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ABSTRACT

D ie ta ry  carbohydrate, e s p e c ia l ly  fru c to s e ,  causes h y p e r t r i -  

glyceridaem ia in humans and lab ora to ry  animals. The potency o f  fructose  

in th is  respect is a t t r ib u te d  to the ease o f  i t s  conversion in the l i v e r  

to the precursors o f  t r i a c y lg ly c e r o l , i . e .  sn -g lycero l 3-phosphate and 

f a t t y  ac ids . This thes is  in ves tig a tes  the short-term  e f fe c ts  o f  fructose  

on lipTd metabolism in iso la ted  hepatocytes.

Incorporation  o f  JD-[ll-^^cJ fructose  in to  t r i  acy lg lycero l was much

g re a te r  than from [jj-^^c] glucose. The m a jo r i ty  o f  the r a d io a c t iv i ty

was associated w ith  the g lycero l moiety in each case, although there  was

a s ig n i f ic a n t  incorporation  in to  f a t t y  acids w ith  fruc tose  The extensive
r  14 Tincorporation  o f  [U- Ç] fructose  in to  the g lycero l moiety is the 

re s u l t  o f  the ease o f  i t s  conversion to t r io s e  phosphate and lofthe  

increase in sn -g lycero l 3-phosphate content o f  the hepatocytes incubated 

w ith  fru c to se . The l a t t e r  e f f e c t  occurs w ithout a change in the cyto­

plasmic NADH/NAD- r a t io .  Thus the incorporation  o f  2 "  fructose

in to  t r ia c y l  g lycero l is a good measure o f  t r ia c y lg ly c e r o l .  synthesis; i t  

does not s u f fe r  from the disadvantage o f  the change in c y to so lic  redox 

p o te n t ia l  observed w ith  g ly c e ro l .

Increasing fruc tose  concentration caused a s t im u la t io n  o f  l i p id

synthesis from endogenous acyl CoA, an e f f e c t  a lso  observed when

exogenous o le a te  was added to the hepatocyte which resu lted  in a much

higher leve l o f  t r ia c y lg ly c e r o l  synthesis . O leate  a lso s tim ulated  glucose

incorporation  in to  to ta l  l i p id  but, in con trast to fru c to se , more

phospholipid than t r ia c y lg ly c e r o l  synthesis occurred. This suggested a

s p e c i f ic  s t im u la to ry  e f f e c t  on t r ia c y lg ly c e r o l  synthesis which was 
r 14 -1confirmed using [ l -  Cj o le a te  as a precursor. The s t im u la t io n  was 

a t t r ib u te d  to the e f f e c t  o f  the ketose on the cytoplasmic sn-g lycero l  

3-phosphate content o f  the c e l l s .  Glucagon was found to in h ib i t  the 

fruc tose  plus o le a te  s t im u la t io n  o f  t r ia c y lg ly c e ro l  synthesis .
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Physio log ica l concentrations o f  fructose  a lso caused increased  

l ipogenesis from L -  la c ta te  and [l-^^C] a c e ta te ,  but f a t t y

acid synthesis was s u b s ta n t ia l ly  in h ib ite d  a t  concentrations o f  the 

ketose above 2mM.

I t  is concluded th a t  the h yp ertr ig ly cer id aem ic  e f f e c t  o f  fruc tose  

is the re s u l t  o f  the s p e c i f ic  s t im u la t io n  o f  hepatic  t r ia c y lg ly c e ro l  

synthesis and lipogenes is .
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There is a considerable body o f  l i t e r a t u r e  which suggests th a t  

high carbohydrate d ie ts  cause h y p ertr ig ly c er id a em ia  in humans 

(Macdonald and B ra ith w a ite ,  1964; Macdonald, 1966) and in laborato ry  

animals (N ikk i la  and O ja la ,  1965; Macdonald, 1973). Sucrose feeding  

is  more h y p ertr ig lyc er id aem ic  than glucose o r  starch and th is  is 

thought to be due to the fru c to se  moiety o f  the sugar (Macdonald,

1973; Macdonald, 1975). Sucrose and fruc tose  are a lso thought to be 

l ipogen ic  in the long term. They induce the synthesis o f  hepatic  

f a t t y  a c id  synthetase (Bruckdorfer e t  ai , 1971; Bruckdorfer e t  a l . ,  

1972a) and acety l CoA carboxylase (Cohen e t  a l . ,  1972) to a g re a te r  

extent than glucose or s ta rch .

This thesis is concerned w ith  the short-te rm  e f fe c ts  o f  the 

components o f  sucrose, i . e .  glucose and fru c to s e , on hepatic  t r i ­

a cy lg lycero l and f a t t y  acid  synthesis . An attem pt is made to show 

th a t ,  in ad d it io n  to the long-term e f fe c ts  invo lv ing  enzyme induction ,  

fructose also has sh ort-term  e f fe c ts  on metabolism which can re s u lt  in 

increased f a t t y  acid  and t r ia c y lg ly c e r o l  synthesis by hepatocytes.

I .  METABOLISM OF FRUCTOSE IN LIVER

A. F ruc tose  uptake  by the  l i v e r

In most animal species the l i v e r  is the p r in c ip a l  s i t e  o f  

2 “ fructose metabolism. D ie ta ry  fruc tose  is transported to the l i v e r  

from the small in te s t in e  v ia  the hepatic  p o rta l  v e in .  The concen­

t r a t io n  o f  the ketose in p o rta l  blood reaches a maximum o f  2.2mM 

when rats  are given a la rge  fructose meal by in tubation  (Topping and 

Mayes, 1971). Under these conditions the concentration in the 

periphera l c irc u la t io n  reaches only 0.3mM and very l i t t l e  fructose is 

metabolised in e x trah e p a t ic  t issu es .

I t  has been reported th a t  fructose does not en te r  the l i v e r

c e l ls  f r e e ly  and th a t  a c a r r ie r  mechanism is involved, desp ite  the

exis tence o f  a steep g rad ien t between the e x t r a -  and i n t r a - c e l l u l a r

concentrations o f  the sugar (Woods ^  £ l_ . , 1970; S es to f t  and F leron ,

1974). The l a t t e r  authors have found th a t  the e l im in a t io n  o f  fructose

from blood is a function  o f  i t s  concentration and follows Michael is

Menten k in e t ic s .  The Km o f  th is  system is 67mM and V is 30 umole/
'  —  max

min/g. Although Baur and Heldt (1977) were unable to show
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th a t  fruc tose  tra n s p o rt  is a sa tu rab le  process, they found com­

p e t i t io n  between the ketose and DHglucose o r  D-galactose fo r  the 

transport system. In h ib i t io n  o f  transport o f  a l l  three sugars by 

cytochalasin  B, p h lo re t in  and p h lo r iz in  suggest th a t  there  is c a r r ie r  

mediated transport across the plasma membrane. Cra ik  and E l l i o t t  

( 1980) have estimated a Km o f  212mM fo r  fruc tose  fo r  the transport  

system. The use o f  iso la ted  hepatocytes has provided evidence fo r  a 

common c a r r i e r  mechanism fo r  the hexoses.

The Km and V fo r  fruc tok inase  are  reported to be ImM and max r
10.3  fimol/min/g re s p e c t iv e ly  (S e s to f t  e t  a l . ,  1972; S e s to f t ,  1974a; 

S es to ft  and F le ro n , 1974). Thus the a f f i n i t y  o f  fructose fo r  i t s  

c a r r ie r  system is lower than the a f f i n i t y  o f  the ketose fo r  fructokinase,  

I t  is th e re fo re  concluded th a t  a c a rr ie r -m ed ia te d  transport o f  

f ruc tose  l im i ts  i ts  metabolism under physio log ical co nd itions . Thus, 

although fructose  is taken up more slowly than glucose by iso la ted  

hepatocytes, fruc tose  is immediately metabolised w ith in  the c e l l  

(Hel dt et. 3JL* j 1974; Baur and H e ld t ,  1976). T here fore , u n l ik e  the 

uptake o f  glucose, the uptake o f  fructose  does not come to a stop in 

iso la ted  l i v e r  c e l ls  (Baur and H e ld t ,  1976). These authors have a lso  

shown th a t ,  i f  the phosphorylation; o f  fructose  w ith in  the c e l l  is 

abolished by a d d it io n  o f  an uncoupler, fructose  uptake only  proceeds 

u n t i l  the ex terna l fructose concentration has been reached w ith in  the 

c e l ls .

The metabolism o f  fructose by the l i v e r  is known to be much more 

rapid than th a t  o f  glucose (Zakim e t  a l . ,  1969; Macdonald, 1971; Walker 

e t  a l . ,  1972) .  The major Vnown d if fé re n ce s  in fructose  and glucose 

metabolism occur in the i n i t i a l  phosphorylation and in the a ld o la s e -  

catalysed cleavage o f  the phosphoryl ated hexoses (C a h i l l  et. .Êl* » 1958). 

Fructose is able to by-pass several enzymatic steps which are required  

fo r  the metabolism o f  glucose. Thus, metabolism o f  fructose to t r io s e  

phosphate does not involve any key reg u la to ry  enzymes. For th is  

reason fructose  is regarded as a much b e t te r  precursor o f  both hepatic  

f a t t y  acids and g ly c e r id e -g ly c e ro l  (Zakim, 1973).

The major metabolic  pathways fo r  the conversion o f  glucose and 

fructose  to t r ia c y lg ly c e r o l  are summarised in F ig .  1.
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The i n i t i a l  step in fruc tose  metabolism by the l i v e r  is a 

phosphorylation by ketohexokinase y ie ld in g  fructose  1-phosphate (Cori 

£ t  aj_., 1951 ; Hers, 1952a). Cleavage o f  fruc tose  1-phosphate by l i v e r  

fruc tose  bisphosphate a ldo lase  y ie ld s  £ -g lycera ldehyde  and dihydroxy­

acetone phosphate. The dihydroxyacetone phosphate may be converted 

to la c ta te  by g ly c o ly t ic  enzymes, to glucose and glycogen by 

gluconeogenic enzymes or  may be converted to sn-g lycero l 3-phosphate 

and used fo r  the synthesis o f  t r i a c y lg ly c e r o l .  There are three possib le  

enzymes which may be involved in the metabolism o f  D^-glyceraldehyde; 

t r io k in a s e  which phosphorylates D^glyceraldehyde to D-glyceraldehyde  

3-phosphate, an NAD*- s p e c i f ic  aldehyde dehydrogenase th a t  produces 

D^glyceric  acid which can be fu r th e r  phosphorylated to 2-phosphoglycerate  

by g ly c e ra te  kinase and NAot^ and NADP*- dependent alcohol dehydrogenases 

which can both reduce £-g lycera ldehyde  to g lycero l which, in tu rn ,  can 

be phosphorylated to sn-g lycero l 3-phosphate by g lycero l k inase. The 

former route is thought to operate in V iv o . Thus the metabolism o f  

fructose  by-passes the key regu la to ry  enzymes o f  glucose metabolism, 

glucokinase and phosphofructokinase I  (Heinz, 1973). The only  

regu la to ry  enzyme which is common to the g lyco lys is  o f  glucose and 

f ruc tose  is pyruvate kinase.

B. Key enzymes o f  fructose metaboli sm

1. Ketohexoki nase

D^fructose is mainly phosphorylated to fructose  1-phosphate by

an ATP-dependent ketohexokinase (ATP: D^-fructose 1-phosphotransferase;

EC 2 . 7 . 1 . 3) (Cori \e t  aj_., 1951; Heinz, 1973). This enzyme is found in

a l l  mammalian l iv e r s  (Heinz e t  a l . ,  1968; Heinz and Weiner, I 969) .

Hepatic  ketohexokinases have been p u r i f ie d  by a number o f  in ves tig a to rs

(Vestl ing e t  a l . ,  1950; Parks \e t  , 1957; Adel man £ t  £1^., 1967;

Sanchez e t  a l . ,  1971a). P u r i f ie d  r a t  l i v e r  ketohexokinase can be

d is tingu ished  from the o ther  hexokinase by an absolute requirement fo r

K* ions (Sanchez e t  a l . ,  1971b). The enzyme has a Km o f  0.46mM fo r

fructose  and 1 .56mM fo r  the ATP-Mg^* complex a t  a K* concentration o f

O.Ahl (Sanchez £ t  £ l_ . , 19713). The enzyme is s tro n g ly  in h ib i te d  by

ADP, one o f  i t s  reac tion  products. The in h ib i t io n  is non-com petitive
2+towards fruc tose  and com petit ive  w ith  respect to the ATP-Mg complex 

and is p a r t i a l l y  reversed by K* ions, (Sanchez A i9 7 1 b ) .
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I t  has been reported th a t  ketohexokinase Is in h ib i te d  by 

fruc tose  1-phosphate (Froesch, 1959) but th is  in h ib i t io n  was not 

observed by Parks e t  a l . (1957 ).  Ketohexokinase is not s p e c i f ic  fo r  

^ - f ru c to s e ,  i t  a lso catalyses the phosphorylation o f  o th e r  kêtose  

such as L^sorbose, L -ga lactoheptu lose , ^ -x y lu lo s e  and D^tagatose and 

can th e re fo re  be regarded as a ketohexokinase. The a f f i n i t y  o f  

ketohexokinase fo r  these sugars a lso depends on the K* concentration  

(Adelman e;t a_l_., 1967; Sanchez e t  a l . ,  1971a).

Ketohexokinase a c t i v i t y  d i f f e r s  in various species. In ra t  

l i v e r  the a c t i v i t y  o f  enzyme is 2 -2 .5  pmoles/min/g (Heinz e t  a l . ,  

1968) which equates w ell  w ith  the rates (3 .0  |imole fruc tose /m in /g  

t issue) o f  e x tra c t io n  o f  fructose from the medium during l i v e r  

perfusion (S e s to f t ,  1974a). I t  has been shown th a t  feeding ra ts  on a 

d ie t  enriched w ith  fructose  ( 65%) fo r  3 weeks causes an increase in  

hepatic  ketohexokinase a c t iv i t y  (Heinz, I 968) ,

2 . Fructose 1-phosphate, a ldo lase  ( E .C .4 .1 . 2 . 1 3 . ) .

The major fa te  o f  the fruc tose  1-phosphate is an a ld o la s e -  

catalysed cleavage re s u lt in g  in the formation o f  dihydroxyacetone  

phosphate and D-glyceraldehyde (Hers and Kusaka, 1953; Leuthardt e t  a l . ,  

1953) .  The same enzyme also catalyses the conversion o f  fructose

1.6-bisphosphate in to  D-glyceraldehyde 3-phosphate and dihydroxyacetone  

phosphate, as w e ll  as the condensation o f  the t r io s e  phosphates to  

y ie ld  fruc tose  1,6-b isphosphate.

There are  three  isoenzymes o f  mammalian a ld o lase . Type A enzyme 

found in muscle, type B in the l i v e r  and type C in the bra in  

(R u t te r ,  1964) .  A ldolase B also occurs in the in te s t in e  (Kawachi e t  a l . ,

1973). Isoenzymes A and C ca ta lyse  mainly the cleavage o f  fructose

1.6-b isphosphate, but a ldo lase  B u t i l i s e s  both fru c to se  1-phosphate 

and fructose 1,6-bisphosphate as substrates (Hers and Kusaka, 1953;

R u tter  e t  a l . ,  I 968) .  The ra t io s  o f  fruc tose  1 ,6-b isphosphate;  

fruc tose  1-phosphate u t i l i s a t i o n  fo r  type A, B and C are 50, 1 and 10 

re sp e c t ive ly  (Penhoet £ t  , 1966). The hepatic  enzyme is cytoplasmic

(H a tz fe ld  e t  al., 1976). In the a d u lt  r a t  and ra b b it  l iv e rs  both A and
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B isoenzymes are found, but the l a t t e r  is predominant. In fo e ta l  l i v e r  

a l l  isoenzymes are  present but isoenzyme B becomes predominant ju s t  

before  b i r th  (R u tte r  ^  aj_., 1968).

The Km values fo r  fructose 1-phosphate and fru c to se  1,6-bisphosphate  

are 9 x 10 and 1 x 10 re sp e c t ive ly  (H e inz , 1973). The Vmax values  

reported fo r  l i v e r  a ldo lase  from male r a t  l i v e r  are  3 .3  and 3 .2  pmole/ 

min/g (Hashemi^ M 9 7 9 ) . A number o f  m etabolites  have an in h ib i to ry  e f f e c t  

on l i v e r  a ld o la s e . I t  has been shown th a t  a ld o lase  B is co m p etit ive ly  

in h ib i te d  by AMP and ADP but not by ATP (Adelman, 1972). This in h ib i t io n  

could play a physio log ica l ro le  in in v ivo c o n tro l l in g  the a c t i v i t y  o f  

l i v e r  a ldo lase  (Adelman, 1972). I t  has been suggested (Woods e t  a l . ,

1970) th a t  l i v e r  a ldo lase  is in h ib ite d  a f t e r  a fruc tose  load because 

th is  treatm ent causes the accumulation o f  fructose  1-phosphate. This has 

been suggested to be due to an increase in IMP concentration which 

fo llows the hepatic  dep le t ion  o f  the adenine n u c leo t id es . However,

Van den Berghe aj_., (1977) have shown th a t  the FIP accumulation  

precedes th a t  o f  IMP and thus the l a t t e r  e f f e c t  could not be considered  

to cause the accumulation o f  the ketose phosphate.

L iv e r  a ldo lase  is regulated by d ie ta ry  carbohydrate (Adelman and 

S p o lte r ,  1966) .  The to ta l  a c t i v i t y  o f  the enzyme decreases to about 

o n e -th ird  o f  the normal a c t i v i t y  i f  the animals are  fasted  fo r  48-72 h, 

but a c t i v i t y  can be restored to normal by re -feed in g  w ith  glucose, 

fruc tose  o r  sucrose when the fasted ra ts  are  given d ie ts  r ich  in glucose 

o r fru c to s e ; the a c t iv i t y  o f  the enzyme is restored to  normal when 

d ie t  is administered fo r  three weeks (Adelman and S p e lte r ,  I 966) ,

3 . T r iok inase  (ATP; ^ -g lycera ldehyde 3-phosphotransferase;
E .C .2 . 7 . I . 2B)

The ATP-dependent phosphorylation o f  D-glyceraldehyde in to  

D-glyceraldehyde 3-phosphate occurs by the action  o f  tr io k in a s e  (Hers 

and Kusaka, 1953). In v ivo  D-glyceraldehyde is normally derived from 

C-4, C-5 and C-6 o f  fru c to se . The high a c t i v i t y  o f  t r io k in a s e  in both 

human and r a t  l iv e r s  and the low K  ̂ o f  th is  enzyme fo r  D-glyceraldehyde  

stro n g ly  suggests th a t  tr io k in a s e  is the most important enzyme in  

D-glyceraldehyde metabolism ( S i l l e r o ^ ^ . ,  I 969) .  The same con­

c lusion  was reached fo llow ing  a study o f  the conversion o f  . [4-^H, 6-^^cJ
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fruc tose  to l i v e r  glycogen in mice (Hue and Hers, 1972). These
3

authors have shown th a t H is not lo s t  in the conversion o f  fructose  

in to  glycogen. I f  the pathway proceeds v ia  g ly c e r ic  acid  there  should 

be a loss o f  ^H during the o x id a t io n  o f  D-glyceraldehyde (F ig .  2 ) .

These authors have found th a t  the ^H/^^C r a t io  in glycogen was 36.6% 

o f  th a t in the in jec te d  fru c to se . The loss o f  t r i t iu m  through fructose  

metabolism was equal to 29.2% and the C-6 to C-1 randomization to  

fruc tose  metabolism was 27.4%. These re su lts  are in agreement w ith  

the hypothesis th a t  the D-glyceraldehyde formed in the l i v e r  upon 

a ld o ly t ic  cleavage o f  fructose  1-phosphate is metabolised by phos­

phory la t ion  to D-glyceraldehyde 3-phosphate under the ac t ion  o f  

t r io k in a s e .  The k in e t ic  p ro p ert ies  o f  t r io k in a s e  a lso r e f l e c t  the 

centra l ro le  o f  the enzyme in fruc tose  metabolism (Frandsen and 

Grunnet, 1971). These authors have shown th a t  the amount o f  fructose  

converted to D-glucose in ra t  l i v e r  s l ic e s  corresponds to the a c t iv i t y  

o f  tr io k in a s e  and also th a t  the enzyme displays a o f  0.77mM fo r  

Mg-ATP. I t  is possib le  th a t  D-g lyceraldehyde phosphorylation is 

regulated to a s ig n i f ic a n t  degree by ATP le v e ls  in v iv o . T r io k in a s e ,  

th e re fo re ,  is e f f e c t iv e  when the concentration  o f  ATP is high which 

would favour o ther gluconeogenic processes and in h ib i t  g ly c o ly s is .

These authors have a lso suggested th a t  a t  low ATP lev e ls  the g lycera te  

and/or g lycero l pathways may o pera te .

4. Pyruvate Kinase (ATP: pyruvate phosphotransferase, E . C . 2 . 7 . 1.40)

Pyruvate kinase catalyses the f in a l  step in the formation o f  

pyruvate from glucose v ia  the g ly c o ly t ic  pathway. This enzyme 

catalyses the t ra n s fe r  o f  the 'energy r ic h '  phosphate group from 

phosphoenolpyruvate to ADP producing enolpyruvate and ATP (H e inz, 1973).

Hepatic pyruvate kinase (L - ty p e )  is  lo c a l ise d  in the cytoplasm.

In the absence o f  any e f fe c to rs  the l i v e r  pyruvate kinase shows

markedly sigmoidal k in e t ic s  w ith  respect to  phosphoenolpyruvate w ith

a [ s j  Q g  o f  about 10  ̂ M (Seubert and Schoner, 1971). Fructose

1,6-bisphosphate is a potent s t im u la to r  o f  the enzyme (Carm inatti

e t  a l . ,  1968) .  The V is not a l te re d  but the K is markedly decreased  '  2, max m ’  . .

to about 10 M.
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L-type pyruvate kinase is  a l l o s t e r i c a l l y  in h ib i te d  by ATP and 

a lan in e  (Seubert and Schoner, 1971; imamura and Tanaka, 1972), The 

presence o f  physio log ica l concentrations o f  these e f fe c to rs  can have 

a profound e f f e c t  on the degree o f  co -opera t iv ifty  th a t  the enzyme 

shows, as w ell  as on the [ s ]  q  ̂ fo r  phosphoenolpyruvate. Physio logical  

concentrations o f  fruc tose  1 ,6-b isphosphate, however, can completely  

reverse the in h ib i t io n  by these e f fe c to r s .  I t  has a lso been reported  

th a t  pyruvate kinase a c t i v i t y  assayed a t  sub-optimal phosphoenol-  

pyruvate concentration is increased by fruc tose  1-phosphate a f t e r  

perfusion o f  r a t  l i v e r  w ith  lOmM fructose  (Eggleston and Woods, 1970).  

Acetyl-CoA has also been shown to in h ib i t  r a t  l i v e r  pyruvate k in ase ,  

a c t i v i t y  (Weber £ t ^ . i  1967).

The a c t i v i t y  o f  the L -type  isoenzyme is markedly a lte re d  by 

phosphorylation catalysed by c y c l ic  AMP-dependent p ro te in  kinase  

(LJungstrom e t  a l . ,  1974; Engstrom, 1978). Moreover, phosphorylation  

has been shown to occur in in ta c t  l i v e r  preparations in which the c y c l ic  

AMP leve ls  have been increased by glucagon (Ben-Bassat e t  a l . ,  1977; 

G u rt le r  and Emmerich, 1978). Phosphorylation converts the enzyme in to  

a less a c t iv e  form. Dephosphorylation has been demonstrated in the 

presence o f  a p ro te in  phosphatases ex trac ted  from l i v e r  (Engstrom,

1978) .  The phosphorylated and dephosphorylated formsof the enzyme 

are characterised  by high ( 8OO pM) and low (300 pü) values fo r  the

[js] Q  ̂ fo r  phosphoenol-pyruvate re s p e c t iv e ly .  Recently , i t  has been 

shown th a t  L -type  pyruvate kinase can also undergo a p r o te o ly t ic  

cleavage which produces a less a c t iv e  enzyme molecule (H a ll  e t  a l . ,

1979) .  These authors speculated th a t  the cleavage is a secondary 

response to phosphorylation and in a c t iv a te s  the enzyme i r r e v e r s ib ly .

Pyruvate k inase a c t i v i t y  has been studied in m eal-tra ined  

animals fed on e i t h e r  carbohydrate o r  Chow d ie ts  (Hopkirk and 

Bloxham, 1979). In both groups o f  ra ts  the to ta l  a c t i v i t y  o f  enzyme 

increases during feeding and is maximum 1-5 h" p o s tp ra n d ia l ly .  Thus 

the period o f  maximum enzyme a c t i v i t y  coincides c lo se ly  w ith  the  

period o f  maximum f a t t y  acid synthes is . The to ta l  a c t i v i t y  o f  pyruvate  

kinase was about three  times as g rea t in homogenates from h igh-  

carbohydrate fed animals compared w ith  dhow-fed animals. This increase  

p a r a l le ls  the enhanced f a t t y  acid synthesis in high carbohydrate fed 

rats  (Hopkirk and Bloxham, 1979).
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C. Consequences o f  hepatic  fruc tose  loading

The lev e ls  o f  fruc tose  1-phosphate in the l i v e r  are  increased  

fo llo w in g  fruc tose  feeding (Hue and Hers, 1972). Oral and e s p e c ia l ly  

paren tera l a d m in is tra t io n  o f  fruc tose  cause a rapid accumulation o f  

f ruc tose  1-phosphate and a d ep le t ion  o f  ATP and P. in the tissues  

th a t  possess ketohexokinase. The accumulation o f  fruc tose  1-phosphate 

has been demonstrated in the l iv e rs  o f  ra ts  and mice (Burch e t  a l . ,

1969; Van den Berghe e t  a l . ,  1973; 1979; l ie s  £ t  aj_., I 98O) and 

normal humans (Woods e t  a l . ,  1970; S e s to f t  e t  a l , 1972). I t  is  

postu la ted  th a t  the breakdown o f  fruc tose  1-phosphate is much slower  

than i t s  formation by fru c to k in ase , as a r e s u l t  there  is an increase  

in the concentration  o f  the fruc tose  e s te r .  I t  has been concluded 

th a t  the accumulation o f  IMP (an in h ib i to r  o f  a ld o la s e ) ,  which is a lso  

observed when l i v e r  is perfused w ith  fru c to s e , is the reason fo r  the 

accumulation o f  ketose phosphate (Woods e;t aj_., 1970). The f in d in g  

th a t  the accumulation o f  the fructose  e s te r  precedes the increase in 

IMP in v ivo  contrad ic ted  the above explanation  (Van den Berghe e t  a l . , ,

1977) .  Another exp lan a tio n , the in h ib i t io n  o f  fruc tok inase  by fructose  

1-phosphate, has a lso been disputed (S e s to f t ,  1974a) and the f a c t  th a t  

the concentration o f  ADP is b a re ly  changed a f t e r  fructose load ru les  

out the p o s s ib i l i t y  o f  in h ib i t io n  by the other product o f  the re ac t io n .  

The decrease in ATP caused by a fructose  load (Maenpaa e t  a l . ,  I 968) 

could decrease the v e lo c i ty  o f  the fruc tok inase  mechanism, although  

not s u f f i c i e n t ly  to  stop the accumulation o f  fructose 1-phosphate.

The a v a i l a b i l i t y  o f  P. a lso  plays a ro le  s in c e , in  iso la ted  l i v e r , t h e  

ra te  o f  fruc tose  uptake (S e s to f t ,  1974b), as w e ll  as the accumulation 

o f  fruc tose  1-phosphate (Woods, 1972), can be enhanced by increasing  

the concentration o f  P. in the perfusion medium.

. Besides the accumulation o f  fruc tose  1-phosphate and IMP, several 

o th er m etabolites  are increased a f t e r  the a d m in is tra t io n  o f  a fruc tose  

load (Van den Berghe, 1978). I t  has been reported th a t  the concen­

t r a t io n  o f  g lyceraldehyde, g lyceraldehyde 3-phosphate, dihydroxyacetone  

phosphate and e s p e c ia l ly  sn -g lycero l 3-phosphate are  increased fo llo w in g  

f ruc tose  load (Heinz and Junghanel, 1969; Burch 2Ë  » 1969; Woods 

e^ ^ . , 1970) .  I t  has been shown th a t  the concentration o f  sn -g lycero l  

3-phosphate is increased approximately e ig h t fo ld  in r a t  l i v e r  perfused  

w ith  lOmM fructose  (We id and and Matschinsky, 1962; Woods e t  a l . ,  1970).



-  22 -

Davies and Mapungwana (unpublished observations) have a lso shown th a t  

fructose  can e le v a te  sn -g lycero l 3-phosphate lev e ls  in hepatocytes  

incubated w ith  fru c to s e ,  even a t  physio log ica l concentrations o f  the 

ketose, but the increase is only o f  the order o f  1 . 5- 2 .0  fo ld  (from  

approximately 200 nm olès/gcelI s ) . The dihydroxyacetone phosphate 

concentra tion , on the o th er hand, was unaffected by the ketose.

R ecently , fructose  metabolism has been studied w ith  P n .m .r .  

in perfused l iv e r s  from rats  starved fo r  48 h ( l i e s  e t  , I 98O). 

These authors have shown th a t  a rapid f a l l  in the concentration o f  

both ATP and P. and a decrease in i n t r a c e l lu la r  pH occurs a f t e r  

in fusion  o f  fru c to s e . These changes are accompanied by a rapid r is e  

in fruc tose  1-phosphate. The uptake o f  la c ta te  by the l i v e r  ind icated  

th a t  the f a l l  in in t r a c e l lu la r .  pH was caused p r im a r i ly  by production  

o f  protons accompanying the formation o f  la c ta te  from fru c to s e , as 

shown below.

Fructose + Mg ATP  ̂   >  Fructose 1 -  P^ + Mg ADP  ̂ + H*

2 L a c ta te  + 2H*  >  g lucose

F ru c tose   >  2H* + 2 L a c ta te

However, th is  proton re lease is tran s ien t si nee i t  is l im ite d  by 

the magnitude o f  the i n i t i a l  increase in fruc tose  1-phosphate concen­

t r a t io n  and the f a l l  in ATP concentration . Further metabolism o f  

fruc tose  1-phosphate to glucose and re-conversion o f  ADP in to  ATP, to  

maintain the new steady s ta te  concentrations, w i l l  re s u lt  in a net  

balance o f  zero protons re leased. However, a t  the same time i t  is  

apparent th a t  a change from la c ta te  uptake to la c ta te  output occurs by 

th is  mechanism, which presumably accounts fo r  the lowering o f  i n t r a ­

c e l lu la r  pH ( l i e s  ejt I 98O). The concentration o f  o ther nucleo­

tides  has a lso been reported to be decreased by fru c to se  loading.

These are UTP, UDP-glucose (Burch e t  a l . ,  1969; 1970) and GTP (Van 

den Berghe e^ aj_., 1977). The decrease in the GTP and UTP occurs more 

slowly than the decrease o f  ATP. The reason fo r  the decrease in GTP is  

thought to be i t s  u t i l i s a t i o n  fo r  the phosphorylation o f  D-glyceraldehyde  

by t r io k in a s e  (Frandsen and Grunnet, 1971).
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The mechanism o f  £ -fru c to s e -in d u ce d  hyperuricemia in humans is 

probably by way o f  the rapid  phosphorylation o f  fruc tose  which causes 

d ep le t ion  o f  ATP and inorganic phosphate in the l i v e r  (Maenpaa e t  a l . ,  

1968; Woods e_t , I 97O; S e s to f t ,  1974a, Van den Berghe e_t aj[_., 1977»

Van den Berghe, 1978). Both are essen tia l fo r  the s t a b i l i s a t io n  o f  AMP 

leve l and, th e re fo re ,  the to ta l  adenine nuc leo tide  content o f  the t is s u e .  

When the in h ib i t io n  o f  AMP deaminase becomes less e f f e c t iv e  the hepatic  

IMP concentration increases and both AMP and IMP undergo dephosphorylation  

w ith  the formation o f  adenine and inosine (Wood ^  a_l_., 1970; Van den 

Berghe e t  a l . ,  I 98O) and e ve n tu a lly  hypoxanthine, u r ic  acid and a l la n t o in ,  

as shown in F ig . 3 (Woods, 1972; Fox and K e l ly ,  1972).

The most l i k e l y  route for, the degradation o f  AMP appears to be 

v ia  AMP deaminase, s ince the enzyme is s tim ulated  by ATP and in h ib i te d  

by physio log ical lev e ls  o f  GTP and P . .  The dep let ion  o f  the l a t t e r  

metabolic  in term ediates appear to re s u l t  in the loss o f  an important 

regu lato ry  contro l o f  AMP deaminase, i . e .  the in h ib i t io n  o f  the 

enzyme under physio log ica l substrate  and reg u la to r  leve ls  (Van den 

Berghe e t  a l . ,  1977). T here fo re , fructose  infus ion  resu lts  in an 

increase in the serum leve l o f  u r ic  acid (Heukenkamp and Z b l ln e r ,

1971) .  In experimental .animals such as ra ts  th a t  possess u r icase , the 

ad m in is tra t io n  o f  a fructose load causes an increase in the plasma leve l  

o f  a l la n to in  in a d d it io n  to the increase in u r ic  acid  (Maenpaa e t  a l . ,  

1968; Kekomaki e t  a l . ,  1972). The mechanism o f  fruc tose  induced 

nucleotide  catabolism was studied using iso la ted  r a t  hepatocytes in  

which the adenine nuc leotide  pool was p re - la b e l  led w ith  adenine

(Smith e t  a l . ,  1977). Incubation o f  iso la te d  ra t  hepatocytes w ith  

fruc tose  (28 mM) caused a rapid  d ep le t ion  o f  the [ l^ c l  adenine nucleo­

tid es  and a corresponding increase in a l la n to in  (Van den Berghe

e t  a l . ,  1980) .  The production o f  a l la n to in  by iso la ted  hepatocytes  

is not influenced by the a d d it io n  o f  low concentrations o f  coformycin  

(0.1  | iM), but is decreased by concentrations o f  coformycin (50 yM) 

th a t  are  in h ib i to ry  fo r  AMP deaminase. With 50 yM -  coformycin the  

production o f  a l la n to in  is decreased by 85% and the formation o f  rad io ­

a c t iv e  a l la n to in  from [1^(0 adenine nucleotides is completely suppressed.

In the presence o f  0.1 yM coformycin, or in i t s  absence, the ad d it io n  

o f  fru c to se  to  the incubation medium causes a rapid degradation o f  

ATP, w ithout an eq u iva len t increase in ADP and AMP, followed by t ra n s ie n t  

increases in IMP and in the ra te  o f  production o f  a l l a n t o in .  In the
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presence o f  50 jiM-coformycîn, the fructose-induced breakdown o f  ATP 

is not m odified , but the d ep le t ion  o f  the adenine nuc leotide  pool 

proceeds much more slowly and the ra te  o f  production o f  a l la n to in  

increases only s l i g h t l y .  A r is e  in IMP concentration is not 

detectab le  but AMP leve l is increased, in h ib i t io n  o f  adenosine 

deaminase requires on ly  0 .1 pM-coformycin (Van den Berghe e t  a l , ,

1980) .  This is evidence fo r  a major ro le  o f  AMP deaminase in the 

regu la tion  o f  the adenine nuc leo tide  breakdown.

D. End products o f  fruc tose  metaboli sm

The major end products o f  fruc tose  metabolism are  glucose, 

la c ta te  and glycogen. I t  has been shown th a t  when l iv e r s  from fasted  

ra ts  are perfused w ith  20mM fru c to se  fo r  1h, 52% o f  the ketose is  

recovered as glucose, 18% as la c ta te  plus pyruvate and 8% as glycogen; 

the remaining 22% is assumed to be metabolised to t r i a c y lg ly c e r o l ,

CO2 and ketone bodies and to  g lycero l and s o rb ito l  (Exton and Park, 

1967) .  From studies performed on perfused l i v e r ,  i t  is well known 

th a t  fructose is one o f  the best gluconeogenic substrates . The 

maximum ra te  o f  glucose formation from fruc tose  by perfused l i v e r  is  

about tw ic e '  th a t from la c ta te  (Exton and Park, 1987; Ross e t  a l . ,  

1967) .  I t  has been shown th a t  fruc tose  is u t i l i s e d  very e f f e c t iv e ly  

by iso la ted  l i v e r  c e l ls  from both fed (Seglen, 1974; A rinze  and 

Rowley, 1975) and fas ted  (V enez ia le  and Lohmar^ 1973; Seglen, 1974) 

ra ts .  At 20mM fructose  the ra te  o f  gluconeogenesis is approximately  

3 pmoles/min/g and glycogen has been shown to accumulate (Seglen,

1974) .  G1uconeogenesis from fru c to se  (5~20mM) is not subject to  

end-product in h ib i t io n  by glucose a t  physio log ica l concentrations in 

c e l ls  from fasted  ra ts  (Seglen, 1974). In v ivo s tu d ies w ith  

fructose in experimental animals (Friedmann e t  a l . ,  1970) and in 

human (Atwell and Waterhouse, 1971; Kell en and Froesch, 1972) have 

demonstrated a rapid conversion o f  the ketose in to  blood glucose 

which re s u lts  in hyperglycemia. Parenchymal c e l ls  iso la ted  from the  

l iv e rs  o f  40h starved , but not from l6 h -fa s te d  ra ts , show an increase  

in the ra te  o f  g1uconeogenesis from fruc tose  compared to fed r a ts '  

(Seglen, 1974).

Glucagon, adrena line  o r  c y c l ic  nucleotides s t im u la te  glucose
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synthesis from fruc tose  in iso la te d  r a t  l i v e r  c e l ls  (Garrison and 

Haynes, 1973). Glucagon enhances glucose formation frcan low concen­

t ra t io n s  o f  fructose  in iso la te d  hepatocytes from 24 h fasted  ra ts  

but does not enhance the i n i t i a l  ra te  o f  gluconeogenesis from lOmM 

fruc tose  (Zahl ten £ t  £ l_ . , 1973). Other authors have a lso  found th a t  

a t  high concentrations o f  substrate  glucagon has no s ig n i f ic a n t  e f f e c t  

on glucose production (Ross e t  a l . ,  1967; Exton and Park, 1968; I 969) .  

The e f f e c t  o f  glucagon on gluconeogenesis is mediated through changes 

in the concentration  o f  c y c l ic  AMP leading to a decrease in 

phosphofructokinase (Van Schaftingen e t  a l . ,  I 98 I )  and an increase  

in fructose 1,6-bisphosphatase (Van Schaftingen and Hers, I 98 I )  

a c t i v i t y  as the re s u l t  o f  a lowering o f  the fruc tose  2 ,6-bisphosphate  

concentration In the l i v e r  (Van Schaftingen ^  , I 98O ). Fructose

a t  low concentration e le v a te s ' hepatocyte Fru 2 ,6 -? 2  but the leve l  

o f  the e f fe c to r  is depleted a t  high concentrations o f  the sugar 

(D.R. Davies, unpublished). This could exp la in  the apparent d is ­

crepancy between the e f f e c t  o f  glucagon a t  d i f f e r e n t  concentrations  

o f  fru c to se .

Perfusion o f  r a t  l i v e r  from fed animals w ith  physio log ica l con­

cen tra t ions  o f  fructose leads to a s ig n i f ic a n t  lowering o f  glucose in 

the perfusate  and a concomitant increase in l i v e r  glycogen (Topping and 

Mayes, 1976). A reduction in glucose concentration has a lso  been 

reported in the hepatic  venous blood o f  ra ts  absorbing a fruc tose  meal 

(Topping and Mayes, 1971). Fructose is known to  cause an increase in 

hepatic  glucose 6-phosphate concentration  (Wal1i e t  a l . , 1975; M i l l e r ,

1978) .  This may a c t iv a te  glycogen synthetase and in h ib i t  phosphorylase

(Hers e t  à l . ,  1974) which may account fo r  the  Increase in glycogen• . ■ ■ - . ^
deposition observed by Topping and Mayes (1976 ).

Perfusion o f  r a t  l i v e r  by fruc tose  has been reported to  re s u l t  

in a t ra n s ie n t  increase in phosphorylase 2  a c t i v i t y  followed by an 

in a c t iv a t io n  o f  the enzyme (Wal 1 i e_t ,1975; Jakob, 1976) . Van den 

Berghe e t  a l . ,  (1973) have a lso  reported an in a c t iv a t io n  o f  phosphorylase 

in mouse l i v e r  when fructose  is administered in t r a p e r i to n e a l ly .  The 

a c t iv a t io n  o f  phosphorylase b y  fruc tose  is in co n tras t w ith  the w idely  

held b e l ie f  th a t  the ketose is a good precursor o f  glycogen. M i l l e r  

( 1978) has provided evidence th a t  the a c t iv a t io n  o f  phosphorylase by
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fructose involves a c y c l ic  AMP-dependent mechanism, since perfusion

o f  l i v e r  w ith  fructose  increases c y c l ic  AMP concentration w ith in  the

c e l l s  and a ls o  inc reases  c y c l i c  AMP-dependent p r o te in  k in a s e .  However,

very high leve ls  o f  the ketose were used by th is  author. Van der

Werve and Hers (1 979 ),  however, were unable to demonstrate any change

in phosphorylase kinase o r  h is tone kinase a c t i v i t y  in iso la ted

hepatocytes in response to the sugar. They c o rre la te d  the increase

in  phosphory lase  ^  to  the  decreased c o n c e n t ra t io n  o f  ATP, s in c e  the

a c t iv a t io n  o f  phosphorylase was a lso observed w ith  o th e r  ATP - _ ------

dep let ing  agents such as g ly c e ro l ,  tagatose and glucose. The l a t t e r

e f f e c t  was only observed when hexokinase was added. They suggest a

mechanism f o r  the  a c t i v a t i o n  o f  phospho ry lase  in v o lv in g  a decrease in
2+the  le v e l  o f  ATP-Mg, r e s u l t i n g  in  a change in  the  r a t i o  o f  Mg /

ATP-Mg which  w o u ld ,  in  t u r n ,  s t im u la te  phosphory lase  k in a se  and thus 

in c re ase  the  co n ve rs io n  o f  phospho ry lase  ^  to  phosphory lase  The 

i n a c t i v a t i o n  o f  phospho ry lase  observed a t  lo n g e r  t im e  i n t e r v a l s  is  

re p o r te d  to  be r e la te d  to  the  lo w e r in g  o f  c y c l i c  AMP by f r u c to s e  

( Van den Berghe £ t  ^ . ,  1973).

Fructose 1-phosphate has a lso  been reported to in h ib i t  p u r i f ie d  

phosphorylase ^  so th a t  a t  concentrations o f  lOmM fruc tose  1-phosphate  

and 1 .5mM P. ,  conditions which are  l i k e l y  to occur in hepatocytes  

subjected to a fructose  load, the enzyme may be in h ib i te d  by approxi­

mately 70% (Van den Berghe , 1973).

I t  has been reported th a t  glycogen is synthesised from fructose  

(20mM) a t  high rates by hepatocytes from fed o r  I6 h - fa s te d  ra ts ,  but 

not in c e l ls  from 40h-starved animals (Seglen, 1974). There is a 

strong synergism between the e f fe c ts  o f  fructose and o f  glucose on 

glycogen synthesis . Glycogen synthase a c t i v i t y  has been reported to  

be increased fo llow ing  fructose a d m in is tra t io n  in v ivo  (Van den 

Berghe _et £ l^ . , 1973; Hue £ t  , 1973; Thurston ejt ^ .  , 1974) and in 

perfused l i v e r  (W a ll i  £]_ ., 1975; Whitton and Hems, 1975). The 

e f f e c t  o f  fruc tose  on glycogen synthase is thought to be secondary 

to the e f f e c t  on phosphorylase, since i t  has been shown th a t  increasing  

glucose concentration from 5.5mM to 55mM causes a sequentia l in a c t iv a ­

t io n  o f  glycogen phosphorylase/and a c t iv a t io n  o f  glycogen synthase in  

perfused l i v e r  (Hue e t  1975). The explanation  fo r  th is  is th a t  

glucose binds to phosphorylase a and, as a r e s u l t ,  there is a rapid
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conversion to phosphorylase ^  by phosphorylase phosphatase (Hers 

e^ a j [ . , 1977) .  Synthetase phosphatase, which a c t iv a te s  glycogen 

synthase, is  s tro n g ly  in h ib i te d  by phosphorylase thus, the  

conversion o f  phosphorylase £  to phosphorylase ^  re su lts  in an 

a c t iv a t io n  o f  glycogen synthase. However, W a ll i  ejt aj_., (1975) 

found th a t  fructose  increased phosphorylase a w ithout a concomitant 

decrease in glycogen synthase, although the decrease in phosphorylase _a 

observed a f t e r  a longer perfusion period resu lted  in an increase in  

glycogen synthase.

i t  has been shown th a t  la c ta te  formation from fructose  is 

s e v e ra l - fo ld  fa s te r  than from glucose in l i v e r  s l ic e s  (Renold e t  a l . ,  

1956; Thieden and Lundquist, 1967) in the perfused l i v e r  (Exton and 

Park, 1967) and in iso la te d  l i v e r  c e l ls  (Seglen, 1974; Davies and 

Mapungwana, unpublished). This d if fe re n c e  is explained by the h igher  

a c t i v i t y  o f  fruc tok inase  in comparison wi t h the glucose phosphorylating  

capacity  o f  hepatic  glucokinase (Adelman e^ ^ . , 1967; Aminoff, 1974) 

and the fa c t  th a t  f ru c to ly s is  bypasses the regu la to ry  enzymes, 

glucokinase and phosphofructokinase (A rinze  and Rowley, 1975). I n '  

ad d it io n  pyruvate kinase is s tim ulated by fructose 1-phosphate 

(Eggleston and Woods, 1970) and by the dep let ion  o f  ATP. Fasting has 

been shown to decrease the formation o f  la c ta te  from fructose (Seglen, 

1974; S e s to f t ,  1974a). I t  has a lso  been shown th a t ,  under anaerobic  

conditions g ly c o ly s is  from fructose  is s tim ulated  in hepatocytes  

(the  Pasteur e f f e c t )  and gluconeogenesis and glycogen synthesis is 

is s trong ly  in h ib i te d  (Seglen, 1974). A dm in is tra t ion  o f  fruc tose  in 

humans has been shown to cause considerable increase in blood l a c t i c  

a c id ,  accompanied by a f a l l  in pH (Bergstrom e t  a l . ,  I 968) .  I t  has 

been shown th a t  perfusion o f  l i v e r  w ith  8.9mM fructose  resu lted  in  

a net la c ta te  production a t  low and high concentrations o f  non­

es t e r i f i e d  f a t t y  acid  but a net uptake occurred a t  physio log ical  

fruc tose  lev e ls  (Laker and Mayes, 1979).

E. A ntike togen ic  e f f e c t  o f  fructose

The metabolism o f  long-chain f a t t y  acid by the l i v e r  is a 

complex process which is dependent on the hormonal and (tWjkafy condi t io n  

o f  the animal. The blood-borne f a t t y  acids are  converted to the
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acyl CoA d e r iv a t iv e  by the cytoplasmic acyl CoA synthase 

(W illiam son, 1979). The fa te  o f  the long-chain acyl CoA is e i t h e r  

e s t é r i f i c a t io n  w ith  sn -g ly ce ro l 3-phosphate to form t r ia c y lg ly c e r o l  

(McGarry and Foste r ,  1980a) o r ^ - o x id a t io n  to acety l CoA. The l a t t e r  

product may be used fo r  the generation o f  ketone bodies o r  fo r  the 

synthesis o f  c i t r a t e  which, in tu rn ,  can e i t h e r  be exported from 

the mitochondria and used fo r  f a t t y  acid synthesis o r  oxid ised to 

CO2 v ia  the t r ic a r b o x y l ic  acid  cyc le  (F ig .  4 ) .

3 -O x idat ion  involves the successive o x id a t iv e  removal o f  acety l  

u n it  as acety l CoA from long-chain f a t t y  ac ids . The c a r n i t in e -  

dependent t ra n s fe r  o f  f a t t y  acid across the m itochondrial membrane 

is  estab lished  as an o b l ig a to ry  step in the 3 -o x id a t io n  o f  long-chain  

f a t t y  ac id .  The formation o f  a c y lc a rn i t in e  and the subsequent 

o x id at io n  may be regulated in the in ta c t  c e l l  (Bremer e t  a l . ,  1978) 

but present evidence ind icates  th a t i t  is  the mitochondrial uptake 

o f f a t t y  acid which is the most important fa c to r  (W illiam son, 1979).

The reg u la t io n  o f  the fa te  o f  acyl CoA appears to be under 

hormonal c o n tro l .  In the fed animal e s t é r i f i c a t io n  predominates and 

o x id at io n  is shut down. In th is  case the major source o f  m itochondrial  

acety l CoA may be pyruvate. In the fasted  s ta te  lipogenesis  and 

t r ia c y lg ly c e ro l  synthesis are  suppressed and ketone body formation  

is increased. The u p t a k e u t i l i s a t i o n  o f  c i t r a t e  fo r  o x id a t io n  is  

v i r t u a l l y  unaffected by d ie ta ry  s ta tu s .  These changes have been 

ascribed to a l te r a t io n s  in the plasma g lu cag o n /in su lin  r a t io  

(McGarry and F oster , 1980a; Zammit, I 9 8 I ) .

The rec ip rocal re la t io n s h ip  between o x id a t io n  and e s t é r i f i c a t io n  

o f  f re e  f a t t y  acid  taken up by the l i v e r  has been w ell  demonstrated 

(McGarry and Foste r , 1971a; Topping and Mayes, 1972; McGarry e t  a l . ,

1975) .  The channelling o f  f a t t y  acids through th is  m etabolic  branch 

p o in t may be governed by the e s t e r i fy in g  capac ity  o f  the l i v e r  which, 

in tu rn , is thought to be dependent upon the avai lab i lity o f  sn- 

glycero l 3-phosphate ( F r i t z ,  I 96 I ;  Wieland and Matschinsky, 1962;

Tzur e t  a l . ,  1964; Mayes and F e l ts ,  1967). Accord ing ly , the enhanced 

ra te  o f  hapatic  f a t t y  acid ox idat ion  seen in in s u l in -d e f ic ie n t  s ta tes  

is postulated to be secondary to a diminished e s t é r i f i c a t io n  capacity
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CAT I  and CAT I I  re fe r  to c a rn i t in e  acyl tran s fe rase  I  and 

I I  re s p e c t iv e ly .  Scheme as defined by (Zammit, I 98 I ) .
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a
re s u lt in g  f r o m /fa l l  in sn -g lycero l 3-phosphate le v e ls .  However, i t  

is not estab lished  th a t  f lu c tu a t io n s  in the sn -g lycero l 3-phosphate  

concentration can in fluence  the ra te  o f  f a t t y  acid o x id at io n  

(Wi 11 iamson ^  £ l^ . , 1969; McGarry and F oster , 1971a, C hris tiansen ,

1979), but recent evidence by Zammit (1981) shows th a t  sn-g lycero l 3“ 

phosphate lev e ls  increase in p a r a l le l  to to ta l  ketone body concen­

t r a t io n .  In a d d it io n .  Debeer e_t £ l_ . , (1981) have found th a t  hepatocyte  

sn-g lycero l 3-phosphate lev e ls  may re g u la te  p a lm ita te  o x id a t io n  v ia  

changes in e s t é r i f i c a t io n  rates but there  is no cla im  th a t  sn -g lycero l  

3-phosphate a f fe c ts  o x id a t io n  d i r e c t l y .  I t  is suggested (Zammit, 1981) 

th a t  the raised sn -g lycero l 3-phosphate concentration is the r e s u l t  

o f  increased d e l iv e ry  o f  g lycero l to the l i v e r  from the adipose t issue  

under ketogenic conditions and th a t  sn -g lycero l 3-phosphate a v a i l a b i l i t y  

is u n l ik e ly  to l i m i t  e s t é r i f i c a t io n .

The a d d it io n  o f  fructose  to iso la te d  l i v e r  prepara tion  from 

fasted animals decreases the formation o f  ketone bodies (McGarry and 

Foster, 1971a; Ontko, 1972; S e s to f t ,  1974c). Such an an tike to g en ic  

e f f e c t  has a lso been described in man, fo llow ing  intravenous in fus ion  

o f  fructose (D ie tze  e t  a l . ,  1978). The an tike to g en ic  e f f e c t  o f  

fructose is most probably due to the in h ib i t io n  o f  3 -o x id a t io n  o f  

f a t t y  acids and an enhanced u t i l i s a t i o n  o f  acety l CoA fo r  l ipogenes is .  

From in v i t r o  experiments i t  has been concluded th a t the e f f e c t  o f  

fructose can be a t t r ib u te d  to the accumulation o f  sn -g lycero l 3-phosphate 

re s u lt in g  in increased e s t é r i f i c a t io n  and thus a decreased amount o f  

f re e  f a t t y  acid  a v a i la b le  fo r  3 -o x id a t io n .  On the o ther hand, an 

increased a c t i v i t y  o f  the c i t r i c  acid cyc le  has been postulated to  

be responsible (McGarry and Fo s te r ,  1971b). Ontko (1972) found th a t  

fructose e levated  00^ production from p a lm ita te  by hepatocytes a t  low 

fructose concentration but Topping and Mayes (1 972 ),  using 

physio log ical le v e ls  o f  the ketose, found in h ib i t io n  o f  3 -o x id a t io n  to 

CO^. The increased a c t i v i t y  o f  the c i t r i c  acid cycle in response to  

fructose n^y be associated w ith  the f a l l ! i n  ATP concentration in the 

l i v e r .  A more recent study o f  C hris tiansen (1979) using hepatocytes  

trea ted  w ith  glucagon revealed th a t  fru c to s e ,  dihydroxyacetone, g ly c e ro l ,  

s o rb ito l  and la c ta te  were capable o f ; a s im i la r  an tike tog en ic  e f f e c t  

despite  la rge  d iffe ren ces  in the accumulationof sn -g lycero l 3-phosphate  

in response to each o f  these s u b stra tes . I t  is  suggested th a t  the
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an tike to g en ic  e f fe c ts  o f  these substrates may be exerted v ia  changes 

in the le v e ls  o f  long-chain acyl CoA and malonyl CoA.

Prager and Ontko (1976) have inves tiga ted  the e f f e c t  o f  fructose  

w ith  a c e l l - f r e e  system u t i l i s i n g  in ta c t  mitochondria and they have 

found th a t  fructose in h ib i ts  a step in the 3 -o x id a t io n  sequence since  

palm itoyl c a r n i t in e  o x id a t io n  is in h ib i te d  s u b s ta n t ia l ly ,  an e f f e c t  

which is independent o f  changes in e s t é r i f i c a t io n  since the microsomes 

were removed in the procedures.

I I .  HEPATIC LIPOGENESIS

The de novo synthesis o f  f a t t y  acids in the l i v e r  involves the 

conversion o f  acety l CoA to acyl CoA in the cytosol o f  the hepatocytes. 

The i n i t i a l  step catalysed by acety l CoA carboxylase is the carboxyla­

t io n  o f  acety l C6A to  malonyl CoA (Vo1pe and Vagelos, 1976). The 

synthesis o f  the acyl CoA is catalysed by the f a t t y  acid synthetase  

complex which u t i l i s e s  acety l CoA, malonyl CoA and NADPH as s u b stra tes .  

The cytoplasmic acety l CoA required fo r  lipogenesis is thought to be 

derived from c i t r a t e  by the ac t ion  o f  ATP c i t r a t e  lyase. The conversion, 

o f  pyruvate to f a t t y  acid involves the mitochondrial uptake o f  the  

former and i t s  conversion to acety l CoA in the mitochondria by 

pyruvate dehydrogenase. Acetyl CoA combines w ith  oxa loaceta te  in the  

mitochondria by action  o f  c i t r a t e  synthase and the c i t r a t e  which leaves 

the mitochondria is u t i l i s e d  fo r  the resynthesis o f  ace ty l CoA in the 

cytoplasm (Bhaduri and S rere , 1963).

A. Key enzymes o f  f a t t y  acid synthesis

1. Acetyl CoA Carboxylase ( E .C .6 .4 .1 ; 2 )  o r  : Acetyl CoA -  CO2 

Ligase (ADP forming)

The i n i t i a l  step in the biosynthesis o f  long-chain f a t t y  acids is 

catalysed by acety l CoA carboxylase. Malonyl CoA is formed by 

carboxylation  o f  acety l CoA. This is g en era lly  regarded as a ra te  

l im i t in g  step in de novo f a t t y  acid b iosynthes is . Acetyl CoA
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carboxylase c a ta ly s e s . the b io tin -dependent carboxy lation  o f  ace ty l CoA 

to form malonyl CoA in a two-stage reac tio n :

Mg^"^
ATP + HCO '  + b io t in  -  E --------- >  CO" -  b io t in  -  E + ADP + Pi

BC

CO^ -  b io t in  -  E + CH.CO -  SCoA ------->"00CCH_00 -  SCoA + b i o t i n - E
^  ̂ TC

Acetyl CoA carboxylase is an a l l o s t e r i c  enzyme w ith  a b io t in  p ro s th e t ic  

group and consists o f  three  su b -u n its ;  b io t in  carboxylase (BC), b io t in  

carboxy c a r r i e r  p ro te in  (BCCP) and transcarboxylase (TC ). B io t in  . 

carboxylase catalyses the f i r s t  h a l f - r e a c t io n ,  the carboxy lation  o f  

b io t in y l  moiety o f  the BCCP (Volpe and Vagelos, 1976). The trans ­

carboxylase component o f  acety l CoA carboxylase catalyses the re v e rs ib le  

t ra n s fe r  o f  carboxyl group from CO  ̂ -  BCCP to ace ty l CoA to form 

malonyl CoA (A1 berts  e^ a l_., 1971; Guchhal t  e t  a l . ,  1971; Polakis  e t  a l . ,

1974).

The enzyme , e x is ts  in two forms, an in a c t iv e  monomeric f o r m  and 

an a c t iv e  polymeric form (Gregol in ^  » 1968). Evidence from

in v i t r o  studies suggest th a t  r a t  l i v e r  acety l CoA carboxylase is a lso  

regulated by a phosphorylation -  dephosphorylation mechanism and i t  

has been postu la ted  th a t  the phosphorylation o f  the enzyme protomer 

leads to a decrease in enzyme a c t i v i t y  Carlsonand Kim, 1973; Lee and 

Kim, 1977).

Thus the a c t i v i t y  o f  p u r i f ie d  acety l CoA carboxylase depends on 

i t s  s ta te  o f  aggregation. The enzyme from animal tissues requires a 

p re -incu bation  in the presence o f  a  t r ic a r b o x y l ic  a c id ,  notably  c i t r a t e ,  

to reveal the carboxylase a c t i v i t y  (Lane e_t aj_., 1974; W itte rs  e t  a l . ,  

1979a). The c i t r a t e  a c t iv a t io n  o f  the p u r i f ie d  enzyme has been shown 

to be the re s u l t  o f  the polym erisation  o f  the protomer to g ive  a 

c a t a l y t i c a l l y  a c t iv e  filamentous s tru c tu re  (G regolin  e t  a l . ,  1966;

Hashimoto and Numa, 1971; Moss and Lane, 1972; Moss e t  a l . ,  1972;

Lane £ t  al_., 1974; Ashcraf t  £ t  £ l^ ., 1980). However, the physio log ica l  

s ig n if ic a n c e  o f  e f f e c t  o f  c i t r a t e  pre incubation has been somewhat doubt­

fu l since the Ka fo r  c i t r a t e  is 3-4mM which is about 1 0 - fo ld  the leve l  

which occurs in the l i v e r  c e l l .  I t  is thought th a t  the a c t iv a t io n
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induces a conformât Tonal change in the protomer which re su lts  in 

polym erisation  (Lane jet £ l_ . , 1974). Polym erisation is a lso enhanced 

by the presence o f  P . ,  albumin, a pH between 6 .5  “ 7 .0  and a high

enzyme concentra tion , whereas depolymerisation is induced by ATP -  

Mg^* and HCO^, malonyl CoA, f a t t y  acyl CoA and a lk a l in e  pH (Lane e t

1974) .  I t  is g e n era l ly  "accepted th a t  the major e f f e c t  o f  the  

a c t iv a t io n  o f  c i t r a t e  is to increase the the enzyme ra th e r  tl

to change the Km values fo r  the substrate  (Volpe and Vagelos, 1976).

- 5
The Km o f  the carboxylase fo r  acety l CoA is 3 x 10 14, the Km

—T —4fo r  bicarbonate is 6 x 10 H  and fo r  ATP 2 x 10 M under optimum assay

conditions (A lb e rts  and Vagelos, 1972; So ler-A rg i laga aj^., 1978a).

I t  has been reported th a t  physio log ical concentrations o f  CoA 

can a c t iv a te  a p a r t i a l l y  p u r i f ie d  acety l CoA carboxylase from r a t  l i v e r  

but th is  e f f e c t  was lo s t  on fu r th e r  p u r i f ic a t io n  o f  the enzyme. This  

a c t iv a t io n  o f  the p a r t i a l l y  p u r i f ie d  enzyme is accompanied by a lowering  

o f  the Km fo r  acety l CoA from 200 jiM to 4 [iM, the l a t t e r  value is 

closer to the physio log ica l concentration o f  c y to s o l ic  ace ty l CoA.

The a c t iv a t io n  o f  acety l CoA carboxylase by physio log ica l concen­

t ra t io n s  o f  CoA has been shown to be s igm oidal. Below 60 pJ4 CoA there  

is l i t t l e  o r  no a c t iv a t io n  o f  the enzyme, suggesting th a t  small changes 

in the concentration o f  CoA can cause s ig n i f ic a n t  changes in  

carboxylase a c t i v i t y .  These authors have suggested th a t  the binding  

s i t e  fo r  CoA is d i f f e r e n t  from th a t  fo r  c i t r a t e  (Yeh and Kim, I 98O).

Treatment o f  the p u r i f ie d  enzyme w ith  Dowex 1 -  X8 to remove :i 

t ig h tly -bound  c i t r a t e  re su lts  in the re s to ra t io n  o f  the CoA a c t iv a t io n  

o f  the enzyme, in th is  case there is an increase in the V^^^ apparently  

w ithout a change in the Km. The a c t iv a t io n  by CoA is accompanied by 

a polym erisation  o f  the enzyme. The phosphorylated form o f  acety l CoA 

carboxylase does not respond to CoA a c t iv a t io n  a t  a l l  a t  physio log ica l  

concentrations. There appears to be one high a f f i n i t y  binding s i t e  

fo r  CoA per s u b -u n it ,  b inding a t  th is  s i t e  is unaffected by c i t r a t e  

but is in h ib i te d  by pa lm ity l  CoA. Bovine serum albumin and CoA together  

can a c t iv a te  the p a lm ity l CoA in h ib i te d  enzyme (Yen and Kim, I 98O ).

i t  has been claimed th a t acety l CoA carboxylase in l i v e r
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homogenates is a c t iv a te d  by incubation a t  37° in v i t r o  (Swanson e t  a i . ,  

1968; A l l r e d  and Roehrig, 1978). The l a t t e r  workers found th a t  a l i v e r  

prepara tion  obtained by homogenising the t issue  in iso to n ic  manni to 1 

and c e n tr i fu g a t io n  a t  27,000 x g contained an enzyme which was capable  

o f  the ace ty l CoA dependent f ix a t io n  o f  HCO  ̂ in to  an a c id -s ta b le  

product. However, more recent work Davies e t  a l . ,  (1982) has id e n t i f ie d  

the major product o f  such an incubation as a s p a r ta te ,  presumably

formed as the re s u l t  o f  the ac t io n  o f  pyruvate carboxylase and a 

transaminase. The former enzyme has almost id e n t ic a l  substrate  and 

e f fe c to r  requirements as acety l CoA carboxylase except th a t  pyruvate  

is the substrate  fo r  pyruvate carboxylase whereas acety l CoA is an 

a l lo s t e r i c  s t im u la to r .  Davies e t  a l . ,  (1982) have a lso  shown th a t  

s u f f ic ie n t  pyruvate accumulation occurs during homogenisation and 

incubation to account fo r  the enhanced rates o f  carboxy la tion  observed 

by A l l re d  and Roehrig (1978 ).  The observations o f  Davies e t  a l . ,  (1982) 

also  cast doubt on some o f  the recent evidence th a t  acety l CoA carboxy­

lase a c t i v i t y  in iso la te d  hepatocytes is influenced by hormones. Geelen 

e_t aj^., ( 1978b) reported a covariance between acety l CoA carboxylase  

leve l and 1ipogenesis in hepatocytes t re a te d  w ith  in s u lin  and glucagon. 

W itte rs  ^ £ l _ . , (1979a) reported an in h ib i t io n  o f  ace ty l CoA carboxylase  

in iso la ted  hepatocytes by glucagon and a s t im u la t io n  by in s u l in .  

Demonstration o f  these hormonal e f fe c ts  required fo r  is o la t io n  o f  the 

enzyme e x t ra c t  a t  room temperature using a vigorous homogenisation 

technique. S im i la r ly ,  Assimacopolous-Jeannet e t  a l . ,  ( I 9 8 I )  have a lso  

found th a t  in s u lin  and vasopressin increase lipogenesis f^orti H2O and 

the l a t t e r  hormone increases acety l CoA carboxylase a c t i v i t y .  A l l  these 

observations can be simply explained by the f a c t  th a t  these hormones 

a l l  regu la te  g lyco lys is  and thus the leve l o f  pyruvate in the crude 

e x trac ts  which are  used fo r  enzyme assay. I t  is a lso  possib le  th a t  

changes in pyruvate concentration could also account fo r  the d iffe ren ces  

in the ra te  o f  lipogenesis  observed by these authors. In f a c t ,  the  

l a t t e r  group have shown th a t  the s t im u la to ry  e f f e c t  o f  in s u lin  is  

abolished a t  a high concentration o f  pyruvate .

Some e a r ly  reports (Swanson e t  a l . ,  1967) ind icated  th a t  acety l  

CoA carboxylase present in an in a c t iv e  form in a high-speed supernatant  

from r a t  l i v e r  could be s tim ulated  by incubation w ith  try p s in .  In th is  

context Abdel-Halim and P o rte r  ( I 98O) have found a non-d ia lysab le  

fa c to r  in such a preparation  which in h ib i ts  acety l CoA carboxylase.
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This in h ib i t io n  is destroyed by heating and by tryp s in  treatm ent,

suggesting th a t a regu lato ry  p ro te in  is  present in the high-speed

supernatant which modulates the a c t i v i t y  o f  the p ro te in .  This fa c to r

has recen tly  been p u r i f ie d  (Shiao e_t £ l_ . , 1981). These authors have

shown th a t  th is  fa c to r  behaves as a cAMP-independent p ro te in  kinase

th a t  in a c t iv a te s  acety l CoA carboxylase by phosphorylation; th is  kinase
2+has a molecular weight o f  16,000 and i t  requires  ATP and Mg fo r  

a c t i v i t y  (Shiao » 1981).

Hardie and Guy (1980) have a lso described an e f f e c t  o f  tryp s in  on 

the enzyme which resu lts  in p a r t ia l  hydro lys is  o f  the protomer; th is  

treatm ent, however, appeared to have no e f f e c t  on the a c t i v i t y  o f  the 

carboxylase despite  the apparent loss o f  one o f  the s i te s  phosphorylated 

by cAMP-dependent p ro te in  kinase.

A number o f  d i f f e r e n t  candidates fo r  the in h ib i t io n  o f  the enzyme 

in v ivo have been postu la ted . Long-chain f a t t y  acyl CoA th io e s te rs  a t  

micromolar concentrations in h ib i t  the carboxylase from r a t  l i v e r ;  the 

in h ib i t io n  is com petit ive  w ith  respect to c i t r a t e  (B o rtz  and Lynen,

1963; Numa ^ ^ . , 1965a; 1965b; Volpe and Vagelos; 1976). The most 

potent th io e s te rs  are  those o f  the C^^ -  C^g f a t t y  a c id s , such as 

p a lm ity l ,  s te ary l  and o le y l  CoA (Goodridge, 1973b; Goodridge e t  a l . ,

1974; Lunzer e_t , 1977). This in h ib i t io n  is thought to be o f  

physio log ical importance since half-maximal in h ib i t io n  occurs a t  con- 

c e n tra t io n s o f the th io es ters  between 3 and 8 x  10 ^M and the concentration  

o f  acyl CoAs in v ivo is thought to  be 15-140 pH (Greenbaum £ t  £ l^ ., 1971; 

Yeh and Level l i e ,  1971).

I t  has been demonstrated th a t  pa lm itoyl CoA binds t ig h t l y  and 

re v e rs ib ly  to mammalian acety l CoA carboxylase in an equimolar r a t io  to 

completely in h ib i t  the enzyme (Ogiwara e t  a l . ,  1978). The in h ib i t io n  

constant (K i)  is as low as 6nM, about three  orders o f  magnitude sm aller  

than the c r i t i c a l  m ic e l la r  concentration o f  pa lm itoyl CoA. Comparison 

o f  the Ki values fo r  various s tru c tu ra l  analogues o f  pa lm itoyl CoA 

in d ic a te  th a t  3 '-phosphate o f  the CoA moiety and the long-chain acyl 

residue are essen tia l  fo r  the in h ib i t io n  o f  the enzyme (Nikawa e t  a l . ,

1979) .  The in h ib i t io n  is com petit ive  w ith  respect to c i t r a t e  but non­

com petit ive  w ith  respect to acety l CoA, b icarbonate , or ATP (Numa e t  a l . ,  

1965a, 1965b ) .  Regulation o f  acety l CoA carboxylase a c t i v i t y  by
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p a lm ity l  CoA has also been studied in  chicken l i v e r  (Goodridge, 1972).

In the presence o f  bovine serum albumin (25 mg/ml), pa lm ity l CoA (100 yM) 

in h ib i te d  incorporation  o f  c i t r a t e  in to  f a t t y  acids by a 100,000

X g supernatant o f  chicken l i v e r  and in h ib ite d  the a c t i v i t y  o f  acety l  

CoA carboxylase p u r i f ie d  from chicken l i v e r  (Goodridge, 1972). This 

" s p e c i f ic "  in h ib i t io n  o f  acety l CoA carboxylase can be reversed by one 

o f  three ways: (1) increase in concentration o f  albumin, (2) increase  

in concentration o f  c i t r a t e  o r  (3) ad d it io n  o f  (+) -  pa lm ity l c a r n i t in e .  

P a lm ity l c a r n i t in e  may ac t as a s tru c tu ra l  analogue th a t  binds to the 

enzyme a t  the same s i t e  as pa lm ity l CoA but does not in h ib i t  enzymatic 

a c t i v i t y  (Goodridge, 1972).

Malonyl CoA is  a potent in h ib i to r  o f  the avian l i v e r  acety l CoA 

carboxylase (G regolin  e t  a l . ,  1966; Chang £ t  a j [ . , 1967) e x h ib i t in g  a 

Ki o f  about 10 I t  has been estab lished  th a t  the in h ib i t io n  by

malonyl CoA is com petit ive  w ith  respect to both acety l CoA and the 

t r ic a r b o x y l ic  acid a c t iv a to r  (Gregolin  e t  a l . ,  I 966) .  While com petit ive  

in h ib i t io n  by malonyl CoA w ith  respect to acety l CoA is o f  the 

" c la s s ic a l"  type, the com petit ive  re la t io n s h ip  between malonyl CoA and 

i s o c i t r a t e  a f fe c ts  the protomer/polymer eq u il ib r iu m  (Lane ^  £ l_ ., 1974).  

C i t r a t e  and is o c i t r a te  cause a s h i f t  in the e q u il ib r iu m  towards the 

c a t a l y t i c a l l y  a c t iv e  polymeric form and malonyl CoA is known to promote 

depo lym erisa tion■(Gregolin e t  a l . ,  1966; Gregolin e t  a l . ,  I 968) thereby  

s h i f t in g  the eq u il ib r iu m  towards the c a t a ly t i c a l l y  in a c t iv e  form (Lane 

e t  , 1974) .  The capacity  o f  the acety l CoA carboxylase to generate  

malonyl CoA approximately equals the capacity  o f  the f a t t y  acid  

synthetase to  incorporate  malonyl CoA into  long-chain f a t t y  ac ids ,  

suggesting th a t  circumstances may a r is e  in v ivo  when the malonyl CoA 

concentration  would be s u f f ic ie n t  to in h ib i t  acety l CoA carboxylase  

a c t i v i t y  (Chang e t , ‘ 1967) .  The t issu e  malonyl CoA leve l has been 

shown to  f lu c tu a te  in the range 0 .7  -  3 .5  nmol/g wet weight (McGarry 

and F oste r , 1980a). In h ib i t io n  o f  acety l CoA carboxylase by malonyl 

CoA may provide a safeguard against excessive acety l CoA u t i l i s a t i o n  

fo r  malonyl CoA production, thereby providing a f in e  control over the 

f a t t y  acid synthesis (Lane e t  a l . ,  1974). I t  has been shown th a t  the  

c e l l u l a r  content o f  malonyl CoA in hepatocytes from fed ra ts  is lowered 

as the concentration o f  o le a te  in the medium is ra ised and th is  is 

accompanied by a proportional f a l l  in the ra te  o f  endogenous f a t t y  acid
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synthesis (McGarry and Foste r , 1980a). This is most l i k e l y  due to the 

in h ib i t io n  o f  acety l CoA carboxylase by an increase in the in t r a c e l lu la r  

concentra tion  o f  long-chain acyl CoA as described above.

Thus there are  a number o f  regu la to ry  m etab o lite s .which have been 

postu la ted  to contro l the a c t i v i t y  o f  acety l CoA carboxylase in v iv o .

The malonyl CoA content o f  l i v e r  has been reported to change under 

d i f f e r e n t  d ie ta ry  regimes. Values o f  about 4nmol/g in fasted o r  

d ia b e t ic  animals, and a leve l o f  15 nmol/g in ra ts  fed on a high 

carbohydrate l i p i d - f r e e  d ie t  have been found (McGarry £ t  £ l_ . , 1978).

These authors suggest a cen tra l ro le  fo r  malonyl CoA in the c o -ord ina tion  

o f  f a t t y  acid  synthesis and 3 -o x id atio n  in iso la ted  hepatocytes.

Glucagon has an acute e f f e c t  on hepatocyte f a t t y  acid metabolism  

causing a switch from synthesis to o x id a t io n .  The high leve l o f  

malonyl CoA in h ib i ts  m itochondrial c a rn i t in e  acyl tran s fe ra se , thus 

in h ib i t in g  f a t t y  acid o x id a t io n .  The e f f e c t  o f  glucagon is ,  th e re fo re ,  

thought to be exerted a t  two le v e ls ;  f i r s t l y ,  the regu la tion  o f  

g ly c o ly s is  and, secondly, by p a r t ia l  in h ib i t io n  o f  acety l CoA 

carboxylase. The ra t io n a le  behind th is  conclusion is th a t  the in h ib i t io n  

o f  lipogenesis  by the hormone could be la rg e ly ,  but not completely, 

o f f s e t  by a d d it io n  o f  pyruvate and la c ta te .  A d d i t io n a l ly ,  glucagon 

in h ib i ts  the generation o f  c i t r a t e  and malonyl CoA in c e l ls  from fed 

animals. However, a d d it io n  o f  la c ta te  and pyruvate in the presence o f  

glucagon restores  the c e l lu la r  c i t r a t e  l e v e l ,  but only p a r t i a l l y  

restores malonyl CoA concentration . This is in te rp re ted  as a d i r e c t  

e f f e c t  o f  the hormone on acety l CoA carboxylase o r ,  p o ss ib ly , on 

c i t r a t e  cleavage enzyme (McGarry e t  al_., 1978).

Watkins e t  a l . ,  (1977) found th a t glucagon in h ib ite d  f a t t y  acid  

synthesis by iso la te d  chick hepatocytes w ithout an apparent change in 

acety l CoA carboxylase a c t i v i t y .  This in h ib i t io n  was ascribed to the 

decrease in c y to s o l ic  c i t r a t e  a f t e r  hormone treatm ent. Cook e t  a l . ,

( 1977) were a lso  unable to show any e f f e c t  o f  the glucagon administered  

in v ivo  on acety l CoA carboxylase a c t i v i t y ,  although the hepatic  

malonyl CoA concentration was reduced by 70% and the long-chain acyl CoA 

content was only  s l ig h t ly  e levated .

On the o ther hand. W itte rs  £ t  a j [ . , (  1979a) and Geelen e t  £ l_ . ,
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( 1978b) have claimed th a t  In s u lin  s tim ulates  and glucagon in h ib i ts  

ace ty l CoA carboxylase in iso la ted  hepatocytes, and Assimacopolous- 

Jeannet e t  a l . ,  ( I 9 8 I )  have reported a p o s it iv e  e f fe c t  o f  vasopressin  

on the enzyme, i t  is postulated th a t  the e f f e c t  o f  the hormones on 

ace ty l  CoA carboxylase is mediated v ia  a p ro te in  kinase and th a t  the 

enzyme is c o n tro l le d  by a phosphorylation/dephosphorylation mechanism 

(Carlson and Kim, 1973; 1974). The phosphorylation and in a c t iv a t io n  

o f  the carboxylase stim ulated by physio log ical concentrations o f  AMP 

and the degree o f  enzyme phosphorylation is re la te d  to the energy 

change. Maximum phosphorylation and in a c t iv a t io n  occurred in the 

presence o f  1.6  mM ATP and 2 .4  mM AMP ( Y e h ^ £ l _ . ,  I 98O)

Pekala ^  _al_., (1978) have reported a cAMP independent in c o r-  
32poration  o f  P. in to  acety l CoA carboxylase by chick l i v e r  c e l ls .

The f u l l y  phosphorylated enzyme appears to be f u l l y  a c t iv e  and they 

suggest th a t  i t  is the dephosphorylated form which is in a c t iv e .  This 

is in c o n tra d ic t io n  to the more recent reports by Yeh e t  a l . ,  ( I 98O) 

and Shiao e t  a l . ,  ( I 98 I ) .  The l a t t e r  group have provided evidence fo r  

the presence in r a t  l i v e r  o f  a cAMP-independent kinase th a t  in a c t iv a te s  

acety l CoA carboxylase by phosphorylation and also a phosphoprotein- 

phosphatase which dephosphorylates the enzyme and regenerates the 

carboxylase a c t i v i t y .  A l l  three enzymes are separable.

Acetyl CoA carboxylase in iso la ted  hepatocytes is known to be 

phosphoryl ated in response to glucagon (Wi t te rs  ejt aj_., 1979a; W i t te rs ,  

1981) but there  is no convincing evidence that th is  leads to a decrease 

in enzyme a c t i v i t y ,  although a number o f  reports have appeared which 

claim  to  observe changes in response to the hormone (W itte rs  e t  a l . ,  

1979b; Geelen e t  a l . ,  1978b; Assimacopolous-Jeannet e t  a l . ,  I 98 I )

In s u lin  causes a small increase in phosphorylation o f  acety l CoA 

carboxylase, an e f f e c t  which is a d d it iv e  to th a t o f  glucagon and 

independent o f  cAMP. The e f f e c t  o f  in s u lin  on enzyme a c t iv i t y  was not,  

however, examined (W it te rs ,  I 98 I ) .

Thus, most o f  the evidence so fa r  points to a reg u la t io n  o f  

ace ty l CoA carboxylase by various phosphorylatioryÜephosphory 1 a t io n  

mechanisms which, a l l i e d  to changes in e f fe c to rs ,  could change rates  

o f  lipogenesis in response to hormones. There is no d ire c t  conclusive
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evidence fo r  the sh ort-term  regu la tion  o f  the l i v e r  enzyme a c t i v i t y  

by hormones. However, the enzyme from mammary gland does appear to  

be in a c t iv a te d  by a cAMP-dependent p ro te in  kinase (Hardie and Guy,

1980) and Brownsey e_t aj_., ( I 98 I )  have reported evidence fo r  the 

phosphorylation and a c t iv a t io n  o f  adipose acetyl CoA carboxylas® by a 

plasma membrane-associated, cAMP-independent k inase. I t  is postu la ted  

th a t  in s u l in  may reg u la te  th is  k inase.

The a c t i v i t y  o f  acety l CoA carboxylase is enhanced by a f a t t y  

acid  and acyl CoA binding p ro te in  (FABP) from ra t  l i v e r  c y to so l,  which 

overcomes the in h ib i t io n  o f  the enzyme by pa lm ity l CoA. This discovery  

led to  the theory th a t  FABP may p a r t ic ip a te  in the short-term  reg u la tio n  

o f  lipogenesis  (Lunzer £ t ^ . ,  1977).

The hypotr ig lyceridaem ic  agent c lo f ib r a t e ,  when given to ra ts  

increases the concentration o f  FABP in the l i v e r  cytosol by tw o -fo ld .  

This can be c o rre la te d  to an increase in the uptake o f  fre e  f a t t y  acid  

by perfused l iv e r s  from c lo f ib r a t e - t r e a te d  ra ts .  However, there  has 

been no evidence fo r  a change in the ra te  o f  e s t é r i f i c a t io n  o f  f re e  

f a t t y  acid  fo llow ing  drug treatm ent (Renaud ^  _al .̂, 1978). The 

3 -o x id a t io n  capacity  o f  mitochondria has been reported to be enhanced 

by c lo f ib r a t e  (Lazarow and De Duve, 1976). Thus, i t  has been suggested 

th a t  FABP plays an important p a r t  in the uptake and metabolism o f  f re e  

f a t t y  acid  in the l i v e r .

I t  has been demonstrated th a t  the levels  o f  hepatic  acety l CoA 

carboxylase and f a t t y  acid  synthetase are a ffec ted  by d i f f e r e n t  

n u t r i t io n a l  fa c to rs .  I t  has been shown th a t ra t  l i v e r  acety l CoA 

carboxylase a c t i v i t y  increases a t  the time o f  weaning (Lockwood e t  a l . ,  

1970) .  This increase has been re la te d  to a change from a high f a t  to 

a high carbohydrate d ie t .

A decrease in enzyme a c t iv i t y  has been found to occur in fasted  

ra ts  (Numa e t  , 1961; Bortz  and Lynen, 1963). A c t iv i t y  o f  acety l CoA 

carboxylase is known to increase on re -feed ing  the fasted  animals w ith  

a high-carbohydrate  d ie t  (Goodridge, 1973a; Craig e t  a l . ,  1972; Gibson 

£ t  £ l^ .,  1972) .  The rates o f  both synthesis and degradation o f  acety l CoA 

carboxylase are a l te re d  by the n u t r i t io n a l  and hormonal s ta tes  o f  the
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animal (Nakanishi and Numa, 1970). These authors have shown th a t  

changes in the enzyme a c t i v i t y  were accompanied by proportional changes 

in the amount o f  immunochemically-reactive p ro te in .  The r e la t iv e  rates  

o f  synthesis o f  acety l CoA/'carboxyl as e as measured by the incorporation  

o f  [^h] leuc ine  were decreased 1.9 and 1 .7  fo ld  by fa s t in g  and in  

d ia b e tes , re s p e c t iv e ly .  However, the ra te  o f  enzyme degradation is the 

same in normal, refed and d ia b e t ic  ra ts  ( h a l f - l i f e  5 9h ) , but is 

acce le ra ted  in fasted rats ( h a l f - l i f e  31h ) .  They suggested th a t the 

former animals are in a steady s ta te ,  whereas the l a t t e r  are ad justing  

to a new environment and th is  adjustment resu lts  in acce lerated  enzyme 

degradation . A s p e c i f ic  polysome f ra c t io n  which is involved In the  

synthesis o f  l i v e r  acety l CoA carboxylase has been id e n t i f ie d  

(Nakanishi e t  a l . ,  1976; Tanabe e^ a_I_., 1976). These authors have 

shown th a t  the binding o f  -  a n t i -a c e ty l  CoA carboxylase to the

is o la te d  polysomes from fasted ra ts  is tw o-fo ld  lower than to polysomes 

from normal animals, whereas th is  binding is fo u r - fo ld  higher when the  

polysomes are iso la ted  from l i v e r  o f  a re -fed  r a t .  Thus, the hepatic  

content o f  acety l CoA carboxylase synthesising polysomes is c lo se ly  

c o rre la te d  to changes in acety l CoA carboxylase synthesis due to d i f f e r e n t  

n u t r i t io n a l  s ta te s ;  the t ra n s la t io n a l  process is not g re a t ly  a f fe c te d .

A number o f  hormonal fac to rs  have been im plicated in the long-term  

re g u la t io n  o f  the acety l CoA carboxylase content o f  r a t  l i v e r .  I t  has 

been suggested th a t  in s u lin  s tim ulates  synthesis o f  the enzyme and , ’ 

glucagon prevents the synthesis induced by carbohydrate feeding (Volpe  

and Vagelos, 1976).

2. F a tty  acid synthetase '

In the presence o f  NADPH, f a t t y  acid synthetase catalyses the  

form ation o f  f a t t y  acid from acety l CoA and malonyl CoA. This cytoplasmic  

enzymes has been resolved in to  seven subunits , each w ith  a separate  

enzymic c a p a b i l i t y :
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1.

2.
>.
4.

5.

6 . 
7.

Acetyl CoA ACP transacylase  

Malonyl CoA ACP tran^cylase  

3 -Ketoacyl ACP synthase 

3 -Ketoacyl ACP reductase 

3 -Hydroxybutyryl ACP dehydrase 

Enoyl ACP reductase  

F a tty  acyl -  S ACP th ioesterase

The fo l lo w in g  reactions catalysed by the subunits are  as fo llow s:

Acetyl -  S -  ACP +  CoA -  SH

Malonyl -  S -  ACP + CoA -  SH

Acetoacetyl -  S -  ACP +

CO  ̂ + ACP -  SH

D (- )  -  3 -  Hydroxybutyryl -  

S -  ACP + NADP+

Crotonyl -  S -  ACP 4- H2O

Butyryl -  S -  ACP 4r NADP*

f a t t y  acid + ACP -  SH

Acetyl : -  S -  CoA + ACP -  SH — !—>

Malonyl -  S -  CoA + ACP -  SH — 2 - »

Acetyl -  S -  ACP + malonyl -  S -  ACP — >

A cetoacety l -  S -  ACP +  NADPH + H^

D ( - )  -  3 -  Hydroxybutyryl -  S -  ACP — >

Crotonyl -  S -  ACP +  NADPH f  H"̂  — ^

F a tty  acyl -  S -  ACP + H2O — >

(ACP 2= Acyl c a r r ie r  p r o te in ) .

The major f a t t y  acid produced is p a lm ita te ,"T h is  is thought to 

be a consequence o f  the high s p e c i f ic i t y  o f  the th ioesterase  fo r  16 and 

18 carbon acyl CoA d e r iv a t iv e s  compared to the low s p e c i f ic i t y  fo r  the 

s h o rte r  chain d e r iv a t iv e s  ( Kumar e t  a l . ,  1972). The molecular weight 

o f  r a t  l i v e r  f a t t y  acid synthetase is about 500,000 (Kumar e t  a l . ,  1972)

Hepatic  f a t t y  acid synthetase e xh ib its  Km values fo r  ace ty l CoA 

o f  4 .4  X 10"^M fo r  malonyl CoA o f  10 x lO’ S  (Nepokroef f  e t  £ l_ . , 1975) 

and f o r  NADPH the Km is 4 .0  x 10"^M(Volpe and Kishimoto, 1972). I t  has 

been found th a t  both acety l CoA and malonyl CoA co m p etit ive ly  in h ib i t  

the enzyme a c t i v i t y  a t  high concentrations (K a tiya r  and P o r te r ,  1974).
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R ecently , i t  has been shown th a t chicken l i v e r  f a t t y  acid synthetase  

is  i r r e v e r s ib ly  in activa ted  by malonyl CoA and by acety l CoA plus 

malonyl CoA (Srin ivasan and Kumar, I 98 I ) .  These authors have demon­

s tra te d  th a t  the ra te  o f  in a c t iv a t io n  is c o n tro lled  by the conformational 

s ta te  o f  the enzyme. NADP* protects  the enzyme against in a c t iv a t io n  

by ace ty l  CoA and malonyl CoA. In a c t iv a t io n  resu lts  from the enhanced 

cova lent binding o f  malonyl CoA groups a t  m u lt ip le  s ite s  on the enzyme 

in a d d it io n  to those required fo r  f a t t y  acid synthesis . The l i v e r  

enzyme is a lso  com petit ive ly  in h ib ite d  by pa lm itoyl CoA and long-chain  

f re e  f a t t y  acids (Knochè e t  a l . ,  1973). Bovine serum albumin protects  

f a t t y  acid synthetase from the e f fe c t  o f  the in h ib i to r  (Knoche e t  a l . ,

1973). The in h ib i t io n  occurs a t  a palm itoyl CoA concentration o f  

20 X 10 S i CHsu e j t ^ . , 1969) .  Other authors b e lieve  th a t the  

in h ib i t io n  o f  f a t t y  acid synthetase by long-chain acyl CoA is non­

s p e c i f ic  and is due to the detergent properties  o f  the compound (Dorsey 

and P o r te r ,  I 968) .

i t  has been demonstrated th a t  r a t  l i v e r  f a t t y  acid synthetase is  

in a c t iv a te d  by the substrate  analogue chloroacetyl CoA. The o v e ra l l  loss 

o f  enzyme a c t i v i t y  resu lts  from the in h ib i t io n  o f  condensation-COg 

exchange a c t i v i t y  o f  the enzyme complex (Kumar e t  I 98O ). I t  is

suggested th a t  the data is consistent w ith  a proposition  th a t  f a t t y  acid  

synthetase consists o f  two fu n c t io n a l ly  id e n t ica l  subunits o f  250,000  

m olecular weight.

I t  has been suggested th a t  CoA is required fo r  the term ination  

o f  the f a t t y  acid synthetase reaction  (Linn and S rere , I 98O). These 

authors have shown th a t  h ighly  p u r i f ie d  ra t  l i v e r  f a t t y  acid synthetase  

is completely  in h ib ite d  when assayed in the presence o f  a co-enzyme A -  

d ep le t in g  system such as th a t  catalysed by phosphotransacetylase, 

ace ty l CoA synthetase, or ATP c i t r a t e  lyase and the a d d it io n  o f  f re e  

CoA causes a reversal o f  th is  in h ib i t io n  (Linn and Srere , I 98O; Linn 

£ t  a]^., I 98O; Sedgwick and Smith, I 98 I ) .  In the absence o f  CoA, the 

ra te  o f  e longation  o f  acyl moieties on both n a tive  f a t t y  acid  synthetase  

and f a t t y  acid  synthetase lacking the chain -term inating  th ioes terase  I  

component was reduced 100-fo ld  and the ad d it ion  o f  CoA promoted 

e lo ngation  o f  acyl -  S -  multi enzyme th io e s te r  w ithout a f fe c t in g  the
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re lease  from the enzyme (Sedgwick and Smith, I 9 8 I ) .

The enzyme a c t i v i t y  appears to be stim ulated by Pi and various  

organ ic  phosphates (Wakil e t  a l . ,  1957). The most e f f e c t iv e  s t im u la to r  

is  Fru 1 ,6  -  P2 but the leve ls  o f  th is  e f fe c to r  required to produce a 

s ig n i f ic a n t  a c t iv a t io n  are f a r  above the physio log ical le v e ls .  K in e t ic  

studies  show th a t  the e f f e c t  o f  the Fru 1 ,6  -  P2 was to decrease the  

Km fo r  NADPH w h i ls t  reversing the in h ib i t io n  by malonyl CoA (P la te  

e t  a l . ,  1968) .

Long-chain acyl CoA have also been reported to in h ib i t  f a t t y  

ac id  synthetase , but again the physio log ical s ig n if ic a n ce  o f  th is  e f f e c t  

is doubtful and the general conclusion drawn is th a t i t  is acety l CoA 

carboxylase and not f a t t y  acid synthetase which is the c r i t i c a l  enzyme 

in the acute., regu la tion  o f  l ipogenesis (Lane e_t £ l_ ., 1974).

N utriona l fac to rs  are also known to be important in the adaptive  

changes in f a t t y  acid synthetase a c t iv i t y ;  fo r  example, fa s t in g  causes 

a lowering o f  enzyme a c t i v i t y  (Craig e t  a l . ,  1972) and re -feed ing  fasted  

animals w ith  a high-carbohydrate , lo w -fa t  d ie t  resu lts  in the induction  

o f  enzyme synthesis leading to a g reat increase in the leve l o f  the 

enzyme in the l i v e r .  The nature o f  the d ie ta ry  carbohydrate is important  

on the f a t t y  acid synthetase a c t i v i t y .  Thus, fructose feeding increases  

f a t t y  ac id  synthetase by 2-3 fo ld  more than glucose feeding (Bruckdorfer  

^  ajl^., 1972a; Volpe and Vagelos, 1974). This d if fe re n c e  has been 

ascribed to the fa c t  th a t  fructose metabolism to pyruvate is more rapid  

than g ly c o ly s is  from glucose and th a t  the induction o f  f a t t y  acid  

synthetase is the re s u lt  o f  e levated  lev e ls  o f  the precursors o f  f a t t y  

ac id s .

F a tty  acid synthetase a c t i v i t y  is low in d ia b e t ic  ra ts  but is 

restored to  normal a f t e r  in s u lin  adm in is tra tion  (Lakshmanan e t  a l . ,  1972 

Craig and P o r te r ,  1973). The increase in enzyme a c t iv i t y  appears to  

be the r e s u l t  o f  an increase in the ra te  o f  enzyme synthesis (Lakshmanan 

£ t  al_., 1972) Other authors have found no evidence th a t  in s u l in  Is 

necessary fo r  the regu la tion  o f  l i v e r  f a t t y  acid synthetase a c t i v i t y .  

Volpe and Vagelos, ( 1974) demonstrated an increase in  l iv e r  enzyme, 

a c t i v i t y  fo llow ing  fructose feeding ih both normal and d ia b e t ic  ra ts .  

These authors suggest th a t i t  is the carbohydrate in take  which is causing
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the increase in f a t t y  acid synthetase ra th e r  than a s p e c i f ic  in s u lin  

e f f e c t .  I t  has been shown th a t fru c tose -feed ing  re su lts  in high lev e ls  

o f  h epatic  f a t t y  acid synthetase and plasma t r ia c y lg ly c e r o l ,  but low 

adipose f a t t y  acid synthetase and plasma in s u lin  leve ls  (Bruckdorfer  

.21 » 1972a). Thus, these authors did not find  any c o r re la t io n

between plasma in s u lin  leve ls  and hepatic  f a t t y  acid synthetase  

a c t i v i t y ,  but there was a c o rre la t io n  between the l a t t e r  and plasma 

t r ia c y lg ly c e r o l  lev e ls  when the animals were fed on fructose or sucrose.

Then the ra te  o f  hepatic  l ipogenesis may become an important fa c to r  in 

determining plasma t r ia c y lg ly c e ro l  le v e ls .

The induction o f  j i v e r  f a t t y  acid synthetase in fa s te d -re - fe d  

ra ts  can be in h ib i te d  by glucagon and theophy lline  (Volpe and Marasa,

1975) and by cAMP (Lakshmanan ^  , 1972). They suggested th a t the

enzyme a c t i v i t y  is regulated by the r e la t iv e  leve ls  o f  in s u lin  and 

glucagon in the blood. The e f fe c ts  o f  in s u lin  and glucagon are regarded 

to be due to changes in the ra te  o f  enzyme synthesis (Lakshmanan e t  a l . ,

1972; 1975) and th is  is a re f le c t io n  o f  the tra n s la ta b le  f a t t y  acidsyrx^Ketase- 

mRNA content o f  the l i v e r  (Pry and P o rte r ,  I 98 I ) .

11 has been demonstrated th a t  hepatic  fa t t y  acid synthetase a c t i v i t y  

increases in hyperthyroid  animals (Volpe and Kishimoto, 1972; Baquer 

ejt ^ . , 1976) .  N e ith e r  adrenalectomy nor hydrocortisone adm in is tra tion  

have any e f f e c t  on the l i v e r  enzyme but adipose t issue  f a t t y  acid  

synthetase a c t i v i t y  is  decreased in animals trea ted  w ith  the hormone 

and increased in adrenalectomised animals (Baquer ^  aj_., 1976). This  

change in the a c t i v i t y  o f  the enzyme in adipose tissue is due to change 

in the ra te  o f  enzyme synthesis . I t  has been demonstrated th a t ,  although  

adrenalectomy o f  normal rats has no e f f e c t  on l i v e r  f a t t y  acid  

synthetase a c t i v i t y  (Volpe and Maraza, 1975), s im i la r  treatm ent o f  

d ia b e t ic  ra ts  resu lts  in re s to ra t io n  o f  the decreased f a t t y  acid  

synthetase which is found in l iv e r s  o f  d ia b e t ic  animals (Volpe and 

Maraza, 1975)..

The presence o f  polyunsaturated f a t  in the d ie t  is a lso known to  

reduce the le v e ls  o f  hepatic  f a t t y  acid synthetase (Bruckdorfer e_t jJ _ . , 

1972b). In th is  context F l ic k  £ t a l _ . ,  (1977) have shown th a t  the 

induction o f  h epat ic  f a t t y  acid synthetase is markedly reduced by feeding  

l in o le a te ;  an e f f e c t  which is re f le c te d  both in a decrease in the 

h a l f - l i f e  o f  the enzyme and in a decreased ra te  o f  synthesis o f  the
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enzyme,

3 ' t r a t e  lyase ( E .C .4 .1 . 3 . 8 ) ,  ATP; c i t r a t e  oxaloacetate-

iyase (CoA ~ a c e ty la t in g  and ATP-dephosphorylating).

A T P -c i t ra te  lyase, a lso known as c i t r a t e -  cleavage enzyme, is a 

key l ipogenicXprovid ing  c y to so lic  acetyl CoA fo r  f a t t y  acid synthesis  

from c i t r a t e  produced in the mitochondria (Kornacker and Lowenstein, 

1965a).

The enzyme catalyses  the fo llow ing  reac tion :

C i t r a t e  + ATP + CoA---------------------------- >  acety l CoA +

oxaloacetate  + ADP + P.

T rans loca tion  o f  acety l CoA from mitochondria in to  cytoplasm is 

an o b l ig a to ry  process in de novo f a t t y  acid synthesis . There are two 

hypotheses fo r  the mechanism o f  th is  t ra n s fe r .  F i r s t l y ,  th a t f re e  

a ce ta te  leaves the mitochondria and is then converted to acety l CoA 

by acety l CoA synthase. Secondly, th a t  c i t r a t e  generated by the action  

o f  mitochondria - is used to generate acety l CoA in the cytoplasm by 

the ac t io n  o f  A T P -c i t ra te  lyase (Lowenstein, 1 9 6 8 ) . (F ig .  5 ) .  Acetyl CoA 

synthetaæ and ATP-ci t r a t e  lyase are both present in ra t  l i v e r  (Kornacker 

and Lowenstein, 1965a; Barth ^ a j [ . ,  1971; 1972), but the level o f  the 

l a t t e r  is much h ig h e r ,  suggesting th a t the c i t r a t e  s h u t t le  is the most 

important mechanism fo r  acety l CoA tra n s fe r  from mitochondria to  

cytoplasm, although i t  has been reported (Endemann e t  a l . ,  1982) th a t  

ketone bodies may co n tr ib u te  s ig n i f ic a n t ly  to lipogenesis v ia  a 

cytoplasmic acetoacetyl CoA synthase.

ATP-ci t r a t e  lyase has a Km o f  5 .8  x 1 0 " \  fo r  c i t r a t e  (Spector,  

1972) . The s p e c i f ic  enzyme a c t i v i t y  is reported to be 2 . 4 /tmol/m in/g  

l i v e r  (Plowman and C le land , 1967). I t  has been shown th a t  Mg 

stim u la tes  the enzyme a c t i v i t y  and th a t  ADP is a com petit ive  in h ib i to r  

K. 1.71 X lO'^M (Walsh and Spector, 1968; 1969). The enzyme is  

su sceptib le  to o x id a t io n  o f  the sulphydryl group a t  the a c t iv e  s i t e  

and EDTA is a lso  needed to prevent enzyme in a c t iv a t io n  (Walsh and
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Spector, 1969) .

The a c t i v i t y  o f  c it ra te -c le a v a g e  enzyme var ies  In accordance 

w ith  the n u t r i t io n a l  s ta te  o f  the animal. The a c t i v i t y  o f  the enzyme 

Is suppressed on s ta rv a t io n  and Is restored on re -feed In g  (Kornacker 

and Lowenstein, 1965b). These authors have shown th a t  the Increase  

In enzyme a c t i v i t y  th a t  occurs on re -feed Ing  starved animals depends 

on the d ie t .  Thé enzyme a c t iv i t y  Is h ighest In animals fed on d ie ts  

r ich  In carbohydrate and low In f a t ,  and lowest In animals fed on d ie ts  

high In f a t  o r  In a l lo x a n -d la b e t ic  animals. These authors have shown 

th a t  d ie ts  high In glucose or fructose e le v a te  the a c t iv i t y  o f  c i t r a t e -  

cleavage enzyme In normal animals, whereas only the  d ie t  high In  

fru c to se  does so In d ia b e t ic  animals. The s p e c i f ic  a c t i v i t i e s  o f  

A T P -c I t ra te  lyase Increased s ig n i f ic a n t ly  In rats fed on the f ru c to s e - -  

based d ie t  (Pearce, I 98O ). A h ig h - f a t  d ie t  containing polyunsaturated  

f a t t y  acids resu lts  In the conversion o f  the enzyme In to  a c a t a l y t i c a l l y  

In a c t iv e  form (Schwartz and Abraham, I 9 8 I ) .

The a c t i v i t y  o f  A T P -c I t ra te  lyase Is under hormonal re g u la t io n .  

Acute In s u l in  ad m in is tra t io n  to the r a t  or to Iso la ted  perfused normal 

l i v e r  causes an Increase In enzyme a c t i v i t y  (McCormI ck ejt ^ . , 1978) 

and these authors have a lso demonstrated th a t  the e f f e c t  o f  chronic  

hyperlnsulInaem la In young rats  Is an Increase In r a t  l i v e r  c i t r a t e -  

cleavage enzyme over a 6-day perio d . Yen ^  aj_. ,(1976) foundca h ig h e r -  

enzyme a c t i v i t y  In obese mice w ith  hyperlnsu lIn ism , In comparison to  

th a t  In lean mice w ith  lower plasma In s u lin  le v e l .  They suggested 

th a t  there  Is a p o s i t iv e  c o r re la t io n  between the plasma In s u lin  leve l  

and A T P -c I t ra te  lyase a c t i v i t y .  A ddition  o f  In s u lin  (1 fiM) to cu ltu red  

hepatocytes Increases A T P -c I t ra te  lyase a c t i v i t y  by 2 .6 - f o l d ,  whereas 

glucagon (0 .1  jiM) decreases the a c t i v i t y  by 68% (Spence e t  a l . ,  1979)

Bt^ cAMP (0 .1  ^M)mlml eked the e f f e c t  o f  glucagon and glucagort 

supplementation o f  c u ltu re  medium already containing Bt^ cAMP had no 

a d d i t iv e  e f f e c t .  The Increase In enzyme a c t i v i t y  caused by In s u l in  Is 

the re s u l t  o f  new enzyme p ro te in  synthesis as was shown by the Increased  

Incorporation  o f  r a d io a c t iv i ty  In to  A T P -c It ra te  ly a s e . Immunopreclpltated 

from e x tra c ts  o f  hepatocytes (Spence e t  a l . ,  1979)» These authors have 

a lso  shown th a t ,  when hepatocytes Iso la te d  from thyroI dectomI zed ra ts  

were placed In c u l tu re ,  they exh ib ited  decreased leve ls  o f  A T P -c I t ra te
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lyase a c t i v i t y  which could be restored by the a d d it io n  o f  3 , 3 ' ,5 - t r i io d o -  

L -ty ro n ln e  (10 îM) to the c u ltu re  medium.

ATP-ci t r a t e  lyase is reported to be phosphoryl ated v! a a glucagon 

s tim u la ted  cAMP-dependent p ro te in  kinase (Janski , 1979;

Ranganathan ^  » 1980, 1982) arid by an in s u lin -s t im u la te d  cAMP-

independent mechanism (Alexander £ t  , I 982) but n e ith e r  m o d if ica t io n  

re s u lts  In a change In the regu lato ry  or c a t a ly t ic  properties  o f  the  

enzyme. I t  Is suggested th a t  the enzyme may be subjected to hormonal 

In fluences  which a l t e r  I ts  s u s c e p t ib i l i t y  to degradation (Osterlund  

e^ , I 98O; Vogel and B rid g er, I 9 8 I ) .

B. Regulation o f  lipogenesis

1. Hormonal control

The b iosynthesis o f  f a t t y  acid Is regulated by both n u t r i t io n a l  

and hormonal fa c to rs .  These fac to rs  I n i t i a t e  sh ort-term  as w e ll  as 

adaptive  mechanisms fo r  c o n tro l l in g  f a t t y  acid synthesis (Goodridge,

1975) .  Lipogenesis has been reported to be diminished In the In s u l ln -  

d e f lc le n t ,  d ia b e t ic  animal and In s u lin  has been reported to s t im u la te  

lipogenesis  both In v ivo  and In v i t r o  (Hers, 1977). In s u lin  has been 

reported to Increase f a t t y  acid synthesis by Iso la te d  ra t  hepatocytes  

(Geelen and Gibson, 1975; M u lle r  1976; Geelen e t  a l . ,  1978b).

I t  has been shown th a t  physio log ica l leve ls  o f  In s u lin  (1 to 10 ng/ml 

and h igher) s tim u lates  the Incorporation  o f  |"l -  a ce ta te  and

In to  f a t t y  acids In cu ltu red  r a t  hepatocytes (Geelen and Gibson, 1976).  

In s u l in  has also been shown to s t im u la te  f a t t y  acid synthesis In f re s h ly  

Is o la te d  hepatocytes from l iv e rs  o^ neonatal chicks (Goodridge, 1973c).

Since those reports a number o f  papers showing the short-term  

s t im u la t io n  o f  lipogenesis by In s u lin  In Iso la ted  hepatocytes (M u lle r  

^ £ 1 - ,  1976; Geelen e t  £ l_ .,  1978b, WI t te rs  e t  aj_,, 1979b;

AssImacopolous-Jeannet e t  a l . ,  I 98 I )  and In perfused l i v e r  \

(Ass Imacopolous-Jeannet e_t , 1977) have appeared. These changes 

have been c o rre la te d  to apparent changes In acety l CoA carboxylase  

le v e ls  (Geelen e t  , )978b; W itte rs  ^  al_., 1979b; Ass Imacopolous- 

Jeannet ^  aj_., 1981) .  L i t t l e  Is known about the substra te  a v a l l a b lU t y  

fo r  f a t t y  acid synthes is , glucose has been reported to be a poor precursor
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o f  f a t t y  acids whereas glycogen and la c ta te  are much b e t te r  precursors  

( Cl a rk ejt a_i_,, 1974; Bloxham ejt aj_., 1977). The e f fe c ts  o f  in s u lin  

could be re la te d  to the a v a i l a b i l i t y  o f  la c ta te  and pyruvate , s ince  

the hormone is known to promote g ly c o ly s is .  G en era lly , lipogenesis  

is measured by the incorporation o f  _[l -  a ce ta te ,  L- 

l a c t a t e ,  or in to  f a t t y  acids . Fa tty  acid synthesis by iso la te d

l i v e r  c e l ls  as assayed by the l a t t e r  method is dependent on the a v a i la ­

b i l i t y  o f  la c ta te  and pyruvate (H a r r is ,  1975). There is a lag in f a t t y  

acid  synthesis which re f le c ts  the time required fo r  la c ta te  and pyruvate  

to accumulate. I t  is o f  in te re s t  to note th a t inc lus ion  o f  high 

c oncentra tionsof la c ta te  and pyruvate in the hepatocyte  ' incubation  

medium re s u lts  in a loss o f  the in s u lin  response, suggesting th a t  

f a t t y  ac id  synthesis is maximally s tim ulated under these conditions.

This implies th a t  the s t im u la t io n  o f  lipogenesis by in s u lin  may simply 

be the re s u l t  o f  la c ta te  accumulation. However, Assimacopolous-Jeannet 

e_t a j [ . , ( 1977) have also found th a t  lipogenesis from ace ta te

is a lso  s tim u la ted  by the hormone in a perfused l i v e r  system, suggesting 

th a t  contro l is a lso  exerted a t  a post-acety l CoA step in f a t t y  acid  

s yn th es is , presumably acetyl CoA carboxylase. Thus, la c ta te  o r  pyruvate  

may s t im u la te  lipogenesis independently by th e i r  roles as s u b stra tes .

More recen tly  Rognstad and Katz ( I 98O) have estimated lipogenesis from 

^H^O and ^ la c ta te  by iso la ted  hepatocytes from fas te d -re - fe d

ra ts  in the presence and absence o f  added la c ta te »  Glucagon in h ib i t io n  

o f  l ipogenesis  from both substrates is overcome by the ad d it io n  o f  

u n lab e lled  la c ta te  to the medium, suggesting th a t the major e f f e c t  o f  

the hormone i s ,  in f a c t ,  to control g ly c o ly t ic  f lu x .

The ra te  o f  hepatic  lipogenesis from has been reported to

be increased in the  perfused mouse l i v e r  by glucose (Assimacopolus- 

Jeannet £ t  aj^., 1977). These authors have shown th a t  the ra te  o f  

lipogenesis  in in s u lin  p re - t re a te d  animals was higher than th a t o f  

animals which were trea ted  w ith  a n t i - in s u l in  serum p r io r  to the perfusion  

I t  has a lso  been reported th a t  when r a t  l i v e r  is perfused w ith  a low 

concentration  o f  f re e  f a t t y  acid (0.3mM) then in s u lin  has no e f f e c t  on 

the ra te  o f  l ipogenes is . High concentrations o f  f re e  f a t t y  acid (1.9iI]M) 

resu lted  in an in h ib i t io n  o f  lipogenesis which could be p a r t i a l l y  over­

come by a d d it io n  o f  in s u lin  to the perfusate  (Topping and Mayes, 1976).
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Glucagon antagonises in s u lin  e f fe c ts  in f a t t y  acid synthesis .  

A d m in is tra t io n  o f  glucagon in h ib i ts  f a t t y  acid synthesis by a s h o rt­

term as w ell as by an adaptive mechanism (Lakshmanan e_t aj_., 1972;

Lee e t  a l . ,  1973, Volpe and Vagelos, 1974; Goodridge, 1975). Both 

e f fe c ts  appear to be mediated v ia  cAMP (B ricker and Levy, 1972; 

Lakshmanan £ t  £]_., 1972).

Glucagon in h ib i ts  f a t t y  acid synthesis by iso la ted  hepatocytes  

(Goodridge, 1973c; Geelen and Gibson, 1975; MUl1er £ t  aj_., 1976; Cook 

e t  a l . ,  1977; Geelen e t  a l . ,  1978b) and blocks the in s u lin  e f f e c t  in 

r a t  hepatocytes cu ltu res  (Geelen and Gibson, 1976).

Glucagon has a lso  been reported to in h ib i t  f a t t y  acid synthesis
”9by perfused mouse l i v e r  a t  hormone concentrations g re a te r  than 10 jj.

(Ma , 1978) .  This concentration is about two orders o f  magnitude

higher than th a t  required fo r  the s t im u la tio n  o f  glycogen breakdown. 

These authors proposed th a t  the action  o f  glucagon on hepatic  f a t t y  acid  

biosynthesis  could be secondary to dep let ion  o f  glycogen (Ma e t  a l . ,

1978) .  However, hepatic  f a t t y  acid synthesis as measured by in co r-  

poration  o f  t r i t iu m  from H^O in to  f a t t y  acids was in h ib ited  60% by 

glucagon in v ivo w ith in  15 min a f t e r  in je c t io n  o f  the hormone. This  

i n h ib i t io n  was c o rre la ted  to a lowering o f  hepatic  malonyl CoA le v e ls .  

However, the a c t i v i t y  o f  acetyl CoA carboxylase and the synthesis o f  

ch o les te ro l were not a ffe c ted  by glucagon treatment (Cook e t  a l . ,  1977). 

The conclusion drawn by these authors is th a t the only explanation fo r  

these observations was th a t  acetyl CoA carboxylase was in h ib ite d  in v ivo  

by an unknown mechanism. Cook e t  a l . , (1978) a lso reported th a t malonyl 

CoA lev e ls  could be increased in iso la ted  hepatocytes by glucose and by 

la c ta te  plus pyruvate and decreased by glucagon and o le a te .

Glucagon has been reported to change the d ire c t io n  o f  f a t t y  acid  

matabolism from synthesis to ox idation  in iso la ted  ra t  hepatocytes  

(McGarry £ t  a ^ . ,  1978) .  The in h ib i t io n  o f  f a t t y  acid synthesis was 

shown to be la rg e ly  o f f s e t  by a d d it ion  o f la c ta te  plus pyruvate , but 

glucagon d id e x e r t  some in h ib i to ry  e f fe c t  on lipogenesis in the presence 

o f  these substra tes . The changes in c e l lu la r  c i t r a te  and malonyl CoA 

lev e ls  ind ica ted  th a t  glucagon exerts  i t s  in h ib i to ry  e f f e c t  on f a t t y  

acid synthesis a t  two le v e ls ;  f i r s t l y ,  the blockade o f  g ly co ly s is  and 

secondly, by p a r t ia l  in h ib i t io n o f  acetyl CoA carboxylase. A cen tra l
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ro le  Is postulated fo r  malonyl CoA In a l t e r in g  the balance between f a t t y  

acid  synthesis and ox idation  since th is  interm ediate  is a potent  

in h ib i t o r  o f  c a r n i t in e  acyl tran s ferase . The^ketogenic ac tion  o f  in s u lin  

may be mediated e n t i r e ly  v ia  changes in tissue  malonyl CoA (McGarry 

Gt a l . ,  1978) .  They propose th a t in the fed animal the insu lin /g lucagon  

r a t io  and malonyl CoA leve ls  are high and f a t t y  acid synthesis is rap id ,  

whereas f a t t y  acid o x idat ion  is reduced to a minimum. In the fasted  

or d ia b e t ic  animal insulin /g lucagon r a t io  and malonyl CoA leve ls  are  

low and f a t t y  acid  o x idat ion  predominates.

Guynn ^  a^l,., (1972) have reported th a t the ra te  o f  f a t t y  acid  

synthesis is d i r e c t ly  re la te d  to the concentration o f  malonyl CoA 

in v iv o , but these authors could f in d  no c o r re la t io n  between the ra te  

o f  lipogenesis  and the hepatic  contents o f  c i t r a t e ,  ATP, ADP, glucose, 

glucose 6-phosphate or sn-g lycero l 3-phosphate. These authors concluded 

th a t  the sh ort-term  control o f  f a t t y  acid synthesis in v ivo probably  

re s u lts  from an In h ib i t io n  o f  acety l CoA carboxylase by long-chain  

acyl CoA which accumulates under conditions where lipogenesis is  

in h ib i te d .

The concentration o f  malonyl CoA is co rre la ted  in a number o f  

s itu a t io n s  w ith  the ra te  o f  lipogenesis which, in tu rn , is  dependent 

on the supply o f  precursors such as glycogen, glucose, la c ta te  and 

pyruvate (Guynn e t  a l . ,  1972; Cook ^  , 1977j McGarry e t  £ l_ . , 1978).

I t  has been shown th a t  l ipogenesis is in h ib ite d  in perfused l i v e r  

(Mayes and Topping, 1974) or hepatocytes (McGarry aj_., 1978) from 

fed ra ts  by increased concentrations o f  n o n -e s te r i f le d  f a t t y  acids . I t  

has been reported th a t ,  in hepatocytes from meal-fed ra ts ,  malonyl CoA 

could be increased by glucose o r  by la c ta te  plus pyruvate and decreased 

by both glucagon and o le ic  acid (Cook e t  a l . ,  1978).

When chick hepatocytes metabolis ing jglucose and ace ta te  as sole exogenous 

substrates  are  tre a ted  w ith  Bt2 cAMP or glucagon, the leve l o f  c e l lu la r  

c i t r a t e  and the ra te  o f  incorporation  o f  £  - ^  U -  ^^cj glucose, J i  -   ̂ c j  

a c e ta te ,  o r  in to  f a t t y  acids decrease concomitantly by over 90%.

Most o f  the c i t r a t e  ( >  75%̂  is found in the cytoplasmic compartment 

where ace ty l  CoA carboxylase is lo ca lised  (Watkins e t  a l . , 1977)«
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I t  îs proposed th a t  reg u la t io n  o f  f a t t y  acid  synthesis by 

^^2 *s due, in p a r t ,  to changes in the c i t r a t e  leve l (C larke

^979) .  These authors have a lso shown th a t  f a t t y  acid synthesis  

from 12 -   ̂ cJ  ace ta te  is p a r t i a l l y  in h ib ite d  by Bt^ cAMP in the 

presence o f  fru c to s e , la c ta te  and pyruvate , desp ite  a high c i t r a t e  

l e v e l ,  in d ic a t in g  th a t  the s i t e  o f  act ion  o f  the c y c l ic  nuc leotide  

involves the regu la tion  o f  the u t i l i s a t i o n  o f  cytoplasmic acety l CoA. 

incorporation  o f  £  -  ^^C j  f ru c to se , |z  -  ^^cj pyruvate o r

D T- ^  -  ^ c j  la c ta te  in to  f a t t y  acid is s im i la r ly  depressed by 

Bt2 cAMP. However, the e f f e c t  o f  glucagon and o f  Bt2 cAMP on c e l lu la r  

c i t r a t e  lev e ls  in the r a t  l i v e r  c e l l  appears to d i f f e r  from th a t  in the 

chick l i v e r  c e l l .  The large decrease in to ta l  c e l lu la r  c i t r a t e  leve l  

caused by glucagon and Bt2 cAMP, which accompany decreased f a t t y  acid  

synthesis from 1̂ -  ^^C^ aceta te  and ^^2^ '"  chick l i v e r  c e l l s ,  is  not 

observed in r a t  hepatocytes ( L a n e ^ t  a 2 * ,  1974, H a r r is ,  1975; Cook 

e£ 2 1 * ,  1978) Another possib le  mechanism fo r  the e f f e c t  o f  glucagon 

on lipogenesis  suggested by M u lle r  and Jeanrenaud (1978) is  th a t  in  

the presence o f  glucagon o f  cAMP hepatic  lipogenesis might be in h ib ite d  

by i n t r a c e l l u la r  accumulation o f  f a t t y  acyl CoA, derived from increased  

cAMP-mediated t r ia c y lg ly c e ro l  breakdown (Mill 1er and Jeanrenaud, 1978).  

These authors have also found th a t  the in h ib i t io n  o f  lipogenesis by 

glucagon was accompanied by a s ig n i f ic a n t  decrease in the a c t i v i t y  o f  

ace ty l CoA carboxylase assayed in the presence and absence o f  added 

c i t r a t e  (M u lle r  and Jeanrenaud, 1978).

Hopkirk and Bloxham (1977; 1979) have found th a t  d iurnal rhythm 

o f  lipogenesis  occurs in m eal-fed rats  in v iv o , and a lso in hepatocytes  

is o la te d  from these animals. The increase in f a t t y  acid synthesis is 

c le a r ly  c o rre la te d  w ith  periods o f  feed ing. At le a s t  some o f  the 

increased f lu x  o f  carbon in to  f a t t y  acids is derived from glycogen, 

which suggests th a t  regu la tion  o f  g lyco lys is  can play a ro le  in the ,

contro l o f  f a t t y  acid synthesis .

P o stle  and Bloxham ( I 98O) have shown th a t g lucocort ico ids  e x e r t  

a perm issive ac tion  on the expression o f  the glucagon in h ib i t io n  o f  

l ip o g en es is , and they suggest th a t  the e f f e c t  o f  glucagon may be 

mediated v ia  changes in pyruvate k inase, which becomes in s e n s it iv e  to  

glucagon in adrenalectomized animals desp ite  the action  o f  cAMP- 

dependent p ro te in  kinase on pyruvate kinase being re ta in ed . Bloxham
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and York (1976) have a lso  c o rre la te d  changes in lipogenesis w ith  f lu x  

through phosphofructokinase.

A number o f  o th e r  hormones have been shown to e x e r t  a short-term

e f f e c t  on h ep atic  lipogenesis Angiotensin I I ,  adrena line  (Ma e t  a l . ,

1977) and vasopressin (Ma and Hems, 1975; Hems, 1977) in h ib ited

lipogenesis  in perfused mouse l i v e r .  These hormones do not apparently

e x e r t  th e i r  e f fe c ts  v ia  changes in h ep atic  cAMP leve ls  (Hems, 1977)
2+bu t, p o ss ib ly ,  v ia  changes in Ca concentration (Assimacopoulos- 

Jeannet aj_., 1981). The e f f e c t  o f  vasopressin was noted to occur 

in perfused mouse l i v e r  but not in perfused r a t  l i v e r  (K irk  and Hems, 

1979) .  The reason fo r  th is  discrepancy is  not c le a r .  I t  is o f  in te re s t  

however, th a t  the s t im u la to ry  e f f e c t  o f  vasopressin on lipogenesis by 

iso la te d  hepatocytes is abolished by ra is in g  the la c ta te  and pyruvate  

concentration  in the medium (Ass imacopoulos-Jeannet e£ aj_., 1981)

2. In h ib i t io n  o f  l ipogenesis by fre e  f a t t y  acids

De novo synthesis o f  f a t t y  acid by the l i v e r  is in h ib ite d  by a 

high leve l o f  d ie ta ry  f a t  (J e f fc o a t  and James, 1977; J e f fc o a t  e t  a l . ,

1979) .  This in h ib i t io n  is probably the re s u lt  o f  adaptive changes in 

acety l CoA carboxylase and f a t t y  acid synthase in response to the 

a v a i l a b i l i t y  o f  f a t t y  acyl CoA (Volpe and Vagelos, 1976; F I ic k  e t  a l . ,  

1977; H a lp erin  e£ a j [ . , 1972). D ie ta ry  l in o le a te  has been shown to 

markedly i n h ib i t  the induction o f  f a t t y  acid  synthesis in r a t  l i v e r  

( F I ic k  e£ a £ . , 1977). In a d d it io n ,  i t  is known th a t  an inverse r e la t io n ­

ship e x is ts  between plasma f re e  f a t t y  acid concentration and the ra te  o f  

f a t t y  acid synthesis .

I t  is w e ll  known th a t  exogenous fre e  f a t t y  acid in h ib i ts  l ip o ­

genesis by various c e l l  cu ltu res  by sh ort-term  and long-term regu la tion  

(Goodridge e t  a l . ,  1974; Volpe and Vagelos, 1976).

Goodridge (1973c) found th a t  albumin-bjound fre e  f a t t y  acids  

e f f e c t i v e ly  in h ib i te d  f a t t y  acid  synthesis from 1̂ -  c J  ace ta te  by 

is o la te d  chick hepatocytes, and he suggested th a t  f a t t y  acid synthesis  

is regulated by the i n t r a c e l lu la r  leve l o f  long-chain acyl CoA which
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is  known to increase under these conditions (Goodridge ^  , 1974).

A s im i la r  in h ib i t io n  o f  l ipogenesis by long-chain f a t t y  acids has been 

found in r a t  hepatocytes; s te a r ic  acid is the most e f f i c i e n t  in h ib i to r  

(N ilsson 1974) despite  the fa c t  th a t  th is  is u t i l i s e d  a t  a lower

ra te  than o th e r  f a t t y  acids (Sundler ejt £ l_ . , 1974). The degree o f  

in h ib i t io n  by various f a t t y  acids (N ilsson ^  a l . , 1974) has been 

c o rre la te d  to the in h ib i t io n  o f  ACC by the corresponding acyl CoA 

d e r iv a t iv e s  (Num a^t a^*» 19&3).

The physio log ica l ro le  o f  long-chain acyl CoA in the regu lation  

o f  lipogenesis  has been questioned on the basis o f  d i f f i c u l t i e s  associated  

w ith  the detergent p ro p ert ies  o f  palra ity l CoA and o ther long-chain  

acyl CoAs. However, the change in hepatic  l ipogenic  a c t iv i t y  in fasted  

or d ia b e t ic  conditions c o rre la te d  to th e  changes in pa lm ity l CoA have 

strengthened the case fo r  the physio log ica l ro le  o f  these CoA d e r iv a t iv e s  

in the negative  feedback in h ib i t io n  o f  lipogenesis (Goodridge, 1973b;

Hsu e_t 2 1 ' ,  1975; Block and Vance, 1977).

An inverse logarithm ic  re la t io n s h ip  has been observed between 

lipogenesis  and serum FFA concentration in the perfused l i v e r  (Mayes and 

Topping, 1974; Topping and Mayes, 1976). This suppression in lipogenesis  

w ith  increasing concentration o f  FFA is s im i la r  to the diminution observed 

in a c t iv e  l i v e r  pyruvate dehydrogenase in the presence o f  FFA (Wieland 

e£ aj^., 1972). T here fo re , i t  was proposed th a t changes in a c t iv i t y  o f  

th is  enzyme might be a regu lato ry  p o in t in the supply o f  acety l CoA fo r  

hepatic  lipogenesis  (Mayes and Topping, 1974). i t  was a lso observed th a t ,  

a t  high concentrations o f  serum FFA, in s u lin  antagonised th e i r  a n t i -  

l ip o g en ic  ac t io n  (Topping and Mayes, 1976). In l i v e r  perfused w ith  

increasing FFA concentrations, to ta l  adenine nucleotides are s ig n i f ic a n t ly  

decreased and |ATpj/|AMP] r a t io  increased; pyruvate dehydrogenase 

a c t i v i t y  is n e g at ive ly  co rre la ted  w ith  ^ATpJ /J aMP  ̂ and [ aTp] / [ a Dp|  ra t io s  

(Topping a £ . , 1977). These authors show th a t  in su lin  modifies the 

e f fe c ts  o f  FFA on pyruvate dehydrogenase. The a b i l i t y  o f  in s u lin  to 

Increase pyruvate dehydrogenase a c t i v i t y  may be accounted fo r  by an 

a n t i - l i p o l y t i c  e f f e c t  o f  the hormone which would e f f e c t iv e ly  cause a 

decreased a v a i l a b i l i t y  o f  in t r a c e l lu la r  FFA (Topping and Mayes, 1972).

Lipogenesis by iso la ted  hepatocytes is also co n tro l led  by VLDL and 

and chylomicron fra c t io n s  iso la ted  from human plasma and ra t  serum
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(Lakshmanan e_t £]_• » 1977). Fa tty  acid synthesis is in h ib i te d  by about 

50% a f t e r  incubation w ith  the t r  i acyl g ly c e r o l - r i  ch l ip o p ro te in  f ra c t io n s  

Chylomicron remnants, produced by the action  o f  l ip o p ro te in  l ip a s e ,  

caused a s ig n i f ic a n t  in h ib i t io n  o f  [ l  -  ace ta te  and incoi—

pora tion  in to  f a t t y  acids by iso la ted  hepatocytes (Koizumi e t  a l . ,

1979).

I t  is a lso  apparent th a t  VLDL binds to a h i g h - a f f i n i ty  s i t e  on 

the hepatocytes. I t  is suggested th a t  the s p e c i f ic  in te rac tio n ; leads 

to hydro lys is  o f  t r i a c y lg ly c e r o l ,  the f re e  f a t t y  acid formed e n te r  the 

c e l l  and are  converted to acyl CoAs which, in tu rn ,  cause a feedback 

in h ib i t io n  o f  ACC (Lakshmanan ejt , 1977). Koizumi £ t  aj_., (1 9 79 ) ,  

however, found a g re a te r  in h ib i t io n  o f  lipogenesis by chylomicron 

remnants than by chylomicrons and they suggest th a t i t  is the degree 

o f  catabolism  and the amount o f  chylomicron remnant which are important 

in in h ib i t io n  o f  f a t t y  acid synthesis .

3 . Source o f  carbon fo r  f a t t y  acid synthesis

I t  has been found th a t in hepatocytes prepared from l iv e rs  o f  

ad l ib iturn  and m eal-fed ra ts ,  f ru c to se , a t  concentration below lOmM, 

is a b e t te r  precursor o f  f a t t y  acids than glucose but the reverse is  

tru e  a t  h igher concentrations. A lso , la c ta te  carbon is a much b e t te r  

f a t t y  acid  precursor than glucose carbon when both substrates are present 

a t  phys io log ica l concentrations (C la rk  ejt aj^., 1974). Data obtained  

'ol lowing perfus ion  o f  mouse l i v e r  w ith  L -  | j j  -   ̂ j  la c ta te  and 

U -  glucose shows th a t  c i r c u la t in g  glucose a t  concentrations

less than 17 mM is not a major carbon source fo r  newly synthesised  

f a t t y  acid whereas la c ta te  (10 mM) markedly stim ulates f a t t y  acid  

synthesis and contr ibutes  extensive carbon to lipogenesis (Salmon e t  a l . ,

1974) .  I t  has a lso  been shown th a t  the ra te  o f  f a t t y  acid synthesis by 

iso la te d  hepatocytes is increased when substrates such as glucose, 

f ru c to s e ,  DMA, la c ta te  and pyruvate are used whereas x y l i t o l  and 

g lycero l are in h ib i to r y  (H a r r is ,  1975). The e f fe c ts  o f  fruc tose  and 

DHA on l ipogenesis  are  presumably re la te d  to the r e la t iv e  ease o f  t h e i r  

conversion to pyruvate .

The de novo synthesis o f  f a t t y  acids from |1 -  ace ta te  is

stim ulated  by fructose  (11 mM), g lycero l (20 mM), DHA (10 mM) ,  la c ta te
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(10 mM) and pyruvate (10 mM) In Iso la ted  hepatocytes prepared from 

neonatal chicks (Goodridge, 1973c). However, the s t im u la to ry  e f fe c ts  

o f  fru c to s e  and DHA are  not observed when ^H^O was used as a substrate  

fo r  the es t im a tio n  o f  f a t t y  acid synthesis (Goodridge, 1973c).

Bloxham ejt ^ . , (1977) claim  th a t  la c ta te  is a major source o f  

carbon fo r  f a t t y  ac id  synthesis in ra t  hepatocytes a t  low concentrations  

o f  the su b stra te  and possib ly  the only source a t  h igher concentrations.  

These authors have shown a poor c o rre la t io n  between incorporation  o f  

^H^O and U -  glucose and a lack o f  enhancement o f  P h J incor­

pora tion  in to  f a t t y  acid by increasing glucose concentra tion , suggesting  

th a t  e x te rn a l glucose carbon is not a major substrate  fo r  f a t t y  acid  

synthes is . The preference fo r  la c ta te  in the ra t  is o f  physio log ical  

s ig n if ic a n c e  s in ce , in m eal-fed ra ts ,  there is a dramatic r is e  in 

h e p a t ic -p o r ta l  la c ta te  concentration (10-15 mM) fo llow ing  ingestion  

o f  a meal demonstrating the rapid a v a i l a b i l i t y  o f  la c ta te  fo r  l ip o ­

genesis (Bloxham e_t aj^., 1977). These authors have found th a t  a t  low 

e x t r a c e l lu la r  la c ta te  concentra tions, t r i t iu m  incorporation in to  

g ly c e r id e  f a t t y  acids is h igher than L -  j^U -  la c ta te  and th is

d if fe re n c e  may be accounted fo r  by conversion o f  an in tra h e p a t ic  

precursor, such as glycogen, to f a t t y  acids . The possible ro le  o f  

glycogen as a precursor fo r  l ipogenesis has also been suggested by 

Salmon _et aj_., ( 1974) .  The u t i l i s a t i o n  o f  the endogenous precursor,  

th e re fo re ,  must be masked by high e x t r a c e l lu la r  la c ta te  (20 mM) when 

the incorporation  o f  L -  la c ta te  and o f  ^H^O are v i r t u a l l y

id e n t ic a l  ( B1 oxham e£ aj_., 1977). These authors have also demonstrated 

th a t  a f a l l  in hepat ic  glycogen during hepatocyte incubation could be 

re la te d  to the ra te  o f  lipogenes is . M u lle r  and Jeanrenaud (1978) have 

a lso  shown th a t  lipogenesis from ' s markedly stim ulated in the

presence o f  g lucose, fructose o r  la c ta te  whereas i t  is not s tim ulated  

by a c e ta te .

A number o f  glucose precursors, including g ly c e ro l ,  la c ta te  and 

fru c to se  and DHA are  an tike to g en ic  and th is  may account fo r  the 

s t im u la t io n  o f  l ipogenes is . Dihydroxyacetone stim ulated the ra te  o f  

l ipogenesis  by about 37% in the absence o f  o lea te  (H a rr is ,  1975; 

Williamson and Whitelaw, 1978). i t  has been shown th a t a d d it io n  o f  

o le a te  in h ib i ts  lipogenesis by about 65%, but DHA re lie v es  th is  

in h ib i t io n  (Mayes and Topping, 1974). This suggests th a t  there is not
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a simple rec ip ro ca l re la t io n s h ip  between ketogenesis and lip^ienesis and 

th a t  the  d is t r ib u t io n  o f  carbon between the two pathways is  c o n tro l le d  

by a t  le a s t  two fa c to rs .

I t  has been reported th a t high concentrations o f  fruc tose  cause 

in h ib i t io n  o f  lipogenesis (C lark  1974) which is probably re la te d

to the d ep le t io n  o f  ATP (see section I ,  C). Fructose in a concentra tion  

o f  15 in h ib i ts  lipogenesis from by 75% in iso la ted  l i v e r  c e l ls

from fed ra ts  (Selmer and Grunnet, 1976). Three possib le  l in ks  between 

ATP and lipogenesis  e x is t :  A T P -c itra te  lyase, acety l CoA synthase and

ACC. The increase in acety l CoA (Thurman and Scholz, 1973) and in 

c i t r a t e  (Sest o f t  e t  a l . ,  1972) concentration observed when fructose  is  

metabolised makes ACC the most l i k e ly  candidate fo r  the in h ib ite d  step  

in f a t t y  acid  synthesis during fructose metabolism. I t  I s ,  however, 

u n l ik e ly  th a t  the decreased lipogenesis is the re s u lt  o f  in h ib i t io n  o f  

ace ty l  CoA carboxylase by decreased ATP leve ls  because o f  the high 

a f f i n i t y  o f  the enzyme fo r  ATP (A lberts  and Vagelos, 1972). The 

mechanism o f  the in h ib i t io n  remains a mystery.

I I I .  TRIACYLGLYCEROL METABOLISM

The l i v e r  occupies a central ro le  in the metabolism o f  g ly c e ro l ip id ,  

I t  synthesises t r ia c y lg ly c e ro ls  and phosphoglycerides fo r  in tra h e p a t ic  

use as an energy reserve and a lso manufactures these important g ly ce ro -  

l ip id s  fo r  export in the form o f l ipopro te in s  v ia  the blood to o ther  

t is s u e s . Hepatic t r ia c y lg ly c e ro l  synthesis requires long-chain acyl 

CoA which may be derived e i th e r  from de novo f a t t y  acid synthesis o r  

from c i r c u la t in g  FFA produced by the action  o f  the enzyme long-chain  

acyl CoA synthase. The glycerol moiety o f the t r ia c y lg ly c e ro l  is thought 

to be mainly derived from sn-glycerol 3~phosphate.

A. T r ia c y lg ly c e ro l  synthesis

1. Biosynthesis o f  1 -acy lg lycero l phosphate

The major pathway fo r  the biosynthesis o f  the g lycero l moiety o f  

the l ip id s  has long been considered to be v ia  s£-g lycero l 3-phosphate 

produced from dihydroxyacetone phosphate (DHAP) by the action  o f  the 

sn -g lycero l 3-phosphate dehydrogenase or from g lycero l by g lycerokinase.
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However, evidence has been produced fo r  another pathway involv ing  

a c y la t io n  o f  DHAP. The proposed pathway fo r  the synthesis o f  

phosphatidate is i l lu s t r a t e d  in Fig. 6 (Pol lock £ t  al_., 1975).

Acyldihydroxyacetone phosphate was f i r s t  discovered as a l ip id  

which was ra p id ly  lab e l le d  by ^^Pi or by ^ - [^^P ATP in guinea pig  

l i v e r  mitochondria (Hajra  and Agranoff, 1967; I 968) .  This rapid  

l a b e l l in g  was due to the dephosphorylation and rephosphorylation o f  

endogenous acyldihydroxyacetone phosphate in mitochondria (H a jra  e t  a l . ,  

1968) .  Acyldihydroxyacetone phosphate was shown to be biosynthesised  

by the d i r e c t  a c y la t io n  o f  DHAP w ith  long-chain acyl CoA (H a jra ,  I 968) .  

i t  has been found th a t  the reduction o f  acyldihydroxyacetone phosphate 

requires  an NADPH -  dependent, mitochondrial dehydrogenase (Hajra  and 

A g ran o ff ,  1968). When the rates o f  formation o f  phosphatidic acid  

from DHAP are  compared, e i th e r  in the presence o f NADH (sn -g lycero l  

3 -  phosphate pathway) or in the presence o f  NADPH (acyldihydroxyacetone  

phosphate pathway), i t  is found th a t phosphatidic acid is formed more

ra p id ly  v ia  DHAP than v ia  sn-glycero 3-phosphate (Pol 

4 -

ock e t  a l . ,  1975).

^hJ  NADH and 4 -  NADPHThe same conclusion is reached when

are used as substrates to compare the two pathways (Agranoff and H a jra ,  

1971 ; H a jra ,  1973). Using s p e c i f ic a l ly  la b e lled  g ly c e ro l ,  i t  has been 

shown th a t  a s ig n i f ic a n t  amount o f  g ly c e ro l ip id  is synthesised v ia  the 

DHAP pathway by r a t  l i v e r  s lic e s  (Manning and B rind ley , 1972; Bowley 

£ t £ l_ * »  1973)* However, when iso la ted  r a t  l i v e r  parenchymal c e l ls  are  

incubated w ith  |u -^^C, 2 -  ^ H jg ly c e r o l , g lycerides  are produced w ith  

^H/^^C ra t io s  in the g lycero l m oieties  s im i la r  to th a t o f  in t r a c e l lu la r  

sn -g lycero l 3 -  phosphate (Rognstad e t  a l . ,  1974). This ind ica tes  th a t  

is o la te d  l i v e r  c e l ls  show less dependence on the acyldihydroxyacetone  

phosphate pathway than th a t claimed fo r  l i v e r  s l ic e s  (Okuyama and Lands, 

I 97O; Manning and B rin d ley , 197.2) since the conversion o f  sn -g lycero l  

3-phosphate to DHAP would re s u lt  in the loss o f  ^H. The approach o f  

Okuyama and Lands (1970) and Manning and Brindley (1972) has a lso been 

c r i t i c i s e d  by Curstedt (1974) and Curstedt and S jo va ll  (19 74 ),  who 

found th a t ,  in the presence o f  ^ , 1 -  e thano l,  the deuterfum

la b e l l in g  a t  C -  2 o f  the g lycero l moiety o f  phosphatidylcholine was

2-3  times h igher than th a t a t  C -  2 o f  the to ta l  hepatic  s £ -g ly cerol

3-phosphate pool. This indicated th a t a s p e c if ic  pool o f  sn -g lycero l  

3-phosphate might be used fo r  synthesis o f  phosphoglycerides in the 

l i v e r .  I f  th is  is the case then i t  is d i f f i c u l t  to eva luate  the r e la t iv e
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Glyceraldehyde 3-phosphate

Dihydroxyacetone phosphate

/ NADH

6^ \ ^ nad+

Acy 1 d Î hydroxyacetone-phosphate g lycero l 3-phosphate

Acyl-CoA

NADPH

NADP

Acy1 CoA

CoA

1— Acyl sn -g lycero l 3-phosphate (Lysophosphatidate)

Acyl CoA

CoA

1,2 -d ia c y l -g ly c e r o l  3-phosphate (Phosphatidate)

1,2 -d ia c y lg ly c e ro l (D ig lyceride )  

Acyl CoA

->  CoA

T r ia c y lg ly c e ro l (T ri  g lyceride)

Enzymes

1. Glycerol 3-phosphate acyl transferase  (E .C .2 .3 .1 .1 5 )

2. Dihydroxyacetone phosphate: AcylCoA transferase  (E .C .2 .3 .1 .4 2 )

3. A c y l-g ly c e ro l  3-phosphate acyl transferase

4. Phosphatidate phosphohydrolase (E .C .3 .1 .3 *4 )

5. Diacyl g lycero l acyl transferase

6. G lycerol 3-phosphate dehydrogenase (E .C .1 .1 .1 .8 )

7. Acyl dihydroxyacetone phosphate reductase (E .C .1 .1 .1 .1 0 1 }

F ig . 6 The g lycero l phosphate and acyldihydroxyacetone phosphate 

pathways f o r  the de novo synthesis o f  g ly c e r o l ip id s . V
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importance o f  the pathway v ia  acyldihydroxyacetone phosphate by com­

paring the H/ C ra t io s  o f  the phosphoglycerides w ith  th a t  o f  to ta l  

hepatic  g lycero l 3-phosphate; th e re fo re ,  these authors have concluded 

th a t  the acyldihydroxyacetone phosphate pathway is o f  l i t t l e  importance 

in the synthesis o f  phospholipids in the l i v e r .  An estim ation  o f  rates  

o f  phosphatid ic  acid synthesis from DHAP or sn-g lycero l 3-phosphate in 

homogenates o f  various t issu es , including l i v e r ,  has shown th a t  the  

DHAP en te rs  in to  phosphatidic acid more rap id ly  v ia  acyldihydroxyacetone  

phosphate, suggesting a s ig n i f ic a n t  co n tr ib u tio n  o f  the pathway v ia  

acyl dihydroxyacetone phosphate in v i t r o  (Pollock e t  a l . ,  1975) despite  

the fa c t  th a t  ^ - g l y c e r o l  3-phosphàtè dehydrogenase and sh -g lycero l  

3 phosphate acyl transferase  are more a c t iv e  than the dihydroxyacetone  

phosphate: acyl CoA tran s fe rase . However, the in v ivo concentration  

o f  s £ -g ly c e ro l 3-phosphate in l i v e r  is  134 nmoles/g and th a t  o f  DHAP 

is 17 nmoles/g (Greenbaum e_t 1971). T h is , together w ith  the 

evidence o f  the k in e t ic  p roperties  o f  dihydroxyacetone phosphate a c y l -  

t ran s fe rase  and sn-g lycero l 3-phosphate acyl transferase  (Schlossman 

and B e l l ,  1977), suggest th a t  the pathway v ia  DHAP has a minor ro le  

j n  v iv o . Schlossman and Bell (1977) have also shown th a t  l i v e r  m icro-  

somes have a s in g le  enzyme capable o f acy la t in g  both DHAP and sn -g lycero l  

3-phosphate. These authors have shown th a t ,  assuming th a t 70% o f  the 

weight o f  hepatocytes is aqueous and th a t  there is no compartmental1za -  

t lo n  o f  substrates sn-g lycero l 3-phosphate and dihydroxyacetone phosphate, 

the concentration  o f  the substrates and the a c t i v i t y  o f  the enzyme 

involved would mean th a t  the r a t io  o f  microsomal sn -g lycero l 3-phosphate 

and DHAP a c y la t io n  would be g re a te r  than 84:1: thus, the microsomal 

sn -g lycero l 3-phosphate pathway fo r  phospholipid and t r ia c y lg ly c e ro l  

synthesis would be expected to be predominant in l i v e r  c e l ls  in v iv o .

2. sn -g lycero l 3-phosphate acyl transferase  ( E .C .2 .3 .1 .1 5 ) ,  o r  a c y l -  

CoA: j_ -g lycero l 3-phosphate acyl transferase ( l )  and acyl-CoA: 

1 -a cy lg lyc e ro l 3-phosphate acyl transferase ( i r ) .

The f i r s t  step in the formation o f  g lycerides and phosphoglycerides 

is the a c y la t io n  o f  sn-g lycero l 3 -phosphate catalysed by the sn-g lycero l  

3-phosphate acyl transferase  system. This enzyme catalyses the conversion  

o f  acyl CoA and sn-g lycero l 3-phosphate to 1-a c y l -s n -g ly c e ro l  3-phosphate 

(Lysophosphatidate) and subsequently to 1,2 -D ia c y lg ly c e ro l  3-phosphate
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(Phosphatidate) Manroy ^  » 1973).

The a c y la t io n  o f  sn-g lycero l 3-phosphate has been shown to  

occur In both mi tochondria (Manroy eJl f l U  1973) ; Sanchez e t  a l ,

1973; Davidson and Stana-Cev, 1974) and microsomes (Yamashita 

Gt a l . ,  1973). H a lf  o f  the to ta l  capacity  fo r  sn-g lycero l 3-phosphate 

a c y la t io n  o f  hepatocytesis lo ca lised  In the outer m itochondrial  

membrane (Manroy e t  a l . ,  1973). i t  has been shown th a t both 1 -a c y l -  

sn-g1ycerol 3-phosphate and phosphatidic acid accumulate in 

m itochondria.

The a c t i v i t i e s  o f  GPAT in the mitochondrial and microsomal 

f ra c t io n s  have been reported to be associated w ith  two separate  

enzymic prote ins  fo llow ing  a study o f  k in e t ic  properties  and 

d i f f e r e n t i a l  in h ib i t io n  by SH-blockers (Abu-lssa and C le land, 1969). 

The microsomal GPAT has an apparent Km o f 0 .14 mM fo r  sn-g lycero l  

3-phosphate w ith  a o f  2 .8  nmol/min/mg (Schlossman and B e l l ,

1977) .  The optimum pH is between 7 .5  -  8 .0  and sulphydryl group 

p ro te c to rs ,  such as cyste ine  and 2-mercaptoethanol s t im u la te  the 

enzyme a c t i v i t y  (Abu-lssa and C le land, 1969; Husbands and Lands, 

1970) .  The best substra te  fo r  acy la t in g  sn-g lycerol 3-phosphate  

is  an acyl CoA w ith  15-18 carbon atoms (Abu-lssa and C le land, 1969). 

Acyl CoAs a t  h igher concentrations ( >10 x 10 ^ )  in h ib i t  the enzyme 

a c t i v i t y  by a mechanism which is thought to be due to the detergent  

e f f e c t  o f  the acyl CoA (Zah le r  and C leland, I 969) .

Both microsomal and mitochondrial dihydroxyacetone phosphate 

acy1 tra n s fe rase  show s im i la r  s p e c i f ic i t y  t o  the corresponding g lycero l  

phosphate a c y l - t ra n s fe ra s e ,  suggesting th a t the DHAP and sn- 

g ly ce ro l 3-phosphate are  acylated by the same enzyme (Bremer e t  a l . ,

1976).
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L îv e r  microsomal GPAT a c t i v i t y  has been shown to be influenced by 

various d ie ta ry  s ta te s .  I t  has been reported th a t  sn-g lycero l 3-phosphate 

leve l in the l i v e r  is e levated  by fructose or g lycero l ad m in is tra t io n  

(N ikk i la ,  1974). This is suggested to lead to the s t im u la tio n  o f  plasma 

t r ia c y lg ly c e r o l  formation in the l i v e r .  The to ta l  hepatic  GPAT a c t i v i t y  

has been reported to be decreased a f t e r  48h fa s tin g  and to be increased  

when the fas ted  animals are re -fed  a f a t - f r e e  or a carbohydrate r ich  

d ie t  (Vavnecka £ t  £ l^ ., 1969; Bremer e t  a l . ,  1976).

However, o ther in ves tig a to rs  did not f in d  any change in s p e c i f ic  

a c t i v i t y  o f  GPAT a f t e r  a fa s t in g  period, although the s p e c i f ic  a c t i v i t y  

o f  the enzyme is increased fo llow ing  a 7-day period on a high f a t  or on 

a h igh-carbohydrate  d ie t  (F a l lo n  and Kemp, 1968).

There has been very l i t t l e  research on the hormonal re g u la t io n  o f  

sn -g lycero l 3-phosphate acyl transferase  a c t iv i t y  in the r a t  l i v e r .  

Experiments using iso la ted  adipocytes have shown th a t  adrena lin  (1 pM) 

decreases the sn -g lycero l 3-phosphate acyl transferase a c t i v i t y ,  w h ile  

in s u l in  increases the a c t i v i t y .  When fructose and in s u lin  are included  

in the incubation medium o f  adipocytes there is a decrease in sn-g lycero l  

3-phosphate acyl tran s fe rase  a c t i v i t y  (Sooranna and Saggerson, 1976).  

Hepatic  GPAT has been shown to be decreased in d ia b e t ic  rats  (Bates 

and Saggerson, 1977) and by adrenalectomy in fasted animals (Bates and 

Saggerson, 1979). The a c t i v i t y  o f  dihydroxyacetone phosphate a c y l -  

t ra n s fe ra s e /  to ta l  l i v e r  has been shown to be decreased by 44% in 

adrenalectomised animals and th a t  in je c t io n  o f  c o r t is o l  restores the 

a c t i v i t y  to le v e ls  found in sham-operated animals (Bates and Saggerson, 

1981).

In the in ta c t  l i v e r  (Akesson, 1970; Akesson e_t aj_., 1970a) and 

in l i v e r  s l ic e s  ( H i l l  e t  al_., 1968) phosphatidic acids and, th e re fo re ,  

d ia c y lg ly c e ro ls  are synthesised w ith high p o s it iona l s p e c i f i c i t y .

Saturated f a t t y  acids occupy mainly p o s it ion  1 and unsaturated f a t t y  

acids are  predominantly e s t e r i f i e d  to p o s it ion  2.

In in ta c t  l i v e r  c e l l s ,  incubated w ith  p h ]  g lycero l only a small 

amount o f  phosphatidate accumulates (Sundler e t  a l . ,  1974 )^and k in e t ic  

studies using in ta c t  animals in jec ted  w ith  [ H j  g lycero l (Akesson 2Ë  ± 1 '  » 

1970b) have demonstrated th a t  phosphatidate is formed from g lycero l
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before  the formation o f  d ia c y lg ly c e ro ls .  This evidence suggests th a t  

the contro l p o in t in the regu la tion  o f  t r ia c y lg ly c e ro l  synthesis in 

l i v e r  is before  the formation o f  phosphatidic ac id .

3. Role o f  phosphatidate phosphohydrolase (E .C .3 .1 .3 .4 )  in  

the re g u la t io n  o f  g ly c e ro l ip id  biosynthesis

The formation o f  1 ,2 -d ia c y l g lycero l from 1,2 -  d iacyl g lycero l  

3 " phosphate (phosphatid ic  acid) can be accomplished by the enzyme 

phosphatidate phosphohydrolase (PPH). Phosphatidate Is an in term ediate  

in the b iosynthesis  o f  d iacyl g ly c e ro l , t r ia c y lg ly c e r o l ,  phosphatidyl-  

ethanolam ine, phosphatidyl choline and C D P-d iacy lg lycero l. PPH, con­

s idered to be the ra te  1imiting enzyme in the synthesis o f  t r i a c y l ­

g ly c e ro ls  (Lamb and F a l lo n ,  1974a; FalIon £ t  aj^., 1977; B rin d ley , 1978b) 

PPH has been found in several d i f f e r e n t  animal t issues . PPH a c t iv i t y  

is found p r im a r i ly  the microsomal and supernatant fra c t io n s  o f  l i v e r ,  

adipose t issu e  and in te s t in e  and a lso , to some e x ten t ,  in the 

m itochondria l f r a c t io n  (Smi th A L ' * 19&7; Lamb and Fa llon  1974a).

The p h y s io lo g ic a l ly  important substrate  appears to be the p a r t ic u la t e -  

bound phosphatidate (Smith ^  , 1967). The method fo r  the prepara tion

o f  th is  s u b s tra te ,  developed by Fal Ion e t  £]_., (1975 ),  involves the  

la b e l l in g  o f  phosphatidate in a microsomal prepara tion . I t  has been 

shown th a t  microsomes from r a t  l i v e r  have a t  leas t two a c t iv e  forms o f  

PPH (Caras and Shapiro, 1975)/, the  non-spec if ic  form w ith  a high Km 

(0 .3  X 10 ^ )  fo r  phosphatidate and a s p e c if ic  form w ith  a low Km 

(0 .03  X 10 ^M) fo r  the substra te .

There are  several l ines  o f  evidence which support an important

ro le  fo r  PPH in the regu la tion  o f  n e u tra l-1 ip id  formation by l i v e r  o r

adipose t is s u e .  The reaction  ra te  o f  PPH under optimum conditions

in v i t r o  is  the lowest in the o v e ra l l  synthetic  pathway in l i v e r

microsomal f ra c t io n s  (Lamb and F a l lo n ,  1974a). PPH a c t iv i t y  has been 

shown to be 0 .6  -  0 .8  nmol/min/mg o f  microsomal p ro te in  when rad io ­

la b e l le d  p a rt icu la te -b o u n d  phosphatidate is used as su b stra te . The 

o v e ra l l  ra te  o f  g ly c e ro l ip id  formation by these microsomal preparations  

is approxim ately 1.0 nmol/min/mg o f  microsomal pro te in  but the optimum 

ra te  o f  microsomal GPAT is 5“ 7 fo ld  higher. Addition o f  the soluble  

supernatant re s u lts  in a 5“ 20 fo ld  increase in t r ia c y lg ly c e ro l  synthesis  

(Lamb and Fallon^ 1974a). Induction o f  increased l i v e r  t r ia c y lg ly c e ro l
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form ation  by ad m in is tra t io n  o f  a 75% fructose d ie t  is  accomplished by 

an e q u iva len t  r is e  in the a c t i v i t y  o f  the microsomal PPH (F a llo n  e t  al_.,

1977). These changes in l i p id  metabolism occur simultaneously over a 

10-day period (Lamb and F a l lo n ,  1974b). Further, the phosphatidate  

content o f  l i v e r  microsomal preparation is diminished by approximately  

15% and d ia c y lg ly c e ro l  increased by approximately 90% under these 

d ie ta ry  co n d it io n s . The e f fe c t  o f  sucrose, g ly c e ro l ,  s o rb ito l  or 

ethanol in tu b a tio n  on hepatic  PPH a c t i v i t y  in ra t  l i v e r  is an increase  

in s p e c i f ic  a c t i v i t y  o f  PPH in comparison to control animals intubated  

w ith  0 .1 5  NaCl. Glucose in tubation  was in e f fe c t iv e .  The g re a te s t  

increase was observed in both soluble and microsomal PPH a c t i v i t y  o f  

ra ts  tre a te d  w ith  ethanol (S turton e_t a_]_., 1978). E ith e r  75% glucose  

or 75% fru c to s e  given in d ie ts  fo r  a period o f  60h resulted  in a 

3 - fo ld  increase in PPH a c t i v i t y  in both the microsomal and supernatant  

f r a c t io n s  in comparison w ith  chow fed animals (Lamb and F a llo n , 1974b). 

These changes can be co rre la te d  to the increase in t r ia c y lg ly c e ro l  

synthesis which occurs on carbohydrate feeding and to the change in the 

r a t io  o f  neutra l l i p id  to po lar l i p id  synthesis observed using ra t  

l i v e r  homogenates or microsomal fra c t io n s  (Lamb and F a l lo n ,  1974b).

An increased supply o f  saturated and monqfeaturated f a t t y  acids  

to the l i v e r ,  such as in s ta rv a t io n ,  stress and obesity  has a lso been 

shown to be accompanied by an increase in the soluble PPH a c t i v i t y  

(Glenny £ t  £ l_ . , 1978). These authors have suggested th a t ingestion o f  

d ie t  r ich  in fructose  or glucose resu lts  in an increased synthesis o f  

saturated  or monqtaturated f a t t y  acids which, in tu rn , may g ive  r is e  

to an increase in PPH a c t i v i t y .  The increase in l i v e r  t r ia c y lg ly c e ro l  

content a f t e r  p a r t ia l  hepatectomy is a lso accompanied by a corresponding 

increase in PPH a c t i v i t y ,  but actinomycin-D adm in is tra tion  re s u lts  in 

a lowering o f  PPH a c t i v i t y  y e t  d q ^  not prevent t r ia cy g ly ce ro l  

accumulation (Mangiapane ejt aj_., 1973). Several drugs which cause 

su b s ta n t ia l  in h ib i t io n  o f  PPH _i_n v i t r o  a lso in h ib i t  neutra l l i p id  f o r ­

mation when administered to th e  in ta c t  animal (B rind ly  and Bowley, 1975). 

A ser ie s  o f  1 ,3 -b is (s u b s t i tu te d  phenoxyj-2-propanones in h ib i t  microsomal 

PPH in v i t r o .  The in h ib i t io n  ranges from 8 to 92% o f  to ta l  a c t i v i t y

o f  the enzyme. In animals fed on laboratory  chow supplemented w ith  

these agents the incorporation o f  j^^cj g lycerol in to  hepatic  t r i a c y l ­

g lyce ro l is decreased by 3 -  75%. Agents which caused a 50% or g re a te r
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decrease in PPH in v i t r o  a lso lowered hepatic  t r ia c y lg ly c e ro l  fo rm ation ,  

measured in v ivo  by more than 60%. Although each o f  these drugs caused 

some in h ib i t io n  o f  GPAT a c t i v i t y ,  the c o rre la t io n  between enzyme 

in h ib i t io n  and decreased hepatic  t r ia c y lg ly c e ro l  formation was b e t te r  

fo r  PPH. Studies o f  the products o f  l i v e r  microsomal preparations o r  

homogenates from ^n - ^ 1 , 3  “ J g ly c e ro l  3-phosphate have shown a 

rapid incorporation  o f  r a d io a c t iv i ty  in phosphatidate and a much slower 

r is e  in n e u t r a l - 1 ip id  r a d io a c t iv i ty  (Lamb and F a llo n , 1974a; 1974b;

Fal Ion e_t , 1975).

In a d d i t io n ,  in obese rodents an increased capacity  fo r  t r i a c y l ­

g lyce ro l b iosynthesis by both adipose tissue and l i v e r  is accompanied 

by a su b s tan t ia l  r is e  in PPH a c t i v i t y  (Fal Ion e t  al_., 1977) as ind icated  

by the change in the r a t io  o f  n e u tra l -1 ip id  to phosphatidate formed; as 

expected, the increase in PPH a c t i v i t y  exceeded the r is e  in sn-g lycero l  

3 -  phosphate e s t é r i f i c a t io n .  However, there are some c o n tra d ic to ry  

re p o rts ,  fo r  example, from studies in the perfused l i v e r ,  the in ta c t  

animal and hepatocytes grown in monolayer cu ltu re  (Lamb eJt aj^., 1976).

I t  has been shown th a t  the adm in is tra t ion  o f  g lycero l to animals

or added to in ta c t  hepatocyte: preparations does not re s u lt  in an 

accumulation o f  r a d io a c t iv i ty  in l i v e r  phosphatidate. The rad io labe l  

appears promptly in t r ia c y lg ly c e ro l  and complex phospholipids (F a llo n  

£ t £ ] _ . , 1977).

An increase o f  between 180 and 320% in the hepatic  so luble  PPH 

a c t i v i t y  has been observed a f t e r  40h fa s t in g ,  W hile GPAT leve ls  are  

lower. However, g ly c e r id e  synthesis by l i v e r  homogenates was found to  

be unchanged o r  s l ig h t ly  increased in the starved animals (Vavrecka 

e t  a l . ,  1969) .

I t  has been shown th a t  the p a r t ic u la te  PPH a c t i v i t y  is in h ib i te d  by 

incubation o f  adipocytes w ith  noradrena lin , but i t  is not c le a r  i f  th is  

is  a d i r e c t  e f f e c t  o f  the hormone on the enzyme or an in d ire c t  e f f e c t  

v ia  the s t im u la t io n  o f  l ip o ly s is  (Cheng and Saggerson, 1978). A c t i v i t i e s  

o f  PPH and DGAT are  increased in microsomal fra c t io n s  iso la ted  from 

l i v e r  perfused w ith  Bt^cAMP. These e f fe c ts  are associated w ith  a decrease 

in microsomal t r ia c y lg ly c e r o l ,  d iacy lg ly cero ls  and phosphatidate  

synthesis fo^m |u -  g lycero l 3-phosphate. The output o f  t r i a c y l ­

g lyce ro l is decreased by the c y c l ic  nucleotide but ketogenesis and
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glucose output are s tim ulated  (S o le r-A rg i laga e t  , 1978a). Thus, 

these authors have suggested th a t  Bt^ cAMP in h ib i ts  hepatic  microsomal 

synthesis o f  t r ia c y lg ly c e r o l  a t  a step p r io r  to the formation o f  

phosphatidate, presumably a t  the GPAT step.

C o rt is o l ad m in is tra t io n  resu lted  in an increase in so luble  PPH 

leve l and an increase in the r e la t iv e  proportion o f  ||^^cj g lycero l  

incorporated in to  t r ia c y lg ly c e ro l  (P r itc h ard  e t  aj_., 1977; Glenny e t  a l . ,  

1978; Glenny and B rind ley , 1978). I t  has also been reported th a t  

thyrox ine  increases the r e la t iv e  ra te  o f  t r ia c y lg ly c e ro l  synthesis  

(Glenny and B r in d le y ,1978). Glucagon and In s u l in ,  however, have no 

s ig n i f ic a n t  e f f e c t  on the soluble  PPH a c t iv i t y  (Lehtonen £ t  , 1979). 

These authors have a lso described the induction o f  so lub le  hepatic  PPH

a c t i v i t y  by c o r t is o l  both in v ivo  and in an iso la ted  perfused r a t  l i v e r .
2+Recently i t  has been shown th a t  Mg -dependent PPH a c t iv i t y  increased  

in the microsomal and decreased in the so luble  f ra c t io n  o f  iso la ted  f a t  

c e l ls  incubated fo r  short periods w ith  l i p o ly t i c  hormones o r  agents 

such as a d ren a lin e , c y c l ic  AMP, theophy lline  and Bt^cAMP (Mol 1er e t  a l . ,  

1981) .  The increase in microsomal a c t i v i t y  ranged from 30 to 134% w ith  

ad ren a lin e  and to almost 200% w ith  Bt^cAMP. The e f f e c t  o f  adrena line  was 

in h ib i te d  by the B -adrenerg ic  antagonist propranolol w h ile  the 

a -a n ta g o n is t  phentolamine enhanced i t  (Mol 1er e t  a H , I 98 I ) .  These 

authors s tro n g ly  suggest th a t  the f a t  c e l l  PPH is co n tro lled  through the 

3 -ad ren erg ic  receptor and the a c t i v i t y  o f  adenylate cyclase. These 

authors have a lso  speculated th a t  the a c t iv a t io n  o f  microsomal PPH by 

l i p o l y t i c  s t im u li  may represent a mechanism whereby f a t t y  acid re lease  

from adipose t issu e  by hormone s e n s it iv e  11pase may be modulated and 

i n t r a c e l l u la r  f a t t y  acid! accumulation maybe counteracted during  

acce le ra ted  l ip o ly s is  in adipose tissue  (Mol 1er e_t ^ . , I 98 I ) .

4 . D ia cy lg lycero l acyl transferase  (E .C .3 .1 .2 0 )

D iacy lg lycero l acyl transferase (DGAT) catalyses the conversion o f  

1,2  -  d ia c y lg ly c e ro l  to t r ia c y lg ly c e r o l .  This enzyme has been iso la ted  

from both microsomal and mitochondrial f ra c t io n s  o f  d i f f e r e n t  mammalian 

t is su e s . I t s  a c t i v i t y  has been shown to be 0 .4  nmol/min/mg p ro te in  in 

r a t  l i v e r  microsomal f ra c t io n  (Fal Ion e_t aj_., 1975). The a c t i v i t y  o f  

DGAT can be a ffe c te d  by d i f f e r e n t  n u t r i t io n a l  s ta tes  (Fal Ion £ t  ^ . , 

1975; Coleman and B e l l ,  1976). I t  has been found th a t  r a t  l i v e r
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homogenate DGAT a c t i v i t y  is  increased by fa s t in g  (Vavrecka £ t  £ l^ . , I 969) .  

This increase in enzyme a c t i v i t y  co rre la ted  w ith an increase in t r i a c y i -  

g ly c e ro l /d ia c y lg iy c e ro l  r a t io  from 0 .7  to 1 .0 .  High fructose d ie ts  fed 

to ra ts  fo r  11 days resu lted  in the accumulation o f  d ia c y l ­

g lycero l (Fal Ion ejt a_l_., 1975). In a d d it io n ,  DGAT a c t iv i t y  measured 

w ith  microsomal-bound d ig ly c e r id e  was increased 2 - fo ld .  I t  has been

found th a t  sucrose, corn o i l  and lard  feeding fo r  a period o f  14 days 

resu lted  in an increase in hepatic  DGAT a c t iv i t y  in ra ts  when compared 

to s ta rc h - fe d  c o n tro ls .  Fat feeding is more e f fe c t iv e  than sucrose in 

m ainta in ing  the enzyme a c t i v i t y  (Glenny £ t  £ l^ ., 1978). I t  has been shown 

th a t  the s p e c i f ic  a c t i v i t y  o f  r a t  adipocyte DGAT increased in microsomal 

f r a c t io n  from precursor c e l ls  grown in c u ltu re  in the presence o f  added 

in s u l in  (Roncari fJL '» 1979). I t  has been shown th a t  the s t im u la to ry  

e f f e c t  o f  f a t t y  acids on t r ia c y lg ly c e ro l  synthesis and VLDL secretion  

in is o la te d  r a t  hepatocytes  ̂ , may be a consequence o f  enhanced

a c t i v i t y  o f  DGAT, the only enzyme th a t is exc lu s ive ly  concerned w ith  the 

synthesis o f  t r ia c y lg ly c e r o l  (Haagsman ^  aj_., 1981b).

B. Regulation o f  t r ia c y lg ly c e ro l  synthesis and secretion

/

1. E f fe c t  o f  f re e  f a t t y  acid! on t r ia c y lg ly c e ro l  secre tion

Hepatic  t r ia c y lg ly c e ro l  synthesis is co n tro lled  by the level o f  

FFA in the l i v e r .  I t  has been shown th a t  increasing the concentration  

o f  FFA in the perfusate  o f  iso la ted  l i v e r  leads to an increase in the 

ra te  o f  secre tion  o f  VLDL (Mayes and F e l ts ,  1966; 1967; Mayes, 1970). 

There is a reciprocal re la t io n s h ip  between the e s t é r i f i c a t io n  o f  FFA 

and th e i r  o x id a t io n  to COg and ketone bodies (Topping and Mayes, 1972). 

At any given concentration o f  FFA the l iv e rs  from fed rats oxidised  

les s , and e s t e r i f i e d  and exported more o f  FFA as VLDL compared to l iv e rs  

from starved ra ts .  In l iv e rs  from fed ra ts  a t . lo w  concentrations o f  

FFA most o f  the in take  in to  the l i v e r  is e s t e r i f i e d  and exported as 

t r ia c y lg ly c e r o l  in VLDL. However, as the FFA concentration is ra is e d ,  

the f ra c t io n a l  e s t é r i f i c a t io n  is decreased although the to ta l  

e s t é r i f i c a t io n  is increased (Topping and Mayes, 1972). Enhancement o f  

V L D L -tr ia c y 1 g lycero l secre tion  by the l i v e r  resu lts  from increased 

synthesis o f  t r ia c y lg ly c e ro l  in a small precursor pool, which is located  

in the smooth endoplasmic reticu lum . There is a lso a large pool o f
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cytoplasmic t r ia c y lg ly c e ro l  ( f lo a t in g  fa t )  which is turned over a t  a 

slow ra te  (Bar-on e t  £1^., 1971; Kuksis e t  al^., 1975; Mayes, 1976). When 

la b e l le d  FFA are taken up by the l i v e r ,  th is  small microsomal pool 

contains t r ia c y lg ly c e r o l  o f  high s p e c i f ic  r a d io a c t iv i ty  compared w ith  

the f lo a t in g  f a t  f ra c t io n  (Mayes, 1976). The function o f  the large  

precursor pool appears to be in the storage o f  the t r ia c y lg ly c e ro l  

which is not exported as VLDL. Hydrolysis o f  the storage t r ia c y lg ly c e ro l  

and resynthesis in the microsomal pool must occur before secre tion  o f  

the stored t r ia c y lg ly c e r o l  can take place ( Bar-on £ t  aj_., 1971).

(See F ig .  7 ) .  The q u a n tity  o f  VLDL secreted by the l i v e r  in the normal 

fed animal in v ivo  is determined by the necessity to secrete  t r i a c y l ­

g ly c e ro l .  I t  has been postulated th a t  the output o f  the VLDL in the  

in ta c t  animal is d i r e c t ly  proportional to the concentration o f  FFA in  

the plasma (Heimberg e t  a l . ,  1974). T r ia c y lg ly c e ro l  synthesis (Ontko, 

1972; Croener and Van Golde, 1978; Haagsman ejt £]_., 1981) and 

secre tio n  o f  V L D L -tr ia c y lg ly ce ro l (Kempen, I 98O; Haagsman and Van Golde, 

1981) by iso la ted  hepatocytes are also stim ulated by the ad d it io n  o f  

f a t t y  acids to the incubation medium.

I t  has been found th a t  in the perfused ra t  l i v e r  from fed ra ts  

VLDL secre tio n  is d i r e c t ly  re la ted  to endogenous f a t t y  acid synthesis ,  

i f  exogenous f a t t y  acid is not supplied . There is a high c o rre la t io n  

between the amount o f  f a t t y  acid synthesised and the e s t e r i f i e d  f a t t y  

acid secreted in such a perfused system (Windmueller and Spaeth, 1967). 

This c o r re la t io n  has a lso  been found in iso la ted  hepatocytes from meal 

fed ra ts  except th a t  the secre tion  o f  newly synthesised t r ia c y lg ly c e ro l  

shows a lag phase o f  about 30 min. These authors conclude th a t  de novo 

t r ia c y lg ly c e r o l  synthesis contro ls  the V L D L -tr iacy lg lycero l re lease by 

a 'push' mechanism (Beynen e_t £]_., I 98 I ) .  This is in l in e  w ith  the  

well-known s tim u la to ry  e f f e c t  o f  f a t t y  acids on the secretion  o f  

t r ia c y lg ly c e r o ls  by the perfused l i v e r  (Havel e t  a 1 . ,  1962; Nestel and 

S te in berg , 1963; Kohout e t  a l . ,  1971) and by iso la ted  hepatocytes  

(Kempen, I 98O; Haagsman and Van Golde, I 98 I ) .  Addition o f  f a t t y  acid  

to iso la te d  hepatocytes also s tim ulates t r ia c y lg ly c e ro l  synthesis from 

p n ]  g ly c e r o l ,  whereas phospholipid synthesis is influenced to a lesser  

degree (Ontko, 1972; Sundler e t  £ l_ . , 1974). However, Mayes and Topping 

( 1974) found th a t  increased concentration o f  serum FFA did not a l t e r  

s ig n i f ic a n t l y  the ra te  o f  VLDL f a t t y  acid secretion by perfused ra t  

l i v e r ,  but there  was a considerable decrease in the proportion o f  the
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F ig . 7 The e f f e c t  o f  f re e  f a t t y  acids, in s u l in ,  pOg and 

f ru c to se  on the secre tion  o f  VLD-1ipoproteins in 

the l i v e r .  Proposed scheme by Mayes (1972 ).
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VLDL f a t t y  ac id  which was synthesised de novo as the FFA concentration  

increased.

The type o f  long-chain f a t t y  acid metabolised by the l i v e r  has 

a considerable  e f f e c t  on the ra te  o f formation and the composition o f  

the VLDL, I t  has been shown th a t the output o f  t r ia c y lg ly c e ro l  from 

the perfused l i v e r  decreased as the degree o f unsaturation o f  f a t t y  

acid increased, but the output increased w ith  the carbon chain length  

(Kohout e t  a l . ,  1971; Dave and Mayes, 1979). I t  has been demonstrated 

th a t  VLD-1ipoprote ins formed from o le a te  were la rg er  and contained less  

c h o les te ro l and phospholipids per molecule o f  t r ia c y lg ly c e ro l  than 

VLD-1ipoprote ins formed from p a lm ita te  (Heimberg and W ilcox, 1972).

Large l ip o p ro te in s  are  c leared  from the c irc u la t io n  a t  a fa s te r  ra te  

than sm alle r  l ip o p ro te in s  and thus the nature o f  the t r ia c y lg ly c e ro l  

f a t t y  acids may have an e f f e c t  on the concentration o f  plasma VLDL- 

t r ia c y lg ly c e r o l  (Mayes, 1976). I t  has been observed th a t  when equimolar 

q u a n t i t ie s  o f  the p a l m i t i t i c  (16 :0 ) o le ic  (18;1) or l in o le ic  (18 :2 ) acids

were in fused, the output o f  t r ia c y lg ly c e ro l  was in the order o f  18:1 =

1 8 : 2 ^ 1 6 : 0  (Goh and Heimberg, 1977). The release o f  t r ia c y lg ly c e ro l  

in primary monolayer cu ltu res  o f  ra t  hepatocytes is g re a te r  in the 

presence o f  unsaturated acids (1 6 :1 ,  18:1 and 18:2) than the saturated  

acids (16 :0  and 18:0) ( Lamb e_t £ l^ . , 1977).

When long-chain f a t t y  acids are infused in equimolar amounts as 

an albumin complex, the ra te  o f  t r ia c y lg ly c e ro l  f a t t y  acid output in 

VLDL fo r  each f a t t y  acid  is as fo llow s: o le a te  (18 :1 )^^» l in o le a te  

18:2 ^  l in o le n a te  (18 :3 )  ^  arachidonate (24:5) 'P >  s te a ra te  (16 :1 )  ^

p a lm ita te  (1 6 :0 )^ >  m yris ta te  ( l4 :0 )  (Dave and Mayes, 1979).

This data shows th a t  unsaturated f a t t y  acids promote more t r i ­

a c y lg ly c e ro l  secre tion  from the l i v e r .

2 . E f fe c t  o f  pOg redox s ta te  o f  the l i v e r  tissue

When whole blood is perfused through the iso la ted  l i v e r  the pO  ̂

has been shown to decrease w ithout any change in Og consumption (Mayes 

and F e l ts ,  1976). This leads to increases in the sn-g lycero l 3-phosphate/  

dihydroxyacetone phosphate, la c ta te /p y ru v a te ,  3 -hydroxybutyra te /acetoaceta te
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and NADH/NAD r a t io s .  The more reduced redox s ta te  is associated w ith  

a marked s h i f t  in balance between o x idat ion  and e s t é r i f i c a t io n  o f  FFA 

in favour o f  o x id a t io n .  This is accompanied by a corresponding decrease 

in sec re tio n  o f  V L D L -tr iac y lg lycero l (Mayes, 1976). The increased  

NADH/NAD r a t io  may cause in a c t iv a t io n  o f  pyruvate dehydrogenase, 

increased f a t t y  acid  ox idation  and thus a decrease in the r a t e r s t e r i -  

f i c a t io n  o f  f a t t y  a c id .  An increase in the NADH concentrations w i l l  

favour the formation o f  sn-g lycero l 3-phosphate whereas a decrease in 

NADH w i l l  provide more NAD* a v a i la b le  fo r  the conversion o f  pyruvate to 

acety l CoA and hence increase the ra te  o f  f a t t y  acid synthesis (Mayes, 

1976).

I t  has been proposed th a t the a v a i l a b i l i t y  o f  sn-g lycero l 3” 

phosphate is a regu lato ry  fa c to r  in f a t t y  acid e s t é r i f i c a t io n  (Exton and 

Park, 1967; Mayes and F e l ts ,  1967; Van T o i,  1974; Debeer £ t  al_., I 9 8 I ) .

A strong s t im u la to ry  e f fe c t  o f  g lycero l on e s t é r i f ic a t io n  and a low 

s n -g lycero l 3-phosphate content o f  iso la ted  hepatocytes from starved  

animal s tro n g ly  suggest th a t  sn-g lycero l 3-phosphate a v a i l a b i l i t y  may 

be a l im i t in g  fa c to r  in t r ia c y lg ly c e ro l  synthesis in iso la ted  r a t  

hepatocytes (Debeer ejt aj_., I 9 8 I ;  Declercq e t  a l . ,  1982b). These authors  

have shown th a t  the v a r ia t io n s  in sn-g lycero l 3-phosphate content from 

0.1 -  0 .3  jimol/10^ c e l ls  s ig n i f ic a n t ly  a l t e r  rates o f  e s t é r i f i c a t io n  in 

is o la te d  hepatocytes. There is no s ig n i f ic a n t  d if fe re n c e  in the 

r e la t io n s h ip  between t r ia c y lg ly c e ro l  synthesis by hepatocytes from fed  

and fas ted  animals and the sn-g lycero l 3-phosphate content o f  the c e l ls  

incubated under d i f f e r e n t  cond itions. However, the l a t t e r  is  lower in 

c e l ls  from fasted animals. There is a lso a 40% decrease in o f

GPAT on fa s t in g  (Declercq, 1982b).

3 . Hormones and t r ia c y lg ly c e ro l  secretion

The major l im it in g  fa c to r  in the secre tion  o f  V L D L -tr iacy lg lycero l  

appears to  be the a v a i l a b i l i t y  o f  FFA. Thus, the factors  which in fluence  

the plasma FFA le v e ls ,  fo r  example the e f fe c t  o f  hormones on adipose  

t is s u e ,  w i l l  in d i r e c t ly  a f fe c t  VLDL secre tio n .

The process o f  g lyce r id e  synthesis and secretion  in the l i v e r  

is known to be regulated- d i r e c t ly  by hormones, e s p e c ia l ly  in s u lin  and
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glucagon (Hems, 1975). i t  has been reported th a t l ipogenesis is 

impaired In d ia b e t ic  animals (Mayes and F e l ts ,  1967; Heimberg ^  ,

1969)» a t  the same time plasma FFA is increased b_ut the secre tion  o f  

VLDL is suppressed. Topping and Mayes (1972) showed th a t  whole blood 

conta in ing  e levated  leve ls  o f  in s u lin  d i r e c t ly  a f fe c ts  the metabolism  

o f  FFA in perfused l i v e r  by increasing the ra te  o f  e s t é r i f i c a t io n  and

on o f  t r i a c y lg ly c e r o l - f a t t y  

aceta te  in to  VLDL t r i a c y l -

decreasing the ra te  o f  o x id a t io n .  Secret 

acid  in VLDL and the incorporation o f  [ \  

g lycero l are  a lso  s t im u la ted . However, Nikki la  (1974) found no d i r e c t  

e f f e c t  o f  in s u lin  on perfusate  t r ia c y lg ly c e ro l  leve ls  in perfused l i v e r  

and he suggested th a t  the d iffe ren ces  between his work and th a t o f  

Topping and Mayes (1972) is th a t  the l a t t e r  authors used whole blood 

taken from ra ts  given a glucose load as a source o f  r a t  in s u l in .

Woodside and Heimberg (1976) found th a t  although plasma t r ia c y lg ly c e ro l  

secre tio n  is suppressed in v ivo by a n t i - in s u l in  serum, a d d it io n  o f  

in s u l in  in v i t r o  did not s ig n i f ic a n t ly  a f fe c t  t r ia c y lg ly c e ro l  secre tion  

by perfused l iv e r s  from rats  trea ted  w ith  the serum. Glucose, on the 

o th e r  hand, s tim ulated  t r ia c y lg ly c e ro l  sec re tio n , whereas in s u lin  and 

glucose together depressed the ra te  o f  secre tion .

Salmon and Hems (1976) have also reported th a t the presence o f  

in s u l in  exerts  l i t t l e  e f f e c t  on net t r ia c y lg ly c e ro l  secre tion  by 

perfused mouse l i v e r ,  but th a t  hormone in h ib ite d  a l ipase  re s u lt in g  in 

a s ig n i f ic a n t l y  g re a te r  re ten tio n  o f  t r ia c y lg ly c e ro l  f a t t y  acids in 

the l i v e r  compared to untreated co n tro ls .

Hepatocytes in suspension secrete  VLDL which is very s im i la r  to 

th a t  found in v ivo (Kempen, I 98O). in s u lin  has been reported to s t im u la te  

the incorporation  o f  [9,10 ^H^j p a lm ita te  in to  t r ia c y lg ly c e ro l  by 

iso la te d  hepatocytes, but the increase is only o f  the order o f  12%

(Beynen e t  £ l_ . , I 98O). These authors have attempted to c o rre la te  th is  

increase to increased (by 18%) sn-g lycero l 3-phosphate leve l in iso la ted  

hepatocytes: trea ted  w ith  in s u l in .  The same group were unable to show 

any a f f e c t  o f  in s u lin  on the ; release o f  p re - lab e l  led V L D L -t r ia c y lg ly c e ro l ,  

When hepatocytes are  incubated w ith  HgO, the secre tion  o f  newly- 

synthesised t r ia c y lg ly c e ro l  in the VLDL shows a lag phase o f  about 

30 min. In s u lin  s tim ulates  the secretion  o f  the newly synthesised VLDL 

but the s t im u la t io n  observed is very sm all. Perfusion o f  l i v e r  w ith  

glucagon o r  Bt2cAMP increases the ox idation  o f  FFA and decreases th e i r
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conversion in to  V L D L -tr iacy lg lycero l and the secretion  o f  t r i a c y l ­

g lyce ro l (Van Harken ^  al_., 19&9; Heimberg e t  al_., I 969 ; Weinstein  

£ t  , 1973) .  One suggested mechanism (Topping and Mayes, 1972) fo r  

th is  e f f e c t  is th a t  glucagon stimulates the hormone-sensitive l ipase  

which hydrolyses the t r ia c y lg ly c e ro l  in the small microsomal t r i a c y l ­

g lyce ro l pool (see F ig .  5 ) .  The p o s it iv e  e f f e c t  o f  in s u lin  observed 

by these workers may be re la te d  to the in h ib i t io n  o f . t h is  1 ipase.

These hormonal e f fe c ts  would account fo r  both the decrease in t r i a c y l ­

g lyce ro l export and the net decrease in e s t é r i f i c a t io n  and increase in 

o x id a t io n  o f  f a t t y  acids observed.

The e f f e c t  o f  Bt^cAMP on t r ia c y lg ly c e ro l  synthesis has been 

studied by in v e s t ig a t in g  the microsomal g ly c e ro l ip id  biosynthesis a f t e r  

perfus ion o f  l i v e r  w ith  the c y c l ic  nucleotide . The incorporation o f  

sn- g lycero l 3-phosphate in to  g ly c e ro l ip id  is reduced by the

trea tm ent, but PPH and DGAT were increased. This suggests th a t  

in h ib i t io n  occurs a t  a step p r io r  to the formation o f  the phosphatidate, 

presumably GPAT (S o le r-A rg ilag a  e t  a l . ,  1978a).

The secre tio n  o f  V L D L -tr iacy lg ly ce ro l by iso la ted  hepatocytes has 

a lso  been reported to be depressed by both glucagon and Bt^cAMP. Thus, 

i t  is  l i k e l y  th a t  glucagon exerts  I t s  e f f e c t  v ia  changes in in t r a c e l lu la r  

cAMP, presumably leading to increased p ro te in  phosphorylation by cAMP- 

dependent p ro te in  k inase.

The mechanism o f  action  by which Bt2cAMP diminishes the hepatic  

output o f  t r ia c y lg ly c e r o l  may include in h ib i t io n  o f  e s t é r i f i c a t io n  o f  

long-chain  f a t t y  acylCoA to t r ia c y lg ly c e r o l ;  depression o f  formation  

and re lease  o f  the VLDL associated w ith  transport o f  t r ia c y lg ly c e r o l ;  

increase in the ra te  o f  transport o f  f a t t y  acids from the cytoplasm in to  

the mitochondria by a l t e r in g  the a c t iv i t y  o f  CAT I ,  or by increasing  

the a v a i l a b i l i t y  o f  f re e  c a rn i t in e  o r  both; d i r e c t  s t im u la tio n  o f  

m itochondria l pathways fo r  o x idat ion  o f  f a t t y  acids and fo r  formation  

o f  ketone bodies; and any combination o f  these factors  (Heimberg e t  a l . ,  

1969; 1978).

The e f f e c t  o f  Bt2cAMP has also been observed in l i v e r  perfusion  

experiments. The net output o f  t r ia c y lg ly c e ro l  by l i v e r  (Heimberg aj_., 

1974) and the incorporation  o f  cJ f a t t y  acid in to  perfusate
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t r î a c y l g lycero l is In h ib i te d  by glucagon (Heimberg e t  aj_., 1974). The 

e f fe c ts  o f  the c y c l ic  nuc leotide  are r e la t iv e ly  small during the f i r s t  

hour o f  p e rfu s io n , but th e n ^ f te r  become extens ive . This is in con trast  

to  the e f f e c t  on glucose output which occurs during the f i r s t  hour.

The exp lanation  fo r  th is  time lag is ,  presumably, re la te d  to some o ther  

change which precedes the e f f e c t  on t r ia c y lg ly c e ro l  ou tpu t. In a d d it io n ,  

M u lle r  and Jeanrenaud (1978) found th a t  t r ia c y lg ly c e ro l  secretion  by 

iso la te d  hepatocytes was in h ib ite d  by glucagon but a t  h igher concen­

t ra t io n s  o f  the hormone (above 10 ^M) than were required to s t im u la te  

glycogenolysis and lipogenes is . This is again in d ic a t iv e  th a t  the 

act io n  o f  the hormone on t r ia c y lg ly c e ro l  output may be in d ire c t .

. Geelen ^  * (1978a) showed th a t  glucagon had no e f f e c t  on the

formation o f  phosphoglycerides from exogenous f a t t y  acids by iso la ted

hepatocytes, but caused a marked decrease in the ra te  o f  t r ia c y lg ly c e ro l

synthesis . Indeed, l a t e r  work (Geelen e_t , 1979) suggested th a t

phospholipid synthesis may be increased by the hormone. Haagsman e t  a l . ,

( 1981) have concluded th a t  microsomal DGAT is regulated by glucagon;

they showed a 53% decrease in enzyme a c t i v i t y  in hormone-treated

hepatocytes. They found a s im i la r  decrease in a c t iv i t y  when the m icro-
2+somal p repara tion  was trea ted  w ith  ATP and Mg, in the presence o f  

supernatant, suggesting th a t  a phosphorylation o f  the enzyme could account 

fo r  the changes in enzyme a c t i v i t y  observed.

2+Ca has a lso  been im plicated in the regu lation  o f  t r ia c y lg ly c e ro l  

synthesis . The uptake o f  Câ "*" by hepatic  microsomes resu lts  in a decrease 

in the b iosynthesis  o f  phosphatldate and o th er g ly c e ro l ip id s ,  Ca -  

d ep le t ion  o f  hepatocytes resu lts  in diminished response o f  the c e l ls  to

both glucagon and cAMP. la tes o f  t r ia c y lg ly c e ro l  synthesis were

decreased and uptake o f  |_^cj o le a te  was reduced in Ca^ -deple ted  

hepatocytes. (Sole r -A rg i lag a £ t  £ l_ ., 1978a,b).

The in h ib i t io n  o f  t r ia c y lg ly c e ro l  synthesis by glucagon in  

glycogen-depleted hepatocytes from fed rats  has been shown to be re la te d  

to a lowering o f  c e l lu la r  sn -g lycero l 3”phosphate content o f  the cel Is  

(Declercq , 1982a).

Adrenalectomy has been reported to impair the synthesis and 

secre tion  o f  t r ia c y lg ly c e r o l  f a t t y  acid by perfused l i v e r  systems



-  76 -

(Klausner and Heimberg, 1967; Ki rk e t  al_., 1975; 1976). Normal re lease  

o f  t r ia c y lg ly c e r o l  is restored by s te ro id  treatment o f  the adrenalectomized  

animal. Ki rk e_t a_l_., (1976) have suggested th a t adrenalectomy re su lts  in 

the p r e fe r e n t ia l  in h ib i t io n  o f  t r ia c y lg ly c e ro l  synthesis; phospholipid  

synthesis remaining unaffected. This is in accord w ith  the work o f  

Glenny and B rind ley  (1978) who found th a t  c o r t is o l  treatment o f  the 

in ta c t  r a t  increased the r e la t iv e  ra te  o f  t r ia c y lg ly c e ro l  synthesis in 

ra t  l i v e r  and increased the f lu x  from phosphatidate to d ia ç ^ ^ ly c e ro l .

This was c o rre la te d  to an increase in the soluble  PPM.

G lucocortico ids  are  known to ra ise  plasma t r ia c y lg ly c e ro l  leve ls  

in ra ts (A fo la b i  ejt a j [ . , 1976), an e f f e c t  which involves both increased  

hepatic  t r ia c y lg ly c e r o l  output and an impaired VLDL clearance by the  

adipose t issu e  (Bagdade £ t  ^ . , 1976).

I t  is  w e ll  known th a t  the output o f  t r ia c y lg ly c e ro l  by perfused  

l i v e r  from female ra ts  exceeds th a t  in the male (Watkins e t  a l . ,  1972).  

Furthermore, t r ia c y lg ly c e r o l  output by perfused l i v e r  from ov a r ié e tomized 

ra ts  is reduced but is restored by oestrogen treatment (Weinstein e t  a l . ,  

1974; Watkins e t  a l . ,  1972). I t  appears th a t la rg e r  VLDL p a r t ic le s  are  

secreted by the female l iv e r s  (S o le r-A rg ilag a  e t  a l . ,  1976). The 

mechanism o f  action  o f  oestrogen is not c le a r ,  but i t  is suggested 

th a t  oestrogen may a c t  by diminishing the response to factors  th a t  

increase the i n t i ^ e l l u l a r  cAMP leve ls  (Weinstein e t  a l . ,  1979).

Glenny and Brindley (1978) reported th a t  thyroxine also increases  

the r e la t i v e  ra te  o f  t r ia c y lg ly c e ro l  synthesis from g lycero l w h ile

not a f fe c t in g  e i t h e r  the accumulation o f  the rad io ac tive  isotope in

phosphatidate o r  the a c t i v i t y  o f  soluble  PPM.
- . ^

Laker and Mayes ( I 98 I )  a lso  reported th a t  the thyroid  status o f  

ra ts  in fluenced hepatic  l i p id  metabolism. Synthesis and secre tion  o f  

t r ia c y lg ly c e r o l  was decreased in hyperthyroid ra ts ;  a t  the same time 

more o le a te  was oxid ised to COg and ketone bodes.

4 . N u t r i t io n a l  control o f  hepatic  t r ia c y lg ly c e ro l  output

High carbohydrate d ie ts  are  known to enhance the hepatic  output  

o f  VLDL” t r ia c y lg ly c e r o l . The f a t t y  acid o f  V L D L -tr iacy lg lycero l may
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o r ig in a t e  from c irc u la t in g  FFA derived from m o b il iza t io n  o f  adipose  

t i s s u e - t r ia c y 1 g lycero l from the d ie t ,  o r  from de novo hepatic  lipogenesis  

(S te in b e rg , 1963). Perfused l iv e rs  o f  f ru c to se -fed  rats  secrete  twice  

as much o le a te  -  t r ia c y lg ly c e ro l  as control animals (Schonfeld

and P f le g e r ,  1971).

Ingestion o f  75% fructose increased the ra te  o f  DHAP e s t é r i f i c a t io n  

and the serum t r ia c y lg ly c e r o l  concentrations (Lamb and F a l lo n ,  1977).

D ie ts  conta in ing  fruc tose  are  reported to increase the hepatic  formation  

o f  t r ia c y lg ly c e r o l  v ia  changes in the a c t iv i t y  o f  GPAT and PPH (Lamb 

and F a l lo n ,  1974a; Fa llon  e t  a l . , 1977).

The rates o f  secre tion  o f  VLDL in ra ts  adapted to a h ig h - f a t  d ie t  

decreased by 40% (K a lop iss is  e t  a l . ,  I 98O). The reasons fo r  th is  decrease 

in VLDL secre tio n  in v ivo are not c le a r ,  since n o n -e s te r i f ie d  f a t t y  

acids are known to enhance VLDL secre tion  rates by the perfused l i v e r  

(Heimberg ejt , I 969) and by cu ltu red  hepatocytes (Dashti,  e t  a l . ,

1980) .  A possib le  explanation  could be th a t  fa t - fe e d in g  lowers VLDL 

production through in h ib i t io n  o f  hepatic  lipogenesis (Ogiwara e t  a l . ,

1978) .  A high degree o f  c o r re la t io n  e x is ts  between the rates o f  

hep atic  lipogenesis and VLDL secre tion  (Windmueller and Spaeth, I 966 ; 1967) 

In perfused l iv e r s  from fed ra ts ,  re lease o f  t r ia c y lg ly c e ro l  is h igh ly  

c o rre la te d  w ith  the ra te  o f  f a t t y  acid  synthesis . However, as the  

concentra tion  o f  FFA is ra is e d , lipogenesis is progressively  in h ib ite d  

and the co n tr ib u t io n  o f  newly synthesised f a t t y  acid to V L D L -t r ia c y l-  

g lycero l f a l l s  (Mayes and Topping, 1974).

In the starved s ta te  hepatic  lipogenesis from carbohydrate v ia  

ace ty l CoA is decreased and FFA are the major source o f  t r ia c y lg ly c e ro l  

f a t t y  acids in VLDL (Mayes, 1976). I t  has been shown in iso la ted  

hepatocytes th a t  fa s t in g  s trong ly  decreases the incorporation o f  

1̂ 2 -^ hJ  g lycero l v ia  sn -g lycero l 3-phosphate in to  t r ia c y lg ly c e r o ls ,  

whereas the formation o f  phospholipids is much less a ffe c te d  (Groener 

and Van Golde, 1977). I t  has a lso  been reported th a t  t r ia c y lg ly c e ro l  

output and lipogenesis vary in p a r a l le l  in several m etabolic s ta tes  

(Mayes and F e l ts ,  1967; Assimacopoulos-Jeannet e t  a l . ,  1974; Bloxham 

e t  a ^ . ,  1977; H o lt  e t  a i . ,  1979). Incorporation o f  exogenous f a t t y  

acids in to  hepatic  VLDL is g re a t ly  decreased in fa t - f e d  rats  as is
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t h e i r  h ep at ic  e s t é r i f i c a t io n  to t r ia c y lg ly c e ro ls  and phospholipids. 

Furthermore, l ipogenesis is s trong ly  in h ib ite d  a f t e r  fa t - fe e d in g  and 

the endogenous t r ia c y lg ly c e r o l  pool contributes less to the VLDL- 

t r ia c y lg ly c e r o ls  than in the control animals. Thus, i t  appears th a t  

f a t t y  acid from exogenous, as w e ll  as from endogenous sources, are  not 

r e a d i ly  a v a i la b le  as substrates fo r  V L D L -tr iacy lg lycero l syntheth is  

in the f a t - f e d  ra ts ,  suggesting th a t f a t t y  acid a v a i l a b i l i t y  a t  the  

assembly p o in t could be a l im i t in g  fa c to r  o f  VLDL secre tion  

(K a lop iss is  e t  a l . ,  1981).

There is evidence that ingesting saturated fa ts  increases the 

concentration  o f  serum t r ia c y lg ly c e ro l  whereas polyunsaturated fa ts  

have the opposite  e f fe c ts  (Macdonald, 1971; Bruckdorfer e t  a l . ,  1972a,b) 

There is a lso  evidence th a t  the ra te  o f  synthesis o f  t r ia c y lg ly c e ro l  

in the l i v e r  is  influenced by the composition o f  d ie ta ry  f a t  (B r in d le y ,  

1978a).
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There have been several reports (Macdonald and Roberts, 1965; 

Nikki la  and O ja la ,  1965; Bar-on and S te in ,  1968; Mukherjee . e t  a l . ,  

1969; Macdonald, 1973) th a t  d ie ta ry  fructose causes a g re a te r  increase  

in fa s t in g  serum t r ia c y lg ly c e ro l  leve ls  compared to an e q u ic a lo r ic  

amount o f  glucose. In a d d it io n ,  both fructose and sucrose in the d ie t  

o f  ra ts  cause an e le v a t io n  o f  serum t r ia c y lg ly c e ro l  leve ls  (Macdonald 

and B ra i th w a ite ,  1964; S h i f f ^ t ^ . , 1971).

Tay ( 1977) found th a t  male rats  had s ig n i f ic a n t ly  h igher leve ls  

o f  serum t r ia c y lg ly c e r o l  than female animals and th a t  a sucrose d ie t  

increased the leve ls  o f  serum tr ia c y lg ly c e ro l  to a g re a te r  e x ten t than 

glucose in both sexes. No s ig n i f ic a n t  sex or d ie ta ry  d iffe ren ces  in  

serum phospholipid were observed. However, Tay (1977) was unable to 

c l a r i f y  whether the d if fe ren ces  were in rates o f  synthesis o r  in the  

rates o f  c learance o f  the l i p i d .  The work o f  Hashemi-Dezfully (1979) 

on h ep atic  l ip o g en ic  enzymes in animals kept on s im i la r  d ie ta ry  

regimes ind ica ted  th a t  the sex d iffe rences  in serum t r ia c y lg ly c e ro l  

observed were the re s u l t  o f  d iffe rences  in rates o f  t r ia c y lg ly c e ro l  

c learance , but th a t  sucrose in the d ie t  e levated l ipogen ic  enzymes to 

a g re a te r  e x te n t  than glucose, in d ic a t in g  th a t the fructose comment 

may a lso  s t im u la te  f a t t y  acid synthesis and, poss ib ly , hepatic  

t r ia c y lg ly c e r o l  output.

Further evidence th a t  fructose can influence t r ia c y lg ly c e ro l  

secre tio n  was obtained from studies on perfused ra t  l i v e r  by Topping 

and Mayes (1 9 7 2 ) ,  who found th a t the ketose increased secre tion  o f  

V L D L -tr ia c y lg ly c e ro l  and decreased ox idation  o f  FFA, I t  has been 

found th a t  perfus ion  o f  l i v e r  w ith  fructose resu lts  in an increase in 

s n -g ly cero l 3-phosphate leve ls  (Wieland and Matschinsky, 1962; Woods

, 1970) ,  and the l a t t e r  group suggested th a t fructose enhances 

FFA e s t é r i f i c a t io n  because i t  is re a d i ly  converted to £ n -g ly ce ro l

3-phosphate. P e re ira  and Jangaard (1971) have come to a s im i la r  

conclusion from the resu lts  o f  th e i r  work w ith  iso la ted  l i v e r  s l ic e s .
In view o f  the e f fe c ts  o f  ischaemia on t r ia c y lg ly c e ro l  synthesis in  

l i v e r  s l ic e s  and perfused l i v e r ,  the aim o f the present study was to 

in v e s t ig a te  the short term e f fe c ts  o f  fructose on f a t t y  acid and 

t r ia c y lg ly c e r o l  synthesis using w e l 1-oxygenated iso la ted  hepatocytes 

as a model system.
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A. Hepatocyte v i a b i l i t y

The use o f  iso la ted  l i v e r  s lic e s  in metabolic studies has been 

sub ject to a number o f  c r i t ic is m s ,  mainly re la t in g  to the v i a b i l i t y  o f  

the c e l ls  (Krebs, e t  a l . ,  1973). Iso lated hepatocytes have been shown 

to be su p erio r  to l i v e r  s lices  in a number o f important respects . For 

example, the adenine nucleotide content o f  iso la ted  hepatocytes is much 

c lo se r  to the value found in vivo than to th a t found in l i v e r  s l ic e s  

incubated fo r  a s im i la r  period under the same conditions (Krebs e t  a l . ,  

1973).

I t  was th e re fo re  decided to examine the m etabolic fa te  o f  fru c to se  

and glucose in iso la ted  hepatocytes and to examine the e f fe c ts  o f  the 

hexoses on l ipogenesis  and t r ia c y lg ly c e ro l  synthesis in iso la ted  l i v e r  

c e l l s .  Most m etabolic  studies on hepatocytes have been concentrated  

on the re g u la t io n  o f  gluconeogenesis by c e l ls  from fasted animals and 

there  have been r e la t i v e ly  few studies on l ip id  metabolism using c e l ls  

from fed animals. Hopkirk and Bloxham (1979), however, found a con­

s id e ra b le  d iu rna l v a r ia t io n  in lipogenesis from by iso la ted

hepatocytes; the increase in the ra te  o f  f a t t y  acid synthesis followed  

a period o f  feeding

In the present study iso la ted  hepatocytes were ro u t in e ly  iso la ted  

a t  0 .900  from animals which were fed on normal laboratory  chow, Dixon 86. 

This is a high carbohydrate, low f a t  d ie t  which would be expected to 

give  high ra tes  o f  lipogenesis since the level o f  l ipogen ic  enzymes in  

animals on the d ie t  are higher than in animals fed on another type o f  

chow, Dixon CDDFrI,which has a higher f a t  content (Hashemi-Dezfully ,

1979).

The trypan blue exclusion te s t  is  w idely  used as an index o f  c e l l  

v i a b i l i t y .  In the experiments described in th is  thesis v i a b i l i t i e s  o f  

approxim ately 90% were genera lly  found and hepatocytes w ith  a v i a b i l i t y  

index o f  less than 80% were discarded. The v i a b i l i t y  declined somewhat 

to about 50% over a 4h incubation period and th is  was p a ra l le le d  by 

leakage o f  la c ta te  dehydrogenase in to  the incubation medium. Perhaps 

a b e t te r  in d ic a t io n  o f  hepatocyte v i a b i l i t y  is the ATP content o f  the  

c e l l s .  A f t e r  a Ih pre -incubation  th is  value was 2 .45 -  0 .095  SEM. A 

fu r th e r  1h incubation resulted in no s ig n i f ic a n t  change in the leve l o f
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the nu c leo t id e  ( T a b l e J ) ,  These values are close to those found 

In vi VO (Krebs e t  a l . ,  1973). I t  is c le a r  th a t a high concentration  

(10 mM) o f  fru c to se  depletes hepatocytes ATP leve ls  over a 60 min period

whereas a physio log ica l concentration o f  the ketose has r e la t i v e ly

l i t t l e  e f f e c t .  Further incubation o f  hepatocytes fo r  180 min resu lts  

in a d im inution o f  the nucleotide  leve ls  in both fru c to s e -  and glucose- 

t re a te d  c e l l s .  The dep le t ion  o f  ATP by fructose is a well-known  

phenomenon (Van den Berghe, 1978) and is the re s u lt  o f  a rapid

metabolism o f  the ketose bT ketohexokinase. A more recent study in the

lab o ra to ry  (Mapungwana, 1982) confirmed the dep le t ion  o f  ATP in fru c to s e -  

tre a te d  c e l ls  from fed ra ts .  The dep let ion  is indeed very ra p id j  in the  

presence o f  10 mM fructose the leve l decreases profoundly over an i n i t i a l  

10 min period and then increases gradually  fo r  up to 60 min. The dep le t ion  

a t  lower fru c to se  concentrations is very much less marked and glucose 

(10 mM) has no e f f e c t  on hepatocyte ATP content.

The m etabolic  competence o f  the hepatocytes was also tested by

C l 4 TU- C j l a c t ic  a c id .  The 

values obtained were approximately 10 pjnole/h/g, comparable to those 

found by o th er workers (Wagle and Ingebretsen, 1975; El 1 lo t  e t  a l . ,

1976) tak ing  in to  account the observation th a t  gluconeogenesis from 

la c ta te  is proportiona l to substrate  concentration up to 20 mM la c ta te  

(Tay, 1977) .  A typ ica l example is shown in F ig .  8 which shows th a t  the  

ra te  o f  gluconeogenesis was l in e a r  fo r  up to 60 min. In a d d it io n ,  

when glucagon, was added to the c e l ls  a t  zero time there was a 2 - fo ld  

s t im u la t io n  o f  gluconeogenesis from la c ta te .  This is gen era lly  regarded 

as a s t r in g e n t  te s t  fo r  hepatocyte v i a b i l i t y ,  since such a s t im u la tio n  

requires the in t e g r i t y  o f  the plasma membrane and the In tegrated  functions  

o f  d i f f e r e n t  s u b c e l lu la r  compartments, i . e .  mitochondria, cytosol and 

endoplasmic re ticu lum .

Glucose output by iso la ted  hepatocytes indubated w ith  2 .5  mM 

fruc tose  was a lso shown to be s e n s it iv e  to glucagon (lO  M). Hormone 

treatm ent resu lted  in a 2 .3 - f o ld  increase in glucose output from 

0 .81  pmols /m in /g  hepatocyte to 1.83 pmols/min/g hepatocyte^ The ■ 

Fncreased output o f  glucose probably arises  from increased glycogenolysis  

and increased gluconeogenesis. I t  is c le a r  th a t  the hepatocytes are  

m e ta b o lic a l ly  competent fo r  a t  lea s t  60 min o f  incubation a f t e r  the  

60 min p re - in c u b a t io n ,  but a f t e r  th is  time there may be a gradual
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Table  I  ATP Concentrations in iso la ted  hepatocytes

Substrate Time (min) pmoles o f  ATP/g c e l ls n

NONE ADDED 0 2 .45  -  0 .095 3

NONE ADDED 60 2.57 Î  0 .140 4

Fructose (2mM) 60 2.31 i  0 .127 3

Fructose (1OmM) 60 1.52  t  0 .120 3

Glucose (9mM) 180 1.07 ±  0.056 8

Fructose(9mM) 180 1.15 Î  0 .076 9

iso la te d  hepatocytes from fed rats were preincubated fo r  

60 min and then incubated w ith  the appropriate  substrate  a t  a 

concentra tion  o f  32 mg (wet weight) hepatocytes per 1 m l. The 

c e l ls  were ex trac ted  w ith  HCIO^ (2% w /v  f in a l  concentration) and 

the n e u tra l is e d  e x trac ts  used fo r  ATP an a lys is .

Each value represent? the mean 1 SEM o f  resu lts
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F ig . 8 Rate o f  gluconeogenesis from L -  la c ta te .

Iso la ted  hepatocytes (4 .0  x 10^ c e l ls /m l)  from fed rats  

were preincubated fo r  Ih w ithout substrate  and then w ith  

la c ta te  (2mM) (o) fo r  various times. Glucagon (10 yM) ( • )  

was added a t  zero time. Experimental d e ta i ls  described  

in Section V I . B. 3c.

Each p o in t represents the mean ± SEM o f  t r i p l i c a t e  resu lts  

w ith  one hepatocyte prepara tion .
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d e te r io r a t io n  in the c e l ls  as indicated by the ATP contents and trypan  

blue exclusion o f  the hepatocytes.

B. Incorporation  o f  hexose in to  to ta l  l ip id

An i n i t i a l  study on the incorporation o f  hexoses in to  to ta l

l i p id  by is o la te d  hepatocytes showed th a t the rates o f  incorporation  

from both j Û- c j  fructose  and glucose were l in e a r  fo r  a t

le a s t  2h a t  concentrations o f  1 mM and 9 mM added hexose (F ig .  9 ) .

The d i f fe re n c e  in reaction  rates suggest th a t  fructose  is a b e t te r  

precursor o f  to ta l  l i p id  than glucose, A higher incorporation o f  

r a d io a c t iv i t y  from fructose  in to  l i v e r  t r ia c y lg ly c e ro l  has been reported  

to  occur in v ivo  (Bar-on and S te in ,  1968: Marhama and Macdonald, 1972; 

1973; Wusteman and Macdonald, 1977) and in iso la ted  l i v e r  s l ic e s  

(P ererra  and Jangaard, 1971). These observations can be re a d i ly  

expla ined by the considerable d i lu t io n  o f  glucose by endogenous

glucose, e s p e c ia l ly  in v iv o . With the iso la ted  hepatocytes preparation^  

th is  can be taken in to  account by estim ating the endogenous glucose 

l e v e l .  The o th er  explanation fo r  the d i f f e r e n t  rates o f  u t i l i z a t i o n  

o f  glucose and fruc tose  is the ease o f  conversion o f  the l a t t e r  In to  

s n -g lycero l 3-phosphate. P ere ira  and Jangaard (1971) have claimed 

th a t  the rapid conversion o f  fruc tose  to sn-g lycero l 3-phosphate may 

play  a ro le  in fructose-induced h y p e r t r ig ly c e r id e m ia . This p o s s ib i l i t y  

was fu r th e r  Inves tiga ted  using iso la ted  hepatocytes as a model system.

The u t i l i z a t i o n  o f  fructose fo r  to ta l  l i p id  synthesis (F ig ,  10)w3S 

found to be g re a te r  than the u t i l i z a t i o n  o f  glucose, even taking in to  

account the d i lu t io n  o f  the r a d io a c t iv i t y  by endogenous glucose. This  

d if fe re n c e  in the rates o f  u t i l i z a t io n  is evident a t  a l l  concentrations  

o f  hexose up to 10 mM. This provides evidence th a t the d if fe re n c e  in  

Incorporation  is not due to isotope d i lu t io n  but is the re s u l t  o f  a 

more rapid  metabolism o f  the ketose.

However, s ince iso la ted  hepatocytes from fed ra ts  were used in 

these experiments, i t  is c le a r  th a t glycogen breakdown occurred which 

can change the concentration o f  glucose in the hepatocyte medium. The 

ra te  o f  glucose output was 0 ,83  ]imole/min/g l i v e r  and was l in e a r  fo r  

a 60 min incubation period (F ig .  11). At the beginning o f  the incubation  

period there  was a leve l o f  1.6  mM glucose in the hepatocyte plus medium.
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Incorporation  o f  (a) D.~ |jJ-^^c] fructose and (b) D -  [u- c] . 

glucose in to  to ta l  l i p id  by iso la ted  hepatocytes.

Hepatocytes were prepared from fed ra ts  and incubated in 

KRB + Ca^ + BSA in the presence o f  added substrates a t  a 

concentra tion  o f  9mM ( • )  or ImM ( o ) . (Incubation vol = 1ml, 

4 .9 2  X 10 c e l l s /m l . )  Reaction was terminated by the ad d it io n  

o f  6% HCIO^ and the l ip id  extracted  by Folch solvents as 

described in M a te r ia ls  and Methods Section V l .B .5 b .  Each 

p o in t  represents the mean ± SEM o f  the resu lts  w ith  3 

hepatocyte prepara tions .

jD-[Û **C] fructose (9x10^ dpm/assay)
O - g l u c o s e  (9x10^ dpm/assay)
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F ig . 10 Incorporation  o f  -  [u-^^C) fructose ( • )  and £  -  [U-^^C] 

glucose (o) in to  to ta l  e x tra c ta b le  l ip id  by iso la ted  

hepatocytes.

Iso la te d  hepatocytes (4 .4  x 10 c e l ls /m l)  from fed rats  

were preincubated a t  37° fo r  Ih in KRB + C a ^  + BSA (1.5%) 

and then w ith  various concentrations o f  hexose fo r  2h.

Experimental techniques are described in M a te r ia ls  and Methods 

Section V I .B .5 b .

Each p o in t represents the mean ± SEM o f  the resu lts  w ith  4 

hepatocyte prepara tions .
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This value  changed to 3 .2  mM a f t e r  60 min incubation. Thus, the 

incorporation  o f  glucose in to  to ta l  l i p id  may be underestimated.

However, ad d it io n  o f  fructose to the hepatocytes also causeda fu r th e r  

increase in glucose lev e ls  (F ig .  11) which could a lso r e s u l t  in iso to p ic  

d i lu t io n  o f  g ly c o ly t ic  in term edia tes. The concentration dependence 

o f  the e f f e c t  o f  fructose is shown in (F ig .  12). Fructose s tim ulates  

glucose output a t  a l l  concentrations up to 10 mM. There are  two 

possib le  explanations fo r  th is  phenomenon. F i r s t l y ,  gluconeogenesis 

from fru c to se  could c o n tr ib u te  glucose (Zahlten e t  aj_., 1973; Foster  

and B l a i r ,  1978) and secondly, i t  is  known th a t incubation o f  hepato­

cytes w ith  fruc tose  can lead to an increased glucose output as a re s u lt  

o f  the e le v a t io n  o f  phosphorylase £  a c t iv i t y  (Van der Werve and Hers,

1977) .  One method o f  minimizing the d i f f e r e n t i a l  isotope d i lu t io n  

e f f e c t  is  to use iso la ted  hepatocytes from fasted animals, although in 

th is  cond ition  a much reduced synthesis o f  t r ia c y lg ly c e ro l  would be 

expected (Groener and Van Golde, 1977). F ig . 13 shows th a t  the basal 

glucose output by these hepatocytes is 0 .124 ± 0.035 S.D. (n =  3) ^imole/ 

m in/g . This is much reduced compared to the c e l ls  from fed animals. 

Incubation o f  the fasted hepatocytes w ith  fructose , however, resu lted  

in a rap id  glucose output 3 .02  t  0 .0 5  S.D. (n = 3) w ith  the glucose 

concentration  reaching 5 .6  mM a f t e r  30 min incubation. The reduced 

glucose outpu t in fasted hepatocytes has also been reported by Foster  

and B la i r  (1978) and P i lk is  e t  a l .... (1976) and appears to be due to  

glycogen d ep le t io n  during fa s t in g .  Thus the rad io ac tive  d i lu t io n  by 

endogenous glucose is much reduced in c e l ls  iso la ted  from fasted animals» 

However, the d i f fe re n c e  in incorporation o f  ^  fructose  and

£  -  glucose p e rs is ts  in these hepatocytes. When the hepatocytes

were incubated w ith  fructose (9 mM) the ra te  o f  fructose incorporation  

in to  to ta l  l i p i d  was 3 .5  t  1.9 S.D. (n =  8 ) nm ole /m in /g , whereas a t  the 

same concentra tion  o f  glucose the ra te  o f  glucose incorporation was 

1 .9  ± 0 .8  S.D. (n =  22) nmol e /m in /g . One explanation fo r  th is  d if fe re n c e  

is  the ease o f  conversion o f  fructose to sn-g lycerol 3-phosphate in 

is o la te d  hepatocytes compared to th a t o f  glucose, but since the d i lu t io n  

by endogenous interm ediates is reduced i t  is also possible th a t  fruc tose  

increases the ra te  o f  l i p id  synthesis. ^

A fu r th e r  study on the fa te  o f  the label in the various fra c t io n s  

which c o n s t i tu te  the to ta l  l i p id  f ra c t io n  was carr ied  out w ith  

hepatocytes from fed animals. The various l ip id  classes were separated



-  89 -

100
l/ l
9 »

>»u
2  8 0
a

a .
9 »

JZ
OI
; ;  6 0
jÿ
o
E

& A 0
I—
3
CL
#-
3
LiJ
</}
8
3
O

0 15 3 0 4 0 6 0

IN C U BATIO N  T IM E  ( m in )

Fig . 11 E f fe c t  o f  fruc tose  on glucose output.

6Is o la te d  hepatocytes (4 x 10 c e l ls /m l)  from fed rats were 

preincubated fo r  Ih w ithout substrate  and then w ith  ( • )  or  

w ith o u t (o) fructose (imM) fo r  various times. Experimental 

methods are described in Section VI B.4b.

Each p o in t represents the mean ± SEM o f  the resu lts  w ith  

3 hepatocyte preparations.
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F ig . 12 E f fe c t  o f  various concentrations o f  fructose on glucose 

outpu t.

Iso la ted  hepatocytes (10 x 10 c e l ls /m l)  were preincubated  

a t  37° fo r  20 min and then in presence o f  fruc tose  fo r  

30 min.

Experimental techniques are described in Section V I .B .4 b .

Each p o in t  represents the mean ± SEM o f  the re su lts  w ith  

3 hepatocyte preparations.
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Fig . 13 The e f f e c t  o f  fructose on glucose output by iso la ted  

hepatocytes from 24h fasted ra ts .

Iso la ted  hepatocytes (7 x 10 c e l ls /m l)  from 24h fasted  

rats; were incubated w ith  ( • )  and w ithout (o) fruc tose  

(10 mM) fo r  various times.

Experimental d e ta i ls  are described in Section V IB .4b .

Each po in t represents the mean ± SEM o f  the resu lts  

with  3 hepatocyte preparations.
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by t h in - la y e r  chromatography (TLC) and the d is t r ib u t io n  o f  r a d io a c t iv i t y  

in the various fractionswas examined. Most o f  the r a d io a c t iv i t y  was 

found to be associated w ith  e i t h e r  phospholipid o r  the t r ia c y lg ly c e ro l  

f ra c t io n s  (Table I I ) .  In the case o f  the D -  

g re a te r  proportion  o f  the label was associated with, t  

than w ith  the phospholipid f r a c t io n ,  but the reverse was true  fo r  D -  

[ u - ^ V j  glucose . (Table I I ) .  Geelen e t  (1978) a lso found a 

p re fe r e n t ia l  synthesis o f  phosholipid in cu ltured  hepatocytes incubated 

w ith  _D -  glucose.

In a fu r th e r  experiment the to ta l  l i p id  was fra c t io n a te d  and the

fa te  o f  the |^^cj hexose o f  the t r ia c y lg ly c e ro l  f ra c t io n  was determined.

Only 13% was associated w ith the f a t t y  acid f ra c t io n  and the remainder

( 87%) was found in the g lycero l moiety In the case o f  hepatocytes

incubated w ith  _D -  ju-^^C 1 fru c to se . With hepatocytes incubated w ith  
-  r .  14^1 . L j . .  . -D -  [u - glucose an even sm aller proportion (7%) was found in the 

f a t t y  acid f ra c t io n  o f  the t r ia c y lg ly c e r o l .  I t  is c le a r  from th is  work 

th a t  most o f  the label associated w ith  the to ta l  l i p id  f ra c t io n  is found 

in the g lycerides  and th a t  most o f  th is  is associated w ith  the g lycero l  

m oiety. These f ind ings  are comparable to those o f  o ther authors who 

used in ta c t  animals and cu ltu red  hepatocytes (Chernick and Scow, 1964; 

Bar-on and S te in ,  1968; Maruhama and Macdonald, 1973; Geelen e t  a l . ,  

1978a ) .  i t  is c le a r ,  th e re fo re ,  th a t  most o f  the incorporation  in to  

the to ta l  l i p id  is due to the ease o f  conversion o f  fruc tose  to sn- 

g lycero l 3-phosphate, a substra te  fo r  both t r ia c y lg ly c e ro l  and phospho­

l i p id  synthes is . I t  is known th a t  perfusion o f  l i v e r  w ith  fruc tose  

leads to an e levated  sn-g lycero l 3~phosphate leve l in the tissue  (Exton 

and Park, 1969; Burch e t  a l . , \ 9 7 0 ;  Woods e t  a l . ,  1970). Under the 

conditions used in th is  study an increase was found in the sn-g lycero l  

3-phosphate content o f  the hepatocytes from 0 .20 t  0 .02  SEM (n =  3) to 

0 .4 2  ±  0 .0 3  SEM (n = 3) jimol/g c e l ls  when hepatocytes were incubated fo r  

60 min w ith  10 mM fructose . Further studies in th is  department 

(Mapungwana and Davies unpublished re su lts )  revealed th a t  the e le v a t io n  

o f  sn -g lycero l 3-phosphate was a lso found a t  low concentrations o f  

fru c to se  (1 mM) and th a t  these changes are  achieved w ithout a s ig n i f ic a n t  

change in the la c ta te /p y ru v a te  r a t io  which can a lso a f f e c t  the sn- 

g lycero l 3-phosphate content o f  the c e l ls  (See a lso Table I V ) .

The present study also shows th a t  comparatively l i t t l e  Cj f a t t yN
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Table I I .  Incorporation  o f  r a d io a c t iv i ty  in to  various  

l i p id  f ra c t io n s .

Hepatocytes (8 x 10^ c e l ls /m l ;  0 .5  ml) from 

fed ra ts  were incubated w ith  e i th e r  JD 

fructose  o r  _D -  j  glucose fo r  1 h. The

to ta l  l i p id  e x t ra c t  was fra c t io n a ted  by th in -  

lay e r  chromatography (see Section VI 5b).

The re su lts  are expressed as the percentage o f  

the to ta l  l i p id  ra d io a c t iv i ty  in each f r a c t io n .

Precursor (9mM)

F ract ion D -  [u-V^cJfructose D -  [u -^ ^ c ] glucose

Phospholipid 39 48

T r ia c y lg ly c e ro l 50 29

Tota l g ly c e ro l ip id 89 77

Cholestero l 8 13

Cholestero l e s te r 3 ; 10
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acid  is synthesised from e i th e r  £  -  [u -^ V jg lu c o s e  or £  -  [u -^ ^ c j  

f ru c to s e .  This f in d in g  is presumably the re s u lt  o f  the g re a te r  iso to p ic  

d i lu t io n  which occurs during g ly co lys is  and f a t t y  acid synthesis whereas 

the conversion o f  fruc tose  and, to a lesser ex ten t ,  glucose to sn -g lycero l  

3-phosphate involve fewer enzymatic reactions. Furthermore, I t  has been 

shown th a t  glucose a t  low concentrations is a r e la t i v e ly  poor carbon 

source fo r  f a t t y  acid synthesis (C la rk  e t  £]_., 1974; Salmon e t  a l . ,

1974; Hems, 1975; Bloxham e t  a l .?  1977) whereas la c ta te  is a much 

b e t te r  precursor (C la rk  e t  aj_., 1974; Salmon e t  £ l_ . , 1974; Hems^

1975; Hems, 1977) and th a t fructose (15 mM) is a potent in h ib i to r  o f  

f a t t y  acid  synthesis (Selmer and Grunnet, 1976). Thus, the conditions  

used in the present study are not conducive to maximal rates o f  f a t t y  

acid  synthesis from hexoses. However, the data obtained in the present  

study po ints  to the conclusion th a t fructose is a b e t te r  precursor fo r  

f a t t y  acid  synthesis than glucose. This is in accord w ith  the observa­

t io n  o f  Woods and Krebs (1971) and Salmon e t  a l . ,  (1974) which suggest 

th a t  f a t t y  acid  synthesis is re la te d  to glycogen d ep le t io n . The 

u t i l i z a t i o n  o f  e i t h e r  glycogen or o f  fructose fo r  the synthesis o f  f a t t y  

acid  a re  both independent o f  the regu lato ry  enzyme, glucokinase, which 

is thought to reg u la te  glucose u t i l i z a t i o n  by hepatocytes (Crisp and 

Pogson, 1972; Bontemps e£ aj_^, 1978). Indeed, one would expect th a t  

fru c to se  would be more re a d i ly  converted to f a t t y  acid than glycogen 

since the metabolism o f  the l a t t e r  requires f lu x  through two fu r th e r  

re g u la to ry  enzymes, glycogen phosphorylase and phosphofructokinase.

Hopkirk and Bloxham (1979) have provided evidence that the reg u la t io n  

o f  h ep atic  pyruvate kinase may be re la te d  to the regu lation  o f  f a t t y  

acid  synthesis in the fed r a t .  I t  is known th a t fructose 1-phosphate, 

which accumulates in l iv e rs  o f  animals fed with fructose (Tay, 1977) or  

in l iv e r s  perfused w ith  10 mM fructose (K je ru lf-Jen sen , 1942; Heinz,

1968; Burch e t  aj_., 1969; 1970; Woods e t  aj_., 1970), is an a c t iv a to r  

o f  pyruvate kinase (Eggleston and Woods, 1970). This would suggest 

th a t  the accumulation o f  F IP , which a lso occurs in iso la ted  hepatocytes  

incubated w ith  fructose  (Mapungwana and Davies, 1982) would r e s u l t  in 

a high ra te  o f  g ly co ly s is  from fru c to se , and thus a higher ra te  o f  

ihcorporàtidn  from £  - i  ||u-^^cj fructose in to  f a t t y  acids compared to the 

incorporation  o f  £  -̂  ju -  cj glucose.

I t  should be noted th a t the ra te  o f  incorporation o f  label from

hexose in to  l i p id  does not represent the to ta l  amount o f  l i p id
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synthesised since the synthesis o f  both sn-glycerol 3-phosphate and o f  

f a t t y  acid  from endogenous sources is not taken in to  account by th is  

method o f  assay. For example, g lycero l released from t r ia c y lg ly c e ro l  

during l ip o ly s  is may be rephosphorylated by hepatic  glycerokinase and 

th is  could d i lu t e  the £ n -g ly ce ro l 3-phosphate p o o l.

C. E f fe c t  o f  added o le a te  on the incorporation o f hexose in to  to ta l

l i p i d .

Hepatic  t r ia c y lg ly c e r o l  and phospholipid can a r is e  e i t h e r  from the 

plasma FFA or from long-chain f a t t y  acid synthesised by the l i v e r  (Mayes,

1976) .  T h ere fo re , in the absence o f  added exogenous f a t t y  acid the

u t i l i z a t i o n  o f  ^  cj hexose fo r  the synthesis o f  g ly c e ro l ip id  is 

dependent on e i t h e r  de novo f a t t y  acid synthesis or on the a v a i l a b i l i t y  

o f  endogenous f a t t y  acid  synthesis o r  on the a v a i l a b i l i t y  o f  endogenous 

f a t t y  acid a r is in g  from the breakdown o f  the pool o f  t r ia c y lg ly c e ro l  

in the hepatocyte. I t  was decided, th e re fo re ,  to examine the incor­

pora tion  o f  [[ c] hexoses under conditions where synthesis o f  t r i a c y l ­

g lycero l would be stim ulated  by exogenous f a t t y  a c id . FFA In the form 

o f  an o le a t e - a 1bumin complex was added to the hepatocyte prepara tion  

and the incorporation  o f  £  -  glucose and £  -  fruc tose

in to  to ta l  l i p id  was examined. I t  was found th a t the ra te  o f  incor­

p ora tion  o f  the hexoses was a lso  l in e a r  in the presence o f added o le a te  

(2  mM) (data  not shown).

I t  was observed th a t  o le a te  ( l  mM) added to the incubation medium

had a marked s t im u la to ry  e f f e c t  on the incorporation o f label from

D -  fu -^^cl fru c to se  in to  to ta l  l ip id  (F ig .  l4a) but comparatively  
— L r ]
l i t t l e  e f f e c t  on the incorporation o f  label from £  -  ĵ U- Cj glucose

(F ig .  I4 b ) .  A s t a t i s t i c a l  analys is  o f  the data indicated th a t  ad d it io n  

o f  o le a te  (1 mM) increased the incorporation o f  £  -  fruc tose

in to  to ta l  l i p id  s ig n i f ic a n t ly  (P < 0 .0 0 5 )  a t  a l l  concentrations o f  

fruc tose  examined. D -  j  glucose incorporation , on the o ther

hand, is only  s ig n i f ic a n t ly  fncrsas^d by ad d ition  o f  FFA in the presence 

o f  9 mM glucose. F ig .  15 shows the e f f e c t  o f  increasing o le a te  con­

c e n tra t io n  on the incorporation o f  P c] hexose in to  to ta l  l i p i d .  I t  

is c le a r  th a t  as the o le a te  leve ls  are raised more incorporation  occurs 

from both la b e l le d  precursors but i t  appears th a t the e f f e c t  is more 

pronounced w ith  fru c to se . In h ib i t io n  o f  glucose incorporation  was
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F ig . 14 E f fe c t  o f  sodium o le a te  (ImM) on the incorporation  o f  

2  -  fructose  and 2  " [U-^^C| glucose in to  to ta l  l ip id

by is o la te d  hepatocytes from fed animals incubated w ith  the 

ap propria te  substrates fo r  2h. Experimental d e ta i ls  are  

described in Section I IB. 5b.

Each p o in t represents the mean ± SEM o f  the resu lts  w ith  

4 hepatocyte preparations.



Fig . 15 E f fe c t  o f  sodium o le a te  -  BSA complex on the  

in co rp o ra t io n  o f  hexoses in to  to ta l  l i p i d .

Iso la te d  hepatocytes (4 x 10 c e l ls /m l )  from fed
r  14-1ra ts  were incubated fo r  2h wi th _D -  [U- CJ fru c to se  

( • )  or 2  “ [u-^^C] glucose (o) and sodium o le a te  -  BSA 

complex. The to ta l  BSA content o f  the incubation  

medium was maintained a t  1.5%. Experimental d e ta i ls  

are described in Section VI B.5b and VI V .7 .

Each p o in t represents the mean ± SEM o f  the re s u lts  

w ith  3 hepatocyte p rep ara tio n s .
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observed w ith  an unphysiologlcal concentration (4 mM) o f  the o le a te .

The increase in the ra te  o f  incorporation presumably re f le c ts  an 

increased f lu x  through sn-glycerol 3-phosphate as a r e s u l t  o f  increased  

g ly c e r o l ip id  synthesis . I f  iso top ic  d i lu t io n  o f  the interm ediates is 

ignored, then the ra te  o f  f lu x  from ^  ^ f r u c t o s e  in to  g ly ce ro -

l i p i d  reaches a maximum level o f  approximately 3*+ nmoles/min/g  

h e p a to c y te s  in the presence o f  2 mM o le a te .  This is comparable w ith  

maximal rates o f  t r ia c y lg ly c e ro l  output by l i v e r  perfused w ith  o le a te  

observed by Heimberg e t  a l . , 1969: 1974) and o f  o le a te  e s t é r i f i c a t io n  

in is o la te d  hepatocytes (Wi11iamson _et ^ , I 98O).

A p re lim in a ry  study on the fa te  o f  the label in the t r ia c y lg ly c e ro l  

f r a c t io n  ind ica ted  th a t  the increase in incorporation was t o t a l l y  

accounted fo r  by an increased incorporation in to  the g lycero l moiety  

(Table i l l )  and, as expected, a percentage decrease in the amount o f  

[| y  hexose converted to f a t t y  acid was observed. This is consis tent  

w ith  the observations o f  Mayes and Topping (1974) who found th a t  o le a te  

in h ib i ts  lipogenesis by perfused l i v e r  and o f  Williamson and Whitelay/ 

( 1978) who showed th a t the f a t t y  acid in h ib i ts  l ipogenesis from 

by 65% in is o la te d  hepatocytes from-fed ra ts ,  but there  is l i t t l e  

evidence th a t  ad d it io n  o f  exogenous o le a te  to hepatocytes re su lts  in a 

substantia l in h ib i t io n  o f  f a t t y  acid synthesis from hexoses in the resu lts  

shown in Table I I I .  In the present study, the increased u t i l i z a t i o n  o f  

fru c to se  and, to a lesser e x te n t ,  glucose fo r  the synthesis o f  the 

g lycero l moiety o f  the g ly c e ro l ip id  fo llow ing  the a d d it io n  o f  o le a te  must 

be the re s u l t  o f  increased g ly c e ro l ip id  synthesis . I t  fo llow s th a t  

incorpora tion  o f  label from 2  " fructose in to  t r ia c y lg ly c e ro l

is a good in d ic a t io n  o f  the amount o f  t r ia c y lg ly c e ro l  synthesis  

occu rr in g . The re su lts  shown in F ig .  14 a re  consis tent w ith  the obser­

va t io n  o f  Ontko ( 1972) th a t fructose s tim ulates o le a te  e s t é r i f i c a t io n  

by is o la te d  hepatocytes. The resu lts  o f  Ontko (1972). ind icated  th a t  

fru c to se  exerts  i t s  e f f e c t  by en tering  the g ly c o ly t ic  sequence a t  the  

t r io s e  phosphate leve l and thus in h ib i t in g  ketogenesis by competition  

w ith  f a t t y  acid  ox idation  and th a t th is  resu lts  iri an increased  

a v a i l a b i l i t y  o f  long chain FFA fo r  e s t é r i f i c a t io n .  L a te r  work by 

Prager and Ontko (1976) using iso la ted  mitochondria and a high-speed  

supernatant from r a t  l i v e r  indicated th a t  the e f f e c t  o f  fru c to se  in 

the In h ib i t io n  o f  ketogenesis was exerted a t  the 3 -o x id a t io n  o f  long-chain  

FFA a t  a s i t e  beyond f a t t y  acid a c t iv a t io n  and a c y  L c a rn i t in e
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Tab le  I I I »  E s t im a t i o n  o f  r a d i o a c t i v i t y  in  g l y c e r o l  and f a t t y

a c id  m o ie t i e s  o f  t r i a c y l g l y c e r o l  f o l l o w i n g  in c u b a t io n  

o f  hepa tocy tes  w i t h  hexoses.

Hepatocytes (8 x 10 c e l ls /m l;  0 .5  ml) from fed ra ts  were 

pre-incubated  w ithout substrates and then w ith  £  -  

fru c to se  (9mM) and D glucose (9mM) in presence

and absence o f  o le a te  (2mM) fo r  2h. The t r ia c y lg ly c e ro l  

f r a c t io n  was separated by TLC and then subjected to 

s a p o n if ic a t io n  as described in M a te r ia ls  and Methods 

(Section VI 5 d ) .

1ncubation
1ncorporation  
in to  g lycero l  

moiety *

Incorporation  
in to  f a t t y  

acid moiety *

% label 
i ncorporated  

in to  f a t t y  
acid f ra c t io n

£  |u-^ fructose 13.4 2.04 13.2

£  | u - ^ g l u c o s e 2. 6 0.21 7 .5

£  fructose  
+ o le a te

168.0 1.75 1.0

£  [u-^^C glucose 
+ o le a te

12.3 0 .22 1 .8

nmoles o f  hexose incorporated /m in /g  hepatocytes
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fo rm a tio n . .  In th is  context, Benito e t  a l . ,  (1979) have shown a 

s ig n i f ic a h b  inverse c o rre la t io n  between e s t é r i f i c a t io n  and ketogenesis  

in hepatocytes iso la ted  from rats in a wide v a r ie ty  o f  physio log ical  

s ta te s .  However, there are  few ind ica tions  in the l i t e r a t u r e  on the  

s p e c i f ic  e f fe c ts  o f  fructose on t r ia c y lg ly c e ro l  synthesis o th er than 

i t  may in h ib i t  ketogenesis and thus in d i r e c t ly  s t im u la te  e s t é r i f i c a t io n .  

I f  i t  is assumed th a t  f a t t y  acids have no e f f e c t  on the conversion o f  

fru c to se  to sn-g lycero l 3-phosphate, i t  is c le a r  from the present study 

th a t  fru c to se  s tim ulates  t r ia c y lg ly c e ro l  synthesis from o le a te .  Recent 

evidence by Declerq aj_., 1982b suggests a c o rre la t io n  between sn- 

g lycero l 3-phosphate leve ls  and t r ia c y lg ly c e ro l  synthesis which gives  

a c lue  as to the mode o f  action  o f  fructose in the present study.

F ig . 16 shows the resu lts  o f  a ty p ica l experiment demonstrating  

the e f f e c t  o f  increasing o le a te  concentrations on the d is t r ib u t io n  o f  

label from £  -  fructose in to  the various l i p id  c lasses. There

are two major products, phospholipid and t r ia c y lg ly c e r o l ,  which account 

fo r  more than 80% o f  the to ta l  l i p id .  At each concentration o f  o le a te  

the m a jo r i ty  o f  the label was associated w ith  the t r ia c y lg ly c e ro l  

f r a c t io n  and a sm aller proportion w ith  the phospholipid f r a c t io n .  With  

increasing lev e ls  o f  o le a te  there was an increased incorporation  in to  

t r ia c y lg ly c e r o l  w ith  a maximum leve l a t  2 mM o le a te .  As the concen­

t ra t io n s  o f  o le a te  are increased the proportion o f  the to ta l  l i p id  

associated w ith  the t r ia c y lg ly c e ro l  f ra c t io n  increases, in d ic a t in g  th a t  

t r ia c y lg ly c e r o l  synthesis is favoured compared to phospholipid synthesis .

The incorporation  o f  £  -  ^cj glucose in to  t r ia c y lg ly c e r o l  as 

used by Geelen £ t  aj_., (1978a) is not a good measure o f  t r ia c y lg ly c e r o l  

synthesis because o f  the iso top ic  d i lu t io n  by endogenous glucose and • 

because o f  the r e la t i v e ly  slow metabolism o f  the hexose to sn -g lycero l

3-phosp

o f

la te ,  since there are two regulatory  enzymes involved. The use 

glycero l as a precursor, on the o ther hand, is a lso  sub ject to  

some c r i t ic is m  since th is  can e f f e c t  the NADH/NAD r a t io  w ith in  the c e l ls  

(see Table IV ) and also the in t e r c e l lu la r  pool o f  sn-g lycero l 3-phosphate 

is v a s t ly  increased from 0 .28  ± 0.1 SEN (n = 3) ymoles/g hepatocytes to  

unphysio logical leve ls  6 .5  ± 1.47 SEM (n = 3) by incubating the c e l ls  

f o r  60 mih w ith  10 mM g ly c e ro l .  I t  has been shown in th is  lab ora to ry  

th a t  concentrations as low as 1 mM g lycero l can produce an e le v a t io n  in 

sn -g lycero l 3-phosphate content to leve ls  g re a te r  than 1 ymole/g  

hepatocytes (Mapungwana and Davies, 1982).
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Fig . 16 E f fe c t  o f sodium o le a te  on the incorporation o f  2 "  [U- C]

fru c to se  (9mM) in to  various l ip id  fra c t io n s  separated by TLC.

Iso la ted  hepatocytes (4 .0  x 10^ c e l ls /m l )  were preincubated a t  

37° and then incubated in presence o f D -  fructose  (9mM)

and various concentrations o f  sodium o le a te  fo r  2h. Symbols:

( • )  phospholipid; (o) c h o les te ro l;  (») t r ia c y lg ly c e r o l ;

( A )  cho les tero l e s te r .  Experimental d e ta i ls  in M a te r ia ls  and 

Methods Section V I .B .S c .  Each po int represents the mean ± SEM 

o f  three  determinations w ith  one hepatocyte prepara tion .
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Table  IV . The e f f e c t  o f  fructose ( 1 0 ^ )  and g lycero l (lOmM) on 

la c ta te  and pyruvate leve ls  in iso la ted  hepatocytes

pmole per g hepatocytes

Control Fructose (1OmM) Glycerol ( lOmM)

Lactate 27.8  ± 12.2 126.8 ± 8 .5 15.5 ± 0 .33

Pyruvate 3 .7  ± 0 .62 13.0 ± 0 .37 0 .6 2  ± 0 .05

Lac ta t e / pyruvate  
r a t io

7 .6  ± 0 .85 9 .8  ± 0 .59 25.5  ± 2 .15

Iso la ted  hepatocytes (8 x 10 c e l l s /m l . ,  0 .5  nil) were incubated w ith  an 

equal volume o f  the appropriate  substrate  fo r  60 min. A liquots  o f  the 

c e l ls  were removed and extracted  w ith  p e rch lo r ic  acid and the n e u tra l ize d  

e x tra c ts  were assayed fo r  la c ta te  and pyruvate as described in M a te r ia ls  

and Methods (Section  VI 4C). A l l  the values are means ± SEM (n = 3 ) .
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However, the resu lts  In Table TV are  In accordance w ith  the  

evidence presented by Lamb e t  a1^., ( I 977) who used I ,  3 '^'c] g lycero l  

to estim ate  f a t t y  acid  e s t é r i f i c a t io n  in iso la ted  hepatocytes cu ltured  

in a primary monolayer and by Sundler e t  aj_., (1974) who found th a t  

t r ia c y lg ly c e r o l  synthesis from Pw] g lycero l by iso la te d  hepatocytes  

was markedly s tim ulated  by f a t t y  acid but th a t  the e f f e c t  on phospholipid  

synthesis was less apparent. I t  is  o f  in te re s t  to note th a t  g ly c e ro l ip id  

synthesis from both fructose  and glucose is in h ib i te d  a t  high concen­

t r a t io n  o f  o le a te  (see F ig . 16), This is presumably because o f  the 

d e le te r io u s  e f f e c t  o f  high leve ls  o f  FFA on hepatocytes (Krebs and 

S o lin g , 1976) re s u lt in g  in damage to the t r ia c y lg ly c e ro l  synthesis ing  

system. In th is  context i t  is o f  in te re s t  to note th a t  Lamb e t  a l . ,  

( 1977) did not f in d  any in h ib i t io n  o f  g ly c e ro l ip id  synthesis by cu ltured  

hepatocytes a t  concentration up to 2 imM p a lm ita te  but they did observe 

in h ib i t io n  o f  the appearance o f  t r ia c y lg ly c e ro l  in the medium a t th is  

concentra tion .

The values fo r  to ta l  l i p id  synthesis were lower than those obtained  

using D -  glucose as a precursor but s im i la r  in th a t  increasing

o le a te  le v e ls  up to 2 mM had a s t im u la to ry  e f f e c t  on the incorporation  

o f  label in to  the g ly c e r o l ip id s . No s t im u la tio n  o f  e i t h e r  cho lestero l  

o r ch o les te ro l e s te r  synthesis was observed w ith  e i t h e r  fruc tose  o r  

glucose (F ig .  16 and 17). I t  is in te re s t in g ,  however, th a t w ith  the  

aldose the major lab e l le d  product is phospholipid and r e la t i v e ly  l i t t l e  

label is incorporated in to  the t r ia c y lg ly c e ro l  whatever the concen­

t r a t io n  o f  o le a te  used. This contrasts w ith  the resu lts  obtained fo r  

fru c to s e . This d i f fe re n c e  is a lso  seen in the resu lts  presented in 

F ig . 18 which show th a t  w ith  increasing o le a te  levels^the proportion o f  label 

from fru c to se  associated w ith  the t r ia c y lg ly c e ro l  increases to > 70% 

whereas w ith  glucose the level o f  incorporation remains comparatively  

low (a maximum o f  35%), the data fo r  g lucose-trea ted  hepatocytes are  

in agreement w ith  th e  resu lts  o f  Greyer and Van Golde (1977) who measured 

phospholipid and t r ia c y lg ly c e ro l  synthesis from g lycero l by iso la te d

ra t  hepatocytes and found th a t  the ra te  o f  incorporation in to  the former 

f r a c t io n  was g re a te r  than in to  the l a t t e r .  Fasting the animals fo r  up 

to 48 h accentuated the d i f fe re n c e .  These authors did not examine the 

e f f e c t  o f  exogenous f a t t y  acid on the rates o f  incorporation  but t r i ­

a c y lg lyc e ro l synthesis was much more susceptib le  to fa s t in g /re fe e d in g  

than phospholipid synthesis . Since the experiment shown in F ig . 16 

and F ig .  17 were run in p a ra l le l  using the same sample o f  hepatocytes.
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  r  14 1F ig . 17 E f fe c t  o f  sodium o le a te  on the incorporation  o f  £  -  jU- Cj glucose

(9mM) in to  various l ip id  f ra c t io n s .
6iso la ted  hepatocytes (4 .0  x 10 c e l ls /m l )  were preincubated a t  

37° fo r  2h and then in presence o f  £  -  glucose and various

concentrations o f  sodium o le a te  -  BSA complex fo r  2h.

Symbols: ( • )  phospholipid; cho lestero l (o ) ;  t r ia c y lg ly c e ro l  (© );

cholestero l es ter  ( A ) .

Experimental technique described in Section V I.B .S b .

Each point represents the mean ± SEM o f  three determinations w ith  

one hepatocyte preparation .



-  105 -

6 0

LU
O

o  6 0

£T

Z

LU

£  4 0 ,

O

Q
Û.

20

O L E A T E  ( m M )
Fig. 18 E f fe c t  o f  sodium o le a te  concentration on the percentage o f  the

p 14 -I r l 4 n
to ta l  l i p id  incorporated from 2  “ [p- Cj fructose  or D -  [LI- C]

glucose (9mM) in to  the t r ia c y lg ly c e r o l .

Iso la ted  hepatocytes (4 .0  x 1Q6 c e l ls /m l)  from fed ra ts  were 

preincubated fo r  Ih w ithout substrate  and then w ith  £  

fru c to se  ( • )  or £  -  glucose (o) and various concentrations

o f sodium o le a te  fo r  2h.

Experimental d e ta i ls  described in Section V I.B .S b .

Each po in t represents the mean ± SEM o f three determinations w ith  

one hepatocyte preparation .
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The re s u lts  suggest a s p e c i f ic  e f fe c t  o f  fructose on t r ia c y lg ly c e r o l  

synthesis r e la t iv e  to phosphoglyceride synthesis . The pathway fo r  the  

in corpora t ion  o f  label in to  the g ly c e r id e  fra c t io n s  follows the same 

route to phosphatidic acid (see F ig . 4 ) .  i t  is c le a r  th a t  a g re a te r  

in corpora t ion  occurs from fructose than from glucose, again r e f le c t in g  

the ease o f  conversion o f the former to triosephosphate but :the d i f fe re n c e  

in r e la t i v e  rates o f  synthesis o f  phospholipid and t r ia c y lg ly c e ro l  must 

be the r e s u l t  o f  d if fe ren ces  in the response o f  the c e l ls  to fructose  

and glucose. I t  is l i k e l y ,  th e re fo re ,  th a t fru c to se , or a m etab o lite  

which changes in concentration as a re s u lt  o f  fructose metabolism, is 

re g u la t in g  t r ia c y lg ly c e r o l  synthesis e i t h e r  by s t im u la t io n  o f  one o f  the  

enzymes unique to the synthesis o f  the t r ia c y lg ly c e r o l ,  PPH and d ia c y l -  

g ly c e ro l :  Acyl CoA acyl tra n s fe ra s e , o r  by in h ib i t io n  o f  phosphoglyceride 

synthesis from phosphatidic ac id .  Assuming th a t f a t t y  acid has no e f f e c t  

on the conversion o f  fructose  to sn-g lycero l 3-phosphate then i t  is  c le a r  

from F ig . 14a and Fig . 16 th a t ad d it io n  o f  o le a te  in the presence o f  

fru c to se  resu lts  in an increased f lu x  through sn-g lycero l 3-phosphate 

in to  the g ly c e r o l ip id s , notably t r ia c y lg ly c e r o l .  I t  is o f  in te re s t  in 

th is  context th a t  Groœer and Van Golde (1977) found th a t fa s t in g  resu lted  

in a decrease in both t r ia c y lg ly c e ro l  and phospholipid synthesis from 

[^^hJ g lycero l by iso la ted  hepatocytes and th a t  sucrose-refeeding rats  

fo r  24h resu lted  in a s p e c i f ic  s t im u la t io n  o f  t r ia c y lg ly c e ro l  synthesis .

Cooper and h is co-workers (Abrams and Cooper, 1976; L ipk in  e t  a l . , 

1978; Palmer e t  a l . ,  1978) have found considerable rates o f  hepatic  

t r ia c y lg ly c e r o l  output in starved animals in v iv o . The t r ia c y lg ly c e r o l  

ar ises  from plasma FFA and the recyc ling  o f  plasma t r ia c y lg ly c e r o l .

In a d d i t io n ,  i t  is well-known th a t  plasma FFA are e levated and h epatic  

ketogenesis increased in the starved condition (Amatruda e t  a l . ,  1978).  

T h e re fo re ,  i t  was o f  in te re s t  to examine i f  the e f f e c t  o f  fruc tose  on 

g ly c e r o l ip id  synthesis was also found in hepatocytes from starved animals.  

Table  V shows th a t  in the absence o f  added o le a te  there is a s ig n i f ic a n t  

d if fe re n c e  (P < 0 .005) between the incorporation  o f  £  -  [u -^ ^ c ]  fructose  

in to  g ly c e ro l ip id  by hepatocytes from fed animals and c e l ls  from rats  

fas ted  fo r  24h. A s im i la r  re s u lt  was a lso observed w ith  £  - [u -^ ^ c ]  

glucose (P < 0 .005) in agreement w ith  the data obtained by Groener and 

Van Golde (1 9 77 ) .  However, ad d it io n  o f  o le a te  (ImM) to the hepatocytes 

resu lted  in a s t a t i s t i c a l l y  s ig n i f ic a n t  s t im u la t io n  o f  incorporation  o f  

label from both hexoses in both fed and fasted an im a ls .(T ab le  V ) . With 

o le a te ,  however, no s ig n if ic a n t  d if fe re n c e  between the incorporation  o f
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Table V a . S t a t i s t ic a l  analys is  o f  the data in Table V.

Compari son S t a t i s t ic a l  s ig n if ic a n c e

Glucose fed V fasted < 0 .005

Fructose fed V fasted < 0 .005

Glucose + o le a te  fed V fasted

Fructose + o le a te  fed V fasted

Fed Glucose V Glucose + o le a te

< 0 .005Fed Fructose V Früctose + o le a te

V Glucose + o le a teFasted Glucose

< 0 .005V Fructose + o le a teFasted Fructose

N.S. = Not s ig n i f ic a n t  

S = S ig n i f ic a n t
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label by hepatocytes from fed and fasted animals was found. The 

exp lana tion  fo r  th is  f in d in g  is not c le a r ;  i t  is possib le  th a t  there  

are no d if fe re n c e s  in the maximal ra te  o f  o le a te  e s t é r i f i c a t io n  by fed  

and fas ted  animals. I t  is l i k e l y  th a t the d if fe re n c e  in D -  

fru c to s e  incorporation  in to  to ta l  l i p i d ,  in the absence o f  o le a te ,  in 

the fas ted  and fed animals r e f l e c t  the to ta l  synthesis o f  g ly c e ro l ip id s  

since i t  would be expected th a t in the fasted s ta te  less g ly c e ro l ip id  

would be synthesised and more o f  the endogenous f a t t y  acid would under­

go ketogenesis and o x id a t io n .  I t  appears th a t exogenous f a t t y  acid has 

the e f f e c t  o f  s t im u lu la t in g  f a t t y  acid e s t é r i f i c a t io n  in hepatocytes  

from both fasted  and fed animals.. The s t im u la t io n  o f  e s t é r i f i c a t io n  by 

fru c to se  may be re la te d  to the known an tike tog en ic  e f f e c t  o f  the sugar 

(Mayes, 1962; Exton and Edson, 19&4; Mayes and F e l ts ,  1967). A s im i la r  

but less marked s t im u la t io n  w ith  ^  glucose as a precursor

possib ly  r e f le c ts  the fa c t  th a t  glucose does e x e r t  some an tike to g en ic  n 

e f f e c t  (Exton and Edson, 1964).

F ig .  19 shows the e f f e c t  o f  increasing o le a te  concentrations on 

the incorporation  o f  P^c] hexose in to  to ta l  l i p id  by hepatocytes from 

24h fas ted  ra ts .  Again, the incorporation  is increased w ith  increasing  

f a t t y  acid concentration w ith  a maximum ra te  observed a t  2mM; 4mM 

o le a te  was found to have an in h ib i to ry  e f f e c t  on the re ac t io n . This  

is comparable to the e f f e c t  found in hepatocytes from fed animals 

( c f .  F ig .  16 and F ig .  17).  With hepatocytes from fasted ra ts  a 

s ig n i f ic a n t  d if fe re n c e  between ^  fructose and

glucose incorporation  was observed a t  a l l  concentrations o f  o le a te  

examined except 4mM o le a te  (F ig .  19).  Again, th is  re f le c ts  the com­

p a ra t iv e  ease o f  conversion o f  the ketose to sn-g lycero l 3-phosphate 

but the s im i l a r i t i e s  in the re s u l t  fo r  fed and fasted hepatocytes 

in d ic a te  th a t  incorporation in to  to ta l  l i p id  re f le c ts  the s t im u la t io n  

by o le a te  o f  sn -g lycero l 3-phosphate e s t é r i f i c a t io n  in both co n d it ions .

The ra te  o f  incorporation  observed in th is  experiment (F ig .  19) and in  

hepatocytes from fed rats (F ig .  15) ind ica tes  th a t  there  is no s ig n i f ic a n t  

d i f fe re n c e  in the ra te  o f  f lu x  from fructose  in to  g ly c e ro l ip id  -  

g lycero l in fed and fasted animals i f  exogenous o le a te  is added to  the 

hepatocytes (see also Table V) . *
*

F ig .  20 shows the re s u lt  o f  one experiment w ith  an animal fasted  

fo r  48h before  is o la t io n  o f  hepatocytes. Again, s t im u la t io n  o f  [  Cj
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E f fe c t  o f  o le a te  concentration on the incorporation o f  Hexoses 

in to  to ta l  l ip id  by hepatocytes from 24h fasted  ra ts .

Hepatocytes (5 .0  x 10 c e l ls /m l)  from 24h fasted ra ts  were p re -  

incubated in KRB + C a ^  + BSA (1.5%) and then incubated w ith  9mM 

fruc tose  ( • )  or glucose (o) and various concentrations o f  sodium 

o le a te  in KRB + Ca** + BSA (1.5%) fo r  2h.

Experimental d e ta i ls  given in M a te r ia ls  and Methods Section  

V I .B .5 b .

Each po in t represents the mean ± SEM o f  the re su lts  w ith  3 

hepatocyte preparations.
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Fig . 20 E f fe c t  o f  o le a te  on the incorporation o f  hexoses In to  to ta l  l l p ld  

by Iso la ted  hepatocytes from 48h fasted ra ts .

iso la ted  hepatocytes (4 .0  xTO ^ c e l ls /m l )  from 48h fasted ra ts  were 

prelncubated In KRB + Ca** + BSA (1.5%) and then Incubated w ith  

9 mM fructose (e) or glucose (o) and various concentrations o f  

sodium o le a te  fon 2h.

Experimental d e ta i ls  described In Section V I.B .S b .
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hexose incorporation  was found a t  low o le a te  leve ls  and In h ib i t io n  a t  

high oleate^j^evels. Indeed, the Incorporation  o f  both £  glucose

and £  -  |u- CJ fruc tose  were almost completely In h ib i te d  a t  8mM o le a te ,  

emphasising the harmful e f f e c t  o f  the high concentration o f  the f a t t y  

acids on the hepatocytes (Krebs and S o ling , 1976). A s im i la r  re s u lt  

w ith  very high o le a te  leve ls  was observed In an experiment w ith  hepato­

cytes from fed animals ( re s u lts  not shown).

To summarize the resu lts  In section  V B and C, I t  is c le a r  th a t  

the Incorporation  o f  D -  [u-^^cl fructose and to a lesser extent
r 14 1 — L j

£  -  |U- CJ glucose In to  to ta l  l l p ld  gives a good In d ica t io n  o f  the  

g ly c e r o l Ip ld  accumulation by Iso la ted  hepatocytes. The d iffe rences  In 

Incorporation  between fed and fasted hepatocytes In d ica te  a g re a te r  

u t i l i s a t i o n  o f  acyl CoA fo r  g ly c e ro l Ip ld  synthesis In the fed s ta te .  

A d dit ion  o f  o le a te  to the hepatocyte resu lts  In a substan tia l s t im u la t io n  

o f  fru c to se  Incorporation  and. In a d d it io n ,  the ketose s tim ulates  the 

synthesis o f  t r ia c y lg ly c e r o l  whereas glucose appears to  favour phospho- 

g ly c e r ld e  synthesis .

D. E f fe c t  o f  In s u lin  and glucagon on O^c] hexose Incorporation
In to  l i p i d .

The various d iffe ren ces  observed between fed and fasted animals

can be explained by changes In hormone le v e ls ,  a f fe c t in g  l lp ld

metabolism e i t h e r  d i r e c t ly  or v ia  an In d ire c t  e f f e c t  exerted by changes 

In carbohydrate m etabolites  brought about by these hormones. The major 

hormones which are thought to reg u la te  t r ia c y lg ly c e ro l  synthesis In the

sh o rt-te rm  are  In s u lin  and glucagon.

T r ia c y lg ly c e ro l  synthesis In l i v e r  Is ra p id ly  responsive In the 

Is o la te d  perfused l i v e r  to both In s u lin  (Topping and Mayes, 1972) and 

glucagon (Van Harken e t  a l . ,  1969» Helmberg ^  jJ,* » 1969; Klausner e t  a l .  

1978; S o le r -A rg lla g a  e t  a l . , 1978b). Chris tiansen (1977) claims th a t  

glucagon In h ib i ts  ^ l -^ c j^ p a lm l  ta te  es te r l  f  Ica t lo n  by Iso la ted  

hepatocytes and Geelen e£ aj_., (1978a) have observed glucagon In h ib i t io n  

o f  t r ia c y lg ly c e r o l  synthesis as estimated by th e .In co rp o ra tio n  o f  

D -  [u-^^c] glucose In to  the l lp ld  by cu ltured  hepatocytes. However, 

they were unable to detect a hormonal e f f e c t  when t r ia c y lg ly c e ro l  

synthesis was measured using j2-^ cj glycero l as a s u b stra te , .
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In the present study an attempt was made to examine the e f fe c ts  

o f  In s u l in  and glucagon on g ly c e ro l ip ld  synthesis . Iso la ted  hepatocytes  

from fed animals were capable o f responding to glucagon as evidenced 

by examining the e f f e c t  o f  glucagon on gluconeogenesis from L -  |u- 

la c ta te  (see F ig .  8 ) .  Table VI shows the e f f e c t  o f  in s u lin  and 

glucagon on the incorporation o f  £  -  fruc tose  and £  -

glucose In to  to ta l  l i p i d .  L i t t l e  or no e f fe c t  o f  former hormone was 

observe^, although glucagon (10 ^M) reduced somewhat the incorporation  

o f  £  -  U- CJ glucose in to  to ta l  l i p i d .  This in h ib i t io n  was not 

s t a t i s t i c a l l y  s ig n i f ic a n t .  This is in contrast to the data o f  Geelen 

e_t a £ . , ( 1978a) who found a considerable in h ib i t io n  o f  g ly c e ro l ip id  

synthesis in cu ltu red  hepatocytes by glucagon but they a lso  were unable 

to show any e f f e c t  o f  in s u l in .  In the present study the use o f  higher  

concentrations o f  hormones to combat the rapid metabolism o f  the 

hormones by the c e l ls  did not re s u lt  in the appearance o f  a hormonal 

response.

Table V I I  shows the e f f e c t  o f  in s u lin  and glucagon on the

incorporation  o f  £  -  [jd-^^cj fructose in to  t r ia c y lg ly c e ro l  in the

presence o f  exogenous f a t t y  a c id .  As shown in previous experiments there

is a s t im u la t io n  o f  the incorporation o f  label from £  -  fructose

in to  t r ia c y lg ly c e r o l  by th e  a d d it io n  o f  o le a te  (2mM) in d ica tin g  th a t

th is  is a tru e  r e f le c t io n  o f  the ra te ^ t r ia c y l  g lycero l synthesis.

Glucagon (IJLiM) appears to in h ib i t  the incorporation o f  label by 40% j

the d if fe re n c e  is s t a t i s t i c a l l y  s ig n i f ic a n t .  In su lin  appears to

have no e f f e c t  on t r ia c y lg ly c e ro l  synthesis . S o ler-A rg ilag a  e t  a l . ,

( 1978b) have shown an in h ib i t io n  by glucagon o f  o le a te  incorporation
2+

in to  t r ia c y lg ly c e r o l  which is Ca dependent. However, these workers 

used a lower concentration o f  o le a te  (O.5mM) and incubated fo r  a 

shorter time in te r v a l .  Thus, in the present study no s ig n i f ic a n t  sh o rt­

term e f f e c t  o f  in s u lin  on e i t h e r  g ly c e ro l ip id  o r

t r ia c y lg ly c e r o l  synthesis was observed,

E. E f fe c t  o f  fructose and glucose on [j-^ (Q o le a te  e s t é r i f i c a t io n

The data obtained using £  -  [u-^^c] fructose as a precursor  

suggest th a t  the sugar may s t im u la te  g ly c e r o l ip id ,  e s p e c ia l ly  t r i a c y l ­

g ly c e ro l ,  synthesis (see Section V A and B). I t  was th e re fo re  decided 

to use [ l-^^c ] o le a te  as a precursor fo r  t r ia c y lg ly c e ro l  synthesis and
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to examine the e f f e c t  o f  added fructose on o le a te  es t e r i f I  c a t io n .  F ig . 21 

shows, th a t  the. ra te  o f o le a te  u t i l i z a t i o n  is -l inear fo r  up to 3h under the  

conditions used In these experiments but i t l  appears' th a t  the nature o f  the  

added hexose has l i t t l e  or no e f f e c t  on the ra te  o f  u t i l i z a t i o n .  This is a lso  

shown in F ig ,  22 where the e f fe c ts  o f  added hexose on o le a te  u t i l i z a t i o n  

a t  various concentrations o f  the f a t t y  acid were examined. The 

u t i l i z a t i o n  o f  the f a t t y  acid was proportional to the o le a te  concen­

t r a t io n .  The ra tes  o f  u t i l i z a t i o n  in these experiments (0 .30  -  0 .50  

ymoles/min/g hepatocytes a t  2mM o le a te )  is o f  the same order as those 

found in r a t  l i v e r  perfused w ith  ImM p a lm ita te  (Kondrup, 1979) and 

w ith  is o la te d  hepatocytes from female ra ts  incubated w ith  ImM o le a te  

(Whitelaw and W illiam son, 1977; Wi11iamson e t  a l . ,  I 98O).

T r ia c y lg ly c e ro l  synthesis was a lso  found to be l in e a r  fo r  up to 

120 min in the presence o f  0 .5  mM o le a te  (F ig .  23) and 2 mM o le a te  

( re s u lts  not shown). Wi 11 iamson £ t  £ l^ . , ( I 98O) found th a t in the  

presence o f  1 mM o le a te  about 50% o f  the uptake by hepatocytes was 

accounted fo r  by the e s t é r i f i c a t io n  o f  the f a t t y  ac id . This contrasts  

w ith  the data obtained in the present study where only 4.2% o f  the 

o le a te  was converted to t r ia c y lg ly c e ro l  a t  th is  concentration o f  f a t t y  

a c id . However, Wi11iamson e t  a l . , ( I 98O) used female ra t  hepatocytes  

and a lso estimated to ta l  e s t e r i f i e d  f a t t y  a c i d . '

F ig .  24 c le a r ly  shows th a t  the proportion o f  the f a t t y  acid  

e s t e r i f i e d  increases w ith  an increasing concentration o f  o le a te  since  

the u t i l i z a t i o n  o f  the f a t t y  acid is proportional to i t s  concentration  

(F ig .  22) .  F ig .  24 a lso  shows th a t  the a d d ition  o f  hexoses to the  

hepatocytes re s u lts  in an even g re a te r  proportion o f  the f a t t y  acid  

being e s t e r i f i e d .  This s t im u la tio n  was more pronounced a t  the higher  

concentrations o f  o le a te .  At 2mM o le a te  in the presence o f fruc tose  

(9 mM) 20% o f  the to ta l  u t i l i z e d  f a t t y  ac id  was e s t e r i f i e d  to t r i a c y l ­

g ly c e ro l ,  in the case o f  glucose ( 9 mM) th is  value was 18%. I t  is 

c le a r  from these re su lts  th a t  the ra te  o f  t r ia c y lg ly c e ro l  synthesis Is  

dependent on the hexose concentration in the hepatocyte medium.

I t  appeared from th is  experiment th a t  both fructose  and glucose 

were s t im u la t in g  t r ia c y lg ly c e ro l  synthesis from added o le a te  although  

the ketose appeared to be more potent in th is  respect. This is confirmed  

by the re s u lts  shown in Table V I I I .  I t  is c le a r  th a t in the presence 

o f  2 mM o le a te  th a t  fructose  increases t r ia c y lg ly c e ro l  synthesis from



Fig . 21 Time course fo r  the u t i l i z a t i o n  o f  [l-^^C] o le a te  (2mM) by 

is o la te d  hepatocytes from fed ra ts .

Hepatocytes (4 .0  x 10^ c e l ls /m l )  from fed ra ts  were p re -
r 14 Tincubated and then incubated w ith  U “ Cj o le a te  w ith  e i t h e r  

9mM fru c to se  ( • )  o r  9mM glucose (o) fo r  a p p ro p ria te  times. 

O leate  u t i l i z a t i o n  was determined by assaying the r a d io a c t iv i t y  

in the f a t t y  ac id  f r a c t io n  a f t e r  separation  by TLC (Section  

V I . B . 8 ) .

Each p o in t  represents the mean ± SEM o f the re s u lts  w ith  3 

hepatocyte p rep ara tio n s .

F ig . 22 E f fe c t  o f  various o le a te  concentra tions on the u t i l i z a t i o n  o f  

f a t t y  acid  by is o la te d  hepatocytes from fed ra ts .

g
Hepatocytes (4 .0  x 10 c e l ls /m l )  from fed ra ts  were pre ­

incubated and then incubated w ith  [ l - ^^C] o le a te  fo r  2h in the 

absence o f  added hexose ( n ) ,  w ith  9mM glucose (o) or w ith  

9mM fru c to s e  ( • ) . O leate  u t i l i z a t i o n  was determined as described  

in F ig . 21.
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ÜJ q -0 -8

F ig . 23

4 0  8 0  1 2 0
IN C U B A TIO N  T IM E  ( m in )

Rate o f 1 ^ 1 ol eat e  e s t é r i f i c a t io n  by iso la ted  hepatocytes.

Iso la ted  hepatocytes (4 .0  x 10^ c e l ls /m l)  from fed ra ts  were 

preincubated and then incubated w ith  [l"^^C] o le a te  (0.5mM) in 

presence o f  e i th e r  9mM glucose (o) or 9mM fructose ( • )  fo r  the 

appropria te  time. O leate u t i l i z a t io n  was determined as described  

in F ig . 22.

Each p o in t represents the mean ± SEM o f  the resu lts  w ith  3 

hepatocyte preparations.
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Fig . 24 E f fe c t  o f  various o le a te  concentrations on the e s t é r i f i c a t io n  o f

the f a t t y  acid by iso la ted  hepatocytes from fed ra ts .

Hepatocytes (4 .0  x 10^ c e l ls /m l )  from fed ra ts  were preincubated
r  14 nand then incubated fo r  1 h w ith  [1- Cj o le a te ,  in the absence o f  

hexose ( a ) ,  w ith  9mM glucose (o) or w ith  9mM fructose  ( • ) .  T r i ­

a c y lg lyc e ro l was separated by TLC and estimated by l iq u id  

s c i n t i l l a t i o n  counting as described in M a te r ia ls  and Methods 

(Section  V I . B .8 ) .

Each p o in t represents the mean ± SEM o f the resu lts  w ith  3 

hepatocyte prepara tions .
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T ab le  V I I l a . S t a t i s t i c a l  a n a l y s i s  o f  the  data  in  Tab le  V I I I

compar ison
s t a t i s t i c a l  
s i g n i  f i c a n c e  

P

c o n t r o l  (2mM o le a t e ) V f r u c t o s e  + o l e a t e  (2mM) < 0.01 S

c o n t r o l  (2mM o le a t e ) V g lu cose  + o l e a t e  (2mM) < 0 .02 S

f r u c t o s e  + o l e a t e  (2mM) V g lucose  + o l e a t e  (2mM) < 0 .02 S

c o n t r o l  ( 0 . o l ea t e ) V f r u c t o s e  + o l e a t e  (O.SmM) < 0 .02 S

c o n t r o l  ( 0 . o l ea t e ) V g lucose  + o l e a t e  (O. 5mM) > 0.1 N.S.

f r u c t o s e  + o l e a t e  (0.5mM) V g lucose  + o l e a t e  (0.5mM) = 0.1 N.S.

N.S. -  Not s i g n i f i c a n t  

S = S i g n i f i c a n t



-  123 -

exogenous o le a te  3 .4  fo ld  whereas glucose a lso exerts  a sm aller  

s t im u la to ry  e f f e c t  (1 .6  fo ld ) on t r ia c y lg ly c e ro l  synthesis . However, 

i t  is apparent th a t  the e f f e c t  o f  fructose  is considerably g re a te r  

than th a t  o f  glucose. This trend is a lso apparent when a s im i la r  

experiment was carr ied  out in the presence o f 0.5mM o le a te  but in th is  

case the only s t a t i s t i c a l l y  s ig n i f ic a n t  d if fe re n c e  was between the 

contro l and fru c to s e -tre a te d  hepatocytes. F ig . 25 shows the e f f e c t  o f  

f ru c to se  on e s t é r i f i c a t io n  o f  low concentration o f  o le a te  (< 0 . 5mM), 

and here again a c le a r  s t im u la tio n  o f  o le a te  e s t é r i f i c a t io n  by the ketose 

was observed.

I t  is c le a r  from th is  data and th a t presented e a r l i e r  (Section V 

B and C) th a t  fructose  and, to a lesser e x te n t ,  glucose s t im u la te  

t r ia c y lg ly c e r o l  synthesis from exogenous o le a te  and from endogenous 

f a t t y  acid by iso la ted  hepatocytes. This s t im u la t io n  o f  o le a te  

e s t é r i f i c a t io n ,  re su lt in g  in the formation o f  t r i a c y lg ly c e r o l ,  could 

be the re s u l t  o f  a number o f  d i f f e r e n t  fa c to rs .  For example, the 

substrates  required fo r  t r ia c y lg ly c e ro l  synthesis , acyl CoA, sn-g lycero l  

3-phosphate and/or dihydroxyacetone phosphate (DHAP) may be increased  

by the ketose. I t  is c le a r  th a t  sn -g lycero l 3-phosphate leve ls  (but  

not DHAP) are  raised by the ketose (see Section V, A ) . However, there  

is no evidence in the l i t e r a t u r e  which shows any increase in acyl CoA 

lev e ls  in response to fruc tose; indeed, Christiansen (1979) found th a t  

long-chain  acyl CoA leve ls  were decreased by fructose (1OmM), an e f f e c t  

which was accentuated by a d d it io n  o f  glucagon to the hepatocytes.

Another possib le  way in which t r ia c y lg ly c e ro l  synthesis could be increase  

is by changes in the a c t iv i t i e s  o f  g lycero l 3-phosphate acyl trans ferase  

o r PPH. The changes observed in GPAT a c t iv i t y  under various conditions  

such as diabetes (Bates and Saggerson, 1977), glucagon treatm ent  

(S o le r-A rg i laga e t  a l . ,  1978b; Wi 11 iamson aj[_., 1980) and sucrose 

feeding (Glenny e t  al_., 1978b) are r e la t iv e ly  small compared to the 

e f f e c t  o f  fructose on t r ia c y lg ly c e ro l  synthesis observed in th is  study.

I t  Is c le a r  th a t  both microsomal and mitochondrial GPAT are very  

s e n s it iv e  to changes in sn-g lycero l 3-phosphate concentration up to  

I mM (Bates and Saggerson, 1977). Thus, the changes in sn -g lycero l  

3-phosphate content o f  hepatocytes incubated w ith  fruc tose  observed in 

the present study (see Section V , B) are consistent w ith  the explanation  

th a t  the s tim u la tio n  o f  o le a te  e s t é r i f i c a t io n  by the ketose is due to 

a change in GPAT a c t iv i t y  as the re s u lt  o f  a g rea te r  substra te
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Fi g. 25 E f fe c t  o f  fructose (9mH) on the e s t é r i f i c a t io n  o f  Cl* cl o le a te  

a t  low concentrations o f  the f a t t y  ac id .
g

Hepatocytes (4 .0  x 10 c e l ls /m l)  from fed ra ts  were preincubated,  

then Incubated w ith  o le a te  In presence ( • )  and absence ( □ )

o f 9mM fructose fo r  Ih .

Experimental d e ta i ls  are described In Section V I . B . 8.

Each po int represents the mean ± SEM o f the resu lts  w ith  3 

hepatocyte preparations.
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a v a i l a b i l i t y .  However, the s p e c if ic  s tim u la t io n  o f  t r la c y lg ly c e ro l  

synthesis r e la t iv e  to phospholipid synthesis (see F ig , 16) Ind icates  

th a t  there  Is a lso  a regu lato ry  enzyme which Is subsequent to phospha- 

t l d l c  acid In the b io s yn th e t ic  pathway, which Is a f fec ted  e i t h e r  

d i r e c t l y  or In d i r e c t ly  by fruc tose . PPH has been reported to regu la te  

the ra te  o f  es t e r l f I c a t l o n  (B r in d le y ,  1978a). The a c t iv i t y  o f  th is  

enzyme Is p a r t ic u la r ly  a f fe c ted  by ethanol Ingestion (B r in d ley , 1978a; 

Savolalnen, 1977, Savolalnen and Hasslnen, I 98O) and the e f f e c t  has 

been a t t r ib u te d  to the  r is e  In hepatic  sn-g lycerol 3-phosphate leve ls  

as a r e s u l t c h a n g e s  In the redox s ta te  Induced by e thano l.  The 

e f f e c t  o f  ethanol occurs a f t e r  a s ig n i f ic a n t  time lag o f  2h (Savola lnen,  

1977) and th is  probably does not exp la in  the e f fe c ts  observed In th is  

th e s is .  However, fructose  does ra is e  sn-g lycero l 3-phosphate leve ls  

w ith o u t a f fe c t in g  the redox s ta te  o f  the hepatocyte (see Section V, B) 

and th is  suggests th a t  PPH may a lso  be subject to short-term  reg u la t io n  

by sn -g lycero l 3-phosphate. D ie ta ry  fructose Is known to cause an 

Increase In PPH a c t i v i t y  and a decrease In microsomal phosphatldate  

bu t, again , th is  is In the long-term (Lamb and F a llo n , 1974b). This  

e f f e c t  o f  the ketose has been ascribed to the e leva t io n  o f  plasma 

co rt ico s te ro n e  w ithout a concomitant s t im u la tio n  o f  In s u lin  secre tion  

(Brl ndley ^  £ l^ . , I 98 I ) .  However, there  Is no evidence. In the 

l i t e r a t u r e  o f  a short-term  reg u la tio n  o f  PPH. Haagsman e t  a l . ,  (1981) 

have reported th a t  t r la c y lg ly c e r o l  synthesis may be Independently  

regulated v ia  a short-term  reg u la t io n  o f  DGAT by glucagon, possibly  

by a phosphorylatlon/dephosphorylatlon mechanism.

F. E f fe c t  o f  glucagon on t r la c y lg ly c e ro l  synthesis

The e f f e c t  o f  glucagon on t r la c y lg ly c e ro l  synthesis from o le a te  

was fu r th e r  examined In the experiment shown In F ig .  26. Again, the  

ra te  o f  o le a te  Incorporation  In to  t r la c y lg ly c e ro l  was dependent on the 

f a t t y  acid concentration and both fructose-and g lucose-stim ulated  o le a te  

e s t e r ! f I c a t lo n  a t  high (2mM) o le a te  le v e ls .  In genera l,  the s t im u la t io n  

observed a t  the lower concentrations o f  f a t t y  acid was not s t a t i s t i c a l l y  

s ig n i f ic a n t .  Addition  o f  glucagon (lyM) to the c e l ls  a t  the s t a r t  

o f  the Incubation appears to re s u lt  In an In h ib i t io n  o f  o le a te  incor­

pora tion  In to  t r la c y lg ly c e ro l  both In the presence o f  fruc tose  and o f  

glucose, but In h ib i t io n  was not s t a t i s t i c a l l y  s ig n i f ic a n t  except w ith  

2mM o le a te  In the presence o f  glucagon. A s t a t i s t ic a l  analys is  o f  the  

data In Table IX In d ica ted , as In a previous experiment (see Table V I I I ) ,



“ 6Fig . 26 E f fe c t  o f  glucagon ( l  x 10 on the e s t é r i f i c a t io n  o f  

o le a te  in the absence o f  added hexose ( □ ) ,  (b) 

w ith  9mM glucose (o) or (c) w ith  9mM fru c to se  ( • ) .

Iso la ted  r a t  hepatocytes (4 .0  x 10 c e l ls /m l )  from fed  

ra ts  were preincubated then incubated fo r  60 min w ith  

1 -^ ^ c j  o le a te ,  in the absence o f  glucagon ( 8 ) or w ith  

pM glucagon ( ■ )  added a t  the s t a r t  o f  the Incubation .

Experimental d e ta i ls  are  described In Section V I . B . 8 and 

Section V I . B .10.

Each p o in t represents the mean ± SD o f  the re s u lts  w ith  

4 hepatocyte p repara tions .
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Table iXa. S t a t i s t ic a l  analys is  o f  the data In Table IX

comparison s t a t i s t i c a l  analysis  
P

contro l V glucose N.S.

contro l V fructose = 0 .005  S

fru c to se  V glucose < 0 .02  S

fru c to se  (co n tro l)  V fruc tose  + glucagon < 0.01 S

glucose (c o n tro l)  V glucose + glucagon N.S.

fru c to se  + glucagon V glucose + glucagon < 0 .0 2  S

N.S. = not s ig n i f ic a n t  

S. = s ig n i f ic a n t
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th a t  fruc tose  and, to a lesser ex ten t  g lucose,stim ulated t r l a c y l ­

g lycero l synthesis from o le a te  compared to c o n tro l .  This e f f e c t  o f  

fruc tose  was reversed by the ad d ition  o f  glucagon but th is  hormone was 

not e f f e c t iv e  w ith  the g lucose-trea ted  c e l ls .  When the hormone-treated  

c e l ls  are  compared, the s t im u la t io n  by fructose  is no longer found; 

indeed, the ketose caused a small in h ib i t io n  compared to glucose. The 

in h ib i to r y  e f f e c t  o f  glucagon In the presence o f  o le a te  (2mM) and 

fru c to se  (9mM) is also apparent when 2  fructose incorporation

into  t r la c y lg ly c e r o l  was used as a measure o f  l i p i d  synthesis (see 

Table V I I ) .

The reason fo r  th is  d i f f e r e n t i a l  e f f e c t  o f  glucagon in the  

presence o f  fruc tose  and glucose is not immediately apparent. There 

is no evidence in the l i t e r a t u r e  to suggest th a t  the metabolism o f  

fruc tose  to sn-g lycero l 3-phosphate is a ffe c ted  by glucagon but there  

is considerable evidence that glucagon a f fe c ts  g lyco lys is  from glucose 

and gluconeogenesis from the t r io s e  phosphate (Hue, I 98 I ) .  In a d d it io n ,  

o le a te  is known to in h ib i t  g lyco ly s is  and to s t im u la te  gluconeogenesis. 

Williamson e t  a l . ,  ( I 98O) found th a t  added o le a te  completely in h ib i ts  

la c ta te  accumulation by iso la ted  hepatocytes, and glucagon a d d it io n  

resu lted  in the u t i l i z a t io n  o f  la c ta te  present a t  the s t a r t  o f  the 

incubation . I t  is not c le a r  a t  what stages o f  g lyco lys is  and gluco­

neogenesis th a t  these e f fe c ts  are  mediated. However, Bremer e t  a l . , -  

( 1978) ,  Sugden £ t  ^ . , ( 1980) and Declerq ^  £ l^ ., (1982a) have provided  

evidence th a t  glucagon lowers sn-g lycero l 3-phosphate le v e ls .  This  

decrease is presumably brought about by in h ib i t io n  o f  g ly co ly s is  to  

the triosephosphate and a s t im u la t io n  o f  gluconeogenesis brought about 

by changes in fruc tose  2 ,6 -b is -phosphate . I f  the s t im u la t io n  o f  o le a te  

e s t é r i f i c a t io n  by fructose  observed in th is  study is the re s u lt  o f  

the e levated  sn^-glycerol 3-phosphate le v e l ,  then the e f f e c t  o f  glucagon 

must be to lower s ji-g lycero l 3-phosphate le v e ls ,  presumably by s t im u la t ­

ing gluconeogenesis from the tr iosephosphate. There is evidence, 

however, th a t  gluconeogenesis from fructose is not s tim ulated by 

glucagon a t  high concentrations o f  fructose but is s tim ulated  a t  lower 

le v e ls o f  fruc tose  (V en eza ile , 1971; Zahl ten £ t  al_. , 1973) • The resu lts  

in the present study in d ica te  th a t  in the presence o f o le a te  (2mM) 

glucagon may reverse the accumulation o f  sn-g lycero l 3-phosphate caused 

by fru c to s e . More recently  Declerq e t  a l . (1982a) have found th a t  

w ith  DHA as a sn-g lycero l 3-phosphate precursor, glucagon s ig n i f ic a n t ly
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decreased the s n -g lycerol 3-phosphate content o f  hepatocytes and the 

incorporation  o f  p a lm ita te  in to  d i -  and t r i -  acy lg lyce ro l .

G. E f fe c t  o f  fructose on lipoqenesis from L -  [u-^^c] la c ta te

I t  was c le a r  from p re lim inary  re su lts  th a t  o f  the hexose

incorporated in to  the t r la c y lg ly c e ro l  f ra c t io n  by iso la ted  hepatocytes;  

more o f  the 2  ” [ u - ^ f r u c t o s e  (13%) was incorporated in to  the f a t t y  

acid moiety than o f  the 2  “ glucose (7%) and since there  was

a g re a te r  to ta l  incorporation from fruc tose , th is  ind icated  th a t  the 

actual incorporation  o f  carbon in to  f a t t y  acid was g re a te r  in the case 

o f  2  ” fruc tose . This is fu r th e r  shown in F ig . 27 which shows

the re la t io n s h ip  between the concentration o f  added hexose and the ra te  

o f  carbon incorporation  in to  the f a t t y  acid f ra c t io n  derived from a 

to ta l  l i p i d  e x t ra c t .  The rates o f  f a t t y  acid synthesis from both 

hexoses were found to be l in e a r  fo r  up to Ih (data not shown). As 

expected, the ketose was shown to be a b e t te r  precursor o f  f a t t y  acid  

carbon than glucose in the concentration range s tud ied . C lark  e t  a l . ,  

(1974) have found th a t lOmM fructose  was a b e t te r  precursor o f  f a t t y  

acid than lOmM glucose but they found th a t the reverse was true  a t  

higher concentra tions. The p r e fe re n t ia l  u t i l i z a t io n  o f  fruc tose  carbon 

fo r  l ipogenesis was expected since the metabolism o f  fructose  to f a t t y  

acid by-passes the f i r s t  two regu la to ry  enzymes o f  g ly c o ly s is ,  

glucokinase and phosphofructokinase (PFK), whereas g lyco lys is  from 

glucose does not. This f in d in g  is a lso in accordance w ith  the data 

obtained by Salmon e t  a l . ,  (1974) who found th a t de novo f a t t y  acid  

synthesis by perfused l i v e r  from fed mice was not stim ulated  by glucose 

a t  concentrations less than 17mM and th a t  the sugar was not a good 

carbon source fo r  l ipogenesis . On the o ther  hand, both glycogen and 

la c ta te  contr ibuted  extensive carbon to f a t t y  a c id .  This was a lso  

the conclusion o f  Clark e t  a l . ,  (1974) fo llow ing  t h e i r  work on iso la ted  

hepatocytes. The evidence suggests th a t  glucokinase is a r a t e - l im i t in g  

step in glucose u t i l i z a t io n  fo r  f a t t y  acid synthesis . However, i f  the 

ra te  o f  carbon incorporation from D -  fru c to se  is compared to

published data concerning absolute rates o f  f a t t y  acid synthesis from 

^H^O by hepatocytes from fed ra ts ,  i t  is c le a r  th a t  ra te  o f  incorporation  

o f  carbon from fructose in to  f a t t y  acid is very low, even a t  high 

concentra tion  o f  the sugar. This is probably due to isotope d i lu t io n  

by glycogen, la c ta te  and other non-rad ioactive  lipogen ic  precursors.
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F ig . 27 Lipogenesis from 2  " [ u - f r u c t o s e  or 2 "  glucose

Hepatocytes were prepared from fed ra ts .  Fructose ( • )  or  

glucose (o) was added to c e l ls  (4 .0  x 10^ c e l ls /m l)

which were preincubated a t  37° fo r  Ih in KRB + + BSA

(1.5%) and then incubated w ith hexoses fo r  Ih .

Experimental d e ta i ls  described in Section V i .B .5 d .

Each p o in t represents the mean ± SEM o f  the resu lts  w ith  

3 hepatocyte preparations.
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L actate  incorporation is gen era l ly  regarded as being a good 

in d ic a to r  o f  rates o f  lipogenesis (C lark  e t  a j [ . , 1974; Salmon e t  £ l_ . , 

1974) .  The resu lts  obtained w ith  th is  substrate  as a carbon source 

are  lower than those obtained using ^^2^ but appear to accura te ly  

r e f l e c t  changes in rates o f  lipogenesis (Hopkirk and Bloxham, 1979). 

T h e re fo re ,  i t  was decided to examine the e f f e c t  o f  fruc tose  on the  

rates o f  incorporation  o f  L -  la c ta te  in to  f a t t y  acid in

order to determine whether or not fructose had an e f f e c t  on l ip o g e n ^ s ,  

independent o f  i t s  ro le  as a carbon source.

F ig . 28 shows the resu lts  o f  a ty p ic a l experiment showing a 

time course fo r  the incorporation o f  L -  [u -^^c] la c ta te  (3mM) in to  

f a t t y  acid  in the presence o f fructose and glucose. Lipogenesis from 

la c ta te  was l in e a r  over a 60 min period in the presence o f  ImM glucose. 

At 9mM glucose there was a s t im u la t io n  o f  lipogenesis a f t e r  à  short , 

time lag .

However, the rates o f  l ipogenesis in the presence o f  fructose  

were not l in e a r ,  in the case o f  ImM fructose  there  was a short i n i t i a l  

lag followed by a marked s t im u la t io n  o f  l ipogenesis between 15 min and 

60 min. A t 9mM fru c to se , however, there  was a considerable in h ib i t io n  

o f  lipogenesis from la c ta te  which was apparent fo r  about 30 min, then 

the hepatocytes showed some recovery and were capable o f  lipogenesis  

a f t e r  an i n i t i a l  lag period. The in h ib i t io n  o f  lipogenesis from la c ta te  

by high concentration o f  fructose is a lso apparent in F ig . 29, which 

shows the e f f e c t  o f  fructose and glucose concentrations on f a t t y  acid  

synthes is . The resu lts  in d ica te  a small s t im u la to ry  e f f e c t  on l ip o ­

genesis by glucose but a marked s t im u la t io n  a t  low concentrations o f  

f ru c to s e . A ra te  o f  lipogenesis from la c ta te  o f  O.69 ± O . I9 S.D.

(n = 4) nmoles/min/g hepatocytes was observed w ith  3mM glucose added, 

whereas w ith  3mM fructose th is  value was increased (P < 0 .05 ) to 

1.50  ± 0 .6 5  nmoles/min/g. These values are considerably lower than 

ra tes  o f  lipogenesis observed in v ivo (Lowenstein, 1971) but o f  the  

same order as those reported by Hopkirk and Bloxham (1979) w ith  is o la te d  

hepatocytes, e s p e c ia l ly  i f  the considerable d iurna l v a r ia t io n  in 

l ipogenesis  by hepatocytes observed by these workers is taken in to  

account. I t  is also c le a r  th a t the d ie t  and sex o f  the animal have 

a considerable  e f f e c t  on the level o f  hepatic  l ipogen ic  enzymes (Pridham 

and Davies, 1979) .  Lipogenic rates could be optim ized by feeding high 

carbohydrate d ie ts  to female ra ts .
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Fig. 28 Time course o f  f a t t y  acid synthesis from L -  la c ta te .

6Iso la ted  hepatocytes (4 .0  x 10 c e l ls /m l)  from fed ra ts  were
r  1 4 T

preincubated fo r  Ih and then incubated w ith  L -  [U- Cj la c ta te

(3mM) in presence o f  ImM glucose ( ■ ) ,  9mM glucose ( □ ) ,  I mM

fruc tose  ( • )  or  9mM fructose ( o ) . The reaction  was stopped w ith

HCIO, the to ta l  l i p i d  extracted  and the f a t t y  acid sapon if ied  as 
4

described in M a te r ia ls  and Methods Section V l .B .5 d .

Each po int represents the mean ± SEM o f  values obtained w ith  one 

hepatocyte prepara tion .
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F ig . 29 E f fe c t  o f  Increasing glucose and fructose concentration on 

lipogenesis from la c ta te  (3mM).

Hepatocytes (4 .0  x 10^ c e l ls /m l)  from fed ra ts  were pre­

incubated fo r  Ih and then incubated w ith  L -  la c ta te

(3mM) in presence o f  various concentrations o f  fruc tose  ( • )  

and glucose (o) fo r  Ih .

Exper imenta l  d e t a i l s  a re  d esc r ibe d  in  S ec t io n  V I .B . g a .

Each po in t represents the mean ± SEM of t r i p l i c a t e  values 

obtained w ith  one hepatocyte p rep ara tio n .
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The In h ib i t io n  o f lipogenesis by fructose a t  9mM and 20mM 

(F ig .  29) has a lso been described by others (Berry and Friend, 1969;

Cl ark  aij_., 1974; Selmer and Grunnet, 1976) but, to my knowledge, 

there  is no report in the l i t e r a t u r e  which shows th a t l ipogenesis is  

restored a f t e r  an i n i t i a l  period o f  in h ib i t io n  (see F ig . 2 8 ) .  This

in h ib i t io n  o f  lipogenesis may be due to the rapid f a l l  in adenine

nuc leo tide  content, e s p e c ia l ly  ATP, which is known to occur when 

hepatocytes are  incubated w ith  fructose (C la rk  ^ £ l _ . ,  1979; Van den 

Bergheet a l . ,  I 98O). The l a t t e r  workers claim th a t ATP leve ls  are not

restored fo llo w in g  incubation o f  the c e l ls  from fasted animals fo r  up

to Ih but Mapungwana ( I 982) in th is  laboratory  has shown th a t  ATP leve ls  

are a t  le a s t  p a r t i a l l y  restored over a Ih incubation period fo llo w in g  

a profound d ep le t ion  in the f i r s t  10 min a f t e r  a d d it io n  o f  fructose  

(10mM) .  This re s to ra t io n  o f  ATP level could exp la in  the increase in 

the ra te  o f  lac ta te -1 ip o g en es is  observed in the present study a f t e r  

30 min in the presence o f  9mM fruc tose .

There are  a t  lea s t  three possible s ite s  fo r  the u t i l i z a t i o n  o f  

ATP in lipogenesis; ATP c i t r a t e  lyase, acety l CoA synthase and acety l  

CoA carboxylase. Selmer and Grunnet (1976) have discounted a fru c to s e -  

induced in h ib i t io n  o f  the former two enzymes on the grounds th a t  the 

r a t io  o f  incorporation  from and ace ta te  is unchanged, but

they a lso s ta te  th a t  the dep let ion  o f  ATP is u n l ik e ly  to lead to an 

in h ib i t io n  o f  acety l CoA carboxylase because o f  the high a f f i n i t y  o f  

the enzyme fo r  ATP. An a l t e r n a t iv e  explanation fo r  the change in 

l ip o g en ic  ra te  w ith  time in hepatocytes incubated w ith  fructose  is the 

p o s s ib i l i t y  th a t  the accumulated FIP may in h ib i t  acety l CoA carboxylase  

but i t  seems th a t  the e f f e c t  o f  th is  m etabo lite  on the acety l CoA 

carboxylase is s t im u la to ry  ra th e r  than in h ib i to ry  (see Section V , I ) .

A fu r th e r  p o s s ib i l i t y  is th a t the reversal o f  the in h ib i t io n  is 

due to the accumulation o f  la c ta te ,  a known s t im u la to r  o f  lipogenesis  

(H a r r is ,  1975). Mapungwana (1982) has c le a r ly  shown th a t la c ta te  plus 

pyruvate output by iso la ted  hepatocytes is stim ulated  by fruc tose  a t  

a l l  concentrations o f  the ketose. She has shown th a t  the la c ta te  

concentration  o f  iso la ted  hepatocytes can change by about I mM in Ih in  

the absence o f  hexose or w ith  glucose (lOmM) and by 4mM in presence o f  

lOmM fru c to s e . The e f fe c t  o f  la c ta te  concentration on the ra te  o f
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lipogenesis  is shown in F ig . 30. I t  is c le a r  th a t  the assay o f  

l ipogenesis  from 3mM la c ta te  underestimates the maximal ra te  o f  

l ipogenesis  and i t  is possible th a t  the s t im u la to ry  e f fe c ts  o f  fruc tose  

observed in F ig .  28 and F ig .  29 could be explained by a change in the 

la c ta te  pool. However, i t  is c le a r  from the resu lts  in F ig .  30 th a t  c 

the s t im u la to ry  e f f e c t  o f  fructose is increased w ith  increasing la c ta te  

concentra tion . This is incompatible w ith  the view th a t  fruc tose  may 

s t im u la te  lipogenesis v ia  an increase in the leve l o f  la c ta te  and 

suggests th a t  fructose  is exerting  an e f fe c t  on lipogenesis independent 

o f  i t s  e f f e c t  on the la c ta te  content o f  hepatocyte.

In an attem pt to c l a r i f y  th is  problem the f a te  o f  JD -  

fru c to s e  in various m etabolites  in the iso la ted  hepatocytes was 

examined. I t  is  well-known th a t the major products o f  fructose  

metabolism are glucose and la c ta te  (Exton and Park, 1967). The method 

o f Hue e t  a l . (1978) u t i l i z i n g  ion-exchange resins to separate glucose,  

la c ta te  and fruc tose  was used. The rates o f  gluconeogenesis from 

fru c to se  ImM (F ig .  31a) and 9mM (F ig .  32a) were found to be l in e a r  fo r  

up to 30 min. L -  la c ta te  accumulation was not l in e a r  w ith

time in e i t h e r  case (F ig .  31a and F ig . 32a). A fu r th e r  examination by 

th in - la y e r  chromatography o f  the ' l a c t a t e '  f r a c t io n  formed a f t e r  30 min 

incubation w ith  both ImM and 9mM fructose  revealed th a t  the ' l a c t a t e '  

f r a c t io n  was, in f a c t ,  contaminated w ith  a substan tia l amount o f  

fru c to se  1-phosphate which had accumulated in the c e l ls  and was e lu ted  

o f f  Dowex A G l-C l” w ith  IM NaCl (see F ig . 33 ) .  In fu r th e r  experiments 

the la c ta te  and FIP were fu r th e r  resolved using the TLC step and the 

re su lts  in F ig . 31b and F ig . 32b show th a t the ra te  o f  la c ta te  

accumulation is l in e a r  fo r  up to 30 min and th a t  FIP accumulates up to 

30 min, then there is a decline  in the level o f  th is  m e ta b o lite .  This  

was borne out by observation in the laborato ry  by Mapungwana (1982) 

who found th a t  hepatocyte FIP le v e ls ,  as measured by a linked FIP 

a ld o la s e /g ly c e ro l  3-phosphate dehydrogenase enzymic determ ination ,  

peak a f t e r  30 min o f  incubation w ith  fructose then g radua lly  d e c l in e .

The next experiment (F ig .  34) shows the accumulation o f  ra d io ­

a c t iv e  m etabo lites  a f t e r  incubation fo r  15 min w ith  various concentrations  

o f  fru c to se . I t  is c le a r  th a t  the accumulation o f  each m e tab o lite  is 

dependent on the concentration o f  the ketose, but the nature o f  the 

re la t io n s h ip  is d i f f e r e n t  in each case. At low concentrations o f
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F ig . 30 E f fe c t  o f  3mM fructose or 3mM glucose on the incorporation  o f  

various concentrations o f  L -  [ll-^^C] la c ta te  in to  f a t t y  acid  

by hepatocytes.

iso la ted  hepatocytes (4 .0  x 10 c e l ls /m l)  from fed ra ts  were 

preincubated and then incubated w ith  L- [D-^^c] la c ta te  fo r  

Ih in the presence o f  3mM glucose (o) or wi th 3mM fructose  

(•).

Experimental methods are described in Section V I .B .S a .

Each po in t represents the mean ± SEM o f  the re su lts  w ith  

3 hepatocyte preparations.



-  138 -

g* 0  8

Q .

LACTATE
o> 0 6

o

0 4
Œ
Q.

GLUCOSE

02

lij

o

0 4

LAC TATE

o

o i

6 015 . 3 0  4 5

IN C U B A TIO N  T IM E  ( m in )

Fîg.  31 Time course o f incorporation o f  £  -  Oj-^^ c]  fru c to se  (ImM) 

in to  glucose, la c ta te  and FIP .

6Iso la ted  hepatocytes (4 x 10 c e l ls /m l )  from fed ra ts  were

preincubated fo r  1 h and then w ith  £  -  fru c to se  (imM)

fo r  various times. The products were separated as described

in M a te r ia ls  and Methods Section V I .B .6 b .  Each p o in t

represents the mean ± SEM o f  the re su lts  wi th  3 hepatocyte  
prepara tions .
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Fîg.  32 Time course o f  incorporation o f  D -  fruc tose  (9mM)

in to  glucose, la c ta te  and FIP.

Hepatocytes (4 x 10 c e l ls /m l)  from fed ra ts  were 

preincubated fo r  Ih and then w ith  £  fruc tose

(9mM) fo r  various times. The products were separated  

as described in M a ter ia ls  and Methods Section V l .B .6 b .

Each p o in t represents the mean ± SEM of the re su lts  w ith  
3 hepatocyte preparations.
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Fîg.  33 T h in - la y e r  chromatographic f ra c t io n a t io n  o f  the ' l a c t a t e '

f r a c t io n  obtained by e lu t io n  o f  Dowex AGI Cl w ith  1 £  NaCl

Hepatocytes were incubated w ith  (a) ImM or (b) 9mM fructose  

fo r  30 min. The c e l ls  were extrac ted  w ith  HCIO^ and the 

n eu tra lised  e x t ra c t  applied to the ion-exchange column and 

the neutra l sugars e lu ted  w ith  water as described in M a te r ia ls  

and Methods Section V I . B . 6 c ,
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Fig. 34 E f fe c t  o f  fructose concentration on the incorporation  o f  ra d io ­

a c t i v i t y  in to  glucose, la c ta te  and FIP.

The la b e l le d  substrate  was added a f t e r  a Ih pre incubation and the  

incubation was terminated w ith  HCIO^ a f t e r  a 15 min incubation period  

The products were separated as described in M a te r ia ls  and Methods 

Section V l . B . 6 c .  Each po in t represents the mean ± SEM o f  the re su lts  

wi th  3 hepatocyte prepara tions .
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fru c to s e  (up to ImM) s im i la r  to those which are  thought to occur 

in vW o (Topping and Mayes, 1971). The r e la t iv e  proportion o f  2  "

[u - cJ glucose to la c ta te  formed is high (>10 : 1 ) •  The r a t io

decreases a t  higher fructose  le v e ls .  This probably r e f le c ts  a 

s a tu ra t io n  of^gluconeogenic pathway from t r io s e  phosphate a t  the high  

concentrations o f  the ketose whereas the g ly c o ly t ic  pathway is  

stim ulated  a t  these high concentra tions, possib ly  by the accumulation  

o f  FIP (F ig .  34b) and F ru -1 , S-Pg (Mapungwana and Davies, 1982) which 

are  known to s t im u la te  pyruvate kinase (Eggleston and Woods, 1970) and 

the d ep le t io n  o f  ATP (Mapungwana and Davies, 1982) a potent in h ib i to r  

o f the enzyme. I t  is o f  in te re s t  in th is  context th a t  there  appears 

to be a d i r e c t  re la t io n s h ip  between FIP leve ls  and la c ta te  accumulation  

The f in d in g s  in F ig .  34b contrast somewhat w ith  data fo r  FIP lev e ls  in 

hepatocytes obtained by Mapungwana and Davies (1982) who have observed 

su b stan t ia l  accumulation o f FIP as assayed by an enzymic method even 

a t  lower concentration o f  fru c to se . For example, they found lev e ls  o f  

FjP o f  > 2 ymole/g a f t e r  incubation a t  ImM fructose  fo r  15 min. The 

reason fo r  th is  discrepancy is not c le a r  but the p re lim in ary  re s u lts  

o f  Davies and P h i l l i p s  (unpublished) in th is  department a lso  reveal 

a discrepancy between FIP accumulation assayed by the radiochemical 

technique and by the enzymatic procedure.

The re s u lts  fo r  glucose and la c ta te  accumulation compare w ith  

those o f  Foster and B l a i r  (1978) using hepatocytes from fed and fasted  

ra ts  incubated w ith  fru c to se  (1OmM) or DHA (lOmM). They a lso  found a 

g re a te r  ra te  o f  gluconeogenesis than g ly co ly s is  from the t r io s e  

phosphate in hepatocytes from both fed and fasted animals but they  

could not d is t in g u ish  between the glucose a r is in g  from glycogen and 

th a t  a r i s i n g  by gluconeogenesis from t r io s e  phosphate by th a t  technique. 

Hepatocytes from fed animals e x h ib i t  a high ra te  o f  endogenous glucose  

output which is stim ulated by fruc tose  (see F ig . 11 and F ig . 12).

The data shown in F ig . 31, F ig . 32 and Fig.  34 suggest th a t  

£  -  [u -^^c] fructose  contributes  only a r e la t i v e ly  small p roportion  

o f  the to ta l  la c ta te  produced by iso la ted  hepatocytes from fed ra ts .

I f  the c o n tr ib u t io n  from endogenous m etabolites  is ignored then the  

maximum increase in L -  la c ta te  leve ls  as a r e s u l t  o f  the

incubation o f  hepatocytes w ith  fru c to se  is about 0.5mM a f t e r  30 min 

which would be u n l ik e ly  to s t im u la te  the apparent ra te  o f  lipogenesis



-  143 -

s i g n i f i c a n t l y ,  p a r t i c u l a r l y  as there Is a considerable leve l  o f  

unlabel led  l a c t a t e  a r is in g  from another source, probably glycogen.

I t  is c le a r  from th is  work that the i n te r p r e t a t io n  o f  the 

s t im u la t io n  o f  l ipogenesis from la c ta te  by fructose is subject  to a 

number o f  c r i t i c i s m s  which a r is e  from a considerat ion o f  the u t i l i z a t i o n  

o f  endogenous precursors.  I t  was apparent,  however, tha t  fructose  was 

exer t ing  a s t im u la to ry  e f f e c t  on l ipogenesis.  This was tested f u r t h e r  

using an a l t e r n a t i v e  subst rate  ( aceta te )  to measure l ipogenesis .

H. E f f e c t  o f  fruc tose  on l ipogenesis from aceta te

In a fu r t h e r  ser ies  o f  experiments rates o f  l ipogenesis from 

[ l c] ace ta te  were examined. The method o f  choice would have been to 

use in order  to determine absolute l ipogenic  ra tes ,  but th is

procedure requires the use of  high leve ls  of  lab e l led  mate r ia l  and could 

not be used because f a c i l i t i e s  were not a v a i l a b le .  However, [l"^^c] 

a ce ta te  incorporat ion into f a t t y  acid is also regarded as a good 

in d ica t io n  o f  l ipogenic  rates (Capuzzi e t  a l . ,  1974) which r e f l e c t  only  

the f l u x  through acetyl  CoA synthase,  acetyl  CoA carboxylase and f a t t y  

acid synthase.

r 14 1Fig .  35 shows th a t  the ra te  o f  incorporation o f  [1- Cj ace ta te  

( ImM or  5mM) in to  to ta l  sapon i f iab le  l i p i d  is l in e a r  with  time fo r  up 

to 60 min in the presence o f  3mM added glucose. Addi t ion  o f  f ruc tose
■ r 14 T(3mM) resul ted in a s t im ula t ion  o f  l ipogenesis from [1- Cj a ce ta te  a t  

both concentrat ions o f  the subst rate.  There was no evidence o f  a t ime-  

lag in the s t im u la t ion  o f  l ipogenesis as was found with  L -  [u- c] 
l a c t a t e  (F ig .  28 ) .  Indeed, the time course fo r  ace ta te  incorporat ion  

is l i n e a r  fo r  only 30 min with  f ructose added. The explanation fo r  

th is  phenomenon is not c le a r .  F ig .  36 shows the re la t io n s h ip  between 

l ipogenesis and aceta te  concentrat ion.  I t  was evident th a t  5mM ace ta te  

produced maximal rates o f  l ipogenesis and hence th is  concentrat ion o f  

substrate  was normally used in subsequent studies together w i th  an 

incubation time o f  30 min.

Acetate  is probably a physiological  substrate  fo r  f a t t y  acid  

synthesis since i t  is known to be present in r a t  blood. Concentrations  

o f  800 liM ace ta te  have been found in hepatic  por ta l  vein o f  fed animals
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Fîg. 35 Time course of  incorporat ion o f  Q-^^c] aceta te  (5 or ImM) 

in to  f a t t y  acid in the presence o f  glucose (3mM) or  

fructose (3mM).

Iso la ted  hepatocytes (4 x 10 c e l ls /m l )  from fed rats  

were preincubated fo r  Ih and then incubated wi th  

ace ta te  (ImM open symbols or  5mM closed symbols) in 

presence o f  3mM fructose ( O ,  •  ) or  3mM glucose ( □  , I  ) 

fo r  Ih .  The react ion was terminated with  HCIO^ and the 

to ta l  l i p i d  extracted and saponif ied as described in 

Section V I . B.5d.

Each po in t  represents the mean ± SEM o f  the resu l ts  wi th  

3 hepatocyte preparat ions .
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Fîg.  36 Lipogenesis from [1- Cj aceta te  a t  various concentrat ions  

o f  subst rate.

Iso lated hepatocytes (4 x 10 c e l l s /m l )  from fed 

rats were preincubated fo r  Ih and then Incubated w i th

aceta te  In presence o f  glucose (3mM) f o r  30 min.

Experimental method Is described In Section V I .B .g b .

Each po int represents the mean ± SEM o f  resu l ts  with  

3 hepatocyte preparat ions .
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(Buckley and Wil l iamson, 1977).  Acetate  is converted to acety l  CoA by 

acety l  CoA synthase which has a Km o f  approximately 0.03mM fo r  ace ta te  

(Knowles e t  a l . ,  1974) and a o f  2 .55  ymole /min/g.  I f  one compares 

the r e l a t i v e l y  low and high Km fo r  ace ta te  u t i l i z a t i o n  in

l ipogenesis (F ig .  36) i t  Is c lea r  tha t  the enzyme Is not ra te -1 Im l t in g  

In f a t t y  acid synthesis from aceta te .

F ig .  37 shows the e f f e c t  o f  various concentrat ions o f  added 

hexose on rates o f  l ipogenesis from [ j ' ^ ^ c j  a ce ta te .  At low concen­

t r a t i o n  o f  fructose there was a s t im ula t ion  o f  l ipogenesis by fructose  

compared to glucose but th is  Increase was not s t a t i s t i c a l l y  s ig n i f i c a n t  

in th is  experiment. At 9mM and 20mM glucose there  was a s i g n i f i c a n t  

(P < 0 . 005) s t imulat ion  o f  l ipogenesis compared to 2mM glucose and 

below. At high concentrations o f  fruc tose  (9mM and 20mM) however,there  

was a s ig n i f i c a n t  (P < O.OO5) i n h ib i t io n  o f  l ipogenesis compared to 

low concentrat ion of  f ructose and to high concentrat ion o f  glucose  

(9mM and 20mM). This f ind ing  is in agreement w i th  the e a r l i e r  

observations (F ig .  29) w ith  L -  l a c ta te  as a precursor.

Clark  e t  a l . ,  (1974) and Selmer and Grunnet (1976) have shown 

th a t  high concentrations o f  f ructose i n h i b i t  f a t t y  acid synthesis from 

H^O by iso la ted  r a t  hepatocytes but Goodridge £ t  aj_., (1974) and

Clarke ^ a j _ . ,  (1979) found a s t im u la t ion  o f  l ipogenesis from [ l - ^ ^ c ]  

ace ta te  by chick hepatocytes incubated w i th  1ImM and 25mM fructose  

re s p e c t ive ly .  The mechanism o f  the in h ib i t io n  o f  l ipogenesis from 

[ i -^ ^ c j  ace ta te  observed in the present study is not obvious.  The 

r e l a t i v e l y  low Km fo r  ATP and high o f  acetyl  CoA synthase (Farstad

^  , 1967) suggest th a t  i t  is u n l i k e ly  th a t  th is  enzyme is r a t e -

l i m i t i n g .  Thus the deplet ion  o f  hepatocyte ATP leve ls  would have 

l i t t l e  e f f e c t  on the conversion o f  a ce ta te  to acetyl  CoA. In a d d i t io n ,  

the I n h ib i t io n  must be the r e s u l t  o f  acety l  CoA carboxylase or f a t t y  

acid synthesis in h ib i t io n .  According to Selmer and Grunnet (1976) the 

deple t ion  o f  ATP is u n l ik e ly  to a f f e c t  acety l  CoA^activ ity  but they 

suggest tha t  fructose increases acyl CoA leve ls  and thus in h ib i ts  

acety l  CoA carboxylase.  However, there  is l i t t l e  o ther  evidence in ; th e  

l i t e r a t u r e  to support th is  view.

The resu l ts  in Fig.  35 and F ig .  37 suggest th a t  f ructose  a t  low 

concentrat ion st imulates  l ipogenesis .  The resu l ts  shown in Table X



-  i4y -

1 0o

08ÜL

O  o  0 4  
u  <o
ÜJ Tz

20
ADDED HEXOSE(mM)

Fig.  37 E f fe c t  o f  various concentrations o f  hexose on 

incorporation o f  0 “ ^^Q] aceta te  into to ta l  

sapon i f ia b le  f a t t y  ac id .

Iso la ted hepatocytes (4 x 10 c e l l s /m l )  from fed 

r a t  were preincubated fo r  Ih and then incubated with  

aceta te  (5mM) in presence o f  various  

concentrations o f  fructose ( O )  or glucose ( # )  fo r  

30 min.

Experimental method is described in Section V I .B .9 b .

Each po int represents the mean ± SEM o f  the resu l ts  

with  4 hepatocyte prepara t ions .



-  l48  -

o-d"

oQ,
Ouc

0)
sz

c
o
0)
to>3U
> .
CL

■o
c
CD

(D
C
o•M
a)
u
CD
>S

§
L .

- o
>■

(U
V)
oO3
D)

O
tn
u0>u-

X

CD

X)

"Oc
CD

CD

■M
in

X )
3
(/)

+J
3
o

5

X :

-a
0)
•M
CDJ3
3
0  
c

CD
1_
CL

0)
l_

1

•U
CD

E
O

vOo
>> —
•M
■M X
CD
4- -iT

in
CD

> *
U
o
•M
CD
Q .
0)

X=

"S

L . *4 -
o o

, c
o

—
4 J
CD
1_

CD o
+J CL
CD 1_
> o
3 o
S_ c
>>
D.

CD
M - j r
O •M •3

lA
CD D)
O C
c
CD S >
in o

C
CD o

o
J - . ' «4- 4-1
O o

CD
CD CO
U
c *3
CD CD (n
in 1- ■3
CD 3 O
L . in X:
Q. CD 4-1

CD CD
C E z

cn ■3
CD c

z , 5 CD
E

ia |i CD tn
4-»

l_ CD CD
o •M

i_
u CD

E CD 4 -)
CM CD

1-------1
o

CD -3- C
in
O 1
4 -) "O
o CD
3 X)
U E

M - O u
L. u

1_ M - (/)
O CD

in ■3

1 tn tn
E CD CD
lA c

o c
l_ cn o
O O

, CL 4 J
— u

E 1 _J CD
CM L .

u -

CD CD
in z l
O E JQ
u O CD
3

M -
U>

o c
. c o
4 -* L f\ CL

CD
s in

CD
c c

O CD
E 4-> 4 -*

CD O
O O 4-»
CA CD

5 ^ CD
l_ X X :
o o 4 -*

M -
*3 o

*3 > - 4 J
CD X: C
4->
CD "3

X)
3 xr CD
U 4-» X)
c CD

•— 5 «—

CM
o  —

<  Z +13: E II
Q  A

M3 C

o

CM x -v
o o

<  z | o
E +1 IIo  o VO

VO C

o

Z l  CD
in E 4-» CM
CD A  CD
4-) O  CO
> - CD 3  Z : +1U in J- E -4T II
O O  I— A
4-» ■M CL>— A  C
CD O
CL 3  + O
CD L.

U -

C
z |  CD A

E E 4-)
A  CD COO ' - f  >  Z O(A CD 3  E +1 II

•v . in L. — -a-
■3 O  > - — L3- C

U  CL
O 3 o
CD —  +31
4-> CXI4-* CO x-^
CD O o o

U - in ^ CM
O  Z oo E +1 II4-* O  Ac 3 '— A  C1_
M- O

o -a-
4->
CD CD o
L_ in x-s O  CM
o O Z +1
Q . U E CM II
L. 3  A A
o A  C
o 31c O

CD
■M
CD ZlCD
4-* E M-»CD CM CD A  ------
O CO
CD CD 3 z: o

in I- E 4-1 II
OO 4-> C L '— M. C  .
u
=3 + O

1

l J U
U-

M-
o

Z ,  CD A
in E -M A  x -s
CD CM I CD —  OO

^  >  Z
O CD 3 E O  II
E in  I -  1— 4-1
p. O o c

O  CL -a- '—
3

—  + o
31

CD — vOin /-s
O Z o
4J E 4-1 II
O  CM -a-
3 -a- c
L.

I* - o

CM

3 vO
in o  —
O Z 4-1vO II

A  C
31 O

c
0)>
cn
CD
i_
CD

"D
CDin
3

(/)

CD

CD
X )
E
3

O

tr>

4-1
1_
3
>

31
1_
3
CL

C TO
X

E
3

O
A X I

TO
1_ h-
3
CL C

■3
3 c
N 3

>

31
4->
3 in

in
3 TO

4-»
O TO
E ■3
% 3
in X :
TO 4-*

• 3 14-
3 O
in
in in
3
i_ in
Q . > >
X
3 TO

C
3 TO
L .
TO

TO
in in U
4-»

in 4J
3 3 in
in X :
3 4-» 4-4

' L . C TO
3 4-*

3 L. in
x = TO
1 - CL <



-  149 -

Table Xa. S t a t i s t i c a l  analysis  o f  the data in Table X,

comparison s t a t i s t i c a l  ana lys is  
P

glucose (2mM) V f ructose (2mM) < 0.05 S

(tNhl) (T-tM) 
glucose^+ pyruvate^V f ruc tose /+  pyruvate < 0 .05 S

glucose (5mM) V f ructose (5mM) < 0 .05 s

(9^ )  (C5M) 
glucose^+ pyruvate^V fructosej |+ pyruvate Qcï îy N.S.

DHA (lOmM) V fructose (5mM) < 0.01 s

DMA (lOmM) V glucose (5mM) < 0.01 s

DHA (5rnM) V glucose (2mM) < 0.005 s

DHA (lOmM) V glucose (2mM) < 0.005 s

DHA (5mM) V glucose (5mM) < 0.005 s

N.S. = Not s ig n i f i c a n t  

S = S ig n i f ic a n t
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shows th a t  fructose  (2mM) does în f a c t  s t im ula te  (P < 0 .05 )  ace ta te  

l ipogenesis  compared to glucose 2mM but tha t  5mM f ructose  produces an 

i n h i b i t i o n  (P < 0 .05)  as suggested by the data in F ig .  37.  Thus the  

concentrat ion o f  the ketose is very important in determining whether  

o r  not a c t iv a t io n  or in h ib i t io n  o f  l ipogenesis occurs.

Table X also shows the e f f e c t  o f  a number o f  o ther  substrates  

on l ipogenesis from [ l -^^c ]  aceta te ;  maximal rates o f  l ipogenesis from 

Ĥ O are  reported to be dependent on the presence o f  various substra tes ,  

fo r  example pyruvate (H a r r is ,  1975).  The e f f e c t  o f  a dd i t ion  o f  pyruvate  

(ImM) on l ipogenesis from ace ta te  by hepatocy teswas examined.

There was a s t im ula t ion  o f  l ipogenesis by pyruvate observed a t  each 

leve l  o f  fruc tose  and glucose examined. Again,  fruc tose  (2mM) in the 

presence o f  pyruvate,  st imulated l ipogenesis compared to the appropr ia te  

glucose control  (P < 0 .05)  but no s ig n i f i c a n t  e f f e c t  was observed a t  

5mM hexose in the presence o f  pyruvate.  The add i t ion  pyruvate had 

no e f f e c t  on the l i n e a r i t y  o f  the time course o f  the incorporat ion of
r 14 111- Cj ace ta te  into f a t t y  acid.  The highest ra te  o f  l ipogenesis was 

observed with  2mM fructose and ImM pyruvate.

in th is  ser ies  o f  experiments the e f f e c t  of  DHA on l ipogenesis  

was a lso  examined. Will iamson and Whitelaw, (1977) have shown th a t

ipogenesis from ^H^O. Table X shows t h a t  the  

aceta te  in to  f a t t y  acid is s t imulated  (P < O.Ol) 

by DHA compared to glucose (2mM or 5mM). Again the ra te  o f  incorpora t ion  

was found to be l in e a r  in the presence o f  th is  substrate  ( r e s u l t  not  

shown).

th is  t r i o s e  s t imulates  

incorporat ion o f [ i- ’S

Fructose and DHA are metabolised by s im i la r  routes v ia  t r i o s e  

phosphates except tha t  the i n i t i a l  phosphorylat ion o f  DHA is catalysed  

by the t r io k in a s e  reaction ( H i l l  e t  a l . ,  1951; Leuthardt e t  a l . ,  1953; 

Hers,  1955; Dahlquîst ,  1962; Frandsen and Grunnet, 1971) y ie ld in g  

dihydroxyacetone phosphate whereas the metabolism o f  f ruc tose  involves  

ketohexokinase and a ldolase.  Hepatocyte g lyco lys is  to l a c t a t e  from 

fruc tose  is however more rapid than from DHA (Foster and B l a i r ,  1978; 

Mapungwana, 1982) and DHA does not deplete  ATP in perfused l i v e r  

(Wil l iamson e t  a l . ,  1969; Woods and Krebs, 1973). However, Mapungwana 

( 1982) has shown some deplet ion o f  hepatocyte ATP a t  lOmM DHA but not 

a t  4mM substrate .  However, the deplet ion  observed a t  lOmM DHA is minor



-  151 -

compared to tha t  with 1OmM fructose and is f u r t h e r  evidence to suggest 

tha t  i n h i b i t i o n  o f  l ipogenesis is due to lack o f  ATP.

The s t im ula to ry  e f f e c t  of  f ructose on l ipogenesis may be re la te d  

to a s im i l a r  e f f e c t  o f  DHA. An attempt to show a c o r r e la t io n  between 

the e f f e c t s  o f  DHA and fructose in th is  laboratory  (Mapungwana, 1982) 

has shown tha t  a t  high substrate leve ls  FIP and to a lesser  ex tent  

Fru-1 ,  G-Pg leve ls  are raised by f ructose whereas DHA ra ises the leve l  
o f  Fru-1 ,  6-P^ only.

I .  E f f e c t  o f  F ru-1 ,  6-P^ and FIP on hepatocyte ACC a c t i v i t y

Since both DHA and fructose s t im u la te  l ipogenesis and they both 

e le va te  Fru-1,G-Pg i t  was decided to examine the e f f e c t  o f  th is  

m e ta bo l i te  on ACC a c t i v i t y .  This enzyme is thought to be a key 

regulatory  enzyme in l ipogenesis ( H a l e s t r a p f / 1973; Geelen e t  a l . ,  1978b;

W i t te rs  e t  a l . ,  1979b). In a d d i t io n ,  i t s a regulato ry  enzyme which

is common to both l ipogenesis from [l-^^C.^ aceta te  and from L -  [u-^^cj  

l a c t a t e  and since s t im ula t ion  o f  the incorporat ion o f  both substrates  

was observed ACC was considered the most l i k e l y  ta rg e t  fo r  re g u la t io n .  

Other possible  regula to ry  enzymes such as pyruvate dehydrogenase or  

ATP c i t r a t e  lyase are d i r e c t l y  involved in the u t i l i z a t i o n  o f  l a c ta te  

but not o f  ace ta te .

Iso la ted hepatocytes were used as a source o f  ACC in these

experiments.  The c e l l s  were prepared from fed male animals ,  the c e l l

p e l l e t  was homogenised and a p a r t i c l e - f r e e  supernatant used f o r  enzyme

assay. The a c t i v i t y  o f  the enzyme is low in crude ex t ra c ts  and pre -
2+incubation wi th  c i t r a t e  and Mg has been used ro u t in e ly  to maximise 

the enzyme a c t i v i t y .  When the method was used in the present study 

values o f  approximately 400 nmoles/min/g hepatocytes were found.  

However, several  independent authors (Geelen ^  aj_. , 1978b; W i t te rs  

^ a j _ . ,  1979b, A l l re d  and Roehrig,  1978; Assimacopoulos -Jeannet  

£ t £ l _ . ,  1981 ; Ly and Kim, I 98 I )  have claimed th a t  crude l i v e r  prepara­

t ions can be used for  the assay o f  ACC and that  indeed the c i t r a t e  

a c t iv a t i o n  step abolishes the hormonal e f fe c ts  on enzyme a c t i v i t y  in 

iso la ted  hepatocytes.  For th is  reason i t  was decided to assay the 

enzyme w ithout the c i t r a t e  pre incubation step but to include c i t r a t e  

in the e x t rac t io n  and incubation media since th is  is considered
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esse n t ia l  by some authors (A l l re d  and Roehrig igyg; W i t te rs  £ t  £l_. ,  

1979b) .  Fig.  38 shows that  the ra te  o f  acetyl  CoA^incorporation o f  

H CÔ  in to  a c id -s ta b le  mate r ia l  is l i n e a r  w i th  time fo r  up to 3 min 

under various conditions and pre l im inary  experiments indicated th a t  

both FIP and Fru-1,G-Pg st imulated enzyme a c t i v i t y . .  The l i n e a r i t y  o f  

the re ac t io n (s )  suggests tha t  there is no c i t r a t e  a c t iv a t io n  during the 

course o f  the incubation.  The extent  o f  the s t im u la t io n  was confirmed 

using a number o f  d i f f e r e n t  enzyme preparations obtained from d i f f e r e n t  

hepatocyte preparat ions (Table X I ) .  A s t im u la t ion  by FIP (1OmM) was 

evident a t  both concentrations o f  c i t r a t e  used. S t imulat ion  by 

F r u - 1 , 6 -P2 ( 0 . ImM) was only observed in the presence o f  lOmM c i t r a t e .  

These concentrat ions o f  the ketose phosphates are s im i l a r  to those 

which may occur in vivo under c e r t a in  condi t ions,  e .g .  fo l low ing  

fruc tose  or DHA loading o f  l i v e r .  However, the enzyme a c t i v i t y  is  

g e n era l ly  low compared to the a c t i v i t y  found when ACC is f u l l y  

a c t iv a te d  by preincubation with  c i t r a t e .  Incubation o f  the enzyme 

w ith  lOmM c i t r a t e ,  ra ther  than 5mM c i t r a t e ,  resul ted in a higher  level  

o f  enzyme a c t i v i t y  and the s t im ula t ion  by both ketose phosphates was 

observed. Preincubation o f  the crude preparat ion w i th  c i t r a t e  abolished  

the s t im u la to ry  e f f e c t  o f  FIP and F r u - 1 ,ô-P^ (data not shown). This 

observation is  in agreement wi th  those o f  other  workers (W it te rs  e t  a l . ,  

1979b; G%elen e t  a l . ,  1978b). C i t r a t e  is a known a l l o s t e r i c  regu la to r  

o f  ACC but there  is no evidence in the l i t e r a t u r e  concerning the  

s t im u la t io n  o f  the enzyme by e i t h e r  FIP o r  F r u -1 ,ô-P^.  No I n h i b i t i o n  

o f  ACC a c t i v i t y  by FIP was observed, suggesting tha t  the i n h i b i t i o n  

o f  l ipogenesis observed a t  high leve ls  o f  fruc tose  (see Fig.  29 and 

Fig.  37) Is not the r e s u l t  o f  FIP accumulation in the hepatocytes.

Recent work by Davies aj[. (1982) casts some doubt on the  

observed s t im u la t ion  o f  ACC by ketose phosphates. Crude l i v e r  e x t rac ts  

contain  both ACC and pyruvate carboxylase.  The former enzyme is 

responsible  fo r  the carboxylat ion o f  acety l  CoA in the presence o f  

ATP; the l a t t e r  fo r  the ATP dependent carboxylat ion o f  pyruvate ,  a 

reaction  st imulated by acetyl  CoA. In a d d i t io n ,  pyruvate is present  

in crude l i v e r  ext rac ts  and accumulates during the incubat ion.  The 

product o f  pyruvate carboxylase is oxaloacetate  which is ra p id ly  

transformed to e i t h e r  malate or aspar ta te .  The major product in crude 

ex t ra c ts  appears to be the amino acid and th is  casts some doubt on the 

use o f  crude extracts  to assay ACC a c t i v i t y .  Indeed, I noue and
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Lowenstein (1975) have drawn a t te n t io n  to th is  problem. In th is  

context Davies (unpublished resu l ts )  has shown an apparent s t im u la t io n  

o f  ACC by Fru.  ZpG-Pg which was shown to be a t t r i b u t e d  to a s t im u la t io n  

o f  g ly co lys is  and the accumulation of  low concentrat ion o f  pyruvate  

a n d , th u s ,o f  pyruvate carboxylat ion products in the incubation medium.

The re gu la t ion  o f  ACC by metaboli tes  in vivo remains a mysterious problem 

but i t  is c le a r  th a t  many reports on the regu lat ion  o f  the enzyme in 

crude e x t ra c ts  need to be re in ve s t ig a ted .
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Fîg.  38 Time course fo r  the acety l  CoA carboxylase

incorporat ion o f  in to  a c id -s ta b le  products

Hepatocytes (3 .9g) from fed rats  were homogenised

in homogenising b u f f e r  (11 .7  ml) and the e x t r a c t

was centr i fuged  a t  100,000 x g fo r  30 min and used

immediately fo r  enzyme assay.  The reaction was

s ta r ted  by the add i t io n  o f  enzyme and terminated

by the add i t ion  o f  0.8]4 MCI. The reaction  mixture

was dr ied under and assayed f o r  r a d i o a c t i v i t y  as

described in M a te r ia ls  and Methods Section V I .B .1 1 a .

The enzyme was incubated in the presence o f  F ru -1 ,  
OoffiO.

S P ^ n m ) ,  o r  o f  FIP^^C#) or in the absence o f  ketose  

phosphates ( O )  .

Each point represents the mean ± SEM o f  the resu l ts  

w ith  3 hepatocyte prepara t ions .
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Table XI The e f f e c t  o f  FIP and F r u - 1 , 6 -P2 on acety l  CoA carboxylase  

a c t i v i t y .

Hepatocytes (3 .9g) from fed ra ts  were homogenised in homogenising 

b u f f e r  ( 11.7  ml) and the e x t ra c t  was centr i fuged a t  100,000 x g fo r  

30 min and used immediately f o r  enzyme assay. The reaction  was 

s ta r te d  by the a dd i t ion  o f  enzyme and terminated by the add i t io n  o f

0.8f1 HCl. The reaction  mixture was dr ied  under n i trogen and assayed 

fo r  r a d i o a c t i v i t y  as described in M a te r ia ls  and Methods. The enzyme 

was incubated in the presence o f  FIP or Fru 1,6-P2 or  In the absence 

o f  ketose phosphate.'

acety l  CoA carboxylase a c t i v i t y

nmoles/3 min/g hepatocytes

control FIP (lOmM) Fru 1 ,6-P2 (O.ImM)

c i t r a t e  (5mM) 106 ± 10 (n=l8) 167 ± 44 (n=6) 110 ± 20 (n=6)

c i t r a t e  (lOmM) 145 ± 20 (n=l4) 220 ± 36 (n=l4) 189 ± 22 (n=l4 )

Each po in t  represents the mean ± SEM o f  re s u l ts .  Number o f  preparat ions  

is given in parenthesis .

A s t a t i s t i c a l  analys is  o f  the data is given in Table  XIa
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Table Xla. Statistical analysis of the data in Table XI

comparison Statistical analysis 
P

control (5mM citrate) V FIP + 5mM citrate

control (5mM citrate) V Fru 1,6 P^ + 5mM citrate

FIP + 5mM citrate V Fru 1,6 P^ + 5mM citrate

control (lOmM citrate) V FIP + lOmM citrate

control (lOmM citrate) V Fru 1,6 P^ + lOmM citrate

control (lOmM citrate) V control (5mM citrate)

FIP + 5mM citrate V FIP + lOmM citrate

Fru 1,6 P^ + 5mM citrate V Fru 1,6 P^ + lOmM citrate

< 0.005 S

N.S.

< 0.02 S

< 0.005 S

< 0.005 S

< 0.005 S

< 0.02 S

< 0.005 S

N.S. = Not significant

S = Significant
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CONCLUSIONS

The f a t e  o f  f a t t y  acids in the l i v e r  is dependent on a number of  

d i f f e r e n t fa c to r s  which determine the ra te  o f  synthesis o f  g l y c e r o l i p i d s .

For example, in the starved s ta te  there is an increase In the a c t i v i t y  o f  

CAT and a decrease in the a c t i v i t y  o f  GPAT which d i re c ts  the metabolism o f  

f a t t y  acid towards 6 -ox id a t ion  ra ther  than e s t é r i f i c a t i o n .  These e f f e c t s  

are presumably due to hormonal, p r i n c i p a l l y  in s u l in  and glucagon, changes 

which occur between the fed and the fasted s ta te .  In the fed s ta te  the 

l i v e r  is the major s i t e  fo r  the synthesis and secre t ion  o f  t r i a c y l g l y c e r o l  

so th a t  excess f a t t y  acid in the d i e t  may be deposited in the adipose  

t is s u e .  In the fed s ta te  carbohydrate can a lso be converted in to  f a t t y  

acids and exported as t r i a c y lg ly c e r o l  by the l i v e r .  Sucrose and fruc tose  

have been reported to cause hyper t r ig lycer idaem ia  an e f f e c t  which can be 

a t t r i b u t e d  in p a r t  to the induction o f  high leve ls  o f  key regu la to ry  enzymes 

of  l i p i d  metabolism which d i r e c t  the metabolism of  carbohydrate towards 

f a t t y  acid and t r i a c y lg ly c e r o l  synthesis .  I t  was o f  in t e r e s t  to discover  

i f  f ruc tos e ,  as a r e s u l t  o f  i t s  unique hepat ic  metabolism could a lso e x e r t  

short- term regu lato ry  e f fe c ts  on these processes.

I t  Is c le a r  from the work presented in th is  thesis  th a t  f ructose  is  

a b e t t e r  carbon source than glucose fo r  the synthesis o f  g ly c e r id e - g ly c e ro l  

and o f  g l y c e r i d e - f a t t y  acid in iso la ted  hepatocytes.  This is in agreement 

w ith  previous work using l i v e r  s l ic e s  (P e re i ra  and Jangaard, 1971) which 

could be c r i t i c i s e d  because o f  the adverse changes In the redox s ta te  and 

the adenine nucleot ide  content o f  th is  type o f  l i v e r  p repara t ion .  The 

resu l ts  presented in th is  thes is  suggest tha t  the wel l -oÿgenated,  iso la ted  

hepatocyte prepara t ion ,  when the lac ta te /p y ru v a te  r a t i o  is maintained a t  

approximately 10:1 and the ATP content remains high ,  is a good model system 

fo r  the in v es t ig a t io n  o f  l i p i d  metablism.

I t  is proposed that  the e f f e c t s  o f  f ruc tose  on t r i a c y l g l y c e r o l  

synthesis may be mediated,  a t  leas t  in p a r t ,  v ia  changes in the sn-g lycerol  

3 -  phosphate content of  the hepatocyte which occur w i thout a change in the  

cytoplasmic NADH/NAD* r a t i o .  Increasing f ruc tose  concentrat ion resul ted  

in the g rea te r  u t i l i z a t i o n  o f  the ketose carbon f o r  t r i g l y c e r i d e - g ly c e r o l  

synthesis ,  an e f f e c t  which was observed in the presence and in the absence 

of  added o le a te .  In the l a t t e r  case, f ruc tose  s t imulated the e s t é r i f i c a t i o n
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to g ive  maximal rates o f  t r i a c y l g l y c e r o l  synthesis .  Topping and Mayes 

( 1972) were the f i r s t  to show tha t  the ketose enhances t r i a c y l g l y c e r o l  

secre t ion  by the perfused l i v e r  in the short- term and tha t  f ructose  causes 

increased e s t é r i f i c a t i o n  and decreased ketogenesis.  Ontko (1972) and 

Prager and Ontko (1976) have concluded tha t  these reciprocal  changes are  

mediated p r im a r i l y  v ia  the i n h ib i t o r y  e f f e c t s  o f  fruc tose  on Ipng-chain  

f a t t y  acid o x id a t io n .  They suggest tha t  fruc tose  metabolism generates an 

in te rmediate  which re tards g -ox ida t ion  a t  an e a r ly  stage in the sequence.  

However, recen t ly  evidence has been accumulating th a t  the reciprocal  

re la t io n s h ip  between f a t t y  acid ox idat ion  and e s t é r i f i c a t i o n  in the fed 

and fasted sta tes  is governed by the i n t r a c e l l u l a r  concentrat ion o f  sn-  

glycero l  3-phosphate (Debeer e t  a l . ,  I 9 8 I ;  Declerq e t  a l . ,  1982a).  Glucagon 

is thought to lower hepatocyte sn-g lycero l  3-phosphate content and, as a 

r e s u l t ,  to i n h i b i t  t r i a c y l g l y c e r o l  synthesis .  Declerq e t  a l . (1982b) have 

provided evidence tha t  the leve l  o f  sn-g lycero l  3-phosphate may l i m i t  

hepat ic  t r i a c y l g l y c e r o l  synthesis in both fed and starved animals,  sn-  

glycerol  3-phosphate has not prev ious ly  been considered to be an important  

metabolic  reg u la to r .  One o f  the problems wi th  th is  m etabo l i te  is th a t  the 

l ev e ls  change considerably according to the redox s ta te  o f  the t issue  

prepara tion  and these changes may mask regu la to ry  changes which occur in v i v o . 

In th is  context recent reports  th a t  sn-g lycero l  3-phosphate is a lso  

involved in the'. i nhi bi t ion  o f  PFK1 and PFK2 (Claus e t  a l . ,  I 982) and in 

the a c t i v a t i o n  of  fruc tose  2, 6 Hbisphosphatase (Van Schaftingen e t  a l . ,

1982) .  There is evidence th a t  the t r i o s e  phosphate pool,  e s p e c ia l ly  

sn-g lycero l  3-phosphate,  is c lo se ly  regulated in v i v o . Thus one may expect  

other  substrates (e .g .  DHA) which a f f e c t  sn-g lycerol  3-phosphate l e v e ls ,  

without a l t e r i n g  the cytoplasmic redox s t a t e ,  to a f f e c t  t r i a c y lg ly c e r o l  

synthesis .  This p o s s i b i l i t y  needs to be tested.

In the present study glucose was a lso shown to s t im u la te  o le a te  

e s t é r i f i c a t i o n  to a lesser extent  but in th is  case the major product was 

phospholipid ra ther  than t r i a c y l g l y c e r o l .  This suggests a s p e c i f i c  

s t im u la t io n  o f  e i t h e r  PPH or  DGAT a c t i v i t y  by the ketose.  There Is no 

report  in the l i t e r a t u r e  to suggest th a t  the increased sn-g lycerol  3-phosphate 

concentrat ion or any o f  the other  consequences o f  f ructose  metabolism are  

involved In the regu la t ion  o f  these enzymes but th is  p o s s i b i l i t y  needs to 

be tested.  In the present study the magnitude o f  the e f f e c t  o f  f ruc tose  

on t r i a c y l g l y c e r o l  synthesis was dependent on f ructose  concentrat ion but 

was observed a t  both physiological  and higher concentrat ions o f  the ketose.
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However, the nature o f  the e f f e c t  on l ipogenesis was concentrat ion  

dependent. S t imulat ion  occurred a t  low fruc tose  concentrat ions and 

i n h i b i t i o n  a t  high fructose  leve ls .  There are  a number o f  e f f e c t s  o f  

fruc tose  on the l i v e r  which are concentrat ion dependent. For example, high 

f ruc tose  concentrat ions a c t iv a t e  pyruvate dehydrogenase in the perfused  

l i v e r  but physio logical  fruc tose  leve ls  are  w i thout  e f f e c t  (Topping and 

Mayes, 1977).  Pyruvate kinase is s t imulated a t  low concentrat ion o f  the 

ketose but is in h ib i te d  a t  concentrat ions >  3mM (Mapungwana and Davies,  

1982) .  Under the condit ions used in th is  study hepatocyte ATP content has 

been shown to be depleted a t  concentrat ions g re a te r  than 2mM fruc tose  

(Mapungwana, I 982) .  Many o f  the e f f e c t s  o f  fruc tose  on enzyme have been 

a t t r i b u t e d  to the deplet ion  o f  ATP which re su l ts  in a general  d is ru p t ion  

o f  c e l l u l a r  metabolism. Thus i t  is l i k e l y  tha t  only the e f fe c ts  observed 

with  physiological  concentrat ions o f  f ructose  have a s ig n i f ic a n ce  f o r  the 

in v ivo  e f f e c t s  o f  the sugar. Thus i t  appears tha t  in the hepatocyte from 

fed ra ts  incubated wi th  low concentrat ions o f  f ruc tose ,  there  are  ideal  

condit ions fo r  the synthesis o f  f a t t y  acid fromerudqgieno.its substrates ,  

including f ruc tose ,  and fo r  the e s t é r i f i c a t i o n  o f  the f a t t y  _acid produced 

de novo and o f  exogenous f a t t y  ac id .  The s t im u la t io n  o f  e s t é r i f i c a t i o n  may 

be a t t r i b u t e d  to a change in the sn-g lycerol  3-phosphate content ,  although  

much more work needs to be done to confirm th is  hypothesis.  The s t im u la t io n  

o f  l ipogenesis remains to be explained in terms o f  the known e f fe c ts  o f  

f ruc tose ,  although one p o s s i b i l i t y  is th a t  the supply o f  endogenous pre ­

cursor ,  notably l a c t a t e ,  may be enhanced by t h e  s t im ula to ry  e f f e c t  o f  

f ruc tose  on g ly c o ly s is .
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V I .  MATERIALS AND METHODS

A. M a te r ia ls

1. Chemi cals

A l l  the chemicals used in the p ro je c t  were o f  Analar grade and a l l  

aqueous so lut ions  were prepared using glass d i s t i l l e d ,  deionized water .  

Substrates and enzymes were purchased from Boehringer Corporation (London) 

L t d . ,  Lewes, Sussex, U .K . ,  unless otherwise s ta te d .  Collagenase from 

Clostr id ium h is to ly t ic u m  lypophi1ized,  c lo s t r id io p e p t id a s e  A, EC 3 .4 . 2 4 . 3  

was used fo r  the preparat ion o f  hepatocytes.  A l l  ra d io a c t iv e  m a te r ia ls  

were obtained from the Radiochemical Centre, Amersham, Bucks.

2. Animals

The ra ts  used in th is  study were o f  the Wista r  s t r a in  and were bred 

in the laborato ry  animal house.

3. Diets

The animals were fed on a commercial d i e t  Dixon. 86 obtained from 

E. Dixon and Sons (Ware) L t d . ,  Crane Mead M i l l s ,  Ware, Herts .  The com­

p o s i t io n  o f  th is  d i e t  is shown in Table  X I I  and the ca lcu la ted  percentage  

composition o f  th is  d i e t  and i t s  c a l o r i f i c  values are  presented in Table  X

Table  X I I

Composition o f  Dixon. 86 d i e t

Dixon. 86 g/kg

Wheat 500

Barley 50

Concentrated meat meal 75

Wh i te f i s h  meal 70

Grass 50

Yeast 50

Molasses 50

Sal t 0 .2

Vi tamin 706 0.022

Values f o r  approximate q u a n t i t i e s  and composition were obtained from the  
manufacturer; E. Dixon S Sons (Ware) L t d . ,  Crane Mead M i l l s ,  Ware, Her ts ,  U.K.



-  I 6 l  -

T ab le  X I I  I

Calculated percentage composition o f  Dixon. 86 d i e t

Dixon. 86 (%)

Crude O i 1 2.03

Crude pro te in 19.29

Crude f i b r e 3.01

D ig e s t ib le  crude o i l 1.44

D ig e s t ib le  crude p ro te in 15.73

D ig e s t ib le  crude f i b r e 1.90

D ig e s t ib le  carbohydrate 50.83

Saturated f a t t y  acids 0 .42

L in o le ic  acid 0 .7 2

Other unsaturated f a t t y  acids 0 .88

Cals/Kg

Gross energy 3,942

M etabol izab le  energy 3,548

V a lu e s  obtained from manufacturer E. Dixon and Sons 

(Ware) L t d . ,  Mead M i l l s ,  Ware, H e r ts .
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4. L iv er  perfusion cabinet

The perfusion cabinet consisted o f  a metal cab inet w i th  a glass  

f ront '  door and a fan heater connected to a thermostat  f o r  the control  

o f  temperature ins ide the cabinet and a glass ' lu n g '  was made to 

s p e c i f i c a t io n  (Mi 11 er-5^^1973). A V/atson-Marlow H.R. f low inducer (Watson • 

Marlow, L t d . ,  Marlow, Bucks, U.K. )  was used to c i r c u l a t e  the perfusion  

media and Swinnex -  13 f i l t e r  un i ts  (Buc. France) were used to f i l t e r  the  

c i r c u l a t i n g  perfusate .

B. Methods

1. Animals

A l l  experiments were performed on male Wista r  ra ts  weighing between 

300 and 350g unless otherwise s ta ted .  The animals were bred in the  

laborato ry  animal house and were fed ad l ib i tu m  on Dixon. 86 d i e t  from 

weaning. For par t  o f  the study the ra ts  were fasted fo r  24h or 48h from 

9 .00h.  The temperature o f  the animal house was kept a t  22° ± 2° and the  

animals were subjected to a 12h l ig h t / 1 2 h  dark regime with  the l i g h t  on 

between 0.800 and 20.00h.

2. Preparat ion of  hepatocytes

Hepatocytes were prepared between 09.00 and lO.OOh according to the  

method o r i g i n a l l y  described by Berry and Friend (1969) and l a t e r  modif ied  

by Krebs e^ a_l_., (1973) and Wagle and Ingebretsen (1975).  Rats were 

anaesthetized with  Nembutal sodium pentobarbitone (May and Baker L t d . ,  

Dagenham, Essex, U.K. )  60 mg/ml, O.lml/ lOOg body weight . The per i tonea l  

c a v i ty  was opened by two l a t e r a l  inc is ions  and the por ta l  vein  and the  

i n f e r i o r  vena cava were exposed. Two l ig a t u re s  were placed loosely around 

the por ta l  ve in .  A t h i r d  l ig a t u r e  was then placed loosely around the  

i n f e r i o r  vena cava j u s t  a n te r io r  to the r ig h t  renal  ve in .  A s t e r i l e  leur  

cannula (Braunla s t e r i l e  leur;  Armour Pharmaceutical  Co. L t d . ,  Eastbourne,  

Sussex, U .K. )  was inser ted into the hepat ic  por ta l  vein and the two . 

l ig a tu re s  were f i r m ly  t i e d .  The l i v e r  was then perfused w i th  Krebs-Ringer  

bicarbonate  (KRB) without Ca^* (Table  X IV,  Krebs and H ense le i t , ‘ 1932) 

which had been preincubated a t  37° and gassed with  95% Og and 5% CO^. The 

i n f e r i o r  vena cava was immediately severed below the r i g h t  kidney to prevent
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Table X IV . Composition o f  Krebs-Ringer b icarbonate .

Solutions required Krebs-Henselei  t  
o r ig in a l  Ringer bicarbonate  

(oarts  bv v o l . )

Final  concentrat ion  
mM

0 . 90% NaCl (0.154m) 100 118

1. 15% KCl (0.154m) 4 3 .5

1.22% CaCl, (O . I IM ) 3 2 .5

2.11% KH^PO  ̂ (0 .154 m) 1 1.2

3 . 82% MgSO^.7 HgO (0.154m) 1 1.2

1.3% NaHCO, (0 .154 m) 21 24.8

The above solut ions  (except CaCl^) were mixed together  and gassed wi th  

COg fo r  Ih and stored a t  4 ° .  CaCl2 so lu t ion  was added and the b u f f e r  

gassed wi th  O2 ÎCO2 (95 : 5 V/V) before the s t a r t  o f  each experiment.
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the l i v e r  from swell ing and the per fusate  al lowed to f low f r e e l y  through 

the l i v e r .  Immediately a f t e r  th is  step the r i b  cage was cut open, exposing 

the thorac ic  c a v i ty .  The i n f e r i o r  vena cava was cannulated j u s t  a n t e r io r  

to the diaphragm v ia  the f i g h t  atr ium o f  the h e ar t .  This cannula was 

f i r m l y  held in place by a t ’ight l i g a t u r e  and the l i g a t u r e  around the 

i n f e r i o r  vena cava in the per itoneal  c a v i ty  was then t i e d .  The l i v e r  was 

perfused wi th KRB (without Ca*" ) a t  a ra te  o f  approximately 25ml/min.

The l i v e r  is then placed in the perfusion apparatus a t  constant

temperature o f  37° and when the l i v e r  appeared pale and the per fusate  was

fre e  from blood (usua l ly  a f t e r  2-5  m i n ) i t  was then perfused wi th
?+collagenase (30 mg suspended in 100 ml o f  KRB w i th  Ca ) u n t i l  the

l i v e r  was smooth and swollen and the leakage o f  medium from the l i v e r  was

rapid (u sua l ly  a f t e r  15-20 min).  The l i v e r  was then removed and placed in

a p l a s t i c  beaker (250 ml capacity)  conta in ing 50ml o f  KRB b u f f e r  (w i thout  
2+

Ca ) which was gassed wi th 95% 0^ and 5% CO  ̂ and the t issue  was minced

using scissors fo r  1-2 min. A p l a s t i c  funnel w i th  a nylon mesh (Nybolt ,

No. 10. 132 micron, J. S tan ia r  and Co.,  Manchester,  U .K . )  was used to

f i l t e r  the c e l l  suspension in to  c e n t r i fu g e  tubes (MSE 50 ml c a p a c i ty ) .

The c e l l s  were sedimented a t  50xg (50 sec . )  in a bench c e n t r i fu g e  (MSE

Minor) .  The supernatant was asp i ra ted  and the p e l l e t  was resuspended in
2+20 ml o f  KRB (w ith  Ca ) conta ining bovine serum albumin f r a c t i o n  V,

( f a t t y  a c id - f r e e )  Sigma (London) Chemical Co. L t d . ,  Poole,  Dorset,  U .K . ) .  

Small a l iquo ts  o f  the hepatocytes were d i lu t e d  1:1 V/V w i th  trypan blue  

(0.25% trypan blue in 0.9% NaCl) and examined under a microscope using a 

haematocrit  chamber. The concentrat ions o f  c e l l s  in the suspensions were

adjusted as required.  The hepatocytes were preincubated fo r  Ih in KRB
2+  - -  

(w ith  Ca ) containing 1.5% BSA and gassed continuously w i th  95% O2 and

5% CO2 in order to restore  the ATP/ADP r a t i o  to normal (Claus £ t  a_l_., 1975).

A l l  glassware used in the prepara t ion  o f  hepatocytes was s i l i c o n i z e d  

by r ins ing  w i th  a so lu t ion  o f  dimethyl  c h lo ro s i lan e  (BDH Chemicals L t d . ,  

Poole,  England) in 1 , 1 , 1 - t r ic h lo ro e th a n e  (2% w/v)  and a i r - d r i e d  overn igh t .  

F i n a l l y ,  the glassware was r insed w i th  d i s t i l l e d  water  to remove HCl formed 

in the treatment and the glassware was then oven-dr ied.
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3" Methods f o r  determination o f  hepatocyte v i a b i l i t y

a. Trypan blue

Structua l  v i a b i l i t y  o f  iso la ted  l i v e r  c e l l s  was judged by the per­

centage o f  c e l l s  which excluded trypan blue .  This value was normally  

g re a te r  than 80%. Cel l  preparat ions  w i th  low v i a b i l i t y  were discarded.

This method gives an in d ic a t io n  o f  the i n t e g r i t y  o f  the plasma membrane,

b. Est imat ion o f  ATP level  in iso la ted  hepatocytes

Iso la ted  ra t  hepatocytes (4 .0  x 10^ c e l l s /m l ;  1ml) were incubated in 
2+

KRB (w i th  Ca + 1.5% BSA) in the presence o f  various substrates and 

hormones. A f t e r  the required time in te rva l  the reaction was stopped by 

a dd i t ion  o f  20% p e rc h lo r ic  acid (100 p i ) .  The p r e c ip i ta te d  p ro te in  was 

removed by c e n t r i f u g a t io n  and the supernatant was t ra n s fe r red  into  a 

microcentr i fuge  tube and n e u t ra l i z e d  using 5M_ K^CO  ̂ (25 p i ) .  The re s u l t in g  

K ClOg was removed by c e n t r i f u g a t io n  and the supernatant assayed fo r  ATP.

ATP leve ls  were assayed in the e x t r a c t  by an enzymic method involv ing a 

coupled enzyme reac t ion .

The p r i n c ip l e  o f  the te s t  was the ATP-dependent conversion o f  g ly c e ra te  

3-phosphate to sn-g lycerol  3-phosphate in a sequence o f  reactions catalysed  

by glyceraldehyde 3-phosphate dehydrogenase, phosphoglycerate kinase,  

t r i o s e  phosphate isomerase and g lycerol  3-phosphate dehydrogenase with  the 

u t i l i z a t i o n  o f  ATP re s u l t in g  in NADH o x id a t io n .  The incubation mixture  

( t o t a l  Vo l .  1.2ml) contained 0.4TM tr ie thano lam ine ,  pH 7 .6 ,  3.3mM MgSO^,

5mM g ly ce ra te  3-phosphate,  0.21 mM NADH and the deprote in lzed supernatant.  

The decrease in absorbance a t  340 nm was fol lowed a f t e r  the a d d i t io n  o f  

an enzyme mixture  (10 P I )  conta ining glyceraldehyde 3-phosphate 350 u /m l ; 

phosphoglycerate kinase 450 u/ml; t r io s e  phosphate isomerase 800 u/ml;  

glycero l  3-phosphate dehydrogenase 60 P /m l .

. c. G1 uconeogenesis from L -  l a c t a t e

A f t e r  preincubat ion the c e l l  suspension (4 x 10 c e l l s /m l ;  1 ml) was 

added to L -  [u-^^c] l a c t a t e  (0 .02 5p c i /p m o l , 5pl)  in polycarbonate tubes.  

The c e l l s  were incubated fo r  various t ime in te rv a ls  in presence and absence 

o f  glucagon (IQpM) in a shaking water bath and gassed continuously with  

95% 0^ and 5% CÔ  a t  37° (200 c yc les /m in ) .  The reaction was stopped by 

the add i t ion  o f  0.15M ZnSO^ (0 .5  m l ) ,  0 .3 j i  Ba (OH)^ (0 .5  ml) and water
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(2ml) was then added and the p r e c i p i t a t e  was removed by c e n t r i f u g a t io n .

The p r o t e i n - f r e e  supernatant was shaken fo r  Ih wi th  moist Dowex 50W -  X8 

(H form, 200 -  400 mesh; 200 mg) and moist  D u o l i te  ES561 (D ia-prosium,

Vi t r y ,  Chauny, France; 800 mg) to separate l a c t a t e  and glucose. A second 

treatment w i th  ion-exchange resin  resu l ted  in a complete removal o f  l a c t a t e  

(Exton and Park,  1967; Claus e t  a l . ,  1975).  D -  glucose remaining

was assayed in T r i t o n  X -  100/totùene s c i n t i l l a n t  (1 :2  v /v )  using a 

Packard -  T r i -C a rb  l iq u id  s c i n t i l l a t i o n  spectrometer.

4.  M e tab o l i te  assays

a. Preparat ion o f  p e rch lo r ic  acid e x t ra c t

Hepatocytes were incubated under various condit ions as described in 

the Results and Discussion section and the react ions were stopped by 

add i t ion  o f  0.1 vol o f  ice -co ld  p e rc h lo r ic  acid (20% w / v ) .  The p r e c ip i ta te d  

p ro te in  was removed by c e n t r i f u g a t io n  a t  6,000 x g in a m icrocentr i fuge .

The supernatant was removed and n eu tra l is ed  w i th  5M, K^CO  ̂ (0 .025  v o l . )  

and was recentr i fuged  fo r  f u r t h e r  10 min to remove r KCIO^.

b. Glucose

Glucose was assayed in the deprote in ised sample by the glucose  

oxidase method (Fleming and Pegler,,  1963; C a t ley ,  1967).  The glucose  

oxidase reagent 75 mg glucose oxidase Boehringer EGAC ^Grade 11) -  15424,

7 .5  mg horse radish peroxidase,  Boehringer 15302 EPAB and 25 mg 

o -d ia n is id in e  hydrochloride  (Sigma) dissolved in 0.3M Tr is-HCl  b u f f e r  

containing 40% g lycero l  (250 ml; pH 7 .0 )  was added to the sample (1ml) in 

a s t o p ^ d  glass te s t  tube.  The so lu t ion  was thoroughly mixed and incubated  

a t  37^0 f o r  Ih .  The reaction mixture  was a c i d i f i e d  by addi t io n  o f  9^  

su lphur ic  acid (2ml) and the absorbance measured a t  540nm. A number o f  

glucose standards(0-50  yg) were used to construct a c a l i b r a t i o n  curve  

fo r  the glucose oxidase te s t .

c. sn-g lycerol  3-phosphate

The formation o f  NADH as measured by the increase in o p t ic a l  densi ty  

a t  340 nm was used as a measure o f  s j i -g lycerol  3-phosphate (Michal  and 

Lang, 1974). The reaction  mixture  ( t o t a l  volume 1.05 ml) contained hydrazine-  

b u f f e r  pH 9 .5  ( i . e . ;  0 .189^  hydraz ine ,  0.47M g lyc ine  and 2.7mM EDTA);
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2 . 3 ImM NAD and the deprotein!zed sample ( 0 .5 m l ) .  The reac t ion  was s ta r te d  

by adding 10 yl o f  sn-g lycerol  3-phosphate dehydrogenase (10 mg/ml) and 

the formation o f  NADH was fol lowed using a recording spectrophotometer.

d. Lactate

The method of  Wieland (1974) was used to measure l a c t a t e .  The 

reaction  mixture contained h y d ra z in e -g ly c ine (0.2M g ly c in e ,  1^ hydraz ine ,

2mM MgCl^) b u f f e r ,  pH 9 .8 ;  (1 .40  m l ) ,  ATP (50 mM, 0 .0 5  m l ) ,  NAD+ (20 mM,

0 .0 5  ml) and deprote in ised sample, pH 9 -9 * 5  (see Section V I ,  4a) ( 0 .5  m l ) .

The increase in absorbance a t  340 nm was fol lowed using a recording  

spectrophotometer a f t e r  a dd i t ion  o f  20 y 1 l a c t a t e  dehydrogenase (10 .6  

u n i ts ,  from ra b b i t  muscle, Boehringer Manheim). Lactate  dehydrogenase 

catalyses the conversion o f  l a c ta te  to pyruvate and the l a t t e r  is removed 

by trapping w i th  hydrazine.

e. Pyruvate

Pyruvate was assayed by method o f  Michal and Beut le r  (1974 ) .  

Triethanolamine b u f f e r ,  pH 7*6 (0.4i1, 1.25 m l ) ,  NADH (5mM, 0 .0 2  ml) and 

deprote in ised  sample (see Section V I ,  4a) (1 .0ml)  were placed In a qu ar tz  

cuvette  (1 cm l i g h t  pa th ) .  The decrease in absorbance a t  340 nm was fol lowed  

using a recording spectrophotometer fo l low ing  the a d d i t io n  o f  10 y 1 l a c t a t e  

dehydrogenase (5 .3  u n i t s ) .

5* Incorporation o f  hexose in to  l i p i d

a. Incubation o f  hepatocytes  

Hepatocytes were preincubated fo r  Ih a t  37° .  The c e l l  suspension
g

(8 X 10 c e l l s /m l ;  0 .5  ml) was added to 0 .5  ml o f  e i t h e r  f ruc tose  or  glucose  

dissolved in KRB (wi th Ca^*) conta ining 1.5% bovine serum albumin (F ra c t io n  

V, Sigma (London) Chemical Co. L t d . ,  Poole,  Dorset,  U .K . ) :  In a d d i t io n ,

the incubat ion mixture  contained 2  " [u-^^C] f ructose  (9 x 10^ dpm) or

2  -  [u-^^Cj glucose (9 x 10^ dpm). The incubations were c a r r ie d  out  in

s i l i c o n i z e d  glass te s t  tubes in a shaking water  bath (200 cyc les/min) fo r  

the appropr ia te  time. The c e l ls  were gassed continuously w i th  95% 0^ and 

5% CO  ̂ fo r  the time o f  the incubation.  The reaction was stopped by the

a d d i t io n  o f  1 ml o f  ice -co ld  pe rch lo r ic  acid (6% w / v ) .
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b. Tota l  l i p i d  e x t ra c t io n

Lip ids  were extracted  by a s im p l i f i e d  m od i f ic a t io n  o f  the method o f  

Folch e t  a l . (1957).  Methanol : Chloroform (2 : 1, v /v )  (6ml) was added 

to the p e rc h lo r ic  acid extrac ted  samples and the mixture  u l t ra s o n ic a te d  

fo r  15 sec (MSE u l t ra s o n ic  d is in t e g r a t o r ,  maximum am pl i tude) .  The mixture  

was l e f t  overnight and then t ra n s fe r re d  to p l a s t i c  50 ml c e n t r i fu g e  tubes 

and 7 .6  ml o f  methanol : chloroform : water (2 : 1 : 0 .8 )  was added to each 

tube and th is  mixture was sonicated f o r  a f u r t h e r  15 sec. To th is  mixture  

4 ml o f  chloroform and 4 ml o f  water were added and the two phases were 

separated by c e n t r i fu g a t io n  in a bench c e n t r i fu g e  (MSE Minor) a t  2000 x g 

f o r  10 min. The aqueous phase was removed by a s p i r a t io n ,  deionised water  

(25  ml) was added to the chloroform layer  and the two phases were separated  

as described prev ious ly .  The aqueous phase was then removed by a s p i r a t io n  

and the lower chloroform phase was f i l t e r e d  into  s c i n t i l l a t i o n  v i a l  through 

phase separating paper (Whatman IPS) to remove p ro te in  and water .  The 

chloroform e x t r a c t  was evaporated to dryness under a stream o f  n i t rogen .

The r a d i o a c t i v i t y  was then assayed in 10 ml o f  a toluene s c i n t i l l a n t  (5 g 

PPO/L toluene) using a Packard T r i -C a rb  l iq u id  s c i n t i l l a t i o n  spectrometer.  

Quenching was estimated using the E.S.R.  method.

c. Separation and analys is  o f  l i p id s

The to t a l  l i p i d  was extracted  as prev ious ly  described.  The chloroform  

ex t rac ts  were then evaporated to dryness under a stream o f  n i t rogen ,  

dissolved in a small volume o f  dry d ie t h y le t h e r  and applied to a c t iv a te d  

s i l i c a  gel G (Kieselge l  G nach Stahl  (Type 60) MERCK) th in  layer  

chromatography (TLC) p la tes  prepared in labora to ry  by the method o f  Smith 

and Seakins (1976 ) .  Authent ic  standards were a lso chromatographed. The 

l i p i d  f r a c t io n s  were separated by TLC in a solvent system conta in ing hexane ; 

dry d ie th y le th e r  : g la c ia l  a c e t ic  acid (80 : 20 : 1 v / v / v )  (C la rk  e t  a l . ,  

1974) .  A f t e r  evaporation o f  the solvent the th in  layer  p la tes  were placed 

in to  a tank conta ining a small trough f i l l e d  wi th  iodine c r y s t a l s .  The 

l i p i d s  appeared as brown bands on a pale background. The contours o f  the  

bands were marked and the p la tes  were l e f t  in an oven a t  50° u n t i l  no 

v i s i b l e  sign o f  iodine s ta in  was l e f t  on the p la te s .  The bands were 

scraped in to  a c e n t r i fu g e  tube and ext rac ted  wi th  d ie t h y le t h e r  (2 x 10 m l ) .  

The e ther  e x t r a c t  was t rans fe rred  d i r e c t l y  in to  a counting v i a l  and was 

evaporated to dryness under a stream o f  ni tog en. The r a d i o a c t i v i t y  was 

then assayed in toluene s c i n t i l l a n t  (5 g PPO/L toluene) (10 ml) using a 

Packard T r i -C a rb  l i q u id  s c i n t i l l a t i o n  spectrometer.
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d . Estimation o f  f a t t y  acid and g lycerol

The to t a l  l i p i d  was extrac ted  as prev ious ly  descr ibed.  A f t e r  

evaporat ion o f  chloroform e x t ra c t  to dryness under a stream o f  n i t ro g en ,  

l i p i d  was dissolved in a small volume o f  dry d ie th y le th e r  and was spotted  

on to the act iva te d  s i l i c a  gel TLC p la tes  (see Section V I ,  5C above).

The l ip id s  were located with  iodine vapour; bleached a t  50° u n t i l  no 

v i s i b l e  trace  o f  iodine is l e f t  and the areas corresponding to t r i a c y l ­

g lycero l  (R^ 'v 0 . 5) were scraped in to  c en t r i fu g e  tubes and e xt rac ted  wi th  

d ie t h y le t h e r  (2 x 10 m l) .  The e ther e x t r a c t  was decanted and evaporated  

to dryness under a stream o f  nitrogen and r a d i o a c t i v i t y  in the t r i a c y l ­

g lycero l  f r a c t io n  was assayed in toluene s c i n t i l l a n t  (5g PPO/L toluene)  

(lOml) using a Packard T r i -C arb  l i q u id  s c i n t i l l a t i o n  spectrometer.  The 

determination o f  label  in the f a t t y  acid and g lycero l  moiet ies  was c arr ie d  

out fo l low ing  sap o n i f ica t io n  w i th  a lc o h o l ic  potassium hydroxide in the  

manner described by Rodbell (1964 ).  Two ml o f  e tha no l ic  KOH (1 ml o f  

saturated aqueous KOH per 100 ml o f  95% ethanol)  was added to the l i p i d  

e x t r a c t  and the mixture heated fo r  Ih in a water bath a t  70°.  The te s t  

tubes then cooled to room temperature by placing the tubes in cold water .  

Deionised water (2ml) was added together w i th  2 drops o f  methyl orange 

(BDH, O . lg /250  ml d i s t i l l e d  water)  and the mixture was a c i d i f i e d  w i th  

5_NHC1 (70  p i )  u n t i l  a colour change from red to orange (pH 3.1 -  4 .1 )  

was observed. The f a t t y  acids were then ext rac ted  w i th  two port ions  

(3  ml) each) o f  hexane (60 -  8 0 ° ) . The two phases were separated by 

f i l t e r i n g  through phase separating paper (Whatman IPS) to remove the 

aqueous phase. The hexane e x t r a c t  was t ra n s fe r re d  to a s c i n t i l l a t i o n  v ia l  

and the solvent  was evaporated to dryness under a stream o f  n i t ro g en .  The 

r a d i o a c t i v i t y  corresponding to f a t t y  acid was counted in toluene s c i n t i l l a n t  

(5g PPO/L tol i jne) (10 m l) .  The d i f fe re n c e  in r a d i o a c t i v i t y  was assumed 

to represent the r a d io a c t i v i t y  present in g lycero l  moitty and is re fe r re d  

to as g ly c e r id e -g ly c e ro l  (Rodbell ,  1964).

r1 A 1 f1 ̂  16. Measurement o f  [ Cj l a c t a t e  and [ CJ glucose synthesis

from D -  [u-  ̂ c] fructose

a. Incubation o f  hepatocytes

The hepatocytes suspension ( t o t a l  vol 1 ml) was incubated w i th  

2  -  [u-^^C]  fructose (9 mM or* 1 mM; 9 x 1 0 ^  dpm/assay) as described in
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Section V I ,  5a above. The reaction was stopped by the ad d i t io n  o f  20% 

p e rc h lo r ic  acid (0 .5  m l ) .  A f t e r  n e u t r a l i z a t i o n  w i th  5M K^CO  ̂ (125 P I )  

the p r e c i p i t a t e  was removed by c e n t r i f u g a t io n  a t  2000 x g fo r  10 min.

b. ion-exchange f r a c t io n a t io n  o f  l a b e l led  products

Labelled glucose and lab e l le d  l a c t a t e  were separated from la b e l led  

fruc tose  by the method o f  Hue e t  a l . ,  ( 1978 ) .  A 1 ml por t ion  o f  the  

deprote in ized  e x t r a c t  was passed through a column (0 .5  cm x 4 cm) o f  

Dowex AGI (X8; Cl form) (Sigma) to remove f r e e  sugars from anions (mainly  

l a c t a t e ) .  The hexose f r a c t io n  was e lu ted  wi th  deionised water (3 m l ) ,

[  c] l a c t a t e  was e lu ted  w i th  1_M NaCl (3 m l ) .  A por t ion  (100 u l )  o f  the 

hexose f r a c t io n  was dr ied on paper disc (Whatman No, 1 2 .4  cm) and counted 

in toluene s c i n t i l l a n t  (5g PPO/L toluene) (10 m l ) .  The remainder o f  th is  

f r a c t io n  was incubated with glucose oxidase (1 mg/1 ml) (Sigma) in the 

presence o f  25 mM Tr is /HCl  b u f f e r  pH 8 .0  f o r  3h a t  37° w i th  gent le  shaking 

and then passed again through a column (0 .5  cm x 4 cm) o f  Dowex (Cl form).  

The fructose was washed out wi th  deionised water (8 ml) and the P^c]

gluconate formed from glucose was re ta ined  on the column and could be 

e lu ted  w i th  12 NaCl (3 m l ) .  A sample o f  each f r a c t io n  (100 y l)  was dr ied

on to paper disc (Whatman 2.4  cm) and r a d i o a c t i v i t y  was assayed in to lue ne /

PPO (5 g PPO/1 toluene) (10 ml) and counted using a Packard T r i -C a rb  

l i q u id  s c i n t i l l a t i o n  spectrometer.

c. Separation o f  D ^ c ]  fruc tose  1 -  phosphate from P^c] l a c t a t e

Fructose 1 -phosphate (FIP) was e lu ted  from a column (0 .5  cm x 4 cm)

o f  Dowex AGI (X8; Cl form) (Sigma) w i th  O.OIIM HCl, fol lowed by 12 HCl

(R in to u l ,  1976) ,  but very l i t t l e  count was e lu te d .  There fore ,  samples o f  

P^c] l a c t a t e  (100 y 1) we re app1i ed to c e l lu lo s e  TLC p la tes  (TLC ready 

p l a s t i c  sheets w i thout binder Schle icher  and Schüll )  together w i th  standard 

0 .2 2  f ructose 1-phosphate (Sigma) ( 3 y l )  and standard [l^c] l a c t a t e .  The 

TLC pla tes  were placed in a developing tank conta in ing  the solvent system 

95% ethanol : ammonium aceta te  (12 ,  pH 3 .8 )  (7 .5  : 3 .0  v / v ) .  A f t e r  the  

f i r s t  run, pla tes  were dr ied and developed again in the same solvent  system. 

The section o f  the p la t e  containing the standard FIP was dipped in PABA 

reagent (10% paraeminobenzoic acid in methanol ) ,  dr ied  and placed in an 

oven a t  110° fo r  5 min. The fruc tose  1-phosphate spot was v is u a l is e d  

under f luorescent  l i g h t .  The j  l a c t a t e  standard was located by scraping  

o f f  0 .5  cm bands from the o r ig in  to the so lvent f r o n t .  S i m i la r ly  the areas 

corresponding to the samples were scraped in to  v ia l s  and the r a d i o a c t i v i t y
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was assayed using e i t h e r  Instagel  : water (10 : 3 .5  v /v )  (Packard),  or  

PCS : H^O (6 : 4 v /v )  (Amersham, Bucks). A quench correc t ion  was 

performed on c e l l  samples by adding an in te rna l  standard,  [.^^cj 

hexadecane. The percentage recovery o f  the standard P^c] l a c t a t e  

prepara t ion  by th is  method was 92%.

7• Preparat ion o f  o l e ic  acid (sodium s a l t )  -  albumin complex

The o l e i c  acid -  albumin complex was prepared as described in the  

l i t e r a t u r e  (Heimberg e t  a l . ,  19&9; Van Harken e t  a l . ,  1969).  Sodium o le a te  

(Sigma) was dissolved in a minimum amount o f  KRB (w i th  Ca ) conta in ing

1.5% bovine serum albumin ( f a t t y  acid f r e e ,  f r a c t io n  V,  Sigma ) ,  by heating  

to 40 -  50°.  Then ice -co ld  KRB (wi th Ca^^) contain ing bovine serum 

albumin (1.5%) was added to the required volume. In some experiments  

sodium o le a te  (220,000 dpm/assay) was added to the pre para t ion .

8. T r ia c y lg ly c e r o l  synthesis from [ l -^^c j  o le a te

Hepatocytes were prepared as described in Section V I ,  2.B and pre­

incubated in a shaking water bath a t  37° fo r  Ih .  The c e l l  suspension 

(8 X 10^ c e l l s /m l ;  0 .5  ml) was added to 0 .5  ml o f  [ l - ^ ^ c ]  o le a t e  (220,000  

dpm) dissolved in KRB (with Ca^* and 1.5% BSA) in presence or  in the absence 

o f  hexoses and incubated in shaking water  bath (200 cycles/min) a t  37 

fo r  appropr ia te  t imes.  The reactions were then stopped with  ice -c o ld  6% 

p e rc h lo r ic  acid (w/V; 1 m l ) .  The to ta l  l i p i d  was ext rac ted  using the  

method o f  Folch ^  aj_., (1957) and various classes o f  l i p i d  were f ra c t io n a t e d  

by TLC as described in Section V I ,  5.C.  The areas corresponding to  

t r i a c y l g l y c e r o l  and u n e s t e r i f i e d  f a t t y  acid were scraped in to  s c i n t i l l a t i o n  

v i a l s  and the r a d io a c t i v i t y  measured in Instagel  : water  (10 : 3 .5  v / v ) .

The mixture  was shaken v igorously  and counted as a gel using a Packard 

Tr i -C arb  l i q u id  s c i n t i l l a t i o n  spectrometer.

9 .  Li pogenesi s

a. Lipogenesis from L -  Çu-^^c] l a c ta te

Hepatocytes from fed rats were prepared as described in Section VI

B.2.  and preincubated in a shaking water  bath a t  37° f o r  Ih .  The c e l l  

suspension (8 x 10^ c e l l s /m l ;  0 .5  ml) was added to 0 .5  ml o f  6mM
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L -  [ u - ^ ^ c j  l a c t a t e  ( l . l  x 10^ dpm) dissolved in KRB (with  Ca '̂*' + 1.5% BSA) 

in presence o f  e i t h e r  fructose or  glucose (0 -20 mM). The c e l l s  were 

incubated in a shaking water bath (200 cycles/min) a t  37° fo r  appropr ia te  

t imes.  The reaction  was stopped wi th  p e rch lo r ic  acid (6% w/v;  1 m l ) .

The l ip id s  were extrac ted  by method o f  Folch e^ aj_., (1957) and the to ta l  

l i p i d  was saponif ied wi th e th an o l ic  KOH as described in Section V I .  5 .d .  

Fa t ty  acids were extrac ted  wi th  hexane (60 -  80°) ( 2 x 3  ml) a n d ^ v a 9 o < a W  

to dryness under a stream o f  n i t rogen .  The r a d io a c t i v i t y  was measured in 

10 ml toluene/PPO (5g PPO/L toluene) using a Packard T r i -C a rb  l iq u id  

s c i n t i l l a t i o n  spectrometer.

b. Lipogenesis from [ l - ^ ^ c ]  aceta te

The method is as described above f o r  L -  l a c t a t e  except th a t

the l a c t a t e  in the hepatocyte incubation mixture was replaced by a f i n a l  

concentrat ion o f  5mM sodium [ l -^^c] ace ta te  (880,000 dpm/assay).

10. Hormone studies with  iso la te d  hepatocytes

In c e r ta in  experiments (see F ig .  26,  Table  V I ,  V I I ,  IX ) ,  the e f f e c t s

o f  in s u l in  (Sigma) and glucagon (SERVA, Feinbiochemica,  Heidelberg) on

l i p i d  synthesis were examined. In these experiments stock so lut ions  o f

I mM in s u l in  and ImM glucagon were made in 0.9% NaCl under s l i g h t l y  a c id ic

(pH 4 .0 )  and s l i g h t l y  a lk a l in e  (pH 9 .0 )  condi t ions,  re s p e c t iv e ly .  The
2+appropr ia te  volume o f  solut ions were added to KRB (wi th Ca + BSA) 

conta in ing the required substrate  and the mixture  was preincubated f o r  a 

short  time before  the add i t ion  o f  hepatocyte suspension.

11. Acetyl  CoA carboxylase  

a.  Enzyme preparation

Iso la ted  l i v e r  c e l l s  are  prepared as described in Section V I ,  B.2 .  

C el ls  were counted in KRB (wi th Ca^* + 1 . 5 %  BSA) and were then centr i fuged  

a t  50 g f o r  50 sec. The supernatant was aspira ted o f f  and p e l l e t  was 

dispersed in ice -co ld  homogenising b u f f e r  (1 : 3 w/v)  conta in ing tr isodium  

c i t r a t e  (20mM), Tr is -HCl b u f f e r  pH 7 .5  (0.05^1), EDTA ( 0 . 5mM) and 

2-mercaptoethanol (5mM) and homogenised using a l o o s e - f i t t i n g  (c learance  

0.4mm) te f lo n  p e s t le .  The homogenate was centr i fuged  a t  1000 x g fo r  

30 min and then the supernatant was recentr i fuged  a t  100,000 x g in an
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MSE superspeed 65 cen t r i fu g e  fo r  Ih .  The supernatant was c a r e f u l l y  

separated to avoid any contamination wi th  e i t h e r  the f lo a t i n g  l i p i d  

p a r t i c l e s  or  the p e l l e t  and used as the source of  enzyme. A l l  enzyme 

preparation steps were c arr ied  out a t  0 -  4 ° .

b. Enzyme assay

Lowenstein (1975) was fol lowed  

bicarbonate into  the carboxyl

The ra d io is o to p ic  method o f  I noue anc

This is based on the incorporat ion  o f

group o f  malonyl CoA (Alberts  and Vagelos, 1972). The reaction  involves

the conversion o f  an a c i d - v o l a t i l e  compound into  an a c id - s t a b le  compound.

Addi t ion  o f  acid (HCl) stops the reaction  .and the unreacted [^^c]
14bicarbonate  escapes as C0« during the drying o f  the mixture  under a

2+stream o f  n i trogen.  C i t r a t e  and Mg ( I noue and Lowenstein,  1975) were 

used to a c t iv a t e  the enzyme in some experiments but in most cases th is  

preincubation step was omitted as recommended by W i t te rs  e t  a l . ,  (1979a).

The reaction was s ta r ted  by add i t ion  o f  0.1 ml o f  crude enzyme to 

the incubation mixture conta ining 100 mM Tr is-HCl  b u f f e r  pH 7 . 5 ,  1 mM DTT, 

0 .2  mM acety l  CoA, 20 mM MaH^^CO^ (0 .25  Wei /  Wmole), 5 mM ATP, the 

s p e c i f ie d  concentrat ion o f  sodium c i t r a t e ,  20 mM MgClg and 0 .5  mg/ml 

BSA f i n a l  concentrat ion and reaction was c ar r ied  out in a shaking water  

bath a t  37° f o r  up to 3 min. The f i n a l  volume o f  assay mixture  was 0 .4  ml 

and the reaction was stopped by the add i t io n  o f  0.1 ml o f  4^ HCl. The 

mixture was dr ied under a stream o f  ni trogen in a fume cupboard to remove 

v o l a t i l e  ^^C0« and the residue was dissolved in 1.0 ml o f  deionized water  

and then 9 ml o f  the s c i n t i l l a n t  added. The s c i n t i l l a n t  consisted o f  a 

mixture o f  PRO in toluene ( 5 g / l i t r e )  and T r i to n  X-100 (1 :3  v / v ) .  The 

r a d i o a c t i v i t y  was assayed in a Packard l iq u id  s c i n t i l l a t i o n  counter w i th  

the appropr ia te  correct ion  fo r  chemical quenching. The blank consisted 

of  the complete reaction mixture except th a t  acety l  CoA was omitted.

12. S t a t i s t i c a l  analysis

The treatment o f  s t a t i s t i c s  were obtained from Z iv in  and Bartko

(1976) . Standard dev ia t ion  was ca lcu la ted  from the formula:
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SD = /  ^  (x^) -  /N ]

N -  1

where ^  = "sum of"

X = mean of arithmetic average éx

N

X = observed values  

N = number o f  observations  

SD = standard de v ia t ion  

df = degrees o f  freedom (d f  = n -  2)

t - t e s t  fo r  comparison o f  resu l ts  used the formula

t  = XX 2

(SD.)

S.E.M. = S.D.

where SEM Is the standard 
e r ro r  o f  mean
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