
\

PRESENTATIONS OF GENERAL LINEAR GROUPS

John Richard Silvester

I

\



ProQuest Number: 10098170

All rights reserved

INFORMATION TO ALL USERS  
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest.

ProQuest 10098170

Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code.

Microform Edition ©  ProQuest LLC.

ProQuest LLC 
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106-1346



ABSTRACT
Let R be an associative ring with a 1. Denote by 

GLp(r ) the group of invertible n/n matrices over R, and by 
GLp(r ) the subgroup of GL^(R) generated by the elementary 
and invertible diagonal matrices. Certain specified 
relations between these generators hold universally, that 
is, for any ring R. We call a ring R universal for
GEp(R) has these relations as defining relations, and we
shew that if R is a local ring (i.e. a ring in which the 
set of all non-units is an ideal) or the ring of rational 
integers, then R is universal for GE^, for all n. This both
generalizes known results for n=2, and includes the ■
classical case where R is a field, possibly skew.

By adding further relations to those already 
considered we obtain in a similar way the concept 'quasi- 
universal for GE^ *, giving a class of rings which strictly 
includes the class of all rings universal for GE^, but which 
is better behaved than the latter under certain ring 
constructions. We shew that every semi-local ring (i.e. 
every ring R such that R modulo its Jacobson radical has 
the minimum condition on right ideals) is quasi-universal 
for GE^ , for all n.

Finally we shew how to obtain a presentation of 
GEn(R) for any R. This is unwieldy, but simplifies greatly 
for a certain class of rings called GE2 -reducible rings, 
which includes all Euclidean rings. We shew that for such 
rings R a set of defining relations for GE^ (R), for i^3t 
is obtained by taking the universal relations together 
with certain relations in GEq(r).
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1• Introduction
The general linear groups GL^Ck) (where K is a 

field) and their subgroups and automorphisms have received 
much attention, and the theory is well-developed, even 
when K is skew. Comparatively little is known about the 
groups GLp(R) of invertible nxn matrices over an arbitrary 
ring R. In [5 ] the question of finite generation of GL^(R) 
is investigated for certain types of Dedekind domain R. In 
[6], all the automorphisms of GLp(R), n >  3, are found, 
where R is any integral domain; this is all the more 
remarkable in view of the fact that not every integral 
domain is a GE-ring (see belowJ. In [7 ], certain 
characteristic subgroups and isomorphisms of subgroups 
of GLp(R), n>3> are studied; in spite of the very general 
title, the rings are all integral domains, or even principal 
ideal domains, and with characteristic ^ 2.

In [1 ], the structure of GI% (R) for quite wide 
classes of rings R is examined, and here we attempt to 
follow the same line of investigation for GL^(r), for 
general n. The main tool in [1 ] was a presentation of GLg(r) 
for certain rings called universal GEg-rings. Finding a 
presentation of GLr>(R), for n>3, is so much more difficult 
that the present work is confined almost exclusively to 
that task.

Over a field, every invertible matrix is a product 
of elementary and diagonal matrices. Over a ring, this 
need not be true; indeed, we define GE^(R) to be the subgroup 
of GLn(R) generated by the elementary and invertible 
diagonal nxn matrices, and we say R is a GE^-ring if GE^(R) 
=GLti(r). a ring R is universal for GEg if GEg(R) has a 
certain presentation (see chapter 2); if R is also a GEg- 
ring, it is a universal GEg-ring.

In [1 ], it was shewn that local rings (in particular, 
fields) are universal for GEg; our main result in chapter 
3 is a presentation of GE^(R; for any local ring R and any 
n, and it seems natural to take this as the basis for the 
definition of 'universal for GEn'. With the help of results 
in [3 ] and [k] it is then shewn that the ring Z of rational 
integers is universal for GE^.

If R is universal for GÊ ,̂, this tells us something 
about the structure of GE^(R^), where R^ is the ring of m*m 
matrices over R. In particular, we can ask: if R is 
universal for GE^^, is R^ universal for GEp? With certain 
restrictions, the answer is yes. The restrictions can be 
removed by considering instead a wider class of rings called 
quasi-universal for GEp. We shew (chapter k) that every 
semi-simple Artinian ring is quasi-universal for Gü^ , and 
we give a simple sufficient condition for such a ring to 
be universal for GEp.

Let J(r) be the Jacobson radical of R. The structure 
of GEp(R/j(R)) is closely related to that of GEp(R); indeed we prove (chapter h) that if R/J(r) is quasi-universal



for GEp, so is R. Thus every semi-local ring is quasi- 
universal for GEp, and as before there is a simple 
sufficient condition for such a ring to be universal for 
GEp.

We conclude (chapter 6) by giving a presentation of 
GEp(r ) for any R whatsoever; it is however a rather clumsy 
presentation. Nonetheless it simplifies greatly for certain 
rings, in particular for Euclidean rings.
Notation. The following notation is used throughout.
Let R be a ring, associative and with a 1, and denote by 
U(r ) the multiplicative group of units of R. Elements of 
U(R) are denoted by Greek letters.
Let Rp be the ring of nxn matrices over R. Rp has identity 
Ip, and its group of units is the general linear group GLp(R) 
Let e(,j be the usual 'matrix units' (1 in the i, j position,

L J= the
0 elsewhere). For i/̂ j and xeR, put B;^j(x) = Ip + xe 
Clearly B{, j (x)eGLp (R). Put = Ip + (oc-Oe^L = t:
diagonal matrix with a in the ith diagonal place and 1 
elsewhere.
Put [a,/3]i,j = [otJ-Jiplj, PLj(a) = [oc,a” ]tj and
[oCĵ  ,0^2 f • • • OCn J = L*̂ L J L "Define GEp(r ) as the subgroup of GLp(R) generated by all 

and all Bj^(x) (aeU(R), xeR, 1 <i,j,k <n, j/k).
If GEp(R) = GLp(R) we say R is a GEp-ring. R is a GE-ring
if it is a GEp-ring for all n. GE stands for 'Generalized
Euclidean*: note that every Euclidean ring is a GE-ring.



(A)

2. Universal GEo-rings 
In GEa(H), put E(x) = ( 1 (-1 )Bi2 (1 )

- (-Î i )
GEg (R) is generated by all the E(x) and [a,j3] (xeR, a,/3eU(R)). 
Then the following ’universal' relations always hold:

E(x)E(0)E(y) = -S(x+y) x,yeR
E(a)E(a”^)E(a) = -Dig(a) aeU(R)
E(x)[a,/3] = [/3,a]E()3 ^xa) a,/3eU(R), xeR
[oĉ ,ocg ] [ , /3g ] = [o c ^ , cXg/3g ] ,/5|̂ eU(R)

Following [1 ], we say that R is universal for GEq if (a) 
is a complete set of defining relations for GEg(R). If in
addition R is a GEg-ring, we say that R is a universal GE?-
ring. In this case, (A) is a complete set of defining
relations for GLg(R).

In [1 ], the following rings are shewn to be 
universal for GEg:

a. Local rings (in particular, fields).
b. Discretely normed rings (in particular, k-rings 

with a degree-function).
c. Discretely ordered rings (in particular, the ring

 ̂ Z of rational integers),
SinSe ^ local ring (i.e. a ring in which the non-units form 
an ideal) is a GE-ring, it is a universal GEg-ring.

Our first question is: do any rings fail to be
universal for GEg? CoroXlgry (2 ,3 ) (bslow) answers this in
the affirmative,
.Lemma (2.1 ). In any ring R, E(a)E(b)E(-a)E(-b) = I

ab = 0 = ba (a,beR).
Proof. For any a,beR, E(a)^E(b)E(-a)E(-b) ^

abab-ab+1 -aba
-bab ba+1 

The result is now clear, □
(Note: the symbol □ will be used to indicate the conclusion
of a proof.)
Definition: Let R,S be rings. A U-homomorphism f:5L.T? S is 
a homomorphism of the additive group of R into the
additive group of S such that

f(l) = 1
and f(cxx/5) = f(a)f(x)f(/3) xeR, a,/5eU(R).

The following theorem is proved in [1:(11.2)]: Given R,S,f 
as above, with R universal for GEg, then f induces a 
homomorphism f*:GEg(R) GEg(S) by the rules:
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f*(E(x)) = E(f(x)) . xeR

= [f(a),f(/3)] a,/3EU(R)
Proposition (2.2), If R,S are rings, and R is universal 

for GEg, and if f:R ̂ S is a U-homomorphism, then
xy = 0 = yx (x,yeR) => f(x)f(y) = 0.

Proof. Construct the homomorphism f*, as above. By (2.1), 
if xy = 0 = yx, then

E(x)E(y)E(-x)E(-y) = I
Apply f* to each side,

E(f(x))E(f(y))E(-f(x))E(-f(y)) = I
By (2..1), f(x)f(y) = 0. □
Corollary (2.3). Let k be a field, and let R be the ring

formed by adjoining to k two commuting indeterminates 
x,y with the added relation xy = 0. Then R is not 
universal for GEg..

Proof. A normal form for a general element t of R is
t = xf(x)+yg(y)+a (f(x)ek[x], g(y)ek[y], aek).

Then tt^ = (xf(x)+yg(y)+a)(xf^(x)+yg^(y)+a^)
= x(xf(x)fi(x)+f(x)ai+afi(x))

y(yg(y)gi(y)+g(y)ai+agi(y)) + aa^
If ttj_ = 1 we must have

(i) aa. = 1 
(ii) xf(x)fi(x)+f(x)ai+afi(x) = 0

(iii) yg(y)gi(y)+g(y)ai+agi(y) = 0
(ii) is an equation in k[x], and by examining the degrees 
of the three terms,we see that xf(x)f^(x) = 0, and so one 
of f(x), fi(x) must be zero; hence both are zero. Similarly 
g(y), gi(y) are both zero.

So U(r ) = k*, the non-zero elements of k. Now put 
S = k[x]. R,S are both free k-modules of count ably infinite 
rank. Define f:R ^ 8 by

f (xf ) = (n^O) (and so f(l) = l)
f(ym) = xsm^i (m >0)

and extend by linearity, f is an isomorphism of k-modules, 
and since f(l) = 1 and U(r ) = k*, f is a U-homomorphism.
But xy = 0 = yx, and f(x)f(y) = x^.x = x^ ^ 0. By (2.2), R 
is not universal for GEg. □
Proposition (2.U). R as in (2.3). Then R is a GE-ring.
Proof. Let A€GLp(R). Then A = Ag+x/^+yAg, where AgEkp , 
AiEkLxJn, and Agek[y]p.
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Now det(A)eU(R)=k*. Therefore det(A)=det(Ao+yAg) 

(i.e. replacing x by 0 does not affect the value of 
det(A)). So Ag+yAg € GLp(R).

- 1Put B = A(Ao+yAa) 
Bo€kp, BiEk[x]p, BgEkLyJn*

Then B = Bg+xBi+yBg, where
-1

x=0 = ■ I.Bg+yBg — A^Ag+yAg)
Therefore Bg=0 and B=Bq +xB^.
So A = (Bq+xB^ ) (Aq+yAg )

e GLn(k[x])GLn(k[y])
Ç  G-Bn(k[%j)GEn(k[y])
C GEp(r ). □

We note in passing the rather special structure of the 
group GEp(R):

GEn(R) = GEn(k[x])QEn(k[y])
G E n ( k [ x ] ) n G E „ ( k [ y ] )  = GEn(k)

E itself is a sort of direct product of k[x] and k[yj, 
amalgamating k.

Thus we have found a fairly easy example of a GE- 
ring R which is not universal for GEg. R contains zero- 
divisors; we proceed to find a ring which is a GE-ring 
and an integral domain (it is even a principal ideal 
domain) but which is not universal for GEg. The method is 
a generalization of the above.
Lemma (2.5). Let R be any ring; â, (l=1,.4)eR and a,/3Eü(R). 

Then (*) E(ai )fi(aa )E(aa JhCa*) =

<r=>
—

8La Q.-1 =
ag = 

=
Proof. (*) is true

1 -oc

-^bg
8gBga^-aiBg-Bg-a = a
a^ Bg a.n —â  —a. =  0
8 2 8 3 8 4*8 2 - 8 4  = 0  

8 3 8 3 - 1 = -/3"̂

0, whence
1.e. (ii).

Suppose (a)-(d) hold. From (d) BgBg = 1-/3“ .̂
In fc) (1 )a.-ag-a^^ = 0, i.e. Bg+^ria^ = 0, whence 
In (b) ai(l-^ i)-ai-Bg = 0, i.e. a-yQ-^+ag =
From (iii), aga, = - 8 3 8 3 0  = (/3"̂ -1 )0 = 1-0,
From (iii) and (iv),'aga^ = s^ag, 

and from (iv), a^a* = -a^0ag.
In (a), aj_agaiBg-2a-ag+aj^0ag = a-1 

i.e. a^(aga^-2+0 }a2 = a-1 .
From (ii), â  ̂(l-0-2+0)Bg = a-1

i.e. a^Bg = 1-a, so (i) holds.



Conversely, if (i)-(iv) hold, 
then agBg =  ̂ by (iii)

= -(l-0 )0 -i by (ii)
= 1-0 *1 , so (d) holds.

So a^agSg =-a^-ai0”i = a^+ag, whence (b 
Also agBga* = ai-0 *ia4 = a^+Sg, whence (c
Then a^agaga^-a^ag-aga^^-a^a^ =

-©1©4,= ai0*ia*
= -8 1ag •
= a-1 , whence (a), □

Proposition (2.6). Let R,S be rings, where R is universal 
for GEg , and let f;R “*■ S be a U-horaomorphism. Then 
if 3 a^,ag€R and aEU(R) such that a^ag = 1-a, we 
deduce f(aiag) = f(ai)f(ag).

Proof. Define 0 by aga^ = 1-0.
0  is a unit, since (1-ag â  ) (1+aga-ia^ )

= 1-agai+ag(l-aiag)a-iai = 1
and (l+aga*iai)(l-agai)

= 1-aga^+aga-i (1-a^Bg )a^ = 1
Construct the homomorphism f*:GEg(R) GEg (S) as before.
By ( 2. 5) ,  E ( a i ) E ( a 2 ' ) E ( - a i / 3 - i ) E ( - / 3 a 2 )  =  [ a , / T ^ ] .

Apply f* to each side ;
E(f(ai))E(f(a2))E(-f(aJf(/3)-i)E(-f(/3)f(a2))

= [f(a),f(/3)-^].
From (2 .5 ), f(ai)f(aa) = 1-f(a) = f(l-a) = fCa^ag). □
Corollary (2.7). Let k be a field not containing a square 

root of -1 . Let x be an indeterminate, and 
X = }(l+xp)n, n=0,1,2,.. j. Let R be the localization 
k[x]^ : then R is a commutative integral domain,
and is not universal for GEg.

Proof. U(r ) = |a(l+x2)n; aEk*, nszj.
For if (l+x2)np(x).(l+x2)mq(x) = 1, where p(x),q(x)Ek[x] 
and are not divisible by l+x^, then n+m <0, since U(k[x])
= k*. If n+m <0 then 1+x^|p(x)q(x) in k[x]: but 1+x^ is 
a prime of k[x]. Therefore n+m = 0, and so p(x)q(x) = 1 

and p(x),q(x)Ek*.
Let y,z be commuting indeterminates, and put 

Y = |(l+y)h* n=0 ,1 ,2 ,.. J. Let 8 be the localization 
k[y,z]Y'
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Define f :R ^ 8 by f(x2M) = yn

f(%2n+i ) = yn%
and extend in the obvious way; thus if reR we can write

r = (l+x^ (p(x^ )+q(x^ ) .x)
and then f(r) = ( 1+y(p(y)+q(y). z).
Now the restriction of f to k[x^]^ is clearly an additive 
homomorphism, and we then have

f(ax+b) = f(a)z+f(b) (a,bsk[x^]^) 
whence f itself is an additive homomorphism. Further, 
f(l) = 1 and f(ar) = f(a)f(r) (a€U(R), reR), whence, since 
R and S are commutative, f is a U-homomorphism. •
Now put ai=x, ag=-x, a=1+x®eU(R). Then a^ag = 1-a.
By (2.6), if R is universal for GEg, f(a^ag) = f(ai)f(ag). 
But f(a^ag) = f(-x^) = -y, and f(ai)f(ag) = -z^.
Therefore R is not universal for GEg. □
; Note that since R is a localization of k[x], which
is both a principal ideal domain and a GE-ring, R itself 
is a principal ideal domain and a GE-ring. Other examples 
of such rings have been found by P.M.Cohn in [2]:
Corollary (2.8). (P.M.Cohn) The ring R of integers in 
~  Q,(V-2) (Q=rationals) is not universal for GEg.

N.B. A similar result holds for the rings ot integers in 
.Q^V-7) and Q (V -1 1 ) .

Proof. U(R) = 1+1i, so since the map f :a+bV-2 ^  a is
additive, it is a U-homomorphism.
But i f  â ',= V-2  = -Bg, we have a^Bg = 1 - a ,  where a = - 1 .
Then f(a^) = 0 = f(ag), but f(aj^ag) = 2 since a^Bg = 2,
and so by (2.6), R is not universal for GEg. □
Note that this R is a Euclidean ring.

Thus we see that a ring need not be pathological 
in order to fail to be universal for GEg. It is natural 
to ask; what other relations can be added to the relations 
(a ) so as to give a complete set of defining relations 
for a wider class of rings? An answer sufficient to cover 
(2.8) is given in [2]; namely that the extra 'universal* 
relation ,  ̂  ̂ ,[E(a)E(b) jj! = -I (all a,beR| ab=m=ba, m=2 or 3)
gives, with (A), a set of defining relations for GEg(R),
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where R is the ring of integers in Q(V’-d), d = 2, 7 or 1 1 . 
(The same paper shews that when d = 1 or 3 the corresponding 
R is universal for GEg. The other values of d are covered 
in [l].) A second way of widening the class of rings is 

; the subject of chapter 4 , where, however, we are dealing 
with GEp(R). Chapter 3 is concerned with the formulation 
of the definition of ‘universal for GEp * ; in preparation 
for this we prove the following;
propeoitien (B.9). A ring R la univarael GEg itr GEg (r)

has the following presentation;
Generators: Bij(x), [a,0] (x gR, a,0eU(R), 1^i,j<2, i/j) 
Relations;

1. Bi. j(x)Bt j(y) = BLj(x+y) (x,y€R)
2. Bij(a-l)BjL(l) = Dij(a)BjL(a)BLj(l-a-i) (aeU(R))
3. Btj(x) = Bjt(-l)Bj.j(l)BjL(-x)Btj(-l)Bji;(l) (x gR)
4. BLj(x)[ai,ag] = [ ,ag ]B(; j (a^^xaj ) (xeR, akCU(R))
5» [ CXi » OCg ] [ , 02 ] = [ o c 0^ , CXg 02 1 ( 0C|̂  , 0L Ê U (R  ) )

Proof. We have.
a(x) = Bi2 (l-x)B2 i(-l)Bi2 (l) (a)

and then Bi2 (x) = E(-x)s(o)""^ (b)
and Bgi(x) = E(0)~^E(x) (c )

Now suppose R is universal for GEg. We shew first that the 
above relations 1 .-3 . (which are true in any ring) imply 
the universal relations (A) (page 6 ), using the definitions 
(a), (b) and (c).

E(0)® = 6 1 2 ( 1 By 1.
= 8 1 2 ( 1 )Bai(-l)|-B2i(l)Bi2 (-2 )iBi2 (l) By 2. and 1.
= -8 1 2 (1 )Big(-2 )Bi2 (l) By 1.

E(0)3 = -I By 1.
Thus E(x)E(0)E(y) = Bi2 (-x)E(0 )2Bi2 (-y)E(0 ) By (B)

= -Bi2 (—x-y)E(O) By 1.
= -E(x+y) By (B).

Prom 2. we get a similar relation
6. Bl j (1-a)Bj L (-1 ) = Dl j (a)Bj (-a)B(, j (a“^-1 )

(write [-1 JlBl j (l-a)Bj(, (-1 ) = Bj, j (a-1 )Bj j, (l ) [-1 ](. (by 4.)
and use 2 . )

Then E(a) = B^g(l-a)Bg^(-1 )Big(l ) ,
= Dig(a)Bgi(-a)Big(a-i) by 6 . and 1 .
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So J£(a)E(a-i)E(a)
= Dia(a)B2i(-a)Bi2 (a-i)Di2 (a-i)B2i(-a-i)Bi2 (a)

•Dia(0 )6 2 1 (-a)Bi2 (“"^)
- 0 1 2 (a)[6 2 1 (^0 )8 1 2 (0“^ ) By U. and 5.

Now [B2i(-l)Bi2 (l)ia 
= B2i(-1 )Bi2 (1 )B2 i(-1 )Bi2 (-1 )6 2 1 (1 )

.B2 i(-1 )Bi2 (2 )B2i(-1 )Bi2 (1 ) By 1.
= Bi2 (l)B2i(-l)Di2 (-l)B2i(l)Bia(-2 )Bi3 (l) By 3. and 6 .
= -I by 1. and 4.

So [B2i(-a)Bi2 (a-i))a = [ a ] i (-1 )Big(1)!^[a“^ b y  4,5.
= [otJi (-1) [a“  ̂]i = -I 

E(a)E(a“^)e(oc) = -Dig(a) is a consequence of 1 .-5 •
Then Big (a)Bgi (-a“  ̂) (B^g (a-1 )Bgi, (l ) ÎB^g (-1 )

= Big (a)Bi2 (a“  ̂)Bgi (-a)Bgi (a)Big (-a -̂) by 2,5.
= Big(a) by 1 .

Replace a by a"^0:
[Bi2(o-l/9)B2i(-/r%)Bi2(o-^/3)j[Bi2(-1 )B2 1 ( 1 )Bi2 (-1 ) !

= Di2 (o-^/3),= [o,/3]“4 /3,o] By 1,5.
[o,/3][Bi2(o-^jS)B2i(-/3-^o)Bi2(o-V)i 

= [/3.o]Bi2 (l)Bai(-l)Bi2 (l) By 1.
, °r Pig (1 )§gt (’’1 )Bi3 (1 (l )Sgi (*1 )Big (1 ) Py Ct,
i.e. E(0)[o,/3] = [/3,o]E(0)
So E(x)[o,/3] = Bi2 (-x)e(0 )[o,/S]

= B i 2 ( - x ) [ / 3 , o ] e ( 0 )

= [/3,o]Bi2 (-/3”^xo)e(0 ) By k.
= [fUo]E(fTixo)

It remains to shew that the relations implicit in (a), (B)
and (c) are consequences of I.-5 . These relations are:

Bi2 (x) = E(-x)E(0)-i = Bi2 (l+x)B2i(-l)Big(l)
- [6 1 2 ( 1 )Bai(-l)Bi2 (l)i-i 

Bai(x) = E(0)-iE(x) = [6 1 2 (1 ) 6 2 1 (-1 )6 1 2 (1 )]"^
.Bia(l-x)B2i(-1 )Bia(l ) ,

The first of these, by 1, is equivalent to 
I = 6 1 2 (1 ) 6 2 1 (-1 ) 6 2 1 (l)Bia(-l)
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which is a consequence of 1• The second is, by 1,

Bsi(x) = Bi2(-l)B2i(l)Bi2(-x)Bai(-1)Bi2(l)
which is just 3» Bo we have a presentation.
Converse: suppose GEg(R) has the presentation 

iBu(x), [a,/3]
We must shew R is universal fop GEg• First we shew that the 
universal relations imply 1.-5. (using (a), (b) and (c)). 
From the universal relations, we have E(0)®=-I : in fact, 
we can assume all the relations proved in [l], Theorem 2.2. 
So Bi2 (x)Big(y) = E(-x)E(0)-iE(-y)E(0)-l

= -B(-x)E(0)E(-y)E(0)"i 
= E(-x-y)E(0)-i = Bia(x+y) J; . .

Similarly Bai(x)Bai(y) = E(0)-iE(x)E(0)-iE(y) ,
= E(0)-1'E(x+y) = Bai(x+y) * ;

Then Bia(a-1 )Bai(l )Bia(a~^-1 )Bai(-a)
= E(1-o )E(0)“=E(1 )E(l-a-i)E(0)-*E(-a)
= E ( - a ) E ( 0 ) E ( l  ) ® E ( 0 ) E ( - a " ^ ) E ( - a )
= E(-a)E(-o-i)E(-o)
= -Dia(-o) = Dia(a) : using 1, 2, follows (case ij=12). 

Similarly Bai(a-1)Bia(1)Bai(o"^-1)Bia(-a) 
s E(0)-^l(a-1)E(-l)B(0)"®S(a-i»1)E(a)K(0)'^
= - E ( 0 ) - i E ( a ) E ( 0 ) B ( - l ) 8 E ( 0 ) E ( a - i ) E ( a ) E ( 0 ) - i  
= E ( 0 ) - i E ( a ) E ( a - i ) E ( a ) E ( 0 ) - i
= -E(0)-iDia(a)E(0)-i = Dai(a). Use 1. as before.
Then Bia(-1)Bai(l)Bia(-x)Bai(-1)Bia(l)
= E(1 )E(0)-®E(1 )E(x)E(0)-2E(-l)»E(0)-i .
= E(l)2E(x)E(-l)2E(0)-i 
= E(l)2E(x)E(-l)-iE(0)-i
= E(1)®E(x+1 )E(0)“® by [l]. Theorem 2.2, equation 2.7.
= E(l)3E(0)E(x) = E(0)-iE(x) = Bai(x)

And Bai(-l)Bia(l)Bai(-x)Bia(-l)Bai(l)
= E(0)-l-E(-1 )2E(0)-®E(-x )E(1 )e (0)-®E(1 )
= E(0)-lE(-l)2E(-x)E(l)s 
= -E(0)-lE(-l)2E(-x)E(l)-i
= -E(0)-^E(-1 )®E(-x-1 )e (0)“  ̂by [l], Thm 2.2, egn 2.7.
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= E(0)“+E(-1)3E(0)E(-x )E(0)“^
= E(-x)E(0)-i = Bia(x)

Then Bia(x)[a,jS] = E(-x )E(o )”^[a,/3]
= E(-x)L0,a]E(O)-i 
= [a,;0]E(-a"^x^)E(o)"i 
= (a":*-x/3)

and Bai(x)[a,/3] = E(0)"^E(x) [a,/9]
= E(0)-^[y9,a]B(/rixa)
= [a,y3]E(0)-^E(;3-^xo)
= [ot»/9]Bai (/3”^xa)

Finally we must check that the relation implicit in (a),
(h) and (c) is a consequence of the universal relations.
This relations is:
E(x ) = Bia(l-x)Bai(-l)Bia(l)

= E(x-1)E(0)-®E(-1)»E(0)-+ 
and this does indeed follow from the universal relations. □
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5. Universal rings.

In defining 'universal for GEp*, we could generalize 
the definition of 'universal for GEg * by taking Ê  j (x) and
[a]ĵ  as generators, where

GLj(x) = Bj. j (1-x)Bj ("1 )B(, j (1 )
but.this seems a little awkward; it is much easier to work 
directly with the elementary matrices B{,j(x). Accordingly, 
we make the following definition:
A ring R is universal for GEn if GEp(R) has the presentation: 
Generators: B^jCx), [ « i o c p ] (xeR, a^€U(R), 1^i,j,k<n, i/j) 
Relations:

(x)Bkm(y) = Bkm(y)Bi, j(x) (i/m, j/k)
(x)Bjk(y) = Bjk(y)Bi,j(x)Bi,k(xy) ' (1/k)

Bu(a-OBji.(l) = Dij(a)Bji(a)Bi,j(l-cx“^)
(x) = Bji, (1 )B|, j (-1 )Bj(, (-x)Bj, j (1 )Bji (-1 )

“n]Bu )

1. BlJ
2. Blj
3. B u
4. B U
5. B lj
6. BlJ
7. [oci

All the

a1 9

that 2, and 3. are vacuous for n=2, so by (2.9) the 
definition coincides with the previous one in this case.
The definition is justified by (3.7) and (3.13).

We already know from [l;(4.l)] that every local ring 
is universal for GEg, but we give a direct proof here in 
terms of the above definition, in the belief that 
familiarity with the argument for this case will make the 
argument for general n easier to follow.
Lemma (3.1). (Normal form for GLg(R), R local.) Put Bi=Bgi(l) 

and Bg=Ig. Then if AeGLg(R) (R local) there is a 
unique expression

A = B|-Bĵ  g (x)Bg^ (y )[oc, 0j jLg 
where x,yeR, oc,0eU(R), r=1 or 2, and 1 +x/U(R) if r=1 . 

Proof. Let A = (a^j). One of a^g, agg must be a unit.
If aggEU(R), put r=2. Otherwise put r=1. In either case
A = Br[ I J j = BrBi3(x)| ^ ° ]

“ BpB^g (x)Bg (y ) [oc,0]^g
If r=1, the last column of A is | x0 [

(l+x)0

(i)
(ii)
which shews that
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1+x is a non-unit. Thus r, 0 and x are unique. Prom (i), 
a is unique.From (ii), y is unique, a

If R is any ring and 1+xy € U(r ), then 1+yx € U(r );
indeed

(l+yx)-i = i-y(l+xy)*ix.
Alternatively we may see this by noting that, for any
x.yeR, Bi.j(x)Bji(y)[l+yx]j = [l+xy]i,Bji (y)Bi j (x). •
This relation will assume great importance in chapter 4, 
when we define 'quasi-universal* rings.
Lemma (3.2). If R is a local ring, the relation

Bi, j (x)Bjt (y)[l+yx]j = [l+xy]tBji,(y)Bj, j(x) (1+xy e u (r ))
is a consequence of the universal relations 1, 4, 6 and 7.
Proof, (i) Suppose yeU(R).
Then Bu(x)BjL(y)[1+yx]j
= fy]jBLj(xy)Bji(l)[y-i]j[l+yx]j by 6, 7.
= [yJjBtj ( (1+xy)-i )Bjt (1 )[y"’̂ ]j [1+yx] j
= [y]jDLj(1+xy)Bji(l+xy)Bij(l-(l+xy)-i)[y-i]j[l+yxJj by 4.
= [y] j[l+xy]i.BjL (1 )Bij(xy)[l+xy]ji[y-i]j[l+yx]j by 6, 7.
= [y]j[l+xy]LBjL(l)Bij(xy)[y-i]j by 7. ; .
= [l+xy]LBji. (y)Bi. j (x) by 6, 7. ' ?
(ii) Suppose xeU(R). By (i),

Bjl (y)Bt j (x)[l+xy]i. = [l+yx]jBij(x)Bji(y) 
is a consequence of 1 , 4, 6 and 7*

Bi. j (x)Bji, (y)[1+yx]j 
= [l+yx]7-Bjt (y)Bi, j (x)[l+xy]t [l+yx]j
= [l+xy]i,Bji. ((1+yx)“+y(l+xy))Bj,j((l+xy)“^x(l+yx)) by 6, 7.
= [1+xy]i.Bji, (y)Bi,j(x)
(iii) Suppose x,y are both non-units.

Bi j (x)Bji. (y)[i+yx]j
= Bi,j(x)Bjt(l)[l+x]j[l+x]j^Bjt(y-l)[l+yx]j by 1, 7.
= [l+x]iBji(l)Bij(x)[l+x]yiBji(y-l)[l+yx]j by (i).
= [l+x]i,[l+x]j^Bji,(l+x)Bi^j(x(l+x)"^)BjL(y-l)

.[l+(y-l)x(l+x)"i]j[l+(y-l)x(l+x)~i]ji[l+yx]j by 6,7. 
= [l+x]t [l+x]j^BjL (l+x)[l+x(l+x)"i(y-1 )]iBjt (y-1 )

.Bij(x(l+x)-i)[l+(y-l)x(l+x)-i]ji[l+yx]j by (i).
= [l+xy]{, [l+x] jiBjĵ  (1+xy)Bj |̂ (y-1 )Bij(x(l+x)-; )

.[l+(y-l)x(l+x)-i]yi[l+yx]j by 6,7.
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= ll+xy]i. [l+x]yiBjI ((l+x)y)Bij(x(l+%)-!)

* [1 + ( y - 1 ) x ( l + x ) ~ i ] j i [ 1 + y x ] j  by  1.

= [1+xyJi .Bj t  ( y ) B L j ( x ) [ ( l + x ) - i | l + ( y - l  ) x ( 1 + x ) " i  i ” ^ ( l + y x ) ] j  

= [ l + x y ] i . B j t - ( y ) B i . j ( x )  by 7.  □

V/e are now in a position to prove that a local ring 
is universal for GEg. The proof here is longer than that in Ll], theugn.tne differenee is less great than would 
appear at first sight, since [l;(4.l)] uses results from 
ll ; section 2]. The point is that this proof (3.3) provides 
a relatively simple illustration of the method that will 
be used to prove that a local ring is universal for GEp,
Proposition (3.3). (P.M.Cohn) Every local ring is universal

for GEg. v /
Proof. Let A = BpB^g (x)Bĝ _ (y ) [a,0]^g be in normal form.
Then A[a',0'] = BrB^g (x)Bgi (y) [aa',00'] by 7. ; J ' .
and ABgi(y') = BrB^g (x)Bgi (y+0y'a*^ ) [a,0] by 1,6.
So it remains to shew that A'Big(w) can be put in normal 
form using only 1.-7.
A'Big(w) = BpBig (x)Bgi(y)B^g(ocw0-^) [a,0] by 6.
so it is sufficient to prove that •
Aq = BrBig(x)Bgi(y)Big(z) can be put in normal form.
(i) z / U(r ). From (3.2)

80  B g i ( y ) B i g ( z )  = B i g ( z ( l + y z ) - i ) B g i ( ( 1 + y z ) y ) [ ( l + z y ) - i , 1 + y z ]
by 6,7.

Aq = BrBig(x+z(l+yz)-i)Bgi((l+yz)y)[(l+zy)-i,1+yz] by 1. 
This is now in normal form, for 1+x e U(r ) <=>

1+x+z(l+yz)"i g U(r ).
(ii) z € U(r ). First suppose r = 2. ■
Then Aq = B^g (x)Bg (y )B^g (z)
If 1+yz 6 U(r), by (3.2) and 7. we have
Ao = Big(x)[l+yz]gBig(z)Bgi(y)[l+zy]%i

= B i s ( x + z ( l + y z ) - i ) B g i ( ( l + y z ) y ) [ ( l + z y ) - i , 1 + y z ]  by 6 , 7 .  
and this is in normal form.
If 1+yz / U(r), then y € U(r), and 
Aq = [y ]2B^g (xy )Bg^ ( 1 )Bĵ  g ( zy ) [y ] g ̂

= [y]2Bgi(l)Big(-l).Big(l)Bgi(-l)Big(xy)Bgi(l)Big(-1)
*Big(l+zy)[y]gi by 1.
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= [y]2B2i(l)Bi2 (-l)B2 i(-xy)Bi2 (1+zy)[y];i by 5.
= B2 i(y)Big(-y-i)[y]2B2 i(-xy)Bi2 (l+zy)[y]2i by 6.
= Bgi(l)Bgi(y-l)Big(-y-i)[l+(-y-i)(y-l)]i[y,y]

'B2i(-xy)Bi2(l+zy)[y]gi by 1,7.
= Bgi(l)[y-i]2Big(-y-i)Bgi(y-l)[y,y]

•Bai(-xy)Bis(l+zy)[y]a^ by (3.2)
= Bgi(l)[y-i]2Bi2(-y"^)B2i(y-1-yx)Big(y(l+zy)y-i)[y]i

by 1,6,7.
= B2i(l)ly-i]2Big(-y-i)Bgi(y-1-yx)Big(l+yz)[y]i 
* Bel(l)[y-i]2Big(-y-i)[l+(y-1-yx)(l+yz)]gBig (1+yz)

*Bgt(y-1-yx)[l+(l+yz)(y-1-yx)]7^[y]^
; by (3.2) and 7.

= Bi'Big(-1 + (l+yz)y~i(l + (y-1-yx)))
'B2i((l + (y-1-yx)(l+yz))-iy(y-1-yx)) 
*[(l+(l+yz)(y-1-yx))"^y , y“^(1+(y-1-yx)(1+yz) ]

by 1,6,7.
and this is in normal form, since

1+(-1 + (l+yz)y~i(l+(y-1-yx)(l+yz)))
is a multiple of 1+yz, and so is a non-unit*
Now suppose r=1. Thus Aq » Bgi(l)Bia(x)Bgi(y)Big(z),
With %GU(R) end / U(R) (and §q a§U(R)),
Aq = Bg^ ( 1 ) B 2 (—1 )BjL2 ( 1+x)Bg jL (y )B^ 2 (z) by 1*

= Bgi(l)Big(-l)Bgi(y')Big(z')[a,0] by (3.2),1,6,7.' ^
(suitable y',z',a,0)

= Big(-y')Bgi(l)Big(z'-1)[a,0] by 1,5.
and so now we can use the argument as for r=2, for
Ago = Big(-y')Bgi(l) is in normal form with r=2. □
There is a natural embedding of GLp»^(R) in GLp(R)

o'
A'by the map

r; a ' »->' 0
0 0 .... 0 1

(A'cGLn_i(R))

With this in mind, if A € GLp(R), the statement A e GLp-i (R) 
will be used to mean 3 A' e GLp-iCB) such that 

A = tA'
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Lemma (3.4). (Normal form for GLp(R), R local.) Put Bp=In 
and Bp=Bpr(l), Kr<n. Then if AeGLp(R) (R local) there is 
a unique expression
A = Bp Bjl p (x^ )....Bp.-̂ p (xp—j, )Bpi (y^ )....Bpp_(yp-j. ) [oc] pA^ 
where aeU(R), AiEGLp_i(R), and if r<n, Xp+1 and Xg, r<s<n, 
are non-units. So by induction we have a normal form for 
A, expressed as a product of 2j(2m-l) = n^ matrices (the 
last one diagonal, the others of type Btj(x)).
[N.B. It is well known that a field, and even a local ring, 
is a GE-ring, and so some such expression for A exists. It 
is the particular form of the expression and its uniqueness 
which are new here.]
Proof. Every matrix in GLp(R) has a unit in every row and 
column (note that this property actually characterizes 
local rings). So we can choose r maximal such that Bp^A 
has a unit a in the n,n position.
Then 3 Xi (i=1....n-l) sR such that

0
C ;A — BpBj^p (XjL )»..»Bp—^P (xp—  ̂)

a
(1)

x^a
Put (yi...,yp_^) = (ai..ap_i)C"i and we have the required 
form, with = rC. ^
If r<n, the last column of A is

(1+Xp )a 
\ ^By choice of r, 1+Xp and Xg (r<s<n) are non-units. .

This also shews that r, xi (l^i<n) and oc are unique. The 
uniqueness of A^ and yi— yn-i follows. □
Lemma (3.5). For any ring R, the following relations in 
GEp(R) are consequences of the universal relations:
8. B;, j(x)Bjk(y)=Bjk(y)Bi j(x)Bi,k(xy)

=BjK (y )B(, k (xy )Bt j (x)=Bi,k (xy )Bjk (y)Bi, j (x)
Bjk (y)Bi j (x)=Bi, j (x)Bjk (y )Btk (-xy )
=Bi, j (x)Bi,k (-xy)Bjk (y )=Bi, k (-xy)Bt j (x)Bjk (y)
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9. Bu(l-a)BjL (-1 ) = Du(a)Bji(-a)Btj(a-^-l)

10. iBtj(a)Bji,(-a-^)i8 = Dtj(-I)
H.iBi,j(l)Bi,k(l)BjL(-1)BKi(-l)i® = Di.j(-l)Bjk(l)Bkj(-l)BjK(l) 
12. [ ocp ] B ^ j ( x )  = Bj , j (  cti, xcc j ̂  [ 0Cj_, •« cxp ]
Proof. 8. consists of various ways of writing 3> all 
equivalent, by 1 and 2. 12 is just another way of writing 6.
Then [-1 ]l B(. j (1-a)Bj {, (-1 ) = B[, j (a-1 )Bj j, (1 ) [-1 ] by 6

= Dij(a)Bji(a)BLj(l-a-i)[-l]L by 4 
= [“1 liBj, J (a)Bj (-a)B|̂  j (a*^-1 ) by

whence 9 follows.
We next prove 10 with a=1 :
IBl j(1)Bj L (-1 ) j®
= [Bi, J (1 )Bji (-1 )Bi j (1 )Bji (1 )Bt j (-1 ) i [Bi j (1 )Bj t (-2)

•Bi. j (1 )Bji, (-1 ) i by 1 
= Bji, (-1 )Bi, j (l )Dj i, (-1 )Bi, j (-1 )Bji, (2)Bji, (-1 ) by 4,5
= Bji, (-1 )Bi, j (1 )B(, j (-1 )Bj|, (l )Di, j (-1 ) by 1,6
= Bi, J (-1 ) by 1
Then [Bi, J (a)Bji, (-«“•■) i® = [aJi, [Bi, j (1 )Bji (-1 ) j® [a">-]t by 6,7

= [«]lBi,j(-1 )[a"*]i, by the above
= Bi, J ( - 1 ) by 7. 

1 1 : |Bij(l)Bik(1 )Bji(-l)BKi(-1 )}®
= Bj,k (1 )Bi, J (l )Bji, (-1 )Bi, J (1 )Bki, (-1 )Bk J (-1 )Bi,k (1 )Bji, (-1 )Bki, (-1 )

by 2,3
= Bi,k(l)[Bi,j(l)Bjt(-l)!®Bji,(l)BkL(-l)Bkj(-l)Bi,k(l)

•Bji, (-1 )Bkt (-1 ) By 1 
= Bi,k(l)[Bi,j(l)Bji,(-l)!®Bki(-l)Bkj(-l)BkL(l)Bi,k(l)

•Bjk(
= Bi,k (1 ) [Bi, j (1 )Bji, (-1 )!®Bk j (-1 )Bi,k (1 )Bjk ( 
= Bi,k(l)[Bi,j(l)Bjt(-l)!®Bi,k(l)Bi,j(l)Bkj(-

•Bjk(
= Bi,k (1 )[Bi, j(l )Bji, (-1 ) l®Bji, (1 )Bi,k (1 )Bk j (-

•Bjk(
= Bi,k(l)Di,j(-l)Btk(l)Bjk(l)Bji,(l)Bkj(-1 )B 
= Bi,j(-l)Bjk(l)B^j(-l)Bjt(l)Bki,(l)Bjk(l)Bk

)Bki,(-l) by 1,2,3 
)Bki(-l) by 1,2 
)
)Bkt(-l) by 2,3 
)
)Bki(-l) by 1,2 
k(l)Bki(-l) By 3,10 
(-1) by 1,2,3,6
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= Di.j(-l)Bjk(l)Bkj(-l)Bji.(l)Bji.(-l)Bjk(l) by 1,2,3 
= Di,j(-l)Bjk(l)Bkj(-l)Bjk(l) by 1. □

We introduce the following notation: if A,B € GEp(R) are
expressions in the generators B(.j(x), [«]%, then A ^ B 
will mean 3 G in GEn-i(R), i.e. an expression in Bi,j(x), 
[oJk with i,j,k<n, such that A = BC, and furthermore that 
this relation is a consequence of the universal relations. 
Clearly ^ is an equivalence relation; the arrow symbol is 
chosen as its use will be in a stepwise reduction to 
normal form. Normally we shall write for where the 
value of n is clear from the context.
Lemma (3.6). Let R be a local ring. The following hold, the
R.H.S. being in normal form in each case:
(1) n Bnt(yt) n B-,n(wi.) H B,. „ (wt . n Bni (ayi ) [a] „

L <n L <n u <n u <n
where 1 + Zy^wt = a € U(r )

(ii) n Bi.n(Xi,).n Bni(yJ.n Bi.n(wi.)
I  <n u <n t <n
^ n BLn(xL+Wi.cx‘"^).n Bnj.(oyj.)[a]n

L <n t <n
where 1 + 2y^w^ = a € U(r)

(iii) . n Bni(yi).n Bin(wi) 
t <n c <n

^ Bs n BLn(wi^-i). n B„|,(^yi,)-Bnj(;S(ys-l))[/3]n '
I  < n L < n

l / s
where l+Zy^w^ = z / U(r ) and s is maximal such that

Z-Wg = 0€U(R)
(iv) n Bin(xL) n Bni(yJ,n BLn(wL)

K n  L <n t <n

^  Bs n Bl n((x|,z+W|, ) a - i ) ,  IL Bp^ (oty  ̂ ) *Bps ( a ( y s ~ z '  ) ) [ a ] p  
K n  t <n

with conditions as in (iii), and also a = 0-XjZ
and z' = 1+SytXî,

(v) If Bs n Bip(xi) R BpL(yi) is in normal form, then
I  < n L < n

Br-Bs n B|,n(xi.) n Bni,(yi) A 
l < n  . L<n

where A € GEp(R) is expressed in normal form.
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[N.B. By relation 2. the order of the terms in the
products n Bpj,(*), n B(.p(*) is immaterial.]L <n L <n

Proof, (l) This holds for n==2, by (3.2). Now consider the 
case n=3. Suppose l+y^w^ = 0eU(R).

^3 1 (y± )®3 2 (^2 )^1 3 (^1 )^2 3 (^2 )
= Bg a (yg )Bg a (wg/3*̂  )Bg (y jBg (“Wg 0 ^yi )Bĵ g (wĵ  )Bgg (Wg (1—0*^ ) )

by 1,2,3
= Bg a (yg )Baa (wg0^^ )Bg ̂ (y^ )Bĵ 3 (wĵ  )Bg 3 (wg ( 1 —0 0'̂ ŷiWj_ ) )

•B2i(“Wg0-Vi) by 1,2,3 
sT Bg a (y2 )Ba3 (w2 0~^ )Bg (ŷ  ̂)B^3 (wĵ  ) by 1

Bg a (ya )Ba a (wg0-^ )Bĵ  3  (wj^0  ̂)B3 ( 0 y i  ) [0 ]g  by (3.2), 6
^ Bag(wga ^)Bgg(cx0 ^ y a ) ^ i 3 (^i*^  ̂)Bg^ (cxŷ  ̂) [oc]g by ( 3 . 2 ) , 6 , 7  

Bia(wjLCX ^)Bag(wgOc  ̂)B3g (oc0”^yg )B^ g (—w^ 0 ^ya)Bgi(#yi)[#]g
by 2,3

Big(wia-i)Bgjwga-i)B3i(oyi)B32(a0-iyg+ayiWi0-iyg)[a]g .

by 1,2,3
— Bia(wj_oc ^)Bgg(Wga  ̂)Bg (ocŷ  ̂)Bgg (cxygO [<x]a 
If l+ygWg € U(R), a similar calculation gives the result.
In the remaining case, 1+y^Wj^ and l+ygWg are both non-units, 
so y^, yg, Wj_, Wg are all units.
Then Bgj. (y^ )Bag (yg )Bj.3 (w^ )Bg3 (wg )
= [yli,y;i]i2Bgi(l)B3g(l)Bi3(-l)Bg3(-l).Mo by 1,2,6,7 

where Mq= Bj.g (l+yiWj.)Bg3 (l+ygWg ) [yj_,yg ] ̂ g 
Now. us<#-1 j. We have Bg(yj. )B3g (yg )Bj.3 (w^ )Bgg (wg )
^ [yi^*y2^]l2Big(l)Bgg(l)Bgi(—l)Bgg(-1)'M

Where M = Dig (-1 )Bj.g (l )Bgj. (-1 )Bjl2 (1 ) *Mq
Big ( 1 +yiWi )Dia (—1 )Bi2 ( 1 )Bgi (—1 )Bgg (—I,—yiWi )Big ( 1 )

'Bgg(l+ygWg) by 2 ,3 , 6

Big (1+yiWi )Di3 (—1 )Bi2 ( 1 )Bg 1 (—1 )Bag (yaWg—yiWi )
'Bi3 (l+ygFg) by 1,2,3

Bi3(l+yiWi)B2g(yiWi-ygWg)Dig(-1 )Big(l )
*Bi3 (yaW2 -yiWi)Bgi(-1 )Big(l+yaWg) by 2,3,6

Bia(l+y2Wa)Bg3(yiWi-ygWg)Dig(-1 )Big(l+ygWg)
•Bi2 (l)Ba3 (-1-y2Wg) by 1,2,3, 6  

"*• Bia (1+yaWa )Bgg (yiWi-ygWg )Di3 (-1 )Bia (1+ygWg )
•B23(-1-y2W2)Bia(-1-ygW2) by 2,3
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Bi3(l+y2W2)B23(l+yiWi)[-1 Ja by 1,2,6,7 

So Bg 1 (y^ )Ba3 (yg )Bi3 (wi )B23 (wg )
[ylSy2^]l2Big(l)Bgg(l)lB3i(-l)B32(-1 )

•Bi3(l+y2W2)B2g(l+yiWi)J[-1]a
[ylSy^MisBigd )B2g(l)[Bia((l+y2W2) (-%-!))

'B 2 g ( ( l + y i W i ) ( - a - i ) ) B a i  (a )B s a (a )  i [a ]g
by previous case 

^,y2  ̂̂ 1 2Bia (yiWioc ^)B2 3 (y2Wga  ̂)Bgi (oc)B32 (oc) [ocjg by 1,2 
Bi3(wia”^)B2g(w3a"^)B3i(ayi)B32(ay2)[a]g by 6,7 

So (i) holds for n = 2,3. We now use induction.
We have 0 - 1 '

oc = 1 + Z yi.Wj, € U(r ).1
n-i / NSuppose first that 1 + Z y^w^ = 0 e U(R).

n— 1 ^Write for S , Then a=1+Ziy(,wj^, 0=1+Z2yi,WL.
 ̂ n “1Similarly, write n% for H .

Then ni.Bni(yt)niBtn(wi,)
= Bni ( y i  )B in (wi/3”  ̂)lla [Bnj, (yj, )Bij. (-Wi^"+yi, ) i

•naBi.n(wi,)Bin(Wj,(l-/rl)) by 1,2,3
Bni (yi )Bin (^1^  ̂)UgBnL (y^ )B2B^ n (wj, )

•Bin(wi(l-/3"^-/3“^22yi.™i )) By 1,2,3 
Bni (yi )Bi(w,.^  ̂)B2Bp(, (yj, )lî̂ Bi, n (^l ) By 1 

■* Bni(yi)Bin(wiy3-i)n8Bi,n(wi,/3"+)n2Bnt (^l, )[j3]n by induction 
Bin(wia-i)Bn/d/3-’-yi)n3Bi,n(Wi,a~i)n2Bni,(oiyi,)[a]n by (3.2),

6 ,7
niBi,n(wi,a-^)naBi,i(-Wi,/r’-yi)Bni(a/3”^yi)n2Bni (oyi, )[«]„

by 2 ,3  
niBi,n(w i,a“ ’-)Bni(a;9"^yi+ocS3yi,Wi,^^y^)n2Bn|, (ay^ ) [ a ] n

by 1,2,3 ,
njBi, n (Wj, a-*-)niBni, (ocyj. ) [a]n

Now suppose 3 r, 1<r<n such that 1 + Z y^wi € U(R).
L <n
i / r

Then a proof similar to the above applies. ■
The remaining case is when 1 + S ŷ Wĵ  = Zp is a non-unit,

L <nl/r ' Kr<n.
Then Zp+ypWp = a e U(r), so y^, Wp are units, 1^r<n.
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Then l+Say^Wj, = Zi-y^Wg G U(r) : put 0 = l+Zgytw^. 
B iB p L (Y L )% iB L n (^ L )

= B n i ( y i ) B p 2

•Bgi.

B n i(y ± )B n s  
•B1 n

B n i ( y i ) B n a  

B n i ( y i ) B n a

(y2)Bin(wiy9-+)B2n(w2y9-^)n3lBnt (yi )Bii (-Wi/3"Vi. ) 
(-Wsfr'yi ) ! HaBi. n (w;, )Bin (Wi (1 -/T^ ) )B2 „ (Wj ( 1 -/3"i ) )

• by 1,2,3
(ya)Bin(^l/5 ^)Ban(Wa0  ̂)nsBni. (ŷ  )II3Bl  ̂(Wj. ) 
(Wi(l-fTi-^-i23yiWi))B2n(wa(l-fri-friZ3yiWi ))

by 1,2,3
(ya )B;j.3 (w^/3“  ̂)Ba n (wa^—̂  ) BsBpL (y i  ) BsBj. ) by 1
(ya)Bin(wi/3"MB2n(w2/3-^)

•n3Bi,n(wi,/S“ )̂naBni,(/2yi,)[/3]n by induction
Bin(wia-i)Ban(w^a-^ )Bm (a/3"^yi)B„2 (a/3-^ya )

■n3Bi,n(wi.a~^)n3Bni.(ay(,)[a]n by case n=3,
and 6,7.

- niBin(wi,a"^)n3lBi,i(-Wi,/3-^yi)Bi.2(-Wi,/3-iy3)i
•Bni(a/3“^yi)Bn3(a/3“+y2)n3Bni,,(“yL )[«]n by 2,3 

niBi,n(wi,a"^)Bni(a/3-Vi+aSayi™l/3“^yi)
•Bna(c'./3"̂ ya+aS3yi,Wt/3“^y2)n3Ünt(ayi, )[a]n' by 1,2,3 

niBi.n(wi.a-^)niBni, (ayi. )[a]n 
Thus (i) is proved, (ii) is now immediate, by 1,2.
(iii) niBni,(yi.)niBi,n(Wi)
= Bs*. n Bni, (yL )Bns(ys-1 )niB;,n(wi, ) by 1,2 t <n

L 7̂ 3
-* Bs-niBtn(wi,/5-i).n Bni,(;Syi,)3ns(/5(ys-l))[/3]n by (i)c <n

I Âs
Note that 1+Ws0~^ = (0+Wj)0“  ̂ = z0*“̂  is a non-unit, and so 
is Wp0"^, s<r<n, so we have normal form.
(iv) Put z" = z'-ycXg. Write n| for H and 2| for 2 *

.  ̂ K n  L<n
l / s  L 7̂ 5

B iB i n (x j, ) n^Bp i ( y i )  BiB^ q )

-* BiBin (xi. )Bns (1 )niBi „ (wj./3"+)niB„i, {fin )B„s (fKys'1 ) ) [/3]n
by (iii)

-* Bsn(x3)Bns(l)n%lBin(xi)Bi3(Xi)|niBin(wLf7l) '
'n*Bni(#yi)Bn,(fKys-l))[f]n By 2,3
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-  Bsn(xs)Bns(l )Bsn(w5/3-^)n|Bi,n(xi.+w-,j3“ +̂Xi,vVs,3-i)

•niBni,(/3yi.)Bns(/3(ys-z') ) [ / ? ] „  b y  1 , 2 , 3

- Bj n (xs )Bns (1 )Bs n (ws/3-̂  )ntBi, n ( (X(, z+Wi. )/3"M
. -n iB n i, (/3yi, )B ns (/3(y3-z*) ) W n  

Now B 2 i ( l ) B i 2 ( ( x s Z + W s ) o T i ) B 2 i ( - X s 0 - i ) [ 6 , a # - i ] i 2  ( ô = 1 + z a “ ^ X s )

ô - ( x s Z + W ; ) a " i x s  ( X s Z + W s ) ^ - !

ô -X s -(x s Z + W s  )a~^X 5 ( a + X j z+W j ) /3” ^

Then ô-Xs~(x5z+Ws )a""̂ Xs = 1+ (z-a-Xs z-w^ )a""̂ Xs
= 1 + ( /3 -a -X s  z ) a ” ^Xs 

= 1

-So ô - ( x s Z + W s  ) a ” ^Xs  = 1+ X s

Then (xgZ+Wg)^^! = (xj (ws+/3)+Ws = Xs+Ws/3*"^+XsWs/3”^
Also (a+XsZ+Ws)^"! = (a+Xj z)/3”^+Ws;3"^ = 1+Ws/3“^
But Bia(xs)B2i(l)Bi2(wsfri)

1 + X s  Xs+Wsy3“ ^+XsWs/3” ^

1 1+Ws/3“^
Thus B g n (xs) B n s (1 ) B 5 n (wg^ ^)
~ Bps (1 )B5|-| ( (xg z+Wg )a ^)Bpg(—Xgô ^)[ôjOC^  ̂] s n 

This relation only involves the two indices s,n and so by
(3.3) it l8 a cQhssauancQ of the universal relations/
So IliBi. n (x-Jn̂ Bni, (yJniB;, n (Wj, )

BgBgn ( (Xg Z+Wg )«-! )Bng (-Xg 0"^ )n|B|, n((%L ̂ +^1 )oc“  ̂)
•niBni (ocyt )Bns(«(ys“z'')ô”'^)[a]n by the above

and 6,7
BgniBi,n((xi,z+wt )a”^)niBi,g((xLZ+WL )a‘"^Xgô“^)

•niBnt (ocyt )Bng ((ayg-az^'-Xg )ô"^ ) [a]n by 1,2,3
B g n i B i n ( ( x L Z + W L ) a ~ ï ) n ï B n i ( a y L )

• Bn g (( ay g -az" -Xg a (y j. X(, z+y^ wj, ) a“^Xg ) ô“*̂ ) [ a ] n
by 1,2,3

Now (ayg-az^-Xs-2|a(yi.Xi, z+yî,WL )a“^Xg )6“^
= (ays-#z*-at^z"-l)z+z-1-ygWg)a~ixg)Ô"i 
= a(yg-z" + (ygWg-z*z)arixg)ô"i 
= a ( y g - z * + y g ( z - a - x g z ) a " i x g - z " z a " i x g ) ô - ^

( V  Wg =  Z - /5  =  z-a-Xgz)
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= a(ys-z^-ysXg)(l+za”^Xs)ô"^
= a ( y s “ z ' - y g X s )

= a(ys~z')" Substitution back gives (iv).
Note that for i>s, w;̂ is a non-unit; so is z, and hence 
so is (xj, z+Wĵ  )a“  ̂• Then 1+(xg z+Wg )a“^

= (a+XgZ+Wg)a”  ̂ = za"i is a non-unit,
so we have normal form.
(v) We have r<n, otherwise the result is trivial.
Firstly suppose s=n. There are three cases;
(a) 1+Xp and Xj, (r<i<n) all non-units; then we have normal
form already.
(b) 1+Xp / U(r ) and x^ e U(R) some t>r,.t maximal. -
Then put ^ = 1+Xp-x^ € U(r).
^  n (x^ (y^ )

= Bj; [B(-|p (1 )Bnt, ( —1 )Bp n (xp )B̂ ^n (X|̂  ) 1 II^^'Bl n (x|̂ )lïiBnL (yi ) by 1 ,2
(where stands for  ̂J )

I , t

BtBp n ( X p ) B t n  (xt/3"̂  )Bnp (/3)Bnt (-/?)
.n;lBLn(xifri)niBni(#y/)[f]n 

(suitable y( g R), by (i),1,2,3,6,?
BtHiBi n (xL )n̂ *- Ib ^p (-x^ )B̂  t (xj. ) !niBni (y[ ) [/3]n

(suitable yf e r ), by 1,2,3
‘̂ BtniBLn(xi./3"^)niBni,(ÿi.)[/3]n (y/eR) by 1,2,3.
Note that xi/3~̂  (t<i<n) is a non-unit, and so is 
1+xt^ri = (̂ +xt,)/3“  ̂ = (l+Xp)/?“ .̂ So we have normal form.
(c) 1+Xp = a e U(r ) .

BpIIj^Bj^ n (xj^ )lIjLBni, (yi, )

“ Bpp (l )Bp n (xp )n^B^ n (xĵ ‘)n^BpL (ŷ  ) by 2
Bpn(xpari)Bnp(a)n^BLn(xLa-i)niBnL(yL)[a]n (suitable yfcR)by.(3.2),6
niBLn(xie-i)nrBip(-Xp)niBnL(y;)[a]n (suitable y eR)

by 1,2,3
^ niBLn(xiaTi)niBnL(yL)[a]n (suitable y €R) by 1,2,3 

This is in normal form. ^
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Now suppose B=r<n. Then 1+Xp is a non-unit, and so 
1 +2Xp = a € U(r)•
Bp Bg n̂ Bj, p (xl ) n^Bp L (y;̂  )
— Bpp (2 )Bp p (xp ) p (x̂  )riĵ BpL (y(, ) by 1,2

Bpp(xpa-i)Bpp(2a)n%BLp(xLa-i)niBpL(y/)[a]p (yfcR) by (3.2),6
%iBLn(xia"i)nïBLp(-2xL)niBpL(y[)[a]p (yfeR) by 1,2,3 
niBLp(xLa-i)niBpL(yL)[a]p (y eR) by 1,2,3.

This is now in normal form.
Finally suppose s,r,n are all distinct. There are two cases:
(a) XpcU(R). We know 1+Xg/U(R), so 1+Xg+Xp = a eU(R).
Then Bp BgRiBt p (x|, )niBpL (yt )
— Bpp ( 1 )Bpg (l )Bp p (xp )Bg p (xg )IÎ B̂l p (xĵ )lIĵ Bp (yj, ) by 2

Bpp(xpOC ^)Bgp(xgU  ̂)Bpp (cx)Bpg (oc)
•ni^Bi,p(xLa“^)niBpi.(yi;)[a]p (y(eR)by (i), \

1,2,3,6,7
^ niBLn(xia-i)nrs|Bip(xL)BLg(xi)iniBpL(yf)[a]p (y[cR)

by 1,2,3
^ niBLp(xLa-i)niBpL(yL)[a]p (y^cR) by 1,2,3 

This is in normal form.
(b) Xp/U(R). Then 1+XpcU(R), so by a previous case.
Bp IÎ Bl n (xi, ) Ilj_Bp (ŷ  )

niBinlxi)niBnù(yî)[a]n (suitable x( , y[ , a)
So BrBsniBLn(xi)niBni(yi)
^ BsniBin(xi)niBni(y{)[a]n %y 2- 

normal form, by a previous case. □
Theorem (5.7). Every local ring is universal for GEp, all n. 
Proof. Let R be local. By (3.3) the theorem holds for n=2.
We use induction on n.
Let A = BpniBLp(xL)niBpL(yL)[a]pAo (A^eGEp-i (r ) ) be in 
normal form. Let B be a generator of GEp(R).
Then by induction it is sufficient to shew AB-»normal form. 
Firstly suppose BeGEp_^(R).
Then AB = BpIÎ Bĵ  p (x|̂ )lI|̂ Bp{̂  (y(̂  ) [ocJpAoB

"♦ BpIIiB|,p(xL )riiBpL (ŷ  )[a]p, and this is in normal
form.
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Next suppose B = [/3i..../3p]
Then AB Bp IÎ Bi, „ (x;, )n̂ Bni, (y;, ) [a/3p Ip , by 6,7, and this is 
normal form.
Next suppose B = Bpj(w).
Then AB Bpn^Bi. p (x|, )lIiBpL (yt )niBpL (wj, ) [a.]p (suitable Wĵ eR)

by 1,2,3,6
BpniB|,p(xL )lIiBpt (yL+W|. )[a]p by 1,2, and this is 

in normal form.
Finally suppose B = Bjp(w).
Then AB Bp n̂ B|, p (x;. )n^BpL (yi )niBi. p (w{, ) [a]p (suitable w^eR)

by 1,2,3,6
Now niB;.p(xt )n̂ Bpi. (yi )niBtp(wj, )[a]p

^ BsniBLp(x()niBpL(y()[a']p (suitable x(, y(, a') 
where this is in normal form (using (ii) or (iii) of (3-6) 
as appropriate). So 
AB BpBsniBLp(x/)niBpi(y/)[a']p

normal form, by (v) of (3.6). □
We shall prove later (chapter 3) that if R/j(r) is universal 
for GEp and R is universal for GEg then R is universal for 
GEp'. Thus (3 .7 ) follows from the special case that all fields 
are universal for GEp, all n. However, this fact is non
trivial; indeed, the proof is scarcely shorter in the 
classical case than that given in (3.7).

In [1;(5.2)] it was shewn that any discretely 
normed ring is universal for GEg. In particular, the ring 
Z of rational integers is universal for GEg. With the help 
of a result in [U], we now shew that Z is universal for GEj.
Theorem (3.8). The ring Z of rational integers is universal

for GE3 .
Proof. In [U; section 2] the following is proved (a sketch 
. of the proof is given at the end of this proof) :
Let PtK = Bik(l)Bkl(-l)BLk(l)[-l]l = PkL

(e.g. Pi2 = 1̂ 01 , Pin — 1 1 )
f?>l 9 ^in — (0 1 ̂

1,
Lo, ij

.i 0,
and 0  ̂ = [-1 ](, , (ik) = B(,k(l).
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Then GSg(z) has the presentation;
Generators: P^k, 0^, (ik) (l<i,k<3, i/k)
Relations:

f(0 P?K = I
(2)

A (3) Of = I ■
w OiOk = O^Oi
(5) 0|, P;, k = Ok
.(6) m Oi, Pk m “ 0,,
f(7) pra(ik)Pik = (ki)
(8) Pr&(ik)Pim = (mk)

B 4 (9) P;i(ik)Pkm = (im)
(10) 0;Mik)0„ = (ik)
(11) 0-i(ik)0i = (ik)-i
.(12) Oki(ik)Ok = (ik)-i
■(13) OiPik(ik)(ki)-i(ik) = I

C " (1U) (ik)(im) = (lm)(lK)
(15) (ik)(mk) = (mk)(ik)
.(16) (ik)(km)(ik)"i(km)"i(im)“

The generators B^kC^) of GEq (r ) are defined
in terms of the above generators by 

Bik(n) = (ik)"
[a,/3A] = where e{\) = 0 if X = 1

1 if X = —1
The relations implicit in the definitions of the two sets 
of generators are:

^Lk (“I )Bk'u (-1 )B{.k ( O  [-1 ]l = Bki(l)BLk(-l)BkL(l)[-l]k 
[a,/5,ô] = [oc] [/3]2 [ô]3
B(,k M  = Bik(l)"

The second and third of these follow immediately from uni
versal relations 7 and 1.
Then Bl k (OBkL (“O B l k ( O  ["1 ]l 
= BLk(l)Bki(-l)Bik(l)BkL(l)BLk(-l)"Bik(l)BkL(-l)[-l]L by 1 
= Bkt (“O B lk (OBkt (-1 ) [“1 ]l by 5
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= Bki,(l)BlK(“l)Bki,(l)'Bki(-l)B|,k(l)Bki,(-2)Bi,k(0

•Bki.(-1)[-I]l By 1 
= Bki, (1 )Bi,k ( -1  )B k i  (1 ) 'Bki, ( -1  )Bi,k (1 )

•Di.k(-l)Btk(-l)Bki(2)Bkt(-l)[-l]i. By k 
= B|u(l)Btk(-l)BKl(l)-Di,k(-l)|i-l]L By 1,6 
= Bki,(l)Bi,k(-l)Bki,(l)[-l]k By 7 

So it remains to shew that the relations (1)-(16) are 
consequences of 1.-7.
( O  Pfk = k (l )Bkl (”*'1 )Sl k ( O  [-1 k (1 )Bk L (-1 )Bl k (l ) [-1 ] i.

= Bi,k(l)Bki,(-l)Bi.k(l)Bi.k(-l)Bki.(l)Btk(-l) By 6,7 
= I by 1

So we may now replace P”k by P{,k where convenient.
(2) PkJPLkPkm
= Bmk(l)Bkm(-l)Bmk(l)[-l]mBlk(l)BkL(-l)Bik(l)[-l]l

-Bmk(l)Bkm(-l)Bmk(l)[-l]m ,

= Bmk(l)Bkm(-l)Bmk(l)Bik(l)Bkl(-l)Bik(l)
•B„k(-l)'Bkm(l)Bmk(-l)[-l]l,By 6,7 

= Bmk(l)Bkm(-l)Bik(l)Bkl(-l)BmL(-l)Bik(l)
•Bkm(l)Bmk(-l)[-Ol By 1,2,3 

= Bmk(l)Bik(l)Bim(l)Bkl(-l)BmL(-l)Bkl(l)Bik(l)
'Bim(l)Bmk(4)[-l]l By 1,2,3 .

= Bmk(l)BLk(l)Bim(l)Bml(-l)Bik(l)BLm(l)Bmk(-l)[-l]b By 1,2 
= Bik(l)Bim(l)BLk(-l)Bml(-l)Bik(l)Bim(l)Blk(-l)[-l]l By 1,2,3 
= Bim(l)Bmi(-l)Bim(l)[-l]ù By 1,2 
” Pi m
(3) o f  = [-l]f = I By 7

(4) Oj,Ok = [-l]i,["l]k = t“l]k[“l]l = OkOi By 7
(5) PfkOiPik
= Bfk (1 )Bki (-1 )Bi,k (l )[-1 jfSik (1 )Bki (-1 )Bi,k (l ) [-1 ]l 
= Bik(l)Bki(-l)Bik(2)Bki(-l)Bik(l)[-l]i By 1,7 
= Bi.k(l)Bki.(-l)D|,k(-l)Bki.(l)Bi,k(-2)Bi.k(l)[-l]i. by 9 (3.5)
= Dj, k (~1 ) [”1 ]i By 1,6 
= [-13k By 7
= 0k
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(6’) PkipOt^km
= [-1 ]kBkm(-1 )Bmk (l )Bk^(-1 ) L“1 ItBkmd )Bmk (“1 )BKmO ) [-1 ]k 
= [ “  ̂IkBk m("1 )Bmk(l )B% m (“1 )B^ m ( ̂ )Bmk (“  ̂)Bk m ( ̂ )["’1 ] L
= L-I]i, By 1,7
= Of,
(7) p"i(ik)Pu
= Bf,k(l)Bki.(-l)Bi.k(l)[-l]tBi,k(l)Bf,k(l)Bki.(-l)Bi.k(l)[-l]f, 
= Bf.k(l)Bki.(-l)Bf.k(-l)Bki.(l)Bi.k(-l) By 1,6,7 
= Bki(l) By 5 
= (kO
(8) p-m(ik)PLm
= Bi.„(l)B„i,(-l)Bi.„(l)[-l]f.Bi,k(l)BLm(l)B„f,(-l)B-,„(l)[-l]f,
= Bim(l)Bml(-l)Bim(l)Bùk(-l)Bim(-l)BmL(l)Bim(-l) By 6,7 
= Bim(l)Bml(-l)Bik(-l)Bmi(l)Bim(-l) By 1,2 
= BLm(l)BLk(-l)Bmk(l)BLm(-l) By 1,2,3 
= Bik(-l)Bmk(l)Bik(l) By 1,2,3 
= Bmi< (l ) By 1 ,2 
= (mk)

(9-> Pf7m(ik)Pk„ .
= Bkm(l)Bmk(-l)Bkm(l)l-l}Bik(l)Bkm(l)Bmk(-l)Bkm(l)[-l]k 
= Bkm(l)Bmk(-l)Bkm(l)Blk(-l)Bkm(-l)Bmk(l)Bkm(-l) By 6,7 
- Bkm(l)Bmk(-l )Blk(-l)Blm(l)Bmk(l)Bkm(-l) By 1,2,3 
= Bkm(l )Bi,k(“1 )Bf,m(l )Bf,|<(l )Bkm(-1 ) By 1 ,2,3 
= Bkm(l)Bim(l)Bkm(-l) By 1,2 
= Bim(l) By 1,2 
= (im)
(10) 0-l(ik)0m = [-l]I^Bik(l)[-l]m

= Bf,k(l ) By 6 
= (ik)

(11) 0[i(ik)0k = [-l]i:^Bi,k(l)L-l]l
= Bf, k (-1 ) By 6 
= Bf,k(l)-VBy 1 
= (ik)-i

( 1 2 )  0J7^(ik)0k = [ -1  ]k^Bf,k ( l  ) [ - 1 3k
= Bf,k (-1 ) By 6
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= Bi.k(l )-^ By 1 
= (ik)-i 

(13) OiPik(ik)(ki)-i(ik)
= [-1 (1 )Bki (-l )Bik(l)[-1 (1 )Bkl (1 )-"Bik(l )
= Bi.k(-l)BKi.(l)Bi.k(-l)Bi,k(l)Bki.(-l)B;,k(l) By 6,7,1 
= I By 1
(li+) (ik)(im) = Bi.k(l)Bi,„(l) = Bf,„(l)Bi,k(l) By 2

= (im)(ik)
(15) (ik)(mk) = Bi.k(l)B,„k(l) = B„k(l)Bi.k(l) By 2

= (mk)(ik)
(16) (ik)(km)(ik)"i(km)"i(im)"i
= Bik(l)Bkm(l)Blk(l)-lBkm(l)"iBLm(l)-i 
= Bkm(l)Bik(l)Bim(l)Bik(l)-iBkm(l)"iBLm(l)-l By 3 
= I by 2. □

It may be helpful here to give a brief sketch of 
Nielsen’s proof that (1)-(16) are a set of defining 
relations for GS3 (Z).

Let N be the subgroup of GEg (z) generated by the 
% and 0̂ '. This is just the orthogonal group, or the 

matrices with exactly one entry of ±1 in each row and 
column, and zero elsewhere. Then a simple order calculation 
shews that the relations (à ) (page 29) present N. The
relations (B) enable any matrix in GEg(z) to be written in
the form .

co-n(ik)
where oj e 11. If M € GEg (z), M = (e^k), put o(M)' = S 6;,k
Then a straightforward calculation shews o(M) > 3, with 
equality iff M e N. Further, o(M)=o(Mw)=o(wM), any weN.
Now supposé M = FiFg....Fr where Fj = P lk oh Ol or (ik).
Define ^ )

Og — o(FgFg....Fp )
Op = o(Fp )

op+i = o(l) = 3 The numbers o^jOg,.. Op+i are called the diagram of M.
Then by an inductive argument, Nielsen shews that for any 
such M, using only (1)-(16), we can obtain M = M', where 
M' = F(Fg....Fg has monotone diagram, Og> . . >Os+^=3.
Thus if M=I, we must have o[=O2=....= 0s+^=3 (since o[ = o(m)
= o(l)=3) and so F( eN, and the relation M'=I is a relation 
of R and so is a consequence of (A); further, M=M' is a 
consequence of (A,B,C) and so M=I is a consequence of (A,B,C), 
i.e., of (1)-(l6).
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In [3 ], Magnus uses Nielsen’s result to get a 

presentation of GEf^(z), n > 3. We can generalize his method 
to prove theorems that hold for Z or k[x] and indeed for 
a class of rings (see (3.11)) which includes any Euclidean 
ring; essentially our results shew that to see whether 
such rings are universal for GE^,, n > 3 , it is sufficient 
to look at the case n = 3 .

Let Aq(R) be the subgroup of GEn(R) generated by 
GEn-i(R) and all Bi,n(x), i<n. Every matrix in A^ (R) has 
bottom row (0,0,.... ,0,1 ), but unless R is a GE«_^-ring, the 
converse need not hold. For example, let R = kLx,y], and 
put

A = 1 +xy x^ and B = A 0
^-y^ 1-xy . 0 0 1 ,

Then B € GBg (r ) , but B / Ag (R) since A / GEg(R) (see [l ; 
Proposition (7.3)])«
Lemma (3.9). If A e A„(r ) (any ring R) then there is a 
unique normal form
(a) A = .R Bi.n(xL)*Ao (xqeR, AgCGEn-iCR))

. L <n
Further, A can be brought to this form using only the
universal relations, i.e. if A is a product of Bij(x)
(léi<n, 1<j<n) and [«i ,....an-i, 1 ] then 3 xi (l<i<n) such that

A -  . II Bi. n (Xi. ) 
t <n

Zrggf, W§ iiavi (i<n)

Blj(x)BKn(y)
J  Bk n 

"  I Bkn
Bkn(y)Bij(x) by 2 , if j/k

and
(y)Bj.n(xy)Bi, j (x) by 2,3, if j=k

by 6 .i,l]B%n(y) — Bkn(^ky)[#i,""^n—1 *1 ] 
Thus, by an inductive argument, if Ai€GEn_i(R)

where
Ai',n BinCxi) = n BLn(yi)"Ai by 2,3,6L<n

A.

L <n
X,

Xn-i0
So Ai 
Then

n Bj, p (x(̂ ) 
L <n

y±
j
yb—1 
0

. 5  BLn(yi) L <n

. g Bin(yi).n = . n A n U i + y L )t <n u <n L <n
by 1 , 2
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Thus if A e An(R), 3 X;, € R such that 

A ̂  .g Bln(xi)I, <n
So 3 AoeGEn-i(R) such th,at A =  ̂<̂ ,6;, ̂ (x,. ) • Aq
Suppose also (Bo€GEn-i(B)) A = n Bin(yL)'B6I ■
Then ^g^Bin(xi-yi) = BqAq ^, whence xi=yi, Ao=Bq , and we 
have uniqueness, □
Lemma (5.10-). A^ (R) (any ring r ) has the following 
presentation:

Generators: Bi.j(x) (i<n) and , 1 ]
Relations: The universal relations 1.-7., where

applicable, together with the relations 
of GEn-i(R).

Proof. By (3.9), all that remains to be shewn is that 
A'B can be put in normal form (where each of A,B is in 
normal form) using only the prescribed relations.

A-B = n B i .n (x i , )Ao-  n BLn(yf,)Bo

= n Bl n (xi.+yL )’AqBo (y(eR) by the same argument
 ̂ as in (3 .9 )

=  ̂n B l n(xl +yL) ' ( Go—AqBo cGEb—i (b )). □L ''D
We note in passing that a similar proof shews that

the group of upper triangular invertible matrices, and the
group of unitriangular matrices, each have presentations 
consisting of the obvious generators together with the , 
applicable universal relations.
Definition: R is a strong GEm-ring if given (k<n)
and bi,....b̂ ç in R, bL not all zero, such that 

â b̂ +».»»+a|̂ bĵ  ^ 0 
there exists P e G'Ê  (R) such that (a^,....â  ) 'P has at least 
one zero entry.

Note that a strong GE^-ring is a GEp-ring; it is 
also a strong GE^-ring for all m^n, A strong GE^-ring is 
just an integral domain (not necessarily commutative). 
Definition: R is a right Ore-ring if for all a^, ag e R 
3 bl, bg € R, not both zero, such that a^b^+agbg = 0.
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Now suppose R is both a right Ore-ring and a strong GSg- 
ring (e.g. R = any Euclidean ring); then given a,b e R 
3 P G GEg(R), c € R, such that (a,b)«P = (c,0).
Conversely, suppose R has this property; then it is a right 
Ore-ring, and it is a strong GEg-ring iff it is an integral 
domain.
Definition: A ring R i s  GEo-reducible if for all a,b g R 
3 P G Gfig(R), c G R, such that (a,b)*P = (c,0).
Theorem (3.11 ). (cf. Magnus, [3]) If R is GEg-^reducible, then 
GEri(R), n^3, has the following presentation:

Generators: Bl j (x ), [a^,....«„]
Relations: The universal relations 1.-7., together with

the relations of GEg(r ) (i.e. relations
involving just three subscripts).

Proof. The theorem is trivial for n = 3, so assume n > 3 
and use induction. . ■
Let Mlj denote any product of B l j ( x ) ,  BjL(y), [a,^^LJ» i.e. 
(since R is certainly a GEg-ring) any matrix in GEp(R) 
which differs from the identity matrix only at the 
intersections of the i,j rows and columns. We stress that 
Ml j will denote any matrix of the appropriate form, so we 
shall write Mjl = Mlj, MljMlj = Mlj, BLj(x)MLj = Mlj, etc. 
Let A G GEn(R),

A =
a b

Now 3 M G GEg(R) such that (a,b)»M = (c,0) 
i.e. 3 Mj_g such that/ '

A =
p  c •••• Ml 2 — 0 0 d ••• M32M2 1

Mp PI ••••Mg ̂ , where A^ g Ap| ( R ) .

(This reduction of . A is essentially due (in the case R 
to Magnus, op. cit.)

= Z)
n-iThen A^ = h BLn(%L)'Ao (Aq e GEn-i(R))



n“ i  ' :Suppose n BLn(xL)AoMnn-i""Mgi = I (*) ‘
1

Then Mpj— g....Mgh BLn(xL)^oMnn—i — i by 1,7 « 1
By relations of An(R) we can write this as . n-i ,  ̂.

B Bl n (xl yAgoM^n—1 = 1

B BLn(xL)AQo = M^n—i (**)±
and thus Mnn-i 6 An(R), and so (**) is a relation of An(R).
By (3.10), (*) is thus a consequence of the universal
relations and the relations of GEn_i(R).
So it remains to shew thatn-i n-iA = n Bl n (xl )AoMp|p̂ .̂...Mgi • II Bl n (y(, )-AiMnn“'i****̂ 2i
can he expressed in the form 

n~iB Bl n (xl )A2Mpp|_̂ ....M2i
(Aq , A^, Ag e GEn-i(R)) using only the universal relations 
and the relations of GEg(R); by induction we can use 
relations of GEn-i(R), and hence by (3.10) we can use 
relations of An(R).
For the rest of this proof, ’ -+ ’ will mean ’ =, using only 
relations of GE^(r ), GEp,_^(R)j An(R), and the universal 
relations.'
By (3 .9 ), Mn—in—2""Mgi H BLn(yi)-A-i II BLn(yt)-^2 (Ag€GEn—1 (r) )

1 1

So A n Bl n (xl )-AoMnn —1 B Bl n (yt )-̂ 2Mnn—i'***Mgi 1 1
II Bl n (xl )AgMpn—1 B Bl n (yi )'^2Mnn”i****M2i 1 1

Then Mnn-i*^B^BL n (y( ) "̂ B̂ B-, n-i (yC )'^B^Bl n (y;. )Mnn-i by 1,2,^   ̂ 1 3,6
Aq n B lh-i(ÿû ) — -̂ 3  ̂ GiLp—i (r )

n - i  , . n-2 . n - i  .
and H BLn(xL)Ag H BLn(yû)  B BLnCx^Ag

1 1  1
n —1 ' " '

So A “*■ H Bl n (xl )AgMnn—lAgMpn—i.***Mgi 
1

Now Ag = n Bl n-i (Zl ).AgMn-in”2 ”**M2i (^ 2  ̂ GEp-g(R))1



Then Mp,n—lAg — Mp,n-i B B^n—iCzLXAgMn—in—2""Mgi
1

~* B B^n—i(zl) n Bl n ( ) Mpn —i'̂ 2Mn —1 n —2••••M21 by 1 ,2,3,6 1 1

-*• n BLn-i(zû) n Bl n (̂ L )AgMnn—iMp—in-2’*’*M2 i by 2,6
n “"2
B Bl n ( )-̂ 4Mnn —î **‘M2 1 by 2 (A* € Gkn_i(R)).

So A II Bl n (xl )Aq n B l  n (̂ L )A4.Mnn”i»**»M2iMnn—I'.’.Mgî
1 1

B Bl n (xl )A5Mpin —i.'.'MgiMnn—i****M21 (Ag € GBp,—i (R))

Then Mp|—gp,—g....M2 iMpipj_̂  -* M^p—iMq—gn—a^^Mgi by 2,6 
and Mnn—iMn—I P —gMnp—1 Bn-go(wi)Bn—ip(Wg)Mn—ip—g

"Mpp-iMn-ip-g by relations
of GE (r )

p —1
So A  n B L p ( x L ) A g B n —g p ( w i ) B n —i p ( w g ) M n —I P —g M n p _ i M n _ i p —g

••••Mg iMp—I P —g.""Mgi
n - iB BLp(xL)AgMn—ip_gMnn—iMn—ip—2""MgiMn-I P —g""Mgi

B BLn(xL)AgMnp—i""MgiMn-IP—g""Mgi (Aq g GEn^i(R))
Then A^ = M^-ip—g^^Mg^M^-^p—g^^Mg^ G GEp|^^(R)
and as b e f o r e ,  Mnp-iA? *^n^BL p ( z l  )AQMnn-i . . . .Mgi (Aq €GEn»i (R )  )

So A n Bl p ( x l  )Aq n B l p ( z l  )AaMnn„i»»».Mg^
1 1

B B l n ( x l  ) AgMpip|_jL••••Mg 1 (A g  GGEp,^^ ( r ) ) . □
1

Thus we have immediately:
Corollary (3.12). If R is GEg-reducible and universal for 
GEg, it is universal for GE^, all n>3. □ •
Corollary (3.13). The ring Z of rational integers is 
universal for GE^, all n.
Proof. The case n=2 is covered by [l;(5.2)], and the case 
n=3 by (3 .8 ). (3.12) now gives the result. □

- We conclude this chapter with some remarks on the 
interdependence of certain of the universal relations.
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Proposition (5.1U). In GEn (R) (any ring R, n>3) the 
universal relation 5* is a consequence of the other 
universal relations.
Proof. Bji, (1 )Bl j (-1 )Bj L (-x )Bl j (1 )Bjl (-1 )
= Bji, (1 )Bi, J ( - 1  )Bki. ( - 1  )Bjk (-x)BKi, (1 )Bjk (x)Bf, j (1 )Bji, ( - 1  )

by 1,3 ( M  i,j)
= Bji.(l)Bki.(-l)Bkj(-l)Bjk(-x)Bi.K(x)Bki(l)BKj(l)

■Bjk (x)Bf,k (-x)Bj I, (-1 ) by 1,3 
= Bki (-1 )Bk j (-1 )Bisu (1 )Bjk (-x )B i^x)Bjk(x)

•Bki(l)Bkj(l)Bki(-l)Bjk(x)Bi.k(-x)Bjk(-x) by 1,2,3 
= Bk j (-1 )Bf,k (x)Bk j (l )B^k ("x) by 1 , 2  

= Bf, j (x) by 1,2,3. □
For n=2, this need not he the case:
Proposition (3.15). In GEg(Z), the universal relation 5* 
is independent of the other universal relations.
Proof. Consider the group G = {±1, ±e} where = 1,
and the map GEg(z) G
given hy (neZ)

Bai(n) - 1 (neZ)
[a,/3] afi {a,0 = +1 )

Then it is clear that the map is consistent with the 
relations 1,4,6,7 (2,3 are vacuous in GEg(R)) hut not 
with 5* □
For certain values of the element x occuring in 5, however, 
3. is a consequence of 1,4,6,7:
Proposition (3.16). (Any r ) The relation

Bi,j(l-a) = Bji(l)Bi,j(-l)Bji.(a-l)Bi,j(l)Bji,(-l) (aeU(R)) 
is a consequence of 1,4,6,7 in GE,(R).
Proof. We have

B u ( “"^-l)Bji,(l)Bf,j(a-l)Bji,(-a-^) = by 1,4
and

Bji, (oc"*--1 )Bf, j (1 )Bji, (a-1 )Bf, j (~a“^) = Dji.Co"’-) by 1,4 
By 7, Dij(a-i)Dji(a-i) = 1 .
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So, using 1,

(1 )Bl j (a-1 )Bjl (“1 )Bl j (1 )Bjl (a-1 )Bl j (-a”^) = I 
Using 1 again,
B l j (-1 )Bjl (1 (a-1 )Bjl (-1 )Bl j (1 )Bjl (a-1 ) = I
and the result follows. □
Corollary .(5..'17)« If R is a local ring, and if |r/j | > 2 
(j=Jacdbson radical) then 5. is a consequence of 1,4,6,7 
in GEg(R).
Proof. If X / U(r ) then x = a-1, where a = 1+x e U(r ).
If X € U(R) and 1+x = a e U(r) then x = a-1 as Before.
Other case; x e U(r), 1+ x  / U(r).
Then 3 a,/3 e U(r ) with a+/3 =1.
So —1 = (a—1 ) + (/S—1 )
and X = (a-1) + (6-1 ) where ô = y9+x+1 g U(r).
By 1, B lj ( x ) = B l j(a-1)Blj(ô-1 ) and the result now follows.

Note that in the excluded cases of (3.17) we can use an 
argument similar to (3.15) to shew that 5. is independent; 
if = 1 ,  just map Big(a) e (aGü(R))

Big(x) "  1 (x/U(R))
B2i(y) ^  1 (yeR)
[a,13] 1 (a,/3£U(R)).
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4» Quasi-universal rings.

We already lu.ow from (3.7) that skew fields are 
universal for GEp,, all n. The Wedderburn-Artin structure 
theorem states that every semi-simple ring with the minimum 
condition on right ideals is a finite direct product of 
full matrix rings over skew fields. Now if R is any ring,

(Bp)m — Bpifji
and if R,S are rings,

GEn(R*S) ^ GEn(R)xGEn(S)
which prompts us to ask whether the property of being 
universal for GE^ is preserved under formation of direct 
products and'of matrix rings; counter-examples to these 
hypotheses are given in (4.1) and (4.7). However, if R,S 
are universal for GEp,, we can shew (see (4.2)) that 
GEpi(Rxs) has a presentation consisting of the universal 
relations, together with

BLj(x)Bji(y) = (y)BL j (x) whenever xy=0=yx. .
Then if R is a GEp,-ring. universal for GEnm, we can shew 
(see (4.9)) that GEm(Rn) has a presentation consisting of 
the universal relations together with

Bij(x)BjL(y)[l+yx]j = [l+xy]LBjL (y)Bî. j(x)
whenever 1+xy e U(r^).

Thus we make the following definition:
Definition: A ring R is quasi-universal for GEn if.GEn(R)
has the following presentation:

Generators: B l j ( x ) ,  ,....o(p,] (xeR,a^^eU(R), 14i,j,k<n,
i/j )

Relations: The universal relations (page 15) with
the following in place of 4:

4i B l j ( x ) B j l (y)[i+yx]j = [i+xy]LBjL(y)SLj(x) ; .
whenever 1+xy e Uf(R). 

(Recall that 1+xy c U(r ) =o 1+yx e U(r ); indeed, this 
follows from 41)

Since 4 is a special case of 4' (just put x=a-1, y=1 and 
use 6), a ring which is universal for GEp, is quasi-universal 
for GEp^. Note also that a ring which is quasi-universal for 
GEp̂  and universal for GEg is universal for GEp,.
Proposition (4.1). Let R be the field of two elements. Then 
RXR is not universal for GEg.
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Proof. R>fR = [(n,ra)|n,m = 0,l} where 1+1 = 0 

, U(RxR) = 1
Let 8 = [O, 1, X, 1+xj where 1+1 = 0 and x^ = 1.
The map 0: RxR 8 determined additively hy (1,1 )® = 1 and
(l,0)® = X is a U-homomorphism. But

(1 , 0 ) . ( 0 , 1 ) = 0 = (0 , 1 ) . ( 1 , 0 ) 
whereas

(1,0)®(O,1)®= x(l+x) = 1+x / 0.
Thus hy (2.2), RXR is not universal for GEg. □
However, RxR is quasi-universal for GEg, hy (4.2)(ii).
Theorem (4.2). (i) If R, 8 are universal for GE^, GEp,(RxS) 
has a presentation consisting of the usual generators, 
and the universal relations together with 
(*) BLj(x)BjL(y) = BjL(y)BLj(x) whenever xy=0=yx.

(ii) If R,8 are quasi-universal for GE^, so is Rx8.
Proof. Clearly (RxS),-, = Rn*8n

and GEn(Rxs) = GEn(R)*GEn(S).
Thus GEn(R*8) has a presentation consisting of presentations 
of GEp, (r ) and GEp, (8), together with relations ensuring that 
these two subgroups commute with each other elementwise.

If (x,y)eRx8, we write Bij(x,y) for Bj, j ( (x,y) ).
Then

B l j(x ,0)Blj
Bu J
B
B

(x,0)BjL 
(x,0)Bjx 
(x ,0)Bkl 

Bl j(x,g)Bxp 
Now U(RX8) = U

o,y
o,y
0,y
o,y
o,y

= B l j(o,y)B(
= Bj l (0,y)BLj(x,0) by (*)

(x,0) by 1

= Bjk(0,y)BLj(x,0) by 3,1 
= Bk l (0,y)BLj(x,0) by 3,1 
= Bkr(0,y)BLj(x,0) by 2 

R)xU(8). Let axEU(R), /3keU(8).
Blj(^,G)[(1 , ) ,••••( 1 , /5p ) ] = [ ( 1 , [3̂ ),....( 1 , /3p, ) ]Bl j (x,0) by 6

[ ( , 1 ), •••• (oCp ,l)]BLj(0,y) = BLj(0,y)[( cx̂ ,1 ),..,.( cxp, 1 ) ] by 6
[ ( , 1 ), ( exp ,l)][(l , P± ), •••• ( 1 , /5p ) ]

— [ ( 1,/̂i ),•••• ( 1,/5p ) ] [ ( ,  1 ),•••• (op , 1 ) ] by 7•
Thus the universal relations for R*8, together with (*), 
are sufficient to ensure that GEp(r) and GEp(S) (as subgroups 
of GEp(Rxs)) commute elementwise.
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It remains to shew that the universal relations for GEp(R) 
and GSp(s) follow from 1,-7. and (*).
Now 1,2,3,6,7 for GEp(R) are just special cases of the 
corresponding relations for GSp(Rxs). Suppose a € U(r ).
■ Bl j(a-1,0)Bj l (l,0)
= BLj((a,l)-(l,l))BjL(l,l)BjL(0,-l) by 1 
= Blj(a,1)Bj l (a,1)Bl j((l,1)-(a-^,1))BjL(0,-1) by 4 .
= DLj(a,l)BjL(a,0)BLj(l-a-i,0) by 1,(*) 

which is the form taken by 4 for GE^ (R) in G'Ep(RxS).
If X e R, Bl j(x,0)
= Bj l (1,1)Blj(-1,-1)Bj l (”X,0)Blj(l,1)Bj l (“1,“1) by 5 
= BjL(l,0)BLj(-1,0 )BjL(-x,0)BL j(l ,0)Bj l (-1 ,0 ) by 1,(*) 

which is the form taken by 5 for GEp, (R), in GEp(RXS). 
Similarly for GEp(S). This completes (i).
(ii): Since (*) is a special case of 4', we have only to 
shew that 4' for GEp.(R) and GEp(s)  is a consequence of the 
quasi-universal relations for GEp(Rxs).
If x,y € R and 1+xy g U.(r )-, then (l, 1 ) + (x, O) (y,0) g U(Rx s ). 
So Bl j(x,0)BjL(y,0)[(l+yx,l)]j .

= [(l+xy,1)]lB j l (y,0)BLj(x,0) by 4' 
which is the form taken by 4' for GEp(R) in GEp(RxS). 
Similarly for GEp(S). oi
Corollary (4.3). Let S = II R^, |A| < oo

XgA ^
(i) If R^ is universal for GEp, all XgA, GEp(S) has a- 
presentation consisting of the universal relations and (*).
(ii) If R^ is quasi-universal for GEp, all XgA, s o  is S. 
Proof. The proof is a straightforward generalization
of (4.2). □ .
We note in passing that there does not seem to be any reason 
why the above should hold for an infinite direct product 
of rings, except in some special cases (e.g. when R. is a 
local ring, all ÀGA) when the proof that any relation of 
a given length in GEp(R^) follows from the universal 
relations is a standard process whose form and length are 
independent of X. It seems unlikely that the direct product 
of infinitely many copies of Z is a GE^-ring (for n=2, it 
isn't; see [l; page 11]) and whether it is quasi-universal
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for GEp does not appear to be a trivial question. 
Definitions; Let Ep(R) be the subgroup of GEp(r) generated 
by all Blj(x), xgR, Ki,j<n, i/j. Let Dp(R) be the subgroup 
of GEp(R) generated by all [a]^, aeU(R), 1<k<n.
Lemma (4.4). If R is universal for GEp, Ep (r ) n Dp(R) is 
generated by all Dtj(a), aeU(R), 1<i,j<n, i/̂ j.
(cf. [1;(9.1), Corollary 1])
Proof. Dl j(a) € Ep(R) by 4 and 1.
Now if [cxi,....cxp] = , n [BLj(x)i, this relation must followL , J , z
from 1.-7. No diagonal matrices are introduced by any of
these relations except 4, and it follows that [oCi,....oCp]
is a product of DLj(a), suitable i,j,a. □
Note that (4.4) need not hold for quasi-universal R. Let
[a]i = II DLj(aLJk) some order (a's g U(r )). Then, as L j k
in the proof of (4.5) below, it follows that UGU(R)' (the 
derived group of U(R)). Now put K = the field of two 
elements, and put R = K%.

T /00\/01\ _ JI2 + 0̂1 ̂ loOr " ^2

I 4. ) (00\ _ /II \I2 + locuioi / - loi/
So by relation 4', [(q |)]i € Ep(R) n Dp(R). But U(R) is the
dihedral group of order 6, generated by (^q ) and (]q ). So

11U\R)' is cyclic of order 3, generated by (^^). Thus
(q ^) X U(R)', and so Ep (r ) n Dp(R) is not generated by all
DLj(a), aGU(R). It follows from (4.4) that R is not 
universal for GEp, any n ; for a second proof of this, see 
(4 .7 ). But, as we shall see in (4.11), R is quasi-universal 
for GEn, all n.
Proposition (4.5). If R is universal for GEp and [a]^GEp(R), 
then oc g U(R)'.
Proof. If , ■
(* ) [a]i = j (cxl jx ) some order,
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we have the relation Dl j (/3) = and so
(»*) [a]i = n,Du(/3u)
Then a = GoôiGiôgdg ôp 0p
where ô{. are the arguments of the D^p in (**): thus 

0 7 1 0 - 1  ôpi = 1

a = 0Q01 0p mod U(R)'
Now 0Q  Gp = 00 V̂ 2 02
where ijri are the arguments of the Dip-i in (**); repeat 
the argument to get

a E 00 01...0s mod U(R)'
After n-2 such steps we have

a E ...X(, mod U(R)'
where X̂  are the arguments of the D^g in (**). Finally
we get, Z X^iXgi X^^ = 1,

a E 1 mod U(r)'
Note that we have not yet used the fact that R is universal 
for GEp,
If R is universal for GEp and [aj^ e Ep(R), then (*) follows 
by (4.4), whence the result. □

Now note that for any ring R, GE^(r) c Eg(R) (see 
Corollary 3 ] or (5 .4 }). Then we have;

Corollary (4.6). Let R be a GEg-ring, and S = Rg.
If GE^ (R) X Eg(R), then S is not universal for GEp, any n. 
Proof. Given x e R and i,j = 1,2 or 2,1 we have (in GEgp(R), 
n>1 )

Btj(x) = Bl3(-x)Bgj(-1)Bl3(x)Bgj(1)
As an equation in GEp(S), this reads

[ B L j ( x ) ] i  =  B ^g  ( —x e L  1 ) B g ^  ( —e^ j  ) B ^ g  ( x e L  1 ) S g ^  (e^^ j  ) e E p ( S )  

If S is universal for GEp, we have by (4.5)
B l j (x ) € U(S)' = GE^(r ), since R is a GEg-ring.
Eg(R) c GE^(R).

Now [a/3]i = DjL (/3)[/3a]LDL j ()5), so since r>Km(/5) € Eg(R), it 
follows that GEg(R)/Eg(R) is abelian, and so 

GB^(R) c Eg(R)
Thus GEg(R) = Eg(R) and we have a contradiction. □
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Corollary (4.7). Let R be the field of two elements, and 
S = Rg. Then S .is not universal for GEp, any n.
Proof. By (4.6) we have only to shew GE^(r ) / Eg(R).
Since U(r ) = 1 ,  Eg(p) = GEg(R).
Then ]GEg(R)j = 6 . Since GEg(r ) is not abelian, it is the 
dihedral group of order 6, which is not a perfect group. □
We now introduce some more notation.
Write Sl j (x ) = xe^j where ê  j are the usual 'matrix units'

= the matrix with x in the i,j position
Jand 0 elsewhere.i, J

Write Bkr(x) == B^p—p+L,rnyn+j(x)
 ̂ LJ, , L j; .Where there is ho ambiguity, we shall write {xj for Bxr(x).

n

Write [a]k = [a]xn-n+L« Again, we shall generally write
[oJx for [a]x. PutDxr(oc) = n

Now let R be a ring and S = Rp. Then Rp^ = 8  ̂ in a 
natural way; specifically, if A = (a^j) € Rp^ and B = (b^j)
£ Sm, then since bj. j £ S = Rp, b,, j = (c^r). We identify 
A and B if ĉ  p = â  p —p 4.% fj p —p +r , all i, j ,k, r 
This isomorphism induces an isomorphism 

U(Rpm) 2  U(8m) 
i.e. GLpm(R) = GLm(S). '

■Proposition (4.8). If R is a ring and S = Rp, there is a 
natural isomorphism 6 ;Rpm 8^. Assume m>2. 6 induces an 
isomorphism between GLp^(R) and GLm(S), and an isomorphism 
between Epm(R) and Em(S). It induces an embedding of GEpm(B) 
in GEb(s), and for this to be an isomorphism it is 
sufficient that R should be a GEp-ring.
Proof. We already have that 6 and its restriction
GLpm(R) GLm(s) are isomorphisms. Then

6 ; B%J(x) ^ Bxp(ELü(x)) (k/r)
6 : Bĵ fj(x) -> [BLj(x)]x (Mj)
8: îoii, Upm] ,....ap̂ ],...
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which shews that 0 maps GEpm(R) into .GEn, (s). Then
BKk(x) = where r / k

and so, since m>2, Ep„,(R) is generated by all Bx^(x)
(x €R, k/r). Thus 0 maps Enm(k) into E„,(S).
.If A € 8m, A = (aij) then

Bkr(A) = n^Bxr (El J (s’u J ) )

=  .n.B^^(au)®
SO 0 maps Enm(k) onto Em(s).
Let R be a GEp-ring. To shew that 0 maps GEpm(R) onto GEm(S-) 
it is sufficient to shew that a e U(S) => [&]% e GEpm(R)®. 
But U(S) = GEp(R), so 0; nCj, [cxJx for suitable Cj, of the 
form Bkx(x) or n[/3(,]k« o

Theorem (4.9). Let R be a GEp-ring. Put S = Rp.
(I) If n ̂ 3, m >2 and R is universal for GEpm, then S is 

universal for GEm. ,
(II) If n,m>2 and R is quasi-universal for GEpm, then S 

is quasi-universal for GEm.
Proof. V/e have to shew that 1.-7. for 8 imply 1.-7. for 
R, with 4' in place of 4 in case (II),
R l ( i ) :  1 / j :  B%^(x)Bk^(y) = [B l j  ( x )  ]k [ B u  (y) Dk

= [Bu (x)Bj, J (y)]k by S7
= [Bij(x+y)lk 

■ _ _ _ = BkkCx+y)
(ii) k/r: B%^(x)B%^(y) = B^r (El j (x) )Bkr (Ei, j (y) )

= Bkr(Eu(x)+Ei.j(y)) by 81
= Bkr(Eij(x+y))
= Bkp(x+y)

This completes R1 .
R2(i) i/s, dA: Bk^(x)B[^(y) = [Bu  (x) ]k [Bps (y) Ik

= [Bi. j  (x )Bps  ( y )J k  by 87 
= [Bps (y)Bi,  j  ( x )  Ik 

= [Bps(y)]k[Bi.j(x)]k by 87 
= B̂ k'(y)Bj;ii(x)
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(il) k/p: B%^(x)Brs(y) = [Btj(x)]k[Bp s(y)

= [Bps(y)]p[BLj(x)]k by 87 
= B^^(y)B%^(x)

(iii) k/p,q . Bkk(x)B^^(y) = [B;, j (x)JkB (Ep ̂ (y) ) p/q • pg. pg
= Bpq^(Epj(y))[Bi, j(x)]k by 86
= Br^Cy)B'j(x)

(iv) k/p, i/G: Bkk(x)Bpk(y) = [B;, j (x) ]nBpk (Ep s (y ) )
= Bpk(Eps(y)Bi.j(-x))[Bi,j(x)]k by 86 
= Bpk (Eps (y) ) [Bj, j (x)]k 
= B^(y)B^ii(x)

(v) Iĝ p, j/r: B^k (x)Bkp(jf)- = [Bj, j (x) ]kBkp(Eps (y) )
= Bkp(B^ j (x)Ep s (y) ) [Bi, j (x) ]k by 86
“ Bkp(Eps(y))[Bi.j(x)]k
= B%^(y)B%^(x) '

(Vi) k/q, t^p; B%^(x)B^S(y) = B^t(Elj(x))Bpp(Eps(y)) 
k/̂ t, p/q:

= Bpg(Eps(y))Bkt(Ei j (x)) by 82 
= B^p\(y)B“ (x)

(vii) kî q, d/r, B|^i(x)B';;|(y).= BkL(ELj(x))B(,p(Eps(y)) 
k/t, t/q:

= Btq(Eps(y))B|<t,(Ei j(x))Bkn(ELj(x)Eps(y))
^ by 83

= Btq(Eps(y))Bkt,(ELj(x)) by 81
= B[|(y)Biâx)

(viii) k/t, i/s, i/d, :
B%^(x)B[g(y) = Bki(ELj(x))Btk(Eps(y))

= Bkt(BLj(x)-l)Btk(l)Btk(-Bps(-y)) by SI 
= t (Bl j (x) )B(,k (Bl j (x) )Bkt (I-Bl j (-x) )B(,k (“Bps (-y) ) by 84
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= Bxt(Blj(x))L-Bps(y)]t^tk(-Bps(y)Btj(x)) ■

'BkL(BLj(-x)Bps(-y)-Bps(-y))BLk(l)[-Bps(-y)]i by 86,7
= [Bl j (x ), “Btj(-x)Bps(y)]xtBtk(-Bps(y)BLj(x))

'Bki(BLj(-x)-l)Btk(l)l-Bps(-y)]L by 87
= [Bl j (x ), -Blj(“x)Bps(y)IxtBtk(“Bps (y)BLj(x ))

• "Bk t(Bl j(-x))BtK(Bl j(-x))Bx t(Bl j(-x ))[-Bps(-y)]t
by S4

= [“Bps(y)]tBtk(“Bps(y)BLj(-x )+Bl j(-x))
•Bxt(Blj(-x))[-Bps(-y)]t by 81,6,7 

= Bl x (Bl j(-x)-Bps(-y)BLj(-x))Bx t(Bl j(x)Bps(-y)) by 86,7 
— B^x (Bp s (y ) )Bx t (Bl j (x ) )
= B^g(y)Bkt(x)

The remaining cases of R2, i.e. as in (viii) but with i=j 
or r=s or both, will be dealt with after R3 (i)-(v).
H3(i) i/g: = [Bl j(x)]k[Bjq(y)]k

= [B|,j(x)Bjq(y)]k by S7 
= [Bjq(y)Bi. j (x)BLq(xy)]k
= [Bjq(y)]k[BLj(x)]K[BLq(xy)]k by 87 
= B^g<y)B%Ü(x)BÜ&(xy)

(ii) k/p: B^d(x)BÜp(y) = [Blj(x)]kBkp(Ejp(y))
= Bk p (Bl j(x)Ejr(y))[Bi, j(x)]k by 86

. = Bkp(Ejr(y)+Ei,r(xy))[Bt j(x)]k '
= BKp(Ejp(y))BKp(Ei,r(xy))[Bi,j(x)]k by 81 
= Bkp(y)Bkk(x)Bkp(xy) by E2(v)

(iii) k/p: B^^(x)B^^(y) = Bkp(Ej,j(x))[Bjp(y)]p
= [Bjr (y)]pBkp(Ei, j(x)Bjp(y)) by 86 
= [Bjp (y)JpBkp(EL j (x)+Sjp(xy))
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= [Bjr(y)]pBKp(BLj(x))Bxp(BLr(xy)) by 81
= B^^^y)B'^(x)B'r(xy)

(iv) k^t, t^D,:k^p: BxL(x)BLp(y) = B x l (Bl j(x))Bl p (Ej p (y))

= BLp(Ejr(y))Bki(ELj(x))Bx2(ELj(x)Sjr(y))
by 83

= BLp(Ejr(y))BkL(Etj(x))Bkp(ELr(xy))
= B^2(y)B%Z(x)B%r(xy)

(v) k/t, i/j, j/r, i/r:

B^^(x)B^%(y) = BkL(ELj(x))Btk(Ejr(y))
= Bkt(BLj(x)-l)BLk(l)Btk(-Bjr(-y)) by 81 
= Bkt(BL]ix))Bik(BLj(x))Bkt(ELj(x))Bik(-Bjr(-y)) by 84 
= Dkt (Bl j (x) ) [-Bjp (-y) JlBlk (-Bjr (y)Bi. j (x) )

'BkL(ELj(-x)Bjp(-y))BLk(l)[-Bjr(y)]i by 86,7 
= [Blj(x), -Bl j (“x)Bjp (-y) ]ktBtk (“Bjp (y)Bi, j (x) ) 

'BkL(BLj(-x)BLr(xy)-l)Bik(l)[-Bjr(y)]L by 87
= [Blj(x), -Blj(-x)Bjp(-y)]ktBtk(“Bjp(y)BLj(x))

•Bkt(Blj(-x )Bl t (xy))Btk(Blj(-x )Bl t (xy)>
*Bkt(ELj(-x)+ELp(xy))[-Bjp(y)]t by 84 

= [BLr(xy), -Bjr(-y)]ktBtk(l“BLj(-x)BLr(xy)Bjp(y)BLj(x)
•Blj(-x)Blp(xy)+BLj(-x)Blp(xy)]) 

•Bkt(ELj(-x)+Elp(xy))[-Bjp(y)]t by 81,6,7 
= [Blp(xy)]kBtk(|Bjp(-y)BLj(-x)Blt(xy)[Bjp(y)BLr(xy)-l]j) 

• B k L ( - E L r ( x y ) + E L j(x)Bjp(y)) by S6,7 

= [Blt(xy)JkBtk(SBl j(-x)[Blp(xy)-Bjp(-y)!j)Bxt(El j(x))
= [BLr(xy)]kBik(Ejr(y))Bkt(ELj(x))
= B%%(xy)B^%(y)B%Z(x)
= Bik(y)Bki(x)Bkk(xy) by R2(iv),(v)
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The remaining cases of R3# i.e. as in (v) hut with either 
i=j or j=r, will he dealt with after R2(ix),(x).
V/e are now in a position to complete R2:
R2(ix) k/t, i/j, j/r, i/r :

Bki!(x)Btk(y) = By E3(iii),
= B[^(-y)Bk[(-l)B[^(y)B^[(l)BkZ(z) By R2(v),(viii)
= Btk(y)Bh(x) By R3(iil), E1 
(x), case (I): k/t, i/j. Since n^3, choose r / i,j.
Then B^t(x)Bifj(y)
= B%[(-x)B^i(-l)Bki(x)B[t(l)Bi^(y) By R3(ili), El
= B^d(y)B%i(-x)Btt(-l)B%t(x)B[t(l) By E2(v), (Ix)
= BiRy)Bh(x). By E3(ili), R1 

Case (ll): Here we may have n=2. Suppose k/t, i/j :
Bh(x)Biii(y) = Bkt(ELL(x))Btk(Bjj(y))

= Bt.k (Ejj (y))Bkt(E!,i (x)) By Si;', 7
= Biij(y)Bj;i(x)

This completes R2; we now complete R3:
R3(vi)(l): k/t, i/j. Choose s / i,j.

Bki(x)Bbi(y)
= Bkt(-x)Bti(-l)Bkt(x)Bti(l)Bi^(y) ByR3(lix), R1
= Btü(y)B%t(-%)Bti(-l)B^Ü(-y)B^t(x)Bg^(l)Bt^(y) By R3(ii),• « R.2
= B^^(y)B%t(-x)Bti(-l)E%t(x)Bg^(-y)B%^(xy)B:L(l)B%^(y)

By E3(v), R1
= B'tk(y)Bkt(-x)Bti.(-l)Bkt(x)BtUl)Bi;Rxy) By R1,2 
= B^^(y)B%t(x)B%Ü(xy) ByR3(iii), R1 
(II): Bh(x)Btii(y) = Bki(Eii(x))Bik(ELj(y))

= [Bi.j(xy)]kBtk(Eu(y))Bkt.(Eii,(x)) By Si;'
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= B,"<k (xy)Btk (y)Bki(x)
= Btk(y)B%t(x)B%^(xy) By H2 
(vii)(l): k / t , C h o o s e  r / l,j.

Bkt(x)Bif; (y)
= B%i(x)B^[(-y)B[^(-l)B{%(y)B%^(l) ByR3(iil), R1
= B^%(-y)B%%(-xy)B%ü(-l)B^[(y)B%%(xy)B%^(l)B%^(x) By R3(v),

R2
= B^k(-y)Bi^(-l)B%^(xy)Bt%(y)Bk^(l)B%((x) By R3(l), R2, R1 
= B^k(-y)Bk^(-l)Bfk(y)Bkk(l)Bki(x)B%^(xy) By R2 
= B^^(y)B%t(x)Bkk(xy) By R3(iii), R1 
(II): M t ,  1/j. Bki(x)Bf^(y)

= Bkt(Si,j(x))Bt,k(Kjj(y))
= LBi.j(xy)]kBj,K(Bjj(y))Bkt(Eu(x)) By 84'
=  B k k ( x y ) B ^ ^ ( y ) B % t ( x )

= B^^(y)B%^(x)B%^(xy) By R2 
This completes R3.
(I) Rb(l) B%d(«-1)B^&(1) = [Bi.j(a-1 )]k[Bji,(l)]k

= [Bu(a-l)Bjt(l)]k By 87 
= [Dij(a)Bji(a)BLj(l-a-i)]k 
= [Di.j(a)]k[BjL(a)]k[Bi,j(l-a"^)]k By 87 
= D j ; i ( ( a ) B i i h “ ) B k i ! ( l - a " ^ )

(ii) k/t, i/j: Bki(a-l)Btk(l ) = Bk t (E;, j (a-1 ) )B^k (Sj l (1 ) ) '
= B K t , ( B L j ( a - l ) - l ) B t k ( l ) B t k ( - B j i ( l ) )  . By 81

= Dk t (Bl j (G-1 ) )Btk (Bi, j (cc-1 ) )Bk t (I-B'i, j (1 -oc) )Btk (“Bj; (-1 ) )By 84
= Bk t (Bi, j (oc-1 ) ) [-Bji, (-1 ) ] tBt,k (“Bji, (l )B;, j (a-1 ) )

•Bkt(Bu(l-“ )BjL(-l)-Bji(-l))Btk(l)[-Bji.(l)]t By 86,7
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= “Bi, j (1-a)Bji, (-1 ) IkL^tk (“Bj i. (1 )Bj, j (a-1 ) )

•Bkt(Bu(l-«)[oc]L-l)Btk(l)[-Bji(l)]t By S7 
= [Bi, j (a-1 ), -Bi, j (1 -a)Bj i, (-1 )]kt,Btk (“Bj i (1 )Bi, j (a-"I ) )

•Bkt(Bl j(l-a)[a]i, )Bt,k(Bi, j(l-a)[a]i, )
•Bkt(l-[a"'-]iBi,j(a-1 ))[-Bji,(l )](, By S4 

= “Bl j ('I“«)Bji, (-1 ) [a :-]i,Bi, j (a-1 ) Ik t
•Btk ( ["Bl j(l-a)[a]i,Bji;(l)B;j (a-1 )B;, j (1 -a) [a] i,+Bi, j(l-a)[a]i,i) 
•Bkt(I-[a"^]lBi.j(a-l))[-Bji.(l)]|, By 81,6,7 

= [[«11» “ [“’"'■]jBji,(-1 )]kt,Bt,k([Bi, j(l-a)[a]i,-[a]jBji, (a)
•Bi,j(l-o)[a]i,j)

'Bk t(l"[“~’’ ]i,Bi, j (a-1 ) ) [-Bji, (l ) ](,
= [ [a] L > [a“^] j Ik tBtk ( 1 [ «1 jBi, j (1 -a) [a] i,-Bj (-1 )Bi, j ( 1-a) [a] i, i ) 

•Bkt([[a ’■I'l.Bi, j (ot-1 )Bji, (l )-Bji, (1 ) j ) By S6,7 
= L[a]i.,[a]P]ktBt.k(Eji,(a))Bkt(Ei,j(l-a-0)
= D h ( o t ) B i U a ) B h ( l - « " M
(iii) M t i  Bh(«-l)s'uUl) = B|(t(Eii,(«-1 ))Bu(Ei,L(l))

= Bkt([a] -l)Btk(l)Btk(Eu(l)-l) EyS1 
= Dkt([a]l)Btk([a]i,)Bkt(l-[a“^]L)Bi,k(ELL(l)-l) By 84 
= Dk t ( [«Ji, )Btk ( [“] i. )Bk t(Ei, i, (l-C£“^) ) [ J 4  Bt,k (Bj j (-1 ) ) ! By 81

= Dkt([a]t)Btk(La]l)Bkt(l-““^)L3.Biik(-l)i

= Dkt([a]i)Btk([a]L)[ .5.Bifi(-l)iBi;i;(1-cx"^) By R2

= Dkt([a]L)Btk(ta]l + ,?.Ejj(-l))Bkt(l-a“^) By 81
J 7̂ 4

= Dkt([a]L)Bt,k(Ei,L (a))Bi;Ul-a“^)
= D%t(a)Btk(a)B%t(l-a-i)
(II) r4' (i) 1/3, 1+xy 6 U(E):
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BKk(x)Bkk(y)[l+yx]k = [B;, j (x) [Bj (y )],<[[ 1+yx]j .

= [Bi, j (x)Bji, (y)[l+yx]j ]k By 87 ■
= [[l+xy]-|,Bji, (y)B;, j (x)Jk 
= [[-1+xy]i,]K[Bji,(y)]k[Bi,j(x)]k By 87 
= [i+xy]kBkk(y)Bkk(x)
(ii) (v/e do not insist that i/j), and 1+xy e U(r ) :

Bkt(x)Btk(y)[i+yx]t = Bki,(Ei,j(x))Bt,k(Bji,(y)[[i+yx]j]t 
= Bkt(Si,j(x))Bt,k(Bji,(y))[l+Eji,(y)Ei.j(x)]t

= [l+Ei,j(x)Eji.(y)]kB,,k(Sj;.(y))Bkt(Su(x)) By S4'
= [[l+xy]i, ]kBik(Eji, (y))BkL(Ei,j (x))
.= [l+xy]kBik(y)Bki(x)
This completes Rk and RU' in cases (l) and (ll) respectively. 
R5(i) If i/o, Bkd(x) = [Bu(x)]k •
= [Bj I (1 )B(, j (-1 )Bji (-x)BL j (1 )Bjl (-1 )]k
= [Bj L (1 ) ]k [Bc j (“O  ]k [Bj L (“x) [Bl j (1 ) ]k [Bj L (-1 ) ]k hy S?
= Bkk(l)Bkk(-l)Bkk(-x)Bkk(l)Bkk(-l)
(ii) As a consequence of 1,2,3 we have

■ , Bjk(l)Bkj(-l)Bj,k(l)
• [B:j(x)i
= Bjk (-1 )Bk j (1 )Bjk (-1 )B(, j (x)Bjk (1 )Bkj (-1 )Bjk (1 )
= Bjk (-1 )Bk J (1 )B-, j (x)Bi,k (+x)Bk j fl )3jk (1 )
= Bjk (-1 )B[,k (x)Bjk (1 )
— B; k ( X )

and Bjk(l)Bkj(-1 )Bjk(l )
lBji.(x)i

= Bjk (-1 )Bk J (1 )Bjk (-1 )Bji, (x)Bjk (1 )Bk j (-1 )Bj k (1 )
= Bjk (-1 )Bk j (1 )Bj|, (x)Bkj (-1 )Bjk(l )
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= Bjk  ( “ 1 )Bji, (x)BkL ( x ) B j k ( l  )

■ = Bk L (x )

S o  we can f i n d ' P  such, t h a t ,  i f  k / t ,

, P
B k t ( x )  = | B k k ( x ) i  (where r / i )  by R 1 , 2 , 3

= [B [% ( l )B % % (- l ) B % % ( -x )B k % ( l )B % k ( - l ) i^  by R 5 ( i )

= B t k ( l ) B k t ( - l ) B ^ k ( - x ) B % t ( l ) B ^ % ( - l )  by R 1 , 2 , 3

Note t h a t  we do no t  i n s i s t  t h a t  i / j .
T h is  completes R5.

R 6 ( i ) i / o  I B k k ( x ) [ u i i , " " # n m ]

— [ B | , j ( x ) ] k [ [  0^111 ••••oCp 1 ],•••• [ 0̂ 1 fu, ....cXp fn ] ]

“  [ [  1 , 1 ]>• • • •  CBî, j ( x ) [ k ,  k ] ] > * • • • [ m > m J 3 B y  S7

= [ [ 1 , 1 ] , .... [ [ c îk , ••••®̂ nk ]B l j (o ik  XOCj k ) 3 » •••* [ m > ••••Op m 1 3
= [ [  , ....o-f̂  ̂  ] , . . . . [  cx̂  (f), ] j [ B l j  ( cxĵ  k xcxj k ) 3 k B y  S7

= [o i i , " "O nm 3B kk(oLkX O jk )

( i i )  k / t  (we do n o t  i n s i s t  t h a t  i / j ) :

Bk t (x) [ 0Cj_  ̂, ....cXf̂  3
“ Bk t  ( Bj, j ( x ) ) [ [  cx̂   ̂, ....cXp ] , . . . . [  c x ^ ^

— [ [ 1 ,  . . . . (Xp3, •••• [ fji f ..••Ofi ni 3 3Bk t  ( [ OjLk t ••••Onk 3 Bj, j ( x )
* [ t, t ....(Xp t, 3 ) B y  s6

— [ [ OjL 1 1 ••••Op jl 3, •••• [ Oj_m m33Bkt,(Bi,j (oj,k xcx j t  ) )

“  [ O- i i  > m 3Bk t  (oj, k xcxj t, )

T h is  completes R6.

R 7  Î [ oj _^ ,  ... .(Xf,^ 3 [ / 5^^ , ... ./3nni 3
— L [ cXjL i, • ‘••OLf̂ri_ 3 ....(Xp (fj 3 3 [ [ /5;j_ f 1 3 t •••*[ m f m 3 3
=  [ [  ̂ ^ , . . . . /5p^ 3 , •••• [ 3  [ fn '  ****/^nm 3 3 B y  S7

= L {.̂ ±i.P± 1 , .1 3 , •••• [ Oj_ m/?! fn , ....cx̂ ,nîn m 3 3
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— [^1 i/̂ i i > ]
This completes the proof of the theorem. □

Theorem (U. 10). Every semi-simple Artin ring is quasi- 
universal for GSn, all n.
Proof. If R is semi-simple and has the minimum condition 
on right ideals, then hy the Wedderhurn-Artin structure 
theorem,

r (i)
- ‘ \

wwhere m^ is a positive integer and K is a skew field, 
each i.
By (3.7), K is universal for GE^ (V a skew field is a 
local ring) and hence is quasi-universal for GE^, all i,n.

(i)
By (4.9), is quasi-universal for GE^, all i,n.\

By (4.3), R is quasi-universal for GÊ ', all:,n. □
Note that "by (4.1) and (4.7) we cannot hope to replace 
'quasi-universal' hy 'universal' in (4.1 (). Indeed we may
new pGstmt# (4,1) §nd (4,7) asi
Corollary (4.11). If K is the field of two elements, then 
Kg and K^K are quasi-universal for GE^, all n; Kg is not 
universal for GE^ , all n, and K>̂ K is not universal for GEg. □

We nov/ shew that, if we restrict attention to skew 
fields R, the ahove example (4.7) is the only case in 
which the restriction n ̂  3 in (4.9)(l) is needed.
Proposition (4.12). Let R he a skew field containing more 
than two elements, and put S = Rg. Then S i s  universal for 
GE„, , all m.
Proof. In (4.9) (l), the only use of the condition n > 3  was 
in R2(x) and R3(vi),(vii). So it is sufficient to find 
alternative arguments for these cases when n = 2 and R'is 
a skew field with |r | >3.
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R2(x) k/t, i/j. Assume first that x / -1 and y / 1.

= B k i ( % L L ( x ) ) B L k ( E j j ( y ) )

= Bkt([ot]L“l)Btk(l)Btk(-[/5]j ) By 81 (a=1+x, /3=1-y)
= Bkt([oc]L)Btk([«]L)Bkt(l-[cx]p)Bt,w(--[;3]j) hy S4 
« Dkt([a]L)[-[f]j]tBLk(-[a,f-i]Lj)Bkt(-I+[a]rt)

' B i k ( l ) [ - [ f Ü T i ] t  By 86 ,7  

= Bkt([a]û)[-[^]j]t B t k j ) D k i ( [ a ] r ^ ) B t k ( )
*Bkt(l” [o(]L )[-[/S]j^]t By 84 

= [-[/5]j JtBtk ("[oc,/3]~j + [a]j,^)Bkt(Bj,t (-x))[-[/5] ĵ Jt, By 81,6,7 
= BLk([a]ri-[a"i,^^Lj)BkL(3iL(x)) By 86,7
= Bik(Ejj(y))Bkt(ËLi(x))
=  BZ^(y)B%t(x)
If X = -1 or y = 1 or "both, we can choose y ,ô g U(r ) (=R*,
the non-zero elements of R) such that y"^x / -1, yd / 1.
B(;t(x)Biij(y) = [y]k[6]^Bki(y-ix)B(ü(ya)[y-i]k[6-i]^ by E6,7

= [y]k[ô]iiBtk(y<5)Bi;i(y"^x)[y“P k [ ô " P l b y  the 
. . . .  above

= BLk(y)Bkt(x) by R6,7
R3(vi) k/t, i/j. First suppose x / -1 ; put a=1+x, z=1-a”^.
Bkt(x)BtÜ(y) = Bkt(Eu(x))Bt,k(Elj(y))
= Bk t ( [aJl ~l)BLk (l)Btk (“Bi, j (-y) ) by St 
= Dkt([a]t)Btk([a]i.)Bkt(l“ [a]P)Btk(“BLj(“y)) by 84 
= A< t ([“ ]l )®t,k ( [“ll )Skt, (E;, i, (2) )B(,k (“Bl j (“y ) )
= Bk t, ( [ot]; ) [“Bl j (-y) ] tBt,k (“Bl J (y) [“ll ) 

• B k t ( “E i , i . ( z ) + E - , j ( z y ) ) B t k ( l ) [ - B L j ( y ) ] t  by 86 ,7  

= Bkt([“ ll)[“Blj(“y)llBLk(“BLj(y)[“ll) 
• B k t ( B i . j ( z y ) [ a ] r ^ - l ) B , , k ( l ) [ “3 i , j ( y ) ] t .
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= Bkt ([«]l ) [“Bl j (-y)]^Bt,k (“B;̂ j (y) [a]j, )

'Dkt(BLj(zy)[a][i)Btk(Bij(zy)[a]ri)
'Bkt(l-[a]LBLj(-zy))[-BLj(y)]t by 84

• = [[cx]i,Bj, j(zy)[a]” ,̂ -[ j (-y) [a] ̂ Bt j (-zy ) ]
'Btk(i-BLj(zy)[a]riBij(y)[a]BLj(zy)[a]r^+BLj(zy)[a]-ij)
•Bkt(BLi,(-x)+Eu(xy))[-B|, j(y)]t by 81,6,7 •

= LBl j(xy)IkBtk(Bl j(-y+zy+a"iy+zy)[a][^+BLj(-y+zy)[a][^) 
•Btk(^Ll(x)+ELj(-xy)+Ej,j(xy)) by 86,7 

= [Bl j (xy) JkBtk ( (Bl j (zy)-Bj, j (zy-y))[a]ri)Bki(%L l (%))
= [Bj, j (xy)]kBtk(Bu j (y)[oc]|,^)Bkt(BLL (x))
= LB;, j (xy)]kBt,k (B-, j (y))Bkt(BLL (x))

. = B%^(xy)Bt^(y)B%t(x)
= Bt^(y)B%t(x)B%^(xy)  by R2

In the case x = -1, choose y / 0,1; so y^^x / -1.
Bki(x)Bt^(y) = [y]kBi;Uy"''^'tii(y)[y"Pi; by r6,7

= [y]kBt^(y)B%t(y-ix)B%^(y-ixy)[y-i]% by the 
. . . .  . . above

= Btk (y)B%t(x )Bkk (xy )  by R6,7

(vii) k/t, i/j. Assume y / 1 ; put /3 = j-y.
Bki(x)BiRy) = Bkt(Eu(x))Btk(Ejj(y))
= Bk J; (B;, j (x) - I^Bt ,k ( l ) B t k  ( " [ ^ ]  j  ) by S1 

= Dk t  (Bi, j (x ) )Bt,k (B;, j (x )  )Bk t ( l “Bi, j ( - x )  )Bt,k (-[/3] j ) by S4

= Dkt(Bu(x))[-[/3]j]t,Bt,k(-[/3]rBu(x))
•Bkt(BLj(-x/3)-l)B^k(l)[-[/3]?]t By 86,7

= Dk t, (Bi, j (x)) [-[/3] j ]t,Bi,k ("1/3] j '̂Bi, j (x) )
•Dk t (Bi, J (-X/3) )Btk (Bi, j (-X/3) )Bk t, (l-Bi, j (txfO ) [-[/IT It

by 84
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= LBi j(x)Bi, j(-x/3), -Bt j (-x)[/3] jBi, j (x/3)]kt,

•Btk ( i-Bi j (-x̂ ) [^] ĵ Bi, j (xy)+Bi, j (-X/3) Î )
'Bkt(Eijfx/))[-L8]ji]i by 81,6,7

= [Bu(xy) IkBtk (Blj(-x/3)-[/3] jBu(-x/3)')Bkt (El j(x/3)[/3]Jt)
by 86,7

= [BLj(xy)]kBtk(Ejj(y))BKt(EL j(x))
= Bk^(xy)B^^(y)B%^(x)
= Btk(y)B%Z(x)B%^(xy) by E2 ,

. In the case y = 1, choose ô / 0,1 ; so yô / 1.
Bkt(x)Btk(y) = [ô]^B%i(x)BZ^(yô)[ô-i]^ by r 6,7

= [ô]^Bii((yO)Bh(x)Bi;jj(xyô)[ô~P^ by the above
= Biii(y)Bi;i(x)B^ii(xy) by E6,7. □

Now by the Wedderburn-Artin theorem, the rings 
(K= sfield, m=1,2,., ) are the 'building blocks' for semi- 
simple Artin rings. We now know that all such are 
universal for GS^, all n, except Kg when |K| = 2. We now 
investigate further to see which' semi-simple Artin rings 
are universal for GEp.
Proposition (4.15). Let R = K^ where K is a sfield and m a 
positive integer. Then, provided |R| > 2, for all xcR 
3 a,/3 e U(R) such that x = a+/3.
Proof. Let Jp be the matrix with r 1's in leading positions 
on the diagonal, and O's elsewhere, O^r^m. So in particular 
Jq “ dj. = *Ifn ~ ^R*
Then given xcR, 3 8,^ e U(R) = GLm(K) such that

6xÿ = Jp,some r ( = rank of x)
If IK| > 2, choose k e K, k / 0,-1. Then 1 = (l+k)-k, and 
both 1+k and -k are units of K.
Then Jp = [l+k,1+k,....1+k,1 ,1 ,....1 ] + [-k,-k,....-k,-1 ,-1 ,....-1 ]

= a + /3 (a,f e U(r)) 
and so x = Q~^a(p~^ + as required.
Now suppose |k | = 2  and m >2.



A = '1 1 ' , B = ’0 1 ' , c = ' 0 1’
J 0, J 0 .1 1.

and 1 1 1 ' 0 1 1 '
D = 1 1 0 , E = 1 0 0

J 0 0. 0 1.
Then Jq =

J± =

Jg = 

J3 =

and for r even, 
r

' A 0  ' + ' b 0 !
. 0 I(n —2/ . 0 IfD —2̂

'A 0  '
+

' c 0  '

. 0 - 2 , . 0 Im —2,

'D 0  '
+

' e 0  ^

. 0 - 3 , . 0 I m —3,

J r  =

A

0

A 0

A
m —r

0

-r
and for r odd, 

A
=

0

0
A

D
- m — r

0
c

0
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So in every case we have Jp = cx+/3, a, 6̂ € U(r ) 
and so x * 0“^a0”  ̂ + □
Theorem (4.14). If R, 8 are rings, both universal for GEp, 
and if for all xgR, yeS we have x = a+/3, y = y+ô for some 
a,/3 € U(R), y,ô g U(s), then RxS is universal for GEp. 
Proof. By (4.2) it is sufficient to shew that 
(*) Bj, j (x)Bjj, (y) = Bji, (y)Bj, j (x), where xy = 0 = yx 
is a consequence of the universal relations. Examining the 
proof of (4 .2 ), we see that in fact we need only consider 
the case of (*) where xgR, yeS. '

Write RxS as the set of all pairs (x,y) (xeR, yeS).
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Then B l j(x ,0)Bj l (0,y) '
= Bl j (a+;S,0)Bj L (0,y+ô) (suitable a,p £ü(R), y,à eU(S)) 

]LBLj(6-1.0)BjL(0,çJ+l)[(-/3“Sô)]L by 6,7 
where 0 = -/3“^a, (f) =

] lB j, j ( (6,1 )-(l ,1 ) )Bj Î, (1 ,1 )Bj i(-1 , 0) [ , 6) ] L
by 1

]LDLj(e,l)BjL(0,l)BLj(l-6-SO)
•Bjl (-1 ,ÿ)[(-/ri-,ô)]L by 4 

(-0"^,(^)]l jBjL(-6,ÿ''"^)
(6-Sl)-(l,1 ))Bj l (1 ,1)[(-;3”S6),(-1 ,ç5"i )]lj by 6,7 
(-6":-,^)]l jBjL (-6,^~^)Dl j (0"^,1 )Bj l (8"i,1 )

■Bl j (1 ~S»0) L (-/3~̂  ,ô), (-1 ,0"’’’) 1l j by 4 
,(-1 ,0)]LjBjL((-0“^.0~^) + ( 6 " M  ))

•Bl j (1-0,0) [ (-/3  ̂,ô), (-1, ) ] L j by 1,6,7
ÿ-i+i)a)BLj(^(l-e), 0) by 6,7 

= BjL(0, 0ô+ô )Bl j(-/30+j9,' 0)
= Bj l (0, y+ô)BL j (a+/3, O)
= BjL(0,y)BLj(x,0). □

Corollary (4.15).. Let K be the field of two elements. Then 
a sufficient condition for a semi-simple Artin ring R to 
be universal for GEp, all n , i s  that R should not contain 
K or Kg as direct faictorf.
Proof.

R =

= [(-^46-1 

=

= [(~/3,0 ^

= [(a,0-i)
•Bi. J 

= [(«,0-1)

= [(-/3,0“i 

= Bj L (0, j6

|K

r (i) ■ (I)
n K where K. is a sfield, and 
1=1 “i

(i), (i)= 2 => m. >3. Each K is universal for GEp,1 m^
by (3.7), (4.9), and (4.12). Then R is universal for GEp 
(all n) by (4.13) and (4.14). □.

The proof of (3.7) depended on the fact that the set 
of non-units in a local ring is an ideal. We.now try to 
generalize this. Let J(R) be the Jacobson radical of R.
If R/J(r ) is universal for GEp, what about R?

Let R be semi-primitive and let'M be an R-bimodule, 
Define 8 = R%M with addition componentwise, and multiplication
given by (r,m)(r',m') = (rr',rm/+mr')
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(s is the split null extension of* R hy M. ) Identify R,M 
with (R,0), (0,M) respectively. M is an ideal of S and 

= 0. so M c J(S)-. Further, S/M = R is semi-primitive, 
so J(S) = M.

Assume that U(R)'= 1, and that am = ma for all 
a€U(R), meM. Then U(s) = all a+m, aeU(R), meM. Further, 
U(8)'= 1, for

(a+m)(a'+m') = aa'+am'+ma'
= a'a+m'a+a'm 
= (a'+m')(a+m)

Now suppose 3 x gR, yeM with xy / yx. Then 
1 / 1+xy-yx € U(S), and

[l+xy-yx]i = [l+xy]^ [l+yx]7^
= [l+xy]i[l+yx]g^D2i(l+yx)
e Ep(8) hy 4, 4' and 7.

But U(8)' =1, so 1+xy-yx / U(8)'. 8 is not universal for
GEp, any n, hy (4.5).

As an example, we can take R = k[x] and M = k<x,y>
(the free associative algebra over the field k on the free 
generators x,y). M is an R-bimodule in a natural way.
R is semi-primitive, U(R)' = 1 .and U(R) = k* commutes 
elementwise with M. Further, xeR, yeM and xy / yx. ,8o if 
we construct 8 as above, 8 is not universal for GEp. any n. 
But S/J(S) = k[x] is universal for GEg (see [l;(5.2)]).

Note; For n > 2 we do not know whether k[x] is 
for 6^»; it reagons'blg to oonjooturg t M tit is. We do in fact obtain a presentation'for GEp(k[x]) 

in (6.4).
In spite of the above, we can give an easy sufficient 

condition for R to be universal if R/J is universal; and 
as before, the property of being quasi-universal is better ■ 
behaved: R/J quasi-universal implies R quasi-universal, 
without extra conditions (see (4.17)).

Write GEp(R,J) for the subgroup of GEp(r ) generated 
by all Bj,j(x), xeJ(R), and all [oj, ,....Op] where aj,=1+Xi,, xĵ eJ.
Proposition (4.16). For any ring R, GSp(R,j) has the .
presentation:

Generators: Bj,j(x), [l+x^ ,....1+Xp 3 (x's e J(r))
Relations: The quasi-universal relations (1,2,3,4/,5,6,7)

where applicable.
Proof. A e GEp (R,J) => A = Ip + (zj.j) where zj, j e J(r )..



So
A = . 5  BLn(xi)L <n

A'
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n Bj, n (xj, ) n Bn j, (y L )
L <n L <n

A'

0...0

for suitable A' e GEp_i(R,J), a = l+Zpp and x's, y*s e J(R). 
Furthermore, this expression for A is unique.
Applying the same reduction to A', and continuing inductively, 
we get a normal form for A;

A = n Bum (xj,(H ) n {, (ymL ) 1 3
m =n , .8 t <m u <m

where Xĵ j, yj,j e J and aj, = 1 mod J.
Clearly A* [/3i ] can be put in normal form, by 7.
It remains to shew that A-Bj,j(z) (zeJ) can be put in normal 
form using only the prescribed relations. Suppose n = 2.

Bi2 (x)Bgi (y) [a,/3]Bgi (z)
= Bi2 (x)B2i (y+)Sza"̂  ) Loc,)93 "by 1,6

Also Bi2(x)B2i(y)[a,)3]Bi2(z)
= Bi2(x)B2i(y)Bi2(«z/5"^)[«,/33 by 6
= Bi2(x)[l+yaz^ri]2Bi2(az^ri)B2i(y)[l+az^riy][i[a,^3 by 4'
= Bi2 (x+az/3"^ (1 +yaz/3~^ )B2i ( (1 +yo:z/9“  ̂)y)

• [(l+o:z/3“^y)"^a, /9+yaz] by 1,6,7 
So the proposition holds for n = 2, Assume n > 2 and use 
induction.
If i, j < n we can put A'Bj,j(z) in normal form, by the 
induction hypothesis.
If i , j  < n,
. B i j  ( x ) B n r ( z )  =  B n r  ( z ) B i , j  ( x )  ( r / i )  b y  2

• Bi, j  ( x ) B n i ,  ( z )  =  Bni, ( z ) B n j  ( - z x ) B i ,  j  ( x )  b y  2 , 3

[ ot^ ,  ] B p r  (  z  )  =  Bpp (otp zctp  ̂ )  [ ot^ ,  ] b y  6

S o  u s i n g  o n l y  1 , 2 , 3  a n d  6  w e  h a v e

A - B n r ( z )  = BBl „ ( x ;  )roni.  ( y i  ) A ' [ a l p B p r  ( z )  ( A ' e G S p . i  ( R ,  J) )
=  p B i , n ( x i . ) n B n i . ( y i , ) n B n i . ( z i , ) A ' [ a ] n  s u i t a b l e  Z i . e J  '
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= roj.n(xi. )nBnt (yt+Zi, )A'[a]p by 1,2 

Now if i,j < n,
Btj(x)Brn(z) = B m  (z )B{. j (x) (r/j) by 2
B{. j ( x ) B j n ( z )  = B jn (z )B i,n (x z )B i,  j  ( x )  by 2,3 
[ ot^, ••••cXp ] Bp p ( z ) = Bp p ( Ofp zcxp ̂  ) [ ocj_, ••••ocp ] by S 

So using only 1,2,3 end 6 we have
A*Bpp(z) = HBj,p (xj, )n3pj, (yL )A [oc ]pBpp(z) (A cGbp_^(R, j) )

= nBtn(xL )nBpt (yi, )nBLp(zj, )A'[a']p suitable z^eJ.L I I
Now it is sufficient to prove that the following is a
consequence of the quasi-universal relations;
(**) (yi )nBi.p(zt ) = nBLn(zi«“ )̂lIBpi. (cxyj. )[oc]pA*I L L L

Where a = 1 + Zy^zi and A*EGEp_i(R,J)
For then, substituting back,

A'Bpp (z) = nBLp(xi+ZLa~i)nBpi(ayi)A*A'[aa']p by 1,2,6,7 L L
and by induction this can now be put in normal form.
For n = 2 ,  (**) reads

B2i(y)Big(z) = [cx]2B1 2 (2 )B2jL(y)A (a =[l+zy]i^, cx=1+yz)
by 4'

= Bi2(zG~^)B2i(ay)[a]2A" by 6.
So assume (**) is true for n-1 : put

n~i n-i1 + Z y^Zi = a, 1 + Z yizi = /3,
1 2

We write B -+ C when B = CD, some D e GE^_^^(R,J)
n- 1 n- 1Also we write 11̂ , 2% for H , 2 .k k

BiBnt (yi )niBj,n(Zi. )
— Dni(yi)Bin(zi^*  ̂)Bs iBpL (yi )®iI (“Zj,̂  ’̂yi ) ÎBgBL p(z;, )

•Bi p (z i (1-/3"M) by' 1,2,3
B p i  ( y ^  )B ^ p  (  Ẑ /3  ̂ )B 2 B p i,  ( y i  ) BgBj, p ( Zj, )

•Bip(zi(1-/3"^-/3“’-S2yi,Zi, )) by 1,2,3 
“ Bpi (y^ )Bip (Zi/3  ̂)ll2BpL (y; )II2Bl p (zl ) by 1

Bni(yi)Bip(zi^"^)n2Bi,p(zLi3“^)naBpi,(/3yi,)[^]n by induction 
= Bin(zia"i)Bn^(a/3"iy^)[l+z^/3"^y^]-^Ia/3"i]„

•naB(,p(zi.^“’-)lIaBpi. (̂ yi, )[;3]p by case n=2
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Bin(zia-i )Bpi (a/3-^^. ) [a/3“  ̂jp^^Bi )ngBpL (/3yc )

by 6,7
= Bin(zia"^)Bpi(a/3“^yi,)n2Bj,n(zL«“^)n2BnL (oyj. )[a]n by 6,7
= Bin(zia~i)n2|BLn(zia-i)BLi(-Zi^^iyi);

•Bni(a/3*’̂ yi)n2BnL (cxyj. )[a]n by 2,3 
“♦ BiBi n (Zj, cT^ )Bp 1 (a/3“^yi+aSayj. Zj. /3"̂ yi )naBnl (ay^ ) [a] p

by 1,2,3,6
= n̂ĵBj, p (Zj, oc  ̂)n^Bp (ocyĵ ) [oc]p 

T h is  p ro v e s  ( * * ) ,  and hence th e  p r o p o s it io n .  □

Theorem (4.17). (l) Let R (or, equivalently, R/J(R)) be 
generated as a ring by its units. Then if R/J(r) is universal 
for GEp, so is R.

(Il) Any R; If R/J(r ) is quasi-universal for GEp, 
so is R.
Proof. (II); If xeJ, y/J, oqel+J, )9j €U(R)-(1+^) then
( i )  Bj, j  (x)Bkt(y) = Bki(y)Bij(x) by 2
( i i )  B î . j ( x ) B j k ( y )  = B jk ( y ) B | , j ( x ) B ( .k ( x y )  b y  3

(iii) Bj,j(x)BkL(y) = Bki(y)BLj(x)Bkj(-yx) by 1,3
( i v )  Bi.j(x)Bjî.(y) = Bji(ya-i)Bij(ax)[l+xy,(l+yx)-i]ij by 4',

6,7 (oc=1 +xy)
( v )  [cX i,....ap ]B i, j ( y )  = Bj. j (a j ,y o :J ^ ) [a ^ ,. , . .a n ]  by 6
(vi) [oĉ ,....oCp ] [/3ĵ_, ..../3p ] = [cx̂ /3ĵ oĉ  ̂, ....0Cp/?po:p̂  ] [oĉ  , ....oCp ] by 7
So from these, if C € GEp (R) is some product of Bj,j(z)*s 
and [/i,....Yn ] * 8 , we can write

C = A'B by 1,2,3,4',6,7 only 
where A is a product (possibly empty) of elementary and
diagonal matrices each incongruent to Ip mod J, and B is
in GSp(R,j); furthermore, if r w  r is the natural map 
R -* R/J then B = Ip, and C,A are formally identical, once 
[ 1 and Bij(O) have been dropped from C. (Just note that 
i n  each of (i)-(vi) the second term on the LHS is congruent 
mod J to the first term on the RHS, and all other terms 
are i n  GEp(R,J). )

Now suppose Cq = Ip i s  a r e l a t i o n  o f  G E p (R ). Then
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Cq = Ip is a relation of Gü^(r/j ), and since R/J is quasi- 
universal for GEVi, we have

Cq — C.j_ — •••• — C(p
where C^ is just Ip, and the step Cj, = Ci+i involves one
application of one of 1.-7. or 4', or putting Bj,j(0) or 
[ 1 . 1  ] equal to 1.

Now Cq = Aq 'Bq (notation as above for C) and Cq , Aq 
are formally identical. If the step Cq = C^ involves 
putting Bl j (0)=I or [l ,....1 ] =1, on lifting to AqBq we obtain 
matrices of GEp(R,J) which we pass through to the right as 
before, to get A^Bi = C^, with Ai,Ciformally identical.
If the step Cq = involves an application of 1,2,3,5,6
or 7, this lifts to the same application to Aq Bq , giving
AiBi = Cl as before.
An application of 4' arises from terras in Aq :

Bj, j (x)Bj Î, (y) [l+yx+z] j where 1+yxcU(R) and zeJ.
3 z'eJ such that ( 1 + y x + z ) ( 1 + z ' = 1+yx. So

Bj, j (x)Bjj, (y)[l+yx+z]j =  Bj,j (x )Bjj. (y)[l+yx]j [l+z']j by 7 
and now we can apply 4' and also pull [l+z/]j through to 
the right, to get A^B^ = C^ as before.

Repeating the above process, we have as a consequence 
of 1.-7. and 4',

Co — Afi, Bm
where A^ and C^ are formally identical; but C^ is just I, 
so Am is the empty product, and Cq = Bm is a consequence 
of 1.-7. and 4'. So since Cq = I, we have Bm = I, and 
Bm € GEp(R,j), so Bm = I is a consequence of 1.-7. and 4', 
by (4.16).

A Cp = I is a consequence of 1.-7. and 4', as 
required.

(l): We have merely to shew that, with the given 
conditions on R, use of 4' in (ll) above can be replaced 
by use of 1.-7.
If xeJ and a€U(R),
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Bl j (x)Bji. (oc) = [a]jBLj(xa)BjL(l)[a"i]j by 6,7 
= [oc] jBl j (/3-1 )Bjl (1 ) [a"^]j where /3= 1+x ( € U(R))
= [cx]jDLj(/3)Bji,(/3)BLj(l-/r^)[a-^]j by 4 
= L/5]lBjl («)Bl j (x)[ay9"'^a“^]j by 6,7 

Using 7, B|. j (x)Bji, (a) [1+ax] j = [1+ xct] lBj l (oc)Bl j (x).
Now suppose y = ai+....+ocp ; apply the above r times to obtain 
(for xeJ)

Bu J (x)Bjî, (y)[l+yx] j = [l+xy]LBjL(y)Bi,j(x) by 1.-7. 
Inductive step;

B l j(x)Bjt(y+a)[l+(y+a)x]j 
=  Bl j (x)BjL (y)[i+yx]j [l+yx]J^BjL (a)[l+(y+a)x]j by 1,7 
= [l+xy]LBjL (y)BL j (x )Bjl (/3'”̂ a)[l+/3’"^ax]j [ (l+/3"^ax)“^

•/9“^(/3+ax)]j
by the inductive hypothesis and 6,7 ()5=1+yx)

= [l+xy]LBjL (y)[l+x/3"^a]LBjL (iS“ ĉc)BL j (x) by the above case 
= [(l+xy)(l+x/3“^a)]LBjL (y+yx/3"^a+/9"‘̂ a)BLj (x) (^=1 )
= [l+x(y+a)]LBjL (y+oc)BL j(x)

So (iv) on page 64 and 4' as used in (4.16) are consequences 
of 1.-7.
The only other use of 4' was in the steps =0^+1 •
Use of 4 arises from terms B l j(l-a)Bjl (l+z) in (zgJ).
(Note that 1-a+z' = 1-a' where a' = a-z' gU(R) (z'eJ))
We have Bl j (1-oc)Bj l (l+z) = Bl j (l-a)Bj l (l )Bj l (z) by 1 
and now we can use 4 and pull the last term through to the 
right. □

Recall that a semi-local ring is a ring R such that 
R/J(r ) has the minimum condition on right ideals; in 
particular, of course, any Artin ring is also semi-local. 
Corollary (4.18). Every semi-local ring R (and in particular, 
every Artin ring) is quasi-universal for GEp, all n.
A sufficient condition for such R -tP be universal for GEp 
is that R/J(r ) should not contain K or Kg as direct 
factor, where |k | = 2.
Proof. The first part is immediate from (4.10) and (4.17).
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The second part follows from (4.15) and (4.17), once we 
note that every Artin ring is generated as a ring hy its 
units. □

We now shew that not every ring is quasi-universal 
for . The question of whether every ring is quasi- 
universal for GEp (n>2) is undecided; it seems unlikely. 
Proposition (4.19). The ring R of integers in Q(V-11)
(Q = rationals) is not quasi-universal for GEg.
Proof. U(r ) = i±ll, so 1+xy e U(r ) a=c> xy=0 (so x=0 or y=0)
or xy = -2 (so x,y = ±1,±2 in some order).
So in GEg(R), 4' is a consequence of 4.
But R is not universal for GEg, hy [2; page I6 3 ], so it 
cannot he quasi-universal for GEg. □
In [2 ] it is also shewn that the rings of integers in 
Q(V’-2) and in Q('7-7) are not universal for GEg ; hut in 
these rings the equation xy = -2 has solutions other than
x,y = ±1,±2, so the above proof breaks down.

Note that if R is a local ring, R/J(R) is a skew 
field, which is generated as a ring by its units; by (4.17) 
we could have deduced (3.7) from the weaker statement that 
every skew field is universal for GE^, but the proof of 
this statement is scarcely shorter than the proof of (3.7).
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5. The commutator quotient structure of GEn(R) and Er.(R).

In this chapter we generalize some of the results 
of [1 ; paragraph 9], We have already seen in (4.4) that 
[1 ;(9.1)Cor.1] has an immediate generalization. We now 
generalize [1;(9.1)].
Proposition (5.1). (Any R) If A e GEp(R), then

A E [aJi mod Ep(R), some a e U(R).
Proof. By 7, A = [cXi,....ocn] Ĝ (R)

— [oCiOCg....cxp] 1 n Dl i (ocl) by 7 
I =2

and now note that hy 4, j (/3) e Ep(R). □
We may ask: to what extent is oc (in (5.1)) determined hy A? 
This is equivalent to determining the subgroup W < U(r ) in 
the following:
Corollary (5.2). For any R, GEp(R)/Ep(R) ^ U(R)/W, some 
W (=W(n)) < U(R).
Proof. Immediate from (5.1), once we note that the LHS 
is well-defined, since Ep(R) <j GEp(R), by 6. □
Now for n = 1, GEp(R) = U(r ) and Ep(R) = 1, so W = 1.
For n > 1, we have
Proposition (5.3). For any R, and n > 1,

GEp(R)/Ep(R) = U(r )/W, some U(R)' < W < U(R).
Proof. = Dgi(^)[/3]i[a]iDi2(/3)
Thus, since DLj(i3) € Ep(R), GEp(R)/Ep(R) is abelian.
The result now follows from.(5.2). □
Corollary (5.4). For n?2, GBp(R)' c Ep(R), any R. □

(cf. Il;(9.1)Cor.3]) ‘
For n>3, we can improve on this:
Proposition (5.5). For n ̂  3, GEp(R)' = Ep(R), any R.

(cf. [1;(9.2)])
Proof. We already have LHS c RHS by (5.4). The reverse 
relationship is immediate from

Bij(x) = BLk(-x)Bkj(-l)BLk(x)Bkj(l) where k / i^j. □ 
Notation: for any group G, write = G /G ' .
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Proposition (5.6). If R is universal for GEp (n>2), 

GEp(R)/Ep(R) = U(R)^ (cf. [1;(9.1)])
Proof. Define a map f;Gij^(R) U(R)^ by

f ;Bl j (x) *-> 1
f : [ oci, cxg , ••••ocp ] ^ ( o(iocg ••••ocp )

Since R is universal for GEp, and f is compatible with 1.-7,
we have a well-defined homomorphism. Clearly im(f) = U(R)^ 
and Ep(R) c ker(f).
Then if A € ker(f), by (5.1) A = [a]i mod E„(h ).
So it is sufficient to prove that a e U(r)' =o [a]i € Ep(R) 
(i.e. the converse of (4.5)).
But if /3,y 6 U(R),

= Dgi(/3)Dgi(y)Dig(/?y) 
e Ep(R), since Dl j (ô ) e Ep (R), by 4. □

Corollary (5.7). If R is universal for GEp, and 1+xy e U(r ),
then 1+xy = 1+yx mod U(r )'.
Proof. 4': B^g(x)Bgi(y)[l+yx]g = [l+xyJ^Bgi(y)B^g(x)
The result now follows from (5.6) and the fact that 
Dig (1+yx) € Ep(R). o

This gives us another way of constructing rings 
which are not universal for GEp, any n. Let K be a 
(commutative) field. Put R = K<x,y>/(xy).
R is the set of all finite K-linear sums of monomials 
yr%s (r,s ̂  O) with multiplication defined by

(y""x̂  ) (ŷ ' ) = 0 if s >0, r' > 0
(y'^x^)x®^ = y"" x^
yr(yr'xs') = yr+r'%s'

Suppose (Sap s y^ x̂  ) (2bp/ s'y*"̂  x^ ̂ ) = 1
Consider the homomorphism R K[x] formed by mapping y »->■ 0.

( s x  ̂) ( Zbg ŝ  ) = 1
whence Booboo = 1 and Sqs = 0, bos^ = 0 all s,s' > 0. 
Similarly, apg = 0, bp/ q = 0 all r,r' > 0.
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C o n v e rs e ly ,  i f  asK * ( = K - ( o } )  and fc R ,  th e n  a + y fx  € U (r ) 

( ( a + y f x ) ~ i  = a ” ^ -a “ ® y fx ) .  So U (R ) = a l l  a + y fx  (a e K * ,  f e R ) .

Then ( a + y f x )  (yS+ygx) = a /3 + y (a g + /3 f)x

= (y 3 + y g x )(a + y fx ) .  Thus U (R ) '  = 1 .

B u t 1+xy  = 1 and 1+ yx  /  1 ,  so b y  (5.7) R i s  n o t  u n iv e r s a l  
f o r  GEp, any n .

The f o l lo w in g  exam ple o f  an  i n t e g r a l  dom ain  w h ic h  

b e h a v e s  i n  a s i m i l a r  way has  b e e n  fo u n d  b y  P .M .C o h n :

L e t  K b e  a  co m m u ta tive  f i e l d ,  and p u t  Rq = K < x ,y > .

C o n s id e r  a m onom ial

X x ^ i y  ® ̂  y

w here  X e K and r t , Sj, > 0  e x c e p t  p o s s ib ly  r^  = 0  o r  Sp = 0
o r  b o th .  D e f in e  i t s  h e ig h t  h  to  be

2h i f  a l l  r i ,S L  > 0

2n-1  i f  r^  = 0 o r  Sp = 0  b u t  n o t  b o th

2 n -2  i f  r .  = 0 = Sp* * oo
P u t  R = a l l  pow er s e r ie s  f  = 2 fp  w here  fp  i s  th e  sum

0
o f  a f i n i t e  num ber o f  m onom ials o f  h e ig h t  n .

P u t Hn, = a l l  a  + 2 fp  (a c K * ,  fp  as a b o v e ).
oo

We c la im  U ( r )  c  Hg and U (R ) ' c  H ^ . F o r  suppose f  = 2 fp  € ü ( r )

and w ith o u t  lo s s  o f  g e n e r a l i t y  we may suppose f q = 1 .

L e t  f i  = p ( x ) + q ( y )  w here p ( 0 )  = 0 ,  q ( 0 )  = 0 .
oo

Suppose f  = 2 gp w here gg = 1 and g i = r ( x ) + s ( y ) ,o
r ( 0 )  = 0 ,  s ( 0 )  = 0 .
L o o k in g  a t  th e  terms o f  h e ig h t  1 i n  ( 2 f p ) ( 2 g p )  = 1  we have  

P(x)+q(y)+r(x)+s(y)+p(x)r(x)+q(y)s(y) = 0  

Thus p(x)+r(x)+p(x)r(x) = 0 .  A p = r  =  0 .

S i m i l a r l y  q  = s = 0 .  A U ( r )  c  Hg.

Now e ac h  i s  m u l t i p l i c a t i v e l y  c lo s e d . Suppose a+ a  € H p ,
)5+b e (w h ere  a ,b  c o n ta in  o n ly  te rm s  o f  h e ig h t  > n ,m  

r e s p e c t i v e l y ) .  Then
( a + a ) " i  = ( l - a ” ^ a + (a ” ^ a ) * - . . «  ) a ~ i  

and s i m i l a r l y  f o r  /3+b. So
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( a + a ) ~ i ( 0 + b ) ~ i  (a + a )( /3 + b )

= ( a  ^ - a ” *a + ....  ) ) (a + a ) ( /3 + b )
= 1 +/9'"^b+a~^a-/9” ^ b -a ’“^a + te rm s  o f  h e ig h t  >m +n  

 ̂ Hm+n*
So s in c e  U (R ) c  H g, we have U (r ) '  c  H * .

Th en  1+ yx  € U (r ) ( ( l + y x ) “  ̂ = 1 -y x + y x y x - . . . .  ) and 1+xy € U (r ) ,  

b u t  ( l + x y ) ( l + y x ) ~ i  = 1 + ( x y - y x )  + te rm s  o f  h e ig h t  > 4

€ H g - H *

A 1+xy /  1+ yx  mod U (r ) ' .  By ( 5 . 7 )  R i s  n o t  u n iv e r s a l  f o r  

GEp, any n .  F u r t h e r ,  R i s  c l e a r l y  an  i n t e g r a l  d o m a in .(s k e w ).

We n o te  t h a t ,  i n  v ie w  o f  ( 5 . 5 )  and ( 5 . 6 )  we h a v e :  

C o r o l la r y  ( 5 . 6 ) . I f  R i s  u n iv e r s a l  f o r  GEp, some n > 3 ,  th e n

GEV,(R)® S U (R )® . □

We now g e n e r a l iz e  ( 5 . 6 )  to  q u a s i- u n iv e r s a l  r in g s .

( 5 . 6 )  was p ro v e d , e s s e n t i a l l y ,  b y  o b s e rv in g  t h a t ,  fro m  th e  

u n iv e r s a l  r e l a t i o n s ,  i f  R i s  u n iv e r s a l  f o r  GEp, th e n  

G E p (R )/E p (R ) has a p r e s e n ta t io n :

G e n e ra to rs :  [oCj, ] ( a t € U ( R ) )

R e la t io n s :  [otj_ ,..«»ocp j 3

Bl j (ot) » 1
and t h i s  i s  th e n  seen to  be  e q u iv a le n t  to  th e  p r e s e n ta t io n ;  

G e n e ra to rs :  [ a ]  ( a e U ( R ) )

R e la t io n s :  [ a ] [ / 3 ]  = [a /3 ] = [ / 3 ] [ a ]
S i m i l a r l y ,  i f  R i s  q u a s i - u n iv e r s a l  f o r  GE^, G E p (R )/E p (R )  

h as  th e  p r e s e n ta t io n :

G e n e ra to rs :  [a ^ , . . . .a p ] ( a L € U ( R ) )

R e la t io n s :  [ , .«»«ap ] [ , ,.../3p ] = [ ]

[ l + x y ] i  = [ l + y x ] j  w henever 1+xy € U (r ) 
and t h i s  i s  e q u iv a le n t  to  th e  p r e s e n ta t io n :

G e n e ra to rs :  [ a ]  (a e U (R ) )

R e la t io n s :  [ a ] [ /3 ]  = [a /3]

[ l+ x y ]  = [1 + y x ]  w henever 1+xy € U (R ) .

So l e t  Ug ( r ) b e  th e  subgroup o f  U (r ) g e n e ra te d  b y  a l l
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e x p re s s io n s  ( l + x y ) ( l + y x ) ~ i  ( l+ x y  € U ( R ) ) ,  and l e t  

U i ( R )  = U ( R ) ' .  Now i f  a , /3  € U (r ) ,  

a/9 = /3 + (a -1  )/3

= /3 (l + /3“  ̂(a -1  )p)
= /3 (l + ( o c - l ) )  mod Ug (R )

= /9a
So U i ( R )  c  U g (R ). We have p ro v e d ;

P r o p o s i t io n  ( 5 . 9 ) . L e t  R be e i t h e r  u n iv e r s a l  o r  q u a s i-  

u n iv e r s a l  f o r  GEp, any n ,  and p u t m = 1 ,2  r e s p e c t iv e ly .

Then G E p (R )/E p (R ) = U (r ) /U „ ,(R ) .  □

C o r o l la r y  ( 5 . 1 0 ) . I f  R,  m a r e  as  i n  ( 5 . 9 ) ,  and [ a ] i € E p ( R ) ,  

th e n  a  e U m (R ). □

T h is  r e s u l t  p r o v id e s ,  p o t e n t i a l l y ,  a way o f  

c o n s t r u c t in g  r in g s  w h ic h  a re  n o t  q u a s i - u n iv e r s a l  f o r  GEp, 
f o r  any n . We r e t u r n  to  t h is  q u e s t io n  i n  th e  n e x t  c h a p te r .

F i n a l l y ,

P r o p o s i t io n  ( 5 . 1 1 ) . (Any r ) I f  n > 3 ,  E n (R )®  = 1 .  ( o f . [ 1  ; ( 9 . 3 ) ] )  

P r o o f . G iv e n  xeR , and i / j ,  choose k  /  i , j .  Then  

Bij(%) = Bik(-x)Bkj(-l)Bik(l)Bkj(l). O
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6 .  The g e n e r a l  c a s e .

H e re  we g iv e  a p r e s e n t a t io n ,  a l b e i t  a clum sy o n e , 

f o r  G E p (R ), t h a t  h o ld s  f o r  any r in g  R; we shew how i t  ta k e s  

a s p e c ia l l y  s im p le  fo rm  when R i s  G E g -r e d u c ib le .

We s t a r t  b y  w o rk in g  i n  as  g e n e r a l  a c o n te x t  as  

p o s s ib le .  L e t  R ,S  be  r in g s ;  l e t  M be  an  (R ,S ) -b im o d u le  and  

N a n  (S ,R ) -b im o d u le .  Suppose we h av e  b a la n c e d  maps 

MxN R ( ( x , y )  ( x ; y )  )

S ( ( y , x )  ( y ; x )  )

s a t i s f y in g  th e  a d d i t io n a l  c o n d it io n s

( x ; y ) x '  = x ( y ; x ' )  ( x , x '  e M, y  € N)

( y ; x ) y '  = y ( x ; y ' )  ( x  € M, y , y ' e  N)

T h en  we can  d e f in e  a r in g  A c o n s is t in g  o f  a l l  ( X
8 )

0R
f B s i ( y ) —

R
»

0 ' s /  ' s .
'a 0  '

; a l l  th e s e a r e  i n  U ( A ) .

. 0

( r e R ,  seS , xsM , y s N ) w i t h  o r d in a r y  m a t r ix  m u l t i p l i c a t i o n  

and a d d i t io n ,  once we a g re e  t o  w r i t e  x y  f o r  ( x ; y )  e t c .

I f  xeM , y € N , a e U (R ) ,  /0 € ü (S ), w r i t e

Bia(x) =

[a,/9]

L e t  P ,G  b e  subgroups o f  U ( R ) ,  U (S ) r e s p e c t iv e ly .

L e t  H be th e  subgroup o f  U (A ) g e n e ra te d  b y  a l l  B i g ( x )  (xeM ) 

a l l  B g i ( y )  ( y c N ) ,  and a l l  [a , /3 ]  (a e F ,  /3gG ).
The f o l lo w in g  u n iv e r s a l  r e l a t i o n s  h o ld ;

( i )  B i g ( x ) B i g ( x ' )  = B i g ( x + x ' )  ( x , x ' e M )
( i i )  B g i ( y ) B g i ( y ' ) = B g i ( y + y ' ) ( y , y ' e N )
( i i i )  B i a ( x ) [ a , / 3 ]  = [ a , /3 ] B ig ( a “ ^x/3) (xeM , a e F , /SeG)

( i v )  B g i ( y ) [ a , ^ ]  = [ o ,^ f ]B g i (^ ^ iy a )  (y e N , a e F , /9eG)

( v )  [ a , / 3 ] [ a ; / 3 ' ]  = [aaJ/S/S '] ( a , a ' e P ,  /3 ,^ 'e G )
Now suppose we have  some r e l a t i o n

( * )  C = 1
w h ere  C i s  a p ro d u c t  o f  th e  g e n e r a to rs  o f  H . U s in g  ( i ) - ( v ) ,  

we can  re d u c e  ( ♦ )  to  th e  fo rm ;
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( v i )  n l B i 2 ( x L ) B g i ( y i . ) }  = [a,fi] (x^eM, y^eN, aeF ,  /3eH)

I t  f o l lo w s  t h a t  ( i ) - ( v ) ,  and ( v i )  when i t  h o ld s ,  a r e  a 

c o m p le te  s e t  o f  d e f in in g  r e l a t i o n s  f o r  H .

I n  o r d e r  to  see when ( v i )  h o ld s ,  we d e f in e  a g e n e r a l iz e d  

fo rm  o f  th e  c o n t in u a n t  p o ly n o m ia ls  o f  [ 1 ;  s e c t io n  8 ] .
D e f in e  P i ( x )  = x  (xeM)  and P i ( y )  «  y  ( y e N ) .
D e f in e  Pg(x,y) = 1^+xy and Pg(y,x) = 1g+yx (xeM , y e N ).

Then i n d u c t iv e ly :

Pn ( )  — Pn—i ( ^ i * ——t p —i ) t p  + Pn—2 ( ^1 * ——i n —a )  

w h ere  tj. eM, i  odd , and t ^ e N ,  i  eve n ; o r  v ic e  v e r s a .  

p _ i  w i l l  mean 0^ o r  0^  and Po = p_g w i l l  mean o r  1

e x a c t ly  w h ic h  w i l l  he  c l e a r  fro m  th e  c o n te x t .
F o r  n > 0  we s h a l l  som etim es w r i t e  p ( t ^  , . . . . tp  ) f o r  Pp ( t^  , . . . . tp  ) .  

Then  i f  x  eM, y  eN , we have  p(xi , y i  ,....Xp ,yp  ) e R , 

p (x^  ,y^,M*.Xp ) € M, p(yi ,Xg ,.«..Xp ,yp ) e N , p(yi ,Xg ,..».Xp ) e S . 

We c la im
m J r P2m (Xi»y 1 ....X ^ym ) Pa m—i (X i^yi-.-Xm  ) ̂

T h is  i s  c e r t a i n l y  t r u e  f o r  m = 0 ,  when we have

f Po P-i \H  “ V p_^ p_a J
and f o r  m = 1 we have  

B. q(x)Bo-i (y) - ^R
0 I g J l y
iR + xy " 1

y ' s  J
P a ( x ,y ) Pi(x)
Pi(y) Po

Then n {B^g (xj, )B g i (y^ ) }  
1

Ç Pam—a ( X f —ym—i  ) Pam—atX i^^Xm —1) 1 ^   ̂g  ^  I f  ^R ^

L Pgni—3 (yi****ym—1 ) Pam—4 (yi****Xm—1 ) < I  B 1 g /  I  ^m  ̂<



s

lb
^ P2 IP—2 1 ) P2m-i(%i""Xm)3 f  ̂̂  0L P2ip—3 1 ) P2IP—2 )J ^  ^
f P2 m m ) P2 ip—i ) 1
V P2ip—1 (yi****yip ) P2 m—2 (yi****̂ ip ) f

8 0 now we can give the following conditions for (vi) to hold: 
P 2 IP IP ) =  cx €  p
P2 IP — 2 ) =  /5 € Q

P2 IP— 1 ) — 0^
P21P—1 ( y i * * * * y i p  )  —

We now turn to a special case. Let K he any ring; put 
R = Kp, 8 = Kj, where r+s = n. Let M,N he, respectively,
all r*6 , all sxr matrices over K. The himodule structure
and the balanced maps (see page 7 3 ) are given hy matrix 
multiplication, and then A = Kp. H is a subgroup of GL^(K); 
the actual subgroup will depend on the choice of P and G.
We put P = G5^(K) and G = GE5 (k) : so H = GEn(K).
Then [a,)3] is a product of Bij(z) (zeK, 1<i,j<r or r<i,j<n)

and [ai,....0Cn] (aj,€U(K)).
Purther, if x = (x^j) € M and y = (yjt) € N (l<i<r, 1<j<s) 
we have

®i2(^) ~ r+j(%Lj) > Bgi(y) = n B p t ( y j t ) f
t , J L , J

and by universal relation 2 , the order of these products
is immaterial. Then (i) and (ii) follow, from 1 and 2;
(iii) and (iv) follow from 2, 3 and 6 .  Finally 2, 6 and 7 
ensure that [a,l] and [l,y9] (aeP, ^çG) commute, and now (v) 
follows by relations of GE^ (K) and QEjCk).
Our results may now be stated as
Theorem (6 .1 ). Let K be any ring, and r,s >1 with r+s = n. 
Then GEp(K) has as defining relations:
( a )  1 , 2 , 3 , 6 , 7
(b) The relations of GEt,(K) (t = max(r,s))

S |Bi:(Xi)B3 i(Yi)j = [A,b] where and
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X (,, Yi ( i= 1 ,...m ) a r e  r e s p e c t iv e ly  r x s ,  s x r  m a tr ic e s  o v e r  K 

and  = A € GEp (K)
Pa m” i  (^1 » , ....Xffl ) = 0
Pa m—i  ( Y i  fXg ,**..Xfn » Y|n ) = 0
Pa m“ 2 ( Y i  >Xg , ••••Xjn ) = B € GE  ̂ (K )  • □

N .B . By ( 6 . 1  ) ( b )  we mean any r e l a t i o n  o f  GEVi ( k ) n o t  in v o lv in g
m ore th a n  t  d i s t i n c t  s u f f ic e s .
As a s p e c ia l  case o f  ( 6 . 1 )  we ta k e  r  = n - 1 ,  8 = 1 ,  and th e n  

use  in d u c t io n  on n .  N o te  t h a t  th e  r e l a t i o n s  o f  GSj^(K) a r e  

c o v e re d  b y  7# We have
Theorem  ( 6 . 2 ) . F o r  any K , any n ,  GÊ ï (K )  h as  as d e f in in g  

r e l a t i o n s :

( a )  1 , 2 , 3 ) 6 , 7
( b )  F o r  1 ^ k < n -1 , and m > 1 ,

( ♦ )  n [B ia  (X{. )B2i  (Y(  ̂ ) 1 = + i  w here

X L , Y l ( i= 1  ....m) a re  r e s p e c t iv e ly  k%1,  1 %k m a tr ic e s  o v e r  K 

and  p2 m ( X i , Y l , ••••Xm, Ym ) = A /c  GE% ( x )

P2 m—1 ( X i ,  ••••Xm ) = 0 
Pa m—1 ( Y i  , ••••Yfn ) = 0 
Pam—a ( Y i , " " X m )  = ^  € U (K )

and

We n o te  t h a t  we c o u ld  add u n iv e r s a l  r e l a t i o n  k to  th e  l i s t  

i n  ( 6 . 2 ) ( a )  and th e n  i n s i s t  i n  ( b )  t h a t  = 1 . We a ls o  n o te  

t h a t  u n iv e r s a l  r e l a t i o n  5 i s  a s p e c ia l  case o f  ( * ) .

Now we have  a lr e a d y  seen  i n  ( 3 . I I )  t h a t  i f  R i s  

GEg- r e d u c ib le ,  th e  r e l a t i o n s  o f  GEp(R) ( n > 3 )  a re  j u s t  th e  

u n iv e r s a l  r e l a t i o n s  to g e th e r  w i t h  th e  r e l a t i o n s  o f  GE@(r); 
i . e .  i n  ( 6 . 2 )  j u s t  ( a ) , a n d  ( b )  f o r  1 ^ k ^ 2 . We shew now t h a t  

f o r  such a r in g  i t  i s  s u f f i c i e n t  to  ta k e  ( a ) ,  and ( b )  f o r  

k = 1 , a l l  m, and f o r  k = 2 ,  m<4.

P r o p o s i t io n  ( 6 . 3 ) . L e t  R be G E , - r e d u c ib le .  Then i f  A € GE@(R), 

th e r e  i s  an  e x p re s s io n
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A = Bi 3 ( x i  )Bg 3 (xg )B 3 i  )B32 (yg )

*^13 (^ 3  )^2  3 )^31 (y  3 )^3  2 ( y * ) ' M
where Xi, y^ e R and M € G S g f R) .

Proof. Write *A B* for *A = BM, some M € G E g ( R ) ' .

Then A f  ! ! ! ) “" ( ! '. ! ) 'B^gC-l )
L . 0  z  J I  . z  z j

f : : :1 -  f :  : : 1 =  f  : : : ] " B 3 , ( y ) B , , ( x )
V . z z J  I  0  1 z /  1 0  0 1 /

some x ,y

l o  0 1 J
B i3 ( x i ) B 23( x g )  some x ^ ,  x%

(E a c h  d o t  s ta n d s  f o r  an  u n s p e c i f ie d  e le m e n t o f  R.)

P u t t in g  t h i s  t o g e t h e r ,  we see
A = B i 3 ( X i ) B 2 3 ( % 2 ) M i B 3 2 ( y ) B 2 3 ( x ) M a B 3 s ( - l ) M 3  (ML€GEs(R) )

» Bi3(Xi)B23(Xg)B31(yi)B32(yg)
"Big (xg )Bg3 (x^ )B g  1 (y^. )B3 2 ( y *  ) "M 

w here  ( y i , y a )  = (0 ,y )M 7 ^  ,  '

( y 3 , y * )  = ( 0 , - l ) M g i M [ i  and M = M^MgMa € G E g (R ). □

We may r e s t a t e  ( 6 . 3 )  a s :  E v e ry  A € G Eg(r ) (R  G E g -re d u c ib le )  

h as  a n  e x p re s s io n

A = n lBis(Xi.)Bai(Yt)l-M

w h ere  , Y i = (yu.yia) , * u * y u  « R
'  "  ^ and  M € GEa(R).

Now suppose m>k and

n iBiaCXi, )Bai(Yi,)J = A'L#]^

= Bi,(Xi)iB,i(Yi)Bi,(X,)B,i(Y,)Bi,(X,);B:i(Y,)
•S lBia(Xi)B,i(Yi);
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= Bia(Xi)n[Bi2(Xi)Bai(Y£)iM-Bai(Ya)nlBi3(Xi,)Bai(Yi)l -by

_  ■ *  ( 6 . 3 )
= " n ' { B i a ( X î ) B a i ( Y [ ) |  s u i t a b le  X^ ,Y i ' .X f  , Y f .

T h is  g iv e s  th e  in d u c t io n :  we can  d is c a r d  a l l  th e  r e l a t i o n s  

f o r  m > 4 , le a v in g  j u s t

Bai(Yi)Bi3(Xa)Bai(Y,)Bia(Xa) = S IBi»(X()Bai(y O  1
Which i n  effect i s  j u s t  ( 6 . 2 ) ( b )  with k  = 2 ,  m = 4  and = 1 .  

Thus we have proved:
Theorem  ( 6 . 4 ) . L e t  R be  G E g -r e d u c ib le .  Then  GEn(R) (a n y  n )  

has as  d e f in in g  r e l a t i o n s :

( a )  2 , 3 , 6 , 7
( b )  The r e l a t i o n s  o f  G Eg(R)

( c )  4
n l B i 3 ( X - , ) B a i ( Y i . ) i  = A 

w here  » A  = ( y i i ' Y l * ) ,  X l j ' f l J   ̂ R

and ( i )  Pe ( X f - . Y * )  = A € G Eg(R)

( i i )  P? (X j^""X* ) =

( i i i )  p .y (Y i....Y * )  = ( 0 , 0 )

( i v  ) Pe ( Y l •..•X4. ) = 1 . □

N o te  t h a t ,  s in c e  a G E g -re d u c ib le  r in g  i s  a lw a y s  a G E - r in g ,  

c o n d i t io n  ( i )  o f  ( 6 . 4 ) ( c )  i s  a consequence o f  ( i i ) , ( i i i ) ,  

and ( i v ) :  th e  fo r c e  o f  i t  i s  t h a t  f o r  eac h  s e t  o f  Xj, ,Y(, 

s a t i s f y in g  ( i i ) , ( i i i )  and ( i v )  we m ust p ic k  an  e x p re s s io n  

f o r  A i n  te rm s  o f  th e  g e n e ra to & s  o f  G E a ( R ) ,  and w r i t e  

down th e  c o rre s p o n d in g  r e l a t i o n  ( c ) .

We r e t u r n  now to  th e  g e n e r a l  c a s e , and p ro v e  some 

i d e n t i t i e s  f o r  th e  c o n t in u a n t  p o ly n o m ia ls .

Lemma ( 6 . 5 ) .

(®) P (^ 1 #^2 f ••••Xm )P(Xjj^,Xjjj«2 , ) P(x^,Xg,„,,Xm —  ̂)

( h )  p(XjL....Xm )p(X m -i..^ .X g  ) -p (x ^ ....X m _ i )p (x^ ....X g  ) = ( - O '"  ( m > 2 )

( c )  p ( x 2» - X m - i ) p ( X m - " X i ) - p ( X 3_ » X m ) p ( X m _ i » - X i )  =  ( - O ' "  ( m > 2) .
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Proof, (a) m=1 ; p(%i)po = PoP(xi)
na > 1 • p(xi*...Xm )p(X|jj —1 ••••Xi )
— P ( Xj, ••••Xflu _i ) X|n p ( X(j) —1 ....Xi ) + p ( Xi ...«Xni —2 ) P ( Xjn —i ••••Xi )
— p ( X i * « * « X r n - . i  ) X m p ( X | n — i » » » * X i  )  4* p ( X i . . . . X m — i  ) p ( X j n ^ 2 * » * * X i  )  b y

induction
— P ( X i  ••••Xm — 1 ) p ( X m  ••••Xi )
(b) m=2 ; p(Xi,Xg)Po - p(xi)p(xg) = l+x^Xg-x^Xg = 1
m=3 : p(xi,?a,Xa)p(xg) - p(x^,Xg)p(x3,Xg)
= (Xi+Xg+XiXaXgjXa - (1 H-X̂ Xg ) (1 ̂ XgXg ) = -1
ni > 3 • P(Xi••••Xm )p(Xm_i••••Xg ) — pCx^^^Xm—i)p(Xm^^Xg)
=  XiP( Xg*«^*Xm ) p ( X m — ^••••Xg ) +  P ( x 3 ^ ^ X m ) p ( X m _ i " " X g )

“  P  ( X g  ••••Xm — 1 )P  ( X m  ••••Xg ) “  p C X g M ^ X m — l ) p ( X m " " X g )
— p(x3.«».Xm )p(Xm— •̂•••Xg ) — PCXg^^Xm—i)p(Xm""Xg) by (a)
“ p(x^M"Xm)p(Xm_i""X3)Xg + p(x3^..*Xm3-P(Xm— )

— p(x3^.^^Xm_i )p(Xm»̂ ^̂ X3 )xg — pCXg•^••Xm— 1 )p(Xm••••X^ )
“ pCxĝ .̂̂ Xm )p(xm— •̂•••X̂ ) — p(xa••••Xm—i )p(Xm̂ ^̂ x̂̂  ) by (a)
= (-1 )n»“a by induction 
= (-1)"
(c) similarly. o
Now we have (using the notation of pp. 73-75; X^eM, Y^eN)

N 1Bi2 (X(̂  )Bgi (Yl ) 1 [P2m (Ym >Xm,•• X^ ) ]21

f P2 m (X̂ «***Ym ) P2 m—i(Xi""Xm) A
= I l ' L P 2 m ( Y m " " X i ) j 3

V P&m—i ( Y i " " Y m )  P2m—2 ( Y t — Xm) /

^ P 6m (X i""Y m ) P^m—i  (Xi**^*Xm )p2m (Ym^^^^Xi ) ^
V P2m—i(Yi""Ym) P31R- 2 (Yi—««Xm )p2m (Ym»**̂ Xi ) /
/ P2m ̂ ^l****Ym ) P2 m CX^••••Ym )p2m— 1 (Xm̂ ^̂ X̂j. ) | -̂ y
I P2m—1 (Yl••••Ym ) 1 + P2 m—1 (Yi»«»^Ym )Pgm—1 (Xm^^**Xi ) /

= [Pgm (Xî »*«Ym ) ]iBg 1 (pgm—i (Yi••••Ym ) )Bi^Pgm—1 (Xm̂ ^̂ «Xĵ  ) )
So we have  P2m (Xi••••Ym ) € U(r)  ̂ P2m(Ym̂ ^̂ 'Xi ) € U ( S ) .

Now any r e l a t i o n  o f  H was r e d u c ib le ,  b y  ( i ) - ( v )  (p ag e  73),
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to  th e  fo rm  n iB ia  ( x l  )B2i  (y t  ) J = [o t,^ ]  -  ( i v )

By ( i ) , ( i i )  [B ig (x i.  ) B g i ( y t  ) 1

= [ a , / 3 ] B g i ( - y m ) B i a ( - X m )
= [o c ]iB g i(-;3 y m )B i2 (-X m /S “ ^ )[ /3 ]a  b y  ( i i i )  , ( i v ) , ( v )

By  ( v ) , " ’n ^ l B i2( x t ) B g i ( y j .  ) } [ / 3 “ ^32 = [ a ] i B 2i ( - f y m ) B i2( ~ X m fr i )

From  ( v i ) ,  OC = p2m (̂ I****ym ) ® Psm—2 (̂ I*«**ym—i  ) ,  • P2m—1 ( ^ i * —^  )*^* 
By ( i ) , ( i i ) , ( v ) ,

n }B2i ( - y i ) B i 2 ( - X L ) j  =

So ^   ̂ = P2m )

— P 2m—2 ("ym— ) • P 2 m_i (“ m̂»***”^i ) — S
— P2m—2 ( Y m - )•

Thus i f  we w r i t e  E f o r  th e  subgroup o f  H g e n e ra te d  b y  a l l  

B i a ( x ) ,  B g i ( y )  (xeM,  y e N ) ,  we h av e  E <j H (b y  ( i i i ) , ( i v ) ) ,  

and H /E  has th e  p r e s e n ta t io n :

G e n e ra to rs :  [ a , / 3 ]  w here a  = o c 'p (x i....y m ) e U ( R ) ,  a ' e F

and /3 = /3 'p (y n ,....X i ) “  ̂ € U ( S ) ,  ^ / e G

R e la t io n s ;  [oci ,/3 i ] [og ,)9g ] =

[p (x i. . . .y n ,) ,p (y m — X i ) ~ ^ ]  = 1 w henever p (x -....y m )
€ U ( R ) .

Now c o n s id e r  th e  case  R = S = M = N ,  F = G = U ( R ) .

So H = G E g (R ), E = E g ( R ) , and we have p ro v e d  t h a t  f o r  any  

r in g  R , G E g (R )/E g (R ) has  th e  p r e s e n ta t io n :

G e n e ra to rs :  [ a ]  ( a e U ( R ) )

R e la t io n s :  [ a ] [ / 3 ]  = [a/3]

[p (x i . . . .y m ) ]  = [p (y m— % i ) ]  w henever p (x i.. . .y m )
€ U ( R ) .

Now n o te  t h a t  p ( l  ,x ^ -1  ,Xg ,....Xn  ) = p ( x i - 1 ,  X g ,....X n )
+ p (x g ....X n )

— (Xj^““1 )P (Xg ..«.Xp ) +P ( Xg ••••Xp ) +P (Xg ••••Xp )

= X ^ p (X g ....X p )+ p (x 3 ....X p )

“  p ( x ^ , Xg , ,„.Xp )

and  s i m i l a r l y  p ( x ^ , X a , . . . . x „ . ^ , x „ - 1 ,1 ) = p ( x j ^ , X a , — x „ )
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So ( m ^ 2 )  we d e f in e  Um(R) to  be th e  subgroup o f  U(R)  

g e n e ra te d  b y  a l l  e x p re s s io n s

Pm(Xi . . . .Xm)Pm(Xm— ( p( x i . . . . Xm)  € U ( R ) ) .  ^

We h av e  Um(R) c  U m + i ( R ) .  P u t  Wi ( R)  = 1 and Wg(R)  = U U ( ( R )
We have p ro v e d

Lemma ( 6 . 6 ) . F o r any R,  and n =  1 o r  2 ,

G E p (R ) /E n (R )  = U(R)/% Vp(R). □

Now use in d u c t io n :  suppose n > 2 ,  and we have  d e f in e d  Wp (R )
such t h a t  G E p (R )/E p (R ) = U ( R ) / W p ( R ) .  So we have a f u n c t io n  

^p : G Ep(R) U (R ) g iv e n  by  6p : G Ep(R) U (R )/W p (R )  

f o l lo w e d  b y  a c h o ic e  o f  c o s e t r e p r e s e n t a t iv e  i n  U ( R ) .

L e t  W p + i(R ) be th e  subgroup o f  U ( R)  g e n e ra te d  b y  Wp(R)  and  

a l l  e x p re s s io n s

p(Xi*...Ym) *̂ p(ym»»»»Xi ) ^
w here  X (,,  Yi a r e  r e s p e c t iv e ly  n x l , i x n  m a tr ic e s  o v e r  R , 

p(X i....Ym  ) € GEp(R) (m = 1 , 2 , 3 , . * * *  )
(a n d  hen ce p(Ym ....X i ) € U ( R ) ) .

Then  we have
Theorem  ( 6 . 7 ) . F o r  a l l  n, a l l  R,

G E p (R ) /E p (R )  S U (R ) /W p (R ) .  □

I f  R i s  c o m m u ta tiv e , Wp(R)  = 1 ,  a l l  n .

I f  R i s  u n iv e r s a l  f o r  GEp, Wp(R)  = U i ( R ) .

I f  R i s  q u a s i - u n iv e r s a l  f o r  GEp, Wp(R)  = U g ( R ) .

We r e c a l l  t h a t  i n  ( 4 . 1 9 )  we shewed t h a t  a c e r t a i n  

co m m u ta tive  r in g  was n o t  q u a s i - u n iv e r s a l  f o r  GEg. We w ou ld  

l i k e  to  f i n d  a n  exam ple o f  a r in g  w h ic h  i s  n o t  q u a s i-

u n iv e r s a l  f o r  GEp, f o r  a l l  n .  C le a r ly  i t  w o u ld  b e  s u f f i c i e n t

t o  f i n d  a r in g  R such t h a t  Ug(R)  c  Wg( R) ,  i . e .  such t h a t

f o r  some m > 2 ,  U g (R ) ^  Um (R), b u t  th e  p re s e n t  a u th o r  i s  

u n a b le  to  say w h e th e r  such a r in g  e x i s t s .
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