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ON A CLASS OF DISTANCE-REGULAR GRAPHS

by

MICHAEL A. GEORGIACODIS

ABSTRACT

We prove that there is no distance-regular graph 

r having intersection array

i(D =

* 1 1 ... 1 c

0 0 0 ... 0 k-c

k k-1 k-1 ... k-1 *

, k > 2

with diameter d > 13.
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Introduction

Definitions and elementary results

A simple graph V is a pair (V(D, E(r)) where

V(r) is a set {v_,v , v } of distinct element1 z n
called vertices and E(T) is a finite set of distinct

unordered pairs of distinct elements of V(r) called edges.

Throughout this thesis the term graph will mean

simple graph.

Definition 1 . Two vertices v^,Vj of a graph T are 

adjacent if {v^,Vj} is an edge.

Definition 2. A walk of length £ in T, joining

V. to V. is a finite sequence of vertices of T 1 ]

^i ~ ^0’ ^1 ’ •••’ " ’̂j

suçh that 11̂  and u^^^ are adjacent for 0 ^  t ^  £-1 .

A walk whose edges are all distinct is called a path .

Definition 3. A connected graph is a graph that contains

a walk jo for each pair v^,Vj of vertices.

Definition 4 . The degree of the vertex v^ is the number

of edges having as a verlex. a regular graph is

a graph in which every vertex has the same degree.



Definition 5. Let T be a graph whose vertex set is

V(r) = {v^ v^, v^} . The adjacency matrix of T is the

n X n matrix ' A = A(T) whose entries a^^ are given by

{ 1, if V. and v. are adjacent 
a = , ^ ]

' 0 , otherwise

Some elementary consequences of this definition are ;

1. The eigenvalues of A are real.

2. The sum of the eigenvalues is zero.

3. The sum of the entries in any row or column is equal

to the degree of the corresponding vertex.

4. The number of walks of length £ in T joining
£

V. to V. is the entry b.-. in A . [ 5 ] p. ii
i j J

Definition 6. The spectrum of the graph T is the set 

of pairs

S = {(ÀQ,m(Xo)), (X^^m(X^)),..., (X^,m(X^))}

where X^, i = 0 ,1 , ..., v are the distinct eigenvalues of

the matrix A and m(X^) their multiplicities.

Proposition 1 [ 5 ] p. 14 If T is a regular connected graph

of degree k then

(1 ) k is a simple eigenvalue

(2) For any eigenvalue X of A(F), we have |x| ^  k .



Definition 7. The number of edges in d  shortest walk 

joining to is called the distance in T between

and Vj and is denoted by ô(v^,Vj).

The diameter d(T) = d of a graph V is the maximum of the 

distances i.e.

d = max 6 (v.,v.)
v.,v.eV(D ^ ^1 ]

Definition 8 . The adjacency algebra of a graph is the algebra 

of polynomials,* over the complex field, in the adjacency matrix A.

Proposition 2 [5] A connected graph T with n vertices 

and diameter d has at least d+1 and at most n distinct 

eigenvalues.

Distance-Regular Graphs.

Let r be a connected graph of diameter d. Then, for 

any vertex v, the vertex set V(T) can be partitioned into 

disjoint subsets

PqCv), r^(v), ..., r^(v) , where

r^(v) = {u e V(r)| 6(u,v) = f}, f = 0,1,..,,d .

Graphs of small diameter can be drawn by arranging their

vertices in rows according to distance from an arbitrary vertex v, 

For example the graph of figure 2 is the same as the one in

figure 1 but drawn in the -vq ĉ ry-v̂ e.<"  ̂ ciescr\ t>e.oL.
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For any connected graph T, and any vertices u,v of r, let 

- I {weV(r) 16(u,w) = h and ô(v,w) = ij|; 

that is, is the number of vertices of F

whose distance from u is h and whose distance from v is i.

Definition 9 . The connected graph F with diameter d

is distance-h-regular if for all integers i and j

(0 ^  i, j ^  d) and for all pairs of vertices

u,v with 6(u,v) = j the number

• S^^(u.v) = (say)

depends only on h,i,j and not on the individual pair (u,v)

F is distance-regular if it is distance-h-regular for all 

h, 0 4  h 4  d .



Theorem I [6 ] If T is distance-l-regular then F 

is distance-regular.

CL proof see [6].

For a fixed j, the number S .. counts the vertices w 

such that w is adjacent to u and 6(v,w) = i, where

6(u,v) = j. Now, if w is adjacent to u and 6(u,v) = j,

then 6(v,w) must be one of the numbers j-1 , j, j + ij in

other words

S . . = 0 if i Ï j-1 , j, j + 1 .

W e  introduce the notation

where 0 < j < d, except that c and b, are undefined.=  =  o d
Then for any arbitrary vertex v e V(F) and a vertex

u £ Fj(v) we have that u is adjacent to c^ vertices in

F . t (v ), a. vertices in F.(v) and b. vertices in F. _(v)]-l ] ] ] 3+1

Definition 10. The intersection array of a distance-regular 

graph is the array

1(F) = a0

C_ C, ••• Cj1 ] d

b_ ... b . ...1 3

0.1



Now let r be a distance regular-graph of diameter d 

and vertex set V ( D  = {v^, v^} and let A^, 0 ^  i ^  d

be the n x n matrix whose entries are

1 , if 6(v ,v ) = i r s
ars 0 , otherwise

For those matrices we observe that = 1 , A^ = A(r) (The usual

adjacency matrix) and A^ + A^ + ... + A^ = J (J being the matrix

whose all the entries are equal to 1).

Theorem II [ 5 ] Let F be a distance-regular graph of

diameter d. Then {A^, A^, ..., A^} is a basis, for the 

adjacency algebra of the graph, described by the formula

d
\  ^hij •

Proposition 3 [53 pHlIf F is a distance-regular graph of cLeĉ f̂ e. ]< 

and diameter d, then A(F) has d+1 distinct eigenvalues 

k = Xq , X^, . ., X^ which are the eigenvalues of the 

(d+1) X (d+1) matrix B whose, entries are

(B)ij = i,j £ {0 ,1,...,d} .

Notice that B is a tridiagonal matrix, with entries

cj, when j-1 = i in the upper diagonal

aj, when j = i in the main diagonal

bj, when j+1 = i in the lower diagonal.

o . X



Definition 11. The matrix B is called the intersection 

matrix of T.

Theorem III [s3 p.i45. Let V be a distance-regular graph with 

intersection matrix B, and suppose that u^, are left

and right eigenvectors such that (u^)^ = (v^)^ = 1 

corresponding to the eigenvalue of B. Then

1. (v^)j = kj(u^)j for all i,j e{0 ,l,...d} .

2. The multiplicity of as an eigenvalue of A(T) is

m(X ) = -r  ---- 5-  , 0 4  i 4  d
Z

j=0

where N is the number of vertices.

The natural question to be asked is when an arbitrarily 

given array corresponds to a distance-regular graph?

The answer to this question is not yet known but the 

following theorem yields certain conditions which although 

not sufficient for the existence of the graph,related to a 

given array, they are nevertheless so restrictive that most known 

arrays satisfying these conditions correspond to a graph.

Theorem IV [5 ] p. 144 If the array (O-l) is the intersection 

array of a distance-regular graph of diameter d then
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1 . = 0 , = k (the degree of the graph),

c_ = 1 and k = a. + b. + c. for 1 < i < d-1 1 1 1 1  —  —
k = + Cj .

2. For 2 ^  i ^  d the numbers

k^ = (k b^ ... b^ ^^/(CgCg ...c^) are . integers,

3. k = ^ i  =  • • • ^  ̂ d-1 ’ 1 =  *̂ 2 =  * ' ’ =  ^d

4. If N = l + k + k- + . . . + k ,  l<.i<. d-1 then2 d —  —
N.k = 0(mod2) and k.dL = O(mod 2) .1 1

5. For each eigenvalue of the matrix B, given by (0.2)

with eigenvector u. defined as in theorem III
K N/ S 1 / \2the number y  Z k.(u.). , 15 o.'Y] I'vi-tece'T.

/j = 0 V  1 3

Definition 12 An array of the form of (0.1) is said 

to be feasible if it satisfies the conditions of theorem IV.

In [16] Tutte showed that the number of vertices N, 

say,of a regular graph whose degree (k ^  3) and girth (y ^  3) 

are given is greater than or equal to

1 + k + k(k-l)+ ... + k(k-l)z(Y if y is odd

and I 0.3
1 + k + k(k-l)+ ... + k(k-l)^^ +(k-l)^^

if y is even

Here the girth of a graph is the length of one of its 

shortest circuits.



A graph which attains the bound (0,3) is called a 

Moore graph if y is odd and a Generalized Polygon if 

y is even.

A lot of work has been done on the classification of such 

graphs. Generalized Polygons have been studied by 

Feit and Higman [9], Singleton [15] and Benson [3]. Moore 

graphs have been studied by Hoffman and Singleton [12],

Vijayan [17], Bannai and Ito [1] and Damerell [6].

\lis tiooK [5^ ch.25Biggs considered both types of graphs as 

special cases of the distance-regular graph of diameter d 

whose intersection array is

* 1 1
0 0 0
k k-1 k-1

1 c

0 k-c

k-1 *

, k > 2 0.4

The case c = k is a Generalized Polygon and the case c = 1 

is a Moore graph.

In this thesis we investigate the feasibility of the 

intersection array (0.4) using the methods and formulae 

given by Biggs [5] and we prove that this is not feasible if 

d > 13.

Supposing that a graph of this type exists, Biggs has 

derived a formula for the minimum polynomial of its adjacency 

matrix A.

In chapter one, by using that formula we calculate the
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multiplicity of each eigenvcilue X of the matrix A as a

function of A. Using that result (Theorem 1 below) Bannai

and Ito [2] have proved that the characteristic polynomial

splits into linear o.sr quadratic factors.

In chapter two we prove that the characteristic polynomial

splits into quadratic factors over GF(2) only if its degree (= d)
t tis of the form d = 2  x f  or 2 x f + 1  where f = 1,3 or 5.

To get this result since the characteristic polynomial G^^x) 

alone does not always provide the answer, we construct another 

polynomial H^(Y) whose roots are linear or quadratic over 

the rationals whenever the roots of the characteristic polynomial 

are.

In chapter three the factorization of G^^x) and H^^Y)

over GF(2), provides the information that the constant terms

of these polynomials are divisible by a certain power of 2.

But we observe that this happens only when t ^ 4 .  From

this it follows that d ^  81.

In chapter four we classify our graphs according to the value

of f. ^When f = 1 the polynomial H^(Y), reduced modulo 
2Y - 4Y, provides the information that t < 4. In the 

case f = 3 the value of the polynomial H^(Y) at Y = 0 , 

where 6 is any odd numbers, provides a necessary condition which 

enables us to eliminate t = 4.

When f = 5, the same polynomial, reduced modulo
2Y + BY + 0 yields the conditions which prevent t from 

being 3 or 4. From these results we get that d < 25.
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Chapter five deals with graphs of diameters 25 and 24. 

There from the theorem of Dumas [7] we derive the conditions 

which forbid those diameters.

In conclusion I wish to state that the principal result 

contained in this thesis, which is described in the abstract, 

was obtained by my own research.
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CHAPTER ONE

Eigenvalues and their multiplicities

We adopt the notation of Biggs [ 5 ] which is 

h = k-1 , q = +/k-l, X = 2q cosa

and we regard the matrix

B =

1
0 1 

k-1 0
k-1

1 •

0 c 
k-1 k-c

1.1

1.2

as the intersection matrix of a D-R graph. Then the characteristic 

equation of B is given by the following result. ([5] lemma 23.3).

The number X is an eigenvalue of the matrix B if either

X = k 1.3

or
X = + 2q cosa 1.4

and F ( c o s v ) = 0  w  \r\ar<2. F  i s
dL cL

sin(d+l)a , sinda ^ c-1 sin(d-l)a _ „ / \q --- :-----  + c L. - - - + — —  — -T— r  = F , (cosa)sina sina sina 1.5

where d is the diameter of the putative graph.
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In this chapter in §1 we calculate the recursion for F,(cosa) andd
we exclude X = -2q from being an eigenvalue. In §2 we express

the multiplicity m(X) say of any eigenvalue X of the adjacency 

matrix A of the assumed D-R graph as a function in X . Finally we

state the theorem of Bannai and Ito which is the starting point of our 

investigation.

§1. The characteristic equation of B.

Lemma 1.1. With F, as defined in (1.5)---------- d
2 c-1F^ = 2qcosa + c, F^ = 4q cos a + 2c cosa + — ^  q 1.6

F , = 2 cosa F , - F , _ , d > 2 . 1.7d d-1 d-2

Proof. The Tchebycev polynomials of the second kind are of the form 

([8 ] (10.11.12) )
u (cosa) = 1.8n sina

and satisfy the following recurrence relation (C 8 ]. (10.11.16) )

U ,(cosa) = 2 cosa U (cosa) - U .(cosa) • 1.9n+1 n n-1

Hence from 1.5 we get

c-1F, (cosa) = q U. (cosa) + c U,  ̂ (cosa) + ---- U (cosa) . 1.10d d d-1 q d-2

Thus

F^ (cosa) = q{2 cosa - U^_2> + c{2 cosa - U^_^}

+ —  {2 cosa U, . - U , } 1.11q d~3 d-4

= 2 cosa F - F . 1.12d-1 d-2

Now putting d = 1,2 into 1.5 we get 1.6.
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We note for future use the formula
2

F, (cosa) = (2q cosa + c) U,  ̂ (cosa) + ^ ̂  ^ U, _ (cosa) 1.13a a-x q d-z

got by substituting for (cosa) in 1 .10.

Proposition 1.1. X = -2q is never an eigenvalue.

Proof. Let q be irrational. Then if -2q is an eigenvalue so is +2q.

But X = +2q implies a = 0 by 1.1 and in that case 1.5 gives, 

after using L'Hôpital*s rule that

q(d+l) + cd + —  (d-1) = 0 1.14q

which is impossible since this is strictly positive. Therefore q 

has to be rational and integral. Now if the integer X = -2q is an 

eigenvalue then a = ïï and again by L'Hôpital*s rule from 1.5 we get

(-1 )^“^ {q(d+D - cd + ^  (d-1 )} = 0 1.15

'  " C ;  x - i  °  1  *  d i  f d ' A

2
-— ^  has to be an integerdq - d + 1

. , -----^ . ■ - = q - must be an integerd q - d + 1  ^ d q - d + 1

.. d q - d  + l ^ q  1.17

which is not true when q > 1 .

Now if q = 1 then k = 2 by 1.1, in which case our graph

is a polygon with 2d + 1 edges.
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§2. The multiplicity of X as an eigenvalue of A .

Theorem 1 . Let X be an eigenvalue of the intersection matrix B 

and m(X) its multiplicity, as an eigenvalue of the adjacency matrix A 

Then

N X-h-1
m (X) " (h+l)( X%-4h) + 2d(X + h + 1) = Z(X) 1.18X(c-l) + h + (c-1)^

(say) where N is the number of vertices of the supposed graph.

Proof. By [ 5 ] p.158 the multiplicity of X as an eigenvalue of 

the matrix A is given by

N ^ 2= Z(X) = Z k. u7 1.19
' i=0 i i

where
k = 1 , k. = kh^"^ , (1 4  i < d), k^ = c ' \  1.20

and \i = (uj^lju^, ..., u^) is a left eigenvector of B corresponding 

to the eigenvalue X . Now since the first d columns of B are the 

same as in the matrix B of [6 ] , the formulae derived there for u in 

terms of any eigenvalue X hold.

Thus i -l\i
u. = c(iy + D 1.211 'q ̂ \q /

where C = ~ , D = and 6 = e^“ . 1.22
k(0-0 ) k(0 -0)

To simplify the resulting algebra we adopt the convention that if

W is a rational function of 0 , then W is the function got by replacing 
-10 by 0 throughout.
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Thus
k 2 — 1 “1 2 xs 20 Ug = 1 =-h + kh (C + 2CC + C ) 1.23

k^ u^ = kh ^ (C^ 0^^ + 2CC + 0~^^), 1 4  i < d 1.24

k^ u^ = c " \  h"^ (C^ 0^^ + 2CC + 0"^^) . 1.25

Hence

Z(X) = Z k. u? =-h"^ + k h”^ c"^ {Z + Y + Z} 1.26
1=0 1 1

where
Y = 2CC (dc + 1) 1.27

and d- .
Z = {c Z 0^^ + (1-c) . 1.28

1=0

2 2 3Consider Z. Sum the series and multiply by k (q0 + c-1).(0-1) .

Then

k^(0^-l)^ (q0+c-l).Z = (h0^-l)(q0-l).
o oa.{(q0+c-l)(q0+l)(0 +c-l).0 -c(q0+c-l)(q0+l)} • 1.29

Now if we put 0 = e^^ we have

ina ina _n _-n _ e - e _ 0 - 0 ,sin na -------- ^ ^ --- 1.30

and equation 1.5 becomes

0̂ *̂  (q0 + c - l)(q0 + 1) = (q + 0) [q + (c-l)0] 1.31

and substituting for 0̂ *̂  into 1.29 we get

k^(0^-l)^ (q0+c-l). Z = (h0^-l)(q0-l) [(c-l)0^fqc0+ (c-l)(c-q )] , 1.32
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Then multiplying both sides of the above equation by 0~^(q0”^ + c - 1) 

and arranging the R.H.S. terms in powers of 0 we get

A.Z = 0\q(c-l)^ + 0^.h(c-l) Ch(ctl) - (c-1)]

+ 0q[h^(3c-c^-l) + h(c-l)(c^-2c-l) - (c-l)^]

- h (c-1 ) + h (2c -4c+l) - h(c-l)(c^+l) + (c-1 )^

+ 0”^q[h^(c-l) - h(2c-l) + (c-1 )(-c^+2c+l)]

+ 0 [h (c-1) - h(2c -4c+l) + c(c-l) ] + 0 ^q(c-l)(c-h) 1.33

where

A = k^(0^-l)^ (q0+c-l)(q0'^+c-l).0"^

= k^(0-0"^)^ Cq(c-l)(0+0”^) + h + (c-1)^] = . A 1.34

Thus

A(Z + Z) = (0^ + 0“^). q(c-l) [h(c-2) + c]

+ (0^ + 0"^) [h^(c^+c-2) - h(3c^-6c+2) + c(c-l)^] 

t (0+0 ^).q[h^(4c-c -2) + h(c-l)(c -2c-2) - he +(c -l)(2-c)]

- 2h^(c-l) + 2hf(2c^-4c+l) - 2h(c-l)(c^+l) + 2(c-l)^ . 1.35

Now 0 = ê °̂  thus

8 + 8-1 = A  , 8^ t 8-2 = , e® + 0-3 = m ! = 3 h l
q 3

and ( 0 - 0 ^ ) ^  = — — T— —  • 1.35

From which we get that

2 ,. 2 / , X . , . / n \2 - i.
A = k (X -4h)[X.(c-l) + h + (c-1) ] • 1.37
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and

A(Z + Z).H= . X^(c-l) Ch(c-2) + c]

+ X^[h^(c^+c-2) - h(3c^-6c+2) + c(c-l)^]

+ X.h[h (-C +4c-2) + h(c-l)(c -5c+4)-hc + (c-1)(2-2c-c^)]

- 2h [h (c-1) - h^(c^-5c+3) - h(-c^+4c^-7c+3) + (c-1)^] , 1.38

Similarly by equation 1.27 we get

Y = 2CC(dc+l) = h +l-h(e +8 b  2(dc+l)
k [2-(8 +9 ‘̂ )]

2 2
= h.2(dc+l) . 1.39

k^(4h-X^)

Thus

H-AY = [X^ - (h+1)^] [X.(c-l) + h + (c-l)^].2h(dc+l) . 1.40

Now equation 1.26 can be written in the form

he AZ(X) = - cA + kA{Z+Y+Z} 1.41

= (h+l).c.h{X^(c-l).2d + X^ [h(c+2d) - c(c-l) + 2d(c-l)^]}

+ (htl).c.h . X{h^[2-c-2d (c-1)] + h[c -2c-4d (c-1)] + (c-1) (2-c-2d)}

+ 2h(h+l).c {-h?(d+l) - h^ [d(c^-2c+3) + 1] - h[d(2c -4c+3 ) - (c-1)^]

+ (c-1)^ (1-d)} . 1.42

Hence

(h+1) (X^-4h) [X(c-l) + (c-1) + h]. Z(X) =

[X - (h+l)i {(h+l-c)[cX+2(h+c-l)] + 2d(X+h+l)[(c-l)X t (c-1)^ + h]}. 1.43

From which we get 1.18
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Theorem 1 shows that the multiplicity m(X) of each eigenvalue 

of the incidence matrix A is a quotient of two cubic polynomials in X. 

This together with the fact that the multiplicity m(X) has to be rational 

implies that all the eigenvalues of the assumed D-R graph must be of 

degree 4  3 over the rationals.

This result has been improved by Bannai and Ito. In [ 2 ]  they 

prove the following .

Theorem 2. If F is a D-R graph with intersection matrix B and 

valency k > 2, then the roots of the characteristic polynomial of B 

are all of degree 4  2 over the rationals.

For proof see [2 ] theorem A.
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CHAPTER TWO

The factorization of the characteristic polynomial of the matrix B 

over GF(2).

If CL D-R graph with intersection matrix B exists, then, 

from the theorem of Bannai and Ito, we know that the roots of its 

characteristic polynomial will be all of degree less than or equal 

tg 2, over the rationals. Consequently, if we reduce that polynomial • 

modulo 2, this must have all its roots in GF(4).

Definition 2.1. Let

G(x) = q^'^ F (cosa) 2.1
d

where
X = 2q cosa 2.2

and F^(cosa) is here regarded as a polynomial in cosa.

By lemma 1.1 the polynomial G^(x) satisfies the following

recurrence relation.

G,(x) = xG (x) - hG, (x) , d > 2 2.3d d-1 d-z

where 2G^(x) = X + c, G^(x) = X + cx + c-k . 2.4

The polynomial (x-k) G^(x) is monic and of degree d + 1 .

Its roots are those given by [ 5] lemma 23.3. Thus (x-k)G^(x) 

is the characteristic polynomial of the matrix B. Therefore if the

graph exists, G^(x), reduced modulo 2, will have all its roots in 

GF(4). ■
Now when h is odd this is not always possible. But when

h is even the polynomial G^(x) factorizes trivially over GF(2).
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To overcome this difficulty we construct another polynomial 

in a new variable Y, whose roots have to be rational' or 

quadratic whenever the roots of G^(x) are. Moreover, this 

new polynomial reduced modulo 2, has all its roots in GF(4) 

only when certain conditions for d are satisfied.

The main result of this chapter is

Theorem 3. If a D-R graph with intersection matrix B exists

then its diameter has to be of the form 

ii "td = 2  X f or 2 x f  + 1, where f = 1 or 3 or 5 .

§1. Preliminary results 

Definition 2.2. Let

H,(Y) = (-1)^ h F (cosa) F (-cosa) 2.5d d o.

where g
Y = = 4 cos^a = 2 cos 2a + 2. 2.6

The so defined H(Y) is a polynomial in Y of degree d.&
The degree of each root of H(Y) , over the rationale, is less thancL
or equal to the degree of the corresponding eigenvalue x of the 

intersection matrix B.

Now since

and since

F (-cosa) = F\(cosg) where 6 = 7r - a 2.7d d

sin n6 _ ^_^^n+l sin na 2.8
sing sina
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we get that

H,(y) = h{[q5ÎHi±Ül£ + £li sin(d-l)gj^ _ 2 sin^da, 2.9
d ^ sina q sina -* , 2 ^sin a

2Putting q = h we get

2 2 94 sin a H^(Y) = -2(c-l) cos2(d-l)a + 2h(c -2c+2) cos2da

- 2h^ cos2(d+l)a + 2h^ + 2(c-l)^ - 2hc^ + 4h(c-l) cos 2a 2.10

Definition 2.3 ' Define

K^(Y) = --2(c-l)^cos2(d-l)a + 2h(c^-2c+2)cos2da - 2h^cos2(d+l)a , 2.11

M(Y) = 2h^ + 2(c-l)^ - 2hc^ + 4h(c-l) cos2a

Then
= 2[h(c-l)Y + (h-c+1)^ - hc^]

(4-Y) H,(Y) = K,(Y) + M(Y) . 2.13Q d

Lemma 2.1

K (Y) = -{h^ + (c-l)^}Y + 2{(h-c+l)^ + hc^} 2.14o

K (Y) = -h^Y^ t h{c^-2(c-l) + 4h} Y - 2 {(h-c+1)^ + hc^} 2.15

K^(Y) = (Y-2) K^_^(Y) - K^_2(Y) . 2.16

Proof The polynomials cosqS = T^(cos0) are the Tchebycev 

polynomials of the first kind and satisfy the following recurrence 

relation [ [8 ], (10.11.15)] .

T A c o s d )  = 2cos0 T (cos0) - T (cos0) . 2.17n+1 n n-1
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Now if we put 0 = 2a 2.11 can be written on the form

K^(Y) = -2(c-l)^ + 2h(c^-2c+2) - 2h^ . 2.18

Hence by 2.17

K (Y) = 2cos2a [-2(c-l)^ T. _ + 2h(c^-2c+2) , - 2h^ T ]d. ci-z d-l d

- [-2(C-D T , , + 2h(c^-2o+2) ^ - 2h^ T 1d-d d-2 d-l

= 2cos2a K^_^(Y) - K^_^(Y) . 2.19

Thus from 2.6 we get 2.16 . Next putting d = 0,1 into

2.11 we get 2.14, 215.

Corollary 2.1. H^(Y) = (Y-2) H^^^(Y) - H^_^(Y) + M(Y) 2.20

H^(Y) = (k-d)^ , H^(Y) = h^Y - hc^ . 2.21

Proof. From 2.13

K,(Y) = (4-Y) H,(Y) - M(Y), d = 0,1, ... . 2.22d d

Thus for d ^  2 2.16 becomes

(4-Y) H^(Y) - M(Y) = (4-Y) [(Y-2) H^_^(Y) - H^_2(Y)] + (3-Y) M(Y)

from which we get 2.20.

Now if we put d = 0,1 into 2.9 we get the stated values 

of Hq (Y), H^(Y) .

Definition 2.4 Put c-1 = e. Then we define r,s such

that 2̂ 11 h and 2®||e . Also define p = min(r,2s) and

L (Y) = 2 ~ ^ H (Y). Denote reduction modulo 2 by an asterisk . d d
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Lemma 2.2.

I. L^(Y) has all its coefficients integral and 

2"^ M(Y) E O(mod 2) .

II. Let p,a be the roots of the equation
2. p + Yp + 1 = 0 2.23

in characteristic 2. Then p = a and
A * 2 A A

L:(Y) =
p + 1  p + 1

Proof By (2.12) and (2.21) JM(Y) = h e Y + (h-e)^ - h(e+l)^

Bq (Y) - (h - e) , Hĵ (Y) = h Y - h(e+l)^. By inspection we

see that each term of H^(Y) or H^(Y) or JM(Y) is divisible 

by h or e and hence by 2^ .

II. From 2.20 and the definition of L,(Y) we haved
Lj(Y) = (Y-2) L^_^(Y) - L^_2(Y) + 2"Pm (Y). d > 2 . 2.25

Reducing modulo 2 we get

L*(Y) = Y L*_^(Y) - L*_2(Y) , d > 2 . 2.25

Now the solution to 2.26 is

l "* = Ap^ + Bd^ 2.27d
where p,d are the roots of the equation 2.23 and A,B the 

solution of the system
A

A + B = L0 2.28
A

Ap + Bd = L^ 

from which we get 2.24.
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§2. Factorization of H^(Y) over GF(2).

We next consider how the polynomial L%(Y) factorizes in 

GF(2) . To do that we first write 2.21 in the form

Hp(Y) = (h - e)2, Hĵ (Y) = - h(e + 1)^

and separate the following five cases.

I. 2s > r = 0

II. 2s = r > 0

III. 2s = r = 0

IV. 2s > r > 0

V. r > 2s ^  0

where r,s are as in definition 2.4 .

2.29

Lemma 2.3. If p,d are the roots of the equation

p^ + Yp + 1 = 0 

I'vi ch<xrcxc4er\s4,'c

(p+l)p

L,(Y) =< 4 -  +1)^

(p +i)p

(p2+l)pd-2
(pd^l + 1)^

in case I

II

III

IV

V

%/50

2.30
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Proof Call th(S.‘R . H S o 4  2.50 K1(p)
i

Now Lq = 2 P (h-e) 2.31

= 2 ^ [h Y - h(e+l)^] 2.32

Thus A 2case I . Lo 5 h E 1
A 2- (h Y “ h.l) = Y + l = p + a + l

and 2.24 becomes

*r _ p(p+p ^+1) + 1 _d _ p^ + p(p+p ^+1) -d
 ̂ ^ 2 ^  p + — ....  p

2p + p pd ^ p + 1 p-d2 K ■ 2
p +1 p +1

(p+l)p^

A -2s 2Case II. Lq E 2 e = 1

A -2s , .2= 2 .h(e+l) = 1
(<VM 0 ol 9,1

Hence

4 -  4 ; / '  4 y ' “ ‘ “ 5 î ï » ' *P +1 P +1 P

1 (p2d-l + 1) 2.34
(p+l)p^^^
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A 2 9Case III . Lq  E h  + e E l  + l = o
A 2

= h Y = Y = p + a  *
(̂/vu o cL 2 1

Thus
T* = P(P+P"1) + 0 d p(p + p"l) 1 _ d , 1
d 2  ̂ -P +----- 2-----  - —  - P + —P + 1  P + l p  pd

1 , d T.2
= (P + 1) . 2.35

P

Case I V .  e  = o
A —TO 2

E 2 ^.h(e+l) E 1

ÂAJI O JL 2 1

■ ■ ■  A'
(p^+l)p

(p2+l)pd-2

2.36

A -2s 2Case V. E 2 .e E 1 , . xC [/vu 0 cL X )
l ” e 2"^^.h E 0 .

■■■ ' 7 7 / " h ' 7 " 7 7 y ' 7 ^ ^

^ (p^'l + 1) • 2.37
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Proposition 2.1 Suppose that all the roots of L^(Y) lie in 

GF(4). Then d must satisfy the following conditions.

d 2 in case I

d  ^  3 II

d  - 2^ X  f III and IV 2.38

d = 2 ^ x f + l  V

where f = 1 or 3 or 5 .

2Proof. Let 0, l , w , w  be the elements of GF(4), where 
2w,w denote cube roots of 1. Now from the equation 2.30 

we see that

Y = 0 corresponds to p = 1
2Y = 1 corresponds to p = w or w

and

the equation

2Y = w or w corresponds to p = a root of

2 2 2 p + w p + l = 0  o r p + w p + l = 0 .  2.39

9 9 9  4 3 2  x ^ + 1(x +wx+l)(x +w x+1) = X +x +x +X+1 = -f • 2.40

These two equations do not have roots in GF(4). But
5
X t 1

So Y = w or w corresponds to p = a primitive 5th root of 1,
A

e say. Therefore L^(Y) has roots in GF(4) if and only if the 

equation N^(p) = 0 has its roots in the set

R  = {1, w, w^, e, e , e } . 2.41

Now take & = 2^ x f, where f is odd. Then p V l  = (p^+1)^^, 

and the roots of + 1 = 0 are all distinct and form a cyclic
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group. A generator of this group is a primitive f^^ root 

of unity. Therefore the roots of the equation + 1 = 0 

are not all in R unless f ^  5. From Vj is we get 2.38.

Corollary 2.2. The diameter d of a D - R  graph with 

intersection matrix B must satisfy conditions 2.38 .

Proof. By theorem 2 all the eigenvalues of the assumed graph 

must be of degree ^  2 over the rationals. Therefore the same 

must be true over GF(2). Now if such a graph exists the 

roots of the polynomial H^(Y) must be rational or quadratic. 

Thus the polynomial [2 ^ H^(Y)]"= L^^Y) (regarded as a function 

of p) must have all its roots in the set R ,

This, by proposition 2.1, is true only when d satisfies the 

conditions Q..5>8 

This proves theorem 3.
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CHAPTER THREE

An upper bound of d

In this chapter we deal with the cases III, IV and V, 

aiming to obtain a bound for the diameter d of the assumed 

D- R graphs. We prove that there cannot be D- R graphs 

with intersection matrix B of diameter d > 81 . To obtain 

that result we consider each of those three cases separately.

In case III, by looking into the polynomial G^(x) we 

get that t ^  3 .

In cases IV and V the polynomial B^(Y) provides the 

information that t ^ 4 .

Those two results, together with the result of theorem 3, 

give rise to the following .

Theorem 4 . The only possible D- R graphs with intersection

matrix B are those of diameter

d = 1,2 in case I , d = 1,2,3 in case II

d = 1,2,4,8,3,6,12,24,5,10,20,40 in case III

d = 1,2,4,8,16,3,6,12,24,48,5,10,20,40,80 in case IV 

d = 2,3,5,9,17,4,7,13,25,49,6,11,21,41,81 in case V .

Throughout this chapter the order of any integer I say, 

is defined to be the maximum power of 2 which divides I and it 

is denoted as ord(I) .

With this notation we have

ord(h) = r , ord(e) = s .
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§1 Case III r = s = 0 .

From equations (2.3) and (2.4) we have

G^(x) = xG^_^(x) + G^_g(x) , d > 2 3.1

A A O
Gj^(x) = X , G^(x) = X . 3,2

-1Suppose that p,a where p = a are the roots of the equation

2p + xp + 1 = 0 3.3
in characteristic 2.

Then the solution to the recurrence 3.1 is

G^(x) = Ap^ + 3.4

where A + B = G^(x)

Ap + Ba = G^(x)

Lemma 3.1. If G^(x) has all its roots rational or 
2t-l

quadratic, then 2 divides G^(a) for any even number a.

3.5

from which we get that
A = B = 1 3.6

Proof. From equations 3.4 and 3.6 we get that
_t

\ d -d , f ^G^(x) = p  + p  = ( p  + p  ) 3.7

—1 f —fNow, for any odd f, x = p + p divides p + p
"t ^Therefore x^ divides G,(x) .d

t-1By hypothesis G^(x) is a product of at least f x 2

quadratic factors over the rationals. Reduced modulo 2 this
2*̂  t“lproduct is divisible by x . Therefore at least 2 factors
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of G^(x) have constant term zero. Hence at least 2^ ^ 

factors of G^(x) have even constant term . Thus

2 divides the constant term of G^(x). Now let a be

any even number. Then by the same argument 2 ^  ^ divides 

the constant term of G^(x+a), which equals G^(a).

t“lCorollary 3.1. ord (c-k) ^  2

Proof. By equations 2.3 and 2.4 we have that the constant

term; of G^(x) is equal to
d-2

G^(0) = (-h) ^ . (c-k) . 3.8

In this case h is odd

.*. ord ( C-Y. ) = ord(G^O))^ 2^ ^ , by lemma 3.1.

Lemma 3.2. Let be the roots of the equation

u ^ - x u + h = 0 .  3.9

Then for any d ^  2
,d ,d ,d-l _ ,d-l

G^(x) = (x+c) ^ j j -  + (c-k) ---^  3.10

provided ^

Proof. The roots of the equation 3.9 for
 ̂ , ±iaX = 2q cosa, are 9 ,4» = q.e

Thus for any integer n we have

(j)̂ - = 2i q^.sin na . 3.11
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Now by 2.1 and 1.13 we get

G^(x) = ^ F^(cosa)=(2qcosa+c).q^ ^ V^_^(cosa)t(c-l-q^)q^ ^ ( c o s a ) 3.12

But by 1.8 and 3.11 for every integer n, we have

2Thus since q = k - 1, from 3.12, we get 3.10 .

Lemma 3.3. Let x = ± 2 and be as in lemma 3.2.

Let d = 2^ X f, where f is odd.

Then
(i) (j)̂ + = 2 mod 4. 3.14

, d , d
(ii) ord -I- = t . 3.15(p - ip

Proof. \

(i) We first note that in this case = h .

Also
(j)tip = ± 2 E 2  mod 4

and

(p^ +  ip^ = ((p + ip)^ - 2 #  = 4-2# - 2 mod 4 .

Hence we have result for d = 1,2 .

Suppose now that result holds for given d + 1 and d .

Then

= (#+^)(#^^^+^^^^) - h(^^+^^) 5 2(mod4) . 3.16

Hence 3.14 holds by induction for every d.

3.17
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Now

ord Tl:  ̂ ^ I ord + / ’' ) = t 3.18
i=l i=i

and

f-i
_______ - rr+M'P(p - Ip

f-3

k=0

f-3
2

Now (pip is odd and by (i) Z + ^f"2k-l^
k=0

(p - ipIS even ., .  f- is odd.9 - Y

Hence

(4 )̂ = (4 )̂ + F )
= 0 + t = t .

Proposition 3.1. Let r = s = 0, d = 2 ^ x f .

Then t < 3.

Proof. From lemma 3.2 for x = ± 2 we get

,d ,d ,d-l ,d-l
G^(±2) = (± 2 + c) + (c-k)   . 3.20

2^-1By lemma 3.1 G^(±2) must be divisible by 2
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.d-l _ d-l
Now ---^ ^ ---  is an integer and by corollary 3.1

2 divides c-k. Thus 2 must divide the first term

of 3.20 which, by lemma 3.3, is equal to

(± 2 + c) X 2^ X odd number = T, say 

and since c is even

either 4 divides c, which implies ± 2 + c E 2(mod4)

or 4 does not divide c, which implies ± 2 + c = 4(mod8) .

Thus ord(T) ^  t + 2. 3.21

Hence G^(± 2) will be divisible by 2 only if T is.

2^"^ £  ord(T) £  t+2 3.22

which is true only when t ^  3 .

Since d = 2 x f ,  f = l or 3 or 5 the above

result proves Theorem 4 in case III.
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§2. Cases IV and V

For the rest of this chapter we deal with case IV, where 

2s > r > 0 , d = 2^ x f  

and

Case V, where r > 2 s ^ 0 ,  d = 2 ^ x f + l .

Lemma 3.4 In cases IV and V L,(Y) is divisible by Y -------------------------  d
t-1

and 2 ^ H,(a) is divisible by 2 for every even a.

Proof. From lemma 2.3 we have

2^

Ld(Y) = 4

^ [p*̂  + p in case IV-1P + P

^ [p^ ^ + p in case V .-1P + P

Call the R.H.S. of 3.23 N^(p). • Then the equation
A

Lj(Y) = N,(p) holds even if p is transcentendal over GF(2). d d

Thus 3.23 holds identically if we put

Y = p + p ^ .
, f -f.2‘̂

But N^(p) = — -------   , and since f is odd we have
P + P

-1 2^-1that (p + p ) divides N^(p) .

Therefore

Y^ divides L , ( Y ) = [ 2 ^ H , ( Y ) ]  d d

3.23
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Now, by theorem 2, 2 ^ H^(Y) is a product of at least f x 2^ ^

quadratic factors. Reduced modulo 2, this product is divisible

2^-1 t-1by Y , Therefore at least 2 factors of

“P Î?C[2 H^(Y)] have constant term zero. Hence at least

t-1 —p2 factors of 2 H^(Y) have an even constant term.

Thus 2 divides the constant term of 2 H,(Y).d

By the same argument, for any even a, 2 divides

the constant term of 2 ^ H^(Y+a), which equals 2 ^ H^(a) .

Lemma 3.5.

(i) If 4 divides d then

H,(0) = H,(2) = (c-k)2 = (h-e)^ . 3.24d d

(ii) If 4 divides d-l then
2 2 H,(0) = - he and H.(2) = -h(c -2h) . 3.25d d

Proof. From definition 2.3

2 • 2 2 K^(Y) = -2(c-l) cos2(d-l)a+2h(c -2c+2)cos2da-2h cos2(d+l)a

M(Y) = 2[h^+(c-l)^+2h(c-l)cos2a-hc^]

(4-Y) H (Y) = M(Y) + K^(Y) , 3.26

Now by 2.6

Y = 0 => cos2a = -1 => a = -̂
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Thus

2e + 2h(e2+i) + 2 h ^ if d ï 0(mod4)
= 1 2 2 2 .•2e - 2h(e +1) - 2h if d = l(mod 4)

and

M(0) 2h^ + 2e^- 4he - 2h(e+l)^ .

by 3.26 we get

V ° )  =
r (h - e)^ 
L“h(e + 1)

if d = 0(mod4) 
if d = l(mod4)

Next Y 

Thus

K-(2) =d

2 => cos2a = 0 => a = —

2h(e + 1 )

2 2 2(h - e )

if d = 0(mod4)

if d = l(mod4)

and

M(2) 2h^ + 2e^ - 2h(e + 1)^ .

by 3.26 we get

H,(2) = 4d

(h - e)

2h^ - hCe+l)^

if d = 0(mod4)

if d = l(mod4)

Lemma 3.5 H (4) = [d(hte) + (h-e)]^ - d^ h . ---------- d 3.27

Proof By equation 2.6, Y = 4 => cos a = 1 => a = 0 .

From 2.9 we have
2 2, r / sin(d+l)a . c-1 sin(d-l)a'\ 2 sin da-, 

Hd(Y) = sina "  + sina J ° '

On letting a ->■ 0 and applying L'Hopital's rule we get 3.27
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Case IV. 2s > r > 0 . Here p = min (2s,r) = r.

■d'By lemma 3.4 2 H,(a), where a is any even number, is
2^-1

divisible by 2 . Thus

ord (H^(a)) ^ r  + 2^ ^

Also by lemmas 3.5 and 3.6 

'dH (2) = (h-e)^ , d = 0 (mod4) 3.29

H^(4) = [d(h+e) + (h-e)]^ - d^(e+l)^h . 3.30

Lemma 3.7. Let r > s. Then t < 4 .

Proof. Since r > s > 0 from 3.29 and 3.30 we get

ord (H^(2)) = 2s 3.31

ord (H^(4)) >,min(2s, 2t + r) 3.32

where the equality holds only if 2s ̂  2t + r.

Thus if 2s ̂  2t + r we have

2t + r >_ ord (H.(4)) . 3.33—  d

Now let 2s = 2t + r then 3.34

2t + r = ord (H^(2)) (by 3.31) * 3.35

. . 2t + r ̂  r + 2^ ^ by 3.28 . . t ̂  4

Lemma 3.8. Let s > r . Then t <_ 4 .

Proof. In this case since s > r > 0

and

ord (H (2)) = 2r 3.36d .

ord (H^(4)) ^  min (2r, 2t 3.37

where the equality holds only if r ^ 2t .
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Thus when r ^ 2t

2t + r >. ord(Hj(4)) . ^-38—  d

VJfjeij.. r = 2t, then by 3.36

1/-= ord(H^(2)) .d

Thus from 3.28 we get that

2t + r ^  r + 2^ ^ ; for any r.

t < 4 .

Lemma 3.9 Let s = r. Then t ^  4

Proof. Let ord (h+e) = r + u, and ord (h-e) = r + v.

Now by 3,28 both H^(4) and H^(2) are of order greater
t-1than or equal-to r + 2 . Thus the same will be true for the

number
Hj(4) - H^(2) = d2[(h+e)2 - h(e+l)2] + 2d(h2-e2) 3.40

= + Tg , say .

Now, ord(T^) = 2t+r and ord(Tg) = t+2r+ltu+v.

Therefore if ord(T^) ^ ord(T^) then

ord(H (4) - H ( 2 ) ) j < 2 t + r ,  3.41d d —

Thus .
2t + r ^ r  + 2 . t ^ 4 .

Next suppose that ord(T^) = ord(T^), then

t - l = r + u + v  . 3.42

But by 3.28

r + 2^"^ ±ord(H,(2)) = 2r + 2v . 3.43—  d

r + <. 2r + 2v < 2(r + u + v) which is
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impossible. Thus ord(T^) ̂  ordCT^).

From lemmas 3.7, 3.8 and 3.9 we have that the order of the

diameter d in case IV is less than or equal to 4. That

proves theorem 4 in case IV.

Case V r > 2s ^  0. In this case p = min(r,2s) = 2s.

For any even number a we have, by lemma 3.4
_2s . 2^"^that 2 H^(a) is divisible by 2 . Thus

ord(H (a)) >i 2s + 2^ ^ . 3.44d —

By lemmas 3.5 and 3.6 we have

H^(0) = - hc^ = -h(etl)2, d = l(mod 4)

H^(4) = Cd(h+e) + (h-e)]2 - d^.hc^

= [h(d+l) + e(d-l)]^ + d H,(0) . 3.45d

Here d-l = 2^ x f and we will prove that t ^  4 .

We suppose that t ^  2. Then ord(dtl) = 1

Lemma 3.10. Let r > 2s > 0. Then t ^  4 .

Proof. Since s > 0, e + 1 is odd. Thus

ord (H (0)) = r . 3.46d

Thus by 3.44 we get that

r > 2s + 2^"^ . 3.47
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2Now since both H^(4) and d H^(0) have order greater

than or equal to 2s + 2^ ^ the same will be true for

Hj(4) - Hj(0) = [h(dtl) + e(d-l)]^ , 3.48

But ord (H^(4) - d H,(0)) ^  2 x min (r+1, t+s)

where inequality holds only when r+1 = t+s . In which 

case from 3.47 we get that

r ^  2s + 2^ ^ which is impossible.

Thus always r + 1 / t + s. Hence

ord(H^(4) - d^H^(O)) = 2 x min(r+l,t+s) ^  2t + 2s

t-1. . 2 + 2s ±  2t + 2s 3.49

which is true only when t ^  4 .

Lemma 3.11. Let r > 2s = 0. Then t ^ 4  .

Proof. Let ord(e+l) = u. Then

ord(H-(0)) = r + 2u . 3.50CL

Since e is odd

ord[H^(4) - d^ H^(0)3 ^  2 x min (r + 1, t) . 3.51

If r 4 t-1, then equality holds in (3.51) so 

ord[H (4) - d^Hj(O)] < i t

Thus from 3.51 and 3.44, for s = 0, we have 

2t > 2^"! .*. t i  4 .
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Now if r = t-1 5 we consider the number

Hj(4) - d^H^(2) = h^[(d+l)^ - 2d^] + 2h(d^-l).e + (d-l)^e

"t " 1whose order must be greater than or equal to 2

Now the orders of the terms in the R H S when r = t-1 are

2t - 1, 2t + 1, 2t

. ê ord(H (4) - d^ H,(2)) = 2t - 1 d d

2t-l >. 2^"1 . •. t < 3 .

From lemmas 3.10 and 3.11 we have that in case V 

t is less than or equal to 4.

This proves theorem 4 in case V .
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CHAPTER FOUR

Further Results

In the previous chapters we have proved that the only 

possible D-R graphs with intersection matrix B are those 

of diameter d ^  81.

In this chapter we classify the assumed graphs according 

to the value of f and we prove.

Theorem 5. The only possible D-R graphs with intersection 

matrix B are those of diameter

d = 1,2,3,4,5,8,9 when f = 1

d = 3,4,6,7,12,13,24,25 when f = 3

d = 5,6,10,11 when f = 5 .

To obtain this result we consider each one of those classes

separately. For each one we obtain certain arithmetical

conditions which are necessary for the existence of the

corresponding graph.

Those conditions alone provide the answer for f = 1,

For the rest of the cases, we use the computer-algebra system

Reduce 2 [lo] (implemented on the computer at Newcastle),

F o r  e  CLc h o  ̂  cL \n  e  c  o. i u_u L x A  e.

1"T ( V  ̂  r e  d. o oio-ri oaxS nrvj o cLuJLi.
cL

Then we observe that not all those polynomials satisfy the 

necessary conditions.
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Definition 4.1. We define the order of the linear polynomial

AY t B to be the min(ord(A), ord(B)).
2© means reduction modulo Y - Y - 1 .

We also defihè __

u = ofd(h-e)

V = ord(hfe) 

w = ord(efl) 

p = min(rj2s) 

r = ord(h) 

s = ord(e)

t = ord(d) or ord(d-l) according to case.

Throughout this chapter the Greek letters e and 0 mean even 

numbers and odd numbers respectively.

t t§1. Graphs of diameter d = 2 or 2 + 1 .

In chapter three we have proved that t ^  3 in case III and

t ^  4 in cases IV and V. Here we prove that t = 4 is

impossible.

Lemma 4.1. If H^^Y) is a product of rational or quadratic
2factors, then reduced modulo Y + eY will be divisible by 

Proof. By lemma 2.3 for f = 1 in cases IV and V we have

l '‘(y ) = Y^d

where L^(Y) = 2 ^ H^(Y). By hypothesis the polynomial L^(Y)
t-1is a product of at least 2 quadratic factors.
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Reduced modulo 2 this product has the form 4.1. Thus L^(Y)

will be a product of 2^ ^ factors of the type + eY + e

over the rationals. But

Y^ + eY + e = (eY + e)(mod(Y^ + eY)) . 4.2

Thus
2 2^"^L^(Y) = P(Y).(Y + eY) + 2 .Q(Y) 4.3

where Q(Y) is a polynomial of degree 2^ ^ .

Therefore . ^
2 2 L^(Y) = 2^ (^Y t b)(mod(Y +eY)) . 4.4

From which we get the stated result.

Lemma 4.2. Let t > 2 . Then

H^CY) 5 J
(h-e)2 (mod(Y^ - 2Y)) if d = 2^

(h^.Y-h(e+l)^)(mod(Y^-2Y) if d = 2^+1

Proof H (Y) = (AY + B) mod Y^-2Y 4.5  d

where 2A + B ■= H (2)d

B = H (0) d

By lemma 3.5

H,(0) = H,(2) = (h-e)^i when d E O(mod 4) d d
and 2

H (0) = -h(e + 1 )
when d E l(mod 4)

2 2 
H Â 2 )  = 2h^ - h(e+l)d

4.6
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A = 2 ^ [H.(2) - H (0)] , B = H (0) d d d 4.7

from which we get the stated results .

2Definition 4.2 0 means reduction modulo Y - 4Y

Lemma 4.3. Let . ord(H^(Y)(mod Y^-2Y)) ^  8  + p . 

Then

I ord(H® (Y)) <_ 6 + r Xo —

II ord(H^^(Y)) 4  6 + 2s .

Proof. H^(Y) = CY + D mod Y - 4Y d

where

and

4C + D = Hj(4) d

D = H (0) d

4.8

Thus
C = 2 (4) - Hj(0)] , D = H^(0) 4.9

H®(Y) = 2"^ [H,(4) - H,(0)].Y + H,(0)d d d d 4.10

By lemma 3.6

Hd(4) [d(h+e) + (h-e)]^ - d^h(etl)^

and by lemma 3.5

Hd(0) = (h-e) , when d = G(mod4)

Hd(0 ) = -h(etl) jWhen d e l(mod4) .



47

Thus when d = 16

H®g(Y) = 8[8(h-l)(h-e^) t (h^ -e^)]Y + (h-e)^

= C Y + D

and when d = 17.

H®^^Y) = [81h^ t 64e^ - 71h(e^tl)]Y - h(e+l)^ 

= V  + .

4.11

4.12

I, d = 16 corresponds to the case IV, where 2s > r > 0 .

By hypothesis and by lemma 4.2 we have

2 2 8 + r = 8 + p ^  ord[H-(Y) mod Y - 2Y] = ord(h-e) = 2u 4,13

where u =

r when s > r

s when r > s

_ r + q, q ^  1 when r . = s .

4.14

Now the orders of the terms in C, for d = 16 are1

where

and

6 + r, 3 + u + V

u + v  = 2u ^  8 + r

u + V > 2r + 3

when r 4 s 

when r = s

Thus always 6 + r < 3 + u + v  

. . ord(C^) = 6 + r . 4.16

II. d = 17 corresponds to the case V where r > 2s ^  0.

Now if s > 0 by hypothesis and lemma 4.2 we have that

r = ord(B) > 8 + 2s . 4.17
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and since for s > 0 the orders of the terms in 

are

2r, 6 + 2s, 3 + r 

we get that ordCC^) = 6 + 2s. q.lS

Next let s = 0. Then by lemma 4.2

2r = ord(A) ^ 8  4.19

thus r ^  4. The orders of the terms in

when s = 0 are

2r, 6 , 4 + r 4.20

thus since r ̂  4 ordCC^) = 5 . 4.21

Hence by 4.16, 4.18, 4.Ï1 and definition 4.1 

we get the stated results.

Corollary 4.1. There is no graph of diameter d = 16 or 17.

Proof. Suppose that such graphs exist. Then the

corresponding polynomials H^^(Y) and H^^(Y) will

factorize into quadratic factors. Then by lemma 4.1
2H^^(Y) and H^^(Y) reduced modulo Y + eY for any even e 

will be of order greater than or equal to 8 + p. This 

contradicts lemma 4.3.

Thus we have proved theorem 5 in the case f = 1.
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*t "t§2. Graphs of diameter d = 2  x 3  or 2 x 3 + l

From theorem 4 we have that the maximal graphs of this

class who possibly exist are those of diameter d = 48 in

case IV and d = 49 in case V. Here we prove that no 

graphs of these diameters exist.

Lemma 4.4. If the D-R graph with diameter

t td = 2 X 3 or 2 x 3 + l  exists.

Then L^^Y) is divisible by (Y^ + 1)^ and 2 %^(0) is
2^divisible by 2 for every odd 0.

Proof. • From lemma 2.3 for f = 3 we have
.t.

V Y )
3 -3 2(p + p ) in case III

gt _i 4.22
3 - 3  -1L (p + p  ) , ( p + p  ) . in case IV and V .

Call the R.H.S of 4.22 N^(p) . Then the equation

L-(Y) = N,(p) holds even if p is transcendental over GF(2). d d
-1Thus 4.2 2 holds identically if we put Y = p + p

2 —2 2^Now N^(p) is divisible by (p + p  + 1 )  and since

p^ + p  ̂ = Y^ (in GF(2.)) then

(Y^ + 1)^ divides L^CY) = [2”^ H^CY)]'' .

By theorem 2 if the graph of diameter d exists the polynomial

2 ^ H^(Y) will be a product of at least f x 2^ ̂  quadratic

factors over the rationals. Reduced modulo 2, this product
2 2^when f = 3 is divisible by (Y + 1 )  . Therefore at least

2^ factors of [2 ^ H^(Y)] will have the form Y^ + Y or

Y^ + 1 .
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Hence at least 2^ quadratic factors of 2 ^H^(Y) will have the
2 2 form Y + 0Y + e or Y + eY + 0. Thus since the value of

each one of those terms at Y = 0 is even we get the stated result, 

Lemma 4.5
2(h-e) , when d = G(mod3)

Hd(l) - -, 2 2h - h(e+l) , when d = l(mod3)

Proof. By definition 2.2 Y = 2 cos2a + 2 .
2irThus for Y = 1, a = —  . - By definition 2.3

2 2M(l) = 2he + 2(h-e) - 2h(e+l) 4.23

K (1) = -2e^cos(d-l) + 2h(e^+1 )c o s d ^  d 3 o

- 2h^ cos(dtl)-^ 4.24

3.H^(1) = K,(l) + M(l) 4.25d ; d

Let d = 0(mod3). Then

9 U-ir 2 2 47TK,(l) = -2e cos —  + 2h(e +1) - 2h cos-^d o o

= e^ + 2h(e^+l) + h^ 4.25

and from 4.2 5" we get

H^(l) = (h-e)^, d 5 O(mod 3)

Let d = l(mod3). Then

K,(l)= -2e^ + 2h(e^+l) cos—  - 2h^ cos-^ d 3 o

= -2e^ - h(e^+l) + h^ . 4.27

Thus „ 2
H (1) = h - h(e+l) , d E l(mod3) . d
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Lemma 4.6. Let 2s > r > 0. Let d = 48 (so t = 4) 

and ord(H (!))> 16 + r.48 ==
Then ord(H^g(-3)) = 12 + r .

Proof. By hypothesis and lemma 4.5 we have

2u = ord(h-e)^ = ord(H^g(l)) ^  16+r 4.28

Now by computer calculations we get

Hyg(-3) = 2^^.5.h^ + 2^^,13.e^ + 2®.47.(4-e^)+2^^.h(e4l)+(h-e)^ . 4.29

This result is reduced modulo 2^^ since otherwise the result 

would be intolerable. The orders of the terms in 4.29 are

13+2r, 12+2S, 6 +u+v, 12+r, 2u . 4.30

Now if r s V = ord(hfe) = ord(h-e) = u ^  8 + ^  by (4.28)

and if r = s then u ^  8 t ^  by (4.28) and v > r

Thus always 12 + r < 6  + u + v and all the other terms of

4.30 are greater than 12 + r.

From which we get that H (-3) is of order 12 + r.48

Lemma 4.7. Let r > 2s ^  0. Let d = 49 (so t = 4) and

ord(H^g(l)\> 16 + 2s. Then ord (H^g(-3)) = 12 + 2s .

Proof. We first consider the case s > 0. Here by hypothesis

and lemma 4.5 we have

r = ord (H^g(D) ^  16 + 2s . 4.31
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Now by computer we calculate H^g(-3) reduced modulo 2^^ 

and we get

H^g(-3) = -437154 - 2®.687.h(e^+l) - h(e+l)^ - 2^^.11.e^ . 4.32

The orders of the terms here are

2r, 6+r, r, 12+2s 4.33

and since (by 4.31) r ^  15 + 2s we have that

ord(H^g(-3))= 12+2s .

Now let s = 0.

Consider

Hyg(-3) - H^g(l) = -2^.10929h^ - 2^.687h(e^ + 1) - 2^^.11.e^ . 4.34

Here the orders are

2+2r, 7+r, 12 . 4.35

Now
12 < 7 + r < 2 + 2r when r > 5

1 2 = 7 + r = 2 + 2 r  , when r = 5

2 + 2 r < 7 + r < 1 2  , when r < 5

Thus
ord (Hyg(-3) - H^g(l)) < 1 2  4.36

and since by hypothesis ord(H^g(l)) ^  16 we have 

that ord(H^g(-3)) ^  12 .

Corollary 4.2. There is no graph of diameter d = 48 or 49.
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Proof. Suppose that such graphs exist. Then by

lemma 4.4 H^gO) and H^g(0) will have orders greater than

or equal to 16 + p for any odd numbers 0. By lemmas 4.6
- /■

and 4.7 when 0 = -3 this is not so.

This proves theorem 5 in the case f = 3.

Graphs of diameter d = 2^ x 5 or 2^ x 5 + 1 .

In chapter three we have proved that possible graphs 

of this class are those of diameter

5, 10, 20, 40, 80 when d = 2^ x 5

and

6 , 11, 21, 41, 81 when d = 2^ x 5 + 1.

Here we prove that the only possible graphs are those of

diameter d = 5, 6, 10 or 11.

§3. Necessary conditions for graphs of diameter
d = 2^ X 5 or 2^ X 5 + 1 .

Lemma 4.8. If a graph of diameter d = 2^ x 5 or 

d = 2^ X  5 + 1 exists then the polynomial H^(Y) reduced

t-1
modulo Y^ + 0Y + 0 will be divisible by 2^ .
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in case III

-1
( p ^ + p ^ )  (p + p in cases IV and V

4.37

-1where p + p = Y. Now in GF(2)
5 ‘ -5 -1 -1 2 _i 9p + p = (p + p ) C(p + p ) + (p + p ) + 1]

V Y )  = 4

2^ 2 2^^^ Y (Y + Y + 1) in case III

2t_i 2 pt+l
Y (Y + Y + 1) in cases IV and V

4.38

By theorem 2, if the assumed graph exists, the

polynomial L^(Y) = 2 ^ H^(Y) will be a product of linear

or quadratic factors over the rationals. Reduced modulo 2

this product has 2 "̂*"̂  irreducible quadratic factors of the

form Y^ + Y + 1 .  Hence the polynomial 2 ^ H^(Y) has at 
t+1least 2 irreducible (over the rationals) quadratic

2factors of the form Y + 0Y + 0. Now for each one 

of these factors we have

Y^ + 0Y + 0 = eY + e (mod Y^ + 0Y + 0) 4.39
Thus

2 2t+l2 P Hj(Y) = P(Y).(Y + 0.Y + 0) + 2 .Q(Y) 4.40

where Q(Y) is a polynomial of degree ^  2
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Therefore
n  o t + l  2

2 ^ H,(Y) = 2 (AY + B)(modY + 0Y + e) . 4.41d

2Now since Y + ÔY + 0 is monic and Q(Y) has integer

coefficients we have that A,B are integers. Thus 2 ^H(Y)
2 2^*^ reduced modulo Y + 0Y + -0 is divisible by 2 *

Hence result.

Lemma 4.9.

H,(Y)d ={(h-e)^ (mod Y^ - 3Y + 1) if d = 0(mod5)

(h^Y-h(e+l)^)(mod Y^-3Y+1) if d = l(modS)

Proof. Let Y^, Y^ be the roots of Y^ - 3Y + 1 = 0 .

Then

where

HL(Y) = P(Y).(Y^-3Y+1) + AY + B 4.42d

AY, + B = H,(Y, ) 1 d 1

AYg + B = H^CY^)

Now Y^ = ^ ^ , Y^ =  ̂ ^ . By definition

2.2 equation (2.6^ Y = 2 cos2a + 2. Thus

-1 + /5 ^ 1 + /5cos2a = --- ;---- or cos2a = ---- :----

Hence
Y^ corresponds to a = -̂

Y^ corresponds to a =

4.43
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By definition 2.3

K^(Y) = -2e^cos(d-l).2a+2h(e^+l)cosd.2a-2h^cos(d+l)2a 

M(Y) = 2[h e Y + (h - e)^ - h(e + 1)^] .

Thus when d = 0(mod5)

Kj(Y^) = 2h(e4l) - 2 cos ^  (h^ + e^)

K^CYg) = 2h(e^+l) - 2 cos ^  (h^ + e^)

and

M(Y^) = 2h^ + 2e^ + 4he.cos ~  - 2h(e+l)^ 

M(Yg) = 2h^ + 2e^ + 4he. c o s ^  - 2h(e+l)^

Now for every Y ^ 4

H^(Y) = [K^(Y) + M(Y)](4-Y) ^ .

Thus 2
HdCYf) = H^CYg) = (h-e)^ 4.44

and from 4.43 we have

A = 0, B = (h-e)^ . 4.45

In the case d E l(mod5), working similarly we have

A = h^, B = -h(e+l)^ . 4.46

4.45 and 4.46 prove lemma 4.9.
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Corollary 4.1. The only possible D-R graphs with 

intersection matrix B and diameter d = 2^ x 5 or

2^ X 5 + 1 are those for which

2 X ord(h-e) ^  2^^^ + p, when d E 0(mod5)

2 2 t+1ord (h Y - h(e+l) ) ^  2 + p , when d El(mod5)

Proof. By lemma 4.8 if such a graph exists then the

corresponding polynomial H^^Y) reduced modulo 
2Y + 0Y + 6 for any odd numbers 0 must be divisible

2^^^+pby 2 ^ . By lemma 4.9.

HjCY) E
(h-e)^ (modY^-3Y+l) , d E 0(mod5)

(h^Y-h(e+l)^)(modY^-3Y+l) , d E l(mod5)

Hence result.

§4. Graphs with diameter d = 2 x 5.

These Graphs correspond to the cases III where 

s = r = 0 and IV where 2s > r > 0.

By corollary 4.1 we have that the only possible graphs 

of this class are those for which

2u = 2 X ord(h-e) >; 2^*^ + r. 4.47
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Here we note that

[ r, when s > r
u = V = j 4.48

I s , when s < r

and
u + V > 2 + r , when s = r . 4.49

Since u ^ 2 ^  + ^  (4.4?) and v ^  min(r,s) > ^

In the following we assume that condition 4.47 holds.
V / c  r e c c t - l A .  #  'v u e o m i  r e d u - c ^ i o M  «vwo JU&JU) 1

Lemma 4.10. Let t = 2,3 or 4. Then

ord(H®(Y)) ^  2(t+l) + r .

Proof We calculate H^^ , H^^ and H^^ on computer.

This gives intolerably large numbers. To avoid this

we have reduced all numerical coefficients modulo 2^^ and we get.

H®{Y) = [2®.191.h(e4l) + 2’ .83.e^ + 2^.667(4-e^)]Y

+ 2®.25h(e4l) + 2®.883e^ + (h-e)^ - 2^.2101 (h^-e^)

■ * 4  + . 4.50

H®g(Y) = [2®.Ill h(e4l) - 2®.29.e^ + 2®.513(h^-e^)]Y

- 2®.87.h(e^+l) - 2®.29.@2 + (h-e)^ - 2**.2441(4-6^)

= AgY + Bg 4.51

and
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Hgg(Y) = [-2^^.17oh(e^+D + 2^^.3.e^ - 2^.115 (h^-e^)]Y

10 9 in 9 9 c: 9 9+ 2 .41.h(e +1) - 2 .29.6 + (h-e) + 2 .1807(h -e )

= AgY + Bg . 4.52

Now if 2s > r > 0 the orders of the terms in the

constant term B., i = 1,2,3 are 1 ’ ’

2t + 2 + r, 2t + 2 + 2s, 2u, t + 1 + u + v 4.53

and since 2u ^  2 + r and u + v > 2 + r

for t = 2,3 or 4 (so d = 20, 40, 80) we get that

ord(B^) = 2t + 2 + r . 4.54

Next if s = r = 0 the orders in the constant term 

become
2t + 3, 2t + 2, 2u, t + 1 + u + V 4.55

where 2u ^  2^^^ and u + v > 2^ .

Thus
ord(Bj= 2t + 2 .

Corollary 4.2. If a graph of diameter d = 2^ x 5 exists 

then t ^  1 .

Proof. By lemma 4.8 the corresponding polynomial H^(Y)
2reduced modulo Y + 0Y + 9 where 0 is any odd numbers 

will be of order greater than or equal to 2^^^ + r.

By lemma 4.10 for t = 2,3,4

2(t+l) + r ^  ord(H®(Y)) ^  2^+1 + r

which is impossible
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§5. Graphs with diameter d = 2^ x 5 + 1

Graphs of this diameter correspond to the case V where 

r > 2s ^  0 .

By corollary 4.1 there is no graph of this type unless 

ord(h^Y - h(e+l)^)^ 2^^^ + 2s . From this we get that

t+1 Ir ^  2 + 2s , when s ^ 0 4.56

and ttlmin(2r, r + 2w) .> 2 when s = 0 • 4.57

Lemma 4.11. Let t = 2,3 or 4. Then

ord(H-(Y)) <_ 2(t+l) + 2s .d —

Proof For the same reason as in lemma 4.10 the polynomials 

ôird have been calculated modulo 2^^.

These calculations give

H® (Y) = [-259274 - 2®.667 h(e4l) - 2®.191 e^]Y 

+ 2“*.3535 4 - h(etl)^ + 2®.2101h(4+l) - 2®.25le^
= A Y + B . 4.58

H® (Y) = [-43471.4 - 2®.513 h(e^+l) - 2®.Ill e^jY

t/2®.723 - h(e^+l) t 2**.2441 h(e^+l) + 2®.87.e^

= AjY + Bj 4.59

and
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Hgi(Y) = [55137 + 2^.115 h(e^+l) + 2^°.17.e^]Y

6 2 2 5 2 in 2+ 2 .357 h - h(e+l) - 2 .1807 h(e +1) - 2 .41.e

= AgY + Bg . 4.60

Now if s ^ 0 the orders of the terms in the coefficient 

A_ (i = 1,2,3) of Y are

2r, t + 3 + r^ 2t + 2 + 2s 4.61

where t = 2,3 or 4 (so d = 21, 41 or 81). Thus

by 4.56 we have that

ord(A^) = 2t + 2 + 2s , if s > 0 . 4.62

Next let s = 0. Then the orders of the terms in 

A^, i = 1,2,3 become for t = 2,3 or 4

2r, t + 4 + r, 2t + 2 4.63

and by 4.57 we have that r > 2^

Then ord(A^) = 2t + 2.

Corollary 4.3. If a graph of diameter d = 2^ x 5 + 1 exists 

then t ^  1 .

Proof. By lemmas 4.8 and 4.11 if such a graph exists 

then for t = 2,3,4 »

2(t+l) + 2s >.ord(H®(Y)) > 2^+^ + 2s —  a —
Vi/ V ' ̂  H I 5 I p 0 i S • b ̂  6 .

Corollaries 4,2 and 4.3 prove theorem 5 in the case f = 5.
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CHAPTER FIVE

The impossibility of graphs with d = 25 or 24.

In this chapter we deal with graphs of diameter d = 25 or 24, 

and we suppose that these graphs exist. This assumption together 

with the theorems of Bannai and Ito [2] and ! Dumas, [7] implies 

that the coefficients of the polynomials and Hg^Cz)

where z = Y-1 must be divisible by certain powers of 2.

But, by computing the actual coefficients, we see that this is not 

always so.

Thus we prove

Theorem 6. The only possible D-R graphs with intersection matrix 

B are those of diameter 1 ^  d ^  13 .

§1, Newton Polygons

Consider the polynomial

P(x) = a x^ + a ^x^ ^ + ... + a_x + a , a a ^ i o  n n-1 1 o ’ n 0 ‘

with rational coefficients.

For the prime number q, this polynomial can be written in the

form
n a. m. .

P(x) = r q ^
i=0 ’‘i

where (mu, = 1 , (mu,q) = 1 and (&^,q) = 1 , i = 0 , ..., n.

From this expression of P(x) we form the ordered pairs 
(a^,i) and we plot them on a rectangular coordinate system.
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omitting points corresponding to zero coefficients. From 

these points we construct the Newton Polygon TT which is the 

convex line enclosing all the points j-ro-vy heiow. For these polygons 

Dumas [7] has proved the following

Theorem. The polygon of a product is jobtained from the

polygons of the factors by joining their sides end to end 

according to non decreasing slope.

(For the proof of this theorem see [7]).

For example for the prime 3 the factors

2 3X + 3x + 9 , X  - 3x + 27

have the polygons shown in figures 3 and 4 respectively which

are combined in order of increasing slopes to form the

polygon shown in figure 5 for the product

2 3 5 4 3 2(x +3x+9)(x -3x+27) = x + 3x + 6x + 18x + 54x + 243 .

ro

O
COL-
Q)

oCl
431 2 432I

fig. 3 fig. 4

powers of X
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ro

'o
(/)
0

O
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fig. 5

powers of X

Corollary 5.1. If the polynomial p(x) with rational

coefficients is a product of quadratic factors, over the 

rationals, then its Newton Polygon is combined of sections 

of (horizontal) length 2. These sections are flat or 

have slope J an integer.
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§2. Proof of theorem 6

We now apply the method of Newton Polygons to prove 

theorem 6 . We recall that by theorem 4

d = 25 is impossible unless r > 2s ̂  0 (case V)

d = 24 is impossible unless 2s > r > 0 (case IV)

or r = s = 0 (case III)

and we shall prove that even these are impossible.

where r = ord(h) , s = ord(e)

Also p = min(r,2s), u = ord(h-e),

V  = ord(hte), w = ord(etl)

and

L,(Y) = H,(Y) 2"P .d d

Supposing that our graphs with diameters d = 25 or 24 

exist from lemmas 4.4 and 4.5 we have that

2u ^  8 + 2r when d = 24 5.1

and
min(2r,r+2w) ^  8 + 2s when d = 25 5.2

Now for d = 25 or 24 and for Y = z+1 lemma 2.3 gives

2”^ H.(z) = ^d
(z + l)^.z^^ when r = s = 0

(z + 1) .z when 2s > r > 0

or r > 2s > 0 .

Thus in the polynomial 2 H.(z), d = 24,25 the coefficient
mof z for any m such that 0 m < 15 is even while the 

coefficient of z^^ is odd. Thus for the prime 2 we have
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a family of Newton Polygons with parameters r and s. 

All the members of this family have the point (16,0) in 

common. For r = 18, s = 3 a representative of this

family is shown in figure 6.

to
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Z, jO sjOMOd
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Lemma 5.1. If the D-R graphs with diameters d = 25 

or 24 exist, then the coefficient of in 2 ^ H^(z)

will be divisible by 2^.

Proof. By hypothesis the polynomial 2 ^ H^(z), d = 25,24 

is a product of quadratic factors, over the rationals. Thus 

by corollary 5.1 the non flat section of its Newton Polygon 

will have slope greater than or equal 5. Therefore the 

coefficient of z^ will have order greater than or equal 

to J 8 = 4 .

We now prove theorem 6 by showing that there are no D-R

graphs with intersection matrix B of diameters d = 25 or 24.

Proof. By lemma 5.1 the coefficient of z^ is divisible
4by 2 . But, by computing coefficients, we get that the 

actual coefficient is

3.[10505 h^ - 407 h(e^+l) - 5716 e^] if d = 25 5.3

3.[5716 h(e^+l) + 4372.e^ + 407 (h^-e^)] if d = 2 4  . 5.4

Now when d = 25 the orders of the terras of the coefficient

of z® in 2 H (z) are• ' 25
I

2r-2s, r-2s , 2 when s ^ 0 5.5

2r , r+1 , 2 when s = 0 5.6

Let s ^ 0. Then w = ord(etl) = 0 thus from 5.2 we

get that r ^  8 + 2s . . by 5.5 we get that the
8 —2scoefficient of z in 2 H^^Cz) has order 2 which 

contradicts to lemma 5.1
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Also when s = 0 since r ^  1 we have that the order of
0

the coefficient of z in H^^Cz) is again 2.

Next when d = 24 the orders of the terms of the 

coefficient of z^ in 2 ^ Hg^Cz) are

2, 2s - r + 2 , u + v  when 2s > r > 0

3, 2 , u + v  when r = s = 0 .

Now by 5.1 u ^  4 for any r ^ O  . . u + v > 2 .
• • 8 “IPThus the coefficient of z in 2 H^^Cz) is not divisible 

4by 2 which contradicts to lemma 5.1.

This proves theorem 6.
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