```
    A SPECTROSCOPIC INVESTIGATION OF
    SOME MIXED HALIDE COMPOUNDS
of PhosPhoruS (V) AND ANTTMONY (V).
```


A thesis subaitted by
 Francis James Ryan
 in candidature for the degree of Doctor of Philosophy of the University of London.

R. H. C. LIBRARY	
OLASS	CDC
No.	Rya
ACC.MO	114.237
DAIE ACQ Marh. 73	

ProQuest Number: 10096783

All rights reserved

INFORMATION TO ALL USERS

The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest 10096783
Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author.
All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346

ABSTRACT

The fundamental vibrational frequencies of the mixed chlorobromophosphonium ions, $\mathrm{PCl}_{3} \mathrm{Br}^{+}, \mathrm{PCl}_{2} \mathrm{Br}_{2}{ }^{+}$and $\mathrm{PBr}_{3} \mathrm{Cl}^{+}$, have been assigned from solid-state Raman and infrared ($\mathrm{PCl}_{3} \mathrm{Br}^{+}$only) measurements. The Raman spectra of the following have been compared:-
(i) $\mathrm{PBr}_{4}{ }^{+} \mathrm{Br}^{-}$and $\mathrm{PBr}_{4}^{+} \mathrm{BBr}_{4}^{-}$
(ii) Normal $\mathrm{PCl}_{5}\left(\mathrm{PCl}_{4}{ }^{+} \mathrm{PCl}_{6}{ }^{-}\right)$and "metastable" PCl_{5} (containing Cl^{-}ions).
(iii) $\mathrm{PCl}_{3} \mathrm{Br}^{+} \mathrm{BCl}_{4}^{-}, \mathrm{PCl}_{3} \mathrm{Br}^{+} \mathrm{PF}_{6}{ }^{-}$and $\mathrm{P}_{2} \mathrm{Cl}_{9} \mathrm{Br}$ (containing $\mathrm{PCl}_{3} \mathrm{Br}^{+}$and Br^{-}ions).
(iv) Compounds shoin by solid-state ${ }^{31}$ P n.m.r. Spectroscopy to contain the $\mathrm{PCl}_{3} \mathrm{Br}^{+}, \mathrm{PCl}_{2} \mathrm{Br}_{2}^{+}$and $\mathrm{PBr}_{3} \mathrm{Cl}^{+}$ions.

From the above, two sets of fundamental vibrational frequencies may be assigned to the tetrahalogenophosphonium ions, $\mathrm{FCl}_{\mathrm{n}} \mathrm{Br}_{4-\mathrm{n}}^{+}$ ($n=0-4$), depending upon whether they are in the ptesence of:-
(a) A polyatomic anion only (eg. BCl_{4}^{-}), or
(b) Single halide ions($\mathrm{Cl}^{-}, \mathrm{Br}^{-}$)

The addition of excess chlorine to $\mathrm{PCl}_{2} \mathrm{~F}$ gields initially a green liquid, probably molecular $\mathrm{PCl}_{4} \mathrm{~F}$, and some white solid, probably $\mathrm{PCl}_{4}^{+} \mathrm{PCl}_{4} \mathrm{~F}_{2}^{-}$. On standing at room temperature for $3-4$ days, the whole solidified to give a compound of stoichfometry $\mathrm{PCI}_{4} \mathrm{~F}$, which it is suggested (from Raman and infrared spectra and fluoride analyses) may be formulated as containing $\mathrm{PCl}_{4}{ }^{+}, \mathrm{F}^{-}$and $\mathrm{PCl}_{4} \mathrm{~F}_{2}^{-}$ ions. Raman and infrared spectra indicate a trans $\left(D_{4 h}\right)$ structure
for the octahedral $\mathrm{PCl}_{4} \mathrm{~F}_{2}{ }^{-}$ion.

Comparison of X -Ray data for $\mathrm{P}_{2} \mathrm{Cl}_{9} \mathrm{Br}$ and the conpound of stoichiometry $\mathrm{PCl}_{4.66} \mathrm{Br}_{0.33}$ indicate a unit. cell for $\mathrm{P}_{2} \mathrm{C1} \mathrm{C}_{9} \mathrm{Br}$, comprising $6 \mathrm{PCl}_{4}^{+}, 2 \mathrm{PCl}_{3} \mathrm{Br}^{+}, 4 \mathrm{PCl}_{6}{ }^{-}$and 4 Br ions. Solidstate Raman and ${ }^{31} \mathrm{P}$ n.m.r. spectra strongly support the above formulation for $\mathrm{P}_{2} \mathrm{Cl}_{9} \mathrm{Br}$. Solid-state Raman spectra of $\mathrm{PCl}_{3} \mathrm{Br}{ }_{6}$ and $\mathrm{PSbCl} \mathrm{Pr}_{3}$ do not confirm the expected formulations, $\mathrm{PCl}_{3} \mathrm{Br}^{+} \mathrm{Br}^{-}\left(\mathrm{Br}_{2}\right)_{2}$ and $\mathrm{PSr}_{3} \mathrm{Cl}^{+} \mathrm{SbCl}_{6}{ }^{-}$.

The two compounds $\mathrm{Et}_{4} \mathrm{NSbEr}_{6}$ and $\mathrm{Bu}_{4} \mathrm{NSBEr}_{6}\left(\mathrm{Bu}=\mathrm{C}_{4} \mathrm{H}_{9}\right)$ may be Eormulated, according to Raman and infrared data, as $E t_{4} N^{+} \operatorname{SbBr}_{6}{ }^{-}$ and $\mathrm{Bu}_{4} \mathrm{~N}^{+} \mathrm{SbBr}_{6}{ }^{-}$respectively. The existence of $\mathrm{Et}_{4} \mathrm{~N}^{+} \mathrm{SbCl}_{5} \mathrm{Br}^{-}$ as a discrete chemical compound and not a 5:1 mixture of $\mathrm{Et}_{4} \mathrm{~N}^{+} \mathrm{SbCl}_{6}{ }^{-}$and $\mathrm{Et}_{4} \mathrm{~N}^{+} \mathrm{SbBr}_{6}{ }^{-}$has been demonstrated by:-
(i) Raman spectroscopy,
(ii) X-Ray powder photography, and
(iii) Differential scanning calorimetry.

Raman and ${ }^{31}{ }^{1}$ n.m.r. spectra of $\mathrm{PSBCl}_{9} \mathrm{Br}$ indicate the formulation $\mathrm{PCl}_{4}{ }^{+} \mathrm{SbCl}_{5} \mathrm{Br}^{-}$.

ACEMOLLEDGEMENTS

The author wishee to thank Dr.Arthur Finch and Dr.Peter N.Gates, of Royal Holloway College, and Mr. Freenan F.Bentley, of the Wright-Patterson Air Force Base, Dayton, Ohio, U.S.A., for advice, encouragement and assistance during this work.

The author also wishes to thank Dr.keith. B.Dillon, of Durham University, for nuclear magnetic resonance measurements and discussion of the results. Finally, the author wishes to thank all those menbers of the Chenistry Department of noyal Holloway College and the Air Force Materials Laboratory (LPA), Wright-Patterson Air Force Base, who have helped him in any way.

The author is greatly indebted to the lionsanto Research Corporation, Prime Contractor on Air Force Contract F 33615-171-C-1132 for financial support during this investigation.

Dedication

To my late Father,
my Mother and
my Wife, Barbara.
ABSTEACT i
ACKNOWLEDGEMENTS iii
DEDICATION iv
$0-0-0-0-0$
Section

1. THE halides of phosphorus (v). 1
1.1. INTRODUCTION 1
1.2. RESULTS AND DISCUSSION 9
1.2.1. The Tetrachlorophosphonium and the Tetrabromophosphonium Ions $\left(\mathrm{PCl}_{4}{ }^{+}\right.$and $\mathrm{PBr}_{4}{ }^{+}$) 9
1.2.1.i. The Tetrabromophosphonium Ion $\left(\mathrm{PBr}_{4}{ }^{+}\right.$) 9
1.2.1.ii. Phosphorus Pentachloride and the Tetrachlorophosphonium Cation ($\mathrm{PCl}_{4}{ }^{+}$) 13
1.2.1.iii. The Ionic Form of the Compound of Stoichiometry $\mathrm{PCl}_{4}{ }^{\mathrm{F}}$. 23
1.2.2. The Trichlorobromophosphonium Ion $\left(\mathrm{PCl}_{3} \mathrm{Br}^{+}\right.$) 32
1.2.2.i. The Coupounds of Stoichiometry $\mathrm{PBCl}_{7} \mathrm{Br}$ 32 and $\mathrm{P}_{2} \mathrm{Cl}_{3} \mathrm{Br} \mathrm{F}_{6}$
1.2.2.if. The Compound of Stoichiometry $\mathrm{P}_{2} \mathrm{Cl}_{9} \mathrm{Br}$ 39
1.2.3. The Dichlorodibromophosphonium and the Chlorotribromophosphonium Ions $\left(\mathrm{PCl}_{2} \mathrm{Br}_{2}{ }^{+}\right.$and $\left.\mathrm{PBr}_{3} \mathrm{Cl}^{+}\right)$ 44
1.2.4. Other Compounds 59
1.2.4.i. The Compound ${ } \mathrm{PCl}_{3} \mathrm{Br}_{4}$ " 59
1.2.4.1i. The Compound of Stoichiometry $\mathrm{PSbCl}_{7} \mathrm{Br}_{3}$ 62
Section Page
2. THE HALIDES OF ANTIMONY (V). 64
2.1. INTRODUCTION 64
2.2. RESULTS AND DISCUSSION 65
2.2.1. The Hexabromoantimonate Ion ($\mathrm{SbBr}_{6}{ }^{-}$) 65
2.2.2. The Pentachlorobromoantimonate Ion $\left(\mathrm{SbCl}_{5} \mathrm{Br}^{-}\right)$ 68
2.2.2.1. The Compound of Stoichiometry $\mathrm{Et}_{4} \mathrm{~N} \mathrm{SbCl}_{5} \mathrm{Br}$ 68
2.2.2.ii. The Compound of Stoichiometry $\mathrm{P} \mathrm{SbCl} \mathrm{S}_{9} \mathrm{Br}$ 74
2.3. Other Antimony Compounds 76
3. EXPERIMENTAL 78
3.1. SYNTHESIS 78
3.1.1. Materials 78
3.1.2. Apparatus and Procedure 78
3.1.2.i. Reactions in Dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ 78
3.1.2.ii. Reactions in Liquid Hydrogen Chloride 80
3.1.3. Preparations 82
3.1.4. Handling 92
3.2 . ELEMENTAL ANALYSIS 93
3.2.1. For Chlorine and Bromine 93
3.2.2. For Boron 94
3.2.3. Fluoride 94
3.3. SPECTRA 96
3.3.1. Solid-State Raman Spectra 96
3.3.2. Solid-State Infrared Spectra 96
3.4. DIFFERENTIAL SCANNING CALORINETRY 97
Page
APPEDEK h VIETGTIOAAL RUPRSEATATIONS FOR TETRADEDRAL SPECIES 99
APPENDIX B VIBRATIONAL REPRESENTATIONS FOR OCTAEEDRAL SFECIES 100
APRLNDIX C (1) REACTION OF EHOSPhOKLS TRICHLORIDE, 101 EROMINE AND EORON TRICHLORIDE INDICHLOKOHETHANE
(2) REACTION OF PEOSPHORUS TKICHLORIDE, BRIMMINE AND BORON TRICALORIDE IN LIQUID FYDROGEN CHLORIDE
(3) THE REACTION OF PHOSPHORUS TRICHLORIDE, BROMINE AND BORON TRIBROMIDE IN DICHILOROMETHANE
(4) THE REACTION OF PHOSPHORUS TRICHLORIDE, BROKINE AND BORON TRIBROMIDE IN LIQUID MYDROGEN CHLORIDE
LIFERENCES 115

Table		Page
1	The Phosphorus Trichloride-Bronine System.	6
2	Comparison of the Solid-State Raman Spectra of Phosphorus Pentabromide and the Compounds of Stoichiometry PBBr_{8} and $\mathrm{Et}_{4} \mathrm{~N}^{\mathrm{BBr}} 4^{\circ}$	11
3	Comparison of the Solid-State Raman Spectra of Phosphorus Pentachloride $\left(\mathrm{PCl}_{4}{ }^{+} \mathrm{PCl}_{6}{ }_{-}\right)$, $\mathrm{Et}_{4} \mathrm{~N}^{+} \mathrm{PCl}_{6}{ }^{-}, \mathrm{PCl}_{4}{ }^{+} \mathrm{BCl}_{4}{ }^{-}$and $\mathrm{Me}_{4} \mathrm{~N}^{+} \mathrm{BCl}_{4}{ }^{-}$.	14
4	Comparison of the Solid-State Raman Spectra of Normal and Metastable Phosphorus Pentachloride.	17
5	Comparison of the Solid-State Raman and Infrared Spectra of the Compound of Stoichiometry $\mathrm{PCl}_{4}{ }^{\mathrm{F}}$.	26
6	Assignment of the Solid-State Raman and Infrared Spectra of Trichlorobromophosphonium Tetrachloroborate $\left(\mathrm{PCl}_{3} \mathrm{Br}^{+} \mathrm{BCl}_{4}{ }^{-}\right.$).	35
7	Assignment of the Solid-State Raman and Infrared Spectra of Trichlorobromophosphonium Hexafluorophosphate $\left(\mathrm{PCl}_{3} \mathrm{Br}^{+} \mathrm{PF}_{6}{ }^{-}\right)$.	33
8	Assignment of the Solid-State Raman and Infrared (above $200 \mathrm{~cm}^{-1}$) Spectra of the Compound of Stoichiometry $\mathrm{P}_{2} \mathrm{Cl}_{9} \mathrm{Br}$.	42
9	The Solid-State Raman Spectrum of the Product (A) of an Unsuccessful Preparation of $\mathrm{PCl}_{3} \mathrm{Pr}^{+} \mathrm{ECl}_{4}{ }^{-}$.	46
10	Assignment and Comparison of the Fundamental Vibrational Frequencies of the $\mathrm{FCl}_{2} \mathrm{Br}_{2}{ }^{+}$and $\mathrm{PBr}_{3} \mathrm{Cl}^{+}$Ions in the Presence of a Polyatomic Anion Only $\left(\mathrm{cm}^{-1}\right)$.	50
11	The Solid-State Raman Spectrum of the Product (C) of the Reaction of Phosphorius Trichloride, Bromine and Boron Trichloride in. Dichloromethane.	55

12 Assignment and Comparison of the Fundamental Vibrational Frequencies of the $\mathrm{PCl}_{2} \mathrm{Br}_{2}{ }^{+}$and $\mathrm{PBr}_{3} \mathrm{Cl}^{+}$Ions in the Presence of Single Halide Ions (cm^{-1}). 58

13 The Solid-State Raman and Infrared Spectrum of $\mathrm{Et}_{4} \mathrm{~N}^{+} \mathrm{SbBr}_{6}^{-}\left(\mathrm{cm}^{-1}\right)$. 67

14 The Solid-State Ranan and Infrared Spectrum of $\mathrm{Et}_{4} \mathrm{~N}^{+} \mathrm{SbCl}_{5} \mathrm{Er}^{-}\left(\mathrm{cm}^{-1}\right)$. 73

14 The Solid-State Raman Spectrum of the Product (C) from the Reaction of Phosphorus Trichloride, Bromine and Eoron Trichloride in Dichloromethane.54

Reaction Vessel for Reactions in Liquid Hydrogen Chloride.81

24 Sublimation Apparatus for the Preparation of Metastable PCl_{5}.85

1.1. Introduction

The chemistry of the phosphorus halides has been reviewed extensively in recent years ($1-7$). The possibility of both ionic and molecular modifications (4) for almost all of the known pentahalides is of particular interest.
1.1.1. Phosphorus Pentachloride (PCl_{5}) and Phosphorus Pentabromide (PBr_{5})

In the gas phase, phosphorus pentachloride exists as a trigonal bipyramidal molecule in equilibrium with chlorine and phosphorus trichloride (8). There is also evidence from mass spectrometry for some association, as $\mathrm{P}_{2} \mathrm{Cl}_{10}$ units, in the gas phase (9). The gas phase trigonal bipyramidal structure of phosphorus pentachloride has been established by electron diffraction studies (10, 11, 12) and confirmed by infrared (13) and Raman (8) spectroscopy. Raman spectra also indicate a similar structure for molten phosphorus pentachloride (14, 15).

In the solid-state, however, phosphorus pentachloride exists as a pale yellow crystalline compound which has been shown by X-ray studies of material recrystallised from nitrobenzene to be of the form $\mathrm{PCl}_{4}{ }^{+} \mathrm{PCl}_{6}{ }^{-}(16,17)$. This has been confirmed by infrared and Raman spectroscopy ($18,19,20,95$); ${ }^{31}$ p nuclear magnetic resonance spectra indicate two peaks, corresponding to $\mathrm{PCl}_{4}{ }^{+}$and $\mathrm{PCl}_{6}{ }^{-}(21,22,23)$.

$$
\begin{array}{ll}
\operatorname{cosec} \\
4 x^{2}
\end{array}
$$

X-ray powder diagrams for phosphorus pentachloride purified by recrystallisation from carbon tetrachloride (24) and by sublimation (25), however, differ from the X-ray powder diagram for a sample of normal phosphorus pentachloride recrystallised from nitrobenzene. Moreover, when normal phosphorus pentachloride is sublimed using an "open" vacuum (that is, when the sublimation apparatus is left open to the pump) a metastable form of phosphorus pentachloride is obtained. The Raman spectrun (26) of this metastable form differs greatly from that of the original, the four bands assignable to the $\mathrm{PCl}_{4}{ }^{+}$cation being more intense relative to the threa assigned to the $\mathrm{PCl}_{6}{ }^{-}$anion. When heated to $120^{\circ} \mathrm{C}$. for 200 seconds, the metastable form has been shown by Raman spectroscopy to revert to the normal form (27).

Phosphorus pentachloride reacts with a number of inorganic chlorides, in particular boron trichloride (28-37) and antimony pentachloride (37, 33,39), to form complexes based on the $\mathrm{PCl}_{4}{ }^{+}$cation. These complexes have been reviewed extensively (5, 7, 40, 41, 42). Their ionic nature has been suggested from vibrational spectroscopic studies.

Phosphorus pentabromide, although known for some time (43), has received little attention. Unlike the pentachloride, there is no evidence to support the existence of molecular phosphorus pentabromide (44) in the gas phase in which it is fullydissociated. In the solid phase, phosphorus pentabromide has been shown by $X-r a y$ studies to be of the form $\mathrm{PBr}_{4}{ }^{+} \mathrm{Br}^{-}(45,46,47)$. This has been confirmed by Raman specticoscopy (48,49). Very few addition compounds of phosphorus pentabromide with inorganic bromides have been reported (6) though $\mathrm{PBr}_{5} \cdot \mathrm{BBr}_{3}(50,51)$ is known.
1.1.2. The Mixed Falides of Phosphorus (V) Of the mixed halides of phosphorus (V) the chlorofluorides have been investigated most thoroughly (4, 52). Of particular interest is the work of Holmes and co-workers (53, $54,55,56,57$). All the members of the series $\mathrm{PCl}_{\mathrm{n}} \mathrm{F}_{5-\mathrm{n}}$ (where $\mathrm{n}=1,2,3$ or 4) have been prepared in molecular form and have been shown by electron diffraction (58, $\mathrm{PCl}_{2} \mathrm{~F}_{3}$), ${ }^{19} \mathrm{~F}$ nuclear magnetic resonance spectroscopy (59, $\mathrm{PCl}_{3} \mathrm{~F}_{2}, \mathrm{PCl}_{2} \mathrm{~F}_{3} ; 60, \mathrm{PCl}_{2} \mathrm{~F}_{3} ; 61, \mathrm{PCl} \mathrm{F}_{4}$) and vibrational spectroscopy $(62,63)$ to have trigonal bipyramidal structures with, where possible, fluorine atoms occupying axial positions. Apart from monochlorotetrafluorophosphorane, $\left(\operatorname{PC1~} \mathrm{F}_{4}\right)$, where evidence is lacking, the chlorofluorophosphoranes transform on standing at room temperature to their solid ionic modifications, all of which are based on the PCl_{4}^{+}cation.
${ }^{31} P$ n.m.r. spectra of the ionic form of $\mathrm{PCl}_{2} \mathrm{~F}_{3}$ indicate the presence of two species, $\mathrm{PCl}_{4}{ }^{+}$and $\mathrm{PF}_{6}{ }^{-}$. Infrared and Ramsn spectra confirm these conclusions (64). An X-Ray powder pattern for $\mathrm{PCl}_{4}{ }^{+} \mathrm{PF}_{6}{ }^{-}$ prepared by direct fluorination of phosphorus pentachloride with arsenic trifluoride in arsenic trichloride (65) was identical to that for a sample prepared from molecular $\mathrm{PCl}_{2} \mathrm{~F}_{3}$ (62). ${ }^{31} \mathrm{P}$ n.m.r. spectra of the ionic form of $\mathrm{PCl}_{3} \mathrm{~F}_{2}$ indicate the formulation $\mathrm{PCl}_{4}{ }^{+} \mathrm{PCl}_{2} \mathrm{~F}_{4}{ }^{-}$(66).

On the basis of molecular weight determinations in glacial acetic acid, it was originally proposed that the ionic form of tetrachlorofluorophosphorane, $\mathrm{PCl}_{4} \mathrm{~F}$, was $\mathrm{PCl}_{4}{ }^{+} \mathrm{F}^{-}$(67). Nore recent unpublished measurements, however, in acetonitrile (5) indicate the
presence of the $\mathrm{PCl}_{4} \mathrm{~F}_{2}^{-}$anion (68). The $\mathrm{PCl}_{4} \mathrm{~F}_{2}^{-}$anion has also been reported as the caesiun salt (69). A recent infrared investigation of the ionic form of $\mathrm{PCl}_{4} \mathrm{~F}$ indicated reaction with glacial acetic acid and the alternative formulation $\mathrm{PCl}_{4}{ }^{+} \mathrm{PCl}_{4} \mathrm{~F}_{2}{ }^{-}$(70).

A compound of stoichionetry $\mathrm{P}_{2} \mathrm{Cl}_{9} \mathrm{~F}$ has been prepared and the etructure $\mathrm{PCl}_{4}{ }^{+} \mathrm{PCl}_{5} \mathrm{~F}^{-}$inferred from qualitative electrolysis in acetonitrile solution (71) and mass spectrometry (9). Evidence from infrared and ${ }^{19} \mathrm{~F}$ n.m.r. spectroscopy for the mixed chlorofluorophosphonium ion, $\mathrm{PCl}_{3} \mathrm{~F}^{+}$, in $\mathrm{PCl}_{3} \mathrm{~F}^{+} \mathrm{SbCl}_{6}{ }^{-}$has been reported (72).

The bromofluorides of phosphorus (V) have not been investigated in any great detail. Dibromo trifluorophosphorane, $\mathrm{PBr}_{2} \mathrm{~F}_{3}$, (73) has been shown to exist in molecular form as a trigonal bipyramid both by ${ }^{19} \mathrm{~F}$ n.m.r. (60) and infrared and Raman (63) spectroscopy. The ionic form has been prepared by direct fluorination of phosphorus pentabromide (74) and the structure, $\mathrm{PBr}_{4}{ }^{+} \mathrm{PF}_{6}{ }^{-}$, indicated by 3_{1} n.m.r. (23) and Raman (75) spectroscopy. Tetrabromofiuorophosphorane, $\mathrm{PBr}_{4}{ }^{\mathrm{P}}$, has been prepared and the ionic form postubted as $\mathrm{PBr}_{4}{ }^{+} \mathrm{F}^{-}$(76) though this is in doubt (5). Little is known of tribromo difluorophosphorane, $\mathrm{PBr}_{3} \mathrm{~F}_{2}$ (77), and evidence from ${ }^{31} \mathrm{P}_{\mathrm{P}}$ n.m.r. and infrared spectroscopy (61) for the molecular form only of bromotetralluorophosphorane PBrF_{4}, has been reported. As yet no chlorobrono fluorides of phosphorus (V), in either ionic or molecular form, have been reported.

The chlorobromides of phosphorus (V) have been investigated for over 100 years. Few conclusions can be drawn from the earlier literature and only two compounds of certain consistution, $\mathrm{PCl}_{4.5} \mathrm{Br}_{0.5}$ and $\mathrm{PCl}_{4.66} \mathrm{Br}_{0.33}$, have been reported.
$\mathrm{PCl}_{4.5} \mathrm{Br}_{0.5}$, or $\mathrm{P}_{2} \mathrm{Cl}_{9} \mathrm{Br}$, a yellow crystalline compound was prepared by the reaction of phosphorus trichloride and bromine In arsenic trichloride (78). Fluorination in arsenic trichloride with arsenic crifluoride yielded the product $\mathrm{PCl}_{4}{ }^{+} \mathrm{PF}_{6}{ }^{-}$from which the formulation $\mathrm{PCl}_{4}{ }^{+} \mathrm{PCl}_{5} \mathrm{Br}^{-}$, was inferred. Fluorination of phosphorus pentachloride, $\mathrm{PCl}_{4}{ }^{+} \mathrm{PCl}_{6}{ }^{-}$, in a similar manner, also gives $\mathrm{PCl}_{4}{ }^{+} \mathrm{PF}_{6}{ }^{-}$. Direct reaction of phosphorus trichloride and bromine (25) initially yielded an unstable aggregate, $\mathrm{PCl}_{3} \mathrm{Br}_{5.7^{\circ}}$ which on pumping gave a yellow solid, $\mathrm{PCl}_{4.8} \mathrm{Br}_{0.4}$. Sublimation of $\mathrm{PCl}_{4.8} \mathrm{Br}_{0.4}$ at $50^{\circ} \mathrm{C}$. gave the compound $\mathrm{PCL}_{4.66} \mathrm{Br}_{0.33^{\circ}} \mathrm{An}$ X-Ray powder diagram of $\mathrm{PCl}_{4.66} \mathrm{Br}_{0.33}$ showed it to be anique single phase, all the lines of the diagram arising from a facecentered cubic unit cell. A structure determination based on powder data alone obtained fair agrement for an arrangement of $8 \mathrm{PCl}_{4}{ }^{+}$ions, $4 \mathrm{PCl}_{6}{ }^{-}$ions and $4 \mathrm{Br}^{-}$ions in the unit cell.

The phosphorus trichloride-bromine system has been investigated by a number of workers and their results are sumparised in Table 1. In general, the reaction is said to produce either some or all the compounds of general formula: $\mathrm{PCl}_{4} \mathrm{Br} ; \mathrm{PCl}_{3}\left(\mathrm{Br}_{2}\right)_{n}$; and $\mathrm{PCl}_{2} \mathrm{Br}\left(\mathrm{Er}_{2}\right)_{\mathrm{n}}($ where $\mathrm{n}=1$ to 10$)$. Some Russian workers $(79 ; 80)$

TABLE 1. The Phosphorus Trichloride-Bromine Eystem

claim to have isolated the compounds $\mathrm{PCl}_{3} \mathrm{Br}_{4}$ and $\mathrm{PCl}_{3} \mathrm{Br}_{18}$ and to have detected a further compound, $\mathrm{PCl}_{3} \mathrm{Br}_{\mathrm{g}}$, by viscosity measurements. Attempts, however, to repeat their preparation of $\mathrm{PCl}_{3} \mathrm{Br}_{4}$ failed (25). Renc (81) claimed to have prepared the yellow crystalline compound, $\mathrm{PCl}_{4} \mathrm{Br}$, which on heating to $135^{\circ} \mathrm{C}$. gave $\mathrm{PCl}_{4.5} \mathrm{Br}_{0.5}$. Milobedzki and Krakowieki (82) also claim to have prepared $\mathrm{PCl}_{4} \mathrm{Br}$.

Mixtures of phosphorus trichloride and bromine in the ratio 1 : 0.0833 to 20 are said to yield four phases at $25^{\circ} \mathrm{C}$. : yellow crystalline phase of limited composition $\mathrm{PCl}_{4} \mathrm{Br}$; a red crystalline phase of limited composition $\mathrm{PCl}_{2} \mathrm{Br}_{5}$; a clear red liquid of varying composition fros $\mathrm{PCl}_{2.952} \mathrm{Br}_{0.154}$ to $\mathrm{PCl}_{2.795} \mathrm{Er}_{0.461}$; and finally a brown-red phase (I) also of varying composition from $\mathrm{PCl}_{3.439} \mathbf{B r}_{\mathbf{4}, 677}$ to $\mathrm{PCl}_{3} \mathrm{Br}_{20}$ (83). In the vapour phase, phosphorus trichloride and bromine react to give a "ruby-like" crystalline compound (II) in which the halogen : phosphorus ratio varies from 7.1 to 8.6 : 1. The brown-red phase (I) mentioned previously, crystallises out completely on seeding with the "ruby-like" material (II) and cooling to $0^{\circ} \mathrm{C}$. These crystals from the brown-red phase yiald $\mathrm{PCl}_{4} \mathrm{Br}$ on pumping. Nateriala I and II were suggested to be solid mixtures of $\mathrm{PCl}_{4} \mathrm{Br}$, $\mathrm{PCl}_{2} \mathrm{Br}_{5}$ and Br_{2}.

Stern (84) and Michaelis (85) claim to have prepared $\mathrm{PCl}_{3} \mathrm{Br}_{2}$, but contemporary (86) and later work (82) leave this in some doubt.

The mutual reactions of the tri- and penta-chlorides and bromides of phosphorus have also been investigated as possible synthetic
routes to the chloro-bromides of phosphorus (V). The phosphorus pentachloride-pentabromide reaction has been investigated by a number of workers $(82,87,88,89,90)$. In general, the products are similar to those produced by direct reaction of phosphorus trichloride and bromine. It has been claimed that $\mathrm{PBr}_{4} \mathrm{Cl}$ is produced from (i) the reaction of phosphorus pentachloride with excess phosphorus tribromide (81) and (ii) the reaction of excess phosphorus pentabromide with phosphorus trichloride (90).

The compound of stoichiometry $\mathrm{PBCl}, \mathrm{Br}$ has been prepared by the reaction of phosphorus trichloride, bromine and boron trichloride in anhydrous liquid hydrogen chloride at $-96^{\circ} \mathrm{C}$. (91). A formulation of $\mathrm{PCl}_{3} \mathrm{Br}^{+} \mathrm{BCl}_{4}^{-}$was inferred from the infrared spectrum. The reaction of antimony pentachloride with phosphorus tribromide (in a 2 : 1 mole ratio) gave a compound of formula $\mathrm{PSbCl}_{7} \mathrm{Br}_{3}$, which was formulated as $\mathrm{PBr}_{3} \mathrm{Cl}^{4} \mathrm{SbCl}_{6}{ }^{-}(72)$. This compound, however, was unstable and could not therefore be satisfactorily characterised.

1.2. Results and Discussion

1.2.1. The Tetrabromophosphonium ($\mathrm{PBr}_{4}{ }^{+}$) and the

Tetrachlorophosphonium $\left(\mathrm{PCl}_{4}{ }^{+}\right)$Cations
1.2.1.1. The Tetrabromophosphoniun Cation ($\mathrm{PBr}_{4}{ }^{+}$)

The solid-state Raman spectra of phosphorus pentabromide ($\mathrm{PBr}_{4}{ }^{+} \mathrm{Br}^{-}$) and the compound of stoiciniometry PBBr_{8} are presented in Figure 1. Solid-state Raman data for these two compounds, togetier with solid-state Raman data for the compound of stoichiometry $\mathrm{Et}_{4} \mathrm{~N}_{\mathrm{BBr}}^{4}$, is presented in Table 2 .

Comparison of the solid-state Raman spectrum of tetraethylamonium bromide ($\mathrm{Et}_{4} \mathrm{~N}^{+} \mathrm{Br}^{-}$), with bands at 426 and $682 \mathrm{~cm}^{-1}$, with that for the compound of stoichiometry $\mathrm{Et}_{4} \mathrm{NBBr}_{4}$ strongly indicates the presence of the $\mathrm{Et}_{4} \mathrm{~N}^{+}$cation in this compound. Further, the presence of bands in the solid-state Raman spectra of the compounds of stoichiometry $\mathrm{Et}_{4} \mathrm{~N} \mathrm{SBr}_{4}$ and PBBr_{8} at $\sim 119,170$ and $245 \mathrm{~cm}^{-1}$ previously assigned to the $\mathrm{BBr}_{4}{ }^{-}$ion (92), strongly suggests the formulation of these compounds as $\mathrm{Et}_{4} \mathrm{~N}^{+} \mathrm{BBr}_{4}^{-}$and $\mathrm{PBr}_{4}{ }^{+} \mathrm{BBr}_{4}{ }^{-}$respectively. The four remaining bands in the solid-state Raman spectrum of $\mathrm{PBr}_{4}{ }^{4} \mathrm{BBr}_{4}{ }^{-}$can now be assigned to the tetrahedral $\mathrm{PBr}_{4}{ }^{+}$cation. They are at $104,149,252$ and $499 \mathrm{~cm}^{-1}$.

The four bands assigned to the $\mathrm{PBr}_{4}{ }^{+}$ion in $\mathrm{PBr}_{4}{ }^{+} \mathrm{BBr}_{4}{ }^{-}$differ, in both position and intensity, from the four bands assigned to

FIGURE 1. The Solid-State Raman Spectra of Phosphorus Pentabromide $\mathrm{PBr}_{4}{ }^{+} \mathrm{Br}^{-}$and the Compound of Stoichiometry $\mathrm{PBBr}_{8}{ }^{\circ}$

TABLE 2. Comparison of the Solid-State Raman Spectra of Phosphorus Pentabromide $\left(\mathrm{PBr}^{+}{ }^{+} \mathrm{Br}^{-}\right.$) and the Compounds of Stoichiometry PBBr 8 and $\mathrm{Et}_{4} \mathrm{NBBr}_{4}$

PBr_{4}^{+}	Br^{-}	PBBr_{8}
$\mathrm{~cm}^{-1}$	$\mathrm{~cm}^{-1}$	$\mathrm{Et}_{4} \mathrm{BBr}_{4} \quad$ Assignment

24	(10)			
41	(1.5)			
45	(1)			Lattice modes
49	(1)			
60	(1.5)			
72	(3.5)	104 (2)		$\nu_{2}(\mathrm{e}) \mathrm{PBr}_{4}^{+}$
83	(1)			
		115 (1.5)	119 (6)	$\nu_{2}(e) \mathrm{BBr}_{4}{ }^{-b}$
139	(3)			
145	(3)	149 (6)		$\nu_{4}\left(t_{2}\right) \mathrm{PBr}_{4}^{+}$
157	(1)			

169 (1.5) 170 (5)
$V_{4}\left(t_{2}\right) \mathrm{BBr}_{4}{ }^{-b}$
$V_{1}\left(\mathrm{a}_{1}\right) \mathrm{BBr}_{4}^{-b}$ 252 (10)

245 (10)
$\nu_{1}\left(a_{1}\right) \mathrm{PBr}_{4}+$
$420(2.5)$
(1)

$$
\nu_{3}\left(t_{2}\right) \mathrm{PBr}_{4}^{+}
$$

482
$\left.\begin{array}{l}(3) \\ (2) \\ (4)\end{array}\right\} \quad 499$

678(2.5)
$\mathrm{Et}_{4} \mathrm{~N}^{+}$

Figures in parentheses are relative
intensities on scale $0-10$.
sh. - shoulder, a - reference 49,
b - reference 92.
the cation in $\mathrm{PBr}_{4}^{+} \mathrm{Br}^{-}(48,49)$. The totally symaetric (a_{1}) band at $229 \mathrm{~cm}^{-1}$ in PBr_{5} is shifted upwards by $\sim 20 \mathrm{~cm}^{-1}$ to $252 \mathrm{~cm}^{-1}$ in $\mathrm{PBr}_{4}{ }^{+} \mathrm{BBr}_{4}^{-}{ }^{-}$. A similar pattern is observed for the doubly degenerate (e) band at $\sim 72 \mathrm{~cm}^{-1}$ and one of the remaining two, triply degenerate (t_{2}), bands at $\sim 476 \mathrm{~cm}^{-1}$ in $\mathrm{PBr}_{4}{ }^{+} \mathrm{Br}^{-}$. The other triply degenerate $\left(t_{2}\right)$ band at $\sim 145 \mathrm{~cm}^{-1}$ in PBr_{5} changes very little in position, but becomes more intense relative to the very strong a_{1} band. The doubly degenerate band at $\sim 72 \mathrm{~cm}^{-1}$ and the triply degenerate band at $\sim 476 \mathrm{~cm}^{-1}$ in PBr_{5} become less intense relative to the a_{1} band. A similar pattern relative to $\mathrm{PBr}_{4}^{+} \mathrm{Br}^{-}$has been observed for the compounds tetrabromophosphonium hexabromotantalate ($\mathrm{PEr}_{4}{ }^{+} \mathrm{TaBr}_{6}{ }^{-}$, 94) and tetrabromophosphonium hexafluorophosphate $\left(\mathrm{PBr}_{4}{ }^{+} \mathrm{PF}_{6}{ }^{-}, 93\right)$.

Thus there appears to be two sets of fundamental vibrational frequencies for the $\mathrm{PBr}_{4}{ }^{+}$ion, depending upon whether the ion is in the presence of (i) a Br^{-}ion or (ii) a polyatomic anion (e.g. $\mathrm{BBr}_{4}{ }^{-}, \mathrm{Ta} \mathrm{Br}_{6}{ }^{-}, \mathrm{PF}_{6}{ }^{-}$etc.).
1.2.1.ii. Phosphorus Pentachloride and the

Tetrachlorophosphonium Cation ($\mathrm{PCl}_{4}{ }^{+}$)
The solid-state Raman spectrum of phosphorus pentachloride $\left(\mathrm{PCl}_{4}{ }^{+} \mathrm{PCl}_{6}{ }^{-}\right)$has been recorded previously and results are sumarised below:

The Solid-State Raman Spectrum of Phosphorus
Fentachloride $\left(\mathrm{FCl}_{4}{ }^{+} \mathrm{PCl}_{6}{ }^{-}\right.$)

Reference	$\mathrm{PCl}_{4}{ }^{+}$						
	$\nu_{1}\left(a_{1}\right)$	$\nu_{2}(e)$	$\nu_{3}\left(t_{2}\right)$	$\nu_{4}\left(t_{2}\right)$	$\nu_{1}\left(a_{1 g}\right)$	$\nu_{2}\left(e_{g}\right)$	$\nu_{5}\left(t_{2 g}\right)$
$18(1955)$	451	173	627	244	358	285	244
$19(1963)$	458	171	658	251	360	281	150
$20(1969)$	460	$182-179$	642	$255-252$	354	$273-264$	$243-240$

The results of Livingston and Ozin (20) do not agree well with the previously published data. The band at $150 \mathrm{~cm}^{-1}$, assigned by Carlson to the triply degenerate $\nu_{5}\left(t_{2 g}\right)$ band of $\mathrm{PCl}_{6}{ }^{-}$, has since been shown to be spurious (95) and there is some confusion concerning the triply degenerate $\nu_{3}\left(t_{2}\right)$ band for $\mathrm{PCl}_{4}{ }^{4}$.

Correct assignment of the Raman spectrum of $\mathrm{PCl}_{5}\left(\mathrm{PCl}_{4}{ }^{+} \mathrm{PCl}_{6}{ }^{-}\right)$is most important in the present work. Consequently, all the bands In the solid-state Raman spectrum of PCl_{5} have been assigned by comparison with solid-state Raman data for $\mathrm{Et}_{4} \mathrm{~N}^{+} \mathrm{PCl}_{6}{ }^{-}$, $\mathrm{PCl}_{4}{ }^{+} \mathrm{BCl}_{4}{ }^{-}$, and $\mathrm{Me}_{4} \mathrm{~N}^{+} \mathrm{BCl}_{4}{ }^{-}$(Table 3). Previous work (18, 19, 20) was used as a guideline in the assignment of bands. These

TABLE 3. Comparison of the Solid-State Raman Spectrum of Fhosphorus Pentachioride $\left(\mathrm{PCl}_{4}^{+}{ }^{+} \mathrm{FCl}_{6}{ }^{-}\right)_{\text {, }}$

$$
\mathrm{Et}_{4} \mathrm{~N}^{+} \mathrm{PCl}_{6}^{-}, \mathrm{PCl}_{4}^{+} \mathrm{ECl}_{4}^{-}, \text {and } \mathrm{Ne}_{4} \mathrm{~N}^{+} \mathrm{BCl}_{4}^{-}-
$$

Figures in parentheses are relative intensities on scale 0-10.
a - reference 37. (for $\mathrm{PCl}_{4}{ }^{+}$assignments).
b - reference 92.
c-reference 95.
assignments are summarised below:

Assignment of the Solid-State Raman Spectrum of
Phosphorus Pentachloride ($\mathrm{PCl}_{4}{ }_{4}^{+} \mathrm{PCl}_{6}{ }^{-}$)

$\mathrm{PCl}_{6}{ }^{-}$
$\nabla_{1}\left(a_{1}\right) \nu_{2}(\mathrm{e}) \nabla_{3}\left(t_{2}\right) \nu_{4}\left(t_{2}\right) \quad \nu_{1}\left(a_{1 g}\right) \nu_{2}\left(e_{g}\right) \nu_{5}\left(t_{2 g}\right)$
$\begin{array}{lllllll}456 & 177 & 656 & 250 & 359 & 278 & 241\end{array}$

When phosphorus pentachloride is sublimed under open vacuum conditions (Section 1.1.1.), a metastable form of phosphorus pentachloride is produced $(26,27)$. The solid-state Raman spectrum of the metastable form differs from that of the normal form as shown in Figure 2 and Table 4.

FIGURE 2. The Solid-State Raman Spectra of Normal and Metastable Phosphorus Pentachloride.


```
TABLE 4. Comparison of the Solid-State Raman Spectrum
    of Normal and Metastable Phosphorus Pentachloride
```

| Normal | PCl_{5} | Metastable PCl_{5} |
| :--- | :--- | :--- |\quad Assignment

177 (2)
185 (1.5)
ν_{2} (e) $\mathrm{PCl}_{4}{ }^{+}$
241 sh. (2)
$\nu_{5}\left(t_{2 g}\right) \mathrm{PCl}_{6}{ }^{-}$
250 (6)
245 (5.5)
$\nu_{4}\left(t_{2}\right) \quad \mathrm{PCl}_{4}^{+}$
278 (4.5)
276
(1)
$\nu_{2}\left(e_{g}\right) \mathrm{PCl}_{6}{ }^{-}$
359 (10)
362
(3)
$\nabla_{1}\left(a_{1 g}\right) \mathrm{PCl}_{6}{ }^{-}$
456 (4.5)
442 (10)
$\nu_{1}\left(\mathrm{a}_{1}\right) \quad \mathrm{PCl}_{4}{ }^{+}$
656 (0.5)
639
(2)
$\nabla_{3}\left(t_{2}\right) \quad \mathrm{PCl}_{4}{ }^{+}$

Figures in parentheses are relative intensities on scale $0-10$.
sh. - shoulder.

A metastable form is also produced by the reaction of phosphorus pentachloride and bromine in dichloromethane. From Raman spectra it is clear that the metastable form reverts to the normal form on heating. The solid-state Raman spectrum of a sample of metastable PCl_{5}, prepared in dichloromethane, indicated partial conversion to the normal form on heating at $130^{\circ} \mathrm{C}$. for two hours.

The banda at 276 and $362 \mathrm{~cm}^{-1}$ in the Raman spectrum of metastable PCl_{5} indicate the presence of the $\mathrm{PCl}_{6}{ }^{-}$anion. The intensities of these two bands relative to the $\mathrm{PCl}_{4}{ }^{+}$bands are considerably less for the metastable form. In normal PCl_{5} there is a 1 : 1 ratio of $\mathrm{PCl}_{4}{ }^{+}: \mathrm{PCl}_{6}{ }^{-}$. The Ranan evidence thus suggests that there are fewer $\mathrm{PCl}_{6}{ }^{-}$ions than $\mathrm{PCl}_{4}{ }^{+}$ions in the metastable form. If this is correct, then in order to preserve (i) electroneutrality and (ii) the observed stoichiometry, it seems probable that the metastable form contains some $C l^{-}$ions in the crystal lattice. Thus a formulation containing $\mathrm{PCl}_{4}{ }^{+}, \mathrm{PCl}_{6}{ }^{-}$and Cl^{-}ions, is suggested for metastable $\mathrm{PCl}_{5}{ }^{\circ}$

The differences (frequencies and intensities) between the $\mathrm{PCl}_{4}{ }_{4}{ }^{+}$bands In the solid-state Raman spectra of normal and metastable PCl_{5} are sumarised below and can clearly be seen in Figure 2.

The Fundamental Vibrational Frequencies of the $\mathrm{PC}_{4}{ }_{4}^{+}$Cation in Normal and Metastable $\mathrm{PCl}_{5}\left(\mathrm{Cm}^{-1}\right)$

	$\nu_{1}\left(a_{1}\right)$	$\nu_{2}(e)$	$\nu_{3}\left(t_{2}\right)$	$\nu_{4}\left(t_{2}\right)$
Normal	$456(10)$	$177(4.5)$	$656(1)$	$250(15.5)$
Metastable	$442(10)$	$185(1.5)$	$639(2)$	$245(5.5)$

The two stretching frequercies at 456 and $656 \mathrm{~cm}^{-1}$ for $\mathrm{PCl}_{4}{ }^{+}$in normal PCl_{5} decrease by $\sim 20 \mathrm{~cm}^{-1}$ in the metastable form. Further, the intensities of the bands at 177 and $250 \mathrm{~cm}^{-1}$ for $\mathrm{PCl}_{4}{ }^{+}$in normal PCl_{5} decrease for the metastable form.

A similar pattern of shifts for the two stretching frequencies is observed for the $\mathrm{PBr}_{4}{ }^{+}$cation (Section 1.2.1.1.). The $\mathrm{PBr}_{4}{ }^{+}$ bands at 252 and $499 \mathrm{~cm}^{-1}$ in $\mathrm{PBr}_{4}^{+} \mathrm{BBr}_{4}^{-}$decrease by $\sim 20 \mathrm{~cm}^{-1}$ in $\mathrm{PBr}_{4}^{+} \mathrm{Br}^{-}$. Thus it appears that two sets of fundamental frequencies occur for the $\mathrm{PCl}_{4}{ }^{+}$and $\mathrm{PBr}_{4}{ }^{+}$ions depending upon whether they are in the presence of (i) polyatomic anion only (e.g. $\mathrm{BBr}_{4}^{-}, \mathrm{PCl}_{6}^{-}, \mathrm{BCl}_{4}^{-}$) or (ii) a single halide ion (e.g. $\mathrm{C1}^{-}, \mathrm{Br}^{-}$).

Differential Scanning Calorimetry-

The resulte of a differential scanning calorimetric investigation of normal and metastable PCl_{5} gave results diagrammatically illustrated in Figure 3. Results for four separate runs for normal PCl_{5} indicate only one transition, at $110 \pm 1^{\circ} \mathrm{C}$. $\left(383 \pm 1^{\circ} \mathrm{K}\right)$, in the range $40-165^{\circ} \mathrm{C}$. The transition is endothermic and results

\cdots

FIGURE 3. Differential Scanning Calorimetry: Thermograms for Normal and Metastable PCl_{5}.

Normal PCl_{5}

Metastable PCl_{5}

$$
130 \pm 4 \mathrm{c}
$$

are summarised below:

Differential Scanning Calorimetric Results for Normal

Phosphorus Pentachloride ($\mathrm{PCl}_{4}^{+}{ }^{\mathrm{PCl}_{6}{ }^{-} \text {) }}$

A 19.18	383 ± 1	1.84 ± 0.04	4.80 ± 0.12	1.7 ± 0.1
E 19.37	383 ± 1	1.80 ± 0.08	4.70 ± 0.22	1.8 ± 0.0
B re-run	383 ± 1	1.96 ± 0.08	5.12 ± 0.22	1.9 ± 0.0
C 15.27	383 ± 1	1.80 ± 0.29	4.70 ± 0.77	1.8 ± 0.1
C re-run	383 ± 1	1.50 ± 0.13	3.92 ± 0.35	1.6 ± 0.1
D 6.30	384 ± 1	1.71 ± 0.21	4.45 ± 0.56	1.7 ± 0.1

The magaitude of the entropy change, ΔS_{T}, deserves comment. An endoentropic solid \leftrightharpoons solid transition has associated with it an increase in disorder (96). For such transitions an approximate value for the entropy change, ΔS_{T}, is given by the equation

$$
\Delta s_{T}=R_{i n}{ }^{n_{2}} /_{n_{1}}
$$

where n_{1} is the number of states of disorder statistically occupied in the initial phase and n_{2} is the number of states of disorder statistically occupied in the final phase. For normal PCl_{5}, the ratio n_{2} / n_{1} is approximately equal to two for the crystal transition at $110^{\circ} \mathrm{C}$. $\left(383^{\circ} \mathrm{K}\right)$. That is to say, either one of the ions in normal
$\mathrm{PCl}_{5}\left(\mathrm{PCl}_{4}{ }^{+}\right.$and $\mathrm{PCl}_{6}{ }^{-}$), occupies twice the number of orientations in the crystal above $110^{\circ} \mathrm{C}$. as below. A detailed knowledge of the crystal structure of normal PCl_{5}, above and below $110^{\circ} \mathrm{C}$, would be required to determine which ion can occupy the new set of oreintations and what the nature of these orientations is (97).

Results for metastable PCl_{5} for four runs and four re-runs in the region $40^{\circ} \mathrm{C}-120^{\circ} \mathrm{C}$ and six runs and six re-runs in the region $120^{\circ} \mathrm{C}-160^{\circ} \mathrm{C}$, indicate two transitions, an endotherm at $111 \pm 2^{\circ} \mathrm{C}$. ($384 \pm 2^{\circ} \mathrm{K}$) and an exotherm at $130 \pm 4^{\circ} \mathrm{C}$. ($403 \pm 4^{\circ} \mathrm{K}$). The endotherm is invariably smaller than that for normal FCl_{5} in the same region. Neither the endotherin nor the exotherm are reproducible and on re-running after covering the range $200^{\circ} \mathrm{C}-160^{\circ} \mathrm{C}$, the magnitude of the endotherm increases slightly, whereas the magnitude of the exotherm decreases or disappears.

Raman spectra indicate partial conversion only of metastable PCl_{5} to normal $\mathrm{PC1}_{g}$ after heating at $130^{\circ} \mathrm{C}$. for two hours as none of the above runs for metastable PCl_{5} were over two hours, this may account for the irreproducibility of the results.

Abstract

1.2.1.iii. The Ionic Form of the Compound of Stoichiometry $\mathrm{PCl}_{4}{ }^{\mathrm{F}}$ Two alternative formulations, $\mathrm{PCl}_{4}{ }^{+} \mathrm{F}^{-}$and $\mathrm{PCl}_{4}{ }^{+} \mathrm{PCl}_{4} \mathrm{~F}_{2}{ }^{-}$, have been proposed for the ionic form of the compound of stoichiometry $\mathrm{PCl}_{4} \mathrm{~F}$. The formulation $\mathrm{PCl}_{4}{ }^{+} \mathrm{F}^{-}$(I) was originally suggested on the basis of molecular waight determinations in glacial acetic acid (67) but from more recent infrared investigations a formulation $\mathrm{PCl}_{4}^{+} \mathrm{PCl}_{4} \mathrm{~F}_{2}^{-}$(II) was proposed (70). In formulation I the PCl_{4}^{+}cation is in the presence of a single halide ion (F^{-}) and in II a polyatomic anion ($\mathrm{PCl}_{4} \mathrm{~F}_{2}{ }^{-}$). In principle it should be possible to distinguish between the two by means of solid-state Raman spectroscopy on the basis of the conclusions above (Section 1.2.1.ii.).

$\mathrm{PCl}_{4} \mathrm{~F}$ was prepared by the addition of excess chlorine to dichlorofluorophosphine $\left(\mathrm{PCl}_{2} \mathrm{~F}\right)$ at ca. $-78^{\circ} \mathrm{C}$. At this stage, the reaction vessel contained in a small amount of white solid (Initial Product) and a large amount of pale green liquid, probably molecular $\mathrm{PC1}_{4} \mathrm{~F}$ (53). On standing at room temperature for 3-4 days, the whole solidified to give a white crystalline compound (Final Product). A total elemental analysis indicated the stoichiometry $\mathrm{PCl}_{4} \mathrm{~F}$.

Final Product

The solid-state Raman and infrared spectra of the final product (of stoichiometry $\mathrm{PCl}_{4} \mathrm{~F}$) from the reaction of excess Cl_{2} and $\mathrm{PCl}_{2} \mathrm{~F}$, are presented in Figures 4 and 5, and compared in Table 5.

The four bands at $190,248,442$ and $639 \mathrm{~cm}^{-1}$ in the solid-state Raman spectrum are characteristic of the $\mathrm{PCl}_{4}{ }^{+}$ion in the presence

$$
\underbrace{-24-}
$$

TABLE 5. Comparison of the Solid-State Raman and Infrared
Spectra of the Compound of Stoichiometry PC1 ${ }_{4}{ }^{\mathrm{F}}$.

$\begin{aligned} & \text { Rama } \\ & \mathrm{cm}^{-1} \end{aligned}$		$\underset{\mathrm{cm}^{-1}}{\text { Infred }^{a}}$	Assignment
	(2)		1attice mode
190	(0.5)		$\nu_{2}($ e $) \mathrm{PCl}_{4}{ }^{+}$
248	(3.5)	255 m	$\nu_{4}\left(t_{2}\right) \mathrm{PCl}_{4}{ }^{+}$
263 (0)			
284 (0)			
322	(0)	320 w	
		375 w	
396	(0.5)	395 w	
442 (10)			$\nu_{1}\left(\mathrm{a}_{1}\right) \mathrm{PCl}_{4}^{+}$
		450 m	$\nu_{3}\left(t_{1 u}\right) \mathrm{PCl}_{6}^{-b}$
		475 m	
		$528 \mathrm{~m} / \mathrm{w}$	
		558 vw	$\nu_{4}\left(\mathrm{~T}_{1 u}\right) \mathrm{PF}_{6}{ }^{-b}$
		579	
		586 m/w	
		595	
639	(2)	6458	$\nu_{3}\left(t_{2}\right) \mathrm{PCl}_{4}^{+}$
		685 w	
		720 m	Nujol
		750 m	
	.	765 m	
		775 m	
		850 s	$\nu_{3}\left(t_{1 u}\right) P F_{6}^{-b}$

Figures in parentheses are relative intensities on the scale 0-10 a. range $200-1000 \mathrm{~cm}^{-1} \mathrm{~m}$ - medium, w - weak, m / w - medium to weak, vw - very weak, s - strong, b. reference 6 and references cited therein.
of a single halide ion. Thas, of the two alternatives proposed, the Raman spectroscopic evidence favours the $\mathrm{PCI}_{4}{ }^{+}{ }^{-}$formulation, since for this only four bands would be expected.

There are, however, a number of weaker bands in the Raman spectrum at $263,284,322$ and $396 \mathrm{~cm}^{-1}$. Further, as fluorine-containing species (e.g. $\mathrm{PCl}_{4} \mathrm{~F}_{2}{ }^{-}$) are expected to be weaker scatterers (relative to the $\mathrm{PCl}_{4}{ }^{+}$ion) it would be unlikely that $\mathrm{P}-\mathrm{F}$ stretching bands would be observed in the Raman. Fluoride analyses of the hydrolysate, although variable were always low for the formulation $\mathrm{PCl}_{4}{ }^{+} \mathrm{F}^{-}$and indicated that not all the fluorine in $\mathrm{PCl}_{4} \mathrm{~F}$ was present as fluoride.

Examination of the solid-state infrared spectrum shows it to be more complex than that expected for the simple $\mathrm{PCl}_{4}{ }^{\boldsymbol{+}} \mathrm{F}^{-}$formulation. The $\mathrm{PCl}_{4}{ }^{+}$ion is indicated by bands at 255 and $645 \mathrm{~cm}^{-1}$. The band at $450 \mathrm{~cm}^{-1}$ indicates the presence of the $\mathrm{PCI}_{G}{ }^{-}$anion and the two bands at 553 and $850 \mathrm{~cm}^{-1}$ suggest the presence of the PF_{6}^{-}anion. The presence of these ions $\left(\mathrm{PCl}_{6}{ }^{-}\right.$and $\mathrm{PF}_{6}{ }^{-}$) as impurities is indicated by comparison of the infrared spectrum of $\mathrm{PCl}_{4} \mathrm{~F}$ with those of $\mathrm{PCl}_{4}{ }^{+} \mathrm{PCl}_{6}{ }^{-}$and $\mathrm{PCl}_{4}{ }^{+} \mathrm{PF}_{6}{ }^{-}$. The $\mathrm{PF}_{6}{ }^{-}$and. $\mathrm{PCl}_{6}{ }^{-}$hands in the infrared spectrum of $\mathrm{PCl}_{4} \mathrm{~F}$ are less intense relative to the PCl_{4} + bands. The infrared spectrum is similar to that obtained by Walther (70) from which the formulation $\mathrm{PCl}_{4}{ }^{+} \mathrm{PCl}_{4} \mathrm{~F}_{2}{ }^{-}$was inferred. The presence of bands in the $P-F$ stretching region at 750,765 and $775 \mathrm{~cm}^{-1}$ and in the octahedral $\mathrm{P}-\mathrm{Cl}$ stretching region at 475,500 and $528 \mathrm{~cm}^{-1}$ strongly suggests the presence of a complex species containing P-F and

P-C1 bands. In view of the elemental anglytical evidence for the stoichiometry $\mathrm{PCl}_{4} \mathrm{~F}$ and the presence of the $\mathrm{PCl}_{4}{ }^{+}$ion, the most probable form of the above complex species is $\mathrm{PCl}_{4} \mathrm{~F}_{2}{ }^{-}$.

Thus Raman spectroscopy indicates the $\mathrm{PCl}_{4}{ }^{+}$ion in the presence of a fluoride ion and infrared spectroscopy suggests the presence of the $\mathrm{PCl}_{4} \mathrm{~F}_{2}{ }^{-}$anion. Further, analysis indicates some fluoride present in $\mathrm{PCl}_{4} \mathrm{~F}$ though not enough for the formulation $\mathrm{PCl}_{4}{ }^{+} \mathrm{F}^{-}$. An intermediate formulation containing $\mathrm{PCl}_{4}{ }^{+}, \mathrm{F}^{-}$and $\mathrm{PCl}_{4} \mathrm{~F}_{2}{ }^{-}$ satisfies the above evidence and may be a possibility. A similar formulation was proposed for metastable PCl_{5} (Section 1.2.1.ii.) which was thought to contain $\mathrm{PCl}_{4}{ }^{+}, \mathrm{Cl}^{-}$and $\mathrm{PC1}_{6}{ }^{-}$ions.

There are two alternative structures for the octahedral $\mathrm{PCl}_{4} \mathrm{~F}_{2}{ }^{-}$ anion, as indicated in Figure 6.

FIGURE 6. Alternative Structures for the $\mathrm{PCl}_{4} \mathrm{~F}_{2}{ }^{-}$anion.

Walther (70) proposed a cis structure for the $\mathrm{PCl}_{4} \mathrm{~F}_{2}{ }^{-}$anion on the basis of the number of bands in the infrared spectrum of ionic $\mathrm{PC1}_{4} \mathrm{~F}$. The number of bands expected for a cis $\left(\mathrm{C}_{2 \mathrm{v}}\right)$ structure is

13 (Appendix B). However, the number of coincident Raman and infrared bands for the cis and trans $\left(D_{4 n}\right)$ structures are 13 and 0 , respectively (Appendix B). The small number of coincident Raman and infrared bands (Table 5), assignable to the $\mathrm{PCl}_{4} \mathrm{~F}_{2}{ }^{-}$ion, does not agree with Walther' results and strongly favours a trans structure for the $\mathrm{PCl}_{4} \mathrm{~F}_{2}$ - ion.

Initial Product

The solid-state Raman spectrum of the initial product of the reaction of excess chlorine and $\mathrm{PCl}_{2} \mathrm{~F}$ is presented in Figure 7. Elemental analysis indicated a slightly high chlorine content for the stoichiometry $\mathrm{PCl}_{4} \mathrm{~F}$ and may explain the presence of the $\mathrm{PCl}_{6}{ }^{-}$band at $358 \mathrm{~cm}^{-1}$. The bands at $176,250,451$ and $657 \mathrm{~cm}^{-1}$ are characteristic of the $\mathrm{PCl}_{4}{ }^{+}$ion in the presence of a polyatomic anion only. The bands at $261,279,320$ and $394 \mathrm{~cm}^{-1}$ are present in the Raman spectrum of the final product (above) and have been assigned to the $\mathrm{PCl}_{4} \mathrm{~F}_{2}{ }^{-}$ion. Thus the above evidence favours the formulation $\mathrm{PCl}_{4}{ }^{+} \mathrm{PCl}_{4} \mathrm{~F}_{2}{ }^{-}$where the $\mathrm{PCl}_{4}{ }^{+}$ion is in the presence of the $\mathrm{PCl}_{4} \mathrm{~F}_{2}{ }^{-}$ anion only.

Comparison of the Raman spectra of the initial and final products shows a decrease in intensity of the $\mathrm{PCl}_{4} \mathrm{~F}_{2}{ }^{-}$bands relative to the $\mathrm{PCl}_{4}{ }^{+}$bands for the final product. The above evidence is consistent with the conclusions concerning the formulations of the initial and final products. For a formulation eontaining $\mathrm{PCl}_{4}{ }^{+}, \mathrm{F}^{-}$and $\mathrm{PCl}_{4} \mathrm{~F}_{2}{ }^{-}$ions, for the final product, there are fewer $\mathrm{PCl}_{4} \mathrm{~F}_{2}{ }^{-}$ions relative to $\mathrm{PCl}_{4}{ }^{\text {+ }}$ ions than for a formulation $\mathrm{PCl}_{4}{ }^{+} \mathrm{PCl}_{4} \mathrm{~F}_{2}{ }^{-}$, proposed for the inttial product.

On standing at room tamperature for $3-4$ days or heating at $130^{\circ} \mathrm{C}$. for 24 hours, Raman spectra indicate that the initial product reverts to the final product.

Thus the conclusions to date concerning the ionic form of the compound of stoichiometry $\mathrm{PCl}_{4} \mathrm{~F}$ may be sumarised as follows:
(1) $\mathrm{PCl}_{2} \mathrm{P}$ reacts initially with excess chlorine to form a small amount of white solid, probably $\mathrm{PCl}_{4}{ }^{+} \mathrm{PCl}_{4} \mathrm{~F}_{2}{ }^{-}$, and a large amount of pale green liquid, probably molecular $\mathrm{PCl}_{4} \mathrm{~F}$.
(2) On standing at room temperature for 3-4 days, the white solid, probably $\mathrm{PCl}_{4}{ }^{+} \mathrm{PCl}_{4} \mathrm{~F}_{2}{ }^{-}$, and the pale green liquid transform to white solid containing $\mathrm{PCl}_{4}{ }^{+}, \mathrm{F}^{-}$and $\mathrm{PCl}_{4} \mathrm{~F}_{2}{ }^{-}$ions in the crystal lattice.
(3) The most probable structure for the octahedral $\mathrm{PCl}_{4} \mathrm{~F}_{2}{ }^{-}$ion is a trans structure with fluorine atoms occupying axial positions.

1.2.2. The Trichlorobromophosphonium Ion ($\mathrm{PCl}_{3} \mathrm{Br}^{+}$)

1.2.2.i. The Compounds of Stoichiometry $\mathrm{PBC1} 7{ }_{7} \mathrm{Br}$ and $\mathrm{P}_{2} \mathrm{Cl}_{3} \mathrm{BrF}_{6}$

The compound of stoichiometry $\mathrm{PBC1} \mathrm{P}_{7} \mathrm{Br}$ was prepared by the addition, in order, of boron trichloride, phosphorus trichloride, and bromine to liquid anhydrous hydrogen chloride at ca, $-96^{\circ} \mathrm{C}$. On warming to room temperature, the solvent evaporated, leaving a white solid. Elemental analysis indicated a $P: C 1: B r$ ratio of $1: 7: 1$, and the stoichiometry $\mathrm{PBCl}_{7} \mathrm{Br}$. The solid-state Kaman spectrum of the above compound is presented in Figure 8.

The presence of the BCl_{4}^{-}ion in $\mathrm{PBCl}_{7} \mathrm{Br}$ is strongly indicated by (i) the bands at 192,280 and $409 \mathrm{~cm}^{-1}$ in the Raman spectrum (92) (ii) comparison with the solid-state Raman spectrum of $\mathrm{Me}_{4} \mathrm{NV}^{+} \mathrm{BCl}_{4}^{-}$ and (iii) "B n.m.r. spectroscopy. A value of $+11.7 \pm 0.5$ p.p.m. for the " B n.m.r. shift (measured relative to $B(O M e)_{3}$ used as an external standard) agrees well with values for $\mathrm{Me}_{4} \mathrm{~N}^{+} \mathrm{BCl}_{4}{ }^{-}$ (+12.1 ± 1 p.p.m.) and $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{C}^{+} \mathrm{BCl}_{4}^{-}(+12.9 \pm 1$ p.p.m.) (99). The evidence above strongly suggests the formulation $\mathrm{PCl}_{3} \mathrm{Br}^{+} \mathrm{BCl}_{4}^{-}$for the compound of stoichiometry $\mathrm{PBCl}_{7} \mathrm{Br}$.

The close correspondence between the fundamental vibrational frequencies of the $\mathrm{PCl}_{4}{ }^{+}$ion and the isoelectronic SiCl $_{4}$ (98) provides a convenient starting point for the assignment of the frequencies of the $\mathrm{PCl}_{3} \mathrm{Br}^{+}$ion.

$\mathrm{PCl}_{4}{ }^{+}$	$\nu_{1}\left(a_{1}\right)$	$\nu_{2}(e)$	$\nu_{3}\left(t_{2}\right)$	$\nu_{4}\left(t_{2}\right)$
$\mathrm{SiCl}_{4}{ }^{+}$	456	177	656	250
	424	150	610	221

The reduction from the $\mathrm{T}_{4}\left(\mathrm{PCl}_{4}{ }^{4}, \mathrm{SiCl}_{4}\right)$ to the $\mathrm{C}_{3 \mathrm{v}}\left(\mathrm{PCl}_{3} \mathrm{Br}^{+}\right.$, $\operatorname{SiCl}_{3} \mathrm{Br}$) point group results in the splitting of the two t_{2}

modes into a_{1} and a modes.

The cix fundamental vibrational frequencies for the $\mathrm{PCl}_{3} \mathrm{Br}^{+\boldsymbol{+}}$ ion are all active in both the Raman and in the infrared. In the absence of Raman polarisation data the assignments have been made by analogy with the iscelectronic $\mathrm{SiCl}_{3} \mathrm{Br}$ (98) as follows:

	(a_{1})	(a_{1})	$\left(a_{1}\right)$	${ }_{4}{ }^{\text {(e) }}$	t_{5}	76 (e)
$\mathrm{PCl}_{3} \mathrm{Br}^{+}$	582	391	214	648	23	156
$\mathrm{SiCl}_{3} \mathrm{Br}$	545	368	191	610	20	135
Assignment of the solid-state Raman and infrared spectra of						
trichlorobromophosphonium tetrachloroborate ($\mathrm{PCl}_{3} \mathrm{Br}^{+} \mathrm{ECI}_{4}^{-}$) is						
presented in Table 6.						

Solid-atate ${ }^{31}$ P a.m.r. spectroscopy (99) gave a value of -48 ± 1 p.p.r. (measured relative to $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$) for the ${ }^{31} \mathrm{P}$ chemical shift of the $\mathrm{PCl}_{3} \mathrm{Br}^{+}$ion in $\mathrm{PCl}_{3} \mathrm{Br}^{+} \mathrm{BCl}_{4}{ }^{-}$- This corresponds well with the value predicted for $\mathrm{PCl}_{3} \mathrm{Br}^{+}$by interpolation between the ${ }^{31} \mathrm{P}$ chemical shifts for $\mathrm{PCl}_{4}{ }^{+}$in $\mathrm{PCl}_{5}(-88.3 \pm 0.5 \mathrm{p} . \mathrm{p} . \mathrm{m}$.$) and for \mathrm{PBr}_{4}{ }^{+}$in $\mathrm{PBr}_{5}{ }^{+}$($+104 \pm 1$ p.p.m.) (104).

In order to confirm the assignment of the fundamental vibrational frequancies of the $\mathrm{PCl}_{3} \mathrm{Br}^{+}$ion an alternative source of the ion,

TABLE 6. Assignment of the Solid-State Raman and Infrared Spectra of $\mathrm{PCl}_{3} \mathrm{Br}^{+} \mathrm{BCl}_{4}^{-}-$

Ranıan cm^{-1}	$\begin{aligned} & \text { Infrared } \\ & \mathrm{cm}^{-1} \end{aligned}$	Partial Assignment
156 (5)	$155^{\text {a }}$	$V_{6}(\mathrm{e}) \mathrm{PCl}_{3} \mathrm{Br}+$
192 (2.5)		$\nu_{2}(\mathrm{e}) \mathrm{BCl}_{4}{ }^{-} \mathrm{b}$
214 (10)	213 m	$\nu_{3}\left(\mathrm{a}_{1}\right) \mathrm{PCl}_{3} \mathrm{Br}{ }^{+}$
232 (6)	231 m	$\nu_{5}(\mathrm{e}) \mathrm{PCl}_{3} \mathrm{Br}+$
280 (1)	275 vw	$\nu_{4}\left(t_{2}\right) \mathrm{BCl}_{4}{ }^{-\mathrm{b}}$
346 (0.5)		impurity
391 (10)	390 m	$\nu_{2}\left(\mathrm{a}_{1}\right) \mathrm{PCl}_{3} \mathrm{Br}{ }^{+}$
409 (2.5)		$\nu_{1}\left(\mathrm{a}_{1}\right) \mathrm{BCl}_{4}^{-b}$
	493 m	
	520 m	
582 (1)	5748	$\nu_{1}\left(\mathrm{a}_{1}\right) \mathrm{PC1}_{3} \mathrm{Br}{ }^{+}$
643 (0.5)	634 s	$\nu_{4} \text { (e) } \mathrm{FCI}_{3} \mathrm{Br}^{+}$
	663 vs. br.	$\nu_{3}\left(t_{2}\right) \mathrm{BCl}_{4}{ }^{-} \mathrm{b}$

Figures in parentheses are relative intensities on scale 0-10.
a. recorded using a Grubb-Farsons Cube Interferoneter
m-medium, vw - very weak, s - strong, vs - very strong,
br - broad, b. reference 92.
trichlorobromoliosphonium hexsfluorophosphate ($\mathrm{PCl}_{3} \mathrm{Pr}^{+} \mathrm{PF}_{6}{ }^{-}$), was investigated (100). $\mathrm{PCl}_{3} \mathrm{Er}^{+} \mathrm{PF}_{6}{ }^{-}$was prepared by the addition of phosphorus trichloride, bromine and phosphorus pentafluoride to liquid anhydrous hydrogen chloride at ca. $-96^{\circ} \mathrm{C}$. Evaporation of the solvent left a white solid. A total elemental analysis indicated the stoichionetry $\mathrm{P}_{2} \mathrm{Cl}_{3} \mathrm{Br}_{6}$. The solid-atate Raman spectruna of $\mathrm{PCl}_{3} \mathrm{Br}^{+} \mathrm{PF}_{6}^{-}$is presented in Figure 9. Assignment of the solid-state Raman and infrared (above $200 \mathrm{~cm}^{-1}$) spectra of $\mathrm{PCl}_{3} \mathrm{Hr} \mathrm{PF}_{6}{ }^{-}$is presented in Table 7 .

The presence of the $\mathrm{PF}_{6}{ }^{-}$ion in $\mathrm{PCl}_{3} \mathrm{Br}^{+} \mathrm{PF}_{6}{ }^{-}$is indicated by (i) bands in the Eanan spectrum at 472 and $743 \mathrm{~cm}^{-1}$ and in the infrared spectrun at 552 and $834 \mathrm{cia}^{-1}$ (6) (ii) comparison with the solid-state Raman and infrared spectrum of $\mathrm{Et}_{4} \mathrm{~N}^{+} \mathrm{PF}_{6}{ }^{-}$and (iii) solid-state ${ }^{31}$ P n.m.r. spectroscopy. A ${ }^{31}$ P chemical shift (99) of $+142.7 \pm 1$ p.p.m. (measured relative to $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$) agrees well with that for PF_{6}^{-}in $\mathrm{PCl}_{4}^{+} \mathrm{PF}_{6}^{-}$(+ 140 p.p.m.) (23). The presence of $\mathrm{PCl}_{4}{ }^{+}$, as an impurity, is indicated by bands, weak relative to the $\mathrm{PCl}_{3} \mathrm{Br}^{+}$bands, at 180,254 and $462 \mathrm{~cm}^{-1}$ in the Racian. Further impurity bands at $200,203,309$, and $353 \mathrm{~cm}^{-1}$ result from the raixed chlorobrompphosphonium ions, $\mathrm{PCl}_{2} \mathrm{Br}_{2}{ }^{+}$and $\mathrm{PBr}_{3} \mathrm{Cl}^{+}$ (Section 1.2.3.).

The bands assigned to the fundamental vibrational frequencies of the $\mathrm{PCl}_{3} \mathrm{Br}^{+}$ion in $\mathrm{PCl}_{3} \mathrm{Br}^{+} \mathrm{PF}_{6}^{-}$(Table 7) agree well in both position and intensity, in the Raman and the infrared, with those assigned to the $\mathrm{PCl}_{3} \mathrm{Br}^{+}$ion in $\mathrm{PCl}_{3} \mathrm{Br}^{+}{ }_{\mathrm{BCl}}^{4}{ }^{-}$. Thus the oíiginal assignment is confirmed.

TABLE 7. Assignment of the Solid-State Randan and Infrared (above $200 \mathrm{~cm}^{-1}$) Spectra of Trichlorobromophosphonium Hexafluorophosphate $\left(\mathrm{PCl}_{3} \mathrm{Br}^{+} \mathrm{PF}_{6}^{-}\right.$).

490 m
472

$$
\nu_{5}\left(t_{2 g}\right) P F_{6}-b
$$

525 m
552
$\nu_{4}\left(t_{1 u}\right) \mathrm{PF}_{6}^{-}{ }^{-}$
558 m
647 m

743
$\nu_{1}\left(\mathrm{a}_{1}\right) \mathrm{PCl}_{3} \mathrm{Br}^{+}$

834 vs
ν_{4} (e) $\mathrm{PCl}_{3} \mathrm{Br}^{+}$
$\nu_{1}\left(a_{1 g}\right) P F_{6}^{-b}$
$\nu_{3}\left(t_{1 u}\right) P F_{6}^{-b}$
a. Raman intensities (Figure 9) are difficult to interpret as the spectrum is still coming off the exciting line at $250 \mathrm{~cm}^{-1}$.
ni. - not investigated, m - medium, w - weak, s - strong,
v.s. - very strong b, Reference 6.
1.2.2.ii. The Compound of Stoichiometry $P_{2} \mathrm{Cl}_{9}{ }^{\mathrm{Br}}$.

The compound of stoichiometry $\mathrm{P}_{2} \mathrm{Cl}_{9} \mathrm{Br}$, prepared by the reaction of phosphorus trichloride and bromine in arsenic trichloride, was originally proposed to have one of the alternative formulations:

$$
\begin{equation*}
\mathrm{PCl}_{3} \mathrm{Br}^{+} \mathrm{PCl}_{6}^{-} \quad \mathrm{PCl}_{4}^{+} \mathrm{PCl}_{5} \mathrm{Br}^{-} \tag{II}
\end{equation*}
$$

(I)

The original investigation (78), using partial fluorination of the complex with $\mathrm{As}_{\mathrm{F}} \mathrm{F}_{3}$ in. As Cl_{3}, indicated formulation II. During the present work, efforts to prepare a compound containing the $\mathrm{PCl}_{5} \mathrm{Br}^{-}$ ion (e.8. $\mathrm{Et}_{4} \mathrm{~N} \mathrm{Br}+\mathrm{PCl}_{5}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$), in order to confirm the formulation II by Raman and infrared spectroscopy, were unsuccessful. The solid-state Raman spectrum of $\mathrm{P}_{2} \mathrm{Cl}_{9} \mathrm{Br}$ is presented in Figure 10.

The bands at 181, 246, 438 and $638 \mathrm{~cm}^{-1}$ in the Raman spectrum of $\mathrm{P}_{2} \mathrm{Cl}_{9} \mathrm{Br}$ are characteristic of the $\mathrm{PCl}_{4}{ }^{+}$ion in the presence of a single halide ion. Apart from these, the presence of the $\mathrm{PCl}_{6}{ }^{-}$ion is also indicated, by bands at 360 and $274 \mathrm{~cm}^{-1}$. Solid-state ${ }^{31} \mathrm{P}$ n.m.r. spectroscopy confirms the presence of both these ions and in addition the $\mathrm{PCl}_{3} \mathrm{Br}^{+}$ion (99). The remaining unassigned bands in the Ravan spectrum at $158,203,230,568$, and 626 may be assigned to the $\mathrm{PCl}_{3} \mathrm{Br}^{+}$ion. The strong ${ }^{a} 1$ band at $391 \mathrm{~cm}^{-1}$ in the Raman spectrum of $\mathrm{PCl}_{3} \mathrm{Br}^{+} \mathrm{BCl}_{4}{ }^{-}$(Section 1.2.2.i.) does not appear to be present in the Raman spectrum of $\mathrm{P}_{2} \mathrm{Cl}_{9} \mathrm{Br}$. Resolution, however, of the broad band at $360 \mathrm{~cm}^{-1}$ indicates two bands, one at $360 \mathrm{~cm}^{-1}$ ($\mathrm{PCl}_{6}{ }^{-}$) and the other at $365 \mathrm{~cm}^{-1}$ assignable to the $\mathrm{PCl}_{3} \mathrm{Br}{ }^{+}$ion. Thus Raman and ${ }^{31} \mathrm{P}$ n.m.r. spectroscopy strongly suggest the presence of the $\mathrm{PCl}_{4}{ }^{+}, \mathrm{PCl}_{3} \mathrm{Br}^{+}$and $\mathrm{PCl}_{6}{ }^{-}$ions, together with single halide
$-40-$

ions, in $\mathrm{P}_{2} \mathrm{Cl}_{9} \mathrm{Br}$. Thus a simple formulation such as I or II appears to be impossible. Assignment of the solid-state Raman and infrared spectra of $\mathrm{P}_{2} \mathrm{C1}_{9} \mathrm{Br}$ is presented in Table δ.

An X-Ray powder photograph (103) for $\mathrm{P}_{2} \mathrm{Cl}_{9} \mathrm{Br}$ confirms that a unique single phase is present and not a mixture of different crystalline components. All the lines on the diagram can be interpreted as arising from a face-centred cubic cell with $a=12.32 \pm 0.05 \stackrel{\circ}{\AA}$. Previously a compound which gave an elemental analysis corresponding to $\mathrm{PCl}_{4.66} \mathrm{Er}_{0.33}$ (25) was investigated by X-Ray powder photography. $\mathrm{PCl}_{4.66} \mathrm{Sr}_{0.33}$ also has face-centred cubic geometry (with a - $12.38 \AA$) and thus appears to be similar to $\mathrm{P}_{2} \mathrm{Cl}_{9} \mathrm{Br}$. From powder data alone, the unit cell for $\mathrm{PCl}_{4.66} \mathrm{Br}_{0.33}$ was proposed to comprise of $8 \mathrm{PCl}_{4}{ }^{+}, 4 \mathrm{PCl}_{6}{ }^{-}$and $4 \mathrm{Br}^{-}$ions.

By analogy with $\mathrm{PCl}_{4.66} \mathrm{Br}_{0.33^{\prime}}$ it is suggested that $\mathrm{P}_{2} \mathrm{Cl}_{9} \mathrm{Br}$ might be formulated as $6 \mathrm{PCl}_{4}{ }^{+}, 2 \mathrm{PCl}_{3} \mathrm{Br}^{+}, 4 \mathrm{PCl}_{6}^{-}$, and $4 \mathrm{Br}^{-}$ions. Such formulation satisfies the $\mathrm{F}_{2} \mathrm{Cl}_{9} \mathrm{Br}$ stoichiometry and qualitatively ueccounts for the relative intensities of the bands for the different species from both Raman and ${ }^{31}$ p n.m.r. spectra.

Comparison of the Raman spectrum of $\mathrm{P}_{2} \mathrm{Cl}_{9} \mathrm{Br}$ with that of $\mathrm{PCl}_{3} \mathrm{Br}^{+} \mathrm{BCl}_{4}{ }^{-}$(Section 1.2.2.i.) indicates some shifts in the bands assigned to the $\mathrm{PCl}_{3} \mathrm{Br}{ }^{+}$ion. The $\mathrm{PCl}_{3} \mathrm{Br}^{+}$bands at $214,391,582$ and $648 \mathrm{~cm}^{-1}$ in the Raman spectrum of $\mathrm{PCl}_{3} \mathrm{Br}^{+} \mathrm{BCl}_{4}{ }^{-1}$ are shifted down to 203, 365,568 and $638 \mathrm{~cm}^{-1}$ in $\mathrm{P}_{2} \mathrm{Cl}_{9} \mathrm{Br}$. The evidence thus suggests that there are two sets of fundamental vibrational frequencies for the $\mathrm{PCl}_{3} \mathrm{Br}^{+}$ion (presented below) depending on the

TABLE 8. Assignment of the Solid-State Raman and Infrared
(above $200 \mathrm{~cm}^{-1}$) Spectra of the Compound of
Stoichiometry $\mathrm{P}_{2} \mathrm{Cl}_{9} \underline{\mathrm{Br}}$.

$\begin{array}{r} \text { Raman } \\ \mathrm{cm}^{-1} \end{array}$	$\begin{gathered} \text { Infrared } \\ \mathrm{cm}^{-1} \end{gathered}$	Assignment
158 (1)	n.i.	$\nu_{5}($ e $) \mathrm{PCl}_{3} \mathrm{Br}^{+}$
181 (2)		ν_{2} (e) $\mathrm{PC1}_{4}^{+}$
203 (3)		$\nu_{3}\left(\mathrm{a}_{2}\right) \mathrm{PCl}_{3} \mathrm{Br}^{+}$
230 (2)	228 w	$\nu_{5}($ e $) \mathrm{PCl}_{3} \mathrm{Br}^{+}$
246 (6)	250 m	$\nu_{4}\left(t_{2}\right) \mathrm{PCl}_{4}{ }^{+}$
274 (1)		$\nu_{2}\left(e_{g}\right) \mathrm{PCl}_{6}{ }^{-}$
	288 w	
365/360 (3)		$\nu_{1}\left(\mathrm{a}_{18}\right) \mathrm{PCl}_{6}{ }^{-}$and $\nu_{2}\left(\mathrm{a}_{1}\right) \mathrm{PC1}_{3} \mathrm{Br}^{+}$
438 (10)		$\nu_{1}\left(\mathrm{a}_{1}\right) \mathrm{PCl}_{4}^{+}$
	450 vs	$\nu_{3}\left(t_{1 u}\right) \mathrm{PC1}_{6}{ }^{-\mathrm{a}}$
	494 w	
568 (0.5)	565 w	$\nu_{1}\left(\mathrm{a}_{1}\right) \mathrm{PCl}_{3} \mathrm{Br}^{+}$
	579 m	
	587 m	
626 (0.5)	625 m	$J_{4}($ e $) \quad \mathrm{PCl}_{3} \mathrm{Br}^{+}$
638 (2)	643 vs	$\nu_{3}\left(\mathrm{t}_{2}\right) \mathrm{PCl}_{4}{ }^{+}$

Figures in parentheses are relative intensities on scale 0-10.
a. reference 6 and references cited therein. n.i. not investigated.
w - weak, m - medium, vs - very strong.
presence of either (i) a polyatomic anion ($\mathrm{SCl}_{4}{ }^{-}, \mathrm{PF}_{6}{ }^{-}$) or (ii) a single halide ion (Br^{-}).

The Fundamental Vibrational Frequencies of the Trichlorobronophosphonium Ion ($\mathrm{PCl}_{3} \mathrm{Br}^{+}$)

In the presence of

$$
\nu_{1}\left(a_{1}\right) \quad \nu_{2}\left(a_{1}\right) \quad \nu_{3}\left(a_{1}\right) \quad \nu_{4}(e) \quad \nu_{4}(e) \quad \lambda_{4}(e)
$$

i) A polyatomic anion ($\mathrm{BCH}_{4}{ }^{-}$)

582	391	214	648	232	156

ii) A single halide $\begin{array}{llllllll}\text { ion (} \mathrm{Br}^{1} \text {) } & 568 & 365 & 203 & 626 & 230 & 158\end{array}$

Thus we have two sets of fundamental vibrational frequencies for the three phosphonium ions, $\mathrm{PBr}_{4}{ }^{+}, \mathrm{PCl}_{4}{ }^{+}$and $\mathrm{PCl}_{3} \mathrm{Br}^{+}$.
1.2.3. The Dichlorodibromophosphonium and the Chlorotribromopnosphonium Ions $\left(\mathrm{PCl}_{2} \mathrm{Br}_{2}{ }^{+}\right.$and $\mathrm{PBr}_{3}{ }^{\mathrm{Cl}}{ }^{+}$).

The following four reactions were investigated in attempts to prepare pure compounds containing either of the two ions $\mathrm{PCl}_{2} \mathrm{Br}_{2}{ }^{+}$and $\mathrm{PBr}_{3} \mathrm{Cl}^{+}$: (Appendix C).
(1) $\mathrm{PCl}_{3}+\mathrm{Br}_{2}+\mathrm{BCl}_{3}$ in $\mathrm{Cl}_{2} \mathrm{Cl}_{2}$
(2) $\mathrm{PCl}_{3}+\mathrm{Er}_{2}+\mathrm{BCl}_{3}$ in liquid HCl.
(3) $\mathrm{PCl}_{3}+\mathrm{Br}_{2}+\mathrm{BBr}_{3}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.
(4) $\mathrm{PCl}_{3}+\mathrm{Er}_{2}+\mathrm{BSr}_{3}$ in liquid EC1.

Under certain conditions reaction (2) yields $\mathrm{PCl}_{3} \mathrm{Br}^{+4} \mathrm{BC1}_{4}{ }^{-}$ (Section 3.1.1.). Mostly, however, the solid- state Raman spectra of the products of such reactions were too complex to be explained in terms of simple formulations (e.g. $\mathrm{PCI}_{2} \mathrm{Er}_{2}{ }^{+} \mathrm{ECI}_{4}{ }^{-}$etc.).

The solid-state Raman spectrum of the product (A) of an unsuccessful $\mathrm{PCl}_{3} \mathrm{Er}^{+} \mathrm{BCl}_{4}{ }^{-}$preparation is presented in Figure 11 and Table 9. Elemental analyses for (A) indicated a high bromine content and a low chlorine content for the formulation $\mathrm{PCl}_{3} \mathrm{Br}^{4} \mathrm{BCl}_{4}{ }^{-}$.

A number of bands in the Raman spectrum can be assigned to the $\mathrm{PCl}_{4}{ }^{+}, \mathrm{PBr}_{4}{ }^{+}, \mathrm{PCl}_{3} \mathrm{Br}^{+}$and $\mathrm{BCl}_{4}{ }^{-}$ions. The $\mathrm{PCl}_{4}{ }^{+}$and $\mathrm{PBr}_{4}{ }^{+}$bands are weak relative to the bands for $\mathrm{PCl}_{3} \mathrm{Br}$. It should be noted that those bands assigned to the phosphonium ions are characteristic of these ions in the presence of polyatomic anions only.

TABLE 9. The Solid-State Raman Spectrum of the Prodict (A) of an Unsuccessful Preparation of $\mathrm{PCl}_{3} \mathrm{Br}^{+} \mathrm{BCl}_{4}^{-}$

The ${ }^{31} \mathrm{I}_{\mathrm{n}}$ n.m.r. spectrum of A , presented in Figure 12, indicates three ${ }^{31}{ }^{P}$ n.m.r. chemical shifts at $-49.6,-9.8$ and +30.5 p.p.m. (relative to $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$) (93). The ${ }^{31} \mathrm{P}_{\mathrm{P}}$ n.m.r. shift at -49.6 p.p.m. has previously been assigned to the $\mathrm{PCl}_{3} \mathrm{Br}^{+}$ion in $\mathrm{PCl}_{3} \mathrm{Pr}^{+} \mathrm{ECl}_{4}^{-}$ (Section 1.2.2.i.). The ${ }^{31} \mathrm{p}$ shifts at -9.3 and +30.5 p.p.m. correspond closely with values predicted for the $\mathrm{PCl}_{2} \mathrm{Br}_{2}{ }^{+}$and $\mathrm{PBr}_{3} \mathrm{Cl}^{+}$ions, respectively, by interpolation between the ${ }^{31} \mathrm{P}$ chewical shifts for $\mathrm{PCl}_{4}{ }^{+}$in $\mathrm{PCl}_{5}(-88.3 \pm 0.5$ p.p.m. $)$ and $\mathrm{FBr}_{4}{ }^{+}$ in FBr_{5} (+104士1 p.p.m.)(104). Thus solid-state Ranan and ${ }^{31}$ P n.m.r. spectra indicate the presence, mainly, of the following ions in $\mathrm{A}: \mathrm{PCl}_{3} \mathrm{Br}^{+} ; \mathrm{PCl}_{2} \mathrm{Br}_{2}{ }^{+} ; \mathrm{PEr}_{3} \mathrm{Cl}^{+}$; and $\mathrm{BCl}_{4}{ }^{-}$. The number of Raman band expected for the $\mathrm{PCl}_{2} \mathrm{Br}_{2}{ }^{+}$(9) and the $\mathrm{PBr}_{3} \mathrm{Cl}^{+}$ (6) ions (Appendix A) corresponds well with the number of unassigned bands in the Raman spectrum of A (16).

A number of peeparations yielded solids whose Raman spectra were similar to the Raman spectrum of A with respect to frequency. The intensity of the Raman bands, however, varied from compound to compound. A study of the Raman spectra of these compounds indicated that the bands ac not vary independently with respect to intensity but can be grouped together according to whether they increase or decrease relative to one another. In this way the unassigned bands in the Raman spectrum of A can be divided into two groups at (i) 129, 145, 179, 200, 208, 345, 521, 600 and $634 \mathrm{~cm}^{-1}$ and at (ii) 119, $151,176,301$ and $504 \mathrm{~cm}^{-1}$. These two groups of bands can thus be assigned to the $\mathrm{PCl}_{2} \mathrm{Br}_{2}{ }^{+}$and the $\mathrm{PBr}_{3} \mathrm{Cl}^{+}$ions, respectively. Assignment of these vibrational frequencies to the fundamental modes of the $\mathrm{PCl}_{2} \mathrm{Br}_{2}{ }^{+}$and $\mathrm{PBr}_{3} \mathrm{Cl}^{+}$ions (in the presence
FIGURE 12. The Solid-State ${ }^{31}$ P N.M.R. Spectrum of the Product (A) of an Unsuccessful Preparation of $\mathrm{PCl}_{3} \mathrm{Br}^{+} \mathrm{BCl}_{4}^{-}$.
of a polyatomic anion only) was then carried out by analogy with the isuelectronic $\mathrm{SiCl}_{2} \mathrm{Br}_{2}$ and $\mathrm{SiBr} \mathrm{S}_{3} \mathrm{Cl}$ (Section 1.2.1.i., 93). Reduction from the $\mathrm{T}_{\mathrm{d}}\left(\mathrm{PCl}_{4}{ }^{+}, \mathrm{PBr}_{4}{ }^{+}, \mathrm{SiCl}_{4}, \mathrm{SiBr}_{4}\right)$ to the $\mathrm{C}_{3 \mathrm{v}}$ $\left(\mathrm{PCl}_{3} \mathrm{Br}^{+}, \mathrm{PBr}_{3} \mathrm{Cl}{ }^{+}, \mathrm{SiCl}_{3} \mathrm{Br}, \mathrm{SiBr}_{3} \mathrm{Cl}\right)$ and finally to the $\mathrm{C}_{2 \mathrm{~V}}$ $\left(\mathrm{PCl}_{2} \mathrm{Br}_{2}{ }^{+}, \mathrm{SiCl}_{2} \mathrm{Br}_{2}\right)$ point groups results in the following pattern of splittings (101).

All of the fundamental vibrational frequencies for the $\mathrm{PCl}_{2} \mathrm{Er}_{2}{ }^{+}$ and the $\mathrm{PBr}_{3} \mathrm{Cl}^{+}$ions are active in the Raman and most (except for the a_{2} mode of $\mathrm{PCl}_{2} \mathrm{Br}_{2}{ }^{+}$) are active in the infrared (Appendix A).

In Table 10, the $\mathrm{PCl}_{2} \mathrm{Br}_{2}{ }^{+}$and $\mathrm{PBr}_{3} \mathrm{Cl}^{+}$ions (in the presence of apolyatomic anion only) are 1 isted and compared with the isoelectronic $\mathrm{SiCl}_{2} \mathrm{Br}_{2}$ and $\mathrm{SiBr}_{3} \mathrm{Cl}$ species. Assignments for the $\mathrm{PCl}_{4}{ }^{+}$ion (in $\mathrm{PCl}_{4}{ }^{+} \mathrm{PCl}_{6}{ }^{-}$), the $\mathrm{PCl}_{3} \mathrm{Br}^{+}$ion (in $\mathrm{PCl}_{3} \mathrm{Br}^{+} \mathrm{BCl}_{4}{ }^{-}$) and the $\mathrm{PBr}_{4}{ }^{+}$ion (in $\mathrm{PBr}_{4}{ }^{+} \mathrm{BBr}_{4}{ }^{-}$) are also incldded.

The solid-state Raman spectrum of the product (B) from the addition, in order, of boron trichloride, phosphorus trichloride and bromine to dichloromethane is presented in Figure 13. The simplicity of the Raman spectrum suggested a pure compound.

TABLE 10. Assignment and Comparison of the Fundamental

$$
\text { Vibrational Frequencies of the } \mathrm{PCl}_{2} \mathrm{Br}_{2}^{+} \text {and }
$$ $\mathrm{PBr}_{3} \mathrm{Cl}^{+}$ions in the Presence of a Polyatomic Anion Only (Cn^{-1})

	a_{1}	e	t_{2}	t_{2}
$\mathrm{PCL}_{4}{ }^{+}$	456	177	656	250
$\left(\mathrm{SiCl}_{4}\right)$	(424)	(150)	(610)	(221)
	\downarrow	\downarrow	$1 \checkmark$	\checkmark
	a_{1}	e	$a_{1} \quad e$	${ }^{a} 1$ e
$\mathrm{PCl}_{3} \mathrm{Br}^{+}$	391	156	582648	214232
$\left(\mathrm{SiCl}_{3} \mathrm{Br}\right)$	(368)	(135)	(545) (610)	(191) (205)
	\downarrow	$J V$	$\downarrow \downarrow$	$\downarrow \downarrow \downarrow$
	a_{1}	$a_{1} \quad a_{2}$	$\begin{array}{lll}a_{1} & b_{1} & b_{2}\end{array}$	$\begin{array}{lll}a_{1} & b_{1} & b_{2}\end{array}$
$\mathrm{PCl}_{2} \mathrm{Br}_{2}{ }^{+}$	345	$129 \quad 145$	600521634	200:179 208
$\left(\mathrm{SiCl}_{2} \mathrm{Br}_{2}\right)(326)$		(111) (122)	(563) (508) (605)	(182)(174) (191)
	\downarrow	$\downarrow 1$	$\downarrow \downarrow$	$\downarrow \downarrow$
	${ }^{\text {a }} 1$	e	$a_{1} e$	a_{1}. e
$\mathrm{PBr}_{3} \mathrm{Cl}^{+}$	301	119	- 504	151176
$\left(\mathrm{SiBr}_{3} \mathrm{Cl}\right)$	(288)	(101)	(579) (498)	(159) (173)
	\downarrow	\downarrow	$\downarrow \downarrow$	$\downarrow \downarrow$
	${ }^{\text {a }} 1$	e	t_{2}	t_{2}
PBr_{4}^{+}	252	104	499	149
$\left(\mathrm{SiBr}_{4}\right)$	(249)	(90)	(487)	(137)

FIGURE 13. The Solid-State Raman Spectrum of the Product (B) from the Addition of Boron
Trichloride, Phosphorus Trichloride and Bromine to Dichloromethane.
376

Total alemental malysis, however. did not incicate nimple stoichiomatry but a P:C1: Br: r ratio of 1.7:7.9:3.0:1.0. ${ }^{31} \mathrm{~F}_{\mathrm{n}}$ mi. x . spectroscopy sisowed one ${ }^{31} \mathrm{P}$ cheraical shift ot -42.8 p.p.m.(relative to $807 \mathrm{H}_{3} \mathrm{PO}_{4}$) (99) indicating the $\mathrm{PCl}_{3} \mathrm{Br}^{+}$ion.

Coaparison of the bands (positions and intensitias) assigned to the $\mathrm{PCl}_{3} \mathrm{Br}^{+}$ion in the faman spectrus of $\mathrm{F}_{2} \mathrm{Cl}_{3}$, Br
(Section 1.2.2.11.) with a number of bands in the Raman anectrum of B strongly sunports the presence of the $\mathrm{PCl}_{3} \mathrm{Er}^{+}$ ion in B.

Vibrational Frequencies of the $\mathrm{FCl}_{3} 3^{+\dagger} \operatorname{Ion}\left(\mathrm{cm}^{-1}\right)$

		$\nu_{2}\left(a_{1}\right)$	$\nu_{3}\left(a_{1}\right)$	$\nu_{4}(4)$	$\nu_{4}(e)$	$V_{4}(e)$
in $\mathrm{F}_{2} \mathrm{CL} \mathrm{g}^{\mathrm{Er}}$	268	305	203	626	230	158
in 2	565	376	204	623	230	161

mhere is strong evidenca for the presence of yingle halide ions in $\mathrm{F}_{2} \mathrm{Cl}_{\mathrm{g}} \mathrm{Br}$ (Section 1.2.2.ii.). The close correspondence between the bande assigned to the $\mathrm{PCl}_{3} \mathrm{Br}$ ion in tha Rawan spectra of $\mathrm{P}_{2} \mathrm{Cl}_{9} \mathrm{Br}$ and E thus indicates the presence of singla binide ions in B. Elewatal salyele fur k indicates a phosphorus to boron ratio of 1.7 : 1.0. Fot formulations contaiaing polyatoxic autona only (i.e.) equal aqounte of tetrahalophospaonium add cetraialoborate iaas; e.8. $\mathrm{PCl}_{3} \mathrm{Br}^{+}, \mathrm{PCl}_{2} \mathrm{Er}_{2}{ }^{4}$ and $2 \mathrm{BCl}_{4}^{-}$etc.), the ratio would be 1:1.

The solid-state infrared spectrum of B (above $200 \mathrm{~cm}^{-1}$) showed bands at 204, 231 and $368 \mathrm{~cm}^{-1}$ indicative of the $\mathrm{PCl}_{3} \mathrm{Br}^{+}$ion. The bands, however, at 565 and $628 \mathrm{~cm}^{-1}$ (in the Raran) expected in the infrared for the $\mathrm{PCl}_{3} \mathrm{Br}^{+}$ion are obscured by a very broad and intense band covering the 500-700 cm^{-1} region. The BCl_{4}^{-}anion has a very broad infrared band in the $500-700 \mathrm{~cm}^{-1}$ region. " B n.m.r. spactroscopy indicates one " B chemical shift at +14.7 p.p.m. (measured relative to $\mathrm{B}(0 \mathrm{Me})_{3}$)close to the ${ }^{3} 3$ chemical shift for $\mathrm{Me}_{4} \mathrm{~N}^{+} \mathrm{BCl}_{4}{ }^{-}$(+12.1 ± 1 p.p.m.) (99).

The solid-state Raman spectrun of the product (C) of a reaction similar to that for B is presented in Figure 14 and Table 11. Elemental analysis indicates a $\mathrm{Cl}: \mathrm{Br}: \mathrm{B}$ ratio of 7.3: 2.9: 1.0 (calculating fhosphorus by difference the $\mathrm{P}: \mathrm{Cl}: \mathrm{Br}: 3$ ratio would be 1.7: 7.3: 2.9: 1.0). A number of weak bands in the Raman spectrum can be assigned to the $\mathrm{PCl}_{4}{ }^{+}, \mathrm{PBr}_{4}{ }^{+}, \mathrm{PCl}_{3} \mathrm{Br}^{+}$(both in the presence of halide and polyatomic anions) and BCl_{4}^{-}ions. The bands at 160 , 200, 230, 373,567 and $629 \mathrm{~cm}^{-1}$ have been assigned, above, to the $\mathrm{PCl}_{3} \mathrm{Br}^{+}$ion in the presence of a single halide ion. The band at $200 \mathrm{~cm}^{-1}$, however, is too intense relative to the other $\mathrm{PCl}_{3} \mathrm{Br}+$ bands to be accounted for entirely by this ion.

In the present work, the solid-state Raman spectra of a large number of compounds, prepared by reactions (1), (2), (3) and (4), were found to be similar to that of C with respect to the position of bands. The intensities of the Raman bands, however, varied from compound to compound. Solid-state ${ }^{31} \mathrm{p}$ n.m.r. spectra of a
FIGURE 14. The Solid-State Raman Spectrum of the Product (c) from the Reaction of Fhosphorus
Trichloride, Bromine and Boron Trichloride in Dichloromethane.

TABLE 11. The Solid-State Ramen Spectrum of the Product
(C) From the Reaction of Phosphorus Trichloride,

Bromine and Boron Trichloride in Dichloronethane
Cm^{-1}
Partial Assignment
40
123 (3)
133 (4)
150 (3.5)
160 (3)
$J_{6}(e) \quad \mathrm{PCl}_{3} \mathrm{Br}^{+}$
173 (9)
190 (8)
200 (10)
$V_{3}\left(\mathrm{a}_{1}\right) \quad \mathrm{PCl}_{3} \mathrm{Br}^{+}$
232 (3.5)
$\nu_{5}(\mathrm{e}) \mathrm{PCl}_{3} \mathrm{Br}^{+}$
252 (1)
$\mathcal{\nu}_{4}\left(\mathrm{t}_{2}\right) \quad \mathrm{PCl}_{4}{ }^{+}$
280 (7.5)
327 (10)
373 (7)
$\nu_{2}\left(\mathrm{a}_{1}\right) \quad \mathrm{PCl}_{3} \mathrm{Br}^{+}$
392 (0.5)
$V_{2}\left(\mathrm{a}_{1}\right) \mathrm{PCl}_{3} \mathrm{Br}^{+}$(polyatomic anion)
410 (0.0)
$V_{1}\left(\mathrm{a}_{1}\right) \quad \mathrm{BC1}{ }_{4}{ }^{-}$
440 (0.5)
$\nu_{1}\left(\mathrm{a}_{1}\right) \quad \mathrm{PCl}_{4}{ }^{+}$
456 (0.0)
$J_{1}\left(\mathrm{a}_{1}\right) \mathrm{PCl}_{4}^{+} \quad$ (polyatomic anion)
490 (0.5)
$\nu_{3}\left(t_{2}\right) \mathrm{PBr}_{4}{ }^{+} \quad$ (polyatomic anion)
500 (3)
520 (0.5)
567 (0.3)
$\nu_{1}\left(\mathrm{a}_{1}\right) \mathrm{PCl}_{3} \mathrm{Br}^{+}$
584 (1.5)
616 (1)
629 (0.5)
$V_{4}(e) \quad \mathrm{PCl}_{3} \mathrm{Br}^{+}$
Figures in parentheses are relative intensities on scale 0-10. Unless otherwise stated, assignments for phosphonium ions are in the presence of single halide ions.
number of these compounds indicated the presence of all three chlorobromophosphonium ions. The ${ }^{31} \mathrm{P}$ n.m.r. spectrum of a compound whose Raman spectrum is similar to C, is presented in Figure 15.

Thus solid-state Raman and ${ }^{31} \mathrm{P}$ n.m.r.spectra indicate the presence of the $\mathrm{PCl}_{3} \mathrm{Br}^{+}, \mathrm{PCl}_{2} \mathrm{Br}_{2}{ }^{+}$and $\mathrm{PBr}_{3} \mathrm{Cl}^{+}$ions, together with single halide ions, in C. A study of the Raman spectra of the compounds referred to above indicated that the intensities of the bands do not vary independently but can be grouped together according to whether they increase or decrease relative to one another. In the same way, as for compound A, it was possible to divide the unassigned bands in the Raman spectrum of C into two groups at (i) $133,150,173,190,200,327,520,584$ and $616 \mathrm{~cm}^{-1}$ and (ii) $123,150,173,280,500$, and $584 \mathrm{~cm}^{-1}$. These two groups of bands are assignable, on the basis of position and intensity, to the $\mathrm{PCl}_{2} \mathrm{Br}_{2}{ }^{+}$and $\mathrm{PBr}_{3} \mathrm{Cl}^{+}$ions, respectively.

The $\mathrm{PCl}_{2} \mathrm{Br}_{2}{ }^{+}$and $\mathrm{PBr}_{3} \mathrm{Cl}^{+}$ions, in the presence of single halide ions, are assigned in Table 12 by analogy with the isoelectronic $\mathrm{SiCl}_{2} \mathrm{Br}_{2}$ and SiBr 3 Cl (98) and compared with assignments for the $\mathrm{PCl}_{4}{ }^{+}$ion (in metastable PCl_{5}), the $\mathrm{PCl}_{3} \mathrm{Br}^{+}$ion (in B) and the PBr_{4}^{+}ion (in $\mathrm{PBr}_{4}^{+} \mathrm{Br}^{-}$).

Thus it appears that the $\mathrm{PCl}_{2} \mathrm{Br}_{2}{ }^{+}$and $\mathrm{PBr}_{3} \mathrm{C1}^{+}$ions, together with the $\mathrm{PCl}_{4}^{+}, \mathrm{PBr}_{3} \mathrm{Cl}^{+}$and $\mathrm{PBr}_{4}{ }^{+}$ions, may be assigned two sets of fundamental vibrational frequencies depending upon the presence of either (i) polyatomic anions only (e.g. $\mathrm{BCI}_{4}{ }^{-}, \mathrm{BBr}_{4}^{-}$etc) or (ii) single halide ions (Cl^{-}or Br^{-}).
Compound whose daman Spectrum is similar to that compound whom similar to that or con

$$
\begin{aligned}
& \text { FIGURE 15. The Solid-State }{ }^{31} \text { P N.M.R. Spectrum of a } \\
& \text { Compound whose Raman Spectrum is similar to that of } C \text {. }
\end{aligned}
$$

萿蓉
$\sqrt{M}_{-38.8}^{M}$
-38.8
$\mathrm{PCl}_{4}{ }^{+}$
$\sim^{\sim \min }$ N
$0.05+$

$$
-3.9
$$

$\mathrm{PCl}_{2} \mathrm{Br}_{2}{ }^{+}$

TABLE 12. Assignment and Comparison of the Fundamental
Vibrational Frequencies of the $\mathrm{PCl}_{2} \mathrm{Br}_{2}{ }^{+}$and $\mathrm{PBr} 3^{\mathrm{Cl}^{+}}$ions in the Presence of Siggle Halide Ions (cm^{-1})

a_{1}		e	t_{2}		t_{2}	
$\mathrm{PCl}_{4}{ }^{+}$	442	185	639		245	
$\left(\mathrm{SiCl}_{4}\right)$	(424)	(150)	(610)		(221)	
	\downarrow	\downarrow	\downarrow		1	
	a_{1}	e	${ }^{1} 1$	e		
$\mathrm{FCl}_{3} \mathrm{Er}^{+}$	376	161	565	628	204	230
($\mathrm{SiCl}_{2} \mathrm{Er}$)	(368)	(135)	(545)	(610)	(191)	(205)
	\downarrow			11	\downarrow	$1 \downarrow$
	${ }^{a} 1$	1	${ }^{\text {a }}$	1 b	${ }^{\text {a }} 1$	

1.2.4. Other Compounds

1.2.4.i. The Compound " $\mathrm{PC1}_{3} \mathrm{Er}_{4}$ "

It has been suggested (5) that compounds of the general formula $\mathrm{PCl}_{3}(\mathrm{Br})_{n}(\mathrm{n}=1-10)$ may be formulated as $\mathrm{PCl}_{3} \mathrm{Br}^{+} \mathrm{Br}^{-\quad}\left(\mathrm{Br}_{2}\right)_{\mathrm{n}-1}{ }^{\text {. }}$ In an attempt to prepare a compound containing the $\mathrm{PCl}_{3} \mathrm{Br}^{+}$ion, the compound of stoichiometry $\mathrm{PCl}_{3} \mathrm{Er}_{4}$ was investigated. Freparation was attempted by the method of Fialkov and Kuzmenko (79), i.e. the direct addition of bromine to phosphorus trichloride. The solid product was sublimed at room temperature, yielding a red crystalline sublimate and a yellow residue.

Neutral hydrolysis of the red crystalline sublimate indicated the release of free bromine. As a consequence, the hydrolysate was tested for chloride, bromide and free bromine with the following results:
\% Phosphorus \% Chloride \% Bromide \% Free Bromine \% Total Bromine
5.3
17.1
26.2
50.4
76.6

These results do not correspond to the expected analysis figures for $\mathrm{PCl}_{3} \mathrm{Br}_{4}$ (calc. for $\mathrm{PCl}_{3} \mathrm{Br}_{4}: \mathrm{P}, 6.8 ; \mathrm{Cl}, 23.2$; $\mathrm{Br}, 70.0 \%$). The above figures indicate the stoichiometry $\mathrm{PCl}_{3} \mathrm{Br}_{6}{ }^{\text {. Further, }}$ the Cl^{-}: Br^{-}ratio is exactly $3: 2$ and the (free) bromine to bromide ratio is $1: 1$, indicating a formulation $\mathrm{PCl}_{3} \mathrm{Br}^{+} \mathrm{Br}^{-}\left(\mathrm{Br}_{2}\right)_{2}$ 。

The solid-state Raman spectra of the compound of stoichiometry $\mathrm{PCl}_{3} \mathrm{Br}_{6}$, presented in Figure 16, does not indicate the $\mathrm{PCl}_{3} \mathrm{Br}^{+} \mathrm{Br}^{-}\left(\mathrm{Br}_{2}\right)_{2}$ formulation. Bands in the Raman at $167,198,368$, 576 and $641 \mathrm{~cm}^{-1}$ are assignable to the $\mathrm{PCl}_{3} \mathrm{Br}^{+}$ion. There are,
however, bands at (i) 186,328 and $519 \mathrm{~cm}^{-1}$ and at (ii) 446, and 657, assignasle to the $\mathrm{PCl}_{2} \mathrm{Br}_{2}{ }^{+}$and $\mathrm{PCl}_{4}{ }^{+}$ions, respectively. The very intense band at $261 \mathrm{~cm}^{-1}$ is probably assignable to the polybromide ion. It was not, possible, however, to prepare a compound containing the $\mathrm{Br}_{5}{ }^{-}$ion (i.e. $\mathrm{Br} \mathrm{B}^{-}(\mathrm{Br})_{2}$) in order to confirm its presence in $\mathrm{PCl}_{3} \mathrm{Br}_{6}$ by comparison of Raman spectra.

The solid-state Raman spectra of a number of preparations of $\mathrm{PCl}_{3} \mathrm{Br}_{6}$, by direct reaction of Br_{2} and PCl_{3}, were identical to the original presented above. Further, preparation of $\mathrm{PCl}_{3} \mathrm{Br}_{6}$ by addition of bromine to phosphorus trichloride (in a $2: 1$ mole ratio) in liquid anhydrous hydrogen chloride at ca. $-96^{\circ} \mathrm{C}$. yielded a compound whose solid-state Raman spectrum was also identical to that of the original $\mathrm{PCl}_{3} \mathrm{Br}_{6}$ (Figure 16).

The solid-state Raman spectrum of yellow residue, from the sublimation of the solid product of the addition of Br_{2} to PCl_{3}, identified it as $\mathrm{P}_{2} \mathrm{Cl}_{9} \mathrm{Br}$ (Section 1.2.2.ii.). Total halogen analysis confirmed this.
FIGURE 16. The Solid-State Raman Spectrum of the Compound of Stoichiometry $\mathrm{FCl}_{3} \mathrm{Br}_{6}$.

1.2.4.ii. The Compound of Stoichiometry $\mathrm{PSLCl}_{7} \mathrm{Er}_{3}$

It was proposed (72) that the addition of phosphorus tribromide to antimony pentachloride (in a $1: 2$ mole ratio) yielded the compound of stoichiometry $\mathrm{PSbCl}_{7} \mathrm{Br}_{3}$. A possible formulation for $\mathrm{PSCCl}_{7} \mathrm{Er}_{3}$ is $\mathrm{PBr}_{3} \mathrm{Cl}^{+} \mathrm{SbCl}_{6}{ }^{-}$. The above preparation was investigated as a possible source of the $\mathrm{PBr}_{3} \mathrm{Cl}^{+}$ion.

Total elemental analysis of the product from the addition of PBr_{3} to SbCl_{5} in dichloromethane indicated the stoichionetyy $\mathrm{PSbCl}_{7} \mathrm{Br}_{3}$. The solid-3tate Raman spectrum is presented in Figure 17. The presence of the $\mathrm{SbCl}_{6}{ }^{-}$anion is indicated by bands at 174, 289, and $330 / 339 \mathrm{~cm}^{-1}$ (6). The band at $174 \mathrm{cmi}^{-1}$, however, is too intense to be accounted for entirely by this ion. Bands at 119, 150, 174, 300 and $308 \mathrm{~cm}^{-1}$ indicate the presence of the $\mathrm{FBr}_{3} \mathrm{Cl}^{+}$ion; however, the $\mathrm{PBr}_{3} \mathrm{Cl}^{+}$ion does not entirely explain the intensities of the bands at 150 and $174 \mathrm{~cm}^{-1}$. A number of weak tands indicate the presence of the $\mathrm{PCl}_{3} \mathrm{Br}^{+}$ion (215, 232 and $392 \mathrm{~cm}^{-1}$) and the $\mathrm{PCl}_{2} \mathrm{Br}_{2}{ }^{+}$ion (196 and $204 \mathrm{~cm}^{-1}$). The intense band at $259 \mathrm{~cm}^{-1}$, together with the bands at 104, 150, and $508 \mathrm{~cm}^{-1}$, are characteristic of the $\mathrm{PBr}_{4}{ }^{+}$ ion in the presence of a polyatonic anion only.

The Raman spectra of a number of preparations of $\mathrm{PSBCl}_{7} \mathrm{Br}_{3}$ were identicat to that above. Thus, solid-state Raman spectuoscopy does not indicate the formulation $\mathrm{PBr}_{3} \mathrm{Cl}^{+} \mathrm{SbCl}_{6}{ }^{-}$for the compound of stoichiometry $\mathrm{PSbCl}_{7} \mathrm{Br}_{3}{ }^{\circ}$
FIGURE 17. The Solid-State Raman Spectrum of the Compound of Stoichiometry $\mathrm{PSbCl}_{7} \mathrm{Br}_{3}$.

SECTION $2-$ TUE HALIDLS OF ANTIMONY (V)

2.1. Introduction

A number of reviews concerning the chemistry of the halides of antiuony (3, 4, 5, 6, 106) have been published recently. For the purposes of Section 2 , the thrm "halide" refers to chloride and bromide only. In this section, the chlorobromoantimonate anions, $\mathrm{Sb}^{\mathrm{V}} \mathrm{Cl}_{\mathrm{n}} \mathrm{Br}_{6-\mathrm{n}}{ }^{-}(\mathrm{n}=0$ to 6$)$ will be discussed.

The hexachloroantinonate ion, $\mathrm{SoCl}_{6}{ }^{-}$, has been identified in a number of complexes; e.g. $\mathrm{PCl}_{4}{ }^{+} \mathrm{SoCl}_{6}{ }^{-}, \mathrm{Et}_{4} \mathrm{NV}^{+} \mathrm{SoCl}_{6}{ }^{-}, \mathrm{CA}_{3} \mathrm{CO}^{+}$ $\mathrm{SbCl}_{6}{ }^{-}$etc.(6)..In contrast, until recently tae hexabromoantimonate ion, $\mathrm{SbBr}_{6}{ }^{-}$, was thought to exist only as a polybromide ion of tripositive antimony (i.e. $\mathrm{Sb}^{\mathrm{III}} \mathrm{Br}_{4} \mathrm{Br}_{2}, 107,108$) and chlorobromoantimonates were not thought to exist at all (5, 106).

Recently, (109) the compound prepared by the addition of tetraethylamoniun bromide, browine and antinony tribromide in concentrated hydrobromic acid was shown, by X-ray studies, to be of the form $\mathrm{Et}_{4} \mathrm{~N}^{+} \mathrm{SbSr}_{6}{ }^{-}$. Infrared and Raman spectroscopy confirm this (110). The preparation and vibrational spectra of the compounds $\mathrm{CH}_{3} \mathrm{CO}^{+} \mathrm{SbCl}_{5} \mathrm{Br}^{-}$(111), $\mathrm{Et}_{4} \mathrm{~N}^{+} \mathrm{SbCl}_{5} \mathrm{Br}^{-}, \mathrm{Et}_{4} \mathrm{~N}^{+} \mathrm{SbCl}_{3} \mathrm{Br}_{3}{ }^{-}$, and $E t_{4}{ }^{+} \mathrm{SbClBr}_{5}{ }^{-}$(110) have also been reported recently.
2.2.1. The texabromoantimonate Ion ($\mathrm{SbEr}_{6}{ }^{-}$) The adition of $\mathrm{Et}_{4} \mathrm{~N} \mathrm{Er}$ to SoBr_{3} and bromine in dichloromethane gave a deep red solid. Elemental analysis for bromine was consistent with the stoichiometry Et $4^{\text {iN }} \mathrm{SbDr}_{6}$. The solid-state Raman spectrum is presented in Figure 18 and the solid-state Raman and infrared frequencies are listed in Table 13.

The proposed formulation $\mathrm{Et}_{4} \mathrm{~N}^{+} \mathrm{SOBr}_{4}{ }^{-}, \mathrm{Br}_{2}(107,108)$ is not indicated by couparison with solid-state Raman data for $\mathrm{Bu}_{4} \mathrm{~N}^{+} \mathrm{SuBr}_{4}{ }^{-}$ (bu $=\mathrm{C}_{4} \mathrm{H}_{9}$, 112). The simplicity of the Raman and infrared spectra and the absence of coincident bands strongly indicates an octahedral Sobr ${ }_{6}^{-}$ion and hence the formulation $E t_{4}{ }^{+}{ }^{+} \operatorname{SbEr}_{6}{ }^{-}$; results agree well with those of Adams and Downs (110).

A similar preparation using $\mathrm{Bu}_{4} \mathrm{NBr}$ yielded a deep red solid.
Elemental analysis for bromine was consistent with $\mathrm{Bu}_{4} \mathrm{~N} \mathrm{Sb}_{\mathrm{Br}}^{6}$. Three Raman bands (at 195,169 and $157 \mathrm{~cm}^{-1}$) suggest the presence of an octahedral $\mathrm{Sb} \mathrm{Br}_{6}{ }^{-}$ion.

FIGURE 18. The Solid-State Raman Spectrum of the Compound of Stoichiometry $\mathrm{Et}_{4} \mathrm{NSbBr}_{6}{ }^{\circ}$

TABLE 13. The Solld-State Raman and Infrared

Laman
Infrared
118^{a}
122 w

150 w
172 mt

177 s
180 s
194 s
$\left.\begin{array}{l}2248) \\ 235 \text { 8 }\end{array}\right)$

Assignment ${ }^{\mathrm{b}}$
$\nu_{4}\left(t_{1 u}\right) S b 3 r_{6}^{-}$
$\nu_{5}\left(t_{2 q}\right) \operatorname{SbBr}_{6}{ }^{-}$
$\nu_{2}\left(e_{g}\right) \operatorname{SiBr}_{6}{ }^{-}$
$\nu_{1}\left(a_{1_{6}}\right) \operatorname{SoBr}_{6}{ }^{-}$
$v_{3}\left(t_{1 u}\right) \operatorname{singr}_{6}{ }^{-}$
w - weak, m - medium, s - strong.
a - determined by interferometric nethods
b - reference 110.

2.2.2. Tice Pentachlorobronwantinonate Ion (SUC1 $5^{6 x^{-}}$)

2.2.2.i. The Conpound of Stoichiometry $\mathrm{It}_{4} \mathrm{NSOCl}_{5} \mathrm{Br}$

The addition of $E t_{4} \mathrm{NE}$ to SbCl_{5} in dichloronethane yielded a yellow solid (A). Elenental analyses for antimony, chlorine and bromine were consistent with the stoichionetry $\mathrm{Et}_{4} \mathrm{~N} \mathrm{SbCl}_{5} \mathrm{Er}$. The solid-state Eaian sfectrum is presented in Figure 19. Comparison with the Raman siectrun of $\mathrm{Et}_{4} \mathrm{~N}^{+} \mathrm{Br}^{-}$: (with bands at 426 and $682 \mathrm{~cm}^{-1}$) indicates the presence of the $E t_{4^{3}}$ ion and the formulation $E t_{4} 4^{+} \mathrm{SDCl}_{5} \mathrm{Br}^{-}$.

Cinlorobrowantimonates (e.g. $\mathrm{SbCl}_{5} \mathrm{Br}^{-}$), however, were thougnt not to exist (5, 106). Under conditions when the complex, $\mathrm{Et}_{4} \mathrm{~N}^{+} \mathrm{SbCl}_{5} \mathrm{Br}^{-}$, should be produced (e.g. as above) a study of toe X-kay diagrams indicated a $5: 1$ mixture of $\mathrm{Et}_{4} \mathrm{~N}^{+} \mathrm{SbCl}_{6}{ }^{-}$and $\mathrm{Et}_{4} \mathrm{~N}^{+} \mathrm{SbBr}_{6}{ }^{-}$.

Evidence, however, to support the existence of $\mathrm{Et}_{4} \mathrm{~N}^{+} \mathrm{SbCl}_{5} \mathrm{Br}^{-}$as a discrete chemical compound and not a $5: 1$ mixture of $\mathrm{Et}_{4} \mathrm{~N}^{+} \mathrm{SbCl}_{6}{ }^{-}$and $\mathrm{Et}_{4} \mathrm{~N}^{+} \mathrm{SbBr}_{6}{ }^{-}$has been obtained from (i) Kaman spectroscopy, (ii) X-Kay powder photography and (iii) differential scanning calorinetry.
$\mathrm{Et}_{4} \mathrm{~N}^{+} \mathrm{SbCl}_{6}^{-}$(white solid) and $\mathrm{Et}_{4} \mathrm{~N}^{+} \mathrm{SbBr}_{6}$ (deep red solid) were mixed lightly (in a $5: 1$ mole ratio) to give a pinkish solid (B) which was compared with the compound of stoichiometry $\mathrm{Et}_{4} \mathrm{~N} \mathrm{SbCl}_{5} \mathrm{Br}$ (A). The absence of a band at $194 \mathrm{~cm}^{-1}$ in the Raman spectrum of A, assigned to the $\operatorname{SbBr}_{6}{ }^{-}$ion (Section 2.2.1.) and clearly present in the Raman spectrum of B, did not support the formulation of $\mathrm{Et}_{4} \mathrm{~N} \mathrm{SbCl}_{5} \mathrm{Br}$ as a $5: 1$ mixture of $\mathrm{Et}_{4} \mathrm{~N}^{+} \mathrm{SbCl}_{6}{ }^{-}$and $\mathrm{Et}_{4} \mathrm{~N}^{+} \mathrm{SbBr}_{6}{ }^{-}$. Further, a number of bands (at 154,216 , and $304 \mathrm{~cm}^{-1}$) in the Raman spectrum of A were not present in that of B. Comparison
FIGURE 19. The Solid-State Raman Spectrum of the Compound of Stoichiometry $E t_{4} \mathrm{NSbCI} \mathrm{S}_{5} \mathrm{Br}$ (A).

of the X-Ray powder photographs for A and B also did not indicate that $\mathrm{Lt}_{4} \mathrm{~N}^{\mathrm{N}} \mathrm{SbCl}_{5} \mathrm{Sr}$ was a $5: 1$ mixture of $\mathrm{Et}_{4} \mathrm{~N}^{+} \mathrm{SbCl}_{6}{ }^{-}$and $\mathrm{Et}_{4} \mathrm{~N}^{+} \mathrm{SbCl}_{6}{ }^{-}$.

Differential scannin'̈ calorinetric results for $E t_{4} \mathrm{~N} \mathrm{SbCl}_{6}$, $\mathrm{Et}_{4} \mathrm{SbBr}_{6}, B$ and A are represented diagranaztically in Figure 20. Results for $E t_{4} \mathrm{~N} \mathrm{SbCl}_{6}, \mathrm{Et}_{4} \mathrm{~N} \mathrm{SbDr}_{6}$ and $\mathrm{Et}_{4} \mathrm{~N} \mathrm{SbCl}_{5} \mathrm{Br}$ are detailed below:

Compound Transition lemperature (${ }^{\circ} \mathrm{K}$) Enthalpy of Transition kJ mole e^{-1}

Lt $4_{4}: \mathrm{SLCl}_{6} \quad 336^{\mathrm{O} \pm 1^{\circ}}\left(63^{\circ} \pm^{\circ}{ }^{\circ} \mathrm{C}.\right) \quad 13.0 \pm 0.4$
$E E_{4} \mathrm{SbBr}_{6} \quad 435^{\circ} \pm 1^{\circ} \quad\left(162^{\circ} \pm 1^{\circ} \mathrm{C}\right.$.) $\quad 30.1 \pm 0.4$
$\mathrm{Et}_{4} \mathrm{~N} \mathrm{SbCl}_{5} \mathrm{Er} \quad 339^{\circ} \pm_{1}^{\circ}\left(66^{\circ} \pm_{1}^{\circ} \mathrm{C}\right) \quad 18.4 \pm 0.4$

The thermograns of $\mathrm{Et}_{4} \mathrm{~N}_{4} \mathrm{SCCl}_{6}$ and $\mathrm{Et}_{4} \mathrm{~N} \mathrm{SbEr}_{6}$ both indicate only one endothermic transition at $63^{\circ} \mathrm{C}$. and $162^{\circ} \mathrm{C}$., respectively. It is reasonable to assume that on first running the $5: 1$ mixture (D) the low temperature peak at $63^{\circ} \mathrm{C}$. can be attributed to $\mathrm{Et}_{4} \mathrm{~N} \mathrm{SbCl}_{6}$ and the high temperature peak at $162^{\circ} \mathrm{C}$. to Et_{4} iN $^{\mathrm{StBr}} 6$. Comparison of the therinogran of 4 . (with only one endothermic transition at $66^{\circ} \mathrm{C}$.) with that of B does not support the 5:1 mixture formulation.
ke-running the 5:1 mixture (B) indicated only one endothermic transition, in the d.s.c. thermogram, at $\sim 65^{\circ} \mathrm{C}$. Further, the solid-state Raman spectrum of a sample of B heated to $120^{\circ} \mathrm{C}$. for two hours was not the sane as that of an unheated sample. The

FIGURE 20. Differential Scanning Calorimetry.

Kaman spectrum of the heated sample, with bands at 171,220 , 292, 303 and $334 \mathrm{~cm}^{-1}$, was identical to that for $\mathrm{Et}_{4} \mathrm{NSSCl}_{5} \mathrm{Br}$. A distinct colour change from the pink colour of the $5: 1$ mixture to yellow, the colour of $E t_{4} \mathrm{NSbCl}_{5} \mathrm{Br}$, accompanied heating. Thus evidence suggests that a $5: 1$ mixture of $\mathrm{Et}_{4} \mathrm{~N}^{+} \mathrm{SbCl}_{6}{ }^{-}$and $\mathrm{Et}_{4} \mathrm{~N}^{+}$SoBr $_{6}{ }^{-}$reacts in the solid-state to give Et $4^{\mathrm{NX}} \mathrm{SOCl}_{5} \mathrm{Br}$.

Reaction, in the solid-state, to produce $E t_{4} \mathrm{~N} \mathrm{SbCl}_{5} \mathrm{Br}$ is also indicated by Ranan epectroscopy when $E t_{4} N^{+} \operatorname{SbCl}_{6}{ }^{-}$and $\mathrm{Et}_{4} \mathrm{~N}^{+} \operatorname{SbEr}_{6}{ }^{-}$ (in a $5: 1$ mole ratio) are mixed either by grinding or in a ballnill. Thus observations on a 5:1 mixture prepared in this way would have similar results to those for a sample of $\mathrm{Et}_{4} \mathrm{~N} \mathrm{SbCl}_{5} \mathrm{Er}$. This may provide a possible explanation of Kolditz' X-Ray results (5,106). The X-Ray powder diagran for a sample of $\mathrm{Et}_{4} \mathrm{~N} \mathrm{SbCl}_{5} \mathrm{Br}$, prepared as above, would be identical to that for a $5: 1$ mixture of $\mathrm{Et}_{4} \mathrm{~N}^{+} \mathrm{SbCl}_{6}{ }^{-}$and $\mathrm{Et}_{4} \mathrm{~N}^{+} \mathrm{SbBr}_{6}{ }^{-}$mixed thoroughly (e.g. in a ball-mill.).

It was possible to resolve a number of bands in the solid-state Raman spectrum of $E t 4_{4} \mathrm{~N}^{+} \mathrm{SbCl}_{5} \mathrm{Br}^{-}$(113) and results are presented, and compared with those of Goetz et al (111) and Adams and Downs (110), in Table 14. Results agree well with those expected for an octahedral ion of $C_{4 v}$ symetry. All eleven fundamental vibrational frequencies for an octahedral $\mathrm{SbCl}_{5} \mathrm{Br}$ - ion are Raman active. Your $\mathrm{Sb}-\mathrm{Cl}$ stretching frequencies, one $\mathrm{Sb}-\mathrm{Br}$ stretching frequency and six deformation frequencies are expected in the Raman (Appendix B).

HisisL 14. The Solid-State Kaman Spectrum of

$$
\mathrm{Et}_{4} \mathrm{~N}^{+} \mathrm{SbCl}_{5} \mathrm{Br}^{-}\left(\mathrm{cn}^{-1}\right)
$$

This work	Goetz et al ${ }^{\text {a }}$	Adams and Downs ${ }^{\text {b }}$	Assignment ${ }^{\text {b }}$
		73 w 80 w	
		85 w	
114 w	110 w	108 mW	Deformation and possible lattice modes
140 w	142 v.s.		
15y w		156 m	
271	170 sin.		
170 m		178 mw. sh.	
104	180 v.s.)	
210 nim. sh.	210 sh		
		215 v.s. $\}$	Sb-Br stretching
220 s			
	230 s	.	
269 s	2908	284 m	
308 s	310 m	304 v.s. $\}$	So-Cl stretching
320 w			
333 v.8.	334 V.8.	331 8	
		340 sh.	

w - weak, m - medium, sh - shoulder, s-strong, v.s. - very strong,
m.w. - medium weak
a - reference 111 (J̣ une 1970), b - reference 110 (August 1971)
This work (May 1971).

2.2.2.ii. The Compound of Stoichionetry PSBCl ${ }_{9} \mathrm{Br}$

The adition of $\mathrm{PCl}_{3}, \mathrm{Br}_{2}$ and BCl_{3} in liquid HCl at ca. $-90^{\circ} \mathrm{C}$. yields, under certain conditions, the compound $\mathrm{PCl}_{3} \mathrm{Br}^{+} \mathrm{bCl}_{4}{ }^{-}$ (Section 1.2.2.i.). In an attempt to prepare the alternative source of the $\mathrm{PCl}_{3} \mathrm{Br}^{+}$ion, $\mathrm{PCl}_{3} \mathrm{Br}^{+} \mathrm{SbCl}_{5}{ }^{-}, \mathrm{SbCl}_{5}$ and not SCl_{3} was added.

Antimony pentachloride $\left(\mathrm{SiCl}_{5}\right)$ was added to Br_{2} and FCl_{3} in liquid Hel at ca. $-96^{\circ} \mathrm{C}$. Un warming to room temperature the excess solvent evaporated leaving a yellow solid. Total elemental analysis indicated the expected stoichiometry, $\mathrm{PSOCl}_{9} \mathrm{Br}$.

The absence of bands at $214,232,391$ and $582 \mathrm{~cm}^{-1}$, (assigned to the $\mathrm{PCl}_{3} \mathrm{Br}^{+}$ion in $\mathrm{PCl}_{3} \mathrm{Br}^{+}{ }_{\mathrm{BCl}}^{4}{ }_{4}^{-}$) in the solid-state Raman spectrum did not indicate the formulation $\mathrm{PCl}_{3} \mathrm{Br}^{+} \mathrm{SbCl}_{6}{ }^{-}$. Comparison, however, with the solid-state Raman spectrun of $\mathrm{Et}_{4} \mathrm{~N}^{+} \mathrm{SbCl}_{5} \mathrm{Br}^{-}$. Figure 21, indicates the presence of the $\mathrm{SbCl}_{5} \mathrm{Br}{ }^{-}$ion and the formulation $\mathrm{PCl}_{4}{ }^{+} \mathrm{SbCl}_{5} \mathrm{Br}^{-}$. The bands at 250, 453 and $653 \mathrm{~cm}^{-1}$ in the Raman spectrum of $\mathrm{PSOCl}_{\mathrm{g}} \mathrm{Br}$ agree well in both position and intensity with bands expected for the $\mathrm{PCl}_{4}{ }^{+}$ion (e.g. by comparison with the Raman spectrum of $\mathrm{PCl}_{4}{ }^{+} \mathrm{PCl}_{6}{ }^{-}$, Figure 2). ${ }^{31} 1_{\mathrm{P}}$ n.m.r. spectroscopy shows one ${ }^{31_{P}}$ chemical shift at -80.0 ± 1 p.p.m. (relative to $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$)
indicative of the $\mathrm{PCl}_{4}{ }^{+}$ion. Thus solid-stata Raman and ${ }^{31} \mathrm{P}$ n.m.r. spectroscopy strongly suggest the formulation $\mathrm{PCl}_{4}{ }_{4}{ }^{+}$ $\mathrm{SbCl} \mathrm{Sr}^{-}$for the compound of stoichiometry $\mathrm{PSbCl}_{9} \mathrm{Br}$.

FIGURE 21. Comparison of the Solid-State Raman Spectra of the Compound of Stoichiometry $\mathrm{PSbCl}_{9} \mathrm{Br}$ and $\mathrm{Et}_{4} \mathrm{~N}^{+} \mathrm{SbCl}_{5} \mathrm{Br}^{-}$

2.2.3. Other Antimony Compounds

The compounds of stoichionetry Et ${ }_{4} \mathrm{~N} \mathrm{SbCl}_{4} \mathrm{Br}_{2}, \mathrm{Et}_{4} \mathrm{~N} \mathrm{SbCl}_{3} \mathrm{Br}_{3}$ and $\mathrm{Et}_{4} \mathrm{~N} \mathrm{SbBr}_{5} \mathrm{Cl}$ were prepared for the following general reaction:
$\mathrm{Sb} \mathrm{X}_{3}+\mathrm{Br}_{2}+\mathrm{Et}_{4} \mathrm{NY}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\mathrm{X}, \mathrm{Y}=\mathrm{Br}_{1} \mathrm{Cl}\right)$

Elemental analysis for chlorine and bromine indicated the above stoichionetries. The solid-state Raman spectra are presented below:

All of the above bands, except for that at $\sim 195 \mathrm{~cm}^{-1}$ are present in the Raman spectrum of $\mathrm{Et}_{4} \mathrm{~N}^{+} \mathrm{SbCl}_{5} \mathrm{Br}{ }^{-}$. The band at $\sim 195 \mathrm{~cm}^{-1}$ has been assigned previously to the $\operatorname{SbBr}_{6}{ }^{-}$anion. Thus Raman evidence indicates that these three compounds are mixtures of $\mathrm{Et}_{4} \mathrm{~N}^{+} \mathrm{SbCl}_{5} \mathrm{Br}^{-}$and $\mathrm{Et}_{4} \mathrm{~N}^{+} \mathrm{SbBr}_{6}{ }^{-}$.

Adans and Downs (110), however, suggested the formulations $\mathrm{Et}_{4} \mathrm{~V}^{+} \mathrm{SbCl}_{3} \mathrm{Sr} \mathrm{r}^{-}$and $\mathrm{St}_{4} \mathrm{~N}^{+} \mathrm{SbOr}_{5} \mathrm{Cl}^{-}$for $\mathrm{Et}_{4} \mathrm{NSSOCl}_{3} \mathrm{Br}_{3}$ and $\mathrm{Et}_{4} \mathrm{~N} \mathrm{SbEr}_{5} \mathrm{Cl}$, in the solid-state and in solution, form a study of both the Raman and the infrared spectra. Solid-state Raman data for $\mathrm{Et}_{4} \mathrm{~N} \mathrm{SbCl}_{3} \mathrm{Br}_{3}$ and $\mathrm{Et}_{4} \mathrm{NSCr}_{5} \mathrm{Cl}$ presented above agrees well with that of Adaus and Downs.

```
SECTION 3 - EXPERIMENTAL
```


3.1. SYNTHESIS

3.1.1. Materials

Reagents of the best availatle conmercial grade were used, generally without further purification. Dichloromethane (ilay and Baker Laboratory Reakent) was dried over CaCl_{2} and fractionally distilled according to the method of Mathews (115).

3.1.2. Apparatus and Procedure

3.1.2.i. Keactions in Dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$

Reactions were carried out by the addition, with stirring; of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solutions of reactants under anhydrous conditions. The resultant precipitate was filtered and dried using the apparatus described in Figure 22.

Before use, the filtration arparatus was thoroughly dried in an oven at $130^{\circ} \mathrm{C}$. and left to cocl under vacuum. Dry air was introduced through the stopcock, A, and the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution and the precipitate were quickly poured into the top, B, of the apparatus. With stopcock A closed, the apparatus was evacuated through stopcock C. When all the filtrate had been pulled through the glass sinter, D, stopcock C to the punp was closed and dry air was introduced through stopcock A. The flask, E, was then replaced by an empty flask to prevent $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ being pulled over under vacuum into the liquid N_{2} trap. The precipitate was then dried under vacuum.

FIGURE 22. Filtration Apparatus for Reactions in Dichloromethane.

Abstract

3.1.2.ii. Kpactions in Liquid bydrogen Chloride

Hydrogen chloride gas was generated by the addition of concentrated hydrochloric acid to concentrated sulphuric acid. Concentrated hydrochloric acid ($\sim 150 \mathrm{ml}$.) in a pressure-equalising dropping funnel was added slowly, with stirring, to concentrated sulpnuric acid ($\sim 300 \mathrm{ml}$.) in a 3-necked flask. The hCl gas evolved was then passed through two traps; the first containing concentrated sulphuric acid to remove water; and the second, an empty splash trap, to remove traces of sulphuric acid carried over.

The reaction vessel (Figure 23) was dried thoroughly in an oven at $130^{\circ} \mathrm{C}$. and cooled by flushing with dry nitrogen. BC1 gas was then condensed into the reaction flask, F, at ca. $-196^{\circ} \mathrm{C}$. The reaction vessel, was then flushed vigorously with dry aitrogen while the trap head, G, was replaced by a CaCl_{2} guard tube. The flow-rate of dry nitrogen was then adjusted to give a very slight excess pressure within the reaction vessel.

The HCl was liquefied using a toluene slush bath (ca. $-96^{\circ} \mathrm{C}$.). It was found advisable to use a wide-necked dewar for the slush bath to facilitate stirring and removal of any toluene which solidifies initially on the outer walls of the reaction flask.

Solid reactants were introduced into the reaction flask before HCl was condensed $\mathrm{in}, \mathrm{BCl}_{3}$ and $\mathrm{B} \mathrm{Br}_{3}$ from ampoules, were added to the liquid HCl through the side neck, H, of the multiple adaptor. Other liquids were added from weight pipettes through the central neck, I, of the multiple adaptor when the stopper in the side

FIGURE 23. Reaction Vessel for Reactions in Liquid Hydrogen Chloride.

neck, H, had been replaced by a CaCl_{2} guard tube.

When all the reactants had been added, excess solvent was evaporated by allowing the reaction vessel to warm to room temperature. Solid residues were then pumped for ca. 30 minutes.

3.1.3. Preparations

3.2.3.i. $\underline{\mathrm{PB} \mathrm{Br}} 8$
PBr_{5} ($\left.14.02 \mathrm{~g} \cdot, 0.033 \mathrm{~mol}.\right)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(\sim 50 \mathrm{ml}$.$) was added to$ $\mathrm{BBr}_{3}(8.34 \mathrm{~g} \cdot, 0.033 \mathrm{~mol}$.$) also in \mathrm{CH}_{2} \mathrm{Cl}_{2}(\sim 50 \mathrm{ml}$) . The resultant yellow precipitate was filtered and dried under vacum. (Found : $\mathrm{Br}, 93.0$; Calc for $\mathrm{PB} \mathrm{Br} \% \mathrm{Br}, 94.0 \%$).
3.1.3.ii. $\mathrm{Et}_{4} \mathrm{NBEBr}_{4}$
$\mathrm{Et}_{4} \mathrm{NB}_{\mathrm{Br}}^{4}$ was peepared according to the method of haddington and Winite (51). Hydrogen bromide was used as solvent and the procedure was similar to that for hydrogen chloride preparations.
$E t_{4} \mathrm{NBr}(5.19 \mathrm{~g} ; 0.025 \mathrm{~mol}$.) was weighed into a reaction vessel and hydrogen bromide (Matheson lecture bottle) was condensed in at ca. $-196^{\circ} \mathrm{C}$. The HBr was liquefied using a slush bath at ca. $-84^{\circ} \mathrm{C}$. (ethyl acetate) and $\mathrm{B} \mathrm{Br}_{3}$ ($6.20 \mathrm{~g} ; 0.025 \mathrm{~mol}$.) added. Evaporation of the colvent left a white solid (Found: $\mathrm{Br} ; 69.3$; Calc. for $\mathrm{Et}_{4} \mathrm{~N} \mathrm{~B} \mathrm{Br}_{4}: \mathrm{Br}, 69.4 \%$).
3.1.3.iii.
$\mathrm{Et}_{4} \mathrm{~N}^{+} \mathrm{PCl}_{6}^{-}$
In an early attempt to prepare $\mathrm{Et}_{4} \mathrm{~N}^{+} \mathrm{PCl}_{5} \mathrm{Br}^{-}$, a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of $\mathrm{Lt}_{4} \mathrm{~N} \mathrm{Br}$ was added to PCl_{5} also in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. A. white precipitate was formed. Total halogen analysis (expressed as mg. sample/ $\left.1 \mathrm{ml} \cdot 0.1 \mathrm{~N} \mathrm{ClgNO}_{3}\right)$, indicated the stoichiometry $\mathrm{Et}_{4} \mathrm{NPCl}_{6}$ (Found: 6.22; Calc for $\mathrm{Et}_{4} \mathrm{~N} \mathrm{PCl}_{6}$: 6.23; Calc for $\mathrm{Et}_{4} \mathrm{~N} \mathrm{PCl}_{5} 8 \mathrm{Br}$: $6.97 \mathrm{mg} \cdot \mathrm{ml} .^{-1}$). All the bands in the solid state Raman spectrum can be explained by the formulation $E t_{4} \mathrm{~N}^{+} \mathrm{PCl}_{6}{ }^{-}$.
3.1.3.iv. $\mathrm{PCl}_{4}^{+} \mathrm{BCl}_{4}^{-}$
$\mathrm{PCl}_{5}(10.60 \mathrm{~s}, 0.051 \mathrm{~mol}$) was dissolved, with stirring in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. To this $\mathrm{BCl}_{3}\left(6.97 \mathrm{~g}, 0.060 \mathrm{~mol}\right.$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added. The white precipitate, which formed imediately, was filtered and dried under vacuum. (Found: $\mathrm{P}, 9.5$; $\mathrm{B}, 3.4$; C1, 86.9 ; Calc. for P B Cl $8 ; \mathrm{P}, 9.5 ; \mathrm{B}, 3.3 ; \mathrm{Cl}, 87.2 \%$)
3.1.3.v. $\mathrm{Me}_{4} \mathrm{~N}^{+} \mathrm{BCl}_{4}{ }^{-}$
$\mathrm{Me}_{4}{\mathrm{~N} \mathrm{BCl}_{4}}$ was prepared according to the method of Waddington and Klanberg (114). $\mathrm{Me}_{4} \mathrm{~N}$ Cl was dried under vacuura at $40^{\circ} \mathrm{C}$. and a weighed amount ($4.20 \mathrm{g},. 0.038 \mathrm{~mol}$) placed in the reaction vessel. HC1 was condensed in and liquefied. BCl_{3}
($4.50 \mathrm{~g} ., 0.038 \mathrm{~mol}$.) was added and the excess solvent
evaporated. A white solid remained and was pumped for ca. 30 minutes.
(Found: $\mathrm{Cl}, 62.3$; Calc . for $\mathrm{Me}_{4} \mathrm{~N}_{\mathrm{SCl}}^{4}$; $\mathrm{Cl}, 62.5 \%$).
3.1.3.vi. Metastable PCl_{5}

The sublimation apparatus for the production of the metastable PCl_{5} is detailed in Figure 24. Normal PCl_{5} was crushed, placed in the apparatus at J, and sublimed at roon temperature onto the cold finger, K, (at ca. $-78^{\circ} \mathrm{C}$). Of the four attempts to prepare metastable PCl_{5} by sublination, only one was successful.

Preparation of metastable PCl_{5} by the addition of $\mathrm{Fr} \mathrm{r}_{2}$ to PCl_{5} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was found to be more successful and more convenient for the preparation of large amounts $\operatorname{Er}_{2}(3.0 \mathrm{~g} ., 0.019$ mol.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added to a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of PCl_{5} (4.2 g., 0.020 mol.). A white solid was precipitated out and was filtered and dried under vacuum (Found: C1, 84.2; Calc.for PCl_{5} : C1, 85.1\%).
3.1.3.vii. $\mathrm{PCl}_{4} \mathrm{~F}$

Initially, $\mathrm{PCl}_{2} \mathrm{~F}$ was prepared according to the method of Booth and Bozarth (116). $\mathrm{PCl}_{3}\left(87.9 \mathrm{~g} \cdot, 0.640 \mathrm{~mol}\right.$) and SbCl_{5} ($\sim 1 \mathrm{ml}$. catalyst) were refluxed at $40^{\circ} \mathrm{C}$. and 240 mi m. pressure. $\mathrm{SLF}_{3}(178.8 \mathrm{~g} ., 0.705 \mathrm{~mol}$.$) was added over a period of three hours$ and the gaseous products $\left(\mathrm{PF}_{3}, \mathrm{PClF}_{2}, P C 1_{2} \mathrm{~F}\right.$ and some PCl_{3}) collected in a trap at ca. $-196^{\circ} \mathrm{C}$. Purification was by low temperature vacuum fractionation. $\mathrm{PCl}_{2} \mathrm{~F}$ and PCl_{3} were retained by a $-125^{\circ} \mathrm{C}$. trap (nethylcyclohexane) and PCl_{3} was retained by a trap at $-96^{\circ} \mathrm{C}$. (tolvene).

$$
-85-
$$

FIGURE 24. Sublimation Apparatus for the Preparation of Metastable PCl_{5}.

Lxcess chlorine (as indicated by a green coloration) was added to $\mathrm{FCl}_{2} \mathrm{~F}$ at ca. $-78^{\circ} \mathrm{C}$. A white solid (Initial Product) and a larga amount of green liquid resulted. The white solid was isolated by pumping off the green liquid into a further trap at ca. $-190^{\circ} \mathrm{C}$. (Found: $\mathrm{Cl}, 77.9$; Calc for $\mathrm{PCl}_{4} \mathrm{~F}, 74.07$).

The green liquid was left at room temperature for 3 days and yielded a white solid (Final Product). (Found: P,16.0; $61,74.0$; F, 9.7; Calc for $\mathrm{PCl}_{4} \mathrm{~F}$; $\mathrm{P}, 16.1$; $\mathrm{Cl}, 74.0$; $\mathrm{F}, 9.9 \%$). Fluoride analyses on the hydrolysate indicated $3.8 \%, 4.2 \%$ and 3.0% F^{-}(Calc for $\mathrm{PCl}_{4}{ }^{+} \mathrm{F}^{-}$: 9.9%) .
3.1.3.viii. $\mathrm{PCl}_{3} \mathrm{Br}^{+} \mathrm{BCl}_{4}{ }^{-}$
$\mathrm{ECl}_{3},(3.70 \mathrm{~g} \cdot, 0.032 \mathrm{~mol}),. \mathrm{PCl}_{3}(3.89 \mathrm{~g} \cdot, 0.028 \mathrm{mol}$.$) and$ $\mathrm{Br}_{2}(4.00 \mathrm{~g} \cdot, 0.025 \mathrm{~mol}$.) , in that order, were added to liquid HCl at ca. $-96^{\circ} \mathrm{C}$. Evaporation of the solvent yielded a white solid. (Found: $\mathrm{P}, 8.2$; $\mathrm{C} 1,65.1$; $\mathrm{Br}, 20.9$; Calc for $\mathrm{PB} \mathrm{Cl} 7^{\mathrm{Br}}$; P, 8.4; Cl, 67.1-Br, 21.6\%, $P: C 1: B r=1.0: 7.0: 1.0)$.

3.1.3.ix. $\mathrm{PCl}_{3}{\xrightarrow{\mathrm{Br}^{+} \mathrm{PF}_{6}}{ }^{-} .}^{-}$

$\mathrm{HCl}_{3} \mathrm{PCl}_{3}(2.37 \mathrm{~g} \cdot, 0.017 \mathrm{~mol}$.$) and \mathrm{Br}_{2}(2.50 \mathrm{~g} \cdot, 0.016 \mathrm{~mol}$. were distilled under vacuum into a reaction vessel fitted with a teflon stopcock at $-196^{\circ} \mathrm{C}$. They were liquefied to give a clear solution using a $-96^{\circ} \mathrm{C}$. slush bath. PF_{5} was then distilled in under vacuum at $-196^{\circ} \mathrm{C}$.
PF_{5} was produced from p - chlorobenzene-diazonium hexafluorophosphate (Phosfluorogen A, Ozark-Mahoning Company). Phosfluorogen A ($\sim 12 \mathrm{~g}$) was dried by heating to $80^{\circ} \mathrm{C}$. and pumping. It was then heated to $150^{\circ} \mathrm{C}$. in an oil bath under vacuum and decomposed to give nitrogen, p - chlorofluorobenzene and $\mathrm{PF}_{5} \cdot \mathrm{P}-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{~F}$ and PF_{5} were trapped at $-196^{\circ} \mathrm{C}$. and then fractionally distilled through a $-78^{\circ} \mathrm{C}$. trap, which retained the $\mathrm{p}=\mathrm{Cl}_{6} \mathrm{H}_{4} \mathrm{~F}_{\text {. }}$

The teflon stopcock on the reaction vessel was then closed and the contents of the vessel liquefied using a $-96^{\circ} \mathrm{C}$. slush bath. The reaction vessel was detached from the vacuum line, fitted with a CaCl_{2} guard tube and with the stopcock open was allowed to warm to room temperature. The excess solvent evaporated leaving a white solid which was pumped for ca. 30 minutes. (Found: P, 16.5; Cl, 28.5; Br, 23.2; $\mathrm{F}, 30.3$; Calc for $\mathrm{P}_{2} \mathrm{Cl}_{3} \mathrm{Br} \mathrm{F}_{6}$; P, 17.1; C1, 29.4; Br, 22.1; F, 31.4\%).
3.1.3. X. $\mathrm{Et}_{4} \mathrm{~N}^{+} \mathrm{PF}_{6}^{-}$

Excess PF_{5}, generated from phosfluorogen A , was distilled into a reaction vessel, fitted with a teflon stopcock, containing HCl and $\mathrm{Et} 4_{4} \mathrm{~N} \mathrm{Br}$ at $-196^{\circ} \mathrm{C}$. With the stopcock closed, the whole was liquefied using a $-96^{\circ} \mathrm{C}$. slush bath. After detaching the reaction vessel from the vacuum line and fitting a CaCl_{2} guard tube, the stopcock was opened and the solvent allowed to evaporate. All the bands in the Raman spectrum are consistent with the formulation $\mathrm{Et}_{4} \mathrm{~N}^{4} \mathrm{PF}_{6}{ }^{-}$.
3.1.3.xi. $\quad{\underset{-2}{2}}^{C l} \underline{1}_{-9} \mathrm{Br}$
$\mathrm{Br}_{2}(19.20 \mathrm{g},. 0.120 \mathrm{~mol}$.$) was added to \mathrm{PCl}_{3}(33.00 \mathrm{g},. 0.240 \mathrm{~mol}$)
in As Cl_{3} (30 ml.) according to the method of Kolditz and
Feltz (74). The yellow precipitate resulting was filtered and
dried under vacuum (Found: C1, 69.6; Er, 17.3; Calc for
$\mathrm{P}_{2} \mathrm{Cl}_{9} \mathrm{Br} ; \mathrm{Cl}, 69.2$; $\mathrm{Br}, 17.37$).
3.1.3.xii. The Product (A) of an Unsuccessful $\mathrm{PCl}_{3} \mathrm{Br}^{+}{ }_{\mathrm{BCl}}^{4}{ }_{4}^{-}$Preparation $\mathrm{PCl}_{3}(6.76 \mathrm{~g} ., 0.049 \mathrm{~mol}),. \mathrm{Br}_{2}(7.47 \mathrm{g},. 0.047 \mathrm{~mol}$.$) and$ BCl_{3} ($6.50 \mathrm{g.}$,0.055 mol .), in that order, were added to liquid HC1 at $-96^{\circ} \mathrm{C}$. A white residue was left on evaporation of the solvent. (Found: C1, 54.2; Br, 35.6\%).
3.1.3.xili. The Product (B) from the Addition of Boron

Trichloride, Phosphorus Trichloride and Bromine in
Dichloromethane
A CH ${ }_{2} \mathrm{Cl}_{2}$ solution of $\mathrm{Er}_{2}(5.47 \mathrm{~g} ., 0.034$ mol. $)$ was added to a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of $\mathrm{BCl}_{3}\left(7.67 \mathrm{~g}, 0.065 \mathrm{~mol}\right.$) and PCl_{3} (7.35 mol., 0.054 mol.). The white precipitate was filtered and dried under vacuum. (Found: P, 8.9; C1, 47.7; Br, 41.6; B, 1.8\%,

P:CliBr:B = 1.7:7.9:3.0:1.0).
3.1.3.xiv. The Product (C) of a Reaction Similar to that for B
(3.1.3.xiii).

In this preparation, similar to that above, $\mathrm{BCl}_{3}(3.91 \mathrm{g},$. 0.033 mol .) was added to $\mathrm{PCl}_{3}(4.60 \mathrm{g},. 0.034 \mathrm{~mol}$.) and Br_{2} ($\left.5.23 \mathrm{~g} ., 0.033 \mathrm{~mol}.\right)$ all in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The resultant pale yellow precipitate was filtered and dried under vacuum. (Found: C1, 46.5; Br, 42.4; B, 1.9\%; calculating phosphorus by difference $=9.2 \pi, \mathrm{P}: \mathrm{C}: \mathrm{Br}: \mathrm{B}=1.7: 7.3: 2.9: 1.0$).

3.1.3.xv. $\mathrm{PCl}_{3}{ }^{\mathrm{Br}}{ }_{-6}$

a. Prepared by direct reaction of Br_{2} and $\mathrm{PCl}_{3}{ }^{-}$
Br_{2} ($27.00 \mathrm{~g} ., 0.169 \mathrm{~mol}$) was added to PCl_{3} ($35 \mathrm{g},. 0.255 \mathrm{~mol}$). Two layers were produced. The lower layer was cooled to ca. $-78^{\circ} \mathrm{C}$. and solidified. The upper layer, supernatant liquid, was decanted and the remaining solid sublimed using a water condenser, as cold finger, and a water pump. After 3 days, a large amount of red crystalline solid had collected in the condenser leaving a small amount of yellow powder. The solid-state Raman spectrum of the yellow powder indicated the compound $\mathrm{P}_{2} \mathrm{Cl}_{9} \mathrm{Br}$. (Found for red solid: $\mathrm{P}, 5.1 ; \mathrm{Cl}, 17.3 ; \mathrm{Br}, 75.9$; as bromide, 27.0, as free bromine, 48.9; Calc for $\mathrm{PCl}_{3} \mathrm{Br}_{6}$: $\mathrm{P}, 5.0$; $\mathrm{Cl}, 17.3$; Br, 77.7\%. Found for yellow powder: total halide expressed a mg. sample/1 ml. $0.1 \mathrm{~N} \quad \mathrm{AgNO}_{3}, 4.64$; Calc for $\mathrm{P}_{2} \mathrm{Cl}_{9} \mathrm{Br}: 4.61$ $\mathrm{mg} \cdot \mathrm{ml}^{-1}$).
b. Prepared by the addition of Br_{2} and PCl_{3} to 1 iquid HCl .
$\mathrm{Br}_{2}(2.43 \mathrm{E} ., 0.015 \mathrm{~mol}$.$) and \mathrm{PCl}_{3}(2.20 \mathrm{~g} ., 0.016 \mathrm{~mol}$.) were added to liquid HCl to give a clear solution. A further amount of $\mathrm{Br}_{2}(2.43 \mathrm{~g} ., 0.015 \mathrm{~mol}$.) was added and the solvent evaporated. The resultant red solid was pumped for ca. 15 minutes. (Found: P , 5.1; $\mathrm{Cl} 17.3 ; \mathrm{Br}, 75.9$, as bromide, 27.0, as free bromine, 48.9; Calc for $\mathrm{PCl}_{3} \mathrm{Br}_{6}$: $\mathrm{P}, 5.0 ; \mathrm{Cl}, 17.2$; $\mathrm{Br}, 77.72$).
3.1.3.xvi. $\quad \mathrm{PSbCl} \mathrm{yBr}_{3}$

The compound of stoichiometry $\mathrm{PSbCl}_{7} \mathrm{Br}_{3}$ was prepared according to the method of Duff (72).
PBr_{3} (2.8 g., 0.010 mol.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added to SbCl_{5} ($6.6 \mathrm{~g} ., 0.022 \mathrm{~mol}$.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The resultant pale yellow precipitate was filtered and dried under vacuum. (Found: P, 5.0; Sb, 19.9; C1, 39.0; Br, 36.0; Calc for $\mathrm{PSbCl}_{7} \mathrm{Br}_{3}$: P, 4.8; Sb, 19.0; C1, 38.8, Br, 37.4\%).
3.1.3.xvii. $\mathrm{Et}_{4}{ }^{\mathrm{N} ~ \mathrm{SbBr}_{6}}$

To a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of $\mathrm{SbBr}_{3}\left(4.15 \mathrm{~g} ., 0.012 \mathrm{~mol}\right.$.) and Br_{2} ($1.60 \mathrm{~g} ., 0.010 \mathrm{~mol}$) was added $\mathrm{Et}_{4} \mathrm{~N} \mathrm{Br}(2.07 \mathrm{~g} ., 0.010 \mathrm{~mol}$. in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. A deep red solid remained after filtration and drying under vacuum. (Found: $\mathrm{Br}, 64.9$; Calc. for $\mathrm{Et}_{4} \mathrm{~N} \mathrm{SbBr}_{6}$: $\mathrm{Br}, 65.6 \%$).
3.1.3.xviii. $\mathrm{Bu}_{4} \mathrm{NSSBr}_{6}\left(\mathrm{Bu}=\mathrm{C}_{4} \mathrm{H}_{9}\right)$
$\mathrm{Bu}_{4} \mathrm{~N} \mathrm{Br}$ (2.04 g., 0.006 mol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added to SbPr_{3} ($3.15 \mathrm{~g} \cdot, 0.009 \mathrm{~mol}$.$) and \mathrm{Br}_{2}\left(1.80 \mathrm{~g} \cdot, 0.011 \mathrm{~mol}\right.$.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

The resultant deep red precipitate was filtered and dried under vacuum. (Found: $\mathrm{Br}, 56.4$; Cale for $\mathrm{Bu}_{4} \mathrm{~N} \mathrm{SbBr}_{6}$, 56.8\%).
3.1.3.xviv. $\mathrm{Et}_{4} \mathrm{~N} \mathrm{SbCl}_{5} \mathrm{Br}$

To $\mathrm{Et}_{4} \mathrm{~N} \mathrm{Br}^{\mathrm{Br}}(4.77 \mathrm{~g}, 0.023 \mathrm{~mol}$.$) in \mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added SbCl_{5} ($6.80 \mathrm{~g} ., 0.023 \mathrm{~mol}$.) also in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. A yellow solid precipitated out and was filtered and dried under vacuum. (Found: $\mathrm{Sb}, 23.8$; $\mathrm{Cl}, 34.9$; $\mathrm{Br}, 15.7$; Calc for $\mathrm{Et}_{4} \mathrm{~N} \mathrm{SbCl}_{5} \mathrm{Br}^{\mathrm{Sb}} \mathrm{Sb}, 23.9$; $\mathrm{Cl}, 34.8$; Br, 15.7\%).
3.1.3.xx. $\mathrm{PSbCl}_{9} \mathrm{Br}$
Br_{2} (4.65 g., $\left.0.029 \mathrm{mol}.\right), \mathrm{PCl}_{3}(3.93 \mathrm{gog} 0.029 \mathrm{mol}$.$) and$ $\mathrm{SbCl}_{5}(8.65 \mathrm{~g} ., 0.029 \mathrm{~mol}$.) were added to 11quid HCl. Evaporation of the solvent left a yellow solid. (Found: $P, 5.4 ; \mathrm{Sb}, 22.4$; $\mathrm{Cl}, 57.6$; $\mathrm{Br}, 14.8$; Calc for $\mathrm{PSbCl}_{9} \mathrm{Br}: \mathrm{P}, 5.6 ; \mathrm{Sb}, 22.1$; C1, 57.8; Br, 14.5\%).
3.1.3.xxi. $\mathrm{Et}_{4} \mathrm{~N} \mathrm{SbCl}_{4} \mathrm{Br}_{2}: \mathrm{Et}_{4} \mathrm{~N} \mathrm{SbCl}_{3} \mathrm{Br}_{2}$ and $\mathrm{Et}_{4}^{\mathrm{N}} \mathrm{SbBr}_{5} \mathrm{Cl}$ The appropriate tetraethylammonium hallde in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added to bromine and the appropriate antimony trihalide. The resulting solids were filtered and dried under vacum. Results are
sumarised below:
$\mathrm{SbCl}_{3}(2.50 \mathrm{~g} \cdot, 0.011 \mathrm{~mol})+.\mathrm{Br}_{2}(2.0 \mathrm{~g} \cdot, 0.013 \mathrm{~mol}$.
$+\mathrm{Et}_{4} \mathrm{NCl}(1.47 \mathrm{go}, 0.009 \mathrm{~mol})-.\mathrm{Et}_{4} \mathrm{~N} \mathrm{SbCl}_{4} \mathrm{Br}_{2}$ - a yellow/ orange solid. (Found: Cl, 25.8; Br, 29.0; Calc. for $\mathrm{Et}_{4} \mathrm{~N} \mathrm{SbCl}_{4} \mathrm{Br}_{2} ; \mathrm{Cl}_{2} 25.6 ; \mathrm{Br}, 28.9 \%$).
$\mathrm{SbCl}_{3}(2.93 \mathrm{~g} \cdot, 0.013 \mathrm{~mol})+\mathrm{Br}_{2}(2.07 \mathrm{~g} \cdot .0 .013 \mathrm{~mol}$.
$+\mathrm{Et}_{4} \mathrm{~N} \mathrm{Br}(2.68 \mathrm{~g}, 0.013 \mathrm{~mol})-\mathrm{Et}_{4} \mathrm{~N} \mathrm{SbCl}_{3} \mathrm{Br}_{3}-$ an orange
 $\mathrm{Cl}, 17.8$; $\mathrm{Br}, 40.17$).
$\mathrm{SbBr}_{3}(4.05 \mathrm{~g} \cdot, 0.011 \mathrm{~mol})+.\mathrm{Br}_{2}(2.10,0.013 \mathrm{~mol}$.
$+E t_{4} \mathrm{~N} \mathrm{Cl}^{(1.42 \mathrm{~g}, 0.009 \mathrm{~mol})}-\mathrm{Et}_{4} \mathrm{~N} \mathrm{Sb} \mathrm{Br}_{5} \mathrm{Cl}$ - brick red solid. (Found: C1, 5.1; Br, 57.3; Calc for $E t_{4} \mathrm{~N} \mathrm{SbBr}_{5} \mathrm{Cl}$; $\mathrm{Cl}, 5.2$; $\mathrm{Br}, 58.2 \%$.

3.1.4. Handling

With very few exceptions, reagents used and compounds prepared In this work were hygroscopic. Consequently, the transfer of reagents and compounds and the preparation of samples for infrared and Raman epectroscopy and elemental analysis was carried out in a glove box under an atmosphere of dry nitrogen. Compounds prepared were transferred from reaction flasks to glass sample tubes with polythene caps, sealed with "parafilm" (Callenkamp) and stored in sealed glass jars lined with CaCl_{2} at ca. $4^{\circ} \mathrm{C}$.

3.2. ELEMENTAL ANALYSIS

3.2.1. Chlorine and Bromine

Weighed samples ($\sim 100 \mathrm{mg}$.) were hydrolysed in dilute alkaline solution in stoppered flasks. Total halide(chloride and bromide) and chloride ware determined by the Volhard method and bromide found by difference. Two samples were used for each determination.

Chloride was determined after the removal of bromide by oxidation to bromine (with KIO_{3} in acid solution) and boiling, according to the method of Andrews (117). The sample, calculated to contain 10-50 mg. of chloride was hydrolysed (in $50 \mathrm{ml} .0 . \mathrm{IN} \mathrm{NaOH}$) in a 500 ml . long-necked ($\sim 15 \mathrm{~cm}$) flask. Initially, 6 ml . of $0.2 \mathrm{~N} \mathrm{R}_{3}$ and 17 ml . of $2 \mathrm{NHNO}_{3}$ were added. Then for each gram of bromine expected 75 ml . of iodate solution and 7.5 ml . of nitric acid were added. The volume was made up to 250 ml . with distilled water and boiled down to a volume of $90 \mathrm{ml} . \quad 100 \mathrm{ml}$. of distilled water were then added and the solution boiled down again to 90 ml . The process was repeated until no more bromine was detected by testing the vapour with starch-iodide paper. While the solution was still hot, 1.5 ml . of 257 phosphorous acid was added to remove excess lodate. The solution was then boiled to remove fodine, keeping the volume above 90 ml . It was then cooled and chloride determined.

For compounds containing antimony, samples were digested in IN NaOH ($\sim 50 \mathrm{ml}$) and refluxed for 2 hours, before determination of halide by the Volhard method. This was found necessary when
determination of halide in standard compounds gave low answers indicating incomplete hydrolysis.

Free bromine (in $\mathrm{PCl}_{3} \mathrm{Br}_{6}$, Section 1.2.4.i.) was determined by the addition of KI in acid solution followed by titration of the iodine released against 0.1 N throsulphate solution using starch as indicator.

3.2.2. Boron

Boron was determined acidimetrically as the boric acid mannitol complex. Samples were hydrolysed in a mixture of methanol and water (90 ml . $\mathrm{MeOH} / 10 \mathrm{ml} \cdot \mathrm{H}_{2} \mathrm{O}$). A trace of concentrated sulphuric acid was added and the mathyl borate distilled into water. The solution was then titrate to a methyl-orange end point. Excess mannitol was then added, (which forms a boric acid-mannitol complex) followed by titration against 0.1 N NaOH using phenolphthalein.

3.2.3. Fluoride

A fluoride electrode (Model 96-09, Orion Research Inc., U.S.A.) In conjunction with a specific ion meter (Model 401, Orion Research Inc.) was used for analysis of fluoride. Samples of the compound of stoichiometry $\mathrm{PCl}_{4}{ }^{\mathrm{F}}(\sim 400 \mathrm{mg}$) were hydrolysed in 10 ml .0 .1 N NaOH . This was then made up to 25 ml .5 ml . samples of the above solution and two standard fluoride solutions
(0.01 M and 0.001 M KF) were diluted $10: 1$ with a 4 M buffered potassiun acetate solution of pH 5 and fluoride ion concentration determined.

Phosphorus and antimony were determined at a commercial laboratory elsewhere (Alfred Bernhardt, Mikroanalytisches Laboratorium, West Germany).
3.3. SPECTRA
3.3.1. Solid-State Raman Spectra

Solid-state Raman spectra were recorded with the following
four instruments:-

1) Cary 81 spectrometer with either a Spectra-Physics Model 125 He-Ne Laser with excitation at $6328 \AA$ (red) or a Coherent Radiation Laboratories Model 52K mixed Kr -Ar Laser with excitation at $6471 \AA^{\circ}\left(\mathrm{Rr}^{+}\right)$(red).
2) Spex 1401 spectroneter with excitation at $6471 \AA \AA^{\circ}$ (red) provided by a Coherent Radiation Laboratories Hodel 52 ionised Kr Laser.
3) Coderg PHO spectrometer with a Spectra-Physics Model Model 125 He-Ne Laser with excitation at $6323{ }^{\circ}$ (red).
4) Jarrell-Ash (25-500) Laser Raman Spectrometer with excitation at $5145 \AA$ (green) and $4880 \AA$ (blue).

Samples were made up in sealed melting-point tubes. For the Cary 81 instrument, melting-point tubes with one end flattened were used.

3.3.2. Solid-State Infrared Spectra

Solid-state infrared spectra in the region 1000 to $200 \mathrm{~cm}^{-1}$ were recorded, using a Perkin-Elmer Model 325 Grating Infrared Spectroneter. Spectra below $200 \mathrm{~cm}^{-1}$ were recorded with the aid of a Grubb-Parsons "Cube" Interferometer. Samples were prepared as Nujol mulls pressed between Csl plates for the region $1000-200 \mathrm{~cm}^{-1}$ and polythenes plate below $200 \mathrm{cin}^{-1}$.

3.4. DIFELKLNTIAL SCANNING CALORINETEX

Details concerning the operation and capabilifies of differential scanning calorimetry have been reported extensively elsewhere (e.g. 118, 119). In this work, the output was displayed on a chart recorder and typical themotrams are shown in Fisures 3 and 20. The areas of the peaks obtained for milligram quantitits of sample are directly proportional to transition enthalpies for the sample Calibration uaing standard samples allowed the absolute magnitudes of these enthalpies to be determiaed.

A Perkin-Elmer D.s.C. - 18 calorimeter with a Leeds and Northrup Speedomax recorder was used. Peak areas were measured using a planiweter. Three readings were taken and averaged arithinetically. The instrument was calibrated using benzoic acid (british Chemical Standards, $\Delta \mathrm{H}_{\text {fus }}^{0}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2} \mathrm{H}\right.$, cryst. $)=17.19 \mathrm{~kJ}$ nole $\left.\mathrm{e}^{-1}, 120\right)$. The benzoic acid calibration was checked with another standard $\mathrm{Na}_{4} \mathrm{NO}_{3}\left(\Delta \mathrm{H}_{\mathrm{fus}}^{\mathrm{O}}\left(\mathrm{NH}_{4} \mathrm{NO}_{3}\right.\right.$, cryst) $=6.39 \mathrm{~kJ}$ mole $\left.{ }^{-1}, 121\right)$. Two separate determinations are detailed below:

```
Benzoic Acid
Saiaple (âB)
    1.00
    1.14
        \(\Delta H_{\text {fus }}\left(\mathrm{NiH}_{4} \mathrm{NO}_{3}\right.\), cryst)
    found (kJ aole \({ }^{-1}\) )
    \(6.45 \pm 0.05\)
    \(6.32 \pm 0.12\)
```

Answers are correct to within 1% of the literature value (6.39 kJ mole ${ }^{-1}$, 121).

Samples and standards were run under identical conditions; i.e. chart speed, sensitivity and rate of temperature increase. Samples were
sealed in shallow aluminiun pans under dry-box conditions and weights of samples cleterwined by difference using a Cann electrobalance ($\sim 150.00-1.00 \mathrm{me}$) . Total weights (sample + pan) were deteruined after eacin run to check for loss of sample. Enpty sample pans were used as references.

$$
\begin{aligned}
& \text { Eumber of } \\
& \text { Fundamental }
\end{aligned}
$$

$$
\infty
$$

APPENDIX A. Vibrational Representation for Tetrahedral Species
Modes Active Infrared
N
N
N
$6\left(3 a_{1}+3 e\right)$

$$
8\left(4 a_{1}+2 b_{1}\right.
$$

$$
\begin{aligned}
& \text { lumber of } \\
& \text { Rainan }
\end{aligned}+\left(a_{1}+e+2 t_{2}\right) \quad l
$$

$6\left(3 a_{1}+3 e\right)$

$$
\begin{aligned}
& 9\left(4 a_{1}+a_{2}\right. \\
& \left.+2 b_{1}+2 b_{2}\right)
\end{aligned}
$$ Fundamental Frequencies \qquad \bullet

a Foint Group
\vec{F}
v^{m} $\stackrel{\rightharpoonup}{3}$

 Ion or MX_{4} $\mathrm{Si}_{3} \mathrm{Y}$

Non

Vibrational Representations for Some 6-Coordinate Species

Distribution of Modes
Deformations
$t_{1 u}+t_{2 g}+t_{2 u}$
$a_{1}+b_{1}+b_{2}+3 e$
$3 a_{1}+2 a_{2}+2 b_{1}+2 b_{2}$

(My)

(ix)

so touanbaly
Tequruepunf
\bullet
\rightleftharpoons
$2 a_{1}+b_{1}+b_{2} a_{1}+b_{1}$
$\xrightarrow[+100]{\substack{20}}$
0^{-4}
$\stackrel{4}{+}$
$\stackrel{3}{+\infty}$

0
ω^{3}
0^{2}
a
Ion or
Molecule
0°
$\mathrm{MX}_{5} \mathrm{Y}$
$\mathrm{HX}_{4} \mathrm{Y}_{2}$
(cis)
$\underset{\text { (trans) }}{\mathrm{MX}_{4} \mathrm{Y}_{2}}$

APPEINDIX C

NOTES

Preparation* :- The order of addition is indicated in the following way; eg.. $\mathrm{PCl}_{3}+\mathrm{ECl}_{3}+\mathrm{Br}_{2}$ the order of addition is 1) PCl_{3}; 2) BCl_{3}, 3) Br_{2} also eg. (for reactions in dichloromethane only) PCl_{3} + $\left\{\mathrm{BCl}_{3}+\mathrm{Br}_{2}\right\}$ means that to a solution of PCl_{3} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, a solution of BCl_{3} and Er_{2} was added.

Analysis:- Analysis figures are in percentages and in atonic ratio e8. for $\mathrm{PCl}_{3} \mathrm{Br}^{+} \mathrm{BCl}_{4}^{-}$: $\mathrm{P}, 8.4 ; \mathrm{Cl}, 67.1 ; \mathrm{Br}, 21.6 ; \mathrm{B}, 3.9 \%$.

Raman Spectra":- The termis "halide" and "polyatomic" refer to the bands assigned to the mixed chloro-bromo phosphonium ions $\left(\mathrm{PCl}_{3} \mathrm{Br}^{+}, \mathrm{PCl}_{2} \mathrm{Br}_{2}{ }^{+}\right.$and $\left.\mathrm{PBr}_{3} \mathrm{Cl}^{+}\right)$in the Raman spectrum and whether they are characteristic of these ions in the presence of either (i) single halide ions or (ii) polyatomic anions. A convenient way of "describing" the Raman spectra is in terms of the relative intensities (on scale 0-10) of the totally symmetric (a_{1}) stretching bands (below):

* reference numbers (eg. $104 / 100$ and 33) refer to page numbers in notebook/roughbook and Raman spectrum file number.
APPESDIX C. (1) The Reaction of Phosphorus Triciloride, Browine

PREPARATION ANALYSIS
SPECTRA (RAMAH)

preparation	AnALYSIS	SPECTRA (Ramai)
($115 / 142$) $\mathrm{BCl}_{3}(7.67 \mathrm{~g} ., 0.065$ mol.) $+{ }^{+} \mathrm{PCl}_{3}(7.35 \mathrm{~g} ., 0.054 \mathrm{~mol}$. $+\mathrm{Br}_{2}$ ($5.47 \mathrm{~g} ., 0.034 \mathrm{~mol}$.)	$\begin{aligned} & : P, 8.9 ; C 1,47.7 ; B r, 41.6 ; \mathrm{B}, 1.87 \\ & \text { P:C1:Br:B }=1.7: 7.9: 3.0: 1.0 \end{aligned}$	(Q3) halide only 376:324:279 $=10: 1: 0$
$\begin{aligned} & (116 / 145) \mathrm{Er}_{2}(14.63 \mathrm{~g} ., 0.091 \mathrm{~mol} .) \\ & +\left\{\mathrm{BCl}_{3}(10.22 \mathrm{~g} ., 0.087 \mathrm{~mol} .)\right. \\ & \left.+\mathrm{PCl}_{3}(10.61 \mathrm{~g} ., 0.077 \mathrm{~mol} .)\right\} \end{aligned}$	$\begin{aligned} & : \mathrm{C1}, 46.0 ; \mathrm{Br}, 43.9 \% \\ & \mathrm{C1}: \mathrm{Br}=2.4: 1.0 \end{aligned}$	(P3) halideonly $375: 328: 280=10: 10: 5$
$\begin{aligned} & (117 / 148) \mathrm{ECl}_{3}(4.07 \mathrm{~g}, 0.035 \mathrm{~mol}) \\ & +\mathrm{PCl}_{3}(4.28 \mathrm{~g} ., 0.031 \mathrm{~mol} .) \\ & +\mathrm{Er}_{2}(\sim 0.5 \mathrm{~g} ., 0.003 \mathrm{~mol} .) \end{aligned}$	$\begin{aligned} & : \mathrm{Cl}, 59.2 ; \mathrm{Er}, 29.92 \\ & \mathrm{C} 1: \mathrm{Br}=4.5: 1 \end{aligned}$	(T3) predoninantly polgatomic $392: 343: 300=10: 1: 0$
$\begin{aligned} & (121 / 155) \mathrm{PCl}_{3}(7.59 \mathrm{~g} ., 0.055 \text { mil. }) \\ & +\mathrm{BC1}_{3}(7.53 \mathrm{~g} ., 0.064 \mathrm{~mol} .) \\ & +\mathrm{Br}_{2}(4.31 \mathrm{~g} ., 0.027 \mathrm{~mol} .) \end{aligned}$	$\begin{aligned} & : \mathrm{Cl}, 47.6 \% ; \mathrm{Br}, 43.9 \% \\ & \mathrm{C} 1: \mathrm{Br}=2.4: 1.0 \end{aligned}$	(vi3) balide only $376: 327: 280=10: 3: 1$

PREPARATION ANALYSIS
SPECTRA (RAMAS)
(C4)
$376: 32$

PREPARATION ANALYSIS	SPECTRA (RAMAN)
$\begin{array}{ll} (142 / 217) \mathrm{ECl}_{3}(12.1 \mathrm{~g} ., 0.103 \mathrm{~mol}) & : \mathrm{Cl}, 47.1 ; \mathrm{Br}, 33.4 \overline{2} \\ +\mathrm{PCl}_{3}(14.0 \mathrm{~g} ., 0.102 \text { mol. }) & \mathrm{C}: \mathrm{Br}=3.2: 1.0 \\ +\mathrm{Br}_{2}(12.1 \mathrm{~g} ., 0.076 \text { mol. }) & \end{array}$	(F5) halide only 376:325:280 $=10: 10: 5$
```(146/227) ECl (8.79 g., 0.075 mol.) :P, 8.7; C1, 46.9; Br, 41.8; + PC1 3 (9.19 g., 0.067 mo1.) B, 1.7% + Br 2 (7.12 g., 0.045 mol.) P: C1: Br:B = 1.8:8.4:3.3:1.0 reaction vessel cooled to -50 % and stirred using a glass stirrer.```	(P5) halide only   375:324:280 $=10: 1: 0$
$\begin{aligned} & (151 / 8 \mathrm{~A}) \mathrm{BCl}_{3}(10.00 \mathrm{~g} ., 0.085 \mathrm{~mol} .) \quad: \mathrm{Cl}, 48.5 ; \mathrm{Br}, 40.5 \% \\ & +\mathrm{PCl}_{3}(10.15 \mathrm{~g} ., 0.074 \mathrm{~mol}) \quad \mathrm{C}: \mathrm{Br}=2.7: 1.0 \\ & +\mathrm{Br}_{2}(8.04 \mathrm{~g} ., 0.050 \mathrm{~mol} .) \\ & \text { reaction vessel cooled to }-50^{\circ} \mathrm{C} . \\ & \text { and reaction stirred using a glass } \\ & \text { stirrer. } \end{aligned}$	(25) halide only   $376: 328: 282=10: 3: 1$

SPECTRA (RAMAN)
(AO) halide only
$376: 328: 282=10: 8: 3$

ANALYSIS
$: C 1,47.3 ; \mathrm{Er}, 43.2 \%$
$\mathrm{Cl}: \mathrm{Br}=2.5: 1.0$ PKEPARATION
$\left(152 / 1 \mathrm{~B} \mathrm{BCl}_{3}(10.11 \mathrm{g.},, 0.086 \mathrm{~mol})\right.$.
$+\mathrm{PC1}_{3}$ ( $9.98 \mathrm{g},. 0.673 \mathrm{~mol}$ ) $+\mathrm{Br}_{2}(3.07 \mathrm{~g}, 0.050 \mathrm{~mol}$. as above $(151 / 8 \mathrm{~A})$ but using a
plastic stirrer.
APPENDIX C. (2) The Reaction of Phosphorus Trichloride, Bromine and

Preparation	ANALYSIS	SPECTRA (RAiAsi )
(2/-) $\mathrm{BCl}_{3}(25.00 \mathrm{~g} ., 0.213 \mathrm{~mol}$.	-	(X) prelocinantly halide
+ $\mathrm{PCl}_{3}$ (20.00 g., 0.145 mol.$\left.\right)$		375:328:284 $=3: 7: 10$
$+\mathrm{Br}_{2}(24.00 \mathrm{~g} \cdot, 0.150 \mathrm{~mol} .)$		
$\longrightarrow$ yellow/red solid.		
(2/-) above sublimed.	-	sublinate precuminantly
- crushed and sublimed for		polyatomic
3 hours with cardice/acetone		391:346:301 = 10:10:6
refrigerant.		residue balide only
		374:328:282 $=7: 10: 9$
(7/51) $\mathrm{Pr}_{2}(3.09 \mathrm{g.,0.019} \mathrm{mol)}$.	P, 8.2; $\mathrm{Cl}, 65.1 ; \mathrm{Er}, 20.9 \%$	(N) polyatouic only
+ $\mathrm{PCl}_{3}$ (3.21 g.,0.023 miol.)	$\mathrm{P}: \mathrm{Cl}: \mathrm{Br}=1.0: 7.0: 1$	394:347:301 = 10:1:0
+ $\mathrm{BCl}_{3}$ ( $15.00 \mathrm{g.}$,0.128 mol.)		
$\longrightarrow$ a white solid.		

FREPARATION

$(95 / 71) \mathrm{Br}_{2}(9.96 \mathrm{~g} \cdot, 0.062 \mathrm{~mol} .)$	expressed in dig. sample/1 mi. 0.1.	(2.2) predominantly polyatoric
$+\mathrm{PCl}_{3}(7.60 \mathrm{~g} ., 0.055 \mathrm{~mol} .)$	$\mathrm{A}_{8} \mathrm{NO}_{3}($ Total Halide) $=4.96$	390:343:293-10:9:5
$+\mathrm{BCl}_{3}(6.50 \mathrm{~g} \cdot .0 .055 \mathrm{nol}$.	(Calc.for $\mathrm{PBC1}_{7} \mathrm{Br}, 4.62$ )	
(96/84) $\mathrm{PCl}_{3}$ ( 5.23 g .90 .038 mol )	$\sim$	(Y2) folgatonic only
$+\mathrm{Er} 2(6.35 \mathrm{~g} \cdot, 0.035 \mathrm{mol}$.		$390: 344: 301=10: 3: 0$
$4 \mathrm{BC1}_{3}(5.00 \mathrm{E}, 0.042 \mathrm{~mol}$. $)$		


(109/116) $\mathrm{PCL}_{3}(3.42 \mathrm{~g}, 0.025 \mathrm{~mol}$.)	: C1, 55.7; Er, 38.5\%	(F3) predonimantly halide
$+\mathrm{Er}_{2}(3.85 \mathrm{ge} .0.024 \mathrm{mol}$.	$\mathrm{Cl}: \mathrm{Br}=3.2: 1$	374:329:282-4:10:8
$+\mathrm{ECl}_{3}(3.49 \mathrm{g.} 0.030 mol.$,		
(110/117) $\mathrm{ECl}_{3}(3.70 \mathrm{ge}, 0.032 \mathrm{~mol}$ )	-	(G3) polyatomic only
$+\mathrm{PCl}_{3}(3.89 \mathrm{~g} \cdot, 0.028$ mol.)		391:346:300 = 10:1:0
$+\mathrm{Br}_{2}(4.00 \mathrm{~g} \cdot, 0.025 \mathrm{nmol}$ )		


preparation	ANALYSIS	SPECTRA (RAAAN)
$\begin{aligned} & (114 / 138) \mathrm{PCl}_{3}(6.50 \mathrm{~g} ., 0.047 \mathrm{~mol} .) \\ & +\mathrm{EC1}_{3}(\mathrm{~B} .20 \mathrm{~g} ., 0.053 \mathrm{~mol} .) \\ & +\mathrm{ER}_{2}(7.63 \mathrm{~g} ., 0.47 \mathrm{~mol} .) \end{aligned}$	expressing mg. sauple/1 nil   $0.1 \mathrm{~N} \mathrm{AgHO}_{3}($ Total Halide $)=467$   (calc.for $\mathrm{PBCl}_{7} \mathrm{Br}, 4.62$ )	(K3) polyatomic only $392: 345: 300=10: 1: 0$
$\begin{aligned} &(11 \mathrm{I} / 151) \mathrm{PC1}_{3}(8.82 \mathrm{~g} ., 0.064 \mathrm{~mol} .) \\ &+\mathrm{Br}_{e}(10.37 \mathrm{~g} ., 0.065 \mathrm{~mol} .) \\ &+\mathrm{EC1}_{3}(8.72 \mathrm{~g} ., 0.074 \mathrm{~mol} .) \end{aligned}$	$\begin{gathered} : \mathrm{Cl}, 65.07 ; \mathrm{Er}, 24.72 \\ \mathrm{C} 1: \mathrm{Br}=5.8: 1.0 \end{gathered}$	(c3) polyatowic only $352: 340: 302=10: 3: 0$
$\begin{aligned} & (127 / 170) \mathrm{PCl}_{3}(6.76 \mathrm{~g} ., 0.049 \mathrm{~mol} .) \\ & +\mathrm{Hr}_{2}(7.47 \mathrm{~g} ., 0.047 \mathrm{mol.}) \end{aligned}$   pumped for 12 hours.	$\begin{aligned} & : \mathrm{Cl}, 54.2 ; \mathrm{gr}, 35.6 \% \\ & \mathrm{C} 1: \mathrm{Br}=3.4: 1.0 \end{aligned}$	(F4) Folyatomic only $388: 342: 297=8: 10: 8$

APPENDIX C. (3) Reaction of Phosphorus Trichloride, Browine and Borcn Tribromide in Dichloromethane
$\frac{\text { SPECTRA (IAMABI) }}{\text { (J1) halide only }}$
$376: 330: 286=0: 3: 10$

PREPARATION ANALYSIS
( $138 / 206$ ) $\mathrm{PCI}_{3}(4.70 \mathrm{~g} \cdot, 0.034 \mathrm{~mol}$.
$+\mathrm{EBr}_{3}$ ( $3.2 \mathrm{~g} ., 0.033 \mathrm{~mol}$.)
$+\mathrm{Br}_{2}(5.6 \mathrm{~g} ., 0.035 \mathrm{~mol}$.
$\longrightarrow$ yellow solid.

$(139 / 208) \mathrm{PCl}_{3}(3.5 \mathrm{~g} ., 0.026 \mathrm{~mol})$.	$: \mathrm{Cl}, 16.4 ; \mathrm{Er}, 74.8 \%$	(A5) polyatomic only
$+\mathrm{BBr}_{3}(7.15 \mathrm{~g} ., 0.029 \mathrm{~mol})$	$\mathrm{Cl}: \mathrm{Br}=1.0: 2.0$	$390: 340: 299=9: 10: 6$
$+\mathrm{Br}_{2}(2.7 \mathrm{~g} ., 0.17 \mathrm{mol})$.		Spectrumindicates $\mathrm{EEr}_{4}^{-}$
$\longrightarrow$ white powder	anion (bands at $242,118 \mathrm{cra}^{-1}$ )	

APPENDIX C. (4) Reaction of Phosphorus Trichloride, Bromine, and
Boron Tribromide in Liquid Hydrogen Chloride
(P1) unpumped - predo
(P1) $\frac{\text { unpumped }}{\text { halide. }}$ - predominantly
$374: 329: 280=9: 10: 8$
(Q1) pumped for 24 hours.predominantly polyatomic
$390: 348: 302=10: 10: 4$
-
PREPARATION
$(138 / 205) \mathrm{BBr}_{3}(9.02 \mathrm{~g} ., 0.036 \mathrm{~mol}$.
$+\mathrm{PCl}_{3}(4.4 \mathrm{~g} ., 0.032 \mathrm{~mol}$.
$+\mathrm{Br}_{2}(5.1 \mathrm{~g} ., 0.032 \mathrm{~mol})$

## RHFERENCES

1. Van Wazer, J.R., "Phosphorus and It's Compounds", Interscience, New York, 1958, 1.
2. George, J.W., Prog.Inory.Caem., 1950, 2, 33.
3. Payne, D.S., Quart.Rev., 1961, 15, 173.
4. Holmes, R.R., J.Chem.Educ., 1963, 40, 125.
5. Kolditz, L., Adv. Inorg. Chem. Radiochem., 1965, 7, 1.
6. Webster, M., Chem.Rev., 1966, 87.
7. Payne, D.S., "Topics in Phosphorus Chewistry", Interscience, New York, 1967, 4, 85.
8. Beattie, I.R., and Ozin, G.A., J.Chem.Soc. (A), 1969, 1691.
9. Kennedy, T., Payne, D.S., Reed, R.I., and Sneddon, W., Proc.Chem. Soc., 1959, 133.
10. Rouault, M. , Compt. Rend., 1938, 207, 620.
11. Kouault, M., Ann.Phys., 1940, 14, 78.
12. Schonaker and Sargent., private commnication quoted by Stevenson, D.P., and Yost, D. Di., J.Chem. Phys., 1941, 9, 403.
13. Wilmshurst, J.R., and Eerustein, H.J., J.Chem. Phys., 1957, 27, 561.
14. Moureu, H., Nagat, M., and Wetroff, G., Compt.Rend., 1937, 205, 276.
15. Noureu, H., Magat, Ni., and Wetroff, G., Chem,Abstr., 1939, 33, 4873.
16. Powell, H.M., Clark, D., and Wells, A.F., Nature, 1940, 149.
17. Clark, D., Powell, H.M., and Wells, A.F., J.Chem.Suc., 1942, 642.
18. Gerding, H., and Houtgraaf, H., Rec.Trav.Chim., 1955, 74, 5.
19. Carlson, G.L., Spec.Acta., 1963, 19, 1291.
20. Livingston, K., and Ozin, G.A., J.Chem.Soc. (A)., 1969, 2840.
21. Andrew, E.R., Bradbury, A., Eades, R.G., and Jenks, G.J., Nature, 1960, 188, 1096.
22. Andrew, E.R., and Eades, R.G., Discussions Paraday Soc., 1962, 34, 38.
23. Wieker, W., and Grimwer, A.K., 2.Naturforsch., 1966, 21, 1103.
24. Kesavedas, T., and Payne, D.S., unpublished results quoted in reference 7.
25. Yopov., A.I., Geske, L.H., and Eaenziger, N.C., J.Am.Chem. Soc. 1956, 78, 1793.
26. Baung aertner, R., Sawodny, W., and Goubeau, J., 2.Anorg, Allgen. Chem., 1964, 333, 171.
27. Shore, S.G., and Knache1, H., private comunication.
28. Martin, D.R., J.Phys.Colloid. Chem., 1947, 51, 1400.
29. Groeneveld, W.L., and Zuur, A.P., Rec.Trav.Chim., 1953, 72, 617.
30. Vickery, R.C., Nature, 1959, 184, 268.
31. Greenwood, N.N., Wade, K., and Perkins, P.G., Chem.Abstr., 1960, 54, 9582.
32. Waddington, T.C., and Klanberg, F., J.Chem.Soc., 1960, 2339.
33. Holnes, R.R., Inorg.Nucl.Chem., 1960, 14, 179.
34. Holmes, R.R., Inorg. Synth., 1963, 7, 79.
35. Fetro, V.F., and Shore, S.G., J.Chem.Soc., 1904, 336.
36. Cal'Chenko, G.L., Tinofeev., B.I., Gedakyan, D.A., Grinberg, Ya.Kh., and liedvecieva, Z.S., Chem.Abstr., 1966, 65, 19367a.
37. Gerding, H., and Duioker, J.C., Kav.Chiw.Minerale, 1966, 3, 815.
38. Cronander, A.w., Ber., 1873, 6. 1466.
39. Beatrie. I.R., and Webster, M., J.Chem.Soc., 1963, 38.
40. Groeneveld, W.L., Rec.Trav.Chin., 1952, 71, 1152.
41. Groeneveld, W.L., Rec.Trav.Chim., 1956, 75, 594.
42. Fialkov, Ya.A., and Bur'yanov, Ya.B., Chem.Abstr., 1960, 54, 16249.
43. Ealard. A.J., Ann.Chim.Phys., 1826, 32, 337.
44. Harris, G.S., and Payne, D.S., J.Chem.Soo., 1958, 3732.
45. Powell, H.M., and Clark, D., Nature, 1940, 971.
46. Van Driel, M., and MacGillavry, C.H., Rec.Trav.Chim., 1943, 62, 167.
47. Gabes, W., and Olie, K., Acta.Crystallogr., (B), 1970, 26, 443.
48. Gerding, H., and Nobe1, P.C., Rec.Trav.Chim., 1958, 77, 472.
49. Litamelincourt, $\mathbb{R}_{0}$, and Crunelle-Cras. M., Bull.Soc.Chia.Fr., 1970, 2470.
50. Tarible, M., Compt.Rend., 1893, 116, 1521.
51. Waddington, T.C., and White, J.A., J.Chem.Soc., 1963, 2701.
52. Schrutzer, R., Adv. Fluor.Chem., 1965, 5, 31.
53. Holmes, R.R., and Gallagher, W.P., Inorg.Chem., 1963, 2, 433.
54. Lioliaes, R.R., Carter, R.P., and Peterson, G.E., Inorg.Chem., 1964, 3, 1748.
55. Griffiths, J.E., Carter, R.P., and Holmes, R.R., J.Chem.Phys., 1954, 41, 863.
56. Carter, R.P., and Holmes, R.R., Inorg.Chem., 1965, 4, 738.
57. Holmes, R.R., J.Chem.Phys., 1967, 46, 3718.
58. Brockwey, L.O., and Beach, J.Y., J.Am.Chem.Soc., 1938, 60, 1836.
59. Muetterties, E.L., Mahler, W., and Schmutzler, R., Inorg. Chern., 1963, 2, 613.
60. Mahler, W., and Muetterties, E.L., Inorg.Chen., 1965, 4, 1520.
61. Kogowski, R., and Cohn, K., Inorg. Chem., 1968, 7, 2193.
62. Kennedy, T., and Payne, D.S., J.Chem.Soc., 1959, 1228.
63. Salthouse, J.A., and Waddington, T.C., Spec.Acta., 1967, 23A, 1069.
64. Reich, P., and Preiss, H., Z.Chem., 1967, 7, 115.
65. Kolditz, L., Z.Anore.Allgem.Chem., 1956, 284, 144.
66. Kolditz, L., Beierlein, I., Wieker, W., and Grimmer, A-R., Z.Chem., 1968, 8, 266.
67. Kolditz. L., Z.Anorg.Allgem.Chem., 1956, 286, 207.
68. Kolditz., L., and Heuthe, unpublished work quoted in reference 5.
69. Roesky, H.W., Angew,Chem.Internat.Edit., 1967, 6, 363.
70. Whlther, J.F., Ph.D.Thesis, Ohio State University, 1965.
71. Kennedy, T., and Payne, D.S., J.Chem.Soc., 1960, 4126.
72. Ruff, J.K., Inorg.Chein., 1963, 2, 813.
73. Moissan, H., Compt.Rend. (ظ)., 1885, 100, 1348.
74. Kolditz, L., and Feltz, A., Z.Anorg.A11gem.Chem., 1957, 293, 155.
75. Dhawliacourt, F., and Crunelle-Cras, M. Compt.Rend., 1970, 271, 124.
76. Kolditz, L., and Bauer,F., Z.Anorg.Allgem,Chein., 1959, 302, 241.
77. Booth, H.S., and Frary, S.G., J.Ari.Chem.Soc., 1939, 61, 2934.
78. Kolditz, L., and Feltz, A., Z.Anorg.Allgem. Chem., 1957, 293, 286.
79. Fialkov, Ya.A., and Fuzmenko, A.A., J.Gen.Chem.U.S.S.R., 1951, 21, 479.
80. Fialkov, Ya.A., end Kuzmenko, A.A., J.Gen.Chem.U.S.S.R., 1952, 22, 1290.
81. Renc, A., Rocz.Chem., 1933, 13, 569.
82. Milobedzki, T., and Krakowieki, S., Rocz.Chem., 1928, 8, 563.
83. Milobedski, T., and Xrakowieki, S., Rocz.Chem., 1930, 10, 153.
84. Stern, A.L., J.Chem.Soc., 1886, 49, 815.
85. Michrelis, A., Ber., 1872, 5, 9.
86. Prinvault, M., Compt.Rend., 1872, 74, 868.
87. Milobedzki, T., Chem.Listy., 1932, 26, 458.
88. Vi夫tic, A., Rocz. Chen., 1933, 13, 454.
89. Kenc, A., kocz.Chem. $1934,14,69$. Chem. Abstr. , 1934, 28, $6077^{9}$
90. Kuzmenko, A.A., Ukr.khim.Zh., 1952, 10, 589. Chem.Aostr. 1954, 48, 5009e.
91. Salthouse, J.A., and Waddington, T.C., J.Chem.Soc. (A)., 1967, 1096.
92. Creighton, J.A., J.Chem.Soc., 1965, 6589.
93. Dhasuelincourt, P., and Crunelle-Cras, M., Compt. ìend (B), 1970, 271, 124.
94. Delhaye, M., Dhamelincourt, P., and Merlin, J-C., Compt.Rend. (B), 1971, 272, 370.
95. Beattie, I.R., Gibson, T., Liuingston, K., Fawcett, V., and Ozin, G.A., J.Chem.Soc. (A)., 1967, 712.
96. Melia, T.P., and Merrifield, R., J.Chen.Soc.(A)., 1971, 1258.
97. Guthrie, G.B., and NcCullough, J.P., J. Phys.Chem. Solids, 1961, 18, 53.
98. Delwaulle, M-L., and Francois, F., Compt.Rend., 1944, 335.
99. Ve thank Dr.F.E.0illon for solid-state ${ }^{31} \mathrm{P}$ and "B n.m.r. neasurements and for discussion of the results.
100. We thank Professor T.C.Waddington for his suggestion of an alternative source of the $\mathrm{PCl}_{3} \mathrm{Br}^{+}$ion.
101. Nakanoto, K., "Infrared Spectra of Inorganic and Co-ordination Compounds", 2nd Edition, Kiley-Interscience, 1970.
102. Liofler, F., Z. Naturforsch, 1971, 26, 547.
103. We thank Mark Goldschmidt for the $X$-kay measurements and discussion of the results.
104. Dillon, K.B., and Waddington, T.C., Spec.Acta., 1971, 27A, 1381.
105. Dillon, K.B., and Gates, P.N.G., J.C.S.Chem.Conm., 1972, 348.
106. Kolditz, L., "Halogen Chemistry", 1967, 2, 115.
107. Kolditz, L., and Heuthe, G., unpublished work quoted in reference 106.
108. Kleinberg, J., Argersinger, W.J., and Geiswold, E., "Inorganie Chemistry", D.C.Reath and Co., Boston, 1960, 416.
109. Mackert, M.L., Jacobson, R.A., and Keiderling, T.A., Inorg.Cher., 1971, 10, 1075.
110. Adans, C.J., and Downs, A.J., J. Inorg. Nuc1.Chem., 1972, 34, 1829.
111. Goetz, C., Deneux, it., and Leroy, M.J.F., Bull.Soc.Chim.Fr., 1971, 29.
112. Ahlijah, G.Y., and Goldstein, M., J.Chem.Soc. (A), 1970, 326.
113. We thank Professor h.Gerding for solid-state Raman measurements.
114. haddington, T.C., and Klauberg, F., J.Cham.Soc., 1960, 2333.
115. Nathews, J.H., J.An.Chen.Soc., 1926, 48, 562.
116. Booth, H.S., and Bozarth, A.R., J.Am.Cher.Soc., 1939, 61, 2927.
117. Andrews, L.W., J.Am.Chem.Soc., 1907, 275.
118. Coley, R., Ph.D., Thesis, Loudou University, 1971.
119. Watson, E.S., $0^{*}$ Neill, M.J., Justin, J., and Brenner, M., Ana1.Chem., 1964, 36, 1233.
120. Jvid, J.J., Amal.Chem., $1964,30,2162$.
121. Weenan, A.G., J.Phys.Chen., 1956, 60, 1356.

# The Existence and Vibrational Characterisation of the Trichlorobromophosphonium Ion 

By F. F. Bentley, Arthur Finch* $\dagger$ P. N. Gates, $\dagger$ and F. J. Ryan $\dagger$
(Chemistry Department, Royal Holloway College, University of London, Englefield Green, Surrey, and the Air Force Materials Laboratory, (LPA), Wright Patterson Air Force Base, Dayton, Ohio, 45433)

Reprinted from

## Chemical Communications 1971

The Chemical Society, Burlington House, London WIV OBN

# The Existence and Vibrational Characterisation of the Trichlorobromophosphonium Ion 

By F. F. Bentley, Arthur Finch* $\dagger$, P. N. Gates, $\dagger$ and F. J. Ryan $\dagger$

(Chemistry Department, Royal Holloway College, University of London, Englefield Green, Surrey, and the Air Force Materials Laboratory, (LPA), Wright Patterson Air Force Base, Dayton, Ohio, 45433)

Summary The existence of the trichlorobromophosphonium ion $\left[\mathrm{PCl}_{3} \mathrm{Br}\right]^{+}$has been confirmed in the solid complexes $\mathrm{PBCl}_{7} \mathrm{Br}$ and $\mathrm{P}_{2} \mathrm{~F}_{6} \mathrm{Cl}_{3} \mathrm{Br}$ and a vibrational assignment is given.
( $\mathrm{X}=\mathrm{Cl}$ or Br ) are well known, evidence for the existence of the mixed species $\left[\mathrm{PX}_{n} \mathrm{Y}_{4-n}\right]^{+},(\mathrm{X}=\mathrm{Cl}, \mathrm{Y}=\mathrm{Br})$ is limited and characterisation is fragmentary. The existence of trichlorobromophosphonium tetrachloroborate (I), $\left[\mathrm{PCl}_{3}-\right.$ $\mathrm{Br}]\left[\mathrm{BCl}_{4}\right]$ has been suggested by Salthouse and Waddington ${ }^{1}$ and its presence in some other complex species postulated.
Although the tetrahalogenophosphonium ions $\left[\mathrm{PX}_{4}\right]^{+}$, We report a detailed vibrational characterisation of the
$\left[\mathrm{PCl}_{3} \mathrm{Br}\right]^{+}$ion in (I) and in the new compound trichlorobromophosphonium hexafluorophosphate (II), $\left[\mathrm{PCl}_{3} \mathrm{Br}\right]-$ [ $\mathrm{PF}_{6}$ ].
Compound (I) was prepared by the addition of excess of boron trichloride to equimolar amounts of phosphorus trichloride and bromine in liquid hydrogen chloride at ca. $-95^{\circ}{ }^{1}$ The precipitated white solid was pumped at ambient temperatures and subsequently manipulated under dry-box conditions. Variations in the order of addition of the three reactants were explored. The purest product, on the basis of analytical data and simplicity of Raman spectra, resulted from the following order of addition to the hydrogen chloride solvent: (i), boron trichloride (ii), phosphorus trichloride, (iii), bromine. The expected stoicheiometry of $\mathrm{PBCl}_{7} \mathrm{Br}$ is fully confirmed by analytical results.

I.r. and Raman spectra $\left(\mathrm{cm}^{-1}\right)$ of the $\mathrm{PCl}_{3} \mathrm{Br}^{+}$ion in $\mathrm{PBCl}_{7} \mathrm{Br}(\mathrm{I})$ and $\mathrm{P}_{\mathbf{2}} \mathrm{F}_{6} \mathrm{Cl}_{3} \mathrm{Br}(\mathrm{II})$				
$\mathrm{PBCl}_{7} \mathrm{Br}$ (I)		$\mathrm{P}_{8} \mathrm{~F}_{6} \mathrm{Cl}_{3} \mathrm{Br}$ (II)		
I.r.	Raman	I.r.	Raman	Assignment
637 (s)	647(vw)	647(s)	657(vw)	$v_{4}(\mathrm{e})$
$597(\mathrm{~m})$		604(m)		
577(vs)	582(w)	588(m)	582(w)	$v_{1}\left(\mathrm{a}_{1}\right)$
525(m)		522(m)		
493(vw)		490(w)		
390(m)	390(vs)	397(m)	399(vs)	$v_{2}\left(a_{1}\right)$
232(m)	233(s)	233(m)	235(s)	$v_{5}(\mathrm{e})$
213(m)	213(vs)	216(m)	217(s)	$v_{3}\left(\mathrm{a}_{1}\right)$
155(w)	155(s)	(m)	159(s)	$v_{B}(\mathrm{e})$

a Not investigated.
Compound (II) was prepared $\ddagger$ by the addition of equimolar amounts of phosphorus trichloride and bromine to liquid hydrogen chloride at ca. $-95^{\circ}$ followed by condensation of excess of phosphorus pentafluoride. Volatile residues were removed in vacuo and the white crystalline product was manipulated under anhydrous conditions. Analytical results confirm the expected stoicheiometry.

Chlorine and bromine were measured by standard titrimetric procedures in this laboratory; phosphorus and fluorine were determined in a commercial laboratory.


Comparison of the spectra with those of authentic samples containing $\mathrm{BCl}_{4}-$ and $\mathrm{PF}_{8}-$ ions lead to the conclusions that (a) in (1), the Raman lines (Figure) at 411m, 280 m , and $194 \mathrm{~m} \mathrm{~cm}^{-1}$ together with a very strong broad i.r. absorption at $670-700 \mathrm{~cm}^{-1}$ confirm the presence of the $\mathrm{BCl}_{4}-$ ion and, (b) in (II), Raman lines at 743s and 472 w $\mathrm{cm}^{-1}$ with i.r. absorptions at 552 s and $834 \mathrm{~s} \mathrm{~cm}^{-1}$ confirm the presence of the $\mathrm{PF}_{8}$ - ion. The remaining Raman lines and i.r. absorptions are common to both complexes and are assigned (Table) to $\mathrm{PCl}_{3} \mathrm{Br}^{+}$on the basis of $C_{3 v}$ symmetry expected by analogy with the isoelectronic $\mathrm{SiCl}_{3} \mathrm{Br}^{2}{ }^{2}$

We thank the Monsanto Research Corporation, prime contractor for an Air Force contract, for financial support.
(Received, May 13th, 1971; Com. 760.)

[^0]Contribution from tie Department of Chemistry, Royal Holloway College, University of London Englefield Green, Surrey, England, and the Air force Materials Laboratory (LPA), Wright-Patterson Air force Base Dayton, Ohio 45433

## The Existence of Chlorobromoantimonates

By F. l. Bentley, Arthur Iinch,* P. N. Gates, and F.J. Ryan

Received May 3, 1971
Recent reviews ${ }^{1,2}$ have stated that chlorobromoantimonates, $\mathrm{SbCl}_{n} \mathrm{Br}_{6-n}-$, do not apparently exist. Thus reaction of, for example, $\mathrm{SbCl}_{4}{ }^{+}$and $\mathrm{Br}^{-}$ions under appropriate conditions is said ${ }^{3}$ to lead to mixtures of hexachloro- and hexabromoantimonates; X-ray powder studies on crystalline tetraethylammonium salts and ultraviolet spectra measurements on acetonitrile solu-
these correspond to $\mathrm{PCl}_{4}+$ bands in the spectra of authentic samples of $\left[\mathrm{PCl}_{4}\right]\left[\mathrm{BCl}_{4}\right]$ and also $\left[\mathrm{PCl}_{4}\right]\left[\mathrm{SbCl}_{6}\right]$ prepared and run in this laboratory. Inspection of Table II shows that, apart from bands at 667 and 422 $\mathrm{cm}^{-1}$ in B , due to the tetraethylammonium ion, the spectra of A and B match extremely closely. Only two weak bands ( 396 and $363 \mathrm{~cm}^{-1}$ in A) are not common to both; the same anionic species is therefore inferred. Consideration of comparison spectra of compounds containing the ions $\mathrm{SbCl}_{6}{ }^{-}, \mathrm{PCl}_{6}-$, and $\mathrm{PCl}_{3}-$ $\mathrm{Br}^{+}$eliminate the possibilities that A might be formulated as $\left[\mathrm{SbCl}_{3} \mathrm{Br}\right]\left[\mathrm{PCl}_{6}\right]$ or as $\left[\mathrm{PCl}_{3} \mathrm{Br}\right]\left[\mathrm{SbCl}_{6}\right]$. That $\mathrm{SbBr}_{6}-$ was not present was shown by the absence of a strong band at $194 \mathrm{~cm}^{-1}$ previously observed in the spectrum of a sample of $\left[\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4} \mathrm{~N}\right]\left[\mathrm{SbBr}_{6}\right]$ prepared in this laboratory. The remaining formulation, consistent with both analytical and Raman evidence, is $\left[\mathrm{PCl}_{4}\right]\left[\mathrm{SbCl}_{5} \mathrm{Br}\right]$, and B is hence established as $\left[\left(\mathrm{C}_{2}-\right.\right.$ $\left.\left.\mathrm{H}_{5}\right)_{4} \mathrm{~N}\right]\left[\mathrm{SbCl}_{5} \mathrm{Br}\right]$. Infrared spectra, run as Nujol mulls, on both A and B are completely consistent with

Table I

Analytical Data for ( $\left.\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4} \mathrm{NSbCl}_{5} \mathrm{Br}$ and $\mathrm{PSbCl}_{9} \mathrm{Br}$								
	Calcd	Found	Calcd	Found	Caled	Found	Calcd	Found
$\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4} \mathrm{NSbCl}_{5} \mathrm{Br}$			23.9	23.8	34.8	34.9	15.7	15.7
$\mathrm{PSbCl}{ }_{9} \mathrm{Br}$	5.6	5.4	22.1	22.4	57.8	57.6	14.5	14.8

tions are cited as evidence. This is surprising in view of the known existence ${ }^{4}$ of the analogous phosphorus anion $\mathrm{PCl}_{5} \mathrm{Br}^{-}$, of antimony-fluorochloro compounds, ${ }^{2}$ and of the halogenotrifluoromethyl antimonates ${ }^{1} \mathrm{Sb}$ $\left(\mathrm{CF}_{3}\right)_{3} \mathrm{X}_{3}{ }^{-}, \mathrm{X}=\mathrm{Cl}, \mathrm{Br}$. In this note we present evidence for the preparation of two compounds containing the pentachlorobromoantimonate anion, Sb $\mathrm{Cl}_{5} \mathrm{Br}^{-}$.

Preparation and Characterization of the $\mathrm{SbCl}_{5} \mathrm{Br}^{-}$ Ion.-The two syntheses are summarized by the equations

$$
\begin{gathered}
\mathrm{PCl}_{3}+\mathrm{Br}_{2}+\mathrm{SbCl}_{5} \xrightarrow{\text { Hquid } \mathrm{HCl}} \mathrm{PSbCl}_{9} \mathrm{Br}(\mathrm{~A})+\mathrm{HBr} \\
\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4} \mathrm{NBr}+\mathrm{SbCl}_{5} \xrightarrow{\text { dichloromethane }}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4} \mathrm{NSbCl}_{5} \mathrm{Br}(\mathrm{~B})
\end{gathered}
$$

In each synthesis the mole ratio of reactants was unity. After precipitation of compound A , the HCl was removed by pumping at ambient temperatures for 2 hr , and the resultant yellow powder subsequently stored and manipulated under strictly anhydrous conditions. Compound B , a yellow solid, was filtered on a glass sinter before pumping and storing. Analytical results (Alfred Bernhardt, Munich, Germany) are summarized in Table I.

Raman Spectra.-Raman spectra of $A$ and $B$ in the solid state were recorded using a Cary 81 Raman spectrometer with 6328 - $\AA$ helium-neon excitation; results are listed in Table II.

The presence of the $\mathrm{PCl}_{4}+$ ion in A is clearly shown by the position of bands at $660,458,251$, and $182 \mathrm{~cm}^{-1}$;

[^1]Table II
Raman Shifts ( $\mathrm{Cm}^{-1}$ ) for $\mathrm{PSbCl}_{9} \mathrm{Br}$ and $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4} \mathrm{NSbCl}_{5} \mathrm{Br}^{a}$

$\mathrm{PSbCl}_{9} \mathrm{Br}$   (A)	$\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4} \mathrm{NSbCl}_{5} \mathrm{Br}$   (B)	Assignment
	677 w	$\mathrm{Et}_{4} \mathrm{~N}^{+}$
660 w		$\mathrm{PCl}_{4}{ }^{+}$
458 s		$\mathrm{PCl}_{4}{ }^{+}$
	422 w	$E t_{4} \mathrm{~N}^{+}$
396 w		?
363 w, sh		?
332 vs	332 s	$\mathrm{SbCl}_{5} \mathrm{Br}^{-}$
310 m	308 m	$\mathrm{SbCl}_{5} \mathrm{Br}^{-}$
290 m	289 m	$\mathrm{SbCl}_{5} \mathrm{Br}^{-}$
251 s		$\mathrm{PCl}_{4}{ }^{+}$
222 s, br	223 s, br	$\mathrm{SbCl}_{5} \mathrm{Br}^{-}$
182 sh		$\mathrm{PCl}_{4}+$
175 s	$173 \mathrm{~m}, \mathrm{br}$	$\mathrm{SbCl}_{5} \mathrm{Br}-$
157 w	158 w	$\mathrm{SbCl}_{5} \mathrm{Br}^{-}$

${ }^{a}$ Abbreviations: Et, $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4}$; vs, very strong; s , strong; m , medium; w, weak; sh, shoulder; br, broad.
the above interpretation; a detailed presentation of the vibrational spectra will be given elsewhere.

Differential Scanning Calorimetry.-To substantiate further that A was not a $5: 1$ (mole) mixture of $\mathrm{SbCl}_{6}{ }^{-}$ and $\mathrm{SbBr}_{6}{ }^{-}$species, differential scanning calorimetric (dsc) measurements were made on $\left[\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4} \mathrm{~N}\right]\left[\mathrm{SbCl}_{6}\right]$ (a), on $\left[\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4} \mathrm{~N}\right]\left[\mathrm{SbBr}_{6}\right]$ (b), on a freshly prepared 5:1 molar mixture of a and b , and on B , using sealed pans, from ambient temperature to ca. $280^{\circ}$. The thermogram from the mixture exhibited features associated with the individual components, and, in particular, reversible endothermic phase changes near $60^{\circ}$ (a) and $158^{\circ}$ (b). The thermogram of B differed from that of the mixture; no evidence for the $158^{\circ}$ endotherm was found, in contrast to the mixture.

Hence the conclusion that B was a compound is further indicated.

Acknowledgment.-We thank Mr. S. Ashdown and Mr. R. Coley for help with the preparation of samples and with dsc measurements, respectively. We are greatly indebted to the Monsanto Research Corp., Prime Contractor on Air Force Contract F 33615-171-C-1132, for financial support during this investigation.


[^0]:    $\dagger$ At Royal Holloway College, University of London, Englefield Green, Surrey.
    $\ddagger$ We thank Professor T. C. Waddington for his suggestion of an alternative source of the $\left[\mathrm{PCl}_{3} \mathrm{Br}\right]$ ion.
    ${ }^{1}$ J. A. Salthouse and T. C. Waddington, Chem. Comm., 1967, 1096.
    ${ }^{2}$ M. L. Delwaulle and F. Francois, Compt. Rend., 1944, 219, 335; 1945, 220, 173.

[^1]:    (1) L. Koiditz, Advan. Inorg. Chrm. Radiochem., 7, 13 (1965)
    (2) L. Kolditz, Halogen (hem., 2, 133 (1967).
    (3) L. Kolditz and G. Heuthe, unpublished results, quoted in ref 2.
    (4) L. Kolditz and A. Feltz, Z. Anorg. Allg. Chem., 293, 286 (1957).

