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(i)
Abstract

The central aim of Part I of this thesis is to investigate 
non-equlibrlum processes in physics by studying the so called 
Rayleigh's Piston model which was originally conceived by Lord 
Rayleigh in 1891* In its most general aspect the modern 
formulation involved the study of the 'Master Equation' for the 
statistical evolution of an ensemble of test-particles (mass M) 
constrained to move in one dimension interacting with heat-bath 
particles ( mass m ) . By using the numerical techniques 
developed in studying neutron thermalisation, we have investiga­
ted the accuracy of Rayleigh's original treatment or the so 
called Brownian limit and obtained numerical results for 
velocity autocorrelation function Sy(t) and electrical 
conductivity cr(ĉ ).

It is in the case of special Rayleigh's model 
where the masses are equal ( M=m ) that we have been able to 
solve the model exactly both by using the method of singular 
eigenfunctions and by the method of Laplace transform. Thus a 
definitive connection is made with methods developed in the 
'Linear Transport Theory* to solve problems in field- of radiative 
transfer, neutron diffusion, the theory of plasma as well as 
elsewhere. For the special model, we have investigated the 
'Velocity' barrier problem, the spatial problem and obtained 
exact expressions for the autocorrelation function, the 
diffusion constant, the electrical conductivity by using the 
linear response theory and tested the validity of the so called 
'Gaussian Approximation' by examining moments of the Van Rove 
correlation function G(r,t).

In Part II of this thesis we have 
investigated the behaviour of a model consisting of an ideal • 
charged electron gas in a uniform magnetic field and confined 
by a cylinderically symmetric potential. We have obtained 
exact expressions for the cuivrent density,the magnetic moment, 
the magnetic susceptibility and examined in detail the boundary 
effects.
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PART

' Of what use is your beautiful investigation 
regarding pi ? ’ ( Kronecker to Lind̂ rrvQurvru )
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CHAPTER ONE

IHTROFJCTIOH TO PART I

Section 1,1. Hon-equilibrium Physics

The irreversibility of physical processes is the most 
characteristic feature of the physical world. We know from 
experience that systems with many degrees of freedom, v/hen left 
to themselves tend to an equilibrium state which is independent 
of the initial state. We should in principle be able to handle 
this problem by solving the Liouville equation, with 
appropriate initial and boundary conditions. A detailed 
analysis of the solution should bring out all the features of 
the macroscopic processes. One is assuming that without 
modifying the microscopic equations, it would be possible to 
describe the evolution of the system.

But the elementary laws of motion are reversible, 
however, the subsequent time evolution of a system is always 
in a privileged direction. This is the celebrated paradox of 
irreversibility. The study of the irreversibility problem 
is beset with enormous difficulties and historically has given 
rise to many controversies. Failing to deduce the irreversible 
approach to equilibrium in a systematic way, physicists have 
attempted to explain the problem from probabilistic 
considerations. In these treatments, the laws of motion 
assumed for the individual particles delibrately deviates 
from the laws of mechanics. At some point in the treatment, an 
element of probabilistic nature is introduced in the theory.
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The earliest and most profound contribution to this problem 
was made by L.Boltzmann (1872), who gave a probabilistic 
explanation of the second law of thermodynamics and introduced 
the H-theorem.

In Part I of this investigation, we have been 
concerned with the stochastic theory approach to non­
equilibrium statistical mechanics. By using physical intuition 
a workable model of physical systems is constructed where all 
the ingredients of an irreversible evolution are present.
Many problems can be treated by applying this theory. By an 
exact analysis of the many body problem, it can be shown that 
in many important cases, the stochastic method can be 
justified.

The progress in our knowledge of stochastic 
processes has been quite extensive since Kolmogorov's 
fundamental paper in 1931. Doubtless as a result of the 
growing need for the stochastic treatment of problems in 
diverse fields of modern science. Many parts of the theory 
were first developed in connection with the study of ' 
fluctuations and noise in electric circuits (Schottky 1918).
At present, stochastic processes provide models in such 
diverse fields as the theory of population growth, 
communication and control theory,.operational research and 
genetics, (see e.g. Bartlett 1962)

Generally the processes in nature are slow and 
the number of particles very large. Such processes can be 
treated with advantage as random or stochastic processes. This
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approach, is semiphenomenological and from the begining a 
deterministic approach is given up in favour of a more 
intuitive treatment. In the next section, we have briefly 
reviewed several general ideas and methods of the theory of 
stochastic processes (see e.g. Balescu 1973).

Section 1.2, Random Processes

We now come to a definition which plays an important role in
many practicle applications. Let y signify the variable in
which one is interested. It may be, for example, the current 
in a noisy electrical circuit. At every given time, y can have 
random values within its range of variation. To every possible 
value y at time t we assume a certain probability density; 
thus P(y,t)dy is a probability of finding the value of the
variable in the infinitesimal interval (y, y+dy ).

In general the knowledge of the probability 
density P(y,t) is not sufficient for the characterisation of 
the process. If it is loiovm that the variable had a value 
^1 ^1 » then the probability of finding the value y^ at tg
will be influenced by this result because the various values 
are not necessarily independent. In other words, the
correlation between what happens at time t^ and what happens
at time t2 , can best be specified by the 'joint probability 
density* 1 ^I’̂ l  ̂ (which is the probability of
finding the value ŷ  ̂at t̂ _ and the value yg at t2 ).
The joint probability density cannot generally be inferred j 
from the knowledge of P^(y^ ,t^ )



Therefore, for the complete description, it is 
necessary to specify all the joint probabilities, F^(y^,t^), 

^I’̂ l )» Sind so on, ad infinitum. Clearly, to make 
further progress, it is necessary to introduce a classifica­
tion of random processes. The simplest assumption we can make 
is one in- which the knowledge of P^( y^,t^ ) would suffice 
for the problem. Namely,

22(^2 '^2 ! “ Pi(y2’̂ 2^’H ^ ^ i ’h  ) ( 1.1 )

In the above purely random process, correlation in time are 
completely absent. This is, however, a very unrealistic 
assumption, particularly for a continous physical process.
For short enough time intervals, one would expect to observe 
a causal relationship between succesive events.

The next simplest case is of fundamental 
importance in physical applications. The whole information is 
now contained in the first two distributions. In order to 
define this process, it is convenient to define a 'transition 
probability' ^2^^2’̂ 2 I ^1»^!^» which is the probability of 
a transition from y^ to y g in time t2~ The transition
probability is defined tlirough the relationship:

( 1.2 )

This relationship tells us that the joint probability 
density equals the probability density of-finding y^ at t̂'
times the probability of a transition from y^ to 1%
time interval t^rt^
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From above the following properties follow quite
naturally:

(i) WgCygitg I q  ) >  o. ( 1.3 )

(ii) » q  ) = !• ( 1.4 )

(iii) Pi(y2,t2) = W l  42(221^2 yi,q).Pi(yi,6;^)

( 1.5 )

The n order transition probability

V ^ n ’ q i  yi'tpi y2,tg; ;yn-i’V i  )
is defined as the 'conditional probability' density of finding 
the value y^ at time t^ , given that y had the values y^_^,
y  .......... . 3̂1 times •
The n-successive times are assumed to be ordered:

*1 <   V l < q  •
A Markov process is defined by the condition :

V ^ n ’El fl'tp ; î n-l’Vl^ = V^nVnl ^n-l’V l  )
( 1.6 )

This equation implies that for a Markov process, the 
probability of a transition at time from to a
value y^ at time t^ depends (besides on t^ ) only on the
value of y at time ^ and not at all on the previous history 
of the system. It is very easy now to follow through the 
following steps.

y2’*2îyi’h  ) “ Wj(yj,tj| y2,t2;y]̂ , q).
P2(y2’^2|yi’h >
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( 1., ,

But from the definition of a probability density,

= (ÀygP^Cy^'t^iyi.tisyg.tg) ( i.s >

and from ( 1,7 )

h ^ y 3’̂ 3i = (üygWgly^.t^ ygftgD.WgCyg.tg y^,q).

( 1.9 )
Combining this with ( 1,5 ) we can write

^ 2 (7 5 1 ^ 5  7 i , q )  = W 2 ^ ^ 2 ^ ^ 3 ’^3 7 2 ’^2^‘‘̂ 2^^2’^2 ^ I ’H ^
D  ( 1.10 )

This identity for the 'conditional probabilities' is an 
integral equation often accepted as a definition of a Markov 
process. It is called the 'Chapman-Kolmogorov' equation (or 
sometimes the Smoluchov/ski equation ), The physical 
interpretation of the above equation is clear. The 
probability of transition from y^at t^ to y^ at t^ can be 
calculated by taking the product of the probability of 
transition to some value yg at an. intermediate time t^ 
and the probability of a transition from that value to the 
final one at t^ , and integrating over all possible 
intermediate values.
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Me have not given further details about the 
general Markov process and the above identity; the mathe­
matical background is readily accessible (Cox and Miller 1963); 
this identity forms the basis of most applications of the 
theory in physics and elsewhere. In control theory it is 
used to obtain differential-stochastic equations by making 
further assumptions (Larson 1969).

In order to obtain from the above identity the 
transport equation for dynamical evolution of the probability 
distribution P(y,t), further simplifications have to be made. 
From Chapman-Kolmogorov equation it is possible to derive the 
Master equation which has formed the basis of this part of the 
thesis. For pedagogical reasons, the presentation is less 
deductive than might be desired by a mathematician and only 
a brief survey of the subject has been presented. Our intent­
ion is to present a physically intuitive picture of linear 
physical processes and not to present long and doubtful 
calculations, applicable only to a few physical systems. We 
have therefore, whenever possible, been less concerned with 
details which are available elsewhere (Felderhof 1961).

let t^= tgH- At in the above identity. Then

^2(73,62 + Gy2'-'2(73, ■fc2+At|y2,t2)U2(y2,t2|7i,tp

( 1.11 )
Let us now specialise the discussion to the physically 
important situation in which the transition probability

^I’̂ l^ does not depend on the time t^ at which the

transition occurs, but only on the time interval t^rt^ .
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( As the two-event transition probability is the only
independent transition probability in a Markov process, the 
subscript 2 is clearly superfluous and can be dropped)

) ( 1.12 )
For small At we can. write

y(y* ,t+At| y,t)= (l~At K(y‘| y)dy‘)cf(y-y')
+ AtK(y*I y) + 0(At) ( 1.1$ )

The delta term denotes the possibility that no transitions 
take place and K(y’| y) is the transition probability 
density per unit time from continuous state y to y '. Therefore 
K(y'I y)^0 and for convenience one can define:

A(y) = Cy' K(y'| y) ( 1.14 )

By substituting U(y',t+At]y,t) from ( 1.13) into ( i . n  ) and
taking the limit At----  ̂o, the following differential form
of identity ( 1.10 ) is obtained :

UygfECyjl 
h \a  t^)J

( 1.15 )
By multiplying the above equation throughout by &nd
integrating over y^ on both sides it follows from ( 1.2 )
and ( lo3 ) that:

= \<iy'K(y|y')P(y',t)-A(y)P(y,t) C  I.IS )
ÔC I
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The Markovian equation ( 1.16 ) is the customary form of the 
Master equation, which relates the evolution of probability 
distribution P(y,t) in time to the transitions in and out of 
states. For discrete systems, the Master equation can be 
written in somewhat familiar form as:

nj
In Quantum Mechanics (1*17 ) is commonly called the Pauli 
equation. The first term on the right hand side describes the 
transitions into a state n, while the second term describes 
the transitions talcing place from state n to any other state n*.

The usefulness of this approach is that the 
transition probability per unit time K(y'| y) is related to the 
physical system and for simple models can be computed exactly 
from the microscopic properties of the system. There are cases 
in the literature where exact expressions have been obtained 
for K(y'|y). (see e.g. Alkemade 195&, Van Kampen I960).

Section 1.3. Properties of the Master equation

By introducing the operator
l(x| X *  )=:K(x|x* ) - ^{x-x')A(x) 

with the definition, _
w.P(x,t)= \^*K(x|x* )P(x* ,t) - A(x) ( lois )

the Master equation ( 1.16 ) follows as.
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with a formal solution

P(x,t)= exp ( wt )o P(x,0) ( 1.20 )

However, the formal solution is of no use in finding the 
explicit value of P(x,t). The familiar method of solving 
equations of the type ( 1.19 ) by determining the eigenvectors 
and eigenvalues of w cannot be used generally because w 
need not be symmetric. Thus generally, it is not certain that 
all solutions can be obtained as superpositions of these 
eigenvectors.

In the case of a real closed system, one would
expect the Master equation to have a unique stationary solution
and to satisfy the principle of detailed balance. In this case,
P(x,t) after a long time must tend to the equilibrium
probability distribution P (x) and then it is possible toeq
symmetrise the operator &. Before we discuss the problem of 
symmetrisation, it is convenient to list all the properties 
of the Master equation which hold quite generally.

(a) Positivity Condition.
If P(x,t)^ 0  at t=0 for all values of x then
P(x,t)^ 0 for all values of x and t,
the proof is quite straightforward(Felderhof 1961)

(b) Uniqueness of Equilibrium
Limit P(x,t) = P (x) for any P(x,t). 
t > 0
Any realistic model has to satisfy this property. In
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Appendix A we have presented the proof which is
normally proved only for discrete-state systems. (It
is important to notice that both (a) and (b) hold
irrespective of the nature of eigenvalue spectrum.)

(c) The Principle of detailed balance
For real closed physical systems, it is reasonable
to assume that F«^(x) must be the only solutioneq
satisfying

|dx'QE(x|x')Pg^(x') -K(x'| x)Pg^(x)] ( 1.21 )

In many cases one can make the stronger assertion 
that the integrand in (l.2l) itself vanishes. That is

E(x|x')Pg^(x) = E(x'|x)Pgg(x) . ( 1.22 )

The above relationship is a natural symmetry relation 
for most physical systems (Haken 1973). It can be 
shown that the detailed balance is a consequence of 
the invariance of the microscopic equations of motion 
under time reversal. In case of dynamical variables 
such as the flow velocity of a fluid, the detailed 
balance principle reflects the symmetry inherent in the 
process.

(d) Detailed Balance end Symmetrisation

We can look for the exponential solutions of the 
Master equation (1.16) of the form:

P(x,t) = exp (-At)^(x^b) ( 1.2$ )
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where the eigenvalues have been specified by X and the 
eigenfunctions by c[)(x,\) . Using detailed balance 
condition (1.22) the operator 6 can be 
symmetrised. The following symmetric kernel can be 
defined:

G(x|x*) = K(x|x* ) .li(x')/Iî(x) ( >1.24- )

where N(x) = ( P (x) )^ and from (1.22) iteq
follows that:

G(x|x*) = G(x'| x) ( 1.2$ )

This leads immediately to the new self-adjoint Master 
equation

^h(x,t) r
 ------ = \dx'G(x| x')h(x* ,t) - A(x)h(x,t)

^  ( 1.26 )
with h(x,t) = P(x,t)/N(x)

( 1.27 )

In operator form the above equation can be written as

<!ih(x,t) ^
------- = A.h(x,t) ( 1.28 )
&t

Kwhere the operator A is defined by the relationship 

A « G(x|x*) - A(x)<J(x-x*)
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In Appendix A it is proved that the operator is negative 
semi-definite with the consequence that X the 
eigenvalues of the symmetrised equation

A ̂  —A $ (x,X) = - X  (x,X) ( 1.29 )

are positive. Hence the spectrum of the eigenvalues 
may he discrete or continuous, or a combination of both 
but always will lie along the positive real axis. The 
symmeterised eigenfunctions are related to the 
eigenfunctions (j) (x,X) of operator w by the 
relationship:

5 (x,X) = ^ (x,X)/N(x) ( 1-30 )

Section 1.4. The Eigenvalue Problem

The standard method of solving the transport equation (1,26 ) 
has been based on the assumption that by a. separation of 
variables, a general solution can be expressed as a sum of 
terms of the form ^(x,A)exp(-Xt). A necessary and sufficient 
condition for the validity of this assumption is that the set 
of eigenfunctions be complete in a sufficiently general 
fuction space. In full the integro-operator eigenvalue 
problem becomes:

( A(x) - X) .5 (x.X) = ^dx'G(x|x* ) .^ (x',X) ( l.$l )

where A(x) is the so called 'Multiplicative Operator'
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There have been several investigations of the 
eigenvalue problem of the type (l.$l) (see e.g. Shizuta 1964), 
The time behaviour of neutrons in matter as described by the 
linearised Boltzmann transport equation satisfies similar 
type of eigenvalue equation (Williams 1966). Some years ago 
it was realised by Case(l960) and others that the presence 
of A(x) in ( l.$l ) can introduce a 'continuum' eigenvalue 
spectrum, which must be used together with the discrete 
eigenvalues and the corresponding eigenfunctions to form 
a complete set. If we assume that A(x) is a monotonically 
increasing function of x starting from its lowest value 
■^min’ then for X  ̂  '̂ min tkere cannot be regular solutions 
of the equation because of the singularity at A(x)=X *

However, it is still possible to find a 
continuum of solutions which turn out to be distributions in 
the sense of L .Schwartz (1966). For this reason, the equation 
is often called the 'singular eigenvalue* problem. The 
continuum spectrum arises through the use of a fundamental 
theorem of distribution theory which states that for any 
infinitely differentiable function q(x) and for a simple 
zero x^ of q(x), a distribution satisfies the identity

q(x)hx = 0 (1.32 )

if and only if
^x Co(x-x^) (1.35 )

where C is a constant and ^(x-x^) is the Dirac delta 
distribution. (The standard rofrences on distribution theory 
are the monographs by L.Schwartz 1966, Lighthill 1938,
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and Zemanian 1938)•

More generally, the solution of equation

(x-x^)g(x) = f(x) ( 1.34 )

can he written as

g(x) = P.f(x)/(x-Xg) + co(x^)o(x-x^) ( 1.33 )

The symbol P indicates that the principal value prescription 
must be used in any integral involving the integrand 
f(x)/(x-x^). w(x^) is an arbitrary function.

The first application of the above symbolic 
identity was made by^ Van Kampen(l933) in. a connection with a 
problem of plasma-oscillations and later by K.M.Case(i960), 
Mika(1961), Zelazny and Euszell(1962) and others for solving 
one and two velocity dependent Boltzmann equation. By using 
(1*33 ) the formal solution of (1»31 ) for eigendistributions 
can be expressed, as:

^  (x,X) = P. I G(x|x')”0(x^,X)dx* /(A(x)-X) + w(X)6(A(x)"X)
( 1.36 )

The formal solution above clearly indicates the singular 
nature of the eigenfunctions and the use of the terminology 
'eigendistributions! for the eigenfunctions representing the 
continuum.

The problems of interpreting the right hand 
side of (1.36 ) were considered by Van Kampen in his orig­
inal paper and more recently Hagelbroek (1973) has looked
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closely at the whole method of using eigendistributions. It 
is necessary to point out that Van Kampen and workers in 
neutron transport theory, including Hagelbroek, had to 
consider distributions of the form f(x)/(x-x^), where Cauchy 
principal value prescription followed quite naturally.

For more advaced type of singular eigenvalue 
problem (I.31) with A(x) depending on the variable x in a 
complicated way, one would expect to find other types of 
distributions. Even for the 'Cauchy t3q>e' distributions, 
Hagelbroek has quite correctly pointed out all the difficul­
ties associated with the application of the singular 
distributions from a rigorous mathematical point of view. 
Hagelbroek (1973) has attempted to resolve these difficulties 
by using the 'functional analytic' approach in order to 
make Case's method more clear and rigorous.

In chapter three, a unique set of eigendist­
ributions is obtained which confirms the Case's method of 
solving the singular eigenvalue problem and at the same time 
gives a profound understanding of the whole topic.

In the absence of the singular eigenfunctions 
the initial value solution h(x,t) can be expanded in terms 
of the discrete eigenfunctions © (x,X) = 0̂ (x)*( where k novf 
labels the discrete eigenvalues), provided that they form 
a complete set, in the following way:

h(x,t) = K(x) + V'a,_5j^(x)exT(-X^) ( 1 3 ? )
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where the expansion coefficients are to be determined by the 
orthogonality property :

a. = d̂x ^j^(x)h(x,o) ( 1.38 )

For discrete eigenfunctions the orthogonality property 
follows quite simply in a standard way, in the form:

^dx^^(x) .5^(x) = 0 ( 1.39 )

if m / n.
However, as was stated above and particularly 

in the neutron thermalisation problem by Koppel(l963) 
whenever A(x) is not independent of x, the discrete 
eigenfunctions must be supplemented by a continuum of singular 
solutions all orthogonal to the discrete set of eigenfunc­
tions. Therefore, besides a linear combination of the discrete 
eigenfunctions, the general solution must contain a term 
given by an integral over the continuum:

r
h(x,t) = N(x) + ^a^j^(x)exp(-\j^t) ^a(X)^(x,X)exp(-Xt)

K J CONTINUUM ( 1.40 )
Normally with the singular solutions the orthogonality
condition is expressed as

dx i(x,X')^(x,X) = ( 1.41 )

where N(A), the normalisation function may be calculated 
by using the Poincare'-Bertrand formula ( Zoppel 1963):
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p. |l/(|jL-v) Ô.[X g(fi,v*) dv’

P.l/(li-v) P*1/(v '-|jl) g(^,v')dp = ~%^g(v,v)

( 1.42 )

(see e.go E.TLCase and P.P.Zweifel 1967 page.70 )
There are many unusual features associated with the applica­
tion of (1.42) which are discussed in chapter three. Applying 
(1.41 ) to (1.40 ) we have

a(X) = 1/1T(X) . ^dx  ̂ (x,X)h(x, o) ( 1.43 )

The Poincare *-Bertrand formula (l.42 ) works only for 
'Cauchy principal value* distributions. In order to exchange 
the order of integration, in cases where the integrand 
contains other types of distributions, a Poincare'-Bertrand 
type of formula has to be found. For more information see the 
review article by Hoare (1971).

By using the theory of Laplace transforms, 
a tool recognised in the Linear transport theory literature 
to be the most powerful method of attacking initial value 
problems (see e.g. Corngold 1965), one can reduce the 
condition of validity of the eigenfunction expansion to the 
existence of a Laplace transform for any function h(x,t).
In chapter four, this method is applied and at the same time 
the connection with the singular eigenfunction method 

is established.
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Section 1.5* The Model

The model we have considered was originally proposed by
Rayleigh (1881). From the modern point of view, Rayleigh's 
original treatment was restricted to the study of an ensemble
of very heavy test particles (or Rayleigh Pistons of mass M)
undergoing brownian motion in a dilute gas (which serves as a 
heat-bath with particles of mass m). Rayleigh considered in 
detail the progress towards a stationary state and the nature 
of this state.

The modern extensions of the Rayleigh model 
have been concerned almost exclusively with the problem of 
Brownian motion, (see e.g. Green 1951, Alcama and 
Siegel 1961). With the condition M m  it is possible 
to reduce the initial value problem for ?(7,t) 
approximately to a second order partial differential equation. 
( the so called Rayleigh-Fokker-Planck equation )« In 
chapter two, the model is reformulated in modern terminology 
and the validity of the R-F-Planck approximation is 
examined numerically. The numerical results are used to 
calculate the velocity autocorrelation function and hence 
using expressions from the linear response theory, the 
electrical conductivity of the model is obtained.

In chapter three, an exact solution is 
obtained by the singular eigenfunction method for the special 
Rayleigh model (essential where m / M ). In chapter four, 
this model is solved by using the Laplace transform
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method. A unique feature of this model is that 'absorbing 
barrier' problems can be formulated and solved exactly 
( chapter four ). Although the general theory was developed 
exclusively for the spatially homogeneous transport equations, 
nevertheless, for the special Rayleigh model, the spatially 
dependent transport problem can be usefully studied ( chapter 
five ).
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CHAPTER TWO

RAYLEIGH MODEL

Section 2.1. Preliminary Formulation.

In order to introduce the Rayleigh model, one can do no better 
than quote from the original paper by Rayleigh in 1881:

” The investigations, of which a part is here 
presented, had their origin in a conviction that the present 
rather unsatisfactory position of the Theory of Gases is due in 
some degrees to a want of preparation in the mind of readers, 
who are confronted suddenly with ideas and processes of no 
ordinary difficulty. For myself, at any rate, I must confess 
that I have found great advantage from a more gradual method 
of attack, in which effort is concentrated upon one obstacle 
at a time. In order to bring out fundamental statistical 
questions, unencumbered with other difficulties, the motion 
is here limited to one dimension, and in addition one set 
of impinging bodies is here supposed to be very small relat­
ively to the other. The simplification thus obtained in some 
directions allows interesting extensions to be made in 
others. Thus we shall be able to follow the whole process by 
which the steady state is attained, when heavy masses origina­
lly at rest are subjected to bombardment by projectiles fired 
upon them indifferently from both sides..........  "

In modern terminology, the Rayleigh model 
can be described as an ensemble of test-particles of mass M, 
constrained to move in one dimension and bombarded by radorn, 
impulsive collisions with a gas of heat-bath particles of 
mass m , having temperature T. One is interested in finding 
the evolution of the velocity probability distribution
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P(V,t) satisfying the Master equation (1.16 ). As with most 
problems in physics, it is not always possible to find P(V,t) 
explicitly. Approximations and practical methods of solving 
the equation have been discussed by Hoare ( 1971).

In this chapter, the general problem for the 
test-particles of all possible mass-ratios,

Y = m / M ( 2.1 )

free from restrictions imposed by Rayleigh ( namely that 
M » >  m ) is discussed and a comparison is made with the limi‘ 
ting case of R-F-Planck equation. We begin by deriving the 
transition kernel for the model and later study the transport 
equation numerically.

Section 2.2* The Rayleigh Kernel

We consider the collision in one dimension of a piston of mass 
M with a particle of mass m. Let V, v be velocities 
before the collision and V ,  v* be the velocities after 
the collision. Applying the equation for conservation of 
energy and the equation for conservation of momentum, it 
follows that

and
M + m = M V ' 4  m v'^ ( 2.2a )

M V + m V = M V* + m V* (2.2b )

From above it follows that
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V' = 2v .y - V.(Y-l)
------------------------------  ( 2.2c )

( 1 + Y )
In order to calculate the Rayleigh transition 

kernel, we now suppose that the piston of mass M is 
immersed in a one dimensional heat-bath of point particles 
of mass m , kept at temperature T • One can consider any type 
of heat-bath but for this chapter it has been taken to be the 
Maxwellian distribution of velocities :

= (m/27ukT)^exp(-mv^/2kT) . ( 2.3a )

where k is the Boltzmann constant. It is convenient to write 
this in the form:

= C^exp(-av^) ( 2.3b )

We require the probability E(V|V*)dV' that the piston having 
initial velocity V will go to a velocity in dV* about V* 
upon impulsive collisions. To obtain this let

Z_^(v,V) = rate of collisions from left with V and v.
Z^(v,y) = rate of collisions from right with V and v. 
or

Z(v,y) = ClV-vlf^(v) ( 2.4 )

where C is a frequency factor with dimensions
'-.T «-T(time)'“.(velocity)*”. To average over the outcome of all

of all collisions, we use a method introduced
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by Valdmaim ( 1958 ) : 
(X) _ cP

K(V|V) = \ Idv̂ dV' i (v - 2yv +(1-y)V ] Z(v,V)

(■

(1+y)-CO - QO
( 2.5 )

The delta distribution in the above relationship expresses
the conservation laws. By using the identity ( see
Zemanian 1958)

b

(x)(f(ax'-p)dx = 1 /a f(p/a) a b g> aa 
0  ̂ = 0  otherwise

( 2 .6 )
it can be shown that

K (V IV ’ ) = p Z (V V  + V ( l - p ) , V )  ( 2 .7  )

By using ( 2.4 ) and ( 2.5 ) the above relationship
can be expressed as

K (V lV ' )  = p^G^IV-V»lCexp(-a[(V*-V).p + v ]^ )  (  2 .8  )

where
\i = (1+y)/2y

The above kernel was not derived by Rayleigh
but was explicitly given by Bebowitz and Bergmann ( 1957 )•
The Master equation for the Rayleigh model can be written as 

OÛ

ÔP(Y,t) ^ IdV'KCV'i V)ï(V,t) - Z(V)P(V,t) ( 2.9 )
OO
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where Z(V) is the velocity dependent collision number given by 
o

Z(V) = (dV'K(V \ v ' )

- CV. erf( (m/2kT)tv ) + (2kT/i:m)^exp(-mV^/2kT ) . 0
( 2.10 )

which can. be derived by a straigtforward integration by 
parts. The Maxwellian distribution for the ensemble is

%(v) = (M/27tkT)2 exp(-MV^/2kT) ( 2.11 )

from which by direct calculation we see that the kernel 
satisfies the detailed balance condition

f^(V)K(V|Y') = fj,j(V')E:(V’| V) ( 2.12 )

which immediately implies that the Maorwellian distribution
is the equilibrium distribution for the ensemble. The
conservation of probability condition is 
0

fdVP(V,t) = 1  ( 2.13 )
-ca

In order to make further analysis simple, 
one can introduce the following reduced variables:

X * (m/2kT)*V 
Ya.y = (m/2kT).V’ - ( 2.14 )
%X =  (2kT/nm) oC.t
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By defining

P(x,x) = (2kT/m)Y P( (2kï/m)fx,(Ti:m/2kT)fx/C )

( 2.15 )
the transport equation can be written in the form:

00

^F(x,x)  ̂ p^(dy|x-y|exp(- C(x-y)p+yJ ̂ )p(y,x) -z(x)P(x,x)
6 ^  J— 00

( 2.16 )

where the kernel and the collision number in reduced variables 
are

k(x|y) = p^|x-y|exp( - [(y-x)p+x%^) ( 2.17 )
OO

z(x) = \dyk(x(y)
— CO

= exp(-x ) + %^xerf(x) ( 2.18 )
where the error function is defined by the integral

/ 2erf(x) « 2/%^ o lduexp(-u ) ( 2.19 )
0

the equilibrium distribution in the reduced variables becomes 

fjj(x) = (2kT/m)tj.j( (2kT/m)t )

=  exp(-x^/Y)/(uY)^ C  2 . 2 0  )

It is useful to list all the properties of the
collision number which will be required later. (Hoare and 
Rahman 1975/74 )•
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with symmetric reflection about the y axis.
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(i) z(x) is a single valued and analytic function for all x 
in the range (-00,00).

(ii) z(x) is an even function: z(x) = -z(-x).

(iii) for large lxl,z(x)<\x lx\ tc*̂. ( 2.21 )

(iv) z(x) is a nonotonically increasing function from its 

minimum value at z(o) = 1. (see Figure 1. )

(v) for small x, z(x) /\% 1 + x^ + O(x^) ( 2.22 )

(vi) z(x) is infinitely differentiable with

z*(x) = %^erf(x) ( 2.25 )

z"(x) = 2exp(-x^) ( 2.24 )

and z(x) satisfies the differential equation:

z"(x) + 2xz’(x) - 2z(x) « 0. C  2.25 )

Section 2.3o Eigenvalue Spectrum and the R-F-Planck equation

From chapter one ( 1,23 ) it follows that the eigenvalue
problem for the transport equation ( 2.16 ) can be written as

00

( z ( x )  = n ^ C y |x -y l  e x p ( - C ( x - y ) . t i  + y ]^ )  4^7,

( 2.25 )
and the corresponding symmetrised equation ( 1 , 5 1  ) follows 
as 00

(z(x) - ?Oo^(xçX) « ^dyg(xiy). |(y,X) ( 2 . 2 7  )
— 00
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where

g(xly) « |x-yl exp(-[x^+ y?/2 ),exp(- ^(p-l),(x-y)^ )

( 2.28 )

$(x,X) = c[)(x,x)AKx) ( 2.29 )

1N(x) = exp(-x^/2y)/ (xy) ( 2.^0 )

Hoare and Rahman (1973/74) have examined the 
general properties of the eigenfunction equation ( 2.27 )* The 
equlibrium eigenvalue X=0 is always present for all values 
p (oo>p>-J), corresponding to the equilibrium distribution.
In general, the continuum part of the spectrum extends from 
z(o) « 1 along the entire positive axis to infinity. The 
discretum always contains the eigenvalue X=0 and in general 
either be empty, or contain a finite number of eigenvalues, or 
an infinite number necessarily with a point of accumulation.
It is possible that discrete eigenvalues can exist in the cont­
inuum region but for physical systems this is a remote 
possibility.

Hoare and Rahman (1975/74) have shov;n that the 
non-zero eigenvalues are bounded for a finite mass ratio y 
being in fact completely absent for the special Rayleigh model 
or y = 1. A tentative bound was obtained which suggested that 
the discretum must be empty (except for X*0 eigenvalue ) at 
least for the mass-ratio region:
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In the next section a numerical study of the eigenvalue 
problem is presented and the validity of the tentative bound 
is tested.

In Rayleigh's original paper and subsequently 
attention has been directed not at the eigenvalue equation 
( 2.27 ) but on the related R-F-Planck equation and its 
counterpart the Langevin equation (Chandrasekhar 1943). Since 
the Master equation can only be solved in rare cases, it is 
important to know, under what circumstances the F-Planck 
equation is a good approximation. Razavy (1976) has looked at 
the approach to Bromian motion in case of a solvable kernel 
where the continuum is missing because of the nature of the 
simplified kernel and has confirmed the weakness of the 
approximation.

The Master equation (2.16 ) can be expressesd
in terms of the Krammer-Moyal expansion series (Si^el i960) as

I i — f  ( 2.31 )
à X  6 ,  k  >

in terms of the "derivate moments* a^(x) (using Moyal's 
terminology; Moyal 1949)

r  -a^(x) = Idy(y-x) k(x|y) ( 2.32 )
-CX3

By expanding the first two moments in the lowest powers of y 
and retaining only the first two moments in ( 2.31 ) the
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Rt-F-Planck equation

1 èP(x.x) ^ X P(x.-d) + Y ^^P(x,x)
4y à x  ^x 2 ^ x^

( 2.33 )
can be derived in terms of the reduced variables.
(see e.go Hoare and Rahman 1975/74 ). This; equation suggests 
a new time scale .The differential operator appear­
ing on the right-hand side of ( 2.35 ) is called the 
Rayleigh operator

üL = ^ X + y
à X 2 h x^

Hence we can write

^ P ( x ,Xr) = ( 2.34 )

The corresponding eigenvalue equation is

with

. ( 2.35 )

<j>n(x) = exp(-x^/2y). Hj^(x/y^)______1
(2^1 XY

( 2.36 )
and

X ~ 0,1,2,3^4,
H^(x) is the n order Hermite polynomial; For the special 
initial condition P(x,o) * t^(x-x^), using Mehler's formula 
( Erdelyi 1955 ), the solution follows as
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= expC-x^/y). y*(2̂ ntT:Y)~^Hpx/Yh\(xp/Y^)exp(-n.rp

exp -(x-Xp.expC-xp 1 1
A ( T » ) .  Y  J  A ( T p ) ^

where
= 1 - exp(-2T̂ )

( 2.37 )

We see that in time scale, the R-F-Planck 
approximation for small y , consists of discrete lines and 
the continuum region, from X= 1 to infinity, is approximated 
by the discrete eigenvalues with n It must be
pointed out that in real time scale t, the continuum would 
always be present. The approximate solution even for quite 
small mass-ratio y must falsify behaviour for small time 
because then the continuum would determine the rate of 
relaxation. It is quite difficult to make qualitative state­
ments about the validity of the approximation. For excimple, 
numerically how small y must be before the equation describes 
adequately over some time range the evolution of the test- 
particle ensemble.

The numerical results obtained in the next 
section have been used to test the discrepancy between the 
discrete eigenvalues and the integer-eigenvalues of
equation ( 2,35 )• ^ similar study was carried out by 
Hoare and Kaplinsky (1970/75) for the three dimensional hard 
sphere gas.
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Section 2o4o numerical Study

Of all available practical methods of finding the eigenvectors 
and eigenvalues of the Master equation ( 2.16 ), the simplest 
is perhaps the method of discretisation. One can use the 
Eayleigh-Ritz method ( Hoare and Kaplinsky 1970/75 ) or one 
of the other methods described in detail by Hoare (1971)•
But the numerical method of discretisation is probably equally 
efficient and can be used without too much labour and 
computation. In any case, the direct method of discretising 
the eigenvalue problem can be used to give preliminary 
information about the spectrum, even if later, more appropriate 
methods are to be applied.

The symmetrised eigenvalue equation ( 2.27 ) 
is discretised in order to obtain results not tied to any 
particular initial distribution. This way of solving transport 
equation is quite common in neutron transport theory and the 
monographs by Williams contains many examples,( Williams 
1966/71)0 Wood (1965) has used the method to obtain numeri­
cal results for the hard sphere gas.

Working in th$ symmetric form of the eigen­
value problem ( 2.26 ) we arrive at the following matrix 
eigenvalue equation;

^  N -
>̂) ( 2.38 )

where v;e have used tilde for the discretised approximations
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In matrix notation this eigenvalue equation reads

( Z - XI). ^  = G.| ( 2.39 )

To make this approximation self consistent the vector Z is 
calculated numerically by using the relationship (1.24 )

OO
z(x) » W y  g(x|y). K(y) ( 2.40 )

J K(x)
-  CP 

Therefore,
N/XX 2 2

Z^= he3p( +(ih) /2y) ôh).exp(- (jh) /2y) ( 2.41 )

h i
where h is the size of the mesh interval, N the number of 
intervals and G(ih,jh) the matrix elements of the matrix G • 
With this way of calculating the matrix Z , the eigenvalue 
X = 0 always corresponds to the equi1ibrium-vector or 
the equilibrium distribution. The converged numerical eigen­
values 1 are good estimates of the discrete eigenvalues
and the numerical eigenvalues ^  1 (we shall refer to
these as pseudo-eigenvalues ) represent "approximately" the 
continuum region. It is not clear how the pseudo-eigenvalues 
converge with increasing N and fixed range to exihibit 
the continuum contribution ( h = 2R/R). If the discretum 
is empty except for the eigenvalue X = 0 then it is clear 
that any calculation of physical properties must involve 
summation over the pseudo-eigenvalues.

Perhaps when discretising a singular eigenvalue
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problem one ought to regard the whole set of discrete eigenva­
lues as representing the spectrum. If one adopts this approach 
then the numerical eigenvalues and eigenfunctions can be used 
to solve the initial value problem at least over a specified 
time range. It will most certainly falsify the evolution of 
the system for small times. By increasing the range and 
decreasing the mesh interval h, one would expect the numeri­
cally constructed solutions to give improved description of 
the relaxation process.

A special feature of the numerical method is 
that one can study the first few eigenvalues by choosing a 
small range R and taking a large number of intervals. For 
studying the time dependent distribution P(x,x), a large

A.number of eigenvalues have to be considered. Thus may
not be a good approximation to some particular true eigen­
value but nevertheless the whole set of numerical eigenvalues
A'X^ may serve sufficiently to represent the evolution of the. 
distribution. Thus, in case of physically interesting funct­
ions, such as the average velocity function for the ensemble 
or the autocorrelation function, it may be quite futile to 
search for the true eigenvalues and eigenfunctions. It is very 
difficult to quantify these concepts and to develop a meaning­
ful method of estimating the errors involved, ( A mean square 
criterion for the Rayleigh-Ritz method was developed by 
Hoare and Kaplinsky 1975 )*

There are many problems in physics where the 
continuum contribution plays a very important part and should 
not be neglected. In the study of two electron-atoms.
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Burke ( 1976 ) has emphasised this point:

" Unfortunately experience has shown that this expression ( in 
terms of a few atomic eigenstates ) is slowly convergent at 
intermediate energies and indeed important contributions arise 
from the continuum eigenstates which cannot easily be included, 
One proposal to overcome this difficulty is to include a few 
well chosen pseudo-states which are not target eigenstates.
The results indicate that with sufficient efforts perhaps 
10-20 %  accuracy can be obtained at intermediate energies using 
this pseudo-state method, but other non-physical effects 
such as the pseudoresonances and pseudothresholds preclude 
the attainment of higher accuracy at the moment. This state­
ment is also relevant to electron scattering by complex atoms 
and ions with more than one electron. "

For the special Rayleigh model the discretum 
contains only the equilibrium eigenvalue X = 0. ( see chapter 
three and Hoare and Rahman (1973/74) ). In a later chapter,
the exact expression for the velocity autocorrelation function 
S^(X) is obtained for the special model. Ve were able to test 
the 'pseudo-eigenstate* approximation by calculating from 
numerical eigenvalues for y = 1 and comparing the
result with the exact solution. To within about 10-15 %  
the results agree and as expected the agreement is worse for 
small times. This detailed study may also be of some interest 
to physicists working in Quantum theory and elsewhere where 
the continuum plays a very important part.

Section 2.5. Numerical Analysis

In order to aproach the 'accurate numerical' eigenvalues we 
used the drawing in tliree dimension of the symmetric
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Figure 2

\ \ \ V .

m

The kernel G(x|y) for mass ratio y = 0.5.
The vertical scale is arbitrary, the x and y 
intervals plotted run from -10 to +10 with the 
origin at centre of the diagram. Note the symmetric 
nature of the kernel.
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kernel g(x|y). Using these diagrams, the actual range is 
choosen such that the values of the kernel outside the range 
are too small to be of computer significance ( using * single 
precision' GDC arithatic). Next the eigenvalues and eigenvec­
tors of interest are computed by using a small number of 
mesh points ( N <̂ 5̂0) &nd the range. From this initial study 
it is possible to find the smallest possible value of the range 
such that all eigenvectors corresponding to eigenvalues of 
interest are 'non-zero' only outŝ Ao. ; this range. Finally by 
using this range and a large number of intervals, the 
eigenvectors and eigenvalues are computed. It was possible to 
use up to 400 intervals.

The eigenvalue subroutines were from the NAG 
Library and all computations were performed on the University 
of London Computer Centre ( U.L.G.C. ) CDC 7600 machine. The 
U.L.C.C. 'SYMVU' package was used to produce the drawings of 
the symmetric kernel. The special case y = 1 was used 
throughout as a test case to check the routines and the 
numerical results.

Section 2.Go Results and Interpretations

(a) Approach to Brownian motion and Eigenvalue Spectrum

In order to make the comparision between the numerical eigenf­
unctions and the R-F-Planck solutions ( 2.35 ) , the
latter set of functions have been used as a basis to expand 
the eigenfunctions ^^(x) and look for the ' impurity ' 
present in each Fourier-Hermite component. Tables are
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Caption For Tables I to VI

Eayleigh-Eigenfunctions in the Hermite representation. 

Each column gives the expansion coefficients for the 

eigenfunction with respect to the set

The dashes indicate values absorbed into the continuum.
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Converged Numerical Eigenvalues of the Rayleigh 
Kernel as a function of mass ratio y. The time 
is scaled according to ( 2,34 ) and in this: units 
the continuum is the region within the dashed 
curve. On the right the eigenvalues are seen 
approaching the integer values predicted hy the- 
Fokker-Planck equation, the effectiveness of this 
approximation decreasing progressively with higher 
indices.
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Figure 4
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is seen to he empty in the region 
0.28
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presented of these results for various values of the mass 
ratio Yo

The approach to Brov/nian motion behaviour with 
decrease in the mass ratio y exhibits itself with progress­
ive convergence of an increasing number of true eigenfunc­
tions to the corresponding Fokker-Hermite basis set functions 
^^(x)• At the same time, begining with the first few eigenva­
lues , the discrete spectrum ( Figure 5 ) steadily conver­
ges to the corresponding Fokker-Planck spectrum. As 
expected in T^time scale do approach integral values
for sufficiently small mass ratios, however, it is impossible 
to make quantitative statements about the R-F-Planck 
approximation from the numerical results. One can say with 
with some certainty that after a long time the relaxation 
of the system would be dominated by the first few discrete 
eigenvalues and therefore the E-F-Planck approximation will 
be good for mass-ratios of value less than about 10*"̂  and 
for aged systems.

• We note from Figure 4 that the emptiness of 
the discretum actually extends over the mass ratio region 
0.28 Y ^oo.

(b) Velocity Autocorrelation Function

Instead of the correct initial solution ( lo57 ) we arrive at 
the approximate solution •

= H(x) + \ aj^fj.(x)exp(-XX ) ( 2 42 )
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with the approximate eigenvalues and the eigenvectors 
. In the above summation we have included all the 

pseudo-eigenstates. In order to obtain the physically interes­
ting velocity autocorrelation function ( in the original 
variables)

8y(t) = ^p(o).p(t)^eg^ ( 2.45 )

where p(t) = - ^V(oo)^

(the second average is over the equilibrium ensemble) 
we have to consider the fundamental initial condition 
P(v,0) . ^(v-v^). Thus

p(o) = and p(t) - V(t)

Therefore,

S y C t )  =  1  d V  Y  P ( v , t ; v p  ( 2 . 4 4  )
•"CO* — CO

In terms of the reduced variables x and equation ( 2.44 ) 
can be expressed in the form

o o xoC-x^/y) fdx x /y  ̂P(x ,x ) /2 kT^' ° j \m  )

—cc>
■.ni= (2kT/TcM)̂ Ê ('C') (2.45 )

rBut from ( 2.42 ) for the initial condition P(x,o)=o(x-x^)
we arrive at the approximate solution:
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( 2.46 )
K(xp

Therefore,

< x (x )/y ‘̂> = E^j^.exp(-\'C)

fC 0‘

( 2.47 )
where oo

®ok dx (x/y^). N(x). ^^(x) ( 2.48 )

— oo
But the eigenvectors can be expanded in terms of the
Fokker-Hermite functions (|)̂ (x) :

|v(x) = ( 2.49 )
with

K(x) = g^(x).
By substituting in ( 2.48 ) it follows that

03

^ok “ } J ~ ' ,  °(x/y^)»
— Oo O

. N^O I (x/yb| ( 2.50 )
J

in Dirac quantum mechanical notation. Using the property (see 
e.g. Schieff 1955 )

<(ol(x/Ybli)^ = + dT,j+l ( 2.51 )
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it follows that

Therefore,

<x(r)A> = y  (l/2)hj_y(x^)exp(-^x)
( 2.55 )

and CO

( 2.54 )
K ®

= a^/2) o exp (
K

by expanding ^^(x ) as in ( 2.49 ) above etc

(c) Electrical Conductivity in Linear Response Regime

To the approximations of the linear response theory (Eubo 
1957) it can be shovm that the admittance cT of an ensemble 
of Rayleigh test-particles of charge e is given by

.00
cr = 0̂  ldt:exp(i(o-c) S^(X) (2.55 )

In the above expression cr̂ is a suitable constant. Using 
( 2.54 ) the above expression becomes

(<r /%) “ / (a^ /2)
it ' ( ^k-

“l‘ ( \  ) ( 2.56 )
( + (0̂ )

K
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(d) I'lumerical Computations

It will suffice here to present a small selection of results 
designed to illustrate the main characteristics of the auto­
correlation function ( for different values of mass ratio y* ) 
and the electrical conductivity.

Autocorrelation Function

Figure 5 shows the full velocity autocorrelation function
S^(“D) for egulihrium fluctuations according to ( 2.54 )•
Mass ratio y takes the values 2°, 2“ ,̂ 2“^,2"’̂ ,2’̂ *,2~^, 2""̂  
and 2*7. The relaxation process slows down as the
mass ratio decreases because the discretum eigenvalues
begin to dominate. The autocorrelation function for mass ratio 
•—P —%2"“ and 2"^ is nearly the same as one would expect from the 

presence of effectively one discrete eigenvalue. The autocorre­
lation function for 2”'̂ is nearly identical to the result 
one would obtain if the process was described by the 
Rayleigh-FoMcer Planck approximation i.e.

Ŝ ĈX) ^  (l/2).exp(-4Y.x) ( 2.57 )

with Y = 2"^.

Electrical Conductivity

Figure 6 shows the real and imaginary parts of the complex 
admittance cr as functions of the frequency of the applied 
field. The results, plotted in dimensionless form in Figure 6
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are seen to correspond broadly to physical intuition. Thus 
the dissipative component [Ee. (CT)] representing the 
transmission of energy to the heat-bath, is maximum under 
dc conditions ( and takes increasing values with decreasing 
mass ratio y ) and falls with a bell-shaped decay to zero 
at higher frequencies. There is no sign of resonance and 
frequencies much higher than the mean collision frequency are 
required for the dissipation to be effectively zero. The 
gamma-one curve decays very slowly relative to other curves.
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CHAPTER THREE

SINGULAR EIGEHFUITCTIQN SOLUTION OF THE SPECIAL MODEL

Section 3olo Statistical Models In One Dimension

In one dimension the most extensively studied statistical 
dynamical model is probably the system of hard rods which can 
conveniently be called the Japsen modelo Some of the properties 
of this model were considered by Frisch and others ( Frisch 
1956; Teramoto and Suzuki 1955)° But the most detailed 
analysis, involving considerable mathematical ingenuity, was 
presented by Jsps<sa (1965)» Later the model was studied by 
Lebowitz and Perçus (1966) from the point of view of the 
kinetic equation and density expansion. Briefly the model can 
be described as an assembly of N hard rods, all of equal mass, 
constrained to move along a line like beads in an abacus. The 
rods do not penetrate each other, so that they retain their 
ordering along the line. When two rods collide, their energy 
and momentum are conserved so that they merely exchange 
velocities.

In order to study non-equilibrium systems, any 
realistic programme would naturally contain a 'fundamental 
statistical' assumption. For example, to obtain a deeper 
understanding of some of the phenomena associated with Brownian 
motion. Ford and others (1965) considered a chain of coupled 
harmonic oscillators, where the initial co-ordinates and momen­
ta of the heat-bath 'oscillator-assembly* were assumed to be 
distributed according to the canonical ensemble.
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Jepson (1965) assumed 'Poincare cycle-pseudostochastic' 
behaviour for the hard rod system and gave general formulae for 
the non-equilibrium properties. It was seen earlier that in 
the Rayleigh model the notional heat-bath particles were 
assumed to provide an aspect of molecular chaos with which 
the test-particles in form of 'Rayleigh Pistons' interacted and 
thus came to equilibrium.

An alternative to the Japsen model in one 
dimension is the special Rayleigh model. This model is the 
Rayleigh model with the psirameter y set equal to one and 
allowing for the possibility of heat-baths other then the 
Maxwellian. Although the hard rod system is a true N-body 
statistical model, nevertheless, by its very nature, it cannot 
lead to 'true' relaxation. But certain 'ergodic properties' 
can be studied quite conveniently. It is clear that given a set 
of velocities for the hard rods; the property of velocity 
exchange on collisions leads to the conclusion that the veloci­
ty distribution set must remain fixed for all time. But a 
single labelled test-particle must evolve according to some 
time dependent position-velocity distribution function. In this 
way, the labelled test-rod system admits both the time 
velocity relaxation and equilibrium fluctuations as well as 
giving a well defined approach to Brownian motion in the limit 
of very heavy system particles. Kuscer and Williams (1967 ) 
have pointed out the fundamental distinction between this two 
statistical models.

It must not be forgotten that the Rayleigh 
model is based on the Markovian assumption. In our view the
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Lebowitz and Perçus ( 1967 ) approach to the Jap sen model 
provides the best connection between these two models. By 
considering the spatially homogeneous non-Markovian kinetic 
equation obtained by the authors and its expansion in powers 
of density, it is immediately apparent, that to the first order 
in density the equation describes a Markovian transport 
equation. This transport equation is precisely the Master 
equation for the special Rayleigh model. Strangely the authors 
do not seem to have considered the first-order solution. The 
whole of our problem consists in finding the exact solution of 
this first-order equation. In chapter five the corresponding 
spatially dependent equation is considered.

In this chapter the exact eigenfunctions of the 
singular integral equation for the special model have been 
found. These functions turn out to be a remarkable class of 
'Schwartz distributions' forming a basis set for the expansion 
of more general initial conditions with 'non-Lg* character.
By considering different heat-baths, a wide class of singular 
solutions can be found, satisfying the general orthogonality 
and completeness conditions. In all cases it is: also possible 
to reduce the crucial pseudofunctions to more explicitly 
defined generalised functions.

Section 3.2. Special Rayleigh Model

We consider an ensemble of Rayleigh test-particles interacting 
with heat-bath particles of equal mass which provide the 
molecular chaos required for the relaxation process. The
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heat-bath. distribution is defined quite generally as h^(V) 
and normalised to unity. From our previous calculations for the 
gereral Rayleigh model the transition kernel can be written 
immediately as

The transport equation follows as
00

. C h^(V) \ d V  IV-V'IP(V',t) - Z(V).P(V,t)
dt \ ( 3.2 )

— oo
where the collision number function

00

Z(V) = C IdV'lV-V'l hg(V') (5.3 )

-1 -1
C is the frequency factor with dimensions (time) .(velocity)

In order to simplify the analysis it is convenient to 
introduce reduced variables. By analogy with the general 
problem, discussed in chapter two, the following scaled variab­
les are introduced:

X = V/tu'̂ ?o

y = ( 5.4 )

X  = Z(0)t 
where ^

Z(0) = 20 \Vh^(V)dV
= CV^ ° (5.5 )



60 -

is the mean speed. By introducing

P(x,x) = P(x#gX, V z ( 0 )  ) ( 3 , 6  )
the transport equation in reduced variables becomes

CO
>iP(x,-c) ^ (

  = h^Cx) \ dylx-ylP(y,-c) - z(x)P(x,t) ( 5.7 )
—  CO

where by definition
^  -J
4p(x) = n H^(x)

= h^(x^V^x) ) ( 3.8 )

Note that ( 5«7 ) represents a well defined transport
equation with the probability conservation law:

CO CD CO

^dxP(x,r) = Idx H^(x) = \dxh^(x)/7i^ = 1 ( $.9 )
- oo J-CO - CO

The scaled transition kernel and the scaled collision
function z(x) are related by the relationship

00

z(x) = ^dy k(x|y)
-05̂ 00

dy |x-yÆ (y) ( 3.10 )
-CP

Thus consistency with the reduced variables ( 2.14 ) in case
of Maxwellian distribution has been maintained. It is worth 
noting that:

Iho(x) > 0, - 00 ^ X < 00
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&o(-x) = ho(x)

z(o) = ly h^(y) dy = 1 ( 3.11
—  CO

z(x)— > as X — ^00 ( $.12

z*(x) = 2 ^^(y)dy ( 3*13
Jo

z"(x) = 2h^(x) ( $.14
To these we may add further obvious consequences

z(x) - xz'(x)—  ̂0 as X —^ oo ( $.15

z(x) = 1 + h^(o)x^ + O(x^) ( $.16

Section $.$. Eigenvalue Problem

The symmetry properties of the kernel k(x|y) play a crucial role 
in the physics of the model and for mathematical purposes. 
Using the relationship

|x-y| = max( |x| , |y() - sgn(x) . sgn(y) ,min( lx| , |y( )
(even) (odd)

( 3.17 )
(see figure 7 ) the transport equation ( $.7 ) can be
written in terms of the odd and even components. Using the 
decomposition;

=(P(x ,T) + P(-X,X) )/2
( 3.18 )

Pggx,X) =(P(x ,t) - P(~x ,x ) )/2
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and the somewhat nnfajiiiliar relationship ( 5*17 ) we have

oPp^(x,r) f.
ÿ — -----  = 2hQ(x) I dy Pg^(y,T).max( 1x1 , y ) - z(x)Pg^(x,c)

( 3.19a )
and

œ
,(X,X)  ̂ A (  = -2sgn(x)h^(x) \min(\x\, y ).P^^(y,x)dy

■̂ o
- z(x)P̂ (̂x,*c:) ( 5* 19b )

The physical significance of the above is that whereas 
Pg^(x,x) = P()xl,x)/2 is in effect the distribution function 
for speeds in the relaxing ensemble, the quantity 
(|)(x,x) = Ix |P^^(x ,t ) determines the flux of particles with 
speed in the range d|x| about x at a given time. From this 
we obtain by integration, the net flux <̂ (X) as a function of 
time

r(j)(r) = 2 lxP^^(x,x) ( 5.20 )
4)

<x(r)>

(Note that positive values indicate an excess current to the 
right, negative to the left). As indicated, this quantity is 
identical in one dimension with the time-dependent mean- 
velocity. The heat-bath distribution being strictly even, all
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the above quantities related to must decay to zero at
infinite time.

The Maxwellian Heat-hath

For later reference, and to connect with our earlier work 
( Hoare and Rahman 1975/74- ) we may summarise here the special 
forms taken by the above relationships in case of the Maxi^elli- 
an heat-bath. Given the Gaussian velocity distribution 
h^(x) = exp(-x^), we have

z(x) = exp(-x^) + TT̂ x erf(x) ( 5.21 )

z*(x) = %2erf(x) ( 5.22 )

pz“(x) = 2 exp(-x )  ̂ 2.23 )

It may be noted that, for the Maxwellian case alone we have the 
strict identity:

z(x) = z"(x)/2 + xz*(x) ( 5*24- )

The following properties may also be seen to be 
independent of the particular specification of the heat-bath 
distribution.(As we have seen in chapter one the first property 
below is necessary in order to cast the eigenvalue problem 
into self-adjoint form ( see (1.26 ) ) . )
(a) The kernel satisfies detailed balance condition for 
reversed collisions: ■'
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îi^(x).k(x|y) *= îi^(y).k(y|x) ( 5-25 )

(b) The kernel satisfies inverse collision symmetry:

k(x|-y) = k(-x|y) ( 5-26 )

(c) The function^h^Cx), by virtue of (a) above satisfies 
equation ( 3-7 ) with left hand side zero. Thus
P(x,oo) * Eg(x) is a time independent solution for the equilib­
rium ensemble. This evidently corresponds to the eigenvalue
X. = 0 o

(d) The spectrum divides into regular and singular branches.
The singular brach, corresponding to non-Pg eigenfunctions, 
may fill the interval (1 ,oo), the totality of points for 
which there exists roots satisfying z(+x^) = X.

(e) The Discrete Spectrum

The eigenvalue problem of equation ( 3*7 ) follows by the
substitution

P(x ,t:) = f(x,X)exp(-XC) ( 5-27 )

( z(x) - X)f(x,X) = ̂ h^(x) ^dyjx-yj f(y,X) ( 5.28 )
-CO

In order to prove the emptiness of the discretum, it is 
convenient to work with the following unsymmetric equation, 
obtained by substituting

f(x,X) = ĥ (x)(})(x,\) ( 5-29 )
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in equation ( 3«7 );
CO

( z(x) - X)^(x,\) = ^dylx-y| (j)(y,X)ĥ (y)
oo

( 5.50 )
—  00

On differentiating the above equation twice and using the 
identity

|x-y| = 2<f(x-y) (5*31 )
dx^

we have

( z(x) -X)({)"(x,X) + 2z'(x)^*(x) = 0  ( 3.32 )

So long as X< 1 this is an elementary equation with the 
general solution:

(j)(x,X) = A^dy/( z(x)-X)^ + B ( 5.53 )
o

The boundary conditions can be recovered from the integral
equation ( 3-30 ) sund its once differentiated form:

oo

z'(x)^(x,X) + (j)*(x).(z(x)-X) = \dysgn(x-y) .h (y)(|)(y,X)A,
O

-GO ( 3 . 3 4  )

By setting x = 0 in ( 3-30 ) and ( 3*34- ) one obtains
CO

(l-X)^(o,X) = ^dy|y|h^(y).(|)(y,X) _ ( 3.33& )
~ CO ^ 0 0

(l-X)cj)»(o,X) = - f dysgn(y)h^(y)(j)(y,X) ( 3*33b )
■CD
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Recognising that the terms in A and B are odd and even 
components of the solution respectively, we obtain the conditi­
ons

(l-X)B = B ( 3.36a )
00

A/(l-X) = A/(l-X) -A z'(oo). \dy/( z(y)-X)^
0

( 3.36b )
where we had to use the relatioship:

2 |dyh (y).i dx_______  ̂ z*(oo) 1 dy
( z(x)-X)^ ]( z(y)-X)^ (1-X)

( 3.37 )

From above it follows that A=B=0 if X / 0 or B is arbitra­
ry and A=0 if X=0.( Eoare and Rahman 1973/74- ). Hence the 
discretum is empty except for X=0 eigenvalue, which correspon­
ds to the equilibrium distribution. The singular eigenfunctio­
ns are considered in section five.

Section 3o4-o The Singular Eigenfunctions : Case's Method

For those not familiar with singular integral equations it is 
probably necessary to point out the singular nature of the 
eigenvalue problem ( 3-30 ). These equations may be treated
with the well loiora method, which , introduced by Carleman 
in a particular case in 1922, were remarkably generalised and 
standardised in a monograph by N.I.Mushkhelishvili (1953). la 
this monograph, only the singular equations involving Cauchy 
principal values were examined, hence it is natural to call

this the theory of Cauchy singular integral equations.
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In I960, Case presented an interesting method 
for handling problems connected with the neutron transport 
equation. In the paper, he demonstrated that the typical 
problems of neutron transport theory can be solved by finding 
a complete set of ‘elementary solutions* consisting of 
distributionso The general solution then follows by superpo­
sition of these solutions and by imposing boundary conditions. 
Zelazny, Kuszell amd Mika (i960) have successfully applied the 
method to other problems, namely, the solution of the 
criticalt^ problem with anisotropic scattering. The results 
of this applications seem to be satisfactory provided that the 
investigated equation does not differ too much from the one- 
speed transport equation treated by Case (I960). ( In essence 
the equation is always of Cauchy singular integral type.)

The basic principles are quite straightforward 
and can be illustrated by considering the homogeneous one- 
speed transport equation. It is not intended here to repeat all 
the steps of the proof but rather to present a brief descripti­
on of the method. ( The standard reference to linear transport 
theory is a monograph by E.ri.Case and P.P.Zweifel 1967.) This 
will serve the following useful purposes:

(i) The description will give the reader an impression of the 
method.
(ii) Equation ( ' $.19 ) will be solved by looking for 
* elementary solutions* by analogy with Case*s method.
(iii) All the comments one can make about the validity of the 
procedure for solving the one-speed transport equation apply
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equally to the method of solving equation ( $.19 ) by the
singular eigenfunction method*
(iv) Thus we shall be in a position to understand the difficul­
ties involved in solving equation ( $.19 ) by the singular
eigenfunction method.

The one-speed homogeneous linear transport
equation is

= c/2. \ ( 3.58 )
Ox J*̂l

where x is a real variable and p ranges over the interval 
-1 ̂  p< +1. By separation of variables in the form:

= 2(x).<j)(̂ ) ( 3.39 )

the problem reduces to the pair of equations:

/
= c/2 V \ {j)̂ (p*)dp* ( $.40 )

“ I

~  - ̂ v/ ( $.41 )
Ô X

A possible solution is assumed to be normalised by 
,+l

( 3.42 )

provided that the left-hand side does not vanish. Apart from a 
constant factor, equation ( $.41 ) has a solution
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Xy = exp(-x/v) ( 5.43 )

and equation ( 3.40 ) becomes

(v-#) = c/2 V ( 3.44 )

Now there are two possibilities:
(a) If V does not lie between -1 and +1 on the real line then

= c/2 .( v/(v-n) ) ( 3.45 )

The normalisation condition yields two solutions (c/l)

= 'j>o+ (ti)exp(+ x/ Vq ) ( 3.45a )
where

k  .(P) ■ f • - ^  ( 5.46b )
(b) If V is a real number between -1 and +1 then

(})^(n)=|p.^ + X(v).(f (v-ix) (3.47 )

where P.l/x indicates the distribution "principal part of 
1/x*. The constant ?v(v) is determined by the normalisation 
condition ( 5.42 ):

+ 1
X(v) =1- g V ^ dp/(v~p) ( 5.48 )

-I
Then , .

T  (xyiO = (|) (p)exp(-x/v) ( 5.49 )
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The solutions ( 3.45 ) and ( $.47 ) are called eigenfuncti­
ons ’in analogy with ordinary terminology’. The corresponding 
values of v are called discrete and continnum eigenvalues.

Next, orthogonality and completeness theorems 
for the eigenfunctions are proved, and their normalisation is 
obtained.
(i) Orthogonality;
Follows quite simply if we use the proof presented in chapter 
one ( l.$9 )

|y- - ( 3.50 )
-I

Note that the proof involves product of distributions.
(ii) Normalisation
The normalisation integral is the value of the integral in
( $.$0 ) when v =v*. For the discrete eigenvalues no
difficulties arise in the definition or the computation. To
make the discussion clear we quote from ’ Linear Transport
Theory’ by N.M.Case and P.FoZweifel (1967) (see page 69.):
"To obtain normalisation integral for the continuum modes, it 
is necessary to proceed with more care, since the distribution 
functions which appear in the continuum eigenfunctions are not 
square integrable. However, it is possible to define normalis­
ation integrals in the following sense :

We wish to use the normalisation integrals to evaluate the 
the coefficients in the expansion of an arbitrary function

f(p) = ^A(v')(j)^,(p)dv* (9)
-(

Multiplying by (p) and integrating we find that



72

>\ +1
P<j)y(|J.)f(p)dp = dp (10)

-I -I -1
Then the left hand side of equation (10) is defined, in analogy 
with the usual case, to be the product of A(v) with the 
normalisation constant N(v)* Thus

•V\
H(v) = i \ ti(f) (ii) A(v')|) ,(n)du' dix (11)

A(v) J . •— \
We have emphasised this point because this is one of those 
rare situations in physics, in which the order of integration 
is important ( because of the singular nature of the functions

(p)o )e*e.ao««o* tlo o o o • o o

By using the Poincare*- Bertrand formula the 
above double integral is evaluated and the following relations­
hip is ascertained:

4-\
\dp p = N(v)(f(v-v*) ( 5.51 )
-I

where N(v) =v( A^(v) + (%cv/2)^ ). This relationship is
said to be symbolic.

(iii) Completeness
A proof is given that a function ^(p), which satisfies some 
suitable Holder conditions, can be written in the form:

+ U(v)<|)/n)dv ( 3.52 )
-I

where a^^, a^_ and A(v) are expansion coefficients. A(v) is
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presumed, to satisfy suitable Holder conditions. These expansion 
coefficients are found by inserting ( $.47 ) in formula
( $.52 ) and considering the resulting equation to be a
singular integral equation for the unlmown function A(v),
( Which is solved by methods given in the monograph by 
N. I. Mushkhvili 195$. ) Once it can be proved that A(v) 
exists , then the orthogonality property can be used to find 
the acutal expression for A(v). For example

A(v) i-—  • \ dn (x(|) (n)(})(|x) ( 3.53 )
N(v) J

-I
where N(v) is the function given in ( $.$1 ).

At this point, having presented Case’s method in 
outline only, we quote from Hagelbroek’s thesis (197$) all the 
objections he raises against Case's method.

"(i) The choise of the additional solutions X(v)^(v-p) of 
equation ( $.44 ) in case -1 < v <+1 is quite arbitrary.
The reason for this choice seems to be that equation ( 3.44 )
as an equation for an unknown distribution admits the solution 
written dov̂ n above. But it does not seem clear why one has to 
have recourse to distribution theory.

(ii) The eigenfunctions (j)̂ given in ( 3.47 ) have been
obtained for fixed values of v amd make sense only if they are 
applied to functions of p. It seems surprising that they can 
be applied to functions of v for fixed values of p.

(iii) The relations ($*50 ) and ($.$1 ), and also the 
procedure by which these relations are obtained are quite 
embarra.sing since the product of distributions has not been 
defined.
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(iv) The function u appears many times in expressions which 
look like inner products ( cf* ($.51 ), (3.5$ ) ). The
function p is called in these cases a weight function by Case 
and others, though it is not non-negative definite. It is 
surprising that such a weight function does not give rise to 
serious difficulties.

(v) The completeness of the set of eigenfunctions (j)̂ is
proved for functions which satisfy suitable Holder conditions,
but an expansion of the type ( $.52 ) is also given and
used for the delta function.

(vi) It is tacitly assumed that, given b and . B(v)
( = to+y^+(x,P)+to_ o_(x,ti)+ J b (v ) y(x,ix)dv ),
the function ^x,p) will be itself a solution of equation 
( $.$8 ) .  "

Hagelbroek did not deny the results obtained by the method, his 
objective was to make the method more rigorous. In the next 
section the method is applied to find the solution of equation 
( $.19 ). The objections raised above will naturally apply to 
the solution obtained below.

Section 3o5o Singular Eigenfunctions of the Special Model

(A) Eigenvalue Equations

As we have outlined above, the solutions of eigenvalue equatio­
ns, corresponding to the uncoupled transport equation
( 3-7 ),

r  .
(z(x) -A)^gy(x,\) =  2 jdymaxC| X | ,  y  ^  ^  ^
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and

r
/

( 2(x)-X)(}) ,(x,A) = -2s0n(x) dymin( (x/ ,y)hĵ (y)(}î (̂y,A)
)

( 3.55 )
obtained by making the substitution

Pg^(x,x) = B^(x)^)g^(x,X)expC-XT) ( 3.56 )

in ( 3.19a) and

P»j(x,TO ='&.(x)^ioa(x,A)e%p(-Ac) (3.57 )

in ( $.19b ), while radically altered in the continuum X >  1, 
may nevertheless be interpreted satisfactorily within the 
realm of generalised functions. Recalling that the generalised 
solution to

x*̂ P(x) = 1  ( 5.58a )

P(x) = pf.1/%% + Va^(S^(x) ( 3.58b )
Kt=o

where 6̂ (x) is the k^^ derivative of the delta function and 
Pf. designates the pseudofunction corresponding to the Hadama- 
rd finite part of the implied divergent integral. More 
explicitly, we understand the action of the pseudofunction 
above through the functional:

<^f.l/x^, <j)(x̂  = pp. dx(f?(x)/x̂  ( 3.59 )
— CO

where é(x) is a test function ( For details see the standard
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references cited earlier on the theory of distributions aoid 
Appendix C.)

Differentiating equations (3*54 ) and 
( 3.53 ) once, one obtains the following pair of equations:

( z(x) + z'(x)(j)ĝ (x,X) = 2 Jdyĥ (y)(|)g.̂ ,(y,X)
o

( 3.60 )
to

( z(x) -X)(j)̂ (̂x,X) + z'(x)(|)̂ (̂x,X) = -2^[dyhg(y)^Q^(y,X)
X

( 3.61 )
Differentiating the above pair of equations we obtain

F"(x,X)( z(x)-X) + 2z‘(x)F'(x) = 0  ( $.62 )

where F(x,?v) is either (|)̂ .̂ (x,X) or (|)̂ (̂x,X). The above 
equation can, more conveniently, be written in the form:

d( z(x)-X)^F*(x)  ̂ Q ( 3.63 )
dx

Now if G(x) is.; a distribution then G*(x) = 0 has only the
A.solution G(x) = constant i.e. the classical solution ( see 

e.g. Jones 1966 page 89). Therefore,from the above 
equation it follows that

( z ( x ) - x f  if»;^(x,X) = ( 3.64 )
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and

( z(x)-X)^<j)^^(x,X) = Ag ( 5.65 )

where and A^ are constants,

(B) The Even Eigenfunctions

We know that (j)̂  ̂(x,X) must be odd function. Therefore, the 
constant A^= 0 and the solution of ( 3,64 ) can be written as

<î(x-|Xjj )- i(x+|Xj^ ) )

+ (x-lx̂ l )+ <i (x+|x̂ | ) )

( 3.66 )
( Throughout prime denotes differentiation with respect to x. ) 
The identity

<f( z(x)-X) = —  ( (̂ (x-|x>| ) + cî(x+|xJ ) )

( 3.67 )

has been used above. It only holds if |x̂ { / 0, From above
by integration we have

(j)̂ (̂x,X) = A + B^( E(x-|x^j )+H(-x-|x^ ) )

+ C^( (î(x-|x^ )-}-̂ (x-t-|xj ) ) ( 3.68 )

where H(x-y) is the Step-function and A, B^ , and are
integration constants.

In order to find these constants, we
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substitute the solution in the original equation ( 3«>54 )
( 3.63 )' By setting x=o in ( 2.54 ) we obtain

CO
(l-X)A = 2Jdyh^(y)(i)^^(y,X)

= A + B^( z(xp-x^z'(xp ) + 2lx^l h^(xpO^ ( 3.69 )

And from (3.63 ) after lengthy calculations 

B^z'(lx^l ) = C^z"(%^ ) ( 3.70 )

By solving in terms of A the even solution becomes

^ H(x-|x^J )+H(-x-|x^| ) )

+ q(xp^). ( i(x-|x^| ) i-(f(x+|xpj ) ) ] ( 3.71 )

where g (x^) = ) z* (x^)l/z"(x^) ( 3*72 )
The single normalisation constant remains to be determined.

(C) The Odd Eigenfunctions

From equation ( 3*65 )

(|)|̂ (̂x,X) = Pf. ^2 + BgC <̂ (x-|Xjj )+(̂ (x+lXj| ) )
( z(x)-X)2

+ Cp( ^  (x-lxjl )-S (x+|x^| ) ) ( 3.73 )
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because must be even function in x. By integration

~ A^RCxjX) + BgC H(x— jx̂ l )—H(“X — Ix^ ) )

+ CgC ^(x-lx^l )-6(x+lx̂ l ) ) ( 3.74 )

where
R(x,X) = Pfo I dy/( z(y)-X)^ ( 3.73 )

-Jo

In order to find the constants of integration B2 an.d 
we have substituted in equation ( 3*55 ) and ( 3.63 ) the 
above expression for <|)̂ (̂x,X). By setting x=o - we obtain:

Ag/Cl-X) = -2 jdyh^(y)AgE(y,X) -2Bg \dyh^(y) - 20^^(x^)
IX > 1

( 3.75 )

And from equation ( 3.63 ) after lengthy calculations:

BgZ'ClXpJ ) = Cg z"(x^) ( 3.77 )

By using the identity 
.00

2 ̂ dyh^(y)R(y,A) = z*(oo)R(on,A)- X/(l-X) ( 3.78 )

(see Appendix C) equation ( 3*76 ) becomes:

-A^^* (oo)R(oo,X) = B^. (z* (co)«“ z’(îx̂ l) ) +

( 3 .79 )

By solving in terms of Ag the odd solution becomes:
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R(oo,X ).( H(x-\x^ )-HC-x- \ x \̂ ) )

-R(oo,X)q(x^).( (f(x-ixpj )-(f(x+|x̂ | ) ) J

( 3.80 )
g(x^) is defined by equation ( 3.72 ) and the normalisation
constant A^ still remains to be determined.

We are now in the stage of Case’s method where 
(j)̂(|x) had been determined for all values of v. The reader will 
have noticed the complexity of the expressions involved in the 
above singular eigenfunctions. The properties of the pseudofu­
nction R(x,X) have been looked at in detail in Appendix C 
(Hoare and Rahman 1974) •

(D) The Special Case x^ =o

It is very important to realise that the above expressions for 
^gy(x,4) and bold only if |x̂ J y o, where X=s(+Xn^),
If we recognise the identity

1- ( H(x-lx^ )+H(-x-|x^J ) ) = H(x+|XpJ )-H(x-\x^| )

( 3.81 )
then the even eigenfunctions can be imritten in the form:

(|)̂ X̂x,X) = A( H(x+|x^ )-H(x-lxp| )

~q(x̂ ).t{(f(x-|x̂  )+(f(x+|x̂  ) )
( 3.82 )
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It is evident from above that ^g.y(x,o)=0. Later it has been 
proved that the result holds also for the odd eigenfunctions 
with the consequence that the singular branch of the spectrum 
is the open interval (l,oo) rather than the closed interval 
Ll,oo). For general singular eigenvalue problems of the type 
we are considering, it is conceivable that the singular branch 
could be of the form (a,b) or \a,b) or (a,g or [a,b] • A 
point rarely recognised in the standard literature,

(E) Orthogonality Property

The orthogonality property of the eigenfunctions is guaranteed 
as we have seen in chapter one ( 1.24 ) by the detailed
balance condition ( 1.22 ) which is used to find the self 
adjoint integral equation ( 1.26 )•

Nevertheless, because the orthogonality 
relationship involves products of distributions, it is worthwh­
ile to present a direct proof of the relationship. The symmietr­
ie integral equation corresponding to equation ( 3,28 )
has eigenfunctions of the form ( see ( I.30 ) ):

l(x,X) = ( h^(x) )̂ (|)(x,X) ( 3.83 )

4 -We would like to prove that the set ( (h^(x))‘*, ^^(x,\) , 
^od(^i^) ) forms an orthogonal system. This is proved in
Appendix C by calculation of the following integrals:

00

-a> ( 3-84 )
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where
z"(x^)

CO

l2= Cd3iî (x)(j>̂ (̂x,X)(j)̂ (̂x,X') = AgCX) N2(X)i(X-X')
-CO

( 3.85 )

where KgCX) = R(oo,X). M.(X)

r “ .I3 = \dxh^(x)|)g^(x,X) =0 ( 3.86 )
-CÔ

and from the parity property of the above eigenfunctions

CO

( 5.87 )
00

I4 = jaj&^(x)t(i(x,x) = 0
— CD

I3 = ltoo(x)(^^^(:c,X)<j)o^(x,X') = 0 ( 3.88 )
-00

There is a fundamental difference between the normalisation 
integral ( 3,51 ) and the orthogonal integrals and •
The former is purely a s;̂ rmbolic relationship and the latter 
is obtained by actual multiplication and integration.

(F) The Completeness Property

The problem of completeness of the orthogonal set of functions 
above, like that for other singular* solutions in transport the­
ory is by no means clear-cut* It is not at all evident 
precisely what space is acually spanned by the singular
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eigenfunctions. ^(x,A), though for practical purposes, a 
space including all * reasonable ' probability distributions 
will be quite adequate. It is evident, nevertheless, that the 
space spanned by the set ( $^(x) , ^(x,X) ), where
^^(x) = h^(x)^ , is more extensive than L2(-oo,e>o) and
certainly includes singular distributions equivalent to 
<f(x“X^) and probably functions in (-00,00) with p ̂  1.

The procedure, as has been explained earlier, is 
to consider the unknovn. function spaces and spanned
by the odd and even singular solutions, with a view to 
giving a constructive proof of completeness over any given 
class of functions.The next section is completely devoted to 
this problem.

Section 3.6. The Completeness Problem for the Eigenfunctions

(i) Completeness for the Even Eigenfunctions

Let g(x) be an arbitrary function ( g(x)e Dg ). Then there
shall exists a coefficient a^ and a function a(X) such that

g(x) = a^^^(x) + la(X)|g^(x,X)h^(x)'^dX ( 3.89 )

As we shall always be interested in initial value problems 
where after a long time P(x,x) must tend-to h^(x)/7i'̂, it is 
convenient to consider only the component of g(x) orthogonal 
to the heat-bath distribution:
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00

s(x) = ti^(x)A'^ + (dXa(X)h^(x)^g,^(x,X) ( 3.90 )

where by definition 
00

(dx( g(x) - h^(x)A^ ) = 0. ( 5.91 )
CO

By substituting the value of in ( 3*90 ) and
Adividing throught by h^(x), the following equation is obtained

r
f(x) = |dx^ w^(x^)z'(x^) - z'(x)w^(x) + 1/TĈ  ( 3.92 )

where f (x)=g(x)/h^(x) aad <On(x) = A(x)a(x).
A transformation from the expansion parameter X to x^ has 
been made with the consequence that w^(x) = *î-o)t (-x). By 
differentiating the above equation with respect to x the 
following First-Order differential equation is obtained:

dw^(x)
---------+ jrv,x;cün
dx

+ P(x)co. (x) = Q(x) ( 3.93 )

where P(x) = d_ (i^( ,z'(x); 5/z"(x) ) ) and
dx

Q(x) = -f *(x)z"(x)/z*(x)^

The solution of equation ( 3*95 ) follows, from the standard
theory of differential equations, as

IKI
^ 1̂ ^^ ^ fdx^z"(x^)f(x^) - z*(|x|)f(x) + p J

0
( 3-94a )
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After substituting co^(x) in (5.92 ) , the integration
constant p is found to be zero. Hence,

IXI
~ Z»(jxi)g(x)/h^(x)^ ( 5.94b )(x) = I 2 [

^ z’d x o n

Thus to find cô (x), only the simple integrability of the func­
tion g(x) is required. The orthogonality of (})̂ (̂x,X) 
distributions is expressed by the integral ( 5*84 ). If
it; is assumed that the order to integration ( see below ) can 
be exchanged then from ( 5.go ) it follows that:

-CD 00

d̂xg(x)(l)ĝ (x,A) ldx(|)ĝ Cx,\)ĥ (x)
-CD —  CD

CD

A(A)4Ki(A)a(\)

r00

I

( 3.95 )

If we integrate the expression on the left hand-side above, 
it can be proved that the same expression as above for o)̂ (x) 
is obtained. Therefore, by actual construction, we have not 
only proved that the even eigendistributions form a complete 
set but it also follows that the normalisation integral can 
be defined by using the orthogonality integral I^ .

The set of distributions( §^(x),$^(x)^^^(x,X) )
where ^^(x) = h^(x)^ and
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E(x+|x^ ) - E(x-)x^ )

•g (x^). ( (f(x~lx̂ | ) + (f(x-r (x̂ l ) )

( 3.96 )
( q(x^) “ z*(|x^l )/z"(x^) ), forms a complete orthonormal
basis set. The orthonormalisation integral is given by:

00
( dxh^(x)(|)^^(x,% ' )<|)̂ (̂x,X) = <f(X-X*) ( 3.97 )
*—00

(ii) The Completeness for the Odd Eigenfunctions

Hoare and Rahman ( 1974 ) found that the proof of completeness 
condition for the odd eigendistributions was troublesome and 
could only be proved in terms of the solution of the Carleman 
equation ( Tricomi 1957 )• The proof required strong assumpti­
ons about the interchangebility of integrals. In chapter four, 
the completeness property is proved by the method of Laplace 
transform in a straightforward way.

Nevertheless, it is worth attempting to prove 
the property by a direct method. Let g-̂ (x) be an arbitrary 
function ( g^(x) e )* B̂.en it is asserted that a coefficie­
nt b(X) must exist, such that:

;  f
g^(x) = hgCx)^ 1 d\'b(X)(})Q̂ (x,X) ( 3.98 )

As we shall always be interested in initial value problems, it
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4is convenient to consider ggCz) - ĝ (̂x) .h^(x) . By substituting 
^od^^’̂ ^ in ( 3.98 ) and defining WgCx) = A^Cx/bCx), we have

(D
A \ p&2(%) = |dx^0J2(xj^)z'(x^)R(x,x^) - z'(x) sgn(x)R(oo, |xl )

/x/'O

- sgn(x)h^(x) » dxĵ R( oo, x^) Cü2(x^) z * (x^)

(  3 . 9 9  )

where R(oo,lx|) is the pseudofunction:

. j:R(oo, X ) = Pf. 1 dy/( z(y)-z(x) )' ( 3.100 )

Rewriting g^Cx) in the form:
CO

AGgCx) = Bî (x) \R(x,x^)z'(x^)o)2(x^) dx^
o /X./

" 2 k  J  B(oo,xpw2(xpdX)^j

( 3-101 )

and integrating, we obtain
DC
SpCy) dy =

—  03

CO
r

% ( y ) dx^W2(x^) z * (x^)R(y, X;»̂) dy
o—  CO CO

+ tcV2 jdXĵ R̂Coo,x̂ )ü}2(x̂ )z*(xĵ ) 
o

z*( lx|)
r
M
dx^R( oo, x^) w (x^) z * (x^)

O ( 3.102 )
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In all these expressions we leave it implicit that the 
quantities R are pseudofunctions and that the taking of 
finite parts is carried out as necessary. The double integral 
above may well not be interchangeable. With a certain 
caution we may invert the order of integration in the crucial 
term. A sufficient condition for this to be possible and one 
adequate for present needs is that the function should
satisfy a Lipschitz condition. In this way one can simplify 
as follows:

CO

— CO CO

0 CD

r
dyh^(y)B(y,x^)

®  03

= z '(x)/2 ^dyw2(y)z'(y)R(x,y)- -n:̂/2^dyz*(y)co2(y)B(oo,y)

r CO

+ Pf. üyw^CyOz'CyO/C z(x)-z(y) )

( 3.103 )

Putting this result back into ( 3.102 ), we arrive by further 
manipulations, not at an explicit expression for w^CA) 
comparable to o)̂ (X) for the even case, but as an integral 
equation for the unknown function. This is, however, readily 
reduced to standard form, in fact to one of the Carleman type. 
( Hoare end Rahman 1974 ). The standardized equation reads

z'(x)h(oo,>:)wp(x) + Pv, f dyWgCy) = q (x) ( 5.104 )
Z"(x) (x-y)
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The Cauchy principal value (Pv.) appearing for the first time 
arises through the basic identity:

Pv.l/t = Pf.E(t)/t - Pf.E(-t)/t ( 5.104 )

( Zemanian 1965 ). Let us define the function 

q^Cx) = 2 fg2(y)dy - 2z*(x)g2(x)  ̂  ̂ 3.105 )
“ CO z”(x)

By defining a(x) = — ( J.IOG )
z"(x)

the solution, in standard form, follows as

CO
Wo(x) = *(=)S2(%) + eA(=) ^

( a^+Tc^). (x-y)

where ( 3.107 )
r -
0(A) dX

_ (A-A (x) )
^  - -1 is the Hilbert transform of the function G(X)= tan” ii/a(A).

(0,Tl)

The Carleman equation is treated rigorously by Muskhelishvili 
(1953)• The existence of the above formal solution , under the 
assumptions mentioned above, is sufficient for present 
purposes to prove the completeness of the - odd eigendistributi­
ons, for an. implicitly defined class of generalised functions.

The method of Laplace transformation gives an
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elegant proof of the completeness of the odd eigendistributions 
( see chapter four ). If we accept that the above proof is 
valid, then the orthogonality property together with the 
Poincane-Bertrand theorem can be used to find explicit 
expression for b(X). From ( 5.98 ) we have

CO CO
A.

oo

od(x,X) = \dxbiQ(x)<j) ,(x,A).
CO - C O I ( 3.108 )

where from ( 5.80 )

= A2(X)( R(x,A) -a(x,A) )
where for convenience, we have defined

( 5.109 )

a(x,A) = E(o o,X).£(E(x-|x^ )-E(-x-|x^j ))

R(oo,X)q(x^). ( cT(x-|x̂ | )-cf(x+|x̂ | )

( 5.110 )
( q(x) = z*(|x|)/z"(x) ).
If the order of integration could be exchanged in ( 3.108 )
then using the orthogonality integral I^ ( 3.85 ) we would
have

CD

d̂xg2(x)(^^^(x,X) = A2(X)^N2(A)b(X)
— oo

From ( 3 «108 ) we have 
.00 1
dxg2(x)(|)od(x,X) = + I dX*b(X*)A2(X)A2(X ')p^

00 o

( 5.111 )

( 5.112a )
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where co / ̂
p y  (dA^(x)A2(A)R(x,\) ldX*A2(A*)b(X*)R(x,7v»)

4 o ( 3.112b )
and cP

^bch^Cx) .( a(x,X)a(x,X*) - a(x,X)R(x,X* )
-CD -a(x,X*)R(x,X) )

( 5.112c )
The order of integration in the second term on the 
left-hand side of ( 5*112c) has been exchanged but the order of 
integration in p^ cannot be exchanged because it involves a 
product of: two pseudofunctions R(x,X) and R(x,X*). ( see page 
68 of the monograph by K.MoCase and P.F.Zweifel 1967.) In 
order to exchange the order of integration in p^ we need a 
Poincare-Bertrand type of formula for our pseudofunctions.

The pseudo function R(x,X) can be written as

R(x,X) = Pfo ldu/( z(u)-z(x^) )^

“ ^regular *** ^singular  ̂5.115a )
where

IKI ( 3.113b )
^singular =  _

Z ' U- X )

= +sgn(x) Pv. 1________ +  sgnCx)
z'(x^)2 /x| - Ix̂ l

(3.113c )
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( see Appendix C for details ). From above it can be seen that 
integration with E(x,X) as an integrand will involve * Cauchy 
principal values Therefore, the only term where integrals 
cannot be exchanged is the term involving ^si^g^lar component 
of R(x,A). In this will be the integral

ly = ( dxsgn(x)h^(x)A^Cx^) 
( lx|- )z'(x^)^

f-*CO

dx^, z * (xp̂ , )Ag(x^, ) sgn(x) 
> ( |x| -(Xp̂ ,! ) z»(xp^,)^

—  Oo

( 3.114 )
( We have used the notation * to show that the integral must 
be understood in the sense of principal values,)( Tricomi 1957) 
In order to exchange the order of integration in the above 
double integral, we note that the Foincar^-Bertrand theorem 
in its most general form states that; ( Tricomi 1957 )

dx |F(xp̂ ,Xp̂ 'f ,x)dxp̂ , 
x-x. ^

r rdxi

- It F(xp^,Xj^,xp

Hence using the theorem.

In =

*.o>
dx

*
r c O

(X-Xĵ )

cCO r
*
C O

dxp̂ , A 2 (X)A2 (A’)b(X* )z"(x)
-(xp^(-x) z’(xp̂ ,)z*(xp̂ )'

( 3.115 )

I

0

dx z’*(x)A2 (X)A2 (A* )b(X')
(x-Xp^).(x-Xp^,). z'(Xp̂ ,)z*(Xp̂ )2

+ D(X)

( 5.116 )
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where

D(X) = îi^(X)Ao(X)^z"(x-)
— '

It follows that when integrals are exchanged an extra term 
D(\) has to be added to the left hand-side of equation( p.lOS ) 
and therefore,

r
\dxg2(x)i|ijj^(x,X) = A g (X )% (X ). ( HgCX) + it^ z" (x ;^ )/z '( |Xj^| )5 )

— CO
(3.118 )

If we define the normalized odd eigendistributi- 
ons ^^(x,X) to be

|^^(x,\) = E(x,\) - a(x,X) )-k(%) (3.119a )
where

------  (3.119b )
( R(oo,X) + It g(oo,X) )

g(x,X) = g(oo,X).|^ E(x-|x^ )-H(-x-|x^| )

+ q(X).( <f(x-|x̂ j )-(f(x+|x^ ) )]

(3.119c )
g(oo,X) = z"(x^)/z*(lx^|

( 5.119d )
a(x,X) = R(oo Jv)g(x,X)

g(oo,X) ( 3oll9e )

q(x^) = z'(|x̂ ĵ )/z"(x^) ( 3*119f )



—  —«

then
CO

/V A /

= <f(X-?t') (3.120 )
—  CO

and ^  ^
b(X) = ldxg2(x)(j)̂ (̂x,X) ( 3.121 )

—  CD
The reason for introducing the function g(x,X) will become 
clear in the next chapter.

Section 3o7o Completeness and Vitali*s Condition

The closure condition of Vitali (1921) ( see Tricomi 1957 
page 95 ) can be stated as follows:

" A necessary and sufficient condition for the completeness of• 
an ON-system of - functions ( (k̂ (x) ) in the entire is
that f .2

22 i |(|)̂ (y)dy j = x-a ( a < x <  b )
rt CD

Although the odd and even eigendistributi ons are not type
being in fact distributions in the sense of' Schwartz, in some 
cases the normalised versions of these functions can be treated 
as ^jg-type of functions. In fact, seemingly strange relationsh­
ips can be derived, which on a closer inspection prove to be 
quite simple, below we present a simple proof that Vitali 
condition holds for both even and odd distributions.

Let f(x,X) denote either the normalised even
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or the odd distributions, ( It should be stated that the 
normalisation integral ( 5*120 ) is a symbolic realationship, ) 
By expanding <f(q-x̂ ) it can be shovm that

co(q-Xg) = 1 dXf(x^,\)f(q,X) (3.122 )
-'l

where the symbolic relationship is 
.00

flXof(Xo,X)f(Xo,X‘) = <î(X-X') ( 3.123 )
— CO

Therefore,
^  , CD .X
dA ( lf(x^,X)dx^ = (dX I f(x,X)dx ( f(q,X)dq
‘ J o  X

I dxdqdXf(x,X)f(q,X) 

rX
= 1 I dxdq (f(x-q)

^ 0 Jo

= (x-a) Q,E,B, (5.124 )
Bor even distributions it can be proved by actual multiplicati­
on and integration that

X, oo

l/7t'̂ ( j*^^(y)'^d7 )^ + (dX (
o

=  X

(3.125 )

For the fundamental initial condition. P(x,o)=d(x-x ) we can now
immediately write 

CO

P(x,x) = [dx|^^(x^,?o|o^(x,X)e“^ h  Èq(x ) A^
r / _ ^N.-XX

( 3.126 )IdXfg^(x.X) ̂ y(x^, X) e-̂ "̂
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In chapter four, the above result is discussed in detail. If 
one could prove the above result for tau equal to zero then 
the completeness of both the even and odd distributions would 
be ascertained. The Laplace transformation method is used in the 
next chapter to prove this result.
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CHAPTER BOUH 

EXACT TRANSFORM SOLUTION OP THE SPECIAL MODEL 

Section 4.1o Introduction

In this chapter, the full range initial value problem for 
velocity relaxation in one dimensional ensemble of Rayleigh 
test-particles is examined for the special Rayleigh model, 
using the Laplace transform method. The explicit solution in 
terms of two independent parity components is obtained. A 
connection has been made with the singular eigendistribution 
method of solving the initial value problem. The even component 
describes the speed relaxation and the odd component provides 
the time dependent flux of particles with the given velocity.

Bearing in mind the difficulties outlined in 
chapter three and the parallels between this situation and that 
encountered in other idealised problems in particle, transport 
theory ( Williams 1971 ) one is tempted to abandon the method 
of singular eigendistributions and revert to a more straightfor­
ward transform method. The result is an exact solution in the 
transform variable, which can easily be expressed in terms of 
integrals over known functions. Although the transform method 
is not encumbered with all the difficulties associated with the 
singular eigendistribution method, it is nevertheless, as we 
shall show, fundamentally equivalent to the method of singular 
eigendistributions.

The fact that these methods are identical,
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follows quite logically if 'distributions* in the sense of
Schwartz are defined as boundary values of analytic functions 

Pin the comjex plane. ( see e.g. Bremerman 1965.) Analytic 
representations of 'distributions* have been investigated by 
Kdthe (1952), Tillman(l961), Sato(l959) and many others. These 
authors rely on techniques from functional analysis and topolog­
ical vector spaces. The simplest discussion of this subject can 
be found in a monograph by H.Bremermaim (1965). The following 
property plays a crucial role in the theory of representations 
of 'distributions' by analytic functions in the complex plane:

Limit ( f(x+ie)-f(x~ie) ) = f(x) for all x ( 4.1 )
e— >0̂

Thus, while it is impossible to represent f(x) as the restricti­
on of an analytic function, any f(x) can be represented by a
jump that f(s) makes as we pass from above the real axis to 
just below the real axis. Thus if T^ is a Schwartz distributi­
on then there exists a function B(s) analytic everywhere
except possibly on the real axis such that:

Limit mx^(x).( B(x+ie)-]r(x-ie) ) = T^,^(x) ̂  ( 4.2 )
e— >0^ J

for any test function <j>(x) of class D . F(s) is called the 
analytic representation of T^*

Recasting equation in the scaled variables x, 
and with the usual definitions given in chapter three, we have 
( see ( 5.4 ) and ( 5*7 ) )
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Figure 8: The Rayleigh Kernel K(x»y) for unit mass ratio and 
Maxwellian heat-bath. The vertical scale is 
arbitrary, the x and y intervals plotted from -10 
to +10 with the origin at the centre. Note the 
discontinuity of the first derivative visible along 
the diagonal.



àP„„(x,-c)

- 100 -
CD

max( |xi ,y)Pg^(y,x) - z(x)P^^(x,X)

S -co

dymin( 1 xl ,y)P^j^(y,X) 
o

-z(x )Pq^(x ,x )

( 4.3a )

( 4.3b )

Although it is possible to work with the uncoupled equation 
( 3o7 ) and arbitrary initial condition P(x,o), it has
proved to be more convenient to work with the fundamental 
initial condition P(x,o) = <S(x-Xq ) and the above pair of • 
equations.( see Barker et al 1977 for the alternative approach) 
By using the superposition principle one can always find the 
solution for arbitrary initial condition . P(x,o) once the 
solution for the fundamental initial condition is knowuo

In the next section, the method of Laplace 
transform is applied successively to ( 4.3a ) and ( 4.3b )
with P(x, o) = ^(x-x^)

Section 4.2* The Laplace Transform Solution 

(a) IX’-en Solution

By making a further change of the dependent variable

P (x,x) = hg(x)fg^(x,x) ( 4.4 )
the even component of the transport equation becomes
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àfĝ (x,-c) r A
^ ------ = 2 l dymax(lxl ,y)h^(y)fg^(y,t)- z(x)fg^(x,x)

( 4.5 )
with the initial conditions:

Pgy(z,o) = l.( i(x-x^)+^(x+x^) )
2

( 4.6 )

fg^(x,x) = Pg^(x,o)/h^(x)

The Laplace transform can be defined compactly in operator form 
as

Lfg^(x,x) = fgy(x,s)

00

[dxexp(-sr)fg^(x,r) ( 4.7 )
and the inverse transform as ^

(T̂ ICO

L“^f^^(x,s) =_1__ \ dsexp(sT)f^^(x,s)
2n± ^

cT>o

= f e-ÿ(x,T) ( 4.8 )

Applying the transform operator to ( 4.5 ) one obtains
oo

( z(x)+s )fg^(x,s) - 2 ^dymax(|xt,y)h^(y)fg^(y,s) = fg^(x,o)

( 4.9 )

To show that the above integral equation can be solved
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exactly, it is convenient to reduce it first to a differential 
equation. Differentiating with respect to x twice and making 
use of the identity

2 I x-yl = Z^(x-y) ( 4.10 )
dx

one finds after some rearrangements and simplifications

f^y(x,s) + 2z'(x)f^y(x,s)/( z(x)+s ) = P^y(x,o)
hg(x^)( z(x)+s) )

( 4.11 )

The primes indicating differentiation with respect to x. The 
classical solution of equation ( 4.11 ) is given by

U(x,s) = A(s)/( z(x)+s ( 4.12 )

where A(s) is function of s: only. The general solution of 
( 4.11 ) follows as

fèy(%,s) = U(x,s)V(x,s) ( 4.15 )

where
1 . (V'(x,s) = - i _  • C-- ------- S2_J  >

U(x,s) ^ s(x)+s ) ^
( )

where having found fgy(x,s) we shall integrate it to obtain
fgy(x,s). In order to find V(x,s) one requires the following 
identities:
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( z(x)+s )P^y(x,o) = ( z(Xjj)+s )P^y(x,o) - tz'(x^)\P^^(x,o)

( 4.15 )
where

( ,.16 )
2

and-

( z(x)+s )P^^(x,o) = ( z(xp+s )P^^(x,o)- 2|z'(x̂ )l P^^(x,o)

+ â^(x^)Pg^(x,o)

( 4.17 )
Therefore,

■ « i ) v v  L '

- 2lz'(xpiP;^(x,o) + ^^(xp?g^(x,o)'^

( 4.18 )
In this form V*(x,s) can easily be integrated to give

r ( %(%o)+s (='°) - 2 z<4xpp;^(x,o)
h„(x„)O' O'

+ ( H(x-Xjj)+H(x+x^) ) + B(s)

( 4.19 ■ )
where B(s) is a constant of integration.
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Therefore,

f^^(x,s) = (z(x^)+s)f;^(x,o) - 2tz'(Xp)l ?og(x,o)
(z(x)+a)^h.^(x^) (z(x)+s)^h^(x^)

+ H(x~x^)+H(x+x^) + C(s)
(z(x)+s)^ (z(x)+s)^

( 4.20 )

where C(s) = A(s)B(s), However, C(s) must be zero because 
fg.y(x,s) is an odd function of x and (z(x)+s) is even function 
of X .

In order to integrate fg.^(x,s), the following 
identity is required:

+ 2|z'(xpiP^^(x,o) ,  ̂ __ ,Q 4.21 J
(z(x)+s) (z(XgO+s) (z(x^)+s)^

which simplifies f^^(x,s) to give

f;^(x,s) = Fèy(%'°) + E(x-x^)+H(x+x^)
(z(x^)+s)hp(x^) (z(x)+s)2

Simple integration gives
( 4.22 )

 ^  +  DCs)
(z(xo)+s)ho(xo) J  (z(u)+s)^

/?>«xOK.'jiXt>l) ( ^•25 )
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where D(s) is a constant of integration. D(s) is found by- 
substituting fg.y.(x,s) from above into ( 4.9 )• For this
substitution the following integral is required:

S. <30 ^ OO
dymaxC ixl ,y)h (y) \ dt/(z(t)+s)^ = max( , txj )

O J ,  ̂ \ (z(x )+s)

r
+ (z(x)+s) \ dt/(z(t)+s) - I/tt"̂

( 4.24 )

After the substitution D(s) is found to be

D(s) = l/s%2 ( 4.25 )

Therefore,
oo^ev(X'S) = ^o^^^ - h (x) \ dt/(z(t)+s)2 + ^ev^^»^^

\J (z(x) + s)

(4.26 )
where

( 4..27 )

ABy a%)plying the operator iT to ( 4.26 ) one obtains 

Pgy(x,r) *= P^^(x,o)exp(~z(x)*C ) + h^(x)/7[^ -Xh^(x) \ due"^^^^^
rr>a<(t:H,Ui5()

( 4.28 )
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where the relationship:

\du/( z(u)+s)^ = X\ duexpC-z(u)x) ( 4.29 )
0

has been used. This follows quite simply if the order of 
integration on the left hand-side of ( 4.29 ) is exchanged.
In Appendix D this relationship is proved rigorously.

(b) Odd Solution

By making a further change of the the dependent variable

( 4.30 )

the odd component of the transport equation becomes

• fw ^  O c ern f -v^ I Trm 4 -n T t-vl f 4•od
o

— '—  “ - 2sgn(x) j dymin(lxl,y)h„(y)f„^(y,T:)

- z(x)f^^(x,r)
( 4.31 )

with the initial conditions:

?od^x,o) =
( 4.32 )

By applying the operator L to ( 4.51 ) one obtains
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,00

( z(x)+s )f^^(x,s) + 2sgn(x) \ dyiain(lxl,y)h^(y)f^^(y,s)

fod<^x,o)

( 4.54 )
By differentiating twice, as in the case of the even solutions 
above ( see (a) above ), and after some rearrangements and 
simplifications, one finds that

gi(x,s) + 2z'(x)£^d<^x,s)
(z(x)+s) 2(x)+s )

( 4.35 )

From the general theory the solution of this equation is 
given by

£od^x,s) = U(x,s).V(x,a) ( 4.56 )
where the classical solution as in the case of the even 
component is

A(s)TJ(x,s) =
( z(x)+s )' ( 4.37 )

and

V'(x,s)
U(x ,s)Iî (Xq) .( z(x)+s )

( 4.38 )
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In order to integrate ( 4*58 ) one requires the following
identities :

( z(x)+s)P^^(z,o) = ( z(x^)+s)P^^(x,o) - |z'(Xp)| Pgy(x,o)

( 4 .59a )
and

( z(x)+s)P^^(x,o) = ( z(x^)+s )P^^(x,o) - 2|z'(xQ)lP^y(x,o)

( 4.59b )
By substituting in (4.38 ) and integrating we have

T(x,s) . ( z(Xo)+8 ) P^a(%,o) _ 2|z ’(Xq)1 Pey(x,o)
A(s)h^(x^j) A(s)h^(x^)

+ H(x-x^)-H(x+x^) + B(s)
A(s)

( 4.40 )

B(s) is a constant of integration.
Therefore,

f'.(x.s) = ( %(%o)+s )fod(%'°) _ 2lz'(xp! Pg^Cx.o)Od' ’  ̂ ^ ----------
( z(x)+s) h^(x^) ( z(x)+s) h^(x^)

+ H(x-x^)-H(x+x^) 4- C(s)
( z(x)+s ( z(x)+s

(4.41 )
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where C(s) = B(s).A(s). 
By using the identity

PpdCx.o) . + 21z'(xp| Pe^(x,o)
( z(x)+s ( z(x )+s)^ ( z(x„)+ s

( 4.42 )
we can re-write ( 4.41 ) in the form:

f^^(x,s) =____ fôd(='0)____________  + E(x-Xo)-H(x-t-x^)
( z(x^j)+s)hjj(xg) ( z(x)+s

+  C(s)
( z(x)+s ( 4.43 )

This equation can easily be integrated to give
rA\?i(nc‘î̂ \XoO

£^g(.'x,s) =   - sgn(x)sgn(x ) \  —  o
\ I (z(u)+s)( z(x^)+s)h^(x^)

D

+ C(s) ^  + DCs)
(z(u)+s)

( 4.44 )

B(s) is a constant of integration which must be zero because 
fod(x,s) is an odd function of x.

In order to find C(s), fo&(x,8) from above is 
substituted in equation ( 4.54 ). By using the following
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integrals

2sgn(x)sgn(x ) \ dymin(lx|,y)h^(y) \ du/( z(u)+s"O' \ )̂ o'
o

-( z(x)+s )sgn(x)sgn(x^) \ du/( z(u)+s

+ Eiin( \xl, Vx̂ \ )sgn(x)sgn(x^) 
( z(x^)+s )

+ TZ^X \ du/( z(u)+ s
o

( 4.45 )
and

2sgn(x) \ dymin(lx| ,y)h^(y) I  dn
J  ( z(u)+s

CD

( z(u)+s )2  l( 2(u)+s )2
D

( 4.46 )

C(s) is found to be

C(s) - Q(%o'S) ( 4.4? )
Q(oo,s)

where by definition:

X

• ( Z):.'?' ‘ * ■ «  >
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We have used the property = z*(co) in the above 
integrals.( see ( 5.13 )• ) By substituting the value of 
C(s) in ( 4.44 ) we obtain

^od(^^G) = - ^od(^)^)_____ - sgn(x)sgn(x^) (  du
^o(^o) ( z(%o)+8) J (z(u)+s)2

+ s) ( 4.49 )
Q(oo,s)

A  ̂ \By applying the operator L"-̂  to h (x)f ,(x,s) one finds; 
that

“ PQ^(x,o)exp(-z(x^)-C )

m!a(\x\j\xoO

- Xsgn(x)sgn(x^)h^(x) \ duexp(-z(u)r )
o

+ h^(x) 1"^ Q(x^,s)Q(x,s)
Q(oo,s)

( 4.50 )

There are many physically interesting results which can be 
obtained by using the above equation without actually finding 
the expression for the inverse of the^complicated product on 
the right-hand side ( Barker et al 1977 )o In the next section, 
the expession for the inverse is calculated in order to
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establish a connection with our previous result in terms of 
pseudofunctions.

Section 4o5. Inverse Transform of the Product

For convenience let

B(x,x^,s) = Q(%o,s)Q(x,s)
Q(oo,s)

( 4.51 )

The existence of the inverse L”^ B(x,x ,s) in equation 
( 4.50 ) must be substantiated before one can find the 
expression for it. For this we need to show that the function 
B(x,x^,s) is of the order 0(s“^) with k > 1, and analytic 
everywhere except along the branch-cut extending from minus 
one to minus infinity along the real line in the complex plane 
( see e.g. Churchill 1958 )• The analyticity condition is 
clearly fulfilled since the terms in the integrand are 
singular only on the branch-cut Re(s) ^  -1. To obtain the 
order in s, we use the bound— to-the*-collision number function

1^ z(x)é 1+%^ X , 

in view of which

|Q(x,s)1 |xl/l(s+l) I ( 4.52 )

.00

\ q ( o o , s ) |  y âSL
(l+s+x^y)^ %J I 8+1 I

( 4.53 )



- 113
Im. s

Re. 3

9_. Contour Diagram for the 
for the inverse transform 
of B(x,Xq,s). The branch-cut 
is shov.d by the dashed lines
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From this it follows immediately that

B(x,x^,s) ( 4.54 )
7ĉ |s+i|5

and the existence of a well defined inverse is assured* The 
contour.-diagram for finding the inverse transform of B(x,x^,s) 
is: shoivn in figure ^ # From the diagram ( see Appendix D )
one can immediately write ;

rL-^ B(x,x„,s) =  i--- \ SK B"(X)- B+(X) )
° 2x1 \

•̂ 1
where

B“(X) - B*(X) * Limit ( B(x,x^,-X-ie)- B(x,x^,-X+ie) )
c ^ o

= 2i Limit ( Im B(x,x^,~7w-ie) ) 
e > o

( )
In Appendix D the following identity is derived

Limit Q(x,-\+ ie) = R(x,X) + iug(x,X) ( 4*56 )
e > o

where R(x^X) is the pseudofunction defined hy ( 5.75 ) and
g(x,X) is defined by ( 3oll9c ):

g(x,X) n» g((X);X). j H(x-|x^ )-H(-x-|XjJ )

-i- q(X).( *̂ (x- Ix^ )- 6(x+ IxJ ) )1
•̂ ( 4*57 a)
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where

and

q(X) = (''x) * ( 4.57c )
Z"(X;̂ )

By simple multiplication

B(x,x^,-X-ie) » Q(x,-X-ie)Q(x^,-X-ie)Q(oo,-X+ie)
Q( oo y -X-ie )Q(co, -X+ie )

( 4 .5 8  )

By using the identity (4.56 ) we have

2i( Im B~(X) ) = 27ii E(x,x^,X) ( 4.59 )

where

E(x,x^,X) = g(oo,X), |^R(x,X)R(x^,X) - ‘n;^g(x^,X)g(x,X)J 
A(X)

- E(oo,X). |^E(x,X)g(xQ,X) + R(x^,X)g(x,X)J 
A(X)"

( 4.60a )
where by definition

A(X) *= R(o d ,X)^ + Ti^g(oo,X)^ ( 4.60b )

Therefore,
00

L“  ̂B(x,XQ,s) = fdXj^z'(xj^)E(x,x^,X)exp(-z(xj^)T:)

° ( 4.61 )
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where the substitution K = z(x, ) is implicit.

In order to write iT B(x,x^,s) in a more 
intelligable form we recall that the odd orthonormalised 
eigendistributions were defined as ( see ( 5*119 ) ):

•od

where

(x,X) = R(x,X) - a(x,X) ). K(x)^ ( 4.62a )

NjCX) .  s L ^ h K l------- . ( 4.62b )
E(oo,X)^ + x^g(oo,X)^

and.
a(x,X) = ( 4.62c )

g(oo,X)

By simple multiplication it can be shov/n that

E(x,x^,s) = - G(Xp,^)g(x,^)
h^(x) g(cK»,X)

( 4.63 )

• OD
Therefore,

h (x)L"^ B(x,x^,s) = \âx^2'(xpe“^^='X^^J^^(x^,X)J^^(x,X)

s(oo,X)

( 4.64 )
In Appendix D it is proved that:
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oo

ydXp̂ z<(xpe‘‘̂ (̂ X̂ '̂  G(x^,X)g(x,X)  ̂ P^^(x,o)
eCoo.x) t^(x)

mm(\)d;i'>̂ oi)

- sgn.(x^)sgn(x) "C ̂ duexp(-z(u) X)

( 4.65 )

Section 4*4. The Complete Solution

A  *1By substituting the expression for L B(x,x^,,s) ( 4.64 )
in equation ( 4.50 ) and. using (4.65 ) it follows
immediately that:

_oo

fod.tK'C) dxj^z'(x^)exp(-z(xpx ) 5o^(x^,^)^o^(x,X)

( 4.66 )
This result connects the Laplace transform solution with the 
result obtained in chapter three by the method of singular 
eigendistributions. ( see (3*126 ). ) The solution in the above
form self-evidently proves the completeness of the odd 
eigendistributions•

Similarly by direct multiplication it is
relatively easy to prove that ( see (4.28 ).)

00

Pg^(x,x) = %(x)/x^ +
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XX)

Pev(x,o)Gxp(-z(xQ)-r) + h^Cx)/# - h^(x)"Cj du ^
r>'̂ (X)C(\xl \̂XoO

where from ( 5.96 ) ( 4-.G7 )

=  g ( c o , X )  £ h (x «  ) - H ( x +  x ^  )

- q(&).( ^̂ (x-ix̂ j )-6(x+;x^ ) )^ ‘

( 4.68 )

The complete solution can now immediately
be written

^oo
P(x ,T) = i(x-x^)e“^^^o^^ + h^(x)/m^ - h^(x) "c\du

. r \ maxO^ij \XoA
miv\V\>c\j \Xo\ ) ^

sgn(x^)sgn(x)h^(x) ̂  du

+ h^(x)L-l B(x,x^,s) ( 4.69 )

For arbitrary initial-condition P(x,o), by the principle 
of superposition, the solution follows in the form:

oo

P(x,t) = P(x^,o)P(x,x^,r) ( 4.70 )

— CO

where P(x,x^,x) is the solution (4.69 ) with the delta
initial condition. More explicitly on integration the solution 
follows in the form:
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P(x ,t ) = P(x, o)exp(—z(x) T ) +
(mixed) (even)

r r “,(x )A^L\

^  (even)
- 2

oo
P„Xv,o)dv du

Pod^^»°)‘3.v du 
(odd)

.00
+ 21î (x)I/“^ /  ■ Q.(x,s) ( Pp^(v,o)Q(v,s)dv'L

L Q(oo,s) J q J

(  4 .7 1  )

In the next chapter, the complete solution is used to obtain 
physical properties of. the model.

The numerical inverse of Laplace transform is 
nowadays quite, straightforward and a number of: excellent 
alogrithms are available. Although as we have showed, the 
inverse integral can be found, in practice, it turns out to be 
more advantageous to apply the straight numerical method of 
finding the inverse transform when pseudofunctions are involved, 
We were thus able to calculate the inverse L"^ B(x,x^,s) 
to an accuracy quite sufficient for illustrating the behaviour 
of the solutions under various initial-conditions. The method 
we employed was the Dubner-Abate (1963) procedure as improved 
by Dubin and Crump ( 1974 ) (see Figure 1 1 ) , For numerical
calculations, we have considered the delta initial condition

A  2and the Maxwellian heat-bath h^(x) = exp(-x ) •



— 120 “

etion 4.5. Barrier Problem by the Laplace Transform method

In past literature, the barrier problems were studied for 
systems where the interactions with a heat-bath can be specifi­
ed in terms of mean collision number and the relaxation 
process can be considered in terms of discrete 'relaxation - 
times*( see e.g. Montroll and Shuler 1958 ). In these 
studies particular attention is paid to the dependence of 
overall rate of reaction ( absorption ) upon both the barrier 
energy and the initial distribution of reactant particles. A 
notable feature of all models so far treated is the existence 
of a characteristic first-order rate constant, with 
exponential dependence on barrier height ( the Arrhenius law . ) 
which can only be justified asymptotically for limitingly 
high barrier energy.

For the singular kinetic process describing 
the special Rayleigh model with absorption barrier, Eoare and 
Rahman ( 1976 ), probably for the first time, presented an 
exact solution. These authors used the method of singular 
eigenfunctions with the associated difficulties. Below the 
problem is solved by applying the transform method which 
again illustrates the simplicity and elegance of the method.

The transport equation for 'absorbing barrier' 
problem in the speed variable can immediately be written down 
if one identifies 2Pg^(x,-c) with P(|xl,x):



 ̂re.y(x,x^,T:)
à -c
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OO

2&o(x)

o

- z(x)Pgy(x,x'^,-c)

o  <  <  X ( 4 . 7 2  )

From above it is apparent that particles exceeding the 
speed-barrier x^ would be removed from the system* In order 
to find î*gy(x,x'̂ ,“c), we have to repeat all the steps taken to 
find the even parity solution. Working with the fundamental 
initial-condition (f(x-x̂ ) and making all the transformations 
it can be shown that:

X
du

(z(xp+s)h^(x^) (z(u)+s)^ 
rrtdxOxyxoi)

+ D(s)

After the relevant substitution D(s) is found to be
( 4 . 7 3  )

D(s) =
2'(x*) ( s + z(x^)-x^z'(x^) )

( z(x'*') + s )

( 4 . 7 4  )
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which finally leads to the solution:

= Pg^(x,x^,o)exp(-z(x^)-C) -h^(x)xl du

max(ixijixoi)

+
Ah (x)
z exp(- z(x‘*‘)X )exp(- x'**z*(x'̂ )r ) 

- exp(-z(x"^)r ) J

( 4.75 )
For the Maxwellian heat-hath we have

P(x,x ,-C) = 2 £ _ (  exp(- e"^r ) - exp(- z(x'^)T ) )
z*(x'*‘)

2 r ’"*+ &(x-Xo)e-:(=o)C _g ^-x ̂  \

( 4.76 )
Results computed from equation ( 4.76 ) with a number of
different initial conditions and barrier heights are
illustrated in Figure 10 • The general content of the above
equation is readily perceived; Eoare and Rahman ( 1976 )
have discussed it in detail, we may note that the Arrhenius
law of reaction kinetics is expressed through the factor 

.2 .2
exp(- exp(-x )T), x representing a reduced activation 
energy and reaction proceeding in accordance with the equlibri- 
um hypothesis.

Similarly the lower barrier problem can be
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barrier (equation ( 4.76 )• ).
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studied quite easily by the transform method.

Figure 10 shows the relaxation of various delta ensembles 
of Rayleigh test-particles in the presence of an absorbing 
barrier ( equation (4o76)). Positions of initial delta 
function, x^, and absorbing barrier, x^, in the four cases are 
(&) 2Cq=0.0, x^=l,5; (b) x^= Oo5,x*^=l*0; (c) Xq=0,0, x***=1.5;
(d) Xq=1.0, x'*'= 1.5.
The vertical arrows represent the decay of the delta function, 
its probability component scaled to unity by the dot. The 
column on the right represents the integrated flux over the 
barrier, scaled to unity by the horizontal bar. The figures 
give the elapsed time in reduced units. Note the interplay 
betv/een three effective time-scales involving;

(i) the decay of the delta function
(ii) relaxation to the Gaussian
(iii) leakage across the barrier.

The distributions of the unabsorbed test-particles are 
effectively Gaussian for 5,0 in cases (a) to (c) and 

1,0 in (d).
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CHAPTER FIVE

SPATIAL TRAI'TSPQRT PROBLETi AND PHYSICAL PROPERTIES OF THE 

SPECIAL RAYIEIGH MODEL 

Section 3»lo Introduction

In this chapter the investigation of the special Rayleigh model 
is continued through a treatment of the spatial transport 
problem. The coupled position-velocity distribution function of 
an inhomogeneous ensemble being, as in higher dimensional 
models, almost out of the question, we shall concentrate on 
the spatial moments, particularly as expressed through the 
Van Hove position-time correlation function G(r,t). Our main 
explicit result will be the derivation of the second spatial 
moment 4. r^(t) ̂  and thus the expression for the 
coefficient of diffusion.

In case of condensed systems, it is usual to 
work in Gaussian approximation, first introduced by 
Vineyard ( 1958 ), in which G(r,t) is assumed to be a Gaussian 
function of position at all times. This approximation is 
3movm to be exact at short times and long times for an arbiora— 
ry system ( Rahman et al 1962 ), and at all times for an 
isotropic harmonic system. ( Van Hove 1954.) Non-Gaussian 
behaviour has been considered by several authors( see e.g.
Desai and Nelkin 1966 ). For mono atomic fluids, the 
corrections arise from dynamical considerations and have been 
studied in the classical limit, where G(r,t) is the
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probability per unit volume of finding an atom at position r 
and at time t, knowing that it was at origin at time t=o.
In this chapter for the special model the non-Gaussian 
behaviour is examined in detail by considering the second and 
the fourth spatial moments. In the Gaussian approximation, 
the knowledge of the second spatial moment would be sufficient 
to determine all the higher spatial moments, however, the 

present calculations show that the non-Gaussian corrections 
at intermediate times are quite significant.

It is well knov/n ( see e.g. Eubo 1957 ) that 
the velocity autocorrelation function yields the self-diffusion 
coefficient for the test-particles. Thus it is very natural to 
consider in this chapter, the autocorrelation function and the 
second spatial moment which are closely related. To the 
approximations of the linear response theory, the admittance cr 
of an ensemble of Rayleigh test-particles, charge e , is 
related by a simple formula to the autocorrelation function. 
Hence, for the special model, together with the autocorrelation 
function, the electrical properties have been presented in this 
chapter.

In the next section all the interesting 
physical properties which can be obtained from the solution of 
the homogeneous equation ( 4.69 ) sre calculated. The first
velocity moment behaviour and the autocorrelation function 
can be obtained by considering only the o ^  component of the 
solution ( 4.69 ). Throughout we shall work with the
fundamental initial condition <$(x-x^) without loss of 
generality.In . section four, the spatial problem is studied.
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Section 3.2. Velocity-Moments and Autocorrelation Function 

(a) Moment Relaxation

Consider first the relaxation of the first moment of the 
velocity distribution, <“x(x)3 • Since

f "  f ”<x(r)) = Idx xp(x,-n) = 2 \ dx xP^^(x,-c) ( 5*1 )
— oo ^

we need perform an integration on the odd part of the solution. 
Taking first the particular case where P(x,o) = ^(x-x^), we 
obtain by direct operation on the solution ( 4.69 )

<x(r)lxj> = x^exp(-z(x^)-C )

- 2 (sgn(x^))^dx xh^(x)^ du

^ o

5 CO&Ag(x) Q(x,s)
W o

( 5.2 )

By using the identity ( see ( 3.15 ) ( 3.14 ) )

-— ( xz*(x) - z(x) ) = 2 X h^(x) ( 5*5 )
dx

both the above integrals simplify on integration by parts:
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CO fnm(ixi,lx:oO
2sgn(x^) j  to X du exp(-z(u)T )

\Xo\
^du(l - *cz(u) )exp(-z(u)T ) 
o

and ( 5.4 )

CO

2 \dx xh^(x) Q(x,s)

with, the result that

s Q ( c o , s )]
( 5.5 )

^x(r)l X S  = \du(l - z(u)Z)exp(-z(u)T )

+ L-1 f  ( i/%i _ sQ(O0,s) )
I Q ( o o , s )

( 5.6 )

However, since by the derivative theorem for Laplace transforms
Xo

sQ(x,s) = L [ L - 4 dy exp(-z(y)-C ) 
6 1 ( 5.7 )

the first integral cancels with the second term in the inverse 
and we obtain the simple result

< x ( x ) l x ^ >  = ( l / 7 i b  L - l /
L Q(c»,s) J

( 5.8 )
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We may note that the identity ( 5*5 ) above leads to

Limit sQ(oo,s) = — )7T;28- ^ OO

which guarantees the correct initial-value result ̂ x(o)l x^ = x^ 
and the multiplication of Q(x^,s)/Q(oo,s) by s and 
taking the limit as s tends to zero confirms that 
^x(oo)& x ^  = o for all x^. Similar result for an arbitrary 

initial condition may be obtained by superposition.

By applying the method of finding the inverse 
transforms involving the function Q(x,s), developed in 
chapter four ( see Appendix D ), we can write

<(x(c)|x^> = - 4  \ dx^z'(x^)exp(-z(xp-C ) (H(x^,X)g(ao,X)
\ A(>0

- E(oo,\)g(x^,X)^

( 5.10 )

The above result can be obtained by using equation ( 4.66 )
which expresses P^^(x,x) ^  terms of eigendistribution:

 ̂ g(oo,X) ^(x^,X)-g(x^,X)R(co,X) 
- A(X) \ g(oo,X)

A
. X h^(x) ( R(x,X)-g(x,X)R(oo,X)

g(oo,X)

( 5.11 )
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By using the identity ( 3®3 ) we can show that

2.̂ dx: ̂ ^(x)x ̂ R(x,X)- ^
g(oo,X)

( 5.12 )
Therefore,

CO

<x(r)lx^> = \ dx̂ z'(xpe-s(%x)'Cg(oa,X)
■o A(X)

_ e(Xo,k)R(os,x) 
g(oo,X)

( 5,13 )
which is identical to equation ( 3.10 ). From 
computational point of view, it is more convenient to use 
( 3o8 ) rather than the above expression for the first
velocity moment.

(b) The Velocity Autocorrelation Function

A similar simplification occurs on writing the velocity 
autocorrelation function 8^(%). Defining

Sjj.(r) = 2 \xjjh^(x^)<x(r)lxJ>dx^ ( 5.14 )

we have
.00

( 5.15 )
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Using ( 3o5 ) once again, we have

= ( l / u )  L ~ ^  ( 1 / Q ( o o , s )u 3  _ s) ( 5 . 1 6  )

the same analysis as before showing that the inverse is, in 
spite of its appearance, non-singular This equation leads to 
an efficient computation of 8^(T), the results of which we 
present in the next section.

By using the expression ( 3*15 ) for the first
velocity moment, we can write

rS„(r) = (lA) \ to;̂ z'(x;̂ )e“^^^X^'^g(oo,X)/A(X)

CO

2 \ eXphp(xo)xo( E(x ,X)-g(Xç^,X)E(co,X) • )
g(oo,X)

( 5.17 )
Using ( 5„12 ) once again, we have

CO
S^C'C) = (l/m^)^ ^ d x ^  z '(x^) s(oo,X)/( E(oo,X)^+ Tc^g(oo,\)^ )

^ . exp(-z(x^)“C )

( 5.18 )

the same expression is obtained if one fin.ds the inverse 
transform in equation ( 5*16 ) in the usual way.

In the next sub-section, asymptotic analysis 
for is presented.
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(c) Asymptotic Analysis

To obtain the autocorrelation behaviour at long times, we must
expose the limiting form of ( 3.15 ) as s ^ o. It is
simplest if we work in the time variable and note that 
asymptotically:

.00

duexp(-z(u)T ) ( 7u/h^(o)
•r^oo

by virtue of the relationship

z(x) = 1 + h^(o)x^ + O(x^)

Furthermore,
CÛ

j |^(7tA^(o) )3e-\l_2T)C-3jd
d"C_

'o T-^co

Now the Laplace transform of the right-hand side exists and is 
equal to (irACh^Co) )^)s(s +1 From this we can
deduce that the s ----- > o behaviour of. Q(oo,s) is

Q(oo,s)^ x A ( \ ( o )  )3. (s+l)-5/2 ( 5.19 )

Since the reciprocal of this dominates the term s on the 
right-hand side of ( 5*16 ) we may assert that the Laplace 
transform of Ŝ ("C) is formally

s (t) 4  ro)l-5/2. L-^( 8+ 1)3/2 ( 5.20 )
X  0

"cr — ^ CO
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V^ilG the inverse of the right-hand side does not exist 
in the ordinary sense, it does in the realm of distributions, 
where we have the following

i;( ) = 4tç3(s+1)3/2 ( 5.21 )
3

Here Pf, denotes the pseudofunction corresponding to the 
Hadamard finite part of the Laplace integral ( see e.g. 
Zemanian (1963) especially chap.8 and item 31, table B.2 ).
This interpretation is. both adequate and natural in the 
present problem where we simply wish to supress the influence 
of an irrelevant singularity at zero time. Thus we can 
state unequivocally that

Sfr) ^  (5.22 )
-C-^co ^

Prom this it is clear that the nature of the heat-bath affects 
asymptotic behaviour only through a constant factor, the

being, it would seem, a universal feature of the 
special Rayleigh model. The factor e"**̂  in (3*22 )
exhibits the Markovian behaviour of the model an.d prevents 
the existence of the so called ' long-time tail *.

(d) Self-diffusion

By a well-known formula ( Kubo 1937) the velocity autocorrela 
tion function yields the self-diffusion coefficient D for
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test-particles. Thus
oo

= \s^(T:)aT= Limit L ( S fs) ) (5.23 )
s _ ^ o

Prom this it follows that, for a Rayleigh test—particle,

D. =^-5/2 ’ r-.co
o Limit C Q(oo,s> )"^ = f ( dv -1

( 5.24 )
A numerical evaluation of the integral for the 
Maxwellian heat-bath ( z(x)=exp(-x^) + m^xerf(x) ) gave the
value = 0.183164....  in dimensionless T  time-
scale. Reverting to the unsealed units, this is found to be 
equivalent to the formula

D = 1.827495.... (aa)"^(2kgl/mn)3 ( 5.25 )

Here the algebraic factor is simply the mean-free-path 
approximation to D in one dimension, n being the number-density 
of test-particles and a their effective cross-section. The 
increase over the MRP value would seem to reflect a more 
just account of the contribution from particles in the high- 
velocity tail of the Maxwellian.

(e) Electrical Conducti^/ity

To the approximations of linear response uheory we may express 
the admittance, 6* , of an ensemble of Rayleigh test-particles,
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charge e, by the formula

00
(c/cr̂ ) = (1/D^) exp(iojr)S^(T)

Here is the dimensionless velocity autocorrelation
function as throughout, D^.the corresponding diffusion coeffici­
ent ( 5®24 ) ̂ and (T̂  is the conductivity (to — ) o ).
Scaling is then through the Stokes-Einstein relationship 
cr̂  * (De^/k^T) with D given by (5*25 )• Thus we need only 
to substitute -ito for s in the Laplace transform expression 
( 3.16 ) to obtain

( 5.27 )
From this the real and imaginary parts of U* may be 
obtained explicitly. Noting that

Q (o o ,-iio )

oo
z(u) ̂-tô
(z(u)^+ w

du

CO
+ 4-to z(u )d u

( z (u )^ +  tô

(  5 .2 8  )
it follows that

to

E e (c ) = P o /lQ (o o ,- iw ) | . au
( s (u ) +to )

D
( 5.29 )
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and

Im(o“) = —i(ü)I 1 — 2. ^CO

du z(-g)
( z(u)2+w2)2

( 5.30 )
where by definition

Po “ ( > ( 5.31 )

Thus we observe the expected decay of the conductance Re(cr) 
from the Stokes-Einstein value under dc conditions to zero 
at high frequencies. The frequency-response shows a broad decay 
with no tendency to resonance. The phase-lag can be seen to
tend to 90^ at high frequencies ( arctan [jEm(o')/Re(o')J ^
as Ü) — ^co). Numerical computations of the above quantities 
are discussed in the next section.

(f) Autocorrelation of Speed

The speed autocorrelation function S (t ) is of lesser 
interest that the velocity autocorrelation function, but can be 
found explicitly by integrations over the even part of the 
velocity distribution, ( 4.69 ). We find after some partial
integrations

\ [_(z(y)-l)'C - l].e%p(-zWC) dy

( 5.32 )
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00
|̂X| (TO = it“3j e-z(y)c |q z(y)_ 1 )-c- 1)

■ \ " '^*3'z'(y)}J dy

(  5 . 5 3  )
^lx\ (T)l being the relaxation of mean speed from an
initial de 11a-distribution at x^. The essentially non-exponen­
tial character of both functions is quite clear.

Section 5* 5* Numerical Computations

The numerical inversion of. Laplace transforms is nowadays a 
straightforward procedure and a number of excellent algorithms 
are available. We were thus, able to calculate the inverse 
function L“^ <(, ) in ( 5,16 ) and ( 4.69 ) to an
accuracy quite sufficient for illustration of the behaviour 
of. the solutions under various conditions. The method we 
employed v;as the Dubner-Abate procedure as inproved by Durbin 
and Crump ( Dubner and Abate 1968; Durbin 1974; Crump 1976 ).

Although the algorithms referred to are now reasonably well- 
knovm in the computing literature, it is unlikely that they 
have often been used with functions as complicated as those 
which arise here. We found it necessary to speed the convergen­
ce of the integrals by use of bounding approximations and the 
so called * c-algorithms' to improve the convergence of the 
Fourier series involved ( see Shanks(1955), Wynn (1956) ).

It will suffice here to present a small selection 
of results designed to illustrate the main characterics of the
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in.it/ial~valu0 and autoconrGlation solutions and th.6 electrical 
conductivity.

(a) Initial-value Solutions

Figure 11 shows full-range initial value solutions under 
delta-function conditions P(x,o) = : S(x-x^) with x^= 0.5 and I.5 
respectively. Anumher of features are quite marked, notably the 

asymmetry of the regular part of the distribution at all 
finite times, with a drift of the most probable velocity from 
approximately x^ to zero as the relaxation progresses. The 
physical origin of this is clear: there is an anticorrelation 
in velocity after the first collision of each test-particle, 
due, it would seem, to the enhanced probability of a'head-on* 
collision for particles in the initial delta-function. A 
related feature is the emergence of; a pronounced * shoulder * 
in the vicinity of x^ when x^ is relatively large—  
presumably due to an appreciable contribution from test partic­
les which have collided twice within the order of a single 
collision-time. Note that the parity components and P^^
are easily estimated by the visual trick of reflecting the 
left-hand half onto the right and summing or differencing as 
approx>riate. In this way the main feature of the speed-relaxat- 
ion P(lxl ,x) can be distinguished— a distinct lag in the 
equilibrium of test-particles with near-zero velocities relati­
ve to those in the high-energy 'tail' of the distribution.

(b) riean Velocities

The mean velocity relaxation according to C ) is
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Fir^re 12: Relaxation of mean velocity for different initial 
de It a-dis tribut ions. P(x,o)=cî(x-x^). Curves: (a) 
x^=lo5»(b) Xq--1.0,(c) x^= 0.^.The lower half shows 
the • small negative flux which develpos in a 
direction opposite to the initial delta-function.

Lf)6
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interesting in that, depending on the initial conditions, the 
average may possibly become negative, indicating that
a net flux: develops in the direction contrary to that of the 
initial distribution. Figure 12 shows that such a reversed 
flux, can occur to a slight degree under certain conditions.

(c) Autocorrelation

CXir most interesting result is perhaps the computation of the 
full velocity autocorrelation function for equilibrium
fluctuations according to ( 5^5 ) . The function,
computed by numerical inversion is shown by Figure 13 
It is clear that the decay of fluctuations is very nearly 
exponential in appearance, though the mathematical behaviour 
cannot at any time be strictly described in this way. The 
asymptotic form of 8̂ (1:) predicted by ( 3*22 ) ( dashed
curve ) gives a fairly good estimate of the true one, though 
with a very slow numerical convergence. Thus the numerical r^o\ts 
both confirm and deny the contention of Cukier and Hynes 
( ) that all model’ processes yield effectively
exponential decay. Numerically, it is true that the exact 
function can be approximated, moderately well by a single 
exponential decay constant; nevertheless this behaviour can 
be given no analytic significance in any time-regime. In 
particular, the approximation advanced by Cukier and Hynes—  

that of talcing the initial slope ( to
determine the general exponential behaviour—  is clearly 
a poor one in terms of the results of Figure 13 

The absence of exponential decay, even at long times, is
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Figure 13 The Velocity autocorrelation function for 

equlibrium fluctuations in an ensemble of
Rayleigh test-partides.The solid line is the 
the result obtained by numerical inversion 
of expression in (3.16).-The dashed line 
shows the asymptotic approximation ( 5*22).
( All the results are calculated for the 
Maxifellian heat-bath. )
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noteworthy hut hardly surprising in a system knovai to posses 
an unbounded continuum spectrum for the underlying transition 
operator.

(d) Electrical Conductivity

The real and imaginary parts of the complex admittance e* may 
be computed directly from equation ( 3.2? ) &s a function of 
the frequency of the applied field.( We do not, of course, 
program the expressions ( 3*29 ) and ( 5«>50 ) directly, it
suffices to use a complex FORTRAN’ version of the numerical 
quadrature for the Q(x,s) integrals already available, 
working with equation ( 3*27 ) throughout ) The results,
plotted in dimensionless form in Figure 14- are seen to 
correspond broadly to physical intuition. Thus the 
dissipative component ^ Re(Cr) ) representing the transmission 
of energy to the heat-bath, is maximum under D.C. conditions 
and falls with a bell-shaped decay to zero at high-frequencies* 
There is no sign of resonance and frequencies very high 
compared to the mean collision frequency are required for the 
dissipation to be effectively zero. As deduced earlier, the 
current lags behind the applied field, its phase angle 
increasing regularly from zero to 90  ̂ at infinite frequency.
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Figure 14a: Heal and Imaginary parts of the admittance
function for charged Rayleigh test-particles 
( solid and broken lines respectively ).
Results are for a Maxwellian heat-bath. The o-scale 
in arbitrary units ' applies to both the curves. The 
real component is proportional to energy dissipation 
into the heat-bath per cycle.

oo
o04
Oo
CO

oo
•o

oo

oo
04

oo
o

oo
CO

oo

oo

oo
04

o
ooo oooooo oo oo oo ooOO OO OO

OCM CO vO CM O CO VO (M

‘AilAIiOnaNOD .



— 14-6

Figure 14-b: Current in a charged Rayleigh System as a
function of frequency.(Pla^avellian Heat-bath.)
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Figure 14-c Response lag in a charged Rayleigh system as 

a function of frequency ( Maxwellian heat-bath)
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^Gction 5.4. Spatial Transport Problem

The linear and one dimensional character of the special 
Rayleigh model leads to a relatively simple equation for the 
spatial evolution of a test-particle ensemble. Designating by 
2?(^»V,t) the velocity-position distribution function for 
particles at time t , the conservation of probability 
can be expressed by the integrodifferential equation

ÀP(r,V,t) + V.^_P(r,V,t)
^  ÔT

.00

.dV*K(VMV)P(r,V»,t) - Z(V)P(r,V,t)

— CO (5*34- )
where, as in the case of the homogeneous problem,

K(VlV') = Cl7-V'Jhp(V) ( 5.55 )
end
Z(V) = (dV'K(VlV') ( 5.56 )

—  CO
The above equation is a Markovian Equation with a streaming 
term added on the left-hand side. As before K(V{V) is the 
scattering kernel in velocities and Z(V) the velocity- 
dependent collision number, its integral over all final states. 
Sources and absorbers are assumed to be absent and infinite 
medium boundary conditions are imposed. An initial distribut­
ion P(r,V,o) is assumed given and this may be normalised 
either absolutely or, if it is periodic, over a characteristic
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distance* Since we shall only be interested in an initially 
localised ensemble, we choose the former alternative and vn?ite

^drdV P(r,V,t) = 1 ( 5o37 )

As usual we make an immediate transformation to reduced 
variables:

X : = (o y r

V  = ( 1/%#^). V  ( 5.58 )

r  = c v^. t = 2(0).t

with the consequence that

P(x,v,-c) = ( tc7 / C  ). P( (C A h “^.x, (it^p.v, T/Z(0))

( 5.59 )
and

^dxdv P(x,v,i:) = 1  ( 5*39 )

In terms of the reduced variables, the transport equation 
assumes the form:

%P(x,v,T;) + v . ^ P ( x ,v ,t ) + z(v)P(x,v,x)OT oK

r
= h^(v)\dv'|v-vM P(x,v',T) ( 5.40 )

-00
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where co

z(v) = fdv' Iv-v'l h^(v') ( 5.41 )

and
\ ( v )  = h^Cn^V^. v) ( 5.42 )

( see ( 3.8 ). )

Since the Van Hove function G(r,t) is the 
probability per unit length (or volume in three dimensions) for 
finding a test-particle at position r at time t if the 
same test-particle is known to have been at the origin at time 
zero, and since we must sample an ensemble of systems at 
thermal equlibrium to determine G(r,t) , the appropriate 
initial condition is

P(x,v,o) = ^(x).h^(v)/Tc^ ( 5*4-5 )

Ve can work with the fundamental initial condition 
(î(x-x^)cSCv-v^) and then use the principle of superposition 
but as we shall see below it is much sinpler to work with
the above initial condition from the begining.

In reduced variables the Van Hove function can 
be vo?itten in the form

where
. G(x,-c) = u V C  . G(r,t) ( 5.44 )

f "G(x,r) = I dv p(x,v,t) ( 5*4-5 )

—  CO
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From equation ( 5*45 ) and ( 5*45 ) we see that G(x,x.) 
has the required general properties

G(x,o) = f(x) ( 5.46 )
and oo

G x G(x ,t ) =1. ( 5.4y )
— <o

By introducing the spatial Fourier transform 
of the position-velocity densityr

h(k,v,x) = 1/2% \ dxe“^^^(x,v,t:)
^  ( 5.48 )

the spatial transport equation becomes

—  r+ ikv + z(v) ).h(k,v,T) = h^(v) \ dv* Iv-v* lh(k,v* ,t:)

( 5.49 )
with the initial condition

h(k,v,o) = hq(v)/2%^^^ ( 5*50 )

In order to proceed further it is convenient to adopt the term-% 
inology used in the neutron transport theory ( see e.g.
Relkin and Ghatak 1964 ). In most problems in neutron 
scattering it is more convenient to deal with the so-called 
intermediate scattering function

r ”(k,t) = \h(k,v,x)dv ( 5.51 )
—  CO
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with the general property

%  (k,o) = /^(o,%) = 1/2% ( 5.52 )

A quantity of direct physical interest in neutron scattering 
experiment is the differential energy transfer cross section

^  CO

8(k,w) = drexp(-iwx) 7t (k,x) ( 5.55 )
V-O

which is the double Fourier transform of the Van Hove function 
G(x,x). Since 7i< (k,x) is determined from an initial value 
problem, we must specify its behaviour for negative times in 
order to completely define S(k,w). For a classical system , 
S(k,w) is an even function of w and ^  (k, is
a real even function of time. Introducing the Laplace 
transform of h(k,v,r) in the form

^ c o
h(k,v,s) = ldTexp(-ST)h(k,v,x) ( 5.54 )

and the transform of 7^ (k,x) iu the form

Q(k,s) = drexp(-sr) /t'(k,x) ( 5.55 )
o

we have

S(k,w) = q(k,-iw) + Q(k,iw) (5.56 )

where
^  CO

Q(k,s) = dvh(k,v,s) ( 5*57 )

—  CO
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and h(k,v,s) is the solution of the equation
CO

( z(v) + ikv + 8 ).h(k,v,s) = h^(v) ^ dv'|v-vM h(k,v* ,s)
—  G3

+ h (v )/2ti5/8

( 5.58 )
Having completed the formal preliminaries, we now turn to 
actual calculations.

In order to make the calculations simpler, it 
is convenient to define;

f(k,v,s) = h(k,v,s)/îi^(v) ( 5.59 )

in terms of which we can rewrite ( 5.58 ) in the simple form:

r( z(v) + ikv + s ).f(k,v,s) = \ dv* |v-v*lh^(v*)f(k,v,s)
—  GO

+ 1/2k5/2

( 5.60 )

Partial differentiating ( 5.60 ) once with respect to v, we 
have

( z'(v)+ik)f(k,v,s) + ( z(v)+ilcv+s )f'(k,v,s)
.CO

d v * s g n ( v - v ')h^(v*)f(k,v*,s) ( 5.61 )
—  CO
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Partial differentiating ( 5*61 ) once with respect to v, 
we have

2( 2*(v)+ik ).f'(k,v,s) + ( z(v)+ikv+s ).f"(k,y,s) = o.

( 5.62 )
The above equation can be integrated to give

.V
f(k,v,s) s A(s,k) + B(s,k). ^du/(z(u)+iku+s)^

( 5.63 )

To find the functions of integration A(s,k) 
and B(s,k), one has to substitute f(k,v,s) into (5*60 )
and ( 5.61 ) respectively and put v=o in the resulting 
expressions. In order to carry out this procedure, the 
following identities are required:

/
^—  j* (z* (v)+ik). jdu/(z(u)+iku+s)^ + l/(z(v)+ikv+s)"j

/  2 = z"(v). I du/(z(u)+iku+s)

( 5.64 )
V

h—  ^v/(z(v)+ikv+s) - (z(v)-vz'(v)+s). ( du/(z(u)+iku+s)2J
O

y
= vz"(v). \ du/(z(u)+itai+s)2

( 5.65 )
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By using the above identities we have:
CO

(dvlvlh^(v). f du/(z(u)+iku+s)2
—  COCO - ^ o

CO

A= Idwh^(v). \ du/(z(u)+iku+s)2
o

dwli^(v). \ du/(z(u)-iku+s)^
'o

( using ( 5.65). )

" " ""1 ( 5.66 )
where

CO
= ik/(%+k ) + s r r du/(z(u)+iku+s)^: [ (

du/( z (u)+iku+ s ) ̂ ]
( 5.67 )

From equation ( 5.60 ) we obtain by setting v=o

( l+s)A(s,k) = B(s,k).Ig^ + A(s,k) + 1/2%^^^

or

sA(s,k) = B(s,k) + 1/2%^/^ ( 5.68 )

where we have used the properties of the collision function 
z(x) ( see ( 5o3 ) ).

From equation ( 5.61 ) we obtain
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by setting v=o
oo

ikA(s,k) + B(s,k)/(l+s) = - I dv*sgn(v*)h^(v')f(k,v*,s)

'b
CO

= \dv'sgn(v')h^(v*)f(k,v*,s)
—  CO

—  00
= -I}, ( 5.69 )

= B(s,k). ag ( 5.70 )

where
00 y

A
ttp = I dv*sgn(v')h^(v*). \ d'a/(z(u)+iku+s)^

CO

00
dv*h^(v'). \ du/(z(u)~iku+s)^

CO Y*
+ \dv*h^(v*), \ du/(z(u)+iku+s)

( using ( 5o64 )• )

2
o

*o

2du/(z(u)+iku+s) +
2

du/( z (u)-iku+s) ̂

o
CO /CO

+ ik. «^du/(z(u)+iku+s)^ - [ du/(z(u)-iku-i-s)^

l/(l+s) ( 5*71 )
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By substituting in equation ( 5.69 ) we obtain

ikil(s,k) = - a,. B(s,k) ( 5.72 )

where oo
= 5*1^ l^cLu/(z(u)+iku+s)^ +

CO

du/(z(u)-iku+s) '

CO
+ ik 
2

00
du/(z(u)+iku+s)^ _ I du/(z(u)-iku+s)

( 5.73 )

By solving the simultaneous pair of equations ( 5*72 )
and (5*68 ) we obtain for the unknovm functions

( 5.74 )

B(s,k) = “^ / p  . ( -ik/a^) ( 5.75 )

where

oc. suj - ika^

k^/(k^ + % )
.00
du/(z(u)+iku+s)
•0

00
du/(z(u)-iku+s)

( 5.76 )
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Therefore,

f(k,v,s) = ( 1/2ti5/2) r

/V
- (ik/a^). I du/(z(u)+iku+s)^ 1

( 5 .77 )

For our purposes Q(k,s) is the most important function, and 
can easily he obtained from the above equation:

rQ(k,s) = I dvh(k,v,s)
—  00 

00

àvho(v).f(k,v,s)
— OO

= (â /27râ ) - (ik/2%^^^a^). ( 5*78 )

where
CO V

= ^dvh^(v). ( du/(z(u)+iku+s)^ ( 5.79 )
— oo Jo

(using (5.64 ). )

,0^ 2 
du/(z(u)+iku+s)^ - \du/(z(u)-xku+s)
o
CO

o
.CO

+ ÎK r (du/(z(u)+ik’a+s)

1
du/(z(u)-iku+s)2 1 

“ ( 5.80 )
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By substituting the expression, for in (5.78 ) we
obtain by a simple calculation

Q(k,s) = - y(k.s)— ---   > ~'7?-r  ( 5.81 )
( %%sy(k,s) + 2k /(k + t:) ) (27t̂ '̂ )

where CO

y(k,s) = I — --- — ? ( 5.82 )
(z(u)+iku+s)
CO

By using the above result for Q(k,s) and equation ( 5*56 ) 
we can immediately obtain the explicit result for the 
differential energy cross section

S(k,w) = - ^ 7 p (%+k^).
(%̂ iwy(k,ici)) + 2k^/(k^+%) )

( 2k^/(îî+k^) -iw%^y(k,-iw) )

( 5.83 )

where
00

y(k,+iü)) = ( ------^ --------- 2 ( 5.84 )
( z(u)+ iku +ito)

—  CO
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Section. 5«5'_ spatial Moments and the Gaussian Approximation

The special Rayleigh model does not allow an analytic calculat­
ion of the Van Hove correlation function G(x,x) as it does for 
S(k,co), nevertheless, it does allow . the analytic 
calculations of the spatial moments of G(x,x) as a function 
of time. By analysing the Pourier-Laplace transform of G(x,xO 
( which is given by Q(k,s) ), it is quite simple to show 
the expected behaviour of G(x,x). ■( see e.g. Lebowitz and 
Perçus 1967* ) However, it is much more convenient to consider 
the spatial moments which can be evaluated exactly by using 
Q(k,s).

To do this calculation we note that

G(k,x) = \ dxexp(-ikx) .G(x,x) ( 5.85 )
2n J

—  oo

and
Q(k,s) = \ dx e3cp(-sr).G(k,x) ( 5.86 )

Hence, G(k,x) is a moment-generating function and

<x^(s)> = ± 2;I. ( £„Q(k,s) ) ( 5.8? )
ôkr k=o

( + if n/2 is even; - if n/2 is odd )
/ x?^(s)^ is the Laplace transform of the n spa vial 

moment. All the odd spatial moments are zero because of the 
choise of the initial condition. The quantities of greatest
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physical interest are the second and the fourth spatial 
moments. These are calculated below.

(a) The Second Spatial Moment

From (5*87 ) we have

<(x2(s)>= -2%.  ̂ ( 5.83 )

Ey using the expression ( 5.81 ) for Q(k,s) we have

<x2(s)> -

S Q(oO,s) 7C3
( 5.87 )

after lengthy but straightfcrvrard calculations. In the above 
expression, Q(oo,s) is the function defined by equation 
( 4.48 )• In order to check the correctness of this result,
we note that

Dg = fdlS^(x) ( see ( 5.23 ).)

= Zxpit (1/2). h_<2^(T)S ( 5.83 )
X  3 00

( see e.g. De sal and Delkin IÇ06.)
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where , the diffusion constant was derived earlier
(5*24 ). Using the derivative theorem for Laplace transforms

A
L L  = s. < x2(s) >

àx 2 J
( 5.89 )

and the limit theorem ( see e.g. Churchill 1958.)

Limit sf(s) = Limit f(x) ( 5.90 )
s ^ o T   ̂oo

we have

D = Limit s^. x^(s) >

1
72 ------

du/z(u)
372    ( 5.91 )TZ 2i

which is precisely the result derived earlier by using 8^Cc). 
The formula ( 5.87 ) for the second moment is in the form
where the numerical Laplace transform method discussed 
earlier can be applied quite readily. Numerical computation, 
of the second spatial moment is discussed at the end of this 
section. I

By applying the method of finding inverse 
Laplace transforms, developed in chapter four ( see Appendix 
D )
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we have

< x (̂t )>= (2A5/2). l-1 (^iA^Q(oo,'s))

- (2A). L"^(1A) (5.92 )

But
,<rtico

B ^ ^l/s^Q(oo,s) ̂  = (l/2%i). 1 dsexp(sX)/s^Q(oo,s)

•lico
<r >o

( 5.93 )

( see the contour diagram: Figure 13 ). The term-
in the integrand will give a contribution and therefore

l/s^Q(oo,s)') = - (l/2%i)o 1 dsexp(sr)/s^Q(oo,s)

CDEF
( 5.94 )

where
p= residue of (1/s Q(oo,s) ).exp(sx) at s=o

= Limit " I 8 . exp(sr)/s Q(oo,s)l 
ds L ^

CO
2\ I /rr f 3X/Q(oo,o) + (2/Q(oo,o)P. \ duA(y)

’o
( 5.95 )



- 16/k
Im.sf

//////

Pisnre__l^ Contour Diagram
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Along the branch cut the contour integral becomes

- (l/2%i). ^  dsexp(sr)/s^Q(oo,s)
CDEF

Co
dx^z* (x^)exp(-z(xp^)r) .2ilm( B“(?0 ) ( 5*96 )

2îci

where

2ilm( B~(\) ) = Limit
(-z (x̂  ̂)-is ) oo,-X-ie )6 ---  ̂o

(-z(x^)+ie)^Q(oo,-X+ie)

2%i.F:(oo A)
( R(oo,X)^ + Tc^g(oo,X)^ ).z(x^)^

( 5.97 )
Therefore,

CO
<x^(x:)> = 2DJC + j du/z(u)^- 2/tz^

00
+ (2A^^^). [ • (xp̂ ) g(oo,X)exp(-z(x^)X )

o E(oo,X)^+7t^g(co,X)^)

( 5.98 )
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The third term on the right-hand side of equation ( 5,98 ) 
clearly shows the non-Gaussian behaviour of the second 
spatial moment in the intermediate-time regime. The asymptotic 
result 2D^% is self-evident.

(b) The Fourth Spatial Moment

If the Gaussian description for G(x,T), as first introduced 
by Vineyard ( 1958 ), applied to the special Rayleigh model 
then we could write

G(x ,t ) = (%wCc)2)-^. ejqpC-x̂ /coCr)̂ ) ( 5.99a )

S O  t h a t
- ° 1 ( 5.99b )
5

for all times. Therefore, to compare our analytic calculations 
with the Gaussian approximation, we can calculate the above 
ratio of moments to see possible deviations from unity.

Laplace transform of the fourth spatial 
moment is given by

^x^(s)^ = + 2tc.( Q(k,s) ) / 5.100 )

After lengthy but quite straightforward calculations , the 
explicit expression for the transform of the moment follows as



- 167 -

S.7C372

CO

3 * \ du u
( z(u) + s

( 5.101 )
which can be simplified by using the identity

CO

du u (z(u)-uz'(u) ) 
( z(u) + s

CO

3/2
du u'
c z(u) + s y

C  5.102 )

( which can be proved by a simple integration by parts. )

00
 72_____ ^
Q(o o,s)^s 7̂i^^

du u ( z(u) - z*(u)u )
( z(u) + s

( 5.105 )

In this form, it is self-evident that the limit theorem ( see 
e.g. Churchill 1958. )

Limit s < X (s)> 
s ------- ^ oo

Limit (x)> = o
X ------  ̂o

( 5.104 )

holds for the fourth spatial moment. Although it is possible 
to find an analj’tic expression for the above moment, it 
suffices here, only to consider the long-time behaviour of



— 168 —

the moment so that numerical results can be checked.

Ii?om equation ( 5-103 ) we see that the conto­
ur diagram for finding the inverse transform of the fourth 
spatial moment would contain the usual branch cut along the 
negative real-axis and a third order pole, at s=o in the 
complex plane. îkom our experience' with the second spatial 
moment we know that the residue of the pole will give the most 
important contribution in the long time limit. Therefore,

<(x^(s)^ s= a^ - Ids exx>(sr). cT x^Cs)>
J  2n±

( 5.105 )
where the integral on the right-hand side above is along the 
branch cut and

= Limit 1. d^ exp(sr). < x̂ '(s)>"j
s ---  ̂o ^ ds^ L -1

Z^‘S<É<E2^s=o + _ X . ( d < x \ s ) >  )g=o2 2 ds

+ 1«( d^ < x ^ ( s ) S  )
2 ds^ ^=0

But

= 24.1)2

( 5.106 )

( 5.107a )
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\ds /s=0
72.02 ,%5/2, ̂  (43̂ /3). j du/z(u)5

and

^ du u^/z(u)^J

( 5.107b )

/OO
- I du/z(u)^

Jo

%

3/2\5
372

r 00
du/z(u)^.

.CO

o
du u^/z(u)^

CO

( 5.107c )
finally ̂

=
, ,co

12.d2.x 2 + 12.D2.%3/2.T.j^4.Dg. jT ^ au/zC%)5j

- 3.
.  /W

du u^/z(u)^

+ Co
( 5.108 )

where C_ is a constant and equal to 1/2.Y d^_Zx^(sîX  d ^ / x^(s3 
[ds^ -I s=o

Therefore, the long-time behaviour of the
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fourth spatial moment is of the form

<(x^(r)> 12.o2.x2 + C^.-v + Cq ( 5.109 )

where is a constant,

(c) Numerical Computations

The numerical method of finding Laplace transforms has 
already been considered in this chapter. For the second 
and the fourth spatial moments the asymptotic results prove 
to be useful checks for the numerical validity of the results. 
Ve shall consider the riaxwellian heat-bath and therefore, 
z(x) = exp(-x^) + Tc'̂ xerf(x).

(i) Figure 16 shows the time evolution of the second 
spatial moment. The dashed line is the asymptotic result 
2D^T which is seen to be a very good approximation in the
long time regime. The non-Gaussian behaviour in the 
intermediate time regime is quite evident.

(ii) Figure 17 shows the time evolution of the fourth
spatial moment..The dashed line is the asymptotic result 
( 5.109 ) where the numerical constants are:

Dq = 0.185165.

“ -0.265275 ( 5.110 )

= 1.477456
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(iii) Figure 18 shows the time evolution of the ratio :

( —
5 . (  < x ^ ( -c )>  )

which for the Gaussian approximation is exactly one. We see 
that the approximation holds for the special Rayleigh model 
in the limit of short and long times, but not at intermediate 
times. The ratio reaches the minimum of about Oo9 after 
roughly one collision-time in the scaled units. After about 
three units of scaled time the ratio is practically identical 
to unity as one would expect from the asymptotic results for 
the moments. Nonetheless, the approximation is clearly a 
poor one in terms of the result at all times, which is hardly 
surprising when one considers the important contribution made 
by integrals along the branch cut.

( * Just before the publication of this thesis, it came to 
the knowledge of the author that P« Resibois ( Physica 
90A, p.273 (1978). ) has quite independently arrived at 

the solution of the spatial problem. However, Resibois was 
not able to give explicit expression for the autocorrelation 
function and the second spatial moment nor did he obtain 
the ratio of moments. )
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APPENDIX A

(a) Approach to Equlibrium

We shall show that any time dependent solution of the Master
equation (1.15 ) tends to oreq

Limit P(x,t) = P^^(x)
t*— —^  0

Consider an arbitrary non-negative convex function f(q)

f(q) ^  0 for 04q<Cco,
f (q) >  0 for 0 <  q <  oo.

Define

E(t) = \dx Pgg^(x)f (q(x,t)) ( A.l )

where
q(x,t) = P(x,t)/Pg^(x) ( A.2 )

Prom ( 1.16 ) and using the detailed balance condition
we have,

” \dx^ f(q). ^ P(x^t)
èt

dxdx'IC(x|x')P (xO ^f(q(x,t))
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by rearranging and relabelling. Per an arbitrary p(x) one 
easily sees that

0 = dxdx*k(x|x*)P^^^(x*). C p(x)-p(x')] ( A.4 )

If one chooses p(x) = f(g(x,t)) « q(x.t)f(q(x.t))
àg

and add the identity obtained to H*(t) above then one obtains 

H'(t) = dxdx* Pgg^(x*)b;(x|x')^ ,t;)-q(x,t^.^f(q)

+ f(q(x,t)) - f(q(x*,t))l#
( A.5 )

Now for any convex function f(q) the term in the integrand 
above vrLthin the square brackets is negative unless 
q(x,t)=q(x*,t). ( f(q)+(q-q').f'(q) ^  f(q*). )

Hence H(t) decreases in time and must therefore 
approach a limit. In this limit one must have H*(t) = 0. 
or

Limit P(x,t)/P (x) = constant. Because of 
normalisation, the constant must equal to one. Q.E.D.

(b) The operator A is negative semi-definite

The operator À is negative semi-definite with the consequence
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that the eigenvalues must he ;^itive.

Consider the inner product or the matrix element 

(f, Af) c ^f(x). ̂ G(x(y)f(y)dydx - ^(x)f(x)^dx

1 ( G(x|y)f(y) - G(xly)N(y)f(x) )dy Idx 
3 L J N ( x )

f(x)/tî(x) -f(y)/IT(y)(^

( A .6  )

The last steps follows by using the property 
G(x|y) = G(y|x) and the identity

^dxdy G(xl y)N(y)f(x)_^ ^ \ \G(y;x)g^x),f(y)^dxdy  ̂ )
N(x) \\ N(y)

Therefore,
A.(f, Af) ^  0. QoE.D.
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APPENDIX B
The Collision Number Function Z(V) For the Rayleigh Model

K(VIV') = p?G 1'7-V'l (m/2TkT)?exp(- + Vj  ̂  )

( B.l )
and oo

Z(V) = dV'K(VlV')

-  CO ( B.2 )

By making the change of variables (2ol4) we have,
00

Z(V) = C.(2IcT/ m)^
f

—  CO

dylx-yle"  ̂ f  + x )

( B.3 )

But ,00

z(x) = ̂  . \ dy Ix-yt e"  ̂ + x )
—  CO ,00—  CO CO -CO

= .i \dttexp(-(x+ t.A^) +ltexp(- Hx-^3

&y(y-x)e~y 

l^xerf (x) +

dy(x-y)e"y
— oo ( B.4 )

Therefore,

Z(V) = C V.erf( (m/2kT)^,V) + (2kT/*Cm)^ .exp(-mV^/2kT ) .C

( )
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Col. The Pseudofunction E(x,X)

Hoare and Rahman have discussed in detail the properties of 
the above pseudofunction. Technically, one ought to 
understand R(x,X) by the following definition;

<Pf.R(x,X), 4Cx) > = Bp. 1 S(x,\)^(x)dx ( C.l )
—  60

Without the complications of distribution theory, it is 
possible to resolve R(x,X) into its regular and singular 
components by making a Taylor series expansion of (z(y)-X) 
about the point 7=x^ :

2E(x,\) 6 \ dy/(z(y)-z(x^^) )
1x1

= sgn(x) J  ^l/(z(y)-z(x^p^- 1/z'(xp^(y-Xj^^ dy

( C.2 )

Essentially in this form, only Cauchy-Principal values have to 
be considered.

C.2. Orthogonal Integrals

h  = ( c.5 )
—  Co
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V/e shall require the following identities:

(a) )-II(x+lx̂ l )] .[(f(x-|xj[̂ ; ) 4- (9(x+|x^j)J

= cf(x-|xĵ |) 4- <f(x+|xĵ l )
( 0.4 )

(b) {^H(x-|x^O-H(x+jx^| )) .(cfCx-lx̂ j ) 4- (f(x+ jx̂ J )) = 0

( C.5 )

(c) <|̂ (x-lx^| ) - H(x+ |x̂ | . <1 H(x-|xj[^|)- H(x+ jx^l ) ̂

H(x- )- H ( x + 1 ( 0 . 6 )

Therefore by substituting the expression ( 3.82 ) for 
^^gy(x,X) and using the above identities it follows that

= A(X)A(\*).^ -2 l'h^(x)dx + 2q(xj^)h^(x^)
o
A.

+ 2 q (x p q (x ^ )h ^ (x j,'). (^ ( |x ^ i- |x 4 | ) )

z'(ix,\ )̂ .A(X)̂ .<f(?«.-X')
 —  - ( C.7 )
z"(xp

r"^A.Ig = \ dxhg(x)(|)ĝ (x,A)̂ ĝ̂ (x,\') ( C.8 )

— 00
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Ve shall require the identities:

(a) ) - H(-x-lXpj )] . ^(î(x-lx^l) - ^^x+&x^|)

= 0 ( C.9 )

(b) ^H(x-lx^l )-H(-x-\xj[̂ l )lf . (f(x-lx̂  )-^(x+lx^ )\

<T(x-ix̂ l ) - <f(x+|x̂ j ) ( C.IO )

(c) (̂ H(x- |x̂ ( )-H(-x-|x^j ) .c{ h (x-|x Î )-E(-x-|x^| )lj

= H(x-|x^J )-E(-x-|x^| ) ( C.ll )

Let Jp = 0^(x,X)-R(oo,X) .g(x,A)') • (^E(xoA*)-R(oo,X*)-gCx^X* ))

By using the relationships:

00

2 ^dyR(y,X)R(y,X')h^(y) = tt'^R(o o ,X)R(o o ,X* )

- ( R(oo,X)-R(oo,?J) )
X-\*

( 0.12 )

and
.oo

2 \ dyh^(y)R(y,X*) = tĉ R(o o ,X* )-z* (ix^l )R( »x̂ | ,X* )

— 1/(X-X*) ( C.13 )
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the required integral becomes:

rI2 = A2(X)A2(X*).Idy J^.h^Cy)
— cO

= ^(A-X') ( C.l/)- )
z"(x^)

( V/here the identities ( C.9 ) to ( C.ll ) have been used. ) 

Finally,

1% = ^ dxh^(x)q)^,,(x,X)

= A(X).^ sldyhpCy) - z'(|x̂  )j

«= 0. ( C.15 )

where we have used the expression ( 3*82) for the even 
eigendistribution.
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P.l _ The Rigorous Proof of the Relationship:

rL ^ Q(x,s) = dyexp(-z(y)i:)
0

( D.l )

By definition,
B~^Q(x,s) = —  I dsexp(s-c) ,Q(x,s)

<T—uoo
( D.2 )

If we integrate Q(x,s) around, the contour ABODE? then from 
Cauchy theorem it follows that

dsQ(x,s)e^^ = 0 ( D.3 )

But,
ds Q(x,s)es-C dse^^CJ(x,s) + \ dse‘̂*^Q(x,s)

+ \dse^^Q(x,s) + j dse^*^Q(x,s)
CO£r ( D.4 )

The first integral on the right-hand side approaches
as A and B are made to approach -oo and 

+00 respectively. In this limit, portions BC and FA 
contribute nothing, because of the rapid decrease of exp(sx).

L“^Q(x,s)

Therefore,
<rVvco

dsoxp(sT:)Q.(x,s)

(T-Cco

r
ds exp ( s •£:) Q(x, s )

( d ,5 )
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-1 (r
i4HfH (ffféf

Pipnir-e 19 Contour Diagram for the
inverse transform of 
function Q(x,s).
The dashed line is the
branch-cut
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Along lines CD and ÈF we can evaluate the integrals as follows. 
Note that the integral over a small semicircle of radius e 
centred at -1 vanishes as 6 tends to zero ( same is true in 
case of a semicircle about s=-z(x) ). Q(x,s) is analytic in 
the the whole complex plane except along the line from -1 to 
-z(x)•

Next we shall bring the lines CD and E F close to the . 
real axis, an operation performed by letting e — > o where 
s=-X+ie

Z(JC>

L - \ ( x , s )  = ( D.6 )
Z(o)

where,
= Limit <^Q(x,-X-ie)-Q(x»-X+ie)'^ 

o

= 2ilm Q"*(A) ( D.7 )

By using the identity ( see e.go Jones 1966)

  -------  = Pf.  ----- Hh ^*(z(x)-X)Limit —
e— >0 (z(x)-X+ ie)^ ( z(x)-X

( D.8(u )

we have, ^
:,X)+ iTc ^du&Limit Q(x,-?v+ie) = E(x,X)+ iTc \ duo (z(u)-À) ( D.8b )

e— >0

It can be shown that
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%■

& (z(u)-X)du = g(x,X) ( D.9 )
o

g(x,X) was defined in equation ( $.119). Therefore,

Q^(X) = R(x,X) + i*n:g(x,X) ( D.lOa )

Q'*(X) a E(x,X) -iTrg(x,X) ( D.lOb )

and
2iImQ“(X) = -27rig(x,X). ( D.lOc )

Finally,

0
,lt\

= -Idx^ z"(x^)/z'(x^)^. |H(x- ix̂ j )-H(-x-\x^l )j
|3C|
dx^e"^(^x)? ^(f(x- |x^ )-(f(x+ |x^ )^

z * (x^) 
o

( D.ll )
Using the relationship:

\Xl

d(l/z'(Xĵ )) exp(-z(x̂ )r).[H(x-|X;̂  )-E(-x-lXpJ )]
%  \jc\

r

= "cl dyexp(-z(y)T) +

) z'Cx^)

- <f(x+|Xĵ | )) ( D.12 )
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It follows that

L“^Q(x,s) = -C
C
duexp(-z(u)x^) ( D.13 )
® Q.E.D.

D.2 Proof of the relationship
CO

a I dx^z*(x^)exp(-z(x^)r).g(x,X)g(x^,X)
g(oo,X)

- sgn(x)sgn(x^).-C ( due“^^^^*^+ e”^^^o^^P^^(x,o)

o ho(x)

( Dol4 )

By substituting g(x,X) etc. in the above expression, we 
have

= D^ + D^ + D^ ( D.15 )

where oo
= I d(-l/z'(xp ( h (x -|XjJ )-E(-x-lx^t ))

• )-H(-Xq-|X;̂ J ))

( D.16 )

(O

+ [h(x - \ x  l )-H(-x -Ix l )]^  o A  O A
. [ô1;x-lXĵ  )-<f(x+|Xjl )J ( D.iy )
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and

D.
CO

— —  (o(x-lx^l )-J(x+lx^ )). (dT(x^^ ix^i ) 
o 2

5(xq+IXj{ )) ( D.18 )

Now by integration by parts we can vn?ite as

^1 “ - *C sgn(x)sgn(x^) ^  due*"^^^^^- D,

and

( D.19 )

= exp(-z(x^)X)^P^^(x,o)

hoCx)

Therefore,

= - sgn(x)sgn(x^X

( D.20 )

î,(x)
Q e .d ,
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We consider a free electron gas in the presence o f  a uniform magnetic field and confined by a 
cylindrically symmetric harmonic potential in the directions normal to the field. The density 
matrix in Boltzmann statistics is evaluated exactly and it is shown that the electron gas rotates 
uniformly under the influence o f the field. The corresponding Wigner distribution function is 
also studied.

1. Introduction

As is well known the theory of diamagnetism of metals is complicated and abounds 
with subtle pitfalls’). One of the reasons is that in the calculation of the bulk 
susceptibility it is essential to take boundary effects into account. This was first 
clearly realized in the classical theory after Miss van Leeuwen formulated her 
famous theorem̂ ), by which she dealt a fatal blow to some of the older theories 
of diamagnetism. According to this theorem, proposed independently by Bohr̂ ), 
the current density vanishes and hence the magnetic moment is zero in classical 
systems of charged particles in thermal equilibrium in the presence of an external 
magnetic field. It was shown by Landau*) that this is not true in quantum 
mechanics and that in fact the diamagnetic susceptibility of an electron gas is just 
one third the paramagnetic susceptibility due to spin.
Landau evaluated the quantum partition function, using an interesting set of 

single particle wavefunctions, and taking proper care of the effects of the boundary

* Part o f this work was performed at the Department o f Physics, Queen M ary College, U ni­
versity o f London.
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on the number of states. Later calculations have also concentrated on the partition 
function since at least this is a foolproof method’), which avoids the intricacies of 
a direct calculation of the magnetic moment. A  particularly careful discussion of 
the boundary effects on the level density for systems of large and intermediate size 
has been given by Dingle®).
A  very elegant way of calculating the partition function was proposed by Sond- 

heimer and Wilson®). They consider an infinite system and hence boundary effects 
do not enter at all. But, as pointed out by Dingle®), in this way one does not deal 
with quite the whole problem, since it is taken for granted that the susceptibility 
is purely a volume effect. Moreover, as will be shown below, the Sondheimer- 
Wilson theory suffers from an inherent contradiction. Although the partition 
function leads to the correct value for the magnetic moment, one finds by direct 
calculation that the current density and hence the magnetic moment vanishes 
identically.
This paper deals with a model situation for which not only the partition function, 

but also the local current density can be evaluated exactly. We consider an ideal 
electron gas confined by a cylindrically symmetric harmonic potential. The density 
matrix can be evaluated by the method of Sondheimer and Wilson®) and we find 
the remarkable result that in the presence of the magnetic field and with Boltz­
mann statistics the electron gas rotates uniformly. We also evaluate the Wigner 
distribution function which turns out to have an interesting form. We confine 
ourselves here to Boltzmann statistics.
To our knowledge the harmonic potential is the only case where such simple 

results can be obtained. It allows one to discuss in detail the effects of the boundary 
and the way in which the bulk limit is attained. For the partition function this was 
already done by Darwin̂ ). In our view the present calculation in combination with 
Sondheimer and Wilson’s method for treating the Fermi-Dirac case provides an 
attractive and lucid description of the diamagnetism of free electrons in metals. 
The detailed calculation of the local properties of the high temperature gas, as 
presented here, may also be of some interest to plasma physicists.

2. Density matrix for electrons in a harmonic potential and a magnetic field

We consider a gas of non-interacting electrons of charge — e, mass m, confined 
by a two-dimensional harmonic potential V(r) = and under the
influence of a uniform magnetic field B in the z-direction. We choose the cylindrical 
gauge for the vector potential /t(r) = ( — jBx, 0). The single-electron hamil- 
tonian reads



DIAMAGNETISM OF A CONFINED ELECTRON GAS 153

Introducing the Larmor frequency W l and the modified frequency by

C'>L = eBjlinc, = (cô  + Wq)̂ , Wq = A/m, (2.2)

one can write the hamiltonian in the alternative form

Jif = p^llm + Wl {xpy -  ypx) + \ m Q l + y^). (2.3)

In Boltzmann statistics the single-particle density matrix satisfies the Bloch 
equation

= -Jfg. (Z4)Cf) -
In coordinate representation this becomes explicitly the partial differential equation

- y - i n i ü l  (x  ̂+ >’2)1 o (r, r'; /9).L2'« V cy ô x j J (2.5)
Following Sondheimer and Wilson®) we look for a solution of the form

Q (a **'; =/(/̂ ) exp [-ig (/5) (.y't - >’'.v) + (xx' +  yy')

-  (ft) (-v̂ + y^ + -v'* + /") - (mllfttr) (z -  z')"]. (2.6)

This satisfies (2.5) provided the functions /(/?), gift), h{ft), k(ft) obey a set of 
coupled nonlinear ordinary dilTerential equations which must be solved with the 
condition that (2.6) reduces to the well-known free particle solution for B =  0 
and K  =  0. One finds, putting and = licoi .̂

At» = I AH) =
Ir.fih-J s i n h s i n h / 5 < f L  

/; sinh ftSi, AF

(2.7)

Now one can evaluate the partition function

Z = Tr p = J e (r, r; ^) dr. (2.8)

We limit the integration over z in (2.8) to the range 0 < z ̂  C. From (2.6) and 
(2.7) one finds

Z = Z^Z=, (2.9)
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where

Z ,  = C{ml2izfth^f (2.10)
is the partition function corresponding to the free motion in the z-direction, and

Z^y = -------    (2.11)cosh ftSi, — cosh

is the partition function corresponding to the motion in the .v and j-directions.
Hence one can evaluate the average magnetic moment and the average energy 

per electron. For the magnetic moment one finds

<M.> =  ̂ (2.12)
d B  cosh - cosh

where pe = etijlmc is the Bohr magneton, and ̂  = oJQi^. For the average energy 
one finds

= -a In zld§ = sinh HS, - .L sinh fc, ̂  J_ (2,,3)
cosh — cosh /?£l 2/Î

The last term is the kinetic energy in the z-direction.

3. Number density and current density

The number density per electron is given by 

n{r) =  Q{r,r){Z (3.1)

and from (2.6), (2.7) and (2.11) one finds the gaussian distribution

n{r) =  ̂  exp [ - a  (x- + ŷ )], - (3.2)

where
«  =  i _ A =  ^  r cosh (3 3,

sinh

The probability current density is given by

/■(<■) = Z-'-L_ [Vg (,, r’) -  V'g (r, r')]|,... + —  "(r) Z(i-). (3.4)
2mi me
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where as before A(r) =  { — \Bx, 0). Substituting from (2.6) one finds that the 
current density can conveniently be written as the product of number density and 
flow velocity®)

j(r) = n{r) V(r), (3.5)

where the flow velocity is given explicitly by

m  ( 1 - '1"; ) (->>. 0). (3.6)V  ̂sinh J

Thus we have found the remarkable result that the electron gas rotates uniformly 
about the z-axis.
One easily checks that the total magnetic moment

<AO = ̂ (r X j{r)). dr, (3.7)

as calculated from the preceding equations agrees with the result (2.12) found from 
the partition function. From the fact that (sinh %)/% is monotonically increasing 
for positive .v it follows that the angular velocity in (3.6) has the same sign for any 
value of the field. The response of the system is diamagnetic for any field strength. 
For weak field one finds from (3.3), with Eq = ho)Q,

a % (m//r) coth/9fo (small 5), (3.8)

i.e., the width of the distribution then is determined by the harmonic potential.
In this limit one finds for the flow velocity

F(r) % Wl (  1  — — ^ ( ~ } \ x , 0) (small B) (3.9)V sinh fteo /

so that the magnetic moment is proportional to the field strength. From (2.12) 
one finds

<AT> % -  1 (small 5). (3.10)
cosh (ieo — 1

For strong field one finds from (3.3)

(X % (large jB) (3.11)

i.e., the width of the distribution is again determined by the harmonic potential
but it now has a value as if the system were classical. The flow velocity tends
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monotonically to a finite value

V(r) % ift/îMo (-y, X, 0) (large B). (3.12)

Hence the magnetic moment saturates, and from (2.12) or (3.7) one finds for the 
limiting value

<M^> « -yUB (large .B). (3.13)

From (2.13) the average energy becomes for strong field

(large R). (3.14)

Thus in the strong field limit one arrives at the following simple picture: The 
electrons orbit in the ground state of the cyclotron motion and constitute magnetic 
dipoles of strength equal to the Bohr magneton. These dipoles are distributed in 
space in a classical distribution w(iich rotates uniformly. Since the kinetic energy 
becomes large the uncertainty principle allows precise classical localization in the 
directions normal to the field.

4. Limit of weak potential

• The parameter can be regarded as characterizing the dimensions of the 
system transverse to the field. The results of the preceding section apply to systems 
of any size. In order to make the connection with the Landau theory*) of dia­
magnetism for macroscopic bodies it is necessary to consider the limit of weak 
potential, thus allowing the dimensions normal to the field to grow indefinitely. 
From (3.3) one finds that in this limit the width of the spatial distribution is deter­
mined by

a X ^Pnuol (small X), (4.1)

which is again the classical value. The flow velocity becomes

V(r) coth - 1) (->’, 0) (small A) (4.2)2 cul
and the magnetic moment

% — yUg ( coth —  J (small K). (4.3)ftEuJ
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Thus in this limit the magnetic moment tends to a value independent of the poten­
tial. The function in brackets in (4.3) is just the Langevin function. The same value 
for the moment is obtained from the partition function as calculated in the absence 
of any potential®).
It is to be noted that the flow velocity F(r) in (4.2) tends to zero with K. On the 

other hand the width of the distribution increases indefinitely as AT tends to zero. 
The two effects just compensate each other and lead in the limit to a finite value 
for the magnetic moment, given by (4.3). Correct understanding of the physical 
situation requires carrying out the above limiting procedure. If one considers free 
particles from the start, as done by Sondheimer and Wilson®), one finds the 
contradictory result that the current density vanishes, whereas at the same time 
the partition function leads to a finite value for the magnetic moment.
If one takes the limit of small B in (4.3) one finds

<A/j> » -i/̂ u/î̂ L (small K, small B). (4.4)

This value is also found by taking the limit of small K in eq. (3.10). Hence the 
two limits can be interchanged. For large B the magnetic moment again saturates 
to the value <A/.> % — //g, in agreement with (3.13).

5. Wigner distribution function

The classical results are recovered by taking the limit /i -> 0. Thus one finds 

<AA) = 0, = 5/2/3,
(// 0) (5.1)A' = \ftmtoQ, y = 0.

The magnetic moment vanishes in agreement with Miss van Leeuwen’s theorem̂ ). 
The theorem also implies that locally the current density vanishes.
The relation between the classical and quantum-mechanical results is seen more 

clearly by rephrasing the latter in terms of the Wigner distribution function̂ ). 
We introduce central and relative coordinates by

/? =  i (r -f- r'), q =  r' — r. (5.2)

The Wigner distribution function /w (/?, P; ft) is defined by

/w (R. P; H) = /I'M? - lî. + ir, H) e"""" dq. (5,3)
It is normalized to

J/w(/?,P)d/?dP = Z. (5.4)
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Quantum-statistical averages can be evaluated from the Wigner distribution ac­
cording to the rule

<f> = Z-‘TrgF = Z-‘i/w(JÎ,F)Fw(«,i’)d/îdP, (5,5)

where (R, P) is the Wigner equivalent of the quantum-mechanical operator F. 
If F is given in coordinate representation as F {r, r') its Wigner equivalent is 
given by

(P, P) =  ^ F { R - i q , R  +  \q) e""""i q . (5,6)

For the operators of present interest the Wigner equivalents are simply related to 
the corresponding classical phase space functions by Weyl’s rule’®).
For the density matrix given by (2.6) the Wigner distribution can be evaluated 

explicitly. Before giving the result we introduce some new notation. We split the 
flow velocity V(r) given by eq. (3.6) into a purely diamagnetic part and a para­
magnetic part Fp,

F  =  Fd +  F p , (5 .7 )

where
F, = —  .4(.), Fp = - ^  Z(r). (5,8)

me me i  sinh

We also define a quantum temperature T' by ft' = \jkaT' with

/5' = ------2 sinh _ (5.9)
(fc (cosh ftSi  ̂+ cosh ftei)

The Wigner distribution can then be written in the form

/w(X,P;H) = Z ^  f f t - exp \--f-[(P. - + (P, - «/,,)=]
- C  (2%/?;)^/2 ( 2m

- - L p ^  -oc{x^ + y2)1 (5.10)
2m J

Note that in the present case the distribution is everywhere positive and has a 
simple classical interpretation. Integrating /w {R, P) over the momenta P one 
recovers the density distribution (3.2). Integrating over the spatial coordinates one 
finds that the momentum distribution is given by the shifted maxwellian

/(f) = 7 T ^  “P \ - &  [(f. - + (fy - "’KXl -  Pi(27tw)2/2 ( 2m 2m
(5.11)
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In the classical limit ft' reduces to ft, and Fp becomes equal to — F̂ . Also, a in 
(5.10) reduces to \  ftmojft,. The current density is given by

P +  - A ( R )  /w(X,P)dP = (Fp(X) + Fp(X)]«(X). (5.12)

It is of interest to note that the parameters ft' and tx differ. For a simple one­
dimensional harmonic oscillator with frequency c»q the Wigner distribution would 
be

/ v ( X , P)  = cosh ' exp ft" (5.13)

with ft" = (/tbT")'’ and quantum temperature T" given by
ksT" = \ho)Q coth \  fth(OQ. (5.14)

Hence in that case kinetic and potential energy appear with the same quantum 
parameter. In the present situation the magnetic field not only causes the current 
to flow, but also affects the average transverse kinetic and potential energy.
The local transverse kinetic energy density is given by
J_
Z

1
2m

/w (/?, P) dP

= [kuT' + i/nF2]/;(/?) (5.15)

and hence is the sum of a temperature and a streaming contribution. As we have 
seen, in the limit of weak potential, K  0, the local flow velocity V tends to zero. 
In this limit one finds from (5.9) for the quantum temperature

kaT' ~ £l coth (small A') (5.16)

which is to be compared with (5.14). Thus the cyclotron motion gives rise to a 
typical harmonic oscillator quantum temperature. In the limit of strong field k^T' 
tends to corresponding to the zero point cyclotron motion. As is evident from 
(3.3) and (5.9), for general values of B and K the parameters x and ft' are influenced 
by both the magnetic field and the oscillator potential.

6. Particle motion

The preceding results have been obtained without inquiry into the details of the 
particle dynamics.. A  study of the particle motions reveals that the simple uniform 
rotation of the electron gas is a result of quite delicate additions and cancellations
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of the individual motions in the Boltzmann statistics. The dynamics of the particles 
is most easily studied by transforming the hamiltonian (2,1) to normal modes. 
The transverse part of the hamiltonian is diagonalized by introduction of the 
following normal mode coordinates

where = (&>L + ĉ o)̂ - Hence one has

X + i>’ = Px + ky = i {a\  -  a_).
\

(6.2)

Solving for x, y, ^nd substituting in (2.1) one finds

= fico+ («+«+ +  ¥) +  Ii(o_ (ata_ + i) + pl l2m, (6.3)

where

cOj. = ± Wl* (6.4)

The corresponding classical hamiltonian is obtained by putting /j = 1 in (6.1)-(6.3)
and omitting the terms with j in (6.3). We only discuss the case of weak potential
CÜQ 4 Wl. Then classically the electron partakes in two circular motions, a fast 
cyclotron motion with frequency co+, and a slow motion in the opposite direction 
with frequency co_. Both a\a+ and are of course constants of the motion, 
but of particular interest is the linear combination

Tg = -  a l a _ = xp„ - )Px (6.5)

which is the z-component of angular momentum.
Previous results for average energy and magnetic moment are recovered easily 

by expressing the variables in terms of the normal mode coordinates and using

=  [exp(/ioji) -  1]"’. (6.6)

The magnetic moment is related to angular momentum by

jW. = i, + +  /). , (6.7)
2mc 2c

From (6.5) and (6.6) it follows that (Tg) is always negative. In the classical case 
<Lj> just balances the average of the second term in (6.7) to give zero magnetic 
moment.
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The results for the local number density and current density are obtained more 
easily by the method of sections 2 and 3.
From (6.3) it follows that the energy eigenvalues are given by

E  (/t+, kft) =  /ÏOJ+ («+ 4- j) +  hoj_ («_ +  i) +  tPkljlm, (6.8)

and one easily writes down the corresponding eigenfunctions in terms of normal 
mode coordinates. On the other hand one can also solve the Schrodinger equation 
directly in coordinate representation. The eigenfunctions are in cylindrical co­
ordinates

y(f) = (An. ( (G <p) e'":' (6.9)
with

(r, 9) = f '!r (6.10)\1 (/; + |/| + 1)7
where b = and are the associated Laguerre polynomials. The quan­
tum number n runs over 0, 1, 2,..., and / over the positive and negative integers. 
The functions form an orthonormal set. The corresponding energy
eigenvalues are

F(/f, /, A',) = (2/7 + |/| + l)Af?L + /Awl + t f tk l llm. (6.11)

From (6.5) and (6.8) it follows that

/ = 77 + — 77_, 77 =  ̂  (77+ 4- 77_) —  ̂  [77+ — 77_|. (6.12)

The results of sec. 2 for the density matrix can be recovered by using the identities’ ’)

1 — C \ i — C y  V 1 —  C
Z  t' / i  (77) =  e x p  R z / ( f  4- /  ’ ) ] ,( = — cc

where Iiiu) are the Bessel functions of imaginary argument. This demonstrates 
again the delicate balance of the individual eigenmodes giving rise to the simple 
macroscopic behavior described above.
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