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Abstract

A quartz crystal resonator has been used to excite shear waves at
a frequency of 20.5 MHz in “He films above and below the superfluid
transition and just above the liquid-gas critical point. The wave
has a viscous penetration depth 6=20 nm and the transverse acoustic
impedance Z = R- iX of the film was found from changes in the
quality factor and resonant frequency of the crystal. The thickness
of a He I film was swept at constant temperature by creating a small
temperature difference between the “He film on the crystal and bulk
liquid helium below it. Calculations of the impedance of a homogeneous
film as a function of die using transmission line theory show the
film's thickness d could be swept from 1.5 to >60 nm . The
impedance of six superfluid films of constant thickness in the range
14-23 nfm has been measured for 0.4 < T < TA .  From the impedance
in the ballistic limit, wI » 1 , the average probability of the
quantum evaporation of a *He atom by a roton incident upon the liquid-
vapour interface is estimated to be ~0.35 . A resonance, the temp-
erature of which was dependent on film thickness, was observed in the
superfluid film and has tentatively been identified with the resonance
in the A/4 Kelvin mode of vortices pinned to the crystal surface.
The transverse acoustic impedance Z of helium has also been measured
49 nK above the liquid-gas critical point for pressures up to 2000 torr.
In the highly compressible critical region, the impedance shows the
effects of the large density gradients that develop close to the crystal
surface under van der Waals' forces. At low pressures, the transition
to non-hydrodynamic behaviour (wTl >1) is observed, and it is esti-
mated that a fraction 0.2 of *He atoms incident upon the crystal are

diffusely scattered from it.
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Chapter 1

Introduction

The propagation of stress waves at ultrasonic frequencies is
widely used to investigate the physical properties of condensed
matter. In both solids and liquids longitudinal and transverse waves
propagate, though in liquids the transverse mode is a heavily damped
viscous wave whose existance is frequently overlooked. Viscous waves
may be excited by, for example, a vibrating wire, a torsional crystal
oscillator or a planar crystal vibrating in shear. The high atten-
uation of the viscous wave makes direct measurement of its velocity
and attenuation difficult and it is usually the effects of the liquid
on the surface generating the wave, rather than the properties of the
wave itself, that are measured.

This thesis reports the excitation of viscous waves in “He films
adsorbed on the electrodes of an AT-cut quartz crystal resonator
vibrating in shear. The physical properties of a film of thickness
comparable with the penetration depth of the viscous wave, 15 nm at
the X-point at 20 MHz, may then be deduced from changes in the quality
factor and resonant frequency of the crystal.

The AT-cut quartz crystal, discussed in Chapter 3.2, vibrates
stably in a thickness-shear mode of resonance and is used extensively
as a microbalance (Lu, 1984). For both solid films and liquid films
of thickness much less than the penetration depth of the viscous wave,
the resonant frequency f of the crystal decreases in proportion to

the adsorbed mass per unit area g (Chapter 2.2)
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where n is the harmonic number of the crystal's resonance and Rq
is the acoustic impedance of the quartz. As the thickness of a liquid
film increases and the effects of viscous damping become appreciable,
the quality factor of the crystal's resonance is lowered and the
change in the resonant frequency is less than that for a solid film
of the same thickness and density. A crystal fully immersed in a
liquid of specific transverse acoustic impedance Z = R - iX

experiences a change in the frequency f and quality factor Q of

the resonance given by

Af = - 1.2
MiR ( )

(1.3)

for R » R, X.
q
The transverse acoustic impedance at a frequency f = w/2n of

a homogeneous, hydrodynamic fluid of density p and viscosity q s,

as shown in Chapter 2.3

= - (1.4)

and the viscous penetration depth of the wave is 6 = /2q/pw . For

He Il (see for example Wilks (1967)), the superfluid component, density

p*» , does not couple to the crystal's motion and the total density and
viscosity, p and q , are replaced by those of the normal fluid
component, p*» = p - p» and q* (Putterman, 1974). |In general

however, the liquid is not homogeneous, the short range (<)
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van der Waals' forces between a liquid and a solid enhancing the
density of helium close to the crystal. The crystal then acts both
as a microbalance, the enhanced density helium, equivalent to an
adsorbed mass per unit area o , decreasing its resonant frequency
(equation (1.1)) and as a high frequency viscometer with the viscous
loading of the helium decreasing both f and Q (equations (1.2)
and (1.3)).

If the crystal is immersed in helium of pressure less than the
saturated vapour pressure, the van der Waals' forces compress the
gas, its density increases and it condenses to form a liquid film
on the crystal (Chapter 2.5). The film's thickness will depend upon
the pressure of the vapour over the film and hence, if bulk liquid
is present, upon the height of the crystal above the liquid level.

At T>T however, thefilm thickness is very sensitive to small
changes in its temperature and by deliberately creating a temperature
difference between the bulk liquid and the film, it is possible, as
shown in Chapter 4, to sweep the film thickness from a few nanometers
to very much greater than the viscous penetration depth. The impe-
dance measured by the crystal as the film thickness is swept at
constant temperature andhence constant 6, may be calculated as a
function of the changing ratio d/é using the transmission line
theory of Chapter 2.4.

Below the A-point it is not possible to create the temperature
difference that is used to sweep the film thickness at T > TA , and
the superfluid film on the crystal is stable, with a thickness deter-
mined by the crystal's height above the liquid level. The data for
the impedance measured at various film thicknesses is presented in

Chapter 5 and shows the effects of the viscous penetration depth 6
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increasing from 15 nm at the A-point to A70nmat 1.2 K for a frequency
of 20 MHz. The impedance may be calculated from transmission line
theory similar to that used for the normal helium film, since again
the relevant parameter is the changing of the ratio die . For
T < 1.2 K, the film enters the non-hydrodynamic regime with oT > 1
where 1 is the relaxation time of the excitations. In the ballistic
limit, WI» 1 , the phonons have a negligible effect and the major
contribution to the measured impedance is from the rotons. These
travel unimpeded across the film after reflection at the crystal,
and a fraction a , which may be deduced from the data, transfers
momentum from the crystal to the vapour. The superfluid film data
also exhibits a large, unexpected thickness and temperature dependent
resonance which has tentatively been identified with vortices pinned
to the crystal and resonating in the A/4 Kelvin mode, with a node
at the crystal surface and an antinode at the 1iquid-vapour interface
(Chapter 2.6).

At temperatures greater than that of the liquid-gas critical point
T , the liquid film cannot form on the crystal. For temperatures
only just above TA however, the high compressibility of the helium
in the critical region under the crystal's surface potential causes
its density to change rapidly from a gas-like to a liquid-like value.
In Chapter 6, measurements of the helium's impedance for the isotherm
T- TA = 49 nK are presented; both the data and calculations using
transmission line theory show a maximum in the mass adsorbed on the
crystal for pressures close to the critical pressure. At low densities,
the mean free path of the helium atoms becomes comparable with the
viscous penetration depth and it is possible to estimate the fraction

of atoms that are diffusely scattered from the crystal surface.
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Shear waves have previously been used to probe “He, '"He and
AHe - “He mixtures in both bulk liquid and adsorbed film states. All
techniques measure either or both the frequency of the viscous wave
and the energy lost from the resonator to the liquid. In 1960, Welber
used a cylindrical, torsionally oscillating crystal to excite viscous
waves in bulk “He at a frequency of 32 kHz and, from the change in the
electrical series resistance of the oscillator caused by the damping
of the liquid, deduced the product pnqn A torsional oscillator
has also been used by Betts et al (1965) and Bertinat et al (1972) to
find the effective viscosity at 40 kHz of “He and solutions of *He
in “He by measuring the decay of the crystal oscillations. Roach and
Ketterson (1976) have used direct transmission of transverse sound
between two AC-cut transducers at frequencies of 12-108 MHz to measure
the impedance of “He.

A planar crystal resonator has also been used to propagate shear
waves in both bulk liquid helium and adsorbed films. Chester, Yang
and Stephens (1972) and Chester and Yang (1973) used a quartz crystal
resonator vibrating in shear at a frequency of 24 MHz as a microbalance;
since the superfluid component of a helium film adsorbed on the crystal
does not couple to its oscillations, they were able to observe the
onset of superfluidity in the thin film. These measurements are
reported in more detail in Yang's thesis (1973) and have recently been
extended to the superfluid onset regime in films of “He - “He mixtures
(Webster et al, 1979 and 1980). Similar data in the onset region of
“He films has also been obtained by Herb and Dash (1975) at frequencies
of 8 and 24 MHz.

Migone et al (1985) have used shear oscillating crystals to
investigate the formation at vapour pressures close to the saturated

vapour pressure of “He films on gold and silver substrates for
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temperatures between 1.4 K and just below the liquid-gas critical
point. Yang and Mason (1980) have also used crystal oscillators to
look at the properties of thick adsorbed superfluid helium films,
but under zero gravity conditions.

An AT-cut quartz crystal, resonating at frequencies of 20.5,
341 and 47.8 NMHz has been used in an extensive study of the effective
viscosity of bulk “He, both above the A-point (Lea and Fozooni, 1986)
and below it, under svp (Lea, Fozooni and Retz, 1984) and at

pressures up to the solidification pressure (Lea and Fozooni, 1984).
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Chapter 2

Background Theory for the Interpretation
of the Experimental Results

2.1  Introduction

A crystal resonator immersed in helium and vibrating in shear
acts both as a microbalance and as a high frequency viscometer;
changes in the quality factor and frequency of the crystal's reso-
nance due to mass and viscous loading being used to find the trans-
verse acoustic impedance of the helium (sections 2.2 and 2.3). The
viscous wave propagates in the helium in accordance with the one-
dimensional Navier-Stokes equation and is a sensitive probe of the
fluid's properties on a length scale comparable with the viscous pene-
tration depth. The van der Waals' forces between a fluid and a sub-
strate enhance the density of the layers of helium close to the crystal
and, if the crystal is surrounded by helium vapour, a liquid film may
condense upon it (section 2.5). The effects of these and other inhomo-
geneities on the impedance measured by the crystal can be calculated

using transmission-line theory (section 2.4).

2.2 The Effect of Helium on the Resonator
A quartz AT-cut crystal resonator vibrating in shear has a resonant

frequency f* which is determined by the thickness of the crystal t

where v is the velocity of the shear waves in the crystal and n = 1,
3, 5 ... is the harmonic number of the resonance.

For thin adsorbed films the crystal acts as a microbalance; toa
first approximation the crystal's Q is unchanged and itsresonant

frequency decreases in proportion to the adsorbed mass perunit area.
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o (Stockbridge, 1966 and Lu, 1984)

4f2g
Af = - S
nRq (2.2.2)
where R = p v is the transverse acoustic impedance of the quartz,
q q
density p
q
The intrinsic quality factor, of the resonator is due to loss
of energy in the crystal mounting and the intrinsic losses of the
quartz itself. If the crystal is immersed in helium of specific trans-

verse acoustic impedance Z = R- iX , there are additional

associated with the excitation of the viscous wave in the fluid.

losses

transverse wave propagating in the quartz and incident normally on one

of the two plane interfaces with the helium suffers an energy loss and

a phase change on reflection, the complex reflection coefficient

being given by

Since R*» R and X , the fractional energy

crystal per reflection is

and the phase change of the wave per reflection is

The wave undergoes many reflections at the quartz/helium

and the energy lost from the crystal to its surroundings

(2.2.3)
loss from the
(2.2.4)
(2.2.5)
interfaces

is measured as
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a decrease in its quality factor Q, defined as

where f = w/2w is the frequency of the wave. Hence, since the wave

is reflected v/t = 2fA/n times per second.

The phase shift per second is (2X/R?) (2fA/n) and the decrease in

resonant frequency of the crystal due to the helium is therefore

2f X
Af = (2-2-8)
q
Thus R and X, the real and imaginary parts of the transverse acoustic

impedance of the helium, can be found from changes in the quality factor

Q and resonant frequency f of the crystal;

MR

R(T) = (Q-“(T) - Q-9) (2.2.9)
MiR

X(T) =- A7 (fb - f's(T)) (2.2.10)

where f0 and Qo are the baseline values of the crystal's resonant
frequency and quality factor corresponding to X=0 and R= 0,
and are usually taken as either the low temperature (T <0.6 K) or

vacuum values of f and Q.
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2.3 The Transverse Acoustic Impedance

2.3.1 The Hydrodynamic Region (wr < 1)

The quartz crystal resonator vibrating in the x = 0 plane as
shown in Figure 2.1, excites a transverse wave in the fluid in which
it is immersed. The velocity distribution u(x) of the wave in a
homogeneous fluid satisfies the 1-D Navier-Stokes equation (Landau and

Lifshitz, 1959)

where n is the viscosity of the fluid and p is its density. The

amplitude of the shear wave at any point x in the fluid is

€(x) = exp(- iwt - yx) (2.3.2)

where w = 27rf . The propagation constant of the wave, y , is found

from equation (2.3.1) with u(x)E*(x) , to be

(1 - i)e (2.3.3)

<
]

where

6=/ I (2.3.4)

is the penetration depth of the viscous wave and characterises the
distance over which the fluid participates in the crystal's motion. In

helium, 6 * 20 nm and as shown in Figure 2.1, the wave is very heavily

damped.
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Figure 2.1

The velocity profile of the viscous wave, penetration depth

6 = (2q/pw)* . x =0 is the solid/liquid interface.
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The transverse acoustic impedance of the helium measured by the

crystal is defined as

= .n (b) (2.3.5)
where T is the shear stress on the crystal surface. Hence from
yz
equation (2.3.2)
Z = HY
=11 - i)n/d
=1 - i) (wpn/2)» (2.3.6)

2.3.2 The Non-Hydrodynamic Region (ur > 1)

The analysis above is valid only in the hydrodynamic region where
WIF <1, T being a relaxation time characteristic of the system. In
the non-hydrodynamic region, wI> 1 , the concepts of viscosity and
penetration depth are no longer appropriate though the acoustic impe-
dance remains well defined in terms of the shear stress w on the
crystal, equation (2.3.5)(a).

For a gas of atoms or excitations in the ballistic limit with
Qar» 1, MW is equal to the flux of transverse momentum away from the
crystal surface and can be derived from kinetic theory. If the angle
between the normal to the crystal and the direction of the gas particle's
approach is o0 , the number of particles hitting unit area of the

crystal/second is given by
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H =y I sinScosede (2.3.7)

where n is the number of particles per unit volume and c¢ is their
mean velocity.

An incoming particle scattered diffusely by the crystal experiences
a change in its transverse momentum of nmu , where m is the effective
mass of the particle and u = u”e is the velocity of the crystal

surface. The shear stress on the crystal is then

T = n* mu®e (2.3.8)
and the impedance Z = n/uoe is
Z =R =" mc
=ipec (2.3.9)
The impedance Z of a bulk gas in theballistic limit wx » 1 is
therefore purely real and independent of frequency. If afraction s

of the gas particles are specularly reflected from the crystal and pick-

up no momentum from it, the ballistic impedance becomes

iapec (2.3.10)

where a =1 - s is the diffusely scattered fraction contributing to

the shear stress on the crystal.

At frequencies of 20 MHz, the experimental conditions are such that
the helium is relatively often in the non-hydrodynamic region, the two

examples of relevance here are the gaseous “He atoms at low pressures
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above the liquid-gas critical point and the phonon and roton excitations

in superfluid helium at low temperatures, T < 1.2 K.

2.4 Transmission Line Theory

The expression for the acoustic impedance Z , equation (2.3.6),
assumes that the helium is homogeneous, having the same properties at
the crystal surface, x =0 as in the bulk, x = . If the properties
of the helium depend on position, and density and viscosity are functions
of x, p=p(x) and n» = q(x), transmission line theory is used to
calculate the impedance actually measured by the crystal. A characte-

ristic or local impedance is defined (Lea and Fozooni, 1985),

Y(X)n (X)

z(x)

(1 - i) (up(x)n(x)/2): (2.4.1)

which is the impedance a bulk homogeneous fluid would have if its
properties were the same as those that exist locally at x . The actual
impedance at x , Z(x), is anaccumulative value, due to all the
fluid to the right of x and is therefore the impedance that would

be measured at that point.

From equation (2.3.5)

Z(x) = -n(x) (2.4.2)

where the velocity u(x) is found from the generalised form of equation

(2.3.2) for the displacement of the wave,

u(x) = A exp(-y(x)x) + Bexp(y(x)x) (2.4.3)
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where A is the amplitude of the forward travelling wave and B that
of any reflected wave. The above three equations, (2.4.1 - 2.4.3) yield

the relation between the actual and local impedances at x ;

Z(x) " A exp(-y(x)x) - B exp(y(x)x)
z(x) A exp(-y(x)x) + B exp(y(x)x) K -

If a length of transmission line £ is considered to represent the
fluid between x and x - £ , then Z(x) of equation (2.4.4) is the
terminating impedance of the line and Z(x - £) is its input impedance

and is given by

- % = Aexp(-Y(x)(x - &))- B exp(y(x)(x - &))
z(x) Aexp(-y(x)(x - £))+ Bexp(y(x)(x - £)) A

where the length of line £ is small and z(x) = z(x - £)
Combining equations (2.4.4) and (2.4.5) to relate the input and

terminating impedances of the line gives

where y is the local propagation constant.

Equation (2.4.6) reduces to the form

~

Z(x - £) = z(x) tanh(ilJ + y£) (2.4.7)
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where
tanh(ilj) = »
In the limit of £ » 0 , the differential form of equation (2.4.7) is
1-tanh”(iii)
Yz(x) (2.4.8)

In general, this equation has to be solved by numerical methods (Lea
and Fozooni, 1985), but for the specific case of ahomogeneous film
adsorbed on the crystal surface it can be solved analytically, as

discussed in Chapter 4.

2.5 Adsorption of Helium Films on the Crystal Resonator

The helium film adsorbed on a substrate has its surface in contact
with vapour that is compressed in the potential field V(x) of the
substrate, its pressure increasing with decreasing x wuntil, at x=d,
the vapour condenses. The chemical potential of ahelium atom of the

gas in the vicinity of the crystal resonator is

Vc = To [P%/Po(To)] (2-5.1)
where is the Boltzmann constant, the saturated vapour pressure
at temperature T4 and the pressure of the vapour at the crystal.

If the pressure at the lowest point in the cell is represented by H*

then equation (2.5.1) becomes
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= mgh+ £n [PAIPAFTA)] (2.5.2)

where mgh is the gravitational potential of the helium atom at height
h above the cell bottom. At the liquid film surface, the crystal
potential V(d) = -VA |, and hence, if bulk liquid helium is present in
the cell at temperature and the crystal, also at , is a

height h above its surface, P*» = P* and

V(d) =m g h (2.5.3)

The simplest expression for the potential V(x) of the substrate
is that deriving from the van der Waals' form of the attractive potential
between two molecules, V(r) ar Integrating this over the complete
substrate yields V(x) al/x* and V(d) , the value of the potential
at the film surface is therefore

-AK.
V(d) = -gf (2.5.4)

where A is a constant for the substrate.

The van der Waals' forces Fal/r? , where r is the separation
of two atoms, are electromagnetic in origin and arise from fluctuations
in the electrostatic dipoles of the atoms. As r increases however,
retardation of the electromagnetic radiation becomes important and

Casimir and Polder (1948) have shown that for separations large com-

pared with the wavelength corresponding to transitions between
the ground and excited states of the atom, Fal/r® . This leads to a
X dependence of the potential of an atom in the field of a planar

substrate for large x .
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Thus the potential of a substrate is expected to vary as x *
where n increases from n =3 for x « A0 to n=4 for x » AO .
Lifshitz (1956) approached the problem from a macroscopic viewpoint and
took the interaction between two solid bodies spaced a short distance d
apart to occur via the fluctuating electromagnetic field that is present
inside a medium and extends beyond it. The interaction is then completely
specified for all separations large compared with interatomic distances
by the complex dielectric susceptibilities of the medium and has the
limiting forms of Vax » and Vax » for small and large separations.
Dzyalashinskii, Lifshitz and Pitaevskii (DLP) (1961) extended the Lifshitz
theory to liquid films adsorbed on a substrate and in contact with a
vapour, and showed how the surface potential may be estimated from the
absorption spectra of the liquid, vapour and substrate.

The DLP theory of film thickness has been verified by Sabisky and
Anderson (1973) for a helium film adsorbed on a single crystal of SrFz
Longitudinal acoustic waves (30GHz) were excited in the helium film and
the standing waves set up between the substrate and the free film surface
were observed as the pressure of the vapour above the film was reduced
and the film thinned. The film thicknesses deduced from the nA/4
(n is odd) resonances of the waves in both saturated and unsaturated
films over a range of thicknesses, [-25nm, are in excellent agreement
with those calculated from the DLP theory.

In general therefore, for a helium film adsorbed on a substrate,
the potential V(d) is proportional to d # , where n increases
from n=3 to n=4 as the film thickness increases, Sabisky and
Anderson reporting that the limiting form, n =4 was not reached for

their substrate at film thicknesses of 25nm.
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The deviation of the potential V(d) from the van der Waals'
form 1/d*® can be expressed by permitting the substrate constant A
to become a function of film thickness. Thus for all d ,

-A(d)K.
v(d) =

For thin films, Chester, Yang and Stephens (1972) give a value for
A of 240K for gold plated crystals similar to those used in these

studi es.

2.6 Vortices and Vortex Waves

2.6.1 Vortices in He Il

The vortices that exist in superfluid helium are similar to those
of classical hydrodynamics (e.g. Batchelor, 1967), but differ in that
they have quantized circulation.

The two-fluid model of He Il (see for example, Wilks 1967) con-

siders the liquid to be a mixture of two intermingling, non-interacting

fluids such that its density is p = . The normal fluid com-
ponent, density p* carries all the entropy of the liquidand has
associated with it a viscosity ,while the superfluid component,

density p* has zero viscosity and its velocity VA satisfies the

relation

A= curl VM =0 (2.6.1)

throughout the liquid. The circulation « in the helium is defined

by the integral
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K= A (2.6.2)

taken over any closed circuit in the liquid. By Stoke's theorem,

this becomes

K= Q curl Vs e ds

for a reducible circuit and therefore, by equation (2.6.1), there

should be zero circulation in the helium and the superfluid component

in a simply connected rotating bucket should remain at rest with

= 0 . Experiments show however (e.g. Osborne, 1950), that the
whole mass of He Il may be set into uniform rotation and therefore
that is not zero. This apparent contradiction is resolved by

considering the helium to be threaded with vortices with non-zero
vorticity * along their cores. Thus equation (2.6.1) is satisfied
for most of the liquid and yet the helium rotates rigidly with the
container as required. For sufficiently high rotation speeds 0 ,
the liquid will be threaded by a uniform array of vortices aligned
along the rotation axis, each with a circulation « and hence a line

density (Feynman, 1955)

"o =f . (2.5.3)

The circulation k is quantized in units of h/m = 10 "m*'s * for
""e, hence for an angular velocity o= 1 rad.s *, the vortex line
density is n* = 2000 cm 2 A equivalent to a spacing between the lines

of approximately 0.2 mm .
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If a vortex is aligned along the z-axis the velocity of the helium

about the axis is

vV =~A for r > a (2.6.4)

where a = 1.3 A characterises the size of the vortex core and increases
with temperature, diverging as T A . The core of the vortex would
classically be that region where the rotatingliquid is held back from
the vortex axis by centrifugal forces. There is however, noevidence
that the core of a vortex in “He is a region of zero or depleted density,
though for the sake of simplicity, a hollow core model is frequently
used to describe it. A more physical picture is that the core radius
is related to the superfluid healing length with = o0 at the vortex
axis r = 0; from this assumption, Barenghi, Donnelly and Vinen (1953)
have estimated the core radius as a functionof temperature, and this
is the value of a used in the calculations of Chapter 5.

A rectilinear vortex has an energy e per unit length which, for
a hollow core vortex aligned along the z-axis is, in cylindrical polar

co-ordinates

g =mpr 1l r vhdr (2. 6.5)

where R is a macroscopic cut-off representing either the size of the
container or the spacing between the vortices. Ingeneral, for a velocity
distribution given by equation (2.6.4), this becomes

PgK*

R . £n f] + aj (2.6.6)
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where 06 characterises the core model; 6 =0 for a hollow core and

6 =i for a core in solid body rotation.

A curved vortex in a stationary fluid has a self induced velocity
that is perpendicular to its plane of curvature. The velocity v*
induced at the vortex core by a length of line L is given by

(Batchelor, 1967)

(2.6.7)

where c¢ is the radius of curvature. Thus the vortex line moves and
changes its shape with a velocity that at any point is caused by the
curvature of the line at that point. A rectilinear vortex with ¢ =0
has no self-induced velocity and remains stationary, whereas a vortex
ring, with constant curvature (radius r”) has a translational velocity

(Fetter, 1978)

Vim0 .- Y+ (2.6.8)

where 6 again characterises the core model.

A vortex moving through a liquid experiences a force perpendicular
to its direction of motion known as the Magnus force. In hydrodynamics,
this arises because the circulation of the vortex causes an increased
velocity of fluid on one side of the vortex, resulting in an excess
pressure from the other. |If the line is moving with a velocity v* in
the laboratory frame and has a self-induced velocity v* , then in a

superfluid flow of velocity v* the streaming of the fluid past the
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vortex is given by (v. + v?*) and the Magnus force per unit length of

line is (Barenghi et al, 1983)

A = ps < X A (2.6.9)

where K = Kw and w is a unit vector along the axis of the vortex.
Equation (2.6.9) assumes that the helium in which the vortex exists
is pure superfluid. In He Il however, interactions between the vortices
and the excitations of the normal fluid result in a drag or friction
force fy per unit length of line, with components parallel and per-
pendicular to the direction of the relative motion of the line and the

normal fluid,

= fo (Vp - v%) + w X (vA - vA) (2.6.10)

where v* is the velocity of the normal fluid flow. The mutual friction
coefficients and y* are experimentally determined for T < 1 K
from the motion of vortex rings attached to ions and can be found
indirectly at higher temperatures from the attenuation of second sound

by rectilinear vortices in rotating containers.

The motion of the vortex is therefore determined by the balance of

forces on the line,

fm + =0 (2.6.11)

2.6.2 Waves on an Isolated Vortex

Lord Kelvin (Thomson, 1880) showed that it should be possible for
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circularly polarized transverse waves to propagate along an isolated
vortex line. In this case, the velocity of the line at each point is
proportional to its radius of curvature and is in a direction perpen-
dicular to the plane of curvature. If however, the vortex line is one
of an array of vortices, its curvature will depend upon the velocity
induced at its core by its neighbours; the resulting lattice waves are
called Tkachenko waves (Andereck and Glaberson, 1982). Vortex waves in
rotating helium were first observed by Hall (1958) on lines pinned
between discs oscillating at frequencies of around 1 Hz

It is possible to gain an insight into the motion of the vortex
associated with the Kelvin wave by considering an analogy between the
vortex line and a fine elastic filament (Fetter, 1978). |Initially,
consider the vortex line to be moving with velocity v* in a stationary
fluid v» = 0 , experiencing no drag force, fA = 0 . Then, from

equations (2.6.9) to (2.6.11)

Pg K X (vA - V.) = 0 (2.6.12)

The first term of this equation, Kx W is effectively the Magnus
force on the line resulting from its motion through the fluid. The
vortex has associated with it an energy/unit length (equation (2.6.6))
and hence a tension T0 which acts to restore the deformation of the

line caused by the Magnus force. T” s therefore associated with the
term -p*» K x v*» where, as before, v* is the self-induced velocity

of the vortex. |If the displacement of the vortex is wu(z,t) , the
vortex being aligned along the z-axis with its displacement perpendicular
to it, then the velocity of the line is v* = 3L[/9t and equation (2.6.12)

becomes
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"0 i1? + Ps A * al =° (2.6.13)

Taking the deformation uv= (G,q,0) and solving (2.6.13) gives the

two equations:

(2.6.14)

To o + P3KC = o (b)

Assuming a wave-like dependence exp[i(wt - kz)] for both ¢ and q ,
these equations can be solved for the angular frequency w = 27rf of
the vortex wave, giving

TAk:
wt = % (2.6.15)

and

nt = + iC

These modes are circularly polarized with a helical deformation that
propagates along the vortex axis, each element of core performing a
small circular orbit in the plane perpendicular to the undeformed
axis. The positive wave , with q = -i¢C , has a rotation in
the same sense as the superfluid circulation while the negative wave
w_, q=iC , rotates in the opposite direction.

If the mass of the vortex is taken into account by setting equation

(2.6.12) equal to the inertial force p*tt a*(92C/9t» , 97q/9t”*) then,

assuming the waves to be circularly polarized.
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p KO
ki =- 4 1. -M
o
(2.6.16)
(0] 0
where ¥ = . Therefore, for w < "o where wOIZTr = 3 x |OAMHz,
ki is imaginary and the wave is a non-propagating mode. For low
frequencies, w « Wo’
k+ = i k_ (2.6.17)

Superposition of two circularly polarized waves of frequency w_
travelling in opposite directions along the vortex line yields a sinu-
soidal deformation of the vortex that is confined to a plane and rotates
about the undeformed vortex axis in a direction opposite to that of the
superfluid circulation.

Equation (2.6.15) expresses the frequency of the vortex wave in
terms of the tension or energy per unit length of the line, equation
(2.6.6). A more detailed analysis (Fetter and Harvey, 1971) gives the
effective long wavelength tension,and the frequency of the negative

wave for ka << 1 is then

o_=-" I + O.1150J (2.6.18)

which is the result derived by Lord Kelvin (Thomson, 1880). Ashton and
Glaberson (1979) have reported the excitation of Kelvin waves on a vortex
line by the radiofrequency oscillation (10 MHz) of ions trapped on the

vortex.
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Equation (2.6.18) is derived assuming there is no interaction
between the vortex and the excitations of the normal fluid; if the
drag force fA per unit length of line (equation (2.6.10)) is taken
into account the wave motion satisfies equation (2.6.11) and the

frequency w_ of the wave is complex, with

, A Y(P-K - Y")

Re(io) = w_ % N ° (a)
(2.6.19)

Jim(cl) = A (b)

Ps
where
Yop;<ll
A Yp + (pgK - Yg)* (2.6.20)

Equation (2.6.19)(a) represents a shift in the frequency of the wave

and equation (2.6.19)(b) represents its damping.
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Chapter 3

Experimental Techniques

3.1  Introduction

The quality factor and resonant frequency of a quartz crystal
vibrating in shear were measured for superfluid and normal “He films
and for “He fluid at a temperature just above that of the liquid gas
critical point. The AT-cut crystal (section 3.2) was mounted in a
cell supported by and thermally anchored to, the mixing chamber of
an Oxford Instrument's “He-*He dilution refrigerator whose operation
is discussed in section 3.5. The experimental cell itself (section
3.4) was designed so it could be used for both bulk and film measure-
ments, in the latter case a tube attached to the cell held liquid "He
and the height of the crystal above the liquid surface determined the
equilibrium thickness of the film on the crystal.

The resonant frequency fA and quality factor of the crystal
were found using a transmission circuit (section 3.3), Q being deduced
from the magnitude of the transmitted signal at resonance, Sm. A
feedback system was used to lock-on to the crystal's resonance and
continuously monitor its frequency and the transmitted signal Sm,
which were recorded, together with the resistance of the thermometer

by an HP9816 microcomputer (section 3.6).

3.2 The Crystal Resonator
3.2.1 AT-Cut Quartz Crystals
The AT-cut crystal resonator is a member of the singly rotated

Y-cut family of crystals; these are crystal plates whose normal is at
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an angle o to the Y-axis in the Y-Z plane of the crystal lographic
axes. The crystals may be piezoelectrically excited into a thickness-
shear mode of resonance, with particle motion along the X-axis in the
plane of the crystal and antinodes of vibration at opposite faces.
The angle of rotation defining the AT-cut, = 35° 10' , is chosen
such that the resonator has a temperature coefficient of frequency,
df/dt of zero at room temperature (Mason, 1940). The high short-
term stability of AT-cut quartz crystals has lead to them being an
important component in oscillator systems and research into their
properties and behaviour has recently been extended to cryogenic
temperatures because of the increase in Q-factor and greater long-
term frequency stability that can be expected.

The resonator used for these studies was a thickness shear mode
AT-cut quartz crystal which had been selected and donated by the GEC
Hirst Centre, Wembl?, Middlesex and had previously been used extensively
in measurements of the transverse acoustic impedance of bulk "He both
above and below the X-point (e.g. Lea et al, 1984, 1985, 1986). The
AT-cut crystal is designed to resonate stably in the thickness-shear
mode with minimal coupling to other vibrations. Coupling to flexural,
extensional and anharmonic modes can occur however, the latter being
when phase reversals of the vibration occur along the crystal surface
rather than along its thickness. The crystal used in these experi-
ments had a diameter to thickness ratio of 36, sufficiently high to
prevent coupling to unwanted modes and no evidence of parasitic reso-
nances had been observed previously.

The resonator consisted of a polished quartz disc of diameter
9 mm and thickness 0.25 mm with vacuum deposited gold electrodes of

size 2.5 nm X 2.5 mm and thickness 150 nm as shown in Figure 3.5.
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The crystal was used in its commercial mounting with two Be-Cu springs
making contact with the electrodes via conducting epoxy resin.
Equation (2.2.1) gives the resonant frequency of an AT-cut crystal

as

-h
1]

zix

where t is the thickness of the crystal and v is the velocity of
transverse sound in the quartz. The fundamental frequency (n = 1)

of the crystal used was 6.83MHz, though for the thickness of electrode
plating on the crystal, this mode was not energy trapped and the Q-
factor of the resonance was low. The 3rd, 5th and 7th harmonics

(n =3, 5and 7), at 20.5, 34.1 and 47.8 MHz, are energy trapped

modes however, and the Q's obtained are high, > 10 in vacuum

at 4.2 K.

Quartz has a hexagonal structure and its mechanical properties
are characterised by 6 independent stress constants, c_
with ij = 11, 13, 14, 33 and 66. For a singly rotated crystal of
cut angle () the velocity of shear waves in quartz of density p

q
is given by

pgV* = (cgg + PA)cos”(j) + c**sin*O - 2Ci4sin&cos& (3.2.1)

where Cee , C44 and cm are the elastic moduli of the quartz and

= 0.763 X 10® Nnr2 is an empirical factor (Stockbridge, 1966) to

account for the effects of piezoelectric stiffening.
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The elastic moduli change little with temperature below 77 K
hence, taking the values given by Stockbridge for liquid nitrogen

temperatures

066 = +38.715 X 10® Nm-2
cM = +59.645 X 10® Nm-2

Cjr = -17.724 X 10® Nm-2

and = 2.664 gcm* the velocity of shear waves in an AT-cut

quartz crystal (= 35° 10" is 3326m s“* . The transverse acoustic

impedance of the quartz, R = p v is therefore 8.862 x 10®&gm * s A~ .
The measured frequencyqand :uality factor, f(T,P) and Q(T,P) ,

include contributions from the change of the quartz crystal's intrinsic

properties with temperature and pressure, as well as those from the

helium. For practical purposes, however, as shown in section 3.2.2,

over the temperature and pressure ranges we are concerned with here,

the only non-negligible effect is that of pressure on frequency.

3.2.2 The Effect of Pressure and Temperature on f and Q

The non-helium contribution to the change of resonant frequency
with pressure is a result of changes in the intrinsic properties of the
quartz of the crystal. Stockbridge (1966) has outlined a method for
estimating the fractional frequency change with pressure, |/f(df/dP) ,
using the derivatives of the elastic moduli c* with respect to

pressure. He gives

¥ (3.2.2)
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where
?2= A.
Hp =o0
and
2pqV9 = (866 + PA)cos”(j) + ShijSin“cj) + 28” “Asi nct)cos(l) (3.2.3)

from equation (3.2.1). For quartz at 77 K and hence, to a good

approximation, also at 4.2 K

66&/2Pq = -0.4269 x 1Q"® m'kg"'

8m/2p = +0.2003 X 10-3 m*kg-i
q

8m/2p = -0.7967 x 10-= m*kg™
q

Pe/2pq = -0.0002 X 10-3 m kg-"

For the AT-cut crystal, ¢ = 35° 10' and I/f(df/dp) = 18.8 x IOr*o torr-#
which for the third harmonic, 20 MHz, is 0.0388 Hz/torr. Measurements
taken at T = 0.25 K where the superfluid helium exerts no viscous
loading on the crystal give df/dp = (0.0399 % 0.0003) Hz/torr (Lea
and Fozooni, 1984); the discrepancy may be due to the slight temperature
dependence of the crystal parameters below 77 K Similar measurements
also show that the quality factor Q is essentially independent of
pressure over the range used here (< 2000%)

The frequency stability of an AT-cut quartz crystal with temperature,
I/f(df/dT) has been givenby Mossuz and Gagnepain (1976) as
<4 X 10-® K-# at 4.2 K, though Komiyama's estimate (1981) is higher,
1.2 X 10-® K'* at 4.2 K, decreasing to 1.5 x ICT* at 2 K. The
Q-factor of the crystal atliquid helium temperaturesis also expected
to have a small temperature coefficient as there is a relaxation peak
in quartz and a consequent decrease in Q at around 15 K but experi-

mentally the Q is found to change only slightly below 2 K.
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certainly less than the error bars upon

themselves, and for temperatures higher

44 .

the effects of temperature should be negligible,

the measurements of

f and Q

than this, f and Q are

taken relative to reference values fO and Q0 obtained at the same

temperature.

3.2.3

Crystal

It is important that the amplitude

small and that

helium film.

of the n'th harmonic's vibration can be obtained;

(1966)

and

where dgg = 3.44 x 10“” C/N

quartz, L is
current | in

estimated from

where PA s

Amplitude and Velocity

its velocity is less than the critical

Surface Vibration

Estimates of the maximum amplitude

thecrystal's inductance and t

thecrystal, resistance

of the

of the crystal

vibration is
velocity of the
C and velocity g

following Stockbridge

(3.2.4)

(3.2.5)

is the piezoelectric coefficient of the

is its thickness. The

r = 602 at resonance,

thetransmission circuit of Figure 3.2 to be

the

1200P

100 + r

r.f.

power in the circuit

in watts and

is

is found
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from the setting, in dBm on the Marconi signal generator, where
OdBm E 1 nW and represents the power dissipated in a 50" load connected

across the output terminals of the oscillator.

At 205 Mz (n =3) , L=0.18 H and for P = -56 dBn, the
rt
peak current in the crystal is #6.3 yA , hence Crrax - 0.8A and
A - 0.2 cm s“?A . This latter is very much less than the critical

velocity of the Hell film; for d =20 nm, v*» = 30 cm s~* (Atkins,
1959).

The power dissipation in the crystal P*» was kept as low as
possible to minimise heating effects; for PA* = -56 dBm', P* 1.5 nW .
Power dependence was checked for, and apart from a notable exception
discussed in Chapter 5, none was observed. Chester, Yang and Stephens
(1972) used power dissipations of %1 pW in their quartz crystals and
reported no power dependence of their film measurements, though Yang
(1973) notes that there was considerable power dependence of measure-
ments in bulk Hell at similar levels.

Through the power dissipated in it, the crystal is maintained at a
temperature higher than that of the ambient helium by the Kapitza effect.
The temperature difference between the crystal and the helium is given
by AT = (RAA)P*» where for T > 0.2 K, R'T® » 0.001 KMm*W'* (Lounasmaa,
1974) and A * 10“®m is the total surface area of the electrodes.

Thus for P*» = 1.5 W, AT - 0.2 yK at 1 Kand the crystal and the

helium are in good thermal equilibrium.

3.3 The Measurement of f and Q

3.3.1 The Transmission Circuit

The transmission circuit used to measure f and Q is shown in
block diagram form in Figure 3.1. The crystal was placed in series

with a Marconi 2018 signal generator and driven at powers of between
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Figure 3.1

Schematic block diagram of the feedback circuit used to lock onto the

resonance of the quartz crystal.
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-47 and -57 dBm The transmitted signal was amplified by a high gain
Avantek amplifier and detected by a diode detector. Figure 3.2 shows
the electrical representation of this transmission circuit with the
crystal represented by the equivalent circuit of an AT-cut crystal
near resonance; a series LCR branch in parallel with a capacitance CO
(Berlincourt, 1964 and Firth, 1965). The series impedances L and C
represent the vibrating body and are frequency independent for a given
resonance, but may change with the harmonic number of the resonance.
The resistance r* represents the losses of the crystal due to internal
friction and determines the intrinsic Q0 of the crystal. The shunt
capacitance is an actual lump capacitance due to the crystal

electrodes and stray capacitance of the supporting structures. Typical

values at 20 MHz of the equivalent circuit components are:

L=0.18 H
C=0.34 X 10-3 pF

r =500

q

C=0.730  0.006 pF

The crystal has two characteristic frequencies, the series and

parallel resonances f and f s given by
so po
SO
, - 11 + CIC
v " A / LC (3.3.2)
Hence Af = f - f = f C/2C = 4830 Hz at 20 MHz .
po so po so 0
If helium is in contact with the crystal, its effects are represented

by the addition of an electrical impedance z_ =r - ix,, in series
He Re He
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Figure 3.2

Electrical representation of the transmission circuit.
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with the LCr* impedances in Figure 3.2. The electrical impedance 24 A*
is proportional to Z , the acoustic impedance of the helium and is

therefore temperature dependent.

The electrical impedance of the equivalent circuit of the
crystal in contact with helium at frequency f , with w= 27rf , s
given by

J_ _ .. 1
z Moo r + i(o)L- 1/wC) (3.3.3)
where rs = rq + r’l’-le and L and C now include the effects of the
helium embodied in the term . Introducing the figure of merit of
the circuit, M= 1/th,rs , the electrical impedance becomes
1+ il | ]
171
(3.3.4)
1 Al
Af,

where Af =f - f and Af =f - f .
s p p s
If M is large, the effects of the shunt capacitance Co can be
neglected and the complete circuit behaves as a simple series resonant

circuit with resonant frequency f* = (2WLC)“? and quality factor

Q given as

(3.3.5)

where the contributions to the measured Q arise from the crystal, the

circuit and the helium respectively.
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Q was deduced from the power developed across the 50" load to
the right of the crystal in Figure 3.2. The d.c. signal S is the
output of a Marconi-Saunders diode and is proportional to the power

P in the circuit. Therefore, from Figure 3.2

A 100
s " p 100 + 2 (3.3.6)
- e

where 0Pand S0 are thepower and signalwhen =z e =0 , i.e.,
when the crystal is shortedout of the circuit.At series resonance,
z =7 and the signal S isgiven b
e s 9 s 9 y

S

s 100 (3.3.7)

S. 100 + r

s

Since the Q of an a.c. circuit is inversely proportional to the
resistance in the circuit, we have

) r + 100

Q_ @ L = AS (3.3.8)

where A is a constant that can be determined from the transmission
resonance curve. Figure 3.3.

The diode detector is designed to have a square law response (i.e.,
the output voltage is directly proportional to the input power) up to
30 W . In general, however, SaP*» where n =1 and Figure 3.4 shows
the response of the diode as a function of circuit power (in dBm) for
the 3rd, 5th and 7th harmonics of the crystal and n =0.995 , 0.997 and
1.000 respectively for S < 7 nV. During the measurements, therefore,
S was kept below this value, and the error in assuming S directly
proportional to P was negligible.

As explained in section 3.3.2, the feedback system locks on to



en

The signal

the crystal

Figure 3.3

S as a function of frequency,

at 20.5 MHz at 4.2 K in vacuum.

showing the resonance of

-0



52 .

the frequency fm of maximum signal Sm. The presence of the shunt
capacitance in the crystal equivalent circuit however, means that

f and Q are not equal to f and Q , the series frequency and
m m s [

quality factor of resonance used in calculation of R and X (equations
(2.2.9) and 2.2.10)). The frequency fm is found from the condition
dS/df = 0 where S is given by equation (3.3.6). |Ignoring terms of

I/MA and smaller

f - f = . A ———— (3-3-9)

The measured quality factor, Qm, calculated from Sm, is similarly
different from that to be expected for the series resonant LCr circuit,

Q , and

A (r + 200)

11 1

+ (3.3.10)

w (r™ + 100)
These circuit corrections to fm and Qm are small, particularly for
Qm, and are negligible when M is large,

Equations (2.2.9) and (2.2.10) express the change in resonant
frequency and quality factor of the crystal due to the impedance

Z = R- iX of the helium as

(3.3.11)

SO s = OR (b)

The values Q0 and fso are baseline values, obtained when the crystal
is not loaded, i.e., when under vacuum or in the mechanical vacuum of
superfluid helium at T & 0.6 K though as noted in Chapter 5, these

are not equivalent conditions.
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3.3.2 The Feedback System

A block diagram of the feedback system used to continuously monitor
the resonant frequency and Q-factor of the crystal is shown in Figure
3.1. The Marconi 2018 signal generator, modified to allow the r.f.
signal to the crystal to be externally a.c. and d.c. frequency modulated
with sensitivity 1 kHz/volt, was driven in continuous wave mode and
frequency modulated at a frequency f*» = 80 Hz. The signal detected
by the diode, S , s proportional to the power in the circuit and is
therefore amplitude modulated with an amplitude dependent upon the
magnitude of the frequency modulation. This could be made sufficiently
small to have negligible effect on the value of Sm. The amplitude
modulation of S was phase sensitively detected by a Brookdeal 9503
Lock-in Amplifier whose d.c. output swung positive to negative as the
frequency increased, passing through zero at the frequency fm of
maximum signal where ds/df = 0 . This output was used to d.c. frequency
modulate the Marconi signal generator, locking it to the frequency fm

The phase of the crystal changes rapidly at resonance, passing

through zero at a frequency fA defined by &m(z*) = 0 and given by

Af

Hence, from equation (3.3.9)

2Af
f-f = 5

r + 100
which is small, 20. sHz at 20 MHz. The phase of the Lock-in Amplifier
is therefore set at that of the circuit when the crystal is at resonance,

though in practice the operation of the feedback loop was relatively
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insensitive to the phase angle, and over a range of approximately #*15°
the lock-in frequency remained constant to the resolution of the measure-
ment, +0.1 Hz .

The efficiency of the feedback loop in locking-on to the resonant

frequency fm may be defined in terms of the factor

where, for a given d.c. frequency modulation signal to the signal
generator, fA» is the frequency when the feedback loop is operating
and f when it is broken. Thus the higher the value of g , the
better the feedback loop operated, with the limit that for high g
the system became unstable,oscillating uncontrollably. A suitable
compromise was found to be g - 300

The frequency of modulation fA» was chosen such that the decay

time of the crystal, r = Q/2wf* < |/(2wf?)

3.4 The Sonic Cell

The basic components of the sonic cell are shown in Figure 3.5.
The cell consisted of three blocks of oxygen-free, high conductivity
(OFHC) copper, the crystal holder and the thermometer and fill-line
blocks, which were bolted onto the main body of the cell, also of OFHC
copper. The cell was sealed with indium 'O" rings and suspended from
the mixing chamber of a “He-*He dilution refrigerator. This design
made ttie initial assembly of the cell easier and had the advantage that
when the fill line required changing it was not necessary to dismantle
the whole cell. Figure 3.5 shows the arrangement used for the film
measurements; the base of the tube, diameter 0.5 cm was 8.5 cm below

the crystal and thus limited the film thickness, determined by the
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height of the crystal above the surface of the bulk helium condensed in
the tube, to greater than 13 nm  For measurements near the liquid-gas
critical point a fill-line block with a small dead volume was used. The
fill-line entered the cell horizontally, on the same plane as the
crystal, and was enclosed in a vacuum jacket from thelevel of the
mixing chamber to the top of the cryostat.

The crystal, in its commercial mounting, was held rigidly horizontal
in the cell body by the crystal contact holder. Short lengths of Niomax
CN superconducting wire connected the crystal to co-axial feed-throughs
which were sealed with stycast epoxy resin. The r.f. signal was trans-
mitted to and from the crystal by 5" co-axial lines running the length
of the cryostat; the crystal was effectively isolated from any heat
leak down these lines by the superconducting transition of the Niomax
wires at 10 K.

The thermometer block held A1len-Bradley 1000 and 220* , 1/8 W
resistors and a Speer 1000 , 1/2 Wresistor that were in contact with
the helium in the cell. The resistance wires were taken from the cell
via a stycast epoxy resin seal and soldered onto stand-offs which were
bolted onto the cell. Additional thermometers were thermally anchored
to the copper body of the cell; two Speer resistors, R4 (1000 , 1/2 W,
T < 1K), RB (4700 , 1/2 W, 1< T < 4.2 K) and a carbon-glass resistor
(4.2 < T < 5.2 K), as discussed in section 3.5.

Measurements near the liquid-gas critical point were conducted with
the cell enclosed in a copper radiation shield to minimise temperature
gradients along the cell. The cell heaters (bifilar wound constantan
wire, 1000 and [10000) were mounted on the radiation shield and the
co-axial cables, all the resistance wires and the fill-line were ther-

mally anchored to it. Long equilibrium times near the gas-liquid critical
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point, especially along the vapour pressure curve, meant that a small
sample space was an advantage; the total volume of the helium in the

cell was estimated as being about 1 em* . Silver sinter, with a high
surface area to volume ratio (10" n*) was used for both the critical
point and the film measurements to improve thermal contact between the

helium and the copper of the cell, to which it was firmly attached.

3.5 Thermometry and the Operation of the Dilution Refrigerator

3.5.1 Temperature 0.3 < T < 3 K

In brief, the principles of operation of a “He-'He dilution refrige-
rator are as follows, a full description is given in many low temperature
technique books, e.g., that by Betts (1976). The gaseous “He-*He mixture
is cooled to 1.2 K by contact with the *He pot and condenses into the
dilution unit of the refrigerator. When condensation is complete, the
mixture is cooled further by pumping on the still until at 20.8 K the
mixture in the mixing chamber separates into a “He-rich phase floating
on a *He-rich phase. Cooling now occurs because the AHe-rich phase has
superfluid properties and the “He atoms dissolved in it behave as a
Fermi gas. “He atoms therefore ‘'evaporate' across the phase boundary
into the "He from the concentrated “He phase thus cooling the mixture.
They are then removed from the still by pumping and subsequently recon-
densed via a series of heat-exchangers into the mixing chamber.

Under optimum conditions, the lowest temperature attained by this
particular fridge is of the order of 30 mK however, for these experi-
ments there was a large heat leak associated with the fill-line, as
explained in section 3.5.3 and the lowest temperature reached was*300 nK

Above TX, for the normal fluid helium films, the data was taken
with only a small amount of °He in the dilution unit, to act as a thermal

link between the °He pot at 1.2 K and the sonic cell.
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For temperature measurement when T < 4.2 K, two carbon Speer
resistors were used; R4(100* iW) and R8s (4700 iW), below and above
1 Krespectively, both thermally anchored to the cell. R4 had been
calibrated against a CVMN magnetic susceptibility thermometer and a
Superconducting Reference Material (SRM)767 unit, and R8 was cali-
brated against a carbon-glass (628) resistor and checked against the
saturated vapour pressure of “He. The calibration curves R(T) for
R4 and R8s are shown in Figures 3.6 and 3.7; the curves are a least

square fit of the calibration points to the formula

Y=aR + bR + ¢ (3.5.1)

The resistance of R4 and R8 was measured by an AVS-45 Automatic
Resistance Bridge made by RV-Elektronikka Oy of Finland, and fitted
with a BCD data transfer option. The excitation voltage of the bridge
was variable (range 10-3000 yV) and was chosen so that power dissi-
pation in the sensor did not exceed 10“*° W. The bridge's reso-
lution over the resistance range under consideration was 0.1* and
errors in the measurement of temperature were estimated to be 1.5% for
T<1K and 1% for T > 1 K.

A Cryobridge 572 (see section 3.5.2) was used to monitor the
resistance of one of the resistances in the cell (AB 100" or Speer
I00fi , depending on the temperature) and gave a d.c. output voltage
directly related to the difference between the required temperature of
the cell - determined by the resistance set on the Cryobridge, and its
actual temperature. This error signal was input to an Oxford Instru-
ments Digital Temperature Controller (DTC2) which was capable of propor-
tional, derivative and integral action and regulated the voltage applied

to the cell heater. Under ideal conditions, the cell temperature was
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controlled to within the resolution of the AVS-45 bridge i.e., < 5 nK

at 2 K.

3.5.2 Temperature T * 5.2 K

Measurements near the liquid-gas critical point were also taken
using the dilution refrigerator, the 1.2 K pot being filled with helium
at 4.2 K and the cell, heated to the required temperature ~5.2 K being
thermally linked to the the helium bath by exchange gas in the IVC.

The conduction of heat by a gas between two parallel plates when
the mean free path (m.f.p.) of the molecules is less than the separation
of the plates (X « d) is independent of pressure and given by the

kinetic theory as

Q = -K dT/dx W2 (3.5.2)

where K is the thermal conductivity of the gas, 26mAhi‘A KA for “He
at 4.2 K. Maintaining the cell at 5.2 Kin this regime would neces-
sitate a high heat input, Q> 60 nW, which would create a large

temperature gradient along the cell, with

AT = A (3.5.3)

where & = 5cm, A =20 cm* and the thermal conductivity of the OFHC

copper K 750 Wi » K4, giving AT = 2 nK. Hence low pressures

where A » d and the kinetic theory equation (3.5.2) is no longer

appropriate must be used (Rose-Innes, 1973)

Q = 300 aP AT Whi'~* (3.5.4)
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where P is the exchange gas pressure in torr and a is the accom-
modation coefficient (a < 1 , its exact value depending on the sur-
face of the plates). At 4.2 K, Xa 1/P and the mean free path of
“He molecules at 10~*t is 1 mm. Figure 3.8 shows Q/AT versus
exchange gas pressure for the cell at .5 K, and the transition from
the kinetic region where Q is independent of pressure, to the low
pressure region is evident. An exchange gas pressure of x 10%“
torr was chosen, giving a thermal response time for the cell of 220 s ;
this was deemed an acceptable compromise between the fast response time
of high exchange gas pressure and large heat input, and a slow response
time with low heat input.

Temperatures above 4.2 K were measured using a carbon-glass resis-
tor that was calibrated against the s.v.p. of “He on the T(58) temp-
erature scale using the equation given by McCarty (1973). McCarty
imposed the constraints Tc = 5.1994 K and Pc = 1718 r+ on his equa-

5.1899 and Pc = 1706.1

tion, whereas Kierstead (1971) gives Tc
On McCarty's T(58) scale, 1706t corresponds to T = 5.190 K. The
critical temperature and pressure were therefore taken as Kierstead's
values, the carbon-glass resistor was not calibrated for pressures
higher than 1706t and the resulting temperature/resistance calibration

fitted to the expression

£n (T) =1 A (&nR)""
n
is shown in Figure 3.9. For T > Tc , where the resistor is not
calibrated, the temperature is estimated by extrapolating the above

equation.



_64_

0.0001 0.001 0.01 0

Pressure (Torr)

Figure 3.8

Q/AT versus exchange gas pressure for the cell at 5 K



_65_

6000

5800

5600

5400
5200
5000
5.00 5.05 5. 10 5. 156 5.20 5.25
Temperature (K)
Figure 3.9

Calibration for the carbon-glass resistance thermometer.



The resistance of the carbon-glass thermometer was measured with
a Cryobridge S72 (manufactured by the Czechoslovak Academy of Science).
This is essentially an a.c. Wheatstone bridge with built-in comparative
resistances and a resolution of 10 . Errors in temperature deter-
mination were estimated to be < 0.05% for T < Tc . Temperature

was controlled as described above, using the DTC2 temperature controller,

3.5.3 The Gas Handling and Pressure Measurement System

The gas handling and pressure measurement system used in these
experiments is shown schematically in Figure 3.10. Research grade 'He
gas was taken from the high pressure cylinder, twice cleaned by passing
it through liquid Ng cooled molecular seives and storedin the 27 dump
on the high pressure side of the system. By condensinghelium directly
from the 2& dump into the sonic cell, the volume of liquid in the cell
could be estimated. This was especially important in the film measure-
ments, since the height of the crystal above the liquid surface in the
tube determines the thickness of the film on thecrystal.

Measurements near the liquid-gas critical point were conducted in
the fluid region above the critical temperature, the pressure being
swept at constant temperature by releasing gas from the cell. The
pressure was measured by a Druck PDCR 110/W absolute transducer con-
nected to a DPI 101 Digital Pressure Indicator with a resolution of
0.1 v . Data was recorded over the range 0-2000 r (P* = 1706 7).

The accuracy of the pressure measurement was limited by the linearity
of the DPI to ~0.8 ~

The dilution refrigerator originally had a capilliary fill line
which was thermally anchored to the 1.2 K “He pot and to the fridge

heat exchangers. For the measurements reported here, this was replaced
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Figure 3.10

Gas handling and pressure measurement system.



by a vacuum jacketed fill line so the temperature gradient along the
length of the line was always the same sign. This reduces hydrostatic
head errors in the measurement of the pressure and prevents condensation
of helium in the neighbourhood of the “He pot when its temperature is
lower than that of the cell. Unfortunately, there was a large heat
leak associated with this fill line limiting the minimum temperature

attainable by the fridge to %300 nK .

3.6 Data Acquisition

Data was recorded by a Hewlett-Packard HP9816 microcomputer, a
schematic diagram of the data acquisition system is given in Figure
3.11, A disc drive and dot-matrix printer were interfaced to the
microcomputer using the Hewlett-Packard General Purpose Interface Bus
(GPIB) which follows IEEE conventions. Also interfaced via the GPIB
were the Marconi 2018 signal generator and the Keithley 195A multimeter
used for measuring the signal S , These devices could be accessed
directly by the HP9816 using their IEEE commands. Instruments with
interfaces other than GPIB compatible were accessed via the two control
and interface boxes, AKB-1 and AKB-2, designed and manufactured by the
college electronics workshop.

The AKB-1 acted as an interface between the microcomputer and the
Philips PM6615 frequency counter and the Druck DPIIOlI pressure indicator,
interpreting the controller's commands to these devices and, on its
request for data, scanning them and placing their BCD data into a buffer.
The contents of the buffer, the individual readings separated by a colon
(:), are then sent in IEEE format to the microcomputer where software
separates the two values. In addition to this, the AKB-1 could also
function as a pressure controller, pulses from it controlling, via a

stepwise motor, the movement and direction of movement of bellows in
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the gas handling system. The frequency of the pulses and hence the
bellow's speed of movement could be selected either manually or by the
HP9816.

The AVS-45 resistance bridge was interfaced to the microcomputer
by the AKB-2, this converted its BCD representation of the data into
IEEE format. Additional control lines to the AVS-45 could be accessed
from the microcomputer via the AKB-2 to change excitation voltage and
resistance range and to select the required temperature sensor using
the multiplexer option.

The addresses for the devices interfaced to the HP9816 and the
command codes for the AKB-1 and AKB-2 are given in Appendix 1.

The HP9816 microcomputer therefore recorded the resistance of the
thermometer and the signal S and frequency f of the crystal's
resonance, and from them calculated the temperature and real and
imaginary parts of the acoustic impedance of the helium in contact with
the crystal. These values were displayed graphically by the HP9816 and
were stored on disc for later transfer to the mainframe computer and

further processing.
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Chapter 4

Helium Films: T > T.A
4.1 Introduction
A known amount of helium at room temperature was condensed into
the cell, partially filling the tube with liquid such that the crystal
was a predetermined height h above the liquid surface. The film that
forms upon the crystal due to van der Waals' forces has an equilibrium
thickness that can be estimated from the van der Waals' form of the

potential ;
AK
-jlp =mg h

with A =40 K. The film however, need not be of the equilibrium
thickness given by this equation. As explained in the following
section, a temperature difference between the crystal and the liquid
in the tube causes the film to evaporate or condense. By deliberately
creating such a temperature difference, it is therefore possible to
sweep the thickness of the film from a few atoms to effectively a
bulk liquid.

The effect on the measured impedance of the changing position of
the 1iquid-vapour interface as the film thickness is swept can be
deduced by solving the transmission line equations of Chapter 2 for
the specific case of a homogeneous film (section 4.3).

The density profile of the helium film adsorbed on the crystal is
discussed in section 4.4 and measurements of the film's impedance at 20 MHz,

3.11 K (Spencer, Lea and Fozooni, 1985), 2.78 K and 2.33 K are presented

in section 4.5.
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4.2 Sweeping the Film Thickness

The thickness of the film adsorbed on the crystal resonator is
determined by the height of the crystal above the level of the helium
liquid in the tube attached to the cell. Equation (2.5.3) shows that
for the crystal in an isothermal cell and at a given height h above
the liquid level, the adsorbed film will have a well defined thickness
d, that depends solely upon the form of the potential V(d) . If,
however, a temperature difference AT is created between the crystal
and the liquid in the tube, equation (2.5.2) for the chemical potential

becomes

V() =-V =mgh- K T &n (4.2.1)

where PO(TO) is the saturated vapour pressure of the liquid at temp-
erature TA and PAAT?) is the svp at the crystal's temperature, T* .
A positive temperature difference, TX > T0 increases the svp of the
liquid of the film while, to a first approximation, the temperature of
the liquid in the tube and hence the vapour pressure over the film
remains constant. The film is therefore no longer in equilibrium, helium
evaporates from it, and its thickness is reduced. The process is
reversed for Tx < T0 , helium vapour condenses and the film rapidly
thickens to become effectively a bulk liquid (d » 6 , the penetration
depth of the wave in the film). Figure 4.1 shows the change in film
thickness for a temperature difference AT between the crystal and

the liquid in the tube at 3 K for an equilibrium film thickness of

20 nm
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The change of film thickness d with temperature difference
Ai =T - T between the crystal and the bulk liquid helium
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X
below it, for a film of equilibrium (AT = 0) thickness

20 nm at 3 K.
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The temperature of the cell was locked to the required value

using the temperature controller, both resistance thermometer and heater

being mounted on the cell body holding the crystal

section 3.4. The copper body of the cell, with the crystal

as described

and its

helium film therefore reacted rapidly to an abrupt change in the heat

input to the system, the thermal inertia of the liquid

being sufficient to ensure the formation of AT .

4.3 Transmission Line Theory for a Homogeneous Film

A homogeneous film of thickness d adsorbed on the crystal

in the tube

sur-

face at X =0 and with its free surface in contact with a homogeneous,

viscous vapour has a local impedance given by

z(x) =@ - i) (wpfnf/2)*» = (1 - i)r 0 <x<d
= (1 - i) (GjpAnr/2)A = (1 - i)rh X>d
The impedance measured by the crystal, Z(0) is therefore,

equation (2.4.7),

Z(0) = (1 - i)r tanh('k + Yd)
where

tanh(") =S rigr

Simplifying this gives the equation

r /r + tanh(1 - i)d/e
z(0) = (1 - i)r 1; tanh(1 - f)d76

where 6 is the penetration depth of the wave in the film.

(4.3.1)
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For a film in a vacuum, =(1-1i)r =0 and
Z(0) = (1 - i)r tanh(l - i)d/e (4.3.3)
In this case, the real and imaginary parts of Z(0) , R and X can

be written as

R * sinh(2d/6) - sin(2d/6)
r  cosh(2d/8) + cos(2d/0) (a)
(4.3.4)
X _ sinh(2d/6) + sin(2d/6) b
r cosh(2d/e6) + cos(2d/e) (b)
and are plotted in Figure 4.2 as functions of dié . As d increases,

R and X increase and pass through a series of heavily damped maxima
and minima corresponding to standing waves in the film. For die » 1,
the measured impedance Z(0) tends towards that of the bulk homogeneous
liquid. This behaviour is shown in the Argand diagram of Figure 4.5,
with X plotted versus R ; the locus of Z(0) is a spiral starting
at Z/r = 0 and rapidly converging to the bulk value, Z= (1 - i)r
When the film is very thin, dié « 1, equation (4.3.4) gives
R=0 and X = 2rd/6 = pwd i.e., the measured impedance is purely

imaginary.

Z(0) = -iwpd (4.3.5)

From equation (2.2.8) this gives a change in the resonant frequency of

the crystal of

4f2pd
S (4.3.6)

Af R
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The real and imaginary parts, R and X , of the transverse

acoustic impedance of a film, thickness d , in vacuum. The

bulk liquid has an impedance (1 - i)r and 6 is the penetration

depth of the viscous wave.
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which is the microbalance equation (2.2.2) with o = pd being that
portion of the film which vibrates without slip with the crystal.

If the thin film is in contact with helium vapour of impedance

Vv Vv
2\
= . i \
ZV— - iwo 1 - r (4.3.7)
and the term (1 - (r*/r)*) is an acoustic mismatch factor. The

measured impedance Z(0) therefore has both real and imaginary parts,
the real part being equal to that of the vapour and the imaginary part

having three contributions:

i) from the impedance of the vapour;
ii) from the microbalance effect of the film;
iii) from the acoustic mismatch between the film and the vapour.

The Argand diagram for a film in contact with a vapour is shown in
Figure 4.5. The locus of Z(0) as film thickness d increases is
again a spiral converging on the bulk impedance of the film, but to a
good approximation, since r >> r* |, starts from the vapour impedance
zV =1 - i)rv .
4.4 The Helium Film Profile

The profile of the helium film adsorbed on the crystal resonator
is shown schematically in Figure 4.3. The van der Waals' forces of the
crystal cause, in the vicinity of the solid/liquid interface, an enhance-
ment in the pressure and density of the fluid above the bulk values.

A layer model is often used to describe the adsorption of helium on a
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CRYSTAL LIQUID VAPOUR

Figure 4.3

The profile of a *“He film, thickness d , adsorbed on the
crystal, showing the localised atomic layer and the region
of enhanced density liquid caused by the van der Waals'

forces.
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substrate; the first atomic layer of statistical thickness 3.6 Ais
considered to be localised on the substrate with successive layers
consisting of helium liquid under high pressure. The atomic layer is
assumed to be localised on the crystal electrodes at low pressures

with a binding energy of 211 K as given by Ezell, Pollock and Daunt
(1981) for 4He atoms on a gold substrate. This adsorbed solid layer,
of mass per unit area produces a temperature independent frequency

shift relative to the vacuum resonant frequency f that is given by

the microbalance equation of Chapter 2:

4f:o0.

The areal density of the first adsorbed layer on Vycor has been given
by Brewer, Symonds and Thomson (1966) to be 7.3 x 10~®kgm“? , giving,
if adsorbed on the crystal electrodes, a frequency shift Af* = - 5 Hz .
This frequency shift for the adsorption of the first atomic layer has
not been verified experimentally for the resonator used in the studies
reported here, since the design of the cell and gas handling system was
not suitable for the control of small quantities of gas. However, Lea
and Fozooni (1984), using the same crystal resonator, observed a frequency
step, Af = - (6 ¥ 1) Hz in superfluid helium at a pressure of 10 bar.
Since there are no viscous losses in the superfluid, this was identified
with the localisation of the second layer of helium atoms on the surface
of the crystal as the pressure was increased.

The layers of helium adjacent to the adsorbed atomic layer are
compressed under the van der Waals' forces of the crystal, but remain
fluid though at high pressure. The density and viscosity of this helium
are therefore enhanced and have values greater than and , the

density and viscosity in the 'bulk' film - where its properties are



unaffected by the surface potential.

The effect of the density and viscosity of the fluid being a
function of x , the distance from the crystal surface, can be deduced
from the transmission line theory of Chapter 2. Assuming the helium is

everywhere locally hydrodynamic, equation (2.4.8) gives

Since the range of the enhancement of the helium's properties is on an
atomic scale, and therefore very much less than 6 , the penetration
depth of the viscous wave, the acutal impedance at x Z(x) = Z*» , the
impedance of the film. The difference between the impedance measured
for a homogeneous film of thickness d and that measured for the same

film but with enhanced density layers is therefore

AZ = - i. p(x) [I - dx (4.4.2)

where xo is the position of the solid/liquid interface,

The change in impedance due to the enhanced density layers there-
fore has only an imaginary component; the resonant frequency of the
crystal is decreased but its Q remains constant. |If the viscosity
of the helium is assumed independent of its density, equation (4.4.2)
becomes

,d

AZ = - io) (p(x) - p*) dx (4.4.3)

AX
o

where the integral now gives the excess mass density and the crystal

responds to it as a microbalance with a change in frequency proportional

to the adsorbed mass.



The effect of the enhanced density liquid layers is therefore
simply to produce a shift in the resonant frequency of the crystal which,
since the range of the density enhancement is small, is essentially
complete before the film grows sufficiently thick for viscous losses

to become appreciable.

4.5 Results and Interpretation

As the film thickness is swept at constant temperatures, the signal
S, representing the Q-factor of the crystal and the resonant frequency
f are recorded; Figure 4.4 shows Af = f0 - f versus S for T =311 K
where fA is the resonant frequency of the crystal in vacuum. The
data is uncorrected for the shift in frequency (11 Hz) caused by the
vapour pressure on the crystal(Chapter 3.2.2) and shows the large
change in both S8 and f ('V/100 Hz) that occurs as the film thickness
changes. In the thin film limit, the crystal is only minimally loaded
and both S and f are high. As the film condenses, f initially
decreases at constant S , the crystal behaving as a microbalance with
frequency decreasing in proportion to the mass adsorbed,while the Q
of the crystal (otS”) remains unchanged. As the film continues to
thicken, viscous losses in the liquid become appreciable, decreasing
both f and Q, and the locus of Af versus S spirals around to
the thick film values.

Converting S to Q and calculating X and R from the data
of Figure 4.4 using equations (2.2.9) and (2.2.10) gives the Argand
diagram of X versus R shown in Figure 4.5, the baseline values f*

and corresponding to X= 0 and R = 0 are discussed below.
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The change in resonant frequency Af = fA* - f of the crystal
versus the signal s , representing its quality factor

(Q a s*) , as the thickness of a He |I film is swept at 3.11 K
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X versus R for the data of Figure 4.4, showing thelocus of
versus R for afilm of bulk impedance 172 kgm~* s“A with a
vapour impedance of zero (dashed line) and of 16 kgm s

(solid line). At 3.11 K, 6 = 19 nm .
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The film is assumed to have the properties of the bulk liquid at
the same temperature and therefore for dié » 1 , when the liquid-
vapour interface has negligible effect, the measured impedance of the
film - iX™ tends towards that of the bulk liquid. The impe-
dance of bulk liquid helium Z,b =r - ix at s.v.p (Lea and Fozooni,
1986 and Lea, Fozooni and Retz, 1984), is shown in Figure 4.6 and the
baseline values Q0 and f0 are taken as being the value of the
frequency and Q-factor at T < 0.6 K where the superfluid exerts no
viscous forces on the crystal. At 3.11 K the real part of the bulk
liquid helium's impedance is r = 172.3 kgm“*s“? and since in the thick
film limit d» 6 , RA =71, this wasused to define the R =0
baseline for the data of Figure 4.5.

For a homogeneous, viscous and hydrodynamic fluid, R = X = (o)pri/2)*
(equation (2.3.6)) and the difference apparent in Figure 4.6 of
Ax = x - r = 27.7 kgm~"s~* at 3.11 K is attributed to the mass loading
of the crystal by enhanced density layers of liquid; Ax = wo where a
is the effective excess mass adsorbed per unit area on the crystal sur-
face. This effect will also be present in the film and in Figure 4.5
is compensated for by setting X* = R* = r in the thick film limit; the
data therefore represents a homogeneous film with the properties of the
bulk liquid throughout.

At the start of the spiral of Figure 4.5, the film is very thin
die « 1 and is therefore locked to the crystal's motion with no viscous
losses. The viscous wave propagatedby the crystal samples predominantly
the helium vapour over the film and it is therefore principally the
vapours impedance Z*» which determines the starting point of the spiral.
Z can be estimated by assuming the vapour to be hydrodynamic, at 3.11 K

oT = 0.004 , and hence taking Z*» = (1 - i)r® where r* = (up”n#/2)A
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The temperature dependence of the real and imaginary parts R

and X of the impedance of bulk liquid **He at 20
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The vapour's density is found from McCarty (1973) and is taken

as being the zero pressure viscosity given by Betts (1976) as

micropoise (4.4.4)

where 0%2,2)* is the collision integral tabulated as a function of
temperature by Monchick et al (1965). At 3.11 K =7.9 uP and
r® = 16 kgm"As~*

The locus of X versus R is calculated using transmission line

theory, equation (4.3.2), and is shown in Figure 4.5 for r = 172.3 kgmTAs"?

and for both r* =0 and r* = 16 kgmA*s~* , representing the film in
a vacuum and in contact with helium vapour at s.v.p. respectively. At
3.11 K the penetration depth 6 = x\/r of the viscous wave in the film
is 19 nm and the film thickness, although not measured directly is seen

to have been swept from ~1.5 nmto > 60 nm .

The bulk liquid impedance and the impedance of the helium vapour
are both temperature dependent; r is seen in Figure 4.6 to increase
above the X-point before decreasing at higher temperatures, while r?
increases with the density and viscosity of the vapour. Figure 4.7
shows data for the sweeping of the film thickness at temperatures of
2.33 and 2.78 K together, for the purposes of comparison, with the
theory curve shown in Figure 4.5 for 311 K The R=0 and X =10
baselines in Figure 4.7 were found in the manner described previously
and r , XxX-r, nv s rv and 6 are tabulated in Figure 4.8 for
all three temperatures. The bulk liquid impedance r changes little

between 2.78 and 3.11 K and these two sets of data are virtually coin-

cident for thick films, though the increase of r* with temperature
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X versus R for "He films at 2.33 and 2.78 K. The solid
line is the same as that drawn in Figure 4.5 and represents

the data at 3.11 K.
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separates the spirals in the thin film limit. The spiral at 2.33 K is
incomplete due to difficulty in sweeping the film near the X-point,

though it shows the expected decrease in the bulk liquid impedance.

Chester, Yang and Stephens.(1972) used a quartz crystal vibrating
in shear to investigate the superfluid properties of unsaturated helium
films adsorbed on the crystal electrodes. They found that as the pres-
sure of the vapour over the film increased towards the saturated vapour
pressure , the change in resonant frequency Af of the crystal
increased, as would be expected if it were responding simply as a micro-
balance, but then as observed in Figure 4.4, Af turned around and began
to decrease. Chester et al did not offer any reasons for this behaviour
but later Yang (1973) proposed an explanation, based on the viscous
properties of the liquid, that is very similar to that described here.
He, however, was unable to confirm it since he had no simultaneous
measurements of the crystal's Q, as there are in Figure 4.4 (QaS*) ,
and could not determine the film's thickness from the pressure of the
vapour over the film since the exact form of the crystal's surface pot-
ential was not known.

Migone et al (1985) have used an AT-cut quartz crystal vibrating
in shear at a frequency of 8 MHz to investigate the formation of helium
films at pressures close to the saturated vapour pressure . They
measured only the resonant frequency of their crystals and for some
observed a frequency reversal similar to that found by Chester et al
which they attributed to instabilities in the crystal's resonance mode.
However, they present an analysis of the viscous losses in the film and
derive a function F(d/eé) which is identical to equation (4.3.4)(b),
plotted in Figure 4.2 and which has been used in this chapter to succes-

sfully explain the frequency reversal. Migone et al interpreted the



frequency measurements where no reversal occurs as evidence for the

abrupt condensation of bulk helium on the crystal.
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T r X - r 6 r

v

(K) (kgm-Zg-i) (kgm-2g-i) ' (nm) (yP) (kgm-Zg-i)
3.1 172.3 27.7 19.1 7.9 16.0
2.78 172.6 26.1 18.7 7.0 12.2
2.33 163.2 25.3 17.4 5.8 7.7
138.9 20.9 14.8 5.3 6.3

Figure 4.8
Table giving the impedance z =r - ix of bulk liquid helium,

the penetration depth 6 of the viscous wave in the liquid
and the viscosity n and impedance r of the helium vapour
' v

at various temperatures.
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Chapter 5

Helium Films T < T
A

5.1 Introduction

At T < TA’ the superfluid film on the crystal is in equilibrium
with the liquid helium in the tube attached to the cell, and is stable
with a thickness d that depends upon the height of the crystal above
the liquid surface. The real and imaginary parts of the impedance of
films with thickness in the range 14 < d < 23 nm have been measured
for 0.4 <Te TN .

In the hydrodynamic region, T 1.2 K, the film is assumed to
have the properties of the bulk liquid and as with the He | film of the
previous chapter, its impedance will be affected by the presence of the
1iquid-vapour interface through the ratio d/ieé , where the penetration
depth 6 = (2n*/pAw)* is now temperature dependent (section 5.3). The
film thicknesses were deduced from the data in the hydrodynamic region
and have been used to estimate the van der Waals' surface potential of
the crystal (section 5.5).

For T "1 K, the film enters the ballistic region with WwI » 1
and the impedance measured depends upon the fraction of rotons a
diffusely scattered from the 1iquid-vapour interface. The fraction a
may be deduced from the data and is assumed to represent the fraction
of rotons, incident upon the interface within the critical angle, which
cause the evaporation of an atom from the film (section 5.4).

The data shows a large thickness and temperature dependent resonance
which has tentatively been identified with vortices pinned to the crystal
resonating in the X/4 mode (section 5.6). Alternative explanations

of the resonance are also considered (section 5.7).
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5.2 The Superfluid Film Data

The data presented in this chapter consists principally of measure-
ments of the real and imaginary parts of the transverse acoustic
impedance at 20 MHz of six superfluid helium films. Figures 5.1-
5.6 show R and X for these films, thickness 14.5, 15.5, 17.5, 19.5,
21.0 and 22.5 nm respectively, the values of d being deduced from the
hydrodynamic theory of section 5.3. At T» , as the film warms slowly
through the X-transition, its superfluid properties are destroyed and
it begins to evaporate; R and X change rapidly with temperature as
the loading of the crystal decreases, providing an independent method
of estimating the film thickness, as discussed below. Below T , R
and X decrease with temperature, the measured impedance depending on
the ratio die where the penetration depth 6 = (2lin/wpny and nn
and p* are the viscosity and density of the normal fluid component.
At the X-point, 6 = 14.5 nm

The data exhibits unexpected features in both R and X that
represent an extraneous resonance coupling into the main AT-shear
resonance of the crystal. The temperature of this resonance decreases
with film thickness, the largest effect being at 21 nm where
AR = 40 kgm‘? s“A | equivalent to 30% of R at T =TA .

The power dissipated in the crystal during these measurements was
kept as small as possible, typically 2 nW In general the film impe-
dance measured was independent of crystal power dissipation, though
slight power dependency was found in the region of the resonances. In
particular, at d=21 nm, T * 1 K at a frequency of 34 MHz, there
was extreme power dependence of the crystal resonance, the implications

of which are discussed later.
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Figure 5.1

Temperature dependence of the real and imaginary parts R and X

of the acoustic impedance of a film of thickness 14.5 nm . Also shown
is the impedance calculated for a homogeneous film (solid lines) and
that corrected for the effects of the enhancement of the density of

the helium close to the crystal (dashed line).
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Temperature dependence of R and X of a film of

thickness 17.5 nm
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Temperature dependence of R and X of a film of

thickness 21.0 nm
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R(T) and X(T) , the real and imaginary parts of the film's
impedance are found from the crystal's quality factor and resonant

frequency using the equations of Chapter 2.2:

iR
(Q-(T) - Q-i) (2.2.9)

MR
X(T) = -4 (fr - f2(T)) (2.2.10)

0o

where Q0 and f0 are reference or baseline values of the ﬂua“tY,
factor and resonant frequency of the crystal and correspond to R =0
and X =0 respectively.

Superfluid helium exerts no viscous drag orloadingupon the
resonator and at T =0 its transverse acoustic impedanceshould be
zero, Z=R-iX= 0. In practice, for bulk helium as shown in
Figure 4.6, Z =0 for T < 0.6 K and the corresponding temperature

independent values of Q and f define the baselines R =0 and

X =0 . Unfortunately, as mentioned previously, it was not possible
to directly obtain the bulk superfluid baselines, A and fA A

and the film data were initially referenced to the vacuum values A
and f and later corrected to the superfluid baselines as described
below. It has been noted previously (Lea, Fozooni and Retz, 1984) that
these are not the same; v Ahro s approximately 20% while

Afo = fo,V - fo,s =14 * 3 Hz . The vacuum values of the crystal's

resonant frequency and quality factor are found after prolonged pumping
on the cell at room temperature in an attempt to remove all traces of
helium gas.

The difference in frequency Af* , between the vacuum and super-

fluid baselines can in part be attributed to the localisation on the



_1(D_

crystal electrodes of the first atomic layer of helium, giving, as
discussed in Chapter 4, a microbalance frequency change of Af =6 Hz .
The gold plating of the crystal electrodes is smooth at optical wave-
lengths, though with a thickness of around 500 atoms, it must be assumed
rough on an atomic scale. Chester and Yang (1973) estimated a roughness
of 5-15% for their gold plated crystals. Helium atoms trapped in the
irregularities of the electrode surface would find themselves constrained
to vibrate with the crystal, thus producing a microbalance frequency
shift in excess of that produced by the first atomic layer. If this

is the case, the observed excess frequency shift of 8 Hz indicates
that the equivalent of approximately one additional atomic layer is
locked to the crystal electrodes and vibrates with them.

For the adsorption of relatively small amounts of helium onto its
electrodes, the crystal should behave purely as a microbalance, its
frequency decreasing in proportion to the adsorbed mass with no
accompanying change in its quality factor. The observed difference
between the vacuum and superfluid baselines for Q, representing an
additional loss of energy from the crystal to the superfluid, must
therefore be attributed to different causes, perhaps to a leakage of
the crystal's vibrational energy from under the electrodes into the
periphery of the crystal.

The appropriate baseline for the data presented in this chapter is
that of z = 0 in the bulk superfluid at low temperatures, representing
the effects of the bulk superfluid on the crystal. Since it was not
possible to obtain f* A and A directly, the R=0 and X=0
baselines were taken as being those values of R and X at T * 0.6 K

where there is no viscous loading of the superfluid on the crystal.



For some thicknesses the resonance so affected the data as to make
this impossible, in these cases the baselines were deduced from the
A-point data as follows.

As the temperature of the film is increased and it passes slowly
through the A-transition, its superfluid properties are destroyed and
a temperature difference is created between the film on the crystal
and the liquid in the tube, causing the film to evaporate as described

in the previous chapter. Figure 5.7 shows X versus R for films of

thickness 14.5 and 21 nm, X and R increase at constant d as
T+ until, at the A-point the film ceases to be superfluid and the
locus of X versus R follows that of a normal film at T , with

decreasing d and constant viscous penetration depth, 6 = 14.5 nm .
The normal film spiral plotted in Figure 5.7 assumes the liquid
is homogeneous and viscous with R = X . The imaginary part X of
the film data is therefore corrected for the enhanced density liquid
close to the crystal surface by the quantity (x - r) , the difference
between the real and imaginary parts of the bulk impedance. The spiral
at TA» is determined by the vapour impedance r* and the bulk liquid
impedance r (tabulated in Figure 4.8) and can therefore be used to
define the R=0 and X = 0 baselines for the film data. The value
of die at the intersection of the superfluid locus with the normal
film spiral gives an estimate of d for the two films in Figure 5.7,
thicknesses 14.5 and 21 nm of (14.1 * 0.3)nm and (22.2 * 0.7)nm

respectively.

5.3 The Hydrodynamic Region WIr« 1
The He Il film, thickness d , adsorbed on the crystal is assumed
to have the properties of the bulk liquid, the measured impedance being

modified by the presence of the 1t1iquid-vapour interface via the ratio
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1

d/é . The viscous penetration depth O = (2r*/pAw)* increases with
decreasing temperature and as in Chapter 4 where the film thickness
was swept at constant 6 , it is appropriate to use transmission
line theory to calculate the impedance of the film. From equation

(2.4.7), the measured impedance Z*(0) is given by

Zf(0) = - XA
= (1 - i)r tanh(* + yd) (5.3.1)
where
tanhip = r /r
v
and
y =1 - 1i)le

r and r* being the impedances of the bulk liquid and of the vapour
in contact with the film respectively. As in section 4.3, rv = (wpquIZ)"
is calculated assuming the vapour to be hydrodynamic, wx < 1 ,
being the zero pressure viscosity of the gas. This assumption is valid
for T >1K; for temperatures below this p* is very small and the
effect of the viscous loading of the vapour on the measured impedance is
negligible.

The real and imaginary parts of the bulk liquid impedance at 20 MHz,
z =r - ix are plotted as functions of temperature in Figure 4.6. The

behaviour of r at frequency f s interpreted in terms of the viscosity.
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from equation (2.3.6)

n=A (5.3.2)

where is the normal fluid density. The viscosity at 20 MHz thus
calculated (Lea, Fozooni and Retz, 1984) exhibits a sharp decrease
below the X-point, levelling out at a value of 12.5 yPbetween 1.2
and 1.5 K before decreasing rapidly to zero.

The hydrodynamic viscosity for T < 1.8 K has beengiven by
Khalatnikov (1976) as the sum of the roton viscosity and the

phonon viscosity qP

At T > 1.4 K the behaviour of the hydrodynamic viscosity and that at
20 MHz is similar, both phonons and rotons are in the hydrodynamic
region but the phonon viscosity qgq* is small and the measured viscosity
is therefore essentially that of the rotons, q* .

Below 1.3 K the hydrodynamic viscosity increases exponentially,
due to the rapid rise in qP as phonon-roton scattering decreases.
At 20 MHz the phonons are in the non-hydrodynamic region with > 1
and &Plé > 1 where tp and /p are the relaxation time and mean
free path of the phonons. In the ballistic limit or? » 1, the

impedance of the phonons is found from equation (2.3.9)

1.06 aP T kgm-2 s"'
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where pP is the phonon density, aP the fraction of excitations
diffusely scattered at the crystal surface and u* is the velocity of
first-sound. %p therefore decreases to zero as T* and the rapid
rise in the hydrodynamic viscosity (seen at low temperatures) is not
observed at 20 MHz. Below 1.2 K the effective roton viscosity also
decreases rapidly to zero as the rotons enter the non-hydrodynamic
region, and in the limit of WI'r » 1 and £r16 » 1 where

is the roton mean free path, R s given by

Roqr =i arprVr
= 1.2 X 10* are "/KbT kg m~* s A
where the mean velocity of the rotons has been taken as = (2KAl/ry)r

M being their effective mass.

R* and , the real and imaginary parts of the film's impedan