

A THERMODYNAMIC STUDY OF HIGH TEMPERATURE EQUILIBRIA INVOLVING ZINC CHLORIDE

A thesis submitted for the degree of Doctor of Philosophy at the University of London by
\section*{PETER PANG}

```
The Bourne Laboratory,
Department of Chemistry,
Royal Holloway and Bedford New College,
Egham Hill,
Egham,
Surrey, TW20 OEX.

ProQuest Number: 10090169

All rights reserved

\section*{INFORMATION TO ALL USERS}

The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.


ProQuest 10090169
Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author.
All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346

\begin{abstract}
Molten zinc chloride has been used as a solvent and catalyst for the hydrocracking of heavy oils and coal slurries. Although there has been some systematic study of the mechanism of these catalytic reactions, little attention has been directed to the fate of the inorganic species which accumulate in the melt. These species derive from heteroatoms in the feedstock, and comprise mainly of zinc sulphide, zinc oxide, zinc-ammine chlorides and other minor chloride complexes. Their steady accumulation poisons the catalyst and renders it cost-inefficient.

This research aims (i) to appraise the available thermodynamic data and (ii) to determine such thermodynamic parameters as are necessary to define equilibria involving zinc-containing species in a zinc chloride melt.

The experimental technique used in this work is the Modified Entrainment Method (MEM). The principal modification of our method from conventional entrainment (or transpiration) is to isolate the sample from the flowing gas stream by a capillary of well-defined geometry so permitting equilibrium partial pressures to obtain above the sample. In this manner equilibrium thermodynamic results may be derived that are independent of the flow rate. A new
\end{abstract}
design of silica capsule involving a re-entrant capillary has been developed for the MEM which replaces the earlier flared capillaries and eliminates the correction for their variable geometry.

The following systems have been studied:
1) the vaporisation of \(\mathrm{ZnCl}_{2}\) involving monomer and dimer species ( 360 to \(710^{\circ} \mathrm{C}\) ),
2) the reductive transport of ZnS in \(\mathrm{H}_{2} \quad(740\) to \(1180^{\circ} \mathrm{C}\) ) (including the phase transition \(\mathrm{ZnS}_{\beta \rightarrow \alpha}\) ( \(1020^{\circ} \mathrm{C}\) )).
3) the transport of ZnS by \(\mathrm{HCl}\left(750\right.\) to \(990^{\circ} \mathrm{C}\) ),
4) the thermal dissociation of \(\mathrm{ZnCl}_{2}\left(\mathrm{NH}_{3}\right)_{2}\) (170 to \(400{ }^{\circ} \mathrm{C}\) ), and
5) the diffusion of \(\mathrm{Zn}(\mathrm{g})\) in \(\mathrm{H}_{2}, \mathrm{He}, \mathrm{N}_{2}\) and \(\mathrm{Ar}(420\) to \(870^{\circ} \mathrm{C}\) ) and of \(\mathrm{Hg}(\mathrm{g})\) in the same gases (150 to \(320^{\circ} \mathrm{C}\) ).

\section*{Dedication}

Revinder Pang, Liu Chow Hop and Chai Wan Pang, my Wife, Mother and Father, in gratitude for that rare thing an act of total understanding kindness.

\section*{Acknowledgements}

It is with great pleasure that I acknowledge the help and guidance of Dr. P.J. Gardner (University Supervisor) for constructive criticism, penetrating remarks and supportive friendship during both the course of this work and the preparation of my thesis.

I also gratefully acknowledge Professor D. Inman, Drs. P. Dudley and S. Duan of the Department of Metallurgy and Materials Science, Imperial College, for assistance with purification and analysis of zinc chloride. Further I am indebted to Mr. K. Knight (British Petroleum plc) for X -ray diffraction studies, to Dr. K. Holder (BP plc) for helpful discussion and to BP plc for financial support.

I would like to pay tribute to all the staff at the Bourne Laboratory, Chemistry Department, RHBNC for their inventive technical and moral support, in particular to Mr . G. Walters (mechanical engineer), Mr. J. Turner (glassblower) and Mrs. J. Evans for her patience, dedication and skill in typing this thesis.

Finally, I thank my wife, Ravi, and my family for suffering, without complaint, the brutishness to which authors sink in order to create something they hope is worthwhile.

I hear，and \(\mathfrak{X}\) forget．
I SEF，and \(\mathfrak{X}\) remember．
I do，and understand．
Een Thousand words not worth one sexing．
Chinese Froverbs．

看 葸 我 我 我
到 字 做 看 聽
的不和到到


\section*{PUBLICATIONS}

Joint Authors P.J. Gardner and P. Pang.
1. Liquid Zinc Chloride Vaporisation Thermodynamics by Modified Entrainment. Can.J.Chem. 1988, 66, in press.
(Dedicated to Professor J.A. Morrison).
2. Thermodynamics of the Zinc Sulphide Transformation Sphalerite \(\rightarrow\) Wurtzite, by Modified Entrainment. JCS Faraday Trans. I. 1988, 84, in press.
3. The Thermodynamics of Zinc Sulphide Transport in Hydrogen Chloride by Modified Entrainment. Can.J.Chem. MS Chem 87-l54-SIE. Accepted for publication April 1988.
4. Thermodynamics of the Dissociation of \(\mathrm{ZnCl}_{2}\left(\mathrm{NH}_{3}\right)_{2}\) by Modified Entrainment. Thermochimica Acta. TCA No. 248-88. Accepted for publication April 1988.

\section*{CONTENTS}

Page No.
CHAPTER 1 Introduction
1.l Introduction ..... 20
1.2 Objective ..... 22
1.3 Method of Obtaining Thermodynamic Data ..... 23
1.4 Theoretical Description of the
Modified Entrainment Method for a
Single Substance ..... 29
1.5 Transport Function \(\xi_{i}\) ..... 36
1.6 Subsequent Chapters ..... 37
References ..... 38
CHAPTER 2 Experimental
2.1 The Modified Entrainment Method (MEM) Rig ..... 40
2.2 Purification of Gases ..... 46
2.3 Mass Flow Controllers ..... 47
2.4 Experimental Procedure ..... 48
2.5 Dry Handling Facilities ..... 52
2.6 Purification of Analar Zinc Chloride ..... 52
2.7 Cyclic Voltammetry - Principles ..... 61
2.8 Cyclic Voltammetry - Experimental ..... 63
2.9 Purity of Zinc Chloride ..... 69
2.10 Preparation and Analysis of Diamminedichlorozinc(II) ..... 74
References ..... 85
Page No.
CHAPTER 3 Binary Gaseous Diffusion Coefficients.
3.1 Introduction ..... 87
3.2 Binary Diffusion Coefficients - Theory ..... 88
3.3 Estimation of Binary Gaseous Diffusion Coefficients ..... 91
Chapman-Enskog, First-Order Approximation ..... 91
Graham's Law of Scaling ..... 98
3.4 Multicomponent Diffusion with One Majority Component ..... 100
Equation and Format used for Multicomponent Diffusion (MCD) in Modified Entrainment Systems ..... 101
Example of MCD for Zinc SulphideTransport in mixture of \(\mathrm{HCl}(\mathrm{g})\) and
Ar (g) ..... 103
3.5 Binary Gaseous Diffusion Coefficients of Zinc and Mercury in Inert Gases ..... 109
3.6 Discussion of Zinc and Mercury
Diffusivity Data ..... 118
3.7 Validation of MEM Rig ..... 122
3.8 Binary Diffusion Coefficients: A Comparison with Experimental Results with Theoretical Predictions ..... 122
References ..... 126
Page No.
CHAPTER 4 Zinc Chloride
4.1 Introduction ..... 129
4.2 Structure of Zinc Chloride ..... 130
Zinc Chloride, crystal ..... 130
Molten and Glassy \(\mathrm{ZnCl}_{2}\) ..... 131
4.3 Thermodynamic Properties of \(\mathrm{ZnCl}_{2}\) Condensed Phases ..... 134
4.4 Vaporisation of Zinc Chloride ..... 139
4.5 Summary of Experimental Technique ..... 144
4.6 Materials ..... 146
4.7 Results and Discussion ..... 146
4.8 Conclusion ..... 158
References ..... 160
CHAPTER 5 Thermodynamics of (i) the
Dissociative Sublimation of Zinc Sulphide
and (ii) Zinc Sulphide Transport in Hydrogen
Chloride by Modified Entrainment.
Notation for Chemical Equilibria used
Throughout Chapter 5 ..... 165
5.1 Introduction ..... 166
5.2 Experimental ..... 168
Zinc Sulphide ..... 168
Zinc Sulphide in Hydrogen Chloride ..... 168
5.3 Materials ..... 169
Page No.
5.4 Results and Discussion
Sublimation of Zinc Sulphide at 1000-1400 K ..... 172
5.5 Results and Discussion
Zinc Sulphide Transport in Hydrogen Chloride ..... 187
5.6 Conclusion ..... 196
References ..... 198
CHAPTER 6 Thermodynamics of Dissociation of Diamminedichlorozinc(II)
6.1 Introduction ..... 201
6.2 Materials ..... 201
6.3 Experimental ..... 201
6.4 Results ..... 202
6.5 Discussion ..... 203
Stoichiometry of the Thermal
Decomposition ..... 203
Modified Entrainment ..... 206
6.6 Conclusion ..... 208
References ..... 209

Appendix 1 Calibration of Thermocouples and Temperature Profiles of Furnaces used in the MEM Experiments
Al.l Calibration of Thermocouples ..... 211
Al. 2 Furnace Profiles used in MEM Studies ..... 213
APPENDIX 2 MEM Transport Equations
A2.1 Evaporation of a Single Substance( \(\mathrm{Zn}, \mathrm{Hg}\) ) in inert gases\(\left(\mathrm{H}_{2}, \mathrm{He}, \mathrm{N}_{2} \mathrm{Ar}\right)\)216
A2. \(2 \quad \mathrm{ZnCl}_{2}\) Transport in Argon ..... 217
MEM transport of \(\mathrm{ZnCl}_{2}\) with Monomer Species Consideration Only ..... 219
Avoiding the Transport Function ..... ( \(\xi\) )
Approximation ..... 220
MEM Transport of \(\mathrm{ZnCl}_{2}\) coupled toAncillary Vapour Pressure Dataobtained from the Literature222
A2.3 "Congruent" Sublimation of ZnS in
Hydrogen ..... 223
A2.4 Transport of ZnS with HydrogenChloride in Argon227
A2.5 Evaporation of Diamminedichloro- zinc(II) in Argon ..... 230
APPENDIX 3 Computer Programs ..... 232
APPENDIX 4 MEM Raw Data Files ..... 253

\section*{LIST OF FIGURES}

Page No.
CHAPTER 1 Introduction
1.1 Reaction Bottle, Re-entrant Design ..... 26
1. 2 Positioning of the Reaction Bottle within the Furnace Tube ..... 27
CHAPTER 2 Experimental
2.1 Modified Entrainment Rig ..... 41
2.2 Design of MEM Capillary Channels ..... 42
2.3 Purification Flow System of Gases used in MEM experiments ..... 48
2.4 MEM Suction Gun used to Locate Silica Bottle onto Fibre Hook ..... 49
2.5 Block Diagram of Gas Circulating
System to Dry Box ..... 53
2.6 Apparatus for Purification of Zinc Chloride ..... 55
2.7 \(\mathrm{ZnCl}_{2}\) Ampoules ..... 602.8a Cyclic Voltammetry - Excitation andResponse62
2.8b Schematic Diagram of Cyclic Sweep Circuit ..... 62
2.9a Electrodes ..... 64
2.9b Electrochemical Cell ..... 65
Page No.
2.10 Cyclic Voltammogram of Purified Zinc a-c Chloride ..... 67-68
2.11 Cyclic Voltammogram of Analar Zinc ..... a-f Chloride (exposed to atmosphere) ..... 72-73
CHAPTER 3 Binary Gaseous Diffusion Coefficients
3.1 The Flux of Particles down a Concentration Gradient ..... 89
3.2 Lennard-Jones (12-6) Potential ..... 94
3.3 Flowchart for the Subroutine used to Evaluate the Multicomponent Diffusion Correction term \(\left(\gamma_{i}\right)\) ..... 107
3.4 Comparison of Binary Diffusivities of Zinc(g) in Hydrogen 650-1200 K ..... 112
3.5 Binary Gaseous Diffusion Coefficients of Zinc in Inert Gases 690-1140 K ..... 116
3.6 Binary Gaseous Diffusion Coefficients of Mercury in Inert Gases \(420-600 \mathrm{~K}\) ..... 117
CHAPTER 5 Thermodynamics of (i) the
Dissociative Sublimation of Zinc Sulphide
and (ii) Zinc Sulphide Transport in Hydrogen
Chloride by Modified Entrainment
5.1 A DSC trace for ZnS from 900 to \(1100^{\circ} \mathrm{C}\) ..... 173
Page No.
CHAPTER 6 Thermodynamics of Dissociationof Diamminedichlorozinc(II) by ModifiedEntrainment
6.1 Evaporation of Diamminedichlorozinc(II) ..... 205
Appendix 1 Calibration of Thermocouples and Temperature Profiles of Furnaces used in the MEM Experiments in-glass Thermometer ..... 211
A2 Deviation of RHBNC type \(R\) TC vs.Calibrated Standard type R TC 212
A3 Temperature Profiles of Gold FurnaceSet Temperature Range \(170^{\circ} \mathrm{C}\) to \(450^{\circ} \mathrm{C}\)213
A4 Temperature Profiles of DemountableTube Furnace Set Temperature Range\(400^{\circ} \mathrm{C}\) to \(900^{\circ} \mathrm{C}\)214
A5 Temperature Profiles of Demountable Tube Furnace Set Temperature Range \(600^{\circ} \mathrm{C}\) to \(1200^{\circ} \mathrm{C}\) ..... 215

\section*{LIST OF TABLES}


CHAPTER 5 Thermodynamics of (i) the Dissociative Sublimation of Zinc Sulphide and (ii) Zinc Sulphide Transport in Hydrogen Chloride by Modified Entrainment
5.1 The XRD and Analytical Analysis of heated samples of \(\mathrm{ZnS}(\beta)\) at 700 to \(1230^{\circ} \mathrm{C}\)171
5.2 Results of Linear Regression on Five Different Data Sets ..... 180
5.3 A Comparison of Literature Data for Equilibrium \(\Delta G_{3 / 4}^{O}\) ..... 182
5.4 Zinc Sulphide - Second Law Treatment ..... 185
5.5. Zinc Sulphide - Third Law Treatment ..... 186
5.6 Comparison of Second Law and Third Law Enthalpies of Formation of Zinc Sulphide at 298 K ..... 187
5.7 Typical Values of Coupling Parameters and Equilibrium Partial Pressures ..... 192
5.8 Comparison of \(K_{6}\) calculated from Equation (5.5.9) with literature results ..... 195
5.9 Second and Third Law Analysis of Zinc Sulphide and Hydrogen Chloride ..... 196
3.7 Thermodynamic Values of \(\Delta G_{1}\) and \(\Delta G_{2}\) over a Temperature Range 700-1100 K ..... 119
3.8 Thermodynamic Values of \(\Delta G_{3}\) and \(\Delta G_{4}\) over a Temperature Range 298-600 K ..... 121
3.9 Diffusivities of Zinc in Inert Gases ..... 124
3.10 Diffusivities of Mercury in Inert Gases ..... 125
CHAPTER 4 Zinc Chloride
4.1 Thermodynamic Properties of \(\mathrm{ZnCl}_{2}(c)\) at 298.15 K ..... 134
4.2 Free Energy of Formation of Zinc Chloride ..... 137
4.3 Evidence For and Against the Existence of \(\mathrm{Zn}_{2} \mathrm{Cl}_{4}(\mathrm{~g})\) ..... 145
4.4 Vapour Pressure of Molten Zinc Chloride 650-1000 K ..... 150
4.5 Enthalpy and Entropy Changes forEquilibria - Independently152
4.6 Enthalpy and Entropy Changes for Equilibria - Combined Sources ..... 156

\title{
Chapter 1
}

\section*{Introduction}

\subsection*{1.1 Introduction}

The use of metal halides as catalysts in coal hydrogenation before 1940 has been well documented by Storch \({ }^{1}\). This early work involved small quantities (often less than 5\%) impregnated on the coal, and was developed to the pilot plant stage by several international oil companies. The use of molten zinc chloride for coal liquefaction was originally exploited by Gorin and co-workers at Consolidation Coal Company (now Conoco Coal Development Company) in 1960. Zinc chloride was found to be much more active and selective in hydrocracking coal than conventional sulphur-resistant catalysts, providing that the molten salt was used in unconventionally large amounts. of the salts tested, zinc chloride was chosen because of its superior product distribution, remarkable resistance to hydrolysis and low cost. Extended research with zinc chloride lead to a process for converting coal to liquid fuels that has been demonstrated in a continuous bench-scale hydrocracker and in a \(45 \mathrm{~kg} \mathrm{~h}^{-1}\) catalyst regeneration unit \({ }^{2,3}\). The process consists of two main steps (1) hydrocracking and (2) catalyst regeneration.

Hydrocracking is conducted in a pool of molten zinc chloride typically at \(420^{\circ} \mathrm{C}\), a hydrogen overpressure of 17 MPa and with a zinc chloride to coal feed ratio of l.0. The spent melt is contaminated with hydrocarbonaeous residue, coal ash, nitrogen (as \(\mathrm{ZnCl}_{2} \cdot \mathrm{NH}_{3}\) ), sulphur (as ZnS ) and oxygen (as ZnO ), impurities arising from the heteroatoms in the feedstock. The regeneration is effected in a fluidized-bed combustor where the zinc chloride is vaporised and impurities are converted to \(\mathrm{N}_{2}, \mathrm{H}_{2} \mathrm{O}\) and \(\mathrm{SO}_{2}\) at \(900^{\circ} \mathrm{C}\) at a pressure of 0.5 MPa .

Recently hydrocracking of heavy grades of crude oils using zinc chloride as a weak Lewis acid catalyst have been commercially explored to selectively produce high yields of gasoline but only limited information on process conditions is available from the general and patent literature.

Although there has been some systematic study of the mechanism of the hydrocracking reaction \({ }^{4}\), little attention has been directed to the fate of the inorganic species which accumulate in the melt. The chemical constitution of these heteroatoms in the feedstock, heavy oils or coal, is irrelevant because reaction conditions (overpressure of hydrogen at \(420^{\circ} \mathrm{C}\) ) in the melt are sufficiently forcing to convert \(\mathrm{N}, \mathrm{O}\), and S into \(\mathrm{NH}_{3}, \mathrm{H}_{2} \mathrm{O}\) and \(\mathrm{H}_{2} \mathrm{~S}\) which interact with zinc chloride catalyst to give an ammonia chloride
complex, an oxide and a sulphide
\[
\begin{aligned}
& \mathrm{ZnCl}_{2}+\mathrm{NH}_{3}=\mathrm{ZnCl}_{2} \cdot \mathrm{NH}_{3} \\
& \mathrm{ZnCl}_{2}+\mathrm{H}_{2} \mathrm{O}=\mathrm{ZnO}+2 \mathrm{HCl} \\
& \mathrm{ZnCl}_{2}+\mathrm{H}_{2} \mathrm{~S}=\mathrm{ZnS}+2 \mathrm{HCl}
\end{aligned}
\]

Their steady accumulation (and including possibly \(\mathrm{VOCl}_{2}\) and \(\mathrm{NiCl}_{2}\) ) act so as to poison the catalyst rendering it cost-inefficient. A recent regeneration patent \({ }^{3}\) for the removal of these inorganic species exists. However there are only limited reliable thermodynamic data on the above reactions and still less information on their kinetics. Neverthless, it is a fair assumption that at the process operating temperature the yields of these inorganic species are thermodynamically controlled.

\subsection*{1.2 Objective}

This research work aims to appraise the available data and to determine such thermodynamic parameters as are necessary to define equilibria involving zinc-containing species in a contaminated zinc chloride melt. Three equilibria of pivotal importance in this system are reactions (1), (2) and (3).
\[
\begin{equation*}
\mathrm{ZnCl}_{2}(\text { liq })+\mathrm{H}_{2} \mathrm{~S}(g)=\mathrm{ZnS}(\text { soln })+2 \mathrm{HCl}(\mathrm{~g}) \tag{1}
\end{equation*}
\]
\[
\begin{align*}
& \mathrm{ZnCl}_{2}(\text { liq })+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})=\mathrm{ZnO}(\mathrm{soln})+2 \mathrm{HCl}(\mathrm{~g})  \tag{2}\\
& \mathrm{ZnCl}_{2}(\text { liq })+\mathrm{NH}_{3}(\mathrm{~g})=\mathrm{ZnCl}_{2} \cdot \mathrm{NH}_{3}(\mathrm{soln}) \tag{3}
\end{align*}
\]
where soln refers to a mixture with the \(\mathrm{ZnCl}_{2}\) melt only. Thermodynamic data for equilibria (l) to (3) above may be obtained directly or indirectly. This thesis investigates directly these equilibria over a temperature range of 150 to \(1200^{\circ} \mathrm{C}\) using the Modified Entrainment Method.

\subsection*{1.3 Method of Obtaining Thermodynamic Data}

The thermodynamics of heterogeneous equilibria provides the corner-stone for many branches of physical and chemical science, for example, material preparation, corrosion and combustion. Vapour pressures and dissociation pressures have been measured by manometry, effusion, torsion-effusion, mass spectrometry, calorimetry and entrainment methods. A similar variety of techniques is available for determining equilibrium constants for chemical reactions \({ }^{5}\). For vapour-solid and vapour-liquid reactions, entrainment (also known as transipartion) has long been a popular method. Before outlining the modified entrainment method, a brief summary of conventional entrainment is presented.

A carrier gas (sometimes doped with a reactive component) is passed over the solid or liquid sample maintained at a fixed temperature. The amount of
product formed in a given time is found and the total volume of carrier gas used is noted. The product is determined from the loss of weight of the solid or liquid, or by condensing or dissolving the sublimate out of the gas stream and determining them by standard analytical techniques. This method is both simple and flexible. However, it suffers from the disadvantage that the effect of the flowing carrier or reactive gas at a finite rate must be accounted for or eliminated. If the gas-flow is very fast, the vapour is not fully equilibrated with the condensed phase, whereas if the flow is very slow, products may travel away from the zone in which equilibrium is being established by diffusion. Furthermore, unmixing of the gas by thermal diffusion becomes a serious source of error, particularly if the gas mixture contains hydrogen \({ }^{6}\). Traditionally, extrapolation to zero flow rate has been used, but this can result in error for the reasons given above. By constricting the flow channel either side of the equilibrium zone containing the condensed phase the effect of diffusion at low flow rates can be reduced. If the apparent partial pressure of the product is plotted as a function of flow rate, there may be a range of flow rates in which the apparent partial pressure does not alter greatly, and this "plateau" value is often taken as representing the true partial pressure?. In a
well-designed apparatus this assumption may be justifiable, but because equilibrium is established only at the surface of the condensed phase, there must always be some diffusion of reactants towards the surface and of products away from the surface. This region in which diffusion operates is ill-defined. Diffusion can be made less limiting by causing turbulent mixing of the gas in the reaction zone, or by flowing the gas stream fast to reduce the boundary layer over the solid or liquid. Inevitably there may be some composition change in the gas in a direction normal to the surface of the condensed phase, and this is an eventual limitation of the method. When a "plateau" in the plot of apparent partial pressure against flow rate is not found, the true partial pressure is in doubt.

The Modified Entrainment Method (MEM) comes to terms with the unavoidable diffusion effect by confining its region of action to a long narrow channel of known geometry (typically 20 mm long, 1 mm I.D.). Its operation is independent of flow rate established in separate experiments which ensure that the heterogenous equilibrium is closely approached over a wide range of temperatures. One end of the channel is connected to \(a\) bulb or reservoir containing the condensed phase under study, and the other end is directed into the stream of reactive gas (figure l.l).


Figure 1.1 Re-entrant Design MEM Reaction Bottle

The reservoir and channel are suspended from a recording microbalance, so that the loss of weight can be measured continuously. By measuring this rate of weight loss, the partial pressures inside the bulb may be described accurately via a simple flux theory. This approach is not new, having been used by Stefan \({ }^{8}\) in 1890 to measure the diffusion coefficient of ether in air. When the vapour leaves the open end of the channel, it is rapidly diluted and swept away in a fast stream of carrier gas.


By using a narrow channel and increasing the surface area of the condensed phase in the MEM capsule, the chemical reaction or evaporation process at the surface can be made to limit the rate at which weight is lost. The technique has some similarity with Knudsen's method for measuring vapour pressures which relies on the measurement of the rate of effusion of a vapour through a small orifice in a gas-tight container where the vapour is at equilibrium
with the condensed phase. The conditions for the measurement are that the orifice must be knife-edged and have a diameter less than one-tenth of the mean free path of the vapour inside the cell. A channel may be used instead of the orifice, but then it is important that its length-to-diameter ratio is known and the appropriate correction factor applied.

Alternatively, using a small surface area of condensed phase with a relatively large channel diameter, a significant departure from equilibrium is maintained. The actual partial pressures of the vapour species over the sample surface may be found from the rate of loss of weight of the sample, \(\stackrel{\circ}{\omega}\), and those partial pressures will differ from the equilibrium values in a manner that can be studied with several experimental variables, for example changing the length and diameter of the channel. In the limit of zero channel resistance i.e. an infinitely wide short channel, the system reduces to Langmuir evaporation. Notice that while both Langmuir evaporation and Knudsen effusion \({ }^{10}\) are performed at low pressure, modified entrainment is performed at approximately atmospheric pressure.

Another attractive feature of this method for studying chemical transport reactions is that, as it is a dynamic system, the transport rate \(\stackrel{\circ}{\omega}\) cannot be affected by an accumulation of gaseous impurities or
of a stoichiometric excess of one component of the sample. In common with other dynamic methods, the composition of the vapour inside the reaction bottle is such as to produce the maximum attainable rate of transport for the given composition of reactive gas flowing through the hot zone. By contrast in a static or sealed system the rate of transport can be reduced by orders of magnitude by the almost inevitable accumulation of unwanted vapour constituents \({ }^{2}\).
1.4 Theoretical description of the Modified Entrainment Method for a single substance

The theory of the modified entrainment method has been fully documented and verified \(11,12,13\). Here only a short summary will be given for a single substance although in subsequent Chapters and Appendix 2 of this thesis, examples of more complex reactions (dissociative sublimation and heterogenous equilibria) are fully discussed.

A one-dimensional model, see figures 1.1 and 1.2 , may be used to describe gas transport in the channel through which vapour in the bulb of the sample bottle communicates with the external gas stream. For the evaporation of a liquid, or sublimation of a solid
\[
\begin{equation*}
M(\ell)=M(g) \tag{1.4.1}
\end{equation*}
\]
\[
\begin{equation*}
M(s)=M(g) \tag{1.4.2}
\end{equation*}
\]

\begin{abstract}
there is a net increase in molar volume in the system. The vapour is not transported away from the surface by diffusion alone, since the increase in volume accompanying vaporisation (the driving force) gives rise to a Stefan'4 flow or "wind". Stefan verified experimentally, that the volume of vapour passing through unit cross-section of pipe (in this example a capillary) in unit time was given by
\end{abstract}
\[
\begin{equation*}
v=\frac{D}{p-p} \cdot \frac{d p}{d x} \tag{1.4.3}
\end{equation*}
\]
where \(P\) is the total pressure, \(p\) the partial pressure of the vapour, and \(D\) is the binary diffusion coefficient between evaporating vapour and inert carrier gas. This equation is obtained from Fick's first law.

The flux, \(\mathrm{J} / \mathrm{mol} \mathrm{m} \mathrm{m}^{-2} \mathrm{~s}^{-1}\), which measures the rate of flow of matter being transported from one region (inside the capsule) of a system to another (outside the capsule), arises from both convective flow (or Stefan "wind") and from diffusion.
\[
\begin{equation*}
J_{i}=n_{i} U-D \frac{d n_{i}}{d x} \tag{1.4.4}
\end{equation*}
\]
where \(U\) is the Stefan velocity, and \(n_{i} / \mathrm{mol} \mathrm{m} \mathrm{m}^{-3}\) is the molar density. At the base of the channel, see figure
1.1, where \(x=a\), the vapour phase is assumed to contain the equilibrium vapour pressure of the condensed phase. Experimentally, this assumption is usually verified by noting the constancy of the flux using a range of different channel sizes. At the top of the channel where \(x=b\), the vapour from the capillary is rapidly flushed and diluted by the bulk flow of the inert carrier gas, and consequently the vapour concentration here is negligible. The effect of rate of weight loss against varying flow rate has been studied for diffusion, sublimation and heterogenous systems \({ }^{11,14,15}\), and found to be essentially independent of the entire range of flow 1 to \(350 \mathrm{~cm}^{3} \mathrm{~min}^{-1}\) used. Typically in this work flow rates in the range 70 to \(100 \mathrm{~cm}^{3} \mathrm{~min}^{-1}\) (s.t.p.) were used. Notice, the flow rate of the inert carrier gas must be sufficiently large to sweep away local concentration of vapour of the mouth of the channel and that its rate does not enter into subsequent flux equations that define the reaction of interest.

Flux equations for the reactants, products and carrier gas (for example, \(\mathrm{H}_{2}\) ) in the channel may be written in the following form
\[
\begin{equation*}
J_{i}=n_{i} U-D\left(i, H_{2}\right) \frac{d n_{i}}{d x} \tag{1.4.5}
\end{equation*}
\]
where \(J_{i}\) is the flux of the species \(i, n_{i}\) is the
```

concentration of species i, U is the mole-average
Stefan velocity and D(i,H2) the binary diffusion
coefficient of the species i in hydrogen. For dilute
gases, ideal gas behaviour is assumed and the molar
densities in equation (1.4.5) may be replaced by
partial pressures from

```
\[
\mathrm{n}_{\mathrm{i}}=\frac{\mathrm{n}}{\mathrm{v}}=\frac{\mathrm{p}_{\mathrm{i}}}{\mathrm{RT}}
\]

Using Poiseuille's formula for viscous flow in a capillary it can be shown that the total pressure varies negligibly with x unless the channel is very narrow \({ }^{6}\).
```

 Equation (1.4.5) may then be rewritten
    ```
\[
\begin{equation*}
J_{i}=\frac{U p_{i}}{R T}-\frac{D\left(i, H_{2}\right)}{R T} \frac{d p_{i}}{d x} \tag{1.4.6}
\end{equation*}
\]

For hydrogen, the inert carrier gas, there is no net flow so \(\mathrm{J}_{\mathrm{H}_{2}}=0\). On summation of the flux equations the diffusion terms cancels, if there is no pressure gradient in the channel, and
\[
\begin{equation*}
\sum_{\mathrm{i}} \mathrm{~J}_{\mathrm{i}}=\mathrm{J}=\frac{\mathrm{UP}}{\mathrm{RT}} \tag{1.4.7}
\end{equation*}
\]
where, \(P=\sum_{i P_{i}}\), is the total pressure in the system. Now substituting (1.4.7) in (1.4.6), the Stefan term U is eliminated
\[
J_{i}=\frac{J R T}{P} \frac{p_{i}}{R T}-\frac{D\left(i, H_{2}\right)}{R T} \frac{d p_{i}}{d x}
\]
rearranging we obtain
\[
\frac{R T}{D\left(i, H_{2}\right)} J_{i}+\frac{d p_{i}}{d x}=\frac{J_{i}}{P} \frac{R T}{D\left(i, H_{2}\right)}
\]
and
\[
\begin{equation*}
\frac{d p_{i}}{d x}=\frac{R T}{D\left(i, H_{2}\right)}\left[\frac{J p_{i}}{P}-J_{i}\right] \tag{1.4.8}
\end{equation*}
\]
now separating the variables
\[
\frac{\mathrm{dp}_{i}}{\left(J p_{i} / P\right)-J_{i}}=\frac{R T}{D\left(i, H_{2}\right)} d x
\]

Integrating from, \(x=a\) to \(x=b\) we obtain
\[
\begin{array}{r}
\int_{P(a)}^{P(b) \frac{d p_{i}}{\left(J p_{i} / P\right)-J}=}=\int_{a}^{b} \frac{R T}{D\left(i, H_{2}\right)} d x \\
\frac{P}{J} \ln \left[\frac{\left(J p_{i}(b) / P\right)-J_{i}}{\left(J p_{i}(a) / P\right)-J_{i}}\right]=\frac{R T \ell}{D_{\left(i, H_{2}\right)}}
\end{array}
\]
so
\[
\ln \left[\frac{\left(J p_{i}(b) / P\right)-J_{i}}{\left(J p_{i}(a) / P\right)-j_{i}}\right]=\frac{J R T \ell}{D\left(i, H_{2}\right)^{P}}
\]

In order to simplify matters let us introduce \(\xi_{i}\), the transport function of species i.
\[
\xi_{i}=\frac{J R T \ell}{P D\left(i, H_{2}\right)}=\frac{\omega R T \ell}{D\left(i, H_{2}\right) A M P}
\]
where,
\[
J=\stackrel{\circ}{\omega} / \mathrm{AM}
\]
\[
\begin{aligned}
& \omega / \mathrm{kg} \mathrm{~s} \mathrm{~s}^{-1}= \text { the rate of weight loss from the } \\
& \text { sample. } \\
& \mathrm{R} / \mathrm{J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}= \text { the gas constant. } \\
& \mathrm{T} / \mathrm{K}= \text { temperature. } \\
&(\mathrm{b}-\mathrm{a})=\ell / \mathrm{m}= \text { the length of the MEM capsule } \\
& \text { channel. } \\
& D_{\left(\mathrm{i}, \mathrm{H}_{2}\right) / \mathrm{m}^{2} \mathrm{~s}^{-1}=} \text { the binary diffusion coefficient of } \\
& \text { species } \mathrm{i} \text { in hydrogen. } \\
& \mathrm{A} / \mathrm{m}^{2}= \text { the cross-sectional area of the } \\
& \text { MEM capsule channel. } \\
& \mathrm{M} / \mathrm{kg} \mathrm{~mol}= \text { the molecular mass of the } \\
& \text { condensed phase. } \\
& \mathrm{P} / \mathrm{Pa}= \text { the total pressure. }
\end{aligned}
\]

Thus rearranging,
\[
\begin{equation*}
\frac{p_{i}^{(a)}}{P}=\frac{J_{i}}{J}-\left[\frac{J_{i}}{J}-\frac{p_{i}^{(b)}}{P}\right] e^{-\xi_{i}} \tag{1.4.9}
\end{equation*}
\]

Considering the evaporation of a single species (e.g. zinc in \(\mathrm{H}_{2}\) ) for a minority species (the vaporised atoms) it can be assumed that at the mouth of the capillary channel
\[
\frac{p_{i}(b)}{p}=0
\]
as previously mentioned, the species \(i\) is quantitatively swept away from the open end of the channel. Substituting this equation into equation (1.4.9) gives directly,
\[
\begin{equation*}
p_{i}(a)=P\left(1-e^{-\xi} i\right) \tag{1.4.10}
\end{equation*}
\]
\(P_{i}(a)\) represents the saturated vapour pressure of the sample since in this case \(J=J_{i}=1\).

The only experiment parameters unknown are the partial pressure \(p_{i}(a)\) and the binary diffusion coefficient \(D\left(i, H_{2}\right)\) - consequently if one is known, the other may be determined. For this example of single substance evaporation, the vapour pressure is usually known and hence the method is used to obtain diffusion coefficients as a function of temperature.
```

1.5 Transport function }\mp@subsup{\xi}{i}{
In the modified entrainment method, the partial
pressure (}\mp@subsup{p}{i}{}\mathrm{) of the minority component in a two
component system has been shown to be

$$
\begin{equation*}
p_{i}=P\left(1-e^{-\xi_{i}}\right) \tag{1.5.1}
\end{equation*}
$$

where $\xi_{i}={ }^{\circ} \mathrm{RT} \ell / D A M P$
in section 1.4. Such a system would be the evaporation of zinc in an argon or hydrogen carrier gas. The term, ($\left.1-e^{-\xi_{i}}\right)$, may be approximated to ξ_{i} to an accuracy of 5% if the transport function, $\xi_{i}<$ 0.1. In some cases it is necessary to retain a quadratic term in the exponential expansion when the same accuracy is obtainable for $\xi_{i}<0.5$. Mass transport in the capillary is via diffusive and convective flow. Cussler ${ }^{16}$ has shown that the first of the exponential approximations above is equivalent to the dilute gas approximation where mass transport is assumed to be exclusively diffusive. In systems where more than one component e.g. monomer and dimer, contribute to the transport this exponential approximation is nearly always invoked ${ }^{11}$ because of algebraic tractability.

```
1.6 Subsequent Chapters
This introductory chapter covers only backgroundmaterial relevant to zinc chloride - catalysedhydrocracking and the modified entrainment method.The following chapters are self-contained and eachcontains a short introductory section in which therelevant literature is critically evaluated. This isa departure from the usual practice of collecting allintroductory material into the first chapter. TheAppendeces contain raw data including rate of weightloss as a function of temperature and pressure foreach equilibrium studied. Other ancillaryexperimental details also included in the Appendecesare calibration of thermocouples, temperature profilesof furnaces, MEM algebraic transport equations ofchemical equilibria and computer programs used in theMEM studies.

\section*{References for Chapter 1}
1. H.H. Storch, "Chemistry of Coal Utilization", 1945, 2, 1750, Wiley, New York.
2. R.T. Struck and C.W. Zielke, Fuel, 1981, 60, 795.
3. C.W. Zielke and W.A. Rosenhoover, U.S. Patent 4424 lll, 1984.
4. T. Obara, T. Yokono and Y. Sanada, Liquid Fuel Technology, 1983, 1, 59.
5. O. Kubaschewski and C.B. Alcock, "Metallurgical Thermochemistry", 5th ed., 1979 (reprinted 1983), Pergamon Press Ltd., Oxford.
6. M.M. Faktor, R. Heckingbottom and I. Garrett, J. Chem.Soc.A, 1970, 2657.
7. J.L. Margrave, "Characterisation of High Temperature Vapour", 1967, Wiley, New York.
8. J. Stefan, Ann. Physik.Chemie., 1890, 17, 550; Ann. Physik., l890, 41, 725.
9. I. Langmuir, J.Am.Chem.Soc., 1916, 38, 2221.
10. M. Knudsen, Ann. Physik, 1915, 47, 697.
11. M.M. Faktor and I. Garrett, J.Cryst.Growth, 1977, 38, 213.
12. M.M. Faktor, I. Garrett and M.H. Lyons, J. Cryst. Growth, 1979, 46, 21.
13. M.H. Davis, Ph.D. Thesis, 1983, Royal Holloway College, University of London.
14. R.H. Moss, Ph.D. Thesis, 1975, Imperial College, University of London.
15. D. Battat, M.M. Faktor, J. Garrett and R.H. Moss, J.Chem.Soc.Faraday I, 1974, 70, 2267.
16. E.L. Cussler, "Multicomponent Diffusion", 1976, Elsevier, Amsterdam.

\section*{Chapter 2 \\ Experimental}
* Words in italics refer to table 2.1 where details of manufacturer's specifications, model serial numbers, and retail addresses are collected. *

\subsection*{2.1 The Modified Entrainment Method (MEM) Rig} The MEM is a modification of the capillary leak method widely used for the determination of diffusion coefficients of gaseous species \({ }^{1}\). Modified entrainment was first validated by comparing the measured vapour pressure of water and lead with literature data \({ }^{2}\). Subsequent studies using the MEM have included the determination of binary gaseous diffusion coefficients \({ }^{3}\), congruent sublimation \({ }^{4}\), retarded sublimation \({ }^{5}\), heterogeneous reaction kinetics \({ }^{6}\) and other equilibria>,8,9. In this procedure a small silica capsule containing a condensed phase was suspended from one arm of a recording microbalance into the hot zone of a vertically mounted tube furance (figure 2.1). The capsule orifice is in the form of a vertical capillary (ca. 20 mm long x lmm internal diameter), which acts as a diffusive resistance isolating the condensed phase from the irreproducible effects of the flowing transport gas.


Figure 2.1 Modified Entrainment Rig
* Small fan behind to cool electrobalance from furnace

In early capusle designs, the capillary channels were slightly flared at their lower ends rather than ground sharp. A correction factor' was necessary to correct for this additional diffusive resistance due to the flared neck of the capsule. Capsules used in previous work \({ }^{6}\) had removeable channels (silica ground cones and sockets) but are now regarded as obsolete because they had a tendency to leak around the joints at high operating temperatures. A significant improvement in design has the capillary inset into the capsule by about 2 mm as illustrated and compared with the other capsules in figure 2.2. This "re-entrant" capsule permits the capillary resistance \(\left(\ell / r^{2}: \ell=\right.\) length, \(r=\) radius) to be measured more precisely than previously used flared capsules. These dimensions, lengths and radii are determined by using a travelling microscope or by a mercury-filling and weighing procedure.


Figure 2.2 Design of MEM Capillary Channels
a) integral, b) demountable and c) re-entrant

The central component of the MEM apparatus was the recording microbalance from which was suspended the sample capsule, via a silica fibre with a maximum diameter of 400 micros. Thicker fibres were avoided because their stiffness often resulted in rubbing against the constrictor in the furnace tube (see figure 2.1); this was usually detected by a characteristic signal on the recorder output of mass versus time. The mass of the capsule in the MEM rig is different from a static determination in vacuo for several reasons
(i) an effect of buoyancy, the magnitude of which depends on the carrier gas and its temperature,
(ii) a momentum transfer effect; the downward flow of the carrier induces a net force on the upper surface of the capsule which enhances its mass,
(iii) a viscous drag effect caused by the gas stress passing over the capsule and
(iv) a "Poiseuille" effect; a small pressure gradient (and consequently a force) develops longitudinally across the capsule which acts as a constructor to laminor flow in the furnace tube.

The last three effects vary with both flow rate of carrier gas and temperature, and at a typical flow of \(80 \mathrm{~cm}^{3} \mathrm{~min}^{-1}(\mathrm{stp})\), sum to \(\simeq 0.4 \mathrm{mg}\). This thermal gas flow \({ }^{10}\) is particularly troublesome as the operating
temperature increases. Random fluctuations were more pronounced in nitrogen and argon flow than in hydrogen or helium.

Electrostatic forces acting between the silica fibre and the furnace tube can become so strong as to displace the sample bottle laterally where it will rub causing excessive noise on the mass versus time recorder trace. Several techniques were employed during operation of the rig to prevent and overcome this problem
(iii) a radioactive ionizing unit on the counter weight balance side to eliminate charge build-up on the tare pan,
(iv) making sure the silica fibre has attached to a heavily waded bottle (approx. lg) and
(v) making the support fibre as thin as possible to hang straight down without touching the constrictor tube.

The microbalance has a maximum sample capacity of \(\log\) and an electrical lifting capacity of 10 g , with a maximum sensitivity of \(5 \times 10^{-10} \mathrm{~kg}\). Microgravimetric measurements were usually operated at a sensitivity of
\(1 \times 10^{-8} \mathrm{~kg}\), with the meter and recorder range (MMR) set to 1 mg which determined the amount of weight that has displayed, full scale, on the meter, recorder or other readout device (digital voltmeter) used. The experimental parameter, the rate of mass loss varied between \(1 \times 10^{-8}\) to \(1 \times 10^{-12} \mathrm{~kg} \mathrm{~s}^{-1}\).

The capsule was held under isothermal conditions in a temperature range of 350 to \(1170^{\circ} \mathrm{C}\) by a demountable tube furnace consisting of two 920 W hemicylindrical elements each 450 mm long and with a 45 mm internal diameter. The temperature was controlled by a linear temperature variable rate programmer coupled to a controlling thermocouple located between the furnace wall and the furnace tube. Sample temperatures were monitored by a second thermocouple, sheathed in a thin-walled silica tube positioned axially 2 mm below the capsule (see figure 2.1). Both sensing and monitoring thermocouples are type \(\mathrm{R}, \mathrm{Pt} / \mathrm{Pt}-13 \% \mathrm{Rh}\) fabricated from wire supplied by Johnson Matthey Metals Ltd. The monitoring thermocouple was calibrated against a secondary standard type \(R\) thermocouple which itself was calibrated at a commercial calibration laboratory (Harwell Instrument Test Laboratories, temperature points taken at \(601,801,1000^{\circ} \mathrm{C}\) to a precision of \(\pm 2\) K). The measuring thermocouple was connected via a cold junction reference compensator to a digital
voltmeter displaying the thermal emf. This thermocouple voltage was converted into temperature using polynominal equations based on IPTS-68 (International Practical Temperature Scale of 1968) \({ }^{11}\). A detailed examination of the temperature profiles along the long axis of the tube furnace with set temperatures between 400 to \(1200^{\circ} \mathrm{C}\) was completed. The shape of the profiles was improved by insulating the bottom of the furnace with ceramic wool fibre. This generated a 40 mm plateau with a temperature variation of \(\pm 2 \mathrm{~K}\) in all cases. Details of insulation and the temperature profiles are given in Appendix Al.2. The "Gold" transparent furnace was monitored by a type \(K\) thermocouple which was calibrated against mercury-in-glass thermometers (including an exposed stem-end correction). The type \(K\) thermocouple was connected directly to a commercial device containing linearization circuits and a cold junction correction. The readout was directly in \({ }^{\circ} \mathrm{C}\). Similarly a 40 mm temperature profile plateau with variation \(\pm 2^{\circ} \mathrm{C}\) was generated at set temperatures 170 to \(450^{\circ} \mathrm{C}\) and again illustrated in Appendix Al. 2.

\subsection*{2.2 Purification of Gases}

Purification of rare gases, argon and helium were achieved by passage through a commercial rare gas purifier (RGP), which included a titanium getter operating at \(700^{\circ} \mathrm{C}\) to remove \(\mathrm{O}_{2}\) and \(\mathrm{N}_{2}\), copper oxide
at \(450^{\circ} \mathrm{C}\) to remove \(\mathrm{H}_{2}\), hydrocarbons and CO and molecular sieves to remove \(\mathrm{CO}_{2}\) and \(\mathrm{H}_{2} \mathrm{O}\). Further purification involved passage through more molecular sieves and hot copper turnings maintained at \(450^{\circ} \mathrm{C}\) to remove water vapour and oxygen respectively, see figure 2.3. Nitrogen gas was purified by passage through a column containing molecular sieves and \(a\) column of copper turnings only. Hydrogen was introduced in a similar fashion following purification via a palladium diffuser. A third gas inlet line was available for the introduction of hydrogen chloride dried via a column of magnesium perchlorate. Molecular sieves and magnesium perchlorate were regenerated at regular intervals by heating under vacuum at \(170^{\circ} \mathrm{C}\) or \(150^{\circ} \mathrm{C}\) respectively for 24 hours table 2.2 indicates the level of manufacturers' impurities of the gases (< \(20 \mathrm{ppm}(\mathrm{v})\) ) and materials used in thesis.

\subsection*{2.3 Mass Flow Controllers}

Fixed gas flow rates were obtained by using mass flow controllers (MFC) which were factory-calibrated to an accuracy of \(\pm 1 \%\) of the full scale readout, displayed on and driven by a MFC command box. For inert gases, typical flow rates were between 70 to \(100 \mathrm{~cm}^{3} \mathrm{~min}^{-1}\) and for reactive gases (hydrogen chloride), between 5.0 tol0.0 \(\mathrm{cm}^{3} \mathrm{~min}^{-1}\). The MFC had internal compensating circuitry to correct the flow

rates to \(0^{\circ} \mathrm{C}\) and 1.0 atm . The normal operating conditions of the MFC were at ambient temperature (5 to \(40^{\circ} \mathrm{C}\) ) and a gas differential pressure of the inlet feed line and outlet line of between 0.3 to 3.0 atm . Temperature coefficient and pressure coefficient corrections for the MFC were therefore not necessary.

\subsection*{2.4 Experimental Procedure}

The capsule was cleaned in a mixture of concentrated nitric and sulphuric acids (l:l v/v) for 24 hours, rinsed thoroughly in distilled water and dried under vacuum at \(170^{\circ} \mathrm{C}\) for several hours before any sample of interest was loaded into it. Before the microbalance was calibrated with a 100 mg class E 2 calibration weight, the machine was switched on for at least 24 hours to stabilize its electrical components to the working ambient environment. The silica fibre was suspended from one arm of the microbalance and the capsule was then introduced onto the lower hook of the
fibre from the bottom of the furnace tube using a special "suction gun" illustrated in figure 2.4. With the capsule in position, the balance was tared both with calibration weights and by electrical weight suppression (typically 500mg). The furnace of choice was then mounted and the appropriate thermocouple (type \(R\) for high temperature furnace and type \(K\) for low temperature furnace) inserted below the capsule and the glassware connected to the vacuum line and gas outlet.


Figure 2.4 MEM Suction Gm Used to Locate Silica Bottle onto Fibre Hook

Once assembled, the apparatus was evacuated to 5 x \(10^{-2} \mathrm{mmHg}\) or better, firstly through the gas inlets and then also through the bottom of the furnace tube. Evacuation through the bottom of the furnace tube was delayed until low pressure has been attained, otherwise turbulence would seriously buffet the bottle and cause the suspension fibre to break. After filling with purified argon to atmospheric pressure, the system was next leak tested using a gas leak detector or soapy water. Evacuation was repeated and the apparatus re-filled with hydrogen and again tested as before. The system was re-evacuated and back-filled with hydrogen twice more. Hydrogen filling was used at this stage because heating metallic samples in the presence of hydrogen usually removes adventitious oxide. Following the final filling, the gas outlet was opened and the hydrogen flow rate was set to the desired level, usually between 70 to \(100 \mathrm{~cm}^{3} \mathrm{~min}^{-1}\) (stp). The furnace was heated and the reactive gas introduced via a separate line (see figure 2.1) if required. The furnace temperature was such that \(\simeq 5 \%\) of the sample weight was lost in a relatively short period of time (ca. a few hours). This exercise ensured that a clean surface was exposed prior to the recording of definitive weight loss results. Rates of weight loss \((\stackrel{\circ}{\circ})\) were recorded under isothermal conditions over the
chosen temperature range taking several data (two or more) measurements for any one temperature to check reproducibility. The temperature sequence depended upon the material being studied. In general however, after recording points over a selected range, it was desirable to repeat points in this range chosen at random. If reproducibility of \(\stackrel{\circ}{\omega}\) was not observed, this suggests either a non-equilibrium process and or the development of a kinetic barrier to material transport e.g. an oxide film on the surface of the sample. Irrespective of the number of reactions involved in the experiment understudy and its detailed theory, a plot of (-) ln \(\omega\) vs. \(1 / T\) was usually linear which provided a quick and convenient check on the progress of the experiment and quickly identified "rogue" points.

To ensure the microbalance remained in a non-corrosive environment, inert carrier gas was flowed via the upper gas inlet (figure 2.1), whilst if required the reactive gas hydrogen chloride was introduced below the constriction through the lower inlet. A positive pressure of greater than 3 mmHg above atmospheric pressure was maintained in the rig during operation precluding ingress from the surrounding atmosphere. A Fortin barometer was used to measure atmospheric pressure in the Laboratory Complex during MEM experiments.

\subsection*{2.5 Dry Handling Facilities}

The dry-box used in this work was an upgraded Linott Mark 1 twin-glove box. Using \(3 \AA\) and \(4 \AA\) molecular sieves to dry re-circulated argon, the moisture level in the box was reduced to \(5 \mathrm{ppm}(\mathrm{V}) \mathrm{H}_{2} \mathrm{O}\). The system is sketched in figure 2.5 and its associated hardware listed in table 2.3. A positive pressure of 4 mmHg above atmospheric pressure was maintained in the box to preclude leakage inwards from the surrounding atmosphere. With the glove ports closed it was found that water vapour seeped through and collected inside the gloves during periods of non-usage. This caused initial unnecessary damping to the atmosphere ( \(>100 \operatorname{ppm}(\mathrm{~V}) \quad \mathrm{H}_{2} \mathrm{O}\) ) when used. To prevent this diffusion of vapour through the gloves, the glove doors were permanently removed enabling the circulating system to purge the box and the glove volume continuously. Some commercial designs have separate purging systems for this purpose.
2.6 Purification of Analar Zinc Chloride

Purification of Analar Zinc Chloride was undertaken at the department of Metallurgy and Material Science, Imperial College with the advice of Professor Inman and Drs. Dudley and Duan.

A) Moisture Meter, B) Compressor Pump, C) Ball Valves,
D) Dry Box, and E) Solenoid Valve

Firure 2.5 Block Diagram of Gas Circulating System to Dry-Box

The following procedure was followed
(i) vacuum drying,
(ii) passage of \(\mathrm{HCl}(\mathrm{g})\) through melt followed by purging with Ar,
(iii) pre-electrolysis,
(iv) filtering melt through no. 2 porosity frit, and
(v) analysis by cyclic voltammetry.

This procedure removed water physically adsorbed onto the salt and its hydrolysed products (e.g. hydroxides and oxides), heavy metal traces (e.g. Pb , Cu , Fe ), anionic complex ions (e.g. borates, silicates) and insoluble carbonaceous residues. The emphasis was on the removal of all water, small quantities of which is known to have a marked effect on melt properties \({ }^{12}\). Water removal was carried out under successively more forcing conditions so minimizing hydrolysis in the melt according to equation (2.6.1)
\[
\begin{equation*}
\mathrm{Cl}^{-}+\mathrm{H}_{2} \mathrm{O} \quad=\quad \mathrm{OH}^{-}+\mathrm{HCl} \tag{2.6.1}
\end{equation*}
\]

All glassware coming into contact with the salt, i.e. melt receiver, filter tube and ampoules, were soaked in \(l: l(v / v)\) concentrated sulphuric/nitric acid baths for 24 hours, washed with distilled water and acetone and finally dried at approximately \(200^{\circ} \mathrm{C}\) for


Figure 2.6 Apparatus for the Purification of Zinc Chloride

A, Anode; B, Cathode; C, Pyrex breaker rod; D, Breakable glass dimple; E, glass sinter (no. 2 porosity); F. Quickfit screw thread joint and cad SQ13; G, Brass plate; K, S29 Ball to vacuum system; L, Pyrex receiver; M, Heating element; N, B45 of inner filter tube; P, Inner Pyrex tube; Q, Pyrex cell head on F.G. 70 flange; R, " 0 " rings; S, Cooling water system; T, Zinc chloride.
at least 1 day. All transfers of zinc chloride were carried out in an argon atmosphere (dry-box or dry-bag).

The detailed procedure was as follows:
A batch of Analar zinc chloride (500g) was vacuum-dried at Royal Holloway and Bedford New College.

Over a period of 21 days, the temperature of the salt was steadily increased to \(424^{\circ} \mathrm{C}\) (mp \(\mathrm{ZnCl}_{2} \simeq\) \(318^{\circ} \mathrm{C}\) ) whilst maintaining a pressure of \(\leqslant 0.1 \mathrm{mmHg}\). The melt was allowed to solidify and transferred to a purification cell at Imperial College.

The purification cell is shown in figure 2.6. Tube \(P\) was loaded with vacuum-dried zinc chloride and the main cell closed with the cell head \(Q\). Before closure the electrodes ( \(A\) and \(B\) ) were removed to prevent corrosion with HCl. Two further entry ports for an HCl bubbler and an outlet tube were present but not shown in the cell, which was located behind the illustrated entry ports in figure 2.6. The cell was evacuated using a two stage rotary pump to a pressure below 0.04 mmHg. This initial pumping took approximately 24 hours and was essential to reduce the adventituous water content to a minimum before heating commenced. The temperature was raised in several stages to \(340^{\circ} \mathrm{C}\) with continuous pumping.

Hydrogen chloride gas, dried via molecular sieves

\begin{abstract}
AWloo and activated charcoal was introduced into the system, which had been purged to 1 atmosphere with dried argon. The gas was first flushed over the surface of the melt and then the gas dispersed through the melt via a bubbler frit; after about 35 minutes the HCl stream was discontinued and the melt purged with Ar for 55 minutes. HCl was passed through the system to remove \(\mathrm{OH}^{-}\)and \(\mathrm{O}^{2-}\), the major products of hydrolysis.
\end{abstract}
\[
\begin{align*}
& \mathrm{HCl}(\mathrm{~g})+\mathrm{OH}^{-}(\text {melt })=\mathrm{Cl}^{-}(\text {melt })+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})  \tag{2.6.2}\\
& 2 \mathrm{HCl}(\mathrm{~g})+\mathrm{O}^{2-}(\text { melt })=2 \mathrm{Cl}^{-}(\text {melt })+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
\end{align*}
\]

Unfortunately \(\mathrm{Cl}_{2}\) was not available to bubble through the melt at this stage to remove \(\mathrm{OH}^{-}\).
\[
\begin{equation*}
2 \mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{OH}^{-}(\text {melt })=2 \mathrm{HCl}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{Cl}^{-}(\text {melt }) \tag{2.6.4}
\end{equation*}
\]

The pre-electrolysis electrodes (cathode:stainless steel, anode:vitreous carbon (boiled in conc. HCl , washed with distilled water and baked at \(200^{\circ} \mathrm{C}\) for 24 hours)) were quickly introduced through the cell head under high argon flow and a constant voltage (1.5V) supply connected. The anode was lowered into the melt followed by the cathode (to ensure cathodic protection
of the stainless steel). The pressure in the cell was immediately reduced to aid stirring by expanding the evolving anodic gases and hence avoid polarization at the anode. The initial current was 2 to 3 mA and fell to zero within an hour. This technique \({ }^{13}\) will remove electroactive species that are dissolved in the melt and that have a decomposition potential within the "potential window" of the \(\mathrm{ZnCl}_{2}\) melt (or solvent). For \(\mathrm{ZnCl}_{2}\), the cathodic limit is \(\mathrm{Zn}^{2+}+2 \mathrm{e} \rightarrow \mathrm{Zn}\) and the anodic limit is \(\mathrm{Cl}^{-} \rightarrow 0.5 \mathrm{Cl}_{2}+\mathrm{e}^{-}\). Thus, metals less electropositive than Zn e.g. \(\mathrm{Cd}, \mathrm{Fe}, \mathrm{Pb}\) will be removed by deposition on the cathode, but the more electropositive metals e.g. Ca,Mg,Al will not be removed. Similar consideration applys to the removal of the negative ions although the anodic limit for \(\mathrm{ZnCl}_{2}\) is not so limiting as \(\mathrm{F}^{-}\)is probably the only impurity of any significance whose deposition potential is more anodic. When applying this method, the electrode materials must be chosen with care \({ }^{13}\) and continuous pumping maintained throughout to enhance stirring and remove anodic gases so reducing anodic polarization.

The dimple \(D\) was broken using the rod \(C\), and with a suitable argon gas pressure above the frit and reduced pressure below the frit, the melt was filtered through into the receiver \(L\). However when the dimple D was broken the rod \(C\) accidentally punctured the
```

glass filter frit and some insoluble products still
remained in the melt during electroanalysis. This
does not affect the analysis because cyclic
voltammetry (CV) only detects electroactive species
dissolved in the melt. Because of the contamination
of the melt described above, after CV the sample was
returned to the filteration apparatus (figure 2.6),
pumped down, melted over a period of 5 days and
refiltered.

```
Subdivision of \(\mathrm{ZnCl}_{2}\) into Aliquots
    The purified batch of \(\mathrm{ZnCl}_{2}\) was broken up in the
dry-box and quickly put into a closed jar. Each lump
of melt was subsequently ground and transferred into a
pre-dried ampoule. This allowed closed ampoules to be
removed from the dry-box prior to evacuation and
sealing. The moisture content of the dry-box (I.c.
not RHBNC box) rose from \(6 \mathrm{ppm}(\mathrm{V})\) to \(150 \mathrm{ppm}(\mathrm{V})\) of
water during this procedure (the unit is part per
million by volume - \(10 \mathrm{ppm}(\mathrm{V})\) corresponds to a partial
pressure of \(\mathrm{H}_{2} \mathrm{O}\) of ca . 0.008 mmHg ). This is probably
due to diffusion of moisture through the gloves.
Sealing of Ampoules
    Figure 2.7 shows the dimensions of the \(\mathrm{ZnCl}_{2}\)
ampoules used. Five ampoules at the time were taken
out of the drybox. Before sealing each was evacuated
and heated gently with a luminous flame to remove any
moisture contamination.


Figure \(2.7 \quad \mathrm{ZnCl}_{2}\) Ampoules
2.7 Cyclic Voltammetry - Principles
    Cyclic voltammetry is a widely-used technique \({ }^{14}\)
for determining the purity of fused melts. Cyclic
voltammograms were obtained by applying a linear
varying potential ramp to a working electrode and
measuring the resultant current flowing between the
working and counter electrodes (figure 2.8). In this
investigation the working electrode was a polished
tungsten disc of accurately known area and the counter
electrode was a large surface area Pt flag at which
the current density and consequently the polarization
is negligibly small. A reference electrode
\(\left(\mathrm{Ag} / \mathrm{AgCl}\left(\mathrm{ZnCl}_{2}+\mathrm{NaCl}+\mathrm{AgCl}\right) 1: 1: 1 \mathrm{v} / \mathrm{v}\right)\) was included
to measure the reversible potential of the working
electrode at near zero current, see figure 2.9a. By
measuring the peak current and noting where it occurs
on the potential axis, it is possible to determine the
concentration and nature of the electroactive species
respectively. This assumes that information is
available from the literature on zinc chloride melts
that have been artifically doped with contaminating
species and the position of \(i_{p}\) and sweep rate noted.


Figure 2.8a Cyclic Voltammetry - Excitation and Response for the Reversible Deposition of a Soluble Product


Figure 2.8b Schematic Diagram of Cyclic Sweep Circuit

However no such studies are available, but as a possible guide eutectic system (LiCl-KCl)14 may provide an estimate of the likely position of peak potentials \(\left(E_{p}\right)\) - some values are listed below:
```

Couple
$\mathrm{Cd}(\mathrm{II}) / \mathrm{Cd}(\mathrm{O})$
$\mathrm{E}_{\mathrm{p}} / \mathrm{V}$ (relative to $\mathrm{Ag}^{+} / \mathrm{Ag}$)
-0.589
$\mathrm{Pb}(\mathrm{II}) / \mathrm{Pb}(\mathrm{O})$
-0.374
$\mathrm{HCl}(\mathrm{g}) / \mathrm{H}_{2}(\mathrm{~g}) / \mathrm{Pt}$
-0.017
$\mathrm{Cl}_{2}(\mathrm{~g}), \mathrm{C} / \mathrm{Cl}^{-} \quad 1.033$
$\mathrm{Br}_{2}(\mathrm{~g}), \mathrm{C} / \mathrm{Br}^{-} \quad 0.857$
$\mathrm{Zn}^{2+} / \mathrm{Zn}$
-0.839
$\mathrm{Hg}^{2+} / \mathrm{Hg}+0.105$
$\mathrm{Fe}^{2+} / \mathrm{Fe}$
-0.445
$\mathrm{Ca}^{2+} / \mathrm{Ca}$
-2.6
from J.A. Plambeck, Encyclopedia of
Electrochemistry of the Elements, ed. A. Bard,
Vol.X, Marcel Dekker, 1976.

```
2.8 Cyclic Voltammetry - Experimental

Figure 2.9 b shows the cyclic voltammetry cell assembled. It was degassed overnight at a pressure of 0.023 mmHg . The cell was then filled with purified argon, disconnected and transferred to the dry-box where the purified melt was added to the cell and the reference electrode prepared. The closed cell was then reconnected to the vacuum line and evacuated
overnight. Argon was introduced into the cell, providing a small flow at a slight positive pressure before melting the salt. The electrodes were then lowered into the melt and voltammetry started.

A. Counter Electrode
B. Working Electrode
C. Reference Electrode


Figure 2.9b Electrochemical Cell
In and outlet for vacuum and argon line and thermocouple in Pyrex tubing via brass-cell head not shown for clarity.

Figures \(2.10 a-c\) show no identifiable peak current except for the expected melt ions at either end of the voltage sweep. Dissolved water in ionic melts sometimes appears as a broad diffuse feature, rather than as a sharp peak, in the voltammogram \({ }^{14}\). This "water wave" may arise from the reduction \(\mathrm{H}_{2} \mathrm{O}+\mathrm{e}^{-} \rightarrow\) \(\mathrm{OH}^{-}+0.5 \mathrm{H}_{2}\). The presence of \(\mathrm{OH}^{-}\)is unlikely to be detected directly as its reduction \(\mathrm{OH}^{-}+\mathrm{e}^{-} \rightarrow \mathrm{O}^{2-}+\) \(0.5 \mathrm{H}_{2}\) is certainly more cathodic than \(\mathrm{Zn}^{2+}\) reduction. The presence of \(\mathrm{O}^{2-}\) may well be detected in the anodic sweep, \(\mathrm{O}^{2-} \rightarrow 0.5 \mathrm{O}_{2}+2 \mathrm{e}^{-}\). These reactions have not been identified in \(\mathrm{ZnCl}_{2}\) melts but one-electron transfers for \(\mathrm{OH}^{-}\)and \(\mathrm{H}_{2} \mathrm{O}\) and the two electron oxidation of \(\mathrm{O}^{2-}\) are established in \(\mathrm{LiCl} / \mathrm{KCl}\) eutectic melt's that was artifically doped with \(\mathrm{H}_{2} \mathrm{O}\). The residual current of the voltammogram may arise from
(i) broad, ill-defined reduction or oxidation of electroactive species (see comment on "water wave" above) and
(ii) the non-Faradaic (or charging) current which arises from the electrical capacity of the interfacial double layer at the working electrode. Even in highly purified melt the non-Faradaic component can make the residual current significant.
Electrodes Used in Figures 2.10 to 2.11
Working electrode \(W\left(1.150 \times 10^{-6} \mathrm{~m}^{2}\right)\)
Counter electrode \(\mathrm{Pt}\left(1 \mathrm{~cm}^{2} \mathrm{flag}\right)\)
Reference electrode \(\mathrm{ZnCl} 2 \mathrm{AgCl}: \mathrm{NaCl} 1: 1: 1 \mathrm{l} / \mathrm{v})\)


\subsection*{2.9 Purity of Zinc Chloride}

The Randles-Sevcik equation \({ }^{16}\) was used to calculate the purity of the melt.
\[
\begin{equation*}
\mathrm{C} / \mathrm{mol} \mathrm{~m}=\frac{\mathrm{i}_{\mathrm{p}}(\mathrm{RT})^{1 / 2}}{0.452(\mathrm{nF})^{3 / 2} \mathrm{~A}(\mathrm{DV})^{1 / 2}}=6.05 \tag{2.9.1}
\end{equation*}
\]
where
\begin{tabular}{|c|c|}
\hline \(\mathrm{C} / \mathrm{mol} \mathrm{m}{ }^{-3}\) & bulk concentration of species \\
\hline \(i_{p} / \mathrm{A}\) & max. peak current \(=9.166 \times 10^{-6}\) \\
\hline \(\mathrm{R} / \mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}\) & gas constant \(=8.314\) \\
\hline T/K & temperature \(=636.15\) \\
\hline n & \begin{tabular}{l}
no. of electrons transferred \(=1\) \\
(assumed)
\end{tabular} \\
\hline \(\mathrm{F} / \mathrm{C} \mathrm{mol}^{-1}\) & Faraday \(=96486.7\) \\
\hline \(\mathrm{A} / \mathrm{m}^{2}\) & area of working electrode \(=1.1499 \mathrm{x}\) \\
\hline & \(10^{-6}\) \\
\hline \(\mathrm{V} / \mathrm{V} \mathrm{S}^{-1}\) & voltage sweep rate \(=50 \times 10^{-3}\) \\
\hline \(\mathrm{D} / \mathrm{m}^{2} \mathrm{~s}^{-1}\) & diff. coefficient of electroactive \\
\hline & species (cf. \(\mathrm{Mg}^{2+}=5.2 \times 10^{-9} \mathrm{~m}^{2} \mathrm{~s}^{-1}\) ) \\
\hline & \(1.0 \times 10^{-9}\) (assumed) \\
\hline
\end{tabular}

Substitution in the above equation (using pessimistic estimates for \(i_{p}\) and \(n\) selected) yields the maximum impurity level, \(C=6.05 \mathrm{~mol} \mathrm{~m} \mathrm{~m}^{-3}\) or 0.03 mol\%. If the impurity is assumed to be only \(\mathrm{H}_{2} \mathrm{O}\) then \(C\left(\mathrm{H}_{2} \mathrm{O}\right)=1.91 \times 10^{-3} \mathrm{wt} \%\). While these results are
encouragingly low, the most disappointing feature of this analytical procedure is the inability to detect a peak current for \(\mathrm{OH}^{-}\)as it presumably lies outside the \(\mathrm{ZnCl}_{2}\) "potential window". However this may be of no consequence as it is known \({ }^{14,18}\) that in the \(\mathrm{LiCl} / \mathrm{KCl}\) eutectic melt \(\left(\mathrm{mp} 450^{\circ} \mathrm{C}\right)\) the equilibrium \(2 \mathrm{OH}^{-}=\) \(\mathrm{H}_{2} \mathrm{O}(\mathrm{g})+\mathrm{O}^{2-}\) lies far to the right, meaning that \(\mathrm{OH}^{-}\) may be detected as \(\mathrm{O}^{2-}\) and \(\mathrm{H}_{2} \mathrm{O}\).

To obtain some estimation of the sensitivity of the technique Analar Zinc Chloride was analysed under identical conditions except the temperature was 6 K higher (642.15K). This initial cyclic voltammogram (figure 2.lla) for which the sample was heated and evacuated showed some evidence of impurities at +0.9 V to +0.4 V (wave 1) and at 0.0 V to 0.25 V (wave 2) vs. \(\mathrm{Ag} / \mathrm{Ag}^{+}\)reference electrode \(\left(\mathrm{ZnCl}_{2}: \mathrm{AgCl}: \mathrm{NaCl}=1: 1: 1\right.\) v/v). Wave 2 appears to be an irreversible cyclic sweep in constrast to the conventional anodic and cathodic reversible reaction of a metal ion ( \(\mathrm{Zn}^{2+}\) ) as shown in figure 2.10b. Hence by evacuating \(\mathrm{ZnCl}_{2}\) overnight and raising the temperature from 298 K to 642 K the purity of the melt, using the information obtained from manufacturer's purity specification and using equation (2.9.1) on figure 2.11a, rose from \(98 \rightarrow\) 99.9 mol\%. Exposing this evacuated pre-dried melt now to a steady stream of laboratory air, these two current waves intensified, elongated and masked all
```

other waves. Their intensities steadily increased
with time whilst drawing air over the melt (figure
2.llb) and not surprisingly decreased with time when
the system was re-evacuated (figure 2.llc). Further
exposure of air at a more rapid rate resulted in wave
2 decreasing as wave l steadily increased (figure
2.lld - 2.llf). Under these conditions moisture and
oxygen are the only sources of impurity.
A general overall mechanism may be as follows:
ZnCl}\mp@subsup{2}{2}{(\ell)}+2\mp@subsup{\textrm{H}}{2}{}\textrm{O}(\textrm{g})=[\mp@subsup{\textrm{ZnCl}}{2}{}+2\mp@subsup{\textrm{H}}{2}{}\textrm{O}](\mathrm{ soln) (2.9.2)
Fast
Hydrolysis
[ZnO + H2O](complex) = Zn(OH)
slow
Initially $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ dissolves to a slight extent in the melt (to $\leqslant 0.1$ mol\%). Hydrolysis may be rapid at the melt temperature causing a decrease in the size of the "water wave" (wave 2) and an increase in the (unseen) OH^{-}feature presumably outside the "potential window" of ZnCl_{2}. Subsequently a slow step converts the OH^{-}to O^{2-} complex, so explaining the steady build up of the "oxide feature" - wave 1 (see figure 2.1ld 2.llf). The presence of wave 1 indicating "oxide" in the melt, appears to inhibit further uptake of moisture as wave 2 the "water wave", in the successive voltammograms showing its steady decline.

```



As mentioned earlier these complex wave features need to be directly verified and/or identified by doping experiments with oxides, hydroxides and water using variable sweep rates, although the relative redox potentials of the various processes (l or 2 electron transfer) are in broad agreement with studies reported for other molten salt systems \({ }^{14,17,18}\). Bettelheim suggested a two electron transfer of water to oxide via a hydroxyl complex as indicated in table 2.4.
2.10 Preparation and Analysis of Diamminedichlorozinc(II).

The preparation of diamminedichlorozinc(II) \(\left(\mathrm{ZnCl}_{2}\left(\mathrm{NH}_{3}\right)_{2}\right)\) has been reported by several methods \({ }^{19,20,21,22, ~ f o r ~ e x a m p l e, ~ A s k e r ~ e t ~ a l . ~}{ }^{21}\) boiled zinc oxide in a solution of ammonium chloride. However the most convenient method to obtain a material of satisfactory purity was found to be
(i) Purified \(\mathrm{ZnCl}_{2}\) dissolved in absolute ethanol (ii) gaseous dried ammonia was then bubbled through this solution when crystals of \(\mathrm{ZnCl}_{2} \cdot 2 \mathrm{NH}_{3}\) were precipitated. These were then filtered off and dried at \(50^{\circ} \mathrm{C}\) for 24 hours. This method is similar to that given in reference 20. \(\mathrm{ZnCl}_{2}\left(\mathrm{NH}_{3}\right)_{2}\) was analysed for \(\mathrm{Zn}^{2+}\) using an EDTA volumetric titration and by an argentometric titration for chloride \({ }^{23}\).

The results were as follows:
\begin{tabular}{lll}
\(\mathrm{ZnCl}_{2}\left(\mathrm{NH}_{3}\right)_{2}\) & \(\% \mathrm{Zn}\) & \(\% \mathrm{Cl}\) \\
Found & 38.8, & \(41.5_{5}\) \\
Theoretical & 38.38 & 41.63
\end{tabular}

The agreement between the calculated and experimental analysis results is satisfactory.
Table 2.l
Model Type, Model Serial No.,
Manufacturer's Specifications and Addresses.
Recording microbalance
Cahn Rloo Electrobalance, \#5050/30324, Cahn
Instruments, Inc., l6207 S. Carmenita Road,
Cerritos, CA 9070l, USA.
UK Agents: Scientific and Medical Products
Ltd., Shirley Institute, Didsbury, Manchester,
M20 8RX.
Anti-static work station kit and tray
\#550-022 and \#550-l5l, RS Components Ltd.,
The Fairway Estate, Green Lane, Hounslow,
Middlesex, TW4 6BU.
Strontium 90 0.2 Radioactive ionizing unit Panax.
Address unknown
Rat

Cont.

Table 2.1 (cont.)

Demountable tube furnace
Electric heating unit, \# 50142/l718-KSP, 240W, Lindberg International Operations, Hubbard Street, Chicago, IL60612, USA. UK Agents: Arnold R. Horwell Ltd., 73, Maygrove Road, West Hampstead, London, NW6 2BP.

Linear temperature variable rate programmer LVP/CC20/R, mark III, Stanton Redcroft, Copper Mill Lane, London, SWl7 OBN.

Cold junction reference compensator Type RJRS Mains 240V, Cropico Ltd. UK Agents: Croydon Precision Instrument Co., Hampton Road, Croydon, CR9 2RU.

Digital voltmeter
Muitimeter \# 1905a, Thurlby Electronics Ltd., New Road, St. Ives, Huntington, Cambs., PE17 4BG.

\section*{Table 2.1 (cont.)}
```

 Ceramic wool fibre
 For Lindberg furnace - standard thickness and
density 13 mm x 48 kg m-3.
For Trans Tempfurnace - standard thickness
and density 25 mm x 96 kg m-3 with hardener
solution added.
Triton Kaowool ceramic fibre blanket,
Morganite Ceramic Fibres Ltd., Tebay Road,
Bromborough, Wirral, Merseyside, L62 3PH.

```

\section*{Gold transparent furnace}
```

Internal diameter and length $65 \mathrm{~mm} \times 406 \mathrm{~mm}$, l0A power rating. TransTemp, 155 6th Street, Chelsea, Mass. 02150, USA.
Type K thermocouple and display box Keithley Model 87l2, glass braid sheath; Keithley, 871 Digital Thermometer Type K, Keithley Instruments Ltd., l Boulton Road, Reading, Berkshire, RG2 ONL.

```

Table 2.1 (cont.)

Rare gas purifier
BOC RGP4, BOC Special Gases, Great West House, Great West Road, Brentford, Middlesex, TW8 9DQ.

Palladium diffuser JMM Hydrogen Diffusion Unit, \#H28/1, Johnson Matthey Equipment Ltd., South Way, Exhibition Grounds, Wembley, HA9 OHW.

Mass flow controller (MFC) and MFC Command box
\#AFC 261 for \(H C l\), \#AFC 260 for all other gases, \#ASM Readout box 6, Advanced semiconductor materials international n.v. (ASM). UK Agents: Epak Electronics Ltd., 34, Holmethorpe Avenue, Redhill, Surrey, RH1 2 NB .

Cont.
```

Table 2.1 (cont.)

```

> loomg \(E 2 \equiv\) NBS Class \(S\)
> calibration weight
\#ME6528 Mettler calibration weights class E2 tolerance \(( \pm 0.015 \mathrm{mg})\) according to OIML (Organisation Internatione de Metrologie Légale) No. 20/EC.

UK Agents: Gallenkamp, Belton Road, Loughborough, Leicestershire, LEll OTR.

Gas leak detector
Gow-Mac gas leak detector \#2l-2l2 Std. dc pump w/Audio (220V charger), Gow-Mac Instrument Co., 100 Kings Road, Madison, N.J. 07940, USA.

Fortin barometer
Griffin \& George Ltd., Bishop Meadow Road, Loughborough, Leicestershire, LEll ORG.

Dry-box with neoprene/butyl/neoprene sandwich gloves (9), Lintott MKl Twin-Glove Box \#814, leak tested at 4.2 SWG for \(\frac{1}{2}\) hour and refurbished by Miller Howe Ltd., Watlington Industrial Estate, Watlington, Oxon, OX9 5LU.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{Table 2.2} \\
\hline \multicolumn{3}{|l|}{Materials and Manufacturer's Specifications} \\
\hline \multicolumn{3}{|l|}{Gases, Grade, \% purity} \\
\hline Hydrogen & 99.99 & BOC Ltd., Great West \\
\hline Nitrogen,"White spot" & 99.997 & House, Great West \\
\hline \multirow[t]{2}{*}{Argon (high purity)} & 99.999 & Road, Brentford, \\
\hline & & Middx., TW8 9DQ. \\
\hline Ammonia & 99.98 & BOC Special Gases, \\
\hline \multirow[t]{2}{*}{Helium grade A} & 99.995 & 24 Deer Park Road, \\
\hline & & London, SWl9 3uF. \\
\hline \multirow[t]{4}{*}{\begin{tabular}{l}
Hydrogen chloride \\
(electronic grade C)
\end{tabular}} & 99.99 & Air Products, \\
\hline & & Doncastle Road, \\
\hline & & Bracknell, Berks, \\
\hline & & RG12 4HL. \\
\hline \multicolumn{3}{|l|}{Materials} \\
\hline zinc wire & 99.99 & Goodfellows Metals \\
\hline \multirow[t]{3}{*}{\(00.250 \mu \mathrm{~m}\)} & & Ltd., Ruxley Towers \\
\hline & & Claygate, Esher, \\
\hline & & Surrey, KTlo OTS. \\
\hline
\end{tabular}

Cont.

Table 2.2 (cont.)
\begin{tabular}{|c|c|}
\hline Zinc Sulphide 99.99 & Aldrich Chemical Co. \\
\hline gold label, batch & The old Brickyard, \\
\hline 24,462-7,JL0301JK. & New Road, Gillingham, \\
\hline Molecular Sieves. & Dorset, SP8 4SL. \\
\hline Mercury, & Alexander Pickering \\
\hline trebly distilled & \& Co. Ltd., 148, \\
\hline & Edinburgh Avenue, \\
\hline & Trading Estate, \\
\hline & \begin{tabular}{l}
Slough, Berkshire. \\
(Co. ceased trading)
\end{tabular} \\
\hline Ethanol, absolute 99.7 & James Burroughs (FAD) \\
\hline quantity ARI00 & Ltd., 70, Eastways \\
\hline & Ind. Parks, Witham, \\
\hline & Essex, CM8 3YE. \\
\hline Other Standard Analar & BDA Chemicals Ltd., \\
\hline Regents: zinc Chloride, & Bloom Road, Poole, \\
\hline Silver Nitrate, Sodium & Dorset, BHl2 4NN. \\
\hline Chloride, Ammonium Chloride & \\
\hline Magnesium Perchlorate and & \\
\hline conc. Acids. & \\
\hline Copper Turnings. & \\
\hline
\end{tabular}



\section*{References}
1. T.R. Marrero and E.A. Mason, J.Phys.Chem.Ref. Data, \(1972,1,3\).
2. D. Battat, M.M. Faktor, I. Garrett and R.H. Moss, J.C.S. Faraday I, 1974, 70, 2302.
3. A. Finch, P.J. Gardner, E. Tarbox and S. Yardley, JCS Faraday I, 1979, 75, 545.
4. B. de Largy, A. Finch and P.J. Gardner, J.Cryst. Growth, 1983, 61, 194.
5. B. de Largy, A. Finch, P.J. Gardner and N. Kell, JCS Faraday I, 1983, 79, 383.
6. M.H. Lyons, Ph.D. Thesis, 1982, Royal Holloway College, University of London.
7. E.J. Tarbox, Ph.D. Thesis, 1977, Royal Holloway College, University of London.
8. M.H. Davis, Ph.D. Thesis, 1983, Royal Holloway College, University of London.
9. M.M. Faktor, I. Garrett and M.H. Lyons, J. Cryst. Growth, 1979, 46, 21.
10. E. Robens, Vacuum Microbalance Techniques, 1971, 8, 73, Plenum Press, New York.
11. BS 4937:Part 2: 1973, British Standard Institution, London.
12. H.L. Yakel and J. Brynestad, Inorganic Chemistry, 1978, 17, 3294; 1978, 17, 1376.
13. S.H. White, "Molton Salt Techniques", ed. Lovering and Gale, 1981, 1, pl9-54. Plenum, New York.
14. S.H. White, "Ionic Liquids", ed. Inman and Lovering, 1981, pl85-247, Plenum, New York.
15. C.A. Melendres, J.P. Ackerman and R.K. Steunenberg, Proceedings of the International Symposium on Molten Salts, ed. J. Braunstein, The Electrochemical Society, 1976, 575.
16. A.J. Bard and L.K. Faulkner, "Electrochemical Methods, Fundamentals and Applications", 1980, John Wiley \& Sons, New York.
17. A. Bettelheim, F. Broitman and U. Mar. J.Electrochem.Soc: Electrochemical Science and Technology, 1985, 132, 1588.
18. Y. Kanzaki and M. Takahashi, J.Electroanal. Chem. Interfacial Electrochem., 1975, 58, 339.
19. T. Yamaguchi and O. Lindqvist, Acta Chem.Scand., 1981, A35, 727.
20. C. Perchard and A. Novak, Spectrochimica Acta, 1970, 26A, 871.
21. W.J. Asher, D.E. Scaife and J.A. Watts, Aust.J.Chem., 1972, 25, 2301.
22. P.R. Kruesi and W.H. Kruesi, US Patent 4500498 , 1985.
23. A.I. Vogel, "Quantitative Inorganic Analysis", 3rd edition, 1972, Longman, London.

\title{
Chapter 3 \\ Binary Gaseous Diffusion Coefficients
}

\subsection*{3.1 Introduction}

Binary diffusion coefficients of gases are important parameters needed in the design of reactors where chemical vapour transport or gas-phase reactions are involved'. Diffusion coefficient measurements fall into two groups, those aimed at gaining greater understanding of the intermolecular forces \({ }^{2}\) and those, as in this work, aimed at obtaining data on systems of practical importance. In view of the scarcity of reliable experimental data for diffusion coefficients, they are commonly estimated from kinetic theory. Although experimental measurements are preferred, their determination is often time-consuming especially over a wide range of temperatures and pressures \({ }^{3}, 4,5\). However the modified entrainment method provides \(a\) rapid and accurate technique for the measurement of binary gaseous diffusion coefficients at atmospheric pressure \({ }^{6}\). A reliable equation (3.3.1) orginally developed from binary pairs of spherical non-polar molecules at low pressure proposed by Chapman and Enskog using rigourous kinetic theory was extensively investigated by Hirschfelder, Bird and Sprotz?. This equation is used throughout this thesis to compare experimental data with theory or to derive accurate theoretical diffusivities in their absence.

In the present work, the modified entrainment method (MEM) was used to determine experimental values for the diffusivities of metal vapours (zinc and mercury) in non-reacting atmospheres (hydrogen, helium, nitrogen and argon). The work on the zinc-hydrogen system was also undertaken for the purpose of validating a newly-modified MEM rig (new purification and gas flow control systems) and a new design capsule (the re-entrant capillary pattern - see figure 2.2).
3.2 Binary Diffusion Coefficients - theory

The flow of material from one region to another is an example of mass transport. When a gas is of uniform density but non-uniform composition, the molecules diffuse through the system until the composition is uniform throughout. This molecular flux motion is the rate of flow passing through unit area in unit time commonly expressed in terms of mol \(\mathrm{m}^{-2} \mathrm{~s}^{-1}\) or \(\mathrm{kg} \mathrm{m} \mathrm{m}^{-2} \mathrm{~s}^{-1}\). Experimental observation on the rate of diffusion or mass transport in one dimension (the \(Z\) direction) shows that the flux ( \(J_{i}\) ) is proportional to the concentration gradient
\[
\begin{equation*}
J_{i} \quad \alpha \quad-\frac{d N_{i}}{d z} \tag{3.2.1}
\end{equation*}
\]
where \(N=\) nos. of molecules per unit volume (or mass) of species i. Mass flow occurs down a concentration
gradient, as conventionally indicated by the negative sign and the constant of proportionality in the mass flux expression is \(D\), the diffusion coefficient or diffusivity (see figure 3.1 - concentration decreasing to the right).


Figure 3.1 The Flux of Particles Down a Concentration Gradient
This is Fick's First Law,
\(J_{i}=-D_{i}\left(\frac{d N_{i}}{d Z}\right)\)

The proportionality constant for a binary gaseous diffusion coefficient ( \(D_{\text {AB }}\) ) describes the relative molecular interaction (movement) between two different molecules (species A and species B) in a gas mixture.

For the sublimation of a single substance (say, zinc) during modified entrainment, the rate of weight loss \((\stackrel{\circ}{\omega})\) at temperature (T) is related to the equilibrium vapour pressure \(\left(\mathrm{p}_{\mathrm{Zn}}^{\mathrm{O}}\right)\) by
\(\mathrm{p}_{\mathrm{Zn}}^{\circ}=\mathrm{P}\left(1-\mathrm{e}^{-\xi}\right)\) where \(\xi=\frac{\stackrel{\circ}{\omega} \mathrm{RT} \ell}{D \mathrm{AMP}}\)
where \(P\) is the total pressure in the system (atmospheric plus ca. 4 mmHg , this slight excess in the MEM system generates a positive pressure so that any leakages would occur out from the system rather than inwards), \(M\) is the atomic mass of zinc, \(D\) is the binary diffusion coefficient of zinc in the carrier gas, \(\ell\) and \(A\) are the length and cross-sectional area of the channel determined as described in Section 1.4. At low pressures and over not too large a temperature range the following semi-empirical relationship \({ }^{4,8}\) shows the temperature variation of \(D_{A B}\)
\[
\begin{equation*}
D_{\mathrm{AB}}=D_{\mathrm{O}}\left[\frac{\mathrm{~T}}{\mathrm{~T}_{\mathrm{O}}}\right]^{1+\mathrm{s}} \tag{3.2.4}
\end{equation*}
\]
\[
\text { where } \begin{aligned}
D_{\mathrm{O}} / \mathrm{m}^{2} \mathrm{~s}^{-1}= & \text { binary diffusion constant at } \\
& \text { reference temperature, } \\
\mathrm{T}_{\mathrm{O}} / \mathrm{K}= & \text { reference temperature, taken as } \\
& 273.15 \mathrm{~K} .
\end{aligned}
\]

\begin{abstract}
For a simple molecular model of ideal rigid spheres, \(1+s=1.5\) independent of temperature. Actual gas pairs, however, have appreciably greater values of \(1+s\), usually between 1.5 and 2 . The inverse pressure dependence of the diffusion coefficient could also have been included, but the small fluctuation in atmospheric pressure during the course of the MEM experiments cause changes in \(D_{\text {AB }}\) that are within the random scatter of the results.
3.3 Estimation of Binary Gaseous Diffusion Coefficients Chapman-Enskog, First-Order Approximation The classical theory of the transport properties of dilute gases based on the Chapman-Enskog (C-E) solution of the Boltzmann equation has been fully described',9. In the kinetic theory of a dilute binary gas mixture at low to moderate pressures Chapman and Enskog showed independently the working equation to be
\end{abstract}
\[
\begin{equation*}
D_{A B}=\frac{3}{16}\left[2 \pi k T \frac{M_{A}+M_{B}}{M_{A} M_{B}}\right]^{\frac{1}{2}} \frac{1}{n \pi \sigma^{2} A B^{\Omega_{D}}} f_{D} \tag{3.3.1}
\end{equation*}
\]
where, \(\mathrm{M}_{\mathrm{A}}, \mathrm{M}_{\mathrm{B}}=\) molecular masses
\(\mathrm{n}=\) number density of \(\mathrm{A}+\mathrm{B}\)
\(\mathrm{k}=\) Boltzmann's constant
\(T=\) absolute temperature.
\(\Omega_{\mathrm{D}}\), the collision integral for diffusion, is a function of temperature and depends upon the choice of the intermolecular force law between colliding molecules. \(\sigma_{\mathrm{AB}}\) is a characteristic length. Finally, \(f_{D}\) is a correction term which is of the order unity. If \(M_{A} \simeq M_{B}, 1.0 \leqslant f_{D} \leqslant 1.02\) regardless of composition of the nature of the intermolecular forces. Only if the molecular masses are very unequal and the light component is present in trace amounts, is the value of \(f_{D}\) significantly different from unity, and even in such cases, \(f_{D}\) is usually between 1.0 and \(1.1{ }^{4}\).

When \(f_{D}\) is chosen as unity and \(n\) expressed by the ideal-gas law, equation (3.3.1) may be written as
\[
D_{A B}=1.858 \times 10^{->T^{3} / 2} \frac{\left[\left(M_{A}+M_{B}\right) / M_{A} M_{B}\right]^{\frac{1}{2}}}{P \sigma_{A B}^{2} \Omega_{D}}(3.3 .2)
\]
where
\[
\begin{aligned}
D_{\mathrm{AB}} / \mathrm{m}^{2} \mathrm{~s}^{-1}= & \text { binary diffusion coefficient for } \mathrm{A} \text { in } \mathrm{B} \\
\mathrm{~T} / \mathrm{K}= & \text { absolute temperature } \\
\mathrm{P} / \mathrm{atm}= & \text { total pressure } \\
\sigma_{\mathrm{AB}} / \AA= & \text { collision diameter, distance centers of } \\
& \text { molecules at zero potential energy, i.e., } \\
& \text { separation between molecular centers of } \\
& \text { unlike pairs upon collision. } \\
\Omega_{\mathrm{D}}= & \text { diffusion collision integral, } \\
& \text { dimensionless. }
\end{aligned}
\]

The collision integral has been tabulated as a function of \(\mathrm{kT} / \epsilon \mathrm{AB}\) where \(\epsilon \mathrm{AB}\) is the minimum energy in the intermolecular force law between species \(A\) and \(B^{7}, 10\). However in this work the analytical relations of Neufeld et al. \({ }^{11}\) or Chen \({ }^{12}\) which allows direct calculation of \(\Omega_{D}\) with an accuracy comparable to that of the best tabulated data \({ }^{10}\) have been used in equation (3.3.2).

Neufeld et al. equation is
\[
\begin{equation*}
\Omega_{D}=\frac{A}{T^{* B}}+\frac{C}{\operatorname{expDT}^{*}}+\frac{E}{\operatorname{expFT}^{*}}+\frac{G}{\operatorname{expHT}^{*}} \tag{3.3.3}
\end{equation*}
\]
\[
\begin{array}{rlrl}
\text { where } \mathrm{T}^{*} & =\mathrm{kT} / \epsilon \mathrm{AB} & \mathrm{~A}=1.06036 & \mathrm{~B}=0.15610 \\
\mathrm{C} & =0.19300 & \mathrm{D}=0.47635 & \mathrm{E}=1.03587 \\
\mathrm{~F} & =1.52996 & \mathrm{G}=1.7674 & \mathrm{H}=3.89411
\end{array}
\]
and Chen's corresponding equation is
\[
\Omega_{\mathrm{D}}=\mathrm{A}\left[\frac{\mathrm{kT}}{\epsilon_{\mathrm{AB}}}\right]^{-\mathrm{B}}+2\left[\frac{10 \mathrm{kT}}{\epsilon_{\mathrm{AB}}}\right]^{-\mathrm{C}}
\]
where \(A=1.075\)
\[
B=0.1615
\]
\[
\begin{equation*}
c=0.74 \log _{10}\left[\frac{10 \mathrm{kT}}{\epsilon_{\mathrm{AB}}}\right] \tag{3.3.4}
\end{equation*}
\]

These equations have been calculated assuming the intermolecular potential is the Lennard-Jones (12-6) potential, consequently \({ }^{\epsilon} \mathrm{AB}\) and \(\sigma_{\mathrm{AB}}\) are the characteristic (12-6) LJ parameters.

Lennard-Jones and Devonshire (see ref. 7) proposed an equation for the intermolecular energy ( \(\Phi\) ) between two molecules at a distance of separation \(r\) as
\[
\Phi(r)=4 \epsilon\left[\left[\frac{\sigma}{r}\right]^{12}-\left[\frac{\sigma}{r}\right]^{6}\right]
\]
and illustrated in figure 3.2 .


Figure 3.2 Lennard-Jones (12-6) Potential

This potential has been widely used in statistical mechanical calculations of low density gas phenomena. The IJ (12-6) potential continues to be employed in much thermophysical and thermodynamic research as a convenient and realistic characterisation.

Further, more elaborate potentials are only partially successful in their interpretation of the results for complicated molecules. Application of Chapman-Enskog theory to the viscosity of pure gases and the corresponding state correlations has led to the formation of many useful values of \(\epsilon\) and \(\sigma^{13}\).

Most experimental data have been obtained for pure gases, so that potential parameters are available only for the interaction of like molecules. In principle, the potential parameters for the interactions of unlike molecules can be derived from the transport properties of mixtures, but the inversion of such data is a formidable theoretical problem. In the case of LJ (12-6) potential, the semi-empirical combination rules (Lorentz-Berthalot rules)
\[
\begin{align*}
& \frac{{ }^{\epsilon} \mathrm{AB}}{\mathrm{k}}=\left[\frac{{ }^{\epsilon} \mathrm{AA}}{\mathrm{k}} \frac{{ }^{\epsilon} \mathrm{BB}}{\mathrm{k}}\right]^{\frac{1}{2}}  \tag{3.3.6}\\
& \sigma_{\mathrm{AB}}=\frac{1}{2}\left(\sigma_{\mathrm{AA}}+\sigma_{\mathrm{BB}}\right)
\end{align*}
\]
have been widely used for predicting the diffusion coefficients of mixtures of gases \({ }^{14}(k=\) Boltzmann's constant).

\begin{abstract}
It has been demonstrated that \(\epsilon-\sigma\) parameter sets determined from second virial coefficients, viscosity or diffusion coefficients can differ slightly in magnitude. The form of the Lennard-Jones potential is such that when regressing experimental data to find "best" values of \(\epsilon / \mathrm{k}\) and \(\sigma\), one cannot separate these potential parameters. That is \(\epsilon / k\) and \(\sigma\) are strongly interdependent and a high value of \(\sigma\) with low value of \(\epsilon / k\) will reproduce transport properties with the same precision as from a low value of \(\sigma\) and a high \(\epsilon / \mathrm{k}\).
\end{abstract}

\begin{abstract}
Using ( \(\epsilon / \mathrm{k}, \sigma\) ) pairs (or sets) from the same source i.e. both from second virial coefficients or both from viscosity data then diffusion coefficients may be estimated to about \(\pm 7 \%\) for non-polar mixtures and to about \(\pm 12 \%\) for mixtures of polar gases.

Diffusion coefficients are relatively insensitive to the choice of \(\epsilon\) and in the absence of experimental or recommended data, they were estimated from Svehla's linear correlation \({ }^{15}\) of \(\epsilon\) and \(T_{b}\) (normal boiling point)
\end{abstract}
\[
\begin{equation*}
\frac{\epsilon}{\mathrm{k}}=1.18 \mathrm{~T}_{\mathrm{b}} \tag{3.3.8}
\end{equation*}
\]

A method for estimating \(\sigma\) of monatomic and diatomic using the mean radius of an electron in the outermost electronic orbital has been proposed \({ }^{15,16}\). By assuming that two colliding molecules begin to repel when their change distributions, begin to overlap, the following equation was obtained.
\[
\begin{equation*}
\sigma_{\text {monatomic }}=2 r+1.8 \tag{3.3.9}
\end{equation*}
\]
where \(r\) is the mean radius of the outermost electronic orbital (see ref. 15 and 16) and 1.8 is an empirical constant adjusted to agree with experimentally determined values of \(\sigma\). Similar empirical relationships can be derived to diatomic and triatomic
molecules \({ }^{15,16}\).
Intuitively \(\sigma\) may be expected to correlate with some other parameter which quantifies the "size" of a molecule, e.g. \({ }^{3}\) رcircumscribed sphere, \({ }^{3}\) molar volume etc., the criteron for the chosen function is that it must be readily available or easily calculated. The list in Appendix \(C\) of ref. 3, tabulates Lennard-Jones constants for 76 species including 18 diatomic or linear polyatomics. Rejecting data for \(I_{2}\) and \(H I\), the IJ force constants for the remaining 16 species gave a satisfactory linear correlation ( \(r^{2}-0.91\) ) with the square root of the moment of inertia, \(I / g \mathrm{~cm}^{2}\)
\[
\begin{equation*}
\sigma / \AA=3.411 \pm 0.087+(0.549 \pm 0.047) 10^{19} / I \tag{3.3.10}
\end{equation*}
\]
and this correlation was used to determine \({ }^{\sigma} \mathrm{ZnCl}_{2}=4.64 \AA\) and \(\sigma_{\mathrm{Zn}_{2} \mathrm{Cl}_{4}}=5.24 \AA\). For \(\mathrm{Zn}_{2} \mathrm{Cl}_{4}\), \(D_{2 h}\) symmetry was assumed, the internal bond angles set to \(90^{\circ}\), and the bridging bond lengths set to 1.1 times the terminal bond lengths which were assumed to be \(2.05 \AA\) as in \(\mathrm{ZnCl}_{2}\). Finally \(\mathrm{I}\left(\mathrm{Zn}_{2} \mathrm{Cl}_{4}\right)=\left(\mathrm{I}_{\mathrm{X}} \mathrm{I}_{\mathrm{Y}} \mathrm{I}_{\mathrm{Z}}\right)^{1 / 3}\) where \(I_{i}\) are the principal moments. These structural assumptions are common to all \(\mathrm{M}_{2} \mathrm{Cl}_{4}\) species quoted in JANAF tables \({ }^{17}\). Chapman and Enskog have shown that for binary diffusion there is only a very small compositional dependence and this is only significant when \(M_{A}>M_{B}\). Consequently no account of this was
taken in the experiment work to determine \(D_{A B}\). The situation is quite different when systems of three or more gases were investigated, that composition dependence was taken into account by applying a multicomponent diffusion correction procedure (discussed in section 3.4).

Finally in the case of polyatomic gas mixtures, it has been demonstrated \({ }^{18}\) that, owing to the insensitivity or robustness of the diffusion coefficient (and viscosity) to inelastic collisions and to the asymmetry of the potential, equation (3.3.2) still retains its validity.

Graham's Law of Scaling
Another technique used to estimate binary gaseous diffusion coefficents is by using Graham's Law of Scaling. The diffusion coefficients of gases 2 and 3 into a reference gas 1 should vary inversely as the square root of the molecular weights of 2 and 3
\[
\begin{equation*}
\frac{D_{13}}{D_{12}}=\left[\frac{M_{2}}{M_{3}}\right]^{\frac{1}{2}} \tag{3.3.11}
\end{equation*}
\]

It has been stressed \({ }^{19}\) that the above equation is actually a crude approximation for most systems, although it is correct in the limiting case that the reference gas \(l\) has molecules which are infinitely large and heavy compared to the molecules of 2 and 3. A more rigorous scaling expression is
\(\frac{D_{13}}{D_{12}}=\left[\begin{array}{l}M_{2} \\ M_{3}\end{array}\right]^{\frac{1}{2}}\left[\left[\begin{array}{l}M_{1}+M_{3} \\ M_{1}+M_{2}\end{array}\right]^{\frac{1}{2}} \begin{array}{lll}\sigma_{12}^{2} \Omega_{12} \\ \frac{12}{\sigma_{2}} \Omega_{13}\end{array}\right]\)

This equation (3.3.12) was used to scale the results for zinc chloride from a system with structural similarity for which reliable experimental data exist. The chosen reference system was \(\mathrm{CO}_{2}-\mathrm{Ar}\) for which \({ }^{3}\)
\(D\left(\mathrm{CO}_{2}, \mathrm{Ar}\right) / \mathrm{m}^{2} \mathrm{~s}^{-1}=1.74 \times 10^{-9} \mathrm{~T}^{1.646} / \mathrm{exp}(89.1 / \mathrm{T})\)
(296-1800 K)
(3.3.13)

Applying the usual combining rules for \(\sigma_{12}\) and \(\epsilon_{12}\) calculated via the equations (3.3.6 to 3.3.8), correlating with the square root of moment of inertia shown previously in this section and interpolating \(\Omega_{D}\) using the appropriate formula \({ }^{12}\), diffusion coefficient equations for zinc chloride monomer and dimer were estimated from equation (3.3.12) over the temperature range 630 to 980 K then linearly regressed to a power formula in \(T\)
\[
\begin{equation*}
D\left(\mathrm{ZnCl}_{2}, \mathrm{Ar}\right) / \mathrm{m}^{2} \mathrm{~s}^{-1}=8.624 \times 10^{-6}(\mathrm{~T} / 273.15)^{1.760} \tag{3.3.14}
\end{equation*}
\]
\(D\left(\mathrm{Zn}_{2} \mathrm{Cl}_{4}, \mathrm{Ar}\right) / \mathrm{m}^{2} \mathrm{~S}^{-1}=6.793 \times 10^{-6}(\mathrm{~T} / 273.15)^{1.761}\)

\subsection*{3.4 Multicomponent Diffusion with one Majority Component}

In complex equilibria, the effect of multicomponent diffusion (the influence of a third gas on the diffusion flux of the first into the second) has been theoretically worked out \({ }^{20}\). The algebra is tedious, particularly for more than three components.

For modified entrainment systems studied two points are relevant
1) they are dilute gas mixtures in the presence of a majority component, for example, the minority components \(\mathrm{ZnCl}_{2}(\mathrm{~g}), \mathrm{Zn}_{2} \mathrm{Cl}_{4}(\mathrm{~g})\) and \(\mathrm{Zn}(\mathrm{g})\) in excess argon or hydrogen acting as the bulk carrier gas. The kinetic theory of multicomponent mixtures of dilute gases via Stefan-Maxwell equations \({ }^{21}\) show that in order to compute the coefficients of such mixtures all that is necessary is information about the binary diffusion coefficient for each pair of constituents.
2) systems where the majority component in \(\mathrm{H}_{2}\) must be treated with caution - here multicomponent diffusion effects are often quite significant, qualitatively because the intermolecular intersection of \(H_{2}\) is unusual when its small size is compared with the inorganic species present. The experimental temperatures in this work were too high for quantum effects with \(\mathrm{H}_{2}\) to be significant.

Equation and Format used for Multicomponent Diffusion (MCD) in Modified Entrainment Systems

Using a second-order approximation for multicomponent diffusion \({ }^{20}\), it has been shown that the diffusion coefficient \(\mathrm{D}(\mathrm{HCl}, \mathrm{m})\) (where \(\mathrm{m}=\) mixture of the species in the gas phase) may be replaced by the binary coefficient \(D(H C l, m)\) (where now \(m=\) the majority component, taken for the example to be Ar subsequently) divided by a composition dependent factor \(\gamma_{\mathrm{HCl}}\) :
\[
\begin{equation*}
\mathrm{D}_{\mathrm{HCl}}=D_{\mathrm{HCl}} / \gamma_{\mathrm{HCl}} \tag{3.4.1}
\end{equation*}
\]
where
\[
\gamma_{\mathrm{HCl}}=1+\mathrm{a}_{\mathrm{HCl}} \epsilon+\mathrm{b} \xi_{\mathrm{HCl}}
\]
and
\[
\epsilon=\frac{\mathrm{p}_{\mathrm{HCl}}^{\mathrm{O}}}{\left(\mathrm{p}_{\mathrm{HCl}}^{\mathrm{O}}+\mathrm{p}_{\mathrm{Ar}}^{\mathrm{O}}\right)}
\]
and \(a\) and \(b\) are functions of other binary diffusion coefficients and fluxes (see below). However at low values of \(\epsilon\) the gas mixture is sufficiently dilute so that the gamma factor is close to unity. The flow of the transporting and carrier gases are controlled by mass flow controllers calibrated in \(\mathrm{cm}^{3} \mathrm{~min}^{-1}\) (stp).
```

Hence the pressure fraction (}\epsilon\mathrm{ , overleaf) may be
re-written in terms of flow rates (FR)
\epsilon=\frac{FR(HCl)}{\textrm{FR}(\textrm{Ar})+\textrm{FR}(\textrm{HCl})}
Notice that \epsilon=0 except when HCl(g) is used as a
reactive gas (chemical vapour transport process),
mixed with argon or hydrogen as carrier gas.
The exact form of the coefficients }a\mathrm{ and }b\mathrm{ in
(3.4.1) is not derived in detail in this thesis.
However, the single most important aspect of the
derivation 20 is that the flux of any species may be
written as a first order linear differential equation,
the solution of which is the concentration of that
species as a function of distance along the channel.
To solve these equations, the concentration (mole
fraction, }\mp@subsup{\textrm{x}}{\textrm{i}}{}\mathrm{) is written as a power series in }\epsilon\mathrm{ ,
truncating at order two

```
\[
\begin{equation*}
x_{i}=f_{1} \epsilon+f_{2} \epsilon^{2} \tag{3.4.2}
\end{equation*}
\]

This is the origin of the description, "a second order approximation".
```

Example of MCD correction for Zinc Sulphide Transport
in mixture of HCl(g) and Ar(g)
The relevant equilibria are (consult Chapter 5,
Appendix A2.4 and A3.5 for further details)
ZnS(c)+2HCl}(g)=\mp@subsup{\textrm{ZnCl}}{2}{}(\textrm{g})+\mp@subsup{\textrm{H}}{2}{}\textrm{S}(\textrm{g})\quad\mp@subsup{\textrm{K}}{12}{
2ZnCl
ZnS (c) = Zn(g) + \frac{1}{2}\mp@subsup{S}{2}{}(g)}\mp@subsup{\textrm{K}}{10}{
H2}(g)+\frac{1}{2}\mp@subsup{S}{2}{}(g)=\mp@subsup{H}{2}{}\textrm{S}(\textrm{g})=\mp@subsup{\textrm{K}}{1}{
The flow rates of HCl and Ar were 6.0 and 84.0
cm }\mp@subsup{}{}{3}\mp@subsup{\textrm{min}}{}{-1}\mathrm{ (stp) respectively giving }\epsilon=0.0667. Th
coding for the participating gaseous species used for
the written computer program (ZNSHCllO.FOR) in
Appendix 3.5 was

| ZnCl_{2} | l | Zn | 5 |
| ---: | ---: | ---: | ---: |
| $\mathrm{Zn}_{2} \mathrm{Cl}_{4}$ | 2 | $\mathrm{~S}_{2}$ | 9 |
| HCl | 3 | $\mathrm{H}_{2} \mathrm{~S}$ | 10 |
| H_{2} | 4 | Ar | 11 |

then,
$1,2,4,5,9,10$ are MINORITY species j,
3 is the transporting species h,
11 is the MAJORITY species A.

```

Gamma correction for minority species
\[
\begin{equation*}
\gamma_{\mathrm{i}}=1+\mathrm{a}_{\mathrm{i}} \epsilon+\mathrm{b} \xi_{\mathrm{i}} \tag{3.4.3}
\end{equation*}
\]
where
\[
\begin{aligned}
& a_{i}=\left[\frac{D_{i A}}{D_{i h}}-1\right] \\
& b_{i}=\left\{\sum_{j}\left[\frac{1}{2}\left[\frac{D_{i A}}{D_{i j}}-1\right]\left[\frac{D_{i A}}{D_{j A}}-1\right] \frac{J_{i}}{J}\right]-\frac{1}{2}\right\}
\end{aligned}
\]

The relationship between \(i\) and \(j\) is summarised in the following matrix,
\begin{tabular}{c|rrrrrr}
\(i\) & & & \(j\) \\
1 & 2 & 4 & 5 & 9 & 10 & 3 \\
2 & 1 & 4 & 5 & 9 & 10 & 3 \\
4 & 1 & 2 & 4 & 9 & 10 & 3 \\
5 & 1 & 2 & 4 & 9 & 10 & 3 \\
10 & 1 & 2 & 4 & 5 & 10 & 3 \\
\hline & 1 & 2 & 4 & 5 & 9 & 3
\end{tabular}

For the transporting species ( HCl or 3), the coefficient \(b_{i}\) is similarly defined but \(a_{i}\) is defined differently
\[
\gamma_{3}=1+a_{3} \epsilon+b_{3} \xi_{3}
\]
where
\[
\begin{aligned}
a_{3}= & -\left[\frac{D_{3}, 11}{D_{3}, 1}-1\right] \frac{J_{1}}{J}-\left[\frac{D_{3,11}}{D_{3,2}}-1\right]_{\frac{J}{J}}^{J_{2}} \\
& -\left[\frac{D_{3,11}}{D_{3,4}}-1\right]_{\frac{J}{J}}^{J_{4}}-\left[\frac{D_{3,11}}{D_{3,5}}-1\right] \frac{J_{5}}{J} \\
& -\left[\frac{D_{3,11}}{D_{3,9}}-1\right]_{\frac{J}{J}}^{J_{9}}-\left[\frac{D_{3,11}}{D_{3,10}}\right]_{10}^{J_{10}}-\frac{J}{J_{3}}
\end{aligned}
\]
\(b_{3}\) is given by the equation above for \(b_{i} . i\) and \(j\) are related as before
\begin{tabular}{l|llllll} 
i & \multicolumn{6}{|c}{\(j\)} \\
\hline 3 & 1 & 2 & 4 & 5 & 9 & 10
\end{tabular}

In all of the expressions for \(a_{i}\) and \(b_{i}\) the ratios of the binary diffusion coefficients are estimated from Graham's law scaling viz
\(D_{(i, j)}=\left[\frac{D_{1}}{D_{j}}-1\right] \simeq\left[\frac{M_{j}}{M_{i}}\right]^{\frac{1}{2}}-1\)
e.g.
\(D(11,4)=\left[\frac{D_{A_{11}}}{D_{A_{4}}}-1\right] \simeq\left[\frac{M_{4}}{M_{11}}\right]^{\frac{1}{2}}-1\)
where \(M_{j}\) is the molecular weight for species \(j\).
Figure 3.3 is a flowchart which outlines the computational method for calculating MCD gamma corrections \(\left(\gamma_{i}\right)\). The method employed is reiterative because the equation for \(\gamma_{i}(3.4 .3)\) contains the transport function, \(\xi_{i}\), which itself depends on \(\mathrm{D}(\mathrm{i}, \mathrm{m})\). Consequently the first estimate of \(\mathrm{D}(\mathrm{i}, \mathrm{m})\) is set to the corresponding binary \(D(i, m)\). This is equivalent to setting \(\gamma_{i}\) to unity. Iteration is initiated, successively updating \(D(i, m)\), until consecutive values of \(\gamma_{i}\) differ by \(<1\) in \(10^{4}\) (the termination criteron). Binary gaseous diffusion coefficients are determined from experimental results or estimated by the Chapman-Enskog first order approximation (see section 3.5 ). It was found that the \(\gamma_{i}\) corrections were always close to unity

```

indicating the MCD coefficients only played a
secondary role in MEM systems chosen, being always
similarly to the binary diffusion coefficients (see
table 3.1)

```
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Table 3.1} & \multicolumn{6}{|l|}{Typical values for the multicomponent diffusion correction coefficients (equation [3.4.3])} \\
\hline T/K & \(\underset{\sim}{2}\left[\mathrm{ZnCl}_{2}\right]\) & \(\left.\underset{\sim}{\left[2 n_{2}\right.} \mathrm{Cl}_{2}\right]\) & \(\underset{\sim}{2[\mathrm{HCl}]}\) & \(\underset{\sim}{2\left(\mathrm{H}_{2}\right)}\) & \(r[2 n]\) & \(\underset{\sim}{2}\left[S_{2}\right]\) & \(\gamma[\mathrm{H}, \mathrm{S}]\) \\
\hline 1024 & 0.9974 & 0.9969 & . 9124 & . 9989 & . 9978 & . 9987 & . 9983 \\
\hline 1159 & 0.9975 & 0.9965 & . 9525 & 1.0010 & . 9985 & . 9993 & . 9997 \\
\hline 1252 & 0.9977 & 0.9959 & . 9681 & 1.0028 & . 9991 & 1.0002 & 1.0009 \\
\hline
\end{tabular}
3.5 Binary Gaseous Diffusion Coefficients of Zinc and Mercury in Inert Gases

The transport of \(\mathrm{Zn}(\mathrm{g})\) in \(\mathrm{H}_{2}\) is a suitable process for the validation of the vapour transport equipment. Also the result is required for the analysis of the \(\mathrm{ZnS} / \mathrm{H}_{2}\) transport experiments in Chapter 5. The equations relating the experimental rate of mass loss \((\stackrel{\circ}{\omega})\), the temperature (T), the channel resistance \(\left(\ell / r^{2}\right)\) and the equilibrium vapour pressure of zinc \(\left(\mathrm{p}_{\mathrm{Zn}}^{\mathrm{O}}\right)\) were given in detail in chapter 1.4 as
\[
\begin{equation*}
\mathrm{p}_{\mathrm{Zn}}^{\circ}=\mathrm{P}\left(1-\mathrm{e}^{-\xi}\right) \text { where } \xi=\frac{\stackrel{\circ}{\omega R T \ell}}{D_{\left(\mathrm{Zn}, \mathrm{H}_{2}\right)}^{\mathrm{AMP}}} \tag{3.5.1}
\end{equation*}
\]
\(\therefore D_{\left(\mathrm{Zn}, \mathrm{H}_{2}\right)}=\frac{\stackrel{\circ}{\omega R T \ell}}{\left[\operatorname{AMPln}\left(1+\mathrm{p}_{\mathrm{Zn}}^{O} / \mathrm{P}\right)\right]}\)

The transport of \(\mathrm{Zn}(\mathrm{g})\) in \(\mathrm{H}_{2}\) was studied in the range 689-1118 \(\mathrm{K}\left(\mathrm{T}_{\mathrm{m}}=693 \mathrm{~K} ; \mathrm{T}_{\mathrm{b}}=1186 \mathrm{~K}\right)\). Fifty-six points were recorded with approximately 1 mg mass loss per point; the corresponding rates of mass loss \((\stackrel{\circ}{\omega})\) range from \(3.22 \times 10^{-12} \mathrm{~kg} \mathrm{~s}^{-1}\) at 693 K to \(1.64 \times 10^{-8}\) \(\mathrm{kg} \mathrm{s}^{-1}\) at 1118 K . The MEM data on zinc and mercury are collected in Appendix A4.1 and A4.2.

The equilibrium vapour pressure of molten zinc ( \(p_{\mathrm{Zn}}^{O}\) in equation (3.5.2)) was taken from a critical compilation by Nezmeyanov \({ }^{22}\)
\[
\begin{aligned}
\log _{10}\left(\mathrm{p}_{\mathrm{Zn}}^{\mathrm{O}} / \mathrm{Pa}\right) & =\mathrm{A}+\mathrm{B} / \mathrm{T}+\mathrm{CT}+\mathrm{Dlog}_{10} \mathrm{~T} \\
\text { where } \quad \mathrm{A} & =-5.7941 \\
\mathrm{~B} & =-5330.735 \\
\mathrm{C} & =-0.00161644 \\
\mathrm{D} & =5.59972
\end{aligned}
\]
over assumed \(\mathrm{T}_{\mathrm{m}}(693 \mathrm{~K})\) to \(\mathrm{T}_{\mathrm{b}}(1186 \mathrm{~K})\) temperature range.

A more recent compilation of thermodynamic data for the elements \({ }^{23}\) includes no further reliable results over the temperature range of interest, although the recommended values for the vapour pressure of liquid zinc are \(5 \%\) greater than those calculated using the above equation. The temperature dependence of gas-phase binary diffusion coefficients was expressed in the usual form (see section 3.2) to give
\(D^{\left(\mathrm{Zn}, \mathrm{H}_{2}\right)}=81.086 \times 10^{-6}(\mathrm{~T} / 273.15)^{1.539} \quad\) (3.5.4)
temperature range between 693 to 1118 K .
Rejection of 1 rogue datum point improved the correlation coefficient \(\left(r^{2}\right)\) for the regression of \(\ln D\left(\mathrm{Zn}, \mathrm{H}_{2}\right)\) vs. \(\ln (\mathrm{T} / 273.15)\) from 0.967 to 0.990 . The diffusion coefficient constants and subsequent data are compared with literature and theoretical data in tables 3.2 to 3.4 and figure 3.4
\begin{tabular}{|c|c|c|c|}
\hline Table 3.2 & \multicolumn{3}{|l|}{Comparison of Binary Diffusivities of
\[
\mathrm{Zn}(\mathrm{~g}) \text { in } \mathrm{H}_{2}, \mathrm{~T}_{\mathrm{O}}=273.15 \mathrm{~K}
\]} \\
\hline \multicolumn{4}{|l|}{Temp. Range/K \(10^{\circ} \mathrm{D}_{\mathrm{O}} / \mathrm{m}_{2} \mathrm{~s}\) (1+s) Source} \\
\hline 724-1027 & 68.6 & 1.709 & Ref. 6 \\
\hline 720-1120 & 71.4 & 1.761 & Theory \\
\hline - - - & 77.0 & 1.50 & Hard Sp \\
\hline \(693-1118\) & 81.1 & 1.539 & This wo \\
\hline \multicolumn{4}{|l|}{a previous result obtained in this laboratory} \\
\hline \multicolumn{4}{|l|}{b Chapman-Enskog theory (see section 3.3)} \\
\hline \multicolumn{4}{|l|}{c E.A. Moelwyn-Hughes, "Physical Chemistry", 2nd edition, 1965, pp 59-62, Pergamon.} \\
\hline
\end{tabular}



Values of \(D_{0}\) and \((1+s)\) shown in table 3.2 are all different but the corresponding value of \(D_{T}\) agrees to within \(74 \%\) over the complete temperature range. Ignoring the Hard Sphere result (an admittedly crude model) the agreement is better than \(84 \%\). The form of these constants \(D_{0} \& l+s\) are analogous to \(L J\) constants \(\epsilon \& \sigma\) is such that when calculating diffusion coefficients one cannot be used without the other. A corresponding study of the transport of \(\mathrm{Zn}(\mathrm{g})\) in helium, nitrogen and argon yielded the results in table 3.5 . Similar results for \(\mathrm{Hg}(g)\) in these gases are also collected in table 3.5.
\begin{tabular}{|c|c|c|c|}
\hline Table 3.5 & \multicolumn{3}{|l|}{Diffusion Coefficient Studies of Metal Vapour by MEM in Inert Gases} \\
\hline System & \(10^{6} \mathrm{D}_{\mathrm{O}} / \mathrm{m}^{2} \mathrm{~s}^{-1}\) & \(1+s\) & Temp. Range/K \\
\hline \(\mathrm{Zn}, \mathrm{H}_{2}\) & 81.086 & 1.539 & 690-1118 \\
\hline \(\mathrm{Zn}, \mathrm{He}\) & 57.431 & 1.632 & 829-1118 \\
\hline \(\mathrm{Zn}, \mathrm{N}_{2}\) & 18.795 & 1.673 & 800-1135 \\
\hline \(\mathrm{Zn}, \mathrm{Ar}\) & 12.423 & 1.793 & 820-1140 \\
\hline \(\mathrm{Hg}, \mathrm{H}_{2}\) & 59.616 & 1.535 & 421-589 \\
\hline Hg , He & 46.409 & 1.597 & 419-589 \\
\hline \(\mathrm{Hg}, \mathrm{N}_{2}\) & 12.525 & 1.761 & 429-590 \\
\hline \(\mathrm{Hg}, \mathrm{Ar}\) & 10.988 & 1.573 & 429-590 \\
\hline
\end{tabular}

The equation for the equilibrium vapour pressure of liquid mercury was that quoted in a recent critical re-determined by Ambrose and Sprake \({ }^{24}\) who used
\[
\begin{equation*}
\log _{10}\left(\mathrm{p}_{\mathrm{Hg}} / \mathrm{kPa}\right)=\mathrm{A}+\mathrm{B} / \mathrm{T}+\mathrm{CT}+\mathrm{DT}^{2} \tag{3.5.5}
\end{equation*}
\]

Temp. Range 400-688 K
\[
\begin{aligned}
& A=7.658791 \\
& B=-3279.230 \\
& C=-9.680031 \times 10^{-4} \\
& D=4.115463 \times 10^{-7}
\end{aligned}
\]

An earlier critical compilation by Nesmeyanov \({ }^{22}\) makes no significant differences to the calculated diffusion coefficient.

Values of \(\ln \left(D_{2>3.15}\right)\) and \((l+s)\) generally a non integral exponent (characteristic for a particular pair) are given in table 3.6 , together with their standard deviation of "coefficients" regress from the fitted line of \(\ln D_{T}\) vs. \(\ln (T / 273.15)\). These results are also compared graphically in figures 3.5 and 3.6 . Notice the temperature dependence of the diffusion coefficient for each system was well reproduced by fitting the experimental data to the logartithmic form of equation (3.5.4)
\[
\begin{equation*}
\ln \left(D_{\mathrm{AB}} / \mathrm{m}^{2} \mathrm{~s}^{-1}\right)_{\mathrm{T}}=\ln \left(D_{273.15}\right)+(1+\mathrm{s}) \ln (\mathrm{T} / 273.15) \tag{3.5.5}
\end{equation*}
\]

The plots are linear implying gas ideality behaviour in the MEM systems studied.
\begin{tabular}{|c|c|c|c|c|}
\hline Table & \multicolumn{4}{|l|}{3.6 Diffusivities of Zinc [690-1140 K] and Mercury [421-590 K] all at 1 Atm.} \\
\hline System & \(\operatorname{lnD}\) o & \(1+s\) & \(r^{2} \mathrm{a}\) & Pts.b used \\
\hline \(\mathrm{Zn}, \mathrm{H}_{2}\) & \(-9.4200 \pm 0.0264\) & \(1.5391 \pm 0.0209\) & 0.990 & 55/56 \\
\hline \(\mathrm{Zn}, \mathrm{He}\) & \(-9.7649 \pm 0.0148\) & \(1.6318 \pm 0.0116\) & 0.998 & 44/49 \\
\hline \(\mathrm{Zn}, \mathrm{N}_{2}\) & \(-10.8819 \pm 0.0481\) & \(1.6733 \pm 0.0380\) & 0.964 & 74/75 \\
\hline \(\mathrm{Zn}, \mathrm{Ar}\) & \(-11.2959 \pm 0.0754\) & \(1.7934 \pm 0.0575\) & 0.960 & 43/50 \\
\hline \(\mathrm{Hg}, \mathrm{H}_{2}\) & \(-9.7276 \pm 0.0136\) & \(1.5349 \pm 0.0217\) & 0.989 & 57/62 \\
\hline \(\mathrm{Hg}, \mathrm{He}\) & \(-9.9674 \pm 0.0235\) & \(1.5785 \pm 0.0372\) & 0.974 & 50/53 \\
\hline \(\mathrm{Hg}, \mathrm{N}_{2}\) & \(-11.2878 \pm 0.0181\) & \(1.7613 \pm 0.0287\) & 0.988 & 48/53 \\
\hline \(\mathrm{Hg}, \mathrm{Ar}\) & \(-11.4187 \pm 0.0194\) & \(1.5731 \pm 0.0287\) & 0.986 & \(46 / 50\) \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
a
\[
r^{2}=\text { correlation coefficient }
\] \\
b Pts used \(=\)
\(\qquad\) total no. of pts collected
\end{tabular}}} \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{\begin{tabular}{l}
\[
\begin{aligned}
\ln D_{\mathrm{T}} & =\ln D_{\mathrm{O}}+(1+\mathrm{s}) \ln \left(\mathrm{T} / \mathrm{T}_{\mathrm{O}}\right) \\
D_{\mathrm{T}} & =D_{\mathrm{O}}\left(\mathrm{~T} / \mathrm{T}_{\mathrm{O}}\right)^{1+\mathrm{s}}
\end{aligned}
\] \\
where \(o=273.15 \mathrm{~K}\) reference temp.
\end{tabular}} \\
\hline
\end{tabular}


Figure 3.5 Binary Gaseous Diffusion Coefficients of Zinc in Inert Gases 690-1140 K

Figure 3.6 Binary Gaseous Diffusion Coefficients of Mercury in Inert Gases 420-600 K

\subsection*{3.6 Discussion of Zinc and Mercury Diffusivity Data} Despite the careful purification of the carrier gases in the MEM system some trace of moisture and oxygen is inevitably present. Progressive formation of an oxide film on the liquid may lead to depressed evaporation rates because the experiments are conducted over a period of at least several days. The following equilibria with oxygen and hydrogen are relevant
```

2Zn(\ell)+O
ZnO(c)}+\mp@subsup{\textrm{H}}{2}{}(\textrm{g})=\textrm{Zn}(\ell)+\mp@subsup{\textrm{H}}{2}{}\textrm{O}(\textrm{g})\quad\mp@subsup{\textrm{K}}{2}{},\Delta\mp@subsup{\textrm{G}}{2}{O

```
        The standard Gibb's free energy change, \(\Delta G_{1}^{O}\) and
\(\Delta G_{2}^{O}\) taken from thermodynamic tables \({ }^{25}\) are,
\(\Delta \mathrm{G}_{1}^{\mathrm{O}}(\mathrm{T}) / \mathrm{J} \mathrm{mol}^{-1}=-706289+214 \mathrm{~T} \quad[700-1100 \mathrm{~K}](3.6 .1)\)
\(\Delta G_{2}^{O}(T) / \mathrm{J} \mathrm{mol}^{-1}=105541-52.8 \mathrm{~T}[700-1100 \mathrm{~K}](3.6 .2)\)
but
\[
\begin{equation*}
\Delta \mathrm{G}_{\mathrm{T}} / \mathrm{J} \mathrm{~mol}^{-1}=\Delta \mathrm{G}_{\mathrm{i}}^{\mathrm{O}}(\mathrm{~T})+\mathrm{RTln}_{\mathrm{i}} \tag{3.6.3}
\end{equation*}
\]
where \(i=1\) or 2 ,
\(\mathrm{Z}_{1}=\frac{\mathrm{a}^{2} \mathrm{ZnO}}{\mathrm{a}^{2} \mathrm{ZnPO}_{2}}\) for \(\mathrm{K}_{1}\), and \(\mathrm{Z}_{2}=\frac{\mathrm{a}_{\mathrm{ZnP}_{\mathrm{H}_{2} \mathrm{O}}}}{\mathrm{annOP}_{2}}\) for \(\mathrm{K}_{2}\)

Thus the position of the equilibria may be assessed at any temperature given the oxygen and moisture content of the carrier gas stream. Postulating a pessimistic level of oxygen impurity to be \(5 \mathrm{ppm}(\mathrm{v})\) and water vapour to be \(20 \mathrm{ppm}(\mathrm{v})\) and assuming the relevant activities of the condensed phases to be equal to 1 then
\[
\begin{equation*}
\Delta G_{1}(T)=\Delta G_{1}^{\circ}(T)+101.5 T \tag{3.6.4}
\end{equation*}
\]
and
\[
\Delta \mathrm{G}_{2}(\mathrm{~T})=\Delta \mathrm{G}_{2}^{\mathrm{O}}(\mathrm{~T})-90.0 \mathrm{~T}
\]
\begin{tabular}{|cc|}
\hline Table 3.7 & \begin{tabular}{c} 
Thermodynamic values of \(\Delta G_{1}\) and \(\Delta G_{2}\) \\
Over a temperature range \(700-1100 \mathrm{~K}\)
\end{tabular} \\
& \begin{tabular}{l} 
Assuming \(5 \mathrm{ppm}(\mathrm{v}) \mathrm{O}_{2}\) and \(20 \mathrm{ppm}(\mathrm{v}) \mathrm{H}_{2} \mathrm{O}\) \\
impurities
\end{tabular} \\
\hline \(7 / \mathrm{K}\) & \(\Delta \mathrm{G}_{1} / \mathrm{kJ} \mathrm{mol}^{-1}\) \\
700 & -476 \\
900 & -410 \\
1100 & -344 \\
\hline
\end{tabular}

From table 3.7 , it shows that \(\Delta G_{1}\) is negative and this indicates the formation of an oxide layer on
molten zinc is thermodynamically feasible. At regular intervals the sample was baked for a short period in hydrogen at 1173 K to remove any oxide film. A similar procedure was followed in the experiments with Hg, except that the baking temperature was much lower, 590 K.

Similarly, thermodynamic values \({ }^{25}\) for mercury(II) oxide and its reduction by a hydrogen gas stream were explored.
```

2Hg(\ell)+\mp@subsup{O}{2}{}(g)=2HgO(c) K

```


The relevant thermodynamic relationships are given in eqs. (3.6.6) and (3.6.7) and table 3.8 assuming pessimistic values of impurities of oxygen and water.
\(\mathrm{O}_{2}\) content \(5 \mathrm{ppm}(\mathrm{v})\)
\(\Delta \mathrm{G}_{3}(\mathrm{~T}) / \mathrm{J} \mathrm{mol}^{-1}=\Delta \mathrm{G}_{3}^{\mathrm{O}}(\mathrm{T})+101.5 \mathrm{~T}\)
where
\(\Delta \mathrm{G}_{3}^{\mathrm{O}}(\mathrm{T}) / \mathrm{J} \mathrm{mol}^{-1}=-185549+300 \mathrm{~T}-28.3 \mathrm{~T} \quad[248-600 \mathrm{~K}]\)
and
```

H2O content 20 ppm(v)
\DeltaG }\mp@subsup{4}{4}{}/\mp@subsup{\textrm{J mol}}{}{-1}=\Delta\mp@subsup{G}{4}{O}(T)-90.
where

$$
\Delta \mathrm{G}_{4}^{\mathrm{O}}(\mathrm{~T}) / \mathrm{J} \mathrm{~mol}^{-1}=-146822-170 \mathrm{~T}+36.3 \mathrm{Tlog}_{10} \mathrm{~T}
$$

$$
[248-600 \mathrm{~K}]
$$

```
\begin{tabular}{|cc|}
\hline Table 3.8 & \begin{tabular}{l} 
Thermodynamic Values of \(\Delta G_{3}\) and \(\Delta G_{4}\) \\
Over a temperature range \(298-600 \mathrm{~K}\)
\end{tabular} \\
& \begin{tabular}{l} 
Assuming \(5 \mathrm{ppm}(\mathrm{v}) \mathrm{O}_{2}\) and \(20 \mathrm{ppm}(\mathrm{v}) \mathrm{H}_{2} \mathrm{O}\) \\
impurities
\end{tabular} \\
\hline \(\mathrm{T} / \mathrm{K}\) & \(\Delta \mathrm{G}_{3} / \mathrm{kJ} \mathrm{mol}^{-1}\) \\
298 & -90 \\
400 & -59 \\
600 & +1
\end{tabular}

As shown in tables \(3.7\left(\Delta G_{1}\right)\) and \(3.8\left(\Delta G_{3}\right)\) the assumption of \(\simeq 5 \mathrm{ppm}\) of \(\mathrm{O}_{2}\) in the carrier gas stream, oxide formation is thermodynamically favourable in both experiments with Zn and Hg . Both HgO and ZnO are less dense than the liquid metals and consequently a thin film will slowly develop on the surface.

\begin{abstract}
Ultimately this will constitute a kinetic barrier to evaporation and the rates of mass loss will become time-dependent and irreproducible. This was not observed and hence it must be concluded that the regular baking \(\mathrm{H}_{2}\) was sufficient to remove any oxide layer.

The existence of gaseous mercury cluster (mainly dimers) has been reported 26,27 . However, in our experimental temperature, their concentration is \(\ll 1 \%\) by extrapolation of the equation in ref. (27) and hence their presence was ignored.
\end{abstract}
3.7 Validation of MEM Rig

The MEM has been exploited to measure binary diffusion coefficients when the vapour pressure of the material is known and the carrier gas used is inert to the evaporated species. The \(D(Z n\), carrier gas) results agree well with the previously determined values obtained in this laboratory using an older design "integral" channel instead of a "re-entrant" channel capsule. This agreement is regarded as a satisfactory test of the equipment and its associated hardware.
```

3.8 Binary Diffusion Coefficients: A Comparison
with Experimental Results with Theoretical
Predictions
Diffusion coefficients obtained from the
experiments described above are compared with those

```

\begin{abstract}
calculated from the Chapman and Enskog first approximation theory for binary pairs of spherical non-polar molecules at low pressures and with literature work where appropriate in tables 3.2, 3.3, 3.9 and 3.10 .

In general, the agreement between experimental and theoretical data is satisfactory and the extent of deviation is similar in both the zinc and the mercury (see tables 3.9 and 3.10 ), except in the case of the argon results. The rate of diffusion decreases as expected with increasing molecular mass of the carrier gas w.r.t. the metal used. Diffusion between metal vapour and hydrogen carrier gas is about 5 times faster than in the heaviest gas used, argon. Hence, when using hydrogen as a carrier gas in MEM the sample will be depleted about 5 times quicker than in argon, since the measured experimental parameter \((\stackrel{\circ}{\omega})\) is directly related to the diffusion coefficients.
\end{abstract}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Table 3.9} & \multicolumn{5}{|l|}{Diffusivities of Zinc in Inert Gases
\[
\text { units }=\frac{D(\mathrm{Zn}, \text { Carrier Gas }) \times 10^{-6}}{\mathrm{~m}^{2} \mathrm{~s}^{-1}}
\]} \\
\hline & T/K & ref.l & expt. & C-E & \%* \\
\hline \multirow[t]{3}{*}{\(D\left(\mathrm{Zn}, \mathrm{H}_{2}\right)\)} & 700 & 343 & 345 & 375 & 8 \\
\hline & 900 & 526 & 508 & 583 & 13 \\
\hline & 1100 & 742 & 692 & 803 & 17 \\
\hline \multirow[t]{3}{*}{\(D(\mathrm{Zn}, \mathrm{He})\)} & 700 & 289 & 266 & 372 & 28 \\
\hline & 900 & 436 & 402 & 567 & 29 \\
\hline & 1100 & 604 & 558 & 795 & 30 \\
\hline \multirow[t]{3}{*}{\(D\left(\mathrm{Zn}, \mathrm{N}_{2}\right)\)} & 700 & - & 91 & 81 & -12 \\
\hline & 900 & - & 138 & 127 & -9 \\
\hline & 1100 & - & 193 & 181 & -7 \\
\hline \multirow[t]{3}{*}{\({ }^{D}(\mathrm{Zn}, \mathrm{Ar})\)} & 700 & 61 & 67 & 75 & 11 \\
\hline & 900 & 107 & 105 & 118 & 11 \\
\hline & 1100 & 166 & 151 & 169 & 11 \\
\hline \multicolumn{6}{|l|}{\[
\begin{aligned}
C-E & =\text { Chapman-Enskog Theory } \\
* & =\frac{\text { theoretical (C-E)- experimental }}{\text { theoretical }} \times 100
\end{aligned}
\]} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Table 3.1 & \multicolumn{5}{|l|}{Diffusivities of Mercury in Inert Gases
\[
\text { units }=\frac{D\left(\mathrm{Hg}, \text { Carrier Gas) } \times 10^{-6}\right.}{\mathrm{m}^{2} \mathrm{~s}^{-1}}
\]} \\
\hline & T/K & ref. 28 & expt. & C-E & \%* \\
\hline \multirow[t]{3}{*}{\(D\left(\mathrm{Hg}, \mathrm{H}_{2}\right)\)} & 400 & - & 107 & 115 & 7 \\
\hline & 500 & - & 150 & 172 & 13 \\
\hline & 600 & - & 200 & 239 & 16 \\
\hline \multirow[t]{3}{*}{\(D(\mathrm{Hg}, \mathrm{He})\)} & 400 & - & 85 & 115 & 26 \\
\hline & 500 & - & 121 & 168 & 27 \\
\hline & 600 & - & 163 & 228 & 29 \\
\hline \multirow[t]{3}{*}{\({ }^{\text {( }}\) ( \(\mathrm{Hg}, \mathrm{N}_{2}\) )} & 400 & & 24 & 23 & -4 \\
\hline & 500 & - & 36 & 35 & -3 \\
\hline & 600 & - & 50 & 49 & -2 \\
\hline \multirow[t]{3}{*}{\({ }^{\text {D }}\) ( \(\mathrm{Hg}, \mathrm{Ar}\) )} & 400 & 23 & 20 & 20 & 0 \\
\hline & 500 & 33 & 28 & 31 & 10 \\
\hline & 600 & 44 & 38 & 44 & 14 \\
\hline \multicolumn{6}{|l|}{\[
\begin{aligned}
C-E & =\text { Chapman-Enskog Theory } \\
* & =\frac{\text { theoretical (C-E)- experimental }}{\text { theoretical }} \times 100
\end{aligned}
\]} \\
\hline
\end{tabular}

\section*{References for Chapter 3}
1. E.L. Cussler, "Diffusion: Mass Transfer in Fluid Systems", CUP, London, 1984.
2. E.A. Mason, Rev.Port.Quim., 1983, 25, 1.
3. R.C. Reid, J.M. Prausnitz and T.K. Sherwood, "The Properties of Gases and Liquid", 3rd edition, 1977, McGraw-Hill, New York.
4. T.R. Marrero and E.A. Mason, J.Phys.Chem.Ref. Data, \(1972,1,3\).
5. T. Park, T.R. Rettich, R. Battino and E. Wilhelm, J.Chem.Eng.Data, 1987, 32, 191.
6. A. Finch, P.J. Gardner, E.J. Tarbox and S. Yardley, JCS Faraday I, 1979, 75, 545.
7. J.C. Hirschfelder, C.F. Curtiss, R.B. Bird, "Molecular Theory of Gases and Liquid", Wiley, New York, 1954. References to the earlier work (including Spotz et al., Trans. ASME, 1949, 72, 921; Chem.Revs., 1949, 44, 205) can be obtained from this treatise on diffusion.
8. R.E. Walker and A.A. Westenburg, JCP, 1959, 31, 519; 1960, 32, 436.
9. S. Chapman and T.G. Cowling, "The Mathematical Theory of Non-Uniform Gases, CUP, London, 1939.
10. M. Klein, F.J. Smith, J.Res.Natl.Bur.Std., Sect. A, 1968, 72, 359.
11. P.D. Neufeld, A.R. Janzen, R.A. Aziz, J.Chem. Phys., 1972, 57, 1100.
12. N.H. Chen, I\&EC, 1959, 51, 1494.
13. L.S. Tee, S. Gotoh and W.E. Stewart, I\&EC Fundamentals, 1966, 5, 356.
14. E.A. Mason and L. Monchick, JCP, 1962, 36, 2746.
15. R.A. Svehla, NASA Tech.Rep. R-132, Lewis Research Center, Cleveland, Ohio, 1962.
16. J.O. Hirschfelder and M.A. Eliason, Annals.New York Acad.Sci., 1957, 67, 451.
17. D.R. Stull and H. Prophet, JANAF Thermochemical Tables, NSRDS-NBS 37, Catalog No. Cl3.48:37, U.S. Govt. Printing Office, Washington DC, 1971 and Supplements published in J. Phys.Chem. Ref. Data, 1974, 3, 3ll; 1975, 4, l; 1978, ㄱ, 793; 1982, 11, 695.
18. L. Monchick, K.S. Yun and E.A. Mason, J.Chem. Phys., 1963, 39, 654.
19. E.A. Mason and B. Kronstadt, J.Chem.Ed., 1967, 44, 740.
20. D. Battat, M.M. Faktor, I. Garrett, and R.H. Moss, JCS Faraday I, 1974, 70, 2293.
21. E.L. Cussler, "Multicomponent Diffusion", 1976, Elsevier.
22. A.N. Nesmeyanov, "The Vapour Pressure of the Chemical Elements", 1963, Elsevier.
23. R. Hultgren, P.D. Desai, D.T. Hawkins, D. Gleiser, K.K. Kelley and D.D. Wagman, "Selected Values of the Thermodynamic Properties of the Elements", 1973, American Society for Metals.
24. D. Ambrose and C.H.S. Sprake, J.Chem.Thermodyn., 1972, 4, 603.
25. I. Barin and O. Knacke, "Thermodynamical Properties of Inorganic Substances", 1973, Springer-Verlag, Berlin Heidelberg.
26. K. Hilpert, J.Chem. Phys., 1982, 77, 1425.
27. B. Stefanov, J.Chem.Phys. 1985, 83, 2621.
28. H.B. Spencer, J.M. Toguri and J.A. Kurtis, Cand.J.Chem., 1969, 47, 2197.

\section*{Chapter 4}

\author{
Zinc Chloride
}

\subsection*{4.1 Introduction}

There is a commerical interest in molten \(\mathrm{ZnCl}_{2}\) as a solvent and catalyst in the hydrocracking of coal slurries and heavy crude oil fractions \({ }^{1}\). Sulphur in the feedstock causes progressive poisoning of the melt by conversion to zinc sulphide. Several regeneration procedures have been employed including a fluidized-bed combustion \({ }^{1}\) in which zinc chloride is distilled from relatively-involatile impurities. Although the vaporisation of zinc chloride has been extensively investigatedr there remains an uncertainty of the published enthalpy and entropy changes for vaporisation. The most controversial aspect of these reports is the extent of polymerisation in the gas phase and the manner in which the extent varies with temperature. Neither vibrational spectra \({ }^{8-10}\), both from matrix isolation studies and high temperature gas examination, nor mass spectrometry \({ }^{3,7,11}\) provide unequivocal evidence for the presence of vapour dimers. Most thermodynamic results obtained from torsion effusion and transpiration, quasistatic vapour phase manometry are interpreted with the assumption that the vapour phase
between 591 and 1200 K contains monomer and dimer only. Furthermore, two independent \({ }^{3,5,6}\) careful manometric studies predict a quite different variation in dimer concentration with temperature in the vapour in equilibrium with the melt. The results of Keneshea and Cubicciotti \({ }^{3}\) indicate the pressure fraction of dimer falls with increasing temperature whereas the most recent work of Polyachenok et al.5,6 suggest the opposite.

The vaporisation has been re-examined in the temperature range 638 to 968 K by the modified entrainment method (MEM) in an attempt to resolve this uncertainty in the vaporisation thermodynamics and the variation of dimer concentration with temperature.

\subsection*{4.2 Structure of Zinc Chloride}

Zinc Chloride, crystal
Until the mid-nineteen seventies it was widely accepted \({ }^{12}\) that there were at least three distinct crystalline phases for zinc chloride, all stable (or metastable) at room temperature. Single crystal structures for three modifications (designated \(\alpha, \beta\) and \(\gamma\) ) have been reported by Brehler \({ }^{13}\) in which the zinc is tetrahedrally co-ordinated by chlorine in each modification. Brehler refutes an earlier claim that the structure is one in which Zn is six-fold co-ordinated by \(\mathrm{Cl}^{-}\). In 1978, Brynestad and Yakel \({ }^{14}\) prepared a scrupulously-anhydrous material which
showed different \(X\)-ray reflexions from any of known patterns and further their phase pattern transforms to one or more of Brehler's phases if it is imperfectly protected from the atmosphere. The currently-accepted structure is orthorhombic, space group Pna2, ( \(Z=4\) ), and consists of a hexagonal close packed lattice of \(\mathrm{Cl}^{-}\)ions with the \(\mathrm{Zn}^{2+}\) ions occupying one quarter of the available tetrahedral sites. Every \(\mathrm{Cl}^{-}\)ion is common to two \(\mathrm{ZnCl}_{4}\) tetrahedron with bridging atoms in the vertices but with no shared faces or edges.

The long-standing uncertainty over the crystal structure is most likely due to the high affinity of \(\mathrm{ZnCl}_{2}\) for water and samples obtained from aqueous solution, even when carefully dehydrated, contain a small proportion of \(\mathrm{OH}^{-}\)replacing \(\mathrm{Cl}^{-}\)ions and this induces slip along the glide planes to generate structures based on cubic close packing. As much of the thermodynamic data for \(\mathrm{ZnCl}_{2}\) are pre-1970 it will be important to assess the significance of slight moisture contamination on such data. Further, new studies to determine (or redetermine) thermodynamic parameters must utilize anhydrous samples.

Molten and Glassy \(\mathrm{ZnCl}_{2}\)
In recent years the chemistry and physics of molten and glassy \(\mathrm{ZnCl}_{2}\) have been widely studied \(15,16,17\) because of its unusual structural features and technological uses \({ }^{1,12 \text {. In the liquid }}\)
phase near the melting point ( \(\mathrm{T} \simeq 591 \mathrm{~K}\) ), \(\mathrm{ZnCl}_{2}\) shows a very high viscosity and a corresponding low electric conductivity. Furthermore it has been found that near the melting point its structure is similar to the glass phase \({ }^{17}\).

The liquid phase structure has been investigated directly by neutron \({ }^{15}\) and X -ray diffraction \({ }^{18}\) and inferred from vibrational spectroscopic examination \({ }^{19}\). Addition of other chlorides e.g. \(\mathrm{NiCl}_{2}, \mathrm{KCl}\) to the system induce a marked decrease and increase in viscosity and conductivity respectively. These changes are interpreted in terms of extended network or lattice structures and may be represented as solid-like regions persisting into the liquid phase. As the temperature is increased these networks collapse producing smaller units e.g. \(\mathrm{Zn}_{2} \mathrm{Cl}_{6}{ }^{2-}\), \(\mathrm{ZnCl}_{4}{ }^{2-}, \mathrm{ZnCl}_{3}{ }^{-}\), etc. and ultimately \(\mathrm{Zn}^{2+}\) and \(\mathrm{Cl}^{-}\). Thus \(\mathrm{ZnCl}_{2}\) appears to melt over an extended range instead of displaying a sharp melting transition typical of a pure material. Moreover, in 1956, Craw and Rogers \({ }^{20}\) noted published melting points varied between 239 and \(365^{\circ} \mathrm{C}\) and reported the mp of their carefully-purified form as \(318 \pm 2^{\circ} \mathrm{C}\). Current editions of reputable textbooks and data compilations still report divergent results e.g. \(275^{\circ} \mathrm{C}\) (Cotton and Wilkinson \({ }^{21}\) ), \(283^{\circ} \mathrm{C}\) (CRC Handbook \({ }^{22}\) ). These variations may be explained by the presence of
impurities in the \(\mathrm{ZnCl}_{2}\), particularly moisture, and the marked tendency for \(\mathrm{ZnCl}_{2}\) to supercool. An extended melting range is of course characteristic of a two component solid solution and the influence of \(\mathrm{OH}^{-}\)incorporated within the lattice of the melting characteristics remains an open question.

The neutron diffraction study \({ }^{15}\) performed at 600 K is less ambiguous. From integration of the appropriate radial distribution functions an average co-ordination of \(\mathrm{Zn}^{2+}\) by \(\mathrm{Cl}^{-}\)of \(4.3 \pm 0.3\) with an internuclear distance of \(2.29 \pm 0.02 \AA\) was found, a value very close to that found in the crystal. It was stressed that the mean 4-fold co-ordination of \(\mathrm{Zn}^{2+}\) indicated by this study does not necessarily imply the existence of discrete covalent \(\mathrm{ZnCl}_{4}{ }^{2-}\) ions, the four Cl- represent a statistical time-average with rapid exchange with neighbouring ions. This study also eliminates \(\mathrm{ZnCl}^{+}\)and \(\mathrm{ZnCl}_{3}^{-}\)and the authors clearly state the most satisfactory model for liquid \(\mathrm{ZnCl}_{2}\) is in terms of \(\mathrm{Zn}^{2+}\) and \(\mathrm{Cl}^{-}\)only. They also examined samples that were deliberately contaminated with moisture \((\simeq 4 \% \mathrm{w} / \mathrm{w})\) and found little change in the structure factors. The \(X\)-ray study \({ }^{23}\) is supportive of the general conclusions outlined above from the neutron diffraction work.

The measurement of diffusion coefficients in strong aqueous solutions of \(\mathrm{ZnCl}_{2}\), corresponding to
approximately \(\mathrm{ZnCl}_{2} 4 \mathrm{H}_{2} \mathrm{O}\), are interpreted in terms of long-lived \(\mathrm{ZnCl}_{4}{ }^{2-}\) ions \({ }^{24}\). Other physical properties of the melt are collected in Janz's "Molten Salt Handbook" 25 and recent studies by Angell et al. 26 and by Cacciola et al. \({ }^{27}\).
4.3 Thermodynamic Properties of \(\mathrm{ZnCl}_{2}\) Condensed Phases

Table 4.1 shows the standard thermodynamic constants for \(\mathrm{ZnCl}_{2}(\mathrm{c})\) taken from three critical compilations.


Only co shows any significant variation (from 75.6 to \(67.4 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\) ) and this most recent value derives
from Cubicciotti and Eding \({ }^{31}\) working in the range 300 to 1000 K . The fact that the remaining entries in the table show little change over a thirty year period does not necessarily mean they are well-established, only that they are based on early work.

Bates \({ }^{32}\) measured the emf of the reversible cell at four temperatures in the range 25 to \(40^{\circ} \mathrm{C}\),
\(\mathrm{Zn}-\mathrm{Hg}\) (2 phase amalgam) \(\mathrm{ZnCl}_{2}(\mathrm{c})+\) satd soln। AgCl,Ag (4.3.1)

The cell reaction is
\(\mathrm{Zn}(a m a l g a m)+2 \mathrm{AgCl}(\mathrm{c})=\mathrm{ZnCl}_{2}(\mathrm{c})+2 \mathrm{Ag}(\mathrm{c})(4.3 .2)\)
and \(\Delta G^{\circ}, \Delta H^{\circ}\) and \(\Delta S^{\circ}\) were extracted in the usual manner \({ }^{32}\) from the cell emf. As most of the results in table 4.1 derive from this study it is worth noting (i) hydrates of \(\mathrm{ZnCl}_{2}\) only precipitate below \(28^{\circ} \mathrm{C} 1^{2}\) so the \(25^{\circ} \mathrm{C}\) measurement was on "metastable" \(\mathrm{ZnCl}_{2}(\mathrm{c})\); the continuity of the emf-temperature plot between 25 and \(40^{\circ} \mathrm{C}\) indicates that the solid phase remained unhydrated down to \(25^{\circ} \mathrm{C}\).
(ii) independent work \({ }^{3}\), had shown the cell emf for \(\mathrm{Zn}(\mathrm{c}) 1 \mathrm{Zn}^{2+}(\mathrm{aq}) 1 \mathrm{Zn}-\mathrm{Hg}(5 \%)\) was zero between 20 and \(30^{\circ} \mathrm{C}\) and hence \(\mathrm{Zn}(\mathrm{C})\) may replace Zn (amalgam) in the cell reaction above,
(iii) extraction of thermodynamic results for \(\mathrm{ZnCl}_{2}\)
relies on corresponding results for AgCl ; these are very well-established and
(iv) the enthalpy result comes from a first temperature derivative and is consequently much less precise than \(\Delta G^{\circ}\).

Wachter and Hildebrand \({ }^{34}\) studied a similar cell with a molten electrolyte in the range 500 to \(575^{\circ} \mathrm{C}\). The fused electrolyte was carefully dried and handled. The cell reaction is of course the synthesis reaction from the elements and reduction of the results to 298 \(K\) using current \(C_{p}^{\circ}\) results \({ }^{31}\) yield values which confirm Bates's earlier results.

The cell studied by Wachler and Hildebrand was again re-examined by Markov and Volkov \({ }^{35}\) in 1963 and Robertson and Kucharski \({ }^{36}\) in 1973 over a similar temperature range, 450 to \(580^{\circ} \mathrm{C}\) and 450 to \(600^{\circ} \mathrm{C}\) respectively. From the experimental section of both papers the cells were carefully prepared and the \(\mathrm{ZnCl}_{2}\) was kept anhydrous.

To conclude this section let us compare \(\Delta G_{T}^{O}\) values for \(\mathrm{Zn}(\mathrm{l})+\mathrm{Cl}_{2}(\mathrm{~g})=\mathrm{ZnCl}_{2}(1)\) from the four independent sources already mentioned (refs. 32, 34, 35,36 ) in the temperature range 723 to 823 K (the mp of \(\mathrm{ZnCl}_{2}\) is \(591 \pm 2 \mathrm{~K}\), and for Zn is 693 K ). Three of these four studies, all electrochemical, encompass this temperature range but Bates's work was at room temperature and the ancillary data taken from Barin
and Knacke \({ }^{37}\) are required to convert the results to the range of interest. Values of \(\Delta \mathrm{G}_{\mathrm{T}}^{\mathrm{O}}\) are collected in table 4.2.

Table 4.2 Free Energy of Formation of Zinc Chloride
\[
\mathrm{Zn}(1)+\mathrm{Cl}_{2}(\mathrm{~g})=\mathrm{ZnCl}_{2}(\mathrm{l}) \Delta \mathrm{G}_{\mathrm{T}}^{\mathrm{O}} / \mathrm{kJ} \mathrm{~mol}^{-1}
\]
\[
\begin{aligned}
& \text { calculated from } \\
& \Delta \mathrm{G}_{\mathrm{T}}^{\mathrm{O}}=-370.39+85.77 \times 10^{-3} \mathrm{~T} \text { Robertons }{ }^{\mathrm{a}} \text { [723-873 K] } \\
& \Delta G_{T}^{O}=-406.32+135.14 \times 10^{-3} \mathrm{~T} \text { Markovb } \quad[723-853 \mathrm{~K}] \\
& \Delta G_{T}^{O}=-403.09+130.12 \times 10^{-3} \mathrm{~T} \text { Bates }{ }^{C} \text { [room temp }+ \\
& \text { ancillary data] } \\
& \left.\Delta G_{T}^{O}=-407.03+133.89 \times 10^{-3} T \quad \text { Hildebrand }{ }^{\mathrm{d}} \text { [774-849 } \mathrm{K}\right]
\end{aligned}
\]
\begin{tabular}{lcccc} 
T/K & Robertson \({ }^{\text {a }}\) & Markovb \(^{\text {b }}\) & Bates \(^{c}\) & Hildebrand \\
723 & -308 & -309 & -309 & \(-310^{\mathrm{e}}\) \\
773 & -304 & -302 & -303 & -304 \\
823 & -300 & -295 & -296 & -297
\end{tabular}
a ref. 36,
b ref. 35,
C ref. 32,
d ref. 34,
e extrapolated

The agreement between Markov \({ }^{35}\), Bates \({ }^{32}\) and Hildebrand \({ }^{34}\) is good, the maximum uncertainty being \(\simeq\)
\(2 \mathrm{~kJ} \mathrm{~mol}^{-1}\) or \(0.7 \%\). However the most recent work by Robertson et al. \({ }^{36}\), the free energy of formation differs significantly at high temperatures to \(\simeq 5 \mathrm{~kJ}\) mol \(^{-1}\) at 823 K . Hence their derived enthalpy and entropy results are not consistent with the three earlier studies, and must be regarded with caution.

The heat capacities of \(\mathrm{ZnCl}_{2}(\mathrm{c}\) and 1) have been measured \({ }^{31}\) in the range 298 to 750 K using a drop calorimeter. They report
```

Cp[[\mp@subsup{ZnCl }{2}{},\textrm{c}]/\mp@subsup{\textrm{J K}}{}{-1}\mp@subsup{\textrm{mol}}{}{-1}=60.67+0.0230T [298<T/K<mp]

```
\(\mathrm{C}_{\mathrm{p}}\left[\mathrm{ZnCl}_{2}, \mathrm{l}\right] / \mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}=100.8 \pm 10\)
[mp<T/K<1000]
(4.3.4)

No temperature dependence was discerned for the liquid phase \(C_{p}\) result and this was probably due to the ready formation of a glass by \(\mathrm{ZnCl}_{2}\) on cooling below the mp (591 K). This glass formation \({ }^{38}\) presents difficulties in the determination of the enthalpy of fusion, and experiments using an adiabatic calorimeter \({ }^{31}\) gave \(10.25 \pm 0.21 \mathrm{~kJ} \mathrm{~mol}^{-1}\), confirming a "lower limit" estimate from the drop calorimetry experiments. In an independent study \({ }^{26}\) the enthalpy of fusion was determined to be \(9.75 \mathrm{~kJ} \mathrm{~mol}^{-1}\).

\subsection*{4.4 Vaporisation of Zinc Chloride}

The total vapour pressures observed by Keneshea and Cubicciotti \({ }^{3}\) for molten zinc chloride are in general agreement with those reported by other workers \({ }^{2}, 6,39\), but the conclusions about the molecular composition of the vapour are controversial. Vapour pressure measurements can be grouped as absolute which makes no assumptions as to the molecular weight of the vapour and non-absolute. For zinc chloride absolute measurements have been carried out by Keneshea and Cubicciotti (1964) using a quasi-static method developed by Rodebush and Dixon \({ }^{40}\). They compared their absolute vapour pressure with the non-absolute values they obtained by transpiration measurements. The two methods will give the same results only if the vapour phase behaves as a perfect gas (a reasonable assumption at the temperature and pressures involved) and if the vapour species are known. They interpreted the differences between the two sets of measurements with the aid of their qualitative mass spectra analysis in terms of partial formation of dimeric species. From their results they concluded that the saturated vapour is principally monomeric but includes small amounts of dimeric molecules \(\left(\mathrm{Zn}_{2} \mathrm{Cl}_{4}\right)\) from 19\% at 650 K to \(4 \%\) at 850 K . Moss (1960) \({ }^{41}\) combined his transpiration data with the boiling point data of Bloom et al. \({ }^{42}\) and confirmed the presence of polymeric
species in the vapour but concluded that the dimer species was the only significant polymer. Furthermore Topor and Moldovean (1972) \({ }^{39}\) using similar quasistatic and transpiration techniques reproduced similar vapour composition results of Keneshea and Cubicciotti. This polymerisation was subsequently re-investigated by Polyachenok et al. (1976) \({ }^{6}\) using a tensimetric method with a quartz membrane mill manometer. They concluded indirect contrast to the earlier workers, that the pressure fraction of the dimer species increased with increasing temperature, for example \(1.2 \%\) at 650 K to \(8.4 \%\) at 850 K .

Recently Skudlarski et al. (1987) \({ }^{\text {P measured the }}\) mass spectrum and the vapour pressure over solid zinc chloride and compared their results (Knudsen-effusion + mass spectrometry) with the previous quasistatic and transpiration data. Extrapolating the vapour pressure of the dimer from Keneshea \({ }^{3}\) and Topor \({ }^{39}\) works to 570 K gives \(4.4 \times 10^{-3} \mathrm{mmHg}\) and \(5.3 \times 10^{-3} \mathrm{mmHg}\) respectively. This vapour pressure should readily be detectable by MS but surprisingly they failed to find the necessary ions characteristic of the dimer. This suggests that the enthalpy of vaporisation of the dimeric molecules is higher than that concluded by either Keneshea or Topor, but closer to Polyachenok results which indicates when extrapolated a relatively insignificant dimer pressure of \(2.2 \times 10^{-9} \mathrm{mmHg}\) at

570 K.
Gregory and Rice (1968) \({ }^{4}\) examined the zinc chloride vapour composition (temperature range 450-600 K) at a low electron ionizing potential ( 8 eV c.f. usual value 70 eV ) on their mass spectrometer to decrease the chances of fragmentation of the dimer to the monomer. They also failed to observe a significant concentration of dimeric species. These workers conflict with the MS analyses by Kenshea (1964) [753 K] and Schäfer (1973) [555 K] \({ }^{11}\) who did detect the dimeric species. Furthermore Bloom et al. \((1970)^{12}\) based his transpiration vapour pressures and activities in molten zinc chloride mixtures on the analysis of the condensate of the vapour to be monomeric only. Further, the existence of higher mass zinc-chlorine species in the mass spectra may be explained in terms of ion-molecule reactions due to the vapour pressure of the source being too high for the spectrometer, for example, ions \(\mathrm{ZnCl}_{2}+, \mathrm{ZnCl}^{+}\)and \(\mathrm{Zn}^{+}\)may react with the monomeric species \(\mathrm{ZnCl}_{2}\) to produce the dimeric ions \(\mathrm{Zn}_{2} \mathrm{Cl}_{4}{ }^{+}, \mathrm{Zn}_{2} \mathrm{Cl}_{3}{ }^{+}\)and \(\mathrm{Zn}_{2} \mathrm{Cl}_{2}{ }^{+}\) respectively. On closer inspection of Schäfer \({ }^{11}\) and Rice \({ }^{4}\) MS data gives the ionisation intensity ratio 100:13:7 and l00:11:6 respectively for \(\mathrm{ZnCl}_{2}{ }^{+}, \mathrm{ZnCl}^{+}\), \(\mathrm{Zn}^{+}\)and are remarkedly both consistent with each other. Schafer noted a further ion \(\mathrm{Zn}_{2} \mathrm{Cl}_{3}+\) which indicated a \(1 \%\) dimer concentration at 555 K .

Electron diffraction data43,44 in conjunction with the available spectroscopic evidence \({ }^{45,46}\) reveals unambigously a linear configuration for zinc chloride monomer with the mean bond length \(\left(\mathrm{r}_{\mathrm{g}}\right): \mathrm{Zn}-\mathrm{Cl}, 2.05 \pm\) \(0.01 \AA\) (ref. 43) and \(2.072 \pm 0.004 \AA\) (ref. 44).

The infra-red absorption spectra of gaseous zinc chloride has been investigated by a low-temperature matrix isolation technique by Loewenschuss and co-workers (1968) \({ }^{8}\). The spectral analysis ranged from 800 to \(35 \mathrm{~cm}^{-1}\) and four distinct regions were labelled a, b, c and d (see ref. 8, figure 1). Regions a (509-499 \(\left.\mathrm{cm}^{-1}\right)\) and d (101-76 \(\mathrm{cm}^{-1}\) ) were assigned to the monomeric species and \(b\left(293-255 \mathrm{~cm}^{-1}\right.\) and \(153-121\) \(\mathrm{cm}^{-1}\) ) and c (101-76 \(\mathrm{cm}^{-1}\) ) to the dimeric species. They established from enriched zinc isotope experiments, the dimers had the correct intensity ratio and frequency for a four membered planar diamond shaped ring structure with two additional chlorine atoms located on the \(\mathrm{Zn}-\mathrm{Zn}\) axis. This structure ( \(\mathrm{D}_{2 \mathrm{~h}}\) ) had been directly observed and postulated earlier by McNamee \({ }^{47}\), although several other infra-red active absorptions due to the dimer are predicted but none were observed. Further Loewenschuss et al. \({ }^{8}\) showed qualitatively increasing the temperature of this effusion cell from 320 to \(550^{\circ} \mathrm{C}\) decreases the concentration of the polymeric species in regions \(b\) and c. This supports the conclusion obtained from

Keneshea et al.'s \({ }^{3,39,41}\) thermodynamic data. McNamee (1962) \({ }^{47}\) studied the matrix isolation spectra of zinc chloride down to \(250 \mathrm{~cm}^{-1}\) and observed similar absorption due to polymeric species. He concluded that dimers were present in the gas phase rather than artificially formed by thermal diffusion in the matrix. However in 1978, Givan and Loewenschuss \({ }^{9}\) refuted this claim. Their infra-red spectra agree well with their earlier matrix-isolation results \({ }^{8}\) except the bands previously assigned to aggregates could now be eliminated by lowering the deposition rate of the matrix.

Papathedorou (1979) \({ }^{10}\) assigns the characteristic single strong polarised band from Raman gas-phase examination to be the symmetric vibration of the monomer at \(702^{\circ} \mathrm{C}\). This band has been observed in the infra-red by Givan and Loewenschuss \({ }^{9}\). Papathedorou speculates that his spectrum support a small deviation from linearity in the monomer ( \(D_{\infty}\) to \(C_{2 v}\) ). His results show a low signal-to-noise ratio which preclude any assignment of features due to polymeric species. Givan and Loewenschuss \({ }^{9}\) have reported similar Raman spectra in other zinc halides which suggests that the zinc chloride dimer assignment is in the \(200-170 \mathrm{~cm}^{-1}\) region.

Table 4.3 summaries the current argument for and against the existence of zinc chloride dimers in the
gas phase. These have been classified into equilibrium (E) and non equilibrium (NE) methods. Notice that the existence of dimers is usually inferred from equilibrium measurement.

In summary there seems to be considerable evidence for the presence of dimers in the gas phase above liquid \(\mathrm{ZnCl}_{2}\), mostly by equilibrium methods. The heat of vaporisation of \(\mathrm{ZnCl}_{2}(1)\) and its ancillary thermodynamical data are discussed and compared with experimental MEM data in section 4.7 in an attempt to clarify the uncertainty in the vapour composition over \(\mathrm{ZnCl}_{2}(1)\).

\subsection*{4.5 Summary of Experimental Technique}

The modified entrainment rig has been described in detail in chapter 2. Briefly, the sample (zinc chloride) is contained in a spherical quartz capsule approximately \(l \mathrm{~cm}\) in diameter suspended from one arm of a recording microbalance. The capsule orifice is in the form of a vertical capillary (ca. 20 mm long x 1 mm internal dia.); this acts as a diffusive resistance to the ingress of the downward flowing carrier gas (argon, \(80 \mathrm{~cm}^{3}\) (stp) \(\mathrm{min}^{-1}\) ) and the egress of the sample vapour. The experimental parameter is the rate of mass loss of the sample \((\stackrel{\circ}{\omega})\) at a preset temperature. Two separate capsules were used with capillary resistances \(6.090 \times 10^{4} \mathrm{~m}^{-1}\) and \(6.918 \times 10^{4}\) \(\mathrm{m}^{-1}, 192\) experiment points in the temperature range

\(638\left(\stackrel{\circ}{\omega} \simeq 1.0 \times 10^{-12} \mathrm{~kg} \mathrm{~s}^{-1}\right)\) to \(978\left(\stackrel{\circ}{\omega} \simeq 8.7 \times 1 \sigma^{9} \mathrm{~kg}\right.\) \(s^{-1}\) ) \(K\) were recorded, 32 of these being with specially doped sample (see Appendix A4.3 for raw MEM data file).

\subsection*{4.6 Materials}

Cyclic voltammetry was used to assay the purity of the zinc chloride melt. No significant peaks were observed due to electroactive impurities, but the small residual current was ascribed to water impurity and the amount estimated was about 0.002 mass per cent. For details of the bulk analysis see section 2.9. After loading the MEM rig with sample, the zinc chloride was further purified in-situ by vacuum drying whilst raising the temperature above its melting point for a period of more than 48 hours. Further purification was followed by passing dry hydrogen chloride over the melt for a least 18 hours followed by prolonged exposure to argon gas stream. As noted considerable care was invested in obtaining a high purity sample as one aspect of this study was to determine the effect of water contamination in the melt on the vaporisation thermodynamics.

\subsection*{4.7 Results and Discussion}

The thermodynamics of the vaporisation of molten zinc chloride has been studied in the temperature range 638 to 978 K . The monomer and dimer equilibria were considered
\[
\begin{equation*}
\mathrm{ZnCl}_{2}(1)=\mathrm{ZnCl}_{2}(\mathrm{~g}) \quad\left[\mathrm{K}_{1}\right], \Delta \mathrm{H}_{1}^{\mathrm{O}}, \Delta \mathrm{~S}_{1}^{\mathrm{O}} \tag{4.7.1}
\end{equation*}
\]
and
\[
\begin{equation*}
2 \mathrm{ZnCl}_{2}(\mathrm{~g})=\mathrm{Zn}_{2} \mathrm{Cl}_{4}(\mathrm{~g}) \quad\left[\mathrm{K}_{2}\right], \Delta \mathrm{G}_{2}^{\mathrm{O}}, \Delta \mathrm{~S}_{2}^{\mathrm{O}} \tag{4.7.2}
\end{equation*}
\]
and the rate of weight loss ( \((\stackrel{\circ}{\omega}\) ) assuming these are the only participating reactions is given by
\[
\begin{equation*}
\stackrel{\circ}{\omega}=\frac{\mathrm{D}_{1} \mathrm{AM}_{1} \mathrm{p}^{\theta} \mathrm{K}_{1}}{\mathrm{RT} \ell}\left[1+\frac{2 \mathrm{D}_{2} \mathrm{~K}_{2} \mathrm{~K}_{1}}{\mathrm{D}_{1}}\right] \tag{4.7.3}
\end{equation*}
\]
where \(p^{\theta}\) is the standard state pressure, \(M_{1}\) is the molecular mass of the monomer and \(K_{1}\) and \(K_{2}\) are the respective equilibrium constants. Full derivation of the above equation is given in Appendix 2.2. The second term in parenthesis in the equation is the contribution made to the mass transport by the dimer. If the dimer concentration was considered negligible then the equation reduces to an evaporation of \(a\) single substance (zinc chloride monomer) in argon carrier gas, as shown in section 1.4. Also, as equation (4.7.3) describes the behaviour of a three component \(\left(\mathrm{ZnCl}_{2}, \mathrm{Zn}_{2} \mathrm{Cl}_{4}, \mathrm{Ar}\right)\) system the effects of multicomponent diffusion must be included. Consequently, \(D_{i}\) are the multicomponent diffusion coefficients of the ith component into the mixture; the estimation of \(D_{i}\) is described in section 3.4. The results from this work were processed by two
```

separate procedures; (i) in combination with other
published work to establish the compatibility of
literature thermodynamic results with this work and
(ii) independently. By substitution of the
equilibrium partial pressures of monomer (}\mp@subsup{\textrm{p}}{1}{0}\mathrm{) and
dimer (}\mp@subsup{\textrm{p}}{2}{0}\mathrm{), the master equation (4.7.3) may be recast

$$
\begin{equation*}
\stackrel{\circ}{\omega}=\frac{A M_{1}}{\mathrm{RTI}}\left\{\mathrm{D}_{1} \mathrm{p}_{1}^{\circ}+2 \mathrm{D}_{2} \mathrm{p}_{2}^{\mathrm{O}}\right\} \tag{4.7.4}
\end{equation*}
$$

This equation may be solved simultaneously by substituting literature equations for total pressure $\left(\mathrm{P}_{\mathrm{T}}=\mathrm{p}_{1}^{0}+\mathrm{p}_{2}^{\circ}\right)$ to give p_{1}° and p_{2}° separately over the common temperature range. Hence $\Delta H_{1}^{O}, \Delta S_{1}^{O}, \Delta H_{2}^{O}$ and ΔS_{2}^{O} are obtained by the appropriate regression.

```

Keneshea and Cubicciotti \({ }^{3}\) quote
```

log}\mp@subsup{10}{0}{}(\mp@subsup{\textrm{P}}{\textrm{T}/\textrm{mm Hg}}{
[693-883 K] (4.7.5)
Polyachenok5 et al. give
log}\mp@subsup{10}{0}{}(\mp@subsup{\textrm{P}}{\textrm{T}}{}/\textrm{mm Hg})=(8.866\pm0.012) - (6032\pm11)K/T
[773-973 K] (4.7.6)

```

Topor \({ }^{39}\) cites
\[
\begin{aligned}
\log _{10}\left(\mathrm{P}_{\mathrm{T}} / \mathrm{mm} \mathrm{Hg}\right)= & (26.047 \pm 0.054)-(8122 \pm 46) \mathrm{K} / \mathrm{T}- \\
& 5.035 \log _{1_{0} \mathrm{~T} \quad[806-885 \mathrm{~K}](4.7 .7)}
\end{aligned}
\]
and Bloom \({ }^{2}\) et al. give
\[
\begin{array}{r}
\log _{1_{0}\left(\mathrm{P}_{\mathrm{T}} / \mathrm{mm} \mathrm{Hg}\right)=9.574-(6639,8) \mathrm{K} / \mathrm{T}} \\
\quad[750-870 \mathrm{~K}](4.7 .8)
\end{array}
\]

The total vapour pressure above molten zinc chloride using the above literature equations is compared in table 4.4. This table also includes expolorated data from Skudlarski et al. and a derived set of data based on the MEM study (see later).

The vapour pressure in table 4.4 can be subdivided on closer inspection. At low temperature, the literature pressures are in general agreement to within acceptable experimental errors. However at higher temperatures, say 900 K , Polyachenok \({ }^{5}\) and Topor \({ }^{99}\) data are significantly lower than either Keneshea \(^{3}\) or Bloom \(^{2}\) data by more than 11 mmHg .

The MEM experimental thermodynamic constants for monomer vaporisation and dimerisation (equations (4.7.1) and (4.7.2)) were obtained by combining equation (4.7.4) with the literature vapour pressure data shown above which extracts the relevant monomer

and dimer partial pressures and subsequent equilibrium constants ( \(\mathrm{K}_{1}\) and \(\mathrm{K}_{2}\) ). Followed by a regression of -RTln \(K_{i}\) vs. \(T\), the gradient gives the ( - ) entropy value and intersection the enthalpy value of the equilibrium \(i\) considered ( \(i=1\) or 2). These thermodynamic values are collected in table 4.5. The results for monomer vaporisation have been converted to a common temperature of 800 K using \(C_{p}\) for the liquid and gas quoted by Barin and Knacke \({ }^{37}\) which were calculated to be
\[
\begin{align*}
& \Delta H_{1}^{O}\left(\mathrm{~T}_{2}\right) / J \mathrm{~mol}^{-1} \\
& \quad=\Delta \mathrm{H}_{1}^{\mathrm{O}}\left(\mathrm{~T}_{1}\right)-40.55 \Delta \mathrm{~T}+0.42 \times 10^{-3}(\Delta \mathrm{~T})^{2}  \tag{4.7.9}\\
& \Delta \mathrm{~S}_{1}^{\mathrm{O}}\left(\mathrm{~T}_{2}\right) / \mathrm{J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \\
& \quad=\Delta \mathrm{S}_{1}^{\mathrm{O}}\left(\mathrm{~T}_{1}\right)-40.55 \ln \left[\frac{\mathrm{~T}_{2}}{\mathrm{~T}_{1}}\right]+0.00084 \Delta \mathrm{~T} \tag{4.7.10}
\end{align*}
\]
where,
\(\Delta \mathrm{T}=\mathrm{T}_{2}-\mathrm{T}_{1}\)
Table 4.5 also includes the thermodynamic constants for equilibria \(K_{1}\) and \(K_{2}\) obtained independently by Keneshea \({ }^{3}\), Polyachenok \({ }^{6}\) and Topor \({ }^{39}\). It is clear from table 4.5 that the thermodynamic constants derived by combining the MEM data with the absolute vapour pressure measurements are dependent upon the chosen source of literature pressure equation used. Both Keneshea \({ }^{3}\) and Polyachenok \({ }^{6}\) thermodynamic
\begin{tabular}{|c|c|c|c|c|c|}
\hline Table 4.5 & \multicolumn{5}{|l|}{\begin{tabular}{l}
Bnthalpy and Entropy Changes* for Equilibria - Combined Sources \\
\(\mathrm{ZnCl}_{2}(1)=\mathrm{ZnCl}_{2}(8), \quad \Delta \mathrm{H}_{1}^{\circ}, \quad \Delta \mathrm{S}_{1}^{\circ}\) (all scaled to 800 K ) \\
\(2 \mathrm{ZnCl}_{2}(8)=2 \mathrm{n}_{2} \mathrm{Cl}_{4}(8), \Delta \mathrm{H}_{1}^{\circ}, \Delta \mathrm{S}_{2}^{\circ}\)
\end{tabular}} \\
\hline \(\Delta \mathrm{H}_{1}^{\mathrm{O}} / \mathrm{kJ} \mathrm{mol}^{-1}\) & \(\Delta S_{1}^{0} / \mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}\) & \(\Delta \mathrm{H}_{2}^{0} / \mathrm{kJ} \mathrm{mol}^{-1}\) & \(\Delta S_{2}^{0} / \mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}\) & Range/K & \[
\begin{aligned}
& \text { This work - Source } \\
& \text { combined (MBM data) } \\
& \text { and ((Absolute Pressure)(Lit.)) }
\end{aligned}
\] \\
\hline \(128.8 \pm 1.5\) & \(130.2 \pm 1.9\) & \(-170 \pm 37\) & \(-207 \pm 47\) & 693-883 & (4.7.4) \& ((4.7.5) (Reneshea)) \\
\hline \(99.6 \pm 12\). & \(95.8 \pm 1.3\) & \(28 \pm 1.3\) & \(31 \pm 6\) & 773-973 & (4.7.4) \& ( (4.7.6) (Polyachanok)) \\
\hline 177.5*2.8 & \(114.9 \pm 3\). 2 & \(-69 \pm 19\) & \(-72 \pm 22\) & 806-885 & (4.7.4) \& ( \((4.7 .7)\) (Topor)) \\
\hline \(133.0 \pm 2.1\) & \(134.4 \pm 2.6\) & \(-181 \pm 21\) & \(-214 \pm 26\) & 750-870 & \((4.7 .4) \&((4.7 .8)\) (B100\# ) ) \\
\hline 127.9キ0.4 & 129.3 & \(-168 \pm 17\) & \(-203 \pm 21\) & 684-869 & ref. 3 (Keneshea) \\
\hline \(118.1 \pm 2.1\) & \(117.0 \pm 2.1\) & \(-84 \pm 3\) & \(-101 \pm 3\) & 775-1273 & ref. 6 (Polyachenok) \\
\hline 128.9*0.4 & \(128.3 \pm 0.4\) & -149 & -171 & 768-893 & ref. 39 (Topor) \\
\hline \multicolumn{6}{|l|}{* the uncertainty intervals quoted are standard deviations from the linear regression of \(\ln _{\mathrm{p}} \mathrm{vs} . \mathrm{T}^{-1}\)} \\
\hline
\end{tabular}
results can be obtained. Not too surprisingly Topor'ssi vapour pressure equation coupled with the MEM data predicts Polyachenok thermodynamic constants since both absolute vapour pressure measurements (Polyachenok and Topor) are similar (see table 4.4), although Topor's own independent thermodynamic calculations clearly support Keneshea's work. Confusingly combining Polyachenok vapour pressure equation (4.7.6) with MEM data produces thermodynamic results which do not correlate well with their own or any of the published literature data. However the combined results obtained from either Keneshea or Bloom vapour pressure equations (4.7.5) and (4.7.8) with the MEM data agree well with Keneshea \({ }^{3}\) and Moss \({ }^{41}\) original investigation of zinc chloride.

> It is readily shown that the temperature

derivative of the dimer pressure fraction \(\left(p_{2}^{0}\right)\left(p_{1}^{0}+\right.\)
\(\left.\mathrm{p}_{2}^{\circ}\right)\) ) is proportional to \(\left(\Delta \mathrm{H}_{1}^{\circ}+\Delta \mathrm{H}_{2}^{\circ}\right) / T^{2}\) which is positive when substituting Polyachenok data \({ }^{6}\) but negative using Keneshea et al.'s results \({ }^{3}\). This fact was utilized in the independent processing of the MEM study. The dimer pressure fraction at 900 K is ca. \(2 \%\) from the results of Keneshea \({ }^{3}\) and decreasing at higher temperatures. Hence it may be assumed that the dimer makes negligible contribution to the transport above 900 K and consequently the MEM results above this temperature (58 data points) were processed via the
exact equation (1.5.1) assuming a two component \(\left(\mathrm{ZnCl}_{2}\right.\) \(+A r)\) system. This equation yields \(\Delta H_{1}^{O}\) and \(\Delta S_{1}^{O}\) only. These results when converted to the mid-point of the temperature range of the MEM data points below 900 K (102 points) were used with the master equation
(4.7.3) to extract \(K_{2}\) and hence \(\Delta H_{2}^{O}\) and \(\Delta S_{2}^{\circ}\) for a three component system (see table 4.6). Conversely Polyachenok's \({ }^{6}\) data predicts the dimer fraction below 700 K to be less than ca. \(2 \%\) and this procedure of first obtaining monomer thermodynamic data over a restricted temperature range to produce dimerisation results was again used (shown in table 4.6). This procedure is inconclusive, results close to those of Keneshea \({ }^{3}\) and Polyachenok \({ }^{6}\) can be obtained depending on the assumed temperature range selected for the negligible dimer fraction.

It is possible in principle to extract optimum values of \(\Delta H_{1}^{\circ}, \Delta H_{2}^{\circ}, \Delta S_{1}^{\circ}\) and \(\Delta S_{2}^{\circ}\) from the MEM results without making any assumptions about the extent of dimer contribution because there are 160 data points and 4 unknowns \(\left(\Delta H_{1}^{\circ}, \Delta H_{2}^{\circ} \ldots\right)\) several minimization routines from the National Algorithm Group48 were explored but the results were unsatisfactory in that the convergence criteria were not met or absurd local minima were found. A simplex routine based on Nelder and Mead's algorithm \({ }^{48}\) proved more satisfactory in
minimizing the sum of the square of the differences of \(\stackrel{\circ}{\omega}\) (experimental) and \(\stackrel{\circ}{\circ}\) (from equation (3)). Only points at temperatures below 856 K were used for which the transport function, \(\xi_{i}\), is \(\leqslant 0.1\) and points were weighted as recommended by Kohman \({ }^{49}\). Some lack of robustness in the algorithm was apparent in that optimum values of \(\Delta \mathrm{H}_{2}^{\circ}\) and \(\Delta \mathrm{S}_{2}^{\circ}\) varied depending on the choice of the initial simplex but \(\Delta H_{1}^{O}\) and \(\Delta S_{1}^{O}\) were stable. No uncertainty intervals are obtained from simplex minimization routines as derivitization is not involved and the intervals quoted for the simplex results in table 4.6 reflects the range of minima located. It is clear that the MEM results derived by this simplex method are in satisfactory agreement with those of Keneshea \({ }^{3}\), Topor \({ }^{39}\) and Moss \({ }^{41}\).

An independent check on \(\Delta S_{1}^{\circ}\) can be obtained by combining McBride's \(S^{50}\) value of \(\mathrm{S}_{298}^{\mathrm{O}}\left(\mathrm{ZnCl}_{2}, \mathrm{C}\right)\) with Cubicciotti and Eding's \({ }^{3} \mathrm{C}_{\mathrm{p}}\left(\mathrm{ZnCl}_{2}, 1\right), \mathrm{C}_{\mathrm{p}}\left(\mathrm{ZnCl}_{2}, \mathrm{c}\right)\) and \(\Delta \mathrm{S}^{\mathrm{O}}\left(\mathrm{ZnCl}_{2}, \mathrm{C} \rightarrow 1\right)\) to give \(\mathrm{S}_{800}^{\mathrm{O}}\left(\mathrm{ZnCl}_{2}, \mathrm{l}\right)=208 \pm 2 \mathrm{~J} \mathrm{~K} \mathrm{~K}^{-1}\) mol \({ }^{-1}\). Givan and Loewenschuss \({ }^{9}\) derive statistical thermodynamic functions for \(\mathrm{ZnCl}_{2}(g)\) based on vibrational spectra of matrix isolated zinc chloride;
\(\mathrm{S}_{800}^{\mathrm{O}}\left(\mathrm{ZnCl}_{2} \mathrm{~g}\right)=335.9 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\). Therefore \(\Delta \mathrm{S}_{1}^{\mathrm{O}}\) (800)
\(=128 \pm 2 \mathrm{~J} \mathrm{~K} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\) in good agreement with the MEM results in table 4.6 and Keneshea et \(\mathrm{al}^{3}\).
\begin{tabular}{|c|c|c|c|c|c|}
\hline Table 4.6 & \multicolumn{5}{|l|}{Enthalpy and Entropy Changes* for Bquilibria - Independently
\[
\begin{aligned}
\mathrm{ZnCl}_{2}(1) & =\mathrm{ZnCl}_{2}(8), \Delta \mathrm{H}_{1}^{\circ}, \Delta \mathrm{S}_{1}^{\circ}(\text { all scaled to } 800 \mathrm{~K}) \\
2 \mathrm{ZnCl}_{2}(8) & =\mathrm{Zn}_{2} \mathrm{Cl}_{4}(8), \Delta \mathrm{H}_{2}^{\circ}, \Delta \mathrm{S}_{2}^{0}
\end{aligned}
\]} \\
\hline \(\Delta \mathrm{H}_{1}^{0} / \mathrm{kJ} \mathrm{mol}^{-1}\) & \(\Delta S_{1}^{0} / \mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}\) & \(\Delta \mathrm{H}_{2}^{\mathrm{O}} / \mathrm{kJ} \mathrm{mol}^{-1}\) & \(\Delta S_{2}^{0} / \mathrm{Jk}^{-1} \mathrm{~mol}^{-1}\) & Range/K & Source \\
\hline 126.9*0.5 & \(128.0 \pm 0.5\) & \(-162 \pm 8\) & \(-202 \pm 11\) & 640-980 & This Worka( \({ }^{\text {a }}\) \\
\hline \(120 . \pm 12.0\) & 117.9*6.0 & -96.6さ4.8 & \(-108.7 \pm 6.0\) & 640-900 & This Worka \({ }^{\text {(2) }}\) \\
\hline 128.5( \(\pm 0.7\) ) & 130( \(\pm 3\) ) & -124( \(\pm 23\) ) & -220( \(\pm 56\) ) & 640-890 & \[
\begin{aligned}
& \text { This Hork } \\
& \text { (Simplex) }
\end{aligned}
\] \\
\hline \((126.9)^{\text {b }}\) & \((128.0)^{\text {b }}\) & \(-155 \pm 3\) & \(-180 \pm 4\) & 640-890 & This Work (doped sample) \\
\hline 127.9*0.4 & 129.3 & \(-168 \pm 17\) & \(-203 \pm 21\) & 684-869 & \[
\begin{aligned}
& \text { ref. }{ }^{\text {ref (Keneshea) }}
\end{aligned}
\] \\
\hline 118.1 \(\pm 21\) & \(117.0 \pm 21\) & \(-84 \pm 3\) & \(-101 \pm 3\) & 775-1273 & ref. 6 (Polyachenok) \\
\hline \(132 \pm 0.3\) & \(132.9 \pm 1.0\) & \(-171.1 \pm 0.4\) & \(-195.8 \pm 0.4\) & 726-899 & \[
\begin{aligned}
& \text { ref. }{ }^{41}\left(\begin{array}{l}
\text { (Moss) }
\end{array}\right.
\end{aligned}
\] \\
\hline \multicolumn{6}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
* uncertainty interval (except for the simplex results) are standard deviations of regression coefficients \\
a obtained by separating results into two temperatures which makes the assumption: \\
(1) dimer concentration negligible above 900 k , (2) dimer concentration negligiblebelow 700 k \\
b the results for the doped sample were all recorded below 900 K ; consequently \(\Delta \mathrm{H}_{1}^{\circ}\) and \(\Delta \mathrm{S}_{1}^{\circ}\) were assumed for the pure sample in a(1)
\end{tabular}}} \\
\hline & & & & & \\
\hline
\end{tabular}

Further it is obvious from the results collected in table 4.6 that the Russian values for \(\Delta H_{2}^{\circ}\) and \(\Delta S_{2}^{\circ}\) are almost exactly one half of the corresponding values of other workers. This does not appear to be a stoichiometry mistranscription as the Russian authors \({ }^{6}\) comment explicitly on their low value of \(\Delta S_{2}^{O}\) compared with Keneshea and Cubicciotti \({ }^{3}\).

It is of some concern in the industrial exploitation of zinc chloride melts as hydrocracking solvents as to how a steady accumulation of water in the melt will affect the thermodynamic vaporisation constants. The water contamination can arise either from a damp feedstock or from the reduction of oxygen heteroatoms during cracking. For example, water has a marked effect \({ }^{51}\) on the transport properties of melts and it has been established that the crystal structure \({ }^{14}\) of zinc chloride at room temperature was doped in situ with water vapour to the extent of 0.3 mass per cent ( 2.3 per cent mole ratio). Increasing the temperature to just below the melting point resulted in the loss of about half of the added water. It is assumed that the residue remained in the melt. The fate of this water is uncertain. Zielke reports that molten zinc chloride is resistant to hydrolysis, although recent investigations suggest otherwise (see section 2.9). Water is soluble in many melts \({ }^{51}\) and, for example, water in 60:40 LiCl-KCl shows Henry's law
behaviour up to 5 per cent mole ratio. Hydrolysis via \(\mathrm{H}_{2} \mathrm{O}+\mathrm{Cl}^{-}=\mathrm{OH}^{-}+\mathrm{HCl}\) and \(\mathrm{H}_{2} \mathrm{O}+2 \mathrm{Cl}^{-}=\mathrm{O}^{2-}+2 \mathrm{HCl}\) has been detected52 in other halide melts. Thirty two data points were recorded for this artificially contaminated melt over the temperature range 640 to 864 K. Predictably, \(\ln \left[\stackrel{\circ}{\omega} / \mathrm{kg} \mathrm{s}^{-1}\right]\) correlates well with \(\mathrm{T}^{-1}\left(\mathrm{r}^{2}=0.998\right)\) and the two linear regression lines, one obtained from the results of the pure sample and the other from the doped sample, were compared by analysis of covariance. This test showed there was no significant difference between the adjusted means or the regression coefficients and consequently it is highly probable that the results derive from the same population. Hence water doping of \(\mathrm{ZnCl}_{2}\) at the one per cent molar ratio level has no effect on the thermodynamics of vaporisation. Table 4.6 shows the thermodynamic constants \(\Delta \mathrm{H}_{2}^{\mathrm{O}}\) and \(\Delta \mathrm{S}_{2}^{\mathrm{O}}\) using the monomer constants of zinc chloride already calculated in the same table.
4.8 Conclusion

From both simplex routine and by using independent ancillary thermodynamical data, the enthalpy and entropy values of equilibria (equation (4.7.1) and 4.7.2)) shows the proportion of dimer in the equilibrium vapour above molten zinc chloride to decrease with increasing temperature. This is at variance with the most recent examination \({ }^{5}, 6\) of this
system but supports earlier studies 3,39,41. Subsequently the vapour pressure equations for monomer and dimer over molten \(\mathrm{ZnCl}_{2}\) are based on this criterion
\[
\begin{equation*}
\mathrm{ZnCl}_{2}(\mathrm{l})=\mathrm{ZnCl}_{2}(\mathrm{~g}) \tag{4.8.1}
\end{equation*}
\]
\(2 \mathrm{ZnCl}_{2}(\mathrm{l})=\mathrm{Zn}_{2} \mathrm{Cl}_{4}(\mathrm{~g})\)
and may be derived from the results in table \(4.6(\mathrm{al})\) and are
\[
\begin{array}{r}
\ln \left[p_{1} / P^{\theta}\right]=-(15300 \pm 60) \mathrm{K} / \mathrm{T}+(15.39 \pm 0.06) \\
{[640-980 \mathrm{~K}]} \\
\ln \left[p_{2} / P^{\theta}\right]=-(11000 \pm 970) \mathrm{K} / \mathrm{T}+(6.5 \pm 1.3) \\
{[640-980 \mathrm{~K}]}
\end{array}
\]
\[
\left[\mathrm{P}^{\theta}=101325 \mathrm{~N} \mathrm{~m}^{-2}\right]
\]

\section*{References for Chapter 4}
1. C.W. Zeilke and W.A. Rosenhoover, U.S. Patent 4424 lll, 1984.
2. H. Bloom, T.H. Spurling and J. Wong, Aust.J.Chem., 1970, 23, 501.
3. F.J. Keneshea and D. Cubicciotti, J.Chem.Phys., 1964, 40, 191.
4. D.W. Rice and N.W. Gregory, J.Phys.Chem., 1968, 72, 3361.
5. O.G. Polyachenok, O.N. Komshilova and G.A. Tsirman, Russ.J.Inorg.Chem., 1969, 14, 912.
6. L.D. Polyachenok, K. Narzanov and O.G. Polyachenok, Russ.J.Phys.Chem., 1976, 50, 1271.
7. K. Skudlarski, J. Dudek and J. Kapala, J.Chem. Thermodyn., 1987, 19, 151.
8. A. Loewenschuss, A. Ron and O. Schnepp, J.Chem. Phys., 1968, 49, 272.
9. A. Givan and A. Loewenschuss, J.Chem. Phys., 1978, 68, 2228.
10. G.N. Papathedorou, National Bureau of Standards Special Publication 561, Oct. 1979, Proceedings of the loth Materials Research Symposium on Characterization of High Temperature Vapors and Gases, NBS, Maryland, U.S.A., Sept., 1978.
ll. H. Schäfer and M. Binnewies, Z.anorg.allg. Chem., 1974, 410, 251.
12. M. Farnsworth and C.H. Kline, "Zinc Chemicals", Zinc Development Association, 1973, London.
13. B. Brehler, Zeit.für Krist., 1961, 115, 373.
14. J. Brynestad and H.L. Yakel, Inorganic Chemistry, 1978, 17, 1376; 1978, 17, 3294.
15. S. Biggin and J.E. Enderby, J.Phys.C:Solid State, Phys., 1981, 14, 3129.
16. P.J. Gardner and D.M. Heyes, Physica, 1985, 131B, 227.
17. F. Aliotta, G. Maisono, P. Migliando, C. Vasi, F. Wanderlingh, G.P. Smith and R. Triolo, J.Chem. Phys., 1981, 75, 613.
18. Y. Takagi and T. Nakamura, Nippon Kagaku Kaishi, 1982, 6, 928, CA 97:4479t.
19. N. Itoh, K. Sakai and T. Nakamura, Inorg.Chem., 1982, 21, 3552.
20. D.A. Craw and J.L. Rogers, J.Chem.Soc., 1956, 217.
21. F.A. Cotton and G. Wilkinson, "Advanced Inorganic Chemistry", 4th edition, 1980, 599.
22. R.C. Weast (ed.), "Handbook of Chemistry and Physics", CRC Press., 66th edition, 1986, B-159.
23. R. Triolo and A.H. Narten, J.Chem. Phys., 1981 74, 703.
24. A.J. Easteal, P.V. Glaquinta, N.H. March and M.P. Tosi, Chem. Phys., 1983, 76, 125.
25. G.J. Janz, "Molten Salts Handbook", Academic Press, 1967, New York.
26. C.A. Angell, E. Williams, K.J. Rao and J.C. Tucker, J.Phys.Chem., 1977, 81, 238.
27. M.L. Cacciola, S. Magazú, P. Migliando, F. Aliotta and C. Vasi, Solid State Commum., 1986, 57, 513.
28. F.D. Rossini, D.D. Wagman, W.J. Evans, S. Levine and I. Jaffe, "Selected Values of Chemical Thermodynamic Properties", National Bureau of Standards circ. 500, 1952.
29. D.D. Wagman, W.H. Evans, I. Halow, V.B. Parker, S.M. Bailey and R.H. Schumm, "Selected Values of Chemical Thermodynamic Properties", Technical Note 270-3, National Bureau of Standards, 1968.
30. O. Kubaschewski and C.B. Alcock, "Metallurgical Thermochemistry", 5th Edition, 1983, Pergamon, Oxford.
31. D. Cubicciotti and H. Eding, J.Chem. Phys., 1964, 40, 978.
32. R.G. Bates, JACS, 1939, 61, 1040.
33. W.J. Clayton and W.C. Vosburgh, JACS, 1936, 58, 2093.
34. A. Wachter and J.H. Hildebrand, JACS, 1930, 52, 4655 .
35. B.F. Markov and S.V. Volkov, Uhr.Khim. Zh., 1963, 29, 511. CA59:122486.
36. R.J. Robertson and A.S. Kucharski, Cand.J.Chem., 1973, 51, 3114.
37. I. Barin and O. Knacke, Thermochemical Properties of Inorganic Substances, 1973, Springer Verlag.
38. M. Robinson, R.C. Pastor, J.A. Harrington, Proceedings - SPIE. The International Society for Optical Engineering, 1982, 320, 37, Advances in Infrared Fibers II.
39. L. Topor and I. Moldoveanu, Rev.Roum.Chim., 1972, 17, 1705; L. Topor, Rev. Roum.Chim, 1972, 17, 1503.
40. W.H. Rodebush and A.L. Dixon, Phys.Rev., 1925, 26, 851 .
41. H.I. Moss, Thesis, Ph.D., Indiana University, Bloomington, Indiana 1960 , also reported by R.L. Seifert, in U.S. Atomic Energy Commission Tech.Rept., TID-6289, 1960.
42. H. Bloom, J.O'M. Bockris, N.E. Richards and R.G. Taylor, J.Am.Chem.Soc., 1958, 80, 2044.
43. A.P. Akishin and V.P. Spiridonov, Kristallografiya, 1957, \(\underline{2}, 475\).
44. M. Hargittai, J. Tremmel and I. Hargittai, Inorg. Chem., 1986, 25, 3163.
45. A. Givan and A. Loewenschuss, J.Mol.Struc., 1978, 48, 325.
46. I. Eliezer and A. Reger, Coordination Chemistry Reviews, 1972/3, 9, 189.
47. R.W. McNamee, Thesis, Ph.D., University of California, Berkeley, California, 1962.
48. National Algorithms Group Library, NAG Central Office, Oxford, U.K.
49. T.P. Kohman, J.Chem.Ed., 1970, 47, 657.
50. J.J. McBride, Thesis, Ph.D., 1955, University of Michigan, Univ. Microfilms International, P.O. Box l346, Ann Arber, Michigan, U.S.A., ref. no. 5800950 .
51. S.H. White in "Ionic Liquids" ed. D. Inman and D.G. Lovering, Plenum Press, 1981, p. 230.
52. D.G. Lovering and R.M. Oblath, in "Ionic Liquids", ed. D. Inman and D.G. Lovering, Plenum Press, 1981, p.176.

\section*{Chapter 5}

Thermodynamics of (i) the Dissociative Sublimation of Zinc Sulphide and (ii) Zinc Sulphide Transport in Hydrogen Chloride by Modified Entrainment.

Notation for Chemical Equilibria Used Throughout Chapter 5

Reductive Sublimation of Zinc Sulphide in Hydrogen
\begin{tabular}{ll}
\(\mathrm{ZnS}(\mathrm{c}, \beta)+\mathrm{H}_{2}(\mathrm{~g})=\mathrm{Zn}(\mathrm{g})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})\) & \(\mathrm{K}_{1}[5.1]\) \\
\(\mathrm{ZnS}(\mathrm{c}, \alpha)+\mathrm{H}_{2}(\mathrm{~g})=\mathrm{Zn}(\mathrm{g})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})\) & \(\mathrm{K}_{2}[5.2]\)
\end{tabular}

Dissociative Sublimation of Zinc Sulphide
\begin{tabular}{ll}
\(\mathrm{ZnS}(\mathrm{c}, \beta)=\mathrm{Zn}(\mathrm{g})+\frac{1}{2} \mathrm{~S}_{2}(\mathrm{~g})\) & \(\mathrm{K}_{3}[5.3]\) \\
\(\mathrm{ZnS}(\mathrm{c}, \alpha)=\mathrm{Zn}(\mathrm{g})+\frac{1}{2} \mathrm{~S}_{2}(\mathrm{~g})\) & \(\mathrm{K}_{4}[5.4]\)
\end{tabular}

Formation of Hydrogen Sulphide
\(\mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{~S}_{2}(\mathrm{~g})=\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) \quad \mathrm{K}_{5}\) [5.5]

Zinc Sulphide transported in Hydrogen Chloride
\(\mathrm{ZnS}(\mathrm{c}, \beta)+\mathrm{HCl}(\mathrm{g})=\mathrm{ZnCl}_{2}(\mathrm{l})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) \quad \mathrm{K}_{6}\) [5.6]
\(\mathrm{ZnS}(\mathrm{c}, \beta)+\mathrm{HCl}(\mathrm{g})=\mathrm{ZnCl}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) \mathrm{K},[5.7]\)

Dimerisation of Zinc Chloride
\(2 \mathrm{ZnCl}_{2}(\mathrm{~g})=\mathrm{Zn}_{2} \mathrm{Cl}_{4}(\mathrm{~g})\)
\[
K_{8} \quad[5.8]
\]

\subsection*{5.1 Introduction}

Zinc sulphide exists in two principal forms, Sphalerite ( \(\beta\), cubic or 3C) and Wurtzite ( \(\alpha\), hexagonal or 2 H\()\). The low temperature form is \(\beta-\), the transition temperature \({ }^{1}\) is \(1293 \pm 10 \mathrm{~K}\), giving the \(\alpha\)-form which is metastable at room temperature.

The crystal structure of \(\mathrm{ZnS}(\beta)\) is best considered as a cubic close-packed array of sulphide ions, with \(\mathrm{Zn}^{2+}\) occupying one half of the tetrahedral holes. ZnS ( \(\alpha\) ) has the same structure except that the sulphide ions are now in hexagonal close-packed array. Both zinc and sulphur are "four co-ordinated" in both structures and the \(\mathrm{Zn}-\mathrm{S}\) distance is \(2.35 \AA\) in \(\mathrm{ZnS}(\beta)\) and \(2.36 \AA\) in \(\mathrm{ZnS}(\alpha)\). Cubic close packed structures containing the repeating sequence of layers ---ABCABCABC---, whereas hexagonal close packing involves the sequence, ---ABABABAB---, both arrangements being equally economical in terms of space filling \({ }^{2}\). From this description it is clear that a local transformation from ccp to hcp requires translation via a glide plane with a modest activation energy. Since 1950, polytypism \({ }^{3}\) has been recognised in ZnS , the polytypes possessing crystallographically structures containing regular sequences of mixed cubic and hexagonal close packing. These polytypes should not be conceived as the \(\alpha\) or \(\beta\) polymorphs containing random glide dislocations but unique structures with
long range order, the repeating unit often exceeding several tens of layers.

Interconversion of sphalerite into various polytypes and wurtzite, may be induced by mechanical effects \({ }^{4}\) (e.g. vitromilling), temperature change \({ }^{5}\) and the presence of impurities \({ }^{3}\). The ease of transformation is probably strongly influenced by surface effects \({ }^{6}\), the appearance of metastable phases increasing as the particle size becomes smaller.

The formation of polytypes must be suspected whenever ZnS is formed under conditions of mechanical stress, in the presence of impurities or at high temperatures where local temperature fluctuations induce dissociative sublimation and recondensation cycles involving small crystallites. With the exception of mechanical stress, these are all conditions likely to be encountered during the formation of ZnS in this work. Hence care was taken to determine the composition of the higher temperature phases used in this work by X-ray diffraction.

The modified entrainment method has been used to study two principal systems
i) the dissociative sublimation of both \(\alpha-\) and \(\beta\)-zinc sulphide, \(\mathrm{ZnS}(\mathrm{c})=\mathrm{Zn}(\mathrm{g})+\frac{1}{2} \mathrm{~S}_{2}(\mathrm{~g})\) [5.3] and [5.4], in the temperature range \(\beta\) - (1012 to 1271 K ) and \(\alpha^{-}(1300\) to 1443 K\()\), and the appropriate free energy equations derived.
ii) equilibrium [5.7], the transport of \(\mathrm{ZnS}(\beta)\) in HCl , has also been examined between 1023 and 1263 K to yield thermodynamic data. These results when combined with free energy data for the vaporisation of zinc chloride (see chapter 4) yield a definitive free energy equation for [5.6] within the liquid range of zinc chloride, 591 to 1005 K .

\subsection*{5.2 Experimental}

\section*{Zinc Sulphide}

The modified entrainment method has been described in detail in chapters 1 and 2. Three different capsules were used with capillary resistances from \(1.912 \times 10^{4}\) to \(2.132 \times 10^{4} \mathrm{~m}^{-1}\). For \(\mathrm{ZnS}(\beta), 92\) data points were recorded with \(\stackrel{\circ}{\omega}\) ranging between \(7.4 \times 10^{-12}\) \(\mathrm{kg} \mathrm{s}^{-1}\left(\right.\) at 1012 K ) to \(2.8 \times 10^{-10} \mathrm{~kg} \mathrm{~s}^{-1}\) (at 1271 K ). For \(\operatorname{ZnS}(\alpha), 199\) data points were noted from 1300 K ( \(\stackrel{\circ}{\omega}\) \(\left.\simeq 3.6 \times 10^{-10} \mathrm{~kg} \mathrm{~s} \mathrm{~s}^{-1}\right)\) to \(1433 \mathrm{~K}\left(\stackrel{\circ}{\omega} \simeq 1.6 \times 10^{-9} \mathrm{~kg}\right.\) \(s^{-1}\).

Zinc Sulphide in Hydrogen Chloride
Two separate capsules were used with diffusive resistances of \(6.699 \times 10^{4}\) and \(6.006 \times 10^{4} \mathrm{~m}^{-1}\). The experimentally-determined quantity is the rate of mass loss of ZnS from the capsule at a known temperature, \(\&(T)\). Four doping ratios of hydrogen chloride in argon (between 0.0602 and 0.0968 ) were used and are quoted as pressure fractions \(\left(\mathrm{p}_{\mathrm{HCl}} /\left(\mathrm{p}_{\mathrm{Ar}}+\mathrm{p}_{\mathrm{HCl}}\right)\right)\) determined from a ratio of flow rates of Ar and HCl
from calibrated mass flow controllers reading in \(\mathrm{cm}^{3}\) (stp) \(\mathrm{min}^{-1}\). The total flow rate \((\mathrm{Ar}+\mathrm{HCl})\) was ca. \(100 \mathrm{~cm}^{3}\) (stp) \(\mathrm{min}^{-1}\) and 145 data points were recorded from \(1023 \mathrm{~K}\left(\& \simeq 1.2 \times 10^{-10} \mathrm{~kg} \mathrm{~s} \mathrm{~s}^{-1}\right)\).
5.3 Materials (see table 2.2 manufacturer's specifications)

Zinc sulphide was used without further purification (Aldrich Gold Label, 99.99\%). Surprisingly, it was common to lose several mass per cent of volatile material during initial heating. The sample was characterized by emission spectroscopy, X-ray diffraction (XRD), thermogravimetric analysis (TGA), mass spectrometry (MS) and elemental analysis. Trace metallic impurities were determined by emission spectroscopy and were present at the following concentrations: Cd, \(10 \mathrm{ppm} ; \mathrm{Na}, 10 \mathrm{ppm} ; \mathrm{Pt}, 2 \mathrm{ppm} ; \mathrm{Mo}\), \(1 \mathrm{ppm} ; \mathrm{Ca},<1 \mathrm{ppm} ; \mathrm{Mg}<1 \mathrm{ppm}\). XRD showed the sample to be \(95+\%\) sphalerite. It has been reported that ZnS is slowly oxidised to \(\mathrm{ZnSO}_{4}\) in moist air and that the freshly precipitated material adsorbs water which gives a continous dehydration loss on drying. Sulphate was shown to be absent from both the stock material and heated samples. TGA (Perkin Elmer TGS-2) in flowing nitrogen from 300 to 973 K at \(20 \mathrm{~K} \mathrm{~min}{ }^{-1}\) showed a near-linear mass loss of 2.95 mass \% terminating between 920 and 970 K . The dissociation pressure above ZnS at 1000 K is ca. \(5 \times 10^{-5} \mathrm{mmHg}\) so
no significant contribution was expected from dissociative sublimation. MS(AEl MS 30) with a solid injection probe was used to identify the volatile species. The sample was heated from ca. 350 to 623 K while continously monitoring the mass spectrum in the \(\mathrm{m} / \mathrm{e}\) range 14 to 220. Water was noted at all temperatures, the maximum evolution being at ca. 450 K and decreasing thereafter. \(\mathrm{H}_{2} \mathrm{~S}\) was observed from 480 K rising to a maximum at 540 K and decreasing thereafter. \(\mathrm{SO}_{2}\), in smaller quantities, was also observed at temperatures in excess of 480 K . No other volatile material that originated from the sample was detected. The \(\mathrm{H}_{2} \mathrm{~S}\) probably arises from the reaction \(3 \mathrm{~S}+2 \mathrm{H}_{2} \mathrm{O}=2 \mathrm{H}_{2} \mathrm{~S}+\mathrm{SO}_{2}\) which is known to proceed slowly on boiling S in \(\mathrm{H}_{2} \mathrm{O}\) (the sample was slightly sulphur-rich, see below). Elemental analysis showed the stock material to have a zn :S ratio of \(0.993 \pm 0.002\). It has been suggested \({ }^{8}\) that the stability of sphalerite depends on it being slightly S-rich but the non-stoichiometry range is small, \(0.998 \pm 0.001\). In summary, the stock material was contaminated with both moisture and sulphur and has a composition \(\mathrm{ZnS}_{1.007 \pm 0.002} 0.168 \quad \mathrm{H}_{2} \mathrm{O}\) ). These impurities have negligible influence on the MEM results as the minimum temperature for the MEM study was 1010 K by which temperature the impurities were lost by volatilization. This was confirmed by
\begin{tabular}{|ccc|cc|}
\hline Table 5.1 The XRD and Analytical Analysis on Heated Samples of \(\mathrm{ZnS}(\beta)\) at 700 to \(1230^{\circ} \mathrm{C}\) to \\
Simulate MEM Conditions
\end{tabular}

\subsection*{5.4 Results and Discussion}

Sublimation of Zinc Sulphide at l000-1400 K
An attempt was made to measure the enthalpy of transition directly using differential scanning calorimetry (DSC, Standard Redcroft Model 1500). The results were ambiguous; there was a slow endotherm with an onset of 1173 K which merged into a more rapid exotherm which was completed at 1333 K (see figure 5.1). It is not possible to deconvolute the two features and only speculation may be offered as to the structural changes that are responsible for these features. These results suggest that the data points from modified entrainmnent above 1173 K with the \(\beta\)-phase should be treated with caution. An X-ray diffraction study of the \(\beta \rightarrow \alpha\) phase transition has been reported by Baars and Brandt5 who steadily heated a "weakly disordered cubic" phase from 293 K while monitoring the diffraction pattern. At about 1173 K , the residual disorder decreases until 1273 K it had been eliminated. Above 1273 K there was a rapid, quantitative conversion to the hexagonal phase, with complete conversion at 1400 K . The implication of this study on our reported enthalpy and entropy of transition is considered overleaf in the Modified Entrainment section.


Figure 5.1 A DSC Trace for ZnS from 900 to \(1100^{\circ} \mathrm{C}\)
```

Scan speed = 5 K min
Atmosphere = flowing nitrogen, 50 cm}\mp@subsup{}{}{3}\mp@subsup{\textrm{min}}{}{-1
Baseline drift = 5 mW over 200 %

```

\section*{Modified Entrainment}

The dissociative sublimation (equilibria [5.3] and [5.4]) of zinc sulphide is known to be congruent9,10 and the concentration of molecular \(\mathrm{ZnS}(\mathrm{g})\) in the equilibrium vapour over our temperature range is negligible \({ }^{11}\). Further there is insignificant contribution from \(S_{n}(g)\) ( \(n>2\) or \(n=1\) ) in this temperature range \({ }^{12}\). Initial experiments performed with Ar as a carrier gas in the temperature range where the \(\beta\)-phase is stable (< 1293 K ) gave extremely low rates of mass loss. All subsequent experiments were performed in hydrogen where the participation of equilibrium [5.5] (formation of hydrogen sulphide from its gaseous elements hydrogen and sulphur) enhanced the rate of mass loss by about three orders of magnitude.

As already mentioned the conversion of the \(\beta\) - to the \(\alpha\)-phase has been extensively investigated and the effects of impurity levels \({ }^{3,13}\), particle size \({ }^{6}\), mechanical stress \({ }^{4}\), etc., on both the rate and temperature of conversion is well-documented. The conversion is facile and it was clearly necessary to establish the identity of the material used in modified entrainment, especially in the region ca. 100 \(K\) below the transition temperature, where a slow conversion to the \(\alpha\)-phase could invalidate the experiments.

Accordingly batches of stock ZnS were heated in flowing \(H_{2}, N_{2}\) or \(A r\) for at least 24 hours, to simulate their behaviour in the modified entrainment rig, quenched rapidly and examined by \(x\)-ray diffraction (XRD). Sample sizes and irradiation times were such that the level of discrimination between the phases was about \(5 \%\). Table 5.1 summarises the sample treatment.

Further, two separate modified entrainment experiments on the \(\beta\)-phase were completed with different initial samples and different temperature sequences; in one set the temperature was increased steadily from 1120 K to within 50 K of the transition temperature and decreased to 950 K , recording 55 data points \((ఓ(T))\) at regular intervals. For the second set, the temperature was decreased from 1150 to 910 K , then increased to 1250 K , noting 37 values of \(\&(T)\). An analysis of covariance on the regression lines \(\left(\Delta G_{3}^{O} / \mathrm{J} \mathrm{mol}^{-1}\right.\) vs. \(\left.T / K\right)\) showed no significant difference. For experiments with the \(\alpha\)-phase, zinc sulphide was maintained at 1440 K in \(\mathrm{H}_{2}\) for at least two hours to ensure complete conversion.
only two of the equilibrium constants \(K_{1}, K_{3}\) and/or \(K_{5}\) are independent and it is convenient to write the flux equations in terms of \(\mathrm{K}_{3}\) and \(\mathrm{K}_{5}\). Hence knowing the hydrogen sulphide equilibrium constant \(\mathrm{K}_{5}\) (obtained from standard tables), \(\mathrm{K}_{3}\) (the sublimation
of zinc sulphide) may be obtained from
\[
\begin{equation*}
\mathrm{K}_{3}=\left[\frac{\& R T \ell}{\mathrm{M}_{\mathrm{ZnS}}}\right] /\left(\mathrm{D}_{\mathrm{Zn}^{\mathrm{A}}} \mathrm{D}_{\mathrm{H}_{2}} \mathrm{~S}_{5} \mathrm{p}^{\theta} \mathrm{P}\right) \tag{5.4.1}
\end{equation*}
\]

In this equation, \(\&\) is the rate of mass loss of ZnS, \(\ell / \mathrm{A}\) is the length over the cross-sectional area (the diffusive resistance) of the capillary, \(M_{Z n S}\) is the molecular mass of \(\mathrm{Zns}, \mathrm{D}_{\mathrm{i}}\) are the quaternary diffusion coefficients, \(K_{i}\) are equilibrium constants, \(\mathrm{p}^{\theta}\) is the standard state pressure ( \(101325 \mathrm{~N} \mathrm{~m}^{-2}\) ) and P is the working pressure in the MEM rig (usually atmospheric +2.3 mmHg ). The equilibrium constants and numerical notation is shown at the beginning of the chapter and is used throughout. The diffusion coefficients ( \(\mathrm{D}_{\mathrm{i}}\) ) include a power law dependence on temperature and are formulated in terms of the corresponding binary diffusion coefficients ( \(D_{i j}\) ) into the majority component \(\left(\mathrm{H}_{2}\right)\) and a multicomponent diffusion correction term ( \(\gamma_{i}\) ). The derivation of equation (5.4.1) and the form of \(\gamma_{i}\) are outlined in the Appendix A2.3 and in section 3.4.

Use of equation (5.4.1) implies a knowledge of \(K_{5}\) (formation of gaseous hydrogen sulphide) and its temperature dependence. The thermodynamic parameters for the components in \(K_{5}\) are well established \({ }^{12}\) and values of free energy equation \(\Delta G_{5}^{\circ}\) were calculated at

100 K intervals from 900 to 1500 K using equation (5.4.2)
\[
\begin{equation*}
\Delta G_{5}^{O}=\Delta H_{298}^{O}-T \Delta(\text { fef }) \tag{5.4.2}
\end{equation*}
\]
where fef \(=-\left(G_{T}^{O}-H_{298}^{\circ}\right) / T\)
calculated JANAF \({ }^{12}\) data form \(\Delta H_{298}^{O}\) and \(\Delta\) (fef). Regression of these results with \(T\) yielded
\[
\Delta \mathrm{G}_{5}^{\mathrm{O}} / \mathrm{J} \mathrm{~mol}^{-1}=(-90333 \pm 110)+(49.3 \pm 0.1) \mathrm{T} \quad[900-1500 \mathrm{~K}]
\]

The uncertainty intervals are standard deviations of the regression coefficients. A recommended expression \({ }^{14}\) for this equilibrium [5.5] over a much wider temperature range (298 to 1750 K ) agrees with (5.4.4) to within \(0.2 \%\) at 900 K and to within \(3.3 \%\) at 1440 K , the upper temperature limit in this work.

The results from two independent MEM experimental data with \(\mathrm{ZnS}(\beta)\) using capsules with different channel dimensions were pooled, the sublimation of zinc sulphide equilibrium constant \(\mathrm{K}_{3}\) extracted from
equation (5.4.1), and \(\Delta G_{3}^{\circ}\) regressed with \(T\) to yield an equation in the form of (5.4.4). A statistical routine was used which identified outliers (data pairs
for which the standardized residual \(>121\) ), which were then rejected, the rejection sequence terminating when \(r^{2}=0.998(n=76)\). The initial \(r^{2}\) was 0.995 for all data points \((\mathrm{n}=92)\), where \(r=\) correlation coefficient.
\[
\begin{array}{r}
\Delta \mathrm{G}_{3}^{\mathrm{O}}(\beta) / \mathrm{J} \mathrm{~mol}^{-1}=(374200 \pm 1200)-(190.4 \pm 1.1) \mathrm{T} \\
\\
{[1012-1271 \mathrm{~K}] \quad(5.4 .5)}
\end{array}
\]

A similar procedure was adopted for the experiments with the \(\alpha\)-phase when the results from three separate experiments with the same capsule were pooled ( \(\mathrm{n}=\) 199, \(r^{2}=0.997\) ), the final regression equation being based on \(\mathrm{n}=191\).
\[
\begin{array}{r}
\Delta \mathrm{G}_{4}^{\mathrm{O}}(\alpha) / \mathrm{J} \mathrm{~mol}^{-1}=(376700 \pm 900)-(191.9 \pm 0.6) \mathrm{T} \\
\\
{[1300-1440 \mathrm{~K}] \quad(5.4 .6)}
\end{array}
\]

In both cases the rejected data points were randomly distributed throughout the temperature range; the uncertainty intervals in equations (5.4.5) and (5.4.6) are standard deviations of the regression coefficients (see table 5.2). Assuming that these equations may be extrapolated to the transition temperature (1293 K) which is equivalent to the approximation,
```

\Delta\mp@subsup{C}{p}{}}\mp@subsup{}{}{\beta}(1010-1293 K)=\Delta\mp@subsup{C}{p}{\alpha}(1293-1440 K

```
the transition of \((\beta \rightarrow \alpha)\) give rise to the experimentally determined thermodynamical data of enthalpy and entropy
```

$\Delta \mathrm{H}^{\circ}(\beta \rightarrow \alpha) 1293=-2.5 \pm 1.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$

```

The heat capacities for \(\mathrm{ZnS}(\alpha)\) and \(\mathrm{ZnS}(\beta)\) at both high \({ }^{16}\) and low \({ }^{15}\) temperatures have been reported by the Bureau of Mines (USA) group. The high temperature work revealed no enthalpy of transition and the results in combination suggest an athermal transformation
\[
\left.\begin{array}{rl}
\Delta\left(\mathrm{H}_{1300}^{\mathrm{O}}-\mathrm{H}_{298}^{\mathrm{O}}\right)(\beta \rightarrow \alpha) & \simeq 0 \mathrm{~kJ} \mathrm{~mol} \\
-1 \\
\Delta \mathrm{~S}^{\circ}(\beta \rightarrow \alpha) 1300 & \simeq 0.4 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}
\end{array}\right\} \text { (5.4.8) }
\]

Hence the results from this work are in satisfactory agreement with the Bureau of Mines (BM) study.

A recent careful examination \({ }^{17}\) of a high temperature solid electrolyte cell yielded Gibbs free energies for the reversible cell reaction,
\[
\begin{equation*}
\mathrm{ZnS}(\beta)+3 \mathrm{Cu}_{2} \mathrm{O}(\mathrm{c})=\mathrm{ZnO}(\mathrm{c})+6 \mathrm{Cu}(\mathrm{c})+\mathrm{SO}_{2}(\mathrm{~g}) \tag{5.4.9}
\end{equation*}
\]
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Table 5.2 &  & \begin{tabular}{l}
near \\
\(\Delta \mathrm{G}^{\circ}\) \\
Zn (g)
\end{tabular} & \begin{tabular}{l}
sion
\[
B T=\Delta
\] \\
\({ }^{2}\) (g)
\end{tabular} & \begin{tabular}{l}
ve Different \\
\(\mathrm{T} \Delta \mathrm{S}^{\circ}\) \\
and \(\mathrm{K}_{4}\)
\end{tabular} & Sets, Sepa & and in \\
\hline Data set code & n & n* & \[
\underset{\text { phase }}{\text { ZnS }}
\] & \[
\begin{gathered}
\mathrm{A}^{+} \\
\mathrm{mol}^{-1}
\end{gathered}
\] & \[
\mathrm{J} \mathrm{~mol}^{\mathrm{B}^{+}} \mathrm{K}^{-1}
\] & Range/K \\
\hline c & 55 & 43 & \(\beta\) & \(374215 \pm 1457\) & \(190.6 \pm 1.2\) & \\
\hline E & 37 & 33 & \(\beta\) & \(373883 \pm 1765\) & \(190.2 \pm 1.5\) & \\
\hline D & 90 & 90 & \(\alpha\) & \(377917 \pm 1383\) & \(192.7 \pm 1.0\) & \\
\hline F & 62 & 62 & \(\alpha\) & \(378113 \pm 1127\) & 192.6さ0.8 & \\
\hline G & 47 & 39 & \(\alpha\) & \(375024 \pm 1377\) & \(190.9 \pm 1.0\) & \\
\hline C+E & & 76 & \(\beta\) & \(374174 \pm 1148\) & \(190.4 \pm 1.1\) & [1010-1270] \\
\hline D+F+G & & 191 & \(\alpha\) & \(376746 \pm 874\) & \(191.9 \pm 0.6\) & [1300-1440] \\
\hline \multicolumn{7}{|l|}{\begin{tabular}{l}
+ the uncertainty intervals in A and B are one standard deviation \\
\(\mathrm{n}-\mathrm{n}^{*}\) number of rejected data pairs \\
* the standardised residual is the residual of the \(i_{\text {th }}\) observation over its standard deviation
\end{tabular}} \\
\hline
\end{tabular}
which in combination with ancillary thermodynamic data gave a similar zinc sulphide sublimation free energy equation
\(\Delta \mathrm{G}_{3}^{\mathrm{O}}(\beta) / \mathrm{J} \mathrm{mol}^{-1}=387000-199 \mathrm{~T}\) [1180-1210 K] (5.4.10)

Over the common temperature range the experimental MEM results (5.4.5) for \(\Delta G_{3}^{O}(\beta)\) are about \(2 \%\) low compared with those from the literature equation (5.4.10) but the constants are quite different suggesting internal compensation. A comparison of \(\Delta G_{3}^{\circ}\) and \(\Delta G_{4}^{O}\) from several sources is given in table 5.3.

The constants A and B in the free energy equations (5.4.5) and (5.4.6) of the dissociative sublimationn of zinc sulphide correspond to the enthalpy and entropy changes respectively at the mid-points of the experimental temperature ranges. The experimental results may be re-converted to apply to the standard formation reaction (5.4.11) at 298 K ,
\[
\begin{equation*}
\mathrm{Zn}(\mathrm{c})+\mathrm{S}(\mathrm{rhomb})=\mathrm{ZnS}(\alpha, \beta) \tag{5.4.11}
\end{equation*}
\]
using supplementary thermodynamic data for zinc \({ }^{20}\), sulphur \({ }^{12}\) and zinc sulphide \({ }^{16}\). These second-law conversions yield heats of formation of
\[
\Delta \mathrm{H}_{\mathrm{f}}^{\mathrm{O}}[\mathrm{ZnS}, \beta] 298=-190.2 \pm 4.6 \mathrm{~kJ} \mathrm{~mol}^{-1} \quad(5.4 .12)
\]
\begin{tabular}{|c|c|c|c|c|}
\hline Table 5.3 & \multicolumn{4}{|l|}{A comparison of literature data for the Equilibrium
\[
\mathrm{ZnS}(\alpha, \beta)=\mathrm{Zn}(\mathrm{~g})+\frac{1}{2} \mathrm{~S}_{2}(\mathrm{~g}), \Delta \mathrm{G}_{3 / 4}^{\circ} / \mathrm{J} \mathrm{~mol}^{-1}=\mathrm{A}-\mathrm{BT}
\]} \\
\hline Phase & Range/K & A & B & Source \\
\hline \(\beta\) & 1180-1210 & 387000 & 199 & ref. 17 (Schaefer) \\
\hline \(\beta\) & 1180-1210 & 391200 & 201 & ref. 18 (Richards) \\
\hline \(\beta\) & < 1293 & 374300 & 193 & ref. 19 (Rosenqvist) \\
\hline \(\beta\) & 1010-1270 & 374200 & 190 & this work \\
\hline \(\alpha\) & 1323-1473 & 360900 & 183 & ref. 19 (Rosenqvist) \\
\hline \(\alpha\) & 1300-1440 & 376700 & 192 & this work \\
\hline
\end{tabular}
\[
\begin{equation*}
\Delta \mathrm{H}_{\mathrm{f}}^{\mathrm{O}}[\mathrm{ZnS}, \alpha] 298=-196 \pm 4.0 \mathrm{~kJ} \mathrm{~mol}^{-1} \tag{5.4.13}
\end{equation*}
\]

Where the uncertainty intervals are \(\pm 2\) (standard deviation) the usual practice for \(\Delta \mathrm{H}_{\mathrm{f}}^{\circ}\) (see table 5.4).

The MEM results were also processed by the third-law method. Here, the complete data set of \(\stackrel{\circ}{\omega}(T)\) is used (92 points for the \(\beta\)-phase and 199 points for \(\alpha-\) ), each data pair yielding a value for \(\mathrm{K}_{3}\) or \(\mathrm{K}_{4}\) from equations [5.3] and [5.4] respectively. Equation (5.4.14) is then used to derive a set of values for \(\Delta \mathrm{H}_{29 \mathrm{~B}}^{\mathrm{O}}\)
\[
\Delta \mathrm{H}_{\mathrm{n}}^{\circ}(\alpha, \beta, 298)=\mathrm{T} \Delta\left[-\left(\mathrm{G}_{\mathrm{T}}^{\circ}-\mathrm{H}_{298}^{\circ}\right) / \mathrm{T}\right]-\mathrm{RTlnK}_{\mathrm{n}} \quad(5.4 .14)
\]
where \(\mathrm{n}=3\) or 4 .
Gibbs free energy functions for ZnS were calculated from the heat capacities and derived functions reported \(\mathrm{Zn}(\mathrm{g})\) were taken from Hultgren \({ }^{20}\) and for \(S_{2}(g)\) from the JANAF compilation \({ }^{12}\). Finally, combining with \(\Delta H_{f}^{\circ}\left[S_{2}, g\right]=128 \pm 0.29^{12} \mathrm{~kJ} \mathrm{~mol}^{-1}\) and \(\Delta \mathrm{H}_{\mathrm{f}}^{\mathrm{O}}[\mathrm{Zn}, \mathrm{g}]=137.74 \pm 0.42^{20} \mathrm{~kJ} \mathrm{~mol}^{-1}\), standard enthalpies of formation corresponding to equation (5.4.11) are derived (see table 5.5). These are then compared with the second law values in table 5.6.

Notwithstanding the identification of our low temperature phase as \(95+\% \beta\) by XRD (see table 5.1),
```

Samelson and Brophy'3}\mathrm{ maintain that chemically-pure
ZnS(\beta) always contains stacking faults, mostly arising
from twinning. Aminoff and Broomé21 have shown that
\alpha-ZnS exists in the vicinity of the interfacial planes
of cubic twin. The experiments of Baars and Brandt9
referred to earlier in the discussion of our DSC
results suggest that the concentration of the \alpha-phase
in a weakly disordered cubic phase could be ca. 20%.
The DSC results (see figure 5.1) show a feature that
occurs in the same temperature interval (900-10200}\textrm{C}
that Baars and Brandts note annealing of the residual
disorder in this weakly disordered cubic phase.
Together, this evidence may suggest our transition
data could refer to the process (0.8\beta+0.2\alpha)->\alpha rather
than \beta->\alpha however unlikely. This introduces an
additional uncertainty into the transition data and
all results specific to the }\beta\mathrm{ -phase. The error limits
quoted reflect this additional uncertainty.

```




\subsection*{5.5 Results and Discussion}

Zinc Sulphide Transport in Hydrogen Chloride
The \(\mathrm{H}_{2} \mathrm{~S}\) produced in reaction [5.7] is significantly dissociated \(\left(\mathrm{K}_{5}(1200 \mathrm{~K}) \simeq 500\right)\) in the experimental temperature range (1023-1263 K). The \(\mathrm{H}_{2}\) being produced from the dissociation participates in reductive sublimation of ZnS . Further, \(\mathrm{ZnCl}_{2}\) undergoes slight dimerization below 1200 K as shown in the previous chapter. The equations [5.3], [5.5],
[5.7] and [5.8] were considered as the only participating equilibria during entrainment. Notice that the reductive sublimation of \(z i n c\) sulphide with hydrogen [5.1] referred to the above arises from the combination of zinc sulphide sublimation [5.3] and hydrogen sulphide reaction [5.5], consequently it is not included explicitly.

The central assumption of the modified entrainment method (MEM) is that the diffusive resistance offered by the capillary above the sample is sufficiently high so that the equilibrium partial pressures of all the gaseous species in [5.3], [5.5], [5.7] and [5.8] are obtained within \({ }^{22,23}\). The condition is met provided the surface area of the condensed phase ( ZnS here) is large compared with the cross-sectional area of the channel and that unfavourable surface kinetic effects do not intervene \({ }^{23}\). Unfavourable surface kinetics may arise from (i) physical effects, e.g. a surface film of oxide may form on a liquid metal so hindering its vaporisation or (ii) structural effects, e.g. the vaporisation coefficient for phosphorus (red) is exceptionally small \(\left(\simeq 10^{-8}\right)\) due to the structural reorganization in the solid \(\rightarrow\) gas phase transition \({ }^{24,25}\) Liquids, most metals, and isotropically bonded solids have vaporisation coefficients close to unity \({ }^{26}\). Kinetic inhibition for zinc sulphide transport in hydrogen chloride reaction
[5.7] at low partial pressures of HCl has been suggested \({ }^{27,28}\). The experiments which prompted this suggestion were in a closed tube reactor for which the diffusive resistance is five times smaller than in the MEM experiments. The equilibrium assumption is usually verified experimentally, as in this work, by conducting experiments with capsules having different channel dimensions and showing the results are self-consistent.

To derive expressions for the partial pressures of the gaseous species in four equations already mentioned, three coupling parameters ( \(\beta^{\prime}, \partial\), and \(\theta\) ) must be defined. These are
\[
\begin{equation*}
\beta^{\prime}=\frac{j\left(\mathrm{Zn}_{2} \mathrm{Cl}{ }_{4}\right)}{j\left(\mathrm{ZnCl}_{2}\right)} ; \quad \partial=\frac{j(\mathrm{Zn})}{j\left(\mathrm{~S}_{2}\right)} ; \theta=\frac{j\left(\mathrm{H}_{2}\right)}{j\left(\mathrm{H}_{2} \mathrm{~S}\right)} \tag{5.5.1}
\end{equation*}
\]
where \(j\) is the flux of the species in the channel and the coupling parameters may be solved from ancillary thermodynamic data on [5.8], [5.3] and [5.5]. Hence an expression for the equilibrium of zinc sulphide transported by hydrogen chloride becomes
\[
\begin{equation*}
\mathrm{K}_{6}=\frac{\mathrm{x}^{2}(2.2)^{2}(\theta+1)}{\mathrm{D}\left(\mathrm{ZnCl}_{2}\right)^{\mathrm{D}}\left(\mathrm{H}_{2} \mathrm{~S}\right)^{\Gamma^{2}\left(1+2 \beta^{\prime}\right) \mathrm{y}^{2}}} \tag{5.5.2}
\end{equation*}
\]
where \(x=\frac{\stackrel{\circ}{\omega R T} \ell}{\mathrm{AM}_{\mathrm{ZnS}}}\),
\[
\begin{aligned}
& \mathrm{y}=\epsilon \mathrm{p}-\frac{2 \mathrm{x}(\partial-2)(\theta+1)}{\mathrm{D}_{\mathrm{HCl}} \Gamma}, \\
& \Gamma=\partial-2 \theta-2 \text { and } \epsilon=\frac{\mathrm{p}_{\mathrm{HCl}}}{\mathrm{p}_{\mathrm{Ar}}+\mathrm{p}_{\mathrm{HCl}}}
\end{aligned}
\]

Full derivation and definition of terms are given in Appendix A2. 4.

As more than two gaseous components are present in the channel at any time the effects of multicomponent diffusion (see section 3.4) are taken into account, so \(\mathrm{D}_{\mathrm{i}}\) in (5.5.2) are multicomponent diffusion coefficients.

As already mentioned to describe this equilibrium system of zinc sulphide transported in hydrogen chloride, the "ZnS/HCl" MEM experimental results ( \(\stackrel{\circ}{\omega}\) ) require to be coupled to reliable ancillary thermodynamical data to calculate the coupling flux parameters \(\beta^{\prime}, \partial\) and \(\theta\). These include the vaporisation of zinc chloride ( \(\beta^{\prime}\) ), sublimation of zinc sulphide ( \((\partial)\) and the "equilibrium formation" of hydrogen sulphide from its gaseous elements ( \(\theta\) ).

Zinc chloride vaporisation has been studied by MEM in chapter 4 and the results interpreted in terms of monomeric and dimeric species in the vapour. The free energy expression (5.5.3) of zinc chloride was derived.
\(\Delta \mathrm{G}_{8}^{\mathrm{O}} / \mathrm{J} \mathrm{mol}^{-1}=-(162.000 \pm 8000)+(202 \pm 11) \mathrm{T} \quad[640-980 \mathrm{~K}]\) (5.5.3)

This equation was used to obtain \(\beta^{\prime}\) (see table 4.6). Although the temperature ranges of the zinc chloride work and the ( \(\mathrm{ZnS} / \mathrm{HCl}\) ) studies are not coincident, the zinc chloride dimer makes little contribution to the table 5.7 transport above 1000 K (see table 5.7 for values of \(\beta\) and partial pressures), so this non-coincidence is not a source of serious error. The dissociative sublimation of sphalerite by modified entrainment (equation [5.3] has also been previously described in section 5.4 and equation (5.5.4) obtained was
\[
\begin{aligned}
\Delta \mathrm{G}_{3}^{\mathrm{O}} / \mathrm{J} \mathrm{~mol}^{-1}(374200 \pm 1200)- & (190.4 \pm 1.1) \mathrm{T} \\
& {[1010-1270 \mathrm{~K}] \quad(5.5 .4) }
\end{aligned}
\]

The results from the MEM experiments with different channel sizes were first processed separately yielding two regression lines in the form \(\Delta G_{7}^{\circ}=a-b T\). Analysis of covariance showed there was no significant probability that the input data arose from different populations; this test confirms that equilibrium partial pressures were obtained within the capsules. The results (145 data pairs, \(\stackrel{\circ}{\omega}(T)\), see Appendix A4.5) from the two different capsules and
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Tab & 5.7 & \begin{tabular}{l}
Typica \\
( \(\mathrm{p}_{\mathrm{i}}^{\circ} / \mathrm{Nm}\)
\end{tabular} &  & of Coupli
\[
\mathrm{SS}(\mathrm{c})+\mathrm{HC}
\] & \begin{tabular}{l}
Parameter \\
g) at 1024
\end{tabular} & \begin{tabular}{l}
and Eq \\
1252 K
\end{tabular} & libriu & Partial & essure & \\
\hline T/K & \(10^{5} \beta^{\prime}\) & \(\theta\) & \(10^{4} \mathrm{a}\) & \(\mathrm{p}^{0}\left(\mathrm{ZnCl}_{2}\right)\) & \(\mathrm{p}^{\circ}\left(\mathrm{Zn}_{2} \mathrm{Cl}_{4}\right)\) & \(\mathrm{p}^{\circ}(\mathrm{HCl})\) & \(\mathrm{p}^{\circ}\left(\mathrm{H}_{2}\right)\) & \(\mathrm{p}^{\circ}(\mathrm{Zn})\) & \(\mathrm{p}^{\circ}\left(\mathrm{S}_{2}\right)\) & \(\mathrm{p}^{\circ}\left(\mathrm{H}_{2} \mathrm{~S}\right)\) \\
\hline 1024 & 1.14 & 1.28 & 0.3 & 359 & . 0066 & 5750 & 29 & . 002 & 106 & 101 \\
\hline 1159 & 0.28 & 2.60 & 11.5 & 800 & . 0035 & 5180 & 84 & . 222 & 307 & 145 \\
\hline 1252 & 0.12 & 4.03 & 97.8 & 1182 & . 0022 & 4700 & 139 & 3.070 & 508 & 154 \\
\hline \multicolumn{3}{|l|}{coupling parameters} & \(\beta^{\prime}=\) & \[
\frac{\left(\mathrm{Zn}_{2} \mathrm{Cl}_{4}\right)}{\left(\mathrm{ZnCl}_{2}\right)} ;
\] & \(=\frac{j(Z n)}{j\left(S_{2}\right)}\); & \(\theta=\frac{j( }{j}\) & & & & \\
\hline
\end{tabular}
four different HCl doping levels were then pooled and equation (5.5.5.) obtained by regression to give
\[
\begin{aligned}
\Delta \mathrm{G}_{7}^{\circ} / \mathrm{J} \mathrm{~mol}^{-1}=(95060 \pm 2700) & -(38.7 \pm 2.4) \mathrm{T}<1140 \mathrm{~K}> \\
& {[1023-1263 \mathrm{~K}] \quad(5.5 .5) }
\end{aligned}
\]
the free energy equation of zinc sulphide transport in hydrogen chloride. The uncertainty intervals are the standard deviations of the regression coefficient.

A Free Energy Equation for the corresponding equilibrium [5.6] involving liquid Zinc Chloride instead of gaseous Zinc Chloride in equilibrium [5.7]

The equilibrium of central importance to this study is equation [5.6]. The coefficients of the experimentally determined equation (5.5.5) were scaled to refer to 808 K (the mean temperature of the \(\mathrm{ZnCl}_{2}\) vaporisation study, see below) using \(c_{p}\) results for HCl and \(\mathrm{H}_{2} \mathrm{~S}\) from JANAF tables \(1^{12}\), for \(\mathrm{ZnCl}_{2}(\mathrm{~g})\) from Givan and Loewenschuss \({ }^{29}\) and for \(\mathrm{ZnS}(\beta)\) from Pankratz and King \({ }^{16}\) and Stuve \({ }^{15}\). Hence our experimental reaction ( \(\mathrm{ZnS} / \mathrm{HCl}\) ) equation [5.7] now scaled from <ll40 K> to <808 K> becomes
\(\Delta G_{7}^{O} / \mathrm{J} \mathrm{mol}^{-1}=(98260 \pm 2700)-(42.0 \pm 2.4) \mathrm{T}<808 \mathrm{~K}>\) (5.5.6)
```

range 638 to 978 K described in chapter 4 for range
6 3 8 to 9 7 8 \mathrm { K }
ZnCl 2(1) = ZnCl 2(g) [5.9] [638-978 K] (5.5.7)
gave
\DeltaG}\mp@subsup{}{9}{O}/J \mp@subsup{\textrm{mol}}{}{-1}=(126600\pm500)-(127.6\pm0.5)T (5.5.8
Subtracting equation (5.5.8) from equation (5.5.6)
yields the free energy equation for equilibrium [5.6]
involving liquid zinc chloride,
\DeltaG
which is valid over a temperature range of 638-978 K , this being within the liquid region of ZnCl_{2} (591-1005 K). Equilibrium constants calculated from this equation (5.5.9) are compared in table 5.8 with the two isolated literature results of Britske and Kapustinskii ${ }^{30}$.

```


Although the proportional error in \(\mathrm{K}_{6}\) is ca. 60\%, the values are significantly different from those of Britske and Kapustinskii \({ }^{30}\).

Third and Second Law Analysis on Zinc Sulphide Transported in Hydrogen Chloride

The free energy values for equation [5.7] were analysed by the third law method. These free energy functions were taken from the literature \(12,15,16,29\).

Using values of ( \(\mathrm{H}_{1,43}^{\mathrm{O}}-\mathrm{H}_{298}^{\mathrm{O}}\) ) from these same sources, the corresponding second law estimates of
\(\Delta H_{298}^{\circ}\) were obtained from \(\Delta H_{7}^{\circ}(1143 \mathrm{~K})=95.1 \pm 2.7 \mathrm{~kJ}\)
\(\mathrm{mol}^{-1}\) extracted from equation (5.5.5), the
experimental result of ( \(\mathrm{ZnS} / \mathrm{HCl}\) ), and method
illustrated in tables 5.4 and 5.5. The contribution of
\(\Delta H_{\text {, }}^{\text {O }}\) from the \(T \Delta(f e f)\) term in the third law analysis is
ca. \(50 \%\) and the coincidence between the second and third law results suggests the free energy functions for the components in equation [5.7] are in good order as shown in table 5.9.

Table 5.9 Second and Third Law Analysis of
\[
\begin{aligned}
& \mathrm{ZnS}(\beta, \mathrm{c})+2 \mathrm{HCl}(\mathrm{~g})=\mathrm{ZnCl}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) \\
& \mathrm{K}_{7}, \Delta \mathrm{H}_{7}^{\mathrm{O}}<298 \mathrm{~K}>\quad[5.7]
\end{aligned}
\]
\[
\Delta \mathrm{H}_{7}^{\mathrm{O}}(298 \mathrm{~K}) / \mathrm{kJ} \mathrm{~mol}^{-1}
\]

Second Law
\(103.9 \pm 5.4\)
Third Law
\(100.8 \pm 0.4\)
Uncertainty intervals are \(\pm 2\) (standard deviations of the Mean)

\subsection*{5.6 Conclusion}

The principal conclusion from this work is that the transition \(\mathrm{ZnS}(\beta) \rightarrow \mathrm{ZnS}(\alpha)\) is nearly athermal, both at the transition temperature and at 298 K . This is in agreement with the BM results 15,16 but at variance with Kapustinskii and Chenkova's solution calorimetric study \({ }^{31}\). Briefly, this Russian work consisted of measuring the enthalpies of reaction of the \(\alpha\) - and \(\beta\)-phases in concentrated HCl using an adiabatic
calorimeter at 293 K. With the same final thermodynamic state in each case, the difference in the heat of reaction is equal to the heat of transition. The solution of the \(\beta\)-phase was so sluggish that the experiments were truncated when dissolution was ca. \(90 \%\) complete, the extent of reaction being determined by analysis. The uncertainty attendant on solution calorimetry with slow reactions is well-established \({ }^{32}\) and the truncation procedure must be regarded as of doubtful validity. Further, when this work was repeated by the BM group \({ }^{33}\) it was the \(\beta\)-phase that proved more difficult to dissolve and no results were reported for it. The BM result for the \(\alpha\)-phase by reaction calorimetry is \(\Delta \mathrm{H}_{\mathrm{f}}^{\circ}[\mathrm{ZnS}, \alpha] 298=-191.9 \pm 0.8 \mathrm{~kJ} \mathrm{~mol}^{-1}\) which differs by 4.4 kJ mol \({ }^{-1}\) from our third law result.

The transport of zinc sulphide in hydrogen chloride has been investigated by modified entrainment. Combining these results with the results from the vaporisation study of \(\mathrm{ZnCl}_{2}\) in Chapter 4 the corresponding "liquid" reaction [5.6] has been derived. It is this reaction that has been proposed as a procedure to remove ZnS contamination in a zinc chloride hydrocracking melt \({ }^{34}\).

References for Chapter 5
1. V.G. Hill, Can.Miner., 1958, 6, 234.
2. S.M. Ho and B.E. Douglas, J.Chem.Ed., 1968, 45, 474 .
3. I.T. Steinberger, Progress in Crystal Growth and Characterisation, (Crystal Growth and Characterisation of Polytype Structures), Pergamon, 1983, 7, 7.
4. K. Imamura and M. Senna, Mat.Res.Bull., 1984, 19, 59.
5. J. Baars and G. Brandt, J.Phys.Chem.Solids, 1973, 34, 905.
6. V.L.Tauson and M.G. Abramovich, Mineral Zh, 1982, 4, 35, CA. 97:130673k.
7. M. Farnsworth and C.H. Kline, "Zinc Chemical", Zinc Development Association, 1973, London.
8. S.D. Scott and H.L. Barnes, Geochimica et Cosmochimica Acta, 1972, 36, 1275.
9. M. Grade and W. Hirschwald, Z.anorg.allg.chem., 1980, 406, 106.
10. G. de Maria, P. Goldfinger, L. Malaspina and V. Pinacente, Trans.Farad.Soc., 1965, 61, 2146.
11. P. Goldfinger and M. Jeunehomme, Trans.Farad. Soc., 1963, 59, 2851.
12. D.R. Stull and H. Prophet, JANAF Thermochemical Tables, NSRDS-NBS 37, Catalogue No. 013.48.37, U.S. Government Printing Office, Washington, D.C., 1971 and Supplements published in J. Phys.Chem.Ref.Data, 1974, 3, 311; 1975, 4, 1; 1978, 7, 793; 1982, 11, 695.
13. H. Samelson and V.A. Brophy, J. Electrochem. Soc., 1961, 108, 150.
14. O. Kubaschewski and C.B. Alcock, "Metallurgical Thermochemistry", 5th Ed., 1979 (reprinted 1983), Pergamon Press Ltd., Oxford.
15. J.M. Stuve, U.S. Bureau of Mines Report of Investigation 7940, 1974.
16. L.B. Pankratz and E.G. King, U.S. Bureau of Mines Reports of Investigation 6708, 1965.
17. S.C. Schaefer and N.A. Gokcen, High Temperature Science, 1982, 15, 225.
18. A.W. Richards, J.Appl.Chem., 1959, 9, 142.
19. T. Rosenqvist and K. Tungesvik, Trans.Farad. Soc., 1971, 67, 2945.
20. R. Hultgren, P.D. Desai, D.T. Hawkins, M. Gleiser, K.K. Kelly and D.D. Wagman, Selected Values of the Thermodynamic Properties of the Elements, 1973, American Society for Metals, Metals Pk., Ohio.
21. G. Aminoft and G. Broomé, Z.Krist., 1931, 80, 355.
22.
23.
30. E.V. Britske and A.F. Kapustinskii, Zhur.fiz. Khim., 1934, 5, 77.
31. A.F. Kapustinskii and L.G. Chentzova, Compt. Rend.Dokl.Acad.Sci., URSS, 1941, 30, 489.
32. G.I. Birley and H.A. Skinner, Trans.Farad. Soc., 1968, 64, 3232.
33. L.H. Adami and E.G. King, U.S. Bureau of Mines Report of Investigation 6495, 1964.
34. C.W. Zielke and W.A. Rosenhoover, U.S. Patent 4424lll, 1984.

\section*{Chapter 6}

> Thermodynamics of Dissociation of Diamminedichlorozinc(II) \(\left(\mathrm{ZnCl}_{2}\left(\mathrm{NH}_{3}\right)_{2}\right)\)

\subsection*{6.1 Introduction}

Molten zinc chloride has been proposed as a hydrocracking solvent for coal slurries and heavy oil fractions \({ }^{1,2}\). Nitrogen is one several heteroatoms inevitably introduced with the feedstock and is reduced to ammonia \(\left(\mathrm{NH}_{3}\right)\) under the usual operating condition of \(420^{\circ} \mathrm{C}\) and 170 atm . of hydrogen. The \(\mathrm{NH}_{3}\) forms strong complexes, principally \(\mathrm{ZnCl}_{2} \mathrm{NH}_{4} \mathrm{Cl}\), \(\mathrm{ZnCl}_{2}\left(\mathrm{NH}_{3}\right)_{2}\) and \(\mathrm{ZnCl}_{2} \mathrm{NH}_{3}\), with zinc chloride and these steadily accumulate in the melt \({ }^{2,3}\). As part of the programme to study the thermodynamics of reactions involving molten zinc chloride and its regeneration from contaminated melts, the thermal decomposition of \(\mathrm{ZnCl}_{2}\left(\mathrm{NH}_{3}\right)_{2}\) has been examined by modified entrainment. 6.2 Materials

Diamminedichlorozinc(II) was made by the method of Perchard and Novak \({ }^{4}\) from ethanolic zinc chloride into which ammonia was passed. The agreement between the calculated and experimental analysis results was shown to be satisfactory in section 2.10 .

\subsection*{6.3 Experimental}

Diamminedichlorozinc(II) crystals were observed to
melt with decomposition in an open m.p. tube at a temperature range from 190 to \(250^{\circ} \mathrm{C}\) (details are given below).

The MEM transport of \(\mathrm{ZnCl}_{2}\left(\mathrm{NH}_{3}\right)_{2}\) in argon was studied in the temperature range from 166 to \(399^{\circ} \mathrm{C}\). Forty-five measurements were recorded with approximately 1 mg mass loss per point, the total initial mass being 231.4 mg ; the rates of mass loss \(\stackrel{\circ}{\omega}(\mathrm{T})\) varied from \(2 \times 10^{-10} \mathrm{~kg} \mathrm{~s}^{-1}\) to \(4 \times 10^{-12} \mathrm{~kg} \mathrm{~s}^{-1}\) dependent upon the temperature of the sample and duration of time held at that particular temperature. The experimental MEM data on \(\mathrm{ZnCl}_{2}\left(\mathrm{NH}_{3}\right)_{2}\) are collected in Appendix A4. 6.

\subsection*{6.4 Results}

The following phase changes of diamminedichlorozinc(II) were noted while heating a sample in a melting point tube:
i) perceptible softening in region 190 to \(220^{\circ} \mathrm{C}\), however \(90+\%\) was still solid. A possible reaction is
\[
\begin{aligned}
& \mathrm{ZnCl}_{2}\left(\mathrm{NH}_{3}\right)_{2}(\mathrm{C})=\mathrm{ZnCl}_{2} \mathrm{NH}_{3}(\ell)+\mathrm{NH}_{3}(\mathrm{~g}) \\
& \mathrm{A} \\
& \mathrm{~B} \\
& \text { (B "wets" A making it look soft), }
\end{aligned}
\]
ii) at \(240^{\circ} \mathrm{C}\), only \(70 \%\) was solid, iii) \(243^{\circ} \mathrm{C}\), only \(50 \%\) was solid and at
iv) 249 to \(252^{\circ} \mathrm{C}\) rapid melting with gas evolution.

During the MEM experiments it was found that only at temperatures below \(228^{\circ} \mathrm{C}\) were reproducible values of \(\dot{\omega}\) obtained. Furthermore a plot of \(\ln \hat{\omega}\) vs. l/T was nearly linear in the range 166 to \(228^{\circ} \mathrm{C}\). At higher temperatures values of \(\stackrel{\circ}{\omega}\) were time-dependent and irreproducible - see figure 6.1 where the experimental sequence is noted.
6.5 Discussion

Stoichiometry of the Thermal Decomposition
Zinc Chloride forms several ammines, \(\mathrm{ZnCl}_{2}\left(\mathrm{NH}_{3}\right)_{\mathrm{n}}\), where \(\mathrm{n}=6,4,2,1.5,1,0.5\) and 0.167 . Their thermal stability and phase interrelationships have been well-documented \({ }^{3}, 5,11\). The monoammine and the diammine have been most thoroughly characterized, viz. by \(X\)-ray diffraction \({ }^{12}\), vibrational spectroscopy \({ }^{4}\), temperature dependence of viscosity and conductivity \({ }^{8}\), thermogravimetric5,6 and thermomechanical analysis \({ }^{5}\) and molecular mass in solution \({ }^{8}\). As mentioned in Section 6.4, the starting material in this work, \(\mathrm{ZnCl}_{2}\left(\mathrm{NH}_{3}\right)_{2}\) remains solid on heating to over \(190^{\circ} \mathrm{C}\) when the presence of a liquid phase \(\left(\mathrm{ZnCl}_{2} \mathrm{NH}_{3}\right.\), see below) becomes apparent. Quantitative analysis \({ }^{9}\) of all of the phases present in a closed system between \(220^{\circ}\) to \(540^{\circ} \mathrm{C}\) and initially charged with diammine suggest the equilibrium stoichiometry as \(\mathrm{ZnCl}_{2}\left(\mathrm{NH}_{3}\right)_{2}=\) \(\mathrm{ZnCl}_{2} \mathrm{NH}_{3}+\mathrm{NH}_{3}\). Furthermore the product of the

reaction under investigation, \(\mathrm{ZnCl}_{2} \mathrm{NH}_{3}\), may be prepared by the controlled thermal decomposition 5,8 of the diammine in an open system at \(200^{\circ} \mathrm{C}\) until the proportional mass loss is \(10 \%\). The thermal stability of \(\mathrm{ZnCl}_{2} \mathrm{NH}_{3}\) has been examined in open systems by Zubakhina \({ }^{6}\) and Volova et al \({ }^{5}\) who reported insignificant decomposition to \(\left.\mathrm{ZnCl}_{2}(\mathrm{NH})_{3}\right)_{n}\) where \(\mathrm{n}<\) 1 below \(320^{\circ} \mathrm{C}\) and \(380^{\circ} \mathrm{C}\) respectively.

The physical properties of monoaminedichlorozinc \(\mathrm{ZnCl}_{2} \mathrm{NH}_{3}\) have been extensively studied \({ }^{5}{ }^{8}\). The room temperature phase is a glassy polymer, \(\left(\mathrm{ZnCl}_{2} \mathrm{NH}_{3}\right)_{\mathrm{m}}\) where \(m \simeq 30\). On heating it passes through an elastic phase (34 to \(60^{\circ} \mathrm{C}\) ) and becomes increasingly viscous to \(90^{\circ} \mathrm{C}\). From 90 to \(140^{\circ} \mathrm{C}\) it displays increasing crystallinity, and finally undergoes a reversible depolymerization and melting from 140 to \(148^{\circ} \mathrm{C}\).

Clearly from the above discussion and as shown in figure 6.1, it is only the experimental results obtained below \(228^{\circ} \mathrm{C}\) that will yield reliable thermodynamic data. Hence, the calculations were confined to 11 raw data readings in the range 166 to \(228^{\circ} \mathrm{C}\) where the diammine was solid, the monoammine was liquid and insignificantly decomposed to lower ammines. Further the cumulative proportional mass loss throughout the experiments was \(4.1 \%\), less than the \(10 \%\) required for quantitative conversion to \(\mathrm{ZnCl}_{2} \mathrm{NH}_{3}\). Taken together the above evidence supports
a reaction stoichiometry given by equation (6.4.1) i.e. the conversion of the solid diammine to form liquid monoammine with the liberation of ammonia.

Modified Entrainment
For equilibrium (6.4.1), involving a single gaseous species, the partial pressure of \(\mathrm{NH}_{3}\left(\mathrm{p}_{\mathrm{NH}_{3}}^{\mathrm{O}}\right.\) is given by
\[
\begin{equation*}
\mathrm{p}_{\mathrm{NH}_{3}}^{\circ}=\mathrm{P}\left(1-e^{-\xi}\right) \tag{6.5.1}
\end{equation*}
\]
 mass loss at temperature \(T, \quad l / A\) is the length over the cross-sectional area of the capsule capillary (2.006 x \(10^{4} \mathrm{~m}^{-1}\) ), M is the molecular mass of \(\mathrm{NH}_{3}, \mathrm{P}\) is the total system pressure (usually a few mmHg above atmospheric pressure) and \(D\) is the binary diffusivity of \(\mathrm{NH}_{3}\) in Ar , see Appendeces A2.5, A3.9 and A4.6 for further ancillary information on the diammine. The diffusivity was estimated over the experimental temperature range (438 to 503 K ) from the Lennard-Jones potential parameters for \(\mathrm{NH}_{3}\) and \(\mathrm{Ar}^{13}\)
\(D\left(\mathrm{NH}_{3}, \mathrm{Ar}\right) / \mathrm{m}^{2} \mathrm{~s}^{-1}=1.825 \times 10^{-5}(\mathrm{~T} / 273.15)^{1.842}\)
\[
[438-503 \mathrm{~K}] \quad(6.5 .2)
\]

Only limited experimental evidence \({ }^{14}\) exists for this system and not within our temperature range. The
```

equilibrium constant for reaction (6.4.1), p p OH / /p
(}\mp@subsup{p}{}{0}=101325 \mp@subsup{Nm}{}{-2}) was formed from equations (6.5.1
and (6.5.2) and the corresponding }\Delta\mp@subsup{G}{1}{O}\mathrm{ was linearly
regressed against T/K to give equation (6.5.3) for the
thermal decomposition of the diammine complex

```
\(\Delta \mathrm{G}_{\mathrm{I}}^{\mathrm{O}} / \mathrm{J} \mathrm{mol}^{-1}=(118500 \pm 3800)-(218 \pm 8) \mathrm{T}\)
    [439-510 K] (6.5.3)

The uncertainty intervals in equation (6.5.3) are standard deviations of the regression coefficients. The dissociation pressure above \(\mathrm{ZnCl}_{2}\left(\mathrm{NH}_{3}\right)_{2}\) (crystal) has been reported before \({ }^{15,16}\) at five temperatures in the range 401 to 490 K . The decomposition reaction was quoted as equation (6.4.1) except that the monoammine phase was written as solid. Converting these early results to free energies we obtain
\(\Delta \mathrm{G}^{\circ} / \mathrm{J} \mathrm{mol}^{-1}=(118800 \pm 9600)-(219 \pm 21) \mathrm{T}\)
[401-490 K] (6.5.4)

The coefficients in equation (6.5.4) have larger uncertainty intervals but are close to those of equation (6.5.3).
6.6 Conclusion

The Gibb's free energy equation (6.5.3) for the
```

conversion of diamminedichlorozinc(II) in the
temperature range [439 to 50l K] has been derived
using the modified entrainment method and compares
favourably with that of earlier workers'5,16 except
they failed to identify the monoammine phase as
liquid. On further heating, the sample develops a
viscous surface film which hinders the rate of weight
loss subsequently as shown in figure 6.1. This
suggests the system has become kinetically rather than
thermodynamically controlled and hence no
thermodynamic data (Gibbs' free energy equations) may
be derived because the system is no longer at
equilibrium.

```

References for Chapter 6
1. R.T. Struck and C.W. Zielke, Fuel, 1981, 60, 795.
2. C.W. Zielke and W.A. Rosenhoover, U.S. Patent 4424 lll, 1984.
3. F.K. Mikhailov and Z.K. Zubakhina, Russian J.Inorg.Chem., 1968, 13, 618.
4. C. Perchard and A. Novak, Spectrochimica Acta, 1970, 26A, 871.
5. L.M. Volova, V.I. Ostroushko and G.I. Sheremet'eva, Russian J.Inorg.Chem., 1967, 12, 958.
6. Z.K. Zubakhina, Russian J.Inorg.Chem., 1968, 13, 353.
7. Z.K. Zubakhina, Tr.Nauch.-Issled.Inst.Osn.Khim., 1969, 19, 105, CA 74:91838w.
8. R.P. Block, R.A. Florentine, J.Simkin and BarthWehrenalp, J.Inorg.Nucl.Chem., 1962, 24, 371.
9. E. Starokadomskaya, J.Appl.Chem. (U.S.S.R.), 1936, 9, 599, CA 30:7427.
10. N. Elliott and D.M. Yost, JACS, 1934, 56, 1057 and 2797.
ll. P.R. Kruesi and W.H. Kruesi, U.S. Patent \(4500498,1985\).
12. T. Yamaguchi and O. Lindqvist, Acta Chem.Scand., 1981, A35, 727.
13. R.C. Reid, J.M. Prausnitz and T.K. Sherwood, "The Properties of Gases and Liquid", 3rd edition, 1977, McGraw-Hill, New York.
14. T.R. Marrero and E.A. Mason, J.Phys.Chem.Ref. Data, 1972, \(1,3\).
15. W. Biltz and C. Messerknecht, Z.anorg.allgem. Chemie, 1923, 129, 161.
16. International Critical Tables, 1929, VII, 252, McGraw-Hill, New York.

\section*{Appendix 1}

Calibration of Thermocouples and Temperature Profiles of Furnaces Used in the MEM Experiments

Al.l Calibration of Thermocouples
Figure Al shows that the Keithley Tc type \(K\) is in satifactory agreement with the mercury-in-glass thermometer (exposed stem-end correction applied) to within experimental error of \(\pm 2^{\circ} \mathrm{C}\).


Equilibrium systems studied using type K Tc were Hg in inert gases, temperature range [148-3170 C ] and \(\mathrm{ZnCl}_{2} 2 \mathrm{NH}_{3}\) in argon, temperature range \(\left[166-399^{\circ} \mathrm{C}\right.\) ].

Figure A2 shows there is a slight deviation in the temperature readings between RHBNC type \(R\) TC and the calibrated standard type \(R\) TC. Consequently a series of temperature corrections were applied to the following systems

Zn in inert gases [417-8670\(\left.{ }^{\circ} \mathrm{C}\right] \mathrm{ZnCl}_{2}\) in Ar [365-705\({ }^{\circ} \mathrm{C}\) ]
ZnS in \(\mathrm{H}_{2}\) [737-11720 C\(] \quad \mathrm{ZnS}\) in HCl [750-990 \(\left.{ }^{\circ} \mathrm{C}\right]\).


Temperature Correction for RHBNC type \(R\) TC.
Temp. Range/ \({ }^{\circ} \mathrm{C}\)
107-488 \(\mathrm{T}(\) cor \() /{ }^{\circ} \mathrm{C}=\mathrm{T}\) (uncor) \(-0.759-0.00643 * \mathrm{~T}\) (uncor)
350-700 T (cor) \(/{ }^{\circ} \mathrm{C}=\mathrm{T}\) (uncor) \(-2.4-0.002 * \mathrm{~T}\) (uncor)
489-586 \(\mathrm{T}(\) cor \() /{ }^{\circ} \mathrm{C}=\mathrm{T}(\) uncor \()-3.6\)
587-1162 \(\mathrm{T}(\) cor \() /{ }^{\circ} \mathrm{C}=\mathrm{T}\) (uncor) \(-10.9+0.012 * \mathrm{~T}\) (uncor)
cor \(=\) corrected temp. uncor \(=\) uncorrected temp.

\section*{Al. 2 Furnace Profiles used in MEM Studies}

Type 1: Gold Furnace \(170-450^{\circ} \mathrm{C}\)
Systems studied with Gold Furnace with insulation lagging were \(H g\) in inert (non-reacting) gases \(\left(148-317^{\circ} \mathrm{C}\right)\) and \(\mathrm{ZnCl}_{2}\left(\mathrm{NH}_{3}\right)_{2}\) in argon \(\left(166-399^{\circ} \mathrm{C}\right)\).


Technical Specification of Gold Furnace:
40 mm Temp Plateau \(\pm 2^{\circ} \mathrm{C}\) in all cases \({ }^{18}\) region \({ }^{24}\). Cylindrical shaped ceramic wool lagging \({ }^{33}\) region \({ }^{51}\). Downward argon flow at \(90 \mathrm{~cm}^{3} \mathrm{~min}^{-1}\) (stp).

Control Tc positioned at 21 cm , between furnace tube and silica tube of MEM rig. Measuring Tc used - type K.

Type 2: Demountable Furnace \(400-900^{\circ} \mathrm{C}\)
Systems studied with Demountable Furnace and one layer of insulation were zinc in inert gases \(\left(455-862^{\circ} \mathrm{C}\right)\) and Zinc Chloride in argon \(\left(365-705^{\circ} \mathrm{C}\right)\).


Figure A4 Temperature Profiles of Demountable Tube Furnace Set Temperature Range \(400^{\circ} \mathrm{C}\) to \(900^{\circ} \mathrm{C}\)

Technical Specification of Demountable Furnace:
40 mm Temp Plateau \(\pm 2^{\circ} \mathrm{C}\) in all cases \({ }^{17}\) region \({ }^{21}\).
One layer of ceramic wool insulation 28 region \({ }^{45}\).
Downward nitrogen flow at \(90 \mathrm{~cm}^{3} \mathrm{~min}^{-1}(\mathrm{stp})\).
Control Tc positioned at 34 cm between insulator and
outer furnace wall. Measuring Tc (RHBNC) type R.

Type 3: Demountable Furnace \(600-1200^{\circ} \mathrm{C}\)
Systems studied with Demountable Furnace with two layers of insulation were zinc sulphide in hydrogen \(\left(737-1172^{\circ} \mathrm{C}\right)\) and zinc sulphide in hydrogen chloride \(\left(750-990^{\circ} \mathrm{C}\right)\).


Figure A5 Temperature Profiles of Demountable Tube Furnace Set Temperature Range \(600^{\circ} \mathrm{C}\) to \(1200^{\circ} \mathrm{C}\)

Technical specification of Demountable Furnace:
40 mm Temp Plateau \(\pm 2^{\circ} \mathrm{C}\) in all cases 19 region \({ }^{23}\).
2 layers of \(c\). wool insuln 0 region 45 33 region 45 .
Downward nitrogen flow at \(90 \mathrm{~cm}^{3} \mathrm{~min}^{-1}\) (stp).
Control Tc positioned at 34 cm between insulator and
outer furnace wall. Measuring Tc (RHBNC) type R.
```

 Appendix 2
 MEM Transport Equations
A2.l Evaporation of a Single Substance (Zn,Hg) in
inert gases (}\mp@subsup{\textrm{H}}{2}{},\textrm{He},\mp@subsup{\textrm{N}}{2}{},\textrm{Ar}
Relevant Programs: ZINCW.FOR and MERCURYW.FOR
For the evaporation of a single substance (say
zinc), the rate of weight loss (\stackrel{\omega}{)}\mathrm{ at temperature (T)}
is related to the equilibrium vapour pressure of zinc
(pozn) by
p
where $\xi=\frac{\stackrel{\omega}{\mathrm{RTR}} \ell}{D \mathrm{AM}_{\mathrm{Zn}} \mathrm{P}}$
P is the total pressure in the system (atmospheric pressure plus ca. 4 mmHg , this slight excess generated by back pressure in the exhaust line), $M_{Z n}$ is the atomic mass of zinc, D is the binary diffusion coefficient of Zn in the carrier gas $\left(\mathrm{H}_{2}, \mathrm{He}, \mathrm{N}_{2}\right.$ or Ar), ℓ and A are the length and cross-sectional area of the channel.
The algebraic equation (A2.l.1) and derivation of binary diffusion coefficients have been discussed in sections 1.4 and 3.5 of this thesis. When the partial pressure of the substance is known, then the binary diffusion coefficients may be calculated as a function of temperature.

```

\section*{A2.2 \(\mathrm{ZnCl}_{2}\) Transport in Argon}

Equilibria considered to be monomer and dimer zinc chloride composition only
\[
\begin{aligned}
\mathrm{ZnCl}_{2}(1) & =\mathrm{ZnCl}_{2}(\mathrm{~g}) & \mathrm{K}_{1} \\
2 \mathrm{ZnCl}_{2}(\mathrm{~g}) & =\mathrm{Zn}_{2} \mathrm{Cl}_{4}(\mathrm{~g}) & \mathrm{K}_{2}
\end{aligned}
\]

To set up flux equations, the following notation is used \(\quad 1 \equiv \mathrm{ZnCl}_{2}\) and \(2 \equiv \mathrm{Zn}_{2} \mathrm{Cl}_{4}\)
\[
\mathrm{Zn} \text { flux } j_{z n}=j_{1}+2 j_{2}
\]
\[
\mathrm{Cl} \text { flux } j \mathrm{cl}=2 \mathrm{j}_{1}+4 \mathrm{j}_{2}
\]

Define coupling flux parameter, \(\alpha\), as the flux ratio for the monomer and dimer as
\[
\alpha=\frac{j_{1}}{j_{2}}
\]
then total flux of system, \(J\), may be rewritten in terms of the coupling parameter \(\alpha\)
\[
J=j_{1}+j_{2}=j_{1}\left[\frac{\alpha+1}{\alpha}\right]
\]

The experimentally measured (or emergent) flux from the channel je
\(j_{e}=j_{Z n}=j_{1}+2 j_{2}=j_{1}\left[\frac{\alpha+2}{\alpha}\right]=\frac{\stackrel{\circ}{\oplus}}{\mathrm{AM}_{\mathrm{ZnCl}}^{2}}\)

Expression for \(\mathrm{j}_{\mathrm{i}} / \mathrm{J}\)
\(\frac{\mathrm{j}_{1}}{\mathrm{~J}}=\frac{\alpha}{\alpha+1} \quad ; \quad \frac{\mathrm{j}_{2}}{\mathrm{~J}}=\frac{1}{\alpha+1} \quad ; \quad \frac{\mathrm{j}_{\mathrm{e}}}{\mathrm{J}}=\frac{\alpha+2}{\alpha+1}\)

Partial pressures of zinc chloride monomer and dimer

In general \(\frac{p_{i}^{a}}{P}=\frac{j_{i}}{J}+\left\{\frac{p_{i}^{b}}{P}-\frac{j_{i}}{J}\right\} e^{-\xi_{i}}\)
(A2.2.1)
where \(\xi_{\mathrm{i}}=\frac{\mathrm{JRT} \ell}{\mathrm{PD}_{\mathrm{i}}}\)
\(\underset{\substack{\text { chapillary } \\ \text { channel }}}{ } \|_{\text {a }}^{b}\)
\[
=\frac{\mathrm{J}_{\mathrm{e}}^{\mathrm{RT} \ell}}{\mathrm{PD}_{\mathrm{i}}} * \frac{\mathrm{~J}}{\mathrm{~J}_{\mathrm{e}}}=\frac{\stackrel{\circ}{ } \mathrm{RT} \ell}{\mathrm{D}_{\mathrm{i}} \mathrm{AM}_{1} \mathrm{P}}
\]
when \(\frac{p_{i}^{b}}{p} \approx 0, \quad \frac{p_{i}^{a}}{P}=\frac{j_{i}}{J}\left(1-e^{-\xi_{i}}\right)\)
and when \(\xi_{i} \ll 1, \frac{p_{i}^{a}}{P}=\frac{j_{i}}{J} \xi_{i}\).

Then
\[
\xi_{1}=\frac{\stackrel{\circ}{\mathrm{RT}} \ell}{\mathrm{D}_{1} \mathrm{AM}_{1} \mathrm{P}}\left\{\frac{\alpha+1}{\alpha+2}\right\}
\]
and
\[
\xi_{2}=\frac{\oplus \mathrm{RT} \ell}{\mathrm{D}_{2} \mathrm{AM}{ }_{1} \mathrm{P}}\left\{\frac{\alpha+1}{\alpha+2}\right\} \quad \begin{aligned}
& \text { Notice } \\
& \begin{array}{l}
\mathrm{M}_{1} \text { in denominator } \\
\text { not } M_{2} \text { in this } \\
\text { expression }
\end{array}
\end{aligned}
\]
\(\therefore\) Partial Pressures \(\mathrm{p}_{1}=\frac{\alpha}{\alpha+2} \cdot \frac{\mathrm{x}}{\mathrm{D}_{1}}\) and \(\mathrm{p}_{2}=\frac{1}{\alpha+2} \cdot \frac{\mathrm{x}}{\mathrm{D}_{2}}\)
where \(\mathrm{x}=\frac{\stackrel{\varrho}{\mathrm{LRT}} \ell}{\mathrm{AM}} \mathrm{H}_{1}\)

Expression for equilibrium constants \(K_{i}\) becomes
\(K_{1}=\frac{p_{1}}{p^{\theta} a_{Z n C l}(1)}=\frac{p_{1}}{p^{\theta}}=\frac{\alpha}{\alpha+2} \cdot \frac{\alpha}{D_{1} p^{\theta}}\)
\(K_{2}=\frac{p_{2} p^{\theta}}{\left(p_{1}\right)^{2}}=\frac{(\alpha+2)}{\alpha^{2}} \cdot \frac{D_{1}^{2} p^{\theta}}{D_{2} x}\)

These two equations (A2.2.3) and (A2.2.4) may be solved simultaneously to find \(x\) (and hence \(\dot{\sigma}\) ), the master equation:
\(\stackrel{\circ}{\omega}_{\mathrm{ZnCl}_{2}}=\frac{\mathrm{AM}_{1}}{\mathrm{RT} \mathrm{\ell}}\left\{\mathrm{~K}_{1} \mathrm{D}_{1} \mathrm{p}^{\theta}+2 \mathrm{~K}_{1} \mathrm{~K}_{2} \mathrm{D}_{2} \mathrm{p}^{\theta}\right\}\)

MEM transport of \(\mathrm{ZnCl}_{2}\) with Monomer Species consideration Only
Relevant computer program: ZNCL2HT.FOR
When the dimer concentration of the evaporation of zinc chloride is considered negligible, the MEM algebraic expressions are similar as those derived for zinc or mercury in Appendix A2.1. As before
```

ZnCl 2(1) = ZnCl
K,
K
where \mp@subsup{p}{1}{}=P(1-\mp@subsup{e}{}{-\mp@subsup{\xi}{1}{}})\mathrm{ and }\mp@subsup{\xi}{1}{}=\frac{\mp@subsup{\dot{\omega}}{1}{}RT\ell}{\mp@subsup{D}{1}{}A\mp@subsup{M}{1}{}P}
Avoiding the Transport Function (\xi) Approximation
Relevant Computer Program: zNCL2K2.FOR
For practical MEM algebraic simplicity the
expansion of the transport function (\xi) is usually
(1 - e e-\xi) \simeq\xi where }\xi<<
when several heterogenous reactions are taken into
consideration. For greater accuracy in experiment
results the exact formulae for the zinc chloride
transport may be used. The monomer thermodynamic
constants are determined by using the negligible dimer
concentration assumption. This concept being
developed earlier in program ZNCL2HT.FOR, and in
Chapter 4, is then reprocessed at a much lower or
higher temperature where dimer concentration is
significant.
The monomer and dimer partial pressures are as
before

```
\(\mathrm{p}_{1}=\frac{\alpha}{\alpha+\mathrm{I}} \mathrm{P}\left(1-\mathrm{e}^{-\xi_{1}}\right) \quad ; \quad \xi_{1}=\frac{\stackrel{\circ}{\mathrm{QRT} \ell}}{\mathrm{D}_{1} \mathrm{AM} M_{1} \mathrm{P}}\left[\frac{\alpha+1}{\alpha+2}\right]\)
\(\mathrm{p}_{2}=\frac{1}{\alpha+1} \mathrm{P}\left(1-\mathrm{e}^{-\xi_{2}}\right) \quad ; \quad \xi_{2}=\frac{\stackrel{\circ}{\omega} \mathrm{RT} \ell}{\mathrm{D}_{2} \mathrm{AM} M_{1} \mathrm{P}}\left[\frac{\alpha+1}{\alpha+2}\right]\)

Redefining the equilibrium constant \(K_{1}\) and the experimental data by
letting \(A=\frac{K_{1} p^{\theta}}{P}\) and \(B=\frac{\stackrel{\omega}{ } \text { RT } \ell}{D_{1} A M P}\)
then \(\quad \mathrm{A}=\frac{\alpha}{\alpha+1}\left\{1-\exp \left[-\mathrm{B}\left[\frac{\alpha+1}{\alpha+2}\right]\right]\right\}\)
and truncating the above expression to the power of 2
\[
\mathrm{A}=\frac{\alpha}{\alpha+1}\left[\mathrm{~B}\left[\frac{\alpha+1}{\alpha+2}\right]-\frac{1}{2} \mathrm{~B}^{2} \frac{(\alpha+1)^{2}}{(\alpha+2)^{2}}\right]
\]

A quadratic equation for \(\alpha\) is thus derived by expansion of the above equation
\[
\alpha^{2}\left(2 A-2 B+B^{2}\right)+\alpha\left(8 A-4 B+B^{2}\right)+8 A=0
\]

The flux parameter \(\alpha\) may now be calculated from the knowledge of the monomer equilibrium \(\left(K_{1}\right)\) using program ZNCL2HT.FOR and experimental data \(\stackrel{( }{\omega}(T)\). Hence substitution of \(\alpha\) into equation (A2.2.7), the dimer
equilibrium may be extracted at the appropriate temperature where dimer concentration is significant.

MEM transport of \(\mathrm{ZnCl}_{2}\) coupled to Ancillary Vapour Pressure Data obtained from the Literature Relevant computer program: ZnCL2PG.FOR

The master equation (A2.2.5) of zinc chloride may be recast in terms of monomer \(\left(p_{1}\right)\) and dimer \(\left(p_{2}\right)\) partial pressures by substituting them in place of the equilibrium constants \(K_{1}\) and \(K_{2}\).
\(\stackrel{\circ}{\omega}=\frac{A M_{1}}{R T l}\left[D_{1} p_{1}+2 D_{2} p_{2}\right]\)
(A2.2.8)

Using ancillary absolute vapour pressure measurements \(\left(P_{T}=p_{1}+p_{2}\right)\) of zinc chloride, gives \(p_{1}\) and \(p_{2}\) separately over the common temperature range. The enthalpy and entropy values for the monomer and dimer may be extracted by standard linear regression procedures.

A2.3 "Congruent" sublimation of ZnS in Hydrogen Relevant Computer Program: ZNSDS3G.FOR The ZnS transport was performed in hydrogen giving the participating reactions
\(\mathrm{ZnS}(\mathrm{c}, \beta)+\mathrm{H}_{2}(\mathrm{~g})=\mathrm{Zn}(\mathrm{g})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) \quad \mathrm{K}_{1} \quad[5.1]\)
and
\[
\mathrm{ZnS}(\mathrm{c}, \beta)=\mathrm{Zn}(g)+\frac{1}{2} \mathrm{~S}_{2}(\mathrm{~g}) \quad \mathrm{K}_{3} \quad[5.3]
\]

The difference between these two equations is
\[
\mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{~S}_{2}(\mathrm{~g})=\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) \quad \mathrm{K}_{5} \quad[5.5]
\]
and it is more convenient when formulating the flux equation to consider [5.3] and [5.5] as the participating reactions since the zinc sulphide entrainment only two of the above equations are independent.

Setting up flux equation for the elements and using the numerical notations \(1 \equiv \mathrm{H}_{2}, 2 \equiv \mathrm{H}_{2} \mathrm{~S}, 3 \equiv \mathrm{~S}_{2}\), \(4 \equiv \mathrm{Zn}\) and \(5 \equiv \mathrm{ZnS}\).
\begin{tabular}{ll} 
Zn Flux & \(j_{Z n}=j_{4}\) \\
H Flux & \(j_{H}=2 j_{1}+2 j_{2}\) \\
S Flux & \(j_{S_{2}}=2 j_{3}+j_{2}\)
\end{tabular}

A coupling parameter, \(\partial\), defined as the flux ratio in the capillary of \(\mathrm{Zn}(\mathrm{g})\) to \(\mathrm{S}_{2}(\mathrm{~g})\)
\[
\partial=\frac{j_{4}}{j_{3}}
\]

In the absence of hydrogen (say argon), \(\partial=2\) as the sublimation is congruent.

Mass balances of flux equations
\(j_{1}+j_{2}=0\) (no net flux of \(H\), i.e. no sink)
\[
\left.\begin{array}{l}
j_{5}=j_{4} \\
j_{5}=2 j_{3}+j_{2}
\end{array}\right\} \quad \therefore j_{4}=2 j_{3}+j_{2}=\frac{2 j_{4}}{\partial}+j_{2}
\]

Writing all the fluxes in terms of \(j_{4}\)
\(j_{1}=j_{4}\left(\frac{2}{\partial}-1\right], j_{2}=j_{4}\left(1-\frac{2}{\partial}\right)\)
\(j_{3}=\frac{j_{4}}{\partial}, j_{4}=j_{4}, j_{5}=j_{4}=j\) emergent
and the sum of all the fluxes becomes
\(J=j_{1}+j_{2}+j_{3}+j_{4}=j_{4}\left[\frac{\partial+l}{\partial}\right]\)

The partial pressures of the system can now be in terms of fluxes and transport expressions. Then by using the transport function approximation the partial pressures of the system may be derived
where
\[
\begin{aligned}
& \frac{p_{i}}{P}=\frac{j_{i}}{J} \xi_{i} \\
& \xi_{i}=\frac{J R T \ell}{D_{i} P}=\frac{\stackrel{\varrho}{ } R_{i} \ell}{D_{i} A_{5} P} \frac{J}{j_{e}}
\end{aligned}
\]

Thus solving the flux equation \(K_{3}\) and \(K_{5}\) may be written as functions of \(\dot{\omega}, \partial\), \(T\), diffusion coefficients channel resistance, total pressure and fundamental constants as shown below.
\(K_{3}=\left[\frac{\stackrel{\varrho}{\omega} R T \ell}{M_{5} \mathrm{Ap}^{\theta}}\right]^{1 \cdot 5} /\left[\mathrm{D}_{4}\left(\mathrm{D}_{3} \partial\right)^{0.5}\right]\)
\(K_{5}=\left[\frac{\omega R T \ell D_{3} p^{\theta}}{M_{5} A \partial}\right]^{0 \cdot 5}\left[\frac{\partial-2}{P_{2}}\right]\)

The term \(\dot{\omega}\) is readily eliminated from these equations leaving a cubic expression in \(\partial\). Substituting literature values for \(K_{3}\) and \(K_{5}\) (see eqn. (5.4.4) and table 5.4), the cubic which has only one real positive root was solved exactly giving \(a \simeq 10^{3}\) at 1425 K . Consequently \(\partial-2\) was approximated to \(\partial\) in (A2.3.2) and then \(\partial\) is eliminated from (A2.3.1) and (A2.3.2) to give (A2.3.3)
\(\mathrm{K}_{3}=\left[\frac{\stackrel{\omega}{\mathrm{e} T \mathrm{R} \ell}}{\mathrm{M}_{5} \mathrm{~A}}\right]^{2} /\left(\mathrm{D}_{4} \mathrm{D}_{2} \mathrm{~K}_{5} \mathrm{p}^{\theta} \mathrm{P}\right)\)
which is identical to equation (5.4.1). The physical significance of the large values of \(\partial\) is that because equilibrium [5.5] lies to the right in our temperature range, the \(\mathrm{S}_{2}\) is transported mainly as \(\mathrm{H}_{2} \mathrm{~S}\).

In a system of more than 2 components the effects of multicomponent diffusion must be included. A second order treatment of this effect (see Section 3.4 and relevant computer program in Appendix A3.7) permits the multicomponent diffusion coefficient ( \(\mathrm{D}_{\mathrm{i}}\) ) to be written in terms of the corresponding binary diffusion coefficient ( \(D_{i j}\) ) with respect to the majority component (hydrogen).

A2.4 Transport of ZnS with Hydrogen Chloride in Argon

Relevant Computer Program: ZNSHCllo. FOR
The partial pressures of the gaseous species in equations [5.3], [5.5], [5.7] and [5.8] (see Chapter 5) are calculated from the general equation (A2.2.1). As four interdependent equilibria are involved, three coupling parameters ( \(\beta^{\prime}, \partial\) and \(\theta\) ) are defined,
\(\beta^{\prime}=\frac{j\left(\mathrm{Zn}_{2} \mathrm{Cl}_{4}\right)}{j\left(\mathrm{ZnCl}_{2}\right)} ; \quad \partial=\frac{j(\mathrm{Zn})}{j\left(\mathrm{~S}_{2}\right)} ; \quad \theta=\frac{j\left(\mathrm{H}_{2}\right)}{j\left(\mathrm{H}_{2} \mathrm{~S}\right)}\)
(A2.4.1)
where \(j\) is the flux of the species in the channel. The net elemental fluxes are written in terms of the fluxes of the participating species e.g.

Flux \((\mathrm{Zn})=j\left(\mathrm{ZnCl}_{2}\right)+2 \mathrm{j}\left(\mathrm{Zn}_{2} \mathrm{Cl}_{4}\right)+j(\mathrm{Zn}) \quad\) (A2.4.2)

Combining the elemental flux equations permits the ratio of any individual flux to the total flux to be written in terms of a function ( \(F_{i}\) ) of the coupling parameters (see previous examples)
\[
\begin{equation*}
\frac{j_{i}}{J}=F_{i}\left(\beta^{\prime}, \theta, \partial\right) \tag{A2.4.3}
\end{equation*}
\]

There is mass conservation of both hydrogen and chlorine species in this system in that there is zero net flux of each. For example, for hydrogen
```

j(HCl)}+2j(\mp@subsup{H}{2}{}\textrm{S})+2j(\mp@subsup{\textrm{H}}{2}{})=

```
For HCl in equation (A2.2.1)
\[
\frac{\mathrm{p}_{\dot{\mathrm{i}}}^{\mathrm{b}}}{\mathrm{P}}=\epsilon
\]
where \(\epsilon\) is the pressure fraction of the transporting gas (HCl) in the carrier gas (Ar) plus HCl mixture see section (3.4.1). For all other species the ratio \(p_{i}^{b} / P\) is zero as the carrier gas flushes these species away from the open end of the channel. The exponential term in equation (A2.2.1) is expanded and truncated at \(0(2)\) - the error in this approximation is \(\leqslant 5 \%\) when the transport function, \(\xi_{i}<0.1\). Hence
\[
\begin{equation*}
\frac{p_{i}}{P}=\frac{j_{i}}{J} \xi_{i} \tag{A2.4.4}
\end{equation*}
\]
and
```

$\frac{p(\mathrm{HCl})}{P}=\epsilon+\frac{j(\mathrm{HCl})}{J} \xi_{\mathrm{HCl}}$
(A2.4.5)
assuming $\epsilon \xi_{\mathrm{HCl}} \ll 1$.
The transport functions (ξi) are written in terms
of the experimental parameter, $\dot{\omega}(\mathrm{ZnS})$, and takes the
form

```
\(\xi_{i}=\frac{\stackrel{\circ}{\omega} R T \ell}{D_{i} A M P} G\left(\beta^{\prime}, \theta, \partial\right)\)
where \(G\) is an universal function of the coupling parameters, \(M\) is the molecular mass of ZnS and A is the cross-sectional area of the channel. Combining equations (A2.4.4) to (A2.4.6) the partial pressures are formed
\[
\begin{equation*}
p_{i}=\frac{\dot{\omega} R T l}{D_{i} A M} F_{i} G \quad(i \neq H C l) \tag{A2.4.7}
\end{equation*}
\]
\(\mathrm{p}_{\mathrm{HCl}}=\mathrm{P}_{\epsilon}-\frac{\stackrel{\varrho}{\mathrm{ERTl}}-}{\mathrm{D}_{\mathrm{HCl}}{ }^{\mathrm{AM}}} \mathrm{F}_{\mathrm{HCl}} \mathrm{G}\)

Next, the equilibrium constants \(\mathrm{K}_{3}, \mathrm{~K}_{5}\) and \(\mathrm{K}_{8}\) are written in terms of the partial pressures and are then equated to the analytical expressions taken from the literature (see Results and Discussion Section (5.5)). The resultant expressions are maniputated so as to solve for the three unknown coupling parameters ( \(\theta\), a and ( \(\beta^{\prime}\) ) when they are then evaluated at each experimental temperature. These values are then back-substituted in the equation for \(K_{7}\).

Details of effects of multicomponent diffusion and second order treatment are discussed in Section (3.4.2) and applied in program ZNSHCllo.FOR.

\section*{A2.5 Evaporation of Diamminedichlorozinc(II) in Ar Relevant Computer Program ZNCl22NH3A.FOR} A possible reaction below the melting point of zinc chloride may be written as
\(\mathrm{ZnCl}_{2} 2 \mathrm{NH}_{3}(\mathrm{c})=\mathrm{ZnCl}_{2} \mathrm{NH}_{3}(\mathrm{l})+\mathrm{NH}_{3}(\mathrm{~g}) \quad \mathrm{K}_{5}\)
the liberation of one mole of ammonia. The MEM algebraic flux expressions are sum of all the flux \(\sum_{i} j_{i}=j\left(N H_{3}\right)=J\)
and the emergent flux \(j_{e}=j\left(\mathrm{NH}_{3}\right)=\frac{\stackrel{\circ}{{ }^{N} H_{3}}}{\mathrm{AM}_{\mathrm{NH}_{3}}}\)
but
\[
\mathrm{p}_{\mathrm{NH}_{3}} \quad \mathrm{j}\left(\mathrm{NH}_{3}\right)
\]
where
\[
\xi_{\mathrm{NH}_{3}}=\frac{\dot{\omega \mathrm{RT} \ell}}{D_{\mathrm{NH}_{3}} \mathrm{AM}_{\mathrm{NH}_{3}} \mathrm{P}}
\]

The partial pressure of ammonia
\[
\mathrm{p}_{\mathrm{NH}_{3}}=\mathrm{P}\left(1-\mathrm{e}^{\left.-\xi_{\mathrm{NH}_{3}}\right)}\right.
\]
and hence \(K_{5}\) may be determined \(K_{5}=\left[\frac{\mathrm{P}_{\mathrm{NH}_{3}}}{\mathrm{P}^{\theta}}\right]\)

The diffusivity was estimated over the experimental temperature range (438 to 503 K ) from the Lennard-Jones potential parameters for Ar and \(\mathrm{NH}_{3}\)
\[
D\left(\mathrm{NH}_{3}, \mathrm{Ar}\right) / \mathrm{m}^{2} \mathrm{~s}^{-1}=1.825 \times 10^{-5}(\mathrm{~T} / 273.15)^{1.842}
\]

\section*{Appendix 3}

\section*{Computer Programs}
\begin{tabular}{llll} 
Mainframe used RHBNC Vax-Cluster & VMS \\
Programming language: Fortran 4 and 77 & VM & \\
& Program & Comment & Page No. \\
A3.1 & F36SPLOT.FOR & Typical Graphics Routine & 233 \\
A3.2 & ZINCW.FOR & Zinc in Inert Gases & 234 \\
A3.3 & MERCURYW.FOR & Mercury in Inert Gases & 234 \\
A3.4 & ZNCL2HT.FOR & Zinc Chloride Monomer & 235 \\
A3.5 & ZNCL2K2.FOR & Calculates Dimer & 237 \\
A3.6 & ZNCL2PG.FOR & MEM data \& lit. v. press. & 240 \\
A3.7 & ZNSDS3G.FOR & Reduction of ZnS in H2 & 244 \\
A3.8 & ZNSHCL10.FOR & ZnS transport in HCl & 247 \\
A3.9 & ZNCL22NH3A.FOR Evaporation of diammine & 252
\end{tabular}
* The zinc chloride simplex routine written by Andrew Wroot (RHBNC) as a general purpose user-friendly program is not included.
\(x 4(j)=x 4(j)\) /average \(4(j)\)
\(y 4(j)=y 4(j)\) /average \(4(j)\)
end do
Size of Picture in \((x, y)\)
call picsiz( \(12.0,19.0)\)
\(* * *\) Set character format \(=1\) OR graph landscape by default***
call chset(1) Choose line eg regression (4) or quadratic (5)
\[
\text { ntype }=4
\]
\[
\begin{array}{ll}
\text { Scale } & (x i, x z, 1, y i, y z, 1) \\
\text { call } & \text { scales }(0.42,0.80,1,-10.85,-8.50,1) \\
\text { call } & \text { xscale }(0.42,0.80,1) \\
\text { call } & \text { yscale }(-10.85 .-8.50 .1)
\end{array}
\]
\[
\text { call page( } 21.0,29.7)
\]
\[
\begin{aligned}
& \text { Set page in cm eg } A 4(21.0,29.7) \quad A 4(x, y) \\
& \text { call page }(21.0,29.7)
\end{aligned}
\]
\[
\begin{aligned}
& \text { Define axes }(x, y) \\
& \text { call axes } 7\left({ }^{\prime} \text { In ( } \mathrm{D} / \mathrm{m}\right. \\
& \text { call axes } 7\left({ }^{\prime} \mathrm{x}^{\prime}, \mathrm{y}^{\prime}\right)
\end{aligned}
\]
\[
\begin{aligned}
& \text { call axes7(' } \left.x^{\prime}, Y^{\prime}\right) \\
& \text { call cv } \\
& \text { call type(ntype) }
\end{aligned}
\]
\[
\begin{aligned}
& \text { call mark pt } \\
& \text { end do } \\
& \text { do } i=1,7
\end{aligned}
\]
\[
\begin{aligned}
& i=1,8 \\
& 11 \text { mark pt }(x 1(i), y 1(i), 0)
\end{aligned}
\]
\[
\begin{aligned}
& \text { do } i=1,7 \\
& \text { call mark pt(x2(i),y2(i),1) } \\
& \text { end do }
\end{aligned}
\]
\[
\begin{aligned}
& \text { do } i=1,8 \\
& \text { call mark pt }(\times 3(i), y 3(i), 2) \\
& \text { end do }
\end{aligned}
\]
\[
\begin{aligned}
& \text { do } i=1,8 \\
& \text { call mark pt }(x 4(i), y 4(i), 5) \\
& \text { end do }
\end{aligned}
\]
\[
\text { call brkn } \mathrm{cv}(\mathrm{x} 1, \mathrm{y} 1,8,1)
\]
\[
\begin{aligned}
& \text { call brkn } \operatorname{cv}(x 2, y 2,7,2) \\
& \text { call brkn } \operatorname{cv}(x 3, y 3,8,3) \\
& \text { call brkn } \operatorname{cv}(x 4, y 4,8,-1)
\end{aligned}
\]
\[
\begin{aligned}
& \text { call both } k 7\left(1,0,{ }^{\prime} \mathrm{D}(\mathrm{Hg}, \mathrm{H} 2) 62 \mathrm{pts} \mathrm{~s}^{\prime}\right) \\
& \text { call both } \mathrm{k} 7\left(2,1, \mathrm{D}^{\prime} \mathrm{D}(\mathrm{Hg}, \mathrm{He}) 53 \mathrm{pts} \mathrm{~s}^{\prime}\right)
\end{aligned}
\]
\[
\begin{aligned}
& \text { call both } k 7\left(2,1, ' \mathrm{D}(\mathrm{Hg}, \mathrm{He}) 53 \mathrm{pts}{ }^{\prime}\right) \\
& \text { call both } k 7\left(3,2,^{\prime} \mathrm{D}(\mathrm{Hg}, \mathrm{~N} 2) 53 \mathrm{pts} \mathrm{~s}^{\prime}\right) \\
& \text { call both } \mathrm{k} 7\left(-1,5,^{\prime} \mathrm{D}(\mathrm{Hg}, \mathrm{Ar}) 50 \mathrm{pts}{ }^{\prime}\right)
\end{aligned}
\]
\[
\begin{aligned}
& \text { Title title7('1','c',' Figure } 3.6 \text { Binary Gaseous } \\
& \text { call } \\
& \text { * Diffusion Coefficients of') }
\end{aligned}
\]
\[
\begin{aligned}
& \text { * Diffusion Coefficients of') } \\
& \text { call title7( }{ }^{\prime}{ }^{\prime},,^{\prime},{ }^{\prime}
\end{aligned}
\]
\[
\begin{aligned}
& \text { call endplt } \\
& \text { stop } \\
& \text { end }
\end{aligned}
\]
Mercury in Ine








\section*{ENDDO 887}
 \(\mathrm{C}=0\)
DO 886
\(\mathrm{IF}(\mathrm{TK}(\mathrm{I}\)
\(\mathrm{C}=\mathrm{C}+1\)
\(\mathrm{TK}(\mathrm{C})=\)
\(\mathrm{P}(\mathrm{C})=\mathrm{P}\)
WDOTE \((\mathrm{C})\)
\(\mathrm{RN}(\mathrm{C})=\)
\(\mathrm{CO})\)
CONT
\(\mathrm{N}=\mathrm{C}\)
DO \(886 \mathrm{I}=1, \mathrm{Cl}\)
\(\mathrm{IF}(\mathrm{TK}(\mathrm{I}) \cdot \mathrm{GE} .900 .0\) ) GOTO 886
\(\mathrm{C}=\mathrm{C}+1\)

PROGRAM ZNCL2K2
PROGRAM ZNCL2K2
MAIN PROGRAMMER P.J.GARDNER
PROGRAM TO EXTRACT K2(T)) FROM LOU TEMP. ZNCL2


c
c
C SELECT RELEVANT DATA
4)
INOM
LECT RELEVANT DATA FROM ZNCL2AR. EMF
REAL \(\mathrm{m}(20)\)
REAL L2, K1 (200), MLNY, K2 (200)
INTEGER C, C1, RN (200), M2 (10)
CHARACTER*80
J1, HEADER (100)
TRANSPORT RESULTS USING
C SELECT R
CHARACTER*80 J1, HEADER ( 100 )
DIMENSION P(200), TC (200), TK (200), DA1 (200), P1 (200), P2(200)
DIMENSION DA2 (200), WDOTE (200), MLNV (200) DIMENSION DA2 (200), \(\mathrm{KDOTE}(200)\), MLNU (200)
COMMON/LS/ TR, K2,

PRINT*,'How many data sets? Assign as FOROO1,FOR002....' READ \(\star\), , 11
PRINT \(\star\), Enter \(10.6 D 12,10 \% 6 D 24,1+\) s 1 , \& \(1+\) s \(2^{\prime}, ~\)

\({ }_{\text {READ } *, \text { H1, S1 }}\)
C Convert H1 and S1 to appropriate temperature
PRINT \(\star\), Enter the 2NCL2R2 points ref. temperature'
print \(\star\),'followed by the \(2 N C L 2 H T\) ref. temperature'

\(40=0\)
\(C 1=0\)
087
\(\mathrm{~J}=1, \mathrm{M} 1\)
DO 887
\(\mathrm{MO}=\mathrm{MO}+1\)

READ (MO, 888 )

\(\mathrm{Cl}=1=1+1\)
\(\mathrm{READ}(\mathrm{HO}, \star) \mathrm{RN}(\mathrm{C} 1), \mathrm{EMF}, \mathrm{TC}(\mathrm{C} 1), \mathrm{MLNY}(\mathrm{C} 1), \mathrm{P}(\mathrm{C} 1)\)

ELSE T1=GA1
C Protection against spurious values- Restart reiteration \(\operatorname{IF}(\mathrm{T1} 1 . \mathrm{LE} .0 .0) \mathrm{T} 1=0.9\)
\(\mathrm{IF}(\mathrm{T} 2 . \mathrm{LE} .0 .0) \mathrm{T} 2=0.9\) DA1 1 ) \(=\) DOA1/T1
DA2 \((I)=D 0 A 2 / T 2\)
C PROTECTION AGAINST CONTINUOUS LOOPING
IF(K.GE.100) GOTO 49
GO TO 110
\[
\begin{aligned}
& 50 \text { CONTINUE } \\
& \text { C PRINT OUT PARTIAL PRESSURES }
\end{aligned}
\]
878 FORMAT(X,') T/K P1 ,991)


\footnotetext{
 \(\infty\)
}





REAL K2 (200)
COMMON/LS/ TK (200), K2,R
\(\mathrm{X1} 1(\mathrm{I})=\mathrm{TK}(\mathrm{I})\)
\(\mathrm{Y} 1(\mathrm{I})=-\mathrm{R} \star \mathrm{X1}(\mathrm{I}) \star \mathrm{ALOG}(\mathrm{K} 2(\mathrm{I}))\)
CONTINUE范
SUBROUTINE LS(N,AO,BO,EO,DO,RS)
LEAST SOUARES ON STRAIGHT LINE IN
LEAST SQUARES ON STRAIGHT LINE IN FORM Y=BOX + AO.
GIVES GRADIENT(BO), INTERCET(AO), THEIR
STANDARD DEIATITNS AND A CORELATION COEFFICIENT IMMENSION X1(200), Y1(200) ら
 \(890 \quad \begin{aligned} & \operatorname{VRITE}(6,890) \\ & \operatorname{FORMAT}(1, \mathrm{x}, \text { I }\end{aligned}\)

\(r\)
*)
à

PROGRAM ZNCL2PG



\[
\begin{aligned}
& \text { పू ※ }
\end{aligned}
\]
©*** SET UP DIFFUSION COEFFICIENTS

0




\(\operatorname{VRITE}\left(6, '(1 X, A 80)^{\prime}\right)\) HEADER(I)
END DO
\(\operatorname{VRITE}\left(6, '(1 X, A 80)^{\prime}\right) \operatorname{HEADER}(I)\)
\(\operatorname{END} \mathrm{DO}\)
DO
\(\operatorname{DO} \operatorname{II}=1,100\)

\(\operatorname{VRITE}(9, *) T K(I), Y 1(I)\)
 i

앙
,
\(\left.\begin{array}{l}\text { R3=SIRT(R4) } \\ \text { URITE( } 6,890)\end{array}\right)\), FOLLOUING LS ANALYSIS, \(\mathrm{Y}=\operatorname{DELTA}(\mathrm{G})\) AND \(\left.X=T / \mathrm{K}^{\prime}\right)\) ********************************')


FORMAT(' LEAST SQUARES ANALYSIS: \(Y=B 0 X+A O^{\prime} /\)
웅
이 © . .

STOP
END
SUBRO
DIMEN
REAL
COMMON
DO 80
DO 60
D(I, J)
CONTI
CONTI
J9J=0
J10J \(=1\)
JSJ \(=1\)
JIJ MEANS \(j 1 / J\) - FOR THIS SYSTEM JIJ=F(DELTA) AND SINCE
DELTA IS SO LARGE, ALL JIJ MAY BE APPROXIMATED AS ABOVE
( \(5(4,9) * D(5,9) * J 0 J+D(4,10) * D(5,10) * J 10 J-1\), )
\(B 5=0.5 *(D, 5)\)
\(B 9=0.5 \star(D(4,5) \star D(9,5) * J S J+D(4,10) * D(9,10) * J 10 \mathrm{~J}-1\).
\(B 10=0.5 *(D(4,5) \star D(10,5) * J 5 J+D(4,9) \star D(10,9) * J 9 J-1\).
\(A S=1++B 5 \star E S\)

\(8 \%\)

PROGRAM ZNSHCLIO
PROGRAMMER P.PANG NOTATION FOR BQUILIBRIUM CONSTANTS AND DIFFUSION COEFFICIENTS AS DESIGNATED BY P.PANG AND P.J.GARDNER SEE DOCUMENTATION. MEM TRANSPORT REACTION CONSIDERED: K 12 2
K 10
K 11

\section*{\(\stackrel{*}{\star} \cong \stackrel{*}{*}\)}

DOUBLE PRECISION L2, RD2, BETACOR, EPSILON,R, PO, CAREA, EMF,TC, MLNU, P, DEL DOUBLE PRECISION WDOTE,TK, DA1, DA2.DA3, DA4, DAS, DA9, DA10 DOUBLE PRRECISION K2, K10, KK11, K12,K12ESTD, G12ESAD, K14, G14, GAMMA , \(c\), BETA DOUBLE PRECISIIN RE(4), XZ (4),YZ(4),PI,TOL,ZZ, XO1AAF, XO2AAF DOUBLE PRECISION ONE,P1, PAS, ZERO,
DOUBLE PRECISION OMEGA, AAAAA, BBBBB, CCCCC, DDDDD, 은 DOUBLE PRECISION EA1 , EA2 ,EA3 ,EA4 ,EAS ,EA9 ,'EA10
READ (5, ' (A80)')FILENM
READ (UNIT \(=8\), FILE \(=\) FILENM \(\quad\),STATUS \(\left.={ }^{\prime} 0 L D^{\prime}\right)\)
OPEN(UNIT \(=10\), \(\mathrm{FILE}==^{\prime}\) ZNSHCLB. PRE', STATUS \(={ }^{\prime}\) NEW \(^{\prime}{ }^{\prime}\) ')

\(\begin{aligned} \text { DAS } & =12.420 \mathrm{D}-6 *((\text { TK/273.15D0 }) * * 1.793 \mathrm{DO}) \\ \text { DA9 } & =8.608 \mathrm{D}-6 *((\text { TK/273.15DO }) * 1.720 \mathrm{D})\end{aligned}\)

00
00
0
~

DO \(I=1,10\),
\(\operatorname{VRITE}\left(6,{ }^{\prime}(1 \times, A 80)^{\prime}\right) \operatorname{HEADER}(I)\)

READ (5, \()\) L2, RD2, BETACOR, EPSILON
\(R \quad=8.3142 \mathrm{DO}\)
\(\mathrm{R}=8.3142 \mathrm{DO}\)
\(\mathrm{PO}=101325.0 \mathrm{DO}\)
CAREA \(=4.00 \mathrm{DO} 0\) DATAN \((1.00 \mathrm{DO}) \star(\mathrm{RD} 2 * * 2.0 \mathrm{DO})\)

\(\operatorname{VRITE}(6, *)^{\prime}\)
\(-190.4 \mathrm{~T}^{\prime}\) \(\mathrm{G}^{\prime}(\mathrm{al}\) pha) \(=376746.0-191.9 \mathrm{~T} \quad \mathrm{G10}\) (beta) \(=374174.0\)



요

INTEGER III, JJJ
COMMON MCD1,MCD2,MCD3 , MCD4, MCD5 , MCD9, MCD1O,


USING GRAHAM'S LAN OF SCALING THROUGHOUT \(\begin{aligned} & \text { i.e. } D i k / D j k=(M j / M i) * * 0.5 \\ & \text { or } \quad D(i, j)=[D i k / D j k-1]\end{aligned}\)


DO 888 JIII \(=1,111\)
CONTINUE \(=\operatorname{DSORT(M(JJJ)/M(III))~}-1.0 D 0\)
CONTINUE
DO 888 JJJJJ \(=1,11\)
CONTINUE \(=\operatorname{DSQRT}\) (M(JJJ)/M(III)) \(-1.0 D 0\)
CONTNUE
\[
\begin{aligned}
& \text { FOR MINORITY SPECI } \\
& \text { FIRST TERM A(**) } \\
& \mathrm{A}(1)=\mathrm{D}(11,3)
\end{aligned}
\]
\[
\begin{aligned}
& A(4)=D(11,3) \\
& A(5)=D(11,3) \\
& A(9)=D(11,3)
\end{aligned}
\]
\[
\begin{aligned}
& A(9)=D(11,3) \\
& A(10)=D(11,3) \\
& C E C O N D
\end{aligned}
\]
\[
\begin{aligned}
& A(10)=D(11,3) \\
& \text { SECOND TERM } B(\star \star)
\end{aligned}
\]
\[
\begin{aligned}
& \text { SECOND TERM } B(\star *) \\
& B(1)=(D(11,2) *(1,
\end{aligned}
\]
\[
\begin{gathered}
B(1)=(D(11,2) * D(1,2) * J 2 J+D(11,4) * D(1,4) * J 4 J+D(11,5) * D(1,5) * J 5 J \\
++D(11,9) * D(1,9) * J 9 J
\end{gathered}
\]
\[
\begin{aligned}
& B(2)=(D(11,1) * D(2,1) * J 1 J+D(11,4) * D(2,4) * J 4 J+D(11,5) * D(2,5) * J J J \\
& ++D(11,9) * D(2,9) * J 9 J+D(11,10) * D(2,10) * J 10 J+D(11,3) * D(2,3) * J 3 J
\end{aligned}
\]
\[
\begin{aligned}
& ++D(11,9) \star D(2,9), \\
& +-1.000) * 0.500
\end{aligned}
\]
\[
\begin{aligned}
& ++D(11,10) * D(4,10) * J 10 \mathrm{~J}+D(11,3) * D(4,3) * J 3 \mathrm{~J}-1.0 \mathrm{DD}) * 0.5 D 0 \\
& B(5)=(D(11,1) * D(5,1) * J 1 \mathrm{~J}+D(11,2) * D(5,2) * J 2 \mathrm{~J}
\end{aligned}
\]
\[
\begin{aligned}
& +D(11,10) * D(5,10) * J 10 J+D(11,3) * D(5,3) * J 3 J-1.0 D 0) * 0.500 \\
& B(9)=(D(11,1) * D(9,1) * J 1 J+D(11,2) * D(9,2) * J 2 J
\end{aligned}
\]
\[
\begin{aligned}
&+D(11,10) * D(9,10) * J 10 J+D(11,3) * D(9,3) * J 3 J-1.000) * 0.5 D 0 \\
& B(10)=(D(11,1) * D(10,1) * J 1 J J+D(11,2) * D(10,2) * J 2 J
\end{aligned}
\]
\[
\begin{aligned}
B(10)= & (D(11,1) * D(10,1) * J 1 J+D(11,2) * D(10,2) * J 2 J \\
& +D(11,4) * D(10,4) * J 4 J+D(11,5) * D(10,5) * J 5 J \\
+ & +D(11,9) * D(10,9) * J 9 J+D(11,3) * D(10,3) * J 3 J-1,0 D 0) * 0 .
\end{aligned}
\]
\[
\begin{aligned}
& \text { CORRECTION FOR TRANSPORTING SPECIES BCL(g) in ARGON(g) } \\
& \text { FIRST TERM }
\end{aligned}
\]
\[
A(3)=-D(11,1) * J 1 J-D(11,2) * J 2 J-D(11,4) * J 4 J
\]

泪。


ELSE
APPLYING MCD CORRECTION


TA1
TA2
TA3
TA4
TAS
TA9
TAA1
TAA
DA2
DA3
DAA
DA
DAS
DA9
DA10
RMCD
ENDIF
> \({ }_{\mathrm{T}}^{\mathrm{T}}(1)=\mathrm{XZ}(1) * \mathrm{~T}+1 \mathrm{~A} 1 \mathrm{COS}(\mathrm{FLOAT}(\mathrm{T}) * \mathrm{PI})-\mathrm{YZ}(1) \star \mathrm{A} 1 \mathrm{P} 1 * \operatorname{SIN}(\mathrm{FLOAT}(\mathrm{T}) * \mathrm{PI}\) \(\mathrm{XZ}(1)=\mathrm{XZ}(1) * \mathrm{~A} 1 \mathrm{P} 1 * \operatorname{COS}(\mathrm{FLOAT}(\mathrm{T}) * \mathrm{PI})-\mathrm{YZ}(1) * \mathrm{~A} P 1 * \operatorname{SIN}(\mathrm{FLOAT}\)
\(\mathrm{YZ}(1)=\mathrm{XZ}(1) * \mathrm{~A} 1 \mathrm{P} 1 * \operatorname{SIN}(\mathrm{FLOAT}(\mathrm{T}) * \mathrm{PI})+\mathrm{YZ}(1) * \mathrm{~A} 1 \mathrm{P} 1 * \operatorname{COS}(\mathrm{FLOAT}(\mathrm{T}) * \mathrm{PI}\) DATA STORED ON FILE ZNSHCL8.OUT,ZNSHCL8.PRE,ZNSHCL8.EXI' SND

MCD "GAMMA" CORRECTION
SUBROUTINE MCDCORR(M, EPSILON) SUBROUTINE MCDCORR (M,EPSILON) DOUBLE PRECISION MCD1, MCD2, MCD 3 , MCD4, MCDS 5 , MCD9, MCD10 DOUBLE PRECISION EA1, EA2, EA3, EA4, EAS, EA9, EA10, EPSILON
DOUBLE PRECISION \(\mathrm{J} 1 \mathrm{~J}, \mathrm{~J} 2 \mathrm{~J}, \mathrm{~J} 3 \mathrm{~J}, \mathrm{~J} 4 \mathrm{~J}, \mathrm{~J} 5 \mathrm{~J}, \mathrm{~J} 6 \mathrm{~J}, \mathrm{~J} 7 \mathrm{~J}, \mathrm{~J} 8 \mathrm{~J}, \mathrm{~J} 9 \mathrm{~J}, \mathrm{~J} 10 \mathrm{~J}\)
\(+-D(11,5) \star J 5 J\) J \(-D(11,9) * J 9 J-D(11,10) * J 10 J-1.000 / J 3 J\)
\({ }_{B}(3)=(D(11,1) * D(3,1) * J 1 \mathrm{~J}+D(11,2) * D(3,2) * J 2 \mathrm{~J}\) \(++D(11,9) * D(3,9) * J 9 J+D(11,10) * D(3,10) * J 10 \mathrm{~J}-1.0 D 0) * 0.5 D 0\)
\(A(1) * E P S I L O N+B(1) * E A 1 / J 8 J\)


\[
\begin{aligned}
& \text { ECHO } C 1 \text { 'V10E10' } \\
& \text { NAME C1 } \\
& \text { NAME C2 'A N/M2' } \\
& \text { NAME C3 'K5' } \\
& \text { NAME C4 'K7' } \\
& \text { NAME C5 'TK' } \\
& \text { NAME C6 'XI' } \\
& \text { NAME C7 ' G5' } \\
& \text { NAME C8 'GG' } \\
& \text { READ 'ZNCL22NH3.OUT'C1-C6 } \\
& \text { SORT C5[C1-C4, C6] C5[C1-C4, C6] } \\
& \text { LET C1 = C1*1E10 } \\
& \text { PRINT C5, C1-C4, C6 } \\
& \text { LET C7 }=-8.3142 \star \text { C5*LOGE (C3) } \\
& \text { LET C8 }=-8.3142 * C 5 * \text { LOGE(C4) } \\
& \text { PRINT C7, C8, C5 } \\
& \text { REGRESS C7 } 1 \text { C5 } \\
& \text { PLOT C7 C5 } \\
& \text { REGRESS C8 } 1 \text { C5 } \\
& \text { PLOT C8 C5 } \\
& \text { END }
\end{aligned}
\]
PROGRAM ZNCL22NH3A

REAL L2,R2, PI, R, PO
REAL RN(200), \(\operatorname{EMF}(200), T K(200), M L N Y(200), P(200), \operatorname{VDOTE}(200)\)
REAL A,M3,D3,P3,K5,K7,XI
INTEGER I,II
CHARACTER \(\star 80\) HEADER(100)

\(\operatorname{DO} I=1,10\)
\(\operatorname{READ}\left(7, \prime(\operatorname{A80})^{\prime}\right) \operatorname{HEADER}(I)\)
\(\operatorname{WRITE}\left(6,{ }^{\prime}(1 X, \text { A80 })^{\prime}\right)\) HEADER (I)
END DO
\(\mathrm{L} 2=1.8512 \mathrm{E}-2\)
\(\begin{aligned} \text { PO } & =101325.0 \\ P I & =4.00 * \operatorname{ATAN}(1.000)\end{aligned}\)
\(\begin{array}{ll}\mathrm{PI}=4.00 * A T A N \\ \mathrm{~A} & =\mathrm{PI} * \mathrm{R} 2 * \mathrm{R} 2\end{array}\)
\(\mathrm{A}=\mathrm{PI} * \mathrm{R} 2 * \mathrm{R} 2\)
\(\mathrm{R}=8.3142\)
\(\mathrm{M} 3=17.0306 \mathrm{E}-3\)
\(\vartheta\)
\(\operatorname{VRITE}(6, *)^{\prime}\)
\(\operatorname{VRITE}(6, \star)^{\prime} \operatorname{VDOT} / \mathrm{Kg} / \mathrm{s}\) AM / N/M2
\(\mathrm{XI} \quad\)

\footnotetext{

}
จ
\(u\)

\section*{Appendix 4 \\ MEM Raw Data Files}
\begin{tabular}{lllc} 
& Data Files & Comment & Page No. \\
A4.1 & ZINC.EMF & Zinc in Inert Gases & 254 \\
A4.2 & HG.EMF & Mercury in Inert Gases & 258 \\
A4.3 & ZNCL2.EMF & Zinc Chloride in Argon & 262 \\
A4.4 & ZNSH2.EMF & Zinc Sulphide in H & 265 \\
A4.5 & ZNSHCL.EMF & Zinc Sulphide in HCl & 270 \\
A4.6 & ZNCL22NH3B.EMF & Diamminedichlorozinc(II) & 275
\end{tabular}
 No jo so d














DATA FILE SERIES: ZNHEA.EMF DATA FILE SERIES: ZNHEA.EMF
DIFFUSION COEFICIENT DATA OF ZINC IN HELIUM. \(15 / 7 / 86\).
FLON OF HELUM \(=90 \mathrm{cc} /\) min (calc.) THERMOCOUPLE Pt: \(13 \% \mathrm{Rh} / \mathrm{Pt}\).
No. OF DATA POINTS \(=57\). CAHN R100 ELECTROBALANCE USED.

\section*{INTERNAL PRESSURE 5.53 mmHg .}










\begin{abstract}






\end{abstract}

\section*{}
```

DAR FSIE COEFPICIENT DATA OF ZINC IN NITROGEN. 30/6/86.
DATA FILE SERIES:ZNN2C.EMP
FLOW OF NITROGEN = 90cc/m in. THERMOCOUPLE Pt:13%Rh/Pt.
No. OF NATA POINTS = 75. CAHN R100 ELECTRRBALANCE USED,
LENGTH L2 }=2.1008+/-0.0053\textrm{cm}
RADIUS R2 = = 0.0560+/- 0.0010
M

```








\section*{dATA FILE SERIES: ZNARA. EMF}


\footnotetext{







}































\footnotetext{

}

 す。
 ๓ッニッルッルックッ




DATA FILE SERIES：HIATA．EMF DIFFUSION COEFFICIENT DATA OF FLOW OF ARGON \(=90 \mathrm{cc} / \mathrm{min}\) ．
NO．OF DATA POINTS \(=50\) CAHN R \(\qquad\)
\(\qquad\) .0574 ＜
 ADIUS R2 \begin{tabular}{l} 
IMENSIONS \\
ENGTH L2 \\
\hline
\end{tabular} beta correction





 88\％











 H
公



mV

出








USING WATER ENTRAINMENT
METHOD \(0.15 \%\) BY UT INCREA AR:Pt NEL:









( \(342.51 \mathrm{mg} \rightarrow 338.425 \mathrm{mg}\) ).
Final wt increased after
heating \(1.27 \%\). Runs \(24-30\)
aborted temp not read.
Runs 51-53 are unexpectly
higher temp.
N.B. low pressure correc





 గ్ర్ర几ন













\section*{ ZNSH2A \\ DATA FILE SERIES：ZNSH2．EMF \\ DATA FILE SERIES：ZNSH2．EMF
EQUILIBRIUM OF ZnS IN H2．ALDICH GOLD LABEL ELEC．GRADE．} OUILIBRIUM OF ZnS IN H2．ALDICH GOLD LABEL ELEC．GRAD No OF DATA POINTS \(=29\) FOR ZINC BLENDE．CAHN R100 USED DIMENSIONS OF CAPILLARY CHANNEL： \(\begin{array}{lll}\text { LENGTHS } & \mathrm{L} 1=0.0663+/-0.0052 \mathrm{~cm} \quad \mathrm{~L} 2=1.7936+/-0.0077 \mathrm{~cm} . \\ \text { RADII } & \mathrm{R} 1=0.0774+/-0.0045 \mathrm{~cm} & \mathrm{R} 2=0.0559+/-0.0028 \mathrm{~cm} .\end{array}\) b CORRECTION \([1+(R 2 . L 1 / R 1 . L 2)]=1.0267\)

\section*{M이우응}

UN 1 AND 2 TEMP RAISED
650 C
WT LOSS OF
＇ 20 2 PRESS －
完正 －鲁号品
葸ํㅜํ

\(\qquad\)











区omen萝





落










 ъ


















 ぶゥ（












 No．OF DATA
DIMENION OF
LENGTH L2 RADIUS R2








REPEATED ZNSH2F.EMF EXP
saixo alaissod saod 0 NVYGaNIH OILDJNIX 3Snvo Q. DOES COOLING SAMPLE ROOM TEMP AND REHEATING
1178 C INDUCE IRREVERSIB POLYTYPES OF SPHALERITE
 SIynodva 30 xDyana azya ANS. HYDROGEN WILL
REMOVES ANY POSSIBLE OX FORMATION.
ANS. NO.





























DATA FILE SERIES：ZNSHCLbb．EMF FLOW RATES \(: \mathrm{HCL}=10.0 \mathrm{cc} / \mathrm{min} \& \mathrm{Ar}=\) LOW RATES： \(\mathrm{HCL}=10.0 \mathrm{cc} / \mathrm{min}\) a Ar
No．OF DATA POINTS \(=42\) ．CAHN R10 DIMENSIONS OF CAPILLARY CHANNEL： RADII \(\quad\) R1 \(=0.0774+/-0.0045 \mathrm{~cm}\)
764.830 RUN \(1=\) RUN 3.5 ORIGINAL

RUN \(1=\) RUN 3.5 ORIGINAL
RNN 1 ABORTED－MEM RIG NOT Temperature Range
\(741-993 \mathrm{C}\) RESSURE
764.830
764.830
 용ㅇㅇ
 か్ iో




 z


억영엉엉웅웅웅웅
㫛资品品员品䍙




 ふiono oiouciois

デブまずきます。

\begin{abstract}
2NSHCLe．emf
 LENGTH L2 2.1008 cm RADIUS R2 \(=0.0560 \mathrm{~cm}\)
beta corr \(=1.000 \mathrm{EO}\)


 \(\mathrm{E}=0.0989\)







\end{abstract}
웃융융융융ㅇㅇㅇ







戸デすま゙ますか。



0.0667
 ＂ DIMENSIONS OF CHANNEL： LENGTH L2 \(=2.1008 \mathrm{~cm}\)
RADIUS R2 \(=0.0560 \mathrm{~cm}\) RADIUS R2 \(=0.0560 \mathrm{~cm}\)
beta corr \(=1.000 \mathrm{E} 0\)




录
 DATA FILE SERIES：ZNSHCLhh．EMF
SPHALERITE \(\mathrm{ZnS}+\mathrm{HCl}\) in Ar （RGP4）．16／1／87．ZNSHCLh．EMF LOW RATES： \(\mathrm{HCl}=8.64 \mathrm{cc} / \mathrm{min}\) \＆ \(\mathrm{Ar}=90.0 \mathrm{cc}\) No．OF DATA POINTS \(=30\) ．CAHN R100 USED．TC Pt：Pt13\％Rh． DIMENSIONS OF CHANNEL： \(\begin{aligned} & \text { LENGTH } L 2=1.9788 \mathrm{~cm} \\ & \text { RADIUS R2 }=0.0574 \mathrm{~cm}\end{aligned}\)

\section*{beta corr \(=1.000 \mathrm{EO} \quad \mathrm{E}=0.0876\)}

```

 @
 ~
ッックッッ8
@mommomom
\#~~

```

```

ッツッツッ8
N-NANむ0
ర్లార్లార్లార్లార్లిర

```

```

ま゙ブま゙づ

```


\begin{tabular}{|c|c|c|}
\hline  & 'st & '902 - d \\
\hline  & & - \(66 \tau\)-d \\
\hline  & & '981 - d \\
\hline  & & \\
\hline  & & \\
\hline  & 31 & '6LT - d \\
\hline  & & \\
\hline  & Lz & -OLt - \({ }^{\text {d }}\) \\
\hline ' "S. LIt." prax "S. Lltu zoa & \(\stackrel{L}{ }\) & 'zSI - d \\
\hline  & & \\
\hline  & & \\
\hline отдех Кттsuazut uotzestuot antzetax ач7 дој & & \\
\hline  & & \\
\hline зо s7tnsax SW jo uotzoodsut əsoton prox & & \\
\hline  & г2 & 'tot - d \\
\hline  & \(\cdot 6\) & -0bt -d \\
\hline  & - 6 & '68t -d \\
\hline  & ¢ & '6Et - d \\
\hline - "ut renamoh, prex „xәламон, доа & \({ }^{\text {I }}\) & '8Et - d \\
\hline  & 'L & - LEt - d \\
\hline  & \(8 \tau\) & 'โย1 - \({ }^{\text {d }}\) \\
\hline  & -s & 'zzt -d \\
\hline  & 81. & '0zt •d \\
\hline  & I2 & - btt -d \\
\hline  & - \({ }^{\text {c }}\) & ' \(\ell\) It •d \\
\hline  & ' \(\varepsilon\) ' & '80t -d \\
\hline  & ' 1 - & '96 - d \\
\hline  & 6. & 's6 -d \\
\hline
\end{tabular}```

