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ABSTRACT

A preliminary investigation of a new Localised Molecular 

Orbital (LMO) method is presented and applied to the molecules HCN,

CO, N^, HgO, NH^ and CH^. The LMOs^are called Perfectly Localised 

Molecular Orbitals (PLMOs) and are obtained in the one-determinant 

Hartree-Fock Molecular Orbital-Linear Combination of Atomic Orbitals 

(MO-LCAO) approximation in a minimal AO basis.

The PLMOs are obtained from a starting set of occupied 

Canonical Molecular Orbitals (CMOs) by applying a general orthogonal 

transformation to the sigma valence CMOs and by minimising the energy 

sacrificed in restricting the transformed MOs to basis AOs on one and 

two centres only. The atomic centres upon and between which the lone 

pair and bond PLMOs reside is decided largely by an energy criterion 

alone. The resulting set of PLMOs are non-orthogonal.

In the example molecules, the energy difference between 

the canonical wavefunction and that constructed from the PLMOs is 

found to be small. The PLMOs, expressed in terms of normalised hybrid 

atomic orbitals (HAOs) on each atom, are found to reflect a normal 

valence description of the molecules in which the overall level of 

hybridisation, is low. This is possible because a substantial degree 

of non-orthogonality among the HAOs on each atom is found. The 

PLMOs yield satisfactory bond and lone pair moments and electronic 

populations, and are also shown, to have a satisfactory behaviour at 

non-experimental geometries of the water molecule.
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It is concluded that the small sacrifice in accuracy 

that results from completely localising LMOs by the PLMO method is 

outweighed by the advantages of dealing with one and two-centre 

LMOs. It is also suggested that the differences in the properties 

of LMOs generated by different orthogonal transformation criteria is 

dependent on the relative amounts of delocalisation from bond and lone 

pair LMOs.
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CHAPTER ONE 

GENERAL INTRODUCTION

1.1 INTRODUCTORY REMARKS

The electronic structure and properties of any molecule ifiay be

determined in principle by solution of Schrodingers (time-independent)

equation.^ The wavefunction.. which describes the electronic state of

the molecule and is a solution of Schrodingers equation is a function

of the co-ordinates of all the nuclei and electrons in the molecule.

In order to actually compute solutions of the Schrodinger equation for

most molecules a number of well documented approximations have to be

made, and methods of describing the electronic structure of molecules

(such as the Molecular Orbital and Valence Bond Methods) are well known.

What is ultimately of interest to chemists however, is that the

electronic distribution in molecules may be determined by quantum

mechanical means and that the structure and reactivity of molecules can

be understood in terms of this electron distribution. It is fortunate

therefore, that it is not necessary to understand the intricacies of

the construction of elaborate wavefunctions in order to describe the

physical situation in a molecule. The physically essential features

of an electron distribution may be understood in terms of a small
2-8

number of density functions' of which the most familiar is simply 

the electron density. Thus for many (but not all) purposes the electro# 

distribution may be treated as a ’charge cloud’ without loss of rigour.

From a quantum mechanical point of view, each molecular calcula

tion, even those on slightly different conformations of the same 

molecule, are entirely independent. Also, the electron density obtained 

from such calculations is found to be ’smeared out’ over the entire
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molecule - the electrons appear like an unstructured sea surrounding 

the fixed nuclei. In contrast to this, in chemistry, some molecules 

are considered to be related in structure (e.g. a homologous series of 

hydrocarbons) and the properties of molecules are understood not in 

isolation, but in relation to other molecules that are thought of as 

having a similar structure or organisation. Hence a molecular system 

in chemistry is understood in terms of its parts: chemical bonds

and functional groups which are often believed to behave in a similar 

manner in different molecules i.e. to be transferable from molecule 

to molecule.

These two approaches to the description of molecular structure

may be resolved by a quantum mechanical picture of a molecule in which

the total electron, density is broken up into parts. In this way the

quantum chemist may search for subunits of a molecular wavefunction

with which to identify standard molecular components such as bonds

e.g. carbon-hydrogen bonds, lone, pairs, e.g. on N in Ammonia,and

functional groups e.g. carboxylic groups, and hence make a bridge
9between classical chemical ideas and quantum mechanics. This bridge 

is attempted in a number of different 'local’ theories, each one of 

which attempts in a different way, and at differing levels of 

mathematical rigour, to promote the understanding of local regions in 

molecules. Some of these methods can be briefly mentioned at this 

point.

Bader and co-workers^^"^^ have developed a method of partitioning 

a molecule into regions defined by saddle points in the electron 

density, where each such region satisfies the virial theorem and is 

quantum mechanically separable from its environment. Such ’virial
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fragments' can be used to characterise the type of bonding in an

isoelectronic series^^ and to interpret the charge and energy changes

in nucleophilic displacement reactions^^ for example. Another,
17related method of testing the localisability of electrons is the 

18Loge theory. Here, the three dimensional space of the molecule is 

portioned into non-overlapping volumes or 'loges' defined by the 

minimisation of a missing information function. The 'best' loges are 

generally found to be those which localise pairs of electrons in regions 

of space associated with core, bonded and non-bonded electrons and are 

hence labelled 'core', 'bond', and 'lone pair loges'. '

A molecular wavefunction may be expressed in terms of the mole

cules'constituent electron groups by the use of 'Generalised Product 

functions' (or 'Group functions0 . In this method each electron group 

is described by its own antisymmetric wavefunction and the molecular 

wavefunction^ in turn, may be expressed in terms of these 'group 

functions'. If an intelligent choice of the electrons comprising each 

group can be made and the groups are only weakly interacting then an 

antisymmetric product of group functions may represent quite an 

accurate wavefunction for the molecule. Such an 'intelligent' choice 

of groups for a molecule with a well-defined valence structure may be 

found to be inner shell, bonding and non-bonding electron pair functions 

or 'geminals.'.

The theory of 'group functions' contains within it the more 

familiar Molecular Orbital Theory (see Appendix I) as a special case.

In an MQ (Molecular Orbital) treatment each 'group' consists of a single 

electron described by a spin-orbital, and the molecular wavefunction 

at the Hartree-Fock level of approximation, consists of an anti-
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symmetrised product (or determinant) of variationally optimised spin- 

orbitals. These MOs, which are obtained as solutions to an eigenvalue 

equation, are not uniquely defined however and the standard delocalised 

canonical molecular orbitals (CMOs) may be transformed into localised 

molecular orbitals (LMOs) which can represent in the MO approximation the 

inner shells, bonds and lone pairs already defined. Alternatively,

LMOs for many molecules.can be built up from atomic orbitals without 

reference to any previously obtained CMOs by simply using chemical 

intuition and experience as starting points in a number of simpler 

procedures.
22 20Finally, the Valence Bond (VB) theory of molecular structure *

2 1which was historically one of the earliest theories to be developed 

is closely tied to chemical ideas of structure. It has, as its basis, 

the idea that molecular formation arises from the bringing together of 

complete atoms which are then allowed to interact. Thus the stabilising 

electron density between.'bonded' atoms in a molecule is obtained by the 

association of valence orbitals on adjacent atoms in pairs, the 

electrons,being of antiparallel spin. This clearly reflects, in a 

mathematical sense, the chemical idea of a two-centre bond largely 

independent of all but the two atoms concerned. VB methods of various 

sorts have been developed over the years but have lost in popularity 

to MO methods. Valence Bond calculations can still be used successfully 

however to investigate the properties of local regions in molecules.

To summarise the above comments, it is clear that there are a number of 

different but related approaches to the understanding of chemical 

concepts through quantum mechanics. Of those mentioned, the most popular 

and well-developed is probably the method of molecular orbitals and it 

is that method which is used as a basis of this work. The theory of 

localised molecular orbitals is introduced in the next part of this 

chapter.
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1.2 MOLECULAR ORBITAL THEORY AND LOCAL REGIONS IN MOLECULES

The two main viewpoints of the electron organisation in a molecule 

that were mentioned in''the previous section are mirrored within molecular 

orbital (MO) theory itself. The delocalised nature of a molecular 

electronic distribution is reflected in the canonical MOs (CMOs) 

while the alternative local picture is given by localised MOs (LMOs).

The method of MOs at the Hartree-Fock level in the one-determinant 

approximation, and the method of solution of the Hartree-Fock eigen

value equation yielding CMOs in Linear Combination of Atomic Orbital 

(LCAO) form are given in Appendix I.

The CMOs belong to irreducible representations of the molecular 

symmetry group and are in general delocalised over the entire 

molecule. In other words, in the LCAO form the delocalised CMOs have 

significant contributions from atomic orbitals on atoms in all parts of 

the molecule. Some properties of molecules are most usefully interpreted 

in terms of the CMOs, for example those properties which relate to 

the molecule as a whole. The common examples are ionization and 

electronic excitation phenomena. In the former case the electron 

removed by ionization may be considered to be removed from the CMO 

with the highest orbital energy and the excited states of a molecule 

are sometimes found to correspond to electron excitations from occupied 

to ’virtual' ground state CMOs. This last point cannot be demonstrated 

formally but it is sometimes true in an approximate sense.

For other chemical properties however, which are essentially 

understood in terms of local regions in molecules such as two-centre 

bonds, the delocalised CMOs do not provide the necessary analytical 

basis and these properties may be understood instead within the MO
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theory in terms of LMOs. LMOs, in contrast to CMOs, only have 

appreciable amplitudes in small, well-defined regions of a molecule.

In LCAO form an LMO usually has significant contributions from atomic 

orbitals on one or two atoms, representing a lone pair of electrons 

or a two-centre Jbond respectively. Besides corresponding to classical

chemical concepts, LMOs serve as a theoretical basis for the analysis
27-30 31 32of bond energies, rotational barriers, NMR coupling constants,

33bond moments, and the transferability of structural subunits between

similar molecules.Moreover, LMOs can be used as intermediate

functions in more complicated quantum mechanical calculations such as
35those involved with. Configuration Interaction (Cl).

The many different methods by which LMOs may be obtained: from 

CMOs, or directly from modified eigenvalue equations, or by combination 

of hybrid atomic orbitals, are outlined in the next chapter. This 

great variety of different methods implies that no one method is 

generally accepted or is clearly satisfactory, particularly in the 

sense of being free from arbitrariness. The generation of unique 

LMOs by a new, simple prescription forms the basis of the rest of this 

work.

1.3 OBJECTIVES OF THE PRESENT WORK

In this work is presented a preliminary investigation of a new 

LMO method. The development and interpretation of the method has been 

undertaken from a chemical viewpoint rather than a mathematical one.

The objective has not been to treat a chemistry problem by a mathemat

ically exact method with maximal accuracy but instead to attribute a 

deeper meaning and justification to the concepts and models chemistry 

has already developed. What follows therefore is a test of the 

applicability of the chemical concepts of lone pairs, two-centre bonds
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and directed valence to LMO theory. The works objective may be 

formally stated as: To investigate the extent to which the electronic 

structure of simple molecules - obtained via the one-determinant 

Hartree-Fock MO-LCAO scheme in a minimal basis - may be expressed in 

terms of two-centre bond and one-centre lone pair PLMOs.

1.3(a) Generation of PLMOs

The new LMO method presented in this work is that of Perfectly 

Localised Molecular Orbitals (PLMOs) and it is explained in detail 

in Part B. The essential elements of the procedure are outlined here.

The PLMOs are constrained to be perfectly localised in LCAO form 

by Atomic Orbital (AO) basis truncation. The localised orbitals are 

not obtained as solutions to an eigenvalue equation but are generated, 

from a set of previously determined CMOs, as an endpoint to an energy 

minimisation procedure. The method is applied only to the sigma 

CMOs, the pi molecular orbitals are left in their canonical form.

Given a geometrical arrangement of atoms in a molecule (the experimental 

equilibrium geometry), the atomic centres upon and between which lone 

pair and bond LMOs are generated are not fixed by a priori assumptions 

about the electronic structure, but instead many different distributions 

('structures') of lone pairs and bonds are considered and are rejected 

or accepted as suitable representations of electron organisation in a 

molecule largely by an energy criterion alone. In order to keep the 

link with chemical valence concepts, the final PLMOs are expressed in 

terms of normalised hybrids on each atom. . Unlike the starting set of 

CMOs, the PLMOs and their constituent Hybrid Atomic Orbitals (HAOs) 

are not constrained to be mutually orthogonal.
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This lack of orthogonality in the PLMOs is an important aspect of

the method. The problem of non-orthogonality is dealt with in detail

in Chapter 3 but here it should be mentioned that the reason that the

PLMOs are non-orthogonal is that it is not usually possible in a

minimal AO basis to simultaneously iiîipose perfect localisation and

LMO o r t h o g o n a l i t y . R e l a x i n g  the orthogonality requirement (whilst

maintaining linear independence) allows the manufacture of PLMOs from

the CMOs but not usually without loss of accuracy in the molecular

wavefunction. This loss of accuracy is to be expected since the

presence of a certain amount of delocalisation of electron density

out of one-centre lone pairs and two-centre bonds must be taken as 
39given. In orthogonal LMOs this electron delocalisation beyond the 

primary atomic centres participating in a bond or lone pair is mani

fested in small AO contributions on secondary atomic centres which are 

often termed LMO 'tails'. In the PLMOs these 'tails' are denied 

existence by AO basis truncation and here the slight electron délocal

isation is reflected in the overlap integral between PLMOs and/or in a 

resultant loss of accuracy in the molecular wavefunction*

Generally, the localisation of MOs in molecules is only expected 

to be possible when the valence structure of the molecule is well 

d e f i n e d . W h e n  this is not the case - in Valence Bond language

'resonance' between structures is important - any LMOs generated tend
41-43to be ambiguous or non-classical in character. For this reason

molecules chosen as a first test of the PLMO method are Hydrogen 

Cyanide, Nitrogen, Carbon Monoxide, Water, Ammonia and Methane. These 

simple molecules have well recognised valence structures and serve as a 

■ good basis for comparison with other LMO methods.
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The connection between a well defined valence description of a

molecule and the ability to obtain LMOs unambigious in character is

a straightforward reflection of the relation between the localisability

of electrons and the localisability of orbitals shown in a note by 
44Daudel. Simply, when electrons are easily localisable (i.e. the 

electron density may be portioned easily into well defined parts) 

the LMOs generated to describe them will also be well localised 

and vice versa. As Daudel concludes^^ 'To obtain information on the 

localisability' of electrons we must therefore express the wavefunction 

in terms of the most localised orbitals. The defect of localisability 

of the orbitals gives a lower bound of the localisability of electrons.' 

Hence no three-centre sigma bonding is considered in this work (though 

in some molecules it may be i m p o r t a n t ) a n d  amongst all the possible 

combinations of two-centre sigma bonds and lone pairs that may be 

generated in a molecule we must search for the most localised LMOs 

not precluded on energetic grounds. In other words, if it is not found 

possible for a particular molecule to select clearly a single bond 

and lone pair 'structure' on energy grounds as a PLMO description, 

the structure within a group of similar energy having’ its LMOs most 

localised is to be chosen in order to get a lower bound to electron 

localisability..

1.3(b) Desired Properties of the PLMOs ^

To test the success of the PLMO method, it is helpful to 

summarise here the desirable properties of the PLMOs in the trial 

molecules.

Firstly, a small energy sacrifice relative to the canonical wave

function is desirable. As was mentioned in the previous sub-section, 

constraining the LMOs to be perfectly localised is generally expected -
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even with non-orthogonal PLMOs chosen to be at an energy minimum - 

to introduce inaccuracies into the wavefunction. This inaccuracy may 

be measured by the energy sacrificed in going from the wavefunction 

constructed from the CMOs (the Canonical wavefunction) to that con

structed from the PLMOs (the PLMO wavefunction). If the PLMOs are 

to be considered as reasonable candidates for a description of the 

electron distribution in a particular molecule, this energy sacrifice 

should be as small as possible.

Secondly, the PLMOs for a molecule via their expression in terms 

of normalised hybrids are hoped to have a close connection to the 

classical valence concepts developed over the years. Although a new 

LMO method should be expected to give new insights into electronic 

structure; where these ideas differ widely from the well-trusted semi- 

empirical results built up by years of chemical experience they should 

be viewed with suspicion.

Thirdly, it is hoped that,some evidence to support the idea of

transferability in the PLMOs can be found. As was mentioned in Section

1.1 the idea that different molecules are constructed from essentially

similar structural subunits underlies most of chemistry. This is

reflected in LMO work by the search for similarities in the forms of

bond and lone pair LMOs formed by the same atoms in corresponding

chemical environments in different molecules. In this way it may

prove possible to transfer localised orbitals (or Pock matrix elements)
34of small molecular subunits from one molecule to another and/or

to build up the wavefunction of a large molecule by using the

transferred parts from smaller prototype molecules ('the building 
34block approach'). Clearly, nothing on thisCcale is possible in this
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work but it may nevertheless be possible to identify similarities in 

lone pairs or the bonding behaviour of atoms in the few cases where 

comparable chemical environments occur in the molecules studied. This 

would be of particular interest in view of the suggestion of Adams^^ 

and the experience of others^^"^^ that the LMOs most suited for trans

fer are those which are non-orthogonal and have no delocalisation 

'tails' in the region of other LMOs - properties satisfied by the 

PLMOs.

Fourthly, any one-electron properties attributable to the 

individual PLMOs should have 'sensible' values. In fact, properties 

of individual LMOs (or MOs) are not usually directly observable but 

may be related to differences in expectation values of different 

states or systems.^^ The one-electron property calculated in this 

work is the dipole moment, and individual bond and lone pair moments 

have a wide utility in chemistry (see Chapter 6). A discussion of 

the values of the PLMO bond and lone pair moments is carried out in 

Chapter 9. ,

Lastly, while it is admitted that the PLMOs are to be non- 

orthogonal it is to be hoped that they are not too far from ortho

gonal. The attributes of non-orthogonal orbitals are discussed 

in Chapter 3 but two points may be mentioned here:

a) LMOs with large overlap integrals can give rise to computational 

difficulties since it is a requirement of the one-determinant Hartree- 

Fock MO theory that the MOs be linearly independent.

b) Orthogonal LMOs can have appreciable spatial overlap^^ but they 

do remain distinct in a mathematical sense. For example, any one- 

electron molecular property can be expressed as an exact sum of MO 

contributions provided they are chosen mutually orthogonal - for non-
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orthogonal orbitals there is a contribution to the one-electron 

property arising from orbital overlap. Hence, in order to be able to 

decompose such a molecular property as nearly as possible into non- 

orthogonal orbital contributions, the orbitals must have low overlap 

integrals i.e. be as close as possible to orthogonal.

The desired properties of the PLMOs listed above are by no means 

exhaustive, but they should help in assessing the success or failure of 

the attempt to express the wavefunction of the trial molecules in terms 

of a single determinant of perfectly localised molecular orbitals 

(PLMOs).
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CHAPTER TWO 

HISTORICAL SURVEY: EXISTING LMO METHODS

2.1 INTRODUCTION

It is not possible to review in critical detail all the available 

LMO methods in the literature. Instead, this chapter contains a

brief summary of the main developments in the generation of LMOs.
52 53LMOs may be generated in many different ways  ̂ representing 

different uses, applications and levels of mathematical rigour and 

computational efficiency. Broadly speaking however, the methods 

of generation can be divided into three groups. In the first group 

(section 2.2) the molecular wavefunction (or density matrix) 

constructed from the CMOs needs to be previously known. The LMOs 

are often obtained via an orthogonal transformation of the previously 

determined CMOs, hence exploiting the non-uniqueness of the solutions 

to the Hartree-Fock equations (Appendix I). In the second group of 

methods (section 2.3) no previous calculation of the molecular wave

function is necessary. Instead, LMOs are obtained directly as solutions 

to a modified eigenvalue equation through appropriate changes in the 

Hartree-Fock operator, F (section 1-4). The third group of methods 

(section 2.4) comprises the generation of LMOs from hybrid atomic 

orbitals (HAOs) by various criteria (maximum HAO overlap, energy 

minimisation and so on). These LMO methods are briefly described 

in the rest of this chapter with some of the key references to the 

literature.

2.2 RELOCALISATION METHODS 

2.2(a) Historical Introduction

The invariance of determinantal wavefunctions to an orthogonal 

transformation was first pointed out by Fock.^^ Hund^^’^^ was the
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first to formulate MO .wavefunction's (for H2 O) in terms of localised
57orbitals. Later, Coulson demonstrated how to transform the CMOs

of methane into LMOs in different ways including one in which non-

orthogonal two-centre bond orbitals were obtained that fitted a

predetermined hybridisation scheme. In a wider discussion of the
58localised nature of chemical bonds, Coulson pointed out the

78-82
equivalence of Mulliken's delocalised CMOs and LMOs. Lennard-Jones * 

gave the first full discussion of the relationship between LMOs 

(termed 'equivalent orbitals' due to the high symmetry of many of the 

example molecules) and the 'standard' or canonical MOs through the 

determinantal invariance. This work was continued by Lennard-Jones 

and c o - w o r k e r s . T h e  criterion fixing the orthogonal transform

ation of the CMOs was thus far based almost exclusively on symmetry 

requirements in highly symmetric molecules, and where this was not 

sufficient, by extra ad hoc constraints. With the sophistication 

of electronic computers however, it became possible to impose more 

wide-ranging requirements on the construction of transforming 

matrices and the variety of localising criteria thereby increased 

dramatically.

2.2(b) Intrinsic Methods

The type of criterion used to derive a matrix transformation is 
70called 'intrinsic' if the criterion arises from an extremum 

condition on a numerical quantity which does not explicitly require 

localisation in any pre-determined region of a molecule but is 

instead a property of the function space in which the calculation 

is undertaken. Such 'intrinsic methods' are among the most popular 

LMO methods yet devised.
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71Foster § Boys introduced a criterion on the orthogonal 

transformation of the CMOs which imposes maximal separation of the 

centroids of charge of the LMOs. This yields a set of 'exclusive 

orbitals' which are found to be localised. A reformulation of the
72mathematical definition of 'maximal seperation' was given by Boys.

The procedure soon proved popular^^”^^ and has been widely used 
77since.

Following a suggestion by Lennard-Jones § Pople^^ that the

'equivalent orbitals' simultaneously maximise the sum of coulombic

self-repulsion terms and minimise the 'non-classical' off-diagonal

exchange terms in the electronic interaction energy expression,

Edmiston & Ruedenberg developed a method of transforming CMOs to
70 83-85'energy localised' MOs with this criterion as its basis. *

This method is rigorously applicable to both atomic and molecular 

systems. The method received immediate attention and application 

by the original authors themselves and by others^^' 86-95 

has been used in countless applications since.

A third intrinsic criterion to fix the orthogonal transformation
70 83of the CMOs, which was originally suggested by Edmiston § Ruedenberg, * 

has been developed by Von Niessen.^^ This method Von Niessen 

calls 'density localisation' since the criterion physically corresponds 

to the minimisation of the sum of the charge density overlap integrals 

of different MOs. In fact all three of these intrinsic criteria 

yield LMOs that are very similar (see Chapter 8) and although the 

Edmiston^ Ruedenberg procedure is often held to be superior because 

of the attractiveness of its criterion, the Boys method is often 

preferred due to the fact that it avoids some of the computation of 

polycentre integrals required in the Edmiston § Ruedenberg method.
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2.2(c) "Cut-Off" Methods

An orthogonal transformation of CMOs may often be fixed by en

suring that one or more of the resultant -LMOs do not contain any dé

localisations. This is normally achieved in a LCAO approximation by 

constraining "secondary" atomic orbitals that are not primarily

involved in a two-centre bond or one-centre lone pair to have a zero
53coefficient. Such methods may be termed "cut-off" methods and

these are the oldest and simplest of the transformation procedures.

Such procedures were often used in early work to localise MOs as an

"afterthought" in standard MO calculations. Examples of the method

are given by Sahni Pople,^^^ Ellison § S h u l l , B u r n e l l e  G

Coulson^^^ and D u n c a n . T h e  method was generalised by Peters^^^

who showed the applicability of the method to many molecules and also

the usefulness of the LMOs obtained. Later, Polak^^^ used a similar

criterion to fix the coefficients of hybrid atomic orbitals in LMOs

in simple organic molecules. A more recent method proposed by

Verwoerd^^^ owes much to these techniques. In this procedure, non-

orthogonal LMOs are obtained that are each a linear combination of a

starting set of CMOs and which minimise the "non-local content"

(expressed in terms of LCAO coefficients on secondary centres) of the
116LMOs. The method has been applied by Claxton.

A related criterion to that of requiring certain LCAO coefficients 

to be zero or a minimum is to require that bonding HAOs on an atom 

(usually in a non-linear molecule) point directly at other bonding 

atoms. This constraint on the values of LCAO coefficients has been 

used to fix a transformation of the CMOs by Pople,^^ Duncan 5 

Pople^^^ and Peters^^^ for example.
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2.2(d) Population Methods

An electron population analysis^^^ based on LCAO coefficients 

has been used by Magnasco Sr Perico^^^*^^^ as the basis for another 

criterion fixing the orthogonal transformation of CMOs that generates 

LMOs. Local populations - corresponding to two-centre bonds and one- 

centre lone pairs - are defined in particular parts of a molecule and 

when an orthogonal transformation of the CMOs is found that simultan

eously maximises the sum of the local populations and minimises the 

"residual populations" on secondary atomic centres, the resulting MOs 

are the "uniformly localised" MOs. The form of these LMOs in many 

molecules correspond quite closely to those obtained by intrinsic 

methods (see Chapter 8).

2.2(e) Projection Methods

The use of projection operator techniques is well known in 
19quantum chemistry and the use of these in the generation of LMOs 

is now well described. Methods which require previous knowledge of 

the molecular wavefunction (or more accurately in this context an 

associated density matrix) are considered here.

Polak^^* 126-131 developed a method for finding "strictly

localised orbitals" (SLOs) where each is composed of one or two valence

hybrid atomic orbitals and has maximum projection onto the space

spanned by the occupied CMOs. Since the SLOs of maximum projection

yield the maximum value of an "occupation number" the localised

orbitals are also termed "localised natural orbitals". Similar
132projection techniques are employed by Roby; in a paper that gives 

localised orbitals by a variety of different projection criteria. In 

one method (which in the Hartree-Fock approximation is equivalent to
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133to that of Polak's, except that no orthogonality constraint is

imposed on the atomic hybrids) Roby searches for optimum HAOs on one

or two centres that have maximum projection onto the occupied CMO

manifold. In a second method, LMOs in the space spanned by the CMOs

are sought that have maximum projection onto the subspaces formed

from the AOs of one atom , (to form lone pairs) and from the AOs of two

adjacent atoms (to form a two-centre bond). Both methods are applied 
132to CO, the latter method yielding especially interesting results

in the context of this work (see Chapter 8).

2.2(f) Density Matrix Methods

The previously described projection methods owe much to the

nature of the first order density matrix in an orbital basis. The

possibility of generating localised orbitals from a molecular density

matrix was recognised by McWeeny,^ but in practice difficulties

arise. If LMOs could be completely localised then they could be

obtained by diagonalising subunits of the density matrix and selecting

those orbitals with eigenvalues of 2. The smallest portioning into

subunits for which this is possible would then represent maximum

localisation. However, in practice the eigenvalues are slightly less

than 2 (due to inherent delocalisations) and problems occur with

degenerate eigenvalues. Successful methods based on this procedure
134have nevertheless been proposed and applied to various molecules.

2.3 DIRECT METHODS 

2.3(a) Introduction

It is obviously desirable to obtain LMOs directly, without previous 

solution of any MO-LCAO equations. One type of method which has had ' 

many variants and many applications is to obtain the required
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localised orbitals as solutions to an eigenvalue equation. Such an 

equation often uses a Hartree-Fock operator that has been specifically 

modified in such a way so as to produce eigenfunctions which have a 

localised nature.

2.3(b) Adams-Gilbert Formalism

Adams^^^*^^^ exploited the freedom to use non-orthogonal (but 

linearly independent) one-electron functions satisfying the Hartree- 

Fock equations in order to derive an eigenvalue equation that yields 

localised orbitals for model subsystems of an electronic system. In 

this method, each subsystem has its own eigenvalue equation, the 

operator of which is modified by a uniquely defined hermitian potential - 

a "screening potential" - which describes the interaction of the model 

subgroup of electrons with the rest of the system. An application of 

the method to a selection of molecules was published some years

later.137
138Gilbert derived equations of a more generalised form to those 

of Adams, wherein the modification of the Hartree-Fock operator was 

now due to an arbitrary hermitian "localising potential" of which 

the one found by Adams was a special case. Different types of 

localised orbitals may be obtained as eigenfunctions by different 

choices of the localising potential. The equations of Adams and of 

Gilbert were discovered more or less independently by the two authors. 

The resulting set of equations which are of general application are 

often called Adams-Gilbert (AG) equations.

Andersonl39'140 extended and simplified the AG equations by 

admitting the possibility of a non-hermitian potential (pseudopotential) 

being introduced into the operator of the eigenvalue equations and 

by no longer limiting himself to the Hartree-Fock m a n i f o l d . T h e s e
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modifications tO' the AG equations began their application to the 

field of solid state physics where interest has been widespread, 

and also to multi-configuration wavefunctions.

More recent variations on the general Adams-Gilbert formalism, 

relating to molecular systems, have been published by Kambara^^^*^^^ 

Matsuoka^^^ and Mehler. These latter two authors are of 

particular interest in the context of this work as they have both 

used a modified form of the AG equations which generates localised 

orbitals which are expanded only in basis functions belonging to 

each separate subsystem. This allows the dimensionality of the 

expansion problem to be reduced since different secular equations of 

small dimension are now solved for different subsystems.

2.3(c) Related Methods

Other authors have presented eigenfunction methods for directly • 

determining LMOs that are less closely related to those of Adams and 

Gilbert.

Peters^^^'^30 presented a method in which an eigenvalue 

problem is solved for each of N LMOs in a subspace (comprising a single 

occupied orbital and all the virtual orbitals) that is orthogonal to 

the space spanned by a pre-selected (N-1) localised orbitals. The
V

procedure is repeated for each LMO in turn until self-consistency is 

obtained. This method has been taken up and applied in other work 

by Wilhite § W h i t t e n ^ ^ ^  and Carpenter § P e t e r s .

Stoll § Preuss et ai_153,154 directly determine LMOs by the , 

addition of a localisation operator to the Hartree-Fock operator.

They further approximate the interaction between orbital groups belong

ing to different localisation centres in order to reduce the comput

ational complexity of the method. The method has been applied to a
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number of small prototype molecules^^^ the evaluation of

observables from the resultant non-orthogonal localised orbitals is

performed with the help of many-body corrections.
43Payne has introduced a method which yields optimised non-

orthogonal LMOs in the one-determinant approximation, expressed in a

basis set of AOs which involves only one atomic centre for lone pairs

and two atomic centres for bonds. The LMOs are optimal in the sense

that they minimise the electronic energy. By applying the variational

procedure to the non-orthogonal orbitals of the constrained form,

Payne obtains an eigenvalue equation of reduced dimension which

each LMO satisfies. The equation that results is similar in form to

the Matsuoka^^^ modification of the AG equations. Most recently,
38Stoll et al. have improved the equations derived in Payne's method 

and have retrieved non-orthogonal LMOs from the eigenvalue equations 

by two different computational procedures. The energy sacrificed in
V

obtaining one and two-centre LMOs in the example molecules is found 
38to be very small.

2.4 HYBRID METHODS 

2.4(a) Introduction

The general problems of the electronic structure of molecules 

have for many years been successfully described in terms of hybrid
i r r _ i r y

atomic orbitals (HAOs). " • Thus, when discussing valence concepts

in terms of LMOs - generated by one of the above methods for example - 

it is often useful to express each LMO as a linear combination of 

normalised HAOs. Alternatively it is possible to build up one and two- 

centre LMOs from previously determined HAOs by various criteria. This 

latter approach is almost always computationally simpler than the



43

previously described ab-initio procedures. This is because where 

energy calculations are used at all (many variations of a "maximum 

overlap" method for example have no energy calculation) they are 

normally of reduced complexity. Such semi-empirical HAO methods have 

been developed largely independently of the above LMO methods, though 

some localisation criteria have been usefully applied to both
approaches.̂ 3»132,181

2.4(b) Maximum Overlap Methods

The notion that the "best" hybrids for a molecule can be

approximated by those having maximum overlap is originally due to

Slater^35 and P a u l i n g . ^3^ This approach has been widely applied and
158developed since for a number of systems, though the basic idea -

that the overlap integral between hybrids is a measure of bond
158strength - has no firm basis in theory and is by no means always

159demonstrable in practice. Despite this, a variety of different 

methods have been proposed and applied to a large number of different 

molecules.

Murrell^^O proposed a method for determining maximum overlap 

hybrids in molecules of type XY^ which was applicable to cases of 

little or no symmetry. This method was generalised by Golebiewski^^^ 

and by Lykos et al,^^^» ^^3 showed that the hybrids could be

obtained by direct matrix diagonalisation, thus making hybrid 

construction into eigenvalue problem of wide applicability-. 

Pelikan § Valko^^^ later extended the approach so as to construct 

hybrid orbitals for a central atom and ligands simultaneously.

Another approach was introduced by Del Re^33>166 which the 

hybrids were chosen so as to factorise the overlap matrix as closely 

as possible into a set of 2 x 2 diagonal blocks. The results of this
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method when applied to certain cycloalkanes were similar to those of 

Coulson §: Goodwin  ̂who used a numerical maximum overlap technique. 

Del Re's procedure was modified later to improve the description of 

atoms with lone p a i r s .

A simple method involving a "stepwise use of maximum overlap" 

was introduced by Stamper § Trinajstic^^^ which has been applied with 

success to"a number of simple m o l e c u l e s . recently, Boca 

et al.^^^ ^^3 have continued the use of maximum overlap procedures 

by the formulation of their "extended maximum overlap approximation" 

(EMOA). In this method HAOs are obtained iteratively by maximizing 

a sum of hybrid overlaps which are weighted by parameters reflecting 

empirical binding energies. The HAOs are then combined to form 

localised bond orbitals.

2.4(c) Energy'Optimisation Methods

These methods generally require greater computational effort 

than the maximum overlap, approach but they have a firmer theoretical 

basis. In these methods the forms of the atomic hybrids, from which 

localised orbitals are.built, are determined by optimising disposable 

parameters such that the electronic energy (or certain of its 

components) is an extremum. In many cases if the localisation 

conditions are relaxed to the extent that the optimum hybrids may be 

delocalised over a number of atomic centres, the full ab-initio 

results are reproduced.
176The method of McWeeny § Del Re was an example of this. In 

this method the first order density matrix is transformed as closely 

as possible to 2 x 2 block diagonal form (as in Del Re's analogous 

factorisation of the overlap matrix^^^) while simultaneously minimising



45.

the associated electronic energy. The calculation was undertaken at

three levels of approximation which were a) non-polar calculation,

b) polarisation of bonds admitted and c) delocalisation of optimum

hybrids found in b) allowed. The full self-consistent field (SCF)

results for each molecule were reproduced in approximation c).
177Letcher § Dunning introduced a method for obtaining completely

localised sigma orbitals (built from HAOs) in a non-orthogonal AO

basis. Disposable parameters in an orthogonal transformation matrix,

linking an orthogonal AO basis with orthogonal localised orbitals,

were fixed by requiring that the energy be a minimum. The final

localised orbitals were obtained by applying an analogous transformation

to the non-orthogonal AO basis. The method was later applied to
178molecules containing pi bonds and adapted to cater for extended

, .  ̂ 179basis sets.

Hoyland^^ has formed two-centre localised orbitals in a series

of paraffins from energy optimised, symmetrically orthogonalised,

combinations of tetrahedral sp^ carbon hybrids and Is hydrogen AOS.

The intermediate non-orthogonal bond functions obtained in methane were

taken over for analogous calculations on higher paraffins (ethane and

propane) to test the transferable nature of the localised orbitals.
48Later an improved procedure was published in which the carbon hybrids

were also energy optimised.

Single determinant MO wavefunctions have been constructed for a
180variety of polyatomic molecules by Petke § Whitten in a minimal

AO basis. Localised orbitals representing two-centre bonds and one-

centre lone pairs were obtained by minimising the total energy of the

wavefunction with respect to all hybridisation and bond polarity

parameters whilst maintaining the orthogonality of HAOs on the same
181atom. More recently Aufderheide has obtained HAOs (called



46.

Localised AOs-LAOs) on each atom in a molecule by an orthogonal intra- 

atomic transformation with MO invariance of a starting set of Slater- 

type AOs. The transformation is fixed by requiring that the intra- 

atomic sum of orbital exchange energy elements be a maximum for the 

LAOS of the atom. This criterion for the LAOs is analogous to the
o ?

Edmiston § Ruedenberg criterion for "energy localised MOs". The
182method has been applied to numerous molecules of 1st Row atoms

previously treated by Edmiston § Ruedenberg.

2.4(d) Other Methods

Besides obtaining hybrids by optimising the electronic energy

of a molecule - a procedure justified by the variational principle -

it is possible to define hybrids in localised orbitals by optimising

other mathematical functions.
183Flygare § Weiss for example constructed a set of one and two-

centre LMOs for formaldehyde from a set of hybrid Slater-type orbitals

in a minimal basis. The disposable parameters left in the LCAO

description were optimised such that the standard deviation between

the sums of experimental and calculated values of ten one-electron

operators was minimised. Another method involving the electric dipole
184moment is that of Del Re who has shown how it is possible to 

construct HAOs in a truncated basis by imposing conditions on thos AOs. 

One set of conditions is that the AOs should be such that the electric 

dipole moment of a polyatomic, molecule, described in terms of a semi- 

empirical bond orbital scheme, should be expressed as the dipole 

moment of the system of bond charges located at the nuclei.

Weinstein § Pauncz^^^^186 ^^ve obtained LMOs by optimising a 

series of electron populations in previously fixed parts of a molecule. 

The local populations that were optimised were the same as those defined
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by Magnasco § Perico^^^ previously described. The difference to the 

work of Magnasco § Perico is that the starting set of orbitals in 

this case were the maximum overlap orbitals of Lykos § S c h m e i s i n g .

It was found that the final LMOs were an improvement on this starting 

set.

"Natural Hybrid Orbitals" have recently been obtained from semi-
187empricial molecular wavefunctions by Foster § Weinhold and from 

ab-initio SCF wavefunctions by Rives § W e i n h o l d . These 

orthonormal hybrid orbitals are obtained by diagonalising subunits of 

the first order density matrix in. a procedure closely related to that 

of McWeeny § Del Re but without any energy criterion.
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CHAPTER THREE

ORTHOGONAL AND NON-ORTHOGONAL ATOMIC AND MOLECULAR ORBITALS

As was mentioned in Chapter 1, the LMOs generated in this work - 

the PLMOs - are not constrained to be mutually orthogonal; neither 

are the hybrid orbitals on each atomic centre in terms of which the 

PLMOs are expressed. An interpretation of the forms of the PLMOs 

will be made in Chapter 8 where a comparison will be made to LMOs 

generated by other methods in which an orthonormality constraint - 

either on the LMOs or HAOs - is maintained. The purpose of this 

chapter is to lay the foundations for some of the discussion of 

chapter 8 and also to clarify some general points regarding orbital 

orthogonality.

3.1. MOLECULAR ORBITALS

The basis of one-determinant Hartree-Fock MO theory is outlined 

in the first Appendix (1-1 to.1-4). It is shown there that the 

only constraint on the MOs comprising the wavefunction is that they are 

all linearly independent, so it might seem that it is simply a 

matter of choice whether the MOs are chosen to be mutually orthogonal 

or not. Nevertheless imposing the constraint that the MOs be 

orthogonal does confer.certain advantages. These are:

a) The expansion of the one and two-electron density functions 

in terms of an MO basis take on simpler forms (equations 1.41 and 

1.43 ). This simplifies the expression for the electronic energy

(equation 1.54) hence yielding the Hartree-Fock equations in their 

usual form (equation 1.59 ), and also simplifies the expressions 

for other molecular properties. In particular, one-electron
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properties such as the dipole moment become a simple sum over the 

MOs (equations 1.84 . and 1.85).

b) The antisymmetry requirement of the wavefunction is easily 

translated into the requirement that the MOs satisfy the Pauli Exclusion 

principle. It is considered that each MO can be occupied by two 

electrons, one of a spin and one of 3̂ spin.

c) The physical interpretation of the results is very much simpler 

if the MOs are orthogonal. The MOs are usually considered distinct 

and exclusive both mathematically and physically.

For these reasons the "standard" solutions to the Hartree 

equation (the CMOs) are those in which MO orthogonality has been 

imposed. Similarly, when these CMOs are to be transformed into 

LMOs an orthogonal transformation is often used so that the LMOs 

are also mutually orthogonal. This means that one-electron properties 

for example may now be expressed as a simple sum over bonds and 

lone pairs which the LMOs represent.

These advantages may be qualified however, by noting the 

following:

a) The orthonormality property of the MOs

S.j 4y(ri)dr^ = 6 ^ . alli,j (3.1)

is a mathematical property. While it makes MOs (or LMOs) distinct

in a mathematical sense, they are not necessarily distinct in a

physical or spatial s e n s e . Orthogonal LMOs still have spatial

overlap which is not apparent from the overlap integral (equation
513.1) due to the phase cancellations between AOs.
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b) While the Pauli Exclusion principle is easily understood

in terms of orthogonal MOs, the overall requirement that a wave-

function be antisymmetric in no way implies or requires that the 
189MOs be orthogonal. It is true that in simple 'wavefunctions 

consisting of a Hartree Product of MOs an orthogonality constraint 

can mimic the full antisymmetry r e q u i r e m e n t , b u t  in a 

determinantalwavefunction the linear independence of the constituent 

MOs is the essential requirement.

c) It proves to be the case that mutually orthogonal LMOs are in 

general slightly delocalised and hence have non-local "tails" on 

secondary atomic centres. As was mentioned in Chapter 1, it is 

not generally possible to remove these "tails" by constraining the 

LMOs to be completely localised around their "primary" atoms

and to maintain orthogonality.

Many of the LMO methods described in the previous chapter employ 

non-orthogonal orbitals for this last reason, though other advantages 

may be ascribed to non-orthogonal LMOs. For example;

1) Since an orthogonal LMO representing a particular bond 

or lone pair [say a C-H bond) will have its "tail" on 

different "overflow atoms" in different molecules, and 

also because strictly localised (hence non-orthogonal)

LMOs may be thought better localised than those with 

"tails", it is often considered that orbital non-ortho

gonality is necessary in order to yield LMOs that are

most nearly transferable from one molecule to another.
Thus Adams has speculated on the properties expected

4 6of "molecularly invariant orbitals".
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2) Removing the orthogonality constraint on LMOs allows

them to take-up the optimum form consistent with their

method of generation. In certain methods, orthogonality

requirements may be considered to stand in opposition to

the variation principle since LCAO coefficients are kept

from assuming those values which would minimise molecular 
37energy.

There are also points to be made against the use of non- 

orthogonal LMOs:

1) The delocalised "tails", which are encountered in the

orthogonal LMOs generated by some of the relocalisation

methods of the previous chapter, are still apparent when
189 192the LMOs are allowed to become non-orthogonal. *

Hence it is possible that the imposition of orthogonality 

is not a severe restriction for the localisation process 

in these cases and that the appearance of "tails" is 

only a property of the particular localisation criterion 

chosen.

2) The similarity of LMOs and their properties in corres

ponding chemical environments in different molecules, 

has been demonstrated for orthogonal orbitals as well as 

for non-orthogonal o r b i t a l s . I n  these cases

the nature of the "overflow atom" influences the degree
195-197of similarity between molecules. Hence, when

synthesising LMOs of à large molecule by transferring

LMO fragments from smaller prototype molecules, standard
198"tail" contributions have to be included.
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3) Non-orthogonal LMOs of optimum form may cause inter-

pretational problems if their overlap integrals are large.

In the limit the orbitals may "collapse" to a single

function, thus making the LMO set linearly dependent

and invalidating the determinantal wavefunction constructed

from them. Linear dependence can always be avoided by

using orthogonal MOs, though other techniques can be used

such as the use of a "penalty function" in the minimisation
189of an energy functional.

In summary then, there are advantages and disadvantages to both 

orthogonal and non-orthogonal orbitals and it cannot be said whether 

orthogonal or non-orthogonal LMOs serve as better descriptions of the 

electronic structure of molecules. The two approaches complement 

one another by attempting to explain molecular structure in different, 

but equally enlightening ways. An example of this duality is shown 

in the investigation of the conformational behaviour of molecules 

in terms of localised orbitals. The interaction between the 

electron density in mutually rotating groups in a molecule may be 

expressed via LMOs in two different ways.

One approach^^'^^^ is based on the use of "Energy Localised
83,84 Here, the interaction is explained in terms ofMOs".

variations in the one-electron, two-centre interference energy^^^ 

within a given LMO representing a bond or lone pair. This is 

possible because the energy localised MOs of one group of atoms 

generally have delocalisation "tails" on the other, interacting 

group. These "tails" therefore are not considered simply by

products of orbital orthogonality, but become central to an 

explanation of electron interaction in this view.
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The second approach however, is based on the view that short 

range interactions between molecular groups - especially their 

orientation dependence - is best described by non-orthogonal. 

functions. In this case^^^ the internal rotation barrier

is investigated in terms of bonds and lone pairs represented by 

strictly localised non-orthogonal orbitals each extending over only 

one or two nuclei and hence devoid of any delocalisation "tails".

The barrier is now simply explained in terms of the penetration 

(overlap) between localised orbitals on the mutually rotating groups.

3.2 HYBRID ATOMIC ORBITALS 

3.2(a) Hybridisation

The PLMOs obtained in this work are expressed in terms of 

normalised Hybrid Atomic Orbitals (HAOs) on each atom (see Part B).

In this way LMOs found from quantum mechanical calculations may be

understood using the concept of hybridisation which has been developed

d sys- 
40,212-214

over many years^^^ and has been invaluable in explaining and sys-

tematising chemical concepts in terms now familiar to chemists.

The idea of hybridisation stems from the assumption that an atom 

retains its identity within a molecule and makes only slight adjust

ments to the molecular environment. This assumption implies that the 

molecular wavefunction may be represented in terms of orbitals formed 

by combination of atomic functions. In such a LCAO-MO procedure each 

atom then has s, p etc. orbitals unambiguously associated with it, 

making it possible to define s and p electronic populations. A 

definition of the wavefunction in terms of atomic orbitals is essential 

for any discussion of hybridisation. Wavefunctions expressed in terms 

of a one-centre expansion for example cannot be understood by
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specifying hybridisation at individual atoms. The approach used 

in this work, that of using normalised HAOs to analyse LMOs, follows 

the example of most LMO methods. However, that hybridisation is more 

than simply an analytical tool can be judged by the success of methods 

that build wavefunctions directly from atomic hybrids in some way 

(see previous chapter).

The HAOs at each atomic centre are not constrained to be mutually 

orthogonal in the PLMO method. This point is in contradiction to the 

properties of the AOs in an isolated atom, to the original work of 

Slater and Pauling^^^ and to much standard chemistry since.

However, by analogy with the previous section, a number of advantages 

and disadvantages may be associated with the presence or absence of 

orthogonality constraints between HAOs at an atomic centre in a 

molecule, and these will be discussed here.

3.2(b) Orthogonality and the description of bonding

Orthogonal hybrids may be considered distinct both mathematically 

and physically. Thus at a simple level - in Valence Bond terms "the 

Perfect Pairing Approximation" - the valence electrons of an atom 

may be assigned unambiguously to orthogonal HAOs in order to be paired 

individually with the hybrids on attached groups to form bonds or to 

form non-bonding pairs of electrons. The electron density of an 

atom therefore becomes a simple superimposition of the densities 

of the HAOs at that atom.

Orthogonality also provides a simplification to the mathematical 

problem of constructing HAOs on an atom in a molecule. The restrictions 

on the relative values of AO coefficients that orthogonality represents,
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especially in molecules of high symmetry such as methane or water, 

significantly reduces the number of disposable parameters in the 

problem. These may then be fixed by some simple prescription such as 

a requirement that bonding hybrids point directly towards another 

atom. It is clear then that the imposition of hybrid orthogonality 

is both intuitively and mathematically appealing.

In spite of this, most LMO methods do not restrict atomic hybrids 

to be mutually orthogonal. This is due to the fact that in the more 

accurate MO theory, electronic delocalisation - and hence the inade

quacy of the perfect pairing approximation - has to be admitted. In

LMO methods that involve an orthogonal transformation of the CMOs such
71,72

as those of Edmiston § Ruedenberg,^^ Boys and Peters, ^  the 

orthogonality requirement on the HAOs is replaced by the mutual ortho

gonality of the slightly delocalised LMOs containing the hybrids. This
215replacement in the Peters method has been discussed in the literature

and the effect on the actual level of hybridisation in the HAOs of water

has been demonstrated in a note by Coulson. In LMO methods that

generate non-orthogonal LMOs, constituent HAOs may or may not be mutually

orthogonal at each atomic centre. Some authors exploit the computational

simplification that results from the use of orthogonal HAOs (many of

the "Hybrid methods" of section 2.4) while others consider orthogonality
132a restriction, that moves HAOs away from their optimum form. In 

both cases, when LMOs are constrained to one or two centres i.e. 

to mimic the perfect pairing approximation, a sacrifice in the accuracy 

of the wavefunction has to be made in most molecules.

For these reasons, when the electronic structure of some molecules 

are expressed in terms of LMOs, contradictions may seem to arise with 

the corresponding description in classical valence terms. However,
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by analysing such LMO descriptions in terms of orthogonal HAOs 

one atom at a time, violations of the normal valence rules - such 

as the octet rule - are shown to be apparent rather than real.^^^

3.2(c) The Directional Properties of Hybrids

The orthogonality conditions between HAOs at an atom effect 

the relative values of the AO coefficients. These in turn effect 

the direction in which an atomic hybrid points. Thus the directional 

properties of hybrids - in particular the VSEPR. model of molecular 

geometry and the phenomenon of "bent" bonds - will be discussed 

here.

It is often considered that the Valence Shell Electron Pair
218 —  220Repulsion (VSEPR) model of molecular geometry requires the

use of orthogonal HAOs at atomic centres in a molecule. This is not

actually so. In fact, the model is most profitably explained in

terms of electron pairs spatially correlated by the antisymmetry re-
220quirement without reference to HAOs at all. If a description in 

terms of directed hybrids on a central atom required however, 

what is important is a minimum of spatial overlap between them. The 

distinction between no overlap in a mathematical sense and in a spatial 

sense has already been made in the discussion of LMOs.^^ It is true 

that the electron correlation imposed by the Pauli exclusion principle, 

and the energetic interactions between electron pairs, are most easily 

understood in terms of doubly occupied mutually orthogonal hybrids at 

a central atom, but this description is not actually necessary. What 

ultimately determines molecular geometry is the position of the mini

mum in an energy surface, and the hybrids used to describe the area 

of space most probably occupied by electron pairs is largely a matter 

of taste.
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To obtain bonding hybrids from both LMO and VB calculations on 

non-linear molecules that are not exactly directed towards a bonded 

atom, is the rule rather than the e x c e p t i o n . S u c h  "bent" bonds are 

obtained with non-orthogonal HAOs of varying degrees^^'^^'^^^'^^^'^^^'^^^ 

and also with orthogonal bonding hybrids optimised in different ways.^^^*^^^ 

A discussion of the "bent" bonds obtained from orthogonal hybrids by 

a maximum overlap criterion has been given as well.^^^'^^^ It is 

clear that the removal of hybrid orthogonality may allow HAOs to be 

directed at angles unobtainable with orthogonal hybrids (and may lead
93in certain cases to roughly equivalent hybrid angles in ^imilar molecules )

but there is apparently little correlation between the non-orthogonality

of HAOs and the appearance of "bent" bonds.

The best conclusion that may be drawn from the above discussion is

essentially the same as was reached in section 3.1. While orthogonal

and non-orthogonal hybrids each have their own advantages - and valence
212 213rules have historically been formulated in terms of orthogonal HAOs - *

they are really equally acceptable alternatives. The two approaches

offer complementary viewpoints.

The approach taken in this work is not to impose any orthogonality

constraints on the HAOs. Thus "we do not set out with any preconceived

ideas about the condition of the atom in the molecule. This will emerge 
215

from the results". ■
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PART B

PLMO METHOD AND RESULTS
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CHAPTER FOUR 

ILLUSTRATION OF PLMO METHOD - EXAMPLE OF HCN

4.1 INTRODUCTION 

4.1(a) Outline of Method

In this chapter is presented the method used to generate sets of 

non-orthogonal Perfectly Localised Molecular Orbitals (PLMOs) in a 

LCAO approximation. The PLMOs were not found by finding SCF solutions 

to eigenvalue equations but by searching an energy surface for a 

minimum by standard techniques. The energy surface was constructed 

by the simple technique of transforming a starting set of CMOs, 

truncating the resulting MOs so that they were perfectly localised, 

forming a specific set of lone pairs and two-centre bonds ("a structure") 

and then computing the total electronic energy of the resulting many- 

electron wavefunction. The electronic energy was hence a function of 

the parameters defining the transformation of the CMOs.

A minimum of energy and a corresponding set of LMOs was obtained 

for each set of lone pairs and bonds that were generated for a given 

molecule. Such a set of strictly localised LMOs does not generally 

span the Hartree-Fock manifold and hence corresponds to an energy 

higher than that calculated from the CMOs. This "energy sacrifice" 

was smaller for some arrangements of lone pairs and bonds than for 

others. Those "structures" of lowest energy were hence candidates 

for an approximate description of the electronic structure of the 

molecule. The final set of PLMOs were chosen from among these low 

energy "structures by selecting the most "localised" set, in line with 

the argument in Chapter one (1.3(a)). The computational details are set
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out in Appendix II.

4.1(b) Investigation of HCN

In order to illustrate the PLMO method by an explicit example, 

the results of applying the procedure to HCN are presented in this 

chapter. Three different investigations were carried out.

In the first investigation, the starting set of CMOs was expressed 

in a ST0-3G minimi basis of AOs. (see Appendix I, Section 4(c) for 

an explanation of terms). In the second case a more accurate ST0-5G 

AO basis was used. In the third investigation the basis AOs were 

again of ST0-3G quality but the inner shell CMOs were truncated and 

renormalised and hence had AO contributions from one centre only.

By comparing the results in the three cases it was possible to test 

the effect of changing the quality of the starting CMOs and of alter

ing the treatment of the inner shells.

4.2 PRELIMINARIES

The geometry and co-ordinate system used for HCN is shown in 

Table 4.1. The same construction was used for all three investigations.

For each molecule considered a starting set of CMOs expressed in 

LCAO form were required. Since the electronic energy had to be 

calculated and also, at a later stage, the dipole moment, various 

integrals over atomic orbitals were also needed. A convenient source

both for the CMOs and also the necessary integrals over AOs was found 
? ? ?in Gaussian 70. This performed a standard Hartree-Fock SCF 

MO-LCAO calculation of the sort described in Appendix I. A minimal 

basis set was used where each Slater-type AO (STO) was approximated 

by a linear combination of k gaussian orbitals (STO-kG). As the 

number k increases the representation of .each STO becomes more 

accurate and the energy calculated from the CMOs (the canonical 

energy) d e c r e a s e s . T h e  effect, of this on the PLMOs may be gauged 

by comparing the results for the ST0-3G and ST0-5G calculations.
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221TABLE 4.1. GEOMETRY AND CO-ORDINATE SYSTEM FOR HCN

R(C-N) = 1.153A R(C-H)=1.066 A Z.HCN=180‘

Atom
Co-

X
■ordinates (atomic units)

y z

H 0.0 0.0 -2.014

C 0.0 0.0 0.0

N 0.0 0.0 2.179
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The occupied CMOs and the orbital eigenvalues for HCN, calculated 

by Gaussian 70 using standard STO e x p o n e n t s , a r e  shown in Tables

4.2 and 4.3.

4.3 PLMO METHOD AS EXEMPLIFIED BY HCN 

4.3(a) Seperation of CMOs

Some of the CMOs of each molecule were regarded as already 

localised and these were therefore separated from the CMOs to be 

transformed. In HCN the carbon and nitrogen inner shells (k'̂  and k̂ )̂ 

were predominantly is^ and Is^ in nature and hence regarded as 

localised onto their respective atomic centres. These inner shells 

could either be left in their canonical form or truncated and 

renormalised so that only AOs on the relevant atom made contributions 

to the MO. Both cases were considered for HCN. The it MOs (tt̂  and ir̂ ) 

were considered as localised C-N bonds and therefore set aside with 

the inner shells. This left three sigma CMOs (o^, and a^) with 

appreciable AO contributions from all the atomic centres in the 

molecule. These CMOs, generally R in number, were to be transformed, 

4.3(b) "Structure" Specification

A fixed arrangement of lone pairs or two-centre bonds in a 

molecule was termed a "structure". This was specified by simply 

denoting which AO coefficients in the MOs would be set to zero at a 

later, truncation stage. If all but the AO coefficients arising from 

one atom (say atom a) were set to zero in a MO , that MO was 

considered a lone pair on that atom (symbol X̂ ). If all but the AO 

coefficients arising from two atoms (say atoms a and b) were set to 

zero in a MO, that MO was considered a bond between those atoms 

(symbol y^^). In HCN the many possible structures described by the

three oMOs include ^H ^CH ^ CN' ^^CN ^NH
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4.3(c) Orthogonal Transformation

The occupied CMOs remaining after the separation stage, R in

number, were now transformed by a square (R x R) orthogonal matrix 2»

A general orthogonal matrix of this sort may be constructed in terms

of %R(R - 1) independent parameters (i = 1, 2, ... R;j = 1, 2, ...

R; i<j.. The general orthogonal matrix X  was a product of %R(R - 1)

separate square (R x R) orthogonal matrices, each constructed in terms
223of one independent parameter ane each having the form:

®ij
1

Sij
Cij

(4.1)

Where C.. = Cos y.. 1]
S.! = Sin y.i 
ij

(4.2)

Here, all diagonal elements are unity except the diagonal elements in the 

ith column and the jth column. All off-diagonal elements are zero except 

the one at the intersection of the ith row and the jth column, which is 

sin y and that at the intersection of the jth row and the ith column
Ij'

which is -sin v For HCN where R = 3, the general orthogonal matrix 
41

was a product of three (3 x 3) orthogonal matrices. Thus

(4.3)

'Ciz 1̂2 o' "^3 0 SlI 1 0 0

X = -̂ 12 1̂2 0 0 1 0 0 C23 "23

0 0 1 2^13 0 1̂3 0 -S23 2̂3
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with the notation of equation (4.2).

Transforming the delocalised CMOs, by the orthogonal matrix X  

gave a new set of R orthogonal'MOs

= i- I (4.4)

4.3(d) Truncation

The transformed orthogonal MOs, (j)̂, were now truncated and

renormalised so that they only had contributions from one or two atomic

centres. The "structure" so obtained was that specified at an earlier
Tstage (Section 4.3(b)). The truncated and renormalised set,^ , were now

no longer mutually orthogonal.

4.3(e) Orthonormalisation

The R truncated MOs and the other occupied CMOs were next brought

together and tested to ensure they were linearly independent. Linear 
d&n

depen^ies would occur in structures where more bonds or lone pairs were

created on or between atoms than there were appropriate basis AOs.

A regular example was two or more hydrogen lone pairs on the same 

hydrogen atom.

In acceptable structures, a copy of the linearly independent 

truncated MOs were orthonormalised by the Schmidt procedure (Section 

1-7). This was done so that the computation of the electronic energy 

exploited the simpler equations for orthogonal MOs. As has already

been explained, the one-determinant wavefunction is, of course,

unchanged for computational purposes by such an orthonormalisation 

of its constituent MOs.

4.3(f) Electronic Energy Calculation

The electronic energy was calculated from the 1st order density 

matrix in the atomic orbital basis and the one and two-electron
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integrals, essentiallyusing equation (1.58 ). For computational 

details see Appendix II.

4.3(g) Iteration to an energy minimum

The electronic energy of the wavefunction constructed from the 

truncated MOs (including the inner shells and tt orbitals) is hence

a function of the %R(R - 1) independent parameters used in construct-
/

ing a general orthogonal transforming matrix (Section 4.3(c)). For a 

particular "structure" these parameters were varied until an energy 

minimum was found. The non-orthogonal but linearly independent 

MOs corresponding to this minimum were hence the final LMOs for this 

structure. This procedure was repeated' for every possible arrange

ment of bonds and lone pairs, so that a long series of "structures" 

with corresponding energies and LMOs were obtained.

In order to test the uniqueness of the LMOs and associated 

energies, several different arbitrary starting values of the trans

formation parameters were used in the energy minimisations. This

test of uniquness for functions has been used by other workers using
92 97other localising methods. ' In fact, each structure's LMOs were 

found to be unique in all cases except where there was more than one 

lone pair on an atom or more than one sigma bond between a pair of 

atoms.

4.4 ENERGY DIAGRAMS AND LMOs FOR HCN '

For HCN a total of 56 different structures were considered by the 

method of the previous section,(216 if the 3 transformed MOs were 

permuted amongst the lone pairs and bonds) not all of which gave rise 

to linearly independent truncated MOs. The lowest energy structures
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for HCN are exhibited in Figures 4.1, 4.2 and 4.3. In Figure 4.1 

are the results using a ST0-3G basis, in figure 4.2 are shown the 

results corresponding to a ST0-5G basis and in figure 4.3 are the 

results for a ST0-3G basis but with the inner shells truncated and 

renormalised. Also exhibited in the figures is the overlap between 

the canonical wavefunction and that constructed from the endpoint 

LMOs, / '̂lMO^‘ structures are shown both by symbols and

in diagrammatic form. In the diagrams, a single line between two 

atoms denotes a sigma bond, two wavy lines between atoms denotes 

a pair of sigma bonds and a pair of crosses beside an atom represents 

a lone pair on that atom (positioning has no significance).

All the structures are seen to correspond to energies higher 

than that of the canonical MOs. The difference is the energy which 

must be sacrificed when restricting the LMOs generated by the above 

method, to only one or two atomic centres. Obviously, the lower the 

energy associated with a structure, the closer will that structure 

be to the CMO description of the ground state. This can be confirmed 

by noting the general trend of the overlaps of the LMO wavefunctions 

with that of the SCF CMO wavefunction in the diagrams. Hence the 

lower energy structures will give the more accurate description of the 

electronic arrangement in the molecule in terms of lone pairs and two- 

centre bonds. For this reason, when looking for such a description 

of the molecule it is only necessary to consider the structures at 

the bottom end of the energy scale in figures 4.1, 4.2 and 4.3.

The three lowest such structures are the same in all three 

figures and the LMOs for these cases, along with the inner shells and 

TT MOs are shown in Tables 4.4, 4.5 and 4.6. Only the unique LMOs
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are shown for each structure, thus the form of the C-H bond is the

sole representative in the case. In order to show the forms

of the orbitals more clearly the nodeless 2s Slater-type AO has been 

replaced by a AO, Schmidt-orthogonalised to the Is AO. The is 

and 2s AO coefficients become altered accordingly. The LMOs and 

^ MOs (and inner shells in Table 4.6) are shown as a normalised 

hybrid atomic orbital (HAO) on each centre with a corresponding 

coefficient (polarity parameter). The HAOs on each atom are not con

strained to be mutually orthogonal. A more detailed analysis of the

localised orbitals is reserved for Part C, here it is sufficient to 

point out that the orbital forms for the three investigations (Tables 

4.4, 4.5 and 4.6) are very similar. In other words, increasing the 

accuracy of the basis set from ST0-3G to ST0-5G, or truncating and 

renormalising the inner shells makes little difference to the end

point LMOs.

The greatest difference between the three sets of results occurs 

in the energy diagrams, figures 4.1, 4.2 and 4.3. It should be noted 

first that the origin of the energy scale (the canonical energy) for 

the ST0-5G case (fig. 4.2) is some 0.84 Hartree lower than in the 

ST0-3G case (fig. 4.1 and 4.3). This is a very large energy 

difference, and at first sight would appear to invalidate the ST0-3G 

approximation. However, the energies relative to the origin in the 

two cases are very similar. The effect of the 5G basis being to 

reduce all energies relative to the origin by only about 0.0001 

Hartree and the closeness of the LMOsobtained has already been pointed 

out. In fact although the total energy converges slowly towards the 

pure STO value with increasing length of gaussian expansion,other
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values such as atomisation energy, atomic populations and dipole 

moments are quite well represented by a ST0-3G e x p a n s i o n . 226 

The most noticeable disparity in the three energy diagrams is 

evident when the inner shells are truncated. For most structures the 

net result is an increase of about 0.0007 H compared with the 

untruncated ST0-3G case. However, the three structures between 

0.00406 H and 0.00475 H in Fig. 4.1 are missing in Fig. 4.3. The 

structures in this case were found at energies just above the top 

of the scale in Fig. 4.3. The general forms of the LMOs in the two 

cases give a clue as to the reason for this difference in energy.

The carbon lone pair in the structure and the nitrogen lone

pairs in the other two structures are very different in character 

in the two examples. In Fig. 4.1 the lone pairs show a very large Is 

contribution and hence a very large overlap (>0.995) with the corres

ponding inner shell MO. In the second case, when the inner shells 

no longer have small AO contributions from secondary centres, the 

lone pairs are more familiar in appearance with a large 2s contri

bution. From these observations it seems that the relevant lone pair 

orbitals in these structures will "collapse" into the atomic core 

and become indestinguishable from the inner shell MOs, when allowed the 

freedom to do so. When the inner shells are left with their canonical 

delocalisations this freedom is present, and the result is an orbital 

overlap very large but slightly less than unity. When the inner shells 

are strictly localised like the lone pairs however, such a "collapse" 

would force the overlap integral to unity and hence to the rejection 

of that MO set due to linear dependence. Thus the lone pair MOs in 

this case are forced to take on a more usual form with a corresponding
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energy sacrifice.

With this exception, truncating the inner shell MOs or using a 

longer gaussian expansion to represent the STO basis set, makes little 

difference to the relative energies of the different structures or 

to the corresponding LMOs. With this in mind, and since this work 

represents only a preliminary investigation of the.PLMO method, all 

other molecules were investigated using a ST0-3G basis and with the 

inner shells left untruncated for simplicity.

4.5 CHOOSING THE PLMO STRUCTURE

The problem of deciding which of the low energy structures will 

be considered the basic valence description of HCN, and hence yielding 

the PLMOs for this molecule, still remains. The three lowest 

energy structures are common to all three figures and are therefore 

considered appropriate candidates.

The argument presented in Chapter 1 (section 1.3(a)) determines 

that the structure be chosen, since the LMOs are localised

onto fewer atomic centres in this set than in the other two. Thus 

the extent to which the electronic structure of HCN may be expressed 

in terms of two-centre bonds and one-centre lone pairs is tested 

more rigorously by selecting this arrangement. In fact, by comparing 

the forms of the LMOs in the three structures, the PLMOs can be seen 

to lead to the LMOs of the other two arrangements by allowing the 

nitrogen lone pair to délocalisé first onto the carbon atom, and 

secondly onto the distant hydrogen atom. Hence the N-H bond in the 

second case is lone pair-like at the nitrogen atom and has only a 

small hydrogen coefficient, while the two C-N bonds present in the 

first case are no longer unique.
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4.6 PROPERTIES OF THE PLMOs

A particular arrangement of lone pairs and bonds, to be consid

ered the basic simple valence approximation to the electronic structure 

of HCN, and a corresponding set of PLMOs has thus been found.

Besides yielding a description of the electronic organisation of the 

molecule directly, the PLMOs may be used to calculate observables 

and other useful functions for the molecule. In this work, the 

dipole moment is calculated for all the molecules investigated in 

Chapter 6 and the results of a Mulliken Population analysis^^^ 

is presented in Chapter 8. It is appropriate at this stage however, 

to show the overlap integrals between the sigma PLMOs.

The absolute values of the overlap integrals are shown for the 

three cases of HCN in Tables 4.7, 4.8 and 4.9. The pi orbitals are 

orthogonal to all the sigma PLMOs by symmetry. Also exhibited in 

the figures is a measure of non-orthogonality of the a PLMOs, A.

This is the root mean square value of the off-diagonal elements of 

the sigma overlap integral matrix and is defined by:

A -  Z Z < * . / * . ( 4 . 5 )
i=l 3 = 1  ̂ :

where no is the number ofo PLMOs (including inner shells). A 

discussion of these values is undertaken in Chapter 8 but it may be 

noted here that the overlap integrals shown are very similar in the 

three tables. This is simply a reflection of the similarity of the 

PLMOs already noted.

noino -1)
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table 4.7 ABSOLUTE VALUES OF OVERLAP INTEGRALS BETWEEN SIGMA PLMOs

(INC. INNER SHELLS) OF HCN AND A FUNCTION^^^ (ST0-3G BASIS)

^N %c ^N ^CH ^CN

^N ^ 1.0

0.0000 1.0 A = 0.0334

0.0001 0.0279 1.0

^CH 0.0108 0.0076 0.0104 1.0

^CN 0.0002 0.0041 0.0060 0.1002 1.0

(a) For definition of A see narrative

TABLE 4.8 ABSOLUTE VALUES OF OVERLAP INTEGRALS BETWEEN SIGMA PLMOs

(INC. INNER SHELLS) OF HCN AND A FUNCTION^^^ (ST0-5G BASIS)

CNCH

0.03300.0000
0.02680.0000

0.01220.00760.0115CH
0.09900.00530.00400.0002CN'

(a) For definition of A see narrative
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TABLE 4.9 ABSOLUTE VALUES OF OVERLAP INTEGRALS BETWEEN SIGMA PLMOs 

(INC. TRUNCATED INNER SHELLS) OF HCN AND FUNCTION 

(ST0-5G BASIS)

CNCH

A = 0.03440.0048 •

0.0058. 0.0338

0.01030.0082 0.0133CH
0.10020.00620.00800.0108CN

(a) For definition of A see narrative.
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4.7 COMMENTS ON THE METHOD

The LMO method presented here is a new one. The PLMOs are

generated by a straightforward procedure based on the requirement

that the delocalisation energy of one and two-centre LMOs be a

minimum. It is perhaps surprising that such a simple technique has

not been exploited before. In the next chapter the results of applying

the method to other molecules besides HCN are given. In this section

some comments on particulars of the PLMO method, not already given

in this chapter, are presented.

4.7(a) Separation of CMOs

The inner shell and pi CMOs were separated from the sigma

valence CMOs at the very beginning of the procedure (Section 4.3(a)).

The inner shells were not included in the localising process because

they were considered to be already localised onto their atomic centres.

This assertion is well founded. It is well known that the core

orbitals in a molecule - represented by the Slater Is AOs in HCN -

are almost identical with those of the free atom, while the valence

MOs contain the essential part of the chemical information. This
227separation of core and valence regions (electrons) forms the basis

228for the successful application of pseudopotential methods in

molecular calculations, which are only slightly less accurate than
, 228,229corresponding ab-initio procedures.

The two pi orbitals in HCN were separated from the sigma 

v&2gnce MOs which were used to form localised bonds and lone pairs.

The sigma-pi description of the C-N multiple bond that results from 

this separation may be contrasted to the three C-N "banana bonds" 

that are generated by other LMO m e t h o d s . T h e s e  two alternative
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descriptions of multiple bonds in general are of course equivalent, 

and if the "banana bond" description is required in HCN (or in CO or 

^ 2  (n^xt chapter)) then an appropriate 3 x 3  linear transformation of 

the sigma PLMO and pi CMOs may be simply applied. The reduction in 

computational complexity that results from sigma-pi separation may 

also be used to advantage in molecules with a number of multiple 

bonds, where the delocalisation of the pi electron system need not 

invalidate an examination of the sigma electrons in terms of 

localised orbitals.

4.7(b) Orthogonal Transformation and Truncation

The energy minimum found for each structure (including the PLMO 

structure) does not fix the associated LMOs completely. Any linear 

combination of the final LMOs for a structure would yield an identical 

energy, and provided such a linear combination did not change the 

structure specification (e.g. by generating three-centre bonds or 

by turning a one-centre LMO into a two-centre LMO), the resulting 

LMOs would be equally acceptable solutions, on an energy criterion, 

for that structure. Clearly, since the PLMO method gives a unique 

set of LMOs for each structure (provided there is not more than one 

sigma bond between a pair of atoms or more than one sigma lone pair 

on an atom) the full freedom afforded the LMOs by the requirement that 

they be linearly independent and normalised, is not exploited by the 

orthogonal transformation and truncation steps in this method. In 

other words, the search for an energy minimum for each structure does 

not occur within the whole function space available, but is con

strained to the direction of convergence imposed by the orthogonal 

transformation of the CMOs. This can be most easily seen in the
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structures at the CMO energy for and CO (next chapter) where because 

the CMOs and other LMOs occur at the same energy they must be linked 

by a linear transformation. In these examples the number of disposable 

parameters used to construct the orthogonal transforming matrix, and 

in terms of which the energy functional is minimised, (%R(R-1) (Section 

4.3(c)), is less than the number that would be required to construct 

a general linear transformation matrix which still maintains the linear 

independence of the transformed CMOs (%R(R+1)). The one and two- 

centre LMOs selected by the PLMO method for any structure are hence those 

in the space of a truncation of an orthgonal transformation of the 

CMOs in which the energy sacrificed is a minimum. How severe this 

restriction on the PLMO wavefunctions of the example molecules proves 

to be, might be judged by comparing the size of the energy sacrifice 

in the PLMO wavefunction to one and two-centre LMO wavefunctions obtained 

by other methods. Such a comparison will be undertaken in Chapter 7.

The success or failure of the PLMO method must be judged by an 

analysis of the results (Part C). However, an advantage of the PLMO 

procedure, besides yielding unique LMOs, is that it should ensure that 

when the energy sacrifice is low, i.e. when only small AO coefficients 

have been deleted by the truncation, the final LMOs are not far from 

orthogonal. This is true of the PLMO structure in HCN (Tables 4.7,

4.8 and 4.9).
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CHAPTER FIVE

EXAMPLES OF PLMO METHOD - CO, N^, H^O, NH^ § CH^

5.1 INTRODUCTION

The general method of obtaining PLMOs, outlined in the previous 

chapter, was applied to the molecules carbon monoxide, nitrogen, 

water, ammonia and methane. A ST0-3G basis was used and the inner 

shells were left untruncated. Neither of these simplifications are 

expected to influence the results to any great extent as the comparisons 

made in chapter 4 show. The results for these molecules are displayed 

in this chapter in the same format as the HCN results of the preceding 

chapter.

5.2 PRELIMINARIES

The molecular geometry and the atomic co-ordinates used are shown 

in Tables 5.1 to 5.5.

The starting sets of CMOs and integrals over AOs were obtained 

from the Gaussian 70 package as with HCN. The occupied CMOs and the 

orbital energies are shown in Tables 5.6 to 5.10. The pi CMOs 

for each molecule, and in CO, and in N^, and in H 2 O, 

and the inner shells, were considered as already localised and hence 

separated from the remaining sigma CMOs which were to be transformed.

The inner shells of the nitrogen molecule (Table 5.7) were delocalised

onto both atomic centres due to symmetry, but by taking a renormalised

sum and difference of the CMOs the inner shells become localised 

onto the atomic centres (Table 5.12).

5.3 ENERGY DIAGRAMS AND LMOs

Some structures and associated energies for the example molecules,

obtained by application of the PLMO procedure, are shown in Figures

5.1 to 5.5. The notation used is the same as for HCN.
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231
TABLE 5.1 GEOMETRY AND CO-ORDINATE SYSTEM FOR CO

R(C - 0) = 1.1282A

Atom X
Co-ordinates (atomic units)

y z

C 0.0 0.0 0.0

0 0.0 0.0 2.1320

232TABLE 5.2 GEOMETRY AND CO-ORDINATE SYSTEM FOR N,

R(N - N) = 1.0976A

Atom X
Co-ordinates (atomic units)

y z

0.0 0.0 0.0

^2 0.0 0.0 2.0742

,233TABLE 5.3 GEOMETRY AND CO-ORDINATE SYSTEM FOR H^O

R(0 - H) = 0.9572A Z-HOH = 104.52'

Atom

Co-ordinates (atomic units)
X y z

0.0

1.4305

•1.4305

0.0

0.0
0.0

0.0
-1.1072

-1.1072
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,232TABLE 5.4 GEOMETRY AND CO-ORDINATE SYSTEM FOR NH.

R(N - H) = 1.008A Z_HNH = 107.3*

Atom
Co-

X
-ordinates (atomic units)

y z
N 0.0 0.0 0.0

1.772 0.0 -0.700

«2 -0.886 1.534 -0.700

«3 -0.886 -1.534 -0.700

2 3 2TABLE 5.5 GEOMETRY AND CO-ORDINATE SYSTEM FOR CH,

R(C - H) = 1.091 A Z.HCH = 109.63°

Atom X
Co-ordinates (atomic units)

y z

C 0.0 0.0 0.0

«1 1.189 -1.189 1.189

«2 -1.189 1.189 1.189

«3 -1.189 -1.189 -1.189

«4 1.189 1.189 -1.189
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Figure 5.1 Energy diagram for LMO structures in sigma frame of CO 
(ST0-3G basis)
(For explanation of symbols see narrative)
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Figure 5.2 Energy diagram for LMO structures in sigma frame of 
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Figure 5.3 Energy diagram for LMO structures in sigma frame of H_02-
(ST0-3G basis)
(For explanation of symbols see narrative.



95

A Energy (H)
(Not to scale)

0.34436

0.34415

0.34391

0.01899

0.01854

0.0

0.8384

0.8386

0.8389

0.9891

0.9887

Structure

2y,
aNH ''NĤ
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Figure 5.4 Energy diagram for LMO structures in sigma frame of NH^ 
(STQ-3G basis)
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A Energy (H)
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Figure 5.5 Energy diagram for LMO structures in sigma frame of CH^ 
(ST0-3G basis)
(For explanation of symbols see narrative)
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The number of different arrangements of lone pairs and bonds 

possible for a molecule, increases dramatically as the number of

atoms and/or the number of delocalised CMOs increases. The

energy diagrams for carbon monoxide and nitrogen. Figures 5.1 and 5.2 

contain almost all the structures possible for the three transformed 

and truncated MOs; while for water, ammonia and methane. Figures 5.3

5.4 and 5.5, only those structures in the very bottom section of the

energy scale are shown. In these latter three molecules there are many

equivalent structures differing only in the hydrogen atom labels. These 

structures were all separately investigated (or a selection of them in 

methane) and an energy minimum obtained. Equivalent structures at

the same energy are represented in the figures by labelling the 

hydrogen atoms algebraically with letters rather than explicitly 

with numbers.

The LMOs corresponding to the structures near the bottom of 

each of the energy diagrams are shown in Tables 5.11 to 5.15. Again, 

an orthogonalised 2s AO has been used, with a resulting alteration 

to the Is and 2s°^ AO coefficients. Only the unique LMOs are shown 

for each structure. The LMOs are expressed in the form of a 

normalised hybrid on each atom and a polarity parameter.

5.4 CHOOSING THE PLMO STRUCTURES

For the diatomic molecules CO and N^ it is not possible to resolve 

using an energy criterion, a number of different structures (Figures

5.1 and 5.2). The reason is that, if one of the three transformed 

MOs remains untruncated, i.e. represents a N-N or C-0 bond and the 

inner shells are left untruncated, the LMOs span the Hartree-Fock 

manifold and therefore yield the canonical energy and wavefunction.
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From among these six structures for each molecule it is now necessary 

to choose the sets which are most localised. This procedure selects 

any one of three structures in each case involving one two-centre 

bond and two one-centre lone pairs. The final choice must therefore 

be made by more empirical means.

Since a unique sigma bond, or and unique lone pairs

Xq , and X^ , X^ , are identical in all the structures at the 

canonical energy - the exception as usual being where there is 

more than one lone pair on the same atom or more than one sigma bond 

between the pair of atoms - the structures containing all these three 

orbitals (the only completely unique structures) are to be chosen.

Thus X^ Xq y^Q and X^ X^ y^^ are to be considered the basic 

valence descriptions yielding the PLMOs.

In both water and ammonia (Figures 5.3 and 5.4) there are two 

structures at nearly the same energy at the bottom of the energy 

level diagrams. The most localised structure in each case is to be 

selected, so that the valence descriptions are X^ y^^ y^^

water and X^ y^^ y^^ y^^ for ammonia. In methane (Figure 5.5)

all structures but one are precluded on energy grounds. This is y^^ y^^

5.5 PLMO OVERLAP INTEGRALS

The absolute values of the overlap integrals between the PLMOs 

for each molecule are shown in Tables 5,16 to 5,20. Also shown is the 

function, a > defined in the previous chapter as a measure of the 

total non-orthogonality of the orbitals.
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TABLE 5.16 ABSOLUTE VALUES OF OVERLAP INTEGRALS BETWEEN SIGMA
(a)

PLMOs (INC. INNER SHELLS) of CO AND A FUNCTION (ST0-3G BASIS)

ko k'c "o ^CO

ko 1.0 -

kc 0.0000 1.0 A = 0. 0452

kc 0.0150 0.0006 1.0

kQ 0.0025 0.0307 0.1389 1.0

^CO 0.0000 0.0000 0.0003 0.0002 1.0

a) For definition of A see narrative (Chapter 4)

TABLE 5.17 VABSOLUTE VALUES OF OVERLAP INTEGRALS BETWEEN SIGMA

PLMOs (INC. INNER SHELLS) of N^ AND (a)A FUNCTION (STO-

kNi •S ^Ni k.^ ^NN

1.0

0.0000 1.0 A = 0.0489

\ 0.0002 0.0227 1.0

0.0227 0.0002 0.1513 1.0

^n n 0.0000 0.0000 0.0003 0.0003 1.0

a) For definition of A see narrative (Chapter 4)
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TABLE 5.18 ABSOLUTE VALUES OF OVERLAP INTEGRALS BETWEEN SIGMA
(a)

PLMOs (INC. INNER SHELL) OF H^O AND A FUNCTION feT0-5G BASIS)

ko 'o ' ^OH^ • ̂ OH^

ko 1.0 .

ko 0.0020 - 1.0 A = 0.0559

^OH^ 0.0053 0.0231 1.0

^OH^ 0.0053 0.0231 0.1329 1.0

a) For definition of A see narrative (Chapter 4)

TABLE 5.19 ABSOLUTE VALUES OF OVERLAP INTEGRALS BETWEEN SIGMA PLMOs

(INC. INNER SHELL) OF NH, AND A FUNCTIOi5^^(STO-3G BASIS)

^N ^N ^NH^ ^NH^ ^NH^

kN 1.0 •

kN 0.0064 1.0 A =0.0865

0.0115 0.0289 1.0

''n h^ 0.0115 0.0289 0.1549 1.0

0.0115 0.0289 0.1549 0.1549 1.0

a) For definition of A see narrative (Chapter 4)
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TABLE 5.20 ABSOLUTE VALUES OF OVERLAP INTEGRALS BETWEEN SIGMA PLMOs 

(INC. INNER SHELL) OF CH  ̂AND A FUNCTI0ri%T0-3G BASIS)

kc ^CH^ ^CH2

kc 1.0

^CH^ 0.0124 1.0 A = 0.1033

^CH2 0.0124 0.1330 1.0

0.0124 0.1330 0.1330 1.0

0.0124 0.1330 0.1330 0.1330 1.0

a) For definition of A see narrative (Chapter 4).
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5 .6 S
The PLMO procedure has been applied to the occupied CMOs 

of the example molecules and a unique set of non-orthogonal PLMOs 

have been obtained in each case. These PLMOs may now be used to obtain 

bond and lone pair moments (Chapter 6) and their properties may be 

discussed and investigated both in isolation and in relation to other 

LMO methods in what follows (Chapters 7, 8, 9, 10 and 11).
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CHAPTER 6

ELECTRIC DIPOLE MOMENT ANALYSIS

6.1 INTRODUCTION

For a molecule in a particular state (normally the ground state) 

described by a wavefunction V, first order properties can be written 

as the expectation value of an appropriate operator. For example, 

for the electric dipole moment:

<D> = <Y/_0/Y> .* (6.1)

The computation of dipole moments and other one-electron properties

is often routinely carried out in computer programs for calculating
234Hartree-Fock SCF-MO wavefunctions, and these may be compared with

the dipole moments obtained from e x p e r i m e n t . F o r  various 

reasons - including the innaccuracy of a one-determinant wavefunction 

expressed in an incomplete set of basis functions, and environmental 

factors - such calculated dipole moments rarely agree closely with 

experimental values. These calculations, however, can still lead 

to a better understanding of electronic structure in molecules. One 

particular approach is outlined below.

6.2 BOND AND LONE PAIR MOMENTS

While total molecular properties are of value to chemists, the

division of the total amongst the constituent bonds and lone pairs of
30classical valence theory can be of equal, or greater utility, and

so bond and lone pair moments are of considerable chemical interest.

Applications in chemistry include the interpretation of Infra Red

gas phase absorption intensities in terms of dipole moment derivatives
237-240with respect to symmetry co-ordinates, reactive substitution,

and internal rotation barriers in m o l e c u l e s . F u r t h e r ,  if it 

is accepted that bonds and lone pairs may be transferred between 

similar chemical environments in different molecules, then the bond
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and lone pair moments should be also. Thus by assigning local moments 

to small prototype molecules it should be possible in theory to 

predict the molecular properties bf a large molecule by vectorial 

addition of its constituent bond and lone pair moments.

One way in which such local moments may be calculated from LMOs 

and associated partitioned nuclear changes is outlined in section 5 

of Appendix I. Some of that development with some of the relevant 

equations are reproduced here.

The electric dipole moment <D> (equation 6.1) may be divided 

into electronic and nuclear contributions both of which may be further 

divided into x, y and z components. The z component (for example) 

of the electronic part of the dipole moment for a molecule described 

by a one-determinant MO wavefunction may be expressed in terms of 

non-orthogonal MOs thus:

n n
Z Z Cl

i=l j=l  ̂ J

where n - number of doubly occupied MOs

(j)., (p. - MOs

<(})./z/(|). > - z component dipole moment integral over MOs

(G"^) j - (j , i)- element of the inverse of the matrix of MO

overlap integrals.

Equation (6.2) may be rewritten:

n _i
-<D >elec. = 2 Z <^./z/^. > (£ )..z 1

n n T
(6.3)

-<D^>elec. = 2 Z Z <cf>̂ /z/(f)̂  (^ ̂ ) ̂  ̂ (6.1)

+ 4  Z Z <6./z/é.> (S ).. 
i=l j=l  ̂  ̂ J
(i<j)
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In equation (6.3) the first sum may be called "the diagonal terms" 

and the second (double) sum "the off-diagonal terms". As written, 

each pair of MOs contribute only once to the off-diagonal terms.

For orthogonal MOs the off-diagonal terms vanish (since the MO 

overlap matrix and its inverse are both the unit matrix) and the 

electronic conponent of the dipole moment becomes an exact sum of 

MO contributions z^elec.

n . n
-<D >elec = Z z^elec = E 2<<p.fzlp.> . (6.4)

 ̂ i=l i=l  ̂ ^

In order to put the expression for non-orthogonal MOs (equation 6.3)

into this.'form, the contribution from each MO, z^elec, needs to be

defined by:

z^elec = 2«j)̂ /z/(|)̂ > (§,̂ )^j^

n 1
+ 2 E <*./z/*.> (§,).. (6.5)

j=i 1 j

Where now the off-diagonal terms of equation (6.3) have been allocated

among the diagonal terms such that the overlap contribution arising

from two MOs has been divided equally between them. The x and y 

components may be defined entirely analogously.

It is also possible to partition the nuclear contribution to 

each component of the dipole moment, among the constituent MOs of 

the molecule, hence yielding total MO dipole moment contributions 

(section 1-5) . When the MOs are LMOs that represent bonds and lone 

pairs, the dipole moment contributions arising from each MO are hence 

the bond and lone pair -moments introduced at the beginning of this 

section.
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6,3 RESULTS FOR EXAMPLE MOLECULES

The non-orthogonal PLMOs of each molecule studied were used to

calculate total molecular electric dipole moments and to analyse the

totals in terms of bond and lone pair moments using the method

of Appendix I section S. The relevant dipole moment integrals for
222each molecule were available from the Gaussian 70 package (see 

Appendix II). The results are shown in Tables 6.1 to 6.13. The 

co-ordinate systems used are those already exhibited (Tables 4.1 

and 5.1 to 5.5). The tables are best understood in terms of 

equations (6.3) and (6.5).

Each table refers to one component of the total dipole moment 

of each molecule. For HCN, CO and only the z component to the 

dipole is needed. For H 2 O the x and z, and for NH^ and CH^ the x, 

y and z components are required. Each table is divided into two 

parts. In the upper part, each PLMO in the first column is assigned 

a total dipole moment component in the last (seventh) column. The 

columns in between these, and the data in the lower part of the 

table show how the contributions to the total bond or lone pair 

moments arise. -̂ The second column in the upper part of each table 

shows the co-ordinate dipole moment integral for each PLMO times the 

conversion factor from atomic units to Debyes. The third column 

exhibits the multiplication factor needed to obtain the diagonal 

electronic contribution for each PLMO (fourth column) as in 

the first term of equation (6.5). The lower part of the table shows 

in an analogous, fashion the significant off-diagonal electronic 

contributions arising from each PLMO pair, and the total, using 

the last term of equation (6.3). These off-diagonal contributions
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are re-allocated amongst the inner shells, bonds and lone pairs 

by dividing each off-diagonal term equally between the overlapping 

PLMOs in question, following the second term in equation (6.5).

The resulting "reallocated” electronic moment is shown in column five 

in the upper part of the table. To this must be added the moment 

arising from the associated positive nuclear charges that have 

been assigned to the PLMOs after Appendix I (Section 5). This 

is presented in the sixth column. The final total dipole moment 

component for each inner shell, bond and lone pair described by the 

PLMOs is hence produced in the last column of the table. The sign 

convention used is that if a dipole has its negative end in the 

direction of the positive co-ordinate axis, the moment has a negative 

sign.

The total bond and lone pair moments (in Debyes) for the 

example molecules are expressed in diagrammatic form in Figures 6.1 

to 6.6. The arrows in the figures point towards the negative end

of the dipole in each case. In water and ammonia the bonding

hybrids on oxygen and nitrogen in the PLMOs do not point directly 

towards the hydrogen atoms (see Chapter 8) and hence produce 

"bent" bonds. This means that the centroids of electron charge

in the NH and OH bonds do not lie on the internuclear lines. For

this reason the bond moments, in these molecules have been expressed 

in the figures as a vector pointing from the centroid of positive 

charge (midpoint between the nuclei) to the centroid of negative 

charge. The direction of this vector is defined relative to the line 

joining the nuclei (Figures 6.4 and 6.5). The CH bond moments 

in methane point towards the hydrogen atoms by symmetry (Figure 6.6).
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A discussion of the results presented here, their physical 

significance, and a comparison to the results of other authors is 

reserved for Chapter 9.
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PART C

DISCUSSION AND INTERPRETATION OF RESULTS 

- POPULATION ANALYSIS
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CHAPTER SEVEN

ENERGY DIAGRAMS

7.1 INTRODUCTION

The manner in which the energy diagrams were constructed 

for a molecule has been described in Chapter 4. The energies 

represent the minimum value obtained by imposing the corresponding 

arrangement of lone pairs and bonds on the transformed MOs. All 

possible arrangements of lone pairs and bonds were considered for 

each molecule. As was said in Chapter 4, not all of these structures 

converged to an energy minimum, but of those which did converge, 

the lowest energy structures are shown in the energy diagrams 

(Figures 4.1 to 4.3 and 5.1 to 5.5). Some aspects of these energy 

diagrams are discussed in this chapter.

7.2 COMPOSITION OF THE DIAGRAMS 

7.2(a) Significance of the Energies

For all the structures considered, the manner in which the MOs

are transformed and truncated does influence the shape of the energy

surface that is searched, and hence the value of the energy minimum

obtained (Section 4.7)-. This point is exemplified in water

(Figure 5.3) where the 2y y structure could be generated by
a b

forming suitable linear combinations of the endpoint LMOs found 

in the lower energy y^^ structure. The wavefunction for water

thus obtained would give an energy of 0.00625H above the canonical 

energy - since a one-determinant wavefunction is invariant to linear 

combinations of its constituent MOs - rather than the 0.00644H 

found from the PLMO procedure. Similar situations arise in the
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(3poH^), Clo2)ipy, structures in water and the ( V n Ĥ '̂nH^^NH^

(Zl'NH *NH.^NH ) ^NhJ  ' '■̂ '̂ NH '̂'nH, ̂ ' (2%% J  ■d D c  a D a D a b
^NH  ̂ structures in ammonia (Figure 5.4). Clearly the search 

a b
for an energy minimum for each structure is constrained by the 

procedures of the PLMO method.

In view of this, what significance can be ascribed to the energy 

value on the diagrams (The energy difference between and Ŷ ^̂ Q)

corresponding to a particular arrangement of lone pairs and bonds?

For the PLMO structure, the energy difference is to be inter

preted as a delocalisation energy. This is the energy that has to 

be sacrificed in order to localise the MOs (hence electrons) into 

two-centre bonds and one-centre lone pairs; or equivalently; the 

energy lowering that would result if the PLMOs were allowed to 

délocalisé over all the AOs in the molecule. This energy value is 

discussed further in Section 7.3.

Structures similar to the PLMO structure, but in which a PLMO 

lone pair has been replaced by a bond involving the same atom, 

should represent a partial delocalisation and therefore be found 

at an energy lower than the PLMOs. This is true in HCN (Fig. 4.1) 

but not so in water and ammonia where the relevant structures occur 

at higher energies. These energy values are imposed by the shape of 

the energy surface generated by the PLMO method and have already 

been discussed above. In CO and N^ (Figures 5.1 and 5.2) all such 

structures span the Hartree-Fock function space (with the inner 

shells left untruncated) and therefore give the canonical energy, 

while in methane (Figure 5.5) no structures representing partial 

delocalisation are possible since only two-centre bonds are considered.
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It would seem dangerous, then, to attach much significance to the 

relative energy values of the non-PLMO low energy structures.

For structures further up each energy scale attempts at 

interpretation become even more dangerous because the relative 

energy values occurring here are generally of the same order as the 

dissociation energies of the individual bonds; for example 

D(CH^ - H) = 0.166H;243 _ q h) = 0.190H;244 - N) = 0.360H.^45

It is unlikely that any of the high energy structures correspond to 

excited states because of the large overlap that exists between the 

generated wavefunctions and the Hartree-Fock canonical ground state 

wavefunction. In appearance, these "unusual" structures are 

reminiscent of Valence Bond resonance structures, though of a type 

that would not normally be expected to make any appreciable contribution 

to the ground state molecular wavefunction. This is, of course, 

exactly where the significance of the high energy structures lies.

The structures are significant in that they ̂  occur at relatively

high energies and are therefore not candidates for a single representation

of the electronic organisation of the molecule in question.

7.2(b) Overlaps with CMO Wavefunction

The overlap between the wavefunction constructed from the LMOs 

for each structure, '̂ m̂ o the wavefunction constructed from

the CMOS, , is also shown on the energy diagrams. For the PLMO

structures the overlaps are all close to unity (>0.98) and in CO and 

(Figures 5.1 and 5.2) are exactly equal to one. These figures 

reflect the closeness of the PLMO descriptions of the molecules to 

the original CMO descriptions.

For each molecule, the overlaps generally increase as the 

relative energies decrease, though there are a couple of exceptions.



133.

These occur in water and ammonia (Figures 5.3 and 5.4) in the 

structures that represent a partial delocalisation of the PLMO 

structure. In these cases the wavefunction overlaps show the expected 

increase in value where the energy does not show the expected 

decrease. That strict linearity is not maintained between energy 

and overlap is demonstrated in the INDO approximation by other LMO

work.246

The individual values of wavefunction overlap seem to have little 

significance and provide limited scope for comparison to other work 

in the literature. For this reason further discussion and comparison 

of the wavefunction properties exhibited in the energy diagrams 

are restricted to the relative energy values.

7.3 PLMO DELOCALISATION ENERGY - COMPARISON TO OTHER METHODS

The arrangement of lone pairs and bonds chosen to yield the 

PLMOs for each example molecule corresponds to those generated by other 

LMO methods. In some methods such arrangements are fixed by a priori 

assumptions concerning the valence descriptions of molecules, while 

in others they are generated (with LMO "tails") by imposing different 

localising criteria on the MOs (see Chapter 2). When such methods 

yield LMOs that are strictly localised (either by a direct calculation 

or by deleting orbital "tails") a comparison may be made between the 

energy sacrifice required in those methods and that necessary in 

the PLMO method. Such a comparison should be an aid in judging the 

success of the approach to one and two-centre localisation adopted 

in this work.

The energy sacrifices necessary in different LMO methods are 

compared in Tables 7.1 to 7.5 for the molecules investigated by the
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PLMO method. No results are available for comparison for N^. The

values for the PLMOs include a contribution from the truncation of

the inner shells. Such information is available for HCN, and for the

other molecules an allowance of 0.0005H has been made for each inner

shell in the molecule. This allowance is based on the results for

HCN where two inner shell truncations gave an increase of 0.0007H

(see Chapter 4) and in carbon monoxide (obtained in supplementary

calculations) where an increase of 0.00085H was obtained.

It can be seen from the tables that the accuracy of the

Hartree-Fock calculations to which the LMO energies are compared,

vary from author to author. The minimal ST0-3G basis employed in

this work is the same as that used in the recent work of Stoll,
38Wagenblast and Preuss, but is less accurate than those employed

by all the other authors. This disadvantage to the PLMO wavefunctions

should be borne in mind when comparing the delocalisation energies.
93The results of Newton, Switkes and Lipscomb are the only

ones obtained by a transformation rqlocalisation LMO method, in this
70 83—85case that of Edmiston  ̂Ruedenberg. * The energy sacrifice

in methane (Table 7.5) and HCN (Table 7.1) when deleting the LMO 

"tails" is significantly greater than that in the PLMO wavefunctions 

and in view of the general, similarity of LMO orbital forms obtained 

by most transformation m e t h o d s , 124,125,247,248 difference

would presumably still be evident when comparing the truncated LMOs

obtained by the methods of Boys,^^*^^ Magnasco  ̂Perico,^^4*125

Von Niessen^^ for example.

Hoyland4^ and Petke § Whitten^^^ obtain one and two-centre 

localisedorbitals constructed from HAOs. The hybrid expansion co-



135

COQ0
g1
I

a:
<CO

u3:

>- O  j ci w
g
§  t—(
scnI—I
5O
WQ

Sa,
Pm0
z:sHH
1
8

S
;

t nO

sËUu
Io

w

LO CD r-H 
hO r-lO  Tfo ooo

o o

(-0 "d-
<—t 00vo 
\o LO

oo
C O

to CS LO
O  LO CD(N Or-' \o \o
fN I  I— ICD CD

CO CO CO

o
00

Cm u
03S

t oO

UJDCHzUJu
I

p

Q§
P4§

S '

CD
O
C O  v O
CD 1 - 4  CM
U o  r ^
CD o  o

( 4 4
( 4 4 o  o
• H
Q

S

X
b O
Î 4 V O  X
CD t o  1 - 4

c C M  C D
P 3 CM  T t

O f - 4  CM
s r - 4  r 4
- 3 r 4  1 - 4  

1 1

z

X
W ) v O  t o
u T f  T f
o CM  \ D
c C M  L O

U J
1 - 4  CM

P L , 1 - 4  f - 44m 1-4 1-4 
1 1

c
c d

■ i 4
t o
t o

I D  3
t o t o  c d

• H 1 o
t o o
a H  T JCO , C O  CD+4«44 1-4 O
o c tf  c d

E  Î4
(D • H  + 4

& . 5  g
H Z  U

T f
L O
1 -444

t o
c d1-4 0 0

X  X
C  C D
CD 1 - 4
b O

X  c d
^  ^  t o
O  t o

k 3  •« 3
o 1-4 <D

X t o  1 - 4  f - l
4 4 • H  O  D m

35 X  44
< E-1 CO US'



136

Qi-J
UJ1—1
>-
E-<
g
COQO
ecE—'
5
DiUJ
HO
Z1—1
aUJu1—1u.1—1cüCJ
<CO
E-h
<
H
3:H1—1

O CM
E
Z1—1
>"CJJDiUJzUJ
zot-4
H
<COt—tPI
<CJ
o 10PJ oUJ zQ PI

ë ëP3 HCL, ZUJU-. CJ
O 1

oZ zo ÊCOt—1 Qcü
<CL,
z UJo ZCJ O

to
1̂
UJPICû
<E-h

00
oo

CM to
00g g

0000oo
00
NOtotooo o

o o o o

bû
00 o(J) t—I
LO oo

00
LOen

NO
LO

LO LO LO LO00LO

bû LO00CT>
UJ

LO00LO

to \o o

U-.OQ

U

LO
o0000

bO

tOa,

o

S
O
O•HCO
■PO(ü
rHw



137,

QwJUJt—1
>-
E—'
<3:H
COQOEHUJS
CsiUJ33HO
z:M
QUJC_31—1
tu1—1DiU<CO
H
<33E-
33E—'t—1
t̂ )

33Z
Zt-4
>-C3peUJzUJ
zot—1H<CO>—1-J<uo to►J OUJ SQ
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efficients and polarity parameters in bonds in each case are 

variationally optimised to give an energy minimum. The Petke G 

Whitten delocalisation energies in NH^ (Table 7.4), H^O (Table 7.3) 

and HCN are close to those of the PLMOs while Hoyland's calculation on 

methane yields an energy very near to that of a full SCF Hartree^fock 

calculation.

All the remaining LMO methods yield localised orbitals without 

"tails" by direct solution of eigenvalue equations involving localis

ation operators. Peters^^^ in his calculation on methane (Table 7.5) 

used a minimal STO basis while Wilhite G Whitten^^^ using essentially 

Peters' method employed two different gaussian bases in both water 

and ammonia (Tables 7.3 and 7,4). The energy sacrifices found by 

Wilhite G Whitten are similar to those of the PLMOs, but the value 

obtained by Peters in methane is much larger. Such a big difference 

between methane and ammonia from essentially the same method 

probably highlights the danger in comparing results obtained using

dissimilar basis sets.
154Stoll et al obtain LMOs in a partitioned gaussian basis for

methane and carbon monoxide (Table 7.2). The energy sacrificed is

much greater than that for the PLMO wavefunctions, though the main

aim of their method is to reduce computational effort rather than
153obtain variationally exact calculations.

The work of Matsuoka^^^ and (to a lesser extent) Payne^^ owes 

much to the eigenvalue equations of Adams and Gilbert.
38One and two-centre LMOs are found in gaussian bases. Stoll et al. 

modify the Payne method and obtain LMO eigenfunctions in a minimal 

ST0-3G basis. The delocalisation energies found by Payne in methane
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and ammonia and by Matsuoka in methane are less than those of the

PLMOs; in water however the reverse is true. The improved method 
38of Stoll et al. needs only a very small energy sacrifice, which is 

smaller than that shown by the PLMOs even in water.

Generally speaking, the delocalisation energies in the PLMO 

wavefunctions compare favourably to those of the other methods 

(though this is less true in ammonia). It is not surprising that 

the energy sacrificed by the PLMOs is less 'than that when deleting 

the LMO "tails" of Edmiston and Ruedenberg '(and presumably of 

similar transformation methods), because the very criterion fixing 

the orthogonal transformation of the CMOs in the PLMO method is that 

the energy sacrifice after truncation be a minimum. As much 

encouragement may be derived from the fact that the energy sacri

ficed by the PLMOs is at least comparable to the delocalisation 

energies from the remaining methods. In particular, those involving 

the direct variational optimisation of wavefunctions, and those 

based on the solution of variationally optimised eigenvalue equations, 

often using more accurate basis sets. This is especially true in 

CO (and N^) where only the inner shells are deemed to contribute 

to a PLMO delocalisation energy in the tables.

In summary, it would seem that the first desired property of 

the PLMOs (Section 1.3(b)) is satisfied because the energy sacrifice 

relative to the canonical wavefunction is indeed small. The exact 

situation is clouded, however, by the use of different basis sets 

in computations by different workers.
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CHAPTER EIGHT 

FORMS OF PLMOs AND POPULATION ANALYSIS

This chapter is concerned with an analysis of the forms of the 

PLMOs and their overlap integrals which are further described in 

Sections 8.2 and 8.3. As an aid to interpretation, the results of 

an electron population analysis (introduced in Section 8.1) are 

also shown. In section 8.4 the significance of the results, and 

a comparison to the forms of the LMOs of other methods, is 

discussed.

8 .1 ELECTRON POPULATION ANALYSIS

The method of Mulliken^^^ and McWeeny^^^*^^^ for calculating 

AO electronic populations, adapted for the case of non-orthogonal 

MOs, is outlined in Section 6 of Appendix I. The electron populations 

so obtained are expected to aid the analysis of aspects of the elec

tronic structure of the molecules considered.

It is important, however, to keep certain reservations in mind 

when dealing with Mulliken populations. Firstly, the concept of the 

electronic population of an atom or atomic orbital has no exact 

physical significance, and which part of the overall electron density 

is to be assigned to any particular atom or AO is, to an extent, 

arbitrary. Secondly, arising from the first point, there exist

many alternative methods of defining electronic populations which
' 249-253attempt to overcome the deficiencies in Mulliken's procedure.

It is certainly true however, that despite the well known 

drawbacks the Mulliken method is still useful in the analysis of 

electronic structure by its power to condense the sometimes 

difficult concepts of the quantum mechanical valence theory into



142

easily understandable concepts and numerical values. It seems to be 

generally true that there is less significance in the absolute value 

of the electron populations for a single molecule, than in the 

relative populations along a series of molecules. Such comparisons 

remain an invaluable tool in the characterisation of structural 

trends. In this work, the method is used mainly to support conclu

sions drawn from the sizes of AO coefficients and bond polarity 

parameters.

8.2 HYBRIDISATION AND POPULATION ANALYSIS OF MOLECULES 

8.2(a) HCN

The forms of the PLMOs obtained for three different cases 

for HCN have been shown in Tables 4.4, 4.5 and 4.<6 of Chapter 4. 

Since they are all quite similar, this discussion will concentrate 

on the ST0-3G basis set results in Table 4.4.

The results of the population analysis is shown in Table 8.1. 

The table shows for each PLMO, the individual AO populations and 

the sum for each atom and for all AOs. The AO and atom populations 

summed over all PLMOs are shown on the bottom line. The grand 

total (i.e. the number of electrons in the molecule) is shown in the 

bottom right-hand corner. For a particular bond, the polarities 

may be obtained from the atom populations in the bond PLMO by 

allocating +1.0e nuclear charge from each bonded atom (as in the 

bond moment calculations. Appendix I). The 2s AO in all the 

population tables is the STO and is hence not orthogonal to the Is 

STO. This means that these populations are not exactly applicable 

to the tables of PLMOs in Chapters 4 and 5 where the Schmidt- 

orthogonalised 2s°^ AO was used. However the difference is not 

great, and since only the gross features are to be noted, the
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distinction is not important.

The results for HCN may be analysed: as follows. The inner 

shells, and k^, in Table 4.4 are the original CMOs obtained from 

Gaussian 70. They are composed almost exclusively of the Is AO 

of the appropriate atom. This is refiected by the Is AO populations 

in Table 8.1 being close to 2.0. This localisation of the inner 

shell CMOs was the reason these MOs were not included in the subse

quent localising process of the method. The very small values of 

Is AO coefficients and populations in the rest of the PLMOs shows 

how little this inner shell "core" has penetrated the valence region 

and supports the idea of core/valence separability (Section 4.7).

The nitrogen lone pair, X., ,  ̂ .^ N^ can be seen to be very largely
or2s in character but with a small contribution from the 2p AO 

which directs the electron density away from the rest of the 

molecule.

The carbon-hydrogen bond, u is polar in the sense C H*,

both from the size of the polarity parameters in the PLMO and also

from the population analysis. The actual values in the latter are

approximately + and - 0.15e and follows the usually expected

electronegativity properties of the atoms concerned. The carbon

hybrid in this PLMO is heavily hybridised with roughly equal
01?contributions from the 2s and 2p AOs, this is reflected by nearly

equal s and p AO populations on carbon (approximately 0.6 electrons).

The carbon hybrid in the C-N sigma bond, , is similarly
or ^hybridised with almost equal weights of 2s and 2p AOs. The nitrogen 

hybrid in this bond is very little hybridised however and is composed
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of a nearly pure nitrogen 2 p orbital with very small amounts of
/

2s°^ (though unusually of negative sign). This bond is also polar 

in the sense expected by electronegativity, C*N", but to a lesser 

extent than the C-H bond. The relevant electron charges here 

are approximately + 0 .1 .

The TT bonds between carbon and nitrogen are those CMOs 

found by Gaussian 70. From the orbital forms and the population 

analysis they can be seen to be slightly polar in the sense C^N".

A simple analysis of this kind can be applied to the PLMOs 

of the other molecules studied. This is carried out in the following 

subsections where only exceptions to the general pattern manifested 

in HCN will be dealt with in any detail.

8.2(b) CO

The PLMOs for CO may be seen in Table 5.11, Chapter 5. The 

population analysis results are in Table 8.2.

The CMO inner shells on carbon and oxygen, k^ and k^, are again

almost entirely made up of the relevant Is orbital. The valence

PLMOs can also be seen to contain very little Is contribution. The

lone pair on oxygen, X^, and the carbon lone pair, X^, both have
ora similar form. Each has a large 2s contribution and a smaller 

contribution from the 2p AO which directs the lone pair electron 

density away from the internuclear region. The polarity of the C-0 

sigma bond, from the polarity parameters and the populations

can be seen to be in the sense C^0~. The charges are approximately 

4  ̂0.35e from Table 8.2. The hybrids on carbon and oxygen that form 

this bond are approximately pure 2p atomic arbital. The ir orbitals 

are again the CMOs. Here however, by dividing the remaining
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unallocated nuclear charges on carbon and oxygen between the two 

TT orbitals, the populations show a polarity of C"0*. The charges 

are about + O.le.

8 .2 (c)

The PLMOs of are shown in Table 5.12/ the population 

analysis in Table 8.3.

As expected, the PLMOs and population analysis reflect the 

symmetry of the molecule. As already stated, the inner shell 

orbitals shown are in fact the renormalised sum and difference of the 

inner shell CMOs. This procedure has clearly localised the orbitals. 

The overall form of the PLMOs in this molecule is similar to that 

of CO with which it is isoelectronic. There is slight hybridisation 

in the lone pairs while the hybrids forming the sigma bond are 

almost pure 2 p in character.

8 .2 (d) HjO

Table 5.13 exhibits the PLMOs of H^O. The population analysis 

of this molecule is shown in Table 8.4.

The oxygen inner shell, k^, is almost solely composed of a

doubly occupied Is atomic orbital on oxygen. The two 0-H bonds

are equivalent, each being polar in the sense 0 The populations

on the atoms reveal this polarity to be approximately -0 .2 e on

oxygen and +0.2e on hydrogen in each bond. The oxygen hybrid has 
01?little 2 s contribution and is composed largely of the 2 p^ and 2 p^ 

AOs, the small 2s°^ coefficient is unusual however in being negative 

in sign. The relative sizes of the p orbital coefficients may be 

used to calculate at which angle in the xz plane the oxygen hybrids 

point. This is shown in Figure 8.1. It can be seen that the hybrids
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Figure 8.1 Direction of bonding hybrids of oxygen in water

H.

N

49
H.

------>  X
(N at origin

in xz plane)

fa)Figure 8.2 Direction of bonding hybrids of nitrogen in ammonia^

(a) in the xy plane of ammonia the angle between bonding hybrids 
is 1 2 0 °.
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point not at the hydrogen atoms but at an angle significantly

smaller than that formed by the internuclear lines. The bonds formed

from such hybrids are often termed "bent" bonds. Of the two oxygen

lone pairs, one lies in a doubly occupied 2 p^ orbital perpendicular

to the plane of the molecule, and the other is shown in Table 5.13.

This has only a small 2p coefficient which directs the electron

density away from the two hydrogen atoms.

8.2(e) NH_— o
The PLMOs are in Table 5.14 and the population numbers in 

Table 8.5.

The nitrogen inner shell, k^, is of the usual form and the 

nitrogen lone pair, again points away from the internuclear

region. The lone pair is slightly more hybridised than those 

seen before but the population analysis still attributes two-thirds 

of the electron charge to the 2s orbital. The three equivalent 

N-H bonds are polar, each roughly having charges of rO.15e and 

+0*15e on nitrogen and hydrogen respectively. As in water the 

bonding nitrogen hybrids do not point directly at the hydrogen 

atoms but form an angle smaller than that formed by the 

internuclear lines. The directions are shown in Figure 8.2. In the xy 

plane the hybrids form an angle of 1 2 0 °, identical to that of the 

molecular geometry.

8 .2 (f) CH^

The PLMOs for this last molecule are in Table 5.15 and the 

population analysis is in Table 8 .6 .

The high symmetry of methane helps to fix the transformation 

of the CMOS needed in the localising method and also ensures that 

the carbon hybrids point directly towards the hydrogen atoms. The
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four equivalent bonds shown in Table 5.15 are each slightly polar, 

with carbon proving the more electronegative element. The bond 

contributions at carbon are heavily hybridised and are in fact quite
3

close to the classical sp hybrids.

8.2(g) Summary

For the molecules described above, the following summary may 

be made.

Inner shells - the inner shells of all the molecules were well 

localised onto the relevant-atomic centre(s). The seperation of 

the core and valence regions as manifested in the sizes of the 

Is AO coefficients was almost complete.

Valence sigma bonds and lone pairs - these are summarised in terms 

of normalised hybrids in Figure 8 .3. The arrows point in the 

direction of the hybrids; a single headed arrow represents a bonding 

hybrid, a double headed arrow represents a lone pair. The numbers
OTin the figure are the percentage 2 s or 2 p content of the hybrids 

and are defined in the footnote of the figure.

From the figure it will be noticed that the lone pairs are all 

largely 2s°^ in character with between 7% and 30% 2p character. The 

nitrogen lone pair in "ammonia is significantly more hybridised than 

all the other lone pairs. The bonding hybrids are of two kinds.

The "internal" atoms exhibit a high degree of hybridisation (carbon 

hybrids in HCN and methane) while "end" atoms (all the other bonding 

hybrids) have between 97 and 100% p character, i.e. use almost pure 

p AOs for bonding.

The polarities of all the sigma bonds studied were found to be 

in the sense expected on electronegativity grounds. "Bent" bonds
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the % 2p character is 100 (c + d  + e ) -  written 97p for example 
the % Is character is negligable.



156.

were found in water and ammonia.

TT orbitals - noteworthy in the forms of these MOs and also revealed 

by the population analysis were the polarities, -rr̂p in CO and 

in. HCN were both less polar than the corresponding sigma bonds.

was polar in the same sense as the sigma bond (C^N”) while 

TTpp was the reverse (C 0^).

8.3 PLMO OVERLAP INTEGRALS

The absolute values of the non-orthogonality integrals between 

the PLMOs for the example molecules have already been shown in 

Tables 4.7, 4.8, 4.9 and 5.16 to 5.20 along with a total measure 

of their non-orthogonality, A. The main features of these 

tables will be highlighted here. A discussion of their significance 

will be left to the next section.

For the sigma PLMOs of HCN, Tables 4.7, 4.8, and 4.9, all the 

overlap integrals are smaller than about 0.03 except for that between 

the two bonds which is 0.1. The A value, 0.03, shows that overall 

the PLMOs are not far from orthogonal.

Tables 5,16 (CO) and 5.17 (N^) are similar in appearance and 

may be taken together. As in HCN, all the integrals are below 

about 0.03 in value except one in each case. This is the overlap 

between the lone pairs on different centres which is 0.14 in CO 

and 0.15 in- N^. In both molecules the lone pairs are each almost 

exactly orthogonal to the sigma bond. In both molecules the value 

of A is 0.05 which is low.

The figures for water and ammonia (Table 5,18 and 5.19 

respectively) may also be taken as a pair. The only overlaps greater 

than 0.03 in each case are those between the bonds which are 0.13 in
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water and 0.15 in ammonia. As before, the lone pairs have only 

small overlap integrals with the bonds.

Finally, in methane (Table 5.20) the non-orthogonality of the 

bonds is again clear. The resulting six overlap integrals pushes up 

A to 0.1, larger than that for the other molecules.

The main observations on the tables may be summarised as 

follows. The overlap integrals between the inner shells and valence 

shell PLMOs are always very small, and remain so when the inner shells 

are truncated (Table 4.9). The tt orbitals are orthogonal to the 

sigma MOs by symmetry. Among the sigma PLMOs, the overlap integrals 

between two or more bonds or, in CO and N^, between two lone pairs on 

different atoms, are not negligible and are found to lie between ,

0.1 and 0,15. Lone pairs are found to be very nearly orthogonal 

to adjoining bonds however. A rough guide to the general magnitude 

of the overlaps. A, is usually small. Four of the molecules have 

values of the order of 0.05 for A, which rises to 0.08 in ammonia and 

0 . 1 0  in methane as the number of overlapping bonds increases.

8 .4 DISCUSSION AND COMPARISON WITH OTHER WORK 

8.4(a) Overall Significance of PLMO Results

The general forms, of the PLMOs, the bond polarities and the 

electron populations are attractively self-consistent. The overall 

level of hybridisation is low, especially in the bonding hybrids of 

"end" atoms, and is only extensive for carbon when this is an "internal" 

atom. The bond polarities found can be matched with the relative 

electronegativities of the atoms concerned. The only variance with 

normal valence ideas occurs in the bonding hybrids of nitrogen in 

HCN and oxygen in water where negative hybrids^^^ are utilised. In 

both cases the negative 2s°^ coefficient is small (-0.05 on N and 

-0 . 1 0  on 0 ) so that the almost pure 2 p bonding is affected only to a 

small extent.
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The justification of chemical valence ideas by the results of 

the PLMO method is not exceptional or novel. All the LMO methods 

described in Chapter 2 achieve to a greater or lesser extent such a 

bridge between classical chemical ideas of valence and quantum 

mechanics. In particular, the results of the early work of 

P e t e r s ^ s h o w  a clear resemblance to the overall orbital forms 

found here. The PLMOs however are without delocalised "tails" so 

that the concepts of two-centre bonds and one-centre lone pairs 

apply exactly. Once again, it should be emphasised that the PLMOs 

are not constrained to be orthogonal and are expressed in terms of 

HAOs which are not orthogonal among themselves on an atom.

The descriptions of the example molecules offered by the PLMOs are 

instructive in themselves, but a better understanding of these 

descriptions may be sought by a comparison to the results of other 

LMO methods. In particular the effect of the lack of orthogonality 

requirements in the PLMOs may be gauged by comparing the results 

with other LMO methods that have orthogonality restrictions of 

one sort or another.

8,4(b) Comparison of PLMOs to LMOs Obtained by Other Methods

8.4(b) fi) Forms ~of LMOs

The PLMOs and corresponding LMOs obtained by the methods of 

Magnasco G Perico,^^t/^^^ Polak^^^'^^^ and Roby^^^ are shown in 

Tables 8.7 to 8.12.

In these tables the LMOs of the other authors have been 

expressed in the same format, co-ordinate system and STO basis 

set as the PLMOs (except for the 2s AO in Polak's work - see 

below). When equivalent LMOs occur (e.g. in HgO) only one / 

example is shown.
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It is generally accepted that the main relocalisation
Q'7 _ o r  Y 1 7 9

LMO methods of Edmiston § Ruedenberg, Boys ' Von

NiesseR^ and Magnasco § Perico yield similar

The orthogonal LMOs obtained by Magnasco § Perico (M § P) by their 

"uniform localisation" criterion are therefore taken as an example 

of these methods. The results of M G P are chosen because all the 

molecules investigated by the PLMO method were also studied 

by M G P in a minimal STO basis while maintaining sigma-pi 

separability. For ease of comparison the M § P LMOs are shown with 

the 2s AO Schmidt-orthogonalised to the Is AO in each case.

The most obvious aspect of the orthogonal M § P LMOs shown 

in the tables is that they are not perfectly localised. There are 

non-negligible orbital "tails" on secondary centres in every molecule. 

In the bond LMOs in water (Table 8.10) the secondary AO coefficients 

get as large as 0.2. The bond LMOs of M ̂  P usually have similar 

polarity parameters to those of the PLMOs, but the hybridisations in 

the HAOs are generally quite different. The amount of 

hybridisation in the M § P results is usually higher than in the 

PLMOs. This is true in all the lone pairs and also in all the bonding 

hybrids except those on carbon in HCN and CH^ (Tables 8.7 and 8.12)

where hybridisation is also marked for the PLMOs.
1?6 1Polak * obtains non-orthogonal "strictly localised orbitals" 

(SLOs) having contributions from one or two centres only that ^

represent sigma lone pairs and bonds. The AO coefficients of the 

directed hybrids and the polarity parameters in the bonds are 

optimised so as to give the largest possible projection onto the 

Hartree-Fock manifold. For a comparison with other LMOs however.
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two points should be noted. Firstly the Is and 2s STOs in Polak’s
255work have been symmetrically orthogonalised and not Schmidt- 

orthogonal ised. Since this procedure leads to well localised

the inner shells are represented by the resulting pure Is 

AOs arrd the valence hybrids contain only 2s and 2p AOs. Secondly, 

the hybrids on each atomic centre are constrained to be mutually 

orthogonal. The difference to the PLMO method contained in the 

first point is not expected to invalidate a comparison, since the 

penetration of Is AO into the valence PLMOs was very low (Section 

8.2). The second point may be utilised when contrasting the LMO 

results to gauge the effect of hybrid orthogonality.

The SLOs of HCN, H^O, NH^ and CH^ are shown in the Tables. A 

pattern does seem to emerge in those four examples available for 

comparison. It appears that while the polarities of the bond orbitals 

are similar, the hybridisation in the SLOs is often intermediate 

in character between the M § P LMOs and the PLMOs. Furthermore, 

it may be seen that a higher level of hybridisation than in the 

PLMOs, is imposed on the hybrids in the SLOs by virtue of their 

orthogonality at each atom. For example, in HCN (Table 8.7) the 

nitrogen lone pair SLO is little hybridised and is similar to the 

PLMO. In order to maintain hybrid orthogonality however, the bonding 

nitrogen hybrid in the SLO contains more 2s character than the 

corresponding PLMO hybrid, though not as much as the M § P LMO.

(The hybrids on carbon in HCN have roughly equal 2s and 2p coeffic

ients in the LMOs of all three methods). An analogous situation 

occurs in H^O (Table 8.10) where the lone pair SLO closely resembles 

the PLMO but to satisfy hybrid orthogonality, the bonding oxygen 

hybrid in the SLO contains a larger 2s coefficient than occurs in
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the equivalent PLMO. In ammonia (Table 8.11) the extent of 

hybridisation in the SLOs of both the bonds and the lone pair (which 

does not apparently point exactly along the z axis) lies between 

that shown by the M S P  LMOs and the PLMOs. In methane (Table 8.12) 

Polak's carbon hybrids are classically sp^ hybridised which corres

ponds to a slightly smaller 2 s content than is found from the other 

two methods.

For carbon monoxide., non-orthogonal LMOs in a minimal STO

basis have also been obtained by a projection operator technique 
132by Roby. These LMOs in Table 8 . 8  are shown with the 2s AO Schmidt- 

orthogonalised to the Is STO.* In this method the HAOs on each atom 

are not restricted to be mutually orthogonal. IVhen Roby generates 

LMOs he searches for vectors in the occupied MO manifold having 

maximum projection onto the relevant one or two-centre subspaces.

For CO he finds that the resulting inner shell and lone pair LMOs 

have complete projection on their particular atomic subspaces 

and therefore have no "tails". The CO bond occupies the complete MO 

manifold already. Thus Roby finds by his method what is revealed at 

least for the valence PLMOs in this work. That is, in CO (and

it is possible to generate completely localised MOs without 

tails in the CMO manifold (i.e. at the canonical energy) providing 

LMO and HAO orthogonality is not imposed.

It is not surprising then that the LMOs of Roby in Table 8 . 8  

show a very close resemblance to the corresponding PLMOs. In fact 

the differences in the AO coefficients and polarity parameters are

* The LMOs in Table 7 of reference 132 are not shown in terms of a 
Schmidt-orthogonalised 2s STO despite a reference in the text 
to that effect. This may be seen most easily by calculating the 
self-overlap integrals of the carbon and oxygen lone pairs from 
reference 132.



168.

only generally manifest in the third decimal place.

In order to be able to gauge the effect of orthogonality 

requirements in these molecules, the values of the overlap integrals 

between valence HAOs are required. Absolute values for the overlap 

integrals between normalised valence HAOs on the same atom for the 

example molecules are shown in Table 8.13. Overlaps are exhibited 

for the hybrids in the PLMOs, the M § P LMOs and the LMOs of Roby.

All such values are zero for the SLOs of Polak, The overlaps found 

in the PLMOs are all significantly greater than those in the M S P

LMOs, except in methane where both sets of values are very small and

in the bonding hybrids of water where the M & P HAOs have a large 

overlap. In fact, apart from the water molecule, the hybrids found 

by M G P on an atom are very nearly mutually orthogonal. The 

overlaps in CO found by Roby are almost indentical with the PLMO results 

as is expected from the closeness of the orbital forms.

8.4(b)(ii) Summary

From the discussion above it does seem that the orthogonality 

properties of the LMOs or HAOs do influence the LCAO form of the 

LMOs of the different methods. However, the effect of such mathematical 

constraints cannot be understood independently of the particular 

LMO method in question, rather, the orthogonality properties 

satisfied by LMOs or HAOs, and the way, in turn, that these con

straints effect the orbital forms, are dependent on the way the LMOs

are generated. The above remarks and discussion may be systematised 

therefore as follows.

The PLMOs and the LMOs of Roby show a similarity of form: 

non-orthogonal LMOs without "tails" are composed of non-orthogonal.
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TABLE 8.13 ABSOLUTE VALUES OF OVERLAP INTEGRALS BETWEEN NORMALISED 
VALENCE HAOs ON THE SAME ATOM FOR THE EXAMPLE MOLECULES

Molecule Integral
This
Work M  ̂p(c) Roby(^)

HCN

^*CCH)/hc(N)^

0.3679
0.1031

0.0090
0.0058

CO 0.3133 0.0090 0.3096

<^c/hocc)>
0.2411 0.0018 0.2498

' ^ 2

0.2601 0.0043

« 2 ° ‘̂ V ’̂ OCH^)^ 0.2837
0 . 2 2 1 2

0 . 1 0 1 0

0.2934

^ V ’V(Hj)^ 0.2119 0.0765

%Ch^)'^\ch 2 )^ 0.1793 0.0064

0.0370 0.0463

Ca) Xjj - lone pair HAO on atom )C.

^X(Y) - bonding HAO on atom X, pointing to atom Y.

(b) For equivalent overlap integrals in N^, H^O, NH^ and CH^ 
only one example is shown.

(c) For references see Tables 8.7 to 8.12.
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little hybridised HAOs with appreciable overlap integrals.

(A similar level of hybridisation and hybrid overlap is shown in the

orthogonal LMOs of Peters.

Polak obtains non-orthogonal SLOs without "tails" (with a

corresponding sacrifice in the accuracy of the molecular wave-

function) but imposes hybrid orthogonality at each atom, which forces

greater hybridisation in some or all HAOs at that centre. (In fact

removing such orthogonality constraints leads to a more accurate

wavefunction but this yields HAOs in water with an overlap integral 
127as high as 0.7. )

In the M § P method (and in the other transformation methods

of Edmiston § Ruedenberg and Boys) the LMO orthogonality imposed

also yields very nearly orthogonal HAOs (in contrast to Peters

method^^^'^^^, leading to orbital "tails" and a degree of hybridisation

even greater than that of Polak. Even when the LMO orthogonality

requirement is relaxed in these transformation methods, the LMO
192forms are hardly altered and the LMO overlaps remain very 

small.189.192

The "condition of the atom in the molecule" JSection 3.2) 

revealed by the PLMO method can hence be understood in terms of 

the mathematical freedom allowed the PLMOs. The resulting condition 

consists of a significant amount of non-orthogonality among the 

HAOs (Table 8.13) and a corresponding low level of hybridisation in 

all but "internal" carbon hybrids.

8.4(b) (iii) "Bent" bonds

The bonding hybrids in the PLMOs of water and ammonia were 

found not to point directly along the 0-H or N-H internuclear lines
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(Figures 8.1 and 8.2). Such "bent" bonds were discussed in Section 

3.2 where it was concluded that the orthogonality properties of hybrids 

at an atomic centre seem to have little clear correlation with the 

appearance of "bent" bonds. This conclusion is borne out by 

Table 8.14 where the angles between bonding hybrids in water and 

ammonia are shown for some LMO methods. In all cases except one,

the angles between hybrids are smaller than the angle between the

corresponding internuclear axes.

This result is expected, and simply reflects the fact that in 

order to maintain molecular stability, electronic charge has to be 

accumulated in the binding regions in water and ammonia which lie

between the nuclei. In a theoretical treatment of bonding in the

water molecule, Bader^^^ suggests that in order to concentrate 

the maximum possible electronic charge in the binding region (and to 

place as little charge as possible in the strongly antibinding 

region) each bonding hybrid at oxygen should be directed about 15 

or 2 0  degrees inside the internuclear axis (giving an overall 

hybrid angle of about 65-75 degrees) and that the oxygen sigma 

lone pair should be almost pure 2s AO in character. These properties 

are clearly exhibited'by the PLMOs.

8.4(c) Hybridisation Trends

As well as a description of individual molecules, chemistry 

is also concerned with the search for similarities and trends in 

"related" molecules. In this respect trends along groups or periods 

of the periodic table are often considered. If a LMO description 

of such a series of molecules is to truly be in chemical terms 

such trends should be apparent in the LMO-LCAO forms and in particular
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TABLE 8.14 "BENT BONDS" IN WATER AND AMMONIA FROM DIFFERENT 
LMO METHODS

Angle between 
bonding hybrids Orthogonality Properties

Author H^O NH 3 LMOs HAOs

Duncan (1957)^^^ - 94° Orthog. Non-orthog.

Peters (1963) 69° 83° Orthog. Non-orthog.

Edmiston § 
Rudenberg(1966) 90° 105° Orthog. Near-orthog.

Magnasco § 
Perico (1968) 95° - Orthog. Non-orthog.

Magnasco § ^-c 
Perico (1968) - 113° -Orthog. Near-orthog.

Petke § 
Whitten (1969) 95“ 1 0 2 °

Non-
Orthog. Orthog.

(1970.72)126,128 91° 97° ■
Non-
Orthog. Orthog.

Von Niessen 
(1973) 98

This work

93°

78°

1 0 0 °

82°

Orthog.

Non-
Orthog.

Near-orthog.

Non-orthog.

Angle between
internuclear
lines

1D4.5° 107°

(a) A general guide to the size of the overlap integrals between 
the LMOs and between the HAOs in the different methods:

"Orthog." - Integrals are zero

"Near-Orthog." - Integrals about 0.05 or less

"Non-Orthog." - Integrals about 0.1 or more.
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in the bond polarities, electron populations and HAO hybridisations. 

For the limited number of molecules tackled in this work, trends 

may be noted in the bonding and non-bonding hybrids found for the 

series carbon, nitrogen and oxygen. The PLMOs for the ten-electron 

hybrids methane, ammonia and water; and for the fourteen-electron 

diatomics CO and are to be considered. The relevant PLMOs, HAOs 

and populations are reproduced in Tables 8.15, 8.16 and 8.17.

The data for the bonds in CH^, NH^ and H^O (Table 8.15), shows

a gradation in going along the row of the periodic table. The

weight of hydrogen in the bonds is approximately the same in all

three cases but the weight of central atom, and hence bond polarity,

increases from carbon to oxygen. This is also shown by the atomic

populations. Hybridisation is only really marked for carbon in CH^

where the hybrids have 27% 2s°^ character. For nitrogen in ammonia

this figure is 3% and for oxygen in water, one per cent. The carbon

atom in methane is sp^*^^ hybridised, close to the classical sp^,

while for nitrogen and oxygen in the other molecules it is the lone

pairs in each case (Tables 8.10 and 8.11) and not the bonds that 
orexploit the 2s AO.

The lone pairs in. CO and (Table 8.16) are also predominantly 

2s°^ AO, but a gradual decrease in the slight 2p admixture in going 

from carbon to oxygen is also evident. This trend has its reflection 

in the hybrids found in the bonds in these molecules (Table 8.17) 

where the large 2 p content increases slightly from carbon to oxygen.

The above trends may be summarised by noting that in going from

carbon to oxygen, the lone pairs contain less and less 2 p character 

and the bonding hybrids less and less 2s°^ character. This gradation 

across the periodic table in bond polarities and atomic hybridisation
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is familiar. The level of hybridisation is usually expected^^^'^^^

to be greater for elements on the left of the first row of the

periodic table in view of the trend in the relative seperation
258of 2s and 2p energy levels. Such trends are noted in HAOs

132having appreciable non-orthogonality by Roby in CO and by

Peters^^^'^^^ in all the example hybrids of Tables 8.15, 8.16 and 8.17

and also in the diatomic hydrides of the 1st row.

A different method for systeraatising the different degrees of

hybridisation in simple molecules has been introduced by Edmiston 
84§ Ruedenberg. To each atom in a molecule is assigned a value of

"Population Ratio" which is defined as "the ratio obtained by dividing

the total number of bonding electrons of the neutral atom in the

particular valence situation by the total number of its lone pair

electrons," This definition has more recently been slightly
259modified by Aufderheide so that the ratio ranges from 0 to 1 

rather than 0 to infinity. Using this method,based on an earlier 

analysis of Ruedenberg et ai^260,261 the Population Ratio (PR) 

increases, the s character of the bonding hybrids at an atom and the

p character of lone pair hybrids at an atom should also increase.

The reverse trends should be observed as PR decreases along a series 

of atoms in molecules. To adequately explain the observed hybrid

isations by PR however, a description in terms of mutually orthogonal 

(or nearly orthogonal) HAOs at each centre is necessary. In this way,
QH QC QO

trends exhibited by the LMOs of Edmiston & Ruedenberg Boys

and Von Niessen^ and by the exactly orthogonal HAOs of Ruedenberg, 

AufderheidelGl'182,259 Rives § Weinhold^^^ are those

expected from the PR of the atom in the molecule.
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The Population Ratio of the 1st row atoms decreases going from 

left to right across the periodic table in methane, ammonia and 

water and also in the series of diatomic hydrides LiH to FH; hence 

the same trends are observed in these molecules by the PLMOs and the 

LMOs of Peters^^^*^^^ as are shown by the methods involving 

orthogonal HAOs, In CO and N 2  however, the PR of each atom increases 

from carbon to oxygen and therefore the trends in the PLMOs, and the 

LMOs of Peters^^^ and Roby^^^ are completely the reverse in both the

bonding and lone pair hybrids, of those found by Magnasco & Perico
84 188(Tables 8.8 and 8.9), Edmiston. and Ruedenberg and Rives § Weinhold

etc.

Although the appearance of a greater degree of hybridisation at

oxygen than at carbon in CO might seem somewhat surprising in classical

t e r m s , t h e  PR method clearly has a firm foundation. The method

has been used extensively to order and explain the degree of
259hybridisation in many simple polyatomic molecules. Rather than 

describing different patterns of electronic organisation, the results 

of the PLMO method, and the Edmiston § Ruedenberg method for example, 

may be explained by the differences in the orthogonality properties 

of the constituent HAOs. It was noted in section 8.4(b) 

that the occurence of nearly orthogonal hybrids in the Edmiston § 

Ruedenberg and similar transformation methods is a particular property 

of these methods. That these properties of HAOs are necessary for 

a description using the PR formalism is supported by the fact that in 

the Magnasco  ̂Perico LMOs for CH^, NH^ and H^O (Tables 8.12, 8.11 

and 8.10) the gradation in hybridisation in the bonds is the reverse 

of that expected by the PR calculation. It is in ' just this series 

of molecules that the HAOs depart further and further from orthog

onality (Table 8.13).



178.

The trends in bond polarity (which are shared by all the other 

LMO methods mentioned) and in hybridisation found in the PLMOs in 

Tables 8.15, 8,16 and 8.17, hence reinforce the self-consistency 

already noted in the PLMO results. This pattern is also clearly de

pendent on the "condition of the atom in the molecule" revealed by 

the PLMO method and in particular the non-orthogonality of the 

constituent HAOs.

8.4(d) PLMO Overlap Integrals

The non-orthogonality of the PLMOs and constituent HAOs has 

been referred to repeatedly in the present section. In fact, unlike 

the hybrid AOs, the PLMOs are not far from orthogonal, as is 

demonstrated by the small value of A for each molecule (Section 8.3(b)) 

This was one of the desired properties of the PLMOs (Section 1.3(b)).

No linear dependence problems were therefore encountered with the 

PLMOs of any molecule, though some high energy structures failed 

to yield an energy minimum for this reason. The effect of this near 

orthogonality on the decomposition of the total dipole moment into 

PLMO contributions is shown in the next chapter.

It was mentioned in Chapter one that the inherent (irremovable) 

delocalisation of electrons in a molecule means that restricting LMOs 

to be perfectly localised usually leads to LMO non-orthogonality and/ 

or introduces inaccuracies into the molecular wavefunction. The 

PLMO overlap integrals are therefore related to the delocalisation 

of electrons out of two-centre bonds and one-centre lone pairs.

This may be seen from the fact that the large intra-atomic HAO 

overlap integrals (Table 8.13) bear no relationship to the overlap 

integrals between valence PLMOs formed from such hybrids (Tables



179.

4.7, 5.16 to 5.20). The valence PLMO overlaps are hence connected

to the small electron delocalisations - in the orthogonal MO Hartree-

Fock manifold expressed as orbital "tails" - residing on secondary

atomic centres that have been deleted from orthogonal LMOs, in

the PLMO method at the truncation stage (Section 4.3(d)). Non-

negligible overlap integrals therefore arise between PLMOs in which

one LMO contained an orbital "tail" on an atom contained in the

other LMO before truncation. Similarly, near zero PLMO overlap

integrals arise from LMOs that had little or no "tails" on relevant

secondary atomic centres before truncation. In this way, the

characteristics of the wavefunctions composed of the orthogonally
Rtransformed MOs of the example molecules, ^ , before removal of 

LMO "tails", can be gauged from the final PLMO overlap integrals.

The values of the PLMO overlaps in the example molecules were 

discussed in Section 8.3. There it was noted that the non-negligible 

overlap integrals occurred between two or more adjacent bonds, or, 

in CO and , between the two lone pairs on different atoms. The 

lone pairs in all the molecules were found to be very nearly orthogonal 

to adjoining bonds however.

Thus, apart from the diatomic molecules in which only the lone 

pairs are able to délocalisé, a characteristic pattern emerges from 

the above description. This is one in which the untruncated lone 

pair LMOs have little or no tails, but the bond LMOs have non- 

negligible tails. Therefore it seems that the orthogonally transformed 

LMO wavefunction is in a form most energetically near to that of one 

and two^centre PLMOs when the lone pairs are almost completely 

localised onto their atomic centre but the bond LMOs are delocalised.
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This result is in contrast to the type of wavefunction that

emerges from the orthogonal transformation methods of Edmiston G

Ruedenberg and Boys,^^’^^ where in general the lone pair LMOs, for

all but halogen atoms, are more delocalised than the bond 
TMHc 43,76,93,263-265  ̂ . .LMOs. Such a result is in agreement however, with

the wavefunctions generated by the method of P e t e r s ^ ^ ^ * a n d  by 

other intuitive "cut-off" criteria (see Section 2.2(c)) where the 

localisation transformation of the CMOs is usually fixed by the 

requirement that the lone pair LMOs have no delocalisation tails.

In view of this contrast, it is not surprising that in the molecules 

studied, the overall PLMO forms are similar to the primary contri

butions to Peters orthogonal LMOs but are at variance to the other 

transformation methods (Sections 8.4(b) and 8.4(c)).

In CO and the link between PLMO overlaps, electron 

delocalisation and "cut-off" localising criteria is even more apparent. 

In these molecules, truncation of the molecular wavefunction to 

give the PLMOs does not lead to an energy sacrifice and hence all 

the inherent electron delocalisation at the Hartree-Fock level is 

expressed in the PLMO overlap integrals. For CO, Peters 

demon s t r a t e s t h a t  it is possible to apply orthogonal transformations 

to the CMOs such that a lone pair LMO at one centre is completely 

localised, but that it is necessary for the lone pair LMO at the 

other centre to be delocalised. There are hence two possible sets 

of LMOs corresponding to the two possible "cut-off" criteria.

As mentioned by Peters^^^, shown by Roby^^^ and demonstrated by the 

PLMOs for both CO and N^; it is only necessary to allow the lone 

pair LMOs to become non-orthogonal to each other and the délocal

isation tails may be deleted completely with no sacrifice in the 

accuracy of the wavefunction.
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The description of the electronic structure of the example 

molecules by a molecular wavefunction constructed from PLMOs 

hence depends in a methodical way on the non-orthogonality of the 

PLMOs.
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CHAPTER NINE 

BOND AND LONE PAIR MOMENTS

The electric dipole moments of the molecules studied and the 

division of the totals into PLMO bond and lone pair contributions 

were set out in Chapter 6. Although these bond and lone pair moments 

are not directly observable they can nevertheless serve as an 

aid in the understanding of the structure of molecules in chemistry 

where the properties of any given molecule are invariably broken 

down into the properties of its constituent parts. Specific 

examples of the usefulness of these moments were given in Chapter 6. 

In this chapter the results will be analysed and interpreted and 

some conclusions drawn.

9.1 TOTAL DIPOLE MOMENTS AND PLMO COMPONENTS

The total dipole moments calculated from the canonical wave

function of Gaussian 70, from the PLMO wavefunction, and the 
9 3 5

experimental" values are shown in Table 9.1. The dipoles of

nitrogen and methane are necessarily zero by symmetry.

Calculations carried out in a minimal Slater AO basis

(including the STO-kG type basis) are generally expected to under-
266estimate the total dipole. This characteristic is revealed in

HCN and H^O. In NH^ the dipole is overestimated however and in CO

the small experimental moment is quite well reproduced. Ammonia

proves to be a genuine exception to the general rule since a moment

close to that found from Gaussian 70 was obtained in the original
223STO-kG work of Hehre, Stewart and Pople. The agreement between 

theory and experiment in CO, whilst pleasing, is probably fortuitous. 

Truncation of the LMOs to give the PLMOs leads to an increase in the
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total dipole in all cases except CO, where the CMC and PLMO 

wavefunctions are identical. The difference between the CMO and 

PLMO dipole moments is only substantial in ammonia which also had 

the largest energy sacrifice in the PLMO wavefunction (Chapter 7).

Why an increase in total dipole moment is obtained when the LMOs

are truncated is not clear, although the same effect is found with
72 43Boys LMOs in a series of carbocyclic compounds and also in the

70 83—85individual Edmiston G Ruedenberg LMOs ' in a series of
1 93molecules.

. It is shown in Appendix I (and Chapter 6) that for non- 

orthogonal LMOs the electronic contribution to the total dipole 

moment is made up of "diagonal" terms arising from each LMO, and 

"off-diagonal" terms arising from the overlap between LMOs (equation 

6.3). In Chapter 1 it was hoped that the off-diagonal terms would 

be relatively small so that the physical interpretation of the PLMO 

moments, after re-allocation of the off-diagonal terms, would be 

straightforward. The figures to show that this is indeed the case 

are exhibited in Tables 9.2 and 9.3. In Table 9.2 the contributions 

to the total dipole moments, collated from the tables of Chapter 6, 

are featured. It can be seen firstly that the total dipole is 

usually the difference of two much larger numbers, the electronic 

and nuclear components. Secondly, the electronic component is almost 

entirely composed of the diagonal terms, the off-diagonal terms 

generally being small by comparison. However, by collecting the 

PLMO terms of Chapter 6 together in Table 9.2 some cancellation of 

terms of opposite sign has occurred. This is most obvious in 

CH^ where the origin of co-ordinates is at the centre of symmetry.
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For this reason, and to show the relative sizes of diagonal and 

off-diagonal contributions more clearly, the absolute sum of these 

terms together with their ratio expressed as a percentage are 

produced in Table 9.3. Only in ammonia do the off-diagonal terms 

contribute 10% of the diagonal terms. In water and methane the 

figure is about 5%, and in the other molecules it is less than 

1%. Clearly, it is generally safe to assign the calculated PLMO 

moments to specific bonds and lone pairs.

The individual bond and lone pair moments found in Chapter 6 

have been shown in diagrammatic form in Figures 6.1 to 6.6. Several 

points can be made about them.. Taking the lone pair moments first 

it can be seen that they are generally larger than the bond moments. 

The lone pair moments lie in the range 1.60D (oxygen in H^O) to 

3.S5D (nitrogen in NH^) which is comparable to the largest total 

dipole moment of these molecules. The lone pair moments are due 

entirely to the hybridisation dipole resulting from the admixture 

of 2p atomic orbital with the 2s°^ AO which directs the electron 

density in the lone pair away from the rest of the molecule in each 

case. The nature of the atom bearing a lone pair sensibly effects 

the value of the dipole moment. In going from carbon to nitrogen 

to oxygen we see a gradual reduction in the moment in line with the 

electronegativity of the atom concerned. The values are 3.25D 

(X in CO); 2.64D (X^ in N^) and 2.38D (X^ in HCN); 1.81D (Xq in CO) 

and 1.60D (X^ in HgO). The nitrogen lone pair in ammonia is 

anomalous, but this high value of 3.55D is also found by other 

workers (see next subsection) and reflects the basic nature of 

ammonia.
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Referring now to the sigma bond moments, these vary from 

0.24D in water) to 2.01D in methane). As expected

there is no general connection between the bond moments and the 

bond polarities (populations) already noted. Bond moments opposite 

in direction to that expected from the PLMO polarities are found in 

UcH (HCN, CH^) and (NH^) for example. This is due to the fact 

that each bond moment has contributions from the hybridisation 

dipoles of the two atoms joined by the bond and also a homopolar 

dipole arising from non-symmetric overlap of the two atomic hybrids, 

besides the charge dipole due to the slight positive and negative 

charges on the bonding atoms. As already mentioned, the bond 

moments in water and ammonia do not point directly along the inter- 

nuclear lines but diverge by 20° and 23° respectively. This reflects 

the fact that the centroid of electron charge is forced off the 

internuclear line by the "bent" bonds found in these molecules.

The TT bond moments in HCN and CO are of roughly the same 

magnitude but are of opposite direction relative to the carbon atoms. 

This is in line with the tt atomic charges (Tables 8.1 and 8.2) 

although the unusual partitioning of nuclear change in should 

be noted.

The total molecular dipole has thus been broken down into bond 

and lone pair contributions insofar as these are adequately represented 

by the non-orthogonal PLMOs. Since these moments may not be directly 

compared to experimental quantities the acceptability of these 

results will be measured by a comparison to the bond and lone pair 

moments obtained by other workers.
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9.2 COMPARISON TO OTHER AUTHORS

Bond and lone pair moments from LMOs are reported in the

literature for many molecules using many different LMO methods.

An alternative approach is to calculate bond moments from dipole

moment derivatives with respect to symmetry co-ordinates obtained
237-240from infra-red spectroscopic data. " The results of the two

approaches are not generally closely matched since while an LMO

method assigns static moments to distinct bonds and lone pairs,

bond moments from infra-red intensity data contain factors arising

from the mutual interaction of different bonds and lone pairs during 
271 2 75-277vibration. * Thus the PLMO moments must be compared to the

bond and lone pair moments of other LMO methods.

The bond and lone pair moments obtained for all the molecules 

studied (except N_ for which no comparison can be found) in this
V ^

work and selected other works are shown in Tables 9.4 to 9.8, The 

inner shell contributions, which are in any case normally very small, 

have been neglected in all instances. The sign convention for the 

moments are the same as in Chapter 6 and, where necessary, the 

conventions used in other works have been changed accordingly.

For ease of comparison only the z component of the bond moments are 

shown in water and ammonia. No allowance has been made for different 

molecular geometries employed by various authors but the difference 

is small and certainly not large enough to effect any conclusions 

drawn.

A large variety of levels of approximation, basis functions and 

localisation criteria are exhibited in the tables and it is clear 

from only a brief study that the PLMO moments found' in, Chapter 6
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are quite comparable to those obtained by other methods, despite 

a large variation in the total molecular dipole moment predicted in 

many cases.

Probably the largest discrepancy in the LMO moments occurs 

in the carbon-nitrogen bonds in HCN (Table 9.4). The value obtained 

for the sigma and pi PLMO moments combined is clearly greater than 

that found by Gey et al, and also greater than that found in the 

combined "banana" bonds of the Edmiston § Ruedenberg procedure.

This is compensated for in that procedure by the higher moment found 

in the nitrogen lone pair in line with the higher degree of hybrid

isation already noted in the Edmiston § Ruedenberg method (Chapter 8) 

so that, in the truncated case at least, a similar total dipole is 

obtained. The moments are similar in all examples.

In CO (Table 9.5) the Edmiston § Ruedenberg criterion again 

gives larger lone pair moments but here the carbon-oxygen "banana" 

bonds yield a moment similar in magnitude to the PLMOs. The 

two alternative localisation "routes" employed by Peters both yield 

lone pair moments more in line with the PLMOs although varies 

widely giving different totals.

In Table 9.6 to aid comparison to the PLMOs the combined 

lone pair moments are shown in cases where two equivalent oxygen 

lone pairs are generated by the particular method used. Despite 

the large variation in total dipole moment for water (1.4-2.60) two 

distinct values for the lone pair moment are discernable in the 

various methods. The first value is in the range 1.6-1.70 is 

accompanied by a z component in the bonds of around zero, and 

apparently occurs in methods where the localising criterion is such 

that the lone pairs have no "tails". The second value is in the
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range 2.9-3.4D, is accompanied by a bond component in the range 

0.3-0.7D and seems to occur in instances where the localisation 

criterion either generates slightly delocalised lone pairs and/or 

demands that the oxygen hybrids point directly along the 0-H 

internuclear line. This is neatly exemplified by the results from 

the two different criteria employed by Peters. The distinction 

between the molecular wavefunctions generated on the one hand 

both by the PLMO method and by "cut-off" methods requiring that lone 

pairs have no "tails", and on the other hand by transformation 

methods yielding delocalised lone pairs has already been noted 

in Section 8.4(d). The different values of the total lone pair 

moment in these cases could be seen as evidence of this.

Similar features are not displayed in the examples of ammonia 

however (Table 9.7). In fact the degree of agreement in the LMO 

moments across the different methods is quite remarkable. The 

LMO moment ranges are: (except Smit § Van Dam) 3.3-3.9D and D̂ ^̂

0.2-0.6D. The PLMO moments lie near the middle of the range in 

each case.

The total dipole moment of methane (Table 9.8) is always

zero by symmetry, and there is again a large measure of agreement

among the different LMO methods on the value of the bond moment.

The values in Table 9.8 lie in the range 1.7-2.ID which clearly

includes the PLMO value of 2.0D. This value of the C-H bond moment

is found in LMO analyses of many different molcules and basis 
272sets but is in disagreement with a value of about 0.4D obtained 

in early work by Coulson^^ and in much spectroscopic and empirical 

work. This disparity is well known and has been discussed in the 

l i t e r a t u r e . A p a r t  from the inaccurate early wavefunction



197.

of Coulson, the difference between LMO C-H moments and those obtained 

from other methods is probably one of definition.

To summarise then, the conclusion that emerges from the present 

study of bond and lone pair LMO moments is that perfectly sensible 

figures are produced for these moments by the non-orthogonal PLMOs,

The figures are directly comparable to those generated by a variety 

of other methods and criteria, and show sensible trends from atom 

to atom in the lone pairs. Further, identical lone pairs and bonds 

in different molecules have similar moments (see next chapter).

A criticism sometimes levelled against the use of non-orthogonal LMOs 

is that molecular one-electron properties can no longer be expressed 

as a sum of LMO contributions. This is, of course, strictly true, 

but it has been shown in this work that by partitioning the electronic 

moment arising from the overlap of LMOs - the off-diagonal terms - 

amongst the contributions arising from the LMOs themselves - the 

diagonal terms - sensible moments, attributable to the bonds and lone 

pairs and summing to the total dipole moment, result.
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CHAPTER TEN 

TRANSFERABILITY

10.1 INTRODUCTION

In the present work, as in most such work, the ability to 

transfer bond or lone pair properties between "similar chemical 

environments" in different, but related, molecules, is one of the 

proposed aims. The idea of transferability was introduced in Chapter 

One, and it was mentioned there that, based on an original suggestion 

by A d a m s , s o m e  authors seem to feel that completely localised and 

non-orthogonal LMOs are best suited for possible transfer between 

m o l e c u l e s . S o m e  problems of definition arise at this point 

however.

Most workers expect that transfer will succeed only between

"similar chemical environments", although quite what these are is

rarely precisely defined. A common example that is used is the transfer

of C-C and C-H sigma bonds between small and larger molecules up the

parrafin series of hydrocarbons, although in this context it may be
230mentioned that Trindle  ̂Sinanoglu conclude that -CHF^ and -CH^ 

count as different environments. In view of this situation, and because 

only a few molecules have been analysed in this work, it is not 

possible to test the potential transferability of the PLMOs (or to 

test the accuracy of Adams suggestions) anything other than super

ficially. A more detailed test must wait upon the results from more, 

and larger, molecules. In this short chapter, therefore, the 

close similarity of only a few selected PLMOs in different molecules 

will be demonstrated. •
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10.2 TRANSFERABILITY IN THE PLMOs

The transferability of inner shell CMOs is well k n o w n , a n d  

is demonstrated for the CMOs of Gaussian 70, after truncation and 

renormalisation, in Table 10.1. Such "automatic" localisation of the 

inner shell CMOs is the reason why they were not included in the 

localisation procedure of Chapter 4.

The oxygen and nitrogen lone pair PLMOs in different molecules 

are compared in Table 10.2. The lone pair on the carbon atom in CO 

is also included for completeness. It can be seen that the PLMO coeff

icients are very similar for the nitrogen lone pairs in N 2  and HCN, 

and for the oxygen lone pairs in CO and H^O. The nitrogen lone pair
98in ammonia is anomalous as has been found in numerous other studies.

This similarity in the lone pairs is evident, despite the fact that

in such small molecules the rest of the molecule would be expected

to have a marked characteristic influence in each case, and hence the

molecular environments might not have been thought similar. (It should

be remembered that in H^O a second oxygen lone pair lies in a pure

2py AO perpendicular to the first. Only by distinguishing between

the oxygen lone pairs in this way is a comparison to the sigma lone

pair in CO possible). The lone pair moments in Table 10.2 are not

transferable to the same extent and it is noticeable how sensitive

the moments are to the degree of hybridisation. Indeed the dependence

of the moment on the percentage of 2s character in all the molecules

(except ammonia) is almost linear. This is to be expected over this
278short range of high 2s character.

The same high degree of equivalence in the LMO coefficients is 

found in the principal contributions to the Magnasco § Perico nitrogen 

lone pairs in N^ and HCN (Tables 8.9 and 8.7) but not in the oxygen 

lone pairs of CO and water (Tables 8.8 and 8.10), In all cases the
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delocalised "tails" of course complicate matters. Furthermore, In a
98wide study of various relocalisation transforming criteria, the

orthogonal lone pair LMOs of these molecules, as revealed in 2s

and 2p type populations, are not as transferable as the lone pair

PLMOs. To this limited extent, this work may therefore be counted
46in support of Adams original suggestion.

It is not possible to discuss the transferability of bond PLMOs in

the framework of the present investigation because there is only

one example to hand, the C-H bond in HCN and CH^. Even here the LMO

forms are not expected to be the same since classically the hybrids

at carbon are sp^ in methane and sp in HCN. This is indeed revealed

by the PLMOs in Table 10.3. All that can be said is that the bond

polarity is the same in both cases (C H^) and that the bond moment is

of the same magnitude and in the same sense (C^H ). A similar
93state of affairs is found elsewhere.

A final attempt to find transferable entities from molecule to 

molecule is expressed in Table 10.4 where the bonding hybrids on nitrogen 

in and HCN are compared. The sigma bonding is to roughly equivalent 

atoms (carbon and nitrogen) and underlies a it bond or bonds. The 

closeness of the hybrid forms would be remarkable were it not for
OX*the negative hybridisation in HCN. The 2s AO coefficient is very 

small however and. should not influence the almost pure 2p bonding in 

these hybrids.

T n  summary, where comparisons have been possible in these few 

molecules - noticeably in the oxygen and nitrogen lone pairs and also 

in the bonding nitrogen hybrids in HCN and N^ - the PLMO coefficients 

and to a lesser extent PLMO moments, have been found transferable
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between molecules. The fact that the PLMOs have no delocalised 

"tails" and are hence non-orthogonal, is felt to enhance their potential 

transferability. Before any firm conclusions can be drawn however 

it is clearly necessary for further work to be done on other 

molecules with the transferability question in mind.
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PART D

THE BEHAVIOUR OF THE PLMO WAVEFUNCTION
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CHAPTER ELEVEN *

BOND AND ANGLE DEFORMATION IN WATER

11.1 INTRODUCTION

All the results quoted and conclusions drawn so far in this work 

have applied to the experimental equilibrium geometry of each 

molecule. (Always bearing in mind of course, the slight variation in 

experimental geometries found from different sources). If such 

results and conclusions are to be of use in explaining the electronic 

structure of the isolated or unperturbed molecule, such an investig

ation is all that is required. However, the analysis of molecular 

wavefunctions for other geometries besides the experimental one can 

lead to information, not only about the characteristics of the 

wavefunction itself, but also about the behaviour of a molecule during 

vibration. Such an approach is reported in this short chapter 

which describes the study of the Gaussian 70 CMO and PLMO wavefunctions 

at various geometries of the water molecule. The investigation was 

undertaken with the following points in mind.

Firstly, quantum mechanical calculations on molecules at the 

Hartree-Fock level usually produce an absolute energy minimum at a 

different molecular geometry to that observed experimentally. It 

would therefore be of interest to compare the energy minimum geometries 

of the CMO wavefunction and PLMO wavefunction to the equilibrium 

geometry and to each other. The difference in energy between the two 

wavefunctions at these non-equilibrium geometries may further reveal 

the accuracy of the previous calculations.

Secondly, the appropriateness of the PLMOs as a description of 

the electronic structure of a molecule may be tested by a) examining 

the force constants obtained through simulating bond stretching and

* The computations in this chapter were carried out as part of a one- 
term research project by an undergraduate student, Mark J. Foster, 
under the author's supervision.
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f
bending from the PLMO wavefunction, and comparing these to those 

obtained from the CMO wavefunction and from experiment, and b) noting 

the change in the form of the PLMOs during the stretch of a bond.

If the PLMO description is indeed useful, it is expected that the 

LCAO form of a bond that is extended would change, whilst the PLMOs 

representing the static parts of the molecule would remain 

approximately constant.

11.2 ENERGY MINIMA AND FORCE CONSTANTS 

11.2(a) Energy Minima

The positions and values of the energy minima for the CMO and 

PLMO wavefunctions (ST0-3G) are shown in Table 11,1. The 

corresponding values at the experimental equilibrium geometry are 

also shown. It can be seen that the position of energy minimum for 

the CMOS and the PLMOs are quite close. The difference in the bond 

length is only 0.004X and the difference in the bond angle is 0.6°. 

There is also a close similarity in the total energy values and in 

their difference. These geometries differ from the experimental 

geometry by a larger amount although the total energy values here 

are only 0.003/4 H above those of the minima. The energy surface as 

a function of geometry for these wavefunctions therefore, is 

apparently quite "shallow" in this area. It is also noticeable that 

at the absolute energy minima, the delocalisation energy has been 

reduced by about 20% of its value at the experimental geometry.

This is quite a substantial reduction considering how small, in 

relative terms, the delocalisation energy is.

It may be concluded from these few observations that the 

canonical wavefunction and the PLMO wavefunction seem to have a
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similar behaviour as a function of molecular geometry, at least near 

their energy minima. Further, in view of the reduction in 

delocalisation energy already noted, it might be hoped that with a 

more accurate canonical wavefunction, having its potential minimum 

nearer to the experimental geometry, the creation of the corres

ponding PLMO wavefunction will entail a smaller loss in accuracy 

than is required at the equilibrium geometry here.

11.2(b) Force Constants

Force constants for bond and angle deformation in water can 

be obtained by calculating the total energy of the molecule at 

various geometries. Bond force constants were found by keeping the 

HOH angle and one bond length fixed, while the second bond length 

was varied either side of a likely energy minimum value. The

total energy was calculated at each geometry from the CMO wavefunction

and, assuming that the resulting potential function had the form:

"t o t = Eo + i  %R (11-11

where

Eq is the energy minimum

ÔR is the displacement from the bond length at the energy minimum
-1k^ is the bond force constant (Nm ).

The energy data created was fitted to a quadratic curve by a standard

quadratic plotter computer program. This revealed the energy minimum 

Eq , the corresponding value of the variable bond length, and 

hence the force constant k^. This procedure was repeated for the 

energy values calculated from the PLMO wavefunction in each case, 

and also for different values of the fixed bond length.
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The force constant for angle deformation was obtained in an 

analogous fashion, from the CMO and PLMO wavefunctions, by keeping 

both OH bond lengths fixed at the appropriate absolute energy 

minimum values, R^, and varying the bond angle. In this case, the 

assumed potential function;

^TOT ^0 "2 ^0 (11-2)

where

Ô0 is the change in angle from its value at the energy minimum
-2k is the angular force constant (Jrad )

can be rewritten in the form:

k. 2
EfOT Eg + “ 2 (11.3)

e
which becomes:

^TOT = EO + I  kj (Re 48)^ (H-4)

where

k is a modified force constant and now has the more manageable0
—  1 —2 units of Nm rad

The results of this process are displayed in Table 11.2.

Calculations 1 to 3 yielded a bond force constant for both the CMO

and PLMO wavefunctions while calculations 4 and 5 provided an angular 

force constant from the PLMO and CMO wavefunctions respectively.

279
The experimental bond and angular force constants obtained from

-1
Infra Red spectra, assuming a valence force field, are 845 Nm

-1 -2 and 76.1 Nm rad
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Of the bond force constant calculations it is clear that the

calculation 2 results are furthest from those obtained experimentally.

Infact calculation 2 is the least reliable since none of the three

variable bond lengths are very close to the energy minimum values

(Table 11.1) and hence fitting the three points to a quadratic curve

is likely to give a less accurate result than those of calculations

1 and 3. These two latter calculations correspond to quite

different fixed bond lengths. The results from 1 deviate by almost

12% from the experimental value, and those from 3 by almost 16%.•

This is not as bad. as would seem at first sight when it is remembered

how crude the method is, and that we are dealing with Hartree-Fock

wavefunction-s that are in any case only normally within approximately
28010% of the experimental values. The agreement between the results 

from the CMO and PLMO wavefunctions are close in each case. A 

similar situation exists in calculations 4 and 5 where the angular 

force constants obtained from the canonical and PLMO wavefunctions 

are very close and are within about 13% of the experimental value.

From these results it can be seen once again that the wavefunction 

constructed from the non-orthogonal PLMOs has a satisfactory behaviour 

as the molecular geometry is varied and is close to that shown by the 

canonical wavefunction. It remains to be seen whether the PLMOs 

themselves reveal a behaviour appropriate to localised bonds and lone 

pairs - which the CMOs obviously cannot - when the molecule geometry 

is distorted.

11.3 CHANGES IN PLMOs

The LCAO form of the PLMOs - with the Slater 2s. AO orthogonalised 

to the Is AO as usual - and the bond and lone pair moments corres

ponding to different geometries are shown in Tables 11.3 and 11.4.
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In Table 11.3 the stretch of one 0-H bond is simulated as in 

calculation 3 above. In Table 11.4 the HOH bond angle is varied as 

in calculation 4. Changes in the total molecular dipole moment 

are shown in Tables 11.5 and 11.6. In Table 11.6 the angle 

between bonding hybrids is also shown.

In Table 11.3 it is which encompasses the proton whose
i

position is changed. It is within this PLMO then, where the most

variation is expected. This is indeed the case. That the LCAO

coefficients in y change more rapidly than those in y^„ can
1 OH2

most clearly be seen in the oxygen 2p and hydrogen Is coefficients.

On stretching the bond y^^ there is a shift of negative charge

to the hydrogen atom and away from oxygen in that PLMO. This is

manifest in the size of the Is^ coefficient and the oxygen hybrid

polarity parameter. This shift is not reflected in a change in the

total bond moment which remains constant. It is probable therefore

that the electron charge follows the moving proton so as to keep

the centroids of positive and negative charge in the same relative

positions in the bond. Although of course, the presence of atomic

dipoles do complicate the analysis. During the stretch the

form of y remains roughly constant although the Is coefficient ÜH2  H
increases very slightly as does the oxygen hybrid polarity parameter. 

This effect is permissable due to the slight change in the form of 

the hybrids on oxygen. The oxygen lone pair becomes slightly less 

hybridised on increasing the O-H^distance which leads to a decrease 

in the lone pair moment. Since the lone pair is the greatest 

contributor to the total dipole moment this too decreases (Table 11.5)
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TABLE 11.5 MOLECULAR DIPOLE MOMENT DURING STRETCH OF 0-H^ BOND
IN H^O (ST0-3G BASIS)

Molecular Dipole Moment 
z comp. X comp.

0.950 -1.718' 0.026
0.993 -1.692 -
1.050 -1.650 -0.038

(a) 0 = 104.52°, R = 0.993Â throughout. R^ = R(O-H^), RCO-H^), 0 =Z.HOH.
(b) Sign convention as in Chapter 6.

TABLE 11.6 MOLECULAR DIPOLE MOMENT AND DIRECTION OF BONDING HYBRIDS 
DURING ANGLE DEFORMATION IN H^O (ST0-5G BASIS)

Molecular Dipole Moment 
z comp. X comp.

Angle Between 
Bonding Hybrids

98.5° -1.718 - 80.1°
100.0° -1.711 - 79.6°
101.5° -1.705 - 79.1°

(a) “ ^2 ~ 0*995A throughout. R^
(b) Sign convention as in Chapter 6.

= R(O-H^), R^ = RfO-Hg), 6 =Z-HOH.
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In Tables 11.4 and 11.6 the effect of opening up the HOH 

angle may be described as follows. The hybridisation in the lone 

pair increases very slightly giving a very small increase in the
I

lone pair moment. The polarity of the 0-H bonds remains almost con

stant (a tiny shift to oxygen may be detected) although the z 

component of the associated bond moment decreases while the x 

component increases as expected. The angle formed by the oxygen 

hybrids varies slightly in the opposite sense to the internuclear 

angle. The total molecular dipole becomes smaller as would be expected 

from the movement of the bonds, although this decrease is not 

so large as it would otherwise be due to the associated increase 

in the lone pair moment.

This description of "bending" in water hence produces a 

sensible outcome as did the previous description of bond stretching.

The two 0-H bonds are largely unaffected by angle deformation

(even in their orientation) and the lone pair is only little altered 
281in appearance. What slight change there is in the hybrid angle

at oxygen, is in the opposite sense to the change in the internuclear

angle, and has been noted in a minimal basis in other investig- 

ations.,256.282,283

To a first degree then, the proposed aim of this section

has been attained. That is, it was required to show that the localised 

description of the water molecule was still possible at molecular 

geometries other than the experimental one, and that only PLMOs des

cribing bonds and lone pairs on atoms that actually change their 

relative positions should vary in form. This latter conclusion 

is not completely true of course, since changes ingeometry in one 

part of a small molecule such as water must have an affect on other



218.

parts. What other changes in PLMO forms were found have been relatively 

small, though not negligible. (The contribution of the lone pair 

moment to the total dipole on angle deformation is rarely taken into 

account for example). It can further be concluded from the discussion 

of the previous section that in attaining a description of the water 

molecule in terms of Perfectly Localised MOs, little sacrifice need be 

made in the accuracy or behaviour of thewavefunction at non

equilibrium geometries.
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CHAPTER TWELVE 

SUMMARY AND CONCLUSIONS

The objectives of the present work were outlined in Chapter One 

(Section 1.3). It was stated there that a preliminary investigation 

of a new LMO method was to be presented and applied to some simple 

example molecules. Drawing from these examples it was attempted "to 

investigate the extent to which the electronic structure of simple 

molecules - obtained via the one-determinant Hartree-Fock MO-LCAO 

scheme in a minimal AO basis - may be expressed in terms of two- 

centre bond and one-centre lone pair PLMOs".

In this chapter the overall success of the new LMO method (the 

PLMO method) will be assessed and therefore the extent to which the 

one and two-centre PLMOs represent the electronic structure of the 

example molecules can be gauged. Arising from a comparison of the 

PLMO results to those of other LMO methods which has already been made, 

it will also be possible to draw wider conclusions about the way certain 

LMO methods describe electronic structure.

12,1 THE PLMO METHOD 

12.1(a) General Points

The simple chemical view of the electronic description of molecules 

is that they consist of two-centre bonds and one-centre lone pairs.

Thus the rationale of the PLMO method is to impose this description 

on a previously determined one-determinant MO wavefunction and to 

minimise the energy sacrificed in doing so. This is done by searching 

the function space generated by a truncation of orthogonally 

transformed CMOs. The PLMO method is hence a relocalisation LMO method
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(Chapter 2) and it is closely related to the LMO methods that orthogonally

transform a starting set of CMOs depending on other 

criteria.70-72' 83-85, 96-98, 104-113, 124,125.

The present method is a simple, easily understandable procedure 

that yields unique PLMOs (except where there is more than one bond 

between a pair of atoms or more than one lone pair on an atom).

However, certain constraints are required in order for the method 

(at least in its current form) to function satisfactorily and to yield 

unique sigma LMOs, These are the separation of core and valence regions 

and the separation of sigma and pi electrons. Both of these constraints 

have been discussed in section 4.7.

12.1(b) Desired Properties

Some desired properties of the localised orbitals were described 

in Chapter One (subsection 1.3(b)) as an aid in judging the overall 

success of the method. It is useful to go through them here one by '

one.

12.1(b)(i) Small energy sacrifice

The energy sacrificed in forming the PLMOs from the CMO wave

function i.e. the delocalisation energy of the PLMOs, has been com- 

paired to that sacrificed in other LMO methods in Chapter 7. Since the 

PLMOs are generated by minimising the energy sacrificed in deleting 

the "tails" of an orthogonal transformation of the CMOs. This sac

rifice is obviously less than that when deleting the "tails" of any 

other set of orthogonal LMOs generated by this procedure. The energy 

sacrifice in the PLMOs is found in Chapter 7 to be at least comparable 

to that in many direct or hybrid LMO methods (though the use of 

different AO. basis sets by different workers does cloud the picture
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somewhat). Hence it seems that producing one and two-centre LMOs 

by deleting the inherent delocalisations in orthogonal LMOs 

constituting a previously determined Hartree-Fock MO wavefunction is 

at least justifiable energetically as starting with one and two-centre 

LMOs and variationally optimising the wavefunction constructed from 

them. This is especially true in the examples of and CO.

The size of the energy sacrifice in absolute terms may be judged 

by comparing the delocalisation energy per bond in H^O and CH^ with 

the values of the dissociation energies of these bonds (Chapter 7).

In both cases the delocalisation energy is under 2%% of the dissociation 

energy. Furthermore, the energy sacrifice in water, 0.007H, is of 

the same order as the energetic penalty to the PLMO wavefunction in 

using the experimental equilibrium geometry rather than the energy 

minimum geometry, 0.004H (Chapter 11).

From these comparisons it can be seen that the energy sacrifice 

necessary in the PLMO method is indeed small.

12.1(b)(ii) Near orthogonality

The PLMOs were expected to be non-orthogonal but for practical 

computational reasons it was hoped they would not be too far from 

orthogonal (Chapter One). The method itself should have ensured this 

to a certain extent, since obtaining the PLMOs by deleting the 

energetically least significant "tails" from orthogonal LMOs was 

unlikely to move the PLMOs far away from orthogonality. This was 

found to be the case.

The overall measure of the non-orthogonality of the PLMOs in the 

trial molecules. A, was small (Chapters 4 and 5) and the calculation 

of PLMO moments and electronic populations by the non-orthogonal



223.

formalisms of Appendix I led to sensible results. In particular, 

it was demonstrated in Chapter 9 that the "diagonal" terms of the 

dipole moment expression arising from the individual PLMOs were far 

greater than the "off-diagonal" terms arising from the overlap of the 

PLMOs.

While the general near-orthogonality of the PLMOs may be 

demonstrated, it is also true that the individual values of the 

non-.negligible PLMO overlap integrals give an indication of the 

kind of LMO wavefunction selected by the PLMO procedure (see below).

12.1(b)(iii) Sensible bond and lone pair moments

The theoretical difficulties of breaking down one-electron 

molecular properties into non-orthogonal LMO contributions wars'mentioned 

in Chapter one. That in practice no difficulty was encountered with 

the PLMOs in this respect has been explained in the previous subsection.

Essentially through reasons of the definition of bond and lone 

pair moments in different instances (Chapter 9), it is only possible 

to test the "sensibleness" of the PLMO moments by a comparison to 

the results of other LMO work. In Chapter 9 it was shown that for 

all the trial molecules where results were available for comparison, 

the PLMO moments were indeed compatible with those from a wide variety 

of different LMO methods. IVhere differences did occur with certain 

of the methods they were consistent with the general differences in 

the degree of hybridisation found by the different procedures. Clearly 

the PLMO method may usefully be used to assign local moments to bonds 

and lone pairs.

12.1(b)(iv) Close connection to classical valence concepts

The. bridge between classical chemical ideas and quantum mechanics 

which any LMO method is meant to provide must clearly be justified by
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its ability to reproduce the normal chemical descriptions of bonding 

and valence. For chemists this is the most important test that may 

be applied to such methods.

The PLMOs in the example molecules, expressed in terms of normalised 

HAOs on each atom, were found to have a consistent make-up. The 

descriptions have been summarised in subsection 8.2(g) and in Figure 

8,3, and clearly reflect a normal valence description in which the 

lone pairs are largely 2s°^ in character and the bonding HAOs, except 

for "internal" carbon hybrids, largely 2p in character. The carbon 

atom in HCN is sp hybridised and in methane is nearly sp^ hybridised. 

Furthermore, the hybridisation trends in the PLMOs were found to 

straightforwardly reflect the nature of the atom upon which the HAOs 

reside.

Unlike the classical hybrids of Slater^^^ and Pauling^^^*^^^ 

however, the HAOs in the PLMOs are non-orthogonal. In fact, the 

"condition of the atom in the molecule" that emerges from the results 

includes substantial non-orthogonality among the hybrids on each atom 

(Table 8.13). It is this which allows the HAOs to be very little 

hybridised, unlike some other LMO methods which either impose hybrid 

orthogonality or in which hybrid near-orthogonality arises automatically 

(subsection 8..4(b)). Thus despite the non-orthogonality of the 

HAOs in the PLMO method (or perhaps more accurately, because of it) 

the valence description of the molecules studied is clearly compatible 

with the usual chemists description of these molecules.

12.1(b)(v) Transferability

The potential transferability of the PLMOs between "similar 

chemical environments" cannot really be gauged satisfactorily by the
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present study because of the small number of examples to hand.

However, the few entities that could be compared in the trial 

molecules, notably the lone pairs on nitrogen and oxygen, were 

found to be roughly transferable. No clear conclusion about the 

possible advantages in this respect of non-orthogonal and completely 

localised LMOs can be made with any confidence, though some comparisons 

made to the literature would seem to support that view (see Chapter 10). 

It can at least be said of the present study that there were no instances 

in the trial molecules where similarities were expected but not 

found.

12.1(c) Conclusions

Judged by the extent to which the present method matched the 

above requirements, it can be said to have been successful. Also, 

the behaviour of the PLMO wavefunction, and the forms of the PLMOs them

selves, at non-experimental geometries of the water molecule has been 

shown to be completely satisfactory (Chapter 11). It may be 

concluded therefore that a single determinant of one and two-centre 

PLMOs in a minimal AO basis offers a very good approximation to the 

electronic structure of the example molecules. The small sacrifice 

in accuracy necessary to completely localise the LMOs in this way 

is certainly not large enough to outweigh the advantages of dealing 

with one and two-centre PLMOs, to which the bonds and lone pairs of 

classical valence theory have exact application.

12.2 RELATED LMO METHODS

The substantial non-orthogonality of the HAOs in the PLMO 

method, and the resulting low level of hybridisation, is not shown 

by the HAOs in all other LMO methods. Methods in which the HAOs are
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substantially non-orthogonal include those of Peters^^^ and
132Roby, while examples of methods which have orthogonal or near- 

orthogonal hybrids at each atom are those of Edmiston $

Ruedenberg,^^*^^ ^^'Boys^^'^^ and Aufderheide^^^'^^^ (section 8.4).

It was found, when comparing the hybridisation trends of these two 

groups of methods, that a further contrast was apparent (subsection 

8.4(c)). Those methods using orthogonal or near-orthogonal hybrids 

at each centre showed trends that could be rationalised using the 

Population Ratio (PR) f o r m a l i s m , w h i l e  in and CO the completely 

opposite trends were encountered in the PLMOs and in the other methods 

utilising substantially non-orthogonal HAOs.

Arising from the discussion of the sizes of the PLMO overlap 

integrals (subsection 8.4(d)) it is possible to understand the source 
of this dichotomy, at least in the transformation relocalisation LMO 

methods to which the PLMO method is closely related.

Because the PLMO overlap integrals are related to the "tails" 

of the orthogonal LMOs that were deleted during truncation, it can be 

said of the transformed LMOs that those representing lone pairs 

were almost completely localised onto their atomic centres while 

those representing bonds were more delocalised (subsection 8.4(d)). 

(Since the PLMOs are found at an energy minimum, the orthogonally 

transformed LMOs, from which the PLMOs are obtained, are most near 

energetically to one and two-centre LMOs in this state). The ortho

gonal transformation matrix fixed by the PLMO method that generates 

localised lone pair LMOs and delocalised bond LMOs is hence similar 

to those matrices selected by the methods of Peters^^^ and 

by other "cut-off" methods in which the criterion fixing the trans-
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formation is usually that lone pair LMOs have no "tails". From the 

examples discussed in this work, the attendant properties of the 

resulting LMOs are that the constituent HAOs are substantially non- 

orthogonal and the overall level of hybridisation is low.

Within the similar intrinsic transformation LMO methods of

Edmiston § Ruedenberg,^^'^^ ' Boys^^'^^ and Von Niessen^^

and in the population method of Magnasco + P e r i c o , t h e

orthogonal transformation of the CMOs is significantly different

from that selected above. In these methods the relative amounts

of delocalisation in the bonds and lone pairs is the reverse of that

in the PLMO method. It is found here that the lone pair LMOs (for

all except halogen atoms) are generally more delocalised than the 
bonds 43,76,93,263-265

The properties of the constituent HAOs in these 

cases consist of near-orthogonality at each centre and greater 

hybridisation than in the PLMOs (section 8.4).

These two alternative descriptions of the electronic structure 

of a molecule via LMOs are obviously equivalent (since both could 

be obtained from the same molecular wavefunction) and the one chosen 

would seem to be a matter of preference. In order to keep close to the 

chemical ideas of two-centre bonds and one-centre lone pairs however, 

the LMOs need to be completely localised. (These types are likely to 

be better suited for transfer between molecules for example).

Those-orthogonal LMOs most energetically near to one and two-centre LMOs 

are those with localised lone pairs. The one and two-centre LMOs 

themselves are the PLMOs, constructed for a number of molecules in 

this work.
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APPENDIX I 

BASIC THEORY

The approach taken in the main body of this work has been a 

chemical one, and in the text the equations have been kept to a 

minimum. The bulk of the mathematical development is therefore 

reproduced here in the first appendix.

Most of the equations used in the computations are present 

in Sections 1.4 to 1.7, but in order to lay the foundations for these 

and to introduce the MO method and the density matrix formalism, the 

earlier parts are necessary. Though these earlier sections repeat 

very basic theory that is available in many standard texts,they 

serve to define the notation in a methodical way and are therefore 

kept. Not in the readily available sources however, except in frag

mented form, is much of the development concerning non-orthogonal 

orbitals which is present throughout this appendix. This has. obvious 

application to the main body of this work.

The density matrix formalism has proved very helpful throughout

and the notation used in this respect, as in the rest of the appendix,
19is based to a large extent on McWeeny § Sutcliffe.

I.l. MOLECULAR WAVEFUNCTIONS

The properties of a molecular system in a stationary state 

consisting of a set of interacting electrons and nuclei may be 

determined in principle by solution of Schrodingers (time-independent) 

equation.^ If it is assumed that N electrons move in a field due to 

L stationary nuclei^^^ then Schrodingers equation takes the form 

(in atomic units)
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K(X^,X2,Xj ... Xĵ ) Y (X^.X^, ... X^) = E Y (X^.X^ ... X^) (I.l)

where

’^3 '** the Hamiltonian operator.

N  ̂ N N
H = E h(p) + 2  E E g(p,q) (1.2)

P=1 p=l q=l

where h(p) = ^rV(p) + V(p) (1.3)

is the one-electron Hamiltonian operator for electron p 

while

g(p,q) = (1.4)
pq

is the electrostatic interaction between electrons p and q.

h(p) consists of two parts: the kinetic energy operator which, 

in cartesian co-ordinates is

* -^2-' + -^2-) (1.5)
s  %  %

and the potential energy of electron p in the field of the fixed nuclei

L Z
V(P) = - H . (1.6)

a=l ap

The electronic wavefunction V(X^,X2  ... X^) describes the

electronic state of the molecule and is a function of the space-

spin co-ordinates of the N electrons.

If Y is normalised then we have

/

J Y*(X^ ... Xjj) Y (X^ ...Xjj) dx^ ... dXjj : (1.7)

2

y
|y(Xj ... Xĵ ) I dXj ... dXjj = 1
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Here, |Y(X^ ... X^)|^ is a probability density with the 

physical interpretation that

|y (X^ ... X_)1̂  dXdX_ ... dX^ = /probability of finding \ (1.8)
f  electrons 1, 2, ... N \
( simultaneously in space- j 
V spin elements j

\dX^dX^ ... dX^ y

Since electrons are indistinguishable, permutating any two electrons

should not affect the probability density |Y | ► This leads to the

requirement that the wavefunction is antisymmetric. This can be

formulated as

P(P,q) 't' (X^ ... X^) = -Y(Xj ...X^) (1.9)

where P(p,q) is a permutation operator which interchanges the co

ordinates of electrons p and q.

The electronic energy E in equation (I.l) is the energy of the 

N electrons moving in the field provided by the nuclei. Equation (I.l) 

is an eigenvalue equation and possesses acceptable solutions Y^ only 

for certain values of the eigenvalue E^. The values E^ are the quantised 

energies of the allowed states Ŷ, of the electronic system.

1.1(a) Method of Molecular Orbitals

The orbital approach to solutions of the many-electron Schrodinger 

equation is an attempt to construct a satisfactory wavefunction 

from a combination of functions each dependent upon the co-ordinates 

of one electron only. To do this we may associate with the N electrons, 

N wavefunctions ^2 each dependent upon the space-spin co

ordinates of one electron. These functions are called spin-orbitals.

A wavefunction constructed from spin-orbitals must satisfy the 

antisymmetry requirement (Equ. (1.9)) and this leads to a wavefunction
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of the form:

Y(X^ ... X^) = Z (Xj ... X^) (I.10)

where is a numerical coefficient and 0 ^ is an "antisymmetrised 

spin-orbital product" which is formed from a linear combination of 

all the possible permutations of the electron co-ordinates amongst 

the ordered set of N spin-orbitals ••• Yĝ - The sum in 

equation (1 .1 0 ) is over all distinct ordered configurations of 

spin-orbitals that may be selected from a complete set of spin-orbitals 

The definition of the "antisymmetrised spin-orbital product" 

is that of a determinant of the form:

(1.11)

■■■

285called a "Slater determinant". The wavefunction is hence expressed 

in equation (I.10) as a linear combination of determinants, each 

containing a different selection of spin-orbitals,

1.1(b) The One-Determinant Approximation

An exact expansion of a wavefunction in terms of Slater 

determinants (equation (I.10)) requires an infinite sum of such 

determinants. However, a good approximate wavefunction, based on an 

intelligent choice of spin-orbitals, may be constructed from only 

a small number of terms in the expansion. Indeed, the wavefunction



233.

may be approximated by a single determinant of N spin-orbitals 

(linearly independent but not necessarily orthogonal)

... =_bT *i(Xi) YgCX^) ... Yw(Xi) 

YiCXg) YzCXg) ...

(1.12)

This single determinant is most appropriate as a representation of the 

wavefunction describing a totally symmetric singlet ground state of 

a molecule ("closed shell" state). In this case we may express the 

wavefunction in terms of n (=N/2 ) doubly occupied "spatial-orbitals", 

or more simply "molecular orbitals". Here, we have separated the 

space and spin co-ordinates of each electron (neglecting spin-orbit 

interaction) and have associated with each molecular orbital (MO) 

two electrons, one spin up, one spin down.

Hence (X^) becomes 4^(r^) a (s^)

B (sp (1.13)

^ 3  exp (j)2 (r^) a (s^)

and so on.

The spin functions a(s) and 3(s) are assumed orthonormal. 

This may be written 

/
/

a(s) 3 (s) ds = Ôa3 (1.14)

where 6  has the properties:
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= 1 if a = B
(1.15)

= 0  if 0. 6

This means that integration of spin-orbitals will yield zero if they 

are of different spin, or the relevant integral over MOs if they 

are the same spin.

The single-determinant wavefunction of MOs has the property 

that it is invariant (besides a "phase-factor") to any linear 

transformation of the MOs.^^ This can be seen to arise from the 

property of a determinant that the multiple of any row (or column) 

may be added to, or subtracted from, any other row (or column) without 

changing the value of the determinant.

1.2 DENSITY MATRIX FORMALISM^

1.2(a) Definitions and Properties*

If 0  is a Hermitian operator representing a physical quantity, 

then the expecration value of 0  in state Y(X^ ... X^) is given by

<0 > - - ' V  0  V  ^ ^ 1  ••• (1.16)

when Y is normalised according to equation (1.7).

Now 0 may be written in the form

N . N N
0 = 0(0) + E 0(p) + Y  E E  0(p,q) + ... (1.17)

p=l p=l q=l
(p^q)

and also

* The symbols for 1st and 2nd order density functions 
and normalisation employed, are those of McWeeny. 5

Only when the functions are expanded in terms of MO or AO bases 
are the representatives called "matrices".



235.

<0 > - <0 Q> + <0^> + <02> + ... (I.IS)

where the terms are zero, one, two ... particle operators and

expectation values respectively, and are symmetrical in the indices

of the electrons.

Now, considering the one-electron term only we have

f  * N ,
<0 ^> = I Y ... X^) [ Z ' 0 (p)] YCXj ... Xĵ ) dX^ ... dXjj (1.19)

/ P = 1

from the symmetry of the electron co-ordinates this becomes

<0 -> = N
1 /

Y (X3  ... X p  [0(1)] Y(Xi ... X^) dXj ... dX^ (1.20)

The operator 0(1), which operates only on the factor following

it, may, nevertheless, be separated from the wavefunction product
*

by the following artifice. By changing the variable in Y to
J ^

X^ it becomes immune from the effect of 0(1), Equation (1.20) 

now becomes

< e p  = N I [0 (1 ) Ï (X^. Xg ... x%) Y(Xi ... Xĵ )] - ^dX^...dXj^
(1.21)

where X = X, after operating with 0 (1 ), but before completing the 
1 1

integration. This may be written

■ y .  . ■<0 > =
>  y

[0 (1 ) p p x p x p ]  , ; (1 .2 2 )
Xi=Xi 1

where

^l^^T^^l^ “ N Y (X^,X2  ... Xj^)Y(X^ ... X^) dX2 «..dX^ (1.23)

3,6
/

is called the 1 st order density function.

Similarly, for the two-electron terms in equations (1.17) and 

(1,18) we may write
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^®2^ ^ 2 j ̂ 0(1 ̂ 2) P2^^^1^2^^1^2^^X^=X^,X2=X2^^1^^2 (1.24)

where

PzCX^Xg/X^Xg) = N(N-l) j Ï (X^.X^.Xj ... X^) Y(Xj ... X^)dXj.. .dX̂ ^
(1.25)

3,6
J

is called the 2 nd order density function.
I

All one-electron properties may hence be described in terms of
>

p^(Xj^/X^) and all two-electron properties in terms of 

P2 (x’x’/XjXpt

If the operator in question is simply a multiplier, for example 

a function of cartesian co-ordinates, the distinction between primed 

and unprimed co-ordinates is no longer necessary since the order 

of operation does not matter. We may write:

p^(X^/xp = p^(X^/xp = p^(xp (1.26)

P2 (X|X2 /X^X2 ) = P2 (X^X2 /X^X2 ) = P2 (X^X2 ) (1.27)

2these "diagonal elements" may be interpreted as follows.

p (X )dX^ = ̂ Probability of finding any of the n'X 2 g'\
^electrons in space-spin element dX^ ) I • )

P2 (X,X2 )dX^dX2  = //probability of finding any 2 \  (1.29)
I of the N electrons simultaneously 1 in space-spin elements dX, and
V)̂2

Hence the expectation values of operators may be directly related 

to the electron distribution.

X^,X2  etc. on the left hand side of equations (1.23) and [1.25) 
refer to "points 1 and 2  and no longer specifically to the 
"co-ordinates of electrons 1 and 2 ".
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For many observables, spinless operators are used. The 

spinless counterparts of the density functions defined in equations 

(1.23) and (1.25) can be obtained by integrating over spins.

We obtain:

Pl(ri/ri> = J[pj(X^/X^)] 3 * 3  ds^ (1.30)

I »
^2^^1^2^^1^2^ -J  [p2(Xi%2/%i%2)] s^=s^,S2=S2^^1^^2 (1*31)

The "diagonal elements" of which may be interpreted in terms analogous 

to definitions (1.28) and (1.29). IVhen operators are spinless, 

the expressions for observables found above may simply be rewritten 

with p replaced by P and X replaced by r.

In the one-determinant approximation the 2nd order density 

function (and all higher order density functions) may be factorised 

in terms of the 1st order density function.^ We obtain

P2(x’ x ’ /X jX2 )  = Pj^cx’ / x p  PjCx’ /X^) -  P^cx’ /X^) P^cx’ / x p  (1 .32 )

This means that in this approximation the whole physical situation 

is determined by the fundamental invariant p^(X^/X^) the "Fock- 

Dirac density function^S4,286,287.

1.2(b) Expansion of Density Functions in Terms of an Orbital Basis

1.2(b)(i) Spin-orbital basis
;

Generally, p^(X^/X^) may be expanded in terms of an arbitrary 

basis of the N-particle wavefunction. For a one-determinant wave

function of spin-orbitals we have:

P^(x;/xp = (1-33)
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where the elements form a square Hermitian NXN matrix g_ which is the 

matrix representation of p^(X^/X^) in this basis.

For a non-orthogonal (but linearly independent) set of spin- 

orbitals, this expression may be found^ explicitly from equation (1.23) 

by replacing the determinant Y* by its leading diagonal and 

expanding Y by its cofactors and integrating the terms to get: 

i N N  ̂ , yk, z
PjCX^/Xj) = ^E^ (X^3 (1.34)

which is
N N

- 1.p (X /X ) = S Z Y (X )Y (X ) (V ") (1.35)
k=l £ » 1  ^

hence p^^ = (VT^) (1.36)

where is the inverse of V which is the (NXN) matrix of overlap 

integrals between spin-orbitals.

V£k =j *£ (%l) *k(%l) 4%1

For orthonormal spin-orbitals = (V ^)^^ = 5^^ (1.38)

and hence we obtain

, N * ,
p^(X^/xp = Z \  (X^) Y^(xp (1.39)

We may obtain the second order density function for the orthonormal 

case from equations(I.39) and(I.32):

2 [< (xp*;(x;)tt^(xp -

< ( x ’)*^(Xi)Y;(X>^(X 2 )] (1.40)
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1.2(b)(il) Doubly occupied MO basis

The first.order density function in a non-orthogonal MO basis 

may be obtained from equation (1.35) by integrating over spins.

, n n ,
P (r /r ) = 2  Z Z *f(r ) *.(r ) (S ) ' (1.41)
J- J- -L i=l j = l 1  -I J ^

where is the inverse of £  which is the (nxn) matrix of overlap 

integrals between MOs.

The expression in the case of orthonormal MOs follows since

we have

(1.42)

n
Pl(ti/ri) = 2 Z (j)f(r̂ ) Yĵ (r̂ ) (1.43)

i=l

Integrating equation (I..40) over spins gives 

, , n n * ,
PZ' 1 Z- 1 Z'

2(j)̂ (r̂ )<|)̂  (r̂ )<j)j (r2 )Y^(r2 )] (1.44)

where the second term occurs with reduced weight because- spin integration 

gives 0  or 1  depending on whether . and Y^ have like or unlike spins. 

From (1.43) and (1.44) we obtain

P2 (r^r2 /r^r2 ) = ~ I  ^l^^l/^2^^1^^2/^l^ (1.45)

1.2(b)(iii) Non-orthgonal atomic orbital basis

The N-particle wavefunction may be expanded further in a basis 

of m atomic orbitals

hence
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P j C V r p  = X X‘ Crp x^Crp (1.46)
m m
Z Z

y=l v=l

Each MO may be expressed as a linear combination of atomic orbitals 

(LCAO)

m
*i(ri) = : % i  Cl.47)

y=l

hence for orthonormal MOs we obtain from equations (1.43) and 

(1.47)

m m n
Pl(ri/ri) = Z Z ^2 Z c*^ c^^ | X^(^i) (1.48)

y=l v=l 1 = 1  J

and from equation (1.46) it can be seen that

n (1.49)
P = 2 z: c*. c .vy yi VI
where P is an element of the (mxm) matrix representation of P,vy 1 -
in the atomic orbital basis. From equations (1,46) and (1.45) we

can obtain an expression for P^ in this basis, we have:

^ 2  (’'1 V V 2 )
m m m m , ,

= 3  5 /  : Ppl[ X̂ Cr̂ ) x̂ Ciz) x̂ Cr,)
y = l v = l X = 1 0  = 1

- i x y r ’p x ^ C r p  X^Crz) X^Cr;)] (1.50)

1.3 ENERGY OF A CLOSED SHELL SYSTEM

The electronic energy of a system described by Y(X^ ... X^) 

is given by:

<E> =
y

Y(X^ ...X^)H Y(X^ ...X^) dX^ ... dX^ (1.51)

where the Hamiltonian H is defined by equations (1.2) to (1.6).

If the terms are grouped into one-electron and two-electron parts
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this expression may be written in terms of first order and second 

order density functions thus

<E> =J^[h(l) P^(r^/r^) ] , dr^ + ~j"g(l,2) P2 (^1 ^ 2 ) ^ ^ 1  ^ ^ 2  (1-32)
^l‘^l

<E> = Eone + ^two CI'53)

The primes in P^ have been dropped since g (1,2) is simply a function

of co-ordinates (— ^) but they have been retained in P.. since

the kinetic energy part of h(l) contains the differential operator

y.
The energy may be expressed in terms of doubly occupied ortho

normal MOs using equations (1.43) and (1.44): 

n
<E> = 2  Z <(j)./h/4. >

i=l 1 1
n n+ z E [2 <Y.Y./g/YiY;> Y,-> ] (1.54)i=l j=l 1  1  3 1 1  J J 1

where <(j,̂ /h/6 ĵ > h(l) dr^ (1 .5 5 )

and ' j *%(?!) 'f'i,(rj) g(l,2) $* (rg) if̂ jCrj) dr^ dr^

(1.56)

equation (1,54) is sometimes written:

n n n
<E> = 2 E h.. + E E [2J - K ] (1.57)

i=l i=l j=l 1 3

where is a "coulomb integral" and represents the interaction

between the charge distributions YJY^ and while is an

"exchange integral" and represents an interaction due to the

correlation between electrons of the same spin in different MOs.
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When the orthonormal MOs are expanded in an AO basis we 

obtain for the energy expression from equations (1.46), (1.50) and (1.52) 

m m

j .
 ̂ m m m m

^ 2  [ < W g / W

-  J <X^X^/ê/X-^X^>] C l . 5 8 )

where the notation of (1.55) and (1.56) is used with % replacing Y

I.4 SCF SOLUTIONS TO SCHRODINGERS EQUATION

1.4(a) Hartree-Fock MOs

Using the expression (1.57) for the energy of the system and

by applying the variational method, a set of differential equations for

the optimum forms of the orthogonal MOs that minimise the energy,
54 288 289may be obtained. These are called the Hartree-Fock equations: * *

lh(i) + S (2J. - K.)[ 4u(r ) = Z i=l,2, .. .n (1.59)
L j = i  J J J 1 J- j  = i  J 1

where J.<(,.(r̂ ) = [ (  ^(1,2) dr^j <(..Crp (1.60)

and Kj *^(r^) = f|'t'j (^2  ̂ gC^>2 ) drg 4y(r^) ' (1.61)

equation (1.59) may be abbreviated to: 

n
F Yi(r^) = E i = 1,2,...n

j = l

or in matrix notation:

(1.62)

F ^  = Y.. £  (1.63)

where  ̂ is a row vector of MOs.
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is a ( n x n )  Hermitian matrix of elements . Any set of 

orthonormal MOs satisfying the set of equations (1.62) are hence 

optimum MOs that minimise the energy.

All the possible sets of orthonormal MOs satisfying equation 

(1.62) are related to some fixed set  ̂by a general unitary trans

formation For example the set ^  is given by:

^  = Y.. (1.64)

A ^
since F is invariant to a unitary transformation,the new set (p 

still satisfy equation (1.63), the only difference being the matrix 

which is now and is given by:

£ = yf^. U (1.65)

This indeterminancy may be removed by choosing the set (|)̂ for 

which g  is diagonal. This set is called the canonical MOs (CMOs) 

and equation (1.62) becomes an eigenvalue equation:

F (J>i = i = 1,2 ... n (1.66)

these equations cannot be easily solved directly however except

in a one-centre problem.

1.4(b) LCAO-MO approximation

Solutions of the Hartree-Fock equations (1.66) may be obtained

by expanding each MO as a LCAO involving the constituent atoms 
290 291in the molecule. * Equation (1.47) may be expressed in 

matrix notation:

(j)̂ = X- £i (1-67)
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where _x is a row vector of AOs and c^ is a column vector of expansion 

coefficients.

Applying the calculus of variations to the energy expression 

(equation (1.58)) we obtain equations for the AO coefficients in the 

ith CMO.
m m

P = 1 . 2  ••• "> (1 -6 8 )

or
m

V  Cyi = 0 ; = 1.2 ... m (1.69)

where F is the matrix element of the Hartree-Fock Hamiltonian F yv
over AOs, and is given by:

m m
* y ,  3 '’cX ["XpXyg/XxX„>

A=1 a = l

- i  ^XyX^g/XxXy>] (1.70)

(notation as in equation (1.58)) 

and is the overlap integral:

“pv x;(fi) X^Crp dr^ (1.71)

In matrix notation (1.68) becomes

F c. = M c. (1.72)=  — 1  =  — 1  1

the values will be the n lowest roots of the corresponding secular 

equation:

If - e.Ml = 0  (1.73)

and for each root the coefficients can be obtained from 

substitution into equation (1.72)
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Since is itself dependent on the AO coefficients in 

(equations (1.70) and (1.49)) the process of solving for the c^ is 

iterative involving cycles of the form:

1) start with AO coefficients in i = 1,2 ... n

2) generate density matrix via equation (1.49)

3) generate f  matrix from equation (1,70) and energy from

equation (1.58)

4) solve secular equation (1.73) for n eigenvalues and hence 

produce new set of AO coefficients c^ i = 1,2 ... n

5) generate density matrix via equation (1.49) ...

... and so on.

The cycles are continued until the AO coefficients (or density 

matrix) at successive cycles are the same to the required accuracy. 

The energy should also have converged to its minimum value. Where 

convergence is slow, or oscillatory behaviour occurs, special 

interpolation procedures may be required.

1.4(c) The forms of the atomic orbitals

The basis functions into which the MOs may be expanded can be 

of many different types. One popular set of basis functions comprise 

the atomic orbitals of the constituent atoms in the molecule. The 

number of atomic orbitals m used in the expansion must be greater 

than n, the number of doubly occupied MOs, but otherwise can take 

any value. Generally the larger the value of m then the more 

accurate will the expansion of the MO into a LCAO be. Two 

specific sizes of basis set may be distinguished:

a) A "minimal basis set" comprises those atomic orbitals up to 

and including the orbitals of the valence shell of each atom 

in the molecule, and
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b) An "extended basis set" amounts to a minimal basis set plus 

any number of AOs lying outside the valence shell for each 

atom.

Rather, than using hydrogenic atomic orbitals which are solutions

of the Schrodinger equation for one-electron atomic systems,
292approximations to these, called Slater-type orbitals (STOs) may be 

used. The STOs have a simpler analytical form for the radial part of 

the AO function which makes many of the integrals required in MO 

calculations easier to evaluate. They have the form

R(r) = (2;)^p"^j (2n.p)^"2 i^p'^ exp (-çr) (1.74)

where n^ is the principal quantum number, and ç is the orbital

exponent which is ideally treated as a further variational parameter

in a LCAO-MO SCF calculation but can alternatively be given an
292empirical value using certain well known rules. The form of R(r)

given in equation (1.74) means that STOs have no radial nodes and

hence that certain AOs on the same atom are no longer orthogonal to

each other, e.g. the Is and 2s functions. This may be overcome in

the case of the Is and 2s AOs by leaving the Is function unaltered

and then constructing a 2 s°^ function orthogonal to it by the

Schmidt procedure (section 1.7).

Even more attractive than STOs in the evaluation of integrals, 
293are gaussian functions, although these do not have such a clear

chemical interpretation as STOs when used as a basis set. A 

compromise may therefore be reached if each STO (of a minimal 

basis set say) is replaced by a linear combination of a small 

number of gaussian-type orbitals at all points in an SCF MO
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294calculation. The representations of STOs could, for example, be

obtained using gaussian functions by a least squares method,
223will become more accurate as the size of the gaussian set increases.

For example, the expansion could be of the form:

STO ^

where (in this equation only) K is the number of gaussian functions

in the expansion, d , is a linear coefficient, g is a gaussianyK y

function and is a gaussian exponent. This sort of basis set
222may be used in the Gaussian 70 computer programme for the

calculation of SCF MOs.

1.5 DIPOLE MOMENTS

Classically, the electrical dipole moment for a set of discrete 

charges q^ is:

D = Z q. r. (1.76)—  —i

where r^ is the position vector of the ith charge. Quantum 

mechanically, the dipole moment operator for a system of N electrons 

and L nuclei is

N L
D = - Z r(p) + Z Z r(a) (1.77)

p=l a=l ^

Both the electronic and nuclear contributions may be separated into

X, y and z components. We obtain:

D = i D + 1 D + k D—  X -4 y —  z
rCp) = i, x(p) + j_yCp) z Cp ) (I.yg)

r(a) = x(a) + j y (a) + jc z(a)
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Now, since in the quantum mechanical description the nuclei are 

considered fixed while the electrons are described by the wavefunction 

we obtain (via equations (1.16) (1.17) and (1.22)) for the z

component of the total dipole moment:

A  L
<D;> = -jz(l) P^(rp dr^ + z(a) (1.79)

where the primes in the density function have been dropped since we 

are dealing with a co-ordinate operator only.

Hence

<D > = <D > elec + D nuclear (1.80)z z z  ̂ -

the other components may be expressed similarly.

We may express <D^> elec in terms of MOs. Using equation (1.41)

we have :

n n
-<D > elec. = 2 Z Z <Y./z/*.> (S" ).. (1.81)

" 1 = 1  3 = 1  ̂ 3 =  V i

where <<(î /z/6 ĵ > =J ** z(l) dr^ (1.82)

equation (1.81) may be written

- <D >elec. = 2 Z <^./z/<p.> (S )..Z - ,  1 1 —  111=1
n n

+ 4 Z Z <(p./z/(p.> ÇS~ ).. (1.83)
i=l j=l  ̂  ̂ ]
(i<j)

where the first sum could be called the "diagonal terms" and the

second (double) sum the "off-diagonal terms". For orthonormal

molecular orbitals equation (1.83) becomes 

n
-<D >elec = 2 Z <*./z/*.> (1.84)

2  i=l 1  1
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or

n
-<D >elec = E elec - (1.85)

 ̂ i=l

where the z component of the electronic moment is simply a sum of 

contributions each arising from one of the n occupied MOs.

The expression (1.83) for non-orthogonal MOs may be put in the 

form (1.85) by defining:

i 1 ^ 1z elec = 2  <Y,/z/ 4  > (§, ).. + 2  Z <Y,/z/* > (Sjl (1 .8 6 )
. j=i 1  J

(j^i]
where the "off-diagonal terms" have been allocated amongst the 

"diagonal terms" such that the overlap contribution arising from two 

MOs has been divided equally between them.

The total dipole moment D and each of the x, y and z components 

are independent of the choice of origin for a neutral molecule. How

ever, the electronic contribution alone and each of the MO contri

butions ẑ  elec are origin dependent.

It is possible to partition the total nuclear charge among the 

n MOs so that the expression (1.79) for the total z component of the 

dipole moment becomes

n . L n
<D > = - I elec + Z E Z . z(a) (1.87)

 ̂ 1 = 1  a=l 1 = 1

where is the amount of positive charge of nucleus a allocated

to the ith MO.

Obviously

n
Z Z . = Z (1.88)

i=l ^
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Equation (1.87) may be written

(1.89)<D > = E
 ̂ i=l

n r . L
z^elec + E Z . z(a) 

a=l .
n

or <D > = E (1.90)
 ̂ i=l

where z^ is the total moment of the ith MO and its corresponding 

nuclear charge. This is independent of the origin of co-ordinates 

provided there is no net positive or negative change associated with 

z^. Since each MO is doubly occupied this means that:

L
Z Z . = 2 ' (1.91)

a=l

When the MOs are LMOs corresponding to two-centre bonds or lone pairs

the z^ may be called bond or lone pair moments. In this case the

allocation of nuclear charge satisfying (1.91) is usually taken 
to be.2°'200.297,298

Z . = 2 when du is a lone pair on atom a )
 ̂ ) (1.92)

)
Z . = Z, . = 1  when d>. is a bond between atoms a and b ai bi

although many other allocation schemes not necessarily satisfying
193equation (1.91) are of course possible. Using this formalism 

the expression for the z component of the dipole moment of the ith 

MO becomes:

, n
z = 2 <4u/z/*.> (S‘ ).. * 2 Z <4./:/*.> (S' ).. + 2z(a) (1.93)

1  1 ---- 1 1  j = 1 ------------- -
(j / i)

when (j)̂ is a lone pair or inner shell on atom a, and:

z^ = 2<*./z/*,>(S" ).. + 2 E <4,/z/*.> (S' ) + z(a) + z(b)(1.94)
1  1   ̂ J —  j 1

(j^i)
when (j)̂ is a bond between atoms a and b. The total z component is then 

given from equation (1.90). The x and y components are defined entirely 

analogously.
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1.6 ELECTRON POPULATION ANALYSIS

From the definition of the 1st order density function, 

equation (1.23), and the normalisation condition of Y , 

equation (1.7), it can be seen that: 

r  

)
or, by integrating over spin;

(X^) dX^ = N (1.95)

J P^ (r̂ ) dr^ = N (1.96)

By expanding P^ in terms of an MO or AO basis set and integrating, 

the total number of electrons, N, can be broken up into "electron 

populations" associated with MOs, AOs or both. This procedure of

"Population Analysis" can help give insights into the electronic
_ -, 1 118-123.structure of molecules.

For MOs not necessarily orthogonal (but linearly independent)

we may proceed as follows:

From equation (1.41) and the expansions:

m
*i<v \ "i'

m
b  S jV  =1

we obtain

n n m m ,
P l ( r i )  = '  j ! ,  ( 1 . 9 8 )

by integrating:

n n m m .

" ■ U S i  vJ. “ ■” >



252,

where is defined in equation (1.71).

Equation (1.99) may be manipulated to give (for real functions)

n r m m
N = E N(i) = E 

i=l i=l
,-1.E E 2 c . c . (S ) .. M

y = l v=l ^  yv

.-1.n m m
+ E E E 2c . c .(S“") .. M

j=i u=i v=i
(jfi)

this becomes in the orthonormal MO case

2n n r m m m
N =  E N ( i ) =  E  ̂ E 2c . + E E 4 C - C . M

i=l
(y >v)

i = U  y- 1  y=l -pi VI yv

(I.100)

(I.101)

118where N(i) is what Mylliken defines "the total population in MO 

Alternatively we may obtain from equation (1.99)

m m r n n
- 1.N =  E N ( y ) =  E V E E 2c . c . [S )..

y=l y=l (i=l j=l yi yj
m n n

.-1.

• j!. ' ' . 1

(v^y)

(1. 102)

which for orthonormal MOs reduces to:

m m <
N = E N(y) = E 

y=l y=l U = 1

2  n m
E 2 c .  + E E 2 c . c . M

i=l ^ = 1  PV
(vpy)

(1.103)

,118where N(y) may be defined as "the total gross population in 

AO xj'. We may now go on to define a population N(i,p) such that:

n m 
N = E E N(i,y) 

i=l y=l
(1.104)

,118N(i,y) may be defined as "the partial gross population in AO

X in MO d).". From reference 118 we obtain for the orthonormal MO y
case (in our notation):
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n m n m r _ m
N = Z Z N (i,y> E E <2c . + E 2c . c . M h (1.105)

i=l y=l i=l y=l 1 v=l
(v^y)

For non-orthogonal MOs in a non-orthogonal AO basis two different 

expression for N(i,y) are obtained depending on which AO index is 

associated with each MO index in the expansions (1.97).

A more general expression that circumvents this problem may be 

obtained by using, instead of equation (1.99), the equation:

M N n n m m ,
N = 1 ^ .  /z = .1 ;  E E (I b i  V  Cvj ' (1-106)

1 = 1 J=1 y = l v = l J H H J h-j
This equation leads to identical expressions for all the populations 

defined above, and we obtain for N(i,y)

N(i,p) = 2 ĉ . (£-1).. * E 2ĉ , ĉ .
V  — 1
(v/̂ y)

n n m .
" h i  * ^%i ""pj " "pi h i  V

(j^i) (ĵ i)(v?̂ y)
(1.107)

where the terms have been collected into four groups for clarity.

This reduces* to equation (1.105) for orthonormal MOs.

All the definitions above satisfy the relations: 

n m n m
E E N(i,y) = E N(i) = E N(y) = N (1.108)

i=l y=l i=l y=l

I.7 METHODS OF ORTHOGONALISATION

It is sometimes necessary, and was so in this work, to generate

an orthonormal set of functions from a non-orthogonal but linearly

independent (LI) set of functions. The methods which may be used
299have been reviewed by Lowdin and one is shown below.

The general problem may be formulated in the following way.

A non-orthogonal, LIjnormalised set of n real functions
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Y2 ^Y2  *'*^n* generate a square (nxn) matrix of overlap integrals ^

with elements S..
1 3

""jy± Cr) YjCr) dr = <y^/y^> (1.109)

In matrix notation where y is a row vector of functions, this is

S = <y/y > (I.110)

A real, orthonormal set of n functions 0  may be formed by a linear 

transformation of the set x  t>y a square nxn matrix This is 

written

0 = X- A (I.Ill)

The problem is hence to find a matrix of coefficients A  such that

< ^ / = <x A/ Y A > 
= A <x/x> 4
= A . S . A . = I (1.112)

where is the unit matrix of order n and A is the transpose of A. 

There is no unique solution to equation (1.112) so that many sets of 

orthogonal functions can be obtained from the non-orthogonal set j .

If the non-orthogonal set y are the constituent functions of 

a one-determinant wavefunction then the wavefunction will be unchanged 

for computational purposes . if the set X  replace the set x •

This is because the two sets are linked by a linear transformation 

(I.Ill) and, as was explained in Section 1.1(b) a one-determinant 

wavefunction is invariant (besides a "phase-factor") to a linear
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transformation amongst its constituent MOs.

The simplest orthogonalising procedure to apply is the 

Schmidt method in which each member of the set, in order, is 

orthogonalised against all the previous members and subsequently 

normalised. The method may be expressed as follows. For a non- 

orthogonal pair of functions and orthogonal pair, 6  ̂ and

are obtained by:

®i = )
) (1.113)

® 2  =-6 ^ 1 2  {l 2  - n  <Yi/Y2 >] )
I

whereid"̂ .̂  is a normalising constant and 8  ̂ is the component of 

y2  orthogonal to y^. The method is easily extended to obtain an ortho

normal set of n functions from a non-orthogonal set y°, y°, ... y° in 

a step-wise process. Firstly, y° ... y° are made orthogonal to y° 

in a series of changes of the type given by (1.113). The superscript 

denotes the number of times the function has been changed. The new 

functions are

y\ = li {ïi - y°i i = 2 ... n (1.114)

Since y^ ... y^ are now all orthogonal to y° they may be combined linearly 

without losing orthogonality to y°. The functions y^ ... y^ are now 

made orthogonal to y^ in a similar series of changes

Y- = ^ 2 i{xi ■ ^ 2  <Y2 /y->} 1=3, ... n (1.115)

This process is repeated until all functions are mutually orthogonal.

The resulting set is yJjY^ ••• yJJ ^. It can be seen that y° is left
1

unchanged by the method, y^ is changed once, and later functions in the
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series are changed to greater and greater extents.

This fact has led to the search for other methods of ortho

gonalisation in cases when the forms of the final orthogonal set 
299are important. This was not the case in this work, so that 

the straightforward Schmidt-procedure was used.

This procedure corresponds to a solution of equation (1.112) 

in which the matrix A is triangular. Although the individual elements 

of A  become rather cumbersome for increasing n, the method is easy 

to use in the computer programme.
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APPENDIX_II_ COMPUTATIONAL DETAILS

All the computer programmes employed in this work were 

written in FORTRAN and were run on the GDC 7600 and 6600 machines

at the University of London Computer (Centre (ULCC).

II.1 Gaussian Seventy
222Gaussian 70, originally written by W.J. Hehre et al. and

224modified for implementation on the ULCC CDC 7600 by P. Mallinson,

was used to generate a suitable starting set of CMOs and for the

evaluation of integrals over AOs for each molecule considered. The

geometry for each molecule was defined for Gaussian 70 by specifying

bond lengths and angled, except in the case of methane, where

in order to remove CMO degeneracies, the geometry was defined by

direct input of the atomic co-ordinates.

To ensure that strict convergence was achieved in each SCF

calculation, the iterative procedure was continued until aichange

of less than lO”  ̂was obtained in the density matrix on successive

cycles. Where slight oscillatory behaviour was encountered during

the iteration to an energy minimum, fer example in CO, a version^^^
301of Gaussian 70 using the technique of "level shifting" was used.

For each molecule, the output file produced by Gaussian 70 

that contained the AO coefficients in the CMOs was written to disc 

storage along with the files containing the following integrals over 

AOs: the kinetic and potential energy integrals, the two-electron

integrals, the AO overlap integrals and the x, y and z dipole moment
—  6integrals. Only those two-electron integrals greater than 10 and 

the lower triangle of each matrix of one-electron integrals were
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stored. For the technique used to economically store the two-electron

integrals and associated AO indices into integer words see ULCC 
224Bulletin B5/10.2.

II.2 ENL0C7

A computer programme called ENL0C7 was written in order to 

generate the many possible bond and lone pair "structures" and 

associated LMOs using the method of Chapter 4. From such LMOs the 

programme also calculated other functions. A flow-diagram 

representing the components of the programme is shown in Figures

II.1 and II.2.

11.2(a) Preliminaries

The starting CMOs and integrals over AOs were read into 

ENLOCr from disc, and other data specifying the calculation, including 

the atoms in the moecule, their co-ordinates, the number of basis 

AOs, the starting values of the transforming parameters and other 

parameters required in library subroutines, were read in from 

punched cards. The AO coefficients and one-electron integrals were 

read into two-dimensional arrays while the two-electron integrals 

and indices were read into a one-dimensional array of length 3200.

This length was sufficient since in none of the molecules studied 

did the number of two-electron integrals of the required size exceed 

1600.

The structure imposed on the CMOs to be transformed was specified 

in two stages. Firstly, the numbers of lone pairs (MOs having 

contributions from one atom only) and two-centre bonds (MOs having 

contributions from two atoms only) were fixed. This part definition 

of the structure was referred to as a specific "case". Secondly,
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SUBROUTINE FUNCT
Evaluation of Electronic 
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transforming matrix 
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Figure II.1 Flow-diagram of ENL0C7
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Separation of CMOs
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number of lone pairs and 
bonds)
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From minimising routine

MOs 
linearly 

independent/N
To minimising routine

100 Hartrees

To minimising routine

Transform CMOs

Add untransformed CMOs

Orthonormalise a copy 
of the MOs

Truncation to specified 
structure

Check orthonormalisation 
is successful

Calculate Electronic Energy 
from the orthonormalised MOs

Construct transforming matrix 
from parameters supplied by 
minimising routine

F = Calculated Energy minus 
Canonical Energy 
(Hartrees)

Figure II.2 Flow-diagram of subroutine FUNCT.
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within each "case" the structure was completely defined by fixing 

the arrangement of the lone pairs and bonds amongst the atoms. The 

programme looped over all possible structures within each case and 

then over all possible cases. In the first version of ENL0C7 

the lone pairs and bonds comprising a structure were permutated 

amongst the MOs to be transformed. In order to save computer time 

in a second version of the programme, this interchanging of the 

MO labels was not carried out since the different permutations gave 

the same energy and LMOs on all but rare occasions. The variation 

in the starting values of the transformation parameters in any 

case ensured that the endpoint LMOs were not dependent on the 

character of individual CMOs.

Another source of potential time-wasting, encountered in NH^ and 

CH^, was the large number of "equivalent" structures that differed 

only in hydrogen atom labels. This problem was circumvented by 

performing an initial loop over all the structures in each molecule - 

without undertaking any computation - to identify the equivalent 

ones, A selection of these were then chosen at random for energy 

minimisation.

11.2(b) Energy minimisation

Once a structure consisting of lone pairs and bonds was fixed

then the programme ENL0C7 entered a minimising subroutine, E04CCF,

from Mark 6 of the NAG (Numerical Algorithms Group Ltd,) library.

This subroutine minimised an energy function, F (the electronic

energy minus the canonical electronic energy) of several independent

variables (the transforming matrix parameters) by the Simplex 
502 505method. * This method tends to be slow (derivatives of the
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function with respect to the variables were not supplied) but it 

is robust. In early work, a different minimising subroutine,

VA04A, from the Harwell Subroutine Library was used. This routine 

employed a different method which again did not require derivatives. 

Results from the two methods were identical, and while both used 

a similar amount of computer time, the NAG subroutine was able to 

locate an energy minimum for higher energy structures on occasions 

when the Harwell subroutine could not. E04CCF was hence the preferred 

routine and was used in all subsequent work.

After the minimising routine was supplied with an arbitrary 

starting set of independent variables, it iterated to a minimum of 

the function F by employing another subroutine FUNCT which calculated 

the value of F for any set of values of the parameters.

For the larger molecules examined it was found that a dis

proportionate amount of computer time was being spent on the energy 

minimisation of bizarre high energy structures. To help correct 

this situation in a later version of ENL0C7, the value of the energy 

function F after forty iterations was compared with a predetermined 

threshold value (say 0.6H) and if a reduction to this function value 

had not been achieved, energy minimisation for this structure was 

abandoned and the next structure was considered.

The computational procedures required in order to return a value 

of F to subroutine FUNCT are outlined below.

II.2(b)(i) Transformation, Truncation and Testing

A general orthogonal matrix was constructed by the successive 

multiplication of %R(R-1) orthogonal matrices, each being a function
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225of one independent variable only, as shown in section 4.3(c).

This orthogonal matrix was then used to transform the relevant CMOs 

by simple matrix multiplication. The rotated MOs were then truncated, 

according to the structure previously specified, by copying the 

required AO coefficients into a second array. They were then 

normalised.

The untransformed CMOs were next recombined with the truncated 

MOs and the resulting matrix of AO coefficients tested for linear 

dependence. This test was performed using subroutine MFGR from 

the SSP (Scientific subroutine package) library, which used the 

standard Gaussian eliminiation technique to find the rank (the number 

of linearly independent columns) of the matrix, When the rank 

was less than the total number of columns, a large function value,

F, was returned to the minimising routine and no further operations 

in the function evaluation were executed.

When the MOs were linearly independent, a copy of them was
299orthonormalised by the Schmidt procedure (see Part 7 of Appendix I)

This was carried out in subroutine ORTHOG. The success of the 

orthonormalisation was checked by forming the matrix of overlap 

integrals between the MOs and ensuring that this was the unit 

matrix.

11.2(b) (ii) Energy calculation

Having obtained an orthonormal set of MOs expressed in LCAO 

form, corresponding to the non-orthogonal truncated MOs, the 

electronic energy was calculated. This was undertaken by using 

equation (1.58) of Appendix I and the one-electron kinetic and 

potential energy integrals and the two-electron integrals. The
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actual procedure adopted involved the construction of the first 

order density matrix from the AO coefficients as in equation (1.49) 

followed by the computation of the one-electron contribution to the 

electronic energy from the density matrix and the one-electron 

integrals according to the first term in equation (i .58). The two- 

electron contribution to the energy was computed in two stages.

In the first stage, the two-electron part of the matrix

representation £ of the Hartree-Fock Hamiltonian in the AO basis was 

constructed using the second term of equation (1.70). (Subroutine 

FOFCLO of Gaussian 70 which adds the various contributions from 

each two-electron integral to the relevant elements of F^was utilised 

at this stage). The two-electron energy calculation was completed 

by adding the products of corresponding elements of the density 

matrix and the two-electron part of the 2 matrix following the second 

term in equation (1.58). The total electronic energy was the sum 

of the one and two-electron parts.

The function F (the electronic energy minus the canonical energy)

was thus returned to the minimising routine.

11.2(c) Endpoint LMOs

When the minimising subroutine had iterated to an energy minimum, 

the non-orthogonal truncated LMOs (obtained immediately before 

orthonormalisation) became the endpoint LMOs for that structure.

Besides displaying the LMOs and the corresponding electronic energy, 

other calculations using the LMOs were undertaken.

Firstly, in subroutine WAVEFN, the matrix of overlap integrals 

between the LMOs was computed, the determinantal wavefunction comprising 

the LMOs was normalised and the overlap with the canonical wave-
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function was found. (NAG library subroutine F03AAF was used to take

the determinant of a matrix using the factorisation method of 
305Grout. ) Secondly, the electrical dipole moment was calculated 

both from the density matrix formed from orthonormal AO coefficients 

in subroutine DOMOS, and directly from the non-orthogonal LMOs 

in subroutine DLMOS using the x, y and z dipole moment integrals 

obtained from Gaussian 70. The dipole moment integrals over LMOs 

were also displayed so that the total dipole moment could be 

partitioned into LMO components after part 5 of Appendix I.

Finally, the population analysis of the LMO wavefunction was under

taken in subroutine POPAN using the equations in part 6 of 

Appendix I.

The programme ENL0C7 repeated the above procedures for all 

possible structures (or a selection for the larger molecules) and 

hence allowed an energy diagram (Chapters 4 and 5) to be constructed, 

from which the PLMO structure,PLMOs and associated properties could 

be obtained.

11.2(d) Computing time

Approximate figures for the number of energy calculations 

required to achieve an energy minimum and the corresponding processing 

time taken are shown in Table II. 1. These numbers refer to the 

PLMO structure for each molecule. The time includes that taken for 

the computation of Mulliken populations and dipole moments etc., 

and is the Central Processing Unit (CPU) time of the ULCC CDC 7600 

machine.
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PROCESSING RESOURCES REQUIRED TO OBTAIN AN ENERGY 

^i™UM_fOR_TH2 PLMO^ OF EACH MOLECULE 

(For explanation, see narrative)

Molecule
Number of Energy 
Calculations CPU Time(s)

HCN 150 2.5

^2 150 ’ 1.5

CO 150 1.5

H^O 150 1.0

NH3 800 8.0

“ 4 800 11.0

The number of energy calculations required for other structures for 

these molecules varied from 50 to 2000. To complete a thorough 

search of all structures for the larger molecules hence took several 

minutes.

II.3 BOND AND ANGLE DEFORMATION IN WATER

The investigation of different geometries of the water molecule 

(Chapter 11) followed much the same lines as the investigation of the 

different example molecules. For every geometry chosen for H^O 

the Gaussian 70 programme was run to yield a set of CMOs, a total 

energy value and the various integrals over AOs. Using the CMOs 

and the integrals, the ENL0C7 programme was run (for the PLMO 

structure only) to generate the PLMOs, a value of the total energy 

corresponding to the PLMOs, and the dipole moment etc. calculated 

from them.
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The geometries used for H^O were chosen to simulate slight 

bond and angle deformation. Hence by fitting the values of the 

total energy obtained for the CMOs and for the PLMOs to quadratic 

curves (using a standard graph plotter programme), it was possible 

to find the energy minimum geometries and to calculate force constants.

The computing time required to generate the PLMOs at the various 

geometries was close to the value in Table II.1 in each case.
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APPENDIX III ABBREVIATIONS AND SYMBOLS USED

AO atomic orbital

AG Adams-Gilbert (formalism)

Cl configuration interaction

CMO canonical molecular orbital

CPU central processing unit

HAO hybrid atomic orbital

H-F Hartree-Fock

INDO incomplete neglect of differential overlap

LCAO linear combination of atomic orbitals

LMO localised molecular orbital

LAO localised atomic orbital

MO molecular orbital

M 5 P MagnaSCO and Perico

NAG Numerical Algorithms Group Ltd.,

PLMO perfectly localised molecular orbital

PR population ratio

SCF self consistent field

SLO strictly localised orbital

STO Slater-type (atomic) orbital

SSP Scientific Subroutine Package

ULCC University of London Computer Centre

VB valence bond

VSEPR valence shell electron pair repulsion
O
A Angstrom unit

D Debye unit

e electron (charge) unit

H Hartree unit
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R(X-Y) bond length of X-Y bond

R^»^2 R(O-H^) and R^O-H^) respectively in H^O

Rg equilibrium bond length (energy minimum value)

6 internuclear angle (in H^O)

bond force constant 

5R displacement from equilibrium bond length

kg angular force constant

6 8 displacement from equilibrium internuclear angle

(j) molecular orbital

^ row vector of molecular orbitals
C({) row vector of canonical molecular orbitals
R row vector of transformed CMOs
T2 row vector of truncated and renormalised MOs

k^ inner shell MO on atom X

a sigma MO

IT pi MO

lone pair LMO on atom X 

bond LMO between atoms X and Y 

X-Y a two-centre bond LMO between atoms X and Y

X%^Y two two-centre bond LMOs between atoms X and Y

X ̂ a lone pair LMO on atom X

X Y a two-centre bond LMO between non-neighbouring atoms

X and Y

X atomic orbital

row vector of atomic orbitals 

Is ,2s.,2p specific Slater-type AOs on atom X
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2s°^ a 2s^ AO orthogonalised to the Is^ AO

h^^y^ bonding HAO on atom X, pointing to atom Y

R number of CMOs to be transformed

T orthogonal transforming matrix (RxR)

general independent parameter in a transforming matrix 

Cij Cosy..
A measure of the non-orthogonality of the PLMOs,

equation (4.5)

no number of sigma PLMOs (including inner shells)

D(X-Y) dissociation energy of the X-Y bond

Y electronic wavefunction

Y_,,_ wavefunction constructed from the CMOsCMO
wavefunction constructed from the LMOsLMO

<Y > overlap of the wavefunctions constructed from theCMO LMO
CMOs and LMOs 

H Hamiltonian operator

E electronic energy

X̂  Space-Spin Co-ordinate of electron 1 (or point 1)

ŝ  spin co-ordinate of electron 1 (or point 1)

r̂  spatial co-ordinate of electron 1 (or point 1)

N number of electrons

n(= ^7 )̂ number of doubly occupied molecular (spatial) orbitals

p,q indices over electrons

k,^ indices over spin-orbitals

i,j indices over molecular orbitals

]i,v,X,a indices over atomic orbitals
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a,b indices over atoms

K index over distinct ordered configurations of

spin-orbitals 

L number of atoms

h(p) one-electron Hamiltonian operator

g(p,q) two-electron Hamiltonian operator
'̂ 2V (p) kinetic energy operator

V(p) potential energy operator

r^ position vector of p

r distance between p and qpq
x,y,z cartesian co-ordinates

Z atomic number of atom aa
P(p,q) permutation operator

$ general Slater determinant

normalising constant

Y spin-orbital

a(s),3(s) spin functions

Kronecker delta, properties in equation (1.15)

0 general hermitian operator

<6> expectation value of Q

0(0) general zero-particle operator

0(p) general one-particle operator •

0 (p,q) general two-particle operator
» »

p^(X^/X^) 1st order density function

p2(X^X^/X^X^) 2nd order density function 

^l^^l^^l^ spinless 1st order density function

^2^^1̂ 2*̂ 1̂̂ 2  ̂ spinless 2nd order density function
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P. .
ij

an element of the matrix representation of p̂  in 

a spin-orbital basis

matrix of representative coefficients p^^ 

an element of the matrix representation of P̂  in 

a molecular orbital basis 

P^^ an element of the matrix representation of P̂  in

an atomic orbital basis

overlap integral between atomic orbitals 

c . the coefficient of y in d>.
y i  ^ y

j overlap integral between molecular orbitals <j>̂,

overlap integral between spin-orbitals 

m number of basis atomic orbitals

M mxm matrix of atomic orbital overlap integrals

nxn matrix of molecular orbital overlap integrals 

^ NXN matrix of spin-orbital overlap integrals

|m | determinant of matrix elements of M

|Ŝ| determinant of matrix elements of

IV I determinant of matrix elements of V

 ̂ cofactor of (k. I) element of |v|
cofactor of (i,j) element of |Ŝ|

inverse matrices of V and ^respectively 

2k C&,k) element of 2  ̂

(Sf . (i,j) element of 2 ̂
ij

h_ self integral = <#^/h/^^> = j h(l) dr^

coulomb integral =

ŶĈi) g(i,2)

11

" i j

J
dr̂  dr̂
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j exchange integral = <^^^j/g/^j^^>

=J(})iĈl) 2(1,2] oJCrg] dr^ dr^

Jj Coulomb operator, see equation (1.60)

Kj exchange operator, see equation (1.61)

F Hartree-Fock hamiltonian operator

energy eigenvalue for <|)̂

E e x p a n s i o n  coefficient in the Hartree-Fock equation 

(1.59)

E nxn matrix of elements e..
=  1]

2 a unitary matrix (transformation)

c. column vector of coefficients c .-1 y 1
F Hartree-Fock integral over atomic orbitalsyv .

y

F mxm matrix of elements F

Ç atomic orbital exponent

n^ principal quantum number

g^ gaussian function

d ^  linear expansion coefficient for a gaussian function

D dipole moment

D dipole moment operator

<D> expectation value of the dipole moment

q charge <

r(p) position vector operator

i,j,k unit co-ordinate vectors

D^,D^,D^ x,y,z dipole moment operators

x(p),y(p),z(p) cartesian co-ordinate operators

z^elec. ' part of the z component of electronic moment allocated

to the ith molecular orbital
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part of the atomic charge of atom a allocated

to the ith molecular orbital.

part of the z component of total dipole moment

allocated to the ith molecular orbital

dipole moment contribution of the XY sigma bond

dipole moment contribution of the X lone pair

N(i) total population in molecular orbital (j)̂

N(y) total gross population in atomic orbital

N(i,y) partial gross population in atomic orbital x^ in

molecular orbital d>.1
Y general real function

Y row vector of y
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