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ABSTRACT

In Chapter 1 to Section 2.3, pertinent probabilistic concepts, as 
well as notions of Markov property, are briefly discussed. Section 2.4 
is an account of the theory of boundary value problems for elliptic 
systems of linear partial differential operators of arbitrary orders. 
Particular attention is paid to the solution of the Dirichlet problem 
for such a system because it intervenes in the analysis of Chapter 4.

In Chapter 3, a spectral representation (THEOREM (3.2.13)) is 
provided for an arbitrary Euclidean covariant (see (3.2.11)) multicom
ponent generalized stochastic field. This result, obtained group-theoreti- 
cally, is then applied to the special case of a three component generalized 
stochastic field (see (3.2.25)), also needed in Chapter 4.

In Section 4.1, Wong's notion of Markov property is formulated. The 
rest of Chapter 4 is then concerned with the complete characterization of 
the class of all three dimensional Euclidean covariant Gaussian generalized 
stochastic fields which are Markov in the sense of Wong. It is also shown 
here that some of the latter are not also Markov in the sense of Nelson. 
Readers familiar with the work of Wong [94] will readily recognize the 
various results of Chapter 4 as extensions of those of Wong.

In Chapter 5, Wong's notion of Markov property is given abstract 
formulation (THEOREM (5.2)). Then it is demonstrated that, like Nelson's 
notion of Markov property, Wong's notion of Markov property is implied by 
the so-called pre-Markov property.

In Chapter 6, ways of extending the investigations of Chapter 4 to 
arbitrary multicomponent Euclidean covariant Gaussian generalized 
stochastic fields are indicated. It is then observed that the required 
extensions present no new problems or difficulties. Finally, Wong's notion



of Markov property is formulated much more generally and sufficient 
conditions (THEOREM (6.2.1)) for Markovicity in this extended formulation 
are furnished. These indicate that quite a large class of mathematically 
and physically interesting multicomponent Gaussian generalized stochastic 
fields are Markov in the sense of Wong.
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CHAPTER O
INTRODUCTION

The important concept of Markov property was first introduced 
for chains [15] of random variables at the beginning (1906) of this 
century by the Russian A. Markov, and subsequently extended, in a 
mathematically rigorous way, to stochastic processes indexed by the 
real line R by his compatriot A. Kolmogorov [40],[48]. Today, there 
exists a beautiful and highly developed theory of Markov stochastic 
processes and their applications [32-34][35][100][9][66]. Naturally, 
therefore, there is the irresistible urge to attempt to develop a 
similar theory for the generalizations of stochastic processes indexed 
by R.

Let (^,(&,y) be a probability space and let ^ y)2denote the inner product of L (O^G&,y). In 1948, Levy [43] defined a 
Brownian motion indexed by R^ as a mean zero Gaussian stochastic field 
{W(x) : X e R^}, with underlying probability space (0,Q^,y), such that

With this Brownian motion in mind. Levy [44], p.136, introduced the 
following notion of Markov property for stochastic fields.
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MARKOV STOCHASTIC FIELDS

Let D be an open subset of R^ with smooth closed boundary D 
and complement D'. Then, a stochastic field {x(x) : x e R^} defined 
on is said to be Markov of order r + 1, r = nonnegative
integer, if each approximation Y to X(x) in a neighbourhood of 9D, 
which possesses the property that

lim ~  |y (w ) - X(x )(w ) I = 0 ,  Ô = distance (x,9D), all w e fi, 
6+0 6^

is such that given Y, the random variables X(x) and X(y) are stochastically 
independent whenever x e D and y e D '.

If {X(x) : X e R^} is Markov of order ^r + 1 but not of order ^  r, 
then {X(x) : x e R^} is said to be Markov of finite order r + 1.

The above definition is the first known attempt to extend the concept 
of Markov property to stochastic fields.

Levy [44] pp.167-168, conjectured that the Brownian motion 
{W(x) : X E p2r+l^ ^ _ non^egative integer} is Markov of order r + 1,

This conjecture was subsequently proved true by McKean [54] who also 
established that the Brownian motion {W(x) ; x e R^} has no Markov 
property at all for even d. Indeed, McKean demonstrated that given

{ (9*̂ W) (x) ; X e 9D, 9 = normal derivative on 9D, k = 0,1,. ..,r}.

then W(x) is stochastically independent of W(y) for x e D and y e D'.
But a Brownian motion is, of course, not even once differentiable, and 
hence McKean explained the meaning of the phrase "the normal derivatives 
of a Brownian motion".
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Recently, Molchan [52] has furnished an alternative proof of 
Levy's conjecture and Pitt [64] has extended McKean's work to arbitrary 
Gaussian stochastic fields which are Markov of some finite order.
Molchan employs aspects of the theory of elliptic partial differential 
equations and the notion of the reproducing kernel Hilbert space [7] 
associated with a stochastic field. By a blending of these same ideas 
with those of McKean in [54] and by applying Peetre's characterization 
of differential operators [63], Pitt characterized a finite order 
Markovian Gaussian stochastic field, under some assumptions, by 
identifying the inner product of its reproducing kernel Hilbert space 
with the Dirichlet form [46] of an elliptic partial differential operator.

Results of the above type are, of course, certainly of relevance in 
the initial stages of development of a theory of Markov stochastic 
fields. But stochastic fields which are Markovian of finite order are 
clearly only a special class of Markovian fields. Indeed, McKean 
employs a generalization of Levy's notion of Markov property in [54], 
and his extended definition thus accommodates Markov stochastic fields 
which are not necessarily of finite order. In [41] [42], necessary and 
sufficient conditions for a Euclidean invariant scalar Gaussian 
stochastic field to be Markov in McKean's sense are presented under some 
assumptions on the spectral measure of the stochastic field. The last 
mentioned papers employ the novel theory of hyperfunctions [42].

The results of [41] [42] may be viewed as extensions of those of 
Molchan [52] and Pitt [64]. The next direction of research must now 
inevitably be that of first removing, if possible, the assumptions made 
in all the above references; then next one must take on the rather more 
daunting challenge of extending the analysis to non-Gaussian, as well as 
generalized, stochastic fields. In this respect, the road to the development
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of a theory of Markov stochastic fields remains a long and hard one.
Meanwhile, extensions of the concept of Markov property to 

generalized stochastic fields have been presented independently by 
Nelson [57] and Wong [94]. Nelson's notion of Markovicity is similar 
to McKean's mentioned above while Wong's definition is analogous to 
Levy's. It is these two concepts - particularly the latter - of 
Markovicity that are considered by us in this Thesis. In what follows, 
we first give an account of the motivation for Nelson's notion of Markov 
property; then we furnish a similar preamble in the case of Wong's notion, 
Finally, we give our own motivation for considering the problems in this 
Thesis.

MARKOV GENERALIZED STOCHASTIC FIELDS

It is well-known that Quantum Field Theory [8] [71] is a relativistic 
theory [67]; hence quantum fields [84] possess Minkowski space as their 
underlying space. Unfortunately, since Minkowski space has indefinite 
metric, the construction and analysis of Boson quantum fields are, 
therefore, bedevilled by rather difficult problems arising from the 
concomitant hyperbolicity of the field equations. It is, consequently,
natural to expect that if the time t parameter could be replaced by

2 *imaginary time it (i = -1) parameter in all quantum field theoretic
equations, so that Minkowski space is transformed into Euclidean space, 
that the problems would become of elliptic type and hence more tractable. 
However, the resulting Euclidean theory would be unphysical because it 
would then correspond to a theory with an unphysical, imaginary energy.

The above heuristic philosophy seems to have been first positively 
invoked by Dyson [102] in quantum electrodynamical computations. Later 
Schwinger [72] and Nakano [55] advocated the formulation of a Euclidean
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operator field theory and, indeed, they constructed Euclidean fields 
which are operators acting on a Euclidean analogue of the conventional 
quantum field theoretic Fock space [13]. In his paper [85], Symanzik 
made the crucially significant discovery - bearing in mind the use it 
has been put to recently - that the Euclidean fields of Schwinger and 
Nakano may be considered as generalized stochastic fields, upon whose 
theory one could then draw. But in the event of a successful completion 
of the above programme of understanding Euclidean fields, the important 
question - to which none of the above authors pre-empted or proposed an 
answer - would then naturally arise of how, if ever possible, to recover 
the physically interesting quantum fields from the Euclidean fields.

Recently, Nelson addressed himself to the last named problem: he
constructed Euclidean fields and then provided a scheme for the recovery 
of scalar Boson quantum fields from the Euclidean fields [57][58]. 
Nelson's work immediately lifted the study of Euclidean fields from its 
previous state of little attention to the limelight, and its results were 
soon avidly devoured and applied by constructive quantum field theorists 
[4-6][38][60][81][88]. Furthermore, other authors [29][62] also 
subsequently produced results on the same theme of constructing Euclidean 
fields and the recovery of quantum fields from them.

Nelson's work, which represents a rigorous mathematical formulation 
and extension of Symanzik's ideas, invokes Probability Theory - a subject 
justly recognized by so many for so long [18] [25] [37] [53] [56] [73-79] as 
destined to play a rôle of no small significance in quantum theoretic 
investigations. Thus, Nelson introduced two important notions [57][58] 
namely: Markov property and reflection property for scalar generalized
stochastic fields. We present these notions in Section 2.3. In [57], 
it is demonstrated that any scalar Euclidean invariant generalized



14

stochastic field which exhibits the two attributes of Markov property 
and reflection property of Nelson, and additionally satisfies some 
other technical assumptions, leads to a scalar Boson quantum field. 
However, in view of the results of [29] and [52] , not all Boson quantum 
fields are obtained in this way.

An example of a physically interesting scalar Euclidean invariant 
generalized stochastic field - because it satisfies both the Markov 
property and the reflection property of Nelson - is afforded by the 
Gaussian generalized stochastic field whose correlation functional is 
given by

where A is the Laplacian in d variables and -Q ( R ) is Schwartz space of 
rapidly decreasing functions. It is this generalized stochastic field 
which leads via Nelson's Reconstruction Theorem [57] to the free scalar 
Wightman quantum field.

It is perhaps pertinent to emphasize that Markov property and 
reflection property are crucial in Nelson's scheme [57] for recovering 
quantum fields from Euclidean fields. Introduction of the reflection 
property is necessitated by the need to eliminate the normal derivatives, 
on the boundary 3D of an open subset D of R^, of a given scalar 
generalized stochastic field. Thus the combination of Markov property + 
reflection property of Nelson for a scalar generalized stochastic field 
is analogous to Levy's notion of "Markov property of order 1".

In order not to proliferate assumptions, it is clear that any 
definition of Markov property which incorporates Nelson's notion of 
Markov property + reflection property is mathematically more satisfying
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because such a definition would suffice in the programme of constructing 
quantum fields. Thus, one needs a stronger notion of Markov property 
than Nelson's. Indeed, such a notion is formulated by Nelson himself 
in [57], but he later abandoned it because of the relative difficulty of 
employing it in his scheme. In the end. Nelson expressed the fervent 
hope of the possibility of eventually finding "a better way of imposing 
a strict notion of locality on a general Markov field" [57].

With the indicated intervention of Markov generalized stochastic 
fields in Constructive Quantum Field Theory, it is clear that a study 
of the former will be beneficial to the understanding of the latter.
Thus, for example, investigations of sample path continuity problems 
for the Markov scalar generalized stochastic field described above have 
been undertaken in [12][65][88]. However, the far more interesting, 
even exciting, problem of obtaining necessary and sufficient conditions 
for a generalized stochastic field to be Markov in the sense of Nelson 
is, to the best of the author's knowledge, still open. We, too, will 
not be addressing ourselves to this problem here. Instead, we investi
gate another physically and mathematically interesting notion of Markov 
property due to Wong [94]; we present this latter concept in Section 4.1.

The motivation for Wong's notion of Markov property is, in contrast 
to Nelson's, purely mathematical. Wong's notion of Markov property is 
formulated in [94] only for scalar Euclidean invariant Gaussian generalized 
stochastic fields, although this can be done much more generally. Wong 
[94] then obtained that a necessary and sufficient condition for Markovicity, 
in his sense, of a scalar Euclidean invariant Gaussian generalized stochastic 
field is that its correlation functional be given by

(«0̂  - A)-1 J,a,ax) ' “o ^ ° -
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But this is precisely the same scalar Gaussian generalized stochastic 
field which, as indicated earlier, satisfies Nelson's notion of Markov 
property + reflection property. Thus, Wong's notion of Markov property 
is itself also of physical interest because it delivers, in one and 
only one stroke, the important scalar Gaussian generalized stochastic 
field which leads by Nelson's Reconstruction Theorem [57] to the free 
scalar Wightman quantum field. Perhaps, this is precisely what Nelson 
had in mind - "It is possible that a better way of imposing a strict 
notion of locality on a general Markov field can be found." [57] - for 
it follows by what precedes that, at least in the case of a scalar 
Euclidean invariant Gaussian generalized stochastic field, it is manifestly 
sufficient to replace Nelson's notion of Markov property + reflection 
property by Wong's notion of Markov property. This discovery is at the 
root of our motivation for undertaking a study of Wong's notion of 
Markov property for Euclidean covariant multicomponent Gaussian generalized 
stochastic fields (see Section 3.2), and it is both mathematically and 
physically interesting to provide a complete characterization, if possible, 
of the class of all such Markov stochastic fields.

The various problems resolved in this Thesis seem best catalogued by 
presenting the results of each chapter, and this we have already done in 
the ABSTRACT. We, therefore, refer to the latter for details.

We have endeavoured to make this Thesis accessible to both probabilists 
and physicists not necessarily familiar with multicomponent Euclidean 
covariant generalized stochastic fields or the theory of boundary value 
problems for elliptic systems of linear partial differential operators of 
arbitrary orders. This has meant the inclusion of some propaedeutic 
material and adequate references at appropriate points in the text, for 
completeness.
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Finally, equations, theorems and clarifying remarks are numbered 
consecutively throughout each section of a given chapter; the symbol O  

signifies the conclusion of a proof and there is a bibliography at the 
end of the Thesis.
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•CHAPTER ■ 1
PROBABILITY THEORY

Probabilistic concepts and theorems, as well as the notational 
conventions, frequently employed in subsequent chapters are briefly 
surveyed here* This survey is largely propaedeutic and hence is by no 
means complete in itself: proofs of well-known theorems whihh are
readily found elsewhere are not furnished, but adequate references are 
supplied for the benefit of the interested reader,

1.1 PROBABILITY SPACE

Fix a nonempty abstract set ^ and let (2) denote a nonempty class of 
subsets of 0.
(1.1.1) DEFINITION is called a Boolean algebra, or simply an algebra, 
of subsets of provided that

(Bl) whenever A^ e and A^ e ̂ 3 r then their set-theoretic union

;
(B2) whenever A E , then its set-theoretic complement A' in 0 also 

belongs to © ,

(1.1.2) DEFINITION An algebra is called a Q-Boolean algebra, or 
simply a cr—algebra, of subsets of if it satisfies the following stronger 
formulation of condition (Bl):
(Bl*) whenever A^ E @  , i = 1,2,,.., then \ J  A. belongs to .

i=l ^
is the a-algebra of subsets of fi, then the pair (̂ XS> )

is called a measurable space and, furthermore, any A e ©  is called a 
measurable set.
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(1.1.3) DEFINITION Any function whose domain of definition is a class 
of sets is classed a set function. To us, unless there is a statement 
to the contrary, a measure u on (̂ ,(2>) is a countably additive [27]
set function y: &  [0 ,«].
(1.1.4) REMARK: In what follows, y will always be assumed complete 
i.e. y is such that the conditions B e (£> , A C.B and y (B) = O together 
imply that A e fi) (necessarily with y (A) = 0).

In case y(0) < <», then y is said to be finite on (̂ 2,@> ) and the
triplet (̂ ,(% ,y) is called a finite measure space.
(1.1.5) DEFINITION A probability space, with probability measure y, is
a finite measure space (^,%,y) for which y(0) = 1.

1.2 RANDOM VARIABLES

In this section, we introduce the notion of a random variable.
For the next definition, suppose that (î̂ ,̂(&ĵ) i = 1,2 are two 

measurable spaces and let f be a function with domain and range in
(1.2.1) DEFINITION f is a measurable function of (^^,(%^) into 
if for arbitrary A e ^ 2 ' the set

f ^(A) = E : f(w^) E a}

belongs to 62)̂ *
(1.2.2) REMARK: Let R^ denote the n-fold Cartesian product of the real 
line R with itself and denote by ^ the a-algebra of all subsets of
R^. A measurable function with domain and range in is called a 
Borel function.

(1.2.3) DEFINITION An n-dimensional R^-valued random variable on a 
probability space (îî,fi>,y) is a measurable function from (Sî,(2> ) into
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( (a similar definition holds, of course, in the case of an
t  ̂ -valued random variable on where C  is the set of all complex

numbers).
(1.2.4) REMARK: Let X = (X^,...,X^) be such an R^-valued random variable
on (̂ ,@* ,y). Then a probability measure y^, called the probability 
distribution of the random vector X, is naturally defined on ( R̂ ,(%ĵ ) 
in the following way:

y^(B) = y (X ^ (B) ) = y({w e 0:X(w) e B, B e (5R.̂ })

Let X = (x^,...,x^) e R^. Then the function x ->■ y^(x) = 
y({ü) e fi: X^(w) ^  x^, i = l,...,n}) is called the joint probability 
distribution function of the real-valued random variables X^, i = l,...,n.

y^ has the following distinguishing properties [95]
(Dl) y^ is nonnegative i.e. y^Xx) ^ O for all x e R^;

y^ is nondecreasing i.e. if a e R ^ i s a  v\o\xv\eĉofêJe.
y%(x) _< y^(x + a) ;

(d2) limit y^(x) = 0
{x̂ ->-<»,i=l,... ,n}

limit y^Xx) = 1
{xrf- 00 ,i=l,... ,n}

Indeed, any measurable function from R^ [0,1] satisfying (Dl) and 
(D2) will be called a probability distribution function [95].
(1.2.5) DEFINITION If F : bP' [0,1] is a probability distribution
function, then a set of random variables X^,...,X^ on some probability 
space, possessing F for their joint probability distribution function is 
called a realization of F. Every probability distribution function admits 
numerous realizations [95], [81], pages 19-21.
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(1.2.6) DEFINITION If (̂ ,(%) is a measurable space and y and v are 
a-finite [27] measures on then v is said to be absolutely 
continuous with respect to y, in symbols v «  y, provided that for all 
A e (S r y (A) = 0 implies v(A) = p. If v «  y and y «  v hold 
simultaneously, v and y are said to be equivalent, and we write v = y .

Antithetically, y and v are said to be mutually singular, or briefly 
singular, if there exists a set A e (B for which y (A) = 0  and v(B) = y (A/\B) 
for all B e (5à • In this case, we write v J. y
(1.2.7) RADON-NIKODYM THEOREM If , \ i) is a a-finite measure space 
and if a a-finite measure v on (Sl/B ) is absolutely continuous with respect 
to y, then there exists a finite-valued y-measurable nonnegative function  ̂

on Î2 such that

v(A) = j  y(dw)#(w) , A 6 0.
A

The function ^ is unique in the sense that if also

v ( A )  =  . f  y  (dco)(f)^(w) , A  E 0
A

then (|) and differ only on sets e Q satisfying y(A^) = O.

(1.2.8) REMARK: <}> is called the Radon-Nikodym derivative of v with
respect to y.

We omit a proof of (1.2.7) which may be found in [27],[39] §6.4, 
[101] p.93.
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1.3 STOCHASTIC INDEPENDENCE

If (Sî,ô,y) is a probability space, then the elements of (52> are 

called events.
(1.3.1) DEFINITION The events A ^ e S )  , i = l,...,n are said to be 
stochastically independent if for any arbitrary subset {a(j):j = 1,...,k } 
of the set {l,2,...,n}, we have

j=l. a(j) r a(j)

Let lS)£f i = l,...,n be sub a-algebras of Then in this case,
i = l,...,n are said to be stochastically independent if for every 

event A^ e the events {A_, i = l,...,n} are stochastically independent.
(1.3.2) REMARK; The above definitions are applied to random variables in 
the following way.

Let X^, i = l,...,n be random variables on (̂ ,(%>,y) and suppose that 
& .  is the minimal sub a-algebra of with respect to which X. is 
measurable. Then the random variables X^, i = l,...,n are said to be 
stochastically independent if the a-algebras (2)̂ , i = l,...,n are 
stochastically independent.

It seems convenient to introduce here the important concept of 
conditional probability.

If B e 2> f y(B) > O, then the conditional probability y (A/B) 
of A e given B is defined to be

By implication, if A, B e  &  are stochastically independent events, 
then



23

,(A/B) = = W(A)

1(1.3.3) DEFINITION If X e L (fi,©>,y), then 

EX = . / y (dm) X(w)

2is called the mean or expectation value of X. If X e L (J2,(£>,y) then

|x - EX||, = <X - EX, X - EX>
IT (0,6^,y)

is called the covariance of X. In this latter case, X necessarily belongs 
to L^(JÎ,ô,y). Any random variable possessing a covariance is called a 
second order random variable.

Next, we bring in the notion of characteristic functions.
(1.3.4) DEFINITION Let X = (X^,...,X^) be an R^-valued random variable 
on (^,&,y) and let t = (t^,...,t^) e bP . Then,

i.%1 t.X. i.?_ t.X.(w)
t C (t) = E e  ̂ = . / y (dw) e  ̂  ̂ ^

is called the characteristic function of X.
(1.3.5) REMARK; Every characteristic function C satisfies
(Cl) C(0) = 1
(C2) C is continuous on R^
(C3) C is nonnegative definite. This means that for any set

: i = 1,...,n } of complex numbers, we have

N N _
E E X. 1. C(t/ ' - t/]') > 0

i=i j=i ^ ]

(t'l' e r", i =
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(1.3.6) REMARK; Suppose we are given a function on R^ to (L 
which satisfies (Cl) and (C2). Then the following theorem is used to 
check whether or not it satisfies (C3).
(1.3.7) BOCHNER'S THEOREM A bounded continuous function on R^ to
is nonnegative definite if and only if it is the Fourier transform of a 
finite positive measure on ( R^, (R^).

Bochner's Theorem is very important in the probability theory of 
finite dimensional random variables [95][48]. A proof of (1.3.7) may be 
found in [95].

1.4 CONDITIONAL EXPECTATION

In the preceding section, we introduced the concept of stochastic 
independence. Indeed, this concept is only a special form of the more 
general notion of conditional stochastic independence which we introduce 
in this section. Much of our work in subsequent chapters actually involves 
the use of this more general concept.

Fundamental to the rigorous study of conditional stochastic 
independence is the notion of conditioning with respect to a given a-algebra 
of events.

Thus, let (^,(%,y) be a probability space and let (2)̂  be a sub
a-algebra of (2> . For f e L^(0,6&,y) set

4 (B) = J y(dw) Xg(w)f(w), B e (S)q/

where Xg is the indicator function of the set B e Clearly,
4 : (2)q R is a countably additive set function.

Let denote the restriction of y to Since, by definition,
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. y ̂  (B) = y (B) , for all B e

one sees that# is absolutely continuous with respect to y ^  . Hence, by
(1.2.7), there exists a unique (up to sets of y ^  measure zero)

(5î> ®(2>^-measurable function, denoted E(f \ ®>q ) or E ^ f, according to 

convenience, such that

#(B) = / y(dw) Xg(w)f(w) = ./ y^(do))E(f 1 (0^) (m)
B

for all B E

(1.4.1) DEFINITION The $)^-measurable function E(f 1 &q) is said to be 
the conditional expectation of the random variable f on (fi,S> ,y) given the 
sub a-algebra &  .
(1.4.2) REMARK: The conditional expectation operator E(* \ Oo^) or E

1is a linear, positivity-preserving operator on L (0,#S,y), which also 
possesses the following additional properties.
(1.4,.3) THEOREM Let f and
Then

& o(i) E f = , f, if f is

(ii) = e S

(iii) = -.E®'°°:

>̂ -measurable;

f } if S>QQ is a sub a-algebra of

(iv) / y (dm) g (0)) (E °f)(w) = / y(dw)f(w)(E %) (w)
if f,g belong to L (!̂ ,£>,y);

(v) E °fg = g E °f if g e L°^(^,@^,y);
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(vi) if 1& and are stochastically independent sub a-algebras of &
0 00 A

and if f e , then E °f = /y(dm)f(m) = Ef;
Ô,(vii) I |e *̂ f I <_ I |f I Ip if f e ,y), 1 1 P 1 ~/ where jj * jjp is

the norm of ,y) ; hence E is a contraction on
,y).

& 0(1.4.4) REMARK; (iv) and (vii) combine to imply that E is the 
orthogonal projection of L̂ (f2,fi>,y) on to (J2,£>̂ ,y). The verification 
of (i) through (vii) may be found in [82] and [88].

TWhen we have cause to invoke (1.4.3) in our subsequent analysis, we 
sometimes do so without explicit reference to (1.4.3).

1.5 STOCHASTIC PROCESSES

The theory of stochastic processes, which sometimes feature in our 
analysis in subsequent chapters, provides a fertile ground for the applica
tion of the concepts in abstract probability theory expounded in the 
preceding sections. Therefore, in this final section of this chapter, 
we provide a rapid introduction to the theory of stochastic processes.
(1.5.1) DEFINITION Let T be an index set. By a stochastic process, 
we mean a family

Ĥ ([2) = {X(t) : t e T}

of real- or complex-valued random variables X(t) indexed by T and 
possessing (fi,îS,y) for their common probability space.
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(1,5,2) REMARK: For simplicity, in what follows we set T = R. Let 
= {t^,...,t^} be a finite subset of points in R, and if as usual 

( R̂ ,(R_̂ ) is the n-dimensional Borel measurable space, let & (T̂ ) 
denote the sub o-algebra of (%> generated by the sets - called cylinder 
sets - of the form

Let denote the restriction of u to i2)(T ). Then ^T^ is a cylinder
n

set measure on &  [23]. Then the probability distribution induced on 
( Q̂ )̂ is given by

%(A) = Uj (x"l(A)) = ({us (X(t^) (01) ,...,X(t^) (lU)) e A, A e (5^"))
n' n n

Thus y is the joint probability distribution of the random variables 
n'

{X(t^) : i = 1,...,n}.

(1.5.3) REMARK: The foregoing analysis relates to the rather rare situation
where the probability space (0,&,y) is known from the beginning. More
often than not, the probability space (Q,lSa,y) is not known a priori, and
usually it is only the family of finite dimensional joint probability
distributions ^ : T^ e R^} that are available. The question is then 

n
posed as to whether or not there exists a stochastic process {X(t) : t e R}
on some probability space realizing these finite dimensional probability
distributions. The answer to this query is in the affirmative if the
finite dimensional probability distributions {y : T e R^} satisfy

n' "
two constraints, known as Kolmogorov Consistency Conditions, which may be 
formulated as follows:
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(Kl) If A e(R,^, so that A x R e then

WT ,%(&);n+1 n

(K2) If 7T denotes a permutation of (1,2,...,n), set

T%(n) " •

Let Y : R^ be the function given by

— 1Then, w„ » = Wq, x * Y

Thus permuting elements of the set T does not affect the y -measuren T^,X
of any fixed set in (R, .

The theory of stochastic processes owes much to the following 
result.
(1.5.4) THE KOLMOGOROV EXTENSION THEOREM Let T = (t.,...,t ) andn 1 n
let y be as above. If the family of finite dimensional probability 

n'
distribution {y :T % R^} satisfy (Kl) and (K2) above, then there T^,X n 0 •
is a real- or complex-valued stochastic process H (fi) = {x(t) : t e R}
on some probability space (̂ ,'(&,y) realizing the family of finite dimensional
probability distributions {y : T e R^}.T^,X n
(1.5.5) REMARK: The lengthy proof of this important theorem may be 
found in [39][66]. Whenever we assert that we are given a stochastic 
process {X(t) : t e R} in our subsequent analysis, it is always tacitly 
assumed that the finite dimensional probability distributions of the 
family {X(t) : t e R} of random variables satisfy (Kl) and (K2), so
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that by (1,5.4) there is a common probability space (f2,{&,y) on which 
X (t) is measurable for all t e R.
(1.5.6) EXAMPLE Let us now furnish an important example of a stochastic 
process. Let = {t^,...,t^} e and for A e set

n 1
n' A v=l 2e ^ v-l'

(Xq = tg = 0), where integration is performed first with respect to x^,
then with respect to x^ etc. and finally with respect to x^. Then
{y : T e R^} is a family of finite dimensional probability measures

" n non ( R ,(R. ). Moreover, {y^ ^ : T^ E satisfies (Kl) and (K2) as can
n'

readily be verified. Hence, by (1.5.4) there is a real-valued stochastic
process H^(0) = {X(t) : t e R} on some probability space (̂ ],%&,y) which
realize {y : T e R^}. H^(0) is called a Gaussian stochastic process

n'^ n
because its finite dimensional probability distributions y^ T e R^,

O ^are Gaussian measures [23]. H (̂ ) is, however, : more commonly called the
Ornstein-Uhlenbec process. The Ornstein-Uhlenbec process is the only
Gaussian process which is both stationary and Markov [19] (see later for
the explanation of these concepts).
(1.5.7) DEFINITION Let Ĥ (fi) = {x(t) : t E R} be a stochastic process 
on the probability space (f2,]S>,y). Then the quantities

m(t) = EX(t)
B(t,s) = <X(t),X(s)>

L^(0,3S,y)
R(t,s) = <X(t) - m(t), X(s) - m(s)>

l T ( o , Ü & , y )

are called respectively the mean value, correlation function and the 
covariance function of H^(0). When m(t) = O, for all t e R, then B(t,s) 
and R(t,s) are not distinguishable. If ||x(t)|[2 < ~ for all t e R, then



30

is said to be a second order stochastic process.
For the Ornstein-Uhlenbec process considered in (1.5.6), m(t) = O 

— I g Iand B(t,s) = e * '. Furthermore clearly this process is a second order
stochastic process.
(1.5.8) DEFINITION Let H°(^) = {X(t) : t e R} be a G\couv.SSW 
stochastic process. Then Ĥ (fi) is said to be stationary if

(a) EX(t) = K, a constant independent of t.
(b) , <X(t) - K, X(s) - K> depends only on t - s.

L (0,6&,y)
(1.5.9) REMARK: Let (̂ ) = {X(t) : t e R} be a stationary
stochastic process on (S2,fi>,y). We suppose, as we may, that each 
X(t)e 8^(0) has mean zero. H^(^) is a Sê fc of random
variables. Let Ĵ j<X) denote the completion in L̂ (fi,(2>,y) of H^(0). Then 
'"^X) is a Hilbert space of random variables with inner product given by

Next, introduce the shift or translation operator U (t), t e (-°°,°°), 
defined as follows

U(t)X(s) = X(t + s) , s,t e (-“,“).

Since each Y in ̂ :̂̂ X) is a limit in L̂ (̂ ,]£),y) of a sequence of random
N

variables of the form Z a.X(t.), U(t) may be extended by linearity and
i=l ^ ^

continuity to be defined on all of "^(X). Furthermore, U (t) is unitary 
on ^élX), for we have
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<U(t)X(s), U(t)X(Sg)>^^^x) = <X(t + s), X(t +

= , B(s - Sq )
= <X(s),

by stationarity. Hence by the penultimate sentence, U(t), t e , is
indeed unitary on all of ^^(X).

It is the preceding fact that makes stationary second order stochastic 
processes interesting to study, and the preceding analysis is at the root 
of a spectral representation for X(t) e ^^(X), In the next chapter, we 
extend the concept of a stochastic process by introducing the notion of a 
generalized stochastic field. In chapter 3 we introduce a generalization 
of the notion of stationarity. This generalization is called Euclidean 
covariance. In the same chapter, we obtain a spectral representation for 
an arbitrary member of a Euclidean covariant generalized stochastic field. 
It is with such a generalized stochastic field that we are concerned in
Chapter 4, and there the spectral representation obtained in Chapter 3 is
of paramount relevance.



32

CHAPTER 2 
RANDOM FIELDS AND ELLIPTIC PROBLEMS

Given the theory of the last chapter, we supply generalizations 
of various concepts and theorems expounded there in the first three 
sections of this chapter. Notions of Markov property for stochastic 
processes indexed by R and generalized stochastic fields are then 
discussed. Because of its relevance in forthcoming chapters, necessary 
and sufficient conditions for a multicomponent mean zero Gaussian 
stochastic process indexed by R to have the Markov property are 
obtained.

The last section of this chapter deals with boundary value problems 
for elliptic systems of linear partial differential equations. Because 
it intervenes in Section 4.5, we pay special attention to the exterior 
Dirichlet problem for such a system.

2.1 GENERALIZED STOCHASTIC FIELDS

In Section 1.5, the important notion of a stochastic process
OH (SÎ) = ,{X(t) : t e R} indexed by R and realized on some probability 
space (S2,(̂ >,y) was introduced and subsequently briefly discussed. It 
was there presupposed that each X(t) in Ĥ (fi) is a measurable function 
on (f2,lfi>,y) which is defined for each t e R. In many not uninteresting 
situations, however, the % -measurable function X(t) fails to be well- 
defined for all t e R [30] [95]. For example, the map t X(t) may be 
a random-variable-valued generalized function [23][88]. Thus in these 
cases, X(t) is a random variable only in a generalized sense which we 
make precise in the next definition. Indeed, a large part of our analysis 
in this and subsequent chapters deals with random variables belonging to 
this extended class.
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(2.1.1) DEFINITION Let (̂ ,1& ,y) be a probability space. Let V be a 
locally convex topological vector space [68]. Then a continuous linear 
mapping of V into the set of all random variables on (̂ ,lS),y), equipped 
with the topology of convergence in probability, is called a generalized 

random variable.
The next definition generalizes the notion of a stochastic process 

introduced in Section 1.5.
(2.1.2) DEFINITION By a generalized stochastic field indexed by V and 
possessing (^,Z&,y) as common underlying probability space, we mean a 
family (̂ ) = {f Ç(f) : f e V} of generalized random variables on

(o,T&,y).
(2.1.3) REMARK; Let = {f^ ; i = l,...,n} be a finite set of elements
of V. Then the finite dimensional probability distribution of the

n
generalized random variables (f̂ ) ; i = l,...,n} on (^,&,y) is given
by y^ (A) = y({w : (%(f̂ ) (m) ,...,^(f^) (m)) e A; A e 5^^} ) 

n
In comparison with the prevailing situation in the theory of stochastic
processes (Section 1.5), given a family {y^ : V = a finite set of

n
elements of V} of finite dimensional probability distributions, it becomes
an open question as to whether or not there is a generalized stochastic
field (̂ ) = ,{Ç(f) : f e on some probability space (S],]&,y) realizing
{yy }. Asking such a question is tantamount to demanding the conditions 

n
under which it is possible to install a countably additivity probability

*measure on the measurable space (V j'V') consisting of the topological dual 
V* of V and the minimal a-algebra 'V'containing all sêk,- V *
Fortunately, the relevant conditions which must be satisfied are well 
known [14] [23] [26] [73] [87]. Again, consistency conditions analogous to 
Kolmogorov Consistency Conditions intervene, and full details of how to 
put a probability measure on (V* /y^) are contained in the last named 
references; hence we shall not pursue the matter further here. In the next
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section, we merely describe (V*,V) and then state the analogue of 

Bochner's Theorem (1.3.7).

2.2 PROBABILITY MEASURES ON (V*,T )

In this section, V will continue to denote a locally convex 
topological vector space whose topological dual is V*. We begin by 

exhibiting the measurable space (V*,'Y‘)«
(2.2.1) DEFINITION Let F be a finite dimensional subspace of V and 
suppose that {f^,...,f^} constitutes a basis for F. Denote by < , > 
the bilinear pairing of elements of V and V*. Then the linear span F^ 
of the set

e V* : 5(f\) = <C,fi> = 0, i = l,...,n}

is called the annihilator of F.
(2.2.2) REMARK; Notice that since F is finite dimensional, it is 
isomorphic to its topological dual F*. On the other hand, the quotient 
space V*/F^ is isomorphic to F* and hence V*/F^ is itself finite 
dimensional.
(2.2.3) DEFINITION Let Hp denote the projection of V* onto the quotient 
space V*/F^. Then, say that a set A C.V* is a cylinder set based on F
if it admits the following type of representation; A = (B), where
B CV*/F^ is a Borel subset.

(2.2.4) REMARK; The class of all cylinder sets in V* clearly forms a 
Boolean algebra Let 'N/' denote the minimal a-Boolean algebra
generated by*Y'°- Then the pair (V*,^) is the sought-for measurable 
space on which a probability measure y may live.

Suppose now that y is a probability measure on (V*,^). Then the
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nonlinear functional

exp i<Ç,*> = exp iÇ(0 : V — > (5, Ç e V*

belongs to ( V * ,y). Hence, it makes sense to investigate the 

nonlinear functional

V

f \— > C(f) = / dy(Ç)exp i<Ç,f>
V*

The map f C(f) just defined is called the characteristic functional of 
the probability measure y. C(f) has the following properties

(Cl) C(0) = 1
(C2) C is continuous on V
(C3) C is nonnegative definite.

Any nonlinear functional possessing the properties (Cl), (C2), (C3) 
will be called a characteristic functional. Characteristic functionals 
are important because they afford the speediest method of putting probability 
measures on measurable spaces, as indicated in the next theorem.
(2.2.5) BOCHNER-MINLOS THEOREM Let f C(f) be a complex-valued 
functional on V which satisfies (Cl), (C2) and (C3) of (2.2.4). Then
there is a unique probability measure y on (V*,'̂ )̂ such that

C(f) = J dy(5) exp i<Ç,f>.
V*

(Of course, it is assumed here that V is nuclear [68]).
Proof of this important theorem may be found in [23] [30] [51].
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(2.2.6) REMARK; In the rest of this Thesis, the generalized stochastic 
fields we shall encounter will be those indexed by certain spaces of 
generalized functions [21][22] obtained by completing the Schwartz space 

— 0)( R̂ ) in some specified norms. It seems convenient, therefore, to
briefly recall the definition of -%( R^).

First, we bring in some notations. Let n = (n^,...,n^) be a d-tuple
of nonnegative integers and set |n] = n^ +...+ n^

n_ n n
8 ^ 8  8Set

Then --- is a differential operator monomial of order |n|. Next, let
8x^

R^) be the subspace of the Banach space C ( R^) such that each 
f e ( R̂ ) satisfies

lim |x 1̂  I f ) (x) I = 0
Ix|-><» 8x

for any derivative of order |n| of f and for any nonnegative integer m. 
We endow'§)^( R^) with the semi-norm ; -2)̂ ( R^) r _̂ = [o,«>)

f P%&(f) = . sup {(1 + |x 1̂ ) \ (—^  f ) (x) I : m <_ K, ]n| _<
XG R*

Then ~2>( R^) i s vaiW cNn in the locally convex topology
whose neighbourhood basis of the zero element is generated by sets of the 
form

N(f
’\ h  ° ....

where e >0, i = 1,...,} 
i^i
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R )̂ is called the Schwartz space of C*” functions on R^ which are 

rapidly decreasing at infinity.

2.3 NOTIONS OF MARKOV PROPERTY

(2.3.1) Markov property, or probabilistic casuality, is a statement of 
conditional stochastic independence of random variables, and as mentioned 
in Chapter 0, the notion of "conditioning" was first introduced by the 
Russian mathematician A. MARKOV [48]. His compatriot, KOLMOGOROV [40], 
then gave this important notion very rigorous mathematical basis by 
invoking Measure Theory. What are now known as Markov stochastic 
processes intervene in many important physical and mathematical consider
ations (see [19], Chapter X for various such examples) and a theory of 
these processes utilizing various mathematical methods [9][35][66] is at 
an advanced stage of development. However, which mathematical device is 
most suitable in the investigation of a given Markov stochastic process 
is largely dependent on what further properties are possessed by the 
process. Thus, for example, in the case of Markov stochastic processes 
possessing stationary transition functions, the modern theory of semi
groups of bounded linear operators [31] affords the most powerful and 
unified tool of study. In this section, we give a definition of Markov 
property for stochastic processes and then we furnish a necessary and 
sufficient condition for Markovicity of vector stochastic processes 
indexed by R, which are of second order and are Gaussian.

The definition of Markov property for stochastic processes indexed 
by R given below will be seen to explicitly utilize the ordering 
relation of points of R. In trying to extend the notion of Markov 
property for stochastic processes so that it may apply to a stochastic 
field {Ç(x) ; X e R^, d > l}, one is therefore handicapped by the fact
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that there is no corresponding ordering of the points of R^, d > 1.
Below, we give a notion of Markov property due to NELSON [57] [58]. In 
Chapter 4, we present the notion of Markov property due to WONG [94].
It is with these two notions of Markov property, and especially the latter, 
that we shall be exclusively concerned in subsequent chapters. Markov 
generalized stochastic fields have intervened in recent investigations 
in Constructive Quantum Field Theory [81][88]. However, unlike in the 
case of stochastic processes, the development of a theory of Markov 
generalized stochastic fields is still very much in its infancy, and our 
efforts in this work, therefore, constitute only a modest contribution to 
this fascinating subject. ^
(2.3.2) DEFINITION Let Ĥ (îî) = {x(t) : t e R} be a real or complex
valued stochastic process on (J],(S>,y). Let l2>(t) denote the minimal 
CT-algebra with respect to which every X(s), s ^  t, is measurable. Let

(t) denote the minimal c-algebra with respect to which every X(s), 
s 2 t, is measurable. Then Ĥ (SÎ) = {x(t) ; t e r } is said to have the 
Markov property if for any (t)-measurable random variable Y, we have

(2.3.3) E(Y\]e>(t)) = E(Y \ X(t))

up to sets of probability measure zero. In words, this equation states
that the future, given the past and the present, is equal to the future

/

given only the present.

(2.3.4) REMARK; An equivalent formulation of Markov property is obtained 
by requiring H (0) to satisfy the following condition if it is indeed 
Markov; if Y is (^(t)-measurable and Z is (2)'*’(t)-measurable, then
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(2.3.5) E(Zy | X(t)) = E(Z 1 X(t))E(Y ) X (t) )

up to sets of probability measure zero. Phenomenologically, (2.3.5) states 
that the future and the past are conditionally stochastically independent 
given the present.

The equivalence of (2.3.3) and (2.3.5) is readily established by 
invoking some of the properties of the conditional operator listed in
(1.4.3).

Next, let y(X(r) = Ç (r)) X(s) = g(s)) denote the probability that 
X(r) (w) = C(r) given that X(s) (w) = g(s), r > s. Set

(2.3.6) y(X(r) = 5 (r) I X(s) = g(s)) = P(Ç(r)j Ç(s)).

Then P(C(r)| C(s)) is called the transition function of the stochastic 
process H^(Q) = {x(r) : r e r } on the probability space (f2,^,y). The 
transition function P(g(r)| C(s)), r > s, of every Markov stochastic 
process H^(0) satisfies the following equation popularly known as the 
CHAPMAN-KOLMOGOROV condition

(2.3.7) P(5(r)| ÇCr^)) = . / P(Ç(r) | S(s))dP(S(s) | ? (r̂ ) ), r^ < s < r,

where F = R or (C is the state space of the stochastic process (0).
(2.3.7) is a consequence of (2.3.3). For, if Y is (r)-measurable and 
r^ < r, then

(2.3.8) E(Y 1 X(r^)) = E (E (Y | (g)(r) ) \ X(r^)) = E(E(Y| X(r))| X(r^))

by (2.3.3). The last equation is actually a disguised form of (2.3.7).
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Set B = {ü3 ; X(r) = Ç (r) } and let denote the indicator function of B. 
Then (2.3.7) may be written as

E (Xg I X (r̂ ) = Ç (r̂ ) ) = E (E (Xg \ X (s) = Ç (s) ) \ X (r̂ ) = g (r̂ ) )

which is a consequence of (2.3.8).
(2.3.9) REMARK; In the next theorem, we furnish a necessary and sufficient 
condition for a second order Gaussian vector stochastic process to have the 
Markov property. The theorem is a generalization of a similar one which 
already obtains in the case of a scalar Gaussian stochastic process
[15, Theorem 8.1] [95] . Presumably, our theorem is well-known, but we 
have found no proof, explicit or otherwise, of it elsewhere.
(2.3.10) THEOREM Let H^(^) = (x(r) = (X^(r)) ; r e r } be a mean zero 
second order Gaussian vector stochastic process indexed by R on the 
probability space (0^G6,y). Set

<X. (r), X (s)> = B , (r,s) .
 ̂ L̂ (s2,ia,u) ^

Suppose that B. . (r,r) = j|x. (r)|| ^ O for all j and all r e R,
and set

B., (r,s)

Finally, let R(r,s) denote the matrix whose entries are R (r,s).
Then, a necessary and sufficient condition for H^(0) to have the 

Markov property is that

R(r,s) = R(r,r^)R(rQ,s) ® < r^ £  r
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Proof; The condition is necessary. Indeed, observe that the random 
variables X^fr^) - (r̂ f s)Xĵ  (s) and X^(s) are mutually orthogonal in 
L̂ ([2,Ê>,y) and, being Gaussian, are consequently stochastically independent. 

Hence

E(Xi(ro> 1 Xĵ (s) = S%.(s))

= E(X.(rg) - R.ĵ (rjj,s)Xĵ (s) + R.^(r^,s)Xj^(s) | X^(s) = S%(s))

E(Xi(rQ) - R^j^(rQ,s)X^(s)[ Xĵ (s) = E%(s)) + E(R^^(r^,s)Xj^(s) | X^(s) = g^/s))

(2.3.10) = Rik(ro,s)5%(s),

because EX^ (r) = O for all j and all r e R. 
Next, set

Pij(^(r)l Ç(s)) = y(X^(r) = C^(r)l Xj(s) = %j(s))

Then, by the definition of conditional expectation, we have

(2.3.11) E(Xĵ (r) I Xĵ (s) = Çj.(s)) = / (r)dP^^ (Ç (r ) |ç (s) )
F

At this juncture, we bring in the Markov condition. Thus if 
O 'H (0) = fx(r) = (X̂ (r)) ; r e r } is indeed Markov, then its transition 
function necessarily satisfies the Chapman-Kolmogorov condition as it applies 
to a vector stochastic process, to wit

(2.3.12) Pi%(S(r)(C(s)) = Z / P^j(Ç(r) U(rQ))dP^^®rg) I 5(s))
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with s < r_ < r.0 —

Thus (2.3.11) becomes

E(X. (r) \ Xĵ (s) = (%(s))

r / / Ç^(r)dP^. (Ç(r) 1 Ç(r^))dP (ÇCr^)) Ç(s))
j F F

X / { / (r)dP.. (Ç (r) 1 Ç (r̂ ) ) } dP (Ç (r̂ ) | Ç (s) )
j F F

S < Tq  < r .

thanks to Fubini's Theorem [27]. The object enclosed in the chain bracket 
is E(X^(r) I Xj(rg) = Cj(r^)) and this latter by (2.3.10) is 

Rij (r,rQ)Çj(rg)• Hence

(2.3.13) E(X_(r)| X̂ (̂s) = Sĵ (s))

= ^  (r'ro'*jk(ro'S)Sk(s) s < fQ - r

again by (2.3.10) and (2.3.11). On the other hand, by

(2.3.10), E(X^(r)j X^(s) = S]j(s)) = R̂ ĵ (r,s)Çĵ (s)

Consequently, (2.3.13) becomes

*ik(r'S)Sk(s) = Ï *ij(r'ro)*ik(ro'S)Ek(s) s < < r
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or equivalently

(2.3.14) R(r,s) = R(r,rQ)R(r^,s) s < r^ < r

Therefore the condition is indeed necessary.
The condition is also sufficient. Indeed, if 

Ĥ (fi) = {x(r) = (X̂ (r)) : r e r } is a second order mean zero Gaussian 
vector stochastic process for which (2.3.14) holds then it follows that

(2.3.15) B.^(r,s) = X B.ĵ (r̂ ,s) s < 1  r

Equation (2.3.15) says that

. B.,(r,r̂ )
" " o '

is orthogonal to, and hence stochastically independent of, X^(s) for 
s < r^ ^  r. By (2.3.15), we have too that

E(X. (r) I X(r^) = (X. (r̂ ) ) ) = ç R.. (r,r^)X. (r̂ )

for

<X^(r) - I Kii(r,ro)X (r̂ ), X%(rQ)>
] Lr(o,Gs,y)

^ *i](r'ro)Bjk(ro'ro)

= 0 .
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Hence

E (r,r^)Xj(r^)

= E(X^(r) I XCr^) = (X̂  (r^) ) )

= E(X^(r) 1 X(p) = (Xj(p)) : P < r ^ < r )

by virtue of the penultimate observation. Hence H^(^) = {X(r) = (X^(r)) ; 
r e  r } is indeed Markov, and the condition is indeed also sufficient. This 
completes the proof.
(2.3.16) REMARK; If R(r,s) is invertible for all (r,s) e R x R,
then [1] the most general continuous solution of the functional equation
(2.3.14) is of the form

R(r,s) = G(r)H(s) s < r
= G (max(r,s) )H(min (r ,s) )

where G(") and H(«) are square matrices each of the same dimensionality 
as R(*,*)o However, in our use of (2,3.14) in later chapters, we place no 
invertibility assumption on R(",").

Next, we consider one definition of Markov property for generalized 
stochastic fields.
(2.3.17) NELSON’S NOTION OF MARKOV PROPERTY [57] [58]. We have already
made comments concerning this notion of Markov property in Chapter 0.
Hence, we now only give the relevant definition.

Let H^(0) = {Ç(f) : f e <^( R^)} be a generalized stochastic field 
on a probability space (0,Ü&,y). We always assume linearity for f ■> Ç (f), ■
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I.e.

5(af^ + Gfg) = otÇ(f̂ ) + 3 5 (̂ 2)' O' 9 E

except possibly on sets of y-measure zero, and we assume continuity in 
probability, i.e. if {f^} is a sequence of members of R^) converging
in the topology of R^) to f in R^), then {C(f^^} converges in

probability to Ç(f).
Next, let D be an open subset of R^ with boundary 8D and complement 

D'. We denote by |^(D) the minimal a-algebra generated by the set
{Ç (f) ; f e ,^( R^) with support of f d  D}, and we set

d&OD) = A2>(0)

where the intersection is over all open sets 0 which contain 9D.
"@)(3D) is called the boundary data a-algebra. Then

f G J^( R̂ ) } is said to be Markov in the sense of NELSON 
if for every positive random variable u e (3&(D), we have

(2.3.18) E(u I ®>(D')) = . E(u 1 (3)(9D))

except possibly on sets of y-measure zero.
In [57], [88], Nelson introduced the following concept.

(2.3.19) DEFINITION Let P T(p) be a homomorphism of the group of
d-1reflections in the hyperplane R into the group of automorphisms of 

the measure algebra [27, Section 40] of the probability space (f2,^,y). 
Then (̂ ) = (C(f) ; f G _^( R̂ ) } is said to possess the reflection 
property of Nelson if

T(p)u = u for all u e R^ )̂
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(2.3.20) REMARK; L e t ^ (  R^) be the completion of R^) in 
the norm derived from the inner product

, ; ^ (  R ) X ,5)̂  R ) -V R
R̂ )

(f(l)^f(2)j -V <f(l),f(2)> = <f(l), (m̂  - A)"lf(2)>
"^( R̂ ) lf( Rd\dx)

d g2
where A = Z  j  is the Laplace operator and m > 0. Nelson shows

i=l 9x.
in [57] [88] that tfee Gaussian generalized stochastic field whose correlation 
functional is given by <f^^\f^^^> satisfies his definitions of

r '̂)
Markov property and reflection property formulated above. By applying 
his reconstruction scheme [57][58][88], he then shows that this particular 
Gaussian generalized stochastic field leads to the free scalar Wightman 
quantum field [84]. In Chapter O, we have already indicated that this 
fact is at the root of our motivation to investigate Wong's definition of 
Markov property in the case of Gaussian multicomponent generalized 
stochastic fields.

2.4 BOUNDARY VALUE PROBLEMS

In our study of Wong's notion of Markov property in Chapter 4 for a 
multicomponent Gaussian generalized stochastic field (̂ ) = (Ç(f) =
(%̂ (f)) ; f ^ J^( R^)} we employ aspects of the theory of boundary value 
problems for elliptic systems of partial differential operators. In this 
section, we present a rapid introduction to this theory and in the course 
of doing so we establish our notations. It is perhaps worthwhile to 
mention that other authors [52] [54] [64] have also invoked the theory of 
boundary value problems for elliptic operators in their own study of 
notions of Markov property different from Wong's.
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The expository account presented here follows the treatment in

[2] [3][16] [46] [69-70] [80] [61].
(2.4.1) Let C^( R^), k e = set of nonnegative integers, denote the 
Banach space of k times continuously differentiable complex-valued 
functions on R^. Then we define the linear partial differential operator 
p (-̂ ) of order Z with constant complex coefficients a^,
n = (n^,...,n^) e Z^ , as follows

(2.4.2) P(|-)f = l a  -—  f, for all f e C*̂ ( R'̂)
|n|<2 " 3x"

9 OTo the operator P ( — ), we make correspond a polynomial n P (n),
d 9y e  R , in d variables, called the characteristic form of B (-^), defined

thus

(2.4.3) P°(n) = . Z y*
|n|=&

n ^1 ^2 ' *d , . . _dn = f n = (n^,...,n^) e Z^

Next, let A(|— ) be an N x N matrix whose entries A. . (-|—),dX. i j  dX
i,j = 1,...,N are linear partial differential operators with constant
coefficients. Let y A^^(y), y e R^, denote the characteristic form

9 0of j f ifj = 1,...,N. Let A (y) be the matrix whose entries are
A?j(n)/ ifj = 1,...,N. We denote by |A^(y)| the determinant of the
matrix A^(y).
(2.4.4) DEFINITION A(-^) = (Â ^̂  (-̂ ) ; i,j = 1,...,N) is said to be 
elliptic if

(i) IÂ  (y) I 7̂ 0 for all y e R^, y 0;
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(ii) there,exist integers ŝ , t^, i = such that the order
8of A. . (ir-) is S. + t., where it is understood that we set 1] dX 1 J

 ̂O if s. + t. < 0.

(2.4.5) REMARK: The following definition of ellipticity given by
VOLEVICH [90] has been shown by him to be equivalent to (2.4.4). To the

9 9matrix A(— ) of linear partial differential operators A . .(— ),oX Ij oX
i,j = 1,...,N, we make correspond the matrix y A(y), y e  R^, whose 
entries are the polynomials y A^j(y), i,j = 1,...,N in d variables. 
Then the determinant |A(y)I = L(y) of A(y) is given by

(2.4.6) L(y) Z (n) '•‘\(d)d^^^TT

, where tt runs through the symmetric group of all permutations of 
{l,...,d} and is the signature of tt. Since y L(y) is a polynomial
in d variables, we can associate with it a partial differential operator
9 OL (-— ) whose characteristic form we denote by L (y). Let r denote thedX

degree of L^(y) and let R denote the maximal degree of the summands on 
the right hand side of (2.4.6). In general r ^ R. Then the definition 
of ellipticity given in (2.4.4) is equivalent to the following formulation 
[90].

A(|^) = : i/j = 1,...,N) is elliptic if

(i) r = R
(ii) L^(y) 7̂  0 for all n e  R^, n ^ p.

We mention this equivalent definition of ellipticity because it is more 
readily checked than (2.4.4).

Let us now bring in other important notions.
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(2.4.7) DEFINITION A(^) = (\j (|̂ ) • ifj = 1,...,N) is said to be
properly elliptic if the polynomial n |A^(y)|, y e  R^, is of even
degree 2m and if for every pair y, y' e R^ of linearly independent
vectors, the polynomial t -> |A^(y + ry')| in the complex variable t
has exactly m roots with positive imaginary part.

8 8(2.4.8) REMARK: For d ^  3, every elliptic A(— ) = (^) • if] = 1,...,N)
is automatically properly elliptic [2] pp. 631-632. However for d = 2 this 
is no longer so.

In the next definition, we introduce a special class of properly 
elliptic operators.
(2.4.9) DEFINITION Let ŝ , t^, i = 1,...,N be as in (2.4.4). Then 
3 3A(-^) = : ifj = lf...,N) is said to be strongly elliptic if

t^ = s^ > 0 and if for every complex vector a = (a^,...,a^) and every 
n e  R^, a ^ p, n ^ O, we have

N s • _  N 2s .
(2.4.10) Re Z (-1) AT.(n)a.a:>K I  |n| la.I

-  1=1

where K > 0, is a constant.
(2.4.11) REMARK: In this section, our objective is to discuss boundary
value problems for elliptic operators. Suppose, therefore, that 
A(-“ ) = : if] = lf...,N) is a properly elliptic operator of

g
order 2m. Let B(^) be an m x N matrix whose entries are the linear

8partial differential operators (-^), h = 1,...,m, j = 1,...,N. Let D 
be an open (not necessarily bounded) subset of R^ whose complement is 
D', and with boundary 9d . Let C^^( R^) be the Banach space of elements 
of C^^( R̂ ) which vanish at infinity and let (Ĉ ’̂(D))^ denote the N-fold 
Cartesian product of C^^XD) with itself. For F = (F^,...,F^) belonging to 
(C(D))^, we now consider the problem of finding f = (f^,...,f^) belonging to 
(C^^(DV/ 9d ))^ such that
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^ 9(2.4.12) Z ^4 4 = F. in D, i = 1,...,Nj=l 13 9x 3 1

N
(2.4.13) Z \ j W ^ j  "  \  h=l,...,m

(2.4.14) fj = O at infinity, i = 1,...,N, if D is unbounded.

9 9First we remark that B (— ) = • h = l,...,m; j = 1,...,N) is
called a matrix of boundary operators associated with 

9 9A(-^) = : i/j = 1,...,N). Next, we mention that (2.4.12),
(2.4.13), (2.4.14) constitute what is called a properly elliptic boundary

9 9 9value problem, denoted {A(-^), B (-^)}, for the matrix of operators A(-^).
It is well-known [69], even in the classical case of the Laplace

d g2
operator A = Z ---— , that such a boundary value problem may or may not

i=l 9x_
be well-posed. In order to obtain a well-posed boundary value problem

9 9 9 9{A(g^), B(^) }, additional conditions must be imposed on B(-ĝ ) = ("̂ ) •

■ 9 9h = l,...,m; j = 1, —  ,N) relative to A(-^) = = 1,...,N);
■ 9thus B(-^) cannot be prescribed arbitrarily. In what follows, we describe 

the required additional conditions.
Let n ->■ B^j (n) r n e denote the characteristic form of B^^ (|̂ )

and let B^(n) denote the matrix whose entries are B^\(Y^), h = l,...,m; 
j = 1,...,N. Let n, n' be two linearly independent vectors in , and 
denote by Tĵ (n,n')/ k = l,...,m, the m roots with positive imaginary part 
of the characteristic equation |A^(n + tti') | = O in the complex variable x. 
The existence of these roots is assured by the proper ellipticity of 
A(-~); see (2.4.7). Set

m
n (t - T̂ (Ti,n')) = M(n,n',x).

k=l ^
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L e t J ^ T ] ) denote the adjoint of the matrix i P (n); thus
A^(n)y'^(ri) = ]A^(n)|l, i = identity N x N matrix. Then we introduce
the following

(2.4.15) DEFINITION B(|^) = (Bĵ j (|̂ ) : h = l,...,m; j = 1,...,N) is said
9 9to cover A (— ) = (A. (— ) ; i,j = 1,...,N) if there exist integers a, ,oX ij oX n

9 9h = l,...,m, such that B . (— ) is of order cr, + t. (set B . (— ) = 0n] ox n i h] ox
if + tj < 0) and if the rows of the matrix

B ^ ( n  +  x n '  ) +  x n )

(the entries of which are polynomials in x) are linearly independent 
modulo the polynomial M(ti,ti',x), i.e.

m N J
Z C Z B (n + XTI*)/̂ ., (n + xn') = o (mod M(n,n',x))only if C, = O, 

h=l j=l ]
h = 1,...,m.
(2.4.16) REMARK: We make the assumption in all that follows that
B (|̂ ) = (~) : h = 1,... ,m; j = 1,... ,N) covers A (~) = (Â  ̂(•— ) :

9 ' 9i, j = 1,... ,N). Then the boundary value problem {A (-̂ ) , B (^) } given by
(2.4.12), (2.4.13), (2.4.14) is well-posed [46][3].

In Chapter.4, we encounter an exterior Dirichlet boundary value problem
9 9for a strongly elliptic operator A(-^) = • if] = l,r..,N). We

wish, therefore, to describe the setting and solution of this problem.
Let A(~) = (A. . (|--) : i,j = 1,...,N) be strongly elliptic. Then, by 9x 13 ox

9definition, the order of A. . (-̂ ) is s. + t. where s., t., i = 1,...,N are
13 ox 1 3  1 1

integers such that s^ = t^ > O. Let D be a bounded open subset of R^
gwith boundary 9d and complement D'. Let —  denote differentiation in the 

direction of the outward normal n on 9D. Then the exterior Dirichlet 

boundary value problem is the following:

given F = (F^,...,F^) e (C(D'))^, find f = (f^,...,f^)
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belonging to (C^^(D'))^ such that

N 3
(2.4.17) E A (— )f = F in D', i = 1,...,Nj=l J 1

(2.4.18) (-^)^ on'bD, V = 0,1,... ,s^-l, i = 1,...,N

(2.4.19) = 0  at infinity, i = 1,...,N

(2.4.18) and (2.4.19) are called the Dirichlet data for (2.4.17). As
shown in [3] p.44, the system of operators  ̂ s v = 0,1,...,s^-l,

9 9i = 1,...,N} covers A(— ) = (Â j (-ĝ) : i,j = 1,...,N). Hence the exterior
Dirichlet boundary value problem is well-posed.

Below, we give integral representations for the functions f̂ ,
i = 1,...,N which solve (2.4.17), (2.4.18), (2.4.19) for a particular choice
of F = (F^,...,F^) and $ = ($̂  ̂ ; v = 0,1,...,s^-l, i = 1,...,N).
(2.4.2) GREEN'S MATRIX FOR AN ELLIPTIC SYSTEM Let A(|-) = (A. . (|~) :3x ]_] ox

9i,j = 1,...,N), where have as usual constant coefficients, be
elliptic. Consider the system of partial differential equations

N . 3
(2.4.21) E A.(-^)f. = ,F. , i=l,...,Nj=l ox J 1

Then a matrix (x,y) e(x,y) = (e_j(x,y) : i,j = 1,...,N) is called a
fundamental matrix for A(^) = • i,j = 1,...,N) if

N 3
(2.4.22) E (-̂ ) E^j(x,y) = 6̂  ̂ ô (x-y)

where 6^  ̂ is the Kronecker delta function and 6(x-y) is the Dirac delta 
"function". The elaborate exercise of constructing a fundamental matrix 
for an elliptic matrix of partial differential operators whose entries have
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analytic coefficients has been accomplished by JOHN [36] ,  Chapter 3.
Here we give the results of this reference in our particular case where

9Aij (-3^), ifj = 1,...,N have constant coefficients.
Thus let

s g (s) - --- 1— I — . for odd d
4!(27Ti)^‘-̂

s e R

-— j ̂ I for even d 
2! (2ni)*

Let P(n) be the matrix inverse of A(ri); and let C denote a path in 
the complex X-plane containing all the roots of |a (Xti) | = p. Then define 

the functions

(2.4.23) v _ ( x , n , t )  =  2^  f dX J  ^ ^ P _  (Xn)

x-n-t . 3
(2.4.24) V..(x,n,t) = - j dr g(r) V . (x, n, r+t)

0 J

(2.4.25) W..(x,y) = . . / . , , dO V (x,n,n'y)
C k{nE  p f :  n =1 }  ^

John [36] shows that a fundamental matrix

e(x,y) = (E^j(x,y) : i,j = 1,...,N) for A(|^) - <9̂ ) • Î “ 1/---/N)

is given by

(2.4.26) E^j(x,y) = . W\j(x,y)
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where is the Laplace operator in the d variables y = (y^,...,y^) 
and k = 1 for odd d, k = 2 for even d.

Next, let l̂ (x,y) = (^j (x,y) : i,j = 1,...,N) satisfy

A(|^)^(x,y) = 0 in D',

where 0 is the null N x N matrix, and assume that (x,y) (X'Y) is
continuous on D' \ J  9D with respect to the argument x for all i,j = 1,...,N. 
Suppose further that

^(x,y) = -G(x,y) for x e 9d and y e D'

Then the matrix (x,y) G(x,y) given by

(2.4.27) G(x,y) = e(x,y) + ̂ (x,y)

is also a fundamental matrix for A(-^) = • if] = 1,...,N).
Furthermore, we have

(2.4.28) G(x,y) = 0 ,  x e 9D

The matrix (x,y) ->■ G(x,y) is called the Green's matrix for
9 9 dA(-^) = (9̂ ) : ifj = 1,...,N) for the region D' of R . The Green's

matrix plays a fundamental role in the integral representations of solutions
of boundary value problems for elliptic systems. ^We need such integral
representations in Chapter 4; hence we shall next indicate how they are
obtained.
(2.4.29) DEFINITION M is said to be a bilinear differential operator 

of order s if

1=1
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where {P. (^), Q . (-̂ ) : i = 1,..., & < »} are linear partial differential1 dX 1 dX
operators (not necessarily with constant coefficients) such that

3 9order of P^(-^) + order of (-̂ ) = s, i = 1,..., Z

and where {a^ : i = l , , . ,,£<«»} is a set of complex numbers.
(2.4.30) REMARK: In what follows, always suppose that the elliptic
matrix A(-^) = (9̂ ) : if] = lf...,N) is also formally self-adjoint.
Then, as also indicated in [36], by integration by parts, we readily obtain

N
(2.4.31) Z / dxf(l)(x) (A . c|-)f f^’) (x) -i,j=l D' ^ «  ex 3

N
X / dx f(2) (X) (A. (^)f (l))(x)

i,j=l: D'  ̂ 13 ex 1

Z / da M (ff^*(x),fP’(x)) 
1,3=1 3D ^  J

where M.. is a bilinear differential operator of order s. + t. - 1, Recall 13 1 ]
that as in (2.4.4) the order of j is + t̂ . da is the surface 
measure on'bD.

(1) _ ^(2)Now, set f. = f. and f. = G., (*,y) in (2.4.31). Then 1 1 ] ]K

N
(2.4.32) f, (y) = E . / dx G (x,y) (A . (-^)f.) (x) + 

^ i,j=l D' ^
N

+ E j  do M .(f.(x),G (x,y)) y e D'.
i,j=l 3d ^

This is the integral representation we referred to above. Let us now make 

one, for us, important application of it.
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(2.4.33) AN EXTERIOR DIRICHLET BOUNDARY VALUE PROBLEM The following
particular boundary value problem arises in our analysis of Markov property

9 9in Chapter 4. Let A(— ) = j • if] = 1,...,N) be strongly elliptic
and formally self-adjoint. Consider the following exterior Dirichlet 
boundary value problem:

N 3
(2.4.34) Z A..(— )f. =0, in D', i = 1,...,N

j=l ]

(2.4.35) f^ = O at infinity, i = 1,...,N

(2.4.36) f^ = f? on 3d , i = 1,...,N

9(2.4.37) (^) f. = O, V = 1,... ,s.-l, i = 1,... ,N, on 3Don 1 jl

y

where n = outward normal on 3D. Then by (2.4.34) and (2.4.32) we have

N - -
■v(y) = z :/ d(J M . (f. (x),G., (x,y)), y e D', k=l,...,N

l,j=13D ^ 2k

Finally, by application of the Riesz representation theorem for a continuous 
linear functional on (C(3D))^ we see that this last equation may indeed be 
presented as follows

N
(2.4.38) f, (x) = E . / da (P (x,y) f° (y), xeD', k = 1,...,N

i=l 3D

The matrix 6^(x,y) = (6^^^ (x,y) : k,i = 1,...,N) is such that (2.4.36) 
holds and it has the following additional properties:

N ^
(2.4.39) ^E^ ^jk^9x^ = O in D', i,j = 1,...,N
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k,i =
(2.4.40) X (x,y) vanishes at infinity for all y e 3D,

(2.4.41) (3^ ) ^  (x,y) = 0 on 3D, v = l,...,s^-l, k = 1,...,N
— X

Thus, we have obtained integral representations (2.4.38) for the functions 
f̂ , i = 1,...,N which solve the exterior Dirichlet boundary value problem 
constituted by (2.4.34)-(2.4.37).

We shall utilize the integral representations (2.4.38) in Chapter 4. 
Meanwhile, in the next chapter, we provide a spectral representation for an 
arbitrary Euclidean covariant multicomponent generalized stochastic field.
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CHAPTER 3

HARMONIC ANALYSIS OF EUCLIDEAN COVARIANT GENERALIZED 
STOCHASTIC FIELDS

The analysis in the next chapter centres on a Euclidean covariant 
multicomponent generalized stochastic field. Here, we provide the spectral 
representation needed there for an arbitrary such field.

Towards the end of this chapter, our results are put to the test in 
the case where the field has only three components and we show that our 
spectral representation coincides with the one furnished by Yaglom in [97].

3.1 GROUP THEORETIC CONCEPTS

Let 1 • I : R̂  ̂+ R+ = [0,«) .

X |xj = ( E = r
i=l ^

denote the usual norm on R*^; j * |  is derived from the inner product
<-,*> ; R^ X R^ ^ R

(x,y) + <x,y> = E x.y.
i=l

Then, the finite dimensional Hilbert space E^ = ( R^, < ' , • > )  is called 
Euclidean space. Sometimes, we simply write R^ for E^.

The full Euclidean group M(d) is the group, whose group operation is 
the usual composition of maps, of all nonsingular nonlinear transformations

g : E^ 4. E^

X 4- gx
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such that <gx-gy, gx-gy> = <x-y, x-y> . M(d) is the semi-direct
product

. s
M(d) eg) Q(d)

of E^, which is an Abelian group under addition, with 0(d) —  the latter 
being defined as the group, with matrix multiplication for its group law, 
of all nonsingular linear transformations

h ; e '̂ E^
X 4- hx

such that determinant of h =il and |hx| = jxl.

d ®Thus each g e M(d) is a pair g = (a,h) e E ^  0(d) and 
X » gx = hx + a, X e E^. Furthermore if g^, gg E M(d) with 
g^ = (a^,h_), i = 1 ,2 , then

9l92 = '̂ 1 V2'^1^2V •

(3.1.1) DEFINITION Let G be an arbitrary topological group and let X be 
a topological space. Then G is said to be a group of transformations of X 
if each g e G determines a bijective and bi-continuous mapping

g : X X 
X ^ gx

satisfying the following

(i) if e G G is the identity element, then

e : X + X, X + ex, is the identity transformation of X onto itself;



60

(ii) g^Cg^x) = . for (g^fggfX) e G x G x X

(iii) the map f: G x X X
(g,x) -> f(g,x) = gx

is separately continuous on G x X.
A topological space X possessing a topological group G of transform

ations is called a group space. A readily available example of a group 
space is any topological group G. Another example of direct relevance to 
us is Euclidean space E*̂ , whose group of transformations is M(d).
(3.1.2) DEFINITION Let X be a group space with G as its group of 
transformations. Then X is called a homogeneous space if every x e X 
can be taken into every point in X by the action of G on X given in
(3.1.1) above. Then G is said to act transitively on X. G is said to 
act effectively on X if for g e G ,  g 7̂ e = the identity element, a point 
X e X exists such that gx ^ x.
(3.1.3) REMARK: It is well-known [24] that if X is a homogeneous space
whose group of transformations is G, and if K is the maximal subgroup of 
G which leaves a certain point x^ e X fixed, then X is isomorphic to the
quotient space G/K, Indeed, all homogeneous spaces may be described in
this way.

* (3.1.4) DEFINITION Let ^  be an infinite dimensional Hilbert space and
let U(^) be the group of all unitary operators on))rC. Then a unitary 
representation of the Euclidean group M(d) on ^  is a strongly continuous 
homomorphism of M(d) into U(^).

A unitary representation g T (g) of M (d) on is said to be
irreducible if the only subspaces of àÇ left invariant under its action
onVî, for all g e M(d), consist of the pair itself and {o} .
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(3.1.5) REMARK: We require knowledge, in the next section, of the
irreducible unitary representations of M(d). We, therefore, wish to 
describe them in what follows.

Let 7T denote the integral part of y d, i.e. tt is the largest integer
equal to or less than y  d. Then an arbitrary irreducible unitary
representation of the rotation group SO(d) is labelled by a n-tuple 
s = (s^,...,s ) of integers. We denote such a representation of SO(d)

(3) ^ (=1.....Vby V (h) or V (h), h e SO (d) , whichever notation we find
more convenient. The integers s^,...,s^ are assumed to satisfy the 
following conditions: (1) s^^O, i = l,..., tt-I;
(ii) for d = an even integer, s^ may be any positive or negative integer
such that the following inequalities hold

1 = 2  i  ••• V l  -

(iii) for d = an odd integer, s^ is always a nonnegative integer such 
that the following inequalities hold

ŝ  > s_ > ... s _ > s > O.1 —  Z TT“1 —  IT —

Thus, we now know how all the irreducible unitary representations of the
rotation group 80(d) may be enumerated. Since SO(d) is a compact
topological group, all its irreducible unitary representations are finite
dimensional. We denote by or 3^   ̂  ̂ the finite dimensional

(s)Hilbert space which is the representation space for V (h), h e SO (d), 
and let N(s) denote the dimension of .

Consider next the irreducible unitary representations of the full 
Euclidean group M(d). Here, the representations are labelled by a pair 
^ = (X,s) where X e [0 ,“) and s is a(5̂ -\Vtuple s = (s^,...,s^) of integers 
whose components satisfy conditions analogous to the three given in the
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preceding paragraph. We denote an irreducible unitary representation of 
M(d) by lA-(g) or or T .  ̂ (g), g e M(d), whichever
is the most convenient notation in a given context. Since M(d) is 
locally compact, but not compact, the irreducible unitary representations 
of M(d) are infinite dimensional. We denote by the infinite 
dimensional Hilbert space which is the representation space for T^(g), 
g e M (d).

Let g -> T^(g) be an irreducible unitary representation of 
d sM(d) = E 0SO(d). Then the restriction

T^(h) = T(^'S)(h), h e SO(d), of T^^'®^ (g) to SO(d)

is an infinite dimensional reducible unitary representation of SO(d).
(X s )As shown in [89], T ' (h), h e SO(d), decomposes as follows into a

direct sum of irreducible unitary representations of SO(d);

(3.1.6) T^^'S^Ch) = ®  )(h)C
n=0

(s') c (s')where h V (h) is the complex conjugate representation to V (h)
and s^ = (s^^,...,s^ ). We employ (3.1.6) in the next section.

Finally, for this section, we remark that a description of how to
obtain the matrix elements of the irreducible unitary representations of
the rotation group SO(d) and the full Euclidean group M(d) may be found
in [89]. For d = 3, [86] is also an adequate reference in this connection.

The representations (h) and {A(g) described above are called
single-valued irreducible unitary representations of SO(d) and M(d)
respectively, and it is these that we employ in our analysis in the sequel.
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3.2 SPECTRAL REPRESENTATIONS FOR EUCLIDEAN COVARIANT GENERALIZED 
STOCHASTIC FIELDS

We employ the group theoretic concepts enunciated in the last 
section in the services of this section in which we furnish spectral 
representations for generalized stochastic fields possessing certain 
transformation properties described below.

We begin with some definitions.
(3.2.1) DEFINITION Let G be a separable locally compact topological 
group of type one. Then the map g s G,

Yg : G -*■ G

9i ^ Yg?! = 99i

is called the left action of G on itself.
Next, we consider multicomponent stochastic fields indexed by G.

To this end, let (g) = (Çj (g)) : g e G} be a second order multicomponent 
stochastic field indexed by G on a probability space (0,#&,%).
(3.2.2) DEFINITION LetD^(g) and B(g^,g2) denote respectively the mean 
and correlation matrices of the multicomponent stochastic field
{C(g) = (Cj (g) : j = 1,...,N) ; g e G}. Let (L̂  (J2,S ,y) )^ denote the
N fold Cartesian product of L?(0,6&,p) with itself. Let H denote the
Hilbert space obtained by completing the ' {Ç(g) = (Çj (g) :

2 <-» Nj = 1,...,N) : g e g } of random vectors in (L ([ï,K>,y)) . Finally, let 
g U(g) be a strongly continuous representation of G on H. Then
(5(g) = (5j(g)) ; g e g } is said to be a left homogeneous stochastic 
field whose elements C(g), g e G, transform covariantly according to 
the representation g + U(g) of G if the following conditions are satisfied:
(i) the induced action V^ on H of the left action of G on itself is 

specified as follows
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(Vgï) (gĵ) = U(g)S(Yg ^g^) = U(g)Ç(g'\^), g,g^ e G

(ii) The matrices%l_(g) and B/g^fgg) are such that

(a) îJR(g^) = ü(g)ÏY\(g ĝ̂ )

(b) B(g^,g2) = . U (g) B (g \^,g (g) g^,g2 ,g e G, where U* (g)
is the adjoint of U(g).

(3. 2.3) REMARK: v_ Let g ->• T^(g) be an arbitrary irreducible unitary 
representation of G on a Hilbert s p a c e —. We denote by G* the 
topological dual space to G. Thus G* is the set of all equivalence classes 
of all irreducible inequivalent unitary representations of G. G*need not 
be a group [49] but it admits a Borel structure so that integration over G* 
is a well-defined notion [49].

Next, we remark that (ii) (a) of (3.2.2) is readily satisfied if 
Jï\(g) = ü(g)ï]flQ, g e G ,  where is some constant vector in C In view 
of our subsequent need for it, we are particularly interested in the most 
general form of B(g^,g2) which ensures that H^(Q) = {Ç(g) = (Çj (g) : 
j = 1,...,N) : g e G } is a left homogeneous stochastic field on (Ŝ,(6 ),ii). 
Fortunately, the solution of this problem is known and it entails providing 
a spectral representation for the components (g) of each Ç(g) in H^(^).
By taking Mackey's Theorem [50] into consideration and by invoking the most 
general form in which any positive definite function on G may be represented 
[20], YAGLOM [98] is finally able to establish the following result. We 
refer to [98] for the lengthy details of the proof of this theorem.
(3.2.4) THEOREM Let G be a separable locally compact topological group 
of type one and let g T— (g) be a strongly continuous irreducible unitary 

representation of G on a Hilbert space . Let H^(0) = {Ç(g) = (Çj (g) ; 
j = 1,...,N) : g E G} be a multicomponent second order stochastic field 
indexed by G on the probability space (îî/tâ/P)» Then H (f2) is a left



65

N

homogeneous second order stochastic field whose elements Ç (g) transform 
covariantly according to the representation U(g) of G on H if

(3.2.5) ^^^(g) = U(g)Y3lg, where is some constant vector in C
and

(3.2.6) B(g^,g2) = U(g^) / Tr [T^(g"^g^)F (dX]U(g^)* ,
G*

with Tr denoting the trace operator; or, equivalently, in a basis.

(3.2.7) B^(g2,g2) = Z Z '92> / 4 j
s,t—1 1,]—1 G

where F (A) =  (F^^ ^  (A) ), A  = Borel subset of G*, is a Hermitian nonnegative 
operator on the tensor product Hilbert space G& H of .̂nd H which
satisfies

P . . , ^ ( A o )  iïïlo,m B5lo,n ' ^   ̂ ^.........

with {t (g) ; g e g } being the identity representation of G, i.e.
. ^  hoT (g) = identity onVÇ. . Equation (3.2.7) is subject to the constraint
that the matrix elements {b (e,e) : e = identity element of g } must bemn
convergent.

Moreover, each Ç (g) e H^(^) admits the following spectral representation

(3.2.8) 5 (g) = U(g) J Tr[T^(g)Z(dA_)]
G*

or, equivalently, in a basis,
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where Z(A), A = a Borel subset of G*, is the vector random operator 
measure over G* whose components satisfy

Conversely, any matrix of the form (3.2.6) is the correlation matrix 
of some multicomponent left homogeneous stochastic field indexed by G, 
on a probability space (f2,fâ,y), whose mean is capable of assuming any 
value of the form (3.2.5). Such a left homogeneous multicomponent stochastic 
field will be of second order if and only if the entries of the matrix
(3.2.6) stay convergent for g^ = gg = e = identity element of G.
(3.2.10) REMARK: If H°(^) = {5(g) = (5j(g) : j = 1,...,N) : g e g } is
not of second order, because the convergence constraint may fail to be 
satisfied, then H^(0) is of second order only in a generalized sense.
Namely, we only require in that case that there exists a suitable class 
"^(G) of test functions [24] on G such that

converges for all m,n = 1,...,N, and f^^^ e '^(G), i = 1,2. We then 
that (̂ ) is a second order left homogeneous generalized stochastic

say

field indexed by ^ ( G )  on (^,0,y). Indeed, our interest is primarily in 
generalized stochastic fields.
(3.2.11) DEFINITION Let H°(0) = (f) = (Ĉ  (f) : j = l,...,N(s)) :
f e v^( R^)} be a second order multicomponent generalized stochastic field 
indexed by *£j( R^) on a probability space (^,$)fP). Let denote the
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Hilbert space obtained by completing the linear space H°(0) in

f P ) )  ̂  ̂f iGt h 4- V ̂  ̂(h), s = (s^,...,s^), be an irreducible
unitary representation of SO(d) on H^®^. Then, we say that H°(0) is a
Euclidean covariant generalized stochastic field transforming according

(s )to the representation h 4* v (h), h e SO(d), if it satisfies the 
following conditions:

(i) the induced action Tg on H^(0) of the transformation g of 
onto itself is specified as follows (XgÇ) (f) = V (h)5(Vgf)

(ii) the mean matrix ïï\j(f) and the correlation matrix B(f^^\f^^^) are 
such that
(a) iSÏVf) = V^®^(h)ïï\(Vgf)

(b) B(f(l),f(^)) = v(G)(h)B(Vgf(l),Vgf(2))v(G)(h)"^

-1 d swhere (Vgf ) (x) = f (g x) and g = (a,h) e M(d) = E 0(d)

(3.2.12) REMARK: In what follows, we give a spectral representation for
an arbitrary Euclidean covariant multicomponent stochastic field which
transforms according to an arbitrary irreducible unitary representation 

(s)h 4-V (h), h e 80(d). In doing so, we invoke (3.2.4). Our proof
and analysis may be compared with that presented by YAGLOM in [97]. The
spectral representation which we obtain below plays a significant role 
in our study of Wong's notion of Markov property in the next Chapter.
(3.2.13) THEOREM Let H^(Q) = {5(f) = ,(5j (f) : j = l,...,N(s)) :
f e *^( R^) } be a second order generalized stochastic field indexed by 
'^( R^) on Let h 4- (h) be a strongly continuous

( s )irreducible unitary representation of SO(d) on the Hilbert space H 
obtained by completing the linear space {5 (f) = (5  ̂(f) : j = 1,...,N(s)) :

f e '3 ( R^) } of random vectors in (L̂  (J2,l2 > rp) ) ^
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Then H^(^) is a Euclidean covariant generalized stochastic field
(s)whose elements transform according to the representation h 4- v (h) 

if and only if

(i) ŜïV(f) =0, all f G R^), where 0 is the null column matrix
(ii) the correlation matrix B(f^^\f^^^) of each 5(f) in H°(^) has 

entries B̂ ^̂  (f ,f ̂ ^̂  ) = Jdx dy f (x)Bĵ  ̂(x-y) f ̂ ^̂ (y) where the 
kernels B^^(x-y) are given by

(3.2.14) B (x-y) = . / F(dX)T- (x-y)
^  M(d)*

where F(*) is a measure on the Borel subsets of M(d)* whose restriction 
to R_j_ = [0,«>) is tempered and, furthermore, F (0) = p. The matrix 
elements T ^  (g) of T^(g) are taken in a basis in which h 4- (h) is
real.

The components 5j (f) of each 5(f) e (0) each has a spectral 
representation given by

5j (f ) = . / dx 5j(x)f(x) , where

(3.2.15) 5.(x) = E f Z (dX)T^ (x)
 ̂ m=l M(d)* ]

with

Proof: Recall that R^ is a homogeneous ■ space whose group of transformations
is the full Euclidean group M(d). Hence GH (SÎ) = (5 (x) = (5j (x) : 
j = 1,...,N(s)) : X e R^} may appropriately be considered as a Euclidean 
covariant multicomponent stochastic field transforming according to the
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(s )representation h ->■ v (h), h e SO(d), which is indexed by M(d) and 
which is constant over all left cosets of M(d) modulo SO(d). With this 
realization. Theorem (3.2.4) is available if we make the identification 
G = M(d). Then by invoking (3.2.8) , it follows that the random variable

W(s) _ (s)n. <g) = I Çj(g)v. . (h) , (h,g) e SO(d) x M(d)j=l 2 31

therefore admits the spectral representation

(3.2.16) ni(g) = ^
m,n=0 M(d)*

where A, A' are Borel subsets of M(d)*, the topological dual of M(d) 
Since we require that 5%(g) be constant over all left cosets of 

M(d) modulo SO(d), therefore, we have

5%(g) = Çĵ (gh) , all h e SO(d).
Hence, for all h e SO(d),

N(s) _(s)
Tl.(gh) = Z 5. (gh)v' ' (h)

j=l. ]

N(s)
Z 5 (g) (h)
j=l ]

n^(g)
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Thus, by (3.2,16), we now have

or equivalently.

■ . , L .{«.

Conversely, it follows from (3.2.17) that 5^X9) = 5ĵ (gh) for all 
h e SO(d). Hence (3.2.17) is both necessary and sufficient in order that 
GH^(O) = {5 (x) = (5j(x)) : X e R^)} be a Euclidean covariant stochastic 
field indexed by R^, which is isomorphic to M(d)/SO(d).

Let dg be the Haar measure for the Euclidean group M(d). Since the 
matrix elements (9) : 9 E M(d)} satisfy

M(d)

where A is some normalization constant and ^  6(X̂  is a point measure
on M(d)* which reduces to the Kronecker delta function if ^ = an integer 
and which is the Dirac <S-function on R̂ , therefore multiplication of both 
sides of (3.2.17) by (g) followed by integration with respect to the

Haar measure dg for M(d), now furnishes

r,m,n=o ' m ,n=0 M {d ) *
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Thus

i  ■ .L
or
(3.2.18) /r=0 M(d)* /M(d)

Next, by (3.1.6), we have

(3.1.6) T^(h) = ) (h)
v=0

(gV)where h -> V (h), v = 0,1,..., are inequivalent irreducible unitary
representations of SO(d), and we assume that basis has been judiciously

/ V.
chosen such that the representations {V (h)} of SO(d) appear in real 
form. Thus, we now have

(3.2.19)

Employing (3.2.19) in (3.2.18), we have

vy M(d)* y V V

■ «i»
Pq

Thus, if (̂h) denotes the identity representation of SO(d) on
we have from the preceding equation that

N(s^) V.
(3.2.20) I  f Z: _ , (d^)V^® '(h)

r =1 M(d)* V P
N(s) V  r
: (h) J

o o
=1 p^ M(d)* P& (̂2.) 

0
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Next, multiply both sides of (3.2.20) by (h) and integrate with
respect to the Haar measure dh for SO(d). Then, we obtain

N(s^)

P,

Hence

\ \  « ( d ) .  “  \ \ u L *

Consequently, we have

where A ->■ Z^(A) is a new stochastic measure satisfying

= 6^, F(aA A ' )
L (ù2 f7Ü r y )

and F ( • ) is a countably additive measure on the a-algebra of subsets of
(s)M(d)*. Z^(A) and F (A) depend only on the representation h V (h)

of SO(d).
Therefore, since

n(g) = , (h"^)5(g) = /  TrtT"(g)Z(dX)]
M(d)*

it follows that the components of 5(x) are given by
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N(s^) N(s)
Sjfx) = Z ^ ^ / Z (dX)\A (g)vf?) (h)_

 ̂ v=0,m=l n^=l =1 M(d)* v ' ] \

~ N(s^) N(s)

v=0,m=l n^=l

“ N(s)
i.e. (.(%) = Z Z / Z„WX)tA- , (g)v!?' (h)

2 m=l i =1 M(d)* “ ~ 21
0

Hence, we may finally write

M(d)*

N(s)
(3.2.21) Ç.(x) = Z Z / Z„(dX)lA. (g)v!?

2 m=l 1=1 M(d)* m -  mi ]i
(s) (h)

y f s)Next, we observe that the functions (g,h) T^. (g)V.. (h) onmi jl
M(d) X SO(d) truly depend only on x e and not on g e M(d). To see 

this, notice that

/g\4i'9)v!.’(h)
1=1

= I ((a,e) (0,h))v!^^ (h), since g = (a,e) (0,h)^ mi J1

^ ^ ( ( a , e ) ) T ^ ( h ) V j ^  (h)
1, X,

T^,((a,e))V<f (h)v'f (h)

Z T ^  ( (a,e) ) since h 4- v^^^(h) is real
Z

T^.((a,e))
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Let us write (a) for {(a,e)), a e r'̂. Then (3.2.21) becomes

(3.2.22) Ç.(x) = r / Z„(dX)Ti. (x),
2 m=l M(d)* * -

X e R̂ .

From this spectral representation for 5  ̂(x) , it follows that

B.. (x-y) = <Ç.d(x),Ç,(y)>
2" 2 k

Thus

(3.2.23) B.. (x-y) = f F(dMTj- (x-y)
2k M(d)* 2

Finally, the temperedness of F(') on R^ = [0,®) follows from Schwartz 
Nuclear Theorem [17] [23] since (f^^\f^^^) 4  (f ,f ̂^̂  ) is a separately
continuous bilinear functional on ~:̂ ( R̂ ) x ( R ). This completes proof

m
of the theorem.
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(3.2.24) REMARK: It is perhaps worthy of note that (3.2.23) has been 
obtained without any assumption concerning the probability distribution 
of elements of the generalized stochastic field (f) = (Ç̂  (f) :
j = l,...,N(s) : f e -^( R^)} on the probability space (S2/10>,y). However, 
in the next chapter where we undertake an exhaustive study of Wong's 
definition of Markov property for multicomponent Euclidean covariant 
generalized stochastic fields, we are obliged to assume that 

{C(f) = (Sj (f) : j = l,...,N(s)) : f E \$)( R^)} is Gaussian on (J2,^,y).
(3.2.25) REMARK: It seems instructive to put (3.2.23) to the test and 
see what it really gives us in the simple case where d = 3. For d = 3, 
the inequivalent irreducible unitary representations of M(3) are labelled 
by the pair ^  = (X,s) e R^ x Z, where Z is the set of all integers. Thus

M(3)* = . R^ X Z

*The spectral measure F(") on the measurable subsets of M(3) = ^  x Z
is atomic on Z for all fixed measurable A e R^y i.e. s ->• F (A, {s}) is
atomic for all measurable A e R^, Furthermore, F (A, {s}) = F (A, {-s}), for 
all measurable A e R^.

XNext, we must present the matrix elements of T— (x-y), ^  = (X,s) e R^ x z,
in an orthonormal basis in which the irreducible unitary representations
h ^ V^^)(h), n = 0,1,...,«, of SO(3) are real. In what follows, we first
present the matrix elements of T^(x-y) in a canonical complex orthonormal

Xbasis and then we arrive at the matrix elements of T— (x-y) in the desired 
basis mentioned in the foregoing sentence by means of a unitary transforma
tion. To this end, we now introduce certain functions which are very 

familiar in the representation theory of SO(3).

Let (a)^ = 1 for n = 0
= a(a+l)(a+2)...(a+n-1), for n > 0

with a e R.
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Then the hypergeometric function x 2Fi(a,b;c;x) is defined as follows

(a) (b) n
(3.2.26) ,F, (a,b;c;x) = Z  ^

 ̂  ̂ n=0 (c)n

iWe now define the function 0 ^ d (0), 0 e [o ,7t] , with - & < m.n <mn — —
& > 0 , as follows

for m > n. For n > m, d^ (0) = (-1)^ ^d^ (0) where d^ (0) is given by —  mn nm nm
(3.2.27).

&Also there are the associated Legendre functions P (z) defined asm
follows

0 /2 ^%2 yM/ 2  . . Jl+m 2 &
(3.2.28) P*(Z) =  2 _  (zT - 1) * , 0 < m < Jl

® 2 ^ 1  - -

2 ^ 1  az^-”

Then, the spherical harmonics, which form an orthonormal basis for
2 2 2 3 2L (S ,dO), S = unit sphere in R and dJ2 = surface measure on S , are
given by

(3.2.29) Y^^(8,*) = (4„/(2 +D >

& = 0,1,...,«, - & <m ^ &. In Section 4,3 we provide certain recurrence 

formulae satisfied by the functions
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TlIn [86], the matrix elements of T— (x-y), A = (X,s) e R x Z,
—  +

are expressed in the orthonormal basis {̂ (̂0,(f)) ; Z = 0,1,
- j!, < m < &} given by

(3.2.30) E® (8,4) = ((2& + l)/4n)l/2im-Sa& (e)ê ®'(’x,m ms

In this basis, the matrix elements tj^(x-y) of T^(x-y) are given by [86].

(3.2.31) t- (x-y) = 3 Z (Zk+Di’̂ (-l)®"^® (̂  ^ q ) (̂  ^ — —mn ,  ̂ s -s 0 m -n n-mk=0 (X x-y|)

• Tk,m-n(

where (x-y)' = | , |x-y| ^ 0 , and (̂  )̂ are the so-called three-j
functions which we define in Section 4.4, equation (4.4.1).

XThe matrix elements T-r, (x-y), (X,s) e R  x Z, are taken in aJK T
basis in which the irreducible unitary representations of SO(3) are real;

Xhence they are related to t—^(x-y), ^ = ( X , s ), given in (3.2,31) by a 
unitary transformation U as follows

A +1 _  X(3.2.32) (x-y) = Z U t- (x-y)
m,n=r-l

Employing (3.2.32) in (3.2.23) , we see that we must first compute

b (x-y) = / F(dX, (si) t/^'^^fx-y)
R^x Z ™

Now, b ^  (x-y) is given by
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1
' - s  o " - n  n-J '

Set
z (-i)G(i  ̂„) F(ax,{s}) = F(k)(dX)S=-1 S -s u

Then, we have

F^^Nax) = (1 0 o )F (d x , {o } )  -  { ( _ !  Î  q) + (J _l o ) } F ( a x , { i } )

Hence

k=0 0 (X|x-y|)

= J  J  « n^nn((^-Y)') / F'°’(dX)^
J,JXtx-y|)

m -n n-m- 'mn oo'(*-?'') f ^ (X|x-y|)%

, i „ - u  1 - Y, , M  ■ . ; > « > « «

Next, we invoke (4.4.1) to obtain

p ( ° ) ( d X )  =  ( ( - l ) / V 3 ) ( F ( d X , { 0 } )  + 2 F ( d X , { l } ) )

F^^^(dX) = (4//5T) (F(dX,{0}) - F(dX,{l}))
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Thus

/ (FMX,{0}) +2P{dX,{l})) .
0

JL(X|x-y|)

+ -n n!m)?2.m-n((=-?)') /<F(dX,{0})-F(dX,{!}))-iti

2_______
(X|x-y|)^

(X|x-y|)

Set

F(dX,{0}) + 2F(dX,{l}) = dO^^^fX)

2F(dX,{0}) + F(dX,{l}) = d$^^^(X)

Then, F(dX,{0}) - F(dX,{l}) =

Next, we note that

- 1 1  2 . . .m-n 1 / (2+n-m) ! (2+m-n) I ...  . 1/2
m -n n-m (1-n) ! (1-m) ! (1+n) ! (1+m) !

Hence, we have that

0

(x|x-y|)
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From the preceding, it now follows that

+1 _
(3.2.33) B.^(x-y) = I U F^b_^(x-y)

m,n,— 1

m,n=-l  ̂   O (X x-y )'

+ < - a > ( ( î % a ! i ) ' : d i (i+m):> ,m-n<m,n=-l 0

J^^;(X|x-y|)
(X|x-y|)^

_. , 1 1 0 .  1 , w. 1-m ,Since ( _) = —  (-1) , we havem -m O ^  .

+1
Z

m,n=-l
(3.2.34) Z /3 (-1)̂ "̂ (̂̂   ̂ ° )U .U , 6m -n m-n mj nk mn

Also, we may choose the unitary transformation U such that

(3.2.35) r  ( - 1 ) aim) Mltni : (i+m) i’ ^ 2 ,m-n ’m,n=-l

/irT |x I /4TT

The initarity of U now implies that the above statement is equivalent to 
the following
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+1 3 -  1Z ——  u .u — —̂r- —   6
j,k=-i Æ F  P: |x|2 Æ  PI

=  ̂  ̂(l-n) : (1-m) ! (1+n) ! (1+m) ^  "m]"pi°qk"nk^2,m-n'
m,n=-l

= (-1)1 ^ (— i.? 1 ( 2+p-q ) !------- .1/2' ^ (̂1-q)î(1-p):(1+q):(1+p):  ̂ 2̂,p-q(* '

Consequently, by employing (3.2.34) and (3.2.35) in (3.2.33) and
1recalling that Y (x') =   , we have that B (x-y) may be written as
Æ "

1 7 (1) Jutx|x-y|)(3.2.36) B (x-y) = / a$'^' (X) ^  +
 ̂  ̂ 0 (Xlx-y|):

0 (X|x-y|)^ Æ F  ]x-y| / 4ir ^

Now, the second term on the right hand side of (3.2.36) may be rewritten 
in another form if we invoke the following recurrence relation between 
Bessel functions:

J^^l(Z) = 2VZ-1 J^(Z) - J^_^(Z)

Put V = 3/2 in the above relation. Then, we have

Thus, the second term on the right hand side of (3.2.36) becomes
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0 (X|x-y|)2 /iT |x-y| A tF ^

V l - y l ’ V > i ’ ' v V  .
A ï ï  o (X|x-y|)̂  ̂ |x-y|

00
- ' -—  6., J d ) (X)

Jr 2 ^X\x- y \)

t/4tF O (X I x-y I ) ̂

. J - Î  " y - i ' - v v
/i7 0 (X|x-y|) ̂  [x-y 2

1 - (2) (1) d].(Xlx-y|)+ —  6 / d($' '-$( ') (X)
(XI x-y I)

Hence (3.2.36) now becomes

" I #  s .  *

+ —  6 /  d(*(2)_$(l)) (x) J£—
Æ T   ̂ O (X|x-y|)2
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and we have finally

1 “f (2) J^(^|x-yl)(3.2.37) B. (x-y) =- --- / d# (X) — -̂-------r +
Æ T  O (X|x-y|)^

. J -  ] .«''■-.'■■ipi.îte'.*'-;'*. _ .  i a i l r j ü ,
Æ T  0 ,(X|x-y|)^ |x-y|2 (Xlx-yl)^*^

The expression (3.2.37) for B., (x-y) has been obtained also by 
YAGLOM [97] by a different method. In the indicated reference Yaglom 
considers a vector generalized stochastic field with an arbitrary number 
of components.

In the next chapter, we make use of (3.2.37) when we discuss Wong's 
notion of Markov property for the vector Gaussian generalized stochastic 
field

= {Ç(f) = : f e •5(
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CHAPTER 4 

MARKOV PROPERTY

This chapter deals with the complete characterization of the class 
of all Euclidean covariant multicomponent Gaussian generalized stochastic 
fields which are Markov in the sense of Wong [94]. The analysis involved 
in the accomplishment of this task is far more subtle than the one under
taken by Wong [94] in the case of scalar Euclidean invariant Gaussian 
generalized stochastic fields, and an intimate blend of Functional 
Analysis, probability theory, group theory and the theory of boundary value 
problems for elliptic systems of linear partial differential equations is 
needed in the final solution of the problem.

In order to simplify computations, the random variables and function 
spaces employed here are all assumed complex-valued. All sesquilinear 
forms are linear in the first argument and antilinear in the second.

4.1 WONG'S NOTION OF MARKOV PROPERTY

Let (^,%,y) be a probability space and let Ĥ (fi) = (f ) = ,(Çj (f ) : 
j = 1,...,N) : f E } be an arbitrary Euclidean covariant generalized
stochastic field on (Q,fi>,ij). In Chapter 3, we obtained a spectral 
representation for each Ç (f ) e Ĥ ([2). In doing so, we made no assumptions 
concerning the probability distributions of members of Ĥ (Sî). In this 
chapter, however, we always assume that Ĥ (fi) is indeed Gaussian - i.e. 
every finite collection of members of H^(^) has Gaussian probability 
distribution law - as well as being Euclidean covariant. With this 
assumption, Wong's definition of Markov property for H^(0) may then be 
formulated and studied. Let us proceed to do this.
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By the phrase "boundary data for (SÎ) ", we mean the set of random
variables, constructed from members of (0), which are associated with
the boundary 9D of a given open set D belonging to R^. In any formulation 
of Markov property, the mode of prescribing boundary data is of intrinsic 
importance because it partly determines the class of random variables 
which satisfy the intended notion of Markov property. In what follows, 
we give Wong's prescription of boundary data for = {Ç (f) = (f) :
j = 1,...,N)} and then we introduce his notion of Markov property [94].
(4.1.1) WONG'S ASSUMPTION Let D denote an arbitrary open subset of
with boundary 3D. Let the surface measure for 3D be da. Then we say that 
Ĥ (fi) = ÏC (f) = (Çj (f) : j = 1,...,N) : f e '-%( R̂ ) } satisfies Wong's
assumption [94] if Ç (f ) = (Ç j (f ) : j = 1,...,N) belongs to (L̂  ([̂ ,]&,y) )^

* 2for all f in L (3D,da).
In what follows, we always suppose that

H°(S2) = {ï(f> = : j = : f e -5( r'̂ )}

satisfies Wong's Assumption. Then we can prescribe boundary data for 
H^(Q) in the spirit of Wong [94].

* *Let H (3d) be the completion of the linear space iC (f) = (Cj(f) : 
j = 1,...,N) : f E L?(3D,da)} of random vectors in (L̂  (J2,|55,y) )̂ . Then 
we take H (3D) to be the boundary data for Ĥ (f2) on 3D.

Next, we introduce Wong's definition of Markov property.
(4.1.2) WONG'S NOTION OF MARKOV PROPERTY Let H ( R̂ ) be the completion
of H°(0) = {5(f) = (Sj(f) : j = 1,...,N) t f e-^( R^)} in (L̂  (fi,S>/y) )̂ -
H°(0) is said to be Markov in the sense of Wong if given any increasing

d-1sequence 3D^, 3D, SD^ of nested boundaries in R , then

W-13) (I - P h O d )> « = « O V  - ^ HOD) " (3»2)
is orthogonal to H (3D^),
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where P ^ is the projection of H ODg) onto H (9D) and I is the
identity operator on H (SDg).

(4.1.4) REMARK: Of course, in view of the fact that H°(!:̂ ) is Gaussian,
the orthogonality condition (4.1.3) is equivalent to stochastic independence 

of H (SDg) ” ^ h(3D) ^ (9D2) and H (3D^). Notice too that since ï P  (Ü)

satisfies Wong's Assumption, we have that H (90) is a subspace of H ( R^),
where 0 is an arbitrary open subset of R̂ .

The next section marks the beginning of our study of Wong's notion of 
Markov property for a Gaussian Euclidean covariant generalized stochastic 
field. Our aim is to provide, if possible, necessary and sufficient 
conditions in order that such a generalized stochastic field be Markov in 
the sense of Wong.

In the next section, we formulate theorems for a d dimensional 
Gaussian generalized stochastic field, and thereafter analyse the particular 
case for which d - 3. In Chapter 6, we show that the analysis which we 
eventually carry through in this chapter for a three dimensional Gaussian 
generalized stochastic field may be extended to any Gaussian Euclidean 
covariant generalized stochastic field. The tools we apply in this 
chapter are again what are called for, except that the calculations are 

admittedly more tedious.

4.2. THE d-DIMENSIONAL VECTOR GENERALIZED STOCHASTIC FIELD

Let (^,% ,y) be a probability space, and let H^(0) = (f) = (Çj (f) • 

j = l,...,d) : f e _^( R^)} be a vector generalized stochastic field on 
(^/®>fy). Then, if we supply the relevant matrix elements in equation
(3.2.14) and carry through the sort of analysis undertaken by us in
(3.2.25), we obtain the following result (see also YAGLOM [97]):



87

0(4.2.1) THEOREM Let H (SÎ) be à Euclidean covariant vector generalized 
stochastic field. Then the mean of each  ̂(f) in (Q) is always identically 
the null column vector, and the matrix B(f^^\f ̂ ^̂ ) of correlation 
functionals has entries

where

(4.2.2) B^j(x-y)

7 . ■,.J_(X|x-yb .

.ti' ......... * &” . .Jv+itX x-y ) . (X|x-y |)

6 (X|x-y|)
+ / d$2 (X)X^ ^  (x.-y.) (x.-y.)

(b̂  = 2^r(l + v) f V = %(d - 2))

where $^("), i = 1,2 are two real nondecreasing functions on [0,“), 

continuous from the left, satisfying

$1<0) = $^(0) = 0, 3^(+0) = Ogt+O)

■ op . _
and temperedness: . J d$. (X) (1 + X ) < <», i = 1,2 for some honnegative p.

0
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(4.2.3) REMARK: For our subsequent needs, it is convenient to recast
(4.2.2) in another equivalent form. To this end, first note that the 
kernel (x,y) (x-y) may be written as follows:

00 J (X|x-y|) 2 00 J (x|x-y|)

.2 “ T J (X|x-y|)
T^r

Thus

(4.2.4) B..(x-y) = b / d$_(X) ij V « ^
J (X|x-y|)

6 . . +
'’ O " (x|x-y|)V 3̂

a2 » 1 JF^x|x-y|)

Next, let C^^Q), 0 e[-1,1], be Gegenbauer's polynomial which, we
recall, is defined by means of the generating function

(4.2.5) (1 - 20Z + Z^)”^ = Z C^(0)Z^, |z| < 1.
n=0

Then, there is Gegenbauer's degenerate addition theorem [93] for the 

Bessel function

00 J (|p||x|)
(4.2.6) = 2 ' 'r(v) Ï  (v+n)i" -^±2-— --- c;̂ (p'.x')

v=0 (|p||x|)

with p' = , |p| > 0 and v = y  (d-2).
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From (4.2,6) we now have

J_(|p||x|)
f dO = 2''r(v)v

(Ip IIx I)''

(Ip IIx I) ' ’

Thus

'' (Ip IIx I) '’

where dO is the surface measure for the unit sphere in Rp.

Employ (4.2.7) in (4.2.4), setting jp[ = X, p e R^, Then, we have

Bii(x-y) = / d$2(|p|)dnê P'(*"y)6 + _-i_, / d($ -$ )(|p])dQ ̂ ,d ^3  ̂ ax. ax. X |p|2
R • R

= / d$2(|p|)dne^2'(*"y)6^^ + / d ( 1p i)d!2-/yîIp I
R<̂  - R^

If we now set

d$2 = d ($2 - 0̂ ) = . and d$2 (|p|)dO = $^^^(dp),

d($2 - $2̂  (|p|)dO = (dp)

then we obtain

(4.2.8) B..(x-y) =. / (dp)e"P‘ 5. . + / « f̂) (3̂ , !i!i ̂ ip-(x-y)
R-î R<̂ 1̂ 1

We are now in a position to present the following result.

be a Euclidean covariant Gaussian vector generalized stochastic field on
(4.2.9) THEOREM Let H°(0) = tç(f) = ,(5j (f) : j = l,...,d) : f e R^)}
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a probability space . Then the mean of each %(f) e H°(0) is
always the null column vector in R^, and the matrix of correlation 
functionals of each ç (f) e H^(^) has entries given by

00 ^
(4.2.10) B (f(2),f(l)) = I Z |a [2 6.. 7 d$(l)(l)f(2)(x)f<l)(x) +

00 ' 00
‘  . , L  Â  / - .  V . ' " ' ! . - ' ' '  I “ ■ ' • • I '  "

where
= f dr r^^^^dO (x')f(r,x')

îjnitn'Jl'

x' = .-r^ , |x| = r > 0, V = J (d - 2)

and the constants {A^ : n = 0,1,...,%} are given by
d

A_ = 2^r (v) (v + n)i^
Gd-l

with = area of the unit sphere  ̂in R^.
2 d-1Proof: We know [59] [83] that L (S ,dfi) is an orthogonal direct sum

1?(S^ ,̂dJ2) = of finite dimensional Hilbert spaces
n=0 - .

n = 0,1,...,“ where is the space of surface spherical harmonics
of degree n. We denote the dimension of by d^. The spherical
harmonics {Y^ : n = 0,1,...,“, Jl = l,...,d^} form a basis for
7 d-1IT(S* ^\dO).

Next, we have that [83]
d ^

-1 Li
(4.2.11) C^(p'.x') = . -J*' Z

d



91

where _ is the area of the unit sphere in R^. Hence, combining 0—1
(4.2.11) with (4.2.6), we may now write

= n l  A

d
where A = 2^r (v) (v + n)i^ ^

V l
Finally, if we now employ (4.2.12) in (4.2.8), we obtain (4.2.10).

This concludes the proof.
(4.2.13) REMARK: In the preceding section, we introduced Wong's notion
of Markov property and we indicated how boundary data are specified for
0 oH (Ü). In what follows we describe the boundary data for H (f2) associated
with the boundary of a ball in R^.

Define f^^^ and f^^^ as in Theorem (4.2.9), Let f̂ ^̂  and f^^^: ^®^°be nZ n& nJl n'&'
the functions obtained by taking f a n d  f̂ ^̂  to be respectively

f(l) (|x|,x') = f(l) (x') ®  6(r. - |x|) = f(l) (x') ®  6 (|x|)
1

f (|y| ,y') = f (y') ^^(rg - |y|) = f (y') ^  (|y|)

where f e L^(S^ ,̂dŜ ) , i = 1,2 and 6 (•) = 6 (r - •) , in the definition

- " ' S .  ■

Then, we have

(4.2.14) f ( X )  = jdÜ Y (x')f^^^(x') / d|x||x|^*^^ v--- <S(r -|x|)
^  O (X|x|)

X
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and

(4.2.15) l'?>.(X) = a  (|(2))r,l+2v "v+n' '"':'

where
(Xrj)'’

(4.2.16) a (f) = /any (x')f(x'), f e L^(s‘̂"^,dn)njl J n&

Then, employing (4.2.14) and (4.2.15) in (4.2.10), we now obtain

^  2 ^1 

= Z z"|a |2 a '* (3)YT ,:(!),, _ >1+2V|.” ,^(1) '̂ v+n'̂ ’'2>
n=0 £=1 " 0̂- 3̂ 1 2 Q (Xrg)^ (Xr^)^

n,n'=0 13" n 1 2  J (Xr,)^ (Xr^)V

where
d d ,

2(2) 2(1), _ . J" T . . ,2(2).- ,Î(1)(4.2.17) ,f ' =

*'(2) * n ]By Wong's Assumption, B..(f Q  6 , f (& 5 ) is convergent
^2 ^1

Hence S(f S&G^) belongs to (l?(0,C&,y))^, f e L^(S^ ^\dO).
Let H (3D) be the completion in (L^(Q,^2>fy))^ of the linear space 

{Ç(f^6^) = (5j(f 5&6^) : j = l,...,d) : f e L?(S^ ,̂dfi)} of random 
vectors. H (3D) then constitutes the boundary data for H^(^) on 3D= 
sphere of radius r > 0. H (3D) features prominently in subsequent 
analysis and hence we shall spend some space describing its intrinsic 
structure.
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4.3 THE BOUNDARY DATA HILBERT SPACE H (3D)

In what follows, we limit ourselves to considering a three component
0vector Gaussian generalized stochastic field H (0) = {Ç(f) = (Ç^(f), 

ggffjfCgCf)) : f G s_9y( R^)} on the probability space (Gl,(&,y). For 
3D = sphere of radius r > 0, about the origin, let H (9d ) be constructed 
as in the preceding section. We wish now to describe the boundary data 
Hilbert space ■ H (9D) of three dimensional random vectors in some detail,

As mentioned in the last section, H (3D) is the completion in
2 3(L (G^C&,y)) of the linear space

{E(f %3(f : £ EL^(s^,dJ2)}

of three dimensional random vectors. The norm of H (3d ) is derived from 
the following inner product

6,). 6,) >3(30) = . : *r)> 2 ,1,3=1 L (S2,£> ,y)

* (2'\ * n V= I B (f} S , « ). r > 0.
i,j=l 3̂ ]

where f/') e (L^(S^,df!)) ,̂ i = J.,2

and i(f ̂ IS)5̂ ) = (Çj(fj ^6j.) : lT(S ,dO), j = 1,2,3), i = 1,2.

(4.3.1) REMARK: In what follows, our aim is to express H (3D) as an
orthogonal direct sum of Hilbert spaces of random vectors. In the next 
section, we exhibit the elements of the first two Hilbert spaces in the 
mentioned orthogonal direct sum expression for H (3D), and then we study 
them. This aim of ours is realized by invoking well-known results in 
the group theoretic analysis of the classical three dimensional rotation
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group SO (3) [10] [96] .
(4.3.2) DISCUSSION Recall that we are dealing with a Euclidean covariant 

vector generalized stochastic field Ĥ (f2) = (f ) = (Ç̂  ̂(f ) ,^2 '^3  ̂ •

f e *2)( R^)}. Hence, if h » (h) is the vector irreducible unitary
representation of SO(3), then we have the following transformation law;

(4.3.3) v(^)(h)B(f(2)og-l,f(l)o^-l)y(l)(h)-l = B(f(2),f(l))

(h,g) e S0(3) x M(3)

G p3), 1 = 1 , 2

Hence, the operator

* * f l]  * -1U(h) ; 5(f ^U(h)Ç(f®6 )̂ = V'^'(h)5(f o h 6^),

* 2 2 f e IT(S ,dO),

which may be readily extended by linearity and continuity so as to be 
defined on all of H (9D) is unitary on H (3D). To see this, we have

* {2\ * n^<ü(h)ç(f ®  & J , U(h)J(f' ®  5J>
HOD)

= Z < Z (h )S % ( f (2 )o h - l ( a g  ) ,  Z 6 )>
i,j=l k Ik k m ]® r(n,S,w)

= Z (h)vf^’(h)B (f ®  6 , f ®  « )
l,j,k,m=l. Ik ]m km

= Z Z V . ( l ) (h )B ( f ( 2 ) o h " l ®  6 , ) y ( ] ^ ( h " l )i,j=lk,m=l km r r m3
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 ̂ *f2iE B 6 , 5 ) by (4.3.3)
i,i=i ]

= < S ), 6_)>
H (3D)

Hence h -*■ U(h) is indeed unitary on H (3D).
*We may next undertake a spectral resolution of each ^(f ̂  5̂ ) in 

H (3D). This latter objective will be achieved by decomposing the unitary 
representation h U(h) of SO(3) into its irreducible components. Since 
SO(3) is a Lie group of type one, we know from Mackey's theorem [50] that
the mentioned decomposition of h U(h) is always possible.

* * 2 2  Consider now the random vector Ç(f 0  6^), r > 0, f £ L (S ,dO), which
* *belongs to H (3D). Then the components Ç^(f 0  6̂ ) of  ̂(f 0  6̂ ) are given

by
Ç^(f0 6̂ ) =. JdxÇ^(x)f(x')ô(r-|x|) (x' = , |x| ^ 0)

= .. /d[2d|x| |x|̂  g^^|x| ,x')f(x' ) Ô (r- |x|)

= r^ JdS2^^(r,x' )f (x*)

* 2 2 2 2 Since f belongs to L (S ,dŜ ), we may expand it into an L (S ,df2)-
convergent series as follows

* “ n
" ^  ■ n=0 a!-n

where : n = 0,1,...,“, & = -n, -n+1,...,n-l,n} is the set of ortho-
2 2normal spherical harmonics, which forms a basis for L (S ,df2). Thus

* 2 ” ,(4.3.4) Ç . ( f e ) ô ) = r  Z Z a J dJÎÇ. (r,x') Y (x* ) , r > 0
 ̂ ^ n=0 &=-n

and the series of random variables on the right hand side of (4.3.4)
2converges in L (0,%&,y). It will be convenient in what follows to label
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*the components of the random vector Ç (f ^  in H (3D) by the
numbers {-1,0,1} instead of by the set of numbers {1,2,3}. We do this

*because the components of Ç (f 0)6^) form a basis for the vector irreducible
unitary representation of SO(3) and the numbers {-1,0,1} are conventionally
employed to label the basis for this representation.

(n )Next, let {h ->■ V (h) ; n = 0,1,...,“} be the irreducible unitary 
representations of SO(3).

Then the random tensor whose components are given by

®  «r) = 5^ (r,x') (x')

i = -1,0,1, & = -n,-n+l,...,n-l,n, and n fixed, is transformed by the 
tensor product representation h ->■ V ) (h) of SO (3) as follows

(v '^'(g) (h)Ç. (Y /an Z (r,x-) z (h)Y , (X’)
j=-l ^   ̂ k=-n

= Z Z ( h )v ' " ’ (h)r̂  /anç. (r,x’)Y . (x’)
j=-l k=-n ] "K

= , Z Z (Y^k<a 6,)
j=-l k=-n

Now, the group SO(3) is simply reducible [28] and we have

(h) = ®  v(^)(h)C
N=Il-nI

As a consequence of the indicated decomposition of ( V ^  V ) (h), 
the random tensor whose components are  ̂“ -1,0,1,
 ̂= -n,-n+l,...,n-l,n and n fixed, may be resolved into a direct sum of 
multicomponent random fields which form basis functions for the irreducible
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unitary representations h (h)̂ , N e [ l-n , 1+n], of SO(3)
which occur in the reduction of (V (h),

Let H(r) be a Hilbert space of three dimensional random vectors
and let, as usual, ̂ d e n o t e  the finite dimensional Hilbert space
of spherical harmonics of degree n. Then the action of the unitary
representation h *>• U (h) on H (3D) is equivalent to the action of the

00

tensor product representation h ->■ (V ^  ^  V^^^)) (h)
n=0

00

on H(r) ®  ( ©  ^ ).
n=0

Now
00 00 1+n

( ®  v ‘“ ’ ))  (h) = ^
n=0 n=0 N= fl-n |

= (h) ©  0  yfa.l) (h)C
n=l i=0

where h +- (h) is the identity representation of SO(3) and
h -> V ( h )  is a (2n+l)-dimensional irreducible unitary representation 
of S0(3) for i = 0,1,2.

Since H (3D) is the representation space for the unitary representation 
h +■ U (h), h e SO (3) , which is equivalent to the unitary representation

h + v'°)(h) ©  heS0(3),
n=l i=0

it is, therefore, seen that the Hilbert space H (3d ) of random vectors 
decomposes into an orthogonal direct sum of Hilbert spaces as follows

(4.3.5) H (3D) = H (r) ®  H ^^Nr) , r > 0
n=l
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in which H (r) is a Hilbert space of scalar random variables and
H (r), n ^ 1, is a Hilbert space of 3 (2n+l)-dimensional random

vectors. Equation (4.3.5) gives the promised spectral resolution of
each ^(f ̂  5̂ ) in H (3D), r > 0. The elements of H (r) are all
constant multiples of the only rotationally invariant scalar random

*variable which may be constructed from Ç (f ô^). On the other hand,
2

each element (r) in H (r) is of the form Y^^^ (r) = Z a . (r)
i=0

where (r) is a (2n+l)-dimensional random vector for i = 0,1,2. All
*the preceding imply that each ^(f ̂ 6^) in H (3D) may be expressed as 

follows

00 2

( (f %  C) = «0*0 (r) + % Z a Y ‘"'^>(r)
n=l 1=0

where the constants {oQ/G^i • ^ ” 1,...,“, i = 0,1,2} depend linearly on 
* 2 2f e L (S ,dO). These facts become important in the sequel.
(4.3.6) REMARK: With effect from the next section, we shall be carrying
out detailed computations which require knowledge of the recurrence 
relations between the orthonormal spherical harmonics

2 2{Y^^ : n = 0,.,..., %; &c[-n,n]} which form a basis for L (S ,dî2). We, 
therefore, present here the relevant information.

3Let X = ,(r,8/(})) be the representation of x e R in polar coordinates, 
and set x' = , |x| > O. Then we have [86]

(4.3.7) cose Y^^(x') = c* V i , / * ’’

(4.3.8) sine e^\^(x') =

(4.3.9) Y^ ,(x') = (-1)*Y (x')n,-& njt
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where 6 c[0,n],  ̂E [0,2ïï] and

(4.3.10) = . [(n-&)(n+&)]^/2[(2n-l)(2n+l)]"l/2

(4.3.11) 3^ = [(n+&+l)(n-&+l)]l/2[(2n+l)(2n+3)]"l/2

(4.3.12) = [(n-&-l)(n-&)]l/2[(2n_i)(2n+l)]"l/2

(4.3.13) 6^ = (-l)[(n+&+l)(n+&+2)]l/2[(2n+i)(2n+3)]"l/2

In the sequel, we employ the following labelling of the components 
X , *0 ^1 *-l . . 2

kl , „ _ .I = sin 0 -606~4- ̂

0 E [0,ir], (f) E [0,2m]
^-1 -cJ-j— |- = sin 0 sin ^ £ '

Then, we have

and by combining (4.3.8) and (4.3.9), we obtain

(4
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We make repeated application of (4.3.7), (4.3.14) and (4.3.15) in 
subsequent computations.

4.4 THE HILBERT SPACES H (r) and H (r), r > 0

This section deals with the esglicit construction and detailed study
of the elements of the Hilbert spaces H (r) and H (r), r > O,
which arise in the orthogonal decomposition of H (3D), see (4.3.5). Our
construction again relies heavily on group theory. Hence we begin by
introducing the so-called three-j functions [86].

Let m e [-j,j], n e [-k,k] and p e [-&,&] where j, k, & are non-
j k ilnegative integers. Then, the three-j function ( ) is defined asm n p

follows

  1/2
fA A ,i k _ { n \2]-k+n ..(j+k-JDI (k+il-j) I (&+j-k): (il+p) .* (&-p)J ,

m̂ n p̂   ̂(j+k+il+1) ! (j+m) I (j-m) : (k+n) : (k-n) 1 ^

V / ^\t (&+j-n-t)!(k+n+t)!
tl (&+p-t) 1 (t+k-j-p) .* (&-k+j-t):

Here, the sum on t is over all integer values compatible with the condition
that the arguments of all the factorial functions under the summation
notation stay nonnegative. The function ( ) vanishes unlessm n p
m + n'^p = 0, and is not defined unless |j-k| jf. ̂  ^ ]+k and j+k-& is an 
integer. Furthermore, the three-j functions satisfy the following 
identities
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(4.4.2) z (i n p)(i n p:' = Vm,n "

(4.4.3) (2%+l)l/2 (2 n p)(2. = «mm,

Next, from the theory of the reduction of the tensor product of two 
irreducible unitary representations (h), and (h) of SO(3) into
irreducible components V^^^(h)^, N e [ j-k ,j+k], where we recall

(h)̂  = complex conjugate representation to (h), we have [86]

W-4.4) Z X .  (h) (h) -  Z i l l )m' ,n' P jr jr

Of course, the right hand side of (4.4.4) contains just one term, namely
that for which p = -(m+n), since as mentioned above, ( ^ )̂ vanishesm n p
otherwise.

Given basis functions for the representations V^^^(h) and V^^^(h), 
we readily construct basis functions for the representation V^^^(h)^. 
Indeed, it is this fact that we invoke in constructing the elements of 
H (r) and H (r), r > 0, in what follows.
(4.4.5) CONSTRUCTION OF THE ELEMENTS OF H (r) and H r > O.

The fact has already been referred to in the last section that the 
random tensor whose components are given by

®  V  = /  dO(i(r,x') Y^^(x'),

i = 1,0,1, Z e [-n,n] and n fixed, transforms according to the tensor 
product (reducible) representation V^^^)(h) of S0(3). Therefore,
given the components of the mentioned random tensor, we may
construct the random vector Y (r) which transforms according to the
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representation V^^^(h))^, N e [|l-nj, 1+n]. The random vector Y (r) is 
(2N+1)-dimensional, and indeed its components are given by

(4.4.6) Yp(r) = Z (2N+1)"/2 n N,
i, Jo

r > 0, p e [-N,N].

By invoking (4,4.4), one readily convinces himself that Y(r) does 
indeed transform according to (h)̂ .

We now finally arrive at the primary objective of this section, 
namely, the specification of the elements of H (r) and H (r), 
r > 0.

Consider first the Hilbert space H ^^^(r). The elements of H ^̂ (̂r) 
are scalar random variables and they transform according to the identity 
representation (h) of SO (3) which arises in the reduction of the
tensor product representation V^^^ ) (h), h eso(3) . Hence, the
random variables in H (r), r > 0, are all constant multiples of the 
scalar random variable (r) given by

"o'':) = . } \  <1 4°)

= 'o O + <1 -i o ' 5 l V  + (-1 Î

Since (̂  q ) = (-1)̂  ^(2j+l) it follows that

" o '" )  = ^ o ' ^ l O ^ V  + ^  ' r )  + ^  «r)

Set /s' ^^(r) = 0(r). Then
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(4.4.7) H r )  = V

(4.4.8) REMARK: By invoking (4.3.7), (4.3.14) and (4.3.15), one finds 
that the random variable $(r) given by (4.4.7) is indeed expressible as 
follows

However, for purposes of subsequent calculations, we shall be content 
with the representation (4.4.7).
(4.4.9) Next, consider the Hilbert space H (r), r > 0, The elements 
of H (r) are nine dimensional random vectors, and an arbitrary such 
vector X(r) may be written as follows

X (r) = Uq X^^) (r) ®  (r) ©  Ug (r)

(a. e <C, i = 0,1,2), where ©  denotes algebraic direct sum and where
(i) ^X (r), i = 0,1,2, transforms respectively according to the three-

dimensional vector irreducible unitary representation h (h)̂ ,
i = 0,1,2 contained in the reduction of the tensor product representation
h ->• (V V ̂^̂  ) (h) , i = 0,1,2 into irreducibles. The construction of
X(r) e H (r) is consequently reduced to the construction of the
vectors X^^^(r), i = 0,1,2. This latter task is readily accomplished by
invoking (4.4.6).

Thus, consider first the random vector X^^^(r). Then, by (4.4.6), 
the three components X^^^ (r), p = -1,0,1 of X^^^ (r) are given by



104

X^°)(r) = 7 3  Z_ (1 ° p)Ei(Yo%
1,£
1

= /3 .% ,'i O p'Si'^OO G«r)1=-1

Hence

0̂°̂ '") = -^ <0 o o’̂ o'^̂ oo® V

= -5o<’̂ o o ® V

xf)(r) = /3 (_ï S ï'E.i'YoO ®  Sf)

= S-l'?00 a  *r) 

X^°)(r) = Æ  ti o-i>5l'’̂ 0 0 ® V  

= Si'^oo® V

Hence, we have that

(4.4.10) (r) = (X_̂ °̂  (r), X^°^ (r) , X^°^ (r) )

= - C o ( Y ^ 0  6̂ ), Li(Yoo^ V )

Next, consider the random vector X^^^(r). Then, by (4.4.6), the 
three components X^^^ (r), p = -1,0,1 of X^^^ (r) are given by

®
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Hence

%0

xf)(r) = ^  C i l  'o -Ï V

= 5_i(Yio S)*;) - So

'o 1 'l O -l) «r>

Hence, we have that

(4.4.11) x'l) (r) = (xjl)(r), xj^) (r), X^^^(r))

“ So'Yll ®  7) ■ '̂ l '*10 ®  7) ' h  ‘̂ 1,-1 ®  '̂ r> - 5-1 (^1]®7)

?-l (?10® V  - 5o(Yi,_i® Sf))

(4.4.12) REMARK: Again in a similar way to what was done in (4.4.8), we
may express the components of (r) in a different way by using (4.3.7),
(4.3.14) and (4.3.15), but again we prefer (4.4.11) because of our 
subsequent needs.
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(2)Finally, consider the random vector X (r). Then, by (4.4.6),
(2) (2) the three components X^ (r), p = -1,0,1 of X (r) are given by

1 2 
= 7 3  ^Z_^

Hence

= >^ 'o o I) Ï i { Y 2, . i ® V  +

+ /3( -1 1 0) 5-1'^21® ®r)

x f  ) (r) = .^ J-^ (1 2 Ï) Si(Y2, ® y

= ’̂ <0 -1 ï)5o(?2,-l® y  + < -lib 7i(Y20®7) +

+ <1 _2 i) 5i (Y2,-2®« 7

= 5.1 (?20 ®  *r> + ̂  h '̂ 2 ,-2 ®  ®r> ' ̂  «o'’'2 ,-l® V
1 2

X^f(r) = yT Z Z (- & _^)5i(Y )
■*■ i=-l £=-2 ^ ^

= ^ < 0 1  «r> + /3  ' Ï  O - i ) 5 i ( Y 2 0 < ® 7 )  +

+ -^ (-Î 2 -i)«-i<’̂ 2 2 ® y

= f  5_i(Y,2<aV + ̂ 1= 5i(Y,o S)6;) - ^1= 5o(Y2i(8 6̂ )
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Thus, we have that

(4.4.13) x'2)(r) = (X̂ )̂ (r), X^^) (r), x|^) (r))

5_l(?22 ®  V  + ?l'^20 ®  V  ■ ^  So'?21 ®  '

' ^0''20®y - i ^ l ' ’̂ 2,-l®V - ' £ 5 - l ' ^ 2 1 ® y  'Æ Ô  " " Æ Ô  " " Æiï

1 =  5-1 (^20® *r) + i  Sl(%2,-2® 7> - &  So(?2,-l ®  *r')

(4.4.14) REMARK; We have now displayed the vectors X ( r ) , i = 0,1,2 each 
of which transforms according to a vector irreducible unitary representation 
of SO(3). As mentioned earlier, each X(r) in H (r) is given by the 
expression

X(r) = UgX^^) (r) ©  a^xf!) (r) ©  (r)
a a

where G (T , i = 0,1,2. Hence, we now know every vector in the Hilbert 
space H (r), r > 0.

By iterating the above mathematical procedure, we readily also display 
an arbitrary member of H (r), n ^  2. Fortunately, our calculations 
below require only knowledge of H (r) and H (r).
(4.4,15) REMARK: In what follows, we embark on a further analysis of the
scalar random variable $(r) and the three dimensional random vectors X^^^ (r), 
i = 0,1,2 given respectively by (4.4.7), (4.4.10), (4.4.11) and (4.4.13).
In doing this, we repeatedly use Theorem (4.2.9), which we refer to for 
notations.
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fO)(4.4.16) THEOREM Let <0(r-), $ (ri ) > _ = b ' '(r«,r.)
^ ^ L^n,S,y) ^ ^

Then, we have

B<°)(r2,r ) = 3 |a / dt'^’(X) +
^ O (Xrg) ' (Xr̂ ) '

+ y(7 + Æ") / dt'^) (X)
5 • 7 7 7 Y(Xfg) (Ar̂ )

Proof By (4.4.7),

Hence

(4.4.17) <$(r,),#(r.)> , = <C„(Y, ® 5  ) + Ç, (Y, ,<S>7 ) +
7(fi,î&,w) "2 " 1' 1 "2

+ <S-l?ll®4r,)'So(?10®ar,) +«l'^,-l®y) + y ' ^ l l ® y > "  2Z 1 1 X JLi (0)
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Next, set

' (Xr̂ ) '

i = 1,2

We may now calculate the various terms on the right hand side of (4.4.17) 
by invoking Theorem (4.2.9). Thus by (4.2.10) we have

n=0 £=-n

, 2 

n,n'=0 £=-n £'=-n' |p|

dJ27^o'y')Vr'y')
2

1 1̂1 1̂1 (̂ 2'̂ l) 1 1̂1 1̂1 (̂ 2'̂ l) J 12 ^10 ^̂ 10 ^

By (4.3.7), we have 

2
/ "1 [T ̂ lo/̂ ')̂ lo/̂ ') = ■ jàÇliâ  ̂ 0 0 ^ 1  ̂ 20̂ '̂))(̂ 1 ̂ 00̂ '̂̂  "** 1̂̂ 20̂ '̂̂ ^

= (ai°)2 + (3^0)2

= I  + Ï5 = I

by (4.3.10) and (4.3.11).
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Hence

)> 2 l̂ ll 5 ^11 ^̂ 2'̂ 1̂2 1 L (̂ ,65 ,p)

Similarly, we have

y)

By (4.3.7) and (4.3.14),

j dJ2 ^2 ^lo'^')^1 , - 1 2 /dQCa^Yggtp ) + 6^ 2 0 '̂  ) ) (Yĵ ^0 0 '5" ) '*'

+  ei" Y2o (p ’) - «1 Y2^_^(p'))

I <a°y/ + e°e^^)

1 ,  1 Æ" 2 V 2  ,

/3 / J . Æs Æ â

Æ
10

by (4.3.10), (4.3.11), (4.3.12) and (4.3.13). Hence,
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Also,

1^11 (Z2'^l? , ,2 ^lo/B^^^ll^P')
|P|

= l5T 1^11^ ^ll'(r2'ri)

since by (4.3.7) and (4.3.15),

, Pg^-1 —
/ “"J [Y n ^  ^1 1 (2 ')|P| 2 10'^ ' 11

= ij/an(a°Y2o'P') + e%(P'))(Y/Y^(p') + e-^Y^^p') + e^ y^^Cp '))

1 , o -1  ^ 0^-1
2Ï (*1?! + )

V2
lOi

Next

y)

/2
10

f PlPosince jdO — _2 (p')Y^g(p') is the complex conjugate of
|P I
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^1^0fd[2  Y (p')Y- _(p') which we have computed above.
|p|2 10 I'-i

2

= + C ^ 2 o 'p ')-®^2,-2'p ’)|'

2,(1), , , 1,, -1,2 . ,^-1,2 ^ ,2,(2)= A +^((Yi ) + (8i ) + (8i) )|Ail (fz'fi)

= + 1  (r2,r̂ )

= |All^*{I'(r2'ri) il /am + ® l S o ' P ’)-®i’'2,-2'P')) "

X (y/ Ÿ ^  (P • ) + 0/Ÿ2O 'P ' ) + ei^22 'P ' ) )

2 ,, -1.2 . ,«-1.2, , (2)= il K I ^ C y/ ) ^  (9-/)^)*'^r2,r^)

Finally, the remaining three terms in (4.4.17) are given as follows:
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- l É  l ^ i l^  ' I ' l f

1^11 (^2'̂ i) |̂ |2 ^11 (P') ^1,-1^^ )

= - ii 1^11^ ^if (ẑ '̂ i)

y)

and

= JAĵ Î  + l&il̂  *ll'(r2'ri) [^0 , Y^i (P'>Y ^  (P')
,2 

|P|'

2 ,(1), > , 2 . ,2 , (2)
= jâ l 4<xx (rz'̂ l) + 5 1*11 ’<’11 (r2'ri)

since by (4,3.15), (4.3.12) and (4.3.13), 

2

2 * 1 1 ' * 1 1
, (p_i)
/ a n — ^  y (p')Y (p')

Ip I

= i  fan |y/ y^ ( p ') + e^S^tp') + 9^22<p ')|'

J  ((y/)2 + (8"1)2 + (02)2)
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As a consequence of all the preceding computations, we have finally
that

<# (r_), $ (r., )<
I.

= ’I'n ' + (& + ^15 + &) l * ï l^  " l'if  ( r2 'r i )

= 3|Ai|2 + |(7 + Æ ’) |Â |2 (r2,r̂ )

= 3|A |2(r2,r )2 / do'l' u) +
O (Xrg): (Xr^):

+ |(7 + Æ-) lAxI^fr^r ,2 / dj'^) ,
O (Xrg)' (Xr ) '

as we asserted. Hence, we are through. C ]
(4.4.18): REMARK: We next address ourselves to the analysis of the nine
dimensional random vector

X(r) = (r) ©  (r) ©  (r), s C, i = 0,1,2
a a

which belongs to H (r), r > O. The next result indicates that we may 
express H (r) as the orthogonal direct sum of two Hilbert spaces. The 
one is a Hilbert space of three dimensional random vectors and the other 
is a Hilbert space of six dimensional random vectors.
(4.4.19) THEOREM Let X^^^(r), X^^^(r), and X^^^(r) be as exhibited in
(4.4.10), (4.4.11) and (4.4.13) respectively. Then the following assertions 
are true:



115

(a) X^^^(r) and X^^^(r) are stochastically independent;
(b) X^^^(r) and X^^^(r) are stochastically independent;
(c) X^^^ (r) and X^^^ (r) are stochastically dependent.
Proof: (a) X^^^(r) is stochastically independent of X^^^(r). To
justify this assertion, we must verify that

<x'°) (r ), x')-) (r,)> „ = 0, i,j = -1,0,1 .
2 1 7(5,%,^)

Thus, consider <X ,)(r-), x'^)(r_)> . From (4.4.10) and (4.4.11),
2 - 1 1  l2(Q,(S>,u)

we have

Now

= O
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Also, we have

2

= W o f  (^2'=!)

4 ^0^1^01 (^2'^l) ®0®1^^11^^'^ ” ^l,-l(P'))(^2l(2') “ ^2,-1^^' ))

=  0 

Hence

<x'°) (r ), x'^) (r,)> = O .2 - 1 1  i,2(n,(S,p)

Indeed, an analogous computation to the preceding indicates that, 
more generally, we have

<X.'°) (r,),x'^) (r.)> = 0, i = -1,0,1
" " l2(!2,|2>,u)

It only remains now to consider the objects

<X.'°)(r,), x'l)(r_)> , , i,j = -1,0,1, i ^ j
2 1 L2(n,&,u)

Typically, we have

L^(Q;& fV i)
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Now

2
y y  11 '"2'^l< /'2Î2 2 Too'P')^l,-l'P )

= i  W i i '  ("2'y  e° (Y^,(p-) - ?i,_i(p'))(Yi'"Yoo(P') + ® l S o ' P ’> -

-  9ÏY2,_2(P'))

=  0

Also, we have

- 1 2 )  f PpP-1
= W l l  (r2'fi) - r i  2^oo'P')'ll'P')IPI

%r ^ o V l l  (^2'^l) ^o/YiiCP') -  % i,-ltP '))(Y i ^20^^')

+ G^?22(2'))

= O

Hence, again, we have

Indeed, more generally, we have that

<x'°)(r-), xi)-)(r,)> , = 0, i,j = -1,0,1, i ^ i .
" 2 2 2' y)
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By combining this latter information with the one supplied above, 
we find that we indeed have

(0),_ . „(1) 
i<X,. (r_), X (r. )> = 0 ,  i,j = -1,0,1.

Hence, the random vectors X^^^(r) and X^^^(r), which we recall are
Gaussian, are indeed stochastically independent as we asserted.

(b) We claim that the random vectors X^^^(r) and X^^^ (r) are
stochastically independent. Again, our claim is justified by carrying
out computations similar to those undertaken in (a) above. We make one
such computation now.

Consider the correlation function <X^^^(r_), X^J^(r_)> .- ^ 2  - 1 1
Then, we have

(4.4.20) <x'l)(r_), x'2)(r.)>
2 -1 1 i,2(S2,̂ S,y)

- 5o(?21<&*r )> 21 L^((2,a,v)

/3Consider now, for example, the term --- <C_(Y ), % , (Y ^ 6  )>^  o  1 1  -1 22 7 (S2,!g>,y)

which occurs, among others, on the right hand side of (4.4.20). Then, we have
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— (2) r ^0^-1 —
^1^2 ^12 (̂ 2'^l) I ,2 ^1 1 (2 )^2 2 (2 ')

Ip I

^ 1^2 ^12 (^2'̂ l) 2̂1̂  ^1^21^^'^ 2^33^^'^ ’*' "̂2 ^11^^'^ "*" ®2 ^31^^'^

= O .
Similarly, we readily verify that, indeed, every term occurring on the 

right hand side of (4.4.20) vanishes. Hence, we have

< x ' ^ ) ( r , ) ,  x ' 2 ) ( r _ ) >  ,  = O- ^ 2  - 1 1  i,2(n,i£,,y)

More generally, one finds, through calculations analogous to the preceding, 
that

<xj^)(r2), X^^^(r:,)> = O, i,j = -1,0,1
 ̂  ̂ ^ (n,&,y)

Hence, the random vectors X^^^ (r) and X^^^ (r) are orthogonal, and since
they are Gaussian, they are consequently stochastically independent, as we 
had claimed.

(c) Finally, we must consider the random vectors X^^^ (r) and X^^^ (r). 
For these random vectors, we are claiming stochastic dependence. Hence, we 
must demonstrate that there is some correlation between X^^^ (r) and X^^^ (r), 
i.e. the correlation functions <xf^^(r), xf^^ (r)> i,j = -1,0,1
are not all zero. That this is, indeed, the case follows by considering,
for example, the correlation function ^(r_), X^ ^(r )>
Then, we have
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/ÏÔ ' ' ' ' ' '  ^2 *1’0''00''”r«" "^O 20 r.
2

1 2,-1^ r.

2 , T . (2)
/ÏÔ V 2 ^ 0 2  '"2'y /“ ^^Oo'P')^2o'P') -

/J — (2) f Pn^l —^  V2^02 <"2<y /<̂ "]̂ ’̂00'P')’'2,-l'P’) -

But

r V l

= I  /d(2 Y^^p') (Y'So(p') + e;^3,^(p') - elv3^_3(p'))

/sa

Ip I

= B° /dS2 Y3^(p')(«3%(p') + 62%o'P'))

-0 0 2 
■ ®

and
PnP_i/ dJ2 - = - y  Y„„(p')Y,,, (pM
|P|

2 00 ^ 21
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1 O -1
= - 2Ï Go Tz / 30 
Hence

' A "  C

= ^  (4v^ - 3 - 3i)A^Â3^j^) (r^.r^)

/ O
Thus (r_), X^^^ (r,)> . ¥  0 , and the random variables

° ■ ° ^ L=(o,6b,y)
Xq^^(rg) and X^^^ (r̂ ) are stochastically correlated.

More evidence of stochastic correlation between components of X^^^ (r) 
(2)and X (r) may now also be obtained by carrying out further computations

of the last kind.
Hence, the Gaussian random vectors X^^^ (r) and X^^^(r) are indeed

stochastically dependent as we claimed. This completes proof of the
□theorem.

(4.4.21) REMARK: Theorem (4.4.19) is significant because it reveals
that the Hilbert space H (r) of nine dimensional random vectors is, 
indeed, an orthogonal direct sum

H ')■) (r) = H (r) ©  H J2J (r)

of two Hilbert spaces H (r) and H (r)' H (r) consists of 
constant multiples of the three dimensional random vector X^^^ (r) given by
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(4.4.11), while H is a Hilbert space of six dimensional random
vectors. Each Y (r) in H ^̂ (̂r) is expressible in the form
Y (r) = (r) ©  a^X (r), 0 ^,0  ̂e (E, where X^^^ (r), i = 0,2 are
given by (4.4.10) and (4.4.13) respectively and where, as usual, ©

a
denotes algebraic direct sum.

In view of the preceding explanation, it now follows that if P ^ 
is the orthogonal projection onto the Hilbert space N (r), where 
N (r) = H (r) or H (r), then

(4.4.22) P x'l)(r,) = P x'^) (r,)
H (r̂ ) ^(1) (2)

= ,P x'l)(r_)
= (l)'"l)

We shall invoke (4.4.22) in the sequel.
We wish next to give the structure of the matrix of correlation

(1)functions of the random vector X (r).
(4.4.23) THEOREM Let B(r2 /r̂ ) be the matrix of correlation functions of 
the random vector X^^^ (r) whose components are given by (4.4.11). Then, 
we have

Buj(r2,r^) = 0, ifj = -1,0,1, i / j .

B_x_x(r2,7) = |Aj2( , +
" ^ ^ 0 (Xr̂ ) ̂  (Xr̂ ) 2

+ ^(2+Æ) |Ai|2(r2ri)2 J (X)
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Boo<"2«y = +0 (Xr̂ ) (Xr̂ )

+ I  /  d$<2) (X) . ! i ± l i ^
O (Xrj) 2 (Xr̂ ) 2

B3,(r2,r ) = |a  / d^'^'cX) . ! k l ! ^  +
O (Xrj) ' (Xr̂ ) 2

+ I lAxl^r^r^)^ / d*(') (X) . ! k i ! ^
0 (Xr̂ ) 2 (Xr̂ ) 2

Proof; We begin by demonstrating that the off-diagonal elements of the
matrix Bfrgyr^) vanish. Thus, consider, for example, the entry
B __(r_,r ) = <X^^^(r«), X^^^(r^)>- . Then by (4.4.11), we have-ZO 2 1 -1 2 O 1

(4.4.24) B_3o(r2,ri) ' « 1 ' « 1 ”

2<«o<’̂ i i ® y > ' ï i ' y , - i ® y ) ^ 2Z X Jj (S2Æ>,y)

We may now compute the terms occurring on the right hand side of
one. Thus, we have <Ç (Y ), ç (Y .. ̂ 6 )> _o 11 rj 1 1,-1(4.4.24) one by _ ^

• y )
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l̂ ll ^11 1^12 _^(p')

=  Y  I  A l l '  * l l ' ( r 2 ' r i )  ; a %  G ^ Y 2 i ( P ' ) ( Y l " Y o o  +  e ^ l Y ^ c / p ' )  -  8 Ï Y 2 , - 2 ( P ' ) )

(by (4.3.7) and (4.3.14))
=  0

= 1^11 ^11 (^2'^l) 1̂ 12 ^ll(P')^ll(P')

= &  |Ail'̂ iî (r2,ri) /dO Y2,(y-"Y^(p') + 8-%o(P') + "̂ 2̂2(p'))

(by (4.3.7) and (4.3.15)

= . 0

^ 2
= |a J 2 (r^.r^) /dU ̂  Y^^p') 7i,_i(p')

- ®ï ?2,-2 t'))

(by (4.3.14)
=  0
Finally, we have



125

= l^ll^ 4'{l'(r2'ri)

+6^Y22( p '))

(by (4.3.14) and (4.3.15))
=  0

In all the foregoing calculations,

(r2,ri) - (r^.r̂ ) = (r^r^)' / d t ( X )
1

i = 1,2, as in earlier computations.
Combining all the above results, we now have, indeed, that

S-lo(r2'ri) =
In an analogous fashion, we readily verify also that more generally, 

Bij(r2fri) = O, i,j = -1,0,1, i ^ j.
To conclude proof of the theorem, it only now remains for us to 

consider the diagonal entries of the matrix B(r2 ,r̂ ). First, consider

B-l-l(=2'ri) i r ^ ) , X_^

Then, by (4.4.11),
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2<5o(YldS*r2)'Go(YiiG*ri)>^2(Q g^,%)" W  (S2,®> ,H)

Consider the various terms on the right hand side of (4.4.25) one by one. 
Then, we have

P'2
= (r^.r^) + (r2.ri)/dî2 -^ï,,(p')Y^^(p')

= Iail^*iî'(r2 'ri) + (r2 .r^)/d!)(6 ^)^ Y^^(p')Y^^^(p'), by (4.3.7)

Thus,

% < ^ x x ^ % > ' ^ i < ’̂ x o ® S ’V(.,a>,y)

= |a J 2*{2) (r2,r^);dO^ Y^^(p-)7^^(p-)

= l l ^ x l M f  (r2,ri)/dOglY2i(p')(8° T^(p') - 6° 7^ _^(p')

(by (4.3.7) and (4.3.14))
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= igje°

1^11 "̂ 11 I ,2Ip I

“ ■ l 4  I \ | M i’‘’̂2'’̂1>

Finally,

p ^
= |Aj"^{^Nr2,r^) + |Aj2^{f (r2,r̂ ) J a a Y ^ ^ ( p ' ) 7 ^ o ( p ’)

|P|

= l\l^’l'n’('̂ 2'̂ l’ + (8i?2i(P') - 0^2,-l‘P ’> •

•(0?21^P'> - 0^2,-lfe'»
(by 4.3.14)

= (r2,r̂ ) + |-|Ail'(8i)'*ii' (r2'ri)

l ^ l l  '^11  '*" 5 1 ^ 1 1 "^11 ( '^ 2 '^ 1 ^

Hence, by combining all the preceding results, we have
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- |a |̂ ^22 ^ 10 1^11 ^11 (̂ 2'̂ l)

= jAj^r^r^)' / d$(l) (X) . ! i ± l ! ^  +
O (Xrg)^ (Xr̂ )*̂

+ ̂ ( 2  + v̂ ) |Ai|2(r2ri)2 / d*(2) (X) •
O (Xrg): (Xr^):

Next, consider the entry ®q o ^̂ 2'^1^* Then by (4.4.11), we have

(4.4.26) B^^(r2,r^) = K ^ \ , - ! ® % V  " « - I % > '?X' ^ , - 1 ® '

'^-x'’' x x ® V ’’L2(nÆ.,y)

2^^1 ̂ ^1,-I®^r2^ ' h  ̂ ^l,-l®^r^^ ̂ ^2 ^̂ 1,-I®'̂ r2̂  '^-1 ̂ 1̂1̂ '̂ r̂  ̂̂ 2

T ^ - 1  (^IJ^^rg) ' h  (^l,-l®^r^) ̂j.2 ^^-1 '^-1 ̂ ^ll®^r^^""̂ 2

Again, we embark on computing the various terms on the right hand side of
(4.4.26) one by one. Thus, we have

^^1 (^Iv-l^^rg) '^1 (^l,-l5SGr^) >^2 (j2,g>,p)
2

= lAl|̂ 4'ii’(r2,rx) + | a ^ ( r j . r ^ ^ )  /̂ SJ f e ' ( P ' )

= | A j " * ^ i ^ r 2 , r ^ )  ( r^ .r^ )  /dS) | r ' ^ Y ^  ( p ' ) + 0 - ^ 2 o ( P '> - 0 ^  , -2  <P'>

(by (4.3.14))
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= A.

I*!I '(’i]̂ ■*■ 51*11 'f'li

S ’V „ ,  ,„

1*11 'f'll 1̂ ,2 ^l,-l(P') *ll(P'.ï-

= i l l *ilMf ''̂ 2''̂ l5/“ 'Yï\o'P'>+®lSofe’> - ®^2,-2<P‘»<^i"^00'P’> +

+ I'?20(P') + Ï?22(P")

(by (4.3.14) and (4.3.15))

i -  U  |2 ' (2)51 1̂ 1' ^11 (̂ 2'̂ l)

Also,

y)

l * i l "  * i r  f'^2'^i) Y _ ^ (p ')
P

Finally,
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p2
1*11 '̂ 11 1*11 '̂ 11 /'̂  ̂"! IT ̂ ll̂ '̂̂ Yĵ ĵ tP')

|P|

= + i  |a  ̂ (r^.r^) /d!)| y"^Y^(p ')+0 ' \ o  (p')+0 Jy22 (p') ]'

(by (4.3.15))

= I&il^*j^)(r2'ri) +^((y'^^+(0'^) + (8^)2)|Ai|2 ’t’̂ f (r2,r̂ )̂

I*ll^*lï^(r2'ri) + I 1 * 1 *ll'(r2'ri)

Hence, by taking cognizance of all the preceding results, we have

= lAj^r^r^)^ I d*(l) (X) +
O (Xrg) ' (Xr^):

2 ,, ,2, ,2T..(2),„ ¥ l « V  4 * . l U V+ f |a |̂ (rari) / d$'^' (X)
(Xtg) (Xr̂ )̂

Finally, we consider the entry By^Crg/r^). Then,

(4.4.27) B^,(r2,r^) = |<5.i ' «o'’̂ l,-l®%>'«-1 ̂’̂ 1 0 ® %’ '

2<5_l(YloG*r2)'S-l(?10®Gri)>^2(Q g^ 2<^-l ̂ ^ l O ^ ^ ^ r ^ ^ ^

(5,%y)



131

Next, consider the various terms on the right hand side of (4.4.27) 
one by one. Then, we have

*=1̂  (n,8 ,y)
(p )2

1*11 "̂ 11 (*^'̂ 1̂  * 1*11 ’*'11 I ,2IP I

= I*il^*iï^(r2'ri) + il*il^*ii^(r2'ri) / d S 2 1 ( p ’) + S^Y^^^Cp')!^

(by (4.3.15))

= |Ai|2*^l)(r2,ri) + ||aJ ^  (6°)2*^f (r^.r^)

= l*ll"*u’ (fl'fl) + t I*i Î  *{i' (r2'Zï)

= |Ai|2*<2)(r2,ri) / d S 2 ^ Y i o ' P ' > ’̂ l,-l<P'’

21 1*11 ^11 (^^'^1^ ) ^ Y2^_x(P'))(6i Yg _i(P ) )

(by (4.3.7) and (4.3.15))
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Also,

ii 1*11' <"2'"l>

y)

Finally,

2

" l̂ll̂ l̂l̂ (̂2'̂l) 1̂ 11 ̂ 11̂ (̂2'̂l) 'ĴJ2 ̂ l,-l(2')̂l,-l(P')

= |Ai|2*i^) (r2'fl) + |All^*ll' (r2,fi) jT̂ O ?2,_i(P')|^

(by (4.3.7))

Hence, by taking cognizance of all the foregoing results, we have that

This completes proof of the theorem. \_A
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(4.4.28) REMARK: In the next section, we examine the consequences
of demanding Markovicity in the sense of Wong for the Gaussian generalized 
stochastic field (̂ ) = (f) = (Ç̂  (f) : j = -1,0,1) : f e •5>( R^)}«

4.5 MARKOV GENERALIZED STOCHASTIC FIELDS

Consider the vector generalized stochastic field

H°(!2) = {Ç(£) = : f e -&( )}

defined on the probability space (0,^ ,y). In equation (4.2.8) it is seen 
that the entries (f ̂ ^\f ̂^̂  ) of the matrix B(f^^\f^^^) of correlation 
functionals of Ç(f) e H^(^) are defined by two spectral measures d $ ( | p | )  
and d$^^^ ( |pI), p e R^. The following interesting question now naturally 
arises: "What must the spectral measures d$ (|p|) and d$^^\|p|), p e R^,
be in order that H^ (̂ ) = {Ç(f) = (Ç_̂  (f ), (f ) (f ) ) ; f e '§( R̂ ) } be 
Markov in the sense of Wong?" This question is resolved in this section.
In doing so, we employ practically every piece of knowledge we have 
obtained thus far in this and previous chapters.

Questions similar to the ones we answer here seem destined to play 
a role of great significance in Constructive Quantum Field Theory, on 
account of the crucial part played thus far by Markov generalized stochastic 
fields in Nelson's scheme [57][58] for constructing quantum fields. 
Unfortunately, as already remarked in Chapter O, to the best of the present 
author's knowledge, the sort of complete characterization of generalized 
stochastic fields which are Markov in the sense of Wong which we accomplish 
in this Thesis has as yet not been considered by any author in the case of 
generalized stochastic fields which are Markov in the sense of Nelson. 
However, examples of generalized stochastic fields which are Markov in 
the sense of Nelson have been furnished in [58][60][45][99][81][92].
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(4.5.1) DEFINITION: Let {X(r) = (X̂ (r) : j = 1,...,N) : r e [0,“)} be
a multicomponent Gaussian mean zero stochastic process on the probability
space (Q,S?,y). Let H (r) = {aX(r) : a e &}, r e [0,»), r > O, and let
P g denote the orthogonal projection onto H (r). Then
{X(r) = (Xj (r) : j = 1,...,N); r e [0 ,oo)} is said to be Markov in the 

sense of Wong if H (r̂ ) is orthogonal to H (rg) - P ^ (r) ^ (r̂ ) for

=i < r < ^2"
(4.5.2) THEOREM Let {X(r) = (X̂ (r) : j = 1,...,N) : r e [0,~)} be as 
described in (4.5.1). Set

N
(a) P g ^ Gki(r2'f)%i(f)

B. (r,s)
(b) —  ̂  = R..(r,s)

Bjj(s.s)

(Note that the quantities {^^^(rgfr) : k,i = 1,...,n } are uniquely 

determined by the two conditions (i) P ^ (r)^^^2^ belongs to H (r)
(ii) X^(r^) - P g (r)\^^2^ orthogonal to Xj(r), j = 1,...,N).
Then {X(r) = (X̂ (r) : j = 1,...,N) : r e lO,»)} is Markov in the sense 
of Wong if and only if

(4.5.3) RCr-fr^) = Q(r_,r)R(r,r_) for r̂  < r < r_ .

Proof: By (4.5.1), {x(r) = (Xj(r) : j = 1,...,N) : r e [0,«)} is Markov
in the sense of Wong if

<X (r2) - P o = . O, k, j = 1,... ,NH (r) k 2 3 1 L2(j2,(S,y)

for ry < r < rg. Thus
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= Z Q, .(r ,r) <X. (r), X (r,)>
i=l ^ 0 I? (0,65,y)

Hence
N

B^j(r2,r̂ ) = Z Q^. (rj.DB. . (r,r̂ )

Dividing both sides of the last equation by which is non
vanishing for all j and all r^> 0, we have

N

or equivalently,

R(r2 ,r̂ ) = Q(r2 /r)R(r,r^) for r^ < r < r2 *

Hence the condition (4.5.3) is indeed necessary.
Suppose next that (4.5.3) holds for r^ < r < r_. Then, we have that

This last equation conveys the information that
N

X, (r̂ ) - E Q .(rg,r)X.(r) is orthogonal to X.(r ),^ XI 1 ] 1
r^ < r < rg, j = 1,...,N. Since 

N
Q,^i(r2,r)Xi(r) = P h (r)\^’̂2>

by definition, then we have that
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- P g orthogonal to Xj(r^), r^ < r < rg,
j = 1,...,N. But by (4.5.1) this implies that {x(r) = (X_(r)) : 
r e [0,«>) } is Markov in the sense of Wong. Hence, the condition (4.5.3)
is indeed also sufficient.
(4.5.4) REMARK; Our next result gives necessary conditions in order that 
the vector generalized stochastic field

H°te) = U(f) = (Ç_j^(f),ÇQ(f),Çj.(f)) : f e -Sc

be Markov in the sense of Wong. In Theorem (4.5.36), we demonstrate that 
the conditions we obtain are indeed also sufficient for Markovicity.
(4.5.5) THEOREM Let iP  (Q) =‘ (f) = (Ç_̂  (f),^^ (f)^^ (f)) : f E i5( R̂ )} „ 
be a Euclidean covariant Gaussian generalized stochastic field which 
satisfies Wong's Assumption (4.1.1). Then, in order that Ĥ (Î2) be Markov
in the sense of Wong, it is necessary that the functions

- 2 Jp., at)
r ->B (r) = / , r > O,

 ̂ 0 ,(Xr)

are twice continuously differentiable and satisfy the differential equations

(A^B.) (r) = aB. (r), r > 0, i = 1,2 and a = constant, where

-  .  .r
Proof; The conditions of the theorem are necessary. To see this, let

3D^, D and be the open subsets of R whose boundaries 3D̂ , 9D and 
are spheres of radius r^, r and r^ respectively, with r^ < r < rg. Then 
9D̂ , 9D and 90̂  is an increasing family of nested boundaries. If the 
generalized stochastic field H^(0) = (f) = ( Ç _ ^ ^ ) (f) (f) ) : f E -;%( R̂ ) }
is indeed Markov in the sense of Wong, then it is necessarily so when the 
special boundaries 9D̂ , 9D and 90^ just described are those employed in
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constructing the boundary data Hilbert spaces H (9D^), H (9D) and 
H (9D2) respectively.

Thus, by definition, we must have that H (802) - P ^ H (SD̂ )
is stochastically independent of H (9D̂ ), r^ < r < r2 «

Now, by the analysis of Section 4.3, we have

(4.3.5) H (9D) = H (r) Q) H (*)(r) , r > 0 .
n=l

The elements of H (r) are complex multiples of the scalar random 
variable 0(r) given by (4.4.7), while the elements of H (r), n ^  1, 
are 3 (2n+l)-dimensional random vectors. A detailed description of H (r) 
and H (r) is given in Section 4.4.

Let Y(r^) = (Ŷ  (r̂ ) : j = 1,...,3 (2n+l)) belong to H (r^), 
i = 1,2. Then a necessary condition for Markovicity in the sense of Wong 
of H^ (̂ ) = {5(f) = (5_i(f) ,5q ( f ) ( f )  ) : f  ̂ is that
Y(r2) - P g (9d)̂ î̂*̂ 2̂  orthogonal to Y(r^), r^ < r  ^2 ’ because
of (4.3.5),

^H (9D)^^^2) ^  ^(n) (^^*(^2)

where P . v is the orthogonal projection onto H (r), r > O.
H l*'(r)

By Theorem (4.5.2), Y(r2) - P is orthogonal to Y(r^),
r, < r < r«, if and only if the vector stochastic process (y (r) = (Y. (r) . ]
j = 1,...,3 (2n+l)) : r e [O,»)} is Markov in the sense of Wong. By the 
same theorem, it now follows that

(4.5.6) <Y. (r2),Y (r.)> = B̂ Ĵ (̂r2 ,r )
^  ̂ Lr(o,G&,y)  ̂ ^

(n),^ ^_(n)
i=l
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Next, we move on to use the above considerations to provide necessary 
conditions on the spectral measures d$^^^(|p|) and d$^^^(|p|), p e R^, 
associated with the generalized stochastic field (S2) = {Ç(f) =

(A) Suppose then that Y(r) belongs to H (r), r > 0. Then Y(r) is a
complex multiple of the random variable 0(r) given by (4.4.7), and it, 
therefore, suffices to set Y(r) = $(r). By Theorem (4.4.16),

(4.5.7) <$(r,),*(r_)> _ . =B^°^(r.,rT)

(Xrg) ? (Xr^)^

+ &(7 + Æ|Aj2(r^r^)2 ; ^$(2) (X)
0 (Xrg)^ (Xr ) 2

But, by (4.5.6), we must have that

(4.5.8) B^^^(r2 ,r̂ ) = (r2 ,r)B (r,r̂ ) , r^ < r < r.

By Aczel [1],'the solution of this last functional equation is of the form 

(r2,r̂ ) = H(r2)G(r^), r^ < r2

Now, set

3t-l,(4.5.9) /s^lA^lr^^)" G(r^) = Gĵ (r̂ )

(4.5.10) /sdA^ltg^)"^ HCtg) = Hg(r2)
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If we combine (4.5.7), (4.5.8), (4.5.9) and (4.5.10), we obtains

Juy/Xr,)
b (Xr, )Ho'ri'Gofri) = 15 /

1'

+ (7 +/2) / a$(2)(X)x2
0 (Xr^) ‘ (Xr^) : 1

Let denote the linear differential operator

d^ . 4 d I d 4 d
_ 2 r dr 4 dr drdr r

Then, we have

(^«0» (rz'Go'ri) = 15 / > (x)XVx^) +0 (Xr^)2

+ a  / d$(2) (x)x"(-x") . - i ± i ^
O (Xr,)^^ (Xr,)^^

= 15 / d*(i) (x)x^ - i î i l ^ ( - x 2 ) . - i î i i ^  +
O (Xr2)f+1 (Xr^)^

+ (7 + »7) / d$(2) (A)x2 1̂
O tXr2)^^ (Xr^i^+l

Thus

(AHq) (r2)G^(r^) = « ^ ^ 2) (AGq) (r^) , < >̂ 2
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and we have

(H^frg))  ̂(AH^) (r̂ ) = (Ggfri))  ̂(Ag )̂ (r̂ ) = a , a constant

Hence, (Ah )̂ (r) = aH^(r)
r > 0 .

(AGq) (r) = aG^Cr)
Thus

(AHq ) (r2)Go(ri) = H^(r2) (AGq) (r̂ ) = GHQ(r2)Gg(r^)

Hence, the function

(4.5.11) r R(r) = H^(r)GQ(0)

. 15 / (7 + ^) /
O (Xr): O (Xr):

satisfies the following differential equation

(4.5.12) (AR) (r) = aR(r), r > 0.

(B) The equation (4.5.12) puts a condition on the spectral measures
d$^^^(X) and d$^^^(X). One obtains other nontrivial conditions on the

(1) (2)spectral measures d$ (X) and d$ (X) by considering the Hilbert space 
H (r), r > O, consisting of nine dimensional random vectors.

Thus, let now Y(r) belong to H (r), f > O. We have already 
remarked in Section 4.4 that H (r) is an orthogonal direct sum

(4.4.22) H(l)(r) = H (r) © H

in which H (r) consists of constant multiples of the three dimensional 
(1)random vector X (r) given by (4.4.11) and H is the Hilbert space
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of six dimensional random vectors of the form (r) a^X (r),
(i) ^aQ/Oti e (E, where X (r), i = 0,2, are given by (4.4.10) and (4.4.13)

respectively, and we recall that (^denotes algebraic direct sum. We
^ (1)may now let, in particular, Y (r) = X (r), r > 0. in (4.5.6).

Next, we have that a necessary condition for Markovicity in the 
sense of Wong of the generalized stochastic field
H°(Î2) = {5(f) = (S_i(f),So(f),Si(f)) : f e )} is that
X (rg) - P g «g.X (tg) be orthogonal to X (r̂ ) for r^ < r < r^. 
By (4.4.22), we have

Let B(r2 ,r̂ ) denote the matrix of correlation functions of the random 
vector X^^^ (r). Then, by (4.5.6), we must now have

(1)(4.5.13) B(r2 #r̂ ) = Q (r2 #r)B(r,r^) r^ < r < r.

Let us proceed to exploit (4.5.13). By Theorem (4.4.23) the matrix 
B(r2 ,r̂ ) is diagonal. Hence (4.5.13) may be re-written as the following 
three equations

(4.5.14) B^^(r2 ,r̂ ) = (r2 ,r)B^^(r,r^), r^ < r < r2 , i = -1,0,1

The functional equations' (4.5.14) have solutions of the forms

(4.5.15) B^^(r2,r^) = H^°^ (r2)(r^^) , r^ < r2, i = -1,0,1.

We next consider the three equations in (4.5.15) in turn. For i = -1, 
we have from Theorem (4.4.23)
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2 n /n\(4.5.16) B (r-ff,) - Ja I (r_r̂  ) j  d$ (X) — —̂ '— ;-- . — ^---]-- +
-1-1  ̂ 1 1 2 1 6 (Xr,)^ (Xr^)^

+ 1^(2 + / d.<^> (X) " ^ t l ^

Set

(4.5.17) (laJr^0)-V°>^(r^) = G_^_^(r^)

(4.5.18) /ÏÔ (|A^|r2l)-V°lj^(r2) =

Then

H

(XI2) • (Xr,)i

-1 (̂ 1*

.-1 (̂ 2)

J&+l(lf2)
_l-l(r2)G_l_l(ri) = 1° / 4* (Xr^X^+l ' (Xr,)^*l

z ±

(2) JĴ JĴ 2;̂ +1̂ 1*̂ 2̂  0^+1 (l̂ l)
(Xr.)̂ "̂  ̂ (Xr.ys+ (2 + Æ’) /  d$'-^'(X)X^-^— n rr • -------—,_+l /, \%+l

2 ‘

Hence, as in the considerations under (A) above, we have that the 
function

op ,1 \ 2
(4.5.19) r 4- Sĵ (r) = (r)G^^_^ (0) = 10 ^ d$ (X)X ^

' " 9 (Ar)+ (2 + Æ") / d$(2) (X)x2 j .  ■

o (Xr)^l

satisfies the differential equation

(4.5.20) (ASĵ ) (r) = aS^(r), r > 0

where a is an arbitrary constant. 
Similarly, from the relations
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= lâ l (rzri)^ / d*'^' (X) 
0

+ I  lA^I^Crjr^)^ /  d^2) (X)

®11 (=1)

(1) >lL,,(Xr,) J,.,(Xr,)

(Xrj)% (Xr^)^

(Xr^)^ 1,
(Xr^):

(Xr^)^ X '(Xr^)^

d^x(Xr2)

(Xrj)'^ i,(Xr̂ ) »

(r̂  < r^)

+ i  ; d$(2)(X) ^ - 4 -̂  . ^  ■ 4  (r̂  < r,)
o

given by Theorem (4.4.23), we obtain that the functions

(4.5.21) r ■> Sgfr) =

= 5 ; d 4 ( i > ( x ) x 2 l i t i 4 r -  +0 (Xr) '

+ 2 /  d»<2 ) (x )x2  - ^ « 4 4
0 (Xr)^+1

and
(4.5.22) r 4. (r) = H4^(r)G^^(0)

= 5 / d»^l’(X)X^ +
o (X r)^^ l

7  (2) 2 ^ ^+ /d4<)(X)X 4 ^
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satisfy respectively the differential equations

(4.5.23) (AS2) (r) = aS2 (r), r > 0 and a = arbitrary constant

(4.5.24) (ASg) (4) = gS2 (r), r > O and a = arbitrary constant. 

Finally, by solving for the functions

(4.5.25) r B. (r) = / d4 (X)X^ - -̂4  ^  , r > O, i = 1,:
0 (Xr)

from any two of the equations (4.5.19), (4.5.21), (4.5.22) and (4.5.11) 
and by employing the differential equations (4.5.20), (4.5.23), (4.5.24) 
and (4.5.12), we conclude that the functions r B^(r), i = 1,2, of
(4.5.25) satisfy the differential equations

(4.5.26) (A.B̂ ) (r) = aB^(r), r > 0, i = 1,2 and ol = constant.

Hence, the conditions of the theorem are indeed necessary. CH
(4.5.27) DISCUSSION Let H°(Ŝ ) = {Ç (f ) = ,(Ç_̂  (f ) (f ) (f ) ) : f e -5( 
be Markov in the sense of Wong. We shall now use the last theorem to 
determine the spectral measures d$^^^(|p|) and d$^^^(]p|), p e R^, which 
describe the generalized stochastic field H^ (J2). To this end, we must 
solve the two differential equations given by (4.5.26). First, one 
recognizes two distinct cases, namely,

(i) Case a = O and (ii) Case a ̂  0.

We consider these cases in turn.

(i) CASE a = O
Then, we have the differential equations
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dB
(4.5.28) (Ab )̂ (r) = =0, r > 0, i = 1,2.

r
We need now to solve (4.5.28) subject to the condition B\(r) = O at

r = 00, i = 1,2. Then, we obtain

(4.5.29) B^(r) = i = 1,2

where B^ = constant, i = 1,2.
Next, by invoking the definitions (4.5.25) of the functions 

r + By(r), i = 1,2, we have

(4.5.30) B.r  ̂=; / (X)X r.,
^ O (Xr)

Hence, by the uniqueness of the Hankel transform, we have, after 
setting 2 ^^^By = A_, that

(4.5.31) d$(^) (X) = dX, i = 1,2.

CASE oC 7̂ O.

Here, the equations (4.5.26) have the following solutions

Jui (a.r)
(i) B. (r) = B. — — ~ T ir ~  ' o, > 0, i = 1,2

 ̂ (â r)
and B^ = constant, i = 1,2, r > O.

Ky.. (our)
(ii) B (r) = B. i . : ,  , a . > o , i = 1,2

 ̂  ̂ (â r)

and B^ = constant, i = 1,2, r > O.
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In (ii), z 4- K^(z) , v e (E, is the modified Bessel function of 
the second kind and it is defined in terms of the Bessel function

Z 4- J (z) = Z --------------
n=0 nir(v+n+1)

as follows
, iTT ■ ilTV ilT

1 ~~T~ S~ô~‘ ~5~~K^(z) = 2^ [sin (TV)] [é  ̂ J_^ (ze )- e J^(ze ) ]

Now, consider solution (i) above. Then, employing (4.5.25), we 
obtain

. J. (Xr)
= B. / dX6(X - a.) — —̂ TT'i" • 

^  O ^ (Xr)

Hence, we find that

d&(^)(X) = B.X"^ 6(X - o.)dX, a. > O, i = 1,2.•1 1 • 1

But in order that (4.5.8) and other similar equations encountered in the
proof of Theorem (4.5.5) are satisfied we must have ” “2 ” say.
Hence

(4 .5.32) d$(^\(X) = B^X"^6(X _ a^)dX, > 0 , i = 1 ,2 .

Employing (4.5.32) in Theorem (4.4.16), we find that the random 
variable $(r) given by (4.4.7) has correlation function given by
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<$ (r̂ ) (r.)> = (r^,r )
 ̂ IT(0,6^,y) 1

^ 1 : ^ '  : v , ) &

where B is some constant. From the preceding one concludes that the 
random variable 0(r), r e  R^, has the very simple representation

o ^y+i(4.5.33) 0(r) = Æ  r —  -p  X , a > O, r e R ,
(«or) '

where X is a random variable with

l|x||% = 1  .
L (0,6&,y)

But as indicated in the proof of Theorem (4.5.5) a necessary condition 
for Bp(^) = {5(f) = (5_ĵ  (f) ,5q (f) ,5j (f ) ) ̂ to be Markov in the sense of 
Wong is that {$(r) ; r e R_̂  = 10,°°)} is Markov in the sense of 
Definition (4.5.1). This is the case if and only if {$ (r) : r e R^ = [0,*)} 
is Markov in the usual sense. From the fact that we must then have

(3:2*r)B̂ *̂ .̂ (r,r, )
B =- nS)-— ----  ' < r < =2B (r,r)

it follows that $(r) cannot vanish for any nonzero r e  R^ = [0,«). But 
$ (r) given by (4.5.33) vanishes at infinitely many nonzero points in R^. 
Hence, solution (i) is inadmissible.

Consider solution (ii) above, for which

K. (a.r)
B (r) = B. -1" —  , r > 0, i = 1,2.

(a.r)
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Then, by (4.5.25), it follows that

Hence, by the uniqueness of the Hankel transform, we have

(4.5.34) d$(^)(X) = a.-3 b. — 5—  d\ , i = 1,2
 ̂a / + \1 ■

Since

.....
K (mr«)I (mr ) = f  d \ J (Xr,)J (Xr )

V 2 V 1 ^ mf+xZ V 2 V 1

r^ ^  r̂ , real part of v > -1 , m > 0 , where z 4- l^(z) is the modified
Bessel function of the first kind [93], we readily see that equation
(4.5.8) and (4.5.14) are satisfied if and only if in (4.5.34).

-3Thus, setting and ot̂ By = A^, i = 1,2, we may re-write
(4.5.34) as follows

2
(4.5.35) d$(^)(X) = A ■ - _■ dX , i = 1,2, c_ > O

' «0 n  ' o

Thus, we have obtained explicit expressions for the spectral measures
(i)d$ (X), i = 1,2, in the two distinct cases for which a = O and a 7̂ 0 

mentioned above. We may combine the results (4.5.31) and (4.5.35) if we 
understand in (4.5.35) to be nonnegative i.e. ^ 0 rather than > O, 

The following question now presents itself: "Are the conditions of
Theorem (4.5.5) also sufficient for Markovicity in the sense of Wong of 
the generalized stochastic field

H°(S2) ='{Ç(f) = (E_i(f),So(f),S^(f)): f e %g( R^)} ? "
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The next result answers this question in the affirmative.
(4.5.36) THEOREM Let H°(0) ='{%(f) = (5_̂  (f ) ,5q (f ) (f) ) : f e *â(R^)}
be a Euclidean covariant Gaussian generalized stochastic field which 
satisfies Wong's Assumption (4,1.1). Then the conditions of Theorem
(4.5.5) are also sufficient in order that H^(Q) be Markov in the sense of 
Wong.
Proof: Let <Ç. ( x ) .(y)> = B..(x-y), and let B(x-y) denote the

 ̂ L^(o,aS,y)
matrix whose entries are B^^(x-y). Let D be an arbitrary open subset of 

3R whose boundary is 9D and let H (9D) be the associated boundary data 
Hilbert space. Then

= /do(x)do(y) f'^’(x)B(x-y)fg^^^y) ,

(i) 2f e L (9D,da), i = 1,2, is the matrix of correlation functionals ofdU
in H (9b).

Suppose now that the conditions of Theorem (4.5.5) hold. Then, as 
demonstrated above (see equation (4.5.35)),

d$ (X) = A. -—  ----  dX, a ^  0, A. - constant, i = 1,2,
1 a. + X ^

By (4.2.8), we, therefore, have

B^j(x-y) = d|p|dQ|p|^(aQ^ + |p|̂ ) ^

= Ai Jdp (Oĝ  + |p|̂ )"̂  îp.(x-y)̂ ^̂  +
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+ /dp(a^2 + |p|2)-l ^  eiP-(-Y)
P

Hence, it follows that

(4.5.37) ((-A) - A)B^jyx-x^) = O, x ^ x^, ^ 0, where
A = Z - ■ is the Laplace operator in three variables. (4.5.37) is a

i=-l 9x^
system of partial differential equations as readily transpires if we set

*̂ ij - A) = \ j  ( '  if] = -1/0,1 ,

for then (4.5.37) may be re-written as follows

(4.5.38) Z (x-Xg) = 0, X f Xq , > 0.
k=-l

9 9The operator A(-^) = * i/i = -1,0,1) is strongly elliptic
(see (2.4.9)), as is trivially checked.

Let 9D be a smooth two dimensional surface separating x and x^,
3X 7̂ Xq. 9D separates R into a bounded part D containing x^ and an 

unbounded part D ' containing x. Then (4.5.38) may be solved as an exterior 
Dirichlet problem as in (2.4.33) with the boundary conditions (2.4.35), 
(2.4.36), (2.4.\B) on 9D. Then, by (2.4.32.), the solution of this Dirichlet 
problem may be presented as follows as an integral equation*

(4.5.39) B..(x-x ) = Z / dO(z)(y^ (x.z)B, . (z-x_) , X E D'
O k=-l 9d ik ki 0

3Let D2 / D, be any three bounded open subsets of R such that
Dg O  D D^. Then the boundaries 9ĉ , 9d , 90^ form an increasing family

3of nested surfaces in R .

^ see
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2Next, suppose that f _ belongs to L (9D_,d&). Then the map9L>2
L^(9D2/da) ->• L̂ (9D,dCT), ■> h^^ , specified as follows

(4.5.40) = J  dOgtzifag (z) j (z,x) ,

X e 9d , is well-defined.
Let X(hgĵ ) be the random vector whose components are

 ̂ ^i^kgD j^)/ j = -1,0,1. Then, we claim that X(hgĵ ) is the 
orthogonal projection of ? ( f ) onto H (9d ). To demonstrate this, we 
first note that X(hgĵ ) belongs to H (9d ) . Next, we must demonstrate 
that C(fgQ ) - X(hg^) is orthogonal to every member of H (9D). Indeed, ' 
we have that if C/gg^) = : i = -1,0,1) belongs to H (9d ), then

Jd02 (x)da (y) (x) (x-y) g^^ (y) -

Z /da (x) da (y) ̂^̂ (̂x) (x-y) g^^ (y)

/dcjj (x)dc (y) fsD̂  M  Bjk (x-y) ggp

- Z /da(x)da(y) f da2 i z ) f ^^ (z) (Pj^ (z-x)B̂ ĵ  (x-y) ĝ ^̂  (y) 

(by (4.5.40))
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= /do2 (z)do(y)fgD (z) lBj^(z-y) - Z /da (x) (z-x)B^^(x-y) ] (y)

=  0

by (4.5.39).
Hence, ? gg ) ” where (ĥ ĵ ) = Z C.Cbgg ^j), is orthogonal to

2 j
every member of H (9D) of the form C(g__). By linearity and continuity,oD
it now follows that 5 (f gĵ ) - X(hgĵ ) is indeed orthogonal to all of H (9D).
Thus X(hgQ) is the projection of g(fgg ) onto H (9D) i.e. X(h^^) =
P g (22) Sffgp ). Hence, H (̂ Dg) - P ^ H (̂ Dg) is stochastically
independent of H (9D).

In an analogous fashion to all of the preceding, we arrive also at the
assertion that H (9D2) - P ^ ^ (SP̂ ) is stochastically independent of
H (9D )̂, where we recall that 9D̂ , 9D, 9D2 is an increasing family of

3nested surfaces in R . But stochastic independence of H (9d̂ ) and H (9D2) - 
P g (233) H (9̂ 2̂  is Wong's definition of Markov property. Hence, the 
conditions of the theorem are indeed also sufficient, and this completes 
proof of the theorem. Q
(4.5.41) REMARK: We may now finally combine Theorem (4.5.5) and 
Theorem (4.5.36) to obtain the following single result.
(4.5.42) THEOREM Let H°(0) ='{Ç(f) = (Ç_^(f) (f) , (f)) : f E J&( R^)} 
be a Euclidean covariant Gaussian generalized stochastic field which 
satisfies Wong's Assumption (4.1.1). Then, the necessary and sufficient 
conditions for Ĥ (îî) to be Markov in the sense of Wong are that the
functions

+ B. (r) = {  M X  , r > O, i = 1,2
O (Ir)
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are twice continuously differentiable and satisfy the differential 
equations

1 4 dB.(^B.)(r) = ( — ^ ) ( r )  = a^B.(r)
r

a > 0, r > 0, i = 1,2 .0 —
(4.5.43) CONCLUSION Theorem (4.5.42) is, of course, a major result
because it represents a unique characterization of the class of Euclidean

3covariant Gaussian vector generalized stochastic fields in R which are 
Markov in the sense of Wong. As we remarked in the introduction to this 
section, a complete characterization, even under a constraint such as 
Wong's Assumption (4.1.1), of generalized stochastic fields which are 
Markov in the sense of Nelson has as yet not been undertaken by any author, 
We leave this latter problem open to other investigators.

We have seen in the preceding discussions of this section that 
Theorem (4.5.42) gives rise to two classes of generalized stochastic 
fields which are Markov in the sense of Wong. They are the generalized 
stochastic fields defined by means of the following unsmeared matrix 
elements

(a) (p) = (lpl^ + "o ^ °

(b) B . j (P) = + *2 1 ^ )

i,j = 0,1,2, where A^ = constant, k = 1,2.
Let A G (0,1) and set A^ = 1, A^ = Ain (b) above. Then, the vector 

Gaussian generalized stochastic field defined by (b) is also Markov in the 
sense of Nelson. Indeed, the inverse of the matrix whose entries are (b) 
has entries given by IpP + ^  ̂  ^ p^p. , and a proof very similar to



154

that given by Nelson in [58] now justifies our claim.
On the other hand, the vector generalized stochastic field defined

by (a) is Markov in the sense of Nelson only when = 0. Hence, Wong's 
notion of Markov property gives rise to some generalized stochastic fields 
which do not satisfy Nelson's definition of Markovicity,* thus the two 
notions of Markovicity are manifestly not equivalent.

In Chapter 5, we provide an abstract formulation of Wong's notion of
Markovicity, and in Chapter 6, we discuss the problem of generalizing 
this notion of Markovicity.
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• CHAPTER- 5 

WONG'S NOTION OF MARKOV PROPERTY REFORMULATED

In this relatively brief chapter, we present an abstract formulation 
of Wong's notion of Markov property and then examine its relationship, 
if any, with Nelson's notion of Markovicity. We saw in the last chapter 
that there are vector generalized stochastic fields which are Markov in 
the sense of Wong but not in the sense of Nelson. This indicates that
these two notions of Markovicity are not equivalent.

In what follows, we again assume that the generalized stochastic 
fields under consideration are Gaussian and satisfy Wong's Assumption
(4.1.1).
(5.1) NOTATION Let H°(0) =' {C(f) = (Cj (f) : j = 1,...,N) : f e ;%( R^l}

be an N-component generalized stochastic field on the probability space 
and let H ( R̂ ) denote the completion of the linear space 

H^ (S2) in (L̂  (fi,35 f y) For any bounded open subset D d  R^ with boundary
9D and complement D', let H (D) and H (9D) denote respectively the
completion of

fC(f) = (Cj(f) : j = lf...,N) ; f e -0( R^), support of f CZD}

and

(C(f) = (Cj (f) : j = 1,...,N) : f e L?(9b,dc)}

in (L̂ ([2,Ca,y))̂ .
Finally, let denote the orthogonal projection of H ( R̂ ) onto 

H (9D).
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The following result is an abstract formulation of Wong's concept 
of Markovicity.

(5.2) THEOREM Let 9D^, 9D and 9D^ be an increasing triplet of nested
boundaries and let H (9D̂ ) , H (9D) and H (gDg) be respectively the
associated boundary data Hilbert spaces. Let denote the orthogonal 
projection of H (9D2) onto H (9D). Then Wong's notion of Markovicity is
equivalent to the following condition:

^9D Ggo Q92 Fgo G901 2  1 2

as an operator equation on H ( R^).
Proof Wong's definition of Markovicity is the following statement: 
H (9̂ 2̂  - PgQ H (9D2) is always orthogonal to H (9b̂ ). This is 
equivalent to the following

“°»,"' ■'V N ’V , . * ,
for every u, y belonging to H ( R^).

Thus, it follows that

Hence

' »  V  "■ " , ■  »

for every u, v E h(R^). In particular, this is true for every 
V e H ( R̂ ) and for arbitrary but fixed u e H ( R*̂ ).

Next, set
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Then, since u is fixed in H ( R^), so is 0(u). From the preceding, we 
have then that the bounded linear functional

F^ : H ( R̂ ) + R

V ^ F  (v) = <0 (u) ,v>
H ( R*̂)

is identically zero on H ( R^). Hence by the uniqueness of any bounded 
linear functional on a Hilbert space, it follows that

t(u) = (Q3d  ̂ ^3D °

for all u in H ( R ).
Hence,

(5.2*) = . 23d  ̂PjD Q3d^

as we claimed. L I
(5.3) REMARK; Notice that every element of each of the Hilbert spaces 
H ( R^), H (3b), H (b) and H (D') is an N-component random vector.
(5.4) DEFINITION We say that H°(0) = {g(f) = (Ç̂  (f) : j = 1,...,N) ; 
f e "5( R^)} has the restricted Markov property of Wong if

E(u^Vj| H (3D)) = E(Ui |H (9D))E(Vj| H (3D))

for every u = (u., i = 1,...,N) e H (D) and 
V = (Vj, j = 1,...,N) e H (D') .

(5.5) THEOREM Let Ĥ (Î2) have the restricted Markov property of Wong.
Then H^(0) is Markov in the sense of Wong.
Proof ; Let D^, D, Dg be bounded open subsets of R^ such that DgZ^D Z) D̂ ,
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Then, the boundaries 9d ,̂ 9d , form an increasing family of nested
_d-l surfaces in R

Now, Wong's Assumption (4.1.1) implies that H (Bd^), H (Bo), 
and H (SDg) are subspaces of H ( R^). We have too that H (8d )̂ is a 
subspace of H (D) and H (BDg) is a subspace of H (D').

Hence, since H^(^) has the restricted Markov property of Wong, we
have

E (Uĵ Vj I H (8d )) = E(u^| H (BD))E(Vj| H (3d ))

for every u = (û  : i = 1,...,N) e H (Bd )̂ CH (D) and

V = (v. : j = 1,...,N) e H (8d„) C h  (D')
3 ^

This last equation implies

<u.,v.> = <u.,E(v.I H (8d ))>

or, equivalently.

 ̂ ir(s,Q,v)  ̂  ̂ ir(Q,e,,w)

<u. ,v. - E(v. I H (3d))> _ ^ = 0

Hence, we have that for every u e H (9d )̂ and every v e H (oDg),
V - E(vI H (8d)) is stochastically independent of u. This is Wong's 
definition of Markovicity, and hence the claim is justified. []
(5.6) REMARK; The restricted Markov property of Wong (5.4) which implies 
Wong's notion of Markovicity is in turn implied by another notion of Markov 
property which we now introduce.
(5.7) DEFINITION Say that H°(G) ='{^(f) = (%j(f) ; j = 1,...,N) ; f s'S( R^l} 
has the pre-Markov property if for any u = (û  ; i = 1,...,N) belonging to
H (D), we have

E(u^| H (D ' ) ) = E(u^| H (3D)), i = 1,...,N
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(5.8) REMARK: Let us now show that the pre-Markov property implies the 
restricted Markov property of Wong. From (5.7), it follows that for
u = (û  : i = 1,...,N) e H (D) and v = (v̂  : j = 1,...,N) G h (D'), then

E(u^Vj| H (D')) = VjE(u^| H (D')) = VjE(u^| H (3D))

by (5.7). But H (3D) is a subspace of H (D'). Hence

E(E(u^Vj| H (D'))| H (3d ))

= E(u^| H (3D))E(Vj| H (3D))
= E(uuVj| H (3d ))

Thus, we have established that

E(u.v.l H (3d )) = E(u. I H (3d ))E(v . | H (3D))
1 3  1 3

for all u = (û  ; i = 1,...,N) g H (D) and all 
V = (Vj : i = 1,...,N) G H (D')

But this is the restricted Markov property of Wong as we have defined it 
in (5.4). Hence our claim is justified.
(5.9) REMARK: Let denote respectively the orthogonal projection
of H ( R )̂ onto H (D), H (D'). Then (5.7) may be expressed in the 
following abstract form

(5.10) Qgi Qg - Gqd ^D

Let us now make contact with Nelson’s notion of Markov property. To 
this end, it is well-known [81] that the pre-Markov property implies the 
Markov property of Nelson. We, therefore, have the following sequence of 
logical implications

PRE-MARKOV PROPERTY ^ RESTRICTED MARKOV   WONG ' S NOTION OF
PROPERTY OF WONG MARKOV PROPERTY

nelson's notion of
MARKOV PROPERTY
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The results of Chapter 4 now lead us to conclude that Wong's notion 
of Markov property is genuinely weaker than the restricted Markov property 
of Wong. Hence, the notions of Markovicity due to Nelson and Wong are 
different extensions of the pre-Markov property.
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CHAPTER- 6
CONCLUSION AND OUTLOOK

Throughout this chapter, unless there is an explicit statement to 
the contrary, we again assume that all generalized stochastic fields 
under consideration are Gaussian.

Let (G,@),y) be a probability space and let

H°(n) = {5(f) = (5_i(f),5o(f),5i(f)) s f e R^)>

be a Euclidean covariant generalized stochastic field on (^,0,y). In 
OChapter 4, H (G) was studied in considerable detail, and necessary and

sufficient conditions for it to be Markov in the sense of Wong were
presented. By means of these conditions, we were then able to obtain
explicit expressions for the two spectral measures d@^^^(|p|), p e R^,

0i = 1,2, associated with H . Because of the mathematical and physical 
importance of the results of Chapter 4, it is, therefore, interesting to 
know whether or not the methods employed there are again available in the 
more general case of arbitrary Euclidean covariant generalized stochastic 
fields. This particular question has already been answered in the 
affirmative in (4.1.4). In Section 6.1, we indicate how to extend our 
results to arbitrary Euclidean covariant generalized stochastic fields.

In Section 6.2, we discuss how Wong's notion of Markov property may 
be modified so as to accommodate a much wider class of interesting - 
whether from a mathematical or physical point of view - generalized 
stochastic fields. Then we provide examples of generalized stochastic 
fields which satisfy,this modified concept of Markovicity in the sense of 
Wong. These examples include many generalized stochastic fields which 
are Markov in the sense of Nelson.
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6.1 ARBITRARY EUCLIDEAN COVARIANT GENERALIZED STOCHASTIC FIELDS

We refer to (3.2.11) for the definition of Euclidean covariance 
for generalized stochastic fields.

Let Ĥ (Î2) = {Ç(f) = (gj(f) : j = 1,...,N) : f e ^S( R̂ ) be a 
Euclidean covariant generalized stochastic field on (0, (S/P) which
transforms according to an irreducible unitary representation

(s) 1h ->• V (h), s = (s^,...,s^)f TT = integral part of of SO(d). Then
by (3.2.11),if B(f^^\f^^^) is the matrix of correlation functionals
of Ç (f ) in Ĥ (J2), we have

B(f(2),f(l)) = v(G)(h)B(Vgf(2),Vgf(l))v(s)(h)"l

-1 d ®where (V̂ f) (x) = g x and g = (a,h) e E ^  SO(d) = M(d).
By way of anticipating the need to extend the results of Chapter 4

to arbitrary Euclidean covariant generalized stochastic fields, we have
ensured that all the results in Chapters 1 to 3 are formulated in their
most general forms.

The analysis of Chapter 4 requires generalization only in two respects.
Since we now have to consider an N-dimensional generalized stochastic field
which transforms covariantly according to an irreducible unitary represen

ts)tation h V (h) of SO(d), d and N arbitrary, we must have available
(A) The spectral representation for an arbitrary Euclidean covariant 

generalized stochastic field.
(B) The reduction formula for tensor products of irreducible unitary 

representations of SO(d). Let us consider (A) and (B) separately.
Now, (A) is already adequately catered for by Theorem (3.2.13) which

furnishes a spectral representation for an arbitrary Euclidean covariant
generalized stochastic field that transforms according to a given irreducible

(s)unitary representation h V (h), s = (s^,...,s^), it = integral part of
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■J d, of SO(d). By invoking Theorem (3.2.13) , like we did in (3.2.25), 
one readily writes down explicitly the matrix B(f^^^,f^^^) of correlation 
functionals of any Euclidean covariant generalized stochastic field. It 
only now remains for us to indicate where matrix elements of irreducible 
unitary representations of the full Euclidean group may be found, because 
they intervene in Theorem (3.2.13). To this end, we refer to [89] where 
a procedure for constructing the mentioned matrix elements is discussed.

Next, consider (B). By comparison with what obtains in the case of 
SO (3) , the reduction of tensor products of irreducible unitary represen
tations of SO(d), d > 3, is a far more difficult undertaking, and the 
subject gives rise to interesting problems in Combinatorial Mathematics. ' 
However, by employing the S-function methods of Littlewood[47], Butler 
and Wybourne [11], have succeeded in providing a procedure for solving 
the reduction problem for SO(d). We refer to the latter work for full 
details. Thus, the reduction formula for the tensor product of two 
irreducible unitary representations of SO(d) can again be written down 
explicitly.

It is perhaps instructive to write down the reduction formula for 
the tensor product of two irreducible unitary representations of SO(4). 
Here, if

f \ , 0 0.(ŝ fSg) (ŝ  ,8^ )
h V (h) and h V (h) are two such representations

of SO (4), then
(sws^) (s_°,S2°)

V ^ (h)^V . (h)
a 3 (s_+s_^-n-m,s_+s_^-n+m)

. G) V 1 1 (h)=
n=0 m=0

where
w = minimum of s^ + Sg and + Sĝ ^
3 = minimum of s^ - and s^^ - s^^
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and h V ( h ) is a representation which is complex conjugate 
to (h).
CONCLUSION With the implementation of the generalizations (A) and (B), 
and again under Wong's Assumption (4.1.1), results analogous to those 
announced in Chapter 4 are now readily obtained for an arbitrary Euclidean 
covariant generalized stochastic field. The only significant difference 
is an increase in the tediousness of the very similar analysis that must 
be done in the latter case.

We may thus conclude as follows.
As in the analysis of Chapter 4, we can provide necessary and sufficient 

conditions for an arbitrary Euclidean covariant generalized stochastic 
field to be Markov in the sense of Wong. These conditions then enable us 
to write down the explicit forms of the spectral measures associated with 
such a Markovian generalized stochastic field.

Every massive (i.e. > 0) Euclidean covariant generalized stochastic
field which satisfies Wong's notion of Markov property reduces to the 
Ornstein-Uhlènbec process on R 119][91].

6.2 OUTLOOK

In any definition of Markov property, the mode of specifying boundary 
data plays a significant part in determining which generalized stochastic 
fields actually satisfy the given notion of Markovicity. Thus, for example, 
on account of Wong's Assumption (4.1.1), Wong's notion of Markov property 
studied in Chapter 4 admits only generalized stochastic fields which are 
defined for and only for sharp-time. It is, therefore, of interest to try 
to weaken Wong's Assumption. To do this, one must give alternative, more 
general methods of specifying boundary data.
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BOUNDARY DATA AND MARKOV PROPERTY Let

H^(G) = {Ç(f) = j (f) : j = 1,...,N) : f e «SC R^)}

be a not necessarily Gaussian, but Euclidean covariant, generalized 
stochastic field on the probability space (0,Q^,y). Then, to relax 
Wong's Assumption (4.1.1), we now merely require as follows:

"There exists a nonempty set of boundary data for H^(f#."

For the Markov condition, we again retain Wong's original formulation. 
Thus, let 3D̂ , 9D, SD^ be an increasing family of nested boundaries and 
let H (3D^), H (3D) and H (̂ Dg) be respectively the associated boundary 
data Hilbert spaces, defined in some acceptable way. Then, we require 
that H (3D2) - P g (2Q) H OD 2) be stochastically independent of H (9D̂ ).

Let us now conclude this chapter by furnishing examples of generalized
stochastic fields which are Markov in the sense of Wong, when we employ 
the above recipe for obtaining boundary data.
(6.2.1) THEOREM Let H^(0) = {Ç (f) = ( Ç (f) : j = 1,...,N) : f e"S)( R^) }
be à Euclidean covariant Gaussian generalized stochastic field on (0,(& ,y).
Set Let R^) denote the

 ̂ ] lT(n,6&,w) ”
completion of ( %j( R^))^ in the norm derived from the following inner
product:

<•,•> . : t^{ r"*))” X (-5( R”̂))” + R
iT)

j(k) ^ k = 1,2.

Then, let H (3D) be the completion in (L^(î2,(^,y))^ of the linear space 

{Ç(f) = (Ç^(f ),..., Çĵ (f)) : £ =  (f, ...,f) e VÇ( R^) r supp f C9D>
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of random vectors. We take ‘ H (9D) to represent the Hilbert space of 
boundary data for H^(^) onbD. H (9D) is indexed by the Hilbert space 
b^(9D) which is the completion of e R^) : supp £ (2 9D} in R^). 

Let (x-y) be the kernel of B^^ (f ̂ ^\f ̂^̂  ).
Finally, suppose that H^(0) is such that

N . g
z (̂ ik (9 )̂ ̂ k] ̂ = 0, X 7̂ y, i,j = 1,...,N

where

= I'-'-'W)

is a strongly elliptic matrix of linear partial differential operators 
with constant coefficients.

Then, Ĥ (S2) is Markov in the sense of Wong.
REMARK; The proof of this theorem is completely analogous to the proof 
of Theorem (4.5.36), provided that we replace (L^(9D,da)^ by £̂(9D) in 
the latter proof. Hence, we will not reproduce the proof here.

Quite a wide class of Euclidean covariant Gaussian generalized 
stochastic fields satisfy the hypothesis of the last theorem, and hence 
are Markov in the sense of Wong. Furthermore, if a Euclidean covariant 
Gaussian generalized stochastic field satisfies the hypothesis of the 
last theorem and is additionally Markov in the sense of Nelson, then it is 
also Markov in the sense of Wong. This indicates that the theorem delivers 
many physically interesting Euclidean covariant Gaussian generalized 
stochastic fields; the latter include those recently studied, under 
physical motivation, in [45] and [99].

Needless to mention. Theorem (6.2.1) may be formulated more generally
■ 3 '3by requiring only that (Â  ̂"^) : i,j = 1,...,N) be a properly

elliptic matrix of linear partial differential operators with constant
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coefficients, for which the Dirichlet problem is well-posed [70]. 
However, the formulation of Theorem (6.2.1) given above seems adequate 
for several physical applications.
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