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ABSTRACT

Let R be an associative ring with a 1. Denote by
GLnERg the group of invertible nxn matrices over R, and by
G&n (R) the subgroup of Glh(R) generated by the elementary
and invertible diagonal matrices., Certain specified
relations between these generators hold universally, that
is, for any ring R. We call a ring R universal for G&,if
GE,(R) has these relations as defining relations, and we
shew that if R is a local ring (i.e. a ring in which the
set of all non-units is an ideal) or the ring of rational
integers, then R is universal for GE,, for all n. This both
generalizes known results for n=2, and includes the
classical case where R is a field, possibly skew.
‘ By adding further relations to those already
considered we -obtain in a similar way the concept 'quasi-
universal for GE,', giving a class of rings which strictly
includes the class of all rings universal for GE,, but which
is better behaved than the latter under certain ring
constructions. We shew that every semi-local ring (i.e.
every ring R such that R modulo its Jacobson radical has
the minimum condition on right ideals) is quasi-universal
for GE,, for all n. '

FPinally we shew how to obtain a presentation of
GE, (R) for any R. This is unwieldy, but simplifies greatly
for a certain class of rings called GE,-reducible rings,
which includes all Euclidean rings. We shew that for such
rings R a set of defining relations for GEn(R), for =3,
is obtained by taking the universal relations together
with certain relations in GE; (R).
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1. Introduction

The general linear groups GL,(X) (where K is a
field) and their subgroups and automorphisms have received
much attention, and the theory 1s well-developed, even
when K is skew. Comparatively little is known about the
groups GL,(R)_of invertible nxn matrices over an arbitrary
ring R. In [5] the question of finite generation of GL,(R)
is_investigated for certain types of Dedekind domain R. In
l6], all the automorphisms of GL,(R), n» 3, are found,
where R is any integral domain; this is all the more
remarkable in view of the fact that not every integral
domain is a GE-ring (see below). In [7], certain
characteristic subgroups and isomorphisms of subgroups
of GL,(R), n>»3, are studied; in spite of the very general
title, the rings are all integral domains, or even principal
ideal domains, and with characteristic £ 2.

In [1], the structure of GL,(R) for quite wide
classes of rings R 1s examined, and here we attempt to
follow the same line of investigation for GL,(R), for
general n. The main tool in [1] was a presentation of GL,(R)
for certain rings called universal GE;~rings. Finding a
presentation of GL,(R), for n>3, is so much more difficult
that the present work is confined almost exclusively to
that task. :

Over a field, every invertible matrix is a product
of elementary and diagonal matrices. Over a ring, this
need not be true; indeed, we define GEh(R) to be the subgroup
of GL,(R) generated by the elementary and invertible
diagonal nxn matrices, and we say R is a GE,~ring if GE,(R)
=GL,(R). A ring R is universal for GE, if GE,(R) has a
certain presentation (see chapter 2); if R is also a Giy-
ring, it is a universal GE,~ring.

In [1], it was shewn that local rings (in particular,
fields) are universal for GE ; our main result in chapter
3 is a presentation of GE,(R) for any local ring R and any
n, and it seems natural to take this as the basis for the
definition of 'universal for GE,'. With the help of results
in [3] and [4] it is then shewn that the ring Z of rational
integers is universal for GE,. )

If R is universal for GE,,, this tells us something
about the structure of GE,(R;), where R, is the ring of m=m
matrices over R. In particular, we can ask: if R is
universal for GE,n, is R, universal for GE,? With certain
restrictions, the answer is yes. The restrictions can be
removed by considering instead a wider class of rings called
quasi-universal for G£,. We shew (chapter L4) that every
semi-simple Artinian ring is quasi-universal for G&,, and
we give a simple sufficient condition for such a ring to
be universal for GE,. ,

Let J(R) be the Jacobson radical of R. The structure
of GE,(R/J(R)) is closely related to that of GE,(R);
indeed we prove (chapter 4) that if R/J(R) is quasi-universal
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for G&,, so is R. Thus every semi-local ring is quasi-
universal for GE,, and as before there is a simple
sufficient condition for such a ring to be universal for
GEne

We conclude (chapter 6) by giving a presentation of
GEn(R) for any R whatsoever; it is however a rather clumsy
presentation., Nonetheless it simplifies greatly for certain
rings, in particular for Euclidean rings.

Notation. The following notation is used throughout.
Let R be a ring, associlative and with a 1, and denote by
UER% the multiplicative group of units of R. Elements of
U(R) are denoted by Greek letters.

Let R, be the ring of nxn matrices over R. R, has identity
I,, and its group of units is the general linear group GL,(R).
Let ey ; be the usual 'matrix units' (1 in the i,Jj position,
0 elsewhere). For i#g and xeR, put By (x) = I, + xeg ;.
Clearly B;;(x)eGL,(R). Put [ajL = I, + (a-1)e,; = the
diagonal matrix with o in the 1th diagonal place and 1
elsewhere. -1
Put [o,B]yj =_[al (Bl Dij(a) = [aya "] ; and

061,062,... an] =HL aLjLo
Define GE,(R) as the subgroup of GL,(R) generated by all
laly and all Bj. (x) (acU(R), xeR, 1 <i,j,k <n, jék).

If GE,(R) = GL,(R) we say R is a GE,-ring. R is a GE-ring
if it is a GE,-ring for all n. GE stands for 'Generalized
Buclidean': note that every Euclidean ring is a GE-ring.



2. Universal GE,-rings

B12<1_x)321(-1)B12(1)
x 1

In GE, (R), put E(x)

i

. -1 0
GE, (R) is generated by all the E(x) and [a,B] (xeR, a,BcU(R)).
Then the following 'universal' relations always hold:

E(x)E(0)E(y) = -E(x+y) X,¥eR
(4) E(a)E(a " )E(a) = =D,z (a) «eU(R)
E(x)[a,8] = [ByalE( xa) o, BeU(R), xeR

[ax:az][ﬁx’ﬁa] = [a1ﬂ1,a2ﬁ2] aLsﬁLGU(R)

Following [1], we say that R is universal for GE, if (A)
~is a complete set of defining relations for GEZ(R) If in
addition R is a GE;-ring, we say that R is a universal GE,-
ring. In this case, (A) is a complete set of defining
relations for GL,(R).
In [1], the following rings are shewn to be
universal for GE,:
a. Local rings (in particular, fields).
b. Discretely normed rings (in particular, k-rings
with a degree-function).
c. Discretely ordered rings (in particular, the ring
_ - Z of rational integers%
Since a local ring (i.e. a ring in which the non-units form
an ideal) is a GE-ring, it is a universal GE,-ring.
- Our first question is: do any rings fail to be
- universal for GE,? Corollary (2,3) (below) answers this in
the affirmative.

.Lemma_(2.1). In any ring R, E(a)E(p)E(-a)E(-b) =
<> &b = 0 = ba (a,beR).
Proof. For any a,beR, E(a)i(b)E(-a)E(-b) }

abab-ab+1 -aba
= ~bab ba+1

The'result is now clear. ]

(Note: the symbol o Will be used to indicate the conclusion
of a proof.) : :

Definition: Let R,S be rings. A U-homomorphism ftR=2 S is
'a homomorphism of the additive group of R into the - :
additive group of S such that !
£{1) =1

and f(axB8) = £(a)f(x)r(B) xeR, o,pBeU(R).
‘The following theorem is proved in [1:(11. 2)] Given R,S,T
as above, with R universal for GE;, then f induces a :
homomorphism £*:GE; (R) = GHE,(S) by the rules:




£*(E(x)) = E(f(x)) ' .. XeR
*([a,8]) = [£(a),£(B)] o, BeU(R)

Proposition (2.2). If R,S are rings, and R is universal
for Gbg, and if f R = S is a U-homomorphism, then
xy = 0 = yx (x,yeR) = £(x)f(y) = O.

- Proof. Construct the homomorphism f*, as above. By (2. 1),
if xy = 0 = yx, then
E(x)E(y)E(-x)E(-y) =
Apply £* to each side.
| B(£(x)) (£ (y))E(-£(x))E(-£(y)) =
By (2.1), £(x)f(y) = 0. o

Corollary (2.3). Let k be a field, and let R be the ring
formed by adjoining to k two commuting indeterminates
X,y with the added relation xy 0. Then R is not
universal for GE;.

Proof. A normal form for a general element t of R is
t = xf(x)+yg(y)+a (f(x)ek[x], g(y)ekly], ack).

.Then  tt, (xf(x)+yg(y)+a) (xf, (x)+¥g, (v)+ay)

' x(xf(x)f, (x)+f(x)a, +af, (x))

+« y(ye(y)e, (y)+e(y)a,+ag, (y)) + aa,

\If tt; = 1 we must have

(i) aa; =1
(i1 xf%x;fiéxg+fg §a1+af1(x3 0
(111) ye(yle, (v)+g(y)a+ag, (¥ 0
(ii) is an equation in k[x], and by examining the degrees
of the three terms,we see that xf(x)f, (x) = 0, and so one
of f(x), (x) must be zero; hence both are zero. Similarly
g(y), gi y3 are both Zero.,
So U(R) = k*, the non-zero elements of k. Now put
S = k[x]. R,S are both free k-modules of countably infinite
rank. Deflne f:R > S by .

£(x") = x*" (n>0) (and so f(1)‘= 1:)
£(y") = x2™=t (m >0) |

and extend by linesrity. f is an isomorphism of k-modules,
and since £(1) = 1 and U(R) = k*, £ is a U~homomorphism.
But xy = 0 = yx, and f(x)f(y) = xz.x = x3 £ 0. By (2.2), R
is not universal for GE,.

Proposition (2.4). R as in (2.3). Then R is a GE-ring.

Proof. Let AeGLh(RE. Then A = Ay +xA, +yA,, where Ajek,,
Ajek[x],, and Ageklyl,.

]

o
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Now det(A)eU(R)=k*. Therefore det(A)=det(A,+yAz)
(i.e. replacing x by O does not affect the value of
det(A)). So Ay+yA, € GL,(R).

Put B = A(Ao+yA2} =1, Then B = B,+xB,+yB,, where
Bo€kp, Biek[x]n, Boekly ). ’ :

B0+yB2 - A(Ao+yA2) 1lx=0 = Io

Therefore Bz—O and B=By+xB4. -
SO A = (Bo+xB, ) (Ag+¥A, )

E Gl s
c GE,(R). D

wWe note in 8881ng the rather special structure of the
group GE, (R):

GE, (R) = GE,(k[x])eE, (x[y])
GE, (k[x])nGE, (k[y]) = GE,(k)

R itself is a sort of direct product of k[x] and k[y],
amalgamating. k.

N m

Thus we have found a fairly easy example of a GE-
ring R which is not universal for GE,. R contains zero-
divisors; we proceed to find a ring which is a Gi-ring
- and an integral domain (it is even a principal ideal
domain) but which is not universal for GE,. The method is
a generallzatlon of the above,

Lemma (2.5). Let R be any ring3 a, (i= 1..u)€R]and o,B<U(R).

Then (*) E(a, )E(az )i(ag)E(ay) = [o,f7
i) aj8; = 1-a
“=21(iii) ag = -a,@"
iv) a, = -fa,
Proof. (*) is true <= a1a2aaa*—aiaz—asa&—aia*+1 =a (a
82aaa* ag~a, = 0 c

Suppose (a)-(d) hold. From (d) asag = 1-71,
In (c) (1—ﬁ”1)a -ag-a, = 0, 1l.e. a2+ﬂ’ a,
In (b) a,(1-Ft)-a,~-a; = 0, i.e. a,B *+a,
‘rom (iii), a,a,; = -2,8;8 = (ﬁ‘1—1§ =
From (iii) and 21v a,8, = 848z,

and from (iv), ala* = -a, fa,.

0, whence
O, whence

—ﬂ, i.e. (1i)..

In (a), a,a,8,8,-2a,a,+8,6a; = o1
ioeo ai 8281—2+ﬁ az = (1-1.

From (ii), a,(1-p~2+B)a, = o=1
i.e. a;a; = 1-a, so (i) holds.



Conversely, if (i)-(iv) hold,
then ajaz = =-asa, 8t by (iiig

. =(1-8)p~* by (ii
1-ﬂ_1’ SQ (d) hO].dSo

a,—f ta,

Then ajazazay—a,8z=a38,=8,8,

wnu

a,+ag, whence (b),
Also agaga,

a,+8,, whence (c

- -1

i
0n

8,6 ta,

. a-1, whence (a). o

Proposition (2.6). Let R,S be rings, where R is universal

: for Gi;, and let f:R ?* 8 be a U-homomorphism. Then
if 3 a,,a,eR and acU(R) such that a;a; = 1-a, we
deduce f(a,a,) = £(a,)f(ay). .

Proof. Define B8 by aza, = 1-8.

B is a unit, since (1-a2ai)(1+a2a—fai)
= 1-8z8,+a(1-as83)a ta,

o

i
-_
-

and . (1+aga—ta, ) (1-aza,)
= 1-aya, +aza-t(1-a,az)a, = 1

Construct the homomorphism £*:GE; (R) - GE; (S) as before.
By (205), E(ai)E(az')E("atﬁ_i)E<—ﬁaz) = [(X’,B—t]o
Apply f* to each side:
B(f(ay))E(f(az))E(-f(a, )£ (B)~1)E(-£(B)f(ay)
= [£(a),£(B)7*]. o ’
From (2.5), f(a,)f(ay) = 1-f(a) = £(1-a) = f(asay). O

Corollary (2.7). Let k be a field not containing a square -
root of -1, Let x be an indeterminate, and
X = {(1+x2)n, n=0,1,2,.. }. Let R be the localization
k[x]X : then R is a commutative integral domain,

, and is not universal for GE,.
Proof., U(R) = {a(1+x2)"; aek*, necZ}. o
For if (1+x®)"p(x).(1+x2)"q(x) = 1, where p(x),q(x)ek[x]
and are not divisible by 1+x®, then n+m <0, since U(k[x])
= k¥, If n+m <O then 1+x2|p(x)a(x) in k[x]: but 1+x*® is
~a prime of k[x]. Therefore n+m = 0, and so p(x)a(x) = 1
and p(x),q(x)ek*. ' : :

Let y,z Dbe commuting indeterminates, andbput
Y = {(1+y)?, n=0,1,2,.. }. Let S be the'lqcalization
k[y,zly. | |
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' Define fiR = S by |£(x2n) = yn
' : f(xzn—u) = y"z

and extend in the obvious way: thus if reR we can write

r = (1+x2)"(p(x2)+q(x?).x)
.and then f£(r) = (1+y)"(p(y)+a(y).z). | |
Now the restriction of f to k[xz]x is clearly .an additive
homomorphism, and we then have

f(ax+b) = f£(a)z+f(b) (a,bék[xZJX)
whence f itself is an additive homomorphism. Further,
£(1) = 1 and f(ar) = £(a)f(r) (acU(R), reR), whence, since
R and S are commutative, £ is a U-homomorphism.v
Now put a,;=X, az=-Xx, a=1+x2€¢U(R). Then a;a, = 1-a.
By (2.6), if R is universal for GE,, f(a,a,) = f(ai)f(az)
But f(a,a,) = £(-x2) = -y, and f(a,)f(a,) = -z2.
Therefore R .is not universal for GE;. O

: Note that since R is a localization of k[x], which
is both a principal ideal domain and a GE-ring, R itself
is a principal ideal domain and a GE-ring. Other examples
of such rings have been found by P.M.Cohn in [2]:

. Corollary (2.8). (P.M.Cohn) The ring R of integers in
' Q(N-2) (Q=rationals) is not universal for GE,.

NeBe A similar result holds for the rings of integers in
~ Q(N-7) and Q(J—H)

Proof. U(R) = {*1}, so since the map f:a+bN-2 » a is
additive, it is a U-homomorphism. ' ‘

‘But if a, .= N-2 = -a,, we have a,8, = 1-a, Where o = =1.
Then f(a,) = 0 = £(a;), but f(asay)
and so by (2.6), R is not universal for GE,. 0O : .
Note that this R is a Euclidean ring. '

Thus we see that a ring need not be pathological
in order to fail to be universal for GE,. It is natural
to ask: what other relations can be added to the relations
(A) so as to give a complete set of defining relations
for a wider class of rings? An answer sufflclent to cover
(2.8) is given in [2]: namely that the extra 'universal'
relation

{E(a)E(b)}® = -I (all a,beR|sb=m=ba, m=2 or 3)

gives, with (A), a set of defining relations for GnQ(R),

2 since a a8, = 2,
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where R is the ring of integers in Q(W-d), d = 2, 7 or 11.
(The same paper shews that when d = 1 or 3 the corresponding
R is universal for GE;., The other values of d are covered
in [1].) A second way of widening the class of rings is

" the subject of chapter 4, where, however, we are dealing
with GE,(R). Chapter 3 is concerned with the formulation

of the definition of 'universal for GE,'; in preparation
for this we prove the following:

Proposition (2.9). A wing R is ufiverasal For Ghy iff GHEa (R)
has the following presentation: '

Generators: B j(x), [a,8] (xeR, a,BcU(R), 1<i,3<2, i#j)
Relations: : ‘
C e Bui(x)By (¥) = By j(x+y) (x,y€R)

2. By (o=1)Bj1 (1) = Dy j(a)Byi (@)By;(1-a"t) (oeU(R))

3. BLJ(X) = BJL(—1)BLJ(1)BJL(—X)BLJ(—1)BJB(1) (xeR)

Ue Byj(x)lagroz] = [og,05 1By (of2xay) (xeR, oreU(R))

5. [a19a2][ﬁ1!ﬁ2] = [aiﬁivazﬁz] (GL’ﬁLEU(R))’.

Proof. We have.

B(x) = Bya(1-%x)Bz1 (=1)By2(1) (a)
and then Byo(x) = E(-x)8(0)"t (b)
and Bg4(x) = E(0)71E(x) (e)

Now suppose R is universal for GE,. We shew first that the
above relations 1.-5. (which are true in any ring) imply
the universal relations (A) (page 6), using the definitions
(a), (b) and (c). '

E(0)2 = By 5(1)Boy (=1){B,2(2)By, (=1)1B,2(1) Dby 1.

B, o (1)Bgay (—1){-Bas (1)B, 2 (-2)1B,2(1) by 2. and 1.
-By2(1)B1z(-2)B;(1) by 1.

s~ E(0)2 = -I Dby 1.

Thus E(x)E(0)E(y)

f

Biz(’X)E(O)zBiz(’Y)E(O) by (b)
-B; 2 (-x-y)E(0) by 1.
- = -E(x+y) by (b).
From 2., we get a similar relation
6. By j(1=0)B;i(-1) = Dy ;(a)Bji (=a)By j(a™t=1)
(write [-1]LBLJ(1-a)BJL(—1) = BLJ(G-1)BJL(1)[—1]L(by L.)
and use 2.)

i

i

Then E(a) B12(1*G)Bgi(“1)B12(1)

Dyz(a)Bgy (ma)Byz(a~2) by 6. and 1.
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so f(a)E(at)E(a)
= Diz(a)B21(—a)B12(a 1)Dyz(a™t)Byy (a1 )By g (a)
D12(a)331( G)Btz(a 1)
= Diz(a)iBzi(-a)B1z(a 1)i3 by L. and 5.
Now {Bgyq(~1)Byo(1)}3
= Bzz('1)B12(1)Bsi( 1)312( -1)Bg, (1)
B2y (-1)B12(2)Bs, (- 1)312(1) by 1.
Bya(1)Bas (~1)Dy, (- 1)B21(1)B,5(-2)B,5 (1) by 3. and 6.
-I by 1. and L,
{Bzi(‘a)Biz(a 1)ie

S

o)

[a]iiBzi(-1)B12(1)¥3[a“1]1 by L,5.
. [a]y (-I)[at]y = -1
S E(a)E(am?)E(a) = -D,,(a) 1is a consequence of 1.-5.
Then Bjg(a)Bgy(-a” 1){B12(a_1)B21(1)IB12( 1)
= Dyp(a)Byz(a” ‘)Bzi(‘a)Bzi(d)Biz(’a t} vy 2,5.
= D, (a) by 1. : :
Replace o by o *3:
{B1a (0 tB)Bay (= 2a)Byo (a2 8) }{Bya(~1)Byy (1)Byo(-1)]
= th(a—iﬁ).= [a9ﬁ]_1[ﬁ:a] by 1,5. :
- [a:ﬁ]iBiz(a*iﬂ)321('ﬁ”ia)Bia(a_iﬁ)}
= [Bya]By2(1)Ba1(-1)Byo(1) - by 1.
or Bya(1)Boy (=1)By2(1)[0s8] = [B52)B1a(1)Bay(=1)Bi2 (1) By Ls
ice. E(0)[a,p8] = [B,a]E(0)
so E(x)[a,B] = Byz(-x)E(0)[a,s]
B, 2 (=x)[B,a]E(0)
[B,a]Bia(—ﬁ-ixa)E(O) by U.
(Bsa]E(B™xa)

"It remains to shew that the relations implicit in (a), (b)
and (c) are consequences of 1.-5. -These relations are:

B, (x) = E(—x)E(o) 1 = B,,(1+x)B,, (-1)B,,(1)
{By2(1)Bay (-1)B, (1)]72
Bzi(X) = E(O)_iE(X) = iB12(1)B21( 1)B13(1)}-1A
B12(1—x)Bai(—1)B12(1>
The first of these, by 1, is equivalent to
I = Bys(1)Bay(=1)Bas(1)Bya(~1) |
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which is a consequence of 1. The second is, by 1,
Bas(X) = Byp(=1)Boy (1)Byo(=x)Byy (-1)By (1)
which is Jjust 3. BSo we have a presentation.

Converse: suppose GE, (R) has the presentation
{BLJ(X)Q [a’ﬁ]|1.—5 }

We must shew R is wunlversal for GE;. First we shew that the
universal relations imply 1.-5. (using (a), (b) and (c)).
From the universal relations, we have E(0)%=-I : in fact,
we can assume all the relations proved in [1], Theorem 2.2.

So Bz (X)Byo(y) E(-x)E(0)~*E(-y)E(0)-1
' -E(-x)E(0)E(~y)E(0)™*

‘ E(-x-y)E(0)™* = B;,(x+y)
Similarly By, (x)B,, (¥) = E(0)-1E(x)E(0)"1E(y) -
= E(0)~2E(x+y) = Byy (x+y) .

Then Bz (a=1)Bgy (1)Byg(a™*=1)By, (~a)
E(1-a)E(0)"2E(1)E(1-a~1)E(O)RBE(~a)
E(-a)E(0) (1) E(0) E(-a™*) E(~a)
E(-a)E(~a~*)E(-a) | 4 .
= =Dyy(-a) = Dyo(a) ¢ using 1, 2, follows (case 1j=12).
Similarly Bz, (o=1)Byz(1)Bgy (a™2=1)B,, (-a)

= B(0)*E(a=1)E(=1)E(0)®E(a~*=1)E(a)1(0)=*

= =£(0)71E(a) E(0)E(~1)2E(0) &(a~* ) E(a) E(0) ™2

= £(0)7* E(a) (a1 ) E(a) £(0) 72

= ~E(0)~tD,, () (0)~t = D, (a). Use 1. as before.
~ Then By,(=1)Bzy (1)Bya(=x)Bgy (=1)By2(1)
" = E(1)E(0)—2E(1)E(x)E(0)-2E(- 1)21:,(0)-1

= E(1)2E(x)E(-1)2E(0)-1

= E(1)2E(x)E(-1)"tE(0)-1

= E(1)2E(x+1)E(0)-2 by [1], Theorem 2.2, equation 2.7.

= E(1)°E(0)E(x) = E(0)7*E(x) = Ba,(x)

And By (-1 )312(1)521(’X)B12( 1)321(1)
© = BE(0)~1E(-1)2E(0)"2E(-x)E(1)E(0)2E(1)

= E(0)-*E(-1)2E(-x)E(1)? |

= -E(0)"1E(-1)2E(-x)E(1)"t
D '—E(o)-‘E(—1)%3(-::—1)E(o)‘i by [1], Thn 2.2, eqn 2.7.

1]

il
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£(0)~E(-1)3E(0)E(-x)E(0)~*
= E(-x)E(0)~* = B,,(x)
Then Byp(x)[a,B] = E(-x)E(0)7*[a, 8]
= E(-x)[B,a]E(0)-*
= [a, B]E(-a"*xp8)E(0)"t
= [0, BBy (a~txp)
and Bay(x)[o,8] = E(0)7*E(x)[o,p]
= E(0)"*[ B, a] E(p1xa)
= [a, BIE(O)*E(F2xa)
= [a,B]By, (B~ xa) _
Finally we must check that the relation implicit in (a),
(p) and (c) is a consequence of the universal relations.
This relationiis:
E(x) = Byo(1~%x)Bzy (-1 )Bia(")_
= E(x-1)E(0)~2E(-1)2E(0)™
and this does indeed follow from the universal relations. o

Il

i



15
3, Universal rings.

In defining 'universal for GE,', we could generalize
the definition of 'universal for GE,' by taking E, ;(x) and
la]x as generators, where

By j(x) = By ;(1-x)B; (-1)B; (1)

but .this seems a little awkward; it is much easier to work
directly with the elementary matrices B ;(x). Accordingly,
we make the following definition:

A ring R is universal for GE, if GE,(R) has the presentation:
- Generators: By ;(x), loy,. az] (xeR, oxeU(R), 1<i,J,k<n, 1£J)
Relations: - ’ '

1. By j(x)Bj(¥) = By ;(x+y)
2. B j(x)Bkn(¥) = Brn(¥)By j(x) (i#m, j#k)
3. By j(x)Bjk(¥) = Bk (¥)By;(x)Bk(xy) (1#Kk)

b By j(a=1)B; (1) = DLJ(G)BJL(Q)BLJ(1_Q-1) -
5. By;(x) = By (1)B;(=1)B; (=x)By ; (1)Bj (1)
6o By (x)[ogyee an] = [ogye 0y ]1By j(aftxay)

7o Logse onllBysee Bnl = [ayBysee onBnl

All these relations hold in GE,(R), for any ring R. Note
that 2., and 3. are vacuous for n=2, so by (2.9) the
definition coincides with the previous one in this case.
The definition is justified by (3.7) and (3.13).

We already know from [1;(4.1)] that every local ring
is universal for G&,, but we give a direct proof here in
terms of the above definition, in the belief that
familiarity with the argument for this case will make the
argumgent for general n easier to follow.

Lemma (3.1). (Normal form for GL;(R), R local.) Put B,=B,, (1)
and By=I,. Then if AeGL;(R) (R local) there is a
unique expression . , '

A = BrByg (X)B21 (y)[o"ﬂ]iz.
where x,yeR, a,BeU(R), r=1 or 2, and 1+x£U(R) if r=1.
Proof. Let A = (a,;). One of a,5, 85 must be a unit.

Ir azgeU(R), put r=2. Otherwise put r=1. In either .case
*
pen(l p] | 3] @
BrByg (Xx)Bgy (¥)lay8)ys = (11)
If r=1, the last column of A is [ x8 | which shews that
1 (1+x)B

n
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1+4x is a non-unit. Thus r, g and x are unique. From (i),
o is unique. From (ii), y is unique. o

If R is any ring and 1+xy € U(R), then 1+yx ¢ U(R);
indeed

(14yx)-t = 1-y(1+xy)~tx.
Alternatively we may see this by noting that, for any

X2y By j(x)Byy (W) [14yx]; = [+xy] By (9)By 5 (x).

This relation will assume great importance in chapter U4,
when we define 'quasi-universal' rings.

Lemma (3.2). If R is a local ring, the relation
B, j (x)B; (v)[14yx]; = [14xy]iBji (¥)By (%) (1+xy € U(R))
is a consequence of the universal relations 1, 4, 6 and 7.
Proof. (1) Suppose yeU(R).
Then By j(x)B;i (¥)[1+yx];
= [)YJJBLJ(XY)BJL(1)[Y—1] [1+yx]J by 6, 7.
[¥13B, 3 ((1+xy)=1)B; (1) [yt 15[ 14yx]; \
[¥1;D0 5 (1+x3)B (1+xy)By j (1=-(14xy)~2) [y~ ] [1+yX]J by L.
[y]501+xy]iBy (1)B j(xy) [1+xy]7t[y-*]; [14yx]; Dby 6, 7.
(vl 01+xy]iB (1B (xy) [y~ ] by 7. b
[1+xy]i B (¥)B;(x) by 6, 7.
(ii) suppose xeU(R). By (i),
B;i (¥)By; (x)[1+xy]y = [1+4yx]; Bu(x)B“(y)

is a consequence of 1, 4, 6 and 7.
- BLJ(X)B L (y)[1+y:x]_;
= [1+yx]37B5 (9)By 5 (x) [1+xy ], [14yx];
[1+xy] By ((1+yx) iy(1+xy))Bu((1+xy)‘1X(1+yX)) by 6, 7.
= [1+xy]; By (¥)B; ;(x)
(iii) Suppose x,y are both non-units.,
B 5 (x)B;y (y) [1+yx];
B, 5 (x)Bjy (1) [1+x];[1+x]71B; (y=1) [1+yx]; by 1, 7.
[1+x]LBjL(1)BU(X)[1+X]}1B“(y-1)[1+yx]_; by (1).
[1+x] [1+x]13tB; (1+x)By ; (x(14+x)71)Bj (y-1)

A1 (r-1)x(14x) 7] (14 (y-1)x(14x) "1 15t [14yx]; Dby 6,7.
[1+x]y [1+x]72B50 (14x) [1+x(14x) 72 (y=1) 11 By (v-1)

By g (x(14x)=1) [14(y-1)x(14+x)"t 17t [14yx]; by (i).
[14xy ] [14x]518;, (14xy)B; (vy-1)B 5 (x(14x)7})

.[1+(yf1)x(1+x)‘}]31[1+yx]j by 6,7.

u

i}
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[1+xy]i [1+x]7 iBJL((1+x)y)BLJ(x(1+x)"1) ‘
+(r=1)x(14x) 7L ] [14yx]; by 1.
(1+xy]Bj (¢)BL 5 () [(H+x) "t 1+ (y=1)x(1+x)"t "L (1+yx) ]
[1+xy]iBji (9)B;(x) by 7. © by 6,7.

i

We are now in a position to prove that a local ring

is universal for GE,. The proof here is longer than that
ia [1], theugn tne Aifference is 1less great than weuld

appear at first sight, since [1;(4.1)] uses results from

; section 2]. The point is that this proof (3.3) provides
a relatively simple illustration of the method that will
be used to prove that a local ring is universal for GE,.

Proposition (3.3). (P.M.Cohn) Every local ring is univeréal
for GEg. ' ;: 5

" Proof. Let A = BB, ,(X)Bas(¥)[a,Bly2 Dbe in normal form.

Then Ala’,8'] = BrBys(x)Bay (v)[oa’,88'] by 7. .0

" and ABg, (y') BrBya(x)Bsy (y+B8y'at)[a,B8] " bYF 1 5

So it remains to shew that A<B,,(w) can be put in normal
form using only 1.-7. . .

A Biz(w) = BrB12(X)Bz1(Y)B1z(aWﬁ— )[a’ﬁ] by 6.

so it is sufficient to prove that ' .
Ay = BpByg(x)Bg, (¥y)Byo(2) can be put in normal form.

(1) z £ U(R). From (3.2) '

Be1 (V)B1a(2)[1+2¥]y [Hyz]ﬁﬁw(z)ﬂai(y)
80 Bpy (¥)By2(2) = Biz(Z(1+yZ) 1)Bea ((14y2)y) [ (142y) =%, 14y2]
. by 6,7.

Ap = BrBiz(X+Z(1+yZ) -1)B,, ((14y2)y) [ (1+2y)=*,14y2] by 1.
This is now in normal form, for 1+x ¢ U(R) <=
| ' 1+x+z(1+yz) 1 ¢ U(R).

1

(ii) z € U(R). First suppose r = 2.
 Then Ay = By, (x)By, (¥)By2(2)
. If 1+yz € U(R), by (3.2) and 7. we have
Ay = Biz(x)[1+yZ] Bia(Z)Bzi(Y>[1+zy]1 o
' = Byo(x+2(14y2)71)Byy ((1+y2)y) [ (1+2y)7* J+yz] by 6,7.
and this is in normal form. '
Ir 1+yz £ U(R), then y € U(R), and
= [y]zBiz(XY)Bzi(1)B12(zy)[YJ2
[Y]aBzi(1)B12( 1) B12(1)Bzi(’1)312(xy)321(1)Biz('1)
By (1+2y)[y]zt by 1.
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= [¥]2Bas(1)Byo(=1)Boy (~xy)By s (1+2y) [y 15t by 5.
= Bpy (¥)Bya(=y 1) [¥y]eBes (~xy)B, s (14+2y) [y]3* by 6.
= 321(1)Bzi(y 1)312(‘y L)[1+(-y~ 1)(Y‘1)] [YJY]
. ; 'Bzi('xy)B12(1+ZY)[Y]2 by 1,7.
C = Baa (1) [yt 1aBra (my™2)Be s (y-1) Ly, y] '
*Bas (-x¥)Bio(1+2y)[y]at vy (3.2)

=IB21(1)[y 1]eBya(=y™1)Boy (y=1-yx)By o (y(142¥)y~ 1)[yh
by 1,6,7.

= B21(1)LyfilzBia(—y-i)Bzi(y—1-yX)sz(1+yZ)[yli
= Bed (1)[y~1)aBio (~y* ) [1+(y-1-yx) (1+y2) ]3B; 5 (14y2)
*Boy (y-1-yx)[1+(1+y2) (y+1-yx) 1Tt [¥]s
by (3.2) and 7.
= By By (-1+(1+y2)y 2t (1+(y-1-yx))) '
By ((14+(y=1-yx)(14y2) )"ty (y-1-yx))
L(1+(1+yz) (y-1-¥x))7ty , vt (1+(y-1-yx)(1+y2) ]
| by 1,6,7.
and this is in normal form, since
14 (=1+(14y2)y7t (1+(y-1-yx) (14y2)))
‘is a multiple of 1+yz, and s0 is a non-unit,
Now suppose r=1. Thus A, = By (1)Bya(x)B34(¥)Bya(2),
with zeU(R) and 14X £ U(R) (and se xcU(R)),
Ay = By (1)Bya(=1)Byo(14x)Byy (¥)By2(2) Dby 1.

By (1)Bya(-1)Bay (¥')Bya(2' ) [ay,B] by (3.2),1,6, 7.
(suitable y' ,z "yosB)

Byz(=y')B21(1)Byo(2'-1)[a, 8] by 1,5.
and so now we can use the argument as for r=2, for
Apo = Byo(=y')Bsy(1) 1is in normal form with r=2. o

i

There is a natural embedding of GL,., (R) in GL,(R)
by the map A’ ?
T: Al & ol (A'e€GL,—, (R))
00 ... 01
With this in mind, if A € GL,(R), the statement A € GL,-;(R)
will be used to mean 3 A’ € GL,-, (R) such that
A=7A"
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Lemma (3.4). (Normal form for GL,(R), R local.) Put B,=I,
and Br.=B,r (1), 1<r<n. Then if AeGL,(R) (R local) there is
a unique expression '
A= BrBin(xi)""Bnain(xn-i)Bni(yi)""Bnn-i(Yn-1)[QJnAi
~where oeU(R), A;eGL,_4(R), and if r<n, x.+1 and Xy, r<s<n,

are non-units., So by induction we have a normal form for

A, expressed as a product of 3(2m-1) = n® matrices (the
last one diagonal, the others of type B ;(x)).

[N.B. It is well known that a field, and even a local ring,
is a GE-ring, and so some such expression for A exists. It
is the particular form of the expression and its uniqueness
which are new here. )

Probf. Every matrix in GLn(R) has a unit in every row and
column (note that this property actually characterizes
local rings). So we can choose r maximal such that BftA

" has a unit « in the n,n position.
Then 3 x; (i=1...n-1) €R such that

(@]

A= BrBin(xi)nuBn-in(xn=1)' c 6 (13
7 BenBin_y O
where GﬁGLne;(R)g aL€Ry '
Put (¥yee¥n-1) = (84...8q-4)C” and we have the required
form, with A; = 7C. | X, |
If r<n, the last column.of A is :
Xp—q O
(1+x%0 )
By choice of r, 1+x. and x, (r<s<n) are non-units. .
This also shews that r, x; (1<i<n) and o are unique. The
uniqueness of A; and y,...yp-4 follows. @O
Lemma (3.5). For any ring R, the following relations in
Ghn(R) are consequences of the universal relations:
8. By j (¥)Bjk(¥)=Bk (¥)By j(x)Byk (xy)
=Bk (¥)Bik (x3)By j (x)=B x (xy) Bk (¥)By 5 (x)
Bk (¥)B; j(x)=B; j (x)B;k(¥)Bik (-x¥)
=By j (x)Bik (=x)By (¥)=Bik (-x¥)Bi y (X)Bjk (¥)
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9 BLJ(1—a)BJL( 1) = Dy j(a)Bj (-=a)By j (o~ 1—1)
{BLJ(a)BJL(-a 1) = DLJ( -1)
;'11 1By 5 (1)Byk (1)Bji (=1)Byi (-1)§% = Dy 5 (=1)Bjk (1)Byj (=1)Bjx (1)
12. [ag,. qn]BLJ(X)'— BLJ(aanJ )[a1’ an]

Proof. 8. consists of various ways of writing 3, all
equivalent, by 1 and 2. 12 is just another way of writing 6.
Then [-1];Bi;(1-a)Bji (<1) = B j(a=1)Bj. (1)[-1], by 6

- - ’ D; j(a)Bji (o)By j(1-a"t)[-1]; by L
[-11:Dy 5 (@)Bjy (-a)By j (a=t=1) by

’

whence 9 follows.
We next prove 10 with a=1 :

BBy (-1)]e
- =. iBLJ(1)BJL( 1)BLJ(1)BJL(1)B|,J(-1)}iBLJ(1)B,jL(_2)

- By (1B (<1)] by 1
= B (=1)By;(1)D;; (-1)B j(-1)B;; (2)B;, (-1) by L, 5
Bji (=1)By ;(1)By ;(=1)Bj (1)D j(~1) Dby 1,6
= Dy j(=1) Dby 1
Then. {By j(a)Bj, (=a™*)}?

[adi 1By 3(1)Bj (=112 (a7t ], by 6,7
[a]LDuJ('1)[a-1]L by the above
D, j(-1) by 7. ‘

115 By 3 (1)Bui (1)By0 (—1)Byy (-1)18

= By (1)By 3 (1)Byy (=1)By 3 (1)Biy (=1)B 5 (=1)By (1)Bj; (=1)By (-1)
by 2,3 »

n

il

= BLK(1){BLJ(1)BJL('1)iaBJL(1)BkL( =1)By 5 (=1)By k(1)
*Bji (=1)Bki (=1) by 1
= Bk (1) 1By (1)Bji (- 1)12BKL<-1)BKJ< 1)Bki (1)Bik (1)
*Bjk (1)Bk (=1) by 1,2,3
Lk(1)iBLJ(1)BJL( 1)3 BKJ( 1)Bbk(1)BJk(1)BKL( 1) by 1,2
Lk(1)iBLJ(1)BJL( 1)3?BLK(1)BLJ(1)BKJ( 1)
‘Bjk (1)Byy (-1) by 2,3
By (1) {By 5(1)By4 (=1) 3885y (1)Byk (1)By 5 (=1) |
BJK(1)BKL( 1) by 1,2
Btk(1)DLJ(‘1)BLk(1)BJk(1)BJL(1)BKJ( 1)Bjk (1)Byi (=1) by 3,10
Dy 3 1B (1)By 5 (=1)By (1)Byy (1)Bj(1)Byi (-1) by 1,2,3,6

U
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Dy 5 (=1)Bji (1)Be; (=1)B;i (1)B;1 (-1)Bj (1) Dby 1,2,3
Dy j(=1)Bjk (1)Bc;(-1)Bjx (1) by 1. o

We introduce the following notation: if A,B € GE,(R) are
expressions in the generators B j(x), [alk, then A 7 B
will mean 3 C in GE,-;(R), i.e. an expression in B ;(x),
[a]x with i,J,k<n, such that A = BC, and furthermore that
this relation is a cohsgquence of the universal relations.

U

i

Clearly 7 is an equivalence relation; the arrow symbol is
chosen as its use will be in a stepwise reduction to
normal form. Normally we shall write — for ;7 where %he
value of n is clear from the context.

Lemma (3.6). Let R be a local ring. The following hold, the
R.H.S. being in normal form in each case:

(1) LEant(yL)LEnBLn(WL) - H BLh(WLa—1) H Bnt(ayt)[a]n

where 1 + 3y wy, = a € U(R)
(ii) H Bun(xu) H Bnu(yu> H Bun(wu)

- Ln Bun(xu+wu 1) H Bnt(ayb)[a]n

where 1 + 3y,w, = o € UR)’ QG“
(111) n Bnb(yt) H Bun(wb) ”

- Bs H an(wtﬁ_ ) H Bn(, (BYL) an(ﬁ(ys—1))[ﬁ]n
’ t#s
where 1+3y_w, = z £ U(R) and s is maximal such that
' , z-w, = PBeU(R)
(iV‘) I Bi,n(xi.) II BnL(y.i), 1 Bi.n(wi.)
L<n t<n i<n

= Bs I Byn((x,z+w; )a™t) I By (o) *Bps (alys~2'))[al,
L<n L<n
L#s
with conditions as in (iii), and also a = fB-X4Zz
and z' = 143y, %

(v) If BS'E BLn(XL).E By (¥i) is in normal form, then
- vLn L<n

BP'BS H BLn(xL) H Bnu(yu) - A

where A € GE, (R) is expressed in normal form.



[N.B.vBy relation 2. the order of the terms in the

22

products I By (*), I Byn(*) is immaterial,]
L<n L<n )

Proof. (1)'This holds for nz2, by (3.2). Now consider the
case n=3. Suppose 1+y,w; = BeU(R). '

1 1 el

It

In’

80

Ba1 (¥1)Bs2(¥2)Bya(Wy)Bas(wy)

Bag (¥2)Baa (Wa1)Bsy (¥Bay (-wu 8™ yi)B13(W1)st(Ws(1'ﬁ-i))
by 1,2,3

Baa(Yz)Bza(Wzﬁ'1)331(yi)Bia(Wi)Bza(Wz(1‘ﬁ LTty wy))

' *Bay (=W 871yy) by 1,2,3
Baz(Yz)Bas(Wzﬁpi)Bai(yi)Bia(Wi) by 1
Baa(¥2)Bza(WaB~2)Bys(wy 87 )Byy (Bys)[Bls Dy (3.2), 6
Baa(Wao™*)Byg (™ ry,)Byg (Woa ™t )Bgy (ay, ) [als by (3.2),6,7

.Bia(w1a—1)Bza(wza~1)Baa(aﬂ_1YQ)Biz(;Wiﬁpiyz)Ba1(GY1)[G]3

by 2,3

Byg(wya™? )Bzéwza—i)Bai (O(y1 )Baz (aftyz+oy Wy 1y, ) [C(Ja
by 1,2,3

By (Weat)Byg (Waa ™) By, (oy )Bas (ayg) [als

1+yswy € U(R), a similar calculation gives the result. -
the remaining case, 1+y,w, and 1+y2w2 are both non~-units,
Yis Ya2s Wy, Wy are all units.

Then Bsi(yi)Baz(yz)Bia(W1)Bza(wz)

“'WhereAMo~ Byg (1451w )Bas (1472w2) [¥15¥2]10

—)

= [yrt ' V2 1]12B51 (1)Bgz(1)Byg(=1)Bes(-1) M, by 1,2,6,7

[y72,551]12B15(1)Ba5(1)Bg, (-1)Bge (1) M

where M = Dya(=1)Byo(1)Bay (-1)By (1) My

-—)

-

-

—

B1a(1+Y1W1)D13( =1)By2(1)Bzy (=1)Bza (-1 yiwi)B12(1)
*Bas(14y2w2) Dby 2, 3:
Byg(14¥4Ws )Dyg(=1)B12(1)Bgy (=1)Bos (yawa=yywy)
*Bys (1+y2Wz) by 1,2,3
Bia(1+Y1W1)Bza(Y1W1'Y2Wz)Dia( 1)512(1)
‘Bis(yzwz’yiwi)Bzi(‘1)313(1+¥;W2) by 2,3,6

Bia(1+yzwz)Bza(Y1W1'yQW2)D1a( 1)Bia(14yzwz)

‘ ‘ *By2(1)Baa(-1-y2wz) by 1,2, 535 6
B13(1+y2w2)B23(y1w1-y2w2)D13( 1)B15(1+y2w2)
“Bag (=1=yo W5 )Byg (-1-y,W,) by 2,3
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~ Byg(1+¥2Wg)Bag (14y,we)[=1]s by 1,2,6,7
SO Bgy (¥4 )Baz(¥2)Byg (Wy)Bzs(wz)
= [yzt,y3 ]12313(1)523(1)i531( 1)Bgp (-1)
'B13(1+ysW2)Bza(1+Y1W1)3[-113
= [y1t 2 Vo ]12B1a(1)B23(1)iB1a((1+y4W2)('a 1))
'Bas((1+yth>(’a i))BSL<G)B52(a);[a]a

by previous case
- [yfi’ygi]12B18(y1w1a—1)B28(yzwza-i)B31(G)Baz(a)[a]a by 1,2
- Bia(w1a—1)B23(w2a_1)B31(ayi)Baz(dYZ)[a]a by 6,7
So (i) holds for n = 2,3. We now use induction.,
We have -1 ' '

a=1+ 3yw € UR).
1 n
: n=1 .
Suppose first that 1 + 3 yiw, = 8 € U(R).
2
Write & for Z « Then a=1+3,¥ Wi B=1+33¥ W »
n-1

Similarly, wrlte Il for. H .

Then Iy Bay (¥ )Ty Byn(wy)
= Bna (¥1)Bin(wy gt )z {Bni (¥i )Byy (~wy ™ 1yu)]
’HzBLn(WL)Bin(W1(1'ﬁri)) by 1,2,3
o Bna(¥1)Bin(wyB 1) IpBn; (¥ )HaBy n(wy)
'Bin(w1(1’ﬁpi'ﬁ—122YLwL)) by 1,2,3
® Bna(y1)Bun(Wa B M) By (v ) MeBin(wy) by 1
= Bn1(¥1)Bin(we B2 )IuBy n(w f71)I,B nL(ﬁyL)[ﬁ]n by induction

—)Bin(wia )Bni(Qﬁ yi)nz un(wLa )Hany(ayb)[a]n by (362)'
’

- HiBLn(WLa~1)H2BL1(—Wtﬁr yi)an(aﬁ— yi)nz nL(ayL%[a]n
2,

= I, Byn(w,a"t)Buy(af™t y1+a22yuwuﬁ~ yi)nanL(%yu)[a]%
’

= Oy Bypn(wao™t)m, B nL(GyL)[a]
Now suppose 3I r, 1<r<n such that 1+ Z ybwL € U(R)

L#r

Then a proof similar to the agbove applies.

The remaining case is when 1 + _% Y. W, = 2. is a non-unit,
: Lsn . - : :
L#rw . . / 1$I‘<n.

Then z.+y W, = o € U(R), 80 ¥, w. are units, 1<ren.

~o



Then 1435y, W, = 2;-¥2Wz € U(R) : put g = 1+33y,w,.

2L

HiBnL(yL)HiBLn(wL)

-3

-

.Bni(yi)an(yz)B1n(W1ﬁ )an(wzﬁh )HaiBnL(YL)Biu(_Wiﬁ_ yu)

*Bgi (~wppt yL)IHG Bin(wy )Byin(wy(1=871))Ban(w (1=571))
: by 1,2,3
Bni(yi)an(ys?Bin(Wiﬁ_i)an(Wzﬁ_i)HaBnL(YL)HSBLh(WL)
*Byin (W (1-F71 =871 355w ) )Ban (W (1-871-p"1 25y, w, )
by 1,2,3
Bni(yi)an(Y2)Bin(W1ﬁF )Ban (W2 )I5Bn (¥ )IaByalwy) by 1
Bni(Yi)an(yz)Bin(Wiﬂ 1)an(wzﬁ_1)
_ *IaBy n (wy A7) B, (Byy ) Bl by 1nduction
Byn(Wia *)Ben(wao™ )Bpy (0B™2y, )Bra (e ;)
‘IgBi n (W, o™2 )I3B,i (v ) [aly by case n=3,
and 6,7.

[y

Oy By n (wya™ )0 {By 4 (-wi 871y, ) B (-wy B2y, ) ]
ani(aﬁ—iyi)an(aﬁ-1Y2)HaBnL(ayL)[a]n by 2,3

- HiBLn(WLa‘L)Bn1(aﬁ_iyi+azayLWLﬁpiY1)

-

'an(aﬁ—1ys+azayiwtﬁ-1YQ)Habnk(ayt)[a]n‘ by 1,2,3
Iy By n (W, a2 )1, By (o ) [l : :

Thus (i) is proved. (ii) is now immediate, by 1,2.

(1ii) HyBpy (yi )Ty Bin(Wy)
= Bs' H Bnb(yL)an(ys‘1)HiBLn(WL) by 1,2

L#s .
™ Bs +Iy By n(wy ﬁ“*) I Bnu(ﬂyb)an(ﬁ(ys—1))[ﬁ]n by (i)

L S

Note that 1+wsB8~* = (B+wy)B~t = zB~t is a non-unit, and so
is w.f8"1, s<r<n, so we have normal form. '

(iv) Put z" = z'-ysxs. Write I3 for II and 3} for 3 .
s Xs 1 .

t<n t<n
L és : L%s

H1an(xL)H1BnL(yL)HiBLO(wL)

H1Bun(XL)an(1)H1BLn(WL _1)H5Bnu(ﬁyu)an(ﬁ(YS‘1))[ﬁ]n
by (iii)

~ By (x5 By (1)13 {By n (30 )By 5 () I, By o (w651

3B, (BYL )Bns (B(ys=1)) (8], Dby 2,3
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Bsn(xs)an(1)Bsn(Wsﬁ_ JIE By n (xy +wy B ex wy f71) .
: *§Bny (AYi )Bns (B(ys-2") ) [B], by 1 1253
Bsn(xs)an(1)Bsn(Wsﬁb JIEBy o ((xg 24w ) g~1)
I3 Bni (Byi )an (B(ys-2z" ))[ﬂ]n
Now 321(1)512((x5z+w5)a 1)Bay(=xs067%)[6,a87t],, (8=1+z07tx,)
5-(Xg Z+W; YUt xs- (x5 24wy ) g1 |

O-xg=(Xs2z+Ws Ja™rxy  (a+Xgz+wg) [t

]

Then 8-xs—(Xgz+Ws)a™txs = 1+(z—a-xgz-Wg ) 1x,
' 1+(B-a-xgz) a1 x,
= 1.
. So 6—(xsz+w5)a 1xy = 1+X%, v
‘Then (xgz+Wg)B~t = (xs(w5+ﬁ)+ws)ﬁ“1 = Xg+Ws B L4+xgwWg [t
Also (o+xgz+Wg)B™t = (a+xs2)F t+ws St = 1{w5ﬁ‘f.‘

1

. But Biz(xs)321(1)312(wsﬁ—i)

1+Xg xs+w5ﬁ +xswsﬁ

, 1 14wy Bt
‘Thus Bsn(Xs)Bns (1)Bsn(ws87)
= Bps (1)Bgn (%5 24+Ws Jomt )Bps (=x671) [6,0871 5
This relation only involves the two indices s,n and so by
(3.3) it is a consequence of the universal relations,
8o My By n (%03 By (YOI By n (We )
™ BgBsn ((Xs2+Ws )a™ )Bng (=%, 671 )I5B Ln((XLZ+WL)a“1)

0H1Bnb(ayL)an(a(ys-z )67 ) [a]y by the above
. and 6,7

/-

= BgIyBin((xyz+wy )a™1) 5B Ls((xLz+wL)a 1x,071)
*T§ Bpy (0w )Bns ((ays—az”-x5)67) [aly by 1,2,3
~ Bs Iy By n ((xy 24wy )o™3) 1§ By (o ) '
*Bps ((ays~0z"=xs 35 ¥y x; 2+¥; |,)oc 1x,)67 1) [al,
- by 1,2,3
Now (ays-az”-xs—zia(nyLz+yLwL)a-1x5)6“1}
= (o¥s =0z" —a( (2" =1 ) z+z=1-ys Ws )0~ xs ) 671
oa(ys—2"+(ysws=2"2z)o txg)071 ‘
a(ys-2z" +y5(z-a-x5z)a x-2" za1 1xs)b‘1

(v wg = 2-8 = z~a-Xs2)
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a(ys—2"-ysxs)(1+za~txg )62
= a(ys=2"=ysXs)
a(ys-z'). Substitution back gives (iv)
Note that for i»>s, w; 1is a non-unit; so is 2z, and hence
so is (xyz+w,)a~t. Then 1+(xsz+Wg )™t

(a+xsz+ws)a 1 =.zg"! is a non-unit,

80 we have normal form.

(v) We have r<n, otherwise the result is trivial.
Firstly suppose s=n. There are.three cases:
(a) 1+x, and x; (r<i<n) all non-units: then we have normal
form already.
(b) 1+4x. ¢ U(R) and x;, ¢ U(R) some t>r, .t maximal.
Then put B = 1+x--%x, € U(R).
B Iy By n (% )3 By (30 )
= By {Bnr (1)Bne (- 1)Brn(xr)BLn(xt)} BLn<XL)H1BnL(yL) by 1,2
(where M' stands for J ) |
. Ltn
L;ér‘yt

BLBrn(Xrﬁ_i)Btn(xLB—1)Bnr(ﬁ)Bnt( ﬁ)
n”Bm(xL B )1y By (By{ ) [Bln
(suitable yi € R), by (1),1,2,3,6,7
= By Bin(x "‘)H'it'iBw(-Xt.,)Bu(xL)3H13na,(yf)[ﬁ]n
(suitable y{ € R), by 1,2,3
= Bl By n(xy 1)1 Bn (51 ) [Bln (FieR) Dy 1,2,3.
Note that x, 8% (t<i<n) is a non-unit, and so is
1+x, 87 = (B+xy)B™* = (1+x-.)B~t. So we have normal form.
(e) 14+% = « € U(R).
BrI3 By n (% )y By (¥i)
= Bppr (1)Brn (% )M By n (xy)1,y Bnu(yu) by 2

= Brp (xpa™1)Bop () By n (%, 0= )1, By (3! ) [adn (suitable yieR)
by (3.2),6

= M, B n(x o™t )M B (=% ), Bpy (v! ) [a], (suitable y €R)
’ by 1,2,3

< By a(x 07 *) By (8, ) [a], (suiteble § €R) by 1,2,3
This is in normal form.
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Now suppose s=r<n. Then 1+X% is a non-unit, and so ,*'
142x. = o € U(R). i
BrBsniBLn(XL)HiBnL(Yi)
= Bnr (2)Brn (% )IOB 0 (% )11 By (yi) by 1,2
- Brn(xra—i)Bnr(ZQ)HEBLn(XLa-i)HiBnL(yi>[q]n (y{eR) by (3-2);

C I B (X eI By e (=2 ), B (v ) [a)n (yleR) by 1,2,3
 I,By o (%0 L, Byg (5, ) (aly (5 €R) By 1,2,3.
This is now in normal form.
Finally suppose s,r,n are all distinct There are two cases:
(a) x~€U(R). We know 1+x,£U(R), so 1+xs+xr = o €U(R).
Then BpBsIlyByn (% )IyBny (v )
= Bnr(1)an(1)Brn(xr)Bsn(xs)HisBun(xu)HiBnu(yu) by 2
> Brp(xpa™ )Bsn(xsa 1)Bnr (o)Bps (o)

fIGSB (X 0™t ) By (v{) [al, (yLeR) by (i%,

> 0,Bin(xa™t)IG8 {By (% )Bys (% ) 30uBny (v!) [aln (YLER)
by 1,2,3

= 0,8 n(xpa )My Bpy () [al, (FieR) by 1,2,3
This is in normal form.
‘,(b)'erU(R) Then 1+x-¢U(R), so by a previous case,
BrniBun(Xu)niBnu(Ju)

#,Hian(xL)HiBnL(yb)[a]n (suitable Xl Yl a)

So BrBsHiBLn(Xi)n1BnL(Y£)

- BsﬂiBLn(X{)H1BnL(yf)[a]n by 2.

~ normel form, by a previous case. O

- Theorem (3.7). Every local ring is universal for GE,, all n.
Proof. Let R be local. By (3.3) the theorem holds for n=2,
We use induction on n.

Let A = BrIL By (x )IBhi (v )lalnlde  (AgeGEq—4 (R)) be in
‘ normal form. Let B be a generator of GE,(R).
Then by induction it is sufficient to shew AB—normal form.
Firstly suppose BeGE,_; (R). |
Then AB = B.IL, B (X ), Bni (¥ ) [a]nAoB

= BrIl By n(xy ), Bpy (vy ) [odps and this is in normal

form.
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Next suppose B = [By.ce.fn]
Then AB = BpI; By n(xy )1Bni (i )[eBnlns by 6,7, and this is
normal form, -
Next suppose B = B,j(w).

Then AB ~ BpIiyBin (%t )3Bni (¥ )y Bni (Wi )[o], (suitable wieR)
by 1,2,3,6

~ BrI, By n(xy ), By (yi+wy ) [aly Dy 1,2, and thie is
in normal form.
Finally suppose B = Bj,(w).

Then AB ~* B.I,Bi n(x{ ) Bnt (¥i )14Bi n(wi )[al, (suitable wieR)
: by 1,2,3,6

Now IIyBin (X, )IBny (¥ ) 0yByn(wy ) [aln

= BgIy By n(x{)0,Bn (y{)[a’], (suitable x{, y{, a')
where this is in normal form (using (ii) or (iii) of (3.6)
as appropriate). So ' :
AB ™ BrBsTyByn(x{ )y By (y{)[a']n

= normal form, by (v) of (3.6). o

We shall prove later (chapter 3) that if R/J(R) is universal
for GE, and R is universal for GE; then R is universal for
GEn. Thus (3.7) follows from the special case that all fields
are universal for GE,, all n. However, this fact 1is non-

trivial; indeed, the proof is scarcely shorter in the
classical case than that given in (3.7).

In [1;(5.2)] 1t was shewn that any discretely
normed ring is universal for GE,. In particular, the ring
Z of rational integers is universal for GE,. With the help
of a result in [L], we now shew that Z is universal for GE;.

Theorem (3.8). The ring Z of rational integers is universal
' for GE;.
Proof. In [4; section 2] the following is proved (a sketch
. of the proof is given at the end of this proof) :
Let Pk = By (1)Bey (-1)Bi (1) [-1]L = Pxy
(eege Pyp = [01 cj y Pan = (0 1 )

10 1,

0. I -,
1 .1

1 0

and 0 = [-1],, (ik) ; Bik (1),
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Then GE;(Z) has the presentation:
 Generators: Pk, Oy, (ik) (1<i,k<3, i#k)
Relations: .", . ’
(1) BB = I
1(2)  PREPikPxm = Pinm
A‘.l (3) OE =1
(L) 0,0k = G
(5)  PkOi Pk = Ok
L(6)  PrhO Pxa = O

((7)  PrE(ik)Px = (ki)
(8) PrA(ik)Pyn = (ik)
5409 PRA(IK)Peq = (im)
(10)  On*(ik)04 = (ik)
(11) o7*(ik)o, = (ik)-t
L(12)  Og*(ik)0x = (ik)™t

(13) O Pk (ik)(ki)7t(ik) = I

(14)  (ik)(im) = (im) (1K)~

(15)  (ikx)(mx) = (mk)(ik)

(16) (ikx)(xm)(ik)~*(km)"*(im)"t = I
The generators Bk (n) and [a,B,6] of GE;(R) are defined
" in terms of the above generators by '

Bik (n)

ik )" , |
o, 5] =‘Of(“)0§(ﬁ)o§(é) where e(\) = 0 if A = 1
1 if A = =1

The relations implicit in the definitions of the two sets

It

of generators are: :
B (1B (-1)Bk (1) [=11 = Beo (1)Buw (+1)Byi (1) [-1 ]k
[a,8,0] = [a],[Bla[0]s '
By (n) = By (1)"
‘The second and third of these follow immediately from uni-
versal relations 7 and 1.
Then By (1)Bxi (=1)Bix (1) [-1]; .
= Buk (1)Bri (=1)Byk (1)Bey (1)By« (=1) *Byx (1)Bi (1) [-1]; by 1
= Bk (-1)Bik (1)Bki (-1)[-1]L by 5 , .
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Bku(1>BLk< =1)Bi (1) Bkt (=1)Brk (1B (-2)Bix (1)
By (=1)[-1]; by 1
By (1)Bui (=1)Bii (1) Bii (<1)Bik (1) |
*Dyk (=1)Bik (=1)Bk (2)Byy (-1)[-1]y by U4 ..
Byt (1)Byk (=1)Byy (1) +Dy (=1)=1], by 1,6
By (1)Bik(=1)B (1) =11k by 7 ,
So it remains to shew that the relai‘:ions (1)-(16) are
consequences of 1.-7.
(1) P2 = By (1)Byi (- 1)Buk(1)[ 1 1Bk (1)Bki (=1)B (M [-111
= By (1)Bki (=1)Bik (1)Biw (=1)Bky (1)Byx(=1) by 6,7
=1 by 1 v
S0 we may now replace P[& by Pi.k where convenient.
(2) PraPikPun :
= Bok (1)Biem (=1 ) By (1) [=1 1Bk (1) Byt (- 1)BLK(1)[ 1]
“Bok (1)Bkn (=1 )Buk (1) [-1 1
Bmk(1)Bkm( 1)Bmk(1)Buk(1)BkL( 1)BLK(1) k
*Bak (=1 )Bkn (1)Bnk (-1) [~ 1]L by 6,7
Em(ﬂam(1>mkw)mu(1mm(1)&KU) a
B|<m<1)Bfnk( 1)[ 1]i, by 1:2’3 '
Bmk(1)BLk(1)Bum(1)BKL( 1)Bmu( 1)Bku(1)Buk(1) -
Bim(1)Bak ) [=1], by 1,2,3
Bmk(1)Buk(1)Bum(1)B L (=1)Bik (1)Byn(1)Bak (-1)[-1]; by 1,2
Bk (1)Byn(1)Bik(=1)Bni (=1)Bik (1)Byn(1)Byk (-1) [~ 1]L by 1,2,3
Bym(1)Bny (=1)Bin(1)[=1]y by 1,2 ‘
Pin ‘
(3) 0f = [-1)2 =1 by 7 |
(4) 0p0g = [-1]i[-11k = [-1]k[-1]y = 00O, Dby 7
(5) P{kO, Py | :
Bk (1)Bki (=1)Bik (1) [=115Bik (1) By (=1)Byk (1) [=1];
Bik (1)Byi (-1)B (2)B, (-1)B, (1) [-1], by 1,7
Bk (1)Bki (=1)Dyk (- 1)Bkb<1)BLk(-2)BLK(1 [-1], by 9 (3.5)
Dk (=1)[-1]y by 1,6 . ‘
[-1]k vy 7
Ok

i il

u

onounon
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(63 PrinOiPem S

[=1JkBkm (=1 )Bak (1)Bxm (=1) L =1 1{ B (1)Bri (= 1)Bkm(1)[ -1 ]k

[=1JiBicm (=1 )Bai (1)Biem (=1)Bim (1) B (=1 B (1) [ =11 [=1]¢

[-1], by 1,7 by 6,7

O . .

(7) Pk (k)P

Bk (1)Bri (=1)Bik (1) [=1 1Bk (1)Buk (1B (=1)BLk (1) [-1]¢

Bik (1)Bki (=1)Byk (= 1)BKL(1)BLK(~1) by 1,6,7

BKLU) by 5

(ki)

) Pl (ik)Piq |

Bim(1)Bni (=1)Byn (1) [=11i Bk (1)Bun(1)Bry (-1)Bi (1) [-1];

Bim(1)Bni (=1)Bin(1)Bik(=1)Bya(=1)Bni (1)Bia(-1) by 6,7

Bim(1)Bni (=1)Bik (=1)Bai (1)Byn(-1) Dby 1,2 |

Bim(1)Bik (=1)Buk(1)B n(~1) Dby 1,2,3

Bk (=1)Bnk (1)Bix (1) Dby 1,2,3

Bak (1) Dby 1,2

(mk)

- (9 Ben(iK)Pgy - :

Bicm (1)Bmk (=1)Biem (1) [ =1 ]Bik (1) By (1) Bk (=1) By (1) [ - 1]k

Bicm (1)Bak (=1)Bin (1)By k(1) Bk (=1)Bax (1)Bka(=1) Dby 6,7

Brm (1)Bak (=1)Bik (=1)Bia(1)Bak (1)Bkn(~1) Dby 1,2,3

ma(1 )Buk( 1)Bbm(1)Buk(1)Bkm( 1) by 1,2,3

BL(m(1)Bum(1)Bkm( 1) by 1,2

BLm(1) by 1,2

g (im) -
(10) o7 (ik)o,

nwn u

(

0onowonouw o oonouonou

(N | AU | N | N | B | N |

(=112 By (1) 1]
Bx(1) Dby 6
(ik)
[-1]7*B (1) [-1];
Bik(-1) by 6
Bk (1)~ by 1
(ik)™* | |
[-1]15tB k(1) [=1 ]k
Bik(-1) by 6

(1) Ofi<ik)0u

| T | | N { A | (A (e ||

(12) 0g*(ik)0
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= B (1)"t by 1 |
| = (ik)™r
(13) OyPyx(ik)(ki)~*(ik)
= [=1]iBik (1)Bry (1B (1) [=11; Bk (1)Byy (1) 7B (1)
Bk (=1)Bki (1)Bik (=1)Bui (1)Byi (-1)BLk (1) by 6,7,1
=1 by 1 : .
(14) (ix)(im) = By (1)Bia(1) = Bia(1)Bix(1) Dy 2
(im) (ik) |
Buk (1)Bik (1) Dby 2
(mk)(ik)

i

1}

(15) (ik)(mk) = By (1)Buk (1)

(16) (1k) (i) (1k) ™ (ka)™* (im) 2

= Bk (1)Brn(1)Bix (1) 71Bxn (1) 1B (1)t

Bim (1)Byk (1)Byn (1)Bk (1) 7Bk (1) 2B (1) Dby 3
I by 2. u]

L It may be helpful here to give a brief sketch of
- Nielsen's proof that (1)-(16) are a set of defining
relations for GE; (). - '

Let 0 be the subgroup of Gi;(Z) generated by the

Pix and O;. This is Jjust the orthogonal group, or the

matrices with exactly one entry of *1 in each row and

column, and zero elsewhere. Then a simple order calculation

shews that the relations (A) (page 29) present . The

. relations (B) enable any matrix in GE; (Z) to be written in

"the form . '

o ; w+I(ik) .

where w € 1. If M € GE;(Z), M = (e x)s put o(M) = 3 ey
: L

Then a straightforward calculation shews o(M; > 3,’with

,equality iff M e Q. Further, o(M)=o(Mw)=o(wM), any wef.
Now suppos€ M = F,F,...F. where Fj = Pyx or O or (ik).

. Define oy = ogFiFéuuFrg
02 = O FQFG'”'FF
or = OEFF)

Cr+g = 0(I) = 3

The numbers 0,,03,.+. Or4 4 are called the diagram of M.

Then by an inductive argument, Nielsen shews that for any
such M, using only (1)-(16), we can obtain M = M’, where

M’ = F{F;...Fg has monotone diagram, 0> 052 .. 20§ 41=3.

Thus if M=I, we must have 0j=05=...=0{4+,=3 (since oj=0(M)
=0(I)=3) and so F{ef,and the relation M’=I is a relation

-of 2 and so is a consequence of (A); further, M=M' is a
consequence of (A,B,C) and so M=I is a consequence of (4,B,C),
i.e., of (1)-(16). . : :
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In [3], Magnus uses Nielsen's result to get a
presentation of GE,(Z), n> 3. We can generalize his method
to prove theorems that hold for Z or k|x] and indeed for
a class of rings (see (3.11)) which includes any wuclidean
ring; essentially our results shew that to see whether
such rings are universal for GE,, n2>3, it is sufficient
to look at the case n = 3.

Let A,(R) be the subgroup of GE,(R) generated by
Gin-4 (R) and all By, (x), i<n. Every matrix in A,(R) has
bottom row (0,0,... ,0,1), but unless R is a GE,_, -ring, the
converse need not hold. For example, let R = k|lx,y]), and

put 2 .. i
A = [1+Xy x ] and B = A 8
-7 -
e 1xy 00 1

Then B € GE;(R), but B £ Az(R) since A £ G5, (R) (see [1;
Proposition (7.3)]). ’

Lemma (3.9). If A ¢ A,(R) (any ring R) then there is a
unique normal form '
(a) A= i'I;InBi.n(xi.)'Ao (xy€R, AgeGER-4(R))

Further, A can be brought to this form using only the
universal relations, i.e. if A is a product of B ;(x)
(1¢i<n, 1<Jj<n) and [0y ,...0n-y51) then 3 x; (1<i<n) such that
A~ 1 Byn(x;)
L<n

Proof, We have (i¢n)

Bkn(¥)By;(x) Dby 2, if j#k
Biy (x)Ben(y) = {Bkn<y)BLa<xy)Bu(x) by 2,3, if j=k
and ‘
[0 geeecOinyg 31 B n(¥) = Bn(oxy) oy ,ettnays1] Dby 6.
Thus, by an inductive argument, if AieGEn_i(R)
Ay 11 BLn(XL) = 1 BLn(Y:,)'Ai by 2,3,6
w<n L<n

where Xq V1
Ai. § = 5.
Xn=-1 Yn-1
0 0
So Aje I Byp(xy) = 1 Bin(yi)
i<n L<n
Then

I Byn(y ) O Bia(y{) = T B aly+y{) by 1,2
i<n t<n ) L<n



Thus if A € A,(R), 3 x, ¢ R such that
Af_’.H BLH(XL)
v <n

II
i <nBin(xy) Ao

.g BLn(yL)'Ba
L<n

'S0 3 hoeGlin-s (R) such that A
Suppose also (B,eGE,—4(R)) A

Then _g Bin(xy=yi) = BoAgl, whence x,=y,, A,=B,, and we
have uniqueness, o
Lemma (3.10). A,(R) (any ring R) has the following
presentation: ,
Generators: By ;(x) (i<n) and [oy yee0tn—g,1]
Relations: The universal relations 1.-7., where

applicable, together with the relations
of GEp—4 (R). | o
Proof. By (3.9), all that remains to be'shewn;is that
A+B can be put in normal form (where each of A,B is;in"
normal form) using only the prescribed relations.' |
A*B = I Bin(x )" J Bin(yi)Bo
= I Byn(xp+y{)+ A,Bo (y{€R) by the same argument

2 as in (3.9)
= LgnBLn(xL+yL)'Co (Co=AgBo€GEs-1 (R)). o

A

We note in passing that a similar proof shews that
the group of upper triangular invertible matrices, and the
group of unitriangular matrices, each have presentations
consisting of the obvious generators together with the .
applicable universal relations.

Definition: R is a strong GE,-ring if given a,,...ax (k<n)
and by ,4...0x in R, by not all zero, such that

8404 +.eetagby = 0
there exists P ¢ GH (R) such that (a,,...ax):P has at least
one zero entry. )

Note that a strong GE,-ring is a GE,~-ring; it is
also a strong GEﬁ-fing for all m<n, A strong GE,-ring is
. just an integral domain (not neceséarily commutative).
Definition: R is a right Ore-ring if for all a,, a, € R
3 by, bz € R, not both zero, such that a,b;+a,by = 0.
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Now suppose R is both a.right Ore-ring and a strong GE,~-
ring (e.g. R = any EBuclidean ring); then given a,b € R

3 P e GE;(R), c € R, such that (a,b):P = (c,0).
Conversely, suppose R has this property; then it is a right
Ore-ring, and it is a strong GE,-ring iff it i1s an integral
domain., |

Definition: A ring R is GE,-reducible if for all a,b ¢ R
3P e GE;(R), ¢c € R, such that (a,b):P = (c,0).

Theorem (3.11). (cf. Magnus [3]) If R is GE;<reducible, then
GE,(R), n >3, has the following presentation:

Generators: By j(x), [oyj...0pn]

Relations: The universal relations 1.-7., together with
the relations of GEz;(R) (i.e. relations
involving just three subscripts).

Proof. The theorem is trivial for n = 3, so assume n > 3
and use induction.

Let M ; denote any product of By;(x), Bji(v), [a,Bly;, i.e.
(since R is certainly a GE,-ring) any matrix in GE.(R)
which differs ffom the identity matrix only at the
intersections of the i,] ro@s and columns. We stress that-
My ; will denote any matrix of the appropriate form, so we
shall write M;; = My, MLJMLJv Mo By (x)My; = My, etc.

Let A € GE,(R), [: , —}

Now 3 M € GE,(R) such that (a,b)+M = (c,0)
i.e« 3 My, such that
A =

Miz = M32M21

O oo oo

04 ...

o..‘ e

C cuee

C

meee= Ay Mpp=geeMzy, Where A, € AL (R).
(This reduction of A is essentially due (in the case R = 2)
to Magnus, op. cit.) '
Then A, = nﬁiBLn(xL)'Ao (Ao € GE,-4(R))
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n"1 ) T ;
Suppose E Byn(XL>AoMnn—1""M21 =1 ' (*) Lo

} n-=1
By relations of A,(R) we can write this as .
= | '
E BLn(Xi)AooMnn-i =1

’ n=i ' .
80 E BLn(Xi)Aoo = Mpn-1 (%)

and thus M;n-y € A,(R), and so (**) is a relation of A,(R).
By (3.10), (*) is thus a consequence of the universal |
relations and the relations of GE,—;(R).
So it remains to shew that
n=1i n—41
A= H BLn(XL)AoMnﬁ—i""Mzi' E Bin (¥i )AiMpp—geeMay
can be expressed in the form
H an(x )AzMnn-i""Mzi
(Agy Ay, Ay € Gmn_i(R)) using only the universal relations
and the relations of GES(R); by induction we can use
relations of GE,-,(R), and hence by (3.10) we can use
relations of A,(R). | '
'  For the rest of thls‘proof, ' 5 ' will mean ' =, using only
relations of th(R), Gmn_i(R); An(R), and the universal
relatlons., '
By (3.9)s Mn—1n~2"'M21 H Bun(yL)Ai - 5 BLn(yi)Az (Az€GBh-4 (R))

' So A~ n B-m(x-L )AoM,m..1 n BLn(y{ )1‘42Mm,_1....M21
- H BLH(XL)AOMnn-l H Bun(yu)AzMnn 1"-M21
Then Mnn—i H BLn(yL) - H Bun—1(y ) H Bun(yu)Mnn -1 by 132’
.o ' s
A0 H Bun 1(y ) = Ay € GE,—, (R)
. “ n—1
and {I‘Bi.n(_xi. )As {IBLn(YL) » I Bin(x{)As
n=1 L, | L
SO A g iI BL n (XL )AaMnn—1A2Mnn_1.n-Mgi

- n=2 _ . . |
Now.A, = ‘E By n-1 (20 )BMy=y pmpeeeley (A5 € GE -5 (R))
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Then Mpp_yA; = Man=1 E BLn—i(ZL)AzMn-in-z""Mzi

n-=1 n=z2 ' -
- H Bin-1(2{) H Bin(z{ MMan-1BoMn_snogeeMay DY 1,2,3,6
- H BLn—1(ZL) H an<z Az Mnn—iMn—1n—2- M21 by 2,6
- n B-m(z{)A*Mnn_i....Mz1 by 2 (A, € GE,_;(R)).
So A ™ n Bm(xb)A3 n an(z )A*Mnn —geenMg g My g eenedoy
= g BLn(xf)AsMnnéxﬂ"Mzimnn—iuani (A5 € GEq-1(R))

and Mpn-41Mp—gn-2Mpn-1 - Bn—an(W1)Bn-in(wz)Mn—in—z

‘Mapn-1Mp=1n-2 DYy relations
of GE (R)

So A = H Bun(X )Aan-zn(Wi)Bn—in(Wz>Mn—1n—2Mnn iMnoin-2

woeMp g My negeeeMay
- H BLH(XL )AsMn—1n—2Mnn-1Mn “in~ 2""M21Mn—1n—2'"M21
- EI BLn (ii‘ )AG}ann—icusz 1Mn_1n_2-ouM21 <A6 6 GEn..i(R))
Then A7 = Mn _1n—2000-M21Mn -qN =2 ooo.Mai E G‘En_i (R)

. ' ne=g ‘
and. as befOI‘e, Mnn"'iA'? - I BL n (EL >A8Mnn"1""M21 (AB EG’En_i (R))
1
n—i - n_=2 n ’
So A - I Bin (X )Ag E Bin(2y )AgMpp_qeeeMay
n—i a ‘ ) ) .
- E Bin(Xi )AgManogedzy  (AgeGE,_4(R)). ©

Thus we have immediately: ,

Corollary (3.12). If R is GEg-réducible and universal for
GE;, it is universal for GE,, all n>3. 0O :
Corollary (3.13%). The ring Z'of’rational integers is
universal for GE,, all n. . |
Proof. The case n=2 is covered by [1,(5 2)1, and the case
n=3 by (3 8). (3.12) now gives the result. O

- We conclude this chapter with some remarkgﬁbnithe
interdependence of certain of the universal relations.
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Proposition (3.14). In GE,(R) (any ring R, n»3) the
universal relation 5. is a consequence of the other

universal relations,
Broof. Bji (1)Byj(=1)Bji (=x)B;(1)Bji (=1)
= BJL (1 )BLJ (-1 )Bki.'("1 )BJK ("X)Bki (1 )BJK (X)BLJ (1 )BJL ( 1 )
by 1,3 (k# 1,])
Bji (1)Bycy (=1)B; (- 1)BJK(—x)BLk(x)BKL(1)BKJ(1)
“Bjk (x)Byx(=x)B;; (-1) by 1,3
By (=1)By; (-1)Bg (1)Bj (=X)B {{x)Bjk (x)
“Bici (1)Bkj (1)Byi (=1)Bjk (x)By i (=x)Bji (=x) Dby 1,2,3
Byj (- 1)BLK(X)BKJ(1)BLK(-X) by 1,2
By ;(x) by 1,2,3. o

il

i

]

For n=2, this need not be the case:
Proposition (3.15). In GE,(Z), the universal relation 5.
is independent of the other universal relations.
Proof. Consider the group G = {*1, *e] where €2 = 1,
and the map GEZ;(Z) G '
given by Byo(n) = € (nez)

Bgq(n) ™ 1 (nez)

[C"ﬁ] ~ ap (a,B = 1)
Then it is clear that the map is consistent with the
relations 1,4,6,7 (2,3 are vacuous in GE,(R)) but not
with 5. o | "

For certain values of the element x occuring in 5, however, 
5. is a consequence of 1,4,6,7:
Proposition (3.16). (Any R) The relation
By (1=a) = By (1)Byj(-1)B;i (a=1)B;(1)B; (-1) (xeU(R))
'is a consequence of 1,4,6,7 in GE; (R).
Proof. We have
By j(a™*=1)B; (1)B; J(a 1)BJL(—a ) = Dy j(a™) by 1,4
and : :
Bji (a—1-1 )BLJ(‘l )BJL (a-1 )BLJ(-G—*)
By 7, DLJ<G‘1)DJL(G-1) = I.- '

D;i(a™*) by 1,4
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By (a™2=1 )BJL (1 )BLJ(O.—” )BJL (-1 )BLJ(1 )BJL (a1 )Bi..i (=a"1) = I

Using 1 again,
By (=1)B;  (1)B; (a=1)B; (=1)By ;(1)Bj  (a=1) = I
and the result follows. O

Corollary (3.17). If R is a local ring, and if |R/J| > 2
(FJ=Jacobson radical) then 5. is a consequence of 1,4,6,7

in GE; (R). , ,

Proof. If x £ U(R) then x = a=1, where o = 1+x € U(R).
If x ¢ U(R) and 1+x = a ¢ U(R) then x = a-1 as before,
Other case: x ¢ U(R), 1+x £ U(R).

Then 3 a,B € U(R) with a+p8 = 1.

So -1 = (a=1) + (B-1)

and x (a=1) + (6-1) where 6 = B+x+1 € U(R).

By 1, By (x) = By (a=1)By;(6-1) and the result now foll

i

il

Note that in the excluded cases of (3.17) we can use an

OWS.e

argunent similar to (3.15) to shew that 5. is independent;

if €2 =1, just map Byz(a) = ¢ (acU(R))
Biz(x) » 1 (x£U(R))
Bz1(¥) P 1 (JeR)
[e,8] =1 (a,8U(R)).

o
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L, Quasi-universal rings.

We already klow from (3.7) that skew fields are
universal for GE,, all n. The Wedderburn-Artin structure
theorem states that every semi-simple ring with the minimum
condition on right ideals is a finite direct product of
full matrix rings over skew fields. Now if R is any ring,

(Rn)m g an
and 1f R,S are rings,
GE, (RxS) = GE,(R)XGE,(S)

which prompts us to ask whether the property of being
universal for GE, is preserved under formation of direct
products and of matrix rings; counter-examples to these
hypotheses are given in (4.1) and (4.7). However, if R,S
are universal for GE,, we can shew (see (4.2)) that
GE,(R*S) has a presentation consistlng of the universal
relations, together with

By ; (x)B;i (y) = By (y)By;(x) whenever xy=0=yx. .

Then if R is a GE,-ring, universal for Gham, we can shew
(see (4.9)) that Ghm(RnS has a presentation consisting of
the universal relations together with

B, 5 (x)Bj, (v) [1+yx]j = [1+x5)iBj (7)By ;5 (x)
whenever 1+xy € U(Ra).
Thus we make the following definition:
Definition: A ring R is guasi-universal for GE, if GE,(R)
- has the following presentation: ' ‘

Generators: By ;(x), [0y yeectn] (xeR, akeU(R), 1<i#j k<n,
1#3

Relations: The universal relations (page 15) w1th
the following in place of 4 '
Lo By (x)By (v)[1+yx]; = [+xy]iBy (v)By (%)
- whenever 1+xy € U(R).
(Recall that 1+xy € U(R) = 1+yx ¢ U(R); indeed, this
follows from L!) '
Since L4 is a special case of 4’ (just put x=a-1, y=1 and’

use 6), a ring which is universal for G&, is quasi-universal
for GE, . Note also that a ring which is quasi-universal for
GE, and universal for GE, is universal for GE,.

Proposition (4.1). Let R be the field of two elements..Then
RXR is not universal for GEj.
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. Proof. RxR = {(n,m)|n,m = 0,1} where 141 = 0
| U(R*R) =1 |
Let S = {0, 1, %, 1+x} where 1+1 = O and x2® = 1.
" The map ©6: RXR — S determined additively by (1,1)® = 1 and
(1,0)° = x 1is a U-homomorphism. But

(130)‘(011) =0 = (0:1)'(1’0)
whereas

(1,0)e(0,1)e= x(1+x) = 1+x £ O.
Thus by (2.2), RX¥R is not universal for G&,. o :
However, RXR is quasi-universal for GE,, by (L4.2)(ii).

Theorem (L.2). (i) If R,S are universal for GE,, GE,(RxS)
- has a presentation consisting of the usual generators,

~and the universal relations together with
(*)  By;(x)Bji(y) = B;i (y)B;(x) whenever xy=0O=yx.

o (ii) If R,S are quasi-universal for GE,, so is RxS.
‘Proof. Clearly (RxS), = RpyxS, |

and - GE, (RxS) = GE,(R)*GE,(S).
Thus GEn(RxS) has a presentation consiéting of presentgtions

. of GE,(R) and GE,(S), together with relations ensuring ‘that

these two subgroups commute with each other elementwise.,
If (x,y)eRxS, we write By j(x,y) for B ;((x,y)).
Then ‘ ' ' - '
- By j(x,0)B;;(0,¥)
BLJ(XfO>BJL(O,Y)

[}

B ;(0,¥)By ;(x,0) Dby 1
B;i (0,¥)B; j(x,0) by (*)
- By j(%,0)B;x(0,¥) = B;k(0,5)B;;(x,0) by 3,1
B, j (x,0)Bx; (0,¥) = By (0,¥)By;(%,0) Dby 3,1
By j (%,0)Bkr (0,¥) = Bkr(0,¥)B;(x,0) by 2
Now U(RxS) = U(R)xU(S). Let oxeU(R), BxeU(S).
BLJ(X’O)[(1’ﬁ1):y"(1:ﬁn)] = [(1’51>:""(1’ﬁn)]BLJ(X:O) by 6
[(a111);""(an,1)]BLJ(O9Y) = BLJ(O:Y)[(Q1:15:""(an:1)] by 6
[ oy 91) gunnelanst)JL(1,81) 500 (1,84)]
= [(1:ﬁi)y""(1,ﬁn>][(a1:1)s""(an’1)J by 7.

Thus the universal relations for RxS, together with (%),

]

are sufficient to ensure that GE,(R) and GE,(S) (as subgroups
of GE,(RxS)) commute elementwise.
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It remains to shew that the universal relations for GE,(R)
and GE,(S) follow from 1.-7. and ().
Now 1,2,3%,6,7 for Gi,(R) are just special cases of the
corresponding relations for GE,(R*S). Suppose o e U(R).
B, j (a=1,0)B; (1,0) .
By j ((as1)=(1,1))B;;, (1,1)B5,(0,=1) by 1 ' x
Dy j (o, 1)Bj (o, 1)BL 5 (1,1)=(a™2,1))8;,(0,=1) Dy &
= Dy ;(0y1)B;j (@, 0)By ;(1-a™1,0) by 1,(*)
which is the form taken by U4 for GE,(R) in GE,(RxS).
If X € R, 'BLJ(X,O)’
Byt (151)B 5 (=1,-1)B; (=x,0)B,; (1,1)B;{(-1,-1) by 5
Bji (1,0)By ;(=1,0 )B;{ (-x,0)B;;(1,0)B;; (-1,0 ) by 1,(*)
which is the form taken by 5 for GE,(R) in GE,(RXS).
Similarly for GE,(S). This completes (i).
(ii): Since (%) is a special case of 4', we have only to
shew that L' for GE,(R) and GE,(S) is a consequence of the
quasi-universal relations for GE,(RXS).
If X,y € R and 1+xy € U(RY, then (1,1)+(x,0)(y,0) ¢ U(R%S).
So By ;(x,0)B;,(y,0)[(1+yx,1)];

o = [(1+xy,1) 1B (v,0)B, j(x,0) by 4’
~which is the form taken by L' for GE,(R) in GE,(RxS).
Similarly for G&,(S). o ' '

1t

it

1}

Corollary (L.3). Let S = KH Ry» |A] <o

is universal for GE,, all AeA, GE,(S) has a

(1) If R,
.presentation consisting of the universal relations and (%),
(ii) If R, is quasi-universal for GE,, all AecA, so is S.
Proof. The proof is a straightforward generalization:

of (4L.2). o

We note in passing that there does not seem to be any reason
why the above should hold for an infinite direct product

of rings, except in some special cases (e.g. when R, is a
local ring, all AecA) when the proof that any relatidn of

a given length in Gi&,(R)) follows from the universal
relations is a standard process whose form and length are
independent of A. It seems unlikely that the direct product
of infinitely many copies of Z is a GE,~ring (for n=2, it
isn't; see [1; page 11]) and whether it is quasi-universal
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for GE, does not appear to be a trivial question.
Definitions: Let E,(R) be the subgroup of GEH(R) generated
by all By ;(x), xeR, 1<i,j<n, i£j. Let D,(R) be the subgroup
of G, (R) generated by all [al,, acU(R), 1<k<n.

Lemma (4.L). If R is universal for GE,, E,(R) n Dy(R) is
generated by all Dy ;(a), acU(R), 1<i,j<n, i#j.

(cf. [1;(9.1), Corollary 1])

Proof. D ;(a) € ®,(R) by L4 and 1.

Now if [og,.0tq] = O {Bj(x)}, this relation must follow
LesdsX

from 1.~-7. No diagonal matrices are introduced by any of
these relations except L, and it follows that [oy y....0p ]
is a product of D ;(a), suitable i,j,a. O

Note that (4.4) need not hold for quasi-universal R. Let
la], = L?%DLJ(QLJK)'in some order (a's e U(R)). Then, as

in the proof of (4.5) below, it follows that acU(R)’ (the
derived group of U(R)). Now put K = the field of two
elements, and put R = K.

0
I + (Q)(S) = 1o
01 00 11y
I, + (OO)(O1) = (01)
So by relation L', [(31)]1 € B,(R) n Dy(R). But U(R) is the
dihedral group of order 6, generated by (?é) and (Jg). So
U(R)' is cyclic of order 3, generated by (}é). Thus
(é;) £ U(R)', and so E,(R) n Dn(R) is not generated by all

D, j(a), ccU(R). It follows from (L4.4) that R is not
universal for G&,, any n : for a second proof of this, see
(4L.7). But, as we shall see in (4.11), R is gquasi-universal
for Gin, all n. |

Proposition (4.5). If R is universal for GE, and [d]ieEn(R),
then a ¢ U(R)'. o
Proof. If

(*)  [aly = nI}kDLJ(qLJK) in some order,
JkE |
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we have the relation Dy;(B8) = Dy;(B)Dy (F 1), and so
(**) [(x]j. = LHJD:LL(ﬁLJ)

Then o = 650404 030,000, 6p
where 8, are the arguments of the D,, in (**): thus
Ort 7t v b7t = 1
o O E 6504 eenees 6 mod U(R)'
Now ©p0y.ceee. Or = o1 ds¥aPaeeee-¥s bs
where Y are the arguments of the D;,-, in (**)' repeat
the argument to get

Z o Pyeeeensps mod U(R)'
After n-2 such steps we have
O = Ay Ageesedy mod U(R)’

where A, are the arguments of the D,, in (**). Finally
we get, T ATIAZL....ALE = 1,
o = 1 mod U(R)’
Note that we have not yet used the fact that R is universsl
for GE,. -
If R is universal for GE, and [a]; € E,(R), then (*) follows
by (4.4), whence the result. o
Now note that for any ring R, G 2 (R) ¢ E2(R) (see

[1;(9.1), Corollary 3] or (5.43}). Then we have:
Corollary (L4.6). Let R be a GE,-ring, and S = R,.
If G&5(R) # Ez(R), then S is not universal for GE,, any n.
Proof. Given x ¢ R and i1,J = 1,2 or 2,1 we have (in GE,,(R),
n>1) -

By j(x) = Bya(=x)By;(=1)B5(x)Bs;(1)
As an equation in GE,(S), this reads

[Bij(x)]y = Bya(-xeyy)Bay(-€1;)By2(xey1)Bay(ey;) € En(S)
If S is universal for GE,, we have by (4.5)

By ;(x) € U(S)’ = GE;(R), since R is a GE,-ring.

i, (R) ¢ Gish(R). |
Now [ap]y = Dji (B)[Ba]iDy;(B), so since Dxn(B) € Ey(R), it
follows that GE;(R)/E,(R) is abelian, and so

64 (R) ¢ B, (R)
Thus GE,(R) = E,(R) and we have a contradiction. @
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Corollary (L.7). Let R be the field of two elements, and
8 = Rz. Then S is not universal for GE,, any n.
Proof. By (L.6) we have only to shew Gis(R) # Z,(R).
since U(R) = 1, E,(R) = Gi(R).
Then |GE,(R)| = 6. Since GZ;(R) is not abelian, it is the
dihedral group of order 6, which is not a perfect group.‘ ul

We now introduce some more notation.
Write th(x) = Xey ; where e, ; are the usual 'matrix units'
= the matrix with x in the 1 J position
. and O elsewhere.
. bd -
Write }r?kr‘(x) = Bxn-n+i :r‘n-*rH-J (x)

Where there is no ambiguity, we shall write Bkr(x) for Bkr(x).

erte [a]k = [a]kn—n+t- Again, we shall generally write
LJ L - oJ ,
[a ] for [a]K. Put Dep(a) = [alla t]n.

Now let R be a ring and S = Rp. Then an % g, in a’
natural way: specifically, if A= (a_ ;) € Rqm and B = (b ;)
¢ Sp, then since by € S = Ry, by = (cii). We identify
A and B if cil = aip-n+krjn-nirs 811 1;3,k,r
This isomorphism induceé an isomorphism -

U(Rpn) & U(Sy) ‘
i.e. GLnn (R) = GL,(S). ' -
Proposition (4.8). If R is a ring and S = R,, there is a

natural isomorphism ©:R,,; - Sn. Assume m >2. 6 induces an
isomorphism between GL,,(R) and GI,(S), and an isomorphism
between E,, (R) and E;(S). It induces an embedding of GE,,(R)
in G, (S), and for this to be an isomorphism it is
sufficient that R should be a GE,-ring. '

Proof. We already have that 6 and its restriction’

GLan(R) GL&(S) are isomorphisms. Then

6: g;z,é,(x) » B (B () (kAr).
o: Bij(x) = [By;(x)]  (3#43)

e: ?aii’»ouogoanm] — [[Otii I...;ani:‘""“'[aim""'anm] ]
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© which shews that 6 maps GE,,(R) into GE,(S). Then

B (x) = B (-x)BRR (-1)BK7 (x)B23 (1) where r £ k
and so, since m >»2, E,,;(R) is generated by all Bg; (x)
(x€R, k#r). Thus 6 maps Enn(R) into E,(S).
,IfAGSm,A=(aLJ) then

Bxr (4) L§JBkr(ELJ(8LJ))

I Bep(ay)®
L2J

so 6 maps Epn(R) onto Eq(S). . :
Let R be a GE,~-ring. To shew that © maps GEnnm (R) onto GEj(S)
it is sufficient to shew that a e U(S) = [alx € GEqn(R)C.
But U(S) GEn(R), so 0: IC, - [a]k for suitable C, of the
form BYJ (x) or H[ﬁt]k. ‘g '

Theorem (4.9). Let R be a GE,-ring. Put S = R,.

(I) If n>3, m>2 and R is universal for GE,,, then S is
S universal for GE, V .
(II) If n,m >2 and R is qu351—unlversal for GEnm, then S

is quasi-universal for Ghm.
- Broof. We have to shew that 1.-7. for S imply 1.-7. for
R, with 4’ in place of 4 in case (II). | '
R1(1): 1A3: Beg (X)Bri(v) = [Byy(x) 1x[By () Dk

‘ [Bu; (x)Byj(¥) ]k by 87
[B j (x+y) 1k
Bkp (x+y)
Byr (B 5 (%) )Bkr (B 5 (¥))
Byr (Ey 5 (x)+E5(y)) Dy 81
Bkr (B j (x+¥))
BYJ (x+)

u

i

1l

I

(11) xAr: B (x)BKE (¥)

]

il

This completes R1.
R2(1i) ifs, J#r: Bep(x)Bia(¥)

il

[BLJ(X)]k[Brs(y)]k
[Bu;(x)Brs(¥) ]k Dby 87
[Brs (¥)By ;5 (x) 1k

[Br‘s (-Y)]k [BLJ (X)]K by S7
Bfk (7)BLE (x) -

1

]

]
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C(11) st B OB = (315 (0 ]k [Brs ()],
[Bes (M1 [BLs(x) )k by 87
| s B;;(y)Béd(x)
(111) gﬁg,q :vBﬁﬁ(x)B;;(y) = [B; (0)JkBy (Brs(¥)) -
Bpq(Ers (¥))[B i (x) ]k by 86
Ny = B;;(y)B“(X)
(1v) Kfp, i#s: BLE(x)BL(¥) = [Byj(x)lkBpx (Ers(¥))
Bpk (Brs (7)By s (=x)) [By j(x) ] Dby s6
Bpk (Brs (¥))[By 5 (x) ]k
o = BRS (v)BLA (x)
- (v) kfp, J#r: Bia (x)BLS(¥) = [BLJ<x)]Kka(Ers(y))
| = Bep(By j (x)Ers (9))[Bj(x) ]k by S6
= Bep(Bres (9)) By (0) )i
= BRp(y)BLA ()
(Vi) k#d, tp; Bii(x)BR5(¥) = Bey(Eyj(x))Bpg(Ers(y))
k#t, D#Q: , - :
Bpg(Ers (¥))Bkt (Bi j (x)) by 52
| = Bpa(¥)B" 7 (x)

' (Vii) kIAQ: j,«l.]f', B&i(X)Br{,a(y)'= BK.L(ELJ(X))BLQ(Ers(y))
k#t, t#q:

. = Buq(Ers (¥))Brt (B 5 (x))Bkg(Ei j (x)Ers (V)

by S3

It

]

= th(Ers(y))Bkt(ELJ(X)) by S1
= BL 3 (¥)BEE (%)
(viii) k#t, J#r, i#s, i#£j, r#s : N |
Bri (x)BLR () = By (Byj(x))Byy(Ers (¥))
Byt (By j(x)-I)Byk (I)Bik (-Brs(-y)) Dby St
Dict, (By j (x))Byx (B 5 (%) )Bicy, (I-By 5 (=%))Byk (~Brs (-)) by Sk
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= Dt (By s (x))[-Brs(¥)JtBrk (-Brs(y)B;(x))
*Bit (B j (-x)Brs (=¥)=Brs (=¥) )Bk (I) [-Brs (-y) ]y by 86,7
[B. 5 (x)s =Bt (=x)Brs (3) IkeBux (-Bes (v)Bi 5 (x))
'BKL<BLJ(-X)'I>BLK<I)['Brs(‘y)]L by S§7
[Bi;(x)s =By ;(=x)Brs (¥) JktBek (-Brs (¥)By j(x))

- *Dyy (B 5 (=x) )Bek (By j (=x))Brt (B 5 (=x) ) [-Brs (-¥) 1t
v by sl

= [—Brgﬁy)]tBtk(-Brs(y)BLJ(~X)+BLJ(—X))
“Bit (B j(-x))[-Brs (-¥) ]y by 81,6,7
= BLK(BLJ(“X)'Brs(‘y)BLJ(-x))BkL(ELJ(X)Brs<‘Y)) by 86,7

Bik (Brs (¥))Bet (By 5(x))

.= BLe (¥)Bei(x)

. The remaining cases of R2, i.é. as in (viii) but with i=]
or r=s or both, will be dealt with after R3 (i)-(v).

R3(1) ifq: BEE(x)BIA(y) = [By;(x)lk[B;q(y) )k
[B,;(x)Bjq(¥) ]k Dy ST
[qu(Y)BLJ(X)BLq(XY)]k
[Byoq(¥) 1c[Bij(x) 1k [B o(xy) Ik by 87
B (7)BiR (%) Bk (xy)
(11) kp: BY (0)BEL(Y) = [By;(0)iBip(Byr (9))
| Bep(By 5 ()% () [By 3 (x) ] by 86
Bap(Ejr () +Eir (xy)) [Byj(x) ]k
B p(Ejr (9))Bep(Bir (xy)) [Byj(x) ]k Dy 81
Bi 5 (7)Bi (x)BKp(xy) by R2(V)
(1i1) kAp: Bid(x)BL(¥) = Bep(E ;5 (x))[Bjr (v)]p

= [Byr () I pBep (B (x)Bjr (¥)) by S6

= [Bjr (9))pBup By j (%)+E;r (x7))

Il

i}

Il

n

[t}
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tl

(B30 () 1 Bep(Ee 5 (¥))Bep (e (33)) by
Bpp(¥)8" 3 (x)B L (xy) ’
(iv) k#t, t#p, . kép: Bii (x)Bin(¥) = By (B j(x))Bip(Ejr (¥))

BLp(Ejr’(y))Bkt(EL J (x))ka(ELJ (x)E;5-(y))
by 853
BLQ<EJJr(y))BKL(EuJ (X))ka(Eur‘ (X,Y))

(y)B P (x)BLT p(x¥)

i

1l

i

i

(v) ®#t, i3, itr, i#r:
Bei(0)BIR(9) = By (85 (x))Bu (50 ()
= By (B 5 () -D)Bu (DB (Byr (3)) by 81
= Dt (By 3 §x))Buk (B j (x))Bky (B 5 (x))Bew (-Byr (-y)) by Sk
= DKL(BLJ(X))[-Bjr(—y)]ank(-BJr(y)BLJ(X)) |
*Biet (B j (=x)Bjr (=¥))Bew (T [-Bjr (¥) ] by 86,7
= [Byj(x)y =By (=x)Bjr (=¥) JktBik (-Bjr (¥)B; ;(x))
“Bi¢ (B 5 (=x)By r (x3)=I)Bex (I)[-B;r (¥) ]y Dby 87
= By ;(x)s =By (-x)Byr (-¥) JtBek (-Bjr (¥)By 5 (x))
Dyt (By 3 (=)Byp (57))Byic (B 5 (=x)Bi r (37))
By (By 5 (=x)+Er (xy)) [-Bj- (¥) ]y by sk
= [Bir(xy)s =Bjr(-¥)JciBuk ({-By j (=x)Byr (x¥)Bjr (v)By j (x)
+By j (=x)Byr (x3)+By j (=x)Bir (xy) }) !
Byy (8 5 (=) +E; - (39)) [ =B (7)1 by §1,6,7
= [Bur () JeBuw (1B (=3)B4 5 (-x)Bir (39) (B (9)Bir (x9)-1})
By (B p (xy)+E, ; (x)B;r(y)) Dby 86,7
= [Bir () JeBo 1By 5 (=) 1By (59 =B (=30} DBt (B 5 (%))
= [Byr (x7) IcBok (Byr () 0Bkt (B 5 (x))
= ng(xy)B' ()BT (x)
= BiL (7)BY (x)BLR (xy) by R2(iv),(v)
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The remaining cases of R3, i.e. as in (v) but with either
i=j or j=r, will be dealt with after R2(ix),(x).
yie are now in a position to complete R2: '
R2(ix) k#t, i£j, j#r, ifr @
LJ rre L rJ ir rJ j e a s
Biet (X)Byk (¥) = Bei (x)Bii (=¥)Bik (=1)Brk (7)Bkk (1) by R3(iii),
&) J L . R1
BLR (-¥)Bik (=1)BLA (7)BAk (1)BEi(x) Dby R2(v),(viii)
Bik (¥)Bei(x) Dby R3(iii), R

(x), case (I): k#t, i#j. Since n >3, choose r'# i,J.

u

Then Byt (x)Bii(y)

u

BLE (-x)BLY (-1)BLT ()BT (1)BIJ (v) by R3(iii), R1 -
BLR (v)BRE (-0BLE (-BLGOBLE() oy R2(v), (ix)

By (¥)Bri(x) Dby R3(iii), R1

il

case (II): Here we may have n=2. Supﬁose k£t, i#j.:
BYE(x)BE () = Biy (Buq ())Buk (855 (¥))

| Buw (855 (7) DB (Byy (x)) by b’y 7

Bl (v)BK} (%)

This completes R2; we now complete R3:

i

R3(vi)(I): k#t, i#j. Choose s # i,3.
By ¢ (x)BL (¥)
Bﬁi(-x)Bii(—1)Bﬁi(x)BiE(1)Bii(y) by R3(iii), R1
Bk (98] (-x)BTL (=B ()3t ()L (1)L (v) oy R3(1D),
Bk (¥)Bit (=x)BL (=1)Bki (x)BEk (-y)Bri (xy)BL{ (1)BEk (v)
o , | by R3(v), R1
BL} (7)BLS (~x)B3L (-1)BhE (x)B3L (1)BL (xy) by RI,2
BLf (7)BEE (x)BES (xy) by R3(i11), R1
C(ID: BRLBL () = By (B {x))Buk (B (9)
, =-{BLJ(Xy)]kBLk(ELJ(Y))BKL(ELL(X)) by sh'

I
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il

Biit (xy)BLK (v)Br3 (%)
By (v)BEY (x)BY) (xy) by R2
(vii)(I): k#t, "i#j. Choose r # i,].
Bk { (x)B{E (v) |
Bt (x)BUk (-v)BLR (-1)BIL (v)BRI (1) by R3(111), R
BYR (=3)BLR (~xy)BL3 (~1)BIL (v)BER (aw)BLE (1)BY (x) vy R3(v),
Bik (=¥)Bik (~1)BiR (x)BLR (1)L (1)BE (%) by R3(1), R2, R
BLk (-y)Bi (=1)Bik ()3 (1Bl ()BL{ (xy) by B2
= BIJ(y)BLL (x)BE] (xy) by R3(1ii), R
CUID A, 14 BRGOBLE ()
o o Byt (By 5 (%))Bek (855 (¥))
By (x9) JuBow (855 (3) DB (B 5 (%)) Dby su
Beit (xy)BiR (7)BRT (x)
= Bl (v)BE{ (x)BY (xy) by R2
This completes RA3.‘ ‘
(1) Ba(1) 13+ Bik(e=1)BRk (1) = [Bry(om1)]i[By1(1) ]y

[Bij(a=1)B;1(1)]x Dby 87
(D j(a)Byy (a)By j (1=t ) I
[Di 3 () Ik By ()] [Bij (1-a7t) ] by 87
= Dik (@)Bik (a)BE (1-a7) .
(31) e, 3450 By (om1)BU (1) = Bie (B (01 )Buc (B0 (1)) -
' = Brt(Byj(a=1)=-I)Byk (I)Bik (-B;1 (1)) . by 81

Dk ¢ (B j (a=1 )).BLK (B (a=1))Bkt (I-By 5 (1-a) )Byk (=B (-1))
' . by Su4

n

] il ]

It

) ‘ka(BLJ(a-1))[-BJL(-1)JLBLK(-BJL(1)BLJ(G-1))
- Bret (Buy (=00 By (=1)-By0 (=1))Bek (D) [-By (1) ]y oy 86,7
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= [Byj(a-1), *BLJ(1‘a>Bjﬂ('1)}ktBLk(‘BJL(1)BLJ(G-1))
| By (By 5 (1-a) [ ~I)Byy () [-Bj (1)1, by 7
[Buy(a=1), =B5(1=c)B; (=1) Ik tBuk (=Bji (1)By(a=1))
*Dyt (By y (1=0) La )Bek (By y(1=a) [y )
Bt (I=[a™*] By ; (=1 ))[-B;; (1) ]y Dby sk
= [{aly, =Byj(1=a)B; (=1)[a72 ] By 5 (o=1) It
'Btk(i“BLj(1-a)[a]LBjt(1)BLJ(a-1)BLJ(1-a)[q]L+BLJ(1—a)[a]L})
By (I=[omt ] By 5 (a=1))[-B; (1) ] vy 81,6,7

= [Lali, =[a™1B; (1) I Bek ({By s (1=a) [a]y =[al ;B (a)
“Bi; (1=a)[a]i ])

1l

By (T-[a™ 1By 5 (a=1)) (B3 (1)
= [[a]Li[a—i]jlktstk(i[a]jBLJ(1-a>[a]L‘BjL(‘1)BLJ(1'Q)[QJL})
B (Lot 1By (a=1)B; (1)-By (1)) by 86,7
= [la]u, [a) 74 Ik tBuk (Ejy (@) )Beo (B j(1-a7%))
= D (Bl (@B (1-0t) |
©o(a3) KAt Bei(a=1)BLK(1) = By (Buy (am1))Buk (B (1))
| = By ([a] -I)BLK(I>BLK(ELL(i)-I) by 51
= Dt (Lol Bk ([adi)Bre (I-[a7* ] )Buy (5 (1)-1) by sk
= Dkt([a]a)Btk([a]L)th(ELL(1-a'1)){J2LBLK(EJJ(-1))3 by S1
= Deu(Ladu)Buc (lali)Bii (1-om®) { g B (-1)]
= Dkt<[a]L)Bnk<[a]L)ijghaié(-ﬂ)23&%(1-a'1) by R2
= Do (Lo )Buc(ledir 3 B55 (=1))Bci(1-07t) by 81
= Dy ([a)y )Buk (B (00))BEE (1-07t)
= Dk} (a)BLk (o) BLE (1-0m2)

(II) RY' (i) i3, 1+xy € U(R):
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Bik (0)Bik () [14yx)} = [By 5 (0) (B0 (0) L 14w 5 )i
= 1By (x)B (V) [1+yx] ]k by 87
L0y Ju By (w)By 5 (%) Dk

[Dxy )i Je 0850 (9) 1 [BLJ(x)] by S7
[y 1E Bk (9)BES ()
(11) k£t (we do not insistv that i#j), and 1+xy € U(R):
Bt (x)BLk (W) [147x){ = Bioy (B3 (3))By (854 () [[1+yx]; 1
Bt (B 5 (2))Bek (B (9))[I+E; () B 5 (x) ]y,

[I+Eu(X)b“(y)]ka(uu(y))Bm( B j(x)) by sb'

[[1+XY]L]kBLK(EJL(Y))BKL(hLJ(X)) |

[1+xy Bk (v)BL (x)

“:Thls completes Rk and Ru’ in cases (I) and (II) respectively.
CR5(1) If 143, BRi(x) = [Byj(x)], '

[Byi (1)By ;5 (=1)B5 (=x)By 5 (1B (-1) ]k

[BJL(1)JK[BL;(f1)] (B (=x) 1 [Bes (1) )k [Byu (1))« Dby 87
BKK(1)B ('1)Bi —X)BKK(1)BKK( 1)"
" (ii) As a consequence of 1,2,3 we have

Bk (1)Biy(=1)B;k (1)

il

i

il

"

il

It

(B (x)]
Bjk (=1)Bij (1)Bj (=1)By j (x)Bjk (1)By (-1)Bk (1)
Bk (=1)Bi; (1B (x)B (+x) By ©)B; (1)

Bk (=1)Byk (x)Bjx (1)

Bk (x) | |

and iBJL(X)}BJK(1?BKJ<‘1>BJK<1)

BJK(-1)BKJ(1)BJK(-1)BJL(X)Bjk(1)ng§—1)BJk(1).
'BJK(-1)BKJ(1)Bjt(X)BkJ(-1)B;k(1)

i

n
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= Bjy (=1)B; (x)Bri (x)B; (1)
Bk (x)

So we can £ind P such that, if k#t,

e . P .
CBri(x) = {Bik(x)}  (where r#i) Dby R1,2,3

: . , , . ‘ . P
{Bik (1)Bik (=1)Bik (=0)Bik (1)Bik (1)1 by R5(1)
Bik (1)Bki(=1)Bik (—x)BK{ (1)BIk(-1) Dby R1,2,3

~ Note that we do not insist that i#j.

"This completes R5,
R6(1) i#J:  Bep(x)[ogqseecttngl

(B, 5 (3) 1 [ Loty s eorsting 1 eons[ Gty ms vettnm ] ]

-

Loty g seeeetng 1yee[ By 5 (%) [0takseunsOlng ] 1 yemne[@umpeneittnn 1] Dy S7

l

[[al;,""ani],"u[[aik,""ank]BLj(a:&xajk)],"“[aim,""anm]]

Il

[[qiis""ani]:nn[aim:uuanm]][BLJ(GE&XQJK)JK by 87

[CX11 ,ooa-anm ]B}:l}) (OL::&X(XJK )
(ii) k#t (we do not insist that i#j):

B;i(x>[a11’""anm]

By (Bu 5 (%)) [[otygsemtng Jyeeeelatypsenntnn 1] 3

i

[[0(11,....0(”1 ] ’"--[aimh-"o‘nm]]BKt ( [aik ,....(Xnk] : ELJ (X)
“[ogysemant]) by 56

=1
[[aii,....ana‘] ,....I_(Xim ,ouoo{nm]]Bkt(ELJ (C(kaajt))

[aliynnanm]B;{(agéant)

]

This completes RO. ‘

R7:  Lotgysenting ) (ByyseeBrm)

[Lotg g otz 1o el 0y o eettng 11D LBeg s eeeBg 1oL BimsemBrm]]
[[GagyesOng JLBraperrBas Jseerlaypseestnm L BegseeBrgl] DY ST

L[aiiﬁii:"nan1ﬁn1]:uu[aimﬁim:unanmﬁnm]1
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= [as1B119eOnBan] '
This completes the proof of the theoren. ju]

Theorem (Q.10)t Every semi-simple Artin ring is quasi-

universal for G&,, all n.
Proof, If R is semi-simple and has the minimum condition
on right ideals, then by the Wedderburn-Artin structure

theoren,
: r (i)
R = - K
i=1 M3
. e (1)
where m, is a positive integer and K is a skew field,
each i. (1)

By (3.7), K  1is universal for GE, (v a skew field is a
local ring) and hence is quasi-universal for Gi,, all i,n.

‘ (1) - , _ ,
"By (L.9), KX is quasi-universal for GE,, all i,n.°

my
By (L.3), R is quasi-universal for GE,, all..n, o

Note that by (4s1) and (4.7) we cannot hope to replace
'quasi-universal' by 'universal' in({.1Q. Indeed we may
now restate (4s1) and (4.7) asi
‘Corollary (L.11). If K is the field of two elements, then
'K; and KxK are quasi-universal for GE,, all n; K, is not

universal for GE,, all n, and K¥K is not universal for GE;. o

We now shew that, 1f we restrict attention to skew
fields R, the above example (4.7) is the only case in
which the restriction n>3 in (4.9)(I) is needed.
Proposition (4.12). Let R be a skew field containing more.
than two elements, and put S = Ry;. Then S is universal for

GE,, all m.

Proof. In (L4.9)(I), the only use of the condition n3> 3 was
in R2(x) and R3(vi),(vii). So it is sufficient to find
alternative arguments for these cases when n = 2 and R is
a skew field with |R| »3.
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R2(x) k#t, iZJ. Assume first that x £ -1 and y £ 1.

Bit (OBLA(Y) = By (Buy (x))Buic (35 (7))

If

Bt (Lol ~I)Ben (I)Bk (-[B];) by 1 (a=1+x, B=1-y)
Det ([ )Bux (o) )Beo (I-[alT*)Buy (-[815) by sb
Dt (Lad ) (=081 Bk (~[o, 3% ] 5 )Bre (=T+[a](®)
‘Bew (I)[-[B]7*], vy 86,7
DKL([G]L)g'[ﬁ]J]LBLK('[G:5"3]LJ)DKL([a]fi)Btk([a]fi)
“Be (I-[a] ) [-[B]7*]L by sk
[-[8l51uBek (=los BlT34+ [l Tt )Bey (B (-x)) (=[BTt ], vy 31,6,7
Bik ([altt-[a™t, 8] j)Bee (B (%)) by S6,7
Buk (Bj ;5 (¥) Bt (B (%)) '
Bik (7)BES ()

X=-1ory =1 or both, we can choose y,5 ¢ U(R) (=R¥,

the non-zero elements of R) such that y~tx # -1, yo # 1.

B ¢ (x)Bip (¥)

1

[ylkloliBks (y~1x)Bi} (vo) [y 21k (674 ] vy RE,7

[y)i(6)iBi) (yo)Bkt (ytx) [yt 1k (67t ]] by the
DN - . above
Bik (¥)Brt (x) by R6,7

1

R3(vi) k#t, i#£j. First suppose x £ =1; put o=1+x, z=1-a"%.

*BRLBL () = Beu (B (0))Buc (B (9))

il

1

]

Bet ([l ~I)Bux (I)Bik (-Biy (-y)) Dby st |
Dt (La]u )Bok (L) Vo (T-[a]T#) B (~By 5 (=) by Sk
Ikt([a]t)Bnk([a]L)BKL(ELL(Z))BLK(-BLJ(~Y))
Dy ([adi ) [=By 5 (=) 1eBun (-Bi () [aly)

By (<Byy (2)+8; ;(29))Bu (1) [-By j(3)]¢ by 6,7
Dt (Laly ) [=By 5 (=3) 1¢ By (=B, 5 (9) [al})

By (B 5 (zy) [alTt-1)B (T)[-By 5 () ]y



57
= D (L) [=By 5 (=3) 1uBuk (B 5 () [adt)
Dt By 5 (2y) [a]T*) Bk (By j(2zy)[alit)
‘Bt (I=[ay By j(~2y)) [-B;(y) ]y by sb
o= [laliBes(zo) lalit, ~[a)T By (=v) [aliBy j (-25)] |
'Bt,k('i-BLJ(Zy)[a]fiBLJ(Y)[Oc;}‘BLJ(Zy)[a]f1+BLj(Zy)[ot]f";)
Byt (Byy (=x)+E j(xy))[-B;(y) ]y Dby $1,6,7 |
= [Byj(xy) Bk (B (~y+zy+oty+zy) ()T +By j (=y+2y) [alTh)
By (B g (x)+8 5 (-xy)+E, 5 (xy)) Dby 86,7
= [BLJ(W)]}(BLK((BLJ(ZJV)"BLJ(ZY"Y))[OCJL—l?BKL(ELL(X))
= [Bo 5 () DB (B 5 (9) [T ) Bien (8 (x))
= [By 5 (x3) JeBuk (B j () )Bry (Byy (%))
. = Big (xy)BLE (v)BRE (%)
= BUR(7)BR{ (x)BE (xy) Dby R2
In the case X = —1., choose y # 0,1; so y~tx £ -1,
CBRE(R)BLR(9) = [yliBRE (v 8B (v) [yt )k by R6,7
| [¥JkBLR (9)Bki (v x) Bl (y txw) [y I by the
- Bei (v)BKE (x)BE (xy) by R6,7 moove
(vii) k#t, ij. Assume y £ 1; put § = 1-y.
BLY ()8 (9) = Biw (B3 (0))Bey (755 ()
= Bktﬁ(‘BLJ(x)"I;BLK(I)BLk('[ﬁ]j) by 81
Drt (By 5 (x))Bek (By 5 (%) )Byy (I-By 5 (-x))Bik (-[B];) by sk
Dt (Bu s (%)) [=1815 1 Buk (~[81T*By 5 (%))
By (Byy ex8)-1)Buk (1) [-[617% ]y oy 86,7
Dy (By 3 (x))[=1815 1 Buk (-LAIT*By 5 () |

*Di (By j €x8) ) Bk (By 5 €x8) )Byy, (I-By j (+x8) ) [-[ 817 )¢
: by sk

|

1



= [Bus(x)BusExB), -Bij(=x)[B13Bij (x8) Ikt |
*Buk ({-Bi j &xB) [Bl7*B ; (xy)+B j &xB)1)
Bre (B exB8))[-[B]3t]y by $1,6,7

= [Bu 3 (x9) Dok (B 5 (=x8)=181 3By 5 (=8) Byt (B0 5 (x8) [B1TH)
) - by 86,7
= I'BLJ<Xy):]KBLK<EJJ(y)>BKL(ELJ<X)) :

= Bui (xy)BLR (v) BRI (x)

Bia (9)BLL()BY (xy) by R2 |

. In the case y = 1, choose & # 0,1; so yd £ 1.
[6)2Bi1 (x)BLR (v0)[67)} by R6,7

(613877 (vo)BE (x)BY] (xy6)[571]) by the above

SUNET
Bki<x)Bid(Y)

Bin(y)Bii (x)Bun(xy) by R6,7.

. Now by the Wedderburn-Artin theorem, the rings K,
(K= sfield, m=1,2,.. ) are the 'building blocks' for semi-
simple Artin rings. We now know that all such K, are
universal for GH,, all n, except K, when |K| = 2. We now.
investigate further to see which semi-~simple Artin rings
are universal for GE,.

Proposition (4.13). Let R = K, where X is a sfield and m a
positive integer. Then, provided |R| > 2, for all xecR

3 o,B8 € U(R) such that x = a+j.

Proof. Let J. be the matrix with r 1's in leading positions
on the diagonal, and 0's elsewhere, O<r<m. So in particular

JO = O, Ji = 811, Jm = 1R-

Then given xeR, 3 6,¢ ¢ U(R) = GL,(X) such that
Ox¢ = J.,some r ( = rank of x) '
If |K| > 2, choose k ¢ K, k # 0,-1. Then 1 = (1+k)-k, and
both 1+k and -k are units of K. :
Then Jp = [1+k,1+k,""1+k,1,1,""1]+[—k,~k,“n—k,—1,—1,""-1]
=a+p (a,8¢ UR))
and s0 x = 0 ta¢g™* + O671B¢~t as required.
Now suppose |K| = 2 and m >2.
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Put A = [1‘1} , B= [01] ,c= (01 j
10 10 117 '

and 11 1 011
D= (110 , E = 100
100 101
Then JO = 1R + 1R
3, = [A 0 ., (B o ]
' 0 I,- 0 Ip_z
;.- [A O . [c 0 ]
. =
0 Ip- 0 Ip_
I, = D O ., [B O
0 Ip- 0 In-
and for r even,
B Lo C ; O
‘ Jr = '.' + .
"A C
0 0
Im-r‘J Ig—r
and for r odd,
. .
. A,’ O. C!, 0
' Jr = ’xA o !C
D B
° Tn_r © Tper

/ .
So in every case we have J, = a+f8, a,8 € U(R)

and s0 X = 6 fog™t + 071/, O

Theorem (4.1L4). If R,S are rings, both universal for GZE,,

and if for all XeR, yeS we have X = a+f8, ¥ = y+5 for some
a,B € U(R), y,6 € U(S), then RxS is universal for GE&,.
" Proof. By (4.2) it is sufficient to shew that ‘

() By; (x)B; (y) = By (¥)By j(x), where xy = 0 = yx
‘is a consequence of the universal relations. Examining the
proof of (L4.2), we see that in fact we need only considep'
the case of (*) where xXeR, yeS.

Write RxS as the set of all pairs (x,y) (xeR, yeS).
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- Then By ;(x,0)B; (0,y) .
= By ;(0+8,0)B;, (0,y+5)  (suitable a,p8 cU(R), v,o eU(s))
[(-ﬁ,6"1>JLBLJ(6-1,o) Bji (0,¢+1)[(-87,8)]y by 6,7
: where 6 = - ta, ¢ = y&~1
[(-ﬁ, 671) 1By 3 ((8,1)=(1,1))ByL (1,1)Byi (=1, 9) [(-87%,8) 1
by 1 ‘

|

1t

[('B:é 1)] DLJ(e 1>BJL(6 1)BLJ(1 6-1 O)
'BJL( 1 ¢)[( -8%,6 )} bl_f L
[{a,67%), (-0~ ’(p)]LJBJb( 0,¢ *)
y By ((671,1)=(1,1))B;, (1,1 [(-87%,0), (=1, *) )i 5. by 6,7
= [(o,67%),(-67%,¢) 11 3By (-6,¢72)Dy ;(07%,1)B; (07%,1)
' By (1-6,0)(-p72,08),(~1,¢7) ] ; by L
[(~ ﬁ,é 1) (=1,8) )i 5B (674,071 )+(67%,1)) |
By (1-6,0)[(=57%,8),(~1,¢72) ] ; Dby 1,6,7
Bji (0, ¢(¢72+1)8)B ;(B(1-0), O) Dby 6,7 -
BJL(O: ¢6+6)BLJ("56+ﬁ; 0)
B;ji (0, y+8)B ;(a+B, 0)
BJL(O’Y)BLJ(X:O)- q _
Corollary (L.15).. Let X be the field of two elements. Then
a sufficient condition for a semi-simple Artin ring R to
be universal for GE,, all n,-is that R should not contain
K or K, as direct factor.l.

i

I

u

Proof. . .y -
E— or (4) - (1)
R = Il Km where K. is a sfield, and
: i=1 i ;
(1) (1) A
K | =2 = m; 33 Each K, 1s universal for G,

l .
by (3.7), (4L.9), and (L.12). Then R is universal for GE,
(all n) by (4.13) and (L.14). o : ‘

The proof of (3.7) depended on the fact that the set
of non-units in a local ring is an ideal. We.now try to
generalize this. Let J(R) be the Jacobson radical of R.

If R/J(R) is universal for GE,, what about R?

Let R be semi-primitive and let 'M be an R-bimodule.
Define 8 = R#M with addition componentwise, and multiplication

.glven_by (r’m)(rz’m/) - (rr’,rm’+mr')



61

(8 is the split null extension of R by M.) Identify R,M
with (R,0), (0,M) respectively. M is an ideal of S and

M® = 0, so M ¢ J(S). Further, S/M = R is semi-primitive,
S0 J(SS = M. ‘ .

Assume that U(R)'= 1, and that om = mo for all
acU(R), meM. Then U(S) = all a+m, aeU(R), meM. Further,
u(s)'= 1, for

(a+m) (a’+m’ ) = aa’+am’ +me’

o a+m’ o+’ m
(a’+m’ ) (o+m)
Now suppose 3 xeR, yeM with xy # yx. Then
1 # 1+xy-yx € U(S), and '
o [Mexy-yx]y = [1+xyly [1+yx]7t
= [1+xy]i [1+yx]5tDsy (14yx)
€ E,(S) by L, 4’ and 7.
But U(S)’' =1, so 1+xy-yx £ U(S)’. .. S is not universal for
GE,, any n, by (4.5).
As an example, we can take R = k[x] and M = k<x,y>
(the free associative algebra over the field k on the free
generators X,y). M is an R-bimodule in a natural way.
R is semi-primitive, U(R)’ = 1.and U(R) = k* commutes
elementwise with M. Further, xeR, yeM and xy # yx. .So if
we construct S as above, S is not universal for GE,,_ any n.
But S/J(S) ¥ k[x] is universal for GE; (see [1;(5.25]
Note: For n > 2 we do not know whether k{x] is

universal for Gi,; it ssems reasonable to gonjecture that
it is. We do in fact obtain a presentation for GE, (k[x]

in (6.4).

In spite of the above, we can give an easy sufficient
condition for R to be universal if R/J is universal; and
as before, the property of being guasi-universal is better-
behaved: R/J quasi-universal implies R gquasi-universal,
without extra conditions (see (L.17)). ' ' '

Write GEn(R,Jg for the subgroupiof GE, (R) generated
by all BLJ(X), xeJ(R), and all [ai,""a, where op=14+X;, X €d.

Proposition (4.16). For any ring R, GE,(R,J) has tﬁé_
presentation: Ehw ‘
Generators: By;(x), [1+x;,n14xn] (x's € J(R))
Relations: The quasi-universal relations (1,2,3,uf,5,6,7)
- where applicable.
Proof. A € GE,(R,J) = A = I, + (zy;) where z,j ¢ J(R)..
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’
So 0
A’ :
A = I Bn(x) :
t<n 0
JieeeTnot aj
0
= LEnBL“(XL)L§nB”L(y“ 6
0...0 o

for suitable A’ € GE,_,(R,J), o = 142, and x's, y's ¢ J(R).
Furthermore, this expression for A is unique.

Applying the same reduction to A’, and continuing inductively,
we get a normal form for A:

.A = n {.H BLm(XLm).H BmL (ymi');[atjvtooan]
m=n yee2 { <M L<m .

where X_;, YVi; € J and ¢ = 1 mod J.
Clearly A-+[pBys....Bn] can be put in normal form, by 7.

It remains to shew that A-B;;(z) (zeJ) can be put in normal
form using only the prescribed relations. Suppose n = 2.

Biz(x)321(y)[a:ﬁ]381(z)

= Byo (X)Bgy (y+Bza™t)la,f]l by 1,6
AZs0 By (x)Byy (¥)[a,B]B15(2)

= By 2(%)Bz1 (¥)Byz(0zf)[a,8) by 6
Byo(x)[14y0287% ] 2By 2 (a2t )Bey (¥) [14az87ty )T 0, 8] Dy L'
Bz (x+0z87t (14yazf *) 71 )Byy ((1+y0zf™)y)

-[(1+02871y) 2, pryoz] by 1,6,7

So the proposition holds for n = 2. Assume n > 2 and use

induction.
If 1,3 < n we can put A-B;;(z) in normal form, by the
induction hypothesis.
If 1,J < n, |

By j (X)Bar (2) = Bar(2)Bij(x) (r#éLl) by 2

" By (x)Bni (2) = Bpi (2)Bnj(=2x)B ;(x) by 2,3

[04 yeuestn IBar (2) = Bnp (onzort )[ai,"nan] by 6
~So using only 1,2,3 and 6 we have
A*B,r(2) = HBLn(xL)HBnL(yL)A [a]nBnr(2) (A'gGEn_i(R,J))

= nBLn(xL)anL(yu)anu(Zu)A [a], suitable z ed
L L - b ’ . .
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= yBLn(XL)anL(yL+ZL)A'[a]n by 1,2
Now if 1,J < n,
By j(x)Brn(2) = Brn(2)By;(x) (r#3) vy 2
By j(x)Bjn(2) = Bjn(2)Byn(xz)B;(x) by 2,3

So using only 1,2,3 and 6 we have

A°Brn(z) = ?Bin(XL)PBnL(yi)A'[a']nBrn(Z) (A'GGEn-i(R,J))
PBLn(XL)anL(YL)HBLn(ZL)A'[a']n suitable z,eJ.
L ) L

Now it 1s sufficient to prove that the following is a
consequence of the quasi-universal relations:
(**) ?Bnt(YL)?BLn(ZL) = ?Bin(zta—i)?BnL(QYL)la]nA'
. where a = 1 + 2y 2z, and A"¢G&,_, (R,J)
For then, substituting back,
A“Brn(z) = {[Bi.n(xk"'zi..a-i){IBnL(ayi. JA"A! [aa’]n by 1,2,6,7

and by induction this can now be put in normal form.
For n = 2, (**) reads
B21(¥)Bya(2) = [al2B12(2)Baa (¥)A"  (A"=[1+2y]1%, a=14y2)
by 4’
By2 (20 *)By, (ay)[a]A" by 6.
So assume (**) is true for n-1 : put

1+ 2¥2 = o 1 + Ey‘,zb.-ﬁ
: 1
We write B = C when B = CD, some D € GE,_, (R, J)

Also we write I, 3k for nH ’ 21.
niBnh(yu)HiBun(ZL)
= Bpy (¥1)Byn (218 1) {Bny (¥i )Byy (-2 B2y ) IeBy n (2 )
*Byn(2z, (1-871)) by 1,2,3
*_Bni(yi)Bin(ziﬁ_i)HanL(yL)HzBLn(ZL)
*Byn(z, (1-p71=F7 22y, 2,)) by 1,2,3
Bn1 (¥1)B1n (2187 )IBny (¥ )IoByn(2z) Dby 1
= By (¥1)Bin (21874 )B4 (2, A7 )M;Bn; (Byi ) [Bla by induction
= Bypn(2z,071)By, (g™ yi)[1+z1ﬁ 1y, 17t g™t ],
- «I3Bin(zi 8~ )Hanu(ﬂyu)[ﬁ]n by case n_2
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- Bin(zia—i)Bni(aﬁ_iyi)[aﬁ~1]nH2BLn(Ztﬁ-i)nanL(ﬁYL)[ﬁ]n
| by 6,7
= Bin(ziafi)Bni(aﬁ_fY1)HzBLn(Zia—i)nanL(QYL)[a]n by 6,7
= Bin(220 "), {By n (2 a™*)By 4 (-2 871y, )]
*Bny (0B72y, ) Bny (o )]s By 2,3
= HzBLn(zLa—i)Bnt(aﬁ-iy1+azzytZL5-1Y1)HanL(GYL)[a]n
by 1,2,3,6
= Iy By n(zy 07t ) 0, By (ayy ) (o],
This proves (**), and hence the proposition. u]
Theorem (4.17). (I) Let R (or, equivalently, R/J(R)) be
generated as a ring by its units. Then if R/J(R) is universal
for GE,, so 1is R. ~ |
(II) Any R: If R/J(R) is quasi-universal for Gi,,

so is R. .

Proof. (II): If xed, y¢J, ael+d, B;eU(R)-(1+J) then

(1) Byj(x)Bke(¥y) = B (¥)BLj(x) by 2

(11) By ;(x)Bjk(¥) = Byk(¥)Bij(x)Bik(xy) by 3

(111) By (x)Bki (¥) = Biy (¥)B ;(x)Bk;(-yx) Dby 1,3

(iv) By ;(x)B;i (y) = By (ya™1)By;(ax)[1+xy, (1+yx)"1] 5 by U',

‘ 6,7 (o=1+xy)

(v)  logeenon]Byy(y) = Bij(ayoit)[oyymean] Dy 6
(v1) [0y seenOn)[ByseneBn] = Loy BioTtyemittnBront oy yean] by 7
So from these, if C € GE,(R) is some product OfKBLJ(Z)'S
and [yy,eeyYnl's , we can write

C = AB by 1,2,3,4',6,7 only
where A is a product (possibly empty) of elementary and
diagonal matrices each incongruent to Iﬁ mod J, and B is
in GE,(R,J); furthermore, if r » T is the natural map '
R = R/J then B = I,, and E,K are formally identical, once
{1]; and B;;(0) have been dropped from C. (Just note that
in each of (i)-(vi) the second term on the LHS is congruent
mod J to the first term on the RHS, and all other terms
are in GE,(R,J).)

Now suppose C, = I, is a relation of GE,(R). Then
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‘ Co = I, is a relation of G&,(R/J), and since R/J is quasi-
universal for GE,, we have

G =0, = e = Gy
where 56 is just I,, and the step C, = E&+1 involves one
application of one of 1.-7. or 4', or putting B, ;(0) or
[15ee.1] equal to 1. -

Now C, = Ay+B, (notation as above for C) and C,, A,
are formally identical. If the step C, = C, involves
putting By ;(0)=I or [1,...1] =I, on 1lifting to A,B, we obtain
matrices of GE,(R,J) which we pass through to the right as
‘before, to get A;B; = C;, with Ki,aiformally identical.

If the step 65 = 5; involves an application of 1,2,3,5,6
or 7, this lifts to the same application to A,B,, giving
Ay;B; = C; as before,

An application of L' arises from terms in Ay:

By (x)B;i (y)[1+yx+z]; where 1+yxeU(R) and zed.

3 z'eJ such that (1+yx+z)(1+2' )71 = 1+yx. So

-BU(X)B“(y)[1+yx+z]j = BU(x)B“(y)[1+yx]3[1+z’]j by 7
and now we can apply L4’ and also pull [1+z’]; through to
the right, to get A;B; = C; as before.

Repeating the above process, we have as a consequence
of 1.-7. and L',

Co = ApDBy :
where A, and G, are formally identical; but C, is just I,
80 A, 1s the empty product, and C, = B, is a consequence
of 1.-7. and L', So since C, = I, we have B, = I, and
By € GE,(R,J), so B, = I is a consequence of 1.-7. and L',
by (L.16).

~. C = I is a consequence of 1.-7. and U4', as
required. . |

s

(I): We have merely to shew that, with the given
conditions on R, use of L4’ in (II) sbove can be replaced
by use of 1.-7. .

If xeJ and oeU(R), .
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By j(x)Bji (@) = [al By ;(xa)B;, (1)[a™2]; by 6,7
[a];By;(B-1)B;i (1) [a"t]; where B= 14x ( € U(R)) ,
[a]3Dy5(B)B; L (B)BL j(1=p1)[o™2]; by L
[BliB;i (@)B j(x)[apta"t]; by 6,7
Using 7, BLJ(X)BJL(O&)[1+OLX]J = [1+XOI,]LBJL(OC)BLJ(X).
Now suppose § = 04 +....+0p ¢ apply the above r times to obtain
(for xed) A
B,y (x)By (9)[1+yx]; = [1+xy]iBj L (¥)Bi;(x) by 1.-7.
Inductive step: ‘
B j (x)B; (y+a) [1+(y+a)x];
By ; (x)Bj (¥) [1+yx]; [1+yx]7B; (a3 [1+(y+a)x]; Y 1,7
[1+xy)i By (¥)By 5 (x)Bs1 (B ra) (148 tax] [ (14872 ax) ™t
o 7 (Brox) ]
by the inductive hypothesis and 6,7 (B=1+yx)
[14+xy]i B (9)[1+x87 1) B, (B *a)B; j(x) by the above case
[(1+xy) (1+x87 ) ] B (y+yxFta+f *a)B; ;(x) (r=1)
[1+x(y+a)]LBJ~L (y+a)BL J (X)
So (iv) on page 6L and L' as used in (L.16) are consequences
of 1.-7. ‘
The only other use of L’ was in the steps Cx = Cgqq o
.Use of L arises from terms B ;(1-a)Bj; (1+4z) in A, (zeJ).
(Note that 1-a+z’ = 1-o’ where o’ = a-z’' e¢U(R) (z'eJd))
We have BL_;(1-O()B3L(1+Z) = BLJ(1—O()BJL(1 )Bj;_(z) by 1
and now we can use U4 and pull the last term through to the
right. o

i

[}

1]

Recall that a semi-local ring is a ring R such that
R/J(R) has the minimum condition on right ideals; in
particular, of course, any Artin ring is also semi-local.
Corollary (4.18). Every semi-local ring R (ernd in particular,
every Artin ring) is quasi-universal for GE,, all n.
A sufficient condition for such R to be universal for GEj
is that R/J(R) should not contain K or K, as direct
factor, where |K| = 2.
Proof. The first part is immediate from (4.10) and (L.17).
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The second part follows from (4.15) and (4.17), once we
note that every Artin ring is generated as a ring by its
units, n]

We now shew that not every ring is quasi-universal
for GE,. The question of whether every ring is quasi-
universal for GE, (n>2) is undecided; it seems unlikely.
Proposition (4.19). The ring R of integers in Q(N-11)

(Q = rationals) is not quasi-universal for GE, .

Proof. U(R) = {#1}, so 1+xy € U(R) = xy=0 (80 x=0 or y=0)
or xy = =2 (80 X,y = *1,*2 in some order).

So in GE;(R), L' is a consequence of L.

But R is not universal for GE,, by [2; page 163], so it
cannot be quasi-universal for GE,. o

In [2] it 1s also shewn that the rings of integers in
Q(N-2) and in Q(N-7) are not universal for GE;; but in
these rings the equation Xy = -2 has solutions cher than
X,y = ¥1,*2, so the above proof breaks down.

Note that if R is a local ring, R/J(R) is a skew
field, which is generated as a ring by its units; by (4.17)
we could have deduced (3.7) from the weaker statement that
every skew field is universal for GE,, but the proof of
this statement is scarcely shorter than the proof of (3.7).
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5. _The commutator guotient structure of GE,(R) and E,(R).

In this chapter we generalize some of the results
of [1;paragraph 9]. We have already seen in (4.4) that
[1;(9.1)Cor.1] has an immediate generalization. We now
generalize [1;(9.1)]. |
- Proposition (5.1). (Any R) If A ¢ GE,(R), then

= [a]; mod i, (R), some o € U(R).
Proof. By 7, A = [0ty yeecp ] mod E.RR)
= [oy0z... an];t H Di.i(au.) by 7

and now note that by L, l‘_,(,6) € E,(R). o

We may ask: to what extent is « (in (5.1)) determined by A?
This is equivalent to determining the subgroup W 4 U(R) in
the following:
" Corollary (5.2). For any R, GEh(R)/En(R) = U(R)/W, some
W (=W(n)) <« U(R).
Proof. Immediate from (5.1), once we note that the LHS
is well-defined, since E,(R) « GE,(R), by 6. o
Now for n = 1, GE,(R) = U(R) and E,(R) =1, so W = 1,
For n > 1, we have )
Proposition (5.3). For any R, and n > 1,
GE,(R)/E,(R) £ U(R)/W, some U(R)' < W < U(R).
Proof. [a]i[ﬁL, = Dzi(ﬁ)[ﬁ] [a]1Ds12(B) |
Thus, since D;;(B) e En(R), GE,(R)/E,(R) is abelian.
The result now follows from (5.2). @O
Corollary (5.4). For n 22, GE,(R)’' ¢ E,(R), any R. u]
' (ef. [13(9.1)Cor.3])
For n >3, we can improve on this:
Proposition (5.5). For n>»3, G&,(R)’ = E,(R), any R.
(ef. [15(9.2)]) |
Proof. We already have LHS c RHS by (5.4). The reverse
relationship is immedlate from
BLJ(x) = Buk(’x)BkJ(’1)BLk(x)BkJ(1) where k Pé i, J . 0
Notation: for any group G, write 62 = Gc/a’.
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Proposition (5.6). If R is universal for GE, (n »2),
GE, (R)/Eq (R) = U(R)® (ef. [13(9.1)])
Proof. Define a map £:G&, (R) » U(R)® by
| £:Bj(x) » 1
Filog s0gyemtn] P (030 0an)?

Since R ié universal for GE,, and f is compatible with 1.-~7,
we have a well-defined homomorphism. Clearly im(f) = U(R)?
and Ep(R) c ker(f). '
Then if A € ker(f), by (5.1) A = [a], mod E,(R).
So it is sufficient to prove that o € U(R)’ => [a], € E,(R)
(i.e. the converse of (L4.5)).
But if 8,y € U(R),

[A7*y™*By]ls = D21 (B)Dzy (¥)Dyz(By)

€ E,(R), since D;;(6) € E,(R), by 4. o '

Corollary (5.7). If R is universal for Gﬁﬂ, and 1+xy € U(R),
then 1+xy = 1+yx-mod U(R)’.
Proof. L': B, (x)Byy (¥)[1+yx]s = [1+xy]4Boy (¥)By2 (x)
The result now follows from (5.6) and the fact that
D;»(1+yx) € Eo(R). D

This gives us another way of constructing rings
which are not universal for GE,, any n. Let X be a
(commutative) field. Put R = K<x,y>/(xy).
R is the set of all finite K-linear sums of monomials
y'xs (r,s8 2 O) with multiplication defined by

(y"xs) (y' "xs! ) =0 if s >0, ¢’ > O
(yrxs)xs’ = yrxs*s’
y" (yr’xs') = yr‘+r"xs'
Suppose (Zapsy x5 )(Ibr ¢ ¥ x5°) = 1
Consider the homomorphism R — K[x] formed by mapping y «~ O.
(Zap5%% ) (3bgs/ x ) = 1

whence aooboo =1 and ags = 0, bgs» = O all s,s8’ > O,
Similarly, apo = Oy bpro = O all r,r’ > O.
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Conversely, if oaeK* (=K-{0}) and feR, then a+yfx € U(R)
((otyfx)™r = o *=a~®yrx). So U(R) = all a+yfx (aeK*, feR).
Then (o+yfx)(p+yegx) = ap+y(ag+ff)x
: (B+ygx)(o+yfx). Thus U(R)' = 1.
But 1+4xy = 1 and 1+yx # 1, 80 by (5.7) R is not universal
for GK,, any n. ' :

The following example of an integral domain which

behaves in a similar way has been found by P.M.Cohn:
Let K be a commutative field, and put R, = K<Xx,y>.
Consider a monomial

hxriysiunxr"ysn
where A € K and ri,s; > O except possibly ry = O or s, = O
or both. Define its height h to be

2n if all ri,5, > O

2n-1 if ry = 0 or 8, = O but not both

2n-2 if ry;, = 0 = sy
Put R = all power series £

(o]
2 £, where £, is the sum
o

of a finite number of monomials of height n.
(. <]

Put Hy = all a + 3 £, (aeK*, f, as above).
m .

We claim U(R) ¢ H, and U(R)’ c Hy. For suppose f = £, €¢U(R)

o8

and without loss of generality we may suppose £, = 1.
Let £, = p(x)+q(y) where p(0) = 0, q(0) = O.

. ©0 .
Suppose £ * = 3 g, where g, = 1 and g, = r(x)+s(y),
[o]

r(0) = 0, s(0) = O.
Looking at the terms of height 1 in (3f,)(2g,) = 1 we have
p(x)+q(y)+r(x)+s(y)+p(x)r(x)+a(y)s(y) = 0
Thus p(x)+r(x)+p(x)r(x) = 0. LA p=r = 0.
Similarly q = s = 0. . U(R) ¢ H;.
Now each H, is multiplicatively closed. Suppose a+a € Hj,
B+b € H, (where a,b contain only terms of height > n,m
respectively). Then
(a+a)™® = (1-a"ta+(a"ta)?-.... )a’f

and similarly for S+b. So
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(a+a)™ (B+p)~* (a+a) (B+b)
(a™2=a2a+we ) (B 2=F2b+w.. )(a+a)(B+b)
1+f"*b+a " ta-p *b-a~1a + terms of height >m+n

€ Hpyne : :
So since U(R) ¢ Hy, we have U(R)’ ¢ H;
Then 1+yx € U(R) ((14yx)™t = 1=yX+yxyx=.... ) and 1+xy ¢ U(R),
but (14+xy)(1+4yx)™* = 1¢(xy-yx) + terms of height 3 L4
€ Hp-Hg .
% 1+xy # 1+yx mod U(R)’. By (5.7) R is not universal for
GE,, any n. Further, R is clearly an integral domain.(skew).

We note that, in view of (5.5) and (5.6) we have:
Corollary (5.8). If R is universal for GE,, some n3> 3, then

GE,(R)? = U(R)%. a

We now generalize (5.6) to quasi-universal rings.
(5.6) was proved, essentially, by observing that, from the
universal relations, if R is universal for GE,, then
GE,(R)/E,(R) has a presentation: ‘
Generators: [0y ,...cn)] (aieU(R))
Relations: [0y geeesOn [ By yeeeBn] = [04 By peeect@nBn]
DLJ(G)_ - 1
and this is then seen to be equivalent to the presentation:
Generators: [a] (axeU(R))
Relations: [al(g] = [aB] = [B]la]
Similarly, if R is quasi-universal for GE,, GEn(R)/En(R)
has the presentation:
Generators: [oyy....apn) ,(aLeU(R))
Relations: [y geecOn]{ByseeeBn] = [Og By seeecttnfnl
[1+4xy]); = [1+yx]; whenever 1+xy e U(R)
and this 1s equivalent to the presentation:
Generators: [a] (acU(R)) |
Relations: [al[B] = [aB]
[1+xy] = [1+yx] whenever 1+xy ¢ U(R).
So let Uz (R) be the subgroup of U(R) generated by all
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expressions (1+xy)(1+yx)™* (1+xy € U(R)), and let
Uy (R) = U(R)'. Now if a,B8 € U(R),
af =g + (a-1)8
B(1 + gt (a-1)p)
B(1 + (a=1)) mod Uy (R)
= fa
So U;(R) ¢ Uy;(R). We have proved:
Proposition (5.9). Let R be either universal or quasi-
universal for GE,, any n, and put m = 1,2_respective1y.
Then  GE,(R)/E,(R) = U(R)/U,(R). o |
Corollary (5.10). If R, m are as in (5.9), and [a];eE,(R),
then a € U,(R). o

This result provides, potentiaily, a way of
constructing rings which are not quasi-universal for GE,,
for any n. We return to this question in the next chapter.

Finally, _ .

Proposition (5.11). (Any R) If n33, E,(R)® = 1. (c£.[1;(9.3)])
Proof. Given xeR, and 1i£J, choose k ¥ i,J. Then

| By j(x) = Byy(=x)Byj(-1)Byp(x)Bcy(1). ©
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6. The general case.

Here we give a presentation, albeit a clumsy one,
for GE,(R), that holds for any ring R; we shew how it takes
a specially siﬁple form when R is GE;-reducible.

We start by working in as general a context as: _
possible. Let R,S be rings; let ¥ be an (R,S)=bimodule and
N an (S,R)-bimodule. Suppose we have balanced maps

MxN->R  ( (xy5)» (x55) )
MM =8 ( (y,x) " (¥5x) )
satisfying the additional conditions
(x39)x" = x(y;x') (x,x' € M, ¥ € N)
(y;x)y" = y(x35") (x € M, y,5'¢ N)
Then we can define a ring A consisting of all (

I'X)

(reR, seS, xeM, yeN) with ordinary matrix multiplication
and addition, once we agree to write xy for (x;y) etc.
If xeM, yecN, an(R), pBeU(s), write

.
1 X 1,. O
Biz(x) = R ] ’ B21(y) = R ’
S G y g
(@ O |
[asB] = ; all these are in U(A).
0 B o

Let F,G be subgroups of U(R), U(S) respectively.

Let H be the subgroup of U(A) generated by all B,,(x) (xeM),
all By, (y) (yeN), and all [a,B] (acF, peG).

The following ﬁniversal relations hold:

(1)  Bya(x)Bya(x’) = Byg(x+x’) (x,x"eM)

(11) Bz1(y)B21(y') = Ba;(Y+y') (y:yieN)

(111) Bya(x)[a,8] = [, B8]By2(a™xB) (xeM, acF, BeG)

(1v) Bas(¥)[a,8] = [a,B]Bas(B*ya) (yeN, aeF, peG)

(v)  [aBlla;B'] = [ao;88'] (a,a’eF, BB’ €G)

Now suppose we have some relation

(*) ¢ = 1

where C is a product of the generators of H. Using (1)-(v),
we can reduce (*) to the form:
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(vi) ? {Bya(xy)Bay (vi)) = [a,p] (x, €M, y €N, acF, PeH)

It follows that (1)-(v), and (vi) when it holds, are a
complete set of defining relations for H.
In order to see when (vi) holds, we define a generalized
form of the continuant polynomials of [1; section 8].
Define py (x) = x (xeM) and py(y) = ¥y (yeN).
Define p,(x,y) = 1o+xy and Pg (¥,x) = 15+¥X (xeM, yeN).
Then inductively:

Pn (ty seeetn) = Pnog (tyyectnoy Jth + Pn-z(ti,eetn_z)
where t_eM, i odd, and t eN, i even; or vice versa.

P.s will mean OM or ON and p, = p-, Wwill mean 1R or 1S;

exactly which will be clear from the context.

For n>0 we shall sometimes write p(t, ,....tn) for pn(ty,ectp)e.
Then if x €M, y €N, we have p(X; y¥4 seerXr»¥r) € R, '
D(XysY1senXr) € My D(VysXzsenXrs¥r) € Ny B(¥15%apem-Xr) € So
We claim

‘

m { ) ; ( P2 m (Xi.yi ....Xm-ym ) p2 1 § (xi'yi"”xm ) )
E B12 (IL )Bz 1 (yi- ) = pgm_1 (y1 ....xm)ym ) pam_z (yt,xB on.'x"' )

This is certainly true for m = O, when we héve

i (Po : P—;)
H ~ Py P-2

and for m = 1 we have

1 1 0 |
Bza(x)B:u(Y) =( R x]( R ]
0

1J\y 1g
1R + Xy X
=( y' . 13) .
__(pz(X.y) p1 (x) ] ‘
=\ p,(¥) Po |

m .
‘Then I {By2(x¢)Bas (¥i)}

(Pam-a(xl....ym-,,) Pgm_a(xi....xm_i) ]( 1R xm][ 1R o) }
sz-a(yi----ym;1) Pam—a(¥yeeZnay) 0. 1 S
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(sz—z(xv--~Ym-1) Pam—1 (XgeeeXp )J 1R 0

Pam=3 (¥gessTm=y) Pam—z (¥geeeeXp) Im 1 s

(sz(xi""ym) Pg m_t(xio---xm) ]
= Pom~1(FyeeTm) Pam=z(¥geeXn)

So now we can give the following conditions for (vi) to hold:
Pom(Xgeeedm) =aeF '
Pem-2(¥ieXn) = B € G
Pan-1(Xsen) = Oy

pam-i (yi....ym) — ON

We now turn to a special case. Let K be any ring; put

R =K., S=K;, where r+s8 = n., let M,N be, respectively,

all rxs, all sxr matrices over K. The bimodule structure

and the balanced maps (see page 73) are given by matrix

multiplication, and then A £ K,. H is a subgroup of GL,(K);

the actual subgroup will depend 6n the cholce of F and G.

We put F = GE.(K) and G = GE; (K) : so H = GE,(K).

Then [a,B] is a product of B;(z) (zeK, 1<i,J<r or r<i,j<n)
and [ay yeettn] (ap€U(K)). ’

Further, if x = (xy;) ¢ Mand y = (y;i) ¢ N (1<igcr, 1<j<s)

we have

Bia(x) = I B ryj (x05) 5 Baa(¥) = OB CATON

and by universal relation 2, the order of these products

is immaterial. Then (i) and (ii) follow from 1 and 2;

(1i1) and (iv) follow from 2, 3 and 6. Finally 2, 6 and 7

ensure that [a,1] and [1,8] (aeF, BeG) commute, and now (v)

follows by relations of GE.(K) and GE,(K).

Our results may now be stated as

Theorem (6.1). Let K be any ring, and r,s >1 with r+s = n.

Then GE,(K) has as defining relations:

(a) 1,2,3,6,7

(b) The relations of GE(K) (t = max(r,s))

(e) ? {By2 (X )Bas (Y )} = [A,B] where m31 and
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Xi» ¥, (i=1...m) are respectively rxs, sxr matrices over K
and Pam(Xy,Y1seeXns¥n) = A € GE. (K)

Pam-1(XysYyseXn) =0

sz-i.(YirXan?--Xm'Ym) =0

sz—z(Yitxas-mxm) =B e GE(X). o
N.B. By (6.1)(b) we mean any relation of GE,(K) not involving
more than t distinct suffices.
As a special case of (6.1) we take r = n-1, 8 = 1, and then
use induction on n. Note that the relations of GE, (K) are
covered by 7. We have
Theorem (6.2). For any K, any n, GE,(K) has as defining
relations:
(a) 1,2,3,6,7
(b) For 1<k<n-1, and m>1,

m ‘ . :
(*) I {Ba(X )Bay (Y )] = AlBlk+s where
Xi» Y. (i=1...m) are respectively kx1, 1xk matrices over K
and Dam(Xy,Yy1s-rXms¥n) = A'€e GBi(K)

sz-i(xi’ooccxln) =0
pam-i(YigoootYm) = 0

pzm_z (Yi’oo'oxm) = ﬂ € U(K)
and A’ 0 }
A= 0 Ine ) ° o

We note that we could add universal relation L4 to the 1list
in (6.2)(a) and then insist in (b) that B8 = 1. We also note
that universal relation 5 is a special case of (*).

Now we have already seen in (3.11) that if R is
GE;-reducible, the relations of GE,(R) (n 3> 3) are just the
universal relations together with the relations of GEs(R);
i.e. in (6.2) just (a),and (b) for 1<k<2. We shew now that
for such a ring it is sufficient to take (a), and (b) for
k=1, all m, and for k=2, m<h.

Proposition (6.3). Let R be GE,-reducible. Then if A ¢ GE;(R),

there 18 an expression
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A = By3(x4)Bag(X3)Bs1(¥1)Bsa(ya)
*Bya(X3)B23a(X4)Bs1 (¥5)Bsa(ys) M
where x;, ¥, € R and M e GE,(R).
Proof. Write 'A - B' for 'A = BM, some M ¢ GE;(R)'.

Then A - (02] »(';;)‘.Bw-n
(i) (i) -

[' ° ] ®  Bya(X )Bas(xz) some x,, X,
001

J'Baa(Y)Bza(x) $0me Xy ¥

Qe o
0 o
e o
(e X}

O o
e @

(Each dot stands for an unspecified element of R)
Putting this togethér, we see .
A = Byg(Xy)Boa(xa)MyByo(¥)Baa (X)MaBag(~1)My (M €GE;(R))
= Bys (Xq)Baa (X3 )Bse (¥1)Bsa(ya)
"By (X3 )Bza(xi)Bai(Ys, )Baz (ye) M

where (y31,¥2) = (0,y)ui* , (xa) = uf®] -
X, 1\ x

(yafy*) (0,-1)Mz2M2 and M = M;M;M; € GE;(R). O

We may restate (6.3) as: Every A € GE;(R) (R GE;-reducible)
has an expression

: 2
A= iIHIBia(XL )Bai(YL)}'M
where XL=(XL1) ’ Yo = (yi1s¥i2) » Xije¥ij € R

Xi2 _
and ¥ € GE;(R).
Now suppose m>4 and

%inz(Xi.)Bas,(YL)} = A-[Bls

Then § {B, o (X, )B,, (¥,)}

= Bza(xi){Bat(Y1)Biz(xa)321(Y2)B12(xa)}Bat(Ya)
B 18,2 (%)B4, ()]
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B1z(xﬁ)52512(xi)Béz(Yi)3“'521(Ya)§1512(xt)Bzi(YL);(by

m=23
I {Bio(X!)Bg,(Y!)} suitable X{,Y!,x!,Y!.

This gives the 1nductioh: we can discard all the relations
for m > 4, leaving just

2 .
Bay (Y3 )B1a(X3)Bay (Y3 )Byo(Xs) = II IBia(xi'. )Bas (YY)}
which in effect is just (6.2)(Dd) with k = m=L4 and 8 =
Thus we have proved:

Theorem (6.4). Let R be GE,-reducible. Then GE,(R) (any n)
has as defining relations:

(a) 2,3,6,7 _
(b) The relations of GE;(R)

(C) ﬁ iBza(X;)Bzz(YL); = A

where X = (;t;) s Yy = (FissYia)s Xijs¥ij € R
and (1) pg(XyeeYs) = A € GE,(R)

(11) By (Xerks) = ()

(1i1) p,(¥y...Ys) = (0,0)

(1v) Do (YsewXy) = 1. ‘o

Note thap, since a GE;-reducible ring is always a GE-ring,
condition (1) of (6.4)(c) is a consequence of (11),(111),
and (iv): the force of it is that for each set of X ,Y;

- satisfying (11),(111) and (iv) we must pick an expression
for A in terms of the generatods of GE@(R), and write
down the corresponding relation (c).

We return now to the general case, and prove some
identities for the continuant polynomials.
Lemma (6.5). : :
(a) p(xl.xz.“nxm)p(x T _2."“x1) = p(x1,x2.“"xm .)
'P(xm’xm_iyn.x )
(b) p(xyeexy)e(x, -1u.x9) p(xin“ m=1 )P(Xp.Xz) = (-1)" (m32)
(e) P(XgeeeeXp—g )P (XpoereXy )=DP(XgeeeXpy ) P(XpmgeeeXy ) = (=1)™ (m32).
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Proof. (a) m=1 : p(x;)p = PoD(x,)
m > 1 3 D(XgeereXq )D(KpogooeeXy )
P(XgeeeeXmog ) XnP(Xn=geeeeXy) + D(XyoeeXmez )D(XpogoeeXy)

D(XgeerXmes ) XaD(XnogeeeeXy) # D(XgeereXmes )P(XmozeeeeXy) DY
. induction

= P(XgeeerXmeg JD(XpoeerXy)
(b) m=2 : p(Xy,%3)Po = P(X;)P(Xz) = 14Xy Xp=X3%X5 = 1
m=3 i D(Xy,%3s%5)P(X5) = D(Xy,%53)P(Xg,%5)
= (X +Xg+X;X3X5 )Xy = (14x.%5) (14x53%,) = =1
M > 3 ¢ D(XgeeeXpy )P(XmegeeeeXg) = D(XgeeeeXpoq )D(XpeeesXy)
Xy P(XgeerXn ) P(XpmgeeeXa) + D(XgewsXp)P(XppmyorneXz)

= %, D(XgeerKmey )P (XpererXg) = D(XgeerXpeq ) P(XpeeraXa )
P(XgeeeeX ) D( Xy ereeXy) - p(xaguxm_i)p(xmnvxz) by (a)
p(xauuxm)p(xm_iunxa)xz + D(XgeereXp )DEEALg eoneXy )

= D(ZgerXp_g )D(XpeereXg )X = P(XgeereXpmg JD(XpoeeeXy )
D(XgeereXm )P (XmmgoeeXy) - p(xannxm-i)p(xm""x,) by (a)
= (=1)""2 py induction
= (=1)"
(c) similarly. o

]

Now we have (using the notation of pp. 73~75; X €M, YLeN)
1B12(XL )Baa.(Yi. ) } [Pam(Ymtxmrm-X1)]2

Pam(XyeeYn) Danet (XgeXn)

: . '[ 2m(Ymm-X )]2
Pim—g (YgeeYp) sz-z(Yt-me)) F '

(p;mm...xm) Dhms (Xg X ) Dz (TeorsKy ) )

Pan—1(YieeYn)  Dam-z(Yyewo-Xn)Dan (YpeXy) J

Pz (XgeeYp) Pam(XieeYn)Pames (XmeweXy) ] by
Pam—y (YqeeeYm) 1 + Panog (Yyee¥n)Pon—yg (XpoerXy ) (6.5)
= [Pgn(Xyee¥n)J1B2a (Pamos (Y1e¥p) )By P21 (XpeeeXy )

~ So we have Pam(XieeYn) € U(R) <= pan(Ype-Xy) € U(S).

Now any relation of H was reducible, by (1)-(v) (page 73),
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to the form g {Byg(xi)Bas (v )} = [, 8] - (iv)

By (1),(11) "I {Bia(xi)Bas(51)]

= [a,B]Bas (-¥n)By1s(~xp)
= [a]1B21(‘ﬁYm)Btz(‘xmﬂ-1)[ﬁ]s by (1i1),(iv),(v)

By (V)’m§11312(xL)B21(YL)l[ﬁ-ila = [011321(“§ym)312('xmﬂ-1)

From (Vi)’ a = sz(11"HYm) = sz-z(xxﬂ"¥m-1)r ?P2m~1(x1""xm)=o-
By (1)9(11)’(V)a '

% iBz1(‘YL)Btz('xL)] = [a-1oﬁ_1]

So ﬁ.1 = sz("ym...--x1)
= p2 m=2 (-ym—1""‘x1 ) .’. pz m.1 (—xmtcvn-xi ) = O
= pzm—g (ym_i....xi ).

Thus if we write E for the subgrqup of H generated by all
Bia(x), Bai(y) (xeM, yeN), we have E < H ,(by (1i1),(1v)),
and H/E has the presentation: ' ’
Generators: [a,B8] where a = a’'p(x4.e..yn) € U(R), a'€F

and 8 = B'p(¥g..-Xy) * € U(S), B'cG
Relations; [oy,Bs][ag,8:] = [aypiasB16a]

[D(Xgee-Tm) s P(Ymee-Xy )™ ] = 1 whenever p(ﬁ ii'fym)
€ .

Now consider the case R = S = M = N, F = G = U(R).
So H = GEg(R), E = E; (R), and we have proved that for any
ring R, GE;(R)/E;(R) has the presentation:
Generators: [a] (acU(R))
Relations: [a]l[B] = [ag]
[P(xgeeeeym)] = [P(¥yme---Xy )] whenever p(xy....¥n)
' eU(R).

Now note that p(1,X,~1,X;,...Xp) = D(X =1, Xgjseee-Xn)
+ p XQQQOOXn)

(%, =1)D(XgeeeXp )+ D (XgeeeeXp ) +D(XgeeeXpy )
X, P(XgueXpy ) +D(XgueeXpy ) |
= D(Xy »Xg90i0Xp) '
and similarly p(xi,xa,”"xn_t,xn—1,1) = D(X, yXgpeeeXpy)
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So (m »2) we define U, (R) to be the subgroup of U(R)
generated by all expressions
D (Xg 00X ) D (XowreXy )72 (p(xg.e-xp) € U(R)). o
We have Up(R) € Upse(R)e Put Wy (R) = 1 and Wa(R) = U U((R)
We have proved '

Lemma (6.6). For eny R, and n = 1 or 2,
" GEq(R)/Eq(R) = U(R)/Wn(R). O

Now use induction: suppose n 32, and we have defined W, (R)
such that GE,(R)/En(R) = U(R)/Wn(R). So we have a function
¢n ¢ GER(R) ™ U(R) given by ©, : GEn(R) ~* U(R)/W,(R)
followed by a choice of coset representative in U(R).
Let Wo+4 (R) be the subgroup of U(R) generated by Wn(R) and
all expressions
P Xy eeeYpn) "D(YpeeerXy )2
where X, Y, are respectively nxi, 1Xxn matrices over R,
P(XgeeeYn) € GER(R) (m = 1,253,000 )
(and hence p(Yy....Xy) € U(R)).
Then we have
Theorem (6.7). For all n, all R,

GEn(R)/En(R) = U(R)/Wn(R)- o
If R is commutative, Wo(R) = 1, all n.
If R is universal for GE,, W,(R) = U;(R).
If R is quasi-universal for GE,, W,(R) = Uz(R).

We recall that in (4.19) we shewed that a certain
commutative ring was not quasi-universal for GE;. We would
like to find an example of a ring which is not quasi-

. universal for GE,, for all n. Clearly it would be sufficient
to find a ring R such that U; (R) : w2 (R), i.e. such that

for some m > 2, Uz(R) § Un(R), but the present author is

unable to say whether such a ring exists,
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