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Abstract

Series estimates of the critical percolation probabilities
and of the critical indices for the 'site problem' and the 'bond
problem' are presented for two and three dimensional lattices.
These critical values are also calculated exactly on the Bethe
lattice. The results derived differ slightly from any previous
values, and are consistent with the assumption of a constant gap
index A in both two and three dimensions. The relation between
the critical indices vy = (3-g)A is deduced and shown to hold on
the Bethe lattice. The series estimates are also consistent with
the above result.

An analogy 1s drawn between the mean number of clusters and
the free energy of a ferromagnet. The corresponding scaling laws,
describing the behaviour near the critical point, are tested using
the exact solution for the Bethe lattice. Numerical work on the
moments of the cluster size distribution for two and three
dimensional lattices is found to be consistent with the scaling
hypothesis. The strong or weak k weight of-a graph is shown to

have the property z x(G")v(G') =n(G) - B .
G'Ca

The critical index & , which describes the variation of the
magnetisation with the field near the critical point, (M v Hl/a)
is calculated and shown to have different values at two points on

the phase boundary.
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Chapter 1 Introduction

1.1 General Discussion of Percolation Systems

The percolation model was first introduced by Broadbent and
Hammersley [1] to describe, for example, the behaviour of a
fluid seeping into a porous solid or the spread of disease in an
orchard. In the case of the porous solil they considered the
'pores' or channels of the solid to be open or closed in a
random manner. If the channel was open the fluid could pass
along it otherwise it could not. The problem was to calculate
the minimum concentration of open channels which were required
before the fluid could 'percolate' throughout the solid. For
the orchard problem the trees were considered to be diseased or
free of disease in a random manner. The problem was to determine
the minimum concentration of diseased trees necessary for an
epidemic to occur.

The above problems are formulated theoretically in the
following manner. The solid is considered to be a random medium(l)
consisting of an infinite number of sites connected by bonds. We
mey consider either the sites or the bonds to be occupied
independently with probability p or unoccupied independently
with probability q = 1-p . The two problems have become known

as the site problem and the bond problem respectively. .

(1)

A random medium is a medium in which the sites (bonds)

are occupied independently.



-8 -

The flow of'fluid in a porous solid is an example of the
bond problem. Here the occupied bonds are the open channels and
the unoccupied bonds the closed channels. The fluid flows along
the occupied bonds and 'wets' each site it passes. = If the fluid
is to wet an infinite number of sites then a certain concentra-
tion of the bonds must be oCcupied. For p 1less than this
critical valiue P, the fluid can only form isolated 'pockets' or
clusters in the medium. A cluster is defined such that there is
an occupied path of bonds between any two sites belonging to the
same cluster.

The spread of disease in an orchard is a site problem. Here
the occupied sites are the diseased trees and the unoccupied sites
the trees free of disease. For an epidemic to occur a certain
concentration of occupied sites, i.e. diseased trees, is required.
For p less than this critical value P, the disease is localised
and does not spread throughout the orchard.

We define p, more exactly in terms of the percolation
probability P(p) , which is the probability that a given site
belongs to a cluster of infinite size. Therefore by definition

P(p) =0 for p < P, » and p, is defined such that

P, = sup{p, such that P(p)=0} . (1.10)

There are few exact relations concerning the percolation

probability P(p) but Hammersley [2] has shown that



P3(p) < P2(p) (1.11)

where s and b denote the site and bond problems respectively
and PN(p) is the probability that any given site belongs to a

cluster of size N . From (1.11) we obtain
s b
P (p) < P (p) (1.12)

since P(p) = lim P_(p) .
, N
N>

So that if P(p) is a monotonic increasing function of p

then
s b

P, 2P, - (1.13)

It is possible to calculate P(p) exactly (see chapter k)
on lattices with a tree like structure, i.e. they contain no loops.,

We obtain
P(p) ~ (p-p,) "7 (1.14)

for p ~» p: . (The critical indices A and y are explained in
section 1.2.)

To obtain inequalities for the critical concentration Po
we consider the number of n-stepped self-avoiding walks on a
random medium., (An n-stepped self-avoiding walk is an ordered
continuous sequence of n steps, along the edges, from site to
site and which visits no site more than once.) We define the

connective constant p as
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.1 :
In y = 1lim = 1n C . (1.15)
oo B n
Broadbent and Hammersley show in [1] that a rigorous lower bound

on P, is provided by

= |-

. (1.16)

p. 2

c

This holds for both site and bond problems.

Several other rigorous bounds and inequalities have been
obtained for p, on specific lattices by introducing associated
lattices. Using these properties exact values of P, » OB
certain two dimensional lattices, have been obtained.

a) For the bond problem we associate with any planar lattice

L a dual lattice LD . The dual lattice is defined such that

each bond of LD intersects a bond of the original lattice once
and once only, and vice versa (see Fig. 1.1).

Essam [ 3] has shown that for a lattice and its dual
D
Pc(baL) + pc(bsL ) =1 (1-17)

vhere pc(b’L) and pc(b,LD) are the critical concentrations on
L and LD respectively.

Since the square lattice is its own dual it immediately
follows that p_(b,5) =3 . ‘The dual of the triangular lattice
is the honeycomb lattice and Sykes and Essam [20] have shown using
a star triangle transformation that

pc(b,T) = 2sin(w/18)

1 - 2sin(n/18) .

Pc(b,H)
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T

4 <
4«

Fig. 1.1 The triangular lattice and its dual the honeycomb
showing the basic property of the intersection of
the lattices.

b) For the site problem we associate with any two dimensional
lattice L a matching lattice L* (see appendix V). In Fig. 1.2
we show the square lattice and its matching lattice. Sykes and
Essam [ 20] have shown that the critical concentrations of the tw0

lattices are complimentary, i.e.

p(s,L) + p (s,1#) =1 . | (1.18)

Since the triangular lattice is its own matching lattice it

follows that pc(s,T) =3 .
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Fig. 1.2 (A) The square lattice (B) The corresponding matching
lattice.

¢) We consider now the relation between the site and the bond
problems. A bond problem on any lattice L is isomorphic with

the site problem on a suitably defined covering lattice L° .

(See Fig. 1.3). (For a definition of the covering lattice see
appendix V). Any configuration of occupied bonds on any lattice
is in one to one correspondence with the occupied sites on the
covering lattice, therefore the characteristic properties of the
bond problem on L are identical with those of the site problem

on L° . Particularly

p,(b,L) = p_(s,L°) . | (1.19)
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(A) (B)

Fig. 1.3 (A) The square lattice (B) The covering lattice of

the square lattice, s¢ .

It is interesting to note that pc(s,Sc) is a self matching
lattice and therefore pc(s,Sc) = 1 , a value already derived from
the self-duality of the square lattice. The covering lattice of
the honeycomb is the kagomé lattice, while that of the triangular
is the kagomé matching lattice. Both pc(b,H) and pc(b,T)
are known therefore we also know pc(s,K) and pc(s,K*) . Since
to every bond problem one can associate an equivalent site problem
while the convérse is not true, the site problem is of greater
generality.

One of the best known examples of the site problem is that of

the dilute ferromagnet. Here the occupied sites are magnetic atoms



- 14 -

and the unoccupied sites non-magnetic impurities. Below thé
critical concentration p, no spontaneous magnetisation occurs
at any temperature since the magnetic atoms can only form finite
isolated clusters. Above P, the spontaneous magnetisation
occurs at a critical temperature Tc(P) which falls to zero at

P=7p, - (See Fig. 1.k4.)

p P. - 1

Fig. 1.4 Diagramatic representation of the variation of the

critical temperature Tc(p) with p .

If the interactions between the magnetic atoms are assumed
to be Ising like then Fortuin and Kasteleyn [30] have shown, using
the random cluster model, that the mean number of clusters per
site is related to the free energy, P(p) is related to the

spontaneous magnetisation while the mean size of clusters per site



is the susceptibility analogue.

| Dalton, Domb and Sykes [L4] have shown for the site problem
that for lattices with a large coordination number Z , ch
tends to a limiting value A . Where the constanﬁ A depends
only on the dimensionality of the lattice and is independant of
any special lattice structure. In two dimensions A was found
to be apﬁroximately 4.5 while in three dimensions A was
approximately 2.7 . We can interpret these values as being the
number of occupied points, for a given dimensionality, which have
to be within range of a given point for an infinite cluste? to
exist. The independence of A on any special lattice structure
can be seen more clearly in the case of random or continuous
percolation. An example of such a problem in two dimensions is
that of the relay stations [5]. Here the question is how many
stations per unit area are required to provide long range communica-
tion when the stations are distributed at fandom and can communicate
directly if the distance between them is less than a distance R .
We associate this with a percolation system in the following manner.
If we have a lattice of coordinaﬁion number Z then the mean
number of sites adjacent to a given site is Zp . In the random
case the value is Vd(R)D . Where Vd(R) is the volume of a
d-dimensional sphere and D 1is the density of distribution of the
sites.

We use the independence of A on the lattice structure to

obtain estimates for Dc . In the limiting case



- 16 -

_ Vd(R)Dc

P, =5 - ; (1.20)

From above, in two dimensions

b5 = szDC
= hnt2c where to = D, (g 2
hence
ty, = 0.36 .

In three dimensions

3

2.7 = L4/3 =R Dc
_ 3em

2-7 - 3 t3c

t3c = 0,081 .

Roberts and Storey [35] ,[36] obtain direct estimates of t,, and

t3c using Monte Carlo techniques and they obtain the values of

t20 = 0.304 and t3c = 0.0889 . These two results indicate

clearly the independence of A on the lattice structure. Although
no exact values are known for ted we may use exact results

derived on a two dimensional lattice structure to provide an upper

bound for the critical concentration. (See chapter 3.)

1.2 Graph Theory Terminology: Mean Values and Perimeter Distribution

The percolation problem is discussed in graph theoretical
concepts and we shall develop those needed below. The discussion

will be in terms of finite graphs which will be extended to cover
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the infinite case at é later stage.

Consider a general linear graph G = (V,E) with vertex set
V and edge set E . In the site problem the vertices of the
graph are the possible locations of a particle and an edge
[i,j] € E is said to be occupied if both its vertices are
occupied by a particle. The edges are usually the nearest
neighbour pairs of sites though higher order neighbours may be
included. The subset V' CV consisting of all occupied vertices
defines a section graph G' = (v',E') where E' consists of all
. the edges of E with both vertices in V' . Each component of
G' corresponds to a cluster of particles in this configuration.
We define the expectation value of a function of the state of the

system

<A36> = ) w(V")A(V',G) (1.21)
v Cv

where the sum runs over all section graphs of G and w(V')
is the probability that the vertices V' are occupied and the
vertices V-V' are unoccupied.

There are 2|Vl terms in the sum and w(V') is normalised
to one.

Because we shall consider only those systems where tﬂe sites

are occupied independently, i.e. a random medium

w(v') = PIV'!QIV_V'I (1.22)
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In the case of the bond problem it is the edges of the graph
which are in one of the two states and the occupied edges define

a partial graph G' = (V,E') . Note there is no restriction on

the edge set E' CE and G' contains the complete vertex set.

Definition (1.21) becomes

<A;6> = §  TW(E')A(E',G) (1.23)
E' CE

where the sum runs over all partial graphs and
— ] T !
Ty = plE' BB (1.24)

If we are going to use (1.21) to obtain mean values then it
is necessary to sum over all the 2|V' configurations. For a
large graph this becomes difficult and Domb has shown [8] that it
is only necessary to sum over thoseAconfigurations which are
connected. The probability that a connected set T of s
vertices occﬁrs as a cluster is psqw , where w 1is the number of
vertices not in I but adjacent to vertices in T and is known
- as the perimeter of TI' . Similarly we may define a bond perimeter
where w 1is now the number of edges not contained in T but
connected to vertices in T .

Using the above restricted class of graphs and assuming

A(V',G) is additive (1.21) becomes

<A3G> =} w*(V')A(V',G) (1.25)
V' Cv
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where now the sum runs only over all connected section graphs of

G and
n* (V1) = pIV' Iqw

where w 1is the perimeter of G' = (V',E') .
We now introduce an important concept in percolation theory,
that of the perimeter distribution over a set of graphs of a .
given size. We can write (1.25) in the form
<A3G> = z bs,wpsqw
S,W
where bs,w is the weighted sum of connected section graphs of G
with s vertices, the corresponding clusters of which have perimeter
Ww . The weighting of bs,w depends on the particular mean value
being calculated. For example if the mean size is being calculated
where each connected graph is weighted with the product of its
vertices and edges

b =8 Z e

[vrT=s
where e = |E'| and the sum runs only over those graphs with
perimeter w .
It is necessary to sum over both s and w since different
configurations of s vertices may have different perimeters. (see

Fig. 1.5.) It is this fact, together with the way in which ag
9

varies for large s , which provides one of the major difficulties
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in deriving exact relations for cluster expansions on an infinite
lattice. It is thought that the average perimeter varies

directly with the size of the graph as s + @ (s is the number

of sites (edges) the graph contains) though this has not been
rigorously proved. We can place bounds on the perimeter distribu-
tion in the following way. The minimum perimeter is obtained

when the sites are as closely packed as possible and a geometrical
representation of this is the d-dimensional hypersphere. If we
associate one site per unit volume then the perimeter is represented
by the surface of the hypersphere. Hence we see that the perimeter
in 4 dimensions must vary at least like sd—l/d . It is easy to
see that the perimeter can vary at most like s since the maxi-

mum perimeter of a graph of s sites on a lattice of coordination

number Z is Zs - 2(s-1) . Therefore we can write

sd_l/d <w<s (1.27)

where this is taken to mean w varies asymtotically at least like
sd_l/d and at most like s .

As d > » the two limits approach and for a lattice of
infinite dimension w must vary like s . We can see this in
the case of the Bethe lattice (see Fig. 1.6) which is an infinite
tree every vertex being of degree Z =o + 1 .

Here there is an exact relation between the size and the

perimeter and between the lattice count and the size and this has

enabled the lattice to be solved exactly. (See chapters 2 and 4.)



80 -
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Fig. 1.5 Distribution of the perimeter for size s =5 on
the triangular lattice site problem.

Fig. 1.6 Bethe lattice of coordination number four.



- 20 —

We have tried to approach the problem through a numerical
treatment. If we define the average perimeter for a given size

s &as

SsW | (1.28)

where &y o is the number of connected section graphs per site
>

of the lattice of size s and perimeter w .

If the average perimeter varies as s then

w_oN 8 .
S S

If we write ;; = ¢s + @& then

To test this relation we have fitted the v, to a curve of the
form 1 + §-+ 52 . If the perimeter varies directly with s then
we should obtain a value of one for A and the intercept of Vg
plotted against %- shogld be one. On all the lattices considered
(the data is recorded in appendix Vi) the final value of A was
very close to one. In all cases it was greater than 0.92 andl
appeared to be steadily increasing to one. The intercept on

the Vg axis also appeared to converge to the value one. We

conclude that the evidence is not inconsistent with the assumption

that ;;' v s but larger cluster expansions should provide more
S .
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conclusive results.

We have so far defined in a general way the mean value of
any function of state of the system. We shall be particularly
concerned here with the moment distributions of the cluster size.
The zeroeth moment or the mean number of clusters is defined as

k(p,L) = £ <ns(p)> (1.29)
S

where <ns(p)> is the mean number of clusters, of size s , per

site.
_ s W
<nS(p)> - 3 Bg,wP @

(In Figs. 1.7 and 1.8 <ns(p)> for the Bethe lattice is plotted
as a function of p and as a function of s .)

Only one exact result (other than on the Bethe lattice) is
known concerning k(p,L) . Temperley and Lieb have shown [ 37]

that for p = p, = 2 on the square lattice (bond problem).

cosho- cosQu)}
cosho-1 z=1

w .
k(pc,L) ‘% %Eexp{%; I dasech(gﬁaln(

0.0981 (1.30)

r

where cosu = g- .

We show in chapter 4 that for large s

<ns(p)> n L»l(p)s-s_g : (1.31)
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Fig 1.7 Variation of the mean number of clusters,
of a given size, with p on the ¢ = 3 Bethe Lattice.
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where

u(p) =1 - Alpp_ |° (1.32)

A 1is a constant and A 1is the gap index (see later). From

(1.31) and (1.32)
<n_(p_)> v 8 | (1.33)

On the square lattice (bond problem) <ns(p)> is known up
to s =10 . Using (1.33) we have estimated the value of g ,
obtaining g = 2 , and hence derived a value for the remainder of
the mean number of clusters defined by R =c¢ I s © where c¢ is
s>10
a constant.
Once R was known we estimated a value for k(pC,L) s
10
k(pC,L) = I <ns(pc)> +R
s=1
which was accurate to within four decimal places of the result
obtained by Temperley.

-1/50(p)

If we write u(p) = e in (1.31) we obtain

<ns(P)> n e’S/So(P) s‘g

Now so(p) , for a given p , can be interpreted as a characteristic
size or cut-off point. That is the probabilitj of finding a
cluster of size greater than so(p) , for a given p , is very

small. (See Fig. 1.8.)
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The nth moment cf the cluster distribution is defined as

_ nsw :
M= I spae, . - (1.34)
S,W

(In Fig. 1.9 we plot the mean size of cluster per site, for the

Bethe lattice, as a function of p .) Now

~[y+(n-2)4l

M (p) ~ |p-p,| (1.35)

(see chapter 4) where vy is the critical exponent of the mean
size of clusters and A 1is the gap index.

Since there are very few exact calculations of the variation
of the moment distributions near p, Ve shall be concerned in
calculating values for the critical exponents, defined above, and
establishing the relation y = (3-g)A between them. We also
estimate values of P, for various two and three dimensional

lattices.

1.3 Derivation of Cluster Expansions [ 6]

The problem is initially formulated for a finite linear graph
G using the terminology of graph theory [7]. Only the site
problem will be considered since the equivalent results for the
bond problem can nearly always be obtained by a simple change of
variable. Two methods will be described to obtain the mean

size of clusters expansion.
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Variation of the mean size of clusters with p for the

0 = 3 Bethe Lattice.
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(&) The Perimeter Method

To formulate the problem more clearly the occupied vertices

will be termed black while the unoccupied vertices will be called

white. As before (1.25) we write the mean number of black clusters
as
. - K S w .
K(pi¢) = 1 K_ _(G)p (1-p) (1.36)
s,w

where Ks w(C-) is the number of connected section graphs of G
3
with s vertices the corresponding clusters of which have

perimeter w .

The mean number of clusters of size s 1is given by

Ks(p;G) = 3 Ks’wps(l—p)W . (1.37)

In terms of which the mean number of black vertices may be written

V(G)p = = sKs(P;G) (1.38)

s
where V(G) is the number of vertices in the graph G . The
mean size of black clusters is usually defined by
2
8(p;¢) = (2 s°K_(p;6))/v(c)p . (1.39)
s
Note. The higher moment distributions are obtained by simply
. 2 . n
replacing s° in (1.39) by s .
The mean number of black clusters of size s may be written

as a polynomial in p of degree at most V(G)



K (ps6) =z A _(G)p" (1.40)

s , SoF

where

A, (6) = (-1)""F(xs)k. () s<7

S,r S,W -

w
=0 s>r (1.41)
The perimeter method is to determine the values of AS r
?

by inspection of the graph G and hence to obtain the mean size
expansion S(p;G) as a polynomial in p . We shall see in
section 1.4 that this method, on a lattice, yields a power series
in p which is only expected to converge for p < P, -

(b) The Linked Cluster Expansion

Only a brief description will be given here of the linked
cluster expansion technique [6] as the method is used only once to
derive a series on the honeycomb lattice. (See appendix III).

It is possible to write the nth moment of the cluster size as a
polynomial in p

M, (256) = I (G500, (o (1.42)

where [Cm;G] is the strong lattice constant of the graph Cm
in G and is defiped as the number of section graphs of G
isomorphic with C, - Mn(Cm) is the strong 0 moment weight
factor for the graph Cm and is independant of G .

The main difficulty with this method lies in the enumeration

of the Mn(Cm) and we consider two methods of obtaining the
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strong second moment weight factors. The first makes use of

the fact that
2
Mz(l,C) = v(C) (1.43)

where C 1is any connected graph.
Combining (1.43) with (1.42) gives
_ 2
z [cm,c]r.in(cm) = v(C) . (1.Lh)
m .
The second method exploits the connection of Mg(p;G) with the

pair connectivity. It is shown in [9] and [10] that

’ZZD(Cii) v(c) > 1

M,(C) >

=1 v(c) =1 . (1.45)

Here C;l is the tth two rooted graph obtained by rooting two
of the vertices of C and D(Cil) is the strong pair connectivity
weight. There are altogether 2iV(C){V(C)-1} terms in the

summation. The strong pair connectivity weights are given in

terms of the strong mean number weights [11] by

p(cily = x(c') - k(c)  v(cily s 2
or ‘ (1.46)

D(Cii)

k(ct®)) n>2,vicd) s o2

(n)

where C . is the unrooted graph obtained from the two rooted

graph C%l by inserting a chain of n edges having the root
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points as terminal vertices and treating the root points as

(1)

ordinary vertices. Also C!' =¢ and C 1is the unrooted
graph obtained from ctt by treating the root points as ordinary

vertices.

1.4 Low Density Series Expansions for Bond and Site Problems

on a Crystal Lattice.

In order to apply the results of the previous section we
suppose thatv Gn is a member of a sequence of finite graphs
which tend to L , the infinite lattice, as n tends to infinity.

The mean size of black clusters as defined in (1.39) needs
re-defining for the infinite graph L

pS(p;L) = I s° <n_(p)> (1.47)
s=1 .

where <ns(p)> is the specific mean number of clusters of size
s .

. It is a property of crystal lattices that if only pairs of
sites which are separated by a finite distance are taken as the
edges of L then a finite section graph of L will have a finite
perimeter. It follows from (1.37) that if s is finite than
<ns(p)> "1s a polynomial in p which vanishes for real p in
the range O < p <1 only at p=0 and p=l , except when the
number of edges #=0 , and therefore has a single maximum in this

region. It will be supposed that the infinite sum (1.47) converges



_30_

in this fegion except at a single point called the critical
probability. In the region above the critical probability
(i.e. p > P, ) S(p;L) represents the mean size of finite
black clusters. On all the lattices investigated (see chapter
3) the coefficients of the power series expansion derived from
(1.47) are all positive and they have been used as a basis for

the determination of the critical probability [12]-[19].

1.5 Extension of the Low Density Series Expansions for the

Mean Size of Clusters and Higher Moments

" If we expand (1.47) as a power series the n® moment of the

cluster size may be written

co

_ r
Mn(p;L) = 1+ ril Sr(L)p (1.48)
where
r n
oq (L) = Szl s as’r(L) (1.L49)
where
ag, (L) = (—1)r'S§(r°—’s)ks,w(G) s<r
=0 s >r (1050)

and as’r(L) forms an infinite matrix a(L) .
Suppose the first s columns of a(L) are known then
Sl(L) through to Ss_l(L) may be obtained.
The specific mean number of black vertices which are contained

in finite black clusters is equal to p provided p < P, Using
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the perimeter method to derive a low density expansion for the
specific mean number of black vertices, Ml(p;L) all the
coefficients other than the first must be zero so that

r

I s a (L) =0 r>1 . (1.51)
a1 S,T

This enables Sl(L) through to S_(L) to be obtained since
eliminating a r(L) from (1.49) and (1.51) gives
Ty
r-1

s, (L) = 1z s(s" =" ha (1) . (1.52)
s=1 ?

Thus an extra term is obtained without deriving any further
information.
A low density expansion may also be obtained for the specific

mean number of black clusters

k(p;L) = I k (L)p" (1.53)
r=1
where
t e
kr(L) = sil a . r L) . (1.54)

The coefficients kr(L) may be obtained independently using the
linked cluster method. Because the mean number weights are zero
for articulated graphs (see appendix V for definition) only
multiply connected graphs contribute to kr(L) . Consequently
the mean number expansion is much easier to determine than the
higher moment expansions. Solving (1.51) and (1.54) for

ar—l,r(L) and ar,r(L) and substituting in (1.49) gives
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r-2

Sr—l(L) = Z

{[ s™+(r-1)"(s-r)+r (r-s-1)la_ _(L)}
s=1 S»T

H (r-1) "= (r-1)r"Tk (1) . - (1.55)

Thus using the same number of polynomials together with (1.55)

allows the mean size of coefficients through S .. (L) to be

s+l
obtained.
For a lattice and its corresponding matching lattice it can

be shown that [ 20]

k(p;L) = ¢(p) + k(q;L*) (1.56)
and

k(p;L¥) = ¢*(p) + k(q;L) . (1.57)

Effectively this states that at density p the mean number of
black clusters on L differs from the mean number of white
clusters on L*¥ by ¢(p) . Similarly the mean number of black
clusters on L¥ differs from the mean number of white clusters
on L by ¢*(p) .

When working with the matching lattices it 1s easier to
derive kr(L) using the high density series in q on the
corresponding lattice, e.g. if kr(L) is required on the honey—'
comb matching lattice it is easier to derive the coefficient of
q? on the plane honeycomb lattice which is identical providing

r>6.

Using the above method the mean number series through .k9(L)
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was derived on the honeycomb matching lattice. (This series is

listed in appendix III.)

1.6 Derivation of a 'Bond' series from a 'Site' series

| From the definition of a subgraph and a section graph [22]
(see appendix V) we see that all subgraphs are contained in
section graphs, i.e. a subgraph is obtained by deleting edges from
the appropriate section graph. It is this fact which enables a
bond series to be derived from a site series using the Yield
Factor technique. We define the yield factor of a graph

G = (V,E) to be

E-E!
= § o (1.58)
E' CE
E'=E
where E' denotes the bond closure of E . (See appendix V.)

If a section graph G has a ‘'site' count a_ s L edges
and a bond perimeter w +then this graph makes a contribution to

the bond series of
2w
apa¥la) .

Consequently if all the section graphs up to n sites are known

on a lattice then the bond series can be obtained up to pn_l .
In appendix IV the yield factors of graphs, up to seven sites,

on the F.C.C. lattice are listed. To obtain the seven tond



_3)4_

perimeter polynomial it was then only necessary to count, for the
bond protlem, all seven bond trees with their perimeter distribu-
tion. To extend the mean size series by one term the mean number
coefficient for nine bond graphs was calculated.

To obtain the site count of a graph from the bond count we
use the Mdbius inversion method [23] and [24]. If the site count

of a graph G 1is as(V,E) then the bond count is

8, (V,E) = & £(E,E")a_(V,E") (1.59)
El
where the sum is over a complete list of subgraphs of |V| = 5

vertices and

1 if ECE!
E(E,E') = .
0 otherwise

Inverting (1.59) we obtain

a (V,E) = u(E',E)a.b(V,E') (1.60)
s B
where u 1is the inverse of £ and is known as the MSbius
function. In this case u is known to be [2L]

(-1)|EE'| if B' CE

! =
u(E',E) 0 otherwise '

In appendix II, p 1is derived for a lattice [23] defined such that

no graph in the lattice has less than one multiply connected block.
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1.7 Thesis Description

So far we have described methods used to derive site and
bond series for a crystal lattice. We endeavour in the chapters
that follow to determine how the functions, represented by these
series, vary near the critical point P, - We assume that the.
nth moment, near p, , varies as (1 - p/pc)_cn » where ¢ is
the critical point exponent of the nth moment. We derive values
for c, and'obtain relationships between them. The series
methods however only provide approximate results and so in chapter
2 we investigate the Bethe lattice. (See Fig. 1.6.)

We obtain exact values for the exponents y , A and g ,
and show that they satisfy the relation y = (3-g)a .

In chapter 3 we introduce the ratio method. This is used
to derive the critical probability P, from the series obtained
using the perimeter method. Approximate values for some of the
critical exponents are obtained and relations between them
investigated. Unfortunately to obtain some of the results it has
been necessary to use series which do not have enough terms,
consequently many of the results have large error bounds. To
derive extra terms demands an unreasonable amount of work éompared
with the extra accuracy gained, since one or even two more terms
in a series make very little difference to the error bounds. Even
once the lattice configurations are known the lattice count and
perimeter of each graph has to be determined and even with the aid

of computers the higher order terms cannot be obtained using the
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'counting' techniques now available. It is necessary to determine
a different method by which these series may be obtained. The
linked cluster technique seemed to provide a solution since it
reduced the total number of graphs to be counted, i.e. all trees
were eliminated. Unfortunately, for any but the most simple
lattices, it has proved equally difficult to obtain the weight
factors for the graphs used.

In chap£er L we derive the scaling laws for percolation
processes. Initially the results are obtained exactly using the
Bethe lattice and then generalised to include two and three
dimensional lattices. We have only really investigated the mean
number series for the F.C.C. lattice (site problem) as this seemed
to provide the best results for the number of terms available.
More investigation is required in this field, for example, other
mean number series on different lattices, the F.C.C. bond
problem particularly, should prove amenable to the same treatment.
(See chapter 4.) The Padé approximant method should also prove
useful in investigating the mean numbér series on lattices for
which the Nevilles table (see chapter 3) in the above method does
not converge.

In chapter 5 we calculate the critical expénent § which
occurs in the case of the dilute ferromagnet. § describes the
variation of the magnetisation with the field near the critical
point Tc(p) , .60 M~ Hl/6 . We have succeeded in calculating

§ at the two end points of the Tc(p) vs p curve (see Fig. 1.k,
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section 1.1) but et no cther point on it. It is important to
note that the two values of & are different and therefore the
index must change its value somewhere on the curve. We tried to
derive § at a general point on the curve using a method
essentially similar to that used to derive 6 at Tc(l) s
(see chapter 5 section 2). Unfortunately this failed because
each graph contributed a different term to the partition function
Z and therefore the total contribution from all graphs could not
be obtained.

Chapter 6 is divorced from the preceeding chapters in that
no critical exponents are calculated. Rather we establish a
relationship, conjectured by G.A. Baker Jr. and J.W. Essam, between

the k weightvof a graph and the number of blocks of the graph.
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Chapter 2 Derivation of, and relationship between, the critical

exponents Yy , A and g for the Bethe lattice

2.1 Relationship between critical exponents

Initially we derive a relationship between y , A and g
which holds for all two and three dimensional lattices as well as
the Bethe lattice. The result is not rigorously proved however
since equation (2.19) involves the summation of a limiting
procedure.

The nth moment of the cluster size distribution varies as:

_ -y-(n-2)A
M (p) v~ A (1-p/p,) (2.11)
we define
o0
f(A,p) = I <n>A¥ ©(2.12)
r
r=0
> r
f(A,p )= & <n> __ A (2.13)
¢ r=0 T PP

where:
P, is the critical probability for the lattice and <n_>
is the mean number of clusters of r sites (bonds).

We show in section 4.2 that <n_> _ ~ Ag— then
r P=P, r

£(A,p,) - £(1,5,) v A(L - VET (2.1%)

Expanding f£(A,p) in a power series about A=l gives
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o (n)
f(A,p) = = %hﬁl (-1)" . (2.15)

n=0

Let u = logi

then duy = %dk ’

n —
and M (p) = i;; £(us2) | o | (2.16)
_ o }(n)(o )
where f(u,p) = I ———HT—LE— u (2.17)
n=0 :
© M (p)
= I n' un (2.18)
n=o n.
w A
= ¥ — (1-p/p )-Y_(n_e)Aun (2.19)
n=0 Ne. (o]
= (1-p/p ) R F (—2—) (2.20)
¢ (l-p/pc)A
E(]J,P) =

—v+2A
o Y F(;;‘;-)

—%+2 Co=y+2A

- = B
wt A R * =
A ¢
u
_ ~Je
flu,p) = u ~ G(x) (2.21)
hence f(u,Pc) Vo v (1-2)
therefore g - 1 = - %—+ 2

-XY . o
3-+ . . (2.22)

23
]
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2.2 Calculation of y and A for the Bethe lattices

We now consider the values of the above indices for the bond
problem on the Bethe Lattices [27]. Following the methods used

in [25] we write the configurational generating function as

g+l

Cloy) =y 1 v afylo)s (2.23)

s=0

where

(0-1)s + 0 + 1 is the perimeter of a cluster of s
occupied bonds
b is the total number of s clusters (of bonds)

per bond of the Bethe lattice.

The expansion (2.23) may be re-written in terms of the funda-

mental Bethe lattice generating function

[+ -]

- S
BO(Z) = I sz

s=0
as
K(x,y) = y°+1BO(Z)
where ‘
7(x,y) = xy° "
now

Alx,y) = x %;5{K3(x,y)}

xygoBé(Z)
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where the prime denotes differentiation with respect to

Z v
A fundamental identity is that for p < P, Al(p,g) =p .
Thus, if
-1
z = z(p) = Z(p,q) = p(1-p)° (2.24)
the generating function must satisfy
1 - - =20
B![z(p)] = G(p) = (1-p) (2.25)
for small enough p . Now Bc(z) is a function only of 1z ,

but 2z is defined by (2.24) as a function of p for all p .
To a given value of 2z , however, correspond twn values of p ,
one of which tends to zero with 2z while the other tends to
unity. Consequently if we define p¥(p) to be the root of the

equation
p*(1-p*)° 1 = p(1-p)7 7 = 2

which vanishes continuously with z , we may re-write (2.25) as
6(p) = [1 - p*(p)]™2°

_hence we may write

B!(z) = [1 - x(2)]7°

“where X(Z) = X(x,y) is the root of

, X(1 - X)O_l =7 = xyo_l
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which vanishes with 2 .

Now S(p) =[x %;-lnA(x,y)]

for all values of p .

B"(z)
S(p) =1+ xyo 1o

where

X=PL¥y=q

-20
(1-x) x=p,y=q,X=p*(p)

hence

p*(p) ¥ p_ = |p-p,|

(2.26)

so that the mean cluster size becomes hyperbolically infinite as

S(p) v (l—p/Pc)

hence y =1 for the Bethe lattice.

The third moment of the cluster size distribution is defined

as
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(x3) (22 0ar),

My(0) = 7757

20
= !l X) {XyQOB'(Z) + X2y30 lB"(Z)
xy20 ag o

2 30-1 3 Lho-2
y y

+ 2x B (2) + x BZ}(Z)}

6aX 2 (hc—302X—l)
(1-0x) * 2% T (I5x%)

1+

3 2

3

1 + 3o0p¥* - czp*e - g p*3 - 20p*

(1 - op*)

M3(p)

hence M3(p) becomes hyperbolically infinite as

- 2/o

M (p) v
(l—p/p )3

hence A =2,
Using the relationship derived in (2.22) gives a value for

g of 5/2.

2.3 Proof that g = 5/2 for the Bethe lattice

Method 1.
A
If we assume that <n > —
s P=Pc sg
then
<ns—l>p=pc .
- Y l + g/S + LY (2‘27)

<n >
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from the equation (2.23)

> = qo+lb Psq(c—l)s

s
[25] shows that on the Bethe lattice P, = %
and
b = 2(os+o+1)!
s  (s+l)(os+o+l)(os+o+l-s)!s!
therefore
“Ng-1” - 0( o )c—l (0s)!(s+1)(os+o+l-s)!
<n > _1 (os+2-s)! (os+o)!
S P"Pc_c
<n >
s-1 - ( o ) {[s(c 1)+o+1][ s(o —1)+0L..[s(0—1)+3]}
<n_> 1 o-1 [os+o-1][ o5+0-2] ...[ os+1]
o

hence dividing throughout by os

<n_ _> o-1
s-1 g g-1 , g+lyco-1l . 0O o-1  _3
<n_> 1 e o—l) {[ o T os )( s T cs)"‘( s os)

Q

x (1-EHa-IH...0 -2}

ags

. o-1 o=1 o-1 1 ro-1 -2 '
~ ﬁ;;f { f—g—J + 5;(—;—3 (3(o+1) (0+2)-3)]

x[1 - =(3a(o-1))}

. : nv[1 o+ o (0 1)(0 -1)(o+M)]1[1 -'—-(c—l)]

' 2
vl o+ 5



hence from (2.27)

g =5/2 .

Method 2.

From [25] the Bethe lattice generating function

1 [2 - (o+1)x(Z)]

B (2) = (2.28)
G o+l [ l"‘X(Z )] O-'+l
At the critical point Xc = %- and the value of Z has a maximum
_ 1 o-1
Ze = glomt)
o
+

now KB(x,y) = yc lBO(Z)

but at p =p_  the mean number function

KB(pC,A) v (1 - A)g‘l vhere A =

N]N

c

hence we require an expansion of BO(Z) in terms of Z/Zc .
Since we are only concerned with positions very close to the

critical point we write

X=X ~-¢
[¢]
Z = (x -e)(1-x +e)°
. € € )
_ _ o-1 o ____yo-1
= Xc(l xc) (1 3 y(1 + 1% )
C (o]

- - ge_yo-1

z=2(1-o0e)(1+ =) . (2.29)

Expanding (2.29) in powers of %%I gives
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Z =12 (1-5—= o (0=2)e” , . )
c 2(o-1) 3(0-1)2
3.2
_ 1 0"¢ 2 o(o-2)e
ZC_Z - ZC ; (0_1) {l + 3 (O"'l) ----- }

hence

2 _2(0=1)r+ oo _ 2 g(0-2)]2(c-1) :
= ——;5——11 Z/Ac]{l 3 (G—l)[ 03 ]

x (1-2/2 )%}

Substituting the values for X into (2.28) gives

_ 1 (e-lotilxa) (o+1) ~(o+1)
BO(Z) ~ (o+1) (1 ; )o+l 1+ o(g—l)e)(l * (U—l)) °

_p (1 + otleyy olotl)e , o2(o+1)(o+2)e?

c (o-1) (0-1) 2(0_1)2

03(c+1110+2)(o+3)e3 . }
6(0-1)3

=B (1 - 03(0+1)€2 L 8 io+l)(o+2)€ ..... )

¢ 2(0—1)2 3(0—1)3

Replacing € Dby the value previously derived gives

B_(2) = B_{1 - E°+i;(l -2/2) + 823 EZtiig(e(Zgl) %
X (1—2/2'05)3/2 + e } (2.30)
hence |
K(p_,2) ~ A(1-1)3/2 | (2.31)

therefore g - 1 = 3/2 giving g = 5/2 .
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To check that the value of the constant A derived was
correct, thus indicating that the method had been carried out
correctly, the function BG(Z) was calculated exactly for

c=3.

2.4 Calculation of 33(2)

33(2) = %-11—3—33% (2.32)
(1 -Xx)

To obtain a solution for B3(Z) in terms of Z we require X as
a function of Z now
7z = x(1 - x)2

3 2

X°-2X"+X-2=0 . (2.33)

From the standard method for solving a cubic equation given in

[26] we obtain the three roots of (2.32).

= 2 )
X = (Sl * 82) * 3 real for all values of Z
gives Xl in the range
X, 20
%-< Xl <1
L
Xl 2_3
- 1 2, i/3, _ L
X, = z(sl+s2)+§ + 5 (sl 32) real for 0 <% <73
gives X2 in the range
1
0 < X2 5_3
Also X, =1

2



- 48 -

2 i¥3 L
= ~3 + +E - =2 - =
X3 z(sl 52) 3 5 (sl 52) real for 0 < Z < 27
gives X3 in the range
L
< =
1 X3 < 3
1
= =
Also X3 3

where

8, = [z/2 - 1/27 + (zg/u - Z/zT)%]l/3

s, [z/2 - 1/27 - (zz/u - Z/2T)%]l/3 .

The root which is required in this particular case is X2 since

this 1s the root which decreases with Z .

X2 will now be written as X .

2 _L 21 _ 3. _.y2_2
X< = 5 + h(sl+82) h(sl S, 3(sl+s2)
2iv3,  __ .y _i/3, 2 2
3 (5178,) — S5 (s]7s;
2 _ _ 2 2, 2, 2
X“(1-2X) = -22 3 + (sl+s2) + 3(sl+32)

+ éigz (si—sgi + i/ﬁ(sl—se) .

. _ 4

In this case Zc = o7
therefore Z = E*i .

27

Substituting these values into (2.31) gives
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2 1
B (}\) = = {— -h— - +§‘ [2A"‘l+2()\2—>\)§]1/3
+ % [2A-1+2(32-2)?] %/3

+.f% il 2a-1+2(32-2)212/3

- 2%3 i[ 2a-1+2(a

2_)\)%] 1/3

B3(A) = 31—5 {-81-18+18 [(21—1+2(12—A)%)1/3
32

+ %(21—1+2(A2-A)%)2/3]

1 1
+18/3 il }(2a-1+2ia2(1-2)%)2/3

—(21—1+2ix%(1—x)%)1/3]} .

The real part of the first bracket gives an expansion in powers
of (1-A)% .

While that of the second bracket gives an expansion in powers of

n+3

(1-2) n#0.

Considering the value for Bs(l) we see that the coefficient

of (1-0)32 is 2§3 .

From equation (2.30) the coefficient of (l-A)3/2 is given

by

;
1y 2
o3 (0+1)2{2(03l)} _ 9?3 for o = 3

8
B = =
¢ 3 (o-1)
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hence we see that both results give the same value for the

coefficient.



_51_

Chapter 3 Numerical estimates for critical probabilities and

critical exponents for two and three dimensional

lattices

3.1 Methods used to analyse series

In this chapter we derive certain mean size of cluster
expansions, and higher momgnt expansions, for various lattices.
The series were obtained using the perimeter method discussed in
{27],[8],[20] and [6].“ We have also used the linked cluster
expansion technique to derive a series on the hexagonal lattice,
the second moment weight factors being obtained from the pair
connectivity weights. This series however has not been completely
verified and is listed in appendix III.

The cluster size distributions for each lattice, contained in
appendix I, were derived using a counting program to enumerate
the complete list of seven site connected graphs. The majority
of work was performed on the site problem where the known series
were extended by a number of terms.

The mean size of cluster expansion can be defined in three

ways for the site (bond) problem, (see [28])

(i) ps(p) =z zIa tszpsqt
st °°
(ii) pS(p) =z z a s.e.psq
st )t
(iii) psS(p) =z I a tezpsq#
st °°
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where s 1is the size

t 1is the perimeter

e 1is the number of edges in the graph

as,t is the count per site .
A1l three cases have been considered but (i) has proved to

be the most useful. The series derived using (ii) and (iii) are
listed in appendix III. The series (i) appear to converge more
rapidly than either (ii) or (iii), see Fig. 3.1. Also methods
are aailable which allow two extra terms to be derived for (i) and
this is the real advantage over the other two series. This
method has been extended as shown in section (1.4) to include the
higher moment expansions.

If we expand the mean size of finite clusters in powers of

p then:

o

S(p) =1+  arp" (3.10)
n
n=1

similarly for the higher moment expansions

©

1+ I bopt (3.11)
n
n=1

M3(p)

M (p) =1+ I cnpn . (3.12)

n=1l

If we assume as in [12] that a, " an;n then this implies

1

that S(p) has a singularity of the form To=p)¥ where

c

\
1



— 4.0
B
I~ 3.0
C
2.0
l 1/n l . ‘ T g.0
0.4 0.2 0.2 0.1

Fig. 3.1 Triangular Lattice site problem. Successive estimates for the
critical percolation probability (pn—>l/pc) plotted against 1/n .
(A) Mean size expansion using e2 (B) Mean size expansion using s x e

. . . 2
(C) Mean size expansion using s
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y = j+1 . Similarly for M3(p) and Mh(P) except that a
different value of j 1is expected.

All the methods which are now discussed will use the
terminology of the mean size of cluster series. This is merely
to avoid repetition as the analysis which follows is the same
for the higher order moments.

We define,as in [12], the ratios of alternating terms as

" These are tabulated for various lattices in

tables (3.2), (3.5), (3.8), (3.11), (3.14). The function o,

is used rather than the direct ratios in an attempt to eliminate
any oscillatory behaviour in the series. We plot L against
1/n in Figs. (3.2), (3.4), (3.6), (3.8), (3.10) and assume that

iiﬁ Py=P = l/pc . Values of the function np - (n-l)pn_l

were calculated and in this way estimates for P, » On various two
and three dimensional lattices, were made.
Once a value for p, on each lattice is established

successive estimates of J , defined by

iy = n(pn - 0)/p (3.13)

are calculated and these are presented in tables (3.3), (3.6),
(3.9), (3.12), (3.15). The corresponding graphs are plotted in

Figs. (3.3), (3-5), (3.7), (3.9), (3.11). It is assumed in

calculating jn for all three moments that all the series diverge
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at the same criﬁical point P, - The numerical evidence, i.e. the
oy for each moment, seems to support this view.

When necessary we have used the Nevilles Table method to
determiﬁe the intercept of the graphs of jn against 1/n .
Here the "linear" extrapolants are given by njn - (n—l)jn_l s

the "quadratic" extrapolants Q, are ‘given by %[nzn - (n-2)2n_ 1,

1
the "cubic" extrapolants by %{nqn - (n—3)qn_l] and so on. The
extrapolation is stopped when successive estimates cease to progress
monotonically. As an example of the method we show in Table 3.0

the values derived for the fourth moment expansion on the hexagonal

matching lattice site problem.

Table 3.0
n jI’.l R’n q‘n rn tn
L 10.6145
5 9.2506 3.7948
6 8.5150 4.8372 6.9220 6.5078
T 8.0675 5.3821 6.7hli5 6.5078
8 7.7693 5.6818 6.5869 6.3081 6.108L

Once values of J for all three moments have been calculated
it is possible to estimate a value for the gap index A .

From (2.11) Mn(p) = An(l - p/pc)—Y—(n_e)A therefore if the
indices of s(p) , M3(p) and Mh(p) are: j(an)+l . j(bn)+l .

j(cn)fl respectively we see that
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>
]

j(bn) - ila))

and

o>
!

= ile) - (o)

If any discrepancy has occurred between the two calculated
values of A the average has been taken.
Then using the relationship g = 3 - yY/A we have estimated

values of g .

3.2 Honeycomb Matching Lattice — site problem

Table 3.1
Coefficients for expansion of sS(p) , M3(p) and MH(P) .

We quote the successive cocfficients in tabular form

n a, bn cn

1 12 - 36 84
2 66 L62 2046
3 312 3960 28848
L 1368 27576 300456
5 5685 168489 2577903
6 2303k 9Lk3392 19343682
7 90288 4943826 13139Lk240
8 350124 - 24666828 826812852
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Fig. 3.2

Hexagonal Matching Lattice site problem. Successive estimates
for the critical percolation probability (pn+l/pc) plotted against 1/n

(A) Fourth moment expansion (B) Third moment expansion (C) Mean size
expansion.
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Table 3.2

Ratios of coefficients of expansion pn(an) . pn(bn) and

pn(cn)
n pn(an) pn(bn) pn(cn)
3 5.0990 10.4881 18.5318
L 4, 5527 7.7258 12.1182
5 4.2686 6.5229 9.4531
6 41034 5.8490 8.0238
7 3.9852 5.4168 7.1393
8 3.8988 5.1134 6.5378

From Fig. 3.2 the estimated value for p, on this lattice is

p, = 0.3015 % 0.001

Table 3.3
Successive estimates of j(an) s j(bn) and j(cn) using

the above value for pc

n jn(an) jn(bn) jn(cn)
3 1.6121 6.4865 13.7620
i 1.4906 5.3173 10.6145
5 1.4350 4.8332 9.2506
6 1.4230 4.5808 8.5150
T 1.4108 4,4322 8.0675
8 1.4038 4.3335 T.7693
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In order to estimate the values of j , from the above,
graphs of jn against 1/n were plotted, see Fig. 3.3, and
where applicable a Nevilles Table was calculated for each set of

values. This leads to estimations of j as

I+

j(an) =1.40 + 0.03
j(bn) = 3.80 + 0.1

j(cn) = 6.20

1+

0.1 .

This would indicate a gap index

A =24 0.2

+

and a value of g as 3 - 2.4 + 0.03
2.k 0.2 .
It must be noted here that g > 2 hence the above error

limits must be chosen to comply with this restriction.

Hence we can reduce the error limits on A to ,

_ + 0.2
A =24 - 0.03
and

2.0 + 0.1 .

o]
5
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Hexagonal Matching Lattice site problem. Successive
estimates

Fig. 3.3

n _for the index of the different moment expansions plotted

against 1/n . (A) Fourth moment expansion (B) Third moment expansion

(C) Mean size expansion.
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3.3 Simple Quadratic Matching Lattice — site problem

Table 3.4

Coefficients for expansion of S(p) , M3

We quote the successive coefficients in tabular form.

(p) and Mh(p) .

n a b c

n n n
1 8 2k 56
2 32 216 okk
3 108 1308 9300
L 348 6516 68316
5 1068 28812 Lh1i792h
6 3180 117216 2250924
T 9216 448152 11031480
8 26452 1636728 50294332

Table 3.5

Ratios of coefficients of pn(an) . pn(bn) and pn(cn) .

n o (e) p (v ) p,le)
3 3.67h2 7.3824 12.8869
L 3.2977 5.4924 8.5070
5 3.1447 4.6933 6.7036
6 3.0229 L.2h13 5.7401
T 2.9376 3.9439 5.1377
8 2.8841 3.7368 4. 7269

From Fig. 3.4 the estimated value for p, on this lattice is

p. = 0.408 + 0.03



|~ 15.0
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0.4 /n 0.3 0.2 0.1
Fig. 3.4

Simple Quadratic Matching Lattice site problem. Successive
estimates for the critical percolation probability (pn+1/pc) plotted

against 1/n . (A) Fourth moment expansion (B) Third moment expansion
(C) Mean size expansion.
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Successive estimates of j(an) s j(bn) and j(cn) using

the above value of P,

co = O U1 & W

ile) 5 (b)) g (e)

1.4973 6.0361 12.7735

1.3819 4.,9636 9.883h
1.k151 L.57hk 8.6753
. 1.koo1 L.3828 8.0518
1.3897 4.2638 T7.6733
1.4138 4.1968 T.4287

From the above estimates graphs of jn against 1/n were

plotted, Fig. 3.

ila))

j(bn)

jle)

This would

for g as

3...

Again with

5, and this leads us to estimations of j as

1.4

+

0.1

3.8

I+

0.1

I+

6.2 £ 0.1 .

indicate a gap index A of 2.4 * 0.2 and a value

2.4

0.1
2. 0.

+ |1+

:

the restriction that g > 2 we may reduce the

error limits on A to

A=

and

R
]

2.4

+ 0.2
- 0.1

2.0 + 0.12 .
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Fig. 3.5 Simple Quadratic Matching Lattice site problem. Successive

estimates’ jn for the index of the different moment expansions plotted

against 1/n . (A) Fourth moment expansion(B) Third moment expansion
(C) Mean size expansion.
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3.4 Triangular Lattice - Site Problem

It is important to study this lattice since the exact value
of P, is known. This allows us to obtain a measure of the
accuracy of series expansion techniques.

Table 3.7
Coefficients for expansion of S(p) , M3(p) and Mu(p) .

We quote the successive coefficients in tabular form.

n a b c

n n n
1 6 18 42
2 18 120 522
3 48 552 38L0
4 126 2160 2165k
5 300  T7he8 . 101964
6 750 2h162 429762
7 1686 72882 1649226
8 LOTh 214248 5947098
9 8868 598464 20231460

The exact value of P, = 3.
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‘Fig. 3.6 Triangular Lattice site problem. Successive estimates for the
percolation probability (pn+l/pc) plotted against 1/n . (A) Fourth

moment expansion (B) Third moment expansion (C) Mean size expansion.
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Table 3.8

Ratios of coefficients of pn(an) . pn(bn) and pn(cn)

n e (a ) p, (o) bn(cn)
3 2.8284 5.5377 9.5618
L 2.6458 4. 2426 6.4k07
5 2.5000 3.6683 5.1530
6 2.4398  3.3446 4.4550
7 2.3707 3.132k4 4.0218
8 2.3307 2.9778 3.7200
9 2.2934 2.8656 3.5025

The exact value of P, is 0.5 and Fig. 3.6 can be seen to

be converging to this value fairly rapidly.

Table 3.9

Successive estimates of j(an) , j(bn) and j(cn) for

p, = 0.5

| noog(a) i) ()
3 1.24k26 5.3066 11.34k27
i 1.2915 4.4853 8.881Y4
5 1.2500 4.1708 7.8824
6 1.3193 4.0337 7.3649
7 1.2973 3.9633 7.0762
8 1.3227 3,9111 6.8798
9 1.3204 3.8950 6.7611

From Fig. 3:7 the convergence of the jn 's 1is seen to be

relatively slow, but the data is consistent with the assumption



0.1
Fig. 3.7 Triangular Lattice site problem. Successive estimates
for the index of the different moment expansions plotted against 1/n .

(A) Fourth moment expansion (B) Third moment expansion (C) Mean size
expansion.
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that they have the same limits as the two previous lattices.

Namely
j(an) = 1.4
j(bn) = 3.8
j(cn) = 6.2

Giving a gap index, as before, of 2.hL.

3.5 Face Centred Cubic Lattice - Site Problem

Table 3.10
Coefficients for expansion of S(p) , M3(p) and Mh(P) we

quote the successive coefficients in tabular form

n an bn cn

1 12 36 8k
2 84 552 2388
3 50k 5880 41136
L 3012 53280 544668
5 171k2 433362 6095418
6 96228 3280224 60712596
T 532028 23558748 555088244
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Fig. 3.8

0.0
0.1
Face Centred Cubic Lattice site problem. Successive estimates

for the critical percolation probability (pﬁ+l/Pc) plotted against 1/n .

(A) Fourth moment expansion (B) Third moment expansion (C) Mean size
expansion.
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Ratios of coefficients pn(an) , pn(bn) and pn(cn)

n pn(an)

9.1652
6.4807
5.9881
5.8320
. 5.6523
5.5710

_ O\ V1w N

pn(bn)

23.49h7
12.7802
9.8245
8.5849
7.8L464
T.3731

p, (e )

48.8672
22.1295
15.1025
12.1728
10.5578

9.5429

From Fig. 3.8 the estimated value for p, on this lattice is

p, = 0.198 * 0.002

Table 3.12

Successive estimates of j(an) , j(bn)

above value of P,

n i lay)
3 0.8496
L 0.7hk26
5 0.7737
6 0.71k9
T 0.7215

i (b))

L.591k
3.7811
3.4991
3.3215
3.2191

i (e)

10.1kk9
7.9612
7.0511
6.5427
6.2264

and j(cn) using the

From the above information estimates of j were made, see

Fig. 3.9, these were
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Fig. 3.9 Face Centred Cubic Lattice site problem. Successive estimates
In

for the index of the different moment expansions plotted against 1/n

(A) Fourth moment expansion (B) Third moment expansion (C) Mean size
expansion. ‘
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j(a ) =0.70 £ 0.02
j(bn) =2.9 +0.1
j(cn) =51 * b.l
This would give, for three dimensions, an estimated value

for the gap index A of 2.2 % 0.2.

g = 2.23 + 0.08.

Hence we obtain

3.6 Face Centred Cubic Lattice — Bond Problem

Table 3.13

Coefficients for expansion of 8(p) , M3(p) , and Mh(p)

we quote the successive coefficients in tabular form.

o =N oV W N

22

234

2348
22726
21L46L2
1993002
18266276
165690848

b
n

66

1632
2852}
422592
5660238
TOTETIU2
841184856
9616920970

15k

7218

204908
459822
82265926
1354071174
20495769944
290829802076
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Fig. 3.10 Face Centred Cubic Lattice bond problem. Successive estimates

for the critical percolation probability (p »1/p ) plotted against 1/n .
n ) P

(4) Fouﬁth moment expansion (B) Third moment.expansion (C) Mean size
expansién.



Table 3.1k

Ratios of coefficients pn(an) , pn(bn) and pn(cn)

n o, (a ) p, (0 ) p (c )
3 10.3309 20.7890 36.4770
4 9.8549 16.0916 o, 8571
5 9.5611 14.0868 20.0369
6 9.3647 12.9407 17.4246
7 9.2250 12.1907 15.78Lk2
8 9.1179 11.6573 14.6554

From extrapolations based on table 3.14 the estimated value

for p, » see Fig. 3.10, is P, = 0.1193 + 0.0002 .

Takle 3.15
Successive estimates of j(an) R j(bn) and j(cn) using

the above value of P,

n jla)) i) ile))
3 0.6974 4. Lhok 10.0551
L 0.7028 3.6789 7.8618
5 0.7032 3.4028 6.9520
6 0.7032 3.2630 6.4725
7 0.7038 3.1804 6.181k
8 0.7021 3.1258 ' 5,9871

From the above information estimates of j were made using a

Nevilles Table, see Fig. 3.11, these were
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Fig. 3.11 Face Centred Cubic Lattice bond problem. Successive estimates
jn for the index of different moment expansions plotted against 1/n

(A) Fourth moment expansion (B) Third moment expansion (C) Mean size
expansion.
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j(an) = 0.70 * 0.01
j(bn) =2.9 *0.1
j(cn) =5.1 +0.1 .

These results are consistent with those derived for the F.C.C.

lattice site problem and give the same results for both A and

g .

3.7 Estimates of y , A and g from series extrapolation

techniques

From the previous sections it would seem reasonable to suppose

that the nth moment of the cluster size distribution varies as
. _ yy-(n-2)a
Mn(p) v (p, = p)
where in two dimensions

y = 2.40 0.1

A= 2.4 % 0.2

2.0 +0.1 .

(0]
]

For three dimensions
y = 1.70 + 0.02
A=2.25 £ 0.25

2.24 £+ 0.09 .

(0]
]



_67_

Once we have decided upon a value for J we can estimate
the radius of convergence of the series, see [21], by calcula-

ting
B, = (n+j)/mp

The quantity Bn should converge to Po with almost negligible
slope. Even if the estimate for j 1is incorrect Bn must

still converge to p, - 1In Table 3.16 we list B~ for the site
problem on the triangular, simple quadratic matching and honeycomb
matching lattices. In Table 3.17 Bn is quoted for the F.C.Cf
site problem and the F.C.C. bond problem.

Table 3.16

Site problem: Two dimensional lattices: successive estimates

for the critical probability B, = (n+j)/npn j=1.k4
. Simple Quadratic Honeycomb
n Triangular Matching Lattice Matching Lattice
L 0.5103 ~ 0.40o9k 0.2965
5 . 0.5120 0.4070 0.2999
6 0.5055 0.4080 0.3006
T 0.5062 0.4085 0.3011
8 0.5041 0.ko7h 0.3014
9 0.5039

ggiﬁgag?dpc 0.5 Exact | 0.408 * 0.002 0.302 * 0.002
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Table 3.17
Three dimensional lattices: successive estimates for the

critical probability B, = (n+j)/npn j = 0.7

Face Centred Face Centred

n Cubic Lattice Cubic Lattice
Site Problem Bond Problem

L 0.19622 0.11922

5 0.19547 0.11923

6 0.19756 0.1192k4

7 0.197LkL 0.11924

8 0.11927
Estimated 108 4+ 0.001 0.1193 + 0.0001

value of P,

3.8 Derivation of an Upper Bound for a Random Plane Network [ 5]

To construct a random plane network first pick points from the
infinite plane by a Poisson process, with density D points per
unit area. Next join each pair of points by a line if they are
separated by a distance less than R .

Gilbert shows [5] that in two dimensions a lower bound for
Ec is 1.75 where E = nRED and Ec is the value of E such

that

1lim P(N) = P() # O
N

where P(N) is the probability that a point belongs to a component

containing at least N-1 points.
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Gilbert points out that a correspondence between percolation
procésses and the random piane network can supply an upper bound
for Ec . He obtains a value 1T7.k for this bound. To reduce this
bound it is necessary to increase the similarity between the two
processes. To do this we wish to make the distance R in the
random plane as near to the nearest neighbour distange on the
lattice as possible.

Consider the case of the simple quadratic lattice (bond
problem) and separate the bonds as shown in Fig. (3.12).

We say that if any two points are connected in the squares

A and B then the bond AB is occupied.

Fig. 3.12

I
I
|
N
:
3
=
1
]
i B
I
|
|

)
\
\
\
\,
>
I'd
’
4
r'd
4
£
d
’
I

\
]
-y
4
’
rd
r
rd

’
I'd
i

?
Y

\ \:!>

~—
AN
N\
rd
rd
$
r'd

I

|

I

|

[

r\

M
1.

L-".

L.

_L’_,
I
]
I

The probability that a point in C 1is connected to a point

in F , see Fig. (3.13), is

i = (1 - e—DL(L—x))(l‘ _ o DLsx,
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Fig. 3.13

#*X - 6x'

Hence the total probability that the bond AB 1is occupied is

= foL (1 - e DL ) pray

p—
2
=pr2 + e _ 1
p=%+e g (3.14)

Now we need to choose R 1o be the length of the diagonal of
the square since we wish to be able to say that any two points in
the square are connected. This ensures that if two bonds are
connected in the lattice case then there is at least one path
between them in the random plane case, thus providing an upper
bound.

The selection of R as the diagonal rather than the side of .

the square does not affect the argument since increasing R
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increases the upper bound. Substituting R® = 21° in (3.14)

gives
+ e - l . (3015)

For the simple quadratic bond problem we know that p, = 3 hence

a bound for Ec can be calculated.

E < T.6 .

P
For the triangular lattice bond problem we must consider

hexagonal areas, see Fig. (3.1L4).

Fig. 3.1k

Using the same method as that described above we see that

_6/38%8 | 6/3a%E,

ﬂR2 nR2

-1

R = 28a° hence

)



_72_

_ 3Y/3E

0E 4 axp(- 338y (3.16)

1+p T 1w

For this lattice P, = 0.347296 and we obtain for E,

Since the first lattice supplies a better upper bound we

choose that value and finally obtain as bounds for Ec

1.75 < B < T.6 .
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Chapter 4 The Scaling Laws for Percolation Processes [29]

4.1 Analogy between the mean number of clusters and the free

energy of a ferromagnet

So far we have endeavoured to derive estimates for the
critical exponents on various lattices. We have shown for the
Bethe lattice that the indices for the nth moment cluster size
differ by a constant A and indicated the truth of this statement
for various two and three dimensional lattices. We wish now to
derive the scaling laws which describe the behaviour near the
critical point. These are then tested using the exact solution
for the Bethe lattice and the numerical work of chapter 3 is
found to be consistent with the scaling hypothesis.

An analogy between percolation and ferromagnetism has been

drawn by Kasteleyn and Fortuin [30], namely

mean number of clusters < free energy
percolation probability € spontaneous organisation

mean size of finite clusters © initial susceptibility .

The basis for this analogy may be seen by considering the moment
generating function for the site (bond) problem
k(p,A) = 2 <a> 2% . (k.10)
s
The mean number of clusters of size s , <ns> is calculated

per site (bond) of the lattice, the lattice being assumed infinite
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but only finite clusters being counted. Clearly k(p,1l) is

the mean number of finite clusters of any size or briefly the

mean number of clusters. The parameter A will be treated as
analogous to the magnetic field parameter exp(- %i%) so that

A =1 corresponds to zero field and k(p,A) is then analogous to
the free energy in a magnetic field. The temperature analogue is

the probability p and
' ©
Pp<p,®T>T,
R 3d
p>pc T<Tc
where P, is the probability above which infinite clusters are
to be found.

The field derivatives of the free energy correspond to the

moments

)
m, (p) (x-—Jk(p,x)h:l

n

e (4.11)

The first moment is the mean number of pafticles per site
(bond) which belong to finite clusters, or p times the probability
that the particle is contained in a finite cluster. The percola-
tion probability is defined as the probability that the particle

belongs to an infinite cluster thus

P(p) =1 - p_lml(p) . ' C(h.12)
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This function is the spontaneous magnetisation analogue
being related to the first derivative of the mean number. It
is zero below P, just as the magnetisation vanishes above Tc .
The second moment is the mean size of finite clusters which
should therefore be taken as the susceptibility analogue. The
mean size diverges in the limit |p—pc| -0 Just as the
susceptibility diverges as IT—TCI +0 .

By numerical analysis of series expansions it was found,

h field derivative

[31] and [32], that for the Ising model the jt
of the free energy in the limit H + O is consistent with the

asymtotic form
£5(T) n |T-TCI—Y_(J_2)A (4.13)

where the exponents Yy and A are approximately equal above and
below Tc . This leads [33] to the scaling law for the singular

part of the free energy

£ (m,u) = |r-r |V (4.14)

| -

sing. |
c

we now wish to propose a similar result for percolation processes
the form of which is clear from the analogy. The proposal will
be supported by the exact analysis on the Bethe lattice and by

numerical work..
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4.2 The Scaling Laws for Percolation Processes

In their analysis of the Bethe lattice, Fisher and Essam [ 25]
used the generating function
s t
K(x,y) = z k . xy . (4.15)
st .
s,t

We shall make use of the relation

k(P3)\) = K(P}‘sl_.p) ()4-16)
on comparison with equation (4.10)

S t : .
<n> =)k, p (1-p)" . (4.17)
st
t

On the Bethe lattice, the perimeter is uniquely related to size
so that in this case there is only one term in the sum, but
equation (4.17) is a result which may be applied to any lattice.

This unique relation of perimeter to size enabled an exact

expression for kst to be found from which we deduce

k. s 88 (4.18)
st
s>

where in terms of the coordination number ¢ + 1 ,

)1 ana g =5/2

v =¢%/(c-1

this result together with

t = (0-1)s + to(c)
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gives
<n> = k_p°(1-p)° '
v s Blu(p)}® _ (%.19)
g-rc0
where
_ o-1
u(p) = vp(1-p) (4.20)

and hence in ‘the limit Ap(p) > 1 from below, we have

ksing(p,l) v {1 - Xu(p)}g_l . (4.21)

When A =1 equation (L4.21) implies that there is a singularity

in the mean number at p =p_ ,

c

where

ulp,) =1 .

Thus

_1l_1y _ Lyl
SR (4.22)

and there is just one solution in the interval (0,1) , namely

=L
Pe T %

since p(p) also has its maximum value at P, - Expanding u(p)

around P,

culp) v 1 - Alp—pc[A (k.23)
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where for the Bethe lattice A =2 and A = 03/2(0—1) « The
function ksing'(p,l) has no singularities for A < 1 (cf. the

Yang and Lee theorem for the Ising Model). For given p there

is a singularity at

1
A=) =Ty | (4.2%)

This critical curve corresponds to the 'pseudo' spinodal curve
for the Ising Model, [34]. Substituting equation (4.23) into

(4.21) we obtain

Roing(PoA) v (1 =21 - Alpp, |8 . (4.25)

By differentiating this J times with respect to A we further

obtain
m.(p) ~ B, |p-p | (8738 | (4.26)
3 j c ,
where
- . g-1-]
B; = (1-g)(2-g) .....(j-g)A .
Equation (4.26) is analogous to (4.13) and by comparison
y=(3-g)A

a result we obtained in Chapter 1, which gives y =1 for the
Bethe lattice corresponding to a simple pole in the mean size at
P =p, . The result which corresponds to (4.14) may be obtained

by writing A = exp(-£) , thus
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—y+2A
v+ G[___é__Z}

(p,1) ~ |pp, |
lo-p, |

k .
sing

The critical exponents are restricted by the exact result

that P(p) is finite. From equations (4.26) and (L.12)

P(p) ~ (p-pc)A—Y
for

P>p,
and hence A > vy .

An obvious extension of P(p) to finite A < 1 and use of

equation (4.21) yields

P(p,,A) v (1 - 1)E2

for A1
and hence g > 2 a result used in Chapter 3 to confine the
error bounds on g .

ﬁumerical work on series expansions for various two and
three dimgnsional lattices supports the conjecture that equations
(k.21), (4.23), (4.25) and (4.26) are generally valid but with
different values of the two independant exponents vy and A .
The results indicating the validity of (h.26) for j =2, 3 and
L are listed in Chapter 3.

To test the validity of (4.23) plots of <n >/<nS> were

s+1

made for many values of p in the range
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now from (4.19)
<n_,,>/<n > v w(p)(1 - g/s) . (h.27)

Hence if <ns+l>/<ns> is plotted against 1/s the intercept
should give a value for u(p) , and the gradient a value for g .
The results which now follow were obtained using the cluster
expansions of the face centred cubic lattice site problem. This
lattice was chosen since the ratios <ns+l>/<ns> seemed to
converge smoothly to u(p) .

In order to estimate the correct intercept a Nevilles table
was plotted from the ratio values. A sample of the computer
output is listed in Table 4.1 for p = 0.19346 . The number of
decimal places used was however much greater than in the figures
recorded.

The value which appeared in the last column of the Nevilles
table was the one used for u(p) for each value of p .

One expects the maximum value of u(p) =1 +to occur at
P=p, - The Nevilles table however did not give these results.
The maximum value on the F.C.C. lattice occurred at p = 0.19346
instead of at the expected value of p = 0.198 . The maximum
value of u(p) was also given as 1.00123180 .

One can see the reason for these apparent discrepancies

when one considers how they were derived. The Neville Table



Table 4.1

Sample of the computer output to estimate

given value-of p .

S <ns>

0.0146589
0.0046838
0.0023769
0.0014316
0.0009531
0.0006785
0.0005067

= Ot Ww N

<n

>
s+l

<n >
S

0.3195
0.507k
0.6023
0.6658
0.7118
0.7469

'f81—

0.8834
0.8868
0.9196
0.94k22
0.9570

u(p) for a

Nevilles Table

0.8902
0.9688
0.987k
0.995L0

1.0211
1.0061 0.9985
1.0029 1.0005 1.0012

values oscillate, albeit slightly, about the true result unless

very many terms of the series are kncwn.

Another term in the

series could have moved the maximum to a different position. By

consistently chosing the last value in the Nevilles table we

assume that this change in value of the variable will not change

the shape of the

u(p)

curve but rather only shift the axes.

In accordance with this assumption (4.23) was adjusted to

give agreement with the Nevilles table results.

A should not be affected by this change.

Equation (L4.23) them becomes

u(p) = - Alpp_|*

where

The value of

(4.28)
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M is the maximum value of u(p) and p, is the

value of p for which this cccurs.

A graph of log[M - u(p)] plotted against log[[p—pml]
should provide a value for A and A .- The results were plotted
over three‘decades for p < Py and p > Py and fitted extremely
well onto two straight lines. In tables 4.2 and 4.3 the results
are listed, Figs. 4.1 and 4.2 are the corresponding graphs.

Once it}had been ascertained over which region the straight

lines extended a least mean square fit was used on the points.

This gave
A = 2.0159 P <P,
A =1.9856 P>0p
log(A) = 2.716 P <P,
log(A) = 2.502 P>D .

The two results are extremely close together and we conclude
that A = 2.0 above and below P, - This value is within error
bounds of the value calculated in Chapter 3 . Though 1f A = 2.0
exactly this would mean that A does not change in going from the
infinite (Bethe) lattice to three dimensions but then shows an

appreciable jump in going to two dimensions.
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Table 4,2

Selection of the values used, ranging over three decades,

to plot Fig. 4.1 . P <Py
D u(p) ~Logl [p-p, ] ~log[ M-u(p)]
0.19336 1.00123167 9.2103 15.8557
0.19334 1.00123161 9.0280 15.4762
0.19332  1.00123154 8.8739 15.1626
0.19308 1.00122986 7.8753 13.1528
0.19272 1.00122441 7.2089 11.8154
0.19236 1.0012154k 6.8124 11.0207
0.19200 1.00120292 6.5293 10. k4524
0.19164 1.00118684 6.3089 10.0097
0.18966 1.00103429 5.5728 8.5297
0.18606 1.00047309 4.9063 7.1839
0.182L46 0.99953404 4.5099 6.3784
0.17886 0.99820309 4.2267 5.7996
0.17562 0.99646585 4.0063 5.3463



14,0

=log [ M-u(p)]

12.0

10.0-

8.0

4,0

-2.0—/
-2, 719

T
“‘0

ig. 4.1 Plots of

decades against

1
6.0

-log(}p-pml)

s{o ’1°3‘IP‘Pm'5J.u

-logl M~u(p)] plotted over three

for p < Py
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Table 4.3
Selection of values used, ranging over three decades, to

plot Fig. 4.2 P>D

m
P u(p) —log[IP-Pmll -logl M-u(p)]
0.19354 1.00123171 9.4335 16.2235
0.19358 1.00123160 9.0280 15.42k49
0.19362  1.00123145 8.7403 14.8653
0.19366 1.00123125 8.5172 14,4133
0.19386 1.00122962 7.8420 13.0362
0.19426 1.0012231k 7.1309 11.6568
0.19466 1.00121237 6.7254 10.8487
0.19506 1.0011973k 6.4378 10.2757
0.195L46 1.00117804 6.2146 9.8310
0.19746 1.00101843 5.5215 8.4525
0.201k46 1.00039032 4.8283 7.0803
0.20546 0.99936L461 L. 4228 6.2833
0.20946 0.99795786 L.1352 5.7218

In the above analysis we have assumed that the value of g
is independant of p . To check this assumption the value of g
was calculated for a large number of values of p using equation
(4.27). The value of g would appear to vary very slowly with
p but this may be because only a small number of terms are
available. Over the range of p used the above assumption would

appear to be valid.
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~logl¥ = u(p’]

10,0

B.O-T

6.0

4,0

0.0

2.0

=2.5 /

I 1
8.0 ~log(|p-p |)10.0

Fig. 4.2 Plots of -loglM-u(p)l plotted over three
decades against - log(lp-pml) for p > p_ -

12,
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Chapter 5 Determination of the critical index &§ at high

and low temperatures for p =1 and p=1p

C

5.1 Calculation of 6§ for p = P, and J >> kBT

It has been shown by Dr. J.W. Essam (on the Bethe lattice)

using scaling arguments similar to those in the last chapter,

that for J >> kyT and p=p_ M~ i ynere 1/6 is

related to g by the expression 1/8 = g - 2 , therefore for

the Bethe lattice &§ =2 . ;

We can show this directly in the following manner. We
consider the bond problem with J >> kBT . There Will be a
fixed number of atoms N and let there be nt atoms in the tth
cluster then

mntH
M, = mn tenh ——w (5.10)
B
. . . th
where Mt 1s the magnetisation of the t cluster.
oyt
M, =mn {1-Hn} (5.11)
t t t
1+p
where _ omH
y=e kBT .
Now
M = <IM, > ‘ ' (5.12)
t
t
hence n
t
M 12w my ( )
E\T’=m{l-'ﬁ<z—-—~—n€> . 5.13
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If we consider the probability of a bond being occupied as

p then
n
t
2n, u
1 t
¥

r
S = Ezrbrpr lq(c‘l)r+2 n (5.14)
t 1+u r 1+p

r
where (o-1)r+2 is the perimeter of a cluster of r sites
b, is the number of trees per site
We digress at this point to consider the configurational

generating function on the Bethe lattice.

KS(x,y) = y° brxry(cnl)r . (5.15)
r=1
Let
- p r
BO(Z) = rzl b 7 (5.16)
then
K°(x,y) = y°B_(2) (5.17)
where
Z = xyo—l .

Using arguments similar to those in Chapter 2, see [25], we can

obtain %g in the form

aB _ ~(o+1)
&= -x@N™° (5.18)

where X(Z) is the root of x(l—x)""l = 7 which vanishes with 2

For o = 2 this can be easily solved and we obtain

a3 _ 8

= . . (5.19)
42 19 4 (1-b2)233
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From (5.16)

28 - v ot = 8z . (5.20)

az = L2 T g 4 (1-4z)?)3

We can re-write (5.14) in the form

? o o

2 +1 -

q y (-1)" ) rbrprq(o l)runr . (5.21)
p n=1 r=1 ‘

oo oo 2 o oo
z (“l)n+1 Z b prq(o—l)runr - 29 (_l)n+l b Zr .
= r rn

n=1 r=1 Pop=1 r=1
(5.22)
Comparing the second sum on the right hand side of (5.22)

with (5.20) we see that, for o = 2

n

t
2 2 w 8z
%<Z _EEE__;> = 29 y (-1)7+L n
n e - _ 343
t . " t n=1 {1+ hzn) }
3 s n+l un
= 16q~ ) (-1) —5 - (5.23)
n=1 {1 + (-bpqu )°} :

My thanks are due at this point to Dr. W.G. Cheambers for
introducing me to the Poisson summation formula by which the
leading term of the above sum may be obtained in the following
manner. |

¥

We write u = e H where C¥ = %EE then the above sum can
B

be written as an integral of the form
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~C*H7,
L J u S az .
c

i . ~C*HZ « 2
sinnZ {1+ (1-lpqe C HZ)2}3

We now replace the contour C , which encloses the real axis on
the positive side excluding the origin, by C' = } + iy , which
is permissible on the positive side of the real axis.

Then

1 Lij 1
ani IC' sinmz 32 =%

therefore

® n
16§ (-1 s -
n=1 {1 + (1-kpq )%}

-C¥*Hgz
e _l]}
—C*HZ)%)3

351 1 m
= 160°{% + == J - az [
2  2m ot sinnZ (1+(1-Ypge

at p = P, = % and for small H

-] n - 1

1 u 1 3 2

2 ) (-1)* — =1 - = f ———(C*Hz)%az (5.2k4)
n=1 {1+(l-un)§}3 Tl Joy sinmZ

hence substituting (5.24) into (5.13) we obtain

M Al
" AH
3/2 1 1
where A = % (—g—}é —— 7247
P kBT~ ot sinna

Hence we cbtain a value of § =2 .,
If we had considered the site problem instead this would have

introduced a factor p into the argument and at p = j =_% we have

==
e

N e
E1:\JIJ
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and T

1}
H

5.2 Calculation of § for p =1

We may write the partition function Z as

logZ = -3logu + logh(a,z) + £(z)

thus

2—1ogZ =m + kT éaiogA(a,z).i—

kpT B” 0o oH

B™ 9H

Now the magnetisation M = m(1 - 2a)
therefore

oM _ _, da _

H - My - X -

Substituting (5.26) into (5.25) gives

kT

B a3
= - —2— A .
M=m- 5 - logh(a,z).x
2
2m 1_ 3/30 logh
BT X 1-M/m

We now use the method of Rushbrooke and Scoins, see [2T]

which is exact on the Bethe lattice, to derive 1log A .

logh = -log(l-a) + glog{(l—a) + %zz(ea-1+g)1
where z = e_QJ/kBT
;
£ =[1+ Ya(l-a)f]?
f = l/z2 -1 .

From (5.28)

(5.26)

(5.27)

page 266,

This gives

(5.28)
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%z2(2+ag/aa)—1 1

. (5.29)
(l-a)+%z2(2a—l+g)1

M . .
We now replace o by 3(1 - E) and after some algebraic manipula-

tion obtain

%aiogA v 2(1 - M/m + M2/m2)

z2 -1+ z(l‘zz)M/m
1+ 2z + (1—22)M/m - z/2(l—22)M2/m2

+q{

hence

2
gaiogA N 2(1-M/miMe /me) + q(1-2){-1 + % +-%(z—l)(z+2)M§}

m
now
om® 1 3 2,2
= . =n —logh . [1 +M/m - M /m° + ...]
BT X aa
hence
2 2
2 Lo q(z-1) + L [9(2-2)(224242)-2]
kB X m2 2

at T =T Z =7 = gig and this becomes

c c
2 2 ‘
2m 1l M 2
T " 5 (a-1)(g2) . = . (5.30)
B c m q
If H~n M6
oM _ 1/8-1
then o x vH

therefore
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from (5.30) we see that &§ = 3 .
The value of & agrees with the value obtained if we use

the conjectured scaling equality

y'=8(6-1) .

On the Bethe lattice y' =1 and B =3 giving a value of

§ =3.
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Chapter 6 Proofs of certain results conjectured by J.W. Essam

and G,A. Baker Jr.

6.1 Proof that I v(G")k(G') = n(G) - B
Gv

Initially we consider the mean number of clusters expansion

for a graph G with V vertices

v
K(p;G) = J K!p? (6.10)
j=1

K! =) k(c.) (6.11)
a5
d
where cj is a list of connected subgraphs , see [22], of G with
J vertices
k(cj) is the weak k weight, see [22] and [T], of cs .

The m=an number of clusters may also be written in the form

; v .
K(p;G) = ¥ s5.p? (6.12)
j=1
8., = % a.. - (6.13)
d iz M

where aij are the elements of a matrix A(G)

(-1)37% ¥ (R (@) i<

ai.
J n ’

=0 i>j
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where Ki,n(G) is the number of connected section graphs of G ,
see [22], with 1 vertices the corresponding clusters of which
have perimeter n .

This matrix is effectively derived from the coefficients of

binomial expansions of the form Anpl(l—p)n , n=V -1, such

that aij is the coefficient of pJ derived from the graph with

i sites.
It e, 'is the number of components of the graph obtained
when the Zth set of n sites is removed from G +then
=T e . (6.14)
c 2

From equations (6.10), (6.11), (6.12) and (6.13) we see that

Z. k(c,) = § B - - (6.15)
J

Therefore
ZJZk(c) EJZa . (6.16)
J Cj J i

The left hand side of eguation (6.16) can be re-written in the

form

} x(a')v(ar)
Gl

where the sum runs over all connected subgraphs,

G' , of G
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and v(G') is the number of vertices in G
Therefore

! x(G)v(er) =) ] ja
1

& £ 9%
We now consider the form of the expression from which the aij are
derived, namely Anpl(l—p)n now
i n ° r,n, r+i
Ap (1-p)" = A ] (-1)"()p : (6.17)
r=0

Differentiating (6.17) with respect to p then multiplying
throughout by p gives,
n

1-p)" = ) (AT ) (Dp
r=0

. i n i+l
iA p (1-p) A .n.p (

for n>2 and p =1 the right hand side of the above equation

is zero.
Therefore
& r n
A Y (L) (x+)() =0 n>2 .
n r =
=0 .
Hence
2 jaij =0 for graphs with perimeter greater than one.
J' .

Therefore the only contribution to the sum z z jaij is from graphs

14
with perimeter one and perimeter zero.

J(evten) = Ty 5+ Ty 5
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The contribution for graphs with perimeter one is derived from

V—l(

Aip 1-p)

‘Therefore
§ Joy_y 5 = Al(V—l) - AV

= —Al .

The only subgraph with zero perimeter is the graphs itself, hence,
j . = n(G).V
[ oy ;5 = n(c)
d
where n(G) are the number of components in the graph G .

From the previous definition of A, given in (6.14)
A; = {n(G)V - n(G)a + x} -~ K (6.18)

where
a is the number of articulation points in G
K is the number of isolated vertices in the graph G .
If d, is the number of blocks attached to the i " articulation

point then

»
]

} {4, +n(c) - 1}

Let Y=7)4d, .
i



Then we consider the relation

Y =b *ta -n : (6.19)

where b is the number of blocks in the graph
& is the number of articulation points
n, is the number of components.

m 1is used here as an ordering parameter; e.g. bm+l is
simply the number of blocks contained in the graph, which is
derived by adding one block to the graph with bm blocks.

This is necessary since we seek to use an inductive proof
to show the truth of (6.19). We assume the truth of (6.19) and

show that the relation is true for Ym+ To do this three

=

cases must be considered.

(i) An extra block is attached to an already existing articula-
tion point.

(ii) An extra block is attached to any site other than an articula-
tion point.

(iii)The extra block forms a new component.

For (i)

Ym+l T m

I
=
+
[

]
o’
B
+
o
B
+
'_l
|
=S

. (6.20)



_97_

Now
bm = bm+l -1
am = am+l
T T Pl :

Therefore substituting in (6.20) gives

Ym+l - bm+l * fmt1 T Pl
For (ii)
xm+l = Ym *2
and
bm = m+l 1
a Ta 4" 1
no=nog .

Therefore for this case also

Ym+l = bm+l * 41 T Pmel
For (iii)
¥m+l = Ym
and
bm = bm+l -1
&, = e
B T oy T S

Therefore again we see that

Ym+1 = m+1 m+1
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Hence if the relationship is true for Ym we have shown that it
1s true for Ym+l .

It if necessary now to show the truth of (6.19) for Ym and
to do this we consider a graph with no articulation points and
which has only one component; 1i.e. a star graph.

From the definition Y =0

now for this graph bm =1

a =0
m
n =1
m
hence
Y =b +a —-n .
m m m m

It follows that since the statement is true for this graph it
is true for all graphs.

Hence

b +a-n(G) +a.n(G) -a

]
h

i}

b - n(G)[1 - al

and
Al=n(G)V+b—n(G) -K .
Since
g' k(G")v(e') = n(a)V - &)

-b + n(G) + K v>a2 .

Then



} x(a)v(g') = ﬁ(G) - B Vo>2 (6.21)
G'

where B 1is the number of blocks in the graph excluding single
vertices.

If G 1is the single vertex then it can be seen than (6.21)
is satisfied for this graph and the restriction V > 2 can
be removed.

Since

from (6.21).

¥ ox(e))Iv(c') - 1] = -B
Gl

for a graph G' with only one component v(G') - 1 is the
cocycle rank, see [22], hence
Y} k(G')r(c') =-B . (6.22)
G'
V(b')

6.2 Proof that ) k(G )vo(G") Y £.-V-2(b-n(G)j
G b' j=1

From similar arguments to those given in the previous section

6.1 we have

T vEenx(e') = J ¥ i, .
G! i;
and
z z jgaij = 0 for all graphs with perimeter greater
15

than two.
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The contribution for graphs with perimeter two is derived from

V-2 2
Ap “(1-p)

Therefore

2

fl

A2{(V—2)2 - 2(v-1)% + v¥)

] 5°
j av_znj

= 2A2 .

The contribution for graphs with perimeter one is derived from

V-1
Ap (1-p) .

Therefore

)2 - v2)

i

Al{(V-l

.2
§ J &V_l:j

Al(l—zv) .

The contribution for graphs with zero perimeter is n(G)V2 .
Hence

) v2(G')k(G‘) = 2A

+ A (1-2V) + n(G)v2 .
Gl l .

2
For 1- irreducible graphs, see [6]
A=V, n(G) =1 and b=1 .

Then

) vE(6)x(G') = 2A, + v(i-v) . (6.23)
G'.
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Let a' Dbe the number of articulation pairs

ci be the number of components the graph splits into

when the ith articulation pair is removed

x!' = Z ci .
i

Now

A = {Xiglll + x! - a'} .

Substituting A, in (6.23) gives

2
7 v2(6")k(a') = 2(x'-a') .. (6.24)
G'
When the jth vertex is removed, let the section graph containing

the remaining vertices of G contain ej articulation points and
fj blocks.

Then from (6.19)

Xx.=e. +f. -1
J J

J
and
'
a' = 3 Z e
j=1
A
x'=3 Jix .
=1 !
Therefore
v
ox' - 2a'= ) f, -V V>3 (6.25)
j= 9

5 v
¥ ovo(@ k(') = § £. -V . (6.26)
Gl ,j=l J
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(6.26) is true for 1- irreducible graphs but a graph which
is not 1- irreducible can be split into its separate blocks and
the sum performed over each block in turn. This is possible
provided account is taken of the extra number of sites added and
of each bond block.

Now J vo(G')k(G') = -2 if G is the bond and in splitting
G,'

the graph into its separate blocks b - n(G) sites are added.
If there are m bond blocks in the graph G then
5 v(b')
YvE(Ek(e) =Y { ) f£.-v(b")} - 2m - b + n(c)
G b' j=1  J
where b' 1s the number of blocks containing more than two
vertices, i.e. b' =D - m

v(b') is the number of sites contained in b' .

Now
y v(b') =vVv+b-n(G) -2mn .
b!
Therefore
5 V(b')
Yy ve(eN)k(c') =) ) f£. -V -2b-n(a)]
G bt j=1 9

V > 2 for each component .

In all the previous expression we have used the weak k
weight k(G') and summed over all the connected subgraphs G'

of G . However (6.11) may also be written as
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K} = z K(cj)
J
where now ¢s is a list of connected section graphs of G with
J vertices
K(cj) is the strong K weight.
We see that the results derived are then equally true for the
strong K weight, e.g.

Y v(G*)K(G*) = n(G) - B
G*

where the sum G¥ is now taken over all connected section graphs

of G . Similarly for the other results derived.
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Appendix T

Distribution of cluster size for various two and three

dimensional lattices.

t = perimeter . s = size .

The matrix a(L) , as far as is known, for each lattice is

also included.



_105_

Hexagonal Matching Lattice - Site Problem

The count is doubled to avoid fractions.

5 1 2 3 L 5 6 (
12 2

13

14 3

15 0

16 0 6

17 6

18 3 0 1k

19 26 0 6

20 6 9 30

21 2 78 0 36

22 30 15 66 63

23 12 36 216 0 17k
2k 6 171 L2 393 12}
25 6 66 336 532 222
26 69 624 309 155L
27 12k 312 1738 131h
28 84 678 2088 2490
29 30 930 191k 7380
30 1k 702 4356 TO9k
31 ‘ 648 4726 12930
32 618 5049 20280
33 480 5826 23828
3k 252 6343 33576
35 8L 6018 38130
36 | 30 4617  L6L32
37 3884 50802
38 | ' 2928 146380
39 \ 1650 L9512

Lo 738 L4eok
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Hexagonal Matching Lattice (Cont.)

£° 1 2 3 L 5 - 6 T

41 228 33696
Lo 63 25898
43 19128
LY 10974
45 5384
46 2172
L7 576

L8 124
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Simple Quadratic Matching Lattice - Site Problem

£° 1 2 3 L 5 6 T

1
10
11
12 6
13 0
1k 8 18 8 2
15 L 8 L
16 2 12 55 %0 22
17 1 60 58 20
18 2l 116 186 170
19 8 100 300 Lok
20 : 2 145 570 a6h
21 8l 510 1384
22 52 Th2 2692
23 12 620 3012
ok 2 458 37hk
25 236 370k
26 92 3428
27 16 2168
28 ‘ 2 1292
29 0
30 0
31 20



Triangular Lattice - Site Problem

\O O N O

10
11
12
13
1k
15
16
17
18
19
20
21
22

L 5
3

12 6

29 21

66

93

- 108 -

14
43
153
298
306

30
111
366
8L0

1290
101k

69
291
957

2349
4299
5310
3408

27
166
803

2592
673k
13634
20469
21372
11562



Simple Quadratic Lattice - Bond Problem

O O N O

10
11
12
13
1k
15
16
17
18
19
20
21
22
23
2L

Counts per site

2
6
L
18
32

55 30
160
174

- 109 -

1L
o)

332
672
570

156
168
336
2030
27112
1908

22

228
958
869
Loék
9972
10880
6473

60
13k
16k

2776
L2k
8770
27392
L6o0k
43220
22202

10

62

728
656
5308
18816
27540
TL576
148728
20Thhh
169784
76886
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Simple Quadratic Latiice — Site Problem

tS

O O N O &

10
11
12
13
14
15
16
17
18
19
20
21
22

1

2

3

4

p]

20
28
12

6

5k
80
60
16

T

22
136
252
228
100

20

8

80
388
176
818
480
152

2h

28
291
1152
aLLy
280
2089
856
216
28

10

154
986
3676
7612
9750
8192
4330
1416
292
32
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Simple Quadratic Lattice =~ Site Problem (Cont.)

t 11 12 13

12 52 9 1
13 6hh 325 112
14 3530 2644 1660
15 1177 12502 10480
16 akhT2 38694 LL5TL
17 33336 79730 129020
18 31202 114342 264482
19 19532 115502 391432
20 8130 83183 423786
21 2180 41136 3371kL
22 380 1406k 193820
23 36 3208 79240
oL 2 480 22993
25 40 4508
26 2 592
27 Ly

28 2
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Simple Cubic Lattice with first, second and third neighbours -

Site Problem

S

t 1 2 3 L 5 6 T

26 1
27

28

29

30

31

32

33

3k

35

36

37

38

39

40

41

42

43

LY

L5

L6

L7

48 " L8
k9

50 8 83

51 12 0

52 2k 30 48

53 0 2k 0

5l k 30 0 2l 18

15

= O O O oo O O O O O Ww

©o 0 0 o o

O O O O O Ww
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Simple Cubic Lattice with first, second and third neighbours (cont.)

S

t 1 2 3 L 5 6 T
55 0 0 12 0
56 48 326 8 16
57 , 12 0 0

58 2k 120 510

59 0 147 0 0
60 0 26L 360 480
61 . 12 120 432 0
62 N 38k 288 480
63 0 240 510
64 480 2172 390
65 360 132 336
66 348 1368 3471
67 168 1782 264
68 380 2348 3612
69 276 200k 4956
T0 L92 4833 4536
T1 138 1296 5376
T2 276 4896 1817k
73 144 4560 5328
Th 216 Loko 15472
75 96 Liok 20593
76 48 7362 24300
7 ' 8 4836 26124
78 36 9132 52116
79 2h 5310 28620
80 L 5812 597kk
81 5TT2 63080
82 7602 6917k
83 5396 66568
8k . , 6456 106446

85 3192 83416



86
87
88
89
90
91
92
93
ok
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
11k
115
116

131528
108783
122538
124172
157440
125760
158528
123120
146406
130236
130554
104184
105460
.-86094
88908
58832
53082
37308
33348
23724
14532
81436
7716
4896
2276
1032
588
432
216

48

L
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Face Centred Cubic Lattice - Site Problem

tS

12
13
1L
15
16
17
18
19
20
21
22
23
2}
25
26
27
28
29
30
31
32
33
3k
35
36
37
38
39
4o

1

1

2

3 L 5 6
8
12
30 2
27
48
96 2k
1hy 6
158 132 6
264 ol
423 1ks
780 168
1194 91k
1212 1308
8L6 2688
5000
7140
10272
11340

36

80
288
1220
1968
15382
10308
18918
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Face Centred Cubic Lattice - Site Problem (cont.)

25 1 2 3 I 5 6 7

L1 9168 31128
L2 L662 53616
43 75528
L) 93852
45 110680
46 98496
L7 ~ 65700

48 26182
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Face Centred Cubic Lattice - Bond Problem

s

t 1 2 3 L 5 6 7

22 6

23

2k

25

26

27

28

29

30

31 2k
32 42
33

3L

35

36

37

38 30
39 120
Lo 192 123
L3 372
42 326
43

L

45

©C O O O O O O O o™
'_l
n

n
=

w
no

O O O O O O O O O ™

240
L6 816 96
L7 146k 648
48 1230 1728 504
L9 1896 2616 0
50 4176 1512 0

0

0

o O O O o o o
o O O O O O O O

51 Ls8L 0
52 2739 0

o O O O O O



53

Sk
55
56
57
58
59
60
61
62
63
6l
65
66
67
68
69
T0
T1
T2
73
Th
75
76
T7
78
79
80
81
82

13456

33960
167472
339088
534336
798972
881496
934992
612000
222566

Thh

ooL8
17736
23088
15792
TTT0

0

0

0

32568
T4832
326L00
58070k
778632
9L9176
809040
591156
200904
202440
405120
174326k -
3379560
6531792
9395856
12568800
14886168
14582112
1258259k
6902880
2102208
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Body Centred Cubic Lattice - Site Problem

S

t 1 2 3 L 5 6

1
10
11
12
13
14 L
15
16
17 12
18 ’ 0
19 12
20 L 42
21 , 0 6
22 78 0
23 32 152
2k 36 30 51
25 ok 408 2k
26 L 182 632
27 384 204
28 336 2088
29 14k 1352
30 108 2748
31 36 2568
32 L 2112
33 - 2016
3k : 10L4
35 ' 480
36 216

37 ' 48

12
16
324
1kh
3096
2058
10416
87TL
18408
18438
20884
20820
15024



38
39
Lo
k1
42
43
L

- 120 -

L

11184
6756
2820
1148

360
60
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Appendix II

Calculation of the Mtbius function for a given lattice.

We define the lattice L(G) of any connected graph G = (V,E)
té be the set of subsets of E ordered by containment and having
the following properties:

"(a) E' = E where E' is the boni closure of E!'

(b) @' = (V,E') is connected and has exactly one

multiply connected block.

We show that:

For all graphs G' € L(G)

"n_mte —_—
u(E',E") = (—1)IE B if E' CE" ; E' = E"
and all graphs obtained from
G' are elements of L(G)

0 otherwise .

All graphs obtained from G' are those graphs obtained'by adding

to G' all combinations of edges from the edge set E" - E' .,
The set of all graphs with more than one multiply cqnnected

block will be referred to as §

(i) We first show that for all graphs G' , where all graphs

obtained from G' are allowed, has M8bius function:

w(er,m) = (-l
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now

z u(E"',E") =0
EICE" CE"

hence

p(E',E") = - Y pu(EME") . (1)
E' C EH'S E"

The proof is an inductive one and we assume that the required

result is true for all graphs G"' = (V,E"') .
Let |E" - E'l =n
From (1)
u(E',E") = —{n(-1)"7T + ncz(—l)n_2 o+ nCr(—l)n_r+...+1} .

(2)

Consider the expansion of (14x)™

n n, r
(14x)" =1 + nx + ... + Crx o+ XD

for x=-1.
0=1+n(-1) + ... + nCr(—l)r + ...+ (-1)8

. . n+
hence the left hand side of (2) is (-1)™*% = (-1)® . Therefore
1 " - |E“"E' l . . nt
p(E',E") = (-1) if the result is true for all G" .
Now the M&bius function of the first graph G" = (V,E") is
1= (-—l)o .  Since the assumed result holds for the first graph
by induction it holds for all the G"™ and the required result

follows.
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(ii) To complete the proof we consider a graph G' = (V,E') such
that not all the graphs obtained from G' are elements of L(G) .

We assume that w(E"',E") =0 , E' CE"CE" . If a member
of & can be obtained from G"'.

"_ty
(—1)IE E otherwise .

We have shown that u(E"'[E") =
Let |E"-E'| =n .
Let there be m ways of adding one edge to G' such that a

member of E. is obtained then

W(E',E") = ~{[n - m - § 1]1(-1)"7L

il

n m n-2
+[%c, C, Z Piy - Z 11 (-1) + ...
: 1l 12

+[ncr - B, - grll(—l)n_r + .u. + 1}

i1 Pio
B =) C._q * gz Cop ¥ ven + ¥ Pi(r—l) .

i1 i(r-1)
Br contains all those graphs which can be obtained from G!
by adding r edges from the edge set E"-E' , and which are not
elements of L(G) ;

Y 1 is the sum over all the graphs G"' which have
ir

pu(E"',E") =0 and |[EM-E"| =1 ;

§ Pik C._j is such that the sum is taken over the set of
ik |

graphs G"' where u(E"E") =0 and |[E",E'| =k ;
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and Pik is the number of ways in which one edge can be added to
the i®h graph of the set G"', defined above, to give a member of
the set §& .

All expressions of the form nCr are defined to be 0 if
r >n.,

Consider the following sum

P x « P P,
J1-)p o +0 oo+ (L)Y ] e+ o+ ] (F1) T
ir = ir . ir ir ir
' Pir iy
=) [1- Po o+ T Cy .+ (-1) V]
ir
=0 .

Since this is just the alternating sum of the binomial

coefficients: Hence we see immediately that

w(B',E") = [nnl (1% + Lo+ [P - e ) (<)

o, + [ncm -1 - ™ L.+

L

[(-1)" - (-1)"]

=0 .
Therefore un(E',E") is zero if the initial assumption is correct.
To show that the assumption is correct it is only necessary
to consider the set of graphs G"', E' CE"' CE" , such that

there is only one way to add an edge to G™ to get a graph € & ,
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and that adding more than one edge leads to an element of L(G) .
The required result then follows by induction.

Since only one edge can be added to G"' to give a member of
£ , there can be no graph G¥ , E"' CE¥ CE" +to which bonds can
be added to give a member of £ .

Let |E" -E"| =58

then

S -
)SI‘

{((s-1)(-1)° + ...+

p(E"E™) Cr(—l + ... + 1}
=0 .
It follows immediately that u(E',E") =0 if not all the
graphs obtained from G' are elements of L(G) , and this

completes the proof.



The series of Appendix III has recently been computed
by C.J. Elliott, J.L. Martin and M.F. Sykes Dby the

perimeter method.

They agree with our results as far as p12 but find

13 14 15 16 17

1404p~° + 2904p— ' + 3522p~° + 6876p ° + 7548p .

We have found certain errors in the second moment weights
‘which have now been corrected and we have confirmed their
coefficient of p13. However we now find 296Hp1u so
that we still appear to have further errors in this and
the subsequent term. Since their method is self

checking their series is probably. correct unless they

have at least two compensating errors,
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Appendix III

a) Mean size series for the hexagonal lattice site problem

3 > 7

S(p) = 1+ 3p + 6p° + 12p° + 2“Ph + 33p” + 6Op6 + 99p

+ 156p8 + 276p9 + h38plo + 597p11 + 113hp12

1k 5

+ 1524p%3 + 3208p1" + 4353pT°

The above series was derived from the following list of graphs.
Where a 'spike' is attached to a graph, this indicates that a
chain of any length may be attached to the graph at any point,
unless otherwise shown.

The graphs are listed together with their strong second

moment weights.
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b) The following series are those derived for the site problem

using definitions (ii) and (iii) in section 3.1

s(p) = } anpn
n=1

an(2) will indicate the coefficients derived using (ii)

an(3) will indicate the coefficients derived using (iii) .

Simple Quadrafic Lattice

n a (2) a (3)
1 L 2
2 12 12
3 28 32
L 60 68
5 12k 1hk
6 260 300
T 428 520

Triangular Lattice

n an(z) an(s)
1 6 3
2 2k 30
3 66 90
L 17h 2o
5 432 612
6 1062 1512
T 2kgo 3618
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Hexagonal Matching Lattice

n an(2) an(3)
1 2h 12
2 198 264
3 972 1542
L Lh22 7020
5 18936 31038
6 77886 130560

Simple Quadratic Matching Lattice

n an(2) a (3)
1 8 L
2 Ly 56
3 156 226
L 516 752
5 1616 2428
6 4896 ThT2

c) High density mean number series on the honeycomb lattice

3 L 5,36 _ Lo ¥ 9

K(q) = ¢ + 2q +0q” +3g q + 33q8 - T3q

The cluster size is distributed as follows:

(p)
qh(3/2p2)

q5(3p3)

q6(7ph + 3p5 6)

;
+ 2p



_l37_

5+ 15p° + 3p")

7

q7(15p

6

9 . .1.10

q8(31%p + 60p' + 3T%p8 + 1207 + 13p )

J(62pT + 17700 + 190p° + 111p™° + 39" + 9p? + p13)
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Appendix IV

a) The following list of graphs are those used to derive the
seven bond perimeter polynomial on the face centred cubic lattice.
All the graphs required, except the seven bond trees are
included, these being enumerated by a different method.

The first figure in the top line of figures for each graph
is the count per site of the graph, the second being the count
of the graph with one bond added etec.

The second row of figures is the yield factor for the graph,
e.g. for the triangle Y¥(x) =1 + 3x .

Any graph marked with a star indicates that when bonds are

added they may be placed at the articulation point also, e.g. when

one bond is added to [:><::] this will include [:>»———~<:] .

b) The flow chart and program is that used to count all trees

of eight sites.
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P q
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[RY
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24

72

12

120

24

48

408

120

360

1320

iuey

276

15

5376

1716

28

4560

27

18288

19

2739 24234 222566

17008 192836

3120

16

7344

€5784
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6_u43g
P N

11 50
P q

11 50
P q

10 52
) q

)\/;; 7\ p10q52

2%

24

24

72

48

LA

408

1532

24

12

84

11

408

11

432

10

1286

10

768

10

5472

11

35988

66

55

55

43

43

4y

220

161

162

104

103

io08

;89

296

303

14y

153

Tuly

336

3563

100

98

104
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504

10

624

2400

2448

696

240

1872

432
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33

3y

33

23

24
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110

65
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28
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48
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. 62
\\\\\ Pqu
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<z

11 62
P q

é/ts\/Three Types

48

14y

288

48

28

120

336

1

840

Bueh

830h

108
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552

11

11

25

23

23
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12
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24
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201

184

135

120

- 1h2 -




1
4O BH

/\ /\
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Three Typ

g €6
P q

Two Types

%4« Pizqso
¥ AN
%@» p11,62

Two Types

10 _6Yu

10 _64
P q

quSS

Two Types

296

1

pes

es

768

I

1

48

1

636

144

10

12

11

10

10

40

29

27

66

53

39

41

28

78

33

27

212

76

80

32

63

417

200

64

6l
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[se]

€3

12

1 15 105 n54 1350 2901 4583 5250

- 1hk -

4071 1682

12
1 1% 91 362 G975 1846 2LL43 2122 960
214
1 ik 91 361 966 1812 2377 2057 935
2y
1 13 77 274 643 1015 1025 528
48
1 13 77 273 637 1001 1011 523
24
i 13 77 272 623 977 977 506
48
143 77 273 635 S91 993 513




p

12 60
q

1)

24

1

48

12

96

13

13

13

12

12

12

12

12

77
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K= [(K) = 1
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JV(1) = location
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tc current configuration
YV{NV) = locaticn

of last vertex

i71
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JOBCUNAN? U 4 ,J6, Tu0, b1 L,0M30000)
REQUEST (TAPEW ,HI)ULOGSGX®TNHIATT
FUN(S)
SKIPF(TAPEY,23,15,B)
COPYBI(TAPLY ,DI5K2)
REWIND(DISK?)
RETURN (TAPEY )
RFL,50000.
LOAD(LGO)
EXECUTE(CNT2 , INPUT,QUTPUT , PUNCH ,DISK2)
0000000000000000000000
PROGRAM CNTZ (INPUT,OUTPUT,PUNCH,TAPE1,TAPE2=INPUT,TAPE3=0UTPUT)
INTEGER Q,J,IDENT,V,L,TE,A,F,B,X,II,Y,NU,K,XT,NV,HILO
INTEGER R(12),RBAR(12),T(23),P(100),DEGREE(11)
INTEGER N(23),5(22,11,4),I(11),THTA(10),TSTOP(3),VV(24),QQ(23)
INTEGER MWPLUS(50,20),MDLTJ(50,20)MPHI(20) ,MEHIP(20)
INTEGER DLTJ(50),WPLUS(50)
INTEGER PHI,PHIP,WDBAR,NPLUS,JJ,WNEXT
INTEGER PERM(100),TPERM(100)
DATA MPHI/6,4,3,12,8,6,4,12,8,18,14,18,18,12,12,42,26,26,2%0/
DATA MPHIP/4,3,0,5,4,3,14%0/
DATA MDLTJ/
c TRIANGULAR
11,-1,51,52,-51,-52,44%0,
c SQUARE
11,-1,51,-51,46%0,
c HONEYCOMB
150%0,
c FCC
11,-1,51,2601,-2601,-51,2602,2550,2551,~2602,-2550,-2551,38%0,
c BCC
11,-1,51,-51,2601,2551,-25801,-2551,42%0,
c sc
11,-1,51,-51,2601,-2601,44%0,
1700%0/
DATA MWPLUS/
c TRIANGULAR
11,1,2,2,46%0,
o SQUARE
11,1,2,57%0,
c HONEYCOMB
150%0,
c FCC
11,1,2,4,4,45%0,
c BCC
11,1,3,3,46%0,
C sc
11,1,4,4740,
1700%0/
XI=0
10000 CONTINUE
1002 Q=10
READ(2,20006 YALATT,HILO
20006 FORMAT (A10,10X,12)
IF(HILO.ED.0)GO TO 100
DO 30 IP=1,100
TPERM(IP)=0




30

a0 0

[}

100
901

27
10021
903

20030

490y

20050

904
20008

[oIN eI e]

4906
311

1111

20001
301
312
905
907

906
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PERM(IP) =0

PHI L[S TIHiE CO-ORDINATLOH NUMBER

PHIP I3 THL NUMBER OF WEICHTED DIRECTIONS.
HILO=+1 FOR lIGH TLEMPLRATURE, -1 FOR LOW TCMPERATURE.
THTA COMTALINS THE PACL HEADING

PRINTS THL LAST LINE OF THE PRLCEDING LATTICE.
IF(XI-1)10621,901,901

WRITE(3,5000)

DO 27 IP=1,IM

IF(TPERM(IP).EQ.0)GO TO 27
WRITE(3,3000)TFERM(IP),IP

CONTINUE

XI=0

IF(HILO)4904,902,4904

WRITE(3,20030)

FORMAT (1H1,16HNO MORE LATTICES)

CALL EXIT

N=1

IF(ALATT.EQ.10HTRIANGULAR)GOTO30u

N=N+1

IF(ALATT.EQ.10HSQUAKE)GOTOS0u

N=N+1

IF(ALATT.EQ. 10HCNEYCCOMB)GOTC90u

N=N+1

IF(ALATT.EQ.10HFCC)GOTO904

N=N+1

IF(ALATT.EQ.10HBCC)GOTQ90u

N=N+1

IF(ALATT.EQ.10HSC)GOTOSOY

WRITE(3,20050)

FORMAT(1H,22HLATTICE WOT RECOGNISED)

CALL EXIT

WRITE(3,20008)N(1),ALATT,HILO
FORMAT(1H,I3,2X,A10,10HLATTICE TC,12)
DECISION INCREMENTS

WPLUS IS THE ARRAY OF WEIGHTS

THE TWO DIRLCTIONS WITH WEIGHT 1 SHOULD APPEAR FIRST, FOLLOWED BY
THE WEIGHTED DIRECTIONS, FOLLOWED BY THE UNWEIGHTED DIRECTIONS
PHI=MPHI(N)

PHIP=MPHIP(}N)

DO 4906 J=1,PHI

DLTJ (J)=MDLTJ(J,N)

WPLUS(J )=MWPLUS(J,N)}
READ(2,20007)IDMIN, IDHMAX
IF(IDMIN)10000,10000,101
READ(1,20001)IDENT,T1,T2,V,L,(T(J),J=1,21),(DEGREE(J),J=1,11)
DO 1111 I=1,V

ISTOP(I)=0

IM=PHI*V

IDL=2%L

FORMAT(14,A8,A3,2212,17,1111)
IF(IDENT-IDMIN)101,312,312
IF(IDENT-IDMAX)aos,905,311
IF(L~-1)906,907,906

TE=PHI

GOT0131

TE=0
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309

116

117
837
871

831
832
833

981
834

835

982
836
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0 908 A=1,L
I(A)=0
1DUM=2%L
DO 909 A=1,IDUM
P(A)=1
N(A)=0
B=1
P(1)=3
B=B+1
IF(B-L)113,113,117
A=2%B
IF(T(A))910,116,910
P(B)=P(B)+2
GOTO116
IF(HILO)B837,837,829
DO871 J=1,L
QQJ)=0
B=0
B=B+1
IF(B-L)828,829,829
A=z2"B
IF(P(B)~2)830,831,827
X=A
GOTO0832
X=A-1
J=B
J=J+1
IF(J-L)981,981,827
IF(P(J)-2)833,833,834
JJ=2%J
IF(X-T(JJ-1))833,982,835
IF(X-T(JJ))833,536,833
IF(X-T(JJ))833,836,836
QQ(B)=QQ(B)+1
GOTOB833
K=1
I(K)=1
IDUM=I(K)
VVv(1)=61226
VV(2)=61226+DLTJ(1)
NV=2
S(IDUM.K,1)=61226
S{IDUM,K,2)=61226+DLTJ(1)
S(IDUM,K,3)=PHL
S(IDUM,K,4)=1
S(A,B,3) IS THE WEIGHT IF A,B IS USED
S(A,B,4) IS 1 IF WEIGHTS ARE TO BE USED FOR NEXT LINE
NU=2%K
N(J)CONTAINS DESCRIPTION OF CONFIGURATION SO FAR.
ADD LAST BOND OF COLUMN K TO CONFIGURATION DESCRIPTION AND
DECIDE ON WEIGHTS
IDUM=I(K)
N(NU-1)=8(IDUM,K,1)
N(NU)=S(IDUM,K,2)
WDBAR=3(IDUM,K, 3)
WHEXT=5(IDUM,K,4)
IF (P(K)-2)969,961,362
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960 VVINV3=U(LDIM,K,2)
GOTOY62
961  VV(NV)=SCIDUM,K,1)
962 IF(WNEXT-1)921,922,321
922 NPLUS=PIIP
GOTO 1172
921 NPLUS=PHI
1172 CONTINUE
LE1=1STOP(NV-1)
IF(NV.LT.3)GO TO 6
LE=VV(NV)
IX=1
5 L1=zLE+DLTJ(IX) .
J=NV-1
3 IF(L1-VV(J))1,2,1
M1=z2%K
11 IF(M1.LE.0)GO TO 1y
IF(LE.EQ.N(M1))GO TO 10
15 M1=M1-2
GO TO 11
10 IF(L1-N(M1-1))15,1,15
14 LE1=LE1+1
1 J=J-1
IF(J.EQ.0)GO TO 4
G0 TO 3
4 IX=IX+1
IF(IX-PHI)S,5,6
6 ISTOP(NV)=LE1
118 IF(K-L+1)923,923,1241
923 KsK+1
NU=2#K
II=0
13=WDBAR*WNEXT
I4=WDRAR-I3

SELECT TYPE OF LINK
IF(P(K’~2)926,925,927

START SEARCH FOR A BOUND-FREE LINK
925 IDUM=I(NU)
JJ=N(IDUM)
GOTO0119
© 926 IDUM=T(NU-1)
JJ=N(IDUM)
119 Y=0
NV=NV+1
I1=P(K)
I2=23-P(K)
120 Y=Y+1
IF(Y-NPLUS)928,928,123
928 X=JJ+DLTJ(Y)
A=0
121 AzA+1
IF(A~NV+1)929,929,122
929 IF(VV{(A)~X)121,120,121
122 Ir(HIL0O)971,971,970
971 IDUM=0
A=0
965 A=zA+1
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1F(A-NV+1)366,966,367
966 D0968 J=1,PHI
IF(VV(A)+DLTJI(J)-X)968,969,958
968 CONTINUE ‘
GOT0965
969 IDUM=IDUM+1
GOTO 365
967 TIF(QQ(K)-IDUM+1)120,970,120
370 II=II+1
ARE WEIGHTS NEEDED NEXT TIME
SCII,K,3)=I44I3*WPLUS(Y)
IF(Y-2)930,930,931
930 S(II,K,4)=WNEXT
GOTO1221
931 S(II,K,u4)=0
STORE BOND LOCATION
1221 S(II,K,I1)=JJ
S(II,K,I2)=X
G0 TO 120
START SEARCH FOR BOUND-BOUND LINK
927 IDUM=T(NU=1)
JJ=N(IDUM)
129 y=0
130 Y=Y+l
IF(Y-NPLUS)943,943,123
943  X=JJ+DLTJ(Y)
IDUM=T(NU)
IF(X-N(IDUM))130,944,130
944 TII=II+1
ARE WEIGHTS NEEDED NEXT TIME
S(IT,K,3)=I4+I3#WPLUS(Y)
IF(Y-2)945,945,946
945  S(II,K,Y4)=WNEXT
G0 TO 1301
946 S(II,K,4)=0
STORE BOND LOCATION
1301 S(II,K,1)=JJ
S(II,K,2)=X
GO TO 130
CHECK IF LAST LINK
123 I(K)=II
IF(K-1)125,1241,936
936 X=23
GO TO 139
125 IF(II-1)127,1171,1171
1241 IF(II-1)126,938,338

COMPUTE ADDITION TO LATTICE CONSTANT
938 IDUM=I(K)
DO 940 II=1,IDUM
LTE=0
LTE=S(II,K,3)
TE=TE+LTE
VV(V)=S(II,K,2)
NCIDL)=VV(V)
N(IDL-1)=5(II,K,1)
LE1=ISTOP(V=-1)
22 LE=VV(V)
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1X=1
20 L1=LE+DLTJ(IX)
J=v-1
18 IF(L1~VV(J))16,17,16
17 M1=z2WK
24 IF(M1.LE.0)GO TO 25
IF(LE.EQ.N(M1))GO TO 23
26 M1:=M1-2
GO TO 24
23 IF(L1-N(M1-1))26,16,26
25 LE1zLE1+1
16 J=J-1
IF(J.EQ.0)GO TO 19
GO TO 18
19 IX=IX+1
IF(IX-PHI)20,20,8
8 LE1=PHI® V-2#L -LE1
PERM(LE1)=PERM(LE1)+LTE
940 CONTINUE
126 I(K)=0
127 K=K-1
IF(FK+1)-2)963,963,964
963 NV=NV-1

c HAS THE LAST POSSIBILITY BEEN TRIED
964 IF(K-1)131,941,941
941 I(K)=I(K)-1
IF(I(K)-1)127,1171,1171
131 TE=TE/T(21)
WRITE(3,4000)IDENT,TE
DO 31 IP=1,IM
IF(PERM(IP).EQ.0)GO TO 31
TPERM(IP)=TPERM(IP)+PERM(IP)/T(21)
PERM(IP)=PERM(IP)/T(21)
WRITE(3,5001)PERM(IP),IP
PERM(IP)=0
31 CONTINUE
Q=2*L
IF(TE-1)101,949,349
943 XI=XI+1
GO TO 101
199 WRITE(3,20009)X
GO TO 101
3000 FORMAT(*COUNT=*,I10,5X,*PERIMETER=#,110)
4000 FORMAT(//,*GRAPH IDENTITY*,I10,5X,%TOTAL COUNT*,I10)
5001 FORMAT(/,zX,"PARTIAL COUNT*,T110,2X,*PERIMETER*,I10)
5000 FORMAT(/,*THE COMPLETE PERIMETER PLYNOMIAL FOR THE ABOVE GRAPHS
10N THIS LATTICE IS#)
20007 FOPMAT(1215)
20009 FORMAT(1HQ,BHERROR NO, I6)
20016 FORMAT(5(I4,I110))
20017 FORMAT(1H,5(I4,110,10X))
END
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Appendix V

~ Graph Definitions

1. An articulation point or cut-vertex is a vertex of a
connected graph, the deletion of which produces a graph which

1s not connected.

2. The deletion of a vertex <1 from any graph G means
the removal of the vertex < from the vertex set of G and

the removal of all incident edges from the edge set of G .

3. The bond closure E' of a subset E' of the edge set E
of a graph G = (V,E) is the set of all edges of E which
have both terminal vertices in the same component of G' = (V,E') .

A subset for which E' = E' is said to be bond closed in G .

L.  The decoration or completion of a simple face of n > 2
vertices of an undirected plane graph is the addition of
in(n-3) new edges constructed by drawing, within the face, all
possible diagonal lines. This converts the face with its
boundary edges to a complete graph K(n) drawn with crossing
lines which is termed a multiface in distinction to an ordinary

face.

5. The matching graph oMt of a simple semiplanar graph G is
obtained from the underlying graph G0 by completing all those

faces of Go not completed in G .
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6. The weak k-weight of a graph G is defined recursively by

k(G) = n(c) =} k(c')
G'

where n(G) is the number of components of G , and the sum runs

over all proper subgraphs, G' , of G .
7. The strong K-weight of a graph G is defined recursively by
k() = n(a) -} K(G¥)
G*
where n(G) is the number of components of G , and the sum runs

over all proper section graphs, G¥ , of G .

8. A subgraph G' of a graph G 1is a graph obtained from G
by deleting a subset (which may be null sets) of its vertices

and edges.

The covering graph c° of an undirected graph G is
constructed as follows: (a) with each edge of G 1is associated
a new vertex; these new vertices constitute the vertex set of

C

G” 3 (b) any two distinct vertices of a° corresponding to

adjacent edges of G are connected by a single edge of GC .
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Appendix VI

Variation of w with s .

W
If we fit v, ==

ws—l

S

to a curve of the form 1 + A/s + B/s

then if ;; v s we expect A to have a value one and the
gl

intercept of Vg plotted against 1/s to be one.

In the following tables Woos Vo A and the successive
intercepts In = s;g - (s—l)ag_l are recorded for various two and

three dimensional lattices.

Simple Quadratic Lattice

s ;; vs IS AS
3 7.333 1.222 - ’ 0.0
L4 8.632 1.177 1.0k15 0.833
5 9.905 1.148 1.0294 0.855
6 11.167 1.127 1.0269 0.899
T 12.416 - 1l.12 1.0186 0.895
8 13.653 1.100 1.0143 0.897
9 14.883 1.090 1.0131 . 0.916
10 16.107 1.082 1.0119 0.928
11 17.326 1.076 1.010k 0.937
12 18.541 1.070 1.0092 0.9k44

13 19.754 1.065 1.0084 0.951



Triangular Lattice

O & N O V1 & W

;S

9.818
11.591
13.323
15.031
16.722
18.401
20.070
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v
S

227
.181
.1kh9
.128
.113
.100
.091

e S = =

Simple Quadratic Matching Lattice

/5]

~N O U1 W

Hexagonal Matching Lattice

;;S
13.800
16.482
19.110
21.70k
2. 274

n

~N O U1 F W

;S
20.818
25.021
29.154
33.237
37.287

1.255
1.194
1.159
1.136
1.118

1.262
1.202
1.165
1.1ko
1.122

HOE e o R S R SR

e N N

.oLok
.0248
.0223
.0183
L0156
.0135

.0137
.0199
.0172
LO1L7

.0227
.0176
.01k9
.0125

.T12
843
.8L46
.881
.897
912
.g2h

O O O O O O O

0.791
0.818
0.877
0.900
0.917

0.855
0.876
0.896
0.915
0.928



Simple Cubic Lattice

O o =N O8N 1 W

;S
13.200
16.256
19.213
22.129
25.018
27.890
30.749

Simple Cubic with 1st, 2nd
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T = N = R = Ry SRy
'—I
\n
o

0.9660
0.9838
1.0006
1.0036
1.00k4Y
1.0043

and 3rd neighbours

3]

O =W

;S
52.987
65.724
78.251
90. 64T

Body Centred Cubic

Lattice

2]

_ O\ W

;S
18.286
22.500
26.654
30.769
34.854

\Y
]

1.330
1.2ko0
1.191
1.158

1.306
1.230
1.185
1.154
1.133

I
s

9721
9915
9975

o O O

.0035
.0012
.0034
.0031

e

.213
.824
.845
.91k
.936
.9k9
<957

o O O O O O o

0.838
0.878
0.919
0.938

0.932
0.928
0.943
0.948



Face Centred Cubic Lattice

wn

= O WV W

;S
23.L440
28.737
33.956
39.121
Lk, 2kt
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0.9972
1.00k42
1.00k6
1.00k46

0.720
0.896
0.925
0.936
0.94k
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