

PRESENTATIONS OF GENERAL LINEAR GROUPS

John Richard Silvester

ProQuest Number: 10098170

All rights reserved

INFORMATION TO ALL USERS

The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest 10098170
Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author.
All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346

ABSTRACT
Let R be an associative ring with a 1. Denote by $G L_{n}(R)$ the group of invertible $n \times n$ matrices over R, and by $G E_{n}(R)$ the subgroup of $G I_{n}(R)$ generated by the elementary and invertible diagonal matrices. Certain specified relations between these generators hold universally, that is, for any ring R. We call a ring R universal for $G E_{n}$ if $G E_{n}(R)$ has these relations as defining relations, and we shew that if R is a local ring (1.e. a ring in which the set of all non-units is an ideal) or the ring of rational integers, then R is universal for $G E_{n}$, for all n. This both generalizes known results for $n=2$, and includes the classical case where R is a field, possibly skew. By adding further relations to those already considered we obtain in a similar way the concept 'quasiuniversal for G_{n} ', giving a class of rings which strictly includes the class of all rings universal for GE , but which is better behaved than the latter under certain ring constructions. We shew that every semi-local ring (i.e. every ring R such that R modulo its Jacobson radical has the minimum condition on right ideals) is quasi-universal for GE_{n}, for all n .

Finally we shew how to obtain a presentation of $G E_{n}(R)$ for any R. This is unwieldy, but simplifies greatly for a certain class of rings called $G E_{2}-r e d u c i b l e ~ r i n g s, ~$ which includes all Euclidean rings. We shew that for such rings R a set of defining relations for $G E_{n}(R)$, for $r \geq$, is obtained by taking the universal relations together with certain relations in $G_{3}(R)$.

CONTENTS

Page

1. Introduction 4
2. Universal $\mathrm{GE}_{2}-$ rings 6
3. Universal rings 15
4. Quasi-universal rings 40
5. The commutator quotient structure of $G E_{n}(R)$ and $E_{n}(R)$ 68
6. The general case 73
REFERENCES 82ACKNOWLEDGEMENTS
I should like to thank Professor P.M.Cohn for much wise counsel and constant encouragement. I should also like to thank the following, who provided grants: The Science Research Council, The United States-United Kingdom Educational Commission, and Rutgers, The State University.
John R. Silvester 19th May 1969
Bedford College, London
Queen Mary College, London
Rutgers, The State University
7. Introduction

The general linear groups $G I_{n}(K)$ (where K is a field) and their subgroups and automorphisms have received much attention, and the theory is well-developed, even when K is skew. Comparatively little is known about the groups $\mathrm{GI}_{n}(\mathrm{R})$ of invertible $n \times n$ matrices over an arbitrary ring R. In [5] the question of finite generation of $\mathrm{GL}_{\mathrm{n}}(\mathrm{R})$ is investigated for certain types of Dedekind domain R. In [6], all the automorphisms of $G I_{n}(R), n \geqslant 3$, are found, where R is any integral domain; this is all the more remarkable in view of the fact that not every integral domain is a GE-ring (see below). In [7], certain characteristic subgroups and isomorphisms of subgroups of $G L_{n}(R), n \geqslant 3$, are studied; in spite of the very general title, the rings are all integral domains, or even principal ideal domains, and with characteristic $\neq 2$.

In [1], the structure of $\mathrm{GI}_{2}(\mathrm{R})$ for quite wide classes of rings R is examined, and here we attempt to follow the same line of investigation for $G L_{n}(R)$, for general n. The main tool in [1] was a presentation of $\mathrm{GL}_{2}(\mathrm{R})$ for certain rings called universal GE_{2}-rings. Finding a presentation of $G L_{n}(R)$, for $n \geqslant 3$, is so much more difficult that the present work is confined almost exclusively to that task.

Over a field, every invertible matrix is a product of elementary and diagonal matrices. Over a ring, this need not be true; indeed, we define $G E_{n}(R)$ to be the subgroup of $G L_{n}(R)$ generated by the elementary and invertible diagonal $n \times n$ matrices, and we say R is a $G E_{n}-r i n g$ if $G E_{n}(R)$ $=G I_{n}(R)$. A ring R is universal for $G E_{2}$ if $G E_{2}(R)$ has a certain presentation (see chapter 2); if R is also a GE_{2} ring, it is a universal GE_{2}-ring.

In [1], it was shewn that local rings (in particular, fields) are universal for $G E_{2}$; our main result in chapter 3 is a presentation of $G E_{n}(R)$ for any local ring R and any n, and it seems natural to take this as the basis for the definition of 'universal for $G E_{n}$ '. With the help of results in [3] and [4] it is then shewn that the ring Z of rational integers is universal for $G E_{n}$.

If R is universal for $G E_{n m}$, this tells us something about the structure of $G E_{n}\left(R_{m}\right)$, where R_{m} is the ring of $m \times m$ matrices over R. In particular, we can ask: if R is universal for $G E_{n m}$, is R_{m} universal for $G E_{n}$? With certain restrictions, the answer is yes. The restrictions can be removed by considering instead a wider class of rings called quasi-universal for GE_{n}. We shew (chapter 4) that every semi-simple Artinian ring is quasi-universal for $G E_{\mathrm{h}}$, and we give a simple sufficient condition for such a ring to be universal for $G E E_{n}$.

Let $J(R)$ be the Jacobson radical of R. The structure of $G E_{n}(R / J(R))$ is closely related to that of $G E_{n}(R)$; indeed we prove (chapter 4) that if $R / J(R)$ is quasi-universal
for $G E_{n}$, so is R. Thus every semi-local ring is quasiuniversal for $G E_{n}$, and as before there is a simple sufficient condition for such a ring to be universal for $G E_{n}$.

We conclude (chapter 6) by giving a presentation of $G E_{n}(R)$ for any R whatsoever; it is however a rather clumsy presentation. Nonetheless it simplifies greatly for certain rings, in particular for Euclidean rings.
Notation. The following notation is used throughout. Let R be a ring, associative and with a 1, and denote by $U(R)$ the multiplicative group of units of R. Elements of $U(R)$ are denoted by Greek letters.
Let R_{n} be the ring of $n \times n$ matrices over R. R_{n} has identity I_{n}, and its group of units is the general linear group GIn (R). Let $e_{i} j$ be the usual 'matrix units' (1 in the i,j position, 0 elsewhere). For $i \neq j$ and $x \in R$, put $B_{i j}(x)=I_{n}+x_{i}{ }_{j}$. Clearly $B_{i j}(x) \in G I_{n}(R)$. Put $[\alpha]_{i}=I_{n}+(\alpha-1) e_{i}=$ the diagonal matrix with α in the ith diagonal place and 1 elsewhere.
$P_{i t}[\alpha, \beta]_{i j}=[\alpha]_{i}[\beta]_{j}, \quad D_{i j}(\alpha)=\left[\alpha, \alpha^{-1}\right]_{i j}$ and
$\left[\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right]=\Pi_{i}\left[\alpha_{i}\right]_{i}$
Define $G E_{n}(R)$ as the subgroup of $G I_{n}(R)$ generated by all $[\alpha]_{i}$ and all $B_{j k}(x) \quad(\alpha \in U(R), \quad x \in R, 1 \leqslant i, j, k \leqslant n, j \neq k)$. If $G E_{n}(R)=G L_{n}(R)$ we say R is a $G E_{n}-r i n g$. R is a $G E-r i n g$. if it is a $G E_{n}$-ring for all n. $G E$ stands for 'Generalized Euclidean': note that every Euclidean ring is a GE-ring.
2. Universal GE $_{2}$-rings

$$
\text { In } \begin{aligned}
\mathrm{GE}_{2}(\mathrm{R}), \text { put } \mathrm{E}(\mathrm{x}) & =\mathrm{B}_{12}(1-\mathrm{x}) \mathrm{B}_{21}(-1) \mathrm{B}_{12}(1) \\
& =\left(\begin{array}{cc}
\mathrm{x} & 1 \\
-1 & 0
\end{array}\right)
\end{aligned}
$$

$G E_{2}(R)$ is generated by all the $E(x)$ and $[\alpha, \beta](x \in R, \alpha, \beta \in U(R))$. Then the following 'universal' relations always hold:
(A)

$$
\begin{array}{ll}
E(x) E(0) E(y)=-E(x+y) & x, y \in R \\
E(\alpha) E\left(\alpha^{-1}\right) E(\alpha)=-D_{12}(\alpha) & \alpha \in U(R) \\
E(x)[\alpha, \beta]=[\beta, \alpha] E\left(\beta^{-1} x \alpha\right) & \alpha, \beta \in U(R), x \in R \\
{\left[\alpha_{1}, \alpha_{2}\right]\left[\beta_{1}, \beta_{2}\right]=\left[\alpha_{1} \beta_{1}, \alpha_{2} \beta_{2}\right]} & \alpha_{i}, \beta_{i} \in U(R)
\end{array}
$$

Following [1], we say that R is universal for $G F_{2}$ if (A) is a complete set of defining relations for $\mathrm{GE}_{2}(R)$. If in addition R is a $G F_{2}-r i n g$, we say that R is a universal $G_{2}-$ ring. In this case, (A) is a complete set of defining relations for $G L_{2}(R)$.

In [1], the following rings are shewn to be universal for $G E_{2}$:
a. Local rings (in particular, fields).
b. Discretely normed rings (in particular, k-rings with a degree-function).
c. Discretely ordered rings (in particular, the ring Z of rational integers).
Since local ring (i.e. a ring in which the non-units form an ideal) is a GE-ring, it is a universal $\mathrm{GE}_{2}-$ ring.

Our first question is: do any rings fail to be universal for $G E_{R}$? Corollary (2.3) (below) answers this in the affirmative.
Lemma (2.1). In any ring $R, E(a) E(b) E(-a) E(-b)=I$

$$
\Leftrightarrow a b=0=b a \quad(a, b \in R) .
$$

Proof. For any $a, b \in R, E(a) E(b) E(-a) E(-b)$

$$
\begin{aligned}
& E(a)\left[\begin{array}{cc}
E(b) E(-a) E(-b) \\
a b a b-a b+1 & -a b a \\
-b a b & b a+1
\end{array}\right]
\end{aligned}
$$

The result is now clear. \quad.
(Note: the symbol a will be used to indicate the conclusion of a proof.).
Definition: Let R,S be rings. A U-homomorphism $f: R \rightarrow S$ is a homomorphism of the additive group of R into the additive group of S such that \because

$$
\begin{aligned}
& \quad \text { and } \quad f(\alpha x \beta)=1 \\
& f(\alpha) f(x) f(\beta)
\end{aligned}
$$

$$
x \in R, \alpha, \beta \in U(R)
$$

The following theorem is proved in [1:(1.1.2)]: Given R,S,f as above, with R universal for $G E_{2}$, then f induces a homomorphism $\mathrm{f}^{*}: \mathrm{GE}_{2}(\mathrm{R}) \rightarrow \mathrm{GE}_{2}(\mathrm{~S})$ by the rules:

$$
\begin{array}{ll}
f^{*}(\mathbb{E}(x))=E(f(x)) & \\
f^{*}([\alpha, \beta])=[f(\alpha), f(\beta)] & \alpha, \beta \in U(R)
\end{array}
$$

Proposition (2.2). If R, S are rings, and R is universal
for GE_{2}, and if $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{S}$ is a U-homomorphism, then
$x y=0=y x(x, y \in R) \Rightarrow f(x) f(y)=0$.
Proof. Construct the homomorphism f^{*}, as above. By (2.1), if $x y=0=y x$, then
$E(x) E(y) E(-x) E(-y)=I$
Apply f^{*} to each side.
$E(f(x)) E(f(y)) E(-f(x)) E(-f(y))=I$
By (2.1), $f(x) f(y)=0$.
Corollary (2.3). Let k be a field, and let R be the ring
formed by adjoining to k two commuting indeterminates
x, y with the added relation $x y=0$. Then R is not universal for $G E_{2}$.
Proof. A normal form for a general element t of R is

$$
t=x f(x)+y g(y)+a \quad(f(x) \in k[x], g(y) \in k[y], a \in k)
$$

Then $\quad t t_{1}=(x f(x)+y g(y)+a)\left(x f_{1}(x)+y g_{1}(y)+a_{1}\right)$

$$
=x\left(x f(x) f_{1}(x)+f(x) a_{1}+a f_{1}(x)\right)
$$

$$
+y\left(y g(y) g_{1}(y)+g(y) a_{1}+a g_{1}(y)\right)+a a_{1}
$$

If $t t_{1}=1$ we must have
(i) $a a_{1}=\bar{K}^{1}$
(ii) $x f(x) f_{1}(x)+f(x) a_{1}+a f_{1}(x)=0$
iii) $y g(y) g_{1}(y)+g(y) a_{1}+a g_{1}(y)=0$
(ii) is an equation in $k[x]$, and by examining the degrees of the three terms, we see that $\operatorname{xf}^{\prime}(x) f_{1}(x)=0$, and so one of $f(x), f_{f}(x)$ must be zero; hence both are zero. Similarly $g(y), g_{1}(y)$ are both zero.

So $U(R)=k^{*}$, the non-zero elements of k. Now put $S=k[x] . R$, S are both free k-modules of countably infinite rank. Define $f: R \rightarrow S$ by

$$
\begin{aligned}
& f\left(x^{n}\right)=x^{2 n} \quad(n \geqslant 0) \quad(\text { and so } f(1)=1) \\
& f\left(y^{m}\right)=x^{2 m-1} \quad(m>0)
\end{aligned}
$$

and extend by linearity. f is an isomorphism of k-modules, and since $f(1)=1$ and $U(R)=k^{*}, f$ is a U-homomorphism. But $x y=0=y x$, and $f(x) f(y)=x^{2} \cdot x=x^{3} \neq 0$. By (2.2), R is not universal for GE_{2}. Proposition (2.4). R as in (2.3). Then R is a GE-ring. Proof. Let $A \in G L_{n}(R)$. Then $A=A_{0}+X A_{1}+y A_{2}$, where $A_{0} \in k_{n}$, $\overline{A_{1} \in K}[x]_{n}$, and $A_{2} \in k[y]_{n}$.

Now $\operatorname{det}(A) \in U(R)=k^{*}$. Therefore $\operatorname{det}(A)=\operatorname{det}\left(A_{0}+y A_{2}\right)$ (i.e. replacing x by 0 does not affect the value of $\operatorname{det}(A))$. So $A_{0}+y A_{2} \in G L_{n}(R)$.

Put $B=A\left(A_{0}+y A_{2}\right)^{-1}$. Then $B=B_{0}+x B_{1}+y B_{2}$, where $B_{0} \in k_{n}, B_{1} \in k[x]_{n}, B_{2} \in k[y]_{n}$.

$$
\mathrm{B}_{0}+\mathrm{y} \mathrm{~B}_{2}=\left.\mathrm{A}\left(\mathrm{~A}_{0}+\mathrm{yA} \mathrm{~A}_{2}\right)^{-1}\right|_{\mathrm{x}=0}=\mathrm{I}
$$

Therefore $B_{2}=0$ and $B=B_{0}+x B_{1}$.
So $A=\left(B_{0}+x B_{1}\right)\left(A_{0}+y A_{2}\right)$

$$
\begin{aligned}
& \in G L_{n}(k[x])\left\{\begin{array}{l}
G L_{n}(k[y]) \\
\subseteq G E_{n}(k[x]
\end{array}\right) \\
& \subseteq G E_{n}(k[y]) \\
& \subseteq G E_{n}(R) \cdot
\end{aligned}
$$

We note in passing the rather special structure of the group $G E_{n}(R)$:

$$
\begin{aligned}
& G E_{n}(R)=G E_{n}(k[x]) G E_{n}(k[y]) \\
& G E_{n}(k[x]) \cap G E_{n}(k[y])=G E_{n}(k)
\end{aligned}
$$

R itself is a sort of direct product of $k[x]$ and $k[y]$, amalgamating k.

Thus we have found a fairly easy example of a GEring R which is not universal for $G E S_{2}$. R contains zerodivisors; we proceed to find a ring which is a GE-ring and an integral domain (it is even a principal ideal domain) but which is not universal for GE_{2}. The method is a generalization of the above.
Lemma (2.5). Let R be any ring; $a_{i} \quad(i=1, .4) \in R$ and $\alpha, \beta \in U(R)$.

$$
\text { Then }(*) E\left(a_{1}\right) E\left(a_{2}\right) E\left(a_{3}\right) E\left(a_{4}\right)=\left[\alpha, \beta^{-1}\right]
$$

$$
\Leftrightarrow \left\lvert\, \begin{array}{ll}
\text { (i) } & a_{1} a_{2}=1-\alpha \\
\text { iii) } & a_{2} a_{1}=1-\beta \\
\text { iiij } & a_{3}=-a_{1} \beta^{-1} \\
\text { iv) } & a_{4}=-\beta a_{2}
\end{array}\right.
$$

Proof. (*) is true $\Longleftrightarrow \left\lvert\, \begin{array}{cc}a_{1} a_{2} a_{3} a_{4}-a_{1} a_{2}-a_{3} a_{4}-a_{1} a_{4}+1=\alpha \\ a_{1} a_{2} a_{3}-a_{1}-a_{3}=0 \\ a_{2} a_{3} a_{4}-a_{2}-a_{4}=0 \\ a_{2} a_{3}-1=-\beta^{-1}\end{array} \quad\right.$ (a) (b)
Suppose (a)-(d) hold. From (d) $a_{2} a_{3}=1-\beta^{-1}$.

Conversely, if (i)-(iv) hold, then $a_{2} a_{3}=-a_{2} a_{1} \beta^{-1}$ by (iii)
$=-(1-\beta) \beta^{-1}$ by (ii)
$=1-\beta^{-1}$, so (d) holds.
So $a_{1} a_{2} a_{3}=a_{1}-a_{1} \beta^{-1}=a_{1}+a_{3}$, whence (b).
Also $a_{2} a_{3} a_{4}=a_{4}-\beta^{-1} a_{4}=a_{4}+a_{2}$, whence (c).
Then $a_{1} a_{2} a_{3} a_{4}-a_{1} a_{2}-a_{3} a_{4}-a_{1} a_{4}=a_{1}\left(1-\beta^{-1}\right) a_{4}+a_{1} \beta^{-1} a_{4}+a_{1} \beta^{-1} a_{4}$

$$
\begin{aligned}
& =a_{1} \beta^{-1} a_{4} \\
& =-a_{1} a_{2} \text { whence }(a) . \\
& =\alpha-1, \text { when }
\end{aligned}
$$

Proposition (2.6). Let R, S be rings, where R is universal for GE_{2}, and let $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{S}$ be a U-homomorphism. Then if $\exists a_{1}, a_{2} \in R$ and $\alpha \in U(R)$ such that $a_{1} a_{2}=1-\alpha$, we deduce $f\left(a_{1} a_{2}\right)=f\left(a_{1}\right) f\left(a_{2}\right)$.
Proof. Define β by $a_{2} a_{1}=1-\beta$. β is a unit, since $\left(1-a_{2} a_{1}\right)\left(1+a_{2} \alpha^{-1} a_{1}\right)$

$$
=1-a_{2} a_{1}+a_{2}\left(1-a_{1} a_{2}\right)^{-1} a_{1}=1
$$

and $\quad\left(1+a_{2} \alpha^{-1} a_{1}\right)\left(1-a_{2} a_{1}\right)$

$$
=1-a_{2} a_{1}+a_{2} \alpha-1\left(1-a_{1} a_{2}\right) a_{1}=1
$$

Construct the homomorphism $\mathrm{f}^{*}: \mathrm{GE}_{2}(\mathrm{R}) \rightarrow \mathrm{GE}_{2}$ (S) as before. By (2.5), $E\left(a_{1}\right) E\left(a_{2}\right) E\left(-a_{1} \beta^{-1}\right) E\left(-\beta a_{2}\right)=\left[\alpha, \beta^{-1}\right]$.
Apply f* to each side:

$$
\begin{aligned}
& E\left(f\left(a_{1}\right)\right) E\left(f\left(a_{2}\right)\right) E\left(-f\left(a_{1}\right) f(\beta)^{-1}\right) E\left(-f(\beta) f\left(a_{2}\right)\right) \\
= & {\left[f(\alpha), f(\beta)^{-1}\right] . }
\end{aligned}
$$

From (2.5), $f\left(a_{1}\right) f\left(a_{2}\right)=1-f(\alpha)=f(1-\alpha)=f\left(a_{1} a_{2}\right)$.
Corollary (2.7). Let k be a field not containing a square root of -1 . Let x be an indeterminate, and $X=\left\{\left(1+x^{2}\right) n, n=0,1,2, \ldots\right\}$. Let R be the localization $\mathrm{k}[\mathrm{x}]_{\mathrm{X}}$: then R is a commutative integral domain, and is not universal for $G E_{2}$.
Proof. $U(R)=\left\{a\left(1+x^{2}\right)^{n} ; a \in k^{*}, n \in Z\right\}$.
For if $\left(1+x^{2}\right)^{n} p(x) \cdot\left(1+x^{2}\right)^{m} q(x)=1$, where $p(x), q(x) \in k[x]$ and are not divisible by $1+x^{2}$, then $n+m \leqslant 0$, since $U(k[x])$ $=k^{*}$. If $n+m<0$ then $1+x^{2} \mid p(x) q(x)$ in $k[x]$: but $1+x^{2}$ is a prime of $k[x]$. Therefore $n+m=0$, and so $p(x) q(x)=1$ and $p(x), q(x) \in k^{*}$.

Let y, z be commuting indeterminates, and put
$Y=\left\{(1+y)_{n}^{n}, n=0,1,2, \ldots\right\}$. Let s be the localization $k[y, z]_{Y}$.

Define $f: R \rightarrow$ b by $\left\lvert\, \begin{aligned} & f\left(x^{2 n}\right)=y^{n} \\ & f\left(x^{2 n+1}\right)=y^{n} z\end{aligned}\right.$
and extend in the obvious way: thus if $r \in R$ we can write

$$
r=\left(1+x^{2}\right)^{n}\left(p\left(x^{2}\right)+q\left(x^{2}\right) \cdot x\right)
$$

and then $f(r)=(1+y)^{n}(p(y)+q(y) \cdot z)$.
Now the restriction of f to $k\left[x^{2}\right]_{X}$ is clearly an additive homomorphism, and we then have

$$
f(a x+b)=f(a) z+f(b) \quad\left(a, b \in k\left[x^{2}\right]_{X}\right)
$$

whence f itself is an additive homomorphism. Further, $f(1)=1$ and $f(\alpha r)=f(\alpha) f(r) \quad(\alpha \in U(R), r \in R)$, whence, since R and S are commutative, f is a U-homomorphism. Now put $a_{1}=x, a_{2}=-x, \quad \alpha=1+x^{2} \in U(R)$. Then $a_{1} a_{2}=1-\alpha$. By (2.6), if R is universal for $G E_{2}, f\left(a_{1} a_{2}\right)=f\left(a_{1}\right) f\left(a_{2}\right)$. But $f\left(a_{1} a_{2}\right)=f\left(-x^{2}\right)=-y$, and $f\left(a_{1}\right) f\left(a_{2}\right)=-z^{2}$.
Therefore R is not universal for $G E_{2}$. \quad o
Note that since R is a localization of $k[x]$, which is both a principal ideal domain and a GE-ring, R itself is a principal ideal domain and a GE-ring. Other examples of such rings have been found by P.M. Cohn in [2]:
Corollary (2.8). (P.M.Cohn) The ring R of integers in
Q ($\sqrt{-2}$) (Q=rationals) is not universal for GE_{2}.
N.B. A Eimilar result holds for the r ings of integers in $Q(\sqrt{-7})$ and $Q(\sqrt{-11})$.
Proof. $U(R)=\{ \pm 1\}$, so since the map $f: a+b \sqrt{-2} \mapsto a$ is additive, it is a U-homomorphism.
But if $a_{1}:=\sqrt{-2}=-a_{2}$, we have $a_{1} a_{2}=1-\alpha$, where $\alpha=-1$. Then $f\left(a_{1}\right)=0=f\left(a_{2}\right)$, but $f\left(a_{1} a_{2}\right)=2$ since $a_{1} a_{2}=2$, and so by (2.6), R is not universal for $G E_{2}$. Note that this R is a Euclidean ring.

Thus we see that a ring need not be pathological in order to fail to be universal for G_{2}. It is natural to ask: what other relations can be added to the relations (A) so as to give a complete set of defining relations for a wider class of rings? An answer sufficient to cover (2.8) is given in [2]: namely that the extra 'universal' relation
$\{E(a) E(b)\} \underset{r}{m}=-I \quad(a l l a, b \in R \mid a b=m=b a, m=2$ or 3) gives, with (A), a set of defining relations for $G E_{2}(R)$,
where R is the ring of integers in $Q(\sqrt{-}-d), d=2,7$ or 11 . (The same paper shews that when $d=1$ or 3 the corresponding R is universal for $G E_{2}$. The other values of d are covered in [1].) A second way of widening the class of rings is the subject of chapter 4, where, however, we are dealing with $G E_{n}(R)$. Chapter 3 is concerned with the formulation of the definition of 'universal for $G E_{n}$ '; in preparation for this we prove the following:
 has the following presentation:
Generators: $B_{i}(x),[\alpha, \beta] \quad(x \in R, \alpha, \beta \in U(R), 1 \leqslant i, j \leqslant 2, i \neq j)$ Relations:

```
1. \(B_{i j}(x) B_{i j}(y)=B_{i j}(x+y)\)
2. \(B_{i j}(\alpha-1) B_{j l}(1)=D_{i j}(\alpha) B_{j i}(\alpha) B_{i j}\left(1-\alpha^{-1}\right) \quad(\alpha \in U(R))\)
3. \(B_{i j}(x)=B_{j i}(-1) B_{i j}(1) B_{j i}(-x) B_{i j}(-1) B_{j i}(1) \quad(x \in R)\)
4. \(B_{i j}(x)\left[\alpha_{1}, \alpha_{2}\right]=\left[\alpha_{1}, \alpha_{2}\right] B_{i j}\left(\alpha_{i}^{-1} x \alpha_{j}\right)\left(x \in R, \alpha_{k} \in U(R)\right)\)
5. \(\left[\alpha_{1}, \alpha_{2}\right]\left[\beta_{1}, \beta_{2}\right]=\left[\alpha_{1} \beta_{1}, \alpha_{2} \beta_{2}\right] \quad\left(\alpha_{i}, \beta_{i} \in U(R)\right)\)
```

Proof. We have.

$$
\begin{equation*}
\mathrm{Z}(\mathrm{x})=\mathrm{B}_{1_{2}}(1-\mathrm{x}) \mathrm{B}_{21}(-1) \mathrm{B}_{12}(1) \tag{a}
\end{equation*}
$$

and then

$$
\begin{equation*}
\mathrm{B}_{12}(\mathrm{x})=\mathrm{E}(-\mathrm{x}) \mathrm{E}(0)^{-1} \tag{b}
\end{equation*}
$$

and
$B_{2_{1}}(x)=E(0)^{-1} E(x)$
Now suppose R is universal for $G E E_{2}$. We shew first that the above relations 1.-5. (which are true in any ring) imply the universal relations (A) (page 6), using the definitions (a), (b) and (c).

$$
\begin{aligned}
E(0)^{2} & =B_{12}(1) B_{21}(-1)\left\{B_{12}(2) B_{21}(-1)\right\} B_{12}(1) \text { by } 1 . \\
& =B_{12}(1) B_{21}(-1)\left\{-B_{21}(1) B_{12}(-2)\right\} B_{12}(1) \text { by } 2 \text { and } 1 . \\
& =-B_{12}(1) B_{12}(-2) B_{12}(1) \text { by } 1 .
\end{aligned}
$$

$\therefore \quad \mathrm{E}(0)^{2}=-\mathrm{I}$ by 1 .
Thus $E(x) E(0) E(y)=B_{12}(-x) E(0)^{2} \dot{B}_{12}(-y) E(0)$ by (b)

$$
=-B_{12}(-x-y) E(0) \text { by } 1
$$

$$
=-E(x+y) \text { by (b). }
$$

From 2. we get a similar relation
6. $B_{i j}(1-\alpha) B_{j i}(-1)=D_{i j}(\alpha) B_{j i}(-\alpha) B_{i j}\left(\alpha^{-1}-1\right)$
(write $[-1]_{i} B_{i}(1-\alpha) B_{j i}(-1)=B_{i}(\alpha-1) B_{j i}(1)[-1]_{i}($ by 4.) and use 2.)
Then $\mathrm{E}(\alpha)=\mathrm{B}_{12}(1-\alpha) \mathrm{B}_{21}(-1) \mathrm{B}_{12}(1)$

$$
=\mathrm{D}_{12}(\alpha) \mathrm{B}_{21}(-\alpha) \mathrm{B}_{12}\left(\alpha^{-1}\right) \text { by } 6 . \text { and } 1
$$

So $E(\alpha) E\left(\alpha^{-1}\right) E(\alpha)$
$=D_{12}(\alpha) B_{21}(-\alpha) B_{12}\left(\alpha^{-1}\right) D_{12}\left(\alpha^{-1}\right) B_{21}\left(-\alpha^{-1}\right) B_{12}(\alpha)$

- $D_{12}(\alpha) B_{21}(-\alpha) B_{12}\left(\alpha^{-1}\right)$
$=D_{12}(\alpha)\left\{B_{21}(-\alpha) B_{12}\left(\alpha^{-1}\right)\right\}^{3}$ by 4. and 5 .
Now $\left\{B_{21}(-1) B_{12}(1)\right\}^{3}$
$=\mathrm{B}_{21}(-1) \mathrm{B}_{12}(1) \mathrm{B}_{21}(-1) \mathrm{B}_{12}(-1) \mathrm{B}_{21}(1)$ - $\mathrm{B}_{21}(-1) \mathrm{B}_{12}(2) \mathrm{B}_{21}(-1) \mathrm{B}_{12}(1)$ by 1.
$=B_{12}(1) B_{21}(-1) D_{12}(-1) B_{21}(1) B_{12}(-2) B_{13}(1)$ by 3. and 6 .
$=-I$ by 1 . and 4 .
So $\left\{B_{21}(-\alpha) B_{12}\left(\alpha^{-1}\right)\right\}^{3}=[\alpha]_{1}\left\{B_{21}(-1) B_{12}(1)\right\}^{3}\left[\alpha^{-1}\right]_{1}$ by 4,5. $=[\alpha]_{1}(-I)\left[\alpha^{-1}\right]_{1}=-I$
$\therefore E(\alpha) E\left(\alpha^{-1}\right) E(\alpha)=-D_{12}^{\prime}(\alpha)$ is a consequence of 1.-5.
Then $B_{12}(\alpha) B_{21}\left(-\alpha^{-1}\right)\left\{B_{12}(\alpha-1) B_{21}(1)\right\} B_{12}(-1)$
$=D_{12}(\alpha) B_{12}\left(\alpha^{-1}\right) B_{21}(-\alpha) B_{2_{1}}(\alpha) B_{12}\left(-\alpha^{-1}\right)$ by 2,5 .
$=D_{12}(\alpha)$ by 1 .
Replace α by $\alpha^{-1} \beta$:
$\left\{\mathrm{B}_{12}\left(\alpha^{-1} \beta\right) \mathrm{B}_{21}\left(-\beta^{-1} \alpha\right) \mathrm{B}_{12}\left(\alpha^{-1} \beta\right)\right\}\left\{\mathrm{B}_{12}(-1) \mathrm{B}_{21}(1) \mathrm{B}_{12}(-1)\right\}$
$=D_{12}\left(\alpha^{-1} \beta\right)=[\alpha, \beta]^{-1}[\beta, \alpha]$ by 1,5.
$\therefore[\alpha, \beta]\left\{B_{12}\left(\alpha^{-1} \beta\right) B_{21}\left(-\beta^{-1} \alpha\right) B_{12}\left(\alpha^{-1} \beta\right)\right\}$
$=[\beta, \alpha] B_{12}(1) B_{21}(-1) B_{12}(1)$. by 1 .
or $\mathrm{B}_{12}(1) \mathrm{B}_{21}(-1) \mathrm{B}_{12}(1)\left[\alpha_{3} \beta\right] \equiv[\beta, \alpha] \mathrm{B}_{18}(1) \mathrm{B}_{\mathrm{g}}(=1) \mathrm{B}_{12}(1)$ by 4 .
i.e. $E(0)[\alpha, \beta]=[\beta, \alpha] E(0)$

So $E(x)[\alpha, \beta]=B_{12}(-x) E(0)[\alpha, \beta]$

$$
=B_{12}(-x)[\beta, \alpha] E(0)
$$

$$
=[\beta, \alpha]_{\mathrm{B}_{12}}\left(-\beta^{-1} \mathrm{x} \alpha\right) \mathrm{E}(0) \text { by } 4 .
$$

$$
=[\beta, \alpha] \mathbb{E}\left(\beta^{-1} \mathrm{x} \alpha\right)
$$

It remains to shew that the relations implicit in (a), (b) and (c) are consequences of 1.-5. These relations are:

$$
\begin{aligned}
& \mathrm{B}_{12}(\mathrm{x})=\mathrm{E}(-\mathrm{x}) \mathrm{E}(0)^{-1}= \mathrm{B}_{12}(1+\mathrm{x}) \mathrm{B}_{21}(-1) \mathrm{B}_{12}(1) \\
& \cdot\left\{\mathrm{B}_{12}(1) \mathrm{B}_{21}(-1) \mathrm{B}_{12}(1)\right\}^{-1} \\
& \mathrm{~B}_{21}(\mathrm{x})=\mathrm{E}(0)^{-1} \mathrm{E}(\mathrm{x})=\left\{\mathrm{B}_{12}(1) \mathrm{B}_{21}(-1) \mathrm{B}_{12}(1)\right\}^{-1} \\
& \cdot \mathrm{~B}_{12}(1-\mathrm{x}) \mathrm{B}_{21}(-1) \mathrm{B}_{12}(1)
\end{aligned}
$$

The first of these, by 1 , is equivalent to

$$
I=B_{12}(1) B_{21}(-1) B_{21}(1) B_{12}(-1)
$$

which is a consequence of 1 . The second is, by 1 ,

$$
\mathrm{B}_{21}(\mathrm{x})=\mathrm{B}_{12}(-1) \mathrm{B}_{21}(1) \mathrm{B}_{12}(-\mathrm{x}) \mathrm{B}_{21}(-1) \mathrm{B}_{12}(1)
$$

which is just 3. So we have a presentation.
Converse: suppose $\mathrm{GE}_{2}(\mathrm{R})$ has the presentation $\left\{B_{i}(x),[\alpha, \beta] \mid 1 .-5.\right\}$
We must shew R is universal for $G_{r a t}$. First we shew that the universal relations imply 1.-5. (using (a), (b) and (c)). From the universal relations, we have $E(0)^{2}=-I$: in fact, we can assume all the relations proved in [1], Theorem 2.2. So $B_{12}(x) B_{12}(y)=E(-x) E(0)^{-1} E(-y) E(0)^{-1}$

$$
\begin{aligned}
& =-E(-x) E(0) E(-y) E(0)^{-1} \\
& =E(-x-y) E(0)^{-1}=B_{12}(x+y)
\end{aligned}
$$

Similarly $B_{21}(x) B_{21}(y)=E(0)^{-1} E(x) E(0)^{-1} E(y)$

$$
=E(0)-1 E(x+y)=B_{21}(x+y)
$$

Then $B_{12}(\alpha-1) B_{21}(1) B_{12}\left(\alpha^{-1}-1\right) B_{21}(-\alpha)$
$=E(1-\alpha) E(0)^{-2} E(1) E\left(1-\alpha^{-1}\right) E(0)^{-2} E(-\alpha)$
$=E(-\alpha) E(0) E(1)^{3} E(0) E\left(-\alpha^{-1}\right) E(-\alpha)$
$=E(-\alpha) E\left(-\alpha^{-1}\right) E(-\alpha)$
$=-D_{12}(-\alpha)=D_{12}(\alpha)$: using 1, 2, follows (case ij=12).
Similarly $\mathrm{B}_{21}(\alpha-1) \mathrm{B}_{12}(1) \mathrm{B}_{21}\left(\alpha^{-1}-1\right) \mathrm{B}_{12}(-\alpha)$
$=E(0)^{-1} E(\alpha=1) E(=1) E(0)^{-2} E\left(\alpha^{-1}=1\right) E(\alpha) E(0)=1$
$=-E(0)^{-1} E(\alpha) E(0) E(-1)^{3} E(0) E\left(\alpha^{-1}\right) E(\alpha) E(0)^{-1}$
$=E(0)^{-1} E(\alpha) E\left(\alpha^{-1}\right) E(\alpha) E(0)^{-1}$
$=-E(0)^{-1} D_{12}(\alpha) E(0)^{-1}=D_{21}(\alpha)$. Use 1. as before.
Then $B_{12}(-1) B_{21}(1) B_{12}(-x) B_{21}(-1) B_{12}(1)$
$=E(1) E(0)^{-2} E(1) E(x) E(0)^{-2} E(-1)^{2} E(0)^{-1}$
$=E(1)^{2} E(x) E(-1)^{2} E(0)^{-1}$
$=E(1)^{2} E(x) E(-1)^{-1} E(0)^{-1}$
$=E(1)^{2} E(x+1) E(0)^{-2}$ by [1], Theorem 2.2, equation 2.7.
$=E(1)^{3} E(0) E(x)=E(0)^{-1} E(x)=B_{2_{1}}(x)$
And $B_{21}(-1) B_{12}(1) B_{21}(-x) B_{12}(-1) B_{21}(1)$
$=E(0)^{-1} E(-1)^{2} E(0)^{-2} E(-x) E(1) E(0)^{-2} E(1)$
$=E(0)^{-1} E(-1)^{2} E(-x) E(1)^{2}$
$=-E(0)^{-1} E(-1)^{2} E(-x) E(1)^{-1}$
$=-E(0)^{-1} E(-1)^{2} E(-x-1) E(0)^{-1}$ by [1], Thm 2.2, eqn 2.7.

$$
\begin{aligned}
& =E(0)^{-1} \mathrm{E}(-1)^{3} \mathrm{E}(0) \mathrm{E}(-x) \mathrm{E}(0)^{-1} \\
& =\mathrm{E}(-x) \mathrm{E}(0)^{-1}=\mathrm{B}_{12}(x)
\end{aligned}
$$

Then $B_{12}(x)[\alpha, \beta]=E(-x) E(0)^{-1}[\alpha, \beta]$

$$
=\mathrm{E}(-\mathrm{x})[\beta, \alpha] \mathrm{E}(0)^{-1}
$$

$$
=[\alpha, \beta] E\left(-\alpha^{-1} \times \beta\right) E(0)^{-1}
$$

$$
=[\alpha, \beta] \mathrm{B}_{12}\left(\alpha^{-1} \times \beta\right)
$$

and $\mathrm{B}_{21}(\mathrm{x})[\alpha, \beta]=\mathrm{E}(0)^{-1} \mathrm{E}(\mathrm{x})[\alpha, \beta]$

$$
=\mathrm{E}(0)^{-1}[\beta, \alpha] \mathrm{E}\left(\beta^{-1} \mathrm{x} \alpha\right)
$$

$$
=[\alpha, \beta] \mathrm{E}(0)^{-1} \mathrm{E}\left(\beta^{-1} \mathrm{x} \alpha\right)
$$

$$
=[\alpha, \beta] \mathrm{B}_{2_{1}}\left(\beta^{-1} \mathrm{X} \alpha\right)
$$

Finally we must check that the relation implicit in (a), (b) and (c) is a consequence of the universal relations. This relation:is:

$$
\begin{aligned}
E(x) & =B_{12}(1-x) B_{21}(-1) B_{12}(1) \\
& =E(x-1) E(0)^{-2} E(-1)^{2} E(0)^{-1}
\end{aligned}
$$

and this does indeed follow from the universal relations.

3. Universal rings.

In defining 'universal for $G E_{\eta}$ ', we could generalize the definition of 'universal for GE_{z} ' by taking $\mathrm{E}_{\mathrm{i}}(\mathrm{x})$ and $[\alpha]_{k}$ as generators, where
$E_{i} j(x)=B_{i j}(1-x) B_{j i}(-1) B_{i} j(1)$
but, this seems a little awkward; it is much easier to work directly with the elementary matrices $B_{i j}(x)$. Accordingly, we make the following definition:
A ring R is universal for $G E_{n}$ if $G E_{n}(R)$ has the presentation: Generators: $B_{i}(x),\left[\alpha_{1}, . . \alpha_{n}\right] \quad\left(x \in R, \alpha_{k} \in U(R), 1 \leqslant i, j, k \leqslant n, i \neq j\right)$ Relations:

1. $B_{i j}(x) B_{i j}(y)=B_{i j}(x+y)$
2. $B_{i j}(x) B_{k m}(y)=B_{k m}(y) B_{i j}(x) \quad(i \neq m, j \neq k)$
3. $B_{i j}(x) B_{j k}(y)=B_{j k}(y) B_{i j}(x) B_{i k}(x y) \quad$ ($\left.i \neq k\right)$
4. $B_{i j}(\alpha-1) B_{j i}(1)=D_{i j}(\alpha) B_{j i}(\alpha) B_{i j}\left(1-\alpha^{-1}\right)$
5. $B_{i j}(x)=B_{j i}(1) B_{i j}(-1) B_{j i}(-x) B_{i j}(1) B_{j i}(-1)$
6. $B_{i j}(x)\left[\alpha_{1}, \ldots \alpha_{n}\right]=\left[\alpha_{1}, \ldots \alpha_{n}\right] B_{i j}\left(\alpha_{i}^{-1} x \alpha_{j}\right)$
7. $\left[\alpha_{1}, \ldots \alpha_{n}\right]\left[\beta_{1}, . . \beta_{n}\right]=\left[\alpha_{1} \beta_{1}, . . \alpha_{n} \beta_{n}\right]$

All these relations hold in $G E_{n}(R)$, for any ring R. Note that 2. and 3. are vacuous for $n=2$, so by (2.9) the definition coincides with the previous one in this case. The definition is justified by (3.7) and (3.13).

We already know from [1; (4.1)] that every local ring is universal for $G E E_{2}$, but we give a direct proof here in terms of the above definition, in the belief that familiarity with the argument for this case will make the argument for general n easier to follow.
Lemma (3.1). (Normal form for $G L_{2}(R), R$ local.) Put $B_{1}=B_{21}$ (1)
and $B_{2}=I_{2}$. Then if $A \in G L_{2}(R)$ (R local) there is a
unique expression

$$
A=B_{r} B_{12}(x) B_{21}(y)[\alpha, \beta]_{12}
$$

where $x, y \in R, \alpha, \beta \in U(R), r=1$ or 2 , and $1+x \notin U(R)$ if $r=1$.
Proof. Let $A=\left(a_{i j}\right)$. One of a_{12}, a_{22} must be a unit. If $a_{2 a} \in U(R)$, put $r=2$. Otherwise put $r=1$. In either case

$$
\begin{align*}
A=B_{r}\left[\begin{array}{ll}
* & * \\
* & \beta
\end{array}\right] & =B_{r} B_{12}(x)\left(\begin{array}{cc}
\alpha & 0 \\
* & \beta
\end{array}\right) \tag{i}\\
& =B_{r} B_{12}(x) B_{21}(y)[\alpha, \beta]_{12} \tag{ii}
\end{align*}
$$

If $r=1$, the last column of A is $\left[\begin{array}{c}x \beta \\ (1+x) \beta\end{array}\right]$
which shews that
$1+x$ is a non-unit. Thus r, β and x are unique. From (i), α is unique. From (ii), y is unique. $\quad \square$

If R is any ring and $1+x y \in U(R)$, then $1+y x \in U(R)$;
indeed

$$
(1+y x)^{-1}=1-y(1+x y)^{-1} x
$$

Alternatively we may see this by noting that, for any $x, y \in R, B_{i}(x) B_{j l}(y)[1+y x]_{j}=[1+x y]_{i} B_{j l}(y) B_{l}(x)$.
This relation will assume great importance in chapter 4 , when we define 'quasi-universal' rings.
Lemma (3.2). If R is a local ring, the relation

$$
B_{i j}(x) B_{j i}(y)[1+y x]_{j}=[1+x y]_{i} B_{j i}(y) B_{i j}(x) \quad(1+x y \in U(R))
$$

is a consequence of the universal relations $1,4,6$ and 7 .
Proof. (1) Suppose $y \in U(R)$.
Then $B_{i j}(x) B_{j i}(y)[1+y x]_{j}$
$=[y]_{j} B_{i}(x y) B_{j i}(1)\left[y^{-1}\right]_{j}[1+y x]_{j}$ by 6,7.
$=[y]_{j} B_{i}((1+x y)-1) B_{j i}(1)\left[y^{-1}\right]_{j}[1+y x]_{j}$
$=[y]_{j} D_{i}(1+x y) B_{j i}(1+x y) B_{i j}\left(1-(1+x y)^{-1}\right)\left[y^{-1}\right]_{j}[1+y x]_{j}$ by 4.
$=[y]_{j}[1+x y]_{i} B_{j i}(1) B_{l}(x y)[1+x y]_{j}^{-1}[y-1]_{j}[1+y x]_{j}$ by 6, 7.
$=[y]_{j}[1+x y]_{i} B_{j i}(1) B_{i}(x y)\left[y^{-1}\right]_{j}$ by 7 .
$=[1+x y]_{i} B_{j i}(y) B_{i j}(x)$ by 6, 7 .
(ii) Suppose $x \in U(R)$. By (i), $B_{j i}(y) B_{i j}(x)[1+x y]_{i}=[1+y x]_{j} B_{i j}(x) B_{j i}(y)$
is a consequence of $1,4,6$ and 7 .
$\therefore \quad B_{i j}(x) B_{j i}(y)[1+y x]_{j}$
$=[1+y x]_{j}^{-\frac{1}{2}} B_{j i}(y) B_{i} j(x)[1+x y]_{i}[1+y x]_{j}$
$=[1+x y]_{i} B_{j i}\left((1+y x)^{-1} y(1+x y)\right) B_{i j}\left((1+x y)^{-1} x(1+y x)\right)$ by 6, 7.
$=[1+x y]_{i} B_{j i}(y) B_{i j}(x)$
(iii) Suppose x, y are both non-units.
$B_{i j}(x) B_{j i}(y)[1+y x]_{j}$
$=B_{i}(x) B_{j i}(1)[1+x]_{j}[1+x]_{j}^{-1} B_{j i}(y-1)[1+y x]_{j}$ by 1, 7.
$=[1+x]_{i} B_{j i}(1) B_{i j}(x)[1+x]_{j}^{-1} B_{j i}(y-1)[1+y x]_{j}$ by (i).
$=[1+x]_{i}[1+x]_{j}^{-1} B_{j i}(1+x) B_{i j}\left(x(1+x)^{-1}\right) B_{j i}(y-1)$
$\cdot\left[1+(y-1) x(1+x)^{-1}\right]_{j}\left[1+(y-1) x(1+x)^{-1}\right]_{j}^{-1}[1+y x]_{j} \quad$ by 6,7.
$=[1+x]_{i}[1+x]_{j}^{-1} B_{j i}(1+x)\left[1+x(1+x)^{-1}(y-1)\right]_{i} B_{j i}(y-1)$

- $B_{i} j\left(x(1+x)^{-1}\right)\left[1+(y-1) x(1+x)^{-1}\right]_{j}^{-1}[1+y x]_{j} \quad$ by (i).
$=[1+x y]_{i}[1+x]_{j}^{-\frac{1}{2}} B_{j i}(1+x y) B_{j i}(y-1) B_{i} j\left(x(1+x)^{-\frac{1}{2}}\right)$
$\cdot\left[1+(y-1) x(1+x)^{-1}\right]^{-1}[1+y x]_{j} \quad$ by $6,7$.

$$
\begin{aligned}
& \left.=[1+x y]_{i}[1+x]\right]^{-1} B_{j i}((1+x) y) B_{i}\left(x(1+x)^{-1}\right) \\
& =[1+x y]_{i} B_{j i}(y) B_{i}(x)\left[(1+x)^{-1}\left\{1+(y-1) x(1+x)^{-1}\right\}-1(1+y x)\right]_{j} \\
& =[1+x y]_{i} B_{j i}(y) B_{i j}(x) \text { by } 7 \cdot \text { by } 6,7 .
\end{aligned}
$$

We are now in a position to prove that a local ring is universal for GE_{2}. The proof here is longer than that in [1], though the alfferance is less great than would appear at first sight, since [1;(4.1)] uses results from [1; section 2]. The point is that this proof (3.3) provides a relatively simple illustration of the method that will be used to prove that a local ring is universal for GE_{n}. Proposition (3.3). (P.M.Cohn) Every local ring is universal for $G E_{2}$.
Proof. Let $A=B_{r} B_{12}(x) B_{21}(y)[\alpha, \beta]_{12}$ be in normal form.
Then $A\left[\alpha^{\prime}, \beta^{\prime}\right]=B_{r} B_{12}(x) B_{21}(y)\left[\alpha \alpha^{\prime}, \beta \beta^{\prime}\right]$ by 7 .
and $A B_{21}\left(y^{\prime}\right)=B_{r} B_{12}(x) B_{21}\left(y+\beta y^{\prime} \alpha^{-1}\right)[\alpha, \beta]$ by 1, 6 .
So it remains to shew that $A \cdot B_{12}(w)$ can be put in normal form using only 1.-7.

$$
A \cdot B_{12}(w)=B_{r} B_{12}(x) B_{21}(y) B_{12}\left(\alpha w \beta^{-1}\right)[\alpha, \beta] \text { by } 6
$$

so it is sufficient to prove that
$A_{0}=B_{r} B_{12}(x) B_{21}(y) B_{12}(z)$ can be put in normal form.
(i) $z \notin U(R)$. From (3.2)
$B_{B_{1}}(y) B_{1 月}(z)[1+z y]_{1}=[1+y z]_{1} B_{12}(z) B_{B_{1}}(y)$
so $B_{21}(y) B_{12}(z)=B_{12}\left(z(1+y z)^{-1}\right) B_{21}((1+y z) y)\left[(1+z y)^{-1}, 1+y z\right]$
by 6,7 .
$A_{0}=B_{r} B_{12}\left(x+z(1+y z)^{-1}\right) B_{z_{1}}((1+y z) y)\left[(1+z y)^{-1}, 1+y z\right]$ by 1.
This is now in normal form, for $1+x \in U(R) \Longleftrightarrow$
$1+x+z(1+y z)^{-1} \in U(R)$.
(ii) $z \in U(R)$. First suppose $r=2$.

Then $A_{0}=B_{12}(x) B_{21}(y) B_{12}(z)$
If $1+y z \in U(R)$, by (3.2) and 7. we have

$$
\begin{aligned}
A_{0} & =B_{12}(x)[1+y z]_{2} B_{12}(z) B_{21}(y)[1+z y]_{1}^{-1} \\
& =B_{12}\left(x+z(1+y z)^{-1}\right) B_{21}((1+y z) y)\left[(1+z y)^{-1}, 1+y z\right] \text { by } 6,7 .
\end{aligned}
$$

and this is in normal form.
If $1+y z \notin U(R)$, then $y \in U(R)$, and

$$
\begin{aligned}
& A_{0}=[y]_{2} B_{12}(x y) B_{21}(1) B_{12}(z y)[y]_{2}^{-1} \\
& \because=[y]_{2} B_{21}(1) B_{12}(-1) \cdot B_{12}(1) B_{21}(-1) B_{12}(x y) B_{21}(1) B_{12}(-1) \\
& \cdot B_{12}(1+z y)[y]_{2}^{-1} \text { by } 1 .
\end{aligned}
$$

$$
\begin{aligned}
& =[y]_{2} B_{21}(1) B_{12}(-1) B_{21}(-x y) B_{12}(1+z y)[y]^{-1} \text { by } 5 . \\
& =B_{21}(y) B_{12}\left(-y^{-1}\right)[y]_{2} B_{21}(-x y) B_{12}(1+z y)[y]_{2}^{-1} \text { by } 6 \text {. } \\
& =B_{21}(1) B_{21}(y-1) B_{12}\left(-y^{-1}\right)\left[1+\left(-y^{-1}\right)(y-1)\right]_{1}[y, y] \\
& \cdot B_{21}(-x y) B_{12}(1+z y)[y]_{2}^{-1} \text { by } 1,7 . \\
& =B_{21}(1)\left[y^{-1}\right]_{2} B_{12}\left(-y^{-1}\right) B_{21}(y-1)[y, y] \\
& \text { - } B_{R_{1}}(-x y) B_{1 g}(1+z y)[y]^{-1} \text { by (3.2) } \\
& =B_{21}(1)\left[y^{-1}\right]_{2} B_{12}\left(-y^{-1}\right) B_{21}(y-1-y x) B_{12}\left(y(1+z y) y^{-1}\right)[y]_{1} \\
& =B_{21}(1)\left[y^{-1}\right]_{2} B_{12}(-y-1) B_{21}(y-1-y x) B_{12}(1+y z)[y]_{1} \\
& =B_{21}(1)\left[y^{-1}\right]_{2} B_{12}\left(-y^{-1}\right)[1+(y-1-y x)(1+y z)]_{2} B_{12}(1+y z) \\
& \text { - } \mathrm{B}_{21}(\mathrm{y}-1-\mathrm{yx})[1+(1+y z)(y+1-y x)]_{1}^{-1}[y]_{1} \\
& \text { by (3.2) and } 7 . \\
& =B_{1} \cdot B_{12}\left(-1+(1+y z) y^{-1}(1+(y-1-y x))\right) \\
& \text { - } B_{21}\left((1+(y-1-y x)(1+y z))^{-1} y(y-1-y x)\right) \\
& \cdot\left[(1+(1+y z)(y-1-y x))^{-1} y, y^{-1}(1+(y-1-y x)(1+y z)]\right. \\
& \text { by } 1,6,7 \text {. }
\end{aligned}
$$

and this is in normal form, since

$$
1+\left(-1+(1+y z) y^{-1}(1+(y-1-y x)(1+y z))\right)
$$

is a multiple of $1+y z$, and so is a non-unit.
Now suppose $r=1$. Thus $A_{0}=B_{21}(1) B_{12}(x) B_{21}(y) B_{12}(z)$, With $2 \xi U(R)$ and $1+X \& U(R)$ (and $s Q \quad X \in U(R)$):

$$
\begin{aligned}
& A_{0}=B_{21}(1) B_{12}(-1) B_{12}(1+x) B_{21}(y) B_{12}(z) \text { by } 1 . \\
&=B_{21}(1) B_{12}(-1) B_{21}\left(y^{\prime}\right) B_{12}\left(z^{\prime}\right)[\alpha, \beta] \text { by }(3.2), 1,6,7, \\
&\left.=B_{12}\left(-y^{\prime}\right) B_{21}(1) B_{12}\left(z^{\prime}-1\right)[\alpha, \beta] \text { buitable } y^{\prime}, z^{\prime}, \alpha, \beta\right) \\
&
\end{aligned}
$$

and so now we can use the argument as for $r=2$, for $A_{00}=B_{12}\left(-y^{\prime}\right) B_{21}(1)$ is in normal form with $r=2$. \quad. There is a natural embedding of $G L_{n-1}(R)$ in $G L_{n}(R)$ by the map

$$
\tau: A^{\prime} \stackrel{ }{ } \rightarrow\left[\begin{array}{cccc}
& & & \\
& A^{\prime} & & \vdots \\
& & & 0 \\
0 & 0 & \ldots & 0 \\
1
\end{array}\right] \quad\left(A^{\prime} \in G L_{n-1}(R)\right)
$$

With this in mind, if $A \in G I_{n}(R)$, the statement $A \in G I_{n-1}(R)$ will be used to mean $\exists A^{\prime} \in G L_{n-1}(R)$ such that

$$
A=\tau A^{\prime}
$$

Lemma (3.4). (Normal form for $G L_{n}(R)$, R local.) Put $B_{n}=I_{n}$ and $B_{r}=B_{n r}(1), 1 \leqslant r<n$. Then if $A \in G L_{n}(R)$ (R local) there is a unique expression
$A=B_{r} B_{1 n}\left(x_{1}\right) \ldots B_{n-1 n}\left(x_{n-1}\right) B_{n 1}\left(y_{1}\right) \ldots B_{n-1}\left(y_{n-1}\right)[\alpha]_{n} A_{1}$
where $\alpha \in U(R), A_{1} \in G L_{n-1}(R)$, and if $r<n, x_{r}+1$ and $x_{s}, r<s<n$, are non-units. So by induction we have a normal form for A, expressed as a product of $\Sigma_{1}^{n}(2 m-1)=n^{2}$ matrices (the last one diagonal, the others of type $\left.B_{i}(x)\right)$.
[N.B. It is well known that a field, and even a local ring, is a GE-ring, and so some such expression for A exists. It
is the particular form of the expression and its uniqueness which are new here.]
Proof. Every matrix in $G L_{n}(R)$ has a unit in every row and column (note that this property actually characterizes local rings). So we can choose r maximal such that $B_{r}^{-1} A$ has a unit α in the n, n position. Then $\exists x_{i} \quad(i=1 \ldots . . n-1) \in R$ such that
$A=B_{r} B_{1 n}\left(x_{1}\right) \ldots B_{n-1 n}\left(x_{n=1}\right) \cdot\left(\begin{array}{cc} & 0 \\ C & \vdots \\ a_{1} \ldots, a_{n-1} & \alpha\end{array}\right)$
where $G \in G L_{n=1}(R)$, $Q_{l} \in R_{1}$.
Put $\left(y_{1} \ldots . y_{n-1}\right)=\left(a_{1} \ldots . a_{n-1}\right) C^{-1}$ and we have the required form, with $A_{1}=\tau$ C.
If $r<n$, the last column of A is

$$
\left(\begin{array}{l}
x_{1} \alpha \\
\vdots \\
x_{n-1} \alpha \\
\left(1+x_{r}\right) \alpha
\end{array}\right)
$$

By choice of $r, 1+x_{r}$ and $x_{s}(r<s<n)$ are non-units. .
This also shews that $r, x_{i}(1 \leqslant i<n)$ and α are unique. The uniqueness of A_{1} and $y_{1} \ldots . y_{n-1}$ follows. a
Lemma (3.5). For any ring R, the following relations in $G E_{n}(R)$ are consequences of the universal relations:

$$
\text { 8. } \left\lvert\, \begin{gathered}
B_{i j}(x) B_{j k}(y)=B_{j k}(y) B_{i j}(x) B_{i k}(x y) \\
=B_{j k}(y) B_{i k}(x y) B_{i j}(x)=B_{i k}(x y) B_{j k}(y) B_{i j}(x) \\
B_{j k}(y) B_{i j}(x)=B_{i j}(x) B_{j k}(y) B_{i k}(-x y) \\
=B_{i j}(x) B_{i k}(-x y) B_{j k}(y)=B_{i k}(-x y) B_{i j}(x) B_{j k}(y)
\end{gathered}\right.
$$

9. $B_{i}(1-\alpha) B_{j i}(-1)=D_{i j}(\alpha) B_{j i}(-\alpha) B_{i j}\left(\alpha^{-1}-1\right)$
10. $\left\{B_{i} j(\alpha) B_{j i}\left(-\alpha^{-1}\right)\right\}^{3}=D_{i j}(-1)$
11. $\left\{B_{i} j(1) B_{i k}(1) B_{j i}(-1) B_{k i}(-1)\right\}^{2}=D_{i j}(-1) B_{j k}(1) B_{k j}(-1) B_{j k}(1)$
12. $\left[\alpha_{1}, \ldots \alpha_{n}\right] B_{i j}(x)=B_{i}\left(\alpha_{i} x \alpha_{j}^{-1}\right)\left[\alpha_{1}, . . \alpha_{n}\right]$

Proof. 8. consists of various ways of writing 3, all
equivalent, by 1 and 2. 12 is just another way of writing 6.
Then $[-1]_{i} B_{i}(1-\alpha) B_{j}(-1)=B_{i j}(\alpha-1) B_{j i}(1)[-1]_{i}$ by 6
$=D_{i j}(\alpha) B_{j i}(\alpha) B_{i j}\left(1-\alpha^{-1}\right)[-1]_{i}$ by 4
$=[-1]_{i} D_{i j}(\alpha) B_{j i}(-\alpha) B_{i j}\left(\alpha^{-1}-1\right) \quad \begin{aligned} & \text { by } \\ & 6,7\end{aligned}$
whence 9 follows.
We next prove 10 with $\alpha=1$:
$\left\{B_{i}{ }_{j}(1) B_{j l}(-1)\right\}^{3}$
$=\left\{B_{i} j(1) B_{j i}(-1) B_{i}(1) B_{j i}(1) B_{i j}(-1)\right\}\left\{B_{i}(1) B_{j i}(-2)\right.$

- $\left.B_{i, j}(1) B_{j i}(-1)\right\}$ by 1
$=B_{j i}(-1) B_{i j}(1) D_{j i}(-1) B_{i}(-1) B_{j i}(2) B_{j i}(-1)$ by 4,5
$=B_{j i}(-1) B_{i}(1) B_{i j}(-1) B_{j}(1) D_{i j}(-1)$ by 1,6
$=D_{i j}(-1)$ by 1
$\operatorname{Then}\left\{B_{i}(\alpha) B_{j i}\left(-\alpha^{-1}\right)\right\}^{3}=[\alpha]_{i}\left\{B_{i} j(1) B_{j i}(-1)\right\}^{3}\left[\alpha^{-1}\right]_{i}$ by 6,7

$$
\begin{aligned}
& =[\alpha]_{i} D_{i j}(-1)\left[\alpha^{-1}\right]_{i} \text { by the above } \\
& =D_{i j}(-1) \text { by } 7 .
\end{aligned}
$$

11: $\left\{B_{l j}(1) B_{i k}(1) B_{j l}(-1) B_{k l}(-1)\right\}^{2}$
$=B_{i k}(1) B_{i j}(1) B_{j i}(-1) B_{i j}(1) B_{k i}(-1) B_{k j}(-1) B_{i k}(1) B_{j i}(-1) B_{k i}(-1)$
$=B_{i k}(1)\left\{B_{i} j(1) B_{j i}(-1)\right\}^{2} B_{j i}(1) B_{k i}(-1) B_{k j}(-1) B_{i k}(1)$

- $B_{j i}(-1) B_{k i}(-1)$ by 1
$=B_{i k}(1)\left\{B_{i}(1) B_{j i}(-1)\right\}^{2} B_{k i}(-1) B_{k j}(-1) B_{k i}(1) B_{i k}(1)$
- $B_{j k}(1) B_{k i}(-1)$ by $1,2,3$
$=B_{i k}(1)\left\{B_{i j}(1) B_{j i}(-1)\right\}^{2} B_{k j}(-1) B_{i k}(1) B_{j k}(1) B_{k i}(-1)$ by 1,2
$=B_{i k}(1)\left\{B_{i j}(1) B_{j i}(-1)\right\}^{2} B_{i k}(1) B_{i j}(1) B_{k j}(-1)$ - $B_{j k}(1) B_{k i}(-1)$ by 2,3
$=B_{i k}(1)\left\{B_{i j}(1) B_{j i}(-1)\right\}{ }^{3} B_{j i}(1) B_{i k}(1) B_{k j}(-1)$

$$
\text { - } B_{j k}(1) B_{k i}(-1) \text { by } 1,2
$$

$=B_{i k}(1) D_{i j}(-1) B_{i k}(1) B_{j k}(1) B_{j i}(1) B_{k j}(-1) B_{j k}(1) B_{k i}(-1)$ by 3,10
$\left.\left.=D_{i j}(-1) B_{j k}(1) B_{k j}(-1) B_{j l}\right\}_{1}\right) B_{k i}(1) B_{j k}(1) B_{k i}(-1)$ by $1,2,3,6$

$$
\begin{aligned}
& =D_{i j}(-1) B_{j k}(1) B_{k j}(-1) B_{j i}(1) B_{j i}(-1) B_{j k}(1) \text { by } 1,2,3 \\
& =D_{i j}(-1) B_{j k}(1) B_{k j}(-1) B_{j k}(1) \text { by 1. a }
\end{aligned}
$$

We introduce the following notation: if $A, B \in G E_{n}(R)$ are expressions in the generators $B_{i} j(x),[\alpha]_{k}$, then $A \vec{n} B$ will mean $\exists C$ in $G E_{n-1}(R)$, i.e. an expression in $B_{i}(x)$, $[\alpha]_{k}$ with $i, j, k<n$, such that $A=B C$, and furthermore that this relation is a consequence of the universal relations. Clearly \vec{n} is an equivalence relation; the arrow symbol is chosen as its use will be in a stepwise reduction to normal form. Normally we shall write \rightarrow for \vec{n} where the value of n is clear from the context.
Lemma (3.6). Let R be a local ring. The following hold, the R.H.S. being in normal form in each case:
(i) $\prod_{i<n} B_{n i}\left(y_{i}\right) \prod_{i<n} B_{i n}\left(w_{i}\right) \rightarrow \prod_{i<n} B_{i n}\left(w_{i} \alpha^{-1}\right) \prod_{i<n} B_{n i}\left(\alpha y_{i}\right)[\alpha]_{n}$ where $1+\Sigma y_{i} w_{i}=\alpha \in U(R)$.
(ii) $\prod_{i<n} B_{i n}\left(x_{i}\right) \prod_{i<n} B_{n i}\left(y_{i}\right) \prod_{i<n} B_{i n}\left(w_{i}\right)$

$$
\rightarrow \prod_{i<n} B_{i n}\left(x_{i}+w_{i} \alpha^{-1}\right) \prod_{i<n} B_{n i}\left(\alpha y_{i}\right)[\alpha]_{n}
$$

where $1+\Sigma y_{l} w_{l}=\alpha \in U(R)$
(iii) $\prod_{i<n} B_{n i}\left(y_{i}\right) \prod_{i<n} B_{i n}\left(w_{i}\right)$

$$
\rightarrow B_{s} \prod_{i<n} B_{i n}\left(w_{i} \beta^{-1}\right) \prod_{\substack{i<n \\ i \neq s}} B_{n l}\left(\beta y_{i}\right) \cdot B_{n s}\left(\beta\left(y_{s}-1\right)\right)[\beta]_{n}
$$

where $1+\sum y_{i} w_{i}=z \notin U(R)$ and s is maximal such that

$$
z-w_{s}=\beta \in U(R)
$$

(iv) $\prod_{i<n} B_{i n}\left(x_{i}\right) \prod_{i<n} B_{n i}(y) \prod_{i<n} B_{i n}\left(w_{i}\right)$
$\rightarrow B_{s} \prod_{i<n} B_{i n}\left(\left(x_{i} z+w_{i}\right) \alpha^{-1}\right) \prod_{\substack{i<n \\ i \neq s}} B_{n i}\left(\alpha y_{i}\right) \cdot B_{n s}\left(\alpha\left(y_{s}-z^{\prime}\right)\right)[\alpha]_{n}$
with conditions as in (iii), and also $\alpha=\beta-x_{s} z$ and $z^{\prime}=1+\Sigma y_{i} x_{i}$
(v) If $B_{s} \prod_{i<n} B_{i n}\left(x_{i}\right) \prod_{i<n} B_{n i}\left(y_{i}\right)$ is in normal form, then $B_{r} \cdot B_{s} \prod_{i<n} B_{l n}\left(x_{i}\right)_{i<n} B_{n i}\left(y_{i}\right) \rightarrow A$ where $A \in G E_{n}(R)$ is expressed in normal form.
[N.B. By relation 2. the order of the terms in the products $\prod_{i<n} B_{n i}(*), \prod_{i<n} B_{i n}(*)$ is immaterial.]
Proof. (i) This holds for $n \neq 2$, by (3.2). Now consider the case $n=3$. Suppose $1+y_{1} w_{1}=\beta \in U(R)$.
$B_{31}\left(y_{1}\right) B_{32}\left(y_{2}\right) B_{13}\left(w_{1}\right) B_{23}\left(w_{2}\right)$
$=B_{32}\left(y_{2}\right) B_{23}\left(w_{2} \beta^{-1}\right) B_{31}\left(y_{1}\right) B_{21}\left(-w_{2} \beta^{-1} y_{1}\right) B_{13}\left(w_{1}\right) B_{23}\left(w_{2}\left(1-\beta^{-1}\right)\right)$
$=B_{32}\left(y_{2}\right) B_{23}\left(w_{2} \beta^{r 1}\right) B_{31}\left(y_{1}\right) B_{13}\left(w_{1}\right) B_{23}\left(w_{2}\left(1-\beta^{-1}-\beta^{T 1} y_{1} w_{1}\right)\right)$
$\cdot B_{21}\left(-w_{2} \beta^{-1} y_{1}\right)$ by $1,2,3$
$\overrightarrow{\mathrm{s}} \dot{\mathrm{B}_{32}}\left(\mathrm{y}_{2}\right) \mathrm{B}_{23}\left(w_{2} \beta^{-1}\right) \mathrm{B}_{31}\left(y_{1}\right) \mathrm{B}_{13}\left(w_{1}\right)$ by 1
$\rightarrow \mathrm{B}_{33}\left(\mathrm{y}_{2}\right) \mathrm{B}_{23}\left(\mathrm{w}_{2} \beta^{-1}\right) \mathrm{B}_{13}\left(\mathrm{w}_{1} \beta^{-1}\right) \mathrm{B}_{31}\left(\beta \mathrm{y}_{1}\right)[\beta]_{3}$ by (3.2); 6
$\rightarrow B_{23}\left(w_{2} \alpha^{-1}\right) B_{32}\left(\alpha \beta^{-1} y_{2}\right) B_{13}\left(w_{1} \alpha^{-1}\right) B_{31}\left(\alpha y_{1}\right)[\alpha]_{3}$ by (3.2),6,7
$\rightarrow B_{13}\left(w_{1} \alpha^{-1}\right) B_{23}\left(w_{2} \alpha^{-1}\right) B_{32}\left(\alpha \beta^{-1} y_{2}\right) B_{12}\left({ }^{-} w_{1} \beta^{-1} y_{2}\right) B_{31}\left(\alpha y_{1}\right)[\alpha]_{3}$
$\rightarrow B_{13}\left(w_{1} \alpha^{-1}\right) \dot{B}_{2}\left(w_{2} \alpha^{-1}\right) B_{31}\left(\alpha y_{1}\right) B_{32}\left(\alpha \beta^{-1} y_{2}+\alpha y_{1} w_{\text {by }} \beta_{1,2}^{-1} y_{2}\right)[\alpha]_{3}$
$=B_{13}\left(w_{1} \alpha^{-1}\right) B_{23}\left(w_{2} \alpha^{-1}\right) B_{31}\left(\alpha y_{1}\right) B_{32}\left(\alpha y_{2^{\prime}}\right)[\alpha]_{3}$
If $1+y_{2} w_{2} \in U(R)$, a similar calculation gives the result.
In the remaining case, $1+y_{1} w_{1}$ and $1+y_{2} w_{2}$ are both non-units, so $\mathrm{y}_{1}, \mathrm{y}_{2}, \mathrm{w}_{1}, \mathrm{w}_{2}$ are all units.
Then $B_{31}\left(y_{1}\right) B_{32}\left(y_{\dot{2}}\right) B_{13}\left(w_{1}\right) B_{23}\left(w_{2}\right)$
$=\left[y_{1}^{-1}, y_{2}^{-1}\right]_{12} B_{31}(1) B_{32}(1) B_{13}(-1) B_{23}(-1) \cdot M_{0}$ by $1,2,6,7$ where $M_{0}=B_{13}\left(1+y_{1} w_{1}\right) B_{23}\left(1+y_{2} w_{2}\right)\left[y_{1}, y_{2}\right]_{12}$ Now. use- 11. We have $B_{31}\left(y_{1}\right) B_{32}\left(y_{2}\right) B_{13}\left(w_{1}\right) B_{23}\left(w_{2}\right)$

$$
\begin{aligned}
& \overrightarrow{3}\left[y_{1}^{-1}, y_{2}^{-1}\right]_{12} B_{13}(1) B_{23}(1) B_{31}(-1) B_{32}(-1) \cdot M \\
& \text { where } M=D_{13}(-1) B_{12}(1) B_{21}(-1) B_{12}(1) \cdot M_{0} \\
& \rightarrow B_{13}\left(1+y_{1} w_{1}\right) D_{13}(-1) B_{12}(1) B_{21}(-1) B_{23}\left(-1-y_{1} w_{1}\right) B_{12}(1) \\
& \text { - } \mathrm{B}_{23}\left(1+\mathrm{y}_{2} \mathrm{w}_{2}\right) \text { by } 2,3,6 \\
& \rightarrow B_{13}\left(1+y_{1} w_{1}\right) D_{13}(-1) B_{12}(1) B_{21}(-1) B_{23}\left(y_{2} w_{2}-y_{1} w_{1}\right) \\
& \text { - } B_{13}\left(1+y_{2} w_{2}\right) \text { by } 1,2,3 \\
& \rightarrow B_{13}\left(1+y_{1} w_{1}\right) B_{23}\left(y_{1} w_{1}-y_{2} w_{2}\right) D_{13}(-1) B_{12}(1) \\
& \text { - } B_{13}\left(y_{2} w_{2}-y_{1} w_{1}\right) B_{21}(-1) B_{13}\left(1+y_{2} w_{2}\right) \text { by } 2,3,6 \\
& \rightarrow B_{13}\left(1+y_{2} w_{2}\right) B_{23}\left(y_{1} w_{1}-y_{2} w_{2}\right) D_{13}(-1) B_{13}\left(1+y_{2} w_{2}\right) \\
& \text { - } B_{12}(1) B_{23}\left(-1-y_{2} w_{2}\right) \text { by } 1,2,3,6 \\
& \rightarrow B_{13}\left(1+y_{2} w_{2}\right) B_{23}\left(y_{1} w_{1}-y_{2} w_{2}\right) D_{13}(-1) B_{13}\left(1+y_{2} w_{2}\right) \\
& \text { - } \mathrm{B}_{23}\left(-1-\mathrm{y}_{2} \mathrm{w}_{3}\right) \mathrm{B}_{13}\left(-1-\mathrm{y}_{2} \mathrm{w}_{2}\right) \text { by } 2,3
\end{aligned}
$$

$$
\rightarrow B_{13}\left(1+y_{2} w_{2}\right) B_{23}\left(1+y_{1} w_{1}\right)[-1]_{3} \quad \text { by } 1,2,6,7
$$

So $B_{31}\left(y_{1}\right) B_{32}\left(y_{2}\right) B_{13}\left(w_{1}\right) B_{23}\left(w_{2}\right)$

$$
\rightarrow\left[y_{1}^{-1}, y_{2}^{-1}\right]_{13} B_{13}(1) B_{23}(1)\left\{B_{31}(-1) B_{32}(-1)\right.
$$

$$
\left.\cdot \cdot_{13}\left(1+y_{2} w_{2}\right) B_{23}\left(1+y_{1} w_{1}\right)\right\}[-1]_{3}
$$

$$
\rightarrow\left[y_{1}^{-1}, y_{2}^{-1}\right]_{12} B_{13}(1) B_{23}(1)\left\{B_{13}\left(\left(1+y_{2} w_{2}\right)\left(-\alpha^{-1}\right)\right)\right.
$$

$$
\left.\cdot B_{23}\left(\left(1+y_{1} w_{1}\right)\left(-\alpha^{-1}\right)\right) B_{31}(\alpha) B_{32}(\alpha)\right\}[\alpha]_{3}
$$

by previous case
$\rightarrow\left[y_{1}^{-1}, y_{2}^{-1}\right]_{12} B_{13}\left(y_{1} w_{1} \alpha^{-1}\right) B_{23}\left(y_{2} w_{2} \alpha^{-1}\right) \dot{B}_{31}(\alpha) B_{32}(\alpha)[\alpha]_{3}$ by 1,2
$\rightarrow B_{13}\left(w_{1} \alpha^{-1}\right) B_{23}\left(w_{2} \alpha^{-1}\right) B_{31}\left(\alpha y_{1}\right) B_{32}\left(\alpha y_{2}\right)[\alpha]_{3}$ by 6,7
So (i) holds for $n=2,3$. We now use induction.
We have

$$
\alpha=1+\sum_{1}^{B-1} y_{i} w_{i} \in U(R)
$$

Suppose first that $1+\sum_{2}^{n-1} y_{i} w_{i}=\beta \in U(R)$.
Write Σ_{k} for ${ }_{k}^{n-1}{ }_{k}^{-1} . \quad$ Then $\alpha=1+\Sigma_{1} y_{i} w_{i}, \quad \beta=1+\Sigma_{z} y_{i} w_{i}$.
Similarly, write Π_{k} for ${ }_{\frac{n}{\Pi_{1}^{1}}}^{\alpha}$.
Then $\Pi_{1} B_{n i}\left(y_{i}\right) \Pi_{1} B_{i n}\left(w_{i}\right)$

$$
=B_{n 1}\left(y_{1}\right) B_{1 n}\left(w_{1} \beta^{-1}\right) \Pi_{2}\left\{B_{n i}\left(y_{i}\right) B_{1 i}\left(-w_{1} \beta^{-1} y_{i}\right)\right\}
$$

$$
\text { - } \Pi_{2} B_{i n}\left(w_{i}\right) B_{1 n}\left(w_{1}\left(1-\beta^{-1}\right)\right) \text { by } 1,2,3
$$

$\vec{n} B_{n 1}\left(y_{1}\right) B_{1 n}\left(w_{1} \beta^{-1}\right) \Pi_{2} B_{n i}\left(y_{i}\right) \Pi_{2} B_{i n}\left(w_{i}\right)$

$$
\text { - } B_{1 n}\left(w_{1}\left(1-\beta^{-1}-\beta^{-1} \Sigma_{2} y_{i} w_{i}\right)\right) \text { by } 1,2,3
$$

$\rightarrow B_{n 1}\left(y_{1}\right) B_{1 n}\left(w_{1} \beta^{-1}\right) \Pi_{2} B_{n i}\left(y_{i}\right) \Pi_{2} B_{i n}\left(w_{i}\right)$ by 1
$\rightarrow B_{n 1}\left(y_{1}\right) B_{1 n}\left(w_{1} \beta^{-1}\right) \Pi_{2} B_{i n}\left(w_{i} \beta^{-1}\right) \Pi_{2} B_{n i}\left(\beta y_{l}\right)[\beta]_{n}$ by induction
$\rightarrow B_{1 n}\left(w_{1} \alpha^{-1}\right) B_{n 1}\left(\alpha^{\prime} \beta^{-1} y_{1}\right) \Pi_{2} B_{i n}\left(w_{i} \alpha^{-1}\right) \Pi_{2} B_{n i}\left(\alpha y_{i}\right)[\alpha]_{n}$ by $\begin{gathered}3.2), \\ 6,7\end{gathered}$
$\rightarrow \Pi_{1} B_{i n}\left(w_{l} \alpha^{-1}\right) \Pi_{2} B_{i 1}\left(-w_{i} \beta^{-1} y_{1}\right) B_{n 1}\left(\alpha \beta^{-1} y_{1}\right) \Pi_{2} B_{n i}\left(\alpha y_{l}\right)[\alpha]_{n}$
$\rightarrow \Pi_{1} B_{i n}\left(w_{i} \alpha^{-1}\right) B_{n 1}\left(\alpha \beta^{-1} y_{1}+\alpha \Sigma_{2} y_{i} w_{i} \beta^{-1} y_{1}\right) \Pi_{2} B_{n i}\left(\alpha y_{i}\right)[\alpha]_{n}$
$\rightarrow \Pi_{1} B_{i n}\left(w_{i} \alpha^{-1}\right) \Pi_{1} B_{n i}\left(\alpha y_{i}\right)[\alpha]_{n}$
Now suppose $\exists r, 1 \leqslant r<n$ such that $1+\sum_{\substack{i<n \\ i \neq r}}^{y_{i} w_{i} \in U(R) \text {. }}$
Then a proof similar to the above applies.
The remaining case is when $1+\sum_{\substack{i<n \\ i \neq n}} y_{i} w_{i}=z_{r}$ is a non-unit,
Then $z_{r}+y_{r} w_{r}=\alpha \in U(R)$, so y_{f}, w_{r} are units, $1 \leqslant r<n$.

$$
\begin{aligned}
& \text { Then } 1+\Sigma_{3} y_{i} w_{i}=z_{1}-y_{2} w_{2} \in U(R): \text { put } \beta=1+\Sigma_{3} y_{i} w_{l} \text {. } \\
& \Pi_{1} B_{n i}\left(y_{i}\right) \Pi_{1} B_{i n}\left(w_{i}\right) \\
& =B_{n_{1}}\left(y_{1}\right) B_{n 2}\left(y_{2}\right) B_{1 n}\left(w_{1} \beta^{-1}\right) B_{2 n}\left(w_{2} \beta^{-1}\right) \Pi_{3}\left\{B_{n i}\left(y_{l}\right) B_{1 i}\left(-w_{1} \beta^{-1} y_{i}\right)\right. \\
& \left.\cdot B_{2 i}\left(-w_{2} \beta^{-1} y_{i}\right)\right\} \Pi_{3} B_{i n}\left(w_{i}\right) B_{1 n}\left(w_{1}\left(1-\beta^{-1}\right)\right) B_{2 n}\left(w_{2}\left(1-\beta^{-1}\right)\right) \\
& \text { by } 1,2,3 \\
& \rightarrow B_{n_{1}}\left(y_{1}\right) B_{n 2}\left(y_{2}\right) B_{1 n}\left(w_{1} \beta^{-1}\right) B_{2 n}\left(w_{2} \beta^{-1}\right) \Pi_{3} B_{n i}\left(y_{i}\right) \Pi_{3} B_{i n}\left(w_{i}\right) \\
& \text { - } B_{1 n}\left(w_{1}\left(1-\beta^{-1}-\beta^{-1} \Sigma_{3} y_{i} w_{i}\right)\right) B_{2 n}\left(w_{2}\left(1-\beta^{-1}-\beta^{-1} \Sigma_{3} y_{i} w_{i}\right)\right) \\
& \text { by } 1,2,3 \\
& \rightarrow B_{n 1}\left(y_{1}\right) B_{n 2}\left(y_{2}\right) B_{1 n}\left(w_{1} \beta^{-1}\right) B_{2 n}\left(w_{2} \beta^{-1}\right) \Pi_{3} B_{n i}\left(y_{i}\right) \Pi_{3} B_{i n}\left(w_{i}\right) \text { by } 1 \\
& \rightarrow B_{n_{1}}\left(y_{1}\right) B_{n 2}\left(y_{2}\right) B_{1 n}\left(w_{1} \beta^{-1}\right) B_{2 n}\left(w_{2} \beta^{-1}\right) \\
& \cdot \Pi_{3} B_{i n}\left(w_{i} \beta^{-1}\right) \Pi_{3} B_{n i}\left(\beta y_{i}\right)[\beta]_{n} \text { by induction } \\
& \rightarrow B_{1 n}\left(w_{1} \alpha^{-1}\right) B_{2 n}\left(w_{2} \alpha^{-1}\right) B_{n_{1}}\left(\alpha \beta^{-1} y_{1}\right) B_{n 2}\left(\alpha \beta^{-1} y_{2}\right) \\
& \text { - } \Pi_{3} B_{i n}\left(w_{i} \alpha^{-1}\right) \Pi_{3} B_{n i}\left(\alpha y_{i}\right)[\alpha]_{n} \text { by case } n=3 \text {, } \\
& \text { and 6,7. } \\
& \rightarrow \Pi_{1} B_{i n}\left(w_{i} \alpha^{-1}\right) \Pi_{3}\left\{B_{i_{1}}\left(-w_{i} \beta^{-1} y_{1}\right) B_{i 2}\left(-w_{i} \beta^{-1} y_{2}\right)\right\} \\
& \text { - } B_{n_{1}}\left(\alpha \beta^{-1} y_{1}\right) B_{n 2}\left(\alpha \beta^{-1} y_{2}\right) \Pi_{3} B_{n i}\left(\alpha y_{i}\right)[\alpha]_{n} \text { by } 2,3 \\
& \rightarrow \Pi_{1} B_{i n}\left(w_{i} \alpha^{-1}\right) B_{n 1}\left(\alpha \beta^{-1} y_{1}+\alpha \Sigma_{3} y_{i} w_{i} \beta^{-1} y_{1}\right) \\
& \text { - } B_{n 2}\left(\alpha \beta^{-1} y_{2}+\alpha \Sigma_{3} y_{i} w_{i} \beta^{-1} y_{2}\right) \Pi_{3} B_{n i}\left(\alpha y_{i}\right)[\alpha]_{n} \text { by } 1,2,3 \\
& \rightarrow \Pi_{1} B_{i n}\left(w_{i} \alpha^{-1}\right) \Pi_{1} B_{n i}\left(\alpha y_{i}\right)[\alpha]_{n}
\end{aligned}
$$

Thus (i) is proved. (ii) is now immediate, by 1,2 .

$$
\begin{aligned}
& \text { (iii) } \Pi_{1} B_{n i}\left(y_{i}\right) \Pi_{1} B_{i n}\left(w_{i}\right) \\
& =B_{s} \cdot \prod_{\substack{i<n \\
i \neq s}} B_{n i}\left(y_{i}\right) B_{n s}\left(y_{s}-1\right) \Pi_{1} B_{i n}\left(w_{i}\right) \text { by } \uparrow, 2 \\
& \rightarrow B_{s} \cdot \Pi_{1} B_{i n}\left(w_{i} \beta^{-1}\right)_{\substack{i<n \\
i \neq s}}^{\prod_{n i}\left(\beta y_{i}\right) B_{n s}\left(\beta\left(y_{s}-1\right)\right)[\beta]_{n} \quad \text { by (i) }}
\end{aligned}
$$

Note that $1+w_{s} \beta^{-1}=\left(\beta+w_{s}\right) \beta^{-1}=z \beta^{-1}$ is a non-unit, and so is $W_{r} \beta^{-1}, s<r<n$, so we have normal form.
(iv) Put $z^{\prime \prime}=z^{\prime}-y_{s} x_{s}$. Write Π_{1}^{s} for $\prod_{\substack{i<n \\ i \neq s}}$ and Σ_{i}^{s} for $\sum_{\substack{i<n \\ i \neq s}} \because$
$\Pi_{1} B_{i n}\left(x_{i}\right) \Pi_{1} B_{n i}\left(y_{i}\right) \Pi_{1} B_{i n}\left(w_{i}\right)$
$\rightarrow M_{1} B_{i n}\left(x_{i}\right) B_{n s}(1) \Pi_{1} B_{i n}\left(w_{i} \beta^{-1}\right) \Pi_{1}^{s} B_{n i}\left(\beta y_{i}\right) B_{n s}\left(\beta\left(y_{s}-1\right)\right)[\beta]_{n}$ by (iii)
$\rightarrow B_{s n}\left(x_{s}\right) B_{n s}(1) \Pi_{i}^{s}\left\{B_{i n}\left(x_{i}\right) B_{i s}\left(x_{i}\right)\right\} \Pi_{1} B_{i n}\left(w_{i} \beta_{i}^{-1}\right)$

- $\Pi_{1}^{s} B_{n i}\left(\beta y_{i}\right) B_{n s}\left(\beta\left(y_{s}-1\right)\right)[\beta]_{n}$ by 2,3

$$
\begin{aligned}
& \rightarrow B_{s n}\left(x_{s}\right) B_{n s}(1) B_{s n}\left(w_{s} \beta^{-1}\right) \Pi_{1}^{s} B_{i n}\left(x_{i}+w_{i} \beta^{-1}+x_{i} w_{s} \beta^{-1}\right) \\
& \quad \cdot \Pi_{1}^{s} B_{n i}\left(\beta y_{i}\right) B_{n s}\left(\beta\left(y_{s}-z^{\prime \prime}\right)\right)[\beta]_{n} \text { by } 1,2,3 \\
& \rightarrow B_{s n}\left(x_{s}\right) B_{n s}(1) B_{s n}\left(w_{s} \beta^{-1}\right) \Pi_{1}^{s} B_{i n}\left(\left(x_{i} z+w_{i}\right) \beta^{-1}\right) \\
& \quad \cdot \Pi_{i}^{s} B_{n i}\left(\beta y_{i}\right) B_{n s}\left(\beta\left(y_{s}-z^{\prime \prime}\right)\right)[\beta]_{n}
\end{aligned}
$$

Now $B_{21}(1) B_{12}\left(\left(x_{s} z+w_{s}\right) \alpha^{-1}\right) B_{21}\left(-x_{s} \delta^{-1}\right)\left[\delta, \alpha \beta^{-1}\right]_{12} \quad\left(\delta=1+z \alpha^{-1} x_{s}\right)$
$=\left(\begin{array}{ll}\delta-\left(x_{s} z+w_{s}\right) \alpha^{-1} x_{s} & \left(x_{s} z+w_{s}\right) \beta^{-1} \\ \delta-x_{s}-\left(x_{s} z+w_{s}\right) \alpha^{-1} x_{s} & \left(\alpha+x_{s} z+w_{s}\right) \beta^{-1}\end{array}\right)$
Then $\delta-x_{s}-\left(x_{s} z+w_{S}\right) \alpha^{-1} \dot{x}_{s}=1+\left(z-\alpha-x_{s} z-w_{S}\right) \alpha^{-1} x_{s}$

$$
\begin{aligned}
& =1+\left(\beta-\alpha-x_{s} z\right) \alpha^{-1} x_{s} \\
& =1
\end{aligned}
$$

So $\delta-\left(x_{s} z+w_{s}\right) \alpha^{-1} x_{s}=1+x_{s}$
Then $\left(x_{s} z+w_{s}\right) \beta^{-1}=\left(x_{s}\left(w_{s}+\beta\right)+w_{s}\right) \beta^{-1}=x_{s}+w_{s} \beta^{-1}+x_{s} w_{s} \beta^{-1}$
Also $\left(\alpha+x_{s} z+w_{s}\right) \beta^{-1}=\left(\alpha+x_{S} z\right) \beta^{-1}+w_{s} \beta^{-1}=1+w_{s} \beta^{-1}$.
But $B_{12}\left(x_{s}\right) B_{21}(1) B_{12}\left(w_{s} \beta^{-1}\right)$

$$
=\left[\begin{array}{ll}
1+x_{s} & x_{s}+w_{s} \beta^{-1}+x_{s} w_{s} \beta^{-1} \\
1 & 1+w_{s} \beta^{-1}
\end{array}\right]
$$

Thus $B_{s n}\left(x_{s}\right) B_{n s}(1) B_{s n}\left(w_{s} \beta^{-1}\right)$
$=B_{n s}(1) B_{s n}\left(\left(x_{s} z+w_{s}\right) \alpha^{-1}\right) B_{n s}\left(-x_{s} \delta^{-1}\right)\left[\delta, \alpha \beta^{-1}\right]_{s n}$
This relation only involves the two indices s, n and so by
(3.3) it is a consequence of the universal relations.

So $\Pi_{1} B_{i n}\left(x_{i}\right) \Pi_{1} B_{n i}\left(y_{i}\right) \Pi_{1} B_{i n}\left(w_{i}\right)$
$\rightarrow \dot{B}_{s} B_{s n}\left(\left(x_{s} z+w_{s}\right) \alpha^{-1}\right) B_{n s}\left(-x_{s} \delta^{-1}\right) \Pi_{1}^{s} B_{i n}\left(\left(x_{i} z+w_{i}\right) \alpha^{-1}\right)$
$\cdot \Pi_{1}^{s} B_{n i}\left(\alpha y_{i}\right) B_{n s}\left(\alpha\left(y_{s}-z^{\prime \prime}\right) \delta^{-1}\right)[\alpha]_{n}$ by the above
$\rightarrow B_{s} \Pi_{1} B_{i n}\left(\left(x_{i} z^{2} w_{i}\right) \alpha^{-1}\right) \Pi_{1}^{s} B_{i s}\left(\left(x_{i} z+w_{i}\right) \alpha^{-1} x_{s} \delta^{-1}\right)$

- $\Pi_{1}^{s} B_{n i}\left(\alpha y_{i}\right) B_{n s}\left(\left(\alpha y_{s}-\alpha z^{N}-x_{s}\right) \delta^{-1}\right)[\alpha]_{n}$ by $1,2,3$
$\rightarrow B_{s} \Pi_{1} B_{i n}\left(\left(x_{i} z+w_{i}\right) \alpha^{-\frac{1}{j}}\right) \Pi_{1}^{s} B_{n i}\left(\alpha y_{i}\right)$
- $B_{n . s}\left(\left(\alpha y_{s}-\alpha z^{\prime \prime}-x_{s}-z_{1}^{5} \alpha\left(y_{i} x_{i} z+y_{i} w_{i}\right) \alpha^{-1} x_{s}\right) \delta^{-1}\right)[\alpha]_{n}$ by $1,2,3$
Now $\left(\alpha y_{s}-\alpha z^{\prime \prime}-x_{s}-\Sigma_{1}^{s} \alpha\left(y_{i} x_{i} z+y_{i} w_{i}\right) \alpha^{-1} x_{s}\right) \delta^{-1}$
$=\left(\alpha y_{s}-\alpha^{\prime \prime}-\alpha\left(\left(z^{\prime \prime}-1\right) z+z-1-y_{s} w_{s}\right) \alpha^{-1} x_{s}\right) \delta^{-1}$
$=\alpha\left(y_{s}-z^{\prime \prime}+\left(y_{s} w_{s}-z^{\prime \prime} z\right) \alpha^{-1} x_{s}\right) \delta^{-1}$
$=\alpha\left(y_{s}-z^{\prime \prime}+y_{s}\left(z-\alpha-x_{s} z\right) \alpha^{-1} x_{s}-z^{\prime \prime} z \alpha^{-1} x_{s}\right) \delta^{-1}$

$$
\left(\because w_{s}=z-\beta=z-\alpha-x_{s} z\right)
$$

$$
\begin{aligned}
& =\alpha\left(y_{s}-z^{\prime \prime}-y_{s} x_{s}\right)\left(1+z \alpha^{-1} x_{s}\right) \delta^{-1} \\
& =\alpha\left(y_{s}-z^{\prime \prime}-y_{s} x_{s}\right) \\
& =\alpha\left(y_{s}-z^{\prime}\right) \cdot \quad \text { Substitution back gives (iv). }
\end{aligned}
$$

Note that for i>s, w_{i} is a non-unit; so is z, and hence so is $\left(x_{i} z+w_{i}\right) \alpha^{-1}$. Then $1+\left(x_{s} z+w_{s}\right) \alpha^{-1}$

$$
=\left(\alpha+x_{s} z+w_{s}\right) \alpha^{-1}=z \alpha^{-1} \text { is a non-unit, }
$$

so we have normal form.
(v) We have $r<n$, otherwise the result is trivial.

Firstly suppose $s=n$. There are three cases:
(a) $1+x_{r}$ and $x_{i}(r<i<n)$ all non-units: then we have normal form already.
(b) $1+x_{r} \notin U(R)$ and $x_{t} \in U(R)$ some $t>r$, t maximal.

Then put $\beta=1+x_{r}-x_{t} \in U(R)$.
$B_{r} \Pi_{1} B_{i n}\left(x_{i}\right) \Pi_{1} B_{n i}\left(y_{i}\right)$
$=B_{i}\left\{B_{n r}(1) B_{n t}(-1) B_{r n}\left(x_{r}\right) B_{t n}\left(x_{t}\right)\right\} \Pi_{1}^{r} t_{B_{l n}}\left(x_{i}\right) \Pi_{1} B_{n i}\left(y_{i}\right)$ by 1,2
(where $\Pi_{1}^{r t}$ stands for $\prod_{\substack{i \\ i \neq r, t}}$)

Note that $x_{i} \beta^{-1}(t<i<n)$ is a non-unit, and so is $1+\mathrm{x}_{\mathrm{t}} \beta^{-1}=\left(\beta+\mathrm{X}_{\mathrm{t}}\right) \beta^{-1}=\left(1+\mathrm{x}_{\mathrm{r}}\right) \beta^{-1}$. So we have normal form.
(c) $1+x_{r}=\alpha \in U(R)$.
$B_{r} \Pi_{1} B_{i n}\left(x_{i}\right) \Pi_{1} B_{n i}\left(y_{i}\right)$
$=B_{n r}(1) B_{r n}\left(x_{r}\right) \Pi_{1} B_{i, n}\left(x_{i}\right) \Pi_{1} B_{n i}\left(y_{i}\right)$ by 2
$\rightarrow B_{r n}\left(x_{r} \alpha^{-1}\right) B_{n r}(\alpha) \Pi_{1}^{r} B_{i n}\left(x_{i} \alpha^{-1}\right) \Pi_{1} B_{n i}\left(y_{i}^{\prime}\right)[\alpha]_{n} \quad$ (suitable $\left.y_{b y} y_{i}^{\prime} \in R\right)$
$\rightarrow \Pi_{1} B_{i n}\left(x_{i} \alpha^{-1}\right) \Pi_{1}^{r} B_{i r}\left(-x_{r}\right) \Pi_{1} B_{n i}\left(y_{i}^{\prime \prime}\right)[\alpha]_{n} \quad($ suitable $y \in R)$
$\rightarrow \Pi_{1} B_{i n}\left(x_{i} \alpha^{-1}\right) \Pi_{1} B_{n i}\left(\hat{y}_{i}\right)[\alpha]_{n}$ (suitable $\hat{y} \in R$) by $1,2,3$
This is in normal form.

Now suppose $s=r<n$. Then $1+x_{r}$ is a non-unit, and so
$1+2 x_{r}=\alpha \in U(R)$.
$B_{r} B_{s} \Pi_{1} B_{i n}\left(x_{i}\right) \Pi_{1} B_{n i}\left(y_{i}\right)$
$=B_{n r}(2) B_{r n}\left(x_{r}\right) \Pi_{1} B_{i n}\left(x_{i}\right) \Pi_{1} B_{n i}\left(y_{i}\right)$ by 1,2
$\rightarrow B_{r n}\left(x_{r} \alpha^{-1}\right) B_{n r}(2 \alpha) \Pi_{1}^{r} B_{i n}\left(x_{i} \alpha^{-1}\right) \Pi_{1} B_{n i}\left(y_{i}^{\prime}\right)[\alpha]_{n} \quad\left(y_{i}^{\prime} \in R\right)$ by (3.2),
$\Rightarrow H_{1} B_{l n}\left(x_{l} \alpha^{-1}\right) H_{1}^{r} B_{i r}\left(-2 x_{l}\right) H_{1} B_{n i}\left(y_{l}^{\prime \prime}\right)[\alpha]_{n}\left(y_{l}^{\ell} \in R\right)$ by $1,2,3$
$\rightarrow \Pi_{1} B_{i n}\left(x_{i} \alpha^{-1}\right) \Pi_{1} B_{n i}\left(\hat{y}_{i}\right)[\alpha]_{n}(\hat{y} \in R)$ by $1,2,3$.
This is now in normal form.
Finally suppose s, r, n are all distinct. There are two cases:
(a) $x_{r} \in U(R)$. We know $1+x_{s} \notin U(R)$, so $1+x_{s}+x_{r}=\alpha \in U(R)$.

Then $B_{r} B_{s} \Pi_{1} B_{i n}\left(x_{i}\right) \Pi_{1} B_{n i}\left(y_{i}\right)$

$$
\begin{aligned}
& =B_{n r}(1) B_{n s}(1) B_{r n}\left(x_{r}\right) B_{s n}\left(x_{s}\right) \Pi_{i}^{r} s B_{i n}\left(x_{i}\right) \Pi_{1} B_{n i}\left(y_{i}\right) \text { by } 2 \\
& \rightarrow B_{r n}\left(x_{r} \alpha^{-1}\right) B_{s n}\left(x_{s} \alpha^{-1}\right) B_{n r}(\alpha) B_{n s}(\alpha) \\
& \text { - } \Pi_{1}^{r}{ }^{s} B_{i n}\left(x_{i} \alpha^{-1}\right) \Pi_{1} B_{n i}\left(y_{i}^{\prime}\right)[\alpha]_{n}\left(\begin{array}{c}
\left.y_{i}^{\prime} \in R\right) \\
1,2,3,6,7
\end{array},\right. \\
& \rightarrow \Pi_{1} B_{i n}\left(x_{i} \alpha^{-1}\right) I_{1}^{r} s\left\{B_{i r}\left(x_{i}\right) B_{i s}\left(x_{i}\right)\right\} \Pi_{1} B_{n i}\left(y_{i}^{\prime \prime}\right)[\alpha]_{n}\left(y_{i}^{\prime \prime} \in R\right) \\
& \rightarrow \Pi_{1} B_{i n}\left(x_{i} \alpha^{-1}\right) \Pi_{1} B_{n i}\left(\hat{y}_{i}\right)[\alpha]_{n}\left(\hat{y}_{i} \in R\right) \text { by } 1,2,3 \\
& \text { This is in normal form. } \\
& \text { (b) } x_{r} \notin U(R) \text {. Then } 1+x_{r} \in U(R) \text {, so by a previous case, } \\
& B_{r} \Pi_{1} B_{i n}\left(x_{i}\right) \Pi_{1} B_{n i}\left(y_{i}\right) \\
& \left.\rightarrow \Pi_{1} B_{i n}\left(x_{i}^{\prime}\right) \Pi_{1} B_{n i}\left(y_{i}^{\prime}\right)[\alpha]_{n} \text { (suitable } x_{i}^{\prime}, y_{i}^{\prime}, \alpha\right) \\
& \text { So } B_{r} B_{s} \Pi_{1} B_{i n}\left(x_{i}\right) \Pi_{1} B_{n i}\left(y_{i}\right) \\
& \rightarrow B_{s} \Pi_{1} B_{i n}\left(x_{i}^{\prime}\right) \Pi_{1} B_{n i}\left(y_{i}^{\prime}\right)[\alpha]_{n} \text { by } 2 \text {. } \\
& \rightarrow \text { normal form, by a previous case. }
\end{aligned}
$$

Theorem (3.7). Every local ring is universal for $G E_{n}$, all n. Proof. Let R be local. By (3.3) the theorem holds for $n=2$. We use induction on n.
Let $A=B_{r} \Pi_{1} B_{i n}\left(x_{i}\right) \Pi_{1} B_{n i}\left(y_{i}\right)[\alpha]_{n} A_{0} \quad\left(A_{0} \in G E_{n-1}(R)\right)$ be in normal form. Let B be a generator of $G E_{n}(R)$.
Then by induction it is sufficient to shew $A B \rightarrow$ normal form. Firstly suppose $B \in G E_{n-1}(R)$.
Then $A B=B_{r} \Pi_{1} B_{i n}\left(x_{i}\right) \Pi_{1} B_{n i}\left(y_{i}\right)[\alpha]_{n} A_{0} B$

$$
\rightarrow B_{r} \Pi_{1} B_{i n}\left(x_{i}\right) \Pi_{1} B_{n i}\left(y_{i}\right)[\alpha]_{n} \text {, and this is in normal }
$$

form.

Next suppose $B=\left[\beta_{1} \ldots \beta_{n}\right]$
Then $A B \rightarrow B_{r} \Pi_{1} B_{i n}\left(x_{i}\right) \Pi_{1} B_{n i}\left(y_{i}\right)\left[\alpha \beta_{n}\right]_{n}$, by 6,7 , and this is normal form.
Next suppose $B=B_{n j}(w)$.
Then $A B \rightarrow B_{r} \Pi_{1} B_{i n}\left(x_{i}\right) \Pi_{1} B_{n i}\left(y_{i}\right) \Pi_{1} B_{n i}\left(w_{i}\right)[\alpha]_{n}$ (suitable $w_{i} \in R$) by $1,2,3,6$
$\rightarrow B_{r} \Pi_{1} B_{i n}\left(x_{i}\right) \Pi_{1} B_{n i}\left(y_{i}+w_{i}\right)[\alpha]_{n}$ by 1,2 , and this is
in normal form.
Finally suppose $B=B_{j n}(w)$.
Then $A B \rightarrow B_{r} \Pi_{1} B_{i n}\left(x_{i}\right) \Pi_{1} B_{n i}\left(y_{i}\right) \Pi_{1} B_{i n}\left(w_{i}\right)[\alpha]_{n}$ (suitable $w_{i} \in R$)
by $1,2,3,6$
Now $\Pi_{1} B_{i n}\left(x_{i}\right) \Pi_{1} B_{n i}\left(y_{i}\right) \Pi_{1} B_{i n}\left(w_{i}\right)[\alpha]_{n}$
$\rightarrow B_{s} \Pi_{1} B_{i n}\left(x_{i}^{\prime}\right) \Pi_{1} B_{n i}\left(y_{i}^{\prime}\right)\left[\alpha^{\prime}\right]_{n} \quad$ (suitable $\left.x_{i}^{\prime}, y_{i}^{\prime}, \alpha^{\prime}\right)$
where this is in normal form (using (ii) or (iii) of (3.6) as appropriate). So
$A B \rightarrow B_{r} B_{s} \Pi_{1} B_{i n}\left(x_{i}^{\prime}\right) \Pi_{1} B_{n i}\left(y_{i}^{\prime}\right)\left[\alpha^{\prime}\right]_{n}$
\rightarrow normal form, by (v) of (3.6). a
We shall prove later (chapter 3) that if $R / J(R)$ is universal for $G E_{n}$ and R is universal for $G E_{a}$ then R is universal for G_{n}. Thus (3.7) follows from the special case that all fields are universal for $G E_{n}$, all n. However, this fact is nontrivial; indeed, the proof is scarcely shorter in the classical case than that given in (3.7).

In $[1 ;(5.2)]$ it was shewn that any discretely normed ring is universal for GE_{2}. In particular, the ring Z of rational integers is universal for GE_{2}. With the help of a result in [4], we now shew that Z is universal for G_{3}. Theorem (3.8). The ring Z of rational integers is universal for GE_{3}.
Proof. In [4; section 2] the following is proved (a sketch . of the proof is given at the end of this proof) :
Let $P_{i k}=B_{i k}(1) B_{k i}(-1) B_{i k}(1)[-1]_{i}=P_{k i}$

$$
\left(e . g . P_{12}=\left(\begin{array}{cc}
01 & 0 \\
10 & 0 \\
0 & I
\end{array}\right), P_{1 n}=\left(\begin{array}{ccc}
0 & & 1 \\
& 1 & \\
& \ddots & \\
& \ddots & 1 \\
1 & & 0
\end{array}\right)\right.
$$

and $O_{i}=[-1]_{i}, \quad(i k)=B_{i k}(1)$.

Then $\mathrm{GE}_{3}(Z)$ has the presentation:
Generators: $P_{i k}, O_{i}$, (ik) ($1 \leqslant i, k \leqslant 3$, $i \neq k$)
Relations:
$A \begin{cases}(1) & P_{i k}^{2}=I \\ (2) & P_{k}^{-1} P_{i k} P_{k m}=P_{i m} \\ (3) & O_{i}^{2}=I \\ (4) & O_{i} O_{k}=O_{k} O_{i} \\ (5) & P_{i k}^{-1} O_{i} P_{i k}=O_{k} \\ (6) & P_{k}^{-1} O_{i} P_{k m}=O_{i}\end{cases}$
$B \begin{cases}(7) & P_{i k}^{-1}(i k) P_{i k}=(k i) \\ (8) & P_{i m}^{-1}(i k) P_{i m}=(m k) \\ (9) & P_{k m}^{-1}(i k) P_{k m}=(i m) \\ (10) & O_{m}^{-1}(i k) O_{m}=(i k) \\ (11) & O_{i}^{-1}(i k) O_{i}=(i k)^{-1} \\ (12) & O_{k}^{-1}(i k) O_{k}=(i k)^{-1}\end{cases}$
$C \begin{cases}(13) & 0_{i} P_{i k}(i k)(k i)^{-1}(i k)=I \\ (14) & (i k)(i m)=(i m)(i k) \\ (15) & (i k)(m k)=(m k)(i k) \\ (16) & (i k)(k m)(i k)^{-1}(k m)^{-1}(i m)^{-1}=I\end{cases}$
The generators $B_{i k}(n)$ and $[\alpha, \beta, \delta]$ of $G E_{3}(R)$ are defined in terms of the above generators by
$B_{i k}(n)=(i k)^{n}$
$[\alpha, \beta, \delta]=O_{1}^{\epsilon(\alpha)} O_{2}^{\epsilon(\beta)} O_{3}^{\epsilon(\delta)}$ where $\epsilon(\lambda)=0$ if $\lambda=1$
The relations implicit in the definitions of the two sets of generators are:
$B_{i k}(1) B_{k i}(-1) B_{i k}(1)[-1]_{i}=B_{k i}(1) B_{i k}(-1) B_{k i}(1)[-1]_{k}$ $[\alpha, \beta, \delta]=[\alpha]_{1}[\beta]_{2}[\delta]_{3}$
$B_{i k}(n)=B_{i k}(1)^{n}$
The second and third of these follow immediately from universal relations 7 and 1.
Then $B_{i k}(1) B_{k i}(-1) B_{i k}(1)[-1]_{i}$
$=B_{i k}(1) B_{k i}(-1) B_{i k}(1) B_{k i}(1) B_{i k}(-1) \cdot B_{i k}(1) B_{k i}(-1)[-1]_{i}$ by 1
$=B_{k i}(-1) B_{i k}(1) B_{k i}(-1)[-1]_{i}$ by 5

So we may now replace $P_{i k}^{-1}$ by $P_{i k}$ where convenient.
(2) $P_{k m}^{-1} P_{i k} P_{k m}$

$$
=B_{m k}(1) B_{k m}(-1) B_{m k}(1)[-1]_{m} B_{i k}(1) B_{k i}(-1) B_{i k}(1)[-1]_{i}
$$

$$
\cdot B_{m k}(1) B_{k m}(-1) B_{m k}(1)[-1]_{m}
$$

$=B_{m k}(1) B_{k m}(-1) B_{m k}(1) B_{i k}(1) B_{k i}(-1) B_{i k}(1)$ - $B_{m k}(-1) B_{k m}(1) B_{m k}(-1)[-1]_{i}$ by 6,7
$=B_{m k}(1) B_{k m}(-1) B_{i k}(1) B_{k i}(-1) B_{m i}(-1) B_{i k}(1)$

- $B_{k m}(1) B_{m k}(-1)[-1]_{i}$ by $1,2,3$
$=B_{m k}(1) B_{i k}(1) B_{i m}(1) B_{k i}(-1) B_{m i}(-1) B_{k i}(1) B_{i k}(1)$
- $B_{i, m}(1) B_{m k}(-1)[-1]_{i}$ by $1,2,3$
$=B_{m k}(1) B_{i k}(1) B_{i m}(1) B_{m i}(-1) B_{i k}(1) B_{i m}(1) B_{m k}(-1)[-1]_{i}$ by 1,2
$=B_{i k}(1) B_{i m}(1) B_{i k}(-1) B_{m i}(-1) B_{i k}(1) B_{i m}(1) B_{i k}(-1)[-1]_{i}$ by $1,2,3$
$=B_{i m}(1) B_{m i}(-1) B_{i m}(1)[-1]_{i}$ by 1,2
$=P_{i m}$
(3) $\mathrm{o}_{\mathrm{i}}^{2}=[-1]_{i}^{2}=I$ by 7
(4) $0_{i} O_{k}=[-1]_{i}[-1]_{k}=[-1]_{k}[-1]_{i}=0_{k} O_{i}$ by 7
(5) $P_{i k}^{-1} O_{i} P_{i k}$
$=B_{i k}(1) B_{k i}(-1) B_{i k}(1)[-1]_{i}^{2} B_{i k}(1) B_{k i}(-1) B_{i k}(1)[-1]_{i}$
$=B_{i k}(1) B_{k i}(-1) B_{i k i}(2) B_{k i}(-1) B_{i k}(1)[-1]_{i}$ by 1,7
$=B_{i k}(1) B_{k i}(-1) D_{i k}(-1) B_{k i}(1) B_{i k}(-2) B_{i k}(1)[-1]_{i}$ by 9 (3.5)
$=D_{i k}(-1)[-1]_{i}$ by 1,6
$=[-1]_{k}$ by 7
$=O_{k}$

$$
\begin{aligned}
& =B_{k i}(1) B_{i k}(-1) B_{k i}(1) \cdot B_{k i}(-1) B_{i k}(1) B_{k i}(-2) B_{i k}(1) \\
& \text { - } B_{k i}(-1)[-1]_{i} \text { by } 1 \\
& =B_{k i}(1) B_{i k}(-1) B_{k i}(1) \cdot B_{k i}(-1) B_{i k}(1) \\
& \text { - } D_{i k}(-1) B_{i k}(-1) B_{k i}(2) B_{k i}(-1)[-1]_{i} \text { by } 4 \\
& =B_{k i}(1) B_{i k}(-1) B_{k i}(1) \cdot D_{i k}(-1)[-1]_{i} \text { by } 1,6 \\
& =B_{k i}(1) B_{i k}(-1) B_{k i}(1)[-1]_{k} \text { by } 7 \\
& \text { So it remains to shew that the relations (1)-(16) are } \\
& \text { consequences of 1.-7. } \\
& \text { (1) } P_{i k}^{2}=B_{i k}(1) B_{k i}(-1) B_{i k}(1)[-1]_{i} B_{i k}(1) B_{k i}(-1) B_{i k}(1)[-1]_{i} \\
& =B_{i k}(1) B_{k i}(-1) B_{i k}(1) B_{i k}(-1) B_{k i}(1) B_{i k}(-1) \text { by } 6,7 \\
& =I \text { by } 1
\end{aligned}
$$

(6.) $P_{k}^{-1} \mathrm{O}_{\mathrm{l}} \mathrm{P}_{\mathrm{km}}$
$=[-1]_{k} B_{k m}(-1) B_{m k}(1) B_{k m}(-1)[-1]_{i} B_{k m}(1) B_{m k}(-1) B_{k m}(1)[-1]_{k}$
$=[-1]_{k} B_{k m}(-1) B_{m k}(1) B_{k m}(-1) B_{k m}(1) B_{m k}(-1) B_{k m}(1)[-1]_{k}[-1]_{i}$
$=[-1]_{i}$ by 1,7
$=O_{i}$
(7) $P_{i k}^{-1}(i k) P_{i k}$
$=B_{i k}(1) B_{k i}(-1) B_{i k}(1)[-1]_{i} B_{i k}(1) B_{i k}(1) B_{k i}(-1) B_{i k}(1)[-1]_{i}$
$=B_{i k}(1) B_{k i}(-1) B_{i k}(-1) B_{k i}(1) B_{i k}(-1)$ by $1,6,7$
$=B_{k l}(1)$ by 5
$=(k i)$
(8) $P_{i m}^{-1}(i k) P_{i m}$
$=B_{i m}(1) B_{m i}(-1) B_{i m}(1)[-1]_{i} B_{i k}(1) B_{i m}(1) B_{m i}(-1) B_{i m}(1)[-1]_{i}$
$=B_{i m}(1) B_{m i}(-1) B_{i m}(1) B_{i k}(-1) B_{i m}(-1) B_{m i}(1) B_{i m}(-1)$ by 6,7
$=B_{i m}(1) B_{m i}(-1) B_{i k}(-1) B_{m i}(1) B_{i m}(-1)$ by 1,2
$=B_{i m}(1) B_{i k}(-1) B_{m k}(1) B_{i m}(-1)$ by $1,2,3$
$=B_{i k}(-1) B_{m k}(1) B_{i k}(1)$ by $1,2,3$
$=B_{m k}(1)$ by 1,2
$=(m k)$
(9.) $P_{k m}^{-1}$ (ik) $P_{k m}$
$=B_{k m}(1) B_{m k}(-1) B_{k m}(1)[-1]_{k} B_{i k}(1) B_{k m}(1) B_{m k}(-1) B_{k m}(1)[-1]_{k}$
$=B_{k m}(1) B_{m k}(-1) B_{k m}(1) B_{i k}(-1) B_{k m}(-1) B_{m k}(1) B_{k m}(-1)$ by 6,7
$=B_{k m}(1) B_{f k}(-1) B_{i k}(-1) B_{i m}(1) B_{m k}(1) B_{k m}(-1)$ by $1,2,3$
$=B_{k m}(1) B_{i k}(-1) B_{i m}(1) B_{i k}(1) B_{k m}(-1)$ by $1,2,3$
$=B_{k m}(1) B_{i m}(1) B_{k m}(-1)$ by 1,2
$=B_{i m}(1)$ by 1,2 .
$=(i m)$
(10) $O_{m}^{-1}(i k) O_{m}=[-1]_{m}^{-1} B_{i k}(1)[-1]_{m}$
$=B_{i k}(1)$ by 6
$=(i k)$
(11) $\left.O_{i}^{-1}(i k) O_{i}=[-1]\right]^{-1} B_{i k}(1)[-1]_{i}$
$=B_{i k}(-1)$ by 6
$=B_{i k}(1)^{-1}$ by 1

$$
=(i k)^{-1}
$$

(12) $O_{K}^{-1}(i k) O_{K}=[-1]_{K}^{-1} B_{i k}(1)[-1]_{K}$
$=B_{i k}(-1)$ by 6

$$
\begin{aligned}
& =B_{i k}(1)^{-1} \text { by. } 1 \\
& =(i k)^{-1} \\
& \text { (13) } O_{i} P_{i k}(i k)(k i)^{-1}(i k) \\
& =[-1]_{i} B_{i k}(1) B_{k i}(-1) B_{i k}(1)[-1]_{i} B_{i k}(1) B_{k i}(1)^{-1} B_{i k}(1) \\
& =B_{i k}(-1) B_{k i}(1) B_{i k}(-1) B_{i k}(1) B_{k i}(-1) B_{i k}(1) \text { by } 6,7,1 \\
& =I \text { by } 1 \\
& \text { (14) (ik) (im) }=B_{i k}(1) B_{i m}(1)=B_{i m}(1) B_{i k}(1) \text { by } 2 \\
& =(i m)(i k) \\
& \text { (15) (ik) (mk) }=B_{i k}(1) B_{m k}(1)=B_{m k}(1) B_{i k}(1) \text { by } 2 \\
& =(m k)(i k) \\
& \text { (16) (ik) (kim)(ik) }{ }^{-1}(\mathrm{~km})^{-1}(i m)^{-1} \\
& =B_{i k}(1) B_{k m}(1) B_{i k}(1)^{-1} B_{k m}(1)^{-1} B_{i m}(1)^{-1} \\
& =B_{k m}(1) B_{i k}(1) B_{i m}(1) B_{i k}(1)^{-1} B_{k m}(1)^{-1} B_{i m}(1)^{-1} \text { by } 3 \\
& =I \text { by } 2 \text {. }
\end{aligned}
$$

It may be helpful here to give a brief sketch of Nielsen's proof that (1)-(16) are a set of defining relations for $\mathrm{GE}_{3}(Z)$.

Let Ω be the subgroup of $\mathrm{Gr}_{3}(Z)$ generated by the $P_{i k}$ and O_{i}. This is just the orthogonal group, or the matrices with exactly one entry of ± 1 in each row and column, and zero elsewhere. Then a simple order calculation shews that the relations (A) (page 29) present Ω. The relations (B) enable any matrix in $G E_{3}(Z)$ to be written in the form

$$
\omega \cdot \Pi(i k)
$$

where $\omega \in \Omega$. If $M \in G_{3}(Z), M=\left(e_{i k}\right)$, put $\sigma(M)=\sum_{i, k} e_{i k}^{2}$ Then a straightforward calculation shews $\sigma(M) \geqslant 3$, with equality iff $M \in \Omega$. Further, $\sigma(M)=\sigma(M \omega)=\sigma(\omega M)$, any $\omega \in \Omega$. Now suppose $M=F_{1} F_{2} \ldots F_{r}$ where $F_{j}=P_{i k}$ or O_{i} or (ik). Define

$$
\begin{aligned}
& \sigma_{1}=\sigma\left(F_{1} F_{2} \cdots \cdot F_{r}\right) \\
& \sigma_{2}=\sigma\left(F_{2} F_{3} \cdots F_{r}\right) \\
& \vdots \\
& \sigma_{r}=\sigma\left(F_{r}\right) \\
& \sigma_{r}+1=\sigma(I)=3
\end{aligned}
$$

The numbers $\sigma_{1}, \sigma_{2}, \ldots \sigma_{r+1}$ are called the diagram of M. Then by an inductive argument, Nielsen shews that for any such M, using only (1)-(16), we can obtain $M=M^{\prime}$, where $\dot{M}^{\prime}=F_{1}^{\prime} F_{2}^{\prime} \ldots . F_{s}^{\prime}$ has monotone diagram, $\sigma_{1}^{\prime} \geqslant \sigma_{2}^{\prime} \geqslant \ldots \geqslant \sigma_{s+1}^{\prime}=3$. Thus if $M=I$, we must have $\sigma_{1}^{\prime}=\sigma_{2}^{\prime}=\ldots=\sigma_{5+1}^{\prime}=3$ (since $\sigma_{1}^{\prime}=\sigma(M)$ $=\sigma(I)=3$) and so $F_{i}^{\prime} \in \Omega$, and the relation $M^{\prime}=I$ is a relation of Ω and so is a consequence of (A); further, $M=M^{\prime}$ is a consequence of (A, B, C) and so $M=I$ is a consequence of (A, B, C), i.e., of (1)-(16).

In [3], Magnus uses Nielsen's result to get a presentation of $G E_{n}(Z), n \geqslant 3$. We can generalize his method to prove theorems that hold for Z or $k[x]$ and indeed for a class of rings (see (3.11)) which includes any Euclidean ring; essentially our results shew that to see whether such rings are universal for $G E_{n}, n \geqslant 3$, it is sufficient to look at the case $n=3$.

Let $A_{n}(R)$ be the subgroup of $G E_{n}(R)$ generated by $G \mathrm{H}_{n-1}(\mathrm{R})$ anc all $\mathrm{B}_{\mathrm{i}}(\mathrm{x})$, $i<n$. Every matrix in $A_{n}(R)$ has bottom row ($0,0, \ldots ., 0,1$), but unless R is a $G E_{n-1}-$ ring, the converse need not hold. For example, let $R=k[\bar{x}, y]$, and put

$$
A=\left[\begin{array}{cc}
1+x y & x^{2} \\
-y^{2} & 1-x y
\end{array}\right] \quad \text { and } B=\left[\begin{array}{cc}
A & 0 \\
0 & 0
\end{array} 1\right]
$$

Then $B \in G_{3}(R)$, but $B \notin A_{3}(R)$ since $A \notin G E_{2}(R)$ (see [1; Proposition (7.3)]).
Lemma (3.9). If $A \in A_{n}(R)$ (any ring R) then there is a
unique normal form
(a)

$$
A=\prod_{i<n} B_{i n}\left(x_{i}\right) \cdot A_{0} \quad\left(x_{i} \in R, A_{0} \in G E_{n-1}(R)\right)
$$

Further, A can be brought to this form using only the universal relations, i.e. if A is a product of $B_{i} j(x)$ $(1 \leqslant i<n, 1 \leqslant j \leqslant n)$ and $\left[\alpha_{1}, \ldots, \alpha_{n-1}, 1\right]$ then $\exists x_{i}(1 \leqslant i<n)$ such that $A \rightarrow \operatorname{II}_{i<n} B_{i n}\left(x_{i}\right)$
Proef: We have ($1 \leqslant n$)

$$
B_{i, j}(x) B_{k n}(y)=\left\{\begin{array}{l}
B_{k n}(y) B_{i j}(x) \text { by } 2, \text { if } j \neq k \\
B_{k n}(y) B_{i n}(x y) B_{i j}(x) \text { by } 2,3, \text { if } j=k
\end{array}\right.
$$

and

$$
\left[\alpha_{1}, \ldots . \alpha_{n-1}, 1\right] B_{k n}(y) \doteq B_{k n}\left(\alpha_{k} y\right)\left[\alpha_{1}, \ldots . \alpha_{n-1}, 1\right] \quad \text { by } 6
$$

Thus, by an inductive argument, if $A_{1} \in G E_{n-1}(R)$

$$
A_{1} \cdot \prod_{i<n} B_{i n}\left(x_{i}\right)=\prod_{i<n} B_{i n}\left(y_{i}\right) \cdot A_{1} \quad \text { by } 2,3,6
$$

where

$$
A_{1} \cdot\left(\begin{array}{l}
x_{1} \\
\vdots \\
x_{n-1} \\
0
\end{array}\right)=\left(\begin{array}{l}
y_{1} \\
\vdots \\
y_{n-1} \\
0
\end{array}\right)
$$

So $A_{1} \cdot \prod_{i<n} B_{i n}\left(x_{i}\right) \rightarrow \prod_{i<n} B_{i n}\left(y_{i}\right)$
Then

$$
\prod_{i<n} B_{i n}\left(y_{i}\right) \prod_{i<n} B_{i n}\left(y_{i}^{\prime}\right)=\prod_{i<n} B_{i n}\left(y_{i}+y_{i}^{\prime}\right) \quad \text { by } 1,2
$$

Thus if $A \in A_{n}(R), \exists x_{i} \in R$ such that

$$
A \rightarrow \prod_{i<n} B_{i n}\left(x_{i}\right)
$$

So $\exists A_{0} \in G E_{n-1}(R)$ such that $A=\prod_{i} \sum_{n} B_{i n}\left(x_{i}\right) \cdot A_{0}$ Suppose also ($\left.B_{0} \in G E_{n-1}(R)\right) \quad A=\prod_{i} \prod_{i} B_{n}\left(y_{i}\right) \cdot B_{o}$

Then $\prod_{i} B_{i n}\left(x_{i}-y_{i}\right)=B_{0} A_{0}^{-1}$, whence $x_{i}=y_{i}, A_{0}=B_{0}$, and we have uniqueness. \square
Lemma (3.10f. $A_{n}(R)$ (any ring R) has the following presentation:

Generators: $B_{i}(x)(i<n)$ and $\left[\alpha_{1}, \ldots . \alpha_{n-1}, 1\right]$
Relations: The universal relations 1.-7., where applicable, together with the relations of $G E_{n-1}$ (R).
Proof. By (3.9), all that remains to be shewn is that $A \cdot B$ can be put in normal form (where each of A, B is in normal form) using only the prescribed relations.

$$
\begin{aligned}
A \cdot B & =\prod_{i} \sum_{n} B_{i n}\left(x_{i}\right) A_{0} \cdot \prod_{i} \sum_{n} B_{n}\left(y_{i}\right) B_{0} \\
& =\prod_{i} \sum_{n} B_{i n}\left(x_{i}+y_{i}^{\prime}\right) \cdot A_{0} B_{0}\left(y_{i}^{\prime} \in R\right) \text { by the same argument } \\
& =\prod_{i} \sum_{n} B_{i n}\left(x_{i}+y_{i}^{\prime}\right) \cdot C_{0} \quad\left(C_{0}=A_{0} B_{0} \in G E_{n-1}(R)\right) .
\end{aligned}
$$

We note in passing that a similar proof shews that the group of upper triangular invertible matrices, and the group of unitriangular matrices, each have presentations consisting of the obvious generators together with the applicable universal relations.
Definition: R is a strong GEn=ring if given $a_{1}, \ldots . a_{k}(k \leqslant n)$ and $b_{1}, \ldots . b_{k}$ in R, b_{i} not all zero, such that
$a_{1} b_{1}+\ldots+a_{k} b_{k}=0$
there exists $P \in G E_{k}(R)$ such that $\left(a_{1}, \ldots . a_{k}\right) \cdot P$ has at least one zero entry.

Note that a strong $G E_{n}-$ ring is a $G E_{n}-$ ring; it is also a strong $G E_{m}$-ring for all $m \leqslant n$. A strong $G E E A_{1}$-ring is just an integral domain (not necessarily commutative). Definition: R is a right Ore-ring if for all $a_{1}, a_{2} \in R$ $\exists b_{1}, b_{2} \in R$, not both zero, such that $a_{1} b_{1}+a_{2} b_{2}=0$.

Now suppose R is both a right Ore-ring and a strong GE_{2} ring (e.g. $R=$ any Euclidean ring); then given $a, b \in R$ $\exists P \in G E_{2}(R), c \in R$, such that $(a, b) \cdot P=(c, 0)$. Conversely, suppose R has this property; then it is a right Ore-ring, and it is a strong $G E_{2}-r i n g$ iff it is an integral domain.
Definition: A ring R is GE $_{2}$-reducible if for all $a, b \in R$ $\exists P \in G E_{2}(R), c \in R$, such that $(a, b) \cdot P=(c, 0)$. Theorem (3.11). (cf. Magnus.[3]) If R is $G E_{2}$ treducible, then $G E_{n}(R), n \geqslant 3$, has the following presentation:

Generators: $B_{i}(x),\left[\alpha_{1}, \ldots . \alpha_{n}\right]$
Relations: The universal relations 1.-7., together with the relations of $\mathrm{GE}_{3}(\mathrm{R})$ (i.e. relations involving just three subscripts).
Proof. The theorem is trivial for $n=3$, so assume $n>3$ and use induction.
Let $M_{i j}$ denote any product of $B_{i j}(x), B_{j i}(y),[\alpha, \beta]_{i j}$, i.e. (since R is certainly a $G E_{2}-r i n g$) any matrix in $G E_{n}(R)$ which differs from the identity matrix only at the intersections of the i, j rows and columns. We stress that $M_{i} j$ will denote any matrix of the appropriate form, so we shall write $M_{j i}=M_{i j}, M_{i j} M_{i j}=M_{i j}, B_{i j}(x) M_{i j}=M_{i j}$, etc. Let $A \in G E_{n}(R)$,

$$
A=\left[\begin{array}{cc}
\vdots & \\
\vdots & \\
a & b \\
\ldots
\end{array}\right]
$$

Now $\exists M \in G E_{2}(R)$ such that $(a, b) \cdot M=(c, 0)$ i.e. $\exists M_{12}$ such that

$$
A=\left(\begin{array}{lll}
\vdots & & \\
\vdots & & \\
0 & c & \ldots .
\end{array}\right] M_{12}=\left[\begin{array}{lll}
\vdots & & \\
\vdots & & \\
0 & 0 & d
\end{array} \ldots . .\right] M_{32} M_{21}
$$

$$
=\ldots=A_{1} M_{n n-1} \ldots M_{21} \text {, where } A_{1} \in A_{n}(R) \text {. }
$$

(This reduction of A is essentially due (in the case $R=Z$) to Magnus, op. cit.)
Then $A_{1}={ }_{1}^{n-1} B_{i n}\left(x_{i}\right) \cdot A_{0} \quad\left(A_{0} \in G E_{n-1}(R)\right)$

Suppose ${ }_{1}^{n-1} B_{i n}\left(x_{i}\right) A_{0} M_{n n-1} \ldots M_{21}=I$
Then $M_{n-1 n-2} \cdots M_{21}{\underset{i}{n-1} B_{i n}\left(x_{i}\right) A_{0} M_{n n-1}=I \quad \text { by } 1,7}^{n}$
By relations of $A_{n-1}(R)$ we can write this as .
so $\quad{ }_{1}^{n-1} B_{i n}\left(x_{i}^{\prime}\right) A_{00}=M_{n n-1}$
and thus $M_{n-1} \in A_{n}(R)$, and so (ψ^{*}) is a relation of $A_{n}(R)$. By (3.10), (*) is thus a consequence of the universal relations and the relations of $G E_{n-1}(R)$.
So it remains to shew that

$$
A={ }_{1}^{n-1} B_{i n}\left(x_{i}\right) A_{0} M_{n n-1} \cdots M_{21} \cdot{ }_{1}^{n-1} B_{i n}\left(y_{i}\right) A_{1} M_{n n-1} \cdots M_{21}
$$

can be expressed in the form

$$
\prod_{1}^{1} B_{i n}\left(x_{i}^{\prime}\right) A_{2} M_{n n-1} \ldots M_{21}
$$

($A_{0}, A_{1}, A_{2} \in G E_{n-1}(R)$) using only the universal relations and the relations of $G E_{3}(R)$; by induction we can use relations of $G E_{n-1}(R)$, and hence by (3.10) we can use relations of $A_{n}(R)$.
For the rest of this proof, ' \rightarrow ' will mean ' $=$, using only relations of $G E_{3}(R), G \bar{E}_{n-1}(R) \cdot A_{n}(R)$, and the universal relations.!
By (3.9), $M_{n-1 n-2} \cdots M_{21}{ }_{1}^{n-1} B_{i n}\left(y_{i}\right) A_{1} \rightarrow{ }_{1}^{n-1} B_{i n}\left(y_{i}^{\prime}\right) A_{2}\left(A_{2} \in G E_{n-1}(R)\right)$
So $A \rightarrow \prod_{1}^{n-1} B_{i n}\left(x_{i}\right) A_{0} M_{n n-1} \prod_{1}^{n-1} B_{i n}\left(y_{i}^{\prime}\right) A_{2} M_{n n-1} \cdots M_{21}$
$\rightarrow{ }_{1}^{n-1} B_{i n}\left(x_{i}\right) A_{0} M_{n n-1}{ }_{1}^{n-2} B_{i n}\left(y_{i}^{\prime}\right) A_{2} M_{n n-1} \ldots M_{21}$
Then $M_{n n-1} \prod_{1}^{n-2} B_{i n}\left(y_{i}^{\prime}\right) \rightarrow{ }_{1}^{n-2} B_{i n-1}\left(y_{i}^{\prime \prime}\right)_{1}^{n-2} B_{i n}\left(\hat{y}_{i}\right) M_{n n-1}$ by 1,2,

$$
A_{0} \prod_{1}^{n-2} B_{i n-1}\left(y_{i}^{\prime \prime}\right)=A_{3} \in G E_{n-1}(R)
$$

and ${ }_{1}^{n-1} B_{i n}\left(x_{i}\right) A_{3}{ }_{1}^{n-2} B_{i n}\left(\hat{y}_{i}\right) \rightarrow{ }_{1}^{n-1} B_{i n}\left(x_{i}^{\prime}\right) A_{3}$
So $A \rightarrow{ }_{1}^{n-1} B_{i n}\left(x_{i}^{\prime}\right) A_{3} M_{n n-1} A_{2} M_{n n-1} \cdots M_{21}$
Now $A_{2}={ }^{n} \prod_{1}^{2} B_{i n-1}\left(z_{i}\right) \hat{A}_{2} M_{n-1 n-2} \cdots M_{21} \quad\left(\hat{A}_{2} \in G E_{n-2}(R)\right)$

Then $M_{n n-1} A_{2}=M_{n n-1}{\underset{1}{\Pi}{ }^{2} B_{i n-1}\left(z_{i}\right) A_{2} M_{n-1 n-2} \cdots M_{21}, ~}_{n}$

$$
\begin{aligned}
& \rightarrow \prod_{1}^{n-1} B_{i n-1}\left(z_{i}^{\prime}\right)^{n-2} \prod_{1}^{2} B_{i n}\left(z_{i}^{\prime \prime}\right) M_{n n-1} A_{2} M_{n-1 n-2} \cdots M_{21} \text { by } 1,2,3,6 \\
& \rightarrow \prod_{1}^{n-1} B_{i n-1}\left(z_{i}^{\prime}\right)^{n-\Pi_{1}^{2}} B_{i n}\left(z_{i}^{\prime \prime}\right) A_{2} M_{n n-1} M_{n-1 n-2}: \ldots M_{21} \text { by } 2,6 \\
& \rightarrow \prod_{1}^{n-2} B_{i n}\left(z_{i}^{\prime \prime}\right) A_{1} M_{n n-1} \ldots M_{21} \text { by } 2\left(A_{4} \in G E_{n-1}(R)\right) .
\end{aligned}
$$

$$
\text { So } A \Rightarrow \prod_{1}^{n-1} B_{i n}\left(x_{i}^{\prime}\right) A_{3}{ }_{1}^{n-2} B_{i n}\left(z_{i}^{\prime \prime}\right) A_{4} M_{n n-1} \ldots M_{21} M_{n n-1} \ldots M_{21}
$$

$$
\rightarrow{ }_{1}^{n-1} B_{i n}\left(x_{i}^{\prime \prime}\right) A_{5} M_{n n-1} \ldots M_{21} M_{n n-1} \ldots M_{21} \quad\left(A_{5} \in G E_{n-1}(R)\right)
$$

Then $M_{n-2 n-3} \ldots M_{21} M_{n n-1} \rightarrow M_{n n-1} M_{n-2 n-3} \ldots M_{21}$ by 2,6 and $M_{n-1} M_{n-1 n-2} M_{n n-1} \rightarrow B_{n-20}\left(w_{1}\right) B_{n-1 n}\left(w_{2}\right) M_{n-1 n-2}$

$$
\begin{aligned}
& \cdot M_{n n-1} M_{n-1} n-2 \text { by relations } \\
& \text { of } G E(R)
\end{aligned}
$$

$\begin{aligned} & \text { So } A \rightarrow{ }_{1}^{n-1} B_{i n}\left(x_{i}^{\prime \prime}\right) A_{5} B_{n-2 n}\left(w_{1}\right) B_{n-1 n}\left(w_{2}\right) M_{n-1 n-2} M_{n n-1} M_{n-1 n-2} \text { of } G E \text { (R) } \\ & \ldots . M_{21} M_{n-1 n-2} \cdots M_{21}\end{aligned}$
$\rightarrow{ }_{1}^{n-1} B_{i n}\left(\hat{x}_{i}\right) A_{5} M_{n-1 n-2} M_{n n-1} M_{n-1 n-2} \ldots M_{21} M_{n-1 n-2} \ldots M_{21}$ $\rightarrow{ }_{1}^{n-1} B_{i n}\left(\hat{x}_{i}\right) A_{6} M_{n n-1} \cdots M_{21} M_{n-1 n-2} \cdots M_{21} \quad\left(A_{6} \in G E_{n-1}(R)\right)$
Then $A_{7}=M_{n-1 n-2} \cdots M_{21} M_{n-1, n-2} \cdots M_{21} \in G E_{n-1}(R)$
and as before, $M_{n n-1} A_{7} \rightarrow{ }_{1}^{n m} B_{i n}\left(\hat{z}_{i}\right) A_{8} M_{n n-1} \ldots M_{21} \quad\left(A_{8} \in G E_{n-1}(R)\right)$

$$
\text { So } \begin{aligned}
A & \rightarrow{ }^{n-1} \prod_{1}^{1} B_{i n}\left(\hat{x}_{i}\right) A_{6}{ }_{1}^{n} \prod_{1}^{2} B_{i n}\left(\hat{z}_{i}\right) A_{8} M_{n n-1} \ldots M_{21} \\
& \rightarrow{ }_{1}^{n-1} B_{i n}\left(\hat{\hat{x}}_{i}\right) A_{9} M_{n n-1} \ldots M_{21} \quad\left(A_{9} \in G E_{n-1}(R)\right) .
\end{aligned}
$$

Thus we have immediately:
Corollary (3.12). If R is $G E_{2}-r e d u c i b l e$ and universal for $G E_{3}$, it is universal for $G E_{n}$, all $n \geqslant 3$. \quad
Corollary (3.13). The ring Z of rational integers is universal for $G E_{n}$, all n.
Proof. The case $n=2$ is covered by $[1 ;(5.2)]$, and the case $n=3$ by (3.8). (3.12) now gives the result. \square

We conclude this chapter with some remarks on the interdependence of certain of the universal relations.

Proposition (3.14). In $\dot{G E}_{n}(R)$ (any ring $R, n \geqslant 3$) the universal relation 5. is a consequence of the other universal relations.

$$
\begin{aligned}
& \text { Proof. } B_{j i}(1) B_{i} j(-1) B_{j i}(-x) B_{i}(1) B_{j i}(-1) \\
& =B_{j i}(1) B_{i j}(-1) B_{k i} \cdot(-1) B_{j k}(-x) B_{k i}(1) B_{j k}(x) B_{i}(1) B_{j i}(-1) \\
& \text { by } 1,3(k \neq i, j) \\
& =B_{j i}(1) B_{k i}(-1) B_{k j}(-1) B_{j k}(-x) B_{i k}(x) B_{k i}(1) B_{k j}(1) \\
& \text { - } B_{j k}(x) B_{i k}(-x) B_{j i}(-1) \text { by } 1,3 \\
& =B_{k i}(-1) B_{k j}(-1) B_{k i}(1) B_{j k}(-x) B_{i k}(x) B_{j k}(x) \\
& \text { - } B_{k i}(1) B_{k j}(1) B_{k i}(-1) B_{j k}(x) B_{i k}(-x) B_{j k}(-x) \text { by } 1,2,3 \\
& =B_{k j}(-1) B_{i k}(x) B_{k j}(1) B_{i k}(-x) \text { by } 1,2 \\
& =B_{i}(x) \text { by } 1,2,3 \text {. } \quad \text {. }
\end{aligned}
$$

For $n=2$, this need not be the case:
Proposition (3.15). In $\mathrm{GE}_{2}(Z)$, the universal relation 5. is independent of the other universal relations.
Proof. Consider the group $G=\{ \pm 1, \pm \epsilon\}$ where $\epsilon^{2}=1$, and the map $\mathrm{GE}_{2}(Z) \rightarrow G$
given by

$$
\begin{array}{ll}
B_{12}(n) \rightarrow \epsilon^{n} & (n \in Z) \\
B_{21}(n) \rightarrow 1 & (n \in Z) \\
{[\alpha, \beta] \rightarrow \alpha \beta} & (\alpha, \beta= \pm 1)
\end{array}
$$

Then it is clear that the map is consistent with the relations $1,4,6,7\left(2,3\right.$ are vacuous in $\left.G E_{2}(R)\right)$ but not with 5. ロ

For certain values of the element x occuring in 5, however, 5. is a consequence of $1,4,6,7$:

Proposition (3.16). (Any R) The relation
$B_{i j}(1-\alpha)=B_{j i}(1) B_{i j}(-1) B_{j i}(\alpha-1) B_{i}(1) B_{j i}(-1) \quad(\alpha \in U(R))$
is a consequence of $1,4,6,7$ in $G E_{2}(R)$.
Proof. We have
$B_{i}\left(\alpha^{-1}-1\right) B_{j i}(1) B_{i j}(\alpha-1) B_{j i}\left(-\alpha^{-1}\right)=D_{i j}\left(\alpha^{-1}\right)$ by 1,4
and
$B_{j i}\left(\alpha^{-1}-1\right) B_{i j}(1) B_{j i}(\alpha-1) B_{i j}\left(-\alpha^{-1}\right)=D_{j i}\left(\alpha^{-1}\right)$ by 1,4
By 7, $D_{i, j}\left(\alpha^{-1}\right) D_{j i}\left(\alpha^{-1}\right)=I$.

So, using 1 ,
$B_{i j}\left(\alpha^{-1}-1\right) B_{j i}(1) B_{i j}(\alpha-1) B_{j i}(-1) B_{i j}(1) B_{j i}(\alpha-1) B_{i}\left(-\alpha^{-1}\right)=I$ Using 1 again,
$B_{i}{ }_{j}(-1) B_{j i}(1) B_{i}{ }_{j}(\alpha-1) B_{j i}(-1) B_{i}{ }_{j}(1) B_{j i}(\alpha-1)=I$
and the result follows. \square
Corollary (3:17). If R is a local ring, and if $|R / J|>2$ (J=Jacobson radical) then 5. is a consequence of $1,4,6,7$ in $G \sum_{2}(R)$.
Proof. If $x \notin U(R)$ then $x=\alpha-1$, where $\alpha=1+x \in U(R)$. If $x \in U(R)$ and $1+x=\alpha \in U(R)$ then $x=\alpha-1$ as before. Other case: $x \in U(R), 1+x \notin U(R)$.
Then $\exists \alpha, \beta \in U(R)$ with $\alpha+\beta=1$.
So $-1=(\alpha-1)+(\beta-1)$
and $\mathrm{x}=(\alpha-1)+(\delta-1)$ where $\delta=\beta+\mathrm{x}+1 \in \mathrm{U}(\mathrm{R})$.
By 1, $B_{i}(x)=B_{i j}(\alpha-1) B_{i}(\delta-1)$ and the result now follows.
Note that in the excluded cases of (3.17) we can use an argument similar to (3.15) to shew that 5. is independent;
if $\epsilon^{2}=1$, just map $B_{12}(\alpha) \mapsto \epsilon \quad(\alpha \in U(R))$
$B_{12}(x) \mapsto 1 \quad(x \notin U(R))$
$B_{21}(y) \mapsto 1 \quad(y \in R)$ $[\alpha, \beta] \mapsto 1(\alpha, \beta \in U(R))$.
4. Quasi-universal rings.

We already kiow from (3.7) that skew fields are universal for $G E_{n}$, all n. The Wedderburn-Artin structure theorem states that every semi-simple ring with the minimum condition on right ideals is a finite direct product of full matrix rings over skew fields. Now if R is any ring,

$$
\left(R_{n}\right)_{m} \cong R_{n m}
$$

and if R, S are rings,

$$
G E_{n}(R \times S) \cong G E_{n}(R) \times G E_{n}(S)
$$

which prompts us to ask whether the property of being universal for $G E_{n}$ is preserved under formation of direct products and of matrix rings; counter-examples to these hypotheses are given in (4.1) and (4.7). However, if R, S are universal for $G E_{n}$, we can shew (see (4.2)) that $G E_{n}(R \times S)$ has a presentation consisting of the universal relations, together with
$B_{i j}(x) B_{j i}(y)=B_{j i}(y) B_{i j}(x) \quad$ whenever $x y=0=y x .$.
Then if R is a $G E_{n}$-ring, universal for $G E_{n m}$, we can shew (see (4.9)) that $G E_{m}\left(R_{n}\right)$ has a presentation consisting of the universal relations together with

$$
\begin{array}{r}
B_{i j}(x) B_{j i}(y)[1+y x]_{j}=[1+x y]_{i} B_{j i}(y) B_{i}(x) \\
\quad \text { whenever } 1+x y \in U\left(R_{n}^{\prime}\right) .
\end{array}
$$

Thus we make the following definition:
Definition: A ring R is quasi-universal for $G E_{n}$ if $G E_{n}(R)$ has the following presentation:

Generators: $B_{i}(x),\left[\alpha_{1}, \ldots . \alpha_{n}\right] .\left(x \in R, \alpha_{k} \in U(R), \underset{i \neq j}{1} \underset{i}{i}, j, k \leqslant n\right.$,
Relations: The universal relations (page 15) with the following in place of 4:
4! $B_{i} j(x) B_{j i}(y)[1+y x]_{j}=[1+x y]_{i} B_{j i}(y) B_{i j}(x)$ whenever $1+x y \in U(R)$.
(Recall that $1+x y \in U(R) \Rightarrow 1+y x \in U(R)$; indeed, this follows from 4!)
Since 4 is a special case of 4^{\prime} (just put $x=\alpha-1, y=1$ and use 6), a ring which is universal for $G \sum_{n}$ is quasi-universal for $G E_{n}$. Note also that a ring which is quasi-universal for $G E_{n}$ and universal for $G E_{2}$ is universal for $G E_{n}$.
Proposition (4.1). Let R be the field of two elements. Then $R \times R$ is not universal for G_{2}.

Proof. $R \times R=\{(n, m) \mid n, m=0,1\}$ where $1+1=0$.

$$
U(R \times R)=1
$$

Let $S=\{0,1, x, 1+x\}$ where $1+1=0$ and $x^{2}=1$.
The map $\theta: R \times R \rightarrow S$ determined additively by $(1,1)^{\theta}=1$ and $(1,0)^{\theta}=x$ is a U-homomorphism. But

$$
(1,0) \cdot(0,1)=0=(0,1) \cdot(1,0)
$$

whereas
$(1,0)^{\theta}(0,1)^{\theta}=x(1+x)=1+x \neq 0$.
Thus by (2.2), $R \times R$ is not universal for $G E_{2}$. i However, $R \times R$ is quasi-universal for $G E_{2}$, by (4.2)(ii).
Theorem (4.2). (i) If R, S are universal for $G E_{n}, G E_{n}(R \times S)$ has a presentation consisting of the usual generators, and the universal relations together with
(*) $\quad B_{i j}(x) B_{j i}(y)=B_{j i}(y) B_{i j}(x) \quad$ whenever $x y=0=y x$.
(ii) If R,S are quasi-universal for $G E_{n}$, so is $R \times S$.

Proof. Clearly $(R \times S)_{n} \cong R_{n} \times S_{n}$

$$
\text { and } G E_{n}(R \times S) \cong G E_{n}(R) \times G E_{n}(S) \text {. }
$$

Thus $G E_{n}(R \times S)$ has a presentation consisting of presentations of $G E_{n}(R)$ and $G E_{n}(S)$, together with relations ensuring that these two subgroups commute with each other elementwise.

If $(x, y) \in R \times S$, we write $B_{i}(x, y)$ for $B_{i}((x, y))$.
Then

$$
\begin{aligned}
& B_{i j}(x, 0) B_{i j}(0, y)=B_{i j}(0, y) B_{i j}(x, 0) \text { by } 1 \\
& B_{i j}(x, 0) B_{j i}(0, y)=B_{j i}(0, y) B_{i j}(x, 0) \text { by }(*) \\
& B_{i j}(x, 0) B_{j k}(0, y)=B_{j k}(0, y) B_{i j}(x, 0) \text { by } 3,1 \\
& B_{i j}(x, 0) B_{k i}(0, y)=B_{k i}(0, y) B_{i j}(x, 0) \text { by } 3,1 \\
& B_{i j}(x, 0) B_{k r}(0, y)=B_{k r}(0, y) B_{i j}(x, 0) \text { by } 2
\end{aligned}
$$

$$
\text { Now } U(R \times S)=U(R) \times U(S) \cdot \text { Let } \alpha_{k} \in U(R), \beta_{k} \in U(S)
$$

$$
B_{i} j(x, 0)\left[\left(1, \beta_{1}\right), \ldots .\left(1, \beta_{n}\right)\right]=\left[\left(1, \beta_{1}\right), \ldots .\left(1, \beta_{n}\right)\right] B_{i} j(x, 0) \text { by } 6
$$

$$
\left[\left(\alpha_{1}, 1\right), \ldots .\left(\alpha_{n}, 1\right)\right]_{B_{i}}(0, y)=B_{i}(0, y)\left[\left(\alpha_{1}, 1\right), \ldots .\left(\alpha_{n}, 1\right)\right] \text { by } 6
$$

$$
\left[\left(\alpha_{1}, 1\right), \ldots .\left(\alpha_{n}, 1\right)\right]\left[\left(1, \beta_{1}\right), \ldots .\left(1, \beta_{n}\right)\right]
$$

$$
=\left[\left(1, \beta_{1}\right), \ldots .\left(1, \beta_{n}\right)\right]\left[\left(\alpha_{1}, 1\right), \ldots .\left(\alpha_{n}, 1\right)\right] \text { by } 7
$$

Thus the universal relations for $R \times S$, together with (*), are sufficient to ensure that $G E_{n}(R)$ and $G E_{n}(S)$ (as subgroups of $\left.G E_{n}(R \times S)\right)$ commute elementwise.

It remains to shew that the universal relations for $G E_{n}(R)$ and $G E_{n}(S)$ follow from 1.-7. and (*).
Now $1,2,3,6,7$ for $G E_{n}(R)$ are just special cases of the corresponding relations for $G E_{n}(R \times S)$. Suppose $\alpha \in U(R)$.

$$
\begin{aligned}
& B_{i j}(\alpha-1,0) B_{j i}(1,0) \\
= & B_{i j}((\alpha, 1)-(1,1)) B_{j i}(1,1) B_{j i}(0,-1) \text { by } 1 \\
= & D_{i}(\alpha, 1) B_{j i}(\alpha, 1) B_{i j}\left((1,1)-\left(\alpha^{-1}, 1\right)\right) B_{j l}(0,-1) \text { by } 4 \\
= & D_{i j}(\alpha, 1) B_{j i}(\alpha, 0) B_{i j}\left(1-\alpha^{-1}, 0\right) \text { by } 1,(*)
\end{aligned}
$$

which is the form taken by 4 for $G E_{n}(R)$ in $G E_{n}(R \times S)$. If $x \in R, B_{i j}(x, 0)$

$$
\begin{aligned}
& =B_{j i}(1,1) B_{i j}(-1,-1) B_{j i}(-x, 0) B_{i j}(1,1) B_{j i}(-1,-1) \text { by } 5 \\
& =B_{j i}(1,0) B_{i j}(-1,0) B_{j i}(-x, 0) B_{i j}(1,0) B_{j i}(-1,0) \text { by } 1,(*)
\end{aligned}
$$

which is the form taken by 5 for $G E_{n}(R)$ in $G E_{n}(R \times S)$.
Similarly for $G E_{n}(S)$. This completes (i).
(ii): Since (*) is a special case of 4^{\prime}, we have only to shew that 4^{\prime} for $G E_{n}(R)$ and $G E_{n}(S)$ is a consequence of the quasi-universal relations for $G E_{n}(R \times S)$.
If $x, y \in R$ and $1+x y \in U(R)$, then $(1,1)+(x, 0)(y, 0) \in U(R \times S)$.
So $B_{i} j(x, 0) B_{j i}(y, 0)[(1+y x, 1)] j$

$$
=[(1+x y, 1)]_{i} B_{j i}(y, 0) B_{i}(x, 0) \text { by } 4^{\prime}
$$

which is the form taken by 4^{\prime} for $G E_{n}(R)$ in $G E_{n}(R \times S)$.
Similarly for $G E_{n}(S)$.
Corollary (4.3). Let $S=\prod_{\lambda \in \Lambda} R_{\lambda},|\Lambda|<\cdots \infty$
(i) If R_{λ} is universal for $G \sum_{n}$, all $\lambda \in \Lambda, G E_{n}(S)$ has a. presentation consisting of the universal relations and (*). (ii) If R_{λ} is quasi-universal for $G E_{n}$, all $\lambda \in \Lambda$, so is S. Proof. The proof is a straightforward generalization of (4.2). ㅁ

We note in passing that there does not seem to be any reason why the above should hold for an infinite direct product of rings, except in some special cases (e.g. when R_{λ} is a local ring, all $\lambda \in \Lambda$) when the proof that any relation of a given length in $G E_{n}\left(R_{\lambda}\right)$ follows from the universal relations is a standard process whose form and length are independent of λ. It seems unlikely that the direct product of infinitely many copies of Z is a $G E_{n}-r i n g$ (for $n=2$, it isn't; see [1; page 11]) and whether it is quasi-universal
for $G E_{n}$ does not appear to be a trivial question. Definitions: Let $E_{n}(R)$ be the subgroup of $G E_{n}(R)$ generated by all $B_{i}(x), x \in R, 1 \leqslant i, j \leqslant n$, $i \neq j$. Let $D_{n}(R)$ be the subgroup of $\operatorname{Gin}_{n}(R)$ generated by all $[\alpha]_{k}, \alpha \in U(R), 1 \leqslant k \leqslant n$.
Lemma (4.4). If R is universal for $G E_{n}, E_{n}(R) \cap D_{n}(R)$ is generated by all $D_{i}(\alpha), \alpha \in U(R), \quad 1 \leqslant i, j \leqslant n$, $i \neq j$. (cf. [1; (9.1), Corollary 1])
Proof. $D_{i} j(\alpha) \in E_{n}(R)$ by 4 and 1 .
Now if $\left[\alpha_{1}, \ldots . \alpha_{n}\right]=\prod_{i, j, x}\left\{B_{i j}(x)\right\}$, this relation must follow from 1.-7. No diagonal matrices are introduced by any of these relations except 4 , and it follows that $\left[\alpha_{1}, \ldots . \alpha_{n}\right]$ is a product of $D_{i j}(\alpha)$, suitable i, j, α. Note that (4.4) need not hold for quasi-universal R. Let $[\alpha]_{1}=\prod_{i j k} D_{i j}\left(\alpha_{i j k}\right)$ in some order $\left(\alpha^{\prime} s \in U(R)\right)$. Then, as in the proof of (4.5) below, it follows that $\alpha \in U(R)^{\prime}$ (the derived group of $U(R)$). Now put $K=$ the field of two elements, and put $R=K_{z}$.

$$
\begin{aligned}
& I_{2}+\binom{00}{01}\binom{01}{00}=I_{2} \\
& I_{2}+\binom{01}{00}\binom{00}{01}=\binom{11}{01}
\end{aligned}
$$

So by relation $4^{\prime},\left[\binom{11}{01}\right]_{1} \in E_{n}(R) \cap D_{n}(R)$. But $U(R)$ is the dihedral group of order 6 , generated by $\binom{01}{10}$ and $\binom{11}{10}$. So $U(R)^{\prime}$ is cyclic of order 3 , generated by $\binom{11}{10}$. Thus $\binom{11}{01} \notin U(R)^{\prime}$, and so $E_{n}(R) \cap D_{n}(R)$ is not generated by all $D_{i}(\alpha), \alpha \in U(R)$. It follows from (4.4) that R is not universal for $G E_{n}$, any n : for a second proof of this, see (4.7). But, as we shall see in (4.11), R is quasi-universal for $G E_{n}$, all n.
Proposition (4.5). If R is universal for $G E_{n}$ and $[\alpha]_{1} \in E_{n}(R)$, then $\alpha \in U(R)^{\prime}$.
Proof. If
(*) $[\alpha]_{1}=\prod_{i j k} D_{i, j}\left(\alpha_{i j k}\right)$ in some order,
we have the relation $D_{i j}(\beta)=D_{1 j}(\beta) D_{1 i}\left(\beta^{-1}\right)$, and so (**) $[\alpha]_{1}=\prod_{i j} D_{1 i}\left(\beta_{i j}\right)$
Then $\alpha=\theta_{0} \delta_{1} \theta_{1} \delta_{2} \theta_{2} \ldots \ldots . \delta_{r} \theta_{r}$
where δ_{i} are the arguments of the $D_{1 n}$ in (**): thus

$$
\delta_{1}^{-1} \delta_{2}^{-1} \cdots \cdots . \delta_{r}^{-1}=1
$$

$$
\therefore \quad \alpha \equiv \theta_{0} \theta_{1} \ldots \ldots \theta_{r} \bmod U(R)^{\prime}
$$

Now $\theta_{0} \theta_{1} \ldots \ldots \theta_{r}=\phi_{0} \psi_{1} \phi_{1} \psi_{2} \phi_{2} \ldots \ldots . \psi_{s} \phi_{s}$
where ψ_{i} are the arguments of the $D_{1 n-1}$ in ($* *$): repeat the argument to get

$$
\alpha \equiv \phi_{0} \phi_{1} \ldots \ldots \phi_{\mathrm{s}} \bmod U(R)^{\prime}
$$

After $n-2$ such steps we have

$$
\alpha \equiv \lambda_{1} \lambda_{2} \ldots \ldots \lambda_{t} \bmod U(R)^{\prime}
$$

where λ_{i} are the arguments of the D_{12} in (**). Finally we get, $\because \lambda_{1}^{-1} \lambda_{2}^{-1} \cdots \ldots . \lambda_{t}^{-1}=1$,

$$
\alpha \equiv 1 \bmod U(R)^{\prime}
$$

Note that we have not yet used the fact that R is universal for GE_{n}.
If R is universal for $G E_{n}$ and $[\alpha]_{1} \in E_{n}(R)$, then (*) follows by (4.4), whence the result. \square

Now note that for any ring R; $G E_{2}^{\prime}(R) \cong E_{2}(R)$ (see [1; (9.1), Corollary 3] or (5.47). Then we have:
Corollary (4.6). Let R be a $G E_{2}$-ring, and $S=R_{2}$. If $G E_{2}^{\prime}(R) \neq E_{2}(R)$, then S is not universal for $G E_{n}$, any n. Proof. Given $x \in R$ and $i, j=1,2$ or 2,1 we have (in $G E_{2 n}(R)$, $n>1$)
$B_{i j}(x)=B_{i 3}(-x) B_{i j}(-1) B_{i 3}(x) B_{3 j}(1)$
As an equation in $G E_{n}(s)$, this reads

$$
\left[B_{i j}(x)\right]_{1}=B_{12}\left(-x e_{i 1}\right) B_{21}\left(-e_{1 j}\right) B_{12}\left(x e_{i_{1}}\right) B_{21}\left(e_{1 j}\right) \in E_{n}(s)
$$

If S is universal for $G E_{n}$, we have by (4.5)
$B_{i} j(x) \in U(S)^{\prime}=G E_{2}^{\prime}(R)$, since R is a $G E_{2}-$ ring.
$\therefore \quad \mathrm{E}_{2}(\mathrm{R}) \subseteq \mathrm{GE}_{2}^{\prime}(\mathrm{R})$.
Now $[\alpha \beta]_{i}=D_{j i}(\beta)[\beta \alpha]_{i} D_{i j}(\beta)$, so since $D_{k m}(\beta) \in E_{2}(R)$, it
follows that $\mathrm{GE}_{2}(\mathrm{R}) / \mathrm{E}_{2}(\mathrm{R})$ is abelian, and so

$$
G E_{2}^{\prime}(R) \subseteq E_{2}(R)
$$

Thus $\mathrm{GE}_{2}^{\prime}(\mathrm{R})=\mathrm{E}_{2}(\mathrm{R})$ and we have a contradiction. \quad a

Corollary (4.7). Let R be the field of two elements, and $S=R_{2}$. Then S is not universal for $G E_{n}$, any n. Proof. By (4.6) we have only to shew $\mathrm{Gi}_{2}^{\prime}(R) \neq \mathrm{E}_{2}(R)$. Since $U(R)=1, E_{2}(R)=G E_{2}(R)$. Then $\left|G E_{2}(R)\right|=6$. Since $G E_{2}(R)$ is not abelian, it is the dihedral group of order 6 , which is not a perfect group. \square We now introduce some more notation. Write $\mathrm{E}_{\mathrm{i} j}(\mathrm{x})=\mathrm{xe}_{\mathrm{i}} \mathrm{j}$ where $\mathrm{e}_{\mathrm{i} j}$ are the usual 'matrix units' $=$ the matrix with x in the i, j position and 0 elsewhere.

Where there is no ambiguity, we shall write $B_{k r}^{i j}(x)$ for $B_{n}^{i j} B_{r}^{i j}(x)$.
Write $[\alpha]_{n}^{i}=[\alpha]_{k n-n+i}$. Again, we shall generally write $[\alpha]_{k}^{i}$ for $[\alpha]_{n}^{i}$. Put $D_{k r}^{i j}(\alpha)=[\alpha]_{k}^{i}\left[\alpha^{-1}\right]_{r}^{j}$.

Now let R be a ring and $S=R_{n}$. Then $R_{n m} \cong S_{m}$ in a natural way: specifically, if $A=\left(a_{i j}\right) \in R_{n m}$ and $B=\left(b_{i j}\right)$ ϵS_{m}, then since $b_{i j} \in S=R_{n}$, $b_{i \cdot j}=\left(c_{k r}^{i j}\right)$. We identify A and B if $c_{k r}^{i} j=a_{i n-n+k j j n-n+r}$, all i, j, k, r This isomorphism induces an isomorphism

$$
U\left(R_{n m}\right) \cong U\left(S_{m}\right)
$$

$$
\text { i.e. } \quad G I_{n m}(R) \cong G L_{m}(S)
$$

Proposition (4.8). If R is a ring and $S=R_{n}$, there is a natural isomorphism $\theta: R_{n m} \rightarrow S_{m}$. Assume $m \geqslant 2$. θ induces an isomorphism between $G I_{n m}(R)$ and $G I_{m}(S)$, and an isomorphism between $E_{n m}(R)$ and $E_{m}(S)$. It induces an embedding of $G E_{n m}(R)$ in $G ⿷_{m}(S)$, and for this to be an isomorphism it is sufficient that R should be a $G E_{n}-r i n g$. Proof. We already have that θ and its restriction $G I_{n m}(R) \rightarrow G L_{m}^{\prime}(S)$ are isomorphisms. Then

$$
\begin{aligned}
& \theta: B_{n}^{i} j(x) \mapsto B_{k r}\left(E_{l j}(x)\right) \quad(k \neq r) \\
& \theta: B_{k k}^{i} j(x) \mapsto\left[B_{i j}(x)\right]_{k} \quad(i \neq j) \\
& \theta:\left[\alpha_{11}, \ldots \ldots \alpha_{n m}\right] \mapsto\left[\left[\alpha_{11}, \ldots, \alpha_{n 1}\right], \ldots \ldots\left[\alpha_{1 m}, \ldots . \alpha_{n m}\right]\right]
\end{aligned}
$$

which shews that θ maps $G E_{n m}(R)$ into $G E_{m}(S)$. Then

$$
B_{k k}^{i j}(x)=B_{k r}^{i j}(-x) B_{r k}^{j j}(-1) B_{k r}^{i j}(x) B_{r k}^{j j}(1) \quad \text { where } r \neq k
$$

and so, since $m \geqslant 2, E_{n m}(R)$ is generated by all $B_{k}^{i} j(x)$ $(x \in R, k \neq r)$. Thus θ maps $I_{n m}(R)$ into $E_{m}(S)$.
If $A \in S_{m}, A=\left(a_{i}\right)$ then

$$
\begin{aligned}
B_{k r}(A) & =\prod_{i, j} B_{k r}\left(E_{i j}\left(a_{i j}\right)\right) \\
& =\prod_{i, j}^{B_{k r}^{i j}\left(a_{i j}\right)^{\theta}}
\end{aligned}
$$

so θ maps $E_{n m}(R)$ onto $E_{m}(S)$.
Let R be a $G E_{n}$-ring. To shew that θ maps $G E_{n m}(R)$ onto $G E_{m}(S)$ it is sufficient to shew that $\alpha \in U(S) \Rightarrow[\alpha]_{k} \in G E_{n m}(R)^{\theta}$. But $U(S) \cong G E_{n}(R)$, so $\theta: \Pi C_{i} \rightarrow[\alpha]_{k}$ for suitable C_{i} of the form $B_{k}^{i}{ }_{k}^{j}(x)$ or $\prod_{i}\left[\beta_{i}\right]_{k}^{i}$.

Theorem (4.9). Let R be a $G E_{n}$-ring. Put $S=R_{n}$.
(I) If $n \geqslant 3$, in $\geqslant 2$ and R is universal for $G E_{n m}$, then S is universal for $G E_{m}$.
(II) If $n, m \geqslant 2$ and R is quasi-universal for $G E_{n m}$, then S is quasi-universal for $G B_{\text {m }}$.
Proof. We have to shew that 1.-7. for S imply 1.-7. for R, with 4^{\prime} in place of 4 in case (II). $R 1$ (i): $i \neq j: B_{k k}^{i}{ }_{k}^{j}(x) B_{k k}^{i j j}(y)=\left[B_{i j}(x)\right]_{k}\left[B_{i j}(y)\right]_{k}$
$=\left[B_{i j}(x) B_{i j}(y)\right]_{k}$ by $s 7$
$=\left[B_{i j}(x+y)\right]_{k}$
$=B_{k k}^{i j}(x+y)$
(ii) $k \neq r: B_{k r}^{i} j(x) B_{k}^{i} j(y)=B_{k r}\left(E_{i j}(x)\right) B_{k r}\left(E_{i j}(y)\right)$
$=B_{k r}\left(E_{i j}(x)+E_{i j}(y)\right)$ by $s 1$
$=B_{k r}\left(E_{i j}(x+y)\right)$
$=B_{k r}^{i j}(x+y)$
This completes R1.
$R 2(i) i \neq s, j \neq r: B_{k k}^{i j}(x) B_{k k}^{r}(y)=\left[B_{i j}(x)\right]_{k}\left[B_{r s}(y)\right]_{k}$
$=\left[B_{i} j(x) B_{r s}(y)\right]_{k}$ by $s 7$
$=\left[B_{r s}(y) B_{i j}(x)\right]_{k}$
$=\left[B_{r s}(y)\right]_{K}\left[B_{i j}(x)\right]_{k}$ by $s 7$
$=B_{k k}^{r}{ }_{k}^{s}(y) B_{k k}^{i j}(x)$
(ii) $k \neq p: B_{k}^{i}{ }_{k}^{j}(x) B_{p p}^{r s}(y)=\left[B_{i j}(x)\right]_{k}\left[B_{r_{s}}(y)\right]_{p}$

$$
\begin{aligned}
& =\left[B_{r s}(y)\right]_{p}\left[B_{i j}(x)\right]_{k} \text { by } s 7 \\
& =B_{p p}^{r s}(y) B_{k k}^{i j}(x)
\end{aligned}
$$

(iii) $\underset{\mathrm{p} \neq \mathrm{q}}{\mathrm{k} \neq \mathrm{q}} \mathrm{q}: \mathrm{B}_{\mathrm{k}}^{i j_{k}^{j}}(\mathrm{x}) \mathrm{B}_{\mathrm{pq}}^{\mathrm{rs}}(\mathrm{y})=\left[\mathrm{B}_{\mathrm{i} j}(\mathrm{x})\right]_{\mathrm{k}} \mathrm{B}_{\mathrm{pq}}\left(\mathrm{E}_{\mathrm{r} s}(\mathrm{y})\right)$

$$
=B_{p q}\left(E_{r_{s}}(y)\right)\left[B_{i}(x)\right]_{k} \text { by } 56
$$

$$
=B_{p q}^{r s}(y) B^{i j}(x)
$$

(iv) $k \neq p, i \neq s: B_{k k}^{i j}(x) B_{p k}^{r s}(y)=\left[B_{i j}(x)\right]_{k} B_{p k}\left(E_{r s}(y)\right)$

$$
\begin{aligned}
& =B_{p k}\left(E_{r s}(y) B_{i j}(-x)\right)\left[B_{i j}(x)\right]_{k} \text { by } s 6 \\
& =B_{p k}\left(E_{r s}(y)\right)\left[B_{i j}(x)\right]_{k} \\
& =B_{p k}^{r s}(y) B_{k k}^{i}(x)
\end{aligned}
$$

(v) $k \neq p, j \neq r: B_{k K}^{i j}(x) B_{k p}^{r}(y)=\left[B_{i j}^{j}(x)\right]_{k} B_{k p}\left(E_{r s}(y)\right)$

$$
\begin{aligned}
& =B_{k} p\left(B_{i j}(x) E_{r s}(y)\right)\left[B_{i j}(x)\right]_{k} \text { by } s 6 \\
& =B_{k p}\left(E_{r s}(y)\right)\left[B_{i j}(x)\right]_{k} \\
& =B_{k p}^{r s}(y) B_{k k}^{i j}(x)
\end{aligned}
$$

(Vi) $\begin{array}{rl}k \neq q, \\ k \neq t, ~ & t \neq p \neq q\end{array} ; B_{k}^{i j}(x) B_{p q}^{r s}(y)=B_{k t}\left(E_{i j}(x)\right) B_{p q}\left(E_{r s}(y)\right)$

$$
\begin{aligned}
& =B_{p q}\left(E_{r s}(y)\right) B_{k t}\left(E_{i j}(x)\right) \quad \text { by } s 2 \\
& =B_{p q}^{r s}(y) B^{i j}(x)
\end{aligned}
$$

(vii) $\begin{aligned} k \neq q, & j \neq r, \\ k \neq t, & B_{k t}^{i j}(x) B_{t}^{r s}(y)=B_{k t}\left(E_{i j}(x)\right) B_{t q}\left(E_{r s}(y)\right)\end{aligned}$

$$
\begin{aligned}
& =B_{t q}\left(E_{r s}(y)\right) B_{k t}\left(E_{i j}(x)\right) B_{k q}\left(E_{i j}(x) \operatorname{Err}_{b y S}^{s}(y)\right) \\
& =B_{t q}\left(E_{r s}(y)\right) B_{k t}\left(E_{i j}(x)\right) \text { by } s 1 \\
& =B_{t q}^{r}(y) B_{k t}^{i j}(x)
\end{aligned}
$$

(viii) $k \neq t, j \neq r, i \neq s, i \neq j, r \neq s:$
$B_{k}^{i}{ }_{i}^{j}(x) B_{t k}^{r s}(y)=B_{k}\left(E_{i j}(x)\right) B_{t k}\left(E_{r s}(y)\right)$
$=B_{k i}\left(B_{i j}(x)-I\right) B_{t k}(I) B_{t k}\left(-B_{r s}(-y)\right)$ by $S 1$
$=D_{k t}\left(B_{i j}(x)\right) B_{t k}\left(B_{i j}(x)\right) B_{k t}\left(I-B_{i j}(-x)\right) B_{t k}\left(-B_{r s}(-y)\right)$ by $S 4$

$$
\begin{aligned}
& =D_{k t}\left(B_{i j}(x)\right)\left[-B_{r s}(y)\right]_{t} B_{t k}\left(-B_{r s}(y) B_{i j}(x)\right) \\
& \text { - } B_{k t}\left(B_{i j}(-x) B_{r s}(-y)-B_{r s}(-y)\right) B_{t k}(I)\left[-B_{r s}(-y)\right]_{t} \quad \text { by } S 6,7 \\
& =\left[B_{i j}(x),-B_{i j}(-x) B_{r s}(y)\right]_{k t} B_{i k}\left(-B_{i j}(y) B_{i j}(x)\right) \\
& \text { - } B_{k t}\left(B_{i} j(-x)-I\right) B_{t k}(I)\left[-B_{r s}(-y)\right]_{t} \text { by } S 7 \\
& =\left[B_{i j}(x),-B_{i j}(-x) B_{r s}(y)\right]_{k t} B_{t k}\left(-B_{r s}(y) B_{i j}(x)\right) \\
& \text { - } D_{k t}\left(B_{i j}(-x)\right) B_{i k}\left(B_{i j}(-x)\right) B_{k t}\left(E_{i j}(-x)\right)\left[-B_{r s}(-y)\right]_{t} \\
& \text { by } 54 \\
& =\left[-B_{r s}(y)\right]_{t} B_{t k}\left(-B_{r s}(y) B_{i j}(-x)+B_{i j}(-x)\right) \\
& \text { - } B_{k t}\left(E_{i} j(-x)\right)\left[-B_{r s}(-y)\right]_{t} \text { by } 51,6,7 \\
& =B_{t k}\left(B_{i j}(-x)-B_{r s}(-y) B_{i j}(-x)\right) B_{k t}\left(E_{i j}(x) B_{r s}(-y)\right) \text { by } 56,7 \\
& =B_{t k}\left(E_{r s}(y)\right) B_{k t}\left(E_{i j}(x)\right) \\
& =B_{t k}^{r s}(y) B_{k}^{i}{ }_{t}^{j}(x)
\end{aligned}
$$

The remaining cases of $R 2$, i.e. as in (viii) but with $i=j$ or $r=s$ or both, will be dealt with after R3 (i)-(v).
$R 3(i) i \neq q: B_{k k}^{i j}(x) B_{k k}^{j q}(y)=\left[B_{i} j(x)\right]_{k}\left[B_{j q}(y)\right]_{k}$

$$
\begin{aligned}
& =\left[B_{i j}(x) B_{j q}(y)\right]_{k} \text { by } S T \\
& =\left[B_{j q}(y) B_{i j}(x) B_{i q}(x y)\right]_{k} \\
& =\left[B_{j q}(y)\right]_{k}\left[B_{i}(x)\right]_{k}\left[B_{i q}(x y)\right]_{k} \text { by } s 7 \\
& =B_{k}^{j q}(y) B_{k k}^{i j}(x) B_{k k}^{i q}(x y)
\end{aligned}
$$

(ii) $k \neq p: B_{k k}^{i f}(x) B_{k p}^{j r}(y)=\left[B_{i j}(x)\right]_{k} B_{k p}\left(E_{j r}(y)\right)$

$$
\begin{aligned}
& =B_{k p}\left(B_{i j}(x) E_{j r}(y)\right)\left[B_{i j}(x)\right]_{k} \text { by } s 6 \\
& =B_{k p}\left(E_{j r}(y)+E_{i r}(x y)\right)\left[B_{i j}(x)\right]_{k} \\
& =B_{k p}\left(E_{j r}(y)\right) B_{k p}\left(E_{i r}(x y)\right)\left[B_{i j}(x)\right]_{k} \text { by } S 1 \\
& =B_{k p}^{j r}(y) B_{k k}^{i j}(x) B_{k p}^{i r}(x y) \text { by } R 2(v)
\end{aligned}
$$

(iii) $k \neq p: B_{k p}^{i} j(x) B_{p p}^{j r}(y)=B_{k p}\left(E_{i j}(x)\right)\left[B_{j r}(y)\right]_{p}$

$$
\begin{aligned}
& =\left[B_{j r}(y)\right]_{p} B_{k p}\left(E_{i j}(x) B_{j r}(y)\right) \text { by S6 } \\
& =\left[B_{j r}(y)\right]_{p} B_{k p}\left(E_{i j}(x)+E_{j r}(x y)\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\left[B_{j r}(y)\right]_{p} B_{k p}\left(E_{i j}(x)\right) B_{k p}\left(E_{i r}(x y)\right) \quad \text { by } S 1 \\
& =B_{p p}^{j r}(y) B_{p}^{i j}(x) B_{p}^{i r}(x y)
\end{aligned}
$$

(iv) $k \neq t, t \neq p, k \neq p: B_{k}^{i}{ }_{t}^{j}(x) B_{t p}^{j r}(y)=B_{k t}\left(E_{i} j(x)\right) B_{t p}\left(E_{j r}(y)\right)$ $=B_{t p}\left(E_{j r}(y)\right) B_{k t}\left(E_{i j}(x)\right) B_{k p}\left(E_{i j}(x) E_{j r}(y)\right)$ by 53
$=B_{t p}\left(E_{j r}(y)\right) B_{k t}\left(E_{i j}^{\prime}(x)\right) B_{k p}\left(E_{i r}(x y)\right)$
$=B_{t p}^{j r}(y) B_{k}^{i} j(x) B_{k p}^{i r}(x y)$
(v) $k \neq t, i \neq j, j \neq r, i \neq r:$
$B_{k t}^{i j}(x) B_{t k}^{j r}(y)=B_{k t}\left(E_{i j}(x)\right) B_{i k}\left(E_{j r}(y)\right)$
$=B_{k t}\left(B_{i j}(x)-I\right) B_{t k}(I) B_{t k}\left(-B_{j r}(-y)\right)$ by $S 1$
$\left.=D_{k t}\left(B_{i j} f x\right)\right) B_{t k}\left(B_{i j}(x)\right) B_{k t}\left(E_{i j}(x)\right) B_{t k}\left(-B_{j r}(-y)\right) \quad$ by 54
$=D_{k t}\left(B_{i j}(x)\right)\left[-B_{j r}(-y)\right]_{t} B_{t k}\left(-B_{j r}(y) B_{i j}(x)\right)$

- $B_{k t}\left(E_{i j}(-x) B_{j r}(-y)\right) B_{t k}(I)\left[-B_{j r}(y)\right]_{t}$ by 56,7
$=\left[B_{i j}(x),-B_{i j}(-x) B_{j r}(-y)\right]_{k t} B_{t k}\left(-B_{j r}(y) B_{i j}(x)\right)$
- $B_{k t}\left(B_{i j}(-x) B_{i r}(x y)-I\right) B_{i k}(I)\left[-B_{j r}(y)\right]_{t}$ by $S 7$
$=\left[B_{i j}(x),-B_{i j}(-x) B_{j r}(-y)\right]_{k t} B_{t k}\left(-B_{j r}(y) B_{i j}(x)\right)$ - $D_{k t}\left(B_{i j}(-x) B_{i r}(x y)\right) B_{t k}\left(B_{i j}(-x) B_{i r}(x y)\right)$
- $B_{k t}\left(E_{i j}(-x)+E_{i r}(x y)\right)\left[-B_{j r}(y)\right]_{t}$ by $S 4$
$=\left[B_{i r}(x y),-B_{j r}(-y)\right]_{k t} B_{i k}\left(\left\{-B_{i j}(-x) B_{i r}(x y) B_{j r}(y) B_{i j}(x)\right.\right.$ - $\left.\left.B_{i j}(-x) B_{i r}(x y)+B_{i j}(-x) B_{i r}(x y)\right\}\right)$.
- $B_{k t}\left(E_{i j}(-x)+E_{i r}(x y)\right)\left[-B_{j r}(y)\right]_{t}$ by $S 1,6,7$
$=\left[B_{i r}(x y)\right]_{k} B_{t k}\left(\left\{B_{j r}(-y) B_{i j}(-x) B_{i r}(x y)\left\{B_{j r}(y) B_{i r}(x y)-I\right\}\right\}\right)$ - $B_{k t}\left(-E_{i r}(x y)+E_{i j}(x) B_{j r}(y)\right)$ by 56,7
$=\left[B_{i r}(x y)\right]_{K} B_{i k}\left(\left\{B_{i j}(-x)\left\{B_{i r}(x y)-B_{j r}(-y)\right\}\right\}\right) B_{k t}\left(E_{i j}(x)\right)$
$=\left[B_{i r}(x y)\right]_{k} B_{i k}\left(E_{j r}(y)\right) B_{k t}\left(E_{i j}(x)\right)$
$=B_{k k}^{i r}(x y) D_{t k}^{j r}(y) D_{k}^{i j}(x)$
$=B_{t k}^{j r}(y) B_{k}^{i}{ }_{t}^{j}(x) B_{k}^{i r}(x y)$ by R2(iv),(v)

The remaining cases of R 3 , i.e. as in (v) but with either $i=j$ or $j=r$, will be dealt with after R2(ix),(x). We are now in a position to complete R2:
R2(ix) k申t, ifj, $j \neq r, i \neq r:$
$B_{k}^{i j}(x) B_{t k}^{r r}(y)=B_{k}^{i j}(x) B_{t k}^{r j}(-y) B_{k}^{j r}(-1) B_{t k}^{r j}(y) B_{k}^{j r}(1)$ by $R 3(i i i)$,
$=B_{t k}^{f j}(-y) B_{k k}^{J P}(-1) B_{t k}^{P J}(y) B_{k k}^{j e}(1) B_{k}^{l j}(x)$ by $R 2(v),(v i i i)$
$=B_{t k}^{r r}(y) B_{k}^{i} j(x)$ by R3(iii), R1
(x), case (I): $k \neq t$, $i \neq j$. Since $n \geqslant 3$, choose $r \neq i, j$.
Then $B_{k}^{i i}(x) B_{t k}^{j j}(y)$
$=B_{k}^{i r}(-x) B_{t}^{r i}(-1) B_{k}^{i r}(x) B_{t}^{r i}(1) B_{t k}^{j j}(y) \quad$ by $R 3(i i i)$, $R 1$
$=B_{t k}^{j j}(y) B_{k}^{i r}(-x) B_{t}^{r i}(-1) B_{k}^{i r}(x) B_{t}^{r i}(1) \quad$ by $R 2(v)$, (ix)
$=B_{t k}^{j j}(y) B_{k}^{i i}(x)$ by R3(iii), R1
Case (II): Here we may have $n=2$. Suppose $k \neq t$, $i \neq j$:

$$
\begin{aligned}
B_{k}^{i t}(x) B_{t k}^{j j}(y) & =B_{k t}\left(E_{i i}(x)\right) B_{t k}\left(E_{j j}(y)\right) \\
& =B_{t k}\left(E_{j j}(y)\right) B_{k}\left(E_{i i}(x)\right) \text { by } S 4^{\prime}, 7 \\
& =B_{t k}^{j j}(y) B_{k}^{i} i(x)
\end{aligned}
$$

This completes R2; we now complete R3:

$$
R 3(v i)(I): k \neq t, i \neq j \text {. Choose s } \neq i, j \text {. }
$$

$$
B_{k}^{i} i(x) B_{t k}^{i} j(y)
$$

$$
=B_{k t}^{i s}(-x) B_{t t}^{s i}(-1) B_{k t}^{i s}(x) B_{t}^{s i t}(1) B_{t k}^{i j}(y) \quad \text { by } R 3(i i i), R 1
$$

$$
=B_{t k}^{i j}(y) B_{k t}^{i s}(-x) B_{t t}^{s i}(-1) B_{t k}^{s j}(-y) B_{k}^{i s}(x) B_{t}^{s i}(1) B_{t k}^{s j}(y) \text { by R3(ii), }
$$

$$
=B_{t k}^{i j}(y) B_{k}^{i}{ }_{t}^{s}(-x) B_{t}^{s i}(-1) E_{k}^{i}{ }_{t}^{s}(x) B_{t k}^{s j}(-y) B_{k k}^{i j}(x y) B_{t t}^{s i}(1) B_{t k}^{s j}(y)^{R 2}
$$

$$
\text { by } R 3(v), R 1
$$

$=B_{t k}^{i j}(y) B_{k}^{i s}(-x) B_{t}^{s i}(-1) B_{k t}^{i s}(x) B_{t}^{s i}(1) B_{k}^{i j}(x y)$ by $R 1,2$
$=B_{t k}^{i j}(y) B_{k}^{i i}(x) B_{k k}^{i j}(x y)$ by $R 3(i i i), R 1$
(II): $B_{k t}^{i i}(x) B_{t k}^{i j}(y)=B_{k t}\left(E_{i i} .(x)\right) B_{t k}\left(E_{i j}(y)\right)$

$$
=\left[B_{i j}(x y)\right]_{k} B_{t k}\left(E_{i j}(y)\right) B_{k t}\left(E_{i i}(x)\right) \text { by } 54^{\prime}
$$

$$
\begin{aligned}
& =B_{k}^{i}{ }_{k}^{j}(x y) B_{t k}^{i i}(y) B_{k}^{i j}(x) \\
& =B_{t k}^{i j}(y) B_{k t}^{i i}(x) B_{k}^{i j}(x y) \text { by R2 } \\
& \text { (vii) (I): } k \neq t, i \neq j \text {. Choose } r \neq i, j \text {. } \\
& B_{k}^{i}{ }_{t}^{j}(x) B_{t k}^{j}{ }^{j}(y) \\
& =B_{k}^{i}{ }_{t}^{j}(x) B_{t k}^{j r}(-y) B_{k}^{r j}(-1) B_{i k}^{j r}(y) B_{k}^{r}{ }_{k}^{j}(1) \text { by R3(iii), R1 } \\
& =B_{t k}^{j r}(-y) B_{k k}^{i r}(-x y) B_{k k}^{r j}(-1) B_{t k}^{j r}(y) B_{k k}^{i r}(x y) B_{k k}^{r j}(1) B_{k}^{i} j(x) \text { by } R 3(v) \text {, } \\
& =B_{t k}^{j r}(-y) B_{k k}^{r j}(-1) B_{k k}^{i j}(x y) B_{t k}^{j r}(y) B_{k k}^{r j}(1) B_{k}^{i j}(x) \text { by } R 3(i), R 2, R 1 \\
& =B_{t k}^{j r}(-y) B_{k}^{r j}(-1) B_{t k}^{j r}(y) B_{k k}^{r j}(1) B_{k}^{i}{ }_{t}^{j}(x) B_{k k}^{i j}(x y) \text { by } R 2 \\
& =B_{t k}^{j j}(y) B_{k t}^{i i}(x) B_{k}^{i j}(x y) \text { by R3(iii), R1 } \\
& \text { (II): } k \neq t, i \neq j \cdot B_{k}^{i}{ }_{t}^{j}(x) B_{t k}^{j j}(y) \\
& =B_{k t}\left(E_{i j}(x)\right) B_{t k}\left(E_{j j}(y)\right) \\
& =\left\lfloor B_{i j}(x y)\right]_{K} B_{t k}\left(E_{j j}(y)\right) B_{k t}\left(E_{i j}(x)\right) \text { by } . S 4^{\prime} \\
& =B_{k}^{i j}(x y) B_{t k}^{j j}(y) B_{k}^{i j}(x) \\
& =B_{t k}^{j j}(y) B_{k}^{i}{ }_{l}^{j}(x) B_{k k}^{i j}(x y) \text { by } R 2
\end{aligned}
$$

This completes R3.

$$
\begin{aligned}
& =\left[B_{i j}(\alpha-1) B_{j i}(1)\right]_{k} \quad \text { by } S 7 \\
& =\left[D_{i j}(\alpha) B_{j i}(\alpha) B_{i j}\left(1-\alpha^{-1}\right)\right]_{k} \\
& =\left[D_{i j}(\alpha)\right]_{k}\left[B_{j i}(\alpha)\right]_{k}\left[B_{i j}\left(1-\alpha^{-1}\right)\right]_{k} \quad \text { by } S 7 \\
& =D_{k k}^{i j}(\alpha) B_{k k}^{j i}(\alpha) B_{k k}^{i j}\left(1-\alpha^{-1}\right)
\end{aligned}
$$

(ii) $k \neq t$, $i \neq j: B_{k}^{i j}(\alpha-1) B_{t k}^{j i}(1)=B_{k t}\left(E_{i j}(\alpha-1)\right) B_{t k}\left(E_{j i}(1)\right)$

$$
=B_{k t}\left(B_{i}(\alpha-1)-I\right) B_{t k}(I) B_{t k}\left(-\dot{B}_{j i}(1)\right) \text { by } S 1
$$

$=D_{k t}\left(B_{i j}(\alpha-1)\right) B_{t k}\left(B_{i j}(\alpha-1)\right) B_{k t}\left(I-B_{i}(1-\alpha)\right) B_{t k}\left(-B_{j} i_{b y}(-1)\right)$
$=D_{k t}\left(B_{i j}(\alpha-1)\right)\left[-B_{j i}(-1)\right]_{t} B_{t k}\left(-B_{j i}(1) B_{i j}(\alpha-1)\right)$

$$
\cdot B_{k t}\left(B_{i}(1-\alpha) B_{j i}(-1)-B_{j i}(-1)\right) B_{t k}(I)\left[-B_{j i}(1)\right]_{t} \text { by } S 6,7
$$

$$
\begin{aligned}
& =\left[B_{i j}(\alpha-1),-B_{i j}(1-\alpha) B_{j i}(-1)\right]_{k t} B_{t k}\left(-B_{j i}(1) B_{i j}(\alpha-1)\right) \\
& \text { - } B_{k t}\left(B_{i j}(1-\alpha)[\alpha]_{i}-I\right) B_{t k}(I)\left[-B_{j i}(1)\right]_{t} \text { by } S 7 \\
& =\left[B_{i, j}(\alpha-1),-B_{i}{ }_{j}(1-\alpha) B_{j i}(-1)\right]_{k i} B_{t k}\left(-B_{j i}(1) B_{i j}(\alpha-1)\right) \\
& \text { - } D_{k t}\left(B_{i}(1-\alpha)[\alpha]_{i}\right) B_{t k}\left(B_{i j}(1-\alpha)[\alpha]_{i}\right) \\
& \text { - } B_{k i}\left(I-\left[\alpha^{-1}\right]_{i} B_{i j}(\alpha-1)\right)\left[-B_{j i}(1)\right]_{t} \text { by } S 4 \\
& =\left[[\alpha]_{i},-B_{i} j(1-\alpha) B_{j i}(-1)\left[\alpha^{-1}\right]_{i} B_{i j}(\alpha-1)\right]_{k t} \\
& \text { - } B_{t k}\left(\left\{-B_{i j}(1-\alpha)[\alpha]_{i} B_{j i}(1) B_{i j}(\alpha-1) B_{i j}(1-\alpha)[\alpha]_{i}+B_{i j}(1-\alpha)[\alpha]_{i}\right\}\right) \\
& \text { - } B_{k t}\left(I-\left[\alpha^{-1}\right]_{i} B_{i j}(\alpha-1)\right)\left[-B_{j i}(1)\right]_{t} \text { by } S 1,6,7 \\
& =\left[[\alpha]_{i},-\left[\alpha^{-1}\right]_{j} B_{j i}(-1)\right]_{k t} B_{t k}\left(\left\{B_{i} j(1-\alpha)[\alpha]_{i}-[\alpha]_{j} B_{j i}(\alpha)\right.\right. \\
& \text { - } \left.\left.B_{i} j(1-\alpha)[\alpha]_{i}\right\}\right) \\
& \text { - } B_{k t}\left(I-\left[\alpha^{-1}\right]_{i} B_{i j}(\alpha-1)\right)\left[-B_{j i}(1)\right]_{t} \\
& =\left[[\alpha]_{i},\left[\alpha^{-1}\right]_{j}\right]_{K t} B_{t k}\left(\left\{[\alpha]_{j} B_{i j}(1-\alpha)[\alpha]_{i}-B_{j i}(-1) B_{i j}(1-\alpha)[\alpha]_{i}\right\}\right) \\
& \text { - } B_{k t}\left(\left\{\left[\alpha^{-1}\right]_{i} B_{i j}(\alpha-1) B_{j i}(1)-B_{j i}(1)\right\}\right) \text { by } 56,7 \\
& =\left[[\alpha]_{i},[\alpha]_{j}^{-1}\right]_{k t} B_{i k}\left(E_{j i}(\alpha)\right) B_{k t}\left(E_{i j}\left(1-\alpha^{-1}\right)\right) \\
& =D_{k}^{i}{ }_{t}^{j}(\alpha) B_{t k}^{j i}(\alpha) B_{k}^{i j}\left(1-\alpha^{-1}\right) \\
& \text { (iji) kAt: } B_{k i}^{i i}(\alpha-1) B_{L k}^{i}(1)=B_{k t}\left(E_{i}(\alpha-1)\right) B_{L K}\left(E_{i i}(1)\right) \\
& =B_{k}([\alpha]-I) B_{i k}(I) B_{t k}\left(E_{i}(1)-I\right) \text { by } S 1 \\
& =D_{k}\left([\alpha]_{i}\right) B_{t k}\left([\alpha]_{i}\right) B_{k t}\left(I-\left[\alpha^{-1}\right]_{i}\right) B_{t k}\left(E_{i i}(1)-I\right) \text { by } S 4 \\
& =D_{k t}\left([\alpha]_{i}\right) B_{t k}\left([\alpha]_{i}\right) B_{k t}\left(E_{i}\left(1-\alpha^{-1}\right)\right)\left\{\prod_{j \neq i} B_{t k}\left(E_{j}(-1)\right)\right\} \text { by S1 } \\
& \left.=D_{k t}\left([\alpha]_{i}\right) B_{t k}(L \alpha]_{i}\right) B_{k t}^{i i}\left(1-\alpha^{-1}\right)\left\{\prod_{j \neq i} B_{t k}^{j j}(-1)\right\} \\
& =D_{k t}\left([\alpha]_{i}\right) B_{t k}\left([\alpha]_{i}\right)\left\{\prod_{j \neq i} B_{i k}^{j j}(-1)\right\} B_{k}^{i} i\left(1-\alpha^{-1}\right) \quad \text { by } R 2 \\
& =D_{k t}\left([\alpha]_{i}\right) B_{t k}\left([\alpha]_{i}+\sum_{j \neq i} E_{j j}(-1)\right) B_{k}^{i i}\left(1-\alpha^{-1}\right) \text { by si } \\
& =D_{k t}\left([\alpha]_{i}\right) B_{t k}\left(E_{i i}(\alpha)\right) B_{k t}^{i i}\left(1-\alpha^{-1}\right) \\
& =D_{k t}^{i i}(\alpha) B_{t k}^{i i}(\alpha) B_{k}^{i} i\left(1-\alpha^{-1}\right) \\
& \text { (II) } R 4^{\prime} \text { (i) } i \neq j, \quad 1+x y \in U(R):
\end{aligned}
$$

$$
\begin{aligned}
& B_{k k}^{i j}(x) B_{k k}^{j i}(y)[1+y x]_{k}^{j}=\left[B_{i j}(x)\right]_{k}\left[B_{j i}(y)\right]_{k}\left[[1+y x]_{j}\right]_{k} \\
= & {\left[B_{i j}(x) B_{j i}(y)[1+y x]_{j}\right]_{k} \text { by } S 7 } \\
= & {\left[[1+x y]_{i} B_{j i}(y) B_{i j}(x)\right]_{k} } \\
= & {\left[[1+x y]_{i}\right]_{k}\left[B_{j i}(y)\right]_{k}\left[B_{i}(x)\right]_{k} \text { by } s 7 } \\
= & {[1+x y]_{k}^{i} B_{k}^{j i}(y) B_{k k}^{i j}(x) } \\
(i i) & k \neq t \text { (we do not insist that } i \neq j) \text {, and } 1+x y \in U(R): \\
& B_{k}^{i j}(x) B_{t k}^{j i}(y)[1+y x]_{t}^{j}=B_{k t}\left(E_{i j}(x)\right) B_{t k}\left(E_{j i}(y)\left[[1+y x]_{j}\right]_{t}\right. \\
= & B_{k t}\left(E_{i j}(x)\right) B_{t k}\left(E_{j i}(y)\right)\left[I+E_{j i}(y) E_{i j}(x)\right]_{t} \\
= & {\left[I+E_{i}(x) E_{j i}(y)\right]_{k} B_{t k}\left(E_{j i}(y)\right) B_{k t}\left(E_{i}(x)\right) \quad \text { by } S 4^{\prime} } \\
= & {\left[[1+x y]_{i}\right]_{k} B_{t k}\left(E_{j i}(y)\right) B_{k t}\left(E_{i j}(x)\right) } \\
= & {[1+x y]_{k}^{i} B_{t k}^{j i}(y) B_{k}^{i j}(x) }
\end{aligned}
$$

This completes $R 4$ and $R 4^{\prime}$ in cases (I) and (II) respectively. R5(i) If $i \neq j, B_{k k}^{i} j(x)=\left[B_{i} j(x)\right]_{k}$
$=\left[B_{j i}(1) B_{i j}(-1) B_{j i}(-x) B_{i j}(1) B_{j i}(-1)\right]_{k}$
$=\left[B_{j i}(1)\right]_{K}\left[B_{i j}(-1)\right]_{K}\left[B_{j i}(-x)\right]_{K}\left[B_{i j}(1)\right]_{K}\left[B_{j i}(-1)\right]_{K}$ by $S 7$
$=B_{k}^{j i}(1) B_{k}^{i}{ }_{k}^{j}(-1) B_{k}^{j i}(-x) B_{k}^{i}{ }_{k}^{j}(1) B_{k}^{j i}(-1)$
(ii) As a consequence of $1,2,3$ we have

$$
\begin{aligned}
& \left\{B_{i j}(x)\right\}^{B_{j k}(1) B_{k j}(-1) B_{j k}(1)} \\
= & B_{j k}(-1) B_{k j}(1) B_{j k}(-1) B_{i j}(x) B_{j k}(1) B_{k j}(-1) B_{j k}(1) \\
= & B_{j k}(-1) B_{k j}(1) B_{i j}(x) B_{i k}(+\dot{x}) B_{k j}(-1) B_{j k}(1) \\
= & B_{j k}(-1) B_{i k}(x) B_{j k}(1) \\
= & B_{i k}(x)
\end{aligned}
$$

and $\left\{B_{j i}(x)\right\}^{B_{j k}(1) B_{k j}(-1) B_{j k}(1)}$
$=B_{j k}(-1) B_{k}(1) B_{j k}(-1) B_{j i}(x) B_{j k}(1) B_{k j}(-1) B_{j k}(1)$
$=B_{j k}(-1) B_{k j}(1) B_{j i}(x) B_{k j}(-1) B_{j k}(1)$

$$
\begin{aligned}
& =B_{j k}(-1) B_{j i}(x) B_{k i}(x) B_{j k}(1) \\
& =B_{k i}(x)
\end{aligned}
$$

So we can find P such that, if $k \neq t$,

$$
\begin{aligned}
&\left.B_{k}^{i} j(x)=\left\{B_{k}^{i r}(x)\right\}^{P} \quad \text { (where } r \neq i\right) \\
&=\left\{B_{k}^{r i}(1) B_{k}^{i r}(-1) B_{k}^{r i}(-x) B_{k}^{i r}(1) B_{k}^{r i}(-1)\right\}^{P} \\
&=B_{t k}^{j i}(1) B_{k}^{i j}(-1) B_{t k}^{j i}(-x) B_{k}^{i j}(1) B_{t k}^{j i}(-1) \text { by } R 5(i) \\
& \text { by } R 1,2,3
\end{aligned}
$$

Note that we do not insist that $i \neq j$.
This completes R5.

$$
\begin{aligned}
& \text { R6(i) } i \neq j: \quad B_{k k}^{i j}(x)\left[\alpha_{11}, \ldots . \alpha_{n m}\right] \\
& =\left[B_{i j}(x)\right]_{K}\left[\left[\alpha_{11}, \ldots . \alpha_{n 1}\right], \ldots .\left[\alpha_{1 m}, \ldots . \alpha_{n m}\right]\right] \\
& =\left[\left[\alpha_{11}, \ldots . \alpha_{n 1}\right], \ldots .\left[B_{i} j(x)\left[\alpha_{1 k}, \ldots . \alpha_{n k}\right]\right], \ldots\left[\alpha_{1 m}, \ldots . \alpha_{n m}\right]\right] \text { by } s 7 \\
& =\left[\left[\alpha_{11}, \ldots . \alpha_{n 1}\right], \ldots .\left[\left[\alpha_{1 k}, \ldots . \alpha_{n k}\right] B_{i}{ }_{j}\left(\alpha_{i k}^{-1} x \alpha_{j k}\right)\right], \ldots .\left[\alpha_{1 m}, \ldots . \alpha_{n m}\right]\right] \\
& =\left[\left[\alpha_{11}, \ldots . \alpha_{n_{1}}\right], \ldots .\left[\alpha_{1 m}, \ldots . \alpha_{n m}\right]\right]\left[B_{i j}\left(\alpha_{i k}^{-1} x \alpha_{j k}\right)\right]_{k} \text { by } s 7 \\
& =\left[\alpha_{11}, \ldots \alpha_{n m}\right] B_{k k}^{i}\left(\alpha_{i k}^{-1} x \alpha_{j k}\right) \\
& \text { (ii) } k \neq t \text { (we do not insist that } i \neq j \text {): } \\
& B_{k}^{i j j}(x)\left[\alpha_{11}, \ldots . \alpha_{n m}\right] \\
& =B_{k t}\left(E_{i}(x)\right)\left[\left[\alpha_{11}, \ldots . \alpha_{n 1}\right], \ldots .\left[\alpha_{1 m}, \ldots . \alpha_{n m}\right]\right] \\
& =\left[\left[\alpha_{11}, \ldots . \alpha_{n 1}\right], \ldots\left[\alpha_{1 m}, \ldots \alpha_{n m}\right]\right] B_{k t}\left(\left[\alpha_{1 k}, \ldots \alpha_{n k}\right]^{-\frac{1}{t}} \mathrm{E}_{i j}(x)\right. \\
& \text { - }\left[\alpha_{1}, \ldots . \alpha_{n t}\right] \text {) by } s 6 \\
& =\left[\left[\alpha_{11}, \ldots . \alpha_{n a}\right], \ldots .\left[\alpha_{1 m}, \ldots . \alpha_{n m}\right]\right] B_{k t}\left(E_{i j}\left(\alpha_{i k}^{-1} x \alpha_{j t}\right)\right) \\
& =\left[\alpha_{11}, \ldots . \alpha_{n m}\right] B_{k}^{i}{ }_{t}^{j}\left(\alpha_{i k}^{-1} x \alpha_{j t}\right)
\end{aligned}
$$

This completes R6.

$$
\begin{aligned}
& \mathrm{R} 7:\left[\alpha_{11}, \ldots \alpha_{n m}\right]\left[\beta_{11}, \ldots . \beta_{n m}\right] \\
& =\left[\left[\alpha_{11} \ldots \alpha_{n 1}\right], \ldots .\left[\alpha_{1 m}, \ldots . \alpha_{n m}\right]\right]\left[\left[\beta_{11}, \ldots . \beta_{n 1}\right], \ldots\left[\beta_{1 m}, \ldots . \beta_{n m}\right]\right] \\
& =\left[\left[\alpha_{11}, \ldots \alpha_{n 1}\right]\left[\beta_{11}, \ldots \beta_{n 1}\right], \ldots .\left[\alpha_{1 m}, \ldots \alpha_{n m}\right]\left[\beta_{1 m}, \ldots \beta_{n m}\right]\right] \text { by } \mathrm{S} 7 \\
& =\left[\left[\alpha_{11} \beta_{11}, \ldots . \alpha_{n 1} \beta_{n 1}\right], \ldots .\left[\alpha_{1 m} \beta_{1 m}, \ldots \alpha_{n m} \beta_{n m}\right]\right]
\end{aligned}
$$

$$
=\left[\alpha_{11} \beta_{11}, \ldots . \alpha_{n m} \beta_{n m}\right]
$$

This completes the proof of the theorem.
Theorem (4.10). Every semi-simple Artin ring is quasiuniversal for $G E_{n}$, all n.
Proof. If R is semi-simple and has the minimum condition on right ideals, then by the Wedderburn-Artin structure theorem,

$$
R \cong \prod_{i=1}^{r} K_{m_{i}}^{(i)}
$$

where m_{i} is a positive integer and K is a skew field, each i.
By (3.7), K is universal for $G E_{n}(\because$ a skew field is a local ring) and hence is quasi-universal for $G E_{n}$, all i,n. (i)

By (4.9), $K_{m_{i}}$ is quasi-universal for $G E_{n}$, all i, n.
By (4.3), R is quasi-universal for $G E_{n}$, allin. a
Note that by (4.1) and (4.7) we cannot hope to replace 'quasi-universal' by 'universal' in (4.10. Indeed we may now restate (4.1) and (4.7) as:
Corollary (4.11). If K is the field of two elements, then K_{2} and $K \times K$ are quasi-universal for $G E_{n}$, all n; K_{2} is not universal for $G E_{n}$, all n, and $K \times K$ is not universal for $G E_{2}$. \square

We now shew that, if we restrict attention to skew fields R, the above example (4.7) is the only case in which the restriction $n \geqslant 3$ in (4.9)(I) is needed. Proposition (4.12). Let R be a skew field containing more than two elements, and put $S=R_{2}$. Then S is universal for GE_{m}, all m.
Proof. In (4.9)(I), the only use of the condition $n \geqslant 3$ was in $R 2(x)$ and $R 3(v i)$, (vii). So it is sufficient to find alternative arguments for these cases when $n=2$ and R is a skew field with $|R| \geqslant 3$.
$R 2(x) k \neq t$, $i \neq j$. Assume first that $x \neq-1$ and $y \neq 1$. $B_{k}^{i} i(x) B_{t k}^{j j}(y)=B_{k t}\left(E_{i}(x)\right) B_{t k}\left(E_{j j}(y)\right)$

$$
=B_{k t}\left([\alpha]_{i}-I\right) B_{t k}(I) B_{t k}\left(-[\beta]_{j}\right) \quad \text { by } S 1 \quad(\alpha=1+x, \beta=1-y)
$$

$$
=D_{k t}\left([\alpha]_{i}\right) B_{t k}\left([\alpha]_{i}\right) B_{k t}\left(I-[\alpha]_{i}^{-1}\right) B_{t k}\left(-[\beta]_{j}\right) \text { by } 54
$$

$$
=D_{k t}\left([\alpha]_{l}\right)\left[-[\beta]_{j}\right]_{t} B_{t k}\left(-\left[\alpha, \beta^{-1}\right]_{i j}\right) B_{k t}\left(-I+[\alpha] \zeta^{-1}\right)
$$

$$
\text { - } \left.B_{t k}(I)[-[\beta]]^{-1}\right]_{t} \text { by } 56,7
$$

$$
=D_{k t}\left([\alpha]_{i}\right)\left[-[\beta]_{j}\right]_{i} B_{t k}\left(-\left[\alpha, \beta^{-1}\right]_{i j}\right) D_{k t}\left([\alpha]_{i}^{-1}\right) B_{i k}\left([\alpha]_{i}^{-1}\right)
$$

$$
\text { - } B_{k t}\left(I-[\alpha]_{i}\right)\left[-[\beta]_{j}^{-1}\right]_{t} \text { by } S 4
$$

$$
=\left[-[\beta]_{j}\right]_{t} B_{t k}\left(-[\alpha, \beta]_{i}^{-1}+[\alpha]_{i}^{-1}\right) B_{k t}\left(E_{i i}(-x)\right)\left[-[\beta]_{j}^{1}\right]_{t} \text { by s1,6,7 }
$$

$$
=B_{t k}\left([\alpha]_{i^{-1}}-\left[\alpha^{-1}, \beta\right]_{i j}\right) B_{k t}\left(E_{i i}(x)\right) \text { by } 56,7
$$

$$
=B_{t k}\left(E_{j j}(y)\right) B_{k t}\left(E_{i i}(x)\right)
$$

$$
=B_{t k}^{j j}(y) B_{k}^{i i}(x)
$$

If $x=-1$ or $y=1$ or both, we can choose $\gamma, \delta \in U(R)\left(=R^{*}\right.$, the non-zero elements of R) such that $\gamma^{-1} x \neq-1$, ys $\neq 1$. $B_{k}^{i} i(x) B_{t k}^{j j}(y)=[\gamma]_{k}^{i}[\delta]_{k}^{j} B_{k}^{i} i t\left(\gamma^{-1} x\right) B_{t k}^{j j}(y \delta)\left[\gamma^{-1}\right]_{k}^{i}\left[\delta^{-1}\right]_{k}^{j}$ by R6,7 $=[\gamma]_{k}^{i}[\delta]_{k}^{j} B_{t k}^{j}(y \delta) B_{k}^{i t}\left(\gamma^{-1} x\right)\left[\gamma^{-1}\right]_{k}^{i}\left[\delta^{-1}\right]_{k}^{j}$ by above $=B_{t k}^{j j}(y) B_{k}^{i i}(x)$ by $R 6,7$
R3(vi) $k \neq t$, $i \neq j$. First suppose $x \neq-1$; put $\alpha=1+x, \quad z=1-\alpha^{-1}$. $B_{k}^{i t}(x) B_{t k}^{i j}(y)=B_{k t}\left(E_{i i}(x)\right) B_{t k}\left(E_{i j}(y)\right)$
$=B_{k t}\left([\alpha]_{i}-I\right) B_{t k}(I) B_{t k}\left(-B_{i} j(-y)\right)$ by $S \mathcal{L}$
$=D_{k t}\left([\alpha]_{i}\right) B_{t k}\left([\alpha]_{i}\right) B_{k t}\left(I-[\alpha]_{i}^{-1}\right) B_{t k}\left(-B_{i j}(-y)\right)$ by S4
$=D_{k t}\left([\alpha]_{i}\right) B_{t k}\left([\alpha]_{i}\right) B_{k t}\left(E_{i i}(z)\right) B_{t k}\left(-B_{i j}(-y)\right)$
$=D_{k t}\left([\alpha]_{i}\right)\left[-B_{i j}(-y)\right]_{t} B_{i k}\left(-B_{i}{ }_{j}(y)[\alpha]_{i}\right)$

- $B_{k t}\left(-E_{i i}(z)+E_{i j}(z y)\right) B_{t k}(I)\left[-B_{i j}(y)\right]_{i}$ by $S 6,7$
$=D_{k t}\left([\alpha]_{i}\right)\left[-B_{i j}(-y)\right]_{t} B_{t k}\left(-B_{i j}(y)[\alpha]_{i}\right)$
- $B_{k t}\left(B_{i j}(z y)[\alpha]_{i}^{1}-I\right) B_{i k}(I)\left[-B_{i j}(y)\right]_{t}$
(vii) $k \neq t$, $i \neq j$. Assume $y \neq 1$; put $\beta=1-y$.

$$
B_{k}^{i}{ }_{t}^{j}(x) B_{t k}^{j j}(y)=B_{k t}\left(E_{i j}(x)\right) B_{i k k}\left(E_{j j}(y)\right)
$$

$$
=B_{k}{ }_{j}\left(B_{i j}(x)-I\right)_{t_{k}}(I) B_{t k}\left(-[\beta]_{j}\right) \text { by } S 1
$$

$$
=D_{k t}\left(B_{i} j(x)\right) B_{t k}\left(B_{i j}(x)\right) B_{k t}\left(I-B_{i} j(-x)\right) B_{t k}\left(-[\beta]_{j}\right) \text { by } \$ 4
$$

$$
=D_{k t}\left(B_{i j}(x)\right)\left[-[\beta]_{j}\right]_{t} B_{t k}\left(-[\beta]_{j}^{1} B_{i j}(x)\right)
$$

- $B_{k t}\left(B_{i j}(-x \beta)-I\right) B_{t k}(I)\left[-[\beta]_{j}^{-1}\right]_{t}$ by $s 6,7$
$=D_{k t}\left(B_{i j}(x)\right)\left[-[\beta]_{j}\right]_{i} B_{i k}\left(-[\beta]_{j}^{1} B_{i j}(x)\right)$

$$
\begin{aligned}
& \text { - } D_{k t}\left(B_{i j}(-x \beta)\right) B_{t k}\left(B_{i} j(-x \beta)\right) B_{k t}\left(I-B_{i j}(+x \beta)\right)\left[-[\beta]_{j}^{-1}\right]_{t} \\
& \text { by } 54
\end{aligned}
$$

$$
\begin{aligned}
& =D_{k t}\left([\alpha]_{i}\right)\left[-B_{i}(-y)\right]_{t} B_{t k}\left(-B_{i}(y)[\alpha]_{i}\right) \\
& \text { - } D_{k t}\left(B_{i j}(z y)[\alpha]^{-1}\right) B_{t k}\left(B_{i j}(z y)[\alpha]^{-1}\right) \\
& \text { - } B_{k t}\left(I-[\alpha]_{i} B_{i j}(-z y)\right)\left[-B_{i j}(y)\right]_{i} \text { by } S 4 \\
& =\left[[\alpha]_{i} B_{i j}(z y)[\alpha]_{i}^{-1},-[\alpha]_{i}^{-1} B_{i j}(-y)[\alpha]_{i} B_{i j}(-z y)\right] \\
& \text { - } B_{t k}\left(\left\{-B_{i j}(z y)[\alpha]_{i}^{-1} B_{i j}(y)[\alpha]_{i j}(z y)[\alpha]_{i}^{-1}+B_{i j}(z y)[\alpha]_{i}^{-1}\right\}\right) \\
& \text { - } B_{k t}\left(E_{i i}(-x)+E_{i j}(x y)\right)\left[-B_{i j}(y)\right]_{t} \text { by } S 1,6,7 \\
& =\left[B_{i j}(x y)\right]_{k} B_{t k}\left(B_{i}\left(-y+z y+\alpha^{-1} y+z y\right)[\alpha]^{-1}+B_{i} j(-\dot{y}+z y)[\alpha]^{-1}\right) \\
& \text { - } \mathrm{B}_{\mathrm{ik}}\left(\mathrm{E}_{\mathrm{i}}(\mathrm{x})+\mathrm{E}_{\mathrm{i} j}(-\mathrm{xy})+\mathrm{E}_{\mathrm{i} j}(\mathrm{xy})\right) \text { by } \mathrm{S} 6,7 \\
& =\left[B_{i j}(x y)\right]_{k} B_{i k}\left(\left(B_{i j}(z y)-B_{i j}(z y-y)\right)[\alpha]_{i}^{-1}\right) B_{k t}\left(E_{i}(x)\right) \\
& =\left[B_{i j}(x y)\right]_{k} B_{t k}\left(E_{i} j(y)[\alpha]_{i}^{-1}\right) B_{k t}\left(E_{i}(x)\right) \\
& =\left[B_{i j}(x y)\right]_{k} B_{t k}\left(E_{i j}(y)\right) B_{k t}\left(E_{i i}(x)\right) \\
& =B_{k}^{i j}(x y) B_{t k}^{i j}(y) B_{k}^{i i}(x) \\
& =B_{t k}^{i j}(y) B_{k}^{i i}(x) B_{k}^{i j}(x y) \text { by R2 } \\
& \text { In the case } x=-1 \text {, choose } \gamma \neq 0,1 \text {; so } \gamma^{-1} \mathrm{x} \neq-1 \text {. } \\
& B_{k}^{i} i(x) B_{t k}^{i j}(y)=[\gamma]_{k}^{i} B_{k}^{i} i\left(\gamma^{-1} x\right) B_{t k}^{i j}(y)\left[y^{-1}\right]_{k}^{i} \text { by } R 6,7 \\
& =[\gamma]_{k}^{i} B_{t k}^{i j}(y) B_{k}^{i} i\left(y^{-1} x\right) B_{k}^{i j}\left(y^{-1} x y\right)\left[y^{-1}\right]_{k}^{i} \text { by the } \\
& =B_{t k}^{i j}(y) B_{k}^{i} i \quad(x) B_{k k}^{i j}(x y) \text { by } R 6,7
\end{aligned}
$$

$$
\begin{aligned}
= & {\left[B_{i j}(x) B_{i j}(-x \beta),-B_{i} j(-x)[\beta]_{j} B_{i j}(x \beta)\right]_{k t} } \\
& \cdot B_{t k}\left(\left\{-B_{i} j(-x \beta)[\beta]_{j}^{-1} B_{i j}(x y)+B_{i j}(-x \beta)\right\}\right) \\
& \cdot B_{k t}\left(E_{i j}(-x \beta)\right)\left[-[\beta]_{j}^{-1}\right]_{t} \text { by } S_{1,6,7} \\
= & {\left[B_{i j}(x y)\right]_{k} B_{t k}\left(B_{i j}(-x \beta)-[\beta]_{j} B_{i j}(-x \beta)\right) B_{k t}\left(E_{i j}(x \beta)[\beta]_{j}^{1}\right) } \\
= & {\left[B_{i j}(x y)\right]_{k} B_{t k}\left(E_{j j}(y)\right) B_{k t}\left(E_{i}(x)\right) \quad \text { by } 56,7 } \\
= & B_{k k}^{i j}(x y) B_{t k}^{j j}(y) B_{k t}^{i j}(x) \\
= & B_{t k}^{j j}(y) B_{k}^{i j}(x) B_{k k}^{i j}(x y) \quad \text { by R2 }
\end{aligned}
$$

In the case $y=1$, choose $\delta \neq 0,1$; so y $\delta \neq 1$.

$$
\begin{aligned}
B_{k}^{i j}(x) B_{t k}^{j j}(y) & =[\delta]_{k}^{j} B_{k t}^{i j}(x) B_{t k}^{j j}(y \delta)\left[\delta^{-1}\right]_{k}^{j} \text { by } R 6,7 \\
& =[\delta]_{k}^{j} B_{t k}^{j j}(y \delta) B_{k}^{i j}(x) B_{k k}^{i j}(x y \delta)\left[\delta^{-1}\right]_{k}^{j} \text { by the above } \\
& =B_{t k}^{j j}(y) B_{k}^{i j}(x) B_{k}^{i j}(x y) \text { by R6,7. }
\end{aligned}
$$

Now by the Wedderburn-Artin theorem, the rings K_{m} (K= sfield, $m=1,2, \ldots$) are the 'building blocks' for semisimple Artin rings. We now know that all such K_{m} are universal for $G E_{n}$, all n, except K_{2} when $|K|=2$. We now investigate further to see which semi-simple Artin rings are universal for GE_{n}.
Proposition (4.13). Let $R=K_{\text {in }}$ where K is a sfield and $m a$ positive integer. Then, provided $|R|>2$, for all $x \in R$ $\exists \alpha, \beta \in U(R)$ such that $x=\alpha+\beta$. Proof. Let J_{r} be the matrix with r 1's in leading positions on the diagonal, and $0^{\prime} s$ elsewhere, $0 \leqslant r \leqslant m$. So in particular $J_{0}=0, J_{1}=e_{11}, J_{m}=1_{R}$.
Then given $x \in R, \exists \theta, \phi \in U(R)=G I_{m}(K)$ such that

$$
\theta x \phi=J_{r}, \text { some } r(=r a n k \text { of } x)
$$

If $|K|>2$, choose $k \in K, k \neq 0,-1$. Then $1=(1+k)-k$, and both $1+k$ and $-k$ are units of K.
Then $J_{r}=[1+k, 1+k, \ldots .1+k, 1,1, \ldots .1]+[-k,-k, \ldots .-k,-1,-1, \ldots .-1]$

$$
=\alpha+\beta \quad(\alpha, \beta \in U(R))
$$

and so $x=\theta^{-1} \alpha \phi^{-1}+\theta^{-1} \beta \phi^{-1}$ as required.
Now suppose $|K|=2$ and $m \geqslant 2$.

Put $A=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right], B=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right], C=\left(\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right]$.
and

$$
D=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 0 \\
1 & 0 & 0
\end{array}\right) \quad, \quad E=\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 0 \\
1 & 0 & 1
\end{array}\right)
$$

Then $J_{0}={ }^{1} R+1_{R}$

$$
\begin{aligned}
& J_{1}=\left(\begin{array}{ll}
A & 0 \\
0 & I_{m-2}
\end{array}\right]+\left(\begin{array}{ll}
B & 0 \\
0 & I_{m-2}
\end{array}\right) \\
& J_{2}=\left(\begin{array}{ll}
A & 0 \\
0 & I_{m-2}
\end{array}\right)+\left(\begin{array}{ll}
C & 0 \\
0 & I_{m-2}
\end{array}\right] \\
& J_{3}=\left[\begin{array}{ll}
D & 0 \\
0 & I_{m-3}
\end{array}\right]+\left(\begin{array}{ll}
\mathrm{E} & 0 \\
0 & I_{m-3}
\end{array}\right)
\end{aligned}
$$

and for r even,

$$
J_{r}=\left(\begin{array}{llll}
A & & & 0 \\
& A & & 0 \\
& \ddots & \ddots & \\
0 & & A & \\
& & & I_{m-r}
\end{array}\right)+\left(\begin{array}{llll}
C & & & \\
& C & & 0 \\
& \ddots & \\
0 & & C & \\
& & & I_{m-r}
\end{array}\right)
$$

and for r odd,

$$
J_{p}=\left(\begin{array}{ccc}
A & & \\
\ddots & 0 \\
& \ddots & \\
0 & & D \\
I_{m-r}
\end{array}\right)+\left(\begin{array}{llll}
C & & & \\
& \ddots & 0 & \\
0 & & E & \\
0 & & & I_{m-r}
\end{array}\right)
$$

So in every case we have $J_{r}=\alpha+\beta, \alpha, \beta \in U(R)$
and so $\mathrm{x}=\theta^{-1} \alpha \phi^{-1}+\theta^{-1} \beta \phi^{-1}$. $\quad \square$
Theorem (4.14). If R,S are rings, both universal for $G E_{n}$, and if for all $x \in R, y \in S$ we have $x=\alpha+\beta, y=\gamma+\delta$ for some $\alpha, \beta \in U(R), \gamma, \delta \in U(S)$, then $R \times S$ is universal for $G E_{n}$. Proof. By (4.2) it is sufficient to shew that
(*) $\quad B_{i j}(x) B_{j i}(y)=B_{j i}(y) B_{i j}(x)$, where $x y=0=y x$
is a consequence of the universal relations. Examining the proof of (4.2), we see that in fact we need only consider. the case of (*) where $x \in R, y \in S$.

Write $R \times S$ as the set of all pairs $(x, y)(x \in R, y \in S)$.

Then $B_{i j}(x, 0) B_{j i}(0, y)$

$$
\begin{aligned}
& \left.=B_{i j}(\alpha+\beta, 0) B_{j i}(0, \gamma+\delta) \quad \text { (suitable } \alpha, \beta \in U(R), \gamma, \delta \in U(S)\right) \\
& =\left[\left(-\beta, \delta^{-1}\right)\right]_{i} B_{i j}(\theta-1,0) B_{j i}(0, \phi+1)\left[\left(-\beta^{-1}, \delta\right)\right]_{i} \text { by } 6,7 \\
& \text { where } \theta=-\beta^{-1} \alpha, \phi=\gamma \delta^{-1} \\
& =\left[\left(-\beta, \delta^{-1}\right)\right]_{i} B_{i j}((\theta, 1)-(1,1)) B_{j i}(1,1) B_{j i}(-1, \phi)\left[\left(-\beta^{-1}, \delta\right)\right]_{i} \\
& \text { by } 1 \\
& =\left[\left(-\beta, \delta^{-1}\right)\right]_{i} D_{i}(\theta, 1) B_{j i}(\theta, 1) B_{i}\left(1-\theta^{-1}, 0\right) \\
& \text { - } B_{j i}(-1, \phi)\left[\left(-\beta^{-1}, \delta\right)\right]_{i} \text { by } 4 \\
& =\left[\left(\alpha, \delta^{-1}\right),\left(-\theta^{-1}, \phi\right)\right]_{i j} B_{j i}\left(-\theta, \phi^{-1}\right) \\
& \cdot B_{i j}\left(\left(\theta^{-1}, 1\right)-(1,1)\right) B_{j i}(1,1)\left[\left(-\beta^{-1}, \delta\right),\left(-1, \phi^{-1}\right)\right]_{i j} \text { by } 6,7 \\
& =\left[\left(\alpha, \delta^{-1}\right),\left(-\theta^{-1}, \phi\right)\right]_{i} B_{j i}\left(-\theta, \phi^{-1}\right) D_{i}\left(\theta^{-1}, 1\right) B_{j i}\left(\theta^{-1}, 1\right) \\
& \text { - } B_{i j}(1-\theta, 0)\left[\left(-\beta^{-1}, \delta\right),\left(-1, \phi^{-1}\right)\right]_{i j} \text { by } 4 \\
& =\left[\left(-\beta, \delta^{-1}\right),(-1, \phi)\right]_{i j} B_{j i}\left(\left(-\theta^{-1}, \phi^{-1}\right)+\left(\theta^{-1}, 1\right)\right) \\
& \text { - } B_{i j}(1-\theta, 0)\left[\left(-\beta^{-1}, \delta\right),\left(-1, \phi^{-1}\right)\right]_{i j} \text { by } 1,6,7 \\
& =B_{j i}\left(0, \phi\left(\phi^{-1}+1\right) \delta\right) B_{i}(\beta(1-\theta), 0) \text { by } 6,7 \\
& =B_{j i}(0, \phi \delta+\delta) B_{i j}(-\beta \theta+\beta ; 0) \\
& =B_{j i}(0, \gamma+\delta) B_{i j}(\alpha+\beta, 0) \\
& =B_{j i}(0, y) B_{i j}(x, 0) \text {. }
\end{aligned}
$$

Corollary (4.15). Let K be the field of two elements. Then a sufficient condition for a semi-simple Artin ring R to be universal for $G E_{n}$, all n, is that R should not contain K or K_{2} as direct factore.
Proof.
$R \cong \prod_{i=1}^{r} K_{m_{i}}^{(i)}$ where $K{ }^{(i)}$ is a sfield, and
(i) $\mid=2 \Rightarrow m_{i} \geqslant 3$. Each $K_{m_{i}}^{(i)}$ is universal for $G I_{n}$,
by (3.7), (4.9), and (4.12). Then R is universal for $G E_{n}$ (all n) by (4.13) and (4.14).

The proof of (3.7) depended on the fact that the set of non-units in a local ring is an ideal. We now try to generalize this. Let $J(R)$ be the Jacobson radical of R. If $R / J(R)$ is universal for $G E_{n}$, what about R ?

Let R be semi-primitive and let M be an R-bimodule. Define $\mathrm{S}=\mathrm{R} \times \mathrm{M}$ with addition componentwise, and multiolication given by

$$
(r, m)\left(r^{\prime}, m^{\prime}\right)=\left(r r^{\prime}, r m^{\prime}+m r^{\prime}\right)
$$

(S is the split null extension of R by M.) Identify R, M with ($R, 0$), ($0, M$) respectively. M is an ideal of S and $M^{2}=0$, so $M \subseteq J(S)$. Further, $S / M \cong R$ is semi-primitive, so $J(S)=M$.

Assume that $U(R)^{\prime}=1$, and that $\alpha m=m \alpha$ for all $\alpha \in U(R), m \in M$. Then $U(S)=a l l \alpha+m, \alpha \in U(R), m \in M$. Further, $U(S)^{\prime}=1$, for
$(\alpha+m)\left(\alpha^{\prime}+m^{\prime}\right)=\alpha \alpha^{\prime}+\alpha m^{\prime}+m \alpha^{\prime}$
$=\alpha^{\prime} \alpha+m^{\prime} \alpha+\alpha^{\prime} m$
$=\left(\alpha^{\prime}+m^{\prime}\right)(\alpha+m)$
Now suppose $\exists x \in R, y \in M$ with $x y \neq y x$. Then $1 \neq 1+x y-y x \in U(S)$, and
$[1+x y-y x]_{1}=[1+x y]_{1}[1+y x]_{1}^{-1}$
$=[1+x y]_{1}[1+y x]_{2}^{-1} D_{21}(1+y x)$
$\epsilon E_{n}(S)$ by $4,4^{\prime}$ and 7.
But $U(S)^{\prime}=1$, so $1+x y-y x \notin U(S)^{\prime} . \therefore$ is not universal for $G E_{n}$, any n, by (4.5).

As an example, we can take $R=k[x]$ and $M=k\langle x, y\rangle$ (the free associative algebra over the field k on the free generators $x, y) . M$ is an R-bimodule in a natural way. R is semi-primitive, $U(R)^{\prime}=1$ and $U(R)=k^{*}$ commutes elementwise with M. Further, $x \in R, y \in M$ and $x y \neq y x$. So if we construct S as above, S is not universal for $G E_{n}$, any n. But $S / J(S) \cong k[x]$ is universal for $G E_{2}$ (see $[1 ;(5.2)]$).

Note: For $n>2$ we do not know whether $k[x]$ is universal for Genj it scems reasonable to conjecture that it is. We do in fact obtain a presentation for GEn (k[x]) in (6.4).

In spite of the above, we can give an easy sufficient condition for R to be universal if R / J is universal; and as before, the property of being quasi-universal is better behaved: R / J quasi-universal implies R quasi-universal, without extra conditions (see (4.17)).

Write $G E_{n}(R, J)$ for the subgroup of $G E_{n}(R)$ generated by all $B_{i}(x), x \in J(R)$, and all $\left[\alpha_{1}, \ldots . \alpha_{n}\right]$ where $\alpha_{i}=1+x_{i}, x_{i} \in J$. Proposition (4.16). For any ring $R, G E_{n}(R, J)$ has the presentation:

Generators: $B_{i}(x),\left[1+x_{1}, \ldots .1+x_{n}\right]$ ($x^{\prime} s \in J(R)$)
Relations: The quasi-universal relations ($1,2,3,4^{\prime \prime}, 5,6,7$) where applicable.
Proof. $A \in G E_{n}(R, J) \Rightarrow A=I_{n}+\left(z_{i j}\right)$ where $z_{i j} \in J(R)$.

$$
\begin{aligned}
A & =\prod_{i<n} B_{i n}\left(x_{i}\right)\left[\begin{array}{cc}
& 0 \\
A^{\prime} & \vdots \\
& \vdots \\
y_{1}^{\prime} \ldots y_{n-1}^{\prime} & \alpha
\end{array}\right] \\
& =\prod_{i<n} B_{i n}\left(x_{i}\right)_{i<n} B_{n i}\left(y_{i}\right)\left[\begin{array}{cc}
A^{\prime} & \vdots \\
& \vdots \\
0 \ldots 0 & \alpha
\end{array}\right]
\end{aligned}
$$

for suitable $A^{\prime} \in G E_{n-1}(R, J), \alpha=1+z_{n n}$ and $x^{\prime} s, y^{\prime} s \in J(R)$. Furthermore, this expression for A is unique.
Applying the same reduction to A^{\prime}, and continuing inductively, we get a normal form for A :

$$
A=\prod_{m=n}, \ldots 2\left\{\prod_{i<m} B_{i m}\left(x_{i m}\right) \prod_{i<m} B_{m i}\left(y_{m i}\right)\right\}\left[\alpha_{1}, \ldots \alpha_{n}\right]
$$

where $x_{i j}, y_{i j} \in J$ and $\alpha_{i} \equiv 1 \bmod J$.
Clearly $A \cdot\left[\beta_{1}, \ldots . \beta_{n}\right]$ can be put in normal form, by 7 .
It remains to shew that $A \cdot B_{i j}(z)(z \in J)$ can be put in normal
form using only the prescribed relations. Suppose $n=2$.
$\mathrm{B}_{12}(x) \mathrm{B}_{21}(\mathrm{y})[\alpha, \beta] \mathrm{B}_{2 \pm}(z)$
$=B_{12}(x) B_{2_{1}}\left(y+\beta z \alpha^{-1}\right)[\alpha, \beta]$ by 1,6
$A \ddagger s o B_{12}(x) B_{21}(y)[\alpha, \beta] B_{12}(z)$
$=B_{12}(x) B_{21}(y) B_{12}\left(\alpha z \beta^{-1}\right)[\alpha, \beta]$ by 6
$=B_{12}(x)\left[1+y \alpha z \beta^{-1}\right]_{2} B_{12}\left(\alpha z \beta^{-1}\right) B_{21}(y)\left[1+\alpha z \beta^{-1} y\right]_{1}^{-1}[\alpha, \beta]$ by 4^{\prime}
$=B_{12}\left(x+\alpha z \beta^{-1}\left(1+y \alpha z \beta^{-1}\right)^{-1}\right) B_{21}\left(\left(1+y \alpha z \beta^{-1}\right) y\right)$ $\cdot\left[\left(1+\alpha z \beta^{-1} y\right)^{-1} \alpha, \beta+y \alpha z\right]$ by $1,6,7$
So the proposition holds for $n=2$. Assume $n>2$ and use induction.
If $i, j<n$ we can put $A \cdot B_{i} j(z)$ in normal form, by the induction hypothesis.
If $i, j<n$,
$B_{i j}(x) B_{n r}(z)=B_{n r}(z) B_{i j}(x) \quad(r \neq i) \quad$ by 2
$B_{i j}(x) B_{n i}(z)=B_{n i}(z) B_{n j}(-z x) B_{i j}(x)$ by 2,3 .
$\left[\alpha_{1}, \ldots . \alpha_{n}\right] B_{n r}(z)=B_{n r}\left(\alpha_{n} z \alpha_{r}^{-1}\right)\left[\alpha_{1}, \ldots . \alpha_{n}\right]$ by 6
So using only $1,2,3$ and 6 we have

$$
\begin{aligned}
& A \cdot B_{n r}(z)=\prod_{i} B_{i n}\left(x_{i}\right) \prod_{i} B_{n i}\left(y_{i}\right) A^{\prime}[\alpha]_{n} B_{n r}(z) \quad\left(A^{\prime} \in G E_{n-1}(R, J)\right) \\
= & \prod_{i} B_{l n}\left(x_{i}\right) \prod_{i} B_{n i}\left(y_{i}\right) \prod_{i} B_{n i}\left(z_{i}\right) A^{\prime}[\alpha]_{n} \quad \text { suitable } z_{i} \in J .
\end{aligned}
$$

$=\Pi_{i} B_{i n}\left(x_{i}\right) \prod_{i} B_{n i}\left(y_{i}+z_{i}\right) A^{\prime}[\alpha]_{n}$ by 1,2
Now if $1, j<n$,

$$
\begin{aligned}
& B_{i j}(x) B_{r n}(z)=B_{r n}(z) B_{i j}(x) \quad(r \neq j) \text { by } 2 \\
& B_{i j}(x) B_{j n}(z)=B_{j n}(z) B_{i n}(x z) B_{i j}(x) \text { by } 2,3 \\
& {\left[\alpha_{1}, \ldots \alpha_{n}\right] B_{r n}(z)=B_{r n}\left(\alpha_{r} z \alpha_{n}^{-1}\right)\left[\alpha_{1}, \ldots \alpha_{n}\right] \text { by } 6}
\end{aligned}
$$

So using only $1,2,3$ and 6 we have

$$
\begin{aligned}
A \cdot B_{r n}(z) & =\prod_{i} B_{i n}\left(x_{i}\right) \prod_{i} B_{n i}\left(y_{i}\right) A^{\prime}\left[\alpha^{\prime}\right]_{n} B_{r n}(z) \quad\left(A^{\prime} \in G E_{n-1}(R, J)\right) \\
& =\prod_{i} B_{i n}\left(x_{i}\right) \prod_{i} B_{n i}\left(y_{i}\right) \prod_{i} B_{i n}\left(z_{i}\right) A^{\prime}\left[\alpha^{\prime}\right]_{n} \text { suitable } z_{i} \in J .
\end{aligned}
$$

Now it is sufficient to prove that the following is a consequence of the quasi-universal relations:
(**) $\prod_{i} B_{n i}\left(y_{i}\right) \prod_{i} B_{i n}\left(z_{i}\right)=\prod_{i} B_{i n}\left(z_{i} \alpha^{-1}\right) \prod_{i} B_{n i}\left(\alpha y_{i}\right)[\alpha]_{n} A^{\prime \prime}$

$$
\text { where } \alpha=1+\Sigma y_{i} z_{i} \text { and } A^{N} \in G E_{n-1}(R, J)
$$

For then, substituting back,

$$
A \cdot B_{r n}(z)=\prod_{i} B_{i n}\left(x_{i}+z_{i} \alpha^{-1}\right) \prod_{i} B_{n i}\left(\alpha y_{i}\right) A^{\prime \prime} A^{\prime}\left[\alpha \alpha^{\prime}\right]_{n} \text { by } 1,2,6,7
$$

and by induction this can now be put in normal form.
For $\mathrm{n}=2$, (**) reads

$$
\begin{aligned}
\mathrm{B}_{21}(y) \mathrm{B}_{12}(z) & =[\alpha]_{2} B_{12}(z) B_{21}(y) A^{\prime \prime} \quad\left(A^{\prime \prime}=[1+z y]_{1}^{-1}, \alpha=1+y z\right) \\
& \text { by } 4^{\prime} \\
& =B_{12}\left(z \alpha^{-1}\right) B_{21}(\alpha y)[\alpha]_{2} A^{\prime \prime} \text { by } 6 .
\end{aligned}
$$

$$
1+\sum_{1}^{n-1} y_{i} z_{i}=\alpha, \quad 1+\sum_{2}^{n-1} y_{i} z_{i}=\beta
$$

We write $B \rightarrow C$ when $B=C D$, some $D \in G E_{n-1}(R, J)$
Also we write Π_{k}, Σ_{k} for $\prod_{k}^{n-1}, \sum_{k}^{n-1}$.

$$
\Pi_{1} B_{n \dot{E}}\left(y_{i}\right) \Pi_{1} B_{i n}\left(z_{i}\right)
$$

$$
=B_{n 1}\left(y_{1}\right) B_{1 n}\left(z_{1} \beta^{-1}\right) \Pi_{2}\left\{B_{n i}\left(y_{i}\right) B_{1 i}\left(-z_{i} \beta^{-1} y_{i}\right)\right\} \Pi_{2} B_{i n}\left(z_{i}\right)
$$

$$
\cdot B_{1 n}\left(z_{1}\left(1-\beta^{-1}\right)\right) \text { by } 1,2,3
$$

$\rightarrow B_{n 1}\left(y_{1}\right) B_{1 n}\left(z_{1} \beta^{-1}\right) \Pi_{2} B_{n i}\left(y_{i}\right) \Pi_{2} B_{i n}\left(z_{i}\right)$

- $B_{1 n}\left(z_{1}\left(1-\beta^{-1}-\beta^{-1} \Sigma_{2} y_{i} z_{i}\right)\right)$ by $1,2,3$
$=B_{n_{1}}\left(y_{1}\right) B_{1 n}\left(z_{1} \beta^{-1}\right) \Pi_{2} B_{n i}\left(y_{i}\right) \Pi_{2} B_{i n}\left(z_{i}\right)$ by 1
$\rightarrow B_{n 1}\left(y_{1}\right) B_{1 n}\left(z_{1} \beta^{-1}\right) \Pi_{2} B_{i n}\left(z_{i} \beta^{-1}\right) \Pi_{2} B_{n i}\left(\beta y_{i}\right)[\beta]_{n}$ by induction
$=B_{1 n}\left(z_{1} \alpha^{-1}\right) B_{n_{1}}\left(\alpha \beta^{-1} y_{1}\right)\left[1+z_{1} \beta^{-1} y_{1}\right]_{1}^{-1}\left[\alpha \beta^{-1}\right]_{n}$
- $\Pi_{2} B_{i n}\left(z_{i} \beta^{-1}\right) \Pi_{2} B_{n i}\left(\beta y_{i}\right)[\beta]_{n}$ by case $n=2$

$$
\begin{array}{r}
\rightarrow B_{1 n}\left(z_{1} \alpha^{-1}\right) B_{n 1}\left(\alpha \beta^{-1} y_{1}\right)\left[\alpha \beta^{-1}\right]_{n} \Pi_{2} B_{i n}\left(z_{i} \beta^{-1}\right) \Pi_{2} B_{n i}\left(\beta y_{i}\right)[\beta]_{n} \\
\text { by } 6,7 \\
=B_{1 n}\left(z_{1} \alpha^{-1}\right) B_{n 1}\left(\alpha \beta^{-1} y_{1}\right) \Pi_{2} B_{i n}\left(z_{i} \alpha^{-1}\right) \Pi_{2} B_{n i}\left(\alpha y_{i}\right)[\alpha]_{n} \text { by } 6,7 \\
=B_{1 n}\left(z_{1} \alpha^{-1}\right) \Pi_{2}\left\{B_{i n}\left(z_{i} \alpha^{-1}\right) B_{i 1}\left(-z_{i} \beta^{-1} y_{1}\right)\right\} \\
\quad \cdot B_{n 1}\left(\alpha \beta^{-1} y_{1}\right) \Pi_{2} B_{n i}\left(\alpha y_{i}\right)[\alpha]_{n} \text { by } 2,3 \\
\rightarrow \Pi_{1} B_{i n}\left(z_{i} \alpha^{-1}\right) B_{n 1}\left(\alpha \beta^{-1} y_{1}+\alpha \Sigma_{2} y_{i} z_{i} \beta^{-1} y_{1}\right) \Pi_{2} B_{n i}\left(\alpha y_{i}\right)[\alpha]_{n} \\
=\Pi_{1} B_{i n}\left(z_{i} \alpha^{-1}\right) \Pi_{1} B_{n i}\left(\alpha y_{i}\right)[\alpha]_{n}
\end{array}
$$

This proves (**), and hence the proposition. \quad.
Theorem (4.17). (I) Let R (or, equivalently, $R / J(R)$) be generated as a ring by its units. Then if $R / J(R)$ is universal for $G E_{n}$, so is R.
(II) Any R : If $R / J(R)$ is quasi-universal for $G E_{n}$, so is R.
Proof. (II): If $x \in J, y \notin J, \alpha_{i} \in 1+J, \beta_{j} \in U(R)-(1+J)$ then
(i) $\quad B_{i j}(x) B_{k t}(y)=B_{k t}(y) B_{i j}(x)$ by 2
(ii) $B_{i j}(x) B_{j k}(y)=B_{j k}(y) B_{i j}(x) B_{i k}(x y)$ by 3
(iii) $B_{i j}(x) B_{k i}(y)=B_{k i}(y) B_{i j}(x) B_{k j}(-y x)$ by 1,3
(iv) $B_{i j}(x) B_{j i}(y)=B_{j i}\left(y \alpha^{-1}\right) B_{i j}(\alpha x)\left[1+x y,(1+y x)^{-1}\right]_{i j}$ by 4^{\prime},

$$
6,7 \quad(\alpha=1+x y)
$$

(v) $\left[\alpha_{1}, \ldots . \alpha_{n}\right] B_{i, j}(y)=B_{i, j}\left(\alpha_{i} y \alpha_{j}^{-1}\right)\left[\alpha_{1}, \ldots . \alpha_{n}\right]$ by 6
(vi) $\left[\alpha_{1}, \ldots . \alpha_{n}\right]\left[\beta_{1}, \ldots . \beta_{n}\right]=\left[\alpha_{1} \beta_{1} \alpha_{1}^{-1}, \ldots . \alpha_{n} \beta_{n} \alpha_{n}^{-1}\right]\left[\alpha_{1}, \ldots . \alpha_{n}\right]$ by 7

So from these, if $C \in G E_{n}(R)$ is some product of $B_{i} j(z)$'s and $\left[\gamma_{1}, \ldots . \gamma_{n}\right]$'s, we can write

$$
\mathrm{C}=\mathrm{A} \cdot \mathrm{~B} \quad \text { by } 1,2,3,4^{\prime}, 6,7 \text { only }
$$

where A is a product (possibly empty) of elementary and diagonal matrices each incongruent to $I_{n} \bmod J$, and B is in $G E_{n}(R, J)$; furthermore, if $r \mapsto \bar{r}$ is the natural map $R \rightarrow R / J$ then $\bar{B}=I_{n}$, and \bar{C}, \bar{A} are formally identical, once $[1]_{i}$ and $B_{i}(0)$ have been dropped from \bar{C}. (Just note that in each of (i)-(vi) the second term on the LHS is congruent mod J to the first term on the RHS, and all other terms are in $\left.G E_{n}(R, J).\right)$

Now suppose $C_{0}=I_{n}$ is a relation of $G E_{n}(R)$. Then
$\bar{C}_{0}=I_{n}$ is a relation of $G E_{n}(R / J)$, and since R / J is quasiuniversal for $G E_{n}$, we have

$$
\overline{\mathrm{C}}_{0}=\overline{\mathrm{C}}_{1}=\ldots=\overline{\mathrm{C}}_{\mathrm{m}}
$$

where \bar{C}_{m} is just I_{n}, and the step $\bar{C}_{i}=\bar{C}_{i+1}$ involves one application of one of $1 .-7$. or 4^{\prime}, or putting $B_{i}(0)$ or [1,....1] equal to 1 .

Now $C_{0}=A_{0} \cdot B_{0}$ (notation as above for C) and \bar{C}_{0}, \bar{A}_{0} are formally identical. If the step $\overline{\mathrm{C}}_{\mathrm{o}}=\overline{\mathrm{C}}_{1}$ involves putting $B_{i j}(0)=I$ or $[1, \ldots .1]=I$, on lifting to $A_{0} B_{0}$ we obtain matrices of $G E_{n}(R, J)$ which we pass through to the right as before, to get $A_{1} B_{1}=C_{1}$, with \bar{A}_{1}, \bar{C}_{1} formally identical. If the step $\overline{\mathrm{C}}_{0}=\overline{\mathrm{C}}_{1}$ involves an application of $1,2,3,5,6$ or 7, this lifts to the same application to $A_{0} B_{0}$, giving $A_{1} B_{1}=C_{1}$ as before. An application of 4^{\prime} arises from terms in A_{0} :
$B_{i j}(x) B_{j i}(y)[1+y x+z]_{j}$ where $1+y x \in U(R)$ and $z \in J$. $\exists z^{\prime} \in J$ such that $(1+y x+z)\left(1+z^{\prime}\right)^{-1}=1+y x$. So
$B_{i j}(x) B_{j i}(y)[1+y x+z]_{j}=B_{i j}(x) B_{j i}(y)[1+y x]_{j}\left[1+z^{\prime}\right]_{j}$ by 7 and now we can apply 4^{\prime} and also pull $\left[1+z^{\prime}\right] j$ through to the right, to get $A_{1} B_{1}=C_{1}$ as before.

Repeating the above process, we have as a consequence of 1.-7. and 4',

$$
C_{o}=A_{m} B_{m}
$$

where \bar{A}_{m} and $\overline{\mathrm{C}}_{\mathrm{m}}$ are formally identical; but $\overline{\mathrm{C}}_{\mathrm{m}}$ is just I , so A_{m} is the empty product, and $C_{0}=B_{m}$ is a consequence of 1.-7. and 4^{\prime}. So since $C_{0}=I$, we have $B_{m}=I$, and $B_{m} \in G E_{n}(R, J)$, so $B_{m}=I$ is a consequence of $1 .-7$. and 4^{\prime}, by (4.16).
$\therefore C_{0}=I$ is a consequence of 1.-7. and 4^{\prime}, as required.
(I): We have merely to shew that, with the given conditions on R, use of 4^{\prime} in (II) above can be replaced by use of 1.-7.
If $x \in J$ and $\alpha \in U(R)$,

$$
\begin{aligned}
& B_{i} j_{j}(x) B_{j i}(\alpha)=[\alpha]_{j} B_{i j}(x \alpha) B_{j i}(1)\left[\alpha^{-1}\right]_{j} \text { by } 6,7 \\
& =[\alpha]_{j} B_{i j}(\beta-1) B_{j i}(1)\left[\alpha^{-1}\right]_{j} \text { where } \beta=1+x \quad(\in U(R)) \\
& =[\alpha]_{j} D_{i j}(\beta) B_{j i}(\beta) B_{i}\left(1-\beta^{-1}\right)\left[\alpha^{-1}\right]_{j} \text { by } 4 \\
& =[\beta]_{i} B_{j i}(\alpha) B_{i}(x)\left[\alpha \beta^{-1} \alpha^{-1}\right]_{j} \text { by } 6,7 \\
& \text { Using } 7, B_{i j}(x) B_{j i}(\alpha)[1+\alpha x]_{j}=[1+x \alpha]_{i} B_{j i}(\alpha) B_{i j}(x) .
\end{aligned}
$$

Now suppose $y=\alpha_{1}+\ldots+\alpha_{r}$: apply the above r times to obtain (for $x \in J$)
$B_{i j}(x) B_{j i}(y)[1+y x]_{j}=[1+x y]_{i} B_{j i}(y) B_{i j}(x)$ by $1 .-7$.
Inductive step:
$B_{i}(x) B_{j i}(y+\alpha)[1+(y+\alpha) x]_{j}$
$=B_{i j}(x) B_{j i}(y)[1+y x]_{j}[1+y x]_{j}^{-1} B_{j l}(\alpha)[1+(y+\alpha) x]_{j}$ by 1,7
$=[1+x y]_{i} B_{j l}(y) B_{i} j(x) B_{j i}\left(\beta^{-1} \alpha\right)\left[1+\beta^{-1} \alpha x\right]_{j}\left[\left(1+\beta^{-1} \alpha x\right)^{-1}\right.$ - $\left.\beta^{-1}(\beta+\alpha x)\right]_{j}$
by the inductive hypothesis and $6,7(\beta=1+y x)$
$=[1+x y]_{i} B_{j i}(y)\left[1+x \beta^{-1} \alpha\right]_{i} B_{j i}\left(\beta^{-1} \alpha\right) B_{i j}(x)$ by the above case
$=\left[(1+x y)\left(1+x \beta^{-1} \alpha\right)\right]_{i} B_{j i}\left(y+y x \beta^{-1} \alpha+\beta^{-1} \alpha\right) B_{i}(x) \quad(r=1)$
$=[1+x(y+\alpha)]_{i} B_{j i}(y+\alpha) B_{i j}(x)$
So (iv) on page 64 and 4^{\prime} as used in (4.16) are consequences of 1.-7.
The only other use of 4^{\prime} was in the steps $\bar{C}_{k}=\bar{C}_{k+1}$. Use of 4 arises from terms $B_{i}(1-\alpha) B_{j i}(1+z)$ in $A_{k}(z \in J)$. (Note that $1-\alpha+z^{\prime}=1-\alpha^{\prime}$ where $\alpha^{\prime}=\alpha-z^{\prime} \in U(R)\left(z^{\prime} \in J\right)$) We have $B_{i} j(1-\alpha) B_{j i}(1+z)=B_{i}(1-\alpha) B_{j i}(1) B_{j i}(z)$ by 1 and now we can use 4 and pull the last term through to the right

Recall that a semi-local ring is a ring R such that
$R / J(R)$ has the minimum condition on right ideals; in particular, of course, any Artin ring is also semi-local. Corollary (4.18). Every semi-local ring R (and in particular, every Artin ring) is quasi-universal for $G E_{n}$, all n. A sufficient condition for such R to be universal for $G E_{n}$ is that $R / J(R)$ should not contain K or K_{2} as direct factor, where $|K|=2$.
Proof. The first part is immediate from (4.10) and (4.17).

The second part follows from (4.15) and (4.17), once we note that every Artin ring is generated as a ring by its units. \quad.

We now shew that not every ring is quasi-universal for $G E_{2}$. The question of whether every ring is quasiuniversal for $G E_{n}(n>2)$ is undecided; it seems unlikely. Proposition (4.19). The ring R of integers in $Q(\sqrt{-11)}$ ($Q=$ rationals) is not quasi-universal for $G E_{2}$. Proof. $U(R)=\{ \pm 1\}$, so $1+x y \in U(R) \Rightarrow x y=0$ (so $x=0$ or $y=0$) or $x y=-2$ (so $x, y= \pm 1, \pm 2$ in some order). So in $G E_{2}(R), 4^{\prime}$ is a consequence of 4 . But R is not universal for GE_{2}, by [2; page 163], so it cannot be quasi-universal for GE_{2}.
In [2] it is also shewn that the rings of integers in $Q(\sqrt{-2})$ and in $Q(\sqrt{-7})$ are not universal for $G E_{2}$; but in these rings the equation $x y=-2$ has solutions other than $x, y= \pm 1, \pm 2$, so the above proof breaks down.

Note that if R is a local ring, $R / J(R)$ is a skew field, which is generated as a ring by its units; by (4.17) we could have deduced (3.7) from the weaker statement that every skew field is universal for $G E_{n}$, but the proof of this statement is scarcely shorter than the proof of (3.7).
5. The commutator quotient structure of $G E_{n}(R)$ and $E_{n}(R)$.

In this chapter we generalize some of the results
of [1;paragraph 9]. We have already seen in (4.4) that [1;(9.1)Cor.1] has an immediate generalization. We now generalize [1;(9.1)].
Proposition (5.1). (Any R) If $A \in G E(R)$, then
$A \equiv[\alpha]_{1} \bmod i_{n}(R)$, some $\alpha \in U(R)$.
Proof. By 7, $A \equiv\left[\alpha_{1}, \ldots . \alpha_{n}\right] \bmod E_{n}(R)$

$$
=\left[\alpha_{1} \alpha_{2} \ldots \alpha_{n}\right]_{1_{i}} \prod_{=2}^{n} D_{i_{1}}\left(\alpha_{i}\right) \quad \text { by } 7
$$

and now note that by $4, D_{i}(\beta) \in E_{n}(R)$. \quad a
We may ask: to what extent is α (in (5.1)) determined by A ? This is equivalent to determining the subgroup $W \triangleleft U(R)$ in the following:
Corollary (5.2). For any $R, G E_{n}(R) / E_{n}(R) \cong U(R) / W$, some $W(=N(n)) \triangleleft U(R)$.
Proof. Immediate from (5.1), once we note that the LHS is well-defined, since $E_{n}(R) \triangleleft G E_{n}(R)$, by 6 . \quad a
Now for $n=1, G E_{n}(R)=U(R)$ and $E_{n}(R)=1$, so $W=1$.
For $n>1$, we have
Proposition (5.3). For any R, and $n>1$,
$G E_{n}(R) / E_{n}(R) \cong U(R) / W$, some $U(R)^{\prime} \leqslant W \leqslant U(R)$.
Proof. $[\alpha]_{1}[\beta]_{i}=D_{21}(\beta)[\beta]_{1}[\alpha]_{1} D_{12}(\beta)$
Thus, since $D_{i j}(\beta) \in E_{n}(R), G E_{n}(R) / E_{n}(R)$ is abelian.
The result now follows from (5.2).
Corollary (5.4). For $n \geqslant 2, G E_{n}(R)^{\prime} \cong E_{n}(R)$, any R.

$$
(\mathrm{cf} .[1 ;(9.1) \operatorname{cor} .3])
$$

For $n \geqslant 3$, we can improve on this:
Proposition (5.5). For $n \geqslant 3, G E_{n}(R)^{\prime}=E_{n}(R)$, any R.

$$
(c f .[1 ;(9.2)])
$$

Proof. We already have LHS \subseteq RHS by (5.4). The reverse relationship is immediate from
$B_{i j}(x)=B_{i k}(-x) B_{k j}(-1) B_{i k}(x) B_{k j}(1)$ where $k \neq i, j . \quad \square$ Notation: for any group G, write $G^{a}=G / G^{\prime}$.

Proposition (5.6). If R is universal for $G E_{n}(n \geqslant 2)$,

$$
G E_{n}(R) / E_{n}(R) \cong U(R)^{a} \quad(c f \cdot[1 ;(9.1)])
$$

Proof. Define a map $f: G E_{n}(R) \rightarrow U(R)^{a}$ by

$$
\begin{aligned}
& f: B_{i j}(x) \mapsto 1 \\
& f:\left[\alpha_{1}, \alpha_{2}, \ldots . \alpha_{n}\right] \mapsto\left(\alpha_{1} \alpha_{2} \ldots . \alpha_{n}\right)^{a}
\end{aligned}
$$

Since R is universal for $G E_{n}$, and f is compatible with 1.-7, we have a well-defined homomorphism. Clearly $\operatorname{im}(f)=U(R)^{a}$ and $E_{n}(R) \subseteq \operatorname{ker}(f)$.
Then if $A \in \operatorname{ker}(f)$, by (5.1) $A \equiv[\alpha]_{1} \bmod E_{n}(R)$. So it is sufficient to prove that $\alpha \in U(R)^{\prime} \Rightarrow[\alpha]_{1} \in E_{n}(R)$ (i.e. the converse of (4.5)).

But if $\beta, \gamma \in U(R)$,

$$
\left[\beta^{-1} \gamma^{-1} \beta y\right]_{1}=D_{21}(\beta) D_{21}(\gamma) D_{12}(\beta \gamma)
$$

$$
\epsilon E_{n}(R) \text {, since } D_{i} j(\delta) \in E_{n}(R) \text {, by } 4 \text {. }
$$

Corollary (5.7). If R is universal for $G E_{n}$, and $1+x y \in U(R)$, then $1+x y \equiv 1+y x \cdot \bmod U(R)^{\prime}$.
Proof. 4': $B_{12}(x) B_{21}(y)[1+y x]_{2}=[1+x y]_{1} B_{21}(y) B_{12}(x)$ The result now follows from (5.6) and the fact that $D_{12}(1+y x) \in E_{n}(R)$. \quad

This gives us another way of constructing rings which are not universal for $G I_{n}$, any n. Let K be a (commutative) field. Put $R=K\langle x, y\rangle /(x y)$.
R is the set of all finite $K-l i n e a r ~ s u m s ~ o f ~ m o n o m i a l s ~$ $y^{r} x^{s}(x, s \geqslant 0)$ with multiplication defined by

$$
\begin{aligned}
& \quad\left(y^{r} x^{s}\right)\left(y^{r^{\prime}} x^{s^{\prime}}\right)=0 \text { if } s>0, r^{\prime}>0 \\
& \quad\left(y^{r} x^{s}\right) x^{s^{\prime}}=y^{r} x^{s+s^{\prime}} \\
& y^{r}\left(y^{r^{\prime}} x^{s^{\prime}}\right)=y^{r+r^{\prime}} x^{s^{\prime}} \\
& \text { Suppose }\left(\sum a_{r} y^{r} x^{s}\right)\left(\sum b_{r^{\prime}} s^{\prime} y^{r^{\prime}} x^{s}\right)=1
\end{aligned}
$$

Consider the homomorphism $\mathrm{R} \rightarrow \mathrm{K}[\mathrm{x}]$ formed by mapping $\mathrm{y} \rightarrow 0$.

$$
\left(\Sigma a_{0 s} x^{s}\right)\left(\Sigma b_{0 s^{\prime}} x^{s^{\prime}}\right)=1
$$

whence $a_{00} b_{00}=1$ and $a_{0 S}=0, b_{0 S^{\prime}}=0$ all $\mathrm{s}, \mathrm{s}^{\prime}>0$. Similarly, $a_{r o}=0, b_{r^{\prime}} 0=0$ all $r, r^{\prime}>0$.

Conversely, if $\alpha \in K^{*}(=K-\{0\})$ and $f \in R$, then $\alpha+y f x \in U(R)$ $\left((\alpha+y f x)^{-1}=\alpha^{-1}-\alpha^{-2} y f x\right)$. So $U(R)=$ all $\alpha+y f x\left(\alpha \in K^{*}, f \in R\right)$.
Then $(\alpha+y f x)(\beta+y g x)=\alpha \beta+y(\alpha g+\beta f) x$
$=(\beta+y g x)(\alpha+y f x)$. Thus $U(R)^{\prime}=1$.
But $1+x y=1$ and $1+y x \neq 1$, so by (5.7) R is not universal for $G E_{n}$, any n.

The following example of an integral domain which behaves in a similar way has been found by P.M.Cohn:
Let K be a commutative field, and put $R_{0}=K\langle x, y\rangle$. Consider a monomial

$$
\lambda x^{r_{1}} y^{s_{1}} \ldots . x^{r_{n}} y^{s_{n}}
$$

where $\lambda \in K$ and $r_{i}, s_{i}>0$ except possibly $r_{1}=0$ or $s_{n}=0$ or both. Define its height h to be

$$
\begin{aligned}
& 2 n \text { if all } r_{i}, s_{i}>0 \\
& 2 n-1 \text { if } r_{1}=0 \text { or } s_{n}=0 \text { but not both } \\
& 2 n-2 \text { if } r_{1}=0=s_{n} \quad \infty
\end{aligned}
$$

Put $R=$ all power series $f=\sum_{0}^{\infty} f_{n}$ where f_{n} is the sum of a finite number of monomials of height n.
Put $H_{m}=a l l \alpha+\sum_{m}^{\infty} f_{n} \quad\left(\alpha \in K^{*}, f_{n}\right.$ as above). We claim $U(R) \subseteq H_{2}$ and $U(R)^{\prime} \subseteq H_{4}$. For suppose $f=\sum_{0}^{\infty} f_{n} \in U(R)$ and without loss of generality we may suppose $f_{0}=1$.
Let $f_{1}=p(x)+q(y)$ where $p(0)=0, q(0)=0$.
Suppose $f^{-1}=\sum_{0}^{\infty} g_{n}$ where $g_{0}=1$ and $g_{1}=r(x)+s(y)$, $r(0)=0, s(0)=0$.
Looking at the terms of height 1 in $\left(\Sigma f_{n}\right)\left(\Sigma g_{n}\right)=1$ we have

$$
p(x)+q(y)+r(x)+s(y)+p(x) r(x)+q(y) s(y)=0
$$

Thus $p(x)+r(x)+p(x) r(x)=0 . \quad \therefore p=r=0$.
Similarly $q=s=0 . \quad \therefore U(R) \subseteq H_{2}$.
Now each H_{m} is multiplicatively closed. Suppose $\alpha+a \in H_{n}$, $\beta+b \in H_{m}$ (where a, b contain only terms of height $\geqslant n, m$ respectively). Then
$(\alpha+a)^{-1}=\left(1-\alpha^{-1} a+\left(\alpha^{-1} a\right)^{2}-\ldots\right) \alpha^{-1}$
and similarly for $\beta+b$. So

$$
\begin{aligned}
& (\alpha+a)^{-1}(\beta+b)^{-1}(\alpha+a)(\beta+b) \\
= & \left(\alpha^{-1}-\alpha^{-2} a+\ldots .\right)\left(\beta^{-1}-\beta^{-2} b+\ldots . .\right)(\alpha+a)(\beta+b) \\
= & 1+\beta^{-1} b+\alpha^{-1} a-\beta^{-1} b-\alpha^{-1} a+\text { terms of height } \geqslant m+n \\
\epsilon & H_{m+n} .
\end{aligned}
$$

So since $U(R) \subseteq H_{2}$, we have $U(R)^{\prime} \subseteq H_{4}$.
Then $1+y x \in U(R)\left((1+y x)^{-1}=1-y x+y x y x-\ldots.\right)$ and $1+x y \in U(R)$, but $(1+x y)(1+y x)^{-1}=1+(x y-y x)+$ terms of height $\geqslant 4$
$\in \mathrm{H}_{2}-\mathrm{H}_{4}$
$\therefore 1+x y \not \equiv 1+y x$ mod $U(R)^{\prime}$. By (5.7) R is not universal for GE_{n}, any n . Further, R is clearly an integral domain.(skew).

We note that, in view of (5.5) and (5.6) we have: Corollary (5.8). If R is universal for $G E_{n}$, some $n \geqslant 3$, then

$$
G E_{n}(R)^{\mathrm{a}} \cong U(R)^{\mathrm{a}} .
$$

We now generalize (5.6) to quasi-universal rings. (5.6) was proved, essentially, by observing that, from the universal relations, if R is universal for $G K_{n}$, then $G E_{n}(R) / E_{n}(R)$ has a presentation:

Generators: $\left[\alpha_{1}, \ldots . \alpha_{n}\right] \quad\left(\alpha_{i} \in U(R)\right)$
Relations: $\left[\alpha_{1}, \ldots . \alpha_{n}\right]\left[\beta_{1}, \ldots . \beta_{n}\right]=\left[\alpha_{1} \beta_{1}, \ldots . \alpha_{n} \beta_{n}\right]$

$$
D_{l} \jmath(\alpha)=1
$$

and this is then seen to be equivalent to the presentation:
Generators: $[\alpha] \quad(\alpha \in U(R))$
Relations: $[\alpha][\beta]=[\alpha \beta]=[\beta][\alpha]$
Similarly, if R is quasi-universal for $G E_{n}, G E_{n}(R) / E_{n}(R)$ has the presentation:

Generators: $\left[\alpha_{1}, \ldots . . \alpha_{n}\right] \quad\left(\alpha_{i} \in U(R)\right)$
Relations: $\left[\alpha_{1}, \ldots . \alpha_{n}\right]\left[\beta_{1}, \ldots . \beta_{n}\right]=\left[\alpha_{1} \beta_{1}, \ldots . \alpha_{n} \beta_{n}\right]$

$$
[1+x y]_{i}=[1+y x]_{J} \text { whenever } 1+x y \in U(R)
$$

and this is equivalent to the presentation:
Generators: $[\alpha] \quad(\alpha \in U(R))$
Relations: $[\alpha][\beta]=[\alpha \beta]$
$[1+x y]=[1+y x]$ whenever $1+x y \in U(R)$.
So let $U_{2}(R)$ be the subgroup of $U(R)$ generated by all
expressions $(1+x y)(1+y x)^{-1} \quad(1+x y \in U(R))$, and let
$U_{1}(R)=U(R)^{\prime}$. Now if $\alpha, \beta \in U(R)$,

$$
\alpha \beta=\beta+(\alpha-1) \beta
$$

$=\beta\left(1+\beta^{-1}(\alpha-1) \beta\right)$
$\equiv \beta(1+(\alpha-1)) \bmod U_{2}(R)$
$=\beta \alpha$
So $U_{1}(R) \subseteq U_{2}(R)$. We have proved:
Proposition (5.9). Let R be either universal or quasiuniversal for $G E_{n}$, any n, and put $m=1,2$ respectively. Then $G E_{n}(R) / E_{n}(R) \cong U(R) / U_{m}(R)$. \quad a Corollary (5.10). If R, m are as in (5.9), and $[\alpha]_{1} \in E_{n}(R)$, then $\alpha \in U_{m}(R)$. $\quad \square$

This result provides, potentially, a way of constructing rings which are not quasi-universal for $G E_{n}$, for any n. We return to this question in the next chapter.

Finally,
Proposition (5.11). (Any R) If $n \geqslant 3, E_{n}(R)^{a}=1$. (cf.[1; (9.3)])
Proof. Given $x \in R$, and $i \neq j$, choose $k \neq i, j$. Then
$B_{i j}(x)=B_{l k}(-x) B_{k J}(-1) B_{i k}(x) B_{k J}(1) . \quad \square$

6. The general case.

Here we give a presentation, albeit a clumsy one, for $G E_{n}(R)$, that holds for any ring R; we shew how it takes a specially simple form when R is $G E_{2}$-reducible.

We start by working in as general a context as possible. Let R, S be rings; let M be an (R, S)-bimodule and N an (S, R)-bimodule. Suppose we have balanced maps

$$
\begin{array}{ll}
M \times N \rightarrow R & ((x, y) \mapsto(x ; y)) \\
N \times M \rightarrow S & ((y, x) \mapsto(y ; x))
\end{array}
$$

satisfying the additional conditions

$$
\begin{array}{ll}
(x ; y) x^{\prime}=x\left(y ; x^{\prime}\right) & \left(x, x^{\prime} \in \mathbb{M}, y \in \mathbb{N}\right) \\
(y ; x) y^{\prime}=y\left(x ; y^{\prime}\right) & \left(x \in \mathbb{M}, y, y^{\prime} \in \mathbb{N}\right)
\end{array}
$$

Then we can define a ring A consisting of all $\left(\begin{array}{cc}r & x \\ y & s\end{array}\right)$ ($r \in R, \quad s \in S, x \in \mathbb{N}, y \in \mathbb{N}$) with ordinary matrix multiplication and addition, once we agree to write $x y$ for ($x ; y$) etc. If $x \in \mathbb{M}, y \in N, \alpha \in U(R), \beta \in U(S)$, write

$$
\begin{aligned}
& B_{12}(x)=\left(\begin{array}{ll}
{ }^{1} R & x \\
0 & { }_{S}
\end{array}\right), B_{21}(y)=\left(\begin{array}{ll}
{ }^{1} R & 0 \\
y & { }_{S}
\end{array}\right), \\
& {[\alpha, \beta]=\left(\begin{array}{ll}
\alpha & 0 \\
0 & \beta
\end{array}\right) ; \text { all these are in } U(A) .}
\end{aligned}
$$

Let F, G be subgroups of $U(R), U(S)$ respectively.
Let H be the subgroup of $U(A)$ generated by all $B_{12}(x)(x \in M)$, all $B_{21}(y)(y \in \mathbb{N})$, and all $[\alpha, \beta](\alpha \in F, \beta \in G)$.
The following universal relations hold;
(i) $B_{1 g}(x) B_{18}\left(x^{\prime}\right)=B_{12}\left(x+x^{\prime}\right) \quad\left(x, x^{\prime} \in M\right)$
(ii) $B_{21}(y) B_{21}\left(y^{\prime}\right)=B_{21}\left(y+y^{\prime}\right) \quad\left(y, y^{\prime} \in \mathbb{N}\right)$
(iii) $\mathrm{B}_{12}(\mathrm{x})[\alpha, \beta]=[\alpha, \beta] \mathrm{B}_{12}\left(\alpha^{-1} \mathrm{x} \beta\right) \quad(\mathrm{x} \in \mathrm{M}, \alpha \in \mathrm{F}, \beta \in \mathrm{G})$
(iv) $B_{21}(y)[\alpha, \beta]=[\alpha, \beta] B_{2_{1}}\left(\beta^{-1} y \alpha\right) \quad(y \in \mathbb{N}, \alpha \in F, \beta \in G)$
(v) $[\alpha, \beta]\left[\alpha^{\prime}, \beta^{\prime}\right]=\left[\alpha \alpha^{\prime}, \beta \beta^{\prime}\right] \quad\left(\alpha, \alpha^{\prime} \in F, \beta, \beta^{\prime} \in G\right)$

Now suppose we have some relation
(*)

$$
c=1
$$

where C is a product of the generators of H. Using (i)-(v), we can reduce (*) to the form:
(vi) $\prod_{1}^{m}\left\{B_{12}\left(x_{i}\right) B_{21}\left(y_{i}\right)\right\}=[\alpha, \beta] \quad\left(x_{i} \in M, y_{i} \in N, \alpha \in F, \beta \in H\right)$

It follows that $(i)-(v)$, and (vi) when it holds, are a complete set of defining relations for H.
In order to see when (vi) holds, we define a generalized form of the continuant polynomials of [1; section 8]. Define $p_{1}(x)=x(x \in \mathbb{M})$ and $p_{1}(y)=y(y \in N)$.
Define $p_{2}(x, y)=1_{R^{+}} x y$ and $p_{2}(y, x)=1_{S}+y x \quad(x \in M, y \in N)$. Then inductively:

$$
p_{n}\left(t_{1}, \ldots . t_{n}\right)=p_{n-1}\left(t_{1}, \ldots . t_{n-1}\right) t_{n}+p_{n-2}\left(t_{1}, \ldots . t_{n-2}\right)
$$

where $t_{i} \in M$, i odd, and $t_{i} \in N$, i even; or vice versa. p_{-1} will mean O_{M} or O_{N} and $p_{0}=p_{-2}$ will mean 1_{R} or 1_{S}; exactly which will be clear from the context. For $n>0$ we shall sometimes write $p\left(t_{1}, \ldots . t_{n}\right)$ for $p_{n}\left(t_{1}, \ldots . t_{n}\right)$. Then if $x \in M, y \in N$, we have $p\left(x_{1}, y_{1}, \ldots . x_{r}, y_{r}\right) \in R$, $p\left(x_{1}, y_{1}, \ldots . . x_{r}\right) \in M, p\left(y_{1}, x_{2}, \ldots . x_{r}, y_{r}\right) \in N, p\left(y_{1}, x_{2}, \ldots . x_{r}\right) \in S$. We claim

$$
\prod_{1}^{m}\left\{B_{12}\left(x_{i}\right) B_{21}\left(y_{i}\right)\right\}=\left(\begin{array}{ll}
p_{2 m}\left(x_{1}, y_{1} \ldots x_{m} y_{m}\right) & p_{2 m-1}\left(x_{1}, y_{1} \ldots x_{m}\right) \\
p_{2 m-1}\left(y_{1} \ldots x_{m} y_{m}\right) & p_{2 m-2}\left(y_{1}, x_{2} \ldots x_{m}\right)
\end{array}\right)
$$

This is certainly true for $m=0$, when we have

$$
i_{H}=\left(\begin{array}{ll}
p_{0} & p_{-1} \\
p_{-1} & p_{-2}
\end{array}\right)
$$

and for $m=1$ we have

$$
\begin{aligned}
\mathrm{B}_{12}(x) \mathrm{B}_{21}(y) & =\left(\begin{array}{ll}
1_{R} & x \\
0 & 1_{S}
\end{array}\right)\left(\begin{array}{cc}
1_{R} & 0 \\
y & 1_{S}
\end{array}\right) \\
& =\left(\begin{array}{cc}
1_{R}+x y & x \\
y & 1_{S}
\end{array}\right) \\
& =\left(\begin{array}{cc}
p_{2}(x, y) & p_{1}(x) \\
p_{1}(y) & p_{0}
\end{array}\right)
\end{aligned}
$$

$$
=\left(\begin{array}{ll}
p_{2 m-2}\left(x_{1} \ldots y_{m-1}\right) & p_{2 m-3}\left(x_{1} \ldots x_{m-1}\right) \\
p_{2 m-3}\left(y_{1} \ldots y_{m-1}\right) & p_{2 m-4}\left(y_{1} \ldots x_{m-1}\right)
\end{array}\right)\left(\begin{array}{ll}
1_{R} & x_{m} \\
0 & { }_{S}
\end{array}\right)\left(\begin{array}{ll}
1_{R} & 0 \\
y_{m} & 1_{S}
\end{array}\right)
$$

$$
\begin{aligned}
& =\left(\begin{array}{ll}
p_{2 m-2}\left(x_{1} \ldots y_{m-1}\right) & p_{2 m-1}\left(x_{1} \ldots x_{m}\right) \\
p_{2 m-3}\left(y_{1} \ldots y_{m-1}\right) & p_{2 m-2}\left(y_{1} \ldots x_{m}\right)
\end{array}\right)\left(\begin{array}{ll}
{ }^{1} R & 0 \\
y_{m} & { }^{1} S
\end{array}\right) \\
& =\left(\begin{array}{ll}
p_{2 m}\left(x_{1} \ldots y_{m}\right) & p_{2 m-1}\left(x_{1} \ldots x_{m}\right) \\
p_{2 m-1}\left(y_{1} \ldots y_{m}\right) & p_{2 m-2}\left(y_{1} \ldots x_{m}\right)
\end{array}\right)
\end{aligned}
$$

So now we can give the following conditions for (vi) to hold:

$$
\mathrm{p}_{2 \mathrm{~m}}\left(\mathrm{x}_{1} \ldots \mathrm{y}_{\mathrm{m}}\right)=\alpha \in \mathrm{F}
$$

$p_{2 m-2}\left(y_{1} \ldots x_{m}\right)=\beta \in G$
$p_{2 m-1}\left(x_{1} \ldots x_{m}\right)=O_{M}$
$p_{z m-1}\left(y_{1} \ldots y_{m}\right)=o_{N}$
We now turn to a special case. Let K be any ring; put $R=K_{r}, S=K_{s}$, where $r+s=n$. Let M, N be, respectively, all $r \times s$, all $s \times r$ matrices over K. The bimodule structure and the balanced maps (see page 73) are given by matrix multiplication, and then $A \cong K_{n} . H$ is a subgroup of $G I_{n}(K)$; the actual subgroup will depend on the choice of F and G. We put $F=G E_{r}(K)$ and $G=G E_{3}(K)$: so $H=G E_{n}(K)$.
Then $[\alpha, \beta]$ is a product of $B_{i j}(z)(z \in K, 1 \leqslant 1, j \leqslant r$ or $r<i, j \leqslant n)$ and $\left[\alpha_{1}, \ldots . \alpha_{n}\right]\left(\alpha_{i} \in U(K)\right)$.
Further, if $x=\left(x_{i j}\right) \in M$ and $y=\left(y_{j i}\right) \in N \quad(1 \leqslant i \leqslant r, 1 \leqslant j \leqslant s)$ we have

$$
B_{12}(x)=\prod_{i, j} B_{i} r_{+j}\left(x_{i j}\right) ; B_{21}(y)=\prod_{i, j} B_{r_{+} j} i\left(y_{j i}\right),
$$

and by universal relation 2, the order of these products is immaterial. Then (i) and (ii) follow. from 1 and 2;
(iii) and (iv) follow from 2, 3 and 6. Finally 2, 6 and 7 ensure that $[\alpha, 1]$ and $[1, \beta](\alpha \in F, \beta \in G)$ commute, and now (v) follows by relations of $G E_{r}(K)$ and $G E_{s}(K)$.
Our results may now be stated as
Theorem (6.1). Let K be any ring, and $r, s \geqslant 1$ with $r+s=n$. Then $G E_{n}(K)$ has as defining relations:
(a) $1,2,3,6,7$
(b) The relations of $G E_{\ell}(K) \quad(t=\max (r, s))$

$X_{i}, Y_{i}(i=1 \ldots . m)$ are respectively $r \times s, s \times r$ matrices over K
and $p_{2 m}\left(X_{1}, Y_{1}, \ldots X_{m}, Y_{m}\right)=A \in G E_{r}(K)$
$p_{2 m-1}\left(X_{1}, Y_{1}, \ldots . X_{m}\right)=0$
$\mathrm{p}_{2 \mathrm{~m}-1}\left(\mathrm{Y}_{1}, \mathrm{X}_{2}, \ldots . \mathrm{X}_{\mathrm{m}}, Y_{\mathrm{m}}\right)=0$
$p_{2 m-a}\left(Y_{1}, X_{2}, \ldots . X_{m}\right)=B \in G E_{3}(K)$.
N.B. By (6.1)(b) we mean any relation of $G E_{n}(K)$ not involving more than t distinct suffices.
As a special case of (6.1) we take $r=n-1, s=1$, and then use induction on n. Note that the relations of $G E_{1}(K)$ are covered by 7. We have
Theorem (6.2). For any K, any $n, G E_{n}(K)$ has as defining relations:
(a) 1,2,3,6,7
(b) For $1 \leqslant k \leqslant n-1$, and $m \geqslant 1$,

$$
\begin{equation*}
\prod_{1}^{m}\left\{B_{12}\left(X_{i}\right) B_{21}\left(Y_{i}\right)\right\}=A[\beta]_{k+1} \quad \text { where } \tag{*}
\end{equation*}
$$

$X_{i}, Y_{i}(i=1 \ldots . m)$ are respectively $k \times 1$, $1 \times k$ matrices over K and $\mathrm{p}_{2 \mathrm{~m}}\left(\mathrm{X}_{1}, \mathrm{Y}_{1}, \ldots \mathrm{X}_{\mathrm{m}}, \mathrm{Y}_{\mathrm{m}}\right)=\mathrm{A}^{\prime} \in G E_{k}(\mathrm{~K})$
$p_{2 m-1}\left(X_{1}, \ldots X_{m}\right)=0$
$p_{2 m-1}\left(Y_{1}, \ldots . Y_{m}\right)=0$
$p_{2 m-2}\left(Y_{1}, \ldots . X_{m}\right)=\beta \in U(K)$
and

$$
A=\left(\begin{array}{ll}
A^{\prime} & 0 \\
0 & I_{n-k}
\end{array}\right)
$$

We note that we could add universal relation 4 to the list in (6.2)(a) and then insist in (b) that $\beta=1$. We also note that universal relation 5 is a special case of (*).

Now we have already seen in (3.11) that if R is GE_{2}-reducible, the relations of $\mathrm{GE}_{n}(\mathrm{R})(\mathrm{n} \geqslant 3)$ are just the universal relations together with the relations of $G E_{3}(R)$; i.e. in (6.2) just (a), and (b) for $1 \leqslant k \leqslant 2$. We shew now that for such a ring it is sufficient to take (a), and (b) for $\mathrm{k}=1$, all m , and for $\mathrm{k}=2$, $\mathrm{m} \leqslant 4$.
Proposition (6.3). Let R be $G E_{2}-$ reducible. Then if $A \in G E_{3}(R)$, there is an expression

$$
\begin{aligned}
& A=B_{13}\left(x_{1}\right) B_{23}\left(x_{2}\right) B_{31}\left(y_{1}\right) B_{32}\left(y_{2}\right) \\
& \cdot B_{13}\left(x_{3}\right) B_{23}\left(x_{4}\right) B_{31}\left(y_{3}\right) B_{32}\left(y_{4}\right) \cdot M
\end{aligned}
$$

where $x_{i}, y_{i} \in R$ and $M \in G E_{2}(R)$.
Proof. Write ' $A \rightarrow B^{\prime}$ for ${ }^{\prime} A=B M$, some $M \in G E_{2}(R)^{\prime}$.

$$
\begin{aligned}
& \operatorname{Then} A \rightarrow\left(\begin{array}{ccc}
\bullet & \cdot & \bullet \\
\bullet & \cdot & \bullet \\
\bullet & 0 & z
\end{array}\right) \rightarrow\left(\begin{array}{lll}
\bullet & \cdot & \cdot \\
\bullet & \cdot & \cdot \\
\bullet & z & z
\end{array}\right) \cdot B_{32}(-1) \\
& \left(\begin{array}{lll}
\cdot & \cdot & \cdot \\
\cdot & \dot{z} & \dot{z} \\
\cdot & z & z
\end{array}\right)\left(\begin{array}{lll}
\cdot & \cdot & \cdot \\
\dot{0} & \dot{i} & \cdot \\
0 & 1 & z
\end{array}\right)=\left(\begin{array}{lll}
\cdot & \cdot & \cdot \\
\dot{0} & \dot{0} & \dot{i}
\end{array}\right) \cdot B_{32}(y) B_{23}(x) \text { some } x, y \\
& \left(\begin{array}{ccc}
\bullet & \cdot & \cdot \\
\bullet & \cdot & \cdot \\
0 & 0 & 1
\end{array}\right) \rightarrow B_{13}\left(x_{1}\right) B_{23}\left(x_{2}\right) \text { some } x_{1}, x_{2}
\end{aligned}
$$

(Each dot stands for an unspecified element of R_{0}) Putting this together, we see

$$
\begin{aligned}
& \begin{array}{l}
A=B_{13}\left(x_{1}\right) B_{23}\left(x_{2}\right) M_{1} B_{32}(y) B_{23}(x) M_{2} B_{32}(-1) M_{3} \quad\left(M_{i} \in G E_{2}(R)\right) \\
=
\end{array} \begin{array}{c}
B_{13}\left(x_{1}\right) B_{23}\left(x_{2}\right) B_{31}\left(y_{1}\right) B_{32}\left(y_{2}\right) \\
\cdot B_{12}\left(x_{3}\right) B_{23}\left(x_{4}\right) B_{31}\left(y_{1}\right) B_{32}\left(y_{4}\right) \cdot M
\end{array} \\
& \text { where }\left(y_{1}, y_{2}\right)=(0, y) M_{1}^{-1}, \quad\binom{x_{3}}{x_{4}}=M_{1}\binom{0}{x} \quad, \\
& \quad\left(y_{3}, y_{4}\right)=(0,-1) M_{2}^{-1} M_{1}^{-1} \quad \text { and } M=M_{1} M_{2} M_{3} \in G E_{2}(R) .
\end{aligned}
$$

We may restate (6.3) as: Every $A \in G E_{3}(R)$ ($R G E_{2}$-reducible) has an expression

$$
A=\prod_{1}^{2}\left\{B_{12}\left(X_{i}\right) B_{21}\left(Y_{i}\right)\right\} \cdot M
$$

where

$$
X_{i}=\binom{x_{i, 1}}{x_{i, 2}}, \quad Y_{i}=\left(y_{i, 1}, y_{i 2}\right), x_{i j,} y_{i j} \in R\left(G \in G E_{2}(R) .\right.
$$

Now suppose m>4 and

$$
\left.{\underset{1}{m}}_{m}^{m} B_{12}\left(X_{i}\right) B_{21}\left(Y_{i}\right)\right\}=A \cdot[\beta]_{3}
$$

Then ${\underset{1}{m}}_{\underset{1}{m}}\left\{B_{12}\left(X_{i}\right) B_{21}\left(Y_{i}\right)\right\}$

$$
\begin{gathered}
=B_{12}\left(X_{1}\right)\left\{B_{21}\left(Y_{1}\right) B_{12}\left(X_{2}\right) B_{21}\left(Y_{2}\right) B_{12}\left(X_{3}\right)\right\} B_{21}\left(Y_{3}\right) \\
\cdot \frac{m}{1}\left\{B_{12}\left(X_{i}\right) B_{21}\left(Y_{i}\right)\right\}
\end{gathered}
$$

$$
\begin{aligned}
& =B_{12}\left(X_{1}\right) \prod_{1}^{2}\left\{B_{12}\left(X_{i}^{\prime}\right) B_{21}\left(Y_{i}^{\prime}\right)\right\} M \cdot B_{21}\left(Y_{3}\right) \prod_{4}^{m}\left\{B_{12}\left(X_{i}\right) B_{21}\left(Y_{i}\right)\right\} \underset{(6.3)}{78} \begin{array}{c}
\text { by } \\
=\prod_{1}^{m-2}\left\{B_{12}\left(X_{i}^{\prime \prime}\right) B_{21}\left(Y_{i}^{\prime \prime}\right)\right\} \text { suitable } X_{i}^{\prime}, Y_{i}^{\prime}, X_{i}^{\prime \prime}, Y_{i}^{\prime \prime} .
\end{array}
\end{aligned}
$$

This gives the induction: we can discard all the relations for m 4, leaving just

$$
B_{21}\left(Y_{1}\right) B_{12}\left(X_{2}\right) B_{21}\left(Y_{2}\right) B_{12}\left(X_{3}\right)=\prod_{1}^{2}\left\{B_{12}\left(X_{i}^{\prime}\right) B_{21}\left(Y_{i}^{\prime}\right)\right\}
$$

which in effect is just (6.2)(b) with $k=2, m=4$ and $\beta=1$. Thus we have proved:
Theorem (6.4). Let R be $G E_{2}-$ reducible. Then $G E_{n}(R)$ (any n) has as defining relations:
(a) $2,3,6,7$
(b) The relations of $G E_{2}(R)$
(c)

$$
{\underset{1}{I}}_{\frac{1}{1}}\left\{B_{12}\left(X_{i}\right) B_{21}\left(Y_{i}\right)\right\}=A
$$

where $X_{i}=\binom{x_{i 1}}{x_{i, 2}}, y_{i}=\left(y_{i_{1}}, y_{i 2}\right), \quad x_{i j,}, y_{i j} \in R$
and (i) $p_{B}\left(X_{1} \ldots Y_{4}\right)=A \in G E_{2}(R)$
(ii) $\mathrm{p}_{7}\left(\mathrm{X}_{1} \ldots \mathrm{X}_{4}\right)=\binom{0}{0}$
(iii) $p_{7}\left(Y_{1} \ldots . Y_{4}\right)=(0,0)$
(iv) $p_{6}\left(Y_{1} \ldots X_{4}\right)=1$.

口
Note that, since a $G E_{2}-r e d u c i b l e ~ r i n g ~ i s ~ a l w a y s ~ a ~ G E-r i n g, ~$ condition (i) of (6.4)(c) is a consequence of (ii), (iii), and (iv): the force of it is that for each set of X_{i}, Y_{i} satisfying (ii),(iii) and (iv) we must pick an expression for A in terms of the generatops of $G E_{2}(R)$, and write down the corresponding relation (c).

We return now to the general case, and prove some identities for the continuant polynomials.
Lemma (6.5).
(a) $p\left(x_{1}, x_{2}, \ldots . x_{m}\right) p\left(x_{m-1}, x_{m-2}, \ldots x_{1}\right)=p\left(x_{1}, x_{2}, \ldots x_{m-1}\right)$ $\cdot p\left(x_{m}, x_{m-1}, \ldots x_{1}\right)$
(b) $p\left(x_{1} \ldots x_{m}\right) p\left(x_{m-1} \ldots x_{2}\right)-p\left(x_{1} \ldots x_{m-1}\right) p\left(x_{m} \ldots x_{2}\right)=(-1)^{m}(m \geqslant 2)$
(c) $p\left(x_{2} \ldots x_{m-1}\right) p\left(x_{m} \ldots x_{1}\right)-p\left(x_{2} \ldots x_{m}\right) p\left(x_{m-1} \ldots x_{1}\right)=(-1)^{m}(m \geqslant 2)$.

Proof. (a) $m=1: p\left(x_{1}\right) p_{0}=p_{0} p\left(x_{1}\right)$

$$
\begin{aligned}
& m \text { > } 1: p\left(x_{1} \ldots x_{m}\right) p\left(x_{m-1} \ldots x_{1}\right) \\
& =p\left(x_{1} \ldots x_{m-1}\right) x_{m} p\left(x_{m-1} \ldots x_{1}\right)+p\left(x_{1} \ldots x_{m-2}\right) p\left(x_{m-1} \ldots x_{1}\right) \\
& =p\left(x_{1} \ldots x_{m-1}\right) x_{m} p\left(x_{m-1} \ldots x_{1}\right)+p\left(x_{1} \ldots x_{m-1}\right) p\left(x_{m-2} \ldots x_{1}\right) \text { by } \\
& \text { induction } \\
& =p\left(x_{1} \ldots x_{m-1}\right) p\left(x_{m} \ldots x_{1}\right) \\
& \text { (b) } m=2: p\left(x_{1}, x_{2}\right) p_{0}-p\left(x_{1}\right) p\left(x_{2}\right)=1+x_{1} x_{2}-x_{1} x_{2}=1 \\
& \mathrm{~m}=3 \text { : } \mathrm{p}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right) \mathrm{p}\left(\mathrm{x}_{2}\right)-\mathrm{p}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) \mathrm{p}\left(\mathrm{x}_{3}, \mathrm{x}_{2}\right) \\
& =\left(x_{1}+x_{3}+x_{1} x_{2} x_{3}\right) x_{2}-\left(1+x_{1} x_{2}\right)\left(1+x_{3} x_{2}\right)=-1 \\
& m>3: p\left(x_{1} \ldots x_{m}\right) p\left(x_{m-1} \ldots x_{2}\right)-p\left(x_{1} \ldots x_{m-1}\right) p\left(x_{m} \ldots . x_{2}\right) \\
& =x_{1} p\left(x_{2} \ldots x_{m}\right) p\left(x_{m-1} \ldots x_{2}\right)+p\left(x_{3} \ldots x_{m}\right) p\left(x_{m-1} \ldots x_{2}\right) \\
& -x_{1} p\left(x_{2} \ldots x_{m-1}\right) p\left(x_{m} \ldots x_{2}\right)-p\left(x_{3} \ldots x_{m-1}\right) p\left(x_{m} \ldots x_{2}\right) \\
& =p\left(x_{3} \ldots x_{m}\right) p\left(x_{m-1} \ldots x_{2}\right)-p\left(x_{3} \ldots x_{m-1}\right) p\left(x_{m} \ldots x_{2}\right) \text { by (a) } \\
& =p\left(x_{3} \ldots x_{m}\right) p\left(x_{m-1} \ldots x_{3}\right) x_{2}+p\left(x_{3} \ldots x_{m}\right) p\left(x_{m}^{\prime} \ddot{x}_{1} \ldots x_{1}\right) \\
& -p\left(x_{3} \ldots x_{m-1}\right) p\left(x_{m} \ldots x_{3}\right) x_{2}-p\left(x_{3} \ldots x_{m-1}\right) p\left(x_{m} \ldots x_{4}\right) \\
& =p\left(x_{3} \ldots x_{m}\right) p\left(x_{m-1} \ldots x_{4}\right)-p\left(x_{3} \ldots x_{m-1}\right) p\left(x_{m} \ldots x_{4}\right) \text { by (a) } \\
& =(-1)^{m-2} \text { by induction } \\
& =(-1)^{m} \\
& \text { (c) similarly. } \quad \text { - }
\end{aligned}
$$

Now we have (using the notation of $\mathrm{pp} .73-75 ; \mathrm{X}_{\mathrm{i}} \in \mathbb{M}, \mathrm{Y}_{\mathrm{i}} \in \mathbb{N}$)

$$
\begin{aligned}
& {\underset{1}{m}}_{m}^{m}\left[B_{12}\left(X_{i}\right) B_{21}\left(Y_{i}\right)\right\}\left[p_{2 m}\left(Y_{m}, X_{m}, \ldots X_{1}\right)\right]_{2} \\
& =\left(\begin{array}{ll}
p_{2 m}\left(X_{1} \ldots Y_{m}\right) & p_{2 m-1}\left(X_{1} \ldots X_{m}\right) \\
p_{a m-1}\left(Y_{1} \ldots . Y_{m}\right) & p_{2 m-2}\left(Y_{1} \ldots X_{m}\right)
\end{array}\right) \cdot\left[p_{2 m}\left(Y_{m} \ldots X_{1}\right)\right]_{2} \\
& =\left(\begin{array}{ll}
p_{2 m}\left(X_{1} \ldots Y_{m}\right) & p_{2 m-1}\left(X_{1} \ldots X_{m}\right) p_{2 m}\left(Y_{m} \ldots X_{1}\right) \\
p_{2 m-1}\left(Y_{1} \ldots . Y_{m}\right) & p_{2 m-2}\left(Y_{1} \ldots X_{m}\right) p_{2 m}\left(Y_{m} \ldots X_{1}\right)
\end{array}\right) \\
& =\left(\begin{array}{ll}
p_{2 m}\left(X_{1} \ldots Y_{m}\right) & p_{2 m}\left(X_{1} \ldots Y_{m}\right) p_{2 m-1}\left(X_{m} \ldots X_{1}\right) \\
p_{2 m-1}\left(Y_{1} \ldots . Y_{m}\right) & 1+p_{2 m-1}\left(Y_{1} \ldots . Y_{m}\right) p_{2 m-1}\left(X_{m} \ldots X_{1}\right)
\end{array}\right) \\
& =\left[p_{2 m}\left(X_{1} \ldots Y_{m}\right)\right]_{1} B_{21}\left(p_{2 m-1}\left(Y_{1} \ldots . Y_{m}\right)\right) B_{1}\left\{p_{2 m-1}\left(X_{m} \ldots X_{1}\right)\right) \\
& \text { So we have } p_{a m}\left(X_{1} \ldots Y_{m}\right) \in U(R) \Longleftrightarrow p_{a m}\left(Y_{m} \ldots X_{1}\right) \in U(S) \text {. } \\
& \text { Now any relation of } H \text { was reducible, by (i)-(v) (page 73), }
\end{aligned}
$$

to the form $\prod_{1}^{m}\left\{B_{12}\left(x_{i}\right) B_{21}\left(y_{i}\right)\right\}=[\alpha, \beta] \quad$-(iv)
$\mathrm{By}(1),(1 i){ }_{\prod_{1}^{m-1}}^{\pi}\left\{B_{12}\left(x_{i}\right) B_{21}\left(y_{i}\right)\right\}$
$=[\alpha, \beta] B_{21}\left(-y_{m}\right) B_{12}\left(-x_{m}\right)$
$=[\alpha]_{1} B_{21}\left(-\beta y_{m}\right) B_{12}\left(-x_{m} \beta^{-1}\right)[\beta]_{a}$ by (iii), (iv), (v)
$\operatorname{By}(v),{ }_{1}^{m-1}\left\{B_{12}\left(x_{i}\right) B_{21}\left(y_{i}\right)\right\}\left[\beta^{-1}\right]_{2}=[\alpha]_{1} B_{21}\left(-\beta y_{m}\right) B_{12}\left(-x_{m} \beta^{-1}\right)$
From (vi), $\alpha=p_{2 m}\left(x_{1} \ldots . y_{m}\right)=p_{2 m-2}\left(x_{1} \ldots y_{m-1}\right), \because p_{2 m-1}\left(x_{1} \ldots x_{m}\right)=0$. By (i), (ii), (v),
$\prod_{1}^{m}\left\{B_{21}\left(-y_{i}\right) B_{12}\left(-x_{i}\right)\right\}=\left[\alpha^{-1}, \beta^{-1}\right]$
So $\beta^{-1}=p_{2 m}\left(-y_{m} \ldots-x_{1}\right)$
$=p_{2 m-2}\left(-y_{m-1} \ldots-x_{1}\right) \quad \because p_{2 m-1}\left(-x_{m} \ldots-x_{1}\right)=0$
$=p_{2 m-2}\left(y_{m-1} \ldots x_{1}\right)$.
Thus if we write E for the subgroup of H generated by all $B_{13}(x), B_{2_{1}}(y) \quad(x \in M, y \in N)$, we have $E \triangleleft H$ (by (iii), (iv)), and H / E has the presentation:
Generators: $[\alpha, \beta]$ where $\alpha=\alpha^{\prime} p\left(x_{1} \ldots . . y_{m}\right) \in U(R), \alpha^{\prime} \in F$ and $\beta=\beta^{\prime} p\left(y_{m} \ldots x_{1}\right)^{-1} \in U(S), \beta^{\prime} \in G$
Relations; $\left[\alpha_{1}, \beta_{1}\right]\left[\alpha_{2}, \beta_{2}\right]=\left[\alpha_{1} \not \dot{\alpha}_{2}, \beta_{1} \beta_{2}\right]$

$$
\left[p\left(x_{1} \ldots y_{m}\right), p\left(y_{m} \ldots x_{1}\right)^{-1}\right]=1 \text { whenever } \underset{\in U(R)}{p\left(x_{1} \ldots . y_{m}\right)}
$$

Now consider the case $R=S=M=N, F=G=U(R)$.
So $H=G E_{2}(R), E=E_{2}(R)$, and we have proved that for any ring $R, G E_{2}(R) / E_{2}(R)$ has the presentation:
Generators: $[\alpha] \quad(\alpha \in U(R))$
Relations: $[\alpha][\beta]=[\alpha \beta]$

$$
\begin{array}{r}
{\left[p\left(x_{1} \ldots y_{m}\right)\right]=\left[p\left(y_{m} \ldots x_{1}\right)\right] \text { whenever } p\left(x_{1} \ldots y_{m}\right)} \\
\in U(R) .
\end{array}
$$

Now note that $\begin{aligned} p\left(1, x_{1}-1, x_{2}, \ldots . x_{n}\right)=p\left(x_{1}-1,\right. & \left.x_{2}, \ldots . x_{n}\right) \\ & +p\left(x_{2} \ldots . x_{n}\right)\end{aligned}$

$$
\begin{aligned}
& =\left(x_{1}-1\right) p\left(x_{2} \ldots x_{n}\right)+p\left(x_{3} \ldots x_{n}\right)+p\left(x_{2} \ldots x_{n}\right) \\
& =x_{1} p\left(x_{2} \ldots x_{n}\right)+p\left(x_{3} \ldots . x_{n}\right) \\
& =p\left(x_{1}, x_{2}, \ldots . x_{n}\right)
\end{aligned}
$$

and similarly $p\left(x_{1}, x_{2}, \ldots . x_{n-1}, x_{n-1}, 1\right)=p\left(x_{1}, x_{2}, \ldots . x_{n}\right)$

So ($m \geqslant 2$) we define $U_{m}(R)$ to be the subgroup of $U(R)$ generated by all expressions
$p_{m}\left(x_{1} \ldots x_{m}\right) p_{m}\left(x_{m} \ldots x_{1}\right)^{-1} \quad\left(p\left(x_{1} \ldots x_{m}\right) \in U(R)\right)$.
We have $U_{m}(R) \subseteq U_{m+1}(R)$. Put $W_{1}(R)=1$ and $W_{2}(R)=\bigcup_{1}^{\infty} U((R)$ We have proved
Lemma (6.6). For any R, and $n=1$ or 2,

$$
G E_{n}(R) / E_{n}(R) \cong U(R) / W_{n}(R)
$$

Now use induction: suppose $n \geqslant 2$, and we have defined $W_{n}(R)$ such that $G E_{n}(R) / E_{n}(R) \cong U(R) / W_{n}(R)$. So we have a function $\phi_{n}: G E_{n}(R) \rightarrow U(R)$ given by $\theta_{n}: G E_{n}(R) \rightarrow U(R) / W_{n}(R)$ followed by a choice of coset representative in $U(R)$. Let $W_{n+1}(R)$ be the subgroup of $U(R)$ generated by $W_{n}(R)$ and all expressions

$$
p\left(X_{1} \ldots . Y_{m}\right)^{\phi_{n_{p}}\left(Y_{m} \ldots . X_{1}\right)^{-1}}
$$

where X_{i}, Y_{i} are respectively $n \times 1,1 \times n$ matrices over R,

$$
p\left(X_{1} \ldots . Y_{m}\right) \in G E_{n}(R) \quad(m=1,2,3, \ldots)
$$

(and hence $\left.p\left(Y_{m} \ldots X_{1}\right) \in U(R)\right)$.
Then we have
Theorem (6.7). For all n, all R,

$$
G E_{n}(R) / E_{n}(R) \cong U(R) / W_{n}(R)
$$

If R is commutative, $W_{n}(R)=1$, all n.
If R is universal for $G E_{n}, W_{n}(R)=U_{1}(R)$.
If R is quasi-universal for $G E_{n}, W_{n}(R)=U_{2}(R)$.
We recall that in (4.19) we shewed that a certain commutative ring was not quasi-universal for GE_{2}. We would like to find an example of a ring which is not quasiuniversal for $G E_{n}$, for all n. Clearly it would be sufficient to find a ring R such that $U_{2}(R) \underset{\neq}{\subset} W_{2}(R)$, i.e. such that for some $m>2, U_{2}(R) \underset{\neq}{\subset} U_{m}(R)$, but the present author is unable to say whether such a ring exists.

REFERENCES.

[1] P.M.Cohn, On the structure of the GL_{2} of a ring. (Pub. Math. I.H.E.S. No. 30, 1966.)
[2] P.M.Cohn, A presentation of SL_{2} for Euclidean imaginary quadratic number fields. (Mathematika 15, 1968.)
[3] W.Magnus, Über n-dimensionale Gittertransformationen. (Acta Math., 1935.)
[4] J.Nielsen, Die Gruppe der dreiaimensionalen Gittertransformationen. (D.K.Danske Vid. Sel., Math-fys. Med.V, 1924.)
[5] O.T.O'Meara, On the finite generation of linear groups over Hasse domains. (J. reine angew. Math. 217, 1956.)
[6] O.T.O'Meara, The automorphisms of the linear groups over any integral domain. (J. reine angew. Math. 223, 1966.)
[7] Yan Shi-Jian, Linear groups over a ring. (Chinese Mathematics, vol. 7 No. 2, 1965.)

