ON A CLASS OF DISTANCE-REGULAR GRAPHS

by

MICHAEL A. GEORGIACODIS

Thesis Submitted
for the Degree of
Doctor of Philosophy

at the University of London

Department of Mathematics
Royal Holloway College

University of London

October 1978



ProQuest Number: 10097469

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

Pro(Quest.
/ \

ProQuest 10097469
Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code.
Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346
Ann Arbor, Ml 48106-1346



ON A CLASS OF DISTANCE-REGULAR GRAPHS
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Introduction

Definitions and elementary results

A simple graph T is a pair (V(I'), E(T')) where

V(r) is a set {vl,v2, cees Vn} of distinct element

called vertices and E(TI') 1is a finite set of distinct

unordered pairs of distinct elements of V(T) called edges.
Throughout this thesis the term graph will mean

simple graph.

Definition 1. Two vertices vi,vj of a graph T are

adjacent if {vi,vj} is an edge.

Definition 2. A walk of length & in T, joining

Vs to vj is a finite sequence of vertices of T

v, = uo,.ul, cees Uy = v:.|

such that u, and u_, are adjacent for 0 <t < #-1.

A walk whose edges are all distinct is called a path .

Definition 3, A connected graph is a graph that contains

a walk )onnvn%\ﬁﬁ% for each pair vi,vj of vertices.

Definition U4, The degree of the vertex Vs is the number
of edges having v, as a verﬂLex. A regular graph is

a graph in which every vertex has the same degree.



Definition 5. Let T be a graph whose vertex set is

v(r) = {

Vi Vs eees vn} . The adjacency matrix of T is the
3

n x n matrix A = A(T) whose entries aij are given by

x{ 1, if A and Vj are adjacent

0, otherwise .

Some elementary consequences of this definition are:
1. The eigenvalues Sf ‘A are real.
2. The sum of the eigenvalues is zero.
3. The sum of the entries in any row or column is equal
to the degree of the corresponding vertex.

4,  The number of walks of length & in T Jjoining

. 2
v, to v, is the entry bs. in A". [5] . 11
i . i3

3

Definition 6. The spectrum of the graph T is the set
of pairs
S = {(gsm(Ae))s  (ALsm(A ) 5eeey (A ,m(A ))}

where Ai’ i=0,1, ..., v are the distinct eigenvalues of

the matrix A and m(Ai) their multiplicities.

Proposition 1 [51] p.14 If T is a regular connected graph
of degree k then
(1) k is a simple eigenvalue "

(2) TFor ény eigenvalue A of A(T), we have |A| <k .



Definition 7. The number of edges in o. shortest walk
joining v, to vj is called the distance in T between vs
and vj and is denoted by G(Vi,vj).

The diameter d(F) = d of a graph T 1is the maximum of the
distances 1i.e.

d = max § (v.,v.) .
v.v.ev(r)y *+ 3
1]

Definition 8. The adjacency algebra of a graph is the algebra

of polynomials,‘over the complex field, in the adjacency matrix A.

Proposition 2 [ 5] A connected graph T with n vertices

and diameter d has at least d+l and at most n distinct

eigenvalues.

Distance-Regular Graphs.

Let T be a connected graph of diameter d. Then, for
any vertex v, the vertex set V(I) can be partitioned into

disjoint subsets

PO(V), rl(v), cees Fd(v) , where

re(v) = {ue v(r)| 8(u,v) = £}, £ = 0,1,...,d .

Graphs of small diameter can be drawn by arranging their
vertices in rows according to distance from an arbitrary vertex v,
For example the graph of figure 2 is the same as the one in

figure 1 but drawn in the wanmecr just described.



\
1 V2 VJ
V5 6 V7

fig.1 .‘

For any connected graph TI', and any vertices u,v of T, let
SH i(u,v) = | {wev(M)|6(u,w) = h and 6&(v,w) = iﬂ;
>
that is, Shi(u’V) is the number of vertices of T

whose distance from u is h and whose distance from v is 1.

Definition 9. The connected graph I with diameter d

is distance-h-regular if for all integers 1 and J
(0<i,j <d) and for all pairs of vertices
u,v with 6&(u,v) = j the number

Shi(u,v) = Shij (say)

depends only on h,i,j and not on the individual pair (u,v).

' is distance=regular if it is distance-h-regular for all

h, 0 <h<d.



Theorem‘I [6] If T is distance-l-regular then T
is disfance-regular.
TFoc a. proof see [6].

For a fixed j? the number Slij counts the vertices w
such that w ié adjacent to u and 6(v,w) = i, where
§(u,v) = j. Now, if w is adjacent to u and 6&(u,v) = j,
then 6(v,w) must be one of the numbers j—l; j, J+L; in
other words »

S.L,i,j =0 if i% 3-1, 3, 3 + 1.

We introduce the notation

. S. . . b. = 8. . . c. =S . .
;| 1,3,3° 73 1,3+1,3° 7§ 1,3-1,73

o}]
n

where 0 < j < d, except that c, and bd are undefined.
Then for any arbitrary vertex v € V(I') and a vertex

u e Pj(v) we have that u is adjacent to cj vertices in

r. .(v), a. vertices in TI.(v) and b. vertices in T, _(v) .
J-1 ] J ] jt+l

Definition 10. The intersection array of a distance-regular

graph is the array

1
%
Cp eer Cioeue Cy
I(r) = aO ay eee aj eee @4 1
b b, vee b. .. =




Now let T be a distance regular-graph of diameter d
and vertex set V(I) = {Vl, cees vn} and let Ai’ 0<iz<d

be the n x n matrix whose entries are

1, if 6&8(v ,v ) =1
r’'s

rs .
0, otherwise

For those matrices we observe that ‘AO = I, A. = A(r) (The usual
adjacency matrix) and 'AO TA e P A S J (J being the matrix
whose all the entries are equal to 1).

Theorem II [ 5] PJBQLet I' be a distance-regular graph of

diameter d. Then {AO, ALy eees Ad} is a basis, for the

l,
adjacency algebra of the graph, described by the formula

d
AhAi= g sh.lj Aj .

Proposition 3 [51 p\LIf T is a distance-regular graph of‘(Le%ree k
and diameter d, then A(I') has d+l distinct eigenvalues
k=2

A which are the eigenvalues of the

0’ l’ '5., )\d
(d+l) x (d+l) matrix B whose, entries are

(B)ij = Slij’ i,j e {0,1,...,d} .

Notice that B 1is a tridiagonal matriXx with entries
cj, when Jj-1 = 1 in the upper diagonal

aj, when j = i in the main diagonal 0.2

bj’ when j+l = 1 - in the lower diagonal.



Definition 11. The matrix B 1s called the intersection

matrix of T.

Theorem III [5] p.las.Let T be a distance-regular graph with

intersection matrix B, and suppose that u,, V. are left

1

and right eigenvectors such that (ui)O = (vi)0

corresponding to the eigenvalue Ai of B. Then

1. (Vi)j = kj(ui)j Afor all i,j e{o0,1,...d} .

2. The multiplicity of Ai as an eigenvalue of A(T) is
N

k.(u.)%
J 173
0]

m(A.) =
i

™M A

;|
where N 1s the number of vertices.

The natural question tovbe asked is when an arbitrarily
given array corresponds to a diétance-regular graph?

The answer to this question is not yet known but the
following theorem yields certain conditions which although
not sufficient for the existence of the graph,related to a
given array, they are nevertﬁeless so restrictive that most known

arrays satisfying these conditions correspond to a graph.

Theorem IV [ 5] p.144 If the array (0.1) is the intersection

array of a distance-regular graph of diameter d then



1. a =0, bo = k (the degree of the graph),

0
1]

1 and k=a. +b. +c¢, for 1<1i<d-1
1 1 1 - -

2. For 2 <ix<d the numbers

ki = (k bl cee bi_l)/(czc3 ...ci) are .integers.

3. k;bl; "'Z‘—bd—l' 5 lg__cé;...;cd .
4, If N=1+k + k2 L kd 1l <i<d-1 then
N.k = 0(mod2) and kiCE = 0(mod 2) .

5. For each eigenvalue Ai of the matrix B, given by (0.2)

with eigenvector u, defined as in theorem III

d
the number N/ z k.(u.)z. s 15  am \M{e%ef-
- it7i%)
j=20
Definition 12 An array of the form of (0.1) is said

to be feasible 1if it satisfies the conditions of theorem IV.

In [16] Tutte showed that the number of vertices N,
say,of a regular graph whose degree (k > 3) and girth (y > 3)
are given is greater than or equal to

1 -
1+ k4 k(k=1)+ ... + k(xk-1)200"3) ;¢ Y 1is odd

and
LRV 1y
1+ k + k(k-D)+ v + k(k-1)2772 4(x-1)2¥"2
if y 1is even
Here the girth of a graph is the length of one of its

shortest circuits.



A graph which attains the bound (0.3) is called a

Moore graéh if y 1is odd and a Generalized Polygon if

Y 1is even.

A lot of work has been done on the classification of such
graphs. Generalized Polygons have been studied by
Feit and Higman [9], Singleton [15] and Benson [3]. Moore
vgraphs have been Studied by Hoffman and Singleton [lé],

Vijayan [17], Bannai and Ito [1] and Damerell [6].

Lq His Eoov.tsl chQSBiggs considered both types of graphs as
special cases of the distance-regular graph of diameter d

whose intersection array is

The case ¢ = k is a Generalized Polygon and the case ¢ =1

is a Moore graph.

In this thesis we investigate the feasibility of the
intersection array (0.4) using the methods and formulae
given by Biggs [5] and we prove that this is not feasible if

d > 13.

Supposing that a graph of this type exists, Biggs has
derived a formula for the minimum polynomial of its adjacency
matrix A.

In chapter one, by using that formula we calculate the



1o

multiplicity of each eigenvalue A of the matrix A as a
function of A. Using that result (Theorem 1 below) Bannai
and Ito [2] have proved that the characteristic polynomial
splits into linear ox quadratic factors.

In chapter two we prove that the characteristic polynomial
splits into quadratic factors over GF(2) only if its degree (= d)
is of the form .d = Qt x £ or b2t va + 1 where f = 1,3 or 5.
To get this result since the characteristic polynomial Gd(x)
alone does not always provide the answer, we construct another
polynomial Hd(Y) whose roots are linear or quadratic over
the rationals whenever the roots of the characteristic polynomial
are.

In.chapter three the factorization of Gd(x) and Hd(Y)
over GF(2), provides the information that the constant terms
of these polynomials are divisible by a certain power of 2.

But we observe that this happens only when +t < U. From
this it folloﬁs that 4 < 8l.

In chapter four we classify our graphs éccording to the value
of f. _When ‘f = 1 the polynomial Hd(Y), reduced modulo
Y2 - 4Y, provides the information that t < 4. 1In the
case f = 3 the value of the polynomial Hd(Y) at Y=90,
where 0 is any odd numbers, provides a necessary condition which
enables us to eliminate t = 4.

When f = 5, the same polynomial, reduced modulo
Y2 + 0Y + é yieids the conditions which prevent t from

being 3 or 4. From these results we get that d < 25.



Chapter five deals with graphs of diameters 25 and 2U4.
There from the theorem of Dumas [7] we derive the conqitions
which forbid those diameters.

In conclusion I wish to state that the principal result

contained in this thesis, which is described in the abstract,

was obtained by my own research.
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CHAPTER ONE

Eigenvalues and their multiplicities

We adopt the notation of Biggs [ 5] which is
h = k-1, » q = +/k-1, A = 2q cosa | 1.1

and we regard the matrix

P | |
k 0 1
k-1 0 .
B : k—l . . l.2
. . 1
0] c i
k-1  k-c
as the intersection matrix of a D-R graph. Then the characteristic

equation of B is given by the following result. ([57 lemma 23.3).

- The number A is an eigenvalue of the matrix B if either

A=k ' 1.3

or .
A =+ 2q cosa - 1.b4
’and Fd-(coSo(\zo w here \1 is defmed bj
81n€d+l)a f e S{nda + c-1 31n€d—l)a = F. (cosa) 1.5
sina sina q sino d

where d is the diameter of the putative graph.



In this chapter in §1 we calculate the recursion for Fd(cosu) and
we exclude A = -2q from being an eigenvalue. In §2 'we express
the multiplicity m(A) say of any eigenvalue A of the adjacency
matrix A of the assumed D-R graph as a function in A . Finally we
state the theorem of Bannai and Ito whiéh is the starting point of our

investigation.

§1. The characteristic equation of B.

Lemma 1.1. With F., as defined in (1.5)

d
_ 2 . ) c-1
Fl = 2qcosa + c, F2 = 4gq cosa + 2c cosa + — - q
Fd = 2 coso Fd—l - Fd-2 s d>2 .
Proof. The Tchebycev polynomials of the second kind are of the form

(Cs] (10.11.12) )

U (cosa) = 51n€n+l)a
n sina
and satisfy the following recurrence relation ([ 83J. (10.11.16) )

Un+l(¢osu) = 2 coso Un (cosa) - Un_l(cosa) .

Hence from 1.5 we get

F. (cosa) = q Ud (cosa) + c U (cosa). + cly 5 (cosa) .

d d-1 q a-
Thus
Fy (cosa) = q{2 cosa Ujp ™ Ud-2} + ¢{2 cosa Ujp = Ud-3}
c-1
+ —a— {2 cosa Ud'3 Ud~4}
= 2 cosa F - F .

d-1 ~ “d-2

Now putting d = 1,2 into 1.5 we get 1.6.

12

1.7

1.8

1.9

1.10

1.11

1.12



We note for future use the formula

2
- c-l-q
Fd (cosa) = (2q cosa + c) Ud-l (cosa) + ra— u

3-2 (cosa)
got by substituting for Ud (cosa) in 1.10.
Proposition 1.1. A = -2q 1is never an eigenvalue.
Proof. Let q be irrational. - Then if =-2q is an eigenvalue so is

But A = +2q implies a = O by 1.1 and in that case 1.5 gives,

after using L'HS8pital's rule that

q(d+l) + cd+E;—]-'- (d-1) = 0

which is impossible since this is strictly positive. Therefore q

has to be rational and integral. Now if the integer A = -2q 1is an

eigenvalue then o = 7 and again by L'HS6pital's rule from 1.5 we get

(-1)91 (q(d+1) - cd + %l- (a-1)} = 0

. 2 2 : 2
c-1 = -dg +dg - q  _ q+ Q- g
o dq +d - 1 dg - d + 1
2

. - .

. aa—%—afiﬂi has to be an integer
2

' __a ... dqd -9 :

° dg - d + 1 q dg - d+1 . must be an integer

which is not true when q > 1 .

Now if q =1 then k = 2 by 1.1, in which case our graph

is a polygon with 2d + 1 edges.

13

1.13

+2q.

1.14

1.15

1.16

1.17
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§2, The multiplicity of X as an eigenvalue of A,

Theorem 1. Let X be an eigenvalue of the intersection matrix B

and m(A) its multiplicity, as an eigenvalue of the adjacency matrix A.

Then
N _ A-h-1 (htl-c)(Act+2h+2c-2) ) -
7 D | A + b ¥ (e-nF T A R l)} = ) 1.18

(say) where N is the number of vertices of the supposed graph.
Proof, By [51] p.158 the multiplicity of A as an eigenvalue of

the matrix A 1is given by

d
L S | 1.19
m(A) - ' PP e | . _
i , i=0
where .
k =1, k., = kn?t L pdt 1.20

, (1 <1 <4), ky=ckh

0 i

and u = (u&iﬂl cees ud) is a left eigenveétor of B corresponding

l,
to the eigenvalue A . Now since the first d columns of B are the

same as in the matrix B of [6] , the formulae derived there for u in

terms of any eigenvalue . A hold.

I

Thus . ‘ _1.1 -
, (Bf : (9 l) 1.21
u, = C{— + D|— .
-1 q q »
-1 -1 .
where C = Bg_:-gf— s D = E@—:I:—g and 8 = e . 1.22
k(e-6 7) k(e ~-6)

To simplify the resulting algebra we adopt the convention that if

~

W is a rational function of © , then W is the function got by replacing

® by ot throughout.



Thus
2 -1 - -
ko ug = 1 =-h " +kn 1?4 2¢8 +29
2 - 7 ~ -~ — s
ko us = kb (c® 0%+ 28+ 07, 1c1<a
and -1 .-1,2 24 ~ ~2 =24
ky u; = c et e? 62 4 o0 +32 9724y
Hence
‘ d 2 -1 -1 -1 A
I(0) = I k;u;=-h o +kh o {Z+Y+ 2}
: i=0
where
A
Y = 2¢C (dc + 1)
and . d
z=c?(c 1 0%+ (10) 024 .
i=0

. . 2
Consider Z. Sum the series and multiply by k2(qe + c—l).(e—l)s.

Then

k2(62-l)3 (qb+c-1).Z = (h92—l)(q6-l).

.{(q9+c-l)(q6+l)(62+c-l).62d—c(qe+c-l)(q6+l)} .

Now if we put 6 = e'® we have

ina ina n .-n
. _ e - e _ 6 -8
in no = - = -
S 21 21

and equation 1.5 becomes
2d -
8 (g8 + c - 1)(g8 + 1) = (q + 8) [q + (c-1)8]

and substituting for 62d into 1.29 we get

K2(02-1)2 (qetc-1). Z = (h82-1)(q6-1) [(c-1)6%+qeo+ (c-1)(c-q2)] ,

15

1.23

1.2y4

1.25

1.26

1.27

1.28

1.30

1.31

1.32
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Then multiplying both sides of the above equation by 9'2(qe'l +c-1)

and arranging the R.H.S. terms in powers of 8 we get

6%hq(c-1)2 + 82.h(c-1) [h(c+l) - (c-1)]

A.Z =

+ 8qlh%(3c-c2-1) + hlc-1)(c?-2¢-1) - (c-1)2]

- 13(e-1) + n2(2e%-tet1) - hle-1)(c+1) + (c-1)°

+ 0 glh%(c-1) - h(2c-1) + (c-1)(-c242c+1)]

+ 0 2[h%(c-1) - h(2c2-tc+l) + cle-1)2] + 873q(c-1)(c-h)
where

Az K2(621)2 (qe+c-1)(q0 tte-1).872

= k20-012 [qle=1)(o+8™) + h + (c-1)%1 = % .

Thus

AGZ +2) = (8% + 873). g(c-1) [h(c-2) + cl
+ (62 + 6_2) [h2(c2+c—2) - h(302—6c+2) + c(d—l)2]

+ (0407 1) .qln%(ve-c2-2) + B(e-1)(c?-2¢-2) - he +(c-1)(2-¢)]

- 2n%(e-1) + 2n%(2c3ner1) - 2n(e-1)(cP41) + 2(e-1)% .

Now 0 =e thus
2 , 2
- - - 3 -3 A(A"=3h
6+ 6 1 = A . 92 + 0 2 = A -2h s 6" + 6 = ( 3 )
q h
q
2
and (6 - 6—1)2 = &—_E_EE .

From which we get that

- L
A = K2 (A%-un)[A.(c-1) + h + (c-1)°1- 4

1.33

1.34%

1.35

1036

1.37



and

Az + 20h= A3(c-1) [h(c-2) + <]

2. 2 -
+ Az[h (c +c-2) - h(3c2—6c+2) + c(c—l)z]

+ A.h[h?(-c®4c-2) + h(c-1)(c2-5c+u)-he + (c-1)(2-2c-c2)]

- 2h [h3(c-1) - h2(c?-5c+3) - h(-c +uc2-7c+3) + (c-1)°7 .

Similarly by equation-

Y = 2cC(dctl)

Thus

1.27 we get

2 2 -2
h2+l_h(g 2 ) .2(de+1)
k"[2-(87+8 7)]

2 2
5%131——%—5— h.2(dc+1)
k“(4h-1%)

hAY = [A2 = (h+1)?] [A.(c-1) + h + (c-1)21.2h(dc+1)

Now equation 1.26 can be written in the form

he AZ(A) =-cA + kA{Z+Y+Z}

+ . 1l

+

Hence

(ht1).c.h{x3(c=1).2d + A2 [h(c+2d) - c(e-1) + 2d(c-1)27}

¥ (=12 (1-a)} .

(hi1) (A2o4h) [A(e-1) + (e-1)2 + hl. Z(A) =

17

1.38

1.39

1.40

1.41

(h+l).c.h . x{h2[é-c#2d (c-1)] + h[c2—2c-ud (c-1)] + (c-1) (2-c-2d4)}

Sh(ht1).c {-13(d+l) - h2 [d(c-2¢43) + 1] - hld(2c2-bc+3) - (e-1)2]

1.42

LA e_(h+1)j {(htl-c)[cA+2(htc-1)] + 2d(A+h+1)[(c-1)A + (c-l)2 + h]kh 1.43

From which we get 1.18.
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Theorem 1 shows that the multiplicity m(X) of each eigenvalue
of the incidence matrix A 1is a quotient of two cubic polynomials in A.
This together with the fact that the multiplicity m(XA) has to be rational
implies that all the eigenvalues of the assumed D-R graph must be of
"degree < 3 over the rationals.
This result has been improved by Bannai and Ito. In[2] they

prove the following .

Theorem 2. If T is a D-R graph with intersection matrix B and
valency k > 2, then the roots of the characteristic polynomial of B
are all of degree < 2 over the rationals.

For proof see [ 2] theorem A.
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CHAPTER TWO

The factorization of the characteristic polynomial of the matrix B

over GF(2).
If o D-R graph with intersection matrix B exists, then,
from the theorem of Bannaili and Ito, we know that the roots of its

characteristic polynomial will be all of degree less than or equal

to 2, over the rationals. Consequently, if we reduce that polynomial -

modulo 2+ this must have all its roots in GF(u4).

Definition 2.1. Let
G(x) = qd_l Fd(cosa)
d i
where
X = 2q cosa

and Fd(cosa) is here regarded as a polynomial in cosa.

By lemma 1.1 the polynomial Gd(x) satisfies the following

recurrence relation.

Gd(x) de_l(x) - th_z(x) , d>2

where
Gl(x) = x +c, G2(x) = x2 + cx + c-k .

. The poiynomiél (x-k) Gd(x) is monic and of degree d + 1.
Its roots are those given by [ 5] 1lemma 23.3. Thus (x-k)Gd(x)
is the characteristic polynomial of the matrix B. Therefore if the
graph exists, Gd(x), reduced modulo 2, will have all its roots in
GF(u4).

| Now_whén 'h is odd this is not always possible. But when

~h is even the polynomiél Gd(x) factorizes trivially over GF(2).

2.1

2.2

2.3

2.4
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To overcome this difficulty we construct another polynomial
in a new variable Y, whose roots have to be rational or
quadratic whenever the roots of Gd(x) are, Moreover, this
new polynomial reduced modulo 2, has all its roots in GF(4)
only when certain conditions for d are satisfied.
fhe main result of this chapter is
Theorem 3. If a D-R graph with intersection matrix B existé

then its diameter has to be of the form

d = 2t xf or Zt xf+1, 'whefe f=1 or 3 or 5.

§1L. Preliminary results

Definition 2.2. Let

_ yd o
Hd(Y) = (-1) " h Fd(cosa).Pd( cosa )

where 5

Y= - 4 cos®s = 2 cos 2a + 2.

The so defined %{Y) is a polynomial in Y of degree d.
The degree of each root of %iY) ,‘ovef the rationals, is less than
or equal to the degree of the corresponding eigenvalue x of the

intersection matrix B.

Now since

Fd(—cosa) = Fd(cosB) where B =7 - o

and since

sin nB _ (_l)n+l sin na
sinf _ sino

2.5

2.6

2.7

2.8



we get that

. . . 2 . 2
Hd(Y) - h{[q81n(d+l)a + S 1 31n(d—l)a] _ C2 sin dq}

sina q sina sin
a

Putting q2 = h we get

. 2 2
4 sin‘a Hd(Y) = =2(c~-1)" cos2(d-l)a + 2h(c2-2c+2) cos2da

- 2h2 cos2(d+l)a + 2h2 + 2(c—l)2 - 2hc2 + 4h(c-1) cos 2a

Definitioh 2.3 " Define
2 2 ’ 2
Kd(Y) = =2(c-1)"cos2(d=1)o + 2h(c ~2ct2)cos2da - 2h"cos2(d+l)a
. _ 2 2 2
M(Y) = 2h" + 2(c-1)" - 2he” + 4h(c-1l) cos2a
= 2[h(c-1)Y + (h-c+1)2 - he?]
Then
(4-Y) H (Y) = K. (Y) + M(Y) .
d d
Lemma 2.1
K (Y) = (0% + (e-1)%}Y + 2{(h-c+1)? + hc?}
Kl(Y)' = -h2Y2 + h{c2-2(c-l) + 4h} Y - 2 {(h-c+1)2 + hc2}
Kd(Y) = (Y-2) Kd_l(Y) - Kd_2(Y) .
Proof  The polynomials cosnd = Tn(cose) are the Tchebycev

polynomials of the first kind and satisfy the following recurrence

relation [ [8 ], (10.11.16)] .

Tn+l(cose) = 2cos® Tn(coge) - Tn_;(cose) .

21
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Now if we put 6 = 2a 2.11 can be written on the form

_ 2 ‘ 2
Kg(1) = ~2(c-1)® T, ) + 2h(c®-2042) T, - 202 7

a4l " 2.18
Hence by 2.17
Ba(Y) = 2cos2a [-2(0—1)2 Typ * 2h(c2—2c+2) T - 2n? T ]
_ d-1 d
- [-2(e-)” 1,y + 2h(eP2e42) T, - 207 T )]
= 2cos2a K, ,(Y) - K, ,(¥) . _ 2.19
Thus from 2.6 we get. 2.16 ., Next puttingb d = 0,1 into
2.11 we get 2.14, 215,
Corollary 2,1. -Hd(Y) = kY—Z) Hd;i(Y) - Hd_z(Y) + M(Y) " 2.20
HO(Y) = (k‘-c)2 > Hl(Y) = th - hc2 . 2.21
Proof.  From 2.13
K, (Y) = (u-Y)’Hd(Y) ; M(Y), d = 0,1, «uo . 2.22

Thus for d > 2 2.16 becomes
(4=1) B (1) = M(Y) = (4=0) [(¥-2) Hy_ (1) = By ,(0] + (3-1) M(Y)

from which we get 2.20.

Now if we put d = 0,1 into 2.9 we get the stated values

of HO(Y), Hl(Y) .

Definition 2.4 Put c-1 = e. Then we define r,s such

_that 2r” h " and 2S[|e . Also define p = min(r,2s) and

Ld(Y) = 2P Hd(Y). Denote reduction modulo 2 by an asterisk .



Lemma 2.2.

I. Ld(Y) has all its coefficients integral and

2P M(Y) = O(mod 2) .
II. Let p,0 be the roots of the equation

2
p +Y¥p +1=0
-1

in characteristic 2. Then p =o¢ and
| TR 2 * *
% _eLy DLy g P" Ly + P L,
Ld(Y) = =5 ¢ 5 -
p° + 1 o+ 1

Proof By (2.12) and (2.21) IM(Y)

H(Y) = (h - 7, H (Y) = h’Y - h(e+1)?,

see that each term of HO(Y) or Hl(Y) or
by h or e and hence‘by 2P .

II. From 2.20 and the definition of Ld(Y)

Ld(Y)

Reducing modulo 2 we get

%

% .

%
Ld(Y)

Now the solution to 2.26 is

o7
Lé = apd 4 Bod

where p,0 are the roots of the equation 2.23 and A,B the

solution of the system
%
0

%
1

A+B= 1L

Ap + Bo = L

from which we get 2.2u.

hetY+ (h-e)? - h(et+1)?

-p.
(Y-2) Ly ;(Y) = L, ,(¥) +2 "M(¥), d 22 .

By inspection we

is divisible
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§2.

GF(2) .

and separate the

We next consider how the polynomial LZ(Y) factorizes in

Factorization of Hd(Y) over GF(2).

To do that we first write 2.21 in the form

HO<Y)'= (h - e)

following five cases.

, H (V) = h? - h(e + 1)2

I. 2s >r = 0
II. 2s =r > O
ITI. 2s =r = 0
Iv. 2s >r > O
V. r >2s > O
where r,s are as in definition 2.4 .
Lemma 2.3. If p,0 are the roots of the equation

i chocactenstic 2, Fhew

Ld(Y') . =2

|

2 -
(p +1)Dd 2

2t ¥p+1=0

1 2d+1
P +

_ 1)
d :
(p+l)p
1 My
(p+l)o
1 d 2
P
d 2
"ETJ;'TT?' (p" + 1)
(p"+1l)p
1 (p(.i_l + 1)2

in case I

II

III

IV

24
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Proof Call 'tha R HS o 2.505 NCL(P)

-~ D 2
Now LO = 2% (h-e) 2.31
R .2
Ly =27 [hY - h(etl)’] 2.32
Thus % 5 , )
Case I. L. =h =1
0 | (wod2)
% 2 _
L, = (h Y-hl) =Y+1=p+o0+1

and 2.24 becomes

* _ plptp T41) +1 4 o2 + p(p+p t41) -d
Ld - 2 p + D) : P
. O +l p +l
02 +p d p+1 -d
= Tg et T
p +1 p 41
- _f__;___ . (92d+1 + 1) | ) 33
(p+l)p
Case II. L; =078 22,
A ('\Mool 1)
4 -
L =2 28 peet1)? z 1
Hence
2
% .o
- pt1l d p- +p - -d_ 1 o .1
Ly = + p = ==p t ="
d 0241 p2+l pt+l pt+l pd
o "1 2d-1 2 3u
) RGN ‘



%
Case III. LO ZSh +e" " =21+1=z0
Ll EhY=Y=p+o0o ,
Thus
* +p ") + 0 -
Ld_p(pg) "’d“p(p;p)-id: pd’“id
P+l P+ 1 p P
_ 1 d 2
= —E'(p + 1) .
p
C IV L* 2
ase V. 0 =2 .e“z0
(miod 2 )
* _ ) .
L, =2 T h(et1)? =1
. * 1
. Ld = 2p .p + 2p X ° 21 (pd+l+ ——dl_l)
p +1 p +1 p p +1 P
2
1 d
= 5 -1 .(p + l) .
(p"+1)p
% -2s 2
Case V. L = .e =1
0] (MJOA.Q)
:':__ -25 _
Ll = 2 .h =0 .
. % p2 1 1 d 1
ey F 3 +2‘-_d=2(""d-2)
p +1 p +l p p +1 P
- 2
1 (pd 1 + 1) .

26

2.35

2.36

2.37



27

Proposition 2.1 Suppose that all the roots of Ld(Y) lie in

GF(4). Then d must satisfy the following conditions.

d < 2 in case I
d < 3 II
d=2%x¢ IIT and IV 2.38
d=2x£+1 | v

where £ =1 or 3 or 5.

. . 2
“Proof. Let- 0, 1, w, w be the elements of GF(4), where
2 .
WoW denote cube roots of 1. Now from the equation 2.30

we see that

o]
"

O . corresponds to p

]
=

o
"

1l corresponds to p =w or w
and
Y=w or w2 corresponds to p = a root of
the equation
92 +wp +1=0 or 92 + w2p +1=0 . 2.39

These two equations do not have roots in GF(4). But

x5 + 1
X+ 1

2
(x2+wx+l)(x2+w2x+l) = x4+x3+x +x+1 = . 2.40

So Y=w or w2 corresponds to p = a primitive 5th root of 1,
' % . .
€ say. Therefore Ld(Y) has roots in GF(4) if and only if the

equation Nd(p) = 0 has its roots in the set

3 4}

2
{1, w, w2, €, €5 € 5 € . 2.41

R

L £ .\2t
Now take ¢ = ot x f, where f is odd. Then p7+1 = (p +1) ,

and the roots of Pf +1 =0 are all distinct and form a cyclic
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group. A generator of this group is a primitive fth root
of unity. Therefore the roots of the equation 'pf +1=0

are not all in R unless f < 5. From thiswe get 2.38.

Corollary 2.2. The diameter d of a D- R graph with

intersection matrix B must satisfy conditions 2.38 .

M. By theorem 2 all the eigenvalues of thé assumed graph
must be of degree < 2l ovér the rationals. . Therefore the same
must be true over GF(2). Now if such a graph exists the
roots of the polynomial H d(Y) must be ratioﬁal or quadratic.
Thus the polynomial [2PH d(Y)]‘k: L:;(Y) (regarded as a function
of p) must have all its roots in the set R ,

This, by propésition 2.1, is true only when d satisfies the
conditions 2.38

This proves theorem 3.



CHAPTER THREE

An upper bound of d

In this chapter we deal with the cases III, IV and V,
aiming to obtain a bound for the diameter d of the assumed
D- R graphs. We prove that there cannot be D~ R graphs
- with intersection mafrix B of diameter d > 81 . To obtain
that result we consider each of those three cases separately..

In case III, by‘looking into the polynomial Gd(x) we
get that t <3 .

In cases IV and V tﬁe_polynomial Hd(Y) provides the
information that t ;,u.

Those two results, together with the result of theorem 3,
give rise to the following .

Theorem L4, ‘The only possible D- R graphs with intersection

matrix B are those of diameter

‘d = 1,2 incase Il , | d = 1,2,3 1in case II
d = 1,2,4,8,3,6,12,24,5,10,26,40 in case III
d = 1,2,4,8,16,3,6,12,24,48,5,10,20,40,80 in case IV
d = 2,3,5,9,17,4,7,13,25,49,6,11,21,41,81 in case V .

Throughout this chapter the order of any integer I say,

is defined to be the maximum power of 2 which divides I and it
is denoted as ord(I) .

With this notation we have

ord(h) = r, ord(e) =s .

29



§1 Case III r = s = 0.

From equations (2.3) and (2.4) we have

£ % %
G.(x) =
3&) xGy_(x) + Gy p(x) 5, d>2
* % 2
Gl(x) =x, G2(x) = x .
-1
Suppose that p,0 where p = = ¢ are the roots of the equation
2
p +xp +1 =0

in characteristic 2.

Then the solution to the recurrence 3.1 is

G;(x) = Apd + Bod

Y.

where A+B = G;(x)
%
Ap + Bo = Gl(x)

from which we get that

Lemma 3.1. If Gd(x) has all its roots rational or

t-1 .
quadratic, then 2 divides Gd(a) for any even number a.

Proof. From equations 3.4 and 3.6 we get that

d d f g2
p+tp = +p7)

%
Gd(x)

-1 . . £ -f
Now, for any odd £, x =p + p divides p + p .
ot .. *
Therefore x divides Gd(X) .

t-1
By hypothesis Gd(x) is a product of at least f x 2

quadratic factors over the rationals. Reduced modulo 2 this

t

L t-1
product is divisible by x2 . Therefore at least 2 factors

30
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*
of Gd(x) have constant term zero. Hence at least 20 ©
factors of Gd(x) have even constant term . Thus
2t—l
2 divides the constant term of Gd(x). Now let a be
t-1
any even number. Then by the same argument 22 divides

the constant term of Gd(x+a), which equals Gd(a).

Corollary 3.1. ord (c-k) ;:2t—l .

Proof. By equations 2.3 and 2.4 we have that the constant

term. of Gd(x) is equal to
'd-2
6,(0) = (-h) 2 . (k) . - 3.8

In this case h is odd

. ord (W) = ord(GA(D))_Z_ 21:-:L , by lemma 3.1.

Lemma 3.2. Let ¢, be the roots of the equation
2
u -xu+h=20 . 3.9

Then for any d > 2

- ,d d ' d-1 d-1
: ¢ - -~ -
= I ——" + (c-k 3.10
G,(x) = (x+c) R (c-k) —5—
provided ¢ # [/
Proof. The roots of the equation 3.9 for
+i0,

X = 2q coso, are ¢, = q.e .
Thus for any integer n Wwe have

6" - wn = 2i q".sin no 3.11
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Now by 2.1 and 1.13 we get

d-1

_ . _ d-1 ¢ .2 d—2U
Gd(x) = q Fd(cosa)—(2qcosa+c).q “a_l(cosa)+(c 1-97)q d_2(coso!.) 3.12

But by 1.8 and 3.11 for every integer n, we have

n+l _ n+l

v
g = . 3.13

qn.lln(cosa) = q" sin(ntl)a _ ¢

Thus since q2 =k -1, from 3.12, we get 3.10 .

Lemma 3.3. Let x =2 and ¢, be as in lemma 3.2.
Let d = 2t x £, where f is odd.

Then ] ‘
(i) ¢ + P = 2 mod 4. - ‘ 3.14

Proof. s
(i) We first note that in this case ¢.y =h.
Also
b+ =+2=2mod b
and
2 2 2 _ _
O + YT = (¢ + Y)" - 209 = u4-2¢p = 2 mod 4 .

Hence we have result for d4d = 1,2 .

Suppose now that result holds for given d + 1 and 4d .
Then

d+2

® + ¢d+2 - (¢+w)(¢d+l+ d+l

o3y~ ety = 2(moau) . 3.16

Hence 3.14 holds by induction for every d.

4.4 f £t C
(ii) q) "lb - ¢ -y .. TT (¢d/21 + w(vﬂ )

. . 3.17
4"4’ cb—d) i=1




Now
t : i t i ;.
0Pd'1—|—.<¢d/z+lpd/7‘) = Zord(d)zi'llld/z) =t
i=1 1=1
and
£ f == 2
%_:_ﬁ_z (o0) 2, 5 (¢f-2k-l+‘pf-2k~l).(¢¢)k .
' k=0
£3
2
Now ¢y is odd and by (i) I (¢f_2k—l + wf-Qk—l)
k=0
f
.is even ..°. ¢¢ — $ is odd.
Hence
¢¢ - ° o - uf G,
ord ( =V ) = ord ( T ) + ord gj; " "+ vy )
= 0+t = t.
Proﬁosition 3.1. Let »r=s =0, d= 2t x f.
Then t < 3.
Proof. From lemma 3.2 for X =% 2 we get
d d - d-1 d-1
G,(£2) = (£ 2 + ¢) ch—:?p—’— + (c-k) i—d)%—- .
2t-l

By lemma 3.1 Gd(i2) must be divisible by 2 .

33
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¢d—l _ wd_l
Now - is an integer and by corollary 3.1
2t-l 2t-l
2 divides c-k. Thus 2 must divide the first term

of 3.20 which, by lemma 3.3, is equal to

(2 +c)x ot x odd number = T, say

and since ¢ 1is even

2(modh4)

n

either 4 divides c¢, which implies * 2 + ¢

or 4 does not divide ¢, which implies #* 2 + ¢ = 4(mod8) .

Thus ord(T) < t + 2. A o 3.21

t-1
Hence Gd(i 2) will be divisible by 22 only if T is.

This \wg:ﬁes

2t < ord(T) < t+2 3.22

which is true only when t < 3 .

Since d = 2t xf, £=1 or 3 or 5 the above

result proves Theorem 4 in case III.



§2. Cases IV and V

For the rest of this chapter we deal with case IV, where
‘ t
2s >r >0, d=2 xf
and

Case V, where r > 2s >0, d = 2t x £+ 1.

Lemma 3.4 In cases 1V and V L (Y) is divisible by Y°
_ St-1
end 2 P.Hd(a) is divisible by 2 for every even a.
Proof. From lemma 2.3 . we have
1 1 [pd + p_d] in case IV

pt+p
L;(Y) =

——_l_:f [pd—l + p—(d-l)] in case V .

p+tp
Call the R.H.S. of 3.23 Nd(p). - Then the equation

LQ(Y) = Nd(p) holds even if p 1is transcentendal over GF(2).

Thus 3.23 holds identically if we put

Y=p + p—l .

(oF + _f)zt
But Nd(p) = 2Ff e » and since f 1is odd we have
p+p
. 2ty
that (p + p 7) divides Nd(p) .
Therefore
t

- ' % - *
y2 -1 divides L;(Y)»= [27P Hd(Y)] .

t

35
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Now, by theorem 2, 2P Hd(y) is a product of at least f x Qt_l

quadratic factors. Reduced modulo 2,; this product is divisible

t
by Y2 -1 . Therefore at least 2t—l factors of

- % »
2P Hd(Y)] have constant term zero. " Hence at least

.'Zt-l factors of 2-P Hd(Y)_ have an even constant term.

t-1 : ,
Thus 22 divides the constant term of 2 P Hd(Y).
_ t-1
By the same argument, for any even a, 2 divides

the constant term of 2 P Hd(Y+a), which equals 27P Hd(a) .

Lemma 3.5.
(i) If 4 divides d then

H(0) = Hy(2) = (e-)? = (n-e)” . | 3.24

(ii1) If 4 divides d-1  then

Hd(O) = - hc2 and Hd(2) = -h(02—2h) . 3.25

Proof. From definition 2.3

Kd(Y) = --2(c-l)2 cos2(d;l)a+2h(c2—2c+2)cos2da-2h2cos2(d+l)a

M(Y) = 2[h2+(c—l)2+2h(c-l)0032a—hc2]
(4-Y) Hd(Y) = M(Y) + Kd(Y) . 3.26
Now by 2.6

Y =0 => cos2a = -1 => a=-121
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Thus
2
{ 2e” + 2h(e2+l) + 2h2 if d = 0(modu)
K.(0) =
d 2 2
-2e” - 2h(e"+1) - 2h2 if d = 1(mod u4)
“and
2
M(0) = 2h” + 2¢2- Yhe - 2h(e+l)2 .
.« by 3.26 we get
(h - e)? if d = O(mod4)
Hd(o) = 2 -
-h(e + 1) if d = 1(modu4) .
Next Y=2=>cos2a =0 :=> a = %- .
Thus
2h(e2 + 1) if d = O(modu)-
K,(2) =
d 2 2
2(h” - e7) if d = 1(mody)
and
M(2) = 2h2 + 2e2 - 2h(e + l)2
.. by 3.26 we get
2 . _
(h - e) if d = 0(modd4)
H.(2) =
d 2h2 - h(-e+l)2 if 4 = 1(mod4) .
2 2 2
Lemma 3.6 Hd(u) = [d(hte) + (h-e)]" = da° c“ n . 3.27
Proof By equation 2.6, Y = 4 => cosQa =1l=>a0a=0,
From 2.9 we have
2
N sin(d+1)a c-l sin(d-1)a .2 sin_ do
Hd(Y) = h[(q sing t q ~ sino ) , sn.nf_:| ‘

On letting a -+ O and applying L'Hopital's rule we get 3.27.
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Case IV. 2s >r >0 . Here p = min (2s,r) = r.

By lemma 3.4 27 F Hd(a), where a is any even number, is

2‘t-l
divisible by 2 . Thus

ord (Hg(a)) 2 r + tt : 3.28
Also by lemmas 3.5 and 3.6

Hd(2) = (h—e)2 _ , d = 0 (mody) 3.29

__ 2 2 2
Hd(u) = [d(h+e) + (h-e)1” - d"(e+l)"h . 3.30

Lemma 3.7. Let r > s. Then t < &4 .
Proof. Since r >s >0 from 3.29 and 3.30 we get

ord (Hd(2)) = 2s 3.31
ord (H,(4)) > min(2s, 2t + r) | 3.32

where the equality holds only if 2s # 2t + r.

Thus if. 2s # 2t + r we have

2t +r 2 ord (H,(4)) . 3.33
Now let 2s = 2t + r then . 3.34
2t + r = ord (Hd(2)) (by 3.31) , ' 3.35
. 2t +r2r+ 25t by 3.28 . ot<n .
Lemma 3.8, Let s >r . Then t <4 .
Proof. In this case since s >r > 0
ord (H,(2)) = 2r 3.36
and
ord (Hd(u)) > min (2r, 2t +7) 3.37

where the equality holds only if r # 2t.
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Thus when »r # 2t

2t + v > ord(Hd(u)) . 3.38
Wheq_. r = 2t, then by 3.36
v+t = 2= ord(H,(2)) . : 3.39

Thus from 3.28 we get that

2t +r2>2r + 2t-l 5 for any r.

Lemma 3.9 Let s = r. Then t <4

Proof. Let ord (h+e) = r + u, and ord (h-e) = r + v,

Now by 3.28 both Hd(u) and Hd(2) are of order greater
t-1

than or equal-to » + 2 . Thus the same will be true for the

number

Hd(u) - Hd(25 d2[(h+e)2 - h(e+l)2] + 2d(h2-e2) 3.40

L d

= Tl + T2 » Say .

Now, ord(Tl) = 2t+r and ord(TQ) = t+2r+l+utv.

Therefore if ord(Tl) # ord(TZ) then
ord(Hd(u) - Hd(2)) <2t +7r. 3.41

Thus
2t+r;r+2tl e ot < b,

Next suppose that ord(Tl) = ord(TQ), then

t-l=r+u+v . 3.42

But by 3.28 |
t-1 _ '
r+2 ;ord(Hd(z)) =2r + 2v , 3.43

. poe 2t <2r + 2v < 2(r + u + v)  which is
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impossible. Thus ord(Tl)# ord(Tz).

From lemmas 3.7, 3.8 and 3.9 we have that the order of the
diameter d in case IV is less than or equal to 4. That

proves theorem 4 in case IV.

Case V. r > 2s >0, In this case p = min(r,2s) = 2s.

For any even number a we have, by lemma 3.4

-2s < 2t1
that 2 Hd(a) is divisible by 2 . Thus

ord(H,(a)) 2 2s + ot | , 3.4y

By lemmas 3.5 and 3.6 we have

H(0) = - he? = -h(e+1)?, d = 1(mod )

[d(h+e) + (h-e)]? - d°.hc?

Hd(u)

[h(d+1) + e(d—l)]2 + d2 Hd(O) . 3.45

Here d-1 = 2t x £ and we will prove that t < 4 .

We suppose that t > 2. Then ord(d+l) = 1 .

Lemma 3.10. Let r >2s >0, Then t < 4.

Proof. Since s >0, e + 1 is odd. Thus

ord (Hd(O)) =r ., 3.46

Thus by 3.44 we get that

r>2s+ 20, 3.47
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Now since both Hd(u) and d2 Hd(O) have order greater

t-1

~ than or equal to 2s + 2 the same will be true for

H(4) - a2 H,(0) = [h(d+1) + e(d-1)12 . 3.48

But ord (Hd(u) - d2Hd(O)) 2 2 x min (rtl, t+s)
where inequality holds only when r+l = t+s . In which

case from 3.47 we get that
r-s . . s .
. rP>22s +2 which is impossible.

Thus always r +1 # t + s. " Hence

ord(Hd(u) - d2Hd(0)) = 2 x min(r+l,t+s) < 2t + 25

2t 4 2s < 2t + 2s | © 3.49

which is true only when t P

Lemma 3.11. Let r.> 2s = 0, Then t 4.

Proof. Let ord(e+l) = u. Then
ord(H,(0)) = r +2u . - 3.50
Since e 1is odd

’ ord[Hd(H) - &2 Hd(O)] 22xmin (r + 1, t) . 3.51

If r $ t-1, then equality holds in (3.51) so
2 :
ord[ﬂd(u) -d Hd(O)] 22

Thus from 3.51 and 3.44, for s = O, we have

2t;2t_l ... t__

A
+
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Now if r = t-1 , we consider the number

H (%) - d2Hd(2) = n°[(a+1)? - 2d%7 + 2n(d%-1).e + (d-1)%

whose order must be greater than or equal to 2t_l '

Now the orders of the terms in the RH S when »r = t-1 are

2t - 1, 2t + 1, 2t

RS ord(H,(4) - a2 Hy(2)) = 2t - 1

e 2t-1 > 2t7% S t<3 .
From lemmas 3.10 and 3.11 we have that in case V
t 1is less than or equal to 4.

This proves theorem 4 in case V .



CHAPTER FOUR

Further Results

In the pre&ioﬁs chapters we have proved that the only
péssible D-R graphs with intersection matrix B are those
of diameter d < 81.

In this chapter we classify the assumed graphs according
to the value of f and we prove.

Theorem 5. The'only possible D-R graphs with intersection

matrix B are those of diameter

d= 1,2,3,4,5,8,9 when £ =1
d= 3,4,6,7,12,13,24,25 when f = 3 -
=5 .

d = 5,6,10,11 " when f

To obtain this result ﬁe consider each one of those classes
separately. For each oﬁe we obtain certain arithmetical
conditioné‘which are necessary for the existence of the
corresponding graph;
Those conditions alone provide the answer for f = 1.

For the rest of the éases, we use the computer—algebfa system
Reduce 2 [N0] (implemented on the computer at Newcastle).

Fer ecoch maluwae of d we coluw loke
Hd.(\(\ re-&ur_o_cﬁ_ Yo wactows m oduls.
Then we observe that not all those polynomials satisfy the

necessary conditions.

43



Definition 4.1, We define the order of the linear polynomial

AY + B to be the min(ord(A), ord(B)).
® means reduction modulo Y2 -Y-1.

~We also define

u = obﬂ(h’ -e)
v = ord(hte)
w = ord(etl)

p = min(r,2s)
r = ord(h)
s = ord(e)

t = ord(d) or ord(d-1) éccording to case.

Throughout this chapter the Greek letteré € and 6 mean even

numbers and odd numbers respectively.

§1. Graphs of diameter d = Qt or 2t+l.

In chapter three we have proved that t < 3 in case III and
t <4 in cases IV and V. Here we prove that t = 4 is
impossible.
Lemma 4.,1. If Hd(Y) is a product of rational or quadratic

factors, then reduced modulo Y2 + €Y will be divisible by
t-1
22 +p .

Proof. By lemma 2.3 for f = 1 in cases IV and V we have

[ t
Ld(Y) =Y

where Ld(Y) = 2P Hd(Y). By hypothesis the polynomial Ld(Y)

is a product of at least 21:_l quadratic factors.

2°-1 ' 4.1

44
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Reduced modulo 2 this product has the form 4.1. Thus Ld(Y)

will be a product of 2t—l factors of the type Y2 + e¥Y + ¢

over the rationals. But
2 _ 2 '
Y +eY+e= (eY + €)(mod(Y"™ + €Y)) . 4,2
Thus
2 2't—l )
Ld(Y) = P(Y). (Y™ + eY) + 2 .Q(Y) 4.3

where Q(Y) is a polynomial of degree 2#_1 .

Therefore '
Ld(Y) =2 (&Y + b)(mod(Y +eY)) . L.y

From which we get the stated result.

Lemma 4.2. Let t >2 . Then

(h-e)? (mod(Y? - 2Y)) if a=2t
Hd(Y) =
(h2.Y-h(e+1)?) (mod(Y2-2Y) if d = 2t4
Proof Hd(Y) = (AY + B) mod Y2-2Y . 4.5
where 2A + B .= Hd(2)
4.6
B = Hd(O) .

By lemma 3.5

Hy(2) = h-e)?; when d = O(mod 4)

n

Hd(o}

and ‘ 2
-h(e + l)

Hd(O) S
when d = 1(mod 4) .

on2 - n(e+1)?

Hd(2)



Now by 4.6

_ 51 _ -
A= 2 [Hd(2)' Hd(O)] s B= Hd(O)

from which we get the stated results .

Definition 4.

2 ® means reduction modulo Y2 - 4y

Lemma 4.3.

By lemma 3.6

Hd(u)

Let ord(Hd(Y)(mod Y2—-2Y)) > 8 +p.

Then
I d(HO (Y)) <6 +
ordifett)) =5 T r
II ord(H@-(Y)) <6 + 2s
17 = .
Proof. Hd(Y) = CY + D mod Y2 - 4y
where 4C + D = Hd(u)
and DA= Hd(O) .
Thus
C = 2 [Hd(u) - Hd(O)] , D= Hd(O)
. 12y) = 272 [H.(4) - H,(0)1.Y + H.(0)
* e d d d d

[d(hte) + (h—e)]2 - th(e+l)2

and by lemma 3.5

Hd(O)

Hd(O)

(h—e)2, when d = O(mod#4)

1(modl) .

_h(e+l)2,when d

46

4.7

4.10
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Thus when d = 16

V)

Hig(Y) = 8[8(h-1)(h-e”) + (h® -e*)IY + (h-e)’
- 4,11
= C1Y + Dl
and when d = 17,
' 2 :
H)(Y) = [81h% 4+ 6ue” - Tah(e+1)I¥ = h(et1)?
= CcY+D, . - 4.12
i. d =16 corresponds‘to the case IV, where. 2s >r >0,
By hypothesis and by lemma 4.2 we have
2 . a2 =
8+r=8+p ;=ord[Hd(Y) mod Y° - 2Y] = ord(h-e)” = 2u 4,13
r when s > r
where u = s when r > s 4,14
r+q,q21 when r =s |
Now the orders of the terms in Cl for d = 16 are
6+r,3+tu+v
where u+vs=2u>8+r. when r #.s
and ut+vz>2r+3 when r =s .
Thus always 6 +r <3 +u+t+v
'e ord(C)) = 6+r. 4.16

II. d =17 corrésponds to the case V where r > 2s > O,
Now if s > O by hypothesis and lemma 4.2 we have that

r = ord(B) 2 8 + 2s . v 4.17
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and since for s > 0 the orders of the terms in Cé
are
2r, 6 + 2s, 3 + 1
‘we get that ord(C2) = 6 + 2s. 4.18

Next let s = 0. "Then by lemma 4.2°

2r = ord(A) > 8 , 4,19
thus r > 4, The orders of the terms in C,
when s = 0 are

2r, 6, 4 + 1 : 3,20
thus since r > 4 ord(C,) = 6 . ' » 4,21

Hence by 4.16, 4.18, 4.2l and definition 4.1

we get the stated results.

Corollary 4.1, There is no graph of diameter d = 16 or 17.

Proof, Suppose that such graphs exist, Then the

corresponding polynomials H. (Y) and Hl7(Y) will

16
factorize into quadratic factors. Then by lemma 4.1
HlG(Y) and Hl7(Y) reduced modulo Y2 + €Y for any even ¢

will be of order greater than or equal to 8 + p. This

contradicts lemma 4.3.

Thus we have proved theorem 5 in the case f = 1.
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§2, Grabhs of diameter d = 2t x 3 or 2t x 3+ 1

From theorem 4 we have that the maximal graphs of this
class who possibly exist are those of diameter d = 48 in

case IV and d = 49 in case V. Here we prove that no

graphs of these diameters exist.
Lemma 4.4, If the D-R graph with diameter

d = 2t x3 or 20 x3+ 1 exists.
% 2 Qt -
Then L,(Y) is divisible by (Y +1)° and 2 pHd(e) is
' t ‘
divisible by 22 for every odd 6.

3 we have

"

Proof. ‘From lemma 2.3 for f
t.
3 -372 i
" +p ") in case III

L(Y) = Jt -1 4.22

(p3 + p-s) Ap +p 7)) in case IV and V .

Call the R.H.S of 4.22 Na(p) . Then the equation

Lz(Y) = Nd(p) holds even if p 1s transcendental over GF(2).

Thus 4.22 holds identically if we put Y = p + p-l .
. 2 o 2t .
Now Nd(p) is divisible by (p” +p ~ + 1) and since
p2 + p~2 = Y2 (in GF(2)) then
2 Qt % -p £
(YY" +1) divides Ld(Y) = [2 Hd(Y)] .

By theorem 2 if the graph of diameter d exists the polynomial
27P Hd(Y) will be a product of at least f x t1 quadratic
factors over the rationals. Reduced modulo 2, this product
o t
2

. e s s 2
when f = 3 is divisible by (Y" + 1)° , Therefore at least

. _ %
2t factors of [2 P Hd(Y)] " will have the form Y2 +Y or

Y2 + 1 .
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Hence at least 2© quadratic factors of 2—PHd(Y) will have the
2 .
form Y + 6Y + € or Y2 + €Y + 6. Thus since the value of

each one of those terms at Y = 6 1is even we get the stated result.

Lemma 4.5
2 ‘ _
: (h-e) , when d = O(mod3)
Hy(1) = {. 2 2 o
h”™ - h(e+l)” , when 4 = 1(mod3) .
Proof, By definition 2.2 VY = 2 cos2a + 2 . . X
Thus for Y =1, o = % .. By definition 2.3
2 2 -
M(1) =2he + 2(h-e)” - 2h(etl) 4,23

Kd(l) = —2e2cos(d—l) -L?- + 2h(e2+l)cosd%7—r-

- 2h2 cos(d+l)? y,24
3.gd;1) = Ky(1) + M(1) - ' 4,25
Let d = 0(mod3). Then
Kd(l) = —ée2 cos %T-r--l- 2h(e2+l_)b— 2h2 co»slgrr
= e? + 2n(e’+1) + h? 4,26

and from 4.25 we get

H (1) = (h-e)?, d = O(mod 3) .
Let d = 1(mod3). Then
K,(1)= -2e2 + 2h(e2+l) cos—u—Tr - 21'12 cosﬁr-
d 3 v 3
= -2e2 - h(e2+l) + h2 . 7 y,27
Thus 2 9 , '
Hd(l) = h® - h(e+l)", d = 1(mod3) .



Lemma 4.6, Let 2s >r >0. Let d=48 (so t = 4)
and opd(Hm(l));_ 16 + r.

Then ord(HuS(—B)) =12 +r.
Proof. By hypothesis and lemma 4.5 we have

2u = ord(h-e)? = ord(Hua(l)) > 16+r

Now bi computer calculations we get

S

This result is reducéd modulo 216 since otherwise the result

would be intolerable. The orders of the terms in 4.29 are

13+2r, 12+2s, 6 +utv, 12+r, 2u .

r
2

by (4.28) and v >r

Now if r 4 s v = ord(hte) = ord(h-e) = u > 8 + by (u4.28)

and if r=s then u2>8 +-%
Thus always 12 + r < 6 + u + v and all the other terms of

4,30 are greater than 12 + r.

From which we get that Hqg(-3) is of order 12 + r.

Lemma 4.7. Let r>2s >0. Let d=149 (sot =14) and

ord(H, 4(1))2 16 + 2s.  Then ord (H,4(-3)) = 12 + 2s .

Proof. We first consider the case s > 0. Here by hypothesis

and lemma 4;5' we have

r = ord (Hug(l)) 216 + 2s .

51

4.28

3.5.h2'+ 212.13.e2 + 26.47.(h2—e2)+212.h(e2+1)+(h—e)2 . 4.29

4,30

4.31
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Now by computer we calculate Hqg(-3) reduced modulo oo
and we get
H,o(-3) = -43715h” - 2°.687.n(e%1) - n(et1)? - 2'2.11.e7 . 4.32
The orders of the terms here are |

2r, 64r, r, 12+2s . 4.33
and since (by 4.31) r > 16 + 2s we have that

ord(Hug(—B))= 12+2s .-
Now let s = 0.
Consider
Hug(-3) - Hqg(l) = —22.10929h2 - 26.687h(e2 +1) - 212.ll.e2 . 4,34
Here the orders are

2t20, Tte, 12 . ' 4,35
Now '

12 <7+r <2+ 2r , When r > 5

12 =7+ r =2 +A2r , When r =5

2+ 2r <7 +1r <12 , when r<5 |,
Thus .

ord (Hug(—B) - Hug(l)) <12 4.36

and since by hypothesis ord(Hqg(l)) > 16 we have

that ord(Hug(-S)) <12.

Corollary 4.2. There is no graph of diameter d = 48 or 49.
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Proof. Sﬁppose that such graphs exist. Then by

lemma 4.4 HL+ (6) and H 9(6) will have orders greater than

8 M

or equal to 16 + p for any odd numbers 6. By lemmas 4.6
. r
and 4.7 when 6 = -3 this is not so.

This proves theorem 5 in the case f = 3.

Graphs of diameter d = 2t x 5 or 2t x5+ 1.

In chapter three we have proved that possible graphs

of this class are those of diameter

"
N

5, 10, 20, 40O, 80 when d x 5
and

6, 11, 21, 41, 81 when d = 2% x5 + 1.

Here we prove that the only possible graphs are those of

diameter d = 5, 6, 10 or 11.

§3. Necessary conditions for graphs of diameter

d = 2t x 5 or Qt x5+ 1.

Lemma 4.8, If a graph of diameter d = 2t x5 or
d = Qt x 5 + 1 exists then the polynomial Hd(Y) reduced

t-1
2 . . e s 2 +p
modulo Y + 6Y + © will be divisible by 2 .



Proof. By lemma 2.3 for f = 5 we have

5 -5.2t
(p” +p ) in case III
S 5 52" -1,
("t ") (pto™) in cases IV and V
-1 . o
where p +p = = Y. Now in GF(2) -
5 -5 -1, -1.2 -1 2
pRetp  =(p+tp”) [lp+tp ™) +(+p7)+1]
t t+1
Y2 (Y2 +Y+ l)2 . © in case III
b ‘ ’ ’ ‘
Ld(Y) =
2t—l 5 2t+l
Y X" +Y +1) in cases IV and V .
By theorem 2, if the assumed graph exists, the

polynomial Ld(Y) = 2P Hd(Y) will be a product of linear
or quadratic factérs over the rationals. Reduced modulo 2
this product has 2t+l’ irreducible quadratic factors of the
form Y2 + Y + 1. Hence the polynomial 2 P Hd(Y) has at
least 2t+l irreducible (over the fationals) quadratic
factors of the form Y2 +‘6Y + 6. Now for each one

of these factors we have

Y2 + oY + 0 = €Y 4 € (mod Y2 + 6Y + 8)

Thus
t+1

z'p‘Hd(Y) = P(Y).(Y2 + 0Y + 8) + 22 .Q(Y)

‘where Q(Y) 1is a polynomial of degree ;=2t .

54

4.37

4,38

4.39

4.40
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Therefore

2t+l

2P Hd(Y) =2 (AY + B)(modY2 + 0Y + g) . 4,41

Now since Y° + 6Y + ® 1is monic and Q(Y) has integer

coefficients we have that A,B are integers. Thus 27 PH(Y)

9 2t+l
- reduced modulo Y~ + 8Y + .9 is divisible by 2 °
Hence result..
Lemma 4.9. .
‘ 2 2 . _
(h-e)” (mod Y~ - 3Y +1) if 4 = 0(mod5)
H (Y) = , ‘
d 1 .2 2. 2
(h"Y-h(e+1)")(mod Y -3Y+1l) if d = 1(mod5)
Proof. Let Yi Y2 be the roots of Y2 -3Y+1=0.
Then
Hd(Y) = P(Y).(Y2—3Y+l) + AY + B , 4,42
where
AY, + B = Hd(Yl)
u.,43
AY, + B = Hd(Y2) .
3+ 5 _3-45 e el
Now Yl = T s Y2 = 5 . By definition
2.2 equation (2.6) Y =2 cos2a + 2. Thus
-1 + V5 1+ 5
cos2qa = ———— or cos2a = - —mm— .
. y L
Hence
: =T
Yl corresponds to a = z

1

Y2 corresponds to o = — .
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By definition 2.3

Kd(Y) = -2e2cos(d-l).2a+2h(e2+l)cosd.2a—2h2cos(d+l)2a
o 2 2

M(Y) = 2[heY + (h -e) - h(e + 1)°] .

Thus when d = 0(mod5)
) 2.\ 21 .2 2

Kd(Yl) = 2h(e“+1l) - 2 cos = (h™ + &%)

Kd(YQ) = 2h(62+l) - 2 cos %; (h2 + e2)

and

M(Yl) = 2h2 + 2é2 + bhe.cos %}--VQh(e+l)2

M(Y2) = 2h2 + '2e2 + uhe. cosil - 2h(e+l)2 .

5
Now for every Y # 4

- _oy 1
Hd(ﬁ) = [Kd(Y) + M(Y)I(4-Y) — .

Thus o
Hd(Yl) = Hd(YQ) = (h-e)

and from 4.43 we have

A=0, B-= (h—e)2 .

In the case d = 1(mod5), working similarly we have
2
A = h s B = "h(e'i‘l) .

4,45 and 4.46 prove lemma 4,9.

b4y

4.46
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Corollary u4.1. The only possible D-R graphs with

intersection matrix B and diameter d = 2t x5 or
2t x 5 + 1 are those for which

2 x ord(h-e) ;=2t+l + p, when d = 0(mod5)

or y 2 2 t+l
ord (h"Y - h(etl)”) > 2 + p, when d =1(mod5) .

- Proof. By lemma 4.8 if such a graph exists then the
corresponding polynomial Hd(Y)‘~reduced modulo

Y2 + 0Y + 8 for any odd numbers 6 must be divisible

by 22 P . By lemma 4.9.
2 2 -
(h-e)” (modY“-3Y+l) , d = 0(mod5)
H (Y) = :
d 2., 2 2
(h"Y-h(e+l)”)(modY -3Y+1) , d = 1(mod5)

Hence result.
.

§4, Graphs with diameter d = 2t x 5.

These Graphs correspond to the cases III where
s =r =0 and IV where 2s >pr > 0,
By corollary 4.1 we have that the only possible graphs

of this class are those for which

2u = 2 x ord(h-e) ;;2t+l + r.

b.47



Here we note that

v
e

r, when s
u=v=

S, when s

A
o]

~and

‘ t
u+v>2 +r, when s

1l
X

. : t |
Since u 2 2 + ;--by‘(4.47) and v > min(r,s) >-§

In the following we assume that condition = 4.47 holds.
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4.49

WwWe aQ‘so recall *that ® micoms r‘elduchou a0 due Lo ‘f’l"(..s_

Lemma 4;10. Let t = 2,3 or 4. Then

ord(H:(Y)) < 2(t+l) + r .

® ;] ' ®
Proof  We calculate HQO R qu and H80 on computer.
This gives intolerably large numbers. To avoid this

we have reduced all numerical coefficients modulo 216 and we get.

4,50

2 5 2 2
Hgo(Y) = [26.191.h(e2+l) + 27.83.e + 27.667(h"-e") 1Y
' ' 2 2 2
+ 26.2Sh(e2+l) + 26.883e2 + (h-e)” - 23.2101 (h"-e™)
= AlY + Bl .
6 2 2
HiO(Y) = [28.111 h(e2+l) - 29.29.e2 + 2 .513(h"-e")]Y

2

28.87.h(e2+l) - 28.29.e

A2Y + B2

and

+ (h-e)Z = 2%.2u41(h%-e?)

4.51
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H:O‘(Y) = [-21%.17.n(e%41) + 211.5.e2 - 27,115 (h2-e?)7y
+ 2lo.ul.h(e2+1) - 210.29.e2 + (h-e)2 + 25.1807(h2—e2)
‘ _
= A3Y + B3 . 4,52
Now if 2s > r > O the orders of the terms in the
constant term Bi’ i=1,2,3 are
~2t+2+r, 2t +2+25, 2u, t+1l+u+v 4,53
and since 2u ;=2t+l +r and u+v o> 2t +r
for t =2,3 or 4 (so d =20, 40, 80) we get that
ord(Bi) =2t +2+1r . _ 4,54
Next if s = r = 0 the orders in the constant term
become
2t + 3, 2t +2, 2u, t+1l+u+v b,55
where 2u ;:2t+l and u + v > 2t .
Thus

ord(Bi)= 2t + 2 .

Corollary 4.2. If a graph of diameter d = ot x 5 exists
then t < 1. ‘ |
Proof., - By lemma 4.8 the corresponding polynomial Hd(Y)
reduced modulo v + 8Y + 8 where 8 is any odd numbers
will be of order greater than or equal to 2 + r.

By lemma 4.10 for t = 2,3,4

2(t+1) + r.;zord(Hg(Y)) ;:2t+l +r

which is impossible.
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§5. Graphs with diameter d = x5 41

Graphs of this diameter correspond to the case V where
r > 2s > 0.

By corollary 4.1 there is no graph of this type unless

ord(thv— h(e+l)2).__>___ o'l 425 L From this we get that
r > 2t+l + 2s , when s :} 0 : 4,56
afld min(2r, r + 2w) > 2t+]f - when s =0 . T 4,57
"Lerﬁma 14;'11. ‘ Let t = -2,5 or 4; L Then

ord(Hg(Y)) < 2(t+l) + 2s .

Proof For the same reason as in lemma 4.10 the polynomials
12 (v), BB (V) .a.'md HZ(Y) have been calculated modulo 2°°
21°7°?% Tyl , 81 "’ .

These calculations give

’ 6 2
Hgl(Y) - [-25927h% - 2°.667 h(e’+1) - 2°.191 e°J¥
2 2 6 .2
+ 2%.3535 h° - h(et1)? + 23.2101n(e’+1) - 2%.25.e
- ° v l*.58
= AY +B) |
HY (1) = [-4347L.h% - 2°.513 h(e®+1) - 2°.111 &%y
+,2°.723 12 - n(e2+1) + 2%.2001 n(e?+1) + 2%.87.07
=AY +B S | 4.59

2 2

and
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Hgl(Y) = [55137 h2 + 27.115 h(e2+l) + 210.17.e2]Y
+ 26.357 h2 - h(e+l)2 - 25.1807 h(e2+l) - 210.4l.e2
: + L] . .
A3Y B3 4.60

Now if s # 0 the orders of the terms in the coefficient
Ai (i =1,2,3) of Y are

2r, t+3+r, 2t + 2+ 2s 4,61
where t = 2,3 or4 (so d =21, 41 or 81). Thus
by 4.56 we have that

ord(A;) = 2t + 2+ 2s , if s>0. ‘ 4,62
Next let s = O. Then the orders of the terms in
Ai’ i=1,2,3 become for t = 2,3 or U4

2r, t + 4 +r, 2t + 2 ' 4.63

and by 4.57 we have that r > 2t .

Then ord(Ai) = 2t + 2.

Corollary 4.3. If a graph of diameter d = 2t x5+ 1 exists

then t < 1.

Proof, By lemmas 4,8 ‘and 4.11 if such a graph exists
then for t = 2,3,4 : .

2(t+l) + 2s > ord(ﬁHi(Y)) > 2t 4 os

vv\\th is lM490$Slee,

Corollaries 4.2 and 4.3 prove theorem 5 in the case f =‘5.
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CHAPTER FIVE

The impossibility of graphs with d = 25 or 24,

In this chapter we deal with graphs of diameter d = 25 or 2u,
and we suppose that these graphs exist. This assumption together
with the theorems of Bannai and Ito [2] and Dumas. [7] implies

that the coefficients of the polynomials H__(z) and H, (z)

25 24
where 2z = Y-1 must be divisible by ceftain powers of 2.
But, by computing the actual coefficients, we see that tﬁis is not
always so.
Thus we prove

Theorem 6. The only possible D-R graphs with intersection matrix

B are those of diameter 1 <d <13 .

§1. , Newton Polygons

Consider the polynomial

_ n n-1
P(x) ax ta X .. tax ta,aa, o0

with rational coefficients.
For the prime number g, this polynomiél can be written in the

form

o 0L:’L i
P(X) = z q T X

i=0 i

3

i

where (mi, zi) =1, (mi,q) = 1 and (Zi,q) =1,1i=0, ..., N,

Frbm this expression of P(x) we form the ordered pairs

(ai,i) and we plot them on a rectangular coordinate system,
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omitting points corresponding to zero coefficients. From

these points we construct the Newton Polygon TT which is the

convex line enclésing all the boints }fow befow, For these polygons

Dumas [7] has proved the following -

Theorem. The polygon of a product isjobtained from the

polygons of the factors by joining their sides end to end
according to non decreasing slope.
(For the proof of this theorem see [7]).

For example for the prime 3 the factors

x2 + 3x+ 9, x3 - 3x + 27
have the polygons shown in figures 3 and 4 respectively which
are combined in order of increasing slopes to form the

polygon shown in figure 5 for the product

3 2 '
(x2+3x+9)(x3—3x+27) = x4 ;Bxq + 6x + 18x + 54x + 243 .

powers of X
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(4]

1 2 3 4 5 s 7
fig. 5
powers of X
>
Corollary 5.1. . If the polynomial p(x) with rational

coefficients is a product of quadratic factors, over the
rationals, then its Newton Polygon is combined of sections

of (Horizontal) length 2. These sections are flat or

h] -
have slope 3 an integer.
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§2. Proof of theorem 6

We now apply the method of Newton Polygons to prove

theorem 6. We recall that by theorem 4

25 1is impossible unless r > 2s > 0 (case V)

[a¥
I

A
"

24 1is impossible unless 2s > r > O (case IV)

or r =s =0 (case III)

and we shall prove that even these are impossible.
[} .

whgre r = ord(h) , s = ord(e)
Also p = min(f;Qs), u = ord(h-e),

v = ord(hte), | w = ord(e+l)
and -

. _ : .
Ld(Y) Hd(Y) 25 .
Suppésing that our graphs with diameters d = 25 or 24

exist from lemmas 4.4 and 4.5 we have that

2u > 8 + 2r when d = 24 5.1

and

‘min(2r,rt2w) > 8 + 25 when d = 25 . 5.2

Now for d = 25 or 24 and for Y ztl lemma 2.3 gives

(z + 1)8.216 when r=s =0

-p _
2 “ H,(z) =
d (z + 1)7.2.16 when 2s > p >0 (ﬂw\od,z}

or r >2s >0,

Thus in the polynomial~ 2P Hd(z), d = 24,25 the coefficient
of z" for any m such that O é!m'< 16 1is even while the

coefficient of 216 is odd. Thus for the primé 2 we have
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r and s.

All the members of this family have the point (16,0) in

common. For r = 18, s = 3 a representative of this

family is shown in figure 6.

A\
Pa

X

powers of

[4

j0 ssasmod

flg, 5‘
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Lemma 5.1. If the D-R graphs with diameters d = 25
or 24 exist, then the coefficient of 28 in 2P Hd(z)

will be divisible by 2°.

Proof. By hypothesis the polynomial 2 " H,(z), d = 25,24
is a product‘of quadratic factors, over the rationals. Thus
by corellary 5.1 +the non flat secfion of its Newton Polygon
will have slope greater than or equal 3. Therefore the
coefficient of 28 will ha&e order greater than or equal

to 3 8 = 4.

We now prove theorem 6 by showing that there are no D-R
graphs with intersection matrix B of diameters d = 25 or 2u.
Proof. By lemma 5.1 the coefficient of z8 is divisible
by 2”. But, by computing coefficients; we get that the

actual coefficient is

3.[10505 h2 - 407 h(82+l) - 5716 e2] if 4 = 25

2

3.[5716 h(e2+l) + 4372.e° + 407 (h2—e2)] if d =-24 .

Now when d = 25 the orders of the terms of the coefficient

8 -2s H

of z in 2 5(z) are

2

2r-2s, 1r-2s , 2 when sV# o

2r , r+l 2 when s =0 .

]

Let s § O. Then w = ord(etl) = O thus from 5.2 we

get that r > 8 + 2s . « by 5.5 we get that the

coefficient of z8 in 2—28 H25(z) has order 2 which

contradicts to lemma 5.1

5.3

5.4

5.5

5.6
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Also when s = 0 since r > 1 we have that the order of

the coefficient of z° in H25(z) is again 2.

Next when d = 24 the orders of the terms of the

coefficient of z8 in 2°F qu(z) are

2, 2s - r + 2, u+tv when 2s >r >0
3, 2, u+ v when r =s =0.
Now by 5.1 u>4% forany r >0 S utrv>2,

Thus the coefficient of z8 in 2°F H24(z) is not divisible

by 2* which contradicts to lemma 5.1.

This proves theorem 6.



(1]

[2]
31
[u]
[s1
(6]

[71]

[8l
[9]

[10]

[11]

69

REFERENCES

Bannai, E. and T. Ito (1973). On Moore graphs,
J. Fac. Sci. Univ. Tokyo Sec. 1A20, 191-208.

Bannai, E and T. Ito (1977). On the spectra of certain
distance-regular graphs, J. Comb. Theory to appear.
Benson, C.T. (1966). Minimal regular graphs of girth
eight and twelve, Canad. J. Math. 18, 1091-1094,

Berge, C. (1976). Graphs and Hypergraphs, (North-Holland
Publishing Company).

Biggs, N.L. (1974). Algebraic Gréph Theory

(Cambridge University Press).

Damerell, R.M. (1973). . On Moore graphs,

Proc. Cambridge Philos. Soc. 74, 227-236.

Dumas, M.G. (1906). Sur quelques cas d'irreductibilité

de polynomes & coefficients rationnels, Journ. de Math. (6)
vol. 2, 191j258.

Erdelyi, Magnus, Oberhettiﬁger, Tficonwi(lQSB)

Higher Transcendental functions. McGraw-Hill.

Feit, W. and G. Higman (1964). The non-existence of
certain generalized polygons, J. Algebra 1, 114-131,

Hearn, A.C. Reduce 2, A System and Language for

Algebraic Manipulation. Proc. of the Second Symposium

on Symbolic and Algebraic Manipulation. Les AMtse Q.es 1931,

Hoffman, A.J. (1963). On the polynomial of a graph,

Am. Math. Monthly 70, 30-36.

s e

v b. e o

PR



[12]

[13]

[14]

[15]

[16]

[17]

[18]

70

Hoffman, A.J. and R.R. Singletom (1960). On

Moore graphs with diameters 2 and 3, IBM

J. Res.Dev., 4, 497-507.

Mowshowitz, A. (1972). The characteristic polynomial
of a graph, J. Comb. Theory 12B,7177—193.

Ore, 0. (1922). Zur Theorie dey* Irreduzibilitatskriterien,

Math. Zeitschrift vol. 20, 278-288,

Singleton, R.R. (1966) On minimal graphs of maximum even

girth,  J.Comb. Theory 1, 306-332.

Tutte, W.T. (1966). Connectivity‘in graphs. -
(University Press, Toronto). |

Vijayan, K.S. (1972). Association schemes and Moore graphs,
Notices Amer. Math. Soc. 19, A-685.

Wilson, R.J. (1972). Introduction to graph theory

(Oliver and Boyd, Edinburgh).



