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ABSTRACT

This thesis presents the results of an investigation into 
the non-equilibrium distribution of trace constituents as a 
function of crystal growth. The ultrabasic igneous complex of 
Rhum (Scotland) with its relative uniformity of mineral 
composition, but variety of mineral habits was used in the 
investigation.

For this, the distributions of elements of contrasting 
behaviour have been studied, and especially uranium which strongly 
partitions into the melt, and strontium, which partitions into 
the feldspar on fractional crystallisation of a basaltic magma.

The technique of fission track analysis for uranium is 
fully described, and further developments have been introduced 
in order to accurately map the inter- and intra-mineral uranium 
distributions in polished rock sections. Results of uranium, 
strontium, nickel and calcium concentrations in the cumulus 
phases olivine, clinopyroxene and plagioclase feldspar are given.

There is a good correlation between the partition 
coefficients of uranium and the morphologies of the major cumulus 
phases. Calculations of crystal growth rates for different 
olivine morphologies have been determined. On these observations, 
a model is proposed relating both the mode and variation in 
nucléation rates of the individual morphologies to the degree 
of supercooling of the melt. Data on other elements are 
presented to substantiate these arguments. It is shown that 
olivines of spinifex (harristic) type have grown at a relatively 
fast rate and not slowly as suggested by some workers. The 
mode of crystallisation of certain morphologies, as to whether 
by diffusion-controlled growth, or by interface-controlled growth 
is discussed.

The distributions of uranium and other geochemically 
compatible elements in the intercumulus minerals are described, 
and the results of reaction of the cumulus with the intercumulus 
material studied. Zirconolite (or zirkelite) is recorded in 
a terrestrial basic intrusion for the first time.
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CHAPTER 1. INTRODUCTION

1.1 . Aims of thesis

Early experimental work by Bowen clearly showed that many 

interdependent factors are involved in the crystallisation of minerals 

from silicate m elts. These factors include the physico-chemical 

conditions prevailing at the onset of nucléation and during growth of the 

mineral (for example, the composition and degree of super saturation 

and supercooling of the melt), and the extent to which variations in 

these conditions affect the morphology and chemical composition of the 

mineral. Before attempts can be made to elucidate the role that each 

plays, geochemical, textural and experimental data need to be accumulated. 

Any proposed model of crystal growth must adequately account for these 

observations.

In an attempt to provide more of these required data, the work for 

this thesis was done. There were two principal aims. Firstly, to 

contribute some knowledge to the distribution of trace constituents in 

accumulative rocks of basic igneous intrusions, using as an example, the 

layered igneous complex of Rhum (Inner Hebrides). Secondly, to examine 

the role of uranium as a potential indicator of crystal growth rates and 

mechanisms in igneous cumulates, and to discuss its behaviour in the 

late-stage crystallisation of basic igneous rocks.

1 .1 .1 .  The distribution of trace constituents

By combining geochemical and textural data with published 

experimental observations, the intermineral partitioning of certain trace 

constituents has been studied as a function of the nucléation, supercooling and 

growth rates of the mineral phases, and their observed crystal morphologies.
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In theoretical models that describe the crystallisation 

of minerals from silicate melts, the assumption is often incorporated 

that equilibrium conditions existed throughout the crystallisation 

process (e.g. Greenland, 1970). Crystallisation is, in itself, 

a combination of three basic operations:- a nucléation process 

(with an associated energy change designated /^G^y^igation^* 
a growth process occurrinQat the crystal/melt interface 

( /\G interface^' and a diffusion process involving transport 

of heat and material away from, or towards the interface 

(/\G diffusion^" growth rate (Y) of a mineral can then
be represented by an overall expression:-

^  ̂  ̂̂  ̂ nucléation ^^interface ^ ̂  ̂ diffusion
where f is a constant for the particular system. However, both ,

nucléation (e.g. Strickland-Constable, 1968) and growth 

processes at the interface (e.g. Kirkpatrick, 1974) require 

the existence of metastoble, or disequilibrium conditions in 

the melt, thus apparently negating models based upon thermodynamical 

equilibrium conditions. A major reason why such models are 

often applicable (e.g. those of Mclntire, 1963 and Albarede and 

Bottinga, 1972) lies in the fact that for most conditions 

observed in nature, the /\G diffusion factor predominates, and 

the diffusion coefficient (D) for the majority of elements in 

silicate melts is usually sufficient to maintain equilibrium 

conditions of growth. (Albarede and Bottinga, ibid., in fact 

recognised the need to take into consideration kinetic dis

equilibrium, but based their models on thermodynamical equilibrium 

conditions - i.e. constant partition coefficients for elements 

during crystal growth).

The degree and extent of the supercooling of the melt 

can be related to both the energy processes involved in crystal'
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growth (e.g. Tiller, 1970), and the rate of crystal growth 

(Tammann, 1925). When therefore, increasing energy contributions 

to the system are made from the nucléation and crystal/melt 

interface processes, expressed in terms of variations in the 

supercooling, then the resulting growth rate will deviate increas

ingly from the "equilibrium" rate allowed by element diffusion.

The outcome will be that the observed partition coefficients for 

these elements will no longer be equal to their equilibrium 

partition coefficients. Hart and Brooks (1974) and Sinha and 

Sastri (1969) have in fact reported variations in the observed 

partition coefficients in basalts, which they attribute to changes 

in crystal growth rates.

Lofgren (1974) noted that the morphologies of experimentally 

grown feldspars (and pyroxenes) depend markedly on the degree of 

supercooling in the melt. He observed a progression of morphologies 

from tabular (or equant) at low supercoolings, to acicular (or 

spherulitic) at high supercoolings. In the literature, there are 

reported many examples of morphological variations within one 

mineralogical type occurring in natural environments. Minerals 

with skeletal, dendritic or acicular morphologies ore usually 

associated with rocks which have undergone rapid coolings, e.g. 

Drever and Johnston (1957) and Brett et al.(1971), whereas more 

equant or polyhedral morphologies are generally associated with 

slower cooling. Bryan (1972), observed a change in morphology 

from euhedral, equidimensional olivine and feldspar crystals in 

the inner (central) zone of a pillow lava, to a skeletal morphology 

at the outer rim. Morphologies similar to thoseftom,rapidly 

cooled rocks but occurring in deep seated rocks have, however 

been described. Donaldson £t al.(1973) observed olivine with a 

spherulitic morphology in the Rhum basic intrusion. Donaldson '



(1974) compared the dendritic morphology of the harrisitic olivines 

from Rhum with Archaecvn spinifex textures (e.g. Nesbitt, 1971) 

and he discussed the possibility that rapid cooling is not an 

essential prerequisite for the formation of such textures, and 

that crystallisation from a highly supercooled magma may have 

been responsible.

In the light of these experimental and field observations, 

a study of the distribution of trace elements in minerals 

displaying a variety of crystal morphologies would prove 

instructive. Examples of such elements are uranium, strontium, 

nickel and calcium, and such minerals are olivine, feldspar and 

pyroxene. Uranium has the additional advantage in that it possesses 

a much slower diffusion rate, e.g. Seitz (1973̂ 6) than most other 

elements which would suggest it to be a more sensitive indicator 

of variations in crystal growth rates. The Rhum layered igneous 

intrusion is particularly suitable for such a study in that there 

is present a wide variety of crystal morphologies, and, in 

addition, the major element compositions of the cumulus minerals 

are relatively constant (Brown, 1956).

1.1.2. Growth rates and mechanisms in cumulates - the role 

of uranium.

The recognition that large intrusive volumes of magma have 

consolidated by a process of crystal accumulation and that the 

resulting solidified body possesses characteristic textures, has 

led to the introduction of a specific nomenclature. Wager et al.

(1960) termed such rocks cumulates - a shortened version of 

Bowen's (1928) term "accumulative rocks". In essence, cumulates 

are the product of accumulation of minerals (termed cumulus 

crystals) from a magma, either by a flotation, or a gravity 

settling process, and subsequently consolidated by crystallisation 

of the intercumulus magma.



14

Studies of the cumulates from the Stillwater Complex, 

Montano, U.S.A., (Hess, 1939) and the Skaergaard Intrusion, East 

Greenland (Wager and Deer, 1939) showed that post-depositional 

enlargement of cumulus crystals at the same temperature as at 

initial formation, was a frequent occurrence. Hess (ibid.) 

suggested that this could have resulted from diffusion of elements 

from the overlying magma, through the intercumulus liquid to 

growing crystals in the upper layers of the crystal pile, 

and that simult aneously, there was diffusion of unwanted material 

in the opposite direction. Such a diffusional overgrowth has 

been termed adcumulus growth (Wager et ,1960), and rocks in 

which much adcumulus growth occurred, are colled adcumulates. In 

the absence of adcumulus growth, the intercumulus liquid becomes 

trapped and crystallises as lower-temperature minerals or zones. 

Rocks of this nature are termed orthocumulates and are recognised 

texturally by the presence of lower-temperature zones around 

the original cumulus crystals, and/or the presence of late-stage 

crystallising minerals such as apatite, zircon etc. Rocks 

intermediate between these two cases are called mesocumulates.

Two other important textures have been recognised in 

cumulates giving additional rock types viz. heteradcumulates and 

crescumulates.

Heteradcumulate is the name given to a cumulate containing 

large unzoned poikilitic crystals of one or more minerals enclosing 

many smaller cumulus crystals. The poikilitic minerals have 

the same composition as their cumulus counterparts elsewhere in 

the intrusion. Such rocks ore relatively common in the Rhum 

layered intrusion and are considered (e.g. Wager and Brown,

1966, p.267) to have developed in a manner similar to that 

proposed for adcumulus growth.
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Crescumulates are recognised by the appearance of the 

predominant mineral displaying an elongated and branching habit. 

These crystals are often orientated with their longer axis 

parallel to the plane of layering - although Drever and Johnston 

(1972) report randomly orientated branching olivine crystals in 

the Rhum western layered series. Wager and Brown (1963 p.554) 

suggest that crescumulates have grown upwards from a carpet of 

cumulus crystals during temporary periods of magma stagnation. 

Specimens from the Harris Bay area (Rhum western layered series) 

have been studied in this work, and tie olivine habit is described 

here os a harrisitic morphology. It should be noted that the 

term crescumulote has not gained general acceptance (e.g. Drever 

and Johnston ibid.).

In the Rhum layered series, a variety of cumulate rock 

types occur, the major cumulus minerals exhibiting a wide range 

of morphologies, but with essentially constant major element 

compositions.^ In olivine, for example, there is a marked 

development of contrasting morphologies, ranging from poikilitic 

(heteradcumulus olivine) through equant, rounded, irregular and 

tabular (cumulus olivine), to harrisitic (crescumulus olivine).

From textural considerations, it would be unusual to expect 

that identical growth processes (and growth rates) produced such 

differing morphologies. The major element geochemistry however, 

shows no variation with morphological type, and in terms of the 

major elements, the growth of olivine in all of the above 

situations may be considered to have been controlled by a diffusion 

process. By studying the distribution of a low-partitioning 

trace element (i.e. an element which plays no significant role 

in the continued growth of the mineral), variations in the growth 

processes (or growth rates) may be detected. Since a low-
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partitioning element is essentially "rejected" from a growing 

crystal; a build-up of that element adjacent to the crystal/melt 

interface occurs. If, in addition, the growth rate of the 

crystal is greater than the rate of diffusion of that element 

away from the interface, the element will become incorporated 

into the crystal in a non-equilibrium manner. The incorporation 

in this case, will be controlled not by a diffusion process, but 

by the rate of attachment at the interface. Thus, a more sensitive 

indicator of both the growth rate and growth mechanism would be 

a low-partitioning, slowly diffusing, trace element.

To test such a hypothesis, the distribution of uranium 

between various olivine morphologies was studied. The results 

show (chapters 3 and 4), that a correlation exists between the 

observed partition coefficients and the olivine (and to a lesser 

extent, pLagioclase) morphologies.

The relative growth rates of the adcumulus, heteradcumulus 

and crescumulus producing processes have from time to time come 

under discussion. Using a simple model incorporating estimates 

of rates of crystal settling and packing of the cumulus minerals. 

Wager ̂  al. (I960) calculated that a growth velocity of 

approximately 0 .1 2  millimetres/day was necessary for the formation 

of adcumulates. Donaldson (1975) however, suggested a faster 

rate of the order of 0.45 millimetres/day for the Skaergaard 

adcumulates. Campbell (1968) in describing the Jimberlana layered 

cumulates, argued that the heteradcumulates of the intrusion 

crystallised more rapidly than did the adcumulates. Wadsworth

(1961) proposed that the olivine crescumulates of Rhum grew at 

a comparatively rapid rate, whereas Donaldson (1974) favoured 

the idea of crystallisation of crescumulates from a highly 

supercooled magma.
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Using a model proposed by Burton ̂  aL (1953),the relative 

growth rates of the six olivine morphologies have been determined 

from the observed partition coefficients of uranium. The 

calculated growth rates agree well with experimentally grown 

olivines (Donaldson, 1975), and with the estimated growth rates 

from packing models (e.g. Wager et 1960 and Wager, 1963).

1.1.3. Late-stage crystallisation in cumulates - the behaviour 

of uranium.

Wager and Brown (1968) in discussing the Skaergaard intrusion, 

suggested that since uranium resided preferentially in the 

residual magma during crystallisation of a basic magma (e.g. Adams 

et al. 1959), its concentration within the rock would be a guide 

to the amount of trapped liquid, and hence the extent of adcumulus 

growth. Henderson (1970) used the term "mesostasis" to describe 

the trapped (or pore) material, and Henderson (ibid) and 

Henderson et al. (1971) calculated the amount of mesostasis in 

specimens from Skaergaard, Rhum and Bushveld cumulates using 

whole rock uranium concentrations. Henderson (1975) showed also 

that uranium could be used to determine the degree of fraction

ation efficiency within cumulates.

In relating the concentration of uranium to the amount of 

mesostasis in the cumulates, Henderson ̂  (1971) showed that

quite considerable variations can occur in volumes separated 

by only a few centimetres. This indicates that the mesostasis 

is not distributed homogeneously even in hand sized specimens, 

and an indication of the location of the uranium (and hence 

where mesostasis areas occur) in cumulates would prove instructive 

in relation to post-cumulus crystallisation processes.

The presence of late-stage crystallisation minerals from 

basic cumulate rocks is well documented. In Skaergaard for ,
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Example, a wide range nf minerals such as zircon, apatite, quartz, 

chlorite etc., occur (Wager and Broun, 1968, p.52), these being 

considered as products of crystallisation from trapped magma.

The behaviour of uranium in such an environment is discussed 

(chapter 5), and many features recorded from uranium - distribution 

studies of lunar rocks are seen also in the Rhum cumulates. Such 

features are the geochemical compatibility of uranium with Zr, P 

and Rare Earth Elements (e.g. Thiel et ^ . , 1972), and the quite 

frequent appearance of unusual uranium-enriched phases such as 

baddeyelite (ZrO^) and zirconolite (CoZrTi^O^) (or zirkelite - 

E.g. Lovering and Work, 1971). In addition reports are presented 

of a uranium-concentration gradient in an apparently unzoned 

ilmenite grain, and a concentric uranium distribution pattern 

within a large poikilitic chrome spinel grain.

1.2. The cumulates of the Rhum and Carlingford intrusions

The majority of specimens described in this thesis are 

from the eastern series of the layered igneous cumulates of Rhum 

(Inner Hebrides). Recently, a plea for the spelling "Rhum", to 

be reverted to its original form, i.e. "Rum", was made (Bruce, 

1975). In fact, earliest geological references e.g. Judd (1374, 

1085) and Marker (1908) use the Gaelic spelling "Rum", as do 

Phillips (1938) and Tomkeieff (1942). Tilley (1944) and Bailey 

(1945) changed the spelling to "Rhum", and in line with subsequent 

literature and with recent Ordnance Survey publications, this 

later Anglicized version (viz. Rhum) is used throughout this.thesis.

The layered cumulates of both the eastern and western 

series of Rhum are Tertiary in age (Bailey, 1945), intrude into 

Pre-Cambrian (mainly Torridonian) rocks, are closely associated 

with bodies of eucrite and gabbro, and with separate complexes 

of felsite, granophyre and explosion breccia (Marker, 1908). '
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Broun (1956) was able to map 15 major rhythmic layers, 

termed "units", in the eastern port of the complex to a height 

of over GOO metres. The units are numbered sequentially upwards 

from 1 at the base of the exposed eastem series. Each unit 

consists of on olivine-rich rock (olivine-cumulate) at the base 

grading upwards to a plagioclase-rich rock (plagioclase-cumulate) 

ot the top, with locally developed chrome-spinel seams occasionally 

seen at the junctions of units. Clinopyroxene occurs throughout 

the intrusion averaging 10 to 15 modal percentage. Orthopyroxene 

is rare or absent,

A significant feature of the complex is the constancy in 

composition of olivine, feldspar and clinopyroxene in the 15 

units. To a slightly lesser extent, this lack of cryptic layering 

is mirrored in the western layered series described by 

Wadsworth (1961). The two series are separated by a north-south 

fault (the Long Loch fault), but Wager and Brown (1968) considered 

that they both originated in the same magma chamber. The total 

exposed thickness of the intrusion is probably more than the 

sum of the two series (i.e. greater than 2300 metres) since no 

layered units east and wesc of the fault can be equated (Wager 

and Brown, ibid.). Brown (1956) and Wager and Brown (ibid.) 

attributed the constancy in mineral composition throughout the 

intrusion, and the regularity of the layering, to each unit 

resulting from an influx of a fresh pulse of basaltic magma.

The sub-crustal magma chamber was probably connected to an active suk- 

aerial volcano. A recent paper by Bibb (1976), discusses the 

possibility of the Rhum cumulates crystallising from a eucritic 

rather than a basaltic magma. This would eliminate some of the 

problems involved in expelling vast amounts of magma from the 

site of crystallisation, and provide a clearer understanding as
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to the lack of cryptic variation within the original cumulus 

crystals. It does not however, detract from the theory regarding 

adcumulus (or heteradcumulus) growth mechanisms.

Although mineralogically there is little variation in the 

major cumulus minerals - olivine essentially FOgg^^^ (chrysolite)’ 

plagioclase feldspar Angg_g^ (bytounite)’ clinopyroxene 

Ca^^Ko^gFe^ (^ndiopside) " there are significant differences in 
the textures and morphologies of these phases. To a certain 

extent, these can be related to the cumulate rock type. Using 

the nomenclature of Wager ̂  (I960), all five cumulate rock

types occur in the layered series of Rhum, i.e. ortho-, meso-, 

ad-, heterad- and crescumulates. In the lower regions of each 

unit in the eastern series, olivine, as a cumulus phase 

exhibits an equant, rounded, irregular and tabular morphology, 

whereas plagioclase feldspar usually occurs intercumulus, enclos

ing many olivine crystals and possessing a poikilitic morphology.

In the feldspar-cumulates higher up in each unit, the roles are 

reversed with plagioclase, a cumulus phase, having a tabular 

morphology, and olivine becoming more intercumulus and occasionally 

developing □ poikilitic morphology. Clinopyroxene, in general, 

maintains a poikilitic morphology through this reversal, but is 

sometimes seen as a cumulus phase - in these latter cases, all 

three minerals are cumulus in origin.

Two field excursions to the eastern layered series were 

undertaken to obtain a collection of samples of various cumulate 

types from different units. The samples obtained from these 

excursions were then augmented with a batch of samples previously 

collected by Henderson in 1968.

Initially, a comparison of the Rhum cumulates with those 

from the Carlingford (Co. Louth) layered basic intrusion was '
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intended. Le Bas (I960) recognised the existence of four loyers 

in this intrusion where, like Rhum the ratio of cumulus olivine 

to cumulus feldspar decreases upwards. Unlike Rhum however, the 

major minerals present i.e. olivine, plagioclase feldspar, 

clinopyroxene and orthopyroxene, show a quite substantial degree 

of cryptic variation within each layer. Examination of thin 

sections collected from a field excursion to Carlingford showed 

that, in addition, some degree of post-depositional tectonic 

activity had affected the intrusion. This manifested itself by 

the appearance of secondary serpentinisation and alteration,

V el ning and microfaulting. Since uranium is a relatively labile 

element (e.g. Cherdyntsev, 1971), there exists ' the strong 

possibility that loss (or indeed introduction) of this element 

had occurred during the tectonic activity. These two factors 

meant that the Carlingford cumulates would not hove provided 

suitable specimens regarding the aims of this thesis, where 

aspects of the primary crystallisation history, with emphasis 

on the distribution of uranium was investigated.

1.3. Selection of analytical techniques.

The major part of this thesis involved studying the 

distribution of uranium in minerals containing concentrations 

of that element at the sub-p.p.m.^level. The analytical 

technique chosen should incorporate several factors

(1 ) a high sensitivity,

(2 ) neither mineral separation nor sample decomposition,

(3) the ability to produce concentration gradients, and 

to locate areas within the rock enriched in uranium ,

(1) A high sensitivity is required since greater than 

95% of the minerals present in the Rhum cumulates (i.e. olivine.
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plagioclase, clinopyroxene and chrome spinel) contain uranium 

concentrations of the order of a feu p.p.b. Previously reported 

values for the olivines from various environments range from 

0.2 p.p.fa., (iherzolite inclusions, Kleeman et al-,1969) to 

46 p.p.b. (dunites, Fisher, 1970); for plagioclase feldspar from 

10 p.p.b. (lunar basalts, Thiel et al. 1972) to 43 p.p.b.

(Bushveld cumulates, Gijbels ̂  al^,1974); for clinopyroxene from 

15 p.p.b. (Iherzolite inclusions, hleeman et al.,1969) to 

60 p.p.b. (Rhum cumulates, Henderson et al^,1971), and for chrome 

spinel from 20 to 30 p.p.b. Gijbels et ibid.).

(2) The uses of a technique which does not require mineral 

separation is necessary for two reasons. Firstly, because outer 

rims of minerals arc often removed during preliminary crushing

of the sample; Henderson _et aL (1971) reported that the outer 

rims of some zoned plagioclase feldspars from the lower units 

of the Rhum cumulates contained a higher uranium concentration 

than did the cores of the crystals- Secondly, contamination 

from micron-sized uraniferous inclusions (e.g. Thiel et al.,1972) 

becomes a possible (and serious) source of error using mineral 

separates.

(3) Since the research for this thesis included a study 

of the behaviour of uranium both within the intrusion as a whole 

(i.e. in terms of the late-stage crystallisation products), and 

within individual crystals (i.e. in terms of crystal growth 

behaviour), the chosen technique requires the ability to 

determine both intra- and inter-mineral uranium distributions.

The only analytical technique currently available which 

satisfied the above requirements is that of fission track (or 

particle track) analysis. Reviews by Fleischer et al.(1969) 

and Fisher (1975) hove shown this technique to be readily



23

applicable to many of the natural sciences since it combines a

relatively simple sample preparation with a high sensitivity

(to sub-p.p.b. levels). The method used in this study, details

of which are given in chapter 2 , was based initially on the

"Lexan print" technique of Hleeman and Lovering (1967 (a) and

(b)). In outline the method is one of irradiating a polished

section of the rock in contact with a detector capable of

recording the induced fission fragments from the nuclear fission 
235of U, and comparing the number of resulting fission tracks 

with those from a substance of known uranium concentration.

A modification of Kleeman and Lovering's (ibid.) technique 

was introduced since a print of the rock surface on the detector 

was not obtained. This entailed producing a photographic 

record (contact print) of the detector, previously inscribed 

with a location grid, in place on the rock surface.

The potential improvement of having a print of the rock 

surface on the detector (as in Kleeman and Lovering, ibid.) 

would, nevertheless hove simplified the above procedure, and 

reasons for not obtaining such a print are discussed. With 

the final irradiated batch of samples however, Lexan prints 

were formed and the reactor conditions for their production 

are given in Appendix 1.

In conjunction with fission track analysis, additional 

instrumental analytical techniques were employed - viz. electron 

probe microanalysis, (details given in chapter 2 , section 2 .8 .) 

and to a lesser extent, x-ray fluorescence.

' Electron probe microanalysis was used to determine the 

compositions of the major mineral phases and distributions of 

trace elements Ni and Ca in olivines (chapter 4, section 4.3.), 

and to detect whether any zoning was apparent in the minerals '
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(chapter 4, sections 4,3., 4.5, and 4.6.).

In studying the distribution of uranium in unusual late- 

stage crystallising minerals, a combination of fission track 

analysis (for locating) the high-uranium minerals. Scanning 

electron microanalysis (for identifying^the mineral and 

electron probe microanalysis (for a quantitative analysis) was 

used (chapter 5, section 5.4.).

An X-ray fluorescence analytical technique was used to 

determine concentrations of Sr in separated feldspars from 

differing cumulate rock types in the Rhum layered intrusion,

A previous study of feldspars from the Rhum cumulates (Williams, 

1971) showed a relationship between the Sr concentrations and 

the type of crystal growth. These results are detailed in 

Appendix 2, and a comparison is drawn between the Sr and U 

concentrations in the feldspar phases (chapter 4, section 4.5.).
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CHAPTER 2 EXPERIMEHTAL TECffiTIG.UES

1: IJRAHIÜI4 PISTRIBUTIOÎT MAPS
2.1. Introduction and Theory

Raturai uranium consists of 3 isotopes| 
and which all undergo spontaneous fission. The 233 sjod
235 isotopes are parent isotopes, and the 234 an intermediate 
product in the 238 decay series.

Of practical importance is the ability of these isotopes 
to undergo induced fission (see table2«1). Under bombardment 
from "energetic" neutrons, the above isotopes fission to 
produce two hî ily-charged, fast-moving ions:-

e.g.
235 theimal neutrons

92 ^n energy ̂  .̂ MeV 

+ 3 or 4 neutrons __

236
I

92
82-100̂  + 125-150^
fission fragments

_______________ (1)

Table 2.1

Isotope % abundance \  (yrs)
Spontaneous
fission

induced
capture
cross-section
(cq)

fission 
energy for 
fission 
(MeV)

234 .0056 2.5 X 10̂ .65 bams .1-2
235 .72 7 .1 X 10® 5607 " .01 - 2*
238 99.27 4 .5 I 10̂ 0.55 " 1

100 1.4 X 10̂ ° . 391 " 1

* neutrons with energy up to . 5 MeV are termed "thermal"
. neutrons.
neutrons with energy ̂  • 5 MeV are termed "fast" neutrons.

The fission fragments formed are unequal in mass (Katkoff, 
i960), the most probable heavy mass of 139» and the most 
probable light mass of 95# The momentum of fission fragments
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X and Y are equal and opposite, separating with kinetic 
energies of up to 150 MeV, and with initial charges as high 
as +16 (Chadderton and Torrens, I969).

It has long been known that the passage of a fission 
fragment through an insulating material will produce 
localised damage, which, under certain conditions, can be 
detected (e.g. Silk and Barnes, 1959)# Price and Walker 
(1962, a) Chemically etched material which had been subjected 
to bombardment by fission tracks, and found that the rate of 
chemical attack was greater along the damaged paths, so making 
them visible (under suitable magnification) to the fission 
"tracks". For the wide range of insulating materials, in 
which the paths of energetic particles have been observed and 
can be microscopically revealed, Fleisher et a]̂  (1964  ̂
collectively termed Solid State Nuclear Track Detectors 
(S.S.T.D.). They can broadly be divided into three groups:-

(a) Crystalline solids (including minerals)
(b) Amorphous solids (glasses)
(c) Organic polymer plastics.

2.1.1. Theory of fissioning
Bohr and Wheeler (1939) initially proposed a theory of

fissioning based on the liquid drop model. The nucleus of the
element is visualised as a spherical drop of liquid. On contact
with a bombarding neutron, oscillations are set up producing
an asymmetrical distribution of positively charged protons.
The resulting repulsion can lead to a splitting of the nuclear
drop (fig. 2.1 ). Since contains an odd number of
neutrons, considerable energy is released when it gains a
further neutron. This kinetic energy starts the disturbance

258within the nucleus that leads to fission. The Ü and
232Th isotopes already contain an even number of neutrons, 
and in this case collision with a fast neutron has to occur



2T-

(table2.1), in order to bring considerable kinetic energy to the 
lïttcleui for fissioning to occur.

The liquid drop model is of course a simplified one and 
many modifications, partioularly to account for defects in the 
prediction of certain events, have been proposed. In the 
liquid drop theory symmetrical splitting of the nucleus should 
occur, whereas in practice, asymmetrical splitting is observed 
(equation (1) ). However, most theories explaining fission 
are at best semi-quantitative since adequate models of 
complex atomic nuclei do not, at the present, exist.

2il.2. Theories of thack formation
Observations showed that almost any energentic nuclei -

including fission fragments - may produce narrow trails of
radiation damage in insulating material (Fleischer ^  a]̂, 1964).
In addition, different materials (S.S.T.D.s) are sensitive to
a variety of different nuclear particles, (Fleischer et ^  I967).
Some organic detectors (e.g. cellulose nitrate) are able to
detect low energy protons, deub̂ rons and alpha particles,
whereas in others - in general the inorganic detectors e.g. mica -
only heavy, highly-charged nouclei are detected (Katz and
Kobetich, 1968).̂

Any theory which attempts to explain (or predict) the
production of latent particle tracks in S.S.T.D.*s must account
for the following major characteristics (Fleischer et al.1969 s).

o
1) The damage region is narrow ( 50 A in diameter) and

continuous atomically, or nearly so.
2) Tracks are not formed in metals or "good" semiconductors.
3) Different detectors have different threshold energies

below which tracks are not revealed.
4) Tracks are highly stable and their fading is controlled bŷ
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Figure 2.1. Schematic representation of the fission 

of a nucleus on the basis of the "liquid drop" model 

(from Chadderton and Torrens, 1969).
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Figure 2.2. lon-explosion spike model (from 

Fleischer £t , 1965, a).
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the motion of atoms and not electronic defects.
Parameters Involving the incident particle, properties of the 
individual S.S.T.D., and etching procedure have similarly 
to be taken into account.

The energy processes involved to form a latent track, and 
damaging mechanisms in both inorganic and organic S.S.T.D.s 
are discussed below. However, a comprehensive theory for 
both inorganic and organic detectors has not been proposed.
2.1.2.1. Energy processes involved.

There are basically three energy processes involved in 
the formation of etchable tracks by energetic particles in
S.S.T.D.s. These ares-

(a) Energy loss of the particle
(b) Transfer of energy from the particle to the detactor.
(c) Production of damage in the detector caused by this 

energy such that the rate of chemical attack along the particle's 
track (R̂ ) is greater than the corresponding rate of attack of 
the bulk of the detector (R̂ ).

(a) A particle loses energy by three main methods. The
principal mode of energy loss is due to interactions of the
particle with atomic electrons (ionisation and excitation)
of the medium in which the particle is travelling - ^  )

\ dx /
electronic. Less important, until the particle nears the end
of its path, is the contribution to energy loss of the
particle when in direct collision with the nuclei of the
stopping medium - nuclear third energy loss
method, {- Æ  ) ,. , . is small in comparison with the\ dx /radiation,
others. Here loss of energy is by the emission of
bremsstrahling and Cerenkov radiation. The total rate of

/ ds\energy loss, or absolute stopping power, I __ 1, may then\ dx /total.
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be writtens-
/ (îe\ = a
I " Hx/total dx/ electronic dx / nuclear dx /

(b) The transfer of energy from the incident particle 
to the detector can conveniently be divided into two types: 
energy absorption by the detector, and energy conversion within 
the detector to more specific modes,

Algar (1965) has shown that three modes of energy 
absorption exists electron displacement (ionisation and 
excitation); nuclear displacement, and the generation of 
impurity atoms as a result of radiation damage. These correl ate 
with the three energy loss processes described above in (a), 
and, as in (a), the primary mechanism for energy absoption is 
considered to be electronic displacement. However, the 
probability of nuclear displacement as the particle nears the 
end of its path increases. The probability of energy 
transfer by nuclear radiation is small.

(c) Energy conversion within the detector produces the 
damage whereby the condition t̂/k̂  ^  1 exists, and an 
etchable track is formed. Energy is converted by means of 
molecular and atomic vibrations and may be emitted in the
form of luminescence, or heat, or it may be stored as potential 
energy in the form of chemically reactive species.
Luminescence accounts for only a few % of the total energy 
converted, some of which will in any case be locally 
absorbed. Heat accounts f)r the vast proportion of energy

(a (ev3 ̂
converted. The temperature in the immediate vicinitŷ of the 
particle may exceed several hundred degrees C (Chadderton 
and Torrens, I969), resulting in extensive atomic and molecular 
rearrangements. At these locally high temperatures, a small 
propnrtirn cF the energy may be stored as potential energy in 
the form of free electrons, free radicals and free ions,



perceptible to chemical attack, they being stabilised by a cage 
effect (an unbonded situation where a molecule, ion or radical 
is wholly or partly locked within the host crystal lattice).

Several models have been proposed by various authors to 
interpret the molecular and ionic arrangement produced by an 
energetic particle via energy-transfer and absorption in both 
inorganic and organic detectors, A brief resume of these follows,
2.1.2. 2.Inorganic detectors.

Models for inorganic detectors revolve around a spike 
concept - lar^local amplitudes of vibration as a result of the 
deposition of a large amount of energy within a locally confined 
volume,

Fleischer ̂  ^.(1565,n) proposed an ion-explosion spike 
model. It is postulated that a charged particle produces within 
the detector a positively charged cylindrical region. Electiustetic 
repulsion of the positive ions occur forming a region locally 
rich in interstitial ions and vacancies (fig.2.2). The model 
predicts that tracks will not be formed in materials having 
(l) a high density of free electrons (i.e. in metals), (2) high 
hole mobilities (i.e. in good semi-conductors such as silicon 
and germanium). The predictions agree well with experiment.

The thermal spike model (Billington and Crawford, 1961) 
suggests that all the energy of the incident charged particle is 
coverted locally to heat. The charged particle interacts with 
electrons in the detector and sets the atoms in vibration. The 
vibrations are subsequently spread to neighbouring atoms by 
"Rutherford" collisions - mutual repulsions of similarly-charged 
particles. Temperatures in excess of 10“̂ °C within a cylindrical 
volume of 100 2 radius and several millimetres in length can be 
attained within a time of the order of 10  ̂seconds. This model 
èorr.esponds in effyct.’: to-energy transfer by electronic displacement
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Brinkmaim (1954?1959) proposed a displacement spike model 

whereby many interstitial and displaced atoms (and ions) are 
produced by "hard sphere" collisions (fig.2.3). Here energy 
transfer is by nuclear displacement both by atoms being "knocked 
on" by collision with the incident particle, and also by secondary 
(or higher order) displacements - the primary knocked on atom 
undergoing collision with neighbouring atoms thus initiating a 
cascade effect.

Chadderton and Torrens (l9&9) combined the latter two 
models to give a fission-spike model. They envisaged (fig.2.U). 
a gradual transition from Rutherford collisions of interatomic 
vibrations (thermal spike concept) to hard sphere collisions 
(displacement spike concept).

In general, for inorganic detectors, predictions by different 
models agree well with experimental observations. Vlien applied 
to the more sensitive organic detectors thou^, agreement between 
predictions and observations is not so precise.
2.1.2.3» Organic detectors

Tracks in organic detectors are the result of broken chemical 
chains (and bonds) and the formation of free radicals and gas 
inclusions (Becker, I968), schematically shown in fig.2.5. These 
may be attributed to electronic ionisation and excitation via 
energy transfer and absorption, in the region of the particle track.

A review of theories covering organic detectors has been 
published by Benton (1970). They all depend on there being a 
critical, or threshold, particle energy value characteristic of 
the detector. Katz and Kobetich (1968, 1970) favoured the formation 
of a track through the deposition of secondary electrons (‘̂rays), 
in the particle’s immediate vicinity producing local molecular 
fragmentation in the detector. An etchable track is then formed 
if sufficient fragment at i on has occurred-over a sufficiently 
large area to allow the etchant to pass freely along the damaged
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Figure 2.3. Displacement spike model (from 

Chadderton and Torrens, 1969).
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Fi\’tire 10. Schematic representation o f  the fission spike, (a) The fragment enters the crystal 
at X and com es to rest at the point Y. The intensity o f  the thermal spike at any point along  
this ‘track’ is given by the radius o f  a right circular cone (seen here in section) at that point.
(b) Diagram show ing the formation o f  a displacement spike by an eneigctic knock-on  
deriving from a collision between the fragment and a lattice atom. Wlicn the mean fiec-path  
for atomic displacement falls below an interatomic distance a displacement spike is formed.
(c) The frequency o f  displacement spike formation increases as the fragment slows down and 
there is a gradual transition from ‘Rutherford’ to ‘hard sphere' collisions.  The statistical 
nature o f  the frequency o f  collision events is considered to be understood and is omitted

from the diagram.

Figure 2.4. Fission spike model (From Chadderton 

and Torrens, 1969).

Figure 2.5. Schematic representation oF Fission fragment 

entering an organic S.S.T.D. (from Becker, 1963).



trail. Primary ionisations or excitations within the detector 
are not, however, taken into account.

Fleischer et (1967) showed that there is a critical
primary ionisation rate for a detector , such that only
particles having primary ionisation rates above this will produce 
etchable tracks. Price et al. (1968) found that for Lexan 
poycarbonate S.S.T.D., the rate of chemical etching of a track 
(R̂ ) increased exponentially with the ionisation rate of the 
particle (above the value Bcrit)' ^^ories based on primary 
ionisation rates however ignore secondary orf-ray effects.
It is likely then that contributions from both primary and •:
secondary effects are racessary to the formation of etchable 
tracks,
2.1.3» Developm ent of Particle Tracks.

Although latent tracks may be observed using both a 
Transmission Electron Microscope (Silk and Bames, 1959) and 
a Scanning Electron Microscope (”Born<.H et al., 1970)» the most 
widely used and simplest method of observation is by use of an 
optical microscope. Conversion from a latent particle track 
in a S.S.T.D. to a particle track which may be viewed optically 
necessitates enlargement, by chemical action;̂ the narrow radiation 
damaged trail.

The region of radiation damage (described above) is 
chemically more reactive than the bulk of the detector. Thus, 
when the detector is immersed in a solvent, the rate of chemical 
attack along the track (R̂ ) is greater than the rate of chemical 
attack perpendicular to the undamaged surface (R̂ ). The resulting 
etch figure is a hollow cylinder lying almg the trajectory of 
the charged particle, and having ideally, a length close to the 
range of the particle. Upon attaining a diameter of size comparable 
to the wa,velength of visible light (*4 ), the etch figure .
acts as a strong scattering centre appearing white in reflected i
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light and dark in transmitted light (fig. 2.6).
An important factor in chemical etching is the existance 

of a critical angle 0̂  , the angle below which particles striking 
the S.S.T.D. will not be revealed by etching. Fleischer and 
Price (1964) showed that 0̂  = sin  ̂ ,and that for some
inorganic glasses, the value of 0̂  can be as hi^ as 50°» For
5.5.T.D. *s such as Lexan, mica and makrofol, 0̂  is very low
(of the order of 2-5̂ ). This in effect means that for the latter
5.5.T.D.'s, a very high percentage of latent tracks will be 
revealed - i.e. the etching efficiency approaches unity.

Etching chemicals and conditions vary for individual 
detectors. A review by Fleischer and Eart(l970) details etching 
conditions for over 9O minerals, glasses and plastics. In general, 
minerals and glasses may be etched under acid (particularly HF) 
conditions, and plastics under conditions.

Various environmental factors such as treatment of the 
detector with ultraviolet radiation (Benton and Henke, 
may influence the formation of tracks in S.S.T.D.*s either prior 
to, or after irradiation. Experiments performed have been aimed 
primarily at enhancing the sensitivity of the S.S.T.D. to 
detectlower energy particles, and to increasing the value of

with respect to R^ so as to improve the quality of the tracks. 
These are reviewed by Benton (1970)*
2.1.4. Track Counting Procedures.

For quantitative work, the number of etch pits per unit 
area of detector is required. Previous workers have employed 
a variety of track counting procedures. Visual track counting 
using a microscope has, for much routine work, been superseded 
by automatic track counting procedures. Schultz (1968) measured 
the light scattered by fission tracks in a S.S.T.D. via a 
photomultiplier coupled with an amplifier. The scattered li^t 
was found to be proportional to the track density, up to a point

36
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Figure 2.6. Fission tracks developed in 
makrofol - an organic S.S.T.D. - viewed 
in transmitted light.



38where tracks overlap. Becker (I966) utilised the fact that 
under dark field illumination, tracks appeared bright on a dark 
background. The amount of li^t may then be measured by placing 
a photomultiplier at the location of the eyepiece. Again the 
photomultiplier réponse was proportional to the number of tracks. 
Besant and Ipsom (1970) counted tracks using an image analysing 
computer (f̂ 'nantimet). The microscope image of the detector is 
monitored by a television camera to a cathode ray screen. On 
the basis of optical intensity, a discriminator unit selects 
those features which are to be counted. The threshold of detection 
may be varied to exclude background marks on the detector.

For measurement of low track densities, various techniques 
have been employed to enlarge a fission track such that it 
becomes visible to the naked eye. They all entail the use of
S.S.T.D.*s thin enough to allow the etched track to penetrate 
through the detector so creating an etched "hole". Fleischer 

• (1966) coated one side of a thin film ( 1 5  

of organic S.S.T.D. with aluminium. The detector was then etched 
from the other side with HaOH solution. The etchant passed 
through the holes and dissolved relatively large areas of 
aluminium around the holes making them visible to the eye.
Dye solutions that are forced through the fission holes onto 
filter paper is a technique used by Cross and Tommasinno (1967)»
These workers (ibid. 1969) also developed a method of rapid, 
automatic track counting by an electrical arrangement. An 
electrical discharge (or spark) is passed through the fission 
hole evaporating a corresponding hole in an adjacent thin 
aluminium sheet. The number of resulting pulses may be counted 
directly by a scaler, and the pattern of holes in the aluminium 
provides a visible replica of the pattern of tracks in the S.S.T.D.

High track densities (where automatic counting techniques 
are unsuitable because of overlapping of the tracks) have been



33measured using a Scanning Electron Microscope (Seitz et al., 1973) 
with mica as the S.S.T.D.. iJhen, however tracks are distributed 
inhomogeneously and over small areas, visual track counting with 
a microscope is usually employed. The magnification used depends 
on the shape and length of the track, and on the individual 
researcher, à considerable range in magnification from x300 

to x2000 has been used, e.g. Hagpal ^  al. (1973) and Seitz 
et ^.(1973).
2.1.5. Applications of S.S.T.D.*s to the Sciences.

In the last decade and a half, S.S.T.D.*s have been used 
extensively in several of the sciences. The advantages of
5.5.T.D.*8 are their ease of use; insensitivity to light; 
selectivity of charged particles from a high background of ' 
neutrons. X-rays and X-rays; stability of tracks to severe 
environmental conditions (temperature and pressu re etc.), 
and a high track recording efficiency. Tlieir applications are 
multifarious and include micro analysis (for uranium - e.g.
Fleischer, I968; for thorium - e.g. Hair et , 1971» for 
boron - e.g. Carpenter, 1972, and for lithium - e.g. Kleeman,
1973)9 nuclear physics (e.g. Fleischer et a^., I969); geochronology 
{e.g. Hurford,1973) 9 cosmology (e.g. Price et al.,
archeology (Fleischer et a^., 1965c), and as evidence of extinct 
(e.g. Fleischer et al., 1965b) and "new" elements (Fleischer 
et al., 1969). Hot least is their applicability in obtaining 
information regarding the distribution, within a rock specimen, 
of fissionable elements - viz. uranium-distribution maps (section 
2.2. ) .

2.1.6. Q.u-'̂ ntitative aspects of the fission track technique.
The uranium or thorium content in a mineral may be determined 

quantitatively since the number of induced fission tracks 
produced is, for an isotope, proportional to the neutron dose.
This can be represented by formula (2) below (from Kleeman and



Lovering, 1970) s-
i f i ) ^  =  (2)

where (j)i)̂  = number of induced tracks per unit area observed 
on the etched surface of x. 

n = neutron dose 
I = isotopic abundance
KT- fission cross section of element (in bams)

(n)y = atomic density of the element in host phase y 
= a geometric depth factor approximately equal to 
the range of the fission fragment in the host solid. 
(Fleischer et.al., 1967)» Subscripts x and y denote 
tracks formed in y and recorded in x.

= "the etching efficiency of order unity" (Fleischer 
ibid. p.334) of the detector, 

ĝ  = a geometric factor (Kleeman and Lovering, ibid.), 
and is equal to 0.5 for tracks formed only on one 
side of the detector.

The concentration of an element (a) having a fissionable 
isotope (b) may, in a specimen, be determined if irradiated under 
identical conditions to a standard with known isotopic composition 
and content, when

4o

stand. spec.
+ constant =-

(h )̂  stand, (h )̂  stand. (h )̂  spec,(l)̂  spec.
where = n? of induced tracks per unit area from isotcpe

B in the standard.

SpC-C = nY of induced tracks per unit area from isotope 
B in the specimen.

(h )̂  stand. = atomic density of element A in the standard. 
(h )̂ spec. = atomic density of element A in the specimen. 
(l)g stand. = isotopic abundance of B in the standard.
(l)g spec. = isotopic abundance of B in the specimen.
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/ \ (Pi)sDec (1)% stand,

then, (H)̂  spec. = Tx)^ spec. '  <?)

The concentration (c), in g/g of element A may be calculated
(n). spec.

C . — g— i) (Aw) -(4)
where Aw = atomic weight of element A

= Avagadro*s Number (approx. 6 x 10̂ )̂
D = density of host phase
The values oi , g and K need an explanation as to their X X xy

functions.
an etching efficiency factor, is the fraction of those

fission fragments impinging on the detector which may be revealed
as tracks. This term is analogous to Fleischer and Prices*
(1964) coŝ Ô  term relating to the critical angle 0̂  , below
which particles striking the detector will not be revealed by
etching. Since for Makrofol is very low (2°), in effect all
the fission fragments will be revealed as tracks (Fleischer
et a^., 1967 ).

ĝ , a geometry factor, simply expresses whether tracks
have crossed the detector from the host phase on one side (g = &),
or from two sides (g = 1).

V/hen tracks from a standard are compared with those from
an unknown specimen under identical conditions, the values
and ĝ  may be cancelled out. However, the value (a depth
factor) is strictly not constant for different materials.

has been defined (Kleeman and Lovering, 1970 ) .̂s the
maximum depth from which a. median fission fragment can produce
a recognisable track. Mory et al. (1970) measured the mean ranges
of fission fragmente through various metals. Except for a
few exceptions they noted a linear relationship between the mean

"•2ranges (r) - measured in units of milligrams. cm - and the square



4Zroot of the atomic number of the elements under study. Values 
(recalculated to microns) varied from 10.54^m, for aluminium 
to 4,44^m. for gold (compared to Kleeman and Loverings', I97O 
value of K^ = Q,^^jXm,).

The measured ranges depended also upon the Crystallographic 
texture of the material. More research is required before the 
effect of K^ (or R) may be evaluated in a variety of materials
(particularly silicates), and before the proper significance of
this factor in the equation is understood. However, if one uses 
Mory's et al. (ibid.) results - i.e. that R is proportional to 
zF, and assumes that R may be proportionally summed for elements 
in a compound material (i.e. minerals), equations (3) and (4) 
may be modified (for uranium)s-

(f̂ ŝpec. (l)stand. (R)stand.
■ liJ sT e—  • (E )sp ec '

where (u)spec. = uranium content in g/g in the specimen
(u) stand. = uranium content in g/g in the standard
(l)spec. = isotopic abundance of in the specimen
(l)stand. = isotopic abundance of in the standard
(R)spec. = mean fission fragment range (in mg. cm ) for

the specimen
(R)stand. = mean fission fragment range (in mg.cm )̂ for 

the standard
(Pi) = number of induced tracks per unit area (from7 spec.

^̂ Û) in the specimen 
(ĵ i)̂ ^̂  ̂= number of induced tracks per unit area (from 

^̂ Û) in the standard
and, where R =  (6)

ĉ  = weight fraction of the ith element having atomic 
number Zi

"2r̂  = range of fission fragments (in mg.cm ) for the ith 
element where r̂  = 0.8(Zi)̂  (Mory et al., 1970).
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For most of the major rock-forming minerals and using glass 
standards however, (E)spec — (r)stand and the term

(R)stcJid. equation (5) approximates to 1.
(R)spec.

2.2. Uranium Distribution Maps - technique.
Uranium (or more accurately, fission track) distribution 

mapping is a technique utilising S.S.T.D.’s to record abcurately 
the distribution and concentration, within a rock or mineral 
section, of those elements which undergo induced fission. Under 
neutron bombardment, S.S.T.D.'s detect only fission fragments 
from trranium and thorium (table 2,1).High energy fluxes,Y -rays, 
neutrons and high energy protons in general, do not produce 
tracks. The technique is as followss- a thin film of the detector 
is placed onto a polished rock section and irradiated in a thermal 
neutron flux. After an appropriate period has elapsed to allow 
most of the radioactivity to decay, the detector is detached 
from the rock surface and the induced fission tracks revealed 
by chemical etching. Fig 2.7, from Kleeman and Lovering (I967,b) 
schematically shows the principle.

Fleischer, using both inorganic (mica, 1965a) and organic
S.S.T.D.*s (Lexan plastic, I966) first obtained uranium distributioi 
maps from polished rock sections. The limitations and usefulnessI
of the technique however, depend upon solving the problem of the 
spatial relationship between the etched detector and the rock 
section.
2.2.1. Spatial relatioship problems in uranium distribution maps

The small size of the tracks (l0-20̂ lm. in length) mean 
that variations of distributed uranium may be studied over small 
areas and within, in fact, individual crystals. However, in 
practice, the usefulness of the distribution technique over very 
small areTB and with low-uranium minerals, depends upon the ability
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LEXAN PLASTIC

MINERAL C

MINERAL AMINERAL B

10/t
Figure 4, A  representation of fission track regiS' 
tration in Lexan plastic. Hypothetical examples 
of three, mineral phases of different uranium 
abundances are A  w ith  moderate content, B 
with low abundance, and C represents a small 
grain of high concentration. The fissioning 
atoms are ^ o w n , w ith  the direction of the 

two products.

Figure 2.7.

Uranium mapping 
- Principle.

(From Kleeman and 
Lovering, 1967, a),

Figure 2.8.

"Lexan Print" (from 
Kleeman and Lovering 
1967, a). ^



45to relate accurately the induced fission track in the S.S.T.D. 
to its source position in the rock or mineral. Owing to the 
small size of the fission track, and since the detector is detached 
from the rock prior to etching, the determination of the spatial 
relationship between the etched detector and the rock’s surface 
becomes a problem. As most of this work was concerned with trace 
uranium concentrations, some method of recording accurately the 
rock/S.S.T.D. couple was required to solve the spatial relationship 
problem.

Kleeman and Lovering (1967a,b) effectively eliminated the 
problem when they reported obtaining a Lexan plastic print - a 
print of the rock's surface permanently imaged on Lexan plastic
S.S.T.D. (fig2.ô'i.. They suggested (ibid. 1976b)the image to be

nthe result of ;/rpartides and Li recoil ions from lithium and 
boron (n,ot) reactions s-

L̂i + n --
+ n --- -> L̂i + ̂ Se

The different concentrât ions of these elements in adjacent 
minerals produce different quantities of {/.-particle pits (less 
than l^m. in depth) giving rise to a mineral contrast and hence 
print fabric.

Although the Lexan plastic print method is widely known 
(Kleeman and Lovering, 1967b was published in Science N.Y.) and 
is both an effective and (apparently) very simple method of 
distribution mapping, the appearance in the literature of several 
methods suggests that other workers may have had difficulty in 
obtaining such prints. Dooley et al. (1970) devise! a dual 
microscope whereby both detector and rock specimen could be 
viewed simultaneously; Fleischer (I966) used a very thin layer 
of detector (approx. 3jUia.) on the rock surface, which was then 
etched in situ; Haines (1972) devised a method whereby location 
marks were made on both rock surface and detector prior to



irradiation, these being assigned coordinates, and then, by- 
vector analysis, the coordinates of other points were calculated. 
Marking the rock with uranium-doped ink or with uranium-enriched 
scribes has also been reported (Szabo ^  al,*197Q)«

In view of the many apparent advantages provided by the 
Lexan plastic print method, several attempts were made during 
this work to obtain such prints.
2.2.2. Lexan plastic prints - their production.

This section is a report of my attempts to produce a 
Lexan plastic print (see also Appendix l).

From correspondence exchanged wi-th Professor Lovering 
and D.A. Wark (Lovering*s research assistant), it would appear 
that several factors come into play in the formation of these 
prints. Several points are discussed and their roles 
investigated,
(a) The ©(.-track registering properties of Lexan may be 
greater than that for makrofol (the organic S.S.T.D. 
routinely used throughout this work).
(b) Nuclear heating may occur and result in the /-tracks being 
annealed (temperatures above 90^0 would anneal the /-tracks - 
Lovering, private communication).
(c) Pressure on the detector may be too high or low.
(d) The Li and B content of the minerals may not be hi^ 
enough to provide an adequate contrast.
(e) The type of adhesive used in preparing the polished thin 
sections may affect the /-track registering properties of the 
detector.
(f) Reactor conditions may differ.
The inclusion of factor (e) - the type of adhesive used - was 
made since Wark (private communication) occasionally found that 
certain epoxy resins outgas an unidentified substance during 
irradiation which prevented the detector from registering

46
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either a print or fission tracks. Tliis he overcame by 
vacuum-evaporating a thin film of pure aluminium (a few hundred 
 ̂thick) onto the S.S.T.D. which effectively protected it from 
the gas and provided the desired print (the aluminium film was 
rapidly removed by the NaOH etching solution).

In an attempt to obtain a Lexan plastic print, 
irradiations were performed aimed at eliminating the factors 
(a) to (f) which could possibly inhibit the formation of such 
a print. Factors (a), (d) and (e) were eliminated by using 
a variety of different aluminium-coated detectors including 
organic S.S.T.D.s (makrofol; Lexan provided by Dr.C. Rice (l.G.S), 
and Lexan provided by Professor Lovering) on a range of 
different rock types. Adjustments of detector pressure were 
made with the tension screws on the irradiation canisters 
(factor (c)); and, since reactor temperatures in both the 
University of London Reactor Centre (U.L.R.C.) and the Atomic 
Weapons Research Establishment (A.W.R.E.) are similar to that in 
the Eifar reactor (the reactor in which Kleeman and Lovering 
obtain their Lexan plastic prints) - table 4.2-factor (b) was 
eliminated. Thus, after theie irradiations, factors (a) to (e) 
were eliminated and a print was not obtained. After a.sample 
of Rhum crescumalate was irradiated (with kind permission of 
D. Wark) in the Hifar reactor (Sydney, W. Australia) and a 
Lexan plastic print produced, it was considered that reactor 
conditions in Hifar were in some way more conducive to print 
formation than either of the reactors at the U.L.R.C. or the 
Herald reactor at the A.W.R.E. (factor (f)). VÆien however, the 
reactor variables (temperature and flux) were compared for the 
three reactors, they were found to be similar (table 4;2)» 
trlês-maiA howavcr , oWa'wfcV

\rvcKd'̂ ix\ad ii/v a. ^
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Table iî.2

Reactor working
temqerature

thermal neutron 
flux ( cm

fast neutron 
flux f cm )̂

Hifar (Sydney 40°c 3 X 10^2 1-5 X 10^0
U.L.R.C. tube) 30°c X 10^^ a  X 10^
A.W.R.E. (VT-l) 35°G 1 12to 2 X 10 ^ 1 X 10^^

The possibility that a high Y-flux was a critical factor was 
dispelled when aluminium irradiation canisters were used in the 
A.W.R.E. VT-1 facility.

Since for most of this work, a Lexan plastic print was 
not obtained (see also Appendix l), the spatial relationship 
problem needed to be tackled from another angle - the contact 
print method.
2.2.3» Contact Print Method.

The contact print method routinely used throu^out this 
work was conceived by the author to resolve the spatial 
resolution problem. Although not as elegant, nor indeed as 
precise as the Lexan plastic print method it was relatively 
simple to use, and the errors have been quantitatively • 
analysed. It is based on recording photographically, on 
a grid basis, the rock/S.S.T.D. couple, A grid of 
approximately 4 millimetre divisions was cut into the makrofol
S.S.T.D. and affixed to the rock section, A photographic 
"contact print" (details section 2.3*1») was made of the 
rock/S.S.T.D. couple. After irradiation, etching and mounting 
on a glass slide, the S.S.T.D. grid was numbered in the form 
Al - IB,. Al - jC. The squares of the S.S.T.D. which 
corresponded to areas in the rock section could then be 
rapidly found by reference to the contact print (similarly 
numbered), or alternatively, areas of interesting uranium-



49

distributions could be related to the corresponding areas 

of the rock section.

A mineral whose uranium content was required, was 

located on the contact print and the grid square noted. Its 

precise coordinates (x̂ , within that square were transformed 

to the coordinates (X, Y) on an x - y microscope stage 

(attached to the Zeiss photomicroscope) upon which the S.S.T.D. 

was placed.

If the grid square on the contact print has dimensions 

a millimetres by b millimetres (along the x and y axes 

respectively) and the point to be transformed lies p miiiimetrir 

and q millimetres along x and y, then the coordinates of the 

point (x,y,) = /̂̂ ). The stage coordinates corresponding

to the position of the grid-square corners on the S.S.T.D. can 

be measured:- A, B along x and C, D along y. The coordinates 

of the transformed point on the S.S.T.D. (X,Y) can be found when: 

X = A + x^(B - A)

Y = C + y^(D - C)

It was important to know how accurately the transfnrmatlrn

process could be performed and hence to know the minium*, m mineral

area, and minimum S.S.T.D. area which could be analysed by the

contact print method. This was related mainly to the error

involved in measuring the contact print coordinates (x̂ , ŷ )

i.e. t  0.5 millimetres. This was termed the "relocaticn error",

R. R, when transformed to the S.S.T.D. is a function of th*̂

magnification of the contact print (routinely x5). An area of

high probability of locating the point on the contact print

( w ) exists with cp
w = (2 X R )̂  where R = relocation accuracy cp cp cp

= 500 U m
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-, = 1 3c 10^ jX ÏÏ? (at x5 magnification).
The corresponding area of high probability on the S.S.T.D.
(w ̂  with mid point XY) of locating the transformed point
is then:-

- ̂ 2 X  ̂ = ( 2 X 100

“ 4 X (at zero magnification)

So, within the square (centre XY) the probability of finding 
the transformed point (x,y,) approaches 1. w^ then was 
taken to be the minimum S.S.T.D* area which can be counted for 
fission tracks. But since this is a finite area, it must relate 
to a finite area of the mineral. To ensure that all fission .v c 
tracks within related only to the mineral under investigation, 
the minimum mineral area (ŵ.. ̂ ) was required where

r -i2
“ |̂ (̂ op + fp) 2

= [(500 + 100 ) ^

a 1.44 X 10 Mm (at x 5 magnification).
4 - 2(Equivalent to approximately 5.8 x 10 jJjR at zero magnification). 

Minerals then having dimension on the contact print less than 
1.4 X 10̂ <r?(approx l.^lm^) should not be chosen for analysis 
unless either of the two following conditions apply:-

(1) The fission track distribution is so distinctly 
shaped and there exists a similarly shaped mineral such that 
correlation between mineral and S.S.T.D. area is obvious 
(chapter 5, section 5.2.3)

(2) The distribution is such that a hi^-uranium phase 
gives a fission track "star" which can be related back to the 
rock section by its unusual mineralogy and/or geochemical 
compatability with elements such as Zr or P. (Chapter 5, section 5.4).
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2.3. Uranium Distribution Maps - procedttre
The principle of the technique is as follows: simultaneous

irradiation of the detector/rock section and detector/standard 
couples in a thermal neutron flux, chemically etching the detached 
dectectcrnand comparing the number of fission tracks from the 
specimen to that from the standard.

Prior to sample irradiation, initial factors such as the 
time required for the irradiation plus an appropriate cooling-off 
period (Y-radiation decay of mainly ̂ ^a, t̂  = 15 hours), practical 
sensitivity and the expected uranium concentrations of the rocks 
and minerals under investigation must be considered. The expected 
concentration range for the Ehum rocks (and minerals) is of the 
order of 10 - 100 p.p.b. uranium (ip.p.b. = 10~̂  p.p.m. ) and the 
practical sensitivity of the method is dependant largely upon the 
attainment of reasonable counting' statistics of the order of 
10 tracks, cm (Pesant and Ipsom,1970)«

For this work, four irradiation facilities had been made 
available ; two initially at the University of London Reactor 
Centre (U.L.R.C.) and a further two at the Atomic Weapons Research 
Establishment (A.W.R.E.). A comparison of the four facilities is 
shown in table 2.3.

facility thermal neutron 
fl^ (neu:frons, 
cm” . sec ).

convenif̂ nt 
dosg (neutrons 
cm . sec ) •

sensitivity.* 
expected uranium 
concentration . 
(p.p.b.) fog 10̂
. tracks.cm .

( throu^ approx.. 
1 X 10̂ ^

3.6 X 10̂ ^ 21
( tube 

U.L.R.C. (
( core

(100 hours)
1.4 X 10̂ 7 4

( tube ** (40 hours)

( J.2. 2 X 10̂ 1 7.2 X 10̂ ® 13
A.V.E.E. (

( VT-1 2 X 10̂ 2 2.0 X 10̂ 7 3
* calculated from formula (2)
** unsuitable for 2 x 1 inch sections due to the small 

diameter of the tube.
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The maxlnmm convenient dose is a loose term combining several 
factors: safety considerations towards reactor personnel 
(against Y -radiation from̂ N̂a) ; real time taken to accumulate 
100 reactor hours (to allow a reasonable sample tumround), 
and a maximum viable dose of 2 x 10̂ 7 neutrons, cm” .̂

Nylon irradiation canisters were designed and 
constructed for both the U.L.R.C. through tube (fig 2„10) r.nd 
the A.V.R.E. J2 facility (fig 2.̂ 11).The U.L.R.C. canister 
can accommodate up to seven polished thin sections plus standards, 
and the J2 canister up to four. The spec imen/de te ct or or 
standard/detector couple was, in each case, sandwiched between 
nylon spacer discs and tensioned by means of the attached 
screw. In the higher flux facilities (U.L.R.C. core tube and 
A.V.R.E. VT - l) standard aluminium canisters were used.

The processes involved in obtaining distribution maps 
can conveniently be divided into four stages

1. Preparation of material
2. Irradiation
5. Etching procedure.
4. Counting procedure,

2.5.1. Preparation of material
Thin sections of the specimen' were prepared by 

mounting the material in an epoxy resin (Ciba-Geigy A105 
and hY 951 hardener in a 10 to 1 ratio) and grinding down
to a thickness of 35jUm. The dimensions of the slide were 
2 x 1  inches and chosen to be compatible for use both with 
the Geoscan microanalyser (at Imperial College) and the Jeol 
scanning electron microscope (at Chelsea College), The 
sections were polished on a Metaserv motorised polishing 
instrument with Hyprez diamond abrasives to a final -JjUm grade, 
washed in a minimum quantity (l-2 mis) of distilled water and 
in I.M.S. It has been suggested (Wark, personal communication)



54-

* 9 3 rVliM.

Spacer
disc

3 8

IS »v\*̂

rrwi.

F i g ure 2 . 1 0  

U.L.R.C. i r r a d i a t i o n  c a n i s t e r



IH'5 /Mm.

6] jl-ijili h''! W\A/>/VM̂

mm.

i ^ m iywy/-

I2'3 
i

mm.

mmr
mm mm.

ml ml.

55

Figure 2.11 

A.W. R.E. i r r a d ia t i o n  c a n i s t e r



56

that with excessive sample washing leaching of uranium into
the aqueous phase may occur, A minimum amount of washing was,
therefore, undertaken, and ultrasonic cleaning in a sonic
bath not used.

Detector material, makrofol KG*, an organic (bis-phenyl
A polycarbonate resin **) S.S.T.D., was supplied in ̂ OjXm

thick transparent sheets. One surface of the sheet was
uniformly smooth and, in order to obtain maximum surface
contact with the rock section, was consequently used as the
detector surface. Pieces of makrofol were cut to cover the

2rock section and a location grid of approximately 4 mm
divisions cut into the detector surface with a clean, new
scalpel blade, /hi old, or blunt blade scratched, rather than
cut the surface, causing the makrofol to buckle. The detector
was then washed in a similar manner to the thin sections and
allowed to dry before being attached to the ro$k section by
means of spots of adhesive (Bostik l) at each comer.

A contact print (section 2.2.2.) was prepared using
Kodak photographic fine grain positive film (fig 2/'(2). A
contact negative was firstly produced by pressing the film
onto the rock detector couple (by means of magnetised clips)
and exposing for a suitable period of time (4 -6 seconds at
f.ll) and developing the negative in 1 + 4 Kodak DPC developer.
The film was chosen for its slow speed (5 ASA) so that it
could be handled near a safe light, and for its high
*Supplied by: C.M.C. Klebetechnik-Ireland Ltd.,
Waterford Industrial Estate,
Waterford, Eire. q

**formula:- 2̂  6̂ 4̂ "̂
identical to Lexan plastic except that makrofol 
contains a small amount of green dye and is prepared by 
a casting process (Paretzke etal. 1973)*
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m m

Figure 2.12 (a). Contact print (R.90).

S mm.

Figure 2.12 (b). Contact print (R.62).
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definition so that objects of size approximately 25jÜlm were resolved.
Preselected areas of interest were then photographed using a Zeiss
photomicroscope (Ilford Pan-P film and 1 + 29 Perceptol developer) at
a total magnification of not less than xlOO (routinely x125).

Glass standards (calibrated microscope glass slides and U.S.G.S.
standards — Section 2.3*5») were washed in a similar manner to the
specimens. Pieces of makrofol were cut, washed and dried, and placed
on the surfaces of the standards. Neither a location grid nor a
photographic record of the standard/detector couple was required.

The materials were packed prior to irradiation, the positions
of the standards arranged such that they were in close proximity
to the positions of the specimens. The arrangement varied slightly
with the type of irradiation canister that was used, but in general
was as shown in figure 2.13.Blanks were used in each irradiation
in order to monitor the uranium concentration in the S.S.T.D.’s.
2.3.2. Irradiation

The total thermal dose required depended uponthe amount of
uranium estimated to be in the photographed pre-selected areas of

17 —2the rock. The maximum limit attainable was 2 x 10 ' neutrons.cm” .
At doses above this, the makrofol S.S.T.D. became increasingly brittle 
and hence less managî6,ble. Similarly, above 2 x 10̂  ̂neutrons.cm 
the epoxy resin bonding the rock section to the glass slide 
deteriorated rapidly, and the rock section started to crumble.
The best choice of reactor facility for the irradiation may rapidly 
be made on the basis of the data in table 2.5. Since the concentration 
of uranium in the major mineral phases of Ehum cumulates are in 
the p.p.b. range, the maximum permitted dose was generally applied.

In both the A.V.R.E. facilities, monitoring to obtain values 
of both the thermal and fast neutron doses for each irradiation, 
was undertaken.
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2.3.5. Etching procedirre
The paths of the fission fragments in the makrofol

5.5.T.D. were made optically visible by chemical etching 
with NaOH solution. The etching parameters, i.e. etchant 
concentration, time and temperature, when varied affect the 
quality of the etched fission tracks. Variations of the 
parameters have however been well investigated, and guide lines 
to the optimum conditions established.

Khan (1975) showed that the general etching velocity 
(Vg) of a plastic detector (cellulose nitrate) increased with 
increasing etchant concentration to a point where Vg remains 
constant. Frank and Benton (1969) suggested the optimum 
NaOE solution concentration for etching Lexan S.S.T.D. to be 
approximately 2CP/q. The "generally accepted" NaOH solution 
concentration is 6N or 6.25E (e.g. Fleischer ^  al. I969).
The solution concentration used routinely in this work was 
6E NaOH.

Frank and Benton (ibid) found that the bulk etch rate 
(equivalent to Khan*s, 1973 term, Vg) increased 

exponentially with temperature of etching solution. Etching 
times at room temperature can be as long as 16 hours (Besant 
and Ipsom, 1970). This was considered inconvenient when 
dealing with batches of samples, and since the track 
definition is in no way enhanced (and may in fact deteriorate, 
Khan, 1973) , a temperature of 70°C was subsequently chosen 
as this required etching times of only 10 minutes.

A drop of Decon 90 wetting agent was added to the 
distilled water prior to the preparation of the etching 
solution as it was reported by Besant and Ipsom (ibid) to give 
a more uniform attack on the detector. The S.S.T.D. was 
agitàted with a glass rod during the etching procedure at
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intervals of approximately 60 seconds. This ensured that 
chemical etch products did not accumulate on the surface of the 
detector and impede the solution r^cUng the site of the 
attack (Khan, 1973). Identical etching conditions were 
followed for both standard and specimen S.S.T.D.s. Upon 
completion of the etching time, the S.S.T.D. was immediately 
immersed in a dilute solution of acetic acid in order to 
halt the etching reaction. The S.S.T.D. was washed with 
distilled water and IMS. Drying was completed with the 
assistance of the heat from a tungsten lamp.

After drying, a brownish residue of phenol or quinone- 
type compounds (Paretzke et^., 1973) coated the surface of 
the makrofol S.S.T.D. This had the result of making the 
detector non-transparent and the tracks indistinct. The 
clarity of the tracks increased when the detector was fixed 
face up on a glass slide with a solution of durafix in 
isopropanol. The effect of the durafix mount on the clarity 
of the tracks was considered to be two-fold. Durafix is a 
solution of cellulose acetate in dicholorethylene, and the 
thin layer of cellulose acetate bonding the detector to 
the glass produced less scattered light since its refractive 
index is similar to that of makrofol. It also appeared to 
dissolve the residue.
2.2.4. Counting procedures

Track counts (i.e. the number of induced fission tracks 
per unit area of detector) were carried out both automatically

and visually.
Automatic track counting was carried out with a 

Ouantimet 720B Image Analyser (at Birkbeck College, London).
A microscrope image (x400 magnification) was transmitted, via 
suitable electronics, to a cathode ray tube and screen. A
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discriminator then analyses the screen for areas of li^t 
and dark (fig 2.14 ),the track count per analysed area printed 
on a teletype output. This enabled homogeneously distributed 
tracks to be rapidly counted.

Heterogeneously distributed tracks (such as found in 
most rock sections) were counted visually using a Zeiss 
photomicroscope and transmitted light at a magnification of 
X450* The area in the field of view was projected onto a 
ground glass projection head screen attached to the 
photomicroscope. Tracing paper with a grid of 4 centimetre 
squared (cm ) divisions marked on it was placed on the screen 
and the number of fission tracks per division recorded. Tracks 
from both specimen and standard were counted in this manner.

Tracks were also counted directly from photographs.
Since photomicrographs of several areas of the detector/rock 
section couple had been taken prior to irradiation (section
2.3.1.); after irradiation and etching, these same areas of 
the detector were rephotographed, and the number of tracks in 
a given area counted from the photographs. Photomicrographs 
were similarly taken (at the same magnification) of the 
standard S.S.T.D. and the tracks counted over a similar area.
2.4, Standard calibration

In order to determine quantitatively the concentration of 
uranium in a specimen by fission track analysis, a standard 
of known uranium content and isotopic composition is required. 
After irradiating both standard and specimen under identical 
conditions, the uranium content (in the specimen) may be 
calculated by comparing the number of induced tracks per unit 
area in the standard S.S.T.D. with the number in the specimen
5.5.T.D. (Section 2.1.6.). In this work two standards were 
used to calculate uranium concentrations of various mineral
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phases. These were n.s.SA . standard glasses (SEM 6I4,
Carpenter, 1972) plus calibrated batches of Chance microscope 
glass slides, as secondary standards. The calibrated glass 
slides were then used in the preparation of those polished 
rock sections which were to be irradiated for fission track 
analysis.

Two analytical methods were used to determine the 
uranium content in the glass slides - fission track analysis 
and delayed neutron activation analysis (D.H.A.A. ) as 
described by Gale (I967).

Six specimens from a batch of 50 Chance 50 x 24 cm 
microscope glass slides were randomly sampled and cut in half.
The uranium content in one half was calculated by fission track 
analysis using SEM-614 glass as standard. Pieces of makrofol
S.S.T.D. were placed against the specimen and the standard 
and irradiated with a total thermal neutron dose of 
6.3 X 10̂  ̂neutrons, cm Etching was performed in 
6N NaOH for 10 minutes at 7O- 1°C (Section 2.3.3.). The 
track density was determined with the Quantimet J20 at 
Birkbeck College (Section 2.2.4.). Tlie other half of the 
glass slide was powdered in an agate pestle and mortar, the 
U content being determined at Harwell by the D.H.A.A. Method.
A batch of "Geoscan" 48 x 24 cm glass slides were similarly 
calibrated by the fission track method.

In order to calculate the uranium content by fission 
track analysis, equation (5) (Section 2.1.6.) was useds-

(P ŝpec. (l) stand. ^ (E) stand. y_ stand.(H) spec. = ;—  ----   % — ----  7-7-----
(f^Atand. (I) spec- ®P®°‘

The standard in this case was the N.B.S. . (SEM-614) glass, 

where :-
(I) stand. = 1.173 X 10“  ̂(isotopic content of ^̂ Û)
(u) stand. = 0.828 - .002 p.p.m. TJ



The specimens mere the 50 x 24 millimetre Chance microscope glass 
slides, where

(I) spec. = 7.26 X lO”  ̂(natural isotopic content of

To determine the values (R)stand. and (R)spec, the major 

element concentrations of both specimen and standard were required.
Then, from equation (6),

R = r. where
L Table 2.4,

element iSHM-614) stand Chance 
î ■’ V i  "i

50 X 24 cm 
Ci?i

"Geoscan'* 
î

48 X 26 cm 
=1^1

Si .33 .987 .33 .987 .32 .958
Ca .08 .286 .1 1 .393 .1 2 ,429
Na ,1 0 .253 .07 .177 .07 .77
Al .0 1 .029 .0 2 .057 .0 2 .057
0
Total

,48
1 .0 0

1.085
2.664

.47

.99
1.063
2.677

.47

.99
1.063
2.684

where c. = weight fraction of the element
r̂  = the mean fission fragment range in mg.cm”

To determine the values of (pi) and (Pi) . trackJ spec. y stand.
densities at x 400 magnification were obtained using the 
Qu an time t ^P^^stand “ x 1 0  ̂(mean of 6)

(pi) = 2.884 X 10^ (mean of 6)/ spec.
Then substituting the appropriate values into equation (5), 

the concentration of uranium in the Chance (50 x 24 mm.) slides

i.e. (U)spec., was calculated - table 2.5.

Table 2.5.

slide n°. D.IM.A.A. fission track
(50 X 24 mm.)_______(p.p.m. U)____________ (p.p.m. U)____

51
52
53
54
55
56

Average

.346 ,343

.382 .345

.333 .345

.367 .350

.373 .343
,369 .341
.362 .344
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Over 100 track counts each over an area of I.746 x 10^^n^ 
were recorded on both standard and specimens. The low mean 
standard deviations and subsequent chi-squared ()(̂ ) tests 
(table 2 .6 Showed that, in addition to obtaining extremely good 
reproducibility (table 2.5, the uranium was distributed 
homogeneously throughout both the U.S.G.S. standards and the 
microscope glass secondary standards.

specimen track̂ density 
(x10  ̂cm” )

Mean S.D. 
100 area 
counts

normal deviate 
(n.d.)

N-B.S. (SM-6I4) 5.370 .380 111.684 .873
50 X 24 mm, 8.667 .377 108.931 .689
"Geo8can" 5«750 .381 117.960 1.288
The (X^) test is a measure of the randomness of a set of numbers 
(in this case, the number of fission tracksrecorded over a unit 

area).
V 2 _ (n - iJsA
2where s = the variance
= the population variance 

n = the degrees of freedom
The normal deviate (n.d.) - i.e. the standard deviation -

of the value  ̂may be calculated (for values on n $0) when:-
n.d. = (2 7(2)̂  - (2n-l)4

then for a random situation, the value of n.d. should lie between
zero and two standard deviations. îhis is in fact seen to be

the case (table2.^ column 5)»
The uranium content in the "Geoscan" 48 x 26 mm. glass 

slides were calculated by fission track analysis and found to 

contain 0.149"»002 p.p.m. uranium.
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2.5» Choice of Detector

Pieces of makrofol and mica were tested for their
suitability as S.S.T.D.*s. Both were irradiated in contact with
standard microscope glass slides and in contact with each other.
Tracks were revealed on etching with a suitable etchant -
mica in 409̂ KP for two hours at room temperature; makrofol in
6N ÎTaOH for ten minutes at 70°C - and counted at x400
magnification using the Quantimet 720 (at Birkbeck College).

Table2.7shows that at the dose of 6 x 10̂  ̂thermal 
_2neutrons.cm , the track density between the mica and makrofol

S.S.T.D.’s varied by only approximately 0.2̂ .̂ The difference 
between the mean track length (column 4) was insignificant at 
the magnification used (x400). At lower magnifications 
however, tracks in makrofol may be easier to resolve.

Table p.? ________________
detector (Pi) tracks.cm uranium mean track

(p.p.b.) length
makrofol/glass 2.718 X 10^ 533 18

mica/glass 2.728 X 1o5 334 15

mica/mica 1016 1.23 -
makrofol/makrofol 120 .15 -

The main qualitative difference was in the appearance 
of the detector. Makrofol was virtually free of any dislocations, 
whereas mica frequently had dislocation defects, and also a 
tendency to be easily scratched when handled. These defects 
may be mistaken for fission tracks especially when automatic 
counting is used. What is perhaps more important is that the 
makrofol has a lower intrinsic uranium content (column 3) 

than the mica. Makrofol is therefore a more sensitive S.S.T.D., 
particularly when applied to minerals with concentrations of 

uranium in the low p.p.b. range.
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The track registration qualities of the two detectors 
at various doses were examined by track counting after irradiation
adjacent to standard glasses over a range of thermal neutron

15 17 ?doses between 7 % 10 and 5 x lO 'neutrons.cm” (figure 2.15).
From the graph it can be seen that the track count for makrofol

17 —?deteriorated at high (> 4 x 10 'neutrons.cm” ) doses. The
makrofol, in fact, with increasing dose became more brittle
and less mana^ble. I t  has been reported (S e it -ÿ  a n d  W a rt, 1 9 7 3 )

that severe track fading may occur with the use of plastic
detectors. Although figure2.15may be interpreted in this
manner, a more likely explanation is that instead of tracks
being lost through fading, excessive irradiation damage affects
the makrofol plastic, such that an increase in (the etching
velocity of the bulk of the detector) over (the etching
velocity along the damaged trail) occurred. This would have
the effect of increasing the critical angle of incidence
(9̂  - Fleischer et 1964) and fewer tracks would result.
This hypothesis is backed, qualitatively, by the appearance
of the fission tracks in the makrofol at doses in excess of
4 X 10̂ '̂ neutrons.cm.” .̂ A lower etching time was needed to
reveal the tracks, and once formed, they appeared shorter
and were conical in shape.

The maximum workable dos- for makrofol S.S.T.D. was
then of the order of 4 x lÔ n̂eutrons.cmT̂ . At doses in excess
of 2 X 10̂ ^neutrons. cmT̂  however, the epoxy resin binding the
rock thin section tothe slides lost its adhesive qualities
and the thin section began to crumble. So any apparent advantage
obtained by using mica was not considered sufficient at the
maximum usat>\.e dose (2 x 10 ^neutrons. cm, ) to offset its

lower sensitivity.
One advantage mica has over plastic S.S.T.D.*s is that
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it has a higher value". That is the total number
of tracks which may be resolved (and counted) over a unit area
is greater for mica than for makrofol. Seitz et al. (1973),
using a Scanning Electron Microscope, counted track densities 

8 —2of up to 2 X 10 tracks.cmT . The limit for plastic
5.5.T.D.'s occurs however, at about 5 x 10? tracks.cmT̂ . A
major disadvantage however, of using mica was its surface
appearance. It was virtually impossible to cleave a piece
of mica without it aquiring a stepped surface profile. This
can lead to unnecessary relocation errors since the surface
contact between the S.S.T.D. is not 100% (figure 2.36).For
example, a 2̂ Am surface step can create a relocation error
of up to &j[m» Since the surface of plastic detectors are
essentially smooth with no stepped profiles, errors of this
type are advoided. Thus for thermal neutron doses of up to 

17 2̂2 X 10 neutrons.cm. , makrofol plastic was prefered to mica 
as the routine S.S.T.D..

2.6. Sources of Error
The four stages of the technique used to obtain uranium 

distribution maps (sections 2.3*1* - 2.3*4*) can each introduce 
errors resulting in inaccurate values of uranium concentrations 
for the various minerals. In this section is discussed the 
"individual" sources of error, and the steps taken to avoid 
or standardise those errors. These can be subdivided into 

four stagess-
1. Sample preparation errors
2. Irradiation errors
3. Etching errors
4. Counting errors

A discussion of the errors inherent in the technique of fission
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track analysis and counting statistics can be found in section 2.'?..
2.6.1. Sample preparation errors

As the surface of the polished thin section contain 
many (small) cracks and intermineral relief boundaries, it 
was important tĥ t the abrasives used to polish the surface 
contained negligable amounts of uranium, in order to avoid 
contamination from this source. Samples of abrasives used 
(section 2.3*1.) were tested for their uranium content by 
placing them between sheets of makrofol S.S.T.D., irradiating, 
etching and counting. The track densities for the abrasives 
were of the same order as those for blank makrofol sheets, 
the uranium content was therefore, below the detection limit 
(^1p*P*b.). The abrasives used were thus eliminated as 
being potential sources of error by contamination.
2.6.2. Irradiation errors

As it was possible to have individual standards for 
each polished thin section irradiated, sample packing was so 
arranged (figure ̂ 13)that relative standard/specimen positions 
were very close (a few millimetres). This effectively eliminated 
(or standardised) local flux variations, self-absorption 
factors and temperature differences. Absolute values for the 
neutron doses were similarly not required if standards were 
introduced for each irradiation.

It has been suggested (Wark, private communication) 
that certain epoxy or araldite resins emit a gas under neutron 
bombardment which can cause track fading. Initial use of 
araldite to attach the makrofol S.S.T.D. to the rock or 
glass surface did in fact result in track fading over a 
distance of several millimetres around the adhesive spot.
IVhen Bostik, or the araldite resin used in preparing the thin 
sections were substituted as an adhesive, no track fading occurred.
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2.6.3. Etching errors
Optimum etching conditions were achieveds the aim 

being to obtain the maximum value for track length/track width 
ratio, such that it had a high probability of being recognised 
(and counted) as an etch figure from a fission fragment.

Once the concentration and temperature track etching 
parameters had been established (Section 2.5.3*) an experiment, 
aimed at obtaining the optimum track definition by varying the 
etching time (the other track etching parameter) was 
performed. Track dimensions were measured (to within 0.2 ̂ m) 
using the Ouantimet 720 at Birkbeck College over a period of 
14 minutes at 1 minute intevals. A plot of etching time against 
track length is given in fig 217, and of etching time against 
track length/width ratios in fig 218. Pig 217 shows two distinct 
phases of etching. There is an initial large increase in 
track length over a relatively short time inteval. At a
track length of 18 ̂Um, further increase in etching time
produces only a very small increase in track length. The first 
phase (represented by the line AB, fig217) of etchant attack 
corresponds to the solution rapidly etching the damaged 
region (caused by the fission fragment) until it reaches the 
end of the fission fragment range in the detector. The 
second phase (line CD) is governed by the velocity of attack 
on the undamaged (bulk) of the detector. Thus, both the 
rate of chemical attack along the track (Ê ), and the rate of 
chemical attack of the bulk of the detector (R̂ ) can be 
calculated. From the graphî-

= 18.8 yiAm in 7 minutes
= l6l yA m per hour

R̂  = 2 JÀm. for 6 minutes
« 20 JAm per hour
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By substituting these values of and into Fleischers 
et al. (1964) formula for calculating the critical angle of 
incidence 0 (Section 2.2.3) s- 0 = sin  ̂^

6̂  is found to be approximately
However the value E^ calculated here is at very best an 
approximation since changes of track length under 0.2 p^m 
cannot be resolved with any degree of accuracy. Thus, large 
errors will result when attempts to measure very small changes 
of track length are made. When, therefore, the Paretzke et 
(1975) value of E  ̂for makrofol at fO^c (Ê  = 1.6 ̂ m  hr 
is substituted into the same equation, 6̂  has the approximate 
value of 1°.

Although E^ appears constant, the track width was 
seen to increase w.r. t. the length. Fig &17 shows with increasing 
time, a decrease in the track length/width ratio such 
that an optimum track definition exists. In this case the 
optimum definition was after 10 minutes 1 minute).

It was of course important to etch both standards and 
specimens under idential conditions. Fig 219 shows the 
variation in track density with etching time. A maximum 
(optimum) density at 10  ̂ 2 minute was reached, and which
then decreased with further increases in etching time. There 
appeared to be two factors affecting the shape of the graph 
(fig 2.19). At low etching times the tracks have not fully 
developed to their maximum size. The track density will 
then depend upon the magnification used (in this case X4OO), 
and the revolving power of the microscope lenses. At high 
etching times definition is lost (see fig 2,1£j), tracks become 
overetched, overlapping may occur, and tracks with low 
angles of incidence become "etched out". At the optimum track
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density and time (lO minutes) a variation in etching times of 
-0.5 minutes results in a variation in track density of only 
0.2P/o.

During routine etching the solution was stirred 
approximately every 60 seconds to ensure a layer of etch 
products did not accumulate on the detector surface. Khan (1973) 
form&lised this aspect of etching when he quantitatively showed 
the adverse effects of an "etch product layer" on the bulk 
etching rate.
2.6.4. Counting errors

In either visual or (particularly) automatic track 
counting; probably the greatest source of error arises in 
deciding whether a feature in the S.S.T.D. is a fission 
track or a detector defect. This error was minimised by using 
organic S.S.T.D.*s since they are not so prone to defects as 
inorganic S.S.T.D.'s. In fact, the vast majority of tracks in 
a S.S.T.D. are easily recognised as such when viewed visually 
(at suitable magnification) since they form straight, linear 
defects; are of limited size; are randomly orientated (in 
general), and are inclined at an angle to the detector surface. 
Occasionally however, a subjective criteria needs to be 
employed to decide whether a feature is to be counted as a 
track or not. With experience, subjective errors can be 
standardised, and at low track counts may be eliminated, 
since there are fewer features and more time can be allocated 
to their correct identification. So, paradoxically, low track 
counts are likely to be more accurate than higher track counts. 
ViHien counting the standard (with a relatively high track 
density) where up to 50 track counts were often performed, 
care was taken to correctly identify border line features in 
order to minimise subjective errors.
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Vdien counting tracks with the Quantimet 720 (Section 
2.2.5)y tracks perpendicular to the detector surface were 
often not detected (there is a visual display of detected 
features - fig 21̂ ). Consequently numerical adjustments to the 
output were sometimes required. This simply entailed recording 
manually the excess number of fission tracks in that area 
count.

2.7. Evaluation of Errors Involved in Fission Track Analysis.

Inherent within any analytical technique is the likelihood

of error. A measurement of the degree of error involved is

necessary in order that the data presented can be evaluated in

terms of reproducibility of results and how close the analysed value

is to the "true" or intrinsic value. By the combination of a

statistical analysis on a series of results and consideration of

errors inherent in the technique itself, an evaluation of the

precision and accuracy of the data, and the sensitivity and

selectivity of the technique can be made.

2.7.1. Precision and accuracy of results.

Statistical interpretation of results permits an unbiased

presentation and the determination of the degree of useful ness of

the data collected. The reproducibility, le. the precision, and

the measure of correctness of the data, i.e. the accuracy, can

be expressed in mathematical terms.

In order to determine the precision of results obtained

by fission track analysis, 100 area counts over an area of
1.746 X 10^ ̂  m^ were performed on three standard glasses (section

2.4.) using the Quantimet 720 and a magnification of X400. The

same specimens were manually counted using the Zeiss photomicroscope
5again at a magnification of X400 and over an area of 1.44 x 10 

/1 2 2yK m in steps of 120 x 120 ̂ m  squares. The standard deviations
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es.D.) and coefficient of variations (or mean standard deviations, 

C) from these results are presented in table 2.8. 

where S.D. =

C

d /(n - 1)

S.D. X 100

where d is the deviation of a specific result from the arithmetic 

mean, x, of a number of determinations, n.

Table 2.8.

...S.D
Quantimet Zeiss

C %
Quantimet Zeiss

track density (xlO^tracks 
Quantimet Zeiss

SRM 614 0.18 0.60 .381 1.23 3.370 3.368

50 X 24 0.47 1.58 .380 1.27 8.667 8.635

Geoscan 0.20 0.63 ,377 1.17 3.750 3.750

Thus, from the table 2.8, a precision of - 1.5% is attainable 
at a confidence limit of - 2cr (i.e. 95.4% probability).

The degree to which a particular result corresponds to 

the true, or intrinsic, value is often difficult to determine since 

this value is not really known. For this reason, a series of 

standard rocks (e.g. Flanagan, 1973) came into use having generally 

accepted values for different elements. An estimation of the 

accuracy could then be obtained for a particular technique, or 

batch of samples, by comparing the values obtained for a standard 

rock with the published values. However, such a procedure could 

not be used for fission track analysis, since mineral standards 

with uranium concentrations at the p.p.b. level are not obtainable. 

Nevertheless, on indication of the accuracy was obtained when 

six specimens from a batch of 50 x 24 glass slides were analysed 

by both fission track analysis and delayed neutron activation



1-8

analysis, D.IM.A.A., (Section 2.4., table 2.5.). D.IM.A.A. gave a 

uranium concentration of 0.362 p.p.m. from an average of six 

analyses (mean S.D. = 4.3), end fission track analyses a 

concentration of 0.344 p.p.m. from six analyses (mean S.D. =0.80). 

These two values are within five percent of each other. It should 

be noted however, that a much greater degree of precision was 

obtained using the fission track technique.

2.7.2. Sensitivity and selectivity of the technique.

The sensitivity of the fission track technique depends upon 

three factors

1) the thermal neutron dose
2) the intrinsic uranium concentration of the detector
3) counting a sufficient number of tracks to allow reason

able counting statistics.

Since the number of tracks produced from a given concentration
235of U is proportional to the thermal neutron dose, then, from

a first approximation, the higher the dose, the greater will be

the sensitivity. However, from experiments on organic detectors
17(section 2.5.) it was found that doses in excess of 4 x 10 

_2
neutron, cm disrupted the structure of these detectors making

them unusable. Thus for organic detectors, the maximum workable
17 —2dose was considered to be 2 x ID neutrons, cm .

An estimation of the uranium content of makrofol S.S.T.D.

gave a value of 0.16 p.p.b. (table 2.7.)

Carpenter (1972) noted that uncertainty due to counting

statistics varied directly with the square root of the number

of events observed, and that the precision of the results may

suffer if an insufficient number of observations are made.

Using automated track counting techniques, Besant and Ipson (1970)

suggested that at track densities greater than approximately

5 X 10  ̂tracks. cmT^, overlapping may begin to introduce errors.
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Ching-Shen Su (1972) also found that the number of observed 

fission tracks was proportional to the uranium concentration at 

low track densities, but that the linearity disappeared at 

high track densities.

Price Vv/«iker (1962) suggested a detection limit of twice 

the background level, viz. the tracks emanating from the

makrofol S.S.T.D., is attainable. At a thermal neutron dose
17 —2of 2 X 10 neutrons.cm” this corresponds to a density of

_2approximately 700 tracks, cm” , and is equivalent to approximately

0.3 p.p.b. uranium. A peak to background ratio of 10 indicates
_2a sensitivity of 1.5 p.p.b. (3000 tracks, cm” ) at a dose of

17 —22 X 10 neutrons, cm” . Therefore the optimum working range

is from 1.5 p.p.b. to 25 p.p.b. (5 x 10^ tracks, cm”  ̂- from

Besant and Ipson, 1970). Since this upper limit refers

essentially to automatic counting techniques where overlapping

of tracks cannot easily be resolved, by careful manual counting,
17the working range can be extended to 25 p.p.m. (at 2 x 10

—2 17 _2neutrons, cm” ) and 50 p.p.m. (at 1 x 10 neutrons, cm ).

At concentrations of uranium above this level, the fission 

tracks overlap to such an extent that the detector is, in 

effect, saturated.

Although a number of other elements can produce etchable

particle tracks in organic detectors (e.g. lithium and boron,

hleeman 1973; lead, Hamilton, 1971; oxygen, Carpenter_et al.,

1973; thorium and Hair et al., 1971), only ^^^Th and

form tracks of comparable size to in makrofol and

lexan S.S.T.D.'s irradiated in a thermal neutron dose. The 

error produced by ^^^Th and are fortunately small since

these isotopes only fission under bombardment of fast neutrons 

(see section 2.1.), and hove much lower capture cross-section '
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235values than U (table 2.1.). Assuming Th/U ratios of

exceptionally 10 to 1 (Burnett ̂  , 1971) and thermal/fast

ratios of typically 10 (table 2.2.), the contribution of fission
fragments from thorium is approximately one percent. Assuming

also a natural isotopic abundance ratio between and
235(approximately 140, table 2.1.), the contribution from U

amounts to only 0.12%. The technique then is very selective

using makrofol or lexan S.S.T.D., the only interfering elements, 
238thorium and U producing, in general approximately one percent 

error.

A more serious type of error is introduced in the form

of matrix effects when non-silicates are being analysed- Since

the range of fission fragments varys according to the media in

which they travel, Mory_et al. (1970), the term Rgtand^^spec
in equation (5), section 2.1.6., will not be constant. In

practice, for most silicates, this term approximates to unity,

but may deviate considerably for non-silicates, e.g. for PbS,

R . ,/R has a value of 0.33 (Schreurs et al., 1971). Thisstand spec  '
problem may however, be partially overcome by estimating the 

value of Rgpgc from Mory et al. (ibid.), and,in calculating the 

uranium contents of some of the oxide minerals (chapter 5), 

this estimation was performed.

The precision and accuracy then of fission track analysis 

is comparable with other techniques for the determination of 

uranium (Fisher, 1975) and has the added advantage of being 

able to mop the distribution of that element in rock sections.

An overall accuracy of - 5% for concentrations up to approximately 

100 p.p.b. and - 10% for concentrations greater than 100 p.p.b. 
is considered to have been achieved.
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2.8. Electron-probe Microanalysls.
An additional technique was employed to determine the 

concentrations and distributions of elements within mineral 

phases, that of electron-probe microanalysis. Analyses were 

performed on the same polished thin sections as those used for 

uranium distribution studies, and the contact print photographs 

used initially in the fission track method, were found to be 

useful for location purposes in the electron-probe microanalysis 

technique.

The two instruments used in this thesis were the Cambridge 

"Geoscon" (at Imperial College, London University), and the 

Jeol 50A Scanning Electron Microscope (at Chelsea College, London 

University).

2.8.1. Cambridge "Geoscan" electron microprobe.
This instrument was used mainly for quantitative analysis 

of selected minerals using as standards natural or synthetic 

minerals. The Geoscan at Imperial College has available two 

spectrometers, whereby two elements may be analysed simultaneously, 

and a choice of five crystals (PET, LiF, TIAP, mica and quartz).

The details of elements analysed, crystals used etc., are given 

below in table 2.9. Routine procedure of analysis was undertaken 

for the major elements.

For the standards, a total of 10,000 counts were 

accumulated both at the beginning and at the end of the run. 

Specimens were counted for three or four ten-second counts. For 

the background, two ten-second counts approximately two degrees 

2 8 either side of the peak were determined for both standards 
and specimens. The data was then corrected for both instrumental 

(i.e. background, dead-time and drift) and matrix (fluorescence, 

absorption and atomic number) effects using the Imperial College'
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programme (PTMK5) by Mason. et . > (96%

For the determination of minor elements IMi and Ca in 

olivines, a manual scan across the peaks was initially performed 

in order to locate precisely the apex of these peaks. Three- 

100-second counts were accumulated and averaged for each point. 
The data were corrected in the same way for instrumental and 

matrix effects.

Table 2.9.

Element X-Ray
Line

Crystal Bragg 
Angle (28)

Standard
Used.

h K PET 51° 08' KTANT (synthetic potassium 
tantalate)

Zr L 1 PET 83° 30' PUREZR (Zr metal)

Y L 1 PET 95° OS' YIG (synthetic yttrium 
iron garnet)

Si H TIAP 32° 08' U0LL2 (natural wollaston- 
ite)

Mg K TIAP 45° 11' FORST (synthetic
forsterite)

Al K TIAP 37° 49' MGALOX (synthetic spinel)

Na h TIAP 55° 07' 0AD2 (Natural jadeite)

Fe h LIF 57° 15' FE203 (synthetic iron 
oxide)

Ni K LIF 48° 10' NIOX (Nickel Oxide)

Ti K LIF 85° 85' TIOX (synthetic titanium 
oxide)

Ca K LIF 112° 57' U0LL2 (natural
wollastonite)

K LIF 62° 46' RHODON (natural
rhodonite)

2.8.2. Oeol 50A Scanning Electron Microscope.

This instrument was used for three purposes - location , 

of small mineral phases, rapid qualitative analysis of minerals.
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and far obtaining Elemental distribution maps of a given area 

within the rock specimen.

In the uranium distribution maps of the Rhum cumulates, 

a relatively frequent occurrence is the appearance of fission 

track "stars". These corresponded to small, uranium-enriched 

mineral phases (chapter 5, section 5.4.). These minerals were in 

all cases found to be either phosphorus or zirconium bearing 

and were often only of the order of 20 - 30 in

size making them difficult to locate using a petrological micro

scope. By use of the energy-dispersive detector on the scanning 

electron microscope (S.E.M.), a window could be set such that 

only phosphorus (K^^) and zirconium (Lp( ) were detected (between 

1.9 and 2.1 keV). Then, with reference to the fission track 

contact print, the area of the rock corresponding to the fission 

track star was scanned at approximately X6DG magnification on 
the P/Zr channel. The uranium source mineral was readily 

located by on accumulation of dots on the cathode ray 

fluorescent screen. Rapid identification and qualitative 

analysis of the phase could then be obtained by displaying the 

full spectrum from a 100 second spot analysis.
Elemental distribution scans of mesostasis areas were 

obtained for a variety of elements (chapter 5) using a similar 

procedure. A window was set at the upper and lower limits on 

the most intense peak of the element concerned (usuall the K 

line), and a slow raster (50 seconds for major elements) 

performed. The image obtained on the cathode ray screen was 

then photographed. In order to relate elemental scanning 

pictures to the rock surface, a secondary electron image (S.E.I.) 

or absorbed electron image (A.E.I.) of the area at the same 

magnification was photographed.
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UsG of the energy dispersive detector was made in order 
to establish whether major element zoning was present in the 

cumulus phases, in particular the olivines and heteradcumulus 

feldspars and clinopyroxenes. This was performed by comparing 

integrated peak areas of selected major elements across the 

surface of the grain. For olivines, Mg and Fe were determined; 

for plagioclase feldspar, Ca and Na; and for clinopyroxene 

Fe, Mg and Ca.
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CHAPTER 3 URANIUM DISTRIBUTION - RESULTS.

3.1. Introduction.

Uranium is a strangely paradoxical element. From the immense 

amount of energy attainable from its nuclear properties, used 

constructively, it can benefit mankind in a technological society by 

providing a stable energy source. Used destructively however, it is 

capable of eliminating organic life on earth.

In spite of its increasing importance in economic aspects of 

geology there is not a great amount of detailed geochemical data of 

uranium in major rock-forming minerals. This is undoubtedly a 

result of its low abundance in these minerals (often to sub-p.p.m. 

levels), and, until the initiation of fission track studies, 

problems involving its analysis at these very low levels prevented 

much detailed work.

This chapter presents analytical results for uranium in the 

major cumulus phases, and also provides a general guide to the 

manner in which uranium behaves in a crystallising basic magma.

Before, however, discussing its behaviour in magmas, some information 

regarding its electronic configuration and aqueous chemistry is 

desirable.

3.1.1. Uranium - its electronic configuration.

The electronic configuration of the uranium atom (atomic
partially

number 92) is such that there are three^ filled orbitals,
3 1 25f 6d 7s , the removal of electrons from which give rise to 

four oxidation states (table 3.1.).

Table 3.1.

Oxidation state □ +3 +4 +5 +6

Electronic configuration 5f^Gd^7s^ 5f^ 5f^ 5f^ 5f°
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A measure of the relative stabilities of the four oxidation 

states may be obtained by an examination of the oxidation/reduction 

couples (for an acidic media), table 3.2. - from Moeller, 1963.

Although direct comparisons between aqweous solutions and silicate 

melts can not usually be made, indications of the possible existence 

of ionic species in silicate melts can be obtained from the aqueous 

chemistry. From this table then, it can be seen that would act

Table 3.2.

Oxidation/ 
Reduction couple

Oxidation
state

E°293
(volts)

ionic radius* 
(nanometres)

3 —1. BO = 11.3

4 -0.631 = 10.6
u'*'̂ - 5 +0.58
UOg"̂ - UOgZ» 6 +0.063

* From Whittaker and Muntus (1970).

as a powerful reducing agent and is therefore probably unstable in

silicate melts. UO^^ is unstable in the presence of water (Moeller,

1963), being either reduced to or oxidised to UO^^^. With

few exceptions then, only the and UĜ '̂*’ ions are capable of

existing in aqueous solutions (and hence, probably in silicate

melts). Under oxidising conditions, and in the presence of water

(i.e. analogous to late -stage crystallisation of basic magmas,
4+chapter 5), U oxidises to produce the doubly-charged uranyl,

UOg^*, ion.

+ ZHgO  ---- >  U0g2+ + + 2e --------  (1)

where = + 0.64-volts.

3.1.2. Uranium - its geochemistry in basic and ultrabasic 

rocks and magmas.

The concentration of uranium in ultrabasic rocks is invariably
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louer than in more acidic rocks. Hagland (1972) reports values 

of between 0.001 and 0.8 p.p.m. uranium for intrusive ultrabasic 
rocks, and between 0.15 and 21 p.p.m. for intrusive acidic rocks.

In basic and ultrabasic igneous cumulate?, although mean 

uranium concentrations are low, there is also observed a relatively 

wide range of concentrations. Gijbels £t , (1974) report a range 

of between 0.011 and 0.066 p.p.m. for the Bushveld intrusion:

Henderson et al̂. (1971) found that values obtained from the Rhum 

intrusion were lower than those from the Skaergaard intrusion 

(Rhum mean, approximately 0.040 p.p.m., Skaergaard mean, 0.24 p.p.m.), 

and that the uranium content -gave an indication of the relative 

amount of mesostasis in the rock, if minerals such as apatite and 

zircon were not present as cumulus phases.

A summary of uranium concentrations in tholeiitic basalts 

(Fisher, 1975) shows that average values range from 0.075 to 0.300 

p.p.m, Henderson ̂  (1971) from an estimation of the amount of

pore material in the Rhum cumulates, calculated a minimum value 

of 0.4 p.p.m. uranium in the contemporary magma. For this study, 

a value of 0.3 p.p.m. was used in calculations of partition 

coefficients of various minerals (chapter 4, sections 4.3. to 4.7,).

The behaviour of uranium in the crystallisation of a basic

magma appears to be controlled largely by its greater inherant

stability in the magma. At the onset of crystallisation, uranium

acts as a low-partitioning (low-k) element,
(M)where k = mineral(M)magma

where (M) . . is the concentration, wt./wt., of element M inmineral '
the mineral

(M) is the concentration, wt./wt., of element M inmagma
the magma.
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and in the cumulus phases of Rhum, assuming a value of (M) to ̂ magma
—2 —1be 0.3 p.p.m.; values of k between 1.3 x 10” and 1.3 x 10” are

found (chapter 4).

Several topics of research have arisen from whole-rock and 

inter-mineral uranium distribution studies on basic and ultrabasic 

rocks. Henderson (1968, 1970) and Henderson et , (1971) showed 

that the amount of uranium in layered basic intrusions could be 

correlated with the amount of mesostasis in the rock, and to the 

degree of fractionation efficiency (Henderson, 1975). Fisher (1970) 

in comparing H/U ratios for a variety of ultrabasic rocks with 

crustal and chondritic ratios, found that the data wecg-in 

disagreement with the concept of a chondritic earth. Studies of 

uranium distributions and concentrations in basic and ultrabasic 

rocks of possible mantle origin have aided in the formulation of 

heat-flow models (e.g. Haines and Zartman, 1973), and in models 

relating to magma genesis (e.g. Seitz and Hart, 1973). Also in 

ultrabasic inclusions, correlations between uranium and phosphorus 

(e.g. Hleeman e^ , 1969) and uranium and light rare earth 

elements (e.g. Frey and Green, 1974) have been observed. In lunar 

basic and ultrabasic rocks, geochemical coherences have been shown 

to exist between uranium and potassium (e.g. Lovering e^ , 1972) 

uranium and zirconium (e.g. Thiel et al., 1972) and uranium and 

mesostasis areas (e.g. Rice and Bowie, 1971).

There is a small amount of data from experimental work on 

uranium distribution studies involving silicate melts. With the 

aid of fission track analysis, Seitz and Shimizu (1972) and 

Seitz (1973, a) obtained uranium partition coefficients of 

pyroxenes grown from diopsidic melts, and calculated diffusion 

coefficients for uranium within diopside and zircon crystals
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(Seitz, 1973, b). From such experiments, Seitz (1973, a), found 

that the partitioning behaviour of uranium in silicate melts 

appears to be independent of the temperature and pressure, and of 

both its actual concentration in the melt and the chemical compos

ition of the melt itself. In addition, Seitz (1974, a) observed 

that partition coefficients from natural systems are consistently 

higher than values measured from synthetic systems under equilibrium 

conditions of crystallisation. This Seitz (ibid.) suggests may 

be due to the non-equilibrium conditions in some natural systems, 

and Seitz (1974, b) in fact observed a disequilibrium growth 

phenomenon in a study of the thorium distribution in experimental 

charges.

The oxidation state, or states, of uranium in magmas is 

uncertain. Cherdyntsev (1971) estimates that 20 - 30% of uranium 

exists as the hexavalent form in acidic rocks, and since the

- UOg^* couple is senative to oxidation (equation (1)), it
2+is predominantly the UO^ ion which occurs in ground waters and 

in sedimentary rocks deposited near to the surface.

However, at the onset of crystallisation of basic and

ultrabasic magmas and in mantle or deep-seated environments,

reducing conditions are likely to prevail. In such environments,

a large proportion of uranium is likely to exist as the ion.

The ionic radii of the and Câ '*’ ions are similar (U^^ = 10.6 
2+nanometre^Co =1(18 nanometies-Whittaker and Muntus, 1970), and, 

there is an apparent geochemical compatability between these two 

elements in their distribution within the olivine phase 

(chapter 4, section 4.3.). In the late-stage crystallisation 

of Rhum, the presence of intercumulus magnetite and evidence of 

water (as for example in the hydrothermal minerals, chapter 5, 

section 5.2.1.), indicates that uranium is likely to have
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2+adopted the UO^ species. In this form, entry into the final

minerals to crystallise,, such as the zirconium-bearing minerals

(chapter 5, section 5.4.), is possible, and consistent with
2+Wilkins (1971) observation that the UD ion occurs in uranium-
2

enriched minerals. In the majority of the Rhum minerals however, 

there is no evidence to indicate whether uranium is present as 

either in the or species.

3.2. The distribution of uranium in the Rhum and Carlinqford 

cumulates.

A study of the distribution of uranium within the ultra- 

basic cumulates of Rhum and Carlingford by the fission track 

technique was undertaken. From the results obtained, four distinct 

groups (with respect to the uranium concentrations) can be 

delineated.

Group 1: Extremely-low uranium (less than 0.1 p.p.m.)

chapter 4, sections 4.3. to 4.7.

Group 2: Low uranium (0.1 to 10 p.p.m.), chapter 5,

section 5.2.

Group 3: Medium uranium (10 - 100 p.p.m.), chapter 5,

section 5.3.

Group 4: High uranium (greater than 100 p.p.m. chapter

5, section 5.4,

The salient features of these groups are tabulated in table 3.3.



91
Table 3.3.

% of total 
uranium

% modal 
volume

U(p.p.mJ Minerals

Extremely-low less than 
40%

95 -93% 0 .0 0 1 to 
0 .1

olivine; 
clinopyroxene; 
feldspar; 
chrome spinel.

Low-uranium approximately
5%

2 - 5% 0 . 1  to 
10

biotite; 
ilmenite; 
chlorite; 
magnetite etc.,

Medium-uranium approximately
5%

approx
imately
0 .1%

10 to 
10 0

apatite.

High-uranium approximately
50%

less than 
0 .0 1%

greater 
than 100

zircon ; 
baddeyelite; 
zirconolite 
(or zirkelite).

Most of the uranium is located in small discrete phases, 

often not larger than 50 ^ m  in size and containing greater than 

100 p.p.m. uranium (chapter 5, section 5.4.). Mineralogically, 

these phases are baddeyelite, zircon and zirconolite - or zirkelite 

(a Ca-Ti-Zr oxide containing minor amounts of Fe and Y). Approximately 

5/0 of the total uranium is contained in apatite crystals having 

uranium concentrations varying from 25 to 75 p.p.m. (chapter 5, 

section 5.3.). Approximately 5% of the total uranium is bound up 

in minerals of the low uranium group (uranium concentration of 0 .1  

to 10 p.p.m.). The accessory or hydrothermal minerals of this 

group, such as biotite, ilmenite, chlorite etc., are discussed in 

chapter 5, section 5.2. The cumulus minerals, i.e. olivine, feldspar, 

clinopyroxene and chrome spinel, although contributing 95 to 93%
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of the modal volume, contain only approximately 40% of the total 

uranium and have uranium concentrations less than 0.1 p.p.m- This 

group is discussed in chapter 4.

3.3. Uranium in cumulus minerals.

Uranium concentrations, determined by the fission track 

Contact print) method, of the cumulus minerals are tabulated in 

this section.

Track counting was performed visually using the Zeiss

photomicroscope at a magnification of x400 with the projection head

attachment (chapter 2, section 2.3.4.).

Areas within the mineral free from inclusions and cracks

were chosen for analysis and where possible, 100 area counts each

1 0 0^  m. X 1 0 0yjLm. (corresponding to an area on the projection

head of 80 mm. x SO m.m.) determined on the detector using the

contact print method (chapter 2 , section 2.2.3.). Similar area

counts on two standards were performed. An internal standard

used was the "Geoscan" or "50 x 24" glass slide, and an external

standard the SRM-S14.

The area counts for both standards and standard glass
2specimens were converted to tracks per cm and corrected for

background. This was achieved by subtracting from these values

the number of tracks expected from the makrofol at the thermal

neutron dose used for the specimens. The number of tracks resulting
_2

from the makrofol was previously determined as 120 tracks cm at
IS ""2a thermal neutron dose nf S x 10 neutrons.cm (chapter 2,

section 2.5.); at a thermal neutron dose of x'neutrons.cm

the contribution from the makrofol can therefore be calculated from

the formula:-
_n _n

x' (neutron.cm *̂) x 120 tracks.cm
la -2G X 10 neutrons, cm
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In calculating the uranium concentration of the mineral

(chapter 2 , section 2 .1 .6.) values for the mean fission fragment

range were required. This term (R in equations (5) and (6 ),spec  ̂ '
chapter 0 , has been evaluated for a variety of minerals from the 

formula by Mory e;k a]̂ ., (1970) and is shown in tables 3.10 and 

3.11.

In table 3-5. of uranium concentration within the Rhum 

cumulus minerals, a note regarding the rock type nomenclature 

(column 2) is required. The nomenclature used here follows 

Wager et al.'s (1960) usage of orthocumulate, mesocumulate, 

adcumulate, hcteradcumulate and crescumulate (see chapter 1 , 

section 1.2.) with Wager and Broujn's (1963, pp. 553-5) modification 

of prefixing, in decreasing order of abundance, the cumulus 

minerals. Classification of a rock into an adcumulate (or 

heteradcumulate), mesocumulate or orthocumulate is based on:-

1) The extent and degree of optical zoning of the feldspar.

2 ) The uranium concentration of the feldspars (chapter 4, 

section 4.5.) in the following manner (table 3.4.)

Table 3.4.

U (p.p.b.) 
of feldspar

morphology rock type

less than 15.2 poikilitic heteradcumulate

less than IS. 8 tabular (cumulus) adcumulate
(unless
clinopyroxene is 
poikilitic - 
then
heteradcumulate)

15.2 to 25.0 poikilitic )
) mesocumulate

10.8 to 25.0 tabular )

greater than 25.0 poikilitic and 
tabular

orthocumulate
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Tables 3.5. and 3.6. show, with increasing height in the 

intrusions, the morphologies and modal percentages of the major 

cumulus minerals, viz. olivine, plagioclase feldspar and 

clinopyroxene within the Rhum and Carlingford samples- The 

uranium concentrations of these minerals, together with the whole 

rock uranium concentrations are also given in these tables.

Microprobe analyses of the olivines (table 3.7.) and plagioclase 

feldspar (table 3.8.) - details of the procedure are given in 

chapter 2 , section 2.8 . - show a relative constancy in composition 

throughout the Rhum eastern layered series, both with morphological 

variation and with height, and ore compositionally similar to 

the olivine crescumulate samples (H.l. to H.IO) from the Rhum 

western layered series (table 3.9.). In contrast to the relative 

constancy of the major and minor element concentrations, the 

concentrations of uranium, within, in particular, the olivine 

phase, show a marked variation which can be correlated to the 

crystal morphology. This relationship is diagrammatically shown 

in figure 3.1 and is discussed in more detail in chapter 4.



u p.p.b..
m o r p h o l o g y  r o n g e  m e a n

poikilitic 4.3 0 -4.52 4.42

95

equant 4 .8 8 - 5 .3 3  ,4.99

irregular 5.13 - 6.71 5.99

rounded 5 .1 7 -6 .4 0  .5.92

tabular 6,35-8 .03  .7:16

Harr is i tic , 8.21-8.43 1 8.32

F i g u r e  3.1
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The specimen of olivine crescumulate from the Rhum western 

layered series (kindly provided by Dr. 3» Wadsworth, University 

of Manchester) was prepared such that ten polished thin sections 

(numbered H.l to H.ID) from three mutually perpendicular 

directions were obtained (chapter 4, section 4.3.1.5). Specimens 

H.l to H. 6  correspond approximately to the olivine (100) crystal 

face; H.7 and H.B to (001), and H.9 and H.IQ to (010) - figures 

4.19 and 4.20. Olivine analyses 1, 2 and 3 are from specimens 

H.l, H.2 and H.3 respectively; analyses 4 and 5 from specimens H.7 

and H.3; analyses 6 and 7 from specimens H.9 and H.IO.

From the microprobe analyses, it can be seen that the 

composition of the major minerals in the olivine crescumulate are 

similar to those of the other cumulates. The mode of origin and 

crystallisation processes involved in the formation of the olivine 

crescumulate is discussed in chapter 4 (sections 4.3. and 4.4.).



of
Table 3«10, Calculation/mean fission 
fragment ranges in various elements 
from Mery et.al. (1970).

IIX

Element
Atomic
weight

Proportion of 
element in 
Oxide

Atomic
Number
(2i)

î =
(0.8 yii)

H 1.01 .1121 1 0.800
0 16.00 - B 2.262
No 22.99 .7418 11 2.529
Mg 24.31 .6031 12 2.771
Al 26.98 .5292 13 2,884
Si 28.09 .4674 14 2.993
P 30.98 .4366 15 3.098
Cl 35.46 - 17 3.298
K 39.10 .8301 19 3.487
Ca 40.00 .7147 20 3.577
Ti 47.90 .5995 22 3.752
Cr 52,01 .6843 24 3.919
Fe 55.85 .7773* 26 4.079
Fe 55.85 .6994** 26 4.079
2r 91.22 .7464 40 5.059

* As FeO
** As Fê Oj.
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Table 3.11

Calculation of and Rgt^nd a^y^ îoxA (kb , p-4-Xj

mineral Rspec standard ^stand

olivine (chrysotile) 2.507 SRM 614 2.641

plagioclase (bytounite) 2.6B5 "Geoscan" 2.684

clinopyroxene (endiopside) 2.774 "50 X 24" 2.679

chrome spinel ‘(1) 3.343

biotite (2) 2.743

chlorite (3) 2.522

uralite (tremolite) 2.723

magnetite (FeO.Fe^O^) 3.273

ilmenite (FeG.TiO^) 3.461

chlor apatite (Caq(PO.) Cl) 
 ̂  ̂3

2.943

(1) from Analysis (6), Table 5.6.

(2) from Analysis (5), Deer etal. (1971) Table IB.

(3) from Analysis (4), Deer etal. (1971) Table 21.
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CHAPTER 4t CRYSTAL GROWTH OF CUMULUS PHASES

4.1. Theory of Crystal Growth

4.1.1, Introduction

The crystallisation of a mineral from a magma (or silicate 
melt)can "beaos t adequately described using a combination of 
equilibrium (thermodynamic) and non-equilibrium (kinetic) arguments.
In classical thermodynamical theory, each "state" of a system 
has a free energy (g) wheres-

G « E - TS + P7 
where E » Internal Energy 

8 = Entropy
T = Absolute temperature 
P «S Pressure 
V » Volume

A change in state from liquid to solid with a decrease in T 
(or an increase in P) results in decreasing the free energy.
At equilibrium, the stable state of the system is the state of 
minimum free energy. Then, for a mineral AH to crystallise from 
a melt containing components A and B, the chemical potentials 
of both A and B in the mineral a n d n i u s t  be the
same as, or less thnn, the chemical potentials of A and B in 
the melt and

i . e .  ^  4.

W h ere  ^ / ^ r

a.d Y ' r "
At constant pressure, graphs of G against T may be drawn, 

the general shape being that shown in figure (4.1.)
Consider decreasing the temperature (at constant P). At 

values of T]>T̂  ( the liquidus temperature), G^^^ is the stable
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Figure 4.1
after Brice, 1961
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F i g u r e  4.2
after  Brice, 1961
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State and AB cannot crystallise. At values of T below

should spontaneously crystallise. In practice 
however, AB does not crystallise until the melt "supercools" - 
i,e, ilntil the temperature falls below to some value
Itie degree of supercooling (A^) is given by the relationships-

A t “ \  - To  :-(1)
The system is then Said to be in meiastable (ms), or non-equilibrium 
condition.

The existence of the metastable region provides the driving
force of the transformation A(G)^ - this being the difference

0
in free energy between the initial metastable state at T̂

(g^)^ and the final state (G^)^ , 
o o

where A(G)j = (G^)^ - (g““ )̂

4.1.2. Processes involved in crystal growth
There are three basic processes which contribute to the 

free energy change involved in the transformation from a liquid 
to a solid state,

(1) The nucléation process (
(2) A crystallisation process at the interface between 

the crystal and the melt
(3) A diffusion process involving transport of material 

to the interface, and transport of material and heat 
away from the interface

The energy evolved (or used) in these processes is dependant
upon the magnitude of the free energy difference A(G)rj, ; and,

o
since the growth rate (Y) of the mineral is a function of the 
three processes, expressed ass-

^  ̂(ĵ n̂ucleation ̂  ̂^interface ̂  ^^diffusio^
then the growth rate is also a function ofthe free energy difference
at T̂ within the crystal/melt system, thus



\n

A ( g)j1 — ----- — (3)

4.1,2.1. Nucléation processes
Before crystallisation of a mineral AB from a melt containing

components A. and B can occur, crystal nuclei of AB need to be
created. For their creation, the crystal nuclei require an
input of energy to overcome the initial surface free energy of
the solid (i.e. nucleus)/liquid interface. Classical nUcleation
theory (for homogeneous nucléation) involves assigning volume
free-energies to the bulk phases and assuming a spherical shape
to the embryonic nucleus. The free energy of the system will
change by the amount A  G when the spherical crystallite is formed.
where /\Q = 4'^r^« (AG^) + 4'H'r̂ cr — — — (4)

3
A g^ = difference in free energy between the solid and 

the liquid (per unit volume), 
r =« radius of the spherical crystallite, 
cr = surface tension,

A plot of AG against r is of the form of figure (4.2), 
and shows that an increase occurs with increasing radius of the 
crystal nucleus until a critical radius (r*) is attained. Any 
further growth (or dissolution) of r* willdecrease the free 
energy of the system, and is thus thermodynamically favoured.
The free energy value A g* corresponding to the critical radius 
r̂ , is termed the free energy barrier (or activation energy) 
of nucléation. Its existence is one of the reasons why liquids 
supercool, and it is analogous to the term in
equation (2).

Using several valid assumptions, Turnbull and Fisher (1949) 
restated equation (4) as the more workable equation (5) below:-

AG„^eleation +  (5)

5 (Ah)^.(At )̂



Uô

where = volume per atom of the spherical nucleus.
A h = heat of fusion.
A t « the amount of supercooling.

-^^nucleation varies sensitively with the amount of
supercooling of the melt.

The rate of formation of nuclei, I (nuclei, cm” ,̂ sec"̂ ) 

depends not only on AG^^g^eation^ tut also upon the viscosity 
of the melt, as shown by equation (6) - from Tumball and Fisher

(1949).

exp ^^nucleation ^^vi
A

Vis
k.Th

where N = Avogadrô s number, 
h = Planck’s constant, 
k = Boltzmann’s constant.

A g^^̂  = approximately the activation energy for viscous flow.
The dependence of I on the temperature and on AT can be seen 
from figure (4.3>- after Strickland - Constable (1968).

From values of T̂  to T^ (the temperature at maximum

nucléation rate), the term AG^^^^eation'^ ̂ ^vis will be 
the rate-controlling factor in equation (6). Below T̂ ,

^^%is ^"̂ nucleation will be rate-controlling since, at 
these values, the ( At)^ term in the denominator of equation (5) 
will be large so decreasing the value of
viscosity of the melt is dependent upon the temperature by the 
equations-

where * viscosity
E = Gas constant 
A = constant.
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î

<— AT
(— » t )
F i g u r e  4 . 3

(after Strickland -C o n s ta b le ,  1968)

c o n c e n t r a t i o n
(A.B)

A . B . C . D

s o l i d l i q u id

i n t e r f a c e d i s t a n c e

F i g u r e  4 . 4
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Thus the movement of molecules and ions to and from the growing 
crystal face is inhibited by increasing the viscosity when 
the temperature is lowered.

The above arguments hold for homogeneous nucléation.
For most cases however, nucléation occurs first on impurities 
present in the liquid or on seed nuclei; nucléation under these 
conditions is said to be heterogeneous. The impurities (or 
seed nuclei ) act, in effect, to reduce the free energy barrier 
by a factor of f(ô)* Equation (5) may then be modified:-

_ ________

nucléation 3. (ah)^. ( AT)^

where A  ̂ n̂ucleation free energy increase for heterogeneous
nucléation, and P

(2 +  cosQ).(1 - cosq)
f(e) = -----------------------------

4
where Q is the contact angle between the nucleus embryo and the 
substrate surface of the particle (or seed nuclei).
4.1.2.2. Interface mechanisms

There are two main types of crystallisation processes 
occuring at the crystal/melt interface; these are termed lateral 
and continuous growth (Kirkpatrick, 1974).

(1) Lateral growth occurs by attaching atoms (and ions)
in discrete elementary steps, either as a two-dimensional nucléation 
process on the crystal surface (Volmar and Marsden, 1951)> or 
by growth on a screw dislocation proceeding perpendicular to the 
surface (Sillig and Turnbull, 1956)

(2) Continuous growth occurs when atoms (or ions) attach 
at essentially any position on the crystal surface,

Cahn (i960) and Cahn et al. (I964) showed mathematically 
that lateral growth mechanisms should occur at small supercoolings, 
and continuous growth mechanisms at large supercoolings. Uhlmann 
(1972) and Kirkpatrick (1974) were able to predict which interface
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mechanism was involved in several experimental (silicate) systems 
from the equations-

Y. n f.k.T!
Yr =  ----- . 1  =     (8)

where Yr * the reduced growth rate - a conveniently named term 
describing the modification of the growth rate (Y) 
by the viscosity , supercooling etc.

L = Latent heat of fusion.
f = fraction of sites on the crystal surface available 

for molecular attachment, 
â  = thickness of one molecular layer.

Then, a plot of Yr against Af will be a function of f, and the 
supercooling dependence of f can be determined. For a screw 
dislocation mechanism, f should increase linearly with increasing 
AT; exponentially for a surface nucléation mechanism, and remain 
constant for a continuous mechanism.

The term in equation (2) is then again
dependent upon the amount of supercooling of the melt.
4.1.2.3. Diffusion processes

In interface controlled growth, the interface advances 
into regions of the melt having a constant mean composition.
The growth rate Y, is then independent of the interface position, 
and hence of time.

If we have therefore a situation whereby a mineral of composition 
A'B’ grows from a melt containing components A,B,C,I),.... (where 
A)>A' and B<TB') - i.e. in most natural silicate systems - there 
will be a region (5 ) enriched in component A, and depleted in 
component B, forming around A*B* as growth proceeds (figure 4,4).
For continued growth of A’B*, chemical diffusion of A towards, and B 
away from the interface must occur throu^ The dependence of
S' upon various factors is discussed more fully below (section 4.1 .5)
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but essentially, if the rate by which the interface mechanism 
occurs is rapid, the volume (or in some cases, heat) diffusion 
will become the dominating factor as growth proceeds, the crystal 
growing then only as fast as the diffusion rate allowed.

Christian (I965) showed that the growth rate for a flat 
interface depends only upon the diffusion coefficient (d) and 
the time (t), and was proportional to (D/t)̂ . However, for minerals 
consisting of more than one componant (e.g. A'B'G’)» the rate- 
controlling diffusion coefficient will be that of the slowest 
moving componant necessary for continued growth then

Y = g ------(9)

where K is a constant.
Many mathematical models have been proposed to attempt 

to obtain solutions to the diffusion equation for spherical, 
cylindrical and ellipsoidal shapes (e.g. Eorvay and Cahn, I96I). 
However, the existence of too many unknowns and variables in the 
equations (e.g. the interference between several growing crystals 
and subsequent overlapping of the diffusion fields) means that 
results can at best be qualitative, even in controlled laboratory 
conditions.

4.1.5. The Function of At in Crystal Growth
Figure Ci3) shows that the nucléation rate is a function 

of the supercooling, AT, of the melt. The various other factors 
that contribute to crystal growth in terms of the supercooling 
have been discussed by Tiller (I970) using the coupling equations-

A t  = Aig + Aig + ATjj, + ATjj  (10)
where AT = the portion of the supercooling consumed in transporting 

material to and from the growing crystal interface
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(i.e. diffusion)
= the portion of the supercooling consumed in producing 
a non-equilibrium solid (i.e. for the incorporation 
of non-equilibrium defects) and the formation of 
initially curved surfaces of small growing crystals.

A t^ = the portion of the supercooling consumed in the
driving force for molecular attachment mechanisms 
of new constituents at the interface.

A t^ = the portion of the supercooling consumed in driving
the heat liberated by the latent heat of crystallisatioi.

For some well-defined situations, certain of the components
in equation (lO)wiU tend to dominate the growth procedure. For
example, in the growth of metal crystals frOn a relatively pure
melt, growth is largely heât contrcl]ad aid AT. Growth of
oxide ciystals from molts of steel is largely diffusion controlled
and A t^ ^ A t. Growth of polymer crystals from a well fractionated
polymeric melt is largely controlled by the kinetics of interface

o f
attachment, and AT ĵ ~AT. Growth/lamellar eutectic crystals
(these being a growth morphology in eutectic crystals and are 
analogous to the cellular structures formed in growth from 
pure metals) is largely controlled by the excess free energy 
of the solid formed and AT^ — -J-AT.

In ill-defined and complex systems found in nature, all 
four factors may play significant roles in the growth procedure. 
Figure 4k S , from Tiller (ibid. p.206), shows schematically the 
regions where various mechanisms are dominant with increasing 
crystallisation time (temperature and supersaturation being 
kept constant)

From figure Cu5) it can be seen that initially A^^ dominates 
the crystal growth and with increasing crystallisation time all 
four factors contribute, until, for non-equilibrium dendritic
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typo growth, and doninate the growth of the crystal.
Tiller (ibid.) showed also that the crystal norphology 

would be largely the resüüt of interplays of the above factors, 
and that a general equation relating the growth velocity to the 
nost stable crystal shape (norphology), S, can be drawn ups-

Y(S) = f (S, Aïg, ATg,ATĵ , AT̂ ')  (11)
For silicate nelts crystallising in a plutonic environnent 

(in effect, long crystallisation tines), the AT^ contribution 
nay be neglected. The role that AT^ plays in the equation is 
discussed later (sections 4.1.4* and 4.1.5*), but its significance 
under equilibriun and plutonic crystallisation conditions will, 
in general, be negligable. Silicates are at least partly polyneric 
(e.g. Hess, 1971), and the growth and norphologies of the phases 
can be interface controlled (e.g. Kirkpatrick, 1974), the AT^ 
contribution then, nay be significant. Silicate nelts are often 
conplex and the need arises to transfer naterials to and fron 
the growing crystal/nelt interface such that the contribution 
fron diffusion (AT^) nay also be significant.

We then nay nake the initial assunption that, for silicate 
nelts crystallising under plutonic conditions, there are two 
extrene cases of growth nechanisns.

(1) Interface controlled growth - where the novenent (or 
growth) of the ciystd/nelt interface is detemined by the 
nechanisn by which the atons (or ions) attach thenselves to the 
growing crystal.

(2) Diffusion controlled growth - where the novenent (or 
growth) of the aystal/nelt interface is detemined by the rate 
at which the atons (or ions) necessary for continued growth nove 
towards the interface, and those species which are not necessary 
for growth nove away fron the interface.
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Since for interface controlled growth, the driving potential 

for growth is obtained by the different free energies/aton in 
the imediate vicinity (but on opposite sides) of the interface, 
the interface velocity will be sone function of the deviation 
from equilibrium - which may be measured by the supercooling at 
the interface, then

^«intorfaoe =  '̂2)
The diffusion of the atoms (or ions) through a medium is

also temperature (and viscosity) dependent (e.g. by the Stokes - 
Einstein equation D = k,T/6.T̂  ,r. ). The growth rate of the
interface then, and hence the free energy change for diffusion 

(̂ ^̂ diffusion)* ^^^d also be some function of the supercooling,

A ^ u c i o n  =  (13)
Tamman (1925) showed experimentally the relationship between 

the growth rate (Y, in cm .sec \) and the supercooling (AT) - 
figure C+.6). It can be noted that there is a similarity in shape 
between figure Ct.^and figure the nucléation rate vs. AT
graph, and the relative juxtapositions of the two curves have 
been used by Dowty ^  â . (1974) to interpret a one-stage cooling 
history for lunar pyroxene-phyric basalts, yhe significance of 
these curves in relation to layered igneous rocks is given below 
(section 4.4.).

In situations whera ace '  ̂ ‘̂diffusion*
velocity will be dependant upon both the local deviation from 
equilibrium at the interface, and upon the gradients of composition 
(or temperature) within the phases. It is usually assumed however, 
(Christian, 1965, p.8) that this situation is transitory, and 
that the interface mobility will be controlled essentially by 
either an interface process, or a diffusion process.
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4.1.4. Temperature distribution at the interface - constitutional
supercooling

discussed earlier (section 4,1.1,), the nucléation of a 
mineral species does not occur until some temperature (T̂ ) below 
the liquidus temperature (T̂ ) is reached. If after nucléation 
and at the onset of crystal growth there is an initial enriched 
zone of low melting point constituents surrounding the crystal 
(section 4.1.2.3), from phase diagram arguments the melt adjacent 
to the crystal interface will have a lower freezing temperature 
than the bulk of the melt. Thus, the equilibrium liquidus 
temperature (T̂ ) rises with increasing distance from the interface 
figure (4.7). However, curve T, which indicates the actual 
temperature gradient can be assumed to be linear (Woodruff ,1973) » 
or, for a fast growth situation may be convex (Brice, 196?)• 
Although the temperature of the melt rises continuously with 
distance into the melt, there is a region ahead of the interface 
in which the actual temperature is below the liquidus temperature. 
This region (shaded in figure(4.7)) is termed "constitutionally 
supercooled" (Rutter and Chalmers, 1953).

Keith and Paddon (1963) have shovm that there is a 
relationship between the ratio of the crystal growth rate (y) 
and the rate of diffusion (d) to the morphology of the crystal.
For a spherulitic morpholo^ Y)>)> D and an impurity layer (5̂ ) 
enriched in low melting point constituents appears at the crystal/ 
melt interface in the region of constitutional supercooling (c.s.). 
i'ny pertubations of the interface with dimensions comparable 
to <5* will encounter a region of c.s. liquid, with high AT values, 
resulting in rapid growth of fibers nomal (or at sli^t angles) 
to the crystal/melt interface.

During rapid growth, the growth rate may be in excess of 
the rate of removal of the latent heat evolved during the
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crystallisation process* Projections will then encounter cooler 
regions of the melt having negative temperature gradients, the 
result being to endourage even faster growth. Dendritic crystal 
morphologies are considered to be the product of rapid growth 
into negative temperature gradients (i.e. hi^ AT) regions of 
melt (e.g. Christian, 1965)» figure (4.8).
4.1.5. Magnitude of S and its relationship to crystal morphologies. 

The magnitude of S depends upon several factors
(1) The temperature distribution gradient (i.e. the amount

of AT)
(2) The crystal growth rate (y)
(5) The convection currents and stirring rates of the melt. 
Factors (I) and (2) are to a certain extent interdependent. 

Jin increase in growth rate and/or an increase in AT will result 
in a decrease in the magnitude of S . (figures 4*9(a), (b) and
(c)).

Lofgren (1974) has demonstrated experimentally that a 
whole progression of plagioclase morphologies can be related to 
progressive changes of ratio. As AT decreases, 5 becomes 
large and the spherulitic fibres increase in size progressing to 
a dendritic form of morphology. As AT approaches zero, the 
growth rate drops and the morphology observed assumes a more 
equilibrium (polyhedral) morphology. The sequence observed can 
be generalised (Lofgren 1974» p. 27O) thuss- 

equilibrium crystal form

skeletal crystals (generally more 
acicular than equilibrium form)

dendrites

spherulites

increasing AT, Y 
decreasing S

I
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The order of events is then likely to he (for plutonic 
conditions)s-

(1) Initial hi^ supercooling
(2) Nucléation and growth of small crystals
(3) The stahlishment of a c.s. region (figure 4*9(a)).
(4) Faster growth encouraged by small E region, which in 

turn increase AT and decrease S  (figure 4.9(b) and (c)).
(5) The vitî nis circle broken by the heat loss rate within 

a large magma chamber being too low, thus T  ̂(and hence At) 
becomes in effect too high to crystaiHî̂  the lower melting 
point constituents as lower temperature zones around the crystal.

(6) Heat loss within the magma chamber occurs (T̂ ) drops), 
or, more likely for plutonic rocks, the growth rate drops
until diffussion of the higher melting point constituents into 

the depleted S' zone occurs.

Figure (4.5) shows schematically the growth rate curve with 
increasing time.

The morphology of the resultant crystal is then likely to 
be a result of initial supercooling. A hi^ initial AT results 
in a dendritic or spheriCLitic growth type and the growth will 
be interface controlled; a low initial AT results in a 
polyhedral, equilibrium growth type and the growth will be 
diffusion controlled.

The effects of convection currents arising, for example, 
from crystals settling within a magma chamber can be of 
importance to cumulates and its significance is discussed below 
(section 4.4.)
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4.2. The Distribution of a low-partitioning trace impurity

The thermodynamic principles governing the partitioning 
of a trace element between the host mineral and corresponding 
liquid are fairly well-defined (e.g. \̂ lhittaker, 196? and 
Mclntire 1961). Unfortunately, when applied to natural systems 
rigid assumptions and a priori conditions are necessarily 
imposed. This results in formulations of inflexible thermodynamic 
models based upon constant equilibrium and crystal growth 
conditions. Albarede and Bottinga (1972) recognised that 
disequilibrium conditions may exist in trace elememt 
partitioning between phenocrysts and host lava, althou^, in 
their models they used assumptions that the crystal growth 
surface is a simple plane and that both partition coefficients 
and the rate of crystallisation are constant. From the 
arguments above (Sections 4.1.1. to 4.1.5) it is apparent that 
under disequilibrium conditions a planar crystal face is unstable; 
that there is a variation of the growth rate with time 
(figure 4.5); and, from the variation of uranium (and to a 
lesser extent Ca and Hi) as trace elements within the olivines 
(Chapter 3t also section 4.3)» observed partition coefficients 
are themselves not constant.

Most models then are based on the assumption that there 
is only an equilibrium partition coefficient. It is, however 
feasible to recognise three partition coefficients (Brice 1967). 
These are the equilibrium interface k̂  and observed (or
calculated) k̂ ^̂  partition coefficients.

Consider the distribution of a low-partitioning trace 
element adjacent to a growing crystal/melt interface (Figure b .10) 

where is a zone enriched in low-partitioning element X.
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Then k = -77“ at Y = 0 (linear growth rate

13>4
equ

8̂ at Y
In cm.sec*̂ ).

ôbs

C
k̂  = at Y « Y

where C = concentration of the element in the solid.
« concentration of the element in the bulk liquid.

Cj = concentration of the element at the crystal/melt 
interface.

If the growth rate exceeds the diffusion rate of the low- 
partitioning element (x), then will increase, and the crystal 
will be forced to incorporate more of the element X. The 
observed partition coefficient k̂ ^̂  will then vary with the 
growth rate of the crystal, increasing in value with 
increasing growth rate and will tend towards unity. The 
inequality k̂ ^̂  > k^^^ ̂  k̂  will then exist.

^  1   (14)
If alternatively the diffusion rate of the low-partitioning 

element exceeds the growth rate Y, then the enriched zone 
will decrease and k , (= k*) = k . Since, from sections 4.1.4.ODS 0̂11
and 4.1.5. above, this is synonomous with equilibrium (low AT) 
conditions, thermodynamical principles of partitioning will be 
valid.

ôbs ^ ^
Thus crystaH-Pation under slow growth rates and 

equilibrium (low AT, low supersaturation) conditions will give 
rise to the partitioning of trace elements in response to 
thermodynamical principles (low values of , whereas more
rapid growth (higher AT, higher supersaturation) results in 
larger (and less predictable) partition coefficients (higher 
values of k̂ ^̂ ).
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4'.5. The Distribution of TJranimn In Bxtremely-low Uranium Phases.

The distribution of uranium within the Ehum and Carlingford 
rocks has been divided into four distinct groups (or phases). These 
were outlined in chapter 5 (section 3.1,5.). Group (4) - extremely- 
low uranium phase - is discussed in the following sections. This 
group is characterised by the minerals having an extremely low 
concentration of uranium ( between 1 and ICO p.p.b. ). The minerals 
within this group are the m6jor rock-forming cumulus minerals of 
the intrusions, i.e. olivine, cllnopyroxene, plagioclase feldspar, 
and chrome spinel, rarely contributing less than 95% modal volume.

Because of the extremely low concentrations within these 
minerals, care had to be taken to ensure that the values measured 
were from uranium ihdigenous to that miheral species and not trapped 
within grain boundaries or cleavage planes, or from small inclusions 
of uraniferous minerals.

The earlier limitations of the fission track technique (i.e.
my inability to obtain prints of the rock surface) meant that tracks
were counted only from the middle of the phases, thus excluding
any spurious tracks from grain boundaries. The distribution of tracks
within the group (4) minerals were homogenous, although the very
low concentrations meant that a low magnitude concentration gradient

2would not be detected over areas smaller than 2 millimetres .
Similarly, very few fission track "stars" were observed within these 
phases, Condie et al. (19&9) had suggested that the uranium 
concentration may vary with the crystallographio direction, or be 
incorporated into cleavage planes. However, measurements of randomly 
orientated mineral sections give low standard deviations ( t<xfc>Ce-̂.2- \ 
and constancy of uranium concentrations in three mutually perpendicular 
directions, both indicate there is no significant variation in uranium 
concentration with crystallographic direction. Thus it may b© 
concluded that the results obtained by fission track analysis of
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the group (4) minerals axe an accurate measure of the intrinsic 
uranium concentrations within these minerals. These results, for 
the Ehum intrusion, are summarised in table 4.1. Where partition 
«̂ efficients are quoted, they refer to the observed values 
section 4.2), and the concentration of urani'jun in the melt is taken 
to be0.30 p.p.m. (section 5.3.).

Table 4.1.

uranium (p.p.b.) k . (x10“ )̂ Average
mineral

range mean range mean Composition

olivine 4.30 - 8.32 6.30 1.43 - 2.77 2.10 F°86Fai4
cllnopyroxene24.32 - 39.15 53.24 B.11 - 13.05 11.08 ^^44^49^®7
feldspar 9.54 - 28.39 18.96 3.18 - 9.46 6.32 “̂8.6^^21.2^^.

chrome spinel approx. 10 3.33 -

4.3.1. Uranium in olivines
Of the group (4) minerals investigated, emphasis was placed 

on studying the distribution and concentrations of uranium within 
the olivines, and in* particular, the olivines from the Ehum intrusion. 
The reasons for this weres-

1) The compact nature of the nesosilicate structure and the 
similarity in and sites in olivine are likely to reduce the 
number of places wherein "foreign" trace elements may accumulate. 
During the study, on only five occasions were fission track "stars" 
observed, and on each occasion the source must only have been of 
the order of 1 yllm, or less, in diameter. On these occasions, the 
mineral areas were scanned using the Jeol microanalyser (copter 2), 
for elements phosphorus (P) and zirconium (Zr), since minerals 
containing these elements (e.g. apatite and sphene) contain 
comparitively large amounts (greater than 50 p.p.m.) of uranium 
( e.g.Burnett 1̂971), Ho inclusions however, were found. The
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probable sources of these "stars" were either contamination from 
dust, or below surface inclusions.

2) The relative constancy of the Fo/Pa ratio thrcutout both 
individual units, and the intrusion as a whole, allowed a means
of standardisation - although recently Dunham (personal communication) 
has found some variation in Fo/Fa in a few units.

3) There exists within the olivine phase a wide variety 
of morphologies, which may result from different growth rates.

The olivines from samples of the Carligford intrusion were 
rejected owing to their being often totally altered 
and comparison could not directly be made with the Ehum olivines 
because of the reported wide range in forsterite content (Fô  ̂to 
FOyg - Le Bas, 1960), the result of differentiation within each 
of the four units.

The range in concentration of uranium within the olivines 
in this study is comparatively large ( from 4.30 to 8.32 p.p.b.). 
Previously reported values by other workers are scarce, but show 
also a wide ranges e.g. Kleeman et al. (19 9̂) quotes values of 0.2 
to 0 .7 p.p.b,; and Fisher (1970), for dunites, of between I.4 to
46 p.p.b.

The composition of olivine throu^out the layered series 
of Ehum has been reported as being remarkedly constant (Brown, 1956) 
varying only from FOĝ Fâ y to FOĝ F'̂  ̂, although more recent detailed 
work (Dunham, personal communication and Wood, personal communication) 
has extended this range. The olivines are thus magnesium-rich members 
of the Fo - Fa series with the name of chrysolite. A systematic 
detailed chemical analysis of the olivines was not undertaken, but 
several grains were analysed for Mg, Fe, Si, Ca and M  using the 
Geoscan microprobe (chapter 2, section 2.8. for details), these grains 
being used as standards for other specimens on the more qualitative 
Jeol S.E.M.. A plot (figure 4.11) of olivine composition verses
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uranium content shows no discernable correlation.
One of the striking features of the olivines from the Ehum 

intrusion, is thelc marked variation in grain size (and volume).
Brown (1956) first recognised this from a detailed examination of 
olivine size and shape within a single macrorhythmic unit (Brown 
ibid., figure 3). An inverse relationship between grain volume 
and uranium content of uraniferous minerals in mesostasis areas 
(i.e. inter cumulus minerals) from lunar basalts was observed by 
Thiel ^  ai. (1972) andBurndbfc et (1971)* In order to see whether 
this inverse relationship held for cumulus olivine, estimated grain 
volumes were plotted against uranium concentration (figure 4*12), 
but again no discernable pattern emerged. Thus, for the olivine 
phase, grain volume is not the controlling influence in the observed 
uranium variation.

A plot of uranium concentration against height in intrusion 
(figure 4*15) similarly shows no correlation (the tie-lines link 
concentrations for different morphologies within the same rock). 
However, a feature worth noting (indicated also by the constancy of 
the Fo content), is the lack of differentiation of the intrusion 
for over 65O metres, with olivines of unit 1 having similar uranium 
contents to olivines of unit I4.

Since the method of fission track analysis involves area 
counting rather than point counting (in e.g. microprobe analysis), 
and the number of tracks observed for olivines was very low, often 
several grains were covered during the course of the analysis. 
Initially, no discrimination was placed over which of the olivine 
grains were to be counted. The outcome was a set of apparently 
constant values, the uranium concentrations having a lower mean 
range and less variation than table 4*1 now shows. When however, 
preselection of olivine grains for analysis on the basis of 
morphological type was undertaken, different values were found for
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different morphologies, these often occurring within one rock specimen. 
On processing the new data hy drawing a histogram of the frequency 
of distribution against the uranim concentration (figure 4,14), 
distinct groupings are indicated. On the basis of mean concentrations, 
the groupings can be resol\e d into six morphological types - table 4,2. 
(and figure 3.1., chapter 3) - although overlapping of types occur.

Table 4*2.

morphology uranium (p.p.b.) mean S.D.

poikilitic 4,30 - 4,52 4.415 .09 .0147
equant 4,88 - 5,33 4,998 .43 .0166
rounded 5.17 - 6.40 5,922 .43 .0197
irregular 5,13 - 6.71 5,993 .42 .0199
tabular 6.35 - 8.03 7.161 1.08 .0239
harrisitic 8.21 - 8.43 8.335 .06 .0227

The morphology • of the olivines is considered then to be a 
fundamental factor in controlling the amount of uranium which enters 
the olivine structure, and, in the interpretation (section 4,4), 
arguments are put forward relating the morphology and uranium 
concentration to the degree of supercooling and crystal growth rate 
of the phase,
4,3,1,1, Poikilitic morphology

The employment of the textural term "poikilitic" (or %ub- 
poikilitic") in preference to the term "ophitic" (or "sub-ophitic") 
here, follows Wager and Brown*s (1$68) usage. The distinction between 
the two terms is in any case not clear cut, and is based apparently 
only on size - e.g. Challinor (1973) mentions that the term ophitic 
merges into the term poikilitic when "...the individual mafic crystals 
are very large in comparison with the feldspars and thus completely 
enclose many of them...". Wager and Deer (1939) for the Skaergaard 
intrusion, initially proposed the poikilitic habit to be characteristic
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of phases crystallised from Intercumiilus magma; Wager and Brown 
(1968, p.60) extended this by using the prefix "sub-” to include 
those intercumulus crystals which did not develops enough to 
completely enclose the cumulus crystals, thus, in effect, discarding 
the use of the term ophitic in layered igneous rocks»

Results presented in table 4-2; and figure 4*H» show that 
in terms of uranium content, the poikilitic morphology is distinct 
from other morphologies. These olivines have the lowest uranium 
concentration and smallest standard deviation of the six recognised 
types. Detailed analyses of olivines with this morphology are given 
below in table 4*3*

Table 4*3»

thermal area tracks. U ppb. Fo
rock unit neutron dose counted no. cm  ̂ (+̂ 33l)content NiO CaO 
no. no. (xlÔ n̂.cm t (x10̂  tracks (x10̂ ) 

secT̂  ) m̂ ) *

62 8 1.94 100 103 0.990 4.39 85.30 - -

63 8 1.94 100 101 0.970 4.30 85.10 - -

64 8 1.94 100 102 0.980 4.34 85.21 .114 .030

89 5 1.73 100 95 0.910 4.52 85.34 - -

8f 3 1.73 100 95 0.900 4.47 85.17 .165 .101

87 3 1.73 100 94 0.900 4.47 85.25 .177 .098

* After subtraction of background from the detector
viz. thermal neutron dose x̂  % 10̂  ̂ tracks,cm  ̂(see section 2,6)

Texturally, this morphological typo occurs poikilitically or 
sub-poikilitically enclosing cumulus feldspar (plate 4»1*)* Its 
modal percentage is low (usually less than 4(% volume), and is found 
towards the top of the units, usually in the feldspar-cumulate.
Althou^ its occarrance on Ehum is not plentiful, its occurrence in 
other layered intrusions appears to be rare. Hess (I96O, p.83) records 
an example from the Stillwater complex of an intergrow tb of olivine
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PLATE 4.1. Poikilitic olivine enclosing cumulus
, O'S" mm.feldspar. I--------

A

PLATE 4.2. Poikilitic (P) and rounded (R) olivines. --------  , o-ilmm.
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and plagioclase (ibid. plate 5» figure 1) which he denotes as being 
poikilitic olivine. Wager and Brown (1968, p.25?) suggest that this 
texture on Ehum may not be sensu stricto poikilitic ( i.e. may not 
have formed from intercumulus liquid), but may have developed throu^ 
deposition as a composite cluster of divine and feldspar. Hess (I96O) 
however, believes the Stillwater poikilitic olivines to have settled 
initially as cumulus crystals (as evidenced by their plagioclase - 
free cores) but (ibid. p.83) to have grown to a considerable extent 
from the interstitial liquid. Whilst the poikilitic habit of the 
divines is not developed to the extent of the clinopyroxenes or the 
feldspars of the Ehum intrusion, in two specimens (R.62 and R.63 

from unit 8), there is clear textural evidence (plate 4«2) of olivines 
having both an intercumulus and a cumulus (rounded) morphology within 
the same rock specimen. The uranium concentrations of these texturally 
dissimilar olivines differ markedly, whereas their forsterite contents 
are similar (table 4.4.).

Table 4.4.

reck no.
modal % 

morphology (of r' ck) U ppb.
partition
coefficient
(x10-5)

Fo
content

poikilitic 46.8 4.39 14.63 85.30
R.62

rounded. 18.2 5.99 19.97 85.28

poikilitic 51.3 4.30 14.33 85.10
R.63

rounded 18.0 6.30 21.00 85.21

Since there is no fall in the Fo content for the poikilitic 
phase crystallising from the intorcumulus magma when compared with 
the cumulus phase, fractionation had not occuzre4 an̂  using Wager 
ot d.*s (i960) terminology, the poikilitic olivine may be described 
as a heteradcumulus phase.

An indication of the crystallisation process with which the
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poikilitic olivine had formed can be obtained by comparing the uranium 
contents of the two phases in table 4-4* Uranium, being a low 
partitioning element, would be expected to accumulate in the inter
cumulus magma (e.g. Rogers and Adam, I969), having been "rejected" 
from the early formed minerals. Use of this simple model predicts 
therefore, that a Mineral crystallising as an intercumulus phase 
would incorporate more uranium than if it crystallised as a cumulus 
phase. The data in table 4*4. does not appear to support this. The 
model however, does not take into account the variety of factors 
involved in nucléation and crystal growth mechanisms of the different 
phases, and this aspect is discussed more fully in section 4*4

A comparison of the partition coefficients in table 4.4, for

the two phases shows that (kotŝ oumulus than (kohŝ poikilitic*
This in terms of equations (14) and (I5), section 4.21, implies that
the poikilitic phase had crystallised under slower growth rate and
more equilibrium conditions (lower AT and lower supersaturation)
than the cumulus phase. Implicit also within the above arguments,
is tha point made initially by Hess (1939),and expanded by Wager
et al. (i960), that free access to the main bulk of the magma was
necessary in order to allow diffusion of material towards, and diffusion
of material (including uranium) and heat (Wager, I963) away from the
growing phase. Were this not to occur, then the intercumulus magma
would become trapped and crystallise out as lower temperature mineral
phases (or lower temperature zones). Wager et ad. (I96O) called
this process adcumulus growth ( or heteradcumulus growth when applied
to heteradcumulus phases), and, given the required spatial environment,
becomes more probable under equilibrium and slow growth rate conditions.
It is proposed therefore to equate the partition coefficient of the
poikilitic phase, Ô obŝ poik' equilibrium partition coefficient
(k ) described above in section 4.2..' equ

Unfortunately, not all observations are consistent with this
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model. For example the nature of a microprobe scan (for major 
elements Fe, Mg and Si, and minor elements Ca and Ni) across a poikilitic 
olivine of R.64.
The results arc given in table 4.5., and shown graphically in figure 
(4.15). From the 3e^ts, a sli^t zoning of the major elements is

Table 4.5.
Analysis Position 

no. (mm.) FeO MgO SiOg CaO MO Total
Fo

content

1 0
(edge)

14.21 44.74. 40.13 .054 .102 99.24. 84.88

2 .40
(mid)

13.88" 44.84' 40.39" .074 .083 99.23' 85.20

5 , .74.
(edge)

15.97. 44.97 40.41. .043 .104 99.51 85.15

4 2.23
(edge)

14.05 45.16 39.92 .050 .106 99.30 85.15

5 2.39
(mid)

15.99’ 45.18 40.04 .029 .105 99.31 85.19

6 2.60
(edge)

13.84 45.26 39.81 .042 .067 99.02 . 85.36

7 ,5.17
(mid)

14.01 45.34 39.80 .012 .113 99.28 85.22

8 4.06
(mid)

14.01 45.38" 39.91 .004 .124 99.43 85.24

9 4.86
(mid)

13.84 45.08 40.10. .000 .133 99.16. 85.30

10 5.09
(edge)

13.94 44.96 39.98 .017 .131 99.04 85.18

11 5.48
(mid)

13.94% 45.55 39.91! .000 .150 99.55 85.35

12 5.61
(edge)

13.78 44.76 40.20' .059 .087 98.90 85.27

15 7.50
(edge)

13.77 45.05 39.93 .044 .136 98.93 85.36 .

14 7.78
(mid)

14.25 45.34 39.88: .000 .130 99.61 85.01

15 8.08
(edge)

13.99: 14.09. 39.94' .019 .134 99.18 85.17
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observed (from Fo^^ gg to FOg  ̂ together with an inverse
relationship between Ca and M. (A uranium gradation, if 
present, would not have been detected owing to the very low 
concentration resulting in a small number of tracks). Inverse 
relationships between Ca and M  have been observed elsewhere, 
in e.g. a series of olivines from a lava flow (Shaw, 1975 - 
personal communication), and can be at least qualitatively 
predicted in that Ca, with respect to olivine, is a low-partitioning 
element, and Ni a high-partitioning element. The trace element 
(Ca and Ni) results are however subject to large analytical 
errors both from their initial low concentrations and because 
unpredictable interference effects (in particular for Ca) from 
the close proximity of the enclosed feldspars would occur. In 
addition, no quantitative measurements of the three-dimensional 
aspects of that particular olivine made. If taken at face 
value, the resultant fluctuations in Ni and Ca would appear to 
indicate that small-scale variations in either the intercumulus 
material or crystal growth rates had occurred during heteradcumulus 
growth. Future detailed distribution studies of these elements 
may provide a clearer picture, but these results do not appear to 
detract from the main features of the uranium results or their 
genetic implications.
4.5.1.2. Fquant morphology

The equant morphological group of olivines were characterised 
using two separate criteria. Firstly, on the basis of the 
number (or proportion) of crystal faces developed - olivines 
having euhedral or subhedral habits (i.e. with two-thirds or more 
of the faces developed); and secondly on the asb ratio.
(figure 4.16). Olivines with asb ratios less than 2.5:1.0, 
together with euhedral or subhedral crystals were classified 
as equant - plate (4.3) shows an olivine with typical equant 
morphology.
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The equant morphology was the most common morphological 
type observed throu^out the Intrusion. The variation in size 
was not large, "a" varied from 0.4 to 2.5 millime tie sand "b" 
from 0 .4 to 1.75 millime tie 8, Brown (1956) however noted a 
tendency for the hi^er units to have a smaller grain size.
The equant morphology occurs also more commonly in the lower 
regions of each unit with a gradation towards more irregular 
and/or poikilitic morphologies towards the top of each unit.
This observation was made also by Brown (ibid) and was well- 
depicted in his type unit (Brown ibid figure 5)* The details 
of the uranium concentrations and, where analysed, the Bo 
contents, MO and CaO concentrations within this morphological 
group are given in table 4»5 (a).

Unlike the poikilitic and harrisitic (section 4*3»l-5*) 
morphological groups, the equant olivines, with respect to 
the uranium concentrations, do not form a totally distinct 
group, there is overlap with rounded, irregular and tabular 
morphological types (figure 4*1 4)« This may be due in part to 
errors in assigning an olivine to its incorrect morphology 
when track counting, since usually only a two-dimensional view 
is obtained. However, in spite of the limitations of 
classification on the basis of shape and crystal form, 
resolution into four groups is possible, and, from the differences 
in mean uranium concentrations and the low S.B. *s, is quite 
justifiable. Furthermore, it is contended that the observed 
differences within each group are a manifestation of 
differences in genesis of the olivine types.

Perhaps the most striking textural feature of the equant 
olivines is their frequent tendency to coalesce. Up to 
five separate olivines arc seen apparently intergrown with each 
other each retaining its euhedral crystal habit (plates 4*3,
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Table 4,5 (a) Equant Olivines
Rock Number* Unit Number U p.p.b.** Fo

content
NiO CaO

90 1 5.01 85.01 .189 .1 0 0

91 1 5.13 -■ - -
92 2 4.93 84.42 .203 .106
93 2 5.69 (1) 85.31 - . -
94 2 4.99 - - -
96 3 6.38 85.46 .171 .088
99 3 5.27 85.01 - -
83 • 5 5.17 (2) 84.99 - -
84 5 6.74 (3) 85.60 .160 .1 0 1

85 5 5.10 - - -
82 6 5.26 - - -

120 7 7.34 (3) 85.13 - -
112 8 5.33 - - -
110 8 6.44 Cl) 85.06 .164 .113
111 8 6.03 (1 ) 85.13 .139 .108
53 9 4.88 84.84 .160 .080
54 9 5.13 (1) 85.65 - -
113 10 6 .0 0 (2 ) - - -
114 10 5.90 (2) - - -

66 11 4.96 87.26 - -
68 11 4.88 66.60 - -

115 13 5.00 86.46 - -
116 13 5.39 (2) 84.92 .169 .111

Average (excluding modification) = 4.998 p.p.b. U

* All specimens prefixed "R".
** After corrected for background. 
(1) to (3) modifications
(1) to irregular
(2) to rounded
(3) to tabular
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and 4.4). An initial cumulus origin for this group is 
suggested by the tendency for equant olivines to occur in 
the lower regions of each unit (Brown ibid. p.15) giving rise 
to a high modal percentage, but the manner in which they inter
lock clearly could not have resulted from packing during 
settling as cumulus crystals, A microprobe traverse across 
three "coalesced" equant olivines (from E,92) for major 
elements Fe, Mg and Si, and minors Ca and Ni was undertaken to 
check for zoning. The direction of the traverse is shown in 
plate (4.4 ); the results obtained in table 4.6, and figure (4.17): 
the uranium concentration for equant olivines from this rock was 
4,93 p.p.b,.

Table 4.6.
Analysis Position

no, (mm, ) Feo MgO SiOg CaO NiO Total
Fo

content

1 0 14.33 44.81 39.84 ,112 .189 99.29 84.38
2 .2 14.41 . 44.86 39.71 .114 .195 99.33 84.41
5 .2 14.41 44.79 39.80 ,101 .210 99.33 84.41
4 .1 14.42 44.82 39.78 .098 .211 99.34 84.41
5 .1 14.39 44.85 39.76 ,098 .224 99.31 84.40

6 .1 14.42 44.84 39.81 ,106 .205 99.38 84.42
7 .3 14.43 44.85 39.76 .118 .199 99.36 84.42
8 .3 14.42 44.85 39.79 .112 .215 99.39 84.41
9 .1 14.50 44.85 39.69 ,109 .218 99.35' 84.44
10 .1 14.44 44.84 39.74 .086 .215 99.33 84.42
11 ,1 14.41 44.82 39.81 ,104 .190 99.35 84.41
12 .4 14.42 44.85 39.75 .113 .171 99.28 84.40

15 - 14.39 44.85 39.77 ,105 ,209 99.32 84.41

14 - 14.41 44.81 39.80 ,096 .215 99.34 84.42

15 - 14.43 44.82 39.76 .107 .199 99.32 84.42
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(Analyses 13 - 15 In table 4*6 are of rounded olivines 
poikilitic enclosed by clinopyroxene and with a uranium 
concentration of 5.89 p.p.b. )

The lack of major element zoning across the interfaces 
of the coalesced olivines (analyses 1 - 12) and the similarity in 
Fo content with olivines having a rounded morphology (analyses 
15 - 15) implies that extension of the rounded cumulus olivines occulted 
by an adcumulus growth mechanism (Vager et §1,̂ 1960, terminology) 
to produce equant olivines. Post-depositional reciystallisation 
at grain boundaries in a similar manner to e.g. diagenetic 
pressure/solution effects in quartz sediments cannot be excluded, 
but the transport problem of expelling the interstitial liquid and 
consequently adding.the "olivine-rich" material remains.

Table 4.7., a comparison of the two morphologies present, 
indicates a marked difference in both the uranium concentration 
and partition coefficients between the rounded and the equant 
morphology. The partition coefficients for the cumulus rounded

Table 4 .7,

modal % U conĉ . k , Foobs
morphology of rock (p.p.b,) content CaO NiO

84.42 .1 0 6 .2 0 5
equant 59 4.95 16.43 r

(sveragd .of 12 analyses)
84.42 .1 0 5 .2 0 7

rounded 11 5.89 19.63
(average of 3 analyses)

morphology (̂ obŝ cum greater than that for the equant 
- i.e. cumulus plus adcumulus growth - morphology, and from 
equations (1 4) and (I5) section 4.2,, this suggests for the equant 
morphology, a slower growth rate under more equilibrium conditions 
(lower A T, lower supersaturation) at the time of crystallisation.
The lower uranium concentration of the equant morphology is considered 
to be the result of combining the (relatively) high uranium content
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Si
PLATE 4.3. Equant morphology (4 coalescing) o-imm.

PLATE 4.4. Equant morphology (6 coalescing) 0*0. mm.I 1
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of the original cumulus crystal, with the (relatively) low 
uranium content of the adcumulus overgrowth regions. The 
conditions under which adcumulus overgrowth occud̂ d would therefore 
he similar to those for heteradcumulus growth in the poikilitic 
olivines (section 4.3*1.1.) - viz. equilibrium conditions 
producing a (slow) diffusion controlled growth mechanism. The 
relative proportions of uranium within both the original cumulus 
mineral and its adcumulus growth extension unfortunately could 
not be distinguished owing to the limitations of the fission- 
track technique at low concentrations (i.e. a uranium gradient 
could not be detected). In Figure (4.17*) howevei> a drop in 
CaO mirrored by a rise in MO towards the edge of the equant 
olivines (i.e. in the zone of adcumulus growth) is observed, 
thereby suggesting different crystallisation mechanisms for 
the two morphologies.
4.3.1.3. Rounded morphology

The rounded morphological olivines were characterised by 
their spherical and anhedral crystal form (plate 4..s)« They 
occur within a rock specimen usually in association with other 
olivine morphologies (mainly equant, irregular and tabular 
morphologies) incorporated in the clinopyroxene and feldspar 
heteradcumulus phases, and often contributing only a low modal 
percentage of rock. Their size is consistantly small with 
diameters ranging from 0,1 millimetre to 0,9 millimetre, and 
this fact, together with the low modal percentage meant that in 
track counting, the number of area counts which could be 
performed was low, giving rise to a decrease in the reliability 
of some of the results. This is a contributing factor to the 
higher S,D. observed for this morphology (table 2). The 
details of.analyses for rounded morphology are given below 
in table 4.8,
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PLATE 4.5. Rounded (R) and Equant (E) 

morphologies

V-0*5 rMm.

PLATE 4.6. Irregular morphology
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Table 4.8.
Bock
no.

Unit
no.

thermal
neutron
dose*

Area tracks tracks U Fo2counted per cm (ppb) content 
(10̂  m̂ ) (10̂ )**

MO CaO

90 1 1.94 40 153 1.2912 5.72 84.87 .178 .105

92 2 0.85 50 130 0.583 5.89 84.42 .103 .207
99 3 1.71 100 125 1.2158 6.11 85.30 .178 .098
83 5 1.53 100 95 0.9194 5.17 84.99 - -
61 8 1.87 ICO 143 1.3926 6t40 85.34 .155 .096

62 a 1.94 100 139 1.3512 5.99 85.28 - -
63. 8 1.94 100 146 1i4212 6.5c 85.21 - -

53 9 1.80 100 136 1.3240 6.33 84.19 - -
116 13 1.90 50 '62 1.1920 5.39 84.92 .169 .111

neutrons,cm ?sec ^. Av,= 5.92
**After subtraction of background from detector - viz.

120dose X

Their occurrence, mainly in the lower reaches of each 
unit, has been interpreted by Brown (1956, p. 15) as having 
nucleated and then travelled over only a short distance, thus 
having had little time to grow. When they do appear in the
upper horizons, they "...  represent primary crystals which
have failed in some way to be fed with olivine-precipitating 
liquid” (Brown ibid. p. 16). Genetically therefore, there appears 
little doubt that this morphology represents an initial cumulus 
phase with little or no post-depositional extension. In fact, 
the textural appearance of these olivines lends itself to 
interpretation of some form of post-crystallisation corrosion to 
produce the spherical form. Whether or not this occurred during 
deposition or during subsequent heteradcumulus growth of the
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enclosing clinopyroxene or feldspar is difficult to say, but, the 
presence of both rounded and equant olivines incorporated within 
a single heteradcumulus plagioclase (plate 4,5) suggests 
that the former explanation is the more probable. It is 
difficult to envisage a situation whereby simultaneous corrosion 
of some olivines occurred to give a rounded morphology, and 
ad^cent olivines extended by adcumulus growth to produce equant 
olivines. With initially rounded olivines, small scale, localised 
fluctuations in AT and supersaturation in the surrounding magma 
may provide suitable conditions for selective diffusion 
controlled adcumulus growth to result giving the two morphologies,

4.5.1.4. Irregular morphology
This morphology group is the least well-defined in terms 

of crystal shape. It varies from a subhedral (plate 4.6. to 
an anhedral, amoeba-like shape (plate 4.7), and in terms of size, 
from 0.1 millimetre to 4 millimetres diameter. Although it 
occurs predominantly in the upper horizons of the units, where 
Brown (1956) noted a transition from a euhedral shape to a more 
irregular shape with increasing height in the unit, it may be 
found in low modal percentages in most of the rock specimens.
Because of these low modal percentages, it was often not 
feasible to calculate the uranium concentrations and in table 4*9* 
below, results are limited to those rock specimens where a significant 
number of area counts could be made.

A microprobe scan for major elements Pe, Mg and Si, and 
minor elements Ca and Hi was made to determine whether zoning was 
appaiEnt. The trajectory of the scan is given in plate (4.7 
the results obtained (analyses 1 to 6) in table 4.10.
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Table 4.9.

Rock
Number

Unit Thermal neutron Track 
Number dose * density**

Ü Fo 
(p.p.b.) content

NiO CaO

R.93 2 0.85 0.5630 5.69
R.95 2 1.71 1,3358 6.71 85"̂ - -

R.96 3 1.71 1.2658 6.38 85.46 .166 .092
R.99 3 1.71 1.1258 5.66 84.87 .183 .100
R.65 8 1.87 1.2826 5.90 - - -

Rllü 8 1.21 0.9058 6.44 - - -
R.lll 8 1.21 0.8558 6.08 85.13 .11 .05
R.54 9 1.80 1.074 5.13 85.66 .,09 .04

* X
1710 neutrons

Average = 5.99
-2 -1 . cm .sec

p.p.b.

** After subtraction of background and x 10 tracks.cm,-2
 ̂ Estimated using the Jeol S.E.M.

Table 4.10.

Analysis Position 
Number (mms.) FeO MgO SiÔ CaO NiO Total Fo U

(p.p.b.]

1 (A) 0 (edge) 14.20 44.69 40.10 .09 .18 99.26) )
2 0.2 14.34 44.83 40.05 .09 .20 99.51) )
3
4

0.8
1.6

14.25
14.27

44.81 40.14 
44.78 39.86

.11

.10
.18
.17

99.49)
99.18)

84.87 ) 5.66

5 2.2 14.23 44.83 40.00 .09 .18 99.33) )
6 (B) 2.4 14.26 44.81 39.94 .11 .17 99.29) )
7 - 13.80 45.11 40.02 .09 .18 99.20) )
a - 13.93 45.06 40.11 .09 .17 99.36) 85.30 ) 6 .1 1

9 - 13.84 45.09 39.88 .10 .18 99.09) )
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Analyses 7-9? Uranium concentration = 6.11 (^0,03 ppb.)
Partition coefficient (k , ) - '0%04-' obs'

The results (analyses 1-6, from specimen R.99) show 
that neither major nor minor element zoning had occurred,and 
when comparison is made with olivines having a rounded 
morphology (0.5 millimetres diameter average), analyses 7-9* 
it can be seen that there is virtually no difference in either 
the major or the Aihor elements between the two morphologies.
Also, the uranium concentrations (and partition coefficients) 
are similar for the two morphologies despite their marked 
differences in crystal shape.

Whilst no chemical differences are apparent, the
morphologies of the two are clearly different and textural
evidence such as coalescing (plate 4* B ) indicates some post-
depositional overgrowth of original cumulus crystals. Because
no zoning occurred,the terminology of Wager ^al.(i960) would
classify this as adcumulus overgrowth, and Brown (1956) suggests
growth from inter cumulus liquid had resulted to give the
irregular crystal shape. Since the uranium concentrations and
partition coefficients for the irregular morphology are greater
than for the equant morphology (section 4.5.1.2.) this implied
that the overgrowth occuried during larger AT and super saturation
conditions and that with respect to the trace element uranium.
this overgrowth was not diffusion-controlled to the same extent
as for the equant or poikilitic morphologies. Another possible
interpretation is that the irregular overgrowth region may have
crystallised in areas of trapped liquid and the olivine undergone
subsolidus reequilibriation. This alternative explanation
however, does not detract from the arguments above; in either 

oriĉ iAûtU)
situation, growtĥ would have occunud under disequilibrium 
conditions.



165

'f. -aw»

PLATE 4.7. Irregular, ameoba-like 
morphology showing trajectory of microprobe 
scan (A - B).

I O'S m m . ^

PLATE 4.8. Irregular morphology showing 
some coalescing.



4.3*1*3. Harrisitic morphology
The harrisitic morphology olivines are characterised by 

their very large, elongated and branching crystal form. They 
occur usually with the longer axis approximately perpendicular to 
the plane of layering and with the branches flattened parallel 
to the (010) crystal face (Wager and Brown I968 p.257). This 
morphology is so called after its type location in the Harris 
Bay area of Western Ehum first observed by Barker (19O8). From 
Wager âl.*s terminology (1960); rocks in which this morphology 
predominates are called olivine crescumulates. The olivine 
crescumulates from the Harris Bay area undoubtedly provide the 
finest example of harrisitic morphology in the world with olivine 
crystals up to 60 centimetres in length (plate 4.9) although 
5-10 centimetres is more common.

A detailed study of an olivine crescumulate from the 
Western layered series of Ehum (kindly provided by Dr,. J.Wadsworth, 
University of Manchester) was undertaken to determine the 
three-dimensional textural and chemical aspects of this rather 
unusual morphological type. A rectangular block 10 centimetres 
by 5 centimetres by 2 centimetres was cut so as to provide ten 
polished thin sections (numbered HI - H 10). Six thin sections 
were cut normal to the x axis (figure 4.18), three at positive x 
and three at negative x; and two thin sections cut normal to each 
of the z and y axes. The z axis was found to coincide parallel 
to the (010) olivine crystal face.

Plates (4.10, 4.11, 4.12) show well the parallel elongated 
form of the harrisitic morphology. The complexity of the 
branching is however, difficult to appreciate from the contact 
print photographs because of the large size (greater than 
ten centimetres) of the olivines, but in fact in plate 4.ID 
(H.I), eighty percent approximately of the olivine seen is in
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PLATE 4.9. Olivine crescumulate, Harris Bay 
area - Rhum western layered series.

PLATE 4.10. Harrisitic morphology (H.I).
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<W^:T

PLATE 4.11 Harrisitic morphology (H.B)

ÿb mm.

PLATE 4.12 Harrisitic morphology (H.1Ü)
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optical continuity, and branching occurs normal to the x,y plane 

and parallel to (010). The nature of the branching can best be 

shown schematically in plan, elevation and side views (figure 4.19 

a, b, c). The "channels" between the olivine fingers (figure 4.19 

b) are filled with large optically (generally) unzoned bytownite 

feldspar, with occasional clinopyroxene (Ca^g Mg^g Fe^) and 

large (up to three millmetres) irregular shaped ilmenite (plate 

4.19). Often encountered within the harrisitic olivines^in 

particular to (100) crystal plane^were olivine "holes". These 

ore described more fully in chapter 5 (section 5.2.5), but are 

essentially rounded, or oval-shaped areas of complex mineralogy 

enclosed two-dimensionally by the olivine, but probably 

connected in the third dimension to a plagioclase "channel", 

the hole entrapping intercumulus magma which then crystallised out 

05 low-temperature (and higher uranium) phases.

The major (Fe, Mg, Si) and minor (Ca and l\i)element 

geochemistry of the harrisitic olivine was studied. Essentially 

no zoning of any of these elements was detected in microprobe 

traverses across each of the three axes x, y and z. An 

average of twenty-seven separate probe analyses are given in 

table 4.11

Table 4.11

Average of
twenty-sever
analyses

1 Range U p.p.b. Kobs
(average
of twelve (x 10” )

SiOg 41.85 41.51 - 42.54

MgO 42.49 42.07 - 42.96

FeO 14.47 14.24 - 15.02 8.32 6.40

CoO 0.191 0.15 - 0.22

NiO 0.257 0.22 - 0.28

Total 99.26
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1 cm.

(a) a p p r o x .  (OOl) 

H.7, H.8

(b) a p p r o x .  (lOO) 

H.I t o  H.6

(c) a p p r o x .  (OlO) 

H.9, H.IO

o l i v i n e

p l a g i o c l a s e

c l i n o p y r o x e n e

F iau re  4 . 1 9
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Atomic ratios:
Mg = S3‘*5Ê>

=» ie*o^
%e uraniimi concentrations from seven of the thin sections

(averaged in table 4*10) however, form a distinct group (figure
4.14) and are the highest values observed within the range of
olivine morphologies (table 4*2). The large size of the harrisitic
olivines enabled a series of area counts across a single olivine
grain to be undertaken, and traverses were performed in three
dimensions. 100 area counts (eqiivalent to an olivine grain area 

2
of 1,0 X 1,0 mm ) for each analysis was made, the details of
which are given below in table 4»12.. The crystallographic

Table 4.12
ÏÏ.5. (parellel to z axis approx.) 

analysis Position No. tracks U (ppb,)
no. (mm. ) of tracks per cm̂  (±.«̂ 5 pph)

(lo4)*

1 0 158 1,5482 8.37

2 2 156 1.5282 8.27

3 4 133 1.5182 8.21
4 6 139 1.5382 8.43

5 8 156 1,5282 8.27

6 10 160 1,6682 8.43

7 12 156 1,5282 8.27

Thermal neutron dose = 1
Average = 8.52 

17.54 X 10 neutrons.cm

H.7 (parrllel to y axis approximately)
1 0 184 1.8026 8,29

2 1 186 1.8226 8.58
3 2 186 1.8226 8,58

4 5 185 1.8126
Average =

8.33

- 2  -1

17 “2 -Thermal neutron dose = 1,87 x 10 neutrons, cm ,sec
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Table 4.12 (cont.)
Analysis Position 

no; (mm.)
No. 

6T tîaiOks
tracks

2per cm
(10 V

U (ppb.)
(+ .05 ppb.)

1 0 177 1.734 8.29

2 1.5 179 1.754 8.38

3 3.0 179 1.754 8.38
4 4 .5 1.76 1.724 8.24
5 6.0 178 1.744 8.33

6 7 .5 176 1.724 8.24

Average * 8.31
17 “2Thermal neutron dose = 1.80 x 10 neutrons.cm .sec

H.IO(parallel to x axis approximately)
-1

directions of the ttaverses in table 4,12 were identified partly 
by optical methods, and partly by the orientation of exsolved 
magnetite (Wager and Brown, 1968) which forms dendritic plates 
parallel to (010) within the olivine. (Kaaden ̂  al, (1972) has 
subsequently shown tĥ t similar exsolved plates in olivines are 
Pe-rich chrome spinels of formula Pê (̂CrQ Pê ^̂ )̂ ). These 
results show firstly, that like the major and minor elements, 
no uranium gradient was observed; and secondly, there is no variation 
in uranium concentration with crystallographic direction (in 
contrast to Condie et al*s., 1969, observations of uranium in 
pyroxenes).

Although ihe extreme examples of harrisitic olivine (and 
the sample analysed in this study) occurs mainly in the western 
layered series of Ehum (Wadsworth, 1961 - who in fact believed 
that the western and eastern series were one and the sane intrusion), 
olivine crescumulates do appear in the eastern series (Wager 
and Brown, 1968) and have been recorded also in the Rogsund gabbro, 
Norway (Robins, I97I). This morphology may in fact be more common



than Ini tally thou^t, and has in fact been observed for other 
minerals; e.g. diopsidic augite from the Duke Island complex -*
Wager and Brown (ibid p. 512), and bytownite feldspar from a 
recently recorded macrospherulitic structure on Ehum (Donaldson 
etal,̂  1973). The genesis of such extreme structures will 
inevitably be conjectural since we cannot hope to reproduce in the 
laboratory the immense sizes of some of the crystals. We can 
however obtain indirectly, an indication of the kind of conditions 
that may have prevailed, by certain aspects of the geochemistry 
and by comparison with, albeit on a very much smaller scale, 
experimentally produced morphologies.

Of the geochemical clues, the composition (and partition 
coefficients) of uranium may provide, in a similar manner to the 
previously described olivine morphologies, information regarding 
the formation of harrisitic olivine a Wager ^^.(1960) suggested 
that harrisitic olivines resulted from extension of cumulus 
olivines in a similar manner to that proposed for adcumulus or 
heteradcumulus growth - i.e. a slow, diffusion - controlled 
mechanism. However, when comparison of uranium concentration 
and partition coefficients is made with the poikilitic (or even 
equant) morphologies, it can be seen that:-

(T^)harr. greater (lJ)poi]t.

(’"otŝ haxr. Greater than (kots)i,olk. [= J

Prom sections 4.2 (equations (14) and (15)) this indicates that 
harrisitic olivines grew at a much faster growth rate and under 
conditions of large AT and supersaturation than did the poikilitic 
morphology which crystallised under eqiâilbrium conditions.
Further evidence supporting these non-equlibrium crystallisation 
conditions is provided by the morphology itself. The elongated 
branching of the olivines is similar in appearance to a dendritic
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morphology observed in experimental systems (e.g. Xofgren, 1974 

and Saratovkin, 1959) where dendrites result from rapid growth of 
hi^ supercooled melts (section 4.1.5.), and also to olivines from 
volcanic rocks (e.g. Nesbitt, 1971) where rapid cooling is 
postulated.

Donaldson (1974) in a comparative study of harrisitic 
morphologies with some Archean spinifex rocks, similarly concluded 
that harrisitic olivines resulted from rapid growth under super
saturated condititions. He suggested that an elevation in the 
liquidus temperature (of olivine) relative to the magma temperature 
was brou^t about by a decrease in the water content of a water- 
undersaturated feldspathic peridotite liquid (Donaldson 
ibid), coupled by adiabatic magma expansion. This would have the 
effect of increasing the degree of supercooling; but in this model 
Donaldson, ibid), since the supercooled magma is produced by 
elevating the liquidus and not by lowering the actual temperature 
of the system, fast growth may be achieved under low cooling 
rates. Thus, olivines crystallising under plutonio conditions 
(i.e. low cooling rates), may produce textures similar to those 
which crystallised under demonstrably rapid cooling rates (e.g. 
spinifex texture, Lewis (l97l)) - the common facbr being the 
degree of supercooling (or supersaturation) of the magma, and 
not the rate of cooling.
4.5.1.6. Tabular morphology

Tabular olivines were characterised by their elongated 
crystal shape where a:b (length to thickness, figure 4.16) ratios 
were greater than 2.5:1.0 and, in some cases exceed 10:1. A 
wide range of sizes was observed with "a” values varying from 
.5 to 5 millimetres and with the direction of elongation parallel 
to (OlO). They were often seen to be euhedral with pinacoid 
faces well developed (plate 4.14J. In overall shape, there is
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PLATE 4.13. Anhedral ilmenite in 
olivine crescumulate.

O’S I------- 1

PLATE 4.14. Tabular morphology with well- ^ ̂ m m .

developed pinacoid faces.
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Bome resfemtlance between this morphology and harrisitic morphology, 
the major differences being in size, where harrisitic olivines 
frequently were much larger, and, in that branching was a major 
characteristic of harrisitic olivines not found in tabular olivines. 
Brothers (I964) noted also the tabular olivines occurred with 
(010) planes parallel to the layering, whereas in harrisitic 
olivines, (OlO) occurred perpendicular to the layering. A feature 
of the tabular, and to a lesser extent harrisitic olivines, is- 
the occasional development of strain lamella (plate 4.15) 
parallel to (lOO), Wager and Brown (I968) suggest this to be a 
result of differential stresses brou^t about by the olivines, 
whilst still hot, being ovolain by a new deposit of cumulus 
crystals. Raleigh (1967) showed experimentally, this structure 
to be parallel to kink bands which formed at temperatures in 
excess of 1000° Centigrade.

In terms of the uranium content (table 4.13) this group, 
like certain of the textural aspects, is similar to the harrisitic 
olivines in that it contains a mean concentration of uranium second 
highest to that of the harrisitic morphology. The range in 
concentration is however larger than that observed for the 
harrisitic morphology, and overlapping of results occur with 
rounded (and to a lesser extent, irregular and equanlj morpholgies 
(figure 4*14). This may be due to inaccurate designation of 
some of the olivines into morphological groups during track 
counting since sections normal to (OlO) An tabular olivines 
would resemble a rounded (or equant) morphology. However, the 
mean uranium concentrations of the two morphologies differ by 
approximately 16 percent (table 4*2) unlike the forsterite 
contents (and MO and CaO where determined) which show no 
significant variation with any other of the morpholgies 
studied.
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PLATE 4.15 Development of strain lamellae 
in the olivine crescumulate.

•JL m n a . 
I \

PLATE 4.16 Tabular morphology - igneous 
lamination.
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Table 4.13»
Rook Unit 
no. no.

Thermal Area 
neutron counted 
dose*

no.
tracks

tracks.
2per cm 

**

U (ppb) 
± .03

) Fo 
content

MO CaO

91 1 0.85 100 70 0.683 6.91 86.06 .176 .111

95 2 1.71 100 141 1.3758 6.92 85.31 - -

96 3 1.71 100 163 1.5958 8.05 85.46 .166 .092

84 5 1.53 100 123 1.1994 6.74 85.60 .160 .101

85 5 1.53 100 116 1.1294 6.35 85.39 .164 .089
120 7 1.81 100 158 1.5438 7.34 85.13 - -
61 8 1.87 100 147 1.4326 6.40 85.34 - -

53 9 1,80 100 168 1.6440 7.86 85.41 .140 .109
68 11 1.81 100 166 1.6238 7.72 85.39 .162 .102

Average = 7.16
* x10̂  ̂neutrons.cm ?sec ]
**(x10'̂ ) and after background tracks were subtracted.

Traverses of major (Fe, Mg, Si) and minor (M and Ca) elements
were obtained (using the Geoscan microprobe) with directions both
parallel to the elongation, and perpendicular to it. The results
are presented in table 4.14, from where it can be seen that r i .
essentially the olivine is homogeneous with respect to these elements
and no zoning occurs. Analyses 1 to 10 (traverse parallel to
the elongation - i.e., to the z crystallographic axis) were analysed
at intervals of 0.3 millimetres (+ 25 jXm)t and analyses 11 to 15

(perpendicular to the elongation - i.e., parallel to the x,y plane)
at intervals of 0.1 millimetres (+ 25̂ m), The uranium traverses
(only parallel to the elongation) were performed ,on the basis

2of 40 area counts (0.4 x 1.0 millimetre ),
Tabular olivines occur sporadically distributed throu^out 

the intrusion, there being no apparent connection between the 
appearance of this morphology, and its position either within a
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Table 4*14
Analysis

no.
FeO MgO SiOg CaO MO Total FO U (pÿb) (k)^^ 

content (+ .03)

1 13.85 45.53 39.95 .10 .16 99.59

2 13.85 45.52 39.94 .10 .16 99.57 7.69

3 13.84 45.53 39.93 .11 .17 99.58
4 13.86 45.54 39.94 .10 .16 99.60

5 13.88 45.52 39.93 .10 .17 99.57

6 13.85 45.53 39.95 .09 .17 99.59 7.71

7 13.86 45.52 39.94 .11 .15 99.58
8 13.83 45.55 39.94 .10 .16 99.58
9 13.84 45.53 39.95 .10 .16 99.59 7.79

10
Average

13.82
13.65

45.52

45.53
39.95
39.94

.11

.10
.16
.16

99.57

99.58 85.39 , 7.71

11 13.84 45.51 39.93 .11 .17

12 13.84 45.53 39.93 .11 .16

13 13.86 45.54 39.91 .10 .17 -
14 13.84 45.54 39.94 .10 ,16
15 13.85 45.52 39.94 .10 .16

Average 
of 15

13.84 45.53 39.94 .10 016 99.57

îhimber of ions on the basis of 4 Oxygens 
.289 1.699 2.001 .003 .003

Atomic ratioss Mg
Fe2+

65.4
14.6

unit, or within the intrusion as a whole. It is found rarely 
as the major morphological type and generally contributes only 
10 to 35% of the olivine present in any one specimen. A cumulus 
genesis for this morphology has been proposed by Wager and Brown 
(1966, p.257) on the basis of alignment within the plane of layering
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producing an igneous lamination (plate 4.18, compare also with 
Wager and Brown ibid., figure I40). The euhedral crystal shape 
and occasional coalescing (seen e*g, in Wager and Brown ibid., 
figure 140) of some of the tabular olivines, may however be the 
result of diffusional modification of the outer edges in a similar 
manner to that proposed for equant olivines (section 4.3.1.2,).

A comparison of uranium concentrations and partition 
coefficients between tabular and poikilitic (or equant) morphologies 
(table 4.2) indicates (from equations 14 and I5) that this morphology 
crystallised at a faster growth rate and under disequilibrium 
(large AT and supersaturation) conditions, Brever and Johnston 
(1957 and 1967) suggested also fxon textural and field relationships 
of small basic intrusions that tabular olivines result from rapid 
precipitation and growth of a supercooled magma. Experimental 
woi*k by Lofgren (1974) showed that an increase in the acicular 
habit of crystals resulted from increasing the growth rate (y) 
and the supercooling (AT) - section 4.1.5.. Wyllie et al, (1963) 
similarly found that the acicular habit of apatite increases with 
an increased rate of quenching. One would expect therefore, to 
find that olivines with high a:b ratios had grown at a more rapid 
rate than those with lower asb ratios. Table 4.15 and figure 4.20 
show the variation in uranium concentration for different asb ratios.

Table 4.15
Bock
no.

modal % 
morpn.

a;b U (ppb) 
(± .C3)

(̂ )obs

96 23.6 8.2 8.03 .0267
68 10.2 5.8 7.72 .0257
84 33.4 2.8 6.74 .0225

Çr- ^ (0̂iJiayy\\r ifViorpUv -



ISO

A

%

é 98?

F i g u r e  4 . 2 0



ISI

An attempt was made to standardise the b values to between 0.3 
and 0.4 millimetres for the three specimens. Only three specimens 
were in fact chosen for this comparison, because the a/b ratio 
often varied quite extensively within one rock specimen - 
probably the result of cutting thin sections from unorientated 
specimens. The three specimens chosen (table 4*15), were 
fortuitously orientated such that the majority of tabular olivines 
range within - 1.0 a/b, and those counted were within - 0.5 a/b.
The interpretation of the results in table 4*15 and figure 4» 20 
is consistant with the above arguments, viz. an increase in 
growth rate produced an increase in uranium concentration and 
(texturally) an increase in a/b ratio.

4.4. Summary and discussion
The salient features observed in the geochemical and 

textural study of the olivine phase from the Ehum basic intrusion 
can be summarised viz.

(1) A constancy in the major elements (i.e. Fo content), 
and to a lightly lesser extent, minor element (MO and CaO) 
concentration throughout the intrusion.

(2) A variation in both the concentration and the observed 
partition coefficient (k -̂̂ g) of uranium.

(5) A correlation between the uranium concentration and 
the morphology of the olivine phase.

The first point - constancy of Fo content - may give an 
indication as to the type of mechanism involved in controlling 
the growth process. In discussing the growth process, whether 
controlled by the incorporation of the elements involved into the 
structure of the crystal at the interface (i.e. interface 
controlled mechanism, section 4.1.2.2.), or by the diffusion of 
those elements necessary for continued growth towards, and those



superfluous away from, the interface (i.e. diffusion controlled 
mechanism, section 4.1.2.3.), several factors need to he assessed.
In general, the rate-controlling process will be the slower of 
the two processes. Similarly, in crystallising a mineral consisting 
of two or more element species from a multi-component system 
(i.e. a silicate melt), diffusion clearly is going to play an 
important role. Were the rate of crystallisation to proceed 
faster than the diffusion rate (i.e. the rate-controlling process 
to be an interface mechanism), then a: matestable phase would result 
(e.g. Kirkpatrick̂ 1974). Although situations arise in multi- 
component systems whereby the rate controlling process is interface- 
controlled at the onset of crystallisation, and may convert to 
diffusion controlled as the crystal enlarges (section 4.1.5.)» 
some confusion arises in the literature as to the range of overlap 
of the two, Christian (1965, p.8) suggests that this range is 
quite small and that a process is essentially either diffusion 
controlled, or interface controlled. MulKn (1972 p.195) 
however, believes that a significant intermediate range exists 
whereby both processes may be rate-controlling and that the 
transition from one to the other may be temperature dependent. 
Intuitively, we would expect, in magmas, the latter to be more 
likely, because only on rare occasions do metastable phases form 
from crystallising magmas. Generally, if diffusion is restricted, 
crystallisation becomes temporarily halted whilst the temperature 
of the system decreases until an equilibrium assembly is 
reestablished. Crystallisation can then continue either in the form 
of lower temperature zones (in e.g. the plagioclase feldspar 
solid solutions), or as a eutectic system. In the section 
describing diffusion controlled growth (section 4,1.2.3.)» it was 
noted that the rate-controlling process was taken to be that of 
the slowest moving component necessary for coitinued growth. Vdien



therefore traverses of Mg, Fe and Si (i.e. those species which 
are necessary for continued olivine growth) across different olivine 
morphologies indicated no significant variation in forsterite 
Content, it may be argued that olivine crystallisation throu^out 
the intrusion was solely the result of diffusion controlled processes 
- provid ing sub-solidus reequilibriation had not extensively 
occurred.̂  houcvtr. U rweaiAi pi
proCûâS«2& (s&Æ- ?- '̂ 3̂*

Points (2) and (3), a variation in uranium concentration 
(and partition coefficient) within the olivine phase, and the 
corellation of this to the olivine morphology indicate fundamental 
growth differences between the various olivines not reflected 
by the major (or minor) element geochemistry. Various observed 
field and textural relationships (e.g. Drever and Johnston, 1957&nd 
1967) and experimental studies (e.g. Saratovkin, 1959 and Lofgren, 
1974) have demonstrated that by a variation in AT and in crystal 
growth rate a variety of crystal morphologies can be obtained 
(section 4*1*5)« A transition from polyhedral (equilibrium crystal 
shape) to skeletal, to dendritic, to spherulitic morphologies 
arise by increasing AT, and hence the rate of growth. Two 
of the above factors are likely however, to increase the rate 
of the interface mechanism at the expense of the rate of diffusion. 
Firstly, an increase in AT results in an increase in the deviation 

from equilibrium at the interface, thus increasing (̂̂ î êrface" 
Secondly, the transition from a polyhedral morphology to one having 
a more elongated or acicular form will enable a proportionally 
larger number of sites to be available for molecular attachment 
(equation 8). One would expect therefore, to find that interface 
mechanisms would play a more significant part in the growth process 
at higher AT’s.

As growth proceeds by diffusional processes in multi-component 
systems, it can be seen that an impurity layer (5 ) is built up
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around the growing crystal (figure 4.4) and that chemical diffusion
of the relevant species occurs through 5 . In addtion, 5 is a
function of the constitutional supercooling (section 4.1.4) such
that by increasing AT, a decrease in S is observed (figure 4.9(a)
to (c)). Consider the effects of this on elements diffusing at
different rates (figure 4.27). If B has a slower diffusion rate,
and a greater concentration gradient, than A, the distance of the
impurity layer will be greater than 5^. Then, with a decrease
of to a value (caused by an increase in. AT and/or Y), the
incorporation of element A into the crystal structure Will be
describable in terms of thermodynamic (equilibrium) priciples,
and the observed partition coefficient of A will be the equilibrium
partition coefficient If A is necessary to the continued
crystallisation of the mineral, the growth process will be diffusion
controlled. The incorporation of element B into the crystal
structure will not however, be describable by (or in, thermodynamical
principles) when 5"=» 5"̂  , and the observed partition coefficient
(k , ) of B will be some value intermediate between k and k*' obs' equ
(the interface partition coefficient - section 4.2). If similarly 
element B plays no significant role in the crystallisation of the 
solid, then, although the overall growth process can be described 
as being diffusion controlled, the controlling factor, with respect 
to element B, will be rate of attachment at the interface.
Conversely, decreasing AT and/or Y such that S increases to a 
value will result in the partition coefficients of both A 
and B being that of their equilibrium partition coefficients, and 
the incorporation of both these elements into the mineral may be 
described as being diffusion controlled.

There is therefore, a range in rates of growth over which 
a crystal may develop which will not affect the major (or minor) 
element concentrations (or partition coefficients), but will be
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TEflected in the concentrations (and partition coefficients) of 

low partitioning elements having compar<itively lower diffusion rates.

A comparison of diffusion coefficients for Mg, Fe, Co and 

uranium are given below in table 4.IS. We can therefore, in 

the general diagram of figure d-uZl) substitute Mg (or Fe) os 

element A, and uranium as element B.

Table 4.IS

Element Diffusion * 
coefficient (D)

Temperature 
(̂  C) Media Source

Mg^+ 0.091 - 1.4 1200 inter-diffusion 
in olivine

1

Fe^+ 50 1275 iron silicate 2
Ca^^ 1.07 - 3.36 1230 to 1423 mugearite melt

O-S: 0-25*. 0 ‘2-S

3

Th 0.2 1350 and 
20 Hbar.

diopside: albitc: 
anorthite melt

4

* X 10"^ cm2 S2C ^
1 = Misner (1972) - recalculated to 12G0°C. 3 = Medford (19731
2 = Matsumara (19S9) 4 = Seitz (1974, b)

_o 2 —1Using the value for thorium (i.e. 2 x 10”''̂ cm sec ) and 
assuming similar diffusion rates for thorium and uranium (e.g. Seitz, 
1973, b), a diffusion coefficient for uranium at 1250*̂ C can be

£
obtained from the Arrhenius equation D = D exp (-^  equal to-9 7 - 1  ■ °S X 10 cm sec

The observed variation in uranium concentration of the olivines 

of Rhum with morphology, therefore, may result from different rates 

of crystallisation. The morphologies observed ranged from polyhedral 

through to dendritic; viz. poikilitic and equant (polyhedral) to 

irregular to tabular (acicular) to harrisitic (dendritic). This trend 

is indicative of on increase in the supercooling ( ̂ T) and the growth 

rate (Y) (section 4.1.5.) and is reflected in a corresponding increase 

in the uranium concentration. The range in the rates of growth were 

not sufficient however to significantly affect the concentrations of 

the other elements (Mg, Fe, Ca and Ni) which remain essentially
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constant despite a variation in uranium concentration. These 
factors can be summariseds-

poikilitic + equant irregular tabular harrisitic
increase in Al, Y and Uranium 

(l4gv Fe, Ca, Ui constant).
Mg, Fe, Ca and M  are considered to have been attached to 

the olivine structure in a diffusion controlled manner throughout 
the different morphologies, whereas uranium appears to have been 
incorporated in an increasingly interface controlled manner with 
increasing olivine growth rate. In terms of crystal morphology, 
an increase in surface area/volume ratio accompanies the increase in 
growth rate.

The above arguments lead us to two important considerations g- 
(l) In multicomponant systems, where a wide range of diffusion 
rates occur, care has to be taken when assigning a growth mechanism 
to a particular mineral phase solely on the basis of major element 
analysis, since, changes in the rates of growth may result in 
those low-partitioning elements with comparatively slower diffusion 
rates being incorporated into a mineral by a different growth 
mechanism than those elements which are necessary for continued 
growth.

(2) A closer inspection of the variations in partition 
coefficients of trace, low-partitioning elements may provide more 
sensitive indicators of the rates of crystal growth of a particular 
mineral phase.

The second consideration may be put on a more quantitative 
basis using an equation by Burton, et si. (1953) whereby a limiting 
value of the effective partition coefficient (f) is obtained from 
an initial equilibrium partition coefficient (t) as solidification 
proceeds.
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t' = > (16)
t + (1 - t).exp(- S^)

where Y = linear growth velocity (cm.sec )
I) = diffusion coefficient of the element in the liquid 
= effective thickness of the liquid layer in which 
the solute is transported by diffusion only.

As Y increases t* approaches unity,, and, for low-partitioning 
elements, t' has values intermediate between t and unity. From 
section 4*2 it can be seen that t is equivalent to the 
partition coefficient equivalent to the observed partition
coefficient , and 5”̂  equivalent to the impurity layer S ,

Then, by rearranging equation (16),

Y =  (17)
O obs

From theoretical observations Mullin (1972) considered the
value of S to range from approximdely 4 - 4 0  microns in
thickness, Donaldson (1975) found, from experimentally grown
olivines, 5 to be approximately 20 microns.. Qualitatively,
by keeping D, k̂ ^̂  ̂and k̂ ^̂  constant, an increase in S produces a
proportional increase in Y - a result predicted in section 4.1.5#
and above. Growth velocities for the different morpholgies may
therefore be estimated from the uranium partition coefficients
using values of D (uranium) = 6 x 10 cm̂ . sec and, since
no definitive values of S can be obtained, S is taken to be
2.0 X 10  ̂cm. From the above, however, it will be seen that
S decreases from poikilitic to harrisitic, the overall effect
being to increase slightly the rate of growth in that direction.
Table 4.17 givEo calculated growth velocities and growth to
diffusion ratios (̂ /d) for the different velocities using
equation (a). The value of k is taken to be that of the ' equ



partition coefficientE of the poikilitic morphology
(section 4.3.1.1).

Table 4.17

Morphology
"obs
( X 10"2)

Y*
-1cm.sec

Y
mm.day ^ %

Poikilitic 1.47 less than 
3.83

less than 
0.33

less than 
64

Equant 1.67 3.63 0.33 64
Irregular 1.57 3.73 0.76 146
Rounded 2.00 9.23 0.30 154
Tabular 2.39 14.6 1.26 243

Harrisitic 2.77 19.0 1.64 317

* X 1D'7

The equation brooks down howover, when K , = K _ os ̂ ' obs equ
this condition yields o zero growth rote. Here crystallisotion 

moy be considered to be a steody-stote situation with growth 

by diffusion olnne.

Donaldson (1975) estimated that growth rates of the order 

of 0.45 mm.day would ensure complété solidification of Skaergaard
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crystal mushes assuming a settling rate of 0.6 mm. day. Wager 
(1963f figure 5) however, suggests a much slower settling rate 
giving thicknesses of the order of 0.35 mm.day for adcumulus 
conditions to prevail. Under these slower conditions, if a 
packing of at best 65 percent is assumed (Wager et^., I96O), 
a growth velocity of approximately 0.12 mm,day (equivalent to 
approximately 1 .2 x 10 cm,sec ) is required to ensure complete 
solidification before a new crystal layer forms. This approximates to 
the range calculated for the poikilitic and equant morphologies, 
which were considered to have crystallised, probably around a 
cumulus olivine nucleus, by an adcumulus (i.e. basically diffusion 
controlled) process. The cumulus-originated morphologies (i,e, 
rounded and tabular) give growth rates intermediate between the 
post-depositional morphologies and the cumulus harrisitic 
morphology; the latter apparently having groun comparitively 
rapidly from a layer of settled cumulus olivines (Wadsworth, I96I),
The highest calculated growth rate (for harrisitic morphology) 
is still within the range of recorded olivine growth rates in 
basalts (Donaldson ibid).

The influence of the growth/diffusion rate ratio ( /d) 
on the crystal morphology has been shown by Lofgren (1974) and 
Donaldson (1975) (section 4«1»5«) and values recorded here 
( table 4.17) agree well with their experimental work. Low ̂ /D 
ratios resulted in polyhedral morphologies (poikilitic, equant, 
and to a lesser extent, irregular and rounded); increasing /d 
ratios resulted in morphologies of increasing surface area/volume 
ratios (i.e. as tabular and harrisitic morphologies), Donaldson 
(1974) reports a '̂ /d ratio for skeletal olivines (intermediate 
between tabular and dendritic) of approximately 10 per cm.

We can thus, summarise the mechanism of growth and certain 
magma conditions by subdividing the morphologies into three groups.



Group (l): poikilitic, equant and irregular morphologies. 
Basically oontrolled by an intercumulus (heterad or adcumulus) 
growth mechanism, probably extending original cumulus olivines, 
under.slow, diffusion controlled ( with respect to both the major 
elements and uranium) conditions and with low, but increasing 
values of AT and Y,

If sub-solidus rœquilibriation of the olivine had occurred, 
the observed uranium concentration may hot be a true representation 
of the adcumulus or heteradcumulus overgrowth, A hi^ degree of 
heteradcumulus growth, e.g. crystallisation of 40 per cent pore 
space would include a lower contribution of the uranium content 
of the original crumulus crystal, than would a smaller degree of 
adcumulus growth (in eg. modification of a rounded crystal to an 
equant crystal). The amount of overgrowth could not unfortunately 
be quantified since essentially no changes in either the major or 
minor element concentrations were detected in microprobe scans. 
Qualitatively, one would expect the amount of overgrowth for the 
poikilitic morphology to be less than for equant or irregular 
morphologies solely on the basis of size.

Group (2): rounded and tabular morphologies. Considered to
be phases that crystallised in (and from) the bulk of the magma 
and subsequently deposited as cumulus crystals. An increase in 
growth rate with an increase in ̂ /b (and surface area/volume) 
ratios was observed. With the increase in growth rate, there- 
occurred an increase in the influence of interface growth mechanism 
for uranium, the major and miner elements were still however 
diffusion controlled.

Group (3): harrisiUc morphology. The most rapid growth rate 
observed and the result of magma locally developing high values 
of the supercooling ( 4\T). In order to obtain the necessary AT 
values, a period of quiescence in regions of magma free from
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suspended cumulus crystals would be required. Alternatively, 
adiabatic magma expansion plus the removal of water could produce 
the required high AT (Donaldson, 1974)*

A qualitative model based on the juxtaposition of the 
curves of linear growth velocity (Y) and nucléation rate verses 
degree of supercooling may be proposed for the crystallisation 
of the observed olivine morphologies. The relevant curves, first 
obtained by Tamman (I925), have been described above:• homogeneous 
(and heterogeneous) nucléation as a function of supercooling is 
shown in figure 4.5., and crystal (linear) growth velocity 
versus supercooling shown in figure (4.6). The two curves are 
not in fact identical in shape, the former having a relatively 
sharp peak, the latter being rather flatter, Tamman (ibid) was 
able to demonstrate that the maximum rate of crystallisation 
occurred at a lower AT than the maximum rate of nucléation. The 
relative positions of the two peaks with respect to the degree of 
supercooling can then be shown schematically (figure 4.22).

The early formed cumulus rounded (and tabular) olivines 
probably formed in regions of the magma devoid of other crystalline
phases, thus their nucléation may be said to be homogeneous.
After nucléation (e.g. at point A on the curve), the latent heat 
of crystallisation generated would decrease the local AT and the 
path of the nucléation would drop to point B, say. The 
corresponding points A’ and B* on the growth rate curve indicate 
a rapid growth rate for these crystal phases. The combination of 
rapid growth and high nucléation rate will, result in small crystals, 
which in the Ehum olivines is manifested as the rounded morphology.
If however a higher degree of AT were reached, at say point C,
without nucléation having previously occurred at point A, a lower 
number of nuclei would be formed under a rapid crystallisation 
velocity (c). Under these conditions tabular olivines can be
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envisaged forming.
Extension of cumulus olivines by adcumulus or heteradcumulus 

growth can similarly be explained using "this model. During settling 
of the cumulus crystals they would move into regions of relatively 
fresh melt (i.e. melt replenished in "olivine-constituent" material) 
and would continue to grow to point D say. Here the growth 
velocity is lower (D') and it is suggested that adcumulus overgrowth 
occurred both during and immediately after settling to produce the 
observed irregular morphology. Irregular in shape since around 
each crystal the zone of interstitial liquid produced by the effect 
of interfering diffusion fields frca crystals mutually competing 
for olivine-constituent material would be irregular. After having 
settled, diffusional adcumulus overgrowth would continue to say 
point E (slower growth rate, E’) giving the euhedral shape and 
coalescing features characteristic of equant morphology. Eeterad- 
cumulus growth to produce the poikilitic morphology would have 
occiurEd after plagioclase feldspar had formed and settled out as 
cumulus crystals. Although the poikilitic morphology is found 
in the upper, plagioclase-cumulates of the units, it is probable 
that cumulus olivine was also present, thus nucléation around 
the preexisting cumulus olivine crystals would result in heterad
cumulus growth. Hucleation was therefore heterogeneous requiring 
lower AT conditions and would begin at point E say. The reduced 
pore space would reduceconvection and so not allow the heat of 
crystallisation to disperse quickly and the supercooling would 
drop to point G say, where slow growth velocities and low AT 
(equilibrium) conditions prevail.

Harrisitic growth of olivine required conditions of rapid 
growth and low crystal nucléation at high AT values. The 
position where these requirements are met are after the maxima 
of the nucléation peak (at A) at point H say. (Alternatively,



displacement of the nucléation peak to the right in figure 4*21 
would suffice). We need therefore to suppress the nucléation 
peak in some mariner such that, in the quiescent supercooled magma 
prior to harrisitic growth, early nucléation at point A does not 
occur. Suppression may be obtained by rapid cooling such that at 
point H a high growth velocity (H’) would act on pre-existing settled 
olivines and dendritic growth form in the direction of the highly 
supercooled magma, (i.e. upwards). The large amount of latent 
heat evolved would be generated in the direction of growth and 
would "accumulate" in a region above the harrisitic layer. Thus 
A  T would increase to point A (andthen to B) and rapid nucléation 
result. In the field, Wadsworth (196I) observed the frequent 
appearance of small olivine crystals at the top of harrisitic 
layers, a feature predicted by the above arguments.

Although many unknowns and variables exist within the model, 
it is however appealing in its simplicity. Unfortunately the 
effect of different silicate assemblages on individual peak 
aspects such as peak height; peak width and peak skewness have not 
been investigated. Nevertheless, the large range in sizes of the 
olivines required an interpretation based upon variation in 
nucléation rate; the observed uranium partition coefficients an 
interpretation based on variation in growth rate, and the observed 
morphologies an interpretation based on variation of supercooling, 
and the model described above is an attempt at combining these.

4.5» Uranium in Feldspars
The distribution of uranium within the feldspars of both 

the Ehum and Carlingford intrusions was determined using the 
fission track (contact point) method. A comparison of those 
re suit sis given below in table 4*18. (Details of the analyses are 
given in table Chapter 5)» The interpretation of the results



Table 4.10
range mean ôbs composition range• mean k̂ ^̂ composition

* (mean) ** + (mean) -H-

9.54 - 17.99 .0599 ^8.€F°2'[.2 12.16 20.31 .0577
29.39 0^0.2 - 23.12 %.1

* 4 5  analyses + 10 analyses

** 21 analyses (mlcroprobe) ++ 5 analyses (microprobe)
(10 optical) (5 optical)

from the Carlingford specimens miist be made with care however, 
because of

1) Few analyses were made,
2) Samples which were collected and analysed could not 

confidently be related to the major rhythmic units of the intrusion, 
(Details of the Carlingford samples are given in section 1.3)*

Previously reported values of uranium concentrations in 
plagioclase feldspars from basaltic magmas are scarce and show 
a wide range of values from 2 p.p.b, (Lovering and Kleeman,
1972) to 190 p.p.b. (iTagpal ^  al., 1973). The values recorded 
in this work (table 4.17)» appear to be more consistant with previously 
reported values from Ehum pla^oclases (Henderson ̂  al., 197O - 
i.e. 10 to 70 p.p.b.); with Thiel’s (1972) values of approximately 
10 p.p.b. in plagioclase8 from lunar basalts, and with Gibjels 
et ad.’s (1974) values of between 23 and 43 p.p.b. for the Bushveld 
plagioclases. The wide range of values in the literature probably 
does not represent accurately the true values of uranivim within 
plagioclase feldspars as a result of several factors.

1) The poBsibilty of errors caused by contamination is increased 
owing to the ease of alteration and the common incorporation of 
inclusions within plagioclase feldspars. Either of these factors 
would increase the observed uranium concentrations, since uranium



19^

has both a tendency to be associated with alteration minerals 
(e.g.Mleeman et^,^1969) and within micron-sized inclusions (e.g. 
in this work).

2) In analytical techniques which involve mineral 
separation, the degree of normal (Albite) zoning is often not 
known. This can produce errors in the uranium concentrations as, 
Henderson etal,(l97l) showed, the outer rims of some zoned 
plagioclase crystals contained a higher uranium concentration than 
did the cores of crystal. This point is discussed in greater 
detail below.
4.5.1. Feldspars in the Ehum intrusion

From textural considerations, the feldspars can be divided 
into two morphological types - tabular (plate ̂ 17)and poikilitic 
(plate L.is). Genetically, these correspond to a cumulus and a 
he teradcumulus origin respectively. When the uranium concentrations 
of these two morphological types are plotted against height in 
the intrusion (figure 4.23)» two factors emerge.

1) There is an increase in uranium concentrations with 
a decrease in hei^t,

2) Although the spread of results is fairly wide and some 
overlap occurs, in the middle and upper units, two trends may 
be resolved. There is a tendency for felspars with a poikilitic 
morphology to contain less uranium than those with tabular 
morphologies.

These two apparent features may be interpreted from a 
crystal growth viewpoint - viz. normal zoning (crystallisation 
of lower temperature a ones), and the existence, of two crystal growth 
mechanisms to give the two morphology types. These are discussed 
separately below.
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PLATE 4.17. ,Tabular feldspar. 0*1 mm.

PLATE 4.18. Poikilitic feldspar.
(e n c lo s in g  oUvin^ )

0 ‘5  m m .
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4.5.1.1. Decree of zoning.
Henderson (1969) and Henderson etal.(1971) discussed the 

possibility of uranium— as a low-partitioning element - being 
incorporated into the outer, lower temperature zones of normally- 
zoned plagioclase feldspars from the Skaeigaard and Ehum intrusions.
The argument being that since uranium enters the feldspar crystal 
in only low concentrations, remaining preferentially in the 
intercumulus liquid, then, if crystal accummulation occurred rapidly, 
it was possible to trap intercumulus liquid in contact with the 
pre-existing feldspar. The resulting lower temperature zones would 
therefore accumulate a large concentration of uranium.

In figure 4.24.(from Brown, 195&, figure 4) the degree 
(and extent) of zoning within the Ehum feldspars is plotted against 
the height in the intrusion. A comparison of this graph with 
uranium concentration in feldspars against height (figure 4.23) 
shows a good correlation. With decreasing height in -the intrusion 
there is observed in the feldspars, both an increase in the uranium 
concentration and an increase in the degree and extent of normal 
zoning.

Although potentially, the fission track technique is capable 
of intra-mineral analysis and should thus be able to differentiate 
zoned and unzoned regions of the feldspar, with such low concentrations 
it was not practicable to count only those areas where zoning was 
absent, and inevitably, the resultant uranium concentrations included 
a variable (unknown) proportion of zoned material. In addition the 
degree and extent of zoning appears to vary extensively within one 
rock specimen, and the large spread of results in the lower units 
may be attributed to this. Thus (perhaps due to the limitations 
of the fission track technique), it can be seen that an increase 
in the uranium concentrations of the feldspars is the result of an 
increase in the degree of zoning.
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Henderson (1969) extended the argument to suggest that 

the existence of zoning in feldspars from cumulates is indicative 

of the amount of mesostasis material. Whole rock uranium 

concentrations would then provide an indication of the amount 

of mesostasis in the rock - providing uranium-enriched minerals 

such as apatite and sphene were not present as cumulus phases 

and providing the proportion of clinopyroxene (which contains a 

higher mean uranium concentration i.e. 33.24 p.p.b.) does not vary 

extensively. When whole rock uranium concentrations (values given 

in table 3.5, chapter 3) are plotted against height in the 

intrusion (figure 4.25) an increase in concentration with decrease 

in height is observed. If, therefore, zoning in feldspars in 

cumulates is symptomatic of (low-temperature) crystallisation of 

trapped interstitial magma, then from the correlation observed 

between figures 4.25 and 4.24, the zoned portions may be inter- 

pretated as being regions of mesostasis material.

The distinction needs to be made here between increasing 

theAb content as a result of zoning (as e.g. in Rhum) and 

increasing the Ab content as a result of fractional crystallisation 

(as e.g. in Skaergaard). Although the uranium concentration 

appears to increase with increasing Ab content (figures 4.23 and 

4.24), this correlation cannot justifiably be extended to encompass 

fractionated systems, since the Ab-enriched zones of the Rhum 

feldspars are considered to be mesostasis areas and are not 

therefore equatable with cumulus originated, lower temperature 

feldspars of the fractionated intrusions.

4.5.1.2.Variation of Uranium with morphological type.

In the middle and upper units of the intrusion (above 

approximately 200 metre^, optical examination of the feldspars 

show them to be significantly less zoned than in the lower units. 

This feature is in accordance with Brown's (1956) observations
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(figure 4.24). In these higher units, both the post-depositional

crystallisation of the cumulus feldspars in the feldspar-cumulates,

and the crystallisation of the intercumulus feldspars of the

olivine-cumulates must have occuired at a constant temperature

and in an environment whereby there was unrestricted access to

the main bulk of the magma. In such a situation, Hess (1939, p431)
of

proposed that free diffusiory material feeding the growing crystals 

occurred,coupled with a subsequent physical expulsion of the 

intercumulus liquid. In the nomenclature of Wag€r et al. 

(1960), the resulting unzoned cumulates would be termed accumulates 

(for unzoned overgrowths of cumulus, i.e. tabular, feldspars), and 

heteradcumulates (where the feldspar phase takes the form of 

poikilitic plates). Thus, an analogous situation to that found 

in the olivines of Rhum arises, whereby both the feldspars and 

the olivines display poikilitic morphologies, and both minerals 

have morphologies corresponding to adcumulus overgrowth on pre

existing cumulus phases. In the olivines, the cumulus crystals 

have rounded (or tabular) morphologies which transform with 

adcumulus overgrowth, to crystals with an equant or irregular 

morphology. Habit modification of the cumulus feldspars is not 

as diverse as the olivines however, the resulting crystal shapes 

remaining essentially unchanged - i.e. as a tabular morphology.

In these upper units (i.e. above 280 metres) there is a 

tendency for poikilitic feldspars to have a lower uranium 

concentration than tabular feldspars (figure 4.2 3). In the lower 

units, this trend is destroyed, the uranium concentration having 

been influenced by the zoning, which varied both in the degree 

and amount from specimen to specimen. A comparison of the 

concentrations between the two morphologies (above 280 metres) 

is given below in table 4.18. In spite of the low number and 

small degree of overlap of results, the trend is significant, and
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an interpretation similar to that for crystallisation of the 

olivine phase (section 4.4) is proposed. The lower uranium 

concentrations (and partition coefficients) in the poikilitic 

morphology suggests crystallisation conditions of lower super

cooling ( A T )  and slower growth rates ( Y ) than existed for 

the tabular morphology.

table 4.19

Uranium p.p.b. (fission track analysis)

poikilitic
morphology* ^obs tabular morphology** ^gbs

11.19 .0428 16.34 .0545

(9.54 - 15J.7) (13.16 - 18.80)

* 9 results, mean S.D. = 1.73 

** 5 results, mean S.D. = 1.36

As observed initially by Brown (1956), the feldspar poikilitic 

morphology occurs in the lower (olivine-rich) regions of each unit, 

with the tabular morphology in the upper (feldspar-rich) regions.

The feldspars in the olivine-cumulates crystallised interstitially 

between the olivine crystals and nucléation was likely to be of a 

heterogeneous nature with olivine grain edges or grain boundaries 

acting as nucléation sites (e.g. Christian, 1965). Using a 

similar model to that proposed for the crystallisation of the 

various olivine morphologies with juxtapositions of nucléation and 

crystal growth rate curves (figure 4.26), heterogenous nucléation 

of poikilitic feldspars would occur at some point A(say). In an 

enclosed environment with restricted convection, the evolved
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latent heat of crystallisation would not adequately be able to 

disperse, and the path of the nucléation curve would decrease to 

a lower value of A T  (to point B, say). The corresponding path 

of the growth rate curve would decrease also from A* to B*. For 

the formation of the feldspar cumulates in the upper regions of 

each unit, olivine would have ceased to crystallise and the 

system reached the olivine-feldspar cotectic join. Thus feldspar 

would nucleate as a major phase, the mode of nucléation in this 

case being homogeneous, at point C (say). Again the latent heat 

of crystallisation evolved would act to decrease locally the 

value of A T  of the melt (although the heat dissipation would 

probably be more effective in a relatively open environment), 

and the path of the nucléation curve would decrease to point D 

(say). Adcumulus overgrowth on the settled cumulus feldspars does 

not appear to have modified the morphology to any great extent, 

it remaining essentially a tabular morphology, and, in terms of 

figure 4.26, nucléation and growth rate conditions for adcumulus 

growth would hove been similar to that for poikilitic (heter- 

adcumulus growth) morphology. Since however, heterogeneous 

nucléation on pre-existing cumulus feldspars is likely to be 

thermodynamically more favoured than heterogeneous nucléation on 

grain boundaries (and edges), the degree of supercooling required 

would be less for adcumulus growth than for heteradcumulus growth.

□n the growth rate curve therefore, nucléation would start at some 

point midway between A and B, and with the decrease in supercooling, 

continue to point B (say).

The model predicts therefore, that the overall growth rate 

of the homogeneously nucleated tabular feldspars (with varying 

amounts of adcumulus growth) would be greater than that for the 

heteradcumulate phase (poikilitic morphology), with the larger
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uranium concentration for the tabular morphology being a mani

festation of the growth rate differences. In both tabular and 

poikilitic morphologies, the Anorthite content of the plagioclases 

are essentially the same

As a corollary to this, when the uranium concentrations of 

the tabular feldspars are compared with the poikilitic feldspars in 

any one unit (table 4.19), and plotted against the height above 

the base of the unit, there is observed (with two exceptions) a 

positive gradient in each of the slopes (figure 4.26 (a) to (h)).

In the case of the two exceptions (units 2 and 3), the feldspar 

zoning varied both in amount and in degree, and the calculated 

uranium concentrations are not considered to be reliable.

Previous to this study for the uranium distribution in the 

feldspars of Rhum, on investigation of the distribution of Sr was 

undertaken on representative feldspar samples separated from both 

feldspar cumulates and olivine-cumulates of several units,

Williams (1971). The analysis was achieved using a Phillips 

X.R.F. instrument and the results are given in Appendix 2- When 

a similar graph of Sr concentrations for poikilitic and tabular 

morphologies are plotted against height above the base of each 

unit (table 4.19), a mirror-image trend is observed (figure 4.%

(a) to (f)) with negative gradients to the slopes. An exception 

to this rule occurs in unit G where the slope has a positive 

gradient. At the present, no explanation can be offered regarding 

this anomaly. At the time of analysis it was found difficult to 

interpret these results, but, using the model proposed in this 

chapter, these trends can be explained.

The distribution at the interface of high-partitioning 

elements (such as Sr) differs markedly to that of a low-partitioning 

element (e.g. uranium), and these distributions are schematically 

shown in figure 4.2g. The Sr concentration increases with distance
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Wciĝ tio- 
cybove

—r—30

/ O -/O-

a.32f 20

/ X

|o-

u^it IIUnit  (O

^  C(ra*niiA.*M  c o n c e n t r - c ^ t i 'o t A  Cp*P*^*3

F i g u r e  4 . 2 7



(o-

lOO

2o-

1̂ -

I0-

5'-

ZlO

O  poibi^&iC MOrpUo£o^

Und l

3oo 350 4-00 440

2o-4o-

/S -

10-

(O-

40-

jîo-

10-

530 -400 450

C O iA C& LA fr-ct 6 i  Oi%\ ^ P *  p *  *^*3

Soo

Figure. 4 , 2 9



zu

in the melt, uhersas the uranium concentration decreases with 

distance. Under equilibium conditions, i.e. slow growth rate, low 

A t conditions, the observed partition coefficients of the

two elements will be equal to their equilibrium partition 

coefficients (k̂ q^), and in figure 4.29 this is schematically 

represented by the large S region, By increasing the growth

rate such that it is more rapid than the diffusion rates of the 

element species, there is an increase in A T  and a decrease in 

S  , to This increases the amount of the low-paÊLtioning

element (uranium) incorporated in the crystal, but decreases the 

amount of the high-parüfcioning element (Sr), and in both coses 

^obs ^ T (equations (13) and (19)).

Therefore, figures 4.27 and 4.28 can be interpreted using 

crystal growth models such that feldspars with a poikilitic 

morphology crystallised with a lower (diffusion-controlled) growth 

rate than the more rapidly grown (more disequilibrium conditions) 

tabular morphology. This resulted in:-

k^bg (tabular) k^^^ (poikilitic)

and k^^^ (tabular) k^^^ (poikilitic)

where k̂obs (tabular) = observed partition coefficient or Uranium

in the tabular morphology

k^bs (poikilitic) = observed partition coefficient of Uranium

in the poikilitic morphology.

*̂ cbs (tabular) = observed partition coefficient of Sr in

the tabular morphology.

kg^^ (poikilitic) = observed partition coefficient of Sr

in the poikilitic morphology.
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Table 4J20.

Specimen
Number

Unit
Number

Height (metres) 
above base of 
unit

Morphology .  * p o P • Do Sr p.p

Ro92 2 0 poik 28.44 -
R.93 2 8.5 poik 29.03 -
R.94 2 17.7 poik 18.46 -
R.95 2 29.9 tab 26.80 -
R.96 3 0 poik 23.91 -
R.99 3 15.2 poik 21.66 -
R.89 3 138.7 tab 24.04 -
R.8G 3 140.8 tab 21.31 -
R.87 3 143.0 tab 18.81 -
R.82 6 0 poik 21.11 -
R.42 6 0 poik - 496'
R.44 G 9.1 tab 21.60 375
R.120 7 0 poik 17,31 -
R.45 7 9.1 poik - 415'
R.46 7 18.2 tab 19.48 315
R.3G 8 0 poik - 474
R.61 8 21.3 poik 13.64 -
R.62 3 28.9 poik 15.81 -
R.G3 8 . 36.G poik 15.71 -
R.112 6 41.1 poik 12.50 -
R.llO B 44.2 poik 13.04 -
R.lll 8 44.5 poik 11.88 -
R.S4 8 45.7 tab 16.83 -
R.65 8 GO. 9 tab 14.50 -
R.47 a 60.9 tab 18.43 492
R.53 9 0 poik 9.54 -
R.54 9 12.2 tab 17.19 -
R.35 ID 0 tab - 509
R.34 10 12,2 poik - 516
R.33 10 27.4 poik - 522
R.113 10 54.8 poik 12.22 -
R.114 10 57.9 tab 15.88 -
R.30 10 60.9 tab - 442
R.66 11 0 poik 11.62 -



ZI4-

R.27 11 27.4 poik - 436
R.68 11 36.6 poik 10.60 -

R.IS 11 41,1 tab 14.13 396
R.19 12 0 poik - 488*
R.24 12 21.3 poik - 472*
R.2G 12 22.0 tab - 413
R.23 12 24.0 tab 13.61 424
R.12 12 27.4 poik - 443

* fission track analysis
** X.R.F. Analysis 
+ Analyst P. Henderson 
poik = poikilitic morphology 
tab = tabular morphology
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4,6. Uranium in clinopyroxene

The concentrations of uranium in the clinopyroxenes from both 

the Rhum and the Carlingford intrusions were determined using the 

fission track (contact print) method. A comparison of tie range of 

concentrations and the mean values for the two intrusions is given in 

table 4.20 belou. (The details of the results arc tabulated in 

chapter^, table 3,4). As in the case of the feldspars, the inter

pretation of the uranium concentrations in the clinopyroxenes from 

the Carlingford intrusion must be treated with caution because of 

sampling difficulties (chapter 1, section 1.3), and because 

alteration appears to have occurred to a much greater degree than in 

Rhum.

table 4.21

Rhum * Carlingford **

Range Mean Ki , obs Range Mean obs
('p.p.U.) (mean) (p.p. b.') (mean)

27.32 - 36.15 32.24 0.107 30.70 - 36.60 33.60 0.112

* 39 analyses (S.D. = 2.33) 

** 10 analyses (S.D. = 2.30 )

Unlike the other major phases, i.e. olivine and feldspar, the 

range of uranium concentrations recorded in the literature for 

clinopyroxenes from basaltic magmas, is not very extensive. 

Concentrations range from 15 p.p.b. (Kleeman, et al_. 1969) to 

09 p.p.b. (Nagasawa and Ulakita, 1963). However, partition coeffic

ients recorded for clinopyroxene grown from experimental di-an-ab 

melts (50, 25, 25 wt.%) differ greatly, Seitz and Shimizu (1972) 

calculated partition coefficients of between 0.15 - 0.19, and 

Seitz (1973) values of approximately 0.0008 from similar melts. There 

is therefore a clear need for further experimental work in this field,
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235By the addition of uranium (the uranium isotope measured in 

f.t. analysis) to experimental melts, the distribution and 

partition coefficients of uranium using the f.t. technique can 

be more easily obtained.

The values recorded in this work however, are consistent 

with those from Henderson (1970) and Henderson et al.(1971), 

(values range from 32 - 60 p.p.b.). In these cases, the 

technique used was Delayed Neutron Activation Analysis (D.N.A.A.), 

and the samples were separated clinopyroxenes from the Rhum, 

Skaergaard and Bushveld intrusions.

4.6.1. Textural variations in the Rhum clinopyroxene phase 

Both the mineralogy and textural variations within the

clinopyroxenes of Rhum have been systematically studied by Brown 

(1956) and Wager and Brown (1968). This section, and section

4.6.2. (Mineralogical and Chemical variations), summarises the 

previous work and adds some new observations.

In comparison to the olivine and feldspar phases, clino- 

pyroxene as both a cumulus and an inter-cumulus phase, occurs in 

subordinate amounts throughout the intrusion. Brown (1956) 

quotes a modal proportionate range of between 1-15% (although he 

noted one specimen contining 70% clinopyroxene), an "average" 

olivine-cumulate containing 8% clinopyroxene and an "average" 

feldspar-cumulate 10% clinopyroxene. In general, he found no 

significant variation in modal percentage in traverses from the 

base to the top of the units.

Within each unit, Brown (ibid. p.17) noted a generalised 

sequence of textural variations:-

1) In the lower regions of the olivine-cumulates, 

clinopyroxene occurs as large poikilitic plates approximately 

five millimetres in diameter.
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2) With increase in height, although still with a poikilitic 

morphology, the clinopyroxene usually has a core (up to two 

millimetres diameter) containing no inclusions, and which he 

suggests represents the original settled crystals.

3) In some of the feldspar cumulates at the top of the 

units, clinopyroxene occurs as equidimensional cumulus crystals 

(averaging 0.6 millimetres diameter) with little intercumulus 

overgrowth.

In the nomenclature of Ula«̂ er et,(I96 0 ) ,  these 

variations would correspond to heteradcumulus, cumulus plus 

heteradcumulus overgrowth, and cumulus (plus a small degree of 

adcumulus overgrowth) textures respectively.

In some of the higher units, Brown (ibid,) noted also that 

clinopyroxene occurs occasionally as a narrow sinuous interstitial 

rim around both the olivine and the feldspar phases. This feature 

however, was not observed in any of the specimens examined in 

this study.

In the field the combination of poikilitic clinopyroxene and 

poikilitic feldspar enclosing cumulus olivines (i.e. to give an 

olivine-heteradcumulate) produces a characteristic honeycomb 

appearance (Wager and Brown, ibid, figure 148). This is due to 

the clinopyroxenes weathering more easily than the feldspars, the 

former represented by hollows, and the latter standing out as 

irregular knobs.

Examination of the specimens collected for this thesis tends 

to support the above observations. It was noted however, in the 

lowest three units, there was a higher modal proportion of 

clinopyroxene (average 22% from eleven specimens), than in the 

units above (average 11% from twenty-eight specimens) - table 

3.5, chapter 3.
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Texturally, the general sequence of heteradcumulus to 

cumulus clinopyroxene with increase in height within a unit, was 

verified. In addition, field examination of the honeycomb structure 

near olivine-cumulate/feldspar-cumulate junctions of units 7, 8,

ID and 13 showed there is within the olivine-cumulus, a decrease 

in diameter of the hollows ( i.e. the clinopyroxene) towards the 

junctions (plate 4.19). Figure 4.30 schematically shows this 

feature. Below approximately 1 metre beneath the olivine-cumulate/ 

feldspar-cumuldtc junction, the diameter of the clinopyroxene 

stabilises, the honeycomb structure becomes more diffuse, and the 

rock surface more irregular.

Thin section examination of specimens R.llO to R.112 from 

unit a (the positions are shown in figure 4.30) confirms the 

decrease in size of both the feldspar and the clinopyroxene 

poikilitic crystals towards the junction. Although measurements 

of the poikilitic crystals from the thin section are given in 

table 4.21, these values are not considered to be as accurate as 

field measurements of the honeycomb weathering- The reasons can 

be attributed mainly to the small size of the thin sections 

(24 millimetres by 48 millimetres) and to problems of obtaining 

a representative section containing the maximum crystal diametero.

In the highest specimen, R.lll, the feldspar exists as a cumulus 

to sub-pcikilitic phase, the clinopyroxene retaining a true 

poikilitic morphology. In the feldspar-cumulate of this unit, 

the feldspar occurs as a cumulus phase with clinopyroxene poikilitic 

to it.
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PLATE 4.19

Honeycomb weathering - unit 8.
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table 4.Z.

Feldspar Clinopyroxene

Specimen
Number

Height
below
junction

Approx
imate
size

Morph
ology

Approx
imate
size

Morph
ology

R.lll 2 - 5  cms 1.5 to 
2 mm.

Sub poik
ilitic

4 mm. poikilitic

R.llO 10 cms. 4 to
5 mm.

poik
ilitic

6 to 
a mm

poikilitic

R.112 170 cms. 6 to
8 mm.

poik
ilitic

10 to 
12 mm.

poikilitic

Although in only four units uas there adequate exposure of the 

olivine-cumulus/feldspar-cumulus junction this evidence, and the 

absence within the intrusion of feldspar poikilitic enclosing 

cumulus clinopyroxene, suggests the order of nucléation of the 

cumulus phases to have been:-

olivine (and spinel?); feldspar; clinopyroxene.

4.6.2. Mineralogical and chemical variations in the Rhum 

Clinopyroxene Phase.

Brown (1956) records very little change in mineral composition 

of the clinopyroxene with either height in the intrusion, or with 

rock type. The composition throughout the intrusion is essentially 

Ca^^ Mg^g Fe^, i.e. magnesian augite. The high Mg/Fe ratio is 

characteristic of high-temperature clinopyroxene such as those 

formed early in the crystallisation of other fractionated basic 

intrusions (e.g. Skaeigaard, Stillwater etc.). Twinning is rarely 

seen; zoning in the higher units is absent but is sometimes 

patchily present in the lower units. Brown (ibid. p.25) noted 

the absence of exsolution lamellae of orthopyroxene parallel to 

(100), and suggested this may be due to the calcic nature of the 

clinopyroxene.
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Table 4.23

1 2 3 4 5

SiOg 49.15 49.92 48.98 50.25 51.90

AlgO^ 3.33 3.23 3.42 2.81 3.40

TiO, 2.05 1.94 1.89 0.81 0.46

FeO 3.60 3.35 3.49 3.14 3.70
(0.53)*

CaB 22.41 22.64 22.35 22.73 21.12

MgO 17.25 17.37 17.41 17.86 17.00

FhO 0.03 0.07 0.11 0.09 n.d.

0.75 0.77 0.88 0.86 0.88

Total 98.57 99.29 98.53 93.5!) 99.75

Ca 45.53 45.81 45.34 44.86 43.9
Mg 48.76 48.90 49.13 50.30 49.2
Fc 5.71 5.29 5.53 4.84 6.9

U(p.p.b) 31.52 29.33 32.11 32.36 —

* Values in parenthesis are for Fe^O^.

Analysis Rock Unit Height Morphology
Number Number Number (metres)

1) R.91 1 12.3 poikilitic

2) R.BS 3 195.2 oquant (cumulus)

3) R.53 9 399.5 poikilitic

4) R.54 9 411.7 equant (cumulus)

5) Analysis from Wager and Brown (1968, p.256, tat

In order to see if the composition of the clinopyroxene is
OG constant as Broun suggests, a few representative examples of 

different morphologies from different heights in the intrusion 

were analysed using the Geoscan microanalyser. (Details of the 

analytical procedure is given in chapter 2, section 2-Q). The 

results are presented in table 4.23 which shows that the 

composition remains essentially the same for both different
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morphological types and for specimens separated by 430 metres of 

the intrusion.

Unlike the olivines and feldspars, the uranium concentration 

y within the clinopyroxene was basically constant, 

a n d  no significant variation of uranium concentration with

morphological type was observed. Similarly, no correlation 

existed between the uranium concentration in the clinopyroxene 

and the height in the intrusion. These two results may have been 

due to a sampling bias. From thirty-nine specimens studied with 

sufficient clinopyroxene present for fission track analysis, on 

only five occasions was the clinopyroxene a cumulus phase - the 

remaining thirty-four specimens were the heteradcumulus phase. 

Until a more rigourous study of cumulus clinopyroxenes within 

the intrusion is undertaken, these results (table 4.2t) cannot 

unfortunately be interpreted from a crystal growth viewpoint.

Table 4.24.

Rhum clinopyroxene Uranium concentrations (p.p.b.)

poikilitic cumulus

range 27.32 - 36-15 range 29.80 - 34.50

mean 32.24 mean 33.06

One feature occasionally seen in the uranium distribution 

maps of the clinopyroxenes, was the existance of a uranium- 

enriched rim (approximately 300 p.p.b.) around both the cumulus 

and the heteradcumulus phases (plate 4.20 (a)— (4)). The width 

of the rim appeared to be fairly constant, ranging from 

0.01 - 0.05 millimetres. Where this occuired,the clinopyroxene 

was probed (both with the Geoscan and Jeol electron microprobes) 

However, no distribution gradients in either the major elements 

(Ca, Mg, Fc, Si or Al), or the minor elements (Ti, Or, Mn, l\la)
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PLATE 4.20 (a). Poikilitic clinopyroxene enclosing
jOM mm,

olivine (01) and tabular feldspar (Fe).

Photomicrograph taken prior to irradiation and 

showing portion of the makrofol grid.
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PLATE 4.20 (b). Uranium distribution map.
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was detected. In the cumulus phases, the clinopyroxene crystals 

were distributed inhomegeneeusly and had formed clusters. Since 

the junctions between individual crystals were straight and no 

major element zoning was present, some adcumulus overgrowth of 

the cumulus crystals had evidently occurred. In the poikilitic 

phases, growth was of a heteradcumulus nature-

From previous arguments, the diffusion rate of uranium in 

the interstitial liquid is slower than for the major elements 

(table 4.7, section 4.4.). Similarly, the existance of a 

distribution gradient in oneslement (i.e. uranium) and not others, 

indicates that sub-solidus reequilibration has not occurred. From 

a crystal growth viewpoint then, there are two possible 

interpretations of this feature.

1) More rapid crystal growth in the region of enriched

uranium in a similar manner to that proposed for the olivine and

feldspar phases.

2) Uranium, in addition to having a slower diffusion rate

than the major elements, is likely also to be in the form of a

larger complexed species (chapter 3, section 3.2.). Thus, in a 

physically restricted environment during the latter stages of 

adcumulus (or heteradcumulus) growth, the final expulsion of 

interstitial liquid was probably not efficient enough to include 

all of the uranium. The excess uranium trapped would therefore 

be incorporated in a non-equilibrium manner, within the 

clinopyroxenes, as a uranium-enriched rim.

4.7. Uranium in chrome spinel

Chrome spinel occurs within the Rhum intrusion in two 

dissimilar environments: as disseminated grains in the cumulates,

or as occasional thin seams traceable over several metres.
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Broun (1956) noted a thin (1 .5  to 2.0 millimetres thick) 

seam of chrome spinel at the junction of unit 11 with unit 12, 

and forming the base of unit 12. The spinels apparently settled 

after the accumulation of cumulus feldspars of the unit 11 

feldspar-cumulate, and prior to the deposition of olivine to 

form the unit 12 olivine-cumulate. In conjunction with 

Dr, P. Henderson, further seams were discovered at the junctions 

of unit 7 /a , unit 13/14 and three seams within the unit 7 

olivine-cumulate,

In a microprobe study of the chrome spinel at unit 11/12, 

Henderson and Suddaby (1971) showed the presence of a large 

systematic variation in the Cr/Al ratios with only a little 

variation in the concentration of Fe^O^. This trend was seen 

also in the unit 7 /8  chrome spinel seam (Henderson, 1975 and 

interpreted as being the result of a complex post-depositional 

reaction between the chrome spinel and overlying olivine, 

underlying feldspar plus intercumulus liquid. This, Henderson 

1974 (ibid.) termed "Al-trend". In contrast, disseminated 

chrome spinel crystals in the cumulates, in particular those 

cumulates containing crystallised trapped liquid, show a trend 

involving changes in the Fe^^ content, termed"Fe-trend"

(Henderson, ibid.). This latter is attributed to reaction 

between cumulus chrome spinel and trapped liquid.

A comparison of the uranium distribution within chromites 

would have proved useful in determining the validity of the 

above hypotheses, however, limitations of the fission track 

(contact print) method meant that a definitive statement could 

not be made. Since the modal proportion of chrome spinels 

in seams was not 100 per cent (typically 70 to GO per cent), 

the tracks emanating from the seam could not be precisely 

referred back to individual chrome spinels. Uranium concentrations
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were in fact calculated, but these values (10.3 p-p„t>, for unit 

13/14 and 9,6 p.p.b. for unit 7 peridotite seam, R.56) relate 

to chrome spinel plus seam matrix, i.e. feldspar and/or olivine.

Uranium concentrations of disseminated grains were similarly 

found not determinable, in this case due to the low uranium 

content and small size of the crystals. In the lexan print sample 

(R.54) however, a large chrome spinel (analysis (2), table 4.25) 

having a uranium concentration of Ig p.p.b. is seen in close 

association with a high-uranium phase (zirconolite or zirkelite) 

and possessing a sieve-like texture with exsolved? silicate 

phases (section 5.2.4), Both this and another chrome spinel 

(analysis (1), table 4.25) seen intergrown with ilmenite in a 

biotite uranium-enriched matrix (section 5.2.3) and within a 

trapped magma environment, show high TiO^ and FegO^ values, 

table 4.25, Both these grains, like Henderson and Suddaby's 

(1971) unit 2 grains (table 4.25 analyses (3) and (4)) plot close 

to the Fe-trend (figure 4,31), and are consistant with Henderson's 

(1974) interpretation of reaction between chrome spinel and 

trapped liquid.

A notable feature is that analysis (2) (table 4.25) chrome 

spinel occurs in unit 9, and from textural considerations (lack 

of zoning of majority of feldspars), this specimen would be 

classified as a odcumulate. The fact that a high-uranium 

phase and a chrome spinel containing a large concentration of 

FOgOj and TiO^ can exist within an odcumulate suggests that 

pockets of trapped magma can become isolated to such an extent 

that chemical exchange of material over short distances is 

totally restricted.
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Table 4.25

Analysis
Number

(1 ) (2 )** (3)+ (4)+

Number of ions on the basis 
of thirty-two oxygens

(1) (2) (3) (4)

^^2°3 26.49. 30.94 29.02 24.91 5.89 7.02 6.42. 5.60

AI2O3 6 . 6 8 4.43 7.60 4.86 2 . 2 2 1,50 2.48 1.60

FegOT* 26.77 24.62 26.96 31.25 6.09 5.29 5.60 6.64

FeO 26.31 29.32 26.70 29.10 6.19 7.05 6.06 6 . 8 6

MgO 5.92 4.32 5.86 4.54 2.46 1.85 2.40 1.92

MnO 0.97 0.65 .1 . 1 1 0.99 0.23 0.15 - -

TlOg 4.20 5.06 4.06 5.07 0.89 1 . 1 0 0.80 1 . 1 2

Total 99.34 99.26 101.33 100.74

2+* calculated from total Fe assuming stoichiometry.

** Average of four spot analyses (Geoscan microprobe).

+ From Henderson and Suddaby (1971) analyses 1 and 2.
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CHAPTER 5 THE DISTRIBUTION OF URANIUM WITHIN INTERCUMJLUS 

PHASES.

5.1. Introduction

Although the cumulus phases (i.e. olivine* feldspar, 

clinopyroxene and chrcmie spinel) constitute the major proportion 

of both the Rhum and the Carlingford specimens • usually not 

less than 95% modal volume - their total contribution to the 

whole rock uranium concentration is often less than 50%. In 

table 5.1., an estimation of the contribution of uranium from 

Group 1 (i.e. cumulus, extremely low-uranium minerals) for an 

"average" Rhum specimen, i.e. olggfeldggcpyx^g chr. spin.^ 

intercumulus minerals^, is given. (Intercumulus minerals here 

is taken to include both primary accessory and alteration 

minerals).

Table 5.1.

Mineral Modal % Average concentration 
(p.p.b. Uranium)

Contribution to 
whole rock 
uranium (p.p.b.)

Olivine 50 6.30 3.15

F eldspar 30 18.96 5.67

Clinopyroxene 15 33.34 4.99

chrome spinel 1 approximately 10 0.1

Total 96 13.91

Thus, for average whole rock uranium concentrations of 

approximately 40 p.p.b. (e.g. Henderson et al^, 1971),the 

proportion of uranium from the 4% modal volume of intercumulus 

phases is approximately 65%. This crude estimation is 

included to show that a very significant amount of uranium is 

distributed in only a few modal % of rock which is, in fact.
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represented by a wide and varied range of minerals. On the 

basis of the uranium concentrations within these various minerals, 

a further three-fold grouping may be derived, Group 1 having 

been previously described in sections 4.3. to 4.7.

Group 2 - low-uranium phases (uranium concentrations from 

0.1 to 10 p.p.m.) represented by minerals such as ilmenite, 

magnetite and biotite.

Group 3 - medium-uranium phases (10 to 100 p.p.m. uranium), 

e.g. apatite.

Group 4 - high-uranium phases (greater than 100 p.p.m. 

uranium) represented by minerals such as baddeyelite, zirconolite 

(or zirkelite) and zircon.

This chapter describes the above groups, and discusses the 

behaviour of uranium in the late-stage (intercumulus) crystall

isation of the Rhum magma.

5.2. Group 2 minerals.

This section describes minerals containing uranium 

concentrations ranging from 0.1 to 10 p.p.m. After the Group 1 

minerals (i.e. the cumulus minerals described in chapter 4), 

minerals from th'.s group constitutes the second highest modal 

percentage of minerals from the Rhum cumulates. Minerals from 

this group are in all cases intercumulus and/or alteration 

products into which uranium enters in varying amounts.

5.2.1. "Hydrothermal" minerals.

In a locally trapped magma environment small amounts of 

water-enriched fractionated liquid cm become isolated and crystallise 

as either late-stage minerals, or react with original cumulus 

crystals to produce hydrothermal alteration minerals. The 

manner is which interstitial liquid becomes trapped has been 

discussed by Wager et al,(1960) who suggested that crystal
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accumulation on top of pre-existing cumulus layer© occurred at a 

more rapid rate than material could diffuse away from the 

interstices of the settled crystals. An additional mechanism 

is proposed here (section 5.2.5) and depends mainly upon 

irregularities in crystal shapes to provide suitably shaped 

pockets wherein trapping can occur.

Minerals which have crystallised directly from the final 

dregs of the intercumulus liquid often contain relatively large 

concentrations of uranium and have partition coefficients (for 

uranium) greater than unity. These minerals are discussed in 

sections 5.3. and 5.4., and are invariably found associated with 

areas of hydrothermal minerals.

Hydrothermal minerals are those minerals which have been 

formed by reaction between the trapped intercumulus (water- 

enriched) liquid and earlier cumulus minerals (the magna having 

passed from the magnatic to the hydrothermal stage - Wager and 

Brown, 1968, p.52).

Clearly, the possibility exists that such hydrothermal 

minerals may have formed after consolidation of the intrusion by 

introduction of water-enriched liquid from an external source. 

However, several features tend to support a primary alteration 

genesis. Firstly, the heterogeneous distribution of alteration 

areas within both thin sections and the intrusion as a whole.

In thin section, areas of fairly intense alteration are often 

located only a few millimetres from fresh, unaltered olivine, 

feldspar and clinopyroxene crystals. Although the frequency 

of alteration areas decreases with height in the intrusion, 

there occur randomly scattered areas of relatively j

high alteration (i.e. greater than 5 percent) in upper units, 

and conversely, areas of relatively low alteration (i.e. less
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than 2 percent) in the lower units. Secondly, there is the correlation 

of hydrothermal areas with certain of the olivine morphologies.

In the more irregularly-shaped olivines, i.e. irregular, tabular 

and harrisitic morphologies, hydrothermal areas appear more 

frequently than in rocks consisting mainly of poikilitic and 

rounded olivine morphologies. (This feature is discussed more 

fully in section 5.2.5.). Thirdly, there is the apparentmrity of 

serpentine minerals (sensu stricto) such as antigorite, chrysotile 

and lizardite.

In the Rhum cumulates, a frequently occurring hydrothermal 

mineral assemblage is one of apatite, chlorite, uralite and 

biotite. Often, only three of these minerals are seen in any 

one area.

Apatite, chlorite, uralite assemblage. Here, an inner 

core of a Al-rich (Co-poor) mineral, identified optically as 

chlorite is seen surrounded by an outer rim of a Ca-rich (Al-poor) 

fibrous amphibole, probably tremolite, but given here the general 

name uralite (e.g. Deer, et al., 1971 ), with 

apatite aften occurring at the chlorite/uralite junction. A 

striking example of this is shown in plate 5.1. (a) to (b), 

where the apatite forms a semi-circular rim (picked out by the 

uranium-distribution map) separating the internal core of 

chlorite from the outer rim of uralite. In this specimen from 

a harrisite sample (H.2.), a three-dimensional view was possible 

since specimen H.5. was cut parallel to H.2. and approximately 

10 millimetres above it (see figure 4.18). The area of H.5. 

corresponding to the hydrothermal alteration of H.2. consists 

of sodic plagioclase (approximately An^g). Thus, a situation 

similar to that proposed for olivine holes (section 5.2.5.) is 

considered to have arisen, whereby crystallisation of feldspar
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into a hollow created by an irregularity in the olivine crystal 

shape trapped the interstitial magma. Reaction of the trapped 

liquid with fddsper, olivine and any primary clinopyroxene 

present would produce the chlorite/uralite assembly. The excess 

phosphorus in the locally fractionated liquid forming apatite.

Apatite, uralite, biotite assemblage. This assemblage is 

shown in plate 5.2. (a) to (f). By comparing the uranium- 

distribution map with K, Ca and P elemental scans (using the 

Scanning Electron Microscope), the distribution of uranium between 

these minerals can be obtained.* Uranium enters apatite 

(BO - 5 p.p.m.) preferentially to uralite (0.40 - .03 p.p.m.) 

and biotite <'0,1 - ,03 p.p.m.).

Chlorite, uralite, biotite assemblage. This is shown in 

plate 5.3. (a) to (f). Chlorite is located from the Al-scan, 

uralite from the Cè-scan and mica (probably biotite) from the 

H-scan. Uranium is found essentially only in the uralite phase 

where a concentration of 0.31 - .03 p.p.m. was determined.

Chlorite and biotite contain less than 0.1 p.p.m. uranium.

Rice and Bowie (1971) were able to determine the modal 

percentage of mesostasis present in a rock from fission track 

analysis of thin sections in a similar manner to Henderson et al. 

(1971) who used however, whole rock uranium concentrations. In 

table 5.2. below, an estimation of the amount of uranium 

per unit area of mesostasis is given for the three examples 

above. From this it can been seen that the amount of uranium 

per unit area of mesostasis varies considerably, and depends 

to a great extent on the proportion of apatite present. This 

would indicate that calculation of the mesostasis using 

fission track analysis is likely to be less accurate than 

using whole rock concentrations. The reason being that owing 

to the heterogeneous distribution of the mesostasis and the
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large concentration of uranium bound up in a small volume of 

apatite a thin section would not be representative of the whole 

rock.

Table 5.2.

Uralite Chlorite Biotite Apatite
Uranium modal Uranium modal Uranium modal Uranium modal
(p.p.m) per- (p.p.mj per- (p.p.mj per- (p.p.mj per

cent cent- cent- cent-
age age age age*

Plate 5.1 . 0 .3 . 65 0,1 33 absent 2 2

Plate 5 .2 . 0.4 20 absent 0.1 68 e o i  5 12
Plate 5.3 . 0 .3 . 28 0.1 64 0.1  8 absent

Average
Uranium 0.3B 0.13 0.15 75

Range 0.31 to 0.46 0.08 to 0.74 0.07 to 0.21 21 to 100

p.p.m. uranium per unit 
srea of mesostasis

Plate 5.1, 

Plate 5.2. 

Plate 5.3.

1.7

10.3

0.16

5.2.2. Magnetite

Magnetite occurs sporadically distributed throughout the 

intrusion usually having an anhedral crystal shape and associated 

with late-stage, intercumulus minerals such as chlorite and 

biotite. The uranium concentrations of the majority of the 

crystals were difficult to determine owing to their small size 

(usually less than 0.1 millimetre diameter) and close proximity 

to associated hydrothermal minerals, but where calculated, 

varied from approximately 0.2 p.p.m. to (exceptionally)

32 p.p.m. Unfortunately, quantitative analyses of magnetites 

with differing uranium concentrations were not determined,
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however, qualitatively (using the Jeol 50 S.E.M.), they contained 

essentially only Fe with minor amounts of Ti (less than 5 percent 

TiOg) and Cr (less than 2 percent Cr^O^).

In a specimen from unit 5, R.34^ (containing cumulus olivine,

heteradcumulus zoned feldspar and heteradcumulus clinopyroxene),

amagnetite crystal containing 31.8 p.p.m. uranium is seen in

association with chlorapatite (')> 50 p.p.m. uranium), ilmenite

(35.0 p.p.m. uranium) and biotite almost completely enclosed

within a branching (or "cup-shaped") olivine. (The uranium

concentration of the olivines from R.84 is 6.74 p.p.b. which

in terms of morphological grouping (section 4.3.) classifies

them as belonging to the irregular or tabular morphologies.)

Plates 5.4 (a) to (c) show the spatial distribution of these

minerals and their relationship to the branching olivine, and

a noteworthy feature is the plagioclase feldspar which is seen

to be normally zoned towards the join of the branches. The

significance of this feature, and the fact that the uranium-

enriched phases occur also at the join of the branches is

discussed below in section 5.2.5. S.E.M. pictures (plate 5.5.

(a) to (f)) show the distribution of the minerals apatite

(Ca and P phase); ilmenite (Fe and Ti phase); biotite (At phase)

and magnetite (Fe (-Ti) phase), and by comparison with plates
image.*)

5.4. (b) and (c^ the uranium distribution of these minerals 

can clearly be seen. Their uranium concentrations are given 

below in table 5.3.

Occasionally, intercumulus magnetite is developed to an 

extent whereby it poikilitically (in an intercumulus manner) 

encloses cumulus plagioclase feldspar. Although the poikilitic 

or sub-poikilitic behaviour of the magnetite appears to 

develop to a greater extent in the feldspar cumulates of the



244-

i

PLATE 5.4 (a)  ̂ 0’5 mfyi. ̂

Branching or "cup-shaped" olivine with 

plagioclase feldspar zoned towards the 

join in the direction of the arrow. The 

boxed area is shown in plate 5.4 (b) and (c).
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PLATE 5.4 (b)

Magnetite (Mg); apatite (Ap); ilmenite (ID and 

biotite (Bi) within a "cup-shaped" olivine (01),
,0-1 mrr\.

- m m

jyrg'

PLATE 5.4 (c)

Uranium-distribution of same area.
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lower units, where the feldspar phase is extensively zoned, 

it was also observed as high as unit 7. Its occurrsre and 

poikilitic habit within layered intrusions is well documented, 

e.g. Wager and Brown (1968, figures 32-34) for the Skaergaard 

intrusion, and Elsdon (1972, figure 1) for the Upper Layered 

Series, Hap Edvard Holm. Qualitative microprobe analyses (Jeol 

50), indicates that essentially only Fe is present with minor 

amounts of TiO^ (less then five percent) - S.E.M. pictures 

plates (5.6. (a), (b) and (c)).

Table 5.3.

Mineral Uranium concentration 
(p.p.m.)
- 0.3 0.0.m.

Apatite 50

Ilmenite 35.0

Magnetite 31.8

Biotite * approximately 0.5

♦ Uncertain due to interference and overlap of tracks 

from the other phases.

Uranium-distribution (contact print) maps of intercumulus 

magnetite show the absence of any uranium gradient, the uranium 

concentration averaging (for R.121) 243 p.p.b. (table 5.4.).

The uranium concentrations of magnetites from layered intrusions 

have not previously been studied, and a literature search did 

not yield any data on uranium contents within magnetites.

5.2.3. Ilmenite

Ilmenite occurs throughout the Rhum intrusion as a minor 

constituent. In general, only two or three grains within any 

thin section are present, the ilmenite usually having an
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PLATE 5.6.
2̂.\2\ )

(a) S.E.I.
. / m m . .

(b) Fe

(c) Ti

(d) Al
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Table 5.4. (Specimen R.121)

P osdtion * Number tracks centimetre** 
(X105)

Uranium p.p.b.

A5B, A3C 1.3130 203

A4B, A15C 1.3271 254

AlOB, A12C 1,3352 271

* On contact print grid.

anhedral shape but displaying a wide range in size - from 0.05 

millimetres to 0.2 millimetres. Unlike magnetite* the 

association of ilmenite with hydrothermal minerals was not so 

obvious. Like magnetite however* the uranium concentration 

varied, ranging from 0.13 p.p.m. to 38 p.p.m. Two factors 

appear to be responsible for this range.

1) The larger the grain size, the lower the uranium 

concentration.

2) Where ilmenite occurs associated with late-stage 

intercumulus minerals such as apatite and biotite, the uranium 

concentration appears to be higher than where no association 

is apparent.

Uranium concentrations of some ilmenites are given 

below in table 5-5., compositions in table 5.6.

An inverse relationship between grain size and uranium 

concentration was observed by Thiel et al. (1972) for ilmenites 

in lunar basalts. This they considered to be the result of 

interplay between several factors. The rise in uranium 

concentration they suggested resulted from an increase in the 

uranium content of the residual magma as solidification 

proceeded. The decrease in grain size they suggested was due 

to an increase in the number of nuclei formed at increased rates
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of cooling - the presence of interstitial glass appearing to 

support this. On Rhum however, interstitial glass was not 

observed, and the increase in uranium concentration within the 

Rhum ilmenites is considered to be either a function of an 

increase in the uranium content of residual magma, or, analogous 

with the cumulus phases, an increase in the rate of crystal 

growth.

From textural considerations, analyses (4) and (5)

(table 5.5.) represent ilmenites having crystallised from a 

trapped magma, since on both these occasions, normal zoning of 

feldspars within "cup-shaped" olivines was observed. (Plate 5.1 

is of ilmenite number (4), and plate 5.4. is of ilmenite 

number (5)). In addition, the trapped magma environment of 

these ilmenites, has not apparently crystallised high-uranium 

phases such as baddeyelite or zirconolite (section 5.4.), which 

would have removed a large proportion of the uranium from the 

late crystallising magma.

An apparently unique situation was observed in an ilmenite 

(analysis 2, tables 5.5. and 5.6.) within an olivine-cumulate 

of unit 6. The specimen (R.82) was collected at the base of 

this unit and mineralogically consists of equant olivines 

poikiliticolly enclosed by heteradcumulus feldspar and 

clinopyroxene. The uranium-distribution map shows the existence 

of a pronounced uranium gradient uithin an fCmenvpe (Rate5% (a),

(6)). Arm counts of 12[^m x 12(yAm at X400 magnification were 

performed in a grid pattern covering the whole of the ilmenite 

grain. Similar sized area counts were performed on two 

standards (S.R.M. 614 and "Geoscan."), and an accuracy of 

- 5 percent for each area count was obtained. Figure (5.1) 

shows the uranium distribution in terms of a contour map, and



25X

•S mm.

PLATE 5 . 7 ( a )  A n h e d r a l  i l m e n i t e  g r a i n  

s u r r o u n d e d  by  o l i v i n e ,  Ol ,  a n d  p l a g i o c l a s e  

f e l d s p a r ,  Fe, a n d  pa r t i a l l y  e n c l o s i n g  a

e u h e d r o l  c h r o m e  s p i n e l  g r o i n ,  Cr.
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from this, it can be seen that the uranium concentration 

varies from .05 to .58 p.p.m. in a uniform profile (figure 5.2.).

Using the Cambridge Geoscan, a microprobe traverse aĉ '̂ ss the 

ilmenite grain covering IS spot analyses was made, but no major 

or minor element zoning was detected. The range and average of 

these analyses are given in table 5.S.

If the natural logarithm of the uranium concentration 

(x 10  ̂ut. % ) is plotted against the square of the distance, 

then with constant growth rate, a straight line should result 

and the diffusion coefficient (D) may be calculated from the 

equation (after Matousek, 1970).

D = 1   (20)
4 kt

where k = slope of the graph 
t = time (seconds)

A plot of In (concentration) against
2

(distance) shows, overall, a large deviation from a straight line (figure 
5.3.1 If it is assumed that the diffusion coefficient of 

uranium remains constant, then figure (5.3.) can be interpreted 

as either a change in growth rate with time (t) or, an increse in 

the uranium content of the residual magma. The former inter

pretation is preferred in this instance because of the large 

grain size and low manganese content of ite ünenite (see discusâ.on teJow).

An estimation of the rates of growth can be obtained by 

taking tangents to the curve at the two extremes (i.e. lines 

X - Y and H - L, figure 5.3.), substituting these into equation 

(20) and rearranging such that 

t = 1 (21)
4 kD

-9Then, assuming D remains constant and has the value 6 x 10 

centimetres^, second'^ section 4.̂ ')̂  growth rates

of 1-4 X lOT^ millimetres, day*"̂  (for the lower uranium portion
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of the grain) and >'03 x 10" millimetres day” (for the higher 

uranium portion, figure 5.4) are obtained. Thus, with an 

increase in uranium concentration* an order of magnitude 

increase in the growth rate is observed.

Also within specimen R.82 is an ilmenite/chromite inter- 

growth surrounded by a rim of a pale-brown, slightly pleochroic 

mineral (plate 5.B (a) to (e)). Qualitative microprobe analysis 

(Jeol 50) shows this latter mineral to contain the major elements 

H, Ti, Fe and Si, and minor elements Mg and A1 - thus indicating 

the mineral to be a mica. Microprobe analysis of the two opaque 

minerals (Cambridge Geoscan) are given in table 5.6. (ilmenite 

analysis number 3, chromite analysis number 6). The high Fe 

and Ti content of the chromite indicates (Henderson and 

Suddaby, 1971) that some post-depositional reaction with the 

residual magma had occurred, the uranium content of the

ilmenite and the presence of surrounding biotite (?) tends to

support this.

A noteworthy feature of the ilmenites analysed was their 

surprisingly high MgO content (average 8.79) Mitchell (1973) 

notes that ilmenites with MgO concentration of this order in 

igneous rocks appear to be uniquely confined to kimberlites, 

and are in fact regarded as a typical kimberlite mineral.

Covering and Widdowson (1968) in reviewing the MgO content in 

ilmenites for a variety of petrological environments, found that 

in basic igneous rocks (e.g. Skaergaarri) MgO varied from 0.46

to 3.27 percent; for inclusions in basic pipes, MgO ranged from

3-8 to 4.5 percent, and in kimberlites from 7 to 12 percent. In 

the light of these observations, several ilmenites were 

reanalysed using the Ocol 50 S.E.M., the results being 

corrected for fluorescence, atomic number and absorption 

effects. These analyses (averaged in table 5.8. analysis
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PLATE 5.8.

(a) S.E.I.

O-S” mm.

(b) Ti

(c) Cr

(d) K
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PLATE 5.0 (e)

Uranium distribution map of area from 

Plate 5.8 (a) to (d). The fission track star 

apparently corresponds to an area within the 

K-rich mineral.
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number 7) show that the high MgO concentration in the Rhum 

ilmenites to be real. At present no explanation of this feature 

is offered.

Another observation was the substitution of MnO for MgO 

in the high-uranium ilmenite (number 5, table 5.5. and 5.6.). 

Czamanske and Milralik (1972) suggest that such mangsnoon ilmenites 

may have crystallised from a residual magma enriched in Mn 

relative to Fe. Such an interpretation appears likely in this 

case. It is hoped however, that future work on the opaque Fe - Ti 

phases of Rhum will be possible, and that a more comprehensive 

picture can be obtained.

Table 5.5.

Ilmenite
Grain
Number

Rock and Approximate
area (contact grain area « 
print) (millimetres )

Associated
Minerals

Uranium
Pop o rn#

1 H.l AllB, A4C .08 olivine,
feldspar

0.13- .03

2 R.B2 A6G, A22C .06 olivine,
feldspar

.05 to .58

3 R.82 A3B, A22C .0025 chromite, 
biotite(7)

1.681 0.3

4 H.2 A9B, A4C .0009 apatite. 5.9ll 0.3

5 R.04^ A3B, A5C .0001 apatite,
biotite,
magnetite

35.ol 0.3
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Table 5.6,

Ilmenite
Grain
Number

1 2 3 4 5 6** 7***

SiOg .02 .09 
(.04 - .24)

.08 .09 .18 .05 -

TiOg 52.11 53.71 
(51.60 - 55.19)

54,60 51.53 52.91 4.20 55.88

Al̂ O; .00 .35 
(.02 - .75)

.07 .01 .22 6.68 -

‘"̂ 2°3 .36 .91
(.33 - 1.44)

.36 .27 1.03 26.49 .31

FeO 28.91 35.42 
(32.81 - 35.74)

35.26 28.25 39.64 26.31 32.43

Fê Ô * 6.85 - - 8.43 - 28.77 -
MnO - .43 

(.15 - .69)
.76 .52 5.75 .97 -

MgO 10.01 8.67 
(7.81 - 10,35)

8.33 9.91 0.61 5.92 8.79

CaO - - - .01 - .00 -
NiO — .10 

(.00 - .21)
.09 — .02 — —

2̂°3 - — — — - — 0.59

Total 98.76'* 99.68 99.55 99.01* 100.36 99.39* 98.00

* Fe-Oj calculated using Imperial College program AUTOCAL.

** Chromite associated with ilmenite grain number 3.

*** Jeol 50 S.EoM. analyses average of ilmenite grain 
numbers 2, 3 and 4.
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5.2.4. "Poikilitic" chrome spinel.

The final batch of samples irradiated in the Herald reactor 

at A.ÜJ.R.E. (Aldermaston) for fission track analysis provided 

two significant observations. The first was the production of 

Lexan prints (see section 2.2.2.), and details of the flux used 

etc., are given in Appendix 1. The second was an apparently 

unique situation (to the Rhum cumulates) of a chrome-spinel 

exhibiting a poikilitic, sieve-like texture. This is shown in 

plate 5.9 (a), and the uranium distribution map (lexan print) 

plate 5.9 (b), strikingly shows that uranium is concentrated in 

the inclusions.

This particular specimen (R.54) is of an olivine cumulate 

from unit 9, the absence of zoning in the heteradcumulus 

feldspar and pyroxenes suggesting that much addumulus growth 

must have occurred. The chrome spinel described here has an 

overall equant crystal shape, like other chrome 

spinels in Ibis specimen (of approximately 1.5 modal percentage). 

Unlike the other chrome spinels however, it has a concentric 

ring of roughly spherical inclusions ranging from 10 to 200 

microns in diameter. The concentric nature of the 

inclusions is probably better seen in the Lexan print and in 

figure 5.5. (drawn from the photomicrograph). Using the Jeol 

microprobe, no zoning was detected in major elements Fe,

Cr, Al, Mg and Ti across the surface of the spinel. Quantitative 

analysis of four points using the Geoscan microprobe was 

undertaken, the positions are shown in figure 5.5., and 

results given in table 5.7.
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"Poikilitic" chrome spinel 0*5* mrn.
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Table 5.7.

(1) (2) (3) (4) Average

Cr^Os 30.85 31.02 30.76 31.14 30.94

Al^Oj 4.43 4.39 4.46 4.41 4.43

FegO^* 24.76 24.20 24.53 24.39 24.62.

FeO 29.00 29.32 29.49 30.31 29.32
MgO 4.73 4.42 4.35 3.79 4.32

MnO 0.63 0.66 0.62 0.68 0.65

TiO, 5-13 5.13 5.08 4.98 5.08

Total 99.53 99.13 99.31 99.70 99.36

Number of ions on the basis of thirty--two oxygen

Cr 6.97 7.05 6.98 7.08 7.02

Al 1.49 1.49 1.52 1.49 1.50

5.33 5.24 5.30 5.28 5.29
FeZ+ 6.93 7.05 7.08 7.29 7.05

Mg 2.02 1.90 1.86 1.62 1.85

Mn 0.15 0.16 0.15 0.17 0.15

Ti 1.10 1.11 1.10 1.10 1.10
2+* Fe-Oj calculated-from total Fe assuming stoichoimetrv.

Uranium concentration of 19.3 Î 0.1 p.p.b.

The included phases are .of four distinct types, all of which
are silica-rich. Often two, and occasionalJy three phases are present 
in one inclusion. The four phases were distinguished by the use of 
the Jeol S.E.M. and partially analysed using the Geoscan 
microprobe (table 5.8.).

Phase A contains essentially only l\la, Al and Si.

Phase B contains Mg, Fe, Si and minor Ca.

Phase C contains Mg, Fe, Si, Ti, Al and Ca.

Phase D contains Mg, Fe, Si and Al.
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Table 5.8.

A«1 g2 ĵ3 p4

CrgO] 0.04 0.76 0.77 0.05

A1 ,0 3 17.57 1.50 2.94 9.69

MnO n-d. 0.09 n.d. n.d.

TiOg n.d. 0.31 8.43 0.86

FeO 0.04 9.63 8.26 18.51

MgO . n.d. 34.20 30.44 16.74

Total 17.65 46.57 50.84 45.85

U (p.p.m.) 17- 2 3 - 1 3 - 1 Not able
owing to overlap from 
Phase Ac

* Average of three inclusions.
1 Other elements present in major proportions are Si and l\la.
2 Other elements present in major proportions are Si (and Ca).
3,Other elements present in major proportions are Si and Ca.
4 Other element present in a major proportion is Si.

The included phases cannot be unequivocally 

identified. However, from similar inclusions recorded in other 

layered intrusions (McDonald, 1965; Jackson, 1961 and Irvine, 

1975), comparisons can be made, and tentative identifications 

suggested. McDonald (1965) found inclusions of orthopyroxene, 

clinopyroxene, biotite and plagioclase in chrome spinels from 

the Bushveld intrusion; Jackson (1961) found olivine and biotite 

inclusions from the Stillwater intrusion; and Irvine (1975) 

found combinations of orthopyroxene, chrome-titanium phlogopite 

(and sodium analogue), sodic plagioclase, pyrrhotite, 

chalcopyrite, rutile and silica-rich glass from the Muskox 

intrusion. It is likely therefore that inclusion A is of a
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silica-rich glass (a suggestion supported by the high uranium 

content - approximately 17 p.p.m.); inclusion B an orthopyroxene 

(enstatite) and inclusion C a titanium-rich (sub-calcic) augite. 

Phase D requires a fuller analysis before identification can be 

attempted.

In layered intrusions, the mode of origin of ajch inclusions, 

has been under some discussion. McDonald (1965) suggested the 

existence of an immiscibile chromium-rich liquid within a basic 

magma, an interpretation considered by Jackson (1966) however, to 

be not feasible. Recently, Irvine (1975) suggested that chrome 

spinels of this nature, but of the Muskox intrusion, Canada, may 

have grown from an "emulsion like mixture of two liquids" (i.e. 

basic and acidic), whereby droplets of contaminant granitic material 

become trapped in the spinel during its growth from a basic magma.

In order to interpret the feature described here, several 

factors need to be taken into consideration.

(1) The concentric nature of the inclusions.

(2) The absence of similar inclusions in nearby chrome 

spinels.

(3) The fact that this grain is not associated with seam 

chrome spinels (single inclusions have in fact been observed in 

chrome spinels from a seam environment in Rhum) unlike those 

from the Bushveld, Stillwater and Muskox intrusions.

(4) The large amounts of TiO^ and Fe^C^, the grain 

plotting close to the "Fe-trend" (Henderson, 1974), figure 4.31.

(5) The associated mineralogy. The grain is in contact 

with a chlorite/biotite assemblage, and adjacent to a high 

uranium phase (the intense fission track star) identified as 

zirconolite (or zirkelite) - section 5.4.

A possible interpretation which encompasses all these 

observations would be a combination of Henderson's (1974) hypothesis
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regarding reaction between cumulus chrome spinel and interstitial 

liquid (i.e. Fe-trend), and Irvine's (1975) hypothesis regarding 

growth from partially mixed acidic and basic magmas. The close 

proximity of the zirconolite suggests a trapped magma environment 

where extreme localised fractionation may have occurred to 

produce small amounts of acidic liquid. During post-depositional 

reaction or overgrowth of the chrome spinel, incorporation of 

this liquid in a globular fashion becomes possible. The concentric 

pattern is then an indication of either the direction in which 

the chrome spinel grew, or locates the distribution of exsolved 

silicate (or silica-rich) phases.

5.2.5. "Olivine Holes";

Inclusions of crystalline material within certain of the 

olivine morphologies of Rhum were observed on several occasions. 

As a result of their oval or rounded shape, these inclusions have 

been termed "olivine holes", and are a relatively common feature 

in the harrisitic, tabular and irregular olivine morphologies. 

More rarely are they found in equant olivines, and are apparently 

absent in the poikilitic and rounded morphologies.

The mineralogy of the included material is varied. Plate 

5.10 (a) to (h) is of an olivine hole (maximum diameter of 

.19 millimetres) within a tabular olivine (R.84^), the elemental 

scans showing apatite, ilmenite and magnetite within a chlorite/ 

uralite matrix. The uranium-distribution map at the lower-power 

magnification (xlO) readily locates the apatite grain of 

approximately I.o millimetre size. A smaller olivine hole 

(diameter .04 millimetres) within a harrisitic olivine (H.2.) 

has a more complex mineralogy (plate 5.11 (a), (b)). A 

combination of elemental spot analyses and optical determinations 

show the inclusion to consist of brown amphibole (uralite? -
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spot analysis indicates Ca, Ti, Al, Fe, Si, Ti and minor Mg and 

K); biotite (K, Ti, Fe, Al, and Si and minor Mg) and chlorite 

(Al, Mg, Fe and Si).

The frequent appearance of olivine holes within the more 

rapidly crystallising olivine morphologies would appear to 

indicate envelopment of liquid during the olivine growth essent

ially isolating the included liquid. The trapped liquid would 

then have the composition of the initial magma minus the olivine 

constituents. This hypothesis is favoured by Drever and 

Johnston (1957) who described olivine inclusions from piciitic 

dykes. However, three-dimensional views of olivine holes in 

the harrisitic sample suggests that the shape is in fact a 

cylinder or cup-shaped hollow within the olivine crystal. Then, 

during further crystallisation of the rock, interstitial magma 

becomes increasingly trapped in the hollows and crystallise out 

as lower temperature mineral phases. Evidence of this is 

seen in the harrisitic samples where an olivine hole situated 

directly above (by approximately 10 millimetres) the H.2. hole 

(plate 5.11 previously) is composed of am oct sodhc ■ plagioclase 

(composition An^g), plate 5.12. Thus a section cut parallel 

to the cylinder would be expected to show normal zoning of 

feldspar towards the bottom of the cylinder (or cup), and, 

adjacent to the bottom, trapped magma crystallising out as 

late-stage minerals enriched in low-partitioning elements such 

as uranium, zirconium or phosphorus. A situation such as this 

is shown in plate 5.4. (section 5.2.2.) and is a common 

occurrence in irregular, tabular and harrisitic olivines where 

minerals such asbaddeyelite, zirconolite and apotite are found. 

Olivine holes, although a growth influenced phenomenon and 

associated with the more rapidly grown crystals, are considered 

mainly to be the product of irregularities in the olivine crystal
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PLATE 5.11 (a)

Secondary electron image (S.E.I.) of olivine 
hole within a harrisitic olivine. Ur = uralite; 
Bi = biotite; Cl = chlorite and 01 = olivine.

m

PLATE 5.11. (b)
Uranium distribution map (photomicrograph).
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0*5' mm.4
PLATE 5.12.

PlagioclasE feldspar within an olivine 

hole, siuated approximately 10 millimetres 
above area shown in plate 5.11.
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shape, followed by extremely localised fractional crystallisation 

in a trapped magma environment, and not solely by enclosing 

liquid during rapid crystal growth.

The fact that such cross-sections are a relatively convnon 

feature, and also that olivine holes are not observed In all the 

olivine morphologies, suggests that post-consolidation corrosion 

or alteration was not the major factor in the production of 

olivine holes.

The range in uranium concentration of olivine holes was 

from 0.03 to 4.5 p.p.m. and depended upon the included minerals. 

Because of the varied mineralogy, an average uranium concentration 

was not calculated.

5*3. Group 3 minerals - apatite

In the four-fold classification based on uranium concen

trations derived in this study, group 3 phases are those minerals 

which contain between 10 and 100 p.p.m. of uranium although 

overlap of some Group 2 phases occur, e.g. ilmenites and 

magnetites (section 5.2.2. and 5.2.3.), The vast majority of 

phases containing 10 - 100 p.p.m. uranium were identified as 

apatites.

Apatite occurred throughout the intrusion as an inter

cumulus mineral, and was in fact found in nearly all the thin 

sections examined. Since the grain size was often less than 

100 it can be easily overlooked during preliminary

thin section examination - Brown (1956) recorded apatite 

only from unit 2 of the Rhum intrusion. Using the fission track 

(contact print) technique however, groins as small as 

10 yim were rapidly located since the relatively high 

uranium concentrations formed distinct features of induced 

fission tracks in the detector. The smaller grains were then 

confirmed as being apatite using the Scanning Electron Microscope.
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The crystal habit of apatite varied from squat to tabular 

with length to breadth ratios ranging from approximately 3 to 1 

to higher than 15 to 1, the crystals possessing subhedral to 

dihedral crystal cutlines.

Apatite was found associated in assemblages of late-stage 

intercumulus minerals such as ilmenite, magnetite and biotite 

(e.g. plate 5.5.); zirconolite and baddeyelite (e.g. plate 5.16. 

and invariably within a chlorite/uralite matrix. Plate 5.13

(a) to (e) is of a large (os millimetre) apatite crystal 

(containing 21 - 3 p.p.m. uranium) within a harrisitic olivine 

hole, the surrounding olivine being in optical continuity. The 

matrix surrounding the apatite consists of two minerals, an 

inner Mg, Al, Fe, Si phase (chlorite), and an outer Ca, Fe,

Mg silicate (uralite). This assemblage of an aluminium-rich 

inner core and calcium-rich outer core is apparently quite common 

and has been described above (section 5-2.1.). Plate 5.14 (a),

(b) is of two apatite crystals (API and AP2) again in a 

serpentinised (chlorite?) matrix (5), the surrounding olivines 

are however several discrete grains and in this case, the matrix 

can be seen apparently corroding one of the olivine grains

(QL 1). The uranium concentration of these two apatite crystals 

is 65 - 10 p.p.m. (the small fission track star in the uranium 

distribution map is from a hole in the thin section, marked H).

The problem of whether serpentinised areas are primary, 

le. autogenetic and products of late-stage fractionating of the 

original magma, or secondary, i.e. formed subsequent to the 

consolidation of the rock has been discussed above (section

5.2.1.). Although in some cases there is evidence to support 

primary crystallisation, as in the case of feldspar zoning into 

olivine cups and olivine holes (section 5.2-5.), there is also 

seen effects of some corrosion by the matrix into the olivines
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PLATE 5.15 (a)
Secondary electron image (S.E.I.) of zirconolite, 
or zirkelite (Zk), surrounded by biotite (Bi) 
and chlorite (Cl).

m

PLATE 5.15 (b)
Uranium distribution map (photomicrograph).
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(e.g. plate 5.14) which may possibly be interpreted as alteration 

•yun^ ihe iitroducticn of hydrothermal solutions from an external 

source. Although the uranium concentrations of the apatites 

from plates 5.13 and 5.14 would seem to indicate a correlation 

between the uranium content and the mode of origin of the matrix, 

subsequent investigation found this not to be the case. The 

uranium concentrations of ten apatite crystals from both "primary" 

(as evidenced by feldspar zoning intocups), and "secondary" 

areas (as evidenced by corrosion of olivine) were determined.

The values ranged from 21 to approximately 100 p.p.m. uranium 

(averaging 7 5 - 5  p.p.m.) but showed no systematic variation 

with the mode of origin. It is probable therefore that many 

other factors were involved such as the degree and extent of 

trapped liquid, and whether or not phases cf high uranium 
concentrations were formed.

5.4. Group 4 minerals.

A striking feature of the uranium distribution maps of 

the Rhum rocks was the occasional appearance of fission track 

"stars". These took the form of star-shaped objects in the 

detector, and were composed entirely of fission tracks emanating 

from essentially a point source. It was initially thought that 

such features were due to contamination of dust-sized particles 

on the surface of the detector, however, closer examination 

showed the source to be small (usually less than 50 iJLm), uranium 

bELaring mineral phases within the rock surface. The shape 

of these objects led Burnett al» (1971) to liken them to 

heavenly stars, classifying them in terms of first and second 

order magnitudes, and their distribution within the detector 

as constellations. Burnett et.aL (ibid.) in fact first used 

the Scanning Electron Microscope (S.E.M.) to locate the source 

minerals of such stars. They found that by taking elemental



206

pictures in the P - Zr channel (between 1.9 and 2.1 keV, i.e. 

the P and Zr lines) at a magnification of 2000, the

uranium fission source was located. In practice, with the 

Oeol 50 S.E.M. used in this work and the aid of photographic 

contact prints, a magnification of 600 was adequate for location 

purposes. The P - Zr channel was used since, in all cases the 

source mineral was identified as either a phosphate (apatite - 

section 5.3.), or a Zr-bearing phase (baddeyelite, zircon or 

zirconolite).

The identification of micron-sized minerals corresponding 

to fission track stars led to the discovery of new and unusual 

minerals which would have probably been overlooked using standard 

microscopic techniques. In particular, fission track mapping 

was used routinely on lunar samples, and aided in the discovery 

of a previously unrecorded Fe - Ti - Zr silicate (tranquillityite), 

e.g. Levering et al.(1971) and Levering and Dark (1971).

The high uranium content of these micron-sized phases 

(often greater than 1 percent UO^) meant that at the routinely used

thermal neutron doses of between 1 x 10^^ and 1 x 10^^ neutrons.
2cm , the induced fission tracks overlapped to such an extent 

that resolution of individual tracks become impossible. The 

S-S.T.D. then became saturated in the area of the fission track 

star, and only a qualitative (minimum) value of the uranium 

concentration could be obtained. At the 1 percent UO^ level 

however, microprobe analysis becomes feasible, and the possibility 

arises of mineral dating by e.g. Pb/U of Th/U methods. Chodos 

and Albee (1972) in fact determined several "microprobe ages" 

from n high uranium mineral in Apollo rock 12013, and found 

reasonable agreement with Rb/Sr and h/Ar ages. Since, in basic 

rocks, these phases are considered to be the product of 

crystallisation of the final remnants of interstitial liquid,
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the calculated microprobe age will correspond to the end of 

the crystallisation process.

. The following sections are a record of the high uranium 

phases (i.e. group 4 minerals with greater than 100 p.p.m. 

uranium) found in the Rhum rocks, and includes the first report 

of the mineral zirconolite (or zirkelite) from a terrestrial 

basic rock.

5.4.1. Zirconolite (or zirkelite)

In several Rhum specimens intense fission track stars 

were observed. The corresponding source minerals were located 

using the P - Zr channel of the S.E.M. Spot analyses of the 

phases showed the presence of elements Zr, Ti and Ca in concen

trations greater than 5 per cent, but an absence of Si. Also 

observed were peaks corresponding to elements Fe, Y and rare- 

earth elements (R.E.E.). Elemental scanning pictures of Ca,

Zr, Ti and V are given, together with the uranium distribution 

map. (Plate 5.15 (a) to (f)).

A total of nine Ca-Zr-Ti oxide grains were recorded through

out the Rhum specimens, although none in the Carlingford samples. 

The mineral occurs as discrete anhedral grains in localised 

mesostasis areas, and with a maximum grain size only of the 

order of éO Am in diameter. The rock specimens in 

which these phases occurred were in all casœ olivine-cumulates 

ranging in the intrusion from unit 3 to unit 9 and also within 

the harrisite sample (olivine-crescumulate). The immediate 

associated minerals were typically of a mesostasis type varying 

from chlorite, biotite and apatite to, on one occasion (H.IO), 

the Ca-Zr-Ti oxide was apparently intimately associated with 

a Mn-rich ilmenite. The crystallising environment of such 

late-stage intercumulus minerals is discussed more fully below
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(section 5.5.) but these minerals are considered to be the 

product of primary late-stage mogmatic differentiation of the 

Rhum magma.

Quantitative microprobe analyses of four of the grains 

were obtained using the Cambridge Geoscan instrument. The 

results are presented in tabb 5.9., the mineral being identified 

as either zirkelite (CaZrTiO^) or zirconolite (CaZrTi^O^).

Confusion has arisen over the yeats as to whether 

zirkelite’ and zirconolite are in fact separate minerals and also 

ove r the precise structural formulas. The problem is 

compounded by the presence of significant amounts of trivalent 

oxides (often greater than 10 per cent), e.g. Borodin et %1., 

I960, analysis number 4). The controversy has recently been 

revived by the identification of oxides from lunar rocks 

containing varying proportions of the elements Ca, Zr, and Ti. 

Brown d:al. (1972) suggested that the C a - Z r - T i  phase named 

as phasep by Haines et al (1971) was equivalent to Ramdhor and 

El Goresy's (1970) mineral dysonalyte and that they both 

conform to the zirkelite formula (after Busche et al., 1972).

Work et al. (1973) however, proposed that the 

structure more closely corresponds to the zirconolite formula, 

and since then, both Kirsten and Horn (1974) and Meyer and 

Boctor (1974) have favoured tho i'/'g of zirconolite. Since in 

this work, the totals amount to only 94 per cent, no definitive 

statement can be made os to whether the mineral is zirkelite or 

zirconolite.

Although low totals were recorded in this work, it is 

worth noting that summation of the same elements from Busche 

et al.'s (1972) average analysis gives o similar total-Rhum 

average of seven elements = 93.39 per cent; Busche et al (1972)
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Table 5.9.

Analysis
Number (1) (2) (3) (4) (5) (6)

CoO 9.47 11.13 10.50 10.75 8.8 12.03
MgO — — — 0.72 0.53

FeO 7.02* 6.06* 6.52* 6.13* 6.1* 2.85

FBgOj — — — - — 3.44

PbO - - - - 0.49 -

Cr^Qj - - - - 0.54 -

^2°3 2.64 2.24 2.24 0.90 3.6 -

RE2Ü3 - - - - 1.8 3.35

AlgOj 0.33 0.53 0.36 0.39 1.36 2.23

TiOg ^5,A9 37.71 36.70 38.10 34.5 32.25

ZrO_ 37.27 36.13 37.43 36.22 40.4 35.75

SiOg 0.26 0.55 0.11 0.19 0.42 1.18
HfOg - - - - 0.35 -

UOg 100ppm iOOprm** 100 ppn** 100 pprrv** 0.22 0.10^

ThDg - - - - 0.50 0.37
NbgDg — — — — 1.00 4.25

TagO^ - - - - - 0.09
HgO- — — - — — 0.09

HgO+ - - - - - 1.56
KgO - - - - — 0.24

MnO - - - - - 0.12

Total 92.68 94.35 93.86 92.68 100.79 100.44
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Table 5.9. (continued)

Analysis
Number (1) (2) (3) (4) (5) (6)

Number of ions calculated on the basis of 7 oxygens
(Ca .651 .740 .709 .726 .567 .812
(
(Mg .062 .049

A ( 
(Fe .377 .315 .344 .323 .307 .150
(
(Pb .008

1.028 1.055 1.053 1.049 0.944 1.011

B (Zr 1.166 1.094 1.151 1.113 1.185 1.098

(Ti 1.712 1.760 1.740 1.806 1.560 1.528
(
(Y .097 .074 .075 .030 .115
(
(Al .025 .039 .027 .029 .096 .165
(
(R.E. .038 .077
(
(Cr .026
(

C (Si .017 .034 .007 .012 .025
(
(Hf .006
(
(U .003 .001
(
(Th .007 .005
(
(Nb mm mm .027 .121

- — — - - .163
1.851 1.907 1.849 1.877 1.903 2.060

* All iron calculated as FeO

** Fission track analysis (minimum value).

+ Calculated as U^Og

Analysis (1) R.82 area AllG, A23C
(2) R.B2 area A5B, A21C
(3) R.82 area A48, A21C
(4) H.IO area A9B, A29C
(5) Average from Busche et.al. (1972) - lunar zirkelite
(6) Analysis number 1 from Borodin et.al. (1960) -

terrestial zirconolite.
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of some seven elements = 95.18 per cent. It is clear from Table 5.9.

that analysis of the Rhum specimens for Rare Earths and niobium 

would help precise identification.

In table 5.9. the number of ions have been calculated on 

the zirconolite formula (i.e. ABC^O^), where A corresponds to 

Ca^^, Fe^* and trace B to Zr̂ *, and C to Ti^^ plus the other 

trivalent, quadravalent and pentavalent cations. On this basis, the 

Rhum specimens averaged can be represented as A^ B^ 

where A + B + C = 4.048. As a comparison, table 5.8. gives also the 

average of Busche et al.'s (1972) analysis, and an analysis by 

Borodin et al. (1960), both of which appear to fit reasonably well 

with the zirconolite formula. (Busche eî  al. (ibid) however 

argues for the use of the zirkelite formula).

Although zirconolite (zirkelite?) occurs in lunar ultromafic 

rocks exhibiting cumulate textures (e.g. Kirsten and Horn, 1974), this 

is the first record of such a mineral from a terrestrial ultramafic 

cumulate, the previously reported examples of terrestrial zirconol- 

ite (zirkelite?) were from metamorphosed pyroxenites (Borodin 

et al., 1960).

The large and diverse range of elements entering the 
zirconolite structure, and the wide range of concentrations 
observed (e.g. Meyer and Boctor, 1974), suggests that tl^ structure 
is not rigidly either CaZrTiO^ or CaZrTigO^, The mineral appears 
to act in a sponge-like manner accommodating the final dregs of

trapped intercumulus magma, and incorporates many of the low- 
partitioning elements which have not entered the cumulus phases.

5.4.2. Baddeyelite
In addition to zirconolite, baddeyelite (ZrO^) was also 

located as being the source mineral to several fission track 
stars. With the S.E.M., the same procedure of mineral location 
and identification was used. In conjunction with the photographic 
contact print, the area of the rock corresponding to the fission 
track star was scanned at approximately x 600 magnification
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using the P - Zr channel, the source mineral located by an 

accumulation of dots on the cathode ray fluorescent screen.

The identity of baddeyelite was confirmed by a spot analysis 

which showed essentially only the element zirconium present.

A total of seven baddeyelite grains were recorded through

out the Rhum specimens, usually occurring as small anhedral 

grains, and averaging approximately 20 m in diameter.

The associated minerals were the same as those found associated 

with zirconolite - i.e. apatite, biotite and chlorite. The 

rock specimens in which baddeyelite occurred were again olivine- 

cumulates ranging from unit 3 to unit 9, and also within the 

harrisite sample. Five of the baddeyelite grains were found 

within the same rock specimens as zirconolite. Quantitative 

microprobe analyses of two baddeyelite grains are given in 

table 5.10 below, from where it can be seen that the analysed 

grains are almost pure ZrOg.

The uranium concentration of the baddeyelite can only be 

given as a minimum value (i.e. greater than 100 p.p.m.), since 

overlapping of fission tracks within the detector had occurred. 

Fisher (1975) in a recent review of fission track analysis 

reports a range of uranium concentrations within lunar baddeyelites 

of 60 to 840 p.p.m.

In one harrisitic sample (H.l. - analysis (1)), a 

baddeyelite grain 3 0 0 A  m in d i a m e t e r  with a subhedral 

crystal outline developed is seen in close association with 

two euhedral (basal) apatite crystals and several anhedral 

zirconolite crystals within a chloritised matrix. Plate 

(5.16 (a) to (h)) show the three separate phases: the Zr 

elemental scan (d) locates the baddeyelite grain; Ti scan (e) 

the zirconolite grains, and Ca scan (f) the two apatite crystals. 

The degree of development of crystal faces of these three average
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Table 5.10.

Analysis
Number 1 2 3 4

ZrO; 98.12 97.94 97.8 92.07 (85.1 - 95.7)
TiOg 1.73 1.89 0.56 2.43 (5.46 0.83)
FeO* 0.54 0.43 1.3 1.52 (3.22 - 0.39)

% 0.00 0.00 — 1.06 (2.65 - 0.29)
AI2O3 0.00 0.00 - - - -
SiOp 0.00 0.01 0.08 0.23 (0.29 - 0.16)
CaO 0.00 0.00 - 0.12 (0.14 - 0.08)
HFOg - - 0.93 1.85 (2.07 - 1.52)
UO2 100 p.p.m** 100 p.p.m.* * - -

100.39 100.27 100.67 99.28

* All Fe calculated as FeO
** From fission track analysis and not included in total.

(minimum
Analysis (1) H.l.

(2) R.84̂
(3) From Heil and Fricker (1974) in a gabbro from 

Axel Heibert Island (Canada).
(4) From Meyer and Boctor (1974 - lunar baddeyelite)

minerals suggests the order of crystallisation to be apatite 
followed by baddeyelite followed by zirconolite.

Baddeyelite has been identified on several occasions in 
lunar basalts and fines (e.g. Ramdohr and El Goresy, 1970 and 
Meyer and Boctor, 1974), and is considered to be a relatively 
corranon accessory mineral associated with late-stage minerals 
such as silica-rich glass, apatite etc. Reports of its 
terres%isi occurrence however, are uncommon, this apparently
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being the first report from a terrestrial ultrabasic cumulate.

Keil and Fricker (1974) record the occurrence of fourteen 

baddeyelite grains from a gabbro which they considered to be 

the first report from terrestrial basaltic rocks. However, in a 

note added in proof, Heil and Fricker (ibid.) suggest that 

baddeyelite may be a relatively cormon trace mineral in basaltic 

rocks (they located further samples in alkali basalts), but 

because of its small size, it apparently has been overlooked in 

the past.

Thus the presence of small, late-stage crystallisation 

minerals, such as zirconolite and baddeyelite, which are easily 

overlooked using standard microscopic techniques can be readily 

located using fission track mapping.

5.4.3. Zircon

A third zirconium-bearing phase located as a source 

mineral of fission-track stars was identified as zircon. Only 

five grains were detected, these all occurring in unit 8 olivine- 

cumulates (specimen numbers R.62 and R.64) and having a maximum 

grain size of too microns an4 possessing subhedral crystal 

outlines. Like zirconolite and baddeyelite, the minerals 

associated with zircon were apatite and biotite, and, on two 

occasions, magnetite and Mn-rich ilmenite. Thus, zircon is 

similarly considered to be the product of late-stage fractional 

crystallisation of the Rhum ultrabasic magma, within a localised, 

trapped magma environment.

Although a quantitative analysis using the Geoscan mico- 

analyser was not undertaken, S.E.M. spot analyses showed that 

essentially only Zr and Si were present. Deer ft

note that yttrium and hafnium enters the zircon 

structure often in concentrations greater than one per cent
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weight oxide. These two elements were not however detected 

on the S.E.M.

The uranium concentration of the zircon grains can only 

be estimated at being greater than 100 p.p.m., although the 

intensity of fission-track stars from zircon grains were lower 

than for either baddeyelite or zirconolite grains of comparable 

size. This indicates that the uranium concentration of zircon 

is less than that for the other Zr-bearing phases - a feature 

seen also in lunar rocks. The range of uranium in lunar 

zirconolite (i.e. phase 0, Levering and Wark, 1971) is quoted 

as 400-2800 p.p.m. (Levering and Wark, ibid); lunar baddeyelite 

from 60 - 840 p.p.m. (Fisher, 1975), end lunar zircon from 

30 - 330 p.p.m. (Fisher, ibid.).

Although zircon has not previously been reported from the 

Rhum layered intrusion, it commonly occif s as an accessory 

mineral in other layered intrusions. In Skaergaard for example, 

Wager and Brown (1968) records that it can usually be found 

at all horizons and is associated with minerals crystallised 

from the trapped Intercumulus liquid.

5.5. Summary and Discussion

In the mesostasis areas of the Rhum cumulates, there are 

present a wide range of minerals containing large variations in 

uranium concentrations. The proposed sub-division of these 

minerals into groups based on uranium content, although to a

certain extent arbitrary, has some validity in that the cumulus

minerals of group 1 were the first minerals to crystallise; 

group 2, in general, the second; group 3 the third, and group 4 

the final crystallisation products of the Rhum interstitial magma.

There is also observed a correlation between the crystal 

size and the concentration of uranium - the smallest mineral
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phases are those from group 4 (high-uranium phases), and the 

largest from group 1 (extremely lou-uranium phases). Such an 

inverse relationship between uranium concentration and grain 

size has been previously recorded for mesostasis areas of lunar 

basalts (e.g. Burnett e^ al^, 1971 and Thiel e^ a^., 1972) and 

also within terrestiiaL zircons (e.g. Silver, 1963). Since 

uranium partitions strongly into the melt during crystallisation 

of the major mineral phases, the uranium content will increase 

in a decreasingly smaller volume of intercumulus liquid, until 

final crystallisation of the residual magma occurs to form the 

group 4 uranium-enriched, mineral phases.

In addition to uranium being enriched in the intercumulus 

liquid, there is also an accumulation of water. This is 

manifested by the close association of uranium-enriched phases 

of groups 3 and 4 with the hydrothermal minerals described in 

section 5.2.1. Seitz and Hart (1973) noted a close affinity 

between uranium and serpentinized areas (not specified mineral- 

ogically) within oceanic ultramafic rocks. In these cases, 

they considered the uranium to have been introduced into the 

ultramafic rocks from an external source during serpentinization 

of the consolidated rocks. A primary crystallisation genesis 

has however, been proposed for the formation of the hydrothermal 

minerals (and hence groups 3 and 4 minerals) in the Rhum 

cumulates, the reasons for this can be summarised

1) Heterogeneous distribution of the hydrothermal minerals.

2) Correlation between hydrothermal minerals and certain 

of the olivine morphologies.

3) The appearance of hydrothermal minerals within olivine 

"holes" (Section 5.2.5.)

4) The absence of serpentine minerals sensu stricto.
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Such a primary alteration process has been proposed for other 

layered intrusions; e.g. Wager and Brown (1968 p.51, p.62) for 

Skaergaard, and Elsdon (1971) for the Map Edvard Holm intrusion, 

East Greenland.

In spite of the strong affinity of uranium with minerals 

containing significant amounts of water (e.g. apatite, uralite), 

and in view of the recorded geochemical compatibility between 

uranium and potassium (e.g. Green et_ al̂ ., 1968), a surprising 

feature was the relatively low concentrations of uranium in the 

only potassium-bearing mineral, i.e. biotite. This is well 

seen in plate 5.2. where the uranium is apparently more stable in 

both the apatite and the uralite minerals suggesting a stronger 

geochemical affinity between uranium and calcium than between 

uranium and potassium.

Uranium concentrations vary considerably in the Rhum 

oxide minerals, there being observed at least two orders of 

magnitude more uranium in the zirconium oxides (baddeyelite and 

zirconolite) than in the iron, titanium oxides (magnetite and 

ilmenite).

In the ilmenites the controlling factor for uranium 

variation appears to be either the geochemical compatibility 

with another element, i.e. manganese in late-crystallising 

ilmenites, or variations in crystal growth rates (figures 5.1. 

to 5.3.). In addition, in both ilmenites and magnetites, the 

uranium concentration increases with decrease in crystal size, 

a feature attributed to an increase in uranium content of 

trapped residual magma (see discussion above).

The strong geochemical compatibility between uranium 

and zirconium is well known from uranium distribution studies 

of lunar rocks (e.g. Haines et al., 1971). The routine use of
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fission track mapping in lunar material has led to identification 

of many "exotic" (Chodos and Albee, 1972) lunar phases. Many, if 

not all of these phases, contain ten per cent or more ZrOg - 

e.g. Phase p> (Haines ^  a ^ , ibid.); Phase B (Lowering and 

Wark, 1971); baddeyelite (Burnett et al., 1971); tranquillityite 

(Lowering et al., 1971); zircon (Burnett et al., ibid.) zirkelite 

(Busche et al., 1972) or zirconolite (e.g. Kirsten and Horn,

1974).

In the Rhum cumulates, three zirconium-bearing minerals 

with uranium concentrations in excess of 100 p.p.m. were observed - 

i.e. zircon, baddeyelite and zirconolite (or zirkelite), none 

of which have been recorded before from the Rhum cumulates.

From textural considerations of coexisting zirconium minerals, 

the order of crystallisation appears to be zircon, baddeyelite, 

zirconolite (zirkelite). From estimated uranium concentrations, 

the order of uranium partitioning appears to be zirconolite (or 

zirkelite) )> baddeyelite ̂  zircon. This latter observation 

is consistant with results from Haines et al. (1971) and 

Fisher (1975).

Thus zirconolite (or zirkelite) is apparently the final 

mineral to have crystallised from the Rhum intercumulus magma.

The flexible nature of the structure (section 5.4.1.) would 

suggest that this mineral acts in a sponge-like manner to 

crystallise the final dregs of intercumulus magma. The low 

analytical totals obtained in this study (table 5.6.) is 

probably a reflection of the large number of elements accommodated 

into the structure. In addition to the many reported examples 

of zirconolite (zirkelite) occurring associated with late-stage 

crystallisation products (e.g. Lowering and Wark, 1974 and 

Brown et al., 1972), Kirston and Horn (1974) described zirconolite
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from a lunar troctelite as an apparently early-crystallising 

primary mineral. Duncan et al. (1974) uses this observation to 

propose a hypothesis for the genesis of lunar basalts from 

partial remelting of a cumulate containing cumulus ilmenite and 

zirconolite. In Rhum however, zirconolite (zirkelite) is 

without doubt not a cumulus phase but, as suggested above, the 

final mineral to crystallise from the intercumulus magma.

Thus, even in the late-stage crystallisation of the 

Rhum magma, the behaviour of uranium is influenced by its 

greater stability within the magma, only entering mineral phases 

in significant amounts when unable to diffuse away into the 

main bulk of the magma. Like the cumulus phases (Sections 4.3. 

to 4.7), uranium distributions in intercumulus phases can act 

as an indicator of both crystal growth rates (e.g. "zoned" 

ilmenite, section 5.2.3.), and mechanisms (e.g. "poikilitic" 

chrome-spinel, section 5.2.4.).
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CHAPTER 6 CONCLUSIONS

This chapter outlines the major conclusions obtained from 

on investigation into the distribution of some trace constituents 

in the ultrabasic igneous complex of Rhum (Inner Hebrides). The 

chapters and sections presenting the relevant information are shown 

in brackets.

6.1. Cumulus phases.

It is shown that the incorporation of trace constituents 

into cumulus minerals crystallising from a magma in a sub-crustal 

environment may occur in a non-equilibrium manner. In particular, 

there exists a variation of uranium concentration in different 

olivine morphologies although the major elements, Mg, Fe and 

Si, and minor elements, f\li and Ca remain essentially constant 

(chapter 4, section 4.3.). In the feldspars, an inverse relationship 

exists between the uranium and Sr distributions (chapter 4, 

section 4.5.), and in a function of the crystal morphology.

Using the observed partition coefficients of uranium, 

growth rates for the various olivine morphologies were calculated 

(chapter 4, section 4.4., table 4.), and the results appear 

consistant with those from models involving simple packing of 

crystals. It is concluded that minerals crystallised by on 

adcumulus or heteradcumulus growth process, grew at a dower rate 

and in o more equilibrium, diffusion controlled, manner than 

those which nucleated and grew directly from the magma (chapter 

4, section 4.4.). Olivines displaying a harrisitic morphology 

grew at a comparatively rapid rate, by an interface controlled 

mechanism and from a supercooled magma.

In order to interpret these results, a model is proposed 

incorporating variations in nucléation, supercooling and growth 

rates for the crystallisation of both the olivine (chapter 4,



304-

section 4.4.) ond feldspar (chapter 4, section 4.5.) phases. The 

distribution of a low-partitioning, slowly-diffusing trace 

constituent can provide a sensitive indicator to the mechanisms 

and rates of crystal growth of cumulus phases.

6.2. Intercumulus phases.

The behaviour of uranium in the intercumulus, late-stage 

crystallisation of the Rhum layered intrusion is controlled 

largely by its inherent greater stability in the magma- Thus, 

the proposed four-fold classification based on the concentrations 

of uranium within mineral groups (chapter 3, section 32) shows 

that minerals containing the lowest uranium contents were the 

first to crystallise from the Rhum magma, and those containing 

the highest uranium content, the final minerals to crystallise.

A close association of uranium distribution within areas 

of hydrothermal alteration is observed. From textural and 

other arguments (chapter 5, section 5.2. ond 5.5.), it is 

concluded that these areas were of a primary crystallisation 

genesis, ond a mechanism is suggested whereby trapping of 

intercumulus magma con occur (chapter 5, section 5.2.5.).

Like the cumulus phases, the distribution of uranium 

provides information regarding both crystal growth rates 

(chapter 5, section 5-2.3.) and mechanisms (chapter 5, section

5.2.4.).

A geochemical coherence is observed between uranium and

manganese (chapter 5, section 5.2.3.); uranium and phosphorus 

(section 5.3.) ond uranium and zirconium (section 5.4.).

A number of unusual geochemical and mincralogical features 

ore seen in the intercumulus phases. The high concentration 

of MhO and MgO in the ilmenites, and the presence of a 

uranium-concentration gradient in one ilmenite groin (chapter 5,
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section 5.2.3.); a concentric distribution of uranium-enriched 

silicate inclusions in a chrome spinel crystal (section 5.2.4.); 

the detection of apatite in oil of the thin sections examined 

(section 5.3.); the presence of zirconolite, or zirkelite, 

(section 5.4.1.) and baddeyelite (section 5.4.2.) - this being 

the first record of these minerals from a terrestrial ultrabasic 

intrusion; and the first recorded appearance of zircon from the 

Rhum intrusion (section 5.4.3.).

The routine use of a uranium distribution technique 

highlights many mineralogicol features which could otherwise 

have easily been overlooked using standard petrological 

microscope techniques.

6.3. Future work.

The results obtained in this study has revealed several 

avenues of research which could profitably be explored at some 

future date. These include:-

1) Uranium distribution studies, using Lexan prints

(Appendix 1) on experimentally grown crystals from melts enriched 
235in U may produce a more quantitative model of disequilibrium

partitioning of uranium in basic magmas.

2) A closer study of the oxide phases of the Rhum intrusion 

is required. /

3) The routine use of "microprobe age dating"/on uranium- 

enriched Zr-oxides in basic intrusions becomes a strong 

possibility in the near future. Such an age would correspond

to the final consolidation of the intruded magma, and, coupled 

with dates from other methods, could provide valuable data 

on rates of heat loss and cooling within specific intrusions.
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APPENDIX 1. Lexan plastic prints - conditions for their 

formation.

The final batch of samples irradiated for fission track 

analysis at the Atomic Weapons Research Establishment (A.W.R.E.) 

Aldermaston, produced examples of Lexan plastic prints. This 

appendix details the reactor conditions prevalent at the time of 

the production, and assesses the conditions most favourable for 

their routine formation.

The reactor used was the thermallsed port of the VT-l facility

in the Herald reactor at the A.W.R.E. (Aldermaston). A thermal
17 -2neutron dose of 1.02 x 10 neutrons, cm , and a fast neutron

14 —2dose of 5.7 x 10 neutrons, cm were recorded for this

irradiation.

Four polished thin sections were prepared and packed in a 

manner similar to that shown in figure 2.13 (chapter 2), using 

Lexan plastic provided by Professor J.F. Levering. The sections 

were tightly wrapped in aluminium foil and placed within a 

polythene irradiation canister. (The diameter of the thermallsed 

section of VT-\ prevented the use of the constructed nylon canister 

(figure 2.11, chapter 2), and a polythene irradiation canister 

supplied by A.W.R.E. personnel was used.) Etching was performed 

in the routine manner described in section 2.3.3. (chapter 2).

After removal from the etching solution and drying, a print of 

the rock surface on the detector (viz. the Lexan print) was 

clearly seen even without the aid of a microscope.

The prints were visible in either transmitted or reflected 

light microscopy, transmitted optics being favoured since 

fission tracks are more easily seen in this mode. The quality 

of the prints varied patchily from a clear, precise mirror image 

of the rock surface (e.g. plate 5.9 (b)), to a fuzzy, indistinct 

form. This latter feature was most probably the result of
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pressure not being evenly applied over the rock surface/detector 

couple in the initial packing of the samples (for discussion 

of this see section 2.2.2., chapter 2), and could be overcome by 

USE of an irradiation canister similar in design to those in 

figures 2.10 and 2.11.

An indication of why Lexan prints were formed in this 

particular irradiation and not in previous irradiations, can be 

obtained by examination of relative thermal to fast neutron doses 

for various irradiations. Both the thermal and fast neutron 

components were measured for the Lexan print irradiation in the 

"thermalised" section of vr-\ (table 1). Values obtained from four 

previous irradiations in the routinely used "non-thermalised" 

section of J.2 are also shown in table 1 (numbered (1) to (4).

Table 1

Thermal neutron 
dose „ 
(neutrons.cm” )

Fast neutron 
dose _2  
(neutrons.cm” )

Lexan print sample 1.02 X 5.7 X 10^^ 179
(1) 171.21 X 10 ' 154.3 X  10 28.1
(2) 2.04 y. 10^’ 7.2 X 10^5 28.3
(3) 2.06 X 10^’ 7.60 X 10^5 26.8
(4) 1.05 X 10 7 3.83 X 10^5 27.1

Average (1) to (4) 27.6

From Table 1 it can be seen that the thermal/fast neutron 

ratio for the Lexan print samples is approximately a factor of 

6.5 higher than for those samples which did not produce prints.

A critical factor in the formation of Lexan prints would appear 

therefore, to be the fast neutron dose (i.e. neutrons possessing 

energies greater than 0.5 MeV).
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As discussed earlier (section 2.2.1, chapter 2), the 

print of the rock surface imaged on the Lexan plastic detector 

is considered to be the result of small etch pits produced by
7alpha-particle and Li recoil ions from lithium and boron 

interactions with thermal neutrons (Kleeman and Lowering, 1970,b; 

Kleeman, 1973). The different concentrations of these elements 

in adjacent minerals give rise to variations in the density of
7

alpha-particle (ond Li ion) pits, hence forming the print fabric 

within the detector.

hleeman (1973) was able to catagorise many of the rock- 

forming minerals into five groups on the basis of their Li and/or 

B concentrations. These ranged from "very low contrast" (at low 

Li and/or B contents) to "very high contrast" minerals (at high 

Li and/or B contents) depending upon the degree of intensity, or 

contrast, they produced on Lexan plastic prints.

With a large fast neutron component however, several 

other elements can produce alpho-particles. If their track 

densities approximate to, or exceed the track densities from Li 

and B, the Lexan print will become obliterated. In order to test 

this hypothesis in a semi-quantitative manner, alpha-particle 

track densities for several elements were calculated using 

equation (2) (section 2.1.6., chapter 2). These are shown 

in table 2. (The product is taken to be 0.3 x 10 ^cm.,

and equal to 0.25 - see Kleeman, 1973).
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Element I*
(isotopic
abundance)

*
millibarns 
( X 10-24)

C++
<">;*
( X IcfO)

expected
density
X 10^ cm

^fast
(1)

track

"fast = 
(2)

.9975
approx
310 449,000 505 848 130

1.0 220 15,400 12.1 14.3 2.2

'̂̂ Al(n,c4)̂ '*Na 1.0 120 78,600 52.4 341 52

°̂Si(n,rf)̂ '̂ Mg .0305 45 246,100 148 approx»
1 0.15

^̂ P(n,o<-)̂ ®Al 1.0 140 650 0.38 approx
0.3

less then 
0.1

^̂ K(n,o(.)̂ l̂ .9308 B5 5,300 2.45
approx.

1 0.15

TOTALS 1206 185

* Taken from De Soate et al. (1972 values for 14 MaV neutrons.

Assuming density of host phase (i.e. minerals) = 3.0
17 —2** Normalised to thermal neutron dose of 2 x 10 neutrons, cm .

^  Concentration (p.p.m.) of element from Mason (1966) average diabase.

(1) Fast neutron component for "non-thermalised" section of J.2
15(i.e. for routine irradiations) = 7.24 x 10

(2) Fast neutron component for "thermalised" section of J.2 (i.e.
15Lexan print irradiation ) = 1.11 x 10
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A comparison of the sum of the track densities for the 

two fast neutron doses, with track densities attributed to Li and B 

for minerals from Kleeman's 1973) five groups (summarised in 

table 3) can then be mode. This shows that for the routine

Table 3 (after Kleeman, 1973)

Group
Minerals
present

Track density ( x 10 cm.”")
Thermal neutron dose Recalculated to thermal 
of lolG neutrons.cm-2 neutron dose of

2 X 10 neutrons.cm

Very low 
contrast

quartz;
ilmenite;
spinel;
apatite

0.91 - 4.0

average 2.1

18.2 - 80.0 

average 41.4

Low
contrast

olivine;
hornblende;
plagioclase;
pyroxenes.

4.0 - 12.6 

average 8.5

80.0 252

average 170

Medium
contrast

plagioclase; 
pyroxenes; 
hydrous rim

17 - 45

average 30

340 - 900 

average 600

High
contrast

pyroxenes;
serpentine; 
garnet ; 
biotite.

70 - 140

average 96

530 - 2400

average 1920

Very
high
contrast

biotite;
micas;
"grain 
boundary"

530 - 2400 

average 976

10,600 - 48,000

average 19520

routine irradiations mode at Aldermaston, only rocks containing 

those minerals in the high and very high contrast groups (viz. 

mica, sepentine, garnet etc.) would be expected to give a Lexan 

print. In ultrabasic rocks however, minerals of the low and 

moderate contrast groups (i.e. olivine, plogioclase and 

clinopyroxene) are present. In order that these rocks produce 

prints, alpha-particle track densities from reaction with fast
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neutrons require to be of the order of 170 x 10^ tracks, cm” .̂ 

The approximate calculations in table 2 show therefore, that 

Lexan prints would be more likely to form in the thermalised 

section of the reactor,
17Thus, for thermal nrutron doses of 2 x 10 thermal

neutrons, cm”'", providing that a fast component of less than
15 —2approximately I'x 10 fast neturons. cm was attained, most

igneous ond metamorphic rock sections would be expected to 

produce Lexan plastic prints.
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APPENDIX 2. Strontium in Rhum feldspars - analytical procedure 

and results.

Plagioclase feldspar was separated from several Rhum (eastern 

layered series) specimens and analysed by X-ray fluorescence for 

Sr (Williams, 1971 - unpublished B.Sc. thesis).

Mineral separation was performed on -80 +120 mesh fractions 

using a Frantz isodynamic magnetic separator and, together with 

hand-picking, a purity of greater than 99% was achieved. With the 

aid of a "Spex" model agate ball and container, each sample was 

powdered (a grinding time of 12j- minutes was used) and made into 

pellets, duplicated where possible, using the procedure of Norrish 

and Chappell (1967, pp 204-206). Approximately 2.5 grams of sample 

were used in making each pellet, this being backed by a layer 

approximately 5 millimetres thick of high purity boric acid. 

Application of a pressure of 5 tons per square inch (equivalent to 

approximately 155 kg.cm” )̂ was found to impart the correct degree 

of cohesiveness to the pellet.

A Phillips X.R.F. Spectrometer (housed at the Department of 

Geology and Mineralogy, Oxford) incorporating a molybdenum 

tube and target and operated at 50 kV and 20 mA was used to 

determine the concentration of Sr in the plagioclase feldspar 

samples. The analysing crystal was LiF (110), and the detector a 

scintillation counter type. Greater than 10,000 counts were 

accumulated for 40 seconds on both the standard and samples on 

the Sr line located at 35.70° 28. Counts for two background 

positions were also for 40 seconds and were offset by 1°20' 20 

either side of the peak. The average of the two background counts 

were subtracted from peak values and the concentration of Sr 

(in p.p.m.) for the sample were calculated from the equation
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below:-

(M) -, = Number of counts for sample x stand x
^ Number of counts for standard • - standard

where = concentration of Sr in the sample (in p.p.m.).

(M)gtgnd ~ concentration of Sr in the standard, ASX 
(= 181 p.p.m.). 

sample ~ ^ass absorption coefficient of the sample for 

the radiation used (= 9.52).

(A)gtgnd ~ mass absorption coefficient of the standard 

for the radiation used (= 7.78).
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Rock Unit 
No. No. (and 

position 
in unit)

Table 1

Height 
(metres 
above base 
of
intrusion)

Rock name 
+

Feldspar
morphology

Sr
(p.p.m.)**

R.a 1 (top) 15.2

R.ll 2 (top) 4G.8

R.IO 3 (base) 51.8

R.39 3 (top) 204.2

R.48 4 (top) 210.3

R.42 6 (base) 292.6

R.44 6 (top) 301.7

R.45 7 (base-
mid.) 313.9

R.46 7 (top) 323.1

R.33 8 (base) 326.1

R.47 6 (top) 377.9

R.35 10 (base) 441.9

R.34 10 (base-
mid.) 454.1

R.33 10 (mid.) 469.4

R.30 10 (mid.-
top) 502.9

R.27 11 (mid.) 539.5

R.18 11 (top) 577.6

R.19 12 (base) 579.1

R.24 12 (mid.) 600.4

feld.-ol.-
cpx.ortho tab.

feld.-ol.
ortho. tab.

feld.-ol.
ortho. tab.

feld.-ol.-
cpx.ortho. tab.

feld.-ol.-
cpx.meso. tab.

ol.heterad. poik.

feld.-ol.' : 
heterad. tab.

ol. heterad. poik.

feld.-ol.
heterad. tab.

ol.heterad. poik.

feld.-ol.
heterad. tab.

feld.-ol.
heterad. tab.

ol. heterad. poik.

ol.heterad. poik.

feld.- ol.
adcum. tab.

ol. heterad. poik.

feld.-ol.
adcum. tab.

ol.heterad. poik.

ol.heterad. poik.

507*

417

443

503*

515*

496*

375*

415*

315

474

492

509

516

522

442

436*

396*

488*

472*
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R.20 12 (mid-
top) 601.9 feld.-ol.

adcum. tab. 413
R.23 12 (mid

top)
603.5 feld.adcum. tab. 424

R.12 12 (top) 606.5 ol.heterad. poik. 443*

R.21 13 (mid.) 640.1 feld.ol.
adcum. tab. 405

R.17 14 (base) 673.6 ol.heterad. poik. 421*
R.14 14 (top) 731.5 ol.heterad. . poik. 430*
R.15 15 (base) 734.5 ol.-feld.- 

cpx. adcum. tab. 431*

After Wager and Brown (1968) modified nomenclature 

(see Table 3.5, chapter 3).

* Analyst, P. Henderson.

** poik. = poikilitic 

tab. = tabular

(chapter 4, section 4.5 for discussion).

These results are given in table 1 together with results 

obtained previously by Dr. P. Henderson. In order that the two 

sets of results be compatable, several sanples were reanalysed, 

table 2. From these results, it was not considered necessary to 

nomalise one set of results since an average difference in values 

of only 2.8% exists.

Table 2

Rock Analysed by P. Henderson
No._____Sr (p.p.m.)________ mean

Analysed by the author 
Sr (p.p.m.) mean

R.18 393.45, 385.84 390

R.35 - 529.90 530

R.47 489.54 490

404.53, 404.72 404

509.05, 508.93 509

492.90, 496.00 494
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