
Forensic Tracking and Surveillance
Algorithms for Homogeneous and Heterogeneous Settings

Submitted by

Saif Mohammed S. A. Al-Kuwari

for the degree of Doctor of Philosophy

of

Royal Holloway, University of London

2011

Declaration

I, Saif Mohammed S. A. Al-Kuwari, hereby declare that this thesis and the work pre-
sented in it is entirely my own. Where I have consulted the work of others, this is
always clearly stated.

Signed . (Saif Mohammed S. A. Al-Kuwari)
Date:

¢l�A� ¯� ¨qy�w� A� ¤

“I cannot succeed except through God”

Abstract

Digital forensics is an emerging field that has uniquely brought together academics,
practitioners and law enforcement. Research in this area was inspired by the numer-
ous challenges posed by the increased sophistication of criminal tools. Traditionally,
digital forensics has been confined to the extraction of digital evidence from electronic
devices. This direct extraction of digital evidence, however, no longer suffices. In-
deed, extracting completely raw data without further processing and/or filtering is, in
some cases, useless. These problems can be tackled by the so-called “computational
forensics” where the reconstructs evidence are undertaken further processing. One
important application of computational forensics is criminal tracking, which we collec-
tively call “forensic tracking” and is the main subject of this thesis. This thesis adopts
an algorithmic approach to investigate the feasibility of conducting forensic tracking
in various environments and settings. Unlike conventional tracking, forensic tracking
has to be passive such that the target (who is usually a suspect) should not be aware
of the tracking process. We begin by adopting pedestrian setting and propose several
online (real-time) forensic tracking algorithms to track a single or multiple targets pas-
sively. Beside the core tracking algorithms, we also propose other auxiliary algorithms
to improve the robustness and resilience of tracking. We then extend the scope and
consider vehicular forensic tracking, where we investigate both online and offline track-
ing. In online vehicular tracking, we also propose algorithms for motion prediction to
estimate the near future movement of target vehicles. Offline vehicular tracking, on the
other hand, entails the post-hoc extraction and probabilistic reconstruction of vehicular
traces, which we adopt Bayesian approach for. Finally, the contributions of the thesis
concludes with building an algorithmic solution for multi-modal tracking, which is a
mixed environment combining both pedestrian and vehicular settings.

1

Acknowledgement

First and foremost, all thanks and praised are due to God, for giving me the strength
and patience to complete this thesis, like many other things in life. This project (and
everything I have ever done) could not have been completed without his blessings.

On Earth, I would like to thank my supervisor, Dr. Stephen D. Wolthusen, for
his support and guidance throughout my PhD, he not only taught me how to be an
academic researcher, but also how to behave like one, being flexible, patient and per-
sistent. I would also like to thank my external examiner Dr. Frank Kargl of University
of Twente and my internal examiner Dr. Geraint Price of Royal Holloway for their
insightful comments on my thesis and for making my viva an interesting experience.

During my stay in Royal Holloway, I was privileged to have met many great people.
I would like to thank them all and wish them well in their life and careers. I am
particularly in debt for Ahmed Al-Mulla for forcing me to join him to a trip to London
and for Hezam Abdulla for calling us on our way and making us divert to Egham, where
I met Ziyad Al-Salloum who convinced me to join the Information Security Group (ISG)
in Royal Holloway. If any of these people was missing that day, I would not have known
Royal Holloway and this thesis probably would not have been written, who said life
is predictable? At Royal Holloway, I am grateful for the unique research experience I
had. Particularly, I would like to thank Dr. Allan Tomlinson, Prof. Peter Wild, Prof.
Keith Martin, Prof. Chris Mitchell, Dr. Carlos Cid and Prof. Kenny Paterson.

Back home, I would like to thank my two sponsors, Qatar’s Higher Education
Institute (HEI) and Ministry of Foreign Affairs (MOFA) for their financial support
over the years. From HEI, I would like to especially thank Aisha Al-Motawa, for being
such a great academic advisor throughout the first two years of my scholarship, and
Eid Al-Hajri for being the same in the last one. I would also like to thank Hind Al-
Swaidi and Fatma Al-Saadi for their support. From MOFA, I would like to thank Reem
Al-Derham for managing my scholarship at her end. Special thanks go to Mohammed
Al-Kaabi, Qatar’s cultural attaché in London for his help and support since 2002, when
I first came to the UK for my undergraduate.

Last but not least, I would like to thank my family for always believing in me,
even more than I believed in myself. Thanks to my mother for putting up with all the
holidays I had to miss during the course of my PhD and for accepting all my artificial
excuses. Thanks to my father for his inspiration, and for being such a great role model,
I am not sure I will ever achieve what he has achieved, but I can promise I will do my
best. Thanks for my sisters and brothers for being there for me. Thanks for the endless
prayers of my grandmother, who never got tired from asking me the same question over
and over again, when are you coming home? Now I can finally answer her, soon.

2

Contents

1 Introduction 11

1.1 Contributions and Publications . 13
1.2 Thesis Outline . 15

I Forensic Tracking and Localisation 18

2 Localisation Techniques 19

2.1 Introduction . 19
2.2 Localisation in Sensor Networks . 21

2.2.1 Parameter Measurement . 22
2.2.2 Geometric Location Estimation 23

2.3 Localisation in Cellular Networks . 27
2.4 Localisation Fusion . 29

2.4.1 Fusing Different Technologies . 29
2.4.2 Fusing Different Parameters . 30

2.5 Accuracy Issues . 31
2.6 Summary . 32

3 Forensic Tracking and Mobility Models 33

3.1 Introduction . 33
3.2 Online Tracking . 34

3.2.1 Active Tracking . 34
3.2.2 Passive tracking . 36
3.2.3 Reliability and Security . 36
3.2.4 Privacy Implications . 37

3.3 Offline Forensic Tracking . 38
3.3.1 Basic Bayesian Approach . 38
3.3.2 Dynamic Bayesian Networks . 39

3

3.4 Mobility Models . 40
3.4.1 Pedestrian Mobility . 41
3.4.2 Vehicular Mobility . 43
3.4.3 Multi-modal Mobility . 46

3.5 Summary . 47

II Online Forensic Tracking 48

4 Online Pedestrian Forensic Tracking 49

4.1 Introduction . 49
4.2 Scene Setting and Assumptions . 51
4.3 Online Pedestrian Localisation . 54

4.3.1 Passive Localisation . 55
4.3.2 Active Localisation . 58

4.4 Piconets . 59
4.4.1 Tracking Piconet . 59
4.4.2 Connecting Piconet . 60

4.5 Piconet Formation . 60
4.5.1 Formation by Direct Interrogation (FDI) 60
4.5.2 Formation by Neighbour Interrogation (FNI) 62

4.6 Basic Pedestrian Tracking . 63
4.6.1 Agent Recruitment and Retirement 63
4.6.2 Simulation Results . 64

4.7 Advanced Pedestrian Tracking . 65
4.7.1 Tracking with Multiple Trackers 67
4.7.2 Tracking Multiple Targets . 70
4.7.3 Fault Tolerance . 70
4.7.4 Leader Election . 73
4.7.5 Transmission Algorithm . 74
4.7.6 Simulation Results . 76

4.8 Privacy in Online Forensic Tracking . 78
4.9 Summary . 79

5 Vehicular Forensic Tracking and Motion Prediction 80

5.1 Introduction . 80
5.2 Vehicular Networks . 82
5.3 Vehicular Localisation . 83

4

5.4 Mobility Prediction . 84
5.4.1 Time Prediction . 85
5.4.2 Direction Prediction . 87

5.5 Vehicular Tracking . 90
5.6 Simulation Results . 92
5.7 Vehicular Parameter Estimation . 95
5.8 Summary . 97

III Offline Forensic Tracking 98

6 Bayesian Offline Vehicular Forensic Tracking 99

6.1 Introduction . 99
6.2 Trace Fusion . 101
6.3 Trace Reconstruction . 104

6.3.1 Phase 1: Routes Identification 105
6.3.2 Phase 2: Routes Analysis and Selection 109

6.4 Simulation Results . 112
6.5 Offline Estimation Accuracy . 115
6.6 Summary . 116

7 Offline Multi-modal Forensic Tracking 117

7.1 Introduction . 117
7.2 Trace Reconstruction Framework . 119
7.3 Scene Representation . 121
7.4 Mobility Modelling . 127

7.4.1 Pedestrian Mobility Delay Model 128
7.4.2 Transport Mobility Delay Models 130
7.4.3 Multi-modal Mobility Delay Model 131

7.5 Fuzzy Trace Validation . 134
7.5.1 Fuzzy Logic . 135
7.5.2 Fuzzification . 136
7.5.3 Fuzzy Inference . 136
7.5.4 Defuzzification . 137

7.6 Trace Reconstruction . 138
7.6.1 The Algorithm . 140
7.6.2 Complexity Analysis . 144

7.7 Summary . 147

5

8 Conclusion and Future Work 148

8.1 Offline Pedestrian Forensic Tracking . 149
8.2 Advanced Bayesian-based Trace Reconstruction 149
8.3 Tracking based on Social Networking . 150
8.4 Crime Reconstruction . 150
8.5 Multi-modal Trace Reconstruction System 151
8.6 Live Vehicular Forensics . 152
8.7 Final Remarks . 152

Bibliography 152

6

List of Figures

1.1 Dependancies among the chapters of the thesis 17

2.1 Triangulation . 24
2.2 Advanced Trilateration . 26

3.1 Sample Dynamic Bayesian Network (DBN) 40
3.2 Forces determining pedestrian mobility 43
3.3 Scenario illustrating our sample vehicular mobility model 46

4.1 A sample single-target single-tracker tracking network consisting of one
tracking piconet and one connecting piconet 53

4.2 Basic Trilateration . 57
4.3 Flow chart illustrating the FDI and the FNI algorithms 61
4.4 Difference in meters between the actual and estimated target locations

during 30 simulation minutes . 66
4.5 Mutual Authentication . 68
4.6 Virtual Tracking . 71
4.7 Maximum and minimum number of agents forming the piconets 73
4.8 The Transmission Algorithm (TA) . 76
4.9 Simulation results when adopting the Random Waypoint model 77
4.10 Simulation results when adopting the Brownian Walk model 77
4.11 Simulation results when adopting the Gauss-Markov model 78

5.1 Illustration of how the speed of a vehicle is estimated in the time predi-
cation algorithm . 86

5.2 Intersection regulatory rules . 88
5.3 Simulation results for 10 nodes scenario 95
5.4 Simulation results for 30 nodes scenario 96
5.5 Simulation results for 50 nodes scenario 96
5.6 Simulation results for 100 nodes scenario 97

7

6.1 Trace fusion of RF and visual based tracks 104
6.2 Sample trace with missing data . 106
6.3 Possible routes through a sample gap . 107
6.4 Simulation Results . 113

7.1 Sample target trace (with gaps) . 119
7.2 Illustration of the scene preparation phase 122
7.3 A graph of three routes R1, R2, R3 . 126
7.4 Illustration of the manoeuver behaviour of a target and how to calculate

the extra distance . 129
7.5 Illustration of the 3D matrix Mvi . 134
7.6 Fuzzy Inference System . 136
7.7 Input and output variables plot . 137
7.8 Graphical representation of the relationship between the input/output

variables of our fuzzy system . 139

8

List of Abbreviations

AOA Angle of Arrival
BRC* Bounded Route Counter (algorithm)
CCTV Closed Circuit Television
(D)BN (Dynamic) Bayesian Network
EDR Event Data Recorder
FDI* Formation by Direction Interrogation (algorithm)
FIS Fuzzy Inference System
FNI* Formation by Neighbour Interrogation (algorithm)
GPS Global Positioning System
IDM Intelligent Driver Motion (mobility model)
IVC Inter Vehicle Communication
MANET Mobile Ad hoc Network
MMDM* Multi-modal Mobility Delay Model
NS-2 Network Simulator 2
NTMDM* Non-traffic-based Transport Mobility Delay Model
PMDM* Pedestrian Mobility Delay Model
POI Point of Interest
RF Radio Frequency
RIPA Regulation of Investigatory Power Act 2000
RSS(I) Received Signal Strength (Indication)
SH* Secure Handover (algorithm)
T-SW* Tracking Software
TA* Transmission Algorithm
TDOA Time Difference of Arrival
TOA Time of Arrival
TTMDM* Traffic-based Transport Delay Mobility Model
VAID* Virtual Agent ID
VANET Vehicular Ad hoc Network
VPID* Virtual Piconet ID
VTN* Virtual Tracking Network
WBS* Weighted Bound Search (algorithm)
WSN Wireless Sensor Network

*novel

9

List of Algorithms

4.1 Single Target Localisation . 58
4.2 Round-trip Time . 59
4.3 Formation by Direct Interrogation (FDI) 62
4.4 Formation by Neighbour Interrogation (FNI) 63
4.5 Detection of a Departing Salve . 65
4.6 Secure Handover (SH) . 68
4.7 Multi-Trackers Multi-Targets Tracking 72
4.8 Detect Tracker Procedure . 72
4.9 Temporary Tracker Election . 74
4.10 Transmission Algorithm (TA) . 75
5.1 Vehicular Localisation . 84
5.2 Online Vehicular Tracking . 92
5.3 Temporary Tracking . 93
6.1 Trace Fusion . 105
6.2 Range Expansion Procedure . 105
6.3 Bounded Route Counter (BRC) . 108
6.4 Search Vertices Marking Procedure . 108
7.1 Trace Reconstruction Framework . 120
7.2 Gap Filling Procedure . 120
7.3 Scene Representation . 123
7.4 Route Marking Procedure . 124
7.5 Vertex/Edge Labelling Procedure . 125
7.6 End Vertices Procedure . 127
7.7 Additional Edges Formation Procedure 128
7.8 Weight-Bound-Search (WBS) . 143
7.9 Back-up Procedure . 144

10

Chapter 1

Introduction

Alongside the advances that today’s technologies brought to us, there comes a whole
new class of criminal threats jeopardising our safety and security. The ubiquitous re-
cent revolution in technology that we are witnessing today has indeed improved our
life in many ways, but it also opened new doors for criminals and offenders by inad-
vertently creating new and more convenient means for them to conduct their criminal
activities. Computer crime, cybercrime, cyberwarfare and cyber-terrorism are all terms
which only came to existence a few decades ago and roughly refer to the same concept
“crimes undertaken using digitalised means”. As dangerous as it sounds, the technolo-
gies that gave such opportunities for criminals, are fortunately also giving us tools to
fight them. Recent crime investigation techniques provided a potential framework in
which law enforcement can efficiently conduct their criminal investigations. In conven-
tional crimes, investigations are mainly based on forensic analysis of evidence left in
the crime scene; such evidence were mainly biological or physical substances. These
investigations are not only important to bring criminals to justice, but also help law en-
forcement preventing future crimes. However, sine modern crimes can be conducted in
(or through) the cyberspace, conventional forensic procedures are no longer sufficient,
and are largely being complemented by the so-called digital forensics.

Digital forensics is commonly conceived as the process of investigating and
extracting digital evidence (traces) from electronic devices.

Traditionally, digital forensics was almost always conceded with the investigation
of the digital activities of suspect individuals who may have used some computerised
means to carry out such activities, these digital evidence may include internet browsing
history, creating/editing files, downloading images/videos etc. Nonetheless, we argue
that investigating the digitalised physical activities of those suspects is equally im-
portant. Such activities include any physical action undertaken by the suspects and

11

1. Introduction

captured by digital devices. In this thesis, we will be concerned with a specific class of
such activities, namely suspects’ mobility behaviours. We claim that tracking a partic-
ular suspect may, in most cases, be necessary in criminal investigations; indeed, proving
the location of a suspect at a particular time (or during a particular period of time) can
be a significant piece of evidence in its own right. We call this class of tracking forensic
tracking, which is basically conducting a tracking procedure for forensic purposes, and
can be either online or offline. Online forensic tracking is the tracking of a suspect
in real time with the added requirement of passivity, where the target is not aware of
the tracking process, for obvious reasons. Offline forensic tracking, on the other hand,
is actually a trace1 reconstruction process, where the locations of the suspects before,
during and after the crime are investigated and reconstructed if necessary. Indeed,
there are scenarios where knowing where the suspects were before and after a crime is
as important as (or even more important than) knowing where they were at the time
of the crime. Similarly, in other scenarios knowing that the target was in a particular
place away from the crime scene during the crime may be of great significance too. A
prime example is a terrorist planted bomb, in which case we know that the suspects
were not in the crime scene during the crime, but instead we would like to learn about
their locations before and after the crime, which may help supporting some hypothesis
that investigators would make.

The intelligence in the various digital forensic procedures and tools is mostly focused
on searching for and extracting evidence from some digital mean. These procedures,
once believed to be trivial, are becoming increasingly difficult due to the sheer data
volume problem. That is, even the low profile crimes today would involved several
laptops, a couple of mobile phones and perhaps one or two PC’s leading to at least
several 10s of Gigabytes of digital information. Clearly, forensically searching this
amount of data is extremely tedious and time consuming even for the most advanced
digital forensics tools; in this sense, digital forensics is reduced to information retrieval.
Another challenge stems from the fact that these extraction techniques and tools are, in
most cases, platform-dependant and given the numerous platforms we have nowadays,
it is highly unlikely that we will ever get a universal tool that would be compatible with
all platforms. However, while finding and extracting evidence is certainly non-trivial,
even after extracting such evidence, in some cases the extracted raw evidence is totally
unintelligible or severely fragmented to the point where it becomes invalid or useless.
In this case, a further processing and filtering is required to forensically recover and
reconstruct this data, which will allow to correlate them in a sound manner. The use

1Trace in this context means a physical location trace, not to be confused with biological traces
such as blood stains or pieces of hair that are usually left behind in a crime scene.

12

1.1. Contributions and Publications 1. Introduction

of such post-processing in a forensic context is called computational forensics [42].

Computational forensics is the science of forensically investigating digital
devices and utilise the various computational, mathematical and statistical
methods to model, simulate, analyse and reconstruct pieces of evidence
extracted from these devices.

Indeed, one of the main contributions of this thesis is the algorithmic treatment of
a class of problems that can be considered a form of computation forensics, namely
the target trace reconstruction. In trace reconstruction, we are given a tracking trace
of a particular target (or a number of targets) that exhibits several tracking gaps
corresponding to periods of time where tracking of the target was not possible, we are
then confronted with the problem of reconstructing these tracking gaps to obtain the
full target trace. In this case, if we extracted the raw target trace without further
computational analysis (as the case in the traditional digital forensics procedures), we
will not be able to use it as evidence because the fact that it is incomplete may render
it unusable. Nevertheless, using the various computational methods, we may be able
to (probabilistically) augment the missing data and obtain a full usable trace that can
conceivably be used at court.

1.1 Contributions and Publications

This thesis contributes a collection of novel tracking algorithms covering both online
and offline forensic tracking. The thesis is structured to flow logically from pedestrian
forensic tracking, to vehicular forensic tracking and finally concludes with an extended
discussion on multi-modal forensic tracking (which is a mixed environment comprising
both pedestrian and vehicular settings). We consider various types of tracking environ-
ments and model the interaction between different mobility behaviours when tracking
both single and multiple targets. While we discuss and propose algorithms for both
online and offline tracking, we believe that the main contribution of this thesis is in the
offline tracking scenarios since these are increasingly common in (the practical) law en-
forcement applications due to the unpredictability of crimes and the inherent difficulty
of conducting online tracking. This thesis is based on 8 papers as follows (these form
the basis of the chapters of the thesis as we discuss below):

1. S. Al-Kuwari, S. D. Wolthusen. A Survey of Forensic Localization and Tracking
Mechanisms in Short-Range and Cellular Networks. In Proc. of the 1st Interna-
tional Conference on Digital Forensics and Cybecrime (ICDF2C ’09). (NY, USA,
Oct. 2009), S. Goe, Ed., vol. 31 of LNICST, Springer-Verlag, pp. 19–32.

13

1.1. Contributions and Publications 1. Introduction

2. S. Al-Kuwari, S. D. Wolthusen. Passive Ad-Hoc Localization and Tracking in
Short-Range Communication. In Proc. of the 1st Inter. Conference on Next
Generation Wireless Systems (NGWS ’09). (Melbourne, Australia, Oct. 2009),
N. Chilamkurti, Ed., ISBN 3838353463, LAB Lambert Academic Publisher.

3. S. Al-Kuwari, S. D. Wolthusen. Algorithmic Approach for Clandestine Locali-
sation and Tracking in Short-Range Environments. In the International Journal
of Communication Networks and Distributed Systems (IJCNDS) (2011). (To
appear in vol. 7, no. 3 of IJCNDS).

4. S. Al-Kuwari, S. D. Wolthusen. Algorithms for Advanced Clandestine Track-
ing in Short-Range Ad Hoc Networks. In Proc. of the 2nd International ICST
Conference (MobiSec ’10). (Catania, Sicily, Italy, May 2010), A. U. Schmidt, G.
Russello, A. Lioy, N. R. Prasad, and S. Lian, Eds., vol. 46 of LNICST, Springer-
Verlag, pp. 67–79.

5. S. Al-Kuwari, S. D. Wolthusen. Forensic Tracking and Mobility Prediction in
Vehicular Networks. In Advances in Digital Forensics VI, Proc. of the Sixth
Annual IFIP WG 11.9 International Conference on Digital Forensics. (Hong
Kong, China, Jan. 2010), K.-P. Chow and S. Shenoi, Eds., vol. 337 of IFIP
Advances in Digital Forensics, Springer-Verlag, pp. 91–105.

6. S. Al-Kuwari, S. D. Wolthusen. Probabilistic Vehicular Trace Reconstruction
Based on RF-Visiual Data Fusion. In Proc. of the 11th Joint IFIP TC6 and
TC11 Conference on Communications and Multimedia Security (CMS ’10). (Linz,
Austria, May 2010), B. D. Decker and I. Schaumüller-Bichl, Eds., vol. 6109 of
LNCS, Springer-Verlag, pp. 16–27.

7. S. Al-Kuwari, S. D. Wolthusen. Fuzzy Trace Validation: Toward an Offline Foren-
sic Tracking Framework. In Proc. of the 6th IEEE Workshop on Systematic
Approaches to Digital Forensic Engineering (SADFE ’11) (Oakland, CA, USA,
May 2011), IEEE Press. (To appear).

8. S. Al-Kuwari, S. D. Wolthusen. Multi-Modal Trace Reconstruction: an Offline
Forensic Tracking Approach. In Proc. of the 8th Annual IFIP WG 11.9 Inter-
national Conference on Digital Forensics , Pretoria, South Africa, January, 2012.
(To appear).

These papers potentially cover most scenarios in which forensic tracking can be
carried out, while considering both single and multiple targets settings. Paper [1] is

14

1.2. Thesis Outline 1. Introduction

the basis of parts of chapter 2 and chapter 3. Papers [2-4] are the basis of chapter 4.
Paper [5] is the basis of chapter 5. Paper [6] is the basis of chapter 6. Paper [7] is the
basis of parts of chapter 3 and parts of chapter 7. Paper [8] is the basis of most of
chapter 7. In chapter 8 we discuss other settings and scenarios (as well as other related
research topics) which can potentially extend the work of this thesis but have not been
considered in the papers.

1.2 Thesis Outline

The flow of the thesis logically covers most of the possible scenarios and environment in
which forensic tracking can be conducted. It starts with pedestrian forensic tracking,
then proceeds to vehicular forensic tracking and finally concludes with multi-modal
forensic tracking (which combines both pedestrian and vehicular settings). Technically,
the thesis is organised in three parts. Part I consists of chapters 2 and 3 and provides
a general background information which the rest of the thesis uses extensively. Part II
consists of chapters 4 and 5, and considers online forensic tracking in different settings.
Part III, consists of chapters 6 and 7, and considers offline forensic tracking. Parts II
and III provide a collection of novel algorithms, which constitute our contributions of
this thesis. Below we provide a brief summary of each chapter.

• Chapter 1: Introduction. This chapter provides a general motivation and overview
of the main problem that this thesis is discussing, that of forensic tracking. It
also summarises the contributions of the thesis and lists the publications forming
the basis of this thesis. Finally, this chapter provides an outline of the rest of the
thesis along with brief summary of each chapter.

• Part I: Forensic Tracking

• Chapter 2: Localisation Techniques. In this chapter we provide a taxonomy
and general overview of the most popular existing localisation techniques in
mobile wireless networks, with emphases on the techniques that are com-
monly used in sensor and cellular networks. We also discuss ways in which
different localisation techniques can be fused by adopting a multi-sensor data
fusion approach, which significantly improves the localisation accuracy.

• Chapter 3: Forensic Tracking and Mobility Models. This chapter builds on
the techniques presented in chapter 2 and uses them in a tracking setting.
Generally, tracking can either be online or offline. We discuss, in details,
both online and offline tracking, and provide example applications. We also
introduce the “forensic tracking” class and briefly discuss its applications. In

15

1.2. Thesis Outline 1. Introduction

the second part of this chapter, we provide an algorithmic discussion about
mobility models and show how they are being built in different environments;
variants of these will later be used in forensic tracking settings.

• Part II: Online Forensic Tracking

• Chapter 4: Online Pedestrian Forensic Tracking. In this chapter we propose
a number of algorithms forming a full passive forensic tracking system that
can be used to track and surveil suspects and criminals using several mobile
ad hoc techniques to dynamically recruit and retire tracking agents that
are triggered to construct dynamically adaptable tracking networks. While
developing the algorithms, we considered scenarios and settings where a
single or multiple trackers track a single or multiple targets. We also propose
several auxiliary algorithms to improve the security, passivity and efficiency
throughout the tracking process while maintaining the tracking network.

• Chapter 5: Vehicular Forensic Tracking and Motion Prediction. After dis-
cussing passive online pedestrian tracking in chapter 4, in this chapter we
proceed by considering passive online tracking in vehicular setting based on
ad hoc vehicular networks (VANETs) while still adopting an agent-based
tracking approach. In addition, we also propose algorithms to predict the
near future movement of target vehicles and show how these predictions may
greatly assist the tracking process by enabling a smoother and more reliable
dynamic recruitment and retirements of the tracking agents.

• Part III: Offline Forensic Tracking

• Chapter 6: Bayesian Offline Vehicular Forensic Tracking. Online tracking
is applicable in some scenarios, but due to the uncertainty of crimes, offline
tracking may be the only plausible option in most cases. In this chapter
we propose a probabilistic approach for conducting offline forensic tracking
in vehicular setting, where we obtain a trace of the target vehicle and try
to reconstruct it using a Bayesian statistical approach. We propose several
algorithms to prepare, process and reconstruct a target’s trace.

• Chapter 7: Offline Multi-modal Forensic Tracking. This chapter presents our
main contribution where we combine scenarios from chapters 4, 5 and 6 to
consider the problem of reconstructing traces collected at a multi-modal en-
vironment, where a target switches between different transportation modes.
This is indeed a challenging environment, but more common today given
the rapid advances in transport systems. While building our multi-modal

16

1.2. Thesis Outline 1. Introduction

forensic tracking system, we use mobility models and transition procedures
to model the transition between different mobility models. Using these tech-
niques and other public information about the tracking scene, we show how
to reconstruct the target’s full trace.

• Chapter 8: Conclusion and Future Work. In this chapter we conclude the thesis
by providing final remarks and discussing a few possible extensions. We believe
that there is a plethora of research still to be undertaken in this area.

Chapter 1

Introduction

Chapter 3
Forensic Tracking and

Mobility Models

Chapter 8

Conclusion

Chapter 2

Localisation Techniques

Chapter 4
Online Pedestrian

Forensic Tracking

Chapter 5

Vehicular Tracking

& Motion Prediction

Chapter 6

Bayesian Offline

Vehicular Tracking

Chapter 7

Offline Multi-modal

Forensic Tracking

Figure 1.1: Dependancies among the chapters of the thesis

Although most of these chapters present independent results, some of them exhibit
close relations, especially chapters 4 and 5 (which discuss online forensic tracking), and
chapters 6 and 7 (which discuss offline forensic tracking). These relations are depicted
in figure 1.1, where an arrow from chapter X to chapter Y means that material from
chapter X were used/extended while developing the results/algorithms in chapter Y.

17

Part I

Forensic Tracking and

Localisation

18

Chapter 2

Localisation Techniques

Target localisation is a critical tool in criminal and, increasingly, forensic
investigations. These applications are greatly aided by the proliferation of
wireless technologies, most of which enable pinpointing target entities rel-
atively efficiently. In this chapter, we provide a thorough discussion and
taxonomy of both established and novel localisation techniques at different
environments, we also discuss the underlying assumptions and limitations in
each case. In particular, we describe the various localisation techniques for
cellular, sensor, and personal area networks in both infrastructure and ad
hoc environments. As individual localisation methods do not always yield
the desired precision and accuracy, may require collaboration, or will be
faced with excessive noise in densely built-up or highly active radio fre-
quency environments, we additionally discuss selected approaches derived
from multi-sensor data fusion applications to enhance the estimation pa-
rameters accuracy by fusing several estimation and measurement techniques.
The contents of this chapter was published in [1].

2.1 Introduction

Given its numerous civilian and military applications, localisation of static and mobile
objects has long been an active area of research. Generally, locating an object (i.e.,
radio emitting device representing an individual) can either be object-based or network-
based. While in the former case, the target object localises itself, in the latter, the
surrounding (reference) objects localise the target object. Network-based localisation
can further be active, where the reference objects collaborate with the target object
to localise it, or passive, where the reference objects clandestinely localise the target

19

2.1. Introduction 2. Localisation Techniques

object by observing and measuring its emissions (object-based localisation is obviously
active). Civilian and some military applications are usually based on active localisation
where the target object is aware of the localisation process (sometimes even initiates
it). On the other hand, most law enforcement applications are usually passive since the
localised objects are often suspect individuals that are being investigated as part of a
criminal investigation. Clearly, this passivity requirement introduces more challenges
and imposes more restrictions on the localisation process as in this case it not only
needs to be carried out efficiently and accurately, but also clandestinely, which is,
evidently, non-trivial. In this chapter, we review various existing localisation techniques
considering different environments and discuss their applications.

Taxonomy. Hightower et al. [61, 62, 60] carried out a series of related studies sur-
veying some of the most fundamental concepts in wireless networks localisation, such
as triangulation, trilateration, location proximity and scene analysis. The authors clas-
sified Lateration (localisation by distances) and Angulation (localisation by angles) as
types of Triangulation. However, this classification is now almost obsolete restricting
triangulation to angulation only and renaming lateration to Trilateration. The authors
also discussed location proximity and scene analysis techniques. In location proxim-
ity a target object is detected as it is approaching a known reference point. On the
other hand, in scene analysis, features of the surrounding environments are simpli-
fied, analysed and then compared against a predefined dataset of the characteristics of
that location. Similarly, Pandy et al. [102] proposed a thorough classification model
for localisation techniques and showed how some real localisation systems can fit in
their model. The authors developed their classification based on factors influencing
the localisation accuracy, including: area of deployment, physical layer technology,
measurement parameters, type of lookup table (mapping measurements to locations),
estimation technique, localisation entity and security parameters. For example, a lo-
calisation algorithm in sensor network can be classified as: ad hoc based (area of
deployment), RF based (physical layer technology), RSS based (measurement param-
eter), Free Space model based (type of lookup table), probabilistic based (estimation
technique), network based (localisation entity) and non-secure (security parameters).

Localisation. Target localisation has been an active research area and consequently
the literature contains many contributions of novel and practical localisation techniques
proposed for different environments and settings. As discussed in [120], localisation is
generally a 2-phase process. In the first phase, parameters, such as RSS (see section
2.2.1), are estimated, and then, a geometric (triangulation/trilateration) or statistical

20

2.2. Localisation in Sensor Networks 2. Localisation Techniques

approach is adopted to estimate the actual location of the target. Statistical estima-
tion methods can be parametric such as Bayesian and Maximum Likelihood (ML), or
nonparametric such as k-NN (k-Nearest-Neighbor), SVR (Support Vector Regression)
and neural networks. In a mobile environment (where the nodes are freely or restric-
tively move over an area), the mobility behaviour adds additional challenges for the
localisation process. Realising this problem, Hu and Evans proposed a monte carlo
localisation algorithm that actually exploit the mobility of the nodes to improve the
accuracy estimation [66].

Chapter Outline. This chapter is organised as follows. Localisation in sensor and
cellular networks are discussed in sections 2.2 and 2.3, respectively. Multi-sensor data
fusion has been extensively used to improve the accuracy of the localisation process
by fusing more than one localisation technique; we introduce some of these fusion
approaches in section 2.4. Finally, in section 2.5, we, very briefly, discuss the affect of
radio propagation on the accuracy of most localisation processes.

2.2 Localisation in Sensor Networks

In sensor networks, the nodes can directly communicate with each other in an ad
hoc manner allowing for the adoption of less constrained algorithmic approach when
designing localisation algorithms. Regardless of whether localisation is object-based or
network-based, nodes localise themselves in reference to other reference nodes, this is
sometimes called self-localisation [96], which is a standard approach in most wireless
networks applications. Reference nodes have known locations and are usually located
close to the node being localised, but in some applications this does not have to be the
case; in fact, in GPS, the reference points are satellites (see section 2.3).

There are several ways in which a target object can be localised in reference to
other objects with known locations [92]. In 2 dimensions, object T can be localised
geometrically if the distance and/or angles between T and some reference objects can
be accurately measured. In particular, T can be localised in two steps:

• measure distances/angles between T and other known reference objects, then

• apply a geometric procedure to determine the location of T .

In the following subsections, we first discuss the various distance/angular measurement
techniques and then describe a few geometric location estimation methods; statistical
localisation approaches, as discussed briefly in section 2.1, are computationally de-
manding and thus not discussed, see [110].

21

2.2. Localisation in Sensor Networks 2. Localisation Techniques

2.2.1 Parameter Measurement

In this section we discuss a few popular techniques for measuring the distance/angle
between two or more objects, typically, single transmitter and a single or multiple
receivers. These techniques assume wireless environment.

Received Signal Strength (RSS). The distance between a transmitter and a re-
ceiver can be estimated by measuring the strength of the transmitter’s signal as it
is received at the receiver [114]. Ideally, in a direct Line of Sight1 (LOS) scenario
the power of the signal is approximately 1/d2, where d is the distance between the
transmitter and the receiver. However, environmental and other factors can (and do)
affect RSS measurements making it nonlinear. RSS is sometimes referred to as RSSI
(Received Signal Strength Indicator/Indication) when used in cellular network context.

Time of Arrival (TOA). TOA, also known as Time of Flight (TOF), is a measure
of the time a signal travels from an object (transmitter) to another (receiver). In
order to correctly calculate TOA, both the transmitter and the receiver have to be
synchronised appropriately, either by referring to a global clock or by exchanging time
synchronisation information. Once the TOA is measured, the distance between the
two objects can be estimated by the classical distance equation: d = v × t where d is
the distance, v is the speed of the signal and t is TOA. In free space, the speed of the
signal is approximately equal to the speed of light (≈ 300, 000 km/second).

The accuracy of both RSS and TOA largely depends on environment modelling. In
urban environments, the Non-Line of Sight (NLOS) situation is very common where
obstacles (natural or human-built) block the direct path between the transmitter and
the receiver; albeit expensive, ways to mitigate the effect of NLOS exist [24]. Round
Trip Time of Arrival (RT-TOA) [90] is a variant of TOA employed in systems where full
time synchronisation is not possible or guaranteed. Basically, in RT-TOA an object P1

sends a signal to another object P2 at time t1. P2 then replies back to object P1 which
records the time it receives the reply, say t2. Then, the RT-TOA is approximately
t2 − t1. Usually, RT-TOA neglects some delays, such as processing delay, so RT-TOA
can be used as long as these delays do not significantly affect the estimation accuracy,
otherwise they should be modelled and accounted for during the calculation.

Time Difference of Arrival (TDOA). In TDOA, only reference objects have to
be synchronised [50], this is in contrast to TOA measurements where synchronisation

1The transmission between two entities is said to be in a line of sight when the signals are not
blocked or affected by obstacles on their way from the transmitter to the receiver.

22

2.2. Localisation in Sensor Networks 2. Localisation Techniques

is required among both the reference and the localised objects. TDOA measures the
time difference of a signal received at different reference objects. To localise an object
in 2 dimensions, at least 3 reference objects are required (4 reference objects for 3
dimensions). First, the TDOA between the target object and two reference objects
form a hyperbola where the target object is located, with the two reference objects
being foci2. A third reference object adds a second hyperbola where the intersection of
the two hyperbolas is the location of the target object. TSOA (Time Sum of Arrival)
is based on similar principles, but in this case the sum of the TOA at several reference
points form ellipsoids intersecting at the target’s location [95].

Angle of Arrival (AOA). In AOA, the reference objects measure the angle between
the arriving signals emitted by the target object and a reference direction known as
the orientation [109]. In order for the reference objects to be able to make AOA
measurements, they need to be equipped with antenna arrays, which not all standard
sensor nodes are usually equipped with; this makes adopting AOA as a primary location
technique in ad hoc and Personal Area Network (PAN) slightly expensive. AOA is
severely affected by the NLOS conditions; under these conditions, signals received are
not necessarily coming from the direction where they were originally transmitted from
by the target. Another way to measure AOA is when a receiving object has more than
one integrated directional antenna, in which case the AOA is the RSS ratio between at
least two of the antennas [103], but this is still a rather expensive solution.

2.2.2 Geometric Location Estimation

Once parameter measurements are obtained as detailed above, the location of the target
object can be geometrically estimated by:

1. triangulation (based on AOA measurements),

2. trilateration (based on TOA or RSS measurements),

3. multi-lateration (based on TDOA measurements),

4. multi-angulation (based on multiple AOA measurements).

Triangulation. In triangulation [63], an object is localised based on AOA measure-
ments from two reference objects. Figure 2.1 illustrates a standard triangulation pro-
cedure, where C is triangulated in reference to A and B. Since we assume knowledge

2In a hyperbola there are two foci points, F1 and F2. These points have the property that given
any point xi on either of the hyperbola’s curves, the difference between the distance from xi to F1 and
xi to F2 is constant.

23

2.2. Localisation in Sensor Networks 2. Localisation Techniques

of the locations of A and B, the distance between them can easily be calculated by the
following formula:

AB =
√

(xb − xa)2 + (yb − ya)2 (2.1)

where (xa, ya) and (xb, yb) are the coordinates of A and B, respectively. After measuring
the angles α and β (see to figure 2.1), and calculating the distance from A to B, we
can use the law of sines to obtain the distance between A and C, denoted AC, or the
distance between B and C, denoted BC, (either will suffice) as follows:

sinα
BC

=
sinβ
AC

=
sin δ
AB

then solving for AC, we have:

AC =
AB. sinβ

sin δ
=

AB. sinβ
sin(180− δ)

=
AB. sinβ
sin(α+ β)

since α + β + δ = 180 (hence, 180 − δ = α + β) and sin δ = sin(180 − δ), then
sin δ = sin(α + β). Now, we need to find XC, such that the triangle ÂXC is a right
triangle. Since we know AC, then:

XC = AC. sinα

knowing both AC and XC, we can now easily obtain AX using Pythagoras theorem:

AX =
√(

AC
)2 − (XC)2 =

√(
AB. sinβ
sin(α+ β)

)2

−
(
AB. sinβ · sinα

sin(α+ β)

)2

Finally, the coordinates of C are determined in reference to the coordinates of A (or
similarly B), such that xc = xa +AX and yc = ya +XC.

ɑ β

δ

A

C

B
X(xa , ya) (xb , yb)

(xc , yc)

Figure 2.1: Triangulation

24

2.2. Localisation in Sensor Networks 2. Localisation Techniques

Trilateration. The simplest way to trilaterate a target is by solving a system of at
least 3 quadratic equations consisting of the circle equations of three intersecting circles
representing the reference objects. These circles are formed by measuring the distances
between the reference objects and the target, which constitute the radii of the circles
(each reference object forms one circle). Solving such system yields the intersection
point of the circles and this is where the target is located (see section 4.3.1). However, in
most cases, the three circles will not be ideally aligned to intersect in exactly one point.
Instead, they will probably intersect in three points forming a circular triangle (also
called curvilinear triangle) as shown in figure 2.2. Fewell [38] proposed an algorithm
to calculate the common overlap area when three circles intersect. Since we are only
interested in finding the three intersection points (not the actual area bounded by
them), we use Fewell’s algorithm up to the stage where the intersection points are
calculated, then we treat them as vertices of a regular triangle and find its centroid,
where the target probably is. Figure 2.2 illustrates how trilateration is performed,
where ra is the radius of circle a, dab is the distance between the centres of circles a
and b, which can be calculated from equation 2.1 (since the locations of the reference
points are known), and (xab, yab) is the intersection point3 between circles a and b.
Based on [38] and figure 2.2, we trilaterate the target as follows (detailed derivation of
the equations can be found in [38]):

1. First, we calculate the sines and cosines of angles θ’ and θ”.

cos θ′ =
d12

2 + d13
2 − d23

2

2d12d13
, sin θ′ =

√
1− cos2 θ′

cos θ′′ = −d12
2 + d23

2 − d13
2

2d12d23
, sin θ′′ =

√
1− cos2 θ′′

2. Next, we calculate the three intersection points (x12, y12), (x13, y13), (x23, y23).

• (x12, y12):

x12 =
r1

2 − r2
2 + d12

2

2d12
, y12 =

1
2d12

√
2d12

2 (r1
2 + r2

2)− (r1
2 − r2

2)2 − d12
4

• (x13, y13): x13 = x13
′ cos θ′ − y13

′ sin θ′, y13 = x13
′ sin θ′ + y13

′ cos θ′

where,

x13
′ =

r1
2 − r3

2 + d13
2

2d13
, y13

′ =
−1

2d13

√
2d2

13 (r1
2 + r3

2)− (r1
2 − r3

2)2 − d13
4

3Two circles intersect in two points, but we are only interested in the point contributing a vertex
to the circular triangle formed by the intersection with a third circle.

25

2.2. Localisation in Sensor Networks 2. Localisation Techniques

• (x23, y23): x23 = x23
′′ cos θ′′ − y23

′′ sin θ′′ + d12, y23 = x23
′′ sin θ′′ + y23

′′ cos θ′′

where,

x23
′′ =

r2
2 − r3

2 + d23
2

2d23
, y23

′′ =
1

2d23

√
2d23

2 (r2
2 + r3

2)− (r2
2 − r3

2)2 − d23
4

3. Finally, once the three vertices of the circular triangle is calculated, we treat it as
a regular triangle and calculate its centroid which will be our estimated location
of the target.

C =
(
x12 + x13 + x23

3
,
y12 + y13 + y23

3

)
(2.2)

r3

r1

r 2

d12

d
13 d23

ɵʹ ɵʺ
(x23,y23) (x13,y13)

(x12,y12)

Figure 2.2: Advanced Trilateration

26

2.3. Localisation in Cellular Networks 2. Localisation Techniques

Multi-lateration and Multi-angulation. Multi-lateration [117] is similar to tri-
lateration but is based on TDOA measurements rather than TOA or RSS. Generally,
in multi-lateration, three reference objects measure the TDOA when receiving a sig-
nal from a target object which forms two hyperboloids intersecting at the target’s
location (TDOA from a fourth object forming a third hyperboloid is measured if lo-
calising the target object in 3 dimensions is required). Similarly, multi-angulation [12]
is closely related to triangulation where a target object is localised based on known
angles. However, while triangulation is localising a target object in reference to two
objects, multi-angulation is a generalisation with more reference objects. Increasing
the number of reference objects is especially beneficial to enhance the accuracy of the
localisation process in noisy environments.

2.3 Localisation in Cellular Networks

In 1996, the Federal Communication Commission (FCC) issued the E911 mandate aim-
ing to further improve the 911 emergency calls when being made from mobile handsets.
The mandate requires telecom operators to be able to accurately locate a mobile hand-
set initiating a 911 call with accuracy of around 50 meters 67% of the time and within
150 meters 95% of the time for handset-based (i.e., object-based) solutions, and within
100 meters 67% of the time and within 300 meters 95% of the time for network-based
solutions [37]. Similarly, since July 2006, Ofcom (the telecommunication regulatory
authority in the UK) gave support to caller localisation made via GSM/UMTS for
emergency calls dialled to several emergency numbers (the European equivalent of
911). The service is limited to identifying the cell in which the call was made, which
may cover a range of several meters in urban areas but can extend over several kilo-
metres in rural ones. Below we discuss a few popular localisation techniques in cellular
networks (some techniques such as Cell ID and Enhanced Cell ID are not discussed
due to their severe accuracy discrepancies; see [17] for more information).

Enhanced Observed Time Difference. E-OTD [77] is based on Observed Time
Difference (OTD) measurements, which estimate the time difference of receiving multi-
ple signals. In E-OTD, the Mobile Station (MS) estimates its own location by calculat-
ing OTD when receiving signals from pairs of Base Stations (BS). This requires at least
three reference BS’ (P1, P2, P3) to be able to make at least two OTD measurements
(e.g., OTD1 from P1 and P2, OTD2 from P1 and P3, or P2 and P3). While E-OTD is
often used in GSM networks, OTDOA (Observed Time Difference of Arrival) is gener-
ally considered the UMTS version of E-OTD developed especially to operate on UMTS

27

2.3. Localisation in Cellular Networks 2. Localisation Techniques

networks. E-OTD was strongly believed to be the next generation of location service.
However, beside requiring the handsets to be slightly modified to enable E-OTD (in-
troducing cost implications), it also failed to meet FCC E-911 location performance
requirements. Recently, E-OTD/OTDOA were largely replaced by U-TDOA.

Uplink Time Difference of Arrival. U-TDOA [98], standardised by 3GPP (3rd
Generation Partnership Project), is a localisation technology that estimates the lo-
cation of a MS by measuring how long it took signals emitted from the MS to be
received at several BS’. Unlike E-TOA, U-TDOA is a network-based technique; that
is, the localisation process is carried out at the reference BS’ which does not impose
extra hardware or software requirements on the MS’. Moreover, U-TDOA uses multi-
lateartion for improved accuracy (see section 2.2.2).

Global Positioning System. GPS [107] is a location system developed by the US
Department of Defence (DoD). GPS is similar to E-OTD in that it is handset-based
(the target localises itself in reference of surrounding reference objects), but in this
case the reference objects are satellite rather than BS’. To be able to use GPS, an
object has to be equipped with a special GPS receiver to correctly receive and decode
signals from at least 4 out of the 24 satellites orbiting the earth that are constantly
emitting these GPS signals. GPS localisation and tracking proved to be useful for
certain situations, but beside requiring additional hardware, it is also not suitable for
indoor or underground environments where GPS signals are usually not available.

Assisted Global Positioning System. With conventional GPS systems, the GPS
device localises itself independently, from receiving the GPS signals to the location
estimation. An A-GPS [34] system, on the other hand, consists of three components:

1. an A-GPS devices that can receive GPS signals but can not decode them,

2. an A-GPS server equipped with a fully featured GPS receiver, and

3. a network infrastructure mediating between the A-GPS devices and A-GPS server.

Briefly, there are two types of A-GPS. In terminal-based A-GPS, the A-GPS device
localises itself by sending the GPS signals it receives to the A-GPS server, which,
based on these signals, carries out the localisation estimation and sends it back to
the device. In network-based A-GPS, the A-GPS server provides some information
(e.g., reference locations, reference time etc.) for the A-GPS device to carry out the
location estimation. Recently, the enhanced A-GPS has been introduced, where cellular
networks are used to improve the localisation efficiency.

28

2.4. Localisation Fusion 2. Localisation Techniques

Differential Global Positioning System. In most cases, GPS signals received
from the satellites contain timing errors [97], which affect the accuracy of the location
estimation. Usually, two receivers located within approximately the same vicinity re-
ceive the same timing errors. Thus, in D-GPS reference stations with pre-configured
accurate locations are distributed carefully to cover a large area. Once these static sta-
tions receive GPS signals, they compare the signals with their pre-configured locations
to find any timing errors. Information about these errors is then propagated to the
mobile stations in their vicinity so they, in turn, can correct their received GPS signals.

2.4 Localisation Fusion

Multi-sensor data fusion entails combining data from different sources to improve the
estimation accuracy of a particular process [51]. Accordingly, fusing more than one
localisation technique/measurement proved very efficient [76]. The classical example
is when a moving object is simultaneously detected by a pulsed radar and an infrared
imaging sensor [85]. The radar can reliably measure the range of the object, but cannot
accurately measure the angular direction. In contrast, the infrared sensor can accu-
rately measure the angular direction, but not the range. Thus, by fusing measurements
from the two sensors, we significantly improve the localisation of the object. Fusion,
however, often introduces additional overhead, which is not desirable for low cost sensor
networks. Below we discuss a few examples of fusion algorithms in wireless networks.

2.4.1 Fusing Different Technologies

Localisation accuracy can be improved by fusing the outputs of multiple wireless tech-
nologies where possible. For example, in [10] and [11], Aparicio et al. proposed an
algorithm to locate a target in an indoor environment by fusing Bluetooth and WLAN
measurements where Bluetooth stations and Access Points (AP’s) are randomly dis-
tributed over an area. This technique incorporates building two maps, one based on
RSS measurements from Bluetooth stations and another based on RSS measurements
from WiFi AP’s. The main idea is to specify the boundaries of the localisation area
by Bluetooth (which is a short range technology and would produce more accurate es-
timates for this purpose) and then only accept the WiFi RSS measurements reporting
the target to be within this area.

Another yet more advanced fusion system is COMPASS (COMmon Positioning
Architecture for Several Sensors) [71] that fuses the outputs of multiple sensors to
produce probabilistic location estimates by means of probability distribution function,
PDF. COMPASS can fuse location information taken from multiple location sources,

29

2.4. Localisation Fusion 2. Localisation Techniques

including access points, GPS, RFID and Gyroscope. Basically, COMPASS is a soft-
ware architecture based on modular plugin design, where each location source has a
separate plugin. The plugins calculate location PDFs based on data provided by their
corresponding location source and report these PDFs to a central locator. The locator
then combines the received PDFs and calculates the location with highest probability.
In [72] Kargl et al. provided an extension to the COMPASS system, with this extension
raw geo-location information is translated to meaningful location information, such as
city name, addresses etc., that can be readily used by location-based services.

2.4.2 Fusing Different Parameters

Fusing different technologies is certainly desirable, but sometimes it is not possible.
Thus, the most common approach in multi-sensor data fusion is to fuse the measure-
ments of different parameters, such as RSS and TOA. In the following subsections we
briefly discuss such fusion techniques. Algorithms proposed to fuse multiple measure-
ments of the same parameter at different intervals, e.g., [136], are not discussed.

Fusing Signal Strength with Time Measurements. Catovic et al. [22, 23] pro-
posed an algorithm to fuse TOA/TDOA measurements with RSS in short-range par-
tially synchronised Wireless Sensor Networks (WSN). The algorithm benefits from the
short-range nature of WSN, which improves TOA/TDOA and RSS measurements. The
proposed algorithm also accounts for the heterogeneous characteristics of WSNs, which
influences some general communication properties such as communication range and
routing. The main drawback of this algorithm is that it requires the nodes to be par-
tially synchronised is not always possible in WSNs. Similarly, Luo et al. [88] proposed
a self-localisation algorithm based on Covariance Intersection4 (CI), which fuses RSS
and TDOA measurements.

Fusing Direction with Time Measurements. In [127], Venkatraman et al. pro-
posed two algorithms based on TOA and AOA fusion. The first algorithm, called Hy-
brid TOA/AOA Algorithm, is based on trilateration where a target object is located
at the common overlap area of at least three intersecting circles formed by TOA mea-
surements from at least three reference objects. In this algorithm, AOA measurements
are taken to further constrain this area and enhance the accuracy of the localisation.
The second algorithm, called Hybrid Lines of Position Algorithm, is based on solving

4CI fuses two or more variables with unknown correlation.

30

2.5. Accuracy Issues 2. Localisation Techniques

Lines of Position (LOP)5 by the least square algorithm6. LOP are generated by an
astronomical method called Intercept Method that is usually used to locate an object
on earth. Similarly, Cong et al. [28] proposed a two-step least square algorithm to fuse
TDOA and AOA measurements in wide-band CDMA cellular network. Additionally,
Hsin-Yuan et al. [65] and Ping et al. [105] proposed other algorithms to fuse angular
(AOA) and time (TOA/TDOA) measurements with neural networks.

2.5 Accuracy Issues

Maintaining consistent estimation accuracy is the main problem in most localisation
techniques. The ideal situation of having a clear line of sight between the transmitter
and the receiver rarely occurs in reality, especially in urban environments. In fact,
localising an object in practice is often based on inherently nonlinear parameters that
are easily affected by environmental and physical factors. In the case of RSS, for
example, the strength of the received signals may not perfectly correlate with the
distances it travelled because they may have been reflected, deflected or absorbed by
en-route obstacles. However, careful investigating of the signalling used in a particular
technology may lead to a better estimation; for example, recent work [64] showed
that in Bluetooth measuring the received power level usually yields better location
estimation than other Bluetooth parameter measurements. Another solution is to use
filters, which basically estimate or recover missing or corrupted signal parameters.
Nevertheless, using filters can be computationally expensive and may not be suitable
for some low-end technologies, such as wireless sensor networks.

As discussed earlier, the localisation algorithms are as accurate as the parameters
they are based on, and the accuracy of the latter mainly depends on correct modelling of
the measured radio waves. Radio waves are usually described by their behaviour while
propagating from a point to another. Modelling these radio propagation behaviours
largely influences the accuracy of any localisation process. Based on the environment,
radio propagation models can be roughly classified as follows [116]:

• Foliage Models: radio propagation through foliage,

• Terrain Models: effect of terrain characteristics on radio propagation, and

• City or built-up Models.
5A single LOP is a line in which a target object is situated. The intersection of multiple LOP yields

the location of that target.
6The least square algorithm solves systems in which the number of equations is greater than the

number of unknowns (such systems are called overdetermined systems).

31

2.6. Summary 2. Localisation Techniques

City Models are derived from empirical data collected at urban environments, primarily
to investigate radio propagation characteristics in such environments. Young Model,
Okumura Model, Hata Model and Lee Model are a few examples of popular city radio
propagation models [116]. These models, however, describe long-range propagation
and hence can be used in localisation in long-range networks, such as cellular networks;
for a discussion about radio propagation models in short-range environments, see [35].

Integrity of Evidence. It is clear that the vast majority of localisation/tracking
mechanisms (especially the passive ones) bear probabilistic distribution due to the un-
avoidable measurement errors imposed by the environment. In one hand, it seems that
pinpointing the exact location of a target entity with 100% accuracy is infeasible (if
at all possible) in practice, on the other hand, if localisation is carried out as part of
forensic investigation, it is important to characterise the estimation errors carefully as
the produced evidence will probably be used in court. In this thesis, while we tried to
design our algorithms to maintain acceptable accuracy, highly reliable measurements
may not always be possible. Thus, we further discussed factors and methods that will
most likely improve our accuracy, e.g., sections 5.7 and 6.5. However, in general it
should be noted that the algorithms presented in this thesis, like most other track-
ing algorithms, produce probable evidence, not 100% factual, and that the amount of
available resources will play a major role in determining whether or not they can be
used in court. Nevertheless, probability distribution functions (PDFs) can be used to
accurately characterise errors, which, ideally, should exhibit uniform distribution. Al-
ternatively, this can be done by adopting measurement models that, e.g., can calculate
the Cramér-Rao bound (CRB)7 of the precision of the location estimation [103].

2.6 Summary

In this chapter, we surveyed various localisation techniques in wireless networks. Gen-
erally, localisation can be either object-based or network-based. In both cases, a target
is localised in reference to several surrounding objects with known locations. In object-
based localisation, the target localises itself by observing emissions from its neighbour-
ing objects, while in network-based localisation, these neighbouring objects localise the
target by observing its emissions. We first discussed several generic localisation tech-
niques in sensor and cellular networks, we then provided a discussion about multi-sensor
data fusion where various localisation parameters are fused to improved accuracy.

7Informally, the CRB is a lower bound describing how much information a set of measurements
have about a parameter with unknown probability distribution.

32

Chapter 3

Forensic Tracking and Mobility

Models

Traditional tracking applications were mainly civilian such as tracking of
goods and children. Military tracking applications are also popular and
mostly based on Radar technology. A third type of tracking applications
is conducted under a law enforcement investigatory framework to collect
forensic evidence associated to some criminal activity, we call this kind of
tracking “forensic tracking”. In this chapter, we first define and elaborate
on this (relatively) new class of tracking and introduce some approaches that
can be adopted to conduct forensic tracking procedures. We then describe
several categories of mobility models and illustrate how they are developed in
practice. Mobility models are especially important to conduct offline foren-
sic tracking and will be used extensively in chapter 7. Parts of this chapter
were published in [1] and [8].

3.1 Introduction

Forensic tracking1 is the tracking of individuals for forensic purposes. These individuals
are usually suspected to be/have been associated with a particular crime (or set of
crimes). Like other classes of tracking, forensic tracking can either be online (takes place
in real time) or offline (takes place post hoc), but unlike other tracking classes, forensic
tracking is always passive because it takes place clandestinely without the knowledge of
the individual being tracked. While conventional civilian tracking applications usually

1Forensic tracking is also sometimes used to refer to the process of embedding marks in a digital
content to track illegal redistributions [82].

33

3.2. Online Tracking 3. Forensic Tracking and Mobility Models

use active online tracking in the sense that the target is aware of the tracking process
and indeed sometimes cooperates with the tracker, in forensic tracking it is crucial that
the tracking process is totally passive and unobservable by the target. Offline tracking,
nevertheless, is naturally passive since the tracking process takes place after the fact
where a collection of traces (corresponding to locations where the target was observed)
are obtained and probabilistically reconstructed; obviously, in most cases, the whole
trace collection process happens without the knowledge of the target.

Chapter Outline. This chapter is organised as follows. In sections 3.2 and 3.3
we discuss online and offline tracking, respectively. Online tracking can further be
active or passive, which are discussed in sections 3.2.1 and 3.2.2, respectively. We
then briefly describe several attacks against online tracking in section 3.2.3, followed
by some privacy concerns associated with online tracking in section 3.2.4. Since offline
tracking cannot be active, we only discuss passive offline tracking. In sections 3.3.1 and
3.3.2, we discuss offline tracking based on the popular Bayesian approach. Finally, in
section 3.4 we provide an overview of mobility models describing their different types,
and illustrating how they are being formally developed.

3.2 Online Tracking

Online tracking, also sometimes called live tracking, is the tracking of a target (or
a number of targets) in real time. Online tracking has many civilian and military
applications and can either be active or passive. In the following sections, we elaborate
on both types and discuss example applications of each.

3.2.1 Active Tracking

The majority of tracking applications are based on active online tracking, and indeed,
most of the literature in tracking covers the various aspects of active tracking. In this
kind of tracking, the target is aware of the tracking process, and in some cases even
collaborates with the tracker to localise itself. This means that active online tracking
cannot be considered a type of forensic tracking. For completeness, however, below we,
very briefly, discuss some popular active online tracking applications.

Tracking in Sensor Networks. Since, usually, there are limited resources available
for sensor nodes, it is important that they maintain an efficient power-saving scheme.
It is, therefore, not surprising that most of the tracking algorithms proposed for sen-
sor networks try to minimise power consumption as much as possible, e.g., [131, 132].

34

3.2. Online Tracking 3. Forensic Tracking and Mobility Models

One approach is to minimise the number of the active tracking sensors to only those
located closer to the target. Kim et al. [74] proposed an algorithm that tracks a tar-
get through a set of steps. Once the surrounding objects detect the presence of the
target, they collaboratively localise it and predict its next movement based on its ve-
locity, assuming that the target does not perform sudden or rapid movements. The
nodes then notify other nodes located at the area toward which the target is approach-
ing. When tracking multiple targets, the power efficiency requirement becomes even
more challenging. Jiang et al. [70] proposed an algorithm to maintain efficient power
consumption threshold in a multi-target tracking scenario. The algorithm divides the
tracking area into tracking sub-areas where nodes frequently switch between sleep and
awake states based on a scheduling scheme. Similarly, distributed tracking became an
established approach [118] where the tracking area is divided into sensor cliques, but
the tracking scene for such algorithms need to be pre-configured.

Binary proximity sensors are also used to track both single [75] and multiple [121]
targets. These sensors produce a 1-bit output to indicate the presence of the target(s) in
their vicinity. However, while algorithms based on binary sensors perform well in short-
range networks, they do not scale for the long-range ones. Research in the feasibility
of tracking multiple targets by binary proximity sensors is undergoing; in particular,
currently, the binary proximity sensors can, with high probability, detect the presence
of targets, but cannot accurately count or identify them.

Tracking in Cellular Networks. Tracking a mobile handset in cellular networks
(including GSM/UMTS and CDMA) has always been an active area of research. How-
ever, because such tracking is based on long-range communication, the accuracy of
algorithms developed for this purpose is severely hindered. Beside the conventional lo-
calisation methods adopted from sensor networks (see section 2.2.1), filtering is usually
also used to remove noise and further improve the location estimation accuracy. For
example, in [93], Mihaylova et al. presented two sequential Monte Carlo based tech-
niques, namely, a particle filter and a Rao-Blackwellised particle filter, which are based
on RSSI measurements of signals emitted by the Mobile Station (MS). Similarly, Zaidi
et al. [135] and Olama et al. [100] proposed several object tracking algorithms based
on Kalman and particle filters. However, generally these filters impose an additional
computational requirement and hence such algorithms are usually network-based; that
is, there is usually a dedicated computation centre to which nodes report the mea-
surements to carry out the location estimation computation. This setting is feasible
in cellular networks as they are infrastructure based networks. Sensor network, on the
other hand, are ad hoc networks which makes such solutions unsuitable.

35

3.2. Online Tracking 3. Forensic Tracking and Mobility Models

Radar Tracking. Although we will consider multiple target tracking in chapter 4
based on wireless mobile ad hoc networks, the majority of research in this area has been
conducted based on radar technology [68], mostly for applications to aviation systems,
where the problem of accurately tracking multiple targets is even more challenging,
especially when associating anonymised measurements to construct the tracking records
of each target [128]. Multiple Target Tracking (MTT) algorithms in radar can roughly
be based on: Nearest Neighbour (NN), Joint Probabilistic Data Association (JPDA)
[83] or Multiple Hypotheses Tracking (MHT) [108]. Detailed discussion about radar-
based tracking is beyond the scope of this thesis.

3.2.2 Passive tracking

Unlike active tracking, in passive tracking the targets must not be aware of the tracking
process. Most (if not all) law enforcement tracking applications enforce this passivity
requirement since the targets are usually suspects or criminals that are being tracked
as part of some criminal investigation. Passive tracking is indeed more challenging than
active tracking because in this case we not only need to track the target efficiently and
accurately, but also be unobservable by the targets. Thus, probably a better name for
this kind of tracking is “clandestine tracking”, but we will stick with “passive tracking”
since this is more widely accepted.

The process of tracking by passive sensors (sensors that measure the radiation
emitted or reflected by surrounding objects) is also called passive tracking, but here
we make an explicit distinction between this passive tracking and our passive track-
ing. Additionally, our passive tracking is also required to be adaptive to cope with
the movements of the targets. Unfortunately, the literature severely lacks contribu-
tions in passive/clandestine tracking. Therefore, in this thesis, we tried to bridge this
gap by extensively discussing and proposing passive tracking algorithms for different
environments, which can be readily used by law enforcements.

3.2.3 Reliability and Security

While it is of course important for the tracking process in the conventional tracking
applications to be reliable, this is even more emphasised in forensic tracking because
the produced evidence will be used in court and thus its integrity needs to be tightly
preserved (see section 2.5). Beside carefully characterising measurement errors, it is
also important to be aware of how potential malicious attackers can masquerade the
tracking process and hence the resulted forensic evidence. In the following subsections
we discuss a few possible ways a tracking process can be maliciously attacked. We

36

3.2. Online Tracking 3. Forensic Tracking and Mobility Models

describe attacks in the typical tracking scenario where a target is being tracked by a
single or multiple trackers, but these also apply for multiple targets scenarios. We will
later revisit some of these attacks in chapter 4 and propose lightweight cryptographic
solutions; see section 4.7.

Address Spoofing. If the address of any of the genuine trackers was spoofed, the
integrity of the whole tracking process fails. In such scenarios, an attacker can imper-
sonate one of the trackers and overtake the tracking process. During this time, the
attacker can easily modify the tracking information. This attack, however, can be pre-
vented by enforcing mutual authentication between the trackers to prove to each other
that they are in fact who they claim they are (see section 4.7.1).

Denial of Service (DoS). Another way to attack a tracking process is to temporar-
ily disable it by temporarily rendering its resources unavailable. Such attacks involve
sending frequent random traffic to the trackers, which may result in losing track of the
target. This attack may be prevented by configuring the trackers to accept traffic from
only specific entities (e.g., the targets and other trackers).

Man-In-The-Middle (MITM). An attacker can mediate between two or more
trackers pretending to be one for the other. An attacker in this case can either be
passive, where it only relays traffic, or active, where it alters traffic as it passes from
one side to the other. This type of attack can be prevented by encryption and the
various integrity check methods. Usually, the traffic is location updates and is small
enough to allow encryption without necessarily overwhelming the tracking process.

3.2.4 Privacy Implications

In active tracking, the tracking process takes place either with the collaboration of the
target, or at least with a prior consent. In both cases, there are no privacy implications
as the target is already aware of and has authorised the tracking process. On the other
hand, this is not the case with passive tracking because the targets are not aware that
they are being clandestinely tracked. Additionally, as we will see in chapters 4 and 5,
passive tracking may require the active propagation and distribution of software and
the passive recruitment of tracking agents to assist in the tracking process, which may
involve both ethical and legal issues. However, while in some jurisdictions, this kind
of passive tracking may not be permitted, in others it may be. In the United King-
dom, for example, the Regulation of Investigatory Power Act 2000 (RIPA) discusses
similar issues under a lawful interception framework, and, in some situations, allows

37

3.3. Offline Forensic Tracking 3. Forensic Tracking and Mobility Models

law enforcement officers to bypass privacy barriers having that appropriate procedures
are followed. In other words, while in some countries violating the privacy of users is
strictly illegal, in others this may be restrictively allowed for a specific period of time.

3.3 Offline Forensic Tracking

Online tracking may not always be possible usually due to resource constraints. In fact,
in most real criminal cases, online tracking is not even an option. In these cases, an
offline forensic tracking investigation is often initiated amid a crime that had already
occurred. Offline tracking begins by obtaining an incomplete set of traces associated to
a target (or a number of targets) then proceeds to reconstruct them probabilistically;
thus, a more intuitive name for offline forensic tracking (which we will use extensively
and interchangeably in the rest of the thesis) is trace reconstruction. Clearly, active of-
fline tracking does not make sense; offline tracking is naturally post-hoc passive. There
are a number of approaches that can be used to reconstruct a target’s trace, promi-
nently, Bayesian approach as it offers a coherent probabilistic framework that suits
our reconstruction task. However, trace reconstruction based on Bayesian approach
may become infeasible for sufficiently large scenarios, in which case we can use variants
of mobility models instead. We provide a brief discussion about both approaches be-
low; Bayesian offline forensic tracking is the subject of chapter 6 while offline forensic
tracking based on mobility models is the subject of chapter 7.

3.3.1 Basic Bayesian Approach

Bayesian analysis is based on the popular Bayesian formula which basically calculates
the probability that an event A will occur given that some other event B has already
occurred, denoted Pr(A|B), and is usually called the posterior probability, formally:

Pr(A|B) =
Pr(AB)
Pr(B)

=
Pr(B|A) · Pr(A)

Pr(B)

where Pr(AB) is the joint probability of A and B (the probability that both A and B
will occur), the probability Pr(A) is the prior probability and is subjectively derived
to model any prior knowledge of event A, the probability Pr(B|A) is the conditional
probability of B given A, also called the likelihood, and the probability Pr(B) is the
marginal probability, which is a normalising factor to make sure that probabilities will
sum up to 1 (adhering to the fundamental axioms of probability theory). Although
Bayesian approach has been successfully used in online localisation and tracking [41],
using it in an offline setting seems even more natural since in this setting we are

38

3.3. Offline Forensic Tracking 3. Forensic Tracking and Mobility Models

confronted with the missing data problem for which Bayesian approach can provide
appropriate probabilistic treatment. When extracting a trace for an offline tracking
analysis, the missing data that the trace will most likely exhibit form gaps. Bayesian
analysis can help in connecting these gaps by assigning probabilities to the different
possible routes through the gaps, then select the route with the highest probability as
the one that the target most likely has taken through the gaps. In Bayesian formulation,
this scenario can be stated as follows:

What is the probability that a particular route has been taken by the target,
given that the target spent some known time while traversing the gap?

The time the target spent traversing a particular gap can easily be found by observing
the end points of the gap which indicate what time the target was last observed before
entering the gap, and then what time the target was next observed as it was leaving
the gap. This can be formulated as follows:

Pr(Routei|GapTime) =
Pr(GapTime|Routei) · Pr(Routei)

Pr(GapTime)

=
Pr(GapTime|Routei) · Pr(Routei)∑
i Pr(GapTime|Routei) · Pr(Routei)

3.3.2 Dynamic Bayesian Networks

Bayesian Networks (BN) are a convenient way to graphically represent causal rela-
tionships among several variables, where some variables directly or indirectly influence
each other. The main feature of BNs is their conditional independence, which states
that a variable is conditionally independent from its non-descendent given its par-
ents. For example, in figure 3.1, Bt is conditionally independent from Ct given At,
denoted Bt ⊥⊥ Ct |At. If two variables are conditionally independent given their par-
ents, then change in one does not affect the other if the value of the parent is known.
Thus, the probability density function of a Bayesian Network X containing n variables
X = {x1, x2, . . . , xn} is calculated as follows:

Pr(x1, x2, . . . , xn) =
n∏
i∈1

Pr(xi|pa(xi))

where pa(xi) is the set of the parent nodes of variable xi. This is much more efficient
than applying the conventional chain rule:

Pr(x1, x2, . . . , xn) = Pr(x1|x2, · · · , xn) · Pr(x2|x3, · · ·xn) · · ·Pr(xn−1|xn) · Pr(xn)

39

3.4. Mobility Models 3. Forensic Tracking and Mobility Models

Once we specify the gaps in a target trace, we run the BN to select the routes that the
target most likely has taken through these gaps. As we traverse the various routes, the
BN constantly updates its state to reflect on the probabilities of the traversed routes,
this is called belief propagation. However, conventional static BNs are not suitable
in this scenario since the network has to be updated according to dynamic variables
that change over time. This means that not only belief propagation is required, but
also a dynamic state update, where future states are affected by the current ones (i.e.,
essentially forming a Markov Chain). In such situations, Dynamic Bayesian Networks
(DBN) [46] can be used instead. Figure 3.1 depicts a sample DBN with four variables,
showing how they are updated from time t to t + 1. Usually, every variable at time t
updates its copy at t + 1 (e.g., Bt → Bt+1;Dt → Dt+1), but it is also possible for a
variable at t to update other variables at t+1 (e.g., At → At+1, Ct+1;Ct → Ct+1, Dt+1).

At

Bt

Ct

Dt

At+1

Bt+1

Ct+1

Dt+1

Figure 3.1: Sample Dynamic Bayesian Network (DBN)

These variables can represent factors affecting whether the target could have been
observed at the location where the DBN is called. However, some of these factors
may be fuzzy in nature. For example, one essential factor that a DBN should consider
when calculating the probabilities is the road traffic states, but this factor is fuzzy
since there is no clear distinction between what constitutes a low, medium or high
traffic. Bayesian Networks utilising fuzzy variables are called Fuzzy Bayesian Networks
(FBN) [44]. Combing FBN with DBN, we have the Fuzzy Dynamic Bayesian Network
(FDBN), which seems to be a comprehensive framework for a typical Bayesian-based
trace reconstruction.

3.4 Mobility Models

In sufficiently large scenarios (such as the one discussed in chapter 7), BN may not be
feasible, in which case we can reconstruct the trace based on mobility models. Mobility
models are mathematical descriptions of the motion behaviour of entities under some

40

3.4. Mobility Models 3. Forensic Tracking and Mobility Models

constrains. These models are most commonly used in simulation-based evaluations of
mobile and wireless network protocols. In our trace reconstruction setting, mobility
models can be used to assist in estimating the target’s movement through the gaps.
In particular, when we run a mobility model on a particular route, we are actually
estimating the movement of the target should they have taken that route. That is, we
supply the models with estimated information about factors that could have affected the
target’s mobility and run it over the possible routes. In the following sections we briefly
introduce different classes of mobility models and show how models in these classes are
being developed to adapt for objects (nodes) with different mobility behaviours. The
discussion in this section considers the standard mobility models (which we feel will
provide essential background for the rest of the relevant parts of the thesis), and these
may be used for trace reconstruction, but simplified variants of them (which we call
delay mobility models) seem to do the job more efficiently and economically. Detailed
discussion about trace reconstruction based on (delay) mobility models is deferred to
chapter 7 where we use them in a multi-modal environment.

3.4.1 Pedestrian Mobility

Pedestrian mobility models [20] describe the motion behaviour of humans (pedestrians).
Generally, these models are either discrete-space or continuous-space [80]:

• Discrete-space: in this approach the movements of the pedestrians are simulated
in discrete time steps while representing simulation environment by a grid. The
nodes (pedestrians) in these models move in a cellular automata fashion by rapidly
switching between adjacent cells, thus they are also sometimes called cellular
automata based models [115].

• Continuous-space: in these models, the nodes’ locations are updated continuously
producing a smooth movement behaviour. Most of the models in this category
model the pedestrian mobility based on the dynamics of fluids or gas [56].

One of the most popular pedestrian mobility models is the random waypoint, which
was first proposed by Johnson and Maltz [30]. In this model each node ni chooses a
random destination di,t and approaches it in a random speed vi,t. Once di,t is reached,
ni pauses for a random time pi,t, chooses another random destination di,t+1 and moves
toward it with a random speed vi,t+1, and so on until the simulation expires. This
(somewhat basic) model has been extensively used in evaluating many ad hoc network
protocols, for which mobility models are essential [133]. More realistic is the continuous-
space approach which models pedestrians as Newtonian particles whose mobility is

41

3.4. Mobility Models 3. Forensic Tracking and Mobility Models

affected by a number of forces [57, 58]; see figure 3.2 for an illustration. Helbing et al.
modelled such forces in their famous social force model [59]. These forces are [87]:

• desire force Fdesire: models the node’s self desire (motive) to reach its destination.
Let ni be a pedestrian with mass mi intending to move with a velocity v̂i in the
direction −→ei , then Fdesire is:

Fdesire
i =

v̂i
−→ei − vi
ti

mi (3.1)

where vi is ni’s current velocity which he tries to adjust to reach v̂i within time ti.
Notice that equation 3.1 is derived from the popular force formula: F = mi × a,
where the acceleration a = v̂i − vi/ti.

• social force Fsocial: models the effect of other nodes ∪j∈N\{i}nj and the environ-
ment (e.g., physical obstacles) ∪i∈Mmi on the movement of node ni, where N
and M are the sets of all nodes and all obstacles, respectively, in the simulation
scene. Here, each object (pedestrian or physical obstacle) is modelled as a circle
with centre ci and radius ri. Fsocial is calculated as follows:

Fsocial
i =

∑
j∈N ,j 6=i

Aj exp
[

(ri + rj)− di,j
Bj

]
−→e i,j

+
∑
k∈M

Ak exp
[

(ri + rk)− di,k
Bk

]
−→e i,k

where Ay and By are the magnitude and range of the force, y ∈ N ∪M, di,j is
the distance between object ui and uj , and −→e i,j is the unit vector pointing from
ui to uj (the direction of the movement).

• physical force Fphysical: models the constrained mobility of nodes that is influ-
enced by the physical structure of pedestrian pathways; this force also accounts
for the avoidance behaviour among nodes.

Fphysical
i =

∑
j∈N ,j 6=i

Aj · g((ri + rj)− di,j)−→e i,j

+
∑
k∈M

Ak · g((ri + rk)− di,k)−→e i,k

where Ay is the magnitude of the force, y ∈ N ∪M, and the function g(.) is
defined as follows:

g(x) =

1 if (ri + rj)− di,j > 0,

0 otherwise.

42

3.4. Mobility Models 3. Forensic Tracking and Mobility Models

Figure 3.2: Forces determining pedestrian mobility

All these forces affect the pace at which the pedestrians move toward their destinations,
which can be calculated by summing all the forces (recall, F = m · a and a = d

dtv).

d

dt
vi =

Fdesire
i + Fsocial

i + Fphysical
i

mi

3.4.2 Vehicular Mobility

Modelling the mobility of vehicles2 has traditionally been based on pedestrian mobility
models [113]. However, due to the substantial intrinsic physical differences between
pedestrians and vehicles, pedestrian mobility models often do not accurately capture
realistic vehicular mobility patterns. Beside the fact that vehicles are significantly
faster than pedestrians, they also have less motion freedom since they are usually
constrained by roadway structures. This has motivated the development of dedicated
vehicular mobility models, which can be roughly classified in four classes:

• Macroscopic models: simulate the characteristics of the roadways (motion con-
strains) and the flow of vehicles. These models do not consider the individual
movement of the vehicles, but rather model the traffic in an abstract level.

• Microscopic models: describe the dynamics of the movement of individual vehicle
entities and their interaction with each other. This is the most common class.

• Mesoscopic models: a hybrid class between macroscopic and microscopic models
mixing features from both with moderate complexity, upper bounded by the
complexity of microscopic models.

2Vehicles in this context includes both private and road-based public transport vehicles because
they are all susceptible to the same mobility constrains on the road.

43

3.4. Mobility Models 3. Forensic Tracking and Mobility Models

• Sub-microscopic models: also called nanomodels, these are very elaborate models
simulating parts of the vehicles, such as the engine, the transmission systems etc.
These models are the most computationally demanding.

Regardless of the class, the most desirable mobility modelling approach is to sta-
tistically derive a model from real-life traces [67]. Unfortunately, it usually takes long
time and substantial effort to collect such traces. Thus, most vehicular mobility models
are based on mathematical formulation, such models are called synthetic models and
are classified as follows [40]:

• Stochastic models: these are microscopic models simulating vehicular movement
with random speed over street map graphs; these models are the most trivial
because they do not represent realistic vehicular behaviours such as interactions
between vehicles and intersection overhead. Examples of such models are the
City Model [31], and Manhattan Model [13].

• Traffic stream models: these are microscopic models simulating the fundamental
traffic parameters such as velocity, density and flow. The model proposed by
Lighthill and Whitham [84] is one of the earliest (and most fundamental) examples
of traffic stream models.

• Car-following models: these are microscopic models where the mobility of each
vehicle is modelled in relation to the vehicle ahead [21]. In these models, the
movement pattern of a particular vehicle is modelled relative to its distance from
the leading vehicle as well as the absolute and relative speed of both vehicles.

• Car/flow interaction models: these models extend microscopic scenarios by in-
troducing multiple traffic flows and considering the interaction between vehicles
from different flows (this includes lane changing and intersection management).

The car-following approach of modelling the mobility of vehicles is probably the
most established (and studied) approach dating back to the 1950s. One of the earliest
car-following models is the GHR model [45], which is based on differential formulation.
However, differential formulation-based car-following models are not scalable and would
require excessive computational power for large scenarios. A more convenient car-
following approach is based on time discrete steps [79]. An example of a simple time-
discrete car-following model is as follows: let dsafe be the minimum safety distance
between any two vehicles at any given time. Based on Figure 3.3, and considering
vehicle Si, this translates to the following rule:

∆xi − Li+1 ≥ dsafe (3.2)

44

3.4. Mobility Models 3. Forensic Tracking and Mobility Models

Other vehicles should preserve similar inequality. This safety distance is inspected
regularly at every time step ∆t. If this distance is abused, a deceleration procedure is
called to decelerate the following vehicle at the next time step:

vi(t+ ∆t) = vi(t)− (vi+1(t)− vi(t)) (3.3)

Otherwise, the vehicle may either choose to keep its current speed, or accelerate:

vi(t+ ∆t) = min[vi(t) + (vi+1(t)− vi(t)), vmax] (3.4)

where vmax is the maximum legally allowable speed and is road-dependant. A more
sophisticated model would also consider lane changing and take-over behaviours of the
vehicles. Such models require more conditions to be satisfied before undertaking the
lane-changing/take-over actions. In all cases, vj−1(t) < vi(t) has to be satisfied to avoid
collisions while changing the lane or overtaking the leading vehicle. The following two
inequalities need to further be satisfied when changing the lane:

(xj−1(t)− xi(t))− Lj−1 ≥ Csafe (3.5)

(xi(t)− xj+1(t))− Lj+1 ≥ Csafe (3.6)

where Csafe is a sufficiently large gap between two vehicles to allow a third one to
slip between them. On the other hand, while overtaking, the node has to do extra
calculations to make sure that it can shift back to its original lane later. Assume that
the acceleration ai of vehicle Si can be roughly estimated upon which the displacement
(distance) di(τ) after time τ can be calculated to check the possibility of whether
overtaking may take place during that time. Considering figure 3.3, vehicle Si first
predicts the distance between vehicles Si+1 (the leading of the current lane) and Sj+1

(the leading of the adjacent lane) after time τ , dgap = d(Sj+1)− d(Si+1), where3:

d(Sj+1) =
vj+1(t) + aj+1.τ

τ

and similarly for d(Si+1). Once dgap is calculated, and in addition to the inequalities
3.5 and 3.6, the following inequalities are also tested:

(dgap ≥ Csafe) ∧ (aj−1(t) < ai(t)) (3.7)

An overtake proceeds only if all conditions are satisfied.
3Since v = v0 + a · t, and d = v/t, then d = (v0 + a · t)/t, where d is the distance, v is the average

velocity, v0 is the initial velocity, a is the acceleration and t is the time.

45

3.4. Mobility Models 3. Forensic Tracking and Mobility Models

Sj+1Sj-1

Si-1 Si Si+1

xj-1(t) xj+1(t)

xi+1(t)xi(t)xi-1(t)

v-1(t) vj+1(t)

vi-1(t) vi(t) vi+1(t)

Li+1LiLi-1

Lj+1Lj-1

Δxi(t)Δxi-1(t)

Δxj-1(t)

Figure 3.3: Scenario illustrating our sample vehicular mobility model

3.4.3 Multi-modal Mobility

Multi-modal mobility models describe the movement of nodes with irregular mobility
behaviours over heterogeneous environments (environments where there is more than
one way to transport from one point to anther). In this case, we not only need to
integrate several different mobility models, but also model the interaction between
them, which turns out to be non-trivial. In particular, we need to model the Inter-
Transport Delay (ITD) which is the transition delay incurred by switching between
different mobility models. For example, considering a bus transportation network, for
an individual to switch from bus a to bus b, the ITD is determined by the timetables
of both a and b. We build the models based on such parameters, which are indeed
publicly available. We represent these timetables by matrices listing all the locations
that a and b pass by and all possible times; below is an example, where zi,j is set to 1
if z appears in location j at time i, 0 otherwise, and z ∈ {a, b}.

ai,j ai,j+1 ai,j+2 · · · ai,y−2 ai,y−1 ai,y

ai+1,j ai+1,j+1 ai+1,j+2 · · · ai+1,y−2 ai+1,y−1 ai+1,y

...
...

...
. . .

...
...

...

ax,j ax,j+1 ax,j+2 · · · ax,y−2 ax,y−1 ax,y




bk,l bk,l+1 bk,l+2 · · · bk,q−2 bk,q−1 bk,q

bk+1,l bk+1,l+1 bk+1,l+2 · · · bk+1,q−2 bk+1,q−1 bk+1,q

...
...

...
. . .

...
...

...

bp,l bp,l+1 bp,l+2 · · · bp,q−2 bp,q−1 bp,q


46

3.5. Summary 3. Forensic Tracking and Mobility Models

These matrices are then used to calculate the ITD. Suppose that an entity arrived
at location m at time t and needs to transit from a to b. This transition can be modelled
using the following transition function (which):

ITDa,b
t =


|t− n| if bn−1,m < t < bn,m,

1 if t = n,

∞ otherwise.

This function basically models how long an entity needs to wait at location m before
a carrier from b is available. Clearly, there are three cases, either the entity arrives at
m between times n and n + 1 (where n < t < n + 1), or at exactly time n, or there
is no b carrier at location m (e.g., b terminates before t or does not pass by m). The
purpose of this section is not to propose a fully functional multi-modal model, rather it
just aims to provide a proof of concept and a brief overview of how multi-modal models
are developed. The above model is a simplification of a more detailed model proposed
in chapter 7; also it may not cover all possible scenarios. Here we explicitly assumed
that the transition location m will be present on the matrices of both a and b, which,
obviously, does not necessarily always hold in practice; this requires a more elaborate
case distinction that is beyond the scope of this introductory section. We also note that
unlike the full model in chapter 7, here we only consider variants of vehicular models
but without integrating a pedestrian one. We will revisit and elaborate on these and
other issues in chapter 7 where we propose a full-fledge multimodal mobility model.

3.5 Summary

In this chapter, we discussed modern applications of tracking with special emphases
on forensic tracking, where the latter entails tracking for forensic purposes. In general,
tracking can either be online or offline. In online tracking, a target is being tracked
in real time, this can further be active, with the knowledge of the target, or passive,
without the knowledge of the target. While most online civilian applications are based
on active tracking, online forensic tracking is always passive for obvious reasons. Offline
tracking, on the other hand, entails the post hoc reconstruction of the target’s trace;
offline forensic tracking is more practically relevant in most criminal investigations.
We discussed and described ways in which offline forensic tracking can be carried out,
namely, using Bayesian approach or based on mobility models. In this chapter we
briefly illustrated how to build and use these approaches to carry out an offline forensic
tracking process, more details of each approach are deferred to chapters 6 and 7.

47

Part II

Online Forensic Tracking

48

Chapter 4

Online Pedestrian Forensic

Tracking

Target tracking applications have drastically evolved and became essential
intelligence and law enforcement tools. Traditionally, long-range commu-
nications, such as cellular networks, have been used for this purpose. This
conventional tracking approach, however, usually suffers from estimation
inaccuracy due to measurement errors. On the other hand, short-range
emissions from mobile devices such as phones and accessories can be used
to improve the accuracy of these passive tracking applications. In this chap-
ter, we adopt an algorithmic approach to build a clandestine agent-based
passive tracking system where a set of dynamically recruited tracking agents
observe single or multiple targets and report to single or multiple trackers.
We develop a number of algorithms to initiate and maintain this tracking
system while consistently preserving passivity and unobservability. We also
propose a few supporting auxiliary mechanisms and algorithms to improve
security and fault-tolerance. The contents of this chapter was published in
[2], [7], and [3].

4.1 Introduction

Modern tracking and surveillance applications are now being frequently utilised by law
enforcements. Unlike the conventional tracking applications, law enforcement tracking
applications are required to be passive since the targets in this case are suspects or
criminals and it is important that they are not aware of the tracking process. While the
ubiquitous use of mobile phones has contributed an important new localisation/tracking

49

4.1. Introduction 4. Online Pedestrian Forensic Tracking

tool, cellular-based tracking offers a limited temporal and spatial resolution causing
severe accuracy implications in rapidly evolving scenarios where adding or switching
between targets is desirable. This is particularly problematic inside buildings or at
crowded urban environments where physical or cellular surveillance is often difficult
(or impossible) without considerable resources and effort. On the other hand, short-
range radio frequency emissions are typically used more often allowing for slightly easier
(passive) tracking that does not require fixed infrastructure or interaction with network
operators and can hence be set up rapidly on an ad hoc basis.

In this chapter, we approach passive tracking based on a secondary radio-frequency
emanation associated with a number of personal electronic devices ranging from mobile
phones to portable computers and their accessories, which use different radio frequency
communication channels, including IEEE 802.11 and Bluetooth. The ubiquity of such
devices and their use by the general public makes them attractive tracking tools. In
fact, recent work [101] showed that the presence of such devices (Bluetooth devices in
that case) is increasingly becoming common among the general public; they carried out
their experiments in a relatively small-sized British city, so we would expect even higher
number of such devices in larger cities. Even though we may occasionally borrow a few
terminologies from Bluetooth technology (for convenience), we deliberately abstracted
the algorithms making them generic enough to be applicable for any short-range ad hoc
communication technology. Once an emission source associated to the target has been
identified, typically in the form of a Layer 2 (MAC) address, the target can be localised
by fusing observation reports from multiple agents and then geometrically transform
these to a target location estimate.

This chapter contributes a number of novel algorithms for pedestrian tracking in
a different settings and scenarios. We first propose algorithms for locating and track-
ing a single target by randomly and dynamically recruiting agents while forming a
number of tracking networks interconnected in an ad hoc fashion. These agents are
typically mobile phones and similar devices from the general public but may also include
purpose-built units. These algorithms constitute a complete (basic) passive tracking
system. We begin by proposing the core tracking functions and discussing a (well
known) localisation technique that is being used by the tracking algorithms as a block-
box every time an update of the target’s location is required. We then proceed to
extend our tracking scenario and add more functionalities to support multiple-target
tracking. This potentially allows for detecting and tracking associates of targets or
multiple devices carried by the same target. While such an individual may frequently
change emission devices to obscure tracking, the mere fact that the same individual
possesses other devices, such as other mobile phones, for a period of time may allow for

50

4.2. Scene Setting and Assumptions 4. Online Pedestrian Forensic Tracking

the formation of useful hypotheses. We also report on a group of algorithms to track
multiple targets by (possibly) multiple trackers while minimising the observability of
coordinating communication and maximising coverage and tracking accuracy among
the dynamically recruited agents. We do not impose specific computational require-
ments on the tracking agents, while also not assuming that such agents are capable of
carrying out heavy computations such as those requiring signal filtering. We instead
tackle the problem of multiple targets tracking at a generic algorithmic high level.

Chapter Outline. The remainder of this chapter is organised as follows. Section
4.2 sets the scene for the rest of the chapter and discusses our assumptions and re-
quirements; it also provides further background information that will be used in later
sections. Online pedestrian localisation is discussed in section 4.3. Section 4.5 describe
how tracking networks are formed, which is a crucial part of our tracking system since
we adopt an agent-based tracking approach. We then propose our tracking algorithms
in sections 4.6 and 4.7 considering scenarios ranging from single tracker single target
(simulation results in section 4.6.2), to multiple trackers multiple targets scenarios (sim-
ulation results in section 4.7.6). In section 4.7.3 we describe how our tracking network
handles failures, followed by an elaboration of the dynamic leader election algorithm in
section 4.7.4, which is used throughout the tracking. To minimise observability, we also
propose a transmission algorithm in section 4.7.5. Finally, privacy in online forensic
tracking and ways to preserve it are discussed in section 4.8.

4.2 Scene Setting and Assumptions

In our proposed passive clandestine tracking system there are three types of entities:

• Trackers: entities initiating the tracking process. We assume that trackers are
law enforcement officers or members of the police.

• Targets: entities that are being tracked by the trackers. We assume that targets
are suspects or criminals being investigated as part of a crime investigation.

• Agents: entities representing pedestrians from the public that happen to present
at the tracking scene and consequently get involved in the tracking process.
Agents can either be masters or slaves, see section 4.4.

For obvious reasons, trackers should not be physically chasing the targets; instead,
they recruit tracking agents who eventually become part of the tracking network.
Briefly, the recruitment process proceeds in two steps (this process is formalised in
section 4.5):

51

4.2. Scene Setting and Assumptions 4. Online Pedestrian Forensic Tracking

1. Range Search: first, the recruiter (who is either a tracker or a master agent)
randomly searches its range for entities.

2. Recruitment: once the recruiter finds some entities, it checks whether these enti-
ties are suitable for recruitment, and if so, it recruits them.

We assume that the tracker can identify the target, typically in the form of a
nominally unique address, and that, initially, the target is in the tracker’s range. We
also assume all entities involved in the tracking process support similar communication
range, which is important to maintain consistent communication. Once the tracker
recruits the agents, the tracker triggers them to form piconets; a piconet is a small
ad hoc network consisting of one master and up to 7 (active) slaves1. The farther the
target moves, the more piconets are formed. While discussing the algorithm, we will
be introducing two types of piconets, tracking piconets and connecting piconets.

• The tracking piconet is responsible for the main tracking task (i.e., locating the
target and sending location updates to the tracker).

• The connecting piconets are responsible for maintaining connectivity throughout
the network by providing delivery links from the tracking piconet to the tracker
and maintaining the delivery of the tracking updates.

Figure 4.1 illustrates a typical piconet interconnection scenario; more information about
these piconets is given in section 4.4. The tracker only recruits the agents of the first
piconet, subsequent recruitments are then handled by the masters. If an agent (master
or slave) is no longer needed, it is retired; algorithms for the recruitment and retirement
of agents are provided in section 4.6.1. Moreover, the tracker maintains a tracking
table T containing records of the target’s movements history which are being updated
periodically by the tracking piconet. Table 4.1 is a sample T (addresses in table 4.1
were generated randomly and do not correspond to real addresses).

Date Time Target Location

10-11-08 13:04:22 10-33-af-b2-00-c5 51.3833 -2.3500

10-11-08 13:09:01 1f-04-e6-20-b0-10 51.3833 -2.3533

10-11-08 13:11:59 10-33-af-b2-00-c5 51.3838 -2.3604

.

Table 4.1: Tracking Table snapshot
1A piconet may consist of more than 7 slaves, but only up to 7 slaves can be active ant any given

time, while the rest are said to be passive. This, however, will introduce unnecessary overhead.

52

4.2. Scene Setting and Assumptions 4. Online Pedestrian Forensic Tracking

Target

Agent

Tracker

Entity

Tracking Piconet

Connecting Piconet

Figure 4.1: A sample single-target single-tracker tracking network consisting of one
tracking piconet and one connecting piconet

We assume that the recruiter is able to communicate with the agent and instal2

tracking software. Our tracking system is based on two software components installed
in the agents at recruitment, these are:

1. Probe-SW : used to locate the suitable entities for recruitment.

2. T-SW (tracking SW): responsible for various management and tracking tasks.

In addition, we also introduce a number of management signals and messages that are
occasionally exchanged among the agents to trigger various tasks. These signalling
messages are discussed throughout the remainder of the chapter and are summarised
in table 4.2. This table should be treated as a reference and the reader can come back
to it later when necessary. Finally, we assume that we have knowledge of the initial
location of the target. This is plausible because in order for the tracker to initiate the
tracking process, the target has to be (initially) in the tracker’s range, and since we
are considering a short-range communication, the tracker will, very likely, be able to
estimate the target’s location (even visually).

2The software can be distributed either by cooperating with the carrier or through active propagation
mechanisms that may or may not involve the consent of the agent depending on legal requirements,
which may significantly vary from a country to another, see sections 3.2.4 and 4.8.

53

4.3. Online Pedestrian Localisation 4. Online Pedestrian Forensic Tracking

Signal/message Description

form pico signal a signal sent to an agent triggering it to form a new piconet
for which it will act as a master

self-destruction signal a signal sent to an entity to retire it

alive messages exchanged among agents to maintain the network

sensing request sets the agents to the temp mode where they constantly
search for genuine trackers

authentication request used for authentication purposes between agents and
trackers; see section 4.7.1

discover message broadcasted by an agent to discover its neighbouring
agents

neighbourList signal exchanged among agents to request lists of each other’s
neighbouring agents

mastership signal sent by the backup master to the slaves of a piconet to
forcefully take over the mastership of the piconet

target location update messages containing information about the current loca-
tion of the target (see section 4.1), these messages are sent
by the tracking master(s) to the tracker(s)

Table 4.2: Signals and messages exchanged among the agents and the trackers

4.3 Online Pedestrian Localisation

As discussed extensively in chapter 2, conventional localisation techniques in wireless
networks are based on measuring signal parameters such as: Received Signal Strength
(RSS), Time of Arrival (TOA), Time Difference of Arrival (TDOA), and Angle of
Arrival (AOA). Since TOA usually requires a fully synchronised network, which is not
preserved in our ad hoc environment, and TDOA may involve interacting with the
target, which, clearly, defeats the passivity of the tracking process, both TOA and
TDOA are not suitable for our algorithm. Similarly, measuring AOA is often difficult
as it requires the agents to be equipped with specialised antenna, which we cannot,
realistically, assume. This leaves RSS to be the only directly suitable method for our
purpose, which can be used in both passive and active tracking. In this section we will
describe the localisation of a single target, this can be generalised to the localisation of
multiple targets and will later be used in sections 4.6 and 4.7 for single and multiple
targets tracking.

54

4.3. Online Pedestrian Localisation 4. Online Pedestrian Forensic Tracking

4.3.1 Passive Localisation

In a passive setting, the target is localised in three steps: first, the recruited agents are
(actively) localised, then the distances between those agents and the target are esti-
mated by means of RSS, and finally the target’s location is estimated via trilateration.

Step 1: Localising the Agents. Initially, in addition to the location of the tar-
get, we assume that the tracker can also estimate the location of at least two of the
recruited agents. Such assumption is plausible for a short-range communication since,
in the worst case scenario, the tracker can visually estimate the locations of the agents.
Alternatively, these two agents can be associates of the tracker to help with the initial
localisation process after which they may depart. Along with the tracker, these two
agents can localise a third agent by means of trilateration (see below). In fact, any
entity can be localised as long as there are at least three other agents with known
locations in its range. It is important that the three agents localising the target have
themselves been already localised, other agents (if there is any) do not have to.

It is also possible to use active methods based on, e.g., TOA/TDOA, to localise these
agents since we are not concerned about passivity between agents; see section 4.3.2.
Furthermore, if the agents are equipped with GPS (which is very common today), the
location of the agents can be obtained even more conveniently, having that the agents
are located in an environment where GPS signals are available (e.g., outdoor).

Step 2: Measuring Distances. Based on the discussion at the beginning of this
section, we use RSS to estimate the distance between the agents and the target. In
long-range communication, RSS measurements may be affected by a number of factors.
While moving objects such as vehicles and pedestrians may introduce random errors
that can be eliminated (or mitigated) by averaging the measurements, the static non-
moving objects, such as buildings, will introduce systematic errors that are difficult to
filter without careful modelling of the environment [96] (see section 2.5). Fortunately,
in short-range communication, the noise due to static objects is, on average, acceptable
as the communication covers limited areas and does not travel long distances. Thus, in
our localisation algorithm, we model the environment by adopting the free-space radio
propagation model, which abstracts away both the random and the systematic errors.
Free-space model is a basic radio propagation model for measuring RSS that assumes
a clear line-of-sight (LOS) path between the transmitter and the receiver, which, in
most short-range communicate scenarios, may be preserved. Hence RSS is calculated
as follows:

Preceived
Ptransmitted

=
Areceiver ·Atransmitter

d2 · λ2

55

4.3. Online Pedestrian Localisation 4. Online Pedestrian Forensic Tracking

This equation is known as Friis equation [43], where Preceived and Ptransmitted are the
received and transmitted power, respectively, Areceiver and Atransmitter are the effective
area of the receiving and transmitting antenna, respectively, d is the distance between
the transmitter and the receiver, and λ is the wavelength. Assuming that the target
uses an isotropic antenna3, the power radiating from the target is calculated as follows:

Preceived =
Ptransmitted ·Areceiver ·Atransmitter

4π.d2

hence, the distance between the transmitter and the receiver is:

d =
√
Ptransmitted ·Areceiver ·Atransmitter

4π.Preceived

Measurement filtering and multi-sensor data fusion (fusing measurements from multi-
ple sensors) [41] can also be used to improve the measurement accuracy but with an
increased computational complexity that the agents may not be capable of. City radio
propagation models, like Young, Okumura, Hata and Lee models [116], may enhance
the accuracy of the measurements in some cases, but as discussed in section 2.5, these
models were developed based on empirical data collected in real cities primarily target-
ing the radio propagation properties for long-range communication scenarios and would
most likely perform poorly when applied on short-range scenarios. This is primarily
why we opt to adopt the free space model, but regardless of the adopted model, in
urban and other dense environments, there will necessarily be an unavoidable radio
propagation error margin.

Once the distances are estimated, every reference agent sends its respective esti-
mated distance to the master agent and the algorithm proceeds to the final step where
the location of the target is estimated.

Step 3: Trilateration. As discussed in section 2.2.2, trilateration is a well-known
geometric approach for localising a target based on at least 3 non-collinear reference
points (i.e., the reference points should not all lie on a single line) when localising in
2 dimensions, or at least 4 non-collinear reference points when localising in 3 dimen-
sions. Although in this algorithm we consider 2 dimensions scenarios, this can be easily
extended to 3 dimensions. Once the distances between the agents and the target are
estimated as described above, the target is localised by calculating the intersection

3An isotropic antenna is based on the theoretical isotropic radiation concept. The radio waves emit-
ted from this antenna are radiated uniformly in all directions. It is not clear whether such theoretical
antenna exists because achieving this behaviour in practice is very difficult, if at all possible, but the
concept is useful as a reference model for an ideal antenna to which other (practical) antennas can be
compared.

56

4.3. Online Pedestrian Localisation 4. Online Pedestrian Forensic Tracking

point of the three circles formed by the three reference agents that are centred at the
locations of the agents and have radii of the agents’ respective estimated distances
from the target (as calculated in step 2). Figure 4.2 illustrates how trilateration is per-
formed, where (xi, yi) and ri are the centre and radius of the circle i which corresponds
to Agenti. Knowledge of the centres of these circles (the coordinates of the locations of
the reference agents) and their corresponding radii (the distances between the reference
agents and the target) is sufficient to calculate the circles’ intersection point.

r1

r2

r3

(x1,y1)

(x2,y2)

(x3,y3)

Agent3Agent1

Agent2

Figure 4.2: Basic Trilateration

The algorithm proceeds as follows: we know that the equation of a circle is (x −
h)2 + (y − k)2 = r2 for all points (x, y) on the circle, where (h, k) are the coordinates
of the centre of the circle and r is its radius. Based on figure 4.2, the equations of the
three circles are:

(x− x1)2 + (y − y1)2 = r2
1

(x− x2)2 + (y − y2)2 = r2
2

(x− x3)2 + (y − y3)2 = r2
3

then, by elementary transformations, the coordinates (x, y) are:

x =
fb− ec
bd− ea

+ ε, y =
c− afb+ aec

b2d− ab
+ ε

where a = 2x1 − 2x2, b = 2y1 − 2y2, c = r2
2 − r2

1 − x2
2 + x2

1 − y2
2 + y2

1, d = 2x1 − 2x3, e =
2y1 − 2y3, f = r2

3 − r2
1 − x2

3 + x2
1 − y2

3 + y2
1, and ε is random variable representing

57

4.3. Online Pedestrian Localisation 4. Online Pedestrian Forensic Tracking

measurement and radio propagation errors. For the sake of expediency, the circles
are considered to be threshold values of cumulative probability distributions (PDFs)
incorporating error margins of the RSS measurements. In particular, we assume that
the three circles will be aligned perfectly to intersect in one point; However, this may
not be the case in practice. That is, it is more likely that the three circles will not
intersect in exactly one point, but rather 3 points forming a circular triangle. In this
case, the target may be localised by finding these three points, treat them as vertices for
an ordinary triangle and find its centroid where the target will most likely be. However,
this process will require advanced calculations and knowledge of some angles between
the reference agents which we assumed to be hard to obtain; detailed discussion of
this more accurate (and advanced) trilateration process is presented in section 2.2.2.
Algorithm 4.1 illustrates the localisation algorithm.

Algorithm 4.1 Single Target Localisation
1: SET Tracker {identify the tracker}
2: SET Target {identify the target}
3: AgentsCount ← 3 {at least 3 agents}
4: for i = 1 to i ≤ AgentsCount do
5: Agents[i].addr ← getAddress(Agent[i]) {Step 1: identify agents}
6: Agent[i].location ← getLocation(Agent[i]) {locate the agents}
7: end for
8: for i = 1 to i ≤ AgentsCount do
9: Agent[i].RSS ← measureRSS(Agent[i],Target) {Step 2: measure RSS}

10: end for
{Step3: Trilateration}

11: Target.location ← Tri(Agent[1,2,3].location, Agent[1,2,3].RSS)
12: locationUpdate(Target.location, Tracker) {send location update to the tracker}

4.3.2 Active Localisation

As illustrated in algorithm 4.1, the first step in our localisation algorithm is to localise
the agents. Since localising the agents need not be passive, we can use active localisa-
tion methods, which are likely to be more accurate. Evidently, time-based parameter
measurement techniques, such as TOA and TDOA, usually enjoy higher accuracy mar-
gin than the signal strength-based ones. Thus, the distance between agents A1 and A2

can be estimated as follows (algorithm 4.2 illustrates this process, which is known as
round-trip time, see section 2.2.1):

1. A1 sends a signal to A2 at time t1.

2. A2 receives the signal and sends an acknowledgement back to A1.

58

4.4. Piconets 4. Online Pedestrian Forensic Tracking

3. A1 receives the acknowledgement at time t2.

4. Assuming the radio waves propagate in free space at approximately the speed of
light (c ≈ 3 × 10−8m/s), A1 calculates the distance between A2 and itself using
the conventional distance equation: d = c× t, where t = t2 − t1.

This procedure can also be used with the target occasionally if passivity is not strictly
required at all times.

Algorithm 4.2 Round-trip Time
1: SET A1, A2 {identify two agents}
2: A1.sendSignal(A2) {A1 sends signal to A2}
3: A1.sendSignal(A2).time = t1 {A1 records the time the signal went out}
4: if A2.receiveSignal(A1) = TRUE then
5: A2.sendAck(A1) {A2 sends acknowledgement back to A1}
6: end if
7: if A1.receiveSignal(A2) = TRUE then
8: A1.receiveSignal(A2).time = t2 {record the time A1 receives the ack}
9: distance(A1, A2) = 3×10−8(t2− t1) {calculate the distance between A1 and A2}

10: end if

4.4 Piconets

As a result to the restrictions that the short-range communication nature of our tracking
environment imposes on the agents, the tracking network will eventually be split into
several piconets. As briefly described in section 4.2, our tracking algorithms utilise two
types of piconets, tracking piconets and connecting piconets.

4.4.1 Tracking Piconet

The actual localisation of the target takes place in the tracking piconet. The master of
the tracking piconet is called tracking master (which has a central role in carrying out
the tracking process) and the slaves are called tracking slaves. To be able to localise the
target, at least 3 members of the tracking piconet should be within the target’s range
(see figure 4.1). Once the target is localised, the tracking master transmits the location
updates back to the tracker. The first tracking piconet is formed by the tracker at
the initialisation stage of the tracking process, then subsequent tracking piconets are
formed on demand. However, a tracking network cannot have two tracking piconets
for a single target; hence, once a new tracking piconet is formed, the old one is either
torn-down or downgraded to a connecting piconet.

59

4.5. Piconet Formation 4. Online Pedestrian Forensic Tracking

4.4.2 Connecting Piconet

The connecting piconet function as a bridge between the tracking piconet and the
tracker, connecting the two and handling the transmission of the traffic between them
(i.e., tracking updates and acknowledgements). In the connecting piconet, the master
is called connecting master and the slaves are called connecting slaves. Obviously,
the further the target moves way from the tracker, the more connecting piconets are
formed. Every connecting piconet has at least two bridge agents (one of which can
be the master) to link the connecting piconet with its neighbours (at the tracker’s
closest connecting piconet, the tracker is connected to one of these bridge agents). In
fact, to connect the tracking network, one agent is sufficient, but this will most likely
over-utilise the agent’s resources.

4.5 Piconet Formation

The piconet initiator is the entity that triggers the formation of a piconet. The tracker
initiates the very first piconet, which is a tracking piconet, and then sets passively
to receive the target location updates; all subsequent piconets are formed by master
agents. New piconets are formed in two cases:

• a new tracking piconet is formed if the current tracking piconet can no longer
handle the target’s movements or if the current tracking piconet broke down,

• a new connecting piconet is formed if an intermediate connecting piconet broke
down or as a downgraded tracking piconet.

Below we propose two piconet formation algorithms to cope with any formation demand
as outlined above, these are: Formation by Direct Interrogation (FDI), and Formation
by Neighbour Interrogation (FNI). Figure 4.3 is a flow chart illustrating the overall
mechanics of both algorithms (note that the minimum required number of agents to
form a connecting piconet is 2 while it is 3 for a tracking piconet; see figure 4.7).
We discuss the formation algorithms below when forming tracking piconets, forming
connecting piconets is similar except when forming a connecting piconet the Probe-SW
does not check the range of its host for the target.

4.5.1 Formation by Direct Interrogation (FDI)

In FDI, the initiator of the piconet searches its range, randomly chooses one of the
entities and sends the Probe-SW to it. The Probe-SW then searches the entity’s range

60

4.5. Piconet Formation 4. Online Pedestrian Forensic Tracking

Chose an entity

randommly

Send Probe-SW

Are there

agents already

recruited?

Can you see them?
Can you see

the target?
Yes

No

No

Recruit

Yes

Required

number of agents

recruited?

No

No

Form piconet Yes

Yes

Send T-SW

Are you

forming a tracking

piconet?

Yes

No

Figure 4.3: Flow chart illustrating the FDI and the FNI algorithms

for the target4 and reports back to the initiator. If the target was found, the initiator
recruits that entity by sending the T-SW to it, otherwise, the initiator discards the
entity and searches its own range again to recruit a different one. When the first agent
is recruited, the initiator attempts to recruit a second one by repeating the process
above but this time it asks the Probe-SW to search the range of the entities it is sent
to for both the target and the already recruited agent. To successfully form a piconet,
it is important that the recruited agents can see each other as well as seeing the target.
When the second agent is recruited, the initiator repeats the same process to recruit
a third agent after which the initiator would have recruited the minimum required

4Here we describe FDI when forming a tracking piconet, forming a connecting piconet is similar,
except that when forming a connecting piconet, the Probe-SW may be triggered to search for any other
entity such as the master of an adjacent piconet.

61

4.5. Piconet Formation 4. Online Pedestrian Forensic Tracking

number of agents to be able to localise the target5 and can now form a tracking piconet
by sending the form pico signal to one of the agents to act as the piconet’s master (for
example, the agent with highest ID may be selected for this purpose). The form pico
signal contains the addresses of the already discovered agents which will be the slaves
of that piconet; in this case, the master does not have to rediscover its slaves because
the agents have been recruited in such a way that guarantees that all of them can see
each other, as well as the target. Algorithm 4.3 illustrates the FDI algorithm.

Algorithm 4.3 Formation by Direct Interrogation (FDI)
1: SET Initiator {identify initiator of the piconet}
2: SET Target {identify the target}
3: SET MIN {minimum number of agents to form a piconet}
4: SET Agents[MIN] {create an array of size MIN, index starts at 1}
5: for i = 1 to i ≤ MIN do
6: Entity[i] ← SearchRange(Initiator)
7: for j = 1 to j ≤ MIN do
8: Entity[i].Suitable ← SendProbe-SW(Entity[i],Target, Agents[j])

{return TRUE if the Target and all recruited agents are in Entity[i]’s range}
9: end for

10: if Entity[i].Suitable = TRUE then
11: sendT-SW(Entity[i])
12: Agent[i] ← Entity[i] {Recruit Entity[i]}
13: end if
14: end for
15: Master ← recruitMaster(Agent[x]) {select a master, x ∈ {1, 2, . . . ,MIN}}
16: sendPico form(Master) {form the piconet}
17: for i = 1 to i ≤ MIN-1 do
18: if Agent[i] 6= Master then
19: recruitSlave(Agent[i]) {recruit other agents as slaves}
20: end if
21: end for

4.5.2 Formation by Neighbour Interrogation (FNI)

Another way to form a piconet is by modifying the Probe-SW to discover the neighbours
of the entity it is sent to and returns a list of those neighbours to the initiator. The
initiator then analyses this information and decides whether the corresponding entity
is suitable for recruitment (i.e., whether the target is listed as one of its neighbours). If
that agent is recruited, the initiator randomly chooses one of that agent’s neighbours

5For better localisation accuracy and fault tolerance, the initiator may wish to recruit more agents;
see section 4.7 and figure 4.7 which illustrates the minimum and maximum number of agents that can
be recruited in a single piconet.

62

4.6. Basic Pedestrian Tracking 4. Online Pedestrian Forensic Tracking

and sends the Probe-SW to it to retrieve the neighbours of the latter and repeats the
process until the minimum required number of agents are recruited (i.e., three agents for
a tracking piconet and two agents for a connecting piconet). Algorithm 4.4 illustrates
the FNI piconet formation algorithm.

Algorithm 4.4 Formation by Neighbour Interrogation (FNI)
1: SET Initiator {identify initiator of the piconet}
2: SET Target {identify the target}
3: SET MIN {minimum number of agents to form a piconet}
4: SET Agents[MIN] {create an array of size MIN, index starts at 1}
5: for i = 1 to i ≤ MIN do
6: Entity[i] ← searchRange(Initiator) {select an entity at random}
7: NeighbourList ← getNeighbourList(Entity[i])
8: for j = 1 to j ≤ sizeof(NieghborList) do
9: for x = 1 to x ≤ MIN do

10: Entity[i].Suitable ← sendProbe-SW(NeighbourList[j], Target, Agent[x])
{return TRUE if the Target and all agents are neighbours to Entity[i]}

11: end for
12: if Entity[i].Suitable = TRUE then
13: sendT-SW(Entity[i])
14: Agent[i] ← Entity[i] {Recruit Entity[i]}
15: break {Recruit another agent}
16: else
17: continue {loop and try different neighbour}
18: end if
19: end for
20: end for

4.6 Basic Pedestrian Tracking

Since the target’s movement is not restricted, agents will need to be dynamically re-
cruited and retired. However, this requirement poses several challenges while forming
and tearing-down communication between the agents. In this section we consider such
issues in a single-tracker single-target scenario; advanced algorithmic treatment for the
multi-target multi-trackers scenarios is provided later in section 4.7.

4.6.1 Agent Recruitment and Retirement

As briefly discussed in section 4.2, the tracker initiates the tracking process by broad-
casting a specialised software, Probe-SW, to every entity in its range. The Probe-SW
first evaluates its host entity for suitability of requirement (e.g., whether the target is

63

4.6. Basic Pedestrian Tracking 4. Online Pedestrian Forensic Tracking

in range) and replies back to the tracker. The tracker then decides whether to recruit
the entity. Recruitment at this stage is triggered by the tracker and is merely a matter
of sending another software, T-SW, to the suitable entities. However, recruiting and
retiring agents in subsequent stages are processed more systematically; in most cases,
recruitment is handled by the masters of the corresponding piconets. Retirement, on
the other hand, are triggered for

• entities failing the Probe-SW initial evaluation, and

• agents departing from their piconets.

An agent is retired by receiving a self-destruction signal from its master (if it is a slave),
the new master (if it is a master departing from its piconet), or the recruiter (if it was
an entity failing the Probe-SW evaluation). This signal will trigger the self-destruction
process, where Probe-SW and T-SW (if present) are removed from the host entity.

Departing Slave. Since agents are mobile entities, they will eventually depart from
the tracking network. Thus, it is crucial to detect their departure as soon as possible
to allow sufficient time for retiring them and arrange for recruiting replacements. All
agents (masters and slaves) regularly exchange alive messages to maintain the piconets.
We do not define how often these messages should be exchanged, but we note that since
we are modelling human movements, rapid exchange rate may be unnecessary. The
purpose of the alive messages is to assure the reachability of the entities and are sent
from the master to all its slaves repeatedly. Once the slaves receive these messages,
acknowledgments should be sent back. If the master does not receive several consecutive
acknowledgements from a particular slave, it retires it and recruits another. Algorithm
4.5 illustrates how the departure of a slave is handled.

4.6.2 Simulation Results

We used Network Simulator 2 (NS-2) to evaluate the proposed algorithms. Figure 4.4
presents the simulation results for a scenario consisting of 18 entities running for 30
simulation minutes. The simulated entities were being constantly recruited/retired by a
single tracker while tracking a single target. The figure shows the difference in distance
between the actual location of the target (obtained from NS-2 built-in location function)
and our algorithm’s estimated location. We used the following formula to calculate the
difference between the two locations:

d =
√

(x2 − x1)2 + (y2 − y1)2

64

4.7. Advanced Pedestrian Tracking 4. Online Pedestrian Forensic Tracking

Algorithm 4.5 Detection of a Departing Salve
1: SET SlaveCount {how many slaves}
2: SET Master {identify the master}
3: SET Slave[SlaveCount] {identify the slaves}
4: SET max missed {max. number of missed acknowledgements}
5: while Tracking is active do
6: for i = 1 to i ≤ SlaveCount do
7: sendAlive(Master → Slave[i]) {exchange alive messages}
8: if Ack = received then
9: continue {if an acknowledgement is received then loop again}

10: else if Ack = not received then
11: Slave[i].missed ack =+ 1 {count how many missed acknowledgements}
12: if Slave[i].missed ack ≥ max missed then
13: retire(Slave[i]) {retire the slave if it exceeds max. no. of misses}
14: recruit new();
15: end if
16: continue {otherwise, keep exchanging alive messages}
17: end if
18: end for
19: end while

where (x1, y1) and (x2, y2) are the coordinates of the target’s actual and estimated loca-
tions, respectively. The average difference between the actual and estimated locations
was found to be 0.54 meters, which is, in most application, acceptable. Typical human
movement in common scenarios (e.g., a target moving through a relatively crowded
area) was considered when selecting the simulation parameters to simulate the target
and agents where both used the random waypoint mobility model6 and a speed of up
to 1 m/s within an area of 250 m2. Furthermore, due to the target’s limited speed, we
localise the target every 5 seconds where it would most likely have made a movement
worth noting. The results in figure 4.4 are based on a free space radio propagation
model in a 2 dimensions scenario.

4.7 Advanced Pedestrian Tracking

Generally, tracking can be handled by single or multiple trackers to track single or
multiple targets (while assuming that both the trackers and the targets are mobile
entities). This suggests four possible scenarios:

• Scenario 1: Single Tracker tracking Single Target.
6See section 3.4.1 for description about random waypoint mobility model and other models.

65

4.7. Advanced Pedestrian Tracking 4. Online Pedestrian Forensic Tracking

Simulation software NS-2

Simulation area 250m2

Simulation duration 1,800 seconds

Simulation runs 20

Node max. speed 10 m/s

Mobility Model Random waypoint

Communication technology IEEE 802.11

Communication range 10m

Radio propagation model Free space

Table 4.3: Simulation configurations

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

1.4	

0	
 2	
 5	
 8	
 11	
 14	
 17	
 20	
 23	
 26	
 29	

D
is

ta
nc

e
(m

et
er

s)

Time (minutes)

Figure 4.4: Difference in meters between the actual and estimated target locations
during 30 simulation minutes

• Scenario 2: Multiple Trackers tracking Single Target.

• Scenario 3: Single Tracker tracking Multiple Targets.

• Scenario 4: Multiple Trackers tracking Multiple Targets.

Scenario 1 is the most basic and is the basis of all other scenario; scenario 1 was
thoroughly covered in section 4.6. In scenario 2, we introduce Handover Tracking, which
involves tracking a target by cooperatively handing over the tracking process between
multiple trackers as necessary (see section 4.7.2). In scenario 3, we introduce Virtual
Tracking, a technique for tracking more than one target (see section 4.7.1). Finally,

66

4.7. Advanced Pedestrian Tracking 4. Online Pedestrian Forensic Tracking

tracking in scenario 4 is based on all the above techniques and is the most complex. In
all scenarios, we assume that trackers have knowledge of the targets’ addresses, which
are passed to all recruited agents along with the addresses of all trackers. We also
assume that trackers possess a secret key which they share with all recruited agents for
lightweight authentication and integrity check as described in section 4.7.1.

4.7.1 Tracking with Multiple Trackers

When target(s) are being tracked by multiple trackers, we assume that a private secure
medium linking the trackers is provided (e.g., secure federal network), allowing them
to periodically synchronise the tracking information. Clearly, it is usually the case that
such network exists among law enforcement officers. In this scenario, we introduce a
framework called handover tracking, where the trackers cooperatively track the tar-
get(s). Usually, the tracking network is handled by a single tracker at any give time,
even if multiple trackers are concurrently available (scenario 4 above is the exception,
see section 4.7.2). However, if the tracking network breaks down, either a tracking
handover to another tracker occurs or a temporary tracker is elected until a genuine
tracker becomes available (this is discussed in section 4.7.4, also see algorithm 4.9).

Ideally, the tracker acknowledges receiving every target location update sent by the
tracking master. If the tracking master does not receive such acknowledgement after
3-4 tracking updates, it assumes a communication failure has occurred. The tracking
master then senses its own range, if one of the genuine trackers is found, it authenticates
it (see below) and starts transmitting the location updates directly to it. Otherwise,
the tracking master elects itself as a temporary tracker, creates a temporary tracking
table Ttemp, and breaks the whole tracking network to start a new one from scratch
acting as a tracker to recruit agents and form a new tracking network. When the
temporary tracker creates this new tracking network, it sets it to a temp mode. In
this mode, the temporary tracker, beside providing a list of all the genuine trackers
and targets to the agents it recruits, it also includes a sensing request, which basically
requires all recruited agents to periodically sense their ranges for any of the genuine
trackers. If a genuine tracker is detected by a particular piconet (either by its master
or slaves), the detecting piconet authenticates the genuine tracker and requests the
temporary tracking table Ttemp from the temporary tracker for the genuine tracker.
When the genuine tracker receives Ttemp, it merges it with its perviously synchronised
copy of the (outdated) tracking table T . Finally, the detecting piconet diverts all
location updates to the (new) tracker and retires any redundant piconet. This process
is formally discussed in section 4.7.4 and illustrated in algorithm 4.9.

67

4.7. Advanced Pedestrian Tracking 4. Online Pedestrian Forensic Tracking

Secure Handover. Since addresses of both trackers and agents can easily be spoofed
during tracking handover, it is important to enforce an authentication process between
trackers and agents. At the time of recruitment, all agents are provided with a secret
key s key, that is also shared among all trackers. We propose a Secure Handover (SH)
scheme, which uses s key to enforce a 3-way handshake authentication process similar
to CHAP (Challenge Handshake Authentication Protocol) [119] while involving random
numbers (i.e., nonce7) to provide extra layer of protection against replay attacks. Figure
4.5 depicts how mutual authentication under the SH scheme takes place between two
entities (in this case, between a genuine tracker and the master of a detecting piconet,
but of course it can be used between any other entities); algorithm 4.6 provides a
pseudocode for our SH scheme.

Detecting

Piconet

Genuine

Tracker
h(s_key + r1), auth_req, r2

Ttemp, h(s_key + r2 + h(Ttemp))

auth_req, r1

Figure 4.5: Mutual Authentication

Algorithm 4.6 Secure Handover (SH)
1: E1, E2 {identify two entities that need to be mutually authenticated}
2: auth req1 ← E1.GenAuthReq {generate an authentication request}
3: r1 ← E1.GenRand {generate random number}
4: E1.send((auth req1, r1) → E2) {send auth req1 and r1 to E2}
5: if E2.received(auth req1, r1) then {if an authentication request is received}
6: h(s key + r1) ← E2.GenHash
7: auth req2 ← E2.GenAuthReq
8: r2 ← E2.GenRand {generate second random number}
9: E2.send((h(s key + r1), auth req2, r2) → E1)

10: end if
11: if E1.received(h(s key + r1)) = h(s key + r1) then
12: E1.reqTemp {if authenticated, request Ttemp from the temp tracker}
13: E1.send((Ttemp, h(skey + r2 + h(Ttemp)) → E2)
14: end if

Once a piconet detects a genuine tracker, the master of that piconet sends an
authentication request (challenge) to the detected tracker along with a random number
r1. The tracker then adds r1 to its copy of s key, hashes it h(s key+r1), and sends the
hash value back to the detecting piconet along with another authentication request and

7A nonce is a random number used only once in a cryptographic setting.

68

4.7. Advanced Pedestrian Tracking 4. Online Pedestrian Forensic Tracking

a random number r2. Once the response is received, the master of the detecting piconet
adds the random number it previously generated (r1) to its own copy of s key, hashes it
and compares the result to the hash value it received from the tracker, if they match, the
tracker is authenticated and the temporary tracking table Ttemp is requested from the
temporary tracker for the newly authenticated tracker (similar authentication process
can take place between the master of the detecting piconet and the temporary tracker).
The Ttemp is then hashed h(Ttemp), and that hash is further hashed after adding s key
and the tracker’s random number to it, h(s key+r2 +h(Ttemp)). This final hash is then
sent to the tracker along with the actual Ttemp. Once received by the tracker, it tests
the integrity of the Ttemp (that it has not been modified in transient) by calculating
h(s key+ r2, h(Ttemp)) and making sure that it matches the hash value it just received;
these resembles a standard hash function based MAC (Message Authentication Code)
algorithm. Clearly, this authentication scheme resists man-in-the-middle attack since
no attacker can act as a man in the middle (pretending to be an agent for the tracker
and a tracker for the agent) unless they possess knowledge of s key. This scheme also
resists replay attacks. We consider two replay attacks:

1. when an attacker observing the authentication session captures the authentication
information (i.e., the hash value) en-route to be maliciously used later, and

2. when an agent, either active or retired, is compromised.

In scenario (1), an attacker cannot use the hash value of a particular session in another
since every session adds a random number (which is different for different sessions) to
the shared s key before hashing it; note that it is important to include a random num-
ber in this case, otherwise the hash of s key alone will always be the same. In scenario
(2), we suggest enforcing a regular change of s key. Obviously, since both trackers
and agents should have a synchronised copy of the s key, no s key change takes place
during temporary tracking. Thus, we assume the existence of a key management mech-
anism/protocol, but the details of such keying mechanism (key generation, distribution
and revocation) are beyond the scope of this thesis.

Clearly, Secure Handover (SH) scheme as described above, is based on symmetric
cryptography (where multiple parties share the same key), which allows the agents
to claim to be trackers, and this becomes problematic if an agent is compromised.
An obvious solution would be to use public key cryptography instead, where every
entity has two pairs of keys, a public and a private one, but then in order for one
entity to authenticate a tracker it has to have access to its public key. This means
that all public keys associated to the trackers have to be supplied to the agents at
recruitment (compared to the single s key above), and similarly all the public keys of

69

4.7. Advanced Pedestrian Tracking 4. Online Pedestrian Forensic Tracking

the agents have to be automatically supplied and synchronised among the trackers if
mutual authentication is required8. The list of the agent’s keys held by the trackers
have to also be carefully updated to reflect retirements/recruitments, but we do not
delve into the details of this process here.

4.7.2 Tracking Multiple Targets

When dealing with multiple targets, we introduce Virtual Tracking, which entails cre-
ating a separate Virtual Tracking Network (VTN) for every target. Each VTN consists
of virtual connecting and tracking piconets which in turn made up of virtual agents.
Every virtual piconet is identified by a Virtual Piconet ID (VPID), and every agent
is identified by a Virtual Agent ID (VAID). Physical piconets and physical agents can
have multiple VAID/VPID and be part of multiple VTN’s, as illustrated in figure 4.6.
The general formate of VPID and VAID is xxyy, where:

• in VPID, xx specifies the target that the corresponding VTN is tracking, and yy
is the piconet ID which is unique within the corresponding VTN,

• in VAID, xx is the agent ID which is unique within the agent’s virtual piconet,
and yy is the piconet ID to which the agent belongs, which is unique within the
corresponding VTN.

This format allows for tracking up to 100 targets; in cases where more than 100 targets
need to be tracked, xx and yy are expanded as necessary. In multi-tracker multi-target
scenario, each VTN is treated as a separate tracking network that may be handled by
single or multiple trackers; see algorithm 4.7.

4.7.3 Fault Tolerance

In connecting piconets, only two agents are required9 but two additional agents are also
recruited as backups and paired with the original agents. Backup agents accompany
the original agents and both should have the same neighbouring agents (unrecruited
neighbours do not have to match) so backup agents can seamlessly take over should
the agents they are paired with fail. Similar orientation applies for the minimum three
agents required to form the tracking piconets. Figure 4.7 illustrates the minimum and
maximum number of agents in the connecting and tracking piconets.

8This situation becomes even more complicated when we need to add or remove trackers.
9This is the bare minimum, but connecting piconets can consist of more than 2 agents. While

having larger connecting piconets will most likely reduce the number of the connecting piconets, it will
also increase the management overhead on the masters of those piconets.

70

4.7. Advanced Pedestrian Tracking 4. Online Pedestrian Forensic Tracking

S Target

Piconet Master

Tracker

VTN 1

VTN 2

VTN 3

S

S

S

VPID 0104

VPID 0203

VPID 0302

VPID 0101

VPID 0103

VPID 0202

VPID 0303

VPID 0102

VPID 0201

VAID 0303

VAID 0302

VAID 0103

VAID 0104

VAID 0403

VAID 0502

VAID 0602

VAID 0101

VAID 0401

Figure 4.6: Virtual Tracking

All recruited agents are discoverable; that is, every agent can discover its neigh-
bouring agents even if they belong to different piconets. Basically, for an agent to
discover all the recruited agents in its range, it broadcasts a discover message which
any recruited agent should reply to providing its ID (or VAID) and its Piconet ID (or
VPID). Within a piconet, agents maintain connectivity by periodically sending alive
messages to each other—alive messages are exchanged between masters and slaves, but
not among slaves; this way, a master can detect a failed slave, and vice versa. Every
slave/backup-slave pair is monitored by the master of the corresponding piconet by
periodically requiring both the slaves and their backup-slaves to provide lists of their
neighbouring agents to confirm that the two lists for a single pair match; if they do
not, the backup slave of that pair is retired and the master of that piconet searches
for a replacement10. All slaves (and backup slaves) send a periodic alive signal to the
master, thus any failure is immediately detected by the master. If a slave failed, its
corresponding backup slave takes over and a replacement backup slave is recruited.

10In fact, it is only important that all the neighbouring agents of an agent are also the neighbouring
agents of the backup agents, but not vice versa.

71

4.7. Advanced Pedestrian Tracking 4. Online Pedestrian Forensic Tracking

Algorithm 4.7 Multi-Trackers Multi-Targets Tracking
1: SET GenTrackers {List of genuine trackers}
2: SET Targets {List of targets}
3: SET Agents {List of agents}
4: SET TrackingMaster {identify the master tracker}
5: VTN[sizeof(Targets)] {a VTN for every target}
6: ActiveTacker ← GenTrackers[1] {choose an initial tracker}
7: TrackingTable ← createTrackingTable(ActiveTracker)
8: for i = 1 to i ≤ sizeof(Targets) do
9: VTN[i] ← createVTN(Targets[i]) {create separate VTN for each target}

10: end for
11: while ActiveTacker = TRUE do {if a genuine tracker is still in range, continue

tracking normally}
12: locationUpdate(TrackingMaster → ActiveTracker)
13: sync(ActiveTracker,GenTrackers,TrackingTable) {Sync tracking table with other

trackers}
14: if ActiveTracker = FALSE then
15: detectTracker(TrackingMaster,Agents,VTN,GenTrackers)

{if the tracker becomes unavailable, call the detectTracker procedure}
16: end if
17: end while

Procedure 4.8 Detect Tracker Procedure
1: detectTracker(TrackingMaster, Agents, VTN, GenTrackers)
{check if there is another genuine tracker in range}

2: for i = 1 to sizeof(VTN) do
3: for j = 1 to sizeof(GenTrackers) do {first, check the tracking master’s range}
4: if searchRange(TrackingMaster[i], GenTrackers[j]) = TRUE then
5: ActiveTracker[i] ← GenTrackers[j]
6: ActiveTracker = TRUE
7: Exit {return to the calling algorithm}
8: end if
9: for k = 1 to sizeof(Agents) do {then, check other agent’s ranges}

10: if searchRange(Agent[k],GenTrackers[j]) = TRUE then
11: ActiveTracker[i] ← GenTrackers[j]
12: ActiveTracker = TRUE
13: Exit {return to the calling algorithm}
14: end if
15: end for
16: end for

{if no genuine tracker is found, elect a temporary one}
17: electTemp(TrackingMaster[i]) {see algorithm 4.9}
18: end for

72

4.7. Advanced Pedestrian Tracking 4. Online Pedestrian Forensic Tracking

Similarly, the master also has a backup master which should see all the slaves of the
piconet. The master confirms so by periodically sending a neighbourList signal to its
backup master requesting it to provide a list of its neighbouring agents. The master
and the backup master also exchange alive messages. If the backup master did not re-
ceive alive messages from the master for a particular period of time, the backup master
forcefully takes over the piconet by sending mastership signal to the slaves and can be
mutually authenticated as described in section 4.7.1.

S Target

Agent

Tracker

S

Backup

S

Minimum number of agents in

connecting and tracking piconets

Maximum number of agents in

connecting and tracking piconets

Tracking

Piconet

Connecting

Piconet

Tracking

Piconet

Connecting

Piconet

Figure 4.7: Maximum and minimum number of agents forming the piconets

4.7.4 Leader Election

Occasionally, some agents may become unavailable either by physically moving away or
by suddenly going offline (e.g., power loss). It is also possible that trackers depart from
the tracking network, or the tracking network may break down at any time and cut
off the link connecting the tracker. In all these scenarios, replacement agents/trackers
have to be recruited/elected. Tracker election process is informally described in section
4.7.1 and is applicable in both single and multiple targets scenarios. This process
involves electing a temporary tracker and is activated when the tracking master does
not receive 3-4 location updates acknowledgements from the tracker; in this case, the
tracking master elects itself as a temporary tracker, see section 4.7.1 for details, and
see algorithm 4.9 for a pseudocode of the tracker election algorithm.

73

4.7. Advanced Pedestrian Tracking 4. Online Pedestrian Forensic Tracking

Algorithm 4.9 Temporary Tracker Election
1: SET GenTrackers {List of genuine trackers}
2: if Failed ack = 3 then {if 3 location updates aren’t acknowledged by the tracker}
3: TrackingMaster← TempTracker {elect tracking master tracker as temp tracker}

4: TrackingNetwork ← break
5: searchRange(TrackingMaster) {TrackingMaster senses its range}
6: if GenTracker = TRUE then
7: divertTraffic(GenTracker)

{if a genuine tracker is found, then it becomes the tracker}
8: break
9: end if

10: GenTracker = FALSE
11: TempMode = TRUE {activate temporary mode}
12: TempTrackingTable ← createTrackingTable(TempTracker)
13: initiateTracking(TempTracker) {TempTracker initiates the tracking network}
14: while GenTracker = FALSE do
15: update(TempTrackingTable)
16: searchRange(GenTracker) {sense range, can you see any genuine tracker?}
17: if GenTracker = TRUE then
18: if authenticate(GenTracker) = TRUE then {authenticate using SH scheme,

see algorithm 4.5}
19: GenTracker ← send(TempTrackingTable)
20: divertTraffic(GenTracker) {divert all location updates to GenTracker}
21: GenTracker = TRUE
22: end if
23: continue {if authentication failed, continue with TempMode}
24: end if
25: end while
26: end if

4.7.5 Transmission Algorithm

To improve the passivity of the tracking process, it is important that the transmission
of the tracking information does not attract the target’s attention. Thus, the tracking
information should not always flow over the same route. In this section we propose the
transmission algorithm (TA), which is comparable to a routing protocol that does not
always use the shortest path between nodes—this may slightly tradeoff efficiency. The
TA is an optional parameter that only trackers can activate. Without the TA, there is
only one route between the tracking piconet and the tracker, but once activated, the
algorithm is handled by the tracking master and proceeds in two steps:

1. first, the tracking master creates new routes by recruiting additional agents,

74

4.7. Advanced Pedestrian Tracking 4. Online Pedestrian Forensic Tracking

2. then selects which route location updates should take on their way to the tracker.

It is important to create such redundant routes only around the target; these can
then merge into a single route down to the tracker (creating redundant routes beyond
this point will not improve the passivity of the tracking because, in most cases, it is
not observable by the target any way). Algorithm 4.10 formalises these steps, where
function Recruit(x, y) recruits any entity that is in the range of both x and y, and
function forward(x→ y) programs x to forward any traffic it receives to y.

Algorithm 4.10 Transmission Algorithm (TA)
1: if TA = TRUE then {if the transmission algorithm is activated}
2: neiPico ← getNeighbour(TrackingMaster,ConnectingPico) {get entities that are

neighbours to both the tracking master and its closest connecting piconet}
3: SET Agent[MAX] {maximum number of redundant routes}
4: for i = 1 to i ≤ MAX do
5: Agent[i] ← recruit(neiPico) {recruit redundant agents}
6: forward(Agent[i] → neiPico)
7: end for
8: Buffer[MAX-1] {set the buffer size}
9: while TA = TRUE do

10: i = 1
11: while Buffer 6= Full do
12: sendUpdates via(Agent[i])
13: Buffer ← append(Agent[i]) {keep track of used routes}
14: increment i
15: end while
16: purge(Buffer) {reset the buffer once it is full}
17: end while
18: end if

Routes Formation. To form additional (redundant) routes, the tracking master
searches its range for agents that are in both its range and the range of its immediate
neighbouring connecting master. Once a suitable agent is found, the tracking master
recruits it and configures it to forward any traffic it receives (i.e., tracking updates)
to the neighbouring piconet. Every newly recruited agent forms a new route from
the tracking piconet to the tracker. Figure 4.8 shows an example where the tracking
piconet forms two redundant routes by recruiting two additional agents.

Route Selection. The tracking master decides which route a particular tracking
update should take by sending that update through the various redundant agents where
beyond these agents, all routes merge. In fact, since originally there is only one route

75

4.7. Advanced Pedestrian Tracking 4. Online Pedestrian Forensic Tracking

S Target

Tracker

Route 3

Route 2

Route 1

Piconet

ID 1002

ID 1001

ID 1003

Agent

S

Figure 4.8: The Transmission Algorithm (TA)

between the tracking piconet and the tracker, none of the piconets has to know the
exact full route to the tracker. That is, for every connecting piconet, there are two
ports (i.e., agents), a receiving port in which traffic enters the piconet and a sending
port in which the traffic exits the piconet11—any traffic received by any other port,
if any exists, is ignored (in the tracking piconet, there is only one port for sending
and receiving). When TA is activated, the tracking master maintains a small buffer to
remember the addresses of the last few (redundant) agents it sent the tracking updates
through, this is important to distribute the tracking updates transmission over as many
routes as possible and prevent over-utilising a particular set of routes. That is, if there
are n routes, the tracking master should buffer approximately n − 1 routes and only
send the next tracking update on a route that is not listed in that buffer, when the
buffer is full, it is purged and the whole process is repeated.

4.7.6 Simulation Results

In section 4.6.2 we simulated the basic localisation/tracking mechanisms, in this section
we investigate the effect of mobility models and node density on the tracking process.
As discussed earlier, if no tracker is available to receive the tracking updates, the
tracking network goes through a temporary tracking period where the tracking master
is elected as a temporary tracker until a genuine tracker is detected. However, it is

11The ports are reversed when transmitting acknowledgements from the tracker to the tracking
piconet (the sending port becomes a receiving port and the receiving port becomes a sending one).

76

4.7. Advanced Pedestrian Tracking 4. Online Pedestrian Forensic Tracking

0	

50	

100	

150	

200	

250	

300	

350	

400	

450	

20	
 50	
 80	
 100	
 120	

Ti
m

e

Node Density

Target	
 10	

Target	
 9	

Target	
 8	

Target	
 7	

Target	
 6	

Target	
 5	

Target	
 4	

Target	
 3	

Target	
 2	

Target	
 1	

Figure 4.9: Simulation results when adopting the Random Waypoint model

0	

50	

100	

150	

200	

250	

300	

350	

400	

450	

500	

20	
 50	
 80	
 100	
 120	

Ti
m

e

Node Density

Target	
 10	

Target	
 9	

Target	
 8	

Target	
 7	

Target	
 6	

Target	
 5	

Target	
 4	

Target	
 3	

Target	
 2	

Target	
 1	

Figure 4.10: Simulation results when adopting the Brownian Walk model

important to investigate how long these temporary periods may last because the agents
usually have limited resources and may not be able to hold the temporary tracking
table Ttemp for long time. Figures 4.9, 4.10, 4.11 show how long, on average, a single
temporary period (from losing contact with the trackers until finding them again) lasts
in scenarios with different node density (20, 50, 80, 100, 120 nodes) when adopting
different mobility models (Random Waypoint, Brownian Walk, Gauss-Markov mobility
models, respectively). In these scenarios, the agents have a communication range of
10m and moving over an area of 250 m2 where 10 targets are being tracked by 3
trackers. Furthermore, to simulate the worst case scenario, we assumed that the agents

77

4.8. Privacy in Online Forensic Tracking 4. Online Pedestrian Forensic Tracking

0	

50	

100	

150	

200	

250	

300	

350	

400	

450	

20	
 50	
 80	
 100	
 120	

Ti
m

e

Node Density

Target	
 10	

Target	
 9	

Target	
 8	

Target	
 7	

Target	
 6	

Target	
 5	

Target	
 4	

Target	
 3	

Target	
 2	

Target	
 1	

Figure 4.11: Simulation results when adopting the Gauss-Markov model

have limited resources, so agents will only form small tracking networks. Note that
figures 4.9, 4.10, 4.11 represent discrete points but are illustrated as stacked marked
lines to visually show the tenancy of temp time to increase or decrease while increasing
the node density (if the figure was plotted normally, the lines will be plotted on top of
each other and it will be difficult to visually distinguish between them).

As the figures show, regardless of the mobility model, the node density does (not
surprisingly) increase the temporary tracking period. However, this is more exemplified
in the scenario where the Random Waypoint mobility model (figure 4.9) is adopted,
which shows that the choice of the mobility model can affect the simulation results.

4.8 Privacy in Online Forensic Tracking

Privacy can become a major issue in online forensic tracking, especially if an agent-
based approach is adopted, where, to some extent, privacy implications may be un-
avoidable. Tracking the target alone, without recruiting agents, might not involve
serious privacy violation as this may be warranted, but when external agents are in-
volved in the tracking process, privacy implications arose. Indeed, the recruitment of
the agents occur in a random fashion and such agents may not be known to the trackers
(law enforcement) beforehand, which means that warrants cannot be issued for them.
As discussed in section 3.2.4, some jurisdictions may give power to law enfacement to
carry out such course of actions in some situations. However, it is always desirable
to preserve the privacy of the agents as much as possible. We thus propose that the
following guidelines should be adhered to throughout the tracking process:

78

4.9. Summary 4. Online Pedestrian Forensic Tracking

Simulation software NS-2

Simulation area 250m2

Simulation duration 1,800 seconds

Simulation runs 10

Node density 20–120

Node max. speed 10m/s

Mobility Model Random waypoint, Brownian, Gauss-Markov

Communication technology IEEE 802.11

Communication range 10m

Radio propagation model Free space

Table 4.4: Simulation configurations

1. The period during which the agents are recruited should be minimised. That
is, a particular agent should not stay recruited for more than MaxR time, where
MAXR is some threshold. Once MAXR expires, the agent should be retired (even
if it is still in range within its piconet) and a replacement should be recruited.

2. The Prob-SW and the T-SW should be programmed appropriately to strictly not
access the private date of their hosts and only carry out the designated tasks.

3. No record should be kept by the trackers about any recruited agents, and this
includes the addresses of the agents, the time during which the agents were re-
cruited and their locations throughout the recruitment.

4.9 Summary

In this chapter, we proposed a number of generic passive localisation and tracking
algorithms based on short-range communication. The mechanisms presented in this
chapter allow intelligence and law enforcement authorities to rapidly and dynamically
track targets reasonably efficiently and accurately. The proposed algorithms consider
scenarios ranging from single target single tracker tracking, to the multiple target
multiple tracker tracking. For scenarios with multiple targets, we introduced virtual
tracking, where an individual virtual tracking network is created for every target. For
scenarios with multiple trackers, we introduced handover tracking where the trackers
continuously switch the tracking responsibility among themselves based on the target(s)
movements. We also proposed a few auxiliary mechanisms to improve the security,
passivity and fault tolerance of the algorithms.

79

Chapter 5

Vehicular Forensic Tracking and

Motion Prediction

Vehicular networks have recently attracted significant research interest due
to its numerous applications such as those concerning drivers/passengers
safety and pleasure. In addition to these civilian applications, vehicular
networks can also be used for forensic and law enforcement purposes. In
this chapter, we discuss how vehicular networks may possibly contribute to
our future crime investigation and prevention. In particular, we propose a
high-level algorithmic online vehicular tracking system to passively track a
target vehicle. Similar to chapter 4, our vehicular tracking system is based
on the dynamic recruitment of the target’s neighbouring vehicles as agents.
We further propose a mobility prediction algorithm to probabilistically pre-
dict the target’s near future movement and adjust the tracking process ac-
cordingly. Combining both agent-based tracking and mobility prediction, a
target vehicle can be passively and clandestinely tracked fairly efficiently.
The contents of this chapter was published in [4].

5.1 Introduction

With various applications directly targeting driver safety as well as other infotain-
ment applications, the rapidly emerging vehicular networks are now envisioned to be
as widely deployed in practice in the near future as other more mature wireless tech-
nologies. Although the main motive behind the emergence of vehicular networks was
purely for driver/passenger safety, these networks can also be used for other purposes.
One way in which vehicular networks can possibly be used is to assist crime investiga-

80

5.1. Introduction 5. Vehicular Forensic Tracking and Motion Prediction

tion and prevention by providing law enforcement a new means to track suspects and
criminals. Vehicular tracking algorithms naturally experience inherently different impli-
cations than those encountered at the conventional mobile networks. For instance, the
nodes in the vehicular networks move more rapidly than the nodes in other mobile net-
works. Additionally, vehicular nodes are characterised by a somewhat limited motion
freedom because their movements are usually constrained by the roadways structures
and traffic regulation. This potentially introduces additional challenges for vehicular
tracking algorithms requiring such algorithms to adapt to the peculiarity of vehicular
movements, but it also improves their mobility predictability since nodes commute over
pre-defined paths.

Related Work. In [18], Boukerche et al. discussed a few localisation techniques
that can be used in vehicular networks along with their practical implications. The
authors showed that most of the current localisation techniques suffer from inherent
inaccuracies that may not be acceptable for some vehicular-based applications, espe-
cially those requiring precise location information. It is argued that in such situations,
the most likely solution would be through data fusion where results from several locali-
sation techniques are fused to improve the accuracy. Although most of the localisation
techniques suitable for vehicular networks are GPS-based, not all vehicles are equipped
with GPS receivers, but even if they do, such techniques become useless if GPS signals
are not available (e.g., inside tunnels). Benslimane [16] addressed such situations and
proposed an extension to the ODAM messaging dissemination protocol such that even
vehicles that are not GPS-capable (temporarily or permanently) are still localised. One
of the popular tracking techniques, especially suitable for vehicular scenarios, is map-
matching, which matches the vehicle’s actual location (raw) data to maps. Barakat-
soulas et al. [14] presented several such algorithms to exploit the vehicular trajectory
information. However, this technique is not suitable for applications requiring strictly
real-time tracking, such as law enforcement online tracking, which is the subject of this
chapter. Other tracking techniques involve the installation of tracking tags on target
vehicles [91], but such solutions, obviously, are not ad hoc and require preparation,
which introduces additional implications and economical concerns.

Chapter Outline. This chapter is organised as follows. In section 5.2, we provide a
brief background about vehicular networks, followed by our proposed vehicular tracking
system, where we discuss localisation in section 5.3, motion prediction in section 5.3
and tracking in section 5.6. Finally, simulation results are presented in section 5.6.

81

5.2. Vehicular Networks 5. Vehicular Forensic Tracking and Motion Prediction

5.2 Vehicular Networks

Generally, vehicular networks are based on ad hoc infrastructure and thus are usually
called Vehicular Ad hoc Networks (VANET), which is considered a class of the more
general Mobile Ad Hoc Networks (MANET). In the USA, the Federal Communications
Commission (FCC) allocated 75 MHz spectrum in the 5.9 GHz band (5.850 GHz to
5.925 GHz) for vehicular communication which can be either Vehicle to Vehicle (V2V)
or Vehicle to Infrastructure (V2I) communication1. V2V is also called Inter-Vehicle
Communication (IVC) and is solely based on an ad hoc infrastructure where vehicles
directly exchange information such as accident and congestion warnings. V2I, on the
other hand, assumes the presence of pre-installed roadside components that vehicles
can communicate with to retrieve information. However, installing such components is
usually expensive, which limits their utility compared to V2V/IVC.

Vehicular Communication. Communication in vehicular networks can be based on
several technologies, such as IEEE 802.16 (WiMAX), Bluetooth, IRA, ZigBee etc. How-
ever, the most popular of these are IEEE 802.11 (WiFi), or 3G via CDMA (Code Di-
vision Multiple Access) technology. While the former approach is simpler and cheaper
to deploy, it suffers from reliability issues because WiFi was not originally designed
to operate in environments with rapid movements. In contrast, 3G is a more robust
solution for vehicular communication, but is also more expensive and difficult to deploy
due to its centralised architecture; see [89] for a discussion about these approaches and
the various proposed solutions.

In this chapter we only adopt a high-level generic algorithmic approach, we do not
consider the peculiarities of the low-level details of vehicular communication.

Vehicular Mobility. Vehicular mobility models were discussed in section 3.4.2 where
we showed how such models are being developed. However, instead of developing
a model from scratch, we will adopt an existing vehicular mobility model from the
literature, namely the IDM (Intelligent Driver Motion) model, which is a microscopic
model [125]. We will consider IDM’s two extensions, IDM-IM (IDM with Intersection
Management) which extends IDM to handle the vehicles behaviour at intersections,
and IDM-LC (IDM with Lane Changes) which extends IDM-IM allowing vehicles to
change lanes and overtake.

1Another form of vehicular communication is the so-called Vehicle to Pedestrian/Person (V2P)
where pedestrians are equipped with transponders to alert the drivers of nearby vehicles and so prevent
pedestrian accidents. This form of vehicular communication is less relevant to our tracking purpose
and will not be considered/discussed further.

82

5.3. Vehicular Localisation 5. Vehicular Forensic Tracking and Motion Prediction

5.3 Vehicular Localisation

The conventional localisation techniques, usually used in cellular and sensor networks
as discussed in chapter 2, can also be used in vehicular networks (but with slightly
degraded accuracy). Since we adopt a passive tracking approach, only RSS-based
localisation is relevant because, unlike TOA and TDOA, it does not require a fully
synchronised network and/or an active communication with the target. When adopting
RSS, the strength of the signals emitted by the target vehicle is measured to estimate
how far the target is. Even though RSS measurements are usually nonlinear, in our
algorithm we adopt a free space radio propagation model, which assumes a direct
line of sight path between vehicles. Such assumption does not severely degrade the
accuracy of the localisation process because it is most likely that the only obstacles in
a our scenario will be the moving vehicles whose effects can be eliminated by averaging
the measurements—the vehicular acceleration also affect RSS measurements, but we
assume that this effect can be mitigated by adding random noise to the calculation.

Localising the target vehicle, Cs, is conducted by first recruiting 3 of its neigh-
bouring vehicles. However, only two of these neighbours (tracking agents) will later
track the target, while the other will be retired immediately once the localisation is
completed. For the rest of the chapter, we will denote the tracking agents as Ca and
Cb (such that Cb is a backup for Ca who is the main tracking agent) and the additional
localising agent as Cl. We will also denote the tracker, who initiates the whole tracking
process, by Ct (note that there may be more than one tracker). We assume that all
agents are capable of localising themselves using, e.g., GPS, which is fairly common
in today’s vehicles, or otherwise have access some location service allowing them to
conveniently pinpoint their locations at any time. Localisation then proceeds in four
steps (algorithm 5.1 illustrates this process):

• Step1: Recruitment. The tracking agents Ca, Cb, as well as the localising agent
Cl are recruited randomly by the tracker Ct who requests the RSS readings from
nodes around Cs and recruits the nodes reporting closest to Cs; see section 5.5
for more details about the initial and subsequent recruitments.

• Step 2: Distance Measurements. The distances between the recruited agents and
the target are estimated by, e.g., the Friis equation [43], see section 4.3.1.

• Step 3: Trilateration. The location of the target is estimated through a geometric
transformation that finds the intersection point of the circles formed by the 3
recruited agents with centres of the agents’ locations and radii of the respective
distances between the agents and the target as measured in step 2.

83

5.4. Mobility Prediction 5. Vehicular Forensic Tracking and Motion Prediction

• Step 4: Retirement. The localising agent Cl is retired.

Algorithm 5.1 Vehicular Localisation
1: SET Ct ← Tracker {identify the tracker}
2: SET Cs ← Target {identify the target}
3: recruit(Ca, Cb) {recruit the tracking agent and its backup}
4: repeat
5: recruit(Cl) {recruit the localisation agent}
6: assign(Ca → C1, Cb → C2, Cl → C3) {for convenience, assign aliases}
7: for i = 1 to i ≤ 3 do
8: measureDistance(Ci, Cs) = di,s {the distance between Ci and Cs}
9: end for

10: assign(Ca ← C1, Cb ← C2, Cl ← C3)
11: localise(Cs, d1,s, d2,s, d3,s, Ca, Cb, Cl) {localise Cs given the locations of Ca, Cb, Cl

and the distances between them and Cs}
12: sendLocationUpdate(Ct) {send location updates to the tracker}
13: retire(Cl) {retire the localisation agent}
14: until Tracking Expires

The localisation algorithm can also be used in conjunction with the prediction
algorithm (section 5.4) to predict the next recruitment, assuming that the agent is able
to measure/estimate its speed as described in section 5.4.1. The speed can also be
estimated if we assumed that the agents are equipped with GPS or have access to some
of location service where the average speed can be trivially estimated, or it can even
be readily provided by any modern GPS software.

Beaconing. Some vehicular networks applications require the vehicles to transmit
real time information such as their current position, speed etc. This information can be
broadcasted by the vehicles in what is known as “beacons” [86]; any vehicle within the
vicinity of the transmitting vehicle can then receive these beacons. Intercepting these
beacons gives an even more convenient and straightforward way to find the location of
the target, in which case there will no need to recruit more than one agent to track the
target as no trilateration is required.

5.4 Mobility Prediction

A particularly important aspect to consider when tracking vehicles is their mobility
behaviour because a good understanding of a particular mobility pattern will help pre-
dicting it. Generally, mobility prediction is slightly simpler in VANETs than MANETs
since vehicular mobility is somewhat restricted to roadways and their movement pace is

84

5.4. Mobility Prediction 5. Vehicular Forensic Tracking and Motion Prediction

usually limited to the maximum allowable speed of the corresponding roadway. Mobile
nodes in MANETs, on the other hand, often perform unpredictable and unconstrained
motion (though nodes are restricted by the terrain characteristics and their physical
limitations). Moreover, vehicular motion clearly has a higher acceleration rate. In this
section, we develop a vehicular mobility prediction algorithm to probabilistically pre-
dict the near-future movement of the target vehicle based on its current location and
estimated speed, assuming that the target has already been localised. Our algorithm
contributes two predictors:

• Time predictor: to estimate the elapsed time before a vehicle reaches the next
intersection, and

• Direction predictor: to predict the direction the vehicle would most likely take
past the next intersection.

As we will show later, predicting these two parameters allows the tracking agents to
estimate how long they will be able to track the target for and then tailor the tracking
process accordingly (e.g., by recruiting/retiring agents etc.).

5.4.1 Time Prediction

To predict how long it will take a vehicle to reach the next intersection, the speed
of that vehicle is estimated as illustrated in figure 5.1. In this figure, Ca estimates
the speed of Cs by making two RSS measurements at times t1 and t2, assuming, for
simplicity, that the distance between the horizontally aligned vehicles in a roadway is
I, which is easily obtainable. However, it is very unlikely that both vehicles Ca and
Cs will be perfectly horizontally aligned, thus when taking the first RSS measurement
RSS1, we calculate the vertical distance ahead or behind Ca to be perfectly adjacent
to Cs and then hypothetically adjust the position of Ca as if it is perfectly horizontally
aligned with Cs, this is shown in figures 5.1(a) and 5.1(b):

N =
√

(d1(t1))2 − I2 (5.1)

Hence, Ca becomes Ca+N as shown in figure 5.1(b). Once Ca is appropriately adjusted,
the second RSS measurement RSS2 takes place at time t2. However, the distance
obtained from RSS2 has to be adjusted with Ca+N by recalculating it as if it was
measured by Ca+N instead of Ca which accounts for the extra distance N obtained
in equation 5.1. Figure 5.1(c) illustrates this process graphically. Distance M is then
calculated by the following equation (most of the equations below are based on the

85

5.4. Mobility Prediction 5. Vehicular Forensic Tracking and Motion Prediction

popular Pythagorus theorem):

(N +M)2 = (d2(t2))2 − I2

M =
√

(d2(t2))2 − I2 −N

knowing both I and M , d2+N (t2) can be calculated by d2+N (t2) =
√
M2 + I2. We can

now find the speed vs of Cs by calculating the distance F as shown in figure 5.1(c), but
here we should also account for the extra distance E (not shown in figure 5.1) due to
the movement of Ca (if Ca was stationary, calculating F will suffice, but it is not):

(d2+N (t2))2 = I2 + F 2

= I2 + (vs(t2 − t1))2

then assuming knowledge of Ca speed (which can be estimated), E = va × (t2 − t1).
Finally, Cs speed is estimated as:

vs =
F + E

t2 − t1
=

√
(d2+N (t2))2 − I2 + E

t2 − t1
(5.2)

Once the speed is estimated, the time it would take Cs to reach the next intersection is
calculated from the traditional distance equation as follows: tz = n−dx

vs
+ ε where dx is

the distance the vehicle has spanned so far of a roadway of length n and can be calcu-
lated relative to the location of Ca, vs is the estimated speed (velocity) of vehicle Cs as
calculated in equation 5.2, and ε is a random variable uniformly distributed introduced
to compensate for the vehicular acceleration/deceleration effect around intersections.

Cs

d 2
(t 2

)

Ca

d2+N
(t2)

I

N

M

ICa+N Cs

(a) Ca and Cs at t1 (b) Ca adjusted to Ca+N t1

I

Ca

Cs

d 1
(t 1

)
N

(c) Ca and Cs at time t2

F

Figure 5.1: Illustration of how the speed of a vehicle is estimated in the time predication
algorithm

We consider the possibility of having both vehicles Ca and Cs perfectly aligned at
the same horizontal line as very unlikely and thus we assume that one of them is leading

86

5.4. Mobility Prediction 5. Vehicular Forensic Tracking and Motion Prediction

or lagging the other. In figure 5.1, we assumed (without loss of generality) that vehicle
Cs is leading Ca and is faster, so it will continue to lead. However, our algorithm will
also properly accommodate other scenarios where Ca is the leading vehicle because
we are measuring the absolute velocity of Cs without considering its relation to the
location and speed of Ca.

Since we assumed that localisation takes place before the prediction algorithm, the
lane that the target occupies will be known. The discussion above considered the
situation where the Ca and Cs are not at the same lane; nonetheless, having them at
the same lane is equally likely. If this is the case, Ca makes the first RSS measurement
RSS1 at t1 and later makes the second RSS measurement RSS2 at t2, then the distance
Cs would have moved between these two measurements is simply the difference in time
between RSS2 and RSS1 divided by the estimated speed. Moreover, if they are not
in the same lane, it does not matter which one is in which lane (and which one is the
leading vehicle); in figure 5.1, it happens that Ca is in the left and Cs is in the right
lane, but if it was the other way round, the algorithm obviously still works. As noted
earlier, to simplify the algorithm, we assume that the leading entity will continue to lead
during the period between the RSS1 and RSS2 measurements, which is a reasonable
assumption since this period is usually short enough to preserve the leading status.

5.4.2 Direction Prediction

Predicting the direction that the vehicle is likely to take through the next intersection
is slightly more complex than predicting its speed bearing a probabilistic distribution.
Direction prediction similarly assumes that the target vehicle has been accurately lo-
calised to the level of distinguishing the lane it occupies, which was not strictly impor-
tant previously (in speed prediction, what matters was to find whether Ca and Cs are
at the same lane, but not which one occupies which lane). We assume that all drivers
adhere to the following basic traffic rules2 as illustrated in figure 5.2:

Rule 1. For a vehicle to turn right at an intersection, it must be present at the right
lane of the roadway leading to that intersection.

Rule 2. For a vehicle to turn left at an intersection, it must be present at the left lane
of the roadway leading to that intersection.

Rule 3. For a vehicle to go straight ahead at an intersection, it can be present at either
the right or the left lane of the roadway leading to that intersection.

2We do not consider U turns since some intersections do not allow them.

87

5.4. Mobility Prediction 5. Vehicular Forensic Tracking and Motion Prediction

Rule 4. A vehicle must position itself in the appropriate lane according to its indented
direction based on rules 1, 2 and 3 around 300 meters before the next intersection or
half way through the roadway leading to the next intersection, whichever comes last. No
lane changing for the purpose of accelerating movement pace (e.g., overtaking) beyond
this point is permitted.

Figure 5.2: Intersection regulatory rules

These rules are applicable for 2-lane unidirectional roadways, which how our track-
ing scene is assumed to be (these are the most common city road infrastructure). It
is realistic to assume that the target will follow these rules as the target (who is a
suspect/criminal) will most likely not attempt to break the traffic rules so they do
not raise suspicion. Assuming rules 1, 2, 3, 4 are fulfilled, vehicles are forced to start
the lane changing process when reaching approximately n/4 of the roadway of length
n, or 400 meters away from the intersection, whichever comes last; this should allow
sufficient time to complete the lane changing process without violating rule 4. We call
the area between n/4 and n/2 (or similarly, the 100m between 400m and 300m to the
next intersection) the Critical Area and apply the following predictions (note that the

88

5.4. Mobility Prediction 5. Vehicular Forensic Tracking and Motion Prediction

probabilities are subjectively estimated based on common experience):

Prediction =

Pr(Ci → R) = 80%, Pr(Ci → A) = 20% if CLi
CriticalArea−−−−−−−−→ CRi ,

Pr(Ci → L) = 70%, Pr(Ci → A) = 30% if CRi
CriticalArea−−−−−−−−→ CLi .

These predictions state that if a particular vehicle Ci is currently occupying the left
lane (CLi), and shifted to the right lane (CRi) as it passes through the critical area, it
is most likely that this shift was imposed by Rule 1, which means that the vehicle is
very likely going to turn right (R) at the next intersection because

1. the probability of turning left (L) from the right lane (where the vehicle has
shifted) is 0, and

2. if the vehicle indented to go straight ahead (A), it would most likely have stayed
in its previous lane without taking the burden of changing the lane because it is
permitted to go straight ahead from either lanes.

Similar argument applies for vehicles shifting from the right lane (CRi) to the left lane
(CLi) as they are passing through the critical area; however, differently in this situation,
it is possible that the vehicle in the right lane shifted to the left lane to increase the
pace of the movement3 while actually intending to go straight ahead, this decreases
the probability of turning left for this particular course of action. If, however, the
vehicle did not change lane through the critical area, it has a 50% probability of taking
either of the two permitted directions depending on its current lane while having a 0%
probability of taking the banned direction (left for the right lane and right for the left
lane). We also note that the algorithm can possibly be used to probabilistically guess
from which direction the target came from by observing the lane it arrived at while
leaving the intersection and entering a new roadway as shown in figure 5.2, but we do
not discuss this backward mobility prediction here.

An interesting extension to this predictor (which we currently do not implement
in our algorithm) is the integration of Points of Interest (POI) [36] where these are
locations that are frequently visited by people; examples of POI are grocery stores,
banks, restaurants, offices etc. Such locations can significantly influence the probability
distribution of vehicular mobility. For example, we know that the probability of a
vehicle in the right lane turning right is (currently) the same as the probability of
going straight ahead if it had not shifted to the right lane as it passes through the
critical area. However, if we further learnt that a particular POI is located at the right

3We assume that the left lane is the passing lane (also called fast lane). However, note that while
in most countries, the left lane is the passing lane, in the UK, Australia, Japan and several other
countries, the right lane is the passing lane.

89

5.5. Vehicular Tracking 5. Vehicular Forensic Tracking and Motion Prediction

direction, such information can possibly increase the probability of the vehicle turning
right than going straight ahead. Moreover, the time of the day may greatly influence
the effect of POI on the prediction probabilities; for example, offices will most likely
be a popular POI only during daytime.

5.5 Vehicular Tracking

In forensic and law enforcement applications, tracking of vehicles is often required to be
passive. This passivity requirement potentially eliminates the use of the active tracking
and location-based systems that modern vehicles are usually equipped with, such as
vehicle telematics. In our tracking scenario, a group of n privately connected trackers,
Ct(i), where i = 1, 2, ..., n (e.g., police patrols), recruit a main tracking agent vehicle Ca
and a backup tracking agent vehicle Cb from the public, to track a target vehicle Cs.
We assume that, initially, at least one of the trackers Ct(i) is located at Cs range which
allows it to recruit, possible by visual estimation, suitable Ca and Cb. Subsequent
recruitments are carried out by the active dissemination of a tracking software through
vehicular networks in a manner similar to that discussed in chapter 4. At this initial
stage, the recruiting Ct(i) also recruits an additional agent, the localisation agent Cl,
which, along with the tracking agents, can localise the target as discussed in section
5.3 and illustrated in algorithm 5.1. The recruiting Ct(i) will also supply the addresses
of the other valid Ct(i) to all recruited agents.

Once localisation of the target is completed, the localising agent is retired leaving
Ca to be responsible for the rest of the tracking and backed up by Cb, whose task is to
maintain Ca and takes over the tracking process should Ca suddenly fail. Ca will also be
responsible for sending the location updates of Cs to one of Ct(i) whenever localisation
is triggered. Ca must assure that its backup agent Cb is in both its and the target’s
range at all times by regularly monitoring Cb’s RSS and probing it for the target’s RSS
(this can be done by exchanging alive messages, see section 4.6.1) or alternatively it
can request a neighbour list from Cb and check that both Ca and Cs exist, otherwise
it has to recruit another Cb. At the beginning of the tracking, Ct(i) creates a tracking
table, T , to store records of the target’s movements as received from Ca. This table is
synchronised with all other Ct(i) as soon as an update is received at any Ct(i). When
a location update is available, Ca searches its range for any of the Ct(i) to update it; if
multiple Ct(i) are found, Ca randomly chooses one4. Localisation is triggered in three
cases (details follow):

4This potentially minimises traffic analysis attack by an attacker where the attacker detects the
tracking process by observing the traffic between the agents and the trackers.

90

5.5. Vehicular Tracking 5. Vehicular Forensic Tracking and Motion Prediction

• when the alive period approaching expiration, or

• when the tracking agent start receiving weak signals from the target, or

• whenever one of the tracker forcefully requests a localisation update.

After running the prediction algorithms (section 5.4), Ca will have an estimate of how
long it will be able to track the target, this period is called the alive period, and
schedules the next localisation for near the expiration of that period. During the alive
period, Ca will keep observing the RSS measurements from the Cs. If a specific lower
threshold of RSS is reached, or the predicted alive period is near expiration, Ca will
initiate a probe process, which involves sending requests to the neighbouring vehicles,
supplying the address of Cs and asking for their RSS measurements, if they are able
to receive emissions from Cs, then the vehicle with strongest RSS is recruited as a
localisation agent Cl. Furthermore, any Ct(i) may at any time request Ca to localise
Cs in which case Ca recruits Cl and forcefully executes the probe process.

If a location update is available but no Ct(i) is found in rage, Ca creates a temporary
tracking table, Ttemp and accumulates it while regularly probing for a valid Ct(i); once
found, Ca transfers its Ttemp to that Ct(i) which, in turn, merges it with its (outdated)
copy of T and synchronises it with the other Ct(i). Algorithm 5.3 illustrates this
temporary tracking process. If Ca had to maintain a Ttemp, but then was triggered to
recruit another Ca (as detailed above) and there is still no Ct(i) in range, the old Ca

recruits a new Ca and hands off the tracking process to it along with the Ttemp which
will be accumulated by the new Ca until a valid Ct(i) is found; the old Ca then retires
itself. Algorithm 5.2 illustrates the basics of the tracking algorithm.

Alternative Tracking. Indeed, vehicular networks are rapidly emerging, but it is
clear that not all on-road vehicles today support them. However, it is more common
for vehicles to possess some sort of emission source(s) that can hence be tracked. These
emission sources may be Bluetooth emissions from the vehicle itself (usually providing
a handsfree calling service which can be found in most low-cost recently manufactured
cars), or any other sort of short-range radiation from a device attached to the driver
of the car, such as a mobile phone. This potentially allows us to use the conventional
MANET tracking algorithms in a vehicular setting. However, due to the differences
between VANET and MANET, the tracking algorithms of the latter need to be modified
to accommodate the characteristics of the former. In particular, as discussed earlier, the
pace in which vehicles move is significantly higher than nodes in the MANETs, which
introduces a whole new class of complication. In this chapter, however, we only discuss
tracking in vehicular networks assuming their presence and noting that alternative

91

5.6. Simulation Results 5. Vehicular Forensic Tracking and Motion Prediction

Algorithm 5.2 Online Vehicular Tracking
1: SET Ct(i) ← Trackers {identify the trackers}
2: SET Cs ← Target {identify the target}
3: SET minAP {threshold to define the start of expiration of AlivePeriod}
4: SET minRSS {define the min threshold values of the RSS}
5: Recruit(Ca, Cb) {recruit the tracking agent and its backup}
6: repeat
7: AlivePeriod ← timePredictor(Cs) {find the alive period}
8: if Cs.RSS(Ca) < minRSS or Ct(i).localise = true or AlivePeriod < minAP then
9: recruit(Cl) {recruit the localisation agent}

10: localise(Cs, Ca, Cb, Cl) {Ca, Cb, Cl Localise Cs}
11: sendLocationUpdate(Ct(i)) {send location updates to one of the trackers}
12: T ← updateTable(LocationUpdate)
13: Ct(i).syncTable(T) {synchronise T with all trackers}
14: Retire(Cl) {Cl is retired once localisation is completed}
15: end if
16: if Ca.RSS(Cs) < minRSS then {if Cs started reporting weak signals to Ca}
17: Ca.Probe {search for a new Ca}
18: if Ĉa.RSS(Cs) ≥ minRSS and Ĉa.RSS(Cb) ≥ minRSS then
19: recruit(Ĉa) {recruit a new Ca}
20: else if Ĉa.RSS(Cs) ≥ minRSS and Ĉa.RSS(Ĉb) ≥ minRSS then
21: recruit(Ĉa, Ĉb) {recruit new Ca and new Cb}
22: end if
23: end if
24: exchangeAlive(Ca, Cb) {exchange alive messages between Ca and Cb}
25: if Ca.RSS(Cb) < minRSS then {if Ca is losing its backup Cb}
26: probe(Ca) {search for a new Cb}
27: if Ca.RSS(Ĉb) > minRSS and Cb.RSS(Cs) > minRSS then
28: recruit(Ĉb) {recruit new Cb when found}
29: end if
30: end if
31: until Tracking Expires

approaches may be pursued if vehicular networking support was not available, but we
do not discuss such implications.

5.6 Simulation Results

To simulate a realistic vehicular network environment, we used the VanetMobiSim sim-
ulator [54] which generates vehicular mobility traces based on the IDM-LC model (see
section 5.2), we then fed the traces to the NS-2 simulator [69] and run the tracking
simulation. The localisation and tracking scenarios exhibit similarities to those sim-

92

5.6. Simulation Results 5. Vehicular Forensic Tracking and Motion Prediction

Algorithm 5.3 Temporary Tracking
1: SET Ct(i) ← Trackers {identify the trackers}
2: SET Cs ← Target {identify the target}
3: SET Ca ← Tracking Agent {identify the tracking agent}
4: while Ct(i) = unavailable do
5: Ttemp ← createTempTable(Ca) {create a temp table held by Ca}
6: if locationUpdate = available then
7: Ttemp ← updateTable(locationUpdate)
8: end if
9: prob(Ct(i)) {search for trackers}

10: if Ct(i) = available then
11: sendTable(Ct(i) ← Ttemp) {send Ttemp to the tracker}
12: Ct(i).syncTable(Ttemp) {synchronise Ttemp with all trackers}
13: end if
14: end while

ulated in chapter 4, so we only simulated the time prediction algorithm (simulating
the direction prediction algorithm is difficult as it highly depends on behaviours that
we cannot expect mobility traces generated by VanetMobiSim to preserve). In our
simulation scenarios, we adopted a road-map that exhibits different roadway lengths,
each with different speed limit. We further generated 4 mobility traces with differ-
ent node densities to analyse the effect of node density on the accuracy of our time
prediction algorithm. Randomly choosing a target vehicle, we predicted the time it
would take the target to reach the next intersection, then compared this prediction
with the time it actually later took that vehicle to reach that intersection as reported
by NS-2. Furthermore, we run the time prediction algorithm for different lengths of
time, ranging from 5 to 20 seconds, then observed how this affected the accuracy of the
prediction. Figures 5.3,5.4,5.5,5.6 present the results in scenarios with node densities
of 10, 30, 50, 100 nodes and running for 1000 simulation seconds (the x-axis represents
number of trial, 10 trials in total, and the y-axis represents time). As shown in figures
5.3,5.4,5.5,5.6, there is a variation in performance at different scenarios. We summarise
the main factors influencing the accuracy of the prediction as follows:

• Node density. As shown in figures 5.3 and 5.4, accuracy of the algorithm is
moderately affected by node density. This is, in fact, what we would expect in
real life scenarios; the more vehicles in a roadway, the harder to accurately predict
their movements due to their irregular acceleration/deceleration behaviours.

• Roadways length. Roadways lengths also affect the accuracy of the algorithm
because longer roadways allow for more acceleration fluctuation which may be

93

5.6. Simulation Results 5. Vehicular Forensic Tracking and Motion Prediction

Simulation software VanetMobiSim and NS-2

Simulation area 1000m2

Simulation duration 1000 seconds

Simulation runs 10

Node density 10–100

Node max. speed varied

Mobility Model IDM-LC

Communication technology IEEE 802.11

Radio propagation model Free space

Table 5.1: Simulation configurations

hard to model. Highways, for example, have fairly different characteristics than
city roadways, both in terms of node density and traffic flow.

• Speed limit. Roadways with higher speed limits allow for an increased accelera-
tion/deceleration fluctuation that may influence the accuracy of the algorithm.

• Prediction Duration. The time prediction algorithm measures the time the target
takes when passing a specific distance, it will then add noise to the measurement
to compensate for the future acceleration/deceleration before finally calculating
the predicted time. However, the algorithm’s accuracy is improved when it ob-
serves the target for longer interval. This is illustrated in figures 5.3 and 5.4 where
a prediction of 20 seconds interval (that is, the target’s movement is observed for
20 seconds before calculating the predicted time) usually yields better predictions
than shorter intervals. Another way to improve the accuracy of the prediction is
to average several prediction observations at different times.

• Location of the prediction. Despite the fact that the prediction process can take
place anywhere through a roadway, in some cases, the exact point where the
prediction process takes place may influence the accuracy of the prediction, es-
pecially for highways which will most likely have a higher speed limit than city
roadways. For example, if the prediction algorithm was executed at the beginning
of a highway, where the vehicles are starting to accelerate, it is likely that this
acceleration is not representative for the rest of the journey.

Based on the above factors, it is clear that the tracking environment has an un-
avoidable influence on the tracking process. Careful modelling of the environment’s
macroscopic features is, therefore, crucial to improve the accuracy of tracking. Infor-

94

5.7. Vehicular Parameter Estimation 5. Vehicular Forensic Tracking and Motion Prediction

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 0 1 2 3 4 5 6 7 8 9

T
im

e

Simulation runs

5 seconds prediction
10 seconds prediction
15 seconds prediction
20 seconds prediction

Actual time

Figure 5.3: Simulation results for 10 nodes scenario

mation about the general structure and layout of roadways can easily be obtained from
online databases, e.g., TIGER [126], while other road characteristics, such as node den-
sity, can be modelled (estimated) based on empirical observation of the concerned area
or by subjective estimates based on the various characteristics of the area and previous
experience, possibly also based on time of the day, as briefly discussed in section 5.4.2.

5.7 Vehicular Parameter Estimation

As discussed in section 2.5, all RF measurements made by tracking algorithms (espe-
cially the passive ones) include an unavoidable error margin. However, estimating the
measurement parameters in the vehicular setting seem to be slightly more straightfor-
ward than estimating them in the pedestrian setting.

In vehicular tracking, it is not important to pinpoint the exact position of the vehicle
since its mobility is usually restricted to the layout of the corresponding roadway.
Compare with the pedestrian setting, where it is difficult to filter the estimations of an
algorithm that has, e.g., 0.5 meters error margin because pedestrians have unrestricted
mobility and can be anywhere within a vicinity of 0.5 meters. In contrast, estimations

95

5.7. Vehicular Parameter Estimation 5. Vehicular Forensic Tracking and Motion Prediction

 30

 40

 50

 60

 70

 80

 90

 100

 0 1 2 3 4 5 6 7 8 9

T
im

e

Simulation runs

5 seconds prediction
10 seconds prediction
15 seconds prediction
20 seconds prediction

Actual time

Figure 5.4: Simulation results for 30 nodes scenario

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5 6 7 8 9

T
im

e

Simulation runs

5 seconds prediction
10 seconds prediction
15 seconds prediction
20 seconds prediction

Actual time

Figure 5.5: Simulation results for 50 nodes scenario

96

5.8. Summary 5. Vehicular Forensic Tracking and Motion Prediction

 0

 20

 40

 60

 80

 100

 120

 140

 0 1 2 3 4 5 6 7 8 9

T
im

e

Simulation runs

5 seconds prediction
10 seconds prediction
15 seconds prediction
20 seconds prediction

Actual time

Figure 5.6: Simulation results for 100 nodes scenario

produced by the same algorithm in a vehicular setting, can be adjusted to roadways
since it is unlikely that a vehicle will drive off-road. Inferences can then be made
about the target’s mobility by observing the estimated time delay in each roadway
(e.g., stopped to commit a crime). In chapters 6 and 7 we discuss such scenarios in an
offline setting.

5.8 Summary

Vehicular networking is one of the most promising future technologies. Research in this
area is becoming attractive due to the rapid emergence of vehicular applications. One
emerging application that vehicular networks can be used for is tracking. Vehicular
tracking is especially important for law enforcement to investigate and prevent crimes.
In this chapter, we developed a set of online algorithms to passively localise, track
and predict the near future movement of a target vehicle in real time. In particular,
we adopt an agent-based tracking approach to track a target vehicle by systematically
recruit agent vehicles via vehicular networks. We also proposed a motion prediction
algorithm to predict the near future movements. This motion prediction algorithm can
then be used by the tracking algorithm to adjust and maintain the tracking process.

97

Part III

Offline Forensic Tracking

98

Chapter 6

Bayesian Offline Vehicular

Forensic Tracking

In chapters 4 and 5 we discussed the online forensic tracking in pedes-
trian and vehicular settings. We showed how tracking can be conducted in
these scenarios using an agent-based approach, which, as discussed in sec-
tion 3.2.4, bears some privacy implications. In this rest of the thesis we
consider the more common and less privacy-controversial scenario of track-
ing a target in an offline manner. In this chapter, we consider a vehicular
tracking scenario and propose an offline post hoc vehicular trace reconstruc-
tion algorithm that can accurately reconstruct vehicular mobility traces of a
target entity by fusing the corresponding available visual and radio-frequency
surveillance data. The algorithms provide a probabilistic treatment to the
problem of incomplete data by means of Bayesian inference. We realise that
it is very likely that an extracted trace of a target entity would contain gaps
(due to missing trace data), so we try to probabilistically fill these gaps.
This allows law enforcement agents to conduct offline tracking while char-
acterising the quality of available evidence. The contents of this chapter
was published in [6].

6.1 Introduction

Wireless mobile devices such as mobile phones and laptops can provide useful ge-
olocation information. However, while such data allows for tracking mobile entities,
collecting it from multiple sources and logically correlating them often creates new
challenges for digital forensics practitioners. Generally, tracking can either be online

99

6.1. Introduction 6. Bayesian Offline Vehicular Forensic Tracking

or offline. Online tracking involves observing the movement of a target entity in real
time and is usually reactive (and adaptive) according to the target’s behaviours; online
tracking has been extensively discussed in chapters 4 for pedestrian setting, and in
chapter 5 for vehicular setting. However, real-time (online) tracking is often difficult
and requires considerable amount of preparation, especially in criminal scenarios where
such process needs to take place clandestinely (in some cases it is even not possible due
to the unpredictable nature of crimes). Offline tracking, on the other hand, entails the
extraction of the target’s movement traces from raw tracking data and analysing them
appropriately. In most cases, offline tracking encounters a problematic phenomenon
that we call tracking gaps. These gaps represent missing tracking data spanning par-
ticular areas over specific periods of time where tracking of the target was not possible,
usually due to constrains of tracking resources. In this case, it is important to try
filling these gaps by probabilistically selecting the routes the target would have most
likely taken between the end points of the gaps; these end points are called the Ingress,
which is the point at which tracking of the target was lost, marking the beginning of
a gap, and the Egress, which is where tracking later resumed, marking the end of that
gap. While such missing data scenarios are certainly important to consider for tracking
individuals, we instead discuss vehicular tracking as this is the most common means
of transportation; we leave the offline tracking of pedestrians as an extension to this
thesis, see chapter 8. Vehicular traces can be collected by explicitly tracking the target
vehicle, or by extracting data from the existing traffic infrastructure (e.g., CCTV) that
was not originally installed for tracking. Either way, we assume that this data was
collected passively since this is required by most law enforcement applications. Beside
exhibiting tracking gaps, such data will certainly contain different types of measure-
ment errors, thus we develop a probabilistic Bayesian-based method to reconstruct the
target trace.

Related Work. Incomplete (or missing) data is a common problem in many con-
temporary applications. Expectation-Maximization and Data Augmentation methods
(along with their improved variants) are among the most popular statistical treatments
for the missing data problem [122]. Similarly, scene reconstruction (which usually deals
with missing data) has been a highly active area of research over the past few decades,
especially for forensics and crime investigation purposes. In general, most of the re-
search in this area involves reconstructing scenes from images. For example, in [19]
Calbi et al. proposed a set of computer-vision-based algorithms that are able to recon-
struct a 3D scene of multiple moving objects. This system utilises a set of pre-installed
cameras surveilling the area to be reconstructed, and thus can only be used at these

100

6.2. Trace Fusion 6. Bayesian Offline Vehicular Forensic Tracking

heavily monitored areas which degrades its flexibility. In [48], Greenhill et al., tried
to overcome the inflexibility of the fixed camera surveillance systems by proposing al-
gorithms that are able to reconstruct scenes by collecting observation streams from
mobile cameras mounted on buses. Moreover, in [27], Conaire et al. discussed how to
fuse image-based and RF-based (radio frequency) localisation to improve the overall ac-
curacy of the process. The authors tested their mechanism in a museum environment
where visitors are equipped with devices containing a portable camera. The device
automatically captures some photos of its surroundings and compares them with a
database of images to identify its current location. This information is then fused with
an estimation of signal strength from several wireless access points distributed around
the museum, where compared to signal strength histograms that were created for var-
ious locations in the museum and stored in a database. Although most of these algo-
rithms were proposed to track individuals, we are explicitly concerned with vehicular
tracking in this chapter. As mentioned in 5.1, Brakatsoulas et al. discussed the feasibil-
ity of reconstructing the movement patterns of objects by observing their GPS tracking
information [14]. Their algorithm adopts the so-called map matching technique where
the tracking information of the objects (which are vehicles in this case) are analysed
and matched to a road-map. Nevertheless, these algorithms usually suffer from various
error sources [73], which motivated the development of improved techniques such as
map-matching based on Artificial Neural Network [130]. This chapter adapts a some-
what similar approach to map-matching but for the purpose of reconstructing a full
tracking trace of a particular entity, not quite concerned about accurate localisation
since it suffices to know that a target vehicle has been in a particular roadway to draw
conclusions about how its trace can be reconstructed.

Chapter Outline. This chapter is organised as follows. In section 6.2 we describe
how to prepare a trace for the reconstruction process. This preparatory phase uses
algorithms to fuse traces from different sources (RF-based and visual-based) and so
minimising the number of tracking gaps in a target’s trace. Our trace reconstruction
algorithm is proposed in section 6.3 in two phases, phase 1 in section 6.3.1 and phase
2 in section 6.3.2, followed by a discussion about its accuracy in section 6.5. Finally,
in section 6.4 a few simulation results are presented and discussed.

6.2 Trace Fusion

Vehicular traces are records containing motion information of vehicles over a particular
area and during a specific period of time. These traces can be collected by various tools,

101

6.2. Trace Fusion 6. Bayesian Offline Vehicular Forensic Tracking

such as cellular tracking, Radar etc. beside the passive techniques presented in chapter
5. However, data from other tools like CCTV (Closed Circuit Television), which are
not originally built for tracking, can be used to improve the existing tracking traces.
We will assume that we have two sets of tracking data belonging to a particular target:

• RF tracks: collected by RF-based tracking techniques1, e.g., chapter 5,

• visual tracks: retrieved from CCTV cameras located at the tracking scene.

These two sources (RF and visual tracks) are natural passive tracking sources.
Tracks from active sources (where the target was actively tracked) can be incorporated
too if available. Regardless of the source of tracks, there are only two possible tracks
that can be obtained, either a range (distance) over which the target was observed, or a
single point at which the presence of the target was detected (multiple single points may
form a range). In our context, we call the first set of tracks RF tracks, assuming that
they were most likely generated by passive (or active) RF-based tracking mechanisms,
while calling the other set of tracks, visual tracks, assuming that they were generated by
image/video-based tools, such as CCTV cameras. However, note that range tracks do
not necessarily have to be generated by RF-based mechanisms, and as discussed above,
indeed in some cases advanced computer vision algorithms can generate such tracks
by analysing footage from CCTV cameras, for example. Similar argument holds for
the visual tracks, where they can potentially be generated by passive/active RF-based
mechanisms.

Before commencing the actual trace reconstruction process (i.e., the offline track-
ing), we first try to fuse any RF and visual tracks we may have. However, this fusion is
just an auxiliary phase and is not necessarily required to proceed to the reconstruction
process, that is, we assume that we have access to both RF and visual tracks, and the
individual tracks exhibit tracking gaps, but when fused, we hope that the number of
these gaps is minimised or at least they shrink.

Interpreting RF tracking data is straightforward, as a minimum, each record con-
sists of time, vehicle ID and location. On the other hand, to interpret the visual tracks,
we assume prior knowledge of the fixed locations of the CCTV cameras and that they
have a somewhat narrow recording angular distance, then we can estimate the location
of a detected target to be the location of the detecting camera. One possible detection
method is to observe the vehicle’s plate numbers, this can be done by viewing images
from CCTV footage and compare them to images containing the target’s plate number.
Computer vision techniques such as SURF [15], perform similar image-based detection

1RF tracks can also be generated from multiple CCTV footage using some advanced computer vision
algorithms that can estimate how fast and how long the target was moving across the camera vicinity.

102

6.2. Trace Fusion 6. Bayesian Offline Vehicular Forensic Tracking

by identifying interest points in the images. The main difference between RF and vi-
sual tracks, though, is that RF tracks represent continuous movements of the vehicle
for a period of time (a set of chronological tracking records), while the visual tracks
represent fixed locations of the target where it was detected.

In this fusion process, we further aim to construct a trace of the target containing
gaps only between intersections. However, in practice, only partial tracks may be
available (due to resource constraints), where the target was unobservable at some
points through the road, potentially creating tracking gaps that are not bounded by
intersections. In such cases, the available tracks of these roadways (with incomplete
traces) may be: (a) visual only, (b) RF only, or (c) both RF and visual. In all these
situations, we run a prediction algorithm to estimate the time it took the target to reach
the next intersection and thereby filling the whole roadway; algorithm 6.1 provides a
pseudocode for this fusion process and figure 6.1 illustrates it graphically.

Situation (a) provides very little information for this algorithm to work, so such
roadways are ignored and marked as semi-incomplete which basically indicates that
the target was observed in this roadway (this information may prove useful in the trace
reconstruction algorithm; see section 6.3), as illustrated in figure 6.1(a). To simplify
the discussion, in situations (b) and (c) we assume that there are only single RF
and/or single visual tracks per roadway, but of course the discussion can be extended
to consider multiple RF/visual tracks without introducing any change in the algorithm.
The prediction algorithm is based on estimating the speed of the target over the period
covered by the available tracking information, which will then be used to predict the
time it would have taken the target to reach the next intersection given the remaining
distance of the corresponding roadway.

In situation (b), we have a single RF track range, which we expand to fill the whole
roadway (details below), as illustrated in figure 6.1(b). Similarly, in situation (c), if the
visual track is within the RF track range, it provides no extra information (essentially
becoming situation (b)) and the visual tracks can be ignored, but if the RF and visual
tracks are apart, we expand the range of the RF to include the visual track; this is
illustrated in figure 6.1(c). Usually, the longer the available tracking range, the better
prediction we can expect. After connecting the RF and visual tracks, the result is a
tracking range and the predicted time to the next intersection can be calculated as
follows:

ti =
n− (d(R)0 + d(R)1)

S
=

(t(R)1 − t(R)0)(n− (d(R)0 + d(R)1))
d(R)1 − d(R)0

(6.1)

103

6.3. Trace Reconstruction 6. Bayesian Offline Vehicular Forensic Tracking

where S = d(R)1−d(R)0
t(R)1−t(R)0

is the speed of the vehicle i (the target), d(R)0 and d(R)1

denote the beginning and the end of the tracking range, respectively, and t(R)0 and
t(R)1 denote the times at which the tracking range started and ended, respectively.
Equation 6.1 assumes d(R)0 = dI,i (where dI,i is the beginning of a roadway), but if this
is not the case, then this means that the tracking range did not start at the beginning of
the roadway, so we need to do a backward prediction (connecting the beginning of the
range with the beginning of the roadway) as well as a forward prediction (connecting
the end of the range with the end of the roadway), both of which can easily be done in
a similar manner. Furthermore, if d(R)1 = dE,i (where dE,i is the end of the roadway),
then only backward prediction is required. In any case, once we know the average speed
of the target (which can be obtained from d(R)0, d(R)1, t(R)0, t(R)1), then given a
distance, we can modify equation 6.1 to compute the time it would take the target to
drive that distance, regardless of whether it is forward or backward.

Semi-completefuse
Intersection IntersectionVisual trace

(a) Trace fusing of a roadway containing a single visual track

expandRF trace
fuse

Intersection Intersection

(b) Trace fusing of a roadway contain a single RF track

expandVisual
fuse

Intersection RF Intersection

(c) Trace fusion of a roadway containing a single visual track and a single RF track

Figure 6.1: Trace fusion of RF and visual based tracks

6.3 Trace Reconstruction

Realistically, even after RF-visual fusion, the target’s tracking trace will still most
likely exhibit tracking gaps. In this section, we propose a 2-phase algorithm to prob-
abilistically fill these gaps. The algorithms assume that the underlying layout of the
tracking scene resembles a Manhattan-grid (see figure 6.2); in chapter 7 we generalise
the algorithm to consider non-Manhattan-grid-like areas. In phase 1, the two end
points (Ingress and Egress) of a gap along with all possible routes between them are
identified. Then in phase 2, the driving behaviour of the target is analysed based on
the target’s available tracking traces. This will later be used by the reconstruction
algorithm to probabilistically select the connecting routes that the target would most
likely have taken through the gaps to finally obtain the full reconstructed trace.

104

6.3. Trace Reconstruction 6. Bayesian Offline Vehicular Forensic Tracking

Algorithm 6.1 Trace Fusion
1: R ← obtain(Roadways) {obtain the set of all roadways of a particular area}
2: repeat
3: chooseRandom(R← R) {choose a random roadway from R}
4: obtainTracks(R) {obtain all available tracks of roadway R}
5: if R.visual and not(R.range) then {if R contains visual tracks but not RF}
6: mark(R) = semi-complete
7: else if R.range and not(R.visual) then
8: extendRange(R) {call the Range Expansion procedure}
9: else if R.visual and R.range then

10: extend(R.range, R.visual) {extend the range to include the visual track}
11: extendRange(R) {call the Range Expansion procedure}
12: end if
13: remove(R, R) {remove roadway R from R}
14: until R = ⊥ {repeat until all roadways in R are exhausted}

Procedure 6.2 Range Expansion Procedure
1: extendRange(R)
2: if R.range.begin = R.begin then
3: forwardExpansion(R.range) {expand the range forward to the end of R}
4: else if R.range.end = R.end then
5: backwardExpansion(R.range) {expand the range backward to the beginning of

R}
6: else if R.range.begin 6= R.begin and R.range.end 6= R.end then
7: forwardExpansion(R.range)
8: backwardExpansion(R.range)
9: end if

6.3.1 Phase 1: Routes Identification

In this phase, the end points, PI,Gi and PE,Gi (the Ingress and Egress, respectively), of
a gap, Gi (where i = 1, 2, .., n for a trace with n gaps), along with the possible routes
between PI,Gi and PE,Gi , are identified, assuming that PI,Gi and PE,Gi correspond to
intersections. However, it may be computationally expensive (or even infeasible) to
identify all the possible routes between PI,Gi and PE,Gi when having a large tracking
area, regardless of the size of the gap. Thus, we restrict the area under consideration
by setting boundaries around the tracking gap, this bounded area is called the search
area which we expect to cover the most probable routes a target would probably have
taken through the gap. Figure 6.2 graphically illustrates a sample tracking trace of a
target with four (bounded) tracking gaps. Since we assumed that the tracking area is
a Manhattan grid, the search area will be of a rectangular or square shape containing
both PI,Gi and PE,Gi . Thus, we have two possible orientations of the positions of the

105

6.3. Trace Reconstruction 6. Bayesian Offline Vehicular Forensic Tracking

Figure 6.2: Sample trace with missing data

PI,Gi and PE,Gi (we refer to intersections as vertices and roadways as edges):

• Aligned Ingress/Egress: if PI,Gi and PE,Gi are either aligned horizontally or ver-
tically, they can be connected by a straight line, but it is näıve to assume that
the target used that route to travel from PI,Gi to PE,Gi . Hence, we widen the
search area to include the routes through the intersections above and the below
(or at the right and left of) PI,Gi and PE,Gi . The search area is then bounded by
the rectangle/square whose vertices are: PI,Gi − 1, PI,Gi + 1, PE,Gi + 1, PE,Gi − 1
where +1 and −1 indicate the above and below (or right and left) intersections
relative to PI,Gi and PI,Gi , respectively.

• Diagonal Ingress/Egress: if PI,Gi and PE,Gi are neither aligned horizontally nor
vertically, they are aligned diagonally (recall that this is a Manhattan-grid), in
which case the search area is bounded by the rectangle/square whose vertices are:
PI,Gi , PI,Gi + 1, PE,Gi , PE,Gi − 1 or PI,Gi − 1, PI,Gi , PE,Gi + 1, PE,Gi , depending
on the positions of the Ingress and Egress relative to each other.

Once the 4 vertices bounding the search area are identified, they are connected
and any vertex within the search area is marked as search vertex. We now propose
an algorithm, called Bounded Route Counter (BRC), to find all the routes between
PI,Gi and PE,Gi that are within the search area. The BRC algorithm resembles a
flooding/broadcast algorithm [123] (this behaviour is also known as message-passing).

106

6.3. Trace Reconstruction 6. Bayesian Offline Vehicular Forensic Tracking

In conventional flooding algorithms, the goal is to deliver a message to all nodes within
a particular area by configuring every node to forward every message it receives to all
other nodes it is connected to except the node it received the message from. Similarly,
BRC uses a message-passing broadcast mechanism to discover the routes between PI,Gi

and PE,Gi . When the BRC algorithm is first executed at PI,Gi , it generates as many
messages as there are exit points attached to PI,Gi , each message represents a separate
flow. These flows then multiply at every intersection they reach as long as it is a search
vertex (creating as many flows as there are exit points attached to that vertex). This
process continues until all flows are terminated. A flow terminates when it reaches: (1)
a non-search vertex, (2) the PI,Gi or (3) the PE,Gi . When a flow terminates it raises a
special tag with a value of 1, if the flow reached PE,Gi , 0 otherwise. If the termination
value was 1, the corresponding flow sends a message back to PI,Gi reporting its traversed
path. Algorithm 6.3 illustrates the BRC algorithm, and figure 6.3 shows an example
scenario of four routes found through a gap using BRC (note that here we assume a
bi-directional roadways, or a roadway consisting of multiple lanes, where vehicles can
flow both forward and backward).

Route 1

Route 2

Route 3

Route 4

Intersection

Ingress/Egress

Figure 6.3: Possible routes through a sample gap

It is easy to see that the algorithm will both terminate and find all possible routes
from PI,Gi to PE,Gi (that are within the search area). Initially, the algorithm is executed
at PI,Gi where it has four possible directions to send the flows through (in this case,
the flow did not come from a particular node, so it is sent to the 4 possible direction
off PI,Gi). At least one flow will hit a search vertex and will further propagate since
at least one direction out the PI,Gi leads to a search vertex. Also, since a flow cannot

107

6.3. Trace Reconstruction 6. Bayesian Offline Vehicular Forensic Tracking

terminate as long as it is propagating through search vertices and that all vertices will
propagate a received flow out all their possible directions (except the one it came from),
it is guaranteed that all search vertices will be visited and only flows that terminate
at PE,Gi will report back to PI,Gi . The BRC algorithm is a basic bounding algorithm
that assumes a manhattan grid, we will later generalise it in chapter 7.

Algorithm 6.3 Bounded Route Counter (BRC)
1: SET PI,Gi ← Ingress {identify Ingress}
2: SET PE,Gi ← Egress {identify Egress}
3: SET Links {array to store the routes connecting PI,Gi and PE,Gi}
4: SET Flow {array containing the individual roadways of a route}
5: ExitPoints {number of exit points attached to a vertex, usually 4}
{now call the markSearchVertices procedure to identify the search vertices}

6: markSearchVertices(PI,Gi , PE,Gi)
7: flood(PI,Gi) {initiate the flooding process at PI,Gi}
8: x = PI,Gi {store the flood initiation point in x}
9: label Loop

10: for i = 1 to i = exitPoints - 1 do
11: if i.nonSearchVertex = True or i.Ingress = True then
12: i.tag = 0 {set tag to 0 if the Ingress or non search vertex is reached}
13: else if i.searchVertex = True then
14: Flow = append(Edge(x, i)) {update the Flow variable}
15: flood(i) {create new flows and send them out the current vertex}
16: x = i {update x which contains the flood initiation point}
17: Goto Loop
18: else if i.Egress = True then
19: i.tag = 1 {set tag to 1 if the Egress is reached}
20: addRoute(Links, Flow) {add the current route to the Links array}
21: purge(Flow) {reset the Flow variable}
22: end if
23: end for

Procedure 6.4 Search Vertices Marking Procedure
1: markSearchVertices(PI,Gi , PE,Gi)
2: if aligned(PI,Gi , PE,Gi) = True then
3: return PI,Gi − 1, PI,Gi + 1, PE,Gi + 1, PE,Gi − 1
4: else if diagonal(PI,Gi , PE,Gi) = True then
5: if leftDiagnoal(PI,Gi , PE,Gi) = True then {if PI,Gi is at the left of PE,Gi}
6: return PI,Gi , PI,Gi + 1, PE,Gi , PE,Gi − 1
7: else if rightDiagnoal(PI,Gi , PE,Gi) = True then {if PI,Gi is at the right of PE,Gi}
8: return PI,Gi − 1, PI,Gi , PE,Gi + 1, PE,Gi

9: end if
10: end if

108

6.3. Trace Reconstruction 6. Bayesian Offline Vehicular Forensic Tracking

In the current scenario we expect that the size of the search areas is minimised due
to the visual-RF fusion process, and so adopting more sophisticated algorithms, such
as branch-and-bound, will probably just slightly enhanced the efficiency of the whole
route identification process at the cost of unnecessary overall complication. However,
we will adopt a branch-and-bound like approach while developing the more general
trace reconstruction algorithm for multi-modal setting in chapter 7.

6.3.2 Phase 2: Routes Analysis and Selection

At this stage, all routes between PI,Gi and PE,Gi are identified; we will denote the
routes by Rij , where i = 1, 2, ..., n and j = 1, 2, . . . , f(Gi), for the jth route of the ith

gap. Also, each Rij consists of f(Rij) roadways, where f(Rij) = 1, 2, The function
f can be thought of as an overloaded function which behaves differently depending on
its input (arguments), that is, given a gap Gi, f returns the number of routes through
Gi, but given a route Rij , f returns the number of roadways forming Rij .

f(X) =

routes in X if X is a gap

roadways in X if X is a route

In this phase, we calculate the probability that a particular route2 was taken by the
target given the actual time that the target spent while traversing the corresponding
gap, which is the time difference between PI,Gi and PE,Gi as obtained from the original
incomplete traces. These analyses are based on a basic Bayesian inference where we first
study the driving behaviour of the target and then assign probabilities for each possible
route through the gap. By investigating the target’s driving behaviour, we essentially
try to model its mobility to identify movement patterns, which is then used in the
route reconstruction algorithm. However, before executing the route reconstruction
algorithm, we first check whether any of the routes contains semi-incomplete roadways.
Recall from section 6.2 that a semi-incomplete roadway is a roadway in which the
target was observed at but could not be included in the RF-visual fusion process. If
a particular semi-incomplete roadway falls between PI,Gi and PE,Gi , we can safely
ignore any route not passing through that roadway because we know that the target
was indeed in that semi-complete roadway; this will potentially minimise the number
of routes under consideration. Once the possible routes are identified, the algorithm
proceeds in 5 steps:

2We assume that targets will not make U turns at any intersection.

109

6.3. Trace Reconstruction 6. Bayesian Offline Vehicular Forensic Tracking

Step 1: Mean and variance. After identifying the routes and the roadways each
route is composed of, we search the available trace of the target for roadways with
similar lengths as those comprising the routes between PI,Gi and PE,Gi . Then, we
calculate the mean (average) of the sum of times the target spent driving those roadways
and assign the result to the corresponding roadways of the gap’s routes. That is, if
a route Rij through the gap Gi consists of f(Rij) roadways Rij = r1, r2, . . . , rf(Ri

j), we
consider each roadway r individually and search the available trace of the target (the
records in which the target was observed) for roadways with approximately similar
lengths as those in Rij and extract the time periods it took the target to pass those
roadways, we then take the average and assign it to the corresponding roadways in Rij .
Preferably, we find more than one route in the available target trace corresponding (in
terms of length) to each route in Rij so we can take their average, the more samples we
are able to obtain, the better averaging accuracy we would expect. Additionally, it is
also desirable that those extracted routes (from the available target trace) are located
geographically close to those of Rij and with similar environmental characteristics (see
section 6.5). Once this is done for Rij , we repeat the process for routes through Gi. In
this step, we aim to find the mean (average) and variance of the target’s driving time
for each route through the gap. Formally, the mean of a route Rij consisting of f(Rij)
roadways is:

µRi
j

=
1

f(Rij)

f(Ri
j)∑

x=1

 1
S(x)

S(x)∑
y=1

tE,y − tI,y

+ ωx (6.2)

where S(x) is the number of roadways from the available target’s traces with the same
length as roadway x, (x = 1, 2, ..., f(Rij)), and ω is the delay factor which may be
different for different roadway, see section 6.5 for a discussion about how to model
this parameter. Since it is easy to extract information about roadways with available
tracking information, it is possible to find when the target entered and exited each
one of these roadways (tI,y, tE,y, respectively, for roadway y). Next, we calculate the
corresponding variance of every route as follows:

σ2
Ri

j
=

1
f(Rij)

f(Ri
j)∑

x=1

 1
S(x)

S(x)∑
y=1

tE,y − tI,y

+ ωx − µRi
j

2

(6.3)

We then use Bayes’ theorem to calculate the probabilities that the target took each
route between the Ingress and the Egress of a gap, and select the route with the highest
probability as the connecting route. We base our probability calculations on the time
difference between the Ingress and the Egress of the gap tGi = tE,Gi − tI,Gi as obtained

110

6.3. Trace Reconstruction 6. Bayesian Offline Vehicular Forensic Tracking

from the original trace3. That is, for every route, we calculate the probability that the
target could have taken that route given the time we obtained by observing the records
at PI,Gi and PE,Gi (the time the target spent in gap Gi):

Pr(route|time) =
Pr(time|route) · Pr(route)

Pr(time)

Pr(Rij |tGi) =
Pr(tGi |Rij) · Pr(Rij)

Pr(tGi)
(6.4)

where Pr(tGi |Rij) is the conditional probability that given the target took the route Rij ,
he spent tGi driving it, which is calculated for every route (with a fixed tGi), Pr(Rij) is
the prior probability that a target will take the route Rij , and Pr(tGi) is the marginal
probability. Steps 2 to 4 below show how these probabilities are calculated.

Step 2: Conditional probability. The probability that the target spent the time
tGi while driving from PI,i to PE,i through gap Gi given that he took route Rij is:

Pr(tGi |Rij) =
1√

2πσ2
Ri

j

exp

−(tGi − µRi
j
)2

2σ2
Ri

j

 (6.5)

This probability is calculated using Gaussian probability density function assuming that
the underlying process is Gaussian [94], that is, the driving behaviour of the target will
most likely follow a Gaussian distribution or can be estimated as Gaussian. In fact, it
is easy to see that this process is Gaussian because typical driving behaviour is to speed
half way through the roadway and slow down at the beginning/end of that roadway,
while driving with an average speed elsewhere. However, the average speed and the
variance will most likely differ among drivers and also depend on the characteristics of
the roadways (i.e., average speed in highways is much higher than city roadways).

Step 3: Prior probability. Since we do not have enough information to model the
target’s route preferences, the probability that the target selects a particular route Rij
(the prior probability) through a gap Gi is uniformly distributed for all available routes,
and can be calculated as follows:

Pr(Rij) =
1

f(Gi)
(6.6)

3Here we assume that the target has a continuous motion, but if the target is suspected to have
stopped en-route (e.g., to commit a crime), an estimated time of how long that could have lasted should
be included in the calculation of tGi .

111

6.4. Simulation Results 6. Bayesian Offline Vehicular Forensic Tracking

where f(Gi) is the total number of routes through the gap Gi. Although we assumed
that taking any route is equally likely, in practice some routes are more likely to be
taken by the target than others. This may be due to traffic flow conditions or POI for
example, see section 6.5 for a discussion about such factors. Another way to model this
is by adopting a mobility prediction algorithm, such as that presented in section 5.4,
which predicts the direction a target vehicle would most likely take out an intersection
by observing its current lane as it is approaching that intersection. However, running
such algorithms is difficult on an offline tracking setting given our limited resources.

Step 4: Marginal probability. The marginal probability Pr(tGi) is the sum of the
conditional (step 2) and prior (step 3) probabilities of all the routes and is calculated
as follows (the marginal probability acts as a normalising constant in the sense that it
makes sure that all the Bayesian probabilities of the routes will sum up to 1):

Pr(tGi) =
f(Gi)∑
j=1

Pr(tGi |Rij) · Pr(Rij) (6.7)

Step 5: Route selection. Finally, we can now calculate the Bayesian probabilities
for each route using equation 6.4 and select the route with the highest probability as
the most likely route the target would have taken through the corresponding gap.

6.4 Simulation Results

In chapter 5, we proposed and simulated several tracking scenarios. In this chapter,
we assume that such online tracking process has already been undertaken and that
the collected tracking trace exhibits missing data. Since it is difficult to obtain real
vehicular traces to validate our probabilistic trace reconstruction algorithm, we used a
vehicular mobility simulator to generate artificial vehicular traces for different scenarios.
Similar to the simulation in chapter 5, here we used VanetMobiSim simulator [54]
to generate vehicular mobility traces based on IDM-LC (IDM with Lane Changes)
mobility model [39] which is an extensions to the IDM (Intelligent Driver Motion)
mobility model [125]. These traces are then fed into NS-2 simulator [69] to generate
the movement of the entities (i.e., vehicles) and a trace database. Arbitrarily appointing
one of the simulated entities as a target, we manually (and randomly) create gaps in
that target’s mobility traces after extracting it from the original trace database. We
then execute our trace reconstruction algorithm to probabilistically choose the most
likely routes to connect those gaps and compare the selected routes with the routes
the target actually took according to the original trace database. Since it is difficult to

112

6.4. Simulation Results 6. Bayesian Offline Vehicular Forensic Tracking

model the delay factor ω without having access to real traffic traces, we modelled ω by
observing the node density on the roadways that the gaps’ routes are composed of. In
particular, we refer to the original mobility traces for all the simulated nodes (before
extracting the target’s trace) and look at traces taken for any node that happen to be
passing through any of the roadways that are part of the gap’s routes, then estimate
the average node density of these roadways to assign values for their corresponding ω
(clearly, the higher the node density, the larger the value of ω). This is easy to do in
practice too since the records from which the target trace was extracted usually contain
other information about other entities that we can use to model the delay factors, which
then can be used in equations 6.2 and 6.3. However, note that different nodes may have
different movement (driving) behaviours, so this modelling techniques will return just
a rough estimate for ω, but this is the best we can do without accessing external
information (in section 6.3.2 we proposed technique based on such information).

Figure 6.4: Simulation Results

Figure 6.4 illustrates our simulation results for scenarios with different node densi-
ties, ranging from 10 to 100 nodes, running over a 1000m2 area consisting of roadways
with different lengths. Every simulation was run for 1800 seconds and in each sce-

113

6.4. Simulation Results 6. Bayesian Offline Vehicular Forensic Tracking

Simulation software VanetMobiSim and NS-2

Simulation area 1000m2

Simulation duration 1800 seconds

Simulation runs 4

Node density 10–100

Node max. speed varied

Mobility Model IDM-LC

Communication technology IEEE 802.11

Radio propagation model Free space

Table 6.1: Simulation configurations

nario we manually created a gap (with 4 possible routes between the Ingress and the
Egress) and run the algorithm to select the most probable route. Figure 6.4 shows the
probabilities of each of the four possible routes at the manually created gap in each
scenario. The results indicate that our reconstruction algorithm along with our mod-
elling technique (by averaging the traffic flow of roadways) works very well in scenarios
with lighter node densities where the probabilities of the routes vary drastically and
it is easy to see which route is the most probable, but as node density increases, the
probabilities become closer. Although we argue that this way of modelling ω is, in most
cases, efficient since it gives a good estimation of other traffic delay factors affecting the
roadways without actually having to model them individually, further modelling may
be required in the more cluttered scenarios. However, in all cases, there are generally
some routes that can be easily ruled out (like route 4 in all scenarios) usually because
they introduce much longer/shorter delay compared to the time the target trace was
missing over the gap.

We believe that if these algorithms were applied to real traces, the results will be
more accurate since most of the simulation-based mobility models (which we had to use)
do not always maintain a tightly consistent motion (i.e., driving) behaviour for every
entity, so modelling the driving behaviour of the target based on his history trace or
traces from other nodes, although returning acceptable results, is slightly less accurate.
In real life scenarios, on the other hand, every driver has a unique driving behaviour,
in fact, recent work [129] even showed that the driving behaviour of individuals would
make a reasonable biometric measure.

114

6.5. Offline Estimation Accuracy 6. Bayesian Offline Vehicular Forensic Tracking

6.5 Offline Estimation Accuracy

The accuracy of our reconstruction algorithm is influenced by a number of factors,
mainly concerning the accuracy of the tracking data collection. When collecting RF
tracks, beside the conventional RF measurement errors, it is very likely that the tracking
traces are collected by several entities, so unless these entities are tightly synchronised,
there will be timing errors among the recorded traces. Similarly, the traffic delay factor
ω influences the accuracy of the algorithm, and is explicitly used in equations 6.2 and
6.3 while calculating the average speed and variance of the target. The delay factor
ω is basically a time delay assigned to individual roadways and is highly dependent
on the various geographical and physical characteristics of the roadways. Examples of
factors influencing ω are (some of which were already discussed in section 5.6):

• Roadways lengths: routes are most likely composed of several roadways that
are usually of different lengths. While the accumulation of the lengths of the
roadways that form a route is representative to the distance between the Ingress
and the Egress through that route, the speed of the movement through this route
is affected by the accelerations and decelerations during the journey and around
the intersections connecting the route’s roadways. Thus, the speed of the target
should be estimated for the individual roadway not the whole route.

• Roadways speed limits: every roadway restricts the speed of vehicles to a specific
speed limit. Knowledge of these limits is useful for estimating the maximum time
threshold during which a vehicle could pass the corresponding roadway.

• Traffic management type: traffic delay highly depends on the traffic management
type. For example, it is very likely that an intersection managed by stop signs
will experience longer delays than another managed by traffic lights. However,
care should be taken when considering traffic lights because delays due to traffic
lights depend on the state of the traffic light upon arrival (i.e., vehicles reaching
the intersection while the traffic light indicates green will most likely experience
much less delay than otherwise), which is generally difficult to model accurately.

• Points of Interest (POI): Another very influencing factor is the existence of points
of interests. These points represent locations that are frequently visited by people,
such as banks, shops etc., and hence are locations of common interest. Intuitively,
the existence of such points along a roadway will very likely increase the traffic
density at that roadway and, consequently, the traffic delay. Potentially, informa-
tion about POI can be extracted from a few specialised maps (like Google maps)
and then used to derive a more accurate prior probability in equation 6.6.

115

6.6. Summary 6. Bayesian Offline Vehicular Forensic Tracking

• Traffic density and flow : if available, knowledge of vehicular density (number
of vehicles per km) and flow (number of vehicles crossing a point per hour) is
very useful. Such information can either be statistically estimated from empirical
data, or probabilistically inferred based on location and time. For example, a
particular area may be increasingly crowded/congested only during a particular
period of time in the day, such as an intersection leading to offices, which may
be congested only at early morning and late afternoon.

• Abnormal events: occasionally, abnormal events may occur and will accordingly
affect the traffic conditions in the corresponding roadways. Examples of such
(temporary) abnormal events include roadwork, accidents, emergencies etc. In
most cases, information about such events can be obtained from the police.

Clearly, obtaining information to accurately model the traffic factor ω is difficult,
this is why in sections 6.3.2 and 6.4, we proposed techniques to model ω without
having to access extra information about the actual traffic. In particular, we estimate
the traffic flow of the concerned roadways by referring to the original tracking traces
(before extracting the target’s trace off). However, beside the explicit modelling of ω
as described above, we note that we already implicitly (and partially) account for it
following our modelling techniques in sections 6.3.2 and 6.4. That is, when we averaged
the driving times in step 1 (section 6.3.2), we have already implicitly accounted for ω
since the traces we used in calculating the average driving times already included an
implicit ω. This will probably work most of the time, but modelling ω separately is
certainly preferred if adequate resources are available.

6.6 Summary

In this chapter, we considered an offline vehicular tracking scenario where target traces
are obtained and probabilistically reconstructed. This is in contrast to online vehicular
tracking (which was discussed in chapter 4 for pedestrian setting, and in chapter 5 for
vehicular setting) that tracks targets in real time. Since the tracking gaps in a target
trace may be prohibitively large, we introduced preparatory phase that try to minimise
these gaps by fusing tracks from different sources. Once the trace is prepared, the trace
reconstruction algorithm proceeds in two phases. In the first phase the end points of
the gaps along with the possible routes through the gaps are obtained. Using Bayesian
inference, the most probable routes through these gaps are then reconstructed. We
also discussed the various factors influencing the accuracy of this estimation process
and presented some simulation results.

116

Chapter 7

Offline Multi-modal Forensic

Tracking

Most contemporary civilian tracking applications consider an online ap-
proach where the target is being tracked in real time. In criminal investi-
gations, however, it is common that only offline tracking is possible, where
tracking takes place after the fact. In this case, given an incomplete trace
of a target (suspect), the task is to reconstruct the missing parts and ob-
tain the full trace. With the recent proliferation of modern transportation
systems, target entities are likely to interact with different transportation
means. Thus, in this chapter, we first introduce a class of mobility models
that has been especially tailored for forensic analysis and propose several in-
stances emulating different transportation means. We then use these models
to build a fully-fledged offline multi-modal forensic tracking system that re-
constructs an incomplete trace of a particular target. We provide theoretical
evaluation of the reconstruction algorithm and show that it is both complete
and optimal. The contents of this chapter was published in [8] and [9].

7.1 Introduction

Traditional digital forensics was exclusively concerned with extracting evidence and
traces from electronic devices that may have been associated with or used in a criminal
activity. In most criminal cases, however, it would also be desirable to find additional
information about particular suspects, such as their physical activities (not just the
digital ones). In particular, investigating the location of suspects before, during and
after a crime, may contribute significant evidence, especially if it was possible to prove

117

7.1. Introduction 7. Offline Multi-modal Forensic Tracking

that a suspect was in a particular location at a particular time that he previously
denies. This kind of investigations is called forensic tracking, which we introduced
and discussed extensively in chapter 3. In most criminal cases, forensic tracking is
carried out in an offline manner, where a location trace of a suspect is obtained and
probabilistically reconstructed to recover any missing parts; such trace can be of a
target that is randomly captured by several CCTV cameras scattered over a particular
area. In chapter 6, we discussed how to carry out such offline forensic investigation in a
vehicular setting. In this chapter, we extend this further and consider a multi-modal1

environment. In particular, we propose a generic trace reconstruction framework and
adopt it to build a complete multi-modal-based forensic tracking system.

We assume that we have access to incomplete location information of a target
showing when and where he was observed; this will create a set of scattered points
over an area. We then need to connect these points to be able to find out what routes
the target could have taken (this is illustrated in figure 7.1). These periods of missing
data (between the points where the target was observed) are called gaps, which if we
reconstruct properly, we can obtain the target’s full trace. Since we generally need
to evaluate all possible routes through these gaps in a multi-modal scenario, we will
need to consider pedestrian routes, public routes, and a combination of both. Briefly,
our trace reconstruction algorithm proceeds in three main phases (we describe how the
algorithm reconstructs a trace belonging to a single target, the same process is repeated
to reconstruct the traces of multiple targets):

1. Scene representation: in this phase a map of the crime scene and its surrounding
area is obtained. Points corresponding to special locations, such as the crime
location, the available traces of the target (where the target was observed), and
the transport routes are then marked.

2. Fuzzy validation: this is a complementary phase where the (incomplete) trace of
the target obtained in the previous phase is further validated using fuzzy logic.

3. Trace reconstruction: once the scene has been graphically represented and pre-
pared, the reconstruction algorithm is executed over the gaps. Each gap repre-
sents a period of missing location information and is reconstructed independently.
All the reconstructed gaps are connected to obtain the most probable route(s)
the target most likely has taken through these gaps.

Chapter Outline. This chapter is organised as follows. In section 7.2 we propose a
generic trace reconstruction framework, followed by a description of how a scene is rep-

1Multi-modal refers to a journey involving more than one mode of transportation.

118

7.2. Trace Reconstruction Framework 7. Offline Multi-modal Forensic Tracking

resented graphically in preparation of the reconstruction process in section 7.3. Several
(special-purpose) mobility models are then proposed in section 7.4, which are later used
by our trace reconstruction algorithm in section 7.6. Prior to actually reconstructing
the trace, we use fuzzy logic in section 7.5 to validate the existing traces, which is
important (but optional) since some of the available traces (which our reconstruction
process is based on) may have been generated unreliably.

.....

.....

.....

.....

.....
.....

.....

.....

.....

.....

Figure 7.1: Sample target trace (with gaps)

7.2 Trace Reconstruction Framework

Figure 7.1 depicts a common scenario in most criminal investigations dealing with
suspect trace reconstruction. In this scenario, the suspect has been observed at some
locations, but was unobservable at others. The problem is how to use the available
traces (the observed locations) to reconstruct the missing ones. Suppose we have a
trace Ts = Vs +Ws for a target s, where Vs and Ws are the available and missing parts
of s’ trace, respectively. The i-th gap between the points a and b in Ts is denoted
by Ga,bi ∈ Ws and represents a period of missing observation. In each Ga,bi , there are
f(Gi) possible routes between a and b (where f here returns the number of routes
connecting a gap, as defined in section 6.3.2). The reconstructed trace T ′s = Vs + W ′s

then consists of the available traces Vs and the most probable routes W ′s connecting
the gaps. Formally, we propose and adopt a reconstruction framework that proceeds
as follows (algorithm 7.1 provides a pseudocode):

1. Obtain a map M of the crime scene and the surrounding areas, and convert it to
a graph GM .

2. Obtain the original trace Ts of the target s (with n gaps), and annotate the gaps
Ga,bi where i ∈ {1, 2, . . . , n}, and a, b are the end points of the i-th gap.

3. For each Ga,bi , find all possible connecting routes Rj where j ∈ {1, 2, . . . , f(Gi)}
and f(Gi) is the number of routes connecting a and b.

119

7.2. Trace Reconstruction Framework 7. Offline Multi-modal Forensic Tracking

4. For each Rj , obtained in step 3, reason about whether or not the target s could
have taken Rj while traversing the gap Ga,bi , we do this by assigning probabili-
ties/costs to each Rj ; repeat for all gaps.

5. The reconstructed trace T ′s is then formed by connecting the available parts of
the trace with the Rj ’s that have been assigned the highest probability in step 4.

Algorithm 7.1 Trace Reconstruction Framework
1: GET M {obtain the scene map}
2: GET T {obtain the target’s trace with missing data}
3: convertToGraph(M) → G
4: mark(T,G) {mark T on top of G}
5: findGaps(G) → G.gap {find the gaps in G}
6: for i = 1 to i ≤ sizeeof(G.gap) do
7: getRoutes(G.gap[i]) = G.gap[i].R {store routes through G.gap[i] in array R}
8: for j = 1 to j ≤ sizeof(G.gap[i].R) do
9: assignProbability(G.gap[i].R[j])

10: end for
11: findHighestProbability(G.gap[i].R) → G.gap[i].mostProbableRoute
12: end for
13: fillGaps(G) {connect the gaps}
14: return reconstruct(G) {return the full trace}

Procedure 7.2 Gap Filling Procedure
1: fillGaps(G)
2: for i = 1 to i ≤ sizeof(G.gap) do
3: connect(G.gap[i].Ingress, G.gap[i].Egress → G.gap[i].mostProbableRoute)

{connect the end points of a gap with the most probable route through it}
4: end for

In step 1, it is trivial to obtain maps from public sources. Converting a map M

to a graph GM , though, might require extra information, which may still be available
publicly. The graph GM would consist of a set of vertices V and a set of edges E .
In this chapter we consider a multi-modal scenario, where the target uses different
means of transportation, and thus we need to have more than one type of edges and
vertices to distinguish between the different transportation modes; this edge/vertex
distinction will allow us later to correctly assign probability/cost weights to the routes.
If we have access to some additional information about the scene, such as locations
of points of interest (POI), estimated traffic flow etc., we may also include these in
the generated graph by marking them appropriately; this information will be useful
when we reason about the likelihood of the routes in step 4. Step 2 is trivial. In step

120

7.3. Scene Representation 7. Offline Multi-modal Forensic Tracking

3, a special route-counter algorithm is adopted to find the possible routes through the
gaps. Clearly, finding all possible routes may require an exponential time (for relatively
large gaps/scenario), thus the search area should first be bounded before executing the
route-counter algorithm, an example of such algorithm is BRC which we proposed in
chapter 6 (a more advanced algorithm covering wider scenario space is proposed in
section 7.6.1). Step 4 is the heart of the reconstruction algorithm where the most
probable routes through the gaps are selected. Finally, in step 5 we connect all routes
chosen on step 4 with the available parts of the trace to obtain the final reconstructed
trace.

In the rest of the chapter, we adopt this framework and propose an offline multi-
modal tracking system, which can be considered a practical instantiation of the frame-
work. Steps 1-3 are covered in section 7.3 while steps 4-5 are covered in section 7.6.

7.3 Scene Representation

In order to systematically reconstruct the target’s trace, a graphical representation
of the crime scene and the surrounding area has to be first generated. Figure 7.2
graphically illustrates the scene preparation process over a sample map2, and algorithm
7.3 provides a pseudocode. The scene representation algorithm proceeds in 5 steps as
follows (to simplify the notation, we will often drop unnecessary labels and tags while
referring to some edges and vertices in the map):

Step 1: Map Preparation. In this initial step, a schematic map GM (based on
an actual geographical area M) of the reconstruction scene (the area over which the
target trace needs to be reconstructed) is obtained. We do not impose any restrictions
on the size of GM other than requiring it to at least cover (1) all the points at which the
target was observed (the available trace of the target), and (2) the crime location(s).
Formally, let GM = (VGM , EGM) be the scene graph, where VGM and EGM are the sets
of vertices and edges of GM , then we assume that {XGM

s ∪ ĈGM } ∈ VGM , such that:

1. XGM
s = {xκp

1 , . . . , x
κq
n } is the set of all locations where the target s was observed

at, where κp < κq are the first and last time, respectively, s was observed in GM ,

2. ĈGM = {cκk
1 , . . . , cκl

m} is the set of several crime locations where crimes were
committed between times k and l. However, to simplify the discussion, we will
describe the reconstruction algorithm considering a single crime scenario, but the
algorithm is obviously applicable to multiple crimes scenarios too.

2While the map in figure 7.2 corresponds to a real map of the city of Boston of the United States
of America, the road network in figure 7.2(d) is artificial, it is plotted for illustrative purposes only.

121

7.3. Scene Representation 7. Offline Multi-modal Forensic Tracking

(a) Obtain the scene map (b) Specify the crime location

(c) Specify the available traces (d) Specify the road network(s)

Figure 7.2: Illustration of the scene preparation phase

Step 2: Route Marking. In this step, relevant public transport networks (e.g.
buses, trains) B1, B1, . . . , Bn ∈ B are marked on GM . A transport network Bj ∈ B
consists of a set of routes Bj = {RBj

1 , R
Bj

2 , . . . , R
Bj
r }, which constitute most of the

vertices and edges in GM . Since we are only marking public transport routes, vertices
in a route Ri correspond to either a stop (e.g. bus/train station), denoted S-vertex, or
a road turn, denoted U -vertex. Similarly, edges can either be routed (part of a route),
denoted R-edge, or unrouted, denoted W -edge (the latter mostly added in Step 4). Let
ei be an edge of type i, then:

i =

B if e ∈
⋃
Bj∈B

⋃|Bj |
i=1 R

Bj

i

W if e ∈ EGM \
⋃
Bj∈B

⋃|Bj |
i=1 R

Bj

i .

where the notation |x| means the number of elements in the set x (the length of x), as-
suming that x does not have repeated elements (i.e., correspond to loop-free routes). A
route Ri is, therefore, defined by the set of vertices it consists of, VRi = {v1, v2, . . . , vk},
and the edges linking these vertices ERi = {e1, e2, . . . , ek−1}. Once all routes are
marked, we plot the available trace of the target, XGM

s = {x1, x2, . . . , xn}, which spec-

122

7.3. Scene Representation 7. Offline Multi-modal Forensic Tracking

Algorithm 7.3 Scene Representation
1: GET M {obtain the crime scene map (to be converted to G)}
2: GET X {obtain the locations where the target was observed}
3: GET C {obtain the crime locations}
4: GET B1, B2, · · · , Bn {obtain the transport networks}
5: for i = 1 to i = n do
6: getAllVertices(Bi) → append(V) {store all the vertices of all the routes in V }
7: getAllEdges(Bi) → append(E) {store all the edges of all the routes in E}
8: end for

Step 2: Route Marking
9: for i = 1 to i = n do

10: getRoutes(Bi)→ Ri[sizeof(Bi)] {store the routes of Bi at the array Ri}
11: markRoutes(Ri) {Call the the markRoute procedure}
12: end for

Step 3: Vertex/Edge Labelling
13: labelling(V,E) {call the labelling procedure }

Step 4: End Vertices
14: for i = 1 to n do
15: getRoutes(Bi)→ Ri[sizeof(Bi)] {store the routes of Bi at the array Ri}
16: endVertices(Ri)→ ρ {call the endVertices procedure below}
17: end for

Step 5: Additional Edges
18: SET Wmax {a distance threshold used by the additionalEdges procedure}
19: additionalEdges(V,Wmax) {call the additionalEdges procedure}

ify the times and locations where the target was observed in GM (these will later
form the gaps that we need to reconstruct). All xi’s are either3 located on top of
vertices or over edges (corresponding to locations on road or at intersection), that is
x1, x2, . . . , xn ∈ VGM ∪ EGM . However, elements in XGM

s should naturally be repre-
sented as vertices, thus if any xi is located on ei ∈ EGM , ei is split at the location of xi
such that ei = e1

i + e2
i . Then, xi is added to VGM (as U -vertex) and ei is replaced by

e1
i , e

2
i in EGM , while updating the V Ri and ERi (the sets of all vertices and edges in Ri)

of any route Ri passing through ei. Next, ĈGM = {c1, c2, . . . , cm}, the locations of the
crimes, are marked on GM , but this time c1, c2, . . . , cm may not be on top of a vertex
or an edge, in which case a W -edge is created between ci and the closest vi ∈ VGM .
Notice that it is acceptable for ci to be on top of an edge ei ∈ EGM because ĈGM

will not be involved in the reconstruction process. Finally, the directions of all edges
ei ∈ EGM are specified. The directions of eRi (R-edges) can easily be determined by
referring to their corresponding routes, while eWi (W -edges) are undirected.

3We assume that XGM
s data was collected by roadside CCTV cameras, and for simplicity, we assume

that the locations of x1, . . . , xn correspond to the locations of the CCTV cameras that recorded them.

123

7.3. Scene Representation 7. Offline Multi-modal Forensic Tracking

Generally, a single edge ei or vertex vi cannot have two different types at the same
time. If a particular vertex vi is part of n routes Ri, Rj , . . . , Rn, then it is an S-vertex
as long as vi is an S-vertex in at least one of Ri, Rj , . . . , Rn, otherwise it is U -vertex.
On the contrary, edges are not allowed to be part of more than one route because
different routes may assign different weights to their edges (see section 7.4 for how and
when these weights are assigned). Thus, if there is more than one route traversing an
edge, we create as many edges as there are routes. Let ei : vp → vq be an edge between
vertices vp and vq, and suppose there are n routes passing through ei, then we relabel
ei to ei,1 and create n−1 extra edges and label them ei,2, . . . , ei,n. Thus, GM is a mixed
multi-graph; that is, a graph allowing multiple directed edges to have the same head
and tail vertices, and contains both directed (R-edge) and undirected (W -edge) edges.

Procedure 7.4 Route Marking Procedure
1: markRoutes(R)
2: for i = 1 to i = sizeof(R) do
3: getVertices(Ri)→ Vi[sizeof(Ri)+1] {obtain the vertices of each route; each route

consists of n roadways (edges) and n+1 vertices (intersection)}
4: getEdges(Ri)→ Ei[sizeof(Ri)] {obtain the edges of each route}
5: for j = 1 to j = sizeof(Vi) do
6: if Vi[j] = STOP then
7: Vi.type = S {if the vertex corresponds to a stop, it is S-vertex}
8: else if Vi[j] = TURN then
9: Vi[j].type = U {if the vertex corresponds to a turn, it is U -vertex}

10: end if
11: end for
12: for j = 1 to j = sizeof(Ei) do
13: if Ei[j] = ROUTED then
14: Ei[j].type = R {if the edge is part of a route, it is R-edge}
15: else if Ei[j] = UNROUTED then
16: Ei[k].type = W {if the edge is not part of a route, it is W -edge}
17: end if
18: end for
19: end for{end of R’s route loop}

Step 3: Vertex/Edge Labelling. All vertices and edges (except W -edges) are
assigned unique labels to specify the routes they are part of. The notation of a vertex
v`ii with label `i = Rkj , . . . , R

n
m indicates that the i-th vertex in VGM is simultaneously

the k-th, . . . , n-th vertex of routes Rj , . . . , Rm, respectively. Since all vertices are
part of routes, a label ` should contain information about at least one route. Edges
are characterised by the vertices they link, thus the notation e`ii : v`pp → v

`q
q means

124

7.3. Scene Representation 7. Offline Multi-modal Forensic Tracking

that the i-th edge in EGM has head and tail at vp, vq ∈ VGM , respectively, where
p, q ∈ {1, 2, . . . , |VGM |}. Note that the head vp and tail vq should belong to at least one
common route and are ordered in succession according to the direction of the edge. If
there is more than one route passing through ei, extra parallel edges are created and
labeled, as detailed in Step 2. Thus, the label of an edge has only one route.

Procedure 7.5 Vertex/Edge Labelling Procedure
1: labeling(V,E)
2: for i = 1 to sizeof(E) do {Edge labelling}
3: if E[i].type = S then
4: E[i].label = E[i].route {label E[i] according to the routes it is part of}
5: else
6: E[i].label = ⊥ {otherwise, it must be a W -route, which is unlabelled}
7: end if
8: end for
9: for i = 1 to i = sizeof(V) do {Vertex Labelling}

10: for j = 1 to sizeof(E) do
11: if E[j].head = V[i] or E[j].tail = V[i] then
12: V[i].label = append(E[j].route) {add a route to a vertex label}
13: end if

{Unlike edges, vertices can be part of more than 1 route}
14: end for
15: end for

Step 4: End Vertices. Once all vertices and edges are labelled, a special set ρGM

is created containing all end vertices, these are the first and last vertices of every
route Ri ∈ Bj (the head and tail of Ri). To simplify the discussion, we will consider
routes of a single transport network Bj , but this can easily be extended to multiple
networks Bm, . . . , Bn ∈ B. Vertices belonging to ρGM are found by first writing down
the adjacency matrices AR1 , AR2 , . . . , ARn of all the routes R1, R2, . . . , Rn ∈ Bj , where
f(Bj) = n (Bj contains n routes). Adjacency matrices represent the neighbouring
relations among the vertices, if vertex i is adjacent to vertex j, then the cell Ai,j in
the matrix A is set to 1, 0 otherwise. A particular vertex in Ri belongs to ρGM if its
corresponding row in ARi sums up to 1. We denote by ARy

i,j the element of the i-th row
and j-th column of ARi , if we need to refer for a whole row, we use the notation ARz

i,∗ ,
and similarly denote a whole column by ARz

∗,j (i.e., ARz = ARz
∗,∗). Thus, formally:

ρGM =
⋃
Bj∈B

ρGM
Bj

=
⋃
Bj∈B

⋃
Ri∈Bj

vk :
∑
k∈Ri

ARi
k,∗ = 1



125

7.3. Scene Representation 7. Offline Multi-modal Forensic Tracking

Figure 7.3 shows a graph consisting of routes R1, R2, R3 in which we illustrate how

v1

v2

v3

v4

R1

R2

R3

Figure 7.3: A graph of three routes R1, R2, R3

to construct adjacency matrices for. Basically, adjacency matrices efficiently describe
the neighbouring relations between the vertices in a graph. For example, vertex v1 in
R1 is adjacent (neighbour) to vertex v2, so ARi

1,2 = 1. Note that we keep the notion
of self-neighbour undefined, that is a vertex cannot be a neighbour to itself, so the
diagonal in the matrices is necessarily always filled with 0’s.



v1 v2 v3 v4

v1 0 1 0 0
v2 1 0 1 0
v3 1 0 0 1
v4 0 0 1 0


AR1



v1 v2 v3 v4

v1 0 1 0 0
v2 1 0 0 0
v3 0 0 0 0
v4 0 0 0 0


AR2



v1 v2 v3 v4

v1 0 0 0 0
v2 0 0 1 1
v3 0 1 0 0
v4 1 1 0 0


AR3

Proposition 7.3.1. A vertex vj ∈ Vi in the adjacency matrix ARi of a finite loop-free
route (i.e., simple path) Ri = (Vi, Ei), where Vi and Ei are the sets of vertices and
edges forming Ri, is an end vertex if its corresponding row ARi

j,∗ in ARi, sums up to 1.

Proof. Let the route Ri be represented by the ordered sequence of vertices v1, v2, . . . , vn,
where v1 and vn are the first and last vertices of Ri, these are called the end vertices.
Clearly, v1 and vn will each be adjacent to a single vertex belonging to Ri, namely
v2 and vn−1, respectively. All other vertices, v2, . . . , vn−1 are adjacent to two vertices
belonging to Ri; that is vi is adjacent with vi−1 and vi+1, for i ∈ {2, . . . , n − 1}.
Therefore,

∑
ARi

1,∗ =
∑
ARi
n,∗ = 1, while

∑
ARi
i,∗ = 2 for i ∈ {2, 3, . . . , n− 1}.

Since routes in GM are directed, ρGM = −→ρ GM ∪←−ρ GM , where −→ρ GM and ←−ρ GM are
the sets of head and tail end vertices of the routes in GM .

126

7.4. Mobility Modelling 7. Offline Multi-modal Forensic Tracking

Procedure 7.6 End Vertices Procedure
1: endVertices(R)
2: for i = 1 to sizeof(R) do
3: getVertices(Ri)→ V
4: for i = 1 to i = sizeof(V) do
5: for j = 1 to i = sizeof(V) do
6: if neighbours(V[i], V[j]) = True then
7: V[i].routeCount =+ 1 {increment the router counter}
8: end if
9: end for

10: if V[i].routeCount = 1 then
11: ρ← add(V[i]) {add V[i] to the set of end vertices ρ}
12: end if{if routeCount = 1, then it must be either a head or a tail of a route}
13: end for
14: end for

Step 5: Additional edges. In this final step we create additional W -edges between
several vertices. A new W -edge is created between any two S-vertices if: (1) they
belong to different routes, and (2) the distance between them is ≤Wmax (a particular
threshold). Formally, the set η of the new (undirected) W -edges is:

η =
{
eW,`kk = vS,`mm ↔ vS,`nn : `m 6= `n ∧ d(vS,`mm , vS,`nn) ≤Wmax

}
where ↔ represents an undirected edge, and d(x, y) is the distance between x and y.
Note that here we disregard the effect of the infrastructure on the W -edges, that is,
we assume that there are no major obstacles between the S-vertices that prevent W -
edges from being created. However, integrating infrastructure information is easy since
most modern maps contain such information, where we can find d(x, y) by rerouting
around the infrastructure and test whether it is ≤Wmax. Finally, we can now formally
define the graph GM = (VGM , EGM) in terms of its edges and vertices, as EGM =
EGM
R ∪ EGM

W and VGM = XGM
s ∪ ĈGM ∪ V GM

S ∪ V GM
U , where EGM

X and V GM
X are the

sets of X-edges and X-vertices in GM , respectively.

7.4 Mobility Modelling

Mobility models were traditionally mainly used in computer simulation, where running
an experiment (e.g. evaluating a protocol) on real systems is both costly and inconve-
nient. Basically, mobility models generate artificial mobility traces that ideally resemble
mobility patterns of real entities. These traces, nevertheless, cannot be directly used to
reconstruct real traces that have already been made by real-life entities. This is mainly

127

7.4. Mobility Modelling 7. Offline Multi-modal Forensic Tracking

Procedure 7.7 Additional Edges Formation Procedure
1: additionalEdges(V,Wmax)
2: for i = 1 to sizeof(V) do
3: for j = 1 to sizeof(V) do
4: if V[i].type = S and distance(V[i], V[j]) ≤Wmax then
5: createW-Route(V[i],V[j])
6: else if V[i].type = S and V[i].label 6= V[j].label then
7: createW-Route(V[i],V[j])
8: end if
9: end for

10: end for

because real mobility patterns are based on human judgements, which are usually very
stochastic in nature. However, we show that even though mobility traces generated
by these models are inherently artificial, we can still use them effectively to assist our
reconstruction process.

Mobility models are usually developed in a microscopic level, modelling the mobility
of each object in relation to its environment and the surrounding neighbouring objects,
and thus generating realistically-looking traces. Most models, therefore, carefully pa-
rameterise the velocity (or rather the acceleration) and direction of the objects and
repeatedly adjust them throughout the simulation. However, in our case, we only need
to use the mobility models to estimate the time a target entity may have spent while
moving from one point to another, completely disregarding the precise microscopic de-
tails; we call this class of mobility models mobility delay models. In addition, since we
are considering a multi-modal scenario (an entity occasionally changing transportation
mode), we not only need to model each class of mobility, but also need to model how
to glue different models together for a smooth transition. We now introduce several
mobility delay models, and then proceed to model the transition between them.

7.4.1 Pedestrian Mobility Delay Model

Popular pedestrian mobility models, such as the social force model [59], cannot be
directly used in our scenario because it requires detailed microscopic information which
we cannot assume to possess (see section 3.4.1), it also delves into details of the inter-
pedestrians behaviour, which is not important in our case. We, therefore, introduce
a mobility delay model, which we call (Pedestrian Mobility Delay Model) PMDM,
to calculate the time an entity x (pedestrian) would take to move from point a to
point b (since here we are only concerned about the time). The mobility of the entity
is mainly influenced by the surrounding static and moving objects which force the

128

7.4. Mobility Modelling 7. Offline Multi-modal Forensic Tracking

ri

c


se


rs

s

j

Figure 7.4: Illustration of the manoeuver behaviour of a target and how to calculate
the extra distance

entity to perform a suitable manoeuver in order to avoid them. We represent each
obstacle object (that the entity has to avoid) as a circle with known centre and radius.
When manoeuvring around an obstacle, the extra distance the entity has to travel is
approximately the length of the arc formed by the chord cutting through the obstacle’s
circle based on the entity’s direction, this is illustrated in figure 7.4. The time the
entity spends from point a to point b is then calculated as follows:

tsa,b =
da,b +

∑
i∈S ri cos−1

(
2r2i−c2

4ri

)
+ ω

vs − ε
+
∑
j∈M

g((rs + rj)− dx,j) (7.1)

where S and M are the spaces of the static and moving objects, respectively (i.e., the
number of objects in the scenario), ri is the radius of the circle surrounding an object
(representing its range), c is the length of the chord cutting through the object’s circle
(can be obtained via secant line geometry and the direction −→es of the target), rs is the
radius of the circle surrounding the target s who moves with a speed up to vs, ds,j
is the distance between the centre of s and the centre of j, ω is a slight delay due to
random factors imposed on the entity, such as crossing a road, ε is a random negative
value (modelling the deceleration behaviour the entity is forced to undertake around
obstacles), and g() is a function defined as follows:

g((rs + rj)− ds,j) =

1 if rs + rj ≥ ds,j ,

0 otherwise.

which models the entity’s pause time should it come across a moving object (waiting
for it to move away). At first glance, equation 7.1 may seem to include microscopic

129

7.4. Mobility Modelling 7. Offline Multi-modal Forensic Tracking

details since it models interactions between objects, but we note that we can model
these details without necessarily simulating the scenario in a microscopic level and only
by assuming knowledge of the movement directions of the entity. The manoeuvre be-
haviour of the entity around static objects (e.g. buildings) can then be easily modelled
by referring to the scene map GM , while the number of interactions between an entity
and the moving objects (i.e., other pedestrians) can be estimated subjectively based
on the popularity of the area and the current time of the day.

7.4.2 Transport Mobility Delay Models

Another class of common mobility models describes the mobility of vehicular entities,
modelling public transport means, such as buses, trains, trams, underground tubes etc.
(here we do not consider private vehicles because they are irrelevant to our scenario,
but they can be considered a special type of the Transport Mobility Delay Models
(TTMDM) below). In this class, the mobility of objects is more structured and less
stochastic than those in the pedestrian models because they are usually constrained
by fixed infrastructure (e.g. roadways, train tracks etc.). However, based on the
infrastructure, we can easily make a distinction between two naturally different types of
vehicular mobility patterns, we call the first type traffic-based transport and the second
non-traffic-based transport. Traffic-based Transport Mobility Delay Model (TTMDM)
is concerned with objects whose mobility is governed by uncertain parameters that,
in some cases, could affect the mobility behaviour significantly; this model describes
the mobility of objects like buses, coaches and similar road-based public transports
whose mobility pattern highly depends on the conditions of the road traffic, which
cannot be precisely modelled/predicted in most cases. Non-traffic-based Transport
Mobility Delay Model (NTMDM), on the other hand, is easier to develop because
random delay factors (such as those in TTMDM) are of no or negligible effect on the
entities’ mobility behaviour. NTMDM is used to model the mobility of infrastructure-
based public transports such as trains and underground tubes, where, apart from rare
occasional signal and other minor failures, have deterministic mobility patterns.

Traffic-based Transport Mobility Delay Model (TTMDM). Most realistic
traffic-based mobility models [53] adjust the velocity of objects in such a way to avoid
collisions. However, this level of microscopic modelling is not required in our scenario
because we are only concerned about the time it would take those objects to move
from one point to another, not the actual movements they should make. Thus, we
consider modelling the factors that will affect this time figure, which can be estimated

130

7.4. Mobility Modelling 7. Offline Multi-modal Forensic Tracking

as follows:
ta,b =

da,b
v̄a,b

+Dtraffic
a,b +

∑
Dinterest
a,b +

∑
Dabnormal
a,b (7.2)

where da,b and v̄a,b are the distance and the maximum allowable speed of the roadway
between points a and b, respectively, Dtraffic

a,b is the expected traffic delay of the roadway
between points a and b and can be estimated by the geographical and physical charac-
teristics of the area as well as the current time of the day, Dinterest

a,b are delays incurred
by points of interest (POI) located between a and b, and finally Dabnormal

a,b represents
abnormal events that reportedly occurred in the road segment between a and b, such as
accidents, breakdowns etc., both Dinterest

a,b and Dabnormal
a,b can be obtained offline either

from public resources (e.g. maps) or from the police.

Non-traffic-based Transport Mobility Delay Model (NTMDM). Modelling
non-traffic-based transport is clearly more straightforward because the uncertainty of
the stochastic delays the traffic-based transports suffer from is largely eliminated (or
mitigated) here. This class describes the mobility of vehicular entities with fixed in-
frastructure, such as trains, underground tubes etc. In this case, we can calculate the
time an object takes from point a to point b as follows:

ta,b =
da,b
va,b

+Dstoppage
a,b +Ddeceleration

a,b +
∑

Dabnormal
a,b (7.3)

where va,b is the fixed speed of the object on its journey from a to b spanning a
distance da,b (which can be obtained offline), Dstoppage

a,b is the (almost) fixed stoppage
time at stations, Ddeceleration

a,b models the deceleration behaviour around the stations
(in equation 7.2, the deceleration effect is part of the Dtraffic

a,b variable), and Dabnormal
a,b

represents any event that may cause a delay to the service, such as signal failure.

7.4.3 Multi-modal Mobility Delay Model

Conventionally, when modelling the mobility of a particular object, we implicitly as-
sume that the object’s behaviour will be consistent throughout the simulation. How-
ever, in our scenario we cannot rule out the possibility that the target could have used
multiple different transportation modes, each with different mobility characteristics.
Thus far, we have introduced three mobility delay models (PMDM, TTMDM, NT-
MDM) and now we model the transition between them by constructing a Multimodal

131

7.4. Mobility Modelling 7. Offline Multi-modal Forensic Tracking

Model PMDM TTMDM NTMDM

PMDM Trivial Level-1 Level-1

TTMDM Trivial Level-2 Level-2

NTMDM Trivial Level-2 Level-2

Table 7.1: Transition modelling between PMDM, TTMDM and NTMDM models

Mobility Delay Model (MMDM)4 to assure a continuous flow of the target. Essentially,
MMDM will only model the transition behaviour between two different models (or two
different carriers of the same model) because once the transition is completed, the rel-
evant mobility model is called to simulate the mobility of the next part of the journey
until another transition is required. The delay incurred by this transition is called
Inter-Transport Delay (ITD) as briefly discussed in section 3.4.3. When the transition
happens between two carriers of the same mobility model (e.g. changing bus), the
transition is said to be homogenous, otherwise if the transition happens between two
carriers of different mobility models (e.g. transition from bus to train), the transition
is said to be heterogeneous. Table 7.1 lists all possible transition combinations along
with the kind of transition in each case (these transition actions are described below).

In a vehicular setting, we are actually interested in tracking the individual who
is being transported by a carrier vehicle, not the vehicle itself, thus it is the entity
who makes the transition which we need to model. Clearly, in PMDM both the entity
and the carrier are a single component. When an entity shifts from any model to
PMDM, the transition is smooth and incurs no delay (i.e., an individual does not have
to wait before commencing a walk action). For any other situation, however, transition
modelling is required to calculate the time an entity will need to wait before shifting to
the next model (or carrier). The main idea is to observe the timetables of the carriers
at the transition location and calculate the transient wait time. Table 7.2 is an excerpt
from a real bus timetable and is organised by stops (represented by rows) and journeys
(represented by columns). As shown in table 7.2, a particular object (individual) rides
in a journey that makes several stops, where the timetable indicates when that object
will arrive at each subsequent stop; thus, while a particular model (e.g., TTMDM)
will describe the mobility patters of several carriers (e.g., buses), there is a dedicated
timetable for every carrier.

For level-1 transition, the entity is shifting from PMDM to either TTMDM or
4It appears that most research in multi-modal mobility modelling was done in robotic motion

planning, e.g., [25]. To the best of our knowledge, apart from integrated modules in, e.g., VISSIM
[106] and SUMO [78] simulators, no pervious formal multi-modal mobility modelling was proposed for
tracking applications.

132

7.4. Mobility Modelling 7. Offline Multi-modal Forensic Tracking

Stop 1 0328 0428 0528 0558 0618 0651 0713 0734 0810 0848 0918 0948

Stop 2 0331 0431 0531 0601 0621 0654 0716 0737 0813 0851 0920 0951

Stop 3 0336 0436 0536 0606 0626 0659 0721 0742 0819 0857 0925 0956

Stop 4 0342 0442 0542 0612 0632 0705 0727 0748 0825 0903 0931 1002

Stop 5 0349 0449 0549 0619 0639 0711 0735 0755 0831 0909 0938 1009

Stop 6 0357 0457 0557 0627 0649 0721 0745 0805 0841 0916 0945 1016

Table 7.2: Sample bus timetable (excerpt from real bus timetable)

NTMDM, in both cases, the entity will most likely experience a slight transient delay
due to the time difference of when it arrives at location x and when the next carrier
belonging to the intended model stops at it. In this case, as soon as the entity arrives
in x, it checks the intended carrier’s timetable for the next departure time at its current
location based on the current time and calculates the time difference. Level-2 transition
is similar except it models the transition between TTMDM and NTMDM. We now
describe this transition process in details.

Recall that in our scene graph GM we represent roadways by edges EGM and in-
tersections by vertices VGM . The transition can only happen in an intersection, so let
vi ∈ VGM be a transition vertex which n carriers from either TTMDM or NTMDM
stop at, let these carriers be denoted by R1, R2, . . . , Rn (this information is included
in the label of vi, see section 7.3). The first step is to obtain the timetables of these n
carriers TR1 , TR2 , . . . , TRn , and covert them into matrices MR1 ,MR2 , . . . ,MRn , where
the rows represent stops and the columns represent journeys.

mR1
1,1 mR1

1,2 · · · mR1
1,e

mR1
2,1 mR1

2,2 · · · mR1
2,e

...
...

. . .
...

mR1
c,1 mR1

c,2 · · · mR1
c,e


. . .



mRn
1,1 mRn

1,2 · · · mRn
1,l

mRn
2,1 mRn

2,2 · · · mRn
2,l

...
...

. . .
...

mRn
k,1 mRn

k,2 · · · mRn
k,l


Note that the dimensions of the matrices depend on the timetables and may be dif-
ferent for different carriers. Next, we extract the rows corresponding to vi from
MR1 ,MR2 , . . . ,MRn and create a 3D matrix Mvi by superimposing these rows; this is
illustrated in figure 7.5.
The dimensions of this new 3D matrix Mvi will be 1× n× L, such that

L = max{w(MR1), w(MR2), . . . , w(MRn)}

where w(M) is the width (number of columns) of matrix M . In other words, L is

133

7.5. Fuzzy Trace Validation 7. Offline Multi-modal Forensic Tracking

1,1,1m 1,2,1m 1,,1 nm... L

Figure 7.5: Illustration of the 3D matrix Mvi

the number of journeys that are being made by the carrier Ri that makes the highest
number of journeys, where i ∈ {1, 2, . . . , n}. Obviously, if R1, R2, . . . , Rn do not all
make the same number of journeys, Mvi will contain some undefined values (set to 0).
We assume access to a global clock which upon calling the procedure CurrentT ime(),
it returns the current time. Once Mvi is created, c = CurrentT ime() is obtained to
build a 1× n matrix M̂vi = [m1,1,m1,2, . . . ,m1,n] such that:

m1,j =


|c−m1,j,z|+ ε if z ≥ c ≥ z + 1,

ε if c = z or c = z + 1,

∞ otherwise.

where z ∈ {1, 2, . . . , L}, and ε is a random delay representing the various factors that
may hold the carriers off (examples of such factors are discussed in section 6.5), plus
the wait time at each stop. The matrix M̂vi will now indicate how long an entity
at the current location x has to wait to pick any carrier R1, R2, . . . , Rn passing by
x (regardless of whether R1, R2, . . . , Rn belong to the same or different model); the
matrix will list all the carriers stopping at vi along with the estimated delay figures for
each.

7.5 Fuzzy Trace Validation

We assume (realistically) that the only available traces of the target came from record-
ings made by CCTV cameras. However, it is likely that some CCTV images will slightly
be defected (e.g., blurred etc.) or basically taken for overcrowded areas where it is dif-
ficult to completely ascertain the presence of the target. Thus, some of the target’s
available traces may have not been generated reliably and need to be validated before
proceeding to the actual trace reconstruction process. Let Ks = {ks1, ks2, . . . , ksm} be a
set containing all the available (raw) traces for a target s. Each element (trace) in Ks is
associated with 4 pieces of information ksi = (lsi , t

s
i , q

s
i , CID), representing the location

lsi and the time tsi at which the target s was observed by the CCTV camera CID, and
qsi is a measure of the quality of the CCTV image of which ksi was generated from (for

134

7.5. Fuzzy Trace Validation 7. Offline Multi-modal Forensic Tracking

convenient, we’ll often drop the CID parameter). In practice, Ks = N s ∪ U s, where
N s and U s are the sets of reliable and unreliable records of the target s, respectively.
Usually, the reliability of ksi is determined by qsi where the target is thought to have
been observed but due to a low quality CCTV image, this cannot be confirmed reliably.
Thus, before proceeding to the trace reconstruction phase, we first need to evaluate
elements in U s and then decide whether to accept or reject them.

First, we carry out an initial test where we assume we can calculate the shortest
path between any two points in the tracking graph using, e.g., Dijkstra algorithm [33].
Suppose we have Ks = {ksn−1, k

s
n, k

s
n+1} and that ksn ∈ U s while ksn−1, k

s
n+1 ∈ N s. If

the following is satisfied
tsn+1 − tsn < SP time(lsn, l

s
n+1)

then we reject ksn immediately, where SP time(A,B) returns the time it takes an entity
to travel from A to B using the shortest path between A and B. That is, there is no
way the target could have moved from lsn to lsn+1 in less than it would have taken him
using the shortest route between these two points. Similarly, we also reject ksn if the
following is satisfied:

tsn − tsn−1 < SP time(lsn−1, l
s
n)

7.5.1 Fuzzy Logic

If the initial test succeeds (if ksi is not rejected), we proceed by building a fuzzy inference
system (FIS) to evaluate the trustworthiness of the records in U s. Generally, fuzzy logic
[134] is used to model imprecise concepts, such as temperature, height etc. Unlike the
classical crisp sets where an element is either inside or outside the set, fuzzy sets do not
have rigid boundaries where elements may belong to more than one fuzzy set to certain
degrees. Thus, every fuzzy set A has a membership function µA which decides to what
extent elements belong to A. Figure 7.6 illustrates the three main phases (components)
of a FIS. In the first phase, the input is fuzzified, where several fuzzy sets are created
and their corresponding membership functions convert the crisp input into fuzzy one.
Then, a set of fuzzy IF-THEN rules are applied to the fuzzy input, and finally the
result is defuzzified to return a crisp output. In our case, we try to evaluate how much
we should trust the traces of U s. Let U s = {us1, us2, . . . , usp}, and p < |N s|. Since each
trace usi represents 3 variables (lsi , t

s
i , q

s
i), we use these as inputs to our fuzzy system

and evaluate each usi independently.

135

7.5. Fuzzy Trace Validation 7. Offline Multi-modal Forensic Tracking

Fuzzification
Fuzzy

Inference
DefuzzificationInput Output

Figure 7.6: Fuzzy Inference System

7.5.2 Fuzzification

Based on the input (the usi records), we have three fuzzy variables, L = {ls1, ls2, . . . , lsp},
representing location, T = {ts1, ts2, . . . , tsp}, representing time, and Q = {qs1, qs2, . . . , qsp},
representing the quality of the CCTV images, where |U s| = p. Each variable is as-
sociated with a number of fuzzy sets as follows: L → {POI,N}, where POI repre-
sents a Point of Interest (e.g. a shopping mall), and N represents non-POI areas,
T → {D1, P1, D2, P2, D3}, where D1 is morning, D2 is afternoon, D3 is night, and
P1, P2 are the morning and afternoon peak periods5, Q → {G1, G2, G3}, where G1 is
good, G2 is average and G3 poor. Every set belonging to every variable has its own
membership function µx, where

x ∈ {POI,N,D1, P1, D2, P2, D3, G1, G2, G3}

All membership functions are normally distributed. Figure 7.7 shows plots of the three
input variables Q,L, T and the output variable O. These membership functions were
created based on subjective analysis to capture the characteristics of the variables they
model.

7.5.3 Fuzzy Inference

Our fuzzy inference formulation is developed by devising a set of IF-THEN rules that
implement our fuzzy reasoning. These rules accept inputs from the (L, T,Q) variables
and return a value assigned to the output variable O, which in turn has two fuzzy sets,
Y,X, to indicate how much trustworthy the record usi is, where Y and X represent
trustworthiness and untrustworthiness, respectively. The IF-THEN rules are based on
the conditional operators AND and OR, but these operators cannot be directly applied
on fuzzy values. The most popular fuzzy counterpart is to replace the AND and OR
operators by the minimum and maximum functions, respectively; that is, the expres-
sions (A = a) ∧ (B = b) and (A = a) ∨ (B = b) are translated to min{µA(a), µB(b)}
and max{µA(a), µB(b)}, respectively. Table 7.3 summarises our fuzzy rules. Basically,
these rules evaluate the trustworthiness of a record usi given when, where and how it

5This day classification assumes a week day. With a few adjustments to the IF-THEN rules in the
fuzzy inference phase, this can easily be modified for weekends where there are no peak periods.

136

7.5. Fuzzy Trace Validation 7. Offline Multi-modal Forensic Tracking

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

Quality

D
eg

re
e

of
 m

em
be

rs
hi

p
poor average good

(a) Q fuzzy input variable plot

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Location

D
eg

re
e

of
 m

em
be

rs
hi

p

POI normal

(b) L fuzzy input variable plot

0 5 10 15 20

0

0.2

0.4

0.6

0.8

1

Time

D
eg

re
e

of
 m

em
be

rs
hi

p

morning peak
1 afternoon peak

2 night

(c) T fuzzy input variable plot

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Trust

D
eg

re
e

of
 m

em
be

rs
hi

p

error trusted

(d) O fuzzy output variable plot

Figure 7.7: Input and output variables plot

was recorded. Intuitively, the more crowded the recording location is, the less confident
we are that the target was spotted correctly; this also applies to low quality CCTV
footage and records made during peak hours.

7.5.4 Defuzzification

The fuzzy rules in table 7.3 will return a fuzzy value belonging to the fuzzy output
variable O where the membership functions of O’s two fuzzy sets, Y and X, will assign
a degree of membership to each set. However, a fuzzy output is not very meaningful in
this case, so we need to defuzzify it and return a crisp value that indicates whether we
should accept or reject the corresponding usi record. There are different defuzzification
methods [111], we adopt the centroid method which is the most popular. In this
method, the centre of the curve, formed by evaluating the IF-THEN rules, is returned.
Figures 7.8(a) and 7.8(b) show how our fuzzy system behaves for different values of

137

7.6. Trace Reconstruction 7. Offline Multi-modal Forensic Tracking

IF THEN

(Q = G1) ∧ {(T = D1) ∨ (T = D3)} O = Y

(Q = G1) ∧ (L = N) ∧ {(T = P1) ∨ (T = P2)} O = Y

(Q = G1) ∧ (T = D2) ∧ {(L = POI) ∨ (L = N)} O = Y

(Q = G1) ∧ (L = POI) ∧ {(T = P1) ∨ (T = P2)} O = X

(Q = G2) ∧ {(T = D1) ∨ (T = D3)} O = Y

(Q = G2) ∧ (L = N) ∧ (T = D2) O = Y

(Q = G2) ∧ (L = N) ∧ (T = P1) O = Y

(Q = G2) ∧ (L = N) ∧ (T = P2) O = Y

(Q = G2) ∧ (L = POI) ∧ (T = P1) O = X

(Q = G2) ∧ (L = POI) ∧ (T = P2) O = X

(Q = G2) ∧ (L = POI) ∧ (T = D2) O = X

(Q = G3) ∧ {(T = D1) ∨ (T = D3)} O = Y

(Q = G3) ∧ {(T = P1) ∨ (T = P2)} O = X

(Q = G3) ∧ (T = D2) ∧ (L = N) O = Y

(Q = G3) ∧ (T = D2) ∧ (L = POI) O = X

Table 7.3: Fuzzy rules

the three input variables (L, T, Q). In figure 7.8(a), both the location L and quality
Q variables are plotted over a range of [0,1]. As we approach 0, the quality of the
CCTV gets worse and the location variable tends to approach a POI area. Clearly, the
closer we are to a POI and the lower the image quality is, the less trust we have on the
corresponding record. Similarly, the time variable T in figure 7.8(b) is plotted over a
range of [0,24], representing the daily 24 hours. As the figure shows, we have less trust
in records taken around POI areas during daytime, but for the early hours of morning
and late hours of night, we trust most of the records regardless of the location as it is
likely that during these periods most locations are not crowded enough to defect the
CCTV images (note that here we ignore the day light effect).

7.6 Trace Reconstruction

As briefly mentioned in section 6.1, classical missing data algorithms, such as EM [32]
and data augmentation [124], cannot be directly used to reconstruct traces because
these algorithms mainly make statistical inferences based on incomplete data, but will
not reconstruct it, as required in our case. Additionally, we cannot assume that we

138

7.6. Trace Reconstruction 7. Offline Multi-modal Forensic Tracking

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1

0.35

0.4

0.45

0.5

0.55

0.6

0.65

QualityLocation

T
ru

st

(a) Location-quality plot

0
5

10
15

20

0
0.2

0.4
0.6

0.8
1

0.35

0.4

0.45

0.5

0.55

0.6

0.65

TimeLocation

T
ru

st

(b) Location-time plot

Figure 7.8: Graphical representation of the relationship between the input/output
variables of our fuzzy system

have a sufficiently large number of available traces to be able to use these algorithms.
Iterative sampling algorithms, such as Markov Chain Monte Carlo (MCMC) [47], when

139

7.6. Trace Reconstruction 7. Offline Multi-modal Forensic Tracking

adapted for a missing data setting, cannot be used here too for the same reasons.
Instead, we take a different algorithmic approach to fill the gaps formed by the missing
traces. We develop an efficient reconstruction algorithm that, using mobility delay
models (as introduced in section 7.4), selects the route(s) that the target has most
likely taken through a gap, given the time it spent traversing it. In the worst case,
the algorithm would at least eliminate several routes that the target could not possibly
have taken, which may still provide important evidence.

7.6.1 The Algorithm

The reconstruction algorithm AR first considers each gap individually, reconstructs
it, repeats for all gaps, and then connects the reconstructed gaps to obtain the full
trace of a target s. Abstractly, AR consists of two fundamental building blocks, (1) a
multi-graph traversing algorithm called Weight-Bound-Search (WBS), and (2) several
mobility models. Once AR is executed, it proceeds by running WBS over a gap,
WBS, in turn, repeatedly calls the mobility models (possibly via AR) and returns
a route (or routes) connecting the gap; AR then reconstructs the other gaps in a
similar fashion. The WBS algorithm is based on a branch-and-bound approach [81]
to optimise the reconstruction process, and uses a crawler that traverses the gaps and
finds plausible routes. For a gap Gp : vm → vn between vertices vm and vn, where
m,n ∈ {1, 2, . . . , |VGM |}, a crawler CGp is generated at vm and broadcasted toward
vn. The crawler CGp maintains two data structures: (1) a LIFO6 list of vertices and
edges traversed so far χCGp , and (2) a delay variable τCGp . The χCGp is dynamically
updated whenever CGp traverses a vertex or edge to keep track of all the vertices and
edges the crawler CGp has visited. The delay variable τCGp is initially set to 0 and is also
dynamically updated whenever CGp traverses an edge or an S-vertex (but not U -vertex,
see below). When CGp is first initiated at vm, it checks vm’s label `m = {Ryx, . . . , Rlk}
which contains information about the routes that vm is part of and consequently finds
the set of its next-hop neighbouring vertices ˆ̀

m, where

ˆ̀
m =

|`m| if vm 6∈ ←−ρ G,

|`m| − k if vm ∈ ←−ρ G.

and k is the number of times vm appears in ←−ρ G (the number of routes in which vm

is a tail-end vertex; such routes terminate at vm and thus do not have next-hop).
However, since we are considering a multi-graph, it is possible that some of these

6Last-In-First-Out is a stack data structure, which organises elements in descending order such that
the last element entering the queue is the first element leaving it.

140

7.6. Trace Reconstruction 7. Offline Multi-modal Forensic Tracking

routes are passing by the same next-hop neighbour (creating parallel edges between
two vertices), so the ˆ̀

m list may actually contain repeated vertices. Even if this is
the case, we still need to consider each outgoing edge (even if all edges are parallel)
separately because it may have different weight depending on which route it belongs
to. Thus, once all next-hop neighbours are found, CGp selects one of them, say vu,
finds the edges (routes) between vm and vu, that is {ei|ei : vm → vu}, and selects one
ei. Once an ei is selected, CGp tags it as “visited”, updates χCGp and traverses it. It
is important that CGp tags any edge it traverses as “visited” so it does not revisit it
again and enters in an infinite loop. Furthermore, if CGp arrives at a vertex vk and
found that there is only one unvisited edge ei, it tags ei as “visited”, traverses it and
then tags vk as “exhausted” so it skips vk if vk ever happened to be a neighbour to
some vertex CGp traverses in the future. Based on the type of the edges connecting
vm with its next-hop neighbouring vertices, CGp calls the appropriate mobility model
(either PMDM, TTMDM or NTMDM) to calculate the delay of that edge, and updates
its τCGp as follows τCGp = τCGp + tvx,vy , where tvx,vy is the delay returned for the edge
ei : vx → vy by the relevant mobility model (this applies to both R-edges and W -
edges). Similarly, once CGp reaches an S-vertex vy, it again updates τCGp but this time
by calling MMDM, such that τCGp = τCGp + tvy where tvy is the delay assigned to vy by
MMDM. However, since there is no transition between mobility models in U -vertices,
MMDM is not called when reaching a U -vertex. The crawler traverses the various routes
by repeatedly backing-up whenever its counter expires, being as a result of finding a
plausible or implausible route. The back-up procedure proceeds as follows: once CGp

finds an (im)plausible route, it checks its χCGp and traverses backward through the
edge in χCGp [1] toward the vertex χCGp [2], where χ[n] is the n-th element of the list χ.
It then deletes these two elements from χCGp , and repeats the whole traversal process
again (searching for neighbouring vertices etc.), but this time it does not traverse the
edge it just came from because it is now tagged as “visited”. The crawler CGp backs-up
if:

1. τCGp + ε > tvn,vm , where ε is a random value7, or

2. traversed a vertex/edge that already exists in its χCGp , or

3. vn (the other end of the gap) is reached, or

4. it reaches a vertex vj such that vj is a tail-end in all its routes (i.e., vj is childless).

In (1), the crawler backs-up once its τCGp reaches a value greater than tvn,vm (the
time difference between when the target was observed at vm and later at vn—the two

7The value of tvn,vm can be adjusted in case the crawlers failed to return any route.

141

7.6. Trace Reconstruction 7. Offline Multi-modal Forensic Tracking

ends of a gap Gp), and ε is a constant delay. This means that the target would take
much longer than tvm,vn if it had traversed that route, which is not possible. In (2),
we only accept loop-free routes because this is what a rational target will opt to do
(and also to prevent infinite loops), so if CGp reaches a vertex vi such that vi ∈ χCGp ,
then it backs-up. We can also detect these vertices by checking whether they are
tagged as “visited”, which implies that they are in the χCGp set. In (3), once CGp

reaches vn, it checks its τCGp , if τCGp + ε ≤ tvm,vn − ε, it backs-up (in other words, if
a crawler returned a time much shorter than tvm,vn , it is probably not the route the
target has taken). Otherwise, if tvm,vn − ε ≤ τCGp ≤ tvm,vn + ε, it backs-up, returns
the route in χCGp as a possible route the target may have taken, as well as returning
the corresponding τCGp . Finally, in (4) CGp also backs-up when it reaches a childless
vertex vj ; additionally, it tags vj as “exhausted”. The WBS algorithm terminates
when its crawler terminates and that happens when the crawler reaches a vertex in
which all neighbouring (next-hop) vertices are tagged as “exhausted”, this means that
they have been already extensively traversed (i.e., all their outgoing edges are tagged
as “visited”). Algorithm 7.8 provides a pseudocode for the WBS algorithm, which is
the heart of the reconstruction algorithm AR. Algorithm 7.8 accepts the scene graph
with well marked gaps as well as the weight of each gap (the delay through the gap).
Variables in the algorithm that are not explicitly initialised, are set to 0, while Boolean
variables are initialised to false.

Proposition 7.6.1. Given a finite search graph, the Weight-Bound-Search (WBS)
algorithm will eventually terminate, with or without returning valid routes.

Proof. Since the WBS is a weight-based algorithm, it is guaranteed to stop traversing
a particular route Ri whenever its weight counter τCGp expires (i.e., τCGp ≥ tvm,vn + ε,
where tvm,vn is the delay through gap Gp : vm → vn, and ε is a small constant). Thus
the only way for the algorithm to run indefinitely is if it gets into an infinite loop, which
can only happen when it traverses the same route and backs-up over and over again.
However, a route Ri cannot be traversed more than once because the algorithm tags
every visited edge and would not traverse any tagged edge, so as long as there is finite
number of edges in a graph, the algorithm will terminate.

In addition, the WBS algorithm will also terminate when traversing an infinitely
deep graph because it traverses the graph down to the point when its weight counter
τCGp expires. However, the WBS algorithm may fail to terminate when it runs over an
infinitely wide graph (the node of the current level has infinitely many children). This,
nevertheless, contributes to the completeness of the WBS algorithm.

142

7.6. Trace Reconstruction 7. Offline Multi-modal Forensic Tracking

Algorithm 7.8 Weight-Bound-Search (WBS)
1: WBS(Graph,Source,Destination,GapWeight)
2: getNieghbours(Source) → nei {list of neighbours}
3: for i = 1 to i ≤ sizeof(nei) do
4: if nei[i] = “exhausted” then
5: Remove(nei[i]) {remove nei[i] if it is tagged as “exhausted”}
6: Continue {loop to the next neighbour nei[i+ 1]}
7: end if
8: getEdges(nei[i]) → nei[i].edges {get all nei[i]’s outgoing edges}
9: for j = 1 to j ≤ sizeof(nei[i].edges) do

10: if nei[i].edges[j] 6= “visited” then
11: Counter++ {How many “unvisited” edges nei[i] has}
12: nei[i].edges[j] → nei[i].currentEdge
13: nei[i].edges[j] = “visited” {tag as “visited”}
14: nei[i].untraversedEdge = true
15: end if
16: end for
17: if nei[i].untraversedEdge = true then
18: if Counter = 1 then {if there was only 1 “unvisited” edge}
19: nei[i] = “exhausted” {tag nei[i] as “exhausted”}
20: end if
21: break {break out of the if statement and traverse nei[i+ 1]}
22: end if
23: end for
24: if nei = ⊥ then
25: Terminate {terminate WBS if all neighbours are “exhausted”}
26: end if
27: for i = 1 to i ≤ sizeof(nei) do
28: getWeight(nei[i].currentEdge) = wei[i] {call mobility model to assign a weight}
29: τ = τ + wei[i] {update the time variable counter}
30: pushRoute(nei[i].currentEdge, nei[i]) → χ {update route list}
31: if nei[i] = Destination then
32: if GapWeight− ε ≤ τ ≤ GapWeight + ε then
33: return τ, χ
34: Back-up(nei[i].currentEdge, nei[i], wei[i], τ , χ) {back 1 level up to Source}
35: Continue {Continue iterating the next neighbour}
36: else if τ ≥ GapWeight + ε then
37: Back-up(nei[i].currentEdge, wei[i], τ , χ); Continue
38: end if
39: else if nei[i] ∈ ←−ρ G or nei[i] ∈ χ then {if childless/End-tail vertex is reached}
40: Back-up(nei[i].currentEdge, wei[i], τ , χ); Continue
41: else if τ ≤ GapWeight− ε then
42: WBS(Graph,nei[i],Destination,GapWeight) {recursion}
43: end if
44: end for

143

7.6. Trace Reconstruction 7. Offline Multi-modal Forensic Tracking

Procedure 7.9 Back-up Procedure
1: Back-up(edge, vertex, weight, τ , χ)
2: Remove(edge, vertex, χ) {remove “edge” and “vertex” from χ}
3: τ = τ - weight {update τ by subtracting “weight”}
4: return τ, χ

Proposition 7.6.2. Given a finite search graph, the Weight-Bound-Search (WBS)
algorithm is complete. If there exist one or more solutions, WBS will return them all.

Proof. For a gapGp : vm → vn, a valid solution means that there is a routeRi : vm → vn

with a weight τ such that tvm,vn − ε ≤ τ ≤ tvm,vn + ε. The fact that the crawler CGp

will eventually terminate, as shown in proposition 7.6.1, means that it will traverse
all valid and invalid routes and will terminates only when there are no more edges to
traverse. Therefore, it follows that if there is a Ri that is a solution as outlined above,
the crawler CGp will find it. Hence, the algorithm is complete.

Once the crawler terminates, and there is more than one route returned, the algorithm
selects the best-fit route, such that

|χ
C

Gp
f

| = min{|χ
C

Gp
1

|, |χ
C

Gp
2

|, . . . , |χ
C

Gp
n
|}

That is, the route with less hops will be selected because this is what a rational target
would probably do (choose a route that does not have many stops). Additionally, by
observing the labels of the edges and vertices of the returned routes, a preferred route
can be selected that minimises the number of transitions between different mobility
models and/or carriers of the same model. However, even if no single preferred route
was selected, the algorithm is likely to minimise the possible routes significantly.

7.6.2 Complexity Analysis

It is not clear how to derive accurate complexity bounds for the trace reconstruction
algorithm AR without considering a particular scenario because the cost of reconstruct-
ing a gap depends on many factors that can only be determined on per scenario basis.
It is also almost certain that gaps will not be of the same size and thus will have dif-
ferent complexities. Although the back-up and termination conditions were designed
in such away that maximises the efficiency of the algorithm, in this section we consider
the worst case scenario and provide estimates of the algorithm’s complexity bounds.

The complexity of AR is essentially the cost of running the WBS algorithm plus the
cost of calling the mobility models when requested by WBS, which happens whenever
WBS traverses an edge or vertex (S-vertex, to be precise). Clearly, the fewer the

144

7.6. Trace Reconstruction 7. Offline Multi-modal Forensic Tracking

traversed edges/vertices, the fewer the calls to the mobility models. This, in turn,
depends on the size of the gap, and how many gaps need to be reconstructed before
obtaining the full trace. Let ψP , ψT , ψN , ψM be the costs of running PMDM, TTMDM,
NTMDM and MMDM, respectively, and let ψWBS be the cost of running WBS, then
generally the computational complexity ψAR

of the AR algorithm is:

ψAR
= O(ψP + ψT + ψN + ψM) +O(ψWBS)

The WBS algorithm is a heuristic8 graph traversal algorithm [112]. When WBS runs
over a tree, it is strictly equally or more efficient than the famous Breadth-First-Search
(BFS) and Depth-First-Search (DFS) algorithms [29]. In the worst case scenario, both
BFS and DFS have a time complexities of O(bd), where b is a fixed branching factor
(the number of the children of a vertex) and d is the depth of the graph (the number
of descendant levels from the root node), and space complexity of O(bd) and O(bd),
respectively. However, recall that beside b and d, WBS also involves a weight factor
τ , which determines when its crawler backs-up or terminates; that is, unlike BFS and
DFS, WBS is not required to traverse all the vertices of the tree before it terminates
(i.e., it backs-up once its weight τ expires).

The hardness of deriving accurate complexity bounds for the WBS algorithm stems
from the fact that we almost always run it over a mixed multigraph9 (representing a
road network) which is, unlike a tree, extremely unstructured.

Definition 7.6.3 (Multigraph). A multigraph is a graph that allows multiple edges
between a pair of vertices (these are called parallel edges). A multigraph can be either
directed, undirected or mixed (where some edges are directed and others are undirected).

Observing our scene graph GM , which is mostly based on modern, sufficiently ma-
ture, road networks, we conjecture that GM is best represented by a multigraph with
the following properties: (1) mixed, since it contains both R-edges and W -edges, (2)
parallel edges are allowed, (3) loops are allowed, and (4) cycles are allowed (that is,
the graph my contain cycles, where a path starts and ends at a particular vertex but
traverses at least 1 additional vertex en-route; this is in contrary to loops, where a path

8While most heuristic algorithm, such as the A* algorithm [99], tries to find the lowest-cost path,
WBS aims at finding all plausible paths based on a particular weight, and these may not be the lowest-
cost paths. Heuristic algorithms use extra information, e.g. weight, to improve the performance.

9Unfortunately, there has been a lot of speculation on what a multigraph actually is, while some
authors explicitly require multigraphs to have parallel edges [104], others just permit them [49]—some
authors, thus, consider graphs a special case of multigraphs in which there are no parallel edges.
Similarly, another controversial issue is whether to allow [55] or disallow [52] loops (a.k.a. self-loop,
an edge which starts and ends at the same vertex), where a multigraph with loops is sometimes called
pseudograph [49]. To prevent ambiguity, we explicitly define what we mean by multigraph.

145

7.6. Trace Reconstruction 7. Offline Multi-modal Forensic Tracking

starts and ends at the same vertex without passing by any vertex en-route). We clearly
allow parallel edges because most modern transport networks have multiple carriers
spanning the same routes or at least have common routes during part of their journeys;
these multiple routes are then represented by parallel edges. Although rare, loops do
exist in some road networks, but this does not affect the WBS algorithm because these
loops will be detected. Finally, obviously it is very common to have cycles in a road
network (in fact, this is a common practice in road infrastructure planning).

To simplify the complexity analysis, we first prove the complexity bounds of WBS
over a tree structure, then show that when running WBS over a multigraph it is gen-
erally equally or more efficient than running it over a tree.

Proposition 7.6.4. In the worst case scenario, when running the Weight-Bound-
Search (WBS) algorithm over a tree, it has a time complexity of O(bτ̂) and space
complexity of O(τ̂) where τ̂ = min{τ, d}, and τ is the weight assigned to the tree (the
delay factor of the tree) while d is the depth of the tree.

Proof. Let b be a branching factor and τ be a weight factor, then in the worst case all
edges have the same minimal weight, say 1, which will cause a crawler CGp to increase
its temporary weight counter τCGp every time it traverses an edge (or S-vertex) by 1
and eventually backs-up once the τCGp > τ + ε. Similarly, if CGp reached the boundary
of the graph (at depth d) and τCGp < τ+ε still holds, CGp will also back-up. Therefore,
the time complexity of WBS is upper bounded by

1 + b+ b2 + · · ·+ bτ̂ = O(bτ̂)

where τ̂ = min{τ, d}. For the space complexity, WBS operates in a similar fashion
as DFS traversing the graph as deep as τ̂ , then backs-up, updates its route buffer (by
removing the recently backed up edges/vertices) and repeat. However, at any give
time, WBS is required to store only one route of length up to τ̂ , which it dynamically
updates throughout its execution.

The introduction of τ in WBS means that not all vertices of the graph will neces-
sarily be traversed, but the worst case scenario is when τ > d (i.e., τ is greater than the
total weight of the most expensive route in a graph) in which case all vertices will be
traversed—for a large graph, this is rarely the case though. Compared to BFS/DFS,
in the worst case scenario the time complexity of WBS is similar to that of BFS/DFS,
but WBS features a significant improvement on space complexity, since only one route
needs to be stored at any given time while DFS and BFS have to store all the vertices
and edges they traverse. Before proving that WBS traverses a multigraph equally or

146

7.7. Summary 7. Offline Multi-modal Forensic Tracking

more efficiently than a tree, we elaborate on how the branching factor b is represented
in a multigraph. Conventionally, b is the number of the children of a particular node,
and is fixed for the kind of trees we discussed so far (all nodes have the same b), however
since in a multigraph there may be parallel edges, and all these parallel edges need to
be traversed, b should be equal to the number of the outgoing edges not the children
vertices. Also, notice that in a multigraph, b is usually not fixed (there are vertices
with more children – or more outgoing edges – than others).

Proposition 7.6.5. Let b be the branching factor of two graphs G and M , both with
depth d, and let G be a tree while M is a multi-graph. Then, running the Weight-
Bound-Search (WBS) algorithm over M is equally or more efficient than running it
over G.

Proof. As shown in proposition 7.6.4, the complexity of WBS over a tree is O(bd).
However, since there is no fixed b in a multigraph scenario, b represents the number
of edges going out off the vertex with the highest number of such edges (since this is
an asymptotic bound). This means that b for other vertices in a multigraph is less
than or equal to this asymptotic b. Hence complexity(M) = b̄d is less than or equal to
complexity(G) = bd, since b ≤ b̄.

7.7 Summary

In this chapter, we conclude the contributions of the thesis by considering the largest
(and most challenging) scenario so far, where we probabilistically reconstruct a tar-
get’s trace in a multi-modal environment (an environment combining both pedestrian
and vehicular settings). We propose a trace reconstruction algorithm that, given in-
formation about several locations where the target was observed, it reconstructs its
full trace by considering the various possible routes connecting the gaps formed by the
periods where the target was unobservable. The algorithm first validates the available
data (traces) by means of fuzzy logic, then uses a specially crafted mobility models to
reconstruct a given trace. These models (called mobility delay models to distinguish
them from the standard conventional mobility models) describe the time delays over a
particular set of routes without delving into various microscopic mobility details of the
individual nodes; such information is not important and will not necessarily improve
the reconstruction process. Finally, we evaluated the complexity of the reconstruction
algorithm and showed that the algorithm is both complete and optimal while compar-
ing its complexity to the popular DFS (Depth First Search) and BFS (Breadth First
Search) search algorithms.

147

Chapter 8

Conclusion and Future Work

Traditionally being a law enforcement application, digital forensics has recently found
its way to academia and is today among the most active research areas. Digital foren-
sics, however, is rapidly evolving and has recently given raise to the more intelligent
discipline of computational forensics. In this thesis, we focused on a particular ap-
plication of computational forensics, namely criminal surveillance and tracking. The
main goal of this research is to investigate how to passively (and clandestinely) track
a target, who we assume to be a suspect that may have been associated to either a
crime that already took place, in which case we consider offline tracking (also known
as trace reconstruction), or a crime that is expected to take place, in which case we
consider online tracking. While in online tracking, the tracking process takes place in
real-time, in offline tracking, the tracking process takes place after the fact (post hoc),
where in the latter case any available trace associated to a target suspect is collected
and forensically analysed. In online tracking, we emphasise that the tracking process
should be passive such that the target is not aware of it. This mere requirement greatly
contributes toward the novelty of our research since passive tracking has rarely been
thoroughly investigated in the literature, and, evidently, is more difficult than active
tracking as it adds the additional requirement of maintaining clandestinity throughout
the whole tracking process. In contrast, when tracking a target actively, the target is
aware of the tracking, sometimes is even cooperatively involved. While developing our
online and offline tracking algorithms, we also considered different environments and
scenario settings. Roughly, the thesis can be divided into three main parts:

• Part 1: Pedestrian tracking. In this part, we considered online tracking of indi-
viduals in real-time by observing signal emissions from any wireless devices they
may possess. However, due to humans’ limited mobility, we assumed a small
tracking scene (such as the size of a neighbourhood or similar venues).

148

8.1. Offline Pedestrian Forensic Tracking 8. Conclusion and Future Work

• Part 2: Vehicular tracking. We extend the tracking scene to consider vehicles,
which have much rapid (but more constrained) mobility patterns than pedestri-
ans. In this case, our tracking scene is restricted to a city size area. We consider
both online (with mobility prediction) and offline forensic tracking.

• Part 3: Multimodal tracking. In this part, we further extend the tracking scene
and consider a combination of parts 1 and 2. In multi-modal tracking we try to
track the targets over a large metropolitan area assuming that target entities may
opt to use different modes of transportation such as vehicular and other public
transportation means (buses, trains etc.). We only considered offline tracking
because it is more applicable in the real world, where online multi-modal tracking
may be infeasible or unrealistic having such large tracking area.

In this final chapter, we discuss how this thesis can be extended and provide ideas
for future work that we believe would be interesting to investigate.

8.1 Offline Pedestrian Forensic Tracking

As discussed above, throughout the thesis, we developed and proposed various forensic
tracking algorithms for three different tracking environments: pedestrian (chapter 4),
vehicular (chapters 5 and 6) and multi-modal (chapter 7). While we investigated both
online and offline forensic tracking in the vehicular setting, we only considered online
forensic tracking in the pedestrian setting and only offline forensic tracking in the
multi-modal setting. Thus, a logical extension to this thesis is to consider the missing
scenarios, namely offline pedestrian forensic tracking and online multi-modal forensic
tracking. However, it is clear that the online forensic tracking in a multi-modal setting
(for a sufficiently large, realistic) scenario becomes unmanageable very quickly, so we
doubt its relevance and feasibility. Offline pedestrian forensic tracking, on the other
hand, may be more interesting and certainly would have more applications than the
online one. This kind of tracking is, nevertheless, more challenging than the offline
vehicular forensic tracking due to the unpredictability of pedestrian movement and
thus will need more careful modelling in order to reconstruct the traces accurately.

8.2 Advanced Bayesian-based Trace Reconstruction

In chapter 3 we discussed the Bayesian approach for trace reconstruction, then in
chapter 6 we demonstrated how to use simple Bayesian inference for this purpose in a
vehicular setting. However, in chapter 6, we only considered the worst case scenario,

149

8.3. Tracking based on Social Networking 8. Conclusion and Future Work

where we do not have any external information about the scene in which the target’s
(incomplete) traces were obtained. In that case, simple Bayesian inference was sufficient
and probably the only option. However, if we happen to have access to more information
about the scene, we will have more variables and then the more powerful Bayesian
Networks (with their dynamic and fuzzy extensions) can be used. It will, therefore,
be interesting to create such scenarios and develop a Bayesian Network to investigate
how accurately traces can be reconstructed, but we note that for a large number of
variables, Bayesian networks become exponentially complex, as discussed in chapter 3
(with their dynamic and fuzzy extensions, complexity grows even faster).

8.3 Tracking based on Social Networking

This thesis has been exclusively concerned with the physical tracking of targets from
online passive tracking to offline tracking and trace reconstruction. The contributed
algorithms carried out the tracking based on physical observations, but sometimes such
physical traces may not be available/accessible due to resource constraints. In this case,
logical tracking may be pursued instead. The theory of social networking seems to
provide an interesting tool for this purpose. In this theory, individuals are represented
by nodes that are connected to each other by ties, such as friendship, business etc.,
forming a network of interconnected nodes. This network can then be analysed in many
ways and various hypotheses can be made based on connections between the nodes.
Recent work [26] used such approach to investigate child sex trafficking networks and
the result seems promising. Similar approach can be used for different forensic purposes
and would make an interesting extension to the work presented in this thesis.

8.4 Crime Reconstruction

The main contribution of this thesis is the investigation of how to reconstruct traces
belonging to particular individuals, considering different environments and settings.
While this will certainly assist in most criminal investigations (as we discussed exten-
sively in chapter 1 and throughout the thesis), trace reconstruction is not synonym
to the more general field of crime reconstruction. Also known as crime scene recon-
struction, crime reconstruction is the process of reconstructing the sequence of the
events leading to a crime by making hypotheses based on evidence collected from the
crime scene or obtained by external sources. Traditionally, these evidence were mainly
biological substances that were inadvertently left by the offenders at the crime scene
and later found by police investigators. While such substances still provide significant

150

8.5. Multi-modal Trace Reconstruction System 8. Conclusion and Future Work

evidence in most criminal investigations, today digital evidence and traces are also
common leftover pieces of evidence. Crime reconstruction is not confined to the recon-
struction of events that took place before or during the crime, but also in most cases
considers the events that occurred after or as a result of the crime, which also usually
provide significant evidence. Therefore, trace reconstruction can indeed be considered
a subset of crime reconstruction. Clearly, then, it would be interesting to investigate
other aspects of crime reconstructions that can complement trace reconstruction.

8.5 Multi-modal Trace Reconstruction System

In chapter 7 we proposed a complete multi-modal trace reconstruction system. Al-
though we provided a theoretical complexity evaluation of the reconstruction algorithm
and showed that it is both optimal and complete, it was not possible to actually im-
plement and practically test this system due to resource and time constrains. The
reconstruction algorithm uses several mobility models, which we especially proposed
and tailored for forensic analysis. These models resemble other existing mobility mod-
els except that they are simpler since in our scenario we are not concerned about the
various microscopic details that conventional mobility models usually take great care
to describe precisely. This, however, does not mean that these models do not need to
be evaluated independently, but such evaluation will have to be undertaken alongside
the evaluation of our multi-modal trace reconstruction system since they are part of
it. In other words, we developed these models especially to be used with our trace
reconstruction system, and as such they cannot replace the normal mobility models in
applications where the conventional mobility models are usually used (e.g., for evalu-
ating protocols) because they would not generate precise node mobility traces, rather
they would only generate the time delay that simulated nodes would generally take
in traversing a particular area or route. This behaviour, however, is useless in most
mainstream (non-forensic) applications using mobility models. Thus, we felt that eval-
uating these mobility models (which, for the sake of distinction, we called “mobility
delay models”) without actually using them in an implementation of our trace recon-
struction system, has little value as they may not be used elsewhere. Therefore, an
immediate extension to this thesis is to implement our multi-modal trace reconstruc-
tion system and evaluate it in practice, but this will likely take quite some time given
the detailed structure of the system. We believe that this system has the potential to
go beyond academic research to find its way to the real world and be an important tool
which law enforcement can use in real modern criminal investigations.

151

8.6 Live Vehicular Forensics

In this thesis, we considered the reconstruction of location traces of target individuals.
However, in [5], it was show that significant evidence can be extracted from modern
intelligent vehicles due to the rich set of sensors they are equipped with. Such evidence
may not only include location traces, but also video and audio evidence. In [5], each
sensor was considered individually to discuss the evidence that can be obtained from
them. A possible extension to this thesis is to consider this new source of evidence
and characterise/fuse such sensor data sources. Most of this data is, however, volatile,
thus it would be interesting to investigate what kind of non-volatile data1 that common
vehicular systems preserve and store in-memory. Our expectation is that most data of
this type is not relevant to the forensic behavioural analysis of individuals. However,
some automotive functions may be capable of storing useful information as part of their
normal operation, possibly with user interaction. For example, most navigation systems
maintain history records of previous destinations entered by the user in addition to a
favourite locations list and a home location bookmark configured by the user; such
data and configurations are likely to be non-volatile and can be easily retrieved at later
times. Moreover, these systems may also contain information on intended movement,
which is of particular interest if it can be communicated to investigators in real-time,
that will enable anticipating target movements.

8.7 Final Remarks

In this thesis, we investigated and studied a computational forensic discipline that we
believe has significant relevance to modern crime investigation and prevention tech-
nologies, we call this discipline “forensic tracking”. Forensic tracking and surveillance
is the process of investigating and reconstructing the location of a target (or targets)
for forensic purposes. Like conventional tracking, forensic tracking can either be on-
line or offline. We studied and elaborated on both types while considering different
environments and settings. We proposed algorithms for passive online pedestrian and
vehicular forensic tracking, then proceeded to consider vehicular offline forensic track-
ing and finally concluded with offline multi-modal forensic tracking, which is the most
challenging as it combines both vehicular and pedestrian settings. This thesis demon-
strate the practical importance and relevance of forensic tracking and surveillance and
envisions that this discipline will become an integral part of modern criminal investi-
gations, while still posing interesting academic research for years to come.

1Data captured by the Event Data Recorder (EDR) is non-volatile, but it is not always interesting
or relevant for forensic investigations.

152

Bibliography

[1] S. Al-Kuwari and S. D. Wolthusen. A Survey of Forensic Localization and Track-
ing Mechanisms in Short-Range and Cellular Networks. In International Confer-
ence on Digital Forensics and Cybecrime (ICDF2C ’09), volume 31 of LNICST,
pages 19–32. Springer-Verlag, 2009. 19, 33

[2] S. Al-Kuwari and S. D. Wolthusen. Passive Ad-Hoc Localization and Tracking
in Short-Range Communication. In International Conference on Next Genera-
tion Wireless Systems (NGWS ’09), ISBN 3838353463. LAB Lambert Academic
Publisher, 2009. 49

[3] S. Al-Kuwari and S. D. Wolthusen. Algorithms for Advanced Clandestine Track-
ing in Short-Range Ad Hoc Networks. In International ICST Conference on
Security and Privacy in Mobile Information and Communication Systems (Mo-
biSec ’10), volume 46 of LNICST, pages 67–79. Springer-Verlag, 2010. 49

[4] S. Al-Kuwari and S. D. Wolthusen. Forensic Tracking and Mobility Prediction
in Vehicular Networks. In IFIP WG 11.9 International Conference on Digi-
tal Forensics, volume 337 of Advances in Digital Forensics VI, pages 91–105.
Springer-Verlag, 2010. 80

[5] S. Al-Kuwari and S. D. Wolthusen. On the Feasibility of Carrying out Live Real-
Time Forensics for Modern Intelligent Vehicles. In International ICST Confer-
ence on Forensic Applications and Techniques in Telecommunications, Informa-
tion and Multimedia (e-Forensics ’10), volume 56 of LNICST, pages 218–234.
Springer-Verlag, 2010. 152

[6] S. Al-Kuwari and S. D. Wolthusen. Probabilistic Vehicular Trace Reconstruction
Based on RF-Visiual Data Fusion. In Joint IFIP TC6 and TC11 Conference
on Communications and Multimedia Security (CMS ’10), volume 6109 of LNCS,
pages 16–27. Springer-Verlag, 2010. 99

153

[7] S. Al-Kuwari and S. D. Wolthusen. Algorithmic Approach for Clandestine Lo-
calisation and Tracking in Short-Range Environments. International Journal of
Communication Networks and Distributed Systems (IJCNDS), 2011. (To appear).
49

[8] S. Al-Kuwari and S. D. Wolthusen. Fuzzy Trace Validation: Toward an Offline
Forensic Tracking Framework. In 6th IEEE Workshop on Systematic Approaches
to Digital Forensic Engineering (SADFE ’11). IEEE Press, 2011. (To appear).
33, 117

[9] S. Al-Kuwari and S. D. Wolthusen. Multi-Modal Trace Reconstruction: an Offline
Forensic Tracking Approach. In IFIP WG 11.9 International Conference on
Digital Forensics, 2012. (To appear). 117

[10] S. Aparicio, J. Perez, A. Bernardos, and J. Casar. A Fusion Method Based on
Bluetooth and WLAN Technologies for Indoor Location. In IEEE International
Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI
’08), pages 487–491, 2008. 29

[11] S. Aparicio, P. Tarrio, J. Perez, A. Bernardos, and J. Casar. An Indoor Location
Method Based on a Fusion Map Using Bluetooth and WLAN Technologies. In
International Symposium on Distributed Computing and Artificial Intelligence
(DCAI ’08), volume 50 of ASC, pages 702–710. Springer-Verlag, 2009. 29

[12] J. Ash and L. Potter. Robust System Multiangulation Using Subspace Meth-
ods. In International Conference on Information Processing in Sensor Networks
(IPSN ’07, pages 61–68, 2007. 27

[13] F. Bai, N. Sadagopan, and A. Helmy. The IMPORTANT Framework for Ana-
lyzing the Impact of Mobility on Performance of Routing Protocols for Ad Hoc
Networks. Elsevier Ad Hoc Networks, 1:383–403, 2003. 44

[14] S. Barakatsoulas, D. Pfoser, R. Salas, and C. Wenk. On Map-Matching Vehicle
Tracking Data. In International Conference on Very Large Databases (VLDB
’05), pages 853–864. VLDB Endowment, 2005. 81, 101

[15] H. Bay, T. Tuytelaars, and L. V. Gool. SURF: Speeded Up Robust Features. In
Computer Vision (ECCV ’06), 2006. 102

[16] A. Benslimane. Localization in Vehicular Ad Hoc Networks. In Systems Com-
munications (ICW ’05), pages 19–25, 2005. 81

154

[17] N. Borenovic, I. Simic, M. Neskovic, and M. Petrovic. Enhanced Cell-ID + TA
GSM Positioning Technique. In EUROCON ’05, volume 2, pages 1176–1179,
2005. 27

[18] A. Boukerche, H. Oliveira, and E. Nakamura. Vehicular Ad Hoc Networks:
A New Challenge for Localization-based Systems. Computer communications,
31(12):2838–2849, 2008. 81

[19] A. Calbi, L. Marcenaro, and C. Regazzoni. Dynamic Scene Reconstruction for 3D
Virtual Guidance. In Knowledge-based Intelligent Information and Engineering
Systems (KES ’06), pages 179–186, 2006. 100

[20] T. Camp, J. Boleng, and V. Davies. A Survey of Mobility Models for Ad Hoc
Network Research. Wireless Communications and Mobile Computing, 2(5):483–
502, 2002. 41

[21] N. Cartner, C. Messer, and A. Rathi. Flow Theory: A State of the Art Report -
Revised Monograph on Traffic Flow Theory. Technical report, Turner-Fairbank
Highway Research Center, 2001. 44

[22] A. Catovic and Z. Sahinoglu. Hybrid TOA/RSS and TDOA/RSS Location Esti-
mation Schemes for Short-Range Wireless Networks. Bechtel Telecommunication
Technical Journal (BTTJ), 2(2):77–84, 2004. 30

[23] A. Catovic and Z. Sahinoglu. The Cramer-Rao Bounds of Hybrid TOA/RSS
and TDOA/RSS Location Estimation Schemes. IEEE Communications Letters,
8(10):626–628, 2004. 30

[24] Y. Chan, W. Tsui, and H. So. Time-of-Arrival Based Localization Under NLOS
Conditions. IEEE Transactions on Vehicular Technology, 55(1):17–24, 2006. 22

[25] H. Choset, K. M. Lynch, S. Hutchinson, G. A. Kantor, W. Burgard, L. E. Kavraki,
and S. Thrun. Principles of Robot Motion: Theory, Algorithms, and Implemen-
tations. MIT Press, 2005. 132

[26] E. Cockbain, H. Brayley, and G. Laycock. Exploring Internal Child Sex Traf-
ficking Networks Using Social Network Analysis. Policing, 5(2):144–157, 2011.
150

[27] C. O. Conaire, K. Fogarty, C. Brennan, and N. E. O’Connor. User Localisation
using Visual Sensing and RF Signal Strength. In Workshop on Applications,
Systems, and Algorithms for Image Sensing (ImageSese ’08), 2008. 101

155

[28] L. Cong and W. Zhuang. Hybrid TDOA/AOA Mobile User Location for Wide-
band CDMA Cellular Systems. IEEE Transactions on Wireless Communications,
1(3):439–447, 2002. 31

[29] T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to Algorithms.
MIT Press, 2nd edition, 2009. 145

[30] David Johnson and David Maltz. Mobile Computing, chapter Dynamic Source
Routing in Ad Hoc Wireless Networks, pages 153–181. Kluwer Academic Pub-
lishers, 1996. 41

[31] V. Davies. Evaluating Mobility Models Within Ad Hoc Netwrosk. Master’s thesis,
Colorado School of Mines, 2000. 44

[32] A. Dempster, N. Laird, and D. Rubin. Maximum Likelihood from Incomplete
Data via the EM Algorithm. Journal of the Royal Statistical Society, 39(1):1–38,
1977. 138

[33] E. Dijkstra. A Note on Two Problems in Connexion with Graphs. Numerische
Mathematik, 1(1):269–271, 1959. 135

[34] G. Djuknic and R. Richton. Geolocation and Assisted GPS. Computer, 34(2):123–
125, 2001. 28

[35] A. Domazetovic, J. Greenstein, B. Mandayam, and I. Seskar. Propagation Models
for Short-Range Wireless Channels with Predictable Path Geometries. IEEE
Transactions on Communications, 53(7):1123–1126, 2005. 32

[36] D. Engelhart, C. Barrett, and M. Morin. A Spatial Analysis of Mobility Models:
Application to Wireless Ad Hoc Network Simulation. In ANSS ’04, pages 35–42,
2004. 89

[37] Federal Communications Commission (FCC). OET Bulletin no. 71: Guidelines
for Testing and Verifying the Accuracy of E911 Location Systems, 2000. 27

[38] M. Fewell. Area of Common Overlap of Three Circles. Technical Report DSTON-
TN-0722, Maritime Operations Division, Defence Science and Technology Organ-
isation, 2006. 25

[39] M. Fiore, J. Harri, F. Fethi, and C. Bonnet. Vehicular Mobility Simulation for
VANETs. In Annual Simulation Symposium (ANSS ’07), 2007. 112

156

[40] M. Fiore, J. Harri, F. Filali, and C. Bonnet. Understanding Vehicular Mobility
in Network Simulation. In IEEE Internatonal Conference on Mobile Adhoc and
Sensor Systems (MASS ’10), pages 1–6, 2007. 44

[41] D. Fox, J. Hightower, L. Liao, D. Schulz, and G. Borriello. Bayesian Filtering for
Location Estimation. IEEE Pervasive Computing, 2(3):24–33, 2003. 38, 56

[42] K. Franke and S. N. Srihari. Computational Forensics: Towards Hybrid-
Intelligent Crime Investigation. In International Symposium on Information As-
surance and Security (IAS ’07), pages 383–386, 2007. 13

[43] H. Friis. A Note on a Simple Transmission Formula. Proceedings of the IRE,
34(5):254–256, 1946. 56, 83

[44] S. Frühwirth-Schnatter. On Fuzzy Bayesian Inference. Fuzzy Sets Systems, 60:41–
58, 1993. 40

[45] D. Gazis, R. Herman, and R. Rothery. Nonlinear Follow-the-Leader Models of
Traffic Flow. Operational Research, 9(4):545–567, 1961. 44

[46] Z. Ghahramani. Learning Dynamic Bayesian Networks. In Adaptive Process-
ing of Sequences and Data Structures, International Summer School on Neural
Networks, pages 168–197, 1998. 40

[47] W. Gilks, S. Richardson, and D. Spiegelhalter, editors. Markov Chain Monte
Carlo in Practice. Chapman & Hall/CRC Interdisciplinary Statistics, 1995. 139

[48] S. Greenhill and S. Venkatesh. Virtual Observers in a Mobile Surveillance System.
In Annual ACM International Conference on Multimedia (MULTIMEDIA ’06),
pages 579–588, 2006. 101

[49] J. Gross and J. Yellen. Graph Theory and Its Applications. Discrete Mathematics
and Its Application. Chapman and Hall/CRC, 2nd edition, 2005. 145

[50] F. Gustafsson and F. Gunnarsson. Positioning Using Time-Difference of Arrival
Measurements. In IEEE International Conference on Acoustics, Speech, and
Signal Processing (ICASSP ’03), volume 6, pages 553–556, 2003. 22

[51] D. Hall and J. Llinas. An Introduction to Multisensor Data Fusion. In Proceedings
of the IEEE, volume 85, pages 6–23, 1997. 29

[52] F. Harary. Graph Theory. Westview Press, 1994. 145

157

[53] J. Harri, F. Filali, and C. Bonnet. Mobility Models for Vehicular Ad Hoc Net-
works: a Survey and Taxonomy. IEEE Communications Surveys and Tutorials,
11(4):19–41, 2009. 130

[54] J. Harri, M. Fiore, F. Fethi, and C. Bonnet. VanetMobiSim: Generating Realistic
Mobility Patterns for VANETs. In ACM International Workshop on Vehicular
Ad Hoc Networks (VANET ’06), 2006. 92, 112

[55] N. Hartsfield and G. Ringel. Pearls in Graph Theory: A Comprehensive Intro-
duction. Dover Publications, 2005. 145

[56] D. Helbing. A Fluid Dynamic Model for the Movement of Pedestrians. Complex
Systems, 6:391–415, 1992. 41

[57] D. Helbing, I. Farkas, and T. Vicsek. Simulating Dynamical Features of Escape
Panic. Nature, 407(6803):487–490, 2000. 42

[58] D. Helbing, I. Frakas, P. Molnar, and T. Vicsek. Pedestrian and Evacuation
Dynamics, chapter Simulation of Pedestrian Crowds in Normal and Evacuation
Situations, pages 21–58. Springer, Berlin, 2002. 42

[59] D. Helbing and P. Molnar. Social Force Model for Pedestrian Dynamics. Physical
Review E, 51(5):4282–4286, 1995. 42, 128

[60] J. Hightower and G. Borriello. A Survey and Taxonomy of Location Systems for
Ubiquitous Computing. IEEE Computer, 34:57–66, 2001. 20

[61] J. Hightower and G. Borriello. Location Sensing Techniques. Technical Report
01-07-01, University of Washington, Department of Computer Science and Engi-
neering, 2001. 20

[62] J. Hightower and G. Borriello. Location Systems for Ubiquitous Computing.
Computer, 34(8):57–66, 2001. 20

[63] O. Hjelle and M. Daehlen. Triangulations and Applications. Springer, 2006. 23

[64] A. K. M. Hossain and W.-S. Soh. A Comprehensive Study of Bluetooth Signal
Parameters for Localization. In IEEE International Symposium on Personal,
Indoor and Mobile Radio Communications (PIMRC ’07), 2007. 31

[65] C. Hsin-Yuan and C. Tung-Yi. Hybrid TDOA/AOA Mobile User Location with
Artificial Neural Networks. In IEEE International Conference on Networking,
Sensing and Control (ICNSC ’08), pages 847–852, 2008. 31

158

[66] L. Hu and D. Evans. Localization for Mobile Sensor Networks. In Annual inter-
national conference on Mobile computing and networking (MobiCom ’04), pages
45–57, 2004. 21

[67] H. Huang, P. Lue, M. Li, D. Li, X. Li, W. Shu, and M. Wu. Performance Evalu-
ation of SUVnet With Real-Time Traffic Data. IEEE Transactions on Vehicular
Technology, 56(6):3381–3396, 2007. 44

[68] I. Hwang, H. Balakrishnan, K. Roy, and C. Tomlin. Multiple-target Tracking
and Identity Management in Clutter, with Application to Aircraft Tracking. In
American Control Conference (ACC ’04), 2004. 36

[69] Information Sciences Institute, University of Southern California. Network Sim-
ulator 2 (NS-2). (www.isi.edu/nsnam/ns). 92, 112

[70] B. Jiang, B. Ravindran, and H. Cho. Energy Efficient Sleep Scheduling in Sensor
Networks for Multiple Target Tracking. In IEEE International Conference on
Distributed Computing in Sensor Systems (DCOSS ’08), volume 5067 of LNCS,
pages 498–509. Springer-Verlag, 2008. 35

[71] F. Kargle and A. Bernauer. The COMPASS Location System. In First Interna-
tional Workshop on Location and Context Awareness (LoCA 2005), volume 3479
of LNCs. Springer-Verlag, 2005. 29

[72] F. Kargle, G. Dannhäuser, S. Schlott, and J. Nagler-Ihlein. Semantic Information
Retrieval in the COMPASS Location System. In Ubiquitous Computing Systems
(UCS 2006), volume 4239 of LNCS. Springer-Ve, 2006. 30

[73] H. Karimi, T. Conahan, and D. Roongpiboonsopit. A Methodology for Predicting
Performances of Map-Matching Algorithms. In International Symposium on Web
and Wireless Geographical Information Systems (W2GIS ’06), pages 202–213,
2006. 101

[74] H. Kim, E. Kim, and K. Han. An Energy Efficient Tracking Method in Wireless
Sensor Networks. In Next Generation Teletraffic And Wired Wireless Advanced
Networking (NEW2AN ’06), volume 4003 of LNCS, pages 278–286. Springer-
Verlag, 2006. 35

[75] W. Kim, K. Mechitov, J.-Y. Choi, and S. Ham. On Target Tracking with Binary
Proximity Sensors. In International Symposium on Information Processing in
Sensor Networks (IPSN ’05), 2005. 35

159

[76] T. Kleine-Ostmann and A. Bell. A Data Fusion Architecture for Enhanced Posi-
tion Estimation in Wireless Networks. IEEE Communications Letters, 5(8):343–
345, 2001. 29

[77] T. Kos, M. Grgic, and J. Kitarovic. Location Technologies for Mobile Networks.
In EURASIP ’07, pages 319–322, 2007. 27

[78] D. Krajzewicz, G. Hertkorn, C. Rssel, and P. Wagner. SUMO (Simula-
tion of Urban MObility): An Open-Source Traffic Simulation. In The Mid-
dle Eastern Modelling and Simulation MultiConferences (MESM ’02), 2002.
(sumo.sourceforge.net). 132

[79] S. KrauB. Microscopic Modeling of Traffic Flow: Investigation of Collision Free
ehicle Dynamics. PhD thesis, Mathematisches Institut, Universitat zu Koln,
1998. 44

[80] T. I. Lakoba, D. J. Kaup, and N. M. Finkelstein. Modifications of the Helbing-
Molnar-Varkas-Vicsek Social Force Model for Pedestrian Evolution. Simulation,
81(5):339–352, 2005. 41

[81] A. H. Land and A. G. Doig. An Automatic Method of Solving Discrete Program-
ming Problems. Econometrica, 28(3):497–520, 1960. 140

[82] M. Lee, K. Kim, and H. Lee. Information Hiding, chapter Forensic Tracking
Watermarking against In-theater Piracy, pages 117–131. Springer-Verlag, 2009.
33

[83] H. Leung, H. Zhijian, and M. Balachette. Evaluation of Multiple Radar Tar-
get Trackers in Stressful Environments. IEEE Transactions on Aerospace and
Electronic Systems, 35(2):663–674, 1999. 36

[84] M. Lighthill and G. Whitham. On Kinematic Waves. II. A Theory of Traffic
Flow on Long Crowded Roads. Proc. of the Royal Society of London. Series A,
Mathematical and Physical Sciences, 229(1178):317–345, 1955. 44

[85] J. Llinas and D. Hall. An Introduction to Multi-sensor Data Fusion. In IEEE
International Symposium on Circuits and Systems (ISCAS ’98), 1998. 29

[86] C. Lochert, B. Scheuermann, and M. Mauve. VANET: Vehicular Applications and
Inter-Networking Technologies, chapter Information Dissemination in VANETs,
pages 49–80. John Wiley and Sons, Ltd., 2010. 84

160

[87] M. Luber, J. Stork, G. Tipaldi, and K. Arras. People Tracking with Human
Motion Predictions from Social Forces. In IEEE International Conference on
Robotics and Automation (ICRA ’10), 2010. 42

[88] R. Lue, O. Chen, and L. Tu. Node Localization through Data Fusion in Sensor
Network. In International Conference on Advanced Information Networking and
Applications (AINA ’05), pages 337–342, 2005. 30

[89] J. Luo and J. Hubaux. A Survey of Inter-Vehicle Communication. Technical
Report IC/2004/24, School of Computer and Communication Science, EPEL,
2004. 82

[90] L. Mailaender. On the Geolocation Bounds for Round-Trip Time-of-Arrival and
All Non-Line-of-Sight Channels. EURASIP Journal on Advances in Signal Pro-
cessing, 2008, 2008. 22

[91] J. Mansell and W. Riley. Vehicle Tracking and Security System, 1993. 81

[92] G. Mao, BarışFidan, and B. Anderson. Wireless Sensor Network Localization
Techniques. The International Journal of Computer and Telecommunications
Networking, 51(10):2529–2553, 2007. 21

[93] L. Mihaylova, D. Angelova, S. Honary, D. Bull, C. Canagarajah, and B. Ristic.
Mobility Tracking in Ceullar Network Using Particle Filtering. IEEE Transac-
tions on Wireless Communciations, 6(10):3589–3599, 2007. 35

[94] C. Miyajima, Y. Nishiwaki, K. Ozawa, T. Wakita, K. Itou, K. Takeda, and
F. Itakura. Driver Modeling Based on Driving Behavior and Its Evaluation in
Driver Idenfication. Proeedings of the IEEE, 95(2):427–437, 2007. 111

[95] G. Mizusawa. Performance of Hyperbolic Position Location Techniques for Code
Division Multiple Access. Master’s thesis, Virginia Polytechnic Institute and
State University, 1996. 23

[96] F. Mondinelli and Z. Kovacs-Vajna. Self-Localizing Sensor Network Architec-
tures. IEEE Transactions on Instrumentation and Measurement, 53(2):277–283,
2004. 21, 55

[97] J. Morgan-Owen and T. Johnston. Differential GPS Positioing. Electronics &
Communication Engineering Journal, 7(1):11–21, 1995. 29

[98] N. Nasser. Automatic Location Systems for Mobile Phones. Arab Research In-
stitute in Sciences & Engineering (ARISER), 2(2):53–59, 2008. 28

161

[99] N. Nilsson. Problem-Solving Methods in Artificial Intelligence. McGraw-Hill,
1971. 145

[100] M. Olama, S. Djouadi, and C. Charalambous. Position and Velocity Tracking
in Cellular Networks Using Particle and Kalman Filtering with Comparison. In
IEEE Conference on Decision and Control (CDC ’06), pages 1315–1320, 2006.
35

[101] E. O’Neill, V. Kostakos, T. Kindberg, A. Fatah gen. Schiek, A. Penn, D. Stanton
Fraser, and T. Jones. Instrumenting the City: Developing Methods for Observ-
ing and Understanding the Digital Cityscape. In International Conference on
Ubiquitous Computing (UbiComp ’06), pages 315–332, 2006. 50

[102] S. Pandey and P. Agrawal. A Survey on Localization Techniques for Wireless
Networks. Journal of the Chinese Institute of Engineers, 29(7):1125–1148, 2006.
20

[103] N. Patwari, J. Ash, S. Kyperountas, A. Hero, R. Moses, and N. Correal. Locating
the Nodes: Cooperative Localization in Wireless Sensor Networks. IEEE Signal
Processing Magazine, 22(4):54–69, 2005. 23, 32

[104] S. Pemmaraju and S. Skiena. Computational Discrete Mathematics: Combina-
torics and Graph Theory with Mathematica. Cambridge University Press, 2003.
145

[105] Z. Ping, L. Ling-yan, and S. Hao-shan. A Hybrid Location Algorithm Based
on BP Neural Networks for Mobile Position Estimation. IJCSNS International
Journal of Computer Science and Network Security, 6(7A):162–167, 2006. 31

[106] PTV system GmbH. VISSIM. (www.ptvamerica.com). 132

[107] A. Raza, S. Hameed, and T. Macintyre. Innovations and Advanced Techniques in
Systems, Computing Sciences and Software Engineering, chapter Global Position-
ing System - Working and its Applications, pages 448–453. Springer Netherlands,
2008. 28

[108] D. Reid. An Algorithm for Tracking Multiple Targets. IEEE Transactions on
Automatic Control, 24(6):843–854, 1979. 36

[109] P. Rong and L. Sichitiu. Angle of Arrival Localization for Wireless Sensor Net-
works. In Annual IEEE Communications Society on Sensor and Ad Hoc Com-
munications and Networks (SECON ’06), volume 1, pages 374–382, September
2006. 23

162

[110] T. Roos, P. Myllymäki, and H. Tirri. A Statistical Modeling Approach to Lo-
cation Estimation. IEEE Transactions on Mobile computing, 1(1):59–69, 2002.
21

[111] S. Roychowdhury and W. Pedrycz. A Survey of Defuzzification Strategies. In-
ternational Journal of Intelligent Systems, 16(6):679–695, 2001. 137

[112] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice
Hall, 3rd edition, 2009. 145

[113] A. Saha and D. Johnson. Modeling Mobility for Behicular Ad Hoc Networks.
In ACM International Workshop on Vehicular Ad Hoc Networks (VANET ’04),
2004. 43

[114] M. Saxena, P. Gupta, and B. Jain. Experimental Analysis of RSSI-based Location
Estimation in Wireless Sensor Networks. In International Conference on Commu-
nication Systems Software and Middleware and Workshops (COMSWARE ’08),
pages 503–510, 2008. 22

[115] A. Schadschneider. Cellular Automaton Approach to Pedestrian Dynamics -
Theory. Pedestrian and Evacuation Dynamics, pages 75–86, 2002. 41

[116] J. Seybold. Introduction to RF Propagation. Wiley-Interscience, 2005. 31, 32, 56

[117] Y. Shang, H. Shi, and A. Ahmed. Performance Study of Localization Methods for
Ad Hoc Sensor Networks. In IEEE International Conference on Mobile Ad-hoc
and Sensor Systems (MASS ’04), pages 184–193, 2004. 27

[118] X. Sheng, Y.-H. Hu, and P. Ramanathan. Distributed Particle Filter with GMM
Approximation for Multiple Targets Localization and Tracking in Wireless Sen-
sor Network. In International Symposium on Information Processing in Sensor
Networks (IPSN ’05), 2005. 35

[119] W. Simpson. PPP Challenge Handshake Authentication Protocol (CHAP). RFC
1994, August 1996. 68

[120] G. Sinan. A Survey on Wireless Position Estimation. Wirel. Pers. Commun.,
44(3):263–282, 2008. 20

[121] J. Singh, U. Madhow, R. Kumar, S. Suri, and R. Cagley. Tracking Multiple Tar-
gets Using Binary Proximity Sensors. In International Conference on Information
OProcessing in Sensor Networks (IPSN ’07), 2007. 35

163

[122] M. Tan, G.-L. Tian, and K. W. Ng. Bayesian Missing Data Problems: EM, Data
Agumentation and Noniterative Computation. CRC Press, 2009. 100

[123] A. Tanenbaum. Computer Networks. Pearson Education Ltd., 2003. 106

[124] M. Tanner and W. Wong. The Calculation of Posterior Distributions by Data
Augmentation. Journal of the Americal Statistical Association, 82(398):528–540,
1987. 138

[125] M. Treiber, A. Hennecke, and D. Helbing. Congested Traffic States in Empirical
Observations and Microscopic Simulations. Physical Review E, 62(2):1805–18024,
2000. 82, 112

[126] U.S. Census Beureau. Topologically Integrated Geographic Encoding and Refer-
encing (TIGER). (www.census.gov/geo/www/tiger). 95

[127] S. Venkatraman and J. Caffery. Hybrid TOA/AOA Techniques for Mobile Lo-
cation in Non-Line-Of-Sight Environments. In IEEE Wireless Communications
and Networking Conference (WCNC ’04), volume 1, pages 274–278, 2004. 30

[128] N. Vyahhi and S. Bakiras. Tracking Moving Objects in Anonymized Trajecto-
ries. In International Conference on Database and Expert Systems Applications
(DEXA ’08), volume 5181 of LNCS, pages 158–171. Springer-Verlag, 2008. 36

[129] A. Wahab, C. Quek, C. K. Tan, and K. Takeda. Driving Profile Modeling and
Recognition Based on Soft Computing Approach. IEEE Transactions on Neural
Networks, 20(4):563–582, 2009. 114

[130] M. Winter and G. Taylor. A Modular Neural Network Approach to Improve
Map-Matched GPS Positioning. In Web and Wireless Geographical Information
Systems (W2GIS ’06), pages 76–89, 2006. 101

[131] Y. Xu and W. Lee. On Localized Prediction for Power Efficient Object Tracking in
Sensor Networks. In International Conference on Distributed Computing Systems
Workshops (ICDCSW ’03), page 434, 2003. 34

[132] H. Yang and B. Sikdar. A Protocol for Tracking Mobile Tragets Using Sensor
Networks. In IEEE International Workshop on Sensor Network Protocols and
Applications (SNPA ’03), pages 71–81, 2003. 34

[133] J. Yoon, M. Liu, and B. Noble. Random Waypoint Considered Harfmul. In
INFOCOM ’03, volume 2, pages 1312–1321, 2003. 41

164

[134] L. Zadeh. Fuzzy Sets. Information and Control, 8(3):338–353, 1965. 135

[135] Z. Zaidi and B. Mark. Real-Time Mobility Tracking Algorithms for Cellular
Networks Based on Kalman Filtering. IEEE Transactions on Mobile Computing,
4(2):195–208, 2005. 35

[136] C. Zhang, J. Liu, S. Liu, and W. Li. Research on Improving TDOA Location
Accuracy Based on Data Fusion. In IEEE 6th Circuits and Systems Symposium
on Emerging Technologies, volume 2, pages 761–764, 2004. 30

165

	Introduction
	Contributions and Publications
	Thesis Outline

	I Forensic Tracking and Localisation
	Localisation Techniques
	Introduction
	Localisation in Sensor Networks
	Parameter Measurement
	Geometric Location Estimation

	Localisation in Cellular Networks
	Localisation Fusion
	Fusing Different Technologies
	Fusing Different Parameters

	Accuracy Issues
	Summary

	Forensic Tracking and Mobility Models
	Introduction
	Online Tracking
	Active Tracking
	Passive tracking
	Reliability and Security
	Privacy Implications

	Offline Forensic Tracking
	Basic Bayesian Approach
	Dynamic Bayesian Networks

	Mobility Models
	Pedestrian Mobility
	Vehicular Mobility
	Multi-modal Mobility

	Summary

	II Online Forensic Tracking
	Online Pedestrian Forensic Tracking
	Introduction
	Scene Setting and Assumptions
	Online Pedestrian Localisation
	Passive Localisation
	Active Localisation

	Piconets
	Tracking Piconet
	Connecting Piconet

	Piconet Formation
	Formation by Direct Interrogation (FDI)
	Formation by Neighbour Interrogation (FNI)

	Basic Pedestrian Tracking
	Agent Recruitment and Retirement
	Simulation Results

	Advanced Pedestrian Tracking
	Tracking with Multiple Trackers
	Tracking Multiple Targets
	Fault Tolerance
	Leader Election
	Transmission Algorithm
	Simulation Results

	Privacy in Online Forensic Tracking
	Summary

	Vehicular Forensic Tracking and Motion Prediction
	Introduction
	Vehicular Networks
	Vehicular Localisation
	Mobility Prediction
	Time Prediction
	Direction Prediction

	Vehicular Tracking
	Simulation Results
	Vehicular Parameter Estimation
	Summary

	III Offline Forensic Tracking
	Bayesian Offline Vehicular Forensic Tracking
	Introduction
	Trace Fusion
	Trace Reconstruction
	Phase 1: Routes Identification
	Phase 2: Routes Analysis and Selection

	Simulation Results
	Offline Estimation Accuracy
	Summary

	Offline Multi-modal Forensic Tracking
	Introduction
	Trace Reconstruction Framework
	Scene Representation
	Mobility Modelling
	Pedestrian Mobility Delay Model
	Transport Mobility Delay Models
	Multi-modal Mobility Delay Model

	Fuzzy Trace Validation
	Fuzzy Logic
	Fuzzification
	Fuzzy Inference
	Defuzzification

	Trace Reconstruction
	The Algorithm
	Complexity Analysis

	Summary

	Conclusion and Future Work
	Offline Pedestrian Forensic Tracking
	Advanced Bayesian-based Trace Reconstruction
	Tracking based on Social Networking
	Crime Reconstruction
	Multi-modal Trace Reconstruction System
	Live Vehicular Forensics
	Final Remarks

	Bibliography

