
Topology-Aware Vulnerability
Mitigation Worms

Defensive Worms

Ziyad S. AL-Salloum

Thesis submitted to the University of London

for the degree of Doctor of Philosophy

1

Standard logo

The logo should be reproduced in the primary colour,
Pantone 660c, on all publications printed in two or
more colours. Refer to the ‘Branded merchandize’
sheet for guidelines on use on promotional items etc.

The text, ‘University of London’, is set as a 50%
transparency of white.

Do not use a keyline see ‘Non standard backgrounds’
for exceptions.

The College name has been specially drawn; please
use the original digital artwork and do not try to
re-set.

xx

x

Clear area

No graphic or text should be placed in an area
around the logo equivalent to the width of the base
of the clocktower silhouette as shown.

≤ 30mm
Minimum size

The logo should be never be reproduced at less than 30mm in width. The
text, ‘University of London’, should be reproduced as 100% white ie. no
transparency

Printing on absorbent and unusual surfaces

The text, ‘University of London’, should be reproduced
as 100% white ie. no transparency. When it is printed on
absorbent paper ie newsprint, or any unusual surface ie metal
fabric or plastic.

Non standard backgrounds

A keyline should only be used if the logo is
placed on a background other than white or
the primary or secondary colours.
The width of the keyline is the width of the
letter ‘l’.

x

x

Royal Holloway logo guidelines

Reversed logo

A white logo may only be used on
Pantone 660 or black. Refer to the
‘Branded merchandize’ sheet for
guidelines on use on promotional items
etc.

‘Royal Holloway’ and the clocktower
silhouette should be reproduced in
the background colour. ‘University of
London’ prints 50% white.

2011

Topology-Aware Vulnerability
Mitigation Worms

Information Security Group
Royal Holloway, University of London

Dedication

. . . Indeed, my prayer, my rites of sacrifice, my living
and my dying are for Allah , Lord of the worlds.

–The Holy Quran [Al-Anam, Verse 162]

Declaration of Authorship

I, Ziyad S. AL-Salloum, hereby declare that this thesis and the work pre-
sented in it is entirely my own. Where I have consulted the work of others,
this is always clearly stated. This work has not been submitted for any other
degree or award in any other university or educational establishment.

Ziyad S. AL-Salloum

December, 2011

Do not go where the path may lead;
go instead where there is no path and
leave a trail.

Ralph Waldo Emerson [1803 – 1882]

Preface

Passion to research is like soul to body, it brings it to life and drives it. But it

is hard to be passionate about something that can not go beyond the paper it

has been written on. Researchers – I believe – have the noble duty of raising

the people’s quality of life by proposing solutions to their problems; dont

waste your time on something else.

Yet, some problems are hard to solve and the root cause, might be, that

we think within the box we live in. Breaking that box, might be necessary,

to bring new research paths up to the surface and help push the research

community a bit forward; indeed if no one thought differently in the past,

we would not enjoy what we have in the present.

Free yourself from anything you take for granted, release your imagina-

tion, and start changing. They will ignore you, laugh at you, then fight you,

but if you are patient enough you will get through.

Acknowledgments

I would like to thank God, the Most Gracious, the Most Merciful for ac-

complishing my doctoral studies. I would like to thank my family and my

government for sponsoring and supporting me.

I am also grateful to my supervisor, Dr. Stephen D. Wolthusen, for main-

taining high standards in supervision, academic knowledge, and attitude.

I have to admit that my attempts to find something he is not aware of in

the broad field of information security have failed. In addition, I would like

to thank my advisor Dr. Chez Ciechanowicz for his support, Dr. Michael

Meier for his valuable comments, and Dr. Allan Tomlinson for taking the

extra step in providing insightful views and comments on different parts of

my work.

I am also grateful to Viet Pham, Penying Rochanakul, and Saif Al-Kuwari,

for the nice comments they provided to enhance the readability of some in-

dividual chapters. I am also deeply grateful to all the lecturers, secretaries

and students in the math department for providing me with a healthy and

productive research environment during my Ph.D. studies.

I also like to acknowledge the campus security guards (especially night

shifts) for making researching after midnight peaceful and quiet. And I

will not forget to express my gratitude to all those I have met at RHUL

prayer room, indeed that humble room became a busy hub to meet different

students on campus year after year. Lastly, I would like to thank Eng. Sami

El-Taji for remembering me in his prayers and – the extraordinary kind –

Bitty (my neighbor) whom always cared.

iii

Abstract

In very dynamic Information and Communication Technology (ICT) infras-

tructures, with rapidly growing applications, malicious intrusions have be-

come very sophisticated, effective, and fast. Industries have suffered bil-

lions of US dollars losses due only to malicious worm outbreaks. Sev-

eral calls have been issued by governments and industries to the research

community to propose innovative solutions that would help prevent ma-

licious breaches, especially with enterprise networks becoming more com-

plex, large, and volatile.

In this thesis we approach self-replicating, self-propagating, and self-

contained network programs (i.e. worms) as vulnerability mitigation mech-

anisms to eliminate threats to networks. These programs provide distinctive

features, including: Short distance communication with network nodes, in-

termittent network node vulnerability probing, and network topology dis-

covery. Such features become necessary, especially for networks with fre-

quent node association and disassociation, dynamically connected links,

and where hosts concurrently run multiple operating systems.

We propose – to the best of our knowledge – the first computer worm

that utilize the second layer of the OSI model (Data Link Layer) as its main

propagation medium. We name our defensive worm Seawave, a controlled

interactive, self-replicating, self-propagating, and self-contained vulnerabil-

ity mitigation mechanism. We develop, experiment, and evaluate Seawave

under different simulation environments that mimic to a large extent enter-

prise networks. We also propose a threat analysis model to help identify

v

weaknesses, strengths, and threats within and towards our vulnerability

mitigation mechanism, followed by a mathematical propagation model to

observe Seawave’s performance under large scale enterprise networks. We

also preliminary propose another vulnerability mitigation worm that uti-

lizes the Link Layer Discovery Protocol (LLDP) for its propagation, along

with an evaluation of its performance.

In addition, we describe a preliminary taxonomy that rediscovers the re-

lationship between different types of self-replicating programs (i.e. viruses,

worms, and botnets) and redefines these programs based on their prop-

erties. The taxonomy provides a classification that can be easily applied

within the industry and the research community and paves the way for a

promising research direction that would consider the defensive side of self-

replicating programs.

vi

Contents

Abbreviations xi

1 Introduction 23

1.1 Motivation . 23

1.2 Summary of Contributions and Organization of the Thesis . . . 25

1.3 Publications . 27

2 Defensive Worms – An Overview 29

2.1 Introduction . 29

2.2 A Taxonomy of Viruses, Worms, and Botnets 34

2.3 Taxonomy in Practice . 41

2.4 General Attributes of Defensive Worms 42

2.5 Defensive Worms vs. Vulnerability Scanners 43

2.6 Defensive Worms – Different Views 44

2.7 Wormophobia . 47

3 Defensive Worms – Related Work 49

3.1 Overview . 49

3.2 Related Work . 49

3.3 Summary . 67

4 A Vulnerability Mitigation Worm – Seawave I 69

4.1 Overview . 69

4.2 Network Topology Model and Simulation Environment 69

4.3 Seawave I . 71

vii

CONTENTS

4.4 Propagation Algorithm . 73

4.5 Vulnerability Detection . 77

4.6 Randomly Scanning Worm . 78

4.7 Simulation Results . 79

4.8 Discussion . 80

4.9 Summary . 84

5 A Vulnerability Mitigation Worm – Seawave II 87

5.1 Overview . 87

5.2 Network Topology Model . 87

5.3 Seawave II . 89

5.4 Intermittently Active Hosts and Topology Changes 92

5.5 Design Components of Seawave 93

5.6 Risks and Threats . 94

5.7 Simulation Results . 95

5.8 Discussion . 98

5.9 Summary . 101

6 An LLDP Based Vulnerability Mitigation Worm 103

6.1 Overview . 103

6.2 Introduction . 103

6.3 Network Topology Model . 104

6.4 LLDP Based Vulnerability Mitigation Worm 105

6.5 LLDP Based Vulnerability Mitigation Defensive Worm Imple-

mentation . 107

6.6 Vulnerability Discovery Mechanism Design Components . . . 110

6.7 Risks and Threats . 111

6.8 Simulation Results . 112

6.9 Discussion . 114

6.10 Summary . 116

viii

CONTENTS

7 Security and Performance Aspects of Seawave 119

7.1 Overview . 119

7.2 Network Topology Model and Simulation Environment 119

7.3 Protective Measures for Seawave 120

7.4 Switching Seawave Off . 122

7.5 Simulation Results . 123

7.6 Seawave Packets . 125

7.7 Discussion . 126

7.8 Summary . 129

8 Threat Analysis Model of Seawave Using Bayesian Belief Net-

works 131

8.1 Overview . 131

8.2 Introduction . 131

8.3 Related Work . 133

8.4 Threat Model Components . 134

8.5 Mechanism’s Threat based Bayesian Networks 135

8.6 Multiple Adversaries Bayesian Belief Threat Network 139

8.7 Threat BBN Conditional Probabilities 139

8.8 Multiple Adversaries BBN Conditional Table 143

8.9 Attack Scenarios . 143

8.10 Seawave’s Threat Model . 147

8.11 Summary . 155

9 Seawave – A Mathematical Propagation Model 157

9.1 Overview . 157

9.2 Introduction . 157

9.3 Related Work . 158

9.4 Epidemic Model Introduction 159

9.5 Seawave Propagation Model . 161

9.6 Simulation Results . 171

ix

CONTENTS

9.7 Discussion . 173

9.8 Summary . 177

10 Summary and Conclusions 179

10.1 Summary . 179

10.2 Directions for future work . 180

10.3 Conclusion . 182

A Further Results 185

A.1 Attack Scenarios Probabilities 185

A.2 Multiple Attack Scenario Probability 195

Bibliography 197

x

Abbreviations

ARP Address Resolution Protocol

BBN Bayesian Belief Network

BPDU Bridge Protocol Data Unit

CAM Content Addressable Memory

DoS Denial of Service

IP Internet Protocol

LAN Local Area Network

LLDP Link Layer Discovery Protocol

LSD Link State Database

MAC Message Authentication Code

Mbps Mega bits per second

MIB Management Information Base

OSI Open Systems Interconnection

OSPF Open Shortest Path First

RARP Reverse Address Resolution Protocol

SNMP Simple Network Management Protocol

STP Spanning Tree Protocol

xi

Chapter 1

Introduction

1.1 Motivation

In the world of Information and Communication Technologies (ICTs), net-

work applications are evolving rapidly and so are their threats. Malicious

worms and botnets have been identified as one of the most significant threats

facing the industry; indeed their outbreaks have cost the industry billions

of US dollars. Furthermore, it has been observed that the majority of ma-

licious worm outbreaks have utilized a publicly known vulnerability with

a vendor level patch already available. If security administrators were able

to identify and reach each vulnerable node in a rapid manner and mitigate

the vulnerability, then many malicious attacks would have been prevented.

Therefore, calls have been raised by industries and governments to search

for innovative solutions to respond to malicious worms attacks. For ex-

ample the chief of U.S. Department of Homeland Security have indicated

that ”The key thing we learnt from Stuxnet was the need for rapid response

across the private sector.” She also noted that recent malicious attacks have

reached a high level of sophistication and novelty [61].

Different difficulties prevent security administrators from providing im-

mediate treatment to each single vulnerable node in the enterprise network.

However – in general – these obstacles raise from the lack of ability to in-

stantly interact with each network device, due to some reasons, including:

• Dynamic nature of Internetworking. Enterprise networks are becom-

ing larger, complex, and volatile by nature. Where it is common for

23

1. INTRODUCTION

subnets to emerge and disappear bound to business, technical, or ad-

ministrative demands, in an environment where network nodes asso-

ciate and disassociate dynamically. This makes it difficult for network

administrators to draw a detailed picture of their network to better

manage its risks and vulnerabilities.

• Transient Connectivity. In real world networks, links are not always

active. Connectivity is transient, based on how network links are im-

plemented or due to unforeseen failures making it difficult to deter-

mine current active network paths.

• Use of Virtual Machines that are Connected Intermittently. Many

nodes host multiple operating systems at different times (or at the

same time); which makes it difficult to determine which OS is currently

running for effective assessment.

• Lack of Resources. Traditional vulnerability assessment techniques

for large-scale networks require more resources and are not cost effec-

tive, which leaves many organizations (especially non-profit ones) fall

short in obtaining the required resources to provide efficient protective

measures to their networks.

The industry – up until now – has failed to provide efficient, reliable,

and rapid vulnerability mitigation mechanisms that give an instant, accu-

rate, and detailed vulnerability map of the enterprise network. Such a map

would provide the means for the security team to take action and inter-

act with target nodes to overcome potential threats promptly. We believe

that controlled, self-replicating, self-propagating, and self-contained net-

work programs (or defensive worms) can provide such functionality; since

– in some of its applications – defensive worms are not meant to be an ex-

ternal short term solution installed in the network to overcome an uncom-

mon problem, but rather an immune system, running within the network

24

1.2 SUMMARY OF CONTRIBUTIONS AND ORGANIZATION OF THE THESIS

providing constant monitoring and continues protection. However, many

challenges face the consideration of worms as commercial solutions in the

ICT industry. To the best of our knowledge there is no solution in the indus-

try that adopts this technology, and in this thesis we try to overcome these

obstacles, by trying to answer the following research questions:

• Does utilizing the features of self-replicating, self-propagating, and

self-contained network programs (worms) provide rapid and effective

vulnerability mitigation coverage?

• Does utilizing topology information and communication between agents

aid in controlling the propagation of self-replicating, self-propagating,

and self-contained vulnerability mitigation network programs?

1.2 Summary of Contributions and Organization of the

Thesis

Our main contributions to the body of knowledge in the field of self-replicating,

self-propagating, and self-contained network programs (worms), include:

• We revisit self-replicating programs (viruses, worms, and botnets) def-

initions and propose new ones to include the defensive prospective.

We also propose design guidelines for defensive worms.

• We propose a novel controlled, topology-aware, interactive, self-replicating,

self-propagating, and self-contained network vulnerability mitigation

system (or vulnerability mitigation worm), that utilizes CAM and STP

information to propagate. To the best of our knowledge the system is

the first computer worm that uses layer two of the OSI model as its

main propagation medium.

25

1. INTRODUCTION

• Based on STP, CAM, ARP, and OSPF, we further enhance and improve

our defensive worm by adding edge node failure recovery, network

backbone traversal, and intermittent node detection and recovery.

• We propose another simple but novel vulnerability mitigation worm

that propagates with only knowledge of immediate network neigh-

borhood as can be obtained from passive observations of the LLDP

protocol.

• We observe and evaluate Seawave’s performance in response to a ma-

licious random scanning worm outbreak. We also discuss mechanisms

to protect Seawave against subversion and ensure the confidentiality

and integrity of its communications.

• We propose a threat analysis model based on Bayesian Belief Networks

to analyze and quantify threats towards our vulnerability mitigation

mechanism.

• We propose and analyze an analytical propagation model of our de-

fensive worm, to observe its performance in large-scale enterprise net-

works.

We hope our contributions joined by other’s work in that not yet well-

founded field of study, would help in building a foundation that paves the

way for this topic to become well researched in academia.

In the remaining of the thesis, we give in Chapter 2 an overview of defen-

sive worms where we redefine viruses, worms, and botnets, based on their

attributes and free from any prejudgments. Then, we further discuss de-

fensive worms by highlighting related work that covered the use of worms

for beneficial purposes in Chapter 3. We then introduce our vulnerability

mitigation worm (Seawave) in Chapter 4 and further improve it in Chap-

ter 5, followed by another vulnerability mitigation worm based on LLDP

in Chapter 6; before releasing Seawave to overcome a malicious random

26

1.3 PUBLICATIONS

scanning worm in Chapter 7. We then propose a threat analysis model to

assess the risks towards Seawave in Chapter 8, followed by a mathematical

propagation model to evaluate Seawave in large-scale enterprise networks

in Chapter 9. Our summary, conclusions, and future work then follows in

Chapter 10.

1.3 Publications

The material of this thesis contains previously published papers, all with

my academic supervisor Dr. Stephen D. Wolthusen, as follows:

• Chapter 4 [4]

• Chapter 5 [5]

• Chapter 6 [3]

• Chapter 7 [6]

• Chapter 8 [8]

• Chapter 9 [7]

27

Chapter 2

Defensive Worms – An Overview

2.1 Introduction

Several network interruptions, over the past few years, have been observed

as the result of malicious worms. Businesses that rely heavily on the In-

ternet have suffered serious financial losses, due to continuing Internet at-

tacks [22]. For example, malicious worms such as SQL Slammer, Code-Red,

and Conficker have cost the industry 1.2, 2.6, and 9.1 Billion of US dollars,

respectively [54, 66, 84]. The evolvement of botnets as a major source of

cybercrime (an industry worth more than 10 Billion of US dollars [34]) has

also added to the challenges; owing to the difficulty of allocating and dis-

infecting malicious bots [9, 62]. These have led the ICT industry to take

information security more seriously and start addressing innovative solu-

tions to help evade current network threats, especially with attacks becom-

ing more sophisticated, well targeted, and increasing in volume [60, 34] –

about one third of European Internet users reported a security incident in

2010 [36]. However, this is not a straightforward task, as in today’s net-

works the task of monitoring and managing assets has become more chal-

lenging; especially within more complex, large, and volatile enterprise net-

works. The challenges further increase when devices associate and disas-

sociate frequently, along with links connecting dynamically in a network

where hosts occasionally run multiple operating systems, leaving security

administrators in an often unpredictable environment.

It is worth noticing that most malicious worm hits have utilized vulner-

abilities that are publicly known, which indicates that the time-window be-

29

2. DEFENSIVE WORMS – AN OVERVIEW

tween the announcement of a vulnerability and its exploitation is too short

for effective patch deployment. Table 2.1 shows the interval between vul-

nerability announcement and worm appearance.

Name Vulnerability Announcement Worm Observed Interval– Days
Code Red 26 June, 2001 12 July, 2001 16
Slapper 30 July, 2002 14 Sept. 2002 45

SQL Slammer 24 July, 2002 25 January, 2003 185
Blaster 16 July, 2003 11 August, 2003 26
Zotob 9 August, 2005 16 August, 2005 7

Conficker.A 23 October, 2008 21 Nov. 2008 29
Conficker.B // 29 Dec. 2008 67

Conficker.B++ // 20 Feb 2009 120
Conficker.E // 7 April 2009 168

Stuxnet // (MS08-067) 17 June 2010 602

Table 2.1: The number of days between the announcement of a wormable vulnera-
bility (with a patch) and the worm appearance [11, 66, 63, 23, 71, 70] – Stuxnet has
used different vulnerabilities to propagate.

As it appears from table 2.1 worms such as Code Red, Blaster, and Con-

ficker.A took 16, 26, and 29 days respectively after vulnerability announce-

ment to breakout – not giving enough time for system administrators to

deploy patches. Perhaps, the delay in distributing updates might be ex-

plained by the quality of security-related configurations, but the question

of how efficient current mitigation mechanisms are in providing sound pro-

tection to enterprise networks remains. The ability to mitigate these vul-

nerabilities prior to worm outbreaks would save the industry billions of US

dollars. Yet – in the real world – effective, quick, and orderly patching that

ensures network systems are always up-to-date with the latest patches, is

hard to obtain. As in addition to the challenges addressed perviously, sys-

tem administrators need to test and examine patches before installing them

– to avoid inconsistency and service disruption – which delays patch de-

ployment. The time it takes for patch examination depends mostly on the

magnitude of the patches to be installed – sometimes organizations become

overwhelmed with the amount of patches they test [18]. Furthermore, usu-

30

2.1 INTRODUCTION

ally installing patches involves rebooting the system, leaving servers where

the service uptime is crucial vulnerable, until system administrators find a

way to tolerate service disruption [106]. Therefore, there exists a need for

vulnerability mitigation mechanisms that can tackle these problems and can

at least fill the gap between wormable vulnerability discovery and malicious

worm outbreaks.

HP Labs borrowed some worm techniques to distribute fixes within their

network; it helped them avoid the hit of the malicious worm Blaster, saving

them a large financial loss. ”Our countermeasure code took a very similar

approach to the actual Blaster worm,” said HP; however the payload trans-

ferred via TFTP to the infected machine was a ”remediation code.” There-

fore, before the outbreak of Blaster, ”HP had patched or disabled a huge

number of their [vulnerable] machines” [16]. However, HP chose not to use

worm propagation but rather distributed scanners or exploiters in a way

that mostly mimics worm’s behaviors. The company avoided using an ac-

tual worm as a precaution due to managerial fears that the worm might get

out of control, thus adding significant overhead and complexity to the im-

plementation of such an approach, as well as exposing the network to the

limitations of scanners1. Meanwhile, HP managed to circumvent the delay

usually associated with patch deployment by distributing temporary reme-

diations, where a formal patch is yet to be installed – when time permits.

They have also avoided violating the privacy law by exploiting their own

systems.

Defensive worms can be used to fill the gap between vulnerability expo-

sure and patching, in the same way as HP did. However, worms are hard to

monitor and control, and usually generate high amount of traffic that might

cause denial of service attacks and lead to network congestion – SQL Slam-

mer, for example, has consumed very high bandwidth that blocked Internet

access in South Korea [89]. But these problems are not insoluble; research in

1Scanners limitations are covered later in this chapter.

31

2. DEFENSIVE WORMS – AN OVERVIEW

this field can always improve our understanding of worms and give us the

ability to utilize them to further protect enterprise networks.

Vulnerability

Announcement

Risk

Assessment

Deploy Defensive

Worm

Low

Temporary

Vulnerability

Remediation

High (Wormable)

CERT

Patch Management

Proactive Defensive

Worm Process

Vulnerabilities Monitoring

Adversaries

Figure 2.1: Proactive defensive worm incident response procedure.

For more effective vulnerability mitigation procedures, the ability to know

which vulnerability is wormable (i.e. has the potential to be utilized by a

worm) and how to temporarily remediate it becomes necessary – models

to evaluate how wormable is a vulnerability exist [73] as well as short-time

remediation techniques [106]. For example, a nonprofit international orga-

nization for vulnerability assessment can be formed to address these issues

and alert security administrators to take precautionary measures; and upon

32

2.1 INTRODUCTION

alert a defensive worm can be released to mitigate that vulnerability, be-

fore a malicious worm or an intruder exploit it. Based on HP’s threat man-

agement procedure [16], Fig. 2.1 shows a possible process of a wormable

vulnerability incident response.

Unfortunately, it can be noticed that the dominating opinion and the ini-

tial impression usually associated with worms have always been linked to

malicious intent [12]. Indeed, the observed malicious worm attacks in recent

years and the lack of comprehensive research on the beneficial side of these

network programs have contributed to that negative view. However, if we

released ourselves from any prejudgments regarding worms and tried to

view them as an information distribution technique that may provide some

distinctive features, that include [2]:

• Short distance communication with target nodes. Which speeds up

interactions, decreases the probability of link and host-to-host com-

munication failures, and keeps the bandwidth generated between the

worm and its target away from main network links.

• Intermittent node vulnerability detection. Enables the discovery of

offline hosts and portable devices (i.e. laptops, smart phones) once

they have been associated with the network.

• Network topology discovery2. Assesses in the discovery of undocu-

mented nodes, subnets, and other network devices that network ad-

ministrators might not be aware off.

• Intelligent Network Propagation. Enables the traversal of the net-

work according to security administrators preferences or task require-

ments.

2This feature becomes useful in detecting malicious botnets.

33

2. DEFENSIVE WORMS – AN OVERVIEW

• No single point of failure. The collection of agents form the scope of

the worm and the failure of an agent has minimum impact on the total

scope of work.

• Workload distribution. The impact of the workload is split between

the nodes within the scope of work.

Perhaps, then, we may be able to form a more comprehensive opinion on

this controversial topic of research.

2.2 A Taxonomy of Viruses, Worms, and Botnets

In general, to be able to consider the beneficial side of self-replicating pro-

grams and to easily classify them, it is necessary to observe this family of

programs from a different perspective and revisit their definitions to pave

the way for a research direction that would consider the defensive side of

self-replicating programs. When we observe self-replicating code based on

its properties, we might be able to obtain a less biased view of its nature. In

this section we revisit the common negative conception usually associated

with viruses, worms and botnets3 and observe how these programs relate

to each other providing a classification that can be easily applied within in-

dustry and the research community.

2.2.1 Malicious or Non-Malicious

Before we classify self-replicating programs we have to identify a common

ground without compromise, where it is possible to single out a program

as malicious or not. The term malicious is perceptional – one man’s misery

is another man’s joy. For example, Stuxnet has hit some nuclear facilities,

which might make it non-malicious (or beneficial) from the perspective of

those who oppose nuclear power, but at the same time malicious in the eyes

3Although we briefly cover and define viruses, the work through the thesis is based on worms.

34

2.2 A TAXONOMY OF VIRUSES, WORMS, AND BOTNETS

of those who support it. This ambiguity usually leads to frequent debates

in the industry or the research community. Therefore, it seems that law is a

reasonable referee to distinguish malicious acts to non-malicious ones. We

therefore leave the distinction between malicious and non-malicious self-

replicating programs – through this taxonomy – to the jurisdiction.

2.2.2 Viruses

Like worms viruses have always been portrayed as harmful and destruc-

tive, which has – in one way or another – impacted the way that they are

defined and proposed. Two definitions, for instance, include:

We define a computer ”virus” as a self-replicating program

that can ”infect” other programs by modifying them or their en-

vironment such that a call to an ”infected” program implies a call

to a possibly evolved, and in most cases, functionally similar copy

of the ”virus” [85].

A computer virus is a set of program instructions that attaches

itself to a file, reproduces itself, and spreads to other files[77].

As it appears from the first definition it uses the word infect (inferring de-

struction) which is a prejudgment, while the other considers attachment to

other programs behavior as a virus property. However, that might not be

the case, since the virus attaches itself to other programs as a hiding tech-

nique – assuming a malicious intent – and not necessary a virus attribute.

Even definitions that emphasize that a virus must be triggered by users [33]

(human intervention) for execution, are not specific, since that is the case

with most programs, not only viruses – even a worm in its first execution

instance is triggered by a user. Therefore, a more accurate definition of a

virus, would be:

Definition 2.1

A virus is a program that copies itself [90].

35

2. DEFENSIVE WORMS – AN OVERVIEW

Thus any self-replicating program is a virus; regardless of weather it at-

taches itself to files, or any other actions.

2.2.2.1 Malicious Viruses

With no regard to intention, when a virus behaves in a way that violates a

law issued by a legislative body, it can be considered malicious. Based on

Def. 2.1 and Section 2.2.1, we therefore define a malicious virus as:

Definition 2.2

A malicious virus is a self-replicating program that – when released – breaches the

laws issued by a legislative body.

Thus a virus that attaches itself to programs without user consent, exhaust

computing resources, or any other harmful tasks that would lead to convic-

tion before the court, would be considered as a malicious virus.

2.2.2.2 Benevolent Viruses

Bontchev discussed benevolent viruses in [14] and demonstrated the pos-

sibility of designing such programs. Although the author provided design

guidelines, he did not give an explicit definition that would otherwise help

identify benevolent viruses. Based on Def. 2.1 and Section 2.2.1 we therefore

define benevolent viruses as:

Definition 2.3

A benevolent virus is a controlled self-replicating program that – when released –

does not violate the laws issued by a legislative body.

Controlling virus propagation is essential, since it ensures that these self-

replicating programs do not perform beyond authorized borders.

2.2.3 Computer Worms

Worms are a subclass of viruses (i.e. advanced viruses), that inherit the

self-replicating property. Describing worms has been heavily debated and

36

2.2 A TAXONOMY OF VIRUSES, WORMS, AND BOTNETS

different definitions have been proposed in the literature [108]; however,

in general they go around two main properties [104]: Self-replication and

self-propagation using different communication mediums. Some of these

definitions include:

A worm is an independent program which, when run on a

computer, will attempt to infect other computer systems [...] In

this case the host program is the operating system of the com-

puter, and the infected code is a stand-alone process or thread of

execution running under the operating system [29].

[a computer worm is] an independently replicating and au-

tonomous infection agent capable of seeking out new host sys-

tems and infecting them via the network. [71]

A computer worm is a program that self propagates across a

network exploiting security or policy flaws in widely used ser-

vices. [107]

Yet there is a more formal definition of computer worms, that can be found

in R. T. Morris appeal (in 1991) which highlights the incident of releasing

what has been known as the Morris worm (released 1988) [91]. The court

defined a computer worm as:

In the colorful argot of computers, a worm is a program that

travels from one computer to another but does not attach itself to

the operating system of the computer it infects. [47]

but as Nazario mentioned, this definition does not cover some worms that

attach themselves to the operating system in order to hide their existence

by using root kits or any other techniques [71]. Furthermore, the court def-

inition along with some other definitions uses the word infect to describe

the activity of injecting the worm’s payload into the system – inferring a

37

2. DEFENSIVE WORMS – AN OVERVIEW

malicious intent – which make these phrases more appropriate to define

malicious worms rather than worms in general. Following the existence of

the area of defensive worms, using these words may no longer be adequate

in worm definitions, since the injected payload might be for beneficial or

non explicit malicious purposes (such as vaccination). Therefore, for the

purpose of this thesis, a computer worm is defined as:

Definition 2.4

A computer worm is a self-replicating, self-propagating, and self-contained pro-

gram that uses networking mechanisms to spread itself [81].

2.2.3.1 Malicious Computer Worms

Malicious worms – when released – breaches the laws issued by a legislative

body. Even if these types of worms were released for good intentions, did

not damage vulnerable systems or their networks; violating users privacy is

enough to make these programs fall into the malicious category. Based on

Def. 2.4 and Section 2.2.1 we define Malicious worms as:

Definition 2.5

A malicious computer worm is a self-replicating, self-propagating, and self-contained

network program that – when released – breaches the laws issued by a legislative

body.

Often malicious worms carry either a malicious payload or a payload

without an explicit destructive intention in it, such as Slammer [63]. How-

ever, in general, such worms would not inject a beneficial payload into their

targets. Damaging a network has been a common characteristic of malicious

worms. Furthermore, malicious worms often propagate virally; as soon as

they outbreak it is hard to stop or eliminate them. The faster and more viral

the worm propagation is, the greater the impact and damage to the network.

Examples of malicious worms include: Morris [91], Witty [65], Code red II

[66], Blaster [11], and SQL Slammer [63].

38

2.2 A TAXONOMY OF VIRUSES, WORMS, AND BOTNETS

2.2.3.2 Defensive Computer Worms

The research literature of defensive worms can not be described as mature.

Researchers refer to these types of worms using different terms, including:

Beneficial worms, benign worms, good worms, benevolent worms, anti-worms,

epidemic-style information dissemination, white worms, killer-worms, nematodes,

helpful worms, good will mobile code, friendly worms, civilian worms, predators,

counter-worms, or defensive worms. Despite the term used, researchers agree

that the main purpose of these worms is beneficial to the network. David

Aitel defines a defensive worm as:

A controlled worm that can be used for beneficial purposes

[2].

It is worth mentioning that some researchers did not require a defensive

worm to be controlled, yet it should have a beneficial payload [18]. How-

ever, previous implementations of worms with a beneficial use proved that

uncontrolled (or viral) propagation might cause unexpected damage to the

network. To avoid viral propagation, a main feature of defensive worms is

the ability to control the way they propagate. Controlling worms, unfor-

tunately, is a vague area in information security with little literature pub-

lished except some techniques such as a query and response mechanism,

something similar to DNS, which gives a green light for a defensive worm

to target [2] or setting a time to live (or age) for the defensive worm. Other

approaches might be utilizing topology information such as the Link Layer

Discovery Protocol (LLDP), Content Addressable Memory (CAM) table, or

Spanning Tree Protocol (STP) to define the path where these worms should

travel [3, 4]. Based on Def. 2.4 and Section 2.2.1 we define defensive worms

as:

Definition 2.6

A defensive computer worm is a controlled self-replicating, self-propagating, and

self-contained network program that – when released – does not violate the laws

39

2. DEFENSIVE WORMS – AN OVERVIEW

issued by a legislative body.

From this definition, the worm can also be used for non security purposes,

such as network topology mapping, traffic analysis, allocating undocumented

nodes, and many other administrative tasks. However, in this thesis we con-

sider the vulnerability mitigation side of this approach.

2.2.4 Botnets

Botnets are an extension of the worm class (i.e. advanced worms) where

agents can interact with each other. In other words botnets inherit the prop-

erties of worms and add an interaction property. In the context of self-

replicating code, we define botnets as:

Definition 2.7

A botnet is an interactive self-replicating, self-propagating, and self-contained net-

work program.

Based on this definition when worm agents (or bots) have the capability to

interact with each other, such a worm can also be described as a botnet. This

description becomes necessary to avoid uncertainty and ambiguity when

discussing worms and botnets. For example Conficker can be described

either as a worm or to be more precise as a botnet (advanced worm), both

descriptions can explain the program.

2.2.4.1 Malicious Botnets

As with malicious worms and viruses we define in a similar way a malicious

botnet as:

Definition 2.8

A malicious botnet is an interactive self-replicating, self-propagating, and self-

contained network program that – when released – breach the laws issued by a

legislative body.

40

2.3 TAXONOMY IN PRACTICE

Examples of malicious botnets include: Storm [82], Conficker [23], and Stuxnet

[70].

2.2.4.2 Defensive Botnets

As in defensive viruses and worms, defensive advanced worms (or botnets)

should be controlled. We define defensive botnets as:

Definition 2.9

A controlled, interactive, self-replicating, self-propagating, and self-contained net-

work program that – when released – does not violate the laws issued by a legislative

body.

Virus
Self-Replicating

Advanced Virus ß Worm
Self-Replicating and Self-Propagating

Advanced Worm ß Botnet
Interactive, Self-Replicating, and Self-Propagating

Figure 2.2: Self-replicating Programs Classification.

2.3 Taxonomy in Practice

Based on this classification, viruses act as a superclass in which its attributes

are inherited by worms [97], likewise botnets evolve to become a subclass of

worms, see Fig. 2.2 for an illustration. This hierarchal view reflects the rela-

tionship between self-replicating programs and is a more constructive way

to approach viruses, worms, and botnets. Which would help clear the con-

fusion that sometimes takes place when researchers comment on incidents

41

2. DEFENSIVE WORMS – AN OVERVIEW

that involve self-replicating programs. It will also pave the way for consid-

ering the beneficial side of these programs. Table 2.2 lists self-replicating

programs and classify them based on their properties.

+ Virus Advanced Virus ß Worm Advanced Worm ß Botnet
Program Name (Self-Replicating) (Self-Propagating) (Interactive)

Bolzano 4 6 6

Chiton 4 6 6

Perenast 4 6 6

Code Red I & II 4 4 6

SQL Slammer 4 4 6

Blaster 4 4 6

Slapper 4 4 4

Conficker 4 4 4

Stuxnet 4 4 4

Seawave 4 4 4

Table 2.2: Virus, Worm, or Botnet?

2.4 General Attributes of Defensive Worms

There is a subtle distinction between a malicious worm and a defensive one;

to avoid designing defensive worms that might engage in malicious activ-

ity, the industry needs some guidelines or a standard to ensure the quality

of these solutions. It is not the payload that differentiates defensive from

malicious, because worms with beneficial payload might still cause harm to

the network [17]. Welchia, for instance, has been used as a countermeasure

to the worm Blaster; it injected a beneficial payload, which downloaded

a remediation patch from a central server. The problem was that Welchia

overwhelmed the network with high bandwidth load, leading to high net-

work disturbance [18] and flagging the worm as malicious – more details

on Welchia is given later in Section 3.2. Also, while a beneficial payload dis-

tributed by a viral propagation technique is malicious, in the same way, a

controlled propagation mechanism along with a malicious payload is ma-

licious as well. Therefore, by combining the two factors, which are a non-

42

2.5 DEFENSIVE WORMS VS. VULNERABILITY SCANNERS

malicious payload along with a controlled propagation technique, we might

be able to see some difference between the two types of worms. Yet, that is

not enough, a worm which is controlled and carries non-malicious payload,

might still penetrate into unauthorized systems and thus should be treated

as malicious. Therefore – inspired by Bontchev [14] – some design aspects

can be considered before producing a defensive worm:

Payload The payload designed to be carried by the defensive worm should

not be engaged in any malicious activity and should not exhaust com-

puting resources.

Propagation The propagation of the defensive worm must be controlled

to ensure that it stays within the scope of work and does not exhaust

network resources.

Transparent The defensive worm should be easily recognized and perceived.

Uninstall The defensive worm should have the functionality to be com-

pletely removed or uninstalled.

Legal The defensive worm should not be designed to violate the laws is-

sued by a legislative body.

Considering all these aspects before releasing a worm, would aid in deploy-

ing productive defensive worms. Still, it is a controversial area of discus-

sion, arguments do exist between information security specialist regarding

defensive worms. However, in general, a defensive worm should produce

some degree of remediation and should not cause any harm to networks or

violate any policies that it should, otherwise, adhere to.

2.5 Defensive Worms vs. Vulnerability Scanners

Defensive worms outperform traditional vulnerability scanners at least in

three main aspects: Probing distance, ability to detect intermittent nodes

43

2. DEFENSIVE WORMS – AN OVERVIEW

and traversing the network regardless of network architecture. A shorter

communication distance between a vulnerable node and the probing server

is faster and less exposed to link failures compared to communicating to a

remote IP address. Defensive worms install agents along their propagation

path which hire each node to participate in the scanning activity and still

maintain high scanning coverage even when an agent fails (i.e. no single

point of failure). Scanners, however, scan different IP addresses remotely,

thus adding more distance and more time for the scanners to communi-

cate with their targets, and upon scanning server failure, the whole scope

of vulnerable nodes is exposed. Furthermore, defensive worms keep prob-

ing their targets for vulnerabilities and detect any newly joining nodes or

off-line nodes that become on-line. Yet, when vulnerability scanners con-

clude their assessment, newly joining or previously off-line nodes become

exposed. Also, the self-discovering nature of defensive worms gives them

the ability to spread around complex and large networks without high re-

gard to the network architecture. Yet, scanners are usually required to be

installed at each network segment for better performance [2].

2.6 Defensive Worms – Different Views

In this controversial topic, using worms for beneficial tasks often raise dif-

ferent views, some of which are hereby addressed.

2.6.1 Worms are not authorized to penetrate into their targets.

Worms can access network nodes using different techniques, not necessarily

penetration. A worm can request permission from a user to access the sys-

tem, use an assigned account, exploit a vulnerability, or other approaches.

Releasing a worm should be within authorized scope (such as an enterprise

network), should this not be the case, the worm becomes illegal as in any

other solution.

44

2.6 DEFENSIVE WORMS – DIFFERENT VIEWS

2.6.2 Worms exhaust network bandwidth and hard to control and target.

Exhausting network bandwidth might be a common criteria of malicious

worms, but is not a property of worms in general, and can be tackled by

proposing new propagation algorithms which ensures that the worm tra-

verses the network without disruption. It is the duty of the research com-

munity to design efficient controlling and targeting algorithms to further re-

duce the risks usually associated with self-replicating and self-propagating

mechanisms – things appear hard until we become more aware of them.

2.6.3 Defensive worms do not stop zero-day attacks.

Defensive Worms are a tool to be used by security experts to prevent ma-

licious attacks; tackling zero-day attacks is a design issue and depends on

how worms are deployed – i.e. a behavioral based solution could detect a

zero-day attack and releases a defensive worm to stop it.

2.6.4 Worms might leave a machine unstable and users might transfer

the worm to other networks using their portable computing

devices.

Like any solution, worms are tested before deployment to ensure they meet

project goals. Controls can be proposed to prevent worm dissemination out

of authorized scope, e.g. an agent does not propagate without a green light

from a central node.

2.6.5 The risk when something goes wrong during worm operation is

much higher than any other program.

This is a good reason to further research into worms and further understand

them to minimize their potential risks. Like an airplane it is too risky if

something goes wrong, but with comprehensive research, traveling now by

airplanes is one of the safest ways of commuting.

45

2. DEFENSIVE WORMS – AN OVERVIEW

2.6.6 When you add all necessary precautions, worms become so

complex, that a patch management system would be enough.

Worms are not a replacement for patch management systems, they are tools

that provide different features that can be utilized for different tasks. Worms

are naturally simple as their self-exploring nature and ability to learn ease

the need for detailed configurations.

2.6.7 Worms would propagate to non-enterprise nodes, such as plugged

visitors portable devices.

Visitor’s devices should not access enterprise networks without authoriza-

tion to ensure these devices do not host malicious code that might emigrate

to the network. During the authorization process, devises can be excluded

from the worm’s scope (i.e. by IP or MAC). In general, giving non-enterprise

devices full access to the network can not be considered a good practice. If

we assume that a visitor node accesses the network without authorization,

then since worms can access nodes using different techniques not neces-

sary by exploitation such as by using an assigned domain account, then an

access failure is expected when the defensive worm tries to access a visitor

device. Upon access failure, network device information and location can

be reported to the security team for action. These are design issues and is

left for the security team to configure the worm according to its assigned

mission.

2.6.8 There is no industrial need.

With current network threats, the industry and the government have gath-

ered their efforts and issued calls for innovative solutions to keep consumer’s

ICT infrastructures protected from emerging and developing threats [61,

34]. Also, developing products that satisfy current industrial requirements

is not a necessity for the research community; indeed very noticeable in-

46

2.7 WORMOPHOBIA

ventions – like airplanes, Global Positioning System, electronic computer,

or Internet – have not initially evolved based on – at the time – market de-

mands [41].

2.7 Wormophobia

Many researchers associate worms with malicious intent; indeed many ob-

served worm outbreaks have caused great damage to the industry. This

created a prejudgment that worms are always prejudicial to the network.

This led industries to fear the use of self-propagating and self-replicating

mechanisms as solutions to security or administrative problems. However,

this fear factor [2, 45] can be eliminated or reduced to a level that would

make defensive worms more acceptable commercially. Bellamy et al. inves-

tigated the reasons behind the fear of worms (Wormophobia) by conducting

a survey to derive people’s opinions and suggest steps to help escape from

this fear circle [12]. They have selected a group of students of mixed age,

level of education, and IT knowledge to ask them several questions with

visual aids; examples of which are shown in Fig. 2.3, 2.4, and 2.5.

Figure 2.3: ”Would you allow a worm to run on your system if it stated its purpose
and displayed contact information of who commissioned it?” [12]

47

2. DEFENSIVE WORMS – AN OVERVIEW

Figure 2.4: ”Would you allow a worm to run on your system if you had the ability
to disable it once it had entered your system?” [12]

Figure 2.5: ”Would you allow a worm to run on your system if the worm had third
party verification?” [12]

This study noticed that using visual aids, in addition to revealing more

information about the mission of the worm (transparency) would help raise

the level of acceptance towards defensive worms. The study also indicated

that using the term worm in commercial use would make the user suspi-

cious and uncomfortable and suggested using different terms to sell such

products to wider customers.

48

Chapter 3

Defensive Worms – Related Work

3.1 Overview

Following the overview of defensive worms in Chapter 2; in this chapter

we cover previous work that approached computer worms as a solution to

network problems or as a defensive mechanism. Since the topic of defen-

sive self-replicating and self-propagating network programs did not reach

a reasonable level of maturity, up until now, we therefore cover researchers

attempts from diverse resources.

3.2 Related Work

We divide this section into three subsections, with the first being an overview

of research that adopts the use of worms for beneficial purposes. The second

part highlights attempts carried out to release potential defensive worms;

and the last focuses on general worm propagation techniques.

3.2.1 Defensive Worms in Literature

In the first research that used the term worm; the self-replicating and self-

propagating network program was released for beneficial purposes. In 1979

Shoch and Hupp of Xerox Palo Alto Research Center deployed a worm that

offered distributed computation within a network. The worm searches for

idle machines and utilizes their free processor cycles to compute tasks; it

allocates its targets by incrementing local host numbers. The worm does

not exploit any vulnerabilities to gain access to an idle machine, but would

49

3. DEFENSIVE WORMS – RELATED WORK

rather request the machine to follow a certain procedure to transfer the

worm. However, one morning, the worm went out of control and resulted

in 100 machines malfunctioning. Fortunately, the authors included an emer-

gency exit – when things go wrong – that enabled them to stop the worm.

The control algorithm was later improved and another program was in-

cluded to monitor, log, and control the size of the worm, leading the worm

to run ”flawlessly.” Different applications were implemented including [87]:

• The Existential Worm: Used mainly to test the mechanism, doing noth-

ing on the machine, but it could display a simple message and had the

ability to self-destruct (or expire) after a randomly selected time.

• The Billboard Worm: Was used to display an image on the user’s screen;

the image is either included in the worm or is fetched from a central

server.

• The Alarm Clock Worm: Uses an independent user program to allocate

the worm and request a call to the user’s phone. Like a wake up call

calendar, the worm maintains a database of user’s requests. When the

time of the call is up, it connects to a terminal and calls the user.

• Multimachine Animation Using a Worm: A graphical engine that spans

several machines and is controlled by a master node. Machines work

in parallel on graphical frames before sending them back to the mas-

ter node upon request. This application might be the first documented

computer botnet – in the context of self-replication and self-propagating

network programs.

• A Diagnostic Worm for the Ethernet: The worms here perform diag-

nostic operations, that require communication among machines and

report results to the master node.

However, the experiment can be improved by utilizing topology infor-

mation to control the worm propagation and enhance bandwidth utiliza-

50

3.2 RELATED WORK

tion. It is not known how the proposed worms operate within large scale

networks and if they can be easily recognized and perceived by users and

network administrators. These worms also miss protective measures that

ensures the confidentiality and integrity of its communications.

In the same direction, Toyoizumi et al. proposed a propagation model

based on Lotka-Volterra (or predator prey) equations for a defensive worm

that counters a malicious one. The defensive worm propagates by tracing

the malicious one (e.g. by sniffing its traffic). When an infected node is

detected by the defensive worm it penetrates the infected machine using

the same attack vector as the malicious one and immunizes the system be-

fore propagating to a random number of randomly selected hosts, using

the same method as the original malicious worm. Simulations with differ-

ent scanning rates were performed on this model with their results being

evaluated [102]. However, it is not advisable to use random scanning tech-

niques, as it is hard to keep a worm using such propagation method op-

erating within limits, let alone the excessive bandwidth generation usually

associated with viral propagation techniques.

Wang et al. proposed a worm taxonomy to cover the aspect of worms

used for beneficial purposes. They introduced a definition of a defensive

worm which they have divided into two other worm types:

• SFworm: A defensive worm that penetrates into a susceptible machine

using the same technique as the malicious one. It patches the vulnera-

ble host to protect it from future infections.

• IFworm: A defensive worm that removes a malicious one and patches

the infected system to prevent any potential breaches. It enters the

infected machine using a backdoor installed by the malicious worm.

They have also proposed mathematical propagation models of these worms

and simulated and analyzed them under different scenarios to counter ma-

licious ones [104]. They used random scanning to locate targets and intro-

51

3. DEFENSIVE WORMS – RELATED WORK

duced a propagation technique that divides a scanning space into N sub-

spaces, where the worm self-replicate to each subspace and so on until the

worm kills itself when the scanning space becomes null. However, for more

practical relevance, their proposal can be strengthened by providing techni-

cal details on how the worm divide the scanning space. The authors also do

not highlight if the worm is authorized to penetrate into susceptible nodes,

or provide any protective measure that prevents the worm from being hi-

jacked by adversaries.

Similarly, Nicole et al. tried to measure the effectiveness of defensive

worms by proposing four defense measures to counter malicious worms.

These defensive types include:

• Simple patch. In this type, when a fixed number of nodes, scan (ran-

domly) a susceptible node, it becomes patched.

• Spreading patch worm. Though similar to the Simple patch technique,

this type of worm not only patches the susceptible node but also self-

replicates before it starts scanning. Unlike the Simple patch, the patch-

ing hosts here continuously grow.

• Nullifying defense worm. In this technique, when the counter-worm

scans an infected host it becomes suppressed, that is, the infection traf-

fic is no longer effective.

• Sniper worm. In this technique, the counter-worm in the host listens for

infection scans and upon detection it scans back the source of the in-

fection (assuming the source IP address is not spoofed) and suppresses

it.

Using discrete and continuos models, the authors evaluate these techniques

as an active defense mechanism against malicious Internet worms [74]. In

another work they also extended the Nullifying worm model to allow the

worm to penetrate the infectious node, remove the infection, and self-propagate.

52

3.2 RELATED WORK

They have also compared some of these active techniques against passive

measures, such as content filtering and address blacklisting [55]. However,

as stated previously, using random scanning is not advisable; controlling

the propagation of the worm either by utilizing topology information or

any other factor, might be necessary to prevent the defensive worm from

operating beyond limits or generating unnecessary bandwidth. Further en-

hancement would be providing protective controls to maintain the integrity

and confidentiality of the defensive worm, in addition to, clarifying how the

worm can be uninstalled from the network.

In addition, Castaneda et al. used defensive worms to counter malicious

ones upon their outbreak into the network. Their active mechanism trans-

forms a malicious worm into an anti-worm to provide immunization to in-

fected or susceptible nodes. Through simulations they have evaluated their

method against malicious worms such as CodeRed I, MSBlaster, and SQL

Slammer. Their framework encompasses three stages: Detection, Analy-

sis, and Generation. Upon detection the mechanism analyzes the malicious

worm to detect which application is vulnerable and observes the changes

occurred on the system before generating an anti-worm. The anti-wrom

uses the same attack vector, to counter the malicious one. To spread the

immunization payload, the mechanism uses four propagation approaches

[18]:

• Passive Anti-Worm. In this technique the anti-worm listens for mali-

cious scans and responds to the origin – disinfecting the source node.

• Active Scanning Anti-Worm. The anti-worm here uses random scanning

to allocate its targets.

• Active-Passive Hybrid Anti-Worm. In this technique the anti-worm starts

with random scanning before switching to passive propagation.

• IDS-based Anti-Worm. The anti-worm in this technique detects its tar-

53

3. DEFENSIVE WORMS – RELATED WORK

gets based on intrusion detection devices scattered around the Inter-

net. These devices capture suspected traffic and identify its source and

destination for immunization.

However, this method can be improved by adding controls to prevent

adversaries from abusing it, while making the defensive worm easily per-

ceived and observed in the network for any monitoring or troubleshooting

activity. The method also lacks a switching off technique or an uninstalling

procedure.

Peikari, also investigated the possibility of using defensive worms to

counter malicious ones. The author suggested different properties of an

effective defensive worm, including:

• Providing a lasting immunity against the targeted infection.

• Consuming less resources than the targeted malicious worm.

• Distributing easily within the network.

• Should adhere to quality control procedures and eliminate its side ef-

fects as much as possible.

• The cost of developing a defensive worm should not be expensive for

the organization and must reduce the potential damage caused by the

malicious worm.

Different real world – event driven – simulations were conducted to test

the defensive worm – using a nonhierarchical network topology. The sim-

ulations experienced a CodeRed outbreak and a defensive worm that uses

CodeRed’s propagation technique, however, to patch – rather than to infect

– susceptible nodes. The defensive worm assumes the properties mentioned

previously and is released before and after the malicious worm outbreaks,

where an evaluation under different scenarios is conducted [24]. However,

the legal aspect of defensive worms should always be highlighted and —

54

3.2 RELATED WORK

as noted earlier – adopting viral propagation techniques is too risky for the

network. It is also not clear how to switch the defensive worm off or what

protective measures are applied to ensure the integrity and the confidential-

ity of its communications.

For wireless sensor networks, Khayam et al. introduced and evaluated a

Topology-Aware Worm Propagation Model to help in defending malicious

worms and provide an effective vehicle to disseminate necessary informa-

tion to secure the network. They divide the sensor network into rectangular

segments (positions), where sensors (nodes) are uniformly distributed. A

node in each segment can – at minimum – communicate with nodes inside

the segment. For those nodes located at segment corners, the communi-

cation can expand to neighboring segments of up to r transmission me-

ters. Each infected node self propagates to β fraction of its neighbors. In

their model they have considered physical, MAC, network, and transport

layer parameters [51]. However, it is necessary to address the legal aspects

of releasing defensive worms in wireless networks and provide a method

to uninstall and completely remove the worm from the network – in case

worm deployment went out of plan.

Industry wise, Dave Aitel implemented a framework that can create a

defensive worm (or a Nematode) that propagates based on simple incre-

mental scanning. The automatically generating defensive worms frame-

work converts an exploit into a payload to be used by the worm. This is

probably the first attempt from industry to consider worms for beneficial

purposes. However, no further development or marketing attempts about

the framework have been observed [2].

Based on [102], Gupta et al. proposed three propagation models of de-

fensive worms as follows:

• Persistent predators; which adds a delay before the defensive worm

dies.

55

3. DEFENSIVE WORMS – RELATED WORK

• Immunizing predators; which access vulnerable systems disinfect and

install patches.

• Seeking predators; which has the ability to follow the propagation path

of the malicious worm.

They have run different simulations on a non-hierarchal fully connected net-

work testing their propagation techniques to counter malicious worms fol-

lowed by results analysis and evaluation. They have also addressed some

central patching drawbacks, such as the possibility of bottlenecks occurring

during patch distribution in large scale networks and the vulnerability of

denial of service attacks usually associated with server-centric approaches.

They also suggested few methods to access a user machine without exploita-

tion and indicated that based on their experiments, defensive worms can be

a promising alternative for centralized patching [35]. However, the pro-

posed worm propagates randomly making it hard to control and there is

no suggested controls to protect the defensive worm from malicious users.

Further improvement can also be making the worm easily perceived and

observed in the network for better monitoring and troubleshooting.

In the same direction, Wu et al. adopted the approach of containing a

malicious worm by releasing a defensive one; they have divided defensive

worms into three types [109]:

• Patching, which only installs a patch on vulnerable nodes.

• Predator, which removes the malicious worm from infected hosts (with

the ability to install a patch).

• Composition, which removes the malicious worm from infected nodes

and patch the vulnerable system.

The approach can be enhanced by using topology information to control

the way these worms propagate and adding protective measures to prevent

56

3.2 RELATED WORK

any misuse of the defensive worm. The approach also lacks a safe exit in

case things went wrong or a clear uninstalling procedure.

In another strategy, Liu et al. proposed an epidemic model of a defen-

sive worm that spreads within a directed graph such as there is no repeated

edges and the in degree of each node is one while the out degree of each

node is the same. In their Balanced Tree based Propagation strategy model,

the worm infects the node, then moves forward to its descendants before

deleting itself on the infectious node. Using Matlab they have run different

simulations of defensive vs. malicious random scanning worm followed

by a performance evaluation of their strategy [56]. However, for practical

relevance, the authors should provide technical details on how the worm

define its propagation path. Further improvements can be adding measures

to protect the worm’s line of communication from malicious abuse and pro-

viding a technique to remove or uninstall it, in addition to, addressing the

legal background behind releasing the worm.

Meanwhile, Tanachaiwiwat et. al studied the defensive worm vs mali-

cious worm technique and identified three types of worm interactions:

• One-Sided. One worm counters another worm in a way that mimics the

predator/prey technique.

• Two-Sided. Two worms try to finish each other. Predator against an-

other predator type of interaction.

• Indirect. Two worms exist in the same network without trying to over-

come each other.

They model these interactions and evaluate their performance through sim-

ulations taking into consideration two factors: Scan rate ratio and initial in-

fected host ratio [98]. They also extend their work by proposing a model of

an aggressive one-sided interaction considering network delay factors such

as packet size, latency, queuing algorithm, and bandwidth. They also pro-

57

3. DEFENSIVE WORMS – RELATED WORK

vide a metric to measure the damage caused to the network by the malicious

worm after the release of a defensive one, in addition to identifying some

factors that affect malicious worm containment procedure [99]. On the same

path as Castaneda et al. the same authors proposed a model of a defensive

worm encountering a malicious one (aggressive one-sided worm interac-

tions), however, under an encounter-based network which is a ”frequently-

disconnected wireless ad-hoc networks requiring close proximity of neigh-

bors.” In their work they concentrated on mobile node characteristics such

as cooperation between nodes, immunization, and intermitted node behav-

ior [100]. However, it is not clear in which legal ground the authors expect

the worms to be released and weather the worms are easily perceived and

observed in the network. The work can be further extended by considering

controlled worm propagation techniques and securing the mechanism from

possible adversaries misuse.

Based on the two-factor model [116] Zhou et al. put forward a mathemat-

ical propagation model of a passive worm and analyzed the possibility of

using passive worms for defensive purposes. They also identified the initial

value of passive worms, the scanning rate, the removal rate, and time de-

lays as factors that affect the performance of these worms [115]. Following

the classification of worms in [18] and the classification proposed in [109]

the authors further classify Hybrid defensive worms into three types:

• Patching-hybrid defensive worm: The defensive worm combines the

attributes of both a Patching and a passive defensive worms.

• Predator-hybrid defensive worm: The defensive worm combines the

attributes of both a Predator and Passive defensive worms.

• Compositive-hybrid defensive worm: The defensive worm combines

the attributes of both a Compositive and Passive defensive worms.

58

3.2 RELATED WORK

They derive models of each type taking into consideration time delays and

run simulations and evaluate their performances [114]. The work, however,

disregards the legal issues regarding releasing such defensive worms and

does not provide an uninstalling or removing method after worm deploy-

ment. The work can be further improved by considering controlled propa-

gation techniques and adding controls to ensure the defensive worm is not

utilized by malicious users.

Different theoretical epidemic-style probing strategies were proposed by

Vojnović et al. based on random probing. They identify the minimum num-

ber of probes required to reach targeted number of nodes, assuming the

distribution of susceptible nodes among the network is known. They used

a variable probing rate that changes based on time (dynamic strategy) or a

fixed probing rate (static strategy) in an attempt to recognize the most suit-

able performance to disseminate information using random probing. For

dissemination where host distribution is not known, each infected host ini-

tiates probing based on information received from the original infecting

node. In this strategy, the worm switches between local subnet probing

and global address space random probing, based on an observed number

of failed probing attempts (K-Fail). Another probing strategy picks a host

randomly from within a randomly selected subnet in a list stored in the

infectious host, or picks a host randomly from the entire address space (K-

CANDSET). They also evaluate the parameters that affects the performance

of their proposed strategies based on different Internet datasets [103]. How-

ever, the work does not provide technical details on how these propaga-

tion techniques can be implemented which is necessary for any practical

relevance. Also it is necessary to address the legal issues regarding self-

replicating propagation techniques and how these techniques can be pro-

tected from malicious abuse.

From a human rights perspective, Aycock tried to consider defensive

worms to measure to what extent Internet censorship is applied in China.

59

3. DEFENSIVE WORMS – RELATED WORK

He proposed ideas and techniques to be utilized by, what he named a human

rights worm [10]. No results about the worm performance has been reported.

Inspired by worm vaccinations, Wang et al. proposed a Susceptabe-

Exposed-Infected-Quarantined-Vaccinated (SEIQV) epidemic model that makes

use of vaccination and dynamic quarantine techniques to reduce the num-

ber of infected hosts and further contain the malicious worm. They have

also studied the impact of different parameters on their model, and run

simulations to evaluate its capabilities [105]. For further improvements, the

work can address the legal ground behind releasing the worm and provide

protective measures to keep the mechanism safe from adversaries.

Berbar et al. considered using beneficial worms to test distributed sys-

tems and verify the fault tolerance capabilities of such scattered software.

The worm closely monitors each entity of the distributed system then re-

ports error messages to a specific worm node for administrators to inspect

[13]. However, it is not clear if the worms are easily perceived and recog-

nized within the network and it is necessary to add an uninstalling func-

tionality in case these worms performed beyond expectations. Also work

can be further improved by addressing how the worm would perform in

large scale networks, in addition to, adding protective measure to keep the

worm operating away from malicious interference.

While, Yao et al. proposed a system that combines honeynets with anomaly

detectors to recognize and prevent malicious intrusions. Upon attack detec-

tion, each honeypot will release a peer to peer defensive worm to encounter

the malicious one. They have provided a P2P-based Benign Worm Model and

run simulations to assist and evaluate their work [111]. However, the legal

ground in which the defensive worm are released is not clear and protect-

ing worm communications is not highlighted to prevent adversaries from

hijacking the mechanism.

In the same direction, Toutonji et al., proposed a Passive Worm Dynamic

Quarantine (PWDQ) model, which describes a method to stop malicious

60

3.2 RELATED WORK

worms by recovering infected hosts either by dynamic quarantine or pas-

sive benign worms techniques [101]. However, the approach can be further

enhanced by providing a procedure to remove the defensive worm when re-

leased, highlighting the legal ground on which the worm can be deployed,

clarifying how the worm can b easily observed in the network, and securing

the mechanism’s communications to block any malicious interventions.

Yong, improved on a previous vaccination structure that uses worms to

counter malicious ones. His modified structure does not require the worm

to download the payload from a central server and instead adds a ”Decod-

ing code” and a ”Resuming and Execution exe” phases to avoid the require-

ment of central servers, download connections, and download code [112].

Further improvements might be adding an entity to the structure responsi-

ble to stop or remove the counter-attack worm, to provide a safe exit in case

the worm went out of control.

Moreover, Nie et al. viewed peer to peer defensive worms as an adequate

solution to prevent malicious P2P worms. When two peers exchange files

the node with a higher patch version transfer the security patch to the lower

patch version node. They have provided a model for their work and run

several simulations to evaluate and examine their approach [75]. However,

it is not clear how the mechanism would perform in large scale networks or

how it can be uninstalled or removed from the network.

Al-Salloum et al. introduced a defensive worm that utilizes informa-

tion within the Link Layer to reconstruct topology information discovered

through the Link Layer Discovery Protocol in order to detect neighboring vul-

nerable nodes and propagate gradually until total coverage of the enterprise

network is reached [3]. While in another work they proposed what seems

to be the first computer worm that utilizes layer two of the OSI model as its

main propagation medium. They introduced a defensive worm that utilizes

topology information such as Content-Addressable Memory (CAM) tables and

Spanning Tree Protocol (STP) stored in switches. In this approach, the vul-

61

3. DEFENSIVE WORMS – RELATED WORK

nerability mitigation mechanism propagates through traversing switches

whilst probing vulnerable hosts until the network is covered [4, 5].

3.2.2 Implemented Defensive Worms

Few attempts were taken to deploy potential defensive worms in real world

networks. Most worms were released to confront and eliminate other ma-

licious worms, however, these attempts were not successful as they have

violated different laws. These worms, include:

Welchia. The Blaster worm variant [46, 30], was released to counter the

spreading of Blaster. Welchia, exploited the same vulnerability at the same

TCP port as Blaster to propagate. The vulnerability has been addressed by

Microsoft Security Bulletin MS03-026 as a buffer overflow in Microsoft Re-

mote Procedural Call (RPC) service. Welchia, immunized a susceptible sys-

tem by exploiting the vulnerability and downloading the MS03-026 patch

then rebooting. However, the worm did not succeed in accomplishing its

goal and instead has caused more damage to the network. That is due to

two reasons: first, Welchia generated massive bandwidth by downloading

patches from the vendor server (windowsupdate.com); secondly, Blaster –

in addition to the traffic generated by Welchia – launched a denial of service

attack at windowsupdate.com. Furthermore, one variant of Welchia tried

to surpass the propagation speed of Blaster by increasing the propagating

threads to 300 (originally was 50) and the worm used an unrestricted ICMP

scanner with a short timeout, which made it become more unstable. Such

techniques to increase Welchia’s speed over Blaster have backfired by gen-

erating more network traffic [18, 104].

Different views have been expressed on Welchia, especially in regard to

its nature, weather it was good or bad? Even the intention behind releasing

the worm has been questioned, as it has been reported that some Welchia

variants have installed an unrestricted backdoor at their targets. Some other

views looked at Welchia as another malicious worm that tries to compete

62

3.2 RELATED WORK

with the Blaster worm [18]. Based on our definition of malicious worms 2.5,

Welchia can be considered malicious, due to the damage it caused to the

Internet and its users, which violates laws issued by legislative bodies.

CRClean is a Code Red II variant, which exploits a buffer overflow vul-

nerability in the Index Server plug-in in Microsoft IIS Server as announced

by Microsoft Security Bulletin MS01-033 [18]. CRClean has been designed

and presented by a German coder named Markus Kern [43]. CRClean has

used an interesting way to spread, it only spreads to systems that have at-

tempted to attack it. This technique is sometimes referred to as passive propa-

gation. The technique would normally reduce the network traffic usually in-

duced by worms that use active scanning to propagate. Another technique

utilized by CRClean was the intercepting of Code Reds malicious traffic,

which blocks any future infections of targets [18].

CRClean works by silently running on a system, waiting and listening

for Code Reds attacks. When CRClean intercepts an attack attempt from a

system infected by Code Red, it launches a counter attack to remove Code

Red and installs CRClean at the system that has launched the attack [57].

Furthermore, since CRClean is memory resident, it removes itself from the

system, once the system is shutdown (if the date is November, 2001 or

Later). Furthermore, for the worm to be detected and identified, it adds

a unique signature to server logs in which it has penetrated. Although, CR-

Clean has introduced some interesting techniques, it has not actually been

released on the Internet [18]. Even if it was released, it would most proba-

bly break into users machines without authorization, which is – at least – a

violation of the privacy law, which puts it in the malicious category.

Code-Green. Also written by a German programmer, who goes by the

name Herbert HexXer. Code-Green is designed to combat the Code Red II

worm. Because Microsoft IIS server can be exploited more than once, Code-

Green is able to attack Code Red infected systems [97]. Code-Green takes

several steps to eliminate Code Red. Once running on the machine, Code-

63

3. DEFENSIVE WORMS – RELATED WORK

Green writes a signature into the system memory identical to the way Code

Red’s writes its own signature. This signature is called an atom, which en-

sures that Code-Red will not re-infect the system again, as it appears to be

infected – while it is not. Next, Code-Green attempts to remove the back-

door (root.exe) installed by Code-Red. This backdoor provides a remote at-

tacker with full control on the IIS server. Also, Code-Green will disable the

virtual mapping previously created by Code Red II, which exposes drive

D and C to remote attackers. Then, Code-Green tries to determine the lan-

guage of the system to pick the correct patch. Subsequently, it downloads

and installs the Microsoft patch MS01-033 to fix the vulnerability already

utilized by Code Red II. Furthermore, Code-Green scans for systems that are

still infected by Code-Red II and patch them as well. Code-Green is mem-

ory resident, which means that once the system is rebooted Code-Green is

removed [57]. Yet, Code-Green writes a unique signature to the logs of the

targeted systems, indicating it has been there [43]. Although, Code-Green

was successfully tested on German language systems, it has not been re-

leased on the Internet [57, 18].

Cheese. Beneficial Worms are not meant only for Microsoft Windows

systems, but also for other platforms including Linux. Cheese was writ-

ten and released to overcome and clean the damage caused by the Linux

targeted malicious worm Lion (or 1i0n). On UDP port 53 (DNS), the Lion

worm was able to exploit a buffer-overflow vulnerability in the Transaction

Signature component of the BIND 8.1 server [71, 18]. Lion installed a back-

door listening on TCP port 10008, which binds to a command shell when

connected. Cheese scans for hosts that have the TCP port 10008 open and in

listening state, and then it connects to the port in order to propagate [71].

The worm scans IP addresses that belong to net blocks 193-218.1-254/16

randomly. When Cheese connects to its targets (port 10008) it gets bound to

a command shell where it can issue commands on the infected system. The

worm initiates a series of commands to load itself and remove any instances

64

3.2 RELATED WORK

of the malicious worm Lion, in addition to disabling the backdoor service

from inetd [71, 18]. Although Cheese was meant to fix and clean its targets,

there were some observed disruptions and confusion on the network; that

is due to the immaturity of this technique [71].

Unlike Code Green, Cheese has been released on the Internet; however,

it was released in a small scale, and there was not much known effect on

the network [18]. It worth mentioning that Cheese breaches an important

feature of defensive worms, in which it propagates randomly, making the

worm spread out of control, let alone accessing users systems without con-

sent, leading the worm to be classified as malicious.

Anti-Santy. This worm was released to counter the Santy malicious

worm, which infects websites that uses phpBB based web forums [49]. Anti-

Santy, uses the same propagation method as Santy, which is by issuing spe-

cially crafted search requests to search engines, like google, to detect Inter-

net forums that run a vulnerable version of phpBB software. The worm then

penetrates these sites and downloads and installs a patch to recover the vul-

nerability. Anti-Santy also defaces websites it breaks into with a messages

such as: viewtopic.php secured by Anti-Santy-Worm V4. Your site is a bit safer,

but upgrade to≥ 2.0.11 [58]. The worm can not be described as beneficial as it

generates high traffic towards infected websites, slowing them down. More-

over, the worm defaces webpages without the owner’s permission, which

violates laws issued by legislative bodies, making Anti-Santy fit more in the

malicious category.

3.2.3 Worm Propagation Techniques

Computer worms differentiate based on the way they propagate. Worms

have adapted different techniques to locate vulnerabilities and propagate to

cover as many targets as possible. In this section we cover some of these

techniques, where most of them were utilized by malicious worms and are

not suitable to be used for beneficial purposes unless accompanied by prop-

65

3. DEFENSIVE WORMS – RELATED WORK

agation control measures. Worms like Code Red I and Slammer have used

random scanning techniques to find their targets, while even the Morris

worm (which utilized local subnet topology information) used a more intel-

ligent way of propagation [92]. The propagation speed increases when the

worm incorporates information to locate all vulnerable hosts, such as in the

Flash worms [93].

A ”hit-list” worm would incorporate information about a number of vul-

nerable hosts where then it will switch to random scanning after scanning

all the hosts in the hit-list. This was proposed by Staniford et al., with further

targeting enhancements, suggested e.g. by Fan and Xiang [26].

Worms like SQLsnake, use a built-in list of numbers that will be used

later to generate network addresses to probe for vulnerabilities, these num-

bers are generated according to network space that most probably contain

vulnerable targets [71]. Zou et al. proposed a routing worm which scans

based on the information provided by the Border Gateway Protocol to re-

duce scanning space [118]. They also introduced a divide-and-conquer scan

worm which uses the divide and conquer approach to propagate. When the

target is infected it passes half of the scanning space to the target and con-

tinues scanning the other half of its original space [117].

Code Red II used different scanning techniques where hosts closer to

the infected target are scanned with higher probability than those farther

away [66]. This is a scanning technique referred to as Island Hopping, as

the network is viewed as a collection of islands, where an island receives

specific attention before hopping to another island [71].

Vojnović et al. identified optimal static and dynamic propagating strate-

gies. These proposed strategies minimize the total number of sampling to

reach a target fraction [103]. In one strategy, a worm infects a randomly se-

lected host then tries to spread on the same subnet, as long as there are many

vulnerable hosts. If not, the worm shift’s to another subnet using random

scanning [88].

66

3.3 SUMMARY

Markus Kern has introduced CRclean, a worm that spreads passively by

listening to Code Red I scanning attempts. When Code Red I scans a host

that already has CRclean installed, CRclean will respond to the scanning

activity by reinfecting the scanning source host and removing the malicious

worm to provide remediation and containment of Code Red I malicious

spread [50]. Blacklists were used by Conficker, the list contained entities

that might provide remedies and containment actions towards malicious

code, such as anti-virus sites and Microsoft, the worm will not try to scan

IPs in the list to avoid detection [53].

3.3 Summary

In this chapter we described attempts that involved utilizing worms for de-

fensive or beneficial purposes. These attempts were covered based on pub-

lished literature or actual attempts of releasing potential defensive worms.

We have also highlighted the propagation techniques that worms usually

use to disseminate around the network, as worms mainly differentiate based

on the way they propagate. This chapter tries to set – at least – a semi com-

prehensive resource for previous work that involves defensive worms to aid

interested researchers in their efforts to explore this topic of research.

67

Chapter 4

A Vulnerability Mitigation Worm –

Seawave I

4.1 Overview

We have defined and provided a taxonomy and an overview of defensive

worms and the challenges the industry face in preventing or reducing the

severity of network vulnerabilities in Chapter 2; followed by a summary

of previous work that involved worms for beneficial purposes and worm

propagation techniques at Chapter 3. In this Chapter we present a novel

controlled, interactive, self-replicating, self-propagating, and self-contained

vulnerability mitigation worm named Seawave1. The mechanism probes for

vulnerabilities within an enterprise network by plotting agents during its

gradual propagation. The defensive worm utilizes layer two topology in-

formation collected from network switches to achieve minimum bandwidth

usage and maximize network coverage. To the best of our knowledge Sea-

wave is the first computer worm to utilize the data link layer (of the OSI

model) as its main propagation medium.

4.2 Network Topology Model and Simulation Environment

In the design of the simulation environment, we have taken into account

where the mechanism will most probably and most beneficially be deployed.

The networks were designed in a hierarchical manner with a varying num-
1Named after the observed wavy propagation curve of the mechanism, which mimics the waves

of a sea – see Fig. 9.4 of Chapter 9.

69

4. A VULNERABILITY MITIGATION WORM – SEAWAVE I

ber of Local Area Networks (LANs) connected to each other through a back-

bone. These hierarchical topologies mimic, to a large extent, enterprise

networks where the mechanism experiences disparate bandwidth capacity

within the backbone and main network links as well as the considerably

higher bandwidth available within switches.

For modeling purposes, we divide network nodes into three types: Hosts,

switches, and routers. Fig. 4.1 illustrates an example of a 1000 node net-

work. For more accuracy in the results, different numbers and layouts of

hierarchical networks have been designed for simulations. Network nodes

have been chosen randomly and linked to randomly selected switches un-

der a specified probability; switches are then connected randomly based on

a specified probability to form an acyclic local topology. After forming the

LAN, a switch is then selected randomly to be linked to a router located in

the backbone to form a LAN connected to the backbone; this process repeats

until the whole enterprise network is completed.

The Drop Tail queue management algorithm [21] was used as a queuing

algorithm and for performance measurements, we have – without loss of

generality – assumed duplex network links with 100Mbps bandwidth; the

simulations in Section 4.7 have used different networks with a node number

varying between 100 and 8000.

For our simulations we have assumed the following:

• The network implements STP and is loop-free.

• Simple Network Management Protocol (SNMP) [38] is supported.

• Vulnerability discovery packets have a length of 900 bytes.

• CAM/port status is maintained by switches.

We have generated 17 hierarchical networks consisting of different num-

bers of LANs, routers, switches, and nodes.

70

4.3 SEAWAVE I

924

1.1.264

923

1.1.263

922

1.1.262

921

1.1.261

919

1.1.259

920

918

1.1.258

917

1.1.257

916

1.1.256

915

1.1.255

914

1.1.254

913

1.1.253

912

1.1.252

911

1.1.251

899

1.1.239

909

1.1.249

910

1.1.250

898

1.1.238

908

1.1.248

897

1.1.237

907

1.1.247

896

1.1.236

906

1.1.246

895

1.1.235

905

1.1.245

894

1.1.234

904

1.1.244

893

1.1.233

903

1.1.243

892

1.1.232

902

1.1.242

891

1.1.231

901

1.1.241

889

1.1.229

890

1.1.230

900

1.1.240

888

1.1.228

887

1.1.227

886

1.1.226

885

1.1.225

884

1.1.224

883

1.1.223

882

1.1.222

881

1.1.221

879

1.1.219

880

1.1.220
878

1.1.218

877

1.1.217

876

1.1.216

875

1.1.215

874

1.1.214

873

1.1.213

872

1.1.212

871

1.1.211

869

1.1.209870

1.1.210

868

1.1.208

867

1.1.207

866

1.1.206

865

1.1.205

864

1.1.204

863

1.1.203

862

1.1.202

861

1.1.201

859

1.1.199

860

1.1.200

858

1.1.198

857

1.1.197

856

1.1.196

855

1.1.195

854

1.1.194

853

1.1.193

852

1.1.192

851

1.1.191

849

1.1.189

850

1.1.190

848

1.1.188

847

1.1.187

846

1.1.186

845

1.1.185

844

1.1.184

843

1.1.183

842

1.1.182

841

1.1.181

839

1.1.179

840

1.1.180

838

1.1.178

837

1.1.177

836

1.1.176

835

1.1.175

834

833

1.1.173

832

1.1.172

831

1.1.171

829

1.1.169

830

1.1.170

828

1.1.168

827

1.1.167

826

1.1.166

825

1.1.165

824

1.1.164

823

1.1.163

822

1.1.162

821

1.1.161

819

1.1.159

820

1.1.160

818

1.1.158

817

1.1.157

816

1.1.156

815

1.1.155

814

1.1.154

813

1.1.153

812

1.1.152

811

1.1.151

799

1.1.139

809

1.1.149

810

1.1.150

798

1.1.138

808

1.1.148

797

1.1.137

807

1.1.147

796

1.1.136

806

1.1.146

795

1.1.135

805

1.1.145

794

1.1.134

804

1.1.144

793

1.1.133

803

1.1.143

792

1.1.132

802

1.1.142

791

1.1.131

801

1.1.141

789

1.1.129

790

1.1.130

800

1.1.140

788

787

1.1.127

786

1.1.126

785

1.1.125

784

1.1.124

783

1.1.123

782

1.1.122

781

1.1.121

779

1.1.119

780

1.1.120

778

1.1.118

777

776

1.1.116

775

1.1.115

774

1.1.114

773

1.1.113

772

1.1.112

771

1.1.111

769

1.1.109

770

1.1.110

768

1.1.108

767

1.1.107

766

1.1.106

765

1.1.105

764

1.1.104

763

1.1.103

762

1.1.102

761

1.1.101

760

1.1.100

759

1.1.99

758

1.1.98

757

1.1.97

756

1.1.96

755

1.1.95

754

1.1.94

753

1.1.93

752

1.1.92

751

1.1.91

750

1.1.90

749

1.1.89

748

1.1.88

747

1.1.87

746

1.1.86

745

1.1.85

744

1.1.84

743

1.1.83

742

1.1.82

741

1.1.81

740

1.1.80

739

1.1.79

738

1.1.78

737

1.1.77

736

1.1.76

735

1.1.75

734

1.1.74

733

1.1.73

732

1.1.72

731

1.1.71

730

1.1.70

729

1.1.69

728

1.1.68

727

1.1.67

726

1.1.66

725

1.1.65

724

1.1.64

723

1.1.63

722

1.1.62

721

1.1.61

720

1.1.60

719

1.1.59

718

1.1.58

717

1.1.57

716

1.1.56

715

1.1.55

714

1.1.54

713

1.1.53

712

1.1.52

711

1.1.51

710

1.1.50

709

1.1.49

699

1.1.39

708

1.1.48

698

1.1.38

707

1.1.47

697

1.1.37

706

1.1.46

696

1.1.36

705

1.1.45

695

1.1.35

704

1.1.44

694

1.1.34703

1.1.43

693

1.1.33

702

1.1.42

692

1.1.32

701

1.1.41

691

1.1.31

700

1.1.40

690

1.1.30

689

1.1.29

688

1.1.28

687

1.1.27

686

1.1.26

685

1.1.25

684

1.1.24

683

1.1.23

682

1.1.22

681

1.1.21

680

1.1.20

679

1.1.19

678

1.1.18

677

1.1.17

676

1.1.16

675

1.1.15

674

1.1.14

673

1.1.13

672

1.1.12

671

1.1.11

670

1.1.10

669

1.1.9

668

1.1.8

667

1.1.7

666

1.1.6

665

1.1.5

664

1.1.4

663

1.1.3

662

1.1.2

661

1.1.1

660

1.1.0

659

0.2.329

658

0.2.328

657

0.2.327

656

0.2.326

655

0.2.325

654

0.2.324

653

0.2.323

652

0.2.322

651

0.2.321

650

0.2.320

649

0.2.319

648

0.2.318

647

0.2.317

646

0.2.316

645

0.2.315

644

0.2.314

643

0.2.313

642

0.2.312

641

0.2.311

640

0.2.310

639

0.2.309

638

0.2.308

637

0.2.307
636

0.2.306

635

0.2.305

634

0.2.304

633

0.2.303

632

0.2.302

631

0.2.301

630

0.2.300

629

0.2.299

628

0.2.298

627

0.2.297

626

0.2.296

625

0.2.295

624

0.2.294

623

0.2.293

622

0.2.292

621

0.2.291

620

0.2.290

619

0.2.289

618

0.2.288

617

0.2.287

616

0.2.286

615

0.2.285

614

0.2.284

613

0.2.283

612

0.2.282

611

0.2.281

610

0.2.280

609

0.2.279

599

0.2.269

608

0.2.278

598

0.2.268

607

0.2.277

597

0.2.267

606

0.2.276

596

0.2.266

605

0.2.275

595

0.2.265

604

0.2.274

594

0.2.264

603

0.2.273

593

0.2.263

602

0.2.272

592

0.2.262

601

0.2.271

591

0.2.261

600

0.2.270

590

0.2.260

589

0.2.259

588

0.2.258

587

0.2.257

586

0.2.256

585

0.2.255

584

0.2.254

583

0.2.253

582

0.2.252

581

0.2.251

580

0.2.250

579

0.2.249

578

0.2.248

577

0.2.247

576

0.2.246

575

0.2.245

574

0.2.244

573

0.2.243

572

0.2.242

571

0.2.241

570

0.2.240

569

0.2.239

568

0.2.238

567

0.2.237

566

0.2.236

565

0.2.235

564

0.2.234

563

0.2.233

562

0.2.232

561

0.2.231

560

0.2.230

559

0.2.229

558

0.2.228

557

0.2.227

556

0.2.226

555

0.2.225

554

0.2.224

553

0.2.223

552

0.2.222

551

0.2.221

550

0.2.220

549

0.2.219

548

0.2.218

547

0.2.217

546

0.2.216

545

0.2.215

544

0.2.214

543

0.2.213

542

0.2.212

541

0.2.211

540

0.2.210

539

0.2.209

538

0.2.208

537

0.2.207

536

0.2.206

535

0.2.205

534

0.2.204

533

0.2.203

532

0.2.202

531

0.2.201

530

0.2.200

529

0.2.199

528

0.2.198

527

0.2.197

526

0.2.196

525

0.2.195

524

0.2.194

523

0.2.193

522

0.2.192

521

0.2.191

520

0.2.190

519

0.2.189

518

0.2.188

517

0.2.187

516

0.2.186

515

0.2.185

514

0.2.184

513

0.2.183

512

0.2.182

511

0.2.181

510

0.2.180

509

0.2.179

499

0.2.169

508

0.2.178

498

0.2.168

507

0.2.177

497

0.2.167

506

0.2.176

496

0.2.166

505

0.2.175

495

0.2.165

504

0.2.174

494

0.2.164

503

0.2.173

493

0.2.163

502

0.2.172

492

0.2.162

501

0.2.171

491

0.2.161

500

0.2.170

490

0.2.160

489

0.2.159

488

0.2.158

487

0.2.157

486

0.2.156

485

0.2.155

484

0.2.154

483

0.2.153

482

0.2.152

481

0.2.151

480

0.2.150

479

0.2.149

478

0.2.148

477

0.2.147

476

0.2.146

475

0.2.145

474

0.2.144

473

0.2.143

472

0.2.142

471

0.2.141

470

0.2.140

469

0.2.139

468

0.2.138

467

0.2.137

466

0.2.136

465

0.2.135
464

0.2.134

463

0.2.133

462

0.2.132

461

0.2.131

460

0.2.130

459

0.2.129

458

0.2.128

457

0.2.127

456

0.2.126

455

0.2.125

454

0.2.124

453

0.2.123

452

0.2.122

451

0.2.121

450

0.2.120

449

0.2.119

448

0.2.118

447

0.2.117

446

0.2.116

445

0.2.115

444

0.2.114

443

0.2.113

442

0.2.112

441

0.2.111

440

0.2.110

439

0.2.109

438

0.2.108

437

0.2.107

436

0.2.106

435

0.2.105

434

0.2.104

433

0.2.103

432

0.2.102

431

0.2.101

430

0.2.100

429

0.2.99

428

0.2.98

427

0.2.97

426

0.2.96
425

0.2.95

424

0.2.94

423

0.2.93

422

0.2.92

421

0.2.91

420

0.2.90

419

0.2.89

418

0.2.88

417

0.2.87

416

0.2.86

415

0.2.85

414

0.2.84

413

0.2.83

412

0.2.82

411

0.2.81

410

0.2.80

409

0.2.79

399

0.2.69

408

0.2.78

398

0.2.68

407

0.2.77

397

0.2.67

406

0.2.76

396

0.2.66

405

0.2.75

395

0.2.65

404

0.2.74

394

0.2.64

403

0.2.73

393

0.2.63

402

0.2.72

392

0.2.62

401

0.2.71

391

0.2.61

400

0.2.70

390

0.2.60

389

0.2.59

388

0.2.58

387

0.2.57

386

0.2.56

385

0.2.55

384

0.2.54

383

0.2.53
382

0.2.52

381

0.2.51

380

0.2.50

379

0.2.49

378

0.2.48

377

0.2.47

376

0.2.46

375

0.2.45

374

0.2.44

373

0.2.43

372

0.2.42

371

0.2.41

370

0.2.40

369

0.2.39

368

0.2.38

367

0.2.37

366

0.2.36

365

0.2.35

364

0.2.34

363

0.2.33

362

0.2.32

361

0.2.31

99

0.1.99

360

0.2.30

359

0.2.29

98

0.1.98

358

0.2.28

97

0.1.97

357

0.2.27

96

0.1.96

356

0.2.26

95

0.1.95

355

0.2.25

94

0.1.94

354

0.2.24

93

0.1.93

353

0.2.23

92

0.1.92

352

0.2.22

91

0.1.91

351

0.2.21

89

0.1.89

90

0.1.90

350

0.2.20

349

0.2.19

88

0.1.88

348

0.2.18

87

0.1.87

347

0.2.17

86

0.1.86

346

0.2.16

85

0.1.85

345

0.2.15

84

0.1.84

344

0.2.14

83

0.1.83

343

0.2.13

82

0.1.82

342

0.2.12

81

0.1.81

341

0.2.11

79

0.1.79

80

0.1.80

340

0.2.10

339

0.2.9

78

0.1.78

338

0.2.8

77

0.1.77

337

0.2.7

76

0.1.76

336

0.2.6

75

0.1.75

335

0.2.5

74

0.1.74

334

0.2.4

73

0.1.73

333

0.2.3

72

0.1.72

332

0.2.2

71

0.1.71

331

0.2.1

69

0.1.69

70

0.1.70

330

0.2.0

329

0.1.329

68

0.1.68

328

0.1.328

67

0.1.67

327

0.1.327

66

0.1.66

326

0.1.326

65

0.1.65

325

0.1.325

64

0.1.64

324

0.1.324

63

0.1.63

323

0.1.323

62

0.1.62

322

0.1.322

61

0.1.61

321

0.1.321

59

0.1.59

60

0.1.60

320

0.1.320

319

0.1.319

58

0.1.58

318

0.1.318

57

0.1.57

317

0.1.317

56

0.1.56

316

0.1.316

55

0.1.55

315

0.1.315

54

0.1.54

314

0.1.314

53

0.1.53

313

0.1.313

52

0.1.52

312

0.1.312

51

0.1.51

311

0.1.311

49

0.1.49

50

0.1.50

310

0.1.310

309

0.1.309

299

0.1.299

48

0.1.48

308

0.1.308

298

0.1.298

47

0.1.47

307

0.1.307

297

0.1.297

46

0.1.46

306

0.1.306

296

0.1.296

45

0.1.45

305

0.1.305

295

0.1.295

44

0.1.44

304

0.1.304

294

0.1.294

43

0.1.43

303

0.1.303

293

0.1.293

42

0.1.42

302

0.1.302

292

0.1.292

41

0.1.41

301

0.1.301

291

0.1.291

40

0.1.40

39

0.1.39

300

0.1.300

290

0.1.290

289

0.1.289

38

0.1.38

288

0.1.288

37

0.1.37

287

0.1.287

36

0.1.36

286

0.1.286

35

0.1.35

285

0.1.285

34

0.1.34

284

0.1.284

33

0.1.33

283

0.1.283

32

0.1.32
282

0.1.282

31

0.1.31

281

0.1.281

30

0.1.30

29

0.1.29

280

0.1.280

279

0.1.279

28

0.1.28

278

0.1.278

27

0.1.27

277

0.1.277

26

0.1.26

276

0.1.276

25

0.1.25

275

0.1.275

24

0.1.24

274

0.1.274

23

0.1.23

273

0.1.273

22

0.1.22

272

0.1.272

21

0.1.21

271

0.1.271

20

0.1.20

19

0.1.19

270

0.1.270

269

0.1.269

18

0.1.18

268

0.1.268

17

0.1.17

267

0.1.267

16

0.1.16

266

0.1.266

15

0.1.15

265

0.1.265

14

0.1.14

264

0.1.264

13

0.1.13

263

0.1.263

12

0.1.12

262

0.1.262

11

0.1.11

261

0.1.261

10

0.1.10

260

0.1.260

259

0.1.259

258

0.1.258

257

0.1.257

256

0.1.256

255

0.1.255

254

0.1.254

253

0.1.253

252

0.1.252
251

0.1.251

250

0.1.250249

0.1.249

248

0.1.248

247

0.1.247

246

0.1.246

245

0.1.245

244

0.1.244

243

0.1.243

242

0.1.242

241

0.1.241

240

0.1.240

239

0.1.239

238

0.1.238

237

0.1.237

236

0.1.236

235

0.1.235

234

0.1.234

233

0.1.233

232

0.1.232

231

0.1.231

230

0.1.230

229

0.1.229

228

0.1.228

227

0.1.227

226

0.1.226

225

0.1.225

224

0.1.224

223

0.1.223

222

0.1.222

221

0.1.221

220

0.1.220

219

0.1.219

218

0.1.218

217

0.1.217

216

0.1.216

215

0.1.215

214

0.1.214

213

0.1.213

212

0.1.212

211

0.1.211

210

0.1.210

209

0.1.209

199

0.1.199

208

0.1.208

198

0.1.198

207

0.1.207

197

0.1.197

206

0.1.206

196

0.1.196

205

0.1.205 195

0.1.195

204

0.1.204

194

0.1.194

203

0.1.203

193

0.1.193

202

0.1.202

192

0.1.192
201

0.1.201

191

0.1.191

200

0.1.200

189

0.1.189

190

0.1.190

188

0.1.188

187

0.1.187

186

0.1.186

185

0.1.185

184

0.1.184

183

0.1.183

182

0.1.182

181

0.1.181

179

0.1.179

180

0.1.180

178

0.1.178

177

0.1.177

176

0.1.176

175

0.1.175

174

0.1.174
173

0.1.173

172

0.1.172

171

0.1.171

169

0.1.169

170

0.1.170

168

0.1.168

167

0.1.167

166

0.1.166

165

0.1.165

164

0.1.164

163

0.1.163

162

0.1.162

161

0.1.161

159

0.1.159

160

0.1.160

158

0.1.158

157

0.1.157

156

0.1.156

155

0.1.155

154

0.1.154

153

0.1.153

152

0.1.152

151

0.1.151

149

0.1.149

150

0.1.150

148

0.1.148

147

0.1.147

146

0.1.146

145

0.1.145

144

0.1.144

143

0.1.143

142

0.1.142

141

0.1.141

139

0.1.139

140

0.1.140

138

0.1.138

137

0.1.137

136

0.1.136

135

0.1.135

134

0.1.134

133

0.1.133

132

0.1.132

131

0.1.131

129

0.1.129

130

0.1.130

128

0.1.128

127

0.1.127

126

0.1.126

125

0.1.125

124

0.1.124

123

0.1.123

122

0.1.122

121

0.1.121

119

0.1.119

120

0.1.120

118

0.1.118

117

0.1.117

116

0.1.116

115

0.1.115

114

0.1.114

113

0.1.113

112

0.1.112

111

0.1.111

109

0.1.109

110

0.1.110

108

0.1.108

107

0.1.107

106

0.1.106

105

0.1.105

104

0.1.104

103

0.1.103

102

0.1.102

101

0.1.101

100

0.1.100

1099

1.0.0

1098

0.0.0

1097

1.2.107

1096

1.2.106

1095

1.2.105

1094

1.2.104

1093

1.2.103

1092

1.2.102

1091

1.2.101

1089

1.2.99

1090

1.2.100

1088

1.2.98

1087

1.2.97

1086

1.2.96

1085

1.2.95

1084

1.2.94

1083

1.2.93

1082

1.2.92

1081

1.2.91

1079

1.2.89

1080

1.2.90

1078

1.2.88

1077

1.2.87

1076

1.2.86

1075

1.2.85

1074

1.2.84

1073

1.2.83

1072

1.2.82

1071

1.2.81

1069

1.2.79

1070

1.2.80

1068

1.2.78

1067

1.2.77

1066

1.2.76

1065

1.2.75

1064

1.2.74

1063

1.2.73

1062

1.2.72

1061

1.2.71

1059

1.2.69

1060

1.2.70

1058

1.2.68

1057

1.2.67

1056

1.2.66

1055

1.2.65

1054

1.2.64

1053

1.2.63

1052

1.2.62

1051

1.2.61

1049

1.2.59

1050

1.2.60

1048

1.2.58

1047

1.2.57

1046

1.2.56

1045

1.2.55

1044

1.2.54

1043

1.2.53

1042

1.2.52

1041

1.2.51

1039

1.2.49

1040

1.2.50

1038

1.2.48

1037

1.2.47

1036

1.2.46

1035

1.2.45

1034

1.2.44

1033

1.2.43

1032

1.2.42

1031

1.2.41

1029

1.2.39

1030

1.2.40

1028

1.2.38

1027

1.2.37

1026

1.2.36

1025

1.2.35

1024

1.2.34

1023

1.2.33

1022

1.2.32

1021

1.2.31

1019

1.2.29

1020

1.2.30

1018

1.2.28

1017

1.2.27

1016

1.2.26

1015

1.2.25

1014

1.2.24

1013

1.2.23

1012

1.2.22

1011

1.2.21

1009

1.2.19
1010

1.2.20

1008

1.2.18

1007

1.2.17

1006

1.2.16

1005

1.2.15

1004

1.2.14

1003

1.2.13

1002

1.2.12

1001

1.2.11

1000

1.2.10

999

1.2.9

998

1.2.8

997

1.2.7

996

1.2.6

995

1.2.5

994

1.2.4

993

1.2.3

992

1.2.2

991

1.2.1

989

1.1.329

990

1.2.0

9

0.1.9

988

1.1.328

8

0.1.8

987

1.1.327

7

0.1.7

986

1.1.326

6

0.1.6

985

1.1.3255

0.1.5

984

1.1.324

4

0.1.4

983

1.1.323

3

0.1.3

982

1.1.322

2

0.1.2

981

1.1.321

1

0.1.1

979

1.1.319

980

1.1.320

0

0.1.0

978

1.1.318

977

1.1.317

976

1.1.316

975

1.1.315

974

1.1.314

973

1.1.313

972

1.1.312

971

1.1.311

969

1.1.309

970

1.1.310

968

1.1.308

967

1.1.307

966

1.1.306

965

1.1.305

964

1.1.304

963

1.1.303

962

1.1.302

961

1.1.301

959

1.1.299

960

1.1.300

958

1.1.298

957

1.1.297

956

1.1.296

955

1.1.295

954

1.1.294

953

1.1.293

952

1.1.292

951

1.1.291

949

1.1.289

950

1.1.290

948

1.1.288

947

1.1.287

946

1.1.286

945

1.1.285

944

1.1.284

943

1.1.283

942

1.1.282

941

1.1.281

939

1.1.279

940

1.1.280

938

1.1.278

937

1.1.277

936

1.1.276

935

1.1.275

934

1.1.274

933

1.1.273

932

1.1.272

931

1.1.271

929

1.1.269

930

1.1.270

928

1.1.268

927

1.1.267

926

1.1.266

925

1.1.265

Figure 4.1: Switched network that implements Spanning Tree Protocol

4.3 Seawave I

Seawave is a controlled, interactive, self-replicating, self-propagating, and self-

contained vulnerability mitigation worm. It utilizes network topology knowl-

edge to propagate in a constructive manner that would not impact network

resources. It uses the Spanning Tree Protocol (STP) information to identify

switches and then reads Content Addressable Memory (CAM) tables stored

in switches to identify nodes and directly connected switches [1] . Note,

that topology information is read step-by-step (and not as a whole) as the

71

4. A VULNERABILITY MITIGATION WORM – SEAWAVE I

D E F

A B C G H I

Switch 1

Switch 2

Switch 3

Towards STP’s

root Bridge

Switch port Blocked by

STP

Switch 4

Switch 5

Port 1

Port 2

Port 3

Port 4

Port 5

A

B

C

Switch 5

Switch 2

Port 1

Port 2

Port 3

Port 4

Port 5

D

E

F

Switch 1

Switch 3

Port 1

Port 2

Port 3

Port 4

G

H

I

Switch 2

Switch 1 CAM Switch 2 CAM Switch 3 CAM

Switch 5 Switch 1 Switch 2

Des BridgeDes BridgeDes Bridge

Figure 4.2: Seawave I

defensive worm propagates gradually. Based on this, paths are constructed

dynamically and on a switch-by-switch basis, updating STP and CAM in-

formation on each step to discover directly connected hosts and switches.

To illustrate the propagation process, assume that in Fig. 4.2 Seawave

was installed on node A where it reads STP and CAM information from

Switch 1 and performs vulnerability discovery on Stations B, C and simul-

taneously reads CAM tables of neighboring switches, in this case Switch 2

and 5. The Seawave agent then process the CAM tables and picks a station

at each neighboring switch to self-replicate. The agent picked station E to

propagate to Switch 2 then the same procedure repeats until the Spanning

Tree path is covered.

For concurrent propagation, Seawave assumes all nodes are vulnerable.

In Fig. 4.2 nodes A, E, and I will act as a vulnerability discovery server

for the nodes directly connected to the switch. This will lower the trans-

mission distance, would keep any bandwidth generated within this process

contained within leaf edges without impacting the heavily used network

links, and would allow the defensive worm to detect un-propped nodes

72

4.4 PROPAGATION ALGORITHM

quickly. For example if a node was off-line during the process of vulnerabil-

ity discovery, then when the node is back on-line the vulnerability discovery

server of the switch will try to detect the new node and thereafter probe it;

identifying intermittently active hosts is detailed in Chapter 5.

The resources for the agent to start detecting vulnerabilities should not

require a large amount of CPU or memory to probe few host nodes con-

nected to one switch. This allows the agent to share station resources with

minimum overhead. Otherwise, alternatives can be considered, such as

probing when the server node is on idle status – bound to the severity of

the vulnerability.

4.4 Propagation Algorithm

For Seawave to propagate around the network it has to visit each switch

attached to the spanning tree. We consider the whole network as N, where

N = {LAN0, LAN1, . . . LANn} . Each subnet consist of one router and sev-

eral switches and hosts, which represents one domain (i.e. for the purposes

of this thesis we do not consider VLAN configurations; these can be handled

analogously), and each switch in the subnet exists as part of the spanning

tree path of that particular subnet.

We denote STPi as the spanning tree information stored in switch i.

STPi{BridgeID} denotes the Bridge ID of switch i and STPi{DesBridge} denotes

the designate Bridge of switch i, which is the next bridge in the ST path and

we denote Sij as interface j at switch i. For the switch to decide where to

forward packets, it refers to its CAM table (or MAC forwarding address ta-

ble). When the switch receives a packet it compares the destination MAC

with those entries in the CAM table. If there is a match, the packet will be

forwarded to the designated port, otherwise it is sent to all ports [86].

We denote the CAM table of switch i at port j as Cij and the MAC ad-

dress of switch i as SiMAC . In order for an agent to start spreading be-

73

4. A VULNERABILITY MITIGATION WORM – SEAWAVE I

tween switches, it has to be able to detect a direct connection between two

switches. A direct connection between two switches is when two switches –

which exist in the spanning tree path – are connected with no other elements

between them. This will enable the agent-based mechanism to propagate

gradually and avoid redundant probes.

We therefore first state a lemma that builds a sufficient base for a switch

directly connected to another switch assuming that the IEEE specification of

the Spanning Tree Protocol [1] is honored:

Lemma 4.1

Interface Sij and Skl are directly connected to each other if and only if STPi{Des.Bridge} =

STPk{BridgeID} when Sij → Skl or STPk{Dec.Bridge} = STPi{BridgeID} when

Skl → Sij

It is not straightforward to detect directly connected switches. Few ap-

proaches exist to detect direct connections. One of them proposed by Bre-

itbart et al. [15], states that two switches interfaces Sij and Skl are directly

connected if and only if Cij ∪ Ckl = u and Cij ∩ Ckl = Φ. u here denotes

all MAC addresses of routers and switches in a subnet S. However, the as-

sumption that a CAM table at a given interface does contain all the MAC

addresses that can be received from the same interface is not satisfied in

all real-world networks [15] owing to aging properties of CAM tables and

communication demand. When a network element becomes idle on that in-

terface, the source MAC address might be removed from the table affecting

the above assumption. Furthermore, an element might not need to perform

any network activity that passes through that specific switch interface, re-

sulting in the MAC address of the element not existing in the CAM table at

all.

Another approach is proposed by Stott [95] where the spanning tree in-

formation is read using SNMP from all switches and routers to construct

the network topology. However, this approach will generate bandwidth ac-

74

4.4 PROPAGATION ALGORITHM

cording to the number of switches and routers which is large in corporate

networks; in addition, the topology might go through different changes in

the process of collecting STP information.

In Seawave, the agent, however, tries to combine both CAM table infor-

mation and Spanning Tree information to detect a direct link between two

switches and therefore propagate switch by switch until the LAN is cov-

ered. In order to detect directly connected switches, we assume that each

CAM table of each switch holds at least the MAC address(es) of the directly

connected switch(es). Switches exchange Bridge Protocol Data Unit pack-

ets [1] that hold spanning tree information quite often (every two seconds

by default) [86] enabling this assumption to most likely be reflected in real

world networks.

Under the assumption that the network implements STP according to

the standard IEEE 802.1D [1] with default settings we now introduce the

following Lemma:

Lemma 4.2

If Sij is directly connected to Skl then {SiMAC , SkMAC} ⊆ (Cij ∪ Ckl) and Cij ∩

Ckl = Φ

PROOF Assume that SiMAC does not exist in Ckl and SkMAC does not exist in

Cij , therefore, {SiMAC , SkMAC} 6⊆ (Cij ∪ Ckl). However, according to lemma

4.1 STPi{Des.Bridge} = STPk{BridgeID} or STPk{Dec.Bridge} = STPi{BridgeID} and

according to the default STP settings a switch would emit BPDU frames

once every 2 seconds, which is much less than the default CAM table aging

time (5 minutes) [86]. Thus, there exist bidirectional STP traffic between the

directly connected switches Si and Sk. As a consequence, Ckl contains SiMAC

and Cij contains SkMAC which is a contradiction �

The ability of the agents to propagate through the network then follows

from lemma 4.1 and 4.2.

75

4. A VULNERABILITY MITIGATION WORM – SEAWAVE I

We denote the hosts connected to the directly connected switch asH(Cs0)

where Cs0 is the CAM table of switch s0. And S(Cs0) = {s1, s2, ..sn} as

switches listed in the CAM table C of switch s0; while (C ∪ STP)s0 as the

CAM table and STP information of switch s0. We denote the function of

fetching data through SNMP as SNMP and agent self-replicating as SR.

And the function of vulnerability detection and selecting a host from a list

as V D and select, respectively. The propagation algorithm of Seawave, then

follows:

1. Install Agent at the starting host at corporate subnet.

2. Agent starts self-replicating to all subnets according to predefined hosts

in each subnet: SR(LAN1 ∪ LAN2.. ∪ LANn)

3. In each subnet the agent reads STP and CAM table information from

the directly connected switch: SNMP{(C ∪ STP)s0}

4. The agent extracts directly connected hosts from the CAM table then

performs vulnerability detection to these hosts: V D(H(Cs0)−{Hagent})

5. Based on lemma 4.2, agent reads STP and CAM table information from

switches listed in the CAM table of the directly connected switch (S(Cs0)):

SNMP{(C ∪ STP)s1 ∪ (C ∪ STP)s2 ..∪ (C ∪ STP)sn} and then detects

directly connected switches based on lemma 4.12.

6. The agent picks a host in each neighbor switch and self-replicate to

propagate on the same subnet: SR(select(H(Cs1)) ∪ select(H(Cs2)).. ∪

select(H(Csn)))

7. Go to step 3 until all neighboring switches in the STP path are visited.

Seawave depends on the information retrieved from CAM tables and

STP that are stored at each switch. Fortunately, it is not necessary to rely on

proprietary protocols, as it is possible to adopt widely supported standards,

such as SNMP management information base (MIB) objects to retrieve this

2For the directly connected switch towards STP root, the agent can consider SkMAC address
instead of requesting STPk{BridgeID} – assuming that the Bridge ID consist of the switch MAC.

76

4.5 VULNERABILITY DETECTION

information, giving Seawave more flexibility and portability over different

networks with different types of switches.

4.5 Vulnerability Detection

In our simulations, we have assumed that one packet is enough to detect

a vulnerability and install an agent; which mimics – to some extent – SQL

Slammer which uses a single packet to propagate [63]. Of course, one packet

is not enough to contain a payload that performs complex tasks (or deal

with multiple vulnerabilities), however, for such tasks larger payloads can

be used.

Different approaches exist to detect a vulnerability, one of them is by

exploiting. The agent will try to probe a potential vulnerable machine by

sending a packet with the necessary payload to achieve three tasks.

• First, exploit the vulnerability to gain the necessary privilege to apply

temporally remediation.

• Second, apply vulnerability remediation to eliminate the security ex-

posure of the vulnerable machine.

• Third, trigger the agent for further propagation to cover other vulner-

able nodes.

Vulnerability remediation is temporary and clearly is not substitute for

a code-level patch and can range of different techniques, such as disabling

a port that can be used by a malicious user to compromise a machine, or

installing a wrapper script that will act as a packet filter between the vul-

nerable application and the network, or even uninstalling the vulnerable

application. Whatever remediation is used by the network security team, it

must have the required privilege to assure successful deployment.

Seawave, should be deployed carefully as its payload might be exposed

to network users with malicious intention; but the mechanism will most

77

4. A VULNERABILITY MITIGATION WORM – SEAWAVE I

likely be triggered by the enterprise security team in response to a critical

vulnerability with an already publicly available exploit – more risks and

threats are addressed in Chapter 5. If exploitation was successful, the node

is vulnerable, otherwise, the node most likely is not. This approach would

eliminate the amount of false positives, usually reported by vulnerability

discovery applications [83]. However, the exploitation procedure must be

performed carefully as it can lead to service disruption, where it might get

the system into a halt or unstable state, bound to the nature of the vulner-

ability and its exploit. Tests should be conducted before deploying any

exploit. However, when this cannot be ensured a secondary propagation

mechanism must be used.

4.6 Randomly Scanning Worm

We designed a simple random scanning worm to compare it with our mech-

anism in terms of bandwidth. Most worms released to counter malicious

ones used random scanning (i.e. Welchia, Cheese). The comparison would

help show if employing topology information would improve bandwidth

utilization. Indeed, excessive bandwidth usage is observed frequently in

worm outbreaks. The random scanning worm mimics the Slammer worm

that uses a random scanning technique where it targets a randomly chosen

IP, by sending one UDP packet to its victims [63] but with slight difference

as the random scanning worm operates in corporate networks specifically

at layer two of the OSI model.

When the worm is initiated, it propagates to all LANs in the corporate

network according to a hard coded destination host at each LAN. Then, the

randomly scanning worm will utilize the information in the host to indicate

the address range it can randomly choose from. This is done by reading the

IP address and the subnet mask, of the host. We have assumed for the simu-

lation a class A network with subnet mask 255.255.192.0. The address space

78

4.7 SIMULATION RESULTS

thereafter consists of 16384 IP addresses; ignoring the network address and

the broadcast address yields 16382 possible target hosts.

The worm uses one packet of size 900 bytes to infect, and we assume

all hosts are vulnerable. However, there are switches and routers that the

worm might scan, with no infection as the vulnerability exists only in host

nodes.

4.7 Simulation Results

Since each network has different topology and parameter choices, it is some-

what difficult to find a closed-form complexity estimate for the vulnerability

discovery mechanism; we have therefore chosen to conduct extensive net-

work simulations of our mechanism. For the results to be more realistic

following the model and assumptions outlined in section 4.2, hierarchical

networks were used, reflecting typical network topologies in large-scale en-

terprise networks.

All simulations have been conducted using the Network Simulator 2

(NS-2), a discrete event simulator mainly used for research activities [42].

The simulations in total were 765 running within hierarchical networks.

Since the capacity of NS-2 is limited, we weren’t able to conduct simula-

tions on topologies over 8000 network nodes. Therefore, we have run our

simulations against 100 to 8000 nodes with around 500 nodes difference be-

tween each topology.

For more accurate results each topology has been simulated 45 times

where the average has been calculated to account for random effects such

as link and node operation failure in addition to time coverage. In addition

to Seawave’s simulation, we have performed simulations of a random scan-

ning worm following the model and assumptions outlined in section 4.6.

However, due to the extensive amount of communications and bandwidth

consumption of such random propagation strategy, the time of simulation

79

4. A VULNERABILITY MITIGATION WORM – SEAWAVE I

was beyond our capacity, and therefore we settled down with one simula-

tion of network topologies ranging from 100 to 3000 nodes.

In each simulation we have gathered the following:

• The number of nodes that were missed (i.e. not probed) by Seawave,

due to a link failure of probability 0.01

• The number of packets generated by both the defensive worm and the

randomly scanning worm to cover the network. The packets, however,

that are generated between a switch and a host are exempted since

they have no significant overhead on the bandwidth of the network.

The packet size is 900 bytes.

• The time it took Seawave to cover the corporate network. Time is mea-

sured in simulation seconds and when there is a link failure, the mech-

anism will try to resend a packet after 2 simulation seconds.

• The number of random worm scans of non-existent IP addresses.

For the sake of simplicity, we have assumed in the simulation that the

CAM table and STP information stored in the switch can be requested by

sending one packet to the switch.

4.8 Discussion

Seawave in its first stage will be installed in the host dedicated to be the

starting node. Since the directly connected switch is transparent, the Sea-

wave agent does not actually see it. However, the agent can impersonate

a switch and therefore can learn the designated switch MAC address from

STP traffic. Then following the propagation algorithm outlined in section

4.4; the agent spreads around the network. Since switches do not necessar-

ily have Reverse Address Resolution Protocol (RARP) [31] servers running

on them (that maps the MAC address to its IP address), getting the IP ad-

dress is not straightforward.

80

4.8 DISCUSSION

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 1000 2000 3000 4000 5000 6000 7000 8000

Pa
ck

et
s

Network Nodes

Propagation Mechanism
Random Scanning Worm

Figure 4.3: Packets generated by Seawave and the random scanning worm to cover
the total network

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 4.5e+06

 5e+06

 5.5e+06

 0 500 1000 1500 2000 2500

N
on

-e
xi

st
en

t I
P

Ad
dr

es
se

s

Network Nodes

No Host

Figure 4.4: The random scanning worm number of scan attempts of non-existent IP
addresses

Breitbart et al. [15] use SNMP MIB object ipNetToMediaTable in a sin-

gle subnet switch domain to get the MAC after providing an IP address

calculated based on network mask and IP address format of the router.

Furthermore, Stott [95] listed other approaches which includes scanning

all STP tables using every IP address in a given range and the Bridge ID

81

4. A VULNERABILITY MITIGATION WORM – SEAWAVE I

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 1000 2000 3000 4000 5000 6000 7000 8000

M
is

se
d

N
od

es

Network Nodes

Missed Nodes
Variance

Figure 4.5: Missed nodes under link failure probability of 0.01

extracted from SNMP MIB object dot1dBaseBridgeAddress that matches the

MAC would be the switch IP address. Another approach would be to scan

switches to read the CAM tables searching for entries that matches the Bridge

ID and whose SNMP MIB object dot1dTpFdbStatus is set to self, which

means the address is assigned to the switch [95].

Since Seawave operates at layer two there is no necessity to use IP ad-

dresses, but this requirement arises when communicating through SNMP,

as it operates at the application layer in the OSI model. In fact, the network

interface card (NIC) would accept a packet with a broadcast IP address set

as a destination. Therefore, assuming the switch does not have a firewall,

one way to communicate is by using the switch’s actual MAC address and

the broadcast IP address of the subnet as a destination to allow the packet

to reach its way to the application layer (SNMP server).

Seawave eases the impact on primary network links by depending largely

on host to switch links to detect close targets which also provide short trans-

mission distance for more efficient probing. According to simulation results

82

4.8 DISCUSSION

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 1000 2000 3000 4000 5000 6000 7000 8000

Si
m

ul
at

io
n

Ti
m

e

Network Nodes

Simulation Seconds
Variance

Figure 4.6: Simulation time required to cover entire network. After replicating
failure, another attempt is triggered after 2 seconds.

Seawave generated 1564 packets to cover a network of 4000 elements, 2454

packets to cover 6000 elements, and 3232 to cover 8000 network elements.

And in comparison to a randomly scanning worm, the defensive worm has

generated 560 packets in a network of 1500 nodes, while the random scan-

ning worm generated 23074 packets of the size 900 bytes, indicating the

ability of Seawave to cover the network using 2.42% of the bandwidth used

by random scanning. Moreover, the random worm generated 31358 packets

to cover a network of 2500 nodes while our mechanism required 896 pack-

ets, about 2.8% of the random worm generated bandwidth. Further results

are shown in Fig. 4.3.

The random scanning worm has generated too many scans to non-existent

IP addresses. Although the worm operates within the LAN, non-existent

IP addresses scans will cause the host to emit an ARP probe [80] for each

new IP address scanning attempt. For a network topology of the size of

1500 it resulted in 3660723 non-existent IP address scan attempts. Further-

83

4. A VULNERABILITY MITIGATION WORM – SEAWAVE I

more, 5165367 nonexistent host scan attempts (or missed connections) were

recorded for a network of the size 2500. Results are shown in Fig. 4.4.

Since the defensive worm depends on the up-to-date CAM and STP in-

formation stored in switches, missed connections are not common (i.e. prob-

ing a non-existent device) and the total bandwidth is used as effectively as

possible without wasting communications. Seawave in its current form is

probabilistic in that it does not ensure that all nodes on the switch have

been probed for vulnerability (i.e. no failure recovery). Therefore, differ-

ent missed nodes were reported under a link failure probability of 0.01. For

instance, a network with 2000 hosts, 20 of them were missed and 52 nodes

were unreached in a 5000 nodes network. The larger the network, the higher

the rate of missed host nodes – more results can be seen in Fig. 4.5.

The time it takes the mechanism to cover the network is measured in

simulation seconds. In a network of 1500 elements it took Seawave 2.6 sim-

ulation seconds to spread around the spanning tree and 3.6 simulation sec-

onds to cover a 5000 nodes network. Of course the time is affected by link

failures, the mechanism will wait 2 simulation seconds before trying to self-

replicate after a link failure. Fig. 4.6 shows more results.

4.9 Summary

In this chapter we have proposed a controlled self-replicating, self-propagating,

and self-contained vulnerability mitigation mechanism (Seawave) as one

approach to probe for network vulnerabilities. The mechanism is topology-

aware, which limits its bandwidth consumption and reduces the risk of un-

controlled propagation. Our defensive worm makes use of two types of in-

formation stored in switches: CAM table and Spanning Tree protocol. This

topology information, enables Seawave to propagate around the network in

a constructive manner, utilizing bandwidth efficiently to avoid any unnec-

essary communication.

84

4.9 SUMMARY

Seawave adds some constraints to the self-replicating process by limiting

replication to one node only directly connected to the switch and enabling

that node to act as a vulnerability discovery entity to the remaining nodes

directly connected to the same switch. The node would subsequently act as

a neighborhood watch node, where the neighborhood consist of all nodes con-

nected to the switch. In the chapter we presented the amount of bandwidth

Seawave would generate in different hierarchical networks. The results also

showed the amount of time – in simulation seconds – it took Seawave to

spread around the network by following the spanning tree and under the

link failure probability of p = 0.01.

The chapter presented the number of nodes that might be missed in the

the process of vulnerability discovery. Also, bandwidth wise, we have com-

pared our proposed vulnerability mitigation mechanism with a malicious

worm that spread using random scanning. Ongoing and future work is fo-

cused on increasing both the robustness and performance of the algorithm

in the face of intermittent bridging (e.g. found in wireless links) and de-

fending the propagation mechanism against malicious adversaries.

85

Chapter 5

A Vulnerability Mitigation Worm –

Seawave II

5.1 Overview

In this chapter we further enhance and improve Seawave I by adding edge

node failure recovery, network backbone traversal, and intermittent node

detection and recovery. These new features allow the defensive worm to

ensure sound coverage by assuring each node has been probed for vulner-

abilities and it also allows the mechanism to independently traverse the en-

terprise network without human intervention – Seawave I required human

intervention – and it adds the capability to detect powered down, discon-

nected, or portable devices as soon as they connect to the enterprise net-

work. Risks and threats to the mechanism are also addressed in this chapter.

5.2 Network Topology Model

The network model we have used for Seawave II follows the one described

in Chapter 4, Section 4.2; however, to observe how the vulnerability mit-

igation mechanism deals with topology updates and intermittently active

hosts, each node was set to run under two modes: online and offline. When

the node is in the offline mode it can not be seen by the mechanism and

is considered disconnected until it becomes online. Fig. 5.1 shows an ex-

ample of a small 100-node network, with a switch and hosts in the offline

mode. In the simulation we have assumed the enterprise network supports

87

5. A VULNERABILITY MITIGATION WORM – SEAWAVE II

34

0.1.34

33

0.1.33

32

0.1.32

31

0.1.31

30

0.1.30

29

0.1.29

28

0.1.28

99

0.2.44

27

9

0.1.9

98

0.2.43

26

0.1.26

8

0.1.8

97

0.2.42

25

0.1.25

7

0.1.7

96

0.2.41

24

0.1.24

6

0.1.6

95

0.2.40

23

0.1.23

5

0.1.5

94

0.2.39

22

0.1.22

4

0.1.4

93

0.2.38

21

0.1.21

3

0.1.3

92

0.2.37

20

0.1.20

19

0.1.19

2

0.1.2

91

0.2.36

18

0.1.18

1

0.1.1

89

0.2.34

90

0.2.35

17

0.1.17

0

0.1.0

88

0.2.33

16

0.1.16

87

0.2.32

15

0.1.15

86

0.2.31

14

0.1.14

85

0.2.30

13

0.1.13

84

0.2.29

12

0.1.12

83

0.2.28

11

0.1.11

82

0.2.27

109

0.2.54

110

0.0.0

10

0.1.10

81

0.2.26

108

0.2.53

79

0.2.24

80

0.2.25

107

0.2.52

78

0.2.23

106

0.2.5177

0.2.22

105

0.2.50

76

0.2.21

104

0.2.49

75

0.2.20

103

0.2.48

74

0.2.19

102

0.2.47

73

0.2.18

101

0.2.46

72

0.2.17

100

0.2.45

71

0.2.16

69

0.2.1470

0.2.15

68

0.2.13
67

0.2.12

66

0.2.11

65

0.2.10

64

0.2.9

63

0.2.8

62

0.2.7

61

0.2.6

59

0.2.4

60

0.2.5

58

0.2.3

57

0.2.2

56

0.2.1

55

0.2.0

54

0.1.54

53

0.1.53

52

0.1.52

51

0.1.51

49

0.1.49

50

0.1.50

48

0.1.48

47

0.1.47

46

0.1.46

45

0.1.45

44

0.1.44

43

0.1.43

42

0.1.42

41

0.1.41

40

0.1.40

39

0.1.39

38

0.1.38

37

36

0.1.36

35

0.1.35

Figure 5.1: A 100 node hierarchical network that implements STP with scattered
disconnected, i.e. offline, nodes (gray links), including a switch.

the following:

• Simple Network Management Protocol (SNMP).

• Spanning Tree Protocol STP and is loop-free.

• Open Shortest Path First (OSPF) [67, 68] as a routing protocol.

• CAM and port status is maintained by switches.

We have generated 17 hierarchical networks consisting of offline nodes

and switches; nodes are linked via a duplex-link where packets can flow in

88

5.3 SEAWAVE II

both directions, and for the results reported in section 5.7, the number of

nodes was chosen between 100 and 8000, with link bandwidth set to 100

Mbps and assuming a discovery packet size of 900 bytes. If we consider a

switch domain as a switch with its directly connected hosts, then there exist

three failures that Seawave II might encounter, including:

• Self-replicating failure to the next switch domain.

• Failure when probing an edge node.

• Self-replicating failure to the next LAN.

The cause of failures, however, is either due to a link or a node operation

failure. In both cases the agent will try to recover the failure. More simula-

tion attributes are mentioned in section 5.7.

H5

H6

H3

H1 H12 H11

H7

H4

H8

A D

C

H10 H2 H9

B

LAN 1

LAN 2

LAN 3

LAN 4

H5

H3

H6

ARP Table

H7

H4

H8

ARP Table

H12

H1

H11

H10

H2

H9

ARP TableARP Table

Figure 5.2: Traverse Backbone Algorithm

5.3 Seawave II

The vulnerability mitigation mechanism proposed in Chapter 4 (Seawave I)

falls short in performing edge node failure recovery and topology change

89

5. A VULNERABILITY MITIGATION WORM – SEAWAVE II

detection, which is detrimental when confronted with volatile edge net-

works. It also does not provide an algorithm for traversing the network

backbone, which requires assigning a host at each LAN as a starting point.

Therefore, in this section we provide enhancements to address these limita-

tions.

In order to provide edge node failure recovery, Seawave will wait for a

response from edge nodes to ensure successful probes; upon failure to re-

spond, the agent will retry after 0.5 seconds. For the vulnerability mitigation

agent to be able to propagate from one LAN to another, it needs to map the

topology of the backbone. Since the OSPF routing protocol is implemented,

the agent upon detection of a router during its propagation, sends to the

router an SNMP MIB request to fetch the OSPF Link State Database (LSD),

which gives a complete description of the backbone, including: Routers,

network segments, and how they are interconnected [69]. This database

is built by the collection of Link State Advertisements (LSA) sent by each

router in the backbone to describe its local routing information. The agent

also reads the ARP cache of the LAN interface of each router to detect a

host IP address in order to self-replicate to. For example, Fig. 5.2 shows a

sample of a network of four LANs connected by a backbone that consists of

four routers. When the agent reachesH1 and detects a router device (e.g. by

checking the SNMP MIB value of ipForwarding if set to one then the device

is a router [15]), it will send an SNMP MIB request ospfLsdbTable to fetch the

LSD [69] and the ARP cache stored at router A using SNMP MIB ipNetTo-

MediaTable; upon receiving router’s A response the agent at H1 extracts the

backbone network map, which in this example consists of routers A,B,C,

and D. The agent thereafter sends an SNMP MIB request to routers B, C,

and D to fetch the stored ARP cache of network interfaces connected to the

LAN. In parallel, the agent picks a host in the ARP cache table of router A

to detect a valid IP address that belongs to a LAN directly connected to the

router for the agent to propagate (No IP will be picked in the case of the

90

5.3 SEAWAVE II

example, since there is only one LAN connected to router A). The agent

subsequently attempts to self-replicate to the selected IP address and waits

to receive replies from routers B, C, and D containing ARP cache tables.

Upon receiving the tables, the agent picks one IP address for each LAN and

self-replicates to it; to ensure comprehensive coverage of all LANs in the

enterprise network.

We denote the list of LANs connected to the first router encountered

by the mechanism as L(ARPR0) where ARPR0 is the ARP cache stored at

routerR0. And we denote LSD stored in the first router as LSDR0 , where the

number of routers according to the database is LSDR0 {N}. We denote the

function of fetching data through SNMP as SNMP and agent self-replicating

as SR. The algorithm for traversing the backbone, then follows:

1. Fetch Link State Database (LSD) and ARP cache from the first encoun-

tered router, using SNMP: SNMP {LSDR0 ∪ ARPR0}

2. Pick an IP address from each LAN interface (else the source LAN inter-

face) in the ARP cache of the first encountered router and self-replicate

to that IP address: SR(L(ARPR0)− {L0})

3. Fetch ARP cache from all other routers in the backbone (according to

LSD), using SNMP: SNMP
{
ARPR1 ∪ ARPR2 ∪ . . . ARPRLSDR0

{N}

}
4. Pick an IP address from each LAN interface in the ARP caches of back-

bone routers and self-replicate to these IP addresses: SR(L(ARPR1) ∪

L(ARPR2) · · · ∪ L(ARPRLSDR0
{N}))

The algorithm assumes that the autonomous system consists of a single

area only, where a single read of the LSD is enough to determine the map

of the backbone. Dividing the backbone into more than one area is used in

very large networks to reduce the size of routing tables, but can be handled

in a straightforward manner.

91

5. A VULNERABILITY MITIGATION WORM – SEAWAVE II

5.4 Intermittently Active Hosts and Topology Changes

In dynamic networks, it is difficult to achieve efficient coverage of a net-

work with transient nodes without excessive scanning frequency. However,

by utilizing topology information it is possible for Seawave to determine

topology changes and intermittently active hosts for vulnerability discov-

ery. The Seawave agent takes advantage of the CAM table stored in the

switch and stores it during the first scan round. After 0.5 simulation sec-

onds, the switch is probed for the CAM table and checked for changes; new

nodes or switches are thereafter detected by the agent and probed.

When a new switch is listed in the CAM table the agent has to verify that

it is actually a directly connected switch, by using Lemma 4.1 and Lemma 4.2.

Intermittently active hosts and topology changes detection can, therefore,

be achieved by the following algorithm:

1. Fetch CAM table from the directly connected switch.

2. Compare the CAM table with the locally stored previous CAM table.

3. Probe newly detected edge nodes.

4. Probe newly detected switches devices according to Lemma 4.1 and

Lemma 4.2

5. Go to step 1 each time t

Note that to speed up the simulation, we have chosen 0.5 simulation

seconds for the agent to check the CAM table. However, the interval may

be up to 5 minutes (the default expiration time for CAM tables stored in

switches) [86]. But what about systems missing from the CAM table due to

inactivity or table age expiration? Those systems will be treated as offline

nodes and will be detected when they become active as per the algorithm.

The agent can also check for topology changes by listening to BPDUs

emitted from the root switch. When a topology change occurs, i.e. when

92

5.5 DESIGN COMPONENTS OF SEAWAVE

a switch port goes into forwarding status or from forwarding (or learn-

ing) into blocking, the switch will emit a Topology Change Notification (TCN)

BPDU to the next switch (towards the root bridge) until the root switch re-

ceives the TCN BPDU and emits a configuration BPDU with the topology

change bit set. The BPDU emitted by the root is sent to all switches and

thereafter the agent can listen to it, where it can trigger a topology change

detection. However, in case the agent might miss a topology change BPDU

we have set the agent to check for network topology changes each 0.5 sim-

ulation second.

5.5 Design Components of Seawave

Nazario et al. defined different components that constitute a worm system

[72]. We use their components to describe the design of our mechanism with

slight modifications. Seawave consists of three components that allow it to

cover the network as follows:

• Reconnaissance. This component is responsible for discovering host

nodes that are vulnerable. Seawave II reads CAM tables stored in

switches to detect edge node hosts to probe for vulnerabilities. The

mechanism also reads STP in addition to the CAM table to determine

next switch to propagate to.

• Probe Component. This component describes the method Seawave’s

uses to detect a vulnerability at a target node. For the sake of simplic-

ity, our simulation assumed all hosts to be susceptible and it requires

only one packet of the size 900 bytes to exploit a vulnerable node.

• Communication. This component describes the communication between

agents. Seawave II enables communication between agents by sending

an acknowledgment packet to the sender agent to only ensure that the

93

5. A VULNERABILITY MITIGATION WORM – SEAWAVE II

self-replicating task has been accomplished successfully so as to dis-

able any blocking attempts.

These three components summarize the design of the vulnerability mit-

igation mechanism; further extensions are discussed briefly in section 5.9.

5.6 Risks and Threats

Since the propagation path depends on topology information, any malicious

interactions with STP, OSPF, ARP, SNMP, or CAM tables might have nega-

tive impact on Seawave’s behavior. For example, the lack of authentication

of the STP protocol, makes it possible for a malicious user to manipulate the

topology and compromise the integrity of BPDUs leading to undesirable ac-

tions such as changing switch port status or electing a compromised switch

as root. Yet, although these vulnerabilities do not relate to the agent directly,

any countermeasure to prevent such abuse would participate in the protec-

tion of the defensive worm itself. Some protection measures do exist for

STP, such as disabling user ports upon detection of STP traffic and disabling

ports that emit false BPDUs that elect false roots.

A malicious user flooding a CAM table with fake MAC addresses, will

cause the switch to act as a hub, with no edge information for the agent to

utilize. One possible mitigation to such misuse would be shutting down

a port if more than one MAC were detected, performance issues however,

should be considered when applying such mitigation.

For the agent to traverse the backbone it has to read the ARP cache stored

in the router. ARP cache poisoning may redirect the agent to an IP address –

out of Seawave’s scope – inserted by malicious users, however, the agent can

be designed to ignore any IP address that do not adhere to certain attributes

put by the enterprise security team. ARP cache poisoning can be achieved

by sending malformed gratuitous ARPs to the target machine, however, pri-

vate VLANs can – to some extent – eliminate such abuse, as they do not

94

5.7 SIMULATION RESULTS

allow nodes on different ports to communicate at layer two but still allow

them to share the same network space.

Since the agent uses SNMP in its communication with network devices

(e.g. switches and routers) a malicious user can intercept this line of com-

munication and alter it according to its attack preference. When the agent,

for example, probes a neighboring switch to determine if it is directly con-

nected to the current switch, the attacker can respond with an SNMP mes-

sage that indicates the switch to be a non-neighbor switch. This will cause

the agent to ignore the switch, and might cause the agent itself to stop any

further propagation. Another scenario, would be an attacker altering the

router response to fetch the OSPF Link State Database SNMP request, giv-

ing the attacker the freedom to define the backbone map according to his

intrusion preference and using it as an input to the mechanism.

Even if we assumed the agents to not be vulnerable to STP, ARP, or

SNMP attacks; a switch domain can be isolated from the vulnerability dis-

covery process by turning the agent off physically (weather the intention

malicious or due to human error). Also, the agent can be controlled re-

motely if it was running under a vulnerable operating system where an at-

tacker can exploit or if the intruder was able to compromise a privileged

user account on the agent host. To reduce these threats, different protective

measures and performance aspects of Seawave are addressed in Chapter 7

followed by a formal threat analysis model of Seawave in Chapter 8.

5.7 Simulation Results

Based on the simulation aspects and the random scanning model described

in Chapter 4 section 4.7 and 4.6; in addition to the assumptions mentioned in

section 5.2, we have run our simulations and gathered the following results:

• Number of link failures under p = 0.01.

95

5. A VULNERABILITY MITIGATION WORM – SEAWAVE II

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 1000 2000 3000 4000 5000 6000 7000 8000

Fa
ilu

re
 A

tte
mp

ts

Network Nodes

Link Failure
Node Operation Failure

Figure 5.3: Failure due to link (p = 0.01) or node operation (p = 0.05).

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 1000 2000 3000 4000 5000 6000 7000 8000

Tim
e (

Si
mu

lat
ion

 S
ec

on
ds

)

Network Nodes

Mechanism
Variance

Figure 5.4: Time to cover the whole enterprise network

• Number of node operation failures under p = 0.05. Note that node

operation failures are caused by the node itself (e.g. system is busy or

in different state due to restarting).

• Number of packets generated by both Seawave II and the randomly

scanning worm to cover the network. The packets, however, that are

generated between a switch and a host are exempt due to them having

96

5.7 SIMULATION RESULTS

 0.41

 0.42

 0.43

 0.44

 0.45

 0.46

 0.47

 0.48

 0.49

 0 1000 2000 3000 4000 5000 6000 7000 8000

Tim
e t

o d
ete

ct
ne

w
ne

tw
or

k d
ev

ice
s

Network Nodes

Topology Change Detection

Figure 5.5: Time to detect all newly added network devices

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 1000 2000 3000 4000 5000 6000 7000 8000

Pa
ck

ets
 of

 S
ize

 90
0 b

yte
s

Network Nodes

Mechanism
Random Scanning Malicious Worm

Figure 5.6: Number of packets generated by randomly scanning worm in compar-
ison to our scanning mechanism

no significant impact on the bandwidth of the network.

• Time it takes the mechanism to cover the corporate network. When

there is a link or a node operation failure, the mechanism will retry

after 0.5 simulation seconds.

• Time it took the mechanism to detect all new network nodes that have

just joined the network. In all simulations the network nodes were ran-

97

5. A VULNERABILITY MITIGATION WORM – SEAWAVE II

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 4.5e+06

 5e+06

 5.5e+06

 0 500 1000 1500 2000 2500

No
n-

ex
ist

en
t IP

 A
dd

re
ss

es

Network Nodes

No Host

Figure 5.7: The random scanning worm number of scan attempts of non-existent IP
addresses

domly added to the topology at different locations. All offline nodes

became online at the 2.5 second of the simulation time.

• Number of random worm scans of non-existent IP addresses.

For the sake of simplicity, we have assumed in the simulation, that the

CAM table and STP information stored in the switch can be requested by

sending one packet. A single SNMP MIB request is also assumed to fetch

OSPF information in addition to ARP cache table stored in the router.

5.8 Discussion

Seawave tries to combine both the distinctive exploring nature of self-replication

programs and the constraints of the enterprise network, to provide a sound

protection without disturbance to the network focal interests. It appears

that by using network topology information it is possible to dramatically

reduce the bandwidth utilized by self-replicating programs as in the case

with Seawave II.

98

5.8 DISCUSSION

Seawave I (see Chapter 4) had some limitations in its capability to spread

around the network and achieve sound coverage without human interven-

tion (i.e. hard coding a single host IP at each LAN to bypass the backbone).

The improvements thereafter are required to address these limitations to

produce a more robust vulnerability discovery mechanism. Three limita-

tions of the previous approach have been addressed by Seawave II. First,

it adds edge node failure recovery ensuring that all network nodes are not

missed; this is important since one vulnerable node can cause a threat to the

whole enterprise network. Second, it provides an algorithm to detect newly

added network devices, which ensures that a vulnerable node joining the

enterprise network get probed as soon as possible to minimize the time of

vulnerability exposure. Third, it provides an algorithm to bypass the net-

work backbone utilizing protocols such as OSPF and ARP; which gives the

mechanism the capability to spread and cover the vulnerable network as

fast as possible to achieve absolute protection.

As in any mechanism Seawave is not fully immune to threats and risks.

The mechanism depends on topology information to propagate, which leaves

it bound to the protection measures applied to this information. Vulnerable

STP allows a malicious user to control and define the path the mechanism

would take; this could allow the attacker to hide nodes from the mecha-

nism, or even cause a denial of service attack by adding network loops to

the topology. Notice that this is not a direct attack on Seawave itself but on

the feedback the mechanism uses to function. The same applies to the CAM

table, what if a malicious user alters it to reflect no switches available. This

would lead the mechanism to find no further way to propagate and stop.

More threats exist in the backbone as well.

Seawave depends on OSPF protocol to pass to other LANs, what if an at-

tacker was able to forge the LSD to contain non-existent IP addresses? This

will stop the vulnerability discovery process from reaching further LANs.

Or even worse, the compromise of the LSD would allow the attacker to

99

5. A VULNERABILITY MITIGATION WORM – SEAWAVE II

define routers IP addresses that is not necessary part of of the predefined

scope of the mechanism. Likewise with ARP cache stored at routers, a poi-

soned ARP cache can give the attacker the ability to direct the worm to self-

replicate to whatever IP is given as long the target is vulnerable. This would

take the vulnerability mitigation mechanism out of its predefined scope and

would add a malicious intention to its operational procedure.

Detecting new switches and nodes is also threatened by malicious activ-

ity. One scenario would be adding a rogue switch where Seawave would

not be able to deal with. When Seawave probes the rogue switch for CAM

or STP information, the switch would provide misleading response, such

as fake designate bridge, allowing the switch to remain with its directly

connected malicious nodes away from the mechanism’s coverage. Seawave

assumes the topology information to be authentic and has not been altered.

However, if that is not the case, it becomes vulnerable to the same vulner-

abilities the network topology has. This is expected as the mechanism in

its topology dependent nature becomes part of the network, like the proto-

cols operating within the network, not like an independent external security

system.

The simulation results cover different aspects of performance. Node op-

eration and link failures of p = 0.05 and p = 0.01, respectively, have recorded

different results. For example in a network of size 2500 nodes, link failures

were 27 and node operation failures were 131. Further, 85 link failures were

recorded at a network of the size of 8000 nodes and 420 node operation fail-

ures at the same network. Fig. 5.3 shows more results. The time it took the

agent to cover a network of 2500 elements was 3.25 simulation seconds and

4.0s to cover a 5000 network topology. Of course the time is affected by link

and node operation failures, Seawave will wait 0.5s before retrying after a

link or node operation failure. Note that the time reflects the coverage of

the whole network including newly added network devices, that join the

network at simulation second 2.5. Fig. 5.4 shows more results.

100

5.9 SUMMARY

For the topology change detection, which records the time it takes the

propagation mechanism to detect all newly added network devices, it shows

close results. That is because each topology detects almost the same number

of network devices. In a network of the size 3000 it required 0.47s to detect

30 hosts and a switch (with different hosts connected to it) and 0.48s for a

network of the size 8000. More results can be seen at Fig. 5.5. In comparison

with a randomly scanning worm, our mechanism has generated 570 packets

in a network of the size 1500, while the random scanning worm generated

23074 packets. Moreover, the random worm generated 31358 packets to

cover a network of the size 2500 while our scanning algorithm required 912

packets only. Further results are shown in Fig. 5.6.

The random scanning worm has generated too many scans to non-existent

IP addresses. Although the worm operates within the LAN, non-existent IP

scans will cause the host to emit an ARP probe for each new IP address scan-

ning attempt. For a network topology of the size 1500 it resulted in 3660723

non-existent IP scan attempts and 5165367 for a network of size 2500. Re-

sults are shown in Fig. 5.7. Seawave, however, avoids scanning non-existent

IP addresses since it detect targets based on CAM information.

5.9 Summary

We have previously proposed a defensive worm (Seawave I) to help pre-

vent malicious attacks in Chapter 4, and in this chapter we further enhance

its performance. Improvements include: edge node failure recovery to en-

sure sound and efficient coverage of all vulnerable edge nodes and an al-

gorithm to enable the mechanism to traverse the network backbone using

OSPF protocol and ARP stored in routers – which provides independently

driven self-propagation to all network LANs without human intervention

as compared to the previous design.

We also proposed an algorithm to enable the mechanism to detect newly

101

5. A VULNERABILITY MITIGATION WORM – SEAWAVE II

added network devices as soon as possible to eliminate vulnerability expo-

sure. Since Seawave is topology dependent, different risks and threats to

topology information have been highlighted, especially protocols utilized

in the discovery process, such as: STP, OSPF, ARP, SNMP, and CAM.

We have validated Seawave through simulations; the results shown here

assumed relatively volatile link failures of probability p = 0.01 and node

operation failure of p = 0.05. The results also showed the time it took Sea-

wave to cover the network, in addition to the time required to detect newly

vulnerable nodes that have just joined the corporate network. Simulation

results of a randomly scanning worm that to some extent mimic the propa-

gation behavior of the Slammer worm have also been gathered to be com-

pared with the vulnerability mitigation mechanism in terms of bandwidth

utilization. Ongoing and future work is focused on increasing both the ro-

bustness and performance of the algorithms in defending the propagation

mechanism against malicious adversaries.

102

Chapter 6

An LLDP Based Vulnerability

Mitigation Worm

6.1 Overview

In this chapter we propose a simple defensive worm that traverses the en-

terprise network with only knowledge of the immediate network neigh-

borhood as can be obtained from passive observation of the LLDP proto-

col. This minimizes bandwidth consumption in conjunction with persistent

agents deployed by the traversal to capture transient or intermittently ac-

tive nodes. We also analyze the efficiency of our propagation mechanism

under different topologies, while considering – in our simulations – link,

node, and discovery attempts failures. We also compare the mechanism

with blind vulnerability discovery and Seawave I1.

6.2 Introduction

Seawave depends mainly on the spanning tree protocol, but for networks

that do not support STP, a defensive worm can look for alternative protocols

to get topology information. In this chapter we propose a mechanism for

rapid automated vulnerability discovery and mitigation dissemination us-

ing local knowledge of network topology to both contain propagation and

– more importantly – to reduce communication complexity while retaining

1Although, in this chapter we propose another vulnerability mitigation worm, for the sake of this
thesis, we concentrate our work on Seawave; and leave further improvements of this defensive worm
for future work.

103

6. AN LLDP BASED VULNERABILITY MITIGATION WORM

propagation speed and robustness. Our mechanism utilize the Link Layer

Discovery Protocol to learn about neighboring nodes and self-propagate

gradually until total coverage of the enterprise network.

6.3 Network Topology Model

The topologies considered in this chapter assume a hierarchical structure

as typically found in structured (enterprise) networks; we formally model

these topologies using the Transit-Stub model based on work by Zegura

[113], obtaining hierarchical graphs by composing interconnected transit

and stub domains. The network is developed by initially constructing a

connected random graph then each node is replaced by another randomly

connected graph representing the backbone of the network. Each node in

the backbone is then replaced by a randomly connected graph to represent

a LAN connected to a backbone node. Additional edges are then added

within LANs and backbone with edge probability 0.5 within Local Area

Networks (LANs) and edge probability 0.8 between each pair of backbone

nodes [113]. We assume each node in the topology (including routers) sup-

ports LLDP. Five different topologies were generated. For topologies that

support STP (where Seawave is due to run), we follow the model described

in Chapter 4 Section 4.2.

For more accurate results different numbers and layouts of hierarchical

networks have been designed for simulations. These hierarchical topologies

consist of a backbone with different number of LANs connected to it. The

Drop Tail queue management algorithm has been used as a queuing algo-

rithm. Nodes are connected via a duplex-link where packets can flow in

both directions. The number of nodes vary between 72 to 260 with a link

failure probability of p = 0.01 and node operation failure of p = 0.05. In

each simulation, the initial node triggers the vulnerability discovery mech-

anism by sending a packet of 900 bytes within 0.2 seconds of starting the

104

6.4 LLDP BASED VULNERABILITY MITIGATION WORM

simulation.

C

B

D

A

Semi-Auto Link Layer
Vulnerability Discovery

Blind Vulnerability
Discovery

Figure 6.1: Zero-Topology knowledge vulnerability discovery (blind)

6.4 LLDP Based Vulnerability Mitigation Worm

In dynamic networks or networks where the topology is unknown or al-

ways changing it is difficult to achieve efficient coverage . However, with

some limited knowledge of network topology, a vulnerability mitigation

mechanism can find its way through the network in a robust manner. If we

assume that each node in a hierarchical network knows its adjacent nodes

(neighbors), it would be possible for many nodes to avoid probing an al-

ready probed system, which – compared to blind vulnerability discovery –

reduces the traffic load on the network and minimizes processing time.

Our proposed algorithm is a vulnerability mitigation worm, which uti-

lizes information from the data link layer (layer 2 of the OSI model) to recon-

struct topology information found through the Link Layer Discovery Protocol

to detect neighboring nodes and propagate gradually until total coverage of

105

6. AN LLDP BASED VULNERABILITY MITIGATION WORM

A

D

C

B

C

A

D

B

C

E

D

B

A

E

C

MIB

MIB

 MIB

MIB

MIB

Device 1

Device 2

Device 1

Device 2

Device 3

Device 1

Device 2

Device 1

Device 2

Device 3

Device 1

Device 2

B

Redundant

Probes

E

Figure 6.2: LLDP Based Vulnerability Mitigation Worm

the enterprise network.

In a fully connected four vertexes graph, such as in Fig. 6.1, each node

will probe its neighbors. For example, if A started probing, it will probe

nodeB,C, andD. NodeB will probe node C andD. Node C will thereafter

probe B and D. Node D will probe its adjacent neighbors C and B. Nodes

afterwards will respond to other probes in a similar way, which results in

six redundant probes and four transaction (assuming equal processing time

for each probing and forwarding step).

However, when the immediate neighbors are known, there will be no

redundant probes and only a single transaction step is required. We note

that the neighborhood information is already provided by the IEEE Link

Layer Discovery Protocol (LLDP) and can be used to discover adjacent net-

work nodes without incurring additional cost. LLDP is a media indepen-

dent protocol intended to be run on all IEEE 802 LAN stations and to allow an

LLDP agent to learn the connectivity and management information from adjacent

stations. [40]. The mechanism traversing the network takes advantage of

the flexibility of self-replicating and self-propagating programs (agents) to

106

6.5 LLDP BASED VULNERABILITY MITIGATION DEFENSIVE WORM

IMPLEMENTATION

distribute the vulnerability discovery process around the network without

regard to network topology. The use of agents enables the mechanism to

capture intermittently active nodes and probe hosts from closer distances,

easing the impact on busy links; for more features see Chapter 2 Section 2.1.

When a node gets probed and an agent is installed it checks to see if there

exist any common neighbors with the probing node, and probes all adjacent

nodes except common neighbors. For example, node A probes the adjacent

node B, then the agent at node B compares its neighbors list N(B) with

A’s neighbors list N(A) and probes {N(B)\N(A)} − {A} to avoid dupli-

cate probes if possible. However, since different nodes can share the same

neighbor it is possible for a node to receive redundant probes or to initi-

ate unnecessary transactions. For example, in Fig. 6.2 when node A initi-

ates agent propagation, there will be two propagation paths. The first path

passes through node C, D, and E, while the other path pass through B and

E. NodeE, therefore, will receive two redundant probes as both paths leads

to E. However, the existence of more than one path to probe a node has the

positive side of the mechanism being able to reach the node even if a spe-

cific path has been blocked. Multiple paths helps in preventing malicious

attempts directed towards stopping the mechanism from propagating, such

as a rogue node that does not react normally to common network behavior.

Furthermore, multiple paths allow the mechanism to avoid missing large

parts of the network when a certain path is not responding positively to

agent propagation (i.e. parts that can not be reached from path A can be

reached by path B). More threats on the mechanism are set for future work.

6.5 LLDP Based Vulnerability Mitigation Defensive Worm

Implementation

Based on LLDP, each node will store a local data base known as Manage-

ment Information Base (MIB) which lists neighbors connected to the node.

107

6. AN LLDP BASED VULNERABILITY MITIGATION WORM

The database can be accessed by requesting LLDP MIB objects using SNMP.

The nodes advertise information about themselves to their neighbors and

collect the information they receive about their adjacent nodes. When a

node needs to learn the list of neighbors of a sender, it accesses the sender’s

MIB through SNMP. When node A probes node B, node B communicates

with node A through SNMP to obtain the list of neighbors, if this informa-

tion is not already retained locally. Regardless of the preceding step, B can

then iterate through the list of neighbors in sequence and probe all neigh-

bors other than common neighbors. This is illustrated in Fig. 6.2 as node

A triggers the mechanism where it starts by reading the station’s neighbors,

which are in this case nodesB andC. When the agent self-replicates to node

B and C both stations will start reading their own neighbors and propagate.

Node B will read A, C, and E and will then read the neighbors list of the

source by requesting the LLDP MIB stored at node A if necessary, obtaining

nodes B and C. B, thereafter, will ignore node A because it is the source

node and will ignore node C because it is a common neighbor between A

and B and will self-replicate to node E. A similar scenario will occur to

node C, where it will self-replicate to node D (ignoring A and B) and then

to node E. Node E, however, will receive two redundant probes that is due

to node E being a common neighbor to two nodes whom are not adjacent

(B and D).

Assuming a node that has received the agent from another node as nreceiver

and the node that sent the agent as nsender. The algorithm can be summa-

rized as follows:

1. Install agent at the starting host n0 in a subnet.

2. Unless nreceiver = n0, if nreceiver is already probed then stop, else con-

tinue.

3. Agent reads nreceiver LLDP Management Information Base objects to

extract adjacent neighbors A.

108

6.5 LLDP BASED VULNERABILITY MITIGATION DEFENSIVE WORM

IMPLEMENTATION

4. Agent then reads nsource LLDP Management Information Base objects

to extract adjacent neighbors B.

5. Remove nreceiver and nsender from the lists and compare them and self-

replicate to non-common neighbors, that is {A\B} − {nsource}.

6. Go to step 2

We assume that adjacent neighbors are nodes directly connected to the

sender or receiver nodes. We consider the whole network as N. The agent

propagates through adjacent nodes sets {A0, A1, A2..}whereN = {A0 ∪ A1 ∪ A2..}.

When the intersection of any two sets (whom are not adjacent) is not empty

then redundant probes would occur, that is {A0 ∩ A1} 6= φ

Agents play an important role in achieving sound coverage of the net-

work. When a node is offline it would not appear in LLDP list of adjacent

nodes, allowing the vulnerability discovery mechanism to fail to see the of-

fline node. However, when each agent around the network reads neighbors

list periodically, nodes that go online or offline would be noticed and suit-

able actions can take place. As soon as a node appears online, it announces

itself through LLDP, where an agent will be able to detect it and thereafter

probe it for any vulnerability – assuming the vulnerability mitigation tech-

niques described at Chapter 4 Section 4.5. In addition, agents would help to

address the problem in relation of network dynamics, the existence of links

and disappearance of others. When there is a new segment connected to

the network, as long as LLDP can be read, it can be detected by agents and

thereafter get assessed for vulnerabilities, reducing the time of vulnerability

exposure as much as possible.

To avoid any possible unauthorized alteration of vulnerability discovery

packets, integrity protection measures can be applied. Both message in-

tegrity and authenticity are required to provide secure vulnerability probes;

one way to provide this is by using Message Authentication Codes or MACs,

a symmetric technique that depends on a secret key distributed among com-

109

6. AN LLDP BASED VULNERABILITY MITIGATION WORM

munication entities. It can be derived by block ciphers or cryptographic

hash functions. When the sending and receiving nodes generate a valid

MAC then they can build a secure line of communication. SSL/TLS and

IPSec for example utilize such technique [37]. Each MAC is embedded into

a packet, by running the key against the packet, the receiving node can ver-

ify message integrity and origin.

Figure 6.3: Two network topologies with the same number of nodes (100), but with
different layouts.

6.6 Vulnerability Discovery Mechanism Design

Components

Nazario et al. defined different components that constitute a worm system

[72]. We use their components to describe the design of our LLDP based de-

fensive worm with slight modification. The vulnerability discovery mecha-

nism consist of three components that allow it to cover the network as fol-

lows:

• Reconnaissance. This component is responsible for discovering host

nodes that are vulnerable. Our discovery and propagation mechanism

depends on the information provided by the LLDP protocol to propa-

110

6.7 RISKS AND THREATS

gate. Hosts are discovered by looking up the neighboring nodes stored

in the LLDP database.

• Probe Component This component describes the method the mechanism

used to detect the vulnerability at a target node. For the sake of sim-

plicity, our simulation assumed all hosts to be susceptible and it re-

quires only one packet of the size 900 bytes to exploit another node and

we assume vulnerability mitigation techniques as described in Chapter

4 4.5. However, in a heterogeneous network, more elaborate scanning

will be required from agents.

• Communication. This component describes the communication between

agents. The scanning mechanism does not allow communication be-

tween agents at this stage, else for detecting if the node has been probed

more than once.

These three components summarize the design of the vulnerability mit-

igation mechanism; further extensions are to be added in future work.

6.7 Risks and Threats

The vulnerability mitigation mechanism assumes the topology information

to be authentic. However, if that is not the case, it becomes vulnerable to

the same vulnerabilities the network topology has. This is expected as the

mechanism in its topology dependent nature becomes part of the network,

like the protocols operating within the network, not like an independent

external security system.

When a malicious entity compromises a network node, it will have the

ability to alter the LLDP database stored in the system. Which gives the

attacker the force to at least hide the compromised node from the mecha-

nism’s sight; that can be achieved by stopping the node from advertising

its identity. However, even though the compromised node has hidden it-

111

6. AN LLDP BASED VULNERABILITY MITIGATION WORM

self from vulnerability detection, its neighbors most probably have been de-

tected by the mechanism, which leaves the vulnerable node to some extent

isolated in the network. Exceptions exist if the neighbors of compromised

node are only connected to it, which leaves the node and its neighbors vul-

nerable.

When an attacker compromises an agent itself, he can stop the propaga-

tion of the mechanism by deleting the LLDP database providing no further

hosts to scan. However, other agents distributed throughout the network

might be able to cover the vulnerability gap caused by such malicious ac-

tivity. For the attacker to stop the whole mechanism from vulnerability de-

tection he has to compromise each agent, which is a difficult task unless the

malicious user was able to control the agent(s) in the very early stages of

propagation.

6.8 Simulation Results

In order to measure the performance of both the baseline blind scanning and

our proposed vulnerability discovery mechanism, computer network sim-

ulations were used. All simulations have been performed using Network

Simulator 2 (NS-2) [42]. As described in section 6.3, hierarchical networks

were generated to model larger enterprise networks. Two parameters were

considered in simulations: The number of network nodes and different net-

work architectures. In total, there were 300 hierarchical network simula-

tions performed by NS-2. The simulations were grouped into 5 groups each

group consisted of a different quantity of nodes that varied from 72 to 260.

For blind and Seawave mechanisms, 5 different layouts of the same topol-

ogy were generated. Note, blind and LLDP mechanisms were run under

the same topologies, while Seawave was run under topologies that support

STP. In each simulation we have gathered the following:

• The number of link failures under the probability of 0.01.

112

6.8 SIMULATION RESULTS

• The number of node operations failures under the probability of 0.05.

Node operation failures are failures caused by the node it self (e.g. sys-

tem is busy or in different state due to restarting).

• The number of redundant probes issued by each mechanism. Redun-

dant probes are probes received by a node more than once.

• The actual number of missed nodes during the process of vulnerability

discovery.

The simulations were run at each group and the average result was cal-

culated for better accuracy. Toplogy nodes consisted of router nodes on the

backbone and host machines spreads around the network as LANs.

6.8.1 Worm’s Sensitivity to Network Topology

Although the network structures were similar (backbones and several LANs),

the generation of unnecessary bandwidth (redundant probes) varied heav-

ily among different topologies. For instance running the same simulation

on two different topologies with the same number of nodes (100) generated

two widely different results. The first blind vulnerability discovery simu-

lation resulted in 63 redundant probes on the first topology. The second

simulation on a topology with the same number of nodes resulted in 277

redundant probes. Running our proposed vulnerability discovery mecha-

nism on the same topologies have resulted in 20 and 116 redundant probes

respectively. Fig. 6.3 shows an example of two network topologies of 100

nodes used as part of the simulations. This indicates how sensitive the self-

replicating and self-propagating algorithms are towards the network struc-

ture and how previous knowledge of the network topology would improve

the performance of such algorithms.

113

6. AN LLDP BASED VULNERABILITY MITIGATION WORM

0

150

300

450

600

72 95 98 100 108 111 112 114 116 130 150 174 180 190 204 209 222 246 256 260

R
ed

un
d

an
t

P
ac

ke
ts

Nodes
Blind LLDP

Figure 6.4: Redundant Probes.

6.9 Discussion

Even limited knowledge of network topology can reduce the communica-

tion complexity of self-replicating and self-propagating network approaches

and is crucial in avoiding congestion. Vulnerability discovery cannot use

highly efficient (reliable) broadcast mechanisms as it requires both interac-

tion between entities and recovery from intermittent availability and faults

since the cost of missing nodes in the discovery is disproportionate.

While blind scanning has the potential to achieve very high coverage, the

number of redundant messages particularly on backbones is problematic as

congestion potentially limits service availability and also restricts propaga-

tion speed. For a network of 100 nodes, our proposed mechanism reduced

the number of redundant probes to 34% of the blind probing approach (on

average), while for a 222-node network, the reduction was 36%, as can be

seen in Fig. 6.4. Seawave does not generate redundant probes as it mainly

depends on STP to propagate which avoid cycles, where there is only one

114

6.9 DISCUSSION

0

12.5

25

37.5

50

72 95 98 100 108 111 112 114 116 130 150 174 180 190 204 209 222 246 256 260

N
o

d
es

 O
p

er
at

io
n

Fa
ilu

re
 0

.0
5

Nodes

Blind LLDP Seawave

Figure 6.5: Node Operation Failure Probability of 0.05

active path to a node. However, the mechanism would generate some over-

head in terms of topology information gathering, as Seawave would com-

municate with neighboring switches to read CAM and STP information to

determine the worm propagation path and requires further recovery traffic

for unavailable nodes.

The main benefit of our proposed LLDP based mechanism is the flexi-

bility of network infrastructure supported and use of information already

present on network nodes. Blind vulnerability discovery has resulted in the

highest amount of link failures under the probability of p = 0.01 or node

operation of p = 0.05 probability failure. That is because blind vulnerabil-

ity discovery consider all links (other than the sender link) and all adjacent

nodes (else sender’s node) in its propagation attempts.

Our algorithm records fewer failures compared to blind vulnerability

discovery as it deals with fewer links and nodes as topology information has

been utilized while, Seawave has the least amount of link and node failure

115

6. AN LLDP BASED VULNERABILITY MITIGATION WORM

0

2

4

6

8

72 95 98 100 108 111 112 114 116 130 150 174 180 190 204 209 222 246 256 260

Li
nk

 F
ai

lu
re

 0
.0

1

Nodes

Blind LLDP Seawave

Figure 6.6: Link Failure Probability of 0.01

due to the mechanism taking advantage of STP path availability (subject to

delays caused by STP convergence), as shown in Fig. 6.6 and 6.5. Results

of the actual number of missed nodes during vulnerability mitigation of the

three mechanisms are plotted at Fig. 6.7

6.10 Summary

Seawave I is a mechanism that depends mainly on STP information for its

propagation; however, sometimes alternative approaches are needed when

dealing with networks that does not necessary support STP. We have there-

fore, proposed in this chapter, an alternative vulnerability mitigation worm,

that allocates its targets based on information retrieved by LLDP.

The use of LLDP gives the mechanism more flexibility which makes it

more suitable for highly heterogeneous network architectures. We have

compared the mechanism with blind vulnerability scanning and Seawave I

in terms of link and node failures, redundant probes, and number of nodes

116

6.10 SUMMARY

0

10

20

30

40

72 95 98 100 108 111 112 114 116 130 150 174 180 190 204 209 222 246 256 260

M
is
se

d

Nodes

Blind LLDP Seawave

Figure 6.7: Actual Number of Missed Nodes.

the mechanisms failed to cover.

Future work would concentrate on increasing the efficiency and robust-

ness of the mechanism, especially reducing the number of redundant probes

and providing a backbone traversal algorithm along with further protective

measures that keeps the LLDP mechanism safe from active adversaries.

117

Chapter 7

Security and Performance Aspects of

Seawave

7.1 Overview

In Chapter 4 and 5, we have tested Seawave within different network topolo-

gies and also compared it to a random scanning worm – bandwidth wise.

In this chapter, however, we release Seawave into the enterprise network

in response to a malicious random scanning worm outbreak. We observe

and evaluate Seawave’s performance and report the results, comparing the

defensive worm against the malicious one demonstrating that network im-

munity can be largely achieved despite a very limited warning interval. We

also discuss mechanisms to protect Seawave against subversion and ensure

the confidentiality and integrity of its communications.

7.2 Network Topology Model and Simulation Environment

Based on the network model previously described in Chapter 5 (Section

5.2), we have generated 5 hierarchical networks with nodes connected via a

duplex-link where packets can flow in both directions, and for the results re-

ported in section 7.5, the number of nodes have been selected between 100

and 500, with link bandwidth set to 100 Mbps and assuming a discovery

packet size of 900 bytes. Fig. 7.1 show an example.

119

7. SECURITY AND PERFORMANCE ASPECTS OF SEAWAVE

34

0.1.34

33

0.1.33

32

0.1.32

31

0.1.31

30

0.1.30

29

0.1.29

28

0.1.28
99

0.2.44

27

0.1.27

9

0.1.9

98

0.2.43

26

0.1.26

8

0.1.8

97

0.2.42

25

0.1.25

7

0.1.7

96

0.2.41

24

0.1.24

6

0.1.6

95

0.2.40

23

0.1.23

5

0.1.5

94

0.2.39

22

0.1.22

4

0.1.4

93

0.2.38

21

0.1.21

3

0.1.3

92

0.2.37

20

0.1.20

19

0.1.19

2

0.1.2

91

0.2.36

18

0.1.18

1

0.1.1

89

0.2.34

90

0.2.35

17

0.1.17

0

0.1.0

88

0.2.33

16

0.1.16

87

0.2.32

15

0.1.15

86

0.2.31
14

0.1.14

85

0.2.30

13

0.1.13

84

0.2.29

12

0.1.12

83

0.2.28

11

0.1.11

82

0.2.27

109

0.2.54

110

0.0.0

10

0.1.10

81

0.2.26

108

0.2.53

79

0.2.24

80

0.2.25

107

0.2.52

78

0.2.23

106

0.2.51

77

0.2.22

105

0.2.50

76

0.2.21

104

0.2.49

75

0.2.20

103

0.2.48

74

0.2.19

102

0.2.47

73

0.2.18

101

0.2.46

72

0.2.17

100

0.2.45

71

0.2.16

69

0.2.14

70

0.2.15

68

0.2.13

67

0.2.12

66

0.2.11

65

0.2.10

64

0.2.9

63

0.2.8

62

0.2.7

61

0.2.6

59

0.2.4

60

0.2.5

58

0.2.3

57

0.2.2

56

0.2.1

55

0.2.0

54

0.1.54

53

0.1.53

52

0.1.52

51

0.1.51

49

0.1.49

50

0.1.50

48

0.1.48

47

0.1.47

46

0.1.46

45

0.1.45

44

0.1.44

43

0.1.43

42

0.1.42

41

0.1.41

40

0.1.40

39

0.1.39

38

37

0.1.37

36

0.1.36

35

0.1.35

Figure 7.1: A sample of a network of 100 nodes where a malicious worm and Sea-
wave are operating. Yellow nodes infected (by malicious worm), brown are im-
mune (by Seawave), and red are susceptible.

7.3 Protective Measures for Seawave

Before deploying the vulnerability mitigation mechanism it is important to

add protective measures that would prevent an adversary from compromis-

ing Seawave’s integrity and confidentiality affecting its normal behavior. In

this section we therefore, propose protective measures that should maintain

the stability of Seawave during its operation and in Chapter 8 we provide a

formal threat analysis model of the mechanism.

The defensive worm in its current stage does not provide sophisticated

communication between plotted agents; however, it is crucial to protect the

communication line between agents to block any malicious attempt to feed

agents false information or even overwrite the agent code which might lead

to mechanism’s compromise. Different approaches exist to protect the line

120

7.3 PROTECTIVE MEASURES FOR SEAWAVE

of communications among Seawave’s agents, including:

Updating Agent Code

In some occasions, the security team of the enterprise network might need

to update the agents around the network to overcome certain threats; how-

ever, many malicious users might utilize any update procedure to inject ma-

licious code within the update to enable the compromise of Seawave. One

protective measure to enable the mechanism to distribute agent updates is

by using digital signatures. When Seawave needs to update its agents, it

signs the update with its private key before deploying it to all agents. Re-

cipient agents, consequently, verify the agent update by running Seawave’s

public key against the binary code and install the new update if it was ver-

ified successfully, otherwise, the update gets rejected. The same approach

has been observed with Conficker where RSA encryption with different key

lengths were used to validate or reject downloads [53]. Key distribution and

management issues should be taken into account when using public key

cryptography to secure agents communication, however, using it only to

validate agent updates from the master node (i.e. the starting node) should

not require extensive key management efforts.

Agent to Agent Communication

Agent to agent communication is needed to maintain Seawave’s operational

level, but there is no requirement to keep the communication between agents

confidential, as it should contain only information that would keep the de-

fensive worm running as expected (such as acknowledgment messages that

an agent has self-replicated successfully). However, the integrity of agent

to agent communication becomes crucial to avoid any malicious attempts

to inject false information or alter packet contents to force the vulnerabil-

ity mitigation mechanism to misbehave and fall out of its normal line of

operation. To provide integrity and authenticity to agent to agent commu-

121

7. SECURITY AND PERFORMANCE ASPECTS OF SEAWAVE

nication, agents can use a Message Authentication Code (MAC) algorithm,

provided a secret key is hard coded in all agents. The message runs through

the MAC before it is sent to its destination. The recipient agent verifies the

message using the same key. For better practice the key should be changed

regularly to prevent a malicious user from revealing the key by sniffing a

large amount of traffic.

Agent to Master Node Communication

Since the communication between agents and the master node would con-

tain sensitive information, bound to the sensitivity of the mission Seawave

has been released on, it is crucial to maintain the confidentiality of this line

of communication. Upon communication the agent suggests a symmetric

key to the master node to be used as a session key, which will encrypt all the

traffic between the two nodes throughout the session. The agent encrypts

the session key using the master node’s public key before it is sent. To pre-

vent the malicious user from altering or suggesting the key (in other words

to provide integrity and authenticity) the key is run through the MAC algo-

rithm of the mechanism. Session keys should be generated randomly with a

length that will make it hard for a malicious users to run a brute force attack

against the encrypted traffic.

7.4 Switching Seawave Off

Self-replicating and self-propagating solutions should have the functional-

ity to be switched off or un-installed from the enterprise network in case

something went wrong, or even for administrative or technical require-

ments. Since all agents are linked to a master node, Seawave can include

such functionality in different ways, including:

• The master node sends instructions to all agents to stop operating and

remain dormant.

122

7.5 SIMULATION RESULTS

• If the agent has not received any packets from the the master node

since time t then the agent stop operating and remain dormant.

• Setting a time to live (or age) for Seawave, where the whole mechanism

stops operating after a pre specified time t.

The location and address of each agent should be accessible by the enter-

prise security team through the master node.

7.5 Simulation Results

All simulations have been performed using the Network Simulator 2 (NS-

2), a discrete event simulator mainly used for research activities [42]. Fol-

lowing the model and assumptions outlined in section 7.2, topologies have

been simulated 19 times and average results were calculated to account for

random effects such as link failure probabilities and protocol state updates.

In our simulations we have gathered the following:

• The number of link failures with probability of 0.01.

• The number of node operation failures with probability of 0.05. Note

that node operation failures are failures caused by the node itself (e.g.

system is busy or in different state due to restarting)

• The number of packets generated by Seawave to cover the network

and overcome the malicious worm. The packets that are generated

between a switch and a host are, however, exempted because they have

no significant impact on the bandwidth of the network. The packet size

is 900 bytes.

• The time it takes Seawave to cover the corporate network and con-

tain the malicious worm. Time is measured in simulation seconds and

when there is a link or a node operation failure, the mechanism will

try to recover the failure after 0.5 simulation seconds.

123

7. SECURITY AND PERFORMANCE ASPECTS OF SEAWAVE

• The number of nodes infected by the malicious worm.

• The number of failed infection attempts due to the node being immune

(i.e. entered the scope of Seawave)

Both the malicious worm and Seawave will be triggered at second 0.2 of

the simulation. The malicious worm follows the model described in Chapter

4 (Section 4.6).

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 100 150 200 250 300 350 400 450 500

In
fe

c
te

d
 N

o
d

e
s

Network Nodes

Infected

Figure 7.2: Number of nodes that the malicious random worm was able to infect,
before Seawave’s domination.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 100 150 200 250 300 350 400 450 500

F
a

ile
d

 I
n

fe
c
ti
o

n
 A

tt
e

m
p

ts

Network Nodes

Failed to Infect

Figure 7.3: Number of failed infection attempts (triggered by the malicious worm)
due to the node being immune.

124

7.6 SEAWAVE PACKETS

 0

 5

 10

 15

 20

 25

 30

 100 150 200 250 300 350 400 450 500

F
a

il
u

re

Network Nodes

Link Failure

Node Failure

Figure 7.4: Link and Node operation failures during Seawave propagation.

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 100 150 200 250 300 350 400 450 500

P
a

c
k
e

ts

Network Nodes

Packets

Figure 7.5: Number of packets generated by Seawave to cover the network.

7.6 Seawave Packets

During Seawave’s propagation to cover the enterprise network, it commu-

nicates with other network devices using 14 types of packets. Within the

switch domain, an agent communicates with the directly connected switch

to detect directly connected hosts and directly connected neighboring switches.

The agent then communicates with neighboring switches and hosts to prop-

agate until it reaches the backbone where it communicates with the router to

draw the backbone and propagate to other LANs. Communication between

agents and the master node is also necessary for results gathering, updates,

125

7. SECURITY AND PERFORMANCE ASPECTS OF SEAWAVE

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 2.1

 2.2

 100 150 200 250 300 350 400 450 500

T
im

e
 -

 S
im

u
la

ti
o

n
 S

e
c
o

n
d

s

Network Nodes

Seconds

Figure 7.6: The time it required Seawave to cover the network.

and issuing further instructions. Packets classifications and descriptions uti-

lized by the mechanism to gather topology information and propagate are

summarized in Table 7.1.

7.7 Discussion

Indeed, due to the high speed of malicious worms and the lag between a

vulnerability announcement and code-level patch deployment, it is neces-

sary to have a mechanism ready to intervene when there is a significant

threat to the enterprise network. The self-replicating and self-propagating

nature of Seawave makes it competent to overcome malicious attacks.

When a malicious worm breaks out, it is a challenging task to eliminate

it, despite the ongoing research on detection and early warning [48, 19].

With a noticeable high infection rate due to random scanning the malicious

worm managed to to infect 248 nodes in a hierarchical enterprise network

of 300 nodes. And with a network of 500 nodes, 465 hosts were compro-

mised before Seawave was able to contain them. More infection results are

shown in Fig. 7.2. However, the malicious worm began to encounter failed

infection attempts, as some hosts have already been covered by Seawave

and became immune; a network of the size of 200 nodes reported 12514

126

7.7 DISCUSSION

Packet Name Description
Agent Ö Switch
Seawave STP CAM RQ Agent requests STP and CAM information

from the switch.
Seawave STP CAM RPL Reply to agent request of STP and CAM infor-

mation from the switch.
Seawave CAM RQ Agent requests CAM information from the

switches.
Seawave CAM RPL Reply to agent request of CAM information

from the switches.
Agent Ö Host
Seawave SelfReplicate Agent self replicates to host.
Seawave SelfReplicate ACK Acknowledgment of agent self replication.
Seawave Host Probe Agent probe host for vulnerability.
Seawave Host Probe ACK Acknowledgment of agent host probe.
Agent Ö Router
Seawave LSD ARP RQ Agent requests LSD and ARP information from

router.
Seawave LSD ARP RPL Reply to agent request of LSD and ARP infor-

mation from router.
Seawave ARP RQ Agent requests ARP information only from

router.
Seawave ARP RPL Reply to agent request of ARP information

from router.
Agent Ö Master Node
Seawave Agent to Master Agent initiates a request to the master node to

start a line of communication.
Seawave Master to Agent Master node initiates a request to an agent to

start a line of communication.

Table 7.1: Seawave’s Packets Description.

failed malicious infections. And 25893 failed compromising attempts for a

network of the size 400. More results are shown in Fig. 7.3

As in any mechanism, in real world deployment, the mechanism might

encounter failures due to a network link or the node itself is not in a status

to continue operating. For a network of the size 300 there were 16 dissemi-

nation failures due to node operation and about 26 failures for a network of

500 nodes. Network link failures have also occurred; for example 5 link fail-

ures have been observed for a network of the size 500 nodes. Obviously, the

127

7. SECURITY AND PERFORMANCE ASPECTS OF SEAWAVE

larger the size of the network the more chance that a link or node operation

failure would occur. More results are shown in Fig. 7.4

Bandwidth wise Seawave was able to eliminate the malicious worm in a

network of the size 300 using 116 packets. A hierarchical network that con-

sisted of 500 nodes required 194 packets to eliminate the malicious worm

and disable the vulnerability in all network nodes. More results are shown

at Fig. 7.5. One of the main challenges in self-replicating and self-propagating

mechanisms is maintaining the bandwidth, it has been observed that Sea-

wave in its task to eliminate the malicious worm and cover the network has

not produced high bandwidth or exhausted network main links, that is due

to the fact that the defensive worm utilizes the network topology to reduce

the bandwidth as much as possible.

The faster the deployment of the security mechanism the narrower the

vulnerability exposure and lesser becomes the risk. The time it took Sea-

wave to respond to the random scanning worm within a network of 300

vulnerable nodes is 1.70 simulation seconds. The time is affected of course

by failures that might happen in the link or the node itself. Seawave re-

covers failures after 0.5 seconds. The enterprise network of 400 nodes in

size has required 2.18 seconds for its coverage. Results are shown in Fig.

7.6. Note, if Seawave was not released promptly, it will be too late for the

mechanism to counter the malicious worm due to network congestion.

The integrity of Seawave becomes crucial when its agents are spread

around the enterprise network. Protective measures, therefore, are neces-

sary to provide confidentiality and integrity while the mechanism operates

within the network. The master node (the first node) uses public key cryp-

tography to protect its communication with agents as described in section

7.3, however, the possibility that the private key becomes compromised by a

malicious user still holds, but it is less likely as it is only one private key the

security team should take care of, which narrows the scope of key manage-

ment. However, the threat of compromise becomes more probable between

128

7.8 SUMMARY

agents as they all share the same secret key for the MAC, a malicious user

who compromise an agent secret key, can communicate between agents in-

cluding the master node and give misfeeds. But such a threat reduces when

the agent is only receiving commands from the master nodes and not issu-

ing them.

7.8 Summary

In this chapter we have highlighted one scenario, where a malicious worm

outbreaks to an enterprise network, to be then confronted by Seawave; which

has succeeded in containing the malicious worm and eliminating its threat.

Using networks that mimic, to a large extent, enterprise networks, simula-

tions of a malicious worm outbreak and Seawave attempts of containments

were implemented. The results covered link and node operation failures,

bandwidth generation, time of coverage, infected nodes, and failed infec-

tion attempts. In all simulation runs, Seawave was able to contain the mali-

cious worm with minimum bandwidth.

We have also highlighted protective measures that the defensive worm

can use to ensure the confidentiality and integrity of its communications.

These measures include using public key cryptography to authenticate agents

updates and exchange session keys with the master node; in addition to,

agents sharing a secret key of the MAC algorithm to ensure the integrity of

operational messages between agents.

Future work is focused on increasing both the robustness and perfor-

mance of the algorithm in defending the propagation mechanism against

malicious adversaries.

129

Chapter 8

Threat Analysis Model of Seawave

Using Bayesian Belief Networks

8.1 Overview

In this chapter we propose a threat analysis model based on Bayesian Belief

Networks (BBNs) to analyze and quantify threats towards Seawave. Based

on several threat scenarios (Section 8.5), the model also determines the risks

posed to the mechanism’s duty of assessment within the enterprise net-

work. The model constructs threats scenarios based on sequenced structure

and also forms a multi-scenario threat BBN, where malicious behaviors are

interdependent and threat performance aspects are adjusted using network

and mechanism specific parameters. Based on predetermined event proba-

bilities within these interdependent structures, threat scenarios likelihoods

and risks are driven.

8.2 Introduction

In Chapter 4 and 5 we proposed our defensive worm Seawave and with dif-

ferent types of threats – especially under complex and dynamic enterprise

networks – it becomes crucial to have a method to assess the mechanism’s

risk. Threat models allow us to prioritize the type of attacks that matters

the most, mitigate Seawave’s risks, discover more attacks [94] and spot the

weakest points within the mechanism to allow for further enhancements.

In this chapter we propose a threat analysis model to identify and quantify

131

8. THREAT ANALYSIS MODEL OF SEAWAVE USING BAYESIAN BELIEF NETWORKS

Stop Agent Propagation

AP (A|B ∩ ¬E) Goal B: Threat
Scenario # 7.

B P (B|C)

C P (C|D)

DP (D)

¬E P (¬E|¬F)

¬F

P (¬F)

Figure 8.1: Bayesian Network of Threat Scenario 7 (See A.1.2) of Goal 8.5.2, Tree 1:
Stopping the agent propagation by flooding the network with Seawave SelfRep
licate ACK packets, after compromising Seawave’s MAC algorithm.

threats and risks that malicious intruders might pose towards our vulner-

ability mitigation mechanism. The model is based on Bayesian Belief Net-

works (BBNs), which allows us to compute probabilistic inference of threats

that might target our mechanism. BBNs have four distinctive capabilities as

illustrated by Heckerman [39] and a fifth capability added by Pendharkar,

et al. [78]:

• Handling incomplete data sets,

• Learning casual relationships,

• Combining domain (prior) knowledge and data,

• Avoiding the over fitting of data, and

• Ability of updating the probability distribution.

132

8.3 RELATED WORK

These capabilities provide efficient estimates that lead to sufficient manage-

rial decision making based on previous knowledge and subjective proba-

bilistic predictions.

8.3 Related Work

Different models to analyze applications from different perspectives use

Bayesian Belief Networks since they provide a robust inductive reasoning.

Chulani et al. demonstrated few limitations of multiple regression cost mod-

els and how a more sophisticated Bayesian approach would overcome these

limitations. The authors move on to compare and contrast the two models

and conclude that the Bayesian approach is more accurate and robust than

the multiple regression approach [20]. Likewise, Fenton et al. show how

BBNs can support effective risk management decisions compared to tradi-

tional metrics approaches [28, 27], they use a decision-support toolset to

validate their proposal.

Pendharkar et al. proposed a Bayesian model and compared it with other

approaches such as neural network and regression tree. Their results show

how BBNs are more competitive in generating point forecasts, how proba-

bilistic bounds can be set by managers on software effort forecasts, and how

new subjective estimates can be incorporated to the Bayesian model [78].

Although, there is a reasonable amount of literature review on different use

of BBNs in assessing software, it is not easy to allocate a research on risk

assessment methods based on BBNs to identify and analyze casual threats

as also noted by [52].

Foroughi described an intelligent agent that uses bayesian techniques to

learn prior risks factors and asset properties in order to generate point fac-

tors and also adjust its probability distribution based on new results [32],

while Phillips et al. proposed a probabilistic graph-based approach to net-

work vulnerability analysis, which can also analyze risks to network as-

133

8. THREAT ANALYSIS MODEL OF SEAWAVE USING BAYESIAN BELIEF NETWORKS

sets [79] . Kondakci proposed a BBN based causal risk assessment method

(CRAM) to identify and analyze threats and quantify risks associated with

them. CRAM can be used to conduct inductive and deductive reasoning

[52].

8.4 Threat Model Components

Indeed threats come in different types and from various sources, it becomes

necessary to classify threats according to their main objective. Here we di-

vide the threats towards our vulnerability mitigation worm into eight com-

ponents according to the goals adversaries try to achieve:

• A: Malicious Use of Agent to Master Node Communication. Under

this component comes the threats intervening with the communication

line between an agent and the mechanism’s master node.

• B: Malicious Use of Agent to Agent Communication. The malicious

interventions in agent to another agent line of communication are in-

cluded within this component.

• C: Compromise Agent to Switch Communication. The agent commu-

nicates with the switch to retrieve important topology information.

The threats to that line of communication are included under this com-

ponent.

• D: Compromise Agent to Host Communication. When an agent com-

municates with a host node or vice versa, malicious abuse of this com-

munication line is included under this component.

• E: Compromise Agent to Router Communication. When the agent

reads router information for further propagation in the enterprise net-

work, such communication is exposed to different threats included un-

der this component.

134

8.5 MECHANISM’S THREAT BASED BAYESIAN NETWORKS

• F: Unauthorized Modification of Agent Code. This component de-

scribes malicious attempts to abuse the code update process within

the mechanism.

• G: Compromising Agent in Host Machine. Attack sequences towards

compromising the agent resident in a network node are included un-

der this component.

• H: Mechanism Information Gathering. Attempts to gather informa-

tion about the mechanism for malicious use are described under this

component.

Next we elaborate on the threat interdependent structure within each

component.

8.5 Mechanism’s Threat based Bayesian Networks

8.5.1 Goal: Malicious Use of Agent to Master Node Communication

1. A: Decrypt the Communication Line Between Master Node and Agent.

1.1 B: Break Asymmetric Encryption.

1.1.1 C: Break Asymmetric Encryption by Brute-force.

1.1.2 D: Mathematically Break Asymmetric Encryption.

2. G: Exhaust Master Node Memory (DoS).

2.1 H: Request Connections to Master Node Based on Reply-Attacks.

2.1.1 I: Sniff Network Traffic for Seawave Agent to Master pack-

ets.

2.1.1.1 J: Compromise a Network Node.

2.1.1.2 N: Plug into the Network.

2.2 K: SYN Flood

135

8. THREAT ANALYSIS MODEL OF SEAWAVE USING BAYESIAN BELIEF NETWORKS

3. L: Feed Malformed Information to Master Node.

3.1 M: Compromise an Agent Node.

8.5.2 Goal: Malicious Use of Agent to Agent Communication

1. A: Stop Agent Propagation - Abnormally.

1.1 B: Send a fake Seawave SelfReplicate ACK packet to the agent

(Reply-Attack).

1.1.1 C: Flood LAN with unauthentic Seawave SelfReplicate

ACK packets.

1.1.1.1 D: Compromise the MAC algorithm.

1.2 E: Send back an authentic Seawave SelfReplicate ACK packet.

1.2.1 F: Compromise the Selected Vulnerable Node.

2. G: Compromising the MAC algorithm.

2.1 H: Brute-force MAC Key.

2.2 I: Compromise an Agent Node.

3. J: Stop Agent propagation to Next LAN.

3.1 P: Send fake Seawave SelfReplicate ACK to Agent.

3.1.1 K: ARP Cache Poisoning of Router to Point to Compromised

Node.

3.1.1.1 L: Compromise Host Node at Next LAN.

4. M: Capture Agent Code after Self-Replicating to an already Compro-

mised Node.

4.1 N: Flood CAM table with Compromised Host MAC Address.

4.1.1 O: Compromise Host Node.

4.1.2 Q: Plug intruder machine into the target switch.

136

8.5 MECHANISM’S THREAT BASED BAYESIAN NETWORKS

8.5.3 Goal: Compromise Agent to Switch Communication

1. A: Redirect Agent Vulnerability Probing to a Compromised Host.

1.1 B: Flood CAM table with MAC Address of rouge host.

1.1.1 I: Compromise Host Node.

1.1.2 J: Plug intruder machine to target switch.

2. C: Generate Denial of Service (DoS) attack.

2.1 D: Form a Loop by Manipulating STP Next Bridge field

3. E: Stop Propagation - Abnormally.

3.1 F: Change STP Next Bridge field to a non existent Address and

Flood CAM table.

4. G: Redirect Mechanism to Next LAN.

4.1 H: Change STP Next Bridge field to point to Router.

8.5.4 Goal: Compromise Agent to Host Communication

1. A: Capturing Exploit code used by Agent to detect Vulnerability.

1.1 B: Compromise Host Machine.

1.2 H: Plug Rouge Host Machine to target Switch.

2. C: Stop Mechanism from Probing Hosts for Vulnerabilities.

2.1 D: Flood hosts with Seawave Host Probe ACK packets.

2.1.1 I: Plug Rouge Host Machine to target Switch.

3. E: Stop Mechanism from Self-Replicating to next Switch.

3.1 F: Flood hosts with Seawave SelfReplicate ACK packets.

3.2 G: Send a Seawave SelfReplicate ACK unicast packet to the

Agent.

137

8. THREAT ANALYSIS MODEL OF SEAWAVE USING BAYESIAN BELIEF NETWORKS

8.5.5 Goal: Compromise Agent to Router Communication

1. A: Stop Mechanism from Propagating or Redirect The propagation.

1.1 B: Feed Malformed OSPF (Link State Database) to Mechanism.

1.1.1 C: Manipulate OSPF Data.

1.2 D: Give Corrupted ARP Table.

1.2.1 E: Manipulate SNMP Data.

2. F: Impersonate a Router.

2.1 I: Modify Switch Next Bridge to Point to impersonator host ma-

chine.

2.1.1 J: Plug impersonator machine to target switch.

8.5.6 Goal: Unauthorized Modification Agent Code

1. A: Compromise Master node Private Key.

1.1 B: Compromise Master Node Machine.

1.2 C: Brute force Private Key.

8.5.7 Goal: Compromising Agent in Host Machine

1. A: Exploiting (root-privilege) Vulnerability in Host Machine

1.1 B: Vulnerability Scanning of target system.

1.1.1 C: Port Scanning Target.

8.5.8 Goal: Mechanism Information Gathering

1. A: Store Mechanism Communication Activity.

1.1 B: Start sniffing agent traffic.

1.1.1 C: When probed record agent IP/MAC.

138

8.6 MULTIPLE ADVERSARIES BAYESIAN BELIEF THREAT NETWORK

8.6 Multiple Adversaries Bayesian Belief Threat Network

This section describes the probability of attacks based on more than one

attacker.

8.6.1 Goal: Halt Mechanism’s Propagation

1. S21: Stop Mechanism From Propagating Over the Backbone.

1.1 S27: Information Gathering of Mechanism activity within the En-

terprise Network.

2. S15: Stop Agent from propagating Beyond the current switch domain.

2.1 S27: Information Gathering of Mechanism activity within the En-

terprise Network.

8.7 Threat BBN Conditional Probabilities

8.7.1 Goal: Malicious Use of Agent to Master Node Communication

1. A : P (A|B) = 0.1, P (A|¬B) = 0.6

1.1 B : P (B|C ∩ D) = 0.01, P (B|C ∩ ¬D) = 0.2, P (B|¬C ∩ D) =

0.01, P (B|¬C ∩ ¬D) = 0.5

1.1.1 C : P (C) = 0.3

1.1.2 D : P (D) = 0.001

2. G : P (G|H∩K) = 0.6, P (G|¬H∩K) = 0.8, P (G|H∩¬K) = 0.5, P (G|¬H∩

¬K) = 0.2

2.1 H : P (H|I) = 0.4, P (H|¬I) = 0.5

2.1.1 I : P (I|J ∩ N) = 0.2, P (I|J ∩ ¬N) = 0.3, P (I|¬J ∩ N) =

0.5, P (I|¬J ∩ ¬N) = 0.1

2.1.1.1 J : P (J) = 0.3

139

8. THREAT ANALYSIS MODEL OF SEAWAVE USING BAYESIAN BELIEF NETWORKS

2.1.1.2 N : P (N) = 0.5

2.2 K : P (K) = 0.7

3. L: P (L|M) = 0.7, P (L|¬M) = 0.1

3.1 M : P (M) = 0.2

8.7.2 Goal: Malicious Use of Agent to Agent Communication

1. A : P (A|B∩E) = 0.3, P (A|B∩¬E) = 0.7, P (A|¬B∩E) = 0.2, P (A|¬B∩

¬E) = 0.5

1.1 B : P (B|C) = 0.5, P (B|¬C) = 0.3

1.1.1 C : P (C|D) = 0.3, P (C|¬D) = 0.5

1.1.1.1 D : P (D) = 0.1

1.2 E : P (E|F) = 0.3, P (E|¬F) = 0.005

1.2.1 F : P (F) = 0.2

2. G : P (G|H∩I) = 0.2, P (G|H∩¬I) = 0.2, P (G|¬H∩I) = 0.2, P (G|¬H∩

¬I) = 0.2

2.1 H : P (H) = 0.2

2.2 I : P (I) = 0.2

3. J : P (J |P) = 0.6, P (J |¬P) = 0.2

3.1 P : P (P |K) = 0.5, P (P |¬K) = 0.4

3.1.1 K : P (K|L) = 0.2, P (K|¬L) = 0.4

3.1.1.1 L : P (L) = 0.2

4. M : P (M |N) = 0.5, P (M |¬N) = 0.2

4.1 N : P (N |O ∩ ¬Q) = 0.5, P (N |¬O ∩Q) = 0.5

4.1.1 O : P (O) = 0.2, P (¬O) = 0.8

4.1.2 Q : P (Q) = 0.3

140

8.7 THREAT BBN CONDITIONAL PROBABILITIES

8.7.3 Goal: Compromise Agent to Switch Communication

1. A : P (A|B) = 0.6, P (A|¬B) = 0.2

1.1 B : P (B|I ∩ ¬J) = 0.5, P (B|¬I ∩ J) = 0.5

1.1.1 I : P (I) = 0.2

1.1.2 J : P (J) = 0.3

2. C : P (C|D) = 0.6, P (C|¬D) = 0.3

2.1 D : P (D) = 0.7

3. E : P (E|F) = 0.6, P (E|¬F) = 0.4

3.1 F : P (F) = 0.7

4. G : P (G|H) = 0.6, P (G|¬H) = 0.3

4.1 H : P (H) = 0.7

8.7.4 Goal: Compromise Agent to Host Communication

1. A : P (A|B∩H) = 0.5, P (A|¬B∩H) = 0.5, P (A|B∩¬H) = 0.5, P (A|¬B∩

¬H) = 0.2

1.1 B : P (B) = 0.2

1.2 H : P (H) = 0.3

2. C : P (C|D) = 0.5, P (C|¬D) = 0.2

2.1 D : P (D|I) = 0.5

2.1.1 I : P (I) = 0.3

3. E : P (E|F∩G) = 0.4, P (E|F∩¬G) = 0.5, P (E|¬F∩G) = 0.4, P (E|¬F∩

¬G) = 0.3

3.1 F : P (F) = 0.5

3.2 G : P (G) = 0.5

141

8. THREAT ANALYSIS MODEL OF SEAWAVE USING BAYESIAN BELIEF NETWORKS

8.7.5 Goal: Compromise Agent to Router Communication

1. A : P (A|B ∩D) = 0.3, P (A|B¬D) = 0.5, P (A|¬B ∩D) = 0.5, P (A|¬B ∩

¬D) = 0.3

1.1 B : P (B|C) = 0.4, P (B|¬C) = 0.3

1.1.1 C : P (C) = 0.4

1.2 D : P (D|E) = 0.5, P (D|¬E) = 0.3

1.2.1 E : P (E) = 0.4

2. F : P (F |I) = 0.5, P (F |¬I) = 0.3

2.1 I : P (I|J) = 0.5, P (I|¬J) = 0.3

2.1.1 J : P (J) = 0.6

8.7.6 Goal: Unauthorized Modification Agent Code

1. A : P (A|B∩C) = 0.1, P (A|¬B∩C) = 0.2, P (A|B∩¬C) = 0.5, P (A|¬B∩

¬C) = 0.3

1.1 B : P (B) = 0.3

1.2 C : P (C) = 0.1

8.7.7 Goal: Compromising Agent in Host Machine

1. A : P (A|B) = 0.4, P (A|¬B) = 0.1

1.1 B : P (B|C) = 0.5, P (B|¬C) = 0.3

1.1.1 C : P (C) = 0.5

8.7.8 Goal: Mechanism Information Gathering

1. A : P (A|B) = 0.7, P (A|¬B) = 0.1

1.1 B : P (B|C) = 0.5, P (B|¬C) = 0.3

1.1.1 C : P (C) = 0.7

142

8.8 MULTIPLE ADVERSARIES BBN CONDITIONAL TABLE

8.8 Multiple Adversaries BBN Conditional Table

8.8.1 Goal: Halt Mechanism’s Propagation

1. S21 : P (S21|S27) = 0.4, P (S21|¬S27) = 0.2

1.1 S27 : P (S27) = 0.147

2. S15 : P (S15|S27) = 0.6, P (S15|¬S27) = 0.4

1.1 S27 : P (S27) = 0.147

8.9 Attack Scenarios

In this section we will highlight possible attack scenarios that would affect

Seawave’s performance and try to find the mechanism’s weakest points. In

goal 8.5.1 where the attacker tries to compromise the communication line

between the agent and the master node, scenario 1 (See A.1.1) calculates the

possibility of an attacker decrypting the communication line by breaking the

RSA encryption mathematically. However, the lack of practical relevance of

such attacks make them less likely to occur.

In scenario 2 (See A.1.1), the attacker tries to decrypt agent communica-

tion to master node by exhaustive key search, which is also very less likely to

succeed as it requires high computing power that is not available to average

attackers. Both scenarios resulted in 7 × 10−5% and 0.5994% probabilities

respectively. However, in scenario 3 (See A.1.1) Seawave might be weak-

ened if the adversary was able to connect to the enterprise network and

sniff agent to master node communication request packets and thereafter

use them to initiate large amount of Seawave Agent to Master requests

forming a DoS against the master node, limiting its availability. The prob-

ability computed for the attack was 1.05%. Conducting the same scenario,

but using an already compromised network node as in scenario 4 (See A.1.1)

would result in the probability decreasing to 0.27%, that is due to the dif-

143

8. THREAT ANALYSIS MODEL OF SEAWAVE USING BAYESIAN BELIEF NETWORKS

ficulty of compromising a node compared to plugging the adversary node

to the network before initiating the attack. Flooding the master node with

SYN connections has resulted in a probability of 8.82% as computed in sce-

nario 5 (See A.1.1). In an attempt to feed the master node with malformed

data as in scenario 6 (See A.1.1), the adversary compromises an agent node

and starts a line of malformed communication with the master node, such

probability was calculated as 14%.

In the context of malicious use of agent to agent communication 8.5.2,

scenario 7 (See A.1.2) describes the possibility of an adversary succeeding

in stopping Seawave’s propagation by flooding the network with Seawav

e SelfReplicate ACK packets in hope that agents about to propagate re-

ceive the packet and stop. However, such attack require the attacker to com-

promise the MAC algorithm and learn the secret key, which is not straight-

forward; the probability was computed to be 0.8358%.

Scenario 8 (See A.1.2), stops the mechanism by sending an authentic S

eawave SelfReplicate ACK packet to the source agent after the adver-

sary succeeds in compromising the vulnerable node. The intruder needs to

pick the same node, randomly selected by Seawave, which is very unlikely;

the probability calculated for such scenario was 0.378%. The probability of

compromising the MAC algorithm used by Seawave using brute force at-

tack was 3.2% as computed in scenario 9 (See A.1.2) and by compromising

the agent and thereafter extracting the secret key it has resulted to 12.8% as

in scenario 10 (See A.1.2).

The agent can be stopped from propagating to other LANs in the en-

terprise by compromising a host in the LAN and ARP cache poisoning the

router to point to the compromised node. When the agent fetches the ARP

cache of the router it will pick the intruder node and therefore self-replicate

to that already compromised node. The intruder, thereafter, will send back

a Seawave SelfReplicate ACK packet to refrain the agent from propa-

gating further. Scenario 11 (See A.1.2) covered this attack with a probability

144

8.9 ATTACK SCENARIOS

of 1.2%. The intruder after compromising a node, can trick the agent to pick

the mac address of the malicious node by flooding the switch CAM table

with the same MAC as the intruder’s. The attacker can, thereafter, capture

the agent code of the mechanism (during self-replicating) as in scenario 12

(See A.1.2), which resulted in a probability of 3.5%.

The intruder might be able to compromise agent to switch line of com-

munication 8.5.3. In scenario 13 (See A.1.3) the intruder can redirect the

agent to probe a rouge host for vulnerability by compromising a host node

and flooding the switch with the MAC address of the rouge node. The prob-

ability of such attack results in 4.2%. Another malicious interaction with the

switch might result in a DoS attack on the mechanism by altering the STP

next bridge field in the switch to point to another switch forming a loop.

The probability of the attack was calculated in scenario 14 (See A.1.3) to be

42%. The intruder can stop the mechanism by altering STP next bridge to

point to a non-existent switch and flooding the CAM with fake MAC ad-

dresses to remove all switch addresses, such attack probability is 42% as in

scenario 15 (See A.1.3). Seawave can be directed to shift to the next LAN

without covering all its current LAN by altering the next bridge field in the

switch to point to the router, forcing the agent to start traversing the en-

terprise network. However, the mechanism will still propagate throughout

switches that exist in the CAM table. Scenario 16 (See A.1.3) highlight this

attack with a probability of 42%.

Within the switch domain, where the agent communicates with host

nodes connected to the same switch, malicious activities are expected 8.5.4.

An intruder compromising a machine can capture the exploit used by the

agent upon probing the vulnerability, however, in general vulnerabilities

addressed by the mechanism would most likely be publicly available ex-

ploits, reducing the impact of the attack. The probability of such activity

resulted in 7% as calculated in scenario 17 (See A.1.4). The intruder might

be able to stop the mechanism from probing host nodes connected to the

145

8. THREAT ANALYSIS MODEL OF SEAWAVE USING BAYESIAN BELIEF NETWORKS

same switch by flooding all nodes within the switch domain with Seawave

Host Probe ACK packets causing the agent to consider host nodes already

probed, while they are not. Probability of this malicious activity occurring

is 7.5% as in scenario 18 (See A.1.4). Inline with the previous technique the

attacker can also stop the agent from propagating to neighboring switches

by flooding host nodes with a Seawave SelfReplicate ACK packet to

mislead the agent that it has already self-replicated to next switches. The

possibility of scenario 19 (See A.1.4) was 12.5%. The same scenario can also

occur without flooding by sending a unicast Seawave SelfReplicate A

CK packet to the agent directly, but it requires the intruder to successfully

allocate the agent. The attack probability was 0.5% as in scenario 20 (See

A.1.4).

Agent to router communication has its share of malicious activity 8.5.5,

as an intruder can stop the mechanism from traversing the backbone by

altering the LSD OSPF data (Seawave LSD ARP RPL), e.g. pointing to no

further routers, before it reaches the agent. As in scenario 21 (See A.1.5) the

probability was 2.4%. Manipulating the ARP table of the router (Seawave

ARP RPL) would also cause the intruder to redirect the agent to whatever

IP address provided or even stopping the agent from spreading to other

LANs connected to the same router. This attack probability was 3.6% as

in scenario 22 (See A.1.5). The intruder can also impersonate a router by

modifying STP next bridge field to point to the malicious node which will

act as a router to provide misleading information to the mechanism. The

probability computed was 15% as in scenario 23 (See A.1.5).

In order for the intruder to be able to carry unauthorized modifications

of agent code (8.5.6), he has to locate then compromise the master node,

before exposing the private key, which is used to sign the agent code. The

probability of such attack results in 13.5% as in scenario 24 (See A.1.6). Re-

vealing the private key by exhaustive key search, consumes long time and

require high computing resources, the likelihood of the attack was 1.4% as

146

8.10 SEAWAVE’S THREAT MODEL

in scenario 25 (See A.1.6).

For the intruder to compromise the agent, as in goal 8.5.7, he has to se-

cure access to the network and locate the agent node before starting port

scanning to identify running network applications on the agent machine.

Then the attacker starts probing his target for vulnerabilities, if there was an

exploitable vulnerability that would grant the intruder with root privilege

then go ahead and exploit to compromise the machine and thereafter the

agent. The probability of the attack was 10% as in scenario 26 (See A.1.7).

Indeed information gathering of a target is one of the crucial elements

of a successful attack. Goal 8.5.8 cover this area, where the likelihood of

an intruder accessing the network and allocating the agent at the current

switch – upon vulnerability probing – before recording and analyzing agent

traffic to allocate the mechanism’s master node is described in scenario 27

(See A.1.8) and has resulted in a probability of 24.5%.

8.10 Seawave’s Threat Model

The approach we have used to assess the security of Seawave is based on

Bayesian Belief Networks. BBN helps us calculate threats and their condi-

tional dependencies, forming a threat scenario that targets the mechanism.

Each threat consists of sub-threats that forms a tree of threats to achieve

a certain malicious goal against the mechanism. These bayesian nets (or

trees) are constructed as a directed acyclic graph (DAG) and each node in

the graph, lists the conditional probability table based on the parent node

probability table. Each node can be described as conditionally independent

given its parent nodes. Fig. 8.1 shows a threat scenario BBN (scenario 7, see

A.1.2) that might be launched against Seawave. Threat probabilistic infer-

ence can be drawn for different attack techniques when conditional proba-

bility tables are filled for each node within the threat BBN. By rearranging

the conditional probability formula:

147

8. THREAT ANALYSIS MODEL OF SEAWAVE USING BAYESIAN BELIEF NETWORKS

P (A|B) =
P (A ∩B)

P (B)

We get the chain rule, where we can calculate the probability of threat A

taking into account its dependencies:

P (A ∩B) = P (A|B)P (B) (8.1)

Thereafter, by symmetry we get the well known Bayes’ rule:

P (A|B) =
P (B ∩ A)

P (B)
=
P (B|A)P (A)

P (B)
(8.2)

The notation P (A ∩ B) describes the joint probability of threat A and threat

B and the notation P (A|B) = p means given threat B and everything else is

irrelevant to threat A then the probability of A is p [44]. The Baye’s rule al-

lows us to revisit our estimations of threat A given that we get information

about another threat B. The denominator refers to the marginal (uncondi-

tional) probability of event B; that is B regardless of other events, which

according to the law of total probability can be computed by:

P (B) =
n∑
i=1

P (B ∩ Ai) =
n∑
i=1

P (Ai)P (B|Ai) (8.3)

In order to compute results, each node in the BBN (or threat tree) should

have a conditional probability table. We have created that table based on

subjective probability driven from work experience and current state of

information. Conditional probabilities of each node are driven based on

the value of their parent nodes. Suppose the set of threats in a BBN is

{T1, T2, . . . , Tn} and Parents(Ti) denote the set of parents of the node Ti in

the same threat BBN, then the joint probability distribution of the BBN can

be calculated by:

P (T1 ∩ T2 ∩ T3 ∩ . . . Tn) =
n∏
i=1

P (Ti|Parents(Ti)) (8.4)

148

8.10 SEAWAVE’S THREAT MODEL

For example, from Eq. (8.4) we can compute the the probability of Fig. 8.1

that is: Stopping the agent propagation by flooding the network with Seawave S

elfReplicate ACK packets after compromising the MAC algorithm, by calcu-

lating the joint probability of the threat BBN:

P (A ∩B ∩ C ∩D ∩ ¬E ∩ ¬F) =

P (A|B ∩ ¬E) · P (B|C) · P (C|D) · P (D) · P (¬E|¬F) · P (¬F)

In Appendix A we have constructed several threat scenarios that might pose

harm to Seawave. These threats are grouped to achieve certain malicious

tasks under pre specified goals (see section 8.4). The conditional tables of

these threat networks are described in section 8.7, where we can derive

probabilistic inference for each BBN. For example, if we observe threat sce-

nario 7 (See A.1.2) we calculate the probability of this threat taking part to

be 0.8358%, this result is based on providing evidence (findings) for each

node in the threat BB network. But what if we are interested in comput-

ing the probability of threat B taking place within the network regardless

to other threats (i.e. unconditional probability). From Eq. (8.3) to calcu-

late the marginal probability of threat B (P (B)) (8.5.2) that is the probability

of a fake Seawave SelfReplicate ACK packet reaching the mechanism’s

agent, we first calculate P (C) based on the conditional table 8.7.2.

P (C) = P (C|D)P (D) + P (C|¬D)P (¬D) = (0.3 · 0.1) + (0.5 · 0.9) = 0.48

Note D is a root node (has no parents) and therefore P(D) equals the condi-

tional probability in the table. Now we are ready to calculate P (B) :

P (B) = P (B|C)P (C) + P (B|¬C)P (¬C) = (0.5 · 0.48) + (0.3 · 0.52) = 0.396

Therefore, the unconditional probability of threat B taking place is 39.6%.

149

8. THREAT ANALYSIS MODEL OF SEAWAVE USING BAYESIAN BELIEF NETWORKS

Figure 8.2: Seawave Bayesian Belief Threat Network 8.5.2 (Tree 1) without provid-

ing any evidence (Netica screenshot).

Fig. 8.2 shows event A (8.5.2) BBN without entering any evidence. How-

ever, one of the benefits of BBNs is the ability to revisit the probabilities

upon new evidence. For example, suppose that we do not know that there

was any flooding of an unauthentic Seawave SelfReplicate ACK pack-

ets within the LAN (event C 8.5.2), but we do know that the agent has

received a forged Seawave SelfReplicate ACK packet (event B 8.5.2).

Providing the evidence that event B is true, then using Bayesian theorem

Eq. (8.2), we can determine the revised probability that there was flooding:

P (C|B) =
P (B|C)P (C)

P (B)
=

0.5 · 0.48

0.396
= 0.61

150

8.10 SEAWAVE’S THREAT MODEL

Therefore the observation that the agent has actually received a forged S

eawave SelfReplicate ACK packet (event B is true), has increased the

probability that the LAN has been flooded by an unauthentic Seawave Se

lfReplicate ACK packets (event C) up from 0.48 to 0.61.

A

S1

S2..
S6

B

S7

S8..
S12

C

S13

S14..
S16

D

S17

S18..
S20

E

S21

S22

S23

FS24

S25

GS26

HS27

Risk = w·
[P (A) · P (B)

... · P (H)] · ι

α
· ζ · ∏

6
i=

1 P
(S

i)

β · ∏
12i=
7 P

(S
i)γ · ∏16

i=13 P (S
i)

β ·
∏20

i=17
P (Si)

δ ·
∏ 23

i=
21
P (
S i
)

α
· P
(S
24
) ·
P
(S
25
)

ε
· P

(S
26
)

ζ
· P

(S
27
)

Figure 8.3: Threat Analysis Model of Seawave.

8.10.1 Constructing The Threat Analysis Model

Based on this we construct a threat analysis model to determine the secu-

rity risks towards Seawave as shown at Fig. 8.3. The model divides threat

scenarios into different groups and applies certain mechanism or network

151

8. THREAT ANALYSIS MODEL OF SEAWAVE USING BAYESIAN BELIEF NETWORKS

parameters to address performance aspects of the malicious attack. These

parameters adjust the ability of the malicious attacker to:

• Allocate the Master Node: α

• Recognize and generate Seawave’s traffic: β

• Manipulate STP and CAM topology information: γ

• Manipulate OSPF and ARP topology information: δ

• Allocate Seawave’s Agent: ε

• Sniff traffic in a switched network: ζ

• Secure access to enterprise network (global parameter): ι

In the model we consider each threat scenario as an independent event, that

is P (S1|S2) = P (S1). We, therefore, calculate the joint probability of each

goal using the multiplication rule:

P (S1 ∩ S2) = P (S1) · P (S2)

The parameter(s) p are then considered to adjust attack performance, as fol-

lows:

p ·
n∏
i=0

P (Si); P (Si) ∈ {A,B...H}, p ∈ {α, β, γ, δ, ε, ζ} (8.5)

The parameter ι which addresses the possibility of an attacker securing ac-

cess to the enterprise network is a global parameter and therefore applies

to all attack scenarios. To see how these threat scenarios affects Seawave,

we define a weight and risk value for the asset targeted, inspired by [52]

with slight modification. We assume asset weight value w range from 0 to

3 and risk value 0 ≤ R ≤ 3 to identify different risk levels: Low {0.0 - 1.0},

Medium {1.1 - 2.0}, and High {2.1 - 3.0}. The risk to the vulnerability miti-

gation mechanism is therefore calculated by:

152

8.10 SEAWAVE’S THREAT MODEL

R = w · [P (A), P (B) . . . P (H)] · ι; (R,w) ∈ [0, 3] (8.6)

Which will compute the risk considering all possible threats towards the

enterprise network. Not all threats should be considered, few threat sce-

narios and the risk they pose to the mechanism can be computed the same

way. For example, assuming asset weight w = 3 and network or mechanism

parameters β = 0.7, γ = 0.6, ε = 0.6, and ι = 0.9 to calculate the risk of a ma-

licious intruder compromising the MAC algorithm by controlling the agent

itself (scenario 9, see A.1.2), while another intruder forming a DoS attack

on Seawave by manipulating STP next bridge field in the switch (scenario

14, see A.1.3) and another trying to stop Seawave from propagating over

the network backbone by manipulating the ARP table stored in the router

(scenario 22, see A.1.5), we compute:

P (S9) · P (S14) · P (S22) · w · β · γ · ε · ι =

(0.032) · (0.42) · (0.036) · (3.0) · (0.7) · (0.6) · (0.6) · (0.9) = 0.0329%

Which results in a low level risk to the enterprise network.

8.10.2 Multiple Attack Scenarios

Figure 8.4: Bayesian Belief Threat Tree 8.6.1 without providing any evidence.

As we have constructed BB networks from single threat elements to form

a threat scenario, in the same manner, we build a BB network that consists

153

8. THREAT ANALYSIS MODEL OF SEAWAVE USING BAYESIAN BELIEF NETWORKS

of threat scenario elements to form a multi-scenario threat to Seawave. We

show how multiple adversaries try to put a halt to Seawave’s propagation.

Adversaries try to gather information about the mechanism, by sniffing traf-

fic based on Goal 8.5.8 and as computed by Scenario 27 (See A.1.8); this sce-

nario, however, is not limited to detecting the master node only, but also

any type of useful information that adversaries may be able to sniff. Based

on the information gathered, adversaries try to block the agents from prop-

agating within their switch domain as described in scenario 15 (See A.1.3)

and prevent the mechanism from moving forward over the enterprise back-

bone as described in scenario 21 (See A.1.5) , placing the mechanism into

halt. Fig. 8.4 shows the multi-scenario BBN attack without entering any

evidence, where scenario 15 and 21 (See A.1.3 and A.1.5 respectively) are

conditionally independent given threat scenario 27 (See A.1.8). And the

probabilities of the attack can be revisited using Bayesian theorem. For ex-

ample suppose that we know that the mechanism has been blocked from

traversing the backbone, that is scenario 21 (See A.1.5) was successful, but

we do not know if there was any information gathering activity beforehand.

Using Eq. (8.2) we compute:

P (S27|S21) =
P (S21|S27)P (S27)

P (S21)
=

0.4 · 0.147

0.229
= 0.26

The result indicates that based on the evidence that Seawave was blocked

from traversing the enterprise network, the probability of information gath-

ering activity held beforehand has risen from 0.147 up to 0.26. The marginal

probability of S21 at Fig. 8.4 was driven using a BBN tool of inference Netica

Toolset [76] and it can be computed the same way as we have shown pre-

viously (8.3). Assuming all events are true, the probability of adversaries

succeeding in their attack to put the mechanism’s propagation into halt is

3.53% as calculated by multiple threat scenario 28 (See A.2.1).

154

8.11 SUMMARY

8.11 Summary

Using Bayesian Belief Networks, we proposed a threat analysis model to

identify and quantify the threats that may occur against Seawave, combined

with techniques to calculate the risk these threats may present. We have di-

vided threats into different components to identify the goals attackers may

try to achieve and designed threat scenarios (or bayesian networks) of sev-

eral malicious penetrating attempts and also formed a multi-scenario threat

BBN.

Several parameters (α, β, γ, δ, ε, ζ and ι) were used for attack perfor-

mance aspects, most of them are specific to the component and another (ι)

is general for the whole model. It turns out that using BBNs is very useful

in building sequenced threat structure against a specific mechanism, where

probabilistic inference of these threats can be driven.

The model allowed to examine and identify weak points in Seawave’s

configuration where an adversary can take advantage of. It also gave us the

ability to predict the likelihood of a malicious attack taking place through

these weak points; forming sound casual relationships between different

model components to shape a whole body of security assessment process.

155

Chapter 9

Seawave – A Mathematical

Propagation Model

9.1 Overview

In Chapter 4 and 5, we have tested Seawave under small to medium size

enterprise networks only; that is because event-driven network simulations

consumed a large amount of CPU power, memory, and time making it be-

yond our capacity to test Seawave under large scale enterprise networks.

In this chapter, we propose and analyze an analytical propagation model

of our vulnerability mitigation worm (Seawave). The model takes into con-

sideration the topology structure of enterprise networks such as switches,

LANs, and backbone. The model also addresses the defensive worm’s de-

lays due to CAM table reading (α), neighbor switch communication (β), and

backbone mapping (ε). We also propose a bandwidth model to measure traf-

fic generation within different stages of propagation. Different simulations

of different hierarchical topologies of enterprise networks have been driven

to further evaluate and observe Seawave’s performance in large scale net-

works.

9.2 Introduction

In this chapter, we propose and analyze a propagation model of Seawave.

We have proposed Seawave in previous chapters, however, although run-

ning topology sensitive mechanisms is better on an event driven simulator

157

9. SEAWAVE – A MATHEMATICAL PROPAGATION MODEL

– as it does not require the topology to be pre-deterministic, which is closer

to real world networks, – these types of simulations are time and comput-

ing power consuming, which restricted Seawave to run on small to medium

size enterprise networks. In this chapter, however, we study how the vul-

nerability mitigation worm propagates on large scale enterprise networks

and analyze its stage by stage propagation before evaluating its overall

performance. We also propose a bandwidth generation model to measure

the amount of traffic generated by Seawave during its gradual propagation

within a pre-deterministic network. In our study we take into consideration

the delays of reading Content-Addressable Memory (CAM) table, Spanning

Tree Protocol (STP), Address Resolution Protocol (ARP), and Open Shortest

Path First (OSPF) topology information.

9.3 Related Work

The field of worm propagation modeling is not new; many models exist to

progress the understanding of computer worms and how they behave. This

understanding helps in designing future countermeasures that reduce or

prevent the impact of malicious worms. Based on the Kermack-Mckendrick

epidemic model, Zou et al. derive a Two-Factor Worm Model (TFWM)

which simulates Code Red worm behavior. The two factors considered are

the dynamic countermeasures applied by users and ISPs, as well as, the

reduction in the worm’s infection speed due to network congestion [116].

More modeling attempts of Code Red were proposed by Staniford et al. and

Moore et al. [93, 64].

Castaneda et al. proposed an architecture to generate a benign worm,

which acts as an active vaccination mechanism that transforms a malicious

worm into a benign worm that propagates the same way as the original

worm [18]. While, different Internet worm propagation models – as intro-

duced by Zou et al. – have been analyzed under different scanning strate-

158

9.4 EPIDEMIC MODEL INTRODUCTION

gies, including: Idealized, Uniform, Divide-and-Conquer, local preference,

and other scans [117].

The Passive Worm Propagation (PWP) model was proposed by Zhou et

al. to study and analyze passive propagation techniques and its feasibility

to represent a benign worm[115]. While, Fang et al. explored worm vaccina-

tion to counter malicious worms by proposing and analyzing three vaccina-

tion models: Running-Vacc, Noreboot-Vacc, and Reboot-Vacc [110]. In the

same direction, Toutonji et al., proposed a Passive Worm Propagation Quar-

antine (PWDQ) model, which describes a method to stop malicious worms

by recovering infected hosts either by dynamic quarantine or passive be-

nign worms techniques [101].

These models, however, do not take into consideration local topology

preferences; few models briefly consider network devices such as the Three

Layer Worm Model proposed by Su et al., which is based on the Simple Epi-

demic Model (SEM) and the TFWM under NAT environment. The first, sec-

ond, and third layers in the model represent hosts and routers, NAT hosts,

and hosts under each NAT respectively [96]. But, in general, few propaga-

tion models consider the internal structure of the network, that is because

many researchers look at the overall view of a worm propagating over the

internet – crossing large number of interconnected networks. Therefore,

from their prospective it becomes not necessary to go deep in the network

architecture. That, however, does not apply to Seawave as it only operates

under enterprise networks.

9.4 Epidemic Model Introduction

Indeed many techniques in the computer science field have been inspired

by biology and computer worm modeling is not an exception. The way

computer viruses and worms propagate are similar to their counterparts in

biology. An epidemic model attacking different individuals simultaneously

159

9. SEAWAVE – A MATHEMATICAL PROPAGATION MODEL

can describe malicious worms propagation behavior. This section briefly in-

troduces three epidemic models that pave the ground for Seawave’s propa-

gation model. The terminology used in these three models is as follows:

• I(t): The number of infectious nodes at time t.

• S(t): The number of susceptible nodes at time t.

• N: Total number of targeted nodes (the size of the scope).

• η: Average scanning rate.

9.4.1 Simple Epidemic Model in a Homogeneous System

In this model nodes are of two states either infectious I(t) or susceptible [N

- I(t)] and when a node is infected it remains infectious and does not get

removed. As the system is homogeneous each node has equal probability

to contact any other node. The simple epidemic model can be expressed as

[25]:

dI(t)

dt
= ηI(t)[N − I(t)] (9.1)

At t=0 there are I(0) infectious nodes and the rest [N - I(0)] are susceptible.

9.4.2 Flash Worm

Perhaps one of the fastest worms – as target addresses are already known

– Staniford et al. have introduced what they termed as Flash Worm [93].

The worm extends the technique of sized hit-list to cover the whole scope

saving the worm the effort of vulnerability scanning and allocating its vic-

tims. Based on the simple epidemic model, Zou et al. derive its propagation

model [117]:

dI(t)

dt
=

η

N
I(t)[N − I(t)] (9.2)

160

9.5 SEAWAVE PROPAGATION MODEL

They showed that without considering delay and with N = 360,000, η =

358/min, and I(0) = 10 the flash worm can infect 99% of its targets at T =

2.23 seconds.

9.4.3 Perfect Worm

Faster than the Flash worm comes the perfect worm; proposed by Zou et al.

as the fastest propagation worm. The perfect worm – where our propaga-

tion model is based – knows all its targets like the Flash worm, however, the

infected nodes cooperate with each other such that there are no reinfections

(i.e. no wasted scans). The propagation model of the worm is [117]:

dI(t)

dt
=

 ηI(t); I(t) < N,

0; I(t) = N
(9.3)

Assuming the worm starts with I(0) infected nodes, the analytical solu-

tion becomes:

I(t) = min[I(0)eηt, N]. (9.4)

9.5 Seawave Propagation Model

In this section we will propose an analytical propagation model of Seawave.

Since Seawave does not infect but rather vaccinate vulnerable nodes from

potential and present malicious attacks, we provide a slightly different ter-

minology than common epidemic terminology:

• V(t) The number of vaccinated nodes at time t.

• A(t) The number of Agent nodes at time t.

• S(t) The number of susceptible nodes at time t.

161

9. SEAWAVE – A MATHEMATICAL PROPAGATION MODEL

• P(t) The number of packets generated at time t. Excluding within

switch bandwidth.

• L(t) The network topology level of operation at time t – the front line

of propagation.

• Switch(L(t)) Number of switches at level L(t).

• N Size of the switch (i.e. the number of nodes connected to the switch).

• LAN The list of LANs within the enterprise network.

• K Number of LANs in the enterprise network.

• η Average scanning rate within a switch.

In the model there are three states of the node:

• Agent: A node becomes an agent, when another agent node self-replicates

to it. An agent node is responsible of further propagation to neighbor-

ing switches and vaccinating other susceptible nodes within the same

switch.

• Vaccinated: A node that has been vaccinated by an agent node.

• Susceptible: A node that is vulnerable to malicious attacks.

Agent and vaccinated nodes continue to remain in their state during the

propagation. Since Seawave depends on the topology of the network for its

propagation we have to specify the topology characteristics; the enterprise

network consists of K LANs each LAN is of the size LAN1, LAN2, .., LANK

respectively. We mean by LAN size, the number of interconnected switches.

Seawave propagates gradually level after level, from switch to neigh-

boring switches and further; Fig. 9.1 illustrates what we mean by levels. We

assume the following for the model:

• All nodes are susceptible.

162

9.5 SEAWAVE PROPAGATION MODEL

L
e

v
e

l
o

n
e

 t
o

 L
e

v
e

l
3

L 1

L2

L3

L 1

L 2

L 3

L 1L 1

L 2

L 3

L 2

L 3

L
e

v
e

l
o

n
e

 t
o

 L
e

v
e

l
3

Network Backbone

a

a
 +

 b

e

S
ix

 L
e

v
e

ls
 N

e
tw

o
rk

a +
 b

a + b

a + b

LAN 1LAN 2

LAN 3 LAN 4

Starting Switch

a +
 b a
 +

 b

Figure 9.1: Enterprise Network Example

• The topology implements the Spanning Tree Protocol.

• All switches are of fixed size N .

We also assume that Seawave initially covers LAN1 starting from the

first level L(t) = 1, before propagating to other LANs within the enterprise

network. Upon covering LAN1 agents self-replicate to other LANs simulta-

neously and propagate until all LANs are covered.

Since the vaccination process is within the switch, this gives the agent

the ability to vaccinate all nodes connected to the switch as soon as it learns

their Media Access Control (MAC) addresses retrieved from the CAM table.

This can be modeled by (9.3), since agents know all their targets and do not

do any revaccination, see Figure 9.2. Let tsf denote the time needed for the

agent to vaccine all nodes connected to the switch, such that V (tsf) = N ;

based on (9.4) the number of vaccinated nodes in level L(t) = 1 (the initial

switch) is therefore:

163

9. SEAWAVE – A MATHEMATICAL PROPAGATION MODEL

Agent

Perfect Worm

Pr
ob
e Switch

Figure 9.2: Within Switch Vaccination

V (t) = min[I(0)eηt, N]; t ≤ tsf (9.5)

Without considering network delays, the start time for Seawave to propa-

gate to level L(t) can be derived by:

LT (t) = tsf · (L(t)− 1); t > tsf (9.6)

Since the mechanism covers the enterprise network level by levelL(t0), L(t1),

L(t2) . . . L(tnf) we derive L(t):

L(t) = dt/(tsf + α + β)e (9.7)

Where α and β are delay parameters described later in this section. Since

all agents start vaccination on the same level L(t) in parallel, then based on

(9.6) and (9.7) the number of vaccinated nodes on L(t) only, can be obtained

by:

164

9.5 SEAWAVE PROPAGATION MODEL

Switch(L(t)) · V (t− LT (t)) (9.8)

Let tnf denotes the total time to cover the whole enterprise network the total

number of vaccinated nodes up to L(t)− 1 becomes:

N ×
L(t)−1∑
i=L(t0)

Switch(i); t ≤ tnf (9.9)

Adding both (9.8) and (9.9) gives us the number of vaccinated nodes beyond

the first level L(t) > 1 :

Switch(L(t)) · V (t− LT (t)) +N ×
L(t)−1∑
i=L(t0)

Switch(i); tst < t ≤ tnf (9.10)

And when t > tnf , then all enterprise network nodes have been vaccinated:

N ×
L(tnf)∑
i=L(t0)

Switch(i); t > tnf (9.11)

Therefore, by combining (9.5), (9.10), and (9.11) we derive the propagation

model of Seawave:

V (t) =



min[I(0)eηt, N]; t ≤ tsf

Switch(L(t)) ·min[I(0)eη(t−LT (t)), N]

+N ×
∑L(t)−1

i=L(t0)
Switch(i);

tst < t ≤ tnf

N ×
∑L(tnf)

i=L(t0)
Switch(i); t > tnf

(9.12)

We also can compute the number of agent nodes scattered around the en-

terprise network by counting the number of switches at t:

A(t) =

L(t)∑
i=L(t0)

Switch(i); t ≤ tnf (9.13)

165

9. SEAWAVE – A MATHEMATICAL PROPAGATION MODEL

And the number of susceptible nodes at time t, can be derived by subtract-

ing the number of vaccinated nodes from the total number of nodes in the

whole network:

S(t) = (N ×
L(tnf)∑
i=L(t0)

Switch(i))− V (t) (9.14)

However, the propagation model (9.12) does not consider the following time

delays during propagation:

1. Time for the agent to fetch the CAM table from the directly connected

switch (α).

2. Time for the agent to fetch CAM tables and STP information from

neighboring switches and self-replicating to nodes in neighboring switches

(β).

3. Time for the agent to fetch ARP and OSPF information from routers

in the backbone and self-replicating to other LANs in the enterprise

network (ε).

Since these delays occur on different stages of the propagation, then the

delay within the start switch at L(t) = 1 is:

t− α; t ≤ tsf where V (t− α) = 0,∀t < α (9.15)

Assuming that the time to cover LAN1 is tLAN1, the time during different

propagation levels within LAN1 becomes:

t− [L(t) · α]− [(L(t)− 1) · β]; tsf < t ≤ tLAN1 (9.16)

And up to tnf the propagation time after delays becomes:

166

9.5 SEAWAVE PROPAGATION MODEL

t− [L(t− ε) · α]− [(L(t− ε)− 2) · β]− ε; tLAN1 < t ≤ tnf (9.17)

Based on (9.15), (9.16), and (9.17) we can derive t on different propagation

levels as follows:

t =



t− α;

t ≤ tsf where V (t− α) = 0; ∀t < α,

t− [L(t) · α]− [(L(t)− 1) · β];

tsf < t ≤ tLAN1,

t− [L(t− ε) · α]− [(L(t− ε)− 2) · β]− ε;

tLAN1 < t ≤ tnf .

(9.18)

S1 S0 S2

S5 S4 S3

S6S7

S1 S0 S2

S3S4

S6S5 S7

T0 : S0

T1 : S1,S2

T2 : S3

T3 : S4,S6

T4 : S5,S7

T0 : S0

T1 : S1,S2

T2 : S3,S4

T3 : S5

T4 : S6

T5: S7

LAN 1 LAN 2

Figure 9.3: Two LANs of the same number of switches and links but different time
coverage.

9.5.1 Network Topology Model

Topology dependent self-replicating self-propagating mechanisms are sen-

sitive to network topologies (see Chapter 6, Section 6.8.1), as they define

167

9. SEAWAVE – A MATHEMATICAL PROPAGATION MODEL

their propagation path based on topology information they self-discover

during their gradual dissemination. As it shows in Fig. 9.3, Seawave will

require more time to cover LAN2 compared to LAN1, although both layouts

have the same number of switches and links. Therefore, it is necessary to de-

fine the enterprise network in detailed manner for the propagation model to

utilize. However, it is not feasible to construct non-deterministic topologies,

as due to their unpredictable nature they would require large quantities of

topology descriptions. Therefore, it is more feasible to construct topologies

of a specific layout for the propagation model to walk through and to ease

the task of resolving Switch(L(t)). Below are characteristics of topologies

we have used:

1. Each switch has two neighbors, except edge switches.

2. Each router in the backbone connects at most two LANs.

Fig. 9.1 shows an example of a topology of such characteristics. Based on

these attributes, we can calculate the total number of levels Seawave go

through to cover the whole enterprise network:

dlog(LAN1)e+ dlog(max[LAN − {LAN1}])e (9.19)

While, the number of switches just before the last level of LAN1 can be com-

puted by:

2L(t)−1; L(t) < dlog(LAN1)e (9.20)

Further, the number of switches of the last propagation level of LAN1 (edge

level) becomes:

LAN1 − (2blog(LAN1)c − 1); L(t) = dlog(LAN1)e (9.21)

168

9.5 SEAWAVE PROPAGATION MODEL

One level further leaves us with switches equal to the number of LANs else

LAN1:

K − 1; L(t)− dlog(LAN1)e = 1 (9.22)

When Seawave bypasses the backbone and passes the first level after LAN1

but does not reach an edge level of LANi, the number of switches becomes:

K∑
i=2

2(L(t)−dlog(LAN1)e−1); L(t)− dlog(LAN1)e < dlog(LANi)e (9.23)

Where at the end edge of LANi, the number of switches can be computed

by:

K∑
i=2

LANi − (2blog(LANi)c − 1); L(t)− dlog(LAN1)e = dlog(LANi)e (9.24)

Of course, number of switches becomes 0 when L(t) is beyond the scope of

Seawave:

0; L(t)− dlog(LAN1)e > dlog(LANi)e (9.25)

Based on (9.20), (9.21), (9.22), (9.23), (9.24), and (9.25) we can compute the

number of switches at different propagation levels:

(1) Seawave’s propagating upto (L(tLAN1)+1): When t ≤ tLAN1 + ε+ (tsf + α + β)

Switch(t) =


2L(t)−1;L(t) < dlog(LAN1)e,

LAN1 − (2blog(LAN1)c − 1);L(t) = dlog(LAN1)e,

K − 1;L(t)− dlog(LAN1)e = 1.

(9.26)

(2) Seawave’s propagating from (L(tLAN1) + 1) upto L(tLANnf
):

When t > tLAN1 + ε+ (tsf + α + β)

169

9. SEAWAVE – A MATHEMATICAL PROPAGATION MODEL

Switch(t) =

K∑
i=2


2(L(t)−dlog(LAN1)e−1);L(t)− dlog(LAN1)e < dlog(LANi)e,

LANi − (2blog(LANi)c − 1);L(t)− dlog(LAN1)e = dlog(LANi)e,

0;L(t)− dlog(LAN1)e > dlog(LANi)e.

(9.27)

Now as we have defined Switch(t), we are ready to run our simulations.

9.5.2 Seawave Bandwidth Model

Following bandwidth and communication assumptions in Chapter 5, if we

denote R as the number of routers in the backbone, then the total number

of packets generated by Seawave to cover the whole enterprise network can

be derived by:

P (tnf) = 4× [(
K∑
i=1

LANi)−K] + 2×R + 2× (K − 1) (9.28)

However, to derive the bandwidth based on time t, we have to take into con-

sideration the levels of propagation Seawave goes through. Within LAN1

the amount of bandwidth can be computed by:

(2L(t) − 2)× 4; tsf < t ≤ tLAN1 (9.29)

And beyond LAN1 the bandwidth becomes:

4× [(

L(t)∑
i=L(t0)

Switch(i))−K] + 2×R + 2× (K − 1); tLAN1 < t ≤ tnf (9.30)

We ignore packets generated within the switch as they do not have a signifi-

cant impact on network main links; therefore, packets within the first switch

are 0. Based on (9.29) and (9.30) we derive the bandwidth model:

170

9.6 SIMULATION RESULTS

P (t) =



0; t ≤ tsf ,

(2L(t) − 2)× 4; tsf < t ≤ tLAN1,

4× [(
∑L(t)

i=L(t0)
Switch(i))−K] + 2×R

+2× (K − 1); tLAN1 < t ≤ tnf .

(9.31)

0 0.5 1 1.5 2 2.5 3
0

100

200

300

400

500

600

700

Time (seconds)

of

 V
ac

ci
na

te
d

no
de

s

Curve Description Example

! = 0.05, " =0.1, # = 0.8

L4

L5

Network Backbone

L1

L3

L6

!+"

!+"

#

!+"
L2!+"

!

Student Version of MATLAB

Figure 9.4: Curve Description of a small six level network as in Fig. 9.1

9.6 Simulation Results

After defining the propagation and the bandwidth models, we are ready

to run our simulations using Matlab [59]. It is, however, useful to describe

Seawave’s curve for more clarity. Fig. 9.4 shows a simple curve of the net-

work example provided at Fig. 9.1, we have plotted the delays for better

readability. Notice the waves in the curve are the result of level by level

propagation. At the very start of the curve only α is applied, as Seawave

still operate within the first switch at L(t) = 1; after which it moves to the

next level (L(t) = 2), where α + β are applied to include neighbor switch

communication, and so on. And when Seawave reaches the backbone, the

delay ε is applied before propagating to all other LANs within the enterprise

network at L(t) = 4 and it continues until the whole network is covered at

L(t) = 6.

Assuming η = 23 and I(0) = 1, we run Seawave on different network

topologies, with different number of switches, LANs, and delays. We also

171

9. SEAWAVE – A MATHEMATICAL PROPAGATION MODEL

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

2000

4000

6000

8000

10000

Times (Seconds)

of

 V
ac

ci
na

te
d

N
od

es

LAN1 ! 4 = 89,120,110,98

" = 0, # = 0, $ = 0
" = 0.005, # = 0.05, $ = 0.5
" = 0.05, # = 0.1, $ = 0.8

Student Version of MATLAB

(a) Seawave Propagation

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

500

1000

1500

2000

Time (Seconds)

of

 V
ac

ci
na

te
d

N
od

es

 LAN1 ! 4 = [89,120,110,98]

 " = 0, # = 0, $ = 0
" = 0.005, # = 0.05, $ = 0.5
" = 0.05, # = 0.1, $ = 0.8

Student Version of MATLAB

(b) Seawave Bandwidth

Figure 9.5: Network of 10,000 nodes distributed among 4 LANs with inside switch,
switch to switch, and backbone delays.

show the amount of bandwidth generated on these topologies. In a network

of 10,000 vulnerable nodes distributed among 4 LANs and 417 switches, the

time required to cover the whole network was 2, 3.2, and 4.7 seconds based

on α = 0 β = 0 ε = 0, α = 0.005 β = 0.05 ε = 0.5, and α = 0.05 β = 0.1

ε = 0.8, respectively; and the bandwidth generated was 1662 packets, see

Fig. 9.5a and 9.5b for more details. In a network of 2084 switches (50,000

nodes) distributed among 12 LANs, based on the previous delays the time it

took to cover the network was 2.5, 3.96, and 5.87 seconds, respectively, with

a bandwidth of 8322 packets; more details can be found in Fig. 9.6. Another

network of 21 LANs and 6250 switches (150,000 nodes) has required 2.86,

4.36, and 6.46 seconds on the same delays. The same network has required

24978 packets to become covered, more results are given in Fig. 9.7.

172

9.7 DISCUSSION

0 1 2 3 4 5 6
0

1

2

3

4

5

6 x 104

Time (Seconds)

of

 V
ac

ci
na

te
d

N
od

es

LAN1 ! 12 = [150, 100, 234, 550, 90, 182, 70, 120, 95, 330, 70, 93]

" = 0, # = 0, $ =0
" = 0.005, # = 0.05, $ = 0.5
" = 0.05, # = 0.1, $ = 0.8

Student Version of MATLAB

(a) Seawave Propagation

0 1 2 3 4 5 6
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Time (Seconds)

of

 V
ac

ci
na

te
d

N
od

es

LAN1 ! 12 = [150, 100, 234, 550, 90, 182, 70, 120, 95, 330, 70, 93]

" =0, # =0, $ =0
" = 0.005, # = 0.05, $ = 0.5
" = 0.05, # = 0.1, $ = 0.8

Student Version of MATLAB

(b) Seawave Bandwidth

Figure 9.6: Network of 50,000 nodes distributed among 12 LANs with inside
switch, switch to switch, and backbone delays.

The time observed to cover a network of 500,000 nodes and 20834 switches

distributed among 70 LANs with different delays was 2.86, 4.36, and 6.46

seconds respectively. The same network consisted of 20 levels and gener-

ated 83264 packets bandwidth, further details can be viewed at Fig. 9.8.

Then we finally run Seawave on a one million node network connected to

41668 Switches and 140 LANs forming 18 levels of propagation; the time

observed to cover the whole enterprise network was 2.52, 3.91, and 5.82 sec-

onds respectively. And it took 166530 packets to cover the network.

9.7 Discussion

Indeed network topologies and structures affect the way how Seawave prop-

agates, as its self-discovery nature binds it to the topology information grad-

173

9. SEAWAVE – A MATHEMATICAL PROPAGATION MODEL

0 1 2 3 4 5 6 7
0

2

4

6

8

10

12

14

16
x 104

Time (Seconds)

of

 V
ac

ci
na

te
d

N
od

es

LAN1 ! 21 = [625,400,500,330,555,432,476,240,142,94,237,77,120,350,424,200,167,325,321,115,120

" =0, # = 0, $ =0
" = 0.005, # = 0.05, $ = 0.005
" = 0.05, # = 0.1, $ =0.8

Student Version of MATLAB

(a) Seawave Propagation

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5
x 104

Time (Seconds)

of

 V
ac

ci
na

te
d

N
od

es

LAN1 ! 21 = [625,400,500,330,555,432,476,240,142,94,237,77,120,350,424,200,167,325,321,115,120]

" =0, # =0, $ =0
" = 0.005, # = 0.05, $ = 0.5
" = 0.05, # = 0.1, $ = 0.8

Student Version of MATLAB

(b) Seawave Bandwidth

Figure 9.7: Network of 150,000 nodes distributed among 21 LANs with inside
switch, switch to switch, and backbone delays.

ually revealed during its propagation. That is why it is more accurate to test

such mechanisms with an event driven simulator (such as NS2 [42]) as you

can run these types of systems on different non-deterministic topologies –

which have been done in Chapter 4 and 5. However, these types of simula-

tors consume high amount of memory and CPU power which makes run-

ning Seawave on large enterprise networks very time consuming. There-

fore, an analytical propagation model is needed to measure Seawave’s per-

formance on very large networks.

Running the mechanism on a network of 7 levels and 500 nodes (21

Switches), yields 1.76 seconds time coverage under parameters α = 0.005,

β = 0.05, ε = 0.5, which is very close to the time coverage observed us-

ing a discrete-event simulator, which was 1.86 seconds on a 500 node net-

work (see Chapter 7). During simulations we have observed that the po-

174

9.7 DISCUSSION

0 1 2 3 4 5 6
0

1

2

3

4

5

x 105

Time (Seconds)

of

 V
ac

ci
na

te
d

N
od

es

20834 Switches, 70 LANs, 20 levels

! = 0, " =0, # = 0
! = 0.005, " = 0.05, # = 0.5
! = 0.05, " = 0.1, # = 0.8

Student Version of MATLAB

(a) Seawave Propagation

0 1 2 3 4 5 6
0

1

2

3

4

5

6

7

8

9 x 104 20834 Switches, 70 LANs, 20 levels

Time (Seconds)

of

 V
ac

ci
na

te
d

N
od

es

! =0, " =0, # =0
! = 0.005, " = 0.05, # = 0.5
! = 0.05, " = 0.1, # = 0.8

Student Version of MATLAB

(b) Seawave Bandwidth

Figure 9.8: Network of 500,000 nodes distributed among 70 LANs with inside
switch, switch to switch, and backbone delays.

sition where the first agent is located does affect the propagation speed, as

the closer the agent is to the backbone router the sooner Seawave spreads

around the enterprise network. That is because the mechanism becomes

able to draw the network map based on the information retrieved from the

backbone routers in the early stages of propagation. Therefore, for faster

propagation the security team might consider installing the starting agent

on the switch directly connected to the router, or as a possible future im-

provement of Seawave, the agent could try to detect the default router and

start mapping the backbone as early as possible.

It has been observed that the smaller LAN1 is the faster the propagation

175

9. SEAWAVE – A MATHEMATICAL PROPAGATION MODEL

0 1 2 3 4 5 6
0

2

4

6

8

10

12 x 105

Time (Seconds)

of

 V
ac

ci
na

te
d

N
od

es

41668 Switches, 140 LANs, 18 levels

! = 0, " = 0, # =0
! = 0.005, " = 0.05, # = 0.5
! = 0.05, " = 0.1, # = 0.8

Student Version of MATLAB

(a) Seawave Propagation

0 1 2 3 4 5 6
0

0.5

1

1.5

2 x 105

Times (Seconds)

of

 V
ac

ci
na

te
d

N
od

es

41668 Switches, 140 LANs, 18 levels

! = 0, " = 0, # = 0
! = 0.005, " = 0.05, # = 0.5
! = 0.05, " = 0.1, # = 0.8

Student Version of MATLAB

(b) Seawave Bandwidth

Figure 9.9: Network of 1000,000 nodes distributed among 140 LANs with inside
switch, switch to switch, and backbone delays.

– for the same previous reasons (i.e. closer to the backbone). Not smaller in

the number of nodes but in propagation levels; as Seawave is affected more

by the levels of propagation rather than number of nodes, that is due to the

nature of self-replicating to all switches on the same level leading the vacci-

nation process to becoming simultaneous. We can see this clearly in Fig. 9.8

(500,000) and Fig. 9.9 (one million) which resulted in 4.36 and 3.91 seconds

time coverage respectively – based on the exact parameters. Although both

networks maintain a 50% number of nodes difference, the 500,000 nodes

network had 20 levels compared with the one million node network which

only had 18 levels from the prospective of Seawave. Even if the number of

levels is the same, the position where Seawave starts propagating impacts

its general behavior, producing different performance results depending on

176

9.8 SUMMARY

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3
x 104

Time (Seconds)

of

 V
ac

ci
na

te
d

N
od

es

LAN1 ! 4 = [100, 200, 300,500]

" =0, # = 0.1, $ = 0.8

Student Version of MATLAB

(a) LAN1→4 = 100, 200, 300, 500

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3 x 104

Time (Seconds)

of

 V
ac

ci
na

te
d

N
od

es

LAN1 ! 4 = [500, 300, 100, 200]

" = 0.05, # = 0.1, $ = 0.8

Student Version of MATLAB

(b) LAN1→4 = 500, 300, 100, 200

Figure 9.10: Two different curves of the same network, but with different Seawave
start points.

the start point of propagation. We can see this in Fig. 9.10a and 9.10b which

shows different curves of the same network, however, with different start-

ing points (LAN1 = 100 and LAN1 = 500). And it shows different time

coverage, due to different propagation levels, as based on (9.19) it took Sea-

wave 16 levels to cover the network starting at LAN1 = 100 as in Fig. 9.10a

and 18 levels to cover the same network starting at LAN1 = 500 as in Fig.

9.10b.

9.8 Summary

In this chapter, we have proposed a propagation model of our vulnerabil-

ity mitigation worm named Seawave. In the model we have considered the

small details of a network structure such as the number of switches, LANs,

177

9. SEAWAVE – A MATHEMATICAL PROPAGATION MODEL

and backbone. Also we have considered the delays to vaccine switch nodes

(α), self-replicate to neighboring switches (β), and bypass the network back-

bone (ε). We have also proposed a bandwidth model to measure the amount

of traffic generated, in addition to, defining a network topology model to

run under.

We have run Seawave on networks of different sizes starting from 10,000

to one million nodes and we have spotted some potential improvements to

the mechanism, such as adding the agent capability to probe for the back-

bone router during early stages of propagation. And we have observed how

the starting position affects the performance and how network levels influ-

ence the time coverage more than node numbers.

178

Chapter 10

Summary and Conclusions

10.1 Summary

In this thesis we have revised our prejudgments towards computer worms

and tried to reassess their capabilities, however not as a malware, but as

a vulnerability mitigation mechanism. Chapter 2, highlighted the need to

revisit the definitions of self-replicating programs, e.g. viruses, worms, and

botnets, and extend them to include the defensive prospective. We have

also proposed general design guidelines for defensive worms, before briefly

addressing the fear factor that usually prevents the industry from adopting

such defensive approaches. Chapter 3 highlighted different attempts that

considered defensive worms for vulnerability mitigation, countermeasures,

or administrative tasks by pointing out researchers work in that regard.

After giving the reader an overview of defensive worms and previous

research on that topic, we proposed a novel controlled self-replicating, self-

propagating, self-contained vulnerability mitigation mechanism (i.e. defen-

sive worm) named Seawave in Chapter 4. Seawave utilizes CAM, STP, OSPF,

and ARP protocols to traverse the enterprise network. Further improve-

ments to our vulnerability mitigation worm have also been addressed in

Chapter 5, before briefly proposing another novel defensive worm that uti-

lize information retrieved by the LLDP protocol to propagate in Chapter

6.

In Chapter 7, thereafter, we have released Seawave against a malicious

random scanning worm (that mimics to some extent Slammer worm be-

havior) and evaluated its performance and observed its capabilities in de-

179

10. SUMMARY AND CONCLUSIONS

fending the enterprise network against such malicious outbreak. Where in

Chapter 8 we proposed a Bayseian Belief Networks based threat model to

address different probabilistic scenarios to breach Seawave. The chapter

provides sequential attacks in the form of baysian trees and measure the

likelihood of these – scenario based – attacks taking place. The model also

addresses the possibility of using different small scale attack scenarios as

part of a major operation – launched by multiple adversaries – to compro-

mise Seawave.

Finally in Chapter 9 we proposed an analytical propagation model to

evaluate and analyze Seawave’s performance on large scale enterprise net-

works. The mechanism has been examined under different sizes of net-

works, starting form 10,000 nodes up to one million. The chapter also pro-

posed a bandwidth generation model to measure traffic generation within

different stages of Seawave propagation – excluding packets generated within

the switch.

10.2 Directions for future work

The topic of designing computer worms for defensive use can not be de-

scribed as mature, further work needs to be accomplished by the research

community to be able to tackle all the problems associated with self-replicating

and self-propagating network programs and pave the way for the industry

to adopt such approaches. Our future work shall be in that direction, specif-

ically:

10.2.1 Seawave in Industrial Standards.

Although we have run Seawave on different event-driven environments

that mimics to a large extent real world enterprise networks, deploying the

vulnerability mitigation mechanism in an actual real world network is nec-

essary to set it up for industry standards and make sure it operates within

180

10.2 DIRECTIONS FOR FUTURE WORK

acceptable protective measures. Introducing the first reliable self-replicating

and self-propagating security product is important to move this topic from

research to real world networks. Further enhancements to the defensive

worm shall be introduced to make it more robust and more capable in work-

ing under different environments.

10.2.2 Further Work on LLDP Vulnerability Mitigation Defensive

Worm.

In the thesis we have introduced a vulnerability mitigation mechanism that

utilized LLDP for its propagation and we believe there is more space for

improvements, including:

• Reduce the number of redundant probes.

• Add the capability for the mechanism to traverse the backbone and

cover the whole enterprise network.

• Assess the threats towards the defensive worm.

• Provide a mathematical propagation model for evaluation in large scale

networks.

10.2.3 Wireless Defensive Worms.

We have only considered defensive worms for wired networks, however, it

is necessary to address the wireless medium as well. One possible approach

would be designing an LLDP-Based defensive worm to mitigate vulnera-

bilities in LLDP-Supported Wireless networks, where the worm propagate

depending on information retrieved from the LLDP protocol.

181

10. SUMMARY AND CONCLUSIONS

10.3 Conclusion

The race between malicious intrusions and defensive mechanisms is always

close. However, threats are increasing in scale, intelligence, and sophis-

tication and unless the research community push forward new defensive

ideas and techniques, the intruders will always be in the lead. Several calls

have been issued by industries and governments for solutions that provide

prompt and effective responses to prevent (or even reduce) the damage

caused by continuous malicious attacks. Unfortunately, researchers seldom

look into worms beyond the malicious prospective; indeed that limited view

has led the research community to overlook the possible employment of

their distinctive features in network protection.

In this thesis we have revisited the definitions of worms and self replicat-

ing code – in general –, to pave the way for a straightforward identification

of viruses, worms, and botnets; and to also consider the beneficial sides of

these programs, which is often overlooked in the literature. The proposed

definitions and taxonomy of self-replicating programs are based on their

properties, while the distinction between malicious and defensive (or ben-

eficial) actions is left for the jurisdiction. This is necessary as in this topic

the ethical side is always highlighted, although the common prospective

in regard to self-replicating code is often negative – disallowing their com-

mercial use. We have also observed through the related work chapter, that

the concept of using defensive worms as a countermeasure is not new but

indeed not mature enough.

We have looked into worms free from any prejudgments and tried to

hire their capabilities to mitigate vulnerabilities in enterprise networks, by

proposing a controlled self-replicating, self-propagating, and self-contained

vulnerability mitigation worm by the name of Seawave. To the best of our

knowledge the mechanism is the first worm that utilize the second layer of

the OSI model (Data link layer) as its main propagation medium, thats be-

182

10.3 CONCLUSION

cause it is meant to be deployed within enterprise networks and not on the

Internet. We found that to tackle the problem of excessive bandwidth gener-

ation – usually associated with worms – the propagation should not be viral

and should adhere to control measures, such as using topology information

as in the case of Seawave. The worm also can be monitored and supervised

by allowing agents to refer to a master entity for instructions.

Owing to the self-replicating and self-propagating properties of Seawave,

the mechanism possess the capabilities of:

• Short distance communication with vulnerable nodes.

• Intermittent nodes vulnerability detection.

• Network topology discovery.

• Intelligent Network Propagation.

• Workload distribution.

It worth mentioning that the network topology discovery feature would aid

in solving the growing problem of allocating and disinfecting malicious bot-

nets scattered around networks.

By modeling several statistical attack scenarios against our vulnerabil-

ity mitigation mechanism, weak and strong points becomes more appar-

ent. It is observed that most weaknesses do not come from Seawave it-

self, but from the topology it runs within; thats because topology depen-

dent self-replicating and self-propagating mechanisms becomes vulnerable

to the same vulnerabilities of the topologies they run within and any pro-

tective measures applied to these topologies, eventually becomes protective

measures to these mechanisms.

For topology sensitive mechanisms, such as Seawave, it is better to asses

the performance within an event-driven simulation environment using dif-

ferent – randomly generated – topologies. As in event-driven simulations

183

10. SUMMARY AND CONCLUSIONS

the topology is not required to be pre-deterministic, which is closer to real

world networks; and that what we have done for small and medium scale

enterprise networks. However due to lack of resources, doing the same as-

sessment on large scale networks becomes difficult. Therefore, we have run

Seawave on large scale enterprise networks by proposing a mathematical

propagation model where we have observed different points of improve-

ments. In the model Seawave run within a pre-deterministic topology with

different sizes up to one million nodes. The propagation model takes into

consideration the internal details of the topology, since our defensive worm

is topology sensitive; and since Seawave follow the STP in its propagation,

it views the enterprise network in terms of levels and not necessary number

of nodes. The more levels the network has, the more time it takes the mech-

anism to cover the network. Furthermore, the number, structure, and size of

LANs within the enterprise network, in addition to, the position where the

mechanism is initiated does also affects the performance of the defensive

worm, including its time of coverage.

In general, we believe that self-replicating code for defensive (or bene-

ficial) purposes worth considering to become a new research direction in

academia. Seawave has been designed to assess enterprise networks secu-

rity teams in their work to mitigate vulnerabilities. Several simulations and

evaluations of the defensive worm have shown promising results in pro-

viding rapid and effective vulnerability mitigation coverage, in addition to,

controlled propagation. Which encourages exploring this field of study and

open new paths to solve modern network problems; as the common way of

thinking has created the problem and unless it changes, the problem might

remain.

184

Appendix A

Further Results

A.1 Attack Scenarios Probabilities

A.1.1 Goal: Malicious Use of Agent to Master Node Communication

Scenario 1 Probability of decrypting the Agent-Master node communication line

by breaking asymmetric RSA encryption mathematically.
= P (A ∩B ∩ ¬C ∩D)

= P (A|B ∩ ¬C ∩D) · P (B ∩ ¬C ∩D)

= P (A|B) · P (B ∩ ¬C ∩D)

= P (A|B) · P (B|¬C ∩D) · P (¬C ∩D)

= P (A|B) · P (B|¬C ∩D) · P (¬C) · P (D)

= 0.1 · 0.01 · 0.7 · 0.001

= 7× 10−5%

Scenario 2 Probability of decrypting the agent to master node communication line

by breaking asymmetric encryption using brute force attack.
= P (A ∩B ∩ C ∩ ¬D)

= P (A|B ∩ C ∩ ¬D) · P (B ∩ C ∩ ¬D)

= P (A|B) · P (B ∩ C ∩ ¬D)

= P (A|B) · P (B|C ∩ ¬D) · P (C ∩ ¬D)

= P (A|B) · P (B|C ∩ ¬D) · P (C) · P (¬D)

= 0.1 · 0.2 · 0.3 · 0.999

= 0.5994%

185

A. FURTHER RESULTS

Scenario 3 Probability of exhausting master node with agent connections by send-

ing Seawave Agent to Master packets obtained by sniffing traffic after plugging

the intruder machine to the enterprise network.
= P (G ∩H ∩ I ∩ ¬J ∩N ∩ ¬K)

= P (G|H ∩ I ∩ ¬J ∩N ∩ ¬K) · P (H ∩ I ∩ ¬J ∩N ∩ ¬K)

= P (G|H ∩ ¬K) · P (H ∩ I ∩ ¬J ∩N ∩ ¬K)

= P (G|H ∩ ¬K) · P (H|I) · P (I ∩ ¬J ∩N ∩ ¬K)

= P (G|H ∩ ¬K) · P (H|I) · P (I|¬J ∩N ∩ ¬K) · P (¬J ∩N ∩ ¬K)

= P (G|H ∩ ¬K) · P (H|I) · P (I|¬J ∩N) · P (¬J) · P (N) · P (¬K)

= 0.5 · 0.4 · 0.5 · 0.7 · 0.5 · 0.3

= 1.05%

Scenario 4 Probability of exhausting master node with connections based on reply-

attacks sent from a compromised node.
= P (G ∩H ∩ I ∩ J ∩ ¬N ∩ ¬K)

= P (G|H ∩ I ∩ J ∩ ¬N ∩ ¬K) · P (H ∩ I ∩ J ∩ ¬N ∩ ¬K)

= P (G|H ∩ ¬K) · P (H ∩ I ∩ J ∩ ¬N ∩ ¬K)

= P (G|H ∩ ¬K) · P (H|I) · P (I ∩ J ∩ ¬N ∩ ¬K)

= P (G|H ∩ ¬K) · P (H|I) · P (I|J ∩ ¬N ∩ ¬K) · P (J ∩ ¬N ∩ ¬K)

= P (G|H ∩ ¬K) · P (H|I) · P (I|J ∩ ¬N) · P (J) · P (¬N) · P (¬K)

= 0.5 · 0.4 · 0.3 · 0.3 · 0.5 · 0.3

= 0.27%

186

A.1 ATTACK SCENARIOS PROBABILITIES

Scenario 5 Probability of exhausting master node with SYN-Flood connections.
= P (G ∩ ¬H ∩ ¬I ∩ ¬J¬N ∩K)

= P (G|¬H ∩ ¬I ∩ ¬J ∩ ¬N ∩K) · P (¬H ∩ ¬I ∩ ¬J ∩ ¬N ∩K)

= P (G|¬H ∩K) · P (¬H ∩ ¬I ∩ ¬J ∩ ¬N ∩K)

= P (G|¬H ∩K) · P (¬H|¬I ∩ ¬J ∩ ¬N ∩K) · P (¬I ∩ ¬J ∩ ¬N ∩K)

= P (G|¬H ∩K) · P (¬H|¬I) · P (¬I ∩ ¬J ∩ ¬N ∩K)

= P (G|¬H ∩K) · P (¬H|¬I) · P (¬I|¬J ∩ ¬N) · P (¬J ∩ ¬N ∩K)

= P (G|¬H ∩K) · P (¬H|¬I) · P (¬I|¬J ∩ ¬N) · P (¬J) · P (¬N) · P (K)

= 0.8 · 0.5 · 0.9 · 0.7 · 0.5 · 0.7

= 8.82%

Scenario 6 Probability of feeding malformed information to master node.
= P (L ∩M)

= P (L|M) · P (M)

= 0.7 · 0.2

= 14%

187

A. FURTHER RESULTS

A.1.2 Goal: Malicious Use of Agent to Agent Communication

Scenario 7 Probability of stopping the agent propagation by sending the agent a Se

awave SelfReplicate ACK packet by flooding the network after compromising

the mechanism’s mac algorithm.
= P (A ∩B ∩ C ∩D ∩ ¬E ∩ ¬F)

= P (A|B ∩ C ∩D ∩ ¬E ∩ ¬F) · P (B ∩ C ∩D ∩ ¬E ∩ ¬F)

= P (A|B ∩ ¬E) · P (B ∩ C ∩D ∩ ¬E ∩ ¬F)

= P (A|B ∩ ¬E) · P (B|C ∩D ∩ ¬E ∩ ¬F) · P (C ∩D ∩ ¬E ∩ ¬F)

= P (A|B ∩ ¬E) · P (B|C) · P (C ∩D ∩ ¬E ∩ ¬F)

= P (A|B ∩ ¬E) · P (B|C) · P (C|D ∩ ¬E ∩ ¬F) · P (D ∩ ¬E ∩ ¬F)

= P (A|B ∩ ¬E) · P (B|C) · P (C|D) · P (D|¬E ∩ ¬F) · P (¬E ∩ ¬F)

= P (A|B ∩ ¬E) · P (B|C) · P (C|D) · P (D) · P (¬E|¬F) · P (¬F)

= 0.7 · 0.5 · 0.3 · 0.1 · 0.995 · 0.8

= 0.8358%

Scenario 8 Probability of stopping the agent propagation by sending an authentic

Seawave SelfReplicate ACK packet after compromising the agent.
= P (A ∩ ¬B ∩ ¬C ∩ ¬D ∩ E ∩ F)

= P (A|¬B ∩ ¬C ∩ ¬D ∩ E ∩ F) · P (¬B ∩ ¬C ∩ ¬D ∩ E ∩ F)

= P (A|¬B ∩ E) · P (¬B ∩ ¬C ∩ ¬D ∩ E ∩ F)

= P (A|¬B ∩ E) · P (¬B|¬C ∩ ¬D ∩ E ∩ F) · P (¬C ∩ ¬D ∩ E ∩ F)

= P (A|¬B ∩ E) · P (¬B|¬C) · P (¬C ∩ ¬D ∩ E ∩ F)

= P (A|¬B ∩ E) · P (¬B|¬C) · P (¬C|¬D ∩ E ∩ F) · P (¬D ∩ E ∩ F)

= P (A|¬B ∩ E) · P (¬B|¬C) · P (¬C|¬D) · P (¬D|E ∩ F) · P (E ∩ F)

= P (A|¬B ∩ E) · P (¬B|¬C) · P (¬C|¬D) · P (¬D) · P (E|F) · P (F)

= 0.2 · 0.7 · 0.5 · 0.9 · 0.3 · 0.2

= 0.378%

188

A.1 ATTACK SCENARIOS PROBABILITIES

Scenario 9 Probability of compromising the mac algorithm by brute force attack.
= P (G ∩H ∩ ¬I)

= P (G|H ∩ ¬I) · P (H ∩ ¬I)

= P (G|H ∩ ¬I) · P (H) · P (¬I)

= 0.2 · 0.2 · 0.8

= 3.2%

Scenario 10 Probability of compromising the mac algorithm by compromising the

agent.
= P (G ∩ ¬H ∩ I)

= P (G|¬H ∩ I) · P (¬H ∩ I)

= P (G|¬H ∩ I) · P (¬H) ∗ P (I)

= 0.2 · 0.8 · 0.8

= 12.8%

Scenario 11 Probability of stopping agent propagation to next LAN by compromis-

ing a host at next LAN then poisoning the ARP cache of the LAN router to point to

the compromised machine and send back a fake Seawave SelfReplicate ACK

packet to stop the agent from propagating to the target LAN.
= P (J ∩ P ∩K ∩ L)

= P (J |P ∩K ∩ L) ∗ P (P ∩K ∩ L)

= P (J |P) · P (P ∩K ∩ L)

= P (J |P) · P (P |K ∩ L) · P (K ∩ L)

= P (J |P) · P (P |K) · P (K|L) · P (L)

= 0.6 · 0.5 · 0.2 · 0.2

= 1.2%

189

A. FURTHER RESULTS

Scenario 12 Probability of capturing the agent code by compromising a host ma-

chine and tricking the agent to choose that machine using MAC address flooding.
= P (M ∩N ∩O ∩ ¬Q)

= P (M |N ∩O ∩ ¬Q) · P (N ∩O ∩ ¬Q)

= P (M |N) · P (N |O ∩ ¬Q) · P (O ∩ ¬Q)

= P (M |N) · P (N |O ∩ ¬Q) · P (O)P (¬Q)

= P (M |N) · P (N |O) · P (O)

= 0.5 · 0.5 · 0.2 · 0.7

= 3.5%

A.1.3 Goal: Compromise Agent to Switch Communication

Scenario 13 Probability of redirecting an agent to probe a rogue host by compro-

mising a host machine and flooding the CAM table with the target mac address.
= P (A ∩B ∩ I ∩ ¬J)

= P (A|B ∩ I ∩ ¬J) · P (B ∩ I ∩ ¬J)

= P (A|B) · P (B|I ∩ ¬J) · P (I)P (¬J)

= 0.6 · 0.5 · 0.2 · 0.7

= 4.2%

Scenario 14 Probability of forming a DoS attack by manipulating STP next bridge

field.
= P (C ∩D)

= P (C|D) · P (D)

= 0.6 · 0.7

= 42%

190

A.1 ATTACK SCENARIOS PROBABILITIES

Scenario 15 Probability of stopping agent propagation by pointing STP next bridge

to non-existent switch and flood CAM table with non-existent MAC.
= P (E ∩ F)

= P (E|F) · P (F)

= 0.6 · 0.7

= 42%

Scenario 16 Probability of transferring the agent to next LAN by modifying STP

next bridge to point to router.
= P (G ∩H)

= P (G|H) · P (H)

= 0.6 · 0.7

= 42%

A.1.4 Goal: Compromise Agent to Host Communication

Scenario 17 Probability of capturing exploit code used by agent to probe for vul-

nerability on a compromised host connected to the same switch.
= P (A ∩B ∩ ¬H)

= P (A|B ∩ ¬H) · P (B ∩ ¬H)

= P (A|B ∩ ¬H) · P (B) · P (¬H)

= 0.5 · 0.2 · 0.7

= 7%

191

A. FURTHER RESULTS

Scenario 18 Probability of stopping the agent from probing hosts connected to the

same switch for vulnerabilities by flooding hosts with Seawave Host Probe ACK

packets.
= P (C ∩D ∩ I)

= P (C|D ∩ I) · P (D ∩ I)

= P (C|D ∩ I) · P (D|I) · P (I)

= 0.5 · 0.5 · 0.3

= 7.5%

Scenario 19 Probability of stopping the agent from propagating to the next switch

by flooding hosts with Seawave SelfReplicate ACK packets
= P (E ∩ F ∩ ¬G)

= P (E|F ∩ ¬G) · P (F ∩ ¬G)

= P (E|F ∩ ¬G) · P (F |¬G) · P (¬G)

= P (E|F ∩ ¬G) · P (F) · P (¬G)

= 0.5 · 0.5 · 0.5

= 12.5%

Scenario 20 Probability of stopping the agent from propagating to the next switch

by sending a unicast Seawave SelfReplicate ACK packet to the agent.
= P (E ∩ ¬F ∩ ¬J ∩G ∩K ∩ L)

= P (E|¬F ∩ ¬J ∩G ∩K ∩ L) · P (¬F ∩ ¬J ∩G ∩K ∩ L)

= P (E|¬F ∩G) · P (¬F |¬J ∩G ∩K ∩ L) · P (¬J ∩G ∩K ∩ L)

= P (E|¬F ∩G) · P (¬F |¬J) · P (¬J) · P (G|K) · P (K|L) · P (L)

= 0.4 · 0.5 · 0.5 · 0.5 · 0.2 · 0.5

= 0.5%

192

A.1 ATTACK SCENARIOS PROBABILITIES

A.1.5 Goal: Compromise Agent to Router Communication

Scenario 21 Probability of stopping the agent from propagating on the backbone by

feeding malformed Seawave LSD ARP RPL (LSD point to no further routers) after

compromising OSPF.
= P (A ∩B ∩ C ∩ ¬D ∩ ¬E)

= P (A|B ∩ C ∩ ¬D ∩ ¬E) · P (B ∩ C ∩ ¬D ∩ ¬E)

= P (A|B ∩ ¬D) · P (B|C ∩ ¬D ∩ ¬E) · P (C ∩ ¬D ∩ ¬E)

= P (A|B ∩ ¬D) · P (B|C) · P (C|¬D ∩ ¬E) · P (¬D ∩ ¬E)

= P (A|B ∩ ¬D) · P (B|C) · P (C) · P (¬D|¬E) · P (¬E)

= 0.5 · 0.4 · 0.4 · 0.5 · 0.6

= 2.4%

Scenario 22 Probability of redirecting or stopping the agent from propagating on

the backbone by feeding malformed Seawave ARP RPL (ARP Table information)
= P (A ∩ ¬B ∩ ¬C ∩D ∩ E)

= P (A|¬B ∩ ¬C ∩D ∩ E) · P (¬B ∩ ¬C ∩D ∩ E)

= P (A|¬B ∩D) · P (¬B|¬C ∩D ∩ E) · P (¬C ∩D ∩ E)

= P (A|¬B ∩D) · P (¬B|¬C) · P (¬C|D ∩ E) · P (D ∩ E)

= P (A|¬B ∩D) · P (¬B|¬C) · P (¬C) · P (D|E) · P (E)

= 0.5 · 0.6 · 0.6 · 0.5 · 0.4

= 3.6%

Scenario 23 Probability of an attacker impersonating a router.
= P (F ∩ I ∩ J)

= P (F |I ∩ J) · P (I ∩ J)

= P (F |I) · P (I| ∩ J) · P (J)

= 0.5 · 0.5 · 0.6

= 15%

193

A. FURTHER RESULTS

A.1.6 Goal: Unauthorized Modification of Agent Code

Scenario 24 Probability of Compromising the private key by compromising the

master node itself.
= P (A ∩B ∩ ¬C)

= P (A|B ∩ ¬C) · P (B ∩ ¬C)

= P (A|B ∩ ¬C) · P (B) · P (¬C)

= 0.5 · 0.3 · 0.9

= 13.5%

Scenario 25 Probability of revealing the private key by brute-force.
= P (A ∩ ¬B ∩ C)

= P (A|¬B ∩ C) · P (¬B ∩ C)

= P (A|¬B ∩ C) · P (¬B) · P (C)

= 0.2 · 0.7 · 0.1

= 1.4%

A.1.7 Goal: Compromising Agent in Host Machine

Scenario 26 Probability of Compromising the Agent installed in a vulnerable ma-

chine.
= P (A ∩B ∩ C)

= P (A|B ∩ C) · P (B ∩ C)

= P (A|B) · P (B ∩ C)

= P (A|B) · P (B|C) · P (C)

= 0.4 · 0.5 · 0.5

= 10%

194

A.2 MULTIPLE ATTACK SCENARIO PROBABILITY

A.1.8 Goal: Mechanism Information Gathering

Scenario 27 Probability of a malicious user accessing enterprise network and start

sniffing agent traffic to allocate master node.
= P (A ∩B ∩ C)

= P (A|B ∩ C) · P (B ∩ C)

= P (A|B) · P (B|C) · P (C)

= 0.7 · 0.5 · 0.7

= 24.5%

A.2 Multiple Attack Scenario Probability

A.2.1 Goal: Put The Mechanism Propagation Process into Halt

Multiple Scenarios 28 Probability of a group of adversaries gathering information

about the mechanism’s traffic, while trying to block the agents from propagating

within the switch domain, in addition to disallowing the mechanism from travers-

ing the backbone, forcing the propagation into halt.
= P (S15 ∩ S21 ∩ S27)

= P (S15|S21 ∩ S27) · P (S21 ∩ S27)

= P (S15|S27) · P (S21|S27) · P (S27)

= 0.6 · 0.4 · 0.147

= 3.528%

195

Bibliography

[1] IEEE Standards for Local and Metropolitan Area Networks: Media

Access Control (MAC) Bridges (Incorporates IEEE 802.1t-2001 and

IEEE 802.1w), 2004. 71, 74, 75

[2] AITEL, D. Nematodes–beneficial worms. Black Hat Federal (2006). 33,

39, 44, 47, 55

[3] AL-SALLOUM, Z., AND WOLTHUSEN, S. Semi-Autonomous Link

Layer Vulnerability Discovery and Mitigation Dissemination. In

Fifth International Conference on IT Security Incident Management and IT

Forensics, (IMF’09). (Stuttgart, Germany, 2009), pp. 41–53. 27, 39, 61

[4] AL-SALLOUM, Z., AND WOLTHUSEN, S. A Link-Layer-Based Self-

Replicating Vulnerability Discovery Agent. In proceedings of the Fif-

teenth IEEE Symposium on Computer and Communications (ISCC). (Ric-

cione, Italy, 2010), pp. 704–707. 27, 39, 62

[5] AL-SALLOUM, Z., AND WOLTHUSEN, S. Agent-Based Host Enu-

meration and Vulnerability Scanning Using Dynamic Topology In-

formation. In the 9th Conference of Information Security for South

Africa (ISSA) (Johannesburg, South Africa, Jan 2010). Avail-

able from: http://ieeexplore.ieee.org/xpls/abs_all.

jsp?arnumber=5588317. 27, 62

[6] AL-SALLOUM, Z., AND WOLTHUSEN, S. Security and Performance

Aspects of an Agent-Based Link-Layer Vulnerability Discovery Mech-

197

BIBLIOGRAPHY

anism. In ARES’10 International Conference on Availability, Reliability,

and Security – SecSe (Krakow, Poland, 2010), pp. 549–554. 27

[7] AL-SALLOUM, Z., AND WOLTHUSEN, S. A Propagation Model of

A Vulnerability Mitigation Computer Worm - Seawave. In The Fifth

International Conference on Network and System Security. (Milan, Italy,

2011), IEEE Digital Library. 27

[8] AL-SALLOUM, Z., AND WOLTHUSEN, S. Threat Analysis Model of an

Agent-Based Vulnerability Mitigation Mechanism Using Bayesian Be-

lief Networks. In the International Workshop on Network Science (NSW)

(New York, USA, 2011), IEEE Computer Society. 27

[9] ASHFORD, W. Rsa europe 2010: Botnets have become

backbone for cybercrime, says microsoft, 2010. [Online;

accessed 4-April-2011]. Available from: http://www.

computerweekly.com/Articles/2010/10/14/243341/

RSA-Europe-2010-Botnets-have-become-backbone-for-cybercrime-says.

htm. 29

[10] AYCOCK, J., AND MAURUSHAT, A. Good worms and human rights.

ACM SIGCAS Computers and Society 38, 1 (2008), 28–39. 60

[11] BAILEY, M., COOKE, E., JAHANIAN, F., WATSON, D., AND NAZARIO,

J. The blaster worm: Then and now. Security & Privacy, IEEE 3, 4

(2005), 26–31. 30, 38

[12] BELLAMY, L., HUTCHINSON, D., AND WELLS, J. User perceptions

and acceptance of benevolent worms–a matter of fear? In 6th Inter-

national Conference on Computer and Information Science. (2007), IEEE

Computer Society, pp. 11–18. 33, 47, 48

[13] BERBAR, A., AND AHMEDNACER, M. Testing and fault tolerance ap-

proach for distributed software systems using nematode worms. Pro-

198

BIBLIOGRAPHY

ceedings of the 4th International Conference on Queueing Theory and Net-

work Applications (2009), 1–4. 60

[14] BONTCHEV, V. Are ’good’ computer viruses still a bad idea? vxheav-

ens.com. Available from: http://vxheavens.com/lib/avb02.

html. 36, 43

[15] BREITBART, Y., GAROFALAKIS, M., JAI, B., MARTIN, C., RASTOGI,

R., AND SILBERSCHATZ, A. Topology discovery in heterogeneous

ip networks: the netinventory system. IEEE/ACM Trans. Netw. 12, 3

(2004), 401–414. 74, 81, 90

[16] BROWN, R., GRIFFIN, J., NORMAN, A., AND SMITH, R. Why hp did

not get “blastered”. HP Laboratories Technical Report HPL-2004-188,

Bristol, UK (2004). 31, 33

[17] BRUCE SCHNEIER. A good worm is hard to find., 2004. [Online; ac-

cessed 10-March-2011]. Available from: http://www.csoonline.

com/article/219607/a-good-worm-is-hard-to-find. 42

[18] CASTANEDA, F., SEZER, E., AND XU, J. Worm vs. worm: preliminary

study of an active counter-attack mechanism. Proceedings of the 2004

ACM workshop on Rapid malcode (2004), 83–93. 30, 39, 42, 53, 58, 62, 63,

64, 65, 158

[19] CHOI, H., LEE, H., AND KIM, H. Fast detection and visualization

of network attacks on parallel coordinates. Computers & Security 28

(2009). Article in press. 126

[20] CHULANI, S., BOEHM, B., AND STEECE, B. Bayesian analysis of em-

pirical software engineering cost models. IEEE Trans. Softw. Eng. 25, 4

(1999), 573–583. 133

199

BIBLIOGRAPHY

[21] COMER, D. E. Internetworking with TCP/IP, Volume 1: Principles, Proto-

cols, and Architectures, Fifth Edition, 5th ed. Prentice Hall PTR, Upper

Saddle River, NJ, USA, 2005. 70

[22] COMPUTER ECONOMICS. 2007 malware report: The economic

impact of viruses, spyware, adware, botnets, and other mali-

cious code, 2007. [Online; accessed 21-March-2011]. Avail-

able from: http://www.computereconomics.com/page.cfm?

name=Malware%20Report. 29

[23] CONFICKER WORKING GROUP. Conficker Working Group: Lessons

Learned. Tech. rep., Conficker Working Group – confickerworking-

group.org, Jan 2011. 30, 41

[24] CYRUS PEIKARI. Fighting Fire with Fire: Designing a ”Good” Com-

puter Virus, 2004. [Online; accessed 10-March-2011]. Available from:

http://www.informit.com/articles/printerfriendly.

aspx?p=337309. 54

[25] DALEY, D. J., AND GANI, J. M. Epidemic Modelling : An Introduction.

Cambridge University Press, 1999. 160

[26] FAN, X., AND XIANG, Y. Accelerating the Propagation of Active

Worms by Employing Multiple Target Discovery Techniques. In Pro-

ceedings of the IFIP International Conference on Network and Parallel Com-

puting (NPC 2008), Springer-Verlag. 66

[27] FENTON, N., KRAUSE, P., AND NEIL, M. Software measurement:

Uncertainty and causal modeling. IEEE Softw. 19, 4 (2002), 116–122.

133

[28] FENTON, N., MARSH, W., NEIL, M., CATES, P., FOREY, S., AND TAI-

LOR, M. Making resource decisions for software projects. In ICSE ’04:

Proceedings of the 26th International Conference on Software Engineering

200

BIBLIOGRAPHY

(Washington, DC, USA, 2004), IEEE Computer Society, pp. 397–406.

133

[29] FERBRACHE, D. A Pathology of Computer Viruses, 1st ed. Springer-

Verlag New York, Inc., Secaucus, NJ, USA, 1992. 37

[30] FERRIE, P., PERRIOT, F., AND SZOR, P. Worm wars. VIRUS BULLETIN

(2003). 62

[31] FINLAYSON, MANN, MODUL, THEIMER. A reverse address resolution

protocol. RFC 903, Computer Science Department, Stanford University

(Juni 1984). 80

[32] FOROUGHI, F. Information security risk assessment by using bayesian

learning technique. Proceedings of the World Congress on Engineering 1

(2008). 133

[33] FREIRE, M., FREIRE, M., AND PEREIRA, M. Encyclopedia of Internet

Technologies and Applications. Information Science Reference - Imprint

of: IGI Publishing, Hershey, PA, 2007. 35

[34] GILES HOGBEN. Botnets: Detection, Measurement, Disinfection and

Defence. Tech. rep., European Network and Information Security

Agency (ENISA), Mar 2011. 29, 46

[35] GUPTA, A., AND DUVARNEY, D. Using predators to combat worms

and viruses: A simulation-based study. 20th Annual Computer Security

Applications Conference (2004), 116–125. 56

[36] H. SEYBERT, A. LF. Internet usage in 2010 Households and Indi-

viduals. Tech. rep., Eurostat, 2011. 29

[37] HANS DELFS, H. K. Introduction to Cryptography Principles and Appli-

cations. Springer-Verlag, Berlin Heidelberg New York, 2007. 110

201

BIBLIOGRAPHY

[38] HARRINGTON, D., PRESUHN, R., AND WIJNEN, B. An architecture

for describing simple network management protocol (snmp) manage-

ment frameworks, 2002. 70

[39] HECKERMAN, D. A tutorial on learning with bayesian networks.

Tech. rep., Learning in Graphical Models, 1995. 132

[40] IEEE. IEEE Standard for Local and metropolitan area networks Sta-

tion and Media Access Control Connectivity Discovery. ”IEEE Std

802.1AB2005” (2005), 0 1-158. 106

[41] II, J. W. C. The Oxford Companion to American Military History, 1st ed.

Oxford University Press, USA; 1st edition, Cary, NC, USA, 2000. 47

[42] ISSARIYAKUL, T., AND HOSSAIN, E. Introduction to Network Simulator

NS2. Springer-Verlag, Heidelberg, Germany, 2009. 79, 112, 123, 174

[43] JAMES MIDDLETON. ’Anti-worms’ fight off Code Red

threat, 2001. [Online; accessed 10-March-2011]. Available

from: http://www.v3.co.uk/v3-uk/news/1962686/

anti-worms-fight-code-red-threat. 63, 64

[44] JENSEN, F. V., AND NIELSEN, T. D. Bayesian Networks and Decision

Graphs. Springer Publishing Company, Incorporated, 2007. 148

[45] JODIE NAZE. Beneficial Network Worms, 2006. [Online; accessed

10-March-2011]. Available from: http://www.itworld.com/nls_

security_nematodes_060117. 47

[46] JOHN LEYDEN. Blaster variant offers ’fix’ for pox-ridden pcs,

2003. [Online; accessed 10-March-2011]. Available from:

http://www.theregister.co.uk/2003/08/19/blaster_

variant_offers_fix/. 62

202

BIBLIOGRAPHY

[47] JUDGE HOWARD G. MUNSON. 928 F.2D 504: United States of

America v. Robert Tappan Morris, 1991. Available from: http://

morrisworm.larrymcelhiney.com/morris_appeal.txt. 37

[48] JUNG, J., MILITO, R. A., AND PAXSON, V. On the Adaptive Real-Time

Detection of Fast-Propagating Network Worms. Journal of Computer

Virology 4, 3 (Aug. 2008), 197–210. 126

[49] KASPERSKY. Net-Worm.Perl.Santy.a threatens Internet Forums, 2004.

[Online; accessed 16-April-2011]. Available from: http://www.

kaspersky.co.uk/news?id=156681162. 65

[50] KERN, M. Re: Codegreen beta release (idq-

patcher/anticodered/etc.), 2001. [Online; accessed 13-April-2010].

Available from: http://seclists.org/vuln-dev/2001/Sep/

0001.html. 67

[51] KHAYAM, S., AND RADHA, H. A topologically-aware worm propaga-

tion model for wireless sensor networks. 25th IEEE International Con-

ference on Distributed Computing Systems Workshops. (2005), 210–216. 55

[52] KONDAKCI, S. Network Security Risk Assessment Using

Bayesian Belief Networks. The 2nd IEEE International Conference

on Information Privacy, Security, Risk and Trust (2010). Avail-

able from: ftp://pubftp.computer.org/Press/outgoing/

proceedings/SocialCom/data/4211a952.pdf. 133, 134, 152

[53] LEDER, F., AND WERNER, T. Know Your Enemy: Containing Con-

ficker. Tech. rep., The Honeynet Project, University of Bonn, Germany,

Mar. 2009. 67, 121

[54] LEMOS, R. Counting the cost of slammer, 2003. [Online; ac-

cessed 24-March-2011]. Available from: http://news.cnet.com/

2100-1001-982955.html. 29

203

BIBLIOGRAPHY

[55] LILJENSTAM, M., AND NICOL, D. M. Comparing Passive and Active

Worm Defenses. In Proceedings of the First International Conference on the

Quantitative Evaluation of Systems (QEST) (September 2004), pp. 18–27.

53

[56] LIU, Y., YUN, X., WANG, B., AND SUN, H. An Anti-worm with Bal-

anced Tree Based Spreading Strategy. Advances in Machine Learning

and Cybernetics (2006), 652–661. 57

[57] MARK JOSEPH EDWARDS. Code red turns codegreen,

2001. [Online; accessed 10-March-2011]. Available from:

http://www.windowsitpro.com/article/antivirus/

code-red-turns-codegreen.aspx. 63, 64

[58] MARSON, I. Anti-santy worm on the prowl, 2004. [Online; ac-

cessed 16-April-2011]. Available from: http://news.cnet.com/

2100-7349_3-5508607.html. 65

[59] THE MATHWORKS, INC. MATLAB Getting Started Guide, 2010. 171

[60] MCAFEE LABS. 2011 Threats Predictions. Tech. rep., McAfee, Inc.,

Jan. 2011. 29

[61] MCMILLAN, R. Dhs chief: What we learned from stuxnet,

2011. [Online; accessed 27-April-2011]. Available from:

http://www.pcworld.com/businesscenter/article/

226237/dhs_chief_what_we_learned_from_stuxnet.html.

23, 46

[62] MICROSOFT. Microsoft Security Intelligence Report volume 9 Battling

Botnets. 1–70. 29

[63] MOORE, D., PAXSON, V., SAVAGE, S., SHANNON, C., STANIFORD,

S., AND WEAVER, N. Inside the Slammer Worm. IEEE Security and

Privacy 1, 4 (July 2003), 33–39. 30, 38, 77, 78

204

BIBLIOGRAPHY

[64] MOORE, D., AND SHANNON, C. The Spread of the Code-Red

Worm (CRv2), 2001. Available from: http://www.caida.org/

research/security/code-red/coderedv2_analysis.xml.

158

[65] MOORE, D., AND SHANNON, C. The spread of the Witty worm. IEEE

security and privacy 2, 4 (2004). 38

[66] MOORE, D., SHANNON, C., AND BROWN, J. Code-red: A Case Study

on the Spread and Cictims of an Internet Worm. In Proceedings of

the ACM SIGCOMM / USENIX Internet Measurement Workshop (IMW

2002) (Marseille, France, 2002), pp. 273–284. 29, 30, 38, 66

[67] MOY, J. T. The OSPF Specification. Internet Request For Comments

RFC 1131, Internet Engineering Task Force, Oct. 1989. 88

[68] MOY, J. T. OSPF Version 2. Internet Request For Comments RFC 1247,

Internet Engineering Task Force, July 1991. 88

[69] MOY, J. T. OSPF: Anatomy of an Internet Routing Protocol. Addison-

Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1998. 90

[70] N FALLIERE AND L.O MURCHU AND E CHIEN. W32. Stuxnet Dossier.

Tech. rep., Symantec Security Response, 2011. 30, 41

[71] NAZARIO, J. Defense and Detection Strategies against Internet Worms.

Artech House Publishers, October 2003. Available from: Hardcover.

30, 37, 64, 65, 66

[72] NAZARIO, J., ANDERSON, J., WALSH, R., AND CONNELLY, C. The

Future of Internet Worms. Tech. rep., Crimelabs Research, 2001. 93,

110

[73] NAZARIO, J., PTACEK, T., AND SONG, D. Wormability: A de-

scription for vulnerabilities. Arbor Networks (Jan 2004). Avail-

205

BIBLIOGRAPHY

able from: http://98.15.203.119/eBooks/Virusability_

researchOct04.pdf. 32

[74] NICOL, D., AND LILJENSTAM, M. Models of Active Worm Defenses.

IPSI Conference 51 (2004), 61801. 52

[75] NIE, X., AND JING, J. A Novel Contagion-Like Patch Dissemina-

tion Mechanism against Peer-to-Peer File-Sharing Worms. Informa-

tion Security and Cryptology (Jan 2011). Available from: http://www.

springerlink.com/index/75M310572822351K.pdf. 61

[76] NORSYSSOFTWARE CORP. Netica Application. Available from: http:

/www.norsys.com. 154

[77] PARSONS, J. J., AND OJA, D. New Perspectives on Computer Concepts

2011: Introductory, 13th ed. Course Technology Press, Boston, MA,

United States, 2010. 35

[78] PENDHARKAR, P. C., SUBRAMANIAN, G. H., AND RODGER, J. A. A

probabilistic model for predicting software development effort. In

ICCSA’03: Proceedings of the 2003 international conference on Computa-

tional science and its applications (Berlin, Heidelberg, 2003), Springer-

Verlag, pp. 581–588. 132, 133

[79] PHILLIPS, C., AND SWILER, L. P. A Graph-Based System for

Network-Vulnerability Analysis. In NSPW ’98: Proceedings of the 1998

workshop on New security paradigms (New York, NY, USA, 1998), ACM,

pp. 71–79. 134

[80] PLUMMER, D. C. RFC 0826 Ethernet Address Resolution Protocol: Or

converting network protocol addresses to 48.bit Ethernet address for trans-

mission on Ethernet hardware, November 1982. 83

[81] SCARFONE, K., GRANCE, T., AND MASONE, K. Computer Security

Incident Handling Guide. NIST Special Publication 800 (2008), 61. 38

206

BIBLIOGRAPHY

[82] SCHNEIER, B. Gathering ’storm’ superworm poses grave

threat to pc nets. Wired.com (2007). [Online; accessed 09-May-

2011]. Available from: http://www.wired.com/politics/

security/commentary/securitymatters/2007/10/

securitymatters_1004. 41

[83] SEAGREN, E. Secure Your Network for Free. Syngress Publishing, 2007.

78

[84] SEBASTIAN BORTNIK. Conficker by the numbers. Tech. rep., ESET

Latin America, Feb 2010. 29

[85] SEBORG, B. An article in the electronic forum VirusL/comp.virus. 35

[86] SEIFERT, R., AND EDWARDS, J. The All-New Switch Book: The Complete

Guide to LAN Switching Technology. Wiley Publishing, 2008. 73, 75, 92

[87] SHOCH, J., AND HUPP, J. The “worm” programs—early experience

with a distributed computation. Communications of the ACM 25, 3

(1982), 172–180. 50

[88] SIMONITE, T. Friendly ’worms’ could spread software fixes. New-

Scientist (2008). [Online; accessed 13-April-2011]. Available from:

http://www.newscientist.com/article/dn13318. 66

[89] SKOUDIS, E., AND ZELTSER, L. Malware: Fighting Malicious Code.

Prentice Hall PTR, Upper Saddle River, NJ, USA, 2003. 31

[90] SOLOMON, A. PC Viruses: detection, analysis, and cure. Springer-Verlag

New York, Inc., New York, NY, USA, 1991. 35

[91] SPAFFORD, E. The Internet Worm Incident Technical Report csd-tr-

933. Lecture Notes in Computer Science87, Springer-Verlag (1989). 37,

38

207

BIBLIOGRAPHY

[92] SPAFFORD, E. H. The Internet Worm Program: An Analysis. Tech.

Rep. CSD-TR-823, Department of Computer Sciences, Purdue Univer-

sity, West Lafayette, IN, USA, Dec. 1988. 66

[93] STANIFORD, S., PAXSON, V., AND WEAVER, N. How to own the in-

ternet in your spare time. In Proceedings of the 11th USENIX Security

Symposium (Berkeley, CA, USA, 2002), USENIX Association, pp. 149–

167. 66, 158, 160

[94] STEVEN, J. Threat modeling perhaps it’s time. IEEE Security and Pri-

vacy 8, 3 (2010), 83–86. 131

[95] STOTT, D. T. Layer-2 Path Discovery using Spanning Tree MIBs.

Avaya Labs Research, Avaya Inc., Basking Ridge, NJ, Tech. Rep (2002),

2002–004. 74, 81, 82

[96] SU, F. Modeling and analysis of internet worm propagation. The

Journal of China Universities of Posts and Telecommunications 17, 4 (2010),

63–68. 159

[97] SZOR, P. The Art of Computer Virus Research and Defense. Addison-

Wesley Professional, 2005. 41, 63

[98] TANACHAIWIWAT, S., AND HELMY, A. VACCINE: War of the Worms

in Wired and Wireless Networks. IEEE International Conference on Com-

puter Communications (2006), 05–859. 57

[99] TANACHAIWIWAT, S., AND HELMY, A. Modeling and Analysis of

Worm Interactions (War of the Worms). Fourth International Conference

on Broadband Communications, Networks and Systems, (BROADNETS

2007). (2007), 649–658. 58

[100] TANACHAIWIWAT, S., AND HELMY, A. On the Performance Evalu-

ation of Encounter-Based Worm Interactions based on Node Charac-

teristics. ACM MobiCom Workshop on Challenged Networks (2007). 58

208

BIBLIOGRAPHY

[101] TOUTONJI, O., AND YOO, S.-M. Passive Benign Worm Propagation

Modeling with Dynamic Quarantine Defense. TRANSACTIONS ON

INTERNET AND INFORMATION SYSTEMS 3, 1 (2009), 96–107. 61,

159

[102] TOYOIZUMI, H., AND KARA, A. Predators: Good will Mobile Codes

combat against Computer Viruses. Proceedings of the workshop on New

security paradigms (2002), 11–17. 51, 55

[103] VOJNOVIĆ, M., GUPTA, V., KARAGIANNIS, T., AND GKANTSIDIS,

C. Sampling Strategies for Epidemic-Style Information Dissemina-

tion. In Proceedings of the 27th IEEE Conference on Computer Communi-

cation (INFOCOM 2008) (Phoenix, AZ, USA, Apr. 2008), IEEE Press,

pp. 1678–1686. 59, 66

[104] WANG, B., FANG, B., AND YUN, X. The Propagation Model and

Analysis of Worms Together with Anti-Worms. WSEAS transactions

on information science and applications 4, 1 (2004), 967–982. 37, 51, 62

[105] WANG, F., SONG, J., DONG, Y., AND GU, J. Epidemic Models Ap-

plied to Worms on Internet. Second International Conference on Intelli-

gent Networks and Intelligent Systems (2009), 160–163. 60

[106] WANG, H. J., WANG, H. J., GUO, C., GUO, C., SIMON, D. R.,

SIMON, D. R., ZUGENMAIER, A., AND ZUGENMAIER, A. Shield:

Vulnerability-Driven Network Filters for Preventing Known Vulner-

ability Exploits. In ACM SIGCOMM (2004), pp. 193–204. 31, 32

[107] WEAVER, N., PAXSON, V., STANIFORD, S., AND CUNNINGHAM,

R. A Taxonomy of Computer Worms. In Proceedings of the 2003

ACM workshop on Rapid malcode (New York, NY, USA, 2003), WORM

’03, ACM, pp. 11–18. Available from: http://doi.acm.org/10.

1145/948187.948190. 37

209

BIBLIOGRAPHY

[108] WHALLEY, I., ARNOLD, B., CHESS, D., MORAR, J., SEGAL, A., AND

SWIMMER, M. An Environment for Controlled Worm Replication and

Analysis. IBM TJ Watson Research Center (2000). 37

[109] WU, D., LONG, D., WANG, C., AND GUAN, Z. Modeling and Anal-

ysis of Worm and Killer-Worm Propagation using the Divide-and-

Conquer Strategy. Distributed and Parallel Computing (2005), 370–375.

56, 58

[110] YANG, Y., FANG, Y., AND LI, L.-Y. The Analysis of Propagation

Model for Internet Worm Based on Active Vaccination. In Proceed-

ings of the 2008 Fourth International Conference on Natural Computa-

tion - Volume 06 (Washington, DC, USA, 2008), IEEE Computer So-

ciety, pp. 682–688. Available from: http://portal.acm.org/

citation.cfm?id=1473248.1473980. 159

[111] YAO, Y., LV, J., GAO, F., YU, G., AND DENG, Q. Detecting and De-

fending against Worm Attacks Using Bot-honeynet. Second Interna-

tional Symposium on Electronic Commerce and Security (2009), 260–264.

60

[112] YONG, Y. A New Vaccine for Worm Vaccination. In Proceedings of the

2010 International Conference on Artificial Intelligence and Computational

Intelligence - Volume 01 (Washington, DC, USA, 2010), AICI ’10, IEEE

Computer Society, pp. 445–447. Available from: http://dx.doi.

org/10.1109/AICI.2010.99. 61

[113] ZEGURA, E. W. GT-ITM: Georgia Tech Internetwork Topology mod-

els (software), 1996. Available from: http://www.cc.gatech.

edu/project. 104

[114] ZHOU, H., WEN, Y., AND ZHAO, H. Modeling and Analysis of Active

Benign Worms and Hybrid Benign Worms Containing the Spread of

210

BIBLIOGRAPHY

Worms. Sixth International Conference on Networking, ICN’07. (2007),

65. 59

[115] ZHOU, H., WEN, Y., AND ZHAO, H. Passive Worm Propagation

Modeling and Analysis. In Proceedings of the International Multi-

Conference on Computing in the Global Information Technology (Washing-

ton, DC, USA, 2007), IEEE Computer Society, pp. 32–. 58, 159

[116] ZOU, C., GONG, W., AND TOWSLEY, D. Code Red Worm Propaga-

tion Modeling and Analysis. Proceedings of the 9th ACM conference on

Computer and communications security (2002), 138–147. 58, 158

[117] ZOU, C., TOWSLEY, D., AND GONG, W. On the Performance of In-

ternet Worm Scanning Strategies. Performance Evaluation 63, 7 (2006),

700–723. 66, 159, 160, 161

[118] ZOU, C. C., TOWSLEY, D., GONG, W., AND CAI, S. Routing Worm:

A Fast, Selective Attack Worm Based on IP Address Information. In

PADS ’05: Proceedings of the 19th Workshop on Principles of Advanced and

Distributed Simulation (Washington, DC, USA, 2005), IEEE Computer

Society, pp. 199–206. 66

211

