Normal forms, factorizations and eigenrings

in free algebras

Mark Roberts
Bedford College

```
Thesis submitted for the degree of Ph.D to the University of London. 1981.
```

ProQuest Number: 10098450

All rights reserved

INFORMATION TO ALL USERS

The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest 10098450
Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author.
All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346

Abstract

The rings considered in this thesis are the free algebras $k\langle\lambda\rangle$ (k a commutative field) and the more general rings $K_{k}\langle x\rangle$ (K a skew field and k a subfield of the centre of K) given by the coproduct of K and $\mathrm{k}\langle 队\rangle$ over k . The results fall into two distinct sections.

The first deals with normal forms; using a process of linearization we establish a normal form for full matrices over $K_{k}\langle X\rangle$ under stable association. We also give a criterion for a square matrix A over a skew field K to be cyclic - that is, for $\mathrm{xI}-\mathrm{A}$ to be stably associated to an element of $\mathrm{K}_{\mathrm{K}}\langle\mathrm{X}\rangle$ (here $\mathrm{k}=$ centre (K)).

The second section deals with factorizations and eigenrings in free algebras. Let k be a commutative field, E / k a finite algebraic extension and P a matrix atom over $k\langle x\rangle$. We show that if E / k is Galois then the factorization of P over $E\langle X\rangle$ is fully reducible; if E / k is purely inseparable then the factorization is rigid. In the course of proving this we prove a version of Hilbert's Theorem 90 for matrices over a ring R that is a fir and a k-algebra; namely that $H^{l}\left(\operatorname{Gal}(E / K), G L_{n}\left(R \otimes_{k} E\right)\right)$ is trivial for any Galois extension E / k. We show that the normal closure F of the eigenring of an atom p of $k\langle x\rangle$ provides a splitting field for p (in the sense that p factorizes into absolute atoms in $F\langle X\rangle$). We also show that if k is any commutative field and D a finite dimensional skew field over k then there exists a matrix atom over $\mathrm{k}\rangle\rangle$ with eigenring isomorphic to D.

Contents

Abstract 2
Acknowledgements 4
Chapter 1 Background 5
§l. Free ideal rings 7
§2. The weak algorithm 9
§3. Unique factorization domains 12
§4. Distributive factor lattices 15
§5. Matrices 17
§6. Eigenrings 21
Chapter 2 Normal forms 24
§l. Preliminaries 25
§2. Reduction to normal form 28
§3. Cyclicity of a matrix 36
Chapter 3 Factorizations and eigenrings 41
§l. Invariant generators of invariant ideals 42
§2. Nature of factorizations under ground field extensions 49
§3. The splitting field 53
§4. Examples 58
55. Eigenrings of matrices 63
References 71

Acknowledgements

I should like to thank my supervisor, Professor P.M. Cohn for his help throughout this thesis.

Also the SRC for financial support.

Chapter 1 Background

This chapter contains the necessary background material for the rest of the thesis. The results are given without proof; most of them can be found (with their proofs) in 'Free rings and their relations' [1] and these are given page references in the text.
$\xi 1$ contains the basic definitions of n-firs, semifirs and firs.
§2 deals with the weak algorithm (a generalization of the Euclidean algorithm). The main result is that any ring satisfying the weak algorithm is a fir ($\operatorname{Prop}^{n} 2.1$). We define tensor bimodules and show that any tensor bimodule satisfies the weak algorithm (Prop ${ }^{n} 2.2$); we deduce that free algebras are firs.

In $\{3$ we define non-commutative unique factorization domains (UFDS); any fir is a UFD (Prop n 3.3). We define stable association and give some equivalent conditions for two elements to be stably associated (Prop ${ }^{n} 3.4$).

In $\S 4$ we consider rings satisfying $D F L$, that is, rings in which the lattice of factorizations of any element is distributive; free algebras satisfy DFL and hence factorizations in free algebras may be described particularly simply.

In $\oint 5$ we generalize the results of $\xi 3$ to the case of matrices over semifirs. We show that a full matrix over a semifir can be associated uniquely with a particular kind of right module, called a torsion module, and that the set of torsion modules over a semifir forms a full abelian subcategory of the category of modules (Prop n 5.1). If R satisfies a suitable chain condition
(e.g. if R is a fir) we can use this to deduce a unique factorization theorem for matrices $\left(\operatorname{Prop}^{n} 5.5\right)$. We then consider relations between matrices of the form $A B=C D$ and give equivalent conditions for two matrices to be stably associated ($\operatorname{Prop}^{n} 5.6$).

In $\S 6$ we define the important idea of the eigenring of an element (or matrix). The main results are; (i) the eigenring of an atom in a 2-fir is a skew field ($\operatorname{Prop}^{n} 6.3$) (ii) the eigenring of an element in a persistent 2-fir is algebraic over the ground field (Prop ${ }^{n}$ 6.4) (iii) every element in $k\langle X\rangle$ has a commutative eigenring (Cory to Prop ${ }^{\text {n }}$ 6.7). There are also versions of
(i) and (ii) for matrices over semifirs.

§1. Free ideal rings

Def ${ }^{n}$ Let R be a ring. R is a right fir if every right ideal of R is free of unique rank (considered as a right R-module). R is a left fir if every left ideal is free of unique rank and R is a fir if it is both a right and left fir. ('fir' stands for free ideal ring.)

We note that firs are a special case of hereditary rings. It is not hard to prove that if R is a fir then every submodule of a free right R -module is again free; hence firs are exactly those hereditary rings all of whose projectives are free. We make weaker definitions as follows;

Def ${ }^{n}$ Let. R be a ring and n a positive integer. Then R is an $n-f i r$ if every right ideal of R generated by at most n elements is free of unique rank. R is a semifir if R is an n-fir for all positive integers n.

Although this definition is phrased in terms of right ideals, we have defined an n-fir and not a 'right n-fir'. This is because the condition is in fact left-right symmetric; if R is an n-fir then every left ideal on at most n generators is free of unique rank. This symmetry of course extends to semifirs but does not hold for firs; there are examples of right firs that are not left firs.

In the commutative case (or more generally for Ore rings) a fir reduces to a principal ideal domain and a 2 -fir to a Bezout domain. Since a Noetherian ring is Ore, the only firs that are Noetherian are PIDs; however, firs do satisfy an ascending chain condition;

Prop n 1.1 Let R be a fir. Then R satisfies the ascending chain condition on n-generator right ideals (where n is any fixed integer). ([1] p.49)

There is another property of firs we shall need to use. A ring R is weakly finite if, given any two square matrices over R A and B with $A B=I$, we have that $B A=I$.

Prop $^{n} 1.2$ Let R be a fir. Then R is weakly finite.
Some examples of firs are;
(i) a PID is a fir
(ii) a skew field is a fir
(iii) the coproduct of firs over a skew field is a fir (and the coproduct of n-firs is an n-fir) ($[3]$ p.106)
(iv) the power series ring $k\langle\rangle\rangle$ in a set of indeterminates X is a semifir but not a fir.

Some more examples of firs (including the rings we are most interested in, namely free algebras) are given in the next section.

§2. The weak algorithm

We recall the Euclidean algorithm for commutative rings. Let R be a commutative ring with a degree function d. Then R satisfies the Euclidean algorithm if the following statement holds;
(i) for all $a, b \in R$ with $d(a) \geqslant d(b)$ there exists $c \in R$ such that $d(a-b c)<d(a)$.

We wish to generalize this to non-commutative rings. We use something slightly weaker than a degree function;

Def ${ }^{n}$ Let R be an integral domain (not necessarily commutative). A filtration v on R is a map $\mathrm{R} \rightarrow \mathbb{N}$ such that;

$$
\begin{aligned}
& \text { (i) } \mathrm{v}(\mathrm{l})=0 \\
& \text { (ii) } \mathrm{v}(\mathrm{a}-\mathrm{b}) \leqslant \max (\mathrm{v}(\mathrm{a}), \mathrm{v}(\mathrm{~b})) \\
& \text { (iii) } \mathrm{v}(\mathrm{ab}) \leqslant \mathrm{v}(\mathrm{a})+\mathrm{v}(\mathrm{~b}) .
\end{aligned}
$$

For notational convenience we set $\mathrm{v}(0)=-\infty$. If equality holds in (iii) v is a degree function.

Def ${ }^{n}$ Let R be a ring with a filtration v. A family (a_{i}) of elements of R is right v-dependent if one of the a_{i} is zero or if there exists b_{i}, almost all zero, such that

$$
v\left(\sum a_{i} b_{i}\right)<\max \left(v\left(a_{i}\right)+v\left(b_{i}\right)\right)
$$

Def ${ }^{n}$ An element a of R is right v-dependent on the family (a_{i}) of elements of R if a is zero or if there exist b_{i}, almost all zero, such that

$$
v\left(a-\sum a_{i} b_{i}\right)<v(a) \text { while } \quad v\left(a_{i}\right)+v\left(b_{i}\right) \leqslant v(a)
$$

Def ${ }^{n}$ A ring R with a filtration v satisfies the n-term weak. algorithm (with respect to v) if for any right v-dependent set $a_{1}, a_{2}, \ldots, a_{m}(m \leqslant n)$ with $v\left(a_{1}\right) \leqslant v\left(a_{2}\right) \leqslant \ldots \leqslant v\left(a_{m}\right)$ some a_{i} is right v-dependent on $a_{1}, a_{2}, \ldots, a_{i-1}$.

As in the case of n-firs, this condition is equivalent to the corresponding condition on the left. The ring R is said to satisfy the weak algorithm (with respect to v) if it satisfies the n-term weak algorithm for all positive integers n.
$\operatorname{Prop}^{n} 2.1$ Let R be a ring with a filtration. Then if R satisfies the n-term weak algorithm R is an n-fir and if R satisfies the weak algorithm R is a fir. ([1]p.72)

A class of rings satisfying the weak algorithm is provided by the idea of a tensor bimodule. Let K be a skew field and let M be a K -bimodule. Let M^{r} denote the tensor product (over K) of r copies of M, and define the tensor K-ring on M, denoted $T(M)$, as

$$
T(M)=M^{0} \oplus M^{1} \oplus M^{2} \oplus \ldots . \quad\left(M^{0}=K\right)
$$

The addition on $T(M)$ is the obvious component-wise operation and the multiplication is that induced by the isomorphism

$$
M^{r} \otimes_{K^{s}}=M^{r+s}
$$

These definitions make $T(M)$ into a ring. There is an obvious filtration v on $T(M)$ defined as follows;
if $m=m_{0}+m_{l}+\ldots+m_{r} \quad\left(m_{i} \in M^{i}, m_{r} \neq 0\right)$ then $v(m)=r$. Prop ${ }^{n} 2.2$ Let v be the filtration on $R=T(M)$ (as defined above). Then R satisfies the weak algorithm with respect to v and hence is a fir. ([1] p. 82)

Free algebras can be constructed as tensor K-rings;
(i) Let k be a commutative field and X a set of indeterminates. Then the free k-algebra on X, denoted $k\langle X\rangle$, is the k-algebra universal for mappings of X into k -algebras. We can also construct it as a tensor ring; let M be the k-bimodule consisting of the direct sum of X copies of k. Then $k\langle X\rangle$ is $T(M)$; hence $k\langle X\rangle$
satisfies the weak algorithm with respect to the filtration giving the value 1 to each element of X (in fact this filtration is a degree function). Thus $k\langle x\rangle$ is a fir.
(ii) More generally, let L be a skew field and k a subfield of the centre of L. Let M be the L-bimodule consisting of the direct sum of X copies of $L \otimes_{K} L$. Then $T(M)$ is a fir, denoted $L_{K}\langle X\rangle$. The elements of $\mathrm{L}_{\mathrm{k}}\langle\mathrm{X}\rangle$ can be thought of as sums of monomials involving elements of X and elements of L , where only the elements of k commute with X . The filtration (which is again a degree function) attaches the value r to the monomial

$$
h_{1} x_{f(1)} h_{2} x_{f(2)} h_{3} \cdots x_{f(r)} h_{r+1} \quad\left(x_{f(i)} \in X, h_{i} \in L\right)
$$

$\mathrm{I}_{\mathrm{k}}\langle\mathrm{X}\rangle$ can be shown to be isomorphic to the coproduct (over k) of the free algebra $k\langle x\rangle$ and L.

Clearly case (i) is a special case of case (ii). In either case we call the value of the filtration the degree of the element. An element is homogeneous if it is the sum of monomials of the same degree (thus m is homogeneous of degree r if $m \in M^{r}$ in $T(M)$). By construction every element can be written uniquely as the sum of its homogeneous components; we define the leading term of an element f, denoted f^{ℓ}, to be the homogeneous component of f of greatest degree.
§3. Unique factorization domains

We start by defining a (non-commutative) unique factorization domain. Let R be an integral domain. An element a of R is an atom if in any factorization $a=b c$ exactly one of b and c is invertible. R is atomic if each non-zero element of R can be expressed as the product of a finite number of atoms. Two elements a and b of R are stably associated (denoted $a \sim b$) if the right R-modules $R / a R$ and $R / b R$ are isomorphic; stable association is clearly an equivalence relation on R.

Def ${ }^{n}$ A ring R is a unique factorization domain if;
(i) R is atomic
(ii) if $a=p_{1} p_{2} \cdots p_{n}$ and $a=q_{1} q_{2} \cdots q_{m}$ are two factorizations of an element a into atoms then $m=n$ and there exists a permutation σ such that $p_{i} \sim q_{\sigma(i)} \quad(i=1,2, \ldots, n)$.

We note that if R is commutative this does reduce to the definition of a commutative UFD, for then $R / a R \cong R / b R$ iff $\mathrm{aR}=\mathrm{bR}$.

A useful concept for dealing with UFDs (and one that extends to the more general case of factorizations of matrices; cf §5) is that of a strictly cyclic module. A right R-module M is strictly cyclic if $M \cong R / C R$ for some non-zerodivisor c of R. For a fixed. integral domain R the set of strictly cyclic right R-modules (with R-module homomorphisms as morphisms) forms a category, denoted $P_{R^{*}}$. We similarly define the category ${ }_{R}{ }^{C}$ of strictly cyclic left R-modules.

Prop ${ }^{n}$ 3.1 The categories C_{R} and $e_{R} e$ are dual. ([1] p.118) Cor ${ }^{y}$ Let R be an integral domain and let a and b be non-zero elements of R. Then $R / a R \cong R / b R$ iff $R / R a \cong R / R b$ 。

This corollary justifies the antisymmetry in the definition of stable association given above.

Prop $^{n} 3.2$ Let R be a 2-fir. Then \mathcal{C}_{R} is a full abelian subcategory of m_{R}, the category of right R-modules. ([1]p.120) Cor ${ }^{y}$ Let R be a $2-f i r$ and c a non-zero element of R. Then the set of strictly cyclic submodules of R / cR form a modular lattice.

The factorization properties of an element c of R are reflected in the subobjects (in e_{R}) of $R / c R$, for if $c=a b$ then

$$
\mathrm{R} / \mathrm{cR}=\mathrm{R} / \mathrm{abR} \supseteq \mathrm{aR} / \mathrm{abR} \cong \mathrm{R} / \mathrm{bR} \supseteq 0
$$

Thus if we impose a chain condition of R so that the set of subobjects of $R / c R$ form a modular lattice of finite height we can use the Jordan-Hólder Theorem (see e.g. [1] p.316) to deduce unique factorization in R.
$\operatorname{Prop}^{n} 3.3$ Let R be an atomic 2-fir. Then R is a UFD. ([1] p.120)
Using Prop ${ }^{n}$ lol (in the case $n=1$) we can deduce;
$\operatorname{Cor}^{\mathrm{y}}$ Let R be a fir. Then R is a UFD.

Thus in particular the free algebras $k\langle X\rangle$ are UFDs. We now consider the relation of stable association in 2-firs. Def n Let R be a ring and let $c a=b d$ be a relation between elements of ${ }^{\bullet} \mathrm{R}$. The relation is said to be
(i) right comaximal if $c R+b R=R$
(ii) left comaximal if $\mathrm{Ra}+\mathrm{Rd}=\mathrm{R}$
(iii) right coprime if a and d have no common right factor
(iv) left coprime if b and c have no common left factor.

The relation is comaximal if it is both left and right comaximal
coprime if it is both left and right coprime.

It is easily seen that any comaximal relation is coprime; in a 2 -fir the converse is also true. We also note that in any relation in a $2-f i r$ we can cancel left and right factors to get a coprime relation.

Prop ${ }^{n}$ 3.4 Let R be a 2-fir and a and b elements of R. Then the following are equivalent;
(i) $a \sim b$
(ii) there exists a comaximal relation $\mathrm{ca}=\mathrm{bd}$
(iii) there exists a coprime relation $\mathrm{ca}=\mathrm{bd}$. ([1]p.126)

§4. Distributive factor lattice

Let R be a 2 -fir and c a non-zero element of R. We have seen that the set of C_{R}-submodules of $R / C R$ forms a modular lattice and we shall refer to this as the factor lattice of c. If every element of R has a distributive factor lattice, R is said to satisfy DFL.

Def ${ }^{n}$ Let $R \subseteq S$ be a ring embedding. This embedding is l-inert if for any $a \in R$ and any factorization $a=b c(b, c \in S)$ there exists an invertible element u of S such that both $b u$ and $u^{-1} c$ lie in R.

Def ${ }^{n}$ Let R be a k-algebra (k any commutative field). R is a conservative 2-fir if both R and $R \otimes_{k} k(t)$ are 2-firs and R is l-inert in $R \otimes_{\mathrm{K}} \mathrm{k}(\mathrm{t})$.

Prop n 4.1 Let R be a conservative 2-fir. Then R satisfies DFL. ([JP.159)
It is easily checked that $k\langle X\rangle$ is a conservative 2 -fir; it is also atomic, so the factor lattice of any element is a distributive lattice of finite height. Such lattices have a very simple description in terms of partially ordered sets, which we now give.

Let:L be a distributive lattice of finite height. An element a of L is join-irreducible if a has no non-trivial representation as the join of two elements. Let $P(L)$ denote the set of joinirreducible elements of L ; it has a partial order inherited from L. Given any partially ordered set T, let $Q(T)$ denote the set of upper segments of T, that is subsets M such that $a \in M, b \geqslant a$ implies $b \in M$. Then $Q(T)$ forms a lattice (join being union and meet intersection of sets).

Prop n 4.2 There is a l-1 correspondence between distributive lattices of height n and partially ordered sets with n elements, given by the maps P and Q described above. ([5] p.61)

We define two particular kinds of lattices of factorization. If the corresponding partially ordered set is the unordered set of n elements, then the lattice is the Boolean algebra of subsets of this set, and we call the factorization completely reducible. If the corresponding partially ordered set is a chain of length n then the lattice is also a chain of length n, and the factorization is then called rigid.

Now let R be any atomic 2-fir. If R does not satisfy DFI, then there is a sublattice of a factor lattice of the form

([5] p. 59). It follows that there exist $a, b, c, d \quad R$ such that $\mathrm{ab}=\mathrm{cd}$ and $\mathrm{a} \sim \mathrm{b} \sim \mathrm{c} \sim \mathrm{d}$. Less obviously the converse is true;

Prop ${ }^{n} 4.3$ Let R be an atomic 2-fir satisfying DFL. Then there are no elements a, b, c, d such that $a b=c d$ is a comaximal relation (and hence $a \sim b \sim c \sim d$). ([I] p.153)

§5. Matrices

The factorization results of the previous sections can be extended (in a somewhat weaker form) to the factorizations of matrices over firs. Any mxn matrix A over a ring R determines a mapping $\phi_{A}::^{n} \rightarrow{ }^{m} R$ (by premultiplication) and hence an exact sequence of right R -modules;

$$
n_{R} \xrightarrow{\boldsymbol{\sigma}_{A}} \mathrm{~m}_{\mathrm{R}} \longrightarrow \mathrm{M} \longrightarrow 0
$$

We identify the matrix A with the right R -module M (\cong coker ϕ_{A}); this of course generalizes the idea of associating an element c of the same characteristic. with the strictly cyclic module R / cR. Two matrices A and $\mathrm{B}^{\mathrm{\lambda}} \mathrm{a}^{\text {are }}$ said to be stably associated if their associated right R-modules are isomorphic. We wish to consider the factorizations of a matrix by considering the submodules of its associated module; however we must restrict attention to a particular kind of module (corresponding to torsion modules in the element case). Def ${ }^{n}$ Let $0 \rightarrow{ }^{n} R \rightarrow{ }^{m} R \rightarrow M \rightarrow 0$ be a presentation of the right R-module M. The characteristic of the presentation is defined to be $m-n$. If R is a semifir the characteristic of a module is independent of the presentation chosen, and we call this the characteristic of the module M, denoted $X(M)$. Def ${ }^{n}$ Let R be a semifir and M a right R-module. M is a torsion module if;
(i) $X(M)=0$
(ii) for any submodule N of $M, \mathcal{X}(N) \geqslant 0$.

Let J_{R} denote the set of torsion R-modules; as in the case of strictly cyclic modules, they form a category.

Prop $^{n} 5.1$ Let R be a semifir. Then T_{R} is a full abelian subcategory of M_{R}. ($[1] p .185$)

Let ${ }_{R} T$ denote the corresponding category of left torsion modules. As before, there is a duality;

Prop $^{n} 5.2 T_{R}$ and R^{\top} are dual categories.
Cor ${ }^{y}$ Suppose that both ${ }_{R} J$ and J_{R} satisfy ACC. Then they both satisfy DCC.

Def f^{n} A semifir R is fully atomic if both J_{R} and T satisy ACC. Note that a fir satisfies $A C C_{n}$ for all n and hence is fully atomic.

Prop $^{n} 5.3$ Let R be a fully atomic semifir and let M be a right torsion R-module. Then the set of J_{R}-submodules of M forms a modular lattice of finite height.

Once the idea of a torsion module has been translated in terms of matrices, Prop $^{n} 5.3$ (and the Jordan-Holder Theorem for modular lattices) will provide a 'unique factorization' for matrices.

Def ${ }^{n}$ Let A be a $n \times n$ matrix over R. A is full if in any factorization $A=B C\left(B \in{ }^{n_{R}}, C \in R^{m}\right), m \geqslant n$. Prop $^{n} 5.4$ Let R be a semifir. Then a square matrix A is full iff the associated module coker ϕ_{A} is a torsion module.([I] p.199)

Prop $^{n} 5.5$ Let R be a fully atomic semifir and let A be a full matrix over R. Then R has a factorization into (full) matrix atoms, and if $A=P_{1} P_{2} \ldots P_{r}$ and $A=Q_{1} Q_{2} \cdots Q_{S}$ are two factorizations of A into atoms then $r=s$ and there exists a
permutation σ of $1, \ldots, r$ such that P_{i} and $Q_{\sigma(i)}$ are stably associated ($\mathbf{i}=1, \ldots, r$) 。 (This follows immediately from 5.3 \& 5.4.)

We now derive some equivalent conditions for stable association of matrices. The following definitions and results (plus proofs) may be found in [4].

Def ${ }^{n}$ Let R be any ring and let $A \in \mathbb{m}_{R}$. A is left full if in any factorization $A=B C \quad\left(B \in M_{R} q, C \in q_{R}{ }^{n}\right)$ necessarily $q \geqslant m$; A is right full if in any such factorization $q \geqslant n$. A is left prime if in any factorization $A=P Q\left(P \in R_{m}, Q \in m^{n}\right) \quad P$ is right invertible. A is right prime if the analogous condition on the right holds.

Let $A C=B D$ be a relation between matrices over R. The relation is said to be right comaximal if (A B) has a right inverse and left comaximal if $\binom{C}{D}$ has a left inverse. It is comaximal if it is both left and right comaximal. The relation is left coprime if (AB) is left prime, right coprime if ($\left.\begin{array}{l}C \\ D\end{array}\right)$ is right prime and coprime if it is both left and right coprime。

Prop ${ }^{n} 5.6$ Let R be a semifir and A and B matrices over R of the same characteristic. Then the following are equivalent;
(i) A is stably associated to B
(ii) there exist invertible matrices U and V and identity matrices of suitable sizes such that

$$
U\left(\begin{array}{ll}
A & 0 \\
0 & I
\end{array}\right)=\left(\begin{array}{ll}
B & 0 \\
0 & I
\end{array}\right) V
$$

(iii) there exists a comaximal relation $C A=B D$
(iv) there exists a coprime relation $C A=B D$.

Prop ${ }^{n} 5.7$ Let R be a semifir and $A D=B C$ a relation between matrices over R in which (A B) is left full and $\binom{D}{C}$ is right full. Then we can cancel left and right square factors to get a comaximal relation i。e. there exist square matrices P and Q such that $A=P A^{\prime}, B=P B^{\prime}, D=D^{\prime} Q, C=C^{\prime} Q$ and $A^{\prime} D^{\prime}=B^{\prime} C^{\prime}$ is a comaximal relation.

§6. Eigenrings

Def ${ }^{n}$ Let R be a ring and J a right ideal of R. The (right) idealizer of J (in R), denoted $I_{R}(J)$ is the $\operatorname{set}\{b \in R: b J \leq J\}$. It is easily seen that $I_{R}(J)$ is a ring and that J is a 2-sided ideal of $I_{R}(J)$. If J is a principal right ideal, say $J=a R$, then $I_{R}(J)=\{b \in R: b a \in a R\}$ so we write $I_{R}(a)$ instead of $I_{R}(J)$ and call this the idealizer of a。

Def ${ }^{n}$ Let R be a ring and J a right ideal of R. The (right) eigenring of J (in R), denoted $E_{R}(J)$ is $I_{R}(J) / J$.

Again if J is. principal, say $J=a R$, we write $E_{R}(a)$ and call it the eigenring of a. There is an alternative formulation of the eigenring of an ideal:

Prop ${ }^{n}$ 6.1 Let R be a ring and J a right ideal of R. Then

$$
E_{R}(J) \cong \operatorname{End}_{R}(R / J)
$$

We may similarly define left idealizers and eigenrings; however we have the following result:

Prop ${ }^{n} 6.2$ Let R be a ring and a a non-zerodivisor of R. Then the left and right eigenrings of a are isomorphic.

We shall be interested in two cases;
(i) where R is a 2 -fir
(ii) where R is a matrix ring over a semifir.

In the first case the eigenring of an element is just the endomorphism ring of the associated strictly cyclic module. In the second case, suppose that $R=T_{m}$, where T is a semifir, and suppose that A is an element of R, full as a matrix over T. Then

$$
E_{R}(A)=\operatorname{End}_{T_{m}}\left(T_{m} / A T_{m}\right)=\operatorname{End}_{T}\left(\mathbb{m}_{T} / A_{T}\right)
$$

so the eigenring of A is isomorphic to the ring of T -endomorphisms of the torsion T-module associated with A. In this case we shall write $E_{T}(A)$ instead of $E_{R}(A)$. We can apply Schur's Lemma in the category e_{R} or J_{R} to get the following result. $\operatorname{Prop}^{n} 6.3$ Let R be a 2-fir (respectively semifir). Let A be an atom of R (respectively a full matrix atom over R). Then $E_{R}(A)$ is a skew field.

Def ${ }^{n}$ Let R be a k-algebra (k any commutative field). Then R is a persistent 2 -fir (respectively semifir) over \underline{k} if both R and $R \otimes_{K} k(t)$ are 2-firs (respectively semifirs).

Free algebras"are clearly persistent semifirs.
Prop ${ }^{n} 6.4$ Let R be a persistent 2-fir (respectively semifir). Let A be an element of R (respectively a full matrix over R). Then $\mathrm{E}_{\mathrm{R}}(\mathrm{A})$ is algebraic over k. [4]

Combining results 6.3 and 6.4 we get;
Prop $^{n} 6.5$ Let R be a persistent 2-fir (respectively semifir) over an algebraically closed field k and let A be an atom of R (respectively a full matrix atom over R). Then $E_{R}(A) \cong k$.

In general if R is a k-algebra and a an element of $R a$ is said to have a scalar eigenring if $\mathrm{E}_{\mathrm{R}}(\mathrm{a}) \cong \mathrm{k}$.

Prop ${ }^{n}$ 6.6 Let R be a k-algebra and an atomic 2-fir and suppose that R satisfies DFL. Suppose moreover that every atom of R has a scalar eigenring; then every non-zero element. of R has a commutative eigenring. ([1] p. 172)

If k is an algebraically closed field we can use this proposition (together with Prop ${ }^{n}$ 6.5) to deduce that every non-zero element of the free algebra $k\langle x\rangle$ has a commutative
eigenring. In order to extend this to the case where k is not algebraically closed we need a result on the behaviour of eigenrings under ground field extensions.

Prop $^{n} 6.7$ Let R be a $k-a l g e b r a$ and A full matrix over R. Let E / k be a field extension and set $S=R \otimes_{K} E$. Then

$$
E_{S}(A)=E_{R}(A) \otimes_{k} E
$$

Cory ${ }^{y}$ Let k be any field. Then any non-zero element of the free algebra $k\langle X\rangle$ has a commutative eigenring.

There is one more result on eigenrings that we shall need later. Let F_{R} be some category of right R-modules. A right $R \rightarrow$ module $M \in F_{R}$ is a distributive module if the lattice of $F_{R}-$ submodules of M forms a distributive lattice ; we shall be interested in the case where M is the strictly cyclic module associated with an element of a 2-fir R (and the category is the category of strictly cyclic R-modules).
$\operatorname{Prop}^{n} 6.8$ Let M be a distributive module with both chain conditions and let A_{1}, \ldots, A_{n} be the F_{R}-simple modules occuring in a composition series for M (with their proper multiplicities). Then there is a homomorphism

$$
\phi: \operatorname{End}(M) \longrightarrow \prod_{i=1}^{n} \operatorname{End}\left(A_{i}\right)
$$

whose kernel is the Jacobson radical of End(M). Moreover $N=\operatorname{ker} \phi$ consists of all nilpotent endomorphisms of M and satisfies $N^{n}=0 .([1] p .150)$

Chapter 2 Normal Forms

In this chapter we consider normal forms for matrices over $K_{k}\langle X\rangle$.

In $\S 1$ we define a lexicographical ordering of $K_{k}\langle X\rangle$; also the idea of left (and right) cofactors of elements or matrices. These two ideas are used in the next section.

In $\S 2$ we establish a normal form for full matrices over $K_{k}\langle X\rangle$ under stable association generalizing that given in [2]. A series of propositions leads up to the result (Th^{m} 2.1).

In $\} 3$ we establish a criterion for a matrix over a skew field to be cyclic ($\operatorname{Th}^{m} 3.1$).

§1. Preliminaries

We recall from Chapter $1, \S_{2}$ that there is a degree function d on $K_{k}\langle x\rangle$ given by $d(x)=1$ for $x \in X$. We require a finer ordering than this in this chapter; we therefore introduce a lexicographical ordering as follows.

Def ${ }^{n}$ An element f of $K_{k}\langle X\rangle$ is pure (of degree r and type ($h(1), h(2), \ldots, h(r))$) if it is of the form

$$
\sum_{j \in J} v_{1 j^{x_{h}} h(1)^{v_{2 j}}{ }^{x_{h}}(2) \cdots v_{r j}{ }^{x_{h}}(r)^{v_{r+l j}}, ~}
$$

where J is an indexing set, each $v_{i j} \in K$ and the $h(i)$ are integers (so $X_{h(i)} \in X$).

It is clear that any element of $K_{K}\langle X\rangle$ can be written uniquely as the sum of its pure components. We define an ordering on the set of pure elements as follows;
let f be of degree r and type ($h(1), h(2), \ldots, h(r)$)
let g be of degree s and type $(k(1), k(2), \ldots, k(s))$
Then $f>g$ iff:
(i) $r>s$
or (ii) $r=s, h(i)=k(i)$ for $l \leqslant i \leqslant j$ and $h(i+1)>k(i+1)$ for some $0 \leqslant j<r$.

Now for any element f of $K_{k}\langle X\rangle$ we define the pure-leading term of f, denoted f^{t}, to be the greatest pure component of f. $K_{k}\langle X\rangle$ can now be ordered by defining one element to be greater than another if its pure-leading term is greater. Let v be the order-preserving map from $K_{k}\langle X\rangle$ onto \mathbb{N} induced by this ordering (thus $\mathrm{v}(\mathrm{I})=0, \mathrm{v}\left(\mathrm{x}_{1}\right)=1$, etc.)

Clearly all the above may be extended to matrices over $K_{k}\langle x\rangle ;$ replace $K_{\mathrm{K}}\langle\mathrm{x}\rangle$ and K by $\left(\mathrm{K}_{\mathrm{k}}\langle\mathrm{x}\rangle\right)_{\mathrm{n}}$ and K_{n} respectively in the definitions.

In the particular case when $K=k$, so the ring is just the free algebra $k\langle X\rangle$, we say an element f is monic if the coefficient of its pure-leading term is I_{0}

The second idea we need is that of cofactors. Let $u_{i}(i \in I)$ be a k-basis of K. Any matrix A with entries in K can be written uniquely as $\sum_{i \in I} u_{i} A^{i}$, where the A^{i} are matrices with entries in k. A^{i} is called the right cofactor of u_{i} in A. Define ${ }^{1}$

$$
A^{*}=\left(\begin{array}{lll}
A^{0} & A^{1} & \ldots . .
\end{array}\right) \text { and } \quad{ }^{*} A=\left(\begin{array}{c}
A^{0} \\
k \\
A \\
\vdots
\end{array}\right)
$$

Now let A be any homogeneous matrix of degree $\geqslant 1$ over $K_{k}\langle X\rangle$. Then A may be written uniquely as

$$
\sum_{i, j} A_{-x}^{i}\left(x_{j} u_{i}\right)
$$

where the A_{-x}^{i} are matrices over $K_{k}\langle X\rangle \cdot A_{-x}^{i}$ is called the left cofactor of $x_{j} u_{i}$ in A and we define
$A_{-x_{j}}^{*}=\left(A_{-x_{j}}^{0} A_{-x_{j}}^{I} \ldots.\right)$
We make analogous definitions of the right cofactors of $u_{i} x_{j}$ in A.

We now prove two lemmas to be used in the proof of normal form in the next section.

Lemma 1.1 Let C be a matrix over K such that the rows of C are linearly independent over k . Then the rows of C^{*} are linearly independent (over k) and hence C^{*} has a right inverse. Pf Suppose that the rows of C^{*} are linearly dependent. Then there exists $a \in^{m_{k}}$ such that $a C=0$. Hence $a C^{i}=0$ for all $i \in I$ and so $a C=a\left(\sum_{i} C^{i} u_{i}\right)=0$, contradicting the hypothesis.
${ }^{1}$ The notation implicitly assumes that $[k: k]$ is countable; the argument goes through in any case.

Def ${ }^{n}$ Let $A \in{ }^{p} K^{n}, B \in K^{p}, x \in X$. Then $A x B$ is in minimal form if the
columns of A are linearly independent over k and the rows of B are linearly independent over k.

Lemma 1. 2 Let $A \in{ }^{P} K^{n}, B \in{ }^{n} K^{p}$. Then there exists an $m \leqslant n$ and $C \in{ }^{P} K^{M}, D \epsilon_{K}{ }^{P}$ such that $A x B=C x D$ and $C x D$ is in minimal form. Moreover, if $C x D$ and ExF are in minimal form ($C \in \mathcal{P}^{m}$, $D \in{ }^{m}{ }^{p}, E \in{ }^{P_{K} r}, F \in{ }^{r}{ }^{p}$) and $C X D=E x F$ then $m=r$.

Pf Suppose that the columns of A are linearly dependent over k. Then there exists $J \in G L_{n}(k)$ such that $A J=\left(\begin{array}{ll}A^{\prime} & 0\end{array}\right)$. Write $J^{-1} B=\binom{B^{\prime}}{B^{\prime}}$. Then $A x B=A^{\prime} \times B^{\prime}$. Clearly repeating this process on A and B will eventually yield the C, D required.

We observe that by Lemma 1.1, CxD is in minimal form iff ${ }^{*} C$ and D^{*} have rank m. Now CxD $=$ ExF. Taking left cofactors of $X u_{i}$ we get $C D^{i}=E F^{i}$; now taking cofactors of u_{j} we get $C^{j_{D}}{ }^{i}=E^{j}{ }^{j}{ }^{i}$. Hence $\left({ }^{*} C\right)\left(D^{*}\right)=\left({ }^{*} E\right)\left(F^{*}\right)$. Since both $G X D$ and ExF are in minimal form we have

$$
m=\operatorname{rank}\left({ }^{*} C D^{*}\right)=\operatorname{rank}\left({ }^{*} E F^{*}\right)=r .
$$

§2. Reduction to normal form

We start by recalling the normal form proved in [2] ;
Let $A \in K_{n}, B \in K_{m}$ and suppose that $x I_{n}+A$ and $x I_{m}+B$ are stably associated over $K_{k}\langle x\rangle$. Then $m=n$ and A and B are conjugate over k. A matrix over $K_{k}\langle x\rangle$ is non-singular at ∞ if it is stably associated to a matrix of the form $x I_{N}+C$ $\left(c \in K_{N}\right)$, so this result provides a normal form for matrices over $K_{k}\langle x\rangle$ non-singular at ∞. In this section we establish a (somewhat weaker) normal form for arbitrary full matrices over $K_{k}\langle x\rangle$, where $X=\left\{x_{1}, \ldots, x_{d}\right\}$ is a finite set of indeterminates. Def ${ }^{n}$ A full matrix P over $K_{k}\langle x\rangle$ is in normal linear form if

$$
\begin{aligned}
& P=C+\sum_{i=1}^{d} A_{i} x_{i} B_{i} \\
& \left(C \in K_{p}, A_{i} \in{ }^{\left.P_{K} n_{i}, B_{i} \in{ }^{n_{i}}{ }^{P}\right)}\right.
\end{aligned}
$$

satisfying the following conditions;
(i) the rows of ($A_{1} \ldots A_{d}$) are left linearly independent over K
(ii) the columns of $\left(\begin{array}{l}B_{1} \\ B_{2} \\ \vdots \\ B_{d}\end{array}\right)$ are right linearly independent over K
(iii) each $A_{i} x_{i} B_{i}$ is in minimal form.

We shall prove the following theorem;
Th^{m} 2.1 Let Q be a full matrix over $\mathrm{K}_{\mathrm{k}}\langle\mathrm{x}\rangle$; then Q is stably associated to a matrix in normal linear form. Moreover if

$$
\begin{aligned}
& Q_{1}=C+\sum A_{i} x_{i} B_{i} \in\left(K_{k}\langle x\rangle\right)_{p} \\
& Q_{2}=D+\sum E_{i} x_{i} F_{i} \in\left(K_{k}\langle X\rangle\right)_{q}
\end{aligned}
$$

are two matrices in normal linear form and $Q_{1} \sim Q_{2}$ then $p=q$
and there exist $U, V \in G L_{p}(K)$ such that $Q_{2}=U Q_{1} V^{-1}$.
As an immediate consequence of this theorem we have:
Cor ${ }^{y}$ Let $Q=C+\sum A_{i} x_{i} B_{i}\left(C \in K_{p}, A_{i} \in P_{K}^{n} ; B_{i} \in{ }^{n_{i}}{ }_{K}{ }^{p}\right)$ be a matrix in normal linear form. The following are invariants;
(i) $\mathrm{p}=$ order of C
(ii) rank of C
(iii) $n_{i}=$ number of columns of A_{i}.

We prove the theorem in three propositions.
Prop $^{n} 2.2$ Let Q be a full matrix over $K_{K}\langle X\rangle$. Then Q is stably associated to a matrix in normal linear form.

Pf For any elements a, b, c of a ring R we have that

$$
(c+a b) \sim\left(\begin{array}{cc}
c+a b & 0 \\
0 & 1
\end{array}\right) \sim\left(\begin{array}{cc}
c+a b & a \\
0 & 1
\end{array}\right) \sim\left(\begin{array}{cc}
c & a \\
-b & 1
\end{array}\right)
$$

It is clear that by using this process (linearization by enlargement) sufficiently often we can find a matrix of the form $C+\sum A_{i} x_{i} B_{i} \quad\left(C \in K_{q}, A_{i} \in q_{K} m_{i} B_{i} \in{ }^{m_{i}}{ }^{q}\right)$ stably associated to Q. Let the rank of $\left(A_{1} \ldots A_{d}\right)$ over K be p. There exists $J \in G L_{q}(K)$
such that

$$
J\left(\begin{array}{llll}
A_{1} & A_{2} & \cdots & A_{d}
\end{array}\right)=\left(\begin{array}{cccc}
A_{1}^{\prime} & A_{2}^{\prime} & \cdots & A_{d}^{\prime} \\
0 & 0 & \cdots & 0
\end{array}\right) \underset{q-P}{p}
$$

Now let $C^{\prime}=J C$ and partition each B_{i} as $\left(B_{i}^{p} \quad{ }^{q-p} B_{i}^{\prime}\right)$. Then

$$
\cdot Q \sim C^{\prime}+\left(\begin{array}{cc}
\sum A_{i}^{P} x_{i} B_{i}^{\prime} & \sum A_{i}^{q-p} x_{i}^{\prime} B_{i}^{\prime} \\
0 & p \\
0-P
\end{array}\right.
$$

Since Q is full the last $q-p$ rows of C^{\prime} must have rank $q-p$ (overk), so by postmultiplying by a suitable invertible matrix over K , we, have

$$
Q \sim\left(\begin{array}{cc}
D_{11}+\sum E_{i} x_{i} F_{i} & D_{12}+\sum G_{i} x_{i} H_{i} \\
0 & I_{q-p}
\end{array}\right)
$$

$$
\sim\left(D_{11}+\sum E_{i} x_{i} F_{i}\right) \quad\left(D_{11} \in K_{p}\right)
$$

and $\operatorname{rank}\left(E_{1} \quad E_{2} \quad \ldots E_{d}\right)=p$, so condition (i) of the definition is satisfied. Condition (ii) of the definition may be similarly enforced. Condition (iii) can be satisfied simply by writing each $E_{i} x_{i} F_{i}$ in minimal form (using Lemma 1.2).

Lemma 2.3 Let $C+\sum A_{i} x_{i} B_{i}\left(C \in K_{p}, A_{i} \in P_{K} n_{i}, B_{i} \in{ }^{n_{i}}{ }^{p}\right)$ be a matrix in normal linear form. Then $\sum A_{i} X_{i} B_{i}$ is a left and right non-zerodivisor.

Pf Suppose the contrary, say

$$
G\left(\sum A_{i} x_{i} B_{i}\right)=0
$$

Consider leading terms;

$$
G^{l}\left(\sum A_{i} x_{i} B_{i}\right)=0 .
$$

Now take left cofactors of $\mathrm{x}_{\mathrm{i}} \mathrm{u}_{\mathrm{j}}$;

$$
\begin{aligned}
G{ }^{l} A_{i} B_{i}^{j} & =0 \\
G^{l} A_{i} B_{i}^{*} & =0
\end{aligned}
$$

Hence
But $A_{i} X_{i} B_{i}$ is in minimal form and hence B_{i}^{*} has a right inverse; thus

$$
G^{l} A_{i}=0
$$

and so $G^{l}\left(\begin{array}{llll}A_{1} & A_{2} & \cdots & A_{d}\end{array}\right)=0$
But by condition (i) of the definition of normal linear form, ($A_{1} A_{2} \ldots A_{d}$) has a right inverse. Hence $G^{l}=0$, a contradiction unless $G=0$. Thus $\sum A_{i} X_{i} B_{i}$ is a left nonzerodivisor. Similarly it is a right non-zerodivisor.

Prop $^{n} 2.4$ Let $Q_{1}=C+\sum A_{i} x_{i} B_{i}$ and $Q_{2}=F+\sum D_{i} x_{i} E_{i}$ be two matrices in normal linear form and suppose that $Q_{1} \sim Q_{2}$. Then there exists a comaximal relation

$$
U Q_{1}=Q_{2} V
$$

in which U and V have entries in K.
Pf Since Q_{1} and Q_{2} are stably associated there are comaximal relations

$$
\begin{equation*}
U Q_{1}=Q_{2} V \tag{1}
\end{equation*}
$$

We show that in any such relation $\partial(U)=\partial(V)$. Suppose that $\partial(U)>\partial(V)$. Comparing leading terms in (1) we get

$$
U^{\ell}\left(\sum A_{i} x_{i} B_{i}\right)=0
$$

By Lemma 2.3 this implies that $U^{\ell}=0$ and hence $U=0, a$ contradiction since $\partial(\mathrm{U})>0$. An analogous argument holds if $\partial(v)>\partial(U)$. Hence $\partial(U)=\partial(V)$.

Recall from $\xi 1$ that v is the map from $K_{k}\langle X\rangle$ to \mathbb{N} defined in terms of the lexicographic ordering of $\mathrm{K}_{\mathrm{k}}\langle\mathrm{X}\rangle$. Let s be the minimum value assumed by $\mathrm{v}(\mathrm{U})$ in any comaximal relation (1). Suppose that the first x_{i} (reading from left to right) occurring in U^{t}, the pure leading term of U, is x_{r}. Let $v\left(U^{t} x_{d}\right)=N$ and consider the terms of v-value $N, N-1, \ldots, N-d+1$ in (1):

$$
\begin{array}{r}
U^{t} A_{d} x_{d} B_{d}=D_{r} x_{r}{ }^{E} r V_{1} \\
U^{t} A_{d-1} x_{d-1} B_{d-1}=D_{r} x_{r}{ }^{E} V_{r} \\
\vdots \tag{2.d}\\
U^{t} A_{1} x_{1} B_{I}=D_{r} x_{r} E_{r} v_{d}
\end{array}
$$

where the V_{i} are matrices ocourring in V . Adding the d equations together we get

$$
U^{t}\left(\Sigma A_{i} x_{i} B_{i}\right)=\left(D_{r} x_{r} E_{r}\right)\left(\Sigma V_{i}\right)
$$

Since $\sum A_{i} x_{i} B_{i}$ is a non-zerodivisor, at least one of the V_{i} is non-zero. In fact the first non-zero V_{i} is the pure leading term of V, the second non-zero V_{i} is the second greatest pure component of V, etc. Moreover, for $i=1, \ldots . d$ and $s>r$,

$$
\begin{equation*}
D_{S} x_{S} E_{S} V_{i}=0 \tag{3}
\end{equation*}
$$

for each of these expressions has v-value greater than N and the v-value of the leading term of the L.H.S. of (I) is $\leqslant N$. Now take left cofactors of $x_{j} u_{i}$ in (2.d-j+l);

$$
U^{t} A_{j} B_{j}^{i}=D_{r} X_{r} E_{r}\left(V_{j}\right)_{-x}^{i}
$$

Hence;

$$
\begin{equation*}
U^{t} A_{j} B_{j}^{*}=D_{r} x_{r} E_{r}\left(V_{j}\right)_{-x_{j}}^{*} \tag{4}
\end{equation*}
$$

Now B_{j}^{*} has a right inverse, say M_{j}, so from (4);

$$
\begin{equation*}
U^{t} A_{j}=D_{r} x_{r} E_{r}\left(V_{j}\right)_{-x_{j}^{*}}^{M_{j}} \tag{5}
\end{equation*}
$$

To simplify the notation write N_{j} for $\left(V_{j}\right)_{-x}^{*} M_{j}$. Combining the equations (5) for $j=1, \ldots$. d we get;

$$
U^{t}\left(\begin{array}{llll}
A_{1} & A_{2} & \cdots A_{d}
\end{array}\right)=D_{r} x_{r} E_{r}\left(\begin{array}{lll}
N_{1} & N_{2} & \cdots \tag{6}
\end{array} N_{d}\right)
$$

Now $\left(A_{1} A_{2} \ldots A_{d}\right)$ has a right inverse, say $\sum A_{i} G_{i}=1$.
Write $N=\sum N_{i} G_{i} . \quad$ Then from (6)

$$
\begin{equation*}
U^{t}=D_{r} x_{r} E_{r} N \tag{7}
\end{equation*}
$$

By applying to (3) the arguments we have just applied to (2.1)(2.d) we also get

$$
\begin{equation*}
0=D_{S} x_{S} E_{S} N \quad(s>r) \tag{8}
\end{equation*}
$$

$$
\text { Now set } U^{\prime}=U-Q_{2} N \text { and } V^{\prime}=V-N Q_{1} \cdot \text { Clearly }
$$

$$
U^{\prime} Q_{1}=Q_{2} V^{\prime}
$$

is a comaximal relation. Moreover

$$
\begin{aligned}
Q_{2} N= & \left(D_{1} x_{1} E_{1}+\ldots+D_{r} x_{r} E_{r}\right) N+\left(D_{r+1} x_{r+1} E_{r+1}+\ldots+D_{d} x_{d} E_{d}\right) N \\
& + \text { terms of lower v-value } \\
= & D_{r} x_{r} E_{r} N+0+\text { terms of lower v-value } \\
= & U^{t}+\text { terms of lower v-value. }
\end{aligned}
$$

Hence $U^{\prime}=U-Q_{2} N$ has lower v-value than U, contradicting the choice of U. Thus we can choose U of v-value 0 , i.e. With entries in K and it follows that V also has entries in K.

$$
\begin{array}{r}
\operatorname{Prop}^{n} 2.5 \text { Let } Q_{1}=C+\sum A_{i} x_{i} B_{i} \in\left(K_{k}\langle X\rangle\right)_{p} \\
\text { and } Q_{2}=F+\sum E_{i} x_{i} F_{i} \in\left(K_{k}\langle X\rangle\right)_{q}
\end{array}
$$

be two matrices in normal linear form and suppose that $Q_{1} \sim Q_{2}$.
Then $p=q$ and there exists $U, V \in G L_{p}(K)$ such that $U Q_{1}=Q_{2} V$. Pf By Prop ${ }^{\text {n }} 2.4$ there is a comaximal relation

$$
\begin{equation*}
U Q_{1}=Q_{2} V \tag{1}
\end{equation*}
$$

where U and V have entries in K. Hence there exist $P, T \in G L_{q}(K)$, $R, S \in G L_{p}(K)$ such that

$$
\operatorname{PUR}=\left(\begin{array}{cc}
m & p-m \\
I_{m} & 0 \\
0 & 0
\end{array}\right)_{q-m}^{m} \quad \text { and } \quad S V T=\left(\begin{array}{cc}
n & p-n \\
I_{n} & 0 \\
0 & 0
\end{array}\right)^{n} \quad n
$$

The relation PUR. $R^{-1} Q_{1} T=P Q_{2} S^{-1}$.SVT is still comaximal. Hence we may assume without loss of generality that the U and V in (1) are of the forms $\left(\begin{array}{ll}I_{m} & 0 \\ 0 & 0\end{array}\right)$ and $\left(\begin{array}{ll}I_{n} & 0 \\ 0 & 0\end{array}\right)$ respectively.

Assume that $m \geqslant n$ and let $s=p-m, t=q-m$. Partitioning Q_{1} and Q_{2} we can rewrite (1) as

$$
\left(\begin{array}{lll}
I_{n} & 0 & 0 \\
0 & I_{m-n} & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{lll}
X_{11} & X_{12} & X_{13} \\
X_{21} & X_{22} & X_{23} \\
X_{31} & X_{32} & X_{33}
\end{array}\right)=\left(\begin{array}{lll}
Y_{11} & Y_{12} & Y_{13} \\
Y_{21} & Y_{22} & Y_{23} \\
Y_{31} & Y_{32} & Y_{33}
\end{array}\right)\left(\begin{array}{lll}
I_{n} & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

$$
\left(\begin{array}{lll}
x_{11} & x_{12} & x_{13} \\
x_{21} & x_{22} & x_{23} \\
0 & 0 & 0
\end{array}\right)=\left(\begin{array}{lll}
y_{11} & 0 & 0 \\
y_{21} & 0 & 0 \\
y_{31} & 0 & 0
\end{array}\right)
$$

Hence $X_{12}, x_{13}, X_{22}, X_{23}$ and Y_{31} are all zero; (1) becomes

$$
\left(\begin{array}{lll}
I_{n} & 0 & 0 \\
0 & I_{m-n} & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{lll}
X_{11} & 0 & 0 \\
X_{21} & 0 & 0 \\
x_{31} & x_{32} & x_{33}
\end{array}\right)=\left(\begin{array}{lll}
Y_{11} & Y_{12} & Y_{13} \\
Y_{21} & Y_{22} & Y_{23} \\
0 & Y_{32} & Y_{33}
\end{array}\right)\left(\begin{array}{lll}
I_{n} & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

This is a comaximal relation; consider a relation of left comaximality.

$$
\left(\begin{array}{lll}
L_{11} & L_{12} & I_{13} \\
L_{21} & L_{22} & I_{23} \\
I_{31} & I_{32} & L_{33}
\end{array}\right)\left(\begin{array}{lll}
x_{11} & 0 & 0 \\
x_{21} & 0 & 0 \\
x_{31} & x_{32} & x_{33}
\end{array}\right)+\left(\begin{array}{lll}
M_{11} & M_{12} & M_{13} \\
M_{21} & M_{22} & M_{23} \\
M_{31} & M_{32} & M_{33}
\end{array}\right)\left(\begin{array}{lll}
I_{n} & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)=I_{p}
$$

Consider the bottom right-hand corner of this equation;

$$
L_{33} X_{33}=I_{s}
$$

Since $K_{k}\langle x\rangle$ is weakly finite, this implies that

$$
\begin{equation*}
x_{33} L_{33}=I_{s} \tag{2}
\end{equation*}
$$

For any matrix G over $K_{k}\langle x\rangle$ let $G{ }^{(1)}$ denote the homogeneous component of G of degree 1 . Since X_{33} is of degree $\leqslant 1$ (as a submatrix of Q_{1}), by taking leading terms in (2) we obtain

Now

$$
\begin{aligned}
\cdot x_{33}{ }^{(1))_{L_{33}^{l}}^{l}} & =0 \\
\left(\sum_{A_{i} x_{i}} B_{i}\right)\left(\begin{array}{l}
0 \\
0 \\
L_{33}^{l}
\end{array}\right) & =\left(Q_{1}^{(1)}\right)\left(\begin{array}{l}
0 \\
0 \\
L_{33}^{l}
\end{array}\right) \\
& =\left(\begin{array}{lll}
x_{11}^{(1)} & 0 & 0 \\
x_{21}^{(1)} & 0 & 0 \\
x_{31}^{(1)} & x_{32}^{(1)} & x_{33}^{(1)}
\end{array}\left(\begin{array}{l}
0 \\
0 \\
L_{33}^{l}
\end{array}\right)\right. \\
& =0
\end{aligned}
$$

But $\sum A_{i} x_{i} B_{i}$ is a non-zerodivisor and so $L_{33}{ }^{l}=0$, a contradiction unless $\mathrm{s}=0$. Thus $\mathrm{s}=0$ and so

$$
x=\left(\begin{array}{ll}
x_{11} & 0 \\
x_{21} & 0
\end{array}\right)
$$

Since X is full we now must have $m-n=0$ and so $p=m=n$. Then

$$
Q_{1}=Q_{2}\left(\begin{array}{ll}
I_{m} & 0 \\
0 & 0
\end{array}\right)
$$

and since both Q_{1} and Q_{2} are full $q-m=0$. Hence $q=m=n=p$, $U=V=I_{n}$ and the result is proved.

This completes the proof of the theorem. We note that in the special case that the matrices concerned are non-singular at zero (that is, the result of specializing each x_{i} to zero is an invertible matrix over K) we can strengthen this normal form a little, We insist (in addition to conditions (i) - (iii) already given) that C, the constant term, be the identity matrix. It then follows immediately that any two stably associated matrices in this form are conjugate over K.

§3. Cyclicity of a matrix

Let k be a commutative field, let $A \in k_{n}$ and let $V=k^{n}$. V is a right $k[x]$-module under the action $v x=v A$ and the matrix A is said to be cyclic if V is a cyclic module i.e. there exists $\mathrm{V} \in \mathrm{V}$ such that $\mathrm{V}=\mathrm{vk}[\mathrm{x}]$. It can be shown that A is cyclic if and only if $x I_{n}-A$ is stably associated (over $k[x]$) to an element of $k[x]$.

Now let K be a skew field with centre k and $A \in K_{n}$. By analogy with the commutative case we define A to be cyclic if $x I_{n}-A$ is stably associated over $\mathrm{K}_{\mathrm{k}}\langle\mathrm{x}\rangle$ to an element of $\mathrm{K}_{\mathrm{K}}\langle\mathrm{x}\rangle$. In this section we derive a criterion for a square matrix over a skew field to be cyclic. By the result mentioned at the beginning of $\xi 2, x I_{n}-A$ and $x I_{n}-B$ are stably associated iff A is conjugate over k to B; hence we are looking for a condition on the $k-$ eonjugacy olass of A. This is provided by $\mathrm{Th}^{\mathrm{Im}}$ 3.1.
Th^{m} 3.1 Let K be a skew field with centre k . Then a matrix $A \in K_{n}$ is cyclic iff A is conjugate over k to a matrix with non-zero entries on the sub-diagonal and zeros beneath the subdiagonal. Pf (\Rightarrow) Suppose that $x I_{n}-A \sim p \in K_{k}\langle x\rangle$ Then there exist comaximal relations

$$
\begin{equation*}
\left(x I_{n}-A\right) U=V p \quad\left(U, V \epsilon^{n}\left(K_{k}\langle x\rangle\right)\right) \tag{1}
\end{equation*}
$$

We show that we may choose such a relation with V of degree 0 . Suppose the contrary and let ∂V assume its minimum value in any
such relation (1). Compare leading terms in (1);

$$
\begin{equation*}
x U^{l}=V_{p}^{l} \tag{2}
\end{equation*}
$$

Since all the terms in (2) are homogeneous, (2) implies that v^{ℓ} is a right multiple of x, say $V^{\ell}=x S$. Hence $U^{l}=S p$. Now define

$$
U^{\prime}=U-S p \quad V^{\prime}=V-(x I \quad A) S
$$

Then $\quad\left(x I_{n}-A\right) U^{\prime}=V^{\prime} p$
is a comaximal relation and $\partial V^{\prime}<\partial V$, contradicting our choice of V. Hence we may take $\partial V=0$ i.e. $V \in K^{n}$. Again consider leading terms of (1)

$$
\begin{equation*}
\mathrm{xu}^{\ell}=\mathrm{Vp} \tag{3}
\end{equation*}
$$

Let $V=\left(a_{1} a_{2} \ldots a_{n}\right)^{T}$. Since (l) is comaximal at least one of the a_{i} is non-zero, say $a_{j} \neq 0$. Then from (3) we see that $a_{j} p$ is a right multiple of x, hence $p=a_{j}^{-1} x r$ (say), and now $a_{i} p=a_{i} a_{j}^{-l} x r$ is a right multiple of x. Hence $a_{i} a_{j}{ }^{-1} \in k$ for all i, and so by adjusting p by a suitable element of K we may assume without loss of generality that $V \in K^{n}$.

Since $V \in k^{n}$ (and is non-zero) there exists $J \in G L_{n}(k)$ such that $J V=\left(\begin{array}{lllll}1 & 0 & 0 & \ldots & 0\end{array}\right)^{T}$. Set $A^{\prime}=J A J^{-1}, U^{\prime}=J$. Then (1) becomes

$$
\left(x I_{n}-A^{\prime}\right) U^{\prime}=\left(\begin{array}{c}
p \tag{4}\\
0 \\
\vdots \\
0
\end{array}\right)
$$

Write $U^{\prime}=\left(\begin{array}{lllll}m_{1} & m_{2} & \ldots & m_{n}\end{array}\right)^{T}$. It is easily seen from (4) that $\left.\partial m_{1}\right\rangle \partial m_{i}(i=2,3, \ldots, n)$. Suppose that σ is a permutation of $\{2,3, \ldots, n\}$ such that. $\partial_{\mathbb{m}_{\sigma(2)}} \geqslant \partial_{m_{\sigma(3)}} \geqslant \ldots . . \geqslant \partial_{m_{\sigma(n)}} \cdot$ Let. J ' be the permutation matrix representing σ and set

$$
A^{\prime \prime}=J^{-1} A^{\prime} J^{\prime} \quad U^{\prime}=J^{\prime} U^{\prime}
$$

Then (4) still holds with A^{\prime} and U^{\prime} replaced by $A^{\prime \prime}$ and $U^{\prime \prime}$ respectively and the elements of $U '$ ' are arranged in descending order of degree. We note that none of the elements of $U '$ ' can be zero, for suppose that the last $n-m+1$ were zero. Let Z be the matrix obtained from A'' by deleting the last. $n-m+1$ rows and columns and H the matrix obtained from $U '$ ' by deleting the last $n-m+1$ elements. Then

$$
\left(x I_{m}-Z\right) H=\left(\begin{array}{c}
p \\
0 \\
\vdots \\
0
\end{array}\right)
$$

and hence $\mathrm{xI}_{\mathrm{m}}-\mathrm{Z} \sim \mathrm{p} \sim \mathrm{xI} \mathrm{n}_{\mathrm{n}}-\mathrm{A}$, a contradiction since $\mathrm{m} \neq \mathrm{n}$. Thus none of the elements of $\mathrm{U}^{\prime \prime}$ are zero.

We shall show that $\mathrm{A}^{\prime \prime}$ is conjugate over k to a matrix of the form 'described in the statement of the theorem. The idea is to successively reduce the $1^{\text {st }}, 2^{\text {nd }}, \ldots, n^{\text {th }}$ rows to the required form. We use induction. Let $P(r)$ denote the statements;
(i) there exists a matrix $B_{r}=\left(b_{i j}^{r}\right) \in K_{n}$, conjugate over k to $A^{\prime \prime}$ such that $b_{j i}^{r}=0(i<j-1)$ and $b_{j, j-1}^{r} \neq 0$ for all $j \leqslant r$. (i.e. the first r rows of the matrix B_{r} are in the required form).
(ii) there exist $U_{r}=\left(u_{1}^{r} u_{2}^{r} \ldots u_{n}^{r}\right)^{T} \in\left(K_{k}\langle x\rangle\right)^{n}$ such that $\partial u_{1}^{r}>\partial u_{2}^{r}>\ldots>\partial u_{r}^{r} \geqslant \partial u_{r+1}^{r} \geqslant \partial u_{r+2}^{r} \geqslant \ldots \geqslant \partial u_{n}^{r}$ and

$$
\left(x I_{n}-B_{r}\right) U_{r}=\left(\begin{array}{c}
p \tag{5}\\
0 \\
\vdots \\
0
\end{array}\right)
$$

$P(1)$ is satisfied by taking $B_{1}=A^{\prime \prime}$ and $U_{1}=U^{\prime \prime}$. Suppose that $P(r)$ is established; consider the $(r+1)^{\text {th }}$ row of (5);

$$
\begin{align*}
&-b_{r+1,1}^{r} u_{1}^{r}-\ldots-b_{r+1, r}^{r} u_{r}^{r}+\left(x-b_{r+1, r+1}^{r}\right) u_{r+1}^{r} \\
&-b_{r+1, r+2}^{r} u_{r+2}^{r}-\ldots-b_{r+1, n}^{r} u_{n}^{r}=0 \tag{6}
\end{align*}
$$

If $b_{r+1,1}^{r} \neq 0$ then $-b_{r+1,1}^{r} u_{1}^{r}$ is the leading term of the LHS of (6) (because of the arrangement of the u_{i}^{r} in order of descending degree) and hence $u_{I}^{r}=0 \quad \bar{X}$. Hence $b_{r+1,1}^{r}=0$. Similarly $b_{r+1, i}^{r}=0$ for $i<r-1$.

Now we want to reduce the $(r+1, r-1)$ entry to 0 . By hypothesis $\mathrm{b}_{r, r-1}^{r} \neq 0$. Let

$$
K=I_{n}-b_{r+1, r-1}^{r}\left(b_{r, r-1}^{r}\right)^{-1} N_{r+1, r}
$$

where $N_{i j}$ denotes the matrix with a I in the (i, j) place and Os elsewhere. Now let $B_{r+1}=K_{B_{r}} K^{-1}, U_{r+1}=K U_{r}$. We note that B_{r+1} agrees with B_{r} on the top left-hand $r x r-1$ submatrix of B_{r} and also on the first $r-2$ elements of the $(r+1)^{\text {th }}$ row. Moreover $\mathrm{b}_{\mathrm{r}+1, \mathrm{r}-1}^{\mathrm{r}+1}=0$. Since $\mathrm{U}_{\mathrm{r}+1}$ still satisfies the hypothesis (ii) of $P(x)$ all that remains to prove is that $b_{r+1, r}^{r+1} \neq 0$ and that $\partial u_{r+1}^{r+1}<\partial u_{r}^{r+1}$.

Consider what (6) becomes with the new naming (and remembering that $b_{r+1, i}^{r+1}=0$ for $\left.i<r-1\right)$;

$$
\begin{equation*}
-b_{r+1, r}^{r+1} u_{r}^{r+1}+\left(x-b_{r+1, r+1}^{r+1}\right) u_{r+1}^{r+1}-\cdots-b_{r+1, n}^{r+1} u_{n}^{r+1}=0 \tag{7}
\end{equation*}
$$

If $\partial u_{r+1}^{x+1}=\partial u_{r}^{r+1}$ then the leading term of the LHS of (7) is $x u_{r+1}^{r+1}$ and hence $u_{r+1}^{r+1}=0 . \times$ Similarly if $b_{r+1, r}^{r+1}=0$. Thus $\partial u_{r}^{r+1}>\partial u_{r+1}^{r+1}$ and $b_{r+1, r}^{r+1} \neq 0$, so $P(r+1)$ is established.

Thus $P(n)$ is true and so the forward implication of the theorem is proved.
(\leftarrow). This is just a straightforward calculation.

We consider some particular cases;
(i) $\mathrm{K}=\mathrm{k}$ is commutative. We clearly may reduce all the entries on the subdiagonal to I and then reduce all the entries on or above the diagonal (excluding the last column) to 0 . We then have A in the form

$$
\left(\begin{array}{ccccc}
0 & 0 & \ldots & 0 & b_{0} \\
1 & 0 & \ldots & 0 & 0 \\
b_{1} \\
0 & 1 & 0 & \ldots & 0 \\
b_{2} \\
\cdots & \cdot & \cdot & \cdot & \cdot \\
0 & \ldots & 0 & 1 & b_{n-1}
\end{array}\right) \quad\left(b_{i} \in k\right)
$$

This matrix is of course the companion matrix of the polynomial $f(x)=x^{n}-\sum_{i=0}^{n-1} b_{i} x^{i}$, and $x I_{n}-A \sim f$.
(ii) $n=2$. Here the only condition for a matrix to be cyclic is that the bottom left hand corner of some matrix in the conjugacy class be non-zero; it is easily seen that this holds unless A is scalar ie. $A=g I_{2}$ for some $g \in K$.

Chapter 3 Factorizations and Eigenrings

This chapter deals with the factorizations and eigenrings of elements and matrices in free algebras.

In $\wp l$ we consider the following situation; let R be a k-algebra, E / k a Galois extension with Galois group G and let $S=R \otimes_{K} E$. Let J be a principal right ideal of S generated by a non-zerodivisor and suppose that J is invariant under the action of G. Does J necessarily have an invariant generator ? This holds if $H^{1}(G, U(S))$ is trivial and we show that this condition is satisfied if R is a matrix ring over a fir (Prop^{n} I.3). We prove an analogous result for purely inseparable extensions and derivations(Prop ${ }^{n}$ 1.4).

In $\wp 2$ we determine what types of factorizations of matrix atoms over free algebras occur when the ground field is extended. If the extension is purely inseparable then the factorization is rigid (Prop^{n} 2.1) and if the extension is Galois then the factorization is fully reducible (Prop n 2.4).

In $\S 3$ we consider eigenrings of atoms in free algebras; we show that each atom has a unique 'splitting field', given by the normal closure of the eigenring ($\mathrm{Th}^{\mathrm{m}} 3.3$).

Some examples of the factorizations described in $\$ 2$ are constructed in $\$ 4$.

In $\oint 5$ we consider the eigenrings of matrix atoms over free algebras. We show that we can construct arbitrary division algebras over a commutative field k as the eigenring of a matrix atom of $k\langle X\rangle\left(\operatorname{Th}^{m} 5 \cdot 5\right)$.

§1. Invariant generators of invariant ideals

In considering the factorization of elements of free algebras under ground field extensions we shall come across the following question; do principal right ideals of $E(X\rangle$ invariant under the action of $\operatorname{Gal}(\mathrm{E} / \mathrm{k})$ have an invariant generator? We also find the same question for matrices.

We answer the question in more generality. Recall the definition of the first cohomology group. Let G be a group and U a group (not necessarily abelian) on which G acts. A map $G \rightarrow U$ given by $g \mapsto u_{g}$ is a crossed homomorphism if it satisfies the following identity;

$$
u_{g h}=u_{h} u_{g}{ }^{h}
$$

Two crossed homomorphism $g \mapsto u_{g}$ and $g \mapsto v_{g}$ are equivalent if there exists $c \in U$ such that

$$
\left.u_{g}=\mathrm{cv}_{\mathrm{g}} \mathrm{c}^{-\mathrm{g}} \quad \text { (for all } \mathrm{g} \in G\right)
$$

The set obtained by taking the set of crossed homomorphisms and factoring out by this equivalence relation is the first cohomology set : denoted $H^{l}(G, U) . H^{l}(G, U)$ is trivial if it has only one element, namely the equivalence class of the trivial crossed homomorphism $G \rightarrow\{\mathcal{T}\}$.

Now let R be a k-algebra and E / k a Galois extension with Galois group G. Let $\mathrm{S}=\mathrm{R} \otimes_{\mathrm{K}} \mathrm{E}$. We can regard G as acting on S (fixing R). Call a subset I of S G-invariant if $I^{g} \subseteq I$ for all $g \in G$; the G-invariant elements of S are just those that lie in R.

Prop n I.I Let k, E, G, R and S be as above and suppose that $H^{l}(G, U(S))$ is trivial. Then any G-invariant principal right ideal of S generated by a non-zerodivisor is generated by an element of R.

Pf Let $I=f S$ be G-invariant (f a non-zerodivisor). For each $g \in G, f^{g} \in f S$, say $f^{g}=f u_{g}$. Consider $f^{g h}$;

$$
\begin{equation*}
f u_{g h}=f^{g h}=\left(f^{g}\right)^{h}=\left(f u_{g}\right)^{h}=f^{h} u_{g}^{h}=f u_{h} u_{g}^{h} \tag{1}
\end{equation*}
$$

Since f is a non-zerodivisor we deduce from (1) that

$$
\begin{equation*}
u_{g h}=u_{h} u_{g}^{h} \tag{2}
\end{equation*}
$$

Taking $h=g^{-1}$ in (2) we see that $u_{g} \in U(S)$; thus $g \mapsto u_{g}$ is a crossed homomorphism of G into $U(S)$. Since $H^{1}(G, U(S))$ is trivial this crossed homomorphism must be equivalent to the identity i.e. there exist $v \in U(S)$ such that $u_{g}=v v^{-g}$ (here $\mathrm{v}^{-\mathrm{g}}$ denotes $\left.\left(\mathrm{v}^{-1}\right)^{\mathrm{g}}\right)$.

Now let $f^{\prime}=f v . \quad f S=f^{\prime} S$ and

$$
\left(f^{\prime}\right)^{g}=(f v)^{g}=f^{g} v^{g}=f u_{g} v^{g}=f v=f^{\prime} \quad \text { for all } g \in G
$$

so $f^{\prime} \in R$.

The problem thus reduces to that of establishing that the first cohomology set is trivial. In the particular case where $\mathrm{R}=\mathrm{k}$ the result is well-known;

Prop ${ }^{n}$ 1. 2 Let E / k be a finite Galois extension with Galois group G. Then $H^{1}(G, U(E))$ is trivial. (See e.g.[g] p.151 , where it is also proved that $H^{1}\left(G, \mathcal{G L}_{n}(E)\right)$ is trivial.)

Using this result we prove a more general result, including the case of invertible matrices over a free algebra.
T^{m} l. 3 Let E / k be a Galois extension with Galois group G. Let R be a k-algebra and let $S=R \otimes_{k} E$. Then if R is a fir $H^{l}\left(G, G L_{n}(S)\right)$ is trivial.

Pf Let $g \mapsto U_{g}$ be a crossed homomorphism of G into $G L_{n}$ (S). Let $F=S^{n}$. F is a left S-module (and hence also a left R-module) under the natural action.

Let T be the skew group ring on E over G (i.e. $T=E[G: e g=g e g]$). F is a right T-module under the action

$$
\begin{array}{ll}
s e=s\left(e I_{n}\right) & (s \in F, e \in E) \\
s g=s^{g} U_{g} & (s \in F, g \in G)
\end{array}
$$

Now let F_{1} be the elements of F fixed by all the elements of G . Since R is a fir and F_{1} is a submodule of the free R-module F, F_{1} is a free left R-module. Let $s_{i}(i \in I)$ be a left R-basis for F_{1}. We show that it is also a left S-basis for F.
(i) The set $s_{i}(i \in I)$ is left independent over S. Let $g_{i}(i=1,2, \ldots, m)$ be a list of all the elements of G and let $a_{i}(i=1,2, \ldots, m)$ be a k-basis for E. We note that the matrix C defined by $c_{i j}=a_{j}^{g i}$ is invertible (thisfollows from Dedetưnd'r Lemma)

Now suppose that there is a relation of S-dependence $\sum_{i} t_{i} s_{i}=0$ $\left(t_{i} \in S\right)_{0}$ We may write $t_{i}=\sum_{j} a_{j} t_{j i}\left(t_{j i} \in R\right)$. We then have

$$
\sum_{j}\left(a_{j}\left(\sum_{i} t_{j i} s_{i}\right)\right)=0
$$

If we act on this by some $g \in G$ we get

$$
\begin{equation*}
\sum_{j}\left(a_{j}^{g}\left(\sum_{i} t_{j i} s_{i}\right)\right)=0 \tag{1}
\end{equation*}
$$

Write t for the vector $\left(\sum t_{1 i} s_{i}, \sum t_{2 i} s_{i}, \ldots, \sum t_{m i} s_{i}\right)^{T}$. Then from (1) we have that

$$
\mathrm{Ct}=0
$$

and hence $t=0$. Thus $\sum_{i} t_{j i} s_{i}=0$ for each i, But the s_{i} are left R-independent and so all the $t_{j i}=0$. Thus the s_{i} are left s-dependent.
(ii) The set $s_{i}(i \in I)$ spans F. Let

$$
H=\{s \in F: s g \in s E \text { for all } g \in G\}
$$

We show firstly that any element of H is a left E-multiple of an element of F_{1} and secondly that any element of F is a sum of elements of H, which establishes the desired result.
(1) Let $s \in H$, say $s g=\operatorname{sb}_{g}\left(b_{g} \in E\right)$ for each $g \in G$. It is now easily checked that $g \mapsto \mathrm{~b}_{\mathrm{g}}$ is a crossed homomorphism of G into E. Since by $P=o P^{n} 1.2 H^{1}\left(G, E^{*}\right)$ is trivial there exists $d \in E$ such that $b_{g}=d d^{-g}$. Then for any $h \in G$,

$$
(d s) h=(s d) h=s(d h)=s\left(h d^{h}\right)=s b_{h} d^{h}=s d=d s
$$

so ds F_{1} and hence s is a left E-multiple of an element of F_{1}.
(2) Let $f_{i}=\sum_{9 \in G} g a_{i}{ }^{g} \in T(i=1,2, \ldots, m)$. Since C is an invertible matrix there exist $z_{i} \in E$ such that $\sum_{i} f_{i} z_{i}=1$. Now suppose that s is any element of F. Set $s_{i}^{\prime}=\operatorname{sf}_{i} z_{i}$. Then

$$
s=s l=s\left(\sum_{i} f_{i} z_{i}\right)=\sum_{i} s f_{i} z_{i}=\sum_{i} s_{i}^{i}
$$

For any $h \in G$ we have

$$
\begin{aligned}
s!h & =s f_{i} z_{i} h=s f_{i} h z_{i}^{h}=s\left(\sum_{g} g a_{i}^{g} h z_{i}^{h}\right)=s\left(\sum_{g} g h a_{i}^{g h} z_{i}^{h}\right) \\
& =s\left(\left(\sum_{g} g h a_{i}^{g h}\right) z_{i}^{h}\right)=s\left(f_{i} z_{i}^{h}\right)=s_{i}^{\prime}\left(z_{i}^{-1} z_{i}^{h}\right) .
\end{aligned}
$$

Thus each $s_{i}^{\circ} \in H$ and s is the sum of the s_{i}^{\prime} -
We have shown that the $s_{i}(i \in I)$ form an S-basis for F_{0}. Hence $|I|=n$. Let B be the matrix whose rows are the s_{i}. Then B is invertible and

$$
B=B g=B^{g_{U}} \quad \text { for all } g \in G
$$

so $U_{g}=B^{-g_{B}}$. Thus every crossed homomorphism of G into $G L_{n}(S)$ is equivalent to the identity and $H^{l}\left(G, G L_{n}(S)\right)$ is trivial. Cor ${ }^{y}$ Let P be a full matrix over $S=E\langle X\rangle$, and suppose that the ideal $P S_{n}$ is invariant under $G a l(E / k)$. Then $P S_{n}=P ' S_{n}$ for some $P^{\prime} \in(k\langle X\rangle)_{n}$.

We also need an analogous result for derivations. We treat the simplest case. Let E / K be a simple purely inseparable extension of exponent 1 i.e. $E=k(a)$ where $a^{p} \in k(p=$ char $k)$. Let d be the derivation on E defined by $a^{d}=1$; d has field of constants k. Let R be a fir and a k-algebra and let $S=R\left(\mathbb{X}_{K} E\right.$. d may be extended. to a derivation of S_{n} over R_{n} (by putting $R^{d}=0 \quad$ and $\left.\left(b_{i j}\right)^{d}=\left(b_{i j}^{d}\right)\right)$.
$\operatorname{Prop}^{n} 1.4$ Let P be a full matrix over S such that $P^{d} \in P S_{n}$. Then there exists $U \in G L_{n}(S)$ such that $P U \in R_{n}$.
Pf Let $P^{d}=P M$. Let $T=E\left[t:\right.$ te $\left.=e t+e^{d}, t^{p}=0\right]$. We can define a left action of T on the free rightes-module $F \approx{ }^{n} S$ by

$$
\begin{array}{ll}
t s=s^{d}+M s & (s \in F) \\
e s=s e & (s \in F, e \in E)
\end{array}
$$

This makes F into a left T-module. We also make F into a right $R-$ module under the obvious restriction from S.

Let

$$
F_{1}=\{s \in F: t s=0\}
$$

F_{I} is an R-submodule of the free right R-module F and R is a fir; hence F_{1} is a free right R -module. Let $\mathrm{s}_{\mathrm{i}}(i \in I)$ be a right R-basis for F_{1}. We show that it is also an S-basis for F.
(i) The set $s_{i}(i \in I)$ is right independent over S. Suppose there is a relation of dependence $\sum_{i} s_{i} m_{i}=0\left(m_{i} \in S\right)$. Since E is spanned over k by $1, a, \ldots, a^{p-1}$ we may write $m_{i}=\sum_{j=1}^{p-1} a_{m}^{j_{m}} c_{j}^{\prime}$ ($\left.m_{i j} \in R\right)$ and the relation of dependence becomes

$$
\sum a^{j}\left(\sum s_{i} m_{i j}\right)=0
$$

Premultiplying by t gives

$$
j a^{j-1}\left(\sum s_{i} m_{i j}\right)=0
$$

(since $t s_{i}=0$) and continuing like this we get

$$
\left(\begin{array}{cccc}
1 & a & \ldots . & a^{p-1} \\
0 & 1 & & (p-1) a^{p-2} \\
& 2! & \ddots & \vdots \\
0 & & 0 & (p-1)!
\end{array}\right)\left(\begin{array}{c}
s_{i} m_{i 1} \\
s_{i} m_{i 2} \\
\vdots \\
s_{i} m_{i p}
\end{array}\right)=0
$$

But clearly the left-hand matrix is invertible. Hence each $\sum s_{i} m_{i j}$ is 0 and since the s_{i} are R-independent, all the $m_{i j}$ must be 0 i.e. $m_{i}=0$ for all $i \in I$. Thus the s_{i} are linearly independent over S.
(ii) The s_{i} span F. Since the matrix $C=\left(c_{i j}\right)$ defined by $c_{i j}=\left(a^{j}\right)^{d^{i}}=j_{C_{i}} a^{j-i}$ is invertible we can find $b_{0}, b_{1}, \ldots, b_{p-1}$ such that

$$
c\left(\begin{array}{c}
b_{0} \\
b_{1} \\
\vdots \\
b_{p-1}
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
1
\end{array}\right)
$$

It can now be checked that (in T)

$$
\sum_{i} a^{i} t^{p-1} b_{i}=1
$$

Let $s \in F$ and define $m_{i}=t^{p-1} b_{i} s$. We see that;
(1) $t m_{i}=t^{p_{b}} b_{i}=0$, so $m_{i} \in F_{1}$
(2) $\quad s=\sum_{i} a^{i} m_{i}=\sum_{m_{i}} a^{i}$, so s is a right combination (ove rE) of the m_{i}.

Thus the s_{i} also span F, and hence $|I|=n$.
Let U be the matrix whose columns are the $s_{i} . U \in G L L_{n}(S)$ and

$$
\begin{aligned}
t U & =0 \\
& =U^{d}+M U
\end{aligned}
$$

Hence

$$
\begin{aligned}
(P U)^{d} & =P^{d} U+P U^{d} \\
& =P M U+P U^{d} \\
& =P\left(M U+U^{d}\right) \\
& =0 .
\end{aligned}
$$

§2. Nature of factorizations under ground field extensions

We deal first with the purely inseparable case.
$\mathrm{Th}^{\mathrm{m}} 2.1$ Let $\mathrm{R}=\mathrm{k}\langle\hat{\mathrm{X}}\rangle$, let E / k be a purely inseparable extension and let $S=E\langle X\rangle$. Let P be a matrix atom of R_{m}. Then P has an atomic factorization in S_{m} of the form $P=P_{1} \ldots P_{n}$ where $P_{1} \sim P_{2} \sim \ldots \sim P_{n}$. If $m=1$ (so P is an element of R) then this factorization is rigid.

Befor proving this theorem we state and prove a proposition and a particular case of the theorem.

Prop ${ }^{n} 2.2$ Let $S=E\langle X\rangle$ (where E is any commutative field) and let $f_{1}, f_{2}, \ldots, f_{n}$ be atoms of S with $f_{1} \sim f_{2} \sim \ldots \sim f_{n}$. Then the product $f_{1} f_{2} \ldots f_{n}$ is rigid.
Pf Suppose that $f=g_{1} g_{2} \cdots g_{r}$ is a different atomic factorization of f in S. Since S is a UFD, $r=n$ and each $g_{i} \sim f_{1}$. Now suppose that $g_{1} S=f_{1} S$. Cancelling on the right in the relation

$$
f_{1} \cdot f_{2} f_{3} \cdots f_{n}=g_{1} \cdot g_{2} g_{3} \cdots g_{n}
$$

we get a coprime (and hence comaximal) relation

$$
f_{1} t=g_{1} s
$$

and now $t \sim g_{1} \sim f_{1} \sim s$, a contradiction (by Prop^{n} 1.4.3).
Hence $f_{1} S \neq g_{1} S$. Continuing inductively we can show that the two factorizations $f=f_{1} f_{2} \ldots f_{n}$ and $f=g_{1} g_{2} \cdots g_{r}$ are equivalent. Thus $L(f S, S)$ is a chain and the product
$f=f_{1} f_{2} \ldots f_{n}$ is rigid.
Prop ${ }^{n}$ 2.3 Hypotheses and conclusions as in Th^{I} 2.1, except assume that the extension E / k is a simple purely inseparable extension of exponent 1 .

Pf Let k be of characteristic $p . E$ is of the form $k(a)$ where $a^{p} \in k$. There is a derivation d on E (with field of constants k) given by $a^{d}=1$. This may be extended to a derivation of S_{m} over R_{m} by setting $\left(b_{i j}\right)^{d}=\left(b_{i j}\right)$ and $R^{d}=0$. Now suppose that P has a factorization (in S_{m})

$$
\begin{equation*}
P=P_{1} P_{2} \cdot \ldots \cdot P_{r} G \tag{I}
\end{equation*}
$$

where the P_{i} are atoms of S_{m} with $P_{1} \sim P_{2} \sim \ldots \sim P_{r}$ and G has no factorization with a left atomic factor stably associated to P_{1}. If G is invertible the result is established, so assume that G is a non-unit. We derive a contradiction. Since $P \in R_{m}$, $P^{d}=0$; hence applying d to (1) gives

$$
\begin{align*}
0 & =\left(P_{1} \ldots P_{r}\right)^{d_{G}}+\left(P_{1} \ldots P_{r}\right)_{G}^{d} \\
-\left(P_{1} \ldots P_{r}\right)^{d} & =\left(P_{1} \ldots \cdot P_{r}\right)^{d_{G}} \tag{2}
\end{align*}
$$

Since P is an atom of R_{m} and $P_{1} \ldots P_{r}$ is a proper left factor of $P, P_{I} \ldots P_{r} \notin R_{m}$ and hence $\left(P_{I} \ldots P_{r}\right)^{d} \neq 0$. Thus (2) provides a non-zero common right multiple of $\left(P_{1} \ldots P_{r}\right)$ and $\left(P_{1} \ldots P_{r}\right)^{d}$. We find common right and left factors in (2);

$$
G^{d}=M Q, G=M^{\prime} Q,-P_{I} \ldots P_{r}=F N,\left(P_{I} \ldots P_{r}\right)^{d}=F N^{\prime}
$$

Note that N is not invertible. (For suppose that N was invertible. Then $\left(P_{1} \ldots P_{r}\right)^{d}$ is a right multiple of $\left(P_{1} \ldots P_{r}\right)$ and by Prop ${ }^{n}$ I. 4 there exists $U \in G L_{m}(S)$ such that $P_{I} \ldots P_{r} U \in R_{m}$, contradicting the atomicity of P.) Cancelling the right and left factors in
(2) gives the coprime (and hence comaximal) relation

$$
N \cdot M=N^{\prime} \cdot M^{\prime}
$$

Thus $M^{\prime} \sim N$ and N as aright factor of $P_{1} \ldots P_{r}$ is the product of
atoms stably associated to P_{1} 。 Hence G^{\prime} has a left atomic factor stably associated to P_{1}, contradicting our hypothesis.

It follows that P has a factorization of the form

$$
P=P_{1} \ldots P_{m}
$$

where the P_{i} are pairwise stably associated atoms of S. If P is an element of R then by $\operatorname{Prop}^{n} 2.2$ the factorization is rigid. Pf of Th^{m} There is a sequence of fields

$$
\mathrm{k}=\mathrm{E}_{\mathrm{o}} \subseteq \mathrm{E}_{1} \subseteq \mathrm{E}_{2} \subseteq \ldots \subseteq \mathrm{E}_{\mathrm{m}}=\mathrm{E}
$$

such that E_{i+1} / E_{i} is a simple purely inseparable extension of exponent $1(i=0,1, \ldots, m-1)$. We prove by induction on i that all the atomic factors of P in E_{i} are stably associated. The case $\mathbf{i}=0$ is trivial.

Suppose that P has an atomic factorization $P=P_{1} P_{2} \ldots P_{q}$ in $E_{j}\langle X\rangle$ with $P_{I} \sim P_{2} \sim \ldots \sim P_{q}$. Now P_{I} is an atom of $E_{j}\langle X\rangle$ and E_{j+l} / E_{j} is a simple purely inseparable extension of exponent 1. By Prop ${ }^{n} 2.3 \quad P_{1}$ has a factorization in $E_{j+1}\langle X\rangle$ of the form $P_{I}=G_{1} \ldots G_{p}$ with the G_{i} stably associated atoms. Now P_{1} and $P_{r}(2 \leqslant r \leqslant q)$ are stably associated as elements of $E_{j}\langle X\rangle$, hence also as elements of $E_{j+1}\langle X\rangle$. Thus all the atomic factors of P_{r} in $E_{j+1}\langle X\rangle$ are stably associated to G_{1} and so the factorization of P in $E_{j+1}\langle X\rangle$ is of the form $P=G_{1} G_{2} \ldots . G_{N}$ with $G_{1} \sim G_{2} \sim \ldots \sim G_{N}$. If $n=1$, so P is an element of R then by Prop ${ }^{n} 2.2$ this factorization is rigid.

Now we deal with the Galois case.
Prop $^{n} 2.4$ Let $R=k\langle X\rangle$, let E / k be a Galois extension with Galois group G and let $S=E\langle X\rangle$. Let P be a matrix atom in R_{m} Then the factorization of P in S_{m} is completely reducible; it is

$$
m_{S / P}^{m_{S}}=\underset{g \in T}{\oplus}{ }^{m_{S}} / Q_{1}^{g} m_{S}
$$

where T is some subset of G and Q_{1} an atom of S_{m}.
Pf G induces a group of automorphisms of S_{m} with fixed ring R_{m}.
Since $P \in R_{m}$, G fixes P and so induces a group of lattice automorphisms of $L\left(\mathrm{PS}_{\mathrm{m}}, \mathrm{S}_{\mathrm{m}}\right)$, the lattice of principal right ideals of S_{m} containing $P S_{m}$ (equivalently, the lattice of m-generator torsion modules containing ${ }^{m_{S}} / P^{m} S_{S}$. Let Q_{1} be an atomic left factor of P in S_{m} and consider the ideal

$$
I:=\bigcap_{g \in G} Q_{I}^{g} S_{m}
$$

I is a principal right ideal of S_{m}, say $I=J S_{m}$ and clearly I is invariant under G". By the corollary to $\operatorname{Prop}^{n} 1.3$ I has an invariant generator, say $I=K S_{m}\left(K \in R_{m}\right)$. But then K is a left factor of P and P is an atom of R_{m}; hence $K S_{m}=P S_{m}$.

Taking an irredundant intersection of the $Q_{1}^{g} S_{m}$ over some subset T of G we get the desired result.

Gor ${ }^{\mathrm{Y}}$ Let $\mathrm{R}=\mathrm{k}\langle\mathrm{X}\rangle$, let E / k be a Galois extension with Galois group G and let $S=E\langle X\rangle$ 。 Let f be an: atom of R. Let L be the factor lattice of f in S and let P be the corresponding partially ordered set. Then P is the unordered set of (say) t elements, so $L=2^{t}$. G has a natural action on P and this action is transitive.

§3. The splitting field

We start with a useful result relating the eigenrings of atoms to the eigenrings of their factors in extended rings. Prop ${ }^{n}$ 3.1 Let $R=k\langle X\rangle$, let E / k be a field extension and let $S=E\langle X\rangle$. Let f be an atom of R and suppose that f has an atomic factorization $f=f_{1} f_{2} \ldots f_{n}$ in S. Then $E_{R}(f)$ embeds (as a ring) in $E_{S}\left(f_{1}\right)$. In particular if f_{1} is an absolute atom then $\mathrm{E}_{\mathrm{R}}(\mathrm{f})$ embeds in E .
Pf By Prop ${ }^{n}$ 1.6.7, $E_{S}(f)=E_{R}(f) \otimes_{K} E$, so there is an embedding a: $E_{R}(f) \longrightarrow E_{S}(f)$
By Prop ${ }^{n}$ 1.6.8, there is a map

$$
b: E_{S}(f) \rightarrow \prod_{i} E_{S}\left(f_{i}\right)
$$

There is also the projection map

$$
c: \prod_{i} E_{S}\left(f_{i}\right) \rightarrow E_{S}\left(f_{1}\right)
$$

Combining these maps we get a (non-zero) map cba: $E_{R}(f) \longrightarrow E_{S}\left(f_{1}\right)$ Since f is an atom, $E_{R}(f)$ is a field and hence this map is an embedding.

If f_{1} is an absolute atom then $E_{S}\left(f_{1}\right) \cong E$ and the last statement of the proposition follows.

We thus have that $E_{R}(f)$ embeds in any field over which f has an absolutely atomic factor. We now want to show that f has an absolutely atomic factor over $\mathrm{E}_{\mathrm{R}}(\mathrm{f})$ and factorizes completely over the normal closure of $E_{R}(f)$. This will prove the existence of unique 'splitting fields'. We deal first with the purely inseparable case and then with the general case.

Def ${ }^{n}$ An atom of $k\langle x\rangle$ is purely inseparable if it factorizes into the product of absolute atoms over some purely inseparable
extension of k .
Prop ${ }^{n} 3.2$ Let f be a purely inseparable atom of $R=k\langle x\rangle$. Then $E_{R}(f)$ is a purely inseparable extension of k over which f splits into absolute atoms.

Pf By hypothesis f splits into absolute atoms over some purely inseparable extension of k. By $\operatorname{Prop}^{n} 3.1, E_{R}(f)$ embeds in this field and hence is itself a purely inseparable extension of k.

Write $F=E_{R}(f), S=F\langle X\rangle$, and $T=E_{S}(f)$. By Prop ${ }^{n}$ 1.6.7, $T=E_{R}(f) \otimes_{K} F=F \otimes_{K} F$.

By Th^{m} 2.1, the atomic factorization of f in S is of the form $f=f_{1} \ldots f_{n}$, where $f_{1} \sim f_{2} \sim \ldots \sim f_{n}$. We shall prove that f_{1} has a scalar eigenring. Since $f_{1} \sim f_{n}$ there is a comaximal relation

$$
\begin{equation*}
a f_{1}=f_{n} a^{\prime} \tag{1}
\end{equation*}
$$

Define a: $I_{S}\left(f_{1}\right) \longrightarrow I_{S}(f)$ by $c \mapsto f_{1} \ldots f_{n-1}$ ac. This is not a ring homomorphism but' it is an E-space homomorphism. a induces a map $b: I_{S}\left(f_{1}\right) \longrightarrow E_{S}(f)$. Then

$$
\begin{aligned}
\operatorname{ker}(b) & =\left\{c \in I_{S}\left(f_{1}\right): f_{1} \ldots f_{n-1} a c \in f_{1} \ldots f_{n} s\right\} \\
& =\left\{c \in I_{S}\left(f_{1}\right): a c \in f_{n} S\right\} \\
& =f_{1} S
\end{aligned}
$$

(for since (1) is comaximal, $\mathrm{af}_{1}=f_{n} a^{\prime}$ is a LCRM of a and f_{n}). Thus b induces an (E-space) embedding $c: E_{S}\left(f_{1}\right) \hookrightarrow E_{S}(f)=T$.

Note that each element of T is either a unit or a zero-divisor (see egg. [6] p.197). Let $s \in I_{S}(f)$ and let $t=\bar{s}$ be the image of s in T. There is a relation $s f=f_{s}{ }^{\prime}$, which is right comaximal ff t is invertible. Clearly if $s \in f_{1} S$ this relation is not right comaximal. Conversely, if the relation is not right comaximal then s and f have a common left factor; since f has the rigid factorization $f=f_{1} \ldots f_{n}$, s must have f_{1} as a left factor.

Thus s is a non-unit iff $s \in f_{1} S$. Now let

$$
J=\{t \in T: \text { ta }=0 \text { for all non-units } a\}
$$

J is a minimal right ideal of T and isomorphic to F (as T-module). We claim that $\operatorname{Im}(c) \subseteq J$. By (2) it suffices to show that any element of $\operatorname{Im}(c)$ is annihilated by f_{1}.

Let $m \in \operatorname{Im}(c) ; m=f_{1} \ldots f_{n-1}$ ac for some $c \in I_{S}\left(f_{1}\right)$. Hence

$$
\begin{aligned}
\overline{m f}_{1} & =\overline{f_{1} \cdots f_{n-1} a_{1} f_{1}} \\
& =\overline{f_{1} \ldots f_{n-1} f_{1} c^{\prime}} \\
& =\overline{f_{1} \ldots f_{n-1} f_{n} a^{\prime} c^{\prime}} \\
& =0 .
\end{aligned}
$$

Thus $\operatorname{Im}(c) \subseteq$ J. Comparing k-dimensions now yields

$$
\begin{aligned}
\left|\mathrm{E}_{\mathrm{S}}\left(\mathrm{f}_{1}\right): \mathrm{k}\right| & =|\operatorname{Im}(\mathrm{c}): \mathrm{k}| \\
& \leqslant|\mathrm{J}: \mathrm{k}| \\
& \leqslant|\mathrm{F}: \mathrm{k}|
\end{aligned}
$$

But $F \subseteq E_{S}\left(f_{1}\right)$; hence $F \cong E_{S}\left(f_{1}\right)$, and F has a scalar eigenring. Now suppose that f_{1} is not an absolute atom. Since f is purely inseparable, f_{1} factorizes into absolute atoms over some purely inseparable extension G of F. By $\operatorname{Th}^{\mathrm{m}} 2.1$ the factorization of f_{1} over G is of the form $f_{1}=g_{1} g_{2} \cdots g_{m}$, where $g_{1} \sim g_{2} \sim \cdots \sim g_{m}$. By hypothesis, $m>1$. Now let $\mathrm{cg}_{1}=\mathrm{g}_{\mathrm{m}} \mathrm{c}^{\prime}$ be a comaximal relation. Then $g_{1} \cdots g_{m-1} c$ is a non-trivial element of the eigenring of f_{1} in $G\langle\chi\rangle$ - But. f_{1} has a scalar eigenring over F, hence also over G

Thus f_{1} (and so also f_{2}, \ldots, f_{n}) are absolute atoms.
Th^{m} 3.3 Let f be an atom of $\mathrm{R}=\mathrm{k}\langle x\rangle$. Then f has at least one absolutely atomic factor over $E_{R}(f)$ and f factorizes into the product of absolute atoms over the normal closure of $E_{R}(f)$.

Pf Let E be a minimal Galois extension of k over which f factorizes
into purely inseparable atoms, say $f=f_{1} \ldots f_{r}$ in $E\langle X\rangle$. Let $S=E\langle X\rangle$, let G be $G a l(E / k)$, let L be the factor lattice of f in S and let P be the corresponding partially ordered set. Define

$$
M=\left\{g \in G: f_{l}{ }^{G}=f_{l}\right\}
$$

By the corollary to Prop ${ }^{\mathrm{n}} 2.4 \mathrm{G}$ acts transitively on P (a set of r elements) and hence M is a subgroup of G of index r. Let

$$
M^{\prime}=\left\{e \in E: e^{g}=e \text { for all } g \in M\right\}
$$

M^{\prime} is a separable extension of k and $\left|M^{\prime}: k\right|=r$. Let $T=M^{\prime}\langle X\rangle$; note that $f_{1} \in T$. We show that $E_{R}(f) \cong E_{T}\left(f_{1}\right)$; since by Prop ${ }^{n} .31$ $E_{R}(f) \hookrightarrow E_{T}\left(f_{1}\right)$ it suffices to show that $E_{R}(f)$ and $E_{T}\left(f_{1}\right)$ have the same dimension as k -spaces.

Again using the corollary to Prop ${ }^{n} 2.4$ we have that f is fully reducible over $S ; S / f S \cong \bigoplus_{9 \in B} S / f_{I}{ }^{S} S$, where B is a subset of G with r elements (in fact, B could be taken to be a set of coset representatives of M in G). Clearly f_{1} and $f_{1}{ }^{\text {g }}$. have isomorphic eigenrings; hence

$$
\begin{aligned}
E_{S}(f) & \cong \prod_{g \in B} E_{S}\left(f_{1} g\right) \\
& \cong\left(E_{S}\left(f_{1}\right)\right)^{r}
\end{aligned}
$$

so

$$
\left|E_{S}(f): E\right|=r\left|E_{S}\left(f_{I}\right): E\right|
$$

It follows that

$$
\begin{aligned}
\left|E_{R}(f): k\right| & =\left|E_{S}(f): E\right| \\
& =r\left|E_{S}\left(f_{1}\right): E\right| \\
& =r\left|E_{R}\left(f_{1}\right): M\right| \\
& =\left|E_{T}\left(f_{1}\right): k\right|
\end{aligned}
$$

Thus $E_{R}(f) \cong E_{T}\left(f_{1}\right)$. Since f_{1} is a purely inseparable atom
of T it splits into absolute atoms over $\mathrm{E}_{\mathrm{T}}\left(\mathrm{f}_{1}\right)$ ($\operatorname{Prop}^{n} 3.2$.
Thus f has at least one absolutely atomic factor over $E_{R}(f)$.
Now let K be the normal closure of $E_{R}(f) 。 K$ contains E and since K is normal every element of $\mathrm{Gal}(\mathrm{E} / \mathrm{k})$ extends to an element of $\operatorname{Aut}(K)$. In $K\langle X\rangle f_{1}$ has the factorization

$$
f_{1}=g_{1} \cdots g_{m}
$$

where the g_{i} are absolute atoms. Hence $f_{l}{ }^{g}$ has the factorization

$$
\begin{equation*}
f_{1}{ }^{g}=g_{1}{ }^{g} \cdots g_{m}^{g} \tag{1}
\end{equation*}
$$

where g denotes the extension of g from $\operatorname{Gal}(\mathrm{E} / \mathrm{k})$ to $\mathrm{Aut}(\mathrm{K})$ and the $g_{j}{ }^{g}$ are absolute atoms (because the g_{j} are).

In $E\langle X\rangle f$ has the factorization

$$
f=f_{1} \ldots f_{r}
$$

and (from the $\mathrm{Cor}^{\mathrm{y}}$ to Prop $^{\mathrm{n}}$ 2.4) each f_{j} is stably associated to $f_{l}{ }^{g}$ for some $g \in G$. From (1) we deduce that each f_{j} factorizes into absolute atoms over K.

Thus f factorizes into absolute atoms in $K\langle x\rangle$.

In this section we construct some examples of the
factorizations described in §2.
$\operatorname{Prop}^{n} 4.1$ Let $f_{i}=x^{n-i} y x^{i-1}+a_{i} x+1 \quad(1 \leqslant i \leqslant n ; n$ a fixed integer $)$ be elements of $k\left(a_{1}, \ldots, a_{n}\right)\langle x, y\rangle$ and let $f=f_{1} \ldots f_{n}$. Then f is symmetric in the a_{i}.
Pf Let $h_{i}=x^{n-i} y x^{i-1}+1$ and let $h=x^{n} y^{-1}+1$. Then

$$
\begin{aligned}
f_{i} & =h_{i}+a_{i} x \\
& =x^{-i} h x^{i}+a_{i} x
\end{aligned}
$$

Let J be the set of all functions from $\{1, \ldots, n\}$ to $\{+,-\}$ and define $t_{i}^{+}=h_{i}, t_{i}^{-}=a_{i} x(i=1, \ldots, n)$. Then

$$
f=\prod_{i=1}^{n} f_{i}
$$

$$
=\prod_{i=1}^{n}\left(x^{-i} h x^{i}+a_{i} x\right)
$$

$$
=\sum_{j \in J}^{i=T} t_{l} j(l) \ldots t_{n}^{j(n)}
$$

$$
=\sum_{r=0}^{n} \sum_{j \in J ; j} t_{1} j(1) \ldots t_{n}^{j(n)}
$$

$$
\left|j^{-1}(t)\right|=r
$$

Now define $s_{i}^{\dot{+}}=1, s_{i}^{-}=a_{i}$. Then if $\left|j^{-1}(+)\right|=r$,

$$
t_{1} j(1) \ldots t_{n}^{j(n)}=\left(x^{-1} h^{r_{x} n_{s}}{ }^{j(1)} \ldots s_{n}^{j(n)}\right.
$$

Thus

$$
f=\sum_{r=0}^{n}\left(x^{-l} n\right)^{r_{x} n}\left(\sum_{\substack{j \in J)=1}} s_{1} j(1) \ldots s_{n}^{j(n)}\right)
$$

and each term in brackets is the coefficient of z^{r} in the expansion of $\prod_{i=1}^{n}\left(z+a_{i}\right)$ and hence symmetric in the a_{i}. Thus f is symmetric in the a_{i}.

Prop ${ }^{n} 4.2$ Let k be a field and g an irreducible polynomial of $k[t]$. Let E be the splitting field of g. Assume that E is either
separable (so Galois) or (simple) purely inseparable, and let $a_{1}, a_{2}, \ldots, a_{n}$ be the roots of f in E. Define f_{i} and f as in Prop ${ }^{n}$ 4.1. Then;
(i) f_{i} is an absolute atom of $E\langle X\rangle$
(ii) f is an atom of $k\langle x\rangle$.

Pf That f_{i} is an absolute atom may be easily seen by considering degrees in y. Now let $R=k\langle X\rangle$ and $S=E\langle X\rangle$. To prove (ii) we

Case $1 \mathrm{E} / \mathrm{k}$ Galois. Let $\mathrm{G}=\mathrm{Gal}(\mathrm{E} / \mathrm{K})$. Then G acts transitively on a_{1}, \ldots, a_{n} and hence $x^{n-1} y+a_{i} x+1$ is a left atomic factor of f for $i=1,2, \ldots, n$. However they are pairwise not stebly associated; since S satisfies DFL this imples that

$$
\bigcap_{i=1}^{n}\left(x^{n-1} y+a_{i} x+1\right) s
$$

is generated by an element of length at least n. But f is of length n and thus

$$
f S=\bigcap_{i=1}^{n}\left(x^{n-1} y+a_{i} x+1\right) S
$$

Moreover, these n atoms exhaust all the possible left atomic factors of f in S (again because S satisfies DFL and f is of length n). Now suppose that g is a left factor of f in R. Then $g \in\left(x^{n-1} y+a_{j} x+1\right) S$ for some j. Now $g^{\alpha}=g$ for each $\alpha \in G$; so $g \in\left(x^{n-1} y+a_{i} x+1\right) S$ for each i. Hence $g \in f S$. Thus f is an atom of R.

Case $2 \mathrm{E} / \mathrm{k}$ purely inseparable. Then $\mathrm{a}_{\mathrm{i}}=a$ (say) for $\mathrm{i}=1, \ldots, \mathrm{n}$, and so all the f_{i} are stably associated; a comaximal relation relating f_{i} and f_{i-1} is

$$
x\left(x^{n-i} y x^{i-1}+a x+1\right)=\left(x^{n-i+1} y x^{i-2}+a x+1\right) x .
$$

Since all the factors of f are similar the factorization is rigid; thus if g is a left factor of f in $R, g=f_{1} \ldots f_{j}$ for some $1 \leqslant j \leqslant n$. Now specialize y to 0 ; we get

$$
(a x+1)^{j} \in k[x]
$$

Thus $a^{j} \in k$ and so $j=0$ or n ie. g is either a unit or equivalent to f. Thus f is again an atom of .R.

Particular instances of this construction are;
(i) $k=Q, f(t)=t^{2}+1, E=Q(i)$
$(x y+i x+1)(y x-i x+1)=x y^{2} x+x^{2}+x y+y x+1$.
(ii) $k=Q, f(t)=t^{3}-2$ with roots $a, a w, a w^{2}, E=Q(a, \omega)$
$\left(x^{2} y+a x+1\right)(x y x+a w x+1)\left(y x^{2}+a w^{2} x+1\right)=$
$x^{2} y x y x y x^{2}+x^{2} y x y x+x^{2} y^{2} x^{2}+x y x y x^{2}+2 x^{3}+x^{2} y+x y x+y x^{2}+1$.
(iii) Fa field of characteristic $3, k=F(z), f(t)=t^{3}-z$ with root say $s\left(s o s^{3}=z\right.$) and $E=k(s)$
$\left(\mathrm{x}^{2} \mathrm{y}+\mathrm{sx}+1\right)(\mathrm{xyx}+\mathrm{sx}+1)\left(\mathrm{yx}^{2}+\mathrm{sx}+1\right)=$ $x^{2} y x y x y x^{2}+x^{2} y x y x+x^{2} y^{2} x^{2}+x y x y x^{2}+z x^{3}+x^{2} y+x y x+y x^{2}+1$.

In order to construct some more examples of factorizations we use the idea of continuant polynomials; these are polynomials $p_{0}, p_{1}, \ldots, p_{n}, \ldots$ in the non-commuting indeterminate t_{1}, $t_{2}, \ldots, t_{n}, \ldots$ defined inductively by

$$
\begin{aligned}
& p_{0}=1, p_{1}\left(t_{1}\right)=t_{1} \text { and } \\
& p_{n}\left(t_{1}, \ldots, t_{n}\right)=p_{n-1}\left(t_{1}, t_{2}, \ldots, t_{n-1}\right) t_{n}+p_{n-2}\left(t_{1}, \ldots, t_{n-2}\right) .
\end{aligned}
$$

In any ring with the 2 -term weak algorithm (in particular, in free algebras) it is possible to analyse comaximal relations in terms of continuant polynomials (see [1]). However, all we require here is the rather obvious result in the opposite direction;

Prop ${ }^{n} 4.4$ Let t_{1}, \ldots, t_{n} be elements of $k\langle x\rangle$. Then
$p_{n}\left(t_{1}, \ldots, t_{n}\right) \cdot p_{n-1}\left(t_{n-1}, \ldots, t_{1}\right)=p_{n-1}\left(t_{1}, \ldots, t_{n-1}\right) \cdot p_{n}\left(t_{n}, \ldots, t_{1}\right)$
is a comaximal relation.
Pf This is easily proved by induction.
We may now construct some more examples.
Prop ${ }^{n}$ 4.4 Let $X=\left\{t_{1}, \ldots, t_{n}\right\}$ and let $R=\mathbb{Q}\langle x\rangle$. Let P_{n} denote $p_{n}\left(t_{1}, \ldots, t_{n}\right)$ and P_{n}^{\prime} denote $p_{n}\left(t_{n}, \ldots, t_{1}\right)$. Then
(i) $f=p_{n} p_{n}^{\prime}+p_{n-1} P_{n-1}^{\prime}$ is an atom of $Q\langle\gamma\rangle$
(ii) over $\mathbb{Q}(i)\langle x\rangle$, f has the absolutely atomic factorization

$$
\begin{aligned}
f & =\left(p_{n}+i p_{n-1}\right)\left(p_{n}^{\prime}-i p_{n-1}^{\prime}\right) \\
& =\left(p_{n}-i p_{n-1}\right)\left(p_{n}^{\prime}+i p_{n-1}^{\prime}\right)
\end{aligned}
$$

Pf We first prove by induction on n that $p_{n} \pm i p_{n-1}$ is an absolute atom. The case $n=1$ is trivial. Write $f_{n}=p_{n} \pm i p_{n-1}$. Then

$$
f_{n}=p_{n-1} t_{n}+p_{n-2} \pm i p_{n-1}
$$

Suppose that $f_{n}=g h$. The degree of f_{n} in t_{n} is l and so g and h must be of degrees 0 and 1 respectively in t_{n}. Write $h=h_{o}+h_{1}$, where h_{i} is homogeneous of degree i in t_{n}. Then

$$
g h_{0}=p_{n-2} \pm i p_{n-1} .
$$

By inductive hypothesis either g or h_{o} is a unit. If h_{o} is a unit we may take it to be 1 and then

$$
\begin{aligned}
g & =p_{n-2} \pm i p_{n-1} \\
g h_{1} & =p_{n-1} t_{n}
\end{aligned}
$$

This is clearly impossible; hence g is a unit and f_{n} is an absolute atom.

That

$$
\begin{aligned}
f & =\left(p_{n}+i p_{n-1}\right)\left(p_{n}^{\prime}-i p_{n-1}^{\prime}\right) \\
& =\left(p_{n}-i p_{n-1}\right)\left(p_{n}^{\prime}+i p_{n-1}^{\prime}\right)
\end{aligned}
$$

follows immediately from Prop $^{n} 3.3$ above.

Thus in $Q(i)\langle\gamma\rangle f$ has a factor lattice of length 2. Since the lattice is distributive there are exactly two possible left atomic factors of f, namely $\left(p_{n}+i p_{n-1}\right)$ and $\left(p_{n}-i p_{n-1}\right)$. But neither of these atoms is stably associated to an element of $Q\langle X\rangle$ 。(For suppose that $p_{n}+i p_{n-1} \sim g \in Q\langle X\rangle$ 。 Define a: $Q(i)\langle X\rangle \rightarrow Q(i)[z]$ by sending t_{1}, \ldots, t_{n-1} to l and t_{n} to z. Then $a\left(p_{n}+i p_{n-1}\right)$ is of the form $\mathrm{Bz}+\mathrm{C}+\mathrm{Di}$, where B, C and D are positive integers; and this must be stably associated to $a(g)$, an element of $Q[z]$. This is clearly impossible.)

Thus f has no proper atomic left factor in $Q\langle x\rangle$ and so f is an atom of $Q\langle X\rangle$.

A particular example of this type of factorization is $(x y z+i x y+x+z+i)(z y x-i y x+x+z-i)=$ $x y z^{2} y x+x y z x+x z y x+x y z^{2}+z^{2} y x+x^{2}+x z+z x+z^{2}+1$.

65. Eigenrings of matrices over free algebras

We start by recalling from $\$ 6$ of Chapter 1 some general results on eigenrings of matrices. Let R be a persistent semifir over a field k and let A be a full matrix over R. Then
(i) $E_{R}(A)$ is algebraic over k (1.6.4)
(ii) if A is an atom then $E_{R}(A)$ is a skew field (1.6.3)
(iii) if A is an absolute atom then $E_{R}(A) \cong k$ (an immediate consequence of 1.6 .5 and 1.6.7).

Of course $k\langle X\rangle$ is a persistent semifir and so these results apply. However in this case we can strengthen (i) (in fact using a different method of proof from that in [4]).

Prop ${ }^{n}$ 1.1 Let A be a full matrix over $R=k\langle X\rangle$. Then $E_{R}(A)$ is finite-dimensional over k .

Pf We use notation and methods from Chapter 2. First we note that if two matrices are stably associated then their associated torsion modules are isomorphic and hence their eigenrings are also isomorphic. Thus there is no loss in generality in taking A in normal linear form; say

$$
A=A_{0}+\sum x_{i} A_{i} \quad\left(A_{0}, A_{i} \in K_{n}\right)
$$

Now let $P \in I_{R}(A)$, say $P A=A Q$. We claim that there exists an $M \in R_{n}$ such that $P-A M$ lies in $k_{n} \cdot$ Suppose the contrary and let $N \in B_{n}$ be such that $T=P-A N$ has degree as small as possible. Write $S=Q-N A$. We have $T A=A S$. Comparing leading terms we get;

$$
T^{\ell}\left(\Sigma x_{i} A_{i}\right)=\left(\Sigma x_{i} A_{i}\right) S^{l}
$$

By the methods of Chapter 2 it follows that T^{ℓ} is a right
multiple of $\left(\sum x_{i} A_{i}\right)$, say $T=\left(\sum x_{i} A_{i}\right) W$. By Lemma 2.2.3 ($\Sigma \mathrm{x}_{\mathrm{i}} \mathrm{A}_{\mathrm{i}}$) is a non-zerodivisor, so the degree of W is one less than that of T. Set $T^{\prime}=T-A W$. Then the degree of T^{\prime} is less than that of T , contradicting the hypothesis.

Thus for each $P \in I_{R}(A)$ there exists $M \in R_{n}$ such that $P-A M \in K_{n}$, say $P-A M=f(M)$. The map $f: I_{R}(A) \rightarrow k_{n}$ is well-defined, for suppose that both $P-A M$ and $P-A N$ lie in k_{n}. Then

$$
\begin{aligned}
A(M-N) & =(P-A N)-(P-A M) \\
& \in K_{n}
\end{aligned}
$$

Comparing terms of highest degree we get

$$
\left(\Sigma x_{i} A_{i}\right)(M-N)^{l}=0
$$

and since $\left(\sum x_{i} A_{i}\right)$ is a non-zerodivisor, $(M-N)^{l}=0$ so $M=N$.
It now follows easily that f is a homomorphism with kernel $A R_{n}$; hence f induces an embedding $E_{R}(A) \hookrightarrow K_{n}$. Cor ${ }^{y}$ Let A be a matrix atom over $R=k\langle X\rangle$. Then $E_{R}(A)$ is a skew field finite-dimensional over k.

If we restrict attention to $1 x l$ matrices ie. elements then we have seen that all eigenrings are commutative (Cor $^{\text {y }}$ to 1.6.7); this result turns on the fact that every factor lattice is distributive. In the general (matrix) case this condition does not hold and it is easy to produce matrices with non-commutative eigenrings - an example is the matrix diag $(x, x) \in(k[x])_{2}$ which has eigenring k_{2}. It is not so evident that matrix atoms can have non-commutative eigenrings, but in fact one can produce arbitrary finite-dimensional skew fields as eigenrings of matrix atoms; the next few pages are devoted to establishing this
result.
Prop $^{n} 5.2$ Let k be any field, let $X=\left\{x_{i j}: 1 \leqslant i, j \leqslant r\right\}$ be a set of indeterminate and let $R=k\langle X\rangle$. Let $Q=\left(x_{i j}\right) \in R_{r}$. Then Q is an (absolute) matrix atom.

In order to prove this obvious-looking result we use the following lemma.

Lemma 5.3 Let k be a field, $X=\left\{x_{1}, \ldots . x_{m}\right\}$ a set of indeterminates. Let $R=k\langle X\rangle$, let $n \leqslant m$ and define $I=\sum_{i=1}^{n} x_{i} R_{0}$ Then I is a maximal proper n-generator right ideal of R. Pf Recall that every right ideal J of R is free of unique rank, this rank being denoted by $\mathrm{p}(\mathrm{J})$. Let

$$
S=\{J \rightrightarrows R: I \nsubseteq J \subsetneq R, p(J) \leqslant n\}
$$

Suppose that S is nonempty. Choose $J \in S$ of minimal rank, say $p(J)=r(\leqslant n)$. Now choose free generators of J, y_{1}, \ldots, y_{r} so as to;
(i) minimize $\max \left(\partial\left(y_{j}\right)\right)$
(ii) given (i), to minimize the number of i such that $\partial\left(\mathrm{y}_{\mathrm{i}}\right)=\max \left(\partial\left(\mathrm{y}_{\mathrm{j}}\right)\right)$.

Suppose that $\max \left(\partial\left(y_{j}\right)\right)>1$, say (without loss of generality) that $\partial\left(y_{r}\right)>1$. Now $I \subset J$, so for $j=1, \ldots, n$

$$
\begin{equation*}
x_{j}=\sum_{i} y_{i} a_{i j} \tag{ij}
\end{equation*}
$$

If each $a_{i r}=0$ then $\sum_{i=1}^{r-1} y_{i} R \supseteq I$, so by assumption on minimality of $p(J) \quad \sum_{i=1}^{r-1} y_{i} R=\sum_{i=1}^{n} x_{i} R$, which is a contradiction (compare ranks). Thus some $a_{i r} \neq 0$, say $a_{j r} \neq 0$. Then

$$
\begin{aligned}
\partial\left(\sum_{i} y_{i} a_{j i}\right) & =\partial\left(x_{j}\right) \\
& =1
\end{aligned}
$$

so the set $\left\{\mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{r}}\right\}$ is right dependent. By the weak
algorithm (see Ch $1, \xi 2$), y_{r} is right dependent on $y_{1}, y_{2}, \ldots, y_{r-1}$, say $\quad \partial\left(y_{r}-\sum_{i=1}^{r-1} y_{i} b_{i}\right)<\partial\left(y_{r}\right)$. But now $y_{1}, \ldots, y_{r-1}, y_{r}-\sum_{i} y_{i} b_{i}$ is a generating set of J and it contradicts condition (i) or (ii). Thus $\max \left(\partial\left(y_{j}\right)\right)=1$ i.e. each y_{j} is of degree l or less.

It is now clear that we can choose the generators $y_{1}, y_{2}, \ldots, y_{r}$ of J !such that $y_{1}=x_{1}, y_{2}=x_{2}, \ldots$ and since $n \geqslant r$ this means that $J=I$; thus S is the empty set and the result is established.

Pf of Prop $^{n} 5.2$ Suppose Q has the factorization $Q=A B \quad\left(A, B \in R_{r}\right)$ We show that either A or B is invertible. Consider the first row of the factorization;

$$
\left(x_{11} x_{12} \ldots \ldots x_{1 r}\right)=\left(a_{11} a_{12} \ldots a_{1 r}\right) B
$$

Thus ($\Sigma a_{1 i} R$) is a n-generator right ideal of R containing $\left(\Sigma x_{l i} R\right)$. By the preceding lemma, $\left(\Sigma a_{l i} R\right)=\left(\Sigma x_{l i} R\right)$ or R_{\cdot} Case $1\left(\Sigma a_{1 i} R\right)=\left(\Sigma x_{1 i} R\right)$. Then there exists $J \in G L_{r}(R)$ s.t.

$$
\mathrm{AJ}=\left(\begin{array}{cccc}
\mathrm{x}_{11} & \mathrm{x}_{12} & \ldots . & \mathrm{x}_{1 r} \\
& \text { 米 } & &
\end{array}\right)
$$

Considering the factorization $Q=A J \cdot J^{-1} B$ we see that $J^{-1} B=I_{r}$, so B is invertible.

Case $2\left(\sum a_{1 i} R\right)=R$. Then there exists $J \in G L_{r}(R)$ s.t.

$$
\begin{aligned}
Q & =A J . J^{-1} B \\
& =\left(\begin{array}{l|lll}
1 & \ldots .0 & 0 \\
\hline c_{21} & & \\
c_{31} & & A^{\prime} \\
\vdots & & & \\
c_{r 1}
\end{array}\left|\begin{array}{c|ccc}
x_{11} & x_{12} & \ldots . & x_{1 r} \\
d_{21} & & \\
d_{31} & B^{\prime} \\
\vdots \\
d_{r 1}
\end{array}\right|\right.
\end{aligned}
$$

where A^{\prime} and B^{\prime} lie in R_{r-1}. Define new variables by

$$
\begin{aligned}
& y_{1 j}=x_{1 j} \\
& y_{i j}=x_{i j}-c_{i 1} x_{1 j} \quad(r \geqslant j \geqslant 1)
\end{aligned}
$$

The $y_{i j}$ form a set of r^{2} elements generating $k\langle x\rangle$; since $|x|=r^{2}$, they form a free generating set and so the map $x_{i j} \rightarrow y_{i j}$ is an \&utomorphism of R. It follows that this change of variable preserves atomicity and invertibility of matrices. Let $Q^{\prime}=\left(y_{i j}\right)$. Then

$$
\begin{align*}
& Q^{\prime}=\left(\begin{array}{cccc}
1 & & & \\
-c_{11} & 1 & & \\
-c_{21} & & 1 & \\
\vdots & & & \\
-c_{r l} & & & 1
\end{array}\right) \quad . Q \\
& =\left(\begin{array}{c|ccc}
1 & 0 & 0 \ldots . & 0 \\
\hline 0 & & \\
\vdots & A^{\prime \prime} & \\
0 & & & B^{\prime \prime} \\
y_{11} & y_{12} & \ldots & y_{1 r} \\
\hline d_{21} & \\
\vdots & &
\end{array}\right) \tag{1}
\end{align*}
$$

where $A^{\prime \prime}$ and $B^{\prime \prime}$ are A^{\prime} and B^{\prime} rewritten in the new variables and the $d_{r l}$'s are some elements of R. Consider the bottom right hand r-lxr-l submatrix of Q in the above factorization; we get

$$
\left(\begin{array}{llll}
y_{22} & y_{23} & \cdots & y_{2 r} \\
y_{32} & y_{33} & \cdots & y_{3 r} \\
\vdots & & & \\
y_{r 2} & \cdots & \cdots & y_{r r}
\end{array}\right)=A^{\prime \prime} B^{\prime \prime}
$$

We may assume inductively that the result holds for r-1xr-1 matrices; hence either $\mathrm{A}^{\prime \prime}$ or $\mathrm{B}^{\prime \prime}$ is invertible.

If $A^{\prime \prime}$ is invertible, so is A.
If $B^{\prime \prime}$ is invertible then

$$
A^{\prime \prime}=\left(\begin{array}{lll}
y_{22} & \cdots & y_{2 r} \\
\vdots & & \\
y_{r 2} & \cdots & y_{r r}
\end{array}\right) \cdot\left(B^{\prime \prime}\right)^{-1}
$$

Now consider the first column of (1);

$$
\left(\begin{array}{l}
y_{2 I} \\
\vdots \\
y_{r 1}
\end{array}\right)=\left(\begin{array}{lll}
y_{22} & \cdots & y_{2 r} \\
\vdots & & \\
y_{r 2} & & y_{r r}
\end{array}\right)
$$

for some $W \in \epsilon^{r-l}$. But this is clearly impossible $\left(y_{21} \notin \sum_{i>2} y_{2 i} R\right)$ Thus either A or B is invertible and hence Q is an atom.

Cor ${ }^{y}$ Let k be a field, $B_{1}, B_{2}, \ldots, B_{n}\left(n=r^{2}\right)$ a k-basis for k_{r} and let $Y=\left\{y_{1}, \ldots, y_{n}\right\}$ and $R=k\langle y\rangle$. Then $Q=\sum_{i} y_{i} B_{i}$ is a matrix atom.

Pf An invertible change of variable does not affect atomicity; and we may clearly make such a change of variable $y_{k} \mapsto z_{i j}$ to make Q into $\left(z_{i j}\right)$. The result now follows by Prop ${ }^{n}$ 5.2.

We need one more result, on the splitting of extensions, before we can construct the eigenrings.

Prop ${ }^{n} 5.4$ Let $R=k\langle X\rangle$, let E / k be a commutative field extension and let $S=R \otimes_{\mathrm{K}} \mathrm{E}$. Let

$$
\begin{equation*}
0 \longrightarrow \mathrm{~A} \xrightarrow{f} \mathrm{~B} \xrightarrow{\mathrm{~g}} \mathrm{C} \longrightarrow 0 \tag{1}
\end{equation*}
$$

be a s.e.s. of R-modules and suppose that the induced s.e.s.

$$
\begin{equation*}
0 \longrightarrow \mathrm{~A} \otimes \mathrm{E} \xrightarrow{\mathrm{f}} \mathrm{~B} \otimes \mathrm{E} \xrightarrow{\mathrm{~g}} \mathrm{C} \otimes \mathrm{E} \longrightarrow 0 \tag{2}
\end{equation*}
$$

of S-modules splits. Then the original s.e.s. of R-modules splits. Pf Let $h: C \otimes E \rightarrow B \otimes E$ be the splitting map for (2). For any $c \in C,(c \otimes l) h=\sum_{i} b_{i} \otimes e_{i} \quad$ (where $\left\{e_{i}\right\}$ is some fixed basis for E over k). Define $j: C \rightarrow B$ by $c j=b_{1}$. We show that $j g=1$. Now hg $=1$, so

$$
c \otimes l=(c \otimes I) h g=\left(\sum b_{i} \otimes e_{i}\right) g=\sum_{i}\left(b_{i} g\right) \otimes e_{i}
$$

(this last equality because g is induced up from g). But $\left\{\mathrm{e}_{\mathrm{i}}\right\}$
is a basis for E / k; hence $\mathrm{c}=\mathrm{b}_{1} \mathrm{~g}=\mathrm{c}(\mathrm{jg})$. Thus $j g=1$ and hence j is an R-homomorphism splitting (1).
$\mathrm{Th}^{\mathrm{m}} 5.5$ Let D be a skew field of dimension $n=r^{2}$ over its centre k and let E be a maximal commutative subfield of D (which we may take to be a separable extension of k). Note that $D \hookrightarrow k_{n}$. Let $A_{1}, A_{2}, \ldots, A_{n}$ be a k-basis of the image of D in k_{n} and set

$$
P=\sum_{i} x_{i} A_{i} \in(k\langle x\rangle)_{n} .
$$

Write $R=K\langle X\rangle, S=E\langle X\rangle$. Then
(i) P is an atom of R_{n} which splits into the product of r stably associated absolute atoms in S
(ii) the eigenring of P (in R_{n}) is $D^{O P}$.

Pf We have that $|E: k|=r$ and $D \otimes_{K} E=E_{r}$. Since the A_{i} form a k-basis for D they form an E-basis for $E_{r}\left(\right.$ in $\left.E_{n}\right)$. By the SkolemNorther Theorem (see egg. [7].212) any two embeddings of E_{r} in E_{n} are conjugate; hence there exists $U \in G L_{n}(R)$ such that the $A_{i}{ }^{U}$ form an E-basis for the copy of E_{r} consisting of matrices of the form

$$
\left(\begin{array}{llll}
c & & & \\
& c & & \\
& & \ddots & \\
& & & \\
& & & c \otimes I_{r}
\end{array} \quad\left(c \in E_{r}\right)\right.
$$

Let $A_{i}^{U}=B_{i} \otimes I_{r} \cdot \operatorname{In} S_{n} P$ is stably associated to $\sum x_{i} A_{i} U$, and it is clear that $\sum x_{i} A_{i}^{U}$ decomposes into r factors, each stably associated to $Q=\sum x_{i} B_{i}$. Hence we have a decomposition

$$
\left(n_{S}\right) / P\left(n_{S}\right) \cong \oplus\left(n_{S}\right) / Q_{i}\left(n_{S}\right) \quad\left(\text { each } Q_{i} \sim Q\right)
$$

Hence

$$
E_{S}(P) \cong\left(E_{S}(Q)\right)^{r}
$$

But by the corollary following Prop ${ }^{n}$ 5.2, Q is an absolute
atom and so $E_{S}(Q) \cong E$. Thus $E_{S}(P) \cong E_{r}$.
Now consider $E_{R}(P)$. It clearly contains those matrices in k_{n} centralizing each A_{i}, so $E_{R}(P) \supseteq D^{O P}$. But
$\left|E_{R}(P): k\right|=\left|E_{S}(P): E\right|=r^{2}=n=\left|D^{O P}: k\right|$
so $\quad E_{R}(P) \cong D^{0 P}$.
It only remains to verify that P is an atom of R. Let M be the torsion module associated with P and suppose that N is a torsion R-submodule. Since $E \operatorname{End}_{R}(M)$ is a skew field ($\left.\cong D^{O P}\right)$, the s.e.s.

$$
\mathrm{O} \longrightarrow \mathrm{~N} \longrightarrow \mathrm{~N} \longrightarrow \mathrm{M} / \mathrm{N} \longrightarrow \mathrm{O}
$$

cannot be split. By Prop $^{n} 5.4$ it follows that the s.e.s.

$$
0 \longrightarrow N \otimes E \longrightarrow M \otimes E \longrightarrow M / N \otimes E \longrightarrow 0
$$

is also not split. But $\mathrm{M} \otimes \mathrm{E}$ is a fully reducible torsion module and N a torsion S-submodule, so the sequence must split. $\cdot \dot{X}$. Thus M is a simple torsion module and P is an atom of R.

References

[1] P.M. Cohn. Free rings and their relations. No 2, LMS monographs, Academic Press (London and New York 1971).
[2] P.M. Cohn. The Cayley-Hamilton theorem in skew fields. Houston J. Maths, Vol 2, No 1 (1976).
[3] P.M. Cohn. Skew field constructions. LMS lecture note series 27, Cambridge University Press (Cambridge 1977).
[4] P.M. Cohn. The universal field of fractions of a semifir, Part 1. To appear Proc. LMS.
[5] G. Grätzer. General lattice theory. Birkhauser Verlag: (Basel and Stuttgart 1978).
[6] N. Jacobson. Lectures in Abstract Algebra III. Van Nostrand. (New York and London 1964).
[7] N. Jacobson. Basic Algebra II. W.H. Freeman \& Co. (San Francisco 1980).
[8] J.P. Serre. Local Fields. Springer Verlag. (New York 1979).

