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Abstract

The central aim of Part I of this thesis is to investipate
non-ecqulikriuvm processes in physics by studying the so called
Reyleigh's Piston model which was originally conceived by Lord
Rayleigh in 1891. In its most general aspect the modern
formulation involved the study of the 'Master Equation' for the
statistical evclution of an ensemble of test-particles (mass M)
constrained to move in one dimension interacting with hecat-bath
particles ( mass m ). By using the numerical technigues
developed in studying neutron thermalisation, we have investiga-
ted the accuracy of Rayleigh's original treatment or the so
called DBrownien limit and obtained numerical results for
velocity autocorrelation function Sv(t) and electrical
conductivity e@).

It is in the case of special Rayleigh's mcdel
vhere the masses are equal ( M=m ) that we have been able to
solve the model exactly both by using the method of singuler
eigenfunctions and by the method of Laplace transform. Thus a
definitive connection is made with methods developed in the
'Linecar Transport Theory! to solve problems in field: of radiative
transfer, neutron diffusion, the theory of plasma as well as
elsewhere. For the specisl model, we have investigated the
'Velocity! barrier problem, the spatisl problem and obtaired
exact erpressicns for the autocorrelation function, the
d¢iffusicn constant, the electrical conductivity by using the
linecar response ftheory and tested the validity of the so called
'*Gaussisn Lpproximation' by examining moments of the Van Hove
correlation function G(r,t).

In Part II of this thesis we have
investigated the behaviour of 2 model consisting of an ideal .
cherged electron ges in a uniform magnetic field and confined
by a cylinderically symmetric potential. VWe have obtained
exact expressicns for the current density,the magnetic moment,
the magnetic susceptibility and exemined in detail the boundary
effects.
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PIRT I

' Of what use is your teautiful investigation

regarding pi ? ' ( Kronecker to Lindemenn )
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CHAPTER  ONE

INTRODUCTION TO PART T

Section 1.1, Non-equilibrium Physics

The irreversibility of physical processes is the most
characteristic feature of the physical world. We know from
experience that systems with many degrees of freedom, when left
to themselves tend to an equilibrium state which is independent
of the initial state. We should in principle be able to handle
this problem by solving the Liouville equation, with
appropriate initial and boundary conditions. A detailed
analysis of the solution should bring out all the features of
the macroscopic processes. One is assuming that without
modifying the microscopic equations, it would be possible to

describe the evolution of the system.

But the elementary laws of motion are reversible,
however, the subsequent time evolution of a system is always
in a privileged direction. This is the ;elebrated paradox of
irreversibility. The study of the irreversibility problem
is beset with enormous difficulties and historically has given
rise to many controversies, Failing to deduce the irreversibdle
approach to equilibrium in a systematic way, physicists have
attempted to explain the problem from probabilistic
conéiderations. In these treatments, the lﬁws of motion
assumed for the individual particles delibrately deviates
from the laws of mechanics. At some point in the treatment, an

element of probabilistic nature is introduced in the theory.
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The earliest and most profound contribution to this problem
was made by L.Boltzmann (1872), who gave a probabilistic
explanation of the second law of thermodynamics and introduced

the H-theoren.

In Part I of this investigation, we have been
concerned with the stochastic theory approach to non-
equilibrium statistical mechanics. By using physical intuition
a workable model of physical systems is constructed where all
the ingredients of an irreversible evolution are present.

Many problems can be treated by applying this theory. By an
exact analysis of the many body problem, it can be shown that
in many important cases, the stochastic method can be

Justified.

The progress in our knowledge of stochastic
processes has been quite extensive since Kolmogorov's
fundamental paper in 1931, Doubtless as a result of the
growing need for the stochastic treatment of prcblems in
diverse fields of modern science. Many parts of the theory
were first developed in connection with the study of-
fluctuations and noise in electric circuits (Schottky 1918).
At present, stochastic processes provide models in such
diverse fields as the theory of population growth,

communication and control theory,.operational research and

genetics., (see e.g. Bartlett 1962)

Generally the processes in nature are slow and
the number of particles very large. Such processes can be

treated with advantapge as random or stochastic processes, This
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aﬁproach is semiphenomenclogical and from the begining a
deterministic approach is given up in favour of a more
intuitive treatment. In the next section, we have briefly
reviewed several general ideas and methods of the theory of

stochastic processes (see e.g. Bslescu 1975).

Section 1.2, Random Processes

We now come to a definition which plays an important role in
many practicle applications. Let y signify the variable in
which one is interested. It may be, for example, the current
in a noisy electrical circuit. At every given time, y can have
random values within its range of variation. To every stsible
value y at time t we assumeba certain probability density;
thus P(y,t)dy is a probability of finding the value of the

variable in the infinitesimal interval (y, y+dy ).

In general the knowledge of the probability
density P(y,t) is not sufficient for the characterisation of
the process. If it is known that the variable had a value
vy at tl , then the probability of finding the value Jo at t2
will be influenced by this result becsuse the various values
are not necessarily independent. In other words, the
correlation between what happens at time tl and what happens
at time t2 , can best be specified by the 'joint probability
density! Pa(yz,tel NERR2] ) (which is the probability of
finding the value y; at t; and the value y, at $, e
The joint probability density cannot generally be inferred

from the knowledge of Pl(yl s By )
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Therefore, for the complete description, it is
necessary to specify all the joint probabilities, Pl(yl,tl),
Py(¥osts| ¥4ty ), @nd so on, ad infinitum. Clearly, to make
further progress, it is necessary to introduce a classifica-
tion of random processes., The simplest assumption we can make
is one in-which the knowledge of Pl( ¥1:5 ) would suffice
for the problem. Namely,

Pg(ya ,t2| yl’tl ) = Pl(yz,tg)-Pl(yl,tl ) ( 1.1

In the above purely random process, correlation in time are
completely absent. This is, however, a very unrealistic
assumption, particularly for a continous physical process.
For short enough time intervals, one would expect to observe

a causal relationship between succesive events.

The next simplest case is of fundamental
importance in physical applications. The whole information is
now contained in the first two distributions. In order to
define this process, it is convenient to define a 'transition
probability! w2(y2,t2] yl,tl), which is the probability of
a transition from v to Ts in time taf tl. The transition

probability is defired through the relationship:

This relationship tells us that the joint probability
density equals the probability density of-finding MY at ti'

times the probability of a transition from beY to Io in

time interval tg-t1 o
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Irom above the following properties follow quite

naturally;
(i) W2<y2,t2 I AR tl ) 2, 0. ( 1.3 )
(ii) Ay, Ws(Tosty 77 5 %7 ) = Lo ( 1.4 )
(111)  Py(yp,to) = \dyy WolToety T9,570.P1(F9,%9)

( 1.5 )
The nth' order transition probability

wn(yn’ tnl Y1453 y2’t2;”“"‘;yn;i;°n-l )
is defined as the 'conditional probability' density of finding
the value I at time £, given that y had the wvalues Tp-1°
yn-2 ’..O.'Q..Q.., yl at the times tn—l’tn—z ,....0.0.’tl L ]
The n-successive times are assumed to be ordered:
t1<t2<t50000l..‘.. tn_/‘l<tn.

A Markov process is defined by the condition :

Wy (T | 790ty 5eveveesVpgatyg) = Wplogs bl Tpogatag )

( 1.6 )

This equation implies that for a Markov process, the
probability of a transition at time RLQL from AR to a
value yn.at time txldepends (besides on A tn.) only on the

value of y at time g}_ and not at all on the previous history

1
of the system. It is very easy now to follow through the

following steps.

P;(Y59t5 y2,t2;yl,tl ) = w3(3'5st3, ygstz;yla t}_)o
P2(3’2,t2|ylatl)
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= Wz(y5stalygstg)on(y29t2lylstl)

- (3,30 2, 82) P30 Bl 77,89

02t C 1.7 )
But from the definition of a probability density,
PE(y§’t§'yl’tl) = dYéchyB,talyl’tl§YQst2) ( 1.8 )

and from ( 1.7 )

P2(y5’t35y17t1) = dyEw2<ya,t3 yg,t2>.W2(y2,t2 yl,tl).
P1(51,tp)

Combining this with ( 1,5 ) we can write

Wa(y5,t5 yl,tl) = dy2w2(y5’t5 ye,tz).WQ(ye,t2 yl,tl)
( 1.10 )

This identity for the 'conditional probabilities' is an
integral equation often accepted as a definition of a Markov
process, It is called the 'Chapman-Kolmogorov' equaticn (or
sometimes the Smoluchowski equation ). The physical
interpretation of the above equation is clear. The
probability of transition from ylat tl to T3 at t3 can be
calculated by taking the product of the probability of
transition to some value Io at an intermediate time t2
and the probability of a tramsition from that value to the
final one at t5 , and integrating over all possible

intermediate values.
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We have not given further details about the
general Markov process and the above identity; the mathe-
matical background is readily accessible (Cox and Miller 1965):
this identity forms the basis of most applications of the
theory in physics and elsewhere. In control theory it is

used to obtain differential-stochastic equations by making

further assumptions (Larson 1969).

In order to obtain from the sbove identity the
transport equation for dynamical evolution of the probability
distribution P(y,t), further simplifications ﬁave to be made.
From Chapman-Kolmogorov equation it is possible.to derive the
Master equation which has formed the basis of this part of the
thesis. For pedagogical reasons, the presentation is less
deductive than might be desired by a mathematician and only
a brief survey of the subject has been presented. Our intent-
ion is to present a physically intuitive picture of linear
physical processes and not to present long and doubtful
calculations, applicable only to a few physical systems. Ve
have therefore, whenever possible, been less concerned with

details which are available elsewhere (Felderhof 1961).

let t5= t2+ At in the above identity. Then

w2(5’3’t2 + Atl?lstl)= dy2W2(:)’3, t2+AtlYg,tg)wz(YZstg!Ylstl)

( 1.11)
Let us now specialise the discussion to the physically
important situation in which the transition probability

w2(y2,t2[yl,tl) does not depend on the time t, at which the

transition occurs, but only on the time interval t,-t; .
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- ( As the two-event transition probability w2 is the only
independent transition probability in a Markov process, the

subscript 2 is clearly superfluous and can be dropped)

wg(Ygatglylytl>= W(YZI yl;tE—tl ) ( 1.122 )

For small At we can write

W(y', t+At]y,t)= (1-At K(y'l y)ay")d(y-y") |
+ AK(y'l y) + O(At) ( 1.13 )

The delta term denotes the possibility that no transitions
take place and K(y'l y) is the transition probability
density per unit time from continuous state y to y'. Therefore

E(y'l ¥)> o and for convenience one can define:

ACy) = \day' K(y"1'¥y) (1.12 )

By substituting W(y',t+At)y,t) from ( 1,13) into ( 1,11 ) and
taking the linit At——— 0, the following differential form

of identity ( 1.10 ) is obtained :

%_H ( y§9t5’ylatl>= dyg EK(:YB' y2)w(y2at2|yl,tl)
t
- “E(3,l 73)W(55, b5l 7y 67D ]

(¢ 1.15)
By multiplying the above equation throughout by ?l(x ftl) and
integrating over y, on both sides it follows from ( l.2 )

and ( 1.5 ) that:

R ((;
i x

A\

v'E(yiy Py, 5)-A(Y)P(y, t) ( 1.16 )
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The Markovian equation ( 1.16 ) is the customary form of the
Master equation, which relates the evolution of probability
distribution P(y,t) in time to the transitions in and out of
states., For discrete systems, the lfaster equation can be

written in somewhat familiar form as:

n'n'n

dP_(t)
a—t-’?-- . Zwm.rn.(t)-.-w P_(t) ¢ 1.17)
N,

In Quantum Mechanics (1.17 ) is commonly called the Pauli
equation. The first term on the right hand side describes the
transitions into a state n, while the second term describes

the transitions taking place from state n to any other state n'.

The usefulness of this approach is that the
transition probability per unit time K(y'| y) is related to the
physical system and for simple models can be computed exactly
from the microscopic properties of the system. There are cases
in the literature where exact expressions have been obtained

for K(y'| y). (see e.g. Alkemade 1956, Van Kampen 1960).

Section 1.%. Properties of the Master equation

By introducing the operator
a(xlx')zK(xlx') - &Zx—x')A(x)
with the definition,

Q.P(x,t)= \ax'K(x]x")P(x',t) - A(x) ( 1.18 )

the Master equation ( 1.16 ) follows as,
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WG, t) 0.P(x,t)

" (119 )

with a formal solution

P(x,t)= exp ( Dt ). P(x,0) ( 1.20 )

However, the formal solution is of no use in finding the
explicit value of P(x,t). The familiar method of solving
equations of the type ( 1.19 ) by determining the eigenvectors
and eigenvalues of ® cannot be used‘generally because o
need not be symmetric. Thus generally, it is not certain that
all solutions can be obtained as superpositions of these

eigenvectors.

In the case of a real closed system, one would
expect the Master equation to have a unique stationary solution
and to satisfy the principle of detailed balance. In this case,
P(x,t) after a long time must tend to the equlibrium
probability distribution Peq(x) and then it is possible to
symmetrise the operator &. Before we discuss the problem of
symmetrisation, it is convenient to list all the properties

of the Master equation which hold quite generally.

(a) Positivity Condition.

If P(x,t) > 0 at t=0 for all values of x then
P(x,t) > O for all values of x and b,
the proof is quite straightforward(Felderhof 1961)

(b) Uniqueness of Ecuilibrium

Linit P(x,t) = P, (x) for any P(x,t).
t $ 0 4

Any realistic model has to satisfy this property. In
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Appendix A we have presented the proof which is
normally proved only for discrete-state systems. (It
is important to notice that both (a) and (b) hold
irrespective of the nature of eigenvalue spectrum.)

The Principle of detailed balance

For real closed physical systems, it is reasonable
to assume that Peq(x) must be the only solution

satisfying
dx'[K(xlx')Peq(x') -K(x'lx)Peq(x)] ( 1.2 )

In many cases one can make the stronger assertion

that the integrand in (1.21) itself vanishes. That is
] -
K(x|x )Peq(x) = K(x'lx)Peq(x) i ( 1.22 )

The above relationship is a natural symmetry relation
for most physical systems (Haken 1975). It can be
shown that the detailed balance is a consequence of

the invariance of the microscopic equations of motion
under time reversal. In case of dynamical variables
such as the flow velocity of a-fluid, the detailed
balance principle reflects the symmetry inherent in the
process.

Detailed Balance and Symmetrisation

We can look for the exponential solutions of the

Master equation (1.16) " of the form:

P(x,t) = exp (—Xt)@(xg%} ( 1.23 )
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where the eigenvalues have been specified by A and the

eigenfunctions by ¢(X,X) . Using detailed balance
condition (l1.22) the operator Y can be

symnmetrised. The following symmetric kernel can be
defined:

G(xl=') = K(xix") . N(x")/H(x) (:1.24 )

where N(x) = ( Peq(x) )% and from (1.22) it
follows that:

G(x|x') = G(x'jx) ' ( 1.25 )

This leads immediately to the new self-adjoint Master

equation
éih(X,t)
X;-—__- = \&x'G(x|x")h(x',t) - L()h(x,t)
( 1.26 )
with h(x,t) = P(x,t)/N(x)
( 1.27 )

In operator form the above equation can be written as

}th(x,t) A
— - R, (1.28 )
3t | -

A
where the operator A is defined by the relationship

A
A= G(xIx') - A(x)g(x—x')
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In Appendix A it is proved that the operator is negative
semi~-definite with the consequence that - A the

eigenvalues of the symmetrised equation

M~
AD G\ = A T (x,0) (1.29 )

are positive. Hence the spectrum of the eigenvalues
may be discrete or continuous, or a combination of both
but always will lie along the positive real axis. The
symmeterised eigenfunctions are related to the
eigenfunctions ¢ (x,\) of operator & by the

relationship:

§ () = & (M) /B (x) (1.30 )

Section 1l.4. The Eigenvalue Problem

The standard method of solving the transport equation (1.26 )
has been based on the assumption that by a separation of
variables, a general'solution can be expressed as a sum of
terms of the form §§x,k)exp(-ht). A necessary and sufficient
condition for the validity of this assumption is that the set
of eigenfuncticns be complete in a sufficiently general
fuction space. In full the integro-operator eigenvalue

problem becomes:

( AGx) - 2.0 (xA) = \ax'e(xix').Q (x',\) ( 1.31)

where A(xz) is the so called '"Multiplicative Operator'.



There have been several investigations of the
eigenvalue problem of the type (1.31) (see e.g. Shizuta 1964),
The time behaviour of neutrons in matter as described by the
linearised Boltzmann transport equation satisfies similar
type of eigenvalue equation (Williams 1966). Some years ago
it was realised by Case(1960) and others that the presence
of A(x) in (1.%1 ) can introduce a 'continuum' eigenvalue
spectrum, which must be used together with the discrete
eigenvalues and the corresponding eigenfunctions to form
a complete set. If we assume that A(x) is a monotonically

increasing function of x starting from its lowest value

A

nine then for Ay

Amin there cannot be regular solutions

of the equation because of the singularity at A(x)=\ .

However, it is still possible to find a
continuum of solutions which turn out to be distributions in
the sense of L.Schwartz (1966). Por this reason, the equation
is often called the 'singular eigenvalue' problem. The
continuum spectrum arises through the use of a fundamental
theorem of distribution theory which states that for any
infinitely differentiable function q(x) and for a simple

zero x of q(x), a distribution D satisfies the identity

q(x)DX = 0 (1.32 )

if and only if

D, = C&(x-x,) : (1.33 )
where C is a constant and é(x—xo) is the Dirac delta
distribution. (The standard refrences on distribution theory

are the moncgraphs by L.Schwartz 1966, Lighthill 1958,



and Zemanian 1958).

More generally, the solution of equation

(x-xJe(x) = £(x) ( 134 )

can be written as
g(x) = P.f(x)/(x=x,)  + w(x,)é(x-x) ( 1.35 )

The symbol P indicates that the principal value prescription
must be used in any integral involving the integrand

f(x)/(x-xd). w(xo) is an arbitrary function.

The first application of the above symbolic
identity was made byfVan Kampen(1955) in a connection with a
problem of plasma-oscillations and later by X.M.Case(1960),
Mika(1961), Zelazny and Kuszell(1962) and others for solving
one and two velocity dependent Boltzmann eguation. By using
(1.55»)‘the formal solution of (1.3l ) for eigendistributiocns

can be expressed as:

T (6,0 = Po \ GG TEAN X /(AGD)-R) + w(A)ECAGD-A)
( 1.36)

The formal solution above clearly indicates the singular
nature of the eigenfunctions and the use of the terminology
teigendistributions! for the eigenfunctions representing the

continuun.

The problems of interpreting the right hand
side of (1l.36 ) were considered by Van Kampen in his orig-

inal paper and more recently Hagelbroek (1973) has looked

% B. Dovison (\‘\‘\4)
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closely at the whole method of using eigendistributions. It
is necessary to point out that Van Kampen and workers in
neutron transport theory, including Hagelbroek, had to
consider distributions of the form f(x)/(x—xo), where Cauchy

principal value prescription followed quite naturally.

For more advaced type of singular eigenvalue
problem (1.31) with A(x) depending on the variable x in a
complicated way, one would expect to find other types of
distributions. Even for the 'Cauchy type' distributions,
Hagelbroek has quite correctly pointed out all the difficul-~
ties associated with the application of the singular
distributions from a rigorous mathematical point of view.
Hagelbroek (1973) has attempted to resolve these difficulties
by using the 'functional analytic' approach in order to

make Case's method more clear and rigorous.

In chapter three, a unique set of eigendist-
ributions is obtained which confirms the Case's method of
solving the singular eigenvalue prcblem and at the same tine

gives a profound understanding of the whole topic.

In the absence of the singular eigenfunctions
the initial value soluticn h(x,t) can be expanded in terms
of the discrete eigenfunctions § (x,A) = QK(X)‘( where k now
labels the discrete eigenvalues), provided that they form

a complete set, in the following way:

B(x,t) = NG + Y a B (x)esp(Ap)

Ly

K

(1.37 )
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where the'expansion coefficients are to be determined by the

orthogonality property :

a = \dx § (x)n(x,0) (1.38 )

For discrete eigenfunctions the orthogonality property

follows quite simply in a standard way; in the form:

(0.3 _(x) = 0 (139 )

if n # n.

However, as was stated above and particuvlarly
in the neutron thermalisation problem by ZKoppel(1963)
whenever A(x) is not independent of x, the discrete
eigenfunctions must be supplemented by a continuum of singular
solutions all orthogonal to the discrete set of eigenfunc-
tions. Therefore, besides a linear combination of the discrete
eigenfunctions, the general solution must contain a ternm

given by an integral over the continuum:

h(x,) = N(x) + Zak@k(x)exp(-?\k’c) + [@a)B(x, Wexp(-1t)
. K .
CoNTINLLM ( 1.40 )

Normally with the singular solutions the orthogonality

condition is expressed as
ax JxANFEN) = KSR (1.1 )

where N(A), the normalisation function may be calculated

by using the Poincare'-Bertrand formula ( Koppel 1963):



- - 18 -

P.Ki/(p—v) ap Plgl/(v'—p) glp,v') av'

—\gdv'jl’.l/(p—\l) P.1/(v'-p) glp,vDdp = -nog(v,v)

(142 )

(see e.g. K.M.Case and P.F.Zweifel 1967 page.70 )
There are many unusual features associated with the applica-
tion of (1.42) which are discussed in chapter three. Applying

(.41 ) to (1L.40 ) we have

a(A) = 1/H(V) . de B, M)h(x, 0) (143 )

The Poincare'-Bertrand formula (31.42 ) works only for

'Cauchy principal value' distributions. In order to exchange
the order of integration, in cases where the integrand
contains other types of distributions, a Poincare'-Bertrand
type of formula has to be found. For more information see the

review article by Hoare (1971).

By using the theory of Laplace transforms,
a tool recognised in the Linear transport théory literature
to be the most powerful method of attacking initial value
problems (see e.g. Corngold 1965), one can reduce the
condition of validity of the eigenfunction expansion to the
existence of a Laplace transform for any function h(x,%).
In chapter four, this method is applied and at the same time
the connection with the singular eigenfunction method

is established.
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Section 1.5. The Model

The model we have considered was originally proposed by
Rayleigh (188l1). From the modern point of view, Rayleigh's
original treatment was restricted to the study of an ensemble
of very heavy test particles (or Rayleigh Pistons of mass M)
undergoing brownian motion in a dilute gas (which serves as a
heat-bath with particles of mass m). Rayleigh considered in
detail the progress towards a stationary state and the nature

of this state.

The modern extensions of the Rayleigh model
have been concerned almost exclusively with the problem of
Brownian motion. (see e.g. Green 1951, Akama and |
Siegel 1961). With the condition MY/ m it is possitle
to reduce the initial value problem for B(V,t)
approximately to a second order partial differential equaticn.
( the so called Rayleigh-Fokker-Planck eguation ). In
chapter two, the model is reformulated in modern terminology
and the:validity of the R-F-Planck approximation is
examined numerically. The numerical results are used to
calculate the velocity autocorrelation function and hence
using expressions from the linear response theory, the

electrical conductivity of the model is obtained.

In chapter three, an exact solution is
obtained by the singular eigeﬁfunction method for the special
Rayleigh model (essential where m # M ). In chapter four,

this model is solved by using the Laplace transform
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method. A unique feature of this model is that 'absorbing
barrier' problems can be formulated and solved exactly

( chapter four ). Although the general theory was developed
exclusively for the spatially homogeneous transport equations,
nevertheless, for the special Rayleigh model, the spatially

dependent transport problem can be usefully studied ( chapter

five ).
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CHAPTER TWO

RAYIEIGH  MODEL

Section 2.1. Preliminary Formulation

In order to introduce the Rayleigh model, one can do no better

than quote from the original paper by Rayleigh in 188l:

" The investigations, of which a part is here
presented, had their origin in a conviction that the present
rather unsatisfactory position of the Theory of Gases is due in
some degrees to a want of preparation in the mind of readers,
who are confronted suddenly with ideas and processes of no
ordinary difficulty. For myself, at any rate, I must confess
that I have found great advantage from a more gradual method
of attack, in which effort is concentrated upon one obstacle
at a time. In order to bring out fundamental statvistical
questions, unencumbered with other difficulties, the motion
is here limited to one dimension, and in additvion one set
of impinging bodies is here supposed to be very small relat-
ively to the other. The simplification thus obtained in some
directions allows interesting extensions to be made in
others. Thus we shall be able to follow the whole process by
which the steady state is attained, when heavy masses crigine=-
1lly at rest are subjected to bombardment by projectiles fired
upon them indifferently from both sideS. eecoeescceves

In modern terminology, the Rayleigh model
can be described as an ensemble of test-particles cf mass I,
constrained to move in one dimension and bombarded by radom,
impulsive collisions with a gas of heat-batlh particles of
mass m , having temperature T. Cne is interested in finding

the evolution of the velocity probability distribution
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P(V,t) satisfying the Master equation (1.16 ). As with most
problems in physics, it is not always possible to find P(V,t)
explicitly. Approximations and practical methcds of solving

the equation have been discussed by Hoare ( 1971).

In this chapter, the general problem for the

test-particles of all possible mass-ratios,

y=mn/M ( 2.1 )

free from restrictions imposed by Rayleigh ( namely that

M >>> m ) is discussed and a comparison is made with the limi-
ting case of R-F-Planck equation. We begin by deriving the
transition kernel for the model and later study the transport

equation numerically.

Section 2.2, The Ravyleigh Kernel

We consider the collision in one dimension of a piston of mass
M with a particle of mass m. Let V, v be velocities
before the collision and V', +v' be the velocities after

the collision. Applying the equation for conservation of
energy and the equation for conservation of momentum, it

follows that
M‘V2 + n v2 = M V'2+ m v'2 ( 2.2a )
and

MV +my =MNV'+ny' (2.2 )

Trom above it follows that
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v\ = 2v.y - V.(y-1)

( 2.2¢ )
(1+vy)

In order to calculate the Rayleigh transition
kernel, we now suppose that the piston of mass M is
immersed in a one dimensional heat-bath of point particles
of mass m , kept at temperature T . One can consider any type
of heat-bath but for this chapter it has been taken to be the

Maxwellian distribution of velocities :
1
£.(v) = (m/2nkT)Zexp(-uve/2KkT) (2.3 )

where k is the Boltzmann constant. It is convenient to write

this in the form:

£,(v) = CoeXP(—avz) (2.3 )

We require the probability X(V]|V')AaV' that the piston having
initial velocity V will go to a velocity in 4V' about V!

upon impulsive collisions. To obtain this let

z (v,V) = rate of collisions from left with V and v.
2 (v,V) = rate of collisions from right with V and v.

or

Z(v,V) = ClV—Vlfm(v) | | ( 2.4 )

L 4

where C is a frequency factor with dimensions
(timej-%(velocity)"} To average over the outcome of all

of all collisions, we use a method introduced
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by Waldmann ( 1958 ? :

@ R
K(VIvY) = dvdVv' s (v - 2yv +(1-y)V )Z(v,V)
(1+y)
“% T

( 2.5 )
The delta distribution in the above relationship expresses
the conservation laws. By using the identity ( see
Zemanian 1958)
b
jf(x)g(ox—-ﬁ)d:x 1/a £(B/a) ob) By oa

[(® = 0 otherwise

1]

( 2.6 )

it can be shown that

K(VIV') = p 2(V'p + V(1~p),V) (¢ 2.7 )

By using ( 2.4 ) and ( 2.3 ) the above relationship

can be expressed as

K(VIV') = ugcolv-v'lcexp(-oa[(V'-V)-u + V]9 '( 2.8 )
where

o= (Leyd)/2y

The above kerrel was not derived by Rayleigh
but was explicitly given by Lebowitz and Bergmann ( 1957 ).

The Master ecquation for the Rayleigh model can be written as
o0

éﬁfflf) = \AV'E(VY VP(V,t) - Z(V)P(V,t) ( 2.9 )
3
ot

- 0
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where Z(V) is the velocity dependent collision number given by

(4]

Z(V) =‘ng'K(V A

~5D
a
= CV. erf((m/ZkT)%V ) + (2kT/nm)ﬁexp(~mV2/2kT ).C

( 2.10 )

which can be derived by a straigtforward integration by

parts. The Maxwellian distribution for the ensemble is
a 2 ' ’ .
— 2 P T
fM(V) = (M/2rkT)? exp(-MV-/2kT) ( 2,11 )

from which by direct calculation we see that the kernel

satisfies the detailed balance condition

£, (MEVIV') = £,(VOE(VV) ( 2.12 )

which immediately implies that the lMaxwellian distribution
is the equilibrium distribution for the ensemble. The
conservation of probability condition is
(3]
ave(V,t) = 1 - ‘ ¢ 2.13 )
74
In order to make further analysis simple,

one can introduce the following reduced variables:

Ya
X = (m/Zk'.L‘) -V
%, -
¥ = (m/2kT).f" - ( 2.14 )
V.
T = (2kT/nn) .C.%
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By defining

. 1
P(x,%) = (2XT/w)? P( (2kT/m)Ex, (m/2xm)2T/C0 )
( 2.15 )
the transport equation can be written in the form:

00

d(xe) w2 \ay eyl e (= [eem)prd DE(F,E) -2GOP(x,T)
ot

-0

( 2.16 )

where the kernel and the collision number in reduced variables

are
K(x1y) = & lx=ylexp( - [(y-x)p+x12) (¢ 2.17 )
<
z(x) = \Séyk(Xty)
~
2 %
= exp{~x~) + mxerf(x) ( 2.18 )
where the error function is defined by the integral
X .
3 2
erf(x) = 2/n% o‘jzluexp(—u ) ( 2.19 )
0

the equilibrium distribution in the reduced variables becomes
z 2
fM(x) = (2kT/m)2fM( (2kT/m)x )
(-2 % ( 2.20 )
= exp{~x“/v)/(ny) . 2.
It is useful to list all the properties of the

collision number which will be required later. (Hoare and

Rahman 1973/74 ).
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TFigure 1.

0.0 y

Figure Capfion

The collisicn~number funection z(IKi)  for
Rayleigh pistons in terms of reduced variable x.
The velocity- collision-number curve is the same

with symmetric reflection about the y axis.
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(i) z(x) is a single valued and analytic function for all x
in the range (~00,00).
(ii) z(x) is an even function: z(x) = ~z(-x).
(iii) for large |xt;z(x)~ ixl n%. ( 2.212 )
(iv) z(x) is a monotonically increasing function from ifs

minimum value at z(o) = 1. (see Figure 1. )

2
(v) for small x, z(xXx)A- 1+ x + O(X4) ( 2.22 )
(vi) 2z(x) is infinitely differentiable with
z'(x) = n%erf(x) ( 2.23 )
z2"(x) = 2exp(-xz) ( 2.24 )
and 2z(x) satisfies the differential eguation:
z"(x) + 2xz'(x) - 2z(x) = O. ( 2.25 )

Section 2.3, Eigenvalue Spectrum and the R-F-Planck equation

From chapter one ( 1,23 ) it follows that the eigenvalue

problem for the transport equation ( 2,16 ) can be written as

b

(2() = MGG = p2layjxy exp(= [G=3)on + ¥ (3,0

T ( 2.26 )
and- the corresponding symmetrised equation ( 1,31 ) follows

as 00

(2(x) = N).0(x,A) = deg(m 7). 8, (2.27 )

-0
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where
gleY) = H2IX~ylexp(-Ex2+ y%VE Ye.exp(~- p(p-l),(x—y)2 )
( 2.28 )
OGx,A) = GG, N /W (x) ( 2.29 )
1, z
N(x) = exp(-x2/2y)/ (ny) 7% ¢ 2.30 )

Hoare and Rahman (1973/74) have examined the
general properties of the eigenfunction egquation ( 2.27 ). The
equlibrium eigenvalue A=Q0 is always present for all values
p (o2duy»d), corresponding to the equilibrium distribution.

In general, the continuum part of the spectrum extends from

z(0) = 1 along the entire positive axis to infinity. The

. discretum always contains the eigenvalue A=0 and in general;mtﬂ
either be empty, or contain a finite number of eigenvalues, or

an infinite number necessarily with'a point of accumulation.

It is possible that discrete eigenvalues can exist in ﬁhe cont-
inuum region but for physical systems this is a remote

possibility.

Hoare and Rahman (1973/74) have shown that the
non-zeroc eigenvalues are bounded for a finite mass ratio vy
being in fact completely absent for the special Rayleigh model
or Yy = 1. A tentative bound was obtained which suggested that
the discretum must be empty (except for A=Q eigenvalue ).at

least for the mass-ratio region:

R RGN
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In the next section a numerical study of the eigenvalue
problem is presented and the validity of the tentative bound

is tested.

In Rayleigh's original paper and subsequently
attention has been directed not at the eigenvalue equation
( 2.27 ) but on the related R-F-Planck equation and its
counterpart the Langevin equation (Chandrasekhar 1943). Since
the lMaster equation can only be solved in rare cases, it is
important to know, under what circumstances the F-Planck
equation is a good approximation. Razavy (1976) has looked at
the approach to Brownian motion in case of a solvable kernel
where the continuum is missing because of the nature of the
simplified kernel and has confirmed the weakness of the

approximation.

The Master equation (2,16 ) can be expressesd

in terms of the Krammer-Moyal expansion series (Sé%el 1960) as

- , n
3P (x,D _ Z ‘r‘f ‘ (__ g__ ) an(x)+ P(x,T) ( 2.31 )
X .

3T n=|
in terms of the 'derivate moments' an(x) (using Moyal's
terminolegy; Moyal 1949)

)
n .
a,(x) = |dy(y=x) k(x1y) ( 2.32 )
} Zeo ‘

By expanding the first two moments in the lowest powers of vy

and retaining only the first two moments in ( 2,31 ) the
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R+-F-Planck equation

1 aP(xgwﬁ = & x ng,1ﬂ + Y 52P(x;c)
Iy ST ¥ 2 3 x°

(2.33 )
can be derived in terms of the reduced variables. '
(see e.g. Hoare and Rahman 1973/74 ). This equation suggests
a new time scale Tp="4YT .The differential operator appear-
ing on the right-hazid side of ( 2.33 ) is called the

Rayleigh operator

ﬁh = 5 X + Y 52 5
d x 23 x
- Hence we can write
A
d PGx,T) = GpPGeT) (2.3 )

o0Tg

The corresponding eigenvalue equation is

U0, ) = - agh ) (2.35 )
with
| () = exp(=x/2v). B G/YD____ 1
(2%l my )?
( 2.26 )
and | :

7\- = 0,1,2’_7),4‘,a.o-ooot

Hn(x) is the nth

order Hermite polynomial. For the special
initial condition P(x,0) = g(x—xO), using Mehler's formula

( Erdelyi 1953 ); the solution follows as
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P(xT) = exp(-x/Y) Z(2nn\jw)'1Hn(X/Y%)Hn(x°/Y%)exp(-ntﬁ)
n

& EXp {-(X-Xo.exp(—_tg) )2 7 R 1
ACTR) . v JO 'A('l-";;‘)%r

( 2.37

where
'A(1k) =1 = exp(-21k>

We see that in ’qrtimg scale, the R-F-Planck
approximation for small vy , consists of discrete lines and
the continuum region, froﬁl A= 1 +to infinity, is approximated
by the discrete eigenvalues with n »1/4y. It must be
pointed out that in real time scale t, the continuum would
always be present. The approximate solution even for quite
small mass-ratio Yy must falsify Dbehaviour for small time
because then the continuum would determine the rate of
relaxation. It is quite difficult to make qualitative state-
ments about the validity of the approximation. For example,
numerically how small vy must be before fhe equation describes
adequately over some time range the evolution of the test-

particle ensemble.,

The numerical results obtained in the next
section have been used to test the discrepancy between the
discrete eigenvalues and the integer-eigenvalues AR of
equation ( 2.35 ). A similar study was carried out by
Hoare and Kaplinsky (1970/75) for the three dimensional hard

sphere gas.

.

J
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Section 2.4, Mumerical Study

Of all avaliable practical metheds of finding the eigenvectors
and eigenvalues of the Master equation ( 2.16 ), the simplest
is perhaps the method of discretisation. One can use the
Rayleigh~-Ritz method ( Hoare and Kaplinsky 1970/75 ) or one
of the other methods described in detail by Hoare (1971).

But the numerical method of discretisation is probably equally
efficient and can be used without too much labour and
computation. In any case, the direct method of discretising
the eigenvalue problem can be used to give preliminary
information about the spectrum, even if later, more appropriate

methods are to be applied,

The symmetrised eigenvalue equation ( 2,27 )
is discretised in order to obtain results not tied to any
particular initial distribution. This way of solving transport
equation is quite common in neutron traansport theory and the
monographs by Williams contains many examples.( Williams
1966/71)., Wood (1965) has used the method to obtain numeri-

cal results for the hard sphere gas.

Working in the symmetric form of the eigen-
value problem ( 2.26 ) we arrive at the following matrix
eigenvalue equation:

~ N~ :
(%,i"‘ A) ga;l(}\): glaéra(}\) ( 2.38 )

=

where we have used tilde for the discretised approximations
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In matrix notation this eigenvalue equation reads:

~ ~ X ~ T
(2-AD). § = ¥.¢ ( 2.39 )

~NS
To make this approximation self consistent the vector Z is

calculated numerically by using the relationship {( 1.24 )

o0
z(x) = dy g(x1y). N(y) | ( 2.40 )
N(x)
-0
Therefore,
N

~ > 2
Z;=  hexp( +(ih) /2y) E(ih,a'h)-e@(- (3h) /2v) ( 2.41 )
=

where h is the size of the mesh interval, N the number of
intervals and G(ih,jh) the matrix elements of the matrix G .
With this way of calculating the matrix E{ , the eigenvalue
A =0 '  always corresponds to the equilibrium-vector or
the equilibrium distribution. The converged numerical eigen-
.values @K(J.are good estimates of the discrete eigenvalues
and the numerical eigenvalues hk :; I (we shall refer to
these as pseudc-eigenvalues ) represent "approximately" the
continuum region. It is not clear how the pseudo-eigenvalues
converge with increasing N and fixed range R. to exihibitb
the continuum contribution ( h = 2R/NW), If the discretum

is empty except for the eigenvalue A = O then it is clear
that any calculation of physical properties muét involve

sunmation over the pseudc-eigenvalues.

Perhaps when discretising a singular eigenvalua
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problem one ought to regard the whole sef of discrete eigenva-
lues as representing the spectrum. If one adopts this approach
then the numerical eigenvalues and eigenfunctions can be used
to solve the initial value problem at least over a specified
time range. It will most certainly falsify the evolution of
the system for small times. By increasing the range and
decreasing the mesh interval h, one would expect the numeri-
cally constructed solutions to give improved description of

the relaxation process.

A special feature of the numerical method is
that one can study the first few eigenvalues by choosing a
small range R and taking a large number of intervals. For
studying the time dependent distribution P(x,T), a large
number of eigenvalues have %o be considered. Thus 3%{ may
not be a good approximation to scme particular true eigen-
value Dbut nevertheless the whole set of numerical eigenvalues
‘Kk may serve sufficiently to represent the evolution of the.
distribution. Thus, in case of physically interesting funct-
ions, such as the average velocity function for the ensemble
or the aubtocorrelation function, it may be quite futile t6
search for the true eigenvalues and eigenfunctions. It is very
difficult to quantify these concepts and to develop a meaning-
ful method of estimating the errors involved. ( A mean square

criterion for the Rayleigh-Ritz method was developed by

Hoare and Kaplinsky 1975 ).

There are many problems in physics where the
continuum contribution plays a very important part and should

not be neglected. In the study of twc electron-atoms,



Burke ( 1976 ) has emphasised this point:

" Unfortunately experience has shown that this expression ( in
terms of a few atomic eigenstates ) is slowly convergent at
intermediate energies and indeed important contributions arise
from the continuum eigenstates which cannot easily be included.
One proposal to overcome this difficulty is to include a few
well chosen pseudo-states which are not target eigenstates.

The results indicate that with sufficient efforts perhaps
10-20 % accuracy can be obtained at intermediate energies using
this pseudo-state method, but other non-physical effects

such as the pseudoresonances and pseudothresholds'preclude

the attainment of higher accuracy at the moment. This state-
ment is also relevant to electron scattering by complex atoms
and ions with more than one electron. "

For the special Rayleigh model the discretum
contains only the equilibrium eigenvalue A = 0. ( see chaﬁter
three and Hoare and Rahman (1973/74) ). In a later chapter,
the exact expression for the velocity autocorrelation function
SXCC) is obtained for the special model. We were able to test
the 'pseudo-eigenstate' approximaticn by calculating from
numerical eigenvalues for vy =1 Sxﬁc) and comparing the
result with the exact solution. To within about 10-15 %
the results agree and as expected the agreement is worse for
small times. This detailed study may also be of some interest
to physicists working in Quantum theory and elsewhere where

the centinuum plays a very important part.

Section 2.5, Rumerical Analysis

In order to aproach the ‘'accurate numerical' eigenvalues we

used the drawing in three dimension of the symmetric
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TFigure 2

The kernel G(x}y) for mass ratid y = 0.5.

The vertical scale 1s arbitrary, the x‘and vy
intervals plotted run from ~10 to +10 with the
origin at centre of the diagram. Note the symmetric

nature of the kernel.
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kernel g(xly). Using these diagrams, the actual range is
choosen such that thé values of the kernel outside the range
are too small to be of computer significance ( using 'single
precision' CDC arithatic). Next the eigenvalues and eigenvec=
tors of interest are computed by using a small number of
mesh points ( N~50) and the range. From this initial study
it is possible to find the smallest possible value of the range
such that all eigenvectors corresponding to eigenvalues of
interest are 'non-zero' only outside - this range. Finally by
using this range and a large number of intervals, the
eigenvectors and eigenvalues are computed. It was possible to

use up'to 400 intervals.,

The eigenvalue subroutines were from the NAG
Library and all computations wcre performed on the University
of London Computer Centre ( U.L.C.C. ) CDC 7600 machine. The
U.L.C.C. 'SYMVU' package was used to produce the drawings of
the symmetric kernel. The special case y = 1 was used
throughout as a test case to check the routines and the

numerical results,

Section 2.6, EResults and Interpretations

(a) Approach to Brownian moticn and Figenvalue Spectrum

In order to make the comparision between the numerical eigenf-
unctions and the R-F-Planck solutions ( 2.35 ) én(x), the
latter set of functions'have been used as a basis to expand
the eigenfunctions %;(x) and look for the ' impurity '

present in each Fourier-Hermite component. Tables are
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Caption For Tables T +to VI

Rayleigh~Eigenfunctions in the Hermite representation.
Each column gives the expansion coefficients for the
eigenfunction @k(x) with respect to the set @n(x).

The dashes indicate values absorbed into the continuum.
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Figure Caption

MASS-RATIO. vy

Converged DNunmerical Eigenvalues of the Rayleigh

Kernel as a function of mass ratio y. The time

is scaled according to ( 2.34 ) and in this units

the continuum is the region within the dashed

curve. On the right the eigenvalues are seen

approaching the integer values predicted by the-

Fokker-~Planck equation, the effectiveness of this

approximation decreasing progressively with higher

indices.
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Numerical Eigenvalues of the Rayleigh Kernel
as a function of mass ratio y. The discrebtum
is -seen to be empty in the rcgion

0.28 <y <eo.
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presented of these results for various values of the mass

ratio v.

The approach to Brownian motion behaviour with
decrease in the mass ratio vy exhibits itself with progress-
ive convergence of an increasing number of true eigenfunc-
tions to the corresponding Tokker-Hermite basis set functions
én(x). At the same time, begining with the first few eigenva-~
lues , the discrete spectrum ( Figure 3 ) steadily conver-—
ges to the corresponding Fokker-Planck spectrum. As
expected ’Xk in T%Ttime écale do approach integral wvalues
for sufficiently small mass ratios, however, it is impossible
to make quantitative statements about the R~-F-Planck
approximation from the numerical results. One can say with
with some certainty that after a long time the relaxation
of the system would be dominated by the first few discrete
eigenvalues and therefore the R-F-Planck approximation will
be good for mass-ratios of value less than about 1()."'3 and

for aged systems.
We note from Figure 4 that the exptiness of
the discretum actually extends over the mass ratio region

0.28 { y oo,

(b) Velocidy Autocorrelation Function SX(tD

Instead of the correct initial solution ( 1l.37 j we arrive at

the approximate solution -

h(x,T) = ﬁtx) + ;}:%k@;(x)exp(-igc )

( 242 )
v .
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with the approximate eigenvalues ’%k and the eigenvectcrs
@L(x). In the above summation we have included all the
pseudo-eigenstates., In order to obtain the physically interes-
ting velocity autocorrelation function ( in the original

variables)
Sy(t) = Ke(0)p(8) o, (2.43 )
where p(t) = LV()) - <V(oo)>
(the second average is over the equilibrium ensemble)
we have to consider the fundamental initial condition

P(V,0) = &V-V_). Thus

po) =V, and p(t) = V(&)

Therefore,
0 9
- - A . 2044 >
Sy(8) = \av v £,(V.)) | 4V V P(V,t;V ) (

In terms of the reduced variables x and <, equation ( 2.44 )
can be expressed in the form
3 o2

N U,
Sv(t) = dxoxoexp(-xo/y) dx X/Y% F(x,T) (%%2)2

= (2kT/nM)%SxCE) _ (‘2-45 )

But from ( 2.42 ) for the initial condition P(x,o)=ékx~xo)

we arrive at the approximate solution:
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h(x,T) = F(x) +Z &, (x4 §k(> >1_u exp(—hk‘c) ( 246 )
N(x )
Therefore,
<X(‘C)/Y%> =Z§k(xo) E e+ €Xp (A, )
K ﬁ(xo)

| ( 2.47 )

where (e0)
E. = \dx (X/Y%). ’I:I/(x). E (x) ( 2.48 )

ok k »
-0

But the eigenvectors @k(x) can be expanded in terms of the

Fokker~Hermite functions ¢n(x):

b= = zxjd);j(x) ( 2.49 )
with N

@O(x)o
By substituting in ( 2.48 ) it follows that

gdxz:' 3(# (x) . (x/v). §> (x) .
- Z \ol(x/Y%)!a> ( 2.50 )

J

|

N(x)

in Dirac quantum mechanical notation. Using the proverty (see

e.g. Schieff 1955 )

RCICZRIFD N C VL GNP A ( 2.51 )

04J+1
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it follows that

Eok = (l/2>%oal : ( 2.52
Therefore,
{x@) /YD =‘ZE:(1/2)%al§k<XO>exp(~KEC) (255
. K N(XO)
and ©

5, CT) =Ze"‘1€<ocl/2%> gaxo%'cxo)xoﬁk(x )
K el c:2
= Z(af/-?)oe@(-?\kt) ' ( 2.54
K

by expanding @k(x ) as in (2,49 ) above etc,

(¢) Electrical Conductivity in Linear Response Reginme

To the approximations of the linear response theory (Kubo
1957) it can be shown that the admittance ¢ of an ensemble

of Rayleigh test~particles of charge e is given by

0
¢ =0y dtexp(inT) SXCtD’ ( 2.55
Q

In the above expression o, is a suitable constant. Using

( 2.54) the above expression becomes

: W 2 1
(G‘/hb) = ;éA(al /2)( X

k- iw)
2 .
oy e ( kk + diw ) ( 2.56
( hﬁ + w2)

K
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(d) Numerical Computations

It will suffice here to present a small selection of results
designed to illustrate the main characteristics of the auto-
correlation function ( for different values of mass ratio Y. )

and the electrical conductivity.

Autocorrelation Function

Figure 5 shows +the full velocity autocorrelation function
SX(TD for equlibrium fluctuations according to ( 2.54 ).

Mass ratio y takes the values 2°, 2;1, 2'2,2'5,2'4,2"5; 2=6
and 2'7. The relaxation process slows down as the

mass ratio decreases because the discretum eigenvalues

begin to dominate. The autocorrelation function for mass ratio
2"'2 and 2-3 is nearly the same as one would expect frem the
presence of effectively one discrete eigenvalue. The autocorre=-
lation function for 277 is nearly identical ‘to the resuld
one would obtain if the process was described by the

Rayleigh-Fokker Planck approximation i.e.

8, (T) ~ (1/2).exp(~4v.T) ( 2.57 )

with y = 27,

Electrical Conductivity

Figure 6 shows the real and imaginary parts of the complex
admittance ¢ as functions of the frequency of the applied

field. The results, plotted in dimensionless form in Figure 6
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are seen to correspond broadly to physical intuition. Thus
the dissipative component [Re.(d?] representing the
transmission of energy to the heat-bath, is maximum under

dc conditions ( and takes increasing values with decreasing
mass ratio v ) and falls with a bell-shaped decay to zero
at higher frequencies. There is no sign of resonance and
frequencies muéh higher than the mean collision frequency are
required for the dissipation to be effectively zero. The

gamma-one curve decays very slowly relative to other curves.
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CHAPTER THREE

SINGULAR EIGENFUNCTION SOLUTION OF THi SPECTIAT, MODEL

Section 3%.,l, Statistical Models In One Dimension

In one dimension the most extensively studied statistical
dynamical model is probably the system of hard rods which can
conveniently be called the Japsen model, Sbme of-the properties
of this model were considered by Frisch and others ( Frisch
1956; Teramoto and Suzuki 1955). But the most detailed
analysis, involving considerable mathematical ingenuity, was
presented by Jepsaen (1965). Later the model was studied by
Lebowitz and Percus (1966) from the point of view of the
kinetic equation and density expansion. Briefly the model can
be described as an assembly of N hard rods, all of equal mass,
constrained to move along a line like beads in an abécus. The
rods do not penetfate each other, so that they retain their
ordering along the: line. When two rods collide, their energy
and momentum are conserved sc that they merely exchange

velocities.

In order to study non-equilibrium systems, any
realistic programme would naturally contain a 'fundamental
statistical' assumption. For example, to cbtain a deeper
understanding of some of the phenomeﬁa associated with Brownizan
motion, Ford and others (1965) considered a chain of coupled
harmonic oscillators, where the initial co-ordinates and momen-
ta of the heat-bath ‘'cscillator-assembly' were assumed to be

distributed according to the canonical ensemble.
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Jepson (1965) assumed 'Poincare cycle-pseudostochastic!'
behaviour for the hard rod system and gave general formulae for
th¢ non-equilibrium properties. It was seen earlier that in
the Rayleigh model the notional heat-bath particles were

assumed to provide an aspect of molecular chaos with which

the test-particles in form of 'Rayleigh Pistons' interacted and

thus came to equilibrium,

An alternative to the Japsen model in-one
dimension is the special Rayleigh model. This model is the
Rayleigh model with the parameter <y set equal to one and
allowing for the possibility of heat-baths 6ther then the
Maxwellian. Although the hard rod system is a true N-body
statistical model, nevertheless, by its very nature, it cannot
lead to 'true' relaxation. But certain ‘'ergodic properties'
can be studied quite conveniently. It is clear that given a set
of velocities for the-hard rods; the property of velocity
exchange on collisions leads to the conclusicn that the velocis=
ty distribution set must remain fixed for all time. But a
single labelled test-particle must evolve according to some
time dependent position-velocity distribution function. In this
way, the labelled test-rod system admits both the time
velocity relaxaticn and equilibrium fluctuations as well as
giving a well defined approach to Brownian motion in the limit
of very heavy system particles. Kubfer and Williams ( 1967 )
have pointed cut the fundamental distinction between this two.

statistical models.

It must not be forgotiten that the Rayleigh

nodel is based on the Markovian assumption. In our view the
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Lebowitz and Percus ( 1967 ) approach to the Japsen model
provides the best connection between these two mcdels. By
considering the spatially homogeneous non-Markovian kinebic
equation obtained by the authors and its expansion in powers
of density, it is immediately apparent, that to the first order
in density the equation describes a Markovian transport
equation. This transport equation is precisely the Master
equation for the special Rayleigh model. Strangely the authors
do not seem to have considered the first-order solution. The
whole of our problém consists in finding the exact solution of
this first-order equation. In chapter five the corresponding

spatially dependent equation is considered.

In this chapter the exact eigenfunctions of the

singular integral equation for the special model have been
found. These functions turn out to be a remarkable class of
'Schwartz distributions' forming a basis set for the expansion
of more general initial conditicns with 'non-Lz' character.
By considering different heat-baths, a wide class of singular
solutions can be found, satisfying the general orthogonality
and completeness conditions. In all cases it is also possible
to reduce the crucial pseudofunctions to more explicitly

defined generalised functions.

Section 3.2. Special Rayleigh Model

We consider an ensemble of Rayleigh test-particles interacting
with heat-bath particles of equal mass which provide the

molecular chaos required for the relaxation process. The
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heat-bath distribution is defined quite generally as hO(V)
and normalised to unity. From our previous calculations for the
gereral Rayleigh model the transition kernel can be written

immediately as
K(VIV'Y) = ¢ W-v'in (V') | ( 3.1 )

The transport equation follows as

00

RV, g n (V) \av! IV-vB(v',8) - 2(V).B(V,t)

ot : | ( 3.2 )
—0

where the collision number function
o0

Z(v) = ¢ l\av'|v-v'| h (V") ( 3.3 )
-0 -1 -1

C is the frequency factor with dimensions (time) .(velocity)

In order to simplify the analysis it is convenient to
introduce reduced variables. By analogy with the general
problem, discussed in chapter two, the following scaled variab-

les are introduced:

X = V/n%vo‘
y = V'/ﬂ%VO (3.5 )
T = 2(0)t
where o
7(0) = 2C thO(V)dV
7.0 (3.5 )
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V, is the mean speed. By introducing

P(x,T) = (7). B(nT x, T/2(0) ) ( 3.6

the transport equation in reduced varisbles becomes

(o]
¥3P(x,T) R .
NS¢ — = ho(X) dylx-y|P(y,©) - z(x)P(x,T) ( 3.7
pad ¢ &)

where by definition

A %
ho(x) s Ho(x)

N
8

- o iz 25 ) )

Note that ( 3.7 ) represents a well defined transport
equation with the probability conservation law:

© o O
A X -
axP(x,T) = ax Ho(x) = \dxh (x)/n% = 1 ( 3.9
- Cco o o
The scaled transition kernel and the scaled collision
function 2z(x) are related by the relationship
: - .
z(x) = \dy k(x1y)
-2 00
A,
= \gdy | x-y1h (¥) | ( 3.10

Thus consistency with the reduced variables ( 2.14 ) in case

of Maxwellian distribution has been maintained. It is worth

noting that:

/1\10(}:)? 0. -0 dx £ oo

o/

)



o 0
Co .
z(o) = gé'%o(y) dy = 1 ¢ 3.11 )
-
z(x)—-)n%x as X —3 00 ( 3.12 )
) S
z'(x) =2 gﬁo(y)dy ( 3.13 )
[¢]
A
z"(x) = 2h (%) ( 3.4 )
To these we may add further obvious consequences
z(x) - xz'(x) — 0 as x—> 00 | ( 3.15 )
2(x) = 1+%h ()% + 0G) ( 3.16 )

Section 3.3. Eigenvalue Problem

The symmetry properties of the kernel k(x|y) play a crucial role
in the physics of the model and for mathematical purposes.

Using the relationship

Ix-y] = max(lxl,Iyl) - sen(x).sgn(y).nmin(Ixi, Iyl)
(even) (o0da)

( 3.17 )
(see figure 7 ) the transport equation ( 3.7 ) can be
written in terms of the odd and even components. Using the

decomposition:

P fevt) =(PGT) + P, ) 0/2 ( 38 )

v Poéx,tb =(P(x,T) - P(~x,T) )/2
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A4

\%

(1A 1%} utw (A)ubs Z_cmw. = AT Ix) Xew |

-V
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and the somewhat unfamiliar relationship ( 3.17 ) we have

0
¥, (x,t) . -
. S-{ZCYii - 2,60 oy By, (ry D) emax(imt, 7 ) - 2GR, (x,©)
( 3.19 )

and

a
¥ (x,T) A
.S_’%(_i_(f.f_ = —ZSgn(X)ho(X) min(\x\, v ).Pod(y,‘c)dy

)

~ 2(x)P 4(x,T) ¢ 3.19 )

The physical significance of the above is that whereas

P, (x,T) = P(1x1,7)/2 is in effect the distribution function
for speedé in the relaxing ensemble, the gquantity

¢(x;t) = IxIP_4(x,T) determines the flux of particles with
speed in the range d|xi about x at a given time. From this
we obtain by integration, the net flux ¢Ct) as a function of

time

o -
1€) 2 v(x}’od(x,'; ( 3.20 )
’ O

x>

(Wote that positive values indicate an excess current to the
right, negative to the left). As indicated, this quantity is
identical in one dimension with the time~-dependent mean-

~velocity. The heat-bath distridbution being strictly even, all
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the above quantities related to Pod must decay to zero at

infinite time.

The Maxwellian Heat-bath

For later reference; and to connect with our earlier work

( Hoare and Rahman 1973/74 ) we may summarise here the special
forms taken by the above relationships in case of the Maxwelli-
an heat-bath., Given the Gaussian velocity distribution

30(x) = exp(—xg), we have

z(x) = exp(-xa) + nPx erf(x) ( 3.2 )
z'(x) = n%erf(x) ) ( 3.22 )
29(x) = 2 exp(=x) ( 3.23 )

It may be noted that, for the Maxwellian case alone we have the

strict identity:

z(x) = z"(x)/2 + xz2'(x) | ( 3-24 )

The following properties may also be seen to be
independent of the particular specification of the heat-bath
distribution.(As we have seen in chapter one the first property
below is necessary in order to cast the eigénvalue problem
into self-adjoint form ( see ( 1.26 ) ) . )

(a) The kernel satisfies detailed balance condition for

reversed ceollisions: )
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ho (0 k(x1y) = B () k(y1x) ( 3.25)

(b) The kerrnel satisfies inverse collision symmetry:

k(xl-y) = k(=x1y) ( 3.26 )

(c) The functionlio(x), by viftue of (a) above satisfies
equation ( 3.7 ) with left hand side zero. Thus

P(x,00) = HO(X) is a time independent solution for the equilib-
rium ensemble., This evidently corresponds to the eigenvalue

?\0=0

(d) The spectrum divides into regular and singular branches.
The singular brach, corresponding to non—L2 eigenfunctions,
may f£ill the interval (1,00), the totality of points for

which there exists roots ix,  satisfying z(4%;) = A.

(e) The Discrete Spectrun

The eigenvalue problem of equaticn ( 3.7 ) follows by the

substitution
P(x,T) = £(x,A)exp(-AT) ( 3.27)
00
( 2(x) - ME(x,A) =B ) \ay1x=y1£(y,0) ( 3.28)
=69

In order to prove the emptiness of the discretum, it is
convenient to work with the following unsymmetric equation,

obtained by substituting

£(x,0) = ho(e)d(x,) ( 3.29 )
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in equation ( 2.7 ):

-

oo
( 202) = MP(x,A) = gdylx-yl ¢(y,?\),flo(y) ( 3.30
— a0

On differentiating the above equation twice and using the

identity
a® ix-yl = 28(x-y) ( 3.31
dx2

we have

¢ 2(x) -MP"(x,A) + 22" ()P (x) = 0 ( 3.32

So long as AL 1 this is an elementary equation with the
general solution:

X
d(x,A) = Av(dy/( 2(x)A)°  + B (3.33
} 0

The boundary conditions can be recovered from the integral

equation ( 3,30 ) and its once differentiated form:
o

2' (), A) + §1 (). (2(x)-A) = gdySgn(?c—y) SNCHLICRS
‘ - ( 3.34

By setting x = Oin ( 3%.20 ) and ( 3.3% ) one obtains

O

(1-2)¢(0,1) = gdylytﬁo(y)-¢(y,>\) : ( 3.35a
-0 o
(1-2)¢"(o,A) = - _(dysgn(yﬁo(w‘l‘(y,k) ( 3.350

(D

N/

~/
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Recognising that the terms in A and B are odd and even

components of the solution respectively, we obtain the conditi-

ons
(1-A)B = B | o ( 3.%6a )
A/(L-A) = A/(1-M) -A z'(00). &dy/( z(y)-\)°
o
( 3.36b )
where we had to use the relatioship:
@ Y co
2 dﬁ%o(y). dx _ 2z'(o0) ay _ 1
| (2(0-1)° (207 (1-1)

¢ 3.37 )

From above it follows that A=B=0 if X # 0O or B is arbitra-
ry and A=0 if A=0.( Eoare and Rahman 1973/74 ). Hence the

discretum is empty except for A=0 eigenvalue, which correspon-
ds to the equilibrium distribution. The singular eigenfunctio-

ns are considered in section five.

Section 3.4, The Sincular Eigenfunctions: Case's Method

For those not familiar with singular integral equations it is
prcbably necessary to point out the singular nature of the
eigenvalue problem ( 3%.30 ). These egquations may be treated
with the well Imown method, which , introduced by Carleman

in a particular case in 1922, were remarkably generalised and
standardised in a monograph by N.I.Mushkhelishvili (1953). In
this monograph, only the singular equations involving Cauchy

principal values were examined, hence it is natural to call

this the theory of Cauchy singular integral ecquations.
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In 1960, Case presented an interesting method
for handling problems connected with the neutron transport
equation. In the paper, he demonstrated that the typical
problems of neutron transport theory can be solved by finding
a complete set of 'elemsntary solutions' consisting of
distributions. The general solution then follows by  superpo-
sition of these solutions and by imposing boundary conditions.,
Zelazny, Kuszell amd Mika (1960) have successfully applied tﬁe
method to other problems; namely, the solution of the
critical&%i problem with anisotropic scattering. The results
of this applications seem to be satisfactory provided that the
investigated equation does not differ too much from the one-
speed transport equation treated by Case (1960). ( In essence

the equation is always of Cauchy singular integral type.)

The basic principles are quite straightforward
and can be illustrated by considering the homogeneous one-
speed transport equation. It is not intended here to repeat all
the steps of the proof but rather to present a brief descripti-
on of the method. ( The standard reference to linear transport
theory is a monograph by K.lM.Case and P.F.Zweifel 1967.) This

will serve the following useful purposes:

(i) The description will give the reader an impression of the
nethod.

(ii) Equation ( " 3.19 ) will be solved by looking for
'elementary solutions' by analogy with Case's method.

(iii) Ali the comments one can make about the validity of the

procedure for solving the one-speed transport equation  apply
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equally to the method of solving equation ( 3.19 ) by the
singular eigenfunction method. |

(iv) Thus we shall be in a position to understsnd the difficul-
ties involved in solving equation ( 3.19 ) by the sinsular

eigenfunction method.

The one-speed homogeneous linear transport

equation is

+1 '
P}gﬂ:@ﬁzﬂl + W(x,n) = 0/2.,S dp'l{r(X,p') ( 3.38 )
X

.a-l -

where x i1s a real variable and p ranges over the interval

~1< pg +1. By separation of variables in the form:
#Cx,p) = X(x).Pu) ( 3.39 )

the problem reduces to the pair of equations:

H ‘
(v=pdd, () = c/2 v S%(u')du' ( 3.40 )
| = o
dX «
— = -Xv/\, : ( 3.41 )
ox |

A possible solution is assumed to be normalised by

1
g¢v(u')du' =1 -~ ( 3.2 )
| ) '

provided that the left-hand side does not vanish. Apart from a

constant factor, eoquation ( 3.41 ) has a solution
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X, = exp(-x/v) ( 3.43 )
and equation ( 3.40 ) becomes

— ('v-'p) 4>V§p) = c/2 v ( 3.84 )

Now there are two possibilities:

(a) If v does not lie between -1 and +1 on the real line then

O, (1) = e/2 . v/(v-p) ) ( 3.45 )

The normalisation condition yields two solutions (c#l)

V’oj_(X#) = ¢+ (Wexp(F x/ v, ) ( 3.462 )
where '
bo 40 = P ( 3.46b )
- (v =p) -
oF M

(b) If v is a real number between -1 and +1 then

o) = § e A ) ( 3.47 )

where P.1l/x indicates the distribution 'principal part of
1/x'. The constant A(v) is determined by the normalisation
condition ( 3.42 ):
. N
A(v) = 1- %v Xdu/(wu) ( 3.48 )
, = _

Th ’
. q;(x,p) = ¢v(p)exp(-x/v) (3.49 )
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The solutions ( 3,46 ) and ( 3.47 ) are called eigenfuncti-
ons 'in analogy with ordinary terminology'. The corresponding
values of v are called discrete and continnum eigenvalues.
Next, orthogonality and completeness theorems
for the eigenfunctions are proved; and their normalisation is

obtained.

(i) Orthogonality:

Follows quite simply if we use the proof presented in chapter

one ( 1.39 )

H
L%‘t - %‘]S P‘bv(p) (pvc(li)dp' ( 3.50 )
) =1 '

Note that the proof involves product of distritutions.

(ii) Normalisation

The normalisation integral is the value of the integral in
( 3.50) when v =v', vFor the discrete eigenvalues no
difficulties arise in the definition or the computation. To
make the discussion clear we quote from ' Linear Transport
Theory' by K.M.Case and P.F.Zweifel (1967) (see page 69.):

"To obtain normalisation integral for the continuum modes, it
is necessary to proceed with mere care, since the distribution
functions which appear in the continuum eigenfunctions are not®
square integrable. However, it is possible to define normalis-
ation. integrals in the following sense:

We wish to use the normalisation integrals to evaluates the
the coefficients in the expansion of an arbhitrary function
(1Y)
i #
£(p) = gA(v')¢v'(u)dv' (9)
ol |
Multiplying by “¢v(“) and integrating we find that
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+\ ¥ B
- gu%(u)f(u)du = gucpv(u)gA(v')#)v.(u)dv' dp (10)

-1 -1 - | -

Then the left hand side of equation (10) is defined, in analogy
with the usual case, to be the product of A(v) with the
normalisation constent N(v). Thus

+
N(v) = i-(v) . &va(u) A(v'.)é\,.(u)dvf dp - Qn

-

We have emphasised this point because this is one of those
rare situations in physics, in which the order of integration

is important ( because of the singular nature of the functions

v(p)o )ooofcoc-oooooooou"

By using the Poincare'- Bertrand formula the
above double integral is evaluated and the following relaticns-—
hip is ascertained:

+
Sdu Oy (0, () = F(WIE(v-v") ¢ 3.50 )
iy . -

where N(v) =v( hg(v) + (ncv/2)2 ). This relationship is

said to be symbolic.

(iii) Completeness

A proof is given that a function ¢(p), which satisfies some
suitable Holder conditions, can be written in the form:
+
¢(p) = a0+¢o+(p) + ao_¢o_(p) +.§;(v)¢v(p)av ( 3.52 )
. o . - . -.l -

a_ and A(v) are expansion coefficients. A(v) is

where 804y Bom
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presumed to satisfy suitable HOlder conditions. These expansion
coefficients are found by inserting ( 3.47 ) in formula

( 3.52 ) and considering the resulting equation to be a
singular integral equation for the uwnknown function A(v).

( Which is solved by methods given in the monograph by

N. I. Mushkhvili 1953. ) Once it can be proved that A(v)
exists , then the orthogonality property can be used to find

the acutal expression for A(v). For example

H
AW) = —L - & an b, ()9 (3.55 )

where N(v) is the function given in ( 3.51 ).

At this point, having presented Case's method in .
outline only, we quote from Hagelbroek's thesis (1973) all the

objections he raises against Case's method.

“(i) The choise of the additional solutions A(v)&(v-p) of
equation ( 3.44 ) in case -1< v <+l is quite arbitrary.
The reason for this choice seems to be that equation ( 3,44 )
as an equation for an unknown distribution admits the solution
written down above. But it does not seem clear why one has to
have recourse to distribution theory.

(ii) The eigenfunctions ¢v given in ( 3,47 ) have Dbeen
obtained for fixed values of v amd make sense only if they are
applied to functions of p. It seems surprising that they can
be applied to functions of v for fixed values of p.

(iii) The relations (3,50 ) and (3.51 ), and also  the
procedure by which these relations are obtained are quite
embarrasing since the product of distributions has not been
defined.
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(iv) The function u appears many times in expressions which
look like imner products ( cf. ( 3.51 ), (3.53 ) ). The
function p is called in these cases a weight function by Case
and others, though it is not non-negative definite. It is
surprising that such a weight function does not give rise to
serious difficulties.

(v) The completeness of the set of eigenfunctions ¢v is
proved for functions which satisfy suitable H8lder conditions,
but an expansion of the type ( 3.52 ) is also given and
used for the delta function.

(vi) It is tacitly assumed that; given b and . B(v)

C G = by ¥, Gropdad,_ o Geyude (B | Cxpw)av ),
the function UAx,u) will be itself a solution cf equation
( 3‘58 )o "

Hagelbroek did not deny the results obtained ty the method, his
objective was to make the method more rigorous. In the next

section the method is applied to find the solution of equation
( 3.19 ). The objections raised above will naturally apply to

the solubtion obtained below.

Section 3,5, Sinsular Eicenfurncticns of the Special Model

(A) FEieenvalue Egquations

As we have outlined above, the solutions of eigenvalue equatio-
ns, corresponding to the uncoupled transport equation

¢ 3.7 ),

0

(2(x) —K)¢GV(X,K) = 2 &dymax(IX|,,y 5ﬁo(y)¢ev(x;K)
(¢]

3.54 )




and
oo ) :
€ 2= (x,0) = —zsen<x>_(dymin< el 30h (3084 (7,0
(o]
( 3.55 )
obtained by making the substitution
~ : A
Poy(x, D) = hOCX)(bGVCX,?\)exp(-?rc) ( 3.56 )
in ( 2.192) and |
Py (%,T) = D (), 4 (xx,\)exp(-AT) (3.57 )

in ( 3.19v ), while radically altered in the continuum A > 1,
may nevertheless be interpreted satisfactorily within the
realm of generalised functions. Recalling that the generalised

solution to

KPR (x)

1
[

( 3.58a )
is '

(%)

‘ -
pf.1/x> + ;EjaKék(x) ( 3.58b )

K=o

th

where 6k(x) is the k' derivative of the delta function and

Pf, desigpnates the pseudofunction corresponding to the Hadama-

rd finite part of the implied divergent integral. More
explicitly, we understand the action of the pseudofunction

above through the functional:

<é‘f.1/xn, ¢CX> = Fp. jdxs!?(x}/xn (¢ 3.59 )

where ¢(x) is a test function ( For details see the standard
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references cited earlier on the theory of distributions and

Appendix C.)

Differentiating equations ( 3.54 ) and
( 3.55 ) once; one obtains the following pair of eqguations:

X

C2Gx) ML) + 2 (0, (x,0) = 2jay’£o<y>q5evcy,x>
- o
( 3.60
w0
‘ - n
€ 2(x) =ML (A + 2" (P (x,A) = —Eﬁdyho(y)%d(y,?\)
X ,
( 3.61
Differentiating the above pair of equations we obtain

F'"(x,A)( z(x)=-A) + 2z2'(x)F'(x) = O ( 3.62

vhere F(x;h) is either ¢ev(x,k) or ¢od(x,h). The atove

equation can, more conveniently, be written in the form:

QQ__Z_(X)—?\)QF'(X) - 0 ( 3.63
ax

A A
Now if G(x) is:i a distribution then G'(x) = O has only the
N .
solution G(x) = constant i.e. the classical solution ( see
e.go' Jones 1966 page 89.). Therefore,from the above

equation it follows that

( z(x)-—?\)2 (?év(x,?\.) = Al ( 3.6
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and

65 )

N

5 .
( z2(x)-\) ¢5d(x,h) = A, (
where Al and. A2 are constants.

(B) The Even Risenfunctions

We know that ¢év(x,k) must be odd function. Therefore, the

constant Al= O and the solution of ( 3.64 ) can be written as

Lo(EA) = By S(x-1x5) )= (x+1xp) ) )
+ G, ( 5!(x-lxﬁ )+ 5f(x+|xﬁ )y )

( 3.66 )

( Throughout prime denotes differentiation with respect tc x. )
The identity

§C z(x)-A) = = ( Sx-1%0 ) + Slxrizyy) )
. A A

IZ'(X;‘)I
‘ ( 3.67 )
has been used above. It only holds if lxﬁ # 0. From atove
by integration we have '
¢ev(x,h) = A + Bl( H(x—lxﬁ )+H(»x-|xﬁ ) )
SN CEIDEC DI ( 3.68 )

where H(x~y) is the Step-function and 4, B, , and C; are

integration constants,

In order to find these constants, we
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- substitute the solution in the original equation: ( 3.54 )
and ( 3.63 ). By setting x=o in ( 3,54 ) we obtain
m

Ede'ﬁo(yWeV(y,?\)

o

(1-2)A

N
A+ Bl( ZCX}\)"XAZ'(XA) ) + E(X;J ho(x?\)cl ( %.69

]

MAnd from ( 3.63 ) after lengthy calculations

1 -
B,z (txkl ) = Clz"(x)\) ( 3.70
By solving in terms of A the even solution becomes

¢ev(x’)‘) = A [1-( H(x=|3%] J+H(~x-|x] ) )

+ ax).C EGmimy) bl ) )] (371

where q(x;\) = ‘Z'(th /z"(x;\) . ( 3.72

The single normalisation constant remains to be determined.

(C) The 0dd Bizenfunctions

From equation ( 3.65 )

- B NG (CMEA DI (T EADID

Gogq(x,A) = PE.
( 2(x)-A)°

+ 0,0 & Gty )-8 Gerizgl) ) ( 3.73
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because ¢éd(x,R) must be even function in x. By integration

. ¢5d(x’h> = AQR(Xak) + BZ( H(X-lxﬂ Y-H(=x=1x1 ) )

+ 02( G(X—IX}‘\ )"&(X“" \XA ) ) ( 2.74

where - %
R(x,A) = Pf, _Xdy/( 2(y)-2)? ¢ 3.75

)
In order to find the constants of integration 32 and. 02,

we have substituted in equation ( 3.55 ) and ( 3.63 ) the

above expression for ¢od(x,k). By setting x=o: we obtain:

o | ®
A/(1-A) = *2.ga§io(Y)AZR(Y,K) -28, dyﬁo(y) - 2Cégo(xx)>
o |
%)

( 3.76
And from equation ( 3.6% ) after lengthy calculations:
Bez'(txﬁ ) = 02 Z"(Xh) o 3.77
By using the identity
®
2 deﬁo(y)R(y,l) = z'(00)R(00,\)~ 1/(1-A) ( 3.78
) _

(see Appendix C) equation ( 3.76 ) becomes:

' A
—Aaz‘(oo)R(oo,K) = 32.(2'(oo)n Z'(‘Xﬁ)) + 202hocxh>

( 5-79

By solving in terms of A2 the odd solubtion becomes
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boalert) = iy [ RGN Roo,A).( H- ) )=HC-se-1350 ) )

uR(ooé).)q(x}\)-( MEEADECAENDIDN

( 3.80 )
q(xh) is defined by equation ( 3.72 ) and the normalisation

constant A2 still remains to be determined.

We are now in the stage of Case's method where
¢V(p) had been determined for all values of v. The reader will
have noticed the éomplexity of the expressions invelved in the
above singular eigenfunctions. The properties of the pseudofu-
nction R(x;K) have been looked at ir detail in AppendixAC

(Hoare and Rahman 1974).

(D) The Special Case X, =0

it is very important to realise that the above expressions for
@ev(x,h) and ¢Od(x,h) hold only if |x1 » o, where k:z(ixk).

If we recognise the identity

1- ( H(x—[xﬁ )+H(-X-ixﬂ ) ) = H(x+!xﬁ )nH(X-\xﬁ ) -

( 3.81 )
then the even eigenfunctions can be written in the form:

@ev(:-:,k) = AL Hx+jx )-H(x-lx)] )

~q(x, ) .{5(X~!§c}g )+c§CX+IXI\I )

( 3.82 2
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It is evident from above that ¢ev(x,o)=0. Later it has been
proved that the result holds also for the odd eigenfunctions
with the consequence that the singular branch of the spectrum
is the open interval (1l,00) rather than the closed interval
[l,oo). For general singular eigenvalue problems of the type
we are considering, it is conceivable that the singular branch
could be of the form (a,b) or [a,b) or (a,b] or [a,b] . A

point rarely recognised in the standard literature.

(E) _Orthogonality Property

The orthogonality property of the eigenfunctions is guaranteed
as we have seen in chapter one ( 1l.24 ) by the detailed
balance condition ( X.22 ) which is used to find the self

adjoint integral equation ( 1.26 ).

Nevertheless, because the orthogonality
relationship involves products of distributions, it is worthwh-
ile to present a direct proof of the relationship. The symmetr-
ic integral equation cerresponding to equation ( 3.28 )

‘has eigenfunctions of the form ( see ( 1.320 ) ):
Bx,h) = ¢ B )E(x,A) (3.85 )

We would like to prove that the set ( (ho(x))%, §ev(x,K) R
@od(x,h) ) forms an orthogonal system. This is proved in
Appendix C by calculation of the following integrals:
;n _
& § — 2.‘" A\ !
I, = —de B §,, G b, AT = AT (MEG-AT)
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where N, (A) = V2 ' (x )l
Z"(X)\)

co
gdx/ﬁo(x)¢od(x,)\)¢od(x,7\') = A,(N) WM (A1)

( 3.85 )

where Nz(h) = R(oo,A). Nl(X)

N/

and from the parity property of the above eigenfunctions

o)

- jdﬁO(X)%d(Xs’*) =0 ( 3.87 )
-
(D .
Is = gd}é\lo(x)é’ev(xﬁd%d{x,k') =0 ( 3.88 )
-0

There is a fundamental difference between the normalisation
integral ( 3,51 ) and the orthogonal integrals I, and I, .
The former is purely a symbolic relationship and the latter

is obtained by actual multiplication and integration.

(F) The Completeness Property

The piroblem of completeness of the orthogonal set of functions
above, like that for other singular solutions in transport the-
ory is by no means clear-cut. It is not at all evident

precisely what space is acually spanned by the singular
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eigenfunctions @(X,h), though for practical purposes, a
space including all ' reasonable "probability distributions
will be quite adequate. It is evident, nevertheless, that the
space spanned by the set ( @o(x) , O(x,2) ), where

Qo(x) =‘£O(x)% , 1s more extensive than L2(—ao,oo) and
certainly includes singular distributions equivalent to

J(x—xo) and probably functions in Lp(-oo,oo) with p> 1.

The procedure, as has been explained earlier, is
to consider the unknown function spaces Dl ‘and D2 spanned
by the 0dd and even singular solutions, with a view to
giving a constructive proof of completeness over any given

class of functions.The next section is completely devoted to

this problemn.

Section 3.6. The Comnletenecss Problem for the Eigenfunctions

(i) Completeness for the Even Eisenfunctions

Let g(x) be an arbitrary function ( g(x)e D, ). Then there

shall exists a coefficient a, and a fﬁnction a()\) such that

gx) = 2 T G0 +  |2a()F, G, M0h ()7 ( 3.89 )
l

As we shall always be interested in initial value problems

where aftér a long time P(x,t) must tend.-to %O(X)/R%, it is

convenient to consider only the component of g(x) orthogonal

to the heat-bath distribution:
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(¢2)]

g(x) = b _(x)/n? + gaxa(xﬁo(x)égevcx,m ( 3.90 )
J, |
where by definition
(¢ 8)
&dx( g(x) - B (x)/x? ) = o. ( 2.9 )

By substituting the value of @ev(x,k) in ( 3.90 ) and

A
dividing throught by ho(x), the following equation is obtained

@
£(x) = XAXA 0y (502 (%) = 2' (D () + 1/n% ( 3.92 )
IxI 2" (x)
where f(x)=g(x)/ﬁo(x) and wl(x) = Alx)a(x).

A transformation from the expanéion parameter A to X has
been made with the consequence that wl(x) = +wl(—x). By
differentiating the above eguation with respect to x the

following First-Order differential equation is obtained:

dw, (x) . -
E;_——- + P(x)wl(X) = Q) ( 3.93)
where P(x) = d_ ( InCiz' GO 2/2"(x) ) ) and
, ax |
Qx) = -£'(x)z2"(x)/z" (x)°

The solution of equation ( 3.93 ) follows, from the standard

theory of differential equations, as

1Al

et gd“W“wﬂw -5 ]
‘ z'(\x
(o}

( 3.94a )
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After substituting wl(x) in ( 3.92 ), the integration

constant B is found to be zero. Hence,

y (x|
wy(x) = f%li—l)a{ 2 dekg(xx) - Z'GXDg(X)/I\lO(X)} ( 3.940 )

Thus to find wl(x); only the simple integrabilityvof the func-
tion g(x) is required. The orthogonality of @ev(x,h)

distributions is expressed by the integral I, ( 3.8 ). If
it  is assumed that the order to integration ( see below ) can

be exchanged then from ( 3,90 ) it follows that:

©
Séxg(x)¢ev(x;k) = j&x¢ev(x K)h (x), anta(A! )¢ (x A"

-gdl'a(K').Il
\

002 (\)a(A) ( 3.95 )

If we integrate the expreésion on the left hand-side above,
it: can be proved that the same expression as above for wl(x)
is obtained. Therefore, by actual construction, we have not
only proved that the even eigendistributions form a complete
set but it also follows that the normalisation integral can |

be defined by using the orthogonality integral Il .

The set of distributions( ﬁb(x),@o(x)¢ev(x,k) )
where ﬁs(x) =Ifxo(x)éL and
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$ey(rh) = M Gy, [ H(xe | ) = H(x=l3) )
—a(x). (St ) + SCer i) ) >]

, _ ( 3.96 )
( q(xx) = z'(ixk))/z"(xh) ), forms a complete orthonormal

basis set. The orthonormalisation integral is given by:
w
A_ .
dxh ()P (AN G W) = S(-AY) ( 3.97 )
— 00

(ii) The Completeness for the 0dd Eigenfunctions

Hoare and Rahman ( 1974 ) found that the proof of.complefeness
condition for the odd eigendistributions was troublesome ard
could only be proved in terms of the solution of the Carlemen
equation ( Tricomi 1957 ). The proof required strong assumptif
ons’about the interchangebility of integrals. In chapter four,
the completeness property is proved by the method of Laplace

transform in a straightforward way.

Nevertheless, it is worth attempting to prove
the property by a direct method. Let gl(x) be an arbitrary
function ( gl(x) e Dy ). Then it is asserted that a coefficie-~

nt b(A) must exist, such that:

w

g (x) = B ()% §m<x><§>od<x,x> ’ ( 3.98 )
\

As we shall always be interested in initial value problems, it
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is convenient to consider ge(x) = gl(x) .ho(x)%. By substituting
ébod(x,?\) in ( 3.98 ) and defining wz(x) = Ag(x)b(x), we have

o

A

gz(x) = ho(x) dehwz(x)\)z'(xx)R(x,xk) - z'(x)zsgn(:c)R(oo,lxl)

(o} Ixl 2

) A
- sgn(x)ho(x) ' Jd_}:}\R(oo,x}\)wz(xK)z'(x}\)
: 0

¢ 3.99 )

where R(oo,|x|) is the pseudofunction:

oo ,
R(oo, x ) = PZ. f&ﬂ( 2(y)-2(x) )? ( 3.100)
0

Rewriting gz(x) in the form:
o
A
g-(x) = h (x) SR(X,X}\)Z'(X}\)U)‘?(XA) dx,
o ’ - X1

_ g;c[Zl(;x;)fR(oo,xk)wé(x)&)dx)\J

o

-

( 3.161 )

and integrating, we obtain
pa o oo

e-(y) 4y = ‘(/ﬁo(y) dekwg(xADZ'(xh)R(y,X;\) dy

—CcO © Jas)
+ nZ/2 ﬁx)\R(oo,x}\)wg(xk)z'(xh)

(o}

- CO

IXI

- z2'(x) decho"’ym)‘”e(X?\)z'(xk)
2
o

( 3.102 )
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In all these expressions we leave it implicit that the
quantities R are pSeudofunctions and that the taking of
finite parts is carried out as necessary. The double integral
sabove may well not be interchangeable. With a certain
caution we may invert the crder of integration in the crucial
term., A sufficient condition for this to be possible and one
adequate for present needs is that the function wZ(Xh) should
satisfy a Lipschitz condition. In this way one can éimplify

as follows:

pS co

(

agh (3) | amwp(xy )z (5 )R(T,%)
w0
(

- L0p0)2" (1) ayh, (IR(T53,)

i @ - @ o)
= z'(x)/2 j;dng(y)Z'(y)R(X,y)- n%/2-géy2'(y)wz(y)R(oo,y)
o lo) 7
co

+ Pf. dywz(y)z'(y)/( z(x)-z(y) )

(o]

( 3.203 )

Putting thics result back into ( 3.102 ), we arrive by further
manipulaticns, not at an explicit expression for wa(h)
comparable to wl(k) for the even case, but as.an integral
equation for the unknown function. This is, however, readily
reduced to standard form, in fact to one of the Carleman type.

( Hoare and Rahman 1974 ). The standardized equation reads

o0 .
z'(x)BR(%o,x)mg(x) + Pv. dywa(y) - q2(x) ( 3.104 )

z" (x) .O(x“y)
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The Cauchy principal value (Pv.) appearing for the first time

arises through the basic identity:
Pv.1/t = PL.H(E)/t ~ PL£H(-L)/t ( 3.104 )

( Zemanian 1965 )., Let us define the function

a(x) = 2 g;;(y)dy - 2Z'(X)82(X) . ( 3.105 )
~co z"(x) ‘
By defining o(x) = 2' () R(00,x) ( 3.106 )
Z"(X)

the solution, in standard form, follows as

(8]

wo(x) = alx)as(x) | A0 N e

( a2+n2) ( a2+n2)%

a,(y)ay

o ( o«Cen) . (x=y)

where ( 3.107 )

[0 &)
a(x) = n ey, J O(AYdA
‘ (»)

O-hg () )

is the Hilbert transform of the function @(A)= tan"ln/a(h).
(o,m)

The Carleman equation is treated rigorously by Muskhelishvili
(1953). The existence of the above formal solution , under the
assumptions mentioned above, is sufficient for present

purposes to prove the completencss of the-odd eigendistributi-

ons, for an implicitly defined class of generalised functions.

The method of Laplace transformation gives‘an
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elegant proof of the completeness of the odd eigendistributions
( see chapter four ). If we accept that the above proof is
valid, then the orthogonality property together with the
Poincard-Bertrand theorem can be used to find explicit

expression for b(A). From ( %3.98 ) we have

o)
co - . " ' .

.gdxge(x)¢od(x,h) = Séxho(x)¢od(x,h). DA, 4 (x, A1)

- - { ( 3.108 )

_where from ( 3.80 )

b g(x,A) = A, R(x,A) ~alx,A) ) | ( 3.109 )

where for convenience, we have defined

a(x,A) = R(00,A). [ (Blx~ 1) )-H(-x~135) ))
+ R(00,M)a(x) . ( lx=ixyf )=d (o 151 ) )]

( 3.110 )

(a(x) = z2'Cix1)/2"(x) ).
If the order of integration could be exchanged in ( 3.208 )
then using the orthogonality integral I, ( 3.85 ) we would

have
w .
gdngCX>¢>od(x;7\) = A2(>\>2N2(?\)b()\) ( 3.111 )
—-w

Trom ( 3.108 ) we have
00 | \ _
axg (g (oA = By +  \A'DANDAMIAMAIE,  ( 3.112a )
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where © ©
By= gdx'l\lo(x)Ae(h)R(x,?\) AN A, (A IB(AR(, M)
s | ( 3.112v )
and w .
B, = gdxgo(x).( ax, Moz, A ") = alx,AR(x,A')
-0 ~a(x, A )R(x,\) )

( 3.112¢ )
The order of integration in the second term on the

left-hand side of ( 3.112c) has been exchanged but the order of
integration in 65 cannot be excheanged because it involves a
product of: two pseudofunctions R(x,A) and R(x,A'). ( see page
68 of the monograph by K.M.Case and P.F.Zweifel 1967.) In
order to exchange the order of integration in 35 we need a

Poincare-Bertrand type of formula for our pseudofunctions.

The pseudofunction R(x;x) can be written . as

/

R(x,A) = Pf. ldu/( z(u)-z(x) )2

o
Rregular * Rsingular ' (3.113a )
where
Xl
1
R = sgn(x). {du -
regular (z()-z(r) )2 2'(x)5(umx,)°
A A A
o
Ixl (3.113b )
Rsingular = =Son X"Pf. au .
Z'(XX) D( 'le.- y_)\) |
= +sgn(x) Pv. 1 + sggﬁx}
2! (x))° - ix) 2t (%)% %)

(3.113c )
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( see Appendix C for details ). From above it can be seen that
integration with R(x,A) as an integrand will involve ' Cauchy
principal values '. Therefore, the only term where integrals

cannot be exchanged is the term involving R component

| singular
of R(x,A). In 65 this will be the integral

*eo *oo

I, = dxsgn(Xfﬁo(X)Ag(xh) , dxx;z'(xx.)Ag(xk.)sgn(X>
)2

Cixt = Ixy) )z (x5 Cpat =t ) 2" (3 0)°

-

o]

(3.114 )

( We have used the notation * to show that the integral must
be understood in the sense of principal values.)( Tricomi 1957)
In order to exchange the order of integration in the above
double integral, we note that the Poincarc-Bertrand theorem

in its most general form states that: ( Tricomi 1957 )

* * * %
ax F(Xx,x;\’f',}c)dx?\. - aXh dY-F(X}\,X}\t +X)
) oz, -x G ) (a1 =26

( 32.115 )
Hence using the theoremn,
* *
o cO
I? = tdx 1 dx, ¢ Az(h)Ag(k')b(h‘)z“(x)
Ge=xy) —(xp %) 2' (x5 002" ()7

* *®

190) 4] ~0 .

- [] ! ]
= | dxy dx =z (X)Az(k)Ag(h Jb(A") + DOV

p

(xmxh},(x~xh,). z'(x}\,)z'(}:}\)a
¢ e ( 3.116 )



where

D(A) = nzb(R)Ag(?\)ez"(X;\)
HICVE

(¢ 3.117 )

It follows that when integrals are exchanged an extra term
D(A) has to be added to the left hand-side of equation( 3.108)

and therefore,
(e ¢)

S%xge(x)¢od(X,K) = 2,(%M). (T, + 72"(1)/2' (1%,1)7)

— 00
(3.118 )

If we define the normalized odd eigendistributi-

ons E;d(x,K) to be

‘v

+ Bt s
$oaGaah) = WMDY RGN = alxd) )+ he(x) (3.119 )

where

N, (A) = g(oo.A) 3.,119% )
2 ( R(00,M)% 1°g(c0,1)2) (

g(x,A) = g(ao;k).[ ZH(x-lxM )éH(-x-lxﬂ )

+ q(h).(‘é(x—lxkg)-ékx+lxﬂ ) )]

(3.119¢ )
g(00,A) = 2"(x)/z' (Ixy] )7
' o (3.119d )
alx,A) = R(oo,Mg(x,A) |
g(oo,A) | (3,119 )

alxy) = z'(ixm) )/2"(x) ( 3.119% )



then
o0
.(dx god(x,}\)@/od(x,M) = dOA-Ar) ('5.120 )
haall ¢ @]
and @ .
b(A) = gMgE(X)¢od(X{k) | ( 3.121 )
il @ &7

The reason for introducing the function g(x;l) will become

clear in the next chapter.

Section 3,7, Completeness and Vitali's Condition

The closure condition of Vitali (1921) ( see Tricomi 1957
page 93 ) can be stated as follows:

" A necessary and sufficient condition for the completeness of -

an ON-system of L., — functions ( éﬂ(x) ) in the entire L. is
X 2

Z ( j(bn(y)dys = x-a ( a-<x< b ) "
n ™

fhat

Although the odd and even elgendistributions are not L2 type
being in fact distributions in the sense of Schwartz, in sone
cases the normalised versions of these functions can be treated
as La-type of functions., In fact,'seemingly strange relationsh-
ips can be derived, which on a closer inspection prove to be
quite simple. Below we present a simple proof that Vitali

condition holds for both even and odd distributions.

Let £(x,\) denote either the normalised even
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or the odd distributions. ( It should be stated that the
normalisation integral ( 3.120 ) is a symbolic realationship. )

By expanding cf(q-xo) it can be shown that
00

§(a=x_) = _(dhf(xo,K)f(q,h) | (3.122 )
|

where the symbolic relationship is

(8 &)
j&of(xo,k)f(xo,K‘) = é(?\-h') ' (3.123 )
—=co
Therefore,
© X

ar ( g;(xo,X)dxo )2
{ o

o X X
gd}x ‘(f(x,k)dng(q,?x)dq
; X '?o o
j S ‘(dxdqdki‘(x,K)f(q,h)
|

OXC X
= X K dxdq &(X-—q)
¢ Jdo
= ( x-a) Q.E.D. (5,124 )

For even distributions it can be proved by actual multiplicati-

on and integration thé‘b

foe) x>

%
/
l/n%(j:go(ygzdy )E + -Xdk (-( §;v(y,l)&3)2 = x
0

° o

(3.125 )

For the fundamental initial condition P(x,o)=<§(x—xo) we can now

immediately write
oo

P(x,T) = d}@od(xo,)g@i)d(x,}\)e_hr-b ﬁo(x)/n’}

\ + \Sd}@'evcx‘}\>§ev(x0’h)e-;\t ( 5.1é6 )
M
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In chapter four, the above result is discussed in detail. If
one could prove the above result for tau equal to zero then

the completeness of both the even and odd distributions would

be ascertained. The Laplace transformation method is used in the

next chapter to prove this result.
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CHAPTER ¥OUR

EXACT TRANSFORM SOLUTION OF THE SPECIAL MODEL

Section 4.1, Introduction

In this chapter, the full range initial value problem for
velocity relaxation in one dimensional ensemble of Rayleigh
test-particles is examined for the special Rayleigh model,
using the Laplace transform method. The explioitrsolution in
terms of two independent parity components is obtained. A
connection has been made with the singular eigendistribution
method of solving the initial value problem. The even component
deséribes the speed relaxation and the odd component provides

the time dependent flux of particles with the given velocity.

Bearing in mind the difficulties outlined in
chapter three and the parallels between this situation énd that
encountered in other idealised problems in particle transport
theory ( Williams 1971 ) one is tempted to abandon the method
of singular eigendistritutions and revert to a more straightfor-
ward transform method. The resul%.is an exact solution in the
transform variable, which can easily be expressed in‘terms of
integrals over known functions. Although the transform method
is not encumbered with all the difficulties associated with the
singular eigendistribution method, it is nevertheless, as we
shall show, fundamentally equivalent to the method of singular

eigendistribuvions.

The fact that these methods are identical,
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foliows quite logically if 'distributions' in the sense of
Schwartz are defined as boundary values of analytic functions

in the coéiex plane. ( see e.g. Bremerman 1965.) Analytic
‘representations of 'distributions' have been investigated by
Eothe (1952), Tillman(1961), Sato(1959) and many cthers. These
authors rely on techniques from functional analysis and topolog-
ical véctor spaces., The simplest discussion of this subject can |
be found in a monograph by H.Bremermann (1965)., The following
property plays a crucial role in the theory of representabtions

of 'distributions' by analytic functions in the complex plane:

Limit ( £f(x+ie)-f(x-ie) ) = f(x) for all x ¢ 41 )
-0,

Thus, while it is impossible to represent f(x) as the restricti-

on of an analytic function, any f£(x) can be represented by a
Jump that f(s) makes as we pass from above the real axis to
just below the real axis. Thus if T, is a Schwartz distributi-
on then there exists a function F(s) analytic everywhere

except possibly on the real axis such thatb:

Limit \@&xb(x).( P(erie)-F(x-ie) ) = <T,8)D ( 4.2 )

E,—--)O+

for any test function {(x) of class D . F(s) is called the

analytic representation of Td'

Recasting equation in the scaled variables x,
and with the usual definiticns given in chapter three, we have

( see ( 3.4 ) and ( 3.7 ) )
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Figure 8: The Rayleigh Kernel K(x\y) for unit mass ratio and
Maxwellian heat-bath. The vertical scale 1is
arbitrary, the x and y intervals plotted from -10

" to 410 with the origin at the centre. Note the
discontinuity of the first derivative visible along
the diagonal.
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AP (X, b) A _m
61: = 2h (x) | dy max(1x1,5)P,(7,0) - z(0P_ (x,T)
. |
o ( &4.32a )
EPod(x,Tﬂ

-ESgn(x)io(x) dymin(lxl,y)Pod(y313

3T

o
—z(x)Pod(x,t)

( 4.2b )

Although it is possible to work with the uncoupled eguation

( 2.7 ) and arbitrary initial condition P(x,0), it hes
proved to be more conveniert to work with the fundamental
initial condition P(%,0) = 6(x—x ) and the above pair of
equations.( see Barker et al 1977 for the alternative eppzoach)
By using the superposition principle one can always ficd the
solution for arbitrary ipitial condition.:P(x;o) once the

solution for the fundamental initial condition is known.
In the next section, the method of ILaplace

transform is applied successively to ( 4.3a ) and ( 4.,%b )
with P(x,0) = 6(x—xo)

Secticn 4.2, The ILaplace Transform Solution

{(a) Even Solution

By making a further change of the dependent wariable

P (x,T) =h ()L, (x,0) ( 4 )

the even componcnt of the transport equation becomes
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QO

dﬁmax(\x\ ,Y)'flo(y)fev(y,t)- z(x)f . (x,T)

3, G0 , &
3T

0
{ 4.5 )

with the initial conditions:

P (x,0) = 1.( g(x-}co)ﬂg(xarxo) )

2
( 4.6 )
’ ~
£oy(x,T) = P (x,0)/h (x)

The Laplace transform can be defined compactly in operator form

as

A
Lfev(x,-c) = fev(xgs)

©
‘gitexp(—st)fev(x,'c) ( 4.7 )

. (o)
and the inverse transform as

+ico
i‘lfw(x,s) =1 dsexp(sf)fevtx,s)
end -100 A
cyo
= £ ox,T) ( 4.8 )

Applying the transform operator to ( 4.5 ) one obtains

o0
( z(x)+s )fev(x,s) -2 dymax(!xt,y)ho(y)fév(y,s) = fev(x,o)
o

( 4.9 )

To show that the above integral equation can be solved
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exactly, it is convenient to reduce it first to a differential
equation. Differentiating with respect to x twice and making

use of the identity

2
Loty = 26Cx-y) ( 4.20 )
ax A

one finds after some rearrangements and simplifications

fgv(x,s) + 2z'(x)fév(x,s)/( z(x)+s ) = ng(x,o}

'Bo(xo)( z(x)+s) )

( 4.1 )

The primes indicating differentiation with respect to x. The

classical solution of equation ( 4.11 ) is given by
U(x,s) = 4(s)/C z(x)+s )2 (a2 )

where A(s) is function of s only. The general solution of

( 4.11 ) follows as

£10(x,8) = U(x,8)V(x,s) | ’ ¢ 4.13 )
where P ( )
X, 0
Vi(x,s) = . E < ev %
U(x,s) ho(xo)( z(x)+s )

( &4.14 )

where having fcund fév(x,s) we  shall integrate 31t to obtain

.fev(x,s). In order to find V(x,s) one requires the following

jidentities:
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( z(x)+s )Pév(x,o) = ( z(x6)+s )Pév(x,o) - !z‘(xo)\Pod(x,o)

( 4.15 )

where

ékx-xo)-ékx+xo)
2

Pod(x,o) =

( 4.16 )

( z(x)+s )ng(x,o) = ( z(xo)+s )P;V(x,o)-~2|z'(xohIPéd(x,o)
+ éﬁé(xo)Pev(x,o)

( 4.17 )

Therefore,

T ' = 1 A 1
(x,s) A(s)ho(xo) [' ( z(xo)+s )Pev(x,o)

- 21z (x N P! (x,0) + ﬁo(xo)yev(x,@]

( 4.18 )

In this form V'(x,s) can easily be integrated to give

‘ 1 ’ '
U vor [( 2rghve Wiy (50 - 2 axRyy(x,0)
4 . ho(Xo) ’l\lo(xo)
+ ( H(x~xo)+H(x+xo) i] + B(s)

( 4,19 )

where B(s) is a constant of integration.
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Therefore,
fév(x,s) = (z(x0)+s)Pév(x,o) - 2‘2'(x0)\Pod(x,o)
(2G)+8) D (x,) (2()+9)%h ()
+ H(x~XO)+H(x+XO) + c(s)
(z(x)+5)? (2(x)+s)°
( 4.20 )

where C(s) = A(s)B{(s). However, C(s) must be zero because

fév(x,s) is an odd function of x and (z(x)+s) is even function

of x.

In order to integrate f£! (x,s), the following

idehtity is required:

Pév(x,o) - Pév(x,o) + 2lz'(xo)\Pod(x,o) Cuor )
(2()+8)°  (a(x)+s)® (2(x,)+s)°
which simplifies fév(x;s) to give
févcx’s) - Pév(x,o)g__ + ﬁ(x—xo)+H(x+xo)
> . 2
(z(xy)+s)h (x,) (z(x)+s)
( 4,22 )
Simple integration gives
m 7/
foy(x,8) = Tey(%:9) - | o D(s)

(z(x0)+sjio(xo) (z(u)+s)2
Max (it 1%l ) ( %23 )
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where D(s) is a constant of integration. D(s) is found by
substituting fev(x,s) from above into ( 4.9 ). For this

substitution the following integral is required:

o ' )
2 \aymaxCra, b (3) | at/(a(8)rs)2 = max( 1x1, 1%} )

(z(x,)+s)

° mex (1%1,1%o1)

(e8]

+ (z)+s) \ at/(z(t)+s)2 - 1/n%

Max (1%, % ol)

( 4.24 )
After the substitution D(s) is found to be
D(s) = 1/sn? ( 4.25 )
Therefore,
0
T A 2 P__(x,0)
Pev(x,s) = ho(X) - ho(x) dt/(z(t)+s) + ev X120
2s | (z(x)+s)
Mox (11, 1%el)
(.26 )
where
A ‘ 27 )
P (x,T) = P (x,s) ( 4.27
. Ay .
By applying the operator L to ( 4.26 ) one obtains
o)

Pev(x;t) = Pev(x;o)eXP(.'Z_(X)t ) + %o(x)/n'} :-'C?lo(X) aue=2(WT
| MaxX (14, 1ot

( 4.28 )
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where the relationship:

b e 4
£“1, du/( z(u)+s)2 = T\ duexp(~z(u)T) ( 4.29)
o . o

has been used. This follows quite simply 1f the order of
integration on the left hand-side of ( #4.29 ) is exghanged.

In Appendix D this relationship is proved rigorously.

(b) 0dd Solution

By making a further change of the the dependent variable

P (x,T) = B (£, (x,0) ( 4.30)

the o0dd component of the transport equation becomes

oo
3 . (x,T) 0
_.............-.---_‘-.a -zd’ ? = - ESgn(X) dymin( Ixt 9y)ho (y) de(y’t)
o ' |

- z2(x)f_4(x,T)

( 4.31 )
with the initial conditions:
Pod(x’°> - 8kx—xo)—5tx+xo)
fod(x,o) - Poalx,0) ( 4.323 )

B, (x,)

o .
By applying the operator L to ( 4.31 ) one obtains
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oo

( z(x)+s )fod(x,S) + 2sgn(x) dymin(lxl,y)%b(y)fod(y,s)
‘ o

= £ s(x,0)

C 4.38 )

By differentiating twice, as in the case of the even solutions

above ( see (a) above ), and after some rearrangements and

simplificatioans, one finds that

£1.(x,8) + 2z'(x)f5d(x;s) - : Pgd(x;o)
(z(x)+s) ﬁo(xo).( z(x)¥s )
( 4.35 )

From the general theory the solution of this equaticn is
given by
féd(x;s) = U(x,s).V(x,s) ( 4.36 )

where the classical solution as in the case of the even

component is

437 )

and

V'(X;S) = Pgd(x’o)
U(x,sfio(xo).( z(x)+s )

( 4.28 )
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In order to integrate ( 4,38 ) one requires the following

identities:

( z(x)+s)Péd(x,o)

( z(xo)+s)Péd(x,o) - tz'(xo)l Pev(x,o)

( 4.3% )

and

( z(x)+s)Pgd(x,o)

C z(x )+s Py i(x,0) - 2§z'(xo)lPév(x,o)

A .
+ 2h0(xo)Pod(x,o)

( 4.3% )

By substituting in ( 4.38 ) and integrating we have

V(x;s) . z(xo)+s ) Péd(x,o) _ 2lz'(xo)| Pev(x,o)
A(SYEO(XO) A(s)%o(xo)
+ H(x&xo)-H(x+xo) + B(s)
A(s)

( 4.40 )

B(s) is a constant of integration.

Therefore,

£!,(x,8) = ( z(x )+s DPLy(x,0) _ 2lz'(x )M P (x,0)

( 2(x)+s)%h (x,) ( 2(x)+s) b, (x,)
+ H(x-xo)-H(x+xo) + Cc(s)
( z(x)+s )° ( z(x)+s )

(a4 )
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where C(s) = B(s).A(s).

By using the identity

P 4(x,0) - Péd(x,o) + 2!z'(x0)l Pév(x,o)
C2Gdes )5 ( alx)+s)? ( 2(x)+ s )3

we can re-write ( 4,41 ) in the forn:

féd(x,S) = Péd(x,o) " 4 H(}':"I'Co)"H(Xﬂ(o)
( z(xo)+s)h0(xo) ( z(x)+s )2
+ C(s)
( z(x)+s )2 ( 4.43 )

This equation can easily be integrated to give .
i (1x1)1Xo1)

£oa(x,8) = Poalx,0) - sgn(x)sgn(x ) A 2
° ( Z(xo)+s)ﬁo(xo) © ) (z(u)+s)
X %
c du + D
+ C(s) PEPRY: (s)
o

(A )

D(8) is a constant of integration which must be zero because

f,q(x,y8) is an odd function of x.

In order to find C(s), fod(x,s) from above is

substituted in-equation ( 4.24 ). By using the following
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integrals
o min (1%, 1Xol)

2sgn(x)sgn(xo).g~dymin(|x|,yiho(y) 'g du/( z(u)+s )2

o o .
min(ixt, 1xo!)

= =( z(x)+s )sgn(X)ssn(xo) _S~ du/( z(u)+s

' + min(\xl,\xot)sgn(x)sgn(xo)

( z2(x )+s )

Xo

+ n%x j; du/( z(u)+ s )2

o

and

2sgn(x) SS dymin(lxl,yfio(y) du
_( z(u)es )2

o)

)2

( 445 )

. x m ’
« = ( z2(x)+s )\gidu- 5+ xn® du
cf z(u)+s ) ( z(u)+s )2

©

C(s) is found to be
C(S) = Q(xo,s)

Q(ov,s)

where by definition:

X

- du
Q(x,s) ~§; (wes )2

(o]

( 4.46 )
C 4.47 )
( 4.8 )
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We have used the property n% = z'(co) in the above

integrals.( see (3,13 ). ) By substituting the value of
C(s) in ( 444 ) vwe obtain

min(1x1, 1, 1)

fod(x,s) = Pod(x’o) - sgn(x)sgn(xo) du

By(xy) ( 2(x )+s) _ (a@)+)?

+  Qxg,8)Q(x,s)

‘ ( 4.49 )
Q(o0,s) :
. h"l A .
By applying the operator L to ho(x)fod(x,s) one finds

that

Pod(x;t) = Pod(x;o)exp(-z(xo)11)

min (11, 101)

- 'ngn(X)sgn(xo)‘ito(X) duexp(~z(u)T )
A AT R
+ ho(x) L Q(XO,S)Q(X,S)
Q(QO,S)

( .50 )

There are msny physically interesting results which can be
obtained by using the above equation without actually finding
the cxpression for the inverse of the\complicated product on
the right-hand side ( Barker et al 1977 ). In the next section,

the expession for the inverse is calculated in order to



- 112 -

establish a connection with our previous result in terms of

pseudofunctions.

Section 4.3, Inverse Transform of the Product

For convenience let

B(x,xo;s) = Q3,4 8)R(x,5) ( 4.50 )
Q(c0,s)
The existence of the inverse L 1 B(x,xo,s) in equation

( 4.50 ) must be substantiated before one can find the
expression for it. For this we need to show that the funcfion
B(x,xs5) is of the order 0(s™¥) with k>1, and analytic
everywhere except along the branch-cut extending from minus
one to minus infinity along the real line in the complex plane
( see e.g. Churchill 1958 ). The analyticity condition is |
clearly fulfilled since the terms in the integrand are
singular only on the branch-cut Re(s) £ -1. To obtain the

order in s, we use the bound —to-the~collision number function:

1< z(x)< l-Ht% X

in view of which

laGx,s)| 2 121/ 1(s+1)%) ( &.52 )
) (e0)
( dy = _ 1
‘Q(QD,S)‘ }\ (l+S+TC’}y>2 Tt% ‘S+l‘ |
O

( 4.53 )
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Figure 9. Contour Diagran for the
for the inverse transform
of B(x,xo,s). The tranch-cub
is shown by the dashed lines.
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From this it follows immediately that

B(x,x_,8) 43 \X'Xo\
° Tc%[s+1|5

¢ &4.54 )

and the existence of a well defined inverse is assured. The
contour - diagram for finding the inverse transform of B(x,xo,s)

is shown in figure 9 . From the diagram ( see Appendix D )

one can immediately write:

(a0

11 B(x,x,,8) = 1 a e B ()- B ) )
2ni

where

B™(A) - BY(A) = Limit ( B(x,xo,-K—ic)- B(x,xo,—h+ie) )
e——> o

= 2i Limit ( Im B(x,%_,~A-i€) )

E——>0
( :4.55 )
In Appendix D the following identity is derived
Limit Q(x,-A+ ie) = R(x,\) + ing(x,\) ( 4.56 )

E~—> 0

where R(x,A) is the pseudofunction defined dy ( 3.75 ) and
g(x,A) is defined by ( 3.119¢c ):

g(x,A) = gloo,A). ]' (= b )-H(=3-1 %50 )

+ a0 ( §Ge 1) )= S o) ) V] ( #.57a)
F57a
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where
g(oo,n) = 2% '
( 4.57b )
‘Z'(X)\)\E
and
a) = 1L | ( 4.57c )
Z"(X)\)
By simple multiplication
B(x,X ,-A-ie) = Q(x,~h~is)Q(xo,-h-ie)Q(oo,-h+is)
Q(00,-A-ie)Q(00,~A+i€)
( 4.58 )
By using the identity ( 4.56 ) we have
2i( Im B"(A) ) = 2ni E(x,x,,}) ( 4.59 )
vhere
E(x,%0,A) = g(00,A). [R<x,x)n(xo,x) - ngg(xo,h)g(x,k?]

XN,

~ R(o9,\). m&md%g)+m%gmaﬂﬂ

A(N)
( 4.60a )
where by definition
2 2 2
AA) = R(o3,A)° + 7g(oo,A) ( 4.60b )
Therefore,
0© | -
A_ .
1t B(x,xo,s) = \g;xhz'(XA)E(X’Xb’k)eXP('z(XR)1:)
. ,

( 4.61 )
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where the substitution A = z(xk) is impiicit.
. ALl ' .
In order to write L™~ B(x,x_,8) in a more
intelligable form we recall that the odd orthonormalised
eigendistributions were defined as ( see ( %.119 ) ):

Boa(xiA) = W3R RGx, M) = alx,n) ). b (002 ( 4.62a )

where

Nz(A) = AC2R ( 4.620 )
2, 2.3y
R(OO’K) + T g(oosk)

and.

a(x,A) = ICRERN) ( 4.62c )
g(oo,N)

By simple multiplication it can be shown that

E(X.,X A’S) = §Od(x0’>\)§‘)0d(x’k) - g(xo,}\,)g(x,X)
° ~
B () : g(00,A)
( 4.63 )
Therefore,
®
A . - o x>
B GOTT Blryx,s) = \@ga Gl ORI e M 4G
! ,
Vo)

SR \ ezt (e P NT gl Ml M)
(o} 8(009K)

( a.64 )

In Appendix D it is proved that:
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o0
dxxz'(xk)e“z(xl)f G(Xo;l)g(x,h) _ Pod(X;o) o—2(x )T
o g(oo,\) ’1\10(}{)

tin %1 1ol )

- sgn(xo)sgn(x)T: duexp(-z(u) T)
( 4.65 )

Section 4.4. The Complete Solution

A o
By substituting the expression for L+ B(xyxgy8) ( 4.64 )
in equation ( 4,50 ) and using ( 4.65 ) it follows

immediately that:
o0

~ ~
Pod(x*c) = dxxz'(xx)exp(—z(xk)T:) §5Q(XO’K)§Od(X’k)

(o]

(4,66 )

This result connects the ILaplace transform solution with the
result obtained in chapter three by the method of singular
eigendistributions. ( see (3.126 ). ) The solution in the above
form self-evidently proves the completeness of the odd

eigerdistribuvtions.

Similarly by direct multiplication it is
relatively easy to prove that ( see ( 4.28 ).)
o0

lev

ev(k,t) = ‘%b(x)/n% + dx 2 (%, Je” 2(x )05 Iev h)a. (x,A)

Q
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<0

Poy(x,0)exp(-z(x ) T) + ﬁo(x)/n - BT\ au o—2(WT

max (13t ,1xo1)

where from ( 3.96 ) (4.67 )

.@ev(x’}\) = g(co,N) [H(x— % Y-H(x+ X )
= a) . §lx-1xy) )-Elx+ixd ) )]
( 4.68 )

The complete solution can now  immediately

be written

- oo
P(x,T) = 6(15-}!0)6-2(}{0)": + %o(x)/n% - ?lo(x)‘r_‘ ay e—2(WT

. x|
win {11, 10 max (12l 1ot )

- Sgn(xo)sgn(xj%o(x) au e-Z(u)t

A A . . .
+ ho(x)L"l B(x,xo,s) ( 4.69 )

For arbitrary initial-condition P(x,0), by the principle

of superposition, the solution follows in the form:

0
P(x,T) = dx, P(xo;o)P(x,x;);f) ( .70 )

- 0o
where P(x,%,,T) is the solution ( 4.69 ) with the delta
initial condition. More explicitly on integration the solution

follows in the form:
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P(x,T) = B(x,0)exp(=2(x)T) + b (x)/n?

(mixed) (even)
O U
-2 'Cﬁo(x)/n%[j e'z(u)tJPev(v,o)dv du
o
x (even)

p 4 oo
. +~Y;'Z(u?]’ Pod(v,o)dv d%]
o tL(Odd)

e
+ 2’1\10(:/:)1'_«"1 r{ Q(x. s) j Po‘d(v,‘o)Q(v,'s)dv
Q,(OO,S) fo) ’

dd
(0dd) (w71 )
In the next chapter; the completé solution is used to obtain

physical properties of the model.

The numerical inverse of Laplace transform is
nowadays quite straightforward and a number of excellent
alogrithms are available. Although as we have showed; the
inverse integral can be found, in practice, it turns out to be
more advantageous to apply the straight numérical mnethod of
finding the inverse transform when pseudofunctions are involved.
We were thus able to calculate the inverse It B(x;xo,s)
to an accuracy quite sufficient for illustrating the behaviour
of the solutions under various initial-conditions. The method
we employed was the Dubner-Abate (1968) procedure as improved
by Dubin and Crump ( 1574 ) (see Figure1i). For numerical
calculations; we have considered the delta initial condition

A 2
and the Maxwellian heat-bath ho(x) = exp(~x=) .



- 120 -

Section 4.5. Barrier Problem by the Laplace Transform method

In past literature, the barrier problems were studied for
systems where the interactions with a heat-bath can be specifi-~
ed in terms of mean collision number and the relaxation
process can be considered in terms of discrete 'relaxation -
times'( see e.g. Montroll and Shuler 1958 ). In these
studies particular attention is paid to the dependence of
overall rate of reaction ( absorption ) upon both the barrier
energy and the initial distribution of réactant particles. A
notable feature of all models so far treated is the existence
of a characteristic first-order rate constant, with
exponential dependence on barrier height ( the Arrhenius law .)
which can only be Justified asymptotically for limitingly

high barrier energy.

For the singular kinetic process describing
the gpecial Rayleigh model with absorption barrier, Hoare and
Rahman ( 1976 ), probably for the first time, presented an
exact solution. These authors used the mgthod of singuler
eigenfunctions with the associated difficulties. Below the
problem is solved by applyirng the transform method which

again illustrates the simplicity and elegance of the method.

The tramsport equaticn for 'absorbing barrier’
problem in the speed variable can immediately be written down .

if cne identifies ZPGV(X,TD with P(ixl,T):
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oD
+
A Pev(x’x ,'C)

0 T

. . .
. A @)\ dymax(x,y)P, (7,X",7)

O

+
- z(x)P (x,x",T)

o £x £ x
o)
From above it is apparent that particles exceeding the
speed-barrier x would be removed from the system. In order
to find Pev(x,x%;tj, we have to repeat all the steps taken to
find the even parity solution. Working with the fundamental
initial-condition 6(X-Xo) and making all the trensformations

it can be shown that:

4 Xj’
feV(X,X%;S) = Peylxyx750) _ du + D(s)
(z(xo)+sjﬁo(xo) (z(u)+s)2
mar(u:l) 1ot )
o L x < x#

C 4.73 )

After the relevant substitution D(s) is found to be

= 1 1
D(s) = 21 (x%) {: (s + z(x))=x"z'(x") )

( 474 )
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which finally leads to the solution:

){‘,ﬁ'

+ ‘ A
Pev(x’x O = Pev(x9x+9 O)GXPC"Z(XO)’C) - hOCX)'C du e—Z(u)‘C
max (1x1,1xot)

A
h_(x)

z2'(x")

exp(= 2(x")T Jexp(~ x2' (x")T )
- exp(-2(x)T) ]

( 4.75 )

For the Maxwellian heat-bath we have
: 2
- —x2 -t +
P(xyx 4T) =2 ( exp(- e T ) - exp(~ 2(x")T) )
z'(x%) :
. jé*
2 .
+ g(x-xo)e-zcxo)t 2 e e'z(y)gy

max (1t 1 Xol)
( 4.76 )

Results computed from equation ( 4,76 ) with a number of
different initial conditions and barrier heights are
illustrated in Figure 10 . The general content of the above
equation is recadily perceived} Hoare and Rehran ( 1976 )
have discussed it in detail, we may note that the Arrhenius
law of reaction kinetics is expressed through the factor

exp(- exp(-x+2)'t), x*  representing a reduced activation
energy and reaction proceeding in accordance with the equlibri-

un hypothesis.

Similarly the 1lower barrier protlem can be
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3

100 7100 150 50

(a) (v) (c) (d)

Relaxation of various delta ensembles of Rayleigh

test-particles in the presence of an absorbing

barrier (equation ( 4.76 ). ).
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studied quite easily by the transform method.

Figure 10 shows the relaxation of various delta ensembles

of Rayleigh test-particles in the presence of an absorbing
barrier ( equation (4.76)). Positions of initial delta
function, X,y and absorbing barrier, x+, in the four cases are
(a) %,=0.0, x'=1.5; (b) x,= 0.5,x=1.0; (e) %,=0.0, x*=1.5;
(@) x,=1.0, x*= 1.5.

The vertical arrows represent the decay of the delta functicn,
its probability component scaled to unity by the dot. The
column on the right represents the integrated flux over the
barrier, scaled to unity by the horizontal bar. The figures
give the elapsed time in reduced units. Note the interplay

between three effective time-scales involving:

(i) the decay of the delta function
(ii) relaxation to tke Gaussian

(iii) leakage across the barrier.

The distributions of the unabsorbed test~particles are
effectively Gaussian for T2 5.0 in cases (a) to (c) and

~ 1.0 in (4).
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CHAPTER _ FIVE

SPATTAT TRANSPORT PROBLEM AND PHYSITCAT, PROPERTIES OF THE

SPECIAL RAYIEIGH MODEL

Section 5.1, Introduction

In this chapter the investigation of the special Rayleigh model
is continued through a treatment of the spatial transport
problem. The coupled position—vglbcity distribution function of
an inhomogeneous ensemble being, as in higher dimensional
models, almost out of the question, we shall concentrate on

the spatial moments, particularly as expressed th;ough the

Van Hove position-time correlation function G(r,t). Our main
explicit result will be the derivation of the second spatial
mor;lent £ re(t)> and thus the expression for the

coefficient of diffusion.

In case of condensed systems, it is usual to
work in Gaussiah‘ approximation, first introduced by
Vineyard ( 1958 ), in which G(r,t) is assumed to be a Gaussian
function of position at all times. This approximation is
Xnown to be exact at short times gnd long times for an arbitra-
ry sysbten ( Rahmon et al 1962 ), and at all times for an
isotropic havmonic system. ( Van Hove 1954.) DNon-Gaussian
Eehaviour has been considered by several authorg( S2€ €.8e
Desai and ielkin 1966 ). For monoatomic fluids, the
corrections arise from dynamic;l considerapions and have been

studied in the classical limit, where G(r,t) is the
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probability per unit volume of finding an atom at position r
and at time +t, knowing that it waé at origin at time t=o.
In this chapter for the special model the ﬁoneGaussian
behaviour is examined in detail by considering the second and
the fourth spatial moments. In the Gaussian approximation,
the knowledge of the second spatial moment would be sufficient
To determine all the higher spatial moments, however, the
present calculations show that the non-Gaussian corrections

at intermediate times are quite significant.

It is well known ( see e.g. Kubo 1957 ) that
the velocity autocorrelation function yields the self-diffusion
coefficient for the test-particles. Thus it is very natural to
consider in this chapter, the autocorrelation function and the
second spatial moment which are closely relaped. To the
approximations of the linear response thepry, the admittance o
of an ensemble of Rayleigh test-particles, charge e , is
related by a simple formula to the autocorrelation function.
Hence, fpr the special model, together with the autocorrelation
function, the electrical properties have been presented in this

chapter.

In the next section all the interesting
physical properties which can be obtained from the solution of
the homogeneous equation ( 4.69 ) are calculated. The first
velocity moment behaviour and the autocorrelation function
can be obtained by considering only the ggi component of the
solution ( 4.69 ). Throughout we shall work with the
fundamental initial condition é(x—xo) without loss of

generality.In . section  four, the spabial problem is studied.
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Section 5.2. Velocity-Moments and Autocorrelation Function

(a) Moment Relaxation

Consider first the relaxation of the first moment of the

velocity distribution, <x(T)y . Since
. ©
&)Y = &dx ¥P(x,T) = 2& dx xPoa(x,'C) ¢ 5.1 )
- o

we need perform an integration on the o0dd part of the solution.
Taking first the particular case where P(x,0) = S(X—xo), we

obtain by direct operation on the solution ( 4.69 )

<x(‘c)\xo) =xoem(-z(xo)‘c )

© R CANERD)
- 2(senlx Nrldx W ()| aw e EWT
© [¢]
o
LTt [ 3080 o & asth(x) Q(x,sﬂj
Q(oo,s) .
( 5.2 )

By using the identity ( see ( 3.13 ) and ( 3.14 ) )

& (xai(x) - 2(0) ) = 2% by() C 53 )
ax

both the above integrals simplify on integration by parts:
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00 min (1t 1¢ot)
2sgn(x ) &
sen(x “'d_x X ho(x)'c du exp(-z(u)T)
©

(o]
1ol
= xoe"z(xo)t - du(l - tz(u) Jexp(-z(u)T)
o)

¢ 5.4 )

and

(0 9)
2 fidx a (%) Qx,s) = [fi; - SQ(oo,Si]

o
( 5.5 )
with the result that

(el x, Y = \au(l - z(WT)exp(-z(w)T )

o

f\_l '
+ 1 QAxy,8) C 1/ - sQ(e2,8) )
Q(00,s) ) |

( 5.6 )
However, since by the derivative theorem for Laplace transforms
© Yo
21
Qx,8) = 3§ 2o elay exp(-a(nT )} ¢ 57 )
(o]

the first integral cancels with the second term in the inverse

and we obtain the simple result

<X(T.)l Xo> = (1/713%) %—l{ Q.(XO_QS) g ( 5.8 )
‘ Q(e0,s)
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We may note that the identity ( 5.5 ) above leads to

. | 1 ( 5.9 )
Limit sQ(en,s) =
’ ng
Sﬁ—~§cw
which guarantees the correct initial-value result4(x(o)lxa,= X
and the multiplication of Q(xo,s}/Q(co,s) by s and
taking the limit as s tends to zero confirms that
£x(e)lxy = o for all x_ . Similar result for an arbitrary

initial condition may be obtained by superposition.

By applying the method of finding the inverse
transforms involving the function Q(x,s), developed in

chapter four ( see Appendix D ), we can write

©
&@I %y = —11:,:: &dX;\Z'(x;\)e@GZCX;\)‘C) R(x,,M)g(co,2)
| ° A(N)

- R(oo,?\)g(xo,?\)>
¢ 5.10 )

The above result cen be obtained by using equation ( 4.66 )

which expresses Pod(x,zj in terms of eigendistribution:

©
xPod(X,t)= dxhz'(xh)e‘z(XX)r (00,7) (%(xo,k)~g(xo,K)R(oo,K)j)
o AM) g(oo,A)

L xh () < R(x,h)-—g(x,?\.)R(oo,h))
‘ g(OOah)

( s5.11 )
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By using the identity ( 5.3 ) we can show that

(60

2 dx’l\lo(x)x (R(x,h)_ g(x,MR(en,A) )

g(oco,\)
©
( 5.12 )
Therefore,
(00]
GOy = A3 | ane et gloo ) [R(xo,w
o AQD)
g(xy,AR(00, 1)
g(oo,A)
( 5,13 )

which is identical to egquation ( 5,10 ). From
computational point of view, it is more convenient to use
( 5.8 ) rather than the above expression for the first

velocity moment.

(b) The Velocity Autocorrelation Punction

A similar simplification occurs on writing the velocity

autocorrelation functicn Sx(‘c). Defining

©
8.(T) = 2 xoﬁo(xo) <x(t)lxo)dxo ( 5.14 )
| o
we have
0
ofh [ 1. A
5. (D) = EL YOO x.h, (x )Q(xy,8) ax }
(v}

( 5.15
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Using ( 5.5 ) once again, we have
5.0 = (/) T ( 1/9(0a, )% - ) ( 5.6 )

the same analysis as before showing that the inverse is, in

spite of its appearance, non-singular This equation leads to
an efficient computation of SX(TS, the results of which we

present in the next section.

By using the expression ( 5.13 ) for the first

velocity moment, we can write

(vo)
5,(T) = <1/n>jax;\z'<x;\>e‘z<Xm)fg(oo,x>/Acu>
' o]

(e8]
2 | axgho{xo)xo( R(x 4A)-g(xy,MR(c0,A) . )
. g(oo,A)
( 5.7 )

Usirg ( 5,12 ) once again, we have

8 6]
5.() = (/%) | ax z'(%) 8(00,A)/( R(00,M)?+ n°g(00,)? )

° . eXP(;ZCX;\)'C)
( 5.18 )

the same expression is obtained if one finds the inverse

transform in equation ( 5.16 ) in the usual way.

In the next sub-éection, asymptotic analysis

for SX(ID is presented.
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(c) Asymptotic Analysis

To obtain the autocorrelation behaviour at lorg times, we must
expose the limiting form of ( 5.16 ) as s——% o. It is

simplest if we work in the time variable and note that

asymptotically:
o
~ -1 -
Sduexp(-zcww 3 (n/ag(o) Yer e T
° T-yoo

by virtue of the relationship
()
z(x) =1 + ho(o)x2 + 0(x4)

Furthermore,

(2]
< \-_-cge"z(u>t du] ~ [(n/'ﬁo(o) )%e"t(l-z't)t'%J
at 2

o T

Now the Laplace transform of the right-hand side exists and is
A -

equal to (n/#(ho(o) )%)s(s +1 ) ?/2 From this we can

deduce that the § ———> 0 behaviour -of. Q(oo,s) is

Q(oo,s) v w/4( ?10(0) )%., (s+1)"3/2 ( 5.19 )
S-Yo

Since the reciprocal of this dominates the term s on the

right-hand side of ( 5.16 ) we may assert that the Laplace

transform of Sx('c) is formally

N
5, (T) ~ in (0352, 17I( st 1)3/2 ( 5.20 )

T—> o
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Vhile the inverse of the right-hand side does not exist

in the ordinary sense, it does in the realm of distributicns,

where we have the following

L ( Pf.'C-S/ze"t ) = %7_:%(54—1)5/2 ( 5.21 )

Here Pf. denotés the pseudofunction corresponding to the
Hadamard finite part of the Laplace integral ( see e.g.
Zemanian (1965) especially chep.8 and item 31, tzble B.2 ).
This interpretation is. both adequate and natural in the
present problem where we simply wish to supress the influence
of an irrelevant singularity at zero time. Thus we can

state unequivocally that

5.0 ~ L& (NITH2 T (5.22 )
T T :

From this it is clear that the nature of the heat-bath affects

asymptotic behaviour only through a constant factor, the

‘5“5/2 9-1: being, it would seem, a universal feature of the
-T .

special Rayleigh model. The factor e~ in ( 5.22 )

exhibits the Markovian behaviour of the model and prevents

the existence of the so called ' long-time tail ‘.

(d) Self-diffusion

By a well-known formula ( Kubo 1957) the velocity autocorrela-

tion function yields the self-diffusion coefficient D for
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test-particles. Thus

o0

po - KSXFT)§11= gin;i_g:cr; ( S.(s) ) ( 5.23 )
(@]

From this it follows that, for a Rayleigh test-particle,

. <D
D, = n>/2 Linit ( Q(oo,s) )t = 372 [i§ ay }'1
s —>»o 2
b 2(3)

( 5.24 )

A numerical evaluation of the integral for the

Maxwellian heat-bath ( z(x)=exp(-x2) + n%xerf(x) ) gave the
value Do = 0.185164..... in dimensionless ¥ time-
scale. Reverting to the unscaled units, this is found to be

equivalent to the formula
D= 1.827495.....(na) " L(2kgt/mm)? ( 5.25 )

Here the algebraic factor is simply the mean-free-path
approximation to D in one dimension, n being the number-density
of test-particles and a  their effective cross-section. The
increase over the IMFP +value would seem to reflect &a more
Just account of the contribution from particles in the high-

velocity tail of the Maxwellian.

(e) Tlectrical Conductivity

To the approximations of linear response theory we may express

the admittance, & , of an ensemble of Rayleigh test-particles,
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charge e, by the formula

(6766) = (1/Do) exp(iwz?SXCt) ( 5.26 )

O

Here Sth) is the dimensionless velocity autocorrelation
function as throughout, Dohthe corresponding diffusicn coeffici-
ent ( 5.24 ), and o, is the conductivity (w —) o ).

Scaling is then through the Stokes-Einstein relatiohsbip

o, = (Dea/kBT) with D given by ( 5.25 ). Thus we need only
to substitute -iw for s in the ILaplace transform expression

( 5.16 ) to obtain

o(w) = (o, /Dm). (7 EQ(eo,-i)™t + do )

(5.27 )
From this the real and imaginary parts of & may be
obtained explicitly. Noting that
oo
2
2 2
. 2 z(1) “=w
Q(co,-1iw) < = [ du
’ (z(W)% v )2
o
2
+ Lo zﬁg%au .
( z(u)+ 0% )
o
( 5.28 )

it follows that
(oo

- 2_ 2
Re(6) = po/1Q(00,-30)| % j IS

(o]
( 5.29 )
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and
. (a.0)
In(o) = W%P w/lQ(oa,-iw)lz( 1 - 2. du__z(u)
° G2
( 5.30 )
where by definition
p, = (og/D n>/2 )

( 5.3 )

Thus we observe the expected decay of the conductance Re(&)
from the Stokes-Einstein value under dc conditions fo zZero

at high frequencies. The frequency-response shows a broad decay
with no tendency to resonanée. The phase-lag can be seen to
tend to 90° at high frequencies ( arctan [;m(G)/Re(UIP"-§'%%'
as o —%o0d). Numerical computations of the abbve quantities

are discussed in the next section.

(£f) Autocorrelation of Speed

The speed autocorrelation function S\x\(t) is of lesser
interest that the velocity autocorrelation function, but can be
found explicitly by integraticns cver the even part of the
velocity distribution, ( 4.69 ). We find after some parti
integrations '

©

Gui@ixgy =7 | (@t - I -em(-=(T) a

1ol ’ ( 5.32 )
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and .

S1x) (O = n"}J e~2(3)T [( 2(y)= 1 )T~ 1)

o .
. (1 -l;ao(y) - ﬁ_%z'(y))} a3

( 5.33 )
<£\x\(13\x67 being the relaxation of mean speed from an
initial delta-distribution at X,e The essentially non-exponen-—
tial character of both functions is quite clear.

Section 5, 3. Numerical Computations

The numerical inversion of Laplace transforms is nowadays a
straightforward procedure and a number of excellent algorithms
are avallable., We were thus able to calculate the inverse
function D14 Y in ( 5.16 ) end ( 4.69 ) to sn
accuracy quite sufficient for illustration of the behaviour

of the solutions under various conditions. The method we
employed was the Dubner-Abate procedure as improved by Durbin
and Crump ( Dubner and Abate 1968; Durbin 1974; Crump 1975 ).

Although the algorithms referred to are now reasonably well-
known in the computing literature, it is unlikely that they
have often been used with functions as complicated as those
which arise here. We found it necessary to speed the convergen-
ce of the integrals by use of bounding approximations and the
so called ' e-algorithms' to improve the convergence of thg

Fourier series involved ( see Shanks(1955), Wynn (1956) ).

It will suffice here to present a small selection

of results designed to illustrate the main characterics of the
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initial-value and autocorrelstion solutions and the electrical

conductivity.

(a) Initial-value Solutions

Figure 11 shows full-range initial value solutions under
delta-function conditions P(x,o)=<5(x-xo) with x = 0.5 and 1.5
respectively. Anumber of features are quite marked, notably the
asymmetry of the regular part of the distribution at all
finite times, with a drift of the most probable velocity from
approximately Xy to zero as the relaxation progresses. The
physical origin of this is clear: there is an enticorrelation
in velocity after the first collision of each test-particle,
due, it would seem, to the enhanced probability of a'head-on'
collision for particles in the initial delta—funcfion. A
related feature is the emergence of a pronounced ' shoulder !}
in the vicinity of X, vhen X, is relatively large—
presumably due to an appreciable contribution from test partic-
les which have collided twice within the order of a single
collision~-time. Note that the parity components Pod and Pev
are easily estimated by the visual trick.of reflecting the
left-hand half onto the right amd summing or differencing as
appropriate. In this way the main feature of the speed-relaxat-
ion P(ix1,¥) cen be distinguished—a distinct lag in the
equilibriunm of test-particles with near-zero velocities relati-

ve to those in the high-energy 'tail' of the distribution.

(b) Mean Velocities

The mean velocity relaxation according to ( 5.8 ) is
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Fipure 12: . Relaxation of mean velocity for different initial

delta-distributions. P(x,o)=é(x-xo). Curves:(a)
xo=105,(b) xo=l.0,(c) X = 0.5.The lower half shows
the- small negative flux which develpos in a
direction opposite to the initial delta-function.

.

-0-001 |-



- 142 -

interesting in that, depénding on the initial conditions, the
average <x(‘c)> may possibly become negative, indicating that
a net flux develops in the direction contrary to that of the
initial distribution. Figure 12 shows that such a reversed

flux. can occur to a slight degree under certain conditions.

(c) Autocorrelation

Our most interesting result is perhaps the computation of the
full velocity autocorrelation function SthQ for ecquilibrium
fluctuations according to ( 5.16 ) . The fdnction, Sx(©
computed by numerical inversion is shown by Figure 13 . |
It is clear that the decay of fluctuations is very nearly
exponential in appearance, though the mathematical behaviour
cannot at any time be strictly described in this way. The
asymptotic form of SthD predicted by ( 5.22 ) ( dashed
curve ) gives a fairly good estimate of the true one, though
with a very slow numerical convergence. Thus thernumerical recolks
both confirm and deny the contention of Cukier and Hynes

( 1976 ) that all model’ - processes yield effectively
exponential decay. DNumerically, it is true that the exact
function can be approximated, moderately well by a single
exponential decay constant; nevertheless this behaviour can
be given no analytic significance in any time-regime. In
particular, the approximation advanced by Cukier and Hynes=——

that of teking the initial slope ( 98 (T)/dT)._, to

determine the general exponential behaviour is clearly

a poor one in terms of the results of Figure 13 .

The absence of exponential decay, even at long times, is
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noteworthy but hardly surprising in a system known to posses

an unbounded continuum spectrum for the underlying transition

operator.

(d) Electrical Conductivity

The real and imaginary parts of the complex admittance e  may

be computed directly from equation ( 5.27 ) as a function of
the frequency of the applied field.( We do not, of course,
program the expressions ( 5.29 ) and ( 5.30 ) directly, it
suffices to use a complex FCRTRAN version of the numerical
quadrature for the Q(x,s) integrals already available,
working with equation ( 5.27 ) throughout ) The results,
plotted in dimensionless form in Figure 14 are seen to
correspond broadly to physical intuition. Thus the t
dissipative component € Re(&) )} representing the transmission
of energy to the heat-bath, is maximum under b.C.'conditions
and falls with a bell-shaped decay to zero at high-frequencies.
There is no sign of resonance and frequencies very high
compared to the mean collision frequency are required for the
dissipation to be effectively zero. As deduced earlier; the
current lags behind the applied field, its phase angle

increasing regularly from zero to 900 at infinite frequency.
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Figure l4a: Real and Imaginary parts of the admittance
function for charged Rayleigh test-partiéles‘
( solid and broken lines respectively ).
Results are for a Maxwellian heat-bath. The o-scale
in ‘arbitrary units applies to both the curves. The
‘real component is proportional to energy dissipation.
into the heat-bath per cycle. ‘
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Figure l4b: Current in a charged Rayleigh System as a
- - function of frequéncy.(Maxwellian Heat-bath.)
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12,00

Figure l4c Response lag in a charged Rayleigh system as
~a function of frequency ( Maxwellian heat-bath).
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Section 5.4, Spatial Transport Problem

The linear and one dimensional character of the special
Rayleigh model leads to a relatively simple equation for the
spatial evolution of a test-particle ensemble. Designating by
P(r,V;t) ~ the velocity-position distribution function for |
particles at time +t , the conservation of probability

can be expressed by the integrodifferential equation

3 P(x,V,t) 7.8 P(x,V,t
6?:(I‘ + b‘? (I‘, 9 )

0

av'E(VIVP(T, V') - Z(V)P(r,V,t)

where; as in the case of the homogeneous problem,

K(viv') = clv-vIn (V') _ ( 5.35 )

end co ‘ | | o

z(v) = J;V'K(Vlv'> ( 5.36 )
- '

The above equation is a Markovian Equation with a streaming
term added on the left-hand side. As before K(V}V') is the
scattering kernel in velocities and Z(V) the velocity-
dependent collision number, its integral over all final states.
Sources and absorbers are assumed to be absent and infinite
medium boundary conditions are imposed. An initial distribut-
ion P(r,V;o) is assumed given and this may be normalised

either absolutely or, if it is periodic, over a characteristic
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distance. Since we shall only be interested in an initially

localised ensemble, We choose the former alternative and write

drav P(r,V,t) = 1 ( 5.37 )

As usual we make an immediate transformation to reduced

variables:
X ~.=(C /n%). T
v o= (U Y ¢ 538 )
T = cTro. t = 2€0).%

with the consegquence that

P(x,v,0) = (nV./C ). B( (¢ /¥y, (nFT)).v, T/2(0))
| ( 5.39 )

and |
S axav P(x,v,T) = 1 ( 539 )

In terms of the reduvuced variables, the transport equation

assumes the form:

éll?(x,v}c) +v.§-—- P(x',v',-'t) + z(v)P(x,v,T)
AT ox R ‘

w -
. ,
= b (v) \av'bv-v'l P(x,v',T) ( 5.40 )

~Q0
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where w

z(v) = .gAV‘\v—v“lho(v') ' o ( 5.41 )
and —o® |

A oy L

ho(v) = nV . ho(n%V6. v) ( 5.42 )

( see ( 3.8 ).)

Since the Van Hove function G(r;t) is the
probability per unit length (or volume in three dimensions) for
finding a test-particle at position r at time t if the
same test-particle is known to have been at the origin at time
zero, and since we must sample an ensemble of systems at
thermal ecqulibrium tc determine G(r;t) , the appropriate

initial condition is
. A %
P(x,v,0) = &(x).h (v)/n ( 5.43 )

We can work with the fundamental initial condition
é(x-xo)dkv-vo) and then use the principle of superposition
"but as we shall see below it is much simpler to work with

the above initial condition from the beginring.

In reduced variables the Van Hove function can

be written in the form

G(x,T) = n%/c . G(r,t) ( 5.4 )
where
(¢ @]
G(x,T) = dv P(x,7,T) ( 5.45 )
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From equation ( 5.43 ) and ( 5.45 ) we see that G(X;t>

has the required general properties
G(x,0) = §(=) ( 5.46 )

( 5.47 )

5
N\
N
g
[
e

By introducing the spatial Fourier transform
of the position-velocity density
(a.0]
n(k,v,T) = 1/21 dxe ¥ (x, v, 1)
o " ( 5.48 )

. the spatial transport equation becomes
e

<.%% + ikv + z(v) ).h(k;v;t) = %b(v) dv'lv-v'lh(k;v';TD

—®© ( 5.49 )

with the initial condition
r A '
n(k,v,0) = bo(v)/2n>/2 . ( 5.50 )

In order to proceed further it is convenient to adopt the term=
inology wused in the neutron transport theory ( see e.g.
Nelkin and Ghatak 1964 ). In most problems in neutron
scattering it is more convenient to deal with the so-called
intermediate scattering function |
©
7 (x,T) = n(k,v,T)dv ( 5.51 )

- &
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with the general property
A (k,0) = 7A(o,T) = 1/2n ( 5.52 )

A quantity of direct physical interest in neutron scattering

experiment is the differential energy transfer cross section

(e o)

S(k,w) = J:ite}cp(-iwﬂ A (k,T) ( 5.53 )

) | ,

which is the double Fourier transform of the Van Hove function
G(x,T). Since 7 (k,t) is determined from an initial value
problem, we must specify its behaviour for negative times in
order to completely define S(k;w). For a classical system ;
S(k,w) is an even function of (- and L (k,7) is
a real even function of time. Introducing the ILaplace

transform of h(k,v,T) in the form

(v 0]
n(k,v,s) = dtexp(-sT)h(k,v,T) ( 5.56 2
. .
and the transform of 7L(k;t) in the form
. m | ‘
- rQlk,s) = dtexp(~-s7) 7 (k,T) ( 5.55 )
o X | ,
we have
S(k,w) = Qlk,-iw) +  Q(k,iw) ( 5.56 )
where
(oo
Q(k,s) = avh(k,v,s) ( 5.57 )
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and h(k,v;s) is the solution of the equation

@

( 2(v) + ikv + s ).h(k,v;s) = %O(v) av' fv-v't h(k,v',s)
-
+ %O(V)/2E3/2

( 5.58 )
Having completed the formal preliminaries; we now turn to

actual calculations.

In order to make the calculations simpler, it

is convenient to define:
£(k,v,8) = h(k,v,8)/h (v) (559 )

in terms of which we can rewrite ( 5.58 ) in the simple form:

m .
( z(v) + ikv + s ).£(k,v,s) = gdv"v-v-'l’ﬁocv-)f(k,v,"s)
ny | |

+ }./Ena/2
( 5.60 )

Partial differentiating ( 5.60 ) once with respect to v, we

have

( z'(v)+ik)£(k,v,s) + ( z(v)+ikvs )£'(k,v,s)

- de'sgn(v-v')%o(v')f(k,v',s) ( 5.61 )

=0
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Partial differentiating ( 5.61 ) once with respect to v,

we have

2( z'(v)+ik ).£'(x,v,s) + ( z(v)+ikves ),f"(k,?;s) = o.

(V 5.62 )

The above equation can be integrated to give

v
f(k,v;s) '= A(s,k) + B(s,k). Sdu/(z(u)+iku+s)2 _
°c ( 5.63 )

To find the functions of integration A(s,k)
and B(s,k), one has to substitute £(kx,v,s) into (5,60 )
and ( 5.61 ) respectively and put wv=o0 in the resulting
expressions. In order to carry out this procedure, the

following identities are required:

N

S [(z'(v)+:u<:).Sdu/(Z(u)+i1«ru+s}2 + 1/(Z(V)+ikV+S)l
> L )
v
= z"(v). gdu/(z(u)-rikms)2

( 5.60 )

v
é—-—- ~ "v/(z(v)+ikv+s) - (z(v)=vz'(v)+s). S du/(z(u)+iku+s)2]
v .
= vz'(v). g c1u/(z(u)+iku+s)2

o

( 5.65 )
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By using the above identities we have:

o® v

I, = Sdﬂ1vl%0(v). j du/(z(u)+iku+s)2
-— 0 ) [+]
0o v
= dvvﬁo(v). du/(z(u)+iku+s)2
° ° © v
- dev?lo(v). du/(z(u)-iku+s)2
(]
Q
(using ( 5.65). )
I | | ( 5.66
where
® >
o = ik/(n+k2) + §[:§ du/(z(u)+iku+s)
2 R
©
fo)
- gdu/(z(u)+iku+s)2]
° ( 5.67
From equation ( 5.60 ) we obtain by setting v=o
( 1+8)A(s,k) = B(s,k).I, + A(s,k) +  1/on/2
or
sA(s,k) = -aj. B(s,k) + 1/211:3/2 ( 5.68

where we have used the properties of the collision function

z(x) ( see ( 53 ) ).
From equation ( 5.61 ) we obtain
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by setting v=o0
oo

ikA(s,k) +  B(s,k)/(1+s)

- Q0

_Ib

oo

&av'sgn(v'iﬁocv-)f(k,v';s>

«©

o
it

]

B(S,k) . (x2

vhere

«© \I'

de‘sgn(v')?lo(v'). j du/(z(u)+iku+s)2

o

R
N
n

= o

® v

= &dv'lﬁo(v'). Edu/(z(u)-iku+s)2
. .

o \
© v

0 o

( using ( 5.64 ). )

fed]

2
)

®

(569

( 5.70

+ gdv'?lo(v'). g du/(z(u)-rikms)a

= E%.{g du/(z(u)+ikues)® + j’du/(z(u)_ikum)eg

+ ik, rgdu/(z(u)-riku+s)2 - idu/(z(u)-iku—s»s)‘gl
2 o

-  1/(1+s)

( 5.71

- g dv'sgn(v')'l\lo(v')f(k,v' ,S)

)

)
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By substituting I, in equation ( 5.69 ) we obtain

ikA(s,k)

= Oz B(s,k) : ( 5.72‘ )

where
[ ]

Uz = '122%- { gdu/(z(’.l)+ilmz+s)2 + au/(z(w)-iku+s)® g
i {

©
@ Vo)

+-2—1-{- gdu/(z(u)+iku+s)2 - idu/(z(u)—ikua-s)‘g%
( 5.73 )

By solving the simultaneous pair of equations ( 5.72 )

and (5.68 ) we obtain for the unknown functions

1
A(Syk) = '2713‘/2 . ( 023/(14_) ( 5°74‘ )
B(s,k) = ;}t—m .+ ( -/ (525 )

where
oy = socz‘ - 1k:oc1
[is!
= k2/(k2 + 7T ) + gt_%_s_ { &du/(z(u)+ilm+s)2
. 2 o

0
+ S du/(Z(u)—iku+S)2 }
o ( 5.76 )
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Therefore,

f(k,v,s) = ( 1/2113/2). L ona/oc4

v
- (ik/oc4). g du/(z(u)+iku+s)2]

¢ 5.77 )

For our purposes Q(k,s) is the most important function and

can easily be obtained from the above equation:
o©
g dvh(k;v, s)

-
oo

de%o(v) J(k,v,s)

-2

Q(k,s)

(ag/2me,) - (ix/2n2/ Zo) « ot ( 5.78 )

where

© v

s = &dvﬁo(v). X du/(z(u)+iku+s)2 ( 5.79 )

- o0 o

( using (5.64 ). )

. © ©
= r? [ gdu./(z(u)+il<:u+s)2 - c_‘lu/(Z(u)—ileS)a ]
2

0

=]

o0
o]

. 2
+ ik [ gdu/(z(u)+i1m+s)2 + jdu/(z(u)-lkuﬁs) 1
2 .

o | ° (5.80 )
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By substituting the expression for o

5 in (5.78 ) vie

obtain by a simple calculation

Qx,s) = & “*k) 7(k.5) .81
° ( n%sy(k s)  + 2k°/(k%+ 1) ) (211)/2) (5 )
where ()
y(k,s) = g e ( 5.82 )
(z(u)+iku+s)
)

By using the above result for Q(k,s) and ecuation ( 5.56 )
we can immediately obtain the explicit result for the

differential energy cross section

= 1 2 . 1
50k, ) on3/2 (k) [ (n{iwy(k,iw) + 2k°/(k%+m) )

1
( 2k2/(1t+k2) -ium%y(k,-iw) ) ]
( 5.85 )

where

du
( z(w+iku +iw)

y(k,+iw) = > o (5.8 )
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Section 5.5. Spatial Moments and the Gaussiszn Approximation

The special Rayleigh model does not allow en enalytic calculat-
ion of the Van Hove correlation function G(x,T) as it does for
S(k,w), nevertheless, it does allow . _ the analytic
calculations of the spatial moments of G(x,T) as a function

of time. By analysing the Fourier-Laplace transform of ch;TD
( which is given by Q(k,s) ), it is quite simple to show

the expected behaviour of G(x%,t). ( see e.g. Lebowitz and
Percus 1967, ) However, it is much more convenient to consider
the spatial moments which can be evaluated exactly by using

Qlk,s).

To do this calculation we note that

w
G(k,T) = -2-1—& dxexp(~-ikx%) .G(x,T) { 5.85 )
n
- co
and. (o)
Q(k,s) = dt exp(-st).G(k,T) ( 5.86 )
. (o]

Hence, G(k;t) is a moment-generating function and

<x’1§s)> = +2m ( g\c_]_anck,@ ;kzo ( 5.87 )

( + if n/2 is even; - if n/2 is odd )

' th s
~x,n(s)> is the Laplace transform of the n spavial
moment. All the odd spatial moments are zero because of the

choise of the initial conditicn. The quantities of greatest
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physical interest are the second and the fourth spatial

nmoments., These are calculated below.

(a) The Second Spatial Moment

From (5.87 ) we have

2 _
¢P(s)y = -2m. [é—a Q,(k,s)] ( 5.¢3
ok Yoo

By using the expression ( 5.81 ) for &(k%,s) we have

2 _ 2 _ 2
{x(s)) = 1:5/252Q(oo,s) s

2 s =~ 2 - T +h -
after lexngthy butb strzightlcrwzrd caleulztiorns. In The &00ve

expression, §(co,s) is the fuzcticn éefined by equation
(4.48 ). In order %o czeck the corrsctness of this rezull,

vwe npote thav

D, = gdt SZ(T.) (eee (5,23 ).)
= izt (1/2). 3 (PO ( 5.8
T—> 0 3z

)



- 162 -

where DO y the diffusion constant was derived earlier

( 5.24 ). Using the derivative theorem for Laplace transforms

%[_{s_ JEACOD, :|= s. £ x2(8) S

3T 2 2
(5.89 )
and the limit theorem ( see e.g. Churchill 1958.)
Limit sf(s) = Iimit £(T) . (5.90 )
S~ 0 T—> 00 '
we have
D, = Limit 2, <L FE)D>
' § ——3 o 2
_o_1 . 1
=72 - (591 )
&du/z(u)2

(]

which is precisely the result derived earlier by using SXCC).
The formula ( 587 ) for the second moment is in the form
where the numerical Laplace transform method discussed

earlier can be applied quite readily. Numerical computation.
of the second spatial moment is discussed at the end of this

section.

By applying the method of finding inverse
Leplace transforms, developed in chapter four ( see Appendix

D)



we have

(x2(T)y = (2/n3/2y, 171 (2/5%(00,9) )

- (2/m). TN /s) (5.92 )
Buj:
THico :
1™t (1/s2Q(oa,s>) = (1/2ni). g dsexp(5T)/5°Q(00, 5)
o |
o yo
( 5.9 )
( see the contour diagram: PFigure 15 ). The s° tern-

in the integrand will give a contribution and therefore

’

’i'l(l/seQ,(oo,s)) = a; - (1/2mi). gdsem(st)/ng(oo,s)

CDEF
( 5.9 )

where

ft

aq residue of (l/szQ(oo,s) Y.exp(st)  at s=o0

i

Limit 4_ [sz. exp(sr)/szQ,(oo,s)]
s—> o ds -
o)

T/q(00,0) +  (2/q(00,0)2). g au/z(y)>
, f o _ .

( 5.95 )
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Im.s4

-09(‘"

PRy b s 2
77”7!"!‘(}.-

Re.s

Fipure 15 Contour Diagram
for finding the inverse
transforms of <x2(8)>
and (x4(s)> . The
dashed line is the
branch-cut and the pole

is marked by a cross.
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Along the branch cut the contour integral becomes

- (1/2ni). f; dsexp(szj/ng(oo,s)

CDEF
(o)
= dxkz'(xx)exp(-z(xx)r).2iIm( B™(\) ) (5.96 )
oni '
)
where
. - - 1
2iIm( B (A = Limit
HrCE) ) =t (~2(x) )-i6)°Q(00, -A-ie)
€E —3o 4 .
- 1
(-z(xh)+ie)2Q(oo,-k+is)
e 2ni.g(oo,A)
| (R(o0,M)°  + n°(00,M)? ).2(x,)°
(5.97 )
Therefore,

©
<x2(t:)) = 2Dt + Qma/zl)g. Sdu/z(u)3~ 2/Tc>

¢

+ (2/%3/2)- dxxz‘(xk) g(oo,h)exp(-z(xk)T:)
' z(xk)a.( R(oo,h)2+n2g(co,K)2)
o _ |

(5.98 )
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The third term on the right-hand side of equation ( 5,98 )
clearly shows the non-Gaussian behaviour of the second
spatial moment in the intermediate-time regime. The asymptotic

result 2Ddt is self-evident.

(b) The Fourth Spatial Moment

If the Gaussien description for G(x,T), as first introduced
by Vineyard ( 1958 ), applied to the special Rayleigh model

then we could write

6(x,T) = (m(T)2) F. exp(-x2/u(T)?) ( 5.99a )
so that
1 <S> = (5.995 )
3 <P -

for all times. Therefore, to compare our analytic calculations
with the Gaussian approximation; we can calculate the above

ratio of moments to see possible deviations from unity.

Laplace  transform of the fourth spatial

moment is given by

<x’*(s)> =+ on.( ¥ ax,s) )k= ( 5.100 )

S 0

After lengthy but quite straightforward calculations , the

explicit expression for the tramsform of the moment follows as
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<xH(e)Y = .- s
> Q(oo,s)232n5]2 s/
. [00)
- 3 -& du u® ']
A Cz(w) + s )*
( 5.101 )
which can be simplified by using the identity
o)
0
du ug(z(u)-uz'(u) ) . 1 _ du u®
Ca(w + s)* 3/ 2 NEIORFDY
o .
¢ 5.102 )

( which can be proved by a simple integration by parts. )

o
' 2
()Y = 72 e ldu v z(n) =~ z'(Wu )
< . 7 Q,(oo,s)as;5'11:5’/‘2 ( z(u) + s 4

( 5.103 )

In this form, it is self-evident that the limit theorem ( see

e.g. Churchill 1958. )

Linmit s <x'(s)> Limit <x*(T))
s ..__._> OO' V'C-——'-—% o .

n
o]

( 5.104 )

bholds for the fourth spatial moment. Although it is possible
to find an analytic expression for the above moment, it

suffices here, only to consider the long-~time behaviour of
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the moment so that numerical results can be checked.

From equation ( 5.103 ) we see that the conto-
ur diagram for.finding the inverse trarnsform of the fourth
spatial moment would contain the usual branch cut along the
negative real-axis and a third order pole at s=o0 in the
complex plane. From our experience’ with the second spatial
moment we know that the residue of the pole will give the nost

important contribution in the long time limit. Therefore,

<xq'(s)> = a, = ds exn(st). <& qus)>
2ini
CHEF (5.105 )

where the integral on the right-hand side above is along the

branch cut and

a5 Limit 1.4° [s? eXP(sr).<xl"'(S)>]

8 — 0 2 d52
= 2N o+ x. %__<x‘*<s)> )y
2 : S
+1.( &2 <MY )
2 dS2 8=0
(5.106 )
But
(DY I, = Do

( 5.107a )
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(g;_x‘*(s») = 7208 a2 [‘(4130/3). fzu/z(uﬁ
. \ds 5=0 : - o

oo
- jdu u2/z(u)a’]

o)

( 5.107b )
and
2, M\l ®
3;2<x (S)/)S~o = 72, { DLO".E —(du/z(u)a
00
- 4.D2.n3/2 du/z(u)4
“Jo
r® @ '
- 8.(D01r3/2)3 d.u/z(u)’. du u2/z(u)4
a>/2 .
/ Jo o
‘ o
+ 8.(D§.n5/2).' j du u/z(u)5§
B o ( 5.107¢ )
Finally,
@
a, = 12.02.¢° 4+ 12.0° 1-5/2.-{;{4 D, [’_g du/z(u)5]
o
e .
- 3. LS du u2/z(u)4J }
o
+ C0
( 5.108 )
where Co is a constant and equal to i___<x4(s)3
5=0

Therefore, the long=time behaviour of the
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fourth spatial moment is of the form

GHHOY 12052+ 0T o+ © ( 5.109 )
T~m

where Cl is a constant.

(¢) Numerical Computations

The numerical method of finding ILaplace transforms has
already been considered in this chapter. For the second

and the fourth spatial moments the asymptotic results prove
to be useful checks for the numerical validity of the resu}ts.'
We shall consider the lMaxwellian heat-bath and therefore,

z2(x) = exp(-xe) + n%xerf(x).

(i) Figure 16 shows the time evolubion of the second
spatial moment. The dashed line is the asymptotic result
2DOI: which is seen to be a very good approximation in the
long time regime. The non-Gaussian behaviour in the

intermediate time regime is quite evident.

(ii) TFigurel? shows the time evolution of the fourth

spatial moment..The dashed line is the asymptotic result

(5.109 ) where +the numerical constants are:
Do = 0,185165.
Cl = -0.266276 | (5.110 )
C. = 1.477456
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aymptotic result ( 5,109 ).
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Figure 18 The Ratio of Moments ( for the
Gaussian distribution, the ratio would
be equal to unity at all times. ).
Notice the convergence to Gaussian
behaviour at long times and near the
origin. . '
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(iii) Tipure 18 shows the time evolution of the rotio:

2 e) S 1
> > )
3.0 Kx"(®)Y )

which for the Gaussian approximation is exactly one. We see
that the approximation holds for the special Rayleigh model
in the limit of short and long times, but not at intermediate
times. The ratio reaches the minimum of about 0.9 after
roughly one collision-time in the scaled units. After about
three units of scaled time the ratio is practically identical
to univy as one would expect from the asymptotic results for
the moments. INonetheless, the approximation is clearly a
poor one in terms of the result at all times, which is hardly
suwrprising when one considers the important contribution nmade

by integrals alcng the branch cut.

( * Just before the publication of this'thesis, it came to
the knowledge of the author that P. Résibois ( Physica
90A, p.2¢3 (1978). ) has quite independently arrived at

the solution of the spatial problem. However, Resibols was

not able to give explicit expression for the autocorrelation
funétion and the second spatial moment nor did he obtain

the ratio of moments. )
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APPENDIX A

(a) Approach to Equlibrium

We shall show that any time dependent solution of the lMMaster

equation ( 1.16 ) tends to P o q(x) or
Limit P(x,t) = P (x)
te—= O ‘
Consider an arbitrary non-negative convex function £(q):
£(a) » O for 0<Lq<co,
£(Q> O for 0L q £ oo.
Define
H(E) = \ax P (O (alx,t)) ( &1 )
where
a(x,8) = P(x,8)/By (x) ( 42 )
From ( 1.16 ) and using the detailed balance conditiocn
we have,
) = \axd £(q). & P(x,t)

v bq ot

]

LR ACIEDIINCONEICIND i_ £(q(x,))
.

- q(x',t). & £lalx',t) )]
S ( 4.3 )
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by rearranging and relabelling. For an arbitrary p(x) one

easily sees that

0 = Azdx'k(xlx" )Py (') T pla)-p(x')] ( A4 )

If one chooses p(x) = f(q(x;t)) - q(x;t).é_i(q(x;t))
&

and add the identity obtained to H'(t) above then one obtains

m'(t) = SX axezx! Peq(x')k(XIX'){ oGt 9-aG, )] 8 2Ca)
- | &

+ £lalx, ) - f(q(X';t))k v
' ( 4.5 )

Now for any convex function £(q) the term in the integrand

above within the square brackets is negative unless

alx,t)=alx!,5). ( £(a)+(a-a").£'(a) & £(a"). )

Hence H(t) decreases in time and must therefore
approach a limit. In this limit one must have H'(t) = O.

or

Limit P(x,t)/P_ . (x) = constant. Because of
£ >0 eq
normalisaticn, the constent must equal to one. Q.E.D.

-

' A
(b) The operator A  is negative semi-definite

A
The operator A is negative semi~definite with the consequence
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that the eigenvalues must be ﬁ%itive;

Consider the inner product or the matrix element

(£, i) gf(x} . XG(:{( 7)£(y)dydx - }(Ic)f(X) 2ax

&f(x)[g ( GxIy)E(y) - G(xIPV(TIE(x) Jdy |ax
N(x)

n

]

2
- i gg G(x\INCR(y) {f(x)/N(X) -f(y)/N(ﬂ}

( AI6 )
The last steps follows by using the property
G(xly) = G(ylx) and the identity

ggdxayc;(xlym(y)ﬁzf - \\emrm@e®edy ¢ 40 )
: N(x) N(y)

Therefore,

(£, X£) £ 0. Q.E.D.
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APPENDIX B

The Collision Number Function Z(V) Tor the Ravleigh Model

K(VIV) = p20 7=V (/2D Pexp(- L[ (rr-mp + ¥]2 )
( B )
and c0
Z(V) = | aV'K(V|V")
T | ( B.2 )

By making the change of variables (2.14%) we have,
[a)

2
Z(V) = C.(2x1/ m)%e})? ay lx-yle” ((y-x) P+ x )

- ® ( B3 )

But Fos) -

z{x)

"

2
}Lz . \dy Ix-yl e~ ((Y-?i)efk + X )

P,z‘ { jdttexp(-[x-z- t.}ikg) +§texp(- [x-)ﬂf)ci{:lj
S

]

P
+2
= ‘(dY(Y-X)e—y + dy(x-y)e ™
*® =00
2 ,
= “V;:erf(x) + e % ] ( Bl )

Therefore,

Z(V) = C V.erf( (m/2kT)%.V) + (2kT/n'.1n)%—oexp(-mV2/2kT ).C

( B.5 )



APPENDIX C

C.l. The Pseudofunction R(x,A)

Hoare and Rahman have discussed in detail the properties of
the above pseudofunction. Technically, one ought to

understand R(x,A) by the following definition:

(@ ]
<PL.R(x,\), ¢(x) ¥ =  Fp. R, M) az ( ¢.1

Without the complications of distribution theory, it is
possible to resolve R(x,A) into its regular and singular
components by makinz a Taylor series expansion of (z(y)-A)

about the point =% ¢

p
R(x,A) = Xdy/(z(y)-z@;g )2
o Ix<

' .
= sgn(x) g 1/(e(3)-2(x)) *- 1/Z'(X;\)2(2Y-X;\)l> dy
\°]

2 ()2 | == 1) 15

.

+ spn(x) [ 1 + 1 ]

( c.2

Essentially in this form, only Cauchy-Principal values have to

be considered.

C.2., Orthogonal Integrals

I
Il = dﬁgo(x)¢ev(x,h)¢ev(x,h') ( c.3

-0
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We shall require the following identities:
(a) [H(x-;x)\{ )—H(xﬂx?\i )] .[({(x-lx;'\l) + 6(X+!X;f\l)]

= SGx-1x 1) + EGerixs))
| ( Cus )

n
(o]

() (HGe= 1D -HCGer 12 1)) « (Sla=t30 ) + (1350 ))

(e) {H(x-(x}! ) - H(x+ 1% )g . Q[ H(x—lxil)m H(x+ By )}

= H(x- lx)'\l Y=H(x+ B ) ( ¢c.6 )

Therefore by substituting the expression ( 3.82 ) for

G.,(x,\)  and using the above identities it follows that
1Zy§
A
I, = A(?\)A(?\').( -2 X,ﬁo(x)dx + 2q(x;{h)h6§x;i)
) °

+ 2q(x;\)q(:c}~)'ﬁo(‘xx). $Cix -1 | ))

= 2'(J30 )7 ADZ.E(AY)

- ¢ ¢.7 )
Z"(X)\)
7 |
I, - im&o(x){zod(x,m}od(x,w) ( c.8 )

- 09
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Ve shall require the identities:

(2) {HCX-IX;\I ) = Hl=x= 1) )}« { §Ge=1x1) = §Genixll)

= 0 ( c.9 A)
(b) Q{H(qu)'\l)-H(—x-\x;\l)lg o S350 )-8(x+1x) )&

= 5(X-tx)\l ) - <§(x+|x?3 ) ( C.10 )
(e) {H(x- gt )-HC=x=131) b o HQx- 1) )-E(=x-1350 )

= H(X—|X2J )—}I('—X—SX}J ) ( C.1l )

Let J2 = (R(x,k)-R(oo,h).g(x,?\)) . (R(xoh')-R(co,h').g(x,h'))

By using the relationships:

0
2&dyl{(y,l)R(y,k')’£o(y) = W%R(OO,?\)R(OO,?L'>

. .

- ( R(00,2)-R(o0,X) )
A=A
( c.12 )
and
co

2 &dylﬁo(y)ﬂ(y,l') = E%R(oo,l‘)-Z'(\Xhl RO ,A%)

© - 1/(A-At) ( C.13 )
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the required integral becomes:
(oo
A
I2 = Aa(K)Az(A').gdy J2.ho(y)
-
= 4,02, R(o0,M)%2' (111 )7 §(A-A1) O caw)

Z"(X)\)
( Where the identities ( C.9 ) to ( C.11 ) have been used. )

Finally,

OGA
I; = | &m0 (x,0)
T EN

=A()\).‘-— Zjdy'l\lo(y) - z'(Ix) )J
(oY

= O. ( ¢€.15 )

where we have used the expression ( 3.82) for the even

eigendistribution.
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APPENDIX D

D.,1 The Riporous Prodf of the Reletionship:

®

11 Q(x,s) = ’{dyezp(-z(y)t) ( D1 )
o]
By definition, THLeo
L"lQ(x,s) = 27& dsexp(s0 .Q(x,s)

T-voo
If we integrate Q(x,s) around the contour ABCDEF then from

Cauchy theorem it follows that

dsQ(x,s)esta o) ( D.3 )
C [ ]
«
Pt +18
' §ds Q(x,s)es‘C = dsestQ(x;s) + dses‘cQ,(x,s)
c dﬁ-éa pC

+ lase®™qlx,s) + ase®T Q(x, s)

CODEF EA ( D4 )
The first integral on the right-hand side approaches
L—]'Q(x,s) as A and B are nmade to approach -oo and
+00 respectively. In this 1limit, portions DC and FA

contribute nothing, because of the rapid decreasz of exp(st).

Therefore,
Gl
dsexp(sT)(x,s) = — \dsexp(s)Q(x,s)

. D.
(o CPEF ¢ 250
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Im.s

~inverse transform of

Contour Diagram for the

function Q(x,s).
The dashed line is the

bpanch~cﬁto

Re.s
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Along lines CD and EF we can evaluate the integrals as follows.
Note that the integral over a small semicircle of radius €
centred at -1 vanishes as € tends to zero ( same is true in
case of a semicircle about ==z(x) ). Q(x,8) is analytic in
the the whole complex plane except along the line from -1 to

-z(x).

Next we shall bring the lines CD and EF close to the ..

real axis, an operation performed by letting € —> o where

s=-A+ie .

z(x)
L7R,8) = e | @eTRTI-T WY Ds )
2() | |

wvhere,

{eon-et oo}

Limit {Q(x, ~A-ie)-Q(x,-A+ic) }

E—=> 0

f

2iIm Q™(A) ( D.7 )

By using the identity ( see e.g. Jones 1966)

Limit 2 = Pf.—2>x + & (2N
e—ro (z(x)-A+ 15)2 ( z(x)-A )2
( D.8¢. )
we have, =~
Limit Q(x,-A+ie) = R(x,A)+ in fdus'(z(u)-?\.) ( D.8h)

E—YO0 .o

It can be shown that



- 186 -
%L

g&'(zm_x)du = g(x,\) | ( D.9 )

o

g(x,A) was defined in equation ( 3.119). Therefore,

Q*(A) = R(x,A) + ing(x,M) ( D.10a )
Q"(A) = R(x,A) -ing(x,A) ( D.10b )
and
2iInQ (A) = -2nig(x,A). ( D.10c )
Finally,
1<t
L"lQ(x, s) ='~g dx}\e'z(xk).cé ! (x;\)g(x,‘xhb
o .
FA
= —gdxk z"(x}‘)/z'(xx)z. [H(X- 1,1 )—H(—x—\x}\l )J
) . Q—Z(KA)"C
° txi
- dx}\e'z(xh)F (c((x- EAPE(EINEN ))
z'(x;\) .
o
( D11 )

Using the relationship:

<l
gd Q/z ! (xh)) exp(—z(x}\)'t) .EH(x- i) )-H(—x:- x| )]
o e P4 -

= -c&d;yexP(-Z(.Y)"c) +de7\e-2(x}‘)z& X=1x%1 )
) Z'(Xy\)

o =

-—J(XHX}J )) ( D.12 )
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It follows that

x
L"lQ(x,s) = tfdue@(—z(u)t) ( D.13 )
° Q.E.D.
D.2 Proof of the relationship
o
Jp = SGXKZ'(Xh)eXP(—Z(xh)f>-g(x,K)g(xo,h)
© - g(o0,0)
Min (i1, 1 ol )
= - sgn(x)sgn(xo). T due'z(u)t+ e-z(xo)tPod(x,o)
N
° ho(x)
( D4 )
By substituting g(x,\) etc. in the above expression; we
have
Jl = Dl + D2 + D3 A ( ' D.15 )
where o0
D, = S a(-1/2' () D 2CNT. (B 1) )-E(=-ly )
° NGERIENPE(EIATADY
( D6 )

ECENDPECEENDIE

. o ’
D, = gdx}\ exp(-z(x}\)‘c) —~
[&(xo-[x}\l )-5(xo+{X;\l )]

Z'(XA)

+ [H(xo-\x}! )—H(-Xo-lx)\! )]

N CENDECNEAD) ( D17 )
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and
©
D, = dx e'z(xk)t
3 J ..}‘_?_ (é(x- 13 )-E(x+ txl D) - (6(}:0’ 1% )
o 2"(x)) |
§Cxo+ 1%t ) ( D.18
Now by integration by parts we can write Dl és
i (1t 1at)
D; = -tsgn(x)sgn(xo) K due"z(u)t- D, -~ ( D.19
o
and
I)3 = exp(-z(xo)'c) Pog(x,0)
—_— ( D.20
o)
h,(x)
Therefore, M‘.“("") 101
Jy = = sgn(x)sgn(x )T aue~2(WT . e—Z(x)fpod(x,o)
° e

)
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DIAMAGNETISM OF A CONFINED ELECTRON GAS*
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We consider a free electron gas in the presence of a uniform magnetic field and confined by a
cylindrically symmetric harmonic potential in the directions normal to the field. The density
matrix in Boltzmann statistics is evaluated exactly and it is shown that the electron gas rotates
uniformly under the influence of the field. The corresponding Wigner distribution function is
also studied.

1. Introduction

As is well known the theory of diamagnetism of metals is complicated and abounds
with subtle pitfalls'). One of the reasons is that in the calculation of the bulk
susceplibility it is essential to take boundary effects into account. This was first
clearly realized in the classical theory after Miss van Leeuwen formulated her
famous theorem?), by which she dealt a fatal blow to some of the older theories
of diamagnetism. According to this theorem, proposed independently by Bohr3),
the current density vanishes and hence the magnetic moment is zero in classical
systems of charged particles in thermal equilibrium in the presence of an external
magnetic field. It was shown by Landau®) that this is not true in quantum
mechanics and that in fact the diamagnetic susceptibility of an electron gas is just
one third the paramagnetic susceptibility due to spin.

Landau evaluated the quantum partition function, using an interesting set of
single particle wavefunctions, and taking proper care of the effects of the boundary

* Part of this work was performed at the Department of Physics, Queen Mary College, Uni-
versity of London.
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152 B.U. FELDERHOF AND S.P. RAVAL

on the number of states. Later calculations have also concentrated on the partition
function since at least this is a foolproof method!), which avoids the intricacies of
a direct calculation of the magnetic moment. A particularly careful discussion of
the boundary effects on the level density for systems of large and intermediate size
has been given by Dingle®). -

A very elegant way of calculating the partition function was proposed by Sond-
heimer and Wilson®). They consider an infinite system and hence boundary effects
do not enter at all. But, as pointed out by Dingle®), in this way one does not deal
with quite the whole problem, since it is taken for granted that the susceptibility
is purely a volume effect. Moreover, as will be shown below, the Sondheimer-
Wilson theory suffers from an inherent contradiction. Although the partition
function leads to the correct value for the magnetic moment, one finds by direct
calculation that the current density and hence the magnetic moment vanishes
identically.

This paper deals with a model situation for which not only the partition function,
but also the local current density can be evaluated exactly. We consider an ideal
electron gas confined by a cylindrically symmetric harmonic potential. The density
matrix can be evaluated by the method of Sondheimer and Wilson®) and we find
the remarkable result that in the presence of the magnetic field and with Boltz-
mann statistics the electron gas rotates uniformly. We also evaluate the Wigner
distribution function which turns out to have an interesting form. We confine
ourselves here to Boltzmann statistics.

To our knowledge the harmonic potential is the only case where such simple
results can be obtained. It allows one to discuss in detail the effects of the boundary
and the way in which the bulk limit is attained. For the partition function this was
already done by Darwin?). In our view the present calculation in combination with
Sondheimer and Wilson's method for treating the Fermi-Dirac case provides an
attractive and lucid description of the diamagnetism of free electrons in metals.
The detailed calculation of the local properties of the high temperature gas, as
presented here, may also be of some interest to plasma physicists.

2. Density matrix for electrons in a harmonic potential and a magnetic ficld

We consider a gas of non-interacting electrons of charge —e, mass i, confined
by a two-dimensional harmonic potential ¥ (r) = 4K (x? 4+ »?) and under the
influence of a uniform magnetic field B in the z-direction. We choose the cylindrical
gauge for the vector potential A(r) = (—1By, Bx, 0). The single-electron hamil-
tonian reads :

1 B \* 1 B \? 2
Jf=——(px—f——y> + — p,+£—x +L+§K(:c2+y2).
n 2c 2m @1
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Introducing the Larmor frequency o, and the modified frequency 2, by
oy = eB2me, Q= (o] + 0d¥, ©i=Km, 22
one can write the hamiltonian in the alterx;ative form
H = p*2m + oy (xp, — ypy) + ImQL (x‘2 + »?). @3

In Boltzmann statistics the single-particle density matrix satisfies the Bloch
equation

']

L I— @4)

i .

)

o

In coordinate representation this becomes explicitly the partial differential equation

M = [ﬁ- V2 + il (xfl -y —E—) — ImQl (x* + yz):| o(r,r'; f).
] 2m iy ox (2.5)
Following Sondheimer and Wilson®) we look for a solution of the form
o(r, s B) = f(B) exp [—ig (B) (¥'y — ¥'x) + h(B) (xx" + 3¥")
O ) - 2P @ — 2P @6)

This satisfies (2.5) provided the functions f(f3), g(p), (), k(B) obey a set of
coupled nonlinear ordinary differential equations which must be solved with the
condition that (2.6) reduces to the well-known free particle solution for B =0
and K = 0. One finds, putting & = h2, and ¢, = hiwg,

7B = ( m )3/2 BéL 2(B) = méy, sinh fe,

2=ph* ) sinh B&.° h*  sinh B8,
mé&, cosh fie, méy 7
np) = —712—“ m, k(p) = —ﬁT coth A&, .
Now one can evaluate the partition function
Z=Tro=|o(rr;p)dr. S (2.8)

We limit the integration over z in (2.8) to the range 0 < z < C. From (2.6) and
(2.7) one finds

Z=2,Z., (2.9)
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where
. = C (m)2nph?)* : (2.10)

is the partition function corresponding to the free motion in the z-direction, and

Z., = ) C@1n
cosh B&L — cosh fe,.

is the partition function corresponding to the motion in the x and y-directions.
Hence one can evaluate the average magnetic moment and the average energy
per electron. For the magnetic moment one finds

dlnz _  &sinh &, — sinh Pey @.12)

M.y = kyT ,
M) ) HB osh B&L — cosh fe,,

where //;B = efi/2mc is the Bohr magneton, and & = /£, . For the average energy
one finds
&y sinh &, — ¢ sinh fe; 1

Hy=—-0InZ[of = —. 2.13
Nalt nzjop cosh g€, — cosh fie,, * 28 @13

The last term is the kinetic energy in the z-direction.

3. Number density and current density
The number density per electron is given by

n(r) =0 (r,r)Z 3.1)

and from (2.6), (2.7) and (2.11) one finds the gaussian distribution

n(r) = _f‘—c exp [—a (x* + »?)], ) (3.2)

e

where

méy, cosh f&, — cosh fe,,
h? sinh fle, )

x=k—h= (3.3)

The probability current density is given by

i =2t L Worr) = Vo ¥|e + = () A, (3.4)
2mi nic
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where as before A(r) = (—3By, 1Bx, 0). Substituting from (2.6) one finds that the
current density can conveniently be written as the product of number density and
flow velocity®)

Jr) = n(r) V(r), . (3.5)
where the flow velocity is given explicitly by

sinh fe.

m) (=5, x,0). (3.6)

V(r) = ) (1 -

Thus we have found the remarkable result that the electron gas rotates uniformly
about the z-axis.
One easily checks that the total magnetic moment

(M = ij (r x j(r): dr, (3.7
2c

as calculated from the preceding equations agrees with the result (2.12) found from

the partition function. From the fact that (sinh x)/x is monotonically increasing

for positive x it follows that the angular velocity in (3.6) has the same sign for any

value of the field. The response of the system is diamagnetic for any field strength.
For weak field one finds from (3.3), with g5 = fiw,,

a = (m[h?) g, coth fleg  (small B), 3.8) .

i.e., the width of the distribution then is determined by the harmonic potential.
In this limit one finds for the flow velocity

Beo

Vimyz= o, ({1l - ————
- ( sinh fleg

> (-»,x,0) (small B) 3.9

so that the magnetic moment is proportional to the field strength. From (2.12)
one finds

[(sinh fzo)/feo] — 1

(M) = —ppfleg (small B). (3.10)
cosh fleg — 1
For strong field one finds from (3.3)
a R 1fmog (large B) (3.11)

i.e., the width of the distribution is again determined by the harmonic potential
but it now has a value as if the system were classical. The flow velocity tends
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monotonically to a finite value
V() ~ 3phicws (—y,x,0)  (large B). (3.12)

Hence the magnetic moment saturates, and from (2.12) or (3.7) one finds for the
limiting value :

(M) = —pug (large B). . (3.13)
From (2.13) the average energy becomes for strong field
(H#) ~ ¢ (large B). (3.14)

Thus in the strong field limit one arrives at the following simple picture: The
electrons orbit in the ground state of the cyclotron motion and constitute magnetic
dipoles of strength equal to the Bohr magneton. These dipoles are distributed in
space in a classical distribution which rotates uniformly. Since the kinetic energy
becomes large the uncertainty principle allows precise classical localization in the
directions normal to the field.

4. Limit of weak potential

- The parameter K~ * can be regarded as characterizing the dimensions of the
system transverse to the field. The results of the preceding scction apply to systems
of any size. In order to make the connection with the Landau theory?) of dia-
magnetism for macroscopic bodies it is necessary to consider the limit of weak
potential, thus allowing the dimensions normal to the field to grow indefinitely.
From (3.3) one finds that in this limit the width of the spatial distribution is deter-
mined by

& = 3fmod  (small K), 4.1

which is again the classical value. The flow velocity becomes

2

V() ~ % 0 (Be, coth fey, — 1) (=3, %,0)  (small K) (4.2)

my

and the magnetic moment

(M) =~ —ug (coth BeL — Fl—) (small X). (4.3)

&L
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Thus in this limit the magnetic moment tends to a value independent of the poten-
tial. The function in brackets in (4.3) is just the Langevin function. The same value
for the moment is obtained from the partition function as calculated in the absence
of any potential®). ' .

It is to be noted that the flow velocity ¥(r) in (4.2) tends to zero with K. On the
other hand the width of the distribution increases indefinitely as K tends to zero.
The two effects just compensate each other and lead in the limit to a finite value
for the magnetic moment, given by (4.3). Correct understanding of the physical
situation requires carrying out the above limiting procedure. If one considers free
particles from the start, as done by Sondheimer and Wilson®), one finds the
contradictory result that the current density vanishes, whereas at the same time
the partition function leads to a finite value for the magnetic moment.

If one takes the limit of small B in (4.3) one finds

(MY =~ —{uyfe,  (small K, small B). (4.4)

This value is also found by taking the limit of small K in eq. (3.10). Hence the
two limits can be interchanged. For large B the magnetic moment again saturates
to the value {(M.) = —puy, in agreement with (3.13).

5. Wigner distribution function

The classical results are recovered by taking the limit £ — 0. Thus one finds

(M. =0, (A =528,
(i > 0) .1
& = 3pmo;, V =0.

The magnetic moment vanishes in agreement with Miss van Leeuwen'’s theorem?).
The theorem also implies that locally the current density vanishes.

The relation between the classical and quantum-mechanical results is seen more
clearly by rephrasing the latter in terms of the Wigner distribution function®).
We introduce central and relative coordinates by

R=1(r+7r), g=r -—r. 5.2
The Wigner distribution function fy (R, P; f) is defined by

SwR,P;p) =h=>fo(R —1g, R +1q; f) """ dg. (5:3)
It is normalized to

{fw(R,P)dRdP = Z. “ (5.4)
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Quantum-statistical averages can be evaluated from the Wigner distribution ac-
cording to the rule

(Fy =Z 'TroF =Z ' [fw(R,P)Fy (R, P)dR dP, (5.5)

where Fy, (R, P) is the Wigner equivalent of the quantum-mechanical operator F.
If F is given in coordinate representation as F(r, r’) its Wigner equivalent is
given by

Fy(R,P)=[F(R —3q, R + 3g) ' dq. (5.6)

For the operators of present interest the Wigner equivalents are simply related to
the corresponding classical phase space functions by Weyl’s rule'®).

For the density matrix given by (2.6) the Wigner distribution can be evaluated
explicitly. Before giving the result we introduce some new notation. We split the
flow velocity V(r) given by eq. (3.6) into a purely diamagnetic part V4 and a para-
magnetic part V,,

V=Vi+V, (5.7)
where
Vi=—A@p), V,=-— _s"’_hég_'--,q(,.)_ (5.8)

mc " e & sinh B&L
We also define a quantum temperature 7’ by ' = 1/kgT’ with

_ 2 sinh &,
&\ (cosh &, + cosh fe)

F (5.9

The Wigner distribution can then be written in the form

o _f8

R, P;f)=2
Fu 2 =C (2z=m)3/?

P {—ﬁ' (P — ’"Vpx)z + (Py — ”’pr)z]
2m

_ﬁ. 2 _ 2 21
2mP: x (X +Y)I. (5.10)

Note that in the present case the distribution is everywhere positive and has a
simple classical interpretation. Integrating fy (R, P) over the momenta P one
recovers the density distribution (3.2). Integrating over the spatial coordinates one
finds that the momentum distribution is given by the shifted maxwellian

_ BB
2n

(5.11)

exp {_ﬂ_ [(Px — mV,)2 + (P, — mV,)?] — b Pf}.
2m 1
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In the classical limit 3’ reduces to f, and ¥, becomes equal to — V. Also, « in
(5.10) reduces to 1fmwj. The current density is given by

JR) = sz [P + ia A(R):I Jw (R, P)dP = [V,(R) + V4(R)] n(R). (5.12)
m c

It is of interest to note that the parameters ' and « differ. For a simple one-
dimensional harmonic oscillator with frequency m, the Wigner distribution would
be

2m

Sw(X,P) = |:27:/i cosh %]—1 exp [:—ﬁ” (P—z + %mngz)] (5.13)

with " = (kgT")~! and quantum temperature 7" given by
kyT" = 3hiwg coth 3 fhay,. (5.14)

Hence in that case kinetic and potential energy appear with the same quantum
parameter. In the present situation the magnetic field not only causes the current
to flow, but also affects the average transverse kinetic and potential energy.

The local transverse Kinetic energy density is given by

1 (1 e, \? e\
— | —[(P: + — 4 P+ —A,) | /v (R PP
Zf2rn|:( +c )+( +c )]f( )
= [kyT" + imV?] n(R) . (5.15)

and hence is the sum of a temperature and a streaming contribution. As we have
seen, in the limit of weak potential, K — 0, the local flow velocity ¥ tends to zero.
In this limit one finds from (5.9) for the quantum temperature

kgT' ~ g coth fe (small K) (5.16)

which is to be compared with (5.14). Thus the cyclotron motion gives rise to a
typical harmonic oscillator quantum temperature. In the limit of strong field kT’
tends to g, corresponding to the zero point cyclotron motion. As is evident from
(3.3) and (5.9), for general values of Band K the parameters x and g are influenced
by both the magnetic field and the oscillator potential.

6. Particle motion

The preceding results have been obtained without inquiry into the details of the
particle dynamics. A study of the particle motions reveals that the simple uniform
rotation of the electron gas is a result of quite delicate additions and cancellations
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of the individual motions in the Boltzmann statistics. The dynamics of the particles
is most easily studied by transforming the hamiltonian (2.1) to normal modes.
The transverse part of the hamiltonian is diagonalized by introduction of the
following normal mode coordinates

b
1

5 (o< F i), (6.1)

i
2 (hmf2,)*

where 2, = (wf + w3)*. Hence one has

E
X+ iy = ( ﬁQ ) (@, + a.), px + ip, =i (;imQ)F (@ —al). (6.2)
mQ,

Solving for x, ¥, p., p, and substituting in (2.1) one finds

H = ho, (dha, +3) + ho_ (@La_ + 1) + pi[2m, (6.3)
where
wy =02, + . : (6.4)

The corresponding classical hamiltonian is obtained by putting & = 1 in (6.1)-(6.3)
and omitting the terms with 4 in (6.3). We only discuss the case of weak potential
wo <€ wy. Then classically the electron partakes in two circular motions, a fast
cyclotron motion with frequency w, , and a slow motion in the opposite direction
with frequency w_. Both ala, and a"a_ are of course constants of the motion,
but of particular interest is the linear combination

L= aTi-a-l- —ala_ = XPy — JPx (6.5)

which is the z-component of angular momentum.
Previous results for average energy and magnetic moment are recovered easily
by expressing the variables in terms of the normal mode coordinates and using

{alyay)y = [exp (wy) — 1]71. (6.6)

The magnetic moment is related to angular momentum by

T S S SR \ &
- c

2mc

From (6.5) and (6.6) it follows that {L,> is always negative. In the classical case
{L.y just balances the average of the second term in (6.7) to give zero magnetic
moment.
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The results for the local number density and current density are obtained more
easily by the method of sections 2 and 3.
From (6.3) it follows that the energy eigenvalues are given by

Ewmy,n_,k)=ho,(n, +3) + ho_(n. +1) + ﬁzkf/2m,' (6.8)

and one easily writes down the corresponding eigenfunctions in terms of normal
mode coordinates. On the other hand one can also solve the Schridinger equation
directly in coordinate representation. The eigenfunctions are in cylindrical co-
ordinates -

1/'(") = d’n.l (T, ‘P) clk:z (69)

with
nipll*t

) = -t TN . .
(Ibnl ()‘, q) Tfl (]1(}1 + |l| + 1)

yr“‘LL" (br?) e~ ¥oritile, (6.10)

where b = m@, /h?, and L, are the associated Laguerre polynomials. The quan-
tum number n runs over 0, 1, 2, ..., and [ over the positive and negative integers.
The functions ¢, ,(r, ) form an orthonormal set. The corresponding energy
eigenvalues are

Em L k) =Q@n+|l| + DA2y + lhey + R2KkZ[2m. (6.11)
From (6.5) and (6.8) it follows that
- l=n, —n_, n=3%m, +n.)—4%|n, —n_[. (6.12)

The results of sec. 2 for the density matrix can be recovered by using the identities't)

o 1
Yy — ML
o I'(n+ ||+ 1) L)<

(&gt~ 31 (2(5715)* ( ¢
= 1 Rl (3 . 6.13
1—¢ l—c)exp l—c(”)) ©19

:Vi 15, (1) = exp[Ju(t +t71)],

I=-w

where I,(1) are the Bessel functions of imaginary argument. This demonstrates
again the delicate balance of the individual eigenmodes giving rise to the simple
macroscopic behavior described above,
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