to d+1. Again, the examples show that the practical 
requirement that W be diagonal may restrict the 
equivalence to a subset of these ARIMA models.

Chapter 8 considers a further generalisation of the 
DLMs to forward shifted polynomial models. It turns out 
that there is no DLM which models this situation for 
which G is non-singular.. It is shown that the minimum 
dimension of G for these models is d+r+l, where d 
is the degree of the polynomial and r is the shift, and 
the observability requirement implies that this valufe 
is the maximum dimension. Again, the stability of the 
estimation scheme for the DLM in the equilibrium state 
is shown to be equivalent to the invertibility of an 
ARIMA (0,d,d+r) model.

Chapter 9 generalises these models to derive DLMs 
equivalent to the ARIMA (p,d,q) models. Thus under the 
conditions described, the predictors of the DLMs 'in the 
equilibrium state are shown to be equivalent to the 
general ARIMA (p,d,q) models. It is shown that some of 
these DLMs are restricted to a subset of ARIMA models, 
but many of these restrictions are avoided if G is 
singular. With observability, this result implies that 
n = p+l+max(d,q). In addition, the eigenvalues of G 
are related directly to the parameters on the left-hand 
side of the corresponding ARIMA model equation. Hence 
the 'autoregressive' model parameters (j)̂ ,. .. ,(j)p are an 
implicit part of the equivalent DLM. This is in contrast 
to all preceeding results which specify the parameters
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on the right-hand side of the ARIMA model equation purely 
in terms of the elements of F, G, W and V = E|^t—t"^ * 
Unfortunately, it appears to be difficult to show for 
these more general models that the predictor of the DLM 
is identical in the equilibrium state to the predictor 
of any ARIMA (p,d,q) model, provided W is not constrained 
to be diagonal, although the conjecture seems reasonable. 
Indeed, the fact that the stability conditions for the 
estimation scheme of the DLM are equal to the invertibility 
conditions for the ARIMA models is a strong indication 
that this conjecture is likely to be true. In this case, 
the previous comments on the generality of the steady 
DLM carry over to these more general models.

In Chapter 10, the Cramer-Rao bound is considered 
for estimators of the state vector of the DLM, but
now assuming multivariate no^aL observations and no system 
error. Observability again plays an important role. It 
is shown that the information matrix is invertible, and 
there is a unique estimator which achieves the Cramer-Rao 
bound if and only if the DLM is observable. Furthermore,

✓N
it is shown that if the initial estimator 0^ for the-o
Kalman filter has covariance matrix equal to the 
Cramer-Rao lower bound, then all the estimators of 
(t > 0) produced by the Kalman filter also achieve the 
Cramer-Rao bound. This problem is discussed in varying 
degrees of generality.
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