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2.

ABSTRACT

In this thesis it is shown how the 1-Cohomology of groups can be 

used to classify certain representations of the Canonical Commutation 

Relations.

First, the alaebra of the Canonical Commutation Relations is 

described in the framework of (^algebras. The Fock and displaced-Fock 

representations are defined.

A unitary representation of a connected Lie group is introduced 

into the complex pre-Hilbert space, over which the C.C.R. algebra is 

built. This group action induces an automorphism of the C.C.R. 

algebra, and the automorphism is shown to be unitarily implemented in 

the Fock representation. The question of unitary implementability in 

the displaced-Fock representation leads to the study of 1-cohomology 

of groups.

The cohomology of the Poincare group is studied, for various 

representations of the Poincare group. Also the cohomology with values 

in the Hilber^-Schmidt operators of the one-particle space is calculated 

to be trivial.

The results obtained then determine whether or not there do exist 

representations of the C.C.R. which are inequivalent to the Fock 

representation and which have a group automorphism unitarily 

implemented.



To my Mother, and to the Memory of my Father



Acknowledgements

Doctoral theses, like good deeds in a naughty world, need no 

apology, wrote Felix Raab in his book "The English Face of Machiavelli".

I adhere to this dictum and therefore take pleasure only in acknowledging 

my debts.

I would like to thank the Science Research Council for providing 

me with a Research Studentship, during tenure of which the work in this 

thesis was begun.

To Professor R.F. Streater I owe many thanks, for supervising my

researches, reading articles, suggesting problems and reading the

chapters of this doctoral thesis, as they appeared in handwritten form.
«It is a pleasure to thank my friend Lutz Polley of the InstiLtut 

fur Kernphysik, TH Darmstadt, with whom I worked during his short visit 

to Bedford College in 1981. The results presented in Chapter 4 were 

obtained during this collaboration.

I thank my friend, Jennifer Brooks, for her generous support and 

encouragement during the hard months of preparation and working out of 

the chapters of this thesis. Without this help, the work would have been 

harder.

The typing of this work has been a long task and has been done 

most excellently by Kendal Anderson, the Secretary of the Mathematics 

Department. To her, also, many thanks.

It is an honour to be able to present a doctoral thesis to my 

parents, and an honour to thank them for their patience and support 

during the years of my education. To my parents I owe a special debt, 

and it is to them that I dedicate my doctoral thesis.



Contents

Introduction

Page no 

6

Chapter 1: Characterization of Displaced Fock

Representations of the Canonical Commutation 

Relations

Chapter 2: Mathematical Results

Conclusion

30

Chapter 3: Cocycles and Representations for the Poincare

Group and its subgroups 49

Chapter 4: Cohomology of Direct products and the Hilbert-

Schmidt Cohomology 82

94

References 97



6.

Introduction

The original motivation for the work presented in this thesis 

was the occurrence of non-Fock representations in the algebraic theory 

of the free quantum field in 1+1 space-time dimensions [%0]. These 

non-Fock representations are of the kind which are named displaced 

Fock representations, and they correspond to the addition of a 

classical field to the free quantum field.

One can describe a representation of the Canonical Commutation 

Relations in terms of a family of unitary operators on a Hilbert space, 

indexed by a complex pre-Hilbert space, t . The set {W(f): f € t } must 

satisfy the relation

W(f)W(h) =

where W(f) is a unitary operator on a Hilbert space for each f e t .

The Fock representation is that representation in which the Hilbert 

space possesses a cyclic vector, and this cyclic vector is annihilated 

by an operator constructed from the Weyl operators W(f). Displaced 

Fock representations can then be defined on the Fock space by unitary 

operators

Wp(f) =

where Wgff) is the Fock version of the representation, and F £ x , the 

algebraic dual of x. Although the map f is strongly continuous,

from T to the Fock space, it is not necessarily the case for the map 

f ■+ Wp(f). One can show that this leads to the result that has a

vacuum vector if and only if F is a continuous linear functional on

T, and so when F is not continuous, the representation corresponds to

a theory with no vacuum.

When a connected Lie group, G, is represented unitarily in x, so 

that it can be thought of as the one-particle symmetry group, it is



known that, in the Fock representation, there is a unitary operator 

in Fock space with

W (U f) = V W (f)V0 g g o  g

where represents g in t , and is the representative of g in Fock 

space. Further, g defines a strongly continuous representation.

One then asks for the same conditions to hold for some of the 

representations W^. They are found to hold if and only if

MgF - F e

where is the Hilbert space completion of t , and is defined by 

(M F) (f) = F(U-lf) and f £ Tg g

This is the point of entry of 1-cohomology into the problem.

These results are described in more detail in Chapter 1.

In the second chapter some theorems about cohomology are presented. 

The first part introduces definitions, and the second part describes 

results of Pinczon and Simon [^33, with the restriction to unitary 

representations. The proofs given are expansions of those given in 

[*#$"], with a new proof given for Proposition 2.2.1. A full proof is 

given for Lemma 2.2.3, as this is useful in the third section, and since 

it appears only as a comment in C4S*]- The third part of the chapter 

presents two new results which are necessary underpinnings for the 

calculations in the third and fourth chapters. In the final section 

of this chapter, results due to Araki and new results are presented 

together.

The third chapter treats the cocycles for physical representations 

of the Poincare groups P_^(s+1), s = 1,3. The Poincare group of 2+1 

space-time dimensions is not mentioned, as this is dealt with in an 

article by the author of this thesis C 3  ̂ • An example of a cocycle for



ta subgroup of P^^3+l) is given, and it is shown to be a cocycle, with 

the help of Lemma 2.3.1.

In the fourth chapter, cocycles for direct product representations 

of the Poincare group are examined. The results are then applied to 

Hilbert-Schmidt valued cohomology for the Poincare group. It turns out 

that the ideas of the previous chapters are useful in the determination 

of these problems. A corollary to these calculations is the result 

that certain representations of the C.A.R. and the C.C.R., having the 

Poincare group unitarily implemented, must be unitarily equivalent to 

the Fock representations involved.

It is interesting to note that as early as 1938, group 1-cohomology 

was considered by Wigner, in his famous paper about the unitary 

representations of the Poincare group. This occurred when Wigner 

reduced the multiplier to ±1. The relevant reference is Section C, 

p.174 of Wigner's paper.



CHAPTER 1

Characterization of Displaced Fock Representations of 

the Canonical Commutation Relations

1. The Canonical Commutation Relations (C.C.R.)

The quantum theory of a boson with one degree of freedom is 

governed by the equation:

PQ - QP = -i 1

Where P, Q are self-adjoint operators acting in a complex Hilbert space 

with a common, densely defined domain of vectors, D, in . This 

equation is not easy to deal with, as we have the following theorem due 

to Wielandt:

Theorem [24]. If P, Q are defined on the same dense domain D in some 

complex Hilbert space H, and they satisfy

PQ - QP = -il (1.1.1)

on D, then P and Q cannot both belong to the bounded operators of ̂  .

It follows from this theorem that at least one of these operators is 

unbounded, and in general both are. A way out of this seeming impasse 

is to form the one-parameter unitary families V(t) = exp(-itQ) and 

U(s) = exp(-isP) with s,t e H. Then for each t £]R, V(t) is unitary 

and for each s e H, U(s) is unitary. The equation (1.1.1) is replaced 

by
— i a ■{“V(t)V(s) = e U(s)V(t)

for all s,t e R and defined for any vector in ff . Equation (1.1.2) is 

called the Weyl Form of the C.C.R. for one degree of freedom. The 

operators P and Q can be recovered by using Stone's Theorem. Now the 

problem with quantum field theory is that we must deal with an infinite
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number of degrees of freedom. We must therefore reflect this in the 

mathematical structure which we erect. Further, if we are to be some

what general, it is necessary to include, as a special case, the above 

system. We now make a first step towards this aim.

Definition 1.1.1. A Weyl system over the test-function space T is the 

structure defined by

(1) T is a complex pre-Hilbert space with inner product (f;g) for 

f,g e T.

(2) For each f e T there is a unitary operator W(f) which acts in a 

Hilbert space |4 / called the representation space, and ff is common to 

the set {W(f): f £ t }.

(3) The map f*— ^W(f) satisfies

W(f)W(g) = W(f+g)e^I*(f'9).

(4) The map s'—  ̂W(sf) from ]R to the unitaries on defines a one- 

parameter weakly continuous family of unitaries for each f e T.

(5) There is a dense linear manifold D in ^  which is stable under the 

application of the generators of all the unitary groups {w(tf): t £ 3r } 

with f e T. We require these generators to be essentially self-adjoint 

on D.

Remark 1.1.1. In the case of the particle with one degree of freedom 

we had two unitary operators U(s) and V(t). We have this situation in 

the infinite dimension case: decompose T into a direct sum of two real 

linear subspaces x = ® t̂ . Each f £ x can be written as f = f^ + tf^

]̂R'where f^,f2 e x . Then we have

U(f) = W(f) f E x^

V(g) = w(ig) g E x^

i is defined as a real-linear operator on x^ which becomes multiplication 

by in X. In this situation, the 1-parameter group
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{u(sf) : f e s € ]r} gives us the momentum and {V(tg) ; g e t e ]R} 

gives us the field operator. So we write

U(sf) =

and

V(tg) = e^tQ(g)

By applying our demands on W(f), W(ig), we obtain, as equations defined 

in the dense domain D,

[Q(f), Q(g)] = [P(f), P(g)] = O

and

CQ(f) , P(g) ] = i(f;g) 1 for f,g e x^

We construct annihilation and creation operators, defined of course on 

D, as follows:

a*(g) = 7f{Q(g) + iP(g) }
and

1
(g) = ^2^Q(g) - ip(g)} for all g E X̂H

These operators are necessary in the construction of the Fock 

representation. They also satisfy commutation properties on D:

[a*(f), a*(g)] = Ca(f), a(g)] = O

and

[a(f) , a*(g) ] = (f;g) 1 for f,g £ x^

In order to construct such a system we must erect a C*-algebra frame

work which gives us all our results.

Remark 1.1.2. Conditions (3) and (4) of Definition 1.1.1 are equivalent 

to condition (3) together with

(4') The map f i— W(f) is weakly continuous on finite-dimensional 

subspaces of x.



12.

2. C*-algebras, States and Representations

We recall that a C*-algebra is a normed algebra CK- over ]R or (C 

with a map *: OL . Further * satisfies

l|A*ll = l|a||

and (A*)* = A for all A € Qi. The algebra UL is complete in || • [| and

the C*-condition holds, namely the condition ||A*A|| = ||A|| for each

A £ 02.

A state on ^  is a linear functional (p : Æ  +• (C (we suppose our 

field of scalars to be C) such that <^ ; A*A> > O for each A e Œ -  The 

symbol <(f> ; A> is the evaluation of (p at the element A e CE . The set of 

states on 6E is written S ( ÛI).

A representation of a C*-algebra Œ  is a pair (tt, H* where tt is 

the map from (5. into the bounded operators on the Hilbert space .

The map w obeys the exigencies

tt(Aa +u b ) = Xtt(a ) + yTT(B)

for A, y £ (E and for A, B e CL . Moreover, 7t(A*) = ir(A)*. Here we make 

no notational distinction between the *-map on CL and the adjoint map 
on the algebra of operators on

The representation tt of 02 on Hyp is said to be cyclic in ^  if 

there is at least one vector 0 £ such that the set {n(A)0: A e ^  }

is total in i.e. finite linear combinations of elements of this set' TT

form a dense set in ff̂ . Cyclic representations and states of go 

together. This is the result of the Gelfand-Naimark-Segal Theorem: 

Theorem 1.2.1 (Gelfand-Naimark-Segal)

Let Û2 be a complex C*-algebra and let ^ be a state on . Then 

there exists a Hilbert space N  , a representation t t and a vector Q  e  

so that is cyclic for t t and

<(|) ; A> = iü, ir (A) ) for any A € (R .
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Further, if "fr̂ is another representation of CE, on a Hilbert space  ̂

with cyclic vector such that

A> = (0^, ■ir̂ (A)îî̂ ) for any A e ,

then there exists a unitary map V: H such that

= Vf2 and w^(A) = Vir(A)V~^

We now proceed to construct a C*-algebra which we will represent

on a Hilbert space to give a Weyl system.

3. The Algebra of the C.C.R.

We choose a complex pre-Hilbert space t . For each element f e t

we define a symbol W(f). A map * is defined on the set of these symbols

by the formula W(f)* = W(-f). This collection of symbols, with the map 

*, is denoted Ap(x). Next we define A(x) as the collection of all 

finite (complex) linear combinations of elements of Ag(x) i.e. if 

R € A(x), there is a number n > 1, a collection {fj^,...,f^} c (t ) 

with

n
R = I z. W(f ) 

k=l ^ ^

where c c. A(x) is a linear space. We make A(x) into an

algebra by imposing the multiplication law

W(f)W(g) = e^^™(^'9).w(f+g)

on Aq (x ) and extending it to A(x). Together with the * map, A(x) 

becomes a *-algebra. We must choose a norm on A(x) to make it into a 

C*-algebra. To this end, we prove the following technical Lemma.

Proposition 1.3.1. A(x) is a simple algebra i.e. if I is any linear 

space in A(x) satisfying R.I c i for R £ A(x) and IR c I then either 

I = {o} or I = A(x).

Proof

First we show that I n Agfx) = 4>. Assume that I A(x) and
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W(f) e l  for some f e x. Then W(-f) W(f) = 1 e I where 1 is the unit in 

A(x). From this it follows that I = A(x). This contradicts the 

assumption that I 5̂ A(x), so we conclude that I n Ag (x) = (f).

Now define the quotient space A(x)/l. Denote by p the quotient 

map. Because of the above discussion, it follows that p(Ag(x)) is an 

isomorphic copy of Ag (x), in A(x)/I. Now A(x)/I is another linear space 

and A(x) is the smallest complex linear space which contains Ag (x) , so 

A(x)/i must be isomorphic to a space which contains A(x). From this it 

follows that A(x)/l is isomorphic to A(x). So p is invertible and 

hence I = {o}. This then establishes the result.

Corollary. Every non-zero representation tt of A(x) on a Hilbert space 

is faithful i.e. ker tt = {o}.

Proof

ker TT = {R e A(x): tt (R) = O} satisfies the conditions of I in the 

above proposition. Hence, as it is non-zero, I = {o}.

We consider certain types of representations of A(x).

Definition 1.3.1. (1) A non-degenerate representation of A(x) is a map

TT into the bounded operators of the Hilbert space such that the set 

{tt(R)¥: R £ A(x), Y E is total in ff

(2) P(x) is the collection of all non-degenerate representations 

TT of A(x) such that for any Y, 0 e and for any f e x the map from

H  to (I defined by

X +■ (W, TT[W(Xf) ]0)

is continuous in A.

Proposition 1.3.2. A(x) completed in the norm

||r|| := sup ||tt(R) 11̂
TT£P (x)

becomes a C*-algebra. A(x) is the C*-algebra obtained. 

Proof. We merely check the C*-condition: we have
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||R*R|| = sup ||t (R*R) 11̂  = sup ||tT (R) ||2 = ||r|P 
TreP(.T) TTeP(T)

Since the condition holds for bounded operators on a Hilbert space.

From the simplicity of A(t ) , it follows that ||r || = O R = O. The rest

is quite easy to prove.

Remark. The C*-algebra A(t ) is in fact a C*-inductive limit.

We call the algebra A(t ) the C*-algebra of the Canonical

Commutation Relations. It is interesting to note that A(t ) is also 

simple : this follows from the simplicity of A (t ). Further, any

representation ir e P(t) is automatically a continuous map,as 

IITT (R) 11^1 IIR||. Each TT e P(x) is also faithful, so that the norm defined 

on A(x) satisfied the condition ||r-t|| = O R = T.

4. Representation of the C.C.R.

Definition 1.4.1. For each tt e P(x) we define the set

W^(x) = {w^(f):= TT(W[f]) and f e x}.

Remark 1.4.1. For each representation it e P(x), W^ (x) is a Weyl system 

over X, acting on ff^.

Lemma 1.4.1. tt is a cyclic representation of A(x) if and only if W^ (x) 

is cyclic.

Proof. If TT is cyclic in then there is a vector 2̂ e ff such that

(¥, tt(R)J2) = O for all R e A(x) implies that Y = O. Because A(x) is

dense in A(x), the same implication holds if (W, tt(R)Q) = O for all 

R e A(x). Hence if (Y, W^(f)f2) = O for all f e x , by linearity of it, we 

have (W, iT(R)f2) = O for R £ A (x) . Therefore Y = O. So if it is cyclic 

in , so is W^. The converse holds, as can be seen, using the same sort 

of analysis.

This Lemma is used in the proof of the next Theorem. It says that 

if TT is got from the G.N.S. construction, then W^ is automatically 

cyclic.
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Theorem 1.4.1

Suppose $ is a function from t to (C which satisfies the 

conditions

(1) iiO) = 1

(2) For each fixed f £ t , the function X -+ #(Xf) is a continuous 

function of X e JR.

(3) For each finite sequence of pairs {(z^, f^) e C x x , k = l,...,n) 

we have

n
I -exp -

j,k=l ^
f,)j > o

i.e. $ is a positive definite function.

Then $ determine? a Weyl system W^(x) acting on a Hilbert space 

. This system is cyclic and it is unique up to unitary equivalence. 

Therefore, if ^ is another function which satisfies the above, and 

^(f) = $(f) for each f ex, then there exists a unitary operator 

M: -> tf'> such that
<P- ^

MW^(f) = W-;>(f)M for each f e x,(j)

and where and are the cyclic vectors in the twoTp (p ip cp
representations.

Remark

Lemma 1.4.1 says that the representation of A(x) obtained by the 

GNS construction from $, forces W^ to be cyclic as W|(f) = ir^[W(f)],

TT̂  being the representation of A(x) got from <p. This lemma also 9
implies the converse of this theorem.

A function $ such as the one in Theorem 1.4.1, is called an 

expectation functional and it determines, in the language of Segal, a

regular state tj) on A(x). An expectation functional on a complex 

pre-Hilbert space x determines a cyclic Weyl system over x. The 

converse holds, and it is not difficult to see that
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fl— >- (îîîf0 <P 9

determines an expectation functional for each cyclic Weyl system. Thus

Wj(f)îî^) is typical of the system and determines it uniquely, up 9 9 9
to a unitary isomorphism.

5. The Fock Representation

We define the Fock representation as that cyclic system Wg, with 

Hilbert space f4g and cyclic vector such that a(g)^ = O for all 

g £ x^. is the real space whose complexification is T, and a(g) is the

annihilation operator defined in §1. Given this condition, it can be 

shown that the expectation functional is

{Q., Wg (f) fZ) = eKp for any f £ t ,

Hence the Fock representation exists and is (up to unitary isomorphism) 

unique. We now prove a well-known property of the Fock representation. 

This property is necessary in the ensuing discussion.

Proposition 1.5.1. The map f I— >■ Wg(f) is strongly continuous in the 

Fock representation. Namely, for each vector Y £

||Wo(f)'l' - W„(h)ï|| + 0  as ||f-h||^^0.

Proof

Consider the vectors of the form W^(g)fi. Then

(W.[h]0, W T f ] W  rg]îZ) = (0, W r-h]W Cf] W [g]0) =
0 0 0 0 0 0

expy {Im(f ;g) + Im(-h;f+g) }. (fZ, Wg[f+g-h]JZ) =

exp Y {lm(f;g) + Im(-h;f+g)}.exp

and so, as f ^ O in t (in the norm), the last expression becomes

exp Y  {Im(-h;g) }'exp j^ÿg-h || %

Therefore we have established that

= (Wg[h]0, WpCg]^)
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(Wg[h]Q, Wg[f]Wg[g]ü) 4̂  (W ^ , W^Cgl^) 

as f + O in T.

Using the fact that the collection of all finite sums of the form
n
^ 2: .W [g ]JZ is a dense set in f4-/ it follows quite easily that 

j=l nI I  Wg [f ]Y"Y I I  ->■ O as f + O in x , where Y = ^ z.WgCg.]JZ. Then using the
j=l  ̂ ]

fact that any Y €  g can be approximated by elements of the form 
n
^z (f )fi, and that the map fl—  ̂Wg (f) is uniformly bounded, as the 
j=l^
W^(f) are unitary, it follows that ||Wg(f)9- y|| -> O as f ^ O in x for 

any 4/ e

Now if 11 f-h 11 ̂  -^0 then we have for any Y E ((.g
■^Im (—h; f )

||Wg(f) Y-W^(h) w|| = ||e W^(f-h)Y-Y||

ylm(-h; f)
^  | | W Q ( f - h ) 9 - Y | |  +  | e  - 1 1 - I I ' i ' l l

and the last two terms tend to zero as f -> h in x. This then 

establishes the result.

6 . The Displaced Fock Representation and Manuceau's Lemma

We now define displaced Fock representations.

Definition 1.6.1. Let W^fx) be the Fock representation over x, on the 

Hilbert space Hg/ and suppose F is a linear functional F: x -> (C.

Then we say that W^(x) defined through

W (f) = (f)r 0

is a displaced Fock representation of the C.C.R. over x.

Remark. It is clear that fl— i-W^Cf) is strongly continuous if and only 

if f j— ). ImF(f) is continuous. Further, we have that Wp(f)W^(g) =

e Wp(f+g) . Further we have that Wp(f)W^,(g) = e W^(f+g).

The expectation functional is ^^^^^(f)^ II'

We know that the Fock representation is unique up to isomorphism
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and are entitled to ask about the conditions of uniqueness of any given 

displaced Fock representation. To this end, we are able to give a 

very useful result, known as Manuceau's Lemma. We present the proof, 

which is due to Roepstroff [47].

Theorem 1.6.1. (Manuceau's Lemma)
XSuppose F^ and F^ are elements of t , the set of complex-valued 

linear functionals on t . Then there is a unitary operator M: H q ffg

such that:

MW (f) = W (f)M 
^1 2

if and only if there exists a constant C +- O so that

|(Pj-P2)[f]I < C.||f||

i.e. if F ĵ -F^ is a continuous linear functional, so that F^-F^ e t *, 

the topological dual of t .

Proof

Assume that such a unitary operator exists. Then we obtain the 

equation

(MWg[f], Wg[f]M^) = exp i[imF^(f)-ImF^(f)]

Now, we know from Proposition 1.5.1 that the left-hand side is 

continuous in f, so the right-hand side must also be continuous in f 

(in the norm topology on x). Hence Im(F^-F^)(f) defines a continuous 

linear functional on x. Whence we deduce that (F^-F^)(f) defines a 

continuous linear functional on x i.e. there is a constant C > O such

that I (F^-F^) (f) I < C.||f I|.

Now we assume this to be true and prove the existence of a unitary

operator M: H q , satisfying the intertwining condition. It is

clear that F -F extends to a continuous linear functional on the 1 2
Hilbert space completion of x . We denote this Hilbert space b y a n d
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the extension of by F. Then the celebrated Riesz Theorem implies

the existence of a vector  ̂ e ^  such that

F(f) = CÇ; f) for f € 3^.

Moreover, (F^-F^) (f) = (C? f) for f é t . No w write 0 = Wg(^)JZ where

ÎZ is the Fock cyclic vector. We have the following:

(0, [f]0) = m, Wg(-c)Wp [f]WQ(c)o) = m, Wp [f]fi)

We can define (?) for  ̂E  as f i— >- Wg (f) is strongly continuous in 

f, with respect to the norm in T,and so we can extend Wg(%) to ^ £ 3^ .

It follows from this that W^ and W^ are unitarily equivalent. 

Indeed, we have

Wg(?)Wp (f) = Wp (f)W^(Ç)
1 2

for any f £ x. This proves the theorem.

We call any collection of displaced Fock representations, which

are pairwise equivalent in the sense that there is a unitary operator 

which satisfies the condition given, a sector. Clearly, the theorem

implies that W^ is equivalent to the Fock representation if and only if

F is a continuous linear functional on x . For this reason we call the 

Fock representation the zero sector.

7. Symmetry Groups and Implementability

In the relativistic theory of boson systems, we represent the 

Poincare group on the space of wave-functions by a unitary represent

ation. The present setting has x playing the role of the wave functions. 

We aliow a generalization in the choice of group : we take any connected

Lie group G. Further, we ask that G be represented by unitary operators

on X so that for each g £ G there is a unitary with

U : X ->• X for each g £ Gg
(Ugf; Ugh) = (f;h) for all f,h £ x
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and

U g \  = for any g,k e G

We also demand that gi— >• Ugf be strongly continuous at the identity. 

Namely, given an open set (k containing the identity of G, there is an 

E > O so that for all g e the vectors Ugf belong to the set 

N(f, e) = {h: h £ T and |[ f-h[[ < s} .L This is equivalent to demanding 

the condition |] Ugf-U^f || -> O as g k in G. This is just strong 

continuity anywhere in G .

Now we consider the group G acting on x and how this is reflected 

in the Fock representation.

Theorem 1.7.1. Let U be a strongly continuous unitary representation 

of the connected Lie group G on the complex pre-Hilbert space X . Then, 

in the Fock representation of the C.C.R., there exists a strongly 

continuous unitary representation V of G in such that for each 

f £ X and for each g £ G

" o < V >  =
and V fZ = JZ where SZ is the Fock vacuum vector.g
Proof

Define 0g(f) := (fZ, W^ (Ugf)JZ) . Then 0g(f) = exp(-^||Ugf |p) =

exp(-̂ 11 f Ip) . Hence 0g, for each g e G, agrees with the expectation 

functional of the Fock representation. Theorem 1.4.1 then assures of 

the existence of a unitary operator Vg: M q H q satisfying

W„ (U f) = V W„ (f)V“  ̂ and V ÎZ = JZ 0 g g 0 g g

Strong continuity must be established separately. We consider 

only the identity of G and strong continuity there. Proposition 1.5.1 

assures us that f I— > W^(f) is strongly continuous from x (in the norm 

topology) to Wq (f). We then have, on the total set defined by 

{Wg(f)^: f £ x}, the following calculation
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l |V g W | j [ f ] f î -W j [ f ] t î | |  = | |V gW jj[f]V -ls2 -W (j[f]!2 ||  =  llw^Eu f]ïî-W(,Cf]!2||

and this last term tends to zero as g ^ e, by strong continuity of U

in T and strong continuity of the map f ^  W q (f). This establishes
n

strong continuity of V on a total set. If Y = ^ z.W (f.)0 then

n
llVgf-ïll < nZjM|VgW|jCf^]îî-W|j[f^]Sî|| ->• o as g e.

Hence, as the set of such vectors Y is dense in V is strongly

continuous on a dense set. Since the unitary operators are uniformly

bounded by 1, and since any Y e ffg is the limit of a sequence of

elements {Y } in the dense set, it follows that V is strongly n g
continuous on the whole of ̂ q . This proves the theorem.

This is a very useful property for a representation to have, so 

we devote a definition to it.

Definition 1.7.1. A representation tt of the C.C.R. over t on a Hilbert 

space is said to implement the group G (and G is said to be 

implementable in it) if there is a unitary operator V, representing G 

in , such thatTT

ïï[ag(A)'] = Vg7r(A)V“ ^

where A is an element of the C.C.R. algebra and is the automorphism 

of the algebra defined on the unitary elements as

a (W[f]) = W(U f) for f e T.g g
We say, further, that w is a G-covariant representation if G is 

implementable in tt and the implementing representation V is strongly 

continuous in g.

In the new language. Theorem 1.7.1 says that the Fock represent

ation is G-covariant. Let us then see what the condition is for any 

displaced Fock representation to implement G. We have the calculation 

ilmF (U f). iImF(U f)
”f ‘V ’ " ® ^ "o(Ugf) = ® ®
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Therefore g I— >- (U^f ) is implemented if and only if the map

ilmF (Ucff) 
g I—  ̂e Wq (f)

is implemented. So for each g e G we seek a unitary operator, T^ say, 

so that Tg: f^Q and

eilmF(Ugf)^ (f) = T (f)T-%
0 g 0 g

ilmF(f) ilmF (U„f)Now, both fl— )- e WQ(f) and f I—  ̂e ^ WQ (f) , for each g e G,

are displaced Fock representations. We can apply Manuceau's Lemma

(Theorem 1.5.1) and we then obtain the result that Tg exists for each

g £ G, if and only if

f 1-^ F(f) - F (Ugf)

defines a continuous linear functional on x, for each g £ G.

Let us now denote, as in Theorem 1.6.1, by x the set of all

linear functionals on x . The subset of x , consisting of the contin

uous linear functionals, is of course defined by the space , the

Hilbert space completion of x in thenorm of x . This is a corollary of
X XRiesz's Theorem. Also, we denote by Ug the dual of Ug, acting on x 

as

(UgF)(f):= F(Ugf) for f £ x, g £ G, F £ x^.

Now it is easy to see that U^ does not define a representation of G 

since we have the calculation

(U^U^F) (f) = (U^F) (U f) = F(U,U f) = F(u, f) = (U^ F) (f) g k K g  K g Kg Kg

for k, g £ G and for all f e x, i.e. UgU^ = U^g on x^.

We remedy this by defining a representation M, of G, on x* by

M F = U* F
^ g-i

Then we have



24

(M M. F) (f) = (U .U -F) (f) = F(U U f) g ^ CT-̂  V-1 rr-1

= F(U f) = (M . F) (f)
[gk]-i

for ail g, k e G, f e t  and F e r .  Taking all this into account, our 

result is that F e x defines a displaced Fock representation in 

which G is unitarily implemented if and only if

F - MgF e *3^ for each g e G.

Moreover, if F e X.then M^ coincides with and so M can be regarded

as an extension of U to x^.

8 . The Cocycle Condition and Classification

Define a function G -+ the formula

0 (g) = F-M F where F e x̂ .F g
Then we have Mg0p,(k) = 0^(gk) - ip̂ (g) . This is called the 1-cocycle 

condition. The result of the last section is that a G-covariant 

displaced Fock representation gives rise to a 1-cocycle of G with 

values in 3^ in the representation M of G. Now we ask whether any 

1-cocyle gives a G-covariant displaced Fock representation. First, 

however, a word about 1-cocycles.

Given any group G and a Hilbert space K and a map 0 : G +■ K 

satisfying

Mg0 (k) = 0 (gk) - 0 (g)

It is not necessarily true that 0 is of the form F-M F where F liesg
either in 3^, or just outside of Thus the 1-cocylces ip̂  given above

are particular examples of 1-cocycles of G with values in DC*

We say that 0^ is a trivial 1-cocyle or a 1-coboundary if F lies

in . Two cocycles 0 and 0 are said to be cohomologous if u F 2 ^2
and 0 - 0 is a 1-coboundary.

1 2
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Now let us suppose that W and W are equivalent displaced FockFi F%
representations. Then we know that F^-Fg e 3^ . This follows from 

Theorem 1.6.1. Then we have

(g) - ^p^(g) = F^-F^ - MgCF^-F^)

Since restricted to ^  is equal to and since = 3^ for each

g e G, then we have that ^ and i|; are cohomologous.Fj F 2
Next, suppose and differ by a coboundary. Further, assume1 2

that all G-invariant functionals on x, vanish on t. Namely if M^F = F 

then F(f) = 0  for every f e x. Then we know, from the cohomology of

with that there exists a vector  ̂  ̂ with

Tpp (g) - ^p (g) = C - MgC

It follows from the form of i|;p and iĵp that
1 2

Fj-F^ - MglFi-F,) = E - MgS

from which we deduce that

F^-F^-C = Mg[F^-F2-Ç]

By assumption, all G-invariant functionals on x, vanish on x , so

F^-F^-S = O

Therefore F^-F^ = C e 3C* Hence, and being cohomologous implies

that W-p. and Wp, must be unitarily equivalent displaced Fock 
1 2

representations.

All this argument can then be summed up in the following 

Classification Theorem.

Theorem 1.8.1. If all G-invariant functionals vanish on x , then there 

is a one-to-one correspondence between the equivalence classes (sectors) 

of displaced Fock representations in which G is implemented, and 

1-cocycles of G, with values in of the form
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^p(g) = F - M^F where F £ t and g £ G.

9. The Group Representation in the Displaced Fock Sectors

The discussions of §7 and §8 have given us a tool with which we 

can "enumerate" all the G-covariant displaced Fock representations. We 

shall exploit this in later sections for various examples of G . How

ever, we continue here a discussion begun, but not completed, in §7. 

This is the implementability problem in displaced Fock sectors. We 

arrived at

ilmF (U f)
F ' g ' g O' ''gW„(U f) = V e ^ W.(f)V"l

and we seek an operator T^, say, so that

W^(U f) = V T W„(f)T"^V“  ̂F g g g F g g

and T^ is to be unitary on . Then we have the following formula for 

T :g

I'g =

Now ^ (g), for g e G, lies in in general, not in T. However, in view

of the strong continuity of f i— >■ W^ (f) , for the Fock sector, we can give 

a good meaning for W^ff) if f e Therefore we have

V o  ( f ) W Q [ * p ( g - l ) ] V - l
ilmF(f) ilm(-^ (g"l);f) (g"l)+f;^ (g"l))

= V e e e W^(f)V“^g 0 g

g 0 g

ilmF (f) -ilmF (f) F) (f)
= V e e e 9 w (f)v"lg 0 g

ilmF (U f) iImF(U f)
= V e ^ W (f)V"l = e ^ W (U f) = WL(U f)g 0 g 0 g f g
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Therefore the map g I  ̂ (U^f) is implemented by the unitary operator

This, however, does not, in general, give an ordinary group represent

ation: it defines a projective representation of G. To see this we

complete as follows:

^Im(M _J; (g"l);^ (k"l))
= V , ^ r - M  J  k 1 Fgk 0 ]̂ -l F F

ylm(i|; (g“l) (k"l))
= V ”0^-'^P " ,

-|lm(* (k))
= Vgk"o[-^k([9k]-l)]e

where we have used the fact that U is implemented in W„ by V , andg 0 g
U Ç = M Ç for each vector Ç e K. Further, we have used the unitarity 9 g
of M and the relationg

= M^(F-M^_^F) • = M^F-F = -^p(k)

If we denote by the operator V^W^[-i|jp(g ^)], then we have the 

following two results:

(1) V^WL(f)V^ = W ru f] for f e Tg F g-i F g

and

F(2) Vg is a projective unitary representation of G with multiplier

- y l m [ g " ! ] ; ^  [k]) 
w(g, k) = e ^ F

From the form of V^, we see that if g ^p(g) is continuous in g then
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ippCg) ^^(k) in norm as g ^ k, whence strongly on |^q as V
F Fdoes so already. The converse of this also holds since if V V,9 k

strongly, we have that

p , -Mli'p(g‘ !̂ 11̂
(̂ , VgO) = (f2, Mg[-^p(g l)]Gl) = e

so as g -> e, i/ĵ Cg"̂ ) must tend to O in norm. Moreover, we note that

-> for each ¥ e if and only if V^_ Y for each Y e ff .9 k 0 g 1 k 0
Using this, we arrive at the conclusion that

||i|jp(g)-i|>p(k) II = ||M^F-MgF|| = ||iPp(g“ lk) || ^ O

as g -> k. This now gives us the following theorem.

Theorem 1.9.1 (Implementability Theorem)

Suppose ip„(g) = F-M F is a cocycle for the action M of G on t ,̂F g
with values in and suppose U is the action of G on t , where M has 

been defined by

(M F) (f) = F(U f)9 g-1

for each g e G, f e t and F e x*. Further, suppose is the 

implementing operator of G in the Fock representation, , of the

Canonical Commutation Relations. Define

= Vg"o[-4p(9"')^

Then
F(1) Vg implements G in the displaced Fock representation 

Wp(f) = e ^ ^ ^ W q (f). for each g £ G, for each f £ x,

(2) defines a multiplier (or projective) representation of G with

multiplier w(g, k) = exp{- -̂ Im(i|;̂ (g""̂ ) ; ^^(k))}, and

(3) g I— >■ is strongly continuous on ff ̂  if and only if g i— v ^^(g)

is noV.njcontinuous in .

This completes the initial discussion of group covariance in 

displaced Fock representations. The results presented so far generalize
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to arbitrary connected topological groups. However, Lie groups are of 

most importance to physics, so we have restricted our attention to 

those.

Theorem 1.9.1 part (2) gives us a projective representation of G.

The projective representation appears because of the factor 

Wg(-ijjp(g ^)) in V^, and we know that the map f i— > Wg(f) satisfies the 

multiplication law Wg(f)Wg(g) = e^^™ Wg (f+g) which defines a 

projective unitary representation of t (as a group) on N g . If G is 

abelian, it is well-known [ %.] that G has as many non-trivial

classics • c4 VHu,UijplicfS tka.K cae Oikievo - kitiAficv tkg Q

For other groups, the situation is in general less clear. If G = (3+1) ,

the Poincare group in 3+1 space-time dimensions, these are trivial. If 

G = P_^(l+1), the Poincare group in 1+1 space-time dimensions, these 

multipliers are not necessarily trivial.

We pursue, in the following chapters, the problem of identifying 

the cocycles and we take various examples for G.

^  ctwci ^  C5p U J o H c
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CHAPTER 2

MATHEMATICAL RESULTS

§1. Preliminary Definitions

We have established, in Theorem 1.8.1, that we must look at 

certain 1-cocycles with values in a Hilbert space , the 1-particle 

Hilbert space. The theorems we now present are typical of Lie groups; 

we establish a relationship between the 1-cohomology of the group and 

the 1-cohomology of the Lie algebra.

Our setting is the Hilbert space on which a connected Lie

group, G, acts through a continuous unitary representation U.

We say that the function ip: G is a (continuous) 1-cocycle

of G for the representation U if ^ is a continuous function on G, in 

the norm topology on J^, and if if; satisfies the 1-cocycle law

l̂̂ (gk) = U i|'(k) + i|̂(g)9
for all g,k e G. Further, a 1-cocycle G ^ i s  said to be a

1-coboundary if there exists a vector C £ such that for each g £ G

ilj(g) = UgC-C.

We also say that ^ is a trivial cocycle if it is a 1-coboundary.

Two 1-cocycles, and ^2 ' are cohomologous if they differ by a 

1-coboundary. Namely, if there exists a vector Ç £ such that for 

each g £ G

^^(g)-^^(9) = UgC - C

The set of 1-cocycles forms a group under the binary operation 

of pointwise addition, and the set of 1-coboundaries forms a subgroup 

of the 1-cocycles. Z ̂ (G,3(̂ ) denotes the set of 1-cocycles and 

B^(G,^) denotes the set of 1-coboundaries.
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The first cohomology group of G with values in is defined by 

the quotient

h 1(g ,3(;) = zi(G,X)/B^(G,3d)

This is well-defined since the relationship defined by cohomology 

of 1-cocycles is an equivalence relationship.

The Lie algebra of G will be denoted by Ĝ . Each element X of Ĝ  

can be represented by a densely-defined self-adjoint operator, it (X). 

Indeed, we have the following relation

U ( e “ ) =

The operator tt(X) is obtained from Stone's Theorem.

One can show (see [9 ]) that if {x^,...,X^} forms a basis of the 

Lie algebra Ĝ  then the operators^ {n(X^),...,w(x^)} have a common 

dense, invariant domain on which they are defined. Furthermore, each 

vector in this domain is an analytic vector i.e. if X^ e {x^,...,X^} 

and C is a vector in the invariant demain, then there exists a t > O 

such that

n=l ]

converges. It follows, quite easily, that if X £ (3, then a vector 

which is analytic for all operators {n(X^),...,n(X^)}, is also 

analytic for tt(X).

A vector C ^ 3 C  is said to be an analytic vector for the 

representation U of G, if the function g —  ̂U(g)C is (strongly) 

analytic at the identity of G. The set of analytic vectors for U is 

denoted by ^  . One can show that is dense in sK •

A function n: Ĝ — ^3^ is called a 1-cocycle of £  for the repres

entation IT if n is linear, and n satisfies the relation

n(Cx,Y]) = TT (X) n ( Y)-IT (Y)n(x)
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with X,Y e and [X,Y] the Lie bracket of X and Y. n is a 1-coboundary 

of Ĝ  if there exists a vector Ç e such that for every X € Ĝ  we have 

n(x) = ir(X) c.

Two cocycles are said to be cohomologous if theGY' difference is a 

coboundary.

We use Z^(G^,^) to denote the 1-cocycles of the Lie algebra Ĝ , with 

values in X! / and we use B ̂ (Ĝ , X ) to denote the 1-coboundaries of the 

Lie algebra G_.

The 1-cohomology group of Ĝ  with values in is then defined as 

the quotient

H^(G,X) = z1(G,X)/B^(G,X)

§2 The relation between H^(G,X) and H ^ (G,X(^)

It is usual in the theory of Lie groups to perform differentiation 

along 1-parameter groups in order to pass to the Lie algebra. This 

"infinitesimal" method is taken over into cohomology theory. However, 

to differentiate a continuous cocycle is not always proper - but this 

can be remedied by the result which follows. It says that each 

(continuous) cocycle is equivalent (i.e. cohomologous) to a cocycle 

which is analytic at the identity. First, a result which allows us to 

prove this.

Lemma 2.2.1 [ ]. Suppose p: G is a continuous function from a

connected Lie group G to the real numbers. Further, suppose p satisfies 

the inequality

p(gk) < p(g) + p(k) for all g,k e G.

Then p(g) < c.^(g)+c for all g e G. Here p(g) is metric function 

defined on G by the formula

p (g) = inf dp (g) 
Y J



33.

and Y varies through the paths joining g to the identity, dy(g) is the

invariant measure on G. The constant c is the greatest lower bound of

p on the unit ball of G, in the metric p.

Proof

Let S. = {g e G: p(g) < j} where j is a natural number. Since 
 ̂ 00

(G,p) is a metric space we know that G = US..
j=l

Now, given g e S --S , we can find a sequence {g . e S.:m+1 m j j
j = l,...,m} such that

From this follows the calculation

p(g) = p(g^(g^'^g^)• • • )  

< p(g^)+p(g“^g^)+...+p(g~^g)

< c(m+l) = cm+c < cp(g)+c

The last inequality follows from the fact that the element g lies in 

S and outside of S , so p(g) > m in this case. This proves the 

Lemma.

We are now ready to prove the next result.

Proposition 2.2.1. Suppose : G X  is a cocycle of G. Then there 

exists a cocycle ijj ' : G ->-X such that ip* (g) is analytic at the identity 

and ijj’ is cohomologous to ip.

Proof

The function f (g) = exp(-[p(g)]2) is analytic at the identity of 

G, and is of rapid decrease with respect to the metric p (g). From this 

it follows that any integral of the type

f(k-l)^(k)dp(k)
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exists because I|ip(k)|| is continuous in k, as a consequence of T{/(k) 

being continuous in k. Further, we note that ||i(;(g)|| satisfies the 

following inequality

lk(gk)|| = ||Ugî (k)-T|̂ (g)|| < |k(g)|| + lk(k)||.

Therefore, the function ||%p ( *) || satisfies the conditions of Lemma 2.2.1, 

Hence I|̂ (g)l| < c.p(g)+c for each g e G, and it follows now that the 

integrals exist.

Now define the function il» * on G by the equation

*'(g) = f(k-lg)^(k)dp(k) - f(k l)^^k)dp(k)
G G

The measure y defined on G is the left-invariant measure which normalises 

f i.e. we have

f(k)dy(k) = 1.

It now follows, using left invariance of y and mapping k to gk, that

ip'(g) = f(k (gk)dy(k) - f (k“ )̂i|; (k)dy (k)

f(k"l)[u ^(k)+^(g)]dy(k) - f(k l)^(k)dy(k)

= \p (g) + (U^- 1) f(k l)^(k)dy(k)

J We have used the cocycle law and the condition that 

f(k)dy(k) = 1.

Now the expression f(k l)#(g)dy(k) is a vector in X ,  so we

conclude that ip' (g) - if'(g) is a coboundary, which proves that is 

cohomologous to ip.

To show that ^'(g) is analytic at the identity, we note that f(g) 

is analytic at the identity and the mapping (k,g) — k“^g is analytic 

at the identity for any fixed k e G. It follows, then, that ip ' (g) is
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analytic at the identity. This proves the proposition.

We define to be the set of cocycles of G with values

in the analytic vectors such that each cocycle is analytic at the

identity.

The set of coboundaries which are analytic at the identity is 

defined by the relation = Z^ (G,X^) n B^(G,X). We define

the corresponding cohomology group as

Corollary 2.2.1. H^(G,%) = .

Proof
Proposition 2.2.1 shows that any cocycle ip e Z^(G,X) has a 

representative ' £ Z^ (G, ) . Hence the equivalence class

[if'] £ H^ (G,X) corresponds uniquely to the equivalence class 

[^'] £ H^(G,X(jj)* This correspondence is bijective. This proves the 

result.

This establishes the relation between the "continuous cohomology" 

and the "analytic cohomology" of the group. We next proceed from 

H^(G,X^) and dn±»ed this into the cohomology group H^ (Ĝ, for the

Lie algebra G of the group G.

Suppose }p £ z M g ,X^)* Then define the function A on G, with 

values in 'Xf by the equation

A(X) = ̂  *(e^) for X £ G 
t=0 “

The derivative exists, as ip is analytic at the identity.

Lemma 2.2.1. A: G^— a linear map and A (X) £ for each X £ Ĝ . 

Proof
-t-v ) . First we show thatd tyWe note that A (X) = A (%r edt t=0

A (Xx) = XA (X) for X £ ]R. We have
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t=0
ds d , . sX.
dïï-di-'K" > s=0

dswhere we have put tX = s. Now -5—  = X and it therefore follows thatdt
A(Xx) = XA (X) .

Now we show A (X+Y) = A(X)+A(Y) . To prove this we use the 

formula

tX tY t(X+Y)+0(tZ) e e = e

for small enough t. This formula can be found, for instance, in [ .

Using this formula, we obtain

A(X+Y) =
t=0

d , , tX tY, —  (e e ).
t=0

tX tY tX tY tXNow }p(e e ) = U(e )ifj(e )+^(e ) . Writing Tr(X) for the self-adjoint
txgenerator of the 1-parameter unitary group U(e ), we obtain

^  ij,(e^e^^I = iir (X) U (e^^) if, (e^^) +U ( e ^ ) ^  if,(ê )̂

+ ^ ^ ( e ^ )

d , , tx tY. Hence —  i|j(e e )
t=o t=0

= A(x)+A(Y) .

It now follows that A (X+Y) = A(X)+A (Y) for any pair X,Y e Ĝ . This 

proves the linearity of the map A. A is also a continuous mapping of 

G i n t o X  •
txWe note also that the function (g,t) — >- Û if;(e ) is analytic at 

the point (e,0) e G xH. Hence its derivative at t=0 is analytic at 

e £ G, and this derivative is none other than U^A(X). Therefore,

g — >■ UgA(X) is analytic at the identity for any X e G, so that for each
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element X of Ĝ, A (X)  ̂ • This proves the Lemma.

Lemma 2.2.2. A : Ĝ  is a 1-cocycle for the representation it of

the Lie algebra G.

Proof

We have shown that A: is a linear map, so we must show

that A(Cx ,Y]) = TT (X) A (Y)-TT (Y) A (X) . For this we need the equations

^ad(g)Y ^ ^ ̂ Y ̂ -1 for g e G and Y e G

and [x ,y ] = ^  ad(e^) Y
t=0

for X,Y e G.

These equations can be found in C G ].

Using the linearity of the map A, we obtain

Moreover, we note thatA([X,Y]) = ^ A ( a d ( e ^ ) Y )

ad(g)Y = ^(ge^^g
t=0
Hence we obtain

s=0
^ ^y

A([X,Y]) = A(ad(e )Y)
t=0

8t3s s,t=0

Further, we have

= U(e^)U(e®^)i|^(e +U (e^^) (e®̂ )+i|; (e^)

From this it follows that

A([X,Y]) = tt(X) A(Y)-tt(Y) A(X) .

This proves the Lemma.

Lemma 2.2.3. If ^ € Z^(G,3C^) such that ^  

then it follows that ip e B^(G,]^ ).

= A(x) €b1(g,V ), t=0 ~  w

Proof

Let us remark that we have the following expression for the
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+-yderivative of ^(e ):

A  . lim<3t h

= lim O (e^) » (e^X) +,|, (e^) -ij, (e*^)
h.»0

hX
= lim U(e^) ^  ̂ = U(e^)A(X) .

h->0 "

Hence if A(X) e (G, ), there exists a vector C e X. such that—  '•(jO (Ü
A(X) = i n ( x ) C  for all X e G. We then have, from the above, that

^i|)(e“ ) = U(e“ ) .i.ir(x)5 = ^ U ( e “ )C].

tx txIt now follows that if'(e ) and U (e )Ç differ by a vector, Cg « We 

have if'(ê )̂ = U(e^)Ç+Çg. Since if) (e^) vanishes when t=0, it follows 

that if' (e^) = U(e^)Ç-Ç.

Now we evaluate if> (g) . Since G is connected, we can find elements 

Xj,...,X^ e G such that g = e -̂ ...e . Using this result, we obtain 

the following calculation

X, X^ X, X. X X.
if̂ (g) = if> (e l...e ) = U(e )̂if'(e ^...e )+if/(e

n-1 X X . X . .. X X X  
= ]] U(e l...e ])^(e )+U(e )̂if/(e )̂+if;(e

j=2

n-1 X, X. X. 1 X^ X^ X^
= ^ U (e ...e i)[U(e )Ç-Ç]+U(e )[U(e )Ç-Ç3+U(e )Ç-Ç

j=2
X X„_, X 

= U(e 1...G )U(e

^  %n = U(e ...e )Ç-Ç

= Ü ( g ) .

So for any g e G, if'(g) = U(g)Ç-Ç e B^ (G, . Hence if> is a coboundary.

This proves the Lemma.
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Remark 2.2.1. Notice that the assumed connectedness of G is 

important in the derivation of Lemma 2.2.3. We shall meet this

argument, in a more general situation, later on.

We also remark that if if/ e B.̂  (G,3^^) , then A, maps if/ into

b U g . X J .

Proposition 2.2.2. If G is connected, then A induces a canonical

imbedding of (G,%^) into . Thus A is injective.

Proof

Lemmas 2.2.1 and 2.2.2 show that A maps cocycles of G to 

cocycles of Ĝ. Lemma 2.2.3 shows that A is an injective mapping with 

kernel B^ (G, . If if/ e Z^(G,3C^) then A maps the equivalence class

of if/ to the corresponding equivalence class in Z^ (Ĝ ,3()̂ ) . This 

establishes the proposition.

It is now clear that, in general, H^(G,!fC) is determined by a 

part of - provided, of course, that G is connected. How

ever, it is not always the case that there is an isomorphic corres

pondence between the two cohomology groups. To achieve this, we must 

impose an extra condition. The following result can be obtained.

We do not present the proof.

Proposition 2.2.3 [ 4 ^ . If G is simply connected, then there is an 

isomorphism between the group H^ (G,^^) and H^ •

We are able to obtain a result similar to this, for the case 

when G is connected, but not necessarily simply connected. This 

result is presented in the next section.
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§3. Quasi-coboundaries

We saw in Chapter 1 that our interest lies in the study of 

cocycles of the form i|/p(g) = M^F-F. Here F e t , the algebraic dual 

of the pre-Hilbert space t. The completion of x is . The group G 

is represented by unitary operators in 3^ , with which the

operators agree when the are restricted to . Such cocycles 

we call quasi-coboundaries and F is called a cocycle function.

Suppose F e and that for each X e Ĝ  we have 7t(X)F e 3^^.

TT is the representation of G got by differentiating along 

1-parameter groups. is the set of analytic vectors for the

representation U. The function A^(X):= n(x)F is a cocycle for G^with 

values in In this case A^ is a quasi-coboundary for the Lie

algebra and F is, again, a cocycle function.

We define (G,3() to be the set of quasi-coboundaries with 

values in 3^. Clearly, B^(G,^) Ç Z^^(G,)(). Further Z^(G 

denotes those quasi-coboundaries which are analytic at the identity. 

The corresponding cohomology groups are defined as usual:

H^(G,X) = Zg(G,K)/B^(G,%) 

and H l ( G , X j  = 2^ X j / B ^  (G,7dJ • 

For the quasi-coboundaries for G we use the symbol Z^ (G,^) 

denote those quasi-coboundaries with values in ̂ . Again, we have 

B^(G,3tLj S (G, '  We also have

Hg (£- = Zg (£'  ̂ ■

The next proposition shows that the map A, defined in the

previous section, gives rise to an isomorphism between H^(G,3:̂ ) and

Hi(G,X. )• The assumption that G is connected, but not necessarily Q —  m
simply connected, is important in this connection.
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Lemma 2.3.1. Suppose that F e t and that R(t) is a representation 

of the real numbers in which is unitary when acting in^X* The 

following conditions are equivalent

(1) R(t)F-F € 'K for all t £ ]R

(2) there exists a number e > 0 such that for all 

|t| < e, R(t)F-F £ X,

Proof

If (1) is true, then (2) is a clear consequence. Suppose, then, 

that (2) is true. We have, writing ^(t) = R(t)F-F,

R(t)F-F = R

= R

( \ t {r ylF-R -t
2 f }

-t

Proceeding in this way, we obtain, for any n > 1,

rR(t)F-F = A(t) {i|/1—  - \p
I2";

where A(t) is a sum of operators, which is bounded when restricted 

to 3^.

Given any t £ 3R, we can choose n so that ■  ̂ < e. It follows

that for this n, i|/[— ] £ and
12^J

£ . Now it follows that, for

any t £ ]R, if/(t) £ ̂  . This proves the Lemma. 

Proposition 2.3.1. H^(G,X) = .

Proof

If \p e Z^(G,X) then there exists a i|/' € Z^(G,X^) such that

if/' (g) = il/(g) +

for some vector Ç c X  • This follows from Proposition 2.2.1. Since
Xlb is of the form ijj(g) = M F-F for F £ x , where M agrees with U when

g 9 g
acting in 'X' then we conclude that if/' (g) = M^(F+Q - (F+0 £ 2 g ( G , X J  . 

From this we conclude that H^(G,X.) = *
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If if/ e then the map A from to is given by

A (X) .= in(X)F, where F e This establishes that 2g(G,X^) is

mapped injectively into Z^(G,J^^). The injectivity follows from 

Lemma 2.2.3.

Suppose, now, that for each X e Ĝ, F e satisfies the condition 

it(X)F e ' Since m(X)F is an analytic vector for the representation 

U (and of M, as M = U) we conclude that for any n > l,ir (X)^F .

Further, there exists a number e > 0 such that for any X e G, the

series

I - ^ v (X)"f
n=l •

converges in X  f for at t e ]R such that 111 < e. Namely, for |t| < e 

we have the inclusion

elt"(=)F-F c:*:

i.e. M(e^^)F-F £ X  for |t| < g .

We now apply Lemma 2.3.1 and obtain that, for any t £ 3R and for any 

X £ G ,

M(e^)F-F £ %

Clearly we have M(e^)F-F  ̂ This follows from the fact

that ir(X)F e V  .'*£0
Since G is connected, any g £ G can be written as a product 

X, Xg = e ■ e ^ for elements X^, ...,X^ £ G . We then apply the argument

used in Lemma 2.2.3 to establish that M^F-F £ for each g £ G.

We have therefore proved that any quasi-coboundary of G, with 

values in gives rise to a quasi-coboundary of G, with values in

X  . Further, any quasi-coboundary of Ĝ  gives rise to a quasi

coboundary for G. Therefore A gives us a bijection between H ^ ( G , X J

and (G,3T ) . We have established Q —  ^ 0)
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h1(g,3<) = h 1(g,ï<) = h^(g,:KJ-

This proves the proposition.

This section shows that, provided G is connected, we obtain a 

bijection between the quasi-coboundaries of G and those of Ĝ . In 

general, we do not expect there to be an isomorphism between the full 

cohomology group of G and the cohomology group of Ĝ . In order to 

achieve our result we had to consider only certain types of cocycles. 

For a given G, there may be cocycles which are not quasi-coboundaries. 

An example is SL(2,C). One can prove that SL(2,C) has no quasi

coboundaries, but that the principal series gives rise to a cocycle 

which is not a coboundary. For details of this see [&].

We are now ready to analyse the structure of cocycles; we do

this in the next section.

§4. The Origin of Cocycles

The results which are quoted here are due mainly to Araki ["i ].
Some elementary consequences are drawn. To begin with, we have the

following.

Definition 2.4.1 ]. Let h JE)or) such that its transform

h(A) = e^t^h(t)dt

satisfies h(0) = 1 ,  1 > h(X) > O, and h(X) ^ 1 if X ^ O, and

h"(O) f O. Further, let'{x^ ___,X^} be a linearly independent basis

of G, the Lie algebra of the connected group G, and define for each 

Xj the operator

R(Xj) = 1 - U(e^^3)h(t) dt

Here, U is a unitary representation of G in the Hilbert space .
n

Next define R = ^ R(X.). It is clear that R is bounded, self-
3=1 '
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adjoint and positive. Then we have the following spectral decomposition

R = X dE (X)

-h hWe define R to be the inverse of the operator R from

[1 - E (O) ]X. i n t o ^  . D~ is the range of in ̂ . On a new 

topology can be defined as follows ||ç||̂ := ||r ^ç||. d "*" denotes the

completion of D in this topology. D“ is closure of D in the norm

; s  ||r '\||.

It can be shown that the precise choice of the function h(t) is 

immaterial. Provided that h(t) satisfies the basic demands, the 

topologies on d"*" and D~ are unique.

The spaces and D~ are dual to each other with respect to the

inner product ( ; ) o n ^ . Indeed, we have the following result.

Lemma 2.4.1 [4 ]. If Ç e d "̂ then RÇ € D~. The form (Ç;ri) for Ç

and ri e D~ can be extended to Ç e D^.

Proof

We have ||c||̂  = ||R̂ |̂|̂  = ||R ^R^||^ = ||Rg|| .̂ This proves the

first part. Notice that R is defined on a dense set D in D and is

isometric from to D • is dense in D~. We can extend R to be

a unitary operator from D"*” onto D~. Given any vector R E D  there is 

a vector rig e D'*’ such that Rrig = n. Using this result we see that 

(C;n) = (Ç;RTig) and this is bounded since | (C;RRg) I =  | (R̂ Ç;R*̂ Tig) |
< Ür '̂çII .llR^gl] = ||cl|_̂ .||ng||_̂ . This proves the duality of and d “ .

Because of this duality, we are able to extend the representation 

U of G o n t o  a representation M of G on d "*" as follows: each Ç e D"*"

defines a functional on d” and for each g e G we define with the

identification

(M 6;n) = (C;U _ n) g • ^ ig

for all n € d ” . The right-hand side is well defined, since one has
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for any Ç e *}^ that £ D~ for all g e G. Hence £ D and

since n £ D~ by assumption, it follows that £ D~ for any g 6 G.

It is clear that and it follows from this that M agrees

with U on X  •
The next two results are useful for our choices of G.

Theorem 2.4.1 C 4 ]. Suppose ip £ (G,^) that G contains an

abelian normal subgroup N. ip can be decomposed into two parts as 

follows

ip (g) = + #i(g)

where Ü is a vector in D'*'(N), the space which is constructed with 

the Lie algebra of N, and if/̂ (g) takes values in the subspace of 

vectors which are invariant under the action of N.

Proposition 2.4.1. If G contains a compact subgroup K, then any 

cocycle i|/ is cohomologous to one which vanishes on K. In particular, 

for any quasi-coboundary, we may assume that the cocycle function is 

invariant under the action of K.

Proof

i|/(k)dk, where dk is the normalised Haar measure on
K

Define Ç =

K. Ç as K is a compact space and dk is totally finite. Consider

then

ip' (g) = ip(g) + (UgC-C)

This is a cocycle which is cohomologous to ip. Further,

i|;' (k) = Tf/(k) + (Ü C- 0

= i|/(k) +

= i|/(k) +

K

ij/(kk^)dk^ - i|/(k̂ )dkĵ  - ip (k) dk.
K K K

= i|/(k) - t̂(k) + i|/(kj)dk^ - ip(k̂ ) dk^ = O
K K
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We have made use of the cocycle identity, the normalization of dk on 

K and the left-invariance of dk. This proves the first result.

If if/ is a quasi-coboundary, if/ (g) = M^F-F, say, where F e D"*", 

then the above result implies that there exists F^ £ such

that M^F^^-F^ vanishes on the compact subgroup K. This 

proves the second assertion.

A useful result, which we shall need, is the following. 

Proposition 2.4.2. Suppose that G satisfies the conditions of 

Theorem 2.4.1. Further, suppose that one element of the Lie algebra 

of the subgroup N can be represented by a self-adjoint operator whose 

spectrum is bounded away from O. Then the space D"̂ (N) = *3^ and the 

quasi-coboundaries are all coboundaries.

Proof

Suppose X e N, the Lie algebra of N, has the property that its 

representative tt(X) has spectrum in]R\(-ô,E) where <S,e >0. Then we 

have

R(X) = 1 -
+-yU(e )h(t)dt = 1 - e^t'^(X)h(t)dt

=  1 -

]R ]R\(-6,E)
e^^\i(t)dtdE(X)

Here we have used the spectral decomposition of ir(X). Hence

rR(X) = 1 - h(X)dE(X)
3R\(-6,e)

Now on]R\(-ô,e), h(X) is bounded above by a number c < 1. Therefore 

R(X) > 1-c > O. From this it follows that R > 1-c > 0 and so R is 

bounded away from zero. Moreover, R is bounded above, by 2. It now 

follows that r”^ exists as a bounded operator on']^, from which we 

obtain the following sequence of inequalities



47.

IU I I +  = ÜR^^II < C . l ld l  =  C . | | r " \ ^ ç || < C .C ^ . I lR ^ d l  =  c . c j k | |  +

where C is the bound of R^ and C|- is the bound of R It follows 

that II "11̂  and ||'|| are equivalent norms, and so D"̂  Hence all

quasi-coboundaries are true coboundaries. This proves the 

proposition.

As a direct consequence of this proposition, we have the

following result concerning the Poincare group Q^(s+1) for s+1 

dimensions of space-time, with s > 1.

Proposition 2.4.3. For any representation of (s+1) on the one-
d®p

/p2+m^
5 s d^Pparticle Hilbert space OR / ----  - ) where m > O is the mass, all

cocycles are coboundaries.

Proof

/^(s+1) contains the space-time translation subgroup 3R^^^, 

which is normal. Therefore any cocycle is of the form

i|/(g) = + ^^(g)

where 0 e D^QR^"^^) and ^^(g) takes on values in those vectors invariant
s+1 9 s dSpunder the action of 3R . In I, OR , - ■ ■ — ) the only such vector is

/ p2+m2
the zero vector, so ipj(g) = O. Hence ̂ ^g) =

Since m > O, the time-translation generator / p^+m^ > m > O and

so the conditions of Proposition 2.4.2 are obtained. It follows that

D'*’0R^^^) = L^OR^, — -4 . and this establishes the proposition. 
î p2+m2

A further result in this vein occurs when the physical theory 

we look at only contains "hard photons". Namely, the mass m = O and 

the energy |p| > w where o) > O. In this case we again apply the 

Proposition 2.4.2 and find that all cocycles are trivial.

The last few results show that under certain conditions one only 

obtains Fock representations of the C.C.R. Moreover, we can see that 

cocycles can only occur when the mass is zero and photons of low
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momentum are allowed i.e. only in the presence of the infra-red 

problem do we hope to see other representations of the C.C.R. This 

is the famous problem of obtaining an infinite number of photons of 

low energy in a given state, thus causing a "condensate" to occur.

In the succeeding chapters we will see that the dimension of 

the momentum space is also an important factor in deciding whether or 

not we obtain non-trivial cohomology.
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CHAPTER 3

Cocycles and Representations for the Poincare Group and its subgroups

“I" 't'§1 The space D for P ̂ (s+1)

A ^We consider the Poincare group P^(s+1) in (s+1) space-time

dimensions, for s = 1 and s = 3.

As a result of Proposition 2.4.3, we may restrict our attention to

the massless case: for m > O, the cohomology is trivial. We consider
2 sonly irreducible representations on the Hilbert space L OR , ^ ) where 

s = 1,3 and w = |p|. When s = 3 we can define both zero-spin and non

zero spin representations on the same space, and this allows us to solve 

our problems more easily. In each representation the translations are 

represented by

ia w -ia.p , ^
(P) = e

where a = ( a ^ i s  the translation.

All our representations, as already remarked, are irreducible, 

and no P^(s+1)-invariant vector, other than the zero vector, exists in 

5—E:) ̂  From this remark, we may deduce that any cocycle of 

P^(s+1) in the above representation is a quasi-coboundary. This is 

because of the result contained in Theorem 2.4.1. Our first result is 

then expressed as: H^(P^(s+l) ,X^) = H^(P^(s+l) X  ) *

Before we proceed further to the calculation of H^ (P^ (s+1) , we

construct D^OR^) by deriving a sufficient and necessary condition for a 

function to belong to d '^OR®). Moreover, we show that all cocycle functions

of belong to D OR^)•
Our choice of the vector space t, over which we build representations

of the C.C.R., is governed by the condition in Theorem 1.8.1, which states

that all P^(s+1)-invariant functionals must vanish on x. In the
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coordinate space version of the representation, these (s+1)-invariant 

functionals are all constants so that in momentum space these functionals 

take the form

F = c.6(p) where c e ]R.

If f e T then we require (F;f) = O and this gives us (6,*f) = 0, namely 

f(0) = 0 .  A further condition on T is that it must be dense in
|S,
w

Now we must choose a candidate for t . We nominate the space

j) Q = {wf: f e ĉ )0R^) K  The tilde denotes the Fourier transform. From
~ s d^pthe definition of the space it is obvious that <2)q ‘=L^0R , ^~)

and it is not hard to see that the unitary representation of P_^(s+1)

maps into c£)q - Another important property is that is dense in 
, s d®pL OR , ^~) . It seems that this is known, but the proof is not to be

found in the literature, so we present it here.

Proof. Since = {f: f e £) } is dense in L^ÛR^, d^f) it follows that
/— ~ ~ ~ 0 s d^p{/ü)f: f e JDl is dense in the space L^ÛR / —^ )  . Hence we have that

L^OR^/ d^p) n L^OR^, ~ ^ )  is dense in L^QR^r ~ ~ )  •

Now suppose that h e L^OR^/ n L^OR^/ d p) and that

Lemma 3.1.1. The space is dense in L^OR^, —;;;=)

h(p)g(p)-^ = o

for all g e Because g = wf with f e we obtain

h (p) f (p) d p = 0

for all f E ^  , and this implies h = O, since ^  is dense in L^OR^, d®p) 

It must follow that ^ q is dense in L^ÛR®,_______________________ _
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Having made a choice for t , we turn to the construction of the 

space D"̂ .

The space can be constructed from the Lie algebra of the space

time translations. This follows from Theorem 2.4.1. We obtain D"** by
-hcompleting the range of the operator R in the topology defined by

1! !̂!+==

where R is defined by

n
R = I R(x.) 

j=l ]

Here, is a typical basis element of the Lie algebra, and R(X^) is 

defined by

R(Xj) = 1 -
tx.

U (e J)h(t)dt.

The choice of function h is immaterial, provided it satisfies the 

requirements of Definition 2.4.1. We may even relax the requirement 

h e J[)OR) and ask for h e *S(IR) . Let us choose

h(t) =

This means that

e^^“h(t)dt = for a e H1+0^
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Using this integral, we find 

where $(p) is a function with

2 < $(p) < 4

From this it follows that F is an element of d '*' if and only if

( .J 1+0)2

Hence we are justified in calling F a function as we have 

~  ? _s  wd^pD = L^CIR ,  ÿ) s = 1,31+w

This constructs the space D^.

Let us note that if F e and F is a cocycle function giving rise 

to an analytic cocycle, we have the relation

w^F ̂  L^OR^, — =) for n > 1

from which we deduce

0>|F(^^Sp <  O O
, 1+0)2 D a]R

i.e. F e D^. It is now apparent that we may refer to a cocycle function 

as coming from either d "*" or x^, the two coinciding for cocycle functions,

§2 The Free Wave Equation

Now we present results concerning the free wave equation, and point
d^pout how elements of L^OR^, — ^ )  can be identified with Cauchy data for 

the free wave equation. The function f(3c,t) defined by

(̂ ) ‘ (f) y  ^f(x,t) = (2ir)
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we obtain
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s

f(x) = j.

and g(x) = ^. ( 2 i t )

where f (x) = f(x,0) and g (x) = g(x,0) and g(x,t) = ^(x,t) .

It is quite clear that f and g are real-valued functions.

Using the functions f and g, we can recover the corresponding (f) as 

follows

(w(p)f(x) - ig (x) }e^— *^^x

In order to make these formulae rigorously true, we may choose f 

and g as follows:

(1) f e ĉ OR^) and g e <^QR^) when s = 3

(2) f e c2)0R) and g € OR) = : 0 e ^  OR) } when s = 1

Here we assume and cî̂ g to consist of real-valued functions. Hence, 

to each we associate a pair from OR̂  ) OR^) (when s = 3) or a

pair from jDOR^) ® c£)gOR^) (when s = 1). In either case, we complete 

the spaces in the topology given by the inner product

<0j;02> = { f̂  (x) (yf^) (x) + g^ (x) (y Ig^) (x) }d®x 

{f« (3£)gj (x) -f 1 (x) 92 (25.)+  ̂ _  X _  ^  -

I5
where 0^ = f% @ g^, & = 1,2, and y = (-A) . One can easily compute the 

equality '

-Im((J)ĵ ;<|)2) = lm<0^;02>

where (f)̂ corresponds to 0^, & = 1,2.

It is through these formulae that we identify elements of
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of Or / ^ ) with Cauchy data of the free wave equation. We do the

same for certain cocycle functions.

§3. Cocycles for P  ̂(1+1)

Now we take the special case of s = 1. It is in this context that 

the first cocycles were seen IXO], in this case, it is easy to show 

that there are non-trivial cocycles. To classify the cohomology is not 

so easy, and it is only possible to classify a part of this cohomology.

The representation space is L^OR, -^-) and the unitary action is 

given by

Po

ilPlag -ipa _
(U(a,A)f^(P) = e e f (A Ip)

where a = (ag,a^) and A~^p is the space part of the vector A“ ^

We know that (P^ (1+1) ,ÏĈ ) = (P^(l+1) ,^^) .

It follows from Proposition 2.3.1, that we need only check

P o = i f  I

Awhether a function gives a quasi-coboundary for the Lie algebra p ^ (1+1)
+of P^(l+1), since we have

h 1(p|(1+1),X) = Hl^pf(l+1)/%J = h 1(p^(1+1)

Theorem 3.3.1. (P^(1+1),^  ) f {o}

i.e. there exist non-trivial cocycles for P^(l+1).

Proof

The Lie algebra generators are 

P, |p| and |p| ^

They can be defined on a dense set. We choose the space

[^ 0  u si)^]

where C ] denotes linear span, and where S is the sign operator.

Let us consider now the set If 0 e ^  and 0(0) O then
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0 ^L^OR, ~|^) • Moreover, we have p0 e <P q , |p|0 e s£)g and ] p | ^  e S ^ g  ,

From this it follows that (p^ (1+1) ,’JC ) f {0>. Therefore, fromy + Ü)
the remark before the theorem,

h1(P^(1+1),’5^) 5̂ {0 }

This proves the result.

This theorem merely tells us that there are non-trivial cocycles.

We will see that there are more cocycles which are not equivalent to those 

given by functions in ^  .

Suppose, now, that 0 £ ® ^ g ^  where the subscript r refers to

the reality of the functions involved. Then we can define

0 } = [#(x)02(x) - n(x)0 ^(x)]dx

where 0 is the quantum field at time zero, and H is the canonically 

conjugate momentum at time zero, and

0 = ® -^Or-

The mapping given by

0 — » W(0) = expi{#,0}

defines a Weyl system over ^ ^  ® *^or*

Now consider the set

and the direct sum LJ “ ® ^2  ̂*^r ® r

We have the following useful result

Lemma 3.3.1. The map 0 {^,0) defined by

2 ,6} = [(5j(x)02(x) - 52(5')0i
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C# ~ ^1 ®  ̂ ^ I r  ® ^r- 9 = 6 © 6- e JD © $) defines aC - / J . Z  x r r  1 2  r or
real linear functional on c3Ê  © which is not continuous in the inner

product structure on <f) ©r or
Proof.

The map is clearly real-linear. We prove the non-continuity as 

follows.

To each Q  ® associate a function in ̂  by the mapping

The same mapping takes «5D̂  © ̂ O r  a dense subset of ÛR, .

Using this mapping, it follows that

= lm(g;e)

The inner product structure on ® ^ 0 r  unitarily equivalent to that

on <= L^OR, . Hence 0 — >- {^,0} is continuous in the inner product

structure on ® ^ 0r only if the map 0 — >■ l m (^;0) is

continuous in the inner product structure of OR, . Because in

general ^  e , and q0  9̂ OR, , this mapping is not in general a

continuous mapping. Therefore 0 — > ,0} is not, in general,a continuous

linear functional.

This proves the result.

Corollary 3.1.1. 0 — > e^^^'®^W(0) defines a displaced Fock representation

of the C.C.R. over ^ ® ^ 0 r *

Lemma 3.3.2. The functions F defined by ------------  a

[ "  h Î

0/2
F^(P) = |ln t It I for |p| < 1

-r.2
= e ^ (p2-l) for |p| > 1

for O < a < 1 define cocycle functions for P_^(l+1) and they give rise to 

displaced Fock representations of the C.C.R. over the space ̂ ^ . Moreover, 

F^ is inequivalent to any cocycjle function from ̂  . ^o(



57

Proof.

If 9 e &  Q then 6 (p) = p0^ (p) with 0^ eS5. Then

a/2
(F ;0) =
a In

ipiji
m j

_p2e P (p -1) dp

|P|>1
whence we obtain

where c^ =
p >1

e - P % p 2- l ) A  and

=
1-0/2 dp'

U p I > i
sup p £rn— j

b i s i  1̂ 1

/2l

Moreover, |p|F (p) is square-integrable with respect to the measure -|̂  , and 

this implies that pF^ (p) is also square-integrable with respect to this 

measure. It is easy to see that

p| ̂ F^ , p^F^ £ l2 Or, 1̂ ~) for n > 1a a

Also we have

dF ''c, - | a n
O .

1 .2 - ^  M-) for p < 1

and this is square-integrable with respect to the measure -j^ . Therefore 

we conclude that

This is enough to show that the functions F do define a displaced 

Fock representation. Clearly, F^  ̂ OR, and if f £ oD we obtain

SO that the displaced Fock sectors defined by f £ o D  and the F^ are always 

inequivalent. This now establishes the lemma.
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Lemma 3.3.2 says that there are more cocycles for P^(l+1) than 

those defined by elements of &  .

Proposition 3.3.1. Suppose F is a cocycle function which defines a 

displaced Fock representation

Wp(f) =

over Q c l2 ÛR, ^  ) , Then F is equivalent to a cocycle function which

is analytic at p = O if and only if F corresponds to Cauchy data

G e ^ i r  r ^^^ch defines a displaced Fock representation

0 — > ê"*-

over ® . .r Or

Proof.

Let us assume that F is already analytic at p = O. If not, and 

F^ is analytic at p = O with

then

F-Fa = f

SO that f corresponds to Cauchy data in the Hilbert space completion of

<© r and this defines a continuous linear functional on S)r Or r or
which means, ultimately, that F and F^ define equivalent displaced

Fock representations over ® ^ ^ ^ .  This is just a reflection of theirS) ® ^r 0
equivalence in the momentum-space formulation.

Using the assumed analyticity at p = 0, let c e (J with

F(0) = c

There exists a function f e ^  with 

F(0) = c = f (O)

so F - f € l2 OR, 1̂ )  , whence F and f define unitarily equivalent displaced



59

Fock representations. We write

F = f + fi

with f2  ̂ B ÛR, I ̂ 1 ) • Using the argument at the beginning of the proof.
we assume that we also have

F € JD .
Now define and by

T ( p )1 ̂  2p

and

^  (P) =

The above formulae provide the inverse to the mapping

® ^2 (P) + i^2 (P)

Through this, we associate F e oD with ^  @ ®

M '  ■■■ '

F = f + f,

If F  ̂ ^ , but F-f e l2 Qr, -p̂ i j with f e ^ , then we have

1

dpwith f^ £ OR, ) . If f̂  corresponds to Cauchy data 0 in the Hilbert 
space completion of we obtain that

F corresponds to ̂  + 0

This proves one direction of the proposition. The other direction 

is proved quite easily, and requires only a slight reversal of the 

arguments we have used.

The reason for picking out ® is that any function from this

space defines a localised automorphism of the local algebras of the 

quantum field in two dimensions of space-time [%0] • Moreover, any localised 

automorphism, which is defined by a displaced Fock representation, can be
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defined in terms of a function from the space < S  ©  « ©  .Ir r
Proposition 3.3.1 says that that the group of cohomology classes, 

defined by functions analytic at p = O, is isomorphic to ]R̂  as an abelian 

group.

't*§4. Cohomology for P ^(3+l)

In this section we prove that (P^(3+1) ,K) = {o} i.e. the 

cohomology is trivial. We do this for massless representations for the 

cases of discrete and continuous spin. The case for space-like represent

ations (also known as representations of imaginary mass) is dealt with 

in Chapter 4 of this thesis.

Let us consider discrete spins first. For this we need the 

following result, due to Redheffer [24-]. Indeed, we quote a modified 

version of Theorem 2 of [%(̂ ], suitable for our purposes.

Redheffer's Theorem. Let K(p) > 0  for p e (O, “>) and suppose that K and 

u satisfy the requirements

lim K(p) = 0 ,  K'(p) > O, lim inf u(p) = 0  
p->0 _̂ p-*»

Further let r > O be a constant and let 

|u'(p)I^p^^^K(p)dp < “
O

Then it follows that

Iu'(p)I^p^^^K(p)dp > rI Iu(p)I^p^K'(p)dp 
o ■'o

We call the last inequality Redheffer's Inequality. A corollary of 

Redheffer's Theorem is the following result, which we will have occasion 

to use.
Corollary. Suppose u, K, r are as in Redheffer's Theorem, except that 

we do not assume

lim K(p) = 0  
prHD
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Assume that there is a function K ̂ which does fulfil all the requirements 

of Redheffer’s Theorem and that,in addition, we have

K(p) > Kj(p) > O and Kj(p) > K'(p) > O

Then

lu'(p) P p  ^K(p)dp > r |u(p) pp^K^ (p)dp
•’o

Proof

|u' (p) I (p) dp > |u' (p) (p)dp
' O ■'o

Now apply Redheffer's Inequality, and we obtain
.00

|u'(p)I^p^^^K(p)dp > r Iu(p)I^P^KJ(p)dp

|u(p)Pp^K' (p)dp

The last inequality follows from the fact (p) > K ’ (p) > O by assumption. 

This proves the corollary to Redheffer's Theorem.

Having prepared the ground, we may begin the work.

Proposition 3.4.1. Let U be a strongly continuous representation of 

P^(3+l), in a Hilbert space which corresponds to mass zero and non-zero 

discrete spin. If F is a cocycle function with

^p(g) = UgF-F ^  for all g eP^(3+l)

then F eTC , and hence the cohomology is trivial.

Proof

Given we can find so that is a coboundary and is

analytic at the identity, with values in*^^, the analytic vectors of U.

Now take and find which vanishes on the compact subgroup, SO (3), 

of p|(3+l). Using the formulae of Proposition 2.2.1 and Proposition 

2 .4 .1, we see that is analytic at the identity and vanishes on the
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subgroup SO (3). of P̂ (.3+l). . Hence we may assume that F is such that 

already satisfies the requirements.

It is shown in [ ̂ ] and that we may realize as L^ÛR^, ,

and in this case the generators of the rotation group are given by

Jl = -i (£x V) ̂  + S

P2

J 3 = -i(£xv)3 + p ; ^ s

where p = |pj and S is a number. Since we assume non-zero discrete spin, 

we have that

, 2n+l , ,S ^ { n ,  — 2— : n e æ, n ^ 0}

Since ijĵ vanishes on the compact subgroup of rotations, we obtain

so that JF = JlF  ̂ =

J2F

A small calculation shows that p.JF = pS£ = 0 .  Since S ^ O, it follows 

that pF = O and this means that

F(p) =

Applying to F, we have that KS6̂ (p) = O, and this means that k = O, 

since S / O. It follows, then, that F = O.

The statement of the result is now seen to hold, so that the 

Proposition has been established.

Proposition 3.4.2. Let F be a cocycle for the irreducible representation 

U of P ^ (3+1) which corresponds to mass zero and spin zero. Then F e 

the Hilbert space of the representation, and so the cocycles are all 

coboundaries.
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Proof.

The preliminary remarks of Proposition 3.4.1 apply also to this 

case (they are, indeed, true for all connected Lie groups), and so we 

assume thatthe cocycle

^L(g) = U F-F t g

obeys the necessary requirements.
d^The Hilbert space is L^OR^, -j-̂ )  and the generators for

rotations are

Jg = -i(pxV)g 6 = 1,2,3

We require that

JgF = O 3 = 1,2,3 ,

From this it follows that F depends only upon p = |£| .

The generators for space-time translations are the multiplication 

operators Pi,P2fP3fP, and the Lorentz boosts are given by

If X represents any one of these generators, we have that

X^F £ TC , the analytic vectors :of U inlR[, for n > 1. In particular, we Ü) “
have

p^F Çl^OR^, -7̂ )  for n > 1

and this implies that lim F (p) - O.
p->oo

Since F depends only on p, it follows that

Moreover, ^ ^ F  ^L^OR^, ĵ y) for 3 = 1,2,3. Hence
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i=i 1e 1

= 47T |F'(p) l^pf.p.dp

Now apply Redheffer's Theorem with K(p) = p. All the requirements are 

fulfilled, as can easily be seen, and we obtain, with r = 1,

I F' (p)I ^p^.p.dp > I F (p)I^pdp = |f(p)|^p^^

It now follows that

F(£) 2

Since the left-hand side is finite, so is the right-hand side, and it 

follows that F e (R^, -j-̂ ) .

We see quite readily, now, that the Proposition has been established, 

Now we consider the case of the continuous spin representations. 

Proposition 3.4.3. Let U be a strongly continuous unitary representation 

of P^ (3+1) on a Hilbert space 1%, which corresponds to mass zero and 

continuous spin. Then, if F is a cocycle function with

'l'p(g) = DgF-F £

it follows that F e ^  and hence all cocycles are coboundaries.

Proof.

Again we assume that F is such that has all the properties we

need.

The space TC can be realized as L^ (IR̂ ; 2^; y ^ )  , 

where = { (a^) : ne  Z, a^ £ * and I |a^l^ < «>}. The inner product i 

given by
n=-

(f;h) = I f(£,n)h(p,n)
n=-oo |£ |
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In this space, the generators for the rotations are 

Jl = -i(pxV)J + S

J2 = -1 (PX^)2

P3Jq = -i(pxV)_ + — -— S ̂ 2 p+p^

The operator S is a matrix operator, operating in i.e. on the variable 

n. S is given by its matrix elements

®nn- =

and a is a number, with

a = 0 for a single-valued representation 

a = ^ for a double-valued representation.

The Lorentz boosts are of the form

= iP̂ g + <E ’‘0)g

where 3 = 1,2,3, and 0 is a vector expression which acts on the 
&2_variables, and contains S, and T^ and T^, which are the generators of 

translations of the two-dimensional Euclidean group. The actual action

of Ti and T2 is not relevant to the analysis which we present, so we omit

expressing it. Details can be found in .

We obtain, as usual, that

JgF = O i.e. (JgF)^ = 0 , n e 2 Z ,  3 = 1,2,3

and ^gF € K  i.e. (  ̂ 3 = 1,2,3

It follows that £. JF = O and this implies that 

p SF = 0  i.e. p(SF)^ = O J n e E
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Now, if a = Î5, this means that

P I = 0  n €  S
n ' = ^  ^

from which we obtain the result

p(n+îs)F^ = 0 n £ Z5.

Since n+h ^ O when n £22, it follows that

pp^ = o

g
and, thus, that F (p) = k 6 (p) with k e t n T  n r *  n

Applying to F, we obtain that

<n (n+4) 0 = O

and, since n+h / O for n e Z, it follows that = O, n £ 7L, This

means that F = 0  and hence F = (F ) = 0 .  n n
Now assume a = O, and in this case we obtain from

p(SF)^ = 0 n e 7L

the result

pnF = 0  n £ En

If n ^ O, we obtain F^ = with £ (C, and applying to F we obtain

(J F) = -i(pxV),F + (SF) = 0  n £ EI n  i n  n

For n ^ O, we have -i (pxV) ̂ F^ = O so that

ic^nd^) = O for n O

and this means that = 0 when n ̂  O. However, when n-= O we obtain the

result that (SF) g = 0 and this implies that (J^F^g = -i(p%V)gFg = O 

for 3 = 1,2,3. Therefore Fg can only depend upon p = |p|. We write
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F(p) = u(p) (6 )On

i.e. F (£) is equal to a scalar function u, depending only upon p = |p|, 

multiplied by the vector the vector with zero in all entries,

except for the entry 1, where n = 0 .

Since ^^F £ ̂  for 3 = 1,2,3, we obtain that

p*i.F e X

where p = P/|p| . From the form of ^  = ( , it follows that

P.^^F = i (p.V)F, and since F (£) = u(p) (6^^), we obtain

i - i j  = Ip («o„>
The operator £-_5l is diagonal with respect to the variables, and F 

consists of only one component, so we obtain

r
r = |u'(p)| -

IE.

Using Schwartz's inequality, we obtain the result

|p *3j ’P =  | p * l _ F p ^ =  |u’( p ) | ^ ^ ^

d^p ^ d3p
lEi

since ^^F e ̂  for 3 = 1,2,3. Further, we use Redheffer's theorem and 

obtain, as in the case of zero spin, tKctt

|u' (p) |2p2 > ! u ( p . p f  = p(p) 2

Hence we obtain that, for the case of continuous spin,

l l p p s  I  < “6=1
The proposition is now seen to be true.

This last Proposition completes the discussion of the massless 

cases. In each case, we have shown that the cocycle function is actually 

an element of the Hilbert space, so that the cocycle is always a coboundary 

This means that, in each case, the cohomology is trivial. Therefore the
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only representations of displaced Fock type are the Fock representations, 

up to a unitary equivalence.

We now proceed to exhibit a case of highly non-trivial cohomology 

for a subgroup of the Poincare group.

§5. Non-trivial Cohomology for a subgroup of P  ̂(3+1)

The subgroup which we study will be called G. It consists of

1) the space-time translations

2) the rotations about the p^-axis

3) the boo^Stsalong the pg-axis.
fOf course, we choose a massless representation of P_^(3+l), and the spin 

is discrete. This representation is restricted to G. The fact that G 

has only one Lorentz boost is highly significant. First we consider the 

spin-zero case, and then use this to give us answers for non-zero spin.

Let = {p e < P < and p^ = p^+p^ < where

{e^: n £ u} is a sequence defined by recursion, as follows:

_ n 2
e, = 1 and E = e E (n > 1)1 n+1 n

{j : n £ u} gives us a sequence of cylinders. All these cylinders have 

their axes on the pg-axis.

Now define a sequence of functions {f^: n e Xj} as follows

f^(£) = 1 if E  £

f (p) = O if p 4 J for n £ W.n —  n

WithJ^= L^OR^, y-y) , we obtain f^ E X  n £ U. Therefore
o q d^p{f : f = f /IIf 11}'is an orthonormal sequence in L OR , tiT) • The n n n " n" |£|

orthonormality arises from the disjunction of the J^.

Define a function f as follows

CO
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It is easy to see that [|̂ | = <». Moreover, f (£) is finite for each 

£  £ R^.

We write

for (a,A) £ G. Therefore, if R is a rotation about the pq-axis, we obtain

(Uĵ f) (£) = (P) = f(R” £̂) = f(£)

This is because the individual functions f^, n £ R, are all rotation- 

invariant. Hence

K

for all rotations R. Therefore, f is a rotation cocycle.

Now consider the Lorentz boosts in G. These are the matrix family

i L =

coshX O O sinhA

O 1 0  O 

O 0 1 O
sinhA o O cosh A

: A e R

We write for the representation of an element, L, of the boosts.

The boosts in G are a one-parameter subgroup of G, parametrized 

by X £ R. Therefore {U^: L is a boost in G} is a unitary representation 

of R  in X , and to show that f is a cocycle function for the boosts, we 

need only show

for the parameter X e (—6 ,6) where 6 > O. This is the implication of 

Lemma 2.3.1. Moreover, we need only show that

U^f-f £^J^ for X e (-6,0]

Since, if ^(X) = U^f-f e , it follows that
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MX) e Je if and only if e X

If X e (-6,0] for some 6 > 0, then

L’ lp = P 2
PgCoshaf|p|sinha

where a = -X > O.

Now we calculate a condition which will prove that f is a cocycle 

function for the boosts. Indeed we have the following

n=l m=l

n=l m=l L n m n L m

We have exploited the fact that f e jC*' for n e R. The functions f andn ^ N.» n
U_ f are real, so we obtain L n

||f-a^f|P= 2 I d  - I (V-ü^fj}
n=l m=l

Our task is now to prove that the right hand side converges. A problem

we encounter is the evaluation of the cross-terms (f ;U f ). If L isn ll m
represented by a parameter X, and X e (-6 ,0] for a sufficiently small 

6 > 0 , we might expect that the contribution to the sum

m=l

is due only to the overlap between the cylinder and a part of itself, 

and the overlap between and a part of which has been shifted.

This can be arranged, as we now see.

If L is represented by X e (-6 ,0] and a = -X > O then

(Uj.f̂ ) (£) =

= f-tPl'Pz'PsCosho+lgjsimha)
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Under the action of this L, the base of given by

{p.* Pj^^P^ £ ̂n+1' ^3 ~ ̂ n+1  ̂ fs shifted so that it becomes the set

{£= p 2+p2 £ P3 = ana

cA+1 ' En+iCosho + (eZ+i+s2)^sinha

where O < s = (Pj+p^) < e .

Similarly, the base of given by {p: P^+P^ £ ^n+2' ^3 ^ ^n+2^
is shifted so that it becomes the set {p: p?+p^ < __ p_ = E' A  and—  ^2 = n+2 n+2

^n+2 = En+gCoshG + sinha

where t = (Pj+Pj) < ^n+2 '

We would like 6 > O so that if a = X and A e (-6,0], then

=A+2 ' =n+l =A+1 " 'n

for every n e R. Choosing O £ 6 <0.3, this is seen to be true (after 

some calculation, of course). Under these conditions, we obtain

r n+2

m=l
sds

n+L
dp3.(p§+s^) ^.(l|fn - l ' W )

'n+1

-1

+ 2tt
'n+1

sds dPgfPg+sZ) ^l|fj| 2
n+1

> 1-2TT
'n+1 E'

sds
n+1

dPg(p§+S^) ^
n+2 n+1

This inequality arises from the fact that Hf^+i < and so

f 11“} < ||f , and a little arrangement. It now follows that

f-U f|l^< I 2ir 
^ n=l ^

n+1
sds

r-n+1

E
dp3 (p2+s2)-‘̂ |fJ|-2

n+2 “n+1

We obtain, after performing standard integration and seme routine estimation.

f II ̂  > TTÊ  (n^-0.5) n" = n+1
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and

n+1 E 'f n+1
sds dp3(pg+s^)

n+2 n+1

The last estimate depends upon taking a fine approximation, and is spoiled 

when the estimate on is too crude. We take the estimate

^n+1 = ^^+2 (cosha+i/^ sinha) .

h(a) is a function of a, and is continuous in a, and lim h(a) = O, and
a^O

h(a) is bounded on R.

Combining all these estimates, we obtain

n=l (u —0.5)

and this proves that f is a cocycle function for the Lorentz boosts. 

Now we come to the space-time translations. We have

lll£|f|P= I lll£lî„IP
n=l

= I
n=l

= I
n=l

P
n
n+1

sds
n

(p2+s2)^dp. -2

'n+1

< In=l
n+1 1-2

t» e
= I n+1 (e -e 1-2

n=l n n+1 " n

oo en+1 n n+1 = I = c
n=l 2e^ , (n^-0.5) n=l 2(n2-0.5) n+1

where c is a constant number in R. From this calculation the following 

estimates are obtained
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i i i E r ^ i p =  i i i i E r ^ i i z =  I  (( | p | ^ ^ ) . i i f  II-z
n=l n=l JJ lEl ^n

and when £  e for any n e 3ST, |£| < [£[^ for all m e R, so that we

obtain

IIIe I ^ll^l|||p|f||^<c for all m e R.

MDreover, we also have

||p“f | P f  lllprfll^f ll|p|f|d; o

for all m e R, and j =  1,2,3. It now follows from these estimates that 

||i-e^î|| < »

where ^  = ( |£| ,£) is the generator of space-time translations, 

a = (ag,£) is any translation in R^, and ̂ a  = |£| a^ - £.£.

This establishes that f is a cocycle function for the space-time 

translations.

Any element of our group G can be written as g = (a,LR) where 

a E R^, L is a boost in the pg-direction and R is a rotation about the 

Pg-axis. Then we have the following sequence of equalities

f-U f = f - e ^ U _ U  f g L R

= & - e ^ U ^ f

= f-e^^f+e^^[f-U^f]

and these establish that f is a cocycle function for our group G.

Having exhibited a non-trivial cocycle function, and hence 

constructed a cocycle, for the case of spin equal to zero, we turn to a 

construction of a cocycle for spin different from zero.

We write Fg C|£| = f (p) • F is regarded as the function f in

polar coordinates. In these coordinates, the generator of rotations about
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the Pg-axis is, for spin S (not necessarily equal to zero)

S nJq = fP X V) - + S = -i-^ + s
 ̂  ̂ 9<|)

where S is a number. This is the discrete spin case, and was mentioned 

in Proposition 3.4.1. The representation space is still L^OR^, 7-^).
Ip I

Now define

Fg(|p|,^,8) = e"̂ '*'̂ Fg(|p|,(f),0)

Then we have

S 9^3

because Fg is actually independent of <{), the angle of rotation about 

the Pg-axis. It follows from this that

e^^^SF = F S S

where (j) parametrises the rotations about the pg-axis, and so

-  "r^s = °
swhere U is the representation of G for spin S, and R is a rotation.

Then we obtain the following

Fg - UgFg e for all g £ G

The value of S can be any element of the set {n, n ez). If

z £ (f, then it follows that

Fg - zFg X 7 C  only if z ^ 1 .

Therefore {zFg: z £ C, z ^ o} is a collection of cocycle functions such

that any pair, corresponding to different values of z £ C, give 

inequivalent cocycles for our group G, for the given value of spin.

When the spin is integer—valued, the cocycle functions give rise to 

displaced Fock representations of the C.C.R. which are inequivalent



75.

amongst themselves, and which are not equivalent to the Fock 

representation. This result is summed up in the following theorem.

Theorem 3.5.l(j^j^et G be the group defined in this section. Then

H^(G,X) {0 }

i.e. the cohomology is non-trivial. This is time for all values of 

discrete spin, and only for the massless representations.

When the spin is an integer, then there exist uncountable 

inequivalent non-trivial displaced Fock representations of the 

Canonical Commutation Relations in which the group G is unitarily 

implemented by a projective unitary group representation on the Fock space, 

Proof

Combine the calculations of section 5 together with Theorem 1.8.1 

and Theorem 1.9.1. The implementing operators form a strongly continuous 

projective representation of G in the Fock space.
Th-c ftcvicfcowh ^  cs A v/Jtrsi'cxA o f  ex. gjVjeta [4  2 ^  »

§6 . The Spectrum Condition

In this last section of chapter 3, we consider conditions under 

which the spectrum condition holds. It is known that, in the Fock 

representation,the spectrum condition holds, namely

H > O

and

> p2

where H is the generator of time—translations, and P^is the generator

of space-translations.

As a preliminary result, we have the following lemma.

Lemma 3.6.1. Suppose F is a cocycle function which gives an analytic

cocycle, and that F e L^ , d s 1,3. Then

Im(F;^^)
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is finite, where

= F - or = F -

Proof

Suppose - F-e I — I then we have

(F;!^) = F(p)F(p) (l-e^l^l

'F(p)F(2 )e"ldt:/2[^:^|p|t/2 _ ^-i|p|t/2^ f g

=  -1 |F(p)|2.e^lpl t/2 2 sin (-1= 1̂ )

Therefore

Im(P;i|i ) = -  |p(£) |2 2 cos(-l=Lt)sin(J^)^ 
> |ê|

lpl

It now follows that for each t e IR, Im(F;i^^) exists if and only if 

F £ OR^ , d^p) .
^iPatIf = F - e P F, we obtain

-ipgt/2^^ipgt/2 ^ ^^iPpt/2^d^p
lEl

F(£)|2e "̂ 3

=  1
-ip^t/2 . ,^g\ a^E

|£|
|F(p)|2e 3 .2. sin (-^)

so that we obtain

Im(F;Tp^) =
P p t  P  t ^ s

I F (£) I 2 2 cos (“|— ) . sin (-^)

p sin(p t)

Again we obtain that Iiii(F;t|;̂ ) is finite for each t e ]R, if and only if 

F £ L^ÛR^pd^p).

This proves the Lemma.
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It is necessary to consider this, because we use the expression 

Im(F;i|;̂ ) in order to make the projective representation of the space-time 

translations into a unitary representation. To extend this unitarity to 

the rest of the group is not necessarily possible. In fact, it is not 

known whether it can be done. However, we restrict down to the 

translations of space-time, in order to determine the positivity of the 

Hamiltonian, considered as a quadratic form.
s+1Lemma 3.6.2. Suppose F is as in Lemma 3.6.1, then if g e HR , an 

element of the translation group, we have that

F F iU = V exp^Im(F;^[g]) y y

is a unitary representation of the translation group. Here,

^[g]sF - M^F

s+1and Im(F;^[g]) is finite for g e 3R , this result following from 

Lemma 3.6.1.

Proof

exp-^-Im(ip[g ^];^[h]) + Im(F;i|iCgj) + Im(F;i(;[h])^ XI 9

p i  F= exp ylm ( F [gh]) =

where g,h e The last line follows after some routine calculation,
SHhlusing the fact that Im(F;^[g]) is finite for each g e M  , and using

the cocycle law.
It is not difficult to see that implements the action of

g £ in indeed, we have

= «p(Ogf)

since expi^Im(F;^[g]) is merely a numerical factor.

Now we turn to the calculation of the generators of the 1-parameter
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subgroups of 3R in the representation U . We have for each one-g
parameter subgroup

Ft

the following

= V^WQ(-^[-t])e
p Y  Im(F;^[t])

where ^[t] — F - M(e )F and {e^: t e ]R} is the one-parameter group 

generated by the Lie algebra element X.

We take strong derivatives, at t = O, on a suitable dense domain 

in Fock space. The actual construction of Fock space which we take is 

the usual one, on which we define annihilation and creation operators 

a(p) and a*(p). Then we have

Wg(f) = exp [a(f) +a*(f)]

where

a (f) =
 ^ £a (p) f (p) ---

= j a* (p) f (p)
d®p

and a* ( f ) = \ a* (p) f (p) -r=—
VO)

d®pwhere f £ L^ OR , — =) . The bar in [a(f)+a*(f)] denotes operator closure. 0)
Let us first consider the time-translation subgroup. In this case,

(defined, as remarked, on a dense domain byI d  F the derivative —  —  Ü 1 dt t

Hamiltonian

t=0
for some Ç) has three parts. The first part is the free

Ü) (£) a* (£) a (£) d®£

H q is defined as a quadratic form in Fock space. We take this dense 

space of definition as ^  where is the dense subspace got from

in the one-particle space.
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The second part is got by differentiating W q (-ip [-t ]) . We obtain 

for this, bearing in mind the definition in terms of annihilation and 

creation operators.

d pa (p) iwF (p)-p-
VÜ)

d pa* (p) iwF (p)— =- 
y w ]

, , ^  iF(p) s f F(p) sa(p) A) . ~-d p + a*(p) .V^.i.— ^  p
/2

^Tm(F;^[t])
The last part is got by differentiating e from which we obtain

- |f(p) |2d®p

Gathering all these terms together, we obtain for H , the generator of
Fthe time-translations in the representation U of the space-time 

translations,

= m(p)a*(p)a(p)d p + . . r- s(p) ym.i. d p
il ~

r- F(p) s (p) ./w.i. d p -
yfl

F(p)F(p) sd p

i F (p) i F (p) süJ(p) (a*(p) -  ---=  (a(p) +   =  )d p
/2.AT

I F  ( p )  I  2 d ^ P
i F(p) i F(P)Writing b(f) = a(p) +  =  , and so b* (p) = a*(p) - _  - _  ■ , we obtain
/2. AT /2.1A)

Ü) (£) b* (p) b (p) d p - IF (p) 12d®p

Since (p)b* (p)b(p)d^p > O on the dense domain of , it follows that

Namely, is bounded below provided F e L^ÛR^, d®p) .

The condition F e L^dR®, d®p) derives from the assumption that F
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defines a one particle state with finite energy i.e.

I (F; wF)| < CO

This means F (p)o)F (p)dSp I F (p)p d^p < 00 .I p I j
We have shown the following result to be true.

Theorem 3.6.1. Suppose F is a cocycle function which defines a one- 

particle state with finite energy, then the spectrum of the Hamiltonian 

in the displaced Fock representation defined by F, is bounded below by

-\\^K = -f lF(p)Pd'

Similar calculations give us

= IP b* (p)b(p)d^p =

for 3 = l,...,s. The integral 

|p(p.) |2p

|F(P)
P^d p

d®p

exists, since 

F e L^ClR®» d®p)

< 1 for 3 = l,...,s and we assume that

Let us "renormalize" the Hamiltonian H :

and let us "renormalize" the momenta

- i - F(p)

Because the relevant integrals exist, the renormalizations correspond 

to unitary transformations of the Fock space onto itself. We obtain 

the following result.

Theorem 3.6.2. Suppose that F is a cocycle function which defines a
F Fone-particle state with finite energy. Then (H^y P^) has its spectrum

—  F itHr
in

X UClp ■ _the forward light cone. The one-parameter groups e ^ and e
itPt
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implement the time and space translations in the displaced Fock 

representation of F.

This concludes the present chapter. We have exhibited non-trivial 

and trivial cocycles. Moreover, in the last section, a condition on the 

cocycle function has been isolated, which ensures the validity of the 

spectrum condition.

At the end of Chapter 2, we claimed that the dimension of 

momentum space is an important factor in deciding whether or not we obtain 

non-trivial 1-cohomology. When we consider the full Poincare group of 

the space, this is true. However, section 5 of this chapter forces us to 

modify this claim. In fact, it is the number of Lorentz generators which 

give us an indication of the absence or presence of cohomology - and hence 

of non-Fock displaced Fock representations. This is pointed out by a 

comparison of the construction in section 5, where only one of the Lorentz 

boosts was used, and the theorems of section 4, where all of the Lorentz 

boosts were used. It may be that a similar situation arises for Lie 

groups which have a structure similar to the Poincare group. Namely, 

groups of the form

T (Dn

where T is a nomnal abelian non—compact group, and N is a group with both 

compact and non-compact subgroups. In such cases, T ̂ ^N would not have 

any 1—cohomology, but T ̂ pN^^ where Nj_ contains only one parameter of the 

non—compact subgroups. This is, however, only a speculative statement.
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CHAPTER 4

Cohomology of Direct Products and the Hilbert-Schmidt Cohomology

§ 1 Introduction

In this chapter, we prove the triviality of the 1-cohomology of 

the Poincaré group P_^(3+l) in the representation V ® U, where V and U are 

arbitrary irreducible representations of p|(3+l), neither belonging to 

the vanishing of four-momentum. V 0 U is the direct product representation

i.e. the usual tensor product representation of G x G restricted to the 

diagonal subset of G x G, namely the set {(g,h) e G x G: g = h}. It is 

because of this restriction that V 0 U is not irreducible. We therefore 

use the theorems on reduction to give us our answers.

The representation V 0 U is unitarily equivalent to a direct

integral of irreducible representations. The irreducible representations

which take part in the direct integral decomposition are dependent upon 

the representations V and U, but those corresponding to massless particles 

occur with measure equal to zero, despite the possibility that both V and 

U correspond to massless particles. This is shown by Manfred Schaaf in 

[4%]. Before we list all possible cases, we begin with some preparatory 

results. First we have a result about unitarily equivalent representations. 

Lemma 4.1.1. Let V and U be unitarily equivalent representations of a 

connected Lie group G, so that

V S = SUg g

for each g £ G and S is a unitary map between the Hilbert spaces

and upon which V and U act. Then
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Proof

If ^ e Z then defined by ^^(g) = Si|̂ (g), is an element
of zl(G,f[y).

It now follows that we may as well assume that V 0 U is actually

equal to the direct integral decomposition, because the above lemma

says that unitarily equivalent representations have isomorphic cohomology 

groups.

We now have to solve another problem: to find the relation between

cocycles for a direct integral decomposition and the cocycles for the

irreducible representations which take part in the decomposition. To 

this end, we quote the following result , which solves the question. 

Theorem 4.1.1. [X^]. Let U be a continuous unitary representation of a 

connected Lie group G, and let

U =g Ugdy (a)
0

where 0 is a standard Borel space and y a standard Borel measure on

Each is an irreducible representation of G on a space<^°^ so that 
©

if = f("°̂ dy (a)

Suppose iĵ: G ^ Hr is a continuous cocycle for U, then we can write

i|;(a;g)dy (a)

where, for each fixed a € 0, *(a; ) : G is a (continuous) cocycle
afor U .
Of course, the cocycles ip(a; ), which correspond to representations 

carrying zero mass, do not occur in the analysis, as these representations 

occur with measure zero in thé direct integral decomposition.



84.

§2. Estimates on Cocycles

We will prove that for the representation V <3 U, under the conditions

indicated, of P_^(3+l) , the cocycles are all coboundaries. To do this,

we show that they are quasi-coboundaries, and then go inside the direct

integral and prove a certain growth estimate on the cocycle functions,

which then proves that the global cocycle function is an element of the

Hilbert space, thus proving the triviality of the cocycle for V 0 U.

Proposition 4.2.1. Suppose that F is a cocycle function for an

irreducible representation belonging to mass m > O. Of the Poincare 
fgroup P_^(3+l) . Further suppose

4" (g) = F - U F t g

is analytic at the identity, and vanishes on S0(3). Then

i iF i p< i  i i v i i "
e=i

where { 3 = 1,2,3} is the set of the Lorentz boost generators for

the representations.

Proof g

It follows from Proposition 2.4.3 that F e L^0R^;<F ; '

the representation space of U.

Since ^p(k) = F-U^F = O for every element k e SO(3), we obtain

JgF = 0  3 = 1,2,3

where is the rotation generator about the 3"^^^^Gtion. Writing 

J = we have (see [ If-]) the following form for J:

J =  ^l(£ X V) + Sgfp+Pgl'ltPi'Pg'P+Pg) 

where we have p = IeI . S Is the diagonal Hermitian spin operator

corresponding to the spin about the third axis. This spin operator

0
2s+lhas at most one eigenvector e e , such that
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®3®0 = °

From the relation ^  F — o, we obtain the equations

-i (p X V) F . + X .F. = 0   ̂ ] ] ]

where {X^: j = l,...,2s+l} is the set of eigenvalues of Sg and

F = '•*•'^2s+l^ a vector of functions in @^s+l^ For all the non

zero eigenvalues in {X^: j = l,...,2s+l} the above equations imply

Fj = O for all except at most one of the j's. To see this, we need only

apply the method of Proposition 3.4.1, when s ^ O. When s = O, the above 

equations reduce to

-i (£ X V)F = O.

Thus, we see that F is a vector with a non-zero component in one place 

only, and therefore we may write

F(P) = U(P) .Gg

u depends only upon p = |£|, since we have

-iCp X V)^u(p) = 0  for 3 = 1,2,3.

We will write F(p) = u(p)eg for the cases s = O and s ^ O, on the 

understanding that eg = 1 for s = 0 ,

In the same representation, the vector of boosts, ^  2' ̂ 3^

can be written as

= iPo^ + £  * Bz

where is a vector expression containing the spin matrices.

p = /p2+m2 is the energy of the state. From the assumed analyticity of 
0 -
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the cocycle defined by P, we obtain

'j'gF e lZ(Jr3, - = ÿ â

and writing p = p/p, we obtain

£.|_P - (ipg ||) .e^

It follows from Schwartz's inequality that

3=1

Furthermore, the norm squared of (ipg -Sg is equal to

|u' I 2p2p dp da (0,4))

where d a (0,4)) is the measure on the unit sphere in ]R^. We apply the 

Corollary to Redheffer's Theorem (see Chapter 3) with pg = '^p^+m^ = K (p) 

and K̂ (p) = p. All the requirements are fulfilled, and we obtain

2
|u'I ̂ PgP^dpda (0,4>) > [u|2 P PP da(0,4>)

Combining all these calculations, we obtain

= F

i i f i i y iii?gFir
e=i

This is the promised result.

Proposition 4.2.2. Suppose that F is a cocycle function for an 

irreducible representation U of P^(3+l) corresponding to the mass parameter 

m satisfying m^ < 0. Also suppose that F gives rise to a quasi-coboundary 

which is analytic at the identity and which vanishes on SO (3) . Then

3
I
=1

I I f I I Y  I l l J g F l l
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Proof

The proof is along the same lines as that of Proposition 4.2.1.

The exceptions are that the Hilbert space is

m; ,

where M is some Hilbert space, possibly finite dimensional, where 

3^ = -m2 > O; Redheffer's inequality can be applied readily, without the

need for the corollary to be used. The vector of rotation generators, J,

has exactly the same expression as in Proposition 4.2.1, and the vector 

of Lorentz boosts has the same form as before.

Apart from these qualifications, the argument is the same.

A useful result is that, for irreducible, space-like representations 

of P_^(3+l), the 1-cohomology is trivial, since the only cocycles are 

quasi-coboundaries, and these are true coboundaries. This remark then 

completes the classification of cocycles for all irreducible representation 

of P^(3+l) which do not correspond to momentum equal to zero.

§3 The Reduction of V 0 U

We present here the results of Schaaf [4%]. The representations

V and U are assumed to be irreducible and not to correspond to vanishing 

four-momentum, and are the signs of the energy of V and U 

respectively, and we have = ±1, = ±1. The masses of V and U are

written as m^, m^. We list the irreducible representations taking part 

in the decomposition of V 0 U by the mass parameter m. The analysis of 

Schaaf gives very fine results, but we do not need all the fineness, so 

we do not give anything other than a gross characterization of the 

representations which do occur in the direct integral decomposition.

We now have the following result.

Theorem 4.3.1. Suppose V 0 U is a direct product of irreducible 

representations of the Poincaré group P+(3+l), defined by any of the
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Table 4.3.1

V u Types of irreducible representations 
taking part in the decomposition of V 0 U

> 0 m ^ > 0 . = 0  =  1 m 2 > 0

m^ > 0 ” ü  =  ° m2 > 0

m^ > 0 C v  =  1 m2 < 0 E u  =  1 m2 > 0 and m^ < O

m 2 > 0 “ u  =  ° E u  =  - 1 m 2 > 0 and m2 < 0

m^ > 0 =  1 m^ > 0 E u  -  - 1 m2 > 0 and m2 < 0

“ v  =  ° %  = ° E u  " 1 m 2 > 0

” V  =  ° m2 < 0 E u  =  1 m2 >  0  and m2 <  o
” v “ ° 1 “ u  =  ° E U =  - 1 m2 < 0

m^ < 0 m^ < 0 E u =  1 m2 > 0
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combinations given in Table 4.3.1. Then the cocycles of V 0 U are all 

coboundaries.

Proof.

If ijj is any cocycle for V 0 U, then we may write, as in Theorem

4.1.1
0

ili(g) = (a)
n

If we assume analyticity at the identity, and vanishing on SO(3), 

for ip, these properties are reflected in the \p(a; ) for almost all 

a e The ip(a; ) are cocycles for unitary irreducible representations

of P^(3+l) corresponding to m^ > o and m^ < o (the representations of 

mass m = O occur with y-measure zero), and hence each Ip (a; ) is a 

coboundary, as is seen in Propositions 4.2.1 and 4.2.2. So we write

iP(a;g) =

for each g e P^(3+l) and for almost all a e fi. Let us write

F = F^dy(a)

Then we have

ip(g) = F - Vg 0 UgF = (f“ - u V ) d y  (a)

and the integral is convergent. Having assumed differentiability of the 

cocycle ip, we obtain

y.^F = ^  gF dy (a) 3 ~ 1/2,3

for the boosts of the representation V 0 U and the boosts for

. The integral must converge, as we demand that ^ e  ^  , the

Hilbert space of V 0 U, for 3 “ 1,2,3.

From Proposition 4.2.1 and Proposition 4.2.2, we obtain
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11̂  ll^= I II îgF||2 for almost all a
8=1

so that

F“ lPdii(a) < I [ ll^VlPdpCa) = I||'1.f||2 
6=1 ̂ 6=1^ Ü

and hence we have proved that P e ̂  since the direct integral giving F 

is convergent.

This proves the stated result.

t§5 Cocycles for P ̂ (3+1) with values in the Hilbert-Schmidt Operators 

Now we prove the triviality of cocycles

'(’̂(g) = VgAV-l - A e

where A is either a linear or anti-linear operator in the Hilbert space

upon which the irreducible unitary representation V of P^(3+l) acts.

B ( Ĵ ) 2 is the space of Hilbert-Schmidt operators on'j^ .

The space is always of the form = I,2(M;S;dy) where

M = H ^  for P^(3+l), and S is a complex Hilbert space (either finite +
dimensional or equal to . M has a measure y defined on it, and y is

invariant under the group G which acts irreducibly o n ^  . Using the

realization of B(3[) ̂  as l2(mxm; S x S; dy 0 dy) it follows that the

action B -+ V BV"1, for B £ B(X) o 9  ̂G, can be written as one of g g +
the following actions

1) V 0 V if B is linear, where V = CVC and C is a conjugation

on 3^

2) V 0 V if B is antilinear.

The following result now follows.

Proposition 4.5.1. The group of one cohomology classes for cocycles 

ip: G B (̂ )  2/ such that ip(q) is a linear (respectively, antilinear) 

operator, in the representation V(*)V  ̂ofG, is isomorphic to the group
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of one cohomology classes for the representation V ® V (respectively,
V 0 V) .

Proof

Suppose ip(g) is a linear operator in B ( ^, then we can define

Kg by

(ip(g)f;h) = Kg(cf ® h) 

for f,h £ 3^ and C a conjugation on . K defines a kernel ing
0 3^. Moreover, satisfies a cocycle condition. Indeed, we have

(ip(gk)f;h) = (VgTp (k) Vg^f ;h) + (ip(g)f;h)

and this implies

K , (Cf 0 h) = K  (CV'lf 0 V"lh) + K (Cf 0 h) gk K g  g g

= K, (V“^Cf 0 V'lh) + K (Cf 0 h) k g  g g

where V = CV C. Hence we obtaing g

K (Cf 0 h) = (V 0 V )K^(Cf 0 h) + K (Cf 0 h)

We write V 0 V for the dual action, on K, , of the group, g g k
Since Kg, for each g £ G, defines a Hilbert-Schmidt kernel in 

"K. 0 , we have Kg e 0 Also Kg is weakly continuous and locally

bounded, as a function of g £ G, from which it follows that Kg is 

strongly continuous. Here we use the result, due to Araki 1, that 

a weakly continuous, locally bounded cocycle in a separable Hilbert— 

space is strongly continuous.

For antilinear operators, we define Kg by

(ip(g)f;h) = K (f 0 h) 

and we obtain
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Kg^(f 0 h) = (Vg 0 Vg)K^(f 0 h) + Kg(f 0 h)

Again, Kg turns out to be a strongly continuous cocycle, as a consequence 

of the same result due to Araki.

It is not hard to see that the cohomology classes of ip are in a 

one to one correspondence with those of the corresponding K.

This establishes the result.

Theorem 4.5.1. The cocycles %p: P^(3+l) B (3C) ̂  for the action 

V(*)V ^, where V does not correspond to vanishing four-momentum, are 

all coboundaries.

Proof

Combine the result of Proposition 4.5.1 with Table 4.3.1 and 

Theorem 4.3.1. This proves the result.

The reason for considering Hilbert-Schmidt valued cohomology is 

that it arises in the construction of non-Fock 'representations of the 

C.A.R. and the C.C.R. It follows from our results that non-Fock 

representations of the C.A.R. and C.C.R. in which the full Poincare 

group is to be implemented, must automatically be of Fock type. Further

more, to obtain non-Fock representations we must abandon Poincare 

covariance, and make do with a subgroup of the Poincare group, or look 

at reducible representations.

In the works of Kraus and Streater and Polley, Reents and

Streater LÀél, this is the attitude taken.

It is worthwhile remarking that the results of Chapter 3 and 

Chapter 4 allow us to prove the following, general, result..

Theorem 4.5.2. If V is any unitary representation of P_j_(3+1) on a 

Hilbert s p a c e d ,  and if V contains neither the trivial representation 

nor the representation corresponding to vanishing four—momentum, then 

all cocycles for V are true coboundaries.

Theorem 4.5.1 has been proved independently by W.J.M.A. Hochstenbach 

IX>}], using global methods due to G. uichardet UQ]. However, the



93.

approach of G. uichardet can only establish existence proofs for 

cohomology, and cannot give us detailed estimates nor can it distinguish 

between quasi-coboundaries and algebraic cocycles. Indeed, the 

infinitesimal method of Pinczon and Simon is ideally suited for our needs.

IXtis k  u|>ov\ Work ,
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Conclusion

In this final section of the thesis, we take the opportunity 

to sum up the work presented, and to point out possible avenues of 

further work.

The motivating theme is the study of displaced Fock representations 

This leads to a study of the 1-cohomology of groups, with values in a 

Hilbert space. Solutions to the problem of "counting" displaced Fock 

representations are presented in terms of solutions to the 1-cohomology 

problem. A by-product is the application of the infinitesimal method 

of cohomology for Lie groups, as expounded by Pinczon and Simon [-4^. 

Extra results on this method are presented, in order to provide a 

sharper basis for the calculations involved.

Connected to the displaced Fock representations of the C.C.R., 

are the symplectically transformed Fock representations, defined by 

Weyl operators

\(f) = Wq(Tf)

f € X /  the one-particle space, T a symplectic operator, the Fock 

representation of the Weyl operators. These turn out to be associated 

to the condition

(V 0 V ) F - F e 3 (  0 ^9 g

where F is a functional on a dense subset of 0 . A similar

condition arises from consideration of pure, gauge—invariant, quasi— 

free, non-Fock representations of the C.A.R. For this we obtain

(V 0 V )F - F eg g

where F is related to the projection operator defining the type of

CAR representation, and = C\^ C, where C obeys C^ = U, C is anti-linear
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These last two conditions are reminiscent of displaced Fock 

representations. A possible interesting avenue of further work is the 

connection of physical conditions on F (e.g. finite energy) with 

physical conditions on the representation of the C.C.R. or C.A.R. (e.g. 

spectrum condition) . Furthermore, when does F correspond to

1) a sympletically transformed representation of the C.C.R.

2) a pure, gauge-invariant, quasi-free, non-Fock representation

of the C.A.R.?

All the work done in this thesis is concerned with free and quasi- 

free fields in Minkowski space. A further point of interest is the 

relation of cocycles for P^(3+l) with cocycles, in Euclidean field 

theory, for S0(4)©1R^. It is known that there are uncountably many 

non-trivial cocycles for S0(4)@1R^, and there are none of these for 

P^(3+l), for physical representations. A question which arises 

naturally is; which cocycles for S0(4)®]R^ can one analytically 

continue over to Minkowski cocycles?

One other feature arises out of the work presented. In the case 

of the two-dimensional Poincare^ group, infinitely many non-trivial 

cocycles exist, thus giving infinitely many inequivalent sectors for 

the field. This is tied up with the fact that the quantum field <})(x) 

is not an opera tor-valued distribution. However, if f £ ̂  OR) and 

g £ P_^(l+1) then

f 4"(Ugf - f)

defines an operator-valued distribution. Formally, we may write

(f)(U f - f) = V 4)(f)v-^ - *(f)9 9 9

This leads us to conclude that the object

V (|)(x)v"̂  - *(x) 9 9
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defines an operator-valued distribution in whereas ^(x) does not,

The result is

h 1 (P_̂ (1+1), ^ {0}

We may then ask about the triviality, or non-triviality, of

(P^(s+1), J) for s = 2,3.
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