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ABSTRACT

This thesis is concerned with the study of the excitation of Hydrogen 

atoms to the n = 3 states from the ground state by electrons with 

incident energies ranging from just above the ionization threshold to 

energies where the first Born approximation is expected to be valid 

('X/IS - 200 eV).

The major physical effects in this region.are exchange, the distortion 

of the wave describing the external electron, and the distortion of 

the atomic system.

A model which includes these effects - the Distorted Wave Polarized 

Orbital (DWPO) approximation - is generalized for any Is - nA excitation 

and used to investigate the excitation process for n = 3 in particular.

Total (integrated) and differential cross sections^ not previously 

calculated using this model, are presented and compared, where possible, 

with other theoretical and experimental work. Other sensitive indicators 

of the effects of the model are considered. These include the polarization 

of Balmer-a (Ha) radiation and the parameters which describe the 

orientation and alignment of the atomic system after collision and the 

coincidence rate for the observation of emitted photons with the ejected 

electrons (Fano-Macek and Macek-Jaecks parameters). Also studied is the 

asymmetry in the observed intensity of Ha radiation arising on sign 

reversal of an applied electric field along the interaction direction.

There is a serious disparity between the results in this model or the Born 

approximation and the experimental observations. A number of reasons for 

this are discussed.

The vrork here indicates a need for further theoretical and experimental

study but that high levels of sensitivity are required in any experimental

work particularly with regard to the polarization and asymmetry measurements.

Additionally, this work illustrates a very serious failure in the DWPO

model caused by the use of the adiabatic polarization potential rather

• •



than an energy dependent potential especially at higher 150 eV) 

energies in the 3d excitation where we found that for the total cross

section, the results obtained^ by including full allowance for polarization

lie a factor of about 2.5 below the B o m  result at 200 eV and do not

approach the Born cross section even for impact energies measured

in keV. The most useful line of future research is expected to be 

the allowance for coupling to adjacent states by the unitarizaticn 

method and some preliminary work for this is included.
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CHAPTER I

INTRODUCTION AND ATOMIC SCATTERING THEORY 

§1.1 Background to this Study

In this work we have extended and generalised our application of 

the Distorted Wave Polarized Orbital (DWPO) approximation. The series 

of previously published reports•includes ; McDowell et al. 1973; 1974;

1975a,b; Morgan and McDowell 1975; Syms et al. 1975; and these papers 

are referred to as papers I to VI in the work that follows. In particular 

we are interested here in the following transitions in hydrogen:

e + H(ls) e + H(3A : A = 0, 1 or 2).

Since the hydrogen atom and hydrogenic ions are the simplest of 

all atomic systems, they have been extensively studied both theoretically 

and experimentally. Published theoretical work on the transitions here 

includes: the first B o m  approximation-; a modified Born approximation 

(Morrison and Rudge, 1966); the Ochkur approximation (Gumble, 1969); a two- 

state distorted wave approximation (Vainshtein, 1961); the Glauber 

approximation (Tai et al. 1970, Bhadra and Ghosh, 1971); the Second 

B o m  approximation (Holt, 1969, Woollings and McDowell, 1973); the 

unitarized Born approximation (Somerville, 19.63); some close coupling 

results at energies very.close to threshold (Burke et al. 1963, Burke 

et al. 1967); results for Is - 3p in the second order optical potential 

method (Bransden et al., 1972); the second order diagonalization method 

(Baye and Heenan, 1974); a multichannel eikonal approach (Flannery and 

McCann, 1974); and in paper I (McDowell et al., 1973) results for the 

Is - 3s excitation were presented in the DWPO model neglecting target 

distortion (DWPO I). In paper VI we published total and differential 

cross sections in the DWPO I and II models.- These results are extended - 

and repeated here for the sake of completeness.

Notwithstanding this extensive list of theoretical work, the
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n = 3 states have not been as well studied as the n = 2 states and 

there has not been a corresponding experimental study. Previous 

experimental investigations of electron-hydrogen scattering have centred 

on the n = 2 substates mainly because the 2 s state is metastable 

and so the substates can be examined separately although they are nearly 

degenerate in energy. However, the n = 3 states are important in 

astrophysics since they give rise to Balmer alpha radiation (referred 

to as Ha). This radiation is emmitted when the n = 3 states decay to 

the n = 2 states. Its wavelength is 6553?-thus it lies in the visible 

spectrum and is easily detected compared with Lyman alpha (1216 R in 

the ultraviolet) which is emmitted when the n = 2 states decay to 

the ground state.

Recently however the experimental position has been greatly improved.

The measurement of the total Ha cross section by Kleinpoppen and 

Kraiss (1958) has now been supplemented in an absolute calibration by 

Walker and St.John (1974). Also Mahan and his colleagues (Mahan 1974,

Mahan, Gallaher and Smith 1975; Smith 1975) have used a sophisticated 

technique to obtain individual cross sections for the Is - 3A (A = 0 ,  1 or 2) 

transitions (relative to the Born approximation at 500 eV), and the total 

Ha cross sections. In doing so they discovered some interesting asymmetries 

(see also Krotkov, 1975) and we discuss these in this work. The only two 

reported measurements of the optical polarization of the Ha line are 

those of Kleinpoppen and colleagues (Kleinpoppen and Kraiss 1968;

Kleinpoppen et al. 1962). We have found no reports of coincidence 

measurements or measurements of the alignment or orientation parameters 

for the n = 3 states of hydrogen.

There is a thorough review of electron-hydrogen scattering by 

Moiseiwit$cVi and Smith (1968) which covers both experimental 

and theoretical work up to the date of publication.

A comment here is appropriate about the notation used in this thesis.

We refer to total cross sections as a and to differential cross sections as
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where ^ = (8 ,^) is the scattering angle illustrated in figure Fl.l. 

We work in the centre of mass frame and in atomic units. The position 

of the bound electron is given by r^ and that of the incoming electron 

by r^ . The co-ordinate system is chosen so that the incoming electron 

direction is along the positive z axis. The different models considered 

here are referred to as: the DWPO model without core polarization (DWPO I) 

or with core polarization (DWPO II); the BORN approximation or for 

hydrogenic ions when the nuclear charge ^ 2  - the COULOI#-BORN

approximation; when core polarization is included in these models we add 

the prefix POLARIZED; and when we include exchange in the BORN and 

POLARIZED BORN (or COULOIR-BORN or POLARIZED COULOMB-BORN) then the 

suffix OPPENHEIMER is added. Equations are referenced by the chapter 

and sequence number. Figures and tables are identified similarly and 

prefixed by F or T respectively.

The rest of this chapter is devoted to a discussion of general 

atomic scattering theory and of the features of the models used to 

study electron hydrogen scattering. In particular we consider the 

background and equations leading to the polarized orbital approximation. 

Briefly in section §1.4 we describe Mahan’s experimental approach and 

finally in section §1.5 we present the layout for the rest of this thesis.

§1.2 General Theory of Scattering

For a full and detailed account of formal scattering theory see any 

of the standard texts - for example Mott and Massey (1971) or Goldberger 

and Watson (1964). Here we consider the theoretical background to each 

of the models used to obtain results for the transitions of interest.

The hydrogen atom consists simply of one electron in the Coulomb 

field of one proton - this system, independent of all interactions,can 

be described by the time-independent Schrodinger equation:

Hq Y = EY (1.1)
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where the Hamiltonian includes only the kinetic and Coulomb potential

energies of the electron and in atomic units is given by;

Ho = - î v X  i  ■ (1 .2 )

This Hamiltonian neglects the various properties of the electron 

and proton other than their charge and mass. These other properties include 

electron and nuclear spin and allowance for them can be included by 

means of a small perturbâtive correction to the Hamiltonian. The exact 

solutions to (1 .1 ) yield the energy levels and eigenfunctions of the 

ground (Is) state and excited (n&) states; when the perturbative correctibi 

is included then the resultant energy levels and eigenfunctions exactly 

describe the more complex atomic model including fine and hyperfine 

structure splittings.

If an external field acts on the atom (which is the case we consider 

in Chapter 7 below dealing with the asymmetry of Ha radiation) then 

the additional perturbative correction used is one which describes 

the coupling of the atom to the external field.

If the atom collides with another electron then the system consists 

of one bound atomic electron with co-ordinates given by ^  and a 

free electron with co-ordinates r^ relative to the proton as in 

figure Fl.l. If the incoming electron has sufficient energy that it is 

scattered inelastically then the scattering process is described by:

H(1s ) + e H(n&) + e + hv (1.3)

When we consider a hydrogenic ion of nuclear charge then all the 

above still applies with the exception that now we have two electrons moving 

in a fixed Coulomb potential due to a central charge of Ze units and 

the equation for the complete system of electron and hydrogenic ion in 

the initial channel becomes: _ _ __

(H - E)tÎ = 0  (1.4)



where the superscript + indicates that the function represents an 

outgoing wave, and in the final channel:

where

and

H = -  J(V^ H- Vg)

Vf =

i(Vi + Vg) r. z = Z - 1

—  +
^2 ^12

(1.5)

(1 .6).

} (1.7)

The final unperturbed wave function is denoted by and V- is

the interaction in the final channel.

Formally, we may write the Green’s function operator for the 

initial channel:

G. = lim 
e->-0 + E-H^+ie (1.8)

and with this definition we obtain a formal expansion of T. : ̂ 1

Vf = I (G+ V.)P
P=o

(the Lippmann-Schwinger equation)

(1.9)

where

and

H = H. + V. 
1 1

H.#. = E#.

> (1.10)

The Green’s function operator for the complete system is:

G = lira 
&+0+ E-H+ie (1.11)
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(Note that this differs from (1.8) in that the subscript i has now 

been dropped). The relation (1.9) can be manipulated so that the solution 

becomes formally:

ït = (1 + g V ) i|/̂ (1.12)

Pre-multiplying (1 .1 2 ) by we obtain:

V ”i " V f d  + G\)'l’i = Ti|k  . (1.13)

T is the transition operator and the T-matrix element, T^^, for a 

transition from state i to state ,f.. is defined:

'’’if = (1.14)

The differential cross section is then defined:

^ 7  I h f l '  C

where is the momentum vector of the incoming electron and is

that of the outgoing electron (see figure Fl.l). VThen this is integrated 

over all angles we obtain the probability of scattering given by the 

total cross sections:

= “ 2 ÎT2ir 1
]t.^| d(cos0 ) ira (1.16)

By calculating the total cross section we can compare the gross 

features of one model against another and with experimental measurements.

The importance of the differential cross sections lies in the fact that 

they are a prediction of the probability of scattering at a specific 

angle and this enables more detailed comparisons to be made.

Closely related to the cross section are the scattering amplitudes 

defined by

   - —  f.r(k) = - Ie^“ *“ [ \j).> —  - - . — (1.17)
If K f 1



g-

where ^  - k_̂, is the momentum transferred by the scattered electron

to the atom. With this definition, the cross sections can be written:

K
o o f  max 2

c r . ( k / ) = ^  |f (K)p KdK (1.18)
11 1 )K . ^min

and

Kmax = b  + k f  ’'min = ’'i " ’'f

Returning to (1.9) - if only the first term is used in (1.14) then 

we obtain the "First B o m  approximation".

T ™  = (1.19)

and the closed terms obtainable for the scattering amplitudes can be used - 

here to readily calculate the cross sections. The obvious improvement 

to this model is to retain the next highest order term and this results 

in the "Second B o m  approximation"

+ G+Vi^^)> (1.20)

but here the second term cannot be computed exactly and so further subsidary 

approximations must be utilized. These usually require that the lowest 

N states are explicitly included and a mean excitation energy together 

with the closure property of wave fun ct i ons are used to complete the sum.

This model has been used by Woollings and McDowell (1973) and Holt (1969) 

with different choices for the mean excitation energy. In particular, the 

differential cross section results for inelastic transitions are 

markedly improved compared with the first Born approximation at large angles

and this is attributed to the inclusion of the initial state and n = 2

state as intermediate states since elastic scattering and Is - 2p 

excitation/important intermediate processes (see also Vainshtein and 

Presnyakov, 1969).
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An effective way of improving the B o m  approximation by making some 

allowance for coupling to other states and ensuring that the results 

satisfy the conservation condition is to follow the unitarization method 

of Seaton (1961) and to use the Born approximation to the reactance matrix. 

When the initial state wave function is expanded over the angular 

momentum states, L, of the impact electron then for high values of L 

exchange and distortion are of lesser importance and so the results obtained 

by this method can be matched with those of more sophisticated calculations 

for lower angular momentum states. For this reason we present in Appendix 

AXII some results which will be useful in such calculations. Somerville 

(1963) has used this method for the Born approximation to the reactance 

matrix and presented results for the transitions of interest here.

Exchange and distortion effects are still neglected and the transition 

matrix in the B o m  approximation to the reactance matrix ^  is

given by

2l = - 2 %  , (1.21)

•whereas the exact relation between the reactance matrix _R and the 2

matrix is :
-2iR

I  = ^

By using ^  in (1.22) Somerville obtained a better approximation to the 

2  matrix given by . 2 jj snd these are the results considered here.

When allowance is included for the exchange of the incoming and bound 

electron in the B o m  model we obtain the Born-Oppenheimer model and 

now the scattering amplitude is written

= ^if - h f

where, as above, f^^ is the first Born approximation to the scattering

amplitude when the hydrogen atom is excited from the initial state,., i . to.. . 

the final state f and is the exchange scattering amplitude for

this transition: fî^ and f^^ are respectively the singlet
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and triplet scattering amplitudes. The disadvantage with this method is

that it frequently yields results (especially near threshold) which

exceed conservation limits (see Bates et al., 1950). Ochkur (1964) has

modified the Born-Oppenheimer approximation by expanding in a
-1power series of k̂, and retaining only the first term. In this case, 

the, exchange scattering amplitude becomes

®if ■ , 2 (1 .21+)

and then the scattering amplitude is:

f:f = (1 ± ^ )  f _  (1.25)
k .

This model has been used for the excitations.here, by Gumble (1969). 

Further, Rudge (1965a) has shown that although Ochkur’s result satisfies 

orthogonality conditions between the initial and final states (whereas 

the Oppenheimer approximation does not) it is not consistent with a 

choice of trial functions in the variational principle which satisfy the 

boundary conditions of the problem. In view of this,Rudge (1965b) has 

modified the Born-Oppenheimer approximation using trial functions in 

variational expressions for the scattering amplitudes and Morrison and 

Rudge (1965) have used the resulting expression for the exchange scattering 

amplitude, which is very similar to Ochkur’s, for the Is ->■ 3Jl transitions 

and obtained significantly different results at low incident energies.

The Born and Born-Oppenheimer models treat the impact and scattered 

electrons as free particles and provided the perturbation V is small 

or the passage time of the incoming electron in the neighbourhood of the 

target is small then this may be acceptable. However at lower impact energies 

the incident wave is distorted and cannot be considered to be a plane 

wave while at the same time the possibility for exchange becomes greater 

and so alternative, approaches, must be considered. ... .. .. .... _ . ..

The usual approch is to expand the function tT in terms of target 

eigenfunctions: '
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= I (r^) F (r^) (.1.26)
q iq ^

where is the orthonormal set of hydrogenic wave functions and

Fq^(r^) is the free electron scattering function satisfying

(V^ + k ’̂’) F^(r^) = 2 F̂ .Cr̂ ) (1.27)
with "

Vqm(%) (r )V(r ,r ) ip^Cr ) dr (1.28)q — 1 — 1  — 2 m — — 1

and V(r^,r^) is therefore the interaction energy between the free 

electron and the target.

The close-coupling approximation follows when (1.26) is terminated 

after N terms thus :

. N ,
■ 'I'i = >/'iq(£3̂ ) V - 2 ^  ’<(-l*-2) (1.29)

where the correlation term % represents some of the effects of the 

mis sing terms and v4" is an-.appropriate antisymrnetrizing operator.

This method is that used by Burke and c:o-workers (Burke et al., 1963,

Burke et al., 1967).

Alternatively5 the lowest N states are treated exactly but for 

m > N the only terms retained are those coupled with states q where 

1 4  q 4  N. Then

N
F (£2 ) = 2  I 

p = 0
v̂ -p dii (I-30)

where is the free particle Green’s function, and the equations for

the scattering functions in these retained states are (see Mittleman, 

and P %  1962)

N ,N
V -  '-2 ’ îi‘- ’ -

(1.31)
where the term' is the second order non-local potential given by

Bransden and Coleman (1972). This is still too complex for an exact
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solution so a mean excitation energy for m > N and closure is used 

and then the optical potential  ̂ becomes:

00
V £ = £ 2 >  = V - 2) V -  (1 -3 2 )

This is the second order optical method used by Bransden et al. (1972).

The eikonal approach is to treat the problem by direct analog)'- to

the potential scattering problem. In this case the function is

assumed to have the form

TÎ = A (1.33)

where A is a slowly varying real function of the incident wave-number

k^ and S satisfies the eikonal equation

(VS)^ = k? - 2V (1.34)

2
and requires that — ^  << k?. Thus the eikonal approximation is a 

high wave number and high energy (compared with the interaction potential) 

approximation.

The Glauber model which is bused on the Eikonal approximation allows 

for the target - impact electron interaction although it neglects 

exchange scattering. The total wave function has the form:

e *(r^) (1.35)

and the energy of the impact electron is assumed to greatly exceed the 

magnitude of the potential so that :

(̂£j, dz y (1.35)

with £ 2  " ~  ~  lies along + k_̂  and ^  is the impact parameter

perpendicular to Z, Thus the free electron scattering function,

F^(£g) is approximated■by a straight line along directions making equal 

angles with k^ and and the scattering amplitude is given by:
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Ik.
h f  ■ i f  ( e^- -  d^b dr (1.37)

where the phase change % is given by

1

and

(1.38)'

r(b,r) = 1 - exp(ix(^,rq)) (1.39)

This model has been used by T ai‘et al. (1970) and Bhadra and Ghosh (1971).

The "coupled-state impact-parameter" method used by Mnndelberg 

(1970) combines both the inclusion of intermediate states as in the close 

coupling approximation and the simplicity of the impact parameter 

method where the perturbing electron is assumed to travel in a classical 

straight-line constant-velocity path with momentum and impact

parameter b. This approach thus allows for coupling to intermediate 

states when direct coupling is weak.

Another impact parameter approximation is that used by Baye and 

Heenen (1974) using a twenty state basis, while Flannery and McCann 

(1974) have used an elaborate multichannel eikonal treatment which 

accounts explicitly for the changes in velocity associated with different 

channels not acknowledged in earlier semiclassical descriptions such as 

the eikonal approximation, the impact parameter approach or the Glauber 

all of which separate the relative motion of the impact electron (described 

by an eikonal type wavefunction for an electron in a static field) from 

the internal electronic motions of the atomic system (described by a 

multistate expansion). This eikonal method readily reduces to the first 

Born or Glauber approximations.

Vainshtein (1961) has used a two state distorted wave approximation 

involving only the initial and final states of the atom. The pair of 

coupled differential equations are obtained from equation (1.25) and
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(V^ + kh  F.(r) = U F„(r) + U F,(r) (1.40a)0 Ü —  CO o —  ol 1 —

(v’’ + k h  F,(r) = U. F (r) + U „  F (r) (1.40b)1 1 —  lo O —  11 1 —

When the coupling potential is small, while and

are large then the inelastic cross section will be small and so << F .1 o
Then a 'good first approximation may be obtained by solving:

- "oo) = ° (l-41a)

F^ (1.41b)

with the boundary conditions for F^ and (see Mott and Massey, 1971) 

ik r ' ik r
F^ ~ e ° + r  e ° f̂ (G,(),) (1.42a)

-1 ^^1^Fq ~ r e fq(8,#) - (1.42b)

When the solution for F^ is inserted in (1.41b) we obtain an inhomogeneous 

equation for F^ of the form:

9 2. ( V  + k^ - U^q) Fq = g(r,8,*),, (1.43)

denoting ■ the solution of the homogeneous equation by then

(V^ + k? - Uqq) gq = 0 (1.44)

and
ik rcosG ik^r

J q - v e  + r  e fq(6,({.) (1.45)

Therefore in this approximation the function F^ represents the motion 

of the impact electron in the mean field of the initial atomic state and 

3̂  ̂ that of the outgoing free electron in the mean field of the excited 

atomic state: thus the scattering wave functions are distorted by the mean

fields of the initial -and final states of the atem. - —

By neglecting the coupling potential between the initial and final 

states but including the polarization distortion of the target by the
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incoming electron we come to the distorted wave polarized orbital 

approximation used here and described below.

§1.3 The Distorted Polarized Orbital Approximation

For a full and detailed description of the polarized orbital 

method see Drachman and Temkin (1972). The original method by TemJcin 

(1959) and when applied to atomic hydrogen by Temkin and Lamkin (196|) 

was essentially designed for elastic scattering only, Lloyd and 

McDowell (1969) applied the method of using the polarised orbital, 

scattering function obtained for elastic scattering to evaluate the 

Is - 2s and Is - 2p cross sections for atomic hydrogen by solving the 

elastic scattering problem using the extended polarization approximation 

(EPD) of Callaway et al. (1968) and then used this function to evaluate 

the T-matrix element for inelastic scattering. The"exact wave function 

satisfies (1.4), so any trial function 2^ which satisfies

the correct boundary conditions and the variational principle
six- k ') ( i -  4^0

may be used to obtain an approximate solution. Callaway et al. choose

a trial function of the form:

F(rg) (1.47)<|)(r̂ ) + x (£i »£2^

where (|)(r̂ ) is ground state target wavefunction, is the antisymmetrizing 

operator and x ( ^  ̂— 2^ is the first-order perturbed part of the ground 

state,function satisfying

(H^-E^)x(£i .£2) = (V - V^^)f(rp

and (H^ - E^)^ = 0,. = <#|v|#> and V is given by (1.7)

The EPD method of Callaway et al. is not strictly variantional 

since if (1.47) is used in (1.46) and the unknown scattering p(r^) is
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expanded over the partial waves o f the scattered electron thus:

■y
&=0 ^2 'o

F(rg) = I ' ■ (1-48)

then a set of integro-differential eqùations for the radial functions 

u^Cr^) results which would yield bounds on. the phase shifts 6^, but 

the EPD method is applied in two parts :

1. the use of (1.47) with = 1 t P^^ (where P^2f(l,2) = f(2,l))

replaced by unity in (1.45) to obtain the polarization and distortion

effects without exchange; and then

2. the use of (1.47) in (1.46) without the perturbed term to

obtain the exchange effects ; this technique does not lead to bounds

on the phase shifts • .

• Thus the initial channel only is included in the initial wave 

function and all other channels are accounted for only by the polarization 

function x ( £ p t h i s  model, the integro-differential equation

becomes : 
.2
^ _ 2V_(r) - 2V _,(r) + V^(r)^u^(r) = ±X%(r)rR^(r)

(1.49)
where

4 m  = (E„ -
O

and p

,j.(r) = Ro(r)Yoo(0); Yj^(t,r) =

The potentials are: the polarization potential

Vp^j_(r) = I $(r^) Vx(r^,r2)dr^ (1.50)

and the distortion potential

V.^(r) " I i x(r^,r2)|^ dr^ (1.51)
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For this work we adopt a simplified version of (1.49) where we 

neglect distortions other than the dipole component of the polarization 

potential: in other words we drop V^(r). Furthermore in the DWPO I 

model we ignore the effect of the core polarization term in the T-matrix 

and allow for polarization distortion only when obtaining the scattering 

wavefunction F^rg) but this term is explicitly included in the DWPO II 

model. The effect of this core polarization term will be seen to be 

quite significant particularly when the Is - 3d excitation results 

are considered.

In particular, we use the dipole only Câllaway-Temkin potential

for V ^(r) since this has been so successful in electron-atom pol
scattering. This is given for hydrogenic systems by:%

1 - e (1 + 2x + 2x^ ^ * ^7 (1.52)

where x = Zr.

When we take

fl(c°sGi2)
V tt (1.53)

(^ >£2  ̂ a step function which cuts off the polarization term for

r^ < r^) then this gives the Callaway-Temkin potential if ’-̂j[_s->-p̂ ^̂ 

satisifies Sternheimer’s equation. This equation, which arose originally 

in the calculation of atomic polarizabilities (Sternheimer 1954) but 

was subsequently shown to approximately correspond to perturbation theory, 

is given by:

.dr (1.54)
with

nA+A '(r) = F T T r lnA
P .(r)

dr2- nA
A'(A'tl) - A(Atl)
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and P^^(r) is the r-multiplied radial part of the hydrogenic nA 

wave function.

Thus we have the basic equation (1.49) on which the DWPO model depends 

and now our solution corresponds exacxly to the adiabatic exchange 

approximation defined by Drachman and Temkin (1972).

Recently however, Walters (1976) has pointed out some of the deficiencies 

of this adiabatic model and therefore we consider the implications on our 

results in Chapter 4 below.

§1.4 Mahan's Experimental Method

The most important experimental work is that of Mahan and c^o-workers 

(Mahan, 1974; Mahan et al 1976). They use the different average delays 

between excitation of the 3A states .and the subsequent radiative 

decay by modulating the beam of impact electrons. This modulation 

involves turning the electron current on and off sinusoidally at high 

frequencies, while measuring the resultant amplitude of the modulated 

photon output as .a function of the modulation frequency. The time response 

of the fluorescence from each directly excited state is described by the 

same differential equation as is a low pass RC filter. By performing a 

least squares fit to the modulated . .amplitudes it is possible to identify 

the substate cross sections and obtain the relative ratios of the 3s, 3p 

and 3d cross sections.

In a separate measurement Mahan obtained the intensity of Ha 

radiation at right angles to the electron beam. After correction for the 

angle of observation and cascade this signal was normalised the 

total B o m  cross section at"500eV to obtain the Ha cross section profile 

and then the total 3A cross sections were derived.
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G1.5 Layout of this Thesis

In the next Chapter with the associated appendices we present the 

generalized formulation for the T-matrix in the DWPO I and II models for 

hydrogenic systems and indicate how this leads to the differential 

and total (integrated) cross sections. Also included is the formulation 

of the polarized Born scattering amplitudes following from the Born 

approximation when core polarization is explicitly included in the target 

wave function. In Chapter 3 we discuss the details of the computer 

programs used to produce the cross sections. In Chppter 4 we present our 

results for the total and differential cross-sections and comj^are them 

with otlier published results.

At this point in Chapter 5 and 6 we move onto the study of other 

parameters of the scattering process. In Chapter 5 we consider the optical 

polarization of Ha radiation and then Chapter 6 is devoted to the coincidence 

and the orientation and alignment parameters. In Chapter 7 we consider 

the asymmetry of Ha radiation in detail and present results using the 

polarized-Born scattering amplitudes. Finally in Chapter 8 we present our 

conclusions and suggestions for further study. For the sake of readability 

we have avoided as much as possible the presentation of detailed 

mathematical manipulations in the main text and these are to be found 

in the appendices.
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CHAPTER 2.

ELECTRON-ATOM SCATTERING

2.1 General Formulation in terms of the T-Matrix

The cross-section for a transition from an initial state i to a

final state f of a hydrogenic system of nuclear charge Z, due to
2collisions with electrons of initial energy Rydhergs, may be written

(McDowell and Coleman 1969 p.307)(using atomic units wherein = e = h = l):

2 IT 1
|t ^^| d(cos 0) TTâ ' (2.1)

where the T-matrix element T^^ may be defined as :

T.f = <4'f|Vj|Yi> (2.2)

with

Ihfl' + 8lT.p|2^ (2.3)
and

L / = (2.4)

(plus and minus signs refer to singlet and triplet contributions respectively) -

the T-matrix is a function of the initial and final state wave vectors, k.
— 1

and j related by'

k.^ = kj-̂  t AE.r ; k..kr = cos 0 . (2.5)1 f if — 1 —f

Interest here is centered on transitions from the grcuiid Is state to an

excited state nAm^, although the following may be generalized to account 

for any initial state.

Here, is the unperturbed wave function in the final channel,

is the interaction potential in that channel and is the total scattering

function in the initial channel, so that satisfies

(H - E)Y. = 0  ... .. _ (g^6)
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with appropriate boundary conditions as discussed below. The total 

Hamiltonian for the incident electron-hydrogenic ionCof nuclear charge 

Z ) system may be written

H = - " I  ^  (2.7)1 2 12

= H f  t Vf

(assuming the target nucleus to have infinite mass) where

= - &V ^ ^---' ^ 9  z = Z -  l (2.8)
^ 1 ^2

and

V - = - —  (2.9)
^ V z  ’̂ 12

in the direct channel, defining the position vectors of the initially

bound electron and the incident electron to be r^ "and r^ respectively

(see figure Fl.l).

The final unperturbed state of the whole system is described by

HfT|;f = Eipf (2,10)

and T|jf is given by

(2.2) (2.11)

where $f(Z,l) is the wave function for a hydrogenic ion of nuclear 

charge Z in the state nAm^

and Xv (z»2) is the outgoing Coulomb wave of an electron in the field 
-f

of a nucleus of charge z (see McDowell and Coleman 19G9 p.239, Gordon 

19.28, p. 180) (note that this, reduces to a plane_wave when z = 0).
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? A'(z,2) = I (2X'+l)i exp(-itiĵ ,(l<j))Ĥ |(l<j r^) P^,(cos6k^) (2.13a)

C O S 0 ^  = k^. £ 2

or in terms of spherical harmonics
CO ^ ̂ ^

X, (z,2) = 4n % i^’exp(-in ,(k ))H (k r ) 5; »u » (2.13b)
Kf x'=o A r A r /J p,=_x, ^ 4 X ]i -z

where .k̂ , = cos 6 and the plane k^,k^f defines (j> = 0 (Fl.l); and

where n«(k) is the partial Coulomb wave phase shift given by

and

n^(k) = arg(r(&+l - ̂ ) ) i  (2.14) .

H^(k,r) = G^(k,z,r)/(kr) (2.15)

thwhere G.(k,z,r) is the regular A order Coulomb function or, in the A
case when Z = 1, it is a (kr) -multiplied Bessel function

G^(k,0,r) = kri^(kr). (2.16)

The normalization of H^(k,r) is thus:

H (k,r) 'v* (kr) ^ sin# (k,r) (2.17)
^ r ~ *

where ^^(kgr) depends on the target polarizability and is given by

Burgess (1963) (see equation 2.27).

2,2 The DWPO Model

In the DI'/PO I model, which neglects target distortion, the total 
scattering function is taken to be

?{-)(l,2) = j£^<f^(Z,l)F*(2) (2.18)

Where the antisyinmetrizer is
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Ji = 1 + Pi2

(2.19)

P^gfd.S) = f(2,l)

Polarization effects in this model are only included in the derivation 

of the distorted wave scattering function F"(2). Working in an uncoupled 

representation this function is expanded in partial waves

+ Z - -F"(2) = \  A. - P. (cose.), cose = k ..r (2.20)
X=0 * 2 ^

with the radial functions u^“(r2 ) satisfying the adiabatic exchange equations 

(see Temkin and Lamkin 1961, Duxler, Pde and LaBahn 1971) so that for an 

initial Is state

u^"(kfr) = ±X^(r).r.R^g(Z,r)

(2.21) 
with

V, , (r) = - -  - (Z + (2.22)Isls r r

and the Callaway-Temkin polarization potential

Vpoi(-) = - ( 1  - e-'""(l + 2 Zr + 2 z V  + ^  + ^ ) )

(2.23)

T  ■r-Ko r ‘

X^"(r) is a non-local zero order exchange interaction, obtained by 

neglecting polarization

= (Sis - |^q^(t)u^±(k.,t)

..... X Y%(t.r)tdt .. (2.2>t)_
with
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r<
Y^(r,r*) = — ^  , r^ = min(r,r*)

(2.25)
r^ = max(r,r*)

±Equation (2.21) is solved for u^ (kf,r) subject to the boundary conditions

u^^(kfjO) = 0

u_~(k.,r) 'V/ k. ^sin(# (r) + 6 “)
^ ^ rw>oo ^ oc À

(2.26)

with

# (r) 'v k.r - JXtt + ~  An(2k.r) + tj (2.27)
" rw>co ^ kf 1 A

•f*It follows that the solution for u, (k.,r) corresponds to theA  1

adiabatic exchange polarization as defined by Drachman and Temkin (1972). 

The full expansion for F“(2) in terms of spherical harmonics is

.. ±
F*(2) = I  

x=o
4tt(2X+1)

1 exp(i(6 ^-+n^)) — ------------------------ (2.28)

and the T-matrix in this model is given by

Tff“ = <#f(Z,l)%^ (z,2)|Vf|(l+Pf2)#f(Z,l)F-(2)> (2,29)

It is useful to note that by ignoring the local static potential

^Isls* polarization potential , and the exchange term X^” (r)

from the integro-differential equation (2 .2 1 ) the model reduces to the

Couiomb-Born-Oppenheircer approximation of Burgess et al.(1970). This is

'équivalent to simply replacing F"(2) by a coulomb wave Xv f rr ^ \- ' — i 2
Using the expansion

(2.30)

Tff“ reduces, after some algebra (see AppendixAl) fo a. sum over partial 

waves of the scattered electron
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where

C\,-(ma) =  . .     I I
[(2&+l)k.] X=0

,X-X'_%XX'
‘XX I'(X,X') ± ( X U , V )

- 4 (« f )

with
im

= (2X+1)(2X'+1)
(X'-|m^|)î 
(X'+lm^l)î

X ’ A X\ /X* A X'

0/ \0 0 Oj

(2.32)

(2.33)

the last Wigner 3-j coefficient serving to define the range of X 

for given A and X* .

VThile

^ + %X,(kf) + G*(kf) (2.34)

is a phase factor which.for atomic hydrogen reduces to the elastic
•f*scattering phase shift 6 , (k.).

The first of the basic integrals is

with

I"(X,X') = rflsn&(r) " x ' ^ V ^

Rfg(Z,t) R^(Z,t) Y^(t,r) t dt

(2.35)

(2.36)

(for the evaluation of this, see appendix All) 

The exchange integrals are

J“(X,X») = I SisX'(^f'^) ^nA^^'^^/ o

with

2lsX'(kf'p) = F to X ' ' f  ' 'X

and (the orthogonality integral)

(2.37)

(2.38)

K“ (A,0) = (2.39)



The coulomb screening factor is:- .

0 7 ^ / 2  1 o T 1 r
d(a.) = G^(er-1)"2 exp(2a. tan""^ (--) ) (2.40)

f (Z^tkfZ) f %
with

3 = 2na ; a. ~ - z/k and d(0) = --- — (2.41)
^ ^ ^ (Itkf^)

In the DWPO II model, account of target distortion is included in the 

direct term of the T-matrix, but, consistent with neglecting exchange 

polarization terms in (2.24) when obtaining the scattering function, 

target distortion is neglected in the exchange part of the T-matrix.

Thus the T-matrix above is replaced by

h i  = hf" ^ (2-42)

The Callaway-Temkin potential in (2.21) is obtained if (f*pQj_(̂ 9 2 ) 

is taken to be

, , . ' 1' — . 2'
A

where u. satisfies Sternheimer’s Equation:ls->-p ^

X  PV.(r) 2
(- + + — ) "isA.p(^) = rPis(r) (2-44)di‘ Is r ^

in which Pfg(r) is the r-multipled hydrogenic radial function for the 

ground state.

It is possible to obtain the solution to (2.44) in .closed form: taking 

Uis^p(ï’) ” w(Z,r) Pfg(r) leads to; (see appendixAlU)

w(Z,r) = (Zr + i  z2p2) (2.45)
2Z
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The term eCr^^r^) is a step function which cuts off the perturbation for 

^ 2  =  ' 7'hus, more explicitly, we allow the initial state of the target

to be perturbed by the dipole component of the interaction with the 

incident electron to the first order in the interaction, provided that the 

incident electron is further from the nucleus than the bound electron.

The overall effect of this is to modify (2.32) by replacing I“ (X,X*) 

by I (X,X*) thus (see appendix IV):

%  +I"(X,X’) = I”(X,X’) + ^ IsnA^^) (kfr)u^“ (kfr) dr (2.46)

and

with (see appendix V).

Isnr ' X"+3r
X”+l ”dt X > 0

(2.48)
= 0 X" < 0

this is equivalent to replacing r ^j_snA^^^ I“ (X,X’) by r f^^^^ +

r^lsn^Ci"') (note that the leading term of k^^^^ is, of course,

of polarization form k,^^.(r) 'v - c/r^).

2.3 The Coulomb-Born and Coulomb-Born-Oppenheimer Approximations

As stated earlier, replacing F~(2) by a coulomb wave Xĵ  (zgrg)
— i

leads to the Coulomb-Born-Oppenheimer approximation (CBO). In the DWPO II

model, where the polarization term <{*pQj_ is explicitly included in the 

atomic wave function, replacing the distorted wave scattering function in 

this way by a Coulomb v;ave leads to what we have called the Polarized- 

Coulomb-Bom-Oppenheimer approximation (PCBO). The Coulomb-Born approximation 

(CB) is achieved by a further simplification whereby exchange is dropped • 

completely - that is the antisymmetrizer, A  , in (2.18) is removed.
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Again, the corresponding approximation to the DWPO II model is what we have

termed the Polarized-Coulomb-Born approximation (PCB). For the results

presented here, z = 0, and the Coulomb wave Xi, r \ reduces to a planeK ,v z,r*/—1 z
wave. Strictly therefore, the approximations described above are the 

Born approximation and variants of it including exchange and core 

polarization.

The approach described above gives the T-matrix expressed as a 

sum over partial waves as in equation (2.31). This method still applies 

for the Coulorfib-Bom-Oppenheimer and Coulomb-Born approximations although
-f“ "f*

terms arising from F“(2) in the basic integrals I“(X,X’), J~(X,X*) and 

K (£,0) are replaced by those arising from a Coulomb wave. It is also 

possible to obtain explicit expressions for the T-matrix in both the 

Bora and, to an increased degree of complexity, the Polarized-Born 

approximations.■ Thus*writing

e | 1 -2> (2.49)

where the superscript B indicates the Born approximation,

then f^^^ (8 ,#) is the scattering amplitude for the excitation of 

the n£m^ state of hydrogen and is related to the T-matrix by:

Substituting for , taking K = _kf - ]<f, K = |k| and
2 -

noting that the contribution due to —  in V(r^,r ) drops out due to 

orthogonality between the hydrogenic wave functions, gives

= - h l  ^  • h s ( i ) i )  (2 -5 1 )

where both (j) „ and (t. are given by (2 .1 2 ). n£m^ Is
By use of Bethe’s integral (see McDowell and Coleman (1969, p.311)

^-■-2 . iK.r
£ dr, = ! U  (2.52)

"■l2 k 2



-J29-
(2.51) becomes:

K

A (2.53)

This reduces, after some algebra (see Appendix VI) to:

J3 16/ni* 2*£lx^/2
(G,*) = - —  ' T ooT,""nAm, 2_2 ' (2A+1)In K

(n-A-l)I(n+A)I

/ l Y

. n n AtS+3s!(n-£-l-s):(K2+y2) 2
. 2|13. ^2 ) (2.54)

where y = 1 +-n

x^ = K^/(K2 + Y^);cos G = 0 , (2.55)

and F(a,b;c;z) is a hypergeometric function (see Abramowltl <%#( 

Stegun (1968), Chapter 15). By substituting for F the familar forms
g

for f . are readily obtained (see Bates (1962), p.552). nAm  ̂ ^
When the polarized core term is added to the initial state wave 

function, the scattering amplitude becomes :

(2.56)

where

= 3 &

r iK.r . (r-, )

y ~-±

After some algebra (see Appendix VII), this expression reduces to:

(2.57)

(8.4) = 8 Æ  y;Y (e, 0)1* I  ( i,(Kr)V^,(r)dr
«
Am

.A
X ’ nA (2.58)

where
fr

\o 0 oy 

0.
(2.59)

X' < 0
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Obtaining and by this approach gives a useful

check to the results obtained via §2.1 and §2.2 and is of additional 

use in the asymmetry analysis described in Chapter 7.

2.4 The Differential and Total Cross Sections

Having obtained the T-matrix as in equation (2.31)

± V ± / X L "̂ if " C%,(m^) P^, (cose)

which may be written

then

where

*1^ (2.60)
£ £

(2.61)

the real and imaginary forms of C^, arising only due to the term:

.A-X’ \1 exp(iC)^,),

in equation (2.32) and thus each term is easily separable.

The differential cross section, in atomic units, is

(2.62)

167r 1

so



a \ -

dfi 16n k .1
I t  I' + la: r  4 3
L

It: I t  r  I
L

-  |2
m j} . (2.63)

The differential cross section is related to the total cross-section by

“if =
r2ïï rtl do._ if
0 ;-i

. d(cos0) d# (2.64)

and so

^if 2 IT
_f 

2 k.
r+1

-1

(equation 2.1 ))

in units of ma

In (2.31) the 0-dependence of T^^ arises through the associatedîpenc
Im.l

Legendre polynomial, P^, (cosG), only. Furthermore, associated 

Legendre polynomials are orthogonal with the orthogonality relation:

'1 |m I jm I 2(x'+|m I):
' X̂ = (2X'+l)(X'-|m̂ |)r YxX'

(see Abramowitt. and Stegun (1968), p.338, equation (8.14.13)), 

thus :

(2.65)

(X’+|m^|)I
j, 4 /  r  L  (2X+l)(X'-|m^|)! I I^X''"'£

_ ^  r
?in£m ~ 0 v I

For each sub-level n£m^ it is possible to describe the cross-section 

in terms of singlet and triplet contributions

_ +  —
^in£m^ *" in£m^ in£m^ (2.67)

where

in£m,
A"k +1

8 m k. -^-1 

A“k_

q ^ | 2  d(cos0 )

4m k^ X'

( V + j m J ) !   ̂ ^
(2X'+l)(X'-fSrf)!- •°X'(”’£)

(2.68)

and. A = 1 ,  A" = 3.
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In the Born and Polarized-Born approximations

(2.50')

so the differential cross section is:

= ^  Ifdo ' n£m^ (G,#) (2.69)

where f^^^ (0,#) is given by (2.54) or (2.56). 

Since

K = k. - k_ —  —1 —f

= k^^ + k^ - 2k^k^ cosG (2.70)

and so (2 .1 ) becomes

2 2 2 
"inAm/^i ) = k F  L , l^nAin/^)! KdK (2.71)

A 1  A

Finally, for each state nA, equations (2.63) and (2.66) are 

summed over all values of (i.e. m^ = -A, - A+1,...,-1,0,1,...A)

and since none of (2.63), (2.66), (2.69) or (2.71) depends explicitly 

on the sign of

therefore

do. , da. „ inA inAo A ^^inAm,
dO do 4 2  I

and
do

^inA ” °inAo in Am,

(2.72)

(2.73)

2.5 Summary

This chapter, with the associated appendices, has described in detail 

the derivation of the T-matrix both in the DWPO I and II models. It has 

been indicated how, by a simple switch in the scattering function, the 

models reduce to the (Coulomb) Born or (Coulomb-) Born-Oppenheimer 

approximations. Furthermore we have shown how it is possible to make 

allowance for core polarization in these approximations and to describe
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the resulting scattering amplitudes for excitation from the ground 

state to any excited state in closed form.

We have presented the framework of the calculation of the differential 

and total cross sections from the T-matrix elements both in terms of 

the magnetic sublevels and of the singlet and triplet contributions.

This calculation was performed, for a range of energies from threshold 

to the area of validity of the Born approximation and for each of the 

n = 3,A states of hydrogen. The computer programs used to evaluate’ 

these results are described in chapter 3 below.
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CHAPTER 3 

COMPUTATIONAL DETAILS

3. .1 Introduction

This chapter describes the computer programs used for both the DWPO I 

and II models,

a) to evaluate the functions formulated in Chapter 2 and which appear

in the integrals I~(X,X'), J“(X,X’) and K~(a ,0) in equation (2.32), 

and then

b) to calculate the values of the cross sections and other parameters

of the excitation process which depend on the magnetic sublevel cross 

sections. These parameters include the polarization fraction of 

Balmer-a radiation and the coincidence measurements and orientation/ 

alignment parameters which are discussed in Chapter 5 and 6 below.

The basic structure of the computer programs is derived from the program 

developed by McDowell et al. (paper Ib, 1974) and referred to as POLORB.

This program treated the ns (n = 1,5) states of hydrogen and Helium in 

the DWPO I model,and, in practice, very few alterations were necessary to 

the published version for the 3s state of hydrogen to take account of 

core polarization effects for the DWPO II model.

Similarly, the program (POLORP) which was used to produce the DWPO I 

and II results reported for the excitation to the 2p states of hydrogen 

and Helium"^(see papers III, IV and V) required no further development.

The major-computing effort has been expended in programming the 

calculations relevant to the nd states which involves a sum of three 

terms for each partial wave corresponding to values for X = X' ~ 2, X' and 

X* + 2 in equation (2,32) whereas only one term arises for the ns states 

and only two terms arise for the 'np states. Because of the nature of 

the integrals and other functions involved in (2.32) three sets of functions 

must be retained at each partial wave X’ corresponding to X = X’ - 2,

X* - 1 and X ’ and the term in in (2.32) stored for X = X’ - 2
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and X ’. In general, for any nA state, the number of terms involved 

increases as A + 1, leading to greater storage requirements and greater 

complexity in the manipulation of the separate components with increasing 

orbital angular momentum. .The program for the nd states (POLORD) is 

described in full below and, where applicable, features common to all 

three programs are indicated. These features include the generation of 

the radial functions and the calculation of the long range contributions 

to the direct integral.

Subsequent to the work reported in this thesis, the program suite used 

to produce the polarized orbital cross sections with or without core 

polarization and retaining the options for the (Coulomb-) Born or (Coulomb-) 

Born-Oppenheimer approximations for hydrogen (and Helium^ etc.) has been 

rationalized into one program using the generalized expressions formulated 

in Chapter 2.

Descriptions of each polarized orbital computer program

3.2 POLORB

This program has been fully described elsewhere (see McDowell et al.

paper I (1973), paper Ib (1974)). The modifications necessary to convert

 ̂ it to include core polarization are made by including an additional

subroutine FNEW and computing an additional integral using the integrand

PINT. The routine FNEW sets up the coupling function rk^(r) at each mesh
ns

point for r. It makes use of the expansion (Ay.6 ) for values greater 

than this value. At the cross over point the error involved is negligible. 

The additional integral corresponds to that in (2.46) where

r.5 M  = I
Isns

and is calculated using Simpson’s rule in the same way as the integrals using 

AINT, etc.

This program does not allow the inclusion of core polarization in the
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(Couloiib) Born Approximation since, in this case, the T-matrix calculation 

is performed using analytic forms for the partial wave contributions expressed 

in terms of hypergeometric functions. Thus the use of the appropriate 

switch to generate this approximation produces the (C)B results only.

The effect of core polarization in the Born approximation for the 3s state 

of hydrogen only, has been computed separately using the closed forms for 

the scattering amplitudes described in Appendix AVII and these results, 

shown in Chapter 4 indicate that very little difference was evident between 

the Born and PB models at all energies.

3.3 POLORP

This program was developed from the P0L.0R3 program by the authors of
2papers III - V and includes the calculation, if required, of the

coupling term in tandem with the calculation of the function.

Other features include the addition of the long range contributions to the

direct integrals and the calculation of the orientation and alignment

parameters relevant to the np states. The long range contributions are

calculated using the subroutine FARINT together with its associated routines,

the orientation and alignment parameters are calculated at the same time
Hvcse.

as the differential cross sections and/are discussed in Chapter 6 .

The implementation of this program for the 3p state calculations 

required only those modifications dependent on the principal quantum number.

3.4 POLORD

Since this program retains most of the procedures of the POLORB and 

POLORP programs and yet is a development from them, the program POLORD is 

more fully described here.
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3.4.1 The framework of the program POLORD

The overall structure of the program is given in figure F3.1 and

figure F3.2 shows the structure of the major subroutine INTLS.
• X"The functions r x f^^^^ and r x “ 1,3) all employ

short range expansions for yZr 4  0.3. The difference between the short 

range expansions and the full expressions at the cross-over point was 

negligible in all cases.

The calculation of the initial state radial wave fundtion, u”(k^,r), 

for varying impact electron energies and for each partial wave X, has 

been fully discussed in papers I and la. The derivation of the Coulomb 

function H^,(k^,r), the phase factors and the function were

also all described in the same references.

Essentially, the radial equation for u“(k^,r) was solved by a 

non-iterative procedure using a Numerov integration procedure and the 

normalization and phase shifts were obtained by comparison with JWICB 

solution (Burgess 1963). The Coulomb or Bessel functions required were 

generated using a Numerov procedure from the appropriate differential equation;

( ~  + - 1^) Gj^(k,z,r) = 0 .
dr • r

The function was computed directly from the defining

integral (2.38).

3.4.2. The long range contributions to the direct integrals

The long range contributions included in the np and the 3d 

calculations have been discussed in paper III. The importance of these 

contributions arises in the direct integrals I~(X,X’) only, wherein

rf, „(r) 'v r ^ (see appendix All)IsnA ^  -

H.,(k_,r) 'v sin# (k ,r)/(k^r) (see equation (2.17))
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FiGUFj: (r3.;i.) strdctdit: of thc proo 3̂a1'1 porord

MAIN CALLING PROGR/iM;

SUBROUTINES :

POLORD: INITIATES CALCULATIONS FOR EACH 
INPUT ENERGY,
INPUTS PROGPAM PARAMETERS 
SET UP KESH OF RADIAL POINTS

INTEGRANDS FOR I, J, K 
INTEGIAL3 IN EQN (2.32) 
FOR EACH PARTIAL WAVE,
FOR FULL DETAILS SEE F3.2

SC ATT: G0L\T:S INTEGRO-
DIFFERENTIAL EQN FOR
THE RADIAL WAI’E FUNCTION

START ; GENERATES POWER
SERIES EXPANSIONS FOR 
THE FIRST NSTART POINTS 
OF EACH IJMEPeNDENT 
SOLUTION

INTGRT: NUMEROV 
INTEGIATICN ROUTINE

SOLVE: GENERATES UNNORM
ALISED RADIAL FH, BY 
MATCHING THE INDEPENDENT 
SOLNS OBTAINED BY 
INTGRT

SIMSON: SIMPSONS 
RULE INTEGRATION 
SUBROUTINE

XSECT; CALCULATES TOTAL 
CROSS SECTIONS- AJID 
POLARIZATION FRACTIONS 
FOR 3d->2n RADIATION.

FARINT: SETS UP
THE CALCULATION 
OF THE LONG lANGE 
CONTRIBUTIONS TO 
THE DIRECT INTEGRAL

DSECT: DIIFERENTIAL CROSS 
SECTIONS, RESULTS 
DEPENDENT ON THE 
EXCITED ELECI'RCN 
ANGLE

PSYCHE : INDIVIDUAL
LONG RAÎfôE CONTRIBUTIONS 
'■■■ USING PSl,
PS2, PS3, PS4, PS6

POTL: CALCULATES THE 
NON-EXOIANGE PART OF 
THE POTENTIAL

PHASE: OBTAINS PHASE-

GFUl-;: CALCULATION OF

FUNCTION-SEE (2.38)

COUL: CALCH. OF THE 
MULTIPLIED_ kr

SHIFTS R NORMALISATION 
BY MATCHING THE JWK3 
SOLN. USING CPHASE 
ZETA & JViKB

COULOl® FUNCTION

CPHASE: COULOMB 
PHASE CALCULATION 
ROUTINE
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Figure F3.2 Structure of the Subroutine INTLS

START

J.
Set up local parameters and those for the n = 3 state

Set up the R^^(Z,r) f— , the f— ,

add in, as appropriate, the rk*^^g^(r) and 

rk^^S^(r) f—  for the DWPO II approximation.

Loop over the partial waves X '

For each X' obtain & store:
gIsX ,(k^,r),n ,(k ), H ,(k r).

Loop over spin

DWPO or B o m
Born/Born-Oppenheimer>

X)r B-0

DWPO

U“(k^r) is a Coulomb-Bessel 
function obtained directly 
from COUL; n^^(k^) is obtained 
from CPHASE (= 0 for z = 0);
ô^iCkf) = 0.

associated routines.

U^(k^r), n^y(k^) and <5*,(k^) are 
all obtained via SCATT and

Calculate each value of: I (X*,X'); 
the long range contributions to 
I"(X,X’) (from FARINT); J"(X',X'); 
iBOR^(X’,X'), also store 
I-(X',X') ±



IvO

If X’ ^ 2 ,  Calculate each value of:

BORN

J-(X'-2,X'), J-(X',X'-2), store

Switch off spin for 6 , -

Switch to B-0 when phase shift is ^  0.005

Loop over spin if appropriate

' Loop over X ’ for X ' ^  X max

Return to main calling routine POLORD
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and
± ±'v- k^^sin(c()^(r) + 6 ) (see equation (2.26))

I'-Ko

Thus, the integrand of I“(X,X’) converges only as at

large r. The subroutine FARINT obtains the integral

^  sinc{,'(r)sin(4.(r) + 6^)dr

' Jr r (n t o t ) Æ T k _  r^+^1 f

where PR(NTOT) is the furthest extent of the mesh of radial points at 

which all the radial functions are calculated.

This integral is calculated using the subroutine PSYCHE and associated 

routines (PSl, PS2, PS3, PS4 and PS6) using a variant of the method given 

by Belling (1958).

Additionally, when core polarization is included, the function

r xj^ p(r) (A + ^ ) r  (see equation (AV.7) (A,B constants),
' P-Ko r '

therefore, in the POLORD program extra integrals are calculated corresponding 

to:

A
fco H^,(k^,r) u^(k^,r)dr

RR(NTOT) r^

for all values of X' and X.
- 2It was found that any contribution due to the term which included Br 

was negligible and therefore not included.

Note that the exchange integrands converge rapidly for large r due 

to the R (Z,r) term (see equation (2.37) ) and therefore a similar 

procedure to the above for r > RR(NTOT) is not necessary for the-'exchange 

integrals.

3.4.3 The "Born-Subtraction" technique

The POLORD program also makes full provision for the 'Born-subtraction" 

technique in the computation of the differential cross sections for both



the DWPO I and II approximations. The method of calculation is outlined 

below. The technique is used to overcome the need to calculate a large 

number of partial waves to achieve convergence in the differential cross 

section particularly since the Born partial waves are used to approximate 

for^ithe higher orders of partial waves.

Referring to equation (2.31);

+ V + bol* (cos0) (3.1)

If T^^ and T^^ are the Born and Polarized Born approximation to 

the T-matrix respectively (see equation (2.50), (2.51), (2.56) and (2.57)) 

and with the expansions :

CO I m I
T.f(m^) = I  C^,(m^) P^,% (cose) (3.2)

where the superscript B is taken to refer to either the BORN or the POLARIZED

BORl'f approximation as necessary, then the DWPO T-matrix can be written :
X *

= I
X'=0

P (cos8) t (3.3)

The same technique is applied to BORN-OPPENHEIMER anc( approximations,

but the full expansion method is retained for the BORN orxd P.B . approximations

as a check of the operation of the computer program.
,B , „PBThe expressions for T^^ and T^^ are obtained by reference to

appendices AVI and AVII and using (2.50'). The choice of X ' in equation
.tit

(3.3) is determined by the requirement^for X' > X^’ the B o m  approximation 

to the direct terms of the partial wave T-matrix differs from the DWPO 

approximation by only a pre-assigned small amount.

The calculation of the differential cross sections follows immediately 

from the above via (2.62). The Born-subtraction technique is also applicable 

to the total cross sections and the method of calculation is indicated 

below.
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For both the B o m  and polarized Born approximations C?,(m ) is 

wholly real and therefore, writing

—± ^o ^ |m I
\  ^ (Re(C^,(ir.j^)) - (cos6) + (3.4)

the singlet and triplet contributions to the total cross section become :

+ r+1
O . r- -

•’-1
d(cos0) (3.5)

where, again, A = 1  and A = 3.

Using the expansion (3.2) for T?^(m^^), equation (2.61) for 3  ^ and 

the orthogonality condition (2.65)^gives
I

and
-  f "L.X' + I -  (3-6)o ’ o

^if ■ *if,X' " ^if,X' + *if (3.7)o ' o

where the subscript X ’^ implies that the summation over X ’ is taken

only as far as X = X ’ . The total B o m  or Polarized B o m  cross sectionso
can be either entered as data in the computer program or calculated 

by integrating (2.71).

In practice, for most of the results reported here this technique was 

not applied in the three programs for the total cross sections where the 

calculation was performed by summing over X' until the result converged. 

The description above is included for completeness and because the technique 

was included in the generalized DWPO program suite referred to earlier.

3.4.4 Other features of the DWPO programs

In the three programs above, exchange is neglected in the computation 

of the radial wave functions u~,(k^,r) when for all X* > the

exchange part of the phase shift is such that |ô^, - 6̂ ,̂ | < 0.01 and 

these radial wave functions are replaced by a Bessel function (or Coulomb
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function in non-hyclrogenic cases) when the non-exchange part of the phase 

shift n^(k^)< 0.01. We find that the contributions due to the exchange, 

integrals J"(X,X') rapidly become negligible for large X' (typically 

X* - 0(30)).

The stability of the results has been tested by varying the initial

mesh size to ta)ce the values II = 0.0055, 0.0060 and 0.0065 so that the

mesh of radial points extends to r = 63.2, 59.0 and 74.7 respectively.
2Results for =20, 100 and 200 eV are shown in table T3.1 for both

the POLORP and POLORD programs and confirm that the programs are numerically 

stable. Similar conclusions were reported for the FOLOl^ program (paper Ib).

The values of the phase shifts obtained for a range of impact energies 

and for the first three partialwaves are given in table T3.2a,b. These 

agree well with those reported by Drachman and Temkin (1972). Additionally 

the program (POLORD) was amended so that instead of using the Sloan 

polarization potential (see equation (2.23)), the simple Buckingham polarization

. Vpob'") = - = I^ (r td )

could be used in additon to the static potential. Phase shifts for both H 

and He"** were produced using the two different polarization potentials for 

a range of values for k^ between 1.0 and 10.0. These results were used 

by Bransden et al. (1976) in their comparative study of equivalent exchange 

potentials in electron scattering wherein the set of the Sloan polarization 

potential phase shifts were taken as an exact reference set for the adiabatic 

exchange model. Similarly, the phase shifts referred to therein as those in the 

static exchange model were produced by excluding any form of the polarization 

potential in the scattering.

As a general comment on the computing procedures, table T3.3 shows some 

results obtained using the polarised orbital programs in the Born mode 

compared with results obtained using the analytic scattering amplitudes 

integrated in a simple program which used a computer integration package.



Table T3.1 Stability of the DWPO II results for Varying Mesh Sizes

2 2a) POLORP Program: Oq (k^ ) Ttâ

Mesh Size Extent of 
r

0^ (k^2=20eV) 0- (k.^=100eV) 3p 1 (k.^=200eV) 3p 1

0.0055 63.2 0.124904 0.109705 0.725109,-1

0.0060 69.0 0.124916 0.109706 0.725107,-1

0.0065 74.7 0.124913 0.109706 0.725105,-1

2b) POLORD Program; Cg^Ck^ . 2 ) na^

Mesh Size Extent of a3d(ki^=20eV)
2

a 3 d(ki =100eV) a3d(ki^=200eV)
r

0.0055 63.2 0.254123,-1 0.397512,-2 0.192892,-2

0.0060 69.0 0.254053,-1 0.397503,-2 0.192886,-2

0.0065 74.7 0.254067,-1 0.397495,-2 0.192881,-2
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Table T3.2a DWPO e H Phase Shifts (radians)rSinglet states

Partial Waves

, k^Ca.u. ) E(eV) s P d

0.50 3.40 1.158 0.013 0.023

1.00 13.60 0.666 0.019 0.050

1.21 20.00 0.628 0.058 0.060

1.49 30.00 0.624 0.116 0.076

1.72 40.00 0.628 0.160 0.090

1.92 50.00 0.630 0.191 0.103

2.00 54.40 0.629 0.202 0.108

2.43 80.00 0.611 0.240 0.130

2.71 100.00 0.593 0.254 0.141

3.00 122.40 0.575 0.263 0.151

3.32 150.00 0.553 0.268 0.158

3.83 200.00 0.519- 0.269 0.166

5.00 340.05 0.454 0.259 0.172

7.00 666.50 0.373 0.232 0.166

10.00 1360.20 0.297 0.200 0.152
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Table T3.2b DWPO e H Phase shifts (radians): Triplet States

Partial Waves

k^Ca.u.) E(eV) s P d

0.50 3.40 2.146 0.312 0.036

1.00 13.60 1.480 0.503 0.128

1.21 20.00 1.298 0.493 0.157

1.49 30.00 i;i22 0.466 0.183

1.72 40.00 1.011 0.442 0.194

1.92 50.00 0.932 0.422 0.200

2.00 54.40 0.904 0.415 0.202

2.43 80.00 0.786 0.383 0.206

2.71 100.00 0.727 0. 366 0.206

3.00 122.40 D.676 0.351 0.206

3.32 150.00 0.632 0.337 0.204

3.83 200.00 0.573 0.317 0.201

5.00 340.05 0.480 0.283 0.191

7.00 665.50 0.384 0.242 1 0.170

10.00 1360.20 0.301
Î

0.200 0.152



V\*̂ =—

CO
3

g

i
0

+J

nd
ë
1Ü

g•-qopH

fe
sA
&

tU

+J

TJ
V

I
I
ÿ

Om

«ÜCO
COE-i
0H
1

CO
CO

00OD CMin in
CDCOin
CO

COinm
COinCO
CDCO
CD

00 oo
CM inCD

CM CM CO

COinCD CDin CMCO od-in00
oCOinCO CO

CD CM CD
CO
CDCM 00CM

COCD in CO
CMCD
CM

CO
CO

CO00
CM

CM CO
CO

CO COCDin
CD
d"

toto CD toCDinCO
CO
CM

COCO 00
CM
CD
CM

CO
COCM to COCO

inCD CO
CO
CMCMCO

to CDCO
COCO

CM
CO

CO
CD PO00

CDin CMCD

COCOin
CM inCO

CM
CO

CO
CM00

d"
CO
CDin

CO
COCO

CD
CMCMCO

CMCO
CDinCD

COCM inCOm CM

CM

s
CDoCO

<u
•X}
e

§opq
0

rC
+-»

.31
A

srÜ
s
so
p4

Pu

CM

cu
■H
CDcuCO
COI
3
w

w



to
H
>

B
û>

£•H

S
(0

tÜ

O
oP-.

l
1

s

oo
(ü

X)
0)
ü
0XJ
2 
A

■M

OPQ

00
H

J

CN CN <N

00 CNlOCD
00
CD

en
CDlO

If)
CNcoo IDinlû ir>

<j»co (û00t>uo

CN CN CN

COlOCD00
CD

CO 00
CN 03

COCO
COLO

CDLOCD
CD
CD

CDLOLO
CD
CO

LO
CO LOLO

CN
LO

CN

00 CN CN

CO
00
CD
CNLO

LO
CD

LOLO
00

00OO
LO

LO
CNCO00

00
LO
CN

LOLO CDCO CDCNCO

00 CN CN CN

CD CD
CD

CO
CD00

00CN CN
CN0000 LOLO CDLOCD

CO CDCD
CD CN

CN CN 00CN CN CNCN

CNCD
LOCD

CNCD CD
CN
CN

CD CO
CNLO00

0000
LO

00
LO

OO
LOLOCD CN

COCN CN CN CN CN

00 LO
CD
LOCD

LO LO
CN00 00CN

0000LO
CD

CD
CNCO

CO 00CN 00CN 00

CD
CNCD LO

CD CDCD
CN COCN00

CN00
CD CO

LO
LO00 CDCO CN

00 COCN CN 00CN

000000 CO
CD
CN

COoco
CN

CN
CNOCD00

CD CD00
LO

LO00 CN00CN LO

00CN LO 00 LO
W CN-

CN
td
t=

'd
§

0pq
S■P
•S1
I
SI
so
opq

pq

CN

p
<D
Q)CO

COI
XW

w



--350 --

Further this computer package is made in Chapter 7 with

regard to the program ASYM described therein. Similarly,table T3.4 shows 

some results produced by the programs in the polarized B o m  mode together 

with those, produced using the analytic polarized Born expressions. It is 

not possible to verify directly the computation of the latter results but 

the Born analytic results agree exactly with published values, while the 

polarized Born expressions are simply an extension of the Born ..expressions, 

and the differential cross sections produced via the polarized B o m  

analytic expressions by the computer program agree with/’’manually” calculated 

from the scattering amplitudes. Thus we have no grounds to doubt the 

calculation of the polarized Born results. These results in turn agree 

fully with the polarized orbital computations which rely on a sum over 

the partial waves of the scattered electron whereas the simple program 

produces the results directly.

For increasing energies, the DWPO I and Born-Oppenheimer and the DWPO II 

and PBO results approach the BORD and POLARIZED BORD results respectively.

Thus we have good reason to trust the only function not checked by the

above calculations - that is the radial wave scattering function u~,(k.,r).A 1
Finally, to ensure that none of the common subroutines became corrupt 

when developing the programs, the POLoRD program was adjusted so that it 

produced the I , J and K integrals in the subroutine INTLS which corresponded 

to those produced by the POLORP program. Again agreement was exact.

3,5 Summary

This chapter has been concerned with the main computational details 

of the calculation of the cross sections using the polarized orbital programs. 

The framework of the programs has been described with particular emphasis 

on the POLORD program. Certain features, such as the long range contributions 

to the direct integrals and the ”Bom-Subtraction” technique, have been 

explained. The stability of the results under varying mesh sizes was
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Further - 4® this computer package is made in Chapter 7 with

regard to the program ASYM described therein. Similarly, table T3.4 shows 

some results produced by the programs in the polarized B o m  mode together 

with those produced using the analytic polarized Born expressions. It is 

not possible to verify directly the computation of the latter results but 

the Born analytic results agree exactly with published values, while the 

polarized Born expressions are simply an extension of the Born ..expressions, 

and the differential cross sections produced via the polarized B o m  

analytic expressions by the computer program agree with/’’manually" calculated 

from the scattering amplitudes. Thus we have no grounds to doubt the 

calculation of the polarized Born results. These results in turn agree 

fully with the polarized orbital computations which rely on a sum over 

the partial waves of the scattered electron whereas the simple program 

produces the results directly.

For increasing energies, the DWPO I and Born-Oppenheimer and the DWPO II 

and PBO results approach the BORD and POLARIZED BORD results respectively.

Thus we have good reason to trust the only function not checked by the 

above calculations - that is the radial wave scattering function u , (k.,r).

Finally, to ensure that none of the common subroutines became corrupt 

when developing the programs, the POLORD program was adjusted so that it 

produced the I, J and K integrals in the subroutine IDTLS which corresponded 

to those produced by the POLORP program. Again agreement was exact.

3.5 Summary

This chapter has been concerned with the main computational details 

of the calculation of the cross sections using the polarized orbital programs. 

The framework of the programs has been described with particular emphasis 

on the POLORD program. Certain features, such as the long range contributions 

to the direct integrals and the "Bom-Subtraction" technique, have been 

explained. The stability of the results under varying mesh sizes was
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tested and the values for the computed phase shifts presented. Finally, 

the results obtained by running the programs in the Born and Polarized-Born 

modes are shoim to be in good agreement with exact values.
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CHAPTER 4 . • . ■

Total and Differential Cross Sections

§4.1 Introduction

In this chapter we present the results of the calculations performed 

using the computer programs described above,together with the other 

available experimental and theoretical results. The individual total 3£ 

cross sections are presented and discussed first, followed by the total n -* 3 

and total Ha cross sections. Important comments about the use of the DWPO 

model are then made and finally we give the differential cross sections.

§4.2 Total Cross Sections for Individual Is n£m^ Transitions

We show in figure F4.1 the calculated total cross sections for the 

individual processes

e + H(ls) 4- e + H(3£); £ = 0, 1, 2

for both the DWPO I and the DWPO II models. The 3p cross section dominates 

throughout the energy range but the 3p DWPO II result lies about 10% 

lower than the DWPO I values. We found (shoi-m below) that at higher 

energies a(3p, DWPO I) tends to the B o m  approximation whereas a(3p, DWPO II) 

tend to the polarized Born approximation. In the 3s results, polarization 

distortion of the core had negligible effect above 100 eV. However, although 

o(3d, DWPO I) is of the same order of magnitude as the 3s cross section, 

in the case of the 3d calculations, polarization distortion effects are 

now very noticeable. In fact, a(3d, DWPO II) is 50% smaller than the 

DWPO I results at 200 eV and even at very high energies the DWPO II results, 

which are equivalent to the polarized-Born results above 200eV, continue to 

be significantly below the Born approximation. The a(3d, DWPO I) cross 

section is equivalent to the Born result above 200eV. Similar conclusions 

about the effect of core polarization have been reached independently by 

Beigmari and Shevel'ko (1974) in a investigation of electron impact induced
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inelastic transitions in the alkalis.

Figure F4.2 shows our results for the 3s excitation compared with 

those of other workers. The experimental results are the relative measurements 

of Mahan (Mahan 1974, Mahan, Gallaher and Smith 1976) obtained via a 

normalization for the 3p states to the B o m  3p cross-section at SOOeV.

Our results, in either the DWPO I or DWPO II models, are in excellent 

agreement with this experiment thoughout the energy range. The Glauber 

calculations of Tai et al. (1970) and the seven-channel eikonal approach 

of Flannery and McCann (1974) are also in good accord with experiments- the 

former for energies above 30eV and the latter throughout the energy range.

The Bora cross section and the modified Bora results of Morrison and Rudge 

(1966) substantially overestimate the cross section below ISOeV. An early 

distorted wave calculation of Vainshtein (1961) is also shown which greatly 

overestimates the cross section at all energies. The twenty state second-order 

diagonalization method of Baye and Heenân (1974) and the low energy 

unitarized Born results of Somerville (1963) are also seen to be in excellent 

agreement with experiment. The six state close coupling calculation of Burke 

et al. (1967) at two low energies is also shown but is in poor agreement with 

experiment. The Ochkur approximation results of Gumble (1969) have not been 

included since they lie very close to the Bora values. Similarly, the Born- 

Oppenheimer results obtained here which lie above the modified Born results 

and the simplified second Born approximation of Holt (1969) which lie between 

the Born and modified Born results are not shown for the sake of clarity.

The 3s excitation cross section calculated here in the Bora, Born-Oppenheimer 

and DWPO models with or without core distortion are tabulated for reference 

purposes in table T4.1. It should be noted that the results referred to 

in the tables in this chapter have been calculated via equation (2.66) and 

thus are subject to convergence errors. For this reason the Born results 

do not exactly agree with published values. __________ ____  ________ ___ _

The calculated values for a(3p) are compared with those of other 

workers and the experimental values of Mahan (1974) in figure F4.3. Our



57-

— I

O) CJ_ o  OPO_Q_
I/) UL CÛ
II O # 0  Q
T  I -r -V A

Z  o

cj n

vX x'̂ .



-58-
T4.1 Cross-sections for transitions from the Is state to the 3s state 

(Units: na^^)

Energy
eV

Born Polarized
3orn

Born - 
Oppenheimer

Polarised 
Born-
Oppenheimer

DWPO I DWPO II

15 .430,-1 .239,-1 .414 .367 .229,-1 .286,-1

20 .432,-1 .277,-1 .173 .147 .152,-1 .151,-1

• 30 .335,-1 .250,-1 .499,-1 .407,-1 .181,-1 .155 ,-l

40 .265,-1 .214,-1 .282,-1 .237,-1 .174,-1 .151,-1

50 .218,-1 .185,-1 .209,-1 .182,-1 .157,-1 .139,-1

80 .142,-1 .130,-1 .130,-1 .122,-1 .115,-1 .107,-1

100 .115,-1 .108,-1 .106,-1 .101,-1 .969,-2 .923,-2

150 .777,-2 .758,-2 .732,-2 .724,-2 .694,-2 .683,-2

200 .587,-2 .584,-2 .560,-2 .564 ,-2
•

.539,-2 .541,-2

* The polarized Born results were obtained using the analytic forms for the 

scattering amplitude (see Chapter 3).
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DWPO II results are in good general agreement with experiment when this is 

renormalized to our DWPO II o(3p) value at SOOeV as shown rather than 

to the Born value which is about 8% higher. However with this renormalization 

we lie slightly above Mahan's estimatedr.m.s. errors below 40eV. Once 

again the low energy unitarized Born results of Somerville (1953) are in 

excellent agreement with experiment - this agreement is improved when the 

experimental results are normalized to the Born value at SOOeV. Above 

20eV, the modified Born resultsof Morrison and Rudge (1966) are also in ‘ 

excellent agreement with experiment. Of the other available theoretical 

results only the Glauber (Tai et al., 1970) and the eikonal pseudo-state 

results of Flannery and McCann (1974) give reasonable accord, both in 

shape and magnitude with experiment. The coupled state impact-parameter 

method of Mandelberg (1970) lies above the experimental results below 30eV 

and below these results for higher energies. In particular, the two state 

(is - 3p) close-coupling calculation of Burke et al. (1963) gives very large 

values of c(3p) - possibly because including only these states in a close 

coupling expansion cannot account for much of the ground state polarizability. 

Burke et al. (1967) give 6-state close-coupling results for n = 1 to 

n = 3 transitons for energies up to the n = 4 threshold. Their results for 

a(3p) also sho;m in F4.3,increase rapidly above threshold and are in little 

better agrément with experiment. Burke et al. (1967) remark that they believe 

their results to be of doubtful validity except for the first point due to 

resonances below the n = 4 threshold whose effect is not included. The 

.second Born approximation results of Holt (1969) and the Ochkur results of 

Gumble (1969), neither of which are shown, lie between the Born and DWPO I 

results. The twenty-,state diagonalization method of Baye and Heenen (.1974)

(not shown) lie very close to the Born results; the distorted wave results 

of Vainshtein (196)) and the one-channel second order potential method of 

Bransden et al. (1972) (not shown) both greatly overestimate the cross section.

The 3pO, 3pl and 3p excitation cross sections calculated here are 

also given in tables T4.2a, b and c. The 3p0 total cross sections in the
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T4.2a Cross Sections for transitions from the Is state to the 3pO

state (units 7ra ) o

Energy
eV

Born Polarised
Born

Born-
Oppenheimer

Polarised
Born
Oppenheimer

DWPO I DWPO II

15 .145 .112 .348 .309 .553,-1 .574,-1
20 • .160 .128 .178 .150 .110 .937,-1
30 .133 .111 .116 .960,-1 .114 .954,-1
40 .108 .926,-1 .948,-1 .812,-1 .101 .859,-1
50 .901,-1 .786,-1 .810,-1 .706,-1 .891,-1 .767,-1
80 .591,-1 .533,-1 .558,-1 .503,-1 .625,-1 .557,-1

100 .478,-1 .437,-1 .460,-1 .420,-1 .513,-1 .464,-1
150 .323,-1 .302,-1 .316,-1 .296,-1 .349,-1 .323,-1
200 .243,-1 .230,-1 .240,-1 .227,-1 .262,-1 .245,-1

T4.2b Cross sections for transitions from the Is state to the 3pl

state (units irâ  )

Energy
eV

Born Polarised
Born

Born
Oppenheimer

Polarised
Born
Oppenheimer

DWPO I DWPO II

15 .104,-1 .806,-1 .121,-1 .109,-1 .720,-2 .647,-2
20 .275,-1 .216,-1 .247,-1 .206,-1 .191,-1 .156,-1
30 .429,-1 .345,-1 .369,-1 .296,-1 .329,-1 .265,-1
40 .472,-1 .385,-1 .419,-1 .341,-1 .385,-1 .314,-1
50 .476,-1 .394,-1 .436,-1 .357,-1 .405,-1 .334,-1
80 .434,-1 .367,-1 .411,-1 .347,-1 .393,-1 .332,-1

100 .400,-1 .342,-1 .384,-1 .328,-1 .371,-1 .317,-1
150 .332,-1 .288,-1 .324,-1 .281,-1 .316,-1 .275,-1
200 .284,-1 .249,-1 .279,-1 .245,-1 .274,-1 .241,-1
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T4.2c Cross sections for transitions from the Is state to the 3p state
2(units Trâ  )

- Energy 
eV

Born Polarised
Born

Born
Oppenheimer

Polarised
Born
Oppenheimer

DWPO I DWPO II

15 .165 .128 . 373 . .528 .797,-1 .703,-1

20 .215 .171 .228 .191 .148 .125

30 .219 .180 .189 .156 .180 .148

40 .203 .170 .179 .149 .178 .149

50 .185 .157 .168 .142 .170 .144

80 .146 .127 .138 .120 .141 .122

100 .128 .112 .123 .108 .125 .110

150 . 986 5~1 .877, -1 .119 .858,-1 .981,-1 .872,-1

200 .811,-1 .727,-1 .798,-1 .717,-1 .810,-1 .727,-1
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Born and DWPO II approximations are plotted in figure F4.4a which also shows 

the results of Flannery and McCann (1974) and Baye and Heenon (1974).

Similarly figure F4.4b shows the corresponding 3pl cross sections. Firstly, 

these show that although the overall 3p cross section obtained by Baye and 

Heenen is very similar to the B o m  approximation to a(3p) (figure F4.4c), 

the magnetic sublevels contributions are noticeably different. Again, although 

the Flannery and McCann o(3p) results are in excellent agreement with the 

DWPO II results above 20eV, comparison of the separate a(3pin^) results 

would imply a serious discrepancy between their model and our own for their 

a(3pO) cross section lies well below ours whereas we predict a smaller 

a(3pl) than they do. This fact significantly affects predictions,using the 

two models,of the polarization fractions for radiation from the 3p state to 

the 2s or ps state (Lyman 3) following excitation from the Is state.

Finally our calculated 3d values are shown in figures F4.5a,b 

Firstly, we compare in F4.5a our DWPO I results with Mahan's experimental 

values (normalized to the Born a(3d) at SOOeV) and with certain other 

theoretical calculations. With this normalization, both the shape and 1

magnitude of the experimental results agree extremely well with the DWPO I 

results. Additionally, the available results in the unitarized Born approximatioAi 

(Somerville 1963) agree very well with maximum of the cross section and the |
i

twenty state second order diagonalization results for higher energies !

(^ 50eV) obtained by Baye and Heenen (1974) are also in line with the 

experimental results.

However, the experimental results have an energy dependence which is 

substantially different from that of the B o m  approximation and Mahan's 

results lie 50% above the B o m  at its maximum. The simplified second 

B o m  results of Woollings and McDowell (1973) and the Glauber results of 

Bhadra and Ghosh (1971) are in very close agreement with each other, tend 

to the first B o m  at high energies but lie a factor of two below experiment.

The modified Born results (Morrison and Rudge 1966) give substantially 

lower values near the maximum of the cross section and again tend to the 

B o m  at high energies. •
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As was remarked with respect to figure F4.1, the effectof polarization 

distortion of the core, incorporated by coupling the Is - 2p states 

together in the target wave function, is dramatic in the Is - 3d case.

The DWPO II results, which agree closely with the polarized B o m  results 

above 200eV, are shown in figure F4.5b. This shows that the DWPO I results 

are a factor of about 2.4 below the first Bora at SOOeV and the separation 

between the Bora and polarized Bora results continues even for impact energies 

measured in KeV. Similar results were found by McDowell et al. (1975b) for 

the DWPO II 2p cross-section and also found by Beigman and Shevel'ko (1974) 

for several s - p transitions in the alkalis.

Also, extension of the 3 state close coupling calculation to 

high energies (Fon, 1975) produces cross sections for the Is - 2p excitation 

which are appreciably below the first Born results. This behaviour strongly 

suggests that p - d coupling, which is not included in this model, may be 

important and emphasises the advantages of using the unitarization (R-matrix) 

technique of Seaton (1961).

Choosing to renormalise the experimental results to our DWPO II results 

at 500eV gives the position shown in F4.5b. Our calculated values remain in 

good accord with the renormalised experiment at impact energies greater than 

30eV. Also shown for reference with F4.5a are the Born results. The Polarized 

Born results and the polarized-Born-Oppenheimer results are a}so Ĵ . - the former 

lie about 50% below experiment at their maximum while the latter always 

overestimate the DWPO II results, are a factor of two above them at the 

cross section maximum and a factor of four abovethe experimental results 

at this point. This comparison shows that although it is target distortion 

which lowers the calculated cross section at high energies, it is distortion 

of the incident wave which dominates at energies below lOOeV. Also shown on 

this graph are the Ochkur results of Gumble (1969) which agree quite well with 

these renormalised experimental results at low energies but tend to the Born 

results at 50eV. Nor can these Ochkur results be used for comparison with
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the experimental results normalised to the Born results at SOOeV as in F4.5a

since they always lie below the B,orn values which have the wrong energy

dependence. Not shown on either graph are 'the coupled state impact

parameter results of Mandelberg whose cross sections lie an order of magnitude

above the experimental results and other theoretical results - the author

states that this feature may be due to the exclusion of higher lying states

in the calculations. Remarkably, the shape of the Mandelberg curve closely

follows that of the modified Born results of Morrison and Budge (1966)

although there is a difference of a factor of thirty between them and the energy

dependence indicated in no way fits that shown by the experimental results.

It should be noticed that the effect of the renormalization adopted

for figure F4.5b is that the 3d cross section now always lies below the

Born results - contrary to the assumption of Mahan (Thesis 1974). This

effect is important when measurements of the Ha polarization are analysed

(see chapter 5 ; below) and when the Ha intensity asymmetry in an

applied electric field is considered (see chapter 7 below).
Our calculated 3d results are tabulated in T4.3a,b,c,d.

§4.3 Total n = 3 and total Ha excitation cross sections.

Mahan (1974) actually measured the total Ha cross section

o(Ha) = 0 3 ^ + 0.12^3^+03^

relative to the Born value at SOOeV together with the ratios of cr̂ ,̂

and , to a(Ha). From the individual 3& cross sections thus obtained,3d
he computed the total n = 3 cross section according to;

0 (n = 3) = 0 3 g + 03p + 0 3 ^.

Figure F4.6 shows his results for this cross section together with the 

theoretical calculations. The experimental points are insensitive to our 

suggested renormalizccti^n ôj-the 3d cross section at SOOeV. They lie between 

our DWPO II result and the modified Born calculation of Morrison and Rudge 

while the sum of the individual Glauber cross sections (Tai et al. 1970,
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T4.3a Cross sections for transitions from the Is state to the 3dO state

2(units irâ  )

Energy
eV

Born Polarised
Born

B o m
Oppenheimer

Polarised
B o m
Oppenheimer

DWPO I DWPO II

15 .116,-1 .466,-2 .385,-1 .279,-1 .165,-1 .155,-1
20 ; .854 ,-2 .336,-2 .345,-1 .237,-1 .149,-1 .133,-1
30 .390,-2 .164,-2 .111,-1 .723,-2 .764,-2 .541,-2
40 .216,-2 .988,-3 .415,-2 .255,-2 .342,-2 .213,-2
50 .144,-2 .701,-3 .203,-2 .118,-2 .214,-2 .128,-2
80 .825,-3 .416,-3 .820,-3 .425,-3 .861,-3 .483,-3

100 .710,-3 .348,-3 .696,-3 .343,-3 .649,-3 .346 ,-3
150 .569 ,-3 .257,-3 . 572,-3 .260,-3 .520,-3. .252,-3
200 .495,-3 .214,-3 .503,-3 .220,-3 .512,-3 .253,-3

T4.3b Cross sections for transitions from the Is state to the 3dl state
2(units ma^ )

Energy
eV

Born Polarised
Born

B o m
Oppenheimer

Polarised
Born
Oppenheimer

DWPO I DWPO II

15 .283,-2 .116,-2 .190,-1 .144,-1 .598,-2 .535,-2
20 .588,-2 .235,-2 .222,-1 .152,-1 .822,-2 .563,-2
30 .647,-2 .259,-2 .139,-1 .812,-2 .777,-2 .400,-2
40 .550,-2 .224,-2 .915,-2 .487,-2 .569,-2 .260,-2
50 .453,-2 .188,-2 .656,-2 .331,-2 .479,-2 .215,-2
80 .267,-2 .116,-2 .323,-2 .115,-2 .288,-2 .131,-2

100 .199,-2 .890,-3 .229,-2 .109,-2 .216,-2 .100,-3
150 .110,-2 .509,-3 .119,-2 .572,-2 .121,-2 .581,-3
200 ' .699,-3 .330,-3 .739,-3 .358,-3 .830,-3 .425,-3
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T4.3c Cross sections for transitions from the Is state to the 3d2 state
2(units Trâ  )

Energy
eV

Born Polarised
B o m

Born
Oppenheimer

Polarised
B o m
Oppenheimer

DWPO I DWPO II

15 .129,-3 .532,-4 .433 ,-3 .285,-3 .161,-3 .105,-3
20 , .675,-3 .273,-3 .158,-2 .942,-3 .832,-3 .419,-3
30 .153,-2 .613,-3 .254,-2 .133,-2 .190,-2 .870,-3
40 .190,-2 .763,-3 .269,-^2 .132,-2 .210,-2 .904,-3
50 .202,-2 .816,-3 .263,-2 .123,-2 .225,-2 .972,-3
80 .191,-2 .787,-3 .222,-2 .992,-3 .210,-2 .912,-3

100 .176,-2 .729,-3 .197,-2 .870,-3 .191,-2 .831,-3
150 .140,-2 .587,-3 .151,-2 .656,-3 .150,-2 .657,-3 ■
200 .115,-2 .485,-3 .121,-2 .525,-3 .126,-2 .564,-3

T4.3d Cross sections for transitions from the Is state to the 3d state
2(units irâ  )

Energy
eV

B o m Polarised
Born

Born
Oppenehimer

Polarised
Born
Oppenheimer

DWPO I DWPO II

15 .176,-1 .708,-2 .774,-1 .571,-1 .287,-1 .264,-1
20 .217,-1 .860,-2 ,822,-1 .559,-1 .330,-1 .254,-1
30 .199,-1 .804,-2 .441,-1 .261,-1 .270,-1 .151,-1
40 .170,-1 .700,-2 .278,-1 .149,-1 .190,-1 .914,-2
50 .145,-1 .610,-2 .204,-1 .103,-1 .162,-1 .753,-2

80 .999,-2 .432,-2 .117,-1. .550,-2 .108,-1 .493,-2

100 .821,-2 .359,-2 .921,-2 .427,-2 .878,-2 .401,-2

150 .558,-2 .245,-2 .597,-2 .271,-2 .594,-2 .273,-2

200 .420,-2 .184,-2 .440,-2 .198,-2 .469,-2 .223,-2
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and Bhadra and Ghosh 1971) also gives a result in close agreement with 

experiment for energies above 20eV. The unitarized Born results of Somerville 

(1953) are also in reasonable agreement with experiment particularly below 

25eV. When target distortion is neglected in our model (as in DWPO I), the 

resulting cross section, while lower than the first Born results, are 

nevertheless too large at energies below 150eV. Similarly the Ochkur results 

of Gumble (1969), the distorted wave results of Vainshtein (1961), and the 

twenty state second order diagonalization method of Baye and Heenen (197^0 all 

give cross sections which disagree with the experiment. Not shown are the 

sum of the individual simplied second Born cross sections (Holt 1969, and 

Woollings and McDowell 1973), which lies between the DWPO I and Born results, 

and the fourteen coupled states impact parameter method of Mandelberg (1970) 

which is distorted by the very large 3d cross section.

The total Ha cross section, a(Ha), is of more interest since the 

c(3p) contribution no longer dominates. The available theoretical results 

are shown in figure F4.7a. Our DWPO II results are in close agreement with 

those obtained using the individual cross sections of Morrison and Rudge 

(1966) although the two models exhibit quite different energy dependence 

at very low energies but where neither approach is expected to be valid. The 

polarized Born cross sections lie between the DWPO I and II results between 

20 and 200eV and are equivalent to the DWPO II results above 200eV. The

combined Glauber cross sections of Tai et al. (1970) and of Bhadra

and Ghosh (1971) lead to values of Ha which are in good agreement with our

DWPO I results at energies above 70eV but predict a maximum at 35eV (higher 

in energy than the maxima predicted by the other.models) and as is usual with 

Glauber calculations, the cross section below this point rapidly decreases 

to very small values. The available (above 50eV) combined simplified 

second Born results (Holt 1969, and Woollings and RicDowell 1973) very 

closely follow.our.DWPO I results. .The.remaining theoretical models shown ... 

(Born, DWPO I, distorted wave, Bom-Oppenheimer, Ochkur and Unitarised Born) 

all give cross sections which lie higher than our DWPO II results. The
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results of Baye and Heenen (197^) are not shown since they are very close 

to the B o m  results.

The DWPO I and II results together with the GlaulDer values are compared 

with the available experimental data in figure F4.7b. The only absolute 

experiment is that of Walker and St.John (1974). These results are 

uncorrected for cascade or for optical polarization. Both these corrections 

are energy dependent and would reduce the quoted values at energies below 

200eV. The other experiments (Kleinpoppen et al. 1962, Kleinpoppen and 

Kraiss 1968, and Mahan (1974) are all relative measurements and were 

originally normalised to the first Born Ha cross section at either 200eV 

or SOOeV. We have renormalised them to our DWPO II result at SOOeV which 

lies about 8% below the Born value. With this renormalization, the most 

recent results (Mahan 1974, Mahan et al. 1976) remain in excellent agreement 

with our calculated DWPO II results at all energies above 20eV. This fact 

would suggest that Mahan’s 3p results may be 20% too low below ISOeV and 

his 3d values may be S0% too high over this energy range in order that 

the individual cross sections might agree with our 3p and 3d results 

and taking the total cross section to be accurate.

The earlier measurements of Kleinpoppen and colleagues (Kleinpoppen et 

al. 1962, and Kleinpoppen and Kraiss 1968) remain in good agreement with 

our DWPO II results above 80eV but appear energy independent below this 

point. These measurements carry large errors (which may be as much as 

± 25%)but the general trend is nonetheless incompatible with that found by 

Mahan et al., by Walker and St.John or with our theoretical results.

The polarization correction to be applied to Walker and St.John's data 

arises from the relation (see Chapter 5 below) between the total Ha cross 

section, a(Ha)^ and that total cross section, Co^^Ha), which would be 

measured at 90° and given by:

a(Ha) = OgQ(Ha) 1 - i  Pgo(H.)
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where Pg^CHa) is the polarization fraction of Ha photons observed at 

90° to the incident electron beam. This correction, as will be seen below 

(chapter 5),is quite small at all energies so that the difference between 

our results (or Mahan’s) and those of Walker and St.John must be attempted 

to be attributed to cascade effects. But this difference is nearly 50% 

of our Ha cross section at 20eV and increases to about 80% at SOOeV.

Mahan (1974) attempted a direct experimental determination of the percentage 

cascade correction to o(Ha) as a function of energy by using the different 

frequency response to the applied r.f. field of states with n ^  4. He 

found that this percentage correction increased from 4.4% at ISeV to 9.3% 

at SOOeV and thus, if these results are confirmed there remains a serious 

discrepancy between our results, those of Mahan (however normalised) and those 

of Walker and St.John.

§4.4 Discussion of the Total 3& , n = 3 and Ha cross sections. -

It is important to note that the most significantly different (from 

other reported results) contribution to the Ha cross section has been, 

the Is - 3d excitation cross section which appears to be too low, 

particularly at higher energies. It is to be expected that including the 

coupling to other adjacent levels via the R-matrix unitarization technique of

Seaton (1961) (see also Somerville, 1963) would improve this cross section ,
!

by allowing for cross-population between states. Moreover, as has been explicitly 

pointed out by Vainshtein and Presnyakov (1969), intermediate states such as 

the 2p state have an important contribution in optically forbidden i

transitions such as is the case with the Is - 3d excitation. {

However, recently an important criticism (Walters, 1976) has been ;

made of the DWPO model as it stands. In particular in this work we have 

used a simple static polarization potential which is adiabatic in nature. Walters 

has shown that full account of non-adiabatic effects should be included 

especially at higher energies. Walters work dealt specifically with elastic 

electron-lithium cross sections but the same basic arguement used there applies ,
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equally well to this work; viz the assumpton that the cross section is 

dominated by the long range interaction of the incident electron with the 

target atom and that this is best represented by a simple adiabatic polarization 

potential breaks down at higher energies when non-adiabatic effects are 

important. Moreover, with Lithium, Walters showed that including non-adiabatic 

effects leads to an underestimate of the elastic cross section (while the 

adiabatic potential overestimated the cross section) so that at higher 

energies the long range interaction no longer can be assumed to dominate and 

- effects (such as cross population between states) then play 

an increasingly important role.

With this parallel in mind it is useful to reconsider the results here.

For the 3s state, the DWPO results tend to the Born by 200eV and are

in excellent agreement with experiment for lower energies. Thus we feel

that the dominant effect has been shown to be the long range dipole

interaction between the impact electron and the target atom. For the 3p

state, the DWPO II results lie about 8% below the B o m  value at SOOeV and this

would indicate that at high energies (above 200eV say) shorter range effects

should be included. At lower energies (20 - ISOeV) when the experimental

results are normalized to the Born at SOOeV, our DWPO II model is in good

general agreement with the experimental results. %"7hen the 3d results are

considered, there is very wide disagreement at high energies between the

DWPO II model and models which ignore core polarization and it is only

at low energies (^ 30eV) that the experimental points (normalized to the
■

Born at SOOeV) agree with our results. The high energy effect, as was

pointed out earlier, does not disappear when non-adiabatic effects are

included. Thus we are forced to conclude i that other shorter range effects 

(such as coupling to other open channels) must be included for this case. 

Although a re-calculation of the Is - 3d cross section would not have a 

major effect, on. the ..total n =..3 excitation cross section due to. the. dominance 

of the Is - 3p cross -section, the situation with regard to the Ha 

cross section, would be altered dramatically and might be expected to go



soine way to bringing our results more in line with those'of Walker and St.John. 

§4.5 Differential Cross Sections

The differential cross sections for the individual and summed 

Is - 3 i transitions calculated using the formulation of Chapter two are 

presented next. The individual and summed results in the DWPO II model at 

100 and 200eV are shown in figures 4.8a, b; 4.9a, b. These energies were 

chosen for illustration purposes since some Glauber results at low angles are 

available for comparison. At small angles ( 4  45°) the 3p transition 

dominates but above 45° the 3s contribution also becomes significant.

Glauber 3p cross sections for 0 < 50° have been given by Tai et al. (1970) 

at lOOeV and ar-e very close to our results in the forward direction although, 

they lie rather higher at intermediate angles. The Glauber 3s differential 

cross section at lOOeV given by Tai et al. (1970) is always close to our 3s 

result but lies lower than our values in the near forward direction ( 0 < 1 0 °) 

but are' higher beyond this direction. The 3d Glauber results, given 

by Bhadra and Ghosh (1971), are shown in both F4.8b and F4.9b for 0 ^ 4 5 °  

and for 100 and 200eV. In the forv/ard direction their results lie a factor 

of two higher than our DWPO II results but the relative difference decreases 

for intermediate angles for both energies.

The DWPO II results for the complete angular range are shown in figure 

F4.8a and F4.9a. Our 3d results show some numerical instability for 

0 > 120°. At large angles our calculated cross sections are many orders of 

magnitude greater than the first Born results. By comparing the predictions 

of the DWPO model for the 2p state (McDowell et al., 1975b) with the 

experimental resultsof Williams and Willis (1975) it is possible to see that 

failure to allow for final channel distortion leads to an underestimate of 

(n = 2 ) in the backward direction by about a factor of two. This is 

confirmed by further comparison of our DWPO results with experiment for 

e + He(l^S) ->• e + He(n^S) ; n = 2, 3 (Scott and McDowell, 1975). Thus we



SI

, SUMMED n=3 DY/PO
BALMËFt K DWPO II
p DWPO II

- 3s DWPO II
3d DWPO II (xlÔ-)
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conclude that our current differential cross sections are superior to 

previously published values for Is - 32 transitions but that they may well 

be substantially too low at larger angles and we would expect them to be 

susceptible to improvement using a unitarization procedure to couple the 

n = 3 states.

Tables giving the individual total n = 3, and Ha differential cross 

sections for a range of energies are included below for future reference 

(tables T4.4a-f DWPO II approximation and T4.5a-f DWPO I approximation).

In particular, the 32m^ differential cross sections are tabulated for 

reference purposes when the calculations are made of the alignment and 

orientation parameters discussed in chapter 6 below.

54.6 Summary

We have presented our calculated total end differential cross sections 

and compared them where possible with other theoretical and experimental work. 

Initially (Syms et al. (1975)) our reaction to the disagreement between 

our total 32 results and the experimental measurements while the total 

Ha results remained in quite good agreement was ascribed to problems of the

experimental procedures. In the light of Walters’ work (1976) we now feel 

that the DWPO model is inconsistent at high energies where an energy dependent 

perturbation potential should be used and because of the problem of cross

population between states - particularly with regard to the Is - 3d 

excitation. Thus we believe^that the experimental work is more likely to be 

correct.

We still believe that the differential cross sections presented here 

are an improvement on previous work but feel that they would be subject to 

improvement viaa .unitarization technique.

The results here all emphasise the need for further experimental and 

theoretical study.
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CHAPTER 5 

Polarization of Ha Line Radiation

5,1 Introduction

In general the dipole radiation emitted by an atom after excitation 

by an electron beam is polarized and has an anisotropic angular distribution, 

With an incident beam of electrons in an Oz direction, this radiation may 

be regarded as due to an electric dipole in the Oz direction and two equal 

electric dipoles in the Ox and Oy directions. Letting 1(6) be the 

intensity of radiation per unit solid angle in a direction making an angle 

0 with Oz, and letting I" and I"̂  be the intensities in a direction 

perpendicular with Oz with electric vectors parallel and perpendicular 

with Oz, then the polarization fraction at 90°, is defined:

T" - i^ ,
?90 = I" + I"̂ •

Using the fact that the intensity of.dipole radiation, making an angle
2X with the dipole axis, is proportional to sin X j one obtains:

1(0) = IX
3(1 - P g Q  COS^e)

(5.2)

where the total intensity of radiation integrated over all angles is 4ttI. 

Therefore, by either measuring I" and I"** or by obtaining the photon 

angular distribution 1(0), it is possible to determine Pg^. Further, 

since Ï = I" t 21^, the percentage polarization can be expressed alternatively

The theory of polarization of impact radiation was first developed by 

Oppenheimer (1927 a,b, 1928) and further developments and applications were 

made by Penney (1932). Later, Percival and Seaton (1958) re-examined the 

problem and extended the analysis. Essentially, the approach is to calculate 

the probabilities of exciting individual quantum states with the probabilities
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of emission of polarized photons in transitions from these states. Penney 

showed that not only are electron spin and fine structure important, but also 

it is necessary to consider nuclear spin and hyperfine structure.

Three atomic levels are distinguished: a.̂  the initial level with

quantum states a, (and for simplicity it is assumed that it has zero 

orbital angular momentum which means that the anisotropy of the problem is 

introduced solely through the motion of the incident electron); b , the upper 

level with quantum states 3 populated after collision and before photon' 

emission; c, the final level with quantum states y reached after photon 

emission. The cross-sections, a(3)» for exciting quantum states of the 

upper level with definite orbital angular momentum component M^, are 

calculated where the quantization axis is in the incident beam direction.

If the upper level has well defined fine and possibly hyperfine structures 

then the upper states, 3 » must be described in a coupled spin-orbital angular

momenta representation and the cross sections for excitation of these vector 

coupled states then expressed in terms of those for excitation of states.

The corresponding algebra for radiative transition probabilities is well 

known (see, for example, Condon and Shortley (1963)).

However Oppenheimer-Penney (0-P) theory, as described above, fails to 

give unambiguous results in the limit of small fine structure energy or, in 

the case of non-zero nuclear spin, in the limit of small hyperfine structure 

energy. That is to say that two different expressions for the polarization 

fraction can be obtained to describe the same process. These ambiguities 

arise through the assumption that the probabilities of exciting individual 

quantum states and the probabilities of emission of polarized photons in 

transitions from these states, can be calculated separately.

Percival and Seaton adopted the approach of considering the probabilities 

of photons of definite polarization being emitted by the entire system of 

atom and colliding electron and obtained an expression involving integrals _ 

over the line profiles.
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Percival and Seaton theory (P-S) gives the 0-P expressions with 

hyperfine structure (or fine structure) if there is negligible overlap 

between the profiles of the hyperfine (or fine) structure components and 

conversely the 0-P expressions neglecting nuclear (and electron) spin are 

obtained if hyperfine (or fine) structure profiles overlap completely.

Thus, to use the 0-P theory, it is necessary to decide whether fine or 

hyperfine structure effects are important; i.e. should the initial and 

intermediate states, a and g , be expressed

3 = A,SLM^Mg
(5.4)

or as :

a = A',S'L'J'Mj' : .f;
f (5.5)

3 = A,SLJM_ Ju
or as:

a = A*
^ \ (5.6)

3 = AjSLJIFMp J

where A,A’ are used to denote all non-angular momenta quantum numbers, I 

is the nuclear spin and F is the resultant of J and I.

The relevant criterion adopted by Percival and Seaton is to compare 

the fine structure separations, the hyperfine structure separations and the 

line widths (since the polarization in P-S theory directly depends on 

the ratio : e = 2ttv^^q /A of the separation of states 3,3° of the

level b to the line width).

If the fine structure splitting is much smaller than the line width 

(i.e. Gpg «  1) then the polarization fraction is derived using (5.4);

if the converse holds while at the same time fine-structure energy is not 

large enough to cause breakdown of LS coupling, then a and 3 should be

taken as described by (5.5) or (5.6) depending on whether 

Erf s >>1. As mentioned earlier, ambiguities can arise i.e. when or

<< 1 or
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^HFS " in such a case to obtain an accurate calculation of the polarization, 

the expressions to use are those derived by the exact theory of Percival 

and Seaton.
2 2Percival and Seaton considered P -= S transitions and Lyman-a (Ly-a) 

radiation in particular. Here the hyperfine separations are smaller than 

the line width but are of the same order of magnitude. Thus they used their 

exact expressions to obtain the polarizations and found that with 0-P theory, 

neglecting hyperfine structure (i.e. 3 given by (5.5)), expressions little

different from the exact forms were obtained.

5.2 Polarization of radiation from the n = 3 states of Hydrogen

In this work we are interested in transitions from the n = 3 level

of hydrogen and in Balmer-a (Ha) transitions in particular: i.e. decay 

from the n = 3 states to the n = 2 states when the light emitted has 

wavelength 6563 % - important since this lies in the visible spectrum and 

occurs frequently in astrophysics as a strongly emitted line. The decay 

process of the n = 3 states is illustrated in figure (F5.1). The 3p state 

decays to either the 2s or Is state with a probability about seven times 

greater that it will decay to the Is state rather than the 2s state: 

i.e. about 88% of the light emitted from the 3p state is Lyman-3 and about

12% is Ha radiation. Both the 3s and 3d states decay to the 2p state

only and thus all the radiation from these transitions is Ha.

The polarization of Ha light will depend on the polarization of the

light emitted from the separate levels and on the populations of these levels. 

Thus it is necessary to compare the level separations with the line widths 

as in table (T5.1). Note that parameters relevant to 3s are ignored since 

radiation from states with zero orbital angular momentum is unpolarized.

Accurate values for all the n = 3 parameters are givenj[AppendixAVIII.

As can be seen »  1 so fine structure is important and e^^g - 1 for

all the 3Xj states, therefore the exact theory of Percival and Seaton should
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Table T5.1

Fine structure, line widths and hyperfine splittings for the 3p and 3d 

states of hydrogen

State 31 3p 3d

Einstein A coeff for 

transition 3 i  ->■ 2 1 -1  (1)

2.245,7 sec"! 6.467,7 sec“^

Line width = A / 2 ttc 1.192,-4 cm“^ 3.434,-4 cm ^

Fine structure splitting

(2)

.1084 cm"^ -1.0361 cm

h n  = ^ i r c A V g ^ / A 9.09,2 1.05,2

State 3£j : 3 p i2 3P3/2 3 4 3 / 2 3 ^ 5 / 2

Hyperfine splitting 5.816,-4cm"l 2.326,-4cra“^ 1.396,-4cm“^ .8973,-4cm”^

4.88 1 . 9 5 0.407 .261

(1) Condon and Shortley (1963) p.134.

(2) Garcia and Mack (1965).

(3) Bethe and Salpeter (1957), and see appendix AVIII



be used to obtained the formulae for the polarization fractions. In fact,
y

a s  indicated by Percnjal and Seaton (their equations (5.13) and (5.14)), if 

I” and I” are the light intensities as in (5.1) derived using (5.5)

(i,e. for very small s^^^) and (5.6) (i.e. for very large c^^j) respectively, 

then the exact form for I" can be written

r , . ' ' : f  .

Expressions obtained for the polarization fraction by use of the two

0-P formulae and from the explicit formula (5.7) are given in table (T5.2),

in terms of the cross-sections for exciting the magnetic sublevels ĉr(3jj,m̂ )
2 2(for details-see appendix AIX). The expressions for P - 2 S) with

and without hyperfine structure are in agreement with those quoted by
FS 2 2Percival and Seaton, the expression for PgQ(3 D 2 P) is in agreement 

with that used by Mahan (1974), but obtained after correcting a misprint 

in Percival and Seaton’s paper.

5.3 Polarization Expression for Ha Radiation

To obtain the overall polarization of Ha radiation it is necessary" 

to start from the definition of the perpendicular cross section. Moisei%6ch 

and Smith (1968) give the relation

“total = - Pgo/3) . (5.8)

where P^^ is the 90° polarization of emitted line radiation and ’̂ poTAL 

is the total excitation cross section. This also follows directly from 

(5.2) when 0 = 90°. For the Ha case

°TOTAL^^^^ = a(3s) + Bg^a(3p) + a(3d) = Z Bgj^a(3s) (5.9)

where a(3£) (H = 1,2,3) are the cross-sections for excitation to the 3&

state and B is the branching ratio for radiation from the 3& state

to the 2V state. Here, B^^ = B^^ = 1 and B^^ = 0.118 (see appendix AVIII)
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Similarly,

" + B^pOg^CSp) + Ogo(3d) = Z (5.10)

where a ^ ^ (3 9 .) ( l  = 1,2,3) are the individual 90° cross sections and are 

defined in terms of the 90° polarizations of photons emitted from these

states by

(TgQ(3J>) = o(3&) (1 - PgQ(3&)/3)"l (5.11)

Thus, from the expressions for Pg^CSil) taken from table (T5.2), we 

obtain the corresponding expressions for as given in table (T5.3).

Since, from (5.9) and (5.11)

°TOTAL^^“  ̂ “ °90^^^) ~ 1  ^ ^3A°90^^*) ^90^^^^ (5.12)

then, by substituting for ^^^^^^(Ha) in (5.8)

PgQ(Ho) = 3(CgQ(Ha) - *T0TAL(H*»/°90(H*)

r (TT 1 - (0'12°90(3P) PgofSp) + °9o(34) Pgo(3d)) ^
fgoi"*; - Ogo(Ho)

This result is in accord with the intui tive idea that the total 

polarization of an emitted line should be made up of the sum of the 

polarizations of the components of the line,weighted according to the 

populations of the components.

5.4 Polarization results for 3p-^2s, 3d 2p and Ha radiation

The magnetic sub-level cross sections were combined according to tables 

T5.2 and T5.3 and the polarization fractions and perpendicular cross sections 

for the 3p and 3d states produced by the POLORP and POLORD programs 

respectively. These results were combined according to equation (5.13) 

via (5.10) to produce the polarization of the Ha radiation.
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Figure F5.2a shows the 90 polarization of the radiation calculated 

in each of the six approximations (Bom, Polarized B o m ,  Born-Oppenheimer, 

Polarized Born-Oppenheimer, DWPO I and DWPO II), for energies up to 50 eV.

Figure F5.2b similarly shows the results from 40 eV to 200 eV. The results 

in the Born and Polarized B o m  are equivalent whether produced by the POLORB, 

POLORP and POLORD programs or from the exact forms of the scattering 

amplitudes and provide a useful check on the computation.

The DWPO I results show the greatest degree of polarization at near 

threshold energies - however in this region the polarized orbital results 

are not expected to be very accurate since coupling between the Is and 2p states 

only is included and any other effects are ignored. Above 20 eV DWPO II 

results lie above all the others with DWPO I being almost indistinguishable 

from DWPO II up to about 40 eV. At this point, the DWPO I results depart from 

the DWPO II results and tend to the Born approximation at higher energies. 

Similarly the DWPO II results tend to the Polarized Born approximation.

The Born and polarized Born results decrease uniformly across the 

entire energy range shown. Initially the Born polarization fraction is 

higher than the polarized Born but the position is reversed at nearly 

50 eV and by 200 eV, the separation between the two is over two percentage 

points,

The Born-Oppenheimer and PBO polarization fractions both show a peak 

at about 25 eV with the B-0 results lying slightly higher than the PBO up 

to about 60 eV where the relative positions.are reversed. At higher 

energies the B-0 results tend to the Born results from below and the PB-0 

polarization fraction tends to the polarized B o m  results - also from below. 

Neither the B o m  nor the Born-Oppenheimer results are expected to have much 

validity at low energies since they are of course high energy approximations.

The effect of the distorted wave polarized orbital model is clearly to 

increase the calculated polarization fraction. Additionally the inclusion 

of core polarization leads to significantly higher results especially at 

higher energies.
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The explanation of the change of sign of polarization is that it 

occurs when the emitted radiation changes from right to left polarization. 

Thus, distortion of the atom and electron system leads to a shift to 

higher values in the energy at which this occurs. Although the effect of 

exchange only (i.e. considering the Born-Oppenheimer rather than the Born 

models) appears to shift the energy slightly to the left, the validity of 

these models in the region where this occurs is open to doubt.

îigure rs.3 again shows the DWPO II results and the Born values for 

comparison for energies up to 100 eV. Also shown are the experimental 

results of ICLeinpoppen et al. (1952), of Kleinpoppen and Kraiss (1968) and 

the calculated values of Mahan (1974). The values given by Mahan do not 

represent an independent measurement of polarization, but rather are 

calculated values in which the B o m  o(n&) cross sections are replaced by 

his measured values while the o(nZm ^) Born results are retained.

However, although the DWPO II Lya polarization polarization results

were in complete agreement^ at energies above 20 eV, with the reported 

measurements of Ott et al. (1970) our present results for Ha are in 

strong disagreement with the measurements of Kleinpoppen and his colleagues 

((1962)and (1968)). Kleinpoppen believes that the later experiments 

(Kleinpoppen and Kraiss (1968)) carries errors of at least 25% (private 

communication 1975), but this does not bring it into agreement with theory. 

The comments made in Chapter 4  about the DWPO model as a whole apply

particularly with respect to the results at higher energies. Therefore the

values shown at these energies are not expected to be a reliable prediction 

of polarization measurements. The model's predictions at lower energies are 

expected to be more reliable and this is where the available experimental 

results show the greatest disparity with theory. Further theoretical and 

experimental studies are clearly required to explain this disparity.

Table T5.4 shows the polarization fractions for the 3p state 

obtained in each model and using;
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a) 0-P theory with fine structure but not including hyperfine structure,

b) 0-P theory with hyperfine structure included,

c) P-S "exact" formulation.

These results confirm the importance, of hyperfine effects at all energies

and for each model since the results under c) are nearest to those under b).

However, the differences even here are significant and show that the "exact"

formulation of Percival and Seaton should be used. The effect of exchange

is to increase the polarization of 3p radiation at low energies - at

higher energies the effect is barely discernible. Core polarization leads

to higher polarization fractions, particularly at high energies. The full

distorted wave polarized orbital model with core polarization gives the

highest values for the polarization fraction such that at 200 eV the

polarization percentage is nearly 3% higher than the Born value. All

models except PBO predict a monotonically decreasing polarization fraction

with energy. The exception, PB-0, suggests a peak at about 20 eV but this

model is unreliable at such low energies in any case.

It should be noted that these results are also a theoretical calculation

of the polarization of Ly-3 radiation (wavelength 1025*83 arising

through the decay of the 3p state t6 the ground state. We have not

found any reports of theoretical calculations or experimental measurements 
#•

of this quantity. However, with other theoretical work it is possible to 

obtain the 3p polarization by combining the individual a(3pm^) cross 

sections, when reported, in the appropriate manner as in table T5.3. More 

usefully though, the separate a(3pm^) may be directly compared and where 

possible we have considered this in Chapter 4.

Table T5.5 shows the polarization fractions for the 3d state as in 

table T5.M-. It will be noticed that including hyperfine splitting in the 

0-P theory leads to results which greatly underestimate the polarization 

fraction at all energies and.in.all models and that_.the results using a) _ 

are very close to the P-S exact formulation. This is to be expected, in

any case, since for the 3d state the parameter < i (see section 5.1),
* (note added at binding): ...but see Chan F.T. and Chang C.H.,1977, .

Rev A15, p 118; for Glauber model theoretical calculations^__
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Table T5.4- Polarization fractions for the 3p state of Hydrogen; a) 0 - P theory

including fine structure only; OP theory including hyperfine structure; c) PS

"exact” formulation.

eV BORN P-BORN B-0 P-B-0 DWPO I DWPO II

a) . 3570 .3575 .3923 .1786 . 3250 .3230
15 b) .2336 ' i2339 .2578 .1142 .2117 .2104

c) .2600 .2604 .2868 .1277 .2359 .2344
a) .2794 .2818 .3032 .3045 .2783 .2832

20 b) .1809 .1825 .1970 .1979 .1802 .1835
c) .2019 .2036 .2196 .2206 .2011 .2047
a) .1929 .1987 .1942 .2004 .2096 .2153

30 b) .1236 .1273 .1244 .1285 .1345 .1383
c) .1382 .1424 .1391 .1436 .1504 .1546
a) .1434 .1513 .1414 .1500 .1664 .1725

40 b) .0913 .0964 .0899 .0955 .1062 .1102
c) .1022 .1079 .1007 .1070 .1188 .1233
a) .1103 .1196 .1082 .1182 .1364 .1434

50 b) .0699 .0759 .0686 .0750 .0867 .0913
c) .0784 .0851 .0769 .0840 .0971 .1023
a) .0528 .0642 .0522 .0639 .0799 .0891

80 b) .0332 . 0404 .0328 .0403 .0504 .0563
c) .0373 .0454 .0369 .0452 .0566 .0631
a) .0303 .0421 .0302 .0424 .0557 . 0656

100 b) .0190 .0265 .0190 .0266 .0304 .0414
c) .0213 .0297 .0213 .0299 .0393 .0464
a) -.0045 .0078 - -.0040 .0085 .0165 .0273

150 b) -.0028 .0049 -.0025 .0053 .0104 .0171
c) -.0031 .0055 -.0028 .0060 .0116 .0192
a) -.0252 -.0129 -.0245 -.0123 -.0077 .0018

200 b) -.0157 -.0081 -.0153 -.0077 -.0048 . 0011
c) -.0177 -.0091 -.0172 -.0086 -.0054 .0013
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Table T5.5 Polarization fractions for the 3d state of Hydrogen
a) 0-P theory including fine structure; b) OP theory including hyperfine
structure; c) P-S "exact” formulation.

eV BORN P-BORN B-0 . P-B-0 DWPO I i! DWPO II

a) .399 9 - .3985 . 3663 .3649 . 3827 .3879
15 b) .3127 .3116 .2856 .2845 .2988 . 3030

c) . 3907 . 3894 .3578 .3563 .3739 .3790
a) . 3087 . 3069 . 3309 .3349 .3299 .3577

20 b) .2396 .2381 .2572 .2605 .2564 .2787
c) .3014 .2996 .3231 .3271 .3220 .3494
a) . 1958 .1987 .2380 .2534 .2267 j .2632

30 b) .1505 ,1528 .1836 .1958 .1748 Î .2035
c) .1910 .1938 .2322 .2473 .2212 .2569
a) .1245 .1327 .1537 .1722 .1408 .1719

40 b) .0952 .1015 .1177 .1322 .1077 .1319
c) .1214 .1293 .1498 .1679 .1372 .1677
a) .0740 .0864 .0902 • .1083 .0833 .1085

50 b) .0563. .0658 .0688 .0826 .0634 .0828
c) .0721 .0842 .0879 .1055 .0811 .1057
a) -.0189 ,.0011 -.0191 -.0013 -.0242 -.0032

80 b) -.0143 .0008 -.0144 -.0010 -.0183 -.0025
c) -.0183 .0011 -.0186 -.0012 -.0236 -.0032
a) -.0568 1 -.0342 -.0602 -.0413 j -.0670 -.0456

100 b) -.0428 1 -.0258 -.0453 -.0311 1 -.0504 -.0344 .
c) -.0553 j -.0333 -.0586 -.0402 j -.0652 -.0444
a) -.1160 1 -.0907 -.1240 -.1043 j -.1279 -.1039

150 b) -.0870 -.0681 -.0928 -.0783 1 -.0958 -.0780
c) -.1128 I -.0882 -.1206 -.1015 j -.1244 -.1011
a) -.1509 1 -.1251 -.1611 -.1421 -.1506 -.1195

200 b) -.1128 1 -.0937 -.1203 -.1063 -.1126 -.0896
c) -.1468 j 

!
-.1217 -.1566 -.1382 -.1465 -.1163
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Table T5.6 Polarization fractions for Ha radiation a) 0-P theory including
fine structure; b) 0-P theory including hyperfine structure; c) P-S "exact”
formulation

eV BORN P-BORN B-0 P-B-0 DWPO I DWPOII

a)

:

.1874 .1910 .0944 .0713 .2417 .2164
15 b) .1321 .1308 .0673 .0512 .1800 .1611

c) .1590 .1541 .0825 .0632 .2228 .1999
a) .1602 .1546 .1344 .1223 .2459 .2479

20 b) .1123 .1049 .0989 .0892 .1804 .1818
c) .1350 .1234 .1231 .1107 .2211 .2227
a) .1153 .1106 .1318 .1258 .1627 .1654

30 b) .0797 .0741 .0958 .0904 .1160 .1166
c) .0954 .0867 .1185 .1109 .1410 .1407
a) .0836 .0836 .0958 .0950 .1093 ...“

40 b) .0570 .0554 .0680 .0661 .0754 .0763
c) .0678 .0645 .0830 .0798 .0901 .0901
a) .0607 .0648 .0659 .0694 .0797 .0861

50 b) .0407 .0424 .0455 .0470 .0537 .0572

____ £)__ .0479 .0491 .0548 .0558 .0634 .0668
'a) .0177 .0302 .0156 .0285 . 0 2 8 1 -- T0429...

80 b) .0105 .0190 .0091 .0179 .0168 .0269

c) .0112 .0214 .0095 .0201 .0180 .0301

a) .0000 .0160 -.0029 .0137 . 00T9 T o m '  -

100 b) -.0017 .0094 -.0039 .0077 .0027 .0155

c) -*0036 .0100 -.0064 .0079 .0009 .0165

a) -.0278 -.0070 -.0310 -.0094 , -.0221 .-7ÜÜ05-” -

150 b) -.0207 -.0058 -.0231 -.0077 -.0177 -.0015

c) -.0264 -.0079 -.0296 -.0103 -.0237 -.0034

a) -.0444 -.0213 -.0472 -.0233 -.0385 -.0149

200 b) -.0319 -.0152 -.0340 -.0168 -.0285 -.0114

c) -.0399 -.0189 -.0426 -.0210 -.0364
....

-.0148

c \ 3
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whereas the converse holds for the 3p state leading to the corresponding 

result discussed above. Again, all models show a monotonically decreasing 

polarization fraction with energy. Similar effects due to exchange and 

core polarization at energies above 20 eV are noticeable as in the 3p 

case and again the DWPO II results predict the highest value for the 

polarization fraction.

Finally table T5.6 presents, in the same way as T5.4 and T5.5, the 

full Ha polarization results. The effect of hyperfine structure is seen 

to underestimate the exact formulation polarization fraction whereas fine 

structure alone overestimates it by nearly as much. The ambiguity is most 

marked in the DWPO II results where, although the smaller contribution of 

the 3d cross section to the total cross section would lead to an expected 

lesser effect of hyperfine structure, this is balanced by a larger 3p 

cross section (and despite the branching ratio which reduces this cross 

section to the same order as the 3d cross section).

5.5 Summary

This chapter has been concerned with the linear polarization of the 

radiation emitted by the 3p and 3d states and of the Ha radiation 

emitted by excitation to the n = 3 states with subsequent decay to the 

n = 2 states. The background to the theory has been described with particular 

application to the n = 3 states and the formulation of the relevant 

expressions outlined.

Results, using the DWPO models as well as the Born and Bom-Oppenheimer 

approximations, have been presented and discussed. These results have been 

compared with the available experimental results but show strong disagreement 

at all energies and indicate the need for further experimental and theoretical 

work.
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CHAPTER 6

Fano-Macek orientation and alignment parameters and the Macek-Jaecks parameters

6.1 Introduction

Macek and Jaecks (1971) discuss in detail the theory of measurements 

wherein photons are detected in delayed coincidence with a scattered particle 

and present a form of analysis specifically applicable to atomic collisions, 

relating the coincidence rate as measured for given photon and particle 

orientation to excitation amplitudes. This approach provides an added 

insight into the physics of electron atom collision processes and taken 

with the relative phases of excitation, provide a sensitive test of any 

collision model.

Fano and Macek (1973) further describe the orientation and alighment 

of the excited atom and show that the alignment of the emitter along the 

direction of emission is proportional to the anisotropy of emission and that 

the linear and circular polarizations are proportional to the alignment within 

the plane of polarization and to the component of orientation in the direction 

of emission respectively.

Morgan and McDowell (1975) have presented results in the DWPO II 

model for these Fano-Macek parameters for the case of Lyman a photons and 

have produced computer generated maps of the coincidence rates. Eminyan 

et al. (1973, 1974) have made experimental determinations of the coincidence 

rate for the 2 ^  and 3^P states of Helium. No theoretical or experimental 

results for the coincidence rates or orientation and alignment parameters 

have yet been reported for the n = 3 states of Hydrogen. We present 

here results for the Macek and Jaecks parameters, that is components of 

the coincidence rate for the n = 3 states of hydrogen, and also Fano-Macek 

parameters for the 3p states of hydrogen.
* (note added at binding): ...but see: Chan F.T. and Chang C.H.,1977, 

Phys Rev A15,_p 118; for Glauber model theoretical calculations.
6.2 Coincidence Rate for the n = 3 states of Hydrogen.

Macek and Jaecks (1971) considered the observation of photons in 

coincidence with scattered electrons where the scattered electrons on
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collision with an atom, excite the atom and then the subsequent decay of 

the atom gives rise to the emission of the observed photons. The rate, 

dN^» for the coincidence observation of the scattered electrons and 

emitted photons is given by the relation (assuming that LS coupling can 

be used to describe the atom):

dN a B(A + A,, + (A,, - A )cos^0 - /2 Re A _ sin20 + A. -sin^0 )df2 d2c oo 11 11 GO V ol V 1-1 V e V

where B is the branching ratio and where the electron is scattered through

n = (0 ) and the photon is scattered through Ü = (0 ,6 ). Thee e e ^ v v
experimental arrangements treated here is that in which = 0 and = ir.

The terms A^^, (q, q* = 0 ± 1) are given by;

fAt
H ' " W " ’ Jo exp -(Y +

where

X

I  (2x+l)(-l)%
XV IJ' J S{: J J* XI |L L X

If * f iJ 11 1

At is the time resolution of the experimental detection apparatus ' (generally

much longer than the precession periods or mean lifetimes of the excited

atom) a is the excitation amplitude for the magnetic sub-level

1 /y  is the mean lifetime of the excited atom; the frequency

w , ,(=(E _ - E_,_,)/h) describes the modulation of the light intensity uril r JF Y

due to Interference of radiation from coherently excited levels of the 

fine-structure or hyperfine-stnicture multiplet; is the orbital

angular momentum quantum member of the state to which the nL state decays.
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For the case of Balmer-a radiation, following Macek and Jaecks 

and ignoring hyperfine structure, then (to a good approximation):

At
exp -(ytiw ,)t dt

0
(independent of F, F') 

-1

0 when J ^ J'

,1/y when J = J'

so

v % , 4 ,  I .

(l  L x f  |L L X I / L L x\ / 1  1 x'

Ij J sj ll 1 v/ \ q  -q' v,

We find for each of the n = 3& states as follows (see Appendix AX) 

!.. 3s-2p: (Balmer-a radiation)

4 o ■

4 i  ■
o ^ /3 y

4 - 1  = 4 l  =

2. 3p-2s: (Balmer-a radiation)
-Is : (Lyman-3 radiation)

A = (5a + 4a1 )/9y00 o 1

■̂ 11 ” (2°o 70i)/9Y

Aol = Re <a^aj^>/3y + 7i Im <a^a^>/9y 
and .. -

ReA , = Re <a a.>/3y01 o 1
ImAoi .. = 7Im <a^a^>/9Y , _

4-1 = -*l/3Y



0.1
3. 3d 2p (Balmer-a) 

Aoo = (440 + 690^ + 12o ) /75Y

A^^ = (31o^ + 81o + 138a2>/150Y

ol

ReAol

/2 /3 ^  ̂2 1 / 2  _ 2 2 / 3  ^
' 25y ^1^2 " 6y ^0^1 50y .,̂ 2̂ 1̂  75y ^l^o^

Re <a_a,> t Re <a,a >
2 1 5 Or

+ ImAbl

1-1

2 3 / 2Im <a_a, > — -r - + Im <a, a >

1 o 150y I 

2 3 / 3

19o
2 1 50y

1 ^ 1 9 / 6

1 o 50y

50y ' 75y ^^2^0^'

It will be recognised that the linear polarization expressions obtained 

in Chapter 5, where hyperfine structure is excluded, can be equally derived

ftom:

^90" (^bo " ^ll)/(*oo ^11^

and this feature provides a useful check on the calculation of the coefficients 

in both this chapter and in Chapter 5.

6.3 Alignment and Orientation Parameters for the 3p state of Hydrogen

Morgan and McDowell (1974) following Eminyan et al. (1973, 1974) have 

used the result that in the collision frame the only non-vanishing components 

of the alignment tensor A and orientation vector 0 may be written

and

where

o

t

= <n|3Lg - L^|n>g = J(1 - 3X)o •

= <n|L^Lg + L^L^|n>g = 2 Re <a^a^> 

= <h|L^^ - Ly^|n>g - 5 ( 1  - 1 ) 0

= <n|L„|n>g = - /2 Im <a^a^>

g = - L(L -+■ 1 )-1

and where
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|np> = a^|l,0> t aj^(|l,l> - |l,-l>)

and that

= °o

4 1 ^
writing

%  ” » (w = 0,1)

then the relative phase of the excitation amplitudes is given by;

X = Xi - Xo'

Thus, to fully describe the coincidence rate as well as the orientation 

and alignment for the collision, in the case of 3p excitation, all that 

is required is knowledge of the magnetic sub-levels cross sections (the 

excitation amplitudes) and of the real and imaginary parts of <a^a^>.

The details of the calculation and computation for 3p - 2s, Is 

are identical with Morgan and McDowell (paper IV, 1975) and thus are not 

repeated here.

The orientation and alignment parameters for the ns states are 

trivial since only one magnetic substate is excited. The corresponding 

parameters for the nd states at present require further study.

6.4 Results and Discussion

The differential cross sections for the magnetic substates produced 

by the % ROLORP and POLORD computer programs have been included in the 

appropriate expressions and the coincidence parameters for the n = 3 

levels of hydrogen calculated, in the DWPO, B o m  and Bom-Oppenheimer 

models either with or without core polarization included.

—  . Morgan and McDowell (paper IV, 1975) have presented computer generated

contour maps to illustrate most effectively the normalised coincidence 

rate for the 2p state as a function of the scattered electron angle
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(0^) and the emitted photon angle (0^)« In that work a symmetrical 

energy dependent pattern was strongly evident. The production of similar 

maps for the n = 3 states should not present any practical difficulties 

and could be used to gain extra insight into the models considered for 

comparison with experimental results when they become available.

For the 3p states we have tabulated the real and imaginary parts 

of <a^a^^> divided by the differential cross section. Also tabulated 

are the results for the parameter X = a / ( a  +a, ). The results areO O -L
presented for a range of energies between 20 and 200 eV and selected 

electron angles between 0° and 180°. Intermediate electron .angles to give 

finer resolution and additional electron angles are also available if 

required. Using the results presented here together with the differential 

cross sections given in Chapter 4, a full description of the orientation 

and alignment of the atom after collision is possible.

The real part of <a^a^> for the 3p states calculated by the POLORP

program is tabulated in T5.1a for the DWPO I and II models and in T6.1b

for the B o m  and Born-Oppenheimer approximations without core polarization. 

It was found that core polarization had very little effect on the results

in the Born models and therefore the results which include core polarization

are not tabulated. Due to cancellation in the differential cross sections 

at higher angles and for higher energies the results at these levels are 

not reliable. However this does not detract from the value of the lower 

energy results particularly since (as was discussed in Chapter 1 and 4) the 

DWPO model itself is no longer expected to be reliable at higher energies 

whereas it is felt that it is useful at lower energies where the computer 

program is more robust.

Referring firstly to T6.1a a similar pattern is evident in both the 

DWPO I and II results: a primary peak occurs in the near forward direction 

followed by a trough which deepens with increasing-energy and a secondary 

peak at about 150° which heightens with increasing energy. The effect 

of core polarization is barely discernible and tends to dampen slightly 

any structure. -
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Considering T6.1b giving the real part of <a^a^> in the Born and 

B-D approxi-mations, the secondary peak noticeable in the DWPO model is no 

longer apparent and the primary peak has been shifted ■ towards the backwards 

dir-ection. The energy dependence remains similar to the DWPO results 

with the greatest effect being evident at about 30 eV followed by a 

decrease with increasing energy. There is very little difference between 

the B o m  and Bom-Oppenheimer results in the forward direction. However, 

in the backward direction the latter results are negative at all energies.

All models are zero in the forv:ard and backward directions at all energies.

The imaginary parts of <a^a^> are shown in T6.2 for the DWPO I and 

II models only. The results' for the B o m  and Bom-Oppenheimer approximations 

are all zero since the excitation amplitudes are either purely real or 

purely imaginary and therefore the relative phase of excitation, is

zero or ± tt. This feature can therefore be used to indicate the valid 

range for the B o m  approximation - i.e. when the prediction of other models 

or when experimental results show very small imaginary parts.

Again, the results are all zero in the forward and backward directins.

A single peak is evident at about 60° for low energies and this advances 

to the forward direction with increasing energ}% There is very little 

difference between the DWPO I and II results particularly at higher 

energies, with the latter model showing slightly ’’flatter" features.

The results for X are given in the DWPO I and II models (Table T6.3a) 

and for the B o m  and Bom-Oppenheimer approximations (T6.3b). The behaviour 

of this orientation parameter at three energies (20, 50 and 100 eV) is 

illustrated in Figures F6.1 when calculated in the DWPO II model and in 

F6.Z calculated in the Born approximation - both sets of results 

obtained using the POLORP program. These results can be compared with 

those for the 2p state of hydrogen (see McDowell et al- paper III (1975))

-and a similar behaviour is evident here. ,A_rapid decrease is seen in the...

forward direction to a minimum which deepens with increasing energy and 

advances to the forward direction. In the DWPO I model a second minimum
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vOoccurs beyond 90 which appears to be almost angle independent followed 

by a return to unity in the backward direction. When the DWPO I and II 

results are compared, the minima in the former are deeper though broader 

than in the latter and the intermediate maximum in the former is less high.

In the B o m  approximation the second minimum does not occur - the 

single minimum advances and deepens with increasing energy. In the Born- 

Oppenheimer a slight second minimum does occur for energies above 30 eV.

The effect of core polarization, which is not shown for these models, is 

to make the minima slightly sharper though less deep.

There are no other experimental or theoretical results for direct 

comparison to date but the similarity both qualitatively, and to some 

extent quantitatively, to the 2p results would indicate that experiments 

to study the detailed behaviour of the coincidence rate will require high 

levels of sensitivity. However, measurements of X can provide a more 

sensitive indication of failure of the B o m  approximation than straightforward 

measurements of the differential cross sections, since this approximation 

does not predict any second minima.

In the 3d case, the coincidence expressions are more complex and 

therefore the individual components and A^ and both the

real and imaginary parts of A^^ are tabulated separately. Using these 

results, the coincidence rate can be computed at any scattered photon angle 

and it is hoped that sufficient information is provided to enable the 

calculation of the orientation and alignment parameters when the necessary 

analysis has been completed. Once again, due to cancellation in the differential 

cross sections, the results for high energies and angles are not considered 

to be very reliable - they are included however for comparison.

For the 3d state the effect of core polarization is more noticeable 

and results for DWPO I and II, Born and Born-Oppenheimer and the polarized 

versions, of these approximations are all given except_for the imaginary 

part of A^^ in the Born and Born-Oppenheimer approximations. In these 

models this parameter is zero for all angles and energies since the
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excitation amplitudes are either wholly real or wholly imaginary and the 

relative phases of excitation between the magnetic sublevels is zero or ± ir.

Referring to Table T6.4a, the parameter is seen to be rapidly

decreasing in the B o m  and polarized Bora models, but the inclusion of 

core polarization leads to a definite reduction (by a factor up to 2.5) 

particularly in the forward direction and at lower energies. This same feature 

is apparent in the Born-Oppenheimer and DWPO models. However, in these 

cases instead of decreasing for all 0^ and E a minimum is evident at 

about 90° for energies above 50 eV followed by another minimum in the 

backward direction. The Bom-Oppenheimer and DWPO I results tend to the 

B o m  results in the near forward direction with increasing energy but depart 

from these results for higher values of 6^ with the DWPO I results being 

about 4-5 orders of magnitude larger than the Born results at higher 

energies and the B-0 results lying intermediate to the Born and DWPO I 

results. The same effects are noticeable when the polarized B o m ,  polarized 

B-0 and DWPO II results are compared. The effect of increasing energy 

in each model is to emphasise the forward maximum, and to lower the 

backward minima.

The parameter A^^ given in T6.4b exhibits similar characteristics 

although it does not have an intermediate minimum in any model. Once 

again at higher energies, where there is little difference in the forv;ard 

direction between the three models without core polarization, and between 

those models which include core polarization, the DWPO results lie about 

five orders of magnitude higher than the Born (or polarized Born) results 

in the backward direction.

The results for the parameter A^_^, given in T6.4c, continue to show 

the same behaviour as A^^ and A^^, but here all models exhibit a 

maximum at about 90°. The real part of A^^ shown in T6.4d remains 

negative in the Born models (Bora and polarized-Born) apart from in the 

forward and backward directions where it is zero. All the models show 

this feature. In the B o m  models a minimum occurs in the very near forward
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direction - thereafter the results increase to zero again by the backward 

direction. In both the B o m  and polarized-Born models, the forward minimum 

deepens with increasing energy. In the forward direction the polarized- 

Born results are significantly smaller (in absolute terms) than the Born 

although the position is reversed for energies above 50 eV with 0 above 90°. 

The results in the remaining four models all show an initial minimum in 

the very near forward direction which deepens to its lowest value at about 

30 eV and then decreases with increasing energy. This minimum is followed 

by a peak at about 45° and then a second minima at about 120°. The B-0 

and DWPO results are very similar when the models which exclude core 

polarization and then the models which include polarization are compared 

in the near forward direction. This is not so at higher angles where the 

DWPO I and II and the B-0 and'polarized-B-o'results are closer together 

than the DWPO and B-0 models results. The B-0 approximations results, at 

higher energies, tend to zero only slightly less slowly than the B o m  

results while the approach of the DWPO results to zero at 180° is clearly 

more steep when compared with the Born results. The effect of polarization is 

seen to be to deepen the initial minima and enhance the subsequent peak.

Finally, T6.4e shows the results in the DWPO I and II models for the 

imaginary part of The initial minimum in the DWPO I model vanishes

and the peak at about 45° - 60° at 20 eV advances to the forward direction 

with increasing energy. Additional maxima and minima arise at higher 

energies with all the results returning to zero in the backward direction.

The DWPO II results do not have this initial minimum but otherwise show the 

same behaviour although beyond about 15° for energies above 30 eV the 

DWPO II results lie lower than the DWPO I results.

6.5 Summary

In this chapter, the results for the orientation and alignment and 

coincidence parameters have been presented. For the 3p states, the
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effect of the DWPO model is most evident in the parameter X where an

intermediate peak occurs and which does not arise in the Born or B o m -

Oppenheimer approximations. The effect of core polarization is only

slight (as it is for the differential cross sections presented in Chapter 4)

and tends to flatten any features. The results indicate that high levels

of sensitivity are required in any experimental studies of the coincidence

rate. For the 3d results, the DWPO models give values for large angles

which are orders of magnitude larger than the B o m  results for the

A,, and Â   ̂ (in absolute terms) parameters. For the A and Â  ^11 1-1 OO 1,-1
parameters, the DWPO models show a trough and peak respectively which do 

not occur in the B o m  approximations. The effect of core polarization 

on all the results is most noticeable at low angles where it causes a 

reduction of about a factor of two, but towards the backward direction 

is only slight.

Whether the DWPO models do give an accurate account of the orientation 

and alignment and coincidence parameters for any range of energies it is 

not possible to say until other models are tested and the experimental 

phenomena studied. In view of the results for the n = 2 states of 

hydrogen (discussed elsewhere:papers III, IV and V) and the criticisms 

of the DWPO model discussed in Chapter the results are known to be less 

reliable at angles 6 > 60° and for higher energies. However the results 

are significantly different from the Born results at all energies considered 

and confirm the unreliability of the Born approximation when calculating 

these parameters. Work on the differential cross sections for the n = 2 

states strongly suggests that the inclusion of distortion in the final 

channel could dramatically improve the results, whereas distortion in this 

work is only allowed in the initial channel. A development of this work 

along this line should therefore provide further useful information about 

.the scattering process. ...     ...



CHAPTER 7 

ASYMMETRY OF Ha RADIATION

7.1 Background to the Asymmetzy problem

Mahan (1974,), in his experimental work on the excitation of the n = 3 

levels of hydrogen, recognised that Stark mixing of the magnetic substates 

of that level, could be important. .The effect of Stark mixing would be to 

distort the Ha signal through cross population between states. Only 12% 

of the 3p state decays with Ha radiation and 88% decays via The

3s and 3d states emit Ha only on decay. Furthermore, the 3p cross 

section dominates the excitation process as has been shovm earlier. Therefore 

any cross population out of the 3p state into the 3s or 3d states 

would be expected to strongly enhance the Ha signal.

The electric field strength required to mix the substates depends mainly 

on the energy splitting of the states. Referring to the level structure 

diagram (Figure F7.1), it can be seen that the nearly degenerate pairs of 

states “ ^3 / 2  /2 " ^1/2 therefore the most important

for this mixing effect. Additionally, for an electric field parallel to 

the electron beam axis, which is assumed to be the situation here, only 

magnetic substates with the same value for Mj are Stark mixed and 

therefore only these states need be considered.

Using time dependent perturbation theory Mahan considered the effects 

on radiation from levels coupled by an electric field and found that fields 

of 0.1 - 0.2 Volts/cm were the maximum tolerable experimentally. To detect 

any stray fields in the experimental apparatus, Mahan then applied a known 

field in three orthogonal directions to the interaction region, using the 

principle that minimum signal occurs at an overall zero field strength.

By observing the position of the minimum signal versus the applied field 

strength any offset of the minimum implied a stray field which then could 

be eliminated. '
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Unexpectedly, when Mahan applied electric fields up to ± 30 V/cm 

along the beam axis, a strong asymmetry upon sign reversal of the field, 

as illustrated in Figure F7.2, was observed. It had been assumed that the 

process involved required that one electron excited one atom to one state 

only which in turn was Stark mixed by the electric field into a pair of 

mixed states. The resulting radiation intensity would then be proportional 

to the square of the electric field and a symmetric intensity curve would be 

expected. The asymmetry was explained by assuming that a coherent excitation 

of magnetic substates iiJlJM and n£+lJM , with a relative non-randomU Ü
phase of excitation could be mixed coherently into each other by the field.

We have repeated the theoretical analysis of Mahan (Thesis 1974) (and see 

also Smith et al. (197 5) and Krotkov (1975)) to eliminate inconsistencies 

in Mahan's thesis. Using a specially written computer program (ASYM) we have 

produced calculations of the asymmetry in both the Born approximation (to 

check with Mahan's work) and the Polarized Born approximation. For the 

latter we have used the generalised analytic forms derived for the polarized 

Born scattering amplitudes and described in Chapter 2 of this thesis. These 

analytic forms were used since both the computed models which include core 

polarization (DWPO II and PBO) for the 3Jim cross sections had tended to 

the corresponding 3iJ.m polarized B o m  cross sections at energies below 

200 eV and therefore can be considered to represent Satisfactorily the 

effect of including (as above) core polarization in any model of the excitation 

process. Similarly, the DWPO I and BO cross sections have tended to the 

B o m  approximation by 200 eV and therefore the analytic Born scattering 

amplitudes were used in the computations here instead of the DWPO I model.•

The Ha signal profile was calculated^impact electron energies of 200 eV 

and 500 eV using the formulation outlined below and the results compared 

with Mahan’s experimental data.
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7.2 The Calculation of the Ha Signal Intensity

The formulation of Percival and Seaton (1958) as used in the case of 

polarization of Ha is followed (see also Chapter 5). Three atomic 

energy levels a, b and c with states a ,3 and y are identified and the 

total intensity of the Ha radiation is given by:

r _ r
I ^ ^33*^^^^^ ^^363'6^— kd̂ d(j) (7.1)

^  r v  _ V  _ /  A  *

r\j — ~
^i

The terms F, A and G may be. considered to describe the three processes: 

coherent excitation; electric field mixing; and decay to lower states with 

the emission of radiation, in turn. The states 6 represent the states 

into which, the electric field mixes the excited states 3 and 3’. The 

excitation density matrix is expressed in terms of scattering amplitudes;

Fpgifo^k) ~ fg(a,k) fg,(a,k) (7.2)

where fg(ô ,]<) is the scattering amplitude for electron impact excitation 

of an atom from the initial state, a, to the excited, 3 or 3', with 

a momentum change vector in the direction Ic. These JMj scattering 

amplitudes are calculated from the vector coupled LM^ excitation amplitudes 

and here the Born or polarized-Born scattering amplitudes are used (see 

Chapter 2). It is important that the relative phases of excitation are 

maintained throughout the calculation. Mathematically, by allowing for different 

excited states, 3 and 3’» the possibility of coherent excitation is 

already included. However, in hydrogen the only physically possible mechanism 

for coherence to occur in the absence of an electric field is for the ■ 

excited states, 3 and 3', to have the same orbital angular momentum
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(e.g. states ^nd then these states can radiate with decay

to the same final state - if however 3 and 3' have different L values 

the two states cannot decay to the same state. But the fine structure 

splittings of the n = 3 sub-levels of hydrogen are so large that any 

initial relative phasing is lost during the radiation process and thus no 

coherence effects are observable experimentally in the absence of any 

electric fields.

In the presence of an external electric field, the two states, 3 and 

3'j can have different L values because then the possibility exists that 

they can be mixed into the same state, 6, which decays to the state y and, 

provided the initial relative phases of these states for all atoms in the 

atom beam are non-randoraly distributed then the coherence condition of 

having one state break into two or more intermediate states and recombine into 

one final state is satisfied. For this reason the density matrix includes the 

term:

A ~ ag,g(E,t) (7.3)

where the functions a^^(E,t) describe the time development of the amplitudes 

of the states coupled by an external electric field. Bethe and Salpeter 

(1957, p288) have obtained, from time-dependent pertubation theory, the 

differential equations coupling the amplitudes, b^ and b 2 , of two states:

8b, -iE, r,
s f  = b̂ (t) - - <ujvlu2> b̂ Ct) (7.4)

and

3b . -iE r
^  <U2|v|ui> b̂ /t) + (--%- - 2-) b2(t) (7.5)

where E^ is the energy of the i^^ state (i = 1 or 2), is the

reciprocal lifetime and <u^|v|u2 > - "̂ be Stark mixing

element between amplitudes of the two states. The solutions to these 

equations are detailed in appendix AXI.
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The radiation matrix elements connecting the Stark mixed 6 levels 

and the final y states are given by:

~ (7-6)

where . g^^(£) is the radiation matrix element giving the transition 
“1 .probability in sec for emission of an _e photon by an atom in the excited 

state 6 decaying into the final state y . Thus this matrix includes here 

the transition probabilities between the n " 3 and n = 2 states as 

given by Condon and Shortly (19S5, pl34) together'with a correction term 

which makes allowance for the experimental arrangement whereby radiation is 

observed perpendicular to the electron beam. If radiation is detected over 

the entire solid angle the intensity may be considered to arise from three 

electric dipoles oscillating along the x, y and z axis where the z axis 

is in the direction of the electron beam, the x axis is in the observed 

direction and the y axis is orthogonal to x and z. Viewing along the 

X axis means that radiation due to this x dipole is not detected and 

so the corresponding radiation intensity is reduced accordingly. The calculation 

of the appropriate reduction factors is given in appendix AXI.

The complete situation is summarized in Figure F7.3 where the three 

stages, treated separately, are illustrated. In Figure F7.3a the incident 

electron hits the target atom and,since the electric field produced by 

this moving charge is strong enough during the short period of the impact, 

the n = 3,to uncoupled energy levels are directly excited. The electric 

field strength rapidly decreases as the incident electron is scattered and 

then spin orbit coupling of the to^ excited levels takes place with the 

resultant fine structure levels shown with the scattering amplitudes f^.

The coherence excitation arises if two excited states with quantum numbers 

(n&JM ) and (n£±lJM ) are produced from the same ground state. In Figure 

F7.3b the coherent superposition of the two.states gg' are mixed exclusively 

into one state 6. Figure F7.3c describes the decay process with Ha
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emission. The detailed derivations of elements of each of the matrices

F, A and G are covered in appendix AXI. Also given are parameters relevant

to the n = 3 splitting of hydrogen.

7.3 Computation of the Ha Signal Intensity

A computer program (ASYM) was written to evaluate the expression (7.1) 

on the ULCC GDC 7600 computer, specifically for the n = 3 states of hydrogen, 

For these states of hydrogen there are 18 separate possibilities for each of 

3, 3* or 6 (E32]m.); a takes the values Is^ + J since the excitations 

are from the ground-state; and the final state y takes the values

The necessary parameters for the electric field mixing calculations 

are summarized in Table T7.1.

The program is designed for any given value of incoming electron energy

and calculates the signal strength for a range of electric field strengths
“1 —1 firstly out from zero to 50 volts cm and then from -50 to zero volts cm

this order of calculation being close to preserve a "base" unit signal at

zero field for the intensity to which all values of the signal for non-zero

fields ean be related.

The essential sequence of the computation is outlined by the flow chart

(Figure F7.4) and described below.

Since the excitation matrix, F, is the only function dependent on
^ -A
jC, the integration over 1C is completed separately. As explained in 

appendix AXI the computer program uses a numerical integration package 

(DOIACF) to evaluate these integrals. A check on the computation at this 

point is provided by comparison of the integration of the Born amplitudes 

with published values (Morrison and Rudge (1966), Moiseiwiijch and Smith (1968)). 

Agreement is exact. Furthermore, we have compared with Krotkov (private 

communication (1975) and P. Rev. (1975)) results of the integrals given by:
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Table T7.1 Radiation Parameters for the n = 3 states of Hydrogen

State Lifetime - 
(sec) (1)

Reciprocal
Lifetime

=1/73%
(sec )

Transition 
Probability to a 
n = 2 state

(sec ^)

3s 15.84,-8 6.313,6 6.313,6

3p 0.5273,-8 189,65,6 22.45,6
3d 1.546,-8 64.67,6 64.67,6

= 1977.25,6 rad cm“^ (315 MHz)

_ ^3p3/2 " ^3d3/2j _ — --------------pd hr = 33.55,6 rad cm ^ (5.3 MHz)

6/2 m.■j R 68.22,6 X m^ rad cm ^

0.6/5 m. —] R
(3)= 10.79,6 X m. E rad cm-1

(1)
(2)
(3 )

Wiese, Smith and Glennon (1966)

Garcia and Mack (1965)

Electric field E measured in volts cm-1
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2ir I fg f *  KdK

tor different values of 3 and 3 *.

Table T7.2 shows our results for the B o m  amplitudes at 200 eV. The 

non-zero mixed cross sections can also be compared with figure 4 of 

Krotkov (1975): again, agreement is exact. For comparison purposes, the 

corresponding results for the polarized-Born amplitudes at 200 eV are included 

.in T7.2.

We have attempted to reproduce Mahan’s results (as shown graphically 

in his thesis) of the overall asymmetry effect using Born scattering 

amplitudes but have not been completely successful in obtaining exact 

quantitative agreement. We cannot tell whether these small differences 

are due to rounding errors in the computation, slight differences

in values of the parameters used or a combination of these effects. We 

do believe, in the light of the similarity of the plotted results both at 

200 eV and 500 eV, that the differences are not significant and that they 

cannot be ascribed to computer programming or logic errors.

7.4 Results and Discussion

Results are presented in the form of graphs of change in intensity 

relative to that at zero field against applied field (Figures F7.5 and F7.6). 

The results are at impact electron energies of 200 and 500 electron volts 

although there is no computational restriction on the range of impact energies. 

The applied field ranges from - 50 volts/cm to +50 volts/cm - again there is 

no computational restriction on this range although it is important that 

the field is not so large that LS coupling breaks down. Both B o m  and 

Polarized-Born approximates for the scattering amplitudes are used.
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Results under this heading are those given by Krotkov 

(private cominimication (1975))

Results produced by the program ASYM using the Born scattering 

amplitudes.

Results produced by the program ASYM using the analytic forms 

for the polarized-Born amplitudes (see Ch. 2).

Percentages in:( ) refer to the fraction of the 3jlj; cross 

section; in ~] that of the Ha cross-section; in f ^ that 

of the n = 3 total cross-section.

The mixed cross sections (where 3* ^ 3) are compared with values 

taken from Krotkov (Fig. 4 (197 5)).
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The graphs show that in all cases the predicted signal has field 

asymmetry in the correct direction - that is: more light is emitted for a 

negative than for a positive field since a negative field is directed such 

that it increases the kinetic energy of the impact electron. As was shown in 

Chapter of the total cross section, the proportion due to the 3p 

excitation increases, at the expense of decreasing 3s and 3d proportions, 

with increasing impact energy although the total cross section decreases.

Thus, at higher energies there exists a greater proportion of the 3p states 

to be mixed into 3s or 3d states which can only decay via Ha, whereas 

if there were a greater proportion of the latter states these would be

mixed into the 3p state which is more likely to decay via

For the same reason the signal intensity change is greater at 500 eV than 

that for 200 eV electrons.

Also shown are Mahan’s theoretical and experimental results and Krotkov’s 

theoretical results. The latter results use the description of the atom 

after the collision in the form of a density matrix with elements p^^^(6’,$’)

and with a basis of a conç»lete set of atomic states u^ such that each

atom is described by

*6'*' = Î (*''*') “n*n

so that

Pnn,(8.*') = y e ’ . r )

and the f^(0',^’) are the B o m  approximations to the scattering amplitudes. 

This approach includes all the possible coherent excitations.

Values for the asymmetry are presented in Tables T7.3a and TV.3b and a 

summary of the results is given in Table TV.4 for applied electrid fields
-1of 30 volts cm

As expected, the effect of core polarization is to increase the overall" 

intensity change while reducing the asymmetry - for the same reason that 

increased impact energy increases the intensity change since core polarization
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Table T7.3a: Value of the asymmetric component, the symmetric component and the 
total Ha intensity signal - all relative to the total signal at zero applied 
field. Impact electron energy = 200 eV.

Electric BORH APPROXIMATION 
field Asymmetric* Symmetric 1 Total 
(Vo^ts component I component 1 signal 
cm ) 1 j

POLARIZED BORN APPROXIMATION 
Asymmetric i Symmetric i Total 
component 1 component ' signal 

1 1

-50 .1561,-1 .1335,11 .1351,1 .1122,-1 .1363,1 .1374,1
-40 .1893,-1 .1332,1 .1351,1 .1360,-1 .1360,1 .1373,1
-35 .2110,-1 .1329,1 .1351,1 .1515,-1 .1357,1 ! .1372,1
-30 .2369,-1 .1326,1 .1349,1 .1701,-1 .1353,1 .1370,1
-25 .2674,-1 .1320,1 .1346,1 .1917,-1 .1347,1 1 ’ .1366,1
-20 .3002,-1 .1310,1 .1340,1 .2148,-1 .1336,1 .1358,1
-15 .3237,-1 .1292,1 .1324,1 .2306,-1 .1318,1 .1341,1
-10 .2924,-1 .1258,1 .1287,1 .2050,-1 .1282,1 .1302,1
- 7 .1962,-1 .1219,1 .1239,1 .1320,-1 .1241,1 .1254,1
- 5 .7814,-2 .1177,1 .1184^ .4336,-2 .1194,1 .1199,1 .
- 4 .7023,-3 .1146,1 .1147,1 - 9547,-3 .1161,1 .1161,1
- 3 -.5882,-2 .1107,1 .1101,1 -.5777,-2 .1119.1 .1113,1
- 2 -.9609,-2 .1061,1 .1052,1 -.8320,-2 .1068,1 .1059,1
- 1 -.7636,-2 .1019,1 .1011,1 -.6379,-2 .1021,1 .1014,1

0 0.0 .1000,1 .1000,1 ;0.0 .1000,1 .1000,1
1 .7636,-2 .1019,1 .1026,1 .6379,-2 .1021,1 .1027,1
2 .9609,-2 .1061,1 .1071,1 .8320,-2 .1068,1 .1076,1

■

3 .5882,-2 .1107,1 .1113,1 .5777,-2 .1119,1 .1124,1
4 -.7023,-3 .1146,1 .1145,1 .9547,-3 .1161,1 .1162,1
5 -.7814,-2 .1177,1 .1169,1 -.4336,-2 .1194,1 .1190,1
7 -.1962,-1 .1219,1 .1200,1 -.1320,-1 .1241,1 .1228,1

10 -.2924,-1 .1258,1 .1228,1 -.2050,-1 .1282,1 .1261,1
15 -.3237,-1 .1292,1 .1260,1 -.2306,-1 .1318,1 .1295,1
20 -.3002,-1 .1310,1 .1280,1 -.2148,-1 .1336,1 .1315,1
25 -.2674,-1 .1320,1 .1293,1 -.1917,-1 .1347,1 .1327,1
30 -.2369,-1 .1326,1 .1302,1 -.1701,-1 .1353,1 .1336,1
35 -.2110,-1 .1329,1 .1308,1 -.1515,-1 .1357,1 .1342,1
40 -.1893,-1 .1332,1 .1313,1 -.1360,-1 .1360,1 .1346,1
.50 -.1561,-1 .1335,1 .1320,1 -.1122,-1 .1363,1 .1352,1

Asymmetry at 
30 Volts cm ^ 4.74%

— *
3.40%

-----------------  -----------
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Table T7.3b: Values of the asymmetric component, the symmetric component and the 
total Ha intensity signal - all relative to the total signal at zero applied 
field. Impact electron energy = 500 eV.

Fleet rlc
-field Total 
(Volts component 1 component » signal 
cm ) ; 1

1 POLARIZED BORN APPROXIMATION ; 
1 Asymmetric i Symmetric i Total |
component J component 1 signal

1 1 1
-50 .1478,-1 .1439,1 .1454,1 .1121,-1 .1464,1 .1475,1
-40 .1794,-1 .1435,1 ■ .1453,1 .1361,-1 .1459,1 .1473,1
-35 .2001,-1 .1431,1 .1451,1 .1517,-1 .1456,1 .1471,1
-30 .2250,-1 .1426,1 .1449,1 .1705,-1 .1450,1 .1467,1 1
-25 .2545,-1 .1418,1 .1443,1 .1928,-1 .1442,1 .1461,1 !
-20 .2869,-1 .1404,1 .1433,1 .2171,-1 .1428,1 .1450,1
-15 .3123,-1 .1381,1 .1412,1 .2358,-1 .1404,1 .1428,1 1
-10 .2907,-1 .1334,1 .1364,1 .2177,-1 .1357,1 .1379,1 j
- 7 .2098,-1 .1283,1 .1304,1 .1542,-1 .1304,1 .1319,1 I
- 5 .1074,-1 .1227,1 .1237,1 .7491,-2 .1244,1 .1252,1 I
- 4 .4443,-2 .1187,1 .1191,1 .2565,-2 .1202,1 .1205,1 1
- 3 -.1583,-2 .1137,1 .1135,1 -.2058,-2 .1148,1 .1146,1 1
- 2 -.5479,-2 .10.78,1 .1073,1 -.4939,-2 .1085,1 .1080,1
- 1 -.4957,-2 .1024,1 .1019,1 -.4254,-2 .1026,1 .1021,1

0 0.0 .1000,1 .1000,1 0.0 .1000,1 .1000,1 1
1 .4957,-2 .1024,1 .1029,1 .4254,-2 .1026,1 .1030,1 1
2 .5479,-2 .1078,1 .1084,1 ..4939,-2 .1085,1 .1090,1 i
3 .1583,-2 .1137,1 .1139,1 .2058,-2 .1148,1 .1150,1 !
4 -.4443,-2 .1187,1 .1183,1 -.2565,-2 .1202,1 .1200,1 !
5 -.1074,-1 .1227,1 .1216,1 -.7441,-2 .1244,1 .1237,1 1
7 -.2098,-1 .1283,1 .1262,1 -.1542,-1 .1304,1 .1288,1 j

10 -.2907,-1 .1334,1 .1305,1 -.2177,-1 .1357,1 1 .1335,1 1
15 -.3123,-1 .1381,1 .1350,1 -.2358,-1 .1404,1 .1381,1 j
20 -.2869,-1 .1404,1 .1376,1 -.2171,-1 .1428,1 .1407,1 1
25 -.2545,-1 .1418,1 .1393,1 -.1928,-1 .1442,1 .1423,1 1
30 -.2250,-1 .1426,1 .1404,1 -.1705,-1 .1450,1 .1433,1 1
35 -.2001,-1 .1431,1 .1411,1 -.1517,-1 .1456,1 .1440,1 1
40 -.1794,-1 .1435,1 .1417,1 -.1361,-1 .1459,1 .1446,1 i
50 -.1478,-1 .1439,1 .1424,1 -.1121,-1 .1464,1 j .1452,1

Asymmetry at 
30 Volts cmT^,4.50%

„ •- ■ ■ - —
3.41%

• —  - - • — • —
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~1Table T7.M- Asymmetry at 30 Volts cm applied electriv field

200 eV impact energy

Mahan (2-state)

Krotkov (density matrix) 

This work (2-state)

500 eV impact energy

Mahan (2-state)

Krotkov (density matrix) 

This work (2-state)

BORN POLARIZED 
- BORN

EXPERIMENTAL

4.89% —
19% (hydrogen)
23% (Deuterium) |

4.1% —

4.74% 3.40%

4.64% 13% (Hydrogen) 
19% (Deuterium)

3.7% — —

4.50% 3.41%
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has been shown to increase the proportion of the 3p cross section mainly

through the greatly reduced 3d contribution. Additionally, it is clear

that the substitution of polarized-Born for Born scattering amplitudes

should not increase the asymmetry values in Krotkov’s approach.

However, none of the theoretical approximations come close to the

experimental asymmetry observed by Mahan.

This disagreement between theory and experiment could be due to a number

of reasons. The first is the exclusion of other off-diagonal elements in

the decay matrix G but it should be noted that in the case of Ha

radiation, off-diagonal elements linking states such as 3si(m = + 2 )
2 d

and 3pgy2 = + 2 ) would be field independent since they are too far

separated for appreciable mixing by fields of the order of ± 30 Volts/cm.

Furthermore, the time integration introduces factors of the order of line

width divided by separation making this contribution very small. Other

levels with small separations differ in parity and therefore are not lihked

by the decay matrix G.

Secondly, hyperfine effects have not been considered but shifts, of the

order of the hyperfine separations, in the energies of the states considered

makes only a very small difference to separations between states apart 
2 2from the 3 - 3 case where it is only 315 MHz and hyperfine splitting

2 2 ■ I ■
of the two states is 52.6 MHz and 17.5 MHz respectively. Rerunning the 

computer program with a shift in the separation of about 70 MHz between 

these states led to no appreciable change in the value of the asymmetry, 

calculated. Full inclusion of hyperfine effects therefore is not expected 

to affect the results significantly.

Thirdly, the use of the Born amplitudes with or without core polarization 

may be in error: certainly our results for 3d excitation including core 

polarization would imply that other coupling effects may be important and 

that these amplitudes, may not adequately describe the excitation process. ..

In particular, the comments in Chapter 4 relating to models which include adiabatic

polarization potentials should be considered - but against this, the fact that
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even the Born approximation (which is generally expected to be useful at 

the energies here) fails, suggest the need for deeper study.

Fourthly, cascade contributions from n > M levèls have been ignored. 

However Mahan quotes the total cascade contributions to the signal to be 

^ 10% and estimates that these raise the symmetric part of the intensity 

signal by only 2-3% with negligible antisymmetric contribution - thus there 

would be negligible effect on the total asymmetric signal.

Fifthly, it was considered whether the same account had been taken of 

the electric field contribution to the energy of the impact electron. The

theoretical treatment has assumed an electron with an initial impact energy
2 . ~1of k^ Rycibergs in a field of E volts cm . It is important that

experimentally that the electrons selected should be those emitted with

the same energj^ - when these electrons have passed through the interaction
’ 2region with field strength E , they will have an energy k^ where 

' 2 2k^ = k^ - E ’ and E ' is included to take account of the effect of the 

electric field. However Mahan in his thesis (p.40) reports that he took 

into account the energy imparted to the electron by the field. The question 

remains whether we have the same account.

A sixth reason for the disagreement could be in the theoretical approach 

since we have assumed the excitation and photon emission processes to be quite 

distinct. However, in Chapter 5, following Percival and Seaton, we 

have shown that in the case of the polarization of Ha this assumption leads 

to ambiguities in the choice of the expressions to use and that the correct 

forms are obtained by calcu].ating the probability of a photon being emitted 

by the complete system of atom plus electron. This could imply that the 

recalculation of the excitation and emission processes including hyperfine 

structure, as suggested in the second reason above," might lead to a similar 

ambiguity and that a completely different approach on the lines of Percival 

and Seaton from a starting point of the Brerasstrahlung formula should be 

followed. We feel that this might merit further study.
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A final source of the discrepancy could be that the experimental results 

are not correct but we are not in a position to discuss this.

7.5 Summary

We have studied the asymmetry of the radiation upon sign reversal of an 

applied electric field following closely the work of Mahan. We have been 

able to closely reproduce his theoretical results in the B o m  approximation 

and have presented results in the polarized-Born approximation. We have 

not been able to reproduce to the full extent the experimentally observed 

results reported by Mahan and have discussed a number of reasons for this 

disagreement.
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CHAPTER 8

CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK 

§8.1 Conclusions

In this thesis we have generalized the DWPO method for Is - n& 

transitions in hydrogenic systems in terms of the T-matrix elements and 

formulated the scattering amplitudes for the polarized B o m  approximation, 

We have applied the DWPO method to Is - 3Jl transitions in Hydrogen 

and compared our cross sections (both total and differential) with other 

theoretical and experimental work. These results have shown the dramatic 

effect of including core polarization on the Is - 3d cross sections 

in particular and indicate the failure of our model to satisfactorily 

predict cross sections at high energies when dynamic polarization and 

other effects are clearly important. However the results presented for 

energies below 150 eV and notably for low energies above the ionization 

threshold are believed to be a useful addition to existing studies since 

we have found good agreement with recent experimental work in this region,

We have extended the formulation of polarization of emmitted 

radiation following excitation to include Ha radiation and presented 

corresponding results. We found that our model, although it gives 

significantly different results to the B o m  approximation, does not give 

good agreement with the existing experimental results. We have presented 

tables of results for the parameters describing the orientation and 

alignment of the atom following excitation and for the coincidence rate 

for'photon^scattered electron’observations in anticipation of other 

work on these topics.

Finally we have re-worked through the formulation of Mahan (1974) 

on the asymmetry of- Ha radiation and presented results in the polarized- 

B o m  approximation. These results do not improve agreement with the 

measured asymmetry compared with the B o m  approximation and we have
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discussed a number of possible reasons for the failure of the theoretical 

models used.

§8.2 Suggestions for future study

For the theoretical ^proach to the problem considered here, the 

most useful development of this work is felt to lie in the more explicit 

inclusion of coupling to other states. This is particularly so following 

the success of the simple unitarized B o m  results of Somerville (1953) 

and for this reason we have presented some preliminary results in 

Appendix AXII where we have calculated the R-matrix elements in the 

Bora approximation for large angular momentum states of the scattered 

electron (following Percival and Seaton, 1957, and see the series of 

papers starting with Seaton, 1961). By using these elements together 

with the R-matrix elements obtained via the DWPO model for low angular 

momentum states a unitarized R-matrix is obtained obeying the conservation 

condition which should retain the advantages of the BWPO model while 

including effects at present neglected..

There has not been a great deal of eiq>erimental study on the 

transitions of interest here despite the importance of the Ha line.

In particular we feel that coincidence experiments would go a long way 

to help identify the most important features of the scattering process 

and thus to a better understanding of the best theoretical approach.
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ft ihAppendix A3.: General form _for Tj^~(K,m) in DWPO I model.

±Derivation of the partial wave summation for (K):

Tif“ (k,m) is defined (2.29):

T^/(k.m) = Xk(z,2)|;r- " ^-|v4*ig(Z,l) r(z,2)> . (Al.l)
~ f  12 2

writing

T./(k,n.) = + (TE12- ’ 4 ^

where

?D12 = <+nAm(Z'l) X ^ ( z . 2 ) | ^ |  F*(z.2)> (A1.3)
— X 12

^D2” = X^(..2)|^| ^^^(Z,X) f"(z ,2)> (A1.4)
-kt 2

(and this term is always zero by orthogonality of the hydrogenic wave functions)

W  = X. ( . , 2 ) 1 ^ 1  ^^^(Z,2) r*(z,l)> (A1.5)
— t 12

• and

Ê2" = Xk̂(z.2)|̂| ̂^̂(Z,2) F̂(z,l)> (A1.6)
+

The expressions for ^k ^ (z,2) - given by
“ f -1

(2.12), (2.13b) and (2,28) - and that for r^^ -given by (2.30)-are 

reproduced below for ease of reference:

+nAm(Z'l) =

,1 X' a
X. (z,2) = 4 ir  I  r  e x p ( - i n , , ( k  ))H , ( k  , r  ) I ^ (6,0)Y (£ ) (A1.8)
JSf x'=o A r A r ■'V A y  z

F (z,2) = Ix=o
4it(2X+1) . rexp(i(5^- + "ix))' 3 ho^-2^ (A1.9)



- 169
X"

r12 X"=0 (2A"-U) Xxi/1,2) h"y"^-2^ (Al.lO)

rhen ;

3 1 2 ' = ^  I, I I. h  W 0) X

^J?,n/-~l^^X''y"^--l^^oo^-l^^~l [• ^x'^ifOg) 
ill H 2

X

4 ^ 2  Yx"(l,2) R^),(Z.l) Eig(Z,l) H^,(k^,2) u^-(k^,2)dr^dr2 (Al.ll)

where

(A1.12)

Now

/ S2 ^X"vi" ^ 00 “ 74tt ?X"w" 4% (A1.13)

V m-tt * ^&X" ^my"

by orthogonality of spherical harmonics (see Edmonds (1960)p.21 equation 

(2 .5 4 )) Combining this result with the integral over ^ 2  gives

my" ^ ?X'y' (5 2 ) Tx"w"(R2 ) Txo(02)d82

m  [(2&tl)(2X'+l)(2X+iy| 
= (-1) 4 IT

V  ji X ’ X \ A  X* X

-m y ̂ 0/ \0 0 0
(A1.14)

and the first of the Wigner 3-j coefficients is non-zero only if y* = m 

(see Edmonds (1960) p.63, equation (4,63)) so

= (-1)” - 4 4 —  Ï  I  (2X+1)
3/2

D12 "i* X=0 X ’=0
(2X’+1)
G&tl)

is,,, ̂ .X-X' -■’XX
1  e

-m m 0 / \ 0  0 0
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•where

r(x,x’) = I
-'o ^

as in (2.35) 

with

^  hsa%(r) = r J E.^(Z,t) E^(Z.t) Y%(t,r) dt

(A1.16)

(A1.17)

as in (2.36). 

Similarly,

,5/2± _ (4TT)'
E12 3c. ̂ X' A"I I I I • IX h  y" (2X"+1)

(2X+1)J .X-X'/«XX'" Y^,^,(6,0) X

L  4 % )  h-'y-'4> .
Ü1 Ü2

h ' y ' 4 )  h'-y-42^ ^

o -'o 
Now

R^(Z,2) H^,(k^,2) uy(k^,l) dr^dr^ (A1.18)

I ^DO *^X»y» ^X"y" = -*X'X" Gy'y"

SO the result of the angular integrations becomes

*X'X*^y'y"
4  h " y "  h o  ^  = ^X'y' ^Xo

(A1.20)
 ̂ '  a X». x \ n  X* X

-m y * o / \ 0  Q. 0

and, as in (A1.14), the first Wigner 3~j coefficient is non-zero only if

_ (-jj^ [ (2&tl)(2&'tl)(2&+l)]^ 
■/tfrr 4tt

= m  , so

T_..- = (-if ! I (2X+1)E12 X=0 X'=0 (2X'+D
“ .X-X- i«XX'" ( ^ A'

1 e
-m m 0,

A X* X
0 0 0,Y*,^(e,o) X j*(x,x') (A1.21)
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where

J*̂(X,X*) = j R̂ (̂Z,r) û "̂(k̂r) dr
 ̂o

as in (2.37) 

with

E^sX* ” ^ P  ^ ̂o
as in (2.38).

Finally,

(A1.22)

(A1.23)

3/2
I I (2x+i)& î -t' Y*„,(e,o)E2

I
k.^ X* X y' X'y

%
h m  h o

&  " > v  . « .. r, Ri.(3,:l »»,(%,.21 V < ’‘1.2>*’i '"'2
(A1.24)

The angular integrations give X ’ = y* = 0

X = A and m = 0_

Now

only

f R ^g (Z ,2 ) H ^ (k^ ,2 ) r^dr^  -  2 e j^ (k^2)^2^^^2

-Zr_

-r2 . Z = 1

2Z

o

3/2 C G^(k^,z,r2>dr2 Z ^  2

M A I . 25)

Considering the case when Z = 1 (i.e. for hydrogen)

Ç  R^g(l,r) H^(k^,r)rdr = ^  e ^ s i n k ^  dr =

(Dwight (1961) p.234 equation (860.80))
= d(0)

(as in (2.41))

If Z > 1  ̂ then writing

I =• 2Z3/2 r -2rkf J, * G,(kf.z.r)dr

(A1.26)

(AÏ.27)
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where G^(k,,z,r) satisfies

d^G 2a
^ + a _ _ _ ) G ^  = 0 (A1.28)

(cf Abramovit& i and Steguii (1968) p.538. equation (14.1.1)) 

with

=

“f = - =/kf
now

G^(k^,z,r) =C^(a^) . pe'^^^F^d - i a^,2,2ip) (A1.29)

(Ahramowiti i and Stegun (1968) p. 538 equation(14.1.3) ) 

where
-no y 2Tra 1

C^(a^) = e |r(l + ia^)| = [2Tra^/(e ? - 1)]= (A1.30)

so

I
3/2

4
The integralî

r  -ioc^Ca^p e e ^F^(l - ia ,2,2ip) dp (A1.31)
o

. rfx>

<r- p' ’ F ( B . Y . y p )  dp (A1.32)
o

is convergent if R(X) > |R(y)| and is equal to

r(v+i) F($,v+i,Y.y/x)
Z+ik

(Laudau and Lifshitz (1958) p.503 equation (f.l)):taking X = —r  ,
f

y = 2i; the convergence condition is satisfied. With v = 1, 3 = l-ia^,

Y = 2, (Al.31) and (Al.32) are equivalent apart from outside factors 

and: -

2,3/2 kf 2ik
I  = h ( « f )  • ^  .

Now

F (8,2,2,t) = ---
■ (1-t)'

SO with



n s -

2ik,0 =

I =
l-ia.

2Z / r / \ I _— 2--f «("h e>̂i 2o tan
( z h k / )  ° - L

(k^/Z^

SO

[ R^g(Z,r) H^(k^,r) rdr 2Z3/2

(zf+k^^)
2*=f I

exp2ira_p(e -1)
2a^tan ^(k^/Z)

= d(a^)

fes in (2.40)) 

Thus

(A1.33)

3/2 ir ~
T /  = (2A+1)^ i*e Y* (0,0) d(a_) IT(i,0) 6m 2 OO X

1
where

mo (A1.34)

ic(A,o) = r

Collecting al.l the terms together 

T /(K,m) = (-1)” I  I  (2X+1)
k^^ 1=0 x'=o _

(Al-35)

Ï .X-X' " h x ' 7 ‘ ^1 0

0 0 o) - <m°*XA«X'o 4("f) **(*'0)]!

^ ?X'm(*'0)

or, in terms of associated Legendre functions;

(AX* 3S)
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T.^ (k,m) 4ïï 00 00

I  I  I  (2X+1)(2X'+1)

A X' X U A  X' X

-iri m 0 /V 0 0 0

^mo^XA^X'O K (&,0))

(X'- m ! ) !(x'tInj )!

pl^
X' (co (A1.37)
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Appendix All; Evaluation of

The function f. .(r) is defined (2.36) isnx,

= I1  

= T5T J!
letbin^

where

^1 " A+1r

l2 = r

R^^(Z.t) R^^(Z,t)dt + r*

R^g(Z,t) R^^(Z,t) dt

r t

r t

now

and

R (Z,t) = 2Z^'^^ e'^t 
Is

2,3/2
[(n-A-l)!(n+A):j m rn-A-1

X I
8=0 sI(n-A-l-s):(2A+l+s):

so, writing x = Zt and y = Zr, y = 1 + —

2
„ /o \ ■̂*■2 r 1 (- —)

h " V + l ( n j  ^n-A-l)!(ntA)^2 (2A+l+s)!s!(n-A-l-s):

X ^2A+2+s e-YX dx

A+1 sI(n-A-l-s)!y 8=0

e-Y* 2A+2+S ^  
^2A+3+s pig p!

y
O



- \ 1 t -

/ 9 \ n  -11 y ^
| ( n - A - l ) î ( n + £ ) î  ^

f - i r ( 2 A + 2 + S )

=0 s!(n-A-l-s)Iy2&+3+s

2 A + 2 + S

y s 
Yy-  e I

p = 0

S i m i l a r l y

9 /9 r *11 71 ^”1
= Z y  j  | ( n - A - l ) I  ( n + A ) l j  ^  J M

( 2 A + 1 + S ) ! s î ( n - A - l - s ) Î

{-&/ - U + 2  _ n l  A 0-&-1 V" n J (PYI)
( n )  [ ( n - A - l ) U n + A ) i j ^  Z y  ( 2 A + s + l ) l  ( n - A - l - s )  1

£ 1 1  iX 2Ü £
y ® + 2  p i g  p !

b ) ' ( g + l ) e -yy s + lI (yy)‘
( 2 £ + s + l ) î ( n - A - l - s ) p = 0  - '

( 2 A + 2 + S )■ n - A - 1

f = ;%-&-!)!(n+%)n : -|_r % 4lZIsnA \n/ L -1 y s=0 (n-A-l-s) !s!y2 A + 3 + S

x ( l  -  e_ *-yy
2 A + 2 + S

( y y ) ^  . e  ^ ^ ( s - f - l ) l ( y y ) ^ ^ ^ ^  ( y y ) ^ \

: 0  P -  ( 2 A t 2 + s ) I  p i  j

and

2\S

I + s T s
( r . )  =  [ ( n - A - l ) ! ( n t A ) i | ^  4 ' ^  ( 2 A + s + 2 ) ( -  § )

I s n A  \nj ( y Z r ) ^  s = 0  s ! ( n - A - l - s ) î y

^  v X  & -
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It is important that, for small values of r, the function

rf^ .(r) should remain bounded so that the integral 17., is finite.IsnA AX'
Using the infinite expansion for exp(- yZr) leads to:-

- f > En-A-l)!(n+%)!| ̂ ""4 (2A+S+2) ("nj
Isnx' ^  U i  (tz)% J o  r*s!(n-A-s-l)!Yt+s+3

r  -YZr / y (YZr)P _2A+s+2 (YZr)P (s+l)! \1 \p=2A+s+3 P' p = 2 a + 1  (2A+2+s):(p-2A-l)!y
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Appendix III; Solution of StcrnheimerEquation 

The equation to be solved is;

2 P" (r) \

with

Taking

then

y = w(Z,r) P^^(r)

2 3r w" + 2r(l - Zr)w* - 2w + r = 0

Assuming a series solution for w:
2 3w = a^ + a^r + a^r + a^r

gives :

so

a« = a = 0 o o

®2 ” 4Z

y . 4
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Appendix IV General form for T^^~(K,m) in DWPO II model

The transition matrix element in the DWPO II model is; (see (2.42))

V  = h f "  + X .  ( z , 2 )  |v^| * _ ; ^ ( 1 ,2 )  ^ ( 2 ) >

= T^^ + .

Repeating (2.43) for ease of reference

, .  Ç(=ï'r2) Ul3+p(zï) Pi(cos6^2^
 ------- —  .  f -----------   ,

where

e(r̂ .r2) = 1° fg <
ll rg >

and

P^(cos6^2) = I ”3 ^ly^-2^y=”*l

(Edmonds (1960) p.63, equation (4.66)) 

now

V = -1- - 1-
^ Z'12 Z'2

(note here that the term corresponding to T^^ (A1.4) is not immediately

equivalent to zero) ; because of the effect of eir^grg) on Y ĵ „(1,2) 

(defined equation (2.25) and see (Al.lO)), ECr^^rg) x r^^ becomes

r  A" .

2X"tl X"+l ^X"y"^~l^ ^X"y"^-2^X" y" r^
“1and for X" = 0 this is simply r^.

Thus

X"
^ j  ... T T O  Xk_(z.2)|_h  -

u
ifD p"Lx" (2X''+1) 'fpoiU,2) F (2)

h " p " 4 i )  Y^,,p„(R2)>



\2'0

= - I Ï  I  Ï  I  I  4 !  ( W  a-x.ifD X"=l p"=-X"X'=0 p'=-X' X=0 p=-l 3 k d  (2X"+1)
X

exp(iÇ^^7) Y^,^,(0,O) X

F  2dr,. dr^ %
O Tg ^

H^t6<^£97>2) u^ (k^ yr^)

Writing (see Appendix AV)
rr

and
r

61 (X,X',X") = r H^,(k^,r) (k^^,r) dr

then
00 X "  00

1 I I
X ’ 1
L I I
'=X' x=o y=-l

2 IT (2X+1)  r ------

i ^  ^ exp( iS%%I)Y%, , ( G , 0 )  x ^X"y" ^£m ^ly ^-1 ^X"y" ^X'y' ^ly ^Xo

X 6I-(X,X',X").

Integrating'over gives

Ü1
h " p "  4  h w  = (-1)"

3(2A+1)(2X"+1)
4ïï

^/A 1 X " W A  1 X"

-m y y’/ \0 0 0

Considering this result, the integration over and the summations over

y" and y :

t " ' i (-1)“ 3<2)!-tl)(2X"+l)  ̂ A  ^ ^
y"=-X" v=-l . * * ” 71 \-iti U p"/V) 0 0

Y Y X"y" X'.y'

Y, Y , dnly Xo -2
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I I I I 3(2p i ) _
y"=-X" y=-l ;i A ’ m ’ L J

'A 1 X"\/A 1 X"VA' 1 X"\/A* 1 X"\
X

\-m y U’VVp 0 0 -y --y”/\0 0 0

y ,_iym+m'+y+y" 3(2X"tl)(2A'+l) 
A',m',

(2A+1)(2X’+1)(2X+1)

h'y* ho \'m' %
i A i X"’

4it , , ,,\-m y y"y",y
'̂A 1 X " \ / a ’ 1 X" \ /A' 1- X"\A' X A'\ /X' X A'̂

yO 0 0 ŷmh' -y -y»y \o 0 0 J \ i ^  0 -my \o 0 0

It is immediately possible to say something of the relationships between 

the different indices. The penultimate Wigner 3-j coefficient is non

zero only if y*=m', futhermore y+y" = md = m from the first and 

third 3-j coefficients and A* + 1 + X" and A + 1 + X" are even, 

from the second and fourth.

Now taking the first and third 3-j coefficients
h ................ /

I y (-1)*+*+%" A  ^ A '  i k"\ •
■ , - L .  L  , J  L ,

J  I ’ 1  \  /  « ■  1  v \  ^
y m  y y"/ \-m' y y»y (2A+1)

so
: : : .x-x-«T.1 = I I I  (-I)”  ̂ V -  (2X+l)[(2X'+l)(2Atl4 i 

^ X"=l X'=0 X=0 k.^

exp(iï,d) C0.O) «I-(X,X',X") XÆ 1 X"\hx’ X l\/V X &
^*9 \0 0 0 / \m 0 -m/\ 0 0 0̂

and
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= (-1)m (4n)
3/2 00 00

"i
I  , L  l i l K #

.X-X* ,._ ±N1 exp(iÇ^^i)

A X* X \ / A  X' X 

- m m  0 / \ 0  0 0
Y*,m(0.Û) X |î4x,X') ± (J*(X,X')

- h o  h i  h ' O  d(»f)
with (A 1 X ' Y
5f*(X,X') = I-(X.X') + 2 y (2i+l) ^0 0 0 / 6I-(X,X',X")

= r (x ,x ' )  + fjisni(z) h ' C ' f )  ‘Iz-
and

^  ~ A  1 % \2 in
JlsnA(r) = 2 I  (2A+1) I kk_-(r)isnA x"=i Vo 0 0 'IsnA

now

a  1 X"'

lO 0 0 (2a'+1)(2A-1)

(A+1)
(2A+3)(2A+1)

= 0

X" = A - 1

X" = A + 1

otherwise

so

1  isr.i(z') = ( # ? )  4 i < r )  + 0 " >

Recalling equations (2.35) or (A1.16), Î (X,Xl) may be written

Î*(X,X') = I”  r(fisni(r) + ‘J l s n i ^ z ’)) H ^ .Ck^) u/(k.r)dr
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Appendix AV: Evaluation of ^  (r)

The function ^^snA^^^ defined (2.47)

■ f i h i  ’ S C ‘-> (AV,1)

with

=

= 0

f R^^(Z.t) t*'+ldt i' > 0
r  ̂o

A* < 0
(AV.2)

uls->p(r) = Z 2 r
“i 2 -Zr (AV.3)

and R^^(Z,r) is as given in Appendix All. Then putting,

y = Zr, X = Zt, Y = 1 + 1/n (AV.4)

A+2
n

l(n-i-l)!(n+i)!l  ̂ >̂-*-1
2yt'+3 s i o

h i
(2A+l+s)Is!(n-A-l-s)Î

i: xi+i'ts+3 ^-YX ( i + | ) d x

n-A-1
I

s=o
h i

(2A+l+s)!sl(n-A-l-s)I

J n - A ^ )  I(n+A)l1  ̂
2y*'+3

x^(A+A4s+3)I

(AV.5)

I ^L p=o , A+A’+s+4-p piY

+ i A+î+4+s xP(i+i'+s+4)!
p=o , A+A’+s+5-p piY ^



Therefore

yn 4(yZr) A'+3
I8=0

(A+&*+s+3)I(2y+A+A'+s+^i 
si(2Atl+s)I(n-A-l-s)I

e"Y2z'(.^2^)i+i'+s+4
*  (i+i'+s+3)! (2-»ti+i'ts+*fl

r ,-YZr

- 1

A+A*+s+3
I

p=0
(yZr)]
p!

(AV.6)

and so

4sni<z-) =
^ Y + 2  
yn J

f(n-Z-l)!(nU)J]^ / 2_

2(YZr)*+^ !S=0 \ Y"
(2A+2y+s+3)(2A+s+2) 

si(n-A-l-s)I

X <

—

& ^-YZr
p=0

(YZr)P , e-YZr(YZr)2&+s+3 .
(2A-1) ■p! (2i+s+2)!(2Y+2i+s+3)

(A+1)(2y+2A+s+5)(2A+S+4)(2A+^ r3) 
(2A+3)(2y+2A+s+3)(yZr)^

-yZr (yZr)P
p=0 pi

, e-YZr(yZr)2*+s+5
(2 A + S + 4  ) I (2y+2A+s+5 )■ -  1 (AV.7)

For computational purposes it is necessary that S^gnA^^^ is well behaved for 

small values of r and can be expressed in terms of a rapidly convergent 

sum of increasing powers of r. Considering the integral in (AV.5)

£ x*+i'+s+3 g-YX (1 + = I  ^ 4
^ p=0 P'

^i+i'+s+3+p + |)

= I
p=0

(-y)P
p!

^ A + A  + S + 4 + P  (A+A*+s+4+p)x .
(A+A'+s+4+p) 2(A+A'+s+5+p)

_ (Zr) A+A * + S + 4

(A+A’+s+4)
r 1 + y ( -jyZr )P( A+A * +s+4 ) ( 2y-p ) 1 
I 2y.pI (A+A'+s+4+p) J



therefore

A+2 Rn-A-l)I(n+A)p2 f  n )
O L O t f O 0 -w

(Zr)A+s+1

s=0 s I "(2A+l+s ) I ( n-A-l-s )~1Ta+A ’ +s+4 )

X + I
P = 1

(-yZr)^(A+A'+s+4)(2y-p) 
2y. p i ( A+Â ' +s-i-4+pi (AV.8)

and so

A A+2 n-A-1
[(n-A-1) Î (n+A)  ̂ ^

' s=0

- (Zr)^+s+l
si(2A+1+S):(n-A-l-s)I (2A-1)

(2A
1__  . y (-yZp)P(2y-p) (A+1)
+S+3) 2y.pI(2A+s+3+p7j (2A+3! ™ 2 _ _  + y(2A+S+5) D-±

(-yZr)“ (2y-p) 
2y,pl(2A+s+5+p) (AV.9)

The infinite sura in (AV.8) can be terminated after only a few terms without 

severe loss of accuracy since the ratio of the râ  ̂ term of the sura 

to the first terra is:

(A+A*+s+5) (2y-ra) (-yZr)^ ^ . a

(A+A’+s+4+ra) * (2y-l) * ml

and for yZr < 1 this diminishes at least as fast as (yZr)m-1
(ra-l)I
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Appendix VI : Evaluation of the Born Scattering Amplitude 

Equation (2.53) defines thus;

where

h i m 4 )  =
(equation (A1.7) with Z = 1)

R^^(l,r) = -^  [(n-A-1) Î (n+A)^ ̂  e I

and

sI(n-A-l-s)I(2A+l+s )T

A' m'=-A'

(see McDowell and Coleman (1959), equations (5.2.9) and (5.2.18)), 

where
 ̂  ̂ k.-k cos 0 . ‘

cos 0 = K.lc. =  ---------------=— T (see Figure FI. 1)
^ (k^-2k^cos0 + k^ )2

Therefore

 ̂j^,(Kr)R^^(r)R^g(r)r^dr x

j Y^^.Ce.O) (AVI.2)

The angular integration gives

f +  'oo

(see Edmonds (1960), p21, equation (2.5.4))
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For n = 3, A =
5 4 9 92 . 3  . (27K + 16Z )

3pm

3dn

(9X2 + 16z 2)^

2®.3^ i A (27x2 ^ i 6z2)
/e.K (9x2 ^ i6z2)4

2^3^. A -T------ :r-r- Y

.0)

(9K + 16Z )

V



Appendix VII : Evaluation of the Polarized-Born Scattering Amplitude

Equation (2.56) defines thus;

where

and
3/tt

iK-£2 1

r /  V=-l "

t-f (  f^2 *

Si
^ - y  "ls.p(ri) fidr^ d£^

Using the expansion for ---  (see (Al.lO))
^12

4 tt .
ï . * . " - ”  ■ .,1,, r a n n -  j

fV

^■u'<Si) V S l >  ?lp(Si)dRi Y;,,.(S2)

Integrating over

« X'
(-1)” I I

l'=l v'=-x'
12(2)1+1)11
(2X'+1)

i  ,1 A  1 X' \A 1 ,
P p'Ao 0 0  -2

(see Edmonds (1960), p .63, equation (4.6.3))

where
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Now,
3(2X'+l)(2t +1)o

T̂T

I  1 X'\ / A I X '

Mg -p -y ' / \ 0 0 0 \  m (S^)o o

and

(see: Edmonds (1960), p.63, equation (4.6.5))

t  1 X' \ 1 X ’\ .A+l+X'

P.P' \ - m  p p - j y ^ - p

(see: Edmonds (1960), p.47, equation (3.7.8)) 

where 6(&,1,X') is the triangular condition.

So
& 1 X

y=-i X'=l

t\2

0 0 0 qm<S2>

Therefore
1 X ,\2

.0 0 0

IK.PgExpanding e according to (AVI.l)

pp ~ A' ^  /A 1 X'= 8/ir X I I i I
A'=0 X'=l m'=-A' Vo 0 0

I 4<S2> ^2 Tl'm'(G.O)

The integral over is non-zero for A’ = A and m* = m only,

so
. 1

1 X'\2
i * ( K r 2 ) V n I ( r )
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The sum over X’ is restricted to the non-zero values of the 3-j 

Wigner coefficient, thus :

\ x  (  ^  ” ("2X'+1)(2A+1) ^A^^^ (^X'A-1 "^X'A+1^
\0 0 0 /

A f
substituting for R^^(r), and y(t,r) in V^^(r) :

V%'(r) = - A -  ("+«')!] " n) ^n A ^ ^  pX'+l \n/ 2 si (2A+l+s) ! (n-A-l-s) I

r  ^X-+£+s+3 (1 t ) e - Y t ^ ^
■'0

and so

S

SÎ(2A+1+S)I(n-A-l-s)I

r  V
io A '

j„(Kr)
+1

^ X ' + U s + 3 ( ^  t) g-Tt at ar
0

letting t = ry

/ 2 \ ‘̂ +2 _
2'^ 
n

n / 2 sl (2A+l+s) I (n-A-l-s) I

r  £  j^(Kr) r*+s+3 /'+^+s+3 ^ 21) dydr

and by changing the order of integration
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A+2 n-A-l)I(n+£)[] ̂
2 ys=0 sI(2A+l+s)!(n-A-l-s)I

X’+A+S+3 fOO A+s+4
j^(Kr) (rt+s+3 + ̂  dr dy

For the states of interest here, A = 0, 1, 2 

and

jo (K r )  =

. \ Sin Kr Cos Kr
 —K r

- h )  Sin Kr - J - j  Cos Kr
K r K r

now

where

r  °l(kr) r"e-Yyr dr = - Z ( « ± Ü  
Jo [Sosj

Sin
a+1 Cos ((a+l)6)

(py.+K^) ^

sin 0 = K
(y V + K ^ ) ^

using these results, and the fact that the states of interest are those 

for which n = 3, leads to

#  4 « . * >
 zÜ_______

0 (Y2y2+K2)3/2
(2sin36 - —  sin46 cos0

2  sin50 cos?0 + sin60 cos^0) dy

*f3pm(G.4) =
64/6tt
45x27K2 Im — ^ (2sin30 + ^  cos40 cos0

0 (Y^y +K2)3/2 2

Q 2 45 2 X- —  sin50 cos. 0 - 6sin0 cos40 - 6sin0 cos50 + -g—  sin0cos 0cos60)dy
" - — — - - coŝ O - *. - _



I9S

32/+' „* r  (IWy" + 9y")   27
1+05 /30K3 2in 2 2 2 3/2 (GsinSO + —  cos40cos(

0 2 1 (y y  + K )

2 2 - 18sin0cos40 - 27cos50sinOcos0 - 24sin 0sin50 - 45cos0sin'0sin6O)dy

with Y = g"

by means of the transformation yy = K tan B ( .*. cos0 = sing, sin0 = cosg), 

these expressions becomes

s in ”'3 , _ IS s in ^B  ^ 189sin4g
_  ( - " - T - ' - i r -

-  116s in^3  + 50s in ^ 3 )d 3  7 * ^ ( 0 , * )

letting:

On =
'^ 's j - J 2 .p e  dg
Q COS 3

= tan (^)

then :
) = - + O n  + Qn+1 2ncos 3 2n n

and

Qi = tan 3 d3 = tang' — 3'.

4 6 ^  K _ - 1  y 2 /3 ÏÏ
5 tan 2 „2,5

9y 27y (y  tK  )

(26y^^ + 1 6 1 y V  + 522y^K^ + 5 9 2 y V  + 322y^K^ + 68K'^°)

similarly:

?oo(K)

K sin^f (-8 + sin^g + 204sin^(

- 180sin^a)dg i Y^^(0,^)

32A  K^tan"^ y , -------    —  t 32A.K
9/6 K 6, 2 _2x5

4 0 5 /6  y (y  +K )

+ '384y\^ + 210y^K®- + 45K^°)

(8 5 y ^ °  + 1 2 8 y V  + 334y^K^
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and, f in a l ly  ;

Gfsdn/G'G) = — --3.2 A  K.  ̂ K (gosin^Og - sin®8 - sin®6)d8
Tx'tOsÆo Y L i:
2+ 9K

“1
% ( 30s in^3 -  sin^g -  l)d g

0 cos 3

- — - — -o' (29y2 _ 210K^) tan'^ ̂  ^ ■
27/30 ^ 2835/30 y^Cy^+K^)^

)<

(- 1435y^0 + ifi+sififyV + 1 3 9 9 1 6 y V  + 173950y\® + 99855y^K^ + 22050K^^)
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Appendix AVIII; Parameters for* Radiation From the n = 3 states of Hydrogen

AVIII.l Branching ratios for 3p - 2s and 3p - Is transitions

These ratios are given by the relative probabilities of 

transitions to the 2 s and Is states and can be expressed in terms 

of the Einstein A coefficient:

^ A(3^P 1,2^S) a^ 3  S(3^P 4- l^S) + 0 ^ 3  S(3^P 4- 2^S)

where m = lor 2, S is the line strength for radiation from a state

n to state m and the wave number a is given by:mn ^ ^

"mn = r A ' Vm n
(R is Rydberg’s constant). 

Using Condon and Shortley (1963) p.134, we obtain

= 0.882

Bg = 0.118

AVIII.2 Absolute Values for the Einstein A Coefficients and Line Widths 

The line width, F , is related to the A coefficient by 

r = A/2ttc

thus, we obtain (see Condon and Shortly (1963), p.134):
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Transition A coefficient 
(sec

Transition Line width r

6.468,75/2 3/2

1.078,73/2 3/2

5.390,73/2 1/2

2.246,73/2 1/2 1.192,-4

1/2 1/2

2.105,61/2 1/2
0.335,-4

4.211,61/2 3/2
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Appendix AIX The Polarization Formulae

As explained in Chapter 5, for the calculation of the polarization 

formulae three states are identified - an initial state a, the 

excited state 3» and the final state y. Throughout the work below, 

we follow Percival and Seaton (1958) (referred to as PS). The 

polarization fraction is given by:

(3K - K)
P = 100 ■ (AIX.l)

. z

The exact form of K and is dependent on the inclusion of

hyper fine splitting.

AIX.l Excluding hyperfine splitting

In this case a, 3 and y are given by:

a = A',S'L'J'M_'V

3 = A,SLJM_ (AIX.2)u

(equation (5.5))

where A', A and A” refer to non-relevant quantum numbers. Since 

the interaction potential is assumed not to include spin co-ordinates 

then it follows that

S = S ’ = S" (AIX.3)

Under this description of the quantum states, PS equation (3.33) for 

K applies, thus:

V A (SL ->• SL")
K^(SL -*■ SL") = a^(SL)(2S + 1) J  (2J"+1)

JJ"M

■

S U  J"1J
W j

1 2
W(LJL"J";S1): ai„ I (AIX.4)

J 1̂ 1,1
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' W awhere v is the velocity of the impact electron, C„ „ „ and

a ^1^2 3

are Clebsch-Gordon 3-j and Wigner 6-j vector-

coupling coefficients respectively,evaluated using Edmonds (1960),

and C|,, I is the cross section for excitation of the n&m, sub-level.
I“l 1 ^

The function K(SL ->• SL") is obtained by summing PS equation 

(3.32) over J and J" to give:

V A(SL +  SL")
"  SL") = T iLT r)-(2SVljA(SL)- + 1) a|„^| (AIX.5)

This is used in preference to PS equation (3.34) which does not
J(2J+1)

include the factor — (2Ltl) which leads to erroneous results.

After some algebra, we obtain for hydrogen:
2 2la) For P S transitions :

»

Thus :

. V A(^P +  2g)
P "  S) = - (5*npo + % l )  (AIX.6)

,  V A(2p +  ^S)

" ' A(Pp)'"

npo npl

(in exact agreement with PS).

o 2lb) For ■ D ->• P transitions:

„ , V^A(^D -*• 2p)
D -  P) = — ----- + 69*ndl + 12°nd2)

V .A(^D +  2p)
-  P) =   (°ndo + 2*ndl + 2*nd2) ^^^X.IO)



—  J L O Q  —

Thus :

P(^D ^P) = 5700 T62a“  p" ^ (AIX.ll)
ndo ndl nd2

AIX.2 Including hyperfine splitting

In this case a, 3 and y are given by equation (5.6)

a = A ’,SL'J'IF'Np'

3 = A,SLJIFMp (AIX.12)

y = A",SL"J"IF"ty

where JF = ,J +

2 22a) For P S transitions:

PS include a(v explicit calculation for this situation and obtain 

for hydrogen (where the nuclear spin. I, = J):

"  'S) = (*npo + ZCnpi)

Kz('f -  'S) = i  (IT^npo + (AIX.13)

Similarly +  S) (^npo + ^ % l )

K('f3/2 +  'S) (°npo + 2 % l )

K(2p -.2s) = + 2*npi) ' (AIX.14)

thus: P(^P^y2 ^S) = 0  (AIX. 15)
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 ̂ 15(a - a _)
and PC P ^ S) = 9-ig- - ü  ' <̂ LX.17)

npo npl

2 22b) For D P transitions:

' In case 2a) above, Percival and Seaton were able to use the 

unitarity properties of the transformations employed and thus obtain 

greatly simplified expressions for" K^CSLJ ->• SL) when only two magnetic 

substate excitation cross-sections are involved. When more substates are 

included this simplification does not occur so that the problem must be 

tackled from first principles.

The relevant relations to be noted are:

K(3) = v^ a(3) (pS equation (2.12))

K (3) = V ------  a(3) \PS equation (2.15)/
^ ^ A(b)

= (2I+1)(2S+1) .J, (2T+1) X

[ TT FW(SLIF;JT)

t . V l

I (PS equation (3.20))2

A (3) = (2J+1)(2L+1)A I  (2F"+1)(2J"+1) x

X W(LJL"J" ;S1) j ^

(pS equations (3.24), (3.29) and (3.30))

and in this case A = A(^D -> ^P).

After some manipulation, we find that:

K(2dj) = (Cnjo + +'2 **4 2 )

K ( 'o )  = V “ndo + 2 * „ ^  + 2*nd2)

(AIX.18)
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and

D3/2 P) = I#o (23*ndo + 33'’„dl +

•"ẑ h f . 2 + f) = I# + % d l  + 2°nd2)

.-. = Y # 0  (S3a^do * L03a^dl + 2 % d 2 )  (AIX'^S)

Thus :

« ' » 3 «  *  = tS ’̂ %ndo ndl nd2

%  '  ’ ° C ! >

ndo ndl nd2

AIX.3 Percival and Seaton "Exact" Formulae

It is explained in Chapter 5 that the "exact" PS formulation is 

required in the two possibly ambiguous cases when the fine structure 

separation is of similar order to the line width or when the hyperfine 

splittings are of the same order as the line width.

In the former case, if e = e^ is the ratio of fine structure 

splitting to line width, then:

, , K^°) + e V ” )
Kg ) =------ — -2— —  (AIX.23)

1 + e

(0) (00)where and are the results obtained via Oppenheimer-Penney
(» )theory when fine structure are excluded or included respectively.

corresponds exactly to section AIX.l above.'
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2itiE
In the latter case, similar expressions apply where e = e = — -— —  , 

(i.e. the ratio of hyperfine splitting to line width) and and
( o o )

are the Oppenheimer-Penney results including fine structure but 

excluding or including hyperfine structure respectively. Thus
( o o )and correspond exactly to sections AIX.l and AIX.2 respectively.

Since, for the n = 3 levels of hydrogen, hyperfine structure is 

of the same order as line width, the results obtained using the expressions 

in the second situation above are presented here.

2 23a) For P S transitions.

Letting and '

^2 2 2 K ( P., +  S) =

V
K (^P ^S) = —

36(1+02^)
(20 + 17E2:),npo + (16 t 19t2')cr,pi

(AIX.24)

The expressions for ^(^Fp/2 ^^^^3/2 and K(^P ■> ^S) remain

unchanged from (AIX.14)

P(^P^y2 +  ^S) = 0 (AIX.25)

P('P_2 + 'S) = ---- ------  % (AIX.26)
, [(40 + 37^2 t (56 t SSCg )*^p]

P(2p .  V .1.V ?    % (AIX.27)
■ P  + 53:2 )°npo + (*3.+ 91=2

Values for e^ and E2 for the. 3p. state are given in table .T5.1 . ..

obtained from appendix AVIII and final forms for the polarization formulae 

shown in T5.2.
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2 23b) For D P transitions, letting ^2 “ ^J”5/2’

we obtain:

Kz'f'Os/S 'F) = — [(135 + 115e,2)a„,„ + (216 + 195E,^)a^,,

+ (“*8 +

^ 2 2  2 K _ + P) = ®
^ 5/2 75(1+62 )̂ L

(27 + 25E2̂)â „̂ + (“2 + 40E2̂)*„dl

+ (6 + 1 0 £ 2 ^ ) V 2

£ £
K^(^D ^P) = K^L(2p^^^ .. 3p) + K ^ ^ ( % / 2  ^  (AIX.28)

The expressions for K(3p +  P), K(3p ^p) are given in (AIX.18),U
100a (a + a - 2a ,_)

P( D 4- 3p) - „ ° ■ " - ~  % (AIX.29)
(®l°ndo + *2°ndl + *3*nd2 1

where

a^ = 456 + 3456^^62^ + 393e ^ + 40802^ 

a^ = 952 + 915ej_^E2^ + 931e^^ + 93602^

32 = 1752 + 17150^^02^ + 17310^^ + 1736e^^

3g = 1296 + 13700^^^02^ + 13380^2 + 132802^

By using the relevant values for ê  ̂ and 0 2  from Table T5.1, the 

expressions for the 3d states are obtained and shown in T5.2.
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Appendix AX: Coincidence Parameters for the n = 3 States of Hydrogen

In Chapter 5 the coincidence parameters A^^, (q,q’ = 0, 1)
are defined:

' « ■  ' . J . , .  j , " V » »

L L x f  fb L X 1 /^L L x\ A  1 x'

-J J sj u  1 L^J \-M^ vy y  q -q»

Using elementary algebraic methods gives for each transition nJl n-1

1. 3s -» 2p

% . ■  I < - , v  Î f: : Ï C  ° n c  1 1

1 x'
= °3s/3Y- 5qq'iq -q* 0

2. 3p -»■ 2s ,1s

2
X

i'
w

"1 1 X 1 A  1 x\ A  1 X
1̂ 1 o j  vy yq  -q’ v

Summing over J and substituting for the 6-j vector coupling coefficients 

(see Edmonds (I960)).
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gives

- " - À  }
■'• *oo = if (S^Spo + ^*3pl)

4 l  = if (ZOgpo + 70gp^)

*1
4 - 1  = ■ 37

4i = If

3. 3d -> 2p

5 „ 1+q-M 2 p  2 x f

« '  J,2..n  '■ “  ' X V  x l  " " " I  J J  '
V i

p  2 xl / 2  2 x\ A  1 x\

U  1  ij Y 4  4  vy \ q  -q' v/

summing over J, and substituting for the 6-j coupling coefficients gives

2  1+q-M
4 a' " 3057  ̂ (-1) ^4 *4  ̂ I (2x+l)(25-x-X ) |(x+5)(x+4)(4-x)'qq i-uuy L X x.v ^

I  X
2 2 X 1 1 x'
Mg -M^ v j  \  q -q’ _v

and therefore :



-

4 o  = i k  + G9*3dl +

4 l  ■ 150y ("^°3do ''' 81*3di + 338a^^2^

4 - 1  = A f  (38/6 Re<a2a^> - SVOj^)

A -, = (5 7 / 2  Re<a^a > + 19/3 Re<a a > + 69/2 i Im<a„a.,>ol loOy 2 1 1 o 2 1

+ 69/s i Im<a_a >) 1 o



Apperidix AXI : The Excitation, Electric Field Mixing and Decay Matrices: F, A

and. G ; Appearing In the Asymmetry Calculation In the n = 3 States of

Hydrogen.

Considering in particular the n = 3 states of hydrogen, then the 

intermediate states, g , 3’ and 6 can take any of 18 distinct values

given by 3Ajm^ : £ = 0, 1 and 2; j = |jj, j. = £  + s = |£| = J.

The ground state a is represented by Is J ± J and y > the final states, 

by 2£jmy. With this representation the F, A and G matrices can be 

calculated as follows :

AXI.l The Excitation Matrix, F.

This 18 x 18 matrix is given by:

Fgg,(a, K) 'v fg(a,K) f^,(a,K)

However, it is not necessary to compute all the 324 terms since only 

diagonal terms and the terms representing the coherent excitation of closely 

adjacent terms * are- considered for the analysis here. These 12 

adjacent terms are ;' 3'^ 3*= sg ± g - p^ ± g ; p3/2 ± 3/2 - d3/2 ± 3/2;

p3/2 ± J •* d3/2 ± 2 , and of the twelve, only three distinct elements need 

be computed since

f  f* = (f f* )*3£jm. 3£’-jm. 3£’jm. 3£jra.] ] ] ]
and

*  A A

^3£jm. ^3£'jm. " ̂^3£j -m. ^3£’j-m.] *^3 ] ]

of the eighteen diagonal terms, only nine are distinct since

A A

^3£jmj ^3£jmj " ^SJtj-m^ ^3£j - m^



;u09-

making a total of twelve separate elements in all to be calculated.

The angular dependence may be separated from the scattering amplitudes 

and then the Is - 3£m^ amplitudes may be rewritten thus :

3s

^3dm^ ” ^3d

The scattering amplitudes used here are either Born or polarized-Bcrn

expressions for either approximation are given in appendices AVI and AVII

in which the terms can be identified easily. Using Condon and

Shortley (1953) (and in particular their equations (8a) and (8b) p.123),

the coupled f . are obtained in terms of the f„. . The table3£]mj . 3£m^
below gives all the elements of F:

- 1
^3sJ ± i ^3p2 ± 2 ^3pi ± i ^3sJ ± 2  ^ ^3s ^3p

* _ A - 3i 2
^3p3/2 ± 3/2 ^3d3/2 ± 3/2 ' ^3d3/2 ± 3/2 ^3p3/2 ± 3/2 " 8rr' ^3p^3d cosGsin 0

^3p3/2 ± J ^3d3/2 ± i " ^3d3/2 ± -1 ^3p3/2 ± 1 " + 8m ^3p ^3d cos0(9cos 0 - 5)

^3s) ± " ^3s

^3p2 ± 5

3p3/2 ± 3/2

^p3/2 ± Ï

—  G^ 4tt 3p

h  Gap Sin's

= i f  G gp ( 1  +  3 c o s 4 )

^3d3/2 ± 3/2 I'■ ■ 8tt 3̂(1 ®
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2
^3d3/2 ± J  “ 8tT S d  ^cos 0)

|2 _ 15 2 . 2^
3dS/2 ±5/2' " 32? 3d

^3d5/2 ± 3/21 “ 32? S d  ® 15cos 0)

3d5/2 ± ^34 (Scos^G - 2cos2e + 1)

rKmax r2ir /Km ax
The integral | F KdK d* (= 2? F KdlC) is simply

*' Kmin ) O  ̂Kmi n

rKmax /2ir /Km ax
I F KdK d4> i =  2?

Kmin ) 0 ^Kmin

evaluated for B o m  scattering amplitudes - however the integration is more

complicated for the polarized B o m  case and therefore a numerical integration

package (BOIACF) was used to calculate the tv/elve elements of the F

matrix by quadrature. This program package is available on the NAG3F system

library of the University of London Computer Centre CDC 7600 Computer.

AXI.2 The Electric Field Mixing Matrix, A.

The elements of this matrix are given by equation (7.3). To derive the 

functions , it is necessary to obtain the solutions to the

equations (7.4) and (7.5). By means of the tranformations

iEgt
4  = 4  (— )

iqt
= bg exp (— — )

these equations be written:

da^ , Y fj-

I T  = - T  4



where
eE

f =

4 2  = 4 - 4

The convention adopted in the work below is that state 1 has orbital

angular momentum = £ and state 2 has orbital angular momentum = £ - 1.

There exists two sets of boundary conditions which yield four solutions, 

a. .(t), (ijj = 1,2): the value of i corresponds to the boundary conditions
1  J

adopted and j to the state amplitudes. These boundary conditions 

together can be used to describe the mixing process as intermediate to the 

individual conditions :

a) a^^(O) = 1, a^gtO) = 0 i.e. only state 1 is excited initially

b) a^^(O) = 0, a^gCO) = 1 i.e. only state 2 is excited initially.

Mahan (thesis 1974-) has obtained the solutions a^^(t). These are:

a., ,(t) = —  exp (at) + —  exp (a t) 11 Y + Y -

a.g(t) = — ^  exp (at) + ~  exp (a t) 12 Y Y
=

4  4a__(t) = -p- exp (a t) + —  exp (a_t) 
2 2  Y t Y "

where

“ 1 2 - r " h > L± = 4  " 4 »'
r = /( - + 1(0^244
4  = _ _ + + % _  

4 ” 2
L“i2 
2 ’

= 4  ^± —  + 2 * 1*12
2

The physical explanation of the a^^(t) is that they describe the 

amount of state j created by the effect of the field at time t when state



a\‘i-

i was initially excited.

Strictly, A^^^,^(^,t) is defined in terms of the amplitudes

^ij ~'^ij iEgt/h) but the exponential terms is always removed in

the full expression (7.3) and therefore in the following the relations for

a . . only are retained.1]
Coherence mixing occurs since not all the integrals :

J ^36 ^35

where Ô ^ 3, are zero. The signal asymmetry arises in turn since not 

all the integrals:

f ^35 ^3'5

where 3 ^ 3', are zero. Since only two state mixing is considered here,

then either 3 = Ô or 3 ’ = 6 in this latter integral.

An example of the mixing between the 3s^ . i and 3p^ ^ is
2 —  2 2 - 2

provided below. The 3p^ ^ ^ is referred to as state 1 and the
2 - 2

3 s ^  2 as state 2. There are five distinct terms for A^g^.g in this
2 - 2  

case, which are:

a) 3 — 3* — 5 — 3s-j /

A 22 22
Aa__ dt r IM'

|2 |^2Re(a^: + 2 Re «a, +a +
2Re(o )

b) 3 “ 3* — 5 — 3p 1 I T[2 —  2

= X 4 i  4 i  = p ë C c Ç + 2Re
«

4 4

+a- +
^ 2Re(a )

c) 3 = 3’ = S i + 1 * S “ P t + 1  2 - 2  2 - 2

= f.. /Q 1y 1
2Re(a^)

T
- 2Re 2Re(a )

and since â ĵ  = a^^ this is equivalent to the case when



U ' à

g = 6' = Pj ± 1» 5

(d) 3 = 8  -  ±  J -  8 '  =  P i  ±  J2 - 2

• £

= (

^22 ^12 = +

^12 ^22 ^

(e) 3 =

)C
W e ' 6

%  ± i '

■ [

A
‘21 ‘̂ 11a„, a,, dt = ±

C= (1 =21 dt)

*e«$'S "Lere

4 3_ 4  1
1^ 1 2  [ 2 R e ( a p

( a  + a  ) + -

' A 
( a _ + a _ ^ )

2 R e ( a  );' 
- J

A

= 0 = S i  i ,  3 = 
2 - 2 ^  ± i

± r

i v v r  4 _ .

A3_ A

, 4 »: 1
Irl " I ( a  +a ) + -

2 R e ( a  )  ; - J
A

•

6 = p t i .  3 ' = s  
2 - 2 2 ± J

p3/2 ± 3/2 - d3/2 ± 3/2 and p3/2 ± J - d3/2 ±

two State mixing are obtained by referring to the states p3/2 ± 3/2 or

p3/2 ± 5 as state 2 and to the d3/2 ± 3/2 or dS/2 ± g states as state 1

where appropriate. The remaining states of which account remains to be

included are 3d5/2 ± m^. These states are not mixed into any others and

the amount of each state depends only on its lifetime thus :

(f) 3 = 3’ = 6 = 3d5/2 ± m. (m. = J ,  3/2 or 5/2).
3 31

Using Condon and Shortley^ (pps 123 and 132) we obtain:



1̂2 = <"l|— 1"2>

— 2.14-

= <n£jnij |-°°^^ |nt-l jm^>

_ 3eE n/(n^-£^) f r 2

S  ■ -“ -1 ' : ' T P - " d  -

p - ( ± m ^  - l ) ' ^  + l)^]i

and, explicitly:

f (m.) = e Æm. ^  (m. - ±J)sp 3 ] h ] ^

“  O . G / S n i j  ^  ( iHj  = ± 2 ,  ± 3 / 2 )

By referring to (a) - ( e )  above the field dependent terms can be

identified. The terms in (c) give a symmetric field dependence since this 
2varies as E . The terms in (d) and (e) are those which lead to the 

asymmetry since they vary only as E and thus are dependent on the sign of 

E. It should be noted that no complex terms arise in the final evaluation

of (7.1) since complex cross-mixing terms such as (e) or (d) are matched

with imaginary terms of the excitation matrix F and when the summations

are completed the final result will be wholly real.

AXI.3 The Decay Matrix G.

The radiation matrix elements of interest are:

Y

~ ^ (e) gg (e)
Y

As explained in Chapter 7, these elements include the transition 

probabilities together with a correction term to allow for the observation 

position. These correction terms can be calculated for each transition 

by considering the separate non-zero contributions to the radiation



intensity from three dipoles aligned along the x, y and z directions 

and then calculating the reduced intensity which would arise if the 

dipole aligned in the x direction is removed.

Thus, for example, considering radiation from the state 6 = 3sJJ. 

the total, intensity is given by;

i"' = c Ig
Y

"  I&+2p3/23/2 ^6->-2p3/2i V)-2p3/2-J

(note that 1.^^ - o i s  ommitted since this is a forbidden transition). ■ 012,

Defining

^ ^ = (n'&*m'|w| n&m)n£m ' '
and

'’to?' = Rn%(r) dr

where w can be x, y or z (and then W = X, Y or Z respectively). 

Then V7 gives the intensity strength for dipoles in each of the x, y or 

z directions. The function; R^^(r) is the radial part of the n£ state 

Hydrogen wavefunction.

If P is the interaction, using Condon and Shortley (1963):

V>2piJ “ |(2pij|Pi3SjU|t

= i  |(2pO|p|3sO)l

= i

¥  ( « % ) '

S->-2pî-i “ h2Pi.i|P|3s„)|

I  |(2p-l|p|3sO)|2



2.\ <o

Ig+2p3/23/2 |(2p3/23/2|P|3s^j)I

= |(2pl|p|3sO)|2

= I  (R ::) '

6+2p3/2^ I^^P3/2llZl 3Sii)I22

= |(2pO|p|3sO) I

■  -I

■ I  < « S > '

6^2p3/2-i “ |2Pg/2_i|P|3s2i)|

I  |(2p-l|p|3sO)|2

" I S ' ' "  • <>2ô'p]

?
Therefore the corrected signal (i.e. that ignoring any contribution

n ’£' 
h£m
n * £ * rndue to X „ ' terms in the above) is given by:

I

the total signal is :

=

and thus the correction factor is :

3 *



The correction factors for the remaining transitions are calculated 

in the same way and we find (in agreement with the values reported by 

Mahan (thesis, 1974))

G 3 SÎ+ 1  = I  J A(3s,

V ; ± l  " I  ^ ± i ^

'"3pJ±J " ^  Y - 3/2 Y^

*^3p3/2±i ~ 6 ^ A(3P3/2 ± 1 ^ y ^

11
^3d3/2±3/2 ~ 20 ^  ̂^^^3/2 ± 3/2 y^

47
’3d3/2±J " 60 ^ A(3dg/2 + 1 ^ y)

^3d5/2±5/2 ” 2 ^ ^^5/2 ± 5/2 y ^

^3dS/2±3/2 " To ^ *(3^5/2 ± 3/2 -»• y^

^3dS/2±i ‘ ‘5 ^ ^^^^5/2 ± J -> y^

The values for the transition probabilities, A(6 y) , are given in 

.appendix AVIII.

The calculated values for the intensity at different values of the 

field and for different impact electron energies are computed by summing 

the expression (7.1) over a, 3, g', 5 and y as necessary.



a.\2-

Appendix AXII B o m  R-Matrix Elements for the Hydrogen n = 3 Levels.

The elements of the reactance matrix are given by (see Seaton (1961) 

p.191, Lawson et al. (1961) and Somerville (1963)):

RXnt^k&gL.n'ü^'k'&g'L) = -2(kk')= % h  £ >

where : the coefficients

are tabulated by Percival and Seaton (1957); and

Z (r^^r2)|n'£^'k'&2')
'2~2

4^2

^2

(and y^(r^,r2 ) is defined in equation (2.25)).

P^^(r) = rR^^(Z,l) (see equation (2.12))

and i^(x) is a spherical Bessel function.

The B o m  R-matrix elements presented here are those for the 

3£^ 3£^* transitions and for which k = k*. Furthermore, the fact that

the long range parts of the potential, dominate can be used to greatly 

simplify the calculations. Thus:



- 3 \ 9

- r ]; i% ,Jq *2 *2

2 ^^2 dr^

and therefore

f^O %» Pqo I 6 ,6
T\(3%,,3&i') = 1X' ~1’ " 1  ' X+1r

r  3£, 3£_' £,£/ X
^ 1 dr. - ^ ^ °

2 - ^2 ?!
:x+i 1 r.

r^-Ko r^ ' ^0 ■"'1 ~"1 ^2 ^

The parameter X is such that

Î 2 ” ^2* ̂ =  X =  &2 * *2* ^2 + Z ^ ' + \  = even integer

I ̂ 2  ” 2̂' I =  X + 2̂' 2̂ "*" 1̂* + X = even integer.

There are nine angular momentum states for given total angular momentum

L given by:

label: 1 2 3 4 5 6 7 8 9-

state 3^2Î 3s 3p 3p 3p 3d 3d 3d 3d 3d

electron angular L L-1 L+1 L L-2 L-1 L+2 L+1 L
momentum •

The parity conservation condition requires that:

Ai+Ag + &?'
(-1) ^ ^ = (-1) ^

so that the states 1, 2, 3, 5, 7 and 9 all have one parity and states 

4, 6, and 8 have the other parity: since there is no coupling between 

states in opposite groupes, the total number of separate R-matrix elements 

to be calculated is greatly reduced.

The asymptotic forms of T^(3£^^3&^*) are given below.



3.ÏO

T^(3s,3s) +  0 T (3p,3d) + - ^
2r>

T (3s,3p) H. T (3p,3d) H- -
/2r  ̂ 4

T2(3s,3d) T^(3d,3d) +  0
r

T^(3p,3p) .»■ 0 T2(3d,3d) +

T ( 3 p , 3 p )  T  ( 3 d , 3 d )

r r

The integrals including the spherical Bessel functions can be obtained from:

i p ( k t ) i ^ , ( k t )  d t  = ^  J ^ ^ j ( k r ) J ^ , . ^ , ( k t )  d t .

ir k
2k gX p^y~y*tXtl^^^y *-y+X+1  ̂ * p^y+p* +X+2^

2 2 2

(see Abramowittc and Stegun (1968), equations (11.4.33), (11.4.34) and

(15.1.20)). This,, yields, for the integrals here:

Ip  4  4 - 1  ^

fn  J  4  4 - 1  =Q r r - 3(y+l)y(y-l)

C  r
C  ?

io  r

C  7

•'0 pZ ^y-

2 6w(v-l)

k2dr =2 5(y+l)y(vi-l)(vi-2)

1dr =

d r  =

2y(y+l)

, 2
3(y+2)(y+l)y(y-l)

. kdr =3 ” 15y(y-l)(y-2)



- 2 2 1 -

C 35p(y-l)(y-2)(p-3)

Writing:

~  L,3&^'kA2'L),

and using the results above leads directly to:

R^^(3s,3s) = 0

18’4L-f3s.3p) =

*LL+l(3S'3p) = v'[6(L+1)(2L+1)J

RLL-2(3S'3d) = /[L(L-l)(2L-l)(2Ltlg

4 l ^3s ,3<1) = 7|_L(L+if(2L_i)(2L+3j

*LL+2(3S'3d) = l̂_( L+1) ( L+3) ( 2L+1) ( 2L+3)J

KL-lL-l(3P'3P) =

*L-lL+l(3P'3p) =
36 k

'(‘2L+Ï)/[L(L+1)]

^L-lL-2(3P'3d) = 7^2(2L-1)(L-D] 1 + 30k'
7[L(2L+1^

%L_lL(3P,3d) -9/r(Ltl)(2L+3)l
2L/[3(2L-l)(2L+lg 1 + 180k'

(L+l)(2L+3)

P _ 135k^/2 _____________
L-lL+2^ " (2L+1) / [L(L+1)(L+2)(2L+3 ̂

^+lL+l(^P'^P) = 

%L+lL-2(3P'3d) =

- 36k
(L+1)(2L+1)

- 135k /2 ___________
( 2L+1) / [L(Ltl) ( L-l)'( 2L-ig



R ^ L ( 3p,3d)

%L+lL+2(3P,3d) =

9/[L(2L-1)]_______
2( L+1 ) / [3 ( 2L+1 ) ( 2L+3)]

-  9
7[2(2L+3)(L+2)] 

- 36k

1 +

1 +

30k

180k'
L(2L-1)

(L+1)(2L+1)

*L_2L(34,3d)

1 + 135k'
4L(2L+1)

6k/|6(L+l)(2L+3)l 
L( 2L-1) /[( L-1) ( 2L+1)] 1 + 405k'

2(L+l)(2L+3)

*L-2L+2(34.3d)  - 1215k______________________
( 2L+l/ [( 2”l-Ï) ( 2L+3 ) ( L+2 )(L+1)(L-1)L]

R^^(3d,3d)

%LL+2(34,3d)

18k(2L-3)(2L+5)
L(L+l)(2L-l)(2L+3) 1 -

405k'
(2L-3)(2L+5)

6k/|6L(2L-l)]__________
(2L+3)(L+1)V [(L+2)(2L+1)] 1 + 405k'

2L(2L-1)

- 36k
\+2L+2^^^’^^^ ” (L+2)(2L+3) 1 + 135k'

4 ( L + 1 ) ( 2 L + 1 ) j

I^^(3p,3p) 36k
L(L+1)

RLL-l(3P,3d)

%LL+l(3P'34)

9/(L-1) 
2l 7T2L+1) '

9/(L+2)
2L/(2L+1)

1 60k^ ]
(L-1)(L+1)

1 -
60k'

L(L+2)

RL_lL.l(34'34) = 1 + 135k'
(L+l)(L+5)

*L-lL+l(3d.3d) =

*L+lL+l(34,3d)

18k/r(L-l)(L+2)]
L(L+1)(2L+1)

18k(L-4)
(L+1)(L+2)(2L+1)

1 -
135k'

(L-1)(L+2)

1 + 135k
L(L-4)
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Abstract. Electron impact excitation of the « = 3 levels of atomic hydrogen is investigated 
by generalizing the d w p o  ii approximation (McDowell et al) to Is -+ nlm, transitions. 
Results are presented, at energies from threshold to 500 eV, for total cross sections for each 
Is -+ 3/ (/ = 0,1,2) transition, total n = 3 cross sections, and the cross section for Ha 
production. They are compared, where possible, with experiment.

Results for the polarization of Ha emitted at 90° to the incident beam are given in Born 
and DWPO ii models, and shown to be inconsistent with experiment.

Differential cross sections for individual and total n = 3 transitions are tabulated at 
selected angles and energies. Further experimental and theoretical work is suggested.

1. Introduction

We extend our earlier work (McDowell eta l 1973,1974,1975a, b, Morgan and McDowell 
1975, papers I - V  of the present series) on application of the distorted wave polarized 
orbital approximation (d w p o ) to the transition

e -f-H (ls )-> e +  H(3/; / =  0,2). (1)

There is little published theoretical work on these transitions except in the first Born 
approximation; a modified Born approximation (Morrison and Rudge 1966), a two- 
state distorted wave approximation (Vainshtein 1961) and the Glauber approximation 
(Tai et al 1970, Bhadra and Ghosh 1971). In our first paper (McDowell et al 1973) we 
gave DWPO results for Is -» 3s excitation, neglecting target distortion (d w p o i ), while 
Woollings and McDowell (1973) gave results for Is 3d in a simplified second Born 
approximation. There are some close-coupling results near threshold (Burke et al 1963).

The lack of theoretical interest in the n =  3 transitions has undoubtedly been 
partially due to the paucity of reliable experimental data. This situation has now 
changed. The measurement of the total Ha production cross section (see below) by 
Kleinpoppen and Kraiss (1968) has now been repeated by Walker and St John (1974), 
who claim an absolute calibration. At the same time Mahan has used an elegant and 
sophisticated technique to obtain cross sections for the individual Is ^  ?j/ (/ =  0,1,2) 
transitions (relative to the Born approximation for I s -> 3p at 500 eV) and has dis
covered some interesting asymmetries (Mahan 1974, Mahan et al 1975, Smith 1975,

2817
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see also Krotlzov 1975), The only measurements of the optical polarization o f the 
Balmer a line are those of Kleinpoppen and his collaborators (Kleinpoppen and Kraiss 
1968, Kleinpoppen et al 1962).

A knowledge of the total and differential cross sections for the magnetic sublevels 
(/, m,) will enable a study to be made of orientation and alignment effects detectable by 
coincidence experiments (Eminyan et al 1974, Morgan and McDowell 1975, IV ) and this 
study will be described in a subsequent paper.

In the present paper we give a unified treatment of our d w p o  models for the general 
I s n / m ,  transition in hydrogenic systems, (§2). A computer program (p o l o r b2) 
embodying the results of this analysis is being prepared for publication elsewhere 
(Morgan et al 1975). Details of the analysis are given by Syms (1975). Our results for 
total cross sections for n =  3 are presented in § 3 while in § 4 we consider the optical 
polarization of Ha, and the total Ha production cross section. A selected set of values 
of differential cross sections are given in § 5. Finally we present our conclusion in § 6.

2. General theoretical formulation

Adopting the notation of our earlier papers, the cross section for the Is nlm, transition
in atomic hydrogen may be written

g(ls -» nlm „kf) =  ^  2 T,f\^KdK{nal) (2)
ATmin

where

lT;f(K)? =  i ( i r / ?  +  31Ti7?) (3)

(plus and minus signs referring to singlet and triplet respectively).

2.1. The D wpo I model

In the DWPO i approximation which neglects target distortion,

m K )  = lW z.2 )|V ;|(l±P „)< ;...(l)f*(2 )> . (4)

The scattering function F -(2) is expanded in partial waves, and evaluated in the exchange 
adiabatic approximation (I, equation (11)). We work in an uncoupled representation, 
and expand in terms of the partial waves À' of the scattered electron,

n(K)= f; Cj(m,)Pi""(cos0) =  <  + i®*. (5)
X' = 0

Then after some algebra we find

(2/+1)/-(7A')±

973/2
X  j J-{À, 2. ) — G)

(22'+ 1)

 ̂ (6)
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with

- 1 ,  ;  ;)■ ™

the other factors being generalizations of those defined in I I I .

2.2. The D WPO u model

In this model we take account of target distortion in the direct term of the T  matrix, 
but, consistent with neglecting exchange polarization terms in solving for the scattering 
function, we neglect it in the exchange term. To be precise, we allow the initial state 
of the target to be perturbed by the dipole component of the interaction with the incident 
electron, to first order in the interaction, provided that electron is farther away from 
the nucleus than the bound electron. Thus we obtain

T;KK)T<<A«UZ,l)% ,Xz,2)|I4l(^p.,(l,2)f^(2)> (8)

where 0poi(l,2) is defined in II. The only effect is to modify (6) above by replacing 
7*(2, X') by 7(2,2') as in I I I ,  but now

r. (9)

The kernel functions are given by (see also appendix)

= --tL  /' > 0r Jq

= 0, /' <  0 (10)

and C/is_p(r) is the Sternheimer function defined in II. This is equivalent to replacing 
Kfis.niir) in 7*(2,2 ') by r f^  J r )  +  ti,^„,ir). The leading term of k[\\„^ is, of course, of 
polarization form ; k[^l„^{r) — c/r"̂ .

2.3. Total and differential cross sections

With the above definitions the total cross section may be written 

<r(ls ^  nlm,-. kf) =  +

while the corresponding differential cross section is

^(m,) =  ~ j [ \ n A m „ K f  +  3 lT r , ( m „ K r ] (12)

+  (13)
16% k;

and may be readily summed over m, to give the corresponding cross sections for Is ->• nl 
transitions.

In practice, rather than evaluating the T-matrix elements via (5) above, we choose 
some Xq such that for 2' >  Xq the Born approximation to the direct terms of the partial 
wave T  matrix differs from the d w p o  approximation by a pre-assigned small amount.
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Then

T ,î=  i f  (Cf.W -C!,W )fr'(cos8)+r,!} (14)
À=0

where C®(m,) is the Born approximation to C*(m,) obtained by replacing r) by
a Coulomb (or Bessel) function, and T® is the Born T  matrix.

Let (7xb bs the approximation to a (equation (11)) obtained by summing up to X'q 
only, and let be the approximation obtained by summing up to X'q only and replacing 
distorted by undistorted waves : then

(t(1s -»• nhn„kf) =  +  (15)

where a^inlm,) is the Born approximation total cross section for the Is -+ nlm, transition.
For s-s transitions, exchange is important even for X' >  Aq, and we adopt a similar 

procedure except that is replaced by the Born-Oppenheimer cross section Cbo- 
For z >  0, we approximate Coulomb waves by plane waves. This is precisely the large 
X' correction introduced by Burgess et al (1970), and is justified provided is negligible 
for such X'. We therefore choose X'q such that

3. Results

3.1. Total cross sections fo r individual Is nlm, transitions

Our calculated total cross sections for the individual transitions

e +  H ( ls )^ e  +  H(3/), 1 =  0 ,1,2

are shown in figure 1. The 3p cross section is by far the largest, but the d w p o  ii results, 
which include the effects of polarization distortion of the target, are approximately 
10% lower than the d w p o  i values over the energy range from 20 to 200 eV. At high 
energies, cr(3p, d w p o  i) tends to the Born approximation, but cr(3p, d w p o  ii) approaches 
the polarized-Born approximation. This is defined (McDowell et al 1975b) by the T  
matrix

n "  =  (ÿ .w /Z . l)Z»,(z.2)1 K,!(<#.,,„(Z, l)  + ,Ap.,(l,2))x.,(2,2)> (16)

and introducing an antisymmetrizer, one similarily obtains a polarized-Born-Oppen- 
heimer approximation. Results in this approximation can be obtained in closed form 
and do not approach the Born result until very high impact energies. They provided 
a close check on the detailed d w p o  ii calculations. The 3s cross section is small at all 
energies and polarization distortion effects were found to be insignificant above 100 eV. 
However while cr(3d, d w p o  i) is comparable in magnitude to the 3s cross section, polariza
tion distortion effects are now very large. Thus o-(3d, d w p o  ii) is 50 % smaller than the 
d w p o  I result at 200 eV and at high energies, the d w p o  ii results, which are equivalent 
above 200 eV to the polarized-Born results, continue to be significantly below the Born 
approximation (figure 4(b)). Similar conclusions have been reached independently by 
Beigman in an investigation of electron impact induced inelastic transitions in the 
alkalis (Beigman and Shevel’ko 1974). Non-adiabatic distortions may significantly 
reduce this effect at higher energies.

Our 3s results are compared with those of other workers in figure 2. The experimental 
results shown are the relative measurements of Mahan (Mahan 1974, Mahan et al
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100
Electron energy CeV)

140 180

Figure l. Total 3/ (/ = G, 1,2) cross sections in unit̂  of nal for impact electron energy in
the range 20 to 200eV. - • + •-• + •, 3s d w p o  i approximation; , 3s d w p o  n
approximation ;-----------,3p d w p o  i approximation ;+ +  + +  +  + + +, 3p d w p o  ii
approximation ;------- , 3d d w p o  i approximation 3d d w p o  ii approxi
mation.

X  ICT'

) 50 100
Electron energy teV)

500

Figure 2. Total 3s cross sections in units of nal for impact electrons energies from threshold
to 500 eV. ■, Burke et al (1967) (six-state close-coupling);-------- , Vainshtein (1961)
(distorted wave); -I 1--- 1--- h-, Born approximation; -t-4--l--j--l- + -f-f, d w p o  ii
approximation;  ---- , d w p o  i approximation; -• -f- —  -t-,-, Morrison and Rudge
(1966) (modified Born); , Tai et al (1970) (Glauber); 0, Mahan (1974).
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1975), obtained via a normalization to the Born 3p cross section at 500 eV. Our results 
are in excellent agreement with this experiment throughout the energy range. The 
Glauber calculations of Tai et al (1970) are also in good accord with experiment at 
energies above 30 eV. The Born cross section and the modified Born results of Morrison 
and Rudge (1966) substantially overestimate the cross section at energies below 150 eV. 
We also show an early distorted wave calculation of Vainshtein (1961).

The calculated values of a(3p) are compared with those of other workers, and with 
the experimental values (Mahan 1974) in figure 3. Our d w p o  ii results are in good

0 30

% 0 20

0 10

0 0 50030 50 100
Electron energy (eV)

Figure 3. Total 3p cross sections in units of nal lor impact electron energies from threshold 
to 500 eV. The meaning of the curves is the same as in figure 2, w i t h B u r k e  et al 
(1963) (two-state close-coupling).

general agreement with experiment when this is renormalized to our o-(3p) value at 
500 eV, rather than to the Born value which is 8 % higher. However, with this 
renormalization we lie slightly above Mahan’s estimated rms errors below 40 eV. The 
modified Born results of Morrison and Rudge (1966) are, however, in excellent agreement 
with experiment above 20 eV. O f the other available theoretical results only the Glauber 
(Tai et al 1970) gives reasonable accord, in shape and magnitude, with the experimental 
values. In particular the two-state close-coupling calculation of Burke et al (1963) 
yields very large values of cr(3p), in total disagreement with experiment at energies 
below 50 eV. This may be partly because inclusion of only the Is and 3p states in a 
close-coupling expansion does not account for much of the ground state polarizability. 
Burke et al (1967) give six-state close-coupling results for 1 ^  3 transitions below the 
n =  4 threshold. Their results for o"(3p) which are also shown in figure 3 increase very 
rapidly above threshold and again appear in disagreement with experiment. Burke et al 
remark that they believe their results to be of doubtful validity (due to resonances 
below the n — 4 threshold whose effect is not included) except at kf =  0 9 au. An 
eleven-state ‘pseudostate’ calculation, combined with our dwpoii values for partial
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wave contributions L  >  3, is in hand (cf Callaway et al 1976) and may help to resolve 
this discrepancy.

Finally our calculated 3d values are shown in figure 4(a), (b). We first compare our 
DWPO I and DWPO ii results with Mahan’s experimental values (normalized to the Born 
3d at 500 eV), and with certain other theoretical calculations. Mahan’s results have 
an energy dependence which differs substantially from that of the first Born approxima
tion and his results lie 50 % above the first Born approximation at its maximum. How
ever, both the shape and the magnitude of the experimental results are correctly given 
by a(3d, d w p o  i) at all energies. The simplified second Born calculation of Woolings 
and McDowell (1973) and the Glauber results of Bhadra and Ghosh (1971) are in 
very close agreement with each other, tend to the first Born approximation at high 
energies, but lie a factor of two below experiment (normalized as above) at its maximum ; 
that is, they also show an energy dependence which differs from the experimental one. 
The modified Born results (Morrison and Rudge 1966) give substantially lower values 
near the maximum of the cross section, and again tend to the Born at high energies. 
As we have already remarked, the effect of polarization distortion of the target on the 
calculated cross sections is large in this case. The d W po ii results (which agree above 
200 eV with the polarized-Born results) are shown in figure 4{b).

; 10 
0 ,0-

500

f

500Electron energy (eV)
Figure 4. Total 3d cross sections in units of nal for impact electron energies from threshold 
to 500 eV. (a)-H--- 1--- 1--- 1-, Born approximation ;-------- , d w p o  i approximation ;

Bhadra and Ghosh (1971) (Glauber); - • + ■-• + •, Morrison and Rudge
(1966) (modified Born); Q, Mahan (1974), normalized to Born 3d at 500 eV. {b)--------,
Born-Oppenheimer II (includes target distortion); + + + +, d w p o  ii approximation;
 , Born ; ********, Born II (includes target distortion); ■, Burke et al (1967) (six-state
close-coupling); Q, Mahan (1974), normalized to Born II at 500eV.
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At 480 eV they lie a factor of 2 4 below the first Born values, and even at 5 keV 
are still almost a factor of two lower. Similar results were found for a(2p, d w p o  ii) by 
McDowell et al (1975b) and for several s-p transitions in the alkalis by Beigman and 
Shevel’ko (1974). This effect does not disappear, though it may be reduced, in higher 
order calculations when non-adiabatic effects are included. Extension of the three-state 
close-coupling calculation to high energies (Fon et al 1975) produces results for o-(2p) 
appreciably below the first Bom results.

We therefore believe that our values of (r(3d, d w p o  ii) are superior to the first Born 
approximation at 500 eV and choose to renormalize the experimental values to them 
at this energy (figure 4(6)).

Our calculated values remain in accord with the renormalized experiment at 
energies E-, >  30 eV. We also show the results of a Born-Oppenheimer calculation, 
modified as in dwpoii to include polarization distortion of the target. This always 
gives values greater than those obtained in d w p o  ii, the effect being a factor of two at 
the maximum of the cross section. This comparison shows that while target distortion 
lowers the calculated cross section at high energies, it is distortion of the incident wave 
which has the dominant effect at energies below 100 eV.

The calculations reported here do not allow for p-d coupling, which may be 
important. This may be investigated by the unitarization {R matrix) technique suggested 
by Seaton (1961), and will be reported on in a later paper.

The effect of renormalization of the measured relative 3d cross section to the d w p o  ii 
result, rather than to the first Born, at 500 eV is that, contrary to the assumption of 
Mahan in other work, the 3d cross section nowhere exceeds the Born value. This is 
of importance in analysing measurements of the optical polarization of Ha (§ 4 below) 
and in interpreting the asymmetry in the Ha intensity in an applied static electric field 
reported by Mahan (Mahan et al 1975, Smith 1975). Our analysis of this latter experiment 
will be reported elsewhere.

3.2. Total n =  3 and total Ha. cross sections

Mahan (1974) actually measured the total Ha cross section

<7(Ha)= <733 +  0-12(T3p-H(73d (17)

relative to the Born value at 500 eV, together with a measurement of the ratios o-3 3 /o-(Ha), 
(T3 p/cr(Ha) and a^Ja{Y{a). From the values of the individual cross sections he obtained 
(see above), we computed the total n =  3 cross section

(T(n =  3) =  C733 +  (73p-h(T3d. (18)

These results for this cross section (which are shown in figure 5) are insensitive to our 
suggested renormalization of his 3d value at 500 eV. They lie between our d w p o  ii 
result and the modified Born calculation of Morrison and Rudge. The sum of the 
individual Glauber cross sections (Tai et al 1970, Bhadra and Ghosh 1971) also gives a 
result in good agreement with experiment for Ê  >  20 eV. Neglect of target distortion 
in our model (d w p o  i) gives results which, while lower than the first Born approximation, 
are nevertheless much too large at energies below 150 eV.

The total Ha cross section a(Ha) is of more interest, since the contribution of (r(3p) 
no longer dominates. The available theoretical results are shown in figure 6(a). Our 
DWPO II results are in good agreement with those obtained using the individual cross 
sections presented by Morrison and Rudge, though they behave quite differently at very
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Figure 5. Total cross sections for the process e-f H(n = 1) -» e + H(n = 3) in units of Truq
for impact'energies from threshold to 500 eV.------- , Vainshtein (1961) (distorted
wave); - -- 1-- 1--+, Born approximation ; + + + + + + + + , d w p o  ii approxima
tion; -------- , DWPO I  approximation; -• -t- —  -t- -, Morrison and Rudge (1966)
(modified Born) ;....., Glauber approximation (Tai et al 1970, Bhadra and Ghosh
1971); □, Mahan (1974).

low energies (less than 15 eV) where neither approach is likely to be valid. The Glauber 
cross sections of Tai et al (1970) and of Bhadra and Ghosh (1971) lead to values of (x(Ha) 
in good agreement with our d w p o  i values at energies above 70 eV, but show a maximum 
at 35 eV and as is usual with Glauber calculations, yield very small cross sections below 
this energy. The other theoretical models (Born, d w p o  i, Born-Oppenheimer, distorted 
wave) for which results are available give cross sections about 50% higher than our 
DWPOII results at intermediate energies (15 <  E, <  100eV).

We compare our d w p o  ii results with the Glauber values and the available experi
mental data in figure 6(6). The only absolute experiment is that of Walker and St John 
(1974). These results are uncorrected for cascade, or for the optical polarization (cf 
§4 below). Both these corrections, which are energy dependent, would reduce the 
quoted values at energies below 200 eV. The remaining experiments (Kleinpoppen et al 
1962, Kleinpoppen and Kraiss 1968, Mahan 1974) are relative measurements, originally 
normalized to the first Born Ha cross section at either 200 or 500 eV. We have 
renormalized them to our d w p o  ii result at this energy, which lies about 8 % below the 
Born value. When this is done the results of Mahan (Mahan 1974, Mahan et al 1975) 
remain in agreement with our calculated values at all energies above 20 eV. This 
suggests that Mahan’s 3p results may be 20% too low at energies below 150 eV, and 
that his 3d values may be 50 % high over this energy range, though his total cross section 
is accurate.

The earlier measurements of Kleinpoppen and his colleagues (Kleinpoppen et al 
1962, Kleinpoppen and Kraiss 1968) remain in good agreement with our theoretical
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Figure 6. Total Balmer a production cross section in units of na\ for impact electron
energies from threshold to 500eV. (a)-------, Born-Oppenheimer;  ,
Born-Oppenheimer II (includes target distortion) ;-------- , Vainshtein (1961) (distorted
wave); H 1--- 1--- 1-, Born approximation;-------- , d w p o  i; +  + +  + +  +  +  +,
D W P O  n; - • + —  + •-, Morrison and Rudge (1966) (modified Born);....., Glauber
(Tai et al 1970, Bhadra and Ghosh 1971). (b) A, Walker and St Johh (1974); □, Mahan 
(1974) normalized to dwpo it at the highest energy of the experiment points ; O, Kleinpoppen 
et al (1962) normalized as above; #, Kleinpoppen and Kraiss (1968) normalized as above ; 
+ + + + + + + +, D W P O  n; • • • • — , Glauber (Tai et al 1970, Bhadra and Ghosh 1971).

results and the experiment of Mahan et al at energies above 80 eV, but show almost no 
energy dependence below this energy. These measurements carry large errors (which 
may be as much as ±25% ) but the general trend is nonetheless incompatible with 
that found by Mahan et al or by Walker and St John, or with our theoretical results.

As will be seen below, the polarization correction to be applied to Walker’s data is 
quite small at all energies, so that it is tempting to attribute the whole difference between 
our results (or Mahan’s) and those of Walker and St John to cascade effects. This 
difference is close to 50% of our Ha cross section at 20 eV increasing to 80% at 500 eV. 
However, Mahan (1974) has attempted a direct experimental determination of the 
percentage cascade correction to <r(Ha) as a function of energy, by using the different 
frequency response to an applied rf field of the states with n ^  4 and finds that this 
percentage correction decreases from 9-3 % at 500 eV to 4 4 %  at 15 eV. I f  these results 
are confirmed, then there exists a serious discrepancy between our results, and those of 
Mahan (however normalized), with the measurements of Walker and St John.

4. Polarization of Ha

The optical polarization of Ha photons observed at 90° to the incident electron beam 
can be expressed in terms of the total Ha cross section, and that cross section (Tc,o(Ha) 
which would be measured at 90°. Thus :

FgoCHa) == 3[1 — a(Ha)/cT9o(Ha)] (19)
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where
o-9o(Ha) = o-9o(3s) + 0-12o-9o(3p) + o-9o(3d) (20)

and the individual 90° cross sections o‘9o(3/) (/ =  0,1,2) are defined in terms of the 90° 
polarization of photons emitted from those states by

a9o(3/) = a(3/)[l-iP9o(3/)]-1 (21)
Expressions for Pgo{3l) in terms of the cross sections for exciting the magnetic 

sublevels on the assumption that hyperfine-structure effects can be neglected,
may be obtained from the work of Percival and Seaton (1958). We find

P9o(3s) — 0,

P9o(3d) — 57

p _ , _ 3(g(3pO)-<r(3pl)) 
7cT(3pO)+llc7(3pl)’

(a(3dO) + a(3dl)-2(T(3d2))
119u(3dO) + 219(7(3d 1) +162a(3d2)

(22)

in agreement with the results of Mahan (1974), after correcting some misprints in 
Percival and Seaton’s paper.

From these results we obtain expressions for the perpendicular cross sections.

£79o(3s) — a(3s), '90(3p) =
7cr(3p0) + llcr(3pl)

<7'9o(3d) — 119cr(3dO) +  219a(3d 1 ) + 1 62(r(3d2) 
100

(23)

These may now be used to calculate the polarization of the Ha line radiation,

1
P9o(Ha) — (j9o(Ha) i ~ Q

Z  B,a9o(3/)P9o(3/) (24)

where B, is the proportion of emissions from the 31 state to the n =  2 state.
Our results for Pgo{3l) and P9 o(Ha) in the d w p o  ii model are tabulated, and compared 

with the Born results, in table 1. The overall effect of including distortion and exchange

Table 1. Polarization fractions for 3p and 3d states and for Ha radiation.
£(eV) Born

Pgof̂ P)
DWPO II Born

Pgo(3d)
DWPO II
P,o(3d)

Born
PgofHa)

DWPO II

15 0-3570 0-3230 0-3999 0-3879 0-1859 0-2159
20 0-2794 0-2832 0-3087 0-3577 0-1590 0-2468
25 0-2291 0-2459 0-2447 0-3126 0-1347 0-2034
30 0-1929 0-2153 0-1958 0-2632 0-1143 0-1643
40 0-1434 0-1725 0-1245 0-1719 0-8294, -1 0-1124
50 0-1103 0-1435 0-7401, - I 0-1085 0-6005, -1 0-8515,-1
80 0-5281, - It 0-8906, - 1 -0-1914, -1 -0-3232, -2 0-1730, -1 0-4232,-1
100 0-3026, -1 0-6561, -1 -0-5773,-1 -0-4728, -1 -0-2588, -3 0-2617, -1
150 -0-4540, -2 0-2725, -1 -0-1209 -0-1160 -0-2824, -1 0-1522, -1
200 —0-2515, — 1 0-3188, -2 -0-1604 -0-1559 -0-4478, -1 -0-1706, -1

t In this table and the following tables the abbreviation 0-5281, — 1 = 0-5281 x 10 ̂  
adopted.
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is to increase the calculated polarization at all energies. The results for P 9 o(Ha) are 
shown in figure 7. The behaviour of the calculated values is very similar to that found 
for Lya (McDowell et al 1975a), except that the polarization goes negative about 50 eV

-  0 30

60 120 
Electron energy (eV)

Figure 7. 90° polarization fraction of the Balmer a line for impact electron energies from 
threshold to 200 eV. 0, Kleinpoppen et al (1962); Kleinpoppen and Kraiss (1968); 
□ , Mahan (1974); + + + + + + + +, d w p o  ii;-H 1-- 1-- 1-, Born.

lower in energy. However, while our d w p o  ii Lya polarization results were in complete 
agreement, at energies above 20 eV, with the measured values of Ott et al (1970) our 
present results for Ha are in strong disagreement with the measurements of Kleinpoppen 
and his colleagues (Kleinpoppen et al 1962, Kleinpoppen and Kraiss 1968). Kleinpoppen 
believes that the latter experiment carries errors of at least 25 % (1975 private communica
tion), but this does not bring them into agreement with theory. The values given by 
Mahan (1974) do not represent an independent measurement of polarization, but rather 
are calculated values in which the Born a{nl) cross sections are replaced with his measured 
values, but the a{nlm^ Born results are retained.

5. Differential cross sections

Differential cross sections for the individual Is -> 3/ transitions have been calculated 
using (12)-(14), and summed to give total n =  3 differential cross sections at selected 
energies. The individual and summed results at 100 and 200 eV are shown in figures 
8(a), (b), 9(a) and (b), the values shown being obtained in the d wpoii model. At small 
angles ( ̂  45°) the 3p transition dominates, but above 45° the 3s cross section contribution 
is also significant. Glauber 3p cross sections for 6 ^  50° have been given by Tai et al 
(1970) at 100 eV and are very close to our results in the forward direction, though they 
lie somewhat higher at intermediate angles (figure 8(h)). The Glauber 3s differential 
cross section at 100 eV is lower than our result in the forward direction {9 <  20°) and 
somewhat higher at larger angles (20° <  6 <  50°), but the differences are small. For 
the 3d case, Glauber values have been given by Bhadra and Ghosh (1971) at both 100
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'V’

120

Figure 8. Differential cross sections in units of Oq sr"*. (a) At 100 eV, for electron angles
ofO° to 180°. ------- , total n = Smvpoii;-------, Balmer a d w p o  ii ; + + + + + +,
3p D W P O  II;-------- , 3s D W P O  II;-------, 3d d w p o  ii ( x 10̂). (b) At 100eV, for
electron angles of 0° to 45°. ------- , total « = 3 d w p o  ii ;-------, Balmer a d w p o  n ;
+ + + + + + + +, 3p DW PO I I ; ....., 3p Glauber (Tai et al 1970); -• 4- 3s
Glauber (Tai et al (1970);-------- , 3s d w p o  n;------- , 3d d w p o  ii; *-*-*-*-
3d Glauber (Bhadra and Ghosh 1971).

and 200 eV for 9 <  50°. They find a forward value a factor of two higher than we obtain 
in the d w p o  ii approximation, but the difference is small at larger angles in this range 
(figures 8(h) and 9(h)).

Results, in our model, over the complete angular range are presented in figures 8(a) 
and 9(a). There is some numerical instability in our 3d result for 9 >  120°. At large 
angles the calculated cross section is many orders of magnitude greater than that 
obtained in the first Born approximation. Comparison of the predictions of the d w p o  ii 
model for Is n =  2 transitions in hydrogen (McDowell et al 1975b) with the experi
ments of Williams and Willis (1975) indicate that our failure to incorporate final channel 
distortion leads to an underestimate of da/dQ (n =  2) in the backward direction by 
about a factor of two. This was confirmed by comparison of our results with experiment 
for e +  He(l ^S) -*■ e 4- He(n ^S), n =  2, 3 (Scott and McDowell 1975). We conclude that 
while our current differential cross sections are superior to previously published values 
for the M =  1 to M =  3 transition in atomic hydrogen, they may well be substantially 
too low at large angles. They might well be susceptible to improvement using 
a unitarization procedure to couple the n =  3 states (Fon et al 1975, Callaway et al
1976).

Values of the total n =  3 and Ha differential cross sections at 50,100,150 and 200 eV 
at selected angles are given in table 2 for future reference ; values at other angles and 
energies will be published elsewhere (Syms 1975).
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(b)

10'̂-

180 0 0(deg)120

a

Figure 9. Differential cross sections in units of aoSr“*. (a) At 200 eV for electron angles 
of 0° to 180°. The meaning of the curves is the same as in figure 8(a). (h) At 200 eV for electron
angles of 0° to 45°. ---------- , total « = 3 d w p o  ii; ---------- , Balmer a d w p o  ii;
+ + + + + + + +, 3p D W P O  II;--------- , 3s D W P O  ii;-------, 3d d w p o  li;

3d Glauber (Bhadra and Ghosh 1971). (Note that the scales for the 3s and 
3d cross sections are on the right-hand side.)

6. Conclusions

We have presented a study of the cross sections for the reactions 

e +  H ( ls )^ e  +  H M  (I =  0,1,2)

evaluated  in the d w p o  ii m odel.
Our calculated total Ha cross sections agree well in shape with the recent relative 

measurement of Mahan. They do not agree with the intermediate energy relative 
experiments of Kleinpoppen and Kraiss (1968). The absolute but uncorrected measure
ments by Walker and St John appear incompatible with our theoretical values when 
proper allowance is made for polarization and cascade effects.

Mahan (Mahan 1974, Mahan et al 1975) has used an rf technique to obtain cross 
sections for the individual I s -> 3/ (/ =  0,1,2) levels from his normalized total Ha 
measurement. Our theoretical values are in excellent agreement with these results for 
I =  0, but at energies below 50 eV our 3p results lie 20 % above the maximum uncertainty 
on Mahan’s results, with a corresponding very substantial decrease in the calculated 
3d values compared to the experimental ones. The latter discrepancy may be removed 
by renormalizing the experimental 3d values (which are small compared with a(3p)) 
to our result at 500 eV, without significantly affecting cr(Ha). We have also calculated 
the optical polarization of Ha emitted at 90° to the incident beam and find, in agreement 
with Mahan (1974), values of fgo(Ha) much smaller at energies above 20 eV than those 
reported by Kleinpoppen and his colleagues (Kleinpoppen et al 1962, Kleinpoppen
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and Kraiss 1968). These experiments are difficult, and subject to error due to the large 
background. More accurate results might now be obtained using coincidence techniques.

Such coincidence measurements (of Lya and Ha photons emitted subsequent to 
excitation of the n =  3 levels, in coincidence with the scattered electron) are in hand 
in at least one laboratory, and our theoretical predictions for the Fano-Macek para
meters (Fano and Macek 1973, Morgan and McDowell 1975) which allow a complete 
description of such experiments will be given in a subsequent paper.
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Appendix. A general form for/,s „,(i ) and A ,, ,,(r) 

Taking

we obtain, setting y =  {n+  l)/n.

{ - 2 Z r /n f

2V+^[(n-;-l)!(n + /)!]>«“-.̂ -‘(-2/nr(2;+s + 2)
(yZr)' ^

Similarly, for /' =  /± 1 ,

\ l l 2 \ ‘^ ^ [ ( n - l - l ) ! ( n  +  l ) ! r ' ^ " - 4 : -U - 2 /n r ( 2 I+ 2  +  s)wM,n
4 \n j (yZrY'^^Z  ;=o s!(/i —/ —1 —

/+r+.+ 3 l (yZr)P\ ______ (yZr)'+''+'+'̂x|-l+e~^^^

with

w,(U') =

A \ P -  I (l +  l' +  s +  3)!(l +  l' +  s +  4 +  2y)_

(l +  l' +  s +  4 +  2y), r  =  1 -1

(I -h I' -h s -h 2)(l -j- r  -hsF  3)(l -f-1' ~h s-f-4 -h 2y), I' =  / +  1. 

For small Zr,

(-2 /« )*(Z r)iS/”7„\/ + s+2

s= 0  s !(n — / — 1 — s) 1(2/ -l-1 -h s) !(/-t- r s 4-4)

j f  i - y Z r r ^ H l  +  l' +  s +  4 ) i 2 y - p - l ) \ 
p=o 2y(p+l)!(/4-/'-|-s-l-p +  5) /
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Note added in proof Professor M  R Flannery has brought to our attention a paper by 
Flannery and McCann (1974, J. Phys. B: Atom. Molec. Phys. 7 L522) containing results 
for the 3s and 3p excitation processes, obtained in a seven-channel (Is, 2s, 2p, 3s, 3p) 
eikonal treatment. As can be seen from table A .l below, these results are in excellent 
agreement with ours above 20 eV, and with experiment. However, the polarization 
fractions for the 3p states obtained by using their reported values for cr(3pG) and cr(3pl) 
in equation (22) (see table A.2) would imply a serious discrepancy between their 
individual magnetic sub-levels contributions and ours.

Table A.I. Total 3s and 3p cross sections in units of 10~̂ 7rao-

eV
FMcC“ DWPO 1 DWPO 11 Experiment'*

3s 3p 3s 3p 3s 3p 3s 3p
15 228 797 286 7-04 216 4-07
165 1-41 723 1 84 10 7 220 925 — —
200 178 109 1 52 148 151 12-5 216 806
300 1 87 148 1 81 180 155 148 1 29 114
500 1 46 14 6 157 17 0 I 39 14-4 1-36 12-7
800 — — 115 14-1 1 07 12-2 097 9-15
1000 090 Ill 097 125 0-93 110 — —

2000 050 742 054 810 054 727 0-58 679
“ Flannery and McCann (1974). 
'’Mahan (1974).

Table A.2. Polarization fractions for the 3p state.

eV
FMcC*
f,o(3p)

Born 
P9o(3p)

DWPO II 
P9o(3p)

15 — 036 032
16 5 025 — —

20 0 19 028 028
30 Oil 0-19 0-22
50 004 Oil 0 14
100 -0-04 003 007
200 -009 -003 00
' Flannery and McCann (1974).
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