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Abstract

Series estimates of the critical percolation probabilities 

and of the critical indices for the *site problem' and the 'bond 

problem' are presented for two and three dimensional lattices.

These critical values are also calculated exactly on the Bethe 

lattice. The results derived differ slightly from any previous 

values, and are consistent with the assumption of a constant gap 

index A in both two and three dimensions. The relation between 

the critical indices y = (3“g)A is deduced and shown to hold on 

the Bethe lattice. The series estimates are also consistent with 

the above result.

An analogy is drawn between the mean number of clusters and

the free energy of a ferromagnet. The corresponding scaling laws,

describing the behaviour near the critical point, are tested using

the exact solution for the Bethe lattice. Numerical work on the

moments of the cluster size distribution for two and three

dimensional lattices is found to be consistent with the scaling

hypothesis. The strong or weak k weight of a graph is shown to

have the property Z k(G')v(G') = n(G) - B .
G'CG

The critical index 6 , which describes the variation of the 

magnetisation with the field near the critical point, (M t 

is calculated and shown to have different values at two points on 

the phase boundary.
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Chapter 1 Introduction

1.1 General Discussion of Percolation Systems

The percolation model was first introduced hy Broadhent and 

Hammersley [ l] to describe, for example, the behaviour of a 

fluid seeping into a porous solid or the spread of disease in an 

orchard. In the case of the porous solid they considered the 

'pores' or channels of the solid to be open or closed in a 

random manner. If the channel was open the fluid could pass 

along it otherwise it could not. The problem was to calculate 

the minimum concentration of open channels which were required 

before the fluid could 'percolate' throughout the solid. For 

the orchard problem the trees were considered to be diseased or 

free of disease in a random manner. The problem was to determine 

the minimum concentration of diseased trees necessary for an 

epidemic to occur.

The above problems are formulated theoretically in the 

following manner. The solid is considered to be a random medium^^^ 

consisting of an infinite number of sites connected by bonds. We 

may consider either the sites or the bonds to be occupied 

independently with probability p or unoccupied independently 

with probability q = 1-p . The two problems have become known 

as the site problem and the bond problem respectively.

A random medium is a medium in which the sites (bonds) 
are occupied independently.
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The flow of fluid in a porous solid is an example of the 

bond problem. Here the occupied bonds are the open channels and 

the unoccupied bonds the closed channels. The fluid flows along 

the occupied bonds and 'wets* each site it passes. ' If the fluid 

is to wet an infinite number of sites then a certain concentra­

tion of the bonds must be occupied. For p less than this

critical value p^ the fluid can only form isolated 'pockets' or 

clusters in the medium. A cluster is defined such that there is 

an occupied path of bonds between any two sites belonging to the 

same cluster.

The spread of disease in an orchard is a site problem. Here 

the occupied sites are the diseased trees and the unoccupied sites 

the trees free of disease. For an epidemic to occur a certain 

concentration of occupied sites, i.e. diseased trees, is required. 

For p less than this critical value p^ the disease is localised

and does not spread throughout the orchard.

We define p^ more exactly in terms of the percolation 

probability P(p) , which is the probability that a given site 

belongs to a cluster of infinite size. Therefore by definition 

P(p) = 0 for p < » and p^ is defined such that

p^ = sup{p, such that P(p)=0} . (l.lO)

There are few exact relations concerning the percolation 

probability P(p) but Hammersley [2] has shown that
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where s and b denote the site and bond problems respectively 

and P^(p) is the probability that any given site belongs to a 

cluster of size N . From (l.ll) we obtain

P^(p) 1  P^(p) (1.12)

since P(p) = lim P (p) .
■ N-X»

So that if P(p) is a monotonie increasing function of p

then

Pc 1 Pc . (1.13)

It is possible to calculate P(p) exactly (see chapter 4) 

on lattices with a tree like structure, i.e. they contain no loops. 

We obtain

P(p) ( p - p i ^  (l.l4)

for p p^ » (The critical indices A and y are explained in 

section 1.2.)

To obtain inequalities for the critical concentration p^ 

we consider the number of n-stepped self-avoiding walks on a 

random medium. (An n-stepped self-avoiding walk is an ordered 

continuous sequence of n steps, along the edges, from site to 

site and which visits no site more than once.) We define the 

connective constant y as
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In y = lim ̂  In . (1.15)
n-x»

Broadbent and Hammersley show in [ l] that a rigorous lower bound 

on p is provided byc

! “■ • (1.16)

This holds for both site and bond problems.

Several other rigorous bounds and inequalities have been 

obtained for p^ on specific lattices by introducing associated 

lattices. Using these properties exact values of p^ , on 

certain two dimensional lattices, have been obtained.

a) For the bond problem we associate with any planar lattice 

L a dual lattice . The dual lattice is defined such that 

each bond of intersects a bond of the original lattice once

and once only, and vice versa (see Fig. l.l).

Essam [ 3l has shown that for a lattice and its dual

p^Ct.L) + p̂ (l>,L°) = 1 (1.17)

where p^(b,L) and p^(b,L^) are the critical concentrations on 

L and respectively.

Since the square lattice is its own dual it immediately

follows that p^(b,S) = i . The dual of the triangular lattice

is the honeycomb lattice and Sykes and Essam [ 20] have shown using 

a star triangle transformation that 

p^(b,T) = 2sin(n/l8) 

p^(b,H) = 1 - 2sin(ïï/l8)
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Fig. 1.1 The triangular lattice and its dual the honeycomb 
showing the basic property of the intersection of 
the lattices.

b) For the site problem we associate with any two dimensional 

lattice L a matching lattice L* (see appendix V). In Fig. 1.2 

we show the square lattice and its matching lattice. Sykes and 

Essam [ 20] have shown that the critical concentrations of the two 

lattices are complimentary, i.e.

P^(s ,L) + p^(s,L*) = 1 . (l.l8)

Since the triangular lattice is its own matching lattice it 

follows that p^(s ,T) = g .
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(A) (B)

Fig. 1.2 Ca ) The square lattice (B) The corresponding matching 
lattice.

c) We consider now the relation between the site and the bond 

problems. A bond problem on any lattice L is isomorphic with 

the site problem on a suitably defined covering lattice .

(See Fig. 1.3). (For a definition of the covering lattice see 

appendix V). Any configuration of occupied bonds on any lattice 

is in one to one correspondence with the occupied sites on the 

covering lattice, therefore the characteristic properties of the 

bond problem on L are identical with those of the site problem 

on L . Particularly

p^(b,L) = p^(s,L ) (1.19)
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(A) (B)

Fig. 1.3 (a ) The square lattice (B) The covering lattice of
the square lattice, .

It is interesting to note that p^(s,8^) is a self matching 

lattice and therefore p̂ (s,S*̂ ) = i , a value already derived from 

the self-duality of the square lattice. The covering lattice of 

the honeycomb is the kagome lattice, while that of the triangular 

is the kagome matching lattice. Both p̂ (b,ïï) and p^(b,T) 

are known therefore we also know p^(s,K) and p^(s,^*) . Since 

to every bond problem one can associate an equivalent site problem 

while the converse is not true, the site problem is of greater 

generality.

One of the best known examples of the site problem is that of 

the dilute ferromagnet. Here the occupied sites are magnetic atoms
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and the unoccupied sites non-magnetic impurities. Below the 

critical concentration p^ no spontaneous magnetisation occurs 

at any temperature since the magnetic atoms can only form finite 

isolated clusters. Above p^ the spontaneous magnetisation 

occurs at a critical temperature T^(p) which falls to zero at

P = P, (See Fig. 1.4.)

1P P,c

T

Fig. 1.4 Diagramatic representation of the variation of the 
critical temperature T^(p) with p .

If the interactions between the magnetic atoms are assumed 

to be Ising like then Fortuin and Kasteleyn [30] have shown, using 

the random cluster model, that the mean number of clusters per 

site is related to the free energy, P(p) is related to the 

spontaneous magnetisation while the mean size of clusters per site
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is the susceptibility analogue.

Dalton, Domb and Sykes [4] have shown for the site problem 

that for lattices with a large coordination number Z , p^Z 

tends to a limiting value A . Where the constant A depends 

only on the dimensionality of the lattice and is independant of 

any special lattice structure. In two dimensions A was found 

to be approximately 4.5 while in three dimensions A was 

approximately 2.7 . We can interpret these values as being the 

number of occupied points, for a given dimensionality, which have 

to be within range of a given point for an infinite cluster to

exist. The independence of A on any special lattice structure

can be seen more clearly in the case of random or continuous 

percolation. An example of such a problem in two dimensions is 

that of the relay stations [ 5l • Here the question is how many 

stations per unit area are required to provide long range comm.unica­

tion when the stations are distributed at random and can communicate 

directly if the distance between them is less than a distance R .

We associate this with a percolation system in the following manner. 

If we have a lattice of coordination number Z then the mean 

number of sites adjacent to a given site is Zp . In the random 

case the value is V^(R)D . Where V^(R) is the volume of a

d-dimensional sphere and D is the density of distribution of the

sites.

We use the independence of A on the lattice structure to 

obtain estimates for D^ . In the limiting case
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Pc °  Z  • - (1-20)

From above, in two dimensions

= kwtgc (|)2

hence

*2c = 0-36

In three dimensions

2.T = 4/3 itR-̂ D.3.c

t_ = 0.0813c

Roberts and Storey [35] »[36] obtain direct estimates of t^^ and 

t^^ using Monte Carlo techniques and they obtain the values of 

tg^ = 0.304 and t^^ = O.O889 . These two results indicate 

clearly the independence of A on the lattice structure. Although 

no exact values are known for t̂ .̂ we may use exact results 

derived on a two dimensional lattice structure to provide an upper 

bound for the critical concentration. (See chapter 3.)

1.2 Graph Theory Terminology; Mean Values and Perimeter Distribution 

The percolation problem is discussed in graph theoretical 

concepts and we shall develop those needed below. The discussion 

will be in terms of finite graphs which will be extended to cover
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the infinite case at a later stage.

Consider a general linear graph G = (V,E) with vertex set 

V and edge set E . In the site problem the vertices of the 

graph are the possible locations of a particle and an edge 

[i,j] E E is said to be occupied if both its vertices are 

occupied by a particle. The edges are usually the nearest 

neighbour pairs of sites though higher order neighbours may be 

included. The subset V' C v consisting of all occupied vertices 

defines a section graph G’ = (v',E') where E' consists of all 

the edges of E with both vertices in V* . Each component of

G' corresponds to a cluster of particles in this configuration.

We define the expectation value of a function of the state of the 

system

<A;G> = I tt(V')A(V',G) (l.2l)
V Ç V

where the sum runs over all section graphs of G and 7r(V) 

is the probability that the vertices V* are occupied and the 

vertices V-V* are unoccupied.

There are 2^̂  ̂ terms in the sum and 7t(V*) is normalised 

to one.

Because we shall consider only those systems where the sites 

are occupied independently, i.e. a random medium

*(V) = p|V'lq|V-V'l . ■ (1.22)
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In the case of the bond problem it is the edges of the graph 

which are in one of the two states and the occupied edges define 

a partial graph G' = (VjE’) . Note there is no restriction on 

the edge set E' C E and G' contains the complete vertex set. 

Definition (l.2l) becomes

<A;G> = I 7(E»)A(E',G) (1.23)
E' Ç E

where the sum runs over all partial graphs and

n^E') = p|2'lq|3-E'|  ̂ (1.24)

If we are going to use (l.2l) to obtain mean values then it 

is necessary to sum over all the 2̂ ^̂  configurations. For a 

large graph this becomes difficult and Domb has shown [ 8] that it 

is only necessary to sum over those configurations which are 

connected. The probability that a connected set F of s 

vertices occurs as a cluster is p^q^ , where w is the number of 

vertices not in F but adjacent to vertices in F and is known 

as the perimeter of F . Similarly we may define a bond perimeter 

where w is now the number of edges not contained in F but 

connected to vertices in F .

Using the above restricted class of graphs and assuming 

A(V,G) is additive (l.2l) becomes

<A;G> = I ii*(V')A(V',G) (1.25)
V  C V
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where now the sum runs only over all connected section graphs of 

G and

77* (VM = p

where w is the perimeter of G* = (V*,E') .

We now introduce an important concept in percolation theory, 

that of the perimeter distribution over a set of graphs of a . 

given size. We can write (l.25) in the form

<A;G> = I t
s,v

where b^ ^ is the weighted sum of connected section graphs of G 

with s vertices, the corresponding clusters of which have perimeter 

w . The weighting of b^ ^ depends on the particular mean value 

being calculated. For example if the mean size is being calculated 

where each connected graph is weighted with the product of its 

vertices and edges

C V ^
|v'J=s

where e = |e '| and the sum runs only over those graphs with 

perimeter w .

It is necessary to sum over both s and w since different 

configurations of s vertices may have different perimeters. (See 

Fig. 1.5.) It is this fact, together with the way in which a^ ^ 

varies for large s , which provides one of the major difficulties
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in deriving exact relations for cluster expansions on an infinite 

lattice. It is thought that the average perimeter varies 

directly with the size of the graph as s ->• <» (s is the number 

of sites (edges) the graph contains) though this has not been 

rigorously proved. We can place bounds on the perimeter distribu­

tion in the following way. The minimum perimeter is obtained 

when the sites are as closely packed as possible and a geometrical 

representation of this is the d-dimensional hypersphere. If we 

associate one site per unit volume then the perimeter is represented 

by the surface of the hypersphere. Hence we see that the perimeter 

in d dimensions must vary at least like s*̂ . It is easy to

see that the perimeter can vary at most like s since the maxi­

mum perimeter of a graph of s sites on a lattice of coordination 

number Z is Zs - 2(s-l) . Therefore we can write

s* < w < s (1.27)

where this is taken to mean w varies asymtotically at least like
d—1/d , .s and at most like s .

As d -»• “ the two limits approach and for a lattice of 

infinite dimension w must vary like s . We can see this in 

the case of the Bethe lattice (see Fig. 1.6) which is an infinite 

tree every vertex being of degree Z = a + 1 .

Here there is an exact relation between the size and the 

perimeter and between the lattice count and the size and this has 

enabled the lattice to be solved exactly. (See chapters 2 and 4.)
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Fig. 1.5 Distribution of the perimeter for size s = 5 on 
the triangular lattice site problem.

Fig. 1.6 Bethe lattice of coordination number four.
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We have tried to approach the problem through a numerical 

treatment. If we define the average perimeter for a given size 

s as

__ l a w
w = w (1.28)
® Z a 

w

where a is the number of connected section graphs per siteS,W D jr

of the lattice of size s and perimeter w .

If the average perimeter varies as s then

If we write w = cs + d then s

—-—  = v = 1 +  — +(l — — ) —2 .— s s c ŝ
^s-1

To test this relation we have fitted the v to a curve of thes
form 1 + ̂  + -̂ 2 ' If the perimeter varies directly with s then 

we should obtain a value of one for A and the intercept of 

plotted against should be one. On all the lattices considered 

(the data is recorded in appendix VI) the final value of A was 

very close to one. In all cases it was greater than 0.92 and 

appeared to be steadily increasing to one. The intercept on 

the Vg axis also appeared to converge to the value one. We 

conclude that the evidence is not inconsistent with the assumption 

that w s but larger cluster expansions should provide more
S-X»
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conclusive results.

We have so far defined in a general way the mean value of 

any function of state of the system. We shall he particularly 

concerned here with the moment distributions of the cluster size. 

The zeroeth moment or the mean number of clusters is defined as

k(p,L) = Z <n^(p)> (1.29)
s

where <n^(p)> is the mean number of clusters, of size s , per 

site.

<n (p)> = Z a s w s,w-

(in Figs. 1.7 and 1.8 <n^(p)> for the Bethe lattice is plotted

as a function of p and as a function of s .)

Only one exact result (other than on the Bethe lattice) is 

known concerning k(p,L) . Temperley and Lieb have shown [37] 

that for p = p = g on the square lattice (bond problem).

k(p^,L) =
z=l2 9z

= 0.0981 (1.30)

where cosy = ~

We show in chapter 4 that for large s

<n (p)> ^ y(p)^s ^ (1.31)
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where
Ay(p) = 1 - A|p-p^| (1.32)

A is a constant and A is the gap index (see later). From

(1.31) and (l.32)

<n^(p^)> ~ s ^ . (1.33)

On the square lattice (bond problem) <n^(p)> is known up

to s = 10 . Using (1.33) we have estimated the value of g ,

obtaining g = 2 , and hence derived a value for the remainder of

the mean number of clusters defined by R = c Z s ^ where c is
s>10

a constant.

Once R was known we estimated a value for k(p ,L) ,c
10

k(p ,L) = E <n (p )> + R , 
c s=l  ̂ c

which was accurate to within four decimal places of the result 

obtained by Temperley.

If we write y(p) = e in (l.3l) we obtain

<n^(p)> ~ e-s/so(p) 3-g .

Now s^(p) , for a given p , can be interpreted as a characteristic 

size or cut-off point. That is the probability of finding a

cluster of size greater than s^(p) , for a given p , is very 

small. (See Fig. 1.8.)
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The moment of the cluster distribution is defined as

M (p) = S . (l.-A)
“ s,w

(In Fig. 1,9 we plot the mean size of cluster per site, for the

Bethe lattice, as a function of p .) Now

Mjj(p) ~ (1.35)

(see chapter h) where y is the critical exponent of the mean 

size of clusters and A is the gap index.

Since there are very few exact calculations of the variation

of the moment distributions near p^ we shall be concerned in 

calculating values for the critical exponents, defined above, and 

establishing the relation y = (3~g)A between them. We also 

estimate values of p^ for various two and three dimensional 

lattices.

1.3 Derivation of Cluster Expansions [ 6]

The problem is initially formulated for a finite linear graph 

G using the terminology of graph theory [ %]. Only the site 

problem will be considered since the equivalent results for the 

bond problem can nearly always be obtained by a simple change of 

variable. Two methods will be described to obtain the mean 

size of clusters expansion.
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Fig. 1.9 Variation of the mean size of clusters with p for the 
0 = 3  Bethe Lattice.
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(a) The Perimeter Method

To formulate the problem more clearly the occupied vertices 

will be termed black while the unoccupied vertices will be called 

white. As before (1.25) we write the mean number of black clusters 

as

K(p;G) = Z K (G)pS(l-p)W (1.36)
s.w

where is the number of connected section graphs of G

with s vertices the corresponding clusters of which have 

perimeter w .

The mean number of clusters of size s is given by

K (p;G) = r K p’̂ d-p)” . (1.37)s ^ s,w*

In terms of which the mean number of black vertices may be written

V(G)p = E sK^(p;G) (1.38)
s

where V(g ) is the number of vertices in the graph G . The

mean size of black clusters is usually defined by

S(p;G) = (Z s^K (p;G))/V(G)p . (1.39)
s ®

Note. The higher moment distributions are obtained by simply

replacing s^ in (1.39) by s^ .

The mean number of black clusters of size s may be written 

as a polynomial in p of degree at most V(G)
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K (p;G) = Z A (G)p^ (l.UO)S ^ s ,r

where

A (G) = (-ir ®I(r-s)K (G) s < r^ s,w

= 0  s > r (l.kl)

The perimeter method is to determine the values of As,r
by inspection of the graph G and hence to obtain the mean size 

expansion S(p;G) as a polynomial in p , We shall see in

section l.U that this method, on a lattice, yields a power series 

in p which is only expected to converge for p < p^ .

(b) The Linked Cluster Expansion

Only a brief description will be given here of the linked

cluster expansion technique [ 6] as the method is used only once to

derive a series on the honeycomb lattice. (See appendix III).

It is possible to write the n^^ moment of the cluster size as a 

polynomial in p

M^(p;G) = I [C^;G]M^(C^)p m (l.%2)
m

where  ̂ is the strong lattice constant of the graph

in G and is defined as the number of section graphs of G

isomorphic with C . M (C ) is the strong n^^ moment weight m n m.
factor for the graph and is independant of G .

The main difficulty with this method lies in the enumeration 

of the ^̂21 ̂ m̂̂  consider two methods of obtaining the
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strong second moment weight factors. The first makes use of 

the fact that

Mg(l,C) = V(C)2 (1.1,3)

where C is any connected graph.

Combining (I.U3) with (1.42) gives

I tc^;C]M^(c^) = v(c)2 . (i.Uit)
m ,

The second method exploits the connection of Mg(p;G) with the

pair connectivity. It is shown in [9] and [ 10] that

M_(C) = 2ZD(C^^) V(C) > 1
 ̂ t ^

= 1 V(C) = 1 . (1.45)

Here 0^^ is the t^^ two rooted graph obtained by rooting two 

of the vertices of C and D(C^^) is the strong pair connectivity 

weight. There are altogether sV(C){V(C)-l} terms in the 

summation. The strong pair connectivity weights are given in 

terms of the strong mean number weights [ 11] by

D(C^^) = K(C') - K(C) V(C^i) > 2  

or (1.46)

D(C^^) = K(c(^)) n > 2 , V(C^i) > 2

where is the unrooted graph obtained from the two rooted

graph by inserting a chain of n edges having the root
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points as terminal vertices and treating the root points as 

ordinary vertices. Also C’ = and C is the unrooted

graph obtained from by treating the root points as ordinary

vertices.

1.4 Low Density Series Expansions for Bond and Site Problems

on a Crystal Lattice.

In order to apply the results of the previous section we 

suppose that is a member of a sequence of finite graphs

which tend to L , the infinite lattice, as n tends to infinity.

The mean size of black clusters as defined in (1.39) needs 

re-defining for the infinite graph L

pS(p;L) = Z <n (p)> (idT)
s=l ®

where <n^(p)> is the specific mean number of clusters of size 

s .

It is a property of crystal lattices that if only pairs of 

sites which are separated by a finite distance are taken as the 

edges of L then a finite section graph of L will have a finite

perimeter. It follows from (1.37) that if s is finite than

<n^(p)> 'is a polynomial in p which vanishes for real p in 

the range 0 p £ 1 only at p=0 and p=l , except when the

number of edges ^=0 , and therefore has a single maximum in this

region. It will be supposed that the infinite sum (1.4%) converges
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in this region except at a single point called the critical 

probability. In the region above the critical probability 

(i.e. p > P^ ) S(p;L) represents the mean size of finite 

black clusters. On all the lattices investigated (see chapter 

3) the coefficients of the power series expansion derived from 

(1.47) are all positive and they have been used as a basis for 
the determination of the critical probability [ 12]-[I9].

1.5 Extension of the Low Density Series Expansions for the 

Mean Size of Clusters and Higher Moments

If we expand (1.47) as a power series the n^^ moment of the 

cluster size may be written

M (p;L) = 1+ Z S (L)p^ (1.48)
r=l ^

where

where

S (L) = Z s \  (L) (1.!(9)I J- s=i s,r

a (L) = (-1 )̂  ®Z(r-s)k (G) sSjP s,ww
= 0  s > r (1.50)

and a (l ) forms an infinite matrix a(L) . s ,r
Suppose the first s columns of a(L) are known then 

S^(L) through to S^_^(l ) may be obtained.

The specific mean number of black vertices which are contained 

in finite black clusters is equal to p provided p < p^ . Using
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the perimeter method to derive a low density expansion for the 

specific mean number of black vertices, M^(p;L) all the 

coefficients other than the first must be zero so that

r
Z s a_ _ (L) = 0 r > 1 (l.5l)
s=l s,r

This enables 8^(l) through to S^(L) to be obtained since

eliminating a (L) from (1.49) and (I.51) gives . r ,r
r-1 _

S (L) = Z s(s° 1 - r" l)a (L) . (1.52)r 1 s=i s,r

Thus an extra term is obtained without deriving any further 

information.

A low density expansion may also be obtained for the specific 

mean number of black clusters

where

k(p;L) = Z k (L)p̂  (1.53)
r=l

r
k (L) = Z a (L) . (1.5%)
^ s=l

The coefficients k^(l) may be obtained independently using the 

linked cluster method. Because the mean number weights are zero

for articulated graphs (see appendix V for definition) only 

multiply connected graphs contribute to k^(l) . Consequently 

the mean number expansion is much easier to determine than the 

higher moment expansions. Solving (I.5I) and (1.^4) for 
^r-1 and a^ ^(L) and substituting in (1.49) gives
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r-2I )
s=l

S ..(L) = I {[ s’̂+(r-l)^(s-r)+r’̂(r-s-l)] a (l)} ^ r,-T s ,r

+[ (r-l)\-(r-l)r^]k^(L) . (l.55)

Thus using the same number of polynomials together with (1.55) 

allows the mean size of coefficients through Ŝ _̂ (̂L) to be 

obtained.

For a lattice and its corresponding matching lattice it can 

be shown that [ 20]

k(p;L) = (j)(p) + k(q;L*) (1.56)

and

k(p;L*) = **(p) 4- k(q;L) . (1.57)

Effectively this states that at density p the mean number of

black clusters on L differs from the mean number of white 

clusters on L* by ^(p) . Similarly the mean number of black

clusters on L* differs from the mean number of white clusters 

on L by (j)*(p) .

When working with the matching lattices it is easier to 

derive k^(L) using the high density series in q on the 

corresponding lattice, e.g. if k^(L) is required on the honey­

comb matching lattice it is easier to derive the coefficient of 

q^ on the plane honeycomb lattice which is identical providing 

r > 6 .

Using the above method the mean number series through .k^(L)
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was derived on the honeycomb matching lattice. (This series is 

listed in appendix III.)

1.6 Derivation of a 'Bond* series from a 'Site' series

From the definition of a subgraph and a section graph [ 22] 

(see appendix V ) we see that all subgraphs are contained in 

section graphs, i.e. a subgraph is obtained by deleting edges from 

the appropriate section graph. It is this fact which enables a 

bond series to be derived from a site series using the Yield 

Factor technique. We define the yield factor of a graph 

G = (V,E) to be

Ïq(<i) = I (1.58)
E' C E
Ë' = E

where E' denotes the bond closure of E . (See appendix V.)

If a section graph G has a ’site’ count a^ , Ü edges 

and a bond perimeter w then this graph makes a contribution to 

the bond series of

& Wv / \a-gP q Y^(q)

Consequently if all the section graphs up to n sites are known 

on a lattice then the bond series can be obtained up to p^ ^ .

In appendix IV the yield factors of graphs, up to seven sites, 

on the F.C.C. lattice are listed. To obtain the seven bond
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perimeter polynomial it vas then only necessary to count, for the 

bond problem, all seven bond trees with their perimeter distribu­

tion. To extend the mean size series by one term the mean number 

coefficient for nine bond graphs vas calculated.

To obtain the site count of a graph from the bond count ve 

use the Mobius inversion method [ 23] and [24]. If the site count 

of a graph G is a^(V,E) then the bond count is

a- (V,E) = Z Ç(E,E»)a (V,E') (l.59)
0 E' s

where the sum is over a complete list of subgraphs of |v| = s 
vertices and

■[:
if E C E'

î(E.E')
otherwise

Inverting (1.59) we obtain

a (V,E) = Z p(E',E)a.(V,E') (l.60)
s E'

where y is the inverse of Ç and is known as the Mobius 

function. In this case y is known to be [24]

T J e-E'I if E» C E 

0 otherwise

In appendix II, y is derived for a lattice [23] defined such that 

no graph in the lattice has less than one multiply connected block,
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1.7 Thesis Description

So far we have described methods used to derive site and 

bond series for a crystal lattice. We endeavour in the chapters 

that follow to determine how the functions, represented by these 

series, vary near the critical point p^ . We assume that the 

n^^ moment, near p^ , varies as (l - p/p^) » where c^ is

the critical point exponent of the n^^ moment. We derive values 

for c^ and obtain relationships between them. The series 

methods however only provide approximate results and so in chapter 

2 we investigate the Bethe lattice. (See Fig. 1.6.)

We obtain exact values for the exponents y , A and g , 

and show that they satisfy the relation y = (3~g)A .

In chapter 3 we introduce the ratio method. This is used 

to derive the critical probability p^ from the series obtained 

using the perimeter method. Approximate values for some of the 

critical exponents are obtained and relations between them 

investigated. Unfortunately to obtain some of the results it has 

been necessary to use series which do not have enough terms, 

consequently many of the results have large error bounds. To 

derive extra terms demands an unreasonable amount of work compared 

with the extra accuracy gained, since one or even two more terms 

in a series make very little difference to the error bounds. Even 

once the lattice configurations are known the lattice count and 

perimeter of each graph has to be determined and even with the aid 

of computers the higher order terms cannot be obtained using the
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’counting’ techniques now available. It is necessary to determine 

a different method by which these series may be obtained. The 

linked cluster technique seemed to provide a solution since it 

reduced the total number of graphs to be counted, i.e. all trees 

were eliminated. Unfortunately, for any but the most simple 

lattices, it has proved equally difficult to obtain the weight 

factors for the graphs used.

In chapter 4 we derive the scaling laws for percolation 

processes. Initially the results are obtained exactly using the 

Bethe lattice and then generalised to include two and three 

dimensional lattices. We have only really investigated the mean 

number series for the F.C.C, lattice (site problem) as this seemed 

to provide the best results for the number of terms available.

More investigation is required in this field, for example, other 

mean number series on different lattices, the F.C.C. bond 

problem particularly, should prove amenable to the same treatment. 

(See chapter 4.) The Padé approximant method should also prove 

useful in investigating the mean number series on lattices for 

which the Nevilles table (see chapter 3) in the above method does 

not converge.

In chapter 5 we calculate the critical exponent 6 which

occurs in the case of the dilute ferromagnet. 5 describes the

variation of the magnetisation with the field near the critical
1 /6point T^(p) , i.e. M ~ H . We have succeeded in calculating

6 at the two end points of the T^(p) vs p curve (see Fig. 1.4,
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section l.l) but at no other point on it. It is important to 

note that the two values of 6 are different and therefore the 

index must change its value somewhere on the curve. We tried to 

derive 6 at a general point on the curve using a method 

essentially similar to that used to derive 6 at T^(l) ,

(see chapter 5 section 2). Unfortunately this failed because 

each graph contributed a different term to the partition function 

Z and therefore the total contribution from all graphs could not 

be obtained.

Chapter 6 is divorced from the preceeding chapters in that 

no critical exponents are calculated. Rather we establish a 

relationship, conjectured by G.A. Baker Jr. and J.W. Essam, between 

the k weight of a graph and the number of blocks of the graph.
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Chapter 2 Derivation of, and relationship between, the critical 

exponents y , A and g for the Bethe lattice

2.1 Relationship between critical exponents

Initially we derive a relationship between y , A and g 

which holds for all two and three dimensional lattices as well as 

the Bethe lattice. The result is not rigorously proved however 

since equation (2.19) involves the summation of a limiting 

procedure.

The n^^ moment of the cluster size distribution varies as;

~ (2.11)

we define

f(X,p) = Z <n >X^ (2.12)
r=0

f(X,p ) = Z <n > _ X^ (2.13)

where :

p^ is the critical probability for the lattice and <n^>

is the mean number of clusters of r sites (bonds).

We show in section 4.2 that <n > 'v ̂  then
r P=Pc

f(X,p^) - f(l.p^) ~ A(1 - X)®"^ . (2.lit)

Expanding f(X,p) in a power series about X=1 gives
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f(A,p) = Z î. (X-1)^
n=0 %"

(2.15)

Let y = logX

then dy = ydX

and M (p) = f(y,p) 
9y y=0 (2.16)

00 — (n) . .
where f(y,p) = Z   y^

n=0 ni (2.17)

M_(p)
= Z
n=0 ni (2.18)

=  z ^  ( l - p / p . ) - Y - ( " - 2 ) A ^ n
n=0 ni (2.19)

= (1-P/Pc)-Y+2A F ( ]
(1“P/P„)

(2.20)

hence

f(p,p) = 4»_ a“Y+2A „ /y
4>

P A
- 1+2

f(p,p) = p G(x )
_ - ^ 2  -^2 
f(p,Pg) ~ P ~ (1-X)

(2.21)

therefore g - 1 =

(2.22)
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2.2 Calculation of y and A for the Bethe lattices

We now consider the values of the above indices for the bond 

problem on the Bethe Lattices [27]. Following the methods used 

in [ 25] we write the configurational generating function as

K^(x,y) = y^*^ Z b^x^y^^ (2.23)
8=0 ^

where

(a-l)s + 0 + 1  is the perimeter of a cluster of s 

occupied bonds 

b^ is the total number of s clusters (of bonds) 

per bond of the Bethe lattice.

The expansion (2.23) may be re-written in terms of the funda­

mental Bethe lattice generating function

B (Z) = Z b Z® 
 ̂ s=0 ^

as

K®(x,y) = y°+lB^(Z)

where

Z(x,y) = xy^ ^

now

A(x,y) = X  {K®(x,y)} 

= xyf*B'(Z)
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where the prime denotes differentiation with respect to Z , 

A fundamental identity is that for p < p^ A(p,q) E p 

Thus, if

z = z(p) = Z(p,q) = p(l-p)^ ^ (2.24)

the generating function must satisfy

B^[z(p)] = G(p) = (l-p)"20 (2.25)

for small enough p . Now B^(z) is a function only of z ,

but z is defined by (2.24) as a function of p for all p .

To a given value of z , however, correspond two values of p , 

one of which tends to zero with z while the other tends to

unity. Consequently if we define p*(p) to be the root of the

equation

p*(l-p*)^ ^ = p(l-p)^ ^ = z 

which vanishes continuously with z , we may re-write (2.25) as 

G(p) = [1 - p*(p)l 

hence we may write

B^(Z) = [1 - X(Z)l"2o 

where X(Z) = X(x,y) is the root of

, x(l - x)^ ^ = z = xy^ ^
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which vanishes with Z .

Now S(p) = [x fj- lnA(x,y)]^^p_y^^

for all values of p .

,-i B:(z)S(p) = 1 + xy^
(1-X) x=p,y=g,X=p*(p)

where

B’’(Z) =
° (l-X)3o

hence

s(p) = '2.26)

near p = p

p*(p) ~ Pc - Ip-Pgl 

so that the mean cluster size becomes hyperbolically infinite as

~ (FÎTip

hence y = 1 for the Bethe lattice.

The third moment of the cluster size distribution is defined

as
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»3<-) ^

“ t x V “ h"iZ)
xy

+ 2x^y3o ^B"(Z) + x^y^G (Z)}

^ _ 1 + 3op* - o^p*^ - g^p*^ - 2ap*^
 ̂ (l - ap*)^

hence M^(p) becomes hyperbolically infinite as 

M_(p) ~  ̂ ---^^ -

hence A = 2 .

Using the relationship derived in (2.22) gives a value for 

g of 5/2 .

2.3 Proof that g = 5/2 for the Bethe lattice 

Method 1.

If we assume that <n > —

then
8 P=Pc gg

<n -> s-1 p=p
-----   ̂ ~ 1 + g/s + ... (2.27)
<*s>
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from the equation (2.23)

<n > = 9°+!% pS (a-l)ss s

[ 25] shows that on the Bethe lattice p = —c a

and

b = 2(gs+g+l)I
s (s+l)(gs+g+l)(gs+g+l-s)!sÎ

therefore

_ f o ^g-1 (gs)!(s+l)(gs+g+l-s)! 
_ -g-1̂  (gs+2-s)l (gs+g)I

9=Pc=g

<n > s P=
[ s ( g-1 ) +g+l] [ s ( g-1 ) +7]... [ s ( g-1 ) +3] 

1 ''g-1-' 4 as+g-l] [ gs+g-2] ...[ gs+l]

hence dividing throughout by gs

<n >s

g-1

g

~ g ^ ^ ^ ^  (i(a+l)(g+2)-3)]

X [ 1 - ^(gg(g-l))] }gs
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hence from (2.27)

g = 5/2 .

Method 2.

From [ 25] the Bethe lattice generating function 

At the critical point X = — and the value of Z has a maximumC O

a
now if (x.y) = y°'̂ B̂„(Z)

hut at p = p the mean number function c

Kr̂ (p̂ ,X) ^ (1 - X)^ ^ where X = ^
c

hence we require an expansion of B^(Z) in terms of Z/Z^ .

Since we are only concerned with positions very close to the 

critical point we write

X = X - e c

Z = (X̂  -e)(l - X^ + e)°"^

= X^d - X^)-l(l - ^)(1 +

Z = Z^(l - oe)(l + . (2.29)

Expanding (2.29) in powers of gives
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 .

1 /n ^ 2 g(g-2)£

hence

%c-z = %e-s T;:!) (1 + 3 -t;:!)"- +

,2 = 2(2^^., 2 g(g-2) 2(g-l)
3 (g-l) 3g

X (1-Z/Z.)h

Substituting the values for X into (2.28) gives

-D (>7 ) _ 1 (2-[g+l]Xp) / g(g+l)gw  ge \-(g+l)
)0+l ^ (a-1) + (o-l))

- r I c(o+i)E\fi g(g+l)e g" (̂g+l) (g+2)e'- "c'l (a-1) HI - (,_1)

a^(g+l)(a+2)(q+3)s^ i
6(a-l)3

= B (1 _ P-(g±l)£^. + a^(g+l)(g+2)£^ ^ .... ^
 ̂ 2(g-l)2 3(g-l)3

Replacing £ by the value previously derived gives

Ig-lj g

X (l-Z/Z )3/2 + .... } (2.30)

hence

K(p^,X) ~ A(l-X)3/2 (2.31)

therefore g - 1 = 3/2 giving g = 5/2 .
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To check that the value of the constant A derived vas 

correct, thus indicating that the method had been carried out 

correctly, the function B^(Z) vas calculated exactly for 

0 = 3 .

2.k Calculation of B^(Z)

B.(Z) = § M  • (2.32)
2 2 (1 - X)^

To obtain a solution for B^(Z) in terms of Z ve require X as 

a function of Z nov

Z = X(l - x)2

- 2X^ + X - Z = 0 . (2.33)

From the standard method for solving a cubic equation given in

[26] ve obtain the three roots of (2.32).

2
^1 ^^1 * ^2̂  * 3 real for all values of Z

gives X^ in the range

X^ < 0 1 —

i < < 1

Xg ■= “5(s^+Sg)+| + ̂ 2 (s^-Sg) real for 0 <_ Z ^ ^

gives X in the range

0 < %2 1  i
Also Xg = 1
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real for 0 <_ Z 

gives X^ in the range

* 3 - 5
where

s^ = [Z/2 - 1/27 + (zf/U - Z/27)^]^/3

Sg [Z/2 - 1/27 - (zf/U - Z/27)^]^/3

The root which is required in this particular case is X^ since

this is the root which decreases with Z .

Xg will now he written as X .

" 9 + ifsi+Sg)^ - - fCs^+Sg)

+ ̂ ( S i - s ^ )  - ̂ (Si-Sg) 

X^(1-2X) = -2Z - I + (Sj+Sg) + |(s®+Sg)

+ -"g- + i/3(s^-Sg)

In this case Z^ = 

therefore Z = — X

Substituting these values into (2.31) gives
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+ I [2X-l+2(x2_x)2]2/3

+ i[2X-l+2(x2_x)5]2/3

^  i[2A-1+2(X^-X)̂  ] 1/3

B (X) = {-8X-I8+I8 [ (2X-1+2(X^-X)^)1/3
32X

+ |(2X-1+2(X^-X)^)^/3]

+ 18/3 i[i(2X-l+2iX^(l-X)^)^/3

-(2X-l+2iX^(l-X)2)l/3]I

The real part of the first bracket gives an expansion in powers 

of (l-X)* .

While that of the second bracket gives an expansion in powers of 

(l-X)^  ̂ n 7̂ 0 .
Considering the value for Bg(X) we see that the coefficient 

of (l-X)3/2 is 5 ^  .

From equation (2.30) the coefficient of (l-X)^ is given

by .

8 3 ( o ± l L ^ 2 ( a ^ j ^  9 Ù  for 0 = 3
^ (a-1) 0^
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hence we see that both results give the same value for the 

coefficient.
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Chapter 3 Numerical estimates for critical probabilities and 

critical exponents for two and three dimensional 

lattices

3.1 Methods used to analyse series

In this chapter we derive certain mean size of cluster 

expansions, and higher moment expansions, for various lattices.

The series were obtained using the perimeter method discussed in 

[ 27] j[ 8] ,[ 20] and [ 6] . We have also used the linked cluster 

expansion technique to derive a series on the hexagonal lattice, 

the second moment weight factors being obtained from the pair 

connectivity weights. This series however has not been completely 

verified and is listed in appendix III.

The cluster size distributions for each lattice, contained in 

appendix I, were derived using a counting program to enumerate 

the complete list of seven site connected graphs. The majority 

of work was performed on the site problem where the known series 

were extended by a number of terms.

The mean size of cluster expansion can be defined in three 

ways for the site (bond) problem, (see [28])

(i) pS(p) = Z Z a
s t S't

(ii) pS(p) = Z Z a s.e.p^q*"
s t s.t

(iii) pS(p) = Z Z a e^p^q^
s t
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where s is the size

t is the perimeter

e is the number of edges in the graph

a , is the count per site .s ,t
All three cases have been considered but (i) has proved to 

be the most useful. The series derived using (ii) and (iii) are 

listed in appendix III. The series (i) appear to converge more 

rapidly than either (ii) or (iii), see Fig. 3.1. Also methods 

are available which allow two extra terms to be derived for (i) and 

this is the real advantage over the other two series. This 

method has been extended as shown in section (l.U) to include the 

higher moment expansions.

If we expand the mean size of finite clusters in powers of 

p then :

S(p) = 1 + Z a p^ (3.10)
n=l

similarly for the higher moment expansions

M_(p) = 1 + Z b p^ (3.11)
3 n=l

M,(p) = 1 + Z c p^ . (3.12)
n=l ^

If we assume as in [ 12] that a ^ n^p ^ then this impliesn -̂c
that S(p) has a singularity of the form (p -p')V "where
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1

Fig. 3.1 Triangular Lattice site problem. Successive estimates for the
critical percolation probability (p̂ -̂ l/p̂ ) plotted against 1/n .
(a ) Mean size expansion using e^ (B) Mean size expansion using s x e

2(C) Mean size expansion using s
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Y = j+1 . Similarly for M^(p) and M^(p) except that a

different value of j is expected.

All the methods which are now discussed will use the

terminology of the mean size of cluster series. This is merely

to avoid repetition as the analysis which follows is the same

for the higher order moments.

We define, as in [ 12] , the ratios of alternating terms as 
^n -P = (----)̂  '. These are tabulated for various lattices in

*n-2
tables (3.2), (3.5), (3.8), (3.11), (3.1%). The function 

is used rather than the direct ratios in an attempt to eliminate 

any oscillatory behaviour in the series. We plot p^ against 

1/n in Figs. (3.2), (3.4), (3.6), (3.8), (3.10) and assume that 

lim p^ = p = 1/p^ . Values of the function np - (n-l)p
n-H»

were calculated and in this way estimates for p^ , on various two

and three dimensional lattices, were made.

Once a value for p on each lattice is establishedc
successive estimates of j , defined by

= n(p^ - p)/p (3.13)

are calculated and these are presented in tables (3.3), (3.6), 

(3.9), (3.12), (3.15). The corresponding graphs are plotted in 

Figs. (3.3), (3.5), (3.7), (3.9), (3.11). It is assumed in

calculating for all three moments that all the series diverge
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at the same critical point p^ . The numerical evidence, i.e. the 

for each moment, seems to support this view.

When necessary we have used the Nevilles Table method to 

determine the intercept of the graphs of against 1/n .

Here the "linear" extrapolants are given by nj^ - (n-l)j^_^ , 

the "quadratic" extrapolants are'given by g[n&^ - (n-2)&^_^] ,

the "cubic" extrapolants by ^{nq^ - (n-3)q^_^] and so on. The 

extrapolation is stopped when successive estimates cease to progress 

monotonieally. As an example of the method we show in Table 3.0 

the values derived for the fourth moment expansion on the hexagonal 

matching lattice site problem.

Table 3.0

n jn &n Si rn
4 10.6145
5 9.2506 3.7948
6 8.5150 4.8372 6.9220 6.5078
7 8.0675 5.3821 6.7445 6.5078
8 7.7693 5.6818 6.5869 6.3081

tn

6.1084

Once values of j for all three moments have been calculated 

it is possible to estimate a value for the gap index A .

From (2.11) M^(p) = A^(l - p/p^) ^ therefore if the

indices of s(p) , M^(p) and M^(p) are: j(a^)+l , j(b^)+l , 

j(c^)+l respectively we see that
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and

A = j(b^) - j(a^)

A = j(c^) - j(b^)

If any discrepancy has occurred between the two calculated 

values of A the average has been taken.

Then using the relationship g = 3 - y/A we have estimated 

values of g .

3.2 Honeycomb Matching Lattice - site problem 

Table 3.1

Coefficients for expansion of S(p) , M^(p) and M^(p) .

We quote the successive coefficients in tabular form

n a b 0n n n

1 12 36 84
2 66 462 2046
3 312 3960 28848
k 1368 27576 300456
5 5685 168489 2577903
6 23034 943392 19343682
7 90288 4943826 131394240
8 350124 24666828 826812852



—18.0

“ 10.0

3. 3 1

Fig. 3.2 Hexagonal Matching Lattice site problem. Successive estimates 
■for the critical percolation probability (p̂ ->l/p̂ ) plotted against 1/n . 
(a ) Fourth moment expansion (B) Third moment expansion (C) Mean size 
expansion.
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Table 3.2

Ratios of coefficients of exoansion p (a ) - p (b ) andn n ^n n

n
P n ( = n )

3 5.0990 10.4881 18.5318
h L.5527 7.7258 12.1182
5 4.2686 6.5229 9.4531
6 .4.1034 5.8490 8.0238
7 3.9852 5.4168 7.1393
8 3.8988 5.1134 6.5378

From Fig. 3.2 the estimated value for

= 0.3015 ± 0.001 •

Table 3.3

Successive estimates of j(â ) , j(bj

the above value for p^

n j n ( t n )

3 1.6121 6.4865 13.7620
h 1.4906 5.3173 10.6145
5 1.4350 4.8332 9.2506
6 1.4230 4.5808 8.5150
7 1.4108 4.4322 8.0675
8 1.4038 4.3335 7.7693

n
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In order to estimate the values of j , from the above, 

graphs of against l/n were plotted, see Fig. 3.3, and

where applicable a Nevilles Table was calculated for each set of 

values. This leads to estimations of j as

j(a^) = 1.40 ± 0.03

j(b^) = 3.80 ± 0.1

j(Cn) = 6.20 ± 0.1

This would indicate a gap index

A = 2.4 ± 0.2 

and a value of g as 3 - 2.4 ± 0.03

2.4 ± 0.2

It must be noted here that g ^  2 hence the above error 

limits must be chosen to comply with this restriction.

Hence we can reduce the error limits on A to ,

A - 2.4 * °;o3

and

g = 2.0 + 0.1



“ 15.0

- 10.0

0.4

Fig. 3.3 Hexagonal Matching Lattice site problem. Successive 
estimates . for the index of the different moment expansions plotted 
against l/n . (A) Fourth moment expansion (B) Third moment expansion 
(C) Mean size expansion.
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3.3 Simple Quadratic Matching Lattice - site problem 

Table 3.4

Coefficients for expansion of S(p) , M^(p)

We quote the successive coefficients in tabular

n a b cn n n

1 8 24 56
2 ■ 32 216 944
3 108 1308 9300
k 348 6516 68316
5 1068 28812 417924
6 3180 117216 2250924
7 9216 448152 11031480
8 26452 1636728 50294332

Table 3.5

Ratios of coefficients of ' Pn(tn)

n p (a ) P (b ) P (c )n n n n n

3 3.6742 7.3824 12.8869
k 3.2977 5.4924 8.5070
5 3.1447 4.6933 6.7036
6 3.0229 4.2413 5.7401
7 2.9376 3.9439 5.1377
8 2.8841 3.7368 4.7269

From Fig. 3.4 the estimated value for p

Pc = 0.4o8 ± 0.03

n n



_  15.0

_1G.0

Fig. 3.4 Simple Quadratic Matching Lattice site problem. Successive 
estimates for the critical percolation probability (p̂ ->l/p̂ ) plotted 
against l/n . (A) Fourth moment expansion (B) Third moment expansion 
(C) Mean size expansion.



- 59 -

Table 3.6

Successive estimates of j(a^^ , j(b^^ and d(c^) using 

the above value of p

n

3 1.4973 6.0361 12.7735
4 1.3819 4.9636 9.8834
5 1.4151 4.5744 8.6753
6 1.4001 4.3828 8.0518
T 1.3897 4.2638 7.6733
8 1.4138 4.1968 7.4287

From the above estimates graphs of against l/n were

plotted, Fig. 3.5s and this leads us to estimations of j as

j(a^) = 1.4 ± 0.1

j(b^) = 3.8 ± 0.1

j(c ) = 6.2 ± 0.1n

This would indicate a gap index A of 2.4 ± 0.2 and a value

s 3 - | : H  5-;l •

Again with the restriction that g ^ 2 we may reduce the 

error limits on A to

and

g = 2.0 + 0.12



-  15.0
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3.8

Simple Quadratic Matching Lattice site problem. SuccessiveFig. 3.5 
estimates
against l/n . (A) Fourth moment expansion(b ) Third moment expansion 
(C) Mean size expansion.

for the index of the different moment expansions plotted
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3.4 Triangular Lattice - Site Problem

It is important to study this lattice since the exact value 

of p^ is known. This aJlows us to obtain a measure of the 

accuracy of series expansion techniques.

Table 3.7

Coefficients for expansion of S(p) , M^(p) and M^(p) .

We quote the successive coefficients in tabular form.

n a b cn n n

1 6 18 42
2 18 120 522
3 48 552 3840
k 126 2160 21654
5 300 7428 . 101964
6 750 24162 429762
T l686 72882 1649226
8 4074 214248 5947098
9 8868 598464 20231460

The exact value of p^ = § .



- 10.0

•Fig. 3.6 Triangular Lattice site problem. Successive estimates for the
percolation probability (p̂ -̂ l/p̂ ) plotted against l/n . (A) Fourth
moment expansion (B) Third moment expansion (C) Mean size expansion.
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Table 3.8

Ratios of coefficients of p (a ) , p (b ) and p (c )n n n n n n

n

3 2.8284 5.5377 9.5618
k 2.6458 4.2426 6.4407
5 2.5000 3.6683 5.1530
6 2.4398 3.3446 4.4550
7 2.3707 3.1324 4.0218
8 2.3307 2.9778 3.7200
9 2.2934 2.8656 3.5025

The exact value of is 0.5 and Fig. 3.6 can be seen to

be converging to this value fairly rapidly.

Table 3.9

Successive estimates of j(a^^ , jCb^^ and j(c^^ for

Pc 0.5 .

n

3 1.2426 5.3066 11.3427
4 1.2915 4.4853 8.8814
5 1.2500 4.1708 7.8824
6 1.3193 4.0337 7.3649
7 1.2973 3.9633 7.0762
8 1.3227 3.9111 6.8798
9 1.3204 3.8950 6.7611

From Fig. 3*7 the convergence of the *s is seen to be 

relatively slow, but the data is consistent with the assumption



15.0

—  10 9 0

l.U

Fig. 3.7 Triangular Lattice site problem. Successive estimates 
for the index of the different moment expansions plotted against l/n 
(a) Fourth moment expansion (B) Third moment expansion (C) Mean size 
expansion.
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that they have the same limits as the two previous lattices. 

Namely

j(a^) = l.k 

= 3.8 

j(c^) = 6.2 

Giving a gap index, as before, of 2.h.

3.5 Face Centred Cubic Lattice - Site Problem 

Table 3.10

Coefficients for expansion of S(p) , M^(p) and M^(p) we 

quote the successive coefficients in tabular form

n bn cn

1 12 36 84
2 84 552 2388
3 504 5880 41136
k 3012 53280 544668
5 17142 433362 6095418
6 96228 3280224 60712596
7 532028 23558748 555088244



_ 15.0

0.*» n 0. 3 0,2 0.1
Fig. 3.8 - Face Centred Cubic Lattice site problem. Successive estimates
for the critical percolation probability (p̂ ->l/p̂ ) plotted against 1/n .
(a ) Fourth moment expansion (b ) Third moment expansion (C) Mean size
expansion,
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Table 3.11

Ratios of coefficients p (a ) , p (b ) and p (c )n n n n n n

n Pn(tn) Pn(=n)

2 9.1652 23.4947 48.8672
3 6.4807 12.7802 22.1295
k 5.9881 9.8245 15.1025
5 5.8320 8.5849 12.1728
6 5.6523 7.8464 10.5578
7 5.5710 7.3731 9.5429

From Fig. 3.8 the estimated value for ;

= 0.198 ± 0.002

Table 3.12

Successive estimates of j(s , j(\)
above value of pc

n jn(Gy) jn(tn)

3 0.8496 4.5914 10.1449
k 0.7426 3.7811 7.9612
5 0.7737 3.4991 7.0511
6 0.7149 3.3215 6.5427
7 0.7215 3.2191 6.2264

n

From the above information estimates of j were made, see 

Fig. 3.9, these were



-  10.0

--0.7

Fig. 3.9 Face Centred Cutic Lattice site problem. Successive estimates
for the index of the different moment expansions plotted against l/n . 

(a ) Fourth moment expansion (b ) Third moment expansion (C) Mean size 
expansion.
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j(a_) = 0.70 ± 0.02

j(t^) = 2.9 ± 0.1

j(c^) = 5.1 ± 0.1 .

This would give, for three dimensions, an estimated value 

for the gap index A of 2.2 ± 0.2. Hence we obtain

g = 2.23 ± 0.08.

3.6 Face Centred Cubic Lattice - Bond Problem 

Table 3.13

Coefficients for expansion of S(p) , M^(p) , and M^(p)

i the successive coefficients in tabular form.

n a b cn n n

1 22 66 154
2 234 1632 7218
3 2348 28524 204908
h 22726 422592 4459822
5 214642 5660238 82265926
6 1993002 70767942 1354071174
7 18266276 841184856 20495769944
6 165690848 9616920970 290829802076
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B

C

-  35.0
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8. 3S
r  8.0 
0.0

0.3 0.2 0.1

Fig. 3.10 Face Centred Cubic Lattice bond problem. Successive estimates
for the critical percolation probability (p̂ -̂ l/p̂ ) plotted against l/n .
(a ) Fourth moment expansion (B) Third moment expansion (C) Mean size
expansion,
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Table 3.1%

Ratios of coefficients p (a ) , p (b ) and p (c )n n ’ ^n n ^n n

n

3 10.3309 20.7890 36.4770
k 9.8549 16.0916 24.8571
5 9.5611 14.0868 20.0369
6 9.3647 12.9407 17.4246
T 9.2250 12.1907 15.7842
8 9.1179 11.6573 14.6554

From extrapolations based on table 3.14 ■
for , see Fig. 3.10, is p^ = 0.1193 ± 0.(

Table 3.15
Successive estimates of j(a^) , j(b^^ ;

the above value of pc

n j(a^) j(\) j(On)

3 0.6974 4.44o4 10.0551
k 0.7028 3.6789 7.8618
5 0.7032 3.4028 6.9520
6 0.7032 3.2630 6.4725
7 0.7038 3.1804 6.1814
8 0.7021 3.1258 5.9871

n

From the above information estimates of j were made using a 

Nevilles Table, see Fig. 3.11, these were
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Fig. 3.11 Face Centred Cubic Lattice bond problem. Successive estimates 
for the index of different moment expansions plotted against l/n . 

(a ) Fourth moment expansion (b ) Third moment expansion (C) Mean size 
expansion.
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j(a ) = 0.70 ± 0.01 

j(b^) = 2.9 ± 0.1 

j(c^) = 5.1 ± 0.1 .

These results are consistent with those derived for the F.C.C. 

lattice site problem, and give the same results for both A and 

g •

3.7 Estimates of Y , A and g from series extrapolation 

techniques

From the previous sections it would seem reasonable to suppose 

that the n^^ moment of the cluster size distribution varies as

M^(p) ~ (Pg -

where in two dimensions

Y = 2.^0 ± 0.1

A = 2.40 ± 0.2

g = 2.0 + 0.1

For three dimensions

Y = 1.70 ± 0.02

A = 2.25 ± 0.25

‘ g = 2,2k ± 0.09
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Once we have decided upon a value for j we can estimate 

the radius of convergence of the series, see [21], hy calcula­

ting

3n = (n+j)/np^

The quantity 3^ should converge to with almost negligible

slope. Even if the estimate for j is incorrect 3^ must 

still converge to p^ . In Table 3*l6 we list 3^ for the site 

problem on the triangular, simple quadratic matching and honeycomb 

matching lattices. In Table 3.IT 3^ is quoted for the F.C.C. 

site problem and the F.C.C. bond problem.

Table 3.16

Site problem: Two dimensional lattices: successive estimates

for the critical probability 3̂  = (n+j)/np^ j = 1.4

n Triangular Simple Quadratic 
Matching Lattice

Honeycomb 
Matching Lattice

h 0.5103 0.^094 0.2965
5 . 0.5120 0.4070 0.2999
6 0.5055 0.4080 0.3006
7 0.5062 0.4085 0.3011
8 0.50^1 0.4074 0.3014
9 0.5039

•̂c
0.5 Exact 0.408 ± 0.002 0.302 ± 0.002
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Table 3.17
Three dimensional lattices: successive estimates for the 

critical probability 3 = (n+j)/np j = 0.7n n

n

k
5
6

7
8

Estimated 
value of p

Face Centred 
Cubic Lattice 
Site Problem

0.19622
0.19547
0.19756
0.19744

0.198 ± 0.001

Face Centred 
Cubic Lattice 
Bond Problem

0.11922
0.11923
0.11924
0.11924
0.11927

0.1193 ± 0.0001

3.8 Derivation of an Upper Bound for a Random Plane Network [ 5]
To construct a random plane network first pick points from the

infinite plane by a Poisson process, with density D points per

unit area. Next join each pair of points by a line if they are

separated by a distance less than R .

Gilbert shows [ 5l that in two dimensions a lower bound for
2E is 1.75 where E = ttR D and E is the value of E such c c

that

lim P(N) = P(oo) ^ 0 
N-X»

where P(N) is the probability that a point belongs to a component 

containing at least N-1 points.
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Gilbert points out that a correspondence between percolation

processes and the random plane network can supply an upper bound

for E . He obtains a value 17.4 for this bound. To reduce thisc
bound it is necessary to increase the similarity between the two 

processes. To do this we wish to make the distance R in the 

random plane as near to the nearest neighbour distance on the 

lattice as possible.

Consider the case of the simple quadratic lattice (bond 

problem) and separate the bonds as shown in Fig. (3.12).

We say that if any two points are connected in the squares 

A and B then the bond AB is occupied.

Fig. 3.12

a s a

- ' d

I

The probability that a point in C is connected to a point 

in F , see Fig. (3.13), is

dp = (1 - e-DL(L-x))(i _
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6x+ -  X

Hence the total probability that the bond AB is occupied is

p = (1 - g-DL(L-x))oLax

2
= DL^ + e”^^ - 1

P = EL
ïïR‘

+ e
EL2
irR̂

-  1 (3.14)

Now we need to choose R to be the length of the diagonal of 

the square since we wish to be able to say that any two points in 

the square are connected. This ensures that if two bonds are 

connected in the lattice case then there is at least one path 

between them in the random plane case, thus providing an upper 

bound.

The selection of R as the diagonal rather than the side of 

the square does not affect the argument since increasing R
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2 2increases the upper bound. Substituting R = 2L in (3.1^) 

gives

(3.15)

For the simple quadratic bond problem ve know that p = g hence

a bound for E can be calculated, c

E < 7.6 . c —

For the triangular lattice bond problem we must consider 

hexagonal areas, see Fig. (3.1^).

Fig. 3.14

/
R

method as that described above

+ e^(- - 1
irR

R = 28a hence
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S?> • (3.16)

For this lattice p = 0.347296 and ve obtain for Ec c

E < 9.0 c —

Since the first lattice supplies a better upper bound ve 

choose that value and finally obtain as bounds for E

1.75 1  1  7.6
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Chapter 4 The Scaling Lavs for Percolation Processes [29]

4.1 Analogy betveen the mean number of clusters and the free 

energy of a ferromagnet

So far ve have endeavoured to derive estimates for the 

critical exponents on various lattices. We have shovn for the 

Bethe lattice that the indices for the n^^ moment cluster size 

differ by a constant A and indicated the truth of this statement 

for various tvo and three dimensional lattices. We vish nov to 

derive the scaling lavs vhich describe the behaviour near the 

critical point. These are then tested using the exact solution 

for the Bethe lattice and the numerical vork of chapter 3 is 

found to be consistent vith the scaling hypothesis.

An analogy betveen percolation and ferromagnetism has been 

dravn by Kasteleyn and Fortuin [30], namely

mean number of clusters free energy

percolation probability spontaneous organisation

mean size of finite clusters initial susceptibility

The basis for this analogy may be seen by considering the moment

generating function for the site (bond) problem

k(p,X) = Z <n^> X . (4.10)
s

The mean number of clusters of size s , <n > is calculateds
per site (bond) of the lattice, the lattice being assumed infinite
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but only finite clusters being counted. Clearly k(p,l) is

the mean number of finite clusters of any size or briefly the

mean number of clusters. The parameter A will be treated as 

analogous to the magnetic field parameter exp(- so that

A = 1 corresponds to zero field and k(p,A) is then analogous to

the free energy in a magnetic field. The temperature analogue is

the probability p and

p > p T < T c c

where p^ is the probability above which infinite clusters are 

to be found.

The field derivatives of the free energy correspond to the 

moment s

%j(p) = 1̂ )'̂  k(p,X) A=1

= Z ŝ  <n > . (4.11)
s

The first moment is the mean number of particles per site 

(bond) which belong to finite clusters, or p times the probability 

that the particle is contained in a finite cluster. The percola­

tion probability is defined as the probability that the particle 

belongs to an infinite cluster thus

P(p) = 1 - p ^m^(p) . , (4.12)
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This function is the spontaneous magnetisation analogue 

being related to the first derivative of the mean number. It

is zero below p^ just as the magnetisation vanishes above T^ .

The second moment is the mean size of finite clusters which 

should therefore be taken as the susceptibility analogue. The

mean size diverges in the limit |p-p̂ | -KD just as the 

susceptibility diverges as |T-T̂ | ->■ 0 .

By numerical analysis of series expansions it was found,

[31] and [32], that for the Ising model the j^^ field derivative 

of the free energy in the limit H ->• 0 is consistent with the 

asymtotic form

f.(T) |t-T (4.13)J c

where the exponents y and A are approximately equal above and 

below T^ . This leads [ 33] to the scaling law for the singular 

part of the free energy

we now wish to propose a similar result for percolation processes 

the form of which is clear from the analogy. The proposal will 

be supported by the exact analysis on the Bethe lattice and by 

numerical work.
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4.2 The Scaling Lavs for Percolation Processes

In their analysis of the Bethe lattice, Fisher and Essatn [25] 
used the generating function

K(x,y) = I k  ̂ (4.15)
s,t

We shall make use of the relation

k(p,X) = K(pX,l-p) (4.16)

on comparison with equation (4.10)

= I k^^P^(l-p)^ . (4.17)
t

On the Bethe lattice, the perimeter is uniquely related to size 

so that in this case there is only one term in the sum, but 

equation (4.17) is a result which may be applied to any lattice. 

This unique relation of perimeter to size enabled an exact 

expression for k^^ to be found from which we deduce

k s (4.18)st
S-X»

where in terms of the coordination number a + 1 ,

V = o^/ia-l)^ ^ and g = 5/2 

this result together with

t = Ca-l)s + ■t̂ (a)
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gives

s (4.19)
S-»o°

where

p(p) = vp(l-p)^ ^ (4.20)

and hence in the limit Xp(p) 1 from below, we have

kging(p,X) {1 - Xw(p)}G"l . (4.21)

When X = 1 equation (4.21) implies that there is a singularity 

in the mean number at p = p^ ,

where

y(p^) = 1

Thus

and there is just one solution in the interval (0,l) , namely

since y(p) also has its maximum value at p^ . Expanding y(p) 

around pc

y(p) 'V 1 - A|p-p 1̂  (4.23)
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where for the Bethe lattice A = 2 and A = a^/2(a-l) . The 

function (p,X) has no singularities for A < 1 (cf. the

Yang and Lee theorem for the Ising Model). For given p there 

is a singularity at

This critical curve corresponds to the 'pseudo' spinodal curve 

for the Ising Model, [34] . Substituting equation (4.23) into

(4.21) we obtain

~ (1 - A(1 - a Ip -p Î . (U.25)

By differentiating this j times with respect to X we further 

obtain

Mj(p) ~ Bjlp-p^l^^ 1 (4.26)

where

Bj = (l-g)(2-g) .... (j-g)A^ ^ j

Equation (4.26) is analogous to (4.13) and by comparison 

Y = (3 - g)A

a result we obtained in Chapter 1, which gives Y = 1 for the 

Bethe lattice corresponding to a simple pole in the mean size at 

p = p^ . The result which corresponds to (4.l4) may be obtained 

by writing X = exp(-^) , thus
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ksing(P'A) ~ .iP-Pol
The critical exponents are restricted hy the exact result 

that P(p) is finite. From equations (4.26) and (4.12)

P(p) ^ (p-Pg)^ ^
for

P + Pc

and hence A y .

An obvious extension of P(p) to finite X < 1 and use of 

equation (4.21) yields

c
for X 1

P(p„,X) ~ (1 - X)® 2

and hence g ^ 2 a result used in Chapter 3 to confine the 

error bounds on g .

Numerical work on series expansions for various two and 

three dimensional lattices supports the conjecture that equations

(4.21), (4.23), (4.25) and (4.26) are generally valid but with 

different values of the two independant exponents y and A .

The results indicating the validity of (4.26) for j = 2, 3 and 

4 are listed in Chapter 3.

To test the validity of (4.23) plots of <ng^^>/<ng> were 

made for many values of p in the range
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-5 IP-PcI -110 ’ <  —  <10

now from (4.19)

~ y(p)(l - g/s) . (4.27)

Hence if <ng^^>/<ng> is plotted against 1/s the intercept

should give a value for y(p) , and the gradient a value for g .

The results which now follow were obtained using the cluster

expansions of the face centred cubic lattice site problem. This

lattice was chosen since the ratios <n ,_>/<n > seemed tos+1 s
converge smoothly to y(p) .

In order to estimate the correct intercept a Nevilles table 

was plotted from the ratio values. A sample of the computer 

output is listed in Table 4.1 for p = 0.19346 . The number of 

decimal places used was however much greater than in the figures 

recorded.

The value which appeared in the last column of the Nevilles 

table was the one used for y(p) for each value of p .

One expects the maximum value of y(p) = 1 to occur at 

p = p^ . The Nevilles table however did not give these results. 

The maximum value on the F.C.C. lattice occurred at p = 0.19346 

instead of at the expected value of p = O.I98 . The maximum 

value of y(p) was also given as 1.00123180 .

One can see the reason for these apparent discrepancies 

when one considers how they were derived. The Neville Table
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Table 4.1

Sample of the computer output to estimate y(p) for a 

given value of p .

<Gs+l>
<n > s

Nevilles Table

1 0.0146589
2 0.0046838 0.3195
3 0.0023769 0.5074 0.8834
4 0.0014316 0.6023 0.8868 0.8902
5 0.0009531 0.6658 0.9196 0.9688 1.0211
6 0.0006785 0.7118 0.9422 0.9874 1.0061
7 0.0005067 0.7469 0.9570 0.9940 1.0029

values oscillate, albeit slightly, about the true result unless 

very many terms of the series are known. Another term in the 

series could have moved the maximum to a different position. By

consistently chosing the last value in the Nevilles table we 

assume that this change in value of the variable will not change 

the shape of the y(p) curve but rather only shift the axes.

In accordance with this assumption (4.23) was adjusted to 

give agreement with the Nevilles table results. The value of 

A should not be affected by this change.

Equation (4.23) them becomes

y(p) = M - A|p-p^| (4.28)

where
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M is the maximum value of y(p) and p^ is the 

value of p for which this occurs.

A graph of log[M - y(p)] plotted against log[ | |  ]

should provide a value for A and A .• The results were plotted

over three decades for p < p and p > p and fitted extremelym m
well onto two straight lines. In tables 4.2 and 4.3 the results 

are listed. Figs. 4.1 and 4.2 are the corresponding graphs.

Once it had been ascertained over which region the straight 

lines extended a least mean square fit was used on the points.

This gave

A = 2.0159 p < p^

A = 1.9856 p > p.m

log (a) = 2.716 p < p.m

log(A) = 2.502 p > p^

The two results are extremely close together and we conclude

that A = 2.0 above and below p . This value is within errorc
bounds of the value calculated in Chapter 3 . Though if A = 2.0 

exactly this would mean that A does not change in going from the 

infinite (Bethe) lattice to three dimensions but then shows an 

appreciable jump in going to two dimensions.
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Table 4.2

Selection of the values used, ranging over three decades.

to plot Fig. 4.1 . p < pm

p y(p) -log[ |p-Pĵ |] -log[ M-y (;

0.19336 1.00123167 9.2103 15.8557
0.19334 1.00123161 9.0280 15.4762
0.19332 1.00123154 8.8739 15.1626
0.19308 1.00122986 7.8753 13.1528
0.19272 1.00122441 7.2089 11.8154
0.19236 1.00121544 6.8124 11.0207
0.19200 1.00120292 6.5293 10.4524
0.19164 1.00118684 6.3089 10.0097
0.18966 1.00103429 5.5728 8.5297
0.18606 1.00047309 4.9063 7.1839
0.18246 0.99953404 4.5099 6.3784
0.17886 0.99820309 4.2267 5.7996
0.17562 0.99646585 4.0063 5.3463
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Fig. U.l Plots of -log[M-y(p)] plotted over three 
decades against -log(|p-p |) for p < p
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Table 4.3

Selection of values used, ranging over three decades, to

)t Fig. 4.2 P > Pm

P u(p) -log[|p-p^|] -log[ M-y (p)]

0.19354 1.00123171 9.4335 16.2235
0.19358 1.00123160 9.0280 15.4249
0.19362 1.00123145 8.7403 14.8653
0.19366 1.00123125 8.5172 14.4133
0.19386 1.00122962 7.8420 13.0362
0.19426 1.00122314 7.1309 11.6568
0.19466 1.00121237 6.7254 10.8487
0.19506 1.00119734 6.4378 10.2757
0.19546 1.00117804 6.2146 9.8310
0.19746 1.00101843 5.5215 8.4525
0.20146 1.00039032 4.8283 7.0803
0.20546 0.99936461 4.4228 6.2833
0.20946 0.99795786 4.1352 5.7218

In the above analysis we have assumed that the value of g 

is independant of p . To check this assumption the value of g 

was calculated for a large number of values of p using equation 

(4.27). The value of g would appear to vary very slowly with 

p but this may be because only a small number of terms are 

available. Over the range of p used the above assumption would 

appear to be valid.
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Chapter 5 Determination of the critical index <S at high 
and low temperatures for p = 1 and p = p_

5.1 Calculation of 6 for p = p^ and J »  k^T

It has been shown by Dr. J.¥. Essam (on the Bethe lattice) 

using scaling arguments similar to those in the last chapter, 

that for J >> kgT and p = p^ M 'v . Where 1/6 is

related to g by the expression 1/5 = g - 2 , therefore for 

the Bethe lattice 6 = 2 .

We can show this directly in the following manner. We 

consider the bond problem with J >> k^T . There will be a 

fixed number of atoms N and let there be n^ atoms in the t^^ 

cluster then

mn H
= mn^tanh -p-ÿ (5.10)

where is the magnetisation of the t^^ cluster.

^t
M. = mn. { 1 - } (5.11)
^  ̂ 1+y t

where

Now

M = <ZM > (5.12)
t ^

hence n
w  -, 2y n
- = m{l - -<Z  n- > . (5.13)

t 1 + y
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If we consider the probability of a bond being occupied as 

p then

M  ■ 2 Î »  - 4 :  (5-i‘)t 1+y r 1+y^

where (a-l)r+2 is the perimeter of a cluster of r sites 

b^ is the number of trees per site 

We digress at this point to consider the configurational 

generating function on the Bethe lattice.

K®(x,y) = I b x^y(^ . (5.15)
r=l

Let

then

where

Bg(Z) = I (5.16)
r=l

K®(x,y) = y^Bp(Z) (5.17)

Z = xy^ ^

Using arguments similar to those in Chapter 2, see [25], we can 
obtain ^  in the form

= [1 - (5.18)

where X(Z) is the root of X(l-X)*̂  ^ = Z which vanishes with Z 

For a = 2 this can be easily solved and we obtain
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From (5.16)

We can re-write (5.1^) in the form

^  I (-1)"+! I rbyprq(°-l)r,nr . (5.21)
n=l r=l

Let = pq^ 

then

^  I (-1)"+^ I ^  I (-1)"+! I r b X
P n=l r=l P n=l r=l

(5.22)
Comparing the second sum on the right hand side of (5.22) 

with (5.20) we see that, for a = 2

t ^  ̂t ^ n=l (1 + (1-4Z^)2)

= 16%3 I (-1)""̂  ̂------ ^ . (5.23)
n=l {1 + (l-ltpqy )̂ }

My thanks are due at this point to Dr. W.G. Chambers for 

introducing me to the Poisson summation formula by which the 

leading term of the above sum may be obtained in the following 

manner.
2mWe write y = e where C* = r— then the above sum can
B

be written as an integral of the form
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-C*HZ

C {X + (l-kpqe-C*HZ):}3

We now replace the contour C , which encloses the real axis on 

the positive side excluding the origin, by C  = i + iy , which 

is permissible on the positive side of the real axis.

Then

 ̂ dZ = ^2ïïi Q, sinïïZ 2

therefore

I6q^ I (-1)°+! _ _
n=l {l + (l-4pq )2y

n
4—0

-C*H%
= + 2^i Jc, siLz ^

at p = p^ =-^ and for small H

n

n=l {l+(l-y )̂ } sinTrZ

hence substituting (5.24) into (5.13) we obtain

where A = |f '
a

Z=dZsinïïZ

Hence we obtain a value of 6 = 2 .

If we had considered the site problem instead this would have 

introduced a factor p into the argument and at p = p^ = i we have

m ~ § H: .
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5.2 Calculation of 6 for p = 1 and T =

We may write the partition function Z as

logZ = -glogy + logA(a,z) + f(z)

thus

V  = m + k^T -|^logA(a,z) . (5.25)

Now the magnetisation M = m(l - 2a) 

therefore

i  = -2-i = X ■ (5.26)

Substituting (5.26) into (5.25) gives

k_T
M = m - %—  logA(a,z).x (5.27)^  9a

2m^ 1 _ 9/9a logA
kgT ' X 1-M/m

We now use the method of Rushbrooke and Scoins, see [27] page 266, 
which is exact on the Bethe lattice, to derive log A . This gives

logA = -log(l-a) + |log{(l-a) + |z^(2a-l+^)} (5.28)

-2J/k%T where z = e h

5 = [1 + 4a(l-a)f] ̂

f = 1/z^ - 1

From (5.28)
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9
9a
l o g A ^ ^  + | { h !(2±4/3,)-l } . (5.29)

(l-a)+^z (2a-l+Ç)

We now replace a by g(l - and after some algebraic manipula­

tion obtain

■|̂ logA ^ 2(l - M/m + M^/m^)

'm ̂- 1 + z(l z^)M/i 
1 + z + (l-z^)M/m - z/2(l-z^)M^/m^

hence

2
■^logA 2(l-M/m+M^/m^) + q(l-z){-l + ̂  + z-1 ) ( z+2

m

now
2

^  ^ ~ ̂ ^logA . [ 1 + M/m - M^/m^ + ...]

hence

^  ^ ~ 2 + q(z-l) + ̂  [f(l-z)(z^+z-h2)-2]
 ̂ m

at T = T z = z = and this becomesc c q

^ = —  . Ç ~ ̂  (q-l)(q-2) . ^  . (5.30)

If H ~

then H  = X

therefore
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—

X

from (5.30) we see that 6 = 3 .

The value of 6 agrees with the value obtained if we use 

the conjectured scaling equality

y’ = S(6 - 1 )

On the Bethe lattice y’ = 1 and 3 = 5  giving a value of 

6 = 3.
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Chapter 6 Proofs of certain results conjectured by J.W. Essam 

and G.A. Baker Jr.

6.1 Proof that E v(G')k(G') = n(G) - B 
 GJ____________________

Initially we consider the mean number of clusters expansion 

for a graph G with V vertices

V

K(p;G) = I K!pJ (6.10)
j=l J

K! = % k(o.) (6.11)

where ĉ  is a list of connected subgraphs , see [ 22] , of G with 

j vertices

k(c.) is the weak k weight, see [22] and [?], of c. .J J
The mean number of clusters may also be written in the form 

V
K(p;G) = I s.pJ (6.12)

j=l ^

s. = / a. .
J i=l

where . are the elements of a matrix A(G)

(6.13)



- 93 -

where K. (g) is the number of connected section graphs of G , 1 ,n
see [ 22] , with i vertices the corresponding clusters of which 

have perimeter n .

This matrix is effectively derived from the coefficients of 

binomial expansions of the form A^p^(l-p)^ , n = V - i , such 

that â, j is the coefficient of p*̂ derived from the graph with 

i sites.

If is the number of components of the graph obtained

when the set of n sites is removed from G then

An = % . (6.i4)

From equations (6.10), (6.11), (6.12) and (6.13) we see that

I k(c.) = % a^. (6.15)
jc. J Ï

Therefore

I j I k(c.) = I j I a.. . (6.16)
j o .   ̂ j i

The left hand side of equation (6.1&) can be re-written in the 

form

I k(G')v(G')
G'

where the sum runs over all connected subgraphs,

G' , of G
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and v (G’) is the number of vertices in G’ .

Therefore

I k(G')v(G') = I I ja.. .
G' i j

We now consider the form of the expression from which the a.. areij
derived, namely A p^(l-p)^ now 

• *A  p^(i-p)“ =  A  y  (-i)f(")pf ^  . (6.17)
r=0

Differentiating (6.17) with respect to p then multiplying 

throughout by p gives,

ÎA P^(l-p)^ - A .n.p^*̂ (l-p)̂   ̂= A I (-l)̂ (r+i)(^)p^*^
r=0

for n _> 2 and p = 1 the right hand side of the above equation 

is zero.

Therefore

A y (-l)^(r+i)(°) = 0 n > 2  .
r=0

Hence

2 ja.. = 0 for graphs with perimeter greater than one.
J

Therefore the only contribution to the sum  ̂ ja.. is from graphs
i j

with perimeter one and perimeter zero.

I k(G')v(G') = I ja . + I ja . .rif n vj-,j . v,j
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The contribution for graphs with perimeter one is derived from

Therefore

I 1) A^v

= -Â  .

The only subgraph with zero perimeter is the graphs itself, hence,

I j&v ! = n(G).V 
j

where n(G) are the number of components in the graph G .

From the previous definition of given in (6.l4)

A^ = {n(G)V - n(G)a + x} - K (6.I8)

where

a is the number of articulation points in G

K is the number of isolated vertices in the graph G .

If d^ is the number of blocks attached to the i^^ articulation

point then

X  = I {d^ + n(G) - 1}

=  ̂d. + an(G) - 
i ^

Let ï = Idi
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Then we consider the relation

-  "m

where b is the number of blocks in the graphm
a is the number of articulation points m
n is the number of components, m

m is used here as an ordering parameter; e.g. b^^^ is

simply the number of blocks contained in the graph, which is

derived by adding one block to the graph with b^ blocks.

This is necessary since we seek to use an inductive proof

to show the truth of (6.19). We assume the truth of (6.19) and

show that the relation is true for Y . To do this threem+1
cases must be considered.

(i) An extra block is attached to an already existing articula­

tion point.

(ii) An extra block is attached to any site other than an articula­

tion point.

(iii)The extra block forms a new component.

For (i)

^m+l ^ 1
= + 1 - . (6-20)
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Now

\+l

%  %+l
Therefore substituting in (6.20) gives

^m+1 ^m+1 ^ ^m+1 ^m+1

For (ii)

and
+ 2

%  %+l
Therefore for this case also

\+l \+l %i+l %+l

For (iii)

and

Y = Y m+1 m

\  ~ \+l " ^

\  \ + l

Therefore again we see that

^m+1 ^m+1 ^ %i+l ^m+1
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Hence if the relationship is true for we have shown that it

is true for Y _ .m+1
It if necessary now to show the truth of (6.19) for Y^ and

to do this we consider a graph with no articulation points and

which has only one component; i.e. a star graph.

From the definition Y = 0m
now for this graph = 1

a = 0  m

%  = 1
hence

Y = b + a - nm m m m

It follows that since the statement is true for this graph it 

is true for all graphs.

Hence

X = b + a - n(G) + a.n(G) - a 

= b -  n(G)[l-a]

and

Since

= n(G)V + b - n(G) - K

 ̂ k(G')v(G') = n(G)V - A
G»

= -b + n(G) + K V > 2

Then
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I k(G')v(G') = n(G) - B V >_ 2 (6.21)
G'

where B is the number of blocks in the graph excluding single 

vertices.

If G is the single vertex then it can be seen than (6.21) 

is satisfied for this graph and the restriction V ^ 2 can 

be removed.

Since

I k(G‘) = n(G)
G*

from (6.21)

I k(G' )[v(G’ ) - 1] = -B 
G’

for a graph G’ with only one component v (G') - 1 is the 

cocycle rank, see [22], hence

I k(G')r(G') = -B . (6.22)
G’

2 n y(t')6.2 Proof that I k(G')v (G') ^ 1 1  f.-V-2(b-n(G))
______________GJ________________ b̂  .1=1 _̂_____________

From similar arguments to those given in the previous section

6.1 we have

I v^(G')kCG') = 1 1  j^a..
G' i j

and

 ̂  ̂j^a.. = 0  for all graphs with perimeter greater
i j

than two.
\
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The contribution for graphs with perimeter two is derived from

AgpV-2(i_p)2 .

Therefore

I ̂ V 2 , j  " A2{(V-2)2 - 2(V-1)2 + V^}
= 2Ag .

The contribution for graphs with perimeter one is derived from 

Aĵ p̂ ’^d-p) .

Therefore
,2 . r/., .\2 „2-I j V l , j  = A ^ { ( V - l )  - V  }

= A^(1-2V)

2The contribution for graphs with zero perimeter is n(G)V 

Hence

I v^(G’)k(G’) ■= 2A + A (1-2V) + n(G)V^
G'

For 1- irreducible graphs, see [6]

A^ = V , n(G) = 1 and b = 1

Then

I v^(G')k(G') = 2A + V(l-V) . (6.23)
G'.
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Let a' be the number of articulation pairs

cj be the number of components the graph splits into 

when the i^^ articulation pair is removed

x '  =  y  c!. 11

Now

Ag = + x' - a»}

Substituting in (6.23) gives

y v^(G’)k(G') = 2(x'-a') .. (6.24)
G'

When the vertex is removed, let the section graph containing 

the remaining vertices of G contain ê  articulation points and 

fj blocks.

Then from (6.19)

x. = e. + f. - 1 J J J
and

V
a '  =  5  ;  e .“ 2 I

j=l
V

J

x '  =  5  I- X .

j=l J
Therefore

V
2x' - 2a' = y f. - V V > 3 (6.25)

j=i '
V

y V  (G')k(G') = y f .  -  V  .  ( 6 . 26)

G' j=l ^
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(6.26) is true for 1- irreducible graphs but a graph which

is not 1- irreducible can be split into its separate blocxs and

the sum performed over each block in turn. This is possible

provided account is taken of the extra number of sites added and

of each bond block.

Now y v^(0')k(G') = -2 if G is the bond and in splitting 
G'

the graph into its separate blocks b - n(G) sites are added.

If there are m bond blocks in the graph G then

r  2  r  v ( b ' )
I V (G')k(G’) = I { y f.-v(b')} - 2m - b + n(G)
G’ b' j=l J

where b' is the number of blocks containing more than two 

vertices, i.e. b* = b - m 

v(b') is the number of sites contained in b' .

Now

y v(b') = V + b - n(G) - 2m 
b'

Therefore
P V(b')

I V  (G')k(G') = I I- f .  - V - 2[b-n(G)]
G» b' 0=1 ^

V ^  2 for each component

In all the previous expression we have used the weak k 

weight k(G') and summed over all the connected subgraphs G' 

of G . However (6.11) may also be written as
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K! = I K(c )
^ C. J

where now cj is a list of connected section graphs of G with 

j vertices 

K(Cj) is the strong K weight.

We see that the results derived are then equally true for the 

strong K weight, e.g.

I v(G*)K(G*) = n(G) - B 
G*

where the sum G* is now taken over all connected section graphs 

of G . Similarly for the other results derived.
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Appendix I

Distribution of cluster size for various two and three 

dimensional lattices.

t = perimeter , s = size

The matrix a(L) , as far as is known, for each lattice is 

also included.
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Hexagonal Matching Lattice - Site Problem

The count is doubled to avoid fractions.

12 2 
13
Ih 3
15 0
16 0 6
IT ■ 6 0
18 3 0 l4 1
19 26 0 6 0
20 6 9 30 0 6
21 2 78 0 36 0
22 30 15 66 63 0
23 12 36 216 0 174
2k 6 171 42 393 124
25 6 66 336 532 222
26 69 624 309 1554
27 124 312 1738 1314
28 84 678 2088 2490
29 30 930 1914 7380
30 14 702 4356 7094
31 648 4726 12930
32 6l8 5049 20280
33 480 5826 23828
34 252 6343 33576
35 84 6018 38130
36 30 4617 46432
37 3884 50802
38 2928 46380
39 1650 49512
40 738 446o4
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Hexagonal Matching Lattice (Cent.)

t ® l  2 3 h 5 6 7

41 228 33696
42 63 25898
43 19128
44 10974
45 5384
46 2172
47 576
48 124



- 107 -

Simple Quadratic Matching Lattice - Site Problem

t"

9
10 2
11 0
12 2 6 1
13 0 0
14 8 18 8 2
15 4 8 4 0
l6 2 12 55 4o 22
17 1 6o 58 20
18 24 ll6 186 170
19 8 100 300 4o4
20 2 145 570 864
21 84 510 1384
22 52 742 2692
23 12 620 3012
24 2 458 3744
25 236 3704
26 92 3428
27 16 2168
28 2 1292
29 0
30 0
31 20
32 2
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Triangular Lattice - Site Problem

t® 1 2 3 4 5 6  T 8 9
6 1
7
8 3
9 2

10 9 3
11 12 6
12 29 21 l4 1
13 66 43 30 6
14 93 153 111 69 27
15 298 366 291 166
16 306 840 957 803
17 1290 2349 2592
18 1014 4299 6734
19 5310 13634
20 3408 20469
21 21372
22 11562
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Simple Quadratic Lattice - Bond Problem 
Counts per site

t® 1 2 3 4 5 6 7 8 9 10

6 2
7
8 6 1
9 4 0

10 .18 0 8 2
11 32 0 l4 0
12 55 30 40 0 22 6
13 i6o 0 156 0 60 0
14 174 332 168 228 134 62
15 672 336 958 164 728
16 570 2030 869 2776 656
17 2712 4o64 4724 5308
18 1908 9972 8770 18816
19 10880 27392 27540
20 6473 46004 74576
21 43220 148728
22 22202 207444
23 169784
2h 76886
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simple Quadratic Lattice - Site Problem 

t® 1 2 3 4 5 6 7  8 9 10

8 2 9 1
9 8 20 4
10 2 28 54
11 12 80
12 2 60
13 16
l4 2
15
16
17
18
19
20
21 32
22 2

22 4
136 80 28 4
252 388 291 154
228 776 1152 986
100 818 2444 3676
20 480 280 7612
2 152 2089 9750

24 856 8192
2 216 4330

28 l4l6
2 292
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simple Quadratic Lattice - Site Problem (Cont.)

t" 11 12 13
12 52 9 1
13 6kk 325 112
Ik 3530 2644 1660
15 1177 12502 10480
16 24472 38694 44574
IT 33336 79730 129020
18 31202 114342 264482
19 19532 115502 391432
20 8130 83183 423786
21 2l80 41136 337144
22 380 l4o64 193820
23 36 3208 79240
2k 2 480 22993
25 4o 4508
26 2 592
27 44
28 2
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Simple Cubic Lattice with first, second and third neighbours 
Site Problem

t^ 1 2 3 4 5 6 T

26 1
27
28
29
30
31
32
33
34 3
35 0
36 0
37 0
38 0
39 0
40 6
41 0
42 0 15
43 0 0
44 4 0 3
45 0 0
46 0 0
47 0 0
48 48 0
49 0 0
50 8 83
51 12 0
52 24 30 48
53 0 24 0
54 ■ 30 0 24 18
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Simple Cubic Lattice with first, second and third r

t® 1 2  3 4 5 6

55 0 0 12 0
56 48 326 8 16
57 12 0 0 0
58 24 120 510 0
59 0 147 0 0
60 0 264 360 480
61 12 120 432 0
62 4 384 288 480
63 0 240 510
64 480 2172 390
65 360 132 336
66 348 1368 3471
67 168 1782 264
68 380 2348 3612
69 276 2004 4956
70 492 4833 4536
71 138 1296 5376
72 276 4896 18174
73 l44 4560 5328
74 216 4940 15472
75 96 4l04 20593
76 48 7362 24300
77 8 4836 26124
78 36 9132 52116
79 24 5310 28620
80 4 5812 59744
81 5772 63080
82 7602 69174
83 5396 66568
84 6456 106446
65 3192 83416
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t® 1 2 3 4 5 6

86 5166 131528
87 3216 108783
88 3060 122538
89 1548 124172
90 1260 157440
91 1296 125760
92 698 158528
93 348 123120
94 l44 i464o6
95 108 130236
96 108 130554
97 36 I04l84
98 4 105460
99 • 86094

100 88908
101 58832
102 53082
103 37308
104 33348
105 23724
106 14532
107 8436
108 7716
109 4896
110 2276
111 1032
112 588
113 432
114 216
115 48
116 4
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Face Centred Cubic Lattice - Site Problem

t^ 1 2 3 4 5 6 7

12 1
13
14
15
16
17
18 6
19
20 
21
22 8
23 12
24 30 2
25 0
26 27
27 48
28 96 24
29 l44 6
30 158 132 6
31 264 24
32 423 145
33 780 168 36
3I+ 1194 914 80
35 1212 1308 288
36 846 2688 1220
37 5000 1968
38 7140 5382
39 10272 10308
ko 11340 18918
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Face Centred Cubic Lattice - site Problem (cont. )

t^ 1 2 3 4 5 6 7

4l 9168 31128
42 4662 53616
43 75528
44 93852
45 110680
46 98496
47 65700
48 26182
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Face Centred Cubic Lattice - Bond Problem 

t® 1 2 3 h 3

22 6
23
24
25
26
27
28 
29
30 8
31 24 0
32 42 0
33 0
34 0
35 0
36 0 2
37 0 12 0
38 0 30 24 0
39 32 120 0 0
4o 192 123 0 0
41 372 0 0 0
42 326 0 0 0
43 0 0 0
44 0 0 0
45 0 0 0
46 0 0 816
47 0 1464 648
48 1230 1728 504
49 1896 2616 0
50 4176 1512 0
51 4584 0 0
52 2739 0 0

240
96
0
0
0
0
0
0
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53
54
55
56
57
58
59
60
61
62
63
64
65
66

67
68

69
70
71
72
73
74
75
76
77
78
79
80 
81 
82

0
0

384
6l68
17256
35880
47784
65550
53640
24234

0
740

10488
25080
42600
43536
41298
17648

0
0

13456
33960

167472
339088
534336
798972
881496
934992
612000
222566

7

744
9048

17736
23088
15792
7770

0
0
0

32568
74832
326400
580704
778632
949176
809040
591156
200904
202440
405120

1743264
3379560
6531792
9395856

12568800
14886168
14582112
12582594
6902880
2102208
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Body Centred Cubic Lattice - Site Problem

t^ 1 2 3  4 5  6 7

8 1 
9 

10 
11 
12
13
14 4
15
16
17 12
18 ° 0 
19 12
20 4 42
21 0 6
22 78 0
23 32 152
24 36 30 51
25 24 408 24 12
26 4 182 632 16
27 384 204 324
28 336 2088 l44
29 144 1352 3096
30 108 2748 2058
31 36 2568 104l6
32 4 2112 8774
33 2016 18408
3k 1044 18438
35 480 20884
36 216 20820
37 48 15024
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t® 1 2 3  4 5  6 T

38 4 11184
39 6756
40 2820
41 1148
42 360
43 60
44 4
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Appendix II

Calculation of the Mdbius function for a given lattice.

We define the lattice L(G) of any connected graph G = (V,E) 

to be the set of subsets of E ordered by containment and having 

the following properties:

(a) E' = E where E' is the bond closure of E'

(b) G' = (V,E') is connected and has exactly one 

multiply connected block.

We show that :

For all graphs G' E L(G)

y(E',E") = (-l)l^ "̂ '1 if E» ÇE" ; E^= E"

and all graphs obtained from 

G* are elements of L(G)

0 otherwise

All graphs obtained from G' are those graphs obtained by adding 

to G’ all combinations of edges from the edge set E" - E' .

The set of all graphs with more than one multiply connected 

block will be referred to as Ç

(i) We first show that for all graphs G' , where all graphs 

obtained from G' are allowed, has Mobius function:

w(E ,E") =
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now

I y(E’" ,E”) = 0
E'Çe"‘CE"

hence

y(E',E") = - I y(E"',E") . (l)
E’ C E"’C E"

The proof is an inductive one and we assume that the required 

result is true for all graphs G"' = (V,E"') .

Let |e" - E'l = n 

From (l)

y(E',E") = -{n(-l)* ^ + "tgf-l)" ^ + ... + ^Cy(-l)^ ^+...+1}

(2)

Consider the expansion of (l+x)^

(l+x)^ = 1 + nx + ... + ^C^x^ + ... + x^

for X = -1 .

0 = 1 +  n(-l) + ... + ^C^(-l)^ + ... + (-1)^

hence the left hand side of (2) is (-1)^^^ = (-1)^ . Therefore

y(E',E") = (-l)l^ ^ I if the result is true for all G"' .

Now the Mobius function of the first graph G" = (V,E") is

1 = (-l)^ . Since the assumed result holds for the first graph

by induction it holds for all the G*" and the required result 

follows.
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(ii) To complete the proof we consider a graph G’ = (V,E’) such 

that not all the graphs obtained from G' are elements of L(G) .

We assume that y(E'” ,E") = 0 , E' C E" ’C E" . If a member 

of Ç can be obtained from G"'.

We have shown that y(E"',E") = (-l)l^ ^ I otherwise .

Let |e"-E'I = n .

Let there be m ways of adding one edge to G' such that a 

member of C is obtained then

y(E',E") = -{[n - m - % l] (-1)
il

n-1

+["c - *C - % p. - % 1] (-1)“ 2 + ... 
 ̂ il 12

+[°C - B - % ^ + ... +1}
ir

contains all those graphs which can be obtained from G’ 

by adding r edges from the edge set E"-E’ , and which are not 

elements of L(G) ;

1 is the sum over all the graphs G"’ which have
ir

yCE"’,E") = 0 and |e"'- E"| = r ;

y C , is such that the sum is taken over the set of 
ik

graphs G’" where y(E'",E") = 0 and |e’",E'| = k ;
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and is the number of ways in which one edge can be added to

the i^^ graph of the set G"' , defined above, to give a member of 

the set C •

All expressions of the form are defined to be 0 ifr
r > n ,

Consider the following sum

I 1 - I Pir + I + ••• + (-1)^ I + ... + I (-1)
ir ir ir ir ir

= I [1 - P.y + + ... +
ir

= 0

Since this is just the alternating sum of the binomial 

coefficients* Hence we see immediately that

y(E',E") = [n-m](-1) + ... + [ C^ - ^C^](-1)

+ ... + [^C^ - 1] (-1)^ * + ... + 1

= [(-l)K - (-1)̂ 1 

= 0 .
Therefore y(E',E") is zero if the initial assumption is correct.

To show that the assumption is correct it is only necessary 

to consider the set of graphs G"' , E' C E"’ C e" , such that 

there is only one way to add an edge to G"' to get a graph E ç ,
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and that adding more than one edge leads to an element of L(G) . 

The required result then follows by induction.

Since only one edge can be added to G"’ to give a member of 

i , there can be no graph G* , E"’ C E* C E" to which bonds can

be added to give a member of Ç .

Let |e" - E"’ I = S

then

y(E"»,E") = {(S-l)(-l)^"^ + ... + Sc^(-l)S-r + ... + 1}

= 0
It follows immediately that y(E’,E") = 0  if not all the 

graphs obtained from G' are elements of L(G) , and this 

completes the proof.



The series of Appendix III has recently been computed 
by C.J. Elliott, J.L. Martin and M.F, Sykes by the 
perimeter method.

12They agree with our results as far as p but find 
1404p^3 + 2904p^^ + 3522p^S + 6876p^^ + 7548p^?.

We have found certain errors in the second moment weights
which have now been corrected and we have confirmed their

13 . 14coefficient of p • However we now find 2964p so
that we still appear to have further errors in this and
the subsequent terra. Since their method is self
checking their series is probably correct unless they
have at least two compensating errors.

V
II.'
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Appendix III

a) Mean size series for the hexagonal lattice site problem

S(p) = 1 + 3p + 6p^ + 12p^ + 24p^ + 33p^ + 60p^ + 99p^

+ 156p^ + 276p9 + 438pl° + 597p^^ + ll34p^^

+ 1524p^3 + 3228p^^ + 4353p^5

The above series was derived from the following list of graphs 

Where a 'spike* is attached to a graph, this indicates that a 

chain of any length may be attached to the graph at any point, • 

unless otherwise shown.

The graphs are listed together with their strong second 

moment weights.
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■18 -  6

CO

" 0 0  6 6  w  "CO.
-  2

)
-108 u

-18 -2

oo  cx6  o o  bcC 6 6
18 6 6 2 108

COO
-J+

6c6 J
1ÔCÇ "000

-  ?
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vu"V.

" 0 9

-154 -22 -2
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b) The following series are those derived for the site problem 

using definitions (ii) and (iii) in section 3.1

S(p) = I a P* 
n=l

a^(2) will indicate the 

a^(3) will indicate the

Simple Quadratic Lattice

coefficients

coefficients

n a (2) a (3)n n
1 k 2
2 12 12
3 28 32
k 60 68
5 124 l44
6 260 300
7 428 520

Triangular Lattice

n a (2) a. (3)n n
1 6 3
2 24 30
3 66 90
k 174 240
5 432 612
6 1062 1512
7 2490 3618
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Hexagonal Matching; Lattice

n aj2)

1 2k 12
2 198 264
3 972 1542
k 4422 7020
5 18936 31038
6 77886 130560

Simple Quadratic Matching Lattice

n a^(2)
1 8 4
2 44 56
3 156 226
k 516 752
5 1616 2428
6 4896 7472

c) High density mean number series on the honeycomb

K(q) = + + Oq^ + |q^ •- 4q'̂ + 33q® - 73q9

The cluster size is distributed as follows :

q^(p)
q^(3/2pf)
q^(3p^)
q^(7p^ + 3p^ + 3pG)
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J(15P^ + 15p^ + 3p7)

q^(3l5P^ + 60p? + 37sp^ + 12p^ + l§p̂ *̂ )

q^(62p7 + 177p® + 190p9 + lllpio + + p^^)
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Appendix IV

a) The following list of graphs are those used to derive the

seven bond perimeter polynomial on the face centred cubic lattice.

All the graphs required, except the seven bond trees are 

included, these being enumerated by a different method.

The first figure in the top line of figures for each graph 

is the count per site of the graph, the second being the count 

of the graph with one bond added etc.

The second row of figures is the yield factor for the graph,

e.g. for the triangle Y(x) = 1 + 3x .

Any graph marked with a star indicates that when bonds are

added they may be placed at the articulation point also, e.g. when 

one bond is added to this will include ------.

b) The flow chart and program is that used to count all trees 

of eight sites.



pq 22
42 326 2739 24234 222566
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p q
120 1464 17008 192336

TA 24 276 3120

15 16

3 48 612 7344
4 40p q

24 408 5376 65784

6 120 1716

8 28 52 45

24 360 4560

8 27 48 40

p V ®
72 1320 18288

19 21



2H 408 5472

11

- l4o -

X 72 1932 35988

12 48 P q
24

1 12 66 220 489 74 4 740 384

84

11 55 161 296 336 132

24 408
11 SO 

P q
11 55 162 303 353 209

24 432
p“ ,“

10 43 104 146 100

72 1236

10 43 103 144 99

48 768

10 44 108 153 104



X, 10 52I' q
24 504

1 10 44 110 ICI 114

- l4l -

9 54P q
32 624

1 9 3 3 5 3 54

zw 9 54 P q
120 2400

1 3 ,4 65 55

120 2448

9 34 65 55

9 54
24 696

9 33 61 48

12 240

8 23 28

96 1872

8 24 29

p9q56
24 432

1 8 25 30



/ N___ I>
48 84

8 25 30

-  lh2 -

14 >4 4 46 4
3 56P q

8 2 3 2 4

7 288 8304

8 23 24

p V ^
100

7 15

48 1392
p V '

p',“

120
11.62

Two Types

336
11.82

Three Types

7 12

28 552

11 52 136 201 135

51 129 184 120



1296

Three Types

10 40 78 63
- 143 -

N 84
9 66p q

Three Types
29 33

9 66

Two Types

768

2 7 2 7

12 66 212 417 480 256

48

Two Types
1 11 53 139 200 128

1 10 39 76 64

p ' V '

Two Types

636

1

144

10 41 80 64

28 32



12
144 -

8 G8P q
8 16

1 15 105 454 1350 2901 4583 5250 4071 1682

12

1 14 91 362 975 1846 2443 2122 960

2 4

1 14 91 361 966 1812 2377 2057 935

24

1 13 77 274 643 1015 1025 528

48

1 13 77 273 637 1001 1011 523

24

1 13 77 272 629 977 977 505

48

pis 58
1 13 77 273 635 991 993 513



SB
3 3 58P q

-  145 -

1 13 77 273 6 36 996 1000 516

2 4
13 58> P q

1 13 77 273 6 34 982 964 480

\/|\// \  '

48

1 13 77 272 627 963 943 472

96

1 12 65 206 411 500 297

1 12 64 199 392 477 287

12

1 12 64 200 395 480 288

96

1 12 63 190 359 418 245

32

p ' V °
1 12 63 189 354 411 242



16
12 60 P q

1 12 63 190 357 414 243

- l46 -

14 4

1 12 64 197 378 443 257

144

1 12 64 197 378 443 257

96

p12 60
1 12 64 19 9 383 450 260

96

12 60
P ^ 1 12 65 205 402 475 272

96

12 60P q
1 12 65 205 402 475 272

24

1 12 64 198 383 454 264

16

1 12 66 214 435 534 320



2 4
11 62P q

1 11 52 138 213 159

-  i4t -

24

1 11 52 137 200 156

336

1 11 52 136 203 141

192

A7V\ ,11 53 141 210 144

384

/ p ' V
1 11 53 141 210 144

p “ q "

96

1 11 53 141 210 144

24

1 11 54 149 235 175

48

1 11 52 135 201 141*



95

1 10 42 90 81

- l48 -

24
1Ù 5 4 p q

^  1 10 41 84 76

48

1 10 41 84 76

48

10 64p q
1 10 40 80 7

144

1 10 42 88 79

192
p ' V *

1 10 42 88 79

yi 192

p'V*
1 10 42 88 79

96

i 10 41 84 76



/\
Ts.\
>

N /

/ I
10 64p q

p 10 64

P V

144

1 10 41 84 76

72

1 10 40 82 75

12

1 10 43 96 96

48

1 9 31 41

- l4p -

2 4

1 9 31 41

p V ®

1 9 30 40

360

1 a 17
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A d d  d e s c r i p t i o n  
o f  K t h  b o n d  M ( 2 K - 1 ) , H v 2 K )  
t o  c u r r e n t  c o n f i g u r a t i o n  

V V ( H V )  =  l o c a t i o n  
o f  l a s t  v e r t e x

1 1 7 1 M IX

N O

Y E S

1 2 't 1

K = I(K) = 1 
N V  =  2  

7 V ( 1 )  =  l o c a t i o n  
o f  f i r s t  v e r t e x

R e a d  g r a p h  
d e s c r i  p  t i o n

. i n d  l a t t i c e  o n  
c o u n t s  a r e  

t o  b e  c a l c u l a t e d

, E 1 I S T O P ( N V - l )

C o m p u t e  a d d i t i o n  t o  
n u m b e r  o f  i n t e r n a l  b e n d s  

L E I , c a u s e d  b y  a d d i t i o n  
o f  c i t e  7 V Ù J V )



1171

T L J T :xT

9 2 5  o r  9 2 6

. ' U o r o  I I  p o s i t i o n ! % t o r e  I I  a l l o w e d  
p o s i t i o n s  f o r  n e x t  
e d p e

I ( K )  =  I ( K )  +  I T
I  ( K  )

II 0  o r

!in
1 2 5

Y E SI S  K

Y E S N O

Y E S

C O M P U T E  A D D I T I O N  
T O  L A T T I C E  C O N S T A N T  

C A L C U L A T E  T O T A L  
P E R I M E T E R

1 2 6

I ( K )

MO
Y E S ' 1 2 7I S  I ( K )  »  1

I ( K )  =  I ( K )  - 1

T E S T  L I N K

Y E S
B o u n d

F r e e

151 -

li'J

L i v i d e  b y  s y m m e t r y  f a c t o r  
W r i t e  p e r i m e t e r  p o l y n o m i a l , /CZHlD
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J O l i d l N A i r . ’ U J  , J G  , T , M I  , b  I , C M J Ü Ü U ù  )
R E Q U E S T  ( T A E E W  , l i n U L 0 G 5 6 X ’' I N i i I B I T "
F U N ( S )
S K [ P F ( T A P E 4 , 2 3 , 1 5 , B )
C O P Y B ! ( T A P E 4 , D I S K 2 )
R E W I N U ( D I 3 K 2 )
R E T U R N ( T A P E 4 )
R F L , 5 0 0 0 0 .
L O A D C L G Û )
E X E C U T E ( C N T 2 , I N P U T , O U T P U T , P U N C H , D I S K 2 )
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

P R O G R A M  C N T 2 ( I N P U T , O U T P U T , P U N C H , T A P E  1 , T A P E 2  =  I N P U T , T A P E 3  =  0 U T P U T )
I N T E G E R  Q , J , I D E N T , V , L , T E , A , F , B , X , I I , Y , N U , K , X I , N V , H I L O  
I N T E G E R  R ( 1 2 ) , R B A R ( 1 2 ) , T ( 2  3 ) , P ( 1 0 0 ) , D E G R E E ( 1 1 )
I N T E G E R  N ( 2  3 ) , S ( 2  2  , 1 1 , 4 ) , I ( 1 1 ) , T H T A ( 1 0 ) , I S T O P ( 9 ) , V V ( 2  4 ) , Q Q ( 2  3 )
I N T E G E R  M W P L U S ( S O  , 2 0 ) , M D L T J (  5 0  , 2 0  ) M P H I ( 2 0 ) , M P H I P ( 2 0 )
I N T E G E R  U L T J ( S O ) , W P L U S ( 5 0 )
I N T E G E R  P H I , P H I P , W D B A R , N P E U S , J J , W N E X T  
I N T E G E R  P E R M ( I Q O )  , T P E R M ( 1 0 0 )
D A T A  M P H I / 6  , 4  , 3  , 1 2  , 8  , 6  , 4  , 1 2  , 3  , 1 8  , 1 4  , 1 8  , 1 8  , 1 2  , 1 2  , 4 2  , 2 5  , 2 6  , 2 * 0 /
D A T A  M F H I P / 4 , 3 , 0 , 5 , 4 , 3 , 1 4 « 0 /
D A T A  M D L T J /

C  T R I A N G U L A R
1 1 , - 1 , 5 1 , 5 2 , - 5 1 , - 5 2 , 4 4 * 0 ,

C  S Q U A R E
1 1 , - 1 , 5 1 , - 5 1 , 4 6 * 0 ,

C  H O N E Y C O M B
1 5 0 * 0 ,

C  F C C
1 1 , - 1 , 5 1 , 2 6 0 1 , - 2 6 0 1  , - 5 1 , 2 6 0 2  , 2 5 5 0  , 2 5 5 1 , - 2 6 0 2  , - 2 5 5 0  , - 2 5 5 1 , 3 8 * 0  ,

C  B C C
1 1 , - 1 , 5 1 , - 5 1 , 2 6 0 1 , 2 5 5 1 , - 2 5 0 1 , - 2  5 5 1 , 4 2 * 0 ,

C  S C
1 1  , - 1  , 5 1  , - 5 1  , 2 6 0 1 , - 2 6 0 1 , 4  4 * 0  ,
1 7 0 0 * 0 /

D A T A  M W P L U S /
C  T R I A N G U L A R

1 1 , 1 , 2 , 2 , 4 6 * 0 ,
C  S Q U A R E

1 1 , 1 , 2 , 4 7 * 0 ,
C  H O N E Y C O M B

1 5 0 * 0 ,
C  F C C

1 1 , 1 , 2 , 4 , 4 , 4 5 * 0 ,
C  B C C

1 1 , 1 , 3 , 3 , 4 6 * 0 ,
C  S C

1 1 , 1 , 4 , 4 7 * 0 ,
1 7 0 0 * 0 /

X I  =  G  
1 0 0 0 0  C O N T I N U E  

1 0 0 2  Q = 1 0
R E A D ( 2 , 2 0 0 0 6 ) A L A T T , H I L O  

2 0 0 0 6  F O R M A T  ( A 1 0 , 1 Q X , 1 2 )
I F ( H I L O . E O . O ) G O  T O  1 0 0  
D O  3 0  I P = 1 , 1 0 0  
T P E R M ( I P ) = 0
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J O  r C K M ( l [ ' ) - 0  

C  I ’ l l I  I S  T H E  C O - U R D I N A T L O f J  N U M B E R
C  P i l l E  1 3  T H E  N U M B E R  U E  W E I G H T E D  D I R E C T I O N S .
C  H I L 0 =  +  1  I  O R  H I G H  T E M P E R A T U R E ,  - 1  F O R  L O W  T E M P E R A T U R E .
C  T H T A  C O N T A I N S  T H E  P A G E  H E A D I N G  
C  P R I N T S  T H E  L A S T  L I N E  O F  T H E  P R E C E D I N G  L A T T I C E .

1 0 0  I F ( X I - 1 ) 1 0 0 2 1 , 9 0 1 , 9 0 1  
9 0 1  W R I T E !  3  , 5 0 0 0  )

D O  2  7  I P - 1 , I M  
I F C T P E R M d P )  . E Q . O ) G O  T O  2 7  
W R I T E (  3  , 3 0 0 0  ) T P E R M ( I P )  , I P  

2  7  C O N T I N U E  
X I  =  Q

1 0 0 2 1  I F ( H I L O ) 4 9 0 4 , 9 0 3 , 4 9 0 4
9 0 3  W R I T E ! 3 , 2 0 0 3 0 )

2 0 0 3 0  F O R M A T  ! 1 H 1 , 1 6 H N 0  M O R E  L A T T I C E S )
C A L L  E X I T  

4 9 0 4  N = 1
I F ! A L A T T . E Q . 1 0 H T R I A N G U L A R ) G O T 0 9  0 4  
N  =  N  +  1
I F ! A L A T T . E Q . 1 Q H S Q U A R E ) G G T 0 9  0  4  
N  =  N  +  1
I F ! A L A T T . £ Q . 1 0 H O N E Y C O M B ) G O T C 9 0 4  
N  =  N  +  1
I F ! A L A T T . E Q .  1 0 H F C O G 0 T 0 9  0  4  
N = N + 1
I F ! A L A T T . E Q .  1 0 H B C O G 0 T 0 9 0 4  
N  =  N + 1
I F ! A L A T T . E Q . 1 0 H S C ) G O T O 9  0 4  
W R I T E ! 3 , 2 0 0 5 0 )

2 0 0 5 0  F O R M A T ! 1 H , 2 2 H L A T T I C E  N O T  R E C O G N I S E D )
C A L L  E X I T

9 0 4  W R I T E ! 3 , 2 0 0 0 8 ) N ! l ) , A L A T T , H I L O
2 0 0 0 8  F O R M A T ! 1 H , I 3 , 2 X , A 1 0 , 1 0 H L A T T I C E  T O , 1 2 )
C  D E C I S I O N  I N C R E M E N T S
C  W P L U S  I S  T H E  A R R A Y  O F  W E I G H T S
C  T H E  T W O  D I R E C T I O N S  W I T H  W E I G H T  1  S H O U L D  A P P E A R  F I R S T ,  F O L L O W E D  B Y
C  T H E  W E I G H T E D  D I R E C T I O N S ,  F O L L O W E D  B Y  T H E  U N W E I G H T E D  D I R E C T I O N S

P H I = M P H I ! N )
P H I P = M P H I P ! N )
D O  4 9 0 0  J = 1  , P H I  
D L T J ! J ) = M D L T J ! J , N )

4 9 0 6  W P L U S ! J ) = M W P L U S ! J , N )
3 1 1  R E A D ! 2 , 2 0 0 0 7 ) I D M I N , I D M A X  

I F ! I D M I N ) 1 0 0 0 0 , 1 0 0 0 0 , 1 0 1
1 0 1  R E A D ! 1  , 2 0 0 0 1 ) I D E N T , T 1 , T 2 , V , L , ! T ! J ) , J = 1 , 2 1 ) , ! D E G R E E ! J ) , J = 1 , 1 1  )

D O  1 1 1 1  1 = 1 , V
1 1 1 1  I S T O P ! I ) = 0  

I M = P H I * V  
I D L = 2 * L

2 0 0 0 1  F O R M A T ! 1 4 , A 3 , A 3 , 2 2 1 2 , 1 7 , 1 1 1 1 )
3 0 1  I F ! I D E N T - I D M I N ) 1 0 1 , 3 1 2 , 3 1 2
3 1 2  I F ! I D E N T - I D M A X ) 9 0 5 , 9 0 5 , 3 1 1
9 0 5  I F ! L - 1 ) 9 0 6 , 9 0 7 , 9 0 6  
9 0  7  T C z P H I

G 0 T 0 1 3 1
9 0 6  T E = 0
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L ' O  3 0 8  A =  1  , L
9 0 8  I ( A ) = 0  

1 D U M = 2 * L
D O  9 0 9  A = 1 , I D U M  
P ( A ) = 1

9 0 9  N ( A ) = 0  
0=1
P ( l ) = 3  

1 1 6  0 = 0 + 1
I F ( B - L ) 1 1 3 , 1 1 3 , 1 1 7  

1 1 3  A = 2 * B
I F ( T ( A ) ) 9 1 Q , 1 1 6 , 9 1 0

9 1 0  P ( B ) = P ( B ) + 2  
G 0 T 0 1 1 6

1 1 7  I F ( H I L O ) 8 3 7 , 8 3 7 , 8 2 9
8 3 7  D 0 8 7 1  J = 1 , L
8 7 1  Q Q ( J ) = 0

B  =  0
8 2 7  B = B + 1  

I F ( B - L ) 8 2 8 , 8 2 9 , 8 2 9
8 2 8  A = 2 * B

I F ( P ( B ) - 2  ) 8 3 0  , 8 3 1  , 8 2 7
8 3 0  X = A  

G 0 T 0 8 3 2
8 3 1  X = A - 1
8 3 2  J = B
8 3 3  J = J + 1  

I F ( J - L ) 9 8 1 , 9 8 1 , 8 2 7
9 8 1  I F ( P ( J ) - 2 ) 8 3 3 , 8 3 3 , 8 3 4
8 3 4  J J = 2 * J  

I F ( X - T ( J J - D )  8 3 3  , 9  8 2  , 8 3 5
8 3 5  I F ( X - T ( J J ) ) 8 3 3  , 6 3 6  , 8 3 3
9 8 2  I F ( X - T ( J J ) ) 8 3 3 , 8 3 6 , 8 3 6
8 3 6  Q Q ( B ) = Q Q ( B ) + 1  

G 0 T 0 8 3 3
8 2 9  K = 1  

I ( K ) = 1  
I D U M = I ( K )
V V ( 1 ) = 6 1 2 2 6
V V ( 2 ) = 6 1 2 2 6 + D L T J ( 1 )
N V  =  2
S ( I D U M , K , 1 ) = 6 1 2 2 6
S ( I D U M , K , 2 ) = 6 1 2 2 6 + D L T J ( 1 )
S ( I D U M , K , 3 ) = P H I  
S ( I D U M , K , 4 ) = 1  

C  S ( A , B , 3 )  I S  T H E  W E I G H T  I F  A , B  I S  U S E D
C  S ( A , B , 4 )  I S  1  I F  W E I G H T S  A R E  T O  B E  U S E D  F O R  N E X T  L I N E

1 1 7 1  N U = 2 * K
C  N C J ) C O M T A I M S  D E S C R I P T I O N  O F  C O N F I G U R A T I O N  S O  F A R .
C  A D D  L A S T  B O N D  O F  C O L U M N  K  T O  C O N F I G U R A T I O N  D E S C R I P T I O N  A N D
C  D E C I D E  O N  W E I G H T S

I D U M = I ( K )
N ( N U - 1 ) = S ( I D U M , K , 1 )
N ( N U ) = S ( I D U M , K , 2 )
W D B A R = S ( I D U M , K , 3 )
W N E X T = S ( I D U M , K , 4 )
I F  ( P ( K ) - 2 ) 9 6 0 , 9 6 1 , 9 6 2
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9 G Q  V V ( N V ; = 3 ( i D Ü M , K , 2 )

G Û T Ü 9  6  2
9 6 1  V V ( N V )  =  ' i (  I L H J M . K ,  1 )
9 6 2  I £ ' ( W N E X T -  1  ) 9 2 1  , 9 2 2  , 9 2 1
9 2 2  N P L U S = F 1 I I P  

G O T O  1 1 7 2
9 2 1  N P L U S = P H I  

1 1 7 2  C O N T I N U E
L E 1 = 1 S T 0 P ( N V - 1 )
I F ( N V . L T . 3 ) G 0  T O  6  
L E = V V ( N V )
I X = 1

5  L 1 = L E + D L T J ( I X )
J = N V - 1

3  I F ( L 1 - V V ( J ) ) 1 , 2 , 1
2  M 1 = 2 * K

1 1  I F ( M 1 . L E . O ) G O  T O  1 4
I F C L E . E Q . N C H l ) ) G 0  T O  1 0  

1 5  M l = M l - 2  
G O  T O  1 1  

1 0  I F ( L 1 - N ( M 1 - 1 ) ) 1 5 , 1 , 1 5
1 4  L E 1 = L E 1 + 1

1  J = J - 1
I F ( J . E Q . O ) G O  T O  4  
G O  T O  3

4  I X = I X + 1  
I F ( I X - P H I ) 5 , 5 , 6

6  I S T 0 P ( N V ) = L E 1
1 1 8  I F ( K - L + 1 ) 9 2 3 , 9 2 3 , 1 2 4 1
9 2 3  K = K + 1  

N U = 2 * K  
11 = 0
I 3 = W D B A R * W N E X T
I 4 = W D B A R - I 3

: S E L E C T  T Y P E  O F  L I N K
I F ( P ( K ) - 2 ) 9 2 6 , 9 2 5 , 9 2 7

: S T A R T  S E A R C H  F O R  A  B O U N D - F R E E  L I N K
9 2 5  I D U M = I ( N U )

J J = N ( I D U M )
G 0 T 0 1 1 9  

- 9 2 6  I D U M = T ( N U - 1 )
J J = N ( I D U M )

1 1 9  Y = 0  
N V = N V + 1  
I 1 = P ( K )
I 2 = 3 - P ( K )

1 2 0  Y = Y + 1  
I F ( Y - N P L U S ) 9 2 8 , 9 2 8 , 1 2 3

9 2 8  X = J J + D L T J ( Y )
A = D

1 2 1  A = A + 1  I
I F ( A - N V + 1 ) 9 2 9 , 9 2 9 , 1 2 2

9 2 9  I F ( V V ( A ) - X ) 1 2 1 , 1 2 0 , 1 2 1
1 2 2  I F ( H I L 0 ) 9 7 1 , 9 7 1 , 9 7 0
9 7 1  I D U M = 0

A = 0
9 6 5  A = A + 1
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1F(A-NV + 1 )9ül, ,966 ,967

9 6 6  D 0 9 6 8  J = 1 , P 1 I I
i r ( V V ( A ) + D L T J ( J ) - X ) 9  6 8 , 9  6 9 , 9  6 8  

9 6  8  C O N T I N U E  
G 0 T 0 9  6  5

9 6 9  I D U M = I D U M + 1  
G O T O  9 6 5

9 6 7  I F ( Q Q ( K ) - I P U M + ] ) 1 2 0 , 9 7 0 , 1 2 0
9 7 0  1 1 = 1 1 + 1

C  A R E  W E I G H T S  N E E D E D  N E X T  T I M E
S ( I I , K , 3 ) = i m I 3 * W P L U S ( Y )
I F ( Y - 2 ) 9 3 0 , 9 3 0 , 9  3 1

9 3 0  S ( I I , K , 4 ) = W N E X T  
G 0 T 0 1 2 2 1

9 3 1  S ( I I , K , 4 ) = 0
C  S T O R E  B O N D  L O C A T I O N

1 2 2 1  S ( I I , K , I 1 ) = J J  
S ( I I , K , I 2 ) = X  
G O  T O  1 2 0

C  S T A R T  S E A R C H  F O R  B O U N D - B O U N D  L I N K
9 2 7  I D U M = T ( N U “ 1 )

J J = N ( I D U M )
1 2 9  Y = 0
1 3 0  Y = Y + 1  

I F ( Y - N P L U S ) 9 4  3 , 9 4  3 , 1 2  3
9 4 3  X = J J + D L T J ( Y )

I D U M = T ( N U )
I F { X - H ( I D U M ) ) 1 3 0 , 9  4 4 , 1 3 0

9 4 4  1 1 = 1 1 + 1
C  A R E  W E I G H T S  N E E D E D  N E X T  T I M E

S ( I I , K , 3 ) = I 4 + I 3 * W P L U S ( Y )
I F ( Y - 2 ) 9 4 5 , 9 4 5 , 9 4 6

9 4 5  S ( I I , K , 4 ) = W N E X T  
G O  T O  1 3 0 1

9 4 6  S ( I I , K , 4 ) = 0
C  S T O R E  B O N D  L O C A T I O N

1 3 0 1  S ( I I , K , 1 ) = J J  
S ( I I , K , 2 ) = X  
G O  T O  1 3 0  

C  C H E C K  I F  L A S T  L I N K
1 2 3  I ( K ) = I I

I F ( K - L ) 1 2 5 , 1 2 4 1 , 9 3 6  
9 3 6  X = 2 3

G O  T O  1 3 9  
1 2 5  I F ( I I - 1 ) 1 2 7 , 1 1 7 1 , 1 1 7 1

1 2 4 1  I F ( I I - 1 ) 1 2 6 , 9 3 8 , 9 3 8

C  C O M P U T E  A D D I T I O N  T O  L A T T I C E  C O N S T A N T
9 3 8  I D U M = I ( K )

D O  9 4 0  1 1 = 1 , I D U M  
L T E  =  0
L T E = S ( I I , K , 3 )
T E = T E + L T E
V V ( V ) = S ( I I , K , 2 )
N ( I D L ) = V V ( V )
N ( I D L - 1 ) = 3 ( I I , K , 1 )
L E 1 = I S T 0 P ( ' / - 1 )

2 2  L E = V V ( V )
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1 X = 1
2 0  L 1 = L E + D L T J ( I X )

J  =  V - 1
1 8  I F ( L 1 - V V ( J ) ) 1 6 , 1 7 , 1 6  
1 7  M 1 = 2 * K
2 4  I F ( M 1 . L E . O ) G O  T O  2 5  

I F ( L E , E Q . N ( M 1 ) ) G 0  T O  2 3
2 6  M l = M l - 2  

G O  T O  2  4  
2 3  I F ( L 1 - N ( M 1 - 1 ) ) 2 6 , 1 6 , 2 6
2 5  L E 1 = L E 1 + 1  
1 6  J = J - 1

I F ( J . E Q . O ) G O  T O  1 9  
G O  T O  1 8

1 9  I X = I X + 1  
I F ( I X - P H I ) 2 0 , 2 0 , 8

8  L E 1 = P H I *  V - 2 * L  - L E I
P E R M ! L E I ) = P E R M ! L E I ) + L T E

9 4 0  C O N T I N U E  •
1 2 5  I ! K ) = 0
1 2 7  K = K - 1

I F ! F { K + l ) - 2  ) 9 6 3  , 9 6 3  , 9 6 4
9 6 3  N V = N V - 1

C  H A S  T H E  L A S T  P O S S I B I L I T Y  B E E N  T R I E D
9 6 4  I F ! K - 1 ) 1 3 1 , 9 4 1 , 9 4 1
9 4 1  I ( K ) = I ! K ) - 1  

I F ! I ! K ) - 1 ) 1 2 7 , 1 1 7 1 , 1 1 7 1
1 3 1  T E = T E / T ! 2 1 )  ,

W R I T E ! 3 , 4 0 0 0 ) I D E N T , T E  
D O  3 1  I P = 1 , I M  
I F ! P E R M ! I P ) . E Q . O ) G O  T O  3 1  
T P E R M ! I P ) = T P E R M ! I P ) + P E R M ! I P ) / T ! 2 1 )
P E R M ! I P ) = P E R M ! I P ) / T ! 2 1 )
W R I T E  !  3 , 5 0 0 1 ) P E R M ! I P ) , I P  
P E R M ! I P ) = 0  

3 1  C O N T I N U E  
Q = 2 * L
I F ! T E - 1 ) 1 0 1 , 9 4 9 , 9 4 9  

9 4 9  X I = X I + 1  
G O  T O  1 0 1  

1 9 9  W R I T E ! 3 , 2 0 0 0 9 ) X  
G O  T O  1 0 1

3 0 0 0  F O R M A T ! * C O U N T = * , 1 1 0 , 5 X , * P E R I M E T E R = *  , 1 1 0 )
4 0 0 0  F O R M A T ! / / , * G R A P H  I D E N T I T Y * , 1 1 0  , 5 X , ' ' T O T A L  C O U N T * , 1 1 0 )
5 0 0 1  F O R M A T ! / , 2 X , ' ' P A R T I A L  C O U N T *  , 1 1 0  , 2 X  , * P E R I M E T E R *  , 1 1 0  )
5 0 0 0  F O R M A T ! / , * T H E  C O M P L E T E  P E R I M E T E R  P L Y N O M Ï A L  F O R  T H E  A B O V E  G R A P H S  

I O N  T H I S  L A T T I C E  I S * )
2 0 0 0 7  F O P . M A T ! l 2 I 5 )
2 0 0 0 9  F O R M A T ! 1 H Q , 8 H E R R 0 R  N O ,  1 6 )
2 0 0 1 6  F O R M A T ! 5 ! I 4 , I 1 0 ) )  I
2 0 0 1 7  F O R M A T ! 1 H , 5 ! I 4 , 1 1 0 , 1 Ü X ) )  I

E N D  '
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Appendix V 

Graph Definitions

1. An articulation point or cut-vertex is a vertex of a 

connected graph, the deletion of which produces a graph which 

is not connected.

2. The deletion of a vertex i from any graph G means 

the removal of the vertex i from the vertex set of G and 

the removal of all incident edges from the edge set of G .

3. The bond closure E' of a subset E' of the edge set E

of a graph G = (V,E) is the set of all edges of E which

have both terminal vertices in the same component of G* = (V,E') 

A subset for which E' = E’ is said to be bond closed in G .

h. The decoration or completion of a simple face of n > 2

vertices of an undirected plane graph is the addition of 

ln{n~3) new edges constructed by drawing, within the face, all 

possible diagonal lines. This converts the face with its 

boundary edges to a complete graph K{n) drawn with crossing 

lines which is termed a multiface in distinction to an ordinary 

face,

M5. The matching graph G of a simple semiplanar graph G is 

obtained from the underlying graph G^ by completing all those 

faces of G^ not completed in G .
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6. The weak k-weïght of a graph G is defined recursively hy

k{G) = n(G) - I A(G*)
G'

where n(G) is the number of components of G , and the sum runs

over all proper subgraphs, G' , of G .

7. The strong K-weight of a graph G is defined recursively by

K{G) = n(G) - I K(G*)
G*

where w (G) is the number of components of G , and the sum runs

over all proper section graphs, G* , of G .

8. A subgraph G* of a graph G is a graph obtained from G

by deleting a subset (which may be null sets) of its vertices 

and edges.

CThe covering graph G of an undirected graph G is 

constructed as follows: (a) with each edge of G is associated

a new vertex; these new vertices constitute the vertex set of
C CG ; (b) any two distinct vertices of G corresponding to

C
adjacent edges of G are connected by a single edge of G
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Appendix VI 

Variation of w with s .

w
If we fit V = s to a curve of the form 1 + A/s + B/s'

ws-1
then if w ~ s we expect A to have a value one and the 

 ̂s-»Go

intercept of plotted against 1/s to he one.

In the following tables w^ , , A and the successive

intercepts I = sw - (s-l)w _ are recorded for various two and n s s-1
three dimensional lattices.

Simple Quadratic Lattice

s w V I As s s s

3 7.333 1.222 - 0.0
k 8.632 1.177 1.04i5 0.833
5 9.905 1.148 1.0294 0.855
6 11.167 1.127 1.0269 0.899
T 12.ill6 1.112 1.0186 0.895
8 13.653 1.100 1.0143 0.897
9 14.883 1.090 1.0131 0.916

10 16.107 1.082 1.0119 0.928
11 17.326 1.076 1.0104 0.937
12 18.541 1.070 1.0092 0.944
13 19.754 1.065 1.0084 0.951
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Triangular Lattice

w V I As s s s

3 9.818 1.227 -
4 11.591 1.181 l.o4o4
5 13.323 1.149 1.0248
6 15.031 1.128 1.0223
7 16.722 1.113 1.0183
8 18.401 1.100 1.0156
9 20.070 1.091 1.0135

Simple Quadratic Matching Lattice

s w V Is s s
3 13.800 1.255 -
4 16.482 1.194 1.0137
5 19.110 1.159 1.0199
6 21.704 1.136 1.0172
7 24.274 1.118 1.0147

Hexagonal Matching Latticig

s w V Is s s
3 20.818 1.262 -
4 25.021 1.202 1.0227
5 29.154 1.165 1.0176
6 33.237 l.l40 1.0149
7 37.287 1.122 1.0125

0.712
0.843
0.846
0.881
0.897
0.912
0.924

As
0.791
0.818
0.877
0.900
0.917

As
0.855
0.876
0.896
0.915
0.928



simple Cubic Lattice

s ws
3 13.200
4 16.256
5 19.213
6 22.129
7 25.018
8 27.890
9 30.749
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V Is s
1.320 -
1.232 0.9660
1.182 0.9838
1.152 1.0006
1.131 1.0036
1.115 1.0044
1.103 1.0043

Simple Cubic with 1st, 2nd and 3rd neighbours

As
0.213
0.824
0.845
0.914
0.936
0.949
0.957

w V I As s s s
52.987 1.330 - 0.838
65.724 1.240 0.9721 0.878
78.251 1.191 0.9915 0.919
90.647 1.158 0.9975 0.938

Body Centred Cubic Lattice

s w V I As s s s
3 18.286 1.306
4 22.500 1.230 1.0035 0.932
5 26.654 1.185 1.0012 0.928
6 30.769 1.154 1.0034 0.943
7 34.854 1.133 1.0031 0.948
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Face Centred Cubic Lattice

s w V I As s . s s
3 23.440 1.302 - 0.720
4 28.737 1.226 0.9972 0.896
5 33.956 1.182 1.0042 0.925
6 39.121 1.152 1.0046 0.936
7 44.247 1.131 1.0046 0.944
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