A SPECTROSCOPIC INVESTIGATION OF SOME MIXED HALIDE COMPOUNDS OF PHOSPHORUS (V) AND ANTIMONY (V).

A thesis submitted by Francis James Ryan in candidature for the degree of Doctor of Philosophy of the University of London.

R. H. C.	LIBRARY
OLASS	CDC
No.	Rya
ACC. No.	114,237
DATE ACQ	March 73
	1

ł

OCTOBER 1972.

ROYAL HOLLOWAY COLLEGE, ENGLEFIELD GREEN,

SURREY.

ProQuest Number: 10096783

All rights reserved

INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest 10096783

Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author.

All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC.

> ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, MI 48106-1346

ABSTRACT

The fundamental vibrational frequencies of the mixed chlorobromophosphonium ions, $PC1_3Br^+$, $PC1_2Br_2^+$ and PBr_3C1^+ , have been assigned from solid-state Raman and infrared ($PC1_3Br^+$ only) measurements. The Raman spectra of the following have been compared:-

- (i) PBr_4^+ Br and PBr_4^+ BBr_4^-
- (ii) Normal PC1₅ (PC1₄⁺ PC1₆⁻) and "metastable" PC1₅ (containing C1⁻ ions).
- (iii) $PC1_3Br^+ BC1_4^-$, $PC1_3 Br^+ PF_6^-$ and P_2C1_9Br (containing $PC1_3Br^+$ and Br^- ions).
- (iv) Compounds shown by solid-state ³¹P n.m.r. Spectroscopy to contain the PCl₃Br⁺, PCl₂Br⁺ and PBr₃Cl⁺ ions.

From the above, two sets of fundamental vibrational frequencies may be assigned to the tetrahalogenophosphonium ions, $PCl_n Br_{4-n}^+$ (n = 0 - 4), depending upon whether they are in the presence of:-

- (a) A polyatomic anion only (eg. $BC1_{4}$), or
- (b) Single halide ions(Cl, Br)

The addition of excess chlorine to PCl_2F yields initially a green liquid, probably molecular PCl_4F , and some white solid, probably $PCl_4^+ PCl_4F_2^-$. On standing at room temperature for 3-4 days, the whole solidified to give a compound of stoichiometry PCl_4F , which it is suggested (from Raman and infrared spectra and fluoride analyses) may be formulated as containing PCl_4^+ , F^- and $PCl_4F_2^$ ions. Raman and infrared spectra indicate a trans (D_{4h}) structure for the octahedral $PC1_4F_2^{-1}$ ion.

Comparison of X-Ray data for P_2Cl_9Br and the compound of stoichiometry PCl_{4.66} $Br_{0.33}$ indicate a unit cell for P_2Cl_9Br , comprising 6 PCl₄⁺, 2 PCl₃Br⁺, 4 PCl₆⁻ and 4 Br⁻ ions. Solidstate Raman and ³¹P n.m.r. spectra strongly support the above formulation for P_2Cl_9Br . Solid-state Raman spectra of PCl₃Br₆ and P SbCl₇Br₃ do not confirm the expected formulations, PCl₃Br⁺Br⁻(Br₂)₂ and PBr₃Cl⁺ SbCl₆⁻.

The two compounds $\text{Et}_4 \text{NSbEr}_6$ and $\text{Bu}_4 \text{NSbEr}_6$ (Bu = $\text{C}_4 \text{H}_9$) may be formulated, according to Raman and infrared data, as $\text{Et}_4 \text{N}^+$ SbBr $_6^$ and $\text{Bu}_4 \text{N}^+$ SbBr $_6^-$ respectively. The existence of $\text{Et}_4 \text{N}^+$ SbCl $_5$ Br $^$ as a discrete chemical compound and not a 5:1 mixture of $\text{Et}_4 \text{N}^+$ SbCl $_6^-$ and $\text{Et}_4 \text{N}^+$ SbBr $_6^-$ has been demonstrated by:-

- (i) Raman spectroscopy,
- (ii) X-Ray powder photography, and
- (iii) Differential scanning calorimetry.

Raman and ³¹P n.m.r. spectra of PSbCl₉Br indicate the formulation PCl₄⁺ SbCl₅Br⁻.

ACKNOWLEDGEMENTS

The author wishes to thank Dr.Arthur Finch and Dr.Peter N.Gates, of Royal Holloway College, and Mr.Freeman F.Bentley, of the Wright-Patterson Air Force Base, Dayton, Ohio, U.S.A., for advice, encouragement and assistance during this work.

The author also wishes to thank Dr.Keith B.Dillon, of Durham University, for nuclear magnetic resonance measurements and discussion of the results. Finally, the author wishes to thank all those members of the Chemistry Department of Royal Holloway College and the Air Force Materials Laboratory (LPA), Wright-Patterson Air Force Base, who have helped him in any way.

The author is greatly indebted to the Monsanto Research Corporation, Prime Contractor on Air Force Contract F 33615-171-C-1132 for financial support during this investigation.

Dedication

To my late Father, my Mother and my Wife, Barbara.

•

.

	CONTENTS	Page
	ABSTRACT	i
	ACKNOWLEDGEMENTS	iii
	DEDICATION	iv
	0-0-0-0	
Section		
1.	THE HALIDES OF PHOSPHORUS (V).	1
1.1.	INTRODUCTION	1
1.2.	RESULTS AND DISCUSSION	9
1.2.1.	The Tetrachlorophosphonium and the	
	Tetrabromophosphonium Ions	
	$(PC1_4^+ \text{ and } PBr_4^+)$	9
1.2.1.i.	The Tetrabromophosphonium Ion (PBr $_4^+$)	9
1.2.1.ii.	Phosphorus Pentachloride and the	
	Tetrachlorophosphonium Cation (PC1 $_4^+$)	13
1.2.1.iii.	The Ionic Form of the Compound of	
	Stoichiometry PC14F.	23
1.2.2.	The Trichlorobromophosphonium Ion	
	(PC1 ₃ Br ⁺)	32
1.2.2.i.	The Compounds of Stoichiometry PBC17Br	32
	and P ₂ Cl ₃ Br F ₆	
1.2.2.ii.	The Compound of Stoichiometry P ₂ Cl ₉ Br	39
1.2.3.	The Dichlorodibromophosphonium and	
	the Chlorotribromophosphonium Ions	
<u>.</u>	(PC12Br2 ⁺ and PBr3C1 ⁺)	44
1.2.4.	Other Compounds	59

59

62

Other Compounds

The Compound "PC13Br4"

The Compound of Stoichiometry PSbC17Br3

1.2.4.i.

1.2.4.ii.

V -

Section		Page
2.	THE HALIDES OF ANTIMONY (V).	64
2.1.	INTRODUCTION	64
2.2.	RESULTS AND DISCUSSION	65
2.2.1.	The Hexabromoantimonate Ion (SbBr ₆)	65
2.2.2.	The Pentachlorobromoantimonate Ion (SbCl ₅ Br ⁻)	68
2.2.2.i.	The Compound of Stoichiometry Et ₄ N SbCl ₅ Br	68
2.2.2.ii.	The Compound of Stoichiometry P SbCl ₉ Br	74
2.3.	Other Antimony Compounds	76
3.	EXPERIMENTAL	78
3.1.	SYNTHESIS	78
3.1.1.	Ma terials	78
3.1.2.	Apparatus and Procedure	78
3.1.2.i.	Reactions in Dichloromethane (CH ₂ Cl ₂)	78
3.1.2.ii.	Reactions in Liquid Hydrogen Chloride	80
3.1.3.	Preparations	82
3.1.4.	Handling	92
3.2.	ELEMENTAL ANALYSIS	93
3.2.1.	For Chlorine and Bromine	93
3.2.2.	For Boron	94
3.2.3.	Fluoride	94
3.3.	SPECTRA	96
3.3.1.	Solid-State Raman Spectra	96
3.3.2.	Solid-State Infrared Spectra	96
3.4.	DIFFERENTIAL SCANNING CALORIMETRY	97

.

VIER TETR	ATIONAL REPRESENTATIONS FOR ADEDRAL SPECIES	99
VI BR OCTA	ATIONAL REPRESENTATIONS FOR HEDRAL SPECIES	100
(1)	REACTION OF PHOSPHORUS TRICHLORIDE, BROMINE AND EORON TRICHLORIDE IN DICHLOROMETHANE	101
(2)	REACTION OF PHOSPHORUS TRICHLORIDE, BROMINE AND BORON TRICHLORIDE IN LIQUID HYDROGEN CHLORIDE	
(3)	THE REACTION OF PHOSPHORUS TRICHLORIDE, BROMINE AND BORON TRIBROMIDE IN DICHLOROMETHANE	
(4)	THE REACTION OF PHOSPHORUS TRICHLORIDE, BROMINE AND BORON TRIBROMIDE IN LIQUID HYDROGEN CHLORIDE	
	VI BR TETR OCTA (1) (2) (3) (4)	 VIERATIONAL REPRESENTATIONS FOR TETRABEDRAL SPECIES VIERATIONAL REPRESENTATIONS FOR OCTAHEDRAL SPECIES (1) REACTION OF PHOSPHORUS TRICHLORIDE, EROMINE AND EORON TRICHLORIDE IN DICHLOROMETHANE (2) REACTION OF PHOSPHORUS TRICHLORIDE, BROMINE AND BORON TRICHLORIDE IN LIQUID HYDROGEN CHLORIDE (3) THE REACTION OF PHOSPHORUS TRICHLORIDE, EROMINE AND EORON TRIBROMIDE IN DICHLOROMETHANE (4) THE REACTION OF PHOSPHORUS TRICHLORIDE, BROMINE AND BORON TRIBROMIDE IN LIQUID HYDROGEN CHLORIDE IN DICHLOROMETHANE

KEFERENCES

115

•

.

This Thesis contains 137 pages.

•

.

- viii -

LIST OF TABLES

<u>Table</u>		Page
1	The Phosphorus Trichloride-Bromine System.	6
2	Comparison of the Solid-State Raman Spectra	
	of Phosphorus Pentabromide and the Compounds	
	of Stoichiometry PBBr ₈ and Et ₄ N BBr ₄ .	11
3	Comparison of the Solid-State Raman Spectra	
	of Phosphorus Pentachloride (PC14 PC16),	
	Et_4N^+ PC1 ₆ , PC1 ₄ BC1 ₄ and Me ₄ N ⁺ BC1 ₄ .	14
4	Comparison of the Solid-State Raman Spectra	
	of Normal and Metastable Phosphorus	17
	Pentachloride.	
5	Comparison of the Solid-State Raman and	
	Infrared Spectra of the Compound of	
	Stoichiometry PC1 ₄ F.	26
6	Assignment of the Solid-State Raman and	
	Infrared Spectra of Trichlorobromophosphonium	
	Tetrachloroborate (PCl ₃ $Br^+ BCl_4^-$).	35
7	Assignment of the Solid-State Raman and	
	Infrared Spectra of Trichlorobromophosphonium	
	Hexafluorophosphate (PC1 ₃ Br^+ PF ₆).	38
8	Assignment of the Solid-State Raman and	
	Infrared (above 200 cm^{-1}) Spectra of the	
	Compound of Stoichiometry P2C19Br.	42
9	The Solid-State Raman Spectrum of the Product	
	(A) of an Unsuccessful Preparation of	
	$PC1_3Br^+ BC1_4^-$.	46
10	Assignment and Comparison of the Fundamental	<u>.</u>
	Vibrational Frequencies of the PC12Br2 and	
	PBr ₃ Cl ⁺ Ions in the Presence of a Polyatomic	
	Anion Only (cm ⁻¹).	50
11	The Solid-State Raman Spectrum of the Product	
	(C) of the Reaction of Phosphorus Trichloride,	
	Bromine and Boron Trichloride in	
	Dichloromethane.	55

Table		Page
12	Assignment and Comparison of the Fundamental Vibrational Frequencies of the PCl ₂ Br ₂ ⁺ and PBr ₃ Cl ⁺ Ions in the Presence of Single Halide	
	$Ions (cm^{-1}).$	58
13	The Solid-State Raman and Infrared Spectrum of $Et_4 N^+$ SbBr ₆ (cm ⁻¹).	67
14	The Solid-State Raman and Infrared Spectrum of Et_4N^+ SbCl ₅ Er ⁻¹).	73

 An and the standard stand Standard stand Standard stand Standard st

•

Figure	LIST OF FIGURES	Page
1	The Solid-State Raman Spectrum of Phosphorus Pentabrowide and the Compound of Stoichiometry	
	PB Er ₈ .	10
2	The Solid-State Raman Spectrum of Normal and	16
	netastable rhospholus rentachiokide.	TO
3	for Norwal and Matastable Phosphorus	
	Pentachloride.	20
4	The Solid-State Raman Spectrum of the	
	Compound of Stoichiometry PC14F.	24
5	The Solid-State Infrared Spectrum of the	
	Compound of Stoichiometry PC14F.	25
6	Alternative Structures for the Octahedral	
	PC1 ₄ F ₂ Anion.	28
7	The Solid-State Raman Spectrum of the Initial	
	Product of the Reaction of Chlorine and	
	Dichlorofluorophosphine (PCl ₂ F).	30
8	The Solid-State Raman Spectrum of the compound of	
	Stoichiometry PBC17Br.	33
9	The Solid-State Raman Spectrum of	
	Trichlorobromophosphonium Hexafluorophosphate	-
	$(PCI_3Br PF_6)$.	37
10	The Solid-State Raman Spectrum of the Compound	
	of Stoichiometry P2 ^{Cl} 9 ^{Br} .	40
11	The Solid-State Raman Spectrum of the Product	
	(A) of an Unsuccessful Preparation of	45
10	$31 \qquad 31$	43
12	The Solid-State P M.M.R. Spectrum of	
	of PCl ₃ Br ⁺ ECl ₄ .	48
13	The Solid-State Raman Spectrum of the Product	
	(B) from the Addition of Boron Trichloride,	
	Phosphorus Trichloride and Bromine to	
	Dichloromethane.	51

- x -

- X1 -	

Figure		Page
14	The Solid-State Raman Spectrum of the Product (C) from the Reaction of Phosphorus Trichloride,	
	Bromine and Boron Trichloride in	
	Dichloromethane.	54
15	The Solid-State ³¹ P N.N.R. Spectrum of a	
	Compound whose Raman Spectrum is similar to	
	that of C.	57
16	The Solid-State Raman Spectrum of the	
	Compound of Stéichiometry PC13Br6.	61
17	The Solid-State Raman Spectrum of the	
	Compound of Stoichiometry PSbCl ₇ Br ₃ .	63
18	The Solid-State Raman Spectrum of the	
	Compound of Stoichiometry Et ₄ N SbBr ₆ .	66
19	The Solid-State Raman Spectrum of the	
	Compound of Stoichiometry Et ₄ N SbC1 ₅ Br (A).	69
20	Differential Scanning Calorimetry.	71
21	Comparison of the Solid-State Raman Spectra	
	of the Compound of Stoichiometry PSbCl ₉ Br	
	and Et ₄ N ⁺ SbC1 ₅ Br ⁻ .	75
22	Filtration Apparatus for Reactions in	
	Dichloromethane.	79
23	Reaction Vessel for Reactions in Liquid	
	Hydrogen Chloride.	81
24	Sublimation Apparatus for the Preparation	
	of Metastable PC1 ₅ .	85

0-0-0-0

and the second second

· · · ·

- 12 - 24 - 12 - 24

- 1 -

THE HALIDES OF PHOSPHORUS (V)

SECTION 1

1.1. Introduction

The chemistry of the phosphorus halides has been reviewed extensively in recent years (1 - 7). The possibility of both ionic and molecular modifications (4) for almost all of the known pentahalides is of particular interest.

1.1.1. Phosphorus Pentachloride (PC15) and

Phosphorus Pentabromide (PBr₅)

In the gas phase, phosphorus pentachloride exists as a trigonal bipyramidal molecule in equilibrium with chlorine and phosphorus trichloride (8). There is also evidence from mass spectrometry for some association, as P_2Cl_{10} units, in the gas phase (9). The gas phase trigonal bipyramidal structure of phosphorus pentachloride has been established by electron diffraction studies (10, 11, 12) and confirmed by infrared (13) and Raman (8) spectroscopy. Raman spectra also indicate a similar structure for molten phosphorus pentachloride (14, 15).

In the solid-state, however, phosphorus pentachloride exists as a pale yellow crystalline compound which has been shown by X-ray studies of material recrystallised from nitrobenzene to be of the form $PCl_4^+ PCl_6^-$ (16, 17). This has been confirmed by infrared and Raman spectroscopy (18, 19, 20, 95); ³¹P nuclear magnetic resonance spectra indicate two peaks, corresponding to PCl_4^+ and PCl_6^- (21, 22, 23).

LIBRART

terre a la companya de la companya da serie de la companya de la companya de la companya de la companya de la c

X-ray powder diagrams for phosphorus pentachloride purified by recrystallisation from carbon tetrachloride (24) and by sublimation (25), however, differ from the X-ray powder diagram for a sample of normal phosphorus pentachloride recrystallised from nitrobenzene. Moreover, when normal phosphorus pentachloride is sublimed using an "open" vacuum (that is, when the sublimation apparatus is left open to the pump) a metastable form of phosphorus pentachloride is obtained. The Raman spectrum (26) of this metastable form differs greatly from that of the original, the four bands assignable to the PCl₄⁺ cation being more intense relative to the three assigned to the PCl₆⁻ anion. When heated to 120°C. for 200 seconds, the metastable form has been shown by Raman spectroscopy to revert to the normal form (27).

Phosphorus pentachloride reacts with a number of inorganic chlorides, in particular boron trichloride (28 - 37) and antimony pentachloride (37, 33, 39), to form complexes based on the PCl₄⁺ cation. These complexes have been reviewed extensively (5, 7, 40, 41, 42). Their ionic nature has been suggested from vibrational spectroscopic studies.

Phosphorus pentabromide, although known for some time (43), has received little attention. Unlike the pentachloride, there is no evidence to support the existence of molecular phosphorus pentabromide (44) in the gas phase in which it is fully dissociated. In the solid phase, phosphorus pentabromide has been shown by X-ray studies to be of the form $PBr_4^+ Br^-$ (45, 46, 47). This has been confirmed by Raman spectroscopy (43, 49). Very few addition compounds of phosphorus pentabromide with inorganic bromides have been reported (6) though PBr_5 . BBr_3 (50, 51) is known.

1.1.2. The Mixed Halides of Phosphorus (V)

Of the mixed halides of phosphorus (V) the chlorofluorides have been investigated most thoroughly (4, 52). Of particular interest is the work of Holmes and co-workers (53, 54, 55, 56, 57). All the members of the series $PCl_n F_{5-n}$ (where n = 1, 2, 3 or 4) have been prepared in molecular form and have been shown by electron diffraction (58, PCl_2F_3), ¹⁹F nuclear magnetic resonance spectroscopy (59, PCl_3F_2 , PCl_2F_3 ; 60, PCl_2F_3 ; 61, $PCl F_4$) and vibrational spectroscopy (62, 63) to have trigonal bipyramidal structures with, where possible, fluorine atoms occupying axial positions. Apart from monochlorotetrafluorophosphorane, (PCl F_4), where evidence is lacking, the chlorofluorophosphoranes transform on standing at room temperature to their solid ionic modifications, all of which are based on the PCl_4^+ cation.

³¹P n.m.r. spectra of the ionic form of PCl_2F_3 indicate the presence of two species, PCl_4^+ and PF_6^- . Infrared and Raman spectra confirm these conclusions (64). An X-Ray powder pattern for $PCl_4^+ PF_6^$ prepared by direct fluorination of phosphorus pentachloride with arsenic trifluoride in arsenic trichloride (65) was identical to that for a sample prepared from molecular PCl_2F_3 (62). ³¹P n.m.r. spectra of the ionic form of PCl_3F_2 indicate the formulation $PCl_4^+ PCl_2F_4^-$ (66).

On the basis of molecular weight determinations in glacial acetic acid, it was originally proposed that the ionic form of tetrachlorofluorophosphorane, PCl_4F , was $PCl_4^+F^-$ (67). More recent unpublished measurements, however, in acetonitrile (5) indicate the presence of the $PCl_4F_2^-$ anion (68). The $PCl_4F_2^-$ anion has also been reported as the caesium salt (69). A recent infrared investigation of the ionic form of PCl_4F indicated reaction with glacial acetic acid and the alternative formulation $PCl_4^+ PCl_4F_2^-$ (70).

A compound of stoichiometry P_2Cl_9F has been prepared and the structure $PCl_4^+ PCl_5F^-$ inferred from qualitative electrolysis in acetonitrile solution (71) and mass spectrometry (9). Evidence from infrared and ¹⁹F n.m.r. spectroscopy for the mixed chlorofluorophosphonium ion, PCl_3F^+ , in PCl_3F^+ SbCl_6⁻ has been reported (72).

The bromofluorides of phosphorus (V) have not been investigated in any great detail. Dibromo trifluorophosphorane, PBr_2F_3 , (73) has been shown to exist in molecular form as a trigonal bipyramid both by ¹⁹F n.m.r. (60) and infrared and Raman (63) spectroscopy. The ionic form has been prepared by direct fluorination of phosphorus pentabromide (74) and the structure, $PBr_4^+ PF_6^-$, indicated by ³¹P n.m.r. (23) and Raman (75) spectroscopy. Tetrabromofluorophosphorane, PBr_4^F , has been prepared and the ionic form postulated as $PBr_4^+ F^-$ (76) though this is in doubt (6). Little is known of tribromo difluorophosphorane, PBr_3F_2 (77), and evidence from ³¹P n.m.r. and infrared spectroscopy (61) for the molecular form only of bromotetrafluorophosphorane PBr_4 , has been reported. As yet <u>no chlorobromo fluorides</u> of phosphorus (V), in either ionic or molecular form, have been reported. - 5 -

The chlorobromides of phosphorus (V) have been investigated for over 100 years. Few conclusions can be drawn from the earlier literature and only two compounds of certain consistution, PCl_{4.5} Br_{0.5} and PCl_{4.66} Br_{0.33}, have been reported.

 $PCl_{4.5}$ $Br_{0.5}$, or P_2 Cl_9 Br, a yellow crystalline compound was prepared by the reaction of phosphorus trichloride and bromine in arsenic trichloride (78). Fluorination in arsenic trichloride with arsenic trifluoride yielded the product $PCl_4^+ PF_6^-$ from which the formulation $PCl_4^+ PCl_5 Br^-$, was inferred. Fluorination of phosphorus pentachloride, $PCl_4^+ PCl_6^-$, in a similar manner, also gives $PCl_4^+ PF_6^-$. Direct reaction of phosphorus trichloride and bromine (25) initially yielded an unstable aggregate, PCl_3 $Br_{5.7}$, which on pumping gave a yellow solid, $PCl_{4.8}$ $Br_{0.4}^-$ Sublimation of $PCl_{4.8}$ $Br_{0.4}$ at 50°C. gave the compound $PCl_{4.66}$ $Br_{0.33}^-$ An X-Ray powder diagram of $PCl_{4.66}$ $Br_{0.33}$ showed it to be a unique single phase, all the lines of the diagram arising from a facecentered cubic unit cell. A structure determination based on powder data alone obtained fair agreement for an arrangement of 8 PCl_4^+ ions, 4 PCl_6^- ions and 4 Br^- ions in the unit cell.

The phosphorus trichloride-bromine system has been investigated by a number of workers and their results are summarised in Table 1. In general, the reaction is said to produce either some or all the compounds of general formula: PCl_4 Br; PCl_3 (Br₂)_n; and PCl_2 Br (Br₂)_n (where n = 1 to 10). Some Russian workers (79, 80)

$$\frac{\operatorname{Prinvault, 1872}(86)}{\operatorname{PCl_3Br_2}}$$

$$\operatorname{PCl_3Br_2}$$

$$\operatorname{PCl_3Br_3} \longrightarrow \operatorname{PCl_3} \longrightarrow \operatorname{PCl_3Br_4}$$

$$\operatorname{PCl_2Br_7} \longrightarrow \operatorname{PCl_3} \longrightarrow \operatorname{PCl_4Br}$$

$$\operatorname{Michaelis, 1872}(85)$$
sealed at low temp, and left $\rightarrow \operatorname{PCl_3Br_2} + \operatorname{PCl_3}$

$$\operatorname{rcl_3Br_2} \longrightarrow \operatorname{Br_2}$$

$$\operatorname{rcl_3Br_2} \longrightarrow \operatorname{Br_2} \longrightarrow \operatorname{PCl_2Br_3} \longrightarrow \operatorname{PCl_2Br_3} + \operatorname{Br_2}$$

$$\operatorname{PCl_3Br_2} \longrightarrow \operatorname{Br_2} \longrightarrow \operatorname{PCl_2Br_3} \longrightarrow \operatorname{PCl_2Br_3} \longrightarrow \operatorname{PCl_2Br_3}$$

$$\operatorname{PCl_3Br_2} \longrightarrow \operatorname{PCl_4Br} + \operatorname{PCl_2Br_3} \longrightarrow \operatorname{PCl_2Br_3} + \operatorname{Br_2} \longrightarrow \operatorname{PCl_3Br_3}$$

$$\operatorname{PCl_3Br_2} \longrightarrow \operatorname{PCl_4Br} + \operatorname{PCl_2Br_3} + \operatorname{Id_2} \leftrightarrow \operatorname{PCl_3Br_3}$$

$$\operatorname{PCl_3Br_2} \operatorname{PCl_4Br} \longrightarrow \operatorname{PCl_4Br} + \operatorname{PCl_2Br_3} + \operatorname{Id_2} \leftrightarrow \operatorname{PCl_3Br_3}$$

$$\operatorname{Pcl_4Br} \longrightarrow \operatorname{Pcl_4Br} + \operatorname{PCl_2Br_3} + \operatorname{Id_2} \leftrightarrow \operatorname{Pcl_4Br} + \operatorname{Pcl_3Br_4} \otimes \operatorname{Pcl_4Br} + \operatorname{Pc$$

claim to have isolated the compounds $PCl_3 Br_4$ and $PCl_3 Br_{18}$ and to have detected a further compound, $PCl_3 Br_8$, by viscosity measurements. Attempts, however, to repeat their preparation of $PCl_3 Br_4$ failed (25). Renc (81) claimed to have prepared the yellow crystalline compound, $PCl_4 Br$, which on heating to $135^{\circ}C$. gave $PCl_{4.5} Br_{0.5}$. Milobedzki and Krakowieki (82) also claim to have prepared $PCl_4 Br$.

Mixtures of phosphorus trichloride and bromine in the ratio 1: 0.0833 to 20 are said to yield four phases at 25° C. : a yellow crystalline phase of limited composition PCl_4Br ; a red crystalline phase of limited composition PCl_2Br_5 ; a clear red liquid of varying composition from $PCl_{2.952}$ $Br_{0.154}$ to $PCl_{2.795}$ $Br_{0.461}$; and finally a brown-red phase (I) also of varying composition from $PCl_{3.439}$ $Br_{4.677}$ to PCl_3 Br_{20} (83). In the vapour phase, phosphorus trichloride and bromine react to give a "ruby-like" crystalline compound (II) in which the halogen : phosphorus ratio varies from 7.1 to 8.6 : 1. The brown-red phase (I) mentioned previously, crystallises out completely on seeding with the "ruby-like" material (II) and cooling to 0° C. These crystals from the brown-red phase yield PCl_4 Br on pumping. Materials I and II were suggested to be solid mixtures of PCl_4 Br, PCl_2 Br₅ and Br₂.

Stern (84) and Michaelis (85) claim to have prepared PC1₃ Br₂, but contemporary (86) and later work (82) leave this in some doubt.

The mutual reactions of the tri- and penta-chlorides and bromides of phosphorus have also been investigated as possible synthetic routes to the chloro-bromides of phosphorus (V). The phosphorus pentachloride-pentabromide reaction has been investigated by a number of workers (82, 87, 88, 89, 90). In general, the products are similar to those produced by direct reaction of phosphorus trichloride and bromine. It has been claimed that PBr₄ Cl is produced from (i) the reaction of phosphorus pentachloride with excess phosphorus tribromide (81) and (ii) the reaction of excess phosphorus pentabromide with phosphorus trichloride (90).

The compound of stoichiometry PBCl₇Br has been prepared by the reaction of phosphorus trichloride, bromine and boron trichloride in anhydrous liquid hydrogen chloride at -96° C. (91). A formulation of PCl₃Br⁺ BCl₄⁻ was inferred from the infrared spectrum. The reaction of antimony pentachloride with phosphorus tribromide (in a 2 : 1 mole ratio) gave a compound of formula PSbCl₇Br₃, which was formulated as PBr₃Cl⁺ SbCl₆⁻ (72). This compound, however, was unstable and could not therefore be satisfactorily characterised.

- 8 -

1.2. Results and Discussion

1.2.1. The Tetrabromophosphonium (PBr_4^+) and the <u>Tetrachlorophosphonium (PCl_4^+) Cations</u>

1.2.1.1. The Tetrabromophosphonium Cation (PBr4⁺)

The solid-state Raman spectra of phosphorus pentabromide $(PBr_4^+ Br^-)$ and the compound of stoichiometry $PBBr_8$ are presented in Figure 1. Solid-state Raman data for these two compounds, together with solid-state Raman data for the compound of stoichiometry Et_4N BBr_4 , is presented in Table 2.

Comparison of the solid-state Raman spectrum of tetraethylammonium bromide $(\text{Et}_4\text{N}^+\text{Br}^-)$, with bands at 426 and 682 cm⁻¹, with that for the compound of stoichiometry Et_4N BBr₄ strongly indicates the presence of the Et_4N^+ cation in this compound. Further, the presence of bands in the solid-state Raman spectra of the compounds of stoichiometry Et_4N BBr₄ and PBBr₈ at~119, 170 and 245 cm⁻¹ previously assigned to the BBr₄⁻ ion (92), strongly suggests the formulation of these compounds as Et_4N^+ BBr₄⁻ and PBr₄⁺ BBr₄⁻ respectively. The four remaining bands in the solid-state Raman spectrum of PBr₄⁺ BBr₄⁻ can now be assigned to the tetrahedral PBr₄⁺ cation. They are at 104, 149, 252 and 499 cm⁻¹.

The four bands assigned to the PBr_4^+ ion in PBr_4^+ BBr_4^- differ, in both position and intensity, from the four bands assigned to

- 9 -

-10----

	Phosph	iorus Pentabromi	de (PBr ₄ Br)	and the
	Compou	unds of Stoichio	metry PBBr 8 and	Et 4NBBr 4
PBr ₄ ⁺ cm ⁻¹	Br	PBBr8 cm ⁻¹	Et ₄ N BBr ₄ cm ⁻¹	Assignment
24	(10)			
41	(1.5)			
45	(1)			lattice modes a
49	(1)		· · · · · · · · · · · ·	ta set d
60	(1.5)		an an an an an a	
72	(3.5)	104 (2)	· · · · ·	v_2 (e) PBr ₄ ⁺
83	(1)	• •	· · · · ·	~ ~ ~
2		115 (1.5)	119 (6)	$\sqrt[3]{2}$ (e) BBr ₄ ^{-b}
139	(3)			
145	(3)	149 (6)		$\sqrt{4}$ (t ₂) PBr ⁺
157	(1)			, , , , , , , , , , , , , , , , , , ,
		169 (1.5)	170 (5)	$\sqrt{(t_2)} BBr_4^{-b}$
	• .	248sh.(3)	245 (10)	$(a_1) BBr_4^{-b}$
229	(10)	252 (10)		$\sqrt{1}$ (a) PBr ₄ +
			420 (2.5)	Et,N ⁺
471	(3)			÷s, 4 − 1, − 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
476	(2)	499 (1)	•), (t.) PBr. +
482	(4)			¥ 5 ° 4° 4
			678 (2.5)	Et ₄ N ⁺

TABLE	2.	Comparison	of	the	Solid-State	Raman S	spectra	of

Figures in parentheses are relative intensities on scale 0 - 10.

sh. - shoulder, a - reference 49, b - reference 92. the cation in $PBr_4^+ Br^- (48, 49)$. The totally symmetric (a_1) band at 229 cm⁻¹ in PBr_5 is shifted upwards by ~ 20 cm⁻¹ to 252 cm⁻¹ in $PBr_4^+ BBr_4^-$. A similar pattern is observed for the doubly degenerate (e) band at ~72 cm⁻¹ and one of the remaining two, triply degenerate (t_2) , bands at ~476 cm⁻¹ in $PBr_4^+ Br^-$. The other triply degenerate (t_2) band at ~145 cm⁻¹ in PBr_5 changes very little in position, but becomes more intense relative to the very strong a_1 band. The doubly degenerate band at ~72 cm⁻¹ and the triply degenerate band at ~476 cm⁻¹ in PBr_5 become less intense relative to the a_1 band. A similar pattern relative to $PBr_4^+ Br^-$ has been observed for the compounds tetrabromophosphonium hexabromotantalate $(PBr_4^+ PF_6^-, 93)$.

Thus there appears to be two sets of fundamental vibrational frequencies for the PBr_4^+ ion, depending upon whether the ion is in the presence of (i) a Br⁻ ion or (ii) a polyatomic anion (e.g. BBr_4^- , Ta Br_6^- , PF_6^- etc.).

1.2.1.ii. Phosphorus Pentachloride and the

Tetrachlorophosphonium Cation $(PC1_4^+)$ The solid-state Raman spectrum of phosphorus pentachloride $(PC1_4^+ PC1_6^-)$ has been recorded previously and results are summarised below:

The Solid-State Raman Spectrum of Phosphorus Pentachloride (PC14 PC16)

Reference	PC14+				PC16			
	\hat{v}_1 (a ₁)	⊋ ₂ (e)	$\hat{v}_{3}(t_{2})$	$\nabla_4(t_2)$	$\widehat{\mathbf{v}}_{1}(\mathbf{a}_{1g})$	$\widehat{\mathbf{v}}_{2}^{(e_g)}$	$\sqrt[3]{_5(t_{2g})}$	
18 (1955)	451	173	627	244	358	285	244	
19 (1963)	458	171	658	251	360	281	150	
20 (1969)	460	182-179	642	2 55 -252	354	273 -264	243-240	

The results of Livingston and Ozin (20) do not agree well with the previously published data. The band at 150 cm⁻¹, assigned by Carlson to the triply degenerate $\sqrt[3]{5}(t_{2g})$ band of PCl₆, has since been shown to be spurious (95) and there is some confusion concerning the triply degenerate $\sqrt[3]{3}(t_2)$ band for PCl₄⁺.

Correct assignment of the Raman spectrum of PCl_5 ($PCl_4^+ PCl_6^-$) is most important in the present work. Consequently, all the bands in the solid-state Raman spectrum of PCl_5 have been assigned by comparison with solid-state Raman data for $Et_4N^+ PCl_6^-$, $PCl_4^+ BCl_4^-$, and $Me_4N^+ BCl_4^-$ (Table 3). Previous work (18, 19, 20) was used as a guideline in the assignment of bands. These

TAELE 3.	Compar	cison of the Sol:	id-Sta	ite Raman Sj	pectr	um of	
	Phosph	norus Pentachlor:	ide (H	C1 + PC1 -),		
	Et4N+	PC1 , PC1 + BC	¹ 4 <u>•</u> •	and Me ₄ N ⁺ B	<u>c</u> 1 ₄ -		
PC14 P	c1 ₆	Et4N PC16	PC14	BC14	Me4N	• BC14	Assignment
cm^{-1}		c ⁻¹	cm^{-1}		cm ⁻¹		
							ана. Алагана ж ала
177 (2)			180	(3))2(e) PC14
			194	(3)	193	(10)	$J_2(e) BC1_4^{-6}$
241 sh.(2)	241 (1)			2	• •	√5(t2)PC16 ^{-C}
250 (6)			253	(7)		s de la companya de la	√4(t2)PC14+
278 (4.	5)	280 (2.5)				er en	$\sqrt{2}(e_g)PC1_6^{-c}$
			281	(1)	277	(7)	$_{24}(t_2)BC1_4^{-6}$
359 (10))	360 (10)					$v_1^{(a_{1g})PC1_6}$
			409	(1)	408	(10)	$\sqrt{1}^{(a_1)BC1_4}$
456 (4.	5)		460	(10)			$\sqrt[3]{(a_1)PCl_4}^+$
					459	(3)	Me 4N+
656 (0.	5)		656	(0.5)			$\sqrt{3}(t_2)PCl_4^+$
					75 7	(10)	Me

Figures in parentheses are relative intensities on scale 0 - 10.
a - reference 37. (for PC1₄ + assignments).
b - reference 92.
c - reference 95.

->

assignments are summarised below:

Assignment of the Solid-State Raman Spectrum of Phosphorus Pentachloride (PC1₄ $\stackrel{+}{PC1_6}$) PC1₄ PC1₆ \neg_1 (a₁) \neg_2 (e) \neg_3 (t₂) \rightarrow_4 (t₂) γ_1 (a_{1g}) γ_2 (e_g) γ_5 (t_{2g}) 456 177 656 250 359 278 241

When phosphorus pentachloride is sublimed under open vacuum conditions (Section 1.1.1.), a metastable form of phosphorus pentachloride is produced (26, 27). The solid-state Raman spectrum of the metastable form differs from that of the normal form as shown in Figure 2 and Table 4.

. . .

`

٤

	of	Normal and	i Met	astable	Phosphorus	Pentachlo	ride
Norm cm ⁻¹	al PC15	M	letas -1 cm	table PC	^{:1} 5	Assignme	at
177	(2)	1	185	(1.5)		$\sqrt{2}$ (e) P	c1 ₄ +
241	sh. (2)					√ ₅ (t _{2g})	PC16
250	(6)	2	245	(5.5)		⇒ ₄ (t ₂)	PC14+
278	(4.5)	2	276	(1)		$\stackrel{>}{\sim}_2$ (eg)	PC16
359	(10)	3	362	(3)		√1 (a _{1g})	PC16
456	(4.5)	L	442	(10)		⊽ ₁ (a ₁)	PC14+
656	(0.5)	e	539	(2)		√ ₃ (t ₂)	PC14+

TABLE 4. Comparison of the Solid-State Raman Spectrum

Figures in parentheses are relative intensities on scale 0 - 10. sh. - shoulder. A metastable form is also produced by the reaction of phosphorus pentachloride and bromine in dichloromethane. From Raman spectra it is clear that the metastable form reverts to the normal form on heating. The solid-state Raman spectrum of a sample of metastable PCl_5 , prepared in dichloromethane, indicated partial conversion to the normal form on heating at $130^{\circ}C$. for two hours.

The bands at 276 and 362 cm⁻¹ in the Raman spectrum of metastable PCl₅ indicate the presence of the PCl₆ anion. The intensities of these two bands relative to the PCl₄ bands are considerably less for the metastable form. In normal PCl₅ there is a 1 : 1 ratio of PCl₄ *: PCl₆ •. The Raman evidence thus suggests that there are fewer PCl₆ ions than PCl₄ * ions in the metastable form. If this is correct, then in order to preserve (i) electroneutrality and (ii) the observed stoichiometry, it seems probable that the metastable form contains some Cl⁻ ions in the crystal lattice. Thus a formulation containing PCl₄ *, PCl₆ and Cl⁻ ions, is suggested for metastable PCl₅.

The differences (frequencies and intensities) between the PCl_4^+ bands in the solid-state Raman spectra of normal and metastable PCl_5 are summarised below and can clearly be seen in Figure 2.

The Fundamental Vibrational Frequencies of the $PC1_4^+$ Cation in Normal and Metastable $PC1_5$ (cm⁻¹)

	[∨] 1 (a1)	$\sqrt{2}$ (e) $\sqrt{3}$ (t ₂)	$\sqrt{4}$ (t ₂)
Normal	456 (10)	177 (4.5) 656 (1)	250 (15.5)
Metastable	442 (10)	185 (1.5) 639 (2)	245 (5.5)

The two stretching frequencies at 456 and 656 cm⁻¹ for PCl₄⁺ in normal PCl₅ decrease by ~ 20 cm⁻¹ in the metastable form. Further, the intensities of the bands at 177 and 250 cm⁻¹ for PCl₄⁺ in normal PCl₅ decrease for the metastable form.

A similar pattern of shifts for the two stretching frequencies is observed for the PBr_4^+ cation (Section 1.2.1.i.). The PBr_4^+ bands at 252 and 499 cm⁻¹ in PBr_4^+ BBr_4^- decrease by ~ 20 cm⁻¹ in PBr_4^+ Br⁻. Thus it appears that two sets of fundamental frequencies occur for the PCl_4^+ and PBr_4^+ ions depending upon whether they are in the presence of (i) a polyatomic anion only (e.g. BBr_4^- , PCl_6^- , BCl_4^-) or (ii) a single halide ion (e.g. Cl^- , Br^-).

Differential Scanning Calorimetry-

The results of a differential scanning calorimetric investigation of normal and metastable PCl_5 gave results diagrammatically illustrated in Figure 3. Results for four separate runs for normal PCl_5 indicate only one transition, at $110 \stackrel{+}{=} 1^{\circ}C$. (383 $\stackrel{+}{=} 1^{\circ}K$), in the range 40 - 165°C. The transition is endothermic and results

FIGURE 3. Differential Scanning Calorimetry: Thermograms for Normal and Metastable PC1₅.

are summarised below:

Differential Scanning Calorimetric Results for Normal Phosphorus Pentachloride (PC14 PC16)

Sample(mg)	Transition Temperature (^K)	Enthalpy of Transition (kJ mole ⁻¹) $ riangle H_T$	Entropy of Transition (J mole ⁻¹) (^o K ⁻¹) $ riangle S_T$	"3 _{"1}
A 19.18	383 [±] 1	1.84-0.04	4.80-0.12	1.7 ± 0.1
B 19.37	383 [±] 1	1.80-0.08	4.70-0.22	1.8 ± 0.0
B re-run	383 [±] 1	1.96-0.08	5.12-0.22	1.9 ± 0.0
C 15.27	383 [±] 1	1.80-0.29	4.70-0.77	1.8 ± 0.1
C re-run	383 [±] 1	1.50-0.13	3.92-0.35	1.6 [±] 0.1
D 6.30	384 [±] 1	1.71-0.21	4.45-0.56	1.7 [±] 0.1

The magnitude of the entropy change, $\triangle S_T$, deserves comment. An endoentropic solid \rightleftharpoons solid transition has associated with it an increase in disorder (96). For such transitions an approximate value for the entropy change, $\triangle S_T$, is given by the equation

1

$$\Delta s_{T} = R i n^{n_2} / n_{\eta}$$

where n_1 is the number of states of disorder statistically occupied in the initial phase and n_2 is the number of states of disorder statistically occupied in the final phase. For normal PC1₅, the ratio n_2/n_1 is approximately equal to two for the crystal transition at 110°C. (383°K). That is to say, either one of the ions in normal $PCl_5 (PCl_4^+ \text{ and } PCl_6^-)$, occupies twice the number of orientations in the crystal above 110° C. as below. A detailed knowledge of the crystal structure of normal PCl_5 , above and below 110° C, would be required to determine which ion can occupy the new set of orientations and what the nature of these orientations is (97).

Results for metastable PCl₅ for four runs and four re-runs in the region 40° C- 120° C and six runs and six re-runs in the region 120° C - 160° C, indicate two transitions, an endotherm at $111 \stackrel{+}{=} 2^{\circ}$ C. ($384 \stackrel{+}{=} 2^{\circ}$ K) and an exotherm at $130 \stackrel{+}{=} 4^{\circ}$ C. ($403 \stackrel{+}{=} 4^{\circ}$ K). The endotherm is invariably smaller than that for normal PCl₅ in the same region. Neither the endotherm nor the exotherm are reproducible and on re-running after covering the range 100° C - 160° C, the magnitude of the endotherm increases slightly, whereas the magnitude of the exotherm decreases or disappears.

Raman spectra indicate partial conversion only of metastable PCl_5 to normal PCl_5 after heating at 130°C. for two hours as none of the above runs for metastable PCl_5 were over two hours, this may account for the irreproducibility of the results.

and the second second

1.2.1.iii. The Ionic Form of the Compound of Stoichiometry PC1, F

Two alternative formulations, $PCl_4^+F^-$ and $PCl_4^+PCl_4F_2^-$, have been proposed for the ionic form of the compound of stoichiometry PCl_4F . The formulation $PCl_4^+F^-$ (I) was originally suggested on the basis of molecular weight determinations in glacial acetic acid (67) but from more recent infrared investigations a formulation $PCl_4^+PCl_4F_2^-$ (II) was proposed (70). In formulation I the PCl_4^+ cation is in the presence of a single halide ion (F⁻) and in II a polyatomic anion $(PCl_4F_2^-)$. In principle it should be possible to distinguish between the two by means of solid-state Raman spectroscopy on the basis of the conclusions above (Section 1.2.1.ii.).

 PCl_4F was prepared by the addition of excess chlorine to dichlorofluorophosphine (PCl_2F) at ca. $-78^{\circ}C$. At this stage, the reaction vessel contained in a small amount of white solid (Initial Product) and a large amount of pale green liquid, probably molecular PCl_4F (53). On standing at room temperature for 3-4 days, the whole solidified to give a white crystalline compound (Final Product). A total elemental analysis indicated the stoichiometry PCl_4F .

Final Product

The solid-state Raman and infrared spectra of the final product (of stoichiometry PCl₄F) from the reaction of excess Cl₂ and PCl₂F, are presented in Figures 4 and 5, and compared in Table 5.

The four bands at 190, 248, 442 and 539 cm⁻¹ in the solid-state Raman spectrum are characteristic of the PCl_{4}^{+} ion in the presence

- 24 -

- 25 -

Raman cm ⁻¹	Infrared ^a cm ⁻¹	Assignment
65 (2)		lattice mode
190 (0.5)		$\sqrt[3]{2}$ (e) PC1 ₄ ⁺
248 (3.5)	255 m	v_4 (t ₂) PCl ₄ ⁺
263 (0)		
284 (0)		
322 (0)	320 w	
	<u>3</u> 76 w	
396 (0.5)	395 w	
442 (10))1 (a1) PC14
·	450 m	$\sqrt[3]{t_{1u}} PC1_6^{-b}$
	475 m	
	528 m/w	
	558 _{VW}	↓ (I _{1u}) PF ₆ ^{-b}
:	579	
	586 m/w	
	595	
639 (2)	6 45 s	$\sqrt[3]{t_2} PCl_4^+$
	685 w	. :
· · · · · · · · ·	720 m	Nujol
	7 50 m	
	765 m	
	775 m	
	850 s	\hat{v}_3 (t _{1u}) PF_6^{-b}

TABLE 5. Comparison of the Solid-State Raman and Infrared

ı

1

Spectra of the Compound of Stoichiometry PC14F.

Figures in parentheses are relative intensities on the scale 0-10 a. range 200 - 1000 cm⁻¹ m - medium, w - weak, m/w - medium to weak, vw - very weak, s - strong, b. reference 6 and references cited therein. of a single halide ion. Thus, of the two alternatives proposed, the Raman spectroscopic evidence favours the $PCl_4^+F^-$ formulation, since for this only four bands would be expected.

There are, however, a number of weaker bands in the Raman spectrum at 263, 284, 322 and 396 cm⁻¹. Further, as fluorine-containing species (e.g. $PCl_4F_2^{-}$) are expected to be weaker scatterers (relative to the PCl_4^{+} ion) it would be unlikely that P-F stretching bands would be observed in the Raman. Fluoride analyses of the hydrolysate, although variable were always low for the formulation $PCl_4^{+}F^{-}$ and indicated that not all the fluorine in PCl_4F was present as fluoride.

Examination of the solid-state infrared spectrum shows it to be more complex than that expected for the simple $PCl_4^{+}F^{-}$ formulation. The PCl_4^{+} ion is indicated by bands at 255 and 645 cm⁻¹. The band at 450 cm⁻¹ indicates the presence of the PCl_6^{-} anion and the two bands at 553 and 850 cm⁻¹ suggest the presence of the PF_6^{-} anion. The presence of these ions $(PCl_6^{-}$ and $PF_6^{-})$ as impurities is indicated by comparison of the infrared spectrum of PCl_4F with those of $PCl_4^{+} PCl_6^{-}$ and $PCl_4^{+} PF_6^{-}$. The PF_6^{-} and PCl_6^{-} hands in the infrared spectrum of PCl_4F are less intense relative to the PCl_4^{+} bands. The infrared spectrum is similar to that obtained by Walther (70) from which the formulation $PCl_4^{+} PCl_4F_2^{-}$ was inferred. The presence of bands in the P-F stretching region at 750, 765 and 775 cm⁻¹ and in the octahedral P-Cl stretching region at 475, 500 and 528 cm⁻¹ strongly suggests the presence of a complex species containing P-F and P-Cl bands. In view of the elemental anylytical evidence for the stoichiometry PCl_4F and the presence of the PCl_4^+ ion, the most probable form of the above complex species is $PCl_4F_2^-$.

Thus Raman spectroscopy indicates the PCl_4^+ ion in the presence of a fluoride ion and infrared spectroscopy suggests the presence of the $PCl_4F_2^-$ anion. Further, analysis indicates some fluoride present in PCl_4F though not enough for the formulation $PCl_4^+F^-$. An intermediate formulation containing PCl_4^+ , F^- and $PCl_4F_2^$ satisfies the above evidence and may be a possibility. A similar formulation was proposed for metastable PCl_5 (Section 1.2.1.ii.) which was thought to contain PCl_4^+ , Cl^- and PCl_6^- ions.

There are two alternative structures for the octahedral $PC1_4F_2^{-1}$ anion, as indicated in Figure 6.

FIGURE 6. Alternative Structures for the PC1₄F₂ anion.

Walther (70) proposed a cis structure for the PCl_4F_2 anion on the basis of the number of bands in the infrared spectrum of ionic PCl_4F . The number of bands expected for a cis (C_{2y}) structure is 13 (Appendix B). However, the number of coincident Raman and infrared bands for the cis and trans (D_{4h}) structures are 13 and 0, respectively (Appendix B). The small number of coincident Raman and infrared bands (Table 5), assignable to the $PCl_4F_2^-$ ion, does not agree with Walther's results and strongly favours a trans structure for the $PCl_4F_2^-$ ion.

Initial Product

The solid-state Raman spectrum of the initial product of the reaction of excess chlorine and PC1₂F is presented in Figure 7. Elemental analysis indicated a slightly high chlorine content for the stoichiometry PC1₄F and may explain the presence of the PC1₆ band at 358 cm⁻¹. The bands at 176, 250, 451 and 657 cm⁻¹ are characteristic of the PC1₄⁺ ion in the presence of a polystomic anion only. The bands at 261, 279, 320 and 394 cm⁻¹ are present in the Raman spectrum of the final product (above) and have been assigned to the PC1₄F₂⁻ ion. Thus the above evidence favours the formulation PC1₄⁺ PC1₄F₂⁻ where the PC1₄⁺ ion is in the presence of the PC1₄F₂⁻ anion only.

Comparison of the Raman spectra of the initial and final products shows a decrease in intensity of the $PCl_4F_2^-$ bands relative to the PCl_4^+ bands for the final product. The above evidence is consistent with the conclusions concerning the formulations of the initial and final products. For a formulation containing PCl_4^+ , F^- and $PCl_4F_2^-$ ions, for the final product, there are fewer $PCl_4F_2^-$ ions relative to PCl_4^+ ions than for a formulation PCl_4^+ $PCl_4F_2^-$, proposed for the initial product.

ډ

On standing at room temperature for 3-4 days or heating at 130°C. for 24 hours, Raman spectra indicate that the initial product reverts to the final product.

Thus the conclusions to date concerning the ionic form of the compound of stoichiometry PCl_AF may be summarised as follows:

- (1) PCl_2F reacts initially with excess chlorine to form a small amount of white solid, probably $PCl_4^+ PCl_4F_2^-$, and a large amount of pale green liquid, probably molecular PCl_4F .
- (2) On standing at room temperature for 3-4 days, the white solid, probably $PCl_4^+ PCl_4F_2^-$, and the pale green liquid transform to a white solid containing PCl_4^+ , F^- and $PCl_4F_2^-$ ions in the crystal lattice.
- (3) The most probable structure for the octahedral PCl_4F_2 ion is a trans structure with fluorine atoms occupying axial positions.

e de la composición de

- 1.2.2. The Trichlorobromophosphonium Ion (PC1_Br)
- 1.2.2.i. The Compounds of Stoichiometry PBC17Br and P2C13BrF6

The compound of stoichiometry $PBCl_7Br$ was prepared by the addition, in order, of boron trichloride, phosphorus trichloride, and bromine to liquid anhydrous hydrogen chloride at ca. -96°C. On warming to room temperature, the solvent evaporated, leaving a white solid. Elemental analysis indicated a P:Cl:Br ratio of 1:7:1, and the stoichiometry $PBCl_7Br$. The solid-state Raman spectrum of the above compound is presented in Figure 8.

The presence of the BC1₄ ion in PBC1₇Br is strongly indicated by (i) the bands at 192, 280 and 409 cm⁻¹ in the Raman spectrum (92) (ii) comparison with the solid-state Raman spectrum of Me₄N⁺ BC1₄⁻ and (iii) "B n.m.r. spectroscopy. A value of +11.7 $\stackrel{+}{-}$ 0.5 p.p.m. for the "B n.m.r. shift (measured relative to B(0 Me)₃ used as an external standard) agrees well with values for Me₄N⁺ BC1₄⁻ (+12.1 $\stackrel{+}{-}$ 1 p.p.m.) and (C₆H₅)₃C⁺ BC1₄⁻ (+ 12.9 $\stackrel{+}{-}$ 1 p.p.m.) (99). The evidence above strongly suggests the formulation PC1₄Br⁺ BC1₄⁻ for the compound of stoichiometry PBC1₇Br.

The close correspondence between the fundamental vibrational frequencies of the PCl_4^+ ion and the isoelectronic $SiCl_4$ (98) provides a convenient starting point for the assignment of the frequencies of the PCl_3Br^+ ion.

$$\overline{v}_1$$
 (a_1) \overline{v}_2 (e) \overline{v}_3 (t_2) \overline{v}_4 (t_2)PC14456177656250sic14424150610221

The reduction from the T_{d} (PC1₄⁺, SiC1₄) to the C_{3v} (PC1₃Br⁺, SiC1₃Br) point group results in the splitting of the two t_2

FIGURE 8. The Solid-State Raman Spectrum of the Compound of Stoichiometry PBC1, Br.

- 33 -

modes into a₁ and e modes.

The eix fundamental vibrational frequencies for the PCl_3Br^+ ion are all active in both the Raman and in the infrared. In the absence of Raman polarisation data the assignments have been made by analogy with the iscelectronic SiCl_3Br (98) as follows:

	γ_1 (a ₁)	³ 2 (a ₁)	3 (a ₁)	√ ₄ (e)) ₅ (e)	⇒ ₆ (e)
PC13Br+	582	391	214	648	2 32	156
SiCl ₃ Br	545	368	191	610	205	135

Assignment of the solid-state Raman and infrared spectra of trichlorobromophosphonium tetrachloroborate (PC1₃ Br^+ BC1₄) is presented in Table 6.

Solid-state ³¹P n.m.r. spectroscopy (99) gave a value of -48 ± 1 p.p.m. (measured relative to $857 H_3PO_4$) for the ³¹P chemical shift of the PCl₃Br⁺ ion in PCl₃Br⁺ BCl₄⁻. This corresponds well with the value predicted for PCl₃Br⁺ by interpolation between the ³¹P chemical shifts for PCl₄⁺ in PCl₅ (-88.3 \pm 0.5 p.p.m.) and for PBr₄⁺ in PBr₅⁺ (+ 104 \pm 1 p.p.m.) (104).

In order to confirm the assignment of the fundamental vibrational frequenties of the PCl_3Br^+ ion an alternative source of the ion,

	S	pectra of PC13Br ⁺ BC1 ₄ .	
Rama cm	an -1	Infrared cm ⁻¹	Partial Assignment
156	(5)	155 ^a	\hat{v}_6 (e) PC1 ₃ Br ⁺
192	(2.5)		v_2 (e) BC1 ₄ b
214	(10)	213 m	$v_{3} (a_{1}) PC1_{3} Br^{+}$
232	(6)	231 m	$\sqrt[3]{5}$ (e) PCl ₃ Br ⁺
280	(1)	275 v w	[√] 4 (t ₂)BC1 ₄ [−] ^b
346	(0.5)		impurity
391	(10)	3 90 m	γ_2 (a ₁)PCl ₃ Br ⁺
409	(2.5)		\rightarrow_1 (a ₁) BC1 ₄ b
		493 m	
		520 m	
582	(1)	574 s	$\sqrt[3]{1}$ (a ₁)PC1 ₃ Br ⁺
643	(0.5)	634 s	$\sqrt[3]{4}$ (e) PCl ₃ Br ⁺
	-	663 vs. br.	$\sqrt[3]{(t_2)BC1_4}^{b}$

TABLE	6.	Assignment	of	the	Solid-	State	Raman	and	Infrared	l
		and the second division of the second s	the second second	_	and the second se	the second s			And the second s	-

Figures in parentheses are relative intensities on scale 0-10. a. recorded using a Grubb-Parsons Cube Interferometer m - medium, vw - very weak, s - strong, vs - very strong, br - broad, b. reference 92. trichlorobromoghosphonium hexafluorophosphate (PCl₃Br⁺ PF₆⁻), was investigated (100). PCl₃Br⁺ PF₆⁻ was prepared by the addition of phosphorus trichloride, bromine and phosphorus pentafluoride to liquid anhydrous hydrogen chloride at ca. -96°C. Evaporation of the solvent left a white solid. A total elemental analysis indicated the stoichiometry $P_2Cl_3BrF_6$. The solid-state Raman spectrum of PCl₃Br⁺PF₆⁻ is presented in Figure 9. Assignment of the solid-state Raman and infrared (above 200 cm⁻¹) spectra of PCl₃Br⁺ PF₆⁻ is presented in Table 7.

The presence of the PF_6^- ion in $PCl_3Br^+ PF_6^-$ is indicated by (i) bands in the Raman spectrum at 472 and 743 cm⁻¹ and in the infrared spectrum at 552 and 834 cm⁻¹ (6) (ii) comparison with the solid-state Raman and infrared spectrum of $Et_4N^+ PF_6^-$ and (iii) solid-state ³¹P n.m.r. spectroscopy. A ³¹P chemical shift (99) of + 142.7 [±] 1 p.p.m. (measured relative to 85% H₃PO₄) agrees well with that for PF_6^- in $PCl_4^+ PF_6^-$ (+ 140 p.p.m.) (23). The presence of PCl_4^+ , as an impurity, is indicated by bands, weak relative to the PCl_3Br^+ bands, at 180, 254 and 462 cm⁻¹ in the Raman. Further impurity bands at 200, 203, 309, and 353 cm⁻¹ result from the mixed chlorobromophosphonium ions, $PCl_2Br_2^+$ and PBr_3Cl^+ (Section 1.2.3.).

The bands assigned to the fundamental vibrational frequencies of the PCl₃Br⁺ ion in PCl₃Br⁺ PF₆⁻ (Table 7) agree well in both position and intensity, in the Raman and the infrared, with those assigned to the PCl₃Br⁺ ion in PCl₃Br⁺ BCl₄⁻. Thus the oitiginal assignment is confirmed.

- 37 -

TABLE	7.	Assignment of the Solid-State Raman and Infrared
		(above 200 cm ⁻¹) Spectra of Trichlorobromophosphonium
		Hexafluorophosphate (PCl ₃ Br ⁺ PF ₆).

159 n.i. $\stackrel{1}{}_{6}^{}$ (e) $PC1_{3}Br^{+}$ 180 $PC1_{4}^{+}$ impurity 200 impurity 208 impurity 217 216 m $\stackrel{1}{}_{3}^{}$ (a_{1}) $PC1_{3}Br^{+}$ 235 233 m $\stackrel{1}{}_{5}^{}$ (e) $PC1_{3}Br^{+}$ 254 253 w $PC1_{4}^{+}$ impurity 309 impurity 353 352 w impurity 399 397 m $\stackrel{1}{}_{2}$ (a_{1}) $PC1_{3}Br^{+}$ 462 $PC1_{4}^{+}$ impurity 490 m $\stackrel{1}{}_{5}$ (t_{2g}) PF_{6}^{-b} 525 m $\stackrel{1}{}_{4}$ (t_{1u}) PF_{6}^{-b} 552 s $\stackrel{1}{}_{4}$ (t_{1u}) PF_{6}^{-b} 552 s $\stackrel{1}{}_{4}$ (t_{1u}) PF_{6}^{-b} 572 m $\stackrel{1}{}_{5}$ (t_{2g}) PF_{6}^{-b} 572 m $\stackrel{1}{}_{4}$ (t_{1u}) PF_{6}^{-b} 574 m $\stackrel{1}{}_{4}$ (e) $PC1_{3}Br^{+}$ 647 m $\stackrel{1}{}_{4}$ (e) $PC1_{3}Br^{+}$ 647 m $\stackrel{1}{}_{4}$ (a_{1g}) PF_{6}^{-b} 834 vs $\stackrel{1}{}_{3}$ (t_{1u}) PF_{6}^{-b}	Raman ^a cm ⁻¹	Iufrared cm ⁻¹	Assignment
180 PCl_4^+ impurity 200 impurity 208 impurity 217 216 m $3_3 (a_1) PCl_3 Br^+$ 235 233 m $3_5 (a_1) PCl_3 Br^+$ 254 253 w PCl_4^+ impurity 309 impurity 353 352 w impurity 399 397 m $3_2 (a_1) PCl_3 Br^+$ 462 PCl_4^+ impurity 472 $3_5 (t_{2g}) PF_6^- b$ 525 m $525 m$ 525 m $3_4 (t_{1u}) PF_6^- b$ 552 a $3_4 (t_{1u}) PF_6^- b$ 558 m $3_1 (a_1) PCl_3 Br^+$ 647 m $3_4 (e) PCl_3 Br^+$ 743 $3_1 (a_{1g}) PF_6^- b$ 834 vs $3_3 (t_{1u}) PF_6^- b$	159	n.i.	$\sqrt[3]{6}$ (e) PCl ₃ Er ⁺
200 impurity 208 impurity 217 216 m ${}^{3}_{3}$ (a ₁) PCl ₃ Br ⁺ 235 233 m ${}^{5}_{5}$ (e) PCl ₃ Br ⁺ 254 253 w PCl ₄ ⁺ impurity 309 impurity 353 352 w impurity 399 397 m ${}_{2}$ (a ₁) PCl ₃ Br ⁺ 462 PCl ₄ ⁺ impurity 472 ${}^{5}_{5}$ (t _{2g}) PF ₆ ^{- b} 525 m 4 (t _{1u}) PF ₆ ^{- b} 552 s ${}^{4}_{4}$ (t _{1u}) PF ₆ ^{- b} 558 m ${}^{1}_{4}$ (a ₁) PCl ₃ Br ⁺ 647 m ${}^{4}_{4}$ (e) PCl ₃ Br ⁺ 743 ${}^{3}_{1}$ (a _{1g}) PF ₆ ^{- b} 634 vs ${}^{3}_{3}$ (t _{1u}) PF ₆ ^{- b}	180		PC14 ⁺ impurity
208 impurity 217 216 m ${}^{3}_{3}$ (a ₁) PCl ₃ Br ⁺ 235 233 m ${}^{5}_{5}$ (e) PCl ₃ Br ⁺ 254 253 w PCl ₄ ⁺ impurity 309 impurity 353 352 w impurity 399 397 m ${}_{2}$ (a ₁) PCl ₃ Br ⁺ 462 PCl ₄ ⁺ impurity 472 ${}^{5}_{5}$ (t _{2g}) PF ₆ ^{- b} 525 m ${}^{5}_{5}$ (t _{2g}) PF ₆ ^{- b} 552 a ${}^{1}_{4}$ (t _{1u}) PF ₆ ^{- b} 558 m ${}^{1}_{1}$ (a ₁) PCl ₃ Br ⁺ 647 m ${}^{1}_{4}$ (e) PCl ₃ Br ⁺ 743 ${}^{1}_{1}$ (a _{1g}) PF ₆ ^{- b} 634 va ${}^{3}_{3}$ (t _{1u}) PF ₆ ^{- b}	200		impurity
217 216 m 3_{3} (a ₁) PC1 ₃ Br ⁺ 235 233 m 3_{5} (e) PC1 ₃ Br ⁺ 254 253 w PC1 ₄ ⁺ impurity 309 impurity 353 352 w impurity 399 397 m 3_{2} (a ₁) PC1 ₃ Br ⁺ 462 PC1 ₄ ⁺ impurity 490 m 472 3_{5} (t _{2g}) PF ₆ ^{-b} 525 m 552 a 3_{4} (t _{1u}) PF ₆ ^{-b} 558 m 3_{1} (a ₁) PC1 ₃ Br ⁺ 647 m 3_{4} (e) PC1 ₃ Br ⁺ 647 m 3_{4} (e) PC1 ₃ Br ⁺	208		impurity
235 233 m $\gamma_{5}^{}$ (e) $PC1_{3}Br^{+}$ 254 253 w $PC1_{4}^{+}$ impurity 309 impurity 353 352 w impurity 399 397 m γ_{2} (a ₁) $PC1_{3}Br^{+}$ 462 $PC1_{4}^{+}$ impurity 490 m 472 $\gamma_{5}^{}$ (t _{2g}) PF_{6}^{-} b 525 m 552 s $\gamma_{4}^{}$ (t _{1u}) PF_{6}^{-} b 558 m γ_{1} (a ₁) $PC1_{3}Br^{+}$ 647 m γ_{4} (e) $PC1_{3}Br^{+}$ 647 m $\gamma_{4}^{}$ (e) $PC1_{3}Br^{+}$ 647 m $\gamma_{1}^{}$ (a _{1g}) PF_{6}^{-} b 834 vs $\gamma_{3}^{}$ (t _{1u}) PF_{6}^{-} b	217	. 216 m	$\sqrt[3]{(a_1)}$ PC13Br ⁺
254 253 w $PC1_{4}^{+}$ impurity 309 impurity 353 352 w impurity 399 397 m ϑ_{2} (a ₁) $PC1_{3}Br^{+}$ 462 $PC1_{4}^{+}$ impurity 490 m 472 ϑ_{5} (t _{2g}) PF_{6}^{-b} 525 m 552 s ϑ_{4} (t _{1u}) PF_{6}^{-b} 558 m ϑ_{1} (a ₁) $PC1_{3}Br^{+}$ 647 m ϑ_{4} (e) $PC1_{3}Br^{+}$	235	233 m	2 5 (e) PC1 ₃ Br ⁺
309 impurity 353 352 w impurity 399 397 m γ_2 (a_1) PCl ₃ Br ⁺ 462 PCl ₄ ⁺ impurity 462 γ_5 (t_{2g}) PF ₆ ⁻ b 472 γ_5 (t_{2g}) PF ₆ ⁻ b 525 m $\sqrt{4}$ (t_{1u}) PF ₆ ⁻ b 552 s $\sqrt{4}$ (t_{1u}) PF ₆ ⁻ b 558 m γ_1 (a_1) PCl ₃ Br ⁺ 647 m $\sqrt{4}$ (e) PCl ₃ Br ⁺ 743 $\sqrt{1}$ (a_{1g}) PF ₆ ⁻ b 834 vs $\sqrt{3}$ (t_{1u}) PF ₆ ⁻ b	254	253 w	PC14 impurity
353 352 w impurity 399 397 m γ_2 (a ₁) PCl ₃ Br ⁺ 462 PCl ₄ ⁺ impurity 490 m 490 m 472 γ_5 (t _{2g}) PF ₆ ^{- b} 525 m γ_4 (t _{1u}) PF ₆ ^{- b} 552 s γ_4 (t _{1u}) PF ₆ ^{- b} 558 m γ_1 (a ₁) PCl ₃ Br ⁺ 647 m γ_4 (e) PCl ₃ Br ⁺ 743 γ_1 (a _{1g}) PF ₆ ^{- b} 834 vs γ_3 (t _{1u}) PF ₆ ^{- b}	309		impurity
399 397 m $\sqrt[3]{2}$ (a ₁) PCl ₃ Br ⁺ 462 PCl ₄ ⁺ impurity 490 m $\sqrt[3]{5}$ (t _{2g}) PF ₆ ^{-b} 525 m $\sqrt[3]{4}$ (t _{1u}) PF ₆ ^{-b} 552 s $\sqrt[3]{4}$ (t _{1u}) PF ₆ ^{-b} 558 m $\sqrt[3]{1}$ (a ₁) PCl ₃ Br ⁺ 647 m $\sqrt[3]{4}$ (e) PCl ₃ Br ⁺ 743 $\sqrt[3]{1}$ (a _{1g}) PF ₆ ^{-b} 834 vs $\sqrt[3]{1}$ (t _{1u}) PF ₆ ^{-b}	353	352 w	impurity
462 490 m 472 $3_5 (t_{2g}) PF_6^{-b}$ 525 m 552 s $3_4 (t_{1u}) PF_6^{-b}$ 558 m $3_1 (a_1) PC1_3Br^+$ 647 m $3_4 (e) PC1_3Br^+$ $3_1 (a_{1g}) PF_6^{-b}$ $3_1 (a_{1g}) PF_6^{-b}$ $3_1 (a_{1g}) PF_6^{-b}$ $3_1 (a_{1g}) PF_6^{-b}$ $3_1 (t_{1u}) PF_6^{-b}$	399	397 m	$\sqrt[3]{2}$ (a ₁) PCl ₃ Br ⁺
490 m 472 $3_5 (t_{2g}) PF_6^{-b}$ 525 m 552 s $3_4 (t_{1u}) PF_6^{-b}$ 558 m $3_1 (a_1) PC1_3Br^+$ 647 m $3_4 (e) PC1_3Br^+$ 743 $3_1 (a_{1g}) PF_6^{-b}$ 834 vs $3_3 (t_{1u}) PF_6^{-b}$	462		PC14 ⁺ impurity
472 $3_{5} (t_{2g}) PF_{6}^{-b}$ 525 m 552 s $3_{4} (t_{1u}) PF_{6}^{-b}$ 558 m $3_{1} (a_{1}) PC1_{3}Br^{+}$ 647 m $3_{4} (e) PC1_{3}Br^{+}$ $3_{1} (a_{1g}) PF_{6}^{-b}$ $3_{1} (a_{1g}) PF_{6}^{-b}$ $3_{3} (t_{1u}) PF_{6}^{-b}$		490 m	
525 m 552 s $\sqrt{4}$ (t_{1u}) PF_6^{-b} 558 m $\sqrt{1}$ (a_1) $PC1_3Br^+$ 647 m $\sqrt{4}$ (e) $PC1_3Br^+$ 743 $\sqrt{1}$ (a_{1g}) PF_6^{-b} 834 vs $\sqrt{3}$ (t_{1u}) PF_6^{-b}	472		√5 (t2g) PF6 ^{-b}
552 s $\sqrt{4}$ (t _{1u}) PF_6^{-b} 558 m $\sqrt{1}$ (a ₁) $PC1_3Br^+$ 647 m $\sqrt{4}$ (e) $PC1_3Br^+$ 743 $\sqrt{1}$ (a _{1g}) PF_6^{-b} 834 vs $\sqrt{3}$ (t _{1u}) PF_6^{-b}		525 m	
$\begin{array}{cccc} 558 \text{ m} & \stackrel{1}{}_{1} (\mathbf{a}_{1}) & \text{PC1}_{3} \text{Br}^{+} \\ 647 \text{ m} & \stackrel{1}{}_{4} (\mathbf{e}) & \text{PC1}_{3} \text{Br}^{+} \\ \hline \\ 743 & \stackrel{1}{}_{1} (\mathbf{a}_{1g}) & \text{PF}_{6}^{-b} \\ \hline \\ & & & \hat{\mathbf{a}}_{3} (\mathbf{t}_{1u}) & \text{PF}_{6}^{-b} \end{array}$		552 s	$\sqrt[y]{4}$ (t _{1u}) PF ₆ ^{-b}
743 $ \begin{array}{c} 647 \text{ m} \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$		558 m	v_1 (a) PC13Br ⁺
743 334 vs $31 (a_{1g}) \text{ PF}_6^{-b}$ $33 (t_{1u}) \text{ PF}_6^{-b}$		647 m	\downarrow_4 (e) PCl ₃ Br ⁺
$834 \text{ vs} \qquad \qquad$	743		$\sqrt{1}$ (a _{1g}) PF_6^{-b}
		834 vs	v_3 (t _{1u}) PF_6^{-b}

a. Raman intensities (Figure 9) are difficult to interpret as the spectrum is still coming off the exciting line at 250 cm⁻¹. n.i. - not investigated, m - medium, w - weak, s - strong, v.s. - very strong b. Reference 6. 1.2.2.ii. The Compound of Stoichiometry P2C19Br.

The compound of stoichiometry P_2Cl_9Br , prepared by the reaction of phosphorus trichloride and bromine in arsenic trichloride, was originally proposed to have one of the alternative formulations:

$$PCl_{3}Br^{+}PCl_{6}^{-} PCl_{4}^{+}PCl_{5}Br^{-}$$
(I)
(II)

The original investigation (78), using partial fluorination of the complex with As F_3 in As Cl_3 , indicated formulation II. During the present work, efforts to prepare a compound containing the PCl₅Br⁻ ion (e.g. Et₄N Br + PCl₅ in CH₂Cl₂), in order to confirm the formulation II by Raman and infrared spectroscopy, were unsuccessful. The solid-state Raman spectrum of P_2Cl_9Br is presented in Figure 10.

The bands at 181, 246, 438 and 638 cm⁻¹ in the Raman spectrum of P_2Cl_9Br are characteristic of the PCl_4^+ ion in the presence of a single halide ion. Apart from these, the presence of the PCl_6^- ion is also indicated, by bands at 360 and 274 cm⁻¹. Solid-state ³¹P n.m.r. spectroscopy confirms the presence of both these ions and in addition the PCl_3Br^+ ion (99). The remaining unassigned bands in the Raman spectrum at 158, 203, 230, 568, and 626 may be assigned to the PCl_3Br^+ ion. The strong a_1 band at 391 cm⁻¹ in the Raman spectrum of PCl_3Br^+ BCl_4⁻ (Section 1.2.2.i.) does not appear to be present in the Raman spectrum of P_2Cl_9Br . Resolution, however, of the broad band at 360 cm⁻¹ indicates two bands, one at 360 cm⁻¹ (PCl_6⁻) and the other at 365 cm⁻¹ assignable to the PCl_3Br^+ ion. Thus Raman and ³¹P n.m.r. spectroscopy strongly suggest the presence of the PCl_4^+ , PCl_3Br^+ and PCl_6^- ions, together with single halide

٦,

- 40 -

ions, in P_2Cl_9Br . Thus a simple formulation such as I or II appears to be impossible. Assignment of the solid-state Raman and infrared spectra of P_2Cl_9Br is presented in Table 8.

An X-Ray powder photograph (103) for P_2Cl_9Br confirms that a unique single phase is present and not a mixture of different crystalline components. All the lines on the diagram can be interpreted as arising from a face-centred cubic cell with $a = 12.32 \stackrel{+}{=} 0.05 \stackrel{\wedge}{A}$. Previously a compound which gave an elemental analysis corresponding to $PCl_{4.66} Br_{0.33}$ (25) was investigated by X-Ray powder photography. $PCl_{4.66} Br_{0.33}$ also has face-centred cubic geometry (with $a = 12.38 \stackrel{\wedge}{A}$) and thus appears to be similar to P_2Cl_9Br . From powder data alone, the unit cell for $PCl_{4.66} Br_{0.33}$ was proposed to comprise of $8 PCl_4 \stackrel{+}{,} 4 PCl_6$ and 4 Br ions.

By analogy with $PCl_{4.66}$ $Br_{0.33}$, it is suggested that P_2Cl_9Br might be formulated as $6 PCl_4^+$, $2 PCl_3Br^+$, $4 PCl_6^-$, and $4 Br^-$ ions. Such a formulation satisfies the P_2Cl_9Br stoichiometry and qualitatively seccounts for the relative intensities of the bands for the different species from both Raman and ^{31}P n.m.r. spectra.

Comparison of the Raman spectrum of P_2Cl_9Br with that of $PCl_3Br^+ BCl_4^-$ (Section 1.2.2.i.) indicates some shifts in the bands assigned to the PCl_3Br^+ ion. The PCl_3Br^+ bands at 214, 391, 582 and 648 cm⁻¹ in the Raman spectrum of $PCl_3Br^+ BCl_4^-$ are shifted down to 203, 365, 568 and 638 cm⁻¹ in P_2Cl_9Br . The evidence thus suggests that there are two sets of fundamental vibrational frequencies for the PCl_3Br^+ ion (presented below) depending on the

TABLE 8. Assignment of the Solid-State Raman and Infrared (above 200 cm⁻¹) Spectra of the Compound of Stoichiometry P₂Cl₉Br.

Raman cm ⁻¹	Infrared cm ⁻¹	Assignment
158 (1)	n.i.	$\sqrt{5}$ (e) PCl ₃ Br ⁺
181 (2)		$\sqrt[3]{2}$ (e) PC1 ₄ ⁺
203 (3)		$\sqrt[3]{a_1}$ PCl ₃ Br ⁺
230 (2)	228 w	$\sqrt{5}$ (e) PCl ₃ Br ⁺
246 (6)	250 m	$\sqrt[3]{4}$ (t ₂) PCl ₄ ⁺
274 (1)		$\sqrt[3]{2}$ (eg) PC1 ⁻
	288 w	
365/360 (3)		$\sqrt{1}$ (a _{1g}) PCl ₆ and $\sqrt{2}$ (a ₁) PCl ₃ Br ⁺
438 (10)		$\sqrt[3]{(a_1)}$ PC14
	450 vs	$\sqrt{3}$ (t _{1u}) PC1 ^{-a}
	494 w	
568 (0.5)	565 w	$\sqrt[3]{1}$ (a ₁) PCl ₃ Br ⁺
	579 m	
	587 m	
626 (0.5)	625 m	v_4 (e) PCl ₃ Br ⁺
638 (2)	64 3 vs	$\sqrt[3]{t_2}$ PC14

Figures in parentheses are relative intensities on scale 0-10. a. reference 6 and references cited therein. n.i. not investigated. w - weak, m - medium, vs - very strong. presence of either (i) a polyatomic anion $(BC1_4, PF_6)$ or (ii) a single halide ion (Br^-) .

The Fundamental Vibrational Frequencies of the Trichlorobromophosphonium Ion (PCl₃Br⁺)

In the presence of	$^{>}1^{(a_1)}$	$\downarrow_2(a_1)$	$\sqrt[3]{a_1}$	√ ₄ (e)	⇒ ₄ (e)	$\sqrt[4]{4}$	
i) A polyatomic anion	E 0 3	301	217	64.9	0.00	156	
(BC1 ₄)	382	391	214	043	232	120	
ii) A single halide							
ion (Br ¹)	568	365	203	626	230	158	

Thus we have two sets of fundamental vibrational frequencies for the three phosphonium ions, PBr_4^+ , PCl_4^+ and PCl_3Br^+ . 1.2.3. The Dichlorodibromophosphonium and the Chlorotribromophosphonium Lons (PCl₂Br₂⁺ and PBr₃Cl⁺).

> The following four reactions were investigated in attempts to prepare pure compounds containing either of the two ions $PCl_2Br_2^+$ and PBr_3Cl^+ : (Appendix C).

(1) $PC1_3 + Br_2 + BC1_3$ in CH_2C1_2 (2) $PC1_3 + Br_2 + BC1_3$ in liquid HC1. (3) $PC1_3 + Br_2 + BBr_3$ in CH_2C1_2 . (4) $PC1_3 + Br_2 + BBr_3$ in liquid HC1.

Under certain conditions reaction (2) yields $PCl_3Br^+ BCl_4^-$ (Section 3.1.1.). Mostly, however, the solid-state Raman spectra of the products of such reactions were too complex to be explained in terms of simple formulations (e.g. $PCl_2Br_2^+ BCl_4^-$ etc.).

The solid-state Raman spectrum of the product (A) of an unsuccessful $PCl_3Br^+ BCl_4^-$ preparation is presented in Figure 11 and Table 9. Elemental analyses for (A) indicated a high bromine content and a low chlorine content for the formulation $PCl_3Br^+ BCl_4^-$.

A number of bands in the Raman spectrum can be assigned to the PCl_4^+ , PBr_4^+ , PCl_3Br^+ and BCl_4^- ions. The PCl_4^+ and PBr_4^+ bands are weak relative to the bands for PCl_3Br^+ . It should be noted that those bands assigned to the phosphonium ions are characteristic of these ions in the presence of polyatomic anions only.

TABLE	9.	The	Solid-State	Raman	Spectrum	of	the	Product	(A)
					-				-	-

of	an	Unsuccessful	Preparation	of	PC13Br BC14	
----	----	--------------	-------------	----	-------------	--

c m ⁻¹		Partial Assignment	1	Partial Assignment
81	(7)		521 (1)	
90	(5)		583 (1)	1 (a1) PC13Br ⁺
119	(ú)		600 (1)	
129	(6)		634 (1)	
145	(6) sh.		643 (1) V	4 (e) PC13Br ⁺
151	(7)			
156	(7)	$\sqrt[9]{5}$ (e) PCl ₃ Br ⁺		
176	(9)			
179	(7) sh.			
193	(6) sh.	$\sqrt[3]{2}$ (e) BC1 ₄ a	Figures in pares	ntheses are
200	(3)		relative intens	ities on
2 08	(10)		scale 0 - 10.	
216	(7)	$\sqrt[3]{a_1}$ PCl ₃ Br ⁺	sh shoulder.	
235	(6)	,) ₅ (e) PCl ₃ Br ⁺	a. reference 92	•
242	(5)	v_1 (a ₁) PBr ₄ ⁺		
259	(4)	y_4 (t ₂) PCl ₄ ⁺		
281	(4)	v_4 (t ₂) BC1 ₄ - a		
301	(7)		· · .	
345	(7)			
391	(6)	v_2 (a ₁) PCl ₃ Br ⁺		
410	(3)	$\sqrt{1}$ (a ₁) BC1 ₄ - a		
455	(1)	v_1 (a ₁) PCl ₄ ⁺		
493	(2)	$\sqrt{3}$ (t ₂) PBr ₄ ⁺		
504	(1)			

•

The ³¹P n.m.r. spectrum of A, presented in Figure 12, indicates three ³¹P n.m.r. chemical shifts at -49.6, -9.8 and +30.5 p.p.m. (relative to 85% H_3PO_4) (99). The ³¹P n.m.r. shift at -49.6 p.p.m. has previously been assigned to the PCl₃Br⁺ ion in PCl₃Br⁺ BCl₄⁻ (Section 1.2.2.i.). The³¹P shifts at -9.3 and + 30.5 p.p.m. correspond closely with values predicted for the PCl₂Br₂⁺ and PBr₃Cl⁺ ions, respectively, by interpolation between the ³¹P chemical shifts for PCl₄⁺ in PCl₅ (-38.3 [±] 0.5 p.p.m.) and PBr₄⁺ in PBr₅ (+ 104 [±] 1 p.p.m.)(104). Thus solid-state Raman and ³¹P n.m.r. spectra indicate the presence, mainly, of the following ions in A: PCl₃Br⁺; PCl₂Br₂⁺; PBr₃Cl⁺, and BCl₄⁻. The number of Raman bands expected for the PCl₂Br₂⁺ (9) and the PBr₃Cl⁺ (6) ions (Appendix A) corresponds well with the number of unassigned bands in the Raman spectrum of A (16).

A number of preparations yielded solids whose Raman spectra were similar to the Raman spectrum of A with respect to frequency. The intensity of the Raman bands, however, varied from compound to compound. A study of the Raman spectra of these compounds indicated that the bands do not vary independently with respect to intensity but can be grouped together according to whether they increase or decrease relative to one another. In this way the unassigned bands in the Raman spectrum of A can be devided into two groups at (i) 129, 145, 179, 200, 208, 345, 521, 600 and 634 cm⁻¹ and at (ii) 119, 151, 176, 301 and 504 cm⁻¹. These two groups of bands can thus be assigned to the $PCl_2Br_2^+$ and the PBr_3Cl^+ ions, respectively. Assignment of these vibrational frequencies to the fundamental modes of the $PCl_2Br_2^+$ and PBr_3Cl^+ ions (in the presence

- 48 -

of a polyatomic anion only) was then carried out by analogy with the isoelectronic $SiCl_2Br_2$ and $SiBr_3Cl$ (Section 1.2.1.i., 98). Reduction from the T_d (PCl₄⁺, PBr₄⁺, SiCl₄, SiBr₄) to the C_{3v} (PCl₃Br⁺, PBr₃Cl⁺, SiCl₃Br, SiBr₃Cl) and finally to the C_{2v} (PCl₂Br₂⁺, SiCl₂Br₂) point groups results in the following pattern of splittings (101).

All of the fundamental vibrational frequencies for the $PCl_2Br_2^+$ and the PBr_3Cl^+ ions are artive in the Raman and most (except for the a_2 mode of $PCl_2Br_2^+$) are active in the infrared (Appendix A).

In Table 10, the $PCl_2Br_2^+$ and PBr_3Cl^+ ions (in the presence of a polyatomic anion only) are listed and compared with the isoelectronic $SiCl_2Br_2$ and $SiBr_3Cl$ species. Assignments for the PCl_4^+ ion (in PCl_4^+ PCl_6^-), the PCl_3Br^+ ion (in PCl_3Br^+ BCl_4^-) and the PBr_4^+ ion (in PBr_4^+ BBr_4^-) are also incldded.

The solid-state Raman spectrum of the product (B) from the addition, in order, of boron trichloride, phosphorus trichloride and bromine to dichloromethane is presented in Figure 13. The simplicity of the Raman spectrum suggested a pure compound.

TABLE 10.	Assignment and Comparison of the Fundamental							
	Vibratic	n al Fre qu	<u>d</u>					
	PBr 3C1+	PBr_Cl ⁺ ions in the Presence of a Polyatomic						
	Anion Or	1y (Cm ⁻¹)	-					
	^a 1		e		t ₂		t ₂	
PC14+	456	1	.77		656	2	250	
(SiC1 ₄)	(424)	(1	.50)	(610)	(2	221)	
				/	\backslash	7		
	J.		L		Ŕ		7	
.	^a 1		e	^a 1	e	^a 1	e	
PC13Br	391	1	.56	582	648	214	232	
(SiCl ₃ Br)	(368)	(1	.35)	(545)	(610)	(191)	(205)	
							\checkmark	
	^â l	^a 1	^a 2	^a 1	^b 1	^b 2 ^a 1	^b 1 ^b 2	
PC12Br2+	345	129	145	600	521 6	34 200 1	208	
(SiCl ₂ Br ₂)(326)	(111)	(122)	(563)	(508) (60	05) (182)(1	(191))
		\backslash	/		\backslash /		\setminus /	
	ł	7	V	Ļ	7 *		$r \downarrow$	
	a 1	e	2	^a 1	e	a 1 .	e	
PBr ₃ ^{C1+}	301	11	.9		504	151	176	
(SiBr ₃ Cl)	(288)	(10	1)	(579)	(498)	(159)	(173)	
					/			
,	∳ a,	e	√ !	Ň	y ↓ t ₂	e t	· /	
PBr ₄ ⁺	252	10	14	4	99	.14	-	
(SiBr ₄)	(249)	(9	90)	(4	87)	(13	(137)	

Total elemental analysis, however, did not indicate a simple stoichiometry but a P:Cl:Br:F ratio of 1.7:7.9:3.0:1.0. 31 P n.m.r. spectroscopy showed one 31 P chemical shift at -41.8 p.p.m.(relative to 80% H₃PO₄) (99) indicating the PCl₃Br⁺ ion.

Comparison of the bands (positions and intensities) assigned to the PCl₃Br⁺ ion in the Raman spectrum of P₂Cl₃Br (Section 1.2.2.11.) with a number of bands in the Raman spectrum of B strongly supports the presence of the PCl₂Br⁺ ion in B.

Vibrational Frequencies of the PCl ₃ 3r ⁺ Ion (cm ⁻¹)									
	٦ ^ر	(a ₁)	² (² 1)	$\mathbf{a}_{3}(\mathbf{a}_{1})$.√4(e)	V4(e)	√ ₄ (e)		
in	P ₂ Cl ₉ Er	568	365	203	626	230	158		

376

in a

565

161

There is strong evidence for the presence of single halide ions in P2Cl4Br (Section 1.2.2.ii.). The close correspondence between the bands assigned to the PCl_Br ion in the Raman spectra of P_Cl_Br and E thus indicates the presence of single halide ions in B. Elemental analysis for B indicates a phosphorus to boron ratio of 1.7 : 1.3. For formulations containing polyatomic amions only (i.e.) equal amounts of tetrahalophosphonium and tetrahaloborate ions; e.g. PCl3Br⁺, PCl2Br2⁺ and 2 BCl4⁻ etc.), the ratio would be 1:1.

204

628

230

The solid-state infrared spectrum of B (above 200 cm⁻¹) showed bands at 204, 231 and 368 cm⁻¹ indicative of the PCl₃Br⁺ ion. The bands, however, at 565 and 628 cm⁻¹ (in the Raman) expected in the infrared for the PCl₃Br⁺ ion are obscured by a very broad and intense band covering the 500-700 cm⁻¹ region. The BCl₄⁻ anion has a very broad infrared band in the 500-700 cm⁻¹ region. "B n.m.r. spectroscopy indicates one "B chemical shift at + 14.7 p.p.m. (measured relative to B(OMe)₃)close to the "B chemical shift for Me₄N⁺BCl₄⁻ (+12.1 [±] 1 p.p.m.) (99).

The solid-state Raman spectrum of the product (C) of a reaction similar to that for B is presented in Figure 14 and Table 11. Elemental analysis indicates a C1:Br:B ratio of 7.3: 2.9: 1.0 (calculating phosphorus by difference the P:C1:Br:B ratio would be 1.7: 7.3: 2.9: 1.0). A number of weak bands in the Raman spectrum can be assigned to the PCl_4^+ , PBr_4^+ , PCl_3Br^+ (both in the presence of halide and polyatomic anions) and BCl_4^- ions. The bands at 160, 200, 230, 373, 567 and 629 cm⁻¹ have been assigned, above, to the PCl_3Br^+ ion in the presence of a single halide ion. The band at 200 cm⁻¹, however, is too intense relative to the other PCl_3Br^+ bands to be accounted for entirely by this ion.

In the present work, the solid-state Raman spectra of a large number of compounds, prepared by reactions (1), (2), (3) and (4), were found to be similar to that of C with respect to the position of bands. The intensities of the Raman bands, however, varied from compound to compound. Solid-state 31 P n.m.r. spectra of a

- 54 -

TABLE 11.		The Solid-State Raman Spectrum of the Product							
		(C) From the	e Reactio	on of Phoe	sphorus Trichloride,				
		Bromine and Boron Trichloride in Dichloromethane							
c m ^{-]}	L		Partia	l Assign	ment				
40									
123	(3)								
133	(4)								
150	(3.5)								
160	(3)		√ ₆ (e)	PC13Br ⁺					
173	(9)								
190	(8)								
200	(10)		$\sqrt[]{_3(a_1)}$	PC13Br ⁺					
23 2	(3.5)		√ ₅ (e)	PC13Br ⁺					
252	(1)		$\sqrt[4]{4(t_2)}$	PC14+					
280	(7.5)								
327	(10)								
373	(7)		$v_2(a_1)$	PC13Br ⁺					
392	(0.5)		$\sqrt[2]{a_1}$	PC13Br+	(polyatomic anion)				
410	(0.0)		$\sqrt[]{1(a_1)}$	BC14	an an taona an				
440	(0.5)		$\hat{v}_1(a_1)$	PC14+	8. .				
456	(0.0)		$(a_1)^{(a_1)}$	PC14+	(polyatomic anion)				
490	(0.5)	• . · · · · .	$\sqrt[3]{t_2}$	PBr ₄ +	(polyatomic anion)				
5 00	(3)		١						
520	(0.5)								
567	(0.3)		$\sqrt[n]{1(a_1)}$	PC13Br ⁺					
584	(1.5)		-		n de la companya de La companya de la comp				
616	(1)		the states	÷	e a construction de la construction				
629	(0.5)		$\sqrt[]{}_{4}(e)$	PC1 ₃ Br ⁺					

Wigures in parenthesis are relative intensities on scale 0-10. Unless otherwise stated, assignments for phosphonium ions are in the presence of single halide ions.

.

number of these compounds indicated the presence of all three chlorobromophosphonium ions. The ³¹P n.m.r. spectrum of a compound whose Raman spectrum is similar to C, is presented in Figure 15.

Thus solid-state Raman and ${}^{31}P$ n.m.r.spectra indicate the presence of the PCl₃Br⁺, PCl₂Br₂⁺ and PBr₃Cl⁺ ions, together with single halide ions, in C. A study of the Raman spectra of the compounds referred to above indicated that the intensities of the bands do not vary independently but can be grouped together according to whether they increase or decrease relative to one another. In the same way, as for compound A, it was possible to divide the unassigned bands in the Raman spectrum of C into two groups at (i) 133, 150, 173, 190, 200, 327, 520, 584 and 616 cm⁻¹ and (ii) 123, 150,173, 280, 500, and 584 cm⁻¹. These two groups of bands are assignable, on the basis of position and intensity, to the PCl₂Br₂⁺ and PBr₃Cl⁺ ions, respectively.

The $PCl_2Br_2^+$ and PBr_3Cl^+ ions, in the presence of single halide ions, are assigned in Table 12 by analogy with the isoelectronic $SiCl_2Br_2$ and $SiBr_3Cl$ (98) and compared with assignments for the PCl_4^+ ion (in metastable PCl_5), the PCl_3Br^+ ion (in B) and the PBr_4^+ ion (in PBr_4^+ Br^).

Thus it appears that the $PCl_2Br_2^+$ and PBr_3Cl^+ ions, together with the PCl_4^+ , PBr_3Cl^+ and PBr_4^+ ions, may be assigned two sets of fundamental vibrational frequencies depending upon the presence of either (i) polyatomic anions only (e.g. BCl_4^- , BBr_4^- etc) or (ii) single halide ions (Cl^- or Br^-).

Assignment and comparison of the fundamental							
Vibration	12 ^{Br} 2 ⁺ _a	nd					
PBr ₃ C1 ⁺ ions in the Presence of Siggle Halide Ions (cm ⁻							
a 1	e	t	2	t ₂			
4 42 185		6 39		245			
(424)	(150)	(610)		(221)			
		/	\backslash	- /			
J _			\checkmark		\checkmark		
aı	e	^a 1	e	^a 1	e		
376	161	565	628	204	230		
(368)	(135)	(545)	(610)	(191)	(205)		
.↓ 	a a	↓ a.	\downarrow \downarrow \downarrow	↓ a_	b. b.		
-1	¹ ²	-1	~1 ~2	-1	·1 ·2		
327	133 150	584	520 616	190	173 200		
(326)	(111) (122)	(563) (508) (605)) (182)	(174) (191)		
	. \ /		\setminus /		\setminus /		
Ţ	$\downarrow \downarrow$	\downarrow	$f \uparrow$	Ļ	\uparrow \uparrow		
^a 1	e	⁸ 1	e .	^a 1	e		
280	123	584	500	150	173		
(288)	(101)	(579)	(498)	(159)	(173)		
		- \	/	\backslash			
			1				
^a 1	e	^t 2		t	2		
229 72		,~476		~145			
(249) (90)		(487)		(137)			
	the States .		e a la composition de la composition de La composition de la c				
	 A strange state 	in the states of					
	Assignmen <u>Vibration</u> <u>PBr₃C1⁺ i</u> a ₁ 442 (424) \downarrow a ₁ 376 (368) \downarrow a ₁ 327 (326) \downarrow a ₁ 280 (288) \downarrow a ₁ 229 (249)	Assignment and comparis Vibrational Frequencies PBr ₃ Cl ⁺ ions in the Pre a ₁ e 442 185 (424) (150) \downarrow \downarrow \downarrow a ₁ e 376 161 (368) (135) \downarrow \downarrow \downarrow a ₁ a ₁ a ₂ 327 133 150 (326) (111) (122) \downarrow \downarrow \downarrow a ₁ e 280 123 (288) (101) \downarrow \downarrow a ₁ e 229 72 (249) (90)	Assignment and comparison of the PC PBr ₃ C1 ⁺ ions in the Presence of S a ₁ e t 442 185 63 (424) (150) (61 \downarrow \downarrow \downarrow \downarrow a ₁ e a ₁ 376 161 565 (368) (135) (545) \downarrow \downarrow \downarrow \downarrow a ₁ a ₁ a ₂ a ₁ 327 133 150 584 (326) (111) (122) (563) (\downarrow \downarrow \downarrow \downarrow a ₁ e a ₁ 280 123 584 (288) (101) (579) \downarrow \downarrow \downarrow \downarrow a ₁ e t ₂ 229 72 ~47 (249) (90) (48	Assignment and comparison of the PCl ₂ Br ₂ ⁺ and <u>PBr₃Cl⁺ ions in the Presence of Siggle Hal</u> a ₁ e t ₂ 442 185 639 (424) (150) (610) \downarrow \downarrow \downarrow \downarrow \downarrow a ₁ e a ₁ e 376 161 565 628 (368) (135) (545) (610) \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow a ₁ a ₁ a ₂ a ₁ b ₁ b ₂ 327 133 150 584 520 616 (326) (111) (122) (563) (508) (605) \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow a ₁ e a ₁ e 280 123 584 500 (288) (101) (579) (498) \downarrow \downarrow \downarrow \downarrow a ₁ e t ₂ 229 72	Assignment and comparison of the Fundamental Vibrational Frequencies of the PCl ₂ Br ₂ and PBr ₃ Cl ⁺ ions in the Presence of Siggle Halide Ion a ₁ e t ₂ 442 185 639 2 (424) (150) (610) (2 \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow a ₁ e a ₁ e a ₁ 376 161 565 623 204 (368) (135) (545) (610) (191) \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow a ₁ a ₁ a ₂ a ₁ b ₁ b ₂ a ₁ 327 133 150 584 520 616 190 (326) (111) (122) (563) (508) (605) (182) \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow a ₁ e a ₁ e a ₁ 280 123 584 500 150 (288) (101) (579) (498) (159) \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow (249) (90) (487) (1		

ABLE 12. Assignment and Comparison of the Fundamental

1.2.4. Other Compounds

1.2.4.i. The Compound "PC13 Br4"

It has been suggested (5) that compounds of the general formula $PCl_3 (Br_2)_n (n = 1 - 10)$ may be formulated as $PCl_3Br^+ Br^- (Br_2)_{n-1}$. In an attempt to prepare a compound containing the PCl_3Br^+ ion, the compound of stoichiometry PCl_3Br_4 was investigated. Preparation was attempted by the method of Fialkov and Kuzmenko (79), i.e. the direct addition of bromine to phosphorus trichloride. The solid product was sublimed at room temperature, yielding a red crystalline sublimate and a yellow residue.

Neutral hydrolysis of the <u>red crystalline sublimate</u> indicated the release of free bromine. As a consequence, the hydrolysate was tested for chloride, bromide and free bromine with the following results:

These results do not correspond to the expected analysis figures for PCl_3Br_4 (calc. for PCl_3Br_4 : P, 6.8; C1, 23.2; Br, 70.0%). The above figures indicate the stoichiometry PCl_3Br_6 . Further, the Cl⁻: Br⁻ ratio is exactly 3:2 and the (free) bromine to bromide ratio is 1:1, indicating a formulation PCl_3Br^+ Br⁻ (Br₂)₂.

The solid-state Raman spectra of the compound of stoichiometry PCl_3Br_6 , presented in Figure 16, does not indicate the $PCl_3Br^+Br^-$ (Br₂)₂ formulation. Bands in the Raman at 167, 198, 368, 576 and 641 cm⁻¹ are assignable to the PCl_3Br^+ ion. There are,
however, bands at (i) 186, 328 and 519 cm⁻¹ and at (ii) 446, and 657, assignable to the $PCl_2Br_2^+$ and PCl_4^+ ions, respectively. The very intense band at 261 cm⁻¹ is probably assignable to the polybromide ion. It was not, possible, however, to prepare a compound containing the Br_5^- ion (i.e. Br^- (Br_2)₂) in order to confirm its presence in PCl_3Br_6 by comparison of Raman spectra.

The solid-state Raman spectra of a number of preparations of $PCl_{3}Br_{6}$, by direct reaction of Br_{2} and PCl_{3} , were identical to the original presented above. Further, preparation of $PCl_{3}Br_{6}$ by addition of bromine to phosphorus trichloride (in a 2:1 mole ratio) in liquid anhydrous hydrogen chloride at ca. -96°C. yielded a compound whose solid-state Raman spectrum was also identical to that of the original $PCl_{3}Br_{6}$ (Figure 16).

The solid-state Raman spectrum of <u>yellow residue</u>, from the sublimation of the solid product of the addition of Br_2 to PCl₃, identified it as P_2Cl_9Br (Section 1.2.2.ii.). Total halogen analysis confirmed this.

FIGURE 16. The Solid-State Raman Spectrum of the Compound of Stoichiometry $PCl_{\mathcal{F}}_{\mathcal{F}}_{\mathcal{F}}$.

- 61 -

1.2.4.ii. The Compound of Stoichiometry PSbCl7Er3

It was proposed (72) that the addition of phosphorus tribromide to antimony pentachloride (in a 1:2 mole ratio) yielded the compound of stoichiometry $PSbCl_7Br_3$. A possible formulation for $PSbCl_7Br_3$ is $PBr_3Cl^+SbCl_6^-$. The above preparation was investigated as a possible source of the PBr_3Cl^+ ion.

Total elemental analysis of the product from the addition of PBr₃ to SbCl₅ in dichloromethane indicated the stoichiometry PSbCl₇Br₃. The solid-state Raman spectrum is presented in Figure 17. The presence of the SbCl₆⁻ anion is indicated by bands at 174, 289, and 330/339 cm⁻¹ (6). The band at 174 cm⁻¹, however, is too intense to be accounted for entirely by this ion. Bands at 119, 150, 174, 300 and 508 cm⁻¹ indicate the presence of the PBr₃Cl⁺ ion; however, the PBr₃Cl⁺ ion does not entirely explain the intensities of the bands at 150 and 174 cm⁻¹. A number of weak bands indicate the presence of the PCl₃Br⁺ ion (215, 232 and 392 cm⁻¹) and the PCl₂Br₂⁺ ion (196 and 204 cm⁻¹). The intense band at 259 cm⁻¹, together with the bands at 104, 150, and 508 cm⁻¹, are characteristic of the PBr₄⁺ ion in the presence of a polyatomic anion only.

The Raman spectra of a number of preparations of $PSbCl_7Br_3$ were identical to that above. Thus, solid-state Raman spectmoscopy does not indicate the formulation PBr_3Cl^+ $SbCl_6^-$ for the compound of stoichiometry $PSbCl_7Br_3$.

- 63 -

SECTION 2 - THE HALIDES OF ANTIMONY(V)

2.1. Introduction

A number of reviews concerning the chemistry of the halides of antimony (3, 4, 5, 6, 106) have been published recently. For the purposes of Section 2, the thrm "halide" refers to chloride and bromide only. In this section, the chlorobromoantimonate anions, $Sb^{V} Cl_{n}Br_{6-n}$ (n = 0 to 6) will be discussed.

The hexachloroantimonate ion, $SbCl_6^-$, has been identified in a number of complexes; e.g. PCl_4^+ $SbCl_6^-$, Et_4N^+ $SbCl_6^-$, Cd_3C0^+ $SbCl_6^-$ etc.(6). In contrast, until recently the hexabromoantimonate ion, $SbBr_6^-$, was thought to exist only as a polybromide ion of tripositive antimony (i.e. $Sb^{III}Br_4^ Br_2$, 107, 108) and chlorobromoantimonates were not thought to exist at all (5, 106).

Recently, (109) the compound prepared by the addition of tetraethylammonium bromide, bromine and antimony tribromide in concentrated hydrobromic acid was shown, by X-ray studies, to be of the form $\text{Et}_4 \text{N}^+$ SbBr₆⁻. Infrared and Raman spectroscopy confirm this (110). The preparation and vibrational spectra of the compounds CH₃ CO⁺ SbCl₅Br⁻ (111), Et₄N⁺ SbCl₅Br⁻, Et₄N⁺ SbCl₃Br₃⁻, and Et₄N⁺ SbClBr₅⁻ (110) have also been reported recently.

, ì

- 64 -

2.2. ALSULTS AND DISCUSSION

2.2.1. The Bexabromoantimonate Ion (SbBr_)

The addition of Et_4 N Br to SbBr_3 and bromine in dichloromethane gave a deep red solid. Elemental analysis for bromine was consistent with the stoichiometry Et_4 N SbBr_6 . The solid-state Raman spectrum is presented in Figure 18 and the solid-state Raman and infrared frequencies are listed in Table 13.

The proposed formulation Et_4N^+ $SbBr_4^-$, Br_2 (107, 108) is not indicated by comparison with solid-state Raman data for Bu_4N^+ $SbBr_4^-$ ($Bu = C_4H_9$, 112). The simplicity of the Raman and infrared spectra and the absence of coincident bands strongly indicates an octahedral $SoBr_6^-$ ion and hence the formulation Et_4N^+ $SbBr_6^-$; results agree well with those of Adams and Downs (110).

A similar preparation using Bu_4NBr yielded a deep red solid. Elemental analysis for bromine was consistent with Bu_4N Sb Br_6 . Three Raman bands (at 195, 169 and 157 cm⁻¹) suggest the presence of an octahedral Sb Br_6^- ion.

TABLE 13. The Solid-State Raman and Infrared Spectrum of $\text{Et}_4 \text{N}^+$ SbBr₆ (cm⁻¹)

Raman	Infrared	Assignment
	113 ^a	√ ₄ (t _{1u}) Sb3r ₆
122 w		³ 5 (t _{2g}) SbBr ₆
150 w		
172 m		v_2 (eg) SbBr ₆
	177 s	
	180 s	
194 s		ν₁ (a_{1ε}) SbBr₆
	224 s)	$\sqrt[3]{t_{1u}}$ SbBr ₆
	235 s)	

w - weak, m - medium, s - strong.

a - determined by interferometric methods

b - reference 110.

. .

2.2.2.i. The Compound of Stoichiometry $Et_4N \ SbCl_5Br$ The addition of Et_4N Br to $SbCl_5$ in dichloromethane yielded a yellow solid (A). Elemental analyses for antimony, chlorine and bromine were consistent with the stoichiometry $Et_4N \ SbCl_5Br$. The solid-state Raman spectrum is presented in Figure 19. Comparison with the Raman spectrum of $Et_4N^+Br^-$ (with bands at 426 and 682 cm⁻¹) indicates the presence of the Et_4N^+ ion and the formulation $Et_4N^+ \ SbCl_5Br^-$.

> Chlorobromoantimonates (e.g. $SbCl_5Br$), however, were thought not to exist (5, 106). Under conditions when the complex, Et_4N^+ SbCl_5Br, should be produced (e.g. as above) a study of the X-Ray diagrams indicated a 5:1 mixture of Et_4N^+ SbCl_6 and Et_4N^+ SbBr_6.

> Evidence, however, to support the existence of $\text{Et}_4 \text{N}^+$ SbCl₅Br⁻ as a discrete chemical compound and not a 5:1 mixture of $\text{Et}_4 \text{N}^+$ SbCl₆⁻ and $\text{Et}_4 \text{N}^+$ SbBr₆⁻ has been obtained from (i) Raman spectroscopy, (ii) X-Ray powder photography and (iii) differential scanning calorimetry.

 Et_4N^+ SbCl₆⁻ (white solid) and Et_4N^+ SbBr₆ (deep red solid) were mixed lightly (in a 5:1 mole ratio) to give a pinkish solid (B) which was compared with the compound of stoichiometry Et_4N SbCl₅Br (A). The absence of a band at 194 cm⁻¹ in the Raman spectrum of A, assigned to the SbBr₆⁻ ion (Section 2.2.1.) and clearly present in the Raman spectrum of B, did not support the formulation of Et_4N SbCl₅Br as a \$:1 mixture of Et_4N^+ SbCl₆⁻ and Et_4N^+ SbBr₆⁻. Further, a number of bands (at 154, 216, and 304 cm⁻¹) in the Raman spectrum of A were not present in that of B. Comparison

- 69 -

of the X-Ray powder photographs for A and B also did not indicate that Et_4N SbCl₅Br was a 5:1 mixture of $Et_4N^+SbCl_6^-$ and $Et_4N^+SbCl_6^-$.

Differential scanning calorimetric results for Et_4N SbCl₆, Et_4N SbBr₆, B and A are represented diagrammatically in Figure 20. Results for Et_4N SbCl₆, Et_4N SbBr₆ and Et_4N SbCl₅Br are detailed below:

Compound	Transition Temperature (⁰ K)	Enthalpy of Transition kJ mole ⁻¹
Et ₄ N SUC1 ₆	$336^{\circ} + 1^{\circ}$ ($63^{\circ} + 1^{\circ}C.$)	18.0 - 0.4
Et ₄ N SbBr ₆	435° +1° (162° +1°C.)	30.1 [±] 0.4
Et ₄ N SbC1 ₅ Er	339° +1° (66° +1°C)	18.4 - 0.4

The thermograms of $\text{Et}_4 \text{N} \text{SbCl}_6$ and $\text{Et}_4 \text{N} \text{SbBr}_6$ both indicate only one endothermic transition at 63°C. and 162°C., respectively. It is reasonable to assume that on first running the 5:1 mixture (E) the low temperature peak at 63°C. can be attributed to $\text{Et}_4 \text{N} \text{SbCl}_6$ and the high temperature peak at 162°C. to $\text{Et}_4 \text{N} \text{SbBr}_6$. Comparison of the thermogram of A. (with only one endothermic transition at 66°C.) with that of B does not support the 5:1 mixture formulation.

ke-running the 5:1 mixture (B) indicated only one endothermic transition, in the d.s.c. thermogram, at $\sim 65^{\circ}$ C. Further, the solid-state Raman spectrum of a sample of B heated to 120° C. for two hours was not the same as that of an unheated sample. The

FIGURE 20. Differential Scanning Calorimetry.

Raman spectrum of the heated sample, with bands at 171, 220, 292, 308 and 334 cm⁻¹, was identical to that for Et_4N SbCl₅Br. A distinct colour change from the pink colour of the 5:1 mixture to yellow, the colour of Et_4N SbCl₅Br, accompanied heating. Thus evidence suggests that a 5:1 mixture of Et_4N ⁺SbCl₆⁻ and Et_4N ⁺ SbBr₆⁻ reacts in the solid-state to give Et_4N SbCl₅Br.

Reaction, in the solid-state, to produce $\text{Et}_4 \text{N} \text{SbCl}_5 \text{Br}$ is also indicated by Raman spectroscopy when $\text{Et}_4 \text{N}^+ \text{SbCl}_6^-$ and $\text{Et}_4 \text{N}^+ \text{SbEr}_6^-$ (in a 5:1 mole ratio) are mixed either by grinding or in a ballmill. Thus observations on a 5:1 mixture prepared in this way would have similar results to those for a sample of $\text{Et}_4 \text{N} \text{SbCl}_5 \text{Er}$. This may provide a possible explanation of Kolditz' X-Ray results (5,106). The X-Ray powder diagram for a sample of $\text{Et}_4 \text{N} \text{SbCl}_5 \text{Br}$, prepared as above, would be identical to that for a 5:1 mixture of $\text{Et}_4 \text{N}^+ \text{SbCl}_6^-$ and $\text{Et}_4 \text{N}^+ \text{SbBr}_6^-$ mixed thoroughly (e.g. in a ball-mill.).

It was possible to resolve a number of bands in the solid-state Raman spectrum of $\text{Et}_4 \text{N}^+$ SbCl_5 Br⁻(113) and results are presented, and compared with those of Goetz et al (111) and Adams and Downs (110), in Table 14. Results agree well with those expected for an octahedral ion of C_{4v} symmetry. All eleven fundamental vibrational frequencies for an octahedral SbCl₅ Br⁻ ion are Raman active. Four Sb-Cl stretching frequencies, one Sb-Br stretching frequency and six deformation frequencies are expected in the Raman (Appendix B).

- 72 -

TABLE 14. The Solid-State Raman Spectrum of

 $\underline{\text{Et}}_{4} \underline{\text{N}}^{+} \underline{\text{SbC1}}_{5} \underline{\text{Br}}^{-} (\underline{\text{cm}}^{-1})$

Thi	s work	Goetz et al ^a	Adams and Downs ^b	Assignment ^b
			73 w	
			80 w	
			85 w	
114	W	110 w	108 mw	Deformation and possible
140	W	142 v.s.		lattice modes
159	W		156 m	
171		170 sh.		
170	m		178 nw.sh.	
164		186 v.s.)	
210	m.sh.	210 sh.		
			215 v.s.	Sb-Br stretching
220	S			
		230 s		
289	8	290 s	284 m	
3 08	8	310 m	304 v.s.	Sb-Cl stretching
320	w			
333	V. 8.	334 v.s.	331 в	
	•		340 sh.	

w - weak, m - medium, sh - shoulder, s - strong, v.s. - very strong, m.w. - medium weak a - reference 111 (June 1970), b - reference 110 (August 1971) This work (May 1971).

and the second second

2.2.2.ii. The Compound of Stoichiometry PSbCloBr

The addition of PCl_3 , Br_2 and BCl_3 in liquid HCl at ca.-96°C. yields, under certain conditions, the compound $PCl_3Br^+ BCl_4^-$ (Section 1.2.2.i.). In an attempt to prepare the alternative source of the PCl_3Br^+ ion, PCl_3Br^+ SbCl_6^-, SbCl_5 and not BCl_3 was added.

Antimony pentachloride $(SbCl_5)$ was added to Br_2 and PCl_3 in liquid HCl at ca.-96°C. On warming to room temperature the excess solvent evaporated leaving a yellow solid. Total elemental analysis indicated the expected stoichiometry, PSbCl_9Br.

The absence of bands at 214, 232, 391 and 582 cm⁻¹, (assigned to the PCl₃Br⁺ ion in PCl₃Br⁺BCl₄⁻) in the solid-state Raman spectrum did not indicate the formulation PCl₃Br⁺ SbCl₆⁻. Comparison, however, with the solid-state Raman spectrum of Et_4N^+ SbCl₅Br⁻, Figure 21, indicates the presence of the SbCl₅Br⁻ ion and the formulation PCl₄⁺ SbCl₅ Br⁻. The bands at 250, 453 and 653 cm⁻¹ in the Raman spectrum of PSbCl₉Br agree well in both position and intensity with bands expected for the PCl₄⁺ ion (e.g. by comparison with the Raman spectrum of PCl₄⁺ PCl₆⁻, Figure 2). ³¹P n.m.r. spectroscopy shows one ³¹P chemical shift at -80.0 [±] 1 p.p.m. (relative to 85% H₃ PO₄) (99) indicative of the PCl₄⁺ ion. Thus solid-state Raman and ³¹P n.m.r. spectroscopy strongly suggest the formulation PCl₄⁺ SbCl₅Br⁻ for the compound of stoichiometry PSbCl₉Br.

- 74 -

.

The compounds of stoichiometry Et_4N SbCl₄ Br_2 , Et_4N SbCl₃ Br_3 and Et_4N SbBr₅Cl were prepared for the following general reaction:

Elemental analysis for chlorine and bromine indicated the above stoichiometries. The solid-state Raman spectra are presented below:

Er4N SbC14Br2	Et ₄ N SbCl ₃ Br ₃	Et ₄ N SbBr ₅ C1
(cm ⁻¹)	(cm ⁻¹)	(cm ⁻¹)
15ú w	137 W	139 w
172 m	172 m	172 w
180 m	182 m	184 m
	195 m	1 94 s
	208 m.sh.	208 m.
218 v.s.	219 v.s.	
287 m	286 m	
305 m	304 m	
3 32 s	331 m	

All of the above bands, except for that at $\sim 195 \text{ cm}^{-1}$ are present in the Raman spectrum of $\text{Et}_4 \text{N}^+$ SbCl₅Br⁻. The band at $\sim 195 \text{ cm}^{-1}$ has been assigned previously to the SbBr₆⁻ anion. Thus Raman evidence indicates that these three compounds are mixtures of $\text{Et}_4 \text{N}^+$ SbCl₅Br⁻ and $\text{Et}_4 \text{N}^+$ SbBr₆⁻. Adams and Downs (110), however, suggested the formulations Et_4N^+ SbCl_3Br_3⁻ and Et_4N^+ SbBr_5Cl⁻ for Et_4N SbCl_3Br_3 and Et_4N SbEr_5Cl, in the solid-state and in solution, from a study of both the Raman and the infrared spectra. Solid-state Raman data for Et_4N SbCl_3Br_3 and Et_4N SbDr_5Cl presented above agrees well with that of Adams and Downs.

والمرجع المرجع المرجع والمرجع والمرجع

SECTION 3 - EXPERIMENTAL

3.1. SYNTHESIS

3.1.1. Materials

Reagents of the best available commercial grade were used, generally without further purification. Dichloromethane (May and Baker Laboratory Reagent) was dried over CaCl₂ and fractionally distilled according to the method of Mathews (115).

3.1.2. Apparatus and Procedure

3.1.2.i. <u>Reactions in Dichloromethane (CH₂Cl₂)</u>

Reactions were carried out by the addition, with stirring; of CH_2Cl_2 solutions of reactants under anhydrous conditions. The resultant precipitate was filtered and dried using the apparatus described in Figure 22.

Before use, the filtration apparatus was thoroughly dried in an oven at 130° C. and left to cool under vacuum. Dry air was introduced through the stopcock, A, and the CH₂Cl₂ solution and the precipitate were quickly poured into the top, B, of the apparatus. With stopcock A closed, the apparatus was evacuated through stopcock C. When all the filtrate had been pulled through the glass sinter, D, stopcock C to the pump was closed and dry air was introduced through stopcock A. The flask, E, was then replaced by an empty flask to prevent CH₂Cl₂ being pulled over under vacuum into the liquid N₂ trap. The precipitate was then dried under vacuum.

- 78 -

.

3.1.2.ii. Reactions in Liquid Hydrogen Chloride

Hydrogen chloride was was generated by the addition of concentrated hydrochloric acid to concentrated sulphuric acid. Concentrated hydrochloric acid (\sim 150 ml.) in a pressure-equalising dropping funnel was added slowly, with stirring, to concentrated sulphuric acid (\sim 300 ml.) in a 3-necked flask. The HCl gas evolved was then passed through two traps; the first containing concentrated sulphuric acid to remove water; and the second, an empty splash trap, to remove traces of sulphuric acid carried over.

The reaction vessel (Figure 23) was dried thoroughly in an oven at 130° C. and cooled by flushing with dry nitrogen. HCl gas was then condensed into the reaction flask, F, at ca. -196° C. The reaction vessel, was then flushed vigorously with dry nitrogen while the trap head, G, was replaced by a CaCl₂ guard tube. The flow-rate of dry nitrogen was then adjusted to give a very slight excess pressure within the reaction vessel.

The HCl was liquefied using a toluene slush bath (ca.-96 $^{\circ}$ C.). It was found advisable to use a wide-necked dewar for the slush bath to facilitate stirring and removal of any toluene which solidifies initially on the outer walls of the reaction flask.

Solid reactants were introduced into the reaction flask before HCl was condensed in.BCl₃ and B Br_{31} from ampoules, were added to the liquid HCl through the side neck, H, of the multiple adaptor. Other liquids were added from weight pipettes through the central neck, I, of the multiple adaptor when the stopper in the side

- 80 -

neck, H, had been replaced by a CaCl, guard tube.

When all the reactants had been added, excess solvent was evaporated by allowing the reaction vessel to warm to room temperature. Solid residues were then pumped for ca. 30 minutes.

3.1.3. Preparations

3.1.3.i. PB Br₈

PBr₅ (14.02 g., 0.033 mol.) in CH_2Cl_2 (~ 50 ml.) was added to B Br₃ (8.34 g., 0.033 mol.) also in CH_2Cl_2 (~ 50 ml.). The resultant yellow precipitate was filtered and dried under vacuum. (Found : Br, 93.0; Calc for PB Br₈; Br, 94.0%).

3.1.3.ii. Et₄N <u>B</u> Br₄

 Et_4N B Br_4 was prepared according to the method of Waddington and White (51). Hydrogen bromide was used as solvent and the procedure was similar to that for hydrogen chloride preparations.

 Et_4^N Br (5.19 g; 0.025 mol.) was weighed into a reaction vessel and hydrogen bromide (Matheson lecture bottle) was condensed in at ca. -196°C. The HBr was liquefied using a slush bath at ca.-84°C. (ethyl acetate) and B Br₃ (6.20 g; 0.025 mol.) added. Evaporation of the solvent left a white solid (Found: Br, 69.3; Calc. for Et_4^N B Br₄ : Br, 69.4%). 3.1.3.iii. Et N PC1

In an early attempt to prepare $\text{Et}_4 \text{N}^+ \text{PCl}_5 \text{Br}^-$, a $\text{CH}_2 \text{Cl}_2$ solution of $\text{Et}_4 \text{N}$ Br was added to PCl_5 also in $\text{CH}_2 \text{Cl}_2$. A white precipitate was formed. Total halogen analysis (expressed as mg. sample/ 1 ml. 0.1N ClgNO_3), indicated the stoichiometry $\text{Et}_4 \text{N}$ PCl₆ (Found: 6.22; Calc for $\text{Et}_4 \text{N}$ PCl₆: 6.23; Calc for $\text{Et}_4 \text{N}$ PCl₅Br: 6.97 mg.ml.⁻¹). All the bands in the solid state Raman spectrum can be explained by the formulation $\text{Et}_4 \text{N}^+$ PCl₆⁻.

3.1.3.iv. $\underline{PCl_4}^+ \underline{BCl_4}^ PCl_5$ (10.60 g, 0.051 mol.) was dissolved, with stirring in CH_2Cl_2 . To this BCl_3 (6.97 g., 0.060 mol.) in CH_2Cl_2 was added. The white precipitate, which formed immediately, was filtered and dried under vacuum. (Found: P, 9.5; B, 3.4; Cl, 86.9; Calc. for P B Cl_8 ; P, 9.5; B, 3.3; Cl, 87.27).

3.1.3.v. Me N BC1

 $Me_4N BCl_4$ was prepared according to the method of Waddington and Klanberg (114). Me_4N Cl was dried under vacuum at $40^{\circ}C$. and a weighed amount (4.20 g., 0.038 mol.) placed in the reaction vessel. HCl was condensed in and liquefied. BCl₃ (4.50 g., 0.038 mol.) was added and the excess solvent evaporated. A white solid remained and was pumped for ca. 30 minutes. (Found: Cl, 62.3; Calc. for Me_4N BCl₄; Cl, 62.5%).

3.1.3.vi. Metastable PC15

The sublimation apparatus for the production of the metastable PCl_5 is detailed in Figure 24. Normal PCl_5 was crushed, placed in the apparatus at J, and sublimed at room temperature onto the cold finger, K, (at ca. $-78^{\circ}C$). Of the four attempts to prepare metastable PCl_5 by sublimation, only one was successful.

Preparation of metastable PCl_5 by the addition of Er_2 to PCl_5 in CH_2Cl_2 was found to be more successful and more convenient for the preparation of large amounts $Er_2(3.0 \text{ g.}, 0.019 \text{ mol.})$ in CH_2Cl_2 was added to a CH_2Cl_2 solution of PCl_5 (4.2 g., 0.020 mol.). A white solid was precipitated out and was filtered and dried under vacuum (Found: Cl, 84.2; Calc.for PCl_5 : Cl, 85.1%).

3.1.3.vii. PC1₄F

Initially, PCl_2F was prepared according to the method of Booth and Bozarth (116). PCl_3 (87.9 g., 0.640 mol.) and $SbCl_5$ (~1 ml. catalyst) were refluxed at 40°C. and 240 m.m. pressure. $SbF_3(178.8 \text{ g., 0.705 mol.})$ was added over a period of three hours and the gaseous products (PF_3 , $PClF_2$, PCl_2F and some PCl_3) collected in a trap at ca. +196°C. Purification was by low temperature vacuum fractionation. PCl_2F and PCl_3 were retained by a -125°C. trap (methylcyclohexane) and PCl_3 was retained by a trap at -96°C. (tolvene).

Excess chlorine (as indicated by a green coloration) was added to PCl_2F at ca. $-73^{\circ}C$. A white solid (Initial Product) and a large amount of green liquid resulted. The white solid was isolated by pumping off the green liquid into a further trap at ca.-196°C. (Found: C1, 77.9; Calc for PCl_4F , 74.0%).

The green liquid was left at room temperature for 3 days and yielded a white solid (Final Product). (Found: P,16.0; Cl, 74.0; F, 9.7; Calc for PCl₄F; P, 16.1; Cl, 74.0; F,9.9%). Fluoride analyses on the hydrolysate indicated 3.8%, 4.2% and 3.0% F^{-} (Calc for PCl₄⁺ F^{-} : 9.9%).

3.1.3.viii. PC1_Br⁺BC1_

 BCl_3 , (3.70 g., 0.032 mol.), PCl_3 (3.89 g., 0.028 mol.) and Br_2 (4.00 g., 0.025 mol.), in that order, were added to liquid HCl at ca.-96°C. Evaporation of the solvent yielded a white solid. (Found: P, 8.2; Cl, 65.1; Br, 20.9; Calc for PB Cl₇Br; P, 8.4; Cl, 67.1- Br, 21.6%, P:Cl:Br = 1.0:7.0:1.0).

3.1.3.ix. PC13Br PF6

.

HC1, PC1₃ (2.37 g., 0.017 mol.) and Br₂ (2.50 g., 0.016 mol.) were distilled under vacuum into a reaction vessel fitted with a teflon stopcock at -196°C. They were liquefied to give a clear solution using a -96°C. slush bath. PF_5 was then distilled in under vacuum at -196°C. PF_5 was produced from p - chlorobenzene-diazonium hexafluorophosphate (Phosfluorogen A, Ozark-Mahoning Company). Phosfluorogen A (~12 g) was dried by heating to 80°C. and pumping. It was then heated to 150°C. in an oil bath under vacuum and decomposed to give nitrogen, p - chlorofluorobenzene and $PF_5 \cdot p - ClC_6H_4F$ and PF_5 were trapped at -196°C. and then fractionally distilled through a -78°C. trap, which retained the p - Cl C_6H_4F .

The teflon stopcock on the reaction vessel was then closed and the contents of the vessel liquefied using a -96° C. slush bath. The reaction vessel was detached from the vacuum line, fitted with a CaCl₂ guard tube and with the stopcock open was allowed to warm to room temperature. The excess solvent evaporated leaving a white solid which was pumped for ca. 30 minutes. (Found: P, 16.5; Cl, 28.5; Br, 23.2; F, 30.3; Calc for P₂Cl₃Br F₆; P, 17.1; Cl, 29.4; Br, 22.1; F, 31.4%).

3.1.3.×. Et4N+PF6

Excess PF_5 , generated from phosfluorogen A, was distilled into a reaction vessel, fitted with a teflon stopcock, containing HCl and Et_4N Br at -196°C. With the stopcock closed, the whole was liquefied using a -96°C. slush bath. After detaching the reaction vessel from the vacuum line and fitting a CaCl₂ guard tube, the stopcock was opened and the solvent allowed to evaporate. All the bands in the Raman spectrum are consistent with the formulation $Et_4N^+ PF_6^-$.

- 3.1.3.xi. $\underline{P}_2 C \underline{1}_9 B \underline{r}_2$ Br_2 (19.20 g., 0.120 mol.) was added to PCl_3 (33.00 g., 0.240 mol.) in As Cl_3 (30 ml.) according to the method of Kolditz and Feltz (74). The yellow precipitate resulting was filtered and dried under vacuum (Found: C1, 69.6; Er, 17.3; Calc for P_2Cl_9Br ; C1, 69.2; Br, 17.3Z).
- 3.1.3.xii. The Product (A) of an Unsuccessful PCl₃Br⁺BCl₄ Preparation PCl₃ (6.76 g., 0.049 mol.), Br₂ (7.47 g., 0.047 mol.) and BCl₃ (6.50 g., 0.055 mol.), in that order, were added to liquid HCl at -96°C. A white residue was left on evaporation of the solvent. (Found: Cl, 54.2; Br, 35.6%).
- 3.1.3.xiii. The Product (B) from the Addition of Boron Trichloride, Phosphorus Trichloride and Bromine in Dichloromethane A CH₂Cl₂ solution of Br₂ (5.47 g., 0.034 mol.) was added to a CH₂Cl₂ solution of BCl₃ (7.67 g., 0.065 mol.) and PCl₃ (7.35 mol., 0.054 mol.). The white precipitate was filtered and dried under vacuum. (Found: P, 8.9; Cl, 47.7; Br, 41.6; B, 1.8%, P:Cl:Br:B = 1.7:7.9:3.0:1.0).

3.1.3.xiv. The Product (C) of a Reaction Similar to that for B

(3.1.3.xiii).
In this preparation, similar to that above, BCl₃(3.91 g.,
0.033 mol.) was added to PCl₃ (4.60 g., 0.034 mol.) and
Br₂ (5.23 g., 0.033 mol.) all in CH₂Cl₂. The resultant pale
yellow precipitate was filtered and dried under vacuum.
(Found: Cl, 46.5; Br, 42.4; B, 1.9%; calculating phosphorus
by difference = 9.2%, P:Cl:Br:B = 1.7:7.3:2.9:1.0).

3.1.3.xv. PC13Br6

a. Prepared by direct reaction of Br, and PCl₃.

 Br_2 (27.00 g., 0.169 mol.) was added to PCl_3 (35 g., 0.255 mol.). Two layers were produced. The lower layer was cooled to ca.-78°C. and solidified. The upper layer, supernatant liquid, was decanted and the remaining solid sublimed using a water condenser, as cold finger, and a water pump. After 3 days, a large amount of red crystalline solid had collected in the condenser leaving a small amount of yellow powder. The solid-state Raman spectrum of the yellow powder indicated the compound P_2Cl_9Br . (Found for red solid: P, 5.1; Cl, 17.3; Br, 75.9; as bromide, 27.0, as free bromine, 48.9; Calc for PCl_3Br_6 : P, 5.0; Cl, 17.3; Br, 77.7%. Found for yellow powder: total halide expressed a mg. sample/1 ml. 0.1N AgNO₃, 4.64; Calc for P_2Cl_9Br : 4.61 mg.ml⁻¹). b. Prepared by the addition of Br, and PC1, to liquid HC1.

 Br_2 (2.43 g., 0.015 mol.) and PCl₃ (2.20 g., 0.016 mol.) were added to liquid HCl to give a clear solution. A further amount of Br_2 (2.43 g., 0.015 mol.) was added and the solvent evaporated. The resultant red solid was pumped for ca. 15 minutes. (Found:P, 5.1; Cl 17.3; Br, 75.9, as bromide, 27.0, as free bromine, 48.9; Calc for PCl₃Br₆: P, 5.0; Cl, 17.2; Br, 77.7%).

3.1.3.xvi. PSbC1_Br3

The compound of stoichiometry $PSbCl_7Br_3$ was prepared according to the method of Duff (72).

PBr₃ (2.8 g., 0.010 mol.) in $CH_2 Cl_2$ was added to $SbCl_5$ (6.6 g., 0.022 mol.) in CH_2Cl_2 . The resultant pale yellow precipitate was filtered and dried under vacuum. (Found: P, 5.0; Sb, 19.9; Cl, 39.0; Br, 36.0; Calc for $PSbCl_7Br_3$: P, 4.8; Sb, 19.0; Cl, 38.8, Br, 37.4%).

3.1.3.xvii. EtaN SbBr₆

To a CH_2Cl_2 solution of SbBr₃ (4.15 g., 0.012 mol.) and Br₂ (1.60 g., 0.010 mol.) was added Et_4N Br (2.07 g., 0.010 mol.) in CH_2Cl_2 . A deep red solid remained after filtration and drying under vacuum. (Found: Br, 64.9; Calc. for Et_4N SbBr₆: Br, 65.6%). 3.1.3.xviii. $\underline{Bu_4N \ SbBr_6} \ (\underline{Bu} = \underline{C_4H_9})$ $\underline{Bu_4N \ Br} \ (2.04 \ g., 0.006 \ mol.)$ in $\underline{CH_2Cl_2}$ was added to $\underline{SbBr_3}$ (3.15 g., 0.009 mol.) and $\underline{Br_2} \ (1.80 \ g., 0.011 \ mol.)$ in $\underline{CH_2Cl_2}$. The resultant deep red precipitate was filtered and dried under vacuum. (Found: Br, 56.4; Cale for $\underline{Bu_4N} \ SbBr_6$, 56.82).

3.1.3.xviv. Et₄N SbCl₅Br

To Et_4N Br (4.77 g., 0.023 mol.) in CH_2Cl_2 was added SbCl_5 (6.80 g., 0.023 mol.) also in CH_2Cl_2 . A yellow solid precipitated out and was filtered and dried under vacuum. (Found: Sb, 23.8; Cl, 34.9; Br, 15.7; Calc for Et_4N SbCl_5Br: Sb, 23.9; Cl, 34.8; Br, 15.7%).

3.1.3.xx. PSbClgBr

 Br_2 (4.65 g., 0.029 mol.), PCl₃ (3.93 g., 0.029 mol.) and SbCl₅ (8.65 g., 0.029 mol.) were added to liquid HCl. Evaporation of the solvent left a yellow solid. (Found: P, 5.4; Sb, 22.4; Cl, 57.6; Br, 14.8; Calc for PSbCl₉Br: P,5.6; Sb, 22.1; Cl, 57.8; Br, 14.5%).

3.1.3.xxi. Et₄N SbCl₄Br₂, Et₄N SbCl₃Br₂ and Et₄N SbBr₅Cl

The appropriate tetraethylammonium halide in CH_2Cl_2 was added to bromine and the appropriate antimony trihalide. The resulting solids were filtered and dried under vacuum. Results are summarised below:

SbCl₃ (2.50 g., 0.011 mol.) + Br₂ (2.0 g., 0.013 mol.) + Et₄N Cl (1.47 g., 0.009 mol.) - Et₄N SbCl₄Br₂ - a yellow/ orange solid. (Found: Cl, 25.8; Br, 29.0; Calc. for Et₄N SbCl₄Br₂; Cl, 25.6; Br, 28.97).

SbCl₃ (2.93 g., 0.013 mol.) + $Br_2(2.07 g., 0.013 mol.)$ + $Et_4N Br (2.68 g, 0.013 mol.) - Et_4N SbCl_3Br_3 - an orange$ $solid. (Found: Cl, 17.7; Br, 40.2; Calc for <math>Et_4N 8b Cl_3Br_3$; Cl, 17.8; Br, 40.12).

SbBr₃ (4.05 g., 0.011 mol.) + Br₂ (2.10, 0.013 mol.) + Et₄N Cl (1.42 g., 0.009 mol.) --- Et₄N Sb Br₅Cl - brick red solid. (Found: Cl, 5.1; Br, 57.3; Calc for Et₄N SbBr₅Cl; Cl, 5.2; Br, 58.27).

3.1.4. Handling

With very few exceptions, reagents used and compounds prepared in this work were hygroscopic. Consequently, the transfer of reagents and compounds and the preparation of samples for infrared and Raman spectroscopy and elemental analysis was carried out in a glove box under an atmosphere of dry nitrogen. Compounds prepared were transferred from reaction flasks to glass sample tubes with polythene caps, sealed with "parafilm" (Gallenkamp) and stored in sealed glass jars lined with CaCl₂ at ca. 4^oC.

3.2. ELEMENTAL ANALYSIS

3.2.1. Chlorine and Bromine

Weighed samples (~ 100 mg.) were hydrolysed in dilute alkaline solution in stoppered flasks. Total halide(chloride and bromide) and chloride were determined by the Volhard method and bromide found by difference. Two samples were used for each determination.

Chloride was determined after the removal of bromide by oxidation to bromine (with K10, in acid solution) and boiling, according to the method of Andrews (117). The sample, calculated to contain 10-50 mg. of chloride was hydrolysed (in 50 ml. O.IN NaOH) in a 500 ml. long-necked (\sim 15 cm.) flask. Initially, 6 ml. of 0.2N K10, and 17 ml. of 2N HNO_3 were added. Then for each gram of bromine expected 75 ml. of iodate solution and 7.5 ml. of nitric acid were added. The volume was made up to 250 ml. with distilled water and boiled down to a volume of 90 ml. 100 ml. of distilled water were then added and the solution boiled down again to 90 ml. The process was repeated until no more bromine was detected by testing the vapour with starch-iodide paper. While the solution was still hot, 1.5 ml. of 25% phosphorous acid was added to remove excess iodate. The solution was then boiled to remove iodine, keeping the volume above 90 ml. It was then cooled and chloride determined.

For compounds containing antimony, samples were digested in 1N NaOH (~ 50 ml.) and refluxed for 2 hours, before determination of halide by the Volhard method. This was found necessary when

- 93 -

determination of halide in standard compounds gave low answers indicating incomplete hydrolysis.

Free bromine (in PCl₃Br₆, Section 1.2.4.i.) was determined by the addition of KI in acid solution followed by titration of the iodine released against 0.1N throsulphate solution using starch as indicator.

3.2.2. Boron

Boron was determined acidimetrically as the boric acid mannitol complex. Samples were hydrolysed in a mixture of methanol and water (90 ml. MeOH/10 ml.H₂O). A trace of concentrated sulphuric acid was added and the methyl borate distilled into water. The solution was then titrate to a methyl-orange end point. Excess mannitol was then added, (which forms a boric acid-mannitol complex) followed by titration against O.1N NaOH using phenolphthalein.

3.2.3. Fluoride

A fluoride electrode (Model 96-09, Orion Research Inc., U.S.A.) in conjunction with a specific ion meter (Model 401, Orion Research Inc.) was used for analysis of fluoride. Samples of the compound of stoichiometry PCl_4F (~400 mg.) were hydrolysed in 10 ml. 0.1N NaOH. This was then made up to 25 ml. 5 ml. samples of the above solution and two standard fluoride solutions (0.01 M and 0.001 M KF) were diluted 10:1 with a 4 M buffered potassium acetate solution of pH 5 and fluoride ion concentration determined.

Phosphorus and antimony were determined at a commercial laboratory elsewhere (Alfred Bernhardt, Mikroanalytisches Laboratorium, West Germany).

.
3.3. SPECTRA

3.3.1. Solid-State Raman Spectra

Solid-state Raman spectra were recorded with the following four instruments:-

- Cary 81 spectrometer with either a Spectra-Physics Model 125 He-Ne Laser with excitation at 6328 Å (red) or a Coherent Radiation Laboratories Model 52K mixed Kr-Ar Laser with excitation at 6471 Å (Kr⁺) (red).
- Spex 1401 spectrometer with excitation at 6471 Å (red) provided by a Coherent Radiation Laboratories Model 52 ionised Kr Laser.
- 3) Coderg PHO spectrometer with a Spectra-Physics Model Model 125 He-Ne Laser with excitation at 6328 Å (red).
- 4) Jarrell-Ash (25-500) Laser Raman Spectrometer with excitation at 5145 Å (green) and 4880 Å (blue).

Samples were made up in sealed melting-point tubes. For the Cary 81 instrument, melting-point tubes with one end flattened were used.

3.3.2. Solid-State Infrared Spectra

Solid-state infrared spectra in the region 1000 to 200 cm⁻¹ were recorded, using a Perkin-Elmer Model 325 Grating Infrared Spectrometer. Spectra below 200 cm⁻¹ were recorded with the aid of a Grubb-Parsons "Cube" Interferometer. Samples were prepared as Nujol mulls pressed between Csl plates for the region $1000-200 \text{ cm}^{-1}$ and polythenes plate below 200 cm⁻¹.

na haran yang karang karang

3.4. DIFFERENTIAL SCANNING CALORIMETRY

Details concerning the operation and capabilities of differential scanning calorimetry have been reported extensively elsewhere (e.g. 118, 119). In this work, the output was displayed on a chart recorder and typical thermograms are shown in Figures 3 and 20. The areas of the peaks obtained for milligram quantities of sample are directly proportional to transition enthalpies for the sample Calibration using standard samples allowed the absolute magnitudes of these enthalpies to be determined.

A Perkin-Elmer D.S.C. - 1B calorimeter with a Leeds and Northrup Speedomax w recorder was used. Peak areas were measured using a planimeter. Three readings were taken and averaged arithmetically. The instrument was calibrated using benzoic acid (British Chemical Standards, ΔH^{0}_{fus} ($C_{6}H_{5}CO_{2}H$, cryst.) = 17.19 kJ mole⁻¹, 120). The benzoic acid calibration was checked with another standard NH₄NO₃ (ΔH^{0}_{fus} ($H_{4}NO_{3}$, cryst) = 6.39 kJ mole⁻¹, 121). Two separate determinations are detailed below:

 Benzoic Acid
 ΔR°_{fus} (NH4NO3, cryst)

 Sample (mg)
 found (KJ mole⁻¹)

 1.00
 6.45 ± 0.05

 1.14
 6.32 ± 0.12

Answers are correct to within 1% of the literature value (6.39 kJ mole⁻¹, 121).

Samples and standards were run under identical conditions; i.e. chart speed, sensitivity and rate of temperature increase. Samples were sealed in shallow aluminium pans under dry-box conditions and weights of samples determined by difference using a Cahn electrobalance ($\sim 50.00 - 1.00$ mg.). Total weights (sample + pan) were determined after each run to check for loss of sample. Empty sample pans were used as references. APPENDIX A. Vibrational Representation for Tetrahedral Species

		- 9	9 -
Examples	PC14 ⁺ , SiC1 ₄ , PEr4 ⁺ , SiEr4.	PCl ₃ Br ⁺ , SiCl ₃ Br, PBr ₃ Cl ⁺ , Si ^B r ₃ Cl.	PC1 ₂ Br2 ⁺ , SiC1 ₂ Br ₂
Jumber of Coincidences	7	S	ು
Modes Active Infrared	2 (2t ₂)	6 (3a ₁ + 3e)	8 (4a ₁ + 2b ₁ + 2b ₂)
Number of Raman	4 (a ₁ +e+2t ₂)	6 (3a ₁ + 3e)	9 (4 $a_1 + a_2$ + $2b_1 + 2b_2$)
Number of Fundamental Frequencies	4	O	6
Point Group	Id	c _{3v}	c ₂ v
Geometry ,	- E		- E
Ion or Molecule	MX 4	¥K3 [¶]	MX2Y2

•

		APPENDIX B.	Vibrational	kepresentation	s for Som	e 6-Coordinate S _I	ecies			
Ion or Molecule		Point Group	Number of fundamental frequencies	Distri (MX)	bution of (MY)	Modes Deformations	I.R.	Raman Ina	No.of I.R. Raman Raman tive Coin- Ciden	f 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
9 MX	· · ·	o	'0	a _{lg} +e +t _{lu}	i	t _{1u} +t ₂ g ⁺ t _{2u}	2(t _{lu}) 3(4	ل _{ال} 8, وي 1(0 (ⁿ 2.	
X ² XW		C 4v		2a ₁ + b ₁ + e	al	$a_1 + b_1 + b_2 + 3e$	8 (a ₁ , e) (²	11 1, ^b 1, ^b 2,e)	œ	
^{MX4} 72 (cis)		c _{2v}	15	$2a_1 + b_1 + b_2$	a1+ b1	3a ₁ +2a ₂ +2b ₁ +≇b ₂	13 (a ₁ ,b ₁ ,ò ₂)	15 (a ₁ ,a ₂ ,b ₁ ,b ₂)(13	
MX4 ^Y 2 (trans)		D4h	11	a ₁₈ +b ₁₈ +e	a1g+a2u	b _{2g} +e _g +a _{2u} +b _{2u} +2e _u	5 (e _u ,a _{2u}) (a	6 1 ₅ , ^b 1 ₆ , ^b 2 ₈ , 2 _u , ^e g)	0	- 100 -
			•••••							

.

APPENDIX C

NOTES

Preparation^{*}:- The order of addition is indicated in the following way; eg., $PCl_3 + ECl_3 + Br_2$ the order of addition is 1) PCl_3 , 2) ECl_3 , 3) Br_2 also eg. (for reactions in dichloromethane only) $PCl_3 + {ECl_3 + Br_2}$ means that to a solution of PCl_3 in CH_2Cl_2 , a solution of ECl_3 and Br_2 was added.

Analysis: Analysis figures are in percentages and in atomic ratio eg. for $PCl_3Br^+ BCl_4^-$: P, 8.4; Cl, 67.1; Br, 21.6; B, 3.9%.

Raman Spectra^{*} :- The terms "halide" and "polyatomic" refer to the bands assigned to the mixed chloro-bromo-phosphonium ions $(PCl_3Br^+, PCl_2Br_2^+ and PBr_3Cl^+)$ in the Raman spectrum and whether they are characteristic of these ions in the presence of either (i) single halide ions or (ii) polyatomic anions. A convenient way of "describing" the Raman spectra is in terms of the relative intensities (on scale 0-10) of the totally symmetric (a₁) stretching bands (below):

Totally S	ymmetric (a ₁)_	Stretching	5 Bands (cm ⁻¹)
PC13 Br+	PC1 ₂ Br ₂ ⁺	PBr ₃ C1 ⁺	in the presence of
~375	~325	~280	(i) halide ions
~ 390	~345	~ 300	(ii) polyatomic anions

* reference numbers (eg. 104/100 and B3) refer to page numbers in notebook/roughbook and Raman spectrum file number.

104/100) PCl ₃ (4.60g., 0.034 mol.)	:Cl, 46.5; br, 42.4; B, 1.9%. (P by	(B3) halide only
Br ₂ (5.23g., 0.033 mol.)	difference, 9.2%)	373:327:280 = 7:10:7
ECl ₃ (3.41 g., 0.033 mol.)	(P): C1:Br:B = 1.7:7.3:2.9:1.0	
-> pale yellow precipitate		
112/130) PC1 ₃ (6.13g., 0.045 mol.)	:Cl, 45.9; Br, 47.7%	(E3) ualide only
Br ₂ (2.07 g., 0.044 mol.)	Cl : Br = 2.2 : 1.0	376:327:280 = 10:3:1
EC13 (5.63 g., 0.048 mol.)		
→ white solid		
113/133) PC1 ₃ (4.878., 0.035 ¤01.)	in mg. sample/ 1 ml 0.1K	(M3) halide only
Br ₂ (5:49g., 0.034 mol.)	$A_{B}WO_{3} = 5.50$	374:328:280 = 9:10:6
BC1 ₃ (4.50 g., 0.038 mol.)		

يعاري مرجود المراجع المراجع المراجع

,

+ ^F C1 ₃ (7.35 g., 0.054 mol.) + Br ₂ (5.47 g., 0.034 mol.)) :F, 8.9; CI, 4/./; ET, 41.6; B, 1.8% P:CI:Br:B = 1.7:7.9:3.0:1.0	(q3) halide only 376:324:279 = 10:1:0
<pre>(116/146) Br₂(14.63 g., 0.091 mol. + { ^BCl₃ (10.22g., 0.087 mol.) + PCl₃(10.61g., 0.077 mol.)}</pre>	.) :C1, 46.0; Br, 43.9% C1:Br = 2.4:1.0	(P3) halideonly 375:328:250 = 10:10:5
(117/148) ECl ₃ (4.07g., 0.035 mol. + FCl ₃ (4.28 g., 0.031 mol.) + Er ₂ (~0.5 g., 0.003 mol.)) :Cl, 59.2; Br, 29.9% Cl:Br = 4.5:1	(T3) predominantly polyato 392:343:300 = 10:1:0
(121/155) PC1 ₃ (7.59 g., 0.055 mol. + EC1 ₃ (7.53g., 0.064 mol.) + Br ₂ (4.31 g., 0.027 mol.)	.) :Cl, 47.6Z;Br,43.9Z Cl:Br = 2.4:1.0	(W3) halide only 376:327:280 = 10:3:1

PREPARATION	ANALYSIS	SPECTRA (RAMAN)
(122/160) PC1 ₃ (11.11 g., 0.081 mol.) + EC1 ₃ (10.34 g., 0.088 mol.) + Er ₂ (4.89g., 0.031 mol.)	:Cl, 60.6; Br, 27.2% Cl:Br = 5.0 : 1.0	(V3) predominantly polyatomic 392:345:301 = 10:5:1
(123/161) PCl ₃ (8.21g., 0.060 mol.) + E6l ₃ (7.79 mg., 0.066 mol.) + Br ₂ (6.31 g., 0.039 mol.)	:Cl, 47.0; Br, 42.8Z Cl:Er = 2.4 : 1.0	(Z3) halíde only 375:324:260 = 10:1:0
(125/166) PCl ₃ (6.10 g., 0.044 mol.) + BCl ₃ (5.77 g., 0.049 mol.) + Br ₂ (5.87 g., 0.037 mol.) - reaction flask cooled in ice.	:Cl, 46.7 Z; Er, 42.9Z Cl:Br = 2.5 : 1.0	(C4) halide only 376:326:280 = 10:5:1
(126/168) PC1 ₃ (6.39 g., 0.047 mol.) + EC1 ₃ (6.05 g., 0.052 mol.) + Br ₂ (5.67 g., 0.036 mol.) reaction vessel cooled in ice.	:Cl, 49.4; Br, 40.2% Cl:Br = 2.8 : 1.0	(D4) halide only 376:329:280 = 10:10:4

- 104 -

PREPARATION [129/173) PCl3(6.40 g., 0.047 mol.) bCl3(5.77 g., 0.049 mol.) bCl3(5.24 g., 0.033 mol.)	<u>ANALYSIS</u> :Cl, 49.8; Br, 40.3% Cl:Br = 2.8 : 1.0	SPECTEA (FAMAN) (C4) halide only 376:328:280 = 10:7:3
137/201) PC1 ₃ (7.9g., 0.058 mol.) {Br ₂ (8.00 g., 0.050 mol.) BC1 ₃ (11.7 g., 0.010 mol.)} eaction vessel cooled in ice.	:Cl, 46.0; Er, 42.4% Cl:Er = 2.4:1.0	(X4) halide only 375:327:279 = 10:10:4
141/213) PC1 ₃ (6.1 g., 0.044 mol.) BC1 ₃ (10.2 g., 0.087 mol.) Er ₂ (4.6 g., 0.029 mol.) eaction vessel below -10 ^o C.		(D5) predominantly halide 376:325:280 = 10:6:3
141/214) PCl ₃ (7.00g., 0.051 mol.) BCl ₃ (11.2 g., 0.095 mol.) Br ₂ (5.5 g., 0.034 mol.)	:Cl, 52.5; Br, 34.1% Cl: Br = 3.5 : 1.0	(E5) predominantly halide 376:326:280 = 10:9:4

- 105 -

.

PREPARATION	ANALYSIS	SPECTRA (RAMAN)
(142/217) EC1 ₃ (12.1 g., 0.103 mol.)	:Cl, 47.1; Br, 33.4Z	(F5) halide only
+ PCl ₃ (14.0 g., 0.102 mol.)	cl:Br = 3.2 : 1.0	376:325:260 = 10:10:5
+ Br ₂ (12.1 g., 0.076 mol.)		
(146/227) BC1 ₃ (8.79 g., 0.075 mol.)	:P, 8.7; Cl, 46.9; Br, 41.8;	(P5) halide only
+ PCl ₃ (9.19 g., 0.067 mol.)	B, 1.7%	375:324:280 = 10:1:0
+ Br ₂ (7.12 g., 0.045 mol.)	<pre>P: C1:Br:B = 1.8:8.4:3.3:1.0</pre>	
reaction vessel cooled to -50°C.		
and stirred using a glass stirrer.		
والمحافظ	ووالافتاح والمحافظ	
(151/8A) BC1 ₃ (10.00 g., 0.085 mol.)	:Cl, 48.5; Br, 40.5%	(Z5) halide only
+ PCl ₃ (10.15 g., 0.074 mol.)	Cl:Br = 2.7 : 1.0	376:328:282 = 10:3:1
+ Br ₂ (\$.04 g., 0.0f0 mol.)		
reaction vessel cooled to -50°C.		
and reaction stirred using a glass		
stirrer.		

- 106 -

PREPARATION	ANALYSIS	SPECTRA (RAMAN)
52/15) BCl ₃ (10.11 g., 0.086 mol.)	:Cl, 47.3; Er, 43.2X	(A6) halide only
PC13 (9.98 g., 0.673 mol.)	Cl: Br = 2.5: 1.0	376:328:282 = 10:8:3
Br ₂ (8.07 g., 0.050 mol.)		
above (151/8A) but using a		
astic stirrer.		

p1

PREPARATION (2/-) BCl ₃ (25.30 g., 0.213 mol.)		
(2/-) BCl ₃ (25.30 g., 0.213 mol.)	ANALYSIS	SPECTRA (RAMAN)
n	ſ	(X) predominantly halide
• FCl ₃ (20.00 g., 0.145 mol.)		375:328:264 = 3:7:10
+ Br ₂ (24.00 g., 0.150 mol.)		
→yellow/red solid.		
(2/-) above sublimed.		sublimate predominantly
- ornshad and sublimed for		a matania
101 1011100 0110 01100110		in the court
3 hours with cardice/acetone		391:346:301 = 10:10:6
refrigerant.		residue halide only
		374:3 28:282 = 7:10:9
(7/51) Br ₂ (3.09 g.,0.019 mol.) P. 8.	2; Cl, 65.1; Br, 20.9Z	(N) polyatowic only
+ PCl ₃ (3.21 g.,0.023 mol.) P.Cl:	Br = 1.0:7.0:1	394:347:301 = 10:1:0
+ ECl ₃ (15.00 g., 0.128 mol.)		
> a white solid.		

- 108 -

+ BCl ₃ (6.50 g., 0.055 mol.)	A£NJ ₃ (Total Halide) = 4.96 (Calc.for PBCl ₇ Br, 4.62)	390:343:293 - 10:9:5
(96/84) PCI ₃ (5.23 g., 0.038 mol.) + Br ₂ (6.35 g., 0.035 mol.) + BCI ₃ (5.00 g., 0.042 mol.)	t	(Y2), polyatouic only 390:344:301 = 10:3:0
(109/116) PC1 ₃ (3.42 g., 0.025 mol.) + Br ₂ (3.35 g., 0.024 mol.) + EC1 ₃ (3.49 g., 0.030 mol.)	:Cl, 55.7; Er, 38.5% Cl:Br = 3.2:1	(F3) predowinantly hali 374:329:282 - 4:10:8
(110/117) ECl ₃ (3.70 g., 0.032 mol.) + PCl ₃ (3.89 g., 0.028 mol.) + Br ₂ (4.00 g., 0.025 mol.)	ţ	(G3) polyatomic only 391:346:300 = 10:1:0

- 109 -

PREPARATION	AWALYSIS	SPECTRA (RAMAN)
(114/138) PC1 ₃ (6.50 g., 0.047 mol.)	expressing mg. sample/l ml	(K3) polyatomic only
+ BC1 ₃ (6.20 g., 0.053 mol.) + BR ₂ (7.63 g., 0.47 mol.)	0.1 N AgWO ₃ (Total Halide) = 467 (calc.for PBCl ₇ Br, 4.62)	392:345:300 = 10:1:0
(114/151) PCl ₃ (8.82 g., 0.064 mol.) + Br _± (10.37 g., 0.065 mol.) + Bcl ₃ (8.72 g., 0.074 mol.)	:Cl,65.0%; Er, 24.7% Cl:Br = 5.8 : 1.0	(U3) polyatomic only 352:346:302 = 10:3:0
(127/170) PC1 ₃ (6.76 g., 0.049 mol.) + Br ₂ (7.47 g., 0.047 mol.) pumped for 12 hours.	:Cl, 54.2; Er, 35.6% Cl:Br = 3.4:1.0	(F4) Folyatomic only 388:342:297 = 8:10:8

- 110 -

.

<pre>(75/20) FC1_3(4.83 g., 0.035 wol.) : C1, 11.3; Br, 80.7% (J1) halide only + Br₂(5.72 g., 0.032 mol.) C1:Br = 1.0: 3.2 376:330:266 = 0:3:10 + BBr₃(3.67 g., 0.035 mol.) -> a yellow solid -> a yellow solid (105/102) FC1₃(3.05 g., 0.022 mol.) :C1, 15.2; Fr, 78.3% (J3) Fredominantly hali + Br₂(3.68 g., 0.022 mol.) :C1, 15.2; Fr, 78.3% (J3) Fredominantly hali + Br₂(3.68 g., 0.021 mol.) :C1, 15.2; Fr, 78.3% (J3) Fredominantly hali -> subs_3 (5.33 g., 0.021 mol.) :C1, 15.2; Fr, 78.3% (J3) Fredominantly hali + Br₂(3.68 g., 0.023 mol.) :C1, 15.2; Fr, 78.3% (J3) Fredominantly hali -> cooled to -78°C> yellow -> precipitate. (113/136) FC1₃(5.25 g., 0.038 mol.) :C1, 13.7; Br, 79.4% (I3) halide only + Br₂(5.95 g., 0.037 mol.) :C1, 13.7; Br, 79.4% (I3) halide only</pre>	PREPARATION	AFALYSIS	SPECTRA (RAMAN)
 Fr₂(5.72 g., 0.032 mol.) Cl:Br = 1.0: 3.2 BFr₃(3.67 g., 0.035 mol.) Cl:Br = 1.0: 3.2 Fri₃(3.67 g., 0.035 mol.) Cl, 15.2; Fr, 78.35 Fri₃(3.05 g., 0.022 mol.) Cl, 15.2; Fr, 78.35 Fri₃(3.05 g., 0.022 mol.) Cl:Br = 1.0: 2.3 Fri₃(3.13 g., 0.021 mol.) Cl:Br = 1.0: 2.3 Fri₃(5.13 g., 0.021 mol.) Cl:Br = 1.0: 2.3 Fri₃(5.35 g., 0.038 mol.) Cl:Br = 1.0: 2.6 Fri₂(5.95 g., 0.037 mol.) Cl:Br = 1.0: 2.6 Fri₃(10.17 g., 0.040 mol.) 	(75/20) PC1 ₃ (4.83 g., 0.035 mol.)	: ĉl, 11.3; Br, 80.7%	(J1) halide only
 → a yellow solid (105/102) PC1₃(3.05 g., 0.022 mol.) :C1, 15.2; Fr, 78.33 (5.13 g., 0.023 mol.) :C1, 15.2; Fr, 78.33 (5.13 g., 0.021 mol.) (13 g., 0.021 mol.) (13 g., 0.021 mol.) (13 f.) f. (14 f.) f. (+ Br ₂ (5.72 g., 0.032 mol.) + BBr ₃ (8.67 g., 0.035 mol.)	Cl:Br = 1.0: 3.2	376:330:286 = 0:3:10
<pre>(105/102) PC1₃(3.05 g., 0.022 mol.) :C1, 15.2; Pr, 78.3% (D3) predominantly halid + Br₂(3.68 g., 0.023 mol.) C1:Br = 1.0 : 2.3 376:328:284 = 0:4:10 + Bbr₃ (5.33 g., 0.021 mol.) ->cooled to -78^oC> yellow precipitate. (113/136) PC1₃(5.25 g., 0.038 mol.) :C1, 13.7; Br, 79.4% (13) halide only + Br₂(5.95 g., 0.037 mol.) C1:Br = 1.0 : 2.6 375:330:285 = 0:4:10 + Bbr₃(10.17 g., 0.040 mol.)</pre>	a yellow solid		
 Er₂(3.68 g., 0.023 mol.) C1:Er = 1.0 : 2.3 376:328:284 = 0:4:10 BDr₃ (5.33 g., 0.021 mol.) → cooled to -78°C. → yellow → cooled to -78°C. → yellow precipitate. precipitate. (13/136) PCl₃(5.25 g., 0.038 mol.) :C1, 13.7; Br, 79.4Z (13) halide only * Br₂(5.95 g., 0.037 mol.) :C1, 13.7; Br, 79.4Z (13, 10.17 g., 0.040 mol.) 	(105/102) PC1 ₃ (3.05 g., 0.022 mol.)	:C1, 15.2; Er, 78.3%	(b3) predominantly halid
 * BBr₃ (5.33 g., 0.021 mol.) > cooled to -78°C> yellow > precipitate. (113/136) PCl₃ (5.25 g., 0.033 mol.) :Cl, 13.7; Br, 79.4% * Br₂ (5.95 g., 0.037 mol.) :Cl, 13.7; Br, 79.4% * EBr₃ (10.17 g., 0.040 mol.) 	+ Br ₂ (3.68 g., 0.023 mol.)	Cl:Br = 1.0 : 2.3	376:328:284 = 0:4:10
precipitate. (113/136) PCl ₃ (5.25 g., 0.038 mol.) :Cl, 13.7; Br, 79.4% (13) halide only + Br ₂ (5.95 g., 0.037 mol.) Cl:Br = 1.0 : 2.6 375:330:285 = 0:4:10 + EBr ₃ (10.17 g., 0.040 mol.)	+ BBr ₃ (5.33 g., 0.021 mol.) 		
<pre>(113/136) PCl₃(5.25 g., 0.038 mol.) :Cl, 13.7; Br, 79.4% + Br₂(5.95 g., 0.037 mol.) Cl:Br = 1.0 : 2.6 375:330:285 = 0:4:10 + EBr₃(10.17 g., 0.040 mol.)</pre>	precipitate.	:	
<pre>* Br₂(5.95 g., 0.037 mol.) Cl:Br = 1.0 : 2.6 375:330:285 = 0:4:10 + EBr₃(10.17 g., 0.040 mol.)</pre>	(113/136) PC1 ₃ (5.25 g., 0.038 mol.)	:C1, 13.7; Br, 79.4Z	(I3) halide only
	+ Br ₂ (5.95 g., 0.037 mol.) + EBr ₃ (10.17 g., 0.040 mol.)	Cl:Br = 1.0 : 2.6	375:330:285 = 0:4:10

- 111 -

(138/206) PC1 ₃ (4.70 g., 0.05	34 mol.)	ſ	(24) halideonly
+ EBr ₃ (3.2 g., 0.033 mol.)			376:330:265 = 0:3:10
+ Br ₂ (5.6 g., 0.035 mol.)			
-> yellow solid.	·		
(139/208) PC1 ₃ (3.5 g., 0.026	i mol.) :C	l, 16.4; Er, 74.8%	(A5) polyatomic only
+ BBr ₃ (7.15 g., 0.029 mol.)	3	l:Br = 1.0:2.0	3 90:340:299 = 9:10:6
+ Br ₂ (2.7 g., 0.17 mol.)			Spectrum indicates BBr ₄
> white powder			anion (bands at 242, 118 cm^{-1})

iosphorus Tríchloride, Bromine, and de in Liquíd Hydrogen Chloride	IS SPECTRA (RAMAN)	(P1) <u>unpumped</u> - predominantly	1.5; Br, 38.7% halide.	1: 6.0: ² .0 374:329:280 = 9:10:8	(Q1) pumped for 24 hours	predominantly polyatomic	390:348:302 = 10:10:4	30.92	.0				42.1Z (E3) <u>unpumped</u> - predominantly	.0 halide	375:329:286 = 1:4:10	pumped for 16 hours - predominantly
Reaction of Ph Boron Tríbromi	ANALYS	Pumped	:E, 7.5; CI, 5	P:C1:Br = 1.0				:Cl, 57.9; Br,	Cl:Br = 4.2:1				:Cl, 48.2; Br,	Cl:Br = 2.6:1		
APPENDIX C. (4)	PREPARATION	(120/15) Br ₂ (4.80 g., 0.030 mol.)	+ PCl ₃ (3.68 g., 0.027 mol.)	+ BBr ₃ (8.67 g., 0.035 mol.)	> pumped for some time.			4 81/33) Br ₂ (7.64 g., 0.042 mol.)	+ PCl ₃ (6.05 g., 0.044 mol.)	+ BBr ₃ (1114 g., 0.045 mol.)	→ inhomogenous solid pumped	for 24 hours.	(107/107) Br ₂ (5.10 g., 0.032 mol.)	+ PCl ₃ (4.39 g., 0.032 mol.)	+ BBr ₃ (10.00 g., 0.040 mol.)	

•

SPECTRA (KAMAN) (Y4) predominantly halide 379:328:282 = 10:4:1	
AMALYSIS :Cl, 58.5; Br, 29.4Z Cl:Er = 4.5:1.0	
PREPARATION (138/205) BBr ₃ (9.02 g., 0.036 mol.) + PCl ₃ (4.4 g., 0.032 mol.) + Br ₂ (5.1 g., 0.032 mol.)	

REFERENCES

- Van Wazer, J.R., "Phosphorus and It's Compounds", Interscience, New York, 1958, 1.
- 2. George, J.W., Prog.Inorg.Chem., 1960, 2, 33.
- 3. Payne, D.S., Quart.Rev., 1961, 15, 173.
- 4. Holmes, R.R., J.Chem.Educ., 1963, 40, 125.
- 5. Kolditz, L., Adv. Inorg. Chem. Radiochem., 1965, 7, 1.
- 6. Webster, M., Chem.Rev., 1966, 87.
- Payne, D.S., "Topics in Phosphorus Chemistry", Interscience, New York, 1967, <u>4</u>, 85.
- 8. Beattie, I.R., and Ozin, G.A., J.Chem.Soc. (A), 1969, 1691.
- 9. Kennedy, T., Payne, D.S., Reed, R.I., and Sneddon, W., Proc.Chem.Soc., 1959, 133.
- 10. Rouault, M., Compt. Rend., 1938, 207, 620.
- 11. Rouault, M., Ann. Phys., 1940, 14, 78.

- Schomaker and Sargent., private communication quoted by
 Stevenson, D.P., and Yost, D.N., J.Chem.Phys., 1941, 9, 403.
- 13. Wilmshurst, J.R., and Eernstein, H.J., <u>J.Chem.Phys.</u>, 1957, <u>27</u>, 661.
- Moureu, H., Magat, M., and Wetroff, G., <u>Compt.Rend.</u>, 1937, <u>205</u>, 276.
- Moureu, H., Magat, M., and Wetroff, G., <u>Chem.Abstr.</u>, 1939, <u>33</u>, 4873.
- 16. Powell, H.M., Clark, D., and Wells, A.F., Nature, 1940, 149.
- 17. Clark, D., Powell, H.M., and Wells, A.F., J.Chem.Soc., 1942, 642.
- 18. Gerding, H., and Houtgraaf, H., Rec. Trav. Chim., 1955, 74, 5.
- 19. Carlson, G.L., Spec.Acta., 1963, 19, 1291.
- 20. Livingston, K., and Ozin, G.A., J.Chem.Soc. (A)., 1969, 2840.
- 21. Andrew, E.R., Bradbury, A., Eades, R.G., and Jenks, G.J., Nature, 1960, 188, 1096.
- 22. Andrew, E.R., and Eades, R.G., <u>Discussions Faraday Soc.</u>, 1962, 34, 38.

- 23. Wieker, W., and Grimmer, A.R., Z.Naturforsch., 1966, 21, 1103.
- 24. Kesavedas, T., and Payne, D.S., unpublished results quoted in reference 7.
- Popov., A.I., Geske, D.H., and Baenziger, N.C., <u>J.Am.Chem.Soc</u>.
 1956, <u>78</u>, 1793.
- Baumgaertner, R., Sawodny, W., and Goubeau, J., Z.Anorg.Allgem.Chem., 1964, 333, 171.
- 27. Shore, S.G., and Knachel, H., private communication.
- 28. Martin, D.R., J.Phys.Colloid. Chem., 1947, 51, 1400.
- 29. Groeneveld, W.L., and Zuur, A.P., Rec.Trav.Chim., 1953, 72, 617.
- 30. Vickery, R.C., Nature, 1959, 184, 268.
- 31. Greenwood, N.N., Wade, K., and Perkins, P.G., <u>Chem.Abstr.</u>, 1960, 54, 9582.
- 32. Waddington, T.C., and Klanberg, F., J.Chem.Soc., 1960, 2339.

- 33. Holmes, R.R., Inorg.Nucl.Chem., 1960, 14, 179.
- 34. Holmes, R.R., Inorg.Synth., 1963, 7, 79.

- 35. Potro, V.P., and Shore, S.G., J.Chem.Soc., 1964, 336.
- 36. Cal'Chenko, G.L., Tinofeev., B.I., Gedakyan, D.A., Grinberg, Ya.Kh., and Medvedeva, Z.S., Chem.Abstr., 1966, 65, 19367a.
- 37. Gerding, h., and Duinker, J.C., Rev.Chim.Minerale, 1966, 3, 815.
- 36. Cronander, A.W., Ber., 1873, 6, 1465.
- 39. Beattie, I.R., and Webster, M., J.Chem.Soc., 1963, 38.
- 40. Groeneveld, W.L., Rec. Trav. Chim., 1952, 71, 1152.
- 41. Groeneveld, W.L., Rec. Trav. Chim., 1956, 75, 594.
- 42. Fialkov, Ya.A., and Bur'yanov, Ya.B., Chem.Abstr., 1960, 54, 16249.
- 43. Balard. A.J., Ann. Chim. Phys., 1826, 32, 337.
- 44. Harris, G.S., and Payne, D.S., J.Chem.Soc., 1958, 3732.
- 45. Powell, H.M., and Clark, D., Nature, 1940, 971.
- 46. Van Driel, M., and MacGillavry, C.H., <u>Rec.Trav.Chim.</u>, 1943, 62, 167.
- 47. Gabes, W., and Olie, K., <u>Acta.Crystallogr.</u>, (B), 1970, <u>26</u>, 443.
- 48. Gerding, H., and Nobel, P.C., Rec. Trav. Chim., 1958, 77, 472.

- 49. Diamelincourt, P., and Crunelle-Cras. M., Bull.Soc.Chim.Fr., 1970, 2470.
- 50. Tarible, M., Compt.Rend., 1893, 116, 1521.
- 51. Waddington, T.C., and White, J.A., J.Chem.Soc., 1963, 2701.
- 52. Schmutzler, R., Adv.Fluor.Chem., 1965, 5, 31.
- 53. Holmes, R.R., and Gallagher, W.P., Inorg.Chem., 1963, 2, 433.
- 54. Holmes, R.R., Carter, R.P., and Peterson, G.E., <u>Inorg.Chem.</u>, 1964, <u>3</u>, 1748.
- 55. Griffiths, J.E., Carter, R.P., and Holmes, R.R., <u>J.Chem.Phys.</u>, 1964, <u>41</u>, 863.
- 56. Carter, R.P., and Holmes, R.R., Inorg. Chem., 1965, 4, 738.
- 57. Holmes, R.R., J.Chem. Phys., 1967, 46, 3718.
- 58. Brockway, L.O., and Beach, J.Y., J.Am.Chem.Soc., 1938, 60, 1836.
- 59. Mustterties, E.L., Mahler, W., and Schmutzler, R., Inorg.Chem., 1963, 2, 613.
- 60. Mahler, W., and Muetterties, E.L., Inorg.Chem., 1965, 4, 1520.

- 61. Rogowski, R., and Cohn, K., Inorg. Chem., 1968, 7, 2193.
- 62. Kennedy, T., and Payne, D.S., J.Chem.Soc., 1959, 1228.
- 63. Salthouse, J.A., and Waddington, T.C., Spec.Acta., 1967, 23A, 1069.
- 64. Reich, P., and Preiss, H., Z.Chem., 1967, 7, 115.
- 65. Kolditz, L., Z.Anorg.Allgem.Chem., 1956, 284, 144.
- Kolditz, L., Beierlein, I., Wieker, W., and Grimmer, A-R.,
 Z.Chem., 1968, 8, 266.
- 67. Kolditz. L., Z.Anorg.Allgem.Chem., 1956, 286, 207.
- 68. Kolditz., L., and Heuthe, unpublished work quoted in reference 5.
- 69. Roesky, H.W., Angew, Chem. Internat. Edit., 1967, 6, 363.
- 70. Walther, J.F., Ph.D.Thesis, Ohio State University, 1965.
- 71. Kennedy, T., and Payne, D.S., J.Chem.Soc., 1960, 4126.
- 72. Ruff, J.K., Inorg.Chem., 1963, 2, 813.
- 73. Moissan, H., Compt.Rend. (B)., 1885, 100, 1348.
- 74. Kolditz, L., and Feltz, A., Z.Anorg.Allgem.Chem., 1957, 293, 155.

- 75. Dhameliacourt, P., and Crunelle-Cras, M., <u>Compt.Rend.</u>, 1970, <u>271</u>, 124.
- 76. Kolditz, L., and Bauer, F., Z.Anorg.Allgem, Chem., 1959, 302, 241.
- 77. Booth, H.S., and Frary, S.G., J.Am.Chem.Soc., 1939, 61, 2934.
- 78. Kolditz, L., and Feltz, A., Z.Anorg.Allgem.Chem., 1957, 293, 286.
- 79. Fialkov, Ya.A., and Fuzmenko, A.A., J.Gen.Chem.U.S.S.R., 1951, <u>21</u>, 479.
- Fialkov, Ya.A., and Kuzmenko, A.A., J.Gen.Chem.U.S.S.R., 1952, 22, 1290.
- 81. Renc, A., Rocz.Chem., 1933, 13, 569.
- 82. Milobedzki, T., and Krakowieki, S., Rocz.Chem., 1928, 8, 563.
- 83. Milobedski, T., and Krakowieki, S., Rocz. Chem., 1930, 10, 158.
- 84. Stern, A.L., J.Chem.Soc., 1886, 49, 815.
- 85. Michaelis, A., Ber., 1872, 5, 9.
- 86. Prinvault, M., Compt. Rend., 1872, 74, 868.
- 87. Milobedzki, T., Chem.Listy., 1932, 26, 458.

- 58. Nenc, A., Rocz. Chem., 1933, 13, 454.
- 89. Kenc, A., <u>Rocz.Chem.</u>, 1934, <u>14</u>, 69. <u>Chem.Abstr.</u>, 1934, 28, 6077⁹
- Kuzmenko, A.A., <u>Ukr.Khim.Zh.</u>, 1952, <u>18</u>, 589. <u>Chem.Abstr</u>.
 1954, 48, 5009e.
- 91. Salthouse, J.A., and Waddington, T.C., J.Chem.Soc. (A)., 1967, 1096.
- 92. Creighton, J.A., J.Chem.Soc., 1965, 6589.
- Dhauelincourt, P., and Crunelle-Cras, M., <u>Compt.Rend</u> (B), 1970, <u>271</u>, 124.
- 94. Delhaye, M., Dhamelincourt, P., and Merlin, J-C., <u>Compt.Rend</u>.(B), 1971, <u>272</u>, 370.
- 95. Beattie, I.R., Gibson, T., Liuingston, K., Fawcett, V., and Ozin, G.A., J.Chem.Soc. (A)., 1967, 712.
- 96. Melia, T.P., and Merrifield, R., J.Chem.Soc. (A)., 1971, 1258.

· ·

- Guthrie, G.B., and McCullough, J.P., <u>J.Phys.Chem.Solids</u>, 1961, <u>18</u>, 53.
- 98. Delwaulle, M-L., and Francois, F., Compt.Rend., 1944, 335.

- 99. We thank Dr.F.E.Dillon for solid-state ³¹P and "B n.m.r. measurements and for discussion of the results.
- 100. We thank Professor T.C.Waddington for his suggestion of an alternative source of the PCl₃Br⁺ ion.
- 101. Nakamoto, K., "Infrared Spectra of Inorganic and Co-ordination Compounds", 2nd Edition, Wiley-Interscience, 1970.
- 102. Hofler, F., Z. Naturforsch, 1971, 26, 547.
- 103. We thank Mark Goldschmidt for the X-Ray measurements and discussion of the results.
- 104. Dillon, K.B., and Waddington, T.C., Spec.Acta., 1971, 27A, 1381.
- 105. Dillon, K.B., and Gates, P.N.G., J.C.S.Chem.Comm., 1972, 348.
- 106. Kolditz, L., "Halogen Chemistry", 1967, 2, 115.
- 107. Kolditz, L., and Heuthe, G., unpublished work quoted in reference 106.
- 108. Kleinberg, J., Argersinger, W.J., and Geiswold, E., "Inorganic Chemistry", D.C.Heath and Co., Boston, 1960, 416.

. [`

- 109. Hackert, M.L., Jacobson, R.A., and Keiderling, T.A., Inorg.Chem., 1971, 10, 1075.
- 110. Adams, C.J., and Downs, A.J., J.Inorg.Nucl.Chem., 1972, 34, 1829.
- 111. Goetz, C., Deneux, M., and Leroy, M.J.F., <u>Bull.Soc.Chim.Fr.</u>, 1971, 29.
- 112. Ahlijah, G.Y., and Goldstein, M., J.Chem.Soc. (A), 1970, 326.
- 113. We thank Professor H.Gerding for solid-state Raman measurements.
- 114. Waddington, T.C., and Klanberg, F., J.Chem.Soc., 1960, 2333.
- 115. Mathews, J.H., J.Am.Chem.Soc., 1926, 48, 562.
- 116. Booth, H.S., and Bozarth, A.R., J.Am.Chem.Soc., 1939, 61, 2927.
- 117. Andrews, L.W., J.Am.Chem.Soc., 1907, 275.
- 118. Coley, R., Ph.D., Thesis, London University, 1971.
- 119. Watson, E.S., O[®]Neill, M.J., Justin, J., and Brenner, M., Anal.Chem., 1964, 36, 1233.

.

120. Javid, D.J., Anal.Chem., 1964, 36, 2162.

121. keenan, A.G., J.Phys.Chem., 1956, 60, 1356.

, "D.M.*B* BBAANU

•

The Existence and Vibrational Characterisation of the Trichlorobromophosphonium Ion

By F. F. BENTLEY, ARTHUR FINCH*†, P. N. GATES,† and F. J. RYAN†

(Chemistry Department, Royal Holloway College, University of London, Englefield Green, Surrey, and the Air Force Materials Laboratory, (LPA), Wright Patterson Air Force Base, Dayton, Ohio, 45433)

Reprinted from

Chemical Communications 1971

The Chemical Society, Burlington House, London WIV OBN

The Existence and Vibrational Characterisation of the Trichlorobromophosphonium Ion

By F. F. BENTLEY, ARTHUR FINCH*[†], P. N. GATES,[†] and F. J. RYAN[†]

(Chemistry Department, Royal Holloway College, University of London, Englefield Green, Surrey, and the Air Force Materials Laboratory, (LPA), Wright Patterson Air Force Base, Dayton, Ohio, 45433)

Summary The existence of the trichlorobromophosphonium ion [PCl₃Br]⁺ has been confirmed in the solid complexes PBCl₇Br and P₂F₆Cl₃Br and a vibrational assignment is given. (X = Cl or Br) are well known, evidence for the existence of the mixed species $[PX_nY_{4-n}]^+$, (X = Cl, Y = Br) is limited and characterisation is fragmentary. The existence of trichlorobromophosphonium tetrachloroborate (I), $[PCl_3-Br][BCl_4]$ has been suggested by Salthouse and Waddington¹ and its presence in some other complex species postulated. We report a detailed vibrational characterisation of the

Although the tetrahalogenophosphonium ions $[PX_4]^+$,

CHEMICAL COMMUNICATIONS, 1971

[PCl₃Br]+ ion in (I) and in the new compound trichlorobromophosphonium hexafluorophosphate (II), [PCl₃Br]-[PF.].

Compound (I) was prepared by the addition of excess of boron trichloride to equimolar amounts of phosphorus trichloride and bromine in liquid hydrogen chloride at ca. $-95^{\circ,1}$ The precipitated white solid was pumped at ambient temperatures and subsequently manipulated under dry-box conditions. Variations in the order of addition of the three reactants were explored. The purest product, on the basis of analytical data and simplicity of Raman spectra, resulted from the following order of addition to the hydrogen chloride solvent: (i), boron trichloride (ii), phosphorus trichloride, (iii), bromine. The expected stoicheiometry of PBCl₇Br is fully confirmed by analytical results.

I.r. and Raman spectra (cm⁻¹) of the $PCl_{9}Br^{+}$ ion in $PBCl_{7}Br(I)$ and $P_{9}F_{6}Cl_{9}Br(II)$

PBCI,	Br (I)	P ₃ F ₆ Cl	Br (II)	
I.r. 637(s) 597(m)	Raman 647(vw)	I.r. 647(s) 604(m)	Raman 657(vw)	Assignment v ₄ (e)
577(vs) 525(m) 493(vw)	582(w)	588(m) 522(m) 490(w)	582(w)	ν ₁ (a ₁)
390(m) 232(m) 213(m) 155(w)	390(vs) 233(s) 213(vs) 155(s)	397(m) 233(m) 216(m) a	399(vs) 235(s) 217(s) 159(s)	$ v_2 (a_1) v_5 (e) v_8 (a_1) v_6 (e) $

^a Not investigated.

Compound (II) was prepared[‡] by the addition of equimolar amounts of phosphorus trichloride and bromine to liquid hydrogen chloride at $ca. -95^{\circ}$ followed by condensation of excess of phosphorus pentafluoride. Volatile residues were removed in vacuo and the white crystalline product was manipulated under anhydrous conditions. Analytical results confirm the expected stoicheiometry.

Chlorine and bromine were measured by standard titrimetric procedures in this laboratory; phosphorus and fluorine were determined in a commercial laboratory.

FIGURE. Raman spectrum of crystalline PCl₃Br+BCl-4

Comparison of the spectra with those of authentic samples containing BCl4- and PF6- ions lead to the conclusions that (a) in (I), the Raman lines (Figure) at 411m, 280m, and 194m cm⁻¹ together with a very strong broad i.r. absorption at 670-700 cm⁻¹ confirm the presence of the BCl₄- ion and, (b) in (II), Raman lines at 743s and 472w cm^{-1} with i.r. absorptions at 552s and 834s cm^{-1} confirm the presence of the PF_6^- ion. The remaining Raman lines and i.r. absorptions are common to both complexes and are assigned (Table) to $PCl_{3}Br^{+}$ on the basis of C_{3v} symmetry expected by analogy with the isoelectronic SiCl_aBr.²

We thank the Monsanto Research Corporation, prime contractor for an Air Force contract, for financial support.

(Received, May 13th, 1971; Com. 760.)

† At Royal Holloway College, University of London, Englefield Green, Surrey.
‡ We thank Professor T. C. Waddington for his suggestion of an alternative source of the [PCl₃Br] ion.

¹ J. A. Salthouse and T. C. Waddington, Chem. Comm., 1967, 1096. ⁸ M. L. Delwaulle and F. Francois, Compt. Rend., 1944, 219, 335; 1945, 220, 173.

CONTRIBUTION FROM THE DEPARTMENT OF CHEMISTRY, ROYAL HOLLOWAY COLLEGE, UNIVERSITY OF LONDON, ENGLEFIELD GREEN, SURREY, ENGLAND, AND THE AIR FORCE MATERIALS LABORATORY (LPA), WRIGHT-PATTERSON AIR FORCE BASE, DAYTON, OHIO 45433

The Existence of Chlorobromoantimonates

By F. F. BENTLEY, ARTHUR FINCH,* P. N. GATES, AND F. J. RYAN

Received May 3, 1971

Recent reviews^{1,2} have stated that chlorobromoantimonates, $SbCl_nBr_{6-n}$, do not apparently exist. Thus reaction of, for example, SbCl₄+ and Br⁻ ions under appropriate conditions is said³ to lead to mixtures of hexachloro- and hexabromoantimonates; X-ray powder studies on crystalline tetraethylammonium salts and ultraviolet spectra measurements on acetonitrile solu-

these correspond to PCl₄+ bands in the spectra of authentic samples of [PCl₄][BCl₄] and also [PCl₄][SbCl₆] prepared and run in this laboratory. Inspection of Table II shows that, apart from bands at 667 and 422 cm^{-1} in B, due to the tetraethylammonium ion, the spectra of A and B match extremely closely. Only two weak bands (396 and 363 cm⁻¹ in A) are not common to both; the same anionic species is therefore inferred. Consideration of comparison spectra of compounds containing the ions SbCl6-, PCl6-, and PCl3-Br⁺ eliminate the possibilities that A might be formulated as [SbCl₃Br][PCl₆] or as [PCl₃Br][SbCl₆]. That $SbBr_6^-$ was not present was shown by the absence of a strong band at 194 cm⁻¹ previously observed in the spectrum of a sample of $[(C_2H_5)_4N][SbBr_6]$ prepared in this laboratory. The remaining formulation, consistent with both analytical and Raman evidence, is [PCl₄][SbCl₅Br], and B is hence established as [(C₂-H₅)₄N][SbCl₅Br]. Infrared spectra, run as Nujol mulls, on both A and B are completely consistent with

	TABLE I	
ANALYTICAL DATA FOR	$(C_2H_5)_4NSbCl_5Br$ and	PSbCl ₉ Br

	~~~~%	P	~~~~%	~~~~~% Sb~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		% Cl		% Br		
	Calcd	Found	Calcd	Found	Calcd	Found	Calcd	Found		
(C ₂ H ₅ ) ₄ NSbCl ₅ Br			23.9	23.8	34.8	34.9	15.7	15.7		
PSbCl ₉ Br	5.6	5.4	22.1	22.4	57.8	57.6	14.5	14.8		

tions are cited as evidence. This is surprising in view of the known existence4 of the analogous phosphorus anion PCl₅Br⁻, of antimony-fluorochloro compounds,² and of the halogenotrifluoromethyl antimonates1 Sb- $(CF_3)_3X_3^-$ , X = Cl, Br. In this note we present evidence for the preparation of two compounds containing the pentachlorobromoantimonate anion, Sb-Cl₅Br⁻.

Preparation and Characterization of the SbCl₅Br-Ion.-The two syntheses are summarized by the equations

$$PCl_{3} + Br_{2} + SbCl_{5} \xrightarrow{Ilquid HCl} PSbCl_{9}Br (A) + HBr$$
$$(C_{2}H_{5})_{4}NBr + SbCl_{5} \xrightarrow{dichloromethane} (C_{2}H_{5})_{4}NSbCl_{5}Br (B)$$

In each synthesis the mole ratio of reactants was unity. After precipitation of compound A, the HCl was removed by pumping at ambient temperatures for 2 hr, and the resultant yellow powder subsequently stored and manipulated under strictly anhydrous conditions. Compound B, a yellow solid, was filtered on a glass sinter before pumping and storing. Analytical results (Alfred Bernhardt, Munich, Germany) are summarized in Table I.

Raman Spectra.-Raman spectra of A and B in the solid state were recorded using a Cary 81 Raman spectrometer with 6328-Å helium-neon excitation; results are listed in Table II.

The presence of the PCl₄⁺ ion in A is clearly shown by the position of bands at 660, 458, 251, and  $182 \text{ cm}^{-1}$ ;

- (1) L. Kolditz, Advan. Inorg. Chem. Radiochem., 7, 13 (1965).
- (2) L. Kolditz, Halogen Chem., 2, 133 (1967).
- L. Kolditz and G. Heuthe, unpublished results, quoted in ref 2.
   L. Kolditz and A. Feltz, Z. Anorg. Allg. Chem., 293, 286 (1957).

	TABLE II	
RAMAN S	SHIFTS (CM ⁻¹ ) FOR PSb(	l ₉ Br and
	(C2H5)4NSbCl5Bra	•
<b>PSbCl</b> ₀Br	(C2H5)4NSbCl5Br	
(A)	(B)	Assignment
	677 w	Et₄N+
660 w		PCl ₄ +
458 s		PCl ₄ +
	422 w	Et₄N+
396 w		?
363 w, sh		?
332 vs	332 s	SbCl₅Br ⁻
310 m	308 m	SbCl ₅ Br ⁻
290 m	289 m	SbCl₅Br−
251 s		PCl ₄ +
222 s, br	223 s, br	SbCl₅Br−
182 sh		PCl ₄ +
175 s	173 m, br	SbCl ₅ Br ⁻
157 w	158 w	SbCl₅Br ⁻

^a Abbreviations: Et, (C₂H₅)₄; vs, very strong; s, strong; m, medium; w, weak; sh, shoulder; br, broad.

the above interpretation; a detailed presentation of the vibrational spectra will be given elsewhere.

Differential Scanning Calorimetry.-To substantiate further that A was not a 5:1 (mole) mixture of SbCl₆and SbBr6- species, differential scanning calorimetric (dsc) measurements were made on  $[(C_2H_5)_4N][SbCl_6]$ (a), on  $[(C_2H_5)_4N][SbBr_6]$  (b), on a freshly prepared 5:1 molar mixture of a and b, and on B, using sealed pans, from ambient temperature to ca. 280°. The thermogram from the mixture exhibited features associated with the individual components, and, in particular, reversible endothermic phase changes near  $60^{\circ}$  (a) and  $158^{\circ}$  (b). The thermogram of B differed from that of the mixture; no evidence for the 158° endotherm was found, in contrast to the mixture.

Hence the conclusion that B was a compound is further indicated.

Acknowledgment.—We thank Mr. S. Ashdown and Mr. R. Coley for help with the preparation of samples and with dsc measurements, respectively. We are greatly indebted to the Monsanto Research Corp., Prime Contractor on Air Force Contract F 33615-171-C-1132, for financial support during this investigation.