The Studies of Some Molecular Conformations

by Vibrational Spectroscopy

by Richard Maxwell Barrett, B.Sc.

| R. H. C. | LIBRARY |
|----------|---------|
| CLAS8    | COM     |
| No.      | Bar     |
| ACC. No. | 115,320 |
| DATE ACQ | May.73  |
| )        |         |

A thesis presented to the Faculty of Science of the University of London in candidature for the degree of Dector of Philosophy.

Chemistry Department, Royal Holloway College, (University of London), Englefield Green, Surrey.

December 1972.

ProQuest Number: 10096793

All rights reserved

INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.



ProQuest 10096793

Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author.

All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC.

> ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, MI 48106-1346

Acknowledgements

to Pr. Derek Theshe of the express his stars singles provided to Pr. Derek Theshe for his addies, gaidmos and analysison foring the tabure of this work.

#### To Linda Mary

Enmire are also due to my collenges Mr. Robert A.R. Perment or next house of belyful discussion and to Dr. Duncan G. Cillie or his advice and help on the N.H.R. supports of this work.

The use of the Louise Salversity inter-wellegents spectro-

The author withou to thank the Salance Research Council ft

inerclei export in the fore of a Pacifridanie Stadestelle.

The impact of maniformational environs in chamistry was clearly domenticated in 1957, during the beaure of this work when the Jobel Price for themistry was sainted in Fraferers

#### Acknowledgements

The author wishes to express his most sincere gratitude to Dr. Derek Steele for his advice, guidance and encouragement during the tenure of this work.

The first part of this theals deals with the pitrational

Thanks are also due to my colleague Mr. Robert A.R. Pearce for many hours of helpful discussion and to Dr. Duncan G. Gillies for his advice and help on the N.M.R. aspects of this work.

The use of the London University inter-collegeate spectroscopic services and computing facilities is gratefully acknowledged.

The author wishes to thank the Science Research Council for financial support in the form of a Postgraduate Studentship.

## Abstract

The impact of conformational analysis in chemistry was clearly demonstrated in 1969, during the tenure of this work, when the Nobel Prize for Chemistry was awarded to Professor D. H. R. Barton.

The first part of this thesis deals with the vibrational analysis of biphenyl and its 4,4'-dihalogeno derivatives with respect to the dihedral angle between the two rings. It is clearly demonstrated that change in conformation for biphenyl and 4,4'-difluorobiphenyl from  $D_{2h}$  (solid state) to  $D_2$  symmetry (solution, molten and gaseous states) is accompanied by changes in position and spectral activity of certain normal modes. These shifts, together with supplementary data derived from some deuterated derivatives of biphenyl, give an estimate of the dihedral angle in the solution state. The structure of 4,4'-dichloro and 4,4'-dibromobiphenyl is  $D_2$  irrespective of phase.

The second part of the thesis presents the vibrational analysis of tetrahydropyran and its 4-chloro and 4-bromo derivatives. Variable temperature NMR measurements give a quantitative estimate of the conformational equilibrium. The final part of this work presents the liquid band shape analysis of the 215 cm<sup>-1</sup> band of hexafluorobenzene in mixed benzene-cyclohexane solvents. It is shown from the computed correlation functions that vibrational relaxation occurs during the split of the hexafluorobenzene-benzene complex.

## Contents

| Chapter One                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | The Vibrational Problem                        | 1   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-----|
| Chapter Two                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | The Vibrational Analysis of Biphenyl           | 34  |
| Chapter Three                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | The Vibrational Analysis of the                |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4-4'-Dihalogeno Bibhenyls                      | 66  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | salysis refore in the subsection!              |     |
| Chapter Four                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | The Vibrational Analysis of                    |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Deuterated Biphenyls                           | 102 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |     |
| Chapter Five                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Conformational Studies of Some                 |     |
| ant he enters. Thy set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Monohalogeno Tetrahydropyrans                  |     |
| Section 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Infrared and Person Chuddag                    | 107 |
| addition, the mindular                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | THILD ON OUT FORCE O DUTTOR                    |     |
| Section B:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Nuclear Magnetic Resonance Studies             | 156 |
| be roadily determined.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | The dimension of the semilar equation.         |     |
| Chapter Fix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Liquid Band Shape Analysis for the             |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 215 cm <sup>-1</sup> Mode of Hexafluorobenzene | 183 |
| the president of the source of |                                                |     |
| Appendix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | inited diservice of the problem, is the        | 210 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | to field for these molecules involves          |     |
| References                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                | 234 |
| Reprint                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | The Vibrational Spectra and                    |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Dihedral Angles of Biphenyl and the            |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4-4'-Dihalogeno Biphenyls                      |     |
| Total number of pages                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | including preface                              | 249 |

solution, on the nature <u>CHAPTER 1</u> nos-field and on the validity of the bareneld approximation. Recent work (1,2) on non-inrodule force fields ha<u>The Vibrational Problem</u>ents terms for a number of moleculer.

For larger milecules, however, the problem is for more

#### 1.1 General Introduction

complicated and the vibrational machines is not always Normal coordinate analysis refers to the mathematical completely established. The polocular escaptry is often treatment involved in the computation of the 31-6 normal modes buous only approximately and emoplogentary data usually of vibration for a molecule (3N-5 for a linear molecule). arises from decharated monday. The escalar southe The solution involves the construction of a three-dimensional involves grandery blocks of considerable discusions wild potential energy surface or its force-field which may or may can only be colved by the sveilability of a fast. ! not be unique. For small molecules the vibrational assignment starage computer. As a consequence the most general here is well established, often for several isotopic species. In field involves a humber of paremeters which largely ancesda addition, the molecular geometric data is usually very accurate the sucher of americantal data. Research on large solamies and Coriclis coupling and centrifugal distortion constants can therefore involves the transferability of verious types of force be readily determined. The dimension of the secular equation field of simpler molecules to more escales of similar is small such that the effort involved in menual calculation is shadeal constitution. to seadict vibertional and me not prohibitive. The consequence of this situation, i.e. amount If this is done obtisfortig it is that foundblo to as of data available plus limited dimension of the problem, is that Wharative tochniques to improve the force field of the r the most general harmonic field for these molecules involves a number of parameters normally lower or at least equivalent to the number of observables available. Research in this case is essentially orientated towards the determination of a complete potential function and the emphasis is on the unicity of the cordinate systems and he used to solve the problem but the

R.H.C.

solution, on the nature of the force-field and on the validity of the harmonic approximation. Recent work (1,2) on non-harmonic force fields has produced cubic and quartic terms for a number of molecules.

2.

For larger molecules, however, the problem is far more complicated and the vibrational assignment is not always completely established. The molecular geometry is often known only approximately and supplementary data usually arises from deuterated species. The secular equation 1 m / m involves symmetry blocks of considerable dimensions which can only be solved by the availability of a fast, largestorage computer. As a consequence the most general harmonic ecordinates in given by a Taylor sories expansio field involves a number of parameters which largely exceeds the number of experimental data. Research on large molecules # ## # #/ ( ---therefore involves the transferability of various types of force field of simpler molecules to more complex molecules of similar chemical constitution, to predict vibrational assignments. If this is done satisfactorily it is then feasible to use therative techniques to improve the force field of the complex molecule. I is independent of the coordinate system it is

To a first approximation molecular vibrations may be treated independently of rotation and electronic motions. Various coordinate systems can be used to solve the problem but the following general treatment will show how the Hamiltonian is set up and solved.

A Cartesian framework for a molecule of N atoms will lead to 3N coordinates,

x1, x2, x3 ..... x31

which does it and in another that is a first

The total kinetic energy is given by

of such coeveinates is

$$2T = \sum_{i=1}^{2} m_{i} \frac{dx_{i}}{dt}^{2} = \sum_{i=1}^{2} m_{i} \dot{x}_{i}^{2} \qquad (1.1.1)$$

The potential energy of the molecule in terms of the same coordinates is given by a Taylor series expansion.

$$\mathbf{v} = \mathbf{v}_{o} + \sum_{i} \left( \frac{\partial \mathbf{v}}{\partial \mathbf{x}_{i}} \right)_{o} \mathbf{x}_{i} + \sum_{i,j} \left( \frac{\partial^{2} \mathbf{v}}{\partial \mathbf{x}_{i} \partial \mathbf{x}_{j}} \right)_{o} \mathbf{x}_{i} \mathbf{x}_{j}$$
  
+ 
$$\frac{1}{5} \sum_{i,j,k} \left( \frac{\partial^{3} \mathbf{v}}{\partial \mathbf{x}_{i} \partial \mathbf{x}_{j} \partial \mathbf{x}_{k}} \right)_{o} \mathbf{x}_{i} \mathbf{x}_{j} \mathbf{x}_{k} + \dots \text{ higher terms}$$
 (1.1)

As V is independent of the coordinate system it is arbitrarily set equal to zero.

If the coordinates are independent  $\frac{\partial V}{\partial x_i}$  must be zero at the equilibrium position. A further simplification arises

2)

if the molecular vibration comprises small displacements in which case it can be assumed that  $x_1 x_2 x_3 \ll x_1 x_2$ . Hence only quadratic terms need be considered in a first-order theory.

The second derivatives are constants being the force constants of the potential function.

lence 
$$2V = \sum_{i,j} f_{ij} x_i x_j$$
 (1.13)

4.

The mass-adjusted displacements can be simply formulated by the help of the mass-weighted coordinates. The definition of such coordinates is

$$q_1 = m_1 \frac{1}{2} x_1$$
 (1.1.4)

Hence the kinetic and potential energy expressions are

$$2T = \sum_{i} q_{i}^{2}$$
 (1.1.5)

$$ev = \sum_{i,j} c_{ij} q_i q_{j} - \lambda = 0$$
 (1.1.6)

or in a matrix notation

The Roy

$$2T = q q$$
 (1.1.7)  
 $2V = q^{t}Cq$  (1.1.8)

Newton's equation of motion can be written in Lagrangian form as

$$\frac{d}{dt}\left(\frac{T}{q_{i}}\right) + \left(\frac{V}{q_{i}}\right) = 0 \quad (i = 1, 30) \quad (1.1.9)$$

A system of 3N second order differential equations is obtained of the form

$$i + \sum_{j} c_{ij} q_{j} = 0$$
 (1.1.10)

or in matrix form

0.98

The solution of such a simple harmonic problem is

$$q_{a} = A_{a} \sin(\lambda^{2} t + \delta) \qquad (1.1.12)$$

where  $A_{1}$ ,  $\delta$  and  $\lambda$  are constants.

2.17

By ubstituting these 3N solutions back into the original differential equations the constants can be calculated and the following system is arrived at

$$\sum_{j} c_{ij} = \lambda_{j} = \lambda_{j} = 0 \quad (1 = 1, 2 \dots 3N) \quad (1.1.13)$$

which can be transformed into

$$\sum_{j=1}^{n} c_{ij} A_{j} + A_{j} (c_{i1} - \lambda) = 0 \qquad (1.1.14)$$

or in matrix form

$$(c - \lambda E)A = 0 \qquad (1.1.15)$$

where E is the unit matrix.

Such a set of simultaneous equations can have a non-trivial solution only if the determinant of the coefficients vanishes

1)

 $\begin{vmatrix} c_{11} - \lambda & c_{1,2} & \cdots & c_{1,M} \\ c_{21} & c_{22} - \lambda & \cdots & c_{1,M} \\ \vdots & \vdots & \vdots & \vdots \\ c_{N,1} & c_{N,N} - \lambda \end{vmatrix} = 0$ or  $\begin{vmatrix} c_{1,j} - \lambda \delta_{1,j} \end{vmatrix} = 0$  (1.1.16)
where  $\delta_{1,j}$  is the Kronecker delta ( $\delta_{1,j} = 1$  if i = j but = 0
otherwise).
In matrix notation the secular equation is c - E = 0 (1.1.17)
The normal frequencies  $\gamma_{1}^{\prime}$  are related to the roots  $\lambda_{1}$  by

6.

types is the following tractment is covered (1.1.18)

On back substituting  $\lambda_i$  a relationship between the sublitudes  $A_{1i}$ ,  $A_{2i}$ , and the i th normal frequency is obtained. This defines  $\mathbb{N}$  simultaneous equations.

 $(c_{11} - \lambda_{1})A_{11} + c_{12}A_{21} + \cdots + c_{1,31}A_{31}, i = 0$  $c_{21}A_{11} + (c_{22} - \lambda_{1})A_{21} + \cdots + c_{2,31}A_{31}, i = 0$ 

 $c_{3N,1}A_{1,1}^{+}$  ....  $(c_{3N,3N} - \lambda_1)A_{3N,1} = 0$ This system can only be solved for the ratios of  $A_{1,1}$ ,  $A_{21}$ . etc., but an arbitrary set  $A_{1,1}^{1}$  may be obtained by putting  $A_{1,1} = 1$ .

### 1.2 Internal Coordinates

ince the above treatment includes the three transalatory and three rotational degrees of freedom, the secular equation will have six roots which are zero. It is therefore far more convenient to construct the vibrational Hamiltonian in a set of coordinates which translate and rotate with the molecule, namely internal coordinates. They involve changes in bond distances, angles between chemical bonds and dihedral angles in torsional movements. These are particularly important because they provide the most physically significant set for use in describing the potential energy of the molecule. Since the kinetic energy, on the other hand, is more easily set up in cartesian displacement coordinates, a relation between the two types is therefore needed. The following treatment is covered in many standard texts (3,4,5).

7.

$$T = \frac{1}{2} \sum_{k=1}^{4N} \frac{1}{m_k} p_k^2$$
 (1.2.1)

where  $p_k$  is the momentum associated with the cartesian displacement  $\pi_k$ .

$$\mathbf{p}_{\mathbf{k}} = \frac{\partial \mathbf{T}}{\partial \mathbf{x}_{\mathbf{k}}} \left( = \frac{\mathbf{m} \cdot \mathbf{x}}{\mathbf{k} \cdot \mathbf{k}} \right) \mathbf{p}_{\mathbf{k}} \mathbf{p}_{\mathbf{k}}$$
(1.2.2)

Now let pi and p be the momenta associated with internal and with translational and rotational motions respectively. Henco

C ing Sun

$$p_{i} = \frac{\partial T}{\partial \tilde{R}_{i}}$$
 and  $p_{t,r} = \frac{\partial T}{\partial (tr ; rot)}$ 

Substitution gives

$$P_{R} = \frac{\partial T}{\partial \dot{x}_{R}} = \sum_{i=1}^{2R-6} \frac{\partial T}{\partial \dot{R}_{i}} \frac{\partial T}{\partial x_{R}} + \sum_{i,r} \frac{\partial T}{\partial (tr; rot)} \frac{\partial (tr; rot)}{\partial x_{R}}$$
(1.2.3)

The first term relates to the internal coordinates whereas the second will be zero because the cartesian axes rotate and franklate with the molecule, thus having no kinetic energy.

ence  

$$2T = \sum_{k}^{\infty} \frac{1}{m_{k}} \left( \sum_{i}^{\infty} p_{i} \frac{\partial R_{i}}{\partial x_{k}} \right)^{2} \qquad (1.2.4)$$

JR. 1 is abbreviated to B and represents the transformation )x between internal and cartesian coordinates. In matrix form

an a set of the set of R = BX

ratuates as

Honce <u>3N 1 / 3N-6</u> 2

are toughter

Ħ

$$P_{I} = \sum_{k} \overline{m}_{k} \left( \sum_{i} P_{i} B_{ik} \right)$$
$$= \sum_{i,j} \left( \sum_{k} \overline{m}_{k} B_{ik} B_{jk} \right) P_{i} P_{j}$$
$$= \sum_{i,j} C_{ij} P_{i} P_{j}$$

 $| 0 = \pm \lambda | = 0$ 

(1.2.6)

(1.2.5)

8.

ere  
$$C_{ij} = \sum_{R} \frac{1}{m_{b}} B_{ik} B_{jk}$$
 or in matrix form

can be to  $G = B M^{-1} B^{+}$  member of symplety blocks because 1 (1.2.7) Hence  $2T = p^{+} G P$  die for a rooresentation of the group (1.2.8) impolend. The problem is constially shaltered because any

Using Hemilton's equation

$$\ddot{R}_{1} = \frac{\partial T}{\partial P_{1}}$$

Hence substitution will give the kinetic energy in terms of the velocities.

$$2T = \hat{R}^{\dagger} \, G^{-1} \, \hat{R}$$
 (1.2.9)

try and intermal coordinates are related

As before the potential energy will be given in internal coordinates as

$$2V = \sum_{i,j} f_{ij} R_{i} R_{j}$$

or to G : 2V = R F Ris symptheticad G mateix.

and Wa

Win

(1.2.10)

Hence the Hamiltonian in internal coordinate space becomes

$$\left[R^{t}FR + \dot{R}^{t}G^{-1}\dot{R}\right]\gamma = E\gamma \qquad (1.2.11)$$

The form of the secular equation must be

$$\mathbb{P} - (\mathbb{G}^{-1})\lambda = 0$$

or multiplying from the left by G

# 2 9 P 2 0

 $|GP - E\lambda| = 0$ 

(1.2.12)

### 1.3 Symmetry and Normal Coordinates

For a large molecule the dimension of the matrix involved can be factored into a number of symmetry blocks because the normal modes form a basis for a representation of the group involved. The problem is essentially unaltered because any symmetry operation must leave the potential and kinetic energies invariant. The symmetry and internal coordinates are related by the U matrix.

Since the U matrix is orthogonal,  $U^{-1} = U^{t}$ .

 $R = U^{-1}S = U^{t}S$ 

Substituting for R in the expressions for T and V

Honce

$$2T = (v^{t} \hat{s})^{t} G^{-1} (v^{t} \hat{s})$$
  
=  $\hat{s}^{t} v G^{-1} v^{t} \hat{s}$   
=  $\hat{s}^{t} G_{-1}^{-1} \hat{s}$ 

27.8

(1.3.2)

(1.3.3)

where G represents the symmeterised G matrix.

Similarly

$$2V = (U^{t}S)^{t}F(U^{t}S)$$
$$= S^{t}U^{t}V^{t}S$$
$$= S^{t}FS$$

X- XE =0

and F (=U F U") is the symmeterised F matrix.

The U matrix is constructed menually from standard group tables (6) by means of the Wigner operator. The rule for nondegenerate coordinates is

$$S^{(\chi)} = N \sum_{T} \chi^{(\chi)}_{T} T R_{1}$$
 (1.3.4)

where X refers to a species (ifreducible representation), N is the normalising constant and  $\chi$  is the character for (1.3.9) astenibrano, fa operation T of that species. The rule has to be modified for wed made-weighted earteelens each o, will be sire by a sighter degenerate species but can usually be formulated using a linear combination of internal coordinates.

The solution of the Lagrange equation in mass-weighted or internal coordinates is complicated by the presence of the cross-terms in the secular equation. It is therefore necessary to construct a particular coordinate system composed of 31-6 parameters that gives both the kinetic and potential energy\_ expressions in a diagonal form. This is done by the introduction of normal coordinates (Q).

Then  $2T = \sum_{i=1}^{N-6} q_i^2 = q^t q$ (1.3.5) (1.3.6) and  $2V = \sum_{A} Q_{A}^{2} = Q^{T} \lambda Q$ 

an = a<sup>n</sup> + a = c<sup>n</sup> > a ∧ being a diagonal matrix. The secular equation is now

 $|\lambda - \lambda E| = 0$ 

(1.3.7)

The transformation involved between other sets of coordinates is given by the L matrix.

$$R = L_R Q \text{ or } S = L_Q Q \qquad (1.3.8)$$

The solution of equation is

to the will

$$Q_k = Q_k^{\circ} \sin(\lambda_k^{\circ} t + \delta_k) \quad (k=1, \dots, 3N-6) \quad (1.3.9)$$

Because there is a linear relationship between normal coordinates and mass-weighted cartesians each o<sub>i</sub> will be given by a similar expression

$$q_{ik} = q_{ik}^{\circ} \sin(\lambda_k^{\frac{1}{2}} + \delta_k) \quad (i=1, ..., 34) \quad (1.3.10)$$

3 # In you St

Hence in each normal coordinate every cartesian oscillates with the same frequency  $\gamma_k$  and the same phase  $S_k$  but in general the amplitudes will be different.

Substituting for S  

$$2T = \overset{*}{S} \overset{*}{G} \overset{-1}{S} \overset{*}{S} = \overset{*}{Q} \overset{*}{Q}$$

$$= (L_{g} \overset{*}{Q}) \overset{*}{G} \overset{-1}{G} (L_{g} \overset{*}{Q})$$

$$= \overset{*}{Q} \overset{*}{(L_{g} \overset{*}{G} \overset{-1}{S} L_{g}) \overset{*}{Q}$$

$$2V = \overset{*}{S} \overset{*}{S} \overset{*}{S} = \overset{*}{Q} \overset{*}{A} \overset{*}{Q}$$

$$= (L_{g} Q) \overset{*}{T} \overset{*}{T} (L_{g} Q)$$

$$= \overset{*}{Q} \overset{*}{(L_{g} \overset{*}{S} T_{g} L_{g}) Q$$

Comparing these equations it follows that A=L tFaL (1.3.11) $L_{s}^{t} G_{s}^{-1} L_{s} = E$ There are in truck of internal deformation used to and oracita G\_ = L\_ L\_s t distortions. (1.3.12) These two equations combined give

$$G_{g} F_{g} L_{g} = L_{g} \lambda$$

or  $(G_{g}F_{q} - \lambda E)L = 0$ stone 1 and 2 is by constructing of and so as shown in the slives

### 1.4 Methods of Constructing the G matrix

 $s_{ij} = \frac{\partial R_i}{\partial x_i}$ 

By far the most convenient aethod of constructing G matrix elements is the Wilson s vector technique. The s vector for 16 10 4 each atom comprising a certain type of internal coordinate, is defined such that it lies in the direction which will produce the largest distortion in the internal coordinate and it is of a magnitude equal to the distortion produced in the internal coordinate by a unit displacement in this most effective direction. The unit displacement is assumed to be infinitesimally small.

But 
$$C_{ij} = \sum_{k=1}^{3N} \frac{\partial R_i}{\partial x_k} \cdot \frac{\partial R_j}{\partial x_k} \cdot \frac{1}{s_k}$$
  
=  $\sum_{k=1}^{3N} s_{ik} \cdot s_{jk} \mu_k$ 

There are six types of internal deformation used to describe the solecular distortions.

(a) Bond stretching (R)

The most effective way of accomplishing a bond stretch between atoms 1 and 2 is by constructing s<sub>1</sub> and s<sub>2</sub> as shown in the above figure.

perpendicular to Tan.

sand tude and direction of a size ba

Hence  $G(r_{12}^2) = \frac{e_{21} \cdot e_{21}}{21} + \frac{e_{12} \cdot e_{12}}{21}$ 

 $\leftarrow \circ \qquad \circ \rightarrow$ 

$$= \frac{1}{m_1} + \frac{1}{m_2} = (\mu_1 + \mu_2)$$

Considering an interaction term between two stretches  $r_{12}$  and  $r_{23}$  the only contribution comes from atom 2.

$$G(r_{12}, r_{23}) = \frac{12^{*2} 23}{m_2} = \mu_2 \cos\theta$$

where 2 is the interbond angle.

feilarly as one by calculated, and then as from the above

Testation units



To produce a unit displacement in angle the vectors  $s_1$ and  $s_3$  will have a magnitude  $\frac{1}{r_{12}}$  and  $\frac{1}{r_{23}}$  respectively. The magnitude and direction of  $s_2$  must be  $-s_1 - s_3$  otherwise the molecule as a whole would move or rotate.



Let  $e_{32}$  and  $e_{21}$  be the unit vectors along the two bonds, and  $e_1$ , a unit vector perpendicular to  $r_{12}$ .

Then  $e_1 = a e_{21} + b e_{32}$  where a and b are some constants. Since  $\cos \theta = \frac{s}{b}$  and  $\sin \theta = \frac{1}{b}$   $e_1 = \frac{e_{21} \cos \theta + e_{32}}{\sin \theta}$ Hence  $s_1 = \frac{\cos \theta e_{21} - e_{23}}{r_{12} \sin \theta}$ Similarly  $s_3$  can be calculated, and then  $s_2$  from the above

relationship.

Hence in general any internal coordinate can be represented by s vectors acting on each of the atoms and the B matrix element computed by using the rules of vector sultiplication. For the remaining internal coordinates only the direction of the s vectors will be shown but the magnitude can be found from the appropriate text.

(c) <u>In-plane was</u> (B) and the first the state

We usually consider the special case where the four atoms of the internal coordinate lie in the same plane, as in the benzene molecule.

The detendentions a woorkers are formed from the unit vectors

Contration (S)

It is essentially represented as the summation of two angle bonding coordinates. In the above figure  $\beta \equiv (\alpha_{123} - \alpha_{124})$ . It is defined to be positive when atom 1 is moving in an anticlockwise direction (opposite to that shown in the figure).

The three following internal coordinates are out-of-plane internal coordinates because the s vectors are directed perpendicular to the plane containing the associated atoms.





tornan hadroness stone will usually

The out-of-plane s vectors are formed from the unit vectors by means of the vector product rule, i.e.  $\frac{(e_{12} e_{22})}{\sin e_2}$  is a unit

vector perpendicular to the plane (1,2,3).

(e) Torsion (S)



(f) Special torsion (G)

Bell introduced a new internal coordinate to improve on Wilson's Valence Force field (V.F.F.) for the out-of-plane vibrations of benzene. The major objection to the torsional force constant involved was its magnitude being three times as

great as that of sthylene, when the benzenoid G-C bond bas only partial double bond character. Bell suggested that the  $\delta$ -coordinate was inadequate because there was no physical justification for neglecting the relative twist of associated C-H bonds, especially when lighter hydrogen atoms will usually have greater displacements.

For each  $C_2 - C_3$ , and the second second

calculated from cope of the freed 6 dies and the ethers wood

 $\beta_{2,3} = (\delta_{1234} + \delta_{5236})$ 

The plane described by atoms 1, 2 and 5 will twist with respect to the plane 4, 3 and 6 about the joining C-C bond.

included and the number of terms involved increases ecoredinately

1.5 Types of Force Field

## (1) Valence Force Field (V.F.F.)

This form of the potential function is the simplest known because it consists of diagonal F matrix elements only. Interaction constants are neglected. Hence for a simple molecule the potential energy will take the form

 $2V = \sum_{i} f_{ii} (\Delta r_{i})^{2} + f_{jj} (r \Delta d_{j})^{2}$ 

sales he langth relies into

The number of force constants is usually less than the number of frequencies so that the force constants can be calculated from some of the frequencies and the others used for checking. In such cases calculated frequencies may deviate from observed volues by as much as 10%, and force constants are very characteristic of a particular kind of bond, e.g. a C=C double bond would have a force constant of about 9.7 mdynes/A regardless of environment. When applied to linear My molecules the VFF becomes a reasonable first order approximation except for conjugated bond systems (e.g. 00,)

## (ii) <u>General Quadratic Force Field (COFF)</u>

In its absolute form all the elements  $\frac{\partial^2 y}{\partial R_j \partial R_j}$  are included and the number of terms involved increases approximately as the equare of the dimension (=  $\frac{1}{2}n(n+1)$  since F is symmetric). This obviously introduces far more parameters then observables, and only in a few simple cases has the complete GQFF been derived. In practice, however, all the remote interaction terms are reduced to zero and some interaction constants can be identified to be zero from their transformational properties under symmetry operations. For example, any interaction term involving the  $\beta$ -internal coordinate (which is converted to  $-\beta$  under  $6_v$ ) and any second coordinate which is transformed into itself, must be identically zero.

#### (iii) Urey-Bradley Force Field (UBFF)

This field consists of a VFF plus terms involving forces between non-bonded nuclei. In physical terms, this sort of potential function seeks to take into account the van der Waals forces between non-bonded atoms. The potential energy has the form

 $\mathbb{V} = (\mathbb{VFF \text{ terms}}) + \sum_{i} \left(\frac{1}{2} \mathbb{F}_{i} (\bigtriangleup q_{i})^{2} + \mathbb{F}_{i}^{1} q_{i} (\bigtriangleup q_{i})\right)$ +  $\sum_{i} k_{i}^{1} r_{i} (\bigtriangleup r_{i}) + \sum_{i} \mathbb{H}^{1} r^{2} (\bigtriangleup q_{i})$ 

where q is the distance between a non-bonded pair of atoms. In this case the linear terms are not necessarily zero because r,  $\propto$  and q are not independent.

The conditions for a potential minimum near the equilibrium positions are now of the form

$$\frac{2\partial V}{\partial (\Delta r_i)} = r_i k_i^1 + q_i F_i^1 \frac{\partial q}{\partial r} = 0$$

When the expansion is worked out, the relationship between the force constant of the GQFF and the UBFF of a simple molecule can be compared. If it is assumed that the repulsive energy between non-bonded atoms is proportional to  $r^{-9}$ ,  $F^1$  is taken to be  $-\frac{1}{10}F$ .

The UBFF has achieved popularity simply because of the difficulty in assigning physical meaning to many off-diagonal VFF constants in terms of molecule structure. Shimanouchi (8) and his coworkers derived values of the non-bonded interaction constants between the halogen atoms of CCl<sub>4</sub> and CBr<sub>4</sub> and found them very close to the isoelectronic systems argonargon and krypton-krypton, at the same internuclear distances.

Since the UBFF is a specific case of the GQFF one should have no doubts in deciding which one is better. Whenever the UBFF fails to work for a molecule, one can automatically assume that other interaction constants, between non-adjacent coordinates, play an important role in the F matrix. A well known example of the failure of the UBFF to reproduce all the observed frequencies is that of ethylene. Later, however, Overend and Scherer (9) showed that the introduction of a transbending-bending interaction constant was sufficient to put the modified Urey-Bradley force field (NUBFF) to work. For all aromatic systems the basic UBFF fails to reproduce the observed spectrum correctly, the error being concentrated in those ring modes which correspond to the famous B, ring vibration of bensene. For this molecule Overend and Scherer (10) suggested an elegant way of introducing into the force field the ortho, meta and para stretch-stretch interactions condensed into a single term, the so-called Kekule constant. This MUBFF works correctly and was later transferred with success to naphthalene and anthracene.

## (iv) Mill's Hybrid Orbital Force Field

Several people have tried to correlate the signs of interaction constants, with the change in electronic charge movements accompanying nuclear distortion. Heath and Linnett (11) largued that changes in sp hybridisation with vibration could account for the interaction constants of water and heavy water. Thus for pure p bond character the oxygen atom would be expected to form two bonds at right angles, whereas complete sp<sup>3</sup> hybridisation would lead to shorter 0-H bonds forming a tetrahedral angle. Considering the a internal coordinate, the molecule will tend to contract stiffening the OH bonds and hence giving a positive sign for F . Likewise an extension of either OH bond would increase the p character of both bonds, i.e. increase the extension of the other bond producing a decrease in the potential energy. Frr will therefore be negative as observed. Similarly a C-H stretch in a benzene nucleus will be accompanied by an increase in the associated C-C-C angle

In this way many stretch-bend interaction constants have been hown to be negative, e.g. C=O and HCH of formaldehyde, C=C and HCH of ethylene.

23.

Mills ucceeded in formulating these qualitative arguments on quantitative grounds by introducing the hybridisation parameter  $\lambda$ . When applied to the simple system of methyl balides the interaction constants were derived as products of the diagonal constants and the derivative of the internal coordinate concurred with respect to  $\lambda$ . Detailed force constant calculations confirmed the predicted signs of these terms $\left(\frac{\partial r}{\partial \lambda}\right)$  CH or CX as positive, consistent with the assumption that p character increases with bond length. Duinker (12) used the HOFF treatment in deriving his in-plane force field for benzene.

(v) Compliance Constants

"Inverse" force constants (i.e. elements of  $F^{-1}$ ) have certain properties which make the solution of the vibrational problem in the form  $|F^{-1} G^{-1} - \lambda^{-1} E| = 0$  more convenient. Decius(13) points out that additional sources of information, in particular mean amplitudes of vibration from electron diffraction ( $r^2$ ) and centrifugal distortion constants from microwave spectroscopy both involve compliance constants in a more direct and natural way. The most important property, however, lies in their invariance in different sets of coordinates. This was most aptly illustrated by and Slater (14) using the force constants derived from <sup>14</sup>NO<sub>2</sub> and <sup>15</sup>NO<sub>2</sub> for two sets of internal coordinates.

# 1.6 Solution of the Secular Matrix

When the G matrix has been calculated from the B matrix and the form of F matrix decided, it is required to solve

 $(G_{s}F_{s} - \lambda_{s}E)L_{s} = 0$  (1.6.1)

This is done by calculating the eigen vectors (D) and eigen values ( $\Gamma$ ) of the symmeterised G matrix

(1.6.2)

The eigen vectors are normalised such that  $D_s D_s^t = E$ .  $\Gamma_s$  is a diagonal matrix containing the eigen values whose corresponding eigen vectors are given by the columns of D.

A matrix D is then formed by

 $G_{g}D_{g} = D_{g}\Gamma_{g}$ 

 $\overline{D}_{s} = D_{s} \Gamma_{s}^{\frac{1}{2}}$ (1.6.3)

It is easily shown that

$$\overline{D}_{s} \ \overline{D}_{s}^{t} = G_{s}$$
(1.6.4)

Multiplying (1.6.2) from the right by Dst

GDD t = D TD t

$$G_{s} = D_{s} \Gamma_{s} D_{s}^{t}$$

$$= (D_{s} \Gamma_{s}^{\frac{1}{2}}) (D_{s} \Gamma_{s}^{\frac{1}{2}})^{t}$$

$$= \overline{D}_{s} \overline{D}_{s}^{t} \qquad (Q.E.D.)$$

A matrix  $\overline{D}_s^{t}F_s\overline{D}_s$  is then formed whose eigen vectors are  $X_s$  and eigen values  $\Lambda_s$ .

i.e. 
$$(\overline{D}_s^{t}F_s\overline{D}_s)Y_s = Y_s\Lambda_s$$
 (1.6.5)

Multiplying from the left by  $\overline{D}_s$ 

 $\bar{\mathtt{D}}_{\mathrm{s}}\bar{\mathtt{D}}_{\mathrm{s}}^{\mathrm{t}}\mathtt{F}_{\mathrm{s}}\bar{\mathtt{D}}_{\mathrm{s}}\mathtt{Y}_{\mathrm{s}}=\bar{\mathtt{D}}_{\mathrm{s}}\mathtt{Y}_{\mathrm{s}}\bar{\mathtt{\Lambda}}_{\mathrm{s}}$ 

It then follows from (1.6.4) that

$$G_{s}F_{s}(\overline{D}_{s}Y_{s}) = (\overline{D}_{s}Y_{s})\Lambda_{s}$$
(1.6.6)

Hence comparison of the two equations (1.6.1) and (1.6.6)

gives

$$L_s \equiv \overline{D}_s Y_s$$
 and  $\lambda_s \equiv \overline{\Lambda}_s$ 

The units of G and F will influence the units of  $\lambda$  s and hence the appropriate factors are introduced.

From (1.1.18) the eigen values  $\lambda_k$  are related to the frequencies in Hz by

$$\lambda_{k} = 4\pi^{2} \gamma_{k}^{2}$$

Using c.g.s. units  $\lambda_k$  will have the dimensions of GF, i.e. anu<sup>-1</sup> dyne cm<sup>-1</sup> 10<sup>5</sup>  $\equiv$  anu<sup>-1</sup> gm sec<sup>-2</sup> But 1 amu =  $\frac{1}{N_c}$  gms

Hence  $N_0 \lambda_k = 4\pi^2 (c \vec{\nu}_k)^2$  where c is the velocity of light and  $\vec{\nu}$  the wave number  $(cm^{-1})$ .

Hence  $\lambda_k = \frac{4^2 e^2}{N_0} \overline{\gamma}_k^2$ or  $\overline{\gamma}_k = 1307.1 \lambda_k^{\frac{1}{3}}$  (1.6.7)

If the secular equation is solved in symmetry coordinates some of the eigen values for certain symmetry species will take on a value of zero. These are known as the redundant roots and occur when there are more symmetry coordinates than normal coordinates. Their presence implies that at least of the deformation coordinates are dependent on one another. In simple cases the redundancy condition can easily be spotted, e.g. in benzene A<sub>pp</sub> species.

 $\sum_{i=1}^{n} \alpha_i = 0$ 

#### From (1.3.1) 5 = 55

Redundant coordinates must be eliminated if the secular equation is set up in the form  $|\mathbf{F} - \mathbf{G}^{-1}\lambda| = 0$ , because now G is singular and has no inverse.

### 1.7 Cartesian Displacement Representation (CD)

Once the secular equation has been solved it is often convenient to transform the normal coordinates back into their cartesian representation so as to vectorially represent the motions of the individual atoms during the normal vibration.

Let A be the transformation between cartesian and internal coordinates such that

X = A R

Because R = B X A B = E = B A

From (1.2.7)

$$G_R = BM^{-1} B^t$$

Postmultiplying by A

$$A G_{R} = ABM^{-1} B^{t}$$

$$A G_{R} = M^{-1} B^{t}$$

Premultiplying by GR-1

$$A = M^{-1} B^{\dagger} G_{R}^{-1}$$
 (1.7.2)

Therefore

 $X = (M^{-1} B^{\dagger} G_R)R$ 

(1.7.3)

(1.7.1)

From 
$$(1,3,1) \leq = UR$$
  
Hence  $X = (M^{-1} B^{t} G_{R}^{-1} U^{t}) \leq (1.7.4)$   
From  $(1.3,8) \leq = L_{g}Q$   
Hence  $X = (M^{-1} B^{t} C_{R}^{-1} U^{t} L_{g})Q$  (1.7.5)  
From above  $C_{g} = U G_{R} U^{t}$   
Hence premultiplying by  $U^{t}$  and postmultiplying by  $U$   
 $U^{t} G_{g} U = G_{R}$   
Hence  $(G_{R})^{-1} = (U^{t} G_{g} U)^{-1}$   
 $= U^{t} G_{g}^{-1} U$   
Substituting in  $(1.7.5)$  gives  $X = (M^{-1} B^{t} U^{t} G_{g}^{-1} L_{g})Q$  (1.7.6)  
From  $L_{g} L_{g}^{t} = G_{g}$  and therefore  $X = (M^{-1} B^{t} U^{t} (L_{g}^{t})^{-1})Q$  (1.7.7)

Both equations (1.7.6) and (1.7.7) involve the inverse of a matrix which may or may not contain one or more redundancies for a certain symmetry block. If this is the case no inverse will exi t because the matrix is singular.

IE GAL WD.P - T Gussoni and Zerbi (15) introduced a set of symmetry coordinates derived from the eigen vectors of the G matrix

E= D t R

(1.7.7)

The new signa coordinates form a completely reduced representation of the symmetry point group to which the molecule belongs and are therefore symmetry coordinates themselve. It may be pointed out that the  $\leq$  coordinates are closer to the normal coordinates than the Wigner type and could be called quasi-mormal coordinates since they reduce the kinetic energy to diagonal form.

contail vibrations involve the transition in the

The  $\leq$  coordinates can be placed in symmetry block form as  $\leq = D_s^{t} S$  (1.7.9)

Any redundancy now present can be removed by omitting the column of zeros in  $D_s$  corresponding to the zero root in  $\Gamma_s$ .

It is now required to find an expression for  $(L_s^{t})^{-1}$  in equation (1.7.7). From  $L_s = \overline{D}_s Y_s$ Hence  $L_s^{t} = Y_s^{t} \overline{D}_s^{t}$ Therefore  $(L_s^{t})^{-1} = \left[ Y t(D \Gamma^{\frac{1}{2}})^{t} \right]^{-1}$  (1.7.10) (where D is the reduced D<sub>s</sub> matrix and  $\Gamma$  the reduced  $\Gamma_s$  matrix.)  $= \left[ Y t^{-1} (\Gamma^{\frac{1}{2}} D^{t}) \right]^{-1}$   $= (D^{t})^{-1} \Gamma^{-\frac{1}{2}} Y$ Hence  $(L_s^{t})^{-1} = D \Gamma^{-\frac{1}{2}} Y$ and  $X = (M^{-1} B^{t} V^{t} D \Gamma^{-\frac{1}{2}} Y)Q$  (1.7.11)
Q can be regarded as defining the scale of the distortions and is in effect a normalising constant. An absolute value is assigned by utilizing the expression for the root mean square displacement for a harmonic oscillator in one dimension

$$\left(\frac{h(v+\frac{1}{2})}{4\pi^2 v_1}\right)^{\frac{1}{2}}$$
(1.7.12)

30.

Fundamental vibrations involve the transition in the vibrational energy levels from  $\overline{\mathbf{v}} = 0 \longrightarrow \overline{\mathbf{v}} = 1$  where  $\overline{\mathbf{v}}$  is the vibrational quantum number. Defining the increase in mean square emplitude in the  $0 \rightarrow 1$  transition by  $(\overline{\mathbf{v}}_i^2)^{\frac{1}{2}}$  we have

$$(\overline{q}_{1}^{2})^{\frac{1}{2}} = \frac{h}{4\pi^{2}\gamma_{1}}$$
(1.7.13)

les & lay and & lay

In reality, however, not all molecules are in the ground state at room temperature and a correction factor of  $\frac{h}{2}$  coth  $\frac{h}{2kT}$  allows for the population of excited states.

#### 1.8 Potential Energy Distribution (PED) -

The solution of the vibrational problem for a particular normal mode k is

$$GF(_k = \lambda_k \ell_k$$

From

 $R = L_pQ$ 

and the relation between the internal coordinates and the normal coordinates will therefore be

that terms provide a reasonable secrete of the relative contria

$$R_{1} = l_{11} Q_{1} + l_{12} Q_{2} \dots l_{1k} Q_{k}$$

$$R_{i} = l_{i1} Q_{1} + l_{i2} Q_{2} \dots l_{ik} Q_{k}$$

Hence for mode k the relative ratio of the amplitudes of the internal coordinates will be

If one of these elements is relatively large compared with others, the normal mode is said to be predominantly due to the vibration caused by the change of this internal coordinate.

Morino and Kuchitsu (17) have shown that the PED in each internal coordinate gives a better measure of the band assignments than the simple ratio of elements.

stores the affediagencil algoence are progressively controls to

Since  $2V = Q^t \land Q$  and  $\land = L^t F L$ the potential energy of the whole molecule for mode  $Q_k$  is expressed as

$$2V = Q_k^2 \sum_{ij} F_{ij} L_{ik} L_{jk}$$
(1.8.1)

Since, in general, the summation terms are large when i = j, only the  $F_{i1} L_{ik}^2$  terms are significant. Thus the ratios of such terms provide a reasonable measure of the relative contribution of each internal coordinate to the normal mode, and if any one term is relatively large compared to the rest the normal mode can be assigned to that particular internal coordinate.

#### 1.9 Computational Solution

The most prominent work for computerising the vibrational problem with or without iterative techniques was due to Snyder and Schachtschneider (16). The essential logic is outlined in Fig. I(i). Diagonalisation of the appropriate matrices is carried using a subroutine EAO3A from the University of London Computer Centre. This subroutine involves Jacobi's method where the off-diagonal elements are progressively reduced to zero and the transformations involved are then applied to a unit matrix to give the eigen vectors.

#### Begin

#### Cycle No. of molecules

Read No. of atoms - Natoms Read cartesian co-ords of nuclei - X Read No. of int. co-ords - NR Read masses in amu - AMASS

#### Cycle NR

| Read | counter | for | 000 | rdinate | deform | ation |
|------|---------|-----|-----|---------|--------|-------|
| R    | d       | 8   |     | 8       | β      | ø     |
| 1    | 2       | 3   | 1   | 4       | 5      | 6     |

Read numbers of nuclei involved in deformation

Form e vectors between bonded nuclei

Form 5 vectors for each atoms

Compile B matrix row with consistent dimensions

Form G = DN-1 Bt

Read F (adyne/A)

Read No. of symmetry blocks - NSIMB

Gycle NSYMB Read U matrix Form G<sub>s</sub> and F<sub>s</sub> Form D and F from EAD3A Eliminate redundancies Form  $\overline{D}^{t} \ \overline{F} \ \overline{D}$ Form Y and A from EAD3A  $L = \overline{D} \ Y$ Output  $\overline{\varphi} = 1303 \lambda^{\frac{1}{2}}$  and L Cartesian displacements

Fig. I(1) Flow diagram of Program 'LINDA' in Appendix 1.

End

## The Vibrational Analysis of Biphenyl

CHAPTER 2 CHAPTER 2

## 2.1 Introduction

Many of the earlier studies on the vibrational spectra of biphenyl (18-21) left many of the assignments in considerable doubt. Recent work of Pasculer and Lebas (22) gives a fairly complete assignment based on purely qualitative reasoning and normal coordinate calculations for the in-plane vibrations of the planar molecule by Zerbi and Sandroni (23,24) give reasonably good predictions. It has therefore been an embarrassing fact that despite so many studies, convincing evidence of spectral changes accompanying change of state has been lacking. This has partly been due to the fact that both the low-frequency infrared and Raman spectre in different physical states had been either inadequately determined or obscured by solvent bands.

Many physical techniques have been used to determine the conformation of biphenyl in different physical states. Early work on the X-ray crystallographic study of crystalline biphenyl by Dhar (25) suggested that the molecule was planar within the limits of experimental error and the inter ring C-C bond length was 1.48 A. More recent work by Trotter (26) revises this distance to 1.506 %. The interpretation of the 247 mm "conjugation band" in the ultraviolet spectrum in solution is still uncertain but present views are based on the assumption that change in conformation will alter the  $\pi - \pi$  interaction thus affecting the position and intensity of the transition. The highresolution N.M.R. spectra in the molten and solution states of ome poly-phenyls (27) give results which are inconclusive for biphenyl but which indicate that m-terphenyl is non-planar. of the biphanyl radical Electron spin resonance spectra (28), are interpreted in terms of a molecule with a dihedral angle of 38°. Unquestionable evidence of the existence of a twisted structure in the vapour phase (29) comes from electron diffraction work, the angle obtained being 45 ± 10°. U.V. spectra (30) suggest that the deviation from planarity should be larger in the vapour state than the solution state value of 20-25°.

#### 2.2 Experimental

The biphenyl used in all spectroscopic studies was purchased from B.D.H. Ltd. and used without further purification. All the near infrared spectra were recorded with a Perkin-Elmer 325 grating spectrophotometer. The solid state spectra were run either as a potassium bromide disc or as a solidified melt. This was obtained by allowing crystelline biphenyl to melt on a warm KBr plate and then leaving to cool very slowly. The solution spectra were recorded using solvents with negligible absorption over particular ranges, i.e. 400 cm<sup>-1</sup> to 1000 cm<sup>-1</sup> with spectroscopic carbon disulphide and 1000 cm<sup>-1</sup> to 1700 cm<sup>-1</sup> with spectroscopic carbon tetrachloride. All the far-infrared spectra were recorded on a R.I.I.C. FS 720 Michelson interferometer using a 25gauge beam-splitter to accommodate the 40-400 cm<sup>-1</sup> spectral range. The solid samples were recorded at liquid nitrogen temperature to prevent evaporation of biphenyl under vacuum. The solution spectra were run in either benzene or cyclohexane, both solvents having very small absorption in the far infra red. The polythene cells were made and scaled using apparatus designed in this Bepartment (%).

76.

The Raman spectra were recorded with either a Cary 81 (180° scattering and He/Ne 6328 Å exciting line) at Imperial College or a Spex Ramalog (90° scattering and Ar<sup>+</sup> 5147 Å exciting line) at University College. Motton Raman spectra of melts were taken in a specially-designed, glass heating finger and the gas-phase spectra using facilities at Southampton University. The principle bands of biphenyl are listed in Table II (1) and spectra below 1000 cm<sup>-1</sup> are shown in Fig. II (1).

400

FREQUENCY (cm<sup>-1</sup>)



Calculations were carried out using magnetic tape facilities on the London University CDC 6600 with programmes written in Fortran IV. The aromatic rings were assumed to be regular hexagons and the bond lengths were taken as  $R_{CC} = 1.40$  Å; R1-7 = 1.48 % and r = 1.084 %. The in-plane force field was transferred from the field of Duinker and Mills (12) for benzene and the out-of-plane force field was transferred from a study on the out-of-plane vibrations of some halogenated benzenes (32). The inter-ring stretching force constant was assumed to be 4.9 mdynes/A - a value chosen on the basis of a simple force constant-bond length relationship for C-C bonds. No inter-ring force constants were introduced because of the uncertainty concerning any resonance interactions. Since no data was available to describe the in-plane and out-of-plane wags for a carbon substituent on a ring, it was assumed that the energy required to produce unit engular deformation was independent of substituent. A list of force constants used is shown in Table II (2). The symmetry coordinates were compiled to represent the D, point group and are given in Appendix (1).

In the calculations below only 59 normal modes are computed, the missing fundamental being attributed to the lowest a<sub>u</sub> mode, namely the "butterfly" mode. This deformation was omitted on account of the uncertainty concerning the nature of the torsion in solution, i.e. whether the torsion occurs about a fixed

## Table II(1)

The Principle Infrared and Raman bands of Biphenyl at Frequencies below 1700 cm<sup>-1</sup>

| Infrared |             | Reman   |                     |        | Assignment      |
|----------|-------------|---------|---------------------|--------|-----------------|
| Solid    | Liquid      | Solid   | Liquid              | Gas    |                 |
|          |             |         |                     |        |                 |
| 1690w    | 1683w       |         |                     |        |                 |
| 1650w    | 1655w       |         |                     |        |                 |
|          |             | 1620 sh |                     |        |                 |
|          |             |         |                     |        |                 |
| 1617w    | 1612w       |         |                     |        |                 |
|          | 20705       | 1610vs  | 1612vs              | 1613vs | a.              |
| 1597s    | 1595s       |         |                     |        | ъ               |
| 1641a    | 10428       | 1500-   | 3 505               | arat   | 3u              |
|          |             | 199208  | 10958               | 1590vs | blg             |
| 1568a    | 15678       |         | (0,05)              |        | b <sub>2u</sub> |
|          |             | 1513m   | 1509m               | 1505v  | 8               |
| 148000   | 1481 -      |         | (0.27)              | njogao | 6               |
| 740049   | 990W        |         | do la 2 la          |        | <sup>D</sup> Zu |
|          | 1455m       | 1462w   | 1462w               |        | blg             |
| 1428vs   | 1430s       |         |                     |        | ben             |
| 1780w    | 1781m       |         |                     |        | Pla             |
|          | (6dew       |         |                     |        |                 |
| 1344m    | 1337m       |         |                     |        | <sup>b</sup> 2u |
|          | 1317w       | 1333w   |                     |        | bla             |
| 1307w    | 1300w       |         |                     |        |                 |
| 1080     | 2000-       |         |                     |        |                 |
| 1500W    | TSOOM       |         |                     |        |                 |
|          |             | 1276vs  | 1285vs              | 1282vs | ag              |
| 1268w    | 1266m       |         | (0.10)              |        | bon             |
|          | 1. A. A. A. |         |                     |        | C.U.            |
|          | 1242w       | 1265shw | 1249m               | 1233w  | ble             |
|          |             | 1208w   | 1192m(br)<br>(0.18) |        | ag              |

|              |                       | Table            | II(1) (conti     | nued)              |                                                                                          |
|--------------|-----------------------|------------------|------------------|--------------------|------------------------------------------------------------------------------------------|
| Infr         | ared                  |                  | Reman            |                    | Assignment                                                                               |
| Solid        | Liquid                | Solid            | Liguid           | Gas                |                                                                                          |
| 1181m        | 1174w                 |                  |                  |                    | b <sub>3u</sub>                                                                          |
|              |                       | 1165m)<br>1149m) | 1158m<br>(0.81)  |                    | blg                                                                                      |
| 1169s)       | 11550                 |                  | 782a             |                    | b <sub>2u</sub>                                                                          |
| 1110m        | 1107w                 |                  |                  |                    |                                                                                          |
| 1090s)       | 1072s                 | 1097w            | 1094w            |                    | <sup>b</sup> lg<br><sup>b</sup> 2u                                                       |
| 1041s        | 1042s                 |                  |                  |                    | b <sub>3u</sub>                                                                          |
| 1006s        | 1007 s                | 1036s            | 1031s<br>(0.06)  | 1029m              | a<br>g<br>b <sub>7u</sub>                                                                |
| 4586<br>985w | 990w                  | 1002vs           | 1004vs<br>(0,09) | 1003ve             | ag<br>b                                                                                  |
| 9684         | 979 <del>v</del> w    | 978w             |                  | 1 <b>603</b> 9<br> | b2g                                                                                      |
| 174w<br>902s | 964vw<br>917m<br>902s |                  | 967m<br>(0.29)   | 964w               | <sup>b</sup> lu<br><sup>a</sup> u <sup>/b</sup> 3g<br><sup>b</sup> 2g<br><sup>b</sup> lu |
|              | 100000<br>7700        |                  |                  |                    | Peu                                                                                      |

|             | Ta        | ble II(1) (          | continued)      |             |                       |
|-------------|-----------|----------------------|-----------------|-------------|-----------------------|
| Infrared    |           |                      | Raman           |             | Assignment            |
| Solid       | Liquid    | Solid                | Liquid          | Gas         |                       |
|             |           |                      |                 | states as   | in assar              |
|             | 838m      | 846w                 | 841m<br>(0.33)  | 838w        | a /b3g                |
|             | 778s      | 790)<br>d-m<br>783)  | 782m            |             | b <sub>2g</sub>       |
| P.T. ther   |           | 7.43sh)<br>)m<br>739 | 741vs<br>(0.08) | 740s        | age and a second      |
| 72978       | 735va     | ather the f          |                 |             | 0°b Iu this           |
| 69578       | < 697vs   | r the Dad (          |                 |             | blu                   |
| 626w        |           |                      | 626w            | , together  | b <sub>2u</sub>       |
| 610m        | 609s      |                      | orrelations     | are litered | bzu                   |
| 11(3).      |           | 61.0m                | 614m            | 615w        | blg loot              |
| eb.7 eyas   | 5438      | 546w                 | 546w            |             | rb <sub>2g</sub>      |
| 458s        | 486s      | sylded the           | in-plans an     | d out-of-pl | blu                   |
| Tuffetten   | 403s      | 40900                | 410m            | 405m        | au/b3g                |
| apert and   | 367m      |                      | apactral co     | eivities at | lib <sub>lg</sub> it. |
| Parturbe    | 315w      | 32910                | 316m<br>(0.18)  | aa 307s.    | on a g                |
| of "005 for | 269m      | 251m                 | 269m<br>(0.88)  | 265w        | b <sub>2g</sub>       |
| 174w        |           |                      |                 |             |                       |
| 118vs       | 112vs     |                      |                 | C Leve      | b <sub>2u</sub>       |
|             | normal no | 89m                  |                 |             |                       |
| 73We 1      | 77w       | 52m                  |                 |             | blu<br>)lu            |
|             |           | 41m<br>22m           |                 |             | )Lattice<br>)modes    |

dihedral angle if the vibration becomes a rotational degree of freedom. This approximation can be justified because the lowness of the frequency results in little mixing with other normal coordinates. It is very common experience that these torsions factor out as a lone vibration.

5,125 5,125 5,285

## 2.3 Theoretical Predictions

The sixty normal modes of biphenyl form a basis for a representation of either the  $D_{2h}$  (dihedral angle  $\theta = 0^{\circ}$ ), the  $D_2$  ( $0^{\circ} < \theta < 90^{\circ}$ ), or the  $D_{2d}$  ( $\theta = 90^{\circ}$ ) point groups depending on its conformation. The representations, together with the corresponding activities and correlations are listed in Table II(7). It can be seen that as the centre of symmetry is lost the symmetry closess of the  $D_{2h}$  group coalesce in pairs. This means that, provided the in-plane and out-of-plane wave-functions mix, the modes in each pair will push one another apart and a relaxation of the spectral activities will result. Perturbations in the eigen values and eigen vectors on change of conformation can be expected from the following phenomena.

#### (i) Steric interactions

The normal modes which are most affected by possible steric interactions between the ortho hydrogens can be picked out from the cartesian displacement calculations. The Van

#### Table II(2)

The quadratic force constants used in calculating the frequencies of the systems  $XC_{H_4}$ .  $C_{H_4}$ . Interaction constants are shown in parentheses. The units are maynes  $A^{-1}$  for stretching constants, maynes rad<sup>-1</sup> for stretch-bend interactions and maynes A rad<sup>-2</sup> for bending constants.

| Force<br>constant | Force constant<br>for coordinate | X=H42  | =F      | =01    | =37     |
|-------------------|----------------------------------|--------|---------|--------|---------|
| no.               |                                  |        |         | 0.236  | 0.336   |
| 1                 | r <sub>1</sub> <sup>2</sup> (E)  | 5.125  | 5.125   | 5.125  | 5.125   |
| 2                 | r <sup>2</sup> (X)               | 0.207  | 5.80    | 3.70   | 3.12    |
| 3                 | ₿1 <sup>2</sup> (H)              | 1.035  | 1.012   | 1.028  | 1.036   |
| 24                | β1 <sup>2</sup> (X)              | 0.4706 | 1.741   | 1.656  | 1.117   |
| 5                 | R12                              | 7.015  | 6.97    | 6.87   | 6.95    |
| 26                | β <sup>2</sup> (c)               | 1.035  | 1.012   | 1.028  | 1.036   |
| 7                 | R <sup>2</sup> (0)               | -4.9   | 4.9     | 4.9    | -4.9.48 |
| 8                 | メ (注)                            | 1.103  | 1.070   | 1.213  | -1,149  |
| 9                 | $\alpha_1^2(x)$                  | -      | 1.394   | 1.405  | 1.207   |
| 10                | (R1, R1+1)                       | 0.531  | 0.526   | 0.480  | -0.558  |
|                   | = m = p                          | ie.    | -0.0055 |        | 0.0160  |
| 11                | $(R_1, \beta_1)$                 | 0.364  | 0.347   | 0.379  | 0.414   |
| 12                | (R1, B1(X))                      | 0,0182 | 0.448   | 0.425  | 0.476   |
| 13                | $(r_1, d_1(x))$                  | -      | -0.637  | -0.772 | -0.557  |
| 14                | $(P_{1}, P_{1+1})$               | 0.028  | 0.047   | 0.022  | -0.015  |
| 15                | (B1, B1+2)                       | -0.022 | -0.022  | -0.019 | -0.008  |
| 16                | (B1 = B1+3)                      | -0.032 | -0.073  | -0.065 | -0.080  |
| 17                | (X1, X1+1)                       | -0.098 | -0.096  | 0.000  | -0.043  |

## Table II(2) (continued)

| 60110120100              |                                                  |         |         |          |          |  |
|--------------------------|--------------------------------------------------|---------|---------|----------|----------|--|
| Force<br>constant<br>no. | Force constant<br>for coordinate                 | X=H     | =P      | =01      | =9r      |  |
| 18 p <sub>g</sub>        | $(R_i, d_i)$                                     | 0.442   | 0.463   | 0.441    | 0.462    |  |
| 19                       | $(r_{\underline{i}}(X), R_{\underline{i}})$      | -       | 0.429   | 0.334    | 0.336    |  |
| 20                       | $(\beta_i, \prec_{i+1})$                         | 0.064   | 0.064   | 0.064    | 0.064    |  |
| 21                       | χ <sup>H</sup> <sub>5</sub>                      | 0.307   | 0.306   | 0.311    | 0.310    |  |
| 55                       | X <sup>z</sup>                                   | 1 -     | 0.359   | 2.354    | 0.321    |  |
| 23                       | Ø <sub>HH</sub> <sup>2</sup>                     | 0.0706  | 0.0700  | 0.0700   | 0.0700   |  |
| 24                       | Ø <sub>HX</sub> <sup>2</sup>                     | 12 1001 | 0.0676  | 0.0561   | 0.0684   |  |
| 25                       | $(\aleph_{\rm H} \aleph_{\rm H}^{\circ})$        | 0.0153  | 0.0155  | 0.0145   | 0.0155   |  |
| 26                       | ( $\chi_{H}^{m} \chi_{H}^{m}$ )                  | -0.0129 | -0.0132 | -0.01.53 | -0.01.48 |  |
| 27                       | ( $\chi_{_{\rm H}} \chi_{_{\rm H}}^{_{\rm P}}$ ) | -0.0141 | -0.0142 | -0.0135  | -0.0159  |  |
| 28                       | (8 H 8 x )                                       | 1 -     | 0.0234  | 0.0284   | 0.0281   |  |
| 29                       | ( X H X m)                                       |         | -0.0058 | -0.0116  | -0.0040  |  |
| 30                       | $(\delta_{H} \delta_{X}^{p})$                    | -       | -0.0056 | 0.0013   | 0.0160   |  |
| 31                       | (ØØ <sub>0</sub> )                               | -0.0137 | -0.0141 | -0.0131  | -0.0129  |  |
| 32                       | ( 8 <sub>H</sub> %)                              | 0.0182  | 0.0187  | 0.0190   | 0.0191   |  |
| 33                       | ( × x00)                                         |         | -0.0195 | -0.0081  | -0.0123  |  |
| 34                       | ( × , , , )                                      |         | -0.0122 | -0.0055  | -0.0115  |  |



der Waals radius of the hydrogen atom (1.24 Å) is large compared with the equilibrium distance between the two ortho hydrogen nuclei (1.75 Å) for planar biphenyl and since the largest displacement is approximately 0.3 Å, strong repulsion should occur. In the  $a_g$  motions both pairs of ortho hydrogens are bouncing against one another and in the  $b_{2u}$  modes only one pair is colliding. Hence the  $a_g$  and  $b_{2u}$  fundamentals involving strong  $\beta$  deformations will be more affected than the corresponding  $b_{1g}$  and  $b_{3u}$  modes on steric relaxation. Steric repulsion could account for the increased bond length in the solid state.

#### (ii) Resonance interaction

It is generally assumed that the biphenyl molecule is a resonance hybrid of several canonical structures one of which involves an inter-ring double bond. Zerbi and Sandroni (23) showed that the  $b_{1g}$  and  $b_{2u}$  modes are greatly affected by the extent of  $\pi$ -delocalisation, and the extent of resonance could be obtained from the values of the Kekule resonance parameter (c) in their perturbed UDEF or by the values and signs of the C-C/C-C interactions in their GVFF for the planar conformation. The possible existence of a small contribution to the hybrid from the double-bonded structure was shown in the signs of certain inter-ring force constants, although their values were

small. To support this they repeated their calculations omitting these inter-ring force constants in the GVFF and in arting only one operameter in the UBFF, only to find that a very satisfactory fit was still obtained.

A small delocalisation of  $\pi$  electrons across the interring bond (1.51 Å) accounts for the almost normal length of a single C-C bond and the vapour phase value of 1.48 Å may imply a slightly higher bond order.

The double-bond structure will contribute even less on twisting and this would be reflected in a force constant When biphenyl is considered as two mono substituted change. benzene molecules (Co symmetry) each of the Co motions will combine into the in- and out-of-phase motions of biphenyl giving rise to a splitting of the original degenerate levels:  $a_1 (C_{2v})$  split into  $a_g$  (in-phase) and  $b_{3u}$  (out-of-phase) parallel modes whilst  $b_1$  modes ( $C_{2v}$ ) split into  $b_{1g}$  (in-phase) and  $b_{2u}$  (out-of-phase) perpendicular modes. Zerbi showed that [1] on the interestion interest. If the constantions are only the ag vibrations were affected by the value of C-C interlenalized on the vinge ring force constant. It will be shown from the calculations below that no interaction occurs between the ag and au, nor between the blg and ban vibrations with change in geometry and hence any spectral shift must be attributed to a force constant variation.

which docloses.

#### (iii) G-matrix changes and is in the second the second

The usual exercise in vibrational analysis is to fit the observaables to the theoretical frequencies in order to improve the force field.

$$G(F + \Delta F)(L + \Delta L) = (L + \Delta L)(\lambda + \Delta \lambda)$$

The calculations in Table II below are based on the assumption that a change in the geometry of biphenyl will leave the force-field unaffected. This turns out to be a justified assumption because of the ability to reproduce the experimental spectral changes. The vibrational problem now takes the form:

#### $\mathbb{P}(G \neq \Delta G)(L + \Delta L) = (L + \Delta L)(\lambda + \Delta \lambda)$

All the large frequency shifts encountered in the molecules considered below can be explained in terms of the appearance of G matrix interaction elements on twi ting. Following first order perturbation theory the interaction between levels depends:

(i) on the interaction integral. If the wavefunctions are localised on the rings, then change in dihedral angle will not effect this integral.

(ii) Inversely on the difference between the energy levels. This implies that interaction will only be significant if there are similar vibrational frequencies in the species which coalesce. The in-phase fundamentals lie between 3000 cm<sup>-1</sup> to about 76 cm<sup>-1</sup> whilst the out-of-plane modes occur only below 1000 cm<sup>-1</sup>. Hence from (ii) it follows that perturbations will lie at low frequency within a certain species. Inter-ring coupling can only occur through deformations which span the rings mean the joining C-C bond and since interaction cannot occur within the A species this excludes the C-C stretch. Other internal deformations which may lead to coupling are  $\mathcal{X}_{c}$  (out-of-plane) carbon may external to the ring),  $\beta_{c}$  (in-plane carbon wag) and the torsions ( $\mathcal{X}$ ) near the function. These predictions are fully substantiated by the calculations reported below.

The practical shifts are able to give an estimate of the dihedral angle when compared with the theoretical trends of the modes which move.

#### 2.4 Results and Interpretation

The calculations for four dihedral angles with the corresponding assignments are tabulated for each symmetry species in Table II (4). Previous investigations have established the majority of the assignments for biphenyl beyond any reasonable doubt and reference will therefore be made to the main points of interest.

## Table II (4)

Calculated and observed frequencies (cm<sup>-1</sup>) for biphenyl for biphenyl for various dihedral angles. (Asterisk & denotes double assignment)

A Species (D<sub>2h</sub> - A<sub>g</sub>, A<sub>u</sub>)

| Cald                     | ulated | Observed Frequencies |        |                  |       |        |  |  |  |
|--------------------------|--------|----------------------|--------|------------------|-------|--------|--|--|--|
| frequencies<br>for all 0 |        | Rai                  | nan    | 669              | Infr  | ared   |  |  |  |
| Bin                      |        | Solid                | Liquid | Gas              | Solid | Liquid |  |  |  |
| Ag                       | 3073   |                      |        |                  |       |        |  |  |  |
|                          | 3072   |                      |        |                  |       |        |  |  |  |
|                          | 3069   |                      |        |                  | 1507  | 1935   |  |  |  |
|                          | 1690   | 1610                 | 1612   | 1613             | 1730  | 1381   |  |  |  |
|                          | 1527   | 1513                 | 1509   | 1505             | 1761  | -74    |  |  |  |
|                          | 1338   | 1276                 | 1285   | 1282             | 1741  |        |  |  |  |
|                          | 1192   | 1208                 | 1192   | -                | 1714  |        |  |  |  |
|                          | 1024   | 1036                 | 1031   | 1029             | -     | -      |  |  |  |
|                          | 998    | 1002                 | 1004   | 1003             | -     | -      |  |  |  |
|                          | 745    | 739                  | 741    | 740              | -     | -      |  |  |  |
|                          | 272    | 331                  | 316    | 307              | -"    | 31.5   |  |  |  |
|                          | 833    | 345                  |        | 840 <sup>#</sup> |       |        |  |  |  |
| Au                       | 963    | <b>T</b> 19          | 967    | 964 <sup>±</sup> | -     | 733    |  |  |  |
|                          | 833    | -                    | 841    | 838 <sup>±</sup> | -     | -      |  |  |  |
|                          | 409    |                      | 410    | 405 <sup>±</sup> | -     | -      |  |  |  |

### Table II (4) (continued)

Presides (Don - Blas Blas

#### Table II (4) (continued)

## Table II (4) (continued)

B<sub>2</sub> Species (D<sub>2h</sub> - B<sub>2u</sub>, B<sub>2g</sub>)

| Calcu<br>frequ  | lated | orreitan<br>S | int 201 | Observed Frequencies |                 |                       |             |                    | in an  |
|-----------------|-------|---------------|---------|----------------------|-----------------|-----------------------|-------------|--------------------|--------|
| for 6           |       |               |         |                      | Ra              | man                   |             | Infr               | ared   |
|                 | 00    | 30°           | 60°     | 90°                  | Solid           | Liquid                | Gas         | Solid              | Liquid |
| B <sub>2u</sub> | 3070  | 3070          | 3070    | 3070                 |                 |                       |             |                    |        |
|                 | 3069  | 7069          | 3069    | 3069                 |                 |                       |             |                    |        |
|                 | 1608  | 1607          | 1605    | 1605                 |                 |                       |             | 1568               | 1567   |
|                 | 1430  | 1.431         | 1433    | 1439                 |                 |                       |             | 1428               | 1470   |
|                 | 1326  | 1326          | 1326    | 1.328                | 10.34.          |                       |             | 1344               | 1337   |
|                 | 1295) | 1.296         | 1296    | 1296                 | 13 7003         | entone                | ant lor     | 1268               | 1266   |
|                 | 1161  | 1160          | 1159    | 1158                 | abd <b>7</b> 68 | uba <sup>-</sup> cena | (i Tonic)   | 1153/<br>1169      | 1155   |
|                 | 1055  | 1055          | 1058    | 1062                 | 7 25 80         | n altern<br>Indicidi  | eel_dar     | 1075/              | 1075   |
|                 | 622   | 621           | 617     | 613                  | at in           | 626                   | anda        | 626                | -      |
|                 | 96    |               | 93      | 91                   | halt V,         | N. Torret             | ante.       | 118                | 112    |
| Beg             | 987   | 987           | 987     | 987                  | 978             | 987                   | 8.6. more   | 100 max            | 979    |
| Y II            | 909   | 908           | 906     | 902                  | bukins<br>-     | free 1.0              |             | 1021_New           | 917    |
| En Sal          | 755   | 755           | 752     | 746                  | 779/            | 782                   | -<br>-<br>- | 10 <u>-</u> 1<br>1 | 778    |
|                 | 694   | 696           | 699     | 703                  | al Test         |                       | anti anta   | 1075 2.0           | 670    |
|                 | 515   | 514           | 51.2    | 502                  | 546             | 546                   | -10         | ten Totani         | 543    |
|                 | 12390 | 244           | 257     | 275                  | 251             | 269                   | 265         | a Tares            | 269    |

A Species

The agreement between calculated and observed ag and a frequencies is good except for  $\rightarrow_4$  which is 80 cm<sup>-1</sup> too high. It has been shown, however, in subsequent work (33) that the fit of the ring modes greatly improves when inter-ring interaction constants are introduced into the force field. The assignments are easily recognised by their strength in the Raman - all the bands being strongly polarised in the melt and very sharp in the gaseous phase. Shifts are observed for 7 and 211 of 16 cm-1 and 15 cm-1 respectively going from Don to Do. These downward shifts are consistent with a lowering of bond order. Although  $\gamma_7$  is not observed in the gaseous phase,  $\gamma_{12}$  moves a further 9 cm<sup>-1</sup> indicating that the molecule twists to a greater dihedral angle. This conclusion is consistent with the vapour-phase U.V. spectrum. From Appendix 3 giving the P.E.D. amongst the normal modes it can be seen that V11 has a very large contribution from f.c.5 of 32% and f.c.8 of 29% adjacent to it. The distribution for  $?_7$ comes entirely from the ortho- and mete- $\beta_{c.u}$  deformations. The calculated cartesian displacements illustrate the increase in steric hindrance due to these two modes. It is worth pointing out that  $\gamma_{11}$  can be seen in the solution far-infra-red spectrum - a direct violation of the selection rules.

The three a modes are absent from the solid Raman spectrum as would be predicted, and appear with moderate strength drystil winnes. It are be seen that the acapanent of the total in the melt. Confusion now arises because the three bg modes are calculated at exactly the same frequencies and these are on the ab from to very molly. Sizes the in analey of an infra-The depolarisation ratios in the melt are greater Raman active. red trendition Is wromertional to the stars of this specia at than the ag counterparts indicating that a double assignment is another in (12) , the intentity of the best assumed. In accord with what was said earlier the fundamentals is expected to be very meall than the sh calculated ag and au frequencies do not vary with dihedral angle and hence the shifts have to be exclained in terms of higher al which was cloudy allowed to wrowel on a for plate. either a force constant change or steric hindrance. It can be clearly owen from Fig. II (12.) that the 3- modes

# the dist, there the orientation is readen, is the well find

Zerbi (6) recorded the infra-red spectrum of a single crystal of biphenyl with linearly polarised radiation. From Table II (5) the direction cosines give the orientation of

| mahia | 77 | (5)   |
|-------|----|-------|
| 19078 | 41 | 10100 |

| Direction cos       | ines and dic | hroic ratios | for crystallin | ae biphenyl       |
|---------------------|--------------|--------------|----------------|-------------------|
| Whe selection       | rulas ellor  | Crystal axis |                | in obceries to v  |
| Molecular<br>axis   | the Roma     | lafro-bid ed | uidan chada ai | Dichroic<br>ratio |
| x<br>combination or | 0.2930       | -0.0065      | 0.9552         |                   |
| mgion botheon       | 0.5203       | -0.8375      | -0.1670        | 0.38              |
| aut-of-plane :      | -0.8002      | 0.5464       | 0.2472         | 2.15              |

artistation officers and

the biphenyl molecules in the lattice with respect to the ab crystal plane. It can be seen that the component of the total dipole moment change for  $B_{3u}$  motions (which transforms as  $T_x$ ) on the ab face is very small. Since the intensity of an infrared transition is proportional to the square of this component in a given direction  $I \propto (A_x)^2$ , the intensity of the  $B_{3u}$ fundamentals is expected to be very small when the ab cleavage is observed. The same effect was observed using biphenyl which was clowly allowed to anneal on a KBr plate. It can be clearly seen from Fig. II (ii ) that the  $B_{3u}$  modes can be identified by their reduction in intensity going from the disc, where the orientation is random, to the solidified melt. This indicates that the melt must crystallise with its ab plane parallel to the plate.

The calculations again indicate that there is no change in frequency with dihedral angle. None of the b<sub>30</sub> modes can be identified as appearing in the Raman molton spectrum although the selection rules allow this. It can be generally observed that there are many more infra-red solution bands than Raman bands and that the Raman spectra are completely devoid of combination or overtone bands. In contrast the infra-red region between 2000 cm<sup>-1</sup> and 1600 cm<sup>-1</sup> contains numerous out-of-plane combination and overtone modes characteristic of an aromatic molecule.



56a

B<sub>3u</sub> fundamentals should give rise to A type band shapes in the gaseous infra-red spectrum. From the data of Pasquier and Lebas (22) such bands are clearly recognized at 611 cm<sup>-1</sup>, 1012 cm<sup>-1</sup>, 1046 cm<sup>-1</sup> and 1486 cm<sup>-1</sup>.

The  $b_{3g}$  modes have been doubly assigned with the  $a_u$  fundamentalseand they also appear at 964 cm<sup>-1</sup>, 838 cm<sup>-1</sup> and 403 cm<sup>-1</sup> in the solution infra-red.

#### Bl Species

The big fundamentals are very difficult to spot because The out-of-plane b., noise speer as noderstally strong bunds their strength in the Raman is very weak. Hence only a few the infra-rod except for 2, where 2 ... moder are alwars depolarisation ratios can be measured with any degree of wash. This time a frequency increase of 28 cm is absorred accuracy but the assignment is facilitated above 1000 cm for V\_ which also has a large half-head width. Because the because the modes must be in-plane. A few of the modes have sibrational energy within a given species must marin exactant correlations with infra-red solution data. The only mode which is predicted to shift,  $y_{10}$ , cannot be observed in the Raman spectrum, but a broad infra-red band at 367 cm with a half-band width of 14 cm<sup>-1</sup> becomes active in solution. A perturbational analysis now in progress gives this mode a zero weighting factor and a value of approximately 400 cm<sup>-1</sup> is always calculated. This tends to suggest that if the fundamental was active it would appear near this value. The change in observed frequency then corresponds to a change in

dihedrel angle of approximately 55°.  $\checkmark_6$  is observed to move from 1263 cm<sup>-1</sup> in the solid to 1249 cm<sup>-1</sup> in solution and to 1233 cm<sup>-1</sup> in the gas phase. It is difficult to identify the accuracy of these positions because the fundamental lies as a weak shoulder of the very strong  $\checkmark_6 a_{1g}$  mode. The reason for this shift is open to speculation. The P.E.D. for  $\checkmark_{10}$ shows that the in-plane  $\beta_c$  force constant contributes 89% to the motion, again confirming the predictions above that shifts arise through 6 matrix interactions involving deformations near the joining C-C bond.

The out-of-plane  $b_{1u}$  modes appear as moderately strong bunds in the infre-red except for  $\gamma_1$  where  $\bigvee_{C-H}$  modes are always weak. This time a frequency increase of 28 cm<sup>-1</sup> is observed for  $\gamma_5$  which also has a large half-band width. Because the vibrational energy within a given species must remain constant regardless of conformation, the decrease in frequency of the  $\gamma_{10}$   $b_{1g}$  is now confirmed indicating that a strong perturbation exists between these two levels. The corresponding angle change for this shift is approximately 35° but it must be remembered that the calculated planar frequency is 27 cm<sup>-1</sup> too low.

About 34% of the energy associated with  $\frac{1}{5}$  is derived from the out-of-plane x deformation.

B<sub>lu</sub> fundamentals should give rise to C-type envelopes in the infra-red spectrum of the gas corresponding to a dipole moment change parallel to the largest principal axis of inertia. Such band shapes can be definitely identified at 484 cm<sup>-1</sup>, 699 cm<sup>-1</sup> and 737 cm<sup>-1</sup>. No dichroic effects are anticipated in the solidified malt and none of the bands became Raman active in the moltan state.

## anny sime tota and if the B2 Species statisticated entirely to

The infra-red  $b_{2u}$  fundamentals are easily identified as fairly strong bands in the disc, melt and solution.spectra. The calculations show that they are mather insensitive to dihedral angle, the maximum shift predicted over 90° being 9 cm<sup>-1</sup>.  $\gamma_{10}$ , however, is a very strong band which is seen to shift by 6 cm<sup>-1</sup> from solid to solution state. In the solid state,  $\gamma_7$  and  $\gamma_8$  seem to be affected by crystal splitting, and this phenomenon could exclain the appearance of the 1149 cm<sup>-1</sup> solid Raman band allocated to  $\gamma_7$  in the  $b_{1g}$  series above. Only  $\gamma_9$  at 626 cm<sup>-1</sup> appears in the Raman melt spectrum.  $B_{2u}$  motions give rise to B-type band shapes and these can be identified at 1431 cm<sup>-1</sup>, 1156 cm<sup>-1</sup> and 1070 cm<sup>-1</sup>.

is any policies contering spectron. As a best avonage at

The out-of-plane  $b_{2g}$  fundamentals are characterised by their appearance as strong bands in the solution infra-red spectrum. This is quite surprising because the bands are very weak in the Raman spectra (only one dipolarisation ratio is determined) and  $\gamma_2$  and  $\gamma_4$  cannot be located at all. The lowest frequency fundamental  $\gamma_6$  is calculated to have a small shift and a change of 18 cm<sup>-1</sup> is observed from solid to melt. This corresponds to a change in dihedral angle of approximately 60° if the shift is attributed entirely to G matrix effects.

2.5 Discussion

The agreement between the spectral frequencies reported here and those reported by Zerbi and Sandroni (24) and Pasquier and Lebas (22) is very good. The assignments differ from those of Pasquier and Lebas only in minor details, mainly in the weak big modes. The assignments of Zerbi and Sandroni for the in-plane fundamentals are again in good agreement as might be expected since they too were based on calculations.

The one outstanding gap in our present knowledge is the frequency of the torsion "butterfly" mode. Zerbi (34) suggests that this might be at 70 cm<sup>-1</sup> corresponding to an absorption in the neutron scattering spectrum. As a band appears at

this frequency in the far-infra-red spectrum and has alternative explanations as a fundamental this assignment may be discounted.

The only band below 1000 cm<sup>-1</sup> not to be assigned occurs in the infra-red solid spectrum at 174 cm<sup>-1</sup> and this disappears in solution. Although the "butterfly" torsion is infra-red inactive for D<sub>2h</sub> symmetry, a slight deviation from planarity of the ortho- hydrogens could perhaps explain this weak band. A more obvious explanation, however, would be for this band to be an external (lattice) mode, disappearing on dissolution.

More recently Lim and Li (35) have re-examined the luminescence spectra of biphenyl and its ubstituted derivatives. In excited electronic states the molecule has been shown to have a planar conformation (36) and calculations based on the extended Hückel treatment (37) indicate that the increased conjugation energy outweights the non-bonded, ortho-ortho repulsion energy. Lim and Li predict that an electronic transition between states of radically different geometry is characterised by the appearence of a long progression in the vibrational mode that carries the geometry of one state into that of the other - namely the "butterfly" mode. They assign this mode to a strong band in the fluorescence spectrum at 635 cm<sup>-1</sup>, and observe odd quanta in the fluorescence spectrum and even quanta in the phosphorescence spectrum at 77°K in n-heptane. A weak band at 626 cm<sup>-1</sup>

does indeed appear in the Raman melt spectrum but this has been assigned as a  $b_{2u}$  fundamental. In fact, all the bands present in both fluorescence and phosphorescence can be accounted for by corresponding Raman fundamentals. The phosphorescence spectrum comprises nearly all the  $a_{Zg}$  modes whilst the fluorescence spectrum contains a mixture of species.

From the work of Fateley and Miller on torsional modes of aromatic compounds in the fer infra-red (38), such a high frequency would require an enormous torsional barrier. A semi-empirical computation of the internal energy of biphenyl as a function of dihedral angle  $\Theta$ , adjacent H-C-C angle and inter-ring bond length has been made by Simonetta et al (39). Their calculations on the isolated molecule gave a minimum in energy of 181.4 kJ/mole for r = 1.51 Å,  $\Theta = 35^{\circ}$  and  $X = 121^{\circ}$ . The barrier height predicted was 9.2 kJ/mole at  $\Theta = 0^{\circ}$  and 14.2 kJ/mole at  $\Theta = 90^{\circ}$ .

The solution of the wave equation for the torsional energy of a molecule assumes that the potential energy may be adequately described by a Fourier so ies in terms of  $\Theta$  (40).

$$2V = \sum_{n=1}^{n=\infty} V_n (1 - \cos \theta)$$

Now I red =  $\frac{1}{2} \left[ 1 - \frac{1}{2} \frac{\sum \lambda^2 1}{2 \pi} \right]$ 

where  $I_{ij}$  = noneth of fourths of the internal topy (i.e.  $C_{ij}$ )

For biphenyl the barrier is two-fold (n=2), and following Fateley et al, V4 is taken as zero.

Hence 
$$2V = V_{2} (1 - \cos 2\theta)$$

On substitution into the wave equation, a function in the form of Mathieu's equation is obtained.

$$y^n + (b - S \cos^2 x)y = 0$$

For a fixed value of S there exists an infinite sequence of characteristic b values, corresponding to which the solutions y are periodic.

The torsional eigen value is given by:

$$E_v = \frac{n^2}{2} F b_v$$

where n is the barrier symmetry, v is the principle torsion quantum number, by is an eigen value of the Mathieu equation and F is given by the expression:

$$F = \frac{h}{8\pi^2 c I_{red}}$$
 (in cm<sup>-1</sup>)

$$\frac{16.852}{\text{Ired}}$$

Now  $I_{red} = I_{\chi} \left[ 1 - I_{\chi} \sum_{i=1}^{2} \frac{\lambda^{2}_{i}}{I_{\chi}} \right]$ 

where  $I_{\chi}$  = moment of inertia of the internal top, (i.e.  $C_{6}H_{5}$ )

as when a sympall poder, "We

about its own symmetry axis,  $\lambda_i = \cos i n$  of the angle between the axis of the internal top and the ith principle axis of inertia of the entire molecule  $(I_i)$ .

For biphenyl  $I_{red} = \frac{1}{2} = 44.54 \text{ anu } \text{A}^2$  giving F a value of 0.78 cm<sup>-1</sup>. Now  $\frac{V}{-\frac{N}{2}} = \frac{FS}{4}$ 

Hence  $V_2 = FS$  and using  $V_2 = 9.2 \text{ kJ/mole}$  the corresponding value of S is 2106.

Also E =

A refinement of Herschbach's tables of  $\Delta b/S$  can be found in Ref. (4) and the "butterfly" torsion is predicted to be 43 cm<sup>-1</sup>. It is perhaps fortuitous that a Raman band is found at 41 cm<sup>-1</sup> in the solid state.

#### 2.6 Conclusion

It has been clearly demonstrated that change in conformation for biphenyl from  $D_{2h}$  to  $D_2$  symmetry is accompanied by changes in spectral activities and shifts of certain normal modes. The only high-frequency shifts observed were for the  $\sqrt{7}$  alg and  $\sqrt{6}$  blg fundamentals, the former being predicted to be due to
the release in steric hindrance of the ortho hydrogens on twisting for the  $\beta_{C-H}$  deformations. The lowest  $a_{lg}$  mode exhibited a decrease of 15 cm<sup>-1</sup> from solid to melt and a further 9 cm<sup>-1</sup> from melt to the gas phase. These shifts are consistent with a lowering of bond order of the central C-C inter-ring bond and predict a greater change in the gaseous phase.

The modes which are predicted and seen to move, namely the '<sub>10</sub> b<sub>1g</sub>', '<sub>5</sub> b<sub>1u</sub>', '<sub>6</sub> b<sub>2g</sub> and '<sub>10</sub> b<sub>2u</sub> fundamentals give an estimate of the dihedral angle which lies between 35° and 60°. Details of how the accuracy of this estimate can be improved are given in Chapter 4.

#### CHAPTER 3

The Vibrational Analysis of the <u>4-4'Dihalogeno Biphenyls</u> <u>3.1 Introduction</u>

66.

It seemed a logical consequence of the work described above to examine the vibrational properties of the 4-4'dihalogeno biphenyls in order to estimate the conformations in different physical states. In marked contrast to the biphenyl history there is little detailed analysis of the spectra for these molecules. Recently Nenni et al (41) concluded that 4-4'dichlorobiphenyl had a planar conformation in both solid and dissolved states. Whilst the spectra of difluorobiphenyl are very similar to those of biphenyl and can be interpreted accordingly, those of dichloro- and dibromobiphenyl have some very different features which cannot be explained as a simple mass effect.

As with binderryl no frequency shifts with dihedrel angle change was predicted and  $\sqrt{\frac{3}{2}}2g^2$  the bighest frequency ring mode, is each colcolated about 69 cm<sup>-1</sup> hoo high. This time, however,  $\sqrt[2]{7}$  is not observed to nove but  $\sqrt[2]{11}$  appears at 277 cm<sup>-2</sup>.

#### 3.2 Experimental

4-4'difluorobiphenyl was purchased from Koch-Lights Ltd., 4-4'dichlorobiphenyl from Pfaltz and Bauer Inc. and 4-4'dibromobiphenyl was synthesised according to Buckles and Wheeler (42). The bond lengths and masses used in the construction of the G matrix were taken as  $r_{C-P}=1.30$  Å,  $r_{C-C1}=1.70$  Å,  $r_{C-Br}=1.865$  Å,  $m_{p}=19.000$  amu,  $m_{C1}=35.457$  amu and  $m_{Br}=79.916$  amu.

#### 3.3 Interpretation and assignments for 4-4' difluorobiphenyl

The principal infrared and Reman bands at frequencies below 1700 cm<sup>-1</sup> are listed in Table III(1) and the features below 1000 cm<sup>-1</sup> are illustrated in Fig. III(i). Calculated fundamentals for various dihedral angles with their corresponding assignment are seen in Table III(2). The force fields used in the calculations were transferred from work on mono- and di-substituted halogeno benzenes (12, 32).

#### A Species

As with biphenyl no frequency shifts with dihedral angle change are predicted and  $\sqrt{3^{2}z_{g}}$ , the highest frequency ring mode, is again calculated about 60 cm<sup>-1</sup> too high. This time, however,  $\sqrt[3]{7}$  is not observed to move but  $\sqrt{11}$  appears at 277 cm<sup>-1</sup>,



Fig. III(i)

264 cm<sup>-1</sup> and 255 cm<sup>-1</sup> in the solid, molten and vapour phases respectively. From the P.E.D. in Appendix 4 much of the energy of this fundamental is derived from inter-ring stretching deformation reflecting a change in bond order due to twist. bands Again all these symmetric modes give very strong times in the Raman and are readily identified by the band polarisations and the sharpness of the bands in the vapour phase.

#### 2.645a

The highest au mode cannot be located but the other two become active at 824 cm<sup>-1</sup> and 423 cm<sup>-1</sup> in the molten state. The latter is identifiable from its polarisation.

#### B3 Species

The higher frequency by fundamentals exhibit the same kind of dichroism as observed for biphenyl, where their intensity repidly diminishes on comparing the infrared spectrum of the solidified malt with that of the randomly orientated KBr disc. This suggests that the crystal structure is very similar to that of biphenyl in that the molecular axes along which the b<sub>3u</sub> transition dipole moments are orientated are all parallel, and are perpendicular to the plate.

The three bgg modes are doubly assigned with the three au modes.

69.

### Table III(1)

The Principal Infrared and Raman bands of 4-4'difluorobiphonyl at frequencies below 1700 cm<sup>-1</sup>.

| Infr   | ared   |        | Raman            |       | Assignment      |
|--------|--------|--------|------------------|-------|-----------------|
| Solid  | Soln.  | Solid  | Liquid           | Gas   |                 |
| 1687w  |        | 12578  |                  |       |                 |
| 1660m  | 1660w  |        |                  |       |                 |
| 1645m  |        |        |                  |       |                 |
|        |        | 1626m  | 1638w            | 1636w |                 |
|        |        | 1603vs | 1607vs<br>(0.44) | 1604  | ag              |
| 1600vs | 1600vs |        |                  |       | b <sub>3u</sub> |
| 1585s  | 1586m  |        |                  |       | b <sub>2u</sub> |
| 1108)) |        | 1554w  | 1553w            |       | blg             |
|        |        | 1529m  | 1524m<br>(0.39)  |       | a.g             |
| 1016s  | 1516v  |        |                  |       |                 |
| 1495vs | 1496vs |        |                  |       | bzu             |
|        | 1476m  |        |                  |       |                 |
| 1450m  | 1458w  |        |                  |       |                 |
| 1393m  | 1394m  |        |                  |       | b <sub>2u</sub> |
| 1343w  | 1350w  |        |                  |       |                 |
|        |        | 1323w  | 1320w            |       | e <sub>g</sub>  |
| 1317s  | 1302s  |        | (0,09)           |       | b <sub>2u</sub> |
| 1286w  | 1283vw |        |                  |       | b <sub>2u</sub> |
|        |        |        |                  |       |                 |

|                | Te     | ble III(1)      | (continued       | )          |                    |
|----------------|--------|-----------------|------------------|------------|--------------------|
| I Infr         | ared   |                 | Raman            |            | Assignment         |
| Solid          | Soln.  | Solid           | Liquid           | Gas<br>Gas |                    |
|                |        | 1273vs          | 1283vs<br>(0.27) | 1284vs     | ag                 |
|                | 606s   | 1257m           | 1257sh           | 1257 sh    | blg                |
|                |        | 1245vw          | 1239w            | 1242w      | blg                |
| 1235vs         | 1230vs |                 | 728m             | 728u       | b <sub>3u</sub>    |
|                |        | 1176m           | (0,90)           |            |                    |
|                |        | 1169 <b>v</b> s | 1167m            | 1163       | a <sub>g</sub>     |
| 1158           | 1153s  |                 | (Vole)           |            | bzu                |
|                |        | 1113w           | 6324             |            |                    |
| 1124s)         | 10958  |                 | (0,94)           |            | bon                |
| (1108))        |        | 1098m           | 1100w            |            | blg                |
| 24(            |        | 1017w           | 1018w            |            | a.g.               |
| 1016s          | 1018s  | 45499           |                  |            | bzu                |
| 1007 s         | 1008s  | -               |                  |            | b <sub>3u</sub>    |
|                | 41,49  | 966 <b>v</b> w  | (13,03)          |            | bzg                |
| 956m           | 952vw  |                 |                  |            | tio                |
| 935m           | 932vw  |                 | (0.01)           |            | ) <sup>10</sup> lu |
|                |        | 938vw           |                  |            | b2g                |
|                |        | 846vs           | 843vs<br>(0.09)  | 84075      | ag                 |
|                | 847s   | 847s            |                  |            | b <sub>2g</sub>    |
| 823 <b>v</b> s | 821vs  |                 |                  |            | blu                |

### Table III(1) (continued)

| Infr   | ared  |       | Raman          |                | As <b>si</b> gnmen   |
|--------|-------|-------|----------------|----------------|----------------------|
| Solid  | Soln. | Solid | Liquid         | Gas            |                      |
| Solid. | Sols. | 823w  | 8245           |                | ).                   |
|        |       | 18000 | 81.2m          |                | )au' <sup>b</sup> 3g |
| 804vs  | 806s  |       | 808 sh         |                | bzu                  |
| 761m   | 755w  |       |                |                |                      |
|        | 726m  | 7226  | 728m           | 728w           | b2g                  |
| 702m   | 704w  |       | (0.90)         |                | b <sub>lu</sub>      |
|        |       | 660 s | 661m<br>(0.74) | 658w           | ag                   |
| 642w   | 638w  |       | (0.01.2)       |                | <sup>b</sup> 2u      |
|        | 630w  | 6275  | 632m           | 633w           | blg                  |
|        | 542m  | 540vw | (0.94)         |                | b <sub>2g</sub>      |
| 518s   |       |       |                |                | b <sub>3u</sub>      |
| 498)   |       |       |                |                |                      |
| 505)   |       | 345   |                |                | Ju                   |
|        | 454m  | 464vw |                |                | blg                  |
|        | 420m  | -     | 423m<br>(0.68) | 415w           | bzg/au               |
| 412m   | 414w  |       | (0.00)         |                | <sup>b</sup> 2u      |
|        | 390 s | 395s  | 392m<br>(0.81) | 389w           | b2g                  |
|        | 358m  | 340vw | (0.02)         |                | blg                  |
| 283m   | 255m  |       |                |                | b <sub>lu</sub>      |
|        |       | 277ve | 264s<br>(0.22) | 255 <b>v</b> s | ag                   |

72.

÷

Tebla 111(2)

# Table III(1) (continued)

| Infrared    |       |       | Remon  | Assignment |     |
|-------------|-------|-------|--------|------------|-----|
| Solid       | Soln. | Solid | Liquid | Gas        |     |
| (in Houles) | 182vw | 180vw | 183n   | 178vw      | b2g |
| 145w        |       |       |        |            |     |

101w Colda

| 961 | rw 73 | Slw   |       |      | b <sub>2u</sub> |
|-----|-------|-------|-------|------|-----------------|
| 721 | 7W.72 | 68w   |       |      | blu             |
|     |       | 2603  |       | 1604 |                 |
|     |       |       | 1.524 |      | 11/2            |
|     |       |       |       |      |                 |
|     | 19425 | 1277  |       |      |                 |
|     |       | 11.69 |       |      |                 |
|     | 1002  |       |       |      |                 |
|     |       | 846   |       |      | -               |
|     |       | 680   |       |      |                 |
|     |       |       | 264   | 255  |                 |
| A   |       |       | -     | 1    |                 |
|     |       |       | 394   | 012  |                 |
|     | 40.9  |       |       |      |                 |

te denotes double assignment

+ mass sensitive modes

#### Table III(2)

Calculated and Observed Frequencies (cm<sup>-1</sup>) for 4-4' difluorobiphenyl for various dihedral angles.

A Species (D<sub>2h</sub> - A<sub>g</sub>, A<sub>u</sub>)

k denotes double assignment

+ mass sensitive modes

### Table III(2)(continued)

B<sub>3</sub> Species (D<sub>2h</sub> - B<sub>3u</sub>, B<sub>3g</sub>)

| Calc            | ulated           |          |      | 0         | bserved        | l frequen        | cies  |      |        |
|-----------------|------------------|----------|------|-----------|----------------|------------------|-------|------|--------|
| for             | all <del>0</del> |          |      | Reman     |                |                  | Infra | red  | Letant |
|                 |                  | 3076     | olid | Liq       | uid            | Gas              | Solid | Lig  | uid    |
| Bzu             | 3073             |          | 2009 | 3069      |                | -                | -     | -    |        |
|                 | 3072             | 1,55%    | 1981 | 2381_     | 1554           | 1553             |       | -    | 1555   |
|                 | 1586             | 1788     |      |           |                | -                | 1600  | 1600 | 0      |
|                 | 1494             | 1.292    |      | 1808      | 1257           |                  | 1495  | 1490 | 5      |
|                 | 1245             | 1648     | 1270 |           |                |                  | 1235  | 123  | D      |
|                 | 1144             |          |      |           |                |                  | 1158  | 115  | 3      |
|                 | 1032             | 610      | 611  |           | 627            |                  | 1016  | 101  | 8 635  |
|                 | 1016             |          |      |           | 464            |                  | 1007  | 100  | 8 5    |
|                 | 800              | * 325    |      | 36 80     | 8 340          |                  | - 804 | 80   | 6 358  |
|                 | 525              | +<br>945 | 945  | 945       |                |                  | 518   | 51   | 5 932  |
| B <sub>3g</sub> | 958<br>829       |          | 966  | 626<br>82 | 4 <sup>±</sup> | 812*             |       |      |        |
|                 | 409              |          | 720  | 42        | 2*             | 415 <sup>*</sup> | 70    |      | 704    |
|                 | 494              |          | 511  | 520       | - Marker       |                  |       |      |        |
|                 |                  | 204      | 833  |           |                |                  | 28    |      |        |
|                 |                  |          | 58   |           |                |                  |       |      | 72     |
|                 |                  |          |      |           |                |                  |       |      |        |
|                 |                  |          |      |           |                |                  |       |      |        |

### Table III(2)(continued)

B<sub>1</sub> Species (D<sub>2h</sub> - B<sub>1g</sub>, B<sub>1u</sub>)

| Calc | ulated |      |      |      | Observed frequencies |            |      |         |        |
|------|--------|------|------|------|----------------------|------------|------|---------|--------|
| for  | ₽ =    |      |      |      | Raman                |            |      | Infrar  | ed     |
|      | 00     | 300  | 600  | 900  | Solid                | Liquid     | Gas  | Solid   | Liquid |
| Blg  | 3070   | 3070 | 3070 | 3070 |                      |            |      |         |        |
|      | 3069   | 3069 | 3069 | 3069 |                      |            |      |         |        |
|      | 1583   | 1582 | 1581 | 1581 | 1554                 | 1553       | -    |         | 1555   |
|      | 1391   | 1388 | 1381 | 1373 | -                    | -          | -    | - 1099  |        |
|      | 1293   | 1292 | 1291 | 1288 | 1257                 | 1259       | 1267 |         |        |
|      | 1274   | 1275 | 1278 | 1281 | 1245                 | 1239       | 1242 |         |        |
|      | 1095   | 1094 | 1092 | 1091 | 1098                 | 1100       | -    |         |        |
|      | 610    | 610  | 611  | 613  | 627                  | 632        | 633  |         | 630    |
|      | 444+   | 441  | 435  | 428  | 464                  | -          | -    |         | 454    |
|      | 301+   | 325  | 349  | 365  | 340                  | -          | -    |         | 358    |
| Blu  | 945    | 945  | 945  | 946  |                      |            |      | 935 or  | 932 or |
|      |        |      |      |      |                      | Sale       |      | 920     | 925    |
|      | 820    | 821  | 822  | 826  |                      |            |      | 822     | 821    |
|      | 709    | 712  | 720  | 729  |                      | 6. 12 I.A. |      | 702     | 704    |
|      | 494    | 500  | 511  | 520  |                      |            |      | 499/505 | 515*   |
|      | 280+   | 254  | 233  | 196  |                      |            |      | 283     | 255    |
|      | 55+    | 56   | 58   | 61   |                      |            |      | 71      | 72     |

### Table III(2)(continued)

B<sub>2</sub> Species (D<sub>2h</sub> - B<sub>2u</sub>, B<sub>2g</sub>)

| Calc            | ulated |      |      |      | Observed frequencies |                  |         |           |        |
|-----------------|--------|------|------|------|----------------------|------------------|---------|-----------|--------|
| for             | θ =    |      |      |      | 2                    | Ramen            |         | Infra     | ređ    |
|                 | 00     | 300  | 60°  | 90°  | Solid                | Liquid           | Gas     | Solid     | Liquid |
| B <sub>2u</sub> | 3070   | 3070 | 3070 | 3070 | rausa i              |                  |         | -         | -      |
|                 | 3069   | 3069 | 3069 | 3069 |                      |                  |         | -         | -      |
|                 | 1586   | 1585 | 1583 | 1581 |                      |                  |         | 1585      | 1586   |
|                 | 1361   | 1362 | 1366 | 1373 | 11/ 1000             |                  |         | 1393      | 1394   |
|                 | 1291   | 1290 | 1288 | 1288 |                      |                  |         | 1317      | 1302   |
|                 | 1279   | 1280 | 1282 | 1281 |                      |                  |         | 1288      | 1283   |
|                 | 1088   | 1088 | 1089 | 1091 |                      |                  | ntrus   | 1124/11   | 081095 |
|                 | 619    | 618  | 616  | 613  | Si gai tuy           | 641              |         | 632       | 638    |
|                 | 41.7+  | 418  | 423  | 428  |                      |                  |         | 414       | 415    |
|                 | 75*    | 8 72 | 66   | 61   |                      |                  |         | 84        | 96     |
| Bar             | 949    | 947  | 947  | 946  | 938                  | e prodit         |         |           |        |
| 45              | 838    | 834  | 830  | 826  | 847 <sup>*</sup>     | 843 <sup>±</sup> | the end |           | 847    |
|                 | 727    | 727  | 729  | 729  | 722                  | 728              | 728     |           | 726    |
| CENTER &        | 520    | 522  | 522  | 520  | 540                  | 10 1010          |         |           | 542    |
| ana y           | 382+   | 381  | 376  | 365  | 395                  | 392              | 389     |           | 390    |
|                 | 150+   | 157  | 173  | 196  | 180                  | 183              | 178     | ing the b | 182    |

encode energy is out by the boss-splitter transmission characteristic.  $\frac{1}{4}$  is split as a doublet (presumably by argute)

#### Bl Species

The intensity of the  $b_{1g}$  Remen bands is again very weak. The two lowest fundamentals,  $\gamma_9$  and  $\gamma_{10}$  are predicted to shift but unfortunately their Remen assignment is very uncertain because their signal to noise ratio is very low. Fairly strong infrared bands do appear in the solution state at 358 cm<sup>-1</sup>, 454 cm<sup>-1</sup> and 630 cm<sup>-1</sup> and these are assigned as the three formerly lowest  $b_{1g}$  modes. If, indeed, 340 cm<sup>-1</sup> of  $\gamma_{10}$  is valid for the solid state a dihedral angle change of approximately  $25^{\circ}$  is predicted.

All six  $b_{1u}$  fundamentals appear in the infrared, the only uncertainty lying with the ambiguity of  $\gamma_1$ . Since a strong band corresponding to 2 x 956 cm<sup>-1</sup> appears in the overtone and combination  $\delta_{C-H}$  region at 1900 cm<sup>-1</sup>, the higher value is favoured. The lowest three bands are predicted to shift, the largest corresponding to  $\gamma_5$  at 283 cm<sup>-1</sup> in the solid state and 255 cm<sup>-1</sup> in solution. This shift leads to an estimate of the change in dihedral angle of 32°. It is interesting to compare the  $\gamma_{10} b_{1g}/\gamma_5 b_{1u}$  splitting with biphenyl where the shifts occur in the opposite sense. It is difficult to observe any change in  $\gamma_6$  from the interforogram transforms because the background energy is cut by the beam-splitter transmission characteristic.  $\gamma_4$  is split as a doublet (presumably by crystal

effects) in the solid state but appears as one band (in fact doubly assigned) at 515 cm<sup>-1</sup> in solution.

#### B2 Species

Although the calculations show no significant shifts in the  $b_{20}$  fundamentals for change in dihedral angle, a change of 15 cm<sup>-1</sup> is observed for  $\gamma_5$ . This decrease, from solid to solution, has been predicted as a relaxation in steric hindrence due to the ortho  $\beta_{C-R}$  deformations.

Five of the  $b_{2g}$  modes are characterised by their appearance in the solution infrared indicating a relaxation of the spectral activities from  $D_{2h}$  to  $D_2$ . The measureable depolarisation ratios for  $\gamma_3$  and  $\gamma_5$  are consistent with a non-symmetric vibration. Although  $\gamma_6$  is predicted to shift no significant change can be observed for the weak Reman line at 180 cm<sup>-1</sup> indicating that the dihedral angle change will be small and less than 30°.

#### 3.4 Conclusion

It has been clearly demonstrated that the first order force field taken gives an excellent fit with the observable frequencies. Again a weak band in the solid far-infrared at 137 cm<sup>-1</sup> which disappears on dissolution cannot be accounted for. Lim and Li (35) suggest that the "butterfly" torsion ( $\gamma_4 a_u$ ) forms a progression at 626 cm<sup>-1</sup> in the luminescence spectra, but this has been assigned to the  $\gamma_8 b_{1g}$  fundamental in the Raman. The shifts observed for 4-4 diffuorobiphenyl suggest an angle in solution of approximately 30°, a value which embraces a high degree of uncertainty. The further change in  $\gamma_{11} a_g$  Raman bend from melt to gas suggest that the dihedral angle is greater in the gas phase. Unfortunately no infrared gas phase data was obtained to check this and no variable temperature solution data is available to investigate the temperature dependence of the dihedral angle.

#### 3.5 Interpretation and assignments of 4-4'dichloro- and dibromobinhenyl

In contrast to biphenyl and its 4-4'difluoro derivative the other two halogeno derivatives show no significant frequency or intensity variations with change of state. The spectra can be fairly readily interpreted by comparison with the solution or molten state spectra of difluorobiphenyl on making allowance for the heavier masses of the substituents. A glance at the spectra in Figs. III(ii) and (iii) show that there are far more bands to assign in the solid state than the corresponding spectra of biphenyl itself. Apart from the a fundamentals all the infrared and Raman bands are coincident



Fig. III(ii)



17 17

indicating that the Rule of Mutual Exclusion does not now apply and the molecules do not possess a centre of symmetry. This contradicts the conclusion deduced by Nanni et al (41) who assigned the spectra on the basis of  $D_{\rm Ob}$  symmetry.

The principle bands for dichloro-and dibromo-biphenyl are listed in Tables III(3) and (5), and the assignments together with the calculated normal modés are given in Tables III(4) and (6). The calculations were repeated for 4-4'difluorobiphenyl substituting the masses of the two fluorine atoms for  $m_{Cl} = 35.5$  and  $m_{Br} = 80.0$ . In this way the fundamentals involving a large cartesian displacement (0.D.) of the carbon atoms, i.e. the modes sensitive to substitution were identified. These vibrations are marked with a cross (+) in Table III(2). It turns out that nearly all the low frequency fundamentals are mass sensitive.

Just as for difluorobiphenyl and biphenyl there are considerable intensity changes of bands between aKBr disc and a solidified melt spectrum. The greatest changes occur for those bands which are certainly by fundamentals where the bands become weaker in the solidified melt. On the other hand, not all bands which exhibit this intensity decrease can arise from by transitions. The principle deduction must be that the long axes are once more orientated almost perpendicular

### Table III(3)

The principle infrared and Raman bands of 4-4'dichlorobiphenyl at frequencies below 1700 cm-1.

| Infra    | red    |                       | Reman           |                 | Assignment |
|----------|--------|-----------------------|-----------------|-----------------|------------|
| Solid    | Soln.  | Solid                 | Liquid          | Gas             |            |
| 1675w    | 1667w  |                       |                 |                 |            |
| 1640w    | 1635w  |                       |                 |                 |            |
|          |        | 1633w                 |                 |                 |            |
|          |        | 1597vs                | 1597 <b>v</b> s | 1595 <b>v</b> s | a          |
| 1595m    | 1593m  |                       |                 |                 | b2         |
| 1588m    |        |                       |                 |                 | bz         |
| 1556w    |        | 1549m                 |                 |                 | bl         |
|          |        | 1516m                 | 1513vw          |                 |            |
|          |        | 1503)<br>d)           |                 | 1505vw          | a          |
| 1488m    | 14849  |                       |                 |                 |            |
| 1474vs   | 1474s  |                       |                 |                 | b.,,       |
| 1455m    | 1450vw | 1453vw                |                 |                 | 3          |
| 1410w    | 14117W | 1417vw                |                 |                 |            |
| 1787m    | 1.789m | 1794vw                |                 |                 | bo         |
| C. State |        | 1.280vw               |                 |                 | br         |
| 13004    | 1700   | 1207eh                |                 |                 | bo         |
|          | 200    | 198700                | 128475          | 1275vs          | 8          |
| 1071-    |        | ale Carlot f ( 19 193 | (0,04)          |                 | b.         |
|          |        |                       |                 |                 | 2          |
|          |        | 1242w                 |                 |                 | bl         |
| and the  |        | 1224vw                |                 |                 |            |

7

### Table III(3) (continued)

| Infrar  | edolos         |                  | Raman                   | Nes    | Assignment     |
|---------|----------------|------------------|-------------------------|--------|----------------|
| Solid   | Soln.          | Solid            | Liquid                  | Gas    |                |
|         |                | 1184vs           | 1191m                   | 1186m  | 8.             |
| 1186w)  | 1190           |                  |                         |        | h              |
| 1172)   | TT OO M        |                  |                         |        | 03             |
| 1116w   | 1114w          | 1123m            | 1124m                   | 1123n  | b <sub>1</sub> |
| 1100s   | 1100sh-w       |                  |                         |        | b <sub>2</sub> |
|         |                | 1098vs           | 1098s<br>(0.13)         | 1096m  | 8              |
| 1087vs  | 1092vs         | 1078m            | 1077m                   | 1070sh | bz             |
|         |                | 1016s            | 1018m<br>(0.20)         | 1013w  | 8              |
| 1018vs  | 1019m          | 1019sh-w         |                         |        | bz             |
| 1003vs  | 1004s          | 1000vw           |                         |        | bz             |
| 971.vw  |                | 973)             |                         | 0.000  | a              |
| 962w    | 957w           | )                |                         | ADDAM  | bz             |
| 949vu   |                |                  |                         |        | be             |
| 943w    | 941.w          |                  |                         |        | bl             |
| 850s    | 843m           | 853w             | 847w                    |        | b <sub>2</sub> |
| 832w    | 829w           | 828)             | 204-                    | 077-   | h              |
| 822sb-w |                | 822)             | 0 <i>2</i> 4m           | OT / M | a/b3           |
| 814vs   | 812 <b>v</b> s |                  |                         |        | bl             |
| 260-    | 707-           | 773 <sub>s</sub> | 77 <u>3</u> m<br>(0.04) | 768s   | a              |
| 702m    | /5/m           |                  |                         |        |                |
| 723m    | 155M           | /27m             |                         |        | b2             |
| 7028    | 704s           | 706w             |                         |        | b3             |
| 698sh-m | 696            |                  |                         |        | b_             |

|           | Table     | III(3)(co     | ontinued)      |            |                  |
|-----------|-----------|---------------|----------------|------------|------------------|
| Infrared  | a abaarva |               | Raman          |            | Assignment       |
| Solid S   | Soln.     | Solid         | Liquid (       | Jas        |                  |
| 637w      | 637w      | 638w          | 639w           | enconsies. | b2               |
| 624w      | 626w      | 628m          | 629m<br>(0.78) | 627w       | b <u>1</u>       |
| 540 sh    |           | 5459          | 543m<br>(0.37) | 536w       | a Lingui         |
| 545s      | 538m      |               |                |            | b <sub>2</sub>   |
| 510/504   | 501s      |               |                |            | bl               |
| 420m 1903 | 423w      | 424sh-m       | 1505           |            | bz               |
| 410s 1794 | 414s      | 421 )<br>d)m  | 413m<br>(0.41) | 406m       | 8                |
| 1174      | 1184      | 414 ) 190     | 11.86          |            | b3               |
| 369W 1088 | 368m      | 368m          | 370w 1096      |            | bl               |
| 306w 1013 | 306m1016  | 306m 0015     | 309w 1013      |            | p <sup>5</sup>   |
| 270w 788  | 270m 773  | 270m 773      |                |            | b <sub>1</sub>   |
| 227 W 521 | - 54,00   | 2278          | 226w<br>(0.09) | 2198 940   | 8                |
| 215w 190  | - 927     | 219w-sh       | 219            |            | bl               |
| 157w      |           | 150vw         | 253            |            | p53              |
|           |           | 116 )<br>d)vs | 61.7           | 622        |                  |
|           | 423.      | 104 )         |                | -          |                  |
| 88-98m    |           |               |                |            | p55              |
| 63w       |           |               |                |            | p <sup>T</sup> 3 |
|           |           | 56m           |                |            | ?                |
|           |           | 42m           |                |            | ?                |

### Table III(4)

Calculated and observed frequencies (cm<sup>-1</sup>) for 4-4'dichlorobiphenyl for various dihedral angles.

| Gale  |        | A Species        | $s (D_{2h} - A_{g})$ | , A_)      |         |        |
|-------|--------|------------------|----------------------|------------|---------|--------|
| Calcu | ilated |                  | Obset                | rved frequ | uencies |        |
| for a | all Q  | Rema             | an                   |            | Infrar  | əd     |
|       |        | Solid            | Liquid               | Gas        | Solid   | Liquid |
| Ag    | 3072   |                  |                      |            |         |        |
|       | 3072   |                  |                      |            |         |        |
|       | 1653   | 1597             | 1597                 | 1595       |         |        |
|       | 1503   | 1495             | -                    | 1505       | 1474    |        |
|       | 1334   | 1287             | 1284                 | 1275       |         |        |
|       | 1174   | 1184             | 1191                 | 1186       |         |        |
|       | 1088   | 1098             | 1098                 | 1096       |         |        |
|       | 1012   | 1016             | 1018                 | 1013       | 1015    |        |
|       | 788    | 773              | 773                  | 768        |         |        |
|       | 521    | 542 <sup>‡</sup> | -                    | 536        | 540     |        |
|       | 198    | 227              | 226                  | 219        | 227     |        |
| A     | 964    | 973              | -                    | 953        | 971     |        |
|       | 832    | 822              | 844                  | 817        | 822     | 824*   |
|       | 408    | 421              | 41-3#                | 406        | -       | 414*   |

### Table III(4) (continued)

B3 Species (D2h - B3u, B3g) Observed frequencies Calculated frequencies Raman Infrared for all Q Solid Liquid Gas Solid Liquid 3070 3070 .3070 3072 2072

BIE Bzu

|    | 1966 1969 |      |        |      |     |            |      |
|----|-----------|------|--------|------|-----|------------|------|
|    | 1563      |      |        |      |     | 1588       |      |
|    | 1468      |      |        |      |     | 1474       | 1474 |
|    | 1174      |      | 1250 3 |      |     | 1172/      |      |
|    | 1286 1985 |      |        |      |     | 1186       | 1180 |
|    |           |      |        |      |     | 11.53 2017 |      |
|    | 1097      | 1078 | 1077   | 1000 | 600 | 1087       | 1092 |
|    | 1025      |      | 62     |      |     | 1019       | 1019 |
|    | 997       | 1000 |        |      |     | 1003       | 1004 |
|    | 712       | 706  |        |      |     | 702        | 704  |
|    |           |      |        |      |     | 100        | 1    |
|    | 9420 940  | 424  | 941 42 | 3    |     | - 963      | 423  |
|    | 809 810   | 813  | - 820  |      |     |            |      |
| 3g | 964       | 966  | 100    |      |     | 962        | 957  |
|    | 832       | 828  | 824    | 1*   |     | 832        | 829  |
|    | 408       | 414  | 41     | *    |     | - 510      | 414  |
|    |           |      |        |      |     |            |      |

### Table III(4) (continued)

| B <sub>1</sub> Species (D <sub>2h</sub> - B <sub>1g</sub> , B <sub>1u</sub> ) |                                 |      |       |      |       |        |      |       |              |  |  |
|-------------------------------------------------------------------------------|---------------------------------|------|-------|------|-------|--------|------|-------|--------------|--|--|
| Calc                                                                          | Calculated Observed frequencies |      |       |      |       |        |      |       |              |  |  |
| for                                                                           | 0=                              |      |       |      | R     | aman   |      | I.o.I | nfrared      |  |  |
|                                                                               | 0,0                             | 300  | 600   | 900  | Solid | Liquid | Gas  | Solid | Liquid       |  |  |
| Blg                                                                           | 3070                            | 3070 | 3070  | 3072 |       |        |      |       |              |  |  |
| 1 <sup>12</sup> 24                                                            | 3070                            | 3070 | 3070  | 3072 |       |        |      |       |              |  |  |
|                                                                               | 1566                            | 1565 | 1564  | 1564 | 1549  |        |      | 1556  |              |  |  |
|                                                                               | 1387                            | 1385 | 1380  | 1375 | 1380  |        |      |       |              |  |  |
|                                                                               | 1287                            | 1287 | 1.287 | 1290 | 1275  |        |      | 1.337 |              |  |  |
|                                                                               | 1284                            | 1285 | 1285  | 1283 | 1242  |        |      | 130   |              |  |  |
|                                                                               | 1106                            | 1105 | 1103  | 1100 | 1123  | 1124   | 1123 | 1117  | 1114         |  |  |
|                                                                               | 621                             | 621  | 622   | 624  | 628   | 629    | 627  | 624   | 626          |  |  |
|                                                                               | 387                             | 383  | 373   | 363  | 373   | 370    |      | 372   | 369          |  |  |
|                                                                               | 242                             | 261  | 277   | 289  | 274   |        |      | 271   | 270          |  |  |
|                                                                               | 63                              | 59   |       |      |       |        |      |       |              |  |  |
| B <sub>lu</sub>                                                               | 940                             | 940  | 941   | 941  |       |        |      | 943   | 941          |  |  |
|                                                                               | 809                             | 810  | 813   | 820  |       |        |      | 814   | 812          |  |  |
|                                                                               | 695                             | 698  | 705   | 712  |       |        |      | 698   | 696          |  |  |
|                                                                               | 472                             | 481  | 498   | 512  |       |        |      | 504/  | 501          |  |  |
|                                                                               | 518                             |      | 517   | 512  |       |        |      | 510   | 278          |  |  |
|                                                                               | 233                             | 211  | 185   | 161  | 219   | 359    | -    | 215   | 3 <b>7</b> 6 |  |  |
|                                                                               | 142                             | 143  | 145   | 48   | 116/  | 154    |      | 63    | =            |  |  |

### Table III(4) (continued)

| afit            | wded 1  | B <sub>2</sub> S | pecies       | (D <sub>2h</sub> | - <sup>B</sup> 2u, <sup>1</sup> | B <sub>2g</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | t reg    | ion area |            |
|-----------------|---------|------------------|--------------|------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|------------|
|                 | the ory | tatalli<br>tata  |              |                  | Ra                              | man                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - 1057   | Infr     | ared       |
| 1223.           | 0°      | 300              | 60°          | 90°              | Solid                           | Liquid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Gas      | Solid    | Liquid     |
| B <sub>2u</sub> | 3070    | 3070             | 3070         | 3070             |                                 | d.minor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |          |            |
|                 | 3070    | 3070             | 3070         | 3070             |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nd as    |          |            |
|                 | 1569    | 1568             | 1566         | 1564             |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | expac    | 1595     | 1593       |
|                 | 1368    | 1368             | 1370         | 1375             | 1394                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 1387     | 1389       |
|                 | 1296    | 1295             | 1293         | 1290             | 1307                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 1300     | 1300       |
|                 | 1279    | 1279             | 1281         | 1283             |                                 | - foreste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | lanki a  | 1271     | -          |
|                 | 1095    | 1095             | 1097         | 1100             |                                 | and the second s |          | 1100     | 1100       |
|                 | 630     | 629              | 627          | 624              | 639                             | 639                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          | 637      | 637        |
|                 | 306     | 303              | 297          | 289              | -                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          | -        | -          |
|                 | 63      | 59               | 54           | 48               |                                 | 28 b18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | noda     | 87-95    |            |
| 100             | in from | od (00)          | Children Odo | spects           |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | antive - |            |
| °2g             | 944     | 943              | 942          | 941              | iditan s                        | pectrus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | hath.    | 949      | 30 card.   |
|                 | 832     | 831              | 826          | 820              | 853                             | 847                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          | 850      | 843        |
|                 | 707     | 708              | 711          | 712              | 727                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 723      | 722        |
|                 | 518     | 518              | 517          | 512              | 542 <sup>±</sup>                | 543                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20124    | 545      | 538        |
|                 | 345     | 348              | 355          | 363              | 309                             | 309                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          | 306      | 306        |
|                 | 119     | 126              | 141          | 161              | 116/                            | 154                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | a 19.000 | 157      | gil whiteh |

was observed to shift from 1317 cm<sup>-1</sup> in the solid state to 1302 cm<sup>-1</sup> is solution due to starie relevation now spreams as to the plane of major crystal development. A good example is afforded in dichlorobiphenyl by the complex region around  $1100 \text{ cm}^{-1}$ . In the crystallised melt spectrum a band at 1087 cm<sup>-1</sup> is strongly reduced in intensity relative to its neighbouring bands. From this it is deduced that the associated transition is of a different species to that of its neighbours and is to be identified as b<sub>3</sub>. However, a band assigned as b<sub>3</sub>, either at 1186 or 1172 cm<sup>-1</sup> and the only fundamental expected in this region besides an a mode, shows no dichroic effect at all.

Doublets near 960, 830 and 415 cm<sup>-1</sup> are clearly assigned to the formerly 'au and  $b_{3g}$  out-of-plane' double assignments. That such doublets exist (average separation ~ 8 cm<sup>-1</sup>) is further support for the D<sub>2</sub> conformation.

In difluorobiphenyl the Raman  $\gamma_8 b_{1g}$  mode appeared in the infrared solution spectrum and the infrared active  $\gamma_8 b_{2u}$ mode appeared in the Raman molten spectrum both around 630 cm<sup>-1</sup>. Now in both dichloro-and dibromo- biphenyl a mass-insensitive doublet appears in both Raman and infrared spectra. Likewise the mass-insensitive  $\gamma_4 b_{1u}$  fundamental is split in the infrared for difluorobiphenyl and appears split around 500 cm<sup>-1</sup> in the other two molecules. The  $\gamma_5 b_{2u}$  mode of difluorobiphenyl which was observed to shift from 1317 cm<sup>-1</sup> in the solid state to 1302 cm<sup>-1</sup> in solution due to steric relaxation now appears as

1117W.

#### Table III(5)

The principle infrared and Raman bands of 4-4'dibromobiphenyl at frequencies below 1700 cm-1

| Infra           | red          | Raman           | Assignment        |
|-----------------|--------------|-----------------|-------------------|
| Solid           | Liquid       | Solid           |                   |
| 1670w           | 10775        |                 | condition 12 14 1 |
| 1635w           |              |                 |                   |
|                 |              | 1628w           |                   |
| TWTOAD          | 10100        | 1587vs          | 8                 |
| 1500-           | 1 599        | INDO:           | 2                 |
| 70201           | 7.200 W      |                 | 22                |
| 1584m           |              | 9699            | <sup>b</sup> 3    |
| 962w            |              | 1538vw          | pl                |
| 94944           | 3495 1       | 1498m           | 8                 |
| 14855           | 1405)<br>d)m | 1490m           |                   |
|                 | 1480))       | Mite States     |                   |
| 1471 <b>v</b> s | 1470s        |                 | bz                |
| 1452w           |              | 8244            |                   |
| 13828           | 1383m        | 616a            | b2                |
| 1300d-w         | 1300w        | 1302 <b>v</b> w | b <sub>2</sub>    |
|                 |              | 1271w-sh        | •                 |
|                 | 73Bv         | 1263w-sh        | bl                |
|                 | 6720         | 1235vw          |                   |
| 668s-oh         | 669 week     | 1224w           | b                 |
|                 | 635u         | 1201sh-vw       |                   |
|                 | 62444        | 1184s           | B                 |
| 1166vw          |              | 560 v           | b <sub>3</sub>    |
| 1117w           | 1114vw       |                 |                   |
| 528 sheets      |              |                 |                   |

### Table III(5)(continued)

| Infrar         | ed      | Raman    | Assignment     |
|----------------|---------|----------|----------------|
| Solid          | Liquid  | Solid    | Asakanaenit    |
| 1.100m         | 1100w   | 1103vv   | bg             |
| 1076s          | 1079m   | 10830    | bl             |
| 1.067vs        | 1071s   |          | bz             |
|                |         | 10698    | ۵              |
| 1016vs         | 1016m   | 1015sh-w | bz             |
|                | 10.00 C | 1010s    | 8              |
| 1000vs         | 1001s   |          | b_             |
| 33.988         | 31648   |          | -3             |
| 970vw          |         | 969m     | 8              |
| 962w           |         | 962      | bz             |
| 040            |         |          | 4              |
| 949 <b>4</b> M |         | 192w     | 02             |
| 944vw          |         |          | b              |
| 848m           | RA1m    | BAAve    | h              |
| Likkyw         | U ZAIN  | 033W     | 2              |
| 822w           |         | 824m     | 8.             |
| 814sh-m        |         | 818m     | b3             |
| 810 vs         | 807vs   |          | bl             |
| 749            |         | 7578     | 8              |
| 720m           | 718w    | 720w     | b <sub>2</sub> |
| 6728           | 672s    | 671w     | bz             |
| 668m-sh        | 668w-sh |          | bl             |
| 635w           | 635w    | 632w     | b <sub>2</sub> |
| 623w           | 624vw   | 623m     | bl             |
| 542m           |         | 540w     | b2             |
|                |         |          |                |

537m

538sh-w

| al. aula tad        | i and observed | frequencies |           |                 |          |
|---------------------|----------------|-------------|-----------|-----------------|----------|
| Infra               | red            | Ramon       | al mgio   | Ass             | d gnment |
| Solid               | Liquid         | Solid       | s.,)      |                 |          |
| 506)<br>d)m<br>500) | 497s           |             | reð Finge | andrea<br>Infla |          |
|                     |                | 415st       |           | nslid a         | hiquid   |
| 410m                | 412s           | 408m        |           | bz              |          |
| 356w                | 355w           | 354w        |           | bl              |          |
| 315 <b>v</b> s      | 316vs          |             |           | bz              |          |
| 271w                |                | 270w        |           | b2              |          |
| 237w                | 1690           | 237w        |           | by              |          |
| 190vw               | 1202           | 192w        |           | by              |          |
| 11.64               | 1184           | 167s        |           | a               |          |
| 144vw               | 1069           |             |           | b_?             |          |
| 108vw               |                |             |           | e               |          |
|                     | 257            | 112vs       |           | b ?             |          |
| 86w                 |                | 98vs        |           | 2<br>b.         |          |
| 74w 14              |                |             |           | ~2<br>b         |          |
| 67                  | o Ka           |             |           | 1               |          |
| u pro               |                |             |           |                 |          |
| 021                 |                |             |           |                 |          |
| 91.1                |                |             |           |                 |          |

## Sable III(5)(continued)

### Table III(6)

95.

Calculated and observed frequencies (cm-1) for 4-4'dibromo biphenyl for various dihedral angles

Prequestion A Species (D<sub>2h</sub> - A<sub>g</sub>, A<sub>u</sub>)

| Calc | ulated |       | Obser  | ved frequ | uencies          |        |
|------|--------|-------|--------|-----------|------------------|--------|
| for  | all 0  | Ra    | nen    |           | Infr             | aređ   |
|      |        | Solid | Liquid | Gas       | Solid            | Liquid |
|      | 1560   |       |        |           | 1584             |        |
| Ag   | 3072   |       |        |           | 1471             |        |
|      | 3072   |       |        |           |                  |        |
|      | 1651   | 1587  |        |           |                  | 1071   |
|      | 1496   | 1498  |        |           |                  |        |
|      | 1339   | 1282  |        |           | 3003             |        |
|      | 1168   | 1184  |        |           | 200              |        |
|      | 1066   | 1069  |        |           | 0/2              |        |
|      | 1016   | 1010  |        |           | 345              |        |
|      | 771    | 757   |        |           | 962              |        |
|      | 443    | 463   |        |           |                  |        |
|      | 147    | 167   |        |           |                  |        |
| Au   | 972    | 969   |        |           | 970              |        |
|      | 827    | 818   |        |           | 814 <sup>±</sup> |        |
|      | 411    | 408   |        |           |                  |        |

### Table III(6)(continued)

B<sub>3</sub> Species (D<sub>2h</sub> - B<sub>3u</sub>, B<sub>3g</sub>)

| Calculated<br>frequencies<br>for all 0 |      |         |            |        | Observed frequencies |       |        |      |  |
|----------------------------------------|------|---------|------------|--------|----------------------|-------|--------|------|--|
|                                        |      | Reman   |            |        |                      |       |        |      |  |
| Bla                                    | 3070 | Soli    | .d<br>3070 | Liquid | Gas                  | Solid | Liquid |      |  |
| Bzu                                    | 3072 |         |            |        |                      |       |        |      |  |
|                                        | 3102 | 1926    | 2569       |        | 1939                 |       |        |      |  |
|                                        | 1560 |         | 1370       |        | 1. 2. 2. 2.          | 1584  |        |      |  |
|                                        | 1462 |         |            |        |                      | 1471  | 1470   |      |  |
|                                        | 1169 |         |            |        |                      | 1166  | -      |      |  |
|                                        | 1077 |         |            |        |                      | 1067  | 1071   |      |  |
|                                        | 1028 | 1095    |            | 1090   |                      | 1016  | 1016   |      |  |
|                                        | 636  |         |            |        |                      | 2002  | 623    | 626  |  |
|                                        | 1001 | 157     | 349        | 340    |                      | 1001  | 1000   |      |  |
|                                        | 6/9  | 6/1     | 1.51       |        |                      | 672   | 673    |      |  |
|                                        | 321  |         |            |        |                      | 315   | 316    |      |  |
| B_B_                                   | 925  | 925     | 925        |        |                      | 062   |        |      |  |
| -3g                                    | 818  | 817     | 840        | 827    |                      | Paa   |        |      |  |
|                                        | 021  | 699 024 | 704        |        |                      | 822   |        |      |  |
|                                        | 411  | 473 415 | 492        |        |                      | 410   | 412    | 497. |  |
|                                        |      | 220     | 221        | 222    | 192                  |       |        |      |  |
|                                        |      |         |            |        |                      |       |        |      |  |

### Table III(6) (continued)

B1 Species (D2h - B1g, B1u)

| Calculated<br>frequencies |       |      |      | Observed frequencies |             |        |     |       |          |  |
|---------------------------|-------|------|------|----------------------|-------------|--------|-----|-------|----------|--|
| for                       | all 0 |      |      |                      | Ra          | man    | an  |       | Infrared |  |
|                           | 00    | 30°  | 600  | 900                  | Solid       | Liquid | Gas | Solid | Liquid   |  |
| Blg                       | 3070  | 3070 | 3070 | 2070                 |             |        |     |       |          |  |
|                           | 3069  | 3069 | 3069 | 3069                 |             |        |     | 80110 | Menid    |  |
| 520                       | 1.546 | 1546 | 1548 | 1552                 | 1538        |        |     |       |          |  |
|                           | 1375  | 1374 | 1370 | 1367                 | 10 <u>-</u> |        |     |       |          |  |
|                           | 1285  | 1284 | 1283 | 1281                 | 1263        |        |     |       |          |  |
|                           | 1234  | 1235 | 1238 | 1242                 | 1224        |        |     |       |          |  |
|                           | 1095  | 1094 | 1092 | 1090                 | 1083        |        |     | 1076  |          |  |
|                           | 616   | 616  | 617  | 618                  | 623         |        |     | 623   | 624      |  |
|                           | 361   | 357  | 349  | 340                  | 354         |        |     | 356   | 355      |  |
|                           | 182   | 176  | 161  | 144                  | 237         |        |     | 237   | 635      |  |
| Blu                       | 925   | 925  | 925  | 926                  | 1           |        | -   | 944   |          |  |
|                           | 816   | 817  | 820  | 827                  |             |        |     | 810   | 808      |  |
|                           | 696   | 698  | 704  | 710                  |             |        |     | 668   |          |  |
|                           | 460   | 471. | 492  | 509                  |             |        |     | 500/  | 497      |  |
|                           | 220   | 220  | 551  | 222                  | 192         |        |     | 100   | 718      |  |
|                           | 33    | 34   | 35   | 39                   | 540         |        |     | 942   | 537      |  |
|                           |       | 350  | 735  | 340                  | 270         |        |     | 272   |          |  |
|                           | 108   |      | 1.27 | 244                  |             |        |     |       |          |  |

### Table III(6) (continued)

| Calcu           | ilated | t there | a ava da | to alloy | Observed frequen      | ncies      |        |
|-----------------|--------|---------|----------|----------|-----------------------|------------|--------|
| for a           | 11 C   | grantin | e chen 1 |          | Raman                 | Infra      | red    |
|                 | 00     | 300     | 600      | 900      | Solid Liquid Ca       | s Bolid    | Liquid |
| B <sub>2u</sub> | 3070   | 3070    | 3070     | 3069     | t (the lowest tog - b | set pullet |        |
|                 | 3069   | 3069    | 3069     | 3069     | Al indicating that D  |            |        |
| Geies           | 1564   | 1562    | 1556     | 1552     |                       | 1590       |        |
|                 | 1364   | 1364    | 1365     | 1367     | of end diminio and a  | 1382       | 1383   |
|                 | 1279   | 1279    | 1280     | 1281     |                       | 1300       | 1300   |
|                 | 1248   | 1247    | 1245     | 1242     |                       |            | : `    |
|                 | 1087   | 1087    | 1088     | 1090     |                       | 1100       | 1100   |
|                 | 625    | 624     | 622      | 618      | 632 obtaining a w     | 635        | 635    |
|                 | 223    | 223     | 223      | 222      | broanbt honyt because |            | -      |
|                 | 50     | 48      | 43       | 39       | on the surface. The   | 89         |        |
| B20             | 928    | 928     | 927      | 926      |                       | 949        |        |
| abtati          | 839    | 837     | 833      | 827      | 844                   | 848        | 841    |
|                 | 703    | 705     | 708      | 710      | 720                   | 720        | 718    |
| 3.6             | 519    | 518     | 516      | 509      | 540                   | 542        | 537    |
|                 | 328    | 330     | 335      | 340      | 270                   | 271        |        |
|                 | 108    | 113     | 127      | 144      | 112/-                 | /145       |        |
|                 |        | 249 20  |          | ficult   |                       | s shifts   |        |

and the frequency fit is not as pood. The very poor whichdlittee

a finely split band centred at 1300 cm<sup>-1</sup> in dichloro and dibromobiphenyl. This provides further evidence for a  $D_2$  conformation in the solid state. The major evidence against a  $D_{2d}$  conformation is that there are too many bands assigned to the  $B_1$  and  $B_2$  species (greater than 16) even though some of the assignments are weak, missing or unsatisfactory. The Raman band at 413 cm<sup>-1</sup> for dichlorobiphenyl is polarised (the lowest 'a<sub>u</sub> - b<sub>3g</sub>' pair) with a dipolarisation ratio of 0.41 indicating that  $D_{2d}$  symmetry does not occur even in the molten state.

A comparison of the spectra of 4-4 dichloro and dibromobiphenyl below 1000 cm<sup>-1</sup> in Figs. III(i) and (ii) show that they possess identical features, the lower frequency fundamentals shifted slightly in the dibromo spectra because of the mass effect. Difficulty was experienced in obtaining a uniform ory tallised melt spectrum for dibromobiphenyl because the material tended to form globules on the surface. The melt also tended to decompose, such that molten Raman data was not obtained.

## 3.6 Conclusion

The conformations of 4-4' dichloro and dibromobiphenyl have been shown to be  $D_2$  irrespective of phase. The estimation of the angle, here, is more difficult because there are no shifts and the frequency fit is not as good. The very poor solubilities of dichloro- and dibromo-biphenyl in common organic solvents compared with biphenyl and difluorobiphenyl indicate a difference in physical properties which may be related to structure.

A preliminary study, without calculations, was carried out on other 4-4'di-substituted biphenyls to investigate the effect of other common organic groups. 4-4'dimethyl, dicyano and dimitro biphenyl gave infrared and Raman spectra similar to dichloro and dibromo-biphenyl and had very poor solubilities. Since no shifts or changes in spectral activities occurred, it was deduced that they possess a D<sub>2</sub> conformation in all phases.

A study of 4-fluoro-and bromo-biphenyl, however, gave similar spectral changes experienced with biphenyl and 4-4'difluorobiphenyl (43). Calculations were performed for 4-bromobiphenyl using the simple biphenyl model above and making the appropriate changes in symmetry ( $C_{2v}$ ) and the bromine atom. A b<sub>2</sub> mode was calculated at 440 cm<sup>-1</sup> and it was predicted to increase in frequency with dihedral angle. A band at 464 cm<sup>-1</sup> in the infrared spectrum for the solid state shifted to 492 cm<sup>-1</sup> in solution. The corresponding change in the B<sub>1</sub> symmetry block was predicted for a band to decrease in frequency at 353 cm<sup>-1</sup>. In fact a Reman and infrared active band at 258 cm<sup>-1</sup> was observed to move to 238 cm<sup>-1</sup> in the molten and solution phase.

100
A study of the vibrational spectra of dicafluorobiphenyl (44,45) by Stude et al suggested that the molecule existed in a  $D_2$  conformation in all phases. It was thus decided to examine the vibrational spectra of 1,2,3,4,5-pentafluorobiphenyl (kindly donated by Professor G. Williams of Bedford College) to examine the effect of the strong dipole across the inter-ring bond. Again a  $D_2$  conformation in all phases was confirmed.

It appears that any inductive or mesomeric effects of the groups, whether directed into or away from the ring, have little effect in determining the overall conformation. The change observed for 4-bromobiphenyl suggests that the planar conformation can only be realised when the substituents are either small or few in number, i.e. the determining factor is crystal packing.

isprove the large deviation secondated with size of the bitter fragmancy ring anders.

The use of destartion data in the reflection of forms fields is very common practice because the subbry of adjustable persenters always exceeds the sumber of oper realise for solvers molecule. It is always common that the quadrotic force study, which is independent of cabarachic terms, is confirmed to the large when ohence. Although destoration refines the force masteria for of accuracy, large monstatestice still

deformations invelves CHAPTER 4 of the bylengun atom to a blog

The Vibrational Analysis of Dauterated Bishenyle

4.1 ... Introduction chough the shifts are such maller.

The estimate of the dihedral angle obtained in Chapter 2 for biphenyl and in Chapter 3 for difluorobiphenyl had a large degree of uncertainty associated with it. This error is to be expected because the first-order calculated frequencies have not been exactly alighed with the observed fundamentals. A perturbational analysis was thus carried out (33) using the colid-state data of biphenyl, perdeuterobiphenyl and biphenyl d-2 so as to refine the force field for the planar conformation. This time, however, inter-ring interaction constants were introduced to improve the large deviation associated with some of the higher frequency ring modes.

The use of deuterated data in the refinement of force fieldd is very common practice because the number of adjustable parameters always exceeds the number of observables for a large molecule. It is always assumed that the quadratic force-field, which is independent of anharmonic terms, is unaffected by the large mass change. Although deuteration refines the force constants for deformations involving vibrations of the hydrogen atom to a high degree of accuracy, large uncertainties still arise for motions associated with the ring. Mills has recently pointed out (46) that other isotopic data, involving carbon and nitrogen, can be more useful even though the shifts are much smaller.

Teller and Redlich independently developed the general theory from which all isotopic rules can be derived. If  $\lambda_1, \lambda_2, \dots, \lambda_k$  are the roots in a particular symmetry species of the secular equation

then

$$\begin{vmatrix} \mathbf{G}_{\mathbf{s}} \mathbf{F}_{\mathbf{s}} - \mathbf{s} \mathbf{\lambda} \end{vmatrix} = \mathbf{0}$$
$$\begin{vmatrix} \mathbf{F}_{\mathbf{s}} \mathbf{G}_{\mathbf{s}} \end{vmatrix} = \begin{vmatrix} \mathbf{F}_{\mathbf{s}} \end{vmatrix} \cdot \mu_{1} \cdot \mu_{2} \cdot \cdots \cdot \mu_{k}$$

 $= \lambda_1 \cdot \lambda_2 \cdot \cdots \cdot \lambda_k$ Since F will be the same for an isotopic species and  $\lambda_k = 4\pi^2 c^2 y_k^2$  it follows that

$$\boxed{\begin{array}{c} \begin{array}{c} & & \\ & & \\ & & \\ \end{array}}_{k} \end{array} = \left( \boxed{\begin{array}{c} & & \\ & & \\ & & \\ \end{array}}_{k} \right)^{\frac{1}{2}}$$

where the prime signifies the isotopic species.

This result is only valid if the symmetry species contains no translation or rotation. If these degrees of freedom are involved the roots will vanish such that the product ratio is

indeterminate. This difficulty is overcome, however, by considering the result of applying weak forces which convert the motions of translation and rotation into low frequency oscillatory actions. In the limit of these vanishing forces (i.e. the coupling is negligible) the ratio of the translatory frequencies is

$$\frac{\sqrt{T}}{\sqrt{T}} = \left(\frac{M}{M}\right)^{\frac{1}{M}}$$

where N is the total mass of the molecule, and the ratational ratio is

| 2. | (1)  |
|----|------|
|    | = -1 |
| VR | 11/  |

where I is the moment of inertia with respect to the appropriate principle axes.

The product rule now takes the form

$$\frac{\overline{\mathbb{N}}-6}{\prod_{k=1}^{k}} \frac{\mathbf{v}_{k}}{\mathbf{v}_{k}} = \frac{\overline{\mathbb{N}}}{\prod_{k=1}^{k}} \left(\frac{\mathbf{u}_{k}}{\mathbf{u}_{k}}\right)^{\frac{1}{2}} \left(\frac{\mathbf{u}_{i}}{\mathbf{u}_{i}}\right)^{\frac{1}{2}} \left(\frac{\mathbf{I}_{i}}{\mathbf{I}_{x}}\frac{\mathbf{I}_{i}}{\mathbf{I}_{x}}\right)^{\frac{1}{2}}$$

The calculated isotopic shifts are useful in assigning some of the more dubious bends.

cobbed By reducing the operation insists welting from 75 o

a about 10 of, frequentation of the soluceing dim in a

4.2 Experimental

Biphenyl d-10 was purchased from Merck Sharo and Dohme of Canada Limited. Biphenyl d-2 was synthesised in these laboratories by R. J. W. Pulham and D. P. Sewell as part of a supervised third-year project.

abed aulequier ions. Carbon-17 iostenia

4-4' dibromobiohenyl was prepared as described above (42). n-Eutyl lithium reagont was prepared (47) at  $-10^{\circ}$ C in dry ethyl ether by the action of n-butyl bromide on frashly-cut lithium metal. The reaction was carried out in an atmosphere of dry mitrogen and the final product was filtered free of reaction precipitate. The freshly-prepared n-butyl lithium reagent was then repidly added to an ether solution of dibromobiohenyl and left overnight to etir (48). The mixture was then treated with 99.8% deuterium oxide. The ether phase was washed and dried and the solvent removed by rotarary evaporation. The product was sublimed, twice to yield white crystals with a melting point of  $66^{\circ}$ C.

The purity of these isotopec was assessed by means of their mass spectra kindly run by Dr. W. Wheatley with an A.E.I. MS 12 double-focussing spectrometer using a direct-insertion sample proble. By reducing the operating ionising voltage from 70 eV, to about 10 eV, fragmentation of the solecular ion (M<sup>+</sup>) does

Alas - Martin - Lala

not occur. The low-voltage spectre hence record the relative abundance of the deuterated solecular ions. Carbon-13 isotopic abundance of the partially deuterated species will have a negligible effect on the peak heights. Spectre were run at four ionising voltages (12, 11, 10 and 9 eV) and the mean compositions calculated as shown in Table IV(1). The table also shows that the extent of deuteration is 97.6% for biphonyl d-2 and 99.2% for biphenyl d-10.

# observation in Verbits data in the amber of ands shich beve Table IV(i)

Isotopic Composition of Deuterated Siphenyls

|      | ompound composition Theoretical composition maximum purity                   |
|------|------------------------------------------------------------------------------|
|      | for biphenyl 4-10 and G12H8D2 - 96.5% and region (5 month)                   |
|      | dphenyl d-2 d-3. C <sub>12</sub> H <sub>9</sub> D - 2.35 99.6%               |
| **** | C12H10 - 1.25<br>The majority of the fundamentals are needined as previously |
|      | teserthed above for bic 012010 h = 93.3% for the seven of extract            |
|      | liphenyl d-10                                                                |
|      | assumption that the in 012H208 - 1.15 beacs from the see bot                 |
|      |                                                                              |

Secondly, the ratio of the bildulated data for the interple epseide end that of bigheops half is compared with the supporte observable ratios to find the boot fiel. This is abdrahus

#### 4.3 Results and Discussion

The observed Raman and infrared bands are listed in Tables IV(2) and (4) for biphenyl d-2 and d-10 respectively and the corresponding assignments are compiled in Tables IV(3) and (5). Zerbi and Sandroni have recently (49) used their modified UBFF to assign the in-plane fundamentals of most of the symmetrically deuterated biphenyls. The most striking observation in Zerbi's date is the number of bands which have not been assigned simply because they have not been seen, especially in the  $B_{1g}$  symmetry block. Difficulty in assignment also arises because of the severe overcrowding of fundamentals expected in the 800 - 860 cm<sup>-1</sup> region (10 bands) for biphenyl d-10 and in the 600 - 620 cm<sup>-1</sup> region (5 bands)

The majority of the fundamentals are assigned as previously described above for biphenyl h-10, but for the areas of ambiguity two lines of approach are adopted. The first is based on the assumption that the intensities of the bands (both Raman and infrared) throughout the series should be roughly comparable. Secondly, the ratio of the calculated data for the isotopic species and that of biphenyl h-10 is compared with the suspected observable ratios to find the best fit. This is admirably

#### (S)VI eldeT

Tynadqidoretuebib 'b-p lo gened names has bererlar elqioning

| 8                     | TSORAE       | 845/24       |                     |             |
|-----------------------|--------------|--------------|---------------------|-------------|
| 3Ta                   | p.<br>SACO2T | 112-800.7*   |                     |             |
| 5                     | (            | 49-28861     | MEGET               |             |
| 112                   |              | M2727        |                     |             |
| borred                |              |              | 01308 <sup>10</sup> | 72550       |
|                       |              |              | USSET               |             |
|                       |              |              | WG LET              |             |
| pSu                   |              |              | \$762T              | \$\$62T     |
| angon ngq             |              |              |                     | STLET       |
| 2130 Ja               | M-401601     | #416PT       |                     |             |
| 1119 ) Be             | 1110° wTOST  | 46051        |                     |             |
| pSa                   |              | 337]         |                     | ASSST       |
| SIq                   | x84909T      | 1110) SASESI |                     |             |
| ngq                   | 48-8285T     | 1991%-sp     |                     | M2857<br>20 |
| 0037m 9 <sub>12</sub> | 1007 8A9091  | 1600vs       |                     | - 703 L     |
|                       |              | Terrary 888  |                     |             |
|                       | 975:0        |              |                     | #589T       |
|                       |              |              |                     | w0621       |
| (5×624)               |              |              |                     | 5086T       |
| intra 8.9             | 5515M 800    | 8572m        | ws7ss               | sstow       |
| ngq                   | 5587mm/68    | 553 dw 8376  |                     | 5590 M      |
|                       | (9) binoti   | PTTOS        | binpid              | PTT9        |
| Jnemus isca           | 8590 u       | ewex         | pa                  | anajuj      |

\*90T

# Table IV(2) (continued)

| Infrare        | d                   | Rams     | Assignmen       |                 |
|----------------|---------------------|----------|-----------------|-----------------|
| Solid<br>Solid | Liquid              | Solid    | Liquid(p)       |                 |
| 1262m          | 1263a               | 1263w-sh | 7448            | b <sub>2u</sub> |
|                |                     | 1242vw   | 1242 <b>v</b> w |                 |
|                |                     | 1209w    | 1187m           | <sup>a</sup> g  |
| 1180m          | 1178ia              |          |                 | b <sub>3u</sub> |
| 1130           | Gio See )           |          |                 |                 |
| 1115           | 1110s               |          |                 | pSa             |
| 100            | 1000                | 1117     | 1107w           | blg             |
|                |                     | 1110     |                 |                 |
|                |                     | 1027m    | 1027m           | e<br>g          |
| 1034m          | 1038s               |          |                 | b <sub>zu</sub> |
| 1007m          | 1007s               |          |                 | b <sub>3u</sub> |
|                |                     | 988s     | 990vs           | ag              |
|                | 978m                |          |                 | b <sub>3u</sub> |
|                | 399                 | 975w-sh  | 967 sh-m        | b2g ?           |
|                | 964 <b>v</b> w      |          |                 | bze             |
| 954vw          | 953 <sup>×</sup> vw |          |                 | blu/b2g ?       |
|                | 874vw sh            | 876m     | 869m            | blg             |
|                | 868vw-sh            | 865w     |                 | p <sup>58</sup> |
| 862a           | 859s                |          |                 | b <sub>2u</sub> |
|                | 838vs               | 845vw    | 838m            | bzg/au          |
| 841s           | 843vs               |          |                 | blu             |
| 767w           | 764m                |          |                 |                 |

# Table IV(2) (continued)

| Cal Infrared and observe                            |                     | ad fracts Rei   | Assignment         |                 |
|-----------------------------------------------------|---------------------|-----------------|--------------------|-----------------|
| Solid                                               | Liquid              | Solid           | Liquid(p)          |                 |
| Calculated<br>Galculated<br>Traquacies<br>for all 9 | 736m                | 743<br>m<br>738 | 744m               | b <sub>2g</sub> |
|                                                     |                     | 734m            | 735s               | 鹿               |
| 716a                                                | 720s                |                 |                    | blu             |
| AL. 3972                                            | 697m                |                 |                    |                 |
| 610vs                                               | 610 <sup>#</sup> vs |                 | 617sh-m            | blu/bon         |
| 604vs                                               | 602\$vs             | 605m            | 603 <sup>*</sup> s | bzulbadbad      |
|                                                     | 1600                | 597 w           | 603s*              | boa *6 66       |
|                                                     | 535m                | 538w            | 535w               | bgg             |
| 449m                                                | 4778                |                 |                    | blu             |
|                                                     | 403vs               | 408vvw          | 405/8              | b20/2           |
|                                                     | 359w                |                 |                    | ble             |
|                                                     | 305w                | 324m            | .309 8             | a.,             |
|                                                     | 259w                | 241m            | 2.62               | bas             |
|                                                     |                     | 93m             |                    | 345             |
|                                                     |                     | 552             | . Taitita          |                 |
|                                                     |                     | 43m             | The Carles         | nodes           |
|                                                     |                     | 254 (0,3        |                    |                 |

### Table IN(3)

Calculated and observed frequencies (cm<sup>-1</sup>) for 4-4' dideuterobiphenyl for various dihedral angles

|            | A Specie             | $s (D_{2h} - A_g, A_u)$ | housedas   |        |  |  |  |
|------------|----------------------|-------------------------|------------|--------|--|--|--|
| Calculated | Observed frequencies |                         |            |        |  |  |  |
| for all 0  |                      | Roman                   | Infrared   | ta'nda |  |  |  |
|            | Solid                | Liquid(p)               | Solid      | Liquid |  |  |  |
| La 3072    |                      |                         |            |        |  |  |  |
| 307 2      |                      |                         |            |        |  |  |  |
| 2282       | 2276                 | 2277(0.25)              |            |        |  |  |  |
| 1689       | 1600                 | 1607*(0.25)             | 1996/11/97 |        |  |  |  |
| 1516       | 1509                 | 1501(0,24)              |            |        |  |  |  |
| 1338       | 1274                 | 1,281(0,22)             |            |        |  |  |  |
| 1192       | 1209                 | 1187(0.15)              |            |        |  |  |  |
| 1024       | 1031                 | 1027(0.07)              |            |        |  |  |  |
| 978        | 988                  | 990(0,10)               |            |        |  |  |  |
| 738        | 734                  | 735(0.10)               |            |        |  |  |  |
| 269        | 324                  | 709(0.31)               |            | 305    |  |  |  |
| Au 963     |                      | 967*(0.11)              |            |        |  |  |  |
| 833        |                      | 838 <sup>*</sup> (0.31) |            |        |  |  |  |
| 409        |                      | 403*(0.35)              |            |        |  |  |  |

# Table IV(3) (continued)

|                 |            | 83                   | Specie | s (D <sub>2h</sub> - | . B3u, B | ( <sub>7,2</sub> ) |                   |  |
|-----------------|------------|----------------------|--------|----------------------|----------|--------------------|-------------------|--|
| Cal             | culated    | Observed frequencies |        |                      |          |                    |                   |  |
| for             | all Q      | 1                    | R      | aman                 |          | Infrared           | Infra             |  |
|                 |            | So So                | lid    | Liquid(              | p)       | Solid              | Liquid            |  |
|                 | 3070       |                      |        |                      | No a     |                    |                   |  |
| <sup>B</sup> zu | 3072       |                      |        | 29                   |          | wartpor wid a      |                   |  |
|                 | 3078       |                      |        |                      |          |                    |                   |  |
|                 | 5583       |                      |        |                      |          | 2296               | 2297              |  |
|                 | 1603       | 1319                 |        |                      |          | 1596/1587          |                   |  |
|                 | 1478       | 1:81                 |        |                      |          | 1471               |                   |  |
|                 | 1193       |                      |        |                      |          | 1180               | 1178              |  |
|                 | 1035       | 869                  | 868    |                      |          | 103602(0.79)       | 1038              |  |
|                 | 1019       | 605                  | 639    |                      |          | 1007               | 1008              |  |
|                 | 976        |                      |        | ster                 |          |                    | 978               |  |
|                 | 604<br>953 |                      |        |                      |          | 604                | 60.2 <sup>*</sup> |  |
| Bag             | 963        | 379                  | 75     | 967 <sup>±</sup> (0  | .11)     |                    | 964               |  |
|                 | 833        | 7168                 | 45     | 838 <sup>%</sup> (0  | .31)     |                    | 838               |  |
|                 | 409        | 614 4                | 08     | 403*                 |          |                    | 403               |  |
|                 | 1 and      |                      |        |                      |          |                    |                   |  |

### Table IV(3) (continued)

|      |                | B1 S      | species    | (Doh - | Big, Bi     | a)             |           |                   |
|------|----------------|-----------|------------|--------|-------------|----------------|-----------|-------------------|
| Cale | ulated         |           |            |        |             | Observed freq  | uoncies   |                   |
| for  | uencies<br>⊖ = |           |            |        | 1           | îsasî          | Infre     | red               |
|      | 00             | 300       | 60°        | 900    | Solid       | Liquid(p)      | Solid     | Liquid            |
| Big  | 3070           | 3070      | 3070       | 3070 ] | No m        | easurements du | to to con | plexity           |
|      | 3069           | 3069      | 3069       | 3069   | of or       | vertone and co | mbinatic  | m bands           |
|      | 1608           | 1606      | 1604       | 1603   | 1593        | 1607*          |           |                   |
|      | 1404           | 1401      | 1395       | 1388   |             |                |           |                   |
|      | 1320           | 1319      | 1317       | 1315   | 1313        |                |           |                   |
|      | 1280           | 1281      | 1283       | 1286   | 1288        |                |           | 1283              |
|      | 1095           | 1094      | 1093       | 1091   | 1110/       | 1107           |           |                   |
|      | 868            | 868       | 868        | 868    | 1117<br>876 | 869*(0.79)     |           | 874               |
|      | 604            | 605       | 605        | 606    | 605         | 603            |           | 610 <sup>\$</sup> |
|      | 340            | 388       | 293        | 267    |             |                |           | 359               |
| Blu  | 99<br>955      | 94<br>955 | 97.<br>955 | 956    |             |                | 954       | 953 <sup>*</sup>  |
|      | 837            | 837       | 839        | 843    |             |                | 841       | 843               |
|      | 714            | 716       | 793        | 731    |             |                | 716       | 720               |
|      | 613            | 614       | 615        | 616    |             | 617*0.751      | 610*      | 610#              |
|      | (13            | 434       | 466        | 490    |             |                | 449       | 477               |
|      | 88             | 88        | 88.        | 89     |             |                |           |                   |
|      |                |           |            |        |             |                |           |                   |

| Prin            |                 | Tal    | ole IV( | 3)(conti                         | nued)              |                  |           |                  |
|-----------------|-----------------|--------|---------|----------------------------------|--------------------|------------------|-----------|------------------|
|                 |                 | B3 Spe | ecies ( | D <sub>2h</sub> - 8 <sub>2</sub> | u, B <sub>26</sub> | g)               |           |                  |
| Cale            | ulated          |        |         |                                  |                    | Observed         | frequenci | 85               |
| for             | 9 m<br>neurores |        |         |                                  |                    | Raman            | Infra     | ređ              |
| 1607            | 00              | 300    | 60°     | 90°                              | Solid              | Liquid(p)        | Solid     | Liquid           |
| B <sub>2u</sub> | 3070            | 3070   | 3070    | 3070                             |                    |                  |           |                  |
|                 | 3069            | 3069   | 3069    | 3069                             |                    | 1571.99          | 128       |                  |
|                 | 1605            | 1604   | 1603    | 1603                             |                    |                  | 4555      |                  |
|                 | 1377            | 1378   | 1381    | 1388                             |                    |                  | 1393      | 1394             |
|                 | 1312            | 1312   | 1313    | 1315                             |                    |                  | 1322      | 1308             |
|                 | 1290            | 1290   | 1289    | 1286                             |                    |                  | 1262      | 1.263            |
|                 | 1038            | 1088   | 1089    | 1091                             |                    |                  | 1131/     | 1110             |
|                 | 1               |        |         |                                  |                    |                  | 1115      |                  |
|                 | 865             | 866    | 867     | 868                              |                    |                  | 862       | 859              |
|                 | 619             | 618    | 617     | 616                              |                    | 617 <sup>±</sup> | 610*      | 610 <sup>*</sup> |
|                 | 95              | 94     | 91      | 89                               |                    |                  |           |                  |
|                 | 6-0             | 17204  |         |                                  |                    |                  |           | *                |
| a58             | 954             | 957    | 951     | 950                              |                    |                  |           | 953              |
|                 | 854             | 852    | 848     | 843                              | 865                | 8692 (0.79)      |           | 868              |
|                 | 730             | 731    | 732     | 731                              | 738/               | 744(0.76)        |           | 736              |
|                 | 608             | 608    | 607     | 606                              | 793<br>597         | 603              |           | 602#             |
|                 | 505             | 504    | 501     | 490                              | 538                | 535              |           | 535              |
|                 | 229             | 234    | 248     | 267                              | 241                | 255              |           | 259              |
|                 |                 |        |         |                                  |                    |                  |           |                  |

### Table IV(4)

| Principle : | infrared and R | aman bands c | of biphenyl D-10 | below 1700 cm <sup>-1</sup>              |
|-------------|----------------|--------------|------------------|------------------------------------------|
| Infra       | red            | Raz          | Assignment       |                                          |
| Solid       | Liquid         | Solid        | Liquid(p)        |                                          |
| 1620w       | 1614w          |              |                  |                                          |
| 1607w       | 1600w          | 1830114      |                  | Notes in                                 |
|             |                | 13/00        |                  |                                          |
|             | 11174          | 1563vs       | 1571vø           | alg                                      |
| 1566m       | 15658          |              |                  | <sup>b</sup> 3u                          |
| 1534w       | 1545w          |              |                  |                                          |
|             |                | 15220        | 152700           | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 |
| 9.500       | 10074          | - 1.1.1.4    | + )) / ¥         | - 15<br>15                               |
| W3564       | 1525w          |              |                  | b?u                                      |
| 1440w       | 1438w          |              |                  |                                          |
| 1412w       | 1412w          |              |                  |                                          |
| 950 vw      | 950w           | lillm        | 14158            | 810                                      |
| 1400w       | 1400w          |              |                  | *••<br>1.1                               |
|             | 860 4          | 3 mal        | 1                |                                          |
|             |                | 1,990W       | 1401w            |                                          |
|             | 1370w          |              |                  |                                          |
|             |                | 1347w        | 1343vw           | bie                                      |
| 1343ve      | 1344vs         |              |                  | b <sub>zu</sub>                          |
| 61.8vv      | 1325           |              |                  | 54<br>0 <sub>20</sub>                    |
| 1317m       | 1314           |              |                  | b                                        |
| 813s        | 1295w          |              |                  | zu                                       |
|             |                | 1280w        | 1278 76          | bia                                      |
| 1260m       | 1.263m         |              |                  | bou                                      |
| 7428        | 7:40           |              |                  | Zu                                       |

# Table IV(4) (continued)

| Infrar                   | ed.                        | Ran             | Assignment              |                        |
|--------------------------|----------------------------|-----------------|-------------------------|------------------------|
| Solid                    | Liquid                     | Solid<br>1231vw | Liquid(p)               |                        |
| 1200w                    | 6500 <sup>8</sup><br>1195m | 1216vw          | 1221vw                  |                        |
| 620a                     | 6748                       | 11868           | 1190va                  | °1g                    |
| 1116w                    | 1117m<br>1092w             |                 | 997 da <sup>(312)</sup> |                        |
| 1024w                    | 1024w                      |                 |                         | b <sub>2u</sub>        |
| 981w                     | 1007m<br>981m              |                 | 10067w                  | blg                    |
| 2009<br>2009<br>2009     | 566年<br>1970年-198          | 965s            | 962vs                   | <sup>8</sup> 1g        |
| 950 vw                   | 950w                       | 880m            | 872m                    | b3u                    |
| 854s                     | 860w                       |                 |                         | bzu                    |
| 844m                     | <b>843m</b><br>552m        | 850m<br>846m    | 842m                    | ble, ben               |
|                          | 830w-sh                    | 831v            | 828ww                   | lg<br>b <sub>lg</sub>  |
| 818vw                    | 825m<br>815vs <sup>‡</sup> | 816w            |                         | b <sub>2u</sub>        |
| 813s                     | 105%                       |                 |                         | bzu                    |
|                          | 79vu<br>782 <sup>%</sup>   |                 | 786w                    | <sup>n</sup> u<br>b b- |
| 93 <del>99</del><br>742m | 7370<br>7448<br>6179       |                 |                         | blu<br>26, 28          |

| Table (IV(4)(continued)   |          |                |                    |                     |  |  |  |
|---------------------------|----------|----------------|--------------------|---------------------|--|--|--|
| Infrared                  |          | Rom            | an                 | Assignment          |  |  |  |
| Solidiated a              | Liquid   | Solid          | Liquid(p)          |                     |  |  |  |
|                           |          | 690m           | 69110              | <sup>s</sup> lg     |  |  |  |
|                           |          | 657m ]         |                    |                     |  |  |  |
|                           | 652m*    | 655m           | 652m <sup>**</sup> | a,, bzp             |  |  |  |
| Codculated<br>Fraguencies |          | 651m           |                    | b                   |  |  |  |
| 620m                      | 6248     |                |                    | b.                  |  |  |  |
|                           | Balid    |                | () 597 ch          | 12<br>(2x299)       |  |  |  |
| 50 Arria                  | 5060     |                |                    | h                   |  |  |  |
| 588m                      | ege X    |                |                    | "2u                 |  |  |  |
| 200m 22(82)               | 20.26    | -0             | -00                | ozu, ole            |  |  |  |
| 2233                      |          | 503n           | 588m               | ble                 |  |  |  |
| 560w1078                  | 564w     |                | k30                |                     |  |  |  |
|                           | 550a-sh  | 539            | 551w               | b2g                 |  |  |  |
| 538va198                  | 542va    |                |                    | blu                 |  |  |  |
|                           | 4648969  | 45970          |                    | b <sub>2g</sub>     |  |  |  |
| 410m 860                  | 437:3880 |                | .015               | b <sub>lu</sub>     |  |  |  |
|                           | 352m     | 354 <b>v</b> w | .348m              | °u, <sup>b</sup> 38 |  |  |  |
|                           | 3348     | 91(9           |                    | ' <sup>b</sup> lg   |  |  |  |
| . 261                     | 300w     | 312m 996       | (19)299m           | alg 30              |  |  |  |
|                           | 248w     | 225m           | 20 <b>3</b> a      | b <sub>2g</sub>     |  |  |  |
| 165vw                     |          |                |                    |                     |  |  |  |
| 112vs                     | 105va    |                |                    | b <sub>2u</sub>     |  |  |  |
|                           | 797w     |                |                    |                     |  |  |  |
| 83vw                      | 7300     |                |                    | blu                 |  |  |  |
|                           | 61 70    |                |                    |                     |  |  |  |
|                           |          |                |                    |                     |  |  |  |

### Table IV(5)

Calculated and observed frequencies (cm<sup>-1</sup>) for biphenyl D-10 for various dihedral angles

|            |                     | W obsersa ( | l'a ny, nu)    |        |          |  |  |
|------------|---------------------|-------------|----------------|--------|----------|--|--|
| Cad<br>fre | culated<br>quencies |             | Observed frequ | encies |          |  |  |
| for        | all 0               |             | laman          | In     | Infrared |  |  |
|            | 2287                | Solid       | Liquid(p)      | Solid  | Liquid   |  |  |
| Ag         | 2287                |             |                |        |          |  |  |
|            | 2285                |             |                |        |          |  |  |
|            | 2280                |             |                |        |          |  |  |
|            | 1678                | 1563        | 1571(0.36)     |        |          |  |  |
|            | 1457                | 1411        | 1415(0.16)     |        |          |  |  |
|            | 1198                | 1186        | 1190[0.11)     |        |          |  |  |
|            | 951                 | 965         | 962(0.06)      |        |          |  |  |
|            | 862                 | 880         | 872(0.04)      |        |          |  |  |
|            | 840                 | 846         | 842(0.34)      |        |          |  |  |
|            | 699                 | 690         | 691(0.04)      |        |          |  |  |
|            | 261                 | 312         | 299(0.12)      |        | 300      |  |  |
| Au         | 780                 |             | 786(0.25)      |        |          |  |  |
|            | 648                 |             | 652*(0.48)     |        |          |  |  |
|            | 358                 |             | 348(0.40)      |        |          |  |  |

# Table IV(5) (continued)

B3 Species (D<sub>2h</sub> - B<sub>3u</sub>, B<sub>3g</sub>)

|        | Observed frequencies                                        |                  |                                                          |                                               |                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|--------|-------------------------------------------------------------|------------------|----------------------------------------------------------|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|        | Raman                                                       |                  |                                                          | Infrared                                      |                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| Sol    | ld                                                          | Liquid(          | p)                                                       | Solid                                         | Liquid                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|        |                                                             |                  |                                                          |                                               |                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|        |                                                             |                  |                                                          |                                               |                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|        |                                                             |                  |                                                          |                                               |                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|        |                                                             |                  |                                                          |                                               |                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| 1301   |                                                             |                  |                                                          | 1566                                          |                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|        |                                                             |                  |                                                          | 1343                                          | 1344*                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|        |                                                             |                  |                                                          | 981                                           | 981                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|        |                                                             |                  |                                                          | 950                                           | 950                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|        |                                                             |                  |                                                          | 854                                           | 860                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|        |                                                             |                  |                                                          | 813                                           | 815 <sup>#</sup>                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|        |                                                             |                  |                                                          | 588                                           | 586 <sup>±</sup>                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|        |                                                             |                  |                                                          |                                               | daile                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|        |                                                             | 786~             |                                                          |                                               | 782                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| 7 655/ | /657                                                        | 652 <sup>*</sup> |                                                          |                                               | 652 <sup>±</sup>                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| 354    | 1                                                           |                  |                                                          |                                               | 352                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|        |                                                             |                  |                                                          |                                               |                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|        |                                                             |                  |                                                          |                                               |                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|        |                                                             |                  |                                                          |                                               |                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|        | 5013<br>5013<br>1555<br>1077<br>1077<br>6655<br>655/<br>354 | Rame<br>Solid    | Dbaervad<br>Raman<br>Solid Licuid<br>505/657 652*<br>354 | Deserved frequent<br>Raman<br>Solid Licuid(p) | Deserved frequencies       Rasen     In       Solid     Licuid(p)     Solid       1966     1343       1343     981       950     854       813     588       786*     555       354     555 | Inferred         Inferred           Solid         Licuid(p)         Solid         Liquid           Solid         Isolid         Isolid         Isolid           1566         1343         1344*           981         981         981           950         950         950           813         815*         860           813         815*         868           786*         588         586*           786*         655/657         652*           354         352         352 |  |  |

# Table IV(5) (continued)

|                                              |      |      | Bl Spec | 100  |                      |                  |          |                   |
|----------------------------------------------|------|------|---------|------|----------------------|------------------|----------|-------------------|
| Calculated<br>frequencies<br>for $\varphi =$ |      |      |         |      | Observed fracuencies |                  |          |                   |
|                                              |      |      |         |      | Raz                  | man Infrared     |          |                   |
|                                              | 00   | 30°  | 600     | 900  | Solid                | Liquid           | (p)Solid | Liquid            |
|                                              | 2261 | 2283 |         | 2:51 |                      |                  |          |                   |
| Bla                                          | 2281 | 2281 | 2281    |      | ļ                    |                  |          |                   |
|                                              | 2279 | 2279 | 2279    | 2279 | )                    |                  |          |                   |
|                                              | 1584 | 1583 | 1581    | 1581 | 1533                 | 1537             |          |                   |
|                                              | 1704 | 1701 | 1294    | 1289 | 1347                 | 1343             |          | 1349 <sup>±</sup> |
|                                              | 1277 | 1277 | 1279    | 1278 | 1280                 | 1278             |          |                   |
|                                              | 1038 | 1037 | 1033    | 10:8 |                      | 1006             |          | 1007              |
|                                              | 840  | 840  | 840     | 840  | 850                  | 842 <sup>*</sup> |          | 843*              |
|                                              | 822  | 822  | 822     | 821  | 871                  | 828              |          | 825               |
|                                              | 583  | 583  | 585     | 587  | 583                  | 588              |          | 585 <sup>*</sup>  |
|                                              | 319  | 702  | 276     | 254  |                      |                  |          | 334               |
|                                              |      |      |         |      |                      |                  |          |                   |
| Blu                                          | 820  | 820  | 821     | 821  |                      |                  | 818      | 815*              |
|                                              | 729  | 731  | 737     | 746  |                      |                  | 742      | 744               |
|                                              | 613  | 616  | 623     | 631  |                      |                  | 620      | 624               |
|                                              | 539  | 539  | 542     | 545  |                      |                  | 538      | 542               |
|                                              | 387  | 404  | 430     | 146  |                      |                  | 410      | 437               |
|                                              | 85   | 85   | 85      | 85   |                      |                  | 83       | 61(?)             |

### Table IV(5) (continued)

|                 |                   |      | B2 Spe | cies | and a second of |                  |                  |
|-----------------|-------------------|------|--------|------|-----------------|------------------|------------------|
| Calo<br>freq    | ulated<br>uencies |      |        |      | obse<br>Reas    | erved frequencie | 18<br>** ** 0.0  |
| 846             | 0°-1              | 30°  | 60°    | 90°  | Solid           | Liquid(p)Solid   | Liquid           |
| B <sub>2u</sub> | 2281              | 2281 | 2281   | 2281 |                 |                  |                  |
|                 | 2278              | 2278 | 2278   | 2279 | b. cad          |                  |                  |
|                 | 1582              | 1581 | 1580   | 1580 |                 | 1522             |                  |
|                 | 1297              | 1296 | 1292   | 1289 |                 | 1317             | 1314             |
|                 | 1262              | 1264 | 1269   | 1278 |                 | 1260             | 1263             |
|                 | 1015              | 1018 | 1022   | 1028 |                 | 1024             | 1024             |
| 100             | 841               | 841  | 841    | 840  |                 | -1 844           | 843              |
|                 | 822               | 822  | 821    | 821  |                 | 818              | 815 <sup>±</sup> |
|                 | 596               | 594  | 591    | 587  |                 | 594              | 596              |
|                 | 89                | 88   | 87     | 85   |                 | 112              | 105              |
| B <sub>2g</sub> | 826               | 826  | 825    | 822  | 816             |                  | 815*             |
| 195             | 759               | 758  | 753    | 746  |                 |                  | 782              |
|                 | 629               | 630  | 632    | 631  | 651             | 652 <sup>%</sup> | 652 <sup>%</sup> |
|                 | 549               | 548  | 547    | 543  | 539             | 551              | 550              |
|                 | 450               | 450  | 451    | 446  | 459             | 465              | 464              |
|                 | 221               | 226  | 237    | 254  | 225             | 243(0.65)        | 248              |

(ar d-10).

illustrated by the assignment of the  $\gamma_8$  and  $\gamma_9$  alg modes of biphenyl d-10. Using the data of biphenyl itself  $\gamma_8$  and  $\gamma_9$ are estimated to occur at 872 cm<sup>-1</sup> and 843 cm<sup>-1</sup> respectively. They in fact appear in the Raman solid state at 880 cm<sup>-1</sup> and 846 cm<sup>-1</sup>.

The same trends concerning spectral shifts also occur in the deuterated species. The  $\gamma_{10}$   $b_{1g}$  modes are again inactive in the Raman but occur in the solution infrared as broad bands at 359 cm<sup>-1</sup> for biphenyl 4-2 and 334 cm<sup>-1</sup> for biphenyl 4-10. The infrared active  $\gamma_5$   $b_{1u}$  band moves from 449 cm<sup>-1</sup> in the solid state to 477 cm<sup>-1</sup> in solution for biphenyl 4-2 and from 410 cm<sup>-1</sup> to 437 cm<sup>-1</sup> for binhenyl 6-10, a shift of 28 cm<sup>-1</sup> in both cases similar to biphenyl itself. Unfortunately interferometric work was not done with biphenyl 6-2 but the  $\gamma_{10}$   $b_{2u}$  modes of d-10 moved from 112 cm<sup>-1</sup> to 105 cm<sup>-1</sup>. The Raman active  $\gamma_6$   $b_{2g}$ modes were observed to shift from 241 cm<sup>-1</sup> in the solid state to 255 cm<sup>-1</sup> in solution for d-2 and from 225 cm<sup>-1</sup> to 243 cm<sup>-1</sup> for d-10.

Biphenyl 4-2 schibits the ortho- $\beta_{C-H}$  steric effect with a shift of 22 cm<sup>-1</sup> is  $\gamma_7$  s<sub>1g</sub> and 14 cm<sup>-1</sup> in  $\gamma_5$  b<sub>2u</sub>. The corresponding high frequency shifts are not observed in biphenyl d-10 but both molecules show the characteristic shift in the lowest s<sub>1g</sub> mode (324 cm<sup>-1</sup> to 307 cm<sup>-1</sup> for d-2 and 312 cm<sup>-1</sup> to 299 cm<sup>-1</sup> for d-10).

1,22.

#### 4.4 Perturbational Analysis

The solid state data for the three biphenyl species were used to refine the force field of the planar molecule using an iterative program written by Mr. R. A. R. Pearce. A preliminary perturbational analysis involved is refinement of the diagonal



and then the off-diagonal constants but no improvement was observed for the high-frequency ring modes. However, when the inter-ring in-plane interaction constants of Table IV(6) were introduced and allowed to find their own values the fit was

drematically improved. The numerical values and signs of bibles, these force constants are consistent with those of bensene-type interaction constants. Especially striking is the value and sign of f.c.2 which is predicted from the qualitative reasoning in Chapter 1. An increase in the inter-ring C-C bond length will result in a decrease in P-character in the ring and favour an opening of the adjacent angle.

The out-of-plane force constants proved nore difficult to refine because the  $\delta \delta_0$  and  $\beta_0$  interaction constants were insensitive to refinement. The fit, however, was improved by the introduction of f.c.4.

The final force field was then used to calculate the variation of the fundamental frequencies ith dihedral angle. The results are summarised in Fig. IV(i) for the four modes which are predicted to shift. The charge in the observed fundamentals was then plotted to give a more accurate estimate of the dihedral angle. This estimate lies within the range  $30^{\circ} \pm 5^{\circ}$  for the  $\sqrt{5}$  b<sub>10</sub>,  $\sqrt{10}$  b<sub>20</sub> and  $\sqrt{6}$  b<sub>2g</sub> modes. A value near 40° is predicted for the  $\sqrt{10}$  b<sub>1g</sub> modes. A value near 40° is predicted for the  $\sqrt{10}$  b<sub>1g</sub> mode but this is probably an overestimate because the bend is inactive in the solid state and the observed change in frequency cannot be osloulated. The introduction of the force constants in Table IV(6) no longer make the Al and B3 species invariant



to dihedral angle change, but the very small changes calculated cannot exclain the shifts observed.

Unfortunately the attempted preparation of perdeuterodifluorobiphenya by the classical Friedel-Crafts technique proved unsatisfactory so that a perturbational analysis could not be carried out at this stage.

#### 5.1 Interoducidon

Cycloberane and embritheted symphoness have been staticd extensively by any physical techniques, pertly, no denote because of the easy accessibility of any cycloberanes and strily because such statics are of value in the universanding of the spectra of the many matural products which contain cycloberane systems. Noty pertere have ably summarized the wark to date (50, 51, 52). Little work, however, but been done on the size-membered acypenheternoyals analogues, manaly the tetrahy important and this chapter presents the spectroscopic and conformational properties of use d-somebalogues tetrahydropyrans. The preference of a functional group X for the equatorial over the satel conferention is mensured by the sculibrian constant X.

### CHAPTER 5

from the relationship

Conformational Studies of Some Monohalogeno

A Tetrahydropyrans

SECTION A: Infrared and Raman Studies

# 5.1 Introduction

Cychohexene and substituted cyclohexenes have been studied extensively by many physical techniques, partly, no doubt, became of the easy accessibility of many cyclohexenes and partly because such studies are of value in the understanding of the spectra of the many natural products which contain cyclohexane systems. Many reviews have ably summarised the work to date (50, 51, 52). Little work, however, has been done on the six-membered oxygenheterocycle analogues, namely the tetrahydropyrans and this chapter presents the spectroscopic and conformational properties of some 4-monohalogeno tetrahydropyrans. The preference of a functional group X for the equatorial over the axial conformation is measured by the equilibrium constant K.

scarbarts determined from scriber studies on the pareffing (16).

walues annear in anyon thereas in Table V (2)

P and the check Valence and One Line V 1999 tgued fixed values equal to where of anotherens fares 24.00 20

The free energy change  $\triangle$  G is then readily calculated from the relationship

$$\Delta G = -RT (n K)$$

If desired the other thermodynamic parameters,  $\Delta$  H and  $\Delta$  S, can be found from measurements at two or more temperatures.

In the past, detailed vibrational analyses have not been performed on such molecules and an empirical approach for the assignment of bands has been adopted. Consequently there has been much uncertainty and discussion over the original  $\Im$  (C-X) assignments of Larnaudic (53). More recently, however, Hallem and Ray (54) have established a linear relationship between the  $\Delta \Im$  (C-X) shifts in various solvents and the corresponding shifts of a reference compound, cis-dichloro ethylene. Table V (1) summarises the  $\Im$  (C-X) assignments for the monohalogeno cyclohexanes and tetrahydropyrans.

Normal coordinate calculations have been made possible owing to the availability of a force field derived for ten simple alighatic ethers by Engder and Zerbi (57), which included tetrahydropyran and two 1:4 dioxanes. The valence forms field contains 76 parameters but 43 of these were not adjusted but were assigned fixed values equal to those of analogous force constants determined from earlier studies on the paraffins (16). These values appear in parentheses in Table V (2).

| ond C-Sr 1.94 %. Celsule   | tions wine only              |                          | 1218      |
|----------------------------|------------------------------|--------------------------|-----------|
| Compound E                 | quatorial(cm <sup>-1</sup> ) | axial(cm <sup>-1</sup> ) | Ref.      |
| Cyclohexyl fluoride        | 1129                         | 1062                     | 53        |
|                            | 1053                         | 1020                     | 51        |
| Cyclohexyl chloride        | 742                          | 688                      | 53        |
| Cyclohexyl bromide         | 687                          | 658                      | 53        |
| Cyclohexyl iodide          | 654                          | 638                      | 53        |
| bande are listed in Tables | 672                          |                          | 55        |
| F1.5. V (1).               | 653-9                        | 652.8                    | 56        |
| 4-Shloro tetrahydropyran   | 757                          | 718                      | this work |
| 4-Bromo tetrahydropyran    | 717                          | 694                      | this work |
|                            |                              |                          |           |

Table V (1) 1.096 1.001 1.767 1

The force field was modified for the halogeno part of the molecule by assuming a transferability of force constants from studies by Snyder of the n-alkyl chlorides (58) and bromo substituted alkenes (59).

vinyl acetic soid (Jubatenaic soid) in antydrous other. A colution

## 5.2 Experimental

The molecular model under consideration belongs to the  $C_s$ point group having only a plane of symmetry. The 42 normal modes symmeterise into two blocks as 23 A' and 19 A''. All bond\$ angles were assumed to be tetrahedral and the C-O bond distance was assumed to be equivalent to the C-C bond distance of 1.54 Å. Other bond

lengths were taken as follows: C-H 1.096 Å, C-Cl 1.767 Å and C-Br 1.94 Å. Calculations were only performed for the equatorial chair conformation. Atomic masses (60) were taken as follows: H = 1.00797, C = 12.01115, O = 15.9994, Cl = 35.453, Br = 79.916 and a calculation involving both isotopes of chlorine showed that only the > (C-Cl) fundamental was affected by 2 cm<sup>-1</sup>. The force field of tetrahydropyran (THP) is tabulated in Table V (2) with the additional force constants of 4-chloro-THP in Table V (3) and 4-bromo-THP in Table V (4). The observed bands are listed in Tables V (5), (7) and (9) and illustrated in Fig. V (1).

#### Preparations

prenerod by a Prints moo

The preparation of the 4-halogene tetrahydropyrans requires 3-butene-1-ol as starting material.

<u>Preparation of 7-butene-l-ol</u> Allyl carbinol was prepared following the method of Nystrom and Brown (61) by the selective reduction of vinyl acetic acid (3-butenoic acid) in anhydrous ether. A solution of 45 g (1.17 mole) of <u>lithium aluminium hydride</u> in 600 ml. of sodium-dried ether was placed in a two litre three-necked flask equipped with reflux condenser, dropping funnel and mechanical stirrer, and protected from atmospheric moisture by a calcium chloride tube. Through the dropping funnel a solution of 80 g (0.93 mole) of vinyl acetic acid (B.D.H.) in 400 ml. of ether was added at such a rate to produce a gentle reflux. After the addition was completed water was added cautiously to decompose excess hydride. 500 ml. of 10% sulphuric acid was then added with cooling under ice and the contents were extracted many times with ether. The extracts were dried with anhydrous magnesium sulphate. A crude product was obtained on rotary evaporation which was distilled under vacuum to give 3-butene-1-ol. (b. ot. 113°C (760 mm), yield 47.7%)

#### LIAIHA

 $CH_2 = CH CH_2CO_2H \longrightarrow CH_2 = CH CH_2CH_2OH$ dry ether

<u>Preparation of tetrahydropyran 4-cl</u>. T.H.P.-4-ol was prepared by a Prin's cyclisation outlined by Hanachke (62). 30 g (0.42 mole) of 3-butene-1-ol and 40 ml. of a freshlyprepared saturated paraformaldehyde solution (prepared by heating paraformaldehyde and distilled water overnight) are added to a 500 ml. 3-nacked flask equipped with a condenser, dropping funnel and mechanical stirrer.  $\delta$  ml. concentrated sulphuric acid was then added dropwise to the mixture at  $80^{\circ}$ C at such a rate that charing did not occur. The mixture was heated for a further four hours and then neutralised with a sodium hydroxide solution. The product was extracted with ether and the extracts dried over anhydrous magnesium sulphate. After rotary evaporation the crude product was distilled under vacuum to give a 74.4% yield of tetrahydropyran-4-ol (b.pt 86°C (11 mm)). Vapour phase chromatography showed the presence of two higher-boiling impurities (3%) which could not be separated on further distillation.

$$CH_2 = CH CH_2CH_2OH + H_2CO \xrightarrow{\text{conc } H_2SO_4}{80^{\circ}\text{c}} HO$$

tetrohydropyron (b.ot 65" at 19 an). G.L.C. analysis indicated

Preparation of 4-chloro tetrahydropyran. 50 g (0.71 mole) of 3-butene-l-ol was placed in a 500 ml. 3-necked flask equipped with a condenser, mechanical stirrer and bleed together with 100 ml. saturated formaldehyde solution in the presence of excess paraformaldehyde powder. Hydrogen chloride from a small lecture bottle was bubbled via a tap through the contents of the flask, cooled in an ice-bath, at a steady rate until the solution was saturated (i.e. all the paraformaldehyde had dissolved) care being taken to avoid sudden suck back. The solution was then neutralised with sodium hydroxide at 0°C and the aqueous solution extracted with diethyl ether. The ether extracts were dried with anhydrous magnesium sulphate and rotary evaporation yielded crude 4-chloro tetrehydropyran. Distillation under vacuum gave a colourless liquid (b.pt 42° at 12 mm of Hg) in 44.55 yield.

glaid of 86.4%. The providently accepterisdence (a.p.t 54.5%)

was analyzed microanalytically by ilfred Sucreast, West CH<sub>2</sub> = CH CH<sub>2</sub>CH<sub>2</sub>OH + (HCHO)<sub>x</sub>  $0^{\circ}$ C

G.L.C. analysis indicated no impurities were present in measureable quantity.

A computed with the compact them of 7.3.7. deal territory

Preparation of 4-bromo tetrahydropyran. An analogous preparation to the above with hydrogen bromide gave a 21.5% yield of 4-bromo tetrahydropyran (b.pt 65° at 19 mm). G.L.C. analysis indicated two higher-boiling impurities which could not be separated on further distillation.

Preparation of toluene-p-sulphonate derivative of T.H.P.-4-ol. 10 g (0.1 mole) of T.H.P.-4-ol was dissolved in 90 ml. of dry (NaOH) pyridine and cooled to -5°C in an ice-selt bath. 20 g of tosyl chloride (B.D.H. m.pt 68°C) was added in one portion to the mixture and swirled until dissolved. After allowing to cool for 2 hrs. at 0°C a small amount (5 ml.) of water was added with shaking and the mixture quickly poured into 100 ml. of distilled water.

White crystals immediately precipitated out which were recrystallised to constant melting point in ethanol to give a yield of 86.4%. The previously unreported compound (m.pt 54.5°C)

distillate with elevet the same builing sofate, the solvent

was analysed microanalytically by Alfred Bernhardt, West Germany, as follows:

 RMB1
 C = 56.15%
 H = 6.35%
 O = 25.11%
 S = 12.37%

 RMB2
 C = 56.11%
 H = 6.18%
 O = 25.16%
 S = 12.42%

A compound with the composition of T.H.P.-4-ol tosylate would have a molecular formula of  $C_{12}H_{16}O_4S$  and the following percentage composition:

$$C = 56.25\%$$
 H = 6.25%  $O = 25.00\%$  S = 12.50%  
Me =  $C_6H_5 = SO_2C1 + T.H.P.-4-01 \xrightarrow{Py}_{O^{\circ}C} Me = C_6H_5SO_2.0C_5H_9O + HC1$ 

Preparation of 4-fluoro tetrahydropyran. An attempt to prepare this compound, previously unreported, was made by the action of the carbohydrate fluorinating agent tetra n-butyl ammonium fluoride (kindly supplied by Dr. J.H. Westwood, Chester Beatty Research Institute, London), 10 g (0.04 mole) on the tosylate of T.H.P.-4-ol dissolved in 100 ml. pure dry acetonitrile (B.D.H. b.pt 81°C). A slight excess of tetra n-butyl ammonium fluoride 15 g (0.06 mole) was added and the mixture refluxed for approximately 3 hours. After leaving overnight the solution was distilled under vacuum leaving a treacle coloured compound as residue. G.L.C. analysis indicated the presence of two components in the distillate with almost the same boiling points, the solvent




## Table V (2) Force Field of Tetrahydropyran

Stretch constants are in units of mdyne/A Stretch-bend interaction constants in units of mdyne/rad. Bending and torsion constants in units of mdyne A/rad<sup>2</sup>

Atosa of

| Force constant         | Group       | Atoms common                   | Value   |
|------------------------|-------------|--------------------------------|---------|
| £(6-0-0)?              |             | to interacting<br>co-ordinates | 2.4072  |
|                        | STRETC      | H press                        |         |
| f(C-H) <sup>2</sup>    | C-CH2-0     | 0=0                            | 4.626   |
| f(C-H) <sup>2</sup>    | C-CH2-C     | 670                            | (4.554) |
| f(c-0) <sup>2</sup>    | C-0         | 670                            | 5.090   |
| f(c-c) <sup>2</sup>    | C-C         | T <sup>led</sup>               | 4.261   |
| r(co/noo)              | STRETCH - S | TRETCH                         |         |
| f(CH/CH)               | C-CH2-0     | c                              | -0.046  |
| f(CH/CH)               | C-CH2-C     | c                              | (0.006) |
| f(co/co)               | 0-0-0       | 0                              | 0.288   |
| £(00/00)               | C-C-0       | c )                            | 6,103   |
| f(cc/cc)               | C-0-0       | c ;                            | (0.101) |
|                        | BEND        | NYP CHIEF                      |         |
| f(H-C-H) <sup>2</sup>  | C-0H2-0     | 0_0                            | 0.471   |
| f(H-C-C) <sup>2)</sup> | C-CH2-0     | 6-5                            | 0.752   |
| f(H-C-0)2              | C-CH2-O     | 6 <u>-</u> 3                   | 0.901   |
| f(H-C-H) <sup>2</sup>  | C-CH2-C     | ° <u>−</u> °                   | (0.550) |
| f(H-C-C)2              | C-CH2-C     | G-H                            | (0.656) |
|                        |             |                                |         |

| Tores constant        |           |                                                |             |
|-----------------------|-----------|------------------------------------------------|-------------|
| Barres constant       |           | to fatomeldag                                  | Valus       |
| Force constant        | () Group  | Atoms common<br>to interacting<br>co-ordinates | Value       |
| f(c-0-c) <sup>2</sup> | C-O-C     | Mg-G B_0-18b trans.                            | 1.313       |
| f(c-c-o) <sup>2</sup> | C-C-O     | the Caseson                                    | 1.182       |
| £(C-C-C) <sup>2</sup> | C-C-C     | Page desarry                                   | 1.071       |
| a If the plane        | STRETCH - | - BEND                                         | agle formed |
| f(co/Hco)             | C-CH2-0   | C-O                                            | 0.387       |
| f(cc/Hcc)             | CCH2-0    | C-C                                            | 0.478       |
| f(CC/HCC)             | C-CH2-C   | C-C                                            | (0.328)     |
| f(CO/HCC)             | C-CH2-0   | c                                              | 0           |
| f(CC/HCO)             | C-CH2-O   | c <sup>o-o</sup>                               | 0,000)      |
| f(CC/RCC)             | C-CH2-C   | c                                              | 0.079       |
| f(co/coc)             | C-0-C     | C-0                                            | 0.483       |
| f(CO/CCO)             | C-C-0     | C-0                                            | 0.618       |
| f(cc/cco)             | 0-0-0     | C-C                                            | 0.403       |
| f(cc/ccc)             | C-C-C     | C-C                                            | (0.417)     |
| r(800/000)            | BEND -    | BEND                                           |             |
| f(HCO/HCO)            | C-CH2-0   | C-0                                            | -0.005      |
| f(HCC/HCC)            | C-CH2-0   | C-C                                            | 0.105       |
| f(HCO/HCC)            | CCH2-0    | C-H                                            | 0.115       |
| f(HCC/HCC)            | C-CH2-C   | C-C                                            | (-0.021)    |
| f(HCC/HCC)            | C-CH2-C   | C-H                                            | (0.012)     |
|                       |           | (1                                             |             |

| -               |                                |                                                | 1.39     |
|-----------------|--------------------------------|------------------------------------------------|----------|
| Force constant  | Group                          | Atoms common<br>to interacting<br>co-ordinates | Value    |
| f(Hacc/Hbcc)    | (0 or C)-CH2-CH2-              | C H <sub>c</sub> C-CH <sub>b</sub> gauche      | (-0.005) |
| f(Hacc/Hbcc)    | (0 or C)-CH2-CH2-              | C H <sub>a</sub> C-CH <sub>b</sub> trans       | (0.127)  |
| f(Hacc1/Hbc1c2) | (0 or C)-CH2-C <sup>1</sup> H2 | - C <sup>*</sup> gauche                        | (0.009)  |
| f(Hacc1/Hac1c2) | (0 or C)-CH2-C <sup>1</sup> H2 | - C <sup>*</sup> trans                         | (0.002)  |
|                 |                                |                                                |          |

\* If the plane formed by atoms  $H_aCC^1$  bisects the angle formed by atoms  $H_bC^1C^2$  then f is designated as gauche; otherwise it is trans.

| f(HCO/CCO) | C-CH2-0         | C-0                              | 2        |
|------------|-----------------|----------------------------------|----------|
| f(HCC/CCO) | C-CH2-0         | C-0                              | (-0.031) |
| f(HCC/CCC) | C-CH2-C         | CC                               | 3        |
| f(HCO/COC) | CH-0-C          | gauche<br>H-C-O-C                | 0.004    |
| f(HCO/COC) | CH-O-C          | trans<br>H-C-O-C                 | -0,112   |
| f(HCC/CCO) | CH-C-0          | gauche<br>H-C-C-O                | -0.113   |
| f(HCC/CCO) | Сн-с-о          | trans<br>H-C-C-O                 | 0.028    |
| f(HCC/CCC) | (0 or C)-CH-C+C | gauche<br>H-C-C-H                | (-0.052) |
| f(HCC/CCC) | (0 or C)-CH-C-C | trans<br>(H)C-C(H)               | (0.049)  |
| r(coc/occ) | C-0-C-C         | gauche                           | }        |
| f(000/000) | 0-0-0-0         | (c) = 0 = 0 = (c)<br>gauche      | (0.011)  |
| f(ccc/ccc) | C-C-C-C         | (C)C-C(C)<br>gauche<br>(C)C-C(C) | }        |
|            |                 |                                  |          |

| Force constant | Group   | Atoms common<br>to interacting<br>co-ordinates | Value      |
|----------------|---------|------------------------------------------------|------------|
| f(coc/occ)     | 0-0-0-0 | trans<br>(C)-O-C-(C)                           | Valia"     |
| £(ccc/cco)     | 0-0-0-0 | trans<br>(C)-C-C-(O)                           | ) (-0.011) |
| f(060/000)     | 0-0-0-0 | trans<br>(C)C-C(C)                             | (8,846)    |

TORSION

Torsion about Cm - On

$$A_{2} - O_{m} - O_{n} - A_{4}$$

$$A_{2} - O_{m} - O_{n} - A_{4}$$

$$A_{2} - A_{4} - A_{4}$$

$$A_{3} - A_{4} - A_{4}$$

$$A_{2} - A_{4} - A_{4}$$

$$A_{3} - A_{4} - A_{4}$$

$$A_{4} - A_{4} - A_{4}$$

$$A_{5} - A_{5} - A_{5} - A_{4}$$

$$A_{5} - A_{5} - A_{5} - A_{5} - A_{5}$$

$$A_{5} - A_{5} - A_{5} - A_{5} - A_{5} - A_{5}$$

Li

Torsion about C<sub>m</sub> - C<sub>n</sub>

2(0-0-01)

 $T_{mn} = 3^{-2} \sum_{i,j} T_{imnj}$  where A<sub>i</sub> and B<sub>j</sub> are trans across Cm - C<sub>n</sub>

0,056 4-0-0-0 0.026 heens (0) 0-0(01) T(C-0) C-0 T(C-C) C-C (0.024)

6.879

(0.550)

Reble V (4)

| Name of the set of the | chloride     | <u>38</u>                                      |         |
|------------------------|--------------|------------------------------------------------|---------|
| Force constant         | Group        | Atoms common<br>to interacting<br>co-ordinates | Value   |
|                        | STRETCH      | 1                                              |         |
| f(C-H) <sup>2</sup>    | C-0H2-01     | And - Article                                  | (4.846) |
| f(c-c1) <sup>2</sup>   | C-01         | Sector -                                       | 3.231   |
| f(C-37)2               | C-Br         |                                                | 2.322   |
|                        | STRETCH - ST | TRETCH                                         |         |
| f(C-C/C-C1)            | C-C-C1       | C                                              | (0.730) |
|                        | BEND         |                                                |         |
| MR.J.A.P               | and a second |                                                | 0.000   |
| f(H-C-C)               | CCH2C1       | -                                              | 0.692   |
| f(H-C-C1) <sup>2</sup> | C-CH2-C1     | -                                              | 0.879   |
| f(C-C-C1) <sup>2</sup> | C-C-C1       | 2                                              | 0.936   |

Table V (3) Additional valence force constants for the n-alkyl

|              | STRETCH -      | BEND                |          |
|--------------|----------------|---------------------|----------|
| f(CBr/MCBr)  | C-Clarker      | C-37                |          |
| f(CC1/HCC1)  | C-CH2-C1       | C <del>1</del> C1   | (0.333)  |
| f(cc/ccc1)   | C-C-C1         | C-C                 | 0.084    |
| f(CC1/CCC1)  | C-C-C1         | C-C1                | (0.550)  |
|              | <u> 318001</u> | <u>71D</u>          |          |
| r(HCC/HCBr)  | BEND - B       | END G-H             | 0.088    |
| f(HCC/HCC1)  | C-CH2-C1       | H-C                 | 0.087    |
| f(HCC/CCC1)  | C1-C-CH.       | gauche              | (-0.037) |
| P(CCEr/CCEr) | C-01082-0      | (H)C-C(C1)          | 120,00   |
| f(000/0001)  | C-C-C-C1       | trans<br>(C)C-C(C1) | 0.026    |

# Table V (4)

| Additional valence     | e force constan | ts for some branched           | i alkyl bromides |
|------------------------|-----------------|--------------------------------|------------------|
| laioé consint          | eroup           |                                |                  |
| Force constant         | Group           | Atoms common<br>to interacting | Value            |
| s(000/008r)            | 0-029-0         | co-ordinates                   | -0,041           |
| \${1160/008x}          | STRETCH         | gaudha<br>(H)C-C(Br)           | -0.030           |
| f(C-H) <sup>2</sup>    | C-CH2-Br        | trens -                        | 4.588            |
| f(C-Br) <sup>2</sup>   | C-Br            | (c)c~0( <u>B</u> r)            | 2,312            |
|                        | STRETCH - ST    | RETCH                          |                  |
| f(00/0Br)              | C-C-Br          | C                              | 0.347            |
|                        | BEND            |                                |                  |
| f(H-C-Br) <sup>2</sup> | C-CH2-Br        | -                              | 0.736            |
| f(C-C-Br) <sup>2</sup> | C-C-Br          | -                              | 1.052            |
| f(H-C-C) <sup>2</sup>  | C-CH2-Br        | -                              | 0.657            |
|                        | STRETCH - B     | END                            |                  |
| f(CBr/HCBr)            | C-CH2-Br        | C-Br                           | 0.226            |
| f(CC/CCBr)             | C-C-Br          | C-C                            | 0,121            |
| f(CBr/CCBr)            | C-C-Br          | C-Br                           | 0.421            |
|                        | BEND -=BE       | ND                             |                  |
| f(HCC/HCBr)            | C-CH2-Br        | C-H                            | 0.088            |
| f(acc/ccBr)            | C-CH2-Br        | C-C                            | -0.030           |
| f(HCBr/CCBr)           | C-CH2-Br        | C-Br                           | -0.031           |
| f(CCBr/CCBr)           | C-CHBr-C        | C-Br                           | -0.041           |

| Force constant | Group<br>Banda (P | Atoas common<br>to interacting<br>co-ordinates | Value           |
|----------------|-------------------|------------------------------------------------|-----------------|
| f(CCC/CCBr)    | C-CHBr-C          | C-Br                                           | -0,041          |
| f(HCC/CCBr)    | CH2-CHBr          | gauche<br>(H)C-C(Br)                           | -0.030          |
| f(CCBr/CCC)    | C-C-C-Br          | trans<br>(C)C-C(Br)                            | 0.093           |
|                |                   |                                                |                 |
|                |                   |                                                |                 |
| 616 w 1        |                   | (0.05)                                         | 11-5            |
|                |                   |                                                |                 |
|                |                   |                                                |                 |
| 966 m 4.44     |                   |                                                |                 |
|                | 2413, v (         |                                                | 10              |
|                |                   | 5464)                                          |                 |
| 1047 e         | 1049 vs (         | (0,8r)                                         |                 |
| 1050 va        |                   |                                                |                 |
| 1155 w         | 1159.8            |                                                |                 |
|                |                   |                                                |                 |
|                |                   |                                                | 3 <sup>10</sup> |
|                |                   |                                                |                 |
|                |                   |                                                | N.              |
|                |                   |                                                |                 |
|                |                   |                                                |                 |
| 1760 w         |                   |                                                |                 |
|                |                   |                                                |                 |

## Table V (5)

The infrared and Raman bands of tetrahydropyran and their assignment

| I.R.            | Raman (p)      | Assignment                |
|-----------------|----------------|---------------------------|
| 1382 m          |                |                           |
| 254 s           | 253 w (0.84)   | <b>₽</b> ¶                |
| 1440 =          | 404 m (0.13)   | A <sup>s</sup>            |
| 430 WW          | 434 m (0.90)   | An                        |
| 1.467 -         | 459 m          | 1A                        |
| 565 m           | 565 VVW        | A!                        |
| 810 sh-w        |                | ¥u                        |
| 816 m           | 818 vs (0.05)  | ₹¥                        |
| 855 m           | 856 w          | A1                        |
| 873 <b>v</b> s  | 873 vw         | A <sup>tt</sup>           |
| 968 m           | 971 vvw        | <b>A</b> #                |
| 1010 m          | 1011 s (0.73)  | ۵1                        |
| 1030 m          | 1032 s (0.64)  | A1                        |
| 1047 s          | 1049 78 (0.82) | a¥.                       |
| 1090 <b>v</b> s |                | <u>∆</u> 0                |
| 1155 w          | 1158 m         | JA .                      |
|                 | 1172 w         | ¥₽                        |
| 1196 s          | 1198 w         | ۸۳                        |
| 1255 m          | 1258 m         | 1Å                        |
| 1272 m          | 1274 s         | A1                        |
| 1298 m          | 1301 s         | 1 <sup>A</sup>            |
| 1350 w          | 1350 w         | <sup>₽</sup> <sup>R</sup> |
| 1360 w          |                | ¥#                        |

| I.R.   | Raman (p)         |                     |      | Assignment |
|--------|-------------------|---------------------|------|------------|
|        |                   |                     |      |            |
| 1382 m | 1385 vw           |                     |      | ۲ı         |
| 1433 m | 1438 s            |                     |      | Ан         |
| 1440 m | 1442 sh-s         |                     |      | ¥#         |
| 1453 m | 1456 s            |                     |      | A1         |
| 1467 m | 1468 w-sh         |                     |      | اً&        |
| 200 8  |                   | 100.2.2<br>1. estim |      |            |
|        |                   |                     |      |            |
|        | 7.457             |                     |      |            |
| 1.455  | a see             |                     | 1350 |            |
| 14/2   | The second second |                     |      |            |
| 1 701  |                   |                     |      |            |
| 4374   |                   |                     |      |            |
| A See  |                   |                     |      |            |
|        |                   |                     |      |            |
| 1254   | 1250              |                     |      |            |
|        |                   |                     |      |            |
|        | 1032 P (1).65     |                     |      |            |
|        | 1011 p            |                     |      |            |
|        |                   |                     |      |            |
|        |                   |                     |      |            |
|        |                   |                     |      |            |
|        |                   |                     |      |            |
|        |                   |                     |      |            |
| 391    |                   |                     |      |            |

## Table V (6)

Calculated frequencies and assignments for tetrahydropyran

|        | ¥.              |             | <b>A</b> <sup>n</sup> |  |
|--------|-----------------|-------------|-----------------------|--|
| L.R. O | Ension (P       |             | Assignment            |  |
| 2969   | 158 ¥ (         | 2967        |                       |  |
| 2932   |                 | 2927        |                       |  |
| 2926   | 258 = 1         | 2861        |                       |  |
| 2862   | 300 w (1        | 2855        | 1                     |  |
| 2856   |                 | (0.27) 1459 | 1442                  |  |
| 2854   |                 | 1452        | 1438                  |  |
| 1465   | 1467            | 1389        | 1360                  |  |
| 1456   | 1.456           | 1368        | 1350                  |  |
| 1448   | 475 1           | 1319        | -                     |  |
| 1391   | 1385            | 0 (0.71254  | 4                     |  |
| 1324   | 1301            | 1222        | 1198 dp               |  |
| 1246   | 1274            | 1168        | 1174                  |  |
| 1234   | 1258            | 1105        | 1090                  |  |
| 1138   | 1158 p          | 1078        | 1049 dp               |  |
| 1077   | 1032 p          | 968         | 971                   |  |
| 979    | 1011 p          | 876         | 873                   |  |
| 889    | 1 <b>-</b> 12 m | 814         | 810                   |  |
| 852    | 856             | 453         | 434 dp                |  |
| 806    | 818 p           | 0,14232     | 253 dp                |  |
| 565    | 565             |             | 1                     |  |
| 450    | 459             |             | A.                    |  |
| 391    | 404 p           |             | 1                     |  |
| 242    |                 |             |                       |  |

| A. + KA                     | Barren and a second sec |                           |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| The infrared and I<br>903 w | Raman bands of 4-chloro<br>assignment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | tetrahydropyran and their |
| I.R.                        | Reman (P)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Assignment                |
| 157 s                       | 156 w (0.67)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 A                       |
| 205 W                       | 206 w (0.89)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ¥8                        |
| 258 m                       | 258 w (0.74)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>∀</b> a                |
| 300 m                       | 300 w (0.16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u>ل</u> اً               |
| 338 m-sh                    | 338 vs (0.27)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | AT.                       |
| 355 s                       | 233 <u>)</u> m (0,14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (1577+ 205) comb          |
| 402 w                       | 1147 ve (0,80)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u>1</u> 20               |
| 443 w                       | 445 w (0.11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ¥#                        |
| 11 <u>8</u> 5 m             | 475 ) (0.76)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                           |
| 1221 vs} d                  | 479 w a (0.76)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A"                        |
| 492 m                       | 492 w (0.25)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (338 + 156) comb          |
| 564 s                       | 564 s (0.18)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 14                      |
| 575 m                       | 574 m (0.16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A <sup>t</sup> .          |
| 719 s                       | 718 m (0.16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 14                      |
| 758 s                       | 757 5 (0.21)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A'                        |
| 802 WW                      | 1317 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | j 4ª                      |
| 815 VW                      | 1787 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <sup>n</sup> A            |
| 824                         | 825                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 10                      |
| 832 d                       | 835 d (0.14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A*                        |
| 877                         | 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 4"                      |
| 885 <sup>m</sup> d          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | } №a                      |
| and the second second       | grant w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           |

Table V (7)

| T.R. Cated          | requesti  | Remen | (P)       | ate for 5- | Assignment            |
|---------------------|-----------|-------|-----------|------------|-----------------------|
|                     | and roads |       | .1.       |            | 10 1000               |
| 903 w               |           | -     |           |            | An                    |
| 981 m               |           | -     |           | 20.27      | ¥ <b>n</b>            |
| 1001 s              | :         | 1004  | s (0.63)  |            | ¥1                    |
| 1020 }              |           | 1021  | 3.        |            |                       |
| 1026 s a            |           | 1027  | w] a      |            | 2455                  |
| 1068 s              | 2.460     | 1069  | W         |            | <b>N</b>              |
| 1090 vs             | 3400      | 1088  | w (~ 1.0) |            | <b>A</b> <sup>∎</sup> |
| 1111 m              | 3.357     | 1111  | m (0.14)  |            | 14                    |
| 1145 s              | 1757      | 1147  | ₩w (0.80) | 1285       | Ан                    |
| 1167 m              |           | 1170  | WW (0.20) |            | 1248                  |
| 1185 m              |           | 1187  | ww (0.76) | 1176       | 1187 6p               |
| 1221                | 3.277     | 1227  | w-br (0.4 | 9)13.53    | A1<br>1145 da         |
| 1227                | 2173      |       | Sec.      |            |                       |
| 1242 sh             |           |       |           |            | An<br>Sei             |
| 1264 m              |           | 1266  | w (0.54)  |            | A                     |
| 1290 sh ]           |           | -     |           | 816        | An                    |
| 1299 m )            |           | 1301  | w (0.50)  |            | A1<br>675/479         |
| 1344 m              |           | 1347  | WW        |            | A1<br>258 do          |
| 1382 m              |           | 1387  | WW        |            | A1                    |
| 1419 w              | 445       | 1424  | W         |            | A∎                    |
| 1434 w              |           | 1438  | W         |            | ¥ŧ                    |
| 1446 m ]            |           | 1458  | V         |            | №и                    |
| 1454 sh ]<br>1467 m |           | 1469  | ¥         |            | At                    |

| Calculated : | frequencies and | assignments for | 4-chloro tetrahydropyran   |
|--------------|-----------------|-----------------|----------------------------|
| 1            | u asei          | ginent and      | <b>A</b> #                 |
| 2984         |                 | 2967            |                            |
| 2969         | 174 )           | 2927            |                            |
| 2929         |                 | 2861            | A*                         |
| 2862         | 194 %           | 2855            |                            |
| 2856         | 222 %           | (0.8%) 1459     | 1458                       |
| 1464         | 1469            | 1452            | 1424                       |
| 1451         | 1438 870        | (0.37) 1395     | - <sup>A<sup>8</sup></sup> |
| 1390         | 1387            | 1379            | (222 + 174) coab           |
| 1329         | 1347            | 1286            | 1290                       |
| 1290         | 1301 p          | 1250            | 1242                       |
| 1234         | 1266 p          | 1176            | 1187 dp                    |
| 1232         | 1227 p          | 1153            | 1145 dp                    |
| 1106         | 1111 p          | a (0.33)1105    | 1090 dp                    |
| 1057         | 1069            | 977             | 981                        |
| 993          | 1004 p          | 924             | 903                        |
| 875          | 877/885         | 816             | 815/802                    |
| 821          | 825/835 p       | 458             | 475/479 dp                 |
| 750          | 757/718 p       | 254             | 258 dp                     |
| 576          | 574/564 p       | 6 (0.30)223     | 206 dp                     |
| 427          | 445 p           |                 |                            |
| 351          | 338 P           | 1               | 1                          |
| 339          | 300 p           | a (0, 90)       | A.                         |
| 134          | 156 p           | (0,95)          | 60                         |

Table V (8)

| 1004 |        | 1.1.1 | -   | 100   |
|------|--------|-------|-----|-------|
| 110  | 0 0 1  | 1.000 | 58  | 1 63  |
| 12.4 | 5.13.3 | 1.005 | - W | 1. 19 |

The infrared and Raman bands of 4-bromo tetrahydropyran and their assignment

I.R. Raman (p) Assignment 134 146 W AI 193 w (0.78) An 222 m (0.83) 220 m 長竹 261 262 270 (0.37) d AT 270 350 VS (222 + 134) comb 386 w 388 w (0.64) At 438 m 440 m (0.24) AI 468 m 471 \$ (0.35) 531 W 533 d d (0.33) 直幸 547 s 549 598 1 602 ] 0. 471 đ 614 618 692 s 694 m (0.33) AI 717 \$ (0.37) 714 8 823 sh 826 vs d (0.30) đ 1 828 s 832 863 w 872 w 874 sh d (0.52) d A 880 883 m 915 w (0.95) Att

Assignment Raman (p) I.R. An ist and assignments for 4-brond tetrahydropyran 982 m 1000 \$ (0.68) Calcula 998 m 1012 sh 1018 m 1020 sh 1023 m 1037 W AI 1070 w (0.67) 1067 8 長町 1086 s AT 1100 w (0.38) 1110 W 費費 1144 w (0.66) 1142 5 An 1170 w 1067 W 1188 sh-w 1183 VW 1743 A. 1203 m (0.40) 1200 8 1220 m Att 1232 m AI 1254 m (0.41) 1252 m At 1298 m (0.57) 1296 5 A 1340 m (0.48) 1337 m-br 1356 w A\* 1388 W 1383 m ¥**n** 1420 W 1418 w 14 1436 1 1471 1 到15個一章 1445 m 140/472 p AN 1458 W A\* 1469 W 1.467 134/146

123

Table V (10)

| Calculated frequencies and assignments for 4-bromo tetrahydropyran |                      |               |                        |  |
|--------------------------------------------------------------------|----------------------|---------------|------------------------|--|
|                                                                    | AT Space is for take |               | Anohloro The end       |  |
| 2969                                                               |                      | 2967          | and (10) respectively. |  |
| 2930                                                               | coon from Vig. V (1) | 2927          | banda aro both infra-  |  |
| 2902                                                               |                      | 2861          | loculon with buch low  |  |
| 2862                                                               | Nost of the bands    | 2855          |                        |  |
| 2856                                                               |                      | 1458          | 1458                   |  |
| 1464                                                               | 1469                 | 1451          | 1420                   |  |
| 1451                                                               | 1436                 | 1387          | the provence of two    |  |
| 1390                                                               | 1388                 | 1372          | casy fit is feight     |  |
| 1321                                                               | 1340 p               | 1278          | molecules and          |  |
| 1255                                                               | 1298 p               | 1249          | onal 1232 value of the |  |
| 1233                                                               | 1254 p               | 1171          | a a 1167 a (C-Z)       |  |
| 1198                                                               | 1203 p               | 1155          | 1144 and and           |  |
| 1087                                                               | 1100 p               | 1104          | 1086                   |  |
| 1057                                                               | 1070 p               | 973           | 982 982 and            |  |
| 986                                                                | 1000 p               | 927           | 915 dp                 |  |
| 880                                                                | 883/374 p            | 816           | and sty a bigaor       |  |
| 821                                                                | 826/832 p            | 462           | m assumed for the      |  |
| 727                                                                | 694/717 p            | 241           | 222 áp                 |  |
| 554                                                                | 533/549 p            | 218           | 193 dp                 |  |
| 421                                                                | 440/471 p            | all restoring |                        |  |
| 338                                                                | 388 p                |               |                        |  |
| 263                                                                | 262/270 p            |               |                        |  |
| 123                                                                | 134/146              |               |                        |  |

### 5.3 Results and Discussion

The assignments for tetrahydropyran, 4-chloro THP and 4-bromo THP are given in Tables V (6), (8) and (10) respectively. As can be seen from Fig. V (i) most of the bands are both infrared and Raman active as anticipated for molecules with such low symmetry. Most of the bands are strong in the Raman spectrum and are readily assigned by their depolarisation ratios. Many of the bands below 900 cm-1 for 4-chloro THP and 4-bromo THP occur as doublets and this is attributed to the presence of two conformers at room temperature. The frequency fit is fairly good for a first-order force field for both molecules and would obviously be improved by a perturbational analysis of the transferred halogeno force constants. Even so, the > (C-X) modes are predicted very near their experimental frequencies and the PED distribution indicates a correct assignment (219 At for 4-chloro THP has a 49.1% contribution from f(C-Cl) and > 18 A' for 4-bromo THP has a 31.9% contribution from f(C-Br) .. The equatorial vibration is almost always found at a higher frequency than is the axial and this has been assumed for the two molecules under study. It has been suggested that the reason for this consistent difference is that when the C-X bond is stretched there is a small restoring force acting on the carbon when X is axial, and the vibration is essentially and a pryotal unsailly somiality only one conformation. Co the

perpendicular to the plane of the ring. When X is equatorial, the motion of the carbon forces a ring expansion, the restoring force is greater and the frequency of the motion is therefore higher.

t the infrared seedhin of this solid is essentially that a

The ratio of the integrated infrared intensities of the a lightly st a still lover tensors have there is a transition, to exial and equatorial  $\mathcal{I}(C-X)$  components does not give a valid colid which is conformativesally para. Flueresyclaequilibrium constant. Indeed, it has been shown by Jensen and homene, however, applied the same spectrum as the light even Cale (63) that the ratio of the equatorial and axial molecular extinction coefficients for cyclohexyl bromide is 1.85. This conclusion that the exposed extated in one conformation only. was accomplished by utilising the corresponding cis- and transeven in the liquid state. W.H.S. widence (67), hewever, proved zethyl cyclohenyl compounds and assuming that the molecular extinction coefficients were the same as those for the two was thus deduced that the two conformations are issuerphone in conformations of the cyclohexyl derivative. Previous work (64) the solld stores and in the sta annally will save the annals using 4-t-butyl derivatives of cyclohexanols showed that a bulky grouping assumed an equatorial preference and its remoteness had little effect on the y (C-X) vibrational mode. Unfortunately Variable tensorature stolles were performed with dechlore THP. the unavailability of such compounds in the tetrahydropyran The wappur was approved under wades with a fine jet onto a the plate series precludes any reliable estimate of the equilibrium constant K by infrared measurements. after acmedian the file be elsegs is the resulting infrered

It is interesting to compare the infrared and Raman spectra molecules with conformational isomers in both solid and liquid states. In the solid phase substances are generally crystalline and a crystal usually contains only one conformation. On the other hand additional bands often appear in the liquid state indicating the presence of a second conformation not present in the solid in equilibrium with the more stable conformation. Chlorocyclohexane (65, 66) freezes to a solid at one temperature but the infrared spectrum of this solid is essentially that of a liquid. At a still lower temperature there is a transition to another solid which is conformationally pure. Fluorocyclohexane, however, exhibited the same spectrum as the liquid even at very low temperatures. This led Lunde et al to the incorrect conclusion that the compound existed in one conformation only, even in the liquid state. N.N.R. evidence (67), however, proved the existence of both conformations in the liquid state. It was thus deduced that the two conformations are isomorphous in the solid state; that is they fit equally well into the crystal lattice. Such a situation is not unexpected since fluorine and hydrogen are so nearly the same in size.

Variable temperature studies were performed with 4-chloro THP. The vapour was sprayed under vacuo via a fine jet onto a KBr plate secured to a cold finger at liquid nitrogen temperature. Even after annealing the film no change in the resulting infrared spectrum was observed. Secondly a 10% carbon disulphide solution was cooled in the variable temperature Raman cell, described above, with cold nitrogen gas (approx. -100°C) in a manner similar to a N.M.R. variable temperature unit. The integrated areas,

however, remained constant within the limits of experimental error with a 66% ratio in favour of the equatorial conformer.

Chiurdoglas (68) calculated that the free energy difference for both chloro- and bromo- cyclohexane in the liquid state to be between -0.3 to -0.4 Kcal/mole (approx. 60% equatorial) for all solvents by infrared methods. More reliable work (63) indicated a value of -610  $\pm$  20 cals/mole for bromo cyclohexane.

SECTION B: Nuclear Magnetic Resonance Studies

A further improvement was obtained by ramardian the speatra

Cyclohexane has been the subject of numerous investigations using N.M.R. spectroscopy. During a flip of the six-membered ring giving a chair-chair interconversion, each axial proton transforms to an equatorial environment and vice versa. However, when the rate of ring inversion is appreciably greater than the chamical shift difference  $(?_a - ?_e)$  an averaged environment gives a sharp singlet at 8.56 (solvent CS<sub>2</sub>). The inversion rate can be retarded using low temperatures and at -50°C the sharp singlet begins to broaden and eventually at -70°C it is seen as two very broad resonances each containing much fine structure. The coslescence temperature  $T_c$ , the temperature at which on warming the sample the doublet resonances have just marged to a single broad poak, is in the region -65°C to -67°C. Below -90°C the

speatrum is temperature independent. The chemical shift difference  $(\gamma_a - \gamma_e)$  of 0.48 ppm from the early measurements of Muller and Tosch (69) on the broad bands was later confirmed by the elegant work of Anet and co-workers (70) using undecadeutero cyclohexane. Here only a single proton was observed and since H-D couplings are only about 0.153 times as great as the corresponding N-H couplings, the signals were quite narrow. A further improvement was obtained by recording the spectra with simultaneous irradiation at the deuterium frequency (double resonance) thus removing the effects of H-D coupling.

The coalescense temperature is related to the rate constant for interconversion by

$$K = 2^{-\frac{1}{2}}\pi \left| \gamma_{a} - \gamma_{e'} \right| \qquad 5.4.1$$

where  $\gamma_{e}$  and  $\gamma_{e}$  are the frequencies of the axial and equatorial protons at the coalescence temperature (71). For cyclohexane a rate constant of 52.5 sec<sup>-1</sup> was obtained. From the Eyring equation

$$k = \left[ (\alpha k_{B}T)/b \right] e^{-\Delta G^{*}}/RT \qquad 5.4.2$$

where d is the transmission coefficient (assumed to be unity) kg the Boltzmann constant and h Planck's constant, the free energy of activation ( $\Delta G^{\pm}$ ) for chair-chair interconversion was calculated to be 10.1 kcal/mole (72).

Study of the monohalogeno cyclohexanes is facilitated by the observation that the  $\measuredangle$ -proton is deshielded by the adjacent halogen atom and is found at very low field compared to the remaining ring protons. It can therefore be easily identified and studied.



#### (I) axial

イ=エイ=キ(1-ゴイ。

### (II) equatorial

The chemical shifts of the d-protons in conformations (I) and (II) will have different values but their assignment does not require a full analysis of the spectrum. Use is made of their signal widths. Thus for the equatorial proton H<sub>1</sub> in (I)

t x signal width ~ 2Je1a2 + 2Je1e2

and for the axial proton in (II)

1 x signal width ~ 2Ja1a2 + 2Ja1a2

Since Jaa  $\gg$  Jae  $\sim$  Jee it follows that the signal width of the axial proton is appreciably greater than the equatorial proton. It is always found that the equatorial  $\prec$  -proton in (I) resonates at lower field than the axial  $\checkmark$  -proton in (II). The Walue of the equilibrium constant can be determined by the following methods:

a) <u>Direct integration</u>. Accurate results will only be obtained if it is fortuitous that the signals are well separated.

b) <u>Shifts of  $\measuredangle$ -protons</u>. If  $\Upsilon$  is the chemical shift of the equilibrium mixture of (I) and (II),  $\Upsilon_e$  the chemical shift of the equatorial  $\measuredangle$ -proton in (I) and  $\Upsilon_e$  the shift of the axial  $\measuredangle$ -proton in (II) then following Eliel (73),

 $\gamma = x \gamma_a + (1 - x) \gamma_e$ 

where x is the fraction of compound present in the more stable conformation.

Hence  $K = \frac{x}{1-x} = \frac{\tau - \tau_e}{\tau_a - \tau}$ 

c) Measurements of vicinal coupling constants (H-C-C-H)



In the rapidly interconverting mixture of (I) and (II) the observed vicinal coupling constants J and J<sup>1</sup> are weighted averages of the coupling constants in the separate conformations. Thus  $J = \text{average } J_{AX} = x J_{2ela} + (1-x) J_{2ale}$  $J^{1} = \text{average } J_{BX} = x J_{2ela} + (1-x) J_{2ele}$ whence  $K = \frac{x}{1-x} = \frac{J - J_{2ele}}{J_{2ela} - J}$ and  $K = \frac{x}{1-x} = \frac{J^{1} - J_{2ele}}{J_{2ela} - J^{1}}$ 

Normally the first expression for K is not useful because  $J_{2ela}$  and  $J_{2ele}$  are almost equal and the numerator and denominator become comparable with experimental error.

d) <u>Signal widths.</u> For the X portion of an AA'BB'X spin system the distance between the outer lines is independent of  $\gamma_A - \gamma_B$  and equals

equatorial & spreton of the other confermer began to appear

$$2 J_{AX} + 2 J_{BX}$$

It follows that  $K = \frac{x}{1-x} = \frac{W-W_e}{W_a-W}$  where W corresponds to 1-x  $W_a-W$  signal width.

The parameters contained in the above equations can be determined experimentally for the conformer pairs either by low temperature isolation or by using the 4-t-butyl cis and trans derivatives. Poor results are generally obtained for compounds with relatively large  $\Delta$  G values, e.g. > 1.3 kcal mole<sup>-1</sup> where the substituents are usually bulky and preferentially assume the equatorial position.

161.

Table V(II) summarises the results of many workers using the area and shift N.M.R. techniques to obtain thermodynamic data for the mono-substituted halogeno cyclohexanes. The results indicate that the free energy change is dependent on technique of determination and worker to worker as well as solvent and temperature. More recently Jensen and Bushweller (79) succeeded in preparing equatorially-substituted chlorocyclohexane free from its conformational isomer. The compound was cooled through its melting-point range (-43.9°C) when the equatorial conformer crystallised preferentially. The crystals were immediately cooled to -151°C (solvent CD\_CDC1) and the N.M.R. spectrum showed the presence of only the axial & -proton. When the solution was warmed to -125°C the resonance of the equatorial  $\prec$  -proton of the other conformer began to appear and increased with time until the equilibrium was established with approximately 87% equatorial conformer.

the conformational achility of any The risk in concepters with

| Compound | -∆G(cal     | mole <sup>-1</sup> ) | Conditions        | Reference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|----------|-------------|----------------------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C5H11-X  | Area        | Shift                | Temp/Solvent      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| F        | 250         | 241                  |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Cl       | 513         | 478                  | -81°C/CS2         | 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Br       | 480         | 439                  |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| I        | 431         | 407                  |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| C1       | ouples sain | 417                  | 4-t-buty1/        | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Br       |             | 393                  | CIS GeCalin       | spectraly.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| C1       |             | 435                  | 4-t-buty1/        | 76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Br       |             | 421                  | o-dichlorobenzene |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Br       | Habel de s  | 200                  | RT/neat           | 76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Cl       | 406         | ]                    | -100°C/CS2        | 77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Br       | 511         | J                    |                   | Campion Color                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| F        | san an del  | 153 ]                | 19F/CC13F/29°C    | 78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| F        | 242         |                      | 19F/CC13F/-55°C   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          |             |                      |                   | care to a second s |

Table V (11)

that of

Very little systematic work to date has been published on the N.M.R. spectra of simple tetrahydropyrans compared to the vast interest in carbohydrates, which contain the THP skeleton. However, the work of Gatti et al (80) suggests that the conformational mobility of the THP ring in comparison with 100 MHZ NMR SPECTRA OF 4-CHLORO TETRAHYDROPYRAN

that of the cyclohexane ring is not sensibly affected by the presence of the oxygen atom.



The 60 MHz PMR spectrum obtained at room temperature shows two complex multiplets centred at 1.5 ppm and 3.5 ppm from TMS, having integrated intensities of 6 and 4 respectively. On the basis of the value of the chemical shift and peak intensity the upfield absorption is assigned to the  $\beta$  - and  $\delta$  - protons, and the remaining downfield absorption to the CH<sub>2</sub>- group linked to the oxygen atom. By double resonance at 1.5 ppm, the CH<sub>2</sub> multiplet transforms into a clear singlet at 3.45 ppm that, with decreasing temperature, broadens and finally aplits at -65°C into an AB quartet. This pattern remains unchanged below -85°C. At this temperature the spectral parameters are:  $\gamma_{0} S_{AB} = 55$  Hz and  $J_{AB} = 12$  Hz which is consistent with geminal coupling. The rate constant at the coalescence temperature is calculated to be about 70 sec<sup>-1</sup> from the relation (81)

 $K = \frac{\pi}{2\sqrt{2}} \left( \delta^2 + 6 \pi^2 \right)^{\frac{1}{2}}$ 









NMR Spectral features of 4-chloro tetrahydropyran



It corresponds to a free energy of activation ( $\Delta G^{*}$ ) of 10.2 Kcal mole<sup>-1</sup>. This value was confirmed by obtaining K by the line-width method at various temperatures above T<sub>c</sub> (82).

### 5.5 Experimental

10% (V/v) solutions of 4-chloro and 4-brows THP in carbon disulphide with TMS reference were run on a Varian HA 100 spectrometer at Harwell by kind permission of the Physical Chemical Measurements Unit (PCNU). The off-set frequencies of the expanded features were accurately calibrated using the frequency counter. The lowest temperature obtainable at 100 MHz was -100  $\pm$  5°C. All 220 MHz spectra were run by the SRC unit at Runcorn where the lowest temperature obtainable was -33°C.

5.6 Results

The room- and low-temperature 100 MHz spectra for the two compounds are illustrated in Figs. V (ii) and (iii). A small amount of impurity can be detected for 4-bromo THP. Fig. V (iv) illustrates the expanded features of the 220 MHz spectra for 4-chloro THP and clearly indicates the gradual collapse of two features. Difficulty arises in locating the centre of the septet in the room-temperature spectrum of 4-chloro THP due to overlap. It has been estimated by assuming that the lines of the septet are equally spaced. Table V (12) summarises the values of the equilibrium constants and the corresponding free energy changes. The results indicate that the equilibrium fevours the equatorially-substituted conformers - approximately 80% for 4-chloro THP and 68% for 4-bromo THP. Unfortunately, these values cannot be checked by direct integration of the lowtemperature signals because the septet of the proton adjacent to the halogen atom merges with the low-field features of the protons next to the heterocyclic oxygen atom. The free energy change for 4-bromo THP is approximately the same as for its cyclohexane analogue (74) but that of 4-chloro THP is for greater than expected. The accuracy of these values depends on the extent of the equilibrium. A 50 - 50 equilibrium of conformers will give a more accurate estimate of the free energy change than an equilibrium involving one predominant conformer. As with the cyclohexane series the value of I is dependent on the method of argument.

A further glasse at the low-field characteristics of the 100 MSs, spectra reveals that the features can be interpreted



### 5.7 Computer simulation of NMR spectra

A further glance at the low-field characteristics of the 100 MHz spectra reveals that the features can be interpreted on a first-order basis



Proton H1 Fig. V(v) shows that the symmetrical septualet of HI of both molecules can be explained by assuming that  $J_{aa} = 2 J_{ab} = 2 J_{ce}$ , and the low-temperature spectrum reveals the isolated shift of H1 in the equatorial conformation at 450.1 Hz for 4-chloro THP and 462.3 Hz for 4-brosso THP. The fine structure reveals a 1:4:6:4:1 guintet for 4-chloro THP made up by assuming that Jae Jee. The corresponding fine structure of equatorial H1 for 4-bromo THP, namely a 1:5:10:10:5:1 sextet, remains to be explained in a satisfactory manner. The centre of the septet at higher field due to the axial proton HI can be clearly seen for 4-brono THP but becomes obscured, as remarked above, for 4-chloro THP from coincidence with another low field resonance. It is interesting to note that H1 resonates at 417.0 Hz when the spectrum of 4-chloro THP is run as a neat liquid, clearly showing the full septet. Hence the neat liquid favours a lower equilibrium constant and a corresponding lower free energy change than for a solution. This result agrees with data for the cyclohexane analogues in Table V(11). that and one only be separated at 120 MRs. The

broader of the two eigenia obviously contains a large des scopling

<u>Protons H4 and H5</u> The signals from these two protons would be expected to occur downfield since they are adjacent to the electronegative hetero-oxygen atom. The low-temperature resonance of 4-chloro THP at 324.7 Hz can be explained by assuming that

Table V (13) below:
the vicinal coupling constant has the same value as the axialaxial coupling constant of 11.6 Hz. Hence the high-field component must belong to the axial environment. At room temperature, however, J5-2 becomes an averaged coupling constant and its value falls (8.4 Hz). Consequently the form of the resonance changes through the given temperature range and this can be clearly seen from the 220 MHz expanded features in Fig. V (iv). The room temperature resonance at 384.7 Hs comprises a predominant equatorial environment whose associated couplings have smaller values which will not vary to any extent over the two extremes of temperature. It is indeed observed that this resonance remains intact at 220 MHz (-33°C). At -100°C (100 MHz) this area becomes very complicated due to the presence of two equatorial protons from two conformational isomers. conscious the original program lifetick of Costallans

and Bothner-By with two mode Closifions:

<u>Protons H2 and H3</u> The remaining alkyl proton resonances are expected to be found near the TMS reference signal. These are very close together and can only be separated at 220 MHz. The broader of the two signals obviously contains a large Jaz coupling constant and hence belongs to the axial environment. The first order features can be clearly deciphered from the 220 MHz expansion. The lower-field counterpart is difficult to interpret.

The room temperature data for 4-chloro THP is summarised in

| 12.997 F   | a chasta bhaa <u>A av</u> | the second states          | Nan splatia                 | n of frequence                 | d.ex  |
|------------|---------------------------|----------------------------|-----------------------------|--------------------------------|-------|
| end in     | stonel thes for           | Cour                       | oling conste                | nt (Hz)                        | 210   |
| outli      | Shift (Hz) at             | 100 MHz<br>J <sub>12</sub> | 84). Por<br><b>J</b> 13     | J <sub>14</sub> J <sub>1</sub> | 5     |
| Hl         | 406.8                     | 8.4                        | 4.2                         | arosagose si                   | 24    |
| H2         | 176.7                     | I <sub>23</sub><br>-11.6   | J <sub>24</sub><br>3.9      | J <sub>25</sub><br>8.4         | 17    |
| H312 une c | 203.5                     | J34 The case               | J <sub>35</sub>             |                                |       |
|            |                           | 4.6                        | 3.2                         |                                | -     |
| H4 approld | 384.7                     | J45                        |                             | a 35. 76.a                     |       |
| H5         | 338.2                     | -11.6                      | s stringe o<br>e solecula e | f seven spine<br>mder conside  | ratil |

m-1-7 - 17 (77)

A program in Fortran II, namely UEA NMR BASIC was obtained from Dr. R. K. Harris of the University of East Anglia. This program comprises the original program LAOCOON of Castallano and Bothner-By with two modifications:

(a) the program automatically performs magnetic equivalence factoring (e.g. an  $X_Z$  group is treated as occupying a quartet state with a total spin of  $\frac{2}{3}$ , or a doublet state of spin  $\frac{1}{3}$  and multiplying the calculated intensities by the appropriate weighting factor);

(b) factorisation of the total spin Hamiltonian is performed for different types of muclei with large differences in resonant frequency. \* The mathematical treatment for the solution of frequencies and intensities for the simplest of spin systems has been outlined in various texts (83, 84). For the complex spin system under consideration a computational procedure has to be adopted.

The contents of this program were updated to Fortran IV for use on the CDC 6600. The capacity of the program is ultimately limited by the size of the largest matrix to be diagonalised after factorisation - namely 35 x 35. The program can therefore only handle a maximum of seven spins (since  ${}^{7}C_{3} = 35$ ). Fortunately the molecule under consideration has a plane of symmetry thus reducing the size from nine to five spins.

The logic of the program can be summarised into a number of steps:

(i) use is made of a set of basis functions as appropriate linear combinations of the 2<sup>n</sup> basic product functions.

 $\gamma n = \alpha \beta \alpha \dots \beta (n)$  $\underline{\Phi}_n = \sum_{n=1}^n a_n \gamma_n$ 

If it has \$ spin. Is contains discovel elements cals.

(2) The Hamiltonian (H) is made up of two components

 $H = H_0 + H_1$   $(\gamma_{=} | H_1 | \gamma_{=}) = 1 \sum_{i=1}^{n} H_{ii}$ 

 $H_0$  represents the energy of isolated nuclei of magnetogyric ratios  $\chi_1$  acted on by fields  $B_1$ 

$$H_{o} = (2\pi)^{-1} \sum_{i} \chi_{B_{i}} I_{2} (i)$$

B<sub>i</sub> will differ from the external field B<sub>o</sub> because of electronic screening

Ar elements between linear combinations of basic products

 $B_{1} = B_{0} (1 - 6_{1})$ 

The indirect spin coupling may be represented by a Hamiltonian involving the scalar products of the spin vectors of all pairs of magnetic nuclei.

 $H_{1} = \sum_{i,j} J_{ij} I(i) \cdot I(j)$ 

(3) The matrix elements of the Hamiltonian Ho are

$$(\gamma_{m} | H_{o} | \gamma_{m}) = (2\pi)^{-1} \sum_{i} \delta_{i} B_{i} [I(i)]_{m}$$

where  $[I_g(i)]_m$  is  $\frac{1}{2}$  if nucleus i has  $\checkmark$  spin in  $\checkmark_m$  and  $-\frac{1}{2}$ if it has  $\beta$  spin. H<sub>o</sub> contains diagonal elements only.

na 1 end 1 ere

(4) The matrix elements of the spin-coupling HamiltonianH<sub>1</sub> between product functions are

$$(\gamma_{m} | H_{1} | \gamma_{m}) = \frac{1}{2} \sum_{i < j} J_{ij} T_{ij}$$
$$(\gamma_{m} | H_{1} | \gamma_{n}) = \frac{1}{2} U J_{ij} \qquad m \neq 1$$

where  $T_{ij} = 1$  or -1 depending on whether spins i and j are parallel or antiparallel in  $\gamma_m$ , and U = 1 if  $\gamma_m$  differs from  $\gamma_n$  by an interchange of spins i and j and is zero otherwise. Matrix elements between linear combinations of basic products are evaluated by expansion.

(5) The order of the complete secular equation can be reduced by using the rule that no mixing occurs between functions with different values of the total spin component  $F_{g}$ .

For trensitions between shotes of a set of emploi suchet

(6) If several species of nuclei A, B etc., are present, step (5) leads to a further simplification because to a high approximation, no mixing occurs between functions which differ in any of the total spin components  $F_g(A)$ ,  $F_g(B)$  etc. The same rule can be applied when there are several sets of nuclei of the same species if the chemical shift between them is large compared with the coupling constants.

from the transition g-) of will be proportional to the sparse

(7) Diagonalisation of the submatrices of the total Hamiltonian and consecutive operations on unit matrices of similar dimensions leads to the computation of energies and wave functions.

(8) The number of possible transitions is limited by the selection rule  $F_g = \frac{1}{2}$  1.

The date of Table V (17) strug as outpot of lines with the

(9) The probability of a transition induced by the field in the x direction for a single isolated nucleus of spin  $\frac{1}{2}$  between states m and m' is given by

$$P_{mm} = \gamma^2 B_1^2 \left( m^* |\mathbf{I}_x| m \right)^2 g(\gamma)$$

where g ( ) is a line-shape parameter.

I (VIOC

For transitions between states of a set of coupled nuclei the perturbing Hamiltonian is

intendity. The measures are be plotted in eacy forms and  $H^* = -2B_1 M_x \cos 2\pi \sqrt{t}$ Figs V(vi) and (vii) illustrate two such examples. It is

where M<sub>x</sub> is the component of the nuclear moment in the x direction:

$$M_{x} = \hbar \sum_{i} \forall_{i} I_{x} (i)$$

Hence for the multi-nuclear problem the intensity arising from the transition  $q \rightarrow q^{\dagger}$  will be proportional to the square of the modulus of the corresponding matrix element of the nuclear-moment component  $\mathbb{N}_{x}^{*}$  This is  $\mathbb{N}^{2} \left[ \mathbb{Q} \left[ \sum_{i} \mathbb{V}_{i} \mathbb{I}_{x}^{(i)} \right]^{2} \right]$ 

The data of Table V (13) gives an output of lines with the corresponding intensity. It is obvious that a visual representation of the calculated spectrum can be more easily compared with the actual spectrum. To enable this to be done NME FIT (see Appendix 5) was written to make use of the Atlas Calcomp plotting facility. Basically this program fits a Lorentzian line shape, to the calculated intensities.

$$I(\gamma) \propto \frac{I(\gamma_0)}{1 + \left(\frac{2\Delta\gamma}{\Delta\gamma_{\frac{1}{2}}}\right)^2}$$

where  $\Delta \dot{\gamma}_{\frac{1}{2}}$  is the half-band width and  $I(\dot{\gamma}_{0})$  the calculated intensity. The spectrum can be plotted in many forms and Figs V(vi) and (vii) illustrate two such examples. It is useful to note that the shifts of the spin system at one operating frequency can be multiplied by the appropriate scaling factor to predict the spectra at other operating frequencies (coupling constants are invariant to operating frequency). A comparison with the observed spectrum of 4-chloro THP shows a very good fit except for proton HI where coupling has been restricted to one half of the molecule only. The fit of the upfield features could have been improved by using the iterative version of the program, namely UEA NMR, ITERATIVE which incorporates a least squares procedure. A useful additional feature of this version is that the frequencies are listed indicating associated energy levels and connected transitions. Such information is useful when interpreting the results of double resonance and spin-tickling experiments. However, the refinement of the molecular parameters did not warrant the use of the vast storage required by the program on the CDC 6600.

Theoretically it would prove extremely elegant to choose a conformational problem whereby the molecular parameters could be determined for both conformers from the low temperature spectrum. The room temperature spectrum could then be predicted by the summation of the individual contributions in the calculated conformer ratio.

#### 5.8 Conclusion

NMR measurements indicate an anomalous trend in the equilibrium constant in CS<sub>2</sub> for 4-chloro and 4-bromo TMP. More work on the fluoro and iodo derivatives is needed to confirm this trend, together with supplementary information from the <sup>19</sup>F resonance of 4-fluoro TMP.

# NMR SPECTRUM CHLORO TETRA

Fig. V (vi) 100 MHz calculated spectrum for 4-chloro THP

640.00 600.00 400.00 880.00 440.00 440.00



182. Fig. V (vii) 220 MHz calculated spectrum for 4-chloro THP



#### CHAPTER 6

of the promatic sydrogrammi. See as interpreting would

Liquid Band Shape Analysis for the 215 cm-1 Mode of Hexafluorobenzene.

#### 6.1 Introduction

accases a place all

It has been an embarrassing fact from a spectroscopic point of view that no direct evidence has been presented for the existence of the hexafluorobensene complex in the solution state. Previous work has shown that hexafluorobensene forms 1:1 molecular complexes with many aromatic hydrocarbons (35) in the solid state. Here it was suggested that the complexes are of the charge transfer type with the aromatic hydrocarbon acting as the donor and HFB (hexafluorobensene) as the acceptor. Additional inferential evidence for the existence of a complex has been obtained from measurements of heat of mixing (86), vapour pressure in gas (87) and liquid states (33), excess volume (39), and dielectric constants/ refractive indices (90).

The characteristic spectral band which is associated with undoubted charge-transfer complexes, e.g. I<sub>2</sub> with benzene (200-260 nm) is not observed for the HFB-B system. Bauer et al (90) conclued that the HFB-B system has very little polar character with a permanent dipole moment not in excess of 0.1 D. The degree of mixing of the charge-transfer state into the ground state for such a complex is usually estimated to be in the order of 5-10% leading to complex dipole moments of approximately 1 D. Gaw and Swinton (88)

suggest a pure electrostatic interaction, the most probable being a dipole - quadrupole interaction, the C - F bond dipoles of HFB interacting with the  $\pi$  -electron quadrupole of the aromatic hydrocarbon. Such an interaction would produce a maximum attractive force when the planes of the two molecules were parallel, i.e. the configuration of the complex in the drystalline state (91). The assumption of this type of force can also account for the increase of stability of the complex as the electron-donating power of substituent groups on the aromatic ring is increased.

on the order of 200 was bud the contlibute margary ends

Vapour phase and solution phase infrared intensities of hexafluorobenzene were determined by Wheatley and Steele (92). Since the polarisability of HFB is small it was anticipated that the solution-phase intensities would be explained by the standard Debye-Onsager theory. This premise turned out to be true for all the bands measured, except the fundamental at 215 cm<sup>-1</sup>. This was assigned by Steele and Whiffen to the out-of-plane  $\chi_{C-F}$  mode of symmetry  $\alpha_{2u}$  (93) although other work (94,95) suggests that it is the  $e_{1u}$  mode. In benzene solution the intensity of the  $a_{2u}$  mode was approximately 40% more than in cyclohexame and carbon disulphide. Furthermore the frequency of the band maximum increased by 4 cm<sup>-1</sup> and in the opposite direction to the normal solvent effect. Wheatley then

further putflutton, Bentues (B.st. \$0.1"0/780 mm) and

proceeded to measure the absolute intensity of this band in a mixed solvent system extending from pure cyclohexane to pure bensene. The results showed that the intensity rose sharoly below 20% w/w benzene-cyclohexane and then remained fairly constant above this composition. The intensity increase could be interpreted in terms of the appearance of the HFB-B complex. Bauer et al (90) estimated the HFB-B inter-molecular stretching frequency of the complex to be approximately 0.1 the total HFB-B bond energy. Assuming the latter to be a few kilojoules, the frequency should be on the order of 200 cm<sup>-1</sup> and the equilibrium constant could be calculated from the intensity data as shown below. However, in recent years the infrared spectroscopist has shifted his attention from eigenvalues and eigenvectors of infrared bands to the actual band shapes of fundamentals in the solution phase because much information can be deduced concerning intermolecular interaction and molecular motion.

6.2 Experimental colv to obtained over a finite interest a without die of the 170 (sere with difference) as -1 to

Materials the pelouhebod meastrum is given by a transaced

Hexafluorobenzene was purchased from Imperial Smelting Co. Ltd. (B.pt. 80.1°C/760 mm). G.L.C. analysis showed no traces of impurity present and the sample was used without further purification. Benzene (B.pt. 80.1°C/760 mm) and cyclohexane (B.pt. 80.7°C/760 mm) were purchased from B.D.H. (spectroscopic grade) and used without further purification.

P(2) con (2m ? e) de

#### Interferometric Recording

All spectra were recorded on a F.S. 720 manufactured by the Research and Industrial Instruments Company. An excellent review on interferometric spectroscopy in the far infrared has been written by Hurley (96) and only a short summary will be covered here. Essentially the interferogram function F(x) is related to the spectral distribution I ( $\checkmark$ ) by a Fourier transformation.

obtain all the information in a sparroug fina de J < )

 $F(x) = \int_{-\infty}^{+\infty} I(\gamma) \cos(2\pi\gamma x) d\gamma$ 

Conversely,

$$I(\gamma) = \int_{-\infty}^{\infty} F(x) \cos(2\pi \gamma x) dx$$

must be at lands 15.9 / Surgers of the second a manualty

In practice F(x) can only be obtained over a finite interval on either side of the ZPD (zero path difference) say -X to +X so that the calculated spectrum is given by a truncated integral

This effect 
$$I(\gamma') = \int_{-x}^{+x} F(x) \cos(2\pi \gamma' x) dx$$

Since F(x) is symmetrical about the ZPD,

diffore

$$I(\gamma) = \int_{0}^{x} F(x) \cos(2\pi \gamma x) dx$$

In calculating spectra the Fourier cosine integral is approximated by a summation.

$$I(\gamma) = 2 \sum_{0}^{x} F(x) \cos 2\pi \gamma x \Delta x$$

analogua/disitel converter such that the interformerse fusction

It can be shown from information theory that in order to obtain all the information in a spectrum from  $0 < \gamma < \gamma_{max}$ it is necessary to sample points from the interferograms at intervals of

$$\Delta x = \frac{1}{2\sqrt{2}}$$

In our case  $\gamma_{max}$  is 400 cm<sup>-1</sup> and hence the sampling interval must be at least 12.5  $\mu$ . Because of the periodic sampling it can be shown that at the frequency  $\gamma$  the computed ppectrum contains false energies of frequencies.

London Takyourd by, which decourse which is ter from the spectrum

Sampla Handlis

$$2n \gamma_{max} - \gamma$$
 where n is an integer.

This effect is called aliasing and a black polythene filter was used to cut off frequencies above 400 cm<sup>-1</sup> to produce an unambiguous spectrum. The resolution obtained is governed by the maximum path difference of the interfering beams by the following relationship

$$\Delta \gamma = \frac{1}{x}$$

All the sample runs were performed with a mirror movement of 8 mm either side of the ZPD giving a resolution of 0.625 cm<sup>-1</sup>. The signal from the Golay detector was sent through an enalogue/digital converter such that the interferogram function was digitized and outputed on paper tape. A 25 gauge Mylar beam splitter effectively covered a range of 40-400 cm<sup>-1</sup> giving maximum transmission near 200 cm<sup>-1</sup>.

The background and sample interferograms were then transformed and ratioed using a programme written at King's College, London University, which incorporated interferogram symmeterisation and triangular apodisation. The output spectra were then plotted at 0.5 cm<sup>-1</sup> intervals such that any change in band shape which occurred would be clearly visible.

#### Sample Handling

A suitable polythene far infrared cell was constructed having a cell thickness of approximately 2 mm with apparatus designed in these laboratories (31). A stock solution of hexafluorobensene in cyclohexane was prepared from which a constant volume was pipetted each time to make up a series of solutions containing the same concentration of hexafluorobenzene in a mixed solvent solution containing varying amounts of benzene and cyclohexane. The interferograms of a cyclohexane background plus the solutions were recorded and the ratioed spectra plotted. The polythene cell was filled with each sample by means of a syringe and annealed with a hot spatula. To prevent deformation under vacuum the cell was firmly clamped between the metal parts of a conventional liquid cell (R.I.I.C. F-Ol). The accurate cell thickness was determined when all the runs had been completed - the cell was clearly cut and an average taken of various positions under a travelling microscope.

#### 6.3 Results

% w/w bensens

The absolute intensity of an infrared absorption band for a molecule in solution is given by

France

 $\Gamma = \frac{N \times 1000 \times 2.303}{N \times c \times 1} \qquad \int_{100}^{Band} \log_{10} \left(\frac{I_0}{I}\right) \frac{d\nu}{\nu}$ 

M - molecular weight of molecule c - concentration in g.1<sup>-1</sup> N - Avogadro constant 1 - path length in cm. The units of  $\int are \ cm^2 mol^{-1}$  Intensities in some texts are expressed in terms of a quantity A which is related as follows

 $Converte A = \Gamma c \gamma$ 

with Transacy was mini ach.

where  $\nu_{0}$  is the frequency of the band origin in cm<sup>-1</sup>, and c is the velocity of light. The units of A are therefore mol<sup>-1</sup>cm<sup>2</sup>sec<sup>-1</sup>.

presented in Table VI (1).

| % w/w benzene   | Ŷ <sub>max</sub> | $\nabla \dot{a}^{\dagger}$ | A x 10 <sup>-8</sup> | Γ x 10 <sup>-21</sup> |
|-----------------|------------------|----------------------------|----------------------|-----------------------|
| serro.0.ordes   | 216              | 7.5                        | 4.34                 | 6.69                  |
| show4.0 Times   | 216.5            | 8.0                        | 4.63                 | 7.11                  |
| indi7.9 ms the  | 216.5            | 9.0                        | 5.12                 | <b>\$.</b> 88         |
| val15.5 This    | ap 217           | 10.0                       | 5.27                 | 8.08                  |
| of 25.0 boud is | 217.5            | 10.0                       | 5.28                 | 8.10                  |
| 10.50.0 in the  | 218              | 11.3                       | 5.15                 | 7.91                  |
| matarnut in th  | minuten his      |                            |                      |                       |

position of the band moliger with the tran " for a be all

aland apprendie the standard which which and a company and

Table VI (1)

190

Fig VI (i) The band area required for the calculation of [ or A was obtained by the Simpson's Rule summation. The main difference which readily distinguishes interferometric spectra from conventional grating spectra is the position of the background curve (I\_). Wheatley (92) took the background absorption from the spectrum of the empty cell since benzene and cyclohexane show no absorption in the spectral range concerned. In the case of the above interferometric spectra a linear background base line was computed from two points at either extremities of the band where the rate of change of intensity with frequency was minimal. To check the validity of this approximation five solutions of different concentrations of hexafluorobenzene in cyclohexane were made up from the stock solution. Using the same cell the interferometric spectra were recorded and the band areas calculated. Figure VI (i) shows a linear Beer's Law plot passing through the origin, indicating that band areas computed in this way have meaningful values. This approximation will, however, affect the accuracy of the band shape near the wings and this will lead to uncertainties in the calculation of the correlation function referred to in Section 6.4.

It can clearly be seen from Table VI (i) that the position of the band maximum shifts by 2 cm<sup>-1</sup> for a 50% w/w mixed solvent. The absolute intensity and half-band width

### Fig VI (i)

Beer's Law Plot of Band Intensity vs Concentration for Hexafluorobenzene in Cyclohexane



show a marked initial increase up to 15.5 % w/w mixed solvent and then remain fairly constant for greater proportions of benzene.

If we consider the equilibrium as follows,

$$c_{6H_6} + c_{6F_6} \stackrel{K_1}{\underset{k=1}{\overset{k_1}{\longleftarrow}}} c_{6H_6} = c_6 F_6$$

the equilibrium constant K will be the ratio of the rate constants. A classical estimate of K can be obtained if we assume that (a) only a 1:1 complex exists and (b) the equilibrium lies completely to the right-hand side for solvents having a greater percentage than 15.5% w/w benzene to cyclohexane. For the 7.9% w/w solvent K has a value of 0.21 mole<sup>-1</sup> 1.

However, a more meaningful physical picture of the nature of the complex in the solution state can be built up from a study of the correlation functions calculated from the above band shapes.

### 6.4 Correlation Functions

a. [8] will converse

Let F(t) be a Hynamical variable of a system at time t, and  $G(t+\gamma)$  the value of another variable at time  $(t+\gamma)$ . The correlation function of F and G is

equilibrium statistion heresen all transport plan

 $C_{FG}(t, \tau) = \langle F(t) G(t+\tau) \rangle$ 

where the brackets represent an average over some appropriate

statistical ensemble. If F and G are the same variable,  $C(t, \gamma')$  is known as the autocorrelation function, and if defined for an ensemble which is time independent we have

$$\langle G(t), G(t+\tau) \rangle = \langle G(0), G(\tau) \rangle = G_{G}(\tau)$$

Considering the motion of an individual molecule in a liquid, let  $\mu_i(o)$  be its dipole moment at t=0. At subsequent times this moment  $\mu_i(t)$  will follow a random behaviour covering positive and negative values. The product  $\mu_i(0)\mu_i(t)$ will behave similarly. The summation of this product over all the molecules divided by the total number of molecules will give the dipole correlation function. At t+0,  $c_{\mu}(t)$ will have a finite positive value and as t becomes large,  $c_{\mu}(t)$  will converge towards zero. The dipole correlation function thus represents a qualitative measure of the loss of memory of the direction of the dipole after a certain time.

Correlation functions have great importance in nonequilibrium statistics because all transport phenomenon (e.g. diffusion and viscosity coefficients) may be expressed as integrals of the appropriate correlation function. In fact, whereas the knowledge of the partition function permits the calculation of all equilibrium properties of a system in equilibrium statistical mechanics, knowledge of the various time correlation functions permits the calculation of transport properties.

195 194.

Time-dependent perturbation theory applied to the interaction of radiation with matter (97) gives the probability per unit time that a transition takes place between two quantum states. When calculating the band shape  $I(\omega)$  using Heisenberg quantum mechanics, which stresses the time dependence of the system rather than the stationary levels of the Schrödinger model, an expression is obtained (98) involving a Fourier transform of the dipole correlation function

$$I(\omega) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} dt e^{-i\omega t} \left\langle \mu(0) \cdot \mu(t) \right\rangle$$

Conversely, on inverting the Fourier analysis, an expression for the correlation function is obtained in terms of the band shape

band  

$$I(t) = \int d\omega e^{i\omega t} I(\omega)$$

Considering only the real part of the correlation function

$$C(t) = \int I(\omega) \cos 2\pi \omega t d\omega$$

It is convenient to normalize the correlation function to unity at t = 0.

200 201

band

 $I(\omega)d\omega$ 

$$\sigma(0) = \left\langle \mu^2(0) \right\rangle = \int$$



Cordon (99) plotted the correlation functions of carbon monoxide in various environments from previous experimental data. From Fig.VI(ii) the correlation function for a low pressure gas decays rapidly to assume pggative values and then converges to zero. This indicates that the molecule is freely rotating such that after half a period of rotation its orientation is predominantly in the opposite direction. At higher pressures or in solution rotational relaxation is superseded by collisional reorientation and inter-molecular torgues leading to an increase in the correlation function at a particular time.

A Fourier analysis of the band shape described above enables the short- and long-term motion to be considered separately. At short times the behaviour of the correlation function is best displayed by considering a power series in the time.

$$\left\langle \mu(0), \mu(t) \right\rangle = \sum_{n=0}^{\infty} \frac{t^n}{n!} \left( \frac{d^n}{dt^n} \left\langle \mu(0), \mu(t) \right\rangle \right)$$

$$t=0$$



I - C0 in CHCl<sub>3</sub> (liq) II - C0 in CCl<sub>4</sub> (liq) III - C0 in CCl<sub>4</sub> (liq) III - C0 in Ar (gas 510 amagat V - C0 in Ar (gas 270 amagat) VI - C0 in Ar (gas 66 amagat) VI - C0 in Ar (gas 66 amagat)





Cauchy and Gauss absorption curves

Experimental curve

The time derivatives are determined using the time dependent wave equation. The coefficients in this time series are identified as frequency moments of the spectrum.

. correlation Discilos for Mintered return is along than the

$$\langle \mu(0), \mu(t) \rangle = \int e^{i\omega t} I(\omega) d\omega = \sum_{n=0}^{\infty} \frac{(it)^n}{n!} \int \omega^n I(\omega) d\omega$$

For headfluorobename H[2] can be enlouleted from molecular

Some of the lower moments have been computed previously by Gordon (100), e.g. for an infrared band of a linear molecule

11 to make hold and all a state and and

$$\langle \mu(0), \mu(t) \rangle = 1 - (kT/I)t^{2} + \left[\frac{1}{2}(\frac{kT}{2})^{2} + (24I^{2})^{-1} \langle (0V)^{2} \rangle\right] t^{2}$$

k - Boltzmann's constant T - temperature, I - moment of inertia  $\langle (0V)^2 \rangle$  - mean square torque on a molecule due to the other molecules.

It is interesting to note that the initial curvature (second moments) of the correlation function depends only on the temperature and moment of inertia, but not on the molecular forces. For classical systems the effects of intermolecular forces are first seen in terms for  $t^4$ . For longer times the hindering of rotation increases the coefficient of  $t^4$  by an amount proportional to the mean-square torque. Hence the actual decay of the rotational correlation function for hindered rotors is slower than the decay for free rotors. This can clearly be seen from a typical experimental decay curve in Fig. VI (ii).

For hexafluorobensene M(2) can be calculated from molecular parameters and is found to be 28.92 cm<sup>-2</sup>.

From an analysis of the band shape for hexafluorobenzene in cyclohexane with no benzene present the following moments were determined:  $M(1) = -0.272 \text{ cm}^{-1}$ ,  $M(2) = 11.09 \text{ cm}^{-2}$ ,  $M(3) = -4.628 \text{ cm}^{-3}$ ,  $M(4) = 416.2 \text{ cm}^{-4}$ .

The second moment is thus considerably below its classical value and hence one may suspect that measurements were not carried far enough into the wings of the band. Slight assymmetry is indicated by the presence of finite values for odd moments. Hence during a brief initial period, free rotation, as in the gas, will determine the kinetics of the dipole rotation and the time correlation function should follow a Causs decay rate.

At longer times the rotational motion has become so complicated by the intermolacular torques that the average correlation is indistinguishable from that of a stochastic (random averaged) exponential decay. The recent paper by Bratoz et al (101) describes a stochastic-type theory to explain the infrared spectra of inert solutions of diatomic molecules. They discuss the relation between a given band form and the nature of the dominating relaxation process, which include translational diffusion, free rotation, rotational diffusion and an intermediate type reorientation. The characteristic narrowness of infrared and Raman bands in the solid state where rotational motion is suppressed indicate that in the solution state the reorientational relaxation function  $G_R(t)$  is far greater in magnitude than the vibrational relaxation function  $G_R(t)$ . Rotational diffusion is, in fact, the most widely applied stochastic model for the behaviour of rotational correlation functions at long times, and the Lorentzian form generates a correlation function of the form

$$\ln G_{\rm R}(t) = -\beta_{\rm R} t$$

iii) IN 6

where  $\beta_R$  is taken as the rotational diffusion constant as calculated by Favro (102) which should have the same value for all vibrations of the same symmetry species.

#### 6.5 Application to Hexafluorobenzene

The correlation functions of the band shapes recorded in Section 6.2 are plotted in Fig. VI(iii). It can be clearly seen that as the concentration of benzene increases, the correlation function relaxes faster. A collision-induced vibrational relaxation is probably taking place involving a



## Time (sec × 10<sup>-12</sup>)

 $\pi - \pi$  complex which involves bonding orbitals of the same symmetry as the out-of-plane agu mode of vibration. This mechanism is supported by the assymmetry of the band shapes which according to Bratoz et al (101) arise from the presence of a non-vanishing imaginary component of Gy(t) in turn favoured by a one-to-one character in the solvent-solute interaction. When the complex splits the vibrational bond energy is presumably degraded to heat energy, a mechanism favoured by the fact that at room temperature, the photon energy  $h \gamma \sim kT$ . A plot of the logarithm of the correlation functions versus time gave severe oscillations at long times such that the gradients exhibited a great deal of uncertainty. The band shapes were then symmeterised by hand and the plots recalculated as shown in Fig. VI (iv). The results are tabulated in Table VI (2). Assuming the Born-Oppenheimer approximation to hold

 $\beta_T = \beta_V + \beta_R$ 

where  $\beta_{V}$  is associated with the vibrational relexation and  $\beta_{R}$  with the reorientational diffusion.  $\beta_{V}$  can therefore be calculated for each solution if it is assumed that in the absence of benzene, vibrational relaxation is suppressed. The optimum slopes were calculated using the method of least squares.



| Table VI (2)  |            |                                                       |                                                |  |  |  |  |
|---------------|------------|-------------------------------------------------------|------------------------------------------------|--|--|--|--|
| % w/w benzene | C6H6 mole1 | β <sub>T</sub> (x10 <sup>12</sup> )psec <sup>-1</sup> | $\beta_{\rm V}({\rm x10}^{12}){\rm psec}^{-1}$ |  |  |  |  |
| 0.0           | 0          | 0.642±0.005                                           | 0                                              |  |  |  |  |
| 4.0           | 0.385      | 0.698±0.005                                           | 0.056±0.010                                    |  |  |  |  |
| 7.9           | 0.736      | 0.74320.006                                           | 0.092±0.012                                    |  |  |  |  |
| 15.5          | 1.358      | 0.896±0.007                                           | 0.25410.013                                    |  |  |  |  |
| 25.0          | 2.041      | 0.879±0.007                                           | 0.237±0.012                                    |  |  |  |  |
| 50.0          | 3.453      | 1.144±0.009                                           | 0.502±0.014                                    |  |  |  |  |

Fig. VI (v) shows an inverse relationship between the vibrational relaxation time and the benzene concentration.

#### 6.6 Discussion

The transition moment responsible for the  $a_{2u}$  band is along the symmetry axis (z) and can be rotated by rotation about either of the equivalent x or y axes. The rotational diffusion constant about the x or y axis is given by the simple relation

$$D_{x,y} = \beta_{R}(a_{2u})/2$$

This gives a value of 0.32 (psec<sup>-1</sup>) which compares very favourably with the value of 0.36 determined by Fujiyama and Grawford (95). A band shape analysis of the 315 cm<sup>-1</sup> ( $e_{1u}$ ) band would give an



estimate of D<sub>z</sub>. Comparison of the diffusion constants for benzene and hexafluorobenzene show that replacement of hydrogen by fluorine has little effect on the spinning of the molecules (i.e. rotation about z axis) but the ability to flip (i.e. rotation about x and y axes) is diminished by a factor of 3.

Rothschild (103), in a similar study of the chloroformbenzene complex, investigated the correlation function derived from the band shape of the 362 cm<sup>-1</sup> (parallel) mode of CDC1; in He also calculated the correlation function of freely benzene. rotating CDC1 molecules and from a value of the equilibrium constant, the correlation function of an equilibrium mixture of complexed and uncomplexed CDC1 molecules. For short times this correlation function is, to a good approximation, given by a linear combination of two gaussians, each describing the free rotation of the corresponding molecular species and weighted by the correct equilibrium mole fraction. The actual correlation curve fell below that of the calculated equilibrium mixture and Rothschild deduced that the weak intermolecular bond in the chloroform-benzene complex is independent of the relative orientations of the individual molecules. A similar treatment of the hexafluorobenzene-benzene complex gives the solid and dashed Gaussian curves in Fig. VI (iv) for the free and equilibrium mixture correlation curves respectively. Since the actual correlation functions lie well above these two curves, it is
deduced that the HFB-B complex is held together by relatively strong anisotropic forces, i.e. rotation of the HFE molecule about the intermolecular bond (z axis) may be possible but not in a perpendicular direction (x and y axes). This deduction will be correct even if the estimate of the equilibrium constant K is wrong, because the moment of inertia of the complex is only fractionally larger than that of free HFB.

Fig. VI (iv) shows that the correlation curves of hexafluorobenzene start to disperse after 0.3 picosecs. Up to 0.2 picosecs all the curves are indistinguishable indicating that on the average HFB molecules and HFB-B complex initially experience free rotation. An estimate of the reverse rate constant  $(k_{-1})$ for the HFB-B equilibrium will be

$$k_{-1} = \frac{1}{\gamma_v} = \beta_v$$

This estimate assumes that vibrational energy transfer occurs in every dissociative act.

Since  $K = 0.2 = \frac{k_1}{k_{-1}}$ 

then  $k_1 \sim 1 \ge 10^{11}$  litres mole<sup>-1</sup> sec<sup>-1</sup> (for 50% w/w solvent). This is of the order one might expect for diffusion controlled reactions. Interesting aspects of molecular motion in the solution state for other simple molecules have been investigated from the dipole-correlation time curves. Fujiyama and Crawford (104) showed that an isotope effect operated when substitution of hydrogen by deuterium in methyl iodide affected the rotational diffusion constants. Rothschild (105) investigated most of the fundamentals of methylene chloride as well as summation, difference and overtone bands. The results showed that the anisotropy of the rotational motion in the liquid state is very similar to that found with freely-rotating CH<sub>2</sub>Cl<sub>2</sub> molecules. In other words the rotational motion is insensitive to molecular association or weak hydrogen-bond formation.

### 6.7 Conclusion

Evidence for the existence of the HFB-B complex in the liquid state from a study of the dipole autocorrelation functions has been presented. The concept of the time correlation function is being applied to other measurements of the properties of liquids, particularly proton magnetic resonance, electron spin resonance and neutron diffraction spectroscopy. Whether one obtains the true kinetically significant band is difficult to assess. Infrared and Raman bands are influenced by weak dombination and difference bands, hot bands and displaced bands arising from molecules containing isotopic species. Corrections arising from variable refractive index has been discussed by Crawford and co-workers (95, 104) using the method of attenuated total reflection. More recently, Konymenburg and Steele (106) have calculated the correlation functions for three simple molecules (chloroform, methyl iodide and methylene chloride) after correction had been made to the band shapes to eliminate these contributions. In the future more sophisticated models of the liquid state will be formulated for simple and complex molecules, but for the present the experimental difficulties of generating meaningful spectra are a more serious limitation.

to give the Cartesian Morteseat coordinates for a typical

R.H.G. LIBRARY

Appendix 1. Appendix 1.

PROGRAM LINES (INPUT, COTPUT, TAPER-INPUT, TAPER-INPUT)

和田田市的市、市场水区、地区市区、市土市地区上、市土市的地位。最大的市区、市土的地域。在上的地域。

All the programmes described in this thesis are available on magnetic tape (MARYLU No. UHOO31) or permanent disc file on the London University CDC 6600. Programme LINDA whose flow diagram is given in Chapter 1 can be modified to give either Cartesian Displacements (CD) or Potential Energy Distribution (PED). The version outlined below in Fortran IV shows how the redundancies are removed to give the Cartesian Displacement coordinates for a typical large molecule. ////.547,845 marnix,/,547,84844444444,//)

一般性的学校自己。你认为了主义,你们们不,并不知道你,并不知道你,这些你你的心,你是我们就有,你在你就能吃,你在你就能吃 20 MARALILIN , 50, 94018 9412, 51, 940188-10, 52, 768 ASSALADE, 52, 768 ASSA

10 10 (21, 22, 23, 24, 25, 26) EDEP

C0 10 127

```
PROGRAM LINDA (INPUT, OUTPUT, TAPE2=INPUT, TAPE1=OUTPUT)
 DIMENSION G(72,72), F(72,72), GMAT(20,20), FMAT(20,20),
ZX(3,22), EA(72), B(68,72) AMASS(22), U(72,20), MARY(5), DMAT
Z(20,20), D(20,20), S(20), R(20), IH(8), JH(8), VAL(8), IB(9),
     ZJB(9), VALUE(9), Z(20), A(72,72)
 COMMON NOAT, NINT, NQ, NATOM1, NATOM2, NATOM3, NATOM4, NATOM5,
     ZNATOM6, NR, NDEF, RA
READ(2. 3)NPROB
3 FORMAT(I1)
 DO 4 NCYC=1, NPROB
     READ(2,5)MARY
 5 FORMAT(5A8)
     WRITE(1,6)MARY
 6 FORMAT(1H1, 50X, 5A8, /, 51X, 10H******************//)
     READ(2,7)NOAT, NR
 7 FORMAT(212)
     NQ=3:NOAT
     WRITE(1,8)NOAT,NR
  8 FORMAT(1H,40X,10HNO. ATOMS=,12,/,41X,16HNO. INT. COORDS=,12,///)
READ(2,12)((X(I,J),I=1,3),J=1,NOAT)
 12 FORMAT(9F8.5)
     WRITE(1,13)
 13 FORMAT(1H , 40X, 1HX, 20X, 1HY, 20X, 1HZ)
      DO 14 J=1, NOAT
 14 WRITE(1,15) J, X(1, J), X(2, J), X(3, J)
 15 FORMAT(1H, 20X, 12, 15X, F8.5, 12X, F8.5, 12X, F8.5)
     WRITE(1,16)
 16 FORMAT(1H ,///, 54X, 8HB MATRIX, /, 54X, 8H*************//)
     DO 17 IC=1,NR
     DO 18 I=1,NQ
 18 EA(I)=0.0
     READ(2,19)NINT, NDEF, NATOM1, NATOM2, NATOM3, NATOM4, NATOM5, NATOM6
 19 FORMAT(SI3)
WRITE(1, 20)NINT, NDEF, NATOM1, NATOM2, NATOM3, NATOM4, NATOM5, NATOM6
 20 FORMAT(1H , 5X, 5HNINT=12, 5X, 5HNDEF=12, 5X, 7HNATOM1=12, 5X, 7HNATOM2
    Z=12, 5X, 7HNATOM 3=12, 5X, 7HNATOM 4=, 12, 5X, 7HNATOM 5=12, 5X, 7HNATOM 6
Z=12)
     GO TO (21, 22, 23, 24, 25, 26) NDEF
 21 CALL STRET(X, EA)
     GO TO 127
22 CALL ABEND(X, EA)
     GO TO 127
```

23 CALL OPLAN(X, EA) CO TO 127 24 CALL TORSN(X, EA) CO TO 127 25 CALL IPLAN(X, EA) GO TO 127 26 CALL SPECT(X, EA) CO TO 127 127 DO 27 J=1,NQ 27 B(J,NINT) = EA(J)17 CONTINUE READ(2,28) (AMASS(I), I=1, NOAT) 28 FORMAT(8F10.6) WRITE(1,29) 29 FORMAT(1H ,///, 50X, 4HMASS/50X, 4H\*\*\*\*\*,/) DO 30 I=1,NOAT 30 WRITE(1, 31) I, AMASS(I) 31 FORMAT(1H , 20X, 12, 13X, F10.6) DO 32 J=1,NR DO 33 I=1,NR G(I,J)20.0 LO 34 KI=1,NOAT DO 35 M=1.3 K2=3±K1+M-3 G(I,J)=G(I,J)+B(K2,I)\*B(K2,J)/AMASS(K1)35 CONTINUE 34 CONTINUE 33 CONTINUE 32 CONTINUE READ(2,133)NSYMB,MCDS 133 FORMAT(212) DO 51 I=1,NR DO 52 J=1,NR F(I,J)=0.0 52 CONTINUE 51 CONTINUE WRITE(1,56) 56 FORMAT(1H ,///, 30X, 23HUN SYMMETERI SED F MATRIX/30X, 23H\*\*\*\*\*\*\*\*\* DO 53 KD=1, MCDS READ(2,54)(IH(M),JH(M),VAL(M),M=1,8) 54 FORMAT(8(212,F6.4)) WRITE(1,58)(IH(M), JH(M), VAL(M), M=1,8)

```
58 FORMAT(8(2HF(,12,1H,12,2H)=,F7.4,1X))
     DO 55 M=1.8
    IG=IH(M)
    JG=JH(M)
    F(IG, JG) = VAL(M)
 55 F(JG,IG)=VAL(M)
 53 CONTINUE
    WRITE(1,134)NSYMB
134 FORMAT(1H ,///, 40X, 17HNO. SYMM. BLOCKS=, I2)
     DO 135 JG=1,NSYMB
READ(2, 36)NDIM, NCDS, NRT
36 FORMAT(312)
    WRITE(1, 37)NDIM, NCDS, NRT
37 FORMAT(1H ,///, 20X, 5HN DIM=12, 20X, 5HNCDS=, 12, 20X, 4HNRT=, 12, /)
DO 9 I=1, NR
DO 10 J=1,NDIM
    U(I,J)=0.0
.10 CONTINUE
  9 CONTINUE
    DO 38 KC=1,NCDS
    READ(2, 39) (IB(N), JB(N), VALUE(N), N=1,9)
39 FORMAT(9(212, F4.0))
    DO 40 N=1.9
    ID=IB(N)
    JD=JB(N)
 40 U(JD,ID)=VALUE(N)
    WRITE(1,41)(IB(N), JB(N), VALUE(N), N=1,9)
 41 FORMAT(1H 9(2HU(12,1H,12,2H)=F4.1,1%))
38 CONTINUE
   DO 42 JA=1,NDIM
    US=0.0
DO 43 IA=1,NR
 43 US=US+U(IA, JA) *U(IA, JA)
    UN=SQRT(US)
    DO 44 IA=1,NR
 44 U(IA, JA) = U(IA, JA) / UN
 42 CONTINUE
    DO 145 I=1,NDIM
    DO 144 J=1.NDIM
    CMAT(I, J)=0.0
144 CONTINUE
145 CONTINUE
    DO 46 JA=1,NDIM
DO 47 IA=1,NR
    EA(IA)=0.0
DO 48 K=1,NR
48 EA(IA) = EA(IA) + U(K, JA) + G(K, IA)
```

47 CONTINUE DO 49 IA=1,NDIM NO 50 K=1.NR 50 GMAT(IA, JA)=GMAT(IA, JA)+EA(K) \*U(K, IA) 49 CONTINUE 46 CONTINUE WRITE(1,45) JC 45 FORMAT(1H , 50X, 14HSYMM G MATRIX(, I1, 1H), /, 50X, 16H\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* 2/11) WRITE(1,60)((I, J, GMAT(I, J), J=1, NDIM), I=1, NDIM) 60 FORMAT(5(3H G(12,1H,12,2H)=F12.8,3X)) 10 161 I=1,NDIM DO 162 J=1,NDIM FMAT(I.J)=0.0 162 CONTINUE 161 CONTINUE DO 62 JA=1,NDIM DO 63 IA=1,NR EA(IA)=0.0 10 64 K=1,NR 64 EA(IA) = EA(IA) + U(K, JA) \*F(K, IA)63 CONTINUE DO 65 IA=1, NDIM DO 66 K=1,NR 66 FMAT(IA, JA)=FMAT(IA, JA)+EA(K) ±U(K, IA) 65 CONTINUE 62 CONTINUE WRITE(1, 61) JC 61 FORMAT(IN ,///, 50X, 14HSYMM F MATRIX(, I1, 1H), /, 50X. 16H\*\*\*\*\*\*\*\*\*\* 2次次末。///) WRITE(1,168)((I, J, FMAT(I, J), J=1, NDIM), I=1, DNIM) 168 FORMAT(1H, 5(2HF(,12,1H,12,2H)=,F12.8,3X)) CALL EAO3A(CMAT, DMAT, NDIM, 20, 1E-08) LY=O DO 67 I=1, NDIM R(I)=GMAT(I,I) IF(R(I).LE.0.001) 00 TO 68 JI=I-LY A(JI, JI)=SQRT(R(I)) DO 69 J=1.NDIM D(J,JI)=DMAT(J,I) 69 CONTINUE GO TO 67 68 LY=LY+1 WRITE(1,70) 70 FORMAT(22H NEGATIVE ROOT WARNING) 67 GONTINUE

DO 72 I=1,NDIM DO 73 J=1,NRT GMAT(I,J)=0.0 DO 74 K=1,NDIM GMAT(I, J)=GMAT(I, J)+FMAT(I, K)\*D(K, J) 74 CONTINUE 73 CONTINUE 72 CONTINUE 10 76 I=1,NRT DO 77 J=1,NRT DMAT(I, J)=0.0 DO 7 K=1,NDIM DMAT(I, J) = DMAT(I, J) + D(K, I) + CMAT(K, J)78 CONTINUE 77 CONTINUE 76 CONTINUE DO 79 I=1,NRT DO 80 J=1,NRT FMAT(I, J)=0.0 DO 81 K=1,NRT FMAT(I,J) = FMAT(I,J) + EMAT(I,K) \* A(K,J)81 CONTINUE 80 CONTINUE 79 CONTINUE DO 179 I=1,NRT DO 180 J=1,NRT DMAT(I, J)=0.0 DO 181 K=1,NRT IMAT(I, J)=DMAT(I, J)+A(I, K)\*FMAT(K, J) 181 CONTINUE 180 CONTINUE 179 CONTINUE CALL EAO3A (DMAT, FMAT, NRT, 20, 1E-08) DO 183 I=1,NRT S(I)=0.0 183 CONTINUE DO 184 I=1,NRT S(I)=1302.9\*SQRT(DMAT(I,I)) WRITE(1,185)I,S(I) 185 FORMAT(7H OMEGA(12, 2H)=F10.1) 184 CONTINUE DO 201 I=1,NRT DO 202 J=1,NRT IMAT(I,J)=0.0

|      | Latal Hall                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | TO 203 K=1.NRT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      | THE AME T T) -THE AME T T) AND T W ATTA AME (Y T)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|      | MAILOgL/~MALLOgL/TELOgR/DEPLEILAgL/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 203  | CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 202  | CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      | WRITE(1.186)I.(DMAT(J.I).J=1.NRT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 186  | HORMAN OZH ETCHNVECTOR FOR OMECA(T2, 18) /10(PX, FQ, 5))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 007  | NUMBERIAS SECONDERING SOME ON SOME ON SOME AND A SAME A |
| 201  | CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      | 10 190 I=1, NRT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | DO 190 J=1,NRT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      | GMAT(I,J)=0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 190  | CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      | TO 101 T-1 MPT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      | DO 100 7-3 HOM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      | DO 192 J=1, NRT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | GMAT(J,I) = FMAT(J,I)/A(I,I)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 192  | CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 191  | CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2:00 | TO 87 T=1.NUTM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      | TO 88 T-1 NDM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|      | DO OD O-SARAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|      | LMAT(1,J)=0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|      | DO 59 K=1,NRT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|      | DMAT(I,J) = DMAT(I,J) + D(I,K) + CMAT(K,J)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 89   | CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 88   | CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 87   | CONTRACTOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 01   | PONTTHOT ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|      | 10 91 1=1,MR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|      | DD 92 J=1,NRT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|      | A(I,J)=0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|      | DO 93 K=1.NDIM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      | A(T,J) = A(T,J) + H(T,K) + TMAT(K,T)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 07   | CONTINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 20   | MAN 1241 013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 92   | CONTINUE.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 91   | CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      | DO 95 I=1,NQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|      | 10 96 J=1.NRT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|      | N(T T)=0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | D y/ A=LyAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|      | $U(I,J)=U(I,J)+B(I,K)\pm A(K,J)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 97   | CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 96   | CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 05   | CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| "    | DO 08 T-1 NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | W 99 J=1, NR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| -    | A(1,J)=0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 99   | CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 98   | CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| -    | DO 300 T-7 NO M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | to too 1=1, NOAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

|      | DO 101 M=1,3<br>L=3*I+M-3<br>DO 102 J=1.NRT                              |     |
|------|--------------------------------------------------------------------------|-----|
| 100  | A(L,J) = U(L,J) / AMASS(I)                                               |     |
| 101  | CONTINUE                                                                 |     |
| 100  | CONTINUE.                                                                |     |
|      | DO 103 I=1,NRT                                                           |     |
| 104  | WRITE(1,10411<br>FORMATIN OOT ZERCARTECTAN DICOLLOPMENT FOR OMECAL IN TH | 1   |
| 70.2 | Z25X.1HX.20X.1HY.20X.1HZ)                                                | 131 |
|      | WRITE(1,105)(AJ,I),J=1,NQ)                                               |     |
| 105  | FORMAT(3(15X, F9.5))                                                     |     |
| 103  | CONTINUE<br>DO DOI T-1 NOTM                                              |     |
|      | DO 221 J=1.NDIM                                                          |     |
|      | IMAT(I, J)=0.0                                                           |     |
|      | D(I,J)=0.0                                                               |     |
| 551  | CONTINUE<br>TO 200 T-7 NF                                                |     |
|      | DO 222 J=1.NR                                                            |     |
|      | A(I,J)=0.0                                                               |     |
| 222  | CONTINUE                                                                 |     |
|      | B(T)=0.0                                                                 |     |
| 223  | CONTINUE                                                                 |     |
| 135  | CONTINUE                                                                 |     |
| 4    | CONTINUE<br>CALL BYTM                                                    |     |
|      | END                                                                      |     |

S17 = 2" (97-3 + 920-3 + 74-5 1 - 14

# Appendix 2

# Symmetry coordinates for biphenyl and its 4-4'disubstituted derivatives for the D<sub>2</sub> point group

A Species

$$\begin{split} s_1 &= s_{1-7} \\ s_2 &= 2^{-1}(r_{8-18} + r_{12-22} + r_{6-17} + r_{2-13}) \\ s_3 &= 2^{-1}(r_{9-19} + r_{11-21} + r_{5-16} + r_{7-14}) \\ s_4 &= 2^{-\frac{1}{2}}(r_{10-20} + r_{4-15}) \\ s_5 &= 2^{-1}(s_{7-8} + s_{12-7} + s_{6-1} + s_{1-2}) \\ s_6 &= 2^{-1}(s_{5-6} + s_{2-3} + s_{9-9} + s_{11-12}) \\ s_7 &= 2^{-1}(s_{9-10} + s_{10-11} + s_{4-5} + s_{7-4}) \\ s_8 &= 2^{-\frac{1}{2}}(d_1 + d_7) \\ s_9 &= 2^{-\frac{1}{2}}(d_{10} + d_4) \\ s_{10} &= 2^{-1}(d_{12} + d_8 + d_6 + d_2) \\ s_{11} &= 2^{-1}(d_3 + d_5 + d_9 + d_{11}) \\ s_{12} &= 2^{-1}(d_{8-18} + \delta_{12-22} = \delta_{17-6} + \delta_{13-2}) \\ s_{13} &= 2^{-1}(\delta_{9-19} + \delta_{21-11} - \delta_{16-5} + \delta_{14-3}) \\ s_{14} &= 2^{-1}(\beta_{8-18} - \beta_{22-12} - \beta_{17-6} + \beta_{13-2}) \\ s_{15} &= 2^{-1}(\beta_{19-9} - \beta_{21-11} - \beta_{16-5} + \beta_{14-3}) \\ s_{16} &= 8^{-1}(\beta_{8-9} + \beta_{11-12} + \beta_{5-6} + \beta_{2-3}) \\ s_{17} &= 2^{-1}(\beta_{7-8} + \beta_{12-7} + \beta_{6-1} + \beta_{1-2}) \\ s_{18} &= 2^{-1}(\beta_{9-10} + \beta_{10-11} + \beta_{4-5} + \beta_{3-4}) \\ \end{split}$$

Bl Species

$$s_{1} = 2^{-1}(r_{3-18} - r_{12-22} - r_{6-17} + r_{2-13})$$

$$s_{2} = 2^{-1}(r_{9-19} - r_{11-21} - r_{5-16} + r_{3-14})$$

$$s_{3} = 2^{-1}(R_{7-8} - R_{7-12} + R_{1-2} - R_{1-6})$$

$$s_{4} = 2^{-1}(R_{9-9} - R_{11-12} + R_{2-3} - R_{5-6})$$

$$s_{5} = 2^{-1}(R_{9-10} - R_{10-11} + R_{3-4} - R_{4-5})$$

$$s_{6} = 2^{-1}(\mathcal{A}_{8} - \mathcal{A}_{12} + \mathcal{A}_{2} - \mathcal{A}_{6})$$

$$s_{7} = 2^{-1}(\mathcal{A}_{9} - \mathcal{A}_{11} + \mathcal{A}_{3} - \mathcal{A}_{5})$$

$$s_{8} = 2^{-1}(\mathcal{A}_{9-19} + \mathcal{A}_{12-22} + \mathcal{A}_{2-13} + \mathcal{A}_{6-17})$$

$$s_{9} = 2^{-1}(\mathcal{A}_{9-19} + \mathcal{A}_{12-22} + \mathcal{A}_{2-13} + \mathcal{A}_{5-16})$$

$$s_{10} = 2^{-1}(\mathcal{A}_{9-19} + \mathcal{A}_{11-21} + \mathcal{A}_{3-14} + \mathcal{A}_{5-16})$$

$$s_{11} = 2^{-1}(\mathcal{A}_{9-19} + \mathcal{A}_{11-21} + \mathcal{A}_{3-14} + \mathcal{A}_{5-16})$$

$$s_{12} = 2^{-1}(\mathcal{A}_{8-9} - \mathcal{A}_{11-12} + \mathcal{A}_{2-3} - \mathcal{A}_{5-6})$$

$$s_{13} = 2^{-1}(\mathcal{A}_{9-9} - \mathcal{A}_{11-12} + \mathcal{A}_{2-3} - \mathcal{A}_{5-6})$$

$$s_{14} = 2^{-1}(\mathcal{A}_{9-10} - \mathcal{A}_{10-11} + \mathcal{A}_{3-4} - \mathcal{A}_{4-5})$$

$$s_{15} = 2^{-\frac{1}{2}}(\mathcal{A}_{10-20} + \mathcal{A}_{4-15})$$

$$s_{16} = 2^{-\frac{1}{2}}(\mathcal{A}_{1-7} + \mathcal{A}_{7-1})$$

$$s_{18} = 2^{-\frac{1}{2}}(\mathcal{A}_{10-20} + \mathcal{A}_{4-15})$$

B2 Species

$$\begin{split} s_{1} &= 2^{-1}(r_{8-18} - r_{12-22} - r_{2-13} + r_{6-17} \\ s_{2} &= 2^{-1}(r_{9-19} - r_{11-21} - r_{3-14} + r_{5-16}) \\ s_{3} &= 2^{-1}(r_{9-19} - r_{11-21} - r_{3-14} + r_{5-16}) \\ s_{4} &= 2^{-1}(r_{8-9} - r_{11-12} - r_{2-3} + r_{5-6}) \\ s_{5} &= 2^{-1}(r_{9-10} - r_{10-11} - r_{1-4} + r_{4-5}) \\ s_{6} &= 2^{-1}(r_{8} - r_{12} - r_{2} + r_{6}) \\ s_{7} &= 2^{-1}(r_{8} - r_{11} - r_{3} + r_{5}) \\ s_{8} &= 2^{-1}(r_{8-18} + r_{12-22} - r_{2-13} - r_{6-17}) \\ s_{9} &= 2^{-1}(r_{8-18} + r_{12-22} - r_{2-13} - r_{6-17}) \\ s_{10} &= 2^{-1}(r_{8-18} + r_{12-22} - r_{2-13} - r_{6-17}) \\ s_{11} &= 2^{-1}(r_{8-9} + r_{11-21} - r_{3-14} - r_{5-16}) \\ s_{12} &= 2^{-1}(r_{8-9} - r_{1-2} + r_{6-1}) \\ s_{14} &= 2^{-1}(r_{9-19} - r_{10-11} - r_{3-4} + r_{4-5}) \\ s_{15} &= 2^{-1}(r_{9-10} - r_{10-11} - r_{3-4} + r_{4-5}) \\ s_{16} &= 2^{-1}(r_{9-10} - r_{1-7}) \\ s_{16} &= 2^{-1}(r_{9-10} - r_{1-7}) \\ s_{17} &= 2^{-1}(r_{10-20} - r_{4-15}) \\ s_{18} &= 2^{-1}(r_{10-20} - r_{4-15}) \\ s_{18} &= 2^{-1}(r_{10-20} - r_{4-15}) \\ s_{18} &= 2^{-1}(r_{10-2} - r_{2-3}) \end{split}$$

220.

-)

B3 Species

aribution of a

 $s_1 = 2^{-1}(r_{8-18} + r_{12-22} - r_{2-} - r_{6-17})$  $s_2 = 2^{-1}(r_{9-19} + r_{11-21} - r_{3-14} - r_{5-16})$  $s_3 = 2^{-\frac{1}{2}}(r_{10-20} - r_{4-15})$  $= 2^{-1}(R_{7-8} + R_{7-12} - R_{6-1} - R_{1-2})$ SA  $s_5 = 2^{-1}(R_{8-9} + R_{11-12} - R_{5-6} - R_{2-3})$  $s_6 = 2^{-1}(R_{9-10} + R_{10-11} - R_{4-5} - R_{3-4})$  $=2^{-\frac{1}{2}}(\alpha_{7}-\alpha_{1})$ 5750  $= 2^{-\frac{1}{2}}(x_{10} - x_{4})$  $s_9 = 2^{-1}(\alpha_8 + \alpha_{12} - \alpha_2 - \alpha_6)$  $s_{10} = 2^{-1}(x_9 + x_{11} - x_3 - x_5)$  $s_{11} = 2^{-1} (\chi_{8-18} - \chi_{12-22} - \chi_{2-13} + \chi_{6-17})$  $s_{12} = 2^{-1}(\gamma_{9-19} - \gamma_{11-21} - \gamma_{3-14} + \gamma_{5-16})$ S13 = 2-1(B8-18 - B12-22 - B2-13 + B6-17)  $s_{14} = 2^{-1}(\beta_{9-19} - \beta_{11-21} - \beta_{3-14} + \beta_{5-16})$  $s_{15} = 2^{-1}(\varphi_{8-9} + \varphi_{11-21} - \varphi_{2-3} - \varphi_{5-6})$  $s_{16} = 2^{-1}(\varphi_{7-8} + \varphi_{12-7} - \varphi_{1-2} - \varphi_{6-1})$  $s_{17} = 2^{-1}(\phi_{9-10} + \phi_{10-11} - \phi_{3-4} - \phi_{4-5})$ 

222. Appendix 3 SIB Potential energy distribution of a simplified velence force field for biphenyl (disgonal constants only) S STS N S14 40. TTS ors R p. R S4 SA No S 18 000 1690 19 745 13 1538 2 B1g 3070 Ag Au

| S18      |       |      |      |      |      |      |     |     | 56         | 53  | 32  |     | ot  | 2  | 223.        |      |      |
|----------|-------|------|------|------|------|------|-----|-----|------------|-----|-----|-----|-----|----|-------------|------|------|
| 517      |       |      |      |      |      |      |     |     |            | 2   |     | 6   | 34  | 52 |             |      |      |
| S16      |       |      |      |      | •    | 9    |     | 80  |            |     |     |     |     |    |             |      |      |
| 513      |       | 36   | 9    | 12   | 23   | 10   |     |     |            |     |     |     |     |    |             |      | 9    |
| S14      |       |      |      |      |      |      |     |     | 32         | 0   |     | 17  | 21  |    |             |      |      |
| SIZ      |       |      |      |      |      |      |     |     |            | 9   |     | 24  | 91  | 41 |             |      |      |
| Siz      |       |      |      |      |      |      |     |     | 60         | TT  | 0   | 11  |     |    |             |      |      |
| us.      |       | 21   | 17   | 8    | 32   | 2    |     |     |            |     |     |     |     |    |             |      |      |
| SIO      |       | 8    | 44   | 12   | 8    | 8    |     |     |            |     |     |     |     |    |             |      |      |
| 50       |       |      |      |      |      |      |     |     | 33         |     | 23  | 23  |     |    |             |      |      |
| Se       |       |      |      |      |      |      |     |     | 00         | 48  | R   |     |     |    |             |      |      |
| 5        |       |      |      |      |      |      | 47  |     |            |     |     |     |     |    |             |      | 5    |
| 26       |       |      |      |      |      |      | 45  |     |            |     |     |     |     |    |             |      |      |
| 52       | 89    | 121  | II   | 5    |      | 19   |     |     |            |     |     |     |     |    |             |      | 40   |
| C0<br>44 | 10.72 | 14   | 10   | 8    | 13   | 26   |     |     |            |     |     |     |     |    |             |      |      |
| M        | 9     | 6    | 13   | 17   | 6    | TT   |     |     |            |     |     |     |     |    |             |      | 66   |
| 50       |       |      |      |      |      |      |     |     |            |     |     |     |     |    | . 99        | W.   |      |
| 5        |       |      |      |      |      |      |     |     |            |     |     |     |     |    | The second  | 66   |      |
|          | 1609  | 1449 | 1337 | 1292 | 1155 | 1069 | 607 | 342 | Blu<br>987 | 898 | 726 | 702 | TEP | 16 | B2u<br>3070 | 3069 | 1608 |

| ~              |                                          |            |                | 224. |
|----------------|------------------------------------------|------------|----------------|------|
| STS            |                                          | 5 2        | 14             |      |
| 317            | 52                                       | R R        | 120            |      |
| S16            | 8                                        |            | 9.9            |      |
| S15            | 92 V9                                    |            |                |      |
| S14            | 29 10 09 19 N                            | IO         | 14<br>28<br>11 |      |
| S13            |                                          | 00         | 16             |      |
| 5              | 00                                       | 51 00      | 000 9 9        |      |
| M<br>M         | 33 11                                    |            | 18° 9 11       |      |
| 53             | 6 4                                      |            |                |      |
| 01             | 72                                       | 16         | 47             |      |
| 00             | IO I                                     | R F        | 5 1            |      |
| 5              | 4                                        |            |                |      |
| 26             | 44                                       |            |                |      |
| 5              | 16                                       |            |                |      |
| 29<br>24<br>29 | RAR                                      |            |                |      |
| MI ON          | 14 00                                    |            |                |      |
| 00<br>02       |                                          |            |                |      |
| of to          |                                          |            |                |      |
| 1430           | 1295<br>1161<br>1055<br>622<br>96<br>B2g | 909<br>766 | 515<br>239     |      |

| 81<br>02            |       | Ame      | 2        |     |                   |     | 225. |  |
|---------------------|-------|----------|----------|-----|-------------------|-----|------|--|
| S17                 |       |          |          |     | 10                | 10  | P 3  |  |
| 516                 |       |          | <i>.</i> |     | 10                | 10  |      |  |
| 315                 |       |          |          |     | 19                | 48  |      |  |
| 145<br>147<br>157   | e 6   | 69<br>89 |          |     |                   |     |      |  |
| S13                 | 22 1  | 69 6     |          |     |                   |     | 4 19 |  |
| SIS<br>SIS          |       |          |          |     | N 09              | 16  |      |  |
| Sent 1              |       |          | -        |     | 15 Q              | 16  |      |  |
| 910<br>S10          |       |          | 8        | 16  | 5<br>21           |     |      |  |
| Сл.                 | 5     |          | R        | 5   |                   |     |      |  |
| 200 go              |       | 10 1     |          | 京   |                   |     |      |  |
| 1                   |       | 0        | or 🖏     | 62  |                   |     |      |  |
| 00 00<br>00 000     | 12    | R (2)    | 5 8      |     | 1875              |     |      |  |
| 50.10               | R     |          | C.       |     | 13                |     |      |  |
| 4<br>4<br>10        | 51    | N N      | 0 10     |     |                   |     |      |  |
| Som Mar S           | 66    |          |          |     |                   |     |      |  |
| Se 6 6              |       |          |          |     |                   |     |      |  |
| 5 5 S               | R 8 ~ |          |          |     |                   |     |      |  |
| B3u<br>3073<br>3072 | 3069  | 2611     | 1020     | 119 | B36<br>963<br>873 | 409 |      |  |

| 373      | 18         |       |      |      | ADD  | endia | <u>c 4</u> |      |                 |     |     | M        | 6   | 226. |  |
|----------|------------|-------|------|------|------|-------|------------|------|-----------------|-----|-----|----------|-----|------|--|
| .F.2.    | S17        |       |      |      |      |       |            |      |                 |     |     | m        | 0   | IO   |  |
| yl (2)   | S16        |       |      |      |      |       |            |      | R               |     |     | 19       |     | 49   |  |
| bipnen   | 515        |       | NO . | 27   | 121  |       | 20         | 54   |                 |     |     |          |     |      |  |
| fluoro   | S14        |       | To   | 00   | 24   | M     | 69         | 4    |                 |     |     |          |     | 12   |  |
| 4-41 01  | 373        |       |      |      |      |       |            |      |                 |     |     | 30       | 42  | 16   |  |
| d for    | S12        |       |      |      |      |       |            |      |                 |     |     | <b>%</b> | 40  | 16   |  |
| La Mella | TT.        |       |      |      | M    | 4     |            | 61   |                 | 12  | M   |          |     |      |  |
| e force  | ols        |       | pa   |      | 8    |       |            | 18   | 9               |     | 35  |          |     |      |  |
| elence   | 6          |       |      | 5    |      | ~     |            | 101  | 2               | 27  | 10  |          |     | 11   |  |
| fied v   | 00<br>00   |       | 2    |      | м    |       |            |      | 0               |     | 27  |          |     |      |  |
| 1mp11    | rd -       |       | m    | 28   |      | TT    |            | 28   | 52              | 00  |     |          |     |      |  |
| 60<br>60 | 36         |       | 33   | 18   | 53   | 9T    |            |      | 0               |     | 5   |          |     |      |  |
| o uo     | 5          |       | 140  | м    |      |       |            | 23   | 53              | 13  | IO  |          |     |      |  |
| dbutt    | 5/3<br>5/4 |       | 50   | ~    |      | 26    |            |      | сн<br>Н         | 22  |     |          |     |      |  |
| dista    | M          | 66    |      |      |      |       |            |      |                 |     |     |          |     |      |  |
| terey    | 50         | 99 08 | \$   |      |      |       |            |      |                 |     |     |          |     |      |  |
| al en    | 5          |       | 8    | 5    | 53   |       |            |      | ₹¢ <sup>8</sup> | 14  | 63  |          |     |      |  |
| Potenti  | 202        | 3073  | 1664 | 1535 | 1347 | 1241  | 1143       | 1022 | 835             | 653 | 229 | Au 958   | 829 | 409  |  |

| 213                         |                                                                                | 227.<br>9 9 8                           |
|-----------------------------|--------------------------------------------------------------------------------|-----------------------------------------|
| S17                         |                                                                                | 16<br>29<br>43                          |
| 22                          | 9 5 5 Q                                                                        |                                         |
| 512                         | 99 99 99 PP                                                                    |                                         |
| S. I.S.                     |                                                                                | 6 28 A 20                               |
| M S                         |                                                                                | 43 20                                   |
| 215                         | C.                                                                             | 3 8                                     |
| SIL                         | 54° 133° 11                                                                    |                                         |
| S IO                        | 5 9 9 5 B                                                                      |                                         |
| 0                           | 5                                                                              | 1 <sup>19</sup> 12 A 19 <sup>14</sup> A |
| 00 <sup>00</sup>            | F                                                                              | A MAR AN                                |
| 5                           | 98                                                                             |                                         |
| <b>9</b><br>53              | 65                                                                             |                                         |
| \$ P                        | N CO IS                                                                        |                                         |
| <b>4</b>                    | 8 PO 22                                                                        |                                         |
| winger (4                   | 12 16 16                                                                       |                                         |
| 25 SS<br>80<br>19           |                                                                                |                                         |
| 10° 1                       |                                                                                |                                         |
| B1g<br>3070<br>3069<br>1583 | 1791<br>1297<br>1297<br>1274<br>1274<br>610<br>610<br>444<br>701<br>301<br>Blu | 821<br>711<br>494<br>280<br>55          |

| _ 60               |       |      |      | the second | A set |      |     |     |     |            |     |     | 229 | 228. |     |
|--------------------|-------|------|------|------------|-------|------|-----|-----|-----|------------|-----|-----|-----|------|-----|
| S                  |       |      |      |            |       |      |     |     |     |            | 2   | 199 | R   | 22   | 5   |
| 8 <mark>1</mark> 7 |       |      |      |            |       |      |     |     |     |            | 20  | 8   | 46  | 17   |     |
| S16                |       |      |      |            |       |      |     |     | 8   |            |     |     |     |      |     |
| Sto                |       |      | 9    |            |       | 9    |     | 82  |     | . 21       |     |     |     |      |     |
| 20<br>24<br>24     |       |      |      |            |       |      |     |     |     |            | 2   | \$  | 6   | 52   | ZA  |
| NT<br>NT           |       |      | 1    |            | 1     |      |     |     |     |            | 10  |     |     | R    | 45  |
| °TS                |       |      |      |            |       |      |     |     |     | 17         |     | 24  |     |      |     |
| ILS                |       |      | R    | 27         | II    | 52   |     |     |     |            |     |     |     |      |     |
| OL                 |       |      | 10   |            | 62    | 17   |     |     | 197 |            |     |     |     |      |     |
| 001                |       |      |      |            |       |      |     |     | 10  | R          | 22  |     |     | \$   | 0   |
| Soo                |       |      |      | 0          |       |      |     |     |     | 34         | 199 | 5   | 5   |      | 2   |
| de la              |       |      |      |            |       |      | 45  |     | 27  |            |     |     |     |      |     |
| 20                 |       | 5    |      |            |       |      | 47  |     |     |            |     |     |     |      |     |
| 87<br>87           |       | 42   | R    | 17         | 5     | 12   |     |     |     |            |     |     |     |      |     |
| 105<br>49          |       | E,   |      | 46         | 19    | 16   |     |     |     |            |     |     |     |      |     |
| ind the second     |       | 41   | 27   | 15         |       | 17   |     |     |     |            |     |     |     |      |     |
| SN G               | LI LI |      |      |            |       |      |     |     |     |            |     |     |     |      |     |
| ar sr              | 8     |      |      |            |       |      |     |     |     |            |     |     |     |      |     |
| BZa                | 6902  | 1586 | 1.61 | 1291       | 1279  | 1083 | 619 | 417 | 75  | B2g<br>949 | 878 | 727 | 520 | 382  | 150 |

229. Ch. SIG O. Langadia B Sta S14 The spectra all sole as radius by garage of a Timera or Blackly of PERF Resources that a contrast subroutines. 5 5 0 Siz 45 M SII (C) 00. TE 15 10 M m son co B7g 958 B3u 3073 1586 1494 1245 1245 1022 1032 800 800 

# Appendix 5

NMEFIT is a programme written to plot the output of either DUNKEN or PERT incorporating CALCOMP subroutines.

27 Kindler

PROGRAM NMRFIT(INPUT, OUTPUT, TAPE25, TAPE27, TAPE6=OUTPUT) DIMENSION X(5003), Y(5003), MARY(4), FR(100), SIZE(100) COMMON FRINC, NL, W, FR1, FR, SIZE CALL START READ 2. W. NLINES 2 FORMAT(F6.0,I3) PRINT 7, W,NLINES 7 FORMAT(1H1, 20X, 16HHALF-BAND WIDTH=, F6. /21X, 14HORIG NO ZLINES=, 13////) READ 3, (FR(I), SIZE(I), I=1, NLINES) 3 FORMAT(6(F7.3.F6.3)) PRINT 8 8 FORMAT(LH, 20X, 9HFREQUENCY, 20X, 9HINTENSITY/) DO 10 I=1,NLINES PRINT 11, FR(I), SIZE(I) 11 FORMAT(1H , 22X, F7.3, 24X, F6.3) 10 CONTINUE READ 4, NPROB 4 FORMAT(I1) DO 5 NYC=1, NPROB READ 6, MARY, FR1, FR2 6 FORMAT(4A10, 2F7.3) PRINT 12, MARY, FR1, FR2 12 FORMAT(1H , 20X, 4A10/, 22X, 1 JHINITIAL FREQ=, F7. 3/22X, 11HFINAL ZFREQ=, F7.3) NL=O 31 DO 30 J=1,NLINES IF(FR(J).GE.FR1) GO TO 28 GO TO 31 28 IF(FR(J).LE.FR2) GO TO 27 GO TO 31 27 NL=NL+1 FR(NL) = FR(J)SIZE(NL)=SIZE(J) 30 CONTINUE FRINC=(FR2-FR1)/5000.0 CALL PLOT(9.0, 14.0, 3) CALL SYMBOL (9.0, 14.0, 0.28, 15HNMR SPECTRUM OF, 0.0, 15) CALL SYMBOL(9.0,13.5,0.28, MARY,0.0,22) CALL CURVE(X,Y)

```
PRINT 14,(I,X(I),I,Y(I),I=1500,2000)
14 FORMAT(4(2HX(I4,2H)=F8.3,2X,2HY(I4,2H)=F7.4))
CALL PLOT(3.0,2.0,-3)
CALL SCALE(X,20.0,5001,-1)
CALL SCALE(Y,10.0,5001,1)
CALL AXUS(0.0,0.0,12HFREQUENCY HZ,-12,20.0,00.0,X(5002),X(5003))
CALL AXUS(0.0,0.0,9HINTENSITY,+9,10.0,090.0,Y(5003))
CALL LINE(X,Y,5001,1,0,0)
CALL PLOT(24.0,-2.0,-3)
5 CONTINUE
CALL ENPLOT(4,0)
END
```

232.

```
SUBROUTINE CURVE(X,Y)
   DIMENSION X(5003), Y(5003), FR(100), SIZE(100)
   COMMON FRINC, NL, W, FRI, SIZE
   DO 2 J=1,5001
   Y(J)=0.1
X(J)=FR1+J*FRINC
2 CONTINUE
   10 3 I=1,NL
   M=IFIX(FR(I)/FRINC)
   N=IFIX(5.0*W/FRINC)
   NN=24041
DO 4 L=1, NN
   LN=L-N-1
   LA=M+LN
I(LA) = Y(LA) + SIZE(I) / (1.0+(2.0/WMLN*FRINC) + 2)
4 CONTINUE
3 CONTINUE
  RETUI W
   END
```

. Tr. 2. 7. 19 .....

10. J. R. Containing

233.

## References

(2048) .

 Y. Morino, IXth European Congress on Molecular Spectroscopy, I.U.P.A.C. (1969).

J. C. Dulaker, Bautorate Thurse, Baiveroity of Inshordan.

12. D. F. Reath and J. W. Linnath, Trans. Faraday Door, 44, 956

17. J. C. Dectur, J. Cont. Phys. 30, 241 (1963).

- 2. K. Machida and J. Overend, J. Chem. Phys., 50, 4429, (1969).
- E. B. Wilson, J. C. Decius and P. C. Cross, Molecular Vibrations, McGraw-Hill, New York (1955).
- D. Steele, Theory of Vibrational Spectroscopy, Saunders, (1971).

5. G. Varsanyi, Vibrational Spectra of Benzene Derivatives, Academic Press (1971).

- F. A. Cotton, Chemical Applications of Group Theory, New York, Interscience, (1967).
- 7. R. P. Bell, Trans. Faraday Soc., 41, 293 (1945).
- 8. I. Harada and T. Shimanouchi, J. Chem. Phys., 44, 2016 (1966).
- 9. J. R. Scherer and J. Overend, J. Chem. Phys., 33, 1681 (1960).
- 10. J. R. Scherer and J. Overend, Spectrochim. Acta, 17, 719 (1961).

24. G. Lestd and J. Sandrenh, Senstroubin, Asts. 241, 511 (1963).

- 11. D. F. Heath and J. W. Linnett, Trans. Faraday Soc., 44, 556 (1948).
- 12. J. C. Duinker, Doctorate Thesis, University of Amsberdam, (1964).
- 13. J. C. Decius, J. Chem. Phys., 38, 241 (1963).
- 14. S. J. Cyvin and N. B. Slater, Nature, 188, 485 (1960).
- 1.5. M. Gussoni and G. Zerbi, J. Mol. Spect., 26, 485 (1968).
- R. G. Snyder and J. H. Schachtschneider, Spectrochim. Acta,
   21, 169 (1965).
- 17. Y. Morino and K. Kuchitsu, J. Chem. Phys., 20, 1809 (1952).
- 18. J. Dale, Acta Chem. Scand., 11, 640 (1957).
- J. E. Katon and E. R. Lippincott, Spectrochim. Acta, 15, 627 (1959).
- D. Steele and E. R. Lippincott, J. Mol. Spect., 6, 238 (1961).
   G. V. Peregudov, Opt. Spect., 9, 155 (1960).
- 22. B. Pasquier and J. M. Lebas, J. Chem. Phys., 64, 765 (1966).
- 23. G. Zerbi and S. Sendroni, Spectrochim. Acta, 24A, 483 (1968).
- 24. G. Zerbi and S. Sandroni, Spectrochim. Acta, 24A, 511 (1968).

- 25. J. Dahr, Indian J. Phys., 7, 43 (1932).
- 26. J. Trotter, Acta Cryst., 14, 1135 (1961).
- 27. R. A. Hoffmann, P. O. Kinell and G. Bergström, Arkiv. Kemi., 15, 534 (1960).
- 28. K. Mocbius, Z. Naturforsch, 20a, 1093 (1965).
- 29. O. Bastiansen, Acts Chem. Scand., 3, 408 (1949).
- 30. H. Suzuki, Bull. Chem. Soc. Japan, 32, 1340 (1959).
- 31. S. Ashdown, T. F. Crowdy and D. Steele, Lab. Pract., 15, 868 (1966).
- 32. K. Radcliffe and D. Steele, Spectrochim. Acta, 25A, 597 (1969).
- 33. V. Eaton and D. Steele, Unpublished Data.
- 34. K. Krebs, S. Sandroni and G. Zerbi, J. Chem. Phys., 40, 3502 (1964).
- 35. E. C. Lim and Y. H. Li, J. Chem. Phys., 52, 12 (1970).
- 36. I. J. Wayher, J. Am. Chem. Soc., 89, 2820 (1967).
- 37. A. Imamura and R. Hoffmann, J. Am. Chem. Soc., 90, 5379 (1968).
- 38. A. F. Miller, W. G. Fateley and R. E. Witkowski, Spectrochim. Acta, 23A, 891 (1967).

- 39. G. Casalone, C. Mariani, A. Mugnoli and M. Simonetta, Mol. Phys., 15, 4, 339 (1968).
- 40. A. Finch, P. N. Gates, K. Radcliff, F. Dickson and F. Bentley, Chemical Applications of Far-Infrared Spectroscopy, Academic Press (1970).
- 41. P. Nanni, F. Viani and V. Lorenzelli, J. Mol. Struct., 6, 133 (1970).
- 42. R. E. Buckles and N. G. Wheeler, Org. Syn., 31, 29 (1951).
- 47. R. M. Barrett and D. Steele, Unpublished Data.
- 44. D. Steele, T. R. Nanney and E. R. Lippincott, Spectrochim. Acta, 22, 849 (1966).
- 45. D. Steele, Spectrochim. Acts, 25A, 959 (1969).
- 46. I. Mills, Centenary Lecture of the Chemical Society (April 1971).
- 47. E. G. Jones and H. Gilman, Org. Reactions, 6, 352 (1951).
- 48. R. I. Akawle, J. M. Scarborough and J. G. Burr, J. Org. Chem., 24, 946 (1959).
- 49. G. Zerbi and S. Sandroni, Spectrochim. Acts, 26A, 1951 (1970).

50. M. Hanack, Conformational Theory, Academic Press, New York, (1965).

51. E. L. Eliel et al, Conformational Analysis, Interscience, New York (1966).

52. H. Booth, Chapter 7, Progress in N.M.R. Spectroscopy, J. W. Emsley, J. Feeney and L. H. Sutcliffe, Vol. 5, Pergamon Press.

278.

- 53. M. Larnaudie, J. Phys. Radium, 15, 650 (1954).
- 54. H. E. Hallam and T. C. Ray, J. Chem. Soc., 2337 (1964).
- 55. D. H. R. Barton, J. E. Page and C. W. Shoppes, J. Chem. Soc., 331 (1956).
- 56. I. O. C. Ekejuiba and H. E. Hallam, J. Mol. Structure, 6, 341 (1970).

67. H. Mallar and M. C. Match, J. Cham. Physics W. 1167 (1966).

- 57. R. G. Snyder and G. Zerbi, Spectrochim. Acta, 23A, 391 (1967).
- 58. R. G. Snyder and J. H. Schachtschneider, J. Mol. Spect., 30, 290 (1969).
- 59. R. G. Snyder, J. Mol. Spect., 28, 273 (1968).
- 60. C. W. C. Kaye and T. H. Laby, Tables of Physical and Chemical Constants, Longmans (1966).
- 61. R. F. Nystrom and W. G. Browa, J. Am. Chem. Soc., 69, 2549 (1947).
- 62. Chem. Abs., 50, 13892c, (1956).
- 63. F. R. Jensen and L. H. Gale, J. Org. Chem., 25, 2075 (1961).
- 64. R. A. Pickering and C. C. Price, J. Am. Chem. Soc., 80, 4931 (1958).

- 65. P. Klaeboe, J. J. Lothe and K. Lunde, Acta Chem. Scand., 10, 1465 (1956).
- 66. K. Kozima and K. Sakashita, Bull. Chem. Soc. Japan, 31, 796 (1958).
- 67. A. J. Berlin and F. R. Jensen, Chem. Ind., 998 (1960).
- 68. G. Chuirdoglu, L. Kleiner, W. Masschelein and J. Reisse, Bull. Soc. Chim. Belges, 69, 143 (1960).
- 69. N. Muller and W. C. Tosch, J. Chem. Phys., 37, 1167 (1962).
- 70. A. L. Anet and A. J. R. Bourn, J. Am. Chem. Soc., 89, 760 (1967
- 71. H. S. Gutowsky and C. H. Holm, J. Chem. Phys., 25, 1228 (1956).
- 72. F. R. Jensen, D. S. Noyce, C. H. Sederholm and A. J. Berlin, J. Am. Chem. Soc., 82, 1256 (1960).
- 73. B. L. Eliel, Chem. Ind., 568 (1959).
- 74. A. J. Berlin and F. R. Jensen, Chem. Ind., 998 (1960).
- 75. J. Reisse, J. C. Celotti and G. Chiurdoglu, Tetrahedron Letters, 7, 397 (1965).
- 76. E. L. Eliel and M. H. Cianni, Tetrahedron Letters, 97 (1962).
- 77. L. W. Reeves and K. O. Strømme, Can. J. Chem., 38, 1241 (1960).
- 78. F. A. Bovey, E. W. Anderson, F. P. Hood and R. L. Kornegay,

J. Chem. Phys., 40, 3099 (1964).

1021 (Auget)

79. F. R. Jensen, C. H. Bushweller and B. H. Beck, J. Am. Chem. Soc., 91, 344 (1969).

M. N. Beary D. A. Horenn, S. M. Sashler and F. Parga.

90 x

80. G. Gatti, A. L. Segre and C. Morandi, J. Chem. Soc. (B), 1203 (1967).

J. C. L. Poeyons and T. H. Marticheln, J. Poyo. Chedes

81. R. J. Kurland, M. B. Rubin and W. B. Wise, J. Chem. Phys., 40, 2426 (1964).

W. Musstley, Fh.D. Ebests, Cuiversity of London, (1968).

- 82. A. Allerhand, H. S. Gutowsky, J. Jonas and R. A. Meinzer, J. Am. Chem. Soc., 88, 3185 (1966).
- 83. J. A. Pople, W. G. Schneider and H. J. Bernstein, High-Resolution Nuclear Magnetic Resonance, McGraw-Hill (1959).
- 84. R. M. Lynden-Bell and R. K. Harris, Nuclear Magnetic Resonance Spectroscopy, Nelson (1969).
- 85. C. E. Patrick and G. S. Prosser, Mature, 187, 1021 (1960).
- 86. D. V. Fenby and R. L. Scott, J. Phys. Chem., 71, 4103 (1967).
- 87. E. M. Dantzler and C. M. Knobler, J. Phys. Chem., 73, 1602 (1969).
- 88. W. J. Gew and F. L. Swinton, Trans. Faraday Soc., 64, 2023 (1968).
- 89. W. A. Duncan, J. P. Sheridan and F. L. Swinton, Trans.
- Faraday Soc., 62, 1090 (1966).

- 90. M. E. Baur, D. A. Horsma, C. M. Knobler and P. Perez, J. Phys. Chem., 73, 641 (1969).
- 91. J. C. A. Boeyens and F. N. Herbstein, J. Phys. Chem., 69, 2153 (1965).
- 92. W. Wheatley, Ph.D. Thesis, University of London, (1958).
- 93. D. Steele and D. H. Whiffen, Trans. Faraday Soc., 55, 369 (1959).
- 94. L. Delbouille, Bull. Classe Sci. Acad. Roy. Belg., 44, 971 (1958).
- 95. T. Fujiyama and B. Crawford, J. Phys. Chem., 72, 2174 (1968).
- 96. W. J. Hurley, J. Chem. Education, 43, 5, 237 (1966).
- 97. L. Pauling and E. B. Wilson, Introduction to Quantum Mechanics, McGraw-Hill, New York (1935).
- 98. R. G. Gordon, Advances in Magnetic Resonance, Vol. 3, Academic Press (1968).
- 99. R. G. Gordon, J. Chem. Phys., 43, 1307 (1965).
- 100. R. C. Gordon, J. Chem. Phys., 39, 2788 (1963).
- 101. S. Bratoz, J. Rios and Y. Guissani, J. Chem. Phys., 52, 439 (1969).
- 102. L. D. Favro, Phys. Rev., 119, 53 (1960).

tal of Molecular Serv ier Pablishing Comi

103. W. G. Rothschild, Chem. Phys. Letters, 9, 2, 149 (1971).

104. T. Fujiyama and B. Crawford, J. Phys. Cham., 73, 4040 (1969).

rimen 105. W. G. Rothschild, J. Chem. Phys., 53, 990 (1970).

been

106. P. Konynenburg and W. A. Steele, J. Chem. Phys., 56, 4776 (1972).

#### RACT

e. Agreement strains and the strains structure in the strains of the structure in the strains of the structure in the structure in the structure is with phase changes are structure in the structure in the structure in the structure is the structure is the structure in the structure is the structure is the structure in the structure is the structure is the structure in the structure is the structure is the structure in the structure is the struc

#### ODUCTION

Biphenyl poses some interesting exactly in the spectral and the spectral interesting exactly in the s

Structure, 11 (1915)
Journal of Molecular Structure Elsevier Publishing Company, Amsterdam. Printed in the Netherlands

# THE VIBRATIONAL SPECTRA AND DIHEDRAL ANGLES OF BIPHENYL AND THE 4,4'-DIHALOGENOBIPHENYLS

#### R. M. BARRETT AND D. STEELE

Department of Chemistry, Royal Holloway College, University of London, Englefield Green, Surrey (England)

(Received July 13th, 1971)

#### ABSTRACT

The vibrational frequencies of biphenyl and its 4,4'-dihalogen derivatives have been computed for various values of the dihedral angle between the two rings. It is shown that certain modes with frequencies below 700 cm<sup>-1</sup> are sensitive to this angle. Agreement between experimental and calculated frequencies is good. The spectra of biphenyl and 4,4'-difluorobiphenyl are in complete accord with a planar  $D_{2h}$  structure in the crystal phase. In solution, melt and gas the dihedral angle of these systems is  $45\pm15^{\circ}$ . The observed frequency shifts of certain A modes are shown to be due to considerable force constant changes for the central C–C bond and its neighbouring internal angle deformations. No significant frequency shifts with phase changes were observed for 4,4'-dichloro- or 4,4'-dibromobiphenyl. In these cases the structures are  $D_2$ .

#### INTRODUCTION

Biphenyl poses some interesting structural problems. It is known to be planar ( $D_{2h}$  configuration) in the crystal<sup>1,2</sup> and to have a staggered configuration in the vapour phase with a dihedral angle<sup>3</sup> of  $45 \pm 10^{\circ}$ . NMR data show a nonplanar configuration in solution but is inconclusive as to the dihedral angle<sup>4</sup>. In principle the vibrational spectra of the various possible configurations should show marked differences. It has been an embarrassing fact that despite many studies in the past<sup>5-12</sup> convincing evidence of spectral changes accompanying a change of state has been sadly lacking. Only one paper<sup>12</sup> reports data showing such evidence, and the spectral interpretation here is based on qualitative arguments. This raises the question as to whether or not vibrational spectroscopy really can give unequivocal evidence for structure. In view of this important issue it was decided to re-examine the spectra from theoretical and practical viewpoints. It will be shown

that drastic changes do occur in the spectra of biphenyl and one of its 4,4'-disubstituted derivatives on change of phase. The contradiction between earlier and the present work is due in part, but not entirely, to the fact that the low-frequency spectra, both Raman and infrared had been inadequately examined.

Spectral changes can arise from two sources: changes in restoring forces and changes in coupling conditions resulting from different geometries. As the dihedral angle changes, the  $\pi$  orbital overlap will vary and possibly lead to changes in bond orders and restoring forces on the nuclei. The experimental evidence is that  $\pi$  orbital overlap between the rings is very weak. The only positive data is that the inter-ring bond length in the crystal is 1.50 Å, a value only slightly less than the accepted value of 1.54 Å for a C-C single bond. Electron diffraction data yield a value of 1.48 Å for this bond in the vapour phase. This small bond length decrease, if real, may imply a slightly higher bond order, but still near unity, and a steric interaction between the 2,2' substituents. Zerbi and Sandroni<sup>10</sup> sought evidence for coupling between the rings by carrying out a perturbation analysis of planar biphenyl using two simple quadratic force fields. Their results indicated that the extent of delocalization of  $\pi$  bonds across the inter-ring C–C bond must be very small. They also believed that evidence for steric interactions between substituents (hydrogen) on the two rings was weak. These conclusions lead to the predictions that the restoring forces will be changed by very little when biphenyl loses its planarity. We shall show that there are some force constant changes whose affect on the spectra can be distinguished from those due to changes in the kinetic energy expressions. The latter however are responsible almost entirely for the observed spectral variations. Thus the dihedral angles in solution may be estimated subject to the limitation of the accuracy of calculations for the planar case. Discrepancies between the calculated and observed frequencies for the planar configuration have large effects on the perturbations produced by changes in the dihedral angles.

Substitution on the aromatic rings leads to changes in the stabilities of the planar configurations through inductive and mesomeric effects, shown by the fact that the 4,4'-dichloro- and -dibromobiphenyls are twisted in the crystal and solution phases, whereas biphenyl itself and its 4,4'-difluoro derivative are planar in the crystal and twisted in solution.

#### SPECTRAL PREDICTIONS BASED ON SYMMETRY CONSIDERATIONS

As the dihedral angle is rotated from  $0^{\circ}$  to  $90^{\circ}$  so the nuclear geometry changes from  $D_{2h}$  through  $D_2$  to  $D_{2d}$ . In the  $D_{2h}$  configuration the in-plane and out-of-plane vibrations do not interact if high order effects such as Coriolis coupling are ignored. For a significant rotation about the central bond – one large enough to change the shape of the vibrational potential wells – the centre of symmetry is

effectively lost and the symmetry classes of the  $D_{2h}$  group coalesce in pairs. Each pair is constituted from a gerade and an ungerade species and from an out-of-plane and an in-plane species of the  $D_{2h}$  configuration (Fig. 1). Thus, provided the inplane and out-of-plane vibrational wavefunctions mix, the vibrations constituting the pairs of classes will push one another apart and the mixing of the wavefunctions will lead to a relaxation of the spectral activities. On this basis changes can be predicted.



Fig. 1. Relationships between vibrations of different symmetry species for biphenyl in the  $D_{2h}$ ,  $D_2$  and  $D_{2d}$  configurations.

In first-order perturbation theory the interaction between levels depends

(i) on the interaction integral  $\langle \psi_a | H_{ab} | \psi_b \rangle$ ; rotation of the rings with respect to one another will not affect this integral if the vibrational wavefunctions are localized in the rings;

(ii) inversely on the difference between the energy levels. This implies that interaction will be weak unless there are similar vibrational frequencies in the species which coalesce.

The in-plane and out-of-plane fundamental frequencies range from 3000 to  $70 \text{ cm}^{-1}$ , and  $1000 \text{ cm}^{-1}$  down respectively. It follows from (ii) that the perturbations will lie below  $1000 \text{ cm}^{-1}$ . This range can be narrowed. Coupling can only occur through those modes which span the ring. As will be explained below interaction cannot occur in the A species. This precludes any interaction through the CC stretch. Other internal deformations which span the ring and may lead to coupling are  $\gamma_C$  (out-of-plane deformation of the C<sub>1</sub> external to the ring),  $\beta_C$  (inplane deformation of C<sub>1</sub>) and  $\delta$ , or  $\phi$  (ring torsion). The natural frequency of the  $\gamma_{CH}$  deformation lies well above that of the only in-plane deformation coordinate to span the ring,  $\beta_C$ , being about 900 cm<sup>-1</sup> compared to 300 cm<sup>-1</sup>. Again interaction is predicted to be weak. The primary perturbations arise from  $\phi$ ,  $\beta_C$  interactions.

Calculations reported below show that no interaction occurs between the  $a_g$ and  $a_u$ , nor between the  $b_{3g}$  and  $b_{3u}$ , vibrations on reduction of the symmetry, though this is formally allowed. The explanation is that in the  $a_u$  and  $b_{3g}$  vibrations the nuclei lying on the C<sub>2</sub> axis passing through C<sub>1</sub> and C'<sub>1</sub> cannot move without violating the appropriate transformation properties of the species. Coupling can only occur through the C<sub>2</sub> and C<sub>6</sub> carbons. As is easily shown the symmetry cartesian

J. Mol. Structure, 11 (1972)

co-ordinates of these nuclei for  $A_u$ ,  $A_g$ ,  $B_{3u}$  and  $B_{3g}$  representations rotate with the rings and hence remain orthogonal for all dihedral angles.

#### CALCULATIONS

All calculations were performed on a CDC 6600 computer using Fortran programmes. The logic of the programmes is as reported previously<sup>13</sup>. The aromatic rings were assumed to be regular hexagons and the bond lengths were taken as  $R_{\rm CC} = 1.40$  Å;  $R_{\rm C,C,r} = 1.48$  Å;  $r_{\rm CH} = 1.084$  Å;  $r_{\rm CF} = 1.30$  Å;  $r_{\rm CCI} = 1.70$  Å and  $r_{CBr} = 1.865$  Å. The fields of Duinker and Mills<sup>14</sup> were used for the in-plane deformation coordinates. The inter-ring stretching force constant was assumed to be 4.9 mdyn Å<sup>-1</sup> – a value chosen on the basis of the known bond length and a simple force constant/bond length relation for CC bonds. No inter-ring coupling constants were introduced in view of the uncertainty concerning any resonance interaction. All out-of-plane force constants are transferred directly from derived fields for benzene and mono- and p-di-halogenobenzenes<sup>15</sup>. As there are no data on values for angle bending constants for a carbon substituent on a ring we assumed that the energy required for a unit angular deformation was independent of the substituent. This has been shown to be a reasonable first approximation<sup>15</sup>. The values chosen were based on the benzene values. All constants are given in Table 1.

In this work we have not used the force field of Zerbi and Sandroni<sup>10</sup> since it was derived from a perturbation analysis using their biphenyl assignments and we wished our conclusions to be independent of this earlier work. It is extremely encouraging that our computed frequencies (Tables 2 to 5) are in almost as good an agreement with the assignments as their perturbed field.

#### EXPERIMENTAL

Calculations were carried out on the London University CDC 6600. Biphenyl was purchased from B.D.H. Ltd., 4,4'-difluorobiphenyl from Koch-Lights Ltd., 4,4'-dichlorobiphenyl from Pfaltz & Bauer Inc. and 4,4'-dibromobiphenyl was synthesized according to Buckles and Wheeler<sup>16</sup>. The near infrared spectra (1700–200 cm<sup>-1</sup>) were recorded with a Perkin–Elmer 325 and the far infrared spectra (400–40 cm<sup>-1</sup>) with a R.I.I.C. FS 720. All solid interferometric spectra were recorded at liquid nitrogen temperature to prevent evaporation of the sample under vacuum. Raman spectra were recorded with either a Cary 81 (180° scattering and He/Ne 6328 Å exciting line) or a Spex Ramalog (90° scattering and Ar<sup>+</sup> 5147 Å exciting line). Molten Raman spectra were taken in a specially designed glass heating finger at University College and the gas-phase spectra using facilities at Southampton University.

The quadratic force constants used in calculating the frequencies of the systems  $\rm XC_6H_4 \cdot C_6H_4 X$ 

Interaction constants are shown in parentheses. The units are mdyn  $Å^{-1}$  for stretching constants, mdyn rad<sup>-1</sup> for stretch/bend interactions and mdyn Å rad<sup>-2</sup> for bending constants.

| Force constant<br>for coordinate          | X = H      | X = F   | X = Cl  | X = Br  | The |
|-------------------------------------------|------------|---------|---------|---------|-----|
| $r_{1}^{2}$ (H)                           | 5,125      | 5.125   | 5,125   | 5.125   |     |
| $r_{1}^{2}(X)$                            | _          | 5.80    | 3.70    | 3.12    |     |
| $\beta_i^2$ (H)                           | 1.035      | 1.012   | 1.028   | 1.036   |     |
| $\beta_1^2(\mathbf{X})$                   | _          | 1.741   | 1.656   | 1.117   |     |
| $R_1^2$                                   | 7.015      | 6.97    | 6.87    | 6.95    |     |
| $\beta^2$ (C)                             | 1.035      | 1.012   | 1.028   | 1.036   |     |
| $R_1^2$ (C)                               | 4.9        | 4.9     | 4.9     | 4.9     |     |
| $\alpha_1^2$ (H)                          | 1.103      | 1.070   | 1.213   | 1.149   |     |
| $\alpha_1^2$ (X)                          | -          | 1.394   | 1.405   | 1.207   |     |
| $(R_{i}, R_{i+1})$                        | 0.531      | 0.526   | 0.480   | 0.558   |     |
| $(R_i, \beta_i)$                          | 0.364      | 0.347   | 0.379   | 0.414   |     |
| $(R_i, \beta_i(\mathbf{X}))$              | - 110      | 0.448   | 0.425   | 0.476   |     |
| $(r_i, \alpha_i(\mathbf{X}))$             | C 11 - 104 | -0.637  | -0.772  | -0.557  |     |
| $(\beta_i, \beta_{i+1})$                  | 0.028      | 0.047   | 0.022   | 0.015   |     |
| $(\beta_1, \beta_{1+2})$                  | -0.022     | -0.022  | -0.019  | -0.008  |     |
| $(\beta_i, \beta_{i+3})$                  | -0.032     | -0.073  | -0.065  | -0.080  |     |
| $(\alpha_i, \alpha_{i+1})$                | -0.098     | -0.096  | 0.000   | -0.043  |     |
| $(R_i, \alpha_i)$                         | 0.442      | 0.463   | 0.441   | 0.462   |     |
| $(r_i (X), R_i)$                          | -          | 0.429   | 0.334   | 0.336   |     |
| $(\beta_i, \alpha_{i+1})$                 | 0.064      | 0.064   | 0.064   | 0.064   |     |
| 2/H2                                      | 0.307      | 0.306   | 0.311   | 0.310   |     |
| 2/x2                                      |            | 0.359   | 0.354   | 0.321   |     |
| $\phi_{\rm HH}^2$                         | 0.0706     | 0.0700  | 0.0700  | 0.0700  |     |
| $\phi_{\rm HX}^2$                         | -          | 0.0676  | 0.0561  | 0.0684  |     |
| $(\gamma_{\rm H} \gamma_{\rm H}^{\circ})$ | 0.0153     | 0.0155  | 0.0145  | 0.0155  |     |
| $(\gamma_{\rm H} \gamma_{\rm H}^{\rm m})$ | -0.0129    | -0.0132 | -0.0153 | -0.0148 |     |
| $(\gamma_{\rm H} \gamma_{\rm H}^{\rm p})$ | -0.0141    | -0.0142 | -0.0135 | -0.0159 |     |
| $(\gamma_{\rm H} \gamma_{\rm X}^{\circ})$ |            | 0.0234  | 0.0284  | 0.0281  |     |
| $(\gamma_{\rm H} \gamma_{\rm X}^{\rm m})$ |            | -0.0058 | -0.0116 | -0.0040 |     |
| $(\gamma_{\rm H} \gamma_{\rm X}^{\rm p})$ | - 120      | -0.0056 | 0.0013  | 0.0160  |     |
| $(\phi\phi_{o})$                          | -0.0137    | -0.0141 | -0.0131 | -0.0129 |     |
| $(\gamma_{\rm H} \phi_{\rm o})$           | 0.0182     | 0.0187  | 0.0190  | 0.0191  |     |
| $(\gamma_{\rm X} \phi_{\rm o})$           |            | -0.0195 | -0.0081 | -0.0123 |     |
| $(\gamma_{\rm X} \phi_{\rm m})$           |            | -0.0122 | -0.0055 | -0.0115 |     |

Note:  $(R_i, R_{i+1}) = -(R_i, R_{i+2}) = (R_i, R_{i+3})$ 

CALCULATED AND OBSERVED FREQUENCIES (cm<sup>-1</sup>) FOR BIPHENYL FOR VARIOUS DIHEDRAL ANGLES

| Calcu                | Calculated frequencies |                  | cies              | Observed f   | frequencies |                |         |         |         |
|----------------------|------------------------|------------------|-------------------|--------------|-------------|----------------|---------|---------|---------|
| for al               | 10                     |                  |                   | Raman        | Infrared    |                |         |         |         |
|                      |                        |                  |                   | Solid        | Liquid      | a mol tora     | Gas     | Solid   | Liquid  |
| A Spe                | ecies (L               | $D_{2h} - A_{t}$ | $(A_u)$           |              |             |                |         |         |         |
| $A_{\rm g}$          |                        |                  |                   |              |             |                |         |         |         |
| 3073)                |                        |                  |                   |              |             |                |         |         |         |
| 3072                 | No m                   | easure           | ments             |              |             |                |         |         |         |
| 3069)                |                        |                  |                   |              |             |                |         |         |         |
| 1690                 |                        |                  |                   | 1610 vs      | 1612 vs     |                | 1613 vs | -       | -       |
| 1527                 |                        |                  |                   | 1513 m       | 1509 m      | (0.27)         | 1505 w  | -       | -       |
| 1338                 |                        |                  |                   | 1276 vs      | 1285 vs     | (0.18)         | 1282 vs | -       | 7       |
| 1192                 |                        |                  |                   | 1205 w       | 1192 m (    | br) (0.18)     | -       | -       | -       |
| 1024                 |                        |                  |                   | 1036 s       | 1031 s      | (0.06)         | 1029 m  | -       | -       |
| 998                  |                        |                  |                   | 1002 vs      | 1004 vs     | (0.09)         | 1003 vs | -       | -       |
| 745                  |                        |                  |                   | 743 sh/739 m | 741 vs      | (0.08)         | 740 s   | -       | -       |
| 272                  |                        |                  |                   | 330 m        | 316 m       | (0.18)         | 307 s   |         | 315 w   |
| Au                   |                        |                  |                   |              | 0/7*        | (0.20)         | 0.61*   |         | 0.04    |
| 903                  |                        |                  |                   | -            | 96/* m      | (0.29)         | 964* W  | -       | 964* V  |
| 833                  |                        |                  |                   | 846* W       | 841* m      | (0.33)         | 838* W  | -       | 838* m  |
| 409                  |                        |                  |                   | 409* VW      | 410* m      | (0.56)         | 405* m  |         | 403* s  |
| $B_3 S_F$            | pecies (               | $D_{2h}-I$       | $B_{3u}, B_{3g}$  |              |             |                |         |         |         |
| $B_{3u}$             |                        |                  |                   |              |             |                |         |         |         |
| 3073                 |                        |                  | 1.1.1             |              |             |                |         |         |         |
| 3072                 | No m                   | easure           | ments             |              |             |                |         |         |         |
| 3069)                |                        |                  |                   |              |             |                |         |         |         |
| 1610                 |                        |                  |                   |              | 10          |                |         | 1597 s  | 1595* s |
| 1483                 |                        |                  |                   |              | 1           |                | -       | 1480 vs | 1481 s  |
| 1193                 |                        |                  |                   | THE CAR      |             |                | -       | 1181 m  | 1174 w  |
| 1040                 |                        |                  |                   | -            | T.          |                | 1 400 0 | 1041 s  | 1042 s  |
| 1020                 |                        |                  |                   |              | 1.17        |                | -       | 1006 s  | 1007 s  |
| 992                  |                        |                  |                   | 100 - YA     | 10.07       |                | - 410   | 985 w   | 990 w   |
| 611                  |                        |                  |                   | 1916- LL     | Dyr.        |                | - 1210  | 610 m   | 609 s   |
| $B_{3g}$             |                        |                  |                   |              | 10-         | SPECIAL STREET | 11-10   |         | A Fall  |
| 963                  |                        |                  |                   | -            | 969* m      | (0.29)         | 964* w  | -       | 964* vv |
| 833                  |                        |                  |                   | 846* w       | 841* m      | (0.33)         | 838* w  |         | 838* m  |
| 409                  |                        |                  |                   | 409* vw      | 410* m      | (0.56)         | 405* m  | -       | 403*s   |
| $\theta = 0^{\circ}$ | 30°                    | 60°              | 90°               |              | Anna'       |                |         |         |         |
| $B_1 Sp$             | ecies (.               | $D_{2h}-E$       | $B_{1g}, B_{1u})$ |              |             |                |         |         |         |
| D1g                  | 3070                   | 2070             | 2070)             |              |             |                |         |         |         |
| 3060                 | 3070                   | 3070             | 30/0              | No measu     | rements     |                |         |         |         |
| 1600                 | 1609                   | 1606             | 1605              | 1502         | 1505        |                | 1506    |         | 1505*   |
| 1440                 | 1448                   | 1443             | 1430              | 1392 VS      | 1462        |                | 1390 VS |         | 1455* W |
| 1337                 | 1336                   | 1332             | 1328              | 1402 W       | 1402 W      |                |         |         | 1317 m  |
| 1202                 | 1202                   | 1204             | 1328              | 1355 W       | 1240        |                | 1222    | -       | 1317 W  |
| 1155                 | 1155                   | 1156             | 1159              | 1165/1140    | 1249 m      | (0.91)         | 1255 m  | -       |         |
| 1060                 | 1069                   | 1065             | 1062              | 1007 m       | 1004 m      | (0.81)         | AT - I  |         |         |
| 607                  | 608                    | 610              | 612               | 1097 W       | 1094 W      | (0.75)         |         | _       | -       |
| 342                  | 326                    | 300              | 275               | 010 m        | 014 m       | (0.75)         | 015 W   | -       | 367 m   |
| 542                  | 520                    | 300              | 215               | -            | -           |                | _       |         | 507 m   |

J. Mol. Structure, 11 (1972)

# TABLE 2 (continued)

| Calculated frequencies |          | Observed   | Observed frequencies |            |              |       |             |            |  |  |
|------------------------|----------|------------|----------------------|------------|--------------|-------|-------------|------------|--|--|
| for $\theta$           | -        |            |                      | Raman      |              |       | Infrared    |            |  |  |
| 0°                     | 30°      | 60°        | 90°                  | Solid      | Liquid       | Gas   | Solid       | Liquid     |  |  |
| B <sub>1u</sub>        |          |            |                      |            | Louis 1      |       | 1. 11.0     |            |  |  |
| 987                    | 987      | 987        | 987                  | -          | -            | -     | 968 w       | 964* vw    |  |  |
| 898                    | 899      | 900        | 902                  | -          | -            | -     | 903 s       | 902 s      |  |  |
| 726                    | 728      | 735        | 746                  | -          | -            | -     | 729 vs      | 735 vs     |  |  |
| 703                    | 703      | 703        | 703                  | -          | -            | -     | 695 vs      | 697 vs     |  |  |
| 431                    | 449      | 479        | 502                  | -          | -            | -     | 458 s       | 486 s      |  |  |
| 91                     | 91       | 91         | 91                   | 100 - Loi  |              |       | 73 w        | 77 w       |  |  |
| $B_2$ Sp               | ecies (. | $D_{2h}-E$ | $B_{2u}, B_{2g})$    |            |              |       |             |            |  |  |
| $B_{2u}$               |          |            |                      |            |              |       |             |            |  |  |
| 3070                   | 3070     | 3070       | 3070                 | 1211 = 101 |              | -     | —           | - 681      |  |  |
| 3069                   | 3069     | 3069       | 3069                 | -          | -            | -     | -           | - 230      |  |  |
| 1608                   | 1607     | 1605       | 1605                 | 101 - 110  |              | -     | 1568 s      | 1567 s     |  |  |
| 1430                   | 1431     | 1433       | 1439                 | UP         |              | -     | 1428 vs     | 1430 s     |  |  |
| 1326                   | 1326     | 1326       | 1328                 | 12         |              |       | 1344 m      | 1337 w     |  |  |
| 1295                   | 1296     | 1296       | 1296                 | -          | -            | -     | 1268 w      | 1266 m     |  |  |
| 1161                   | 1160     | 1159       | 1158                 | -          | -            | -     | 1154 w/1169 | s 1155 m   |  |  |
| 1055                   | 1055     | 1058       | 1062                 | -          |              |       | 1075 m/1090 | s 1072 s   |  |  |
| 622                    | 621      | 617        | 613                  |            | 626 w        | -     | 626 w       |            |  |  |
| 96                     | 95       | 93         | 91                   | -          | -            |       | 118 vs      | 112 vs     |  |  |
| B <sub>2g</sub>        |          |            |                      |            |              |       |             |            |  |  |
| 987                    | 987      | 987        | 987                  | 978 w      | 987          | -     |             | 979 vw     |  |  |
| 909                    | 908      | 906        | 902                  | -          | _            | -     | -           | 917 m      |  |  |
| 755                    | 755      | 752        | 746                  | 779/786 m  | 782 m        | -     |             | 778 s      |  |  |
| 694                    | 696      | 699        | 703                  | -          | -            | -     | -           | 670 m      |  |  |
| 515                    | 514      | 512        | 502                  | 546 w      | 546 w        | -     | -           | 543 s      |  |  |
| 239                    | 244      | 257        | 275                  | 251 m      | 269 m (0.88) | 265 w | -           | 269 m      |  |  |
| Unass                  | igned a  | observe    | d freque             | encies     |              |       |             |            |  |  |
| e nuos                 | Buea     |            | a neque              | incres.    |              |       | 1690 w      | 1683 w     |  |  |
|                        |          |            |                      |            |              |       | 1650 w      | 1655 w     |  |  |
|                        |          |            |                      | 1620 sh    |              |       |             |            |  |  |
|                        |          |            |                      | 1020 511   |              |       | 1617 w      | 1612 w     |  |  |
|                        |          |            |                      |            |              |       | 1380 w      | 1381 m     |  |  |
|                        |          |            |                      |            |              |       | 1307 w      | 1300 w     |  |  |
|                        |          |            |                      |            |              |       | 1280 w      | 1280 w     |  |  |
|                        |          |            |                      |            |              |       | 1110 m      | 1107 w     |  |  |
|                        |          |            |                      |            |              |       | 1110 m      | 670 w      |  |  |
|                        |          |            |                      |            |              |       | 174 w       | 010 11     |  |  |
| 89 r                   | n        |            |                      |            |              |       |             |            |  |  |
| 52 r                   | n        |            |                      |            |              |       |             |            |  |  |
| 41 r                   | n   Lat  | tice no    | des                  |            |              |       |             | and a star |  |  |
| 22 r                   | n)       |            |                      |            |              |       |             |            |  |  |

\* Double assignment.

vs, s, m, w, vw, sh, very strong, strong, medium, weak, very weak, shoulder respectively. The species symbols refer to  $\theta = 0$  ( $D_{2h}$  configuration). The mode correlation for  $\theta \neq 0$  is made on the basis of eigenvector similarities.

calculated and observed frequencies  $(cm^{-1})$  for 4,4'-difluorobiphenyl for various dihedral angles

| Calculated frequencies                  |           |              |                        | Observed frequencies |              |           |                       |           |         |  |  |
|-----------------------------------------|-----------|--------------|------------------------|----------------------|--------------|-----------|-----------------------|-----------|---------|--|--|
| for all                                 | for all θ |              |                        | Raman                |              |           | 1100                  | Infrared  |         |  |  |
|                                         |           |              |                        | Solid                | Liquid       | -         | Gas                   | Solid     | Liquid  |  |  |
| A Spe                                   | cies (1   | $D_{2h} - A$ | $_{\rm g}, A_{\rm u})$ |                      |              |           |                       | at and    | 1.4     |  |  |
| $A_{\rm g}$                             |           |              |                        |                      |              |           |                       |           |         |  |  |
| 3073)                                   | Nam       |              | manta                  |                      |              |           |                       |           |         |  |  |
| 3072)                                   | NO II     | leasure      | ments                  |                      |              |           |                       |           |         |  |  |
| 1664                                    |           |              |                        | 1603 vs              | 1607 vs      | (0.44)    | 1604 s                | -10       |         |  |  |
| 1535                                    |           |              |                        | 1529 m               | _1524 m      | (0.39)    | 1519 m                | -         | -       |  |  |
| 1346                                    |           |              |                        | 1323 w               | 1320 w       |           | -                     |           |         |  |  |
| 1241                                    |           |              |                        | 1277 vs              | 1283 vs      | (0.27)    | 1284 vs               | -         | -       |  |  |
| 1143                                    |           |              |                        | 1169 vs              | 1167 m       | (0.12)    | 1163 m                | 01-00     | 10- 6   |  |  |
| 1022                                    |           |              |                        | 1017 w               | 1017 w       |           | -                     | 01 -000   | 11 V    |  |  |
| 835                                     |           |              |                        | 846 vs               | 843 vs       | (0.09)    | 840 vs                | 10        | 0.1-    |  |  |
| 653                                     |           |              |                        | 660 s                | 661 m        | (0.74)    | 658 w                 |           | 1.1-    |  |  |
| 229                                     |           |              |                        | 277 vs               | 264 s        | (0.22)    | 255 vs                | 1-11      |         |  |  |
| $A_{\rm u}$                             |           |              |                        |                      |              |           |                       |           |         |  |  |
| 958                                     |           |              |                        |                      | -            |           | -                     | 1 22/25   |         |  |  |
| 829                                     |           |              |                        | 823* w               | 824* s       |           | 812* s                | 11-01-01- |         |  |  |
| 409                                     |           |              |                        | -                    | 423* m       | (0.68)    | 415* w                | 1 - 1     | 420* m  |  |  |
| $B_3$ Spe $B_{3u}$<br>$B_{3u}$<br>3073) | ecies (   | $D_{2h}-1$   | $B_{3u}, B_{3g}$       |                      |              |           |                       |           |         |  |  |
| 3072                                    | NO II     | leasure      | ments                  |                      |              |           |                       |           |         |  |  |
| 1586                                    |           |              |                        | -                    | -            |           | -                     | 1600 vs   | 1600 vs |  |  |
| 1494                                    |           |              |                        | -                    | 200.000      |           | -                     | 1495 vs   | 1496 vs |  |  |
| 1245                                    |           |              |                        | -                    | -            |           | -                     | 1235 vs   | 1230 vs |  |  |
| 1144                                    |           |              |                        | -                    | -            |           | -                     | 1158 s    | 1153 s  |  |  |
| 1032                                    |           |              |                        | -                    | -            |           | -                     | 1016 s    | 1018 s  |  |  |
| 1016                                    |           |              |                        | -                    | -            |           |                       | 1007 s    | 1008 s  |  |  |
| 800                                     |           |              |                        | -                    | 808 sh       |           |                       | 804 vs    | 806 s   |  |  |
| 525                                     |           |              |                        | -                    | -            |           |                       | 518 s     | 515 s   |  |  |
| B3g                                     |           |              |                        |                      |              |           |                       |           |         |  |  |
| 958                                     |           |              |                        | 966 vw               | -            |           | 21                    | -         | -       |  |  |
| 829                                     |           |              |                        | 823* w               | 824* s (     | or 812* m | 812* s                | -         | _       |  |  |
| 409                                     |           |              |                        | _                    | 423* m       | (0.68)    | 415* w                | -         | 420* m  |  |  |
| $\theta = 0^{\circ}$                    | 30°       | 60°          | 90°                    |                      |              | (0.00)    |                       |           |         |  |  |
| $B_1$ Spe                               | cies (    | $D_{2h} - E$ | $B_{1g}, B_{1u}$       |                      |              |           |                       |           |         |  |  |
| Big                                     |           |              | AB, IU,                |                      |              |           |                       |           |         |  |  |
| 3070                                    | 3070      | 3070         | 3070)                  |                      |              |           |                       |           |         |  |  |
| 3069                                    | 3069      | 3069         | 3069                   | No measu             | urements     |           |                       |           |         |  |  |
| 1583                                    | 1582      | 1581         | 1581                   | 1554 w               | 1553 w       |           | -                     | _         | 1555 w  |  |  |
| 1391                                    | 1388      | 1381         | 1373                   |                      | -            |           | -                     | _         | _       |  |  |
| 1293                                    | 1292      | 1291         | 1288                   | 1257 m               | 1259 sh      |           | 1267 sh               | -         | _       |  |  |
| 1274                                    | 1275      | 1278         | 1281                   | 1245 VW              | 1239 W       |           | 1207 SH               |           | _       |  |  |
| 1095                                    | 1094      | 1092         | 1091                   | 1098 m               | 1100 w       |           | 1242 W                |           |         |  |  |
| 610                                     | 610       | 611          | 613                    | 627 5                | 632 m        | (0.91)    | 633                   |           | 630 w   |  |  |
| 444                                     | 441       | 435          | 478                    | 464                  | 052 m        | (0.91)    | 055 W                 |           | 454 m   |  |  |
| 301                                     | 325       | 340          | 365                    | 340 mm               | These should |           | A State of the second |           | 358 m   |  |  |
| 501                                     | 545       | 545          | 505                    | 540 VW               |              |           | 1773                  | 010770    | 550 m   |  |  |

J. Mol. Structure, 11 (1972)

# TABLE 3 (continued)

| Calculated frequencies |         | ies        | Observed frequencies |            |            |         |        |             |           |  |
|------------------------|---------|------------|----------------------|------------|------------|---------|--------|-------------|-----------|--|
| for $\theta$           | =       |            |                      | Raman      |            |         |        | Infrared    |           |  |
| 0°                     | 30°     | 60°        | 90°                  | Solid      | Liquid     |         | Gas    | Solid       | Liquid    |  |
| $B_{1u}$               |         |            |                      |            |            | - A COL |        |             |           |  |
| 945                    | 945     | 945        | 946                  |            | - Charles  |         | -      | 935 m       | 932 vw    |  |
|                        |         |            |                      |            |            |         |        | or 956 m    | or 952 vw |  |
| 820                    | 821     | 822        | 826                  | -          | -          |         | -      | 822 vs      | 821 vs    |  |
| 709                    | 712     | 720        | 729                  | -          | -          |         | -      | 702 m       | 704 w     |  |
| 494                    | 500     | 511        | 520                  |            | -          |         | -      | 499/505 vs  | 515* s    |  |
| 280                    | 254     | 233        | 196                  | -          | -          |         | -      | 283 m       | 255 m     |  |
| 55                     | 56      | 58         | 61                   | -          | -          |         | -      | 71 vw       | 72 w      |  |
| B2 Sp                  | ecies ( | $D_{2h}-E$ | $B_{2u}, B_{2g})$    |            |            |         |        |             |           |  |
| $B_{2u}$               |         |            |                      |            |            |         |        |             |           |  |
| 3070                   | 3070    | 3070       | 3070)                | Name       |            |         |        |             |           |  |
| 3069                   | 3069    | 3069       | 3069)                | ino meast  | irements   |         |        |             |           |  |
| 1586                   | 1585    | 1583       | 1581                 | a transfer |            |         | -      | 1585 s      | 1586 m    |  |
| 1361                   | 1362    | 1366       | 1373                 | -          | -0.15      |         | -      | 1393 m      | 1394 m    |  |
| 1291                   | 1290    | 1288       | 1288                 | -          | -          |         | -      | 1317 s      | 1302 s    |  |
| 1279                   | 1280    | 1282       | 1281                 | -          | -          |         | -      | 1286 w      | 1283 vw   |  |
| 1088                   | 1088    | 1089       | 1091                 | -1         | 1000       |         | -      | 1124 s/1108 | 1095 s    |  |
| 619                    | 618     | 616        | 613                  | -          | 641 sh     |         | -      | 642 w       | 638 w     |  |
| 417                    | 418     | 423        | 428                  | -          | -          |         | -      | 414 m       | 415 w     |  |
| 75                     | 72      | 66         | 61                   | -          | -          |         | - 14   | 84 w        | 96 vw     |  |
| $B_{2g}$               |         |            |                      |            |            |         |        |             |           |  |
| 949                    | 949     | 947        | 946                  | 938 vw     | -          |         | -      | -           | 1 10      |  |
| 838                    | 834     | 830        | 826                  | 846* vs    | 843* vs (0 | ).09)   | -      |             | 847 s     |  |
| 727                    | 727     | 729        | 729                  | 722 s      | 728 m (0   | ).90)   | 728 w  |             | 726 m     |  |
| 520                    | 522     | 522        | 520                  | 540 vw     |            |         | -      |             | 542 m     |  |
| 382                    | 381     | 376        | 365                  | 395 s      | 392 m (0   | ).81)   | 389 w  | -           | 390 s     |  |
| 150                    | 157     | 173        | 196                  | 180 vw     | 183 m      |         | 178 w  | -           | 182 vw    |  |
|                        |         | 34.15      | 1                    |            |            |         |        |             |           |  |
| Unass                  | signed  | observe    | ed frequen           | cies       |            |         |        |             |           |  |
|                        |         |            |                      |            |            |         |        | 1687 w      | 1.000     |  |
|                        |         |            |                      |            |            |         |        | 1660 m      | 1660 w    |  |
|                        |         |            |                      | 1000       | 1(20       |         | 1000   | 1645 m      |           |  |
|                        |         |            |                      | 1626 m     | 1638 W     |         | 1030 W |             | 1516      |  |
|                        |         |            |                      |            |            |         |        |             | 1516 W    |  |
|                        |         |            |                      |            |            |         |        | 1450        | 14/0 m    |  |
|                        |         |            |                      |            |            |         |        | 1450 m      | 1450 W    |  |
|                        |         |            |                      | 1176       |            |         |        | 1343 W      | 1350 W    |  |
|                        |         |            |                      | 11/6 m     |            |         |        |             |           |  |
|                        |         |            |                      | 1113 w     |            |         |        | 761         | 755       |  |
|                        |         |            |                      |            |            |         |        | /61 m       | 155 W     |  |
|                        |         |            |                      |            |            |         |        | 145 W       | 101 w     |  |
|                        |         |            |                      |            |            |         |        |             | 101 W     |  |
| Same                   | abbrev  | viations   | as in Tab            | ole 2.     |            |         |        |             |           |  |
|                        |         |            |                      |            |            |         |        |             |           |  |
|                        |         |            |                      |            |            |         |        |             |           |  |
|                        |         |            |                      |            |            |         |        |             |           |  |
|                        |         |            |                      |            |            |         |        |             |           |  |

J. Mol. Structure, 11 (1972)

calculated and observed frequencies  $(cm^{-1})$  for 4,4'-dichlorobiphenyl for various dihedral angles

| Calculated frequencies |          |              | cies              | Observed frequencies |         |            |           |                |            |  |  |
|------------------------|----------|--------------|-------------------|----------------------|---------|------------|-----------|----------------|------------|--|--|
| for all $\theta$       |          | Raman        |                   |                      |         | Infrared   |           |                |            |  |  |
|                        |          |              |                   | Solid                | Liquid  | G          | as        | Solid          | Liquid     |  |  |
| A Spe                  | cies (1  | $D_{2h} - A$ | $(A_u)$           |                      |         |            |           |                |            |  |  |
| Ag                     | 200      |              |                   |                      |         |            |           |                |            |  |  |
| 3072)                  |          |              |                   |                      |         |            |           |                |            |  |  |
| 3072)                  | No m     | ieasure      | ments             |                      |         |            |           |                |            |  |  |
| 1653                   |          |              |                   | 1597 vs              | 1597 vs | 1:         | 595 vs    | 1 -11 1        |            |  |  |
| 1503                   |          |              |                   | 1495                 |         | 1:         | 505 vw    | -87            | 1 - 1      |  |  |
| 1334                   |          |              |                   | 1287 vs              | 1284 vs | 12         | 275 vs    | -              | -          |  |  |
| 1174                   |          |              |                   | 1184 vs              | 1191 m  | 1          | 186 m     | and the second |            |  |  |
| 1088                   |          |              |                   | 1098 vs              | 1098 s  | 10         | 096 m     | -              | -          |  |  |
| 1012                   |          |              |                   | 1016 s               | 1018 m  | 10         | 013 w     | Co. There i    | -          |  |  |
| 788                    |          |              |                   | 773 s                | 773 m   |            | 768 s     | 1 I            | -          |  |  |
| 521                    |          |              |                   | 545* s               | 543* m  |            | 536 w     | 540 sh         | ML 07.     |  |  |
| 198                    |          |              |                   | 227 s                | 226 s   |            | 219 s     | 227 vw         | 1- 10      |  |  |
| 4                      |          |              |                   |                      |         |            | 123       |                |            |  |  |
| 964                    |          |              |                   | 973 w                | _       |            | 53 vw     | 971 vw         | 1.1        |  |  |
| 832                    |          |              |                   | 822* m               | 824* m  |            | 217 w     | 822 sh-w       |            |  |  |
| 408                    |          |              |                   | 421 W                | 413* m  |            | 106 m     | 410* s         | 414* s     |  |  |
| 400                    |          |              |                   | 721 W                | 415 III |            | 100 m     | 410 3          | 717 5      |  |  |
| B <sub>3</sub> Sp      | ecies (  | $D_{2h}-I$   | $B_{3u}, B_{3g})$ |                      |         |            |           |                |            |  |  |
| B <sub>3u</sub>        |          |              |                   |                      |         |            |           |                |            |  |  |
| 3072                   | No m     | easure       | ments             |                      |         |            |           |                |            |  |  |
| 3072)                  |          |              |                   |                      |         |            |           |                |            |  |  |
| 1563                   |          |              |                   | -                    |         |            |           | 1588 m         | 1593* m    |  |  |
| 1468                   |          |              |                   | - 100                |         |            | -         | 1474 vs        | 1474 s     |  |  |
| 1174                   |          |              |                   | -                    | -       | all don -  | - 19      | 1172 w/        | 1180 w     |  |  |
|                        |          |              |                   |                      |         |            |           | 1186 m         |            |  |  |
| 097                    |          |              |                   | 1078 m               | 1077 m  | 1          | 070 sh    | 1087 vs        | 1092 vs    |  |  |
| 025                    |          |              |                   | 1019 sh-w            | -       |            | -         | 1019 vs        | 1019 m     |  |  |
| 997                    |          |              |                   | 1000 vw              | -       |            | - Charles | 1003 vs        | 1004 s     |  |  |
| 712                    |          |              |                   | 706 w                | -       |            | -         | 702 s          | 704 s      |  |  |
| 420                    |          |              |                   | 424 sh-m             | 423 sh  | - 4        | -         | 420 m          | 423 w      |  |  |
| B 3.0                  |          |              |                   |                      |         |            |           |                |            |  |  |
| 964                    |          |              |                   | 966 w                |         |            |           | 962 w          | 957 w      |  |  |
| 832                    |          |              |                   | 828 m                | 824* m  | 10 1 1 m . | -         | 832* w         | 829* w     |  |  |
| 408                    |          |              |                   | 414 w                | 413* m  | 4          | 406 m     | 410* s         | 414* s     |  |  |
| 0-00                   | 300      | 600          | 000               |                      |         |            |           |                |            |  |  |
| P = 0                  | soies (  | D            |                   |                      |         |            |           |                |            |  |  |
| $B_1 Sp$               | ectes (. | $D_{2h}-L$   | (1g, D1u)         |                      |         |            |           |                |            |  |  |
| D <sub>1g</sub>        | 3070     | 2070         | 2072)             |                      |         |            |           |                |            |  |  |
| 2070                   | 3070     | 3070         | 3072              | No measu             | rements |            |           |                |            |  |  |
| 566                    | 1565     | 1564         | 1564              | 1540 -               |         |            |           | 1556           |            |  |  |
| 1300                   | 1305     | 1304         | 1375              | 1280                 |         |            |           | 1550 W         |            |  |  |
| 1207                   | 1207     | 1207         | 1200              | 1300 VW              |         |            |           |                |            |  |  |
| 201                    | 1207     | 1287         | 1290              | 12/5 m               | -       |            | 1 1 1     | IL STORE       | and a star |  |  |
| 1204                   | 1285     | 1285         | 1283              | 1242 W               | 1124    |            | 22        | 1117           | 1114       |  |  |
| 106                    | 1105     | 1103         | 1100              | 1123 m               | 1124 m  | 11         | 23 m      | III/w          | 1114 W     |  |  |
| 621                    | 621      | 622          | 624               | 628 m                | 629 m   | (          | 527 W     | 624 w          | 626 W      |  |  |
| 387                    | 383      | 373          | 363               | 373 m                | 370 w   |            | -         | 372 w          | 369 m      |  |  |
| 242                    | 261      | 277          | 289               | 274 m                | -       |            | -         | 271 w          | 270 m      |  |  |

J. Mol. Structure, 11 (1972)

# TABLE 4 (continued)

| Calculated frequencies |                                       | Observed frequencies |           |              |            |               |     |           |            |  |
|------------------------|---------------------------------------|----------------------|-----------|--------------|------------|---------------|-----|-----------|------------|--|
| for $\theta$           | -                                     |                      |           | Raman        |            |               |     | Infrared  |            |  |
| 0°                     | 30°                                   | 60°                  | 90°       | Solid        | Liquid     | (destruction) | Gas | Solid     | Liquid     |  |
| B11                    | Thek:                                 | 1940                 | 13.3      | - That was - | Distant of | Round         |     |           |            |  |
| 940                    | 940                                   | 941                  | 941       |              | -          |               | -   | 943 w     | 941 w      |  |
| 809                    | 810                                   | 813                  | 820       |              | -          |               | -   | 814 vs    | 812 vs     |  |
| 695                    | 698                                   | 705                  | 712       | 12           | -          |               | -   | 698 sh-m  | 696 w      |  |
| 472                    | 481                                   | 498                  | 512       | 11-11-1      | 1          |               | -   | 504/510 s | 501 s      |  |
| 233                    | 211                                   | 185                  | 161       | 219 w-sh     |            |               | -   | 215 w     | N- mar     |  |
| 42                     | 43                                    | 45                   | 48        | -            | -          |               | -   | 63 w?     | -          |  |
| R. SI                  | necies (                              | $D_{av} = I$         | R. R.)    |              |            |               |     |           |            |  |
| $B_2 o_p$<br>$B_{2u}$  | i i i i i i i i i i i i i i i i i i i | 2h L                 | 2u, D2g)  |              |            |               |     |           |            |  |
| 3070                   | 3070                                  | 3070                 | 3070      | -            | -          |               | -   | -         | - 2011     |  |
| 3070                   | 3070                                  | 3070                 | 3070      | -            | -          |               | -   | -         | - 19905    |  |
| 1569                   | 1568                                  | 1566                 | 1564      | -            | 22.184     |               | -   | 1595 m    | 1593 m     |  |
| 1368                   | 1368                                  | 1370                 | 1375      | 1394 vw      |            |               | -   | 1387 s    | 1389 s     |  |
| 1296                   | 1295                                  | 1293                 | 1290      | 1307 sh      | 20-100     |               | _   | 1300 w    | 1300 w     |  |
| 1279                   | 1279                                  | 1281                 | 1283      | -            | -          |               | -   | 1271 w    | - 191      |  |
| 1095                   | 1095                                  | 1097                 | 1100      | -            | -          |               | -   | 1100 s    | 100 sh-w   |  |
| 630                    | 629                                   | 627                  | 624       | 639 w        | 639 w      |               | -   | 637 w     | 637 w      |  |
| 306                    | 303                                   | 297                  | 289       | -            |            |               | -   | -         | -          |  |
| 63                     | 59                                    | 54                   | 48        | -            | -          |               | -   | 87–95 m   | -          |  |
| B22                    |                                       |                      |           |              |            |               |     |           |            |  |
| 944                    | 943                                   | 942                  | 941       | -            | -          |               | -   | 949 vw    | -          |  |
| 832                    | 831                                   | 826                  | 820       | 853 w        | 847 w      |               | -   | 850 s     | 843 m      |  |
| 707                    | 708                                   | 711                  | 712       | 727 m        | -          |               | -   | 723 m     | 722 w      |  |
| 518                    | 518                                   | 517                  | 512       | 542* m       | 543* m     |               | -   | 545 s     | 538 m      |  |
| 345                    | 348                                   | 355                  | 363       | 309 m        | 309 m      |               | -   | 306 w     | 306 m      |  |
| 119                    | 126                                   | 141                  | 161       | 150 vw       | 154 vw     |               |     | 157 w     |            |  |
|                        |                                       |                      |           | s 1724       |            |               |     |           |            |  |
| Unas                   | signed                                | observe              | ed freque | ncies        |            |               |     |           | 121        |  |
|                        |                                       |                      |           |              |            |               |     | 1675 w    | 1667 w     |  |
|                        |                                       |                      |           |              |            |               |     | 1640 w    | 1635 w     |  |
|                        |                                       |                      |           | 1633 w       | 1000       |               |     |           |            |  |
|                        |                                       |                      |           | 1516 m       | 1513 vw    |               |     | 1.1.1     | The second |  |
|                        |                                       |                      |           |              |            |               |     | 1488 m    | 1484 s     |  |
|                        |                                       |                      |           | 1453 vw      |            |               |     | 1455 m    | 1450 vw    |  |
|                        |                                       |                      |           | 1417 vw      |            |               |     | 1410 m    | 1411 vw    |  |
|                        |                                       |                      |           | 1224 vw      |            |               |     |           |            |  |
|                        |                                       |                      |           | 116.00       |            |               |     | 762 m     | 757 m      |  |
|                        |                                       |                      |           | 116 VS       |            |               |     |           |            |  |
|                        |                                       |                      |           | 104 Vs       |            |               |     |           |            |  |
|                        |                                       |                      |           | 56 m         |            |               |     |           |            |  |
|                        |                                       |                      |           | 42 m         |            |               |     |           |            |  |

Same abbreviations as in Table 2.

calculated and observed frequencies  $(cm^{-1})$  for 4,4'-dibromobiphenyl for various dihedral angles

| Calculated frequencies                    | Observed j |                |                  |           |      |      |      |
|-------------------------------------------|------------|----------------|------------------|-----------|------|------|------|
| for all θ                                 | Raman      | Infrared       |                  |           |      |      |      |
|                                           | Solid      | d Solid Liquid | -192             |           |      |      |      |
| A Species $(D_{2k} - A_{2k}, A_{2k})$     |            |                |                  | 820       | 1.18 | 1178 | Sec. |
| A-                                        |            |                |                  |           |      |      |      |
| 3072)                                     |            |                |                  |           |      |      |      |
| 3072 No measurements                      |            |                |                  |           |      |      |      |
| 1651                                      | 1587 vs    |                |                  |           |      |      |      |
| 1496                                      | 1498 m     |                | -                |           |      |      |      |
| 1339                                      | 1282 vs    | -              |                  |           |      |      |      |
| 1168                                      | 1184 s     | -              | _                |           |      |      |      |
| 1066                                      | 1069 s     | -              | -                |           |      |      |      |
| 1016                                      | 1010 s     | -              | -                |           |      |      |      |
| 771                                       | 757 s      | -              | 1.00 horas       |           |      |      |      |
| 443                                       | 460 s      | -              | TOP TOP 1        |           |      |      |      |
| 147                                       | 167 s      | -              | -                |           |      |      |      |
| A                                         |            |                |                  |           |      |      |      |
| 972                                       | 969 w      | 970 vw         | W. 863           | 812 N-AS3 |      |      |      |
| 827                                       | 818 m      | 814 m-sh       | _                |           |      |      |      |
| 411                                       | 408 m      | -              | -                |           |      |      |      |
| $B_3$ Species $(D_{2h} - B_{3m}, B_{3m})$ |            |                |                  |           |      |      |      |
| $B_{3}$                                   |            |                |                  |           |      |      |      |
| 3072)                                     |            |                |                  |           |      |      |      |
| 3072 No measurements                      |            |                |                  |           |      |      |      |
| 1560                                      | _          | 1584 m         | IT_ SHE          |           |      |      |      |
| 1462                                      | _          | 1471 vs        | 1470 s           |           |      |      |      |
| 1169                                      | -          | 1166 vw        | 34 <u>2</u> .001 |           |      |      |      |
| 1077                                      | -          | 1067 vs        | 1071 s           |           |      |      |      |
| 1028                                      | 1015 sh-w  | 1016 vs        | 1016 m           |           |      |      |      |
| 1001                                      | -          | 1001 vs        | 1000 s           |           |      |      |      |
| 679                                       | 671 w      | 672 s          | 672 s            |           |      |      |      |
| 321                                       | -          | 315 vs         | 316 vs           |           |      |      |      |
| B <sub>3g</sub>                           |            |                |                  |           |      |      |      |
| 972                                       | 962 w      | 962 w          |                  |           |      |      |      |
| 827                                       | 824 m      | 822 w          |                  |           |      |      |      |
| 411                                       | 415 s      | 410 m          | 412 s            |           |      |      |      |

J. Mol. Structure, 11 (1972)

# TABLE 5 (continued)

| Calculated frequencies |           | Observed.    | frequencies       |                |             |                   |  |
|------------------------|-----------|--------------|-------------------|----------------|-------------|-------------------|--|
| for $\theta$           | =         |              |                   | Raman          | Infrared    | 14 (1) (1) (1)    |  |
| 0°                     | 30°       | 60°          | 90°               | Solid          | Solid       | Liquid            |  |
| B <sub>1</sub> Sp      | ecies (   | $D_{2h} - B$ | $_{1g}, B_{1u}$   |                |             |                   |  |
| $B_{1g}$               |           |              |                   |                |             |                   |  |
| 3070                   | 3070      | 3070         | 3070              |                | -           |                   |  |
| 3069                   | 3069      | 3069         | 3059              | -              | -           | -                 |  |
| 1546                   | 1546      | 1548         | 1552              | 1538 vw        | -           | -                 |  |
| 1375                   | 1374      | 1370         | 1367              | -              | -           |                   |  |
| 1285                   | 1284      | 1283         | 1281              | 1263 w-sh      |             |                   |  |
| 1234                   | 1235      | 1238         | 1242              | 1224 w         | -           | -                 |  |
| 1095                   | 1094      | 1092         | 1090              | 1083 m         | 1076 s      | 1079 m            |  |
| 616                    | 616       | 617          | 618               | 623 m          | 623 w       | 624 vw            |  |
| 361                    | 357       | 349          | 340               | 354 m          | 356 w       | 355 w             |  |
| 182                    | 176       | 161          | 144               | 237 w          | 237 w       |                   |  |
| R.                     |           |              |                   |                |             |                   |  |
| 025                    | 025       | 025          | 026               |                | 044 100     |                   |  |
| 925                    | 917       | 925          | 920               | _              | 944 VW      | 808 MG            |  |
| 610                    | 617       | 020          | 710               | -              | 610 VS      | 600 VS            |  |
| 696                    | 698       | /04          | /10               | -              | 668 m       | 668 W             |  |
| 460                    | 4/1       | 492          | 509               | - 3            | 000/506 m   | 497 s             |  |
| 220                    | 220       | 221          | 222               | 192 w          | 190 vw      |                   |  |
| 33                     | 34        | 35           | 39                | -              | 73 w        | -                 |  |
| B <sub>2</sub> Sp      | pecies (. | $D_{2h}-B$   | $B_{2u}, B_{2g})$ |                |             |                   |  |
| 2070                   | 2070      | 2070         | 2060              |                |             |                   |  |
| 3070                   | 3070      | 3070         | 3009              | -              | of grant in | the second second |  |
| 3069                   | 3069      | 3069         | 3069              | -              | 1500        | 1500              |  |
| 1564                   | 1562      | 1556         | 1552              |                | 1590 w      | 1588 W            |  |
| 1364                   | 1364      | 1365         | 1367              | da altri Mass  | 1382 s      | 1383 m            |  |
| 1279                   | 1279      | 1280         | 1281              | -              | 1300 w      | 1300 vw           |  |
| 1248                   | 1247      | 1245         | 1242              | -              | -           | -                 |  |
| 1087                   | 1087      | 1088         | 1090              | 1103 vw        | 1100 m      | 1100 w            |  |
| 625                    | 624       | 622          | 618               | 632 w          | 635 w       | 635 w             |  |
| 223                    | 223       | 223          | 222               | -              | -           | -                 |  |
| 50                     | 48        | 43           | 39                | 98 vs          | 89 w        | -                 |  |
| Bas                    |           |              |                   |                |             |                   |  |
| 928                    | 928       | 927          | 926               |                | 949 vw      | -                 |  |
| 839                    | 837       | 833          | 827               | 844 w          | 848 m       | 841 m             |  |
| 703                    | 705       | 708          | 710               | 720 w          | 720 m       | 718 w             |  |
| 510                    | 518       | 516          | 500               | 540 w          | 542 m       | 537 m             |  |
| 328                    | 330       | 335          | 340               | 270 m          | 271 m       |                   |  |
| 100                    | 112       | 127          | 144               | 270 m          | 145 yr      |                   |  |
| 108                    | 115       | 127          | 144               | and the second | 145 VW      | -                 |  |
| Unas                   | signed    | observe      | ed freque         | ncies          |             |                   |  |
|                        |           |              |                   |                | 1670 w      |                   |  |
|                        |           |              |                   |                | 1635 w      |                   |  |
|                        |           |              |                   | 1628 w         |             |                   |  |
|                        |           |              |                   | 1490 m         | 1485 s      | 1485/1480 m       |  |
|                        |           |              |                   |                | 1452 w      |                   |  |
|                        |           |              |                   | 1271 w         |             |                   |  |
|                        |           |              |                   | 1235 vw        |             |                   |  |
|                        |           |              |                   | 1201 vw-s      | h           |                   |  |
|                        |           |              |                   | 1201 111-5     | 1117 w      | 1114 vw           |  |
|                        |           |              |                   |                | 538 sh-w    | 537 m             |  |
|                        |           |              |                   | 112 ve         | 108 vw      | oor m             |  |
|                        |           |              |                   | 112 45         | 100 ***     | an marine un      |  |

Same abbreviations as in Table 2.



Fig. 2. Solid, melt and gaseous Raman and solid and liquid infrared spectra of 4,4'-difluorobiphenyl.

Composite spectra of 4,4'-difluoro- and -dichloro-biphenyls are shown in Figs. 2 and 3. The spectra of biphenyl have been adequately presented previously and those of 4,4'-dibromobiphenyl are sufficiently similar to those of the dichloro compound not to warrant reproduction. In Fig. 4 the absorption spectrum of a crystallized melt of 4,4'-difluorobiphenyl is compared with that of the same compound as measured in an alkali halide disc.



Fig. 3. Solid, melt and gaseous Raman and solid and liquid infrared spectra of 4,4'-dichlorobiphenyl.

J. Mol. Structure, 11 (1972)





#### INTERPRETATION OF THE SPECTRA OF BIPHENYL

Previous investigations have established the majority of the assignments for planar biphenyl beyond any reasonable doubt. We shall therefore refer only to the main points of interest.

## A Species

The agreement between calculated and observed  $A_g$  frequencies is quite pleasing – especially in view of the fact that no attempt has been made to improve the fit by varying the transferred benzene force field. The greatest discrepancy is for the highest ring mode, which is 5 % high. In our experience this is a characteristic failing of the field used.

The assignments present no problem – all the bands being strongly polarized in the melt and remaining sharp in the gaseous phase. The calculated  $A_g$  and  $A_u$ frequencies do not vary with dihedral angle. The observed changes are indeed small (Table 2) for all, except the lowest mode, and are probably associated with small variations in the C-C force constants. We found it rather surprising that the lowest mode varied so strongly with phase until we examined the eigenvectors. About 30 % of the energy of this mode is associated with stretching of the central C-C bond and a further  $27\frac{1}{2}$  % arises from the adjacent ring angle deformation. This dependence then shows that there is indeed a reduction in these force constants as the molecule goes from planar solid to solution to gaseous phase. This change must be quite large, perhaps as high as 30 %, to account for the 7 % variation in frequency. Study of the deuterated biphenyls may elucidate the problem of the relative contributions of the two internal deformations. For the present we content ourselves with the observation that the variation from melt to gaseous phase is at least half of that from solid to melt.

The Raman polarization data positively identifies the A modes of the melt derived from the  $A_u$  modes of the planar configuration. Three moderate to strong

J. Mol. Structure, 11 (1972)

polarized bands appear in the melt where there were no bands in the solid. The extent of the increase in intensity, and the extent of the polarization, is surprising in view of the facts that the  $A_u$  modes are Raman active anyhow and the eigenvectors do not change with dihedral angle.

## $B_1$ Species

The calculated frequencies greater than 1000 cm<sup>-1</sup> do show small depenences on dihedral angle due to changes in the G matrix coupling terms between what were in-plane symmetry co-ordinates. The major angle dependence however is predicted to arise from interaction between the lowest  $b_{1g}$  and the second lowest  $b_{1u}$  vibrations. Both exhibit about 20 % shift in change of dihedral angle from 0° to 90°. Experimentally the  $b_{1u}$  band shifts 28 cm<sup>-1</sup> at 458 cm<sup>-1</sup>. No Raman band was observed in the liquid phase at the new frequency of this mode. In accord with this failure we could not find a Raman band in the crystal which could be assigned to the  $b_{1g}$  vibration, but an infrared band of moderate strength appears in the infrared at 367 cm<sup>-1</sup>. The observed frequency shift of the  $b_{1u}$  band is in accord with a dihedral angle in solution of near 40°. However it should be noted that the  $b_{1g}$  and  $b_{1u}$  frequencies are calculated to be about 50 and 30 cm<sup>-1</sup> high respectively. The interaction between the levels is sensitive to their frequency separation for reasons discussed earlier, and therefore the above deduction has an uncertainty of at least 10°. It is our hope that the studies of force fields and deuterated species which are in progress will allow these error limits to be decreased.

The major assignment problems in this species arise from the weakness of the associated Raman and infrared bands. It is reassuring that our calculations have vindicated the agreement of earlier studies in locating and assigning these fundamental transitions.

With the exception of the perturbation discussed earlier no effects of interaction between the  $b_{1g}$  and  $b_{1u}$  modes are found.

# B<sub>2</sub> Species

As with the  $B_1$  species, the higher frequency modes show up to 10 cm<sup>-1</sup> calculated shift with a dihedral angle change from 0° to 90°. Interaction between the two lowest  $b_{2u}$  and  $b_{2g}$  vibrations is significant, though not as great as with the  $b_1$  pair discussed earlier. Experimentally the frequency shifts are indeed small – the greatest being  $18 \text{ cm}^{-1}$  (lowest  $b_{2g}$  mode) – but there are strong intensity effects due to the strength of the  $b_{2u}$  and  $b_{2g}$  bands for the planar configuration. Thus the  $b_{2g}$  vibration at 546 cm<sup>-1</sup> gives rise to a strong infrared band in the melt, or in solution, due to interaction with the 626 cm<sup>-1</sup> band. Surprisingly the 626 cm<sup>-1</sup> band disappears in solution, but this is not because of a frequency shift since a moderate strength Raman band now occurs at 626 cm<sup>-1</sup>.

The frequency shift of the lowest  $b_{2g}$  mode, if attributed entirely to G matrix effects indicates a dihedral angle change of just over 60°. This result is rather suspect since the frequency shift from melt to vapour is 4 cm<sup>-1</sup> in the opposite direction. We consider this estimate too high and believe the deduction from the  $B_1$  species to be more reliable.

# B<sub>3</sub> Species

The identification of the  $b_{3u}$  vibrations is facilitated by the marked polarization of these bands along the *c* axis of the crystal<sup>7,9</sup>. No marked frequency or intensity effects are expected or observed with the single exception that the  $b_{3g}$ band at 838 cm<sup>-1</sup> gives rise to a moderate strength infrared band.

# DISCUSSION

The agreement between the spectral frequencies reported here and those reported by Zerbi and Sandroni<sup>9</sup> and by Pasquier and Lebas<sup>12</sup> is very good. Our assignments differ from those of Pasquier and Lebas only in minor details. This is an encouraging fact since their paper has come to our attention only since the completion of our work, and their assignments were arrived at essentially by qualitative arguments. The assignments of Zerbi and Sandroni for thein-plane species are again in good agreement as might be expected since they too were based on calculations, though for the planar case only.

The one outstanding gap in our present knowledge is the frequency of the torsion mode. Zerbi and Sandroni suggest that this might be 70 cm<sup>-1</sup> corresponding to an absorption in the neutron scattering spectrum. As a band appears at this frequency in the electromagnetic absorption spectrum and has alternative explanations as a fundamental this assignment may be discounted. In a recent analysis of the fluorescence spectrum<sup>17</sup> a long sequence of bands of frequency 635 cm<sup>-1</sup> was reported. On the assumption that the excited state was planar whilst the ground state was non-planar the authors pointed out that a progression in the torsion might be expected, and they assigned the long sequence accordingly. This is not tenable as such a high frequency would require an enormous torsion barrier.

A semi-empirical computation of internal energy of biphenyl as a function of dihedral angle,  $H_2C_2C_1$  angle and  $C_1C_1'$  bond length has been made<sup>18</sup>. The results were in excellent accord with known properties. The most stable configuration predicted for the free molecule had a dihedral angle of about 35° and a  $C_1C_1'$ bond length of about 1.50 Å. A planar configuration was predicted for the crystal with a slightly longer  $C_1-C_1'$  bond length of 1.52 Å. The barrier height predicted was 2.5 kcal mole<sup>-1</sup> at  $\chi = 0^\circ$  and 3.7 kcal mole<sup>-1</sup> at  $\chi = 90^\circ$ . An assumed barrier

J. Mol. Structure, 11 (1972)

height of 12.5 J mole<sup>-1</sup> (3 kcal mole<sup>-1</sup>) and a two-fold barrier, then, with F = 0.377 cm<sup>-1</sup> a torsion frequency of approximately 60 cm<sup>-1</sup> is predicted.

The predicted  $\pi$  orbital overlap energy between the rings decreases sharply with the dihedral angle. The flatness of the internal energy-dihedral angle curve is due to the simultaneous sharp drop in steric repulsion. The small change in bond length observed on passing from crystal to vapour does not therefore preclude a considerable change in the inter-ring force constant. Such a change is suggested by the behaviour of the lowest  $a_g$  mode.

## INTERPRETATION OF THE SPECTRA OF 4,4'-DIFLUOROBIPHENYL

In marked contrast to the biphenyl history there is no earlier detailed analysis of the spectrum. However the similarity in the spectra of biphenyl and of its diffuoro derivative – especially in the dependence of bands on phase and crystal orientation – allows a ready interpretation of the latter which is based on the earlier analyses of biphenyl itself.

# A Species

As with biphenyl no frequency shifts with dihedral angle change are predicted. The actual Raman bands due to the  $a_g$  and  $a_u$  modes are readily identified by the band polarizations and the sharpness of the bands in the vapour phase. Only the highest  $a_u$  mode is not located. Just as with biphenyl, the observed frequency shifts, on passing from solid to liquid to vapour, are small, with the single exception of that for the lowest  $a_g$  mode. The potential distribution is similar to that for biphenyl, and in principle this again should allow reasonable estimates for the change in bond order of the central C–C bond to be determined. A significant answer however could only be given after a careful analysis of the force field to ascertain the relative contributions due to the ring angle and the C–C stretch force constants. This difficulty is made clear when it is realised that the vibrations at 1603 and 1323 cm<sup>-1</sup> both have over 20 % of their energy in the central C–C stretching mode and both, in contrast to the 277 cm<sup>-1</sup> vibration, are calculated too high.

# $B_1$ Species

The intensity of many of the  $b_{1g}$  Raman bands is very weak – just as for biphenyl. Only three of the eight non C–H stretching modes can be located with any certainty. Strong interactions or the dihedral angle changes are predicted between the two lowest  $b_{1g}$  modes and the  $b_{1u}$  modes. Strong new infrared bands at 357 and 456 cm<sup>-1</sup> are clearly due to these formerly  $b_{1g}$  modes. The other interacting vibrations of the  $b_{1u}$  species in the planar case, show considerable frequency

J. Mol. Structure, 11 (1972)

shifts (10 % for a band at 283 cm<sup>-1</sup>), but in accord with the weakness of the Raman activity of the  $b_{1g}$  modes, no Raman bands can be located at the displaced frequencies.

The observed frequency shift of the 283 cm<sup>-1</sup> band would indicate a dihedral angle of about 32° in the solution. However the main interaction between this mode and the  $b_{1u}$  species is with the  $b_{1g}$  vibration at 464 cm<sup>-1</sup>. The observed difference in the energies of the two modes is 181 hc erg compared with a calculated value of 164 hc. The greater observed difference will lead to an underestimate of angle. An angle of 35° to 45° appears to be more realistic.

# B<sub>2</sub> Species

The general comments about frequency shifts and intensity changes made for this species of biphenyl apply equally well to 4,4'-difluorobiphenyl. Shifts are small, but intensity changes are quite dramatic. In particular the strong infrared bands of the solution at 847, 726 and 542 cm<sup>-1</sup> are due to formerly  $b_{2g}$  vibrations.

# B<sub>3</sub> Species

The behaviour of the bands due to the  $B_3$  species vibrations on allowing a melt to crystallize on a plate in itself gives good evidence for planarity, or near planarity, of the rings in 4,4'-difluorobiphenyl. It also suggests that the crystal structure is very similar to that of biphenyl in that the molecular axes along which the  $b_{3u}$  transition moments are orientated are all parallel and are perpendicular to the plate. This is shown as a very strong dichroic ratio for the  $b_{3u}$  bands as measured by relative intensities in the crystallized melt spectrum and in a KBr disc. Frequency shifts and activity changes are small.

INTERPRETATION OF THE SPECTRA OF 4,4'-DICHLOROBIPHENYL AND 4,4'-DIBROMOBI-PHENYL

In contrast to biphenyl and its 4,4'-difluoro derivative, the dichloro and dibromo derivatives show no significant frequency or intensity variations with change of state. The spectra can be fairly readily interpreted by comparison with the solution or molten state spectra of difluorobiphenyl on making allowance for the heavier masses of the substituents.

In a recent publication<sup>18</sup> the spectra of 4,4'-dichlorobiphenyl were briefly reported and interpreted on the basis of a planar system. The arguments presented in support of this were the similarity to the spectral frequencies of biphenyl itself and the simplicity of the spectrum. Neither argument is acceptable on the present much more extensive evidence. The major argument against a  $D_{2h}$  structure must be the almost total coincidence between observed infrared and Raman frequencies below 1000 cm<sup>-1</sup>.

J. Mol. Structure, 11 (1972)

It would be possible to assign the principal bands on the basis of the  $D_{2d}$  structure. The major evidence against this is the polarization of the Raman band at 413 cm<sup>-1</sup>. No measurements of polarization were made on the other weaker fundamentals derived from the  $A_u$  vibrations of the  $D_{2h}$  species.

Just as for difluorobiphenyl and for biphenyl there are considerable intensity changes of bands between a KBr disc spectrum and a solidified melt spectrum. The greatest changes occur for those bands which are certainly  $b_3$  fundamentals. In these instances the bands are weaker in the solidified melt. On the other hand not all bands which exhibit this intensity decrease can arise from  $b_3$  transitions. The principal deduction must be that the long axes are once more oriented almost perpendicular to the plane of major crystal development. This serves to assist vibrational assignments. A good example is afforded by the complex region around 1100 cm<sup>-1</sup>. In the crystallized melt spectrum a band at 1087 cm<sup>-1</sup> is strongly reduced in intensity relative to neighbouring bands. From this we deduce that the associated transition is of a different species to that of its neighbours and that it is to be identified as the  $b_3$ . From similar arguments our desire to assign one of the pair of infrared bands at 1186 and 1172 cm<sup>-1</sup> to a  $b_3$  fundamental, which is the only fundamental apart from an *a* expected in this region, has to be tempered by the lack of any orientation effects on the strengths of the bands.

Doublets near 970, 830 and 415 cm<sup>-1</sup> should clearly be assigned to the pairs of bands due to the a and  $b_3$  out-of-plane type vibrations. That such doublets exist is further support for the  $D_2$  structure.

The spectra of 4,4'-dibromobiphenyl are very similar to those of the dichloro analogue. Difficulty was experienced in obtaining a uniform crystallised melt spectrum. The material tended to form globules on the surface and crystallise in random orientations thereby probably explaining the fact that no marked intensity changes were observed.

On the existing evidence it is not possible to estimate quantitatively the dihedral angles in these molecules. However the similarity of the spectra with those of solutions of biphenyl and its 4,4'-difluoro derivative suggests similar angles.

#### CONCLUSION

It has been clearly demonstrated that change in conformation for biphenyl and 4,4'-difluorobiphenyl from  $D_{2h}$  to  $D_2$  symmetry is accompanied by changes in spectral activities and shifts of certain normal modes. The only high frequency shift observed was  $v_5(B_{2u})$  for difluorobiphenyl and this tallies with an observed shift for  $v_5(B_{2u})$  of 4,4'-dideuterobiphenyl from 1322 cm<sup>-1</sup> in the solid state to 1308 cm<sup>-1</sup> in solution. This can be explained in terms of lack of steric hindrance in the *ortho* hydrogens on twisting which would be expected to affect the  $\beta$ -CH bending modes.

J. Mol. Structure, 11 (1972)

Both the lowest  $a_{1g}$  modes for biphenyl and 4,4'-difluorobiphenyl are affected by a decrease of 15 cm<sup>-1</sup> and 13 cm<sup>-1</sup> respectively from solid to liquid and 9 cm<sup>-1</sup> from liquid to gas. These shifts have to be explained in terms of force constant changes about the central joining bond.

Several frequencies of these systems are predicted to shift. Comparison of calculated dihedral angle dependence and observed shifts leads to estimates for the dihedral angles of near 45°. A more accurate estimate of the dihedral angles in solution for these two molecules is being undertaken by using supplementary data from the deuterated species. With the additional observables the force field is being refined for  $D_{2h}$  symmetry, and then the dihedral angle will be varied until the practical shifts on the modes which move correspond to the theoretically predicted shift.

The conformations of 4,4'-dichloro- and 4,4'-dibromobiphenyl have been shown to be  $D_2$  irrespective of phase. The estimation of the angle here is more difficult because the frequency fit is not as good. The very poor solubilities of dichloro- and dibromobiphenyl in common organic solvents compared with biphenyl and diffuorobiphenyl indicates a difference in physical properties which may be related to structure.

#### ACKNOWLEDGEMENTS

One of us (R.M.B.) wishes to thank the Science Research Council for a studentship. We also acknowledge a grant by the Science Research Council towards the purchase of a Perkin-Elmer 325 spectrometer.

#### REFERENCES

- 1 A. HARGREAVES AND S. H. RIZVI, Acta Crystallogr., 15 (1962) 365.
- 2 J. TROTTER, Acta Crystallogr., 14 (1961) 1135.
- 3 O. BASTIANSEN, Acta Chem. Scand., 3 (1949) 408.
- 4 R. A. HOFFMAN, P. O. KINELL AND G. BERGSTRÖM, Ark. Kemi, 15 (1960) 534.
- 5 J. DALE, Acta Chem. Scand., 11 (1957) 640.
- 6 J. E. KATON AND E. R. LIPPINCOTT, Spectrochim. Acta, 15 (1959) 627.
- 7 D. STEELE AND E. R. LIPPINCOTT, J. Mol. Spectrosc., 6 (1961) 238.
- 8 G. V. PEREGUDOV, Opt. Spectrosc. (USSR), 9 (1960) 155.
- 9 G. ZERBI AND S. SANDRONI, Spectrochim. Acta, 24 A(1968) 483.
- 10 G. ZERBI AND S. SANDRONI, Spectrochim. Acta, 24A (1968) 511.
- 11 G. ZERBI AND S. SANDRONI, Spectrochim. Acta, 26A (1970) 1951.
- 12 B. PASQUIER AND J. M. LEBAS, J. Chim. Phys., 64 (1966) 765.
- 13 D. STEELE, J. Mol. Spectrosc., 15 (1965) 333.
- 14 J. C. DUINKER, Thesis for Doctorate of Natural Sciences, University of Amsterdam, 1964.
- 15 K. RADCLIFFE AND D. STEELE, Spectrochim. Acta, 25A (1969) 597.
- 16 R. E. BUCKLES AND N. G. WHEELER, Org. Syn., 31 (1951) 29.
- 17 E. C. LIM AND Y. H. LI, J. Chem. Phys., 52 (1970) 6416.
- 18 G. CASALONE, C. MARIANI, A. MUGNOLI AND M. SIMONETTA, Mol. Phys., 15 (1968) 339.