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ABSTRACT

In Chapter I we begin by considering a theorem of 
J. Dieudonne on the minimum radius of starlikeness of a 
class of analytic functions. We give a simple new proof 
of this theorem. By this new proof also we find the mini
mum radius of univalence of this class and we determine 
all the cases which give the minimum radius of univalence 
and the minimum radius of starlikeness. We then use a 
method similar to that in this new proof to obtain the 
minimum radius of univalence and the minimum radius of 
starlikeness of some other classes of analytic functions. 
For each class we determine all the cases giving the mini
mum radius of univalence and the minimum radius of star
likeness. Then we give some similar results for the 
minimum radius of convexity.

In Chapter II first we deal with Heawood's Lemma 
which was established and used by P.J. Heawood to prove 
the theorem known as the Grace-Heawood Theorem. The same 
lemma was used by S. Kakeya in the proof of another 
theorem. We show that Heawood*s Lemma is false and we 
give new proofs of these results. Then for some special 
cases we improve the value of the radius of univalence
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given by Kakeya*s Theorem. In this connection we first 
give L.N. Cakalov’s result and then we obtain some 
improvements of his result.

In Appendix I we give some examples related with 
Chapter I and Chapter II. In Appendix II we give an 
example which shows that there is an error in a paper by 
M. Robertson.
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CHAPTER I

We begin with the following definitions.
DEFINITION 1.1. The radius of univalence of an 

analytic function f(z) is the radius r of the greatest 
circle! zl / r in which f(z) is univalent.

DEFINITION 1.2. The radius of starlikeness of an 
analytic function f(z) satisfying f(0)=0, f*(O) / 0 is the 
radius r of the greatest circle | z r  in which the follbw^ 
ing conditions are satisfied

(i)  ̂ is regular,

(11) 0.
DEFINITION 1.3* The radius of convexity of an 

analytic function f(z) satisfying f*(0) =^0 is the radius 
r of the greatest circle |zI / r in which the following 
conditions are satisfied

(i) 1 + is regular,

. DEFINITION 1.4. The radius of starlikeness of order 
^ » 0 / > / l ,  ofan analytic function f(z) satisfying 

f(0) = 0, f*(0) y 0 is the radius r of the greatest circle
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\z\ L r in which, the following conditions are satisfied

(i)  ̂ is regular,
f(z)

tii) Re I I ^ A .
L f(z) J

DEFINITION 1 .5. The radius of convexity of order A , 
0 ^ A /  ̂ of an analytic function f(z) satisfying f’(0) / 0
is the radius r of the greatest circle |zl ^ r in which the 
following conditions are satisfied

(i) 1 + — is regular,
f'(z)

(ii) Re (1 + ^ X .
L f'(z) 3

Let P(z) be a polynomial of degree n all of whose 
zeros are exterior to or on the circumference of the unit 
circle. It was proved by J.W. Alexander that the
polynomial f(z) = zP(z) is univalent and starlike in 
\̂  \ L — A more general result was proved by J. Dieudonnè 
/"3_7 for the functions of the form f(z) = z [P( z) ] ,
where P(z) is again a polynomial of degree n and o( is any 
real number, in the following theorem.

THEOREM 1.1. Let P(z) be a polynomial of degree 
n(/0) all of whose zeros are exterior to or on the circum
ference of the unit circle. If u  is any real number dif- 
ferent from zero then the minimum radius of starlikeness of
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«y
the function f(z) = z jP(z)]^ has the value:

Sg = 1 if -2 ^ Z 0 ;

& = — -—  other lise.
° h+ofl

First we give Dieudonnè*s proof then we give a simple 
nev; proof of the theorem. By this new proof also we find 
the minimum radius of uni valence of f(z) = z [P(z)J ^ and by 
considering the distribution of the zeros of P(z) outside 
the unit disc we determine all the cases which give the 
minimum radius of univalence and the minimum radius of star
likeness. We then use a method similar to that in this new 
proof to obtain some other results such as the minimum 
radius of univalence and the minimum radius of starlikeness 
of a rational function, the minimum radius of univalence and 
the minimum radius of starlikeness of a polynomial 
f(z) = zP(z) where the zeros of P(z) lie in an annulus etc. 
Then we give some similar results for the minimum radius of 
convexity.

We begin by giving Dieudonnè* s proof.
Proof* Let D be a simply connected domain in the 

plane of the complex variable z, and suppose that the func
tion (z) makes a one-to-one conformai representation onto 
a convex domain Û . If a^, â , .., are n points
interior to D there exists a single point interior to D 
such that
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^(aJ +'f (ap) +...+'i(a ) 
=      ^n

This property is an immediate consequence of the con
vexity of ^  . Consider in particular the function

(z) = ^ and the domain h to be the interior of a circle 
which does not contain the origin. Then if a^, ag, a^
are points of such a domain the point j ̂ defined by

^  ^  + .. + (harmonic mean) (1.1 )&1 &2 ^n

is also interior to the domain.
Now let P(z) be a polynomial of degree n all of whose 

zeros x^, x̂ , ..., x^ are exterior to or on the circum
ference of the unit circle ; by dividing if necessary by a 
constant it may be supposed that P(0) = 1. Then

P(z) = (1 - ^)( 1 - ... (1 - ,Xi ^n

and Î 1 M  = _ ! _ + _ L *  .
P(z) Z-X̂  Z-Xg z-*^ .

By the preceding remarks we can show that the function (j)(z) 
defined by

(1.2)

is regular and of modulus not greater than one in the unit 
circle. To show this, from (1.2),
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- fTzl

s-%1

 ̂ +...+ p — -p .. ' +...+z-%1 Z-X^ Z-X^ z-x^

Z-X.| Z-X^ Z-X^ Z-Xj^

4-# # .4"
%1-%

 ̂ +...+ 1 (1.3)

i
Since i f —| ^ 1, . . .  I f —1^1 for jzj / 1 then ' Xi I x^ 1

1- f —, . . . ,  1- f — lie in the circle I 1-w| /  1 and by (I.I) 
1̂ ^n

the point  ̂ defined by

^ 1 +...+ ■>
ll 1-1- 1-

1̂ %n

lies in the same circle. Therefore the denominator of (1.3) 
cannot vanish which implies that 4> (z) is regular in |z| / 1 
Now

Cj)(z) =
x,-z x^-z

+...+ ^
-1 ■ ■
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(5̂  -1) +...+ -1)
1______________ n_____

'-i?

=  1 - — — — :— —  = 1 - ïi

’-S t . .
Therefore iz(p(z)| / 1 in }z| / 1 and by Schwarz*s Lemma 
id) (z)j^ 1 in |z I / 1.

Now we apply formula (1.2) to seek the minimum radius

of starlikeness of the function f(z) = z[P(z)]^. For this 
we find the radius r of the greatest circle ) z r such that 
Re j J ^ 0 in the circle. Let

or from (1.2),

For |z|^ r, we have I z (j)(z)l̂  r, and by considering linos as
limiting cases of circles we can see that the point u(z)
remains inside a circle 2f whose centre is on the real axis

and which cuts this axis in the points u..j =  ̂ »
„ _ 1+(l+^)r
^ 2 --- 14?--  "

u(z) actually takes these values when (j) (z) = e^^ with 6 a
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real constant. The necessary and sufficient condition in
order that Re j ^ 0 be satisfied by all polynomials
P(z) under consideration is that u.̂ 1 0, u^ ^0. If
j 1+0̂ 1̂  1 these conditions are satisfied whenever r ^ 1, if

/  1I l4-cX I hi they reduce to r ^ . . This proves the theorem.I l+cX, I
For = n, this yields Alexander* s theorem. If
P(z) = (z - then these minimum values are attained.

Here one can ask the question, considering the distri
bution of zeros of P(z) outside the unit disc, if P(z) is 
not of the form (z-e^^)^, then for each real o< is the
radius of starlikeness of f(z) greater than the given mini
mum value? and also, what is the minimum radius of univa
lence of f(z) and in which cases this is attained? Now we

f i)give the new proofs and by this simple method answer these 
questions.

THEOREM 1.2. Let P(z) be a polynomial of degree n(/0) 
all of whose zeros are exterior to or on the circumference 
of the unit circle. If o< is any real number different from 
zero then the minimum radius of univalence and the minimum

(X

radius of starlikeness of the function f(z) = z£P(z)]^ â,VG 
the values:

U = S = 1 if -2 0 ;O 0

U = 8 = -rrr— : otherwise.0 a |1+cx| --------

(i) Theorem 1.2 may also be proved by an argument similar to 
Dieudonnè * s proof of Theorem 1.1.
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If -2 ^ 0 then f(z) has this minimum radius of uni va
lence and the minimum radius of starlikeness if and only if 
P(z) has at least one zero on the circumference of the unit 
circle? otherwise if and only if all the zeros of P(z) are 
concentrated at the same point on the circumference of the 
unit circle.

Proof. Let

Then

so

P(z) = ag(z-x.̂  )(z-%2) ••• (z-x^) .

...
P(z) Z-X̂  Z-Xp z-x^

= 1 + ^ z U U l  ,
f(z) n P(z)

and

(1.4)
We will consider all possible cases given by real values 
of o< .

Case 1. ^ 0

If Re ^  for X = x̂ , Xp, ..., x^ then, by (1.4)

Re  ̂̂ j- 0. Putting z = re^®, x = Rê *̂ , we have

Re ' Z_ I = r -rRcos(0-'ĵ ) ^ _ 1
. z-x / r -2rRcos(6-^)+R
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<=0> <=< r^-rR <Xcos(0-f) -r^+2rRcos(6-'f)-R^

<=> r̂ (o<+l)-rR(c<+2)oo8(0-f)+R̂ A 0.
But r̂ (ô +l)-rR(c<+2)cos(e-y>)+R^i^ r̂ (o(+l)-rR(«;+2)+R̂  ,

and the roots of r̂ (c<+1 )-rR(o<+2)+R̂  = 0

are R a n d • Since R 1, for r we have

Re ^  , where equality exists if and only if R=1,

r , and cos(6-y) = 1. Therefore 8^ » and this

minimum value is attained if and only if all the zeros of 
P(z) are concentrated at one point on the circumference of

the unit circle. Otherwise, by continuity. Re .

is satisfied in a larger circle.

Now I m j ^ l  = ,
Iz-X/ r^-2rRcos(e-y)+R^

which vanishe s for 6 = ̂ . Therefore if the zeros of P(z) are 
situated as stated above then Im vanishes at the

same point on the circumference of \z\̂  8̂  where

Re j = 0. This implies that at this point f*(z) = 0.
8ince f(z) is univalent in |z|/ 8^ then

this minimum value is attained if and only if all the zeros 
of P(z) are concentrated at the same point on the circum-

(i) See, e.g. 10/, p.206, Theorem 10.
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ference of the unit circle.

Case 2. 0 J:» ex Jï -1

Since c</ 0, if Re ^ ~ ^ for x = x̂ , Xp,

then by (1.4) Re z) ̂ have

r^-rRcos(g-y) / _ !  (î g)
r̂ -2rRcos(9-'f)+R̂  ^

C3<r̂ -rRo<'CDs(e-y) ̂  -r^+2rRcos(6-<f)-R^ (1.6)

6=> r^ (o (+ l)-rR (o ,^+2)cos(e -ÿ )+R ^-4  0 ( 1 . 7 )

But r^((X+1 )-rR (c<+2)co8(e-9)+R ^T^ r^(o<+1 )-rR (cXf2)+R^ ( 1 . 8 )

and the roots of r̂ (o<+1 )-rR(o<+2)+R̂  = 0
R  \rx:p[ , R. Since R ̂  1 for |z|/ 1 we have

Re 0. Thus f(z) is univalent and starlike in

|z|/ 1. If the minimum modulus of the zeros of P(z) is 1
then f(z) is not analytic in any larger circle about the
origin. Therefore II. = 8̂  = 1 and both of these minimum0 0
values are attained if and only if P(z) has at least one 
zero on the circumference of the unit circle.

Case 3. cA = -1

We have r^-rRco8(9-Y)  ̂̂
r^-2rRcos(0-y)+R^

r̂ -rRcos(0-9')  ̂r̂ -2rRcos(0-)P)+R̂
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<=> rRcos(e-Y) ^ R^

<=> rcos(e-'f) / R .

Since f(z) is univalent and starlike in Izj/ 1 and if P(z) 
has a zero on the circumference of the unit circle f(z) is 
not analytic in any larger circle about the origin, we have 
Uq = Sq = 1 and both of these minimum values are attained if 
and only if P(z) has at least one zero on the circumference 
of the unit circle.

Case 4. -1
By (1.5), (1.6), (1.7), (1.8) and the fact that f(z) may not 
be analytic in any circle about the origin whose radius is 
greater than 1, we have = 1. Both of these minimum
values are attained if and only if P(z) has at least one 
zero on the circumference of the unit circle.

Case 5. o( / -2

We have r^-rRcos(G-f) / - -1
r^-2rRcos(0-f)+R^ “

<$=> cx̂ r̂ -ĉ 'rRcosCS-'f):̂ -r̂ +2rRcos(6-'f)-R̂  .

But r̂ (ĉ +1 )-rR(<X+2)cosCS-':0+R̂ — r̂ (c<+1 )+rR(o<+2)+R̂

and the roots of r̂ (oC+1 )+rR(o<+2)+R̂  = 0

are -R and - ̂5^  • Since R 1, for r ^ w e  have

Re I ̂ §^1 “ “ ’ where equality exists if and only if R=1,
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i ir = )-TT?T and cos(e-ÿ) = -1. Therefore = ,~rrTr and thisI o< *r I I O I o< + 1 I
minimum value is attained if and only if all the zeros of
P(z) are concentrated at the same point on the circumference 
of the unit circle. Then by an argument similar to that 
used in case 1, we have and this minimum value is0 I o< + 11
is attained if and only if all the zeros of P(z) are concen
trated at the same point on the circumference of the unit
circle. This completes the proof of the theorem.

It is known that the function w = f(z) maps the in
terior of the unit circle onto a convex domain if and only 
if the function zf*(z) maps the interior of the unit circle 
onto a starlike domain. Now we develop a method which 
enables us to obtain results for the minimum radius of con
vexity. If f(z) is of the form zQ(z), we shall write g*(z) 
for Q(z). Thus, having proved a theorem for the minimum 
radius of starlikeness of f(z) we can deduce a similar 
result for the minimum radius of convexity of g(z). There
fore we will prove the theorems for the minimum radius of 
starlikeness and after each proof we will state the corres
ponding theorem for the minimum radius of convexity.

THEOREM 1.3. Let f *(z) be a function of the form

f*(z) = P(z)^, where P(z) is a polynomial of degree n(/0) 
all of whose zeros are exterior to or on the circumference
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of the unit circle. If o( is any real number different from 
zero then the minimum radius of convexity of the function 
f(z) has the values:

Cq = 1 if -2 ^ Z 0 ;

C_ = ttt— 1 otherwise.0 |1 + o<| ----------
^  -2 ^ ^  ^ 0 then f(z) has this minimum radius of con
vexity if and only if P(z) has at least one zero on the cir
cumference of the unit circle? otherwise if and only if all 
the zeros of P(z) are concentrated at the same point on the 
circumference of the unit circle.

Note If -2 ^ ^ 0 then f(z) may not be analytic in
any circle about the origin whose radius is greater than 1.
Therefore = U = 1 and U is also attained if and only if 0 0 0
P(z) has at least one zero on the circumference of the unit 
circle.

Now we prove other results for the minimum radius of 
univalence and starlikeness by using arguments similar to 
that used in Theorem 1.2. First we consider the distribu
tion of the zeros of P(z) relative to an annulus.

THEOREM 1.4. Let f(z) be a polynomial of the form 
f(z) = zP(z).If m(/0) zeros of the polynomial P(z) lie in

(i) The first two examples given in Appendix^are rela
ted to Theorem 1.2 and Theorem 1.3-
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the annulus 0 / d /|z|/ D and the remaining n(/0) are situa
ted in 1 z 1 ^  D then the minimum radius of univalence and the 
minimum radius of starlikeness of f(z) are U = S = -piv "-y 0
where y^ is the greater root of the equation

n(d-D)y^ + [ d( 1-n) - D(l+m)]y - d = 0 (1.9)

f ( z) has this minimum radius of uni vale nee and the minimum 
radius of starlikeness if and only i f z e r o s  of.,P(z) are 
concentrated at a point on the circumference of the circle 
I z|/ d and n zeros are concentrated at a point on the cir
cumference of the circle | z|/ D, where these two concentra
tion points and the origin are collinear and the two concen
tration points are on the same side of the origin.

Proof.
We have P(z) = ag( z-x̂  )( z-x^) " X z-x^)( ) * "  ( ’

and = _5_ +  _Æ_ +...+ + — g— .+

0 0

flTT " z-Xp • • • z-x^ z-x^^^ • • Z-Xj^^

First we will, show that if y is any negative number and if 
J X l^d then for r / we have Re | j.\y. Putting

iô lYz = re , X =: Re , we have

r‘̂-2rRcos(6-SP)+R‘
R e i ^  I = .--rRcpŝ e-vf) ^  ^ 

iz-xj r -2rRcos(e-y>)+R‘̂
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4=3> r^-rRcos (©-y) ^  yr^-2rRycos(e-y)+R^y

r̂ ( 1-y)-rR( 1-2y)cos(e-'f)-yR^ ̂  0 .
Since y is negative, we have

r^(1-y)-rR(1-2y)cos(e-f)-yR^ ̂  r^(1-y)-rR(l-2y)-yR^ .

The roots of r^(1-y)-rR(1-2y)-yR^ = 0
are - -r^ and R. Since R d, for r / we have1-y —  ’ = 1-y
Re — y> where equality exists if and only if R = d,

r = , and c o s ( e - ÿ )  = 1. Therefore, if ŷ , yp are any
two negative numbers then

—y . d r "x
for r ^ jjy' we have Rej^g^j^y^ provided |x|^d,

and for r / -̂-Jy " we have -Yg |x| X D.

Now we will find negative y^, yp satisfying the system
y^d -ypD

" 1^1 ~ 1-yg ’

my^ + nyp = -1 .
-1-nyp

To solve this system we write ŷ  =-— —-- from second equa
tion and substitute in the first, obtaining

-d-nypd ypD 
m+1+nyp " 1-yp

2 2 <=^ -d-nypd + ypd+nyp d = ypDm + ypD + nyp D

<=> nyp^(d-D) + yp[d(l-n)-D(l+m)] - d = 0 .

Both roots of this equation are negative because the product
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of the roots is ^ 0  and the sum of the roots is

— L 0. Since - ~ is situated between the roots, if 
we chose the greater root then y^-^ - ^ andn

m = y-j Z 0. Hence for [zjZ we have Re|-"|-̂ y -"| :̂ 0.

Equality exists somewhere on the circumference of the circle

■y
—y  D

(z|Z Y Y " if and only if m zeros of P(z) are concentrated at 
*^0

a point on the circumference of the circle | z|/ d and n 
zeros are concentrated at a point on the circumference of 
)Z|Z B where these two concentration points and the origin 
are collinear and the two concentration points are on the 
same side of the origin. Also, if y = ,

then n(d-D)y^+ [d( 1-n)-D( 1+m)J y-d ^0 .

Therefore A  ̂  ^  / d .

Consequently 8̂  = » and this minimum value is attained

if and only if the zeros of P(z) are situated as stated 
above.

12 Xj r^-2rRcos(©-‘f)+R^
which vanishes for G= Thus if the zeros of P(z) are

:f *situated as stated above then | vanishes at the

same point on the circumference of (zjZ ^ v "

Re J ̂ I = 0. This implies that at the same point
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ff(z) = 0, which completes the proof of the theorem.

Note. In this proof we assumed that m and n are both 
different from zero. Now consider the case when just one of 
them is equal to zero. We assume without loss of generality 
that m is different from zero. Let y^ be the root of equa
tion (1.9 ). The theorem is still valid and is equivalent to 
Theorem 1.2 in the case </ = n.

Let us compare this result with the result given by 
L.N. Cakalov /p. 57» Theorem 2.6/ for the radius of univa
lence of a polynomial f(z). Here we considered the distri
bution of the zeros of relative to an annulus, whereas
he considered the distribution of the zeros of f*(z) rela
tive to an annulus. Cakalov*s result is valid for only a 
special type of annulus about the origin and for a special 
type of distribution of the zeros relative to this annulus. 
But the result which we proved is valid for every annulus 
about the origin and for every type of distribution of the 
zeros relative to an annulus. Also we find the minimum 
radius of univalence and the only possible case giving this 
minimum value. Considering the distribution of the zeros of 
f*(z) we deduce the following result for the minimum radius 
of convexity.

THEOREM 1.5. Let f*(z) be a polynomial. m(/0) of 
wbose zeros lie in the annulus 0 / d ̂ jZf/ I) and the remain
ing n(/0) are situated in | z | zà D. Then the minimum radius
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of convexity of f(z) is

where is the greater root of the equation

n(d-D)y^ + [d(1-n)-D(1+m)] y - d = 0 . 
f(z) has this minimum radius of convexity if and only if m 
zeros of f * (z) are concentrated at a point on the circumfer
ence of the circle | z|Z d and n zeros are concentrated at a 
point on the circumference of |z|/ D, where these two con
centration points and the origin are collinear and the two 
concentration points are on the same side of the origin.

Note. Consideration of the cases where just one of 
m, n is zero gives the result corresponding to that ex
plained in the "note" after the proof of Theorem 1.4.

Here f(z) is univalent inside the same circle where it 
is convex. Therefore we may compare also this result with 
Cakalov*s result. For suitable distributions of the zeros of 
f*(z) outside | z 1 we obtain better estimates for the mini
mum radius of univalenee.

Now we will determine the minimum radius of starlike
ness and convexity of order .

THEOREM 1.6. Let P(z) be a polynomial of degree n(/0) 
all of whose zeros are exterior to or on the circumference 
of the unit circle. If 0 Z A / 1 then the minimum radius of 
starlikeness of order \ of f(z) = zP(z) ^
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S = ^1+n-A *
f(z) has this minlmijm radius of starlikeness of order X lî. 
and only if all the zeros of P(z) are concentrated at the 
same point on the circumference of the unit circle. If 
"X = 1 then the radius of starlikeness of order X  

f(z) = zP(z) is always zero.

Proof. Denoting the zeros of P(z) by x̂ , Xp, ..., x̂ , 
»e have Ee | = Ee |l + j ■

for X = x^, Xp, ..., x^ then

E e | M ^ }  A

iePutting z = re , x = Re , we have
Re 1 ^ 1  = r2_rRoos(e-y)

\z-xj r -2rRcos(e-S-')+R n

<=:> nr^-nrRcos(e-y)(:\-1 )r^-2rR(>-1 )cos(©-'f)+(A-1 )R̂

r^(n—A+1 )—rR [n—2(X—1 )1 oos(6—Y)—({A—1 )R ^  0 .

But r^(n-X+1 )-rR [ n-2(X-1 ) ] cos(6-w)-(A-1 )R̂

L  r̂ (zi-A+1 )-rR [ n-2(X-1 )] -(?>-l)R̂  , 
and the roots of the equation

r^(n-X+l)-rR [(n-2(X-1 )] -(A~1)R^ = 0 

are and R. Since R ̂  1 for r £ ^2'^ we have
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Re ( ^  Equality exists if and only if R = 1,L Z"*x j XI
we0 08(0-Y) = 1 and r = . Therefore, for r /

have Re where equality exists if and only if
all the zeros of P(z) are concentrated at the same point on 
the circumference of the unit circle.

If A = 1 then for z = 0 we have Re j' =1. By

the minimum principle for harmonic functions Re -j. Al
cannot be satisfied at all points of a circle about the 
origin. Therefore for every type of distribution of the 
zeros of P(z) outside |z|/ 1 the radius of starlikeness of 
order ^ is zero. Using the fact that f(z) is convex of 
order if and only if zf'(z) is starlike of order  ̂ we 
have the following theorem.

THEORM 1.7. Let f • ( z ) be a polynomial of degree 
n(/0) all of whose zeros are exterior to or on the circum
ference of the unit circle. If 0 / 1 then the minimum
radius of convexity of order of f(z) is.

^  "  ï f e x  •

f(z) has this minimum radius of convexity of order X if and 
only if all the zeros of f'(z) are concentrated at the same 
point on the circumference of the unit circle. If X = 1 
then the radius of convexity of order ^ 2î. f(z) is always 
zero.

Now we seek the minimum radius of univalence and the
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minimum radius of starlikeness of a rational function. In 
theorem 1.2 we have shown that if P(z) is a polynomial of 
degree n all of whose zeros are exterior to or on the cir
cumference of the unit circle then the minimum radius of 
univalence and the minimum radius of starlikeness of 
f(z) = zP(z) is Now we consider a rational function of

the form f(z) = where M(z) is a polynomial of degree
m(/0), N(z) is a polynomial of degree n(/0) and all the 
zeros of M(z) and N(z) are exterior to or on the circumfer
ence of the unit circle. We obtain a similar result,
Theorem 1.8, that the minimum radius of univalence and the

•1minimum radius of starlikeness are greater than where 
= m+n. Then in Theorem 1.10 we determine the exact values 

of the minimum radius of univalence and the minimum radius 
of starlikeness.

THEOREM 1.8. Let f(z) be a rational function of the

form f(z) = — where M(z) is a polynomial of degree 
ni(/0), N(z) is a polynomial of degree n(^0). If all the 
zeros of M(z) and N(z) are exterior to or on the circumfer
ence of the unit circle then the minimum radius of univa
lence and the minimum radius of starlikeness of f(z) are 
greater than , where n = m+n.

Proof.
Flitting = Hz) ,
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agC z - x p  (  z - X g ) . . .  (  z - x ^ )  

we have pjj = ii^ + iiç +' '+ ̂  ' z-x̂ ^̂  “ z-x̂ +2 “ ̂ m + n

■" ^  z-Xg   z-x^ 3-Xm+i+ ^ + . . . +  ^

-̂\i+2 ‘ * ' W  J
We will show that if r ̂  then

x = x̂ , Xg.....x^

and -Re[^J A - 1 for x = x̂ ^̂ , x̂ +g, ...,
which implies that

i ft i ̂Putting z = re , x = Re we have

<J=̂  r|r̂ -h|rRcos(©-f) A -r̂ +2rRcos(e-if)-R̂

\  ^ r^ (r j  +1 ) —rR ( + 2 )co s (6“ 'J )̂+R  ̂A  o «

But r̂ ( f̂ +l)-rR(f| +2)cos(6-if)+R Â r̂ ( rj)+1 )-rR( +2)+R^

and the roots of the equation

r̂ ( +1 )-rR( +2)+R^ = 0

are a,nd R. Since R  A  1, for r ̂  '̂ '+ f  w® h a v e
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^ °-
Also,

<==^ -r̂ rj +rE cos(0-Y) A -r^+2rRcos(6-'j^)-R^

<=> r̂ ( 1- f̂ )+rR(i| -2)cos(©-vp)+R^ A o .

But r^(l- )+rR( -2)cos(0-4)+R^ ̂ A r^(l- )-rR(f| -2)+R^
and the roots of the equation

r^(l- •] )-rR( f) -2)+R^ = 0
]R 1are — — . and -R. Since R 1, for r /  r we haverj - 1 — » = ^ -1

^ - T j -  T p r  ■ - ^  •

Note. It ca^ be seen that if m / 0, n = 0 then both
of these radii are equal to 7j+y * If m = 0, n / 0 both of

•1them are greater than . In particular if m = 0 and
n A 1 they are both equal to .

For the minimum radius of convexity we have the follow
ing theorem.

THEOREM 1.9* Let f*(z) be a rational function of the 
form f * ( z) = HtIt M( z) is a polynomial of degree
m(/0), N(z ) is a polynomial of degree n(/O). If all the 
zeros of M(z) and N(z) are exterior to or on the circumfer- 
ence of the unit circle then the minimum radius of con-
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vexlty of f(z) is greater than "q+ï" = m+n.

Note. Consideration of the oases where just one of 
m,n is zero gives the results corresponding to those ex
plained in the "note" after the proof of Theorem 1.8.

Now we find the exact values of the minimum radius of 
univalence and starlikeness.

THEOREM 1.10. Let f(z) he a rational function of the

form f(z) = ẑ ^'gj where M(z) is a polynomial of degree m(/o), 
N(z) is a polynomial of degree n(/o) and all the zeros of 
M(z ) and N(z) are exterior to or on the circumference of the 
unit circle. Then the minimum radius of univalence and the 
minimum radius of starlikeness of f(z) are

^0 = ^0 = y^ir ’

where is the positive root of the equation

y + (2-m-n)y - 2m = 0 . 
f(z) has this minimum radius of uni valence and the minimum 
radius of starlikeness if and only if all the zeros of M(z) 
are concentrated at one end of a diameter of the unit circle 
and all the zeros of N(z) are concentrated at the opposite 
end of the same diameter,

Proof, Let y^ he the positive root of the equation

y + (2-m-n)y - 2m = 0 .

(i) The theorem is va%id also for the cases m / 0, n = 0 
and m = 0, n A 2.
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In equation (1.10) substituting for and in equation 
(1.11) substituting for y +̂2, we see that

^ L we have Re A - ^  .
*1Equality exists if and only if R = 1, r = ■ % and7o+1

OO8(0-f) = 1.
Also, for r / we have -Re A  - .

Equality exists if and only if R = 1, r = — ^  and
^0

cos(G -y) =-1. Since y^ satisfies the equation

" y ■ ’
it follows that for r / — we have

- 3̂ 0+̂

mRe ) i -nRe 1 A -1 .z-x j 1 z-x,

Therefore, for r ^ jT"^ we have Re | ̂ f(g) ̂ | A  0, where

equality exists somewhere on the oiroumferenoe of the circle 
•*

|Z|/ -■ 'J.' if and only if all the zeros of M(z) are oonoen- 
•̂0

trated at one end of a diameter of the unit circle and all
the zeros of N(z) are concentrated at the opposite end of

•1the same diameter. Thus S = - and this minimum value is
Jo

attained if and only if the zeros of M(z) and N(z) are 
situated as stated above.

Now I m J ^ t  =   ,
12-Xj r^rRcos(c-y?)+R^
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so for 0 = Y or 6-Sf = TT we have 0 » Therefore

if the zeros of M(z) and N(z) are situated as stated above 
then ~  ̂ the same point on the circumferenoe
of the circle | z|^ y^TT \ = 0. This

0  ̂ r/r i / M \implies that on the same circumference vanishes and
so f*(z) vanishes, which completes the proof of the theorem. 
For minimum radius of convexity we have

THEOREM 1.11. Let f’(z) be a rational function of 
the form f*(z) = where M(z) is a polynomial of degree
m(/0), N(z) is a polynomial of degree n(/0), and all the 
zeros of M(z) and N(z) are exterior to or on the circumfer- 
ence of the unit circle. Then the minimum radius of con-
vexity of f(z) is

0. =o y^+1 ’
where y^ is the positive root of the equation

y + (2-m-n)y - 2m = 0 . 
f(z) has this minimum radius of convexity if and only if all 
the zeros of M(z) are concentrated at one end of a diameter 
of the unit circle and all the zeros of N(z) are concentra
ted at the opposite end of the same diameter*̂

It is known that if f(z) is regular and Re f*(z) -^0 
in a convex domain then f(z) is univalent in the same domain. 
By considering the preceding results about the minimum

(i) The theorem is valid also for the cases m / 0, n = 0 
and m = 0, n A  2.
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radius of univalence and the minimum radius of starlikeness 
we deduce the following corollaries.

COROLLARY 1. If the n points , Xg, ..., x^ are ex
terior to or on the circumference of the unit circle then 
the minimum radius of univalence of the function

( A x .
1— I 1
n

= (n+l)z + %  X. log(z-x.)
i=1  ̂ ^

n X.
= (n+l)z + log n  (z-x.)

i=1 ^

— ^0 "  ii+T •
f(z) has this minimum radius of univalence if and only if 
x^, Xg, ..., x̂  ̂are concentrated at the same point on the

circumference of the unit circle.
This follows because in Theorem 1.2 we have shown that

in |z|/ 1 , we have
“ n+1

where equality exists if and only if x.j, Xg, . .., x^ are 
concentrated at one point on the circumference of the unit 
circle. Also we have shown that if x.̂ , x̂ , ..., x^ are
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situated as stated above then

<•
at a point on the circumference of \zi/ . This gives 
the required result.

Similarly by Theorem 1.4 we have

COROLLARY 2. If , Xg, ..., x^ lie in the annulus

0 Z d ^ I z I / D and , x̂ _̂ g, ..., are situated in

|z| ̂  L, then the minimum radius of univalence of the 
function m+n X *

f(z) = (m+n+1)z + log TÏ {z-x.) ^
i=1

where is the greater root of the equation

n(d—D)y^ + [d( 1—n) — D( l+m)] y — d = 0 • 
f(z) has this minimum radius of univalence if and only if 
x̂ , Xg, ..., x^ are concentrated at a point on the circum
ference of |z;/ d and x̂ .̂|, x̂ _̂ g, ..., are concentrated
at a point on the circumference of |z|^ D where these two 
concentration points and the origin are collinear and the 
two concentration points are on the same side of the origin.

By Theorem 1.10 we have

COROLLARY 3. If x̂ , Xg, ..., x^, x^^^, ..., x^^^ are 
outside or on the circumference of the unit circle then the
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minimum radius of univalence of the function

T T  (z-x.) ^
-J —  4 "L

= (m-n+l)z + log -~A--------m+n „
■ "T .A. .
I I (z-x.)  ̂

3=m+ 1 ''

is n_ = ^0 y^+1 ’

where y^ is the positive root of the equation
p

y + ( 2-m-n)y - 2m = 0 . 
f(z) has this minimum radius of univalence if and only if 
X.J, Xg, ..., x^ are concentrated at one end of a diameter of 
the unit circle and x̂  ̂.j, x̂^̂^̂g, ..., x̂ ^̂  ̂are concentrated 
at the opposite end of this diameter.

Similarly we can state corollaries giving the minimum 
radii of univalence of the functions

(i) f(z) = J[1 + g ( ^ + ^ + . . . +  ^ ) ] d z  , 

where is any real number,
and (fi),f(z) = J[i_7i+ - ^ ] d z  0 1.

These corollaries follow by Theorems 1.2 and 1.6 respectively 
By using arguments similar to those in the proofs of 

the preceding theorems we obtain results for other problems 
such as those stated below^
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o<
1. Let f(z) be a function of the form f(z) = z[P(z)] 

where P(z) is a polynomial and c< is ^ y  real number. By 
considering the distribution of the zeros of P(z) relative 
to an annulus about the origin to find the minimum radius of 
univalence and the minimum radius of starlikeness of f(z) 
and also to determine all possible cases giving these mini- 
mum values.

2. Let f(z) be a function of the form f(z) = z

M(z) and N(z) are polynomials all of whose zeros are ex
terior to or on the circumference of the unit circle and o< 
is any real number. To find the minimum radius of univa
lence and the minimum radius of starlikeness of f(z) and to 
determine all possible cases giving these minimum values.

M( z3. Let f(z) be a function of the form f(z) = z

where M(z) and N(z) are polynomials and o< is any real 
number. By considering the distribution of the zeros of 
M(z) and N(z) relative to an annulus about the origin to 
find the minimum radius of univalence and the minum radius 
of starlikeness of f(z) and to determine all possible cases 
giving these minimum values.

4. By considering the functions given in problems 
1,2,3 and for each function f(z) by considering the given 
distribution of zeros (and poles) of to find the mini
mum radius of starlikeness of order ^ and to determine all

c<
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cases which give these minimum values.

5. Alternatively hy considering the distribution of 
the zeros of derivatives outside 1 or relative to an
annulus about the origin to find the minimum radii of con
vexities and also to determine all possible cases giving 
these minimum values for the functions

(i) f(z) = J [P(z)l dz , 
where P(z) is a polynomial and c< is any real number,

and (11) f(z) = dz

where M(z), N(z) are polynomials and c< is any real number.
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CHAPTER II

THEOREM 2.1. Let f(z) be a polynomial of degree not 
exceeding n (n^l). If the moduli of all the zeros of f*(z) 
are greater than cosec ^  then f(z) is univalent over

|z|Z
This theorem was first conjectured by J.W. Alexander II
and then proved by S. Kakeya Kakeya^s proof depended

f ii)on P.J. Heawood's Lemma^ in conjunction with some other 
theorems. But we will show that Heawood’s Lemma is false. 
This lemma was also used by Heawood himself { Z J  to prove 
the theorem known as the "Grace-Heawood Theorem".
Therefore we think it is worthwhile first to deal with 
Heawood’s Lemma.

We will state Heawood’s proof of his lemma. Then by 
constructing some counter examples we will show that this 
lemma is false. In order to prove the Grace-Heawood Theorem, 
Heawood first established his lemma and by applying his 
lemma he obtained a preliminary result from which the Grace- 
Heawood Theorem followed. We will state this preliminary

(i) The term univalent is restricted usually to functions 
defined in a domain. We use the term here in an 
obvious sense for the set | z 1, i.e. we say that 
f(z) is univalent over | z |/ 1 if f(z.j ) = f( Zg),
|zt/ 1, |Zg(/ 1, implies = Zg.

(ii) so called by Kakeya in
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result as Theorem 2.2. We will prove this theorem by 
another method independent of Heawood*s Lemma. Then we will 
prove Theorem 2.1 directly by applying Theorem 2.2. Also 
the Grace-Heawood Theorem now follows from Theorem 2.2 as in 
Heawood*s paper. Then we will consider various types of 
distribution of the zeros of the derivative and for these 
special cases we will improve the value of the radius of 
uni valence given by Theorem 2.1. In this connection we will 
first see the result given by L.N. Cakalov Then by
using similar arguments we will obtain some improvements of 
Cakalov*s result.

We begin by stating Heawood*s Lemma.
HEAWOOD*S LEMMA. If any two distinct numbers cX , ^ 

satisfy the relation
a p + b(o(-f p ) + c == 0 

then, still preserving this relation, we can make o4 , p 
coincide either by increasing the minimum modulus or without 
altering it. If o(, p have different moduli then we can 
always make them coincide by increasing the minimum modulus.

By applying his lemma Heawood obtained the following 
result.

THEOREM 2.2. If a polynomial f(z) of degree n takes 
the same value at the points cx, p then there exists a poly
nomial P(z) of degree n satisfying the following conditions;

i) P(«K) = P(p) I
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ii) All the zeros of P*(z) are concentrated at the 
same point;

iii) The conmion modulus of the zeros of P*(z) is
greater than or equal to the minimum modulus of 
the zeros of f*(z).

Now we state Heawood’s proof of his lemma and Theorem
2.2 .

Pro of. Let f(z) be a polynomial which has two given 
zeros. Without loss of generality we may assume that these 
zeros are +1 and -1. Supposing the derived equation is

z^-^ + qgZ^-3 - ... = 0  ,

the original equation will be
A  . z^-1
n n-1^  - q. • s- + ... = C .

Since this equation is satisfied hy z = +1 we have the rela
tion

1n-1 + 3 = ^ +  = 0 ' (2.1)
where q^ is the sum of the products, r at a time, of the
roots of the derived equation, and q^ is 1.

First we assume that all the zeros of f*(z) except two,
viz. cX , p , are fixed. Then (2.1 ) gives between these two
zeros a relation of the form

P+ A ( CX+ p ) + = 0  ,
or say

(o < - S ) ( p - 5 ) = k ^ .  (2.2)
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Geometrically this shows that c<, ̂  are "reflected inverses" 
of each other v/ith respect to centre (suppose point C in 
figure 1.), and radius k in magnitude and direction. Here k 
is a vector whose magnitude is the radius of inversion and 
whose line is the line of reflection, GH or OK. o< , p, may 
vary in any manner provided this condition is satisfied. In

A

Figure 1

-I
6

Figure 2.
particular they may both be concentrated at one of the 
points H and K. In the first place we suppose that they are 
at unequal distances from the origin, as A*, B*. In this 
case we may obviously increase the distance of the nearer 
(at the expense of the more remote, if necessary) consis
tently with the connection between them. Now we suppose 
that they are at equal distances OA, OB (figure 1). We have 
the angle BOH = HOA, and the distances G A. OB = GH^ = GK^. 
Thus the triangles AGH, HGB? AGK, KGB are similar. There
fore the four angles at H and K are respectively equal to 
the four at A and B. Hence HAKB are concyclic and then in 
general one of the points H, K lies inside and one outside
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the circle centered at 0 through A, B. By concentrating 
both zeros at the one lying outside the circle we increase 
their distances from 0. The only exceptional case is when 
the points H and K are on the circumference of the circle 
centered at 0, in which case CO is perpendicular to HCK 
(figure 2). In this case for any two lines CA, CB making 
equal an^es with HCK we have CA . CB is constant. Thus 
there exists an infinite number of pairs of positions of 
A,B all at the same distance from 0. We may concentrate A 
and B at H or K but it is not possible to increase the dis
tance from 0 which remains the same. This completes 
Heawood*s proof of his lemma. He then obtained Theorem 2.2 
in the following way.

Suppose all the zeros capable of variation, subject to 
the condition (2.1). By the above considerations, as long as 
there exist any two zeros at unequal distances from 0, then 
the distance of the nearer may be increased as in the first 
case. If all the zeros have the same distance from 0 it may 
be possible to concentrate a pair at an increased distance 
as in the second case. Then by the first case the distance 
of the nearer points may be increased. When the distances 
of all points from 0 are the same, let us suppose that each 
pair is in the case finally considered, where the minimum 
distance cannot be increased. Now if this state of things 
persists continually, which seems very unlikely, we can even
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further concentrate them without alteration of this common 
distance. But if this state of things does not persist con
tinually we can concentrate them by increasing the distance 
as before. Hence unless all the zeros are concentrated at 
one point we can always concentrate them with increased or 
unaltered minimum distance from 0. It follows that the dis
tribution (or one of the distributions) of the zeros in 
which the distance of the nearest zero from 0 is greatest 
must be where all the zeros are concentrated at one point. 
Thus we obtain a new polynomial such that all the zeros of 
its derivative are concentrated at the same point. Since 
the condition (2.1) is satisfied then this new polynomial 
attains the same value for z = +1.

Thus Heawood obtained Theorem 2.2 from which he 
derived the Grace-Heawood Theorem. Now by proceeding in the 
same way as in Heawood’s proof we construct the following 
two counter examples:

Example 1. If the derived equation be 

- q^z^ + qgZ^ - q^z + = 0 ,

the original equation will he of the form 
z^ z^ z^ z^
T  "" + ^2 T ~  %

If this is satisfied by z = +1, and c<2> o<3» are
the roots of the derived equation, then

5 + 5 q2 + = 0 , (2.3)



I2 = '^1 «̂ 2 + cXgO<3 + ^ 2 ^ 4 + ^ f \ *

%  = •

Supposing that all the roots but two, viz. <X̂ , o<̂  are 
fixed, (2.3 ) will give between these two a relation of the 
form

If

then +o4^)(o< + (- -̂ + -̂) = 0 ,

or o(^ . = . g  . .

Since X a r e  fixed we can write this equation in the 
form

o< 1 + o<2 = A .

If o<1+ U,
L lo(̂ |

0<1+ ĉ 2 Z Ix

then whether lo< 1̂ , IcX are the same or not, we can only 
concentrate «X̂ , (Xg by decreasing the minimum distance 
(figure 3).

Figure 3«
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Suppose that when all roots except ^  ̂ a r e  fixed the 
relation (2.1) in the lemma can be written as 

ao<^ c/g + b( o<g) + c = 0 ,

where a / 0. Then we can write this equation in the form

If lo< I i = S then we can only concentrate

^-| I o<2 9'"̂ (S , so in this* case also we see that if two roots
have different magnitudes it is not always possible to con
centrate them with an increased minimum distance from 0.

Example 2. If the derived equation be
3 2z - + q^z - q^ = 0 ,

the original equation will be of the form

f- - <ll f- + qg i" ■ ‘13'= = ° •
If this is satisfied by z = +1 and o< ̂ , cx g, o<^ are the 
roots of the derived equation, then

■J q.1 + 0.3 = 0 » (2.4 )

q^ = c< ̂  + o<2 + c<j ,

^3= •
(2.4 ) can be written as

'̂ 1 '̂ 2 + ( ̂ 1+ + J = 0 »

so if o< J = ~  then
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( n ) ( o<̂ + n )  = 0 .

Thus if o(. = - n  and l o < o i I X . I then we cannot concen-1 \f3 2 ' 1(
trate c<̂ , cKg by increasing the minimum modulus.

These counter examples show that Heawood*s Lemma is 
false. Thus Heawood*s proof of Theorem 2.2 is also not 
valid. We will prove Theorem 2.2 by tl^ principal of 
apolarity of polynomials.

DEFINITION 2.1. If the coefficients of two polynomials

f(z) = a^ + a^z + 0^ agZ^ +...+ a^z“ ,

g(z) = t>Q + b^z + bgZ^ +...+ b^z“ ,

of degree n satisfy the condition

+ °n^2V2 = 0 , (2.5)

tben f(z) and g(z) are called apolar polynomials.
Let

f(z) — a^ + a^z + agZ +...+ â ẑ , 

where the coefficients satisfy the given linear relation

%  ̂ n"̂  °n^1 \-l"^ °n^2 \-2"^'"+ ^  ̂ o °
This implies that

g(z) = A Q- 0^ A^z + AgZ^ -.. .+(-1 )^ A^^z^

is apolar to f(z). By writing the same relation for the

(i) 0^ denotes the (p+1)th coefficient of the n*th power of
the binomial, i-e. •
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particular polynomial

fgCx) = (x-z)“ = x^ - 0^ x^“ ẑ +... ,

regarding x as a parameter, we find immediately that 
g(z) = 0 ,

Thus if the coefficients of a polynomial f(z) satisfy a linear 
relation then a polynomial g(z) apolar to f(z) can be obtained 
directly from this relation.

Using this fact, we need only the following theorem of 
Grace^ in order to prove Theorem 2.2.

THEOREM 2.3• If two polynomials are apolar then any 
/ • • • \

circular domain^ containing all the zeros of one of these 
polynomials contains at least one zero of the other.

Proof. Let two polynomials

f(z) = %  + a^z 4- 0^ agZ^ +...+ a^z^ (2.7)

g(z) = b^ + 0^ b^z + 0^ bgZ^ +...+ b^z“

of degree n be apolar. Then their coefficients satisfy the 
condition of apolarity (2.5). We denote the zeros of f(z) by 
c<̂ , 0 2̂* and the zeros of g(z) by ẑ , Zg, ẑ .
Putting

the relation (2.5) can be written as

(i) See, e.g., P*19«
(ii) /Tl7l see, e.g., /E7, p.16-18.
(iii)By a circular domain we mean the interior or exterior of 

a circle or half plane.
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SqSq + +...+ = 0 , (2.8)

^0= •> ’
1̂ = z., + Zg +...+ ,

Sn = z^zg ... z^
In this way we associate the relation (2*8) with the equation 
(2.7). We will show that, if c<̂ , cXg, •••» o<^ are the zeros 
of f(z), and if Zy Zg, •••, z^ is a system of solutions of 
the equation (2.8), then every circular domain containing all 
of the points U  ̂  contains at least one point ẑ . Clearly 
this is true for n = 1. By supposing it is true up to the 
(n-l)th degree we will show that it is also true for the n th 
degree. The proof will then follow hy induction.

Let C be a circular domain containing all the points 
V/e may assume that at least one of the points z^ is 

exterior to C, otherwise there is nothing to prove. Supposing 
that this point is z^ = we will show that one of the points
2.J, Zgf . ., z^_^ lies in C. Let us put

= Z.| + Zg +...+ ,

~  ^1^2 ••• % - 1  •
Then
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^0 = ®o ’
Si = Si + I Sq

= T Vi •
If we substitute these values in (2.8) then we obtain the 
relation

(V̂lT + (â+ag> )ŝ +...+ (%_i+ ïâ)Vl = ° * 
But this relation is associated with the equation

Since we have supposed that the theorem is true up to the 
(n-1)th degree it is sufficient to show that all the roots of 
this last equation are in C. Writing G(z) as

G ( z ) =  a ^ + C ^ ^ ^ a .|z + • .  *+ a^ ^ .,jz  ( a .^ +C ^ ^^ a2Z + . . .^ a ^ z  ) ,

Since
f'(z) = n [a^ + +...+ a^z^"^] ,

we have
nG(z) = ^ f*(z) + n LV®n-1^1^ +•••+ ,

and subtracting
nf(z) = na^ + n a^z +...+ na^z^ 

we obtain 
nG(z) = nf(z) + ( 'j--z)f'(z) . 

Division by f(z) gives

h(z) = n + i] -z) •
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Thus the zeros of G(z) satisfy the equation h(z) = 0. Now 
h(z) cannot have a zero exterior to C, for suppose that z^ is 
a zero exterior to C. Then

t  ^
“-'i

and

The image of C under the transformation

z = Zq- z
is also a circular domain. Let us denote this domain by P . 
Since z^ is exterior to C, P does not contain the point 
Z =oo , Since y is exterior to C, Z = 0 is also exterior to 
p. By (2#9) the sum of the transforms of is zero; so 
Z = 0 is their centre of gravity. But the transforms of all 

are in P ; thus Z = 0 is also in P . This contradiction 
completes the proof.

Using the concept of apolarity of polynomials we will 
now prove Theorem 2.2.
Proof of Theorem 2.2. The relation

f(c< ) - f( {5 ) = 0  
is a linear relation between the coefficients of f*(z). As we 
explained in the argument following the definition of 
apolarity on p. 4 5, by writing the same linear relation 
between the coefficients of
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f^(x) = (x-z)̂ "'' , 
we find the relation

r ̂ 1g(z) = (x-z)̂ '”‘dx = 0 ,
where g(z) is apolar to f*(z). Now if Z is the zero of
g(z) of maximum modulus then, by Theorem 2.3, in |z|/ |Z| 
there exists at least one zero of f*(z). This means that 
the minimum modulus of the zeros of f*(z) is less than or 
equal to |Z|. Hence the polynomial

(z-Z)^ + C 
satisfies the conditions of F(z).

Thus we have proved Theorem 2.2 by a method independ
ent of Heawood^s Lemma. As an immediate consequence we will 
prove Kakeya^8 theorem (Theorem 2.1).

Proof of Theorem 2.1. Let f(z) be a polynomial of
degree n \  1 which attains the same value at two distinct 
points , p in the unit circle. By theorem 2.2. there 
exists a polynomial F(z) of the form

P(z) = (z-Z)“ + C , 
where | Z | is greater than or equal to the minimum modulus of 
the zeros of f*(z). Also we know that Z is the zero of 
maximum modulus of the equation

(o<- z)^= ( p - z)^ .

p
o(-  p tu

0^ 2 = -Tjnr '
where to is an n'th root of imity different from 1. If we
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allow (X , P to vary in the closed unit circle, then we have

hmlnp-- r  h-ool^ -isin2J| ° i j(

L d - c o s ^  \)48in̂
IT= coseo ^  .

Therefore if the moduli of all the zeros of f*(z) are 
greater than coseo ~ then f(z) cannot attain the same value 
at two distinct points inside or on the unit circle. This 
proves the theorem.

In the above proof of Theorem 2.1 if we allow , p 
to vary only in the interior of the unit circle we deduce 
immediately that:
if the derivative f*(z) of a polynomial of degree not 
exceeding n A  1 does not vanish in jzj/ coseo ̂  then f(z) 
cannot attain the same value at two distinct points in
) z l/ 1. i.e. f(z) is univalent in I z )/ 1.
This result is best possible for all n ^ 1. This is evident

2if n = 2, as the polynomial z + 2z shows, since we then
have cosec ̂  = 1 and the derivative vanishes at z = -1, so
that the polynomial is not univalent inside a circle larger 
than the unit circle. If n 2 then we may show this by 
constructing the following example.

Let f*(z) = (z - coseo where n A 2. Then f(z)
TrlSzsh

attains the same value at the points = e ^ ,
Tr (n-2)i 2Ü1 TT(2-n)i

|3 = e , for if we put = e “ , then o(= & ,
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TT(n-2)i
satisfy

I f oi » l3 ÛU
ji = e satisfy the equation

coseo n 1— iaj »

which implies that
/ ex' -coseo TT\n

\ [3 -cosec ̂  /
TT ^ TT ^Thus -cosec = (p-cosec .

We remark that in Robertson gives a necessary
and sufficient condition (in the form of the vanishing of a
certain determinant involving the coefficients of f(z)) for
f(z) to be univalent inside |z|/ 1 but in no larger disc,
but the result contains an error.^

THEOREM 2.4. Let f(z) be a polynomial of degree n
which takes the same value at the points -1 and +1. Then •

"TTthe circle with centre 0 and radius cot — contains at least 
one zero of the derivative f*(z).
This theorem is known as the G-race-Heawood Theorem, and it 
gives a generalization of Rollers Theorem for the complex 
plane. It was first proved by Grace and then by Heawood 
Grace's proof depended on the principal of apolarity. 
Heawood*s proof is based on his lemma, and so is not valid. 
As we mentioned before, to prove this theorem Heawood first 
established his lemma, and by applying it he obtained a 
preliminary result which we stated as Theorem 2.2. Then the 
Grace-Heawood Theorem followed from this result. With our

(i) See Appendix II.
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valid proof of Theorem 2.2 the Grace-Heawood Theorem 
follows from it as in Heawood*s paper. To prove Theorem 
2.4 it is sufficient to take o< = 1, p = -1 in the proof of 
Theorem 2.1.

For some special types of distribution of the zeros 
of f*(z) we will now improve the radius of univalence given 
by Theorem 2.1.^^^ In this connection we will first state 
L.N. Oakalov*s result /theorem 2.^ and give his proof.
Then by using arguments similar to his we will prove some 
improvements of his result. By Theorem 2.1, if the deriva
tive of a polynomial f(z), of degree not exceeding n+1,
(n/O), does not vanish in the disc |z1/ 1 then f(z) is uni
valent in I z 1/ sin^j- . Oakalov /2/ formed a special type 
of distribution of the zeros of f*(z) outside the unit 
disc, for which he showed that f(z) is univalent in a 
larger circle than that given by Theorem 2.1. We will 
state Oakalov*s result as Theorem 2.6. His proof is based 
on Theorem 2.5 which he obtained by first establishing the 
following lemma.

LEMMA. Suppose that n is an integer, n A 1. 
a-, ap, •.., a are n positive numbers whose sum

® " k=i ^  ^ ’
and , Ug, ..., are n non-zero complex numbers whose
moduli satisfy the condition

(i) See also the last two examples given in AppendixJ.
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1^1 L sin , k = 1, 2, n , (2.10)
n

then Re TT (l + A q . (2.11)
k=1 ^

Equality exists in (2.11) if and only if 8 = ̂  ,

u^ = isinajj.e , k = 1, 2, ..., n, or u^ = -isina^e 
k “ 1, 2, ••• n#

14L iY^
Proof. let u^ = rjj.e , 1 + u^ = ŷ ê , where

0 / r^ / sin a^ and since n A 1, ^^Ao. Since cos'fĵ .A o
we have, taking principal value of argument, Z
If we eliminate f from the equations 1+rĵ cos(| ĵ= fk̂ ^̂ '̂ k'
r̂ ŝin ({)̂ = fjj-Sinyjj. we obtain

sin^k = r̂ 8̂in( 'T̂ )̂ . (2.12)
Thus IsinVj^l Z Z sin a^ , IH'jj.l Z \  » (2.13)

 ̂  ̂^ ^  ^  ^ ' (2.1ij.)
The first part of the lemma follows from this relation.
Then by considering the relations (2.14), (2.13), (2.12) 
the second part can be seen easily.

THEOREM 2.5. Suppose that Q(z) is a polynomial in z 
of degree n A 1 with zeros z^, Zg, ..., ẑ , all different 
from zero. Let Iẑ l = r̂ . Then the polynomial of degree 
n+1

P(z) = J Q(z)dz
is univalent in the circle lz|/ r^ where r^ is the positive
root of the equation

n
V" . r TTarc sin —  = ■r* •
k=1 ^k ^
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Proof. Without loss of generality we may assume that 
Q(0) = 1 and so ^

zQ(z) = T T  (1 - . (2,15)k=1 ^k
Let au, Bp, ..., a be n positive numbers subject to the 

n
condition a, / ?  . By applying the lemma to the 

k=1 ^ ~ ^
product (2.15) we find that Re Q(z) A  0 if / sin an.
or |zi ^ r^sin a^ , i.e. if the modulus of z does not
exceed the least of the products

r̂  ̂sin a^ k — 1, 2, ..., n .
To be able to choose the a^ in a most advantageous manner
we will show the existence of n positive numbers

n -jj
aij, â , ..., a^ subject to the condition %% ^  ^ 2 
that the least of the numbers

r.̂ sin aij, r^ sin â , ... r^ sin a^ (2.16)
attains a maximum value. We will show that a!j, a^,..., a^ 
are characterized by the following necessary and sufficient 
conditions

sr at IT^  k “ ? * TiSin ajj = r^sin a^ =...= r^sin a^ .
In order to show this now suppose that is the greatest 
possible value of the least of the numbers (2.16). If 
Y^a^ / then by choosing a sufficiently small positive

V—  TTnumber C and putting + C we obtain 2_ Z '2 *
k~ 1

Therefore the least of the numbers r^sin a^ will be greater 
than p  which is a contradiction. On the other hand if the
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numbers (2.16) are not all equal to each other, then at
least one of them for instance r^sin a^ is greater than p
Let 8^ =  ̂ for k ^ m and 8,̂ = 8;̂ - (n-1 ) 6 . Then we
have and for a sufficiently small positive €
each of the numbers r^sin a^ is greater than p which is
also a contradiction. Let r be the common greatest number
in (2.16). If we eliminate al|, â , ..., a^ from the equa- 

n
tions a^ = ÿ , r̂ ŝin ajj = r^sin a^ = ... = r^sin a^ = r,

we find for r the equation
n
H  arc sin ^  = S  . (2.17)
k=1 ^k ^

This equation has exactly one positive root r^ because its
left side is a monotonie function of r where r ranges from
0 to the least of the numbers r̂ .̂ In the circle Izi/ r^ we
have Re P*(z) 0. Therefore as is known this implies the
uni valency of P(z) in \z\^ r^ which completes the proof.

It can be seen that if Q(z) has at least two zeros of
the same modulus but different argument or of the same
argument but different modulus then P(z) is univalent in a
circle of radius larger than the number r^ given by Oakalov
in this theorem. Because by putting - = u. in

n \  ^

Q(z) = T T  ( 1 ~ )k=1 \

and considering the lemma and the proof of the theorem, we 
deduce that if r^ is the positive root of equation (2.17)
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then for lz|/ we have

Re Q(z ) a  0 
where equality exists if and only if

iarcsin p
either -  ̂Z" e ^ k = 1,2,..., n

’̂k ^k
-iarcsin —

or _ | _ = _ i ^ e  ^ k = 1,2,..., n .
\  ^k

THEOREM 2.6. Suppose that m is a non-negative
integer less than and let

R = s i n ^  : ^

Let m of the zeros of the polynomial Q(z) = T T  (1 - f—) lie
k=1 ^k

in the annulus 1 Z Iz|Z R and the remaining n-m he situated
in the region Iz| A  R. Then the polynomial P(z) = Jq(z)dz
is univalent in the circle |zl/ r_ where the radius r."   ' ' -    - ’ *— 0     —  0
defined by equation (2.17) is larger than the radius sin^^y
given by the theorem of Kakeya.

Proof, r^ denotes the positive root of equation
(2.17), where r^ = lẑ.| and 0 / r̂  Z / ••• / Let us
write equation (2.17) as

m n
arc sin ~  + 5Z arc sin ^  •

1 ^k m+1 ^k
Now by substituting in the first sum 1 and in the second R
for r^ we obtain the inequality

m arc sin r + (n-m) arc sin g A  H  .
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Therefore the positive root r' of the equation 
m arc sin r + (n-m) arc sin g = ̂

is less than r^. In this equation if we substitute the
- T-r yv

value R we find that r' = sin . Therefore r^ A  sinjjjy.
This completes the proof of Theorem 2.6 given by Bakalov.
He then states the following Corollary and Remark.

COROLLARY. ^  m = 1 then R = 2 cos . Therefore
if Iẑ t = 1  and |ẑ,| A  2 cos g for k = 2, 3, .. .n, then
P(z) = jQ(z)dz is univalent in | z |/ r^ where r^ A sin .

Remark. It can be easily shown that if
P P+q

Q.(z) =TT ( 1 - f—) and Q_(z) = | I ( 1 - f—) then the
1^1 "k

real part of the function i$ non-negative in the
circle Izl^ r^ where r^ is the positive root of the equa-

TT fQAz)tion ^  arc sin -g - = . Therefore P(z) = j^TzJ

is univalent in this circle.
Here we note a few points. It is known that the con

dition of having a positive real part of the derivative 
inside a circle is only a sufficient condition for univa
lency; Theorem 2.6 does not, in fact, give the best 
possible results for the minimum radius of univalence. In 
Chapter I, Theorem 1.1+ on the other hand, by considering 
the distribution of the zeros of we proved the best
possible results for the minimum radius of univalence and 
starlikeness. Theorem 1.1+ was valid for every annulus
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about the origin and for every type of distribution of the 
zeros relative to this annulus. Also we determined the 
only possible cases giving the best possible results. Then 
in Theorem 1.5 by considering the distribution of the zeros 
of f*(z) we obtained the best possible results for the 
minimum radius of convexity. As we noted there, for suit
able distributions of the zeros of f*(z) outside | z|/ 1 we 
may obtain estimates for the radius of uni valence better 
than that given by Theorem 2.6. Also our best possible 
results. Theorem 1.10, Theorem 1.11 about the minimum 
radius of univalence of a rational function are comparable 
with Oakalov*s remark given after the proof of Theorem 2.6. 
Now by using arguments similar to Oakalov's, we will prove 
better results than Theorem 2.6. We will give these 
results as Theorem 2.7, 2.8, 2.9, 2.10.

THEOREM 2.7. Suppose that n A 2 and

Let one of the zeros of the polynomial Q(z) = TT (1 - f—)
k=1 ^k

lie in the annulus 1 ^ |z)^ R and the remaining n-1 be 
situated in the region \ zI A  R. Then the polynomial 
P(z) = JQ( z)dz is univalent in the circle | z|̂ / r^ where

^0 -A 2(,2n+1 ) ’

If n A 3 we have further
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\ , Tî n \ . TT

Proof. Since we use arguments similar to those used 
in the proof of Theorem 2.6, it is sufficient to show that

i) r A i|
ii) r' = sin is the positive root of the

equation aro sin r + (n-l) arc sin g = ^  ;

iii) if n A  3 then sin 2( ^ + 1')' sin .

i) follows because

° 2T&+TT ’

° ^ lci-i']'('2ii+Y) ^ ^  4 ^  ’

2( 2n+1 ) ^  2U-U(2n+1 ) ^ ̂  "

Thus sin 2V2n+i; ^  2(n-^)(L+i;
ii) follows because on substituting r* in the equation

we have
-nv>_2LîL_ -J- (n+l)TT

2( S + 1) + (n-1 )arcsin'>-h.2n-»:U,:_ . zLn-ljAn+jJ. = g",
®^“ÏÏT2H+T7

•i 0 TTn / n (n+1) TT
2(2n+l) ■*■ 2(n-l}(,2n+1 ) ~ ? ’

and 30 the equation is satisfied, 
iii) follows since

° 2( ̂ îl) '

° ̂  ’

2('Sîï)' ^  n A ^ ± | n .
Similarly we will prove the following results, Theorem 2.8,
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THEOREM 2.8. Suppose that n A  1 and

61.

sin Ttn
R = 2(n+1 j

sin TT
2(n-1 Hn+1 ) n

Let one of the zeros of the polynomial Q(z) = T T ( 1 - z—)
k=1 \

lie in the annulus 1 ^ |zî  R and the remaining n-1 be situa
ted in the region |z|AvR. Then the polynomial P(z) = jQ(z)dz 
is univalent in the circle \z\£ r̂ , where

r^ A  sin TTn
T O T T  •

If n A  2 we have further
TTn \ 

Proof, i) R A 1 because
r^ A Sim . TT Sinjjyy .

n / / TT° ^ 2(n+1) ^ 2 ’
® Z 2Tri5 7rn+T7 ̂  ?

TT

and
Thus

tion
ii)

TTn \ TT_____
2ln+1; 21n-1Xn+1) *Tin \ . TT
®^“̂2(n.+1 ) ®^“2(n-1 Mn+1 ; '
= Bing'̂ ^ -:j j' is the positive root of the equa-
arc sin r + (n-l)arc sin § = J  »

because on substituting r' in the equation we have

+ (n-l)arc sin. TT

i.e TTn ^ TT _ TT 
2(n+i; 2(n+i; " 2 ’

sin2(n-1 Mn+1 )
TT 
? »

and so the equation is satisfied.
iii) If n A 2 then sing'̂ ^Y)' sin^^ , because 

/ Tin / TT
° A 2 n r m  ̂  ? '

(i) Considering the "remark" given after the proof of 
Theorem 2.6 we may extend all these results to the 
rational functions.
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^ / TT- / TT
0 Z h+T Z ^

and 2(n+”j ^  nTT f 2 .
THEOREM 2.9 Suppose that n A  1, x is a real number such
i ithat —r, / X / r- and    ^ ---

a-iv, -XTTn+TT
2U-l/(xn+i; ^

Let one of the zeros of the polynomial Q( z ) = T T  ( 1 - lie
k=1 k

in the annulus 1 / ( z R and the remaining n-1 be situated in 
the region (zj R. Then the polynomial P(z) = J^Q(z)dz is 
univalent in the circle |z| / r^ where

Proof, i) R A 1 because
o Z E r Z i  for x Z l  ,

° /  2(n-r)fSt-1) /  ? ’n

m  ^  =1“ î t c t S s S t  •
ii) r* = sin is the positive root of the equation

r TTarc sin r + (n-l) arc sin ̂  = -g- , 
because on substituting r* in the equation we have

(i) If X is near to ~ then R becomes large and Theorem 2.9
then says that P(z) is univalent in the circle (z)/ r 
where r^ is less than but near to 1.
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xTTn .  -̂ rin-̂ TTT +  (n-l)arc sini—  
 ̂ Isi

sxnxn+1  ̂ ' î ,*̂ xTrn r^/._ - , > /____ \ i 2 *

xTTn . -xTin+TT
®^^xn+T 2(n-l)(xn+l)

i  ̂ X I m  , -X 11 n+TT _ "
* ’ xn+1 2(xn+1) 2

and so the equation is satisfied.
iii) sin A sin » because

O Z ^ Z ?  for X Z 1

^  ̂  ^ ^  ̂ 2 •
THEOREM 2.10, Suppose that n A  1,X is a real number

such that X A  1, k is an integer such that 0 / k / n and
• ̂ XTT n 

g _ 2k(xn+1j
2(n-kHxn+1 ; ^

Let k of the zeros of the polynomial Q( z ) = TJ ( 1 - — ) lie
k=1 ^k

in the annulus 1 £ | z |/ R and the remaining n-k be situated 
in the region |z l A R. Then the polynomial P(z) = Jq( z)dz is
univalent in the circle iziZ r_ where ■ — o ■

r^A sin ĵj.̂ xn+1; ‘
2

K  k Z ffxn+T)" have further

(i)

"•o ̂  2kgn+i) 5 t

(i) For k=1 and for large x, R becomes large, and by Theorem 
2.10; P(z) is univalent in the circle |Z|/ r where r 
is less than but near to 1.
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Proof. i) H A 1 because 
/  X T T n  /  TT

° ^ TOÎÏÏTT 2 '
n  /  TT_________  /  TT
° ^ 2(n-k)(xn+l) Z 2

X T T n  \  TT_________
2k(xn+11 2tn-kHxn+i; *

Thus sin 2k(xn+1 ) ^  ®rn 2(n-kKxn+1 ) '
ii) r' = sin is the positive root of the

equation
k arc sin r + (n-k) arc sin § = J  , 

because on substituting r* in the equation we have

ï^sirsîîT 2("-k)(™+i)

^*®* ^ $k^xn+1 ) * k^n-kjtxn+l ) ?
and so the equation is satisfied.

ill) then s i n g ^ J r y A s i n ^ .

because 0 / ^ 5 '

^ 2kf5^')' + sin]— sin

. xTTn \ TT - . / xn +xn
2k(3m+1 j n+1 Z 2(xn+11 '
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APPENDIX I

Let f(z) be of the form f(z) = zP(z) where P(z) is a 
polynomial of degree n. In order to obtain a better idea of 
how the radius of starlikeness of f(z) varies with the dis
tribution of the zeros of P(z) we now consider some special 
cases. For these cases we will also find the radius of 
univalence. Alternatively by considering the distribution 
of the zeros of f*(z) we may obtain similar results for the 
radius of convexity. First we consider the case where all 
the zeros of the polynomial P(z) are situated on the circum
ference of the unit circle at equal distances from each 
other. Without loss of generality we may assume that 

f(z) = z(z^-l) . (nA 1)
Then f*(z) = z^-1+nz^ ,
and zf;(z) ^ g[(n+l)z”--l] ^ (n+l)z^-1 ^

* A
Putting z = re , we have

= Re /[(n+1 ,

The numerator is
■ Ee{(n+l)r2^-(n+l)r^e“i®-r^e-“iG+l}
= (n+1 )r^^-(n+1 )r^cos ne-r“cos n©+1 = E, say.

Now, putting r^ = R, we have
E = (n+1 )R^-(n+2)Rcos n6 -k1 (n+1 )R^-(n+2)R+1 .
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The roots of (n+1 )R^-(n+2)R+1 = 0

are 1 and , so for r / nj=" » Rave j A  0.
Thus the radius of starlikeness of f(z) is A - ' • Since

the derivative vanishes on the circumference of |z|Z 
the radius of univalence has also the same value.

Here we see that for |zl/ have

where equality exists if and only if z^ = i.e. if and
only if z is on the circumference of |z|/ -T" ' in such a

■  “Jn+1
position that z, one of the zeros of P(z) and the origin are 
collinear, and z and this zero of P(z) are on the same side 
of the origin. .. .. .. .. .. .. (i)

Now let f(z) = zP(z), where P(z) is a polynomial of 
degree n all of whose zeros are situated on the circumfer
ence of the unit circle.
Denoting the zeros of P(z) by x̂ , ..., x̂ , we have

Putting z = re^^ x = ê '̂
Re I  ̂ I = r^-rco8(6-Y)

J r̂ -2rcos((̂ -ŷ )+1 
If r is fixed and r / 1 then this is a decreasing function
of cos(6-^)......................................... (iii)
Let us consider the following cases, represented by figures
1 and 2. Points on the outer circles denote the zeros of
P(z).
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Figure 2.

S / ' #

Figure 1.
In figure 1 we oonsider the case where all the zeros of P(z) 
are distributed at equal distances from each other on the 
circumference of the unit circle. Then we keep the posi
tions of all the zeros the same except one, Bay B. Let B
approach one of the other zeros, say A. (Figure 2.)
By (i), (ii) and (iii) we see that
in the first case for z = we have Re 0

in the second case for z = Â  we have  ̂ *
If we denote the radius of starlikeness in the first case by 

and in the second case by ^2 by continuity
moving B nearer to A without altering the 

positions of the other zeros we obtain the radius of star
likeness smaller than ^ g" Also by increasing the number of 
zeros approaching A and keeping the positions of the remain
ing zeros we decrease the radius of starlikeness.

Now let us consider the case where n is an even number
and ^ zeros of P(z) are concentrated at one end of a 
diameter of the unit circle and & of them are concentrated
at the opposite end of the same diameter. Again without
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loss of generality we may assume that
n

f(z) = . ( n 2)
Putting J = m we have

f(z) = z(z^-l)“ ,
f'(z) = (z2-l)“+ 2z2m(z2-l

= (z^-1)““^Cz^-1+2mz^], 
zf'(z) _ z(z^-1z^(2m+l)-1

Z(z2-1)%
_ z^(2m+1)-1 

ẑ -1
Î0Putting z = re , we have

The numerator is
Re|(2m+1 )r^-(2m+1 )r^e^^®-r^e“^̂ ®+l|.
= (2m+1)r^+1-r^(2m+2)oos20 
= (n+1)r^+1-r^(n+2)oos2 8 . 

since (n+1 )r\l-r^(n+2)oos2e ^(n+1 )r\l-r^(n+2) , 
and (n+1)r^+1-(n+2)r^ = (r^-1)[(n+1)r^-1],

Equality exists if and only if cos 2 0 = 1  and r = ■■■ -— .. ( iv)
y n+1

Thus the radius of starlikeness of f(z) i£ — . Since the
vjn+l .

derivative vanishes on the circumference of | z|/ ■ . then
“ \Jn+1

the radius of uni valence has also the same value.
Let us consider the oases represented by the following 

figures. Points on the outer circle denote the positions of 
the zeros of P(z) and the numbers in parenthesis show the
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nimber of zeros

Figure 3. Figure 4. Figure 5. Figure 6.
Figure 3 represents the above case where n is an even 

number and ^ zeros of P(z) are concentrated at A and ^ zeros 
are concentrated at B. By moving one of the zeros from B 
towards A we have figure 4. When this zero reaches A we 
have Figure 5. By continuing this process we eventually 
obtain the distribution of zeros represented in Figure 6.
By (ii), (iii) and (iv) we see that in the case represented 
by figure 3

for z = A1 we have  ̂= 0 .
But in the case represented by figure 4

for z = Â  we have » •

Let us denote the radii of starlikenesses corresponding to 
the figures 3> 4, 5, 6 respectively hy f ’ p *

Now in the following two examples we will obtain 
results for the radius of univalence better than that given 
by the theorem of Kakeya, (Theorem 2.1). First we suppose 
that f(z) is a polynomial of degree n and all the zeros of
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f'(z) are situated on the oircumference of the unit circle 
at equal distances from each other. We may assume that

f'(z) = - 1 (n A  1).
By the first example which we considered above we deduce that 
the radius of convexity corresponding to this case is — . 
But the radius of univalence of f(z) is 1 because if ^
f(z^) = f(zg) and ẑ  / Zg where Izp / 1, Izgl/ 1 then

4  4_  - Zi = JT - 2̂ , 

so ’
or, dividing by z^-Zg,

^z^-1+z^-^zg+.. .+z^zg-2+z^-'' ) = 1 .

But l|z^""^+z^""^zg+.. .+ẑ Zg""̂ +Zg"̂ | / ̂  . n = 1 ,
which is a contradiction.

Now we consider the case where f(z) is a polynomial of 
degree n and one zero of the derivative is located at one 
end of a diameter of the unit circle and all the others are 
concentrated at the opposite end of the same diameter. We 
may assume that

f'(z) = (z-l)(z+l)“”2 (n A 3).

Using the inequality

we find the radius of convexity of f(z) to be
We will now prove that the radius of univalence of f(z) is
greater than or equal to sin Equality exists only for
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TTn=3. ^  n A 3 then it is always greater than sin Since
by the previous example we know that for n=3 the radius of 
univalence is equal to 1 in the following proof we will 
assume that n A  3. A similar proof is valid for n=3 provi
ded that the radius of the circle under consideration is 
assumed to be less than 1, which implies that f(z) is uni
valent in every closed circle inside the unit circle; 
therefore the radius of univalence is equal to 1.

Proof.

H

Figure 7.
If f'(z) = (z-l)(z+l)““  ̂,
then n(n-l)f(z) = n(z-1)(z+1)^”^ - ( z + 1 .

icCPutting 1+z ='̂  , Re , we have
n(n-l)f(z) = Y  ('3) = (n-1 ,

and taking imaginary parts,
|m YCy) = (n-l)R^sin no<-2nR^”^sin(n-1 )<=<.

First we will show that for 0 /o(^ we have / 0.
Therefore the image of the upper half disc | z sin , 

z-^0 and the image of the lower half disc |z|^ sin , 
Im z / 0 have not any common point.
For 0 Ipil. ̂  we have
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cos no<-cos(n-1 )o< / 0 .
If P(o() = (n-l)sin nc5<-n sin(n-l)cK,
then for 0 /o;^ we have (c<) / 0, and ?(■=<) is a decreas
ing function of o< . Since P(0) = 0 it follows that for 
0 /o</ ̂  we have F(o<) / 0.
But (n-l)Rsin n°<'-2nsin(n-1 ) 2(n-l)sin np<-2nsin(n-1 )'Y. 
Thus for 0 /c3< ̂  ̂  we have

(n-1 )Rsin no(-2nsin(n-1 )û('̂ 0 
and so (^) / 0.
If "X \ 21 then sin nqf/ 0 and sin(n-1 ) 0 ,n-1 n
so Im Y  (j) = (n-l)R^sin nc<-2nR“”'*sin(n-1 )o</ 0.
By a similar consideration for 0 A _ we have
LY() ) A  0.
Now we will show that f(z) cannot take the same value at two
distinct points z ,̂ Zg which are both on the upper half disc 
jz[^ sin Imz A  o or on the lower half disc Iz)^ sin 
Imz ^ 0.
Writing

h(z)=n(n-1 )f(z)=n( z-1 )(z+1 )““^-(z+1 )“=(z+1 )^"\nz-n-z-1 ),
and g(z) = log h(z) = (n-1)log(z+1) + log(nz-n-z-1),
we have g'(z) = # ^  + '
Putting z = re , we have

Re g'(z) = (n-1 )(Re — ^ —  + Re — tt-— — ----- -).
re +1 re (n-l)-(n+l)

Now
r.- 1 r cos y +1 r cos jf +1 r cos y +1
re +1 (re^^+1)(re”^^+1) r^+re^ +re~^^+1 r^+2r cosb+1



73.

and
Re -TTTT— !---------  Re_-^ y -C - î2:-l ) - l ^ I

re^(n-1 )-(n+1 ) [re^^(n-1 )-(n+1 )j [re~^^(n-1 )-(n+1 )]
_   r(n-1 )cosjf-(n+1 ) _______
r (n-l) -r(n^-1)e^^-r(n^-1)e”^^+(n+1)

(n-l)r 008 y -(n+1)
r^(n-1)^-2r(n^-1)cos ÿ +(n+1 

so Re — T«—  + ZTDr ^re (n-l)-(n+l)
= ĵ (n-1 )^r^-2r(n^-1 )cosJT+(n+1 )^+(n-1 )^r^cosïT-2r^(n^-1 )

. coŝ ÿ"+(n+1 )^rcos2T +(n-1 )r̂ cosÿ'-(n+1 )r^ 
+2r^(n-1)cos^y-2r(n+1)oosy+(n-1)roosy-(n+1)] 
/|^^+2r cosy+i][(a-1 )^r^-2r(n^-1 )cos<ï+(n+1 )^l]« 

The numerator is
(n+1 )^+(n-1 )^r^-(n+1 )-(n+1 )r^+cos Jfĵ 2r(n̂ -1 )+(n-1 )^r^ 

+(n+1 )^r+(n-1 )r^-2r(n+1 )+(n-1 )r j
+008^y 2"2r^(n^-1 )+2r^(n-1 )J

p= L + M cos^+ N 00s ÿ" ,
say. We have

M = r{j-2n^+2+n^+1+2n-2n-2+n-1 ] + r^ [n^- 2n+1 +n-1]
= r(n-n^)+r^(n^-n) = (n^-n)(r^-r) / 0 ,
N = 2r^(n-1-n^+l) I 0 , 

so L + M oos ÎT+ N cos^^Al + M + N .
Since
L+M+N = (n+1 )^+(n-l)^r^-(n+l)-(n+1 )r^+2r^(n-n^)+(r^-r)(n^-n) 
= n^+2n+1-n-1+r^[n^-2n+1-n-1-2n^+ 2n] + (n^-n)r^-(n^-n)r 
= (n^+n)(1-r^)-r(n^-n)(1-r^) = (1-r^)[n^+n-r(n^-n )] A  0 ,
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it follows that if r / 1 then Re g'(z)Ao. Thus g(z) cannot
take the same value at two distinct points inside or on the

. TT , , gg(z) , , ,circle |zi/ sin f(z) = j and if f(z^)=f(zg)
g(zj g(Zp)

then e = e so g(z^) = g(Zg) + 2krri where k is an
integer. But if ẑ , Zg are points on the upper half disc 
|z|^ sin ’>^zAo, then log h(z^) - log h(zg) cannot be
equal to 2kTTi
because Im log h(z) = (n-1 )arg(z+1 )+arg|̂ (n-1 )z-(n+1 )|, 
and so Im | log h(z^)-log h(zg) j / 2TT.
By a similar consideration z^, Zg cannot be points on the 
lower half disc. Hence f(z) cannot take the same value at 
two distinct points inside or on the circle lz|^ sin .
If n A 3 then f’(z) cannot vanish on the circumference of 
this circle, so by Dieudonne's argument^the radius of 
uni valence of f(z) is greater than sin .

(i) If C is the largest circle about the origin inside 
which a polynomial f(z) is univalent then on the 
circumference of C either f(z) takes the same value 
at two distinct points or f'(z) vanishes. Otherwise 
f^zl is univalent inside a larger circle, 

see e.g., _7, p.22.
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APPENDIX II

In this appendix we will show that the result given 
by M. Robertson in ^ _ 7  contains an error.

Let f(z) = z + agZ^ +...+ a^z^ and let z^ be the root 
of smallest modulus of f'(z) = 0. Then by the theorem of 
Kakeya (Theorem 2.1) the radius of univalence of f(z) is 
greater than or equal to |ẑ i sin ̂ . It is stated by 
M. Robertson that if

n̂®-n’ ^n-1®'n-1’*” ’̂ 2®'2’

D =

0, 0 ,...;.,.
1 , 0 , ----- .. . ,  0

2̂®'2 ’ 1 ,0 , .. . . . ,  0

0, 0,........ • > V n ’ ^-l^-n-l’ * 1
nan, (ii-'>)an_i,- • f^^2’ 1, 0, 0 , .  •  O .  0 . .  , 0
0, na^,. . . . . . .•f3a^j Sag, 1, 0  9 .............................................. 0
0, 0,........ 3a^, 2ag 9 1,0,..... 0

0, 0,......  ,nâ , ( n - l ) a ^ _ ........- ,2a2, 1

r-i TT 1 - §)where b = sin   — - ,
cos -

then f(z) takes the same value at two points ẑ f on the 
circumference of | z(^ Iẑ l sin ̂  where z^z^ are the points 
of contact of the tangents drawn from ẑ  and so the radius 
of univalence of f(z) is exactly iẑ l . sin ̂  .

-0
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Now we construct the following counter example. Let

D =

■ “  • Then

^2^2 1 0 0
0 W 1 0
0 0 W 3̂®'3 ^2^2 1

3a^ 2ag 1 0 0
0 3aj 2^2 1 0
0 0 3a^ 2ag 1

1, = 0, %  = -
1

^2 = 1. \ = 0
We will show that f(z) cannot take the same value at two 
points z^ on the circumference of \z\/ iẑ i sin ̂  
where ẑ , z^ are the points of contact of the tangents 
drawn from ẑ . Thus according to the argument given in 

the radius of univalence of f(z) should be greater
7ythan |Zq I♦ sin — .

_____z.o

Figure 1
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We have

%  = 4 ^ '  '“o'-=1“ ?  = ^ ’

2 \}2

Since f(z) is real for real z and ẑ , Zg are complex conju
gates, in order to show that f(z^)  ̂f(zg) it is sufficient 
to show that f(ẑ ) is not real. T̂his follows because

f(zp = + z2 - Î1
r- 22. ^

where h  is real, but z, = f- "—  e  ̂+ e ^ ,
^ T 1 2 'Jâ 2 V2

which is not real.
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