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ABSTRACT

This thesis is about "'decision problems concerning properties of
sets of cquations'.

If £ is a first- order language with equality and if P is a
property of sets of £ - equations, then ''the decision problem of P in
L' is the problcmlofthé existence or not of an algorithmwhich enables us

to decide whether, given a set 2 of £- equations, 2 has the property
P or not. If such an algorithm exists, P is decidable in <£.Otherwise,

it is undecidable in <.

After surveying the work that has been done in the . field, we
present a new method for proving the undecidability of a property P ,for
finite sets of [- equations. As an application , we establish the
undecidability of some basic model~ theoretical properties, for finite
setsof equations of non- trivial languages. Then, we prove -.the .. non -
existence of an algorithm for deciding whether a field is finite and ,
as a corollary, we derive the undecidability of certain properties,for
recursive sets of equations of infinite non- trivial languages. Finally,
we consider trivial languages, and we prove that a number of properties,
undecidable in languages with higher complexity, are decidable in them.
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CHAPTER O

INTRODUCTION

§0.0. Introduction

An equation is a universal sentence of a first order language
with equality of the form (W V) (¢ = ¢), where ¢ and ¢ are ‘terms .
The study of equations, as a separate mathematical discipline, began
in 1935 with a paper written by Birkhoff [ 1 J. It has been of great
importance to Algebraists,because some of the most 1nterest1ng theories
~ to them (the theory of groups, the theory of rings, the theory of
lattices,to mention just few examples)can be axiomatized by equations.

Global decision probiems, concerning pfopertiesvwof' sets of
equations, were raised, for the first time, by Tarski [ 28 ] in 1963.
They subsequently received consideration mainly by Perkins [ 19 1,
"McKenzie [ 12 1, McNulty [ 14 1] and Pigozzi [ 22 1.These are problems
of the following kind : :

let £ bea countable languaoe and let P be a property of
sets of equations of £. Is there an algorlthm that enables us to
decide whether, given a finite (or recursive or 51ng1eton) set .of .
equations of £, it has the property P ?

If such an algorithm exists, P is called decidable for finite

(or recursive or singleton) sets of equations in £. Otherwise, it is

called undecidable. Almost all the properties, examined so far,turned
out to be undecidable, at least in languages with sufficiently high
complexity.

Undecidable properties of sets of equations are the focal point
of this thesis. Our approach is Model-theoretical,with a minimal use
of formal Recursion theory and an extended use of informal procedures,

whenever this is possible.
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Chapter 0 is introductory.Preliminary definitions and results

from Set theory, Model Theory and Recursion theory are given in §0.1.

and a system of notations is introduced. § 0.2. deals with equations.
A classification of the dec151on problems concerning equatlons

is attempted in §0.3. In §0 4., the ex1st1ng methods for proving the
undecidability of properties of sets of equatlons are surveyed and the
most important results, obtained so far, are given. ‘We conclude the
chapter with a discussion of the motivation that led us to pursue this
line of research.

In Chapter 1 a new method of proving the undécidability of

“propérties of finite sets of equations 2 is given. As an application,
- the undecidability of the properties :

P : The equational theory generated by 2 is éqpationally compléte.

: The first order theory‘of the ihfinite modelsvoﬁ > is complete.

P : Tﬁé»firstrordéf theory of the infinite models of 3 is model-
" complete.

: 2 hégwtheﬂfbint eﬁﬁédding property.

P, : The first order theory of the non-trivial models of 3 has the
- joint embedding property.

jao)

: The first order theory of the infinite models of 'S has the joint
embedding property,

for non-trivial languages, is established.

In Chapter 2 the non-existence of an algorithm , for deciding
whether a computable field is finite, is proved. As a consequence of
this fact, the undecidability of properties :

P% : 5 has finite non-trivial models.

P; : The first order theory of the non-trivial models of 2 1is complete.
P, : The first order theory of the non-trivial models of 2 is model-

- complete,

for recursive sets of equations of infinite strong languages, 1is

- established.
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The decision problems of propértiés P, - Pa;-in- trivial
languages, are examined in Chapter 3 and algorithms for deciding

whether a finite set 2 has each one of the properties are constructed.

Indices of symbols and reféréncés can be found at the end of the
thesis. , '

A final remark on typography. ' e " is used as an abbreviation
of "if and only if" while the symbols " [0 " and " #'" indicate '"end
of the proof" and "'contradictory statément”, reSpéctivély.
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§0.1.Batkground material-Notations

A. From Set Theory

We shall assume familiarity with the basic notions of Set
theéfy.

The symbols U, N, - stand, respectively, for the operations of
union, intersection and difference of sets. The symbols €, C, ; stand,
respectively, for the relations of membership, inclusion and proper
inclusion between sets. '

'_ The Cartesian product of a family of sets'{Xi :1 € T}is denoted
by iEngi° We also use the notation Xg x Xp X...x X~ for the
Cartesian product of a finite family of sets. The complement of a set
'X, is denoted by X. -

The empty set is denoted by @, the set of natural numbers by
® and the first ordinal, greater than w, by ;. Otherwise we use
lower case Greek letters o, B, vy, 6,... for ordinals. The cardinaliiy
.t

of an arbitrary set X is denoted by |X]|. p; stands for the i

prime number.

< is the usual ordering relation between ordinals.An equivalence
relation in a set X is denoted by ~. The equivalence class of an
X € X, with respect to ~, is denoted by [x]:

Let A, B be two sets and CC A, £ : A~ B is a mapping with
domain A and range a subset of B. f£/¢ is the restriction of f to
C. fI[C] is the image of C under f. The symbols f: A>3, f: A—B, f:
A» B are used to denote that :f is,respectively,injective,surjective,
bijective.: _

AB stands for the set of all f: A-» B. If f; and f, belong
to AB , £1+f, stands for the usual sum, while f£;.f, stands for the
usual product of the two mappings.

If o is an ordinal and X is a set, an oa-termed sequence in X

(i.e. a member of *X) is denoted by <x; : B <a>, or simply by X.

B. From Model Theory

We assume the reader is familiar with the elements of First
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‘order loglc and Model theory. Chang s and Keisler’s [ "4 j-Will Servé"as
a constant reference for definitions and basic results in the field.

Throughout the thesis, £ is a countable algebralc 1anguage i.e.

[

a first order language with equality, with countably many operation
symbols, at most countably many constant symbols and no relatlon symbols.
In other words, a language of the form

L = <{Q. }1EI’ {CJ}J€J>’

where I and J are sets of natural numbers, Qi is an operation

symbol and cJ is a constant symbol.

“If the number of non- logical symbols in £ is finite,.b'i;—h~
called a finite algebraic language. Otherwise, it is called a denumerable

»algebralc language.

The rank of Q "is denoted by fkif:w The _laﬁgﬁggemhis"' 292;_
trivial if it contains either at least two unary opération symbols  or
at least one symbol of rank greater than one. Otherwise, it is trivial.
The language is strong if it has at least one operation 'symbol of rank:
greater than one.

The set of variables is denoted by Va ='{vi : i€ w). We use
no_ , "y n’ "o n’ "o, n’ " 3 n’ "y n’ " _ n’ respectively, for
"not'", “or'", '"and", "implies", ''there exists', 'for each", "equal".

Symf»' is used for the set of all logical and non-logical symbols

of the language. I.e.

Sym£ = Va‘JI —’V, A, q, } U {Q }le:[ {Cj}

jed

The set of terms of the language is denoted by Terni If t e
Termp and s emrenn_c, then t[s] is defined as follows:

S.

i, vi[s] i

C.
J

11. Qi 9061;.; er(i)_1[§] = Qieotgj‘eltgj !..er(i)_1[§]-

ii. cj[§]

Exp,, Form,, Sent,, 3 -Form, V-Form,, ¥ 4 -Form,  stand, respectively,
for the sets of exn10551ons,formulae, sentences, existential formulae ,
universal formulae and universal-existential formulae of the language L.
If o is a formula (or a term) of £, with exactly the variables VHO,
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V. 3 V. yeee,V free in it, we write @ (v. , V. ,...,V ).

An £ -structure is called an £—a1gebra We use Gothic 1etters

.2[ B, Dy to denote algebras and the corresponding English letters
A, B, C, D, ... to denote their universes. If Qi is an operation

symbol, c. j is a constant symbol, t is a tem and ¢ is a formula,
we use, respectively, the notations Q“[, cJ A and (pﬂ[ for their
interpretation in L. The cardinality of . L 1is denoted by ILI. An
algebra is trivial if H2L0N = 1.

Let 9 be an £ -algebra and X C A. The expansion of £ by

X is the language
'cx:‘CU{Ca :a€e X},

obtained from by adding a new constant symbolv <, for each a€ X.

It is understood that, if a = b then C, *C o ‘The "expanded algebra

A, 1is the £ -structure, obtained by interpreting each new constant

‘symbol c, by the element a. I.e.

Ay = <, {Q?il}i e 1’ {C?I}j ey @laex?

e e - = e pm—————— et e e+ o o m——— it et et e m e -

" The symbol = denotes the usual satlsfactlon predlcate So, if

n
® e 0 LN ] e
(D(VK s Vi s » Vi ) € FomL, and < a,, a, a > A, we
.0 1 n-1
write B -

1

AFE o [ay, aj,... a ]

for " @ is satisfied by <8gyees > in A".

If 3cSent, and TC Sent,, the symbols AE 3 and T g3
stand, respectively, for "Q[ :1s a model of 2" and "% is a
consequence of T".

“'A first order theory of £ 1is conceived of as containing all

its consequences. In other words, if ¢ C Sent, , then, 0 is a first
order theory of £, if and only if

(Yo Sent, ) (€ 0«0 q)

The first order theory generated by a class of £-algebras & ,

is the set:
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" Thg={oe€ Sent, : WA KR) QU )}

The first order theory generated by a'set’ s 'C Sentp 1is the set
6[3] = {¢ € Sent, : 3 [ ¢},

A cB,AB, A =B and A =B stand, respectively, for "9 is
a substructure of B'", "A is an elementary substructure of B"," A is
isomorphic to 3" and "2 is elementary equivalent to B ". If A is
an f-structure and X C A, the substructure of 2, generated by X, is
denoted by <X>. If C‘)IB: B < a2 is a chain of £L-structures, its union
is denoted by g¥ OLQ[B. '

The notations £ :A-B,-f :A»B, £ : 0> B and £ :*B are
used to denote that £ is, respectively,"anhomomorphism of A to
B ", "an homomorphism of A onto B ", "an embedding of A to B"and
"an isomorphism between 2 and B". , "

Let ® be a first order theory of £. 0 is consistent if it
has a model. 0 is g-categorical. if any two models of it of cardiﬁaiiﬁr
a are isomorbhie. ® is complete if it is consistent and it sa-
tisfies one of the following equivalent statements: ”

i. Any two models of it are elementary equivalent.

ii. There is no consistent first order theory € of £, such
that ¢ ¢ 6.

iii. For any ¢ € Sent£, either g € 0 or -9 € 0.

® is model-complete if for any two models AL and 2B of it,such that
AWy, it holds that A <

® has the joint embedding properrty if any two models of ® are
embeddable in a third model of it. I.e. if | -

VAED) ¥BE®) (FIckF® 3 £:2A-C) (3g:B~C)

® is preserved under unions of chains if, for any ordinal ¢ and for
any chain Q[B : B < o> of models of 0, the union U A, is - a
model of 0. Bea

. The following fundamental theorems of Model Theory will be in
constant use throughout the thesis:

Theorem 0.1.0 [Llos’ - Vaught test] Let ® be a consistent theory
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‘of £ that satisfies the following conditions:

" a. O has no finite models
b. 0 is a-categorical for some infinite cardinal @.

Then 0 is complete.

Theorem 0.1.1. [Lindstrdm’s theorcm] Let ® be a consistent theory

of £ that satisfies the following conditions:

a. 0 has no finite models.
b. 0 is preserved under the union of chains.
c. 0 is a-categorical for some infinite cardinal a.
, "Then O is model-complete. '
Theorem 0.1.2. .A first order theor);h ® of £ is preserved under
‘(the unions of chains if and only if it is axiomatizable by a set

of universal-existential sentences. I.e. if there exists 2 CV¥ 3 - Sent£
such that 0[Z21= 0. '

Theorem 0.1.3. [Lowenheim-Skolem theorem] If a set T of .C -
sentences has an infinite model,then it has models of any given infinite

power a.

Proofs of the above mentioned theorems can be found respectlvely,
on pages 113, 114, 125 and 67 of Chang’s and Keisler’s L 4 1.

C. From Recursion Theofy and Decision Theory.

We assume the reader understands what is meant by an informal
algorithm and a function computable by an informal algorithm,
Consequently,he will not find it difficult to understand what a decidable
set is: A set A is decidable if there -_is an informal algorithm that
enables us to decide whether an object x belongs to A or not.

, Famlllarlty with the fundamental concepts of Recursion Theory ,
as developed for example, in the first chapter of H. Rogers® [ 24 1],
is desirable. All the same, it is not a sine qua non for the reading
© of this the51s because we shall 1ntroduce, in a comprehensive way,any
notion from Recursion Theory, we are going to use, and informal

procedures will be given preference to formal ones, whenever this is
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possible:

‘Various formal characterisations of the informal notions of
élgorithm, function computable by algorithm and decidable set have been
obtained since the 1930’s. These characterisations have varied widely
“in form but they have been shown to be equivalent. We give here the

. Turing Characterization because we find it closer to our intuition and

more convenient for our purpose.
We approach the Turing'Characterization by the following physical
picture : Consider the machine T, that is designed to perform the

same task that a human computer performs. It has the following parts:

a. A tape, infinite in both directions, which is divided wup
into squares. A zero or a one is written in each square = and all but
finitely many squares have a zero in them at any one time.

‘ b. A black box that takes one of a finite number of internal
states, at any one time. ' B
So, the machine looks like this:

[T T
/\
Black

Box

The machine is capable of examiﬁihg only one square at a given.
time and, according to the number it finds in the square and to the
internal state of the box, it performs one of the following operations:

1. It writes a 0 in the square.
2. It writes a 1 in the square.
3. It concentrates on the next square to the left.
4. It concentrates on the next square to the right.

If the machine is given an input (i.e. an initial description on the

tape) it performs a uniquely determined succession of operations, which

may go on for ever or may terminate after giving an output (i.e. a final

description on the tape). For further details about its construction and

its operation see Rogers [ 24 ] and Davis [ 5 1. .
What should be understood,for our purpose, is that,for each n €

w -1, each Turing Machine computes an n-ary partial fUnction.fg from

" © to w, which is defined as follows : Given the machine any input n -
>€Py , written in the suitable language, if the
Jto be the

tuple < XgsXyseee X

1 n-1
machine halts after giving an output, take f(xo,xl,...,xn_1
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total number of ones appearing on the tape.

_ - An n-ary partial function from ® to © is called recursive
if there is a Turing Machine that computes it. A set A C ® is called
recursive if its characteristic function CXA is recursive.

» The thesis thét Turing Machineé,ﬁarfial'récursive functiohs'andw
recursive sets are an adequate formal explicatum for the = intuitive
notions of numerical algorithms, number-theoretical functions computable
by algorithms and decidable sets of natural numbers, respectively, is
known as Church’s Thesis. Although such a thesis is not susceptible to
a strict mathematical proof, the evidence for its correctness is

overwhelming. For a detailed discussion of the evidence we refer the
reader to Kleene’s [ 9 J]. We accept Church’s thesis as correct and we
are able from now on to treat, in a formal way, questions concerning
numerical algorithms,number-theoretical algorithmic functions , and

decidable sets of natural numbers. o ~

Since the original informal notions concern much broader
classes of non-numerical objects, the following question is naturally
raised : Is there any way to apply our formal theory of recursive
functions to such broader classes of objects ? There is no difficulty
in defining Turing Machines which operate with finite alphabets other

' that { 0,1} and the resulting theory is essentially the same. Indeced,
we coula use any decidable set as an alphabet. But,for our purpose, it
will be better to reduce other alphabets to {0,1},by Goedel Numberings

as follows :
If A 1is a countable set of objects, which is decidable in the
intuitive sence of the term, a Goedel Numbering of A 1is an injective

mapping g : A» W, with the following properties :

a. g 1is an informal algorithm
-1 . . .

b. g = 1is an informal algorithm

c. g [A) 1is a recursive set.

"The number g(x), assigned to x through g, is called the Goedel-
number of x. A subset B of A 1is called recursive if its image
g[A ] is recursive. An n-ary function f from A to A is called-
recursive if the number-theoretical function fg’ given by the rule:

£ (8(x ), +e5800 1)) = g(ECK, 0% ),

is recursive.
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A Turing Machine T can be identified with the finite set of
instructions that determines its operation. The finite set of instructions
can be expressed, in a pureiy mathematical way, as a finite set of
quadruples of natural numbers. So, a Turing Machine becomes a mathematical
object It is known that the set of all Turing Machines T(i e. the set
of 1nstruct10ns associated with them) can be -given a Goedel Numbering G
~ such that Gm = W. (See Rogers [24] » Pg 21)

 Goedel Numberings have a wide range of application to logic
because, given any countable first order language,one can find a Goedel
" Numbering of the set of its formal expressions.One can consequently ask
whether a set or a set of ‘sets of expre551ons is decidable and u51ng
Recursion Theory, he can have a strict mathematical proof of the correct
answer. e = ,
Let £ = <f{Q }1 c 1’ {c. }J c J:> be .a ‘counfable‘-.algebfaic
language. Throughout the the51s, gp : Sym, > W is taken to be the-

following mapping:
g, ()70, g, (V)=1, g, (\)=2, g,()=3, g, (2)=4, g, ()=S, g£(3) -6
g£(vn) =7+3n,V¥new
g.(Q;)
gr(cj) =7+ (3j+2), ¥vjeda

7+ (3i+1), Viel

Obviously, g is a Goedel nwnbéring of the set of symbols of £,
while gE : Exp, » u, which is given by:

gﬁ(o') 1
Yo = <00,013"'0n_1> € Expﬁ’ g5(0)= _I—[ pi * ?
1<n

is a Goedel numbering of the set of expreésions of the languagé.

It is intuiﬁvely clear to us that the sets Term , Form, and
Sent£ are recursive. If the reader cannot convince himself with anything
but formal proofs, he can find them in Monk’s [ 15 1. Then, following
the method described there, he can construct his own proofs of facts

we will assume to be intuitively clear.
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. § 0.2,Equations and equational classes of algebras.

Let £ be a countable algebraic language.

An equation of £ is a universal sentence of the form (¥ V)
(o=¢), where @ and ¢ are ténns. We dénoté by Eq£ the sef of
equations of the language £. Consequently,

Eq, = M Vv)(o=0) 1 € Termy ,¢ € Term,

If 2 1is a set of equations of £, we denote by ModZ the class of
all £L-algebras which are models of 2, i.e. '

Mod3 = {2 :AF 3}

A.class B of <L-algebras is a variéty or an equational“class if it

consists of all the models of some 32 C Eq,. I.e.

(W is a variety) » (3 2 C Eq_c)(%= Mod 3 )

The fragment of first order logic that deﬁls with equations is_
‘known as Equational Logic.It has been of great importance to algebraists,
because the most interesting classes of algebras (with the remarkable
exeption of the class of fields) are equational classes. For example,
the class of semigroups can be treated as the class of all models of the
eciuation v V0V1V2) (VO.(Vl.Vz) = (VO'VI)'VZ) of the language £ = <.>,
while the class of groups. can be treated as the class of all models

of the set

G ={(Wov,v,) ( (v,-v)).v, =v0.(vl.v2j),'fwo) (Vo.v;i;~"1),(Vvo)(vo.1=v0)

: -1 . .
of equations of the language £ =<., -, 1>. Abelian groups, Rings,

Lattices and Boolean algebras can also ‘be cquationally definedjthat is
to say, in each individual case, the class of algebras can be considered
as Mod 3 , for a suitable 2. |
‘ We have not given definitions of the above mentioned elementary
algebraic notions, but the reader can find them in any standard text
of Abstract Algebra.

It is now generally ag'reéd that Equational Logic draws its origin
from Birkhoff’s [ 1 ], which appeared in print in 1935. '
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In this paper, Equational Logic is treated for the first time as
a formal system with the following five axioms of dérivation:

1. V0 € Term, , the equation (¥ V) (¢ =¢) holds.

2. ¥<o,¥> € 2Temm,, if (¥ ¥)(¢ = ¥) holds, then (¥ V)( = ¢ )
holds. ) B

3. V<0,0,x> € 3Temm,, if (V v)(@ Lb) and (¥ V)0 = X) hold,
the equation (¥ V) (¢ = X)holds. ‘

\

4. V<0,b>€ Term, and ¥ i€ “Term, , if (¥ ¥)(0 = V)holds,
then (V V)(wtﬁ] = Y[nD)holds.

5. Far any operation symbol Qi of the 1anguage and any two
sequences <@ ,9.,..., r(i]—].>’ < wo,wl,... wr(i)—]A> of terms of the
language, if the equations (V V) (m. = w.) hold for all -i’s , then -
Vv) Qoo ... r(i)-1 Q ... r(l) _1) holds.

1791 1701
As one would expect, axioms 'i 5 are part of the axioms of
derivation for first order logic. We adopt Birkhoff’s ax1omatlzat10n,and'
‘we say that, given I U {g} C Eq£ , € is derivable from 2 by means of
axioms 1-5 (in symbols 2 'Eq €) if there exists a proof of ¢ startlng :
"{rom 2 and using only the rules 1-5.

In the above mentloned remarkable paper, Birkhoff proves a

- completeness theorem for equational logic, which is entirely analogous

to the Goedel Completeness Theorem for first order 1logic and a :
characterization theorem, which ~provides a . purely algebraic

characterization for equational classes of algebras. These two important
theorems, which we are going to use repeatedly,are given here without
proofs : , _ ‘ -
Theorem 0.2.0. (Completeness Theorem for Equational Logic).

For any algebraic language £, and any 2 U {€} C Eq,, it holds:

3 Fe if and only if 3 F-Eq £

THueofénl().Z.T. (Characterization Theorem for Varieties of Algébras)

A class BB of L-algebras is a variety iff it is piosed ‘under the,
formation of subalgebras, homomorphic images and direct products.
In other words, O is a variety iff it has the following . three

properties:
1. (FAED) ¥ BCA) (BEV)
2. (VoL eq) (¥ £ 130 »p) (A€ T

3. (W{a;ie ey ( ] a; en
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- .

We introduce below some basic notions from Equational Logic,which

will be in constant use throuchout the thesis:

A set 0O of equations of £ is an equational theory if it.

‘contains all its equational consequences, i.e. if it holds:
4 (V € € Eq,) (O Fe«eel)
If & is a class of f-algebras, the equational theory generated by
® is the set 4 '

Tthyt = {e € Eq, : (VAERK) (UL €)}

If 2 is a set of equations of I, the eqﬁational theory generated by
‘ 2 1is the set

SEq[§]={€EEq£ 12 F e}

The équational theoryi 0 is called recursivelLbased,or‘ finitely based ,

or one-based , if there exists 2 C Eq, , which is,respectively,recursive.
or finif.e or a singleton, with the property eEq [2] = 0.The equational
theory © is equationally consistent if it has a non-trivial model or,
equivalently, if it is a proper subset of Eq,. The equational theory ©
is equationally complete if it is equationally consistent and satisfies
one of the following equivalent statements :

i. There is no equationally consistent equational théory ®,such
that 0 C 0.

ii.Any two non-trivial models of © satisfy the same equations.

Finally, we give the following définition:. Let © be an
equational theory of the language < =~<{Qi}i e 1’ {cj}j e3> and let
~0 be the binary relation, defined as follows :

(¥ <0, 0> € 2Tem,) (o~ g bV 7)(0=1)< 0)

It can be easily checked that ~0 is a congruence relation in  the

set Term£ , 1.e. an equivalence relation in Term,, with the property

“for any operation symbol Qi and for any <Oy, oo 0. (i)-1 > and
<LD0,--- wr(i)-l > sequences of terms, if the relations cpn~e l]Jn hold



23

for all n’s , then the relation Q 00, +*r Or(i)-1 T QU b .
holds'.

Consider now the quotient set

r(i)-1 ’

Termg / ~p . Because of the fact

that ~5 1s a congruence relation in Term » the algebra
{c.}

9l =<Term, , . Y. \
'C/NB' ,1Q j'je J>’

i}i € I’
where a) the interpretation of any constant symbol <5 in g 1is its

equivalence class under ~g (.e. c?z = [cj] ), and

b) the interpretation of any operation symbol Qi in 9 is the
operation defined by the rule:

: SRR T ) ey :
V < [(DO]’ [@1],0-0 [(Dr(l) 1] > € ) £/"‘9 ’

QQi @0 Tseee [91(4y43) = [Q0,0, (5y.,]

e

is well-defined. Call 9  the term algebra of © and denote it by
<
Ne -

The reader with an elementary knowledge of universal Algébrawi]l
immediately recognise that if © is equationally consistent, Se is,
in fact, the free algebra in ® generators of the class of models of
the equational theory 6. '

In the course of proving his completeness theorem for equational
logic, Birkhoff [ 1 7] proves that the equational theory generated by

the algebra "2’6 coincides with 0 .For any term ¢ of £,it is obvious

that the following relation holds :
36 .
[(p] = (p . (EVOJ, [Vl]’ ...[Vn]...).‘

Consequently, the set {lvy ]:1€w} 1is a set of generators
for & g If 0 is equationally consistent, then, the above mentioned
set is infinite, because the hypothesis that ''for some distinct 1 and
j, it holds that [v,] = [Vj]",l_eads to the = contradictory statement
"g= Eq£ " . |

Since these remarks about the term algebras are of great

importance to us, we summarize them in the following theorem :

Thebrém 0.2.2. For any equational theory 0, the following

statements hold :

-
Tth’bG—e
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b. S% = <{lv,} : n€ w}>

c. If @ 1is equationally consistent, then [vh] ® [Vh] for any

m# n.

A gféat_ number of intercsting- results concerning sets of
_equations have been obtained,but a lot of questions still remain |
_open. An exposition of individual results would fall beyond the scope
tof this thesis. For the interested reader, through, two excellent survey
papers of the work done up to 1975 are available. These are Pigozzi’s
[ 21 1 and Taylor’s [ 29 1.
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§ 0.3. Decision problems concerning sets of equations.

Various decision problems “about sets of equatldns naturally
‘arisc. They can be classified into two major categories. Local problems,

~ which concern individual sets of equations éndv global problems, which

" concern properties of sets of equations in general.

\

“A. Local Decision problems.

1f £ is a countable algebralc language and @ is an equatlonal i
theory of £, the decision problem of 0 is the problem of whether ©

is decidable or not. Formally speaking, if 3; is the Goedel numbering
of the expressions of the language, defined in 0.1, it is the "~ problem
of whether the set of natural numbers gc[ejl is recursive or not.

Obv10usly, the theory qu is decidable for any ‘£. It is also.
clear that the equational theory Tthlt,generated by a finite algebra,
is decidable. Since any recursively based and equationally complete
equational theory is decidable, a number of well-known theories turn out
to be decidable. We mention. as. such the. equational - theories of -
Distributive Lattices, of Boolean Algebras, of p-groups for‘any prime -
nunber p (i.e. abelian groups satisfying the equation Cva) vab =0)) :
and the equational theory of p-rings for any prime number p (i.e.
commutative rings with unit satisfying the equations OJV ) @)V = 0)and
(V\r) (vp ! - 1)). Equational completeness is not,of course, a necessary
condltlon for the decidability of a recur51ve1y based equational theory,3
as the fact that the equational theories of Lattices and Abelian groups
are decidable indicates. ‘

Post [ 23 ] was the first to éohéfruct a finitely based undecidable
equational theory. This was a theory of semigroups. Later,other examples -
of finitely based undecidable equational theories, in a “variety of
languages, were given, primarily by Tarski [ 27 1, Perkins [ 20 J,Malcev
[ 10 ] and Murskii [ 16 1. Up to now, we don’t know whether there exists:

a finitely based equational theory of groups, which is undecidable.

It * should be mentioned here, that the decision problems for -
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équation@l theories can be coﬁsidefedfaszaparticular case of the famous
word problems, which have been the focal point of intense research by
Universal Algebraists (Post ['23 ] and Markov [ 11 ] proved that there
" exists a flnltepresentatumlof a semigroup with unsolvable word problem

“while Boone and Novikov [ 2,181 proved that there exists a finite
presentation of a group with unsolvable word problem,in order to mention
‘only the most famous results). Under the formulation we give below,word
probleins can be treated as local problems concerning sets of equations :
Let 0 be an equational theory, in 'the countable algebraic
language L. We enlarge the language, by adding a set of new constant
symbols C = {c. : i€ 1I}. Let R be a set of equations of the language
L' =Lu C, w1th no variables in it.A presentation<C,R>of a model of
0 is an £L'-algebrall , which is generated by the set { clt i€l }
and satisfies the equations 6U R.The word problem for thc;plesentatlon

< C,R> of a model of 0 1is the problem of the existence or not of

an algorithm that enables us to decide whether, given any two c-words
(i.e. any two constant terms of £'),they are equal in this presentation
or not. In other words, it is the problem of whether the set

- 4 . .

2, ' :
<u,v >€ (c-words): RUB Fu=v

is decidable or not. We say, accordingly, that the presentation has a
solvable word problem or an unsolvable word problem.

If we consider a presentation <C,R> of a model of 0, with
|I|] = w ‘and R = ¢, then this presentation becomes, in fact, the term
algebra &,, expanded in £’ by the set of individual constants {fv, 1:

n € w} . Consequently, the word problem :for this presentation is

1dent1ca1 with the dec151on problem for 0,as Theorem 0.2.2. indicates.

B. Global decision problems.

. " Let £ be a countable algebraic language and let P be a .
property of sets of equations of £. The decision problem of P in £ is

the problem of the existence or not of an algorithm that enables us to
decide whether, given a set 3 C Eq, , 2 has the property P or not.
If such an algorithm exists, P is called decidable in <£. Otherwise ,
it is called undecidable in- L.
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The above formulation of the decision problem of P in L,
contains the vague statement ''given I C Eq, ". How is 2 given?Is every .

form of giving 3 suitable for our purpose ? Are there more than one
suitable forms?

A first observation is that, in order to be able to formulate our
problem in a strict mathematical way and to solve it by the help of
Recursion Theory, the relevant sets must be given in-a form that implies
an indexing of them (i.e. a representation of‘ each one of them by a
natural number). '

According to the kind of. the examined sets (i.e. recursive or
finite or singletons), they can be given in .various dcceptable forms .
Recursive sets I can be given by an algorithm that calculates their
characteristic function :fg or by an algorithm that calculates-a function
with domain 2 and the statement that they are recursive, to mention

only two examples. Finite sets and singletons can be given as recursive

sets and in, at least, one further way : By writing down their members in

the form {a,, a,, a,, ... an_l}. “ -.
Consequently,our original general decision problem of P in £

splits into a number of separate problems dependent upon the kind of the

given sets and the form in which the sets are given.

Are theseAproblems'related to one another and, if so, what sort

of relationship exists? : 4
Suppose that we have chosen a form in which the three kinds of
sets can be given (e.g. by a set of instructions for calculating their
characteristic functions). Then, obviously, a negative solution for
singletons would yiéld a negative solution for finite sets, and this
would yield a negative solution for recursive set. The converse
1mp11cat1on holds for positive solutions. .
| On the other hand suppose that we have chosen one kind of sets
(e.g. finite) and two forms of giving them (e.g. by writing down their
members and by giving instruction for their characteristic functions) The
correspondlng ‘decision problems, say A and B, are mot necessarily
related to one another. They are related if and only if there is a

uniform way of going from the one form to the other; in other wox rds,if

énd only if there is an algorithm that gives, for each set in the form
A, the same set in the form B, or conversely. " Indeed, if we tan go
“uniformly from A to B, then a negative solution to A provides a
negative solution to B while, a positive solution to B provides a

positive solution to A.
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After havingreluéidated any kind of vagueness in the informal
conception of the decision problem of a property P in £, we now
advance to give rigorous mathematical formulations of it, for

singletons, finite sets and recursive sets of £ -equations :
7 From our experience we know that the most probable solution to
such problems, in equational logic, is tﬁe negative one (There are
some exeptions : Burris [ ] gave a positive solution to the decision
problem of the property "M % has a finfte non-trivial model''for
languages with no operation symbols ‘of rank greater than one.llence,
our effort is to formulate our problems in ways that provide a maximal
number of negative solutions to decision problems of P, -in :one go.
Justified by the remarks made above,we make, thus, the following

conv el’lthDS :

From this point onward throughout this the51s

a. "given a singleton 2" means "given 2 in the form.{a}"

b. "given a finite 2' means "given Z in the form'{a 28, 58003, }

and

c. "given a recursive 3" means ' given an algorithm for .

calculating its characteristic function OCZ '

Suitable goedel numberings are also required :
Let G be the goedel numbering of the set of Turing Machines (or
equivalently, of the set of consistent sets of instructions that are

associated with the Turing Machines).

let g bea goedel munbering of the symbols of £ . We have
seen how gE ylelds a goedel numberlng gs of the set of expre551onsx
of the language. This also yields a goedel numbering 85 of the finite

sets of expressions of the language , by mapping each
2 =-{ao, cee 2y } to

- ' g**(i) = . 1—1 pg*(ai),

1 <1

where p g*(a. ) is the g*(a;)- -th prlme number.

Using these numberlngs we are now in the position to formulate

our problems :

a) Let A be the imagé of tﬁe set Eq£ - through gf, and let
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B = {Xx:(x €A) a(g* ' (x) has the property P)}.

The decision problem of P for singlé equations of £ is ‘the
problem of the existence or not of a partial recursive function ¢ such
that

i. for any x €A, ¢ is defined and

1 '
0.

I

ii. jJfor x€ AN B, ¢x)
(for x€ AN B, ¢x)

i}

b) Let A be the image of the set of finite séts .of équations
through gr*, and let

B={x:(x €A A(g;*'l(x) has the propérty P)}

A\l
kS

The decision problem of P for finite sets of L-equations is

the problem of the existence or not of a partial recursive function ©
with properties i and ii, for these A and B.

¢) Let A be the image of the set of Turing Machines under G,
which calculate characteristic functions of images of setsof L-equations
under g, and let . _

B = xﬁ(x € A) o (G '(X)calculates the characteristic
‘function of g'[3] for a set
5> with the property P)

The decision problem of P for recursive sets of £- equations

is as before,for these A and B.

The three formulations are justified by Church’s Thésis and by
the properties of goedel mumberings. .

Decision problems of properties of sets of equations appéared,for
the first time,in 1963, in an expository article by Tarski [ 28 J.There,
the decision problems of the properties

0. GEq[ZJ is equationally consistent

1. OEq[Z] is decidable

2. OEq[E] 'is equationally complete

3. there exists a finite algebra [, so that ATthaLl = OEqEZJ
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4, OE [21has a basis of given cardinality x, which cannot be

reduced any further,

for flnlte sets of equqtlons and for singletons were ralscd Perkins [19]
gave negatlve solutions to problem 0 for finite sets of equations in
any strong language, and to problems 1-3 for finite sets of equations
in any language with at least two binary operatlon synbols and at least
two constant symbols. Later McNulty [ 14 1 extended Perkins’ results and

gave a negatlve solution to problem 4. A numberof other properties were
examined by McKenzie [ 12 1, McNulty [ 14 1 and Pigozzi [ 22 1, almost
all of which turned out to be undecidable, at least in Ilanguages with

-.. sufficiently high complexity.

In the above mentioned article by Térski, another decision

problem of P in £ was raised. This is

d) The decision problem of P for finite £—élgebras i.e. the

problem of the existence or not of an algorithm that enables’ us to
decide whether the equational theory . Eq;Lgeneratedt3721g1vcn finite
L-algebra , has the property.

~Obviously, Tth;i is equationally consistent if and only if ‘i is
non trivial. So, the property ' 2 is. an equationally consistent
equational theory " is decidable for finite £ - algebras in any £ .
-McKenzie proved that the property ' 2 is an equationally complete
equational theory" is also decidable for finite £ -algebras in any L.
An outstanding open problem of type d, is the decision problem of the

property "3 is a finitely based equational theory" for finite algebras.

We don’t give here a strict mathematical formulation of the
. problem d, because we are not going to deal with it any further.The
focal point of this thesis is decision problems of types b and c,and
in §0.4, a survey of the existing methods of dealing with them and a
summary of the results obtained so far is given.

Before closing this brief exposition of the decision problems -
concerning equations, we should mention a problem that stands on the
borderline between local and global problems :

Let © be a fixed finitely based equational theory of £ . Is there an
algorithm that enables us to decide whether a finite set 3 of equations
of £ is a basis of 07 A finitely based equational theory 0,for which '
such an algorithm exists, iz a base-decidable equational theory and the

_problem,mentioned above,is the base-decidability problem of 0 .




31

Obviously, any finitély based and undecidable equational theory is base-
undecidable. The converse is not true, as Perkins showed - that the
decidable theory Eq£, for a language with just one binary qperation
symbol, is base-undecidable. McNully [ 13 ‘Jfound a very simple criterion
for base-undec1dab111ty of equatlonal theorles as an application of

which, almost all the well-known equational theorles are proved to be
base-undecidable.
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§0.4. Sufvey of the existing methods of proving- the .

undecidability of properties of sets of equations.

Undecidable propertles of sets of equations are the main concern
of this th351s, i.e. properties P of sets of <£- equatlons for which
there is no algorithm that enables us to decide whether, given a

“recursive (or finite or singleton) set of equations of £,it has the
property p. : '

———— A mmber of methods for prOV1ng the undGC1dab111ty of properties
of sets of equations have been developed since 1963. Although tables of
individual results, obtained by these, are available in the 1literature
(McNulty [ 14 1 and Taylor [ 29 1),no expository article about the
methods themselves is known to me. It secms appropriate here to ‘survey

the existing techniques, before moving on to present new ones :

A decision problem is effectively reducible to another if an

algorithmic solution to the second yields an algorithmic solution to the
first. The common feature of all the existing methods under discussion
is that, in order to prove the undecidability of a property P, they
effectively reduce a well-known not algorithmically solvable decision

problem to the decision problem of P.
None of them uses formal recursion theory but the reader is left in no
doubt that the given informal procedures have a formal equivalent,which

can be obtained routinely.

"A. Perkins’ Method (for finite sets of equations) [ 19 ]

InHall [ 6 ], it is proved that the word problem'of a finite
presentation of a semigroup is reducible to the word problem of a '
- presentation of a semigroup on two generators and finitely many relations.
Since it is well known that a finite presentation of a semigroup with
unsolvable word problem exists ( Post[ 23 1), we deduce that there
exists a presentation <{a,b}, R> of a semigroup on two generators and

finitely many defining relations with unsolvable word problem.. Perkins
uses this fact in order to prove the undecidability of the properties

0-3, which we mentioned on pg 24, for finite sets of equations, in
languages with at 1least two binary operation symbols and at least two

constant symbols.
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The method is the followino:

Let P be the property under examination and let £ be the
language in which the examination is being perfenned.

‘

The fact that < {a,b}, R > has an unsolvable word problem
1S expressed by the statement that the set :

14

{<U,V> € *({a,b}-words):RUS F U = V} | (1

where S = {(¥ v, v,v,)( (Vo+v)) v, = vg.(v;.v,)) },is undecidable.

If we manage to associate,'in an algorithmic way,with each pair
<U,V> of {a,b} -words, a finite set T(U,V) €Eq, , so that

RUSE U=Ve T(U,V) has the property P, (2)

then, by means of (1) A (2), the undec1dab111ty of the ploperty P, for

finite sets of equations of . £, will have been establlshed

B. Perkins’ Method (for recursive sets of equations)( 19 1

A recursive set R of pairs of natural numbers, whose second

coordinates form a non-recursive set R', can_be constructed. (For example,
consides a recursive set I of sentences which generates an undecidable
first order theory . It can be easily proved that the set of [I-proofs is
also recursive, while the set Th{ [ J={y : (3 X)(x is a [-proof of y)} is
non-recursive. By usihg suitable -goedel numberings, we can take the
mumerical sets R and R’, in the obvious way).

" Perkins reduces the decision problem of such an R’ to the deC151on
problem of the properties 0-3 of pg 29, for recursive sets of equatlons

in any strong language. This is done as follows:
Let ‘P be the property under examination and let £ bo. the

language in which the examination is taking place. We associate,in a -
recursive way, with each natural number n, a recursive set of L£-equations

En , so that
n € R" & En has the property P.

. So, the needed reduction has been obtained and the undecidability of P,
for recursive sets of L-equations, follows from the undecidability of R'.
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C. McNulty’s method (for finite sets of equations) [ 14 ]

" Let £ and £’ be two algebfaic languages.A system of definitions
for £ in <£' is a mapping O with domain the set of non - logical

" symbols of £ and range included in the set Term,. ,such that

a. v <5 constant symbols, 6(cj) is a constant term, and

b. ¥ O, opération symbol, 6(Oi) contains just the variables
| VooVysesVr(i)-1

Given 5, a mapping ing : TérmL, -~ Term, . is defined by induction:

mﬁ(vn) =Vn

ina(cj) =6(cj), Vvjed
inﬁ(oieo'_"er(i)-—l) = 6(Oi)[in660,...inﬁer(i)_lj', Vie I_.
5 is called a universal system of definitions for £ in £’ with
.respect to 0 C Eq - if, for any 2 C Eq, and for any (V\/) (¢ = V)ELq,
the following relation holds :

! B ~

(IF W) (0= " |
| (VV).(iDES = ingt) 2{(V_§_'f) (s=t)eslvol (V\?) (ina(p = ingl)

In Malcev [ 10 1, a finite set of equation M, in a language &

with just two unary operation symbols .f and g ,which contains just one

- variable v; ,is constuctud, such that the set

Hee Eq£0 s € has just the variable v. : MF ¢} (M

is undecidable. In order to prove the undecidability of a property P,

McNulty chooses a suitable universal system of definitions for £, in
£ with respect to {(¥vy)(vy, = Vy)} say &;. Then, by means of &;, he
recursively associates with each equation g, in just the symbols f, g

and Vs, a finite set B(e, 50, M) with the property
ME e« B(e, 5, M) has the property P (2)

Relation (2) reduces the decision problem of the set (1) to that of the

property P, for finite sets of f-equations, and the undecidability of
P follows.
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Three generalvéritéfia, providing‘sufficiéht conditions for the
undecidability of properties P (i.e. for the réducibility of the.
decision problem of the set (1) to the decision problem of P ) are
established and a large number of individual results are obtained , by a

simple application of them. In certain cases, where the criteria are
not applicable, individual proofs are given, which, although elaborated
and different from one another in the detail, simultaneously use the

technique described above. o
Here are the most important properties that have been proved to
be undecidable by McNulty’s method :

0. 3 is w-categorical, for £ non-trivial and finite
1. % 1is w -categorical, for £ non-trivial

2., % 1is catégorical in all

infinite powers |, for £ non-trivial and finite
3. OEq[E] is decidable , for £ non-trivial
4., I is irreduntant , for £ non-trivial

S. GEq[ZJ has an irréduntant

base of cardinalityAu , for £ non-trivial

6. 2 1is residually finite, for £ strong
7. % 1is residually small ; for £ strong

8. 2 has arbitrarily large
simple models , for £ strong

9. 2 has no infinite Jonson '
models , for £ strong

10. 2 1is a base of a primal
algebra, ' for £ strong.

D. Pigozzi’s Method (for finite sets of equations) [ 22 1

This method is an elaboration of the previous one. Instead of the
conceptually simpler notion of a universal system of definitions for L
in £' with respect to 0 C Eqﬂ.,the more elaborated notion of & normal
universal systém of definitions for £ in L' with respect to ®C3Eq£,
is used. This can be viewed as a universal system of definitions with

the extra property : ' There is a procedur¢ that gives, for any
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s C qu , an algorithm for checking whether, given € & Eq£ ,

{OJ‘G)(inas = ingt) : (¥ ¥)(s =t) €3} U0 Fe,

assuning that oracles (i.e. external agents that give correct
information, when asked) for 2 and 0 have'been_ provided. It is
jmmediately clear from the definitions that normal universal systems’
prov1de more information than unlversal ones. '

7 It is immediately clear from the deflnltlon that nonnal unlversal
systems provide more information than universal ones.Here lies the ab111ty
of the method to reach results not accessible by McNulty’s method.

Let P be the property under examination and let £  be the
language in which the examination is being performed. Consider the -
language £, with just cne binary operation symbol. Choose a suitable
mo C Eq, and a suitable normal universal system of definitions  for
L, in £ with respect to 0y, say 5, Then, in an algorithmic way,
associate, with each finite 32 C Eq£ , a finite set T(Z, ;) C Eq£

so that

[5] is equationally inconsistent <« T(Z2,5) has the -
property P.

®kq

.So, the deéision ~problem of the property "0 [2] 1is equationally

consistent" for finite sets of [Lj-equations is reduced to the decision

- problem of P for finite sets of f-equation. Since the former  has
been proved, by Perkins, to be undecidable, the latter is undecidable

too.

The two important applications of this method are the
undecidability of the Amalgamation property and the undecidability of
: the Schreier property, both in any strong language.

E. McKenzie’s Method (for single equations) [ 12 ]

" Two disjoint sets of natural mumbers A and B are recursively
inseparable if there is no C C w such that ACCand BC w- C .
Accordingly, two disjoint sets. of £-sentences are recur51ve1y |
1nseparable if their images through a goedel numbering are recur51vcly
inseparable. )

McKenzie proves that,in the language £ = <+> with just one
binary operation symbol, the sets |
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A= (\-’vv _Jle=0) €Lq, ¢ (Vv v .. )((p W =
¥ Vv ) vy = vy)
andr/
B = (VVV--vnl)(w llJ)eEq PO VY eV ) (0 = A v Y E V)

has a flnite modelﬂ

are récursivély inseparable. Thén,hé uses this fact in order to prove
the undecidability of certain propértiés P for single équations (or
for single universal sentencés) of any strong languagé.

The fact that it is not decidable whether ¢ € Eq, has finite

non-trivial models, for example, is proved as follows :
If the set -

C={¢ee€ Eq£ : ¢ has finite non-trivial modéls}

was decidable, then, since BcC and AC Sent -C A and B would

not be recursively 1nseparab1e #.

This method has apparently a very limited range of applications.
The few propertles, examined by McKenzle s method, though, are not
accessible by any of the previous ones.
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§ 0.5. Motivation

We have already mentiored the main decidability results, concerning
properties of sets of equations, known in the literatu?e.

What we found astonishing was the fact that , although a large
number of properties had been examined, two of the most fundamental
‘model theoretical ones, namely the properties

P : the first- order theory, generated by 2, 1is complcte,'and

P : the first-order theory, generated by 2, is model - complete,

~didn’t seen to have received any consideration.
This observation led us to pursue this line of research.

The answer to the decision problem of P , for finite sets of

equations of any algebraic language, easily emerges: '
Since the set Eq, has only trivial models, they are all elementary

equivalent and, consequently, the first- order theory, generated by EIq, ,
is complete. On the other hand, any first- order theory, axiomatizable by
a set of equationally consistent equations, is properly included in O[chl.
It is not, thus, complete. Hence we deduce that, given any finite 2 C Eq,,
it holds that

P(3) 0[] = O[Eq, ]« 0, [3] = Eq, )

Since, as McNulty has proved in [13], in any non- trivial algebraic
language, the equational theory Eqﬁ is base - undecidable, relation (1)
implies the following:

Theorem 0.5.0, Let £ be any non- trividl algebraic language. There .is

no algorithm that enables us to decide whether, given any finite 2 C Eq,,
the first - order theory generated by 2 is complete.

In the last chapter of this thesis, we shall prove that, in any
trivial language, Eq, is a base - decidable‘equafiohal theory. From  this
fact and from relation (1) the decidability of P , for finite sets of any
trivial language,will follow, and the decision problem of P for finite

sets of equations of all languages will have been completely settled.
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~ In the case of property P , the things are not that simple. As
we shall sce in the last chapter, the only model - complete first - order

theory of a trivial language, which is axiomatizable by equations, is
OCEq,]. This, togethér with the base -decidability of Eq,,implies that
P is decidable,for finite sets of equations of trivial languages.

~ On the other hand, as far as non-trivial languages are concerned,
we have been unable either to construct a model - complete first - order
theory, different from O[Eqﬂl, axiomatizable by equations, or to prove
that such a theory doesn’t exist. ' ,

The decision problem of P cannot, thus, be investigated any

further, before an answer to the following question is obtained: -

Question Is there an equationally consistent set of equations of a
non - trivial language, which generates a model - complete first - order
theory?

After having examined the decision problems of P and P, it
is natural to raise the corresponding problems for properties '

1. the first- order theory of the non- trivial models of 2 1is
complete, ' '

2. the first- order theory of the infinite models of 2 1is
complete,

3. the first-order theory of the non- trivial models of 2 is
model - complete and

4. the first- order theory of the infinite models of 2 is
model - complete.

We have tried to use the already known techniques of §0.4., 1in
order to settle these problems. Since ‘this effort has been uncuccessful,
the need to find new techniques, applicable here has emerged. In what

follows  these new methods and their range of application is presented.
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CHAPTER T
UNDECIDABLE PROPERTIES OF FINITE SETS OF EQUATIONS

§1.0 Introduction

Throughout this chapter, £ is a countable algebraic language and
P is a property of sets of Cf-equations. P(Z) is used to . denote  the
fact that 2 has the property P, while -P(Z) is used to denote the fact
that 3 doesn’t have the property P. '

S

The main concern of this chapter is "undecidable properties P for

finite sets of f-cquations'". What is meant by this statement, both’

“informally and formally,was explained in the introductory chapter.Here,we
present a new method of proving this kind of undecidability and, by
applying it, we establish a set of new results.

In §1.1 the general method is presented.ln §1.2 thelnmjecidability'
of properties

P, : the equational theory generated by 3 is equationally
complete

P, : the first-order theory generated by the infinite models of
2 1is complete '

: the first-order theory generated by'the infinite models of 2
is model-complete

P31 ¥ has the joint embedding propérty

: the first-order theory of the non-trivial models of 5 has
the joint embedding properiy and

P, : the first-order theory of the infinite models of s “has the
joint embedding property,

for finite sets of equations of any finite non-trivial algebraic languages

(with at least one constant symbol, in cases P, - P;)is proved, as an
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~application of the method. The decision problems of P;-Ps, in non -

trivial infinite languages,are examined in §1.3.
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) §1J7 A method of proviﬁg the undecidability of properties of

finite sets of equations.

In this section we present a general criterion that pr0V1des a set
of. su£f1c1ent conditions in order for a property P to be undecidable ,
for finite sets of equations of a non-trivial language £. The criterion
seems complicated, at the first look but its proof is almost obvious and
its application is straightforward. It turns out to be quite powerful,
since‘it gives access to properties which cannot be examined by any
of the existing methods. Its wide range of application will be shown in
§1.2. ‘ .

In section 0.3 the meaniné of the statement '"P is undecidable for

finite sets of f-equations'" was given and a formal equivalent of the

informal notion, through Goedel numberings and recursive functions, was
obtainted. ‘We only use informal procedures in  this "part, but the
corresponding formal ones can be easily constructed.

Before advancing to present the criterion (Theorem 1.1.0],cértain
new notions need to be defined :

Let I be a finite set of fL-equations.
In the introductory chapter, what is meant by " the equational
theory generated by I is decidable" and " the equational theory

generated by T is base-decidalle" was defined. We relativise the two

definitions, here, to a new set of £ -equations, A, and thus we get two.
weaker notions : _ o .
The equational theory generated by I is decidable with respect’

to A, if there is an algorithm that enables us to decide whether, given

e €D, ¢ is a consequence of I, .or not . Otherwise, eEq[[-] is
undecidable with respect to A.Siwilarly,the equational theory generated by
[ is base-decidable with respect to A, if there is an algorithm that

enables us to decide whether, given a finite 3 C A, 3 is a basis of
oEq[r] or not. Otherwise, GEq[F] is base-undecidable with respect to
A.

Let [ Dbe a finite set of Cf-equations and let Sym(I) be the
set of all operation symbols, constant symbols and variables occurring in
r.
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We define. [(I) to be the set of all equations (¥V) (@ ), in

at most Sym([), such that either

a. ¢ and ¢ contain exactly onc and the same variable, or
b.  there exists a term «, with exacly one variable, and

there exists an equafién: ¥ Vf(y1ﬂ= y,) in i‘, so that either 0=K[Y;]
and § = K[y,1, or ¢ = k[y,]and  =vy;, or o =k[y,]and { =vy,.

\

With the help of the above given definitions, we are now able to

* formilate our criterion :

Theorem 1.1.0. Let £ be a countable algebraic languagé, let I be
a finite set of <L-equations and let P be a property of finite sets
of f-équations. Suppose that the following conditions hold :

a. 'GEqFF] is decidable with respect to E(') and base-undecidable
" with respect to E(I).
b. GEJ:FJ has the property P, and every finite 3 C E(M),which

generates GEq[F], has also the property P.

c. Evéry finite 3 C E(I'), which generates a proper equational
subtheory of BEq[F], doesn’t have the property P.

Then, P is undecidable for finite sets of equations of L.

Proof
If P was decidable for f1n1te sets of f-equations,then theset

Eq[r] NE(r) ) a (S finite) : P(Z)' | (1)

would be decidable, too.
Conditions b. and c. of the theorem obviously imply that,given
finite 3 C qaq[rj N E(F) it holds :

(zco

Eq[r] (2)

Relation (2), together with the dec1dab111ty of set (1), would
imply the deC1dab111ty of the set '

P(E)*> OE [2]1=0

(2ceEq[rJ N E(F)) A (3 finite) :eEq[21= eEq[rJ (2)

Because of the decidability of 0 q[lj with respect to E(I'), we
get that the set |



45

(3 € E(T))A (3 finite) : 5C 0 (4)

Eq[r]
is decidable. |
Now, the decidability of sets(S)and.(4) would yleld the following
decision procedure, for checking whether a finite 2 C E(I) - generates
OEq[F]. or not :

[ Given 3, check whether S is in (4). If |

no, then 3 is not a basis of 6 [F] If
yes, then check whether > is in (3)
Again, if no, ¥ 1is not a base of OEq[F].

| If yes, 3 is a basis of Opqlr

Conséqucntly, GEq[F] would be base-decidable with respect to
E(lr') , which would contradict condition (@)of the theorem. ' a

.

In the course of applying Theorem 1.1.0, in §1.2., we shall use
Theorem 1.1.1.,given below,whenever we want to prove that the equationai
thecory gencrated by [ is base -undecidable with .-respect to
EM).

Theorem 1.1.1. is a slightly modified version of the theorem |,
proved by McNulty [13 ], that follows :

McNulty®s Theorem. Let I be ‘a finite set of equations of a’
countable, non-trivial algebraic language £,and let © be a non-trivial

term of £ (i.e a term containing either at least two unary operation

symbols or at least an operation symbol of rank greater than one) with

at least one variable, such that T F (¥v) (8 = vg). )
Then, the equational theory generated by [ is base-undecidable.

Outline of the proof

McNulty proves his theorem, using the technlque set out on pp34
and 35 of the 1ntroductory chapter. We outline here his ploof only to
the extent needed in order to convince the reader that our modification

is sound:

. Let £* ={f,g,h,k} be a language with exacly four unary operation ‘
symbols. A .

Consider a universal system &g of definitions for £* in £,
. with réspect to {(¥Vvy) (vg = vp)}, whose rangé contains only operation
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‘symbols occuring in 8. Such a system is proved by MchNulty to exist
always. , . _ '
, Let M be Malcev’s set, defined on p. 34, whose only.symbols are
f, g and Vv, Associate with each équgtion"s-‘of the form OVvi)(¢=¢)5

in at most f, g and Vi, the finite sct of £L-equations

e

B(e,d O,M)— 1n5 no v

7 ((m h [kvgl) [v,3= (ing o k) [vo D) O (v1=v,)el
0

¥V ((1115 hy EkVQD[vJ@: M) (y=y)eET v (VV) (v’ —v)Cl
: 0 .

McNulty proves that the following holds :
MEe « B(s,ﬁo,M) is a basis of OEq[F].

This relation, togéthér with the undécidability of set (M of P
34, yield the base-undecidability of OEq[F]. 0

Theorem 1.1.1. Let I be a finite set of equations of a countable,
non-trivial algebraic language Let 6 be a non-trivial term of £ w1th

at least one variable and with all its operation symbols and constant
" symbols in Sym(l). If [ F (¥Vv) (6 = vy), then the equational theory
“génerated by T is base undecidable with respect to E(I).

Proof
'I'he proof is obtalned by a close examination of the sets B(e,ﬁo,M)

of the prev1ous theorem : -

Claim . For every equation €, in at most the symbols f, g and Vis
the set B(g, 60, M) is included in E(T). :

Proof of the claim

Since T|= ¥V) (0 =v ), ' contains at least one variable .
Without loss of generality, we can identify it w1th the unique variable
Vis which occurs in Malcev’s set, M.

Having made this conventlon we now observe that the variables ,
oc:cum.*mb v1n B(e, §,, M), are exactly those occurring in . Also,
because of the choice of §,,and because.of the construction of B(e,dj,M) ,.
the operation symbols.and the constant symbols in it are among those in

r. Cohsequently, B(e,d,,M) is in at most Sym().
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On the other hand, sintev ¢ inferprets, by definition, £-terms
to L£¥*-terms wifh exactly the same variables , in60 [ M] consistsof
equations (WV) (¢ =¢’) with both ¢ and ¢" ..in.exactly the
variable Vi; SO in60 [M]1 C E(I). | o ' N

If we put k = inﬁoh wtk\ﬁ} or k= in531w[k\6] ,» we get thaE
the remaining equations in B( (¥v) (0 = {),0;,M) are of the form (¥v)
(kCvy1 =k[v21) or (W) (k[v;] = vy) or (W) (k [Vo1= vp), for some (¥V)
(v1 =V,) in T so they are in E(I), too. This completes the proof of
the claim. ' o O

Finally, the base- dec1dab111ty of OEq[F] , w1th.respect to E(D),
would yield jthrough the felatlon

ME € ¢ B(g, 8y, M)is a basis of BEq[F]

0

and the claim,a contradiction, exactly as before. So, we are done. [J
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' §L243Applications of the method.

Let S be a finite set of equations of the cowitable algébraic'

“language £. Let

’ =3 U {(3 VVyeeoV )% A ‘ (Vi # v.)):n € w-T}
Co , T v<i <jsn J
and let \

1 .
Z > =3 U {(3 V0V1) (Vg L Vl)}

Obviously, © [2¥] is the first order théory genérated by . the
class of infinite models of 2, while O[2>1] is the first-order thco-

Ty generated by the class of non-trivial models of 3.

We make the following notational conventions :

P,(2) stands for "the équational theory gencrated by 3 is ;

equationally complete'.

PI(E) stands for "the first-order theory generated by 3° is

complete'.
P,(3) stands for “the first-order théory generated by 5% is

'mbdel—complete”.
&

Pg(Z) stands for " has the joint embedding property".

1 .
P, (3) stands for s’ has the joint ‘embedding property', and

PS(Z) stands for "S° has the joint embedding property".

All the notions, used above, were defined in the introductory -

‘ chapter.In this section, we apply the method, previously described, and
we get the undecidability of properties Py - Pg, for finite sets of
equations of any nqn-trivial finite language (in cases P3; - Pg , the

language is also required to have at least one constant symbol).Theorems
1.2.0,°1.2.3 and 1.2.5, establish the above mentioned undecidability
results :

Theotrem 1.2.0. Let £ be a non-trivial fiﬁite algebraic language .

There is no algorithm that enables us to decide whether, given any finite
2 CEq, , 2 has the property P; (i € {0,11).
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Lemma 1.2.1. If an equationally consistent equational theory has

property Pl, then it has property Po'

Proof.
Supnose that ¢ 1is equatlonally consistent but not equatlonallym

complete Then, by definition, there 1is an equatlonal theory 0, such
that

) gﬁ 0 S }k%‘

Consider the term algebras Sb and :E Because of Theorem 0.
2. 2.,they are both 1nf1n1te models of 0, but they don’t satisfy the
‘same equations. So, ‘we R found Sb 0 and &B k_m such that Sb %
Sb « This means that the first order theorx, generated by 0, is not
complete. ]

Lemma 1.2.2. If the equatlonal theory, generated by a flnlte set of

equations ,3, of a countable algebraic language L, is equationally
complete, then it is decidable.

Proof.
Obviously, the following holds :

(VeeE )EFew > = )

Claim. For any ¢ € Eq£, exactly one of the relations 3! F e and
3>! k- ¢ holds.

Proof of the claim.

Since OL [3] is equationally consistent,  has at least one
non-trivial model Consequently, the first order theory generated by
3>! is consistent and it cannot contain the contradictory statement
€A -€.

- Suppose that 1 e Then, there exists a non-trivial model
of 3, which doesn’t satisfy e. Thus,since any two non-trivial models

of 2 satisfy the same equations, it holds
VWA E S (AR €)
or, cquivalently, it holds

VU FETH[ARE-€).
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This means that _Z>l = -E. So .the proof of the claim is complete. 0O

‘It is well known (see Monk [ 15 1, p.173) that,,since s>1 is.

flnlte, the set of first- 01der consequences of 5”1 can be cffectivelx'
listed ; i.e. the set 0 [57'7 can be written as an w- sequence

i

7/
Ops Oys Opp wve O 5 wos (2)

th

SO that, given e 1ny11€5w the sentence © , that falls at the n~ place

in the sequence, can be algorlthmlcally found. Thus,

glven €€ Eq£, we are assured by the claim that exactly]
one of € and -€ appears in (2), after flnltely many
stépsi If ¢ appears first, then write € € G‘QEZ],
justified by relation (1).If -¢ appears first, then
| write € £0, [3], justified again by relation (1).

Eq.
The above described algorithm is a decission procedure for GEq[ZJ. O

Proof of théorém 1.2.0.
Let

=<WQl e Gl 2

be any algebraic non-trivial language, with both I and J finite.Then
the set of f£-equations

_ _ s s st o2
r= (VVOVI"‘Vf(i)_l)(Q' VorrVr(i)-1 * vo).1€EI}U{cj-—cj-.<J,J>>€ J
is also finite. We shall prove that I satisfies conditions a, b and

¢ of theorem 1.1.0, for P = P, and P =P, respectivély :

Condition b. Since 'GEq[r] is equationally consistent, ™ has
- models. Consider any two I F ™ and BF T of the same cardinality

a. Because of the restrictions imposed on the constant symbols by T,
there exist <a,b> € A x B, such that '

¥ j EJ)(cJ?[= 4 A c§.’3= b).

Consider now any bijection

f : A>—> B;

that maps a to b. For any operation: symbol Q and for any <ay, aj,
ceesy, > € r(J‘JA it holds:
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A 9
£(Q] (ag,ayeeeay(5) )= £@ )= (£(ay), £la,(;y.))- ©)
Also, because of (1) ,for any constant symbol cj, it holds:

f(c';?‘) = f(a) = b = cJ23 | (3)

Relations (2) and (3)prove that f is an isomorphism between the
structures 2L and B. |

We have proved that any two models of F°° of cardinality o« are
isomorphic; consequéntly, ™ is a-categorlcal Thus, by Theorem 0.1.0.
orr®y is compléte. By lemma 1.2.1. , the equatlonal completeness of OEq[l']
follows.

We have proved that
Py AP (N

holds. The rémaining part of condition b holds trivially. O
Condition a Lemma 1.2.2. proves that the finitely based, equatlonally
complete equational theory OEq[l'] is decidable; hence GEq[ ri is
decidable with respect to E(I). |

The non-trivial language £ contains, by definition, either an
operation symbol Qi of rank greater than one or two wunary ope1at10n
.symbols £ and g.In the first case, it holds

M E V) QVgeeVegiyor = Yoo (M
while, in the second case, it holds
r }= O‘IVO)(ngO = V). (2)

Relations (1) and (2) show that there exists always an £-term 9, that
satisfies the requirements of Theorem 1.1.1.; so,the base-undecidability
of OEq[ M1 ,with respect to E(I'),follows. . ' 0

Condition c, Let 3 be any finite set of r-équations such that

Eq[i] C OEq[['] . Then, by the definition of equational completeness
Eq[Z] is not equationally complete By Lemma 1.2.1., 0[2"] cannot be
complete, either. We have proved that it holds :

[-P, ()] A [-P(5)] 0

Since conditions a, b and c of 'Iheérém 1.1.0. are satisfied by T



52

for both P, and P, the two properties are undecidable for {inite

sets of .£—équatioﬁs. ‘ ' 0

Theorem 1.2.3. Let £  be a non-trivial finite algebmlc lfmguagc

There is no algorlthm that enables us to deC1de whether , given any
finite 2 c Eq C e b3 has the property Pz

Proof

Let
=<{Q}; I, e} ¢ &2
be any finite non-trivial a_lgebralc language. Then the set of équations
= {((¥V) (QVoV1+++Vp(5yo1 = Vo) ie 1)

is also finite. We shall prové that I satisfies conditions a, b and

c of Theorem 1.1.0, for the property P.:

Condition a. Let Tsym(I) be the set of . £-temms in at most Sym(J'),
It can be shown, by two easy. inductions on the length of the terms ¢

and {, respectively, that,for any pair <¢,¥> e Ts (N, it holds :
> y pai. ym

r |= W) (9 =\) « (the first leftmost variable occurring
in @  coincides with the first
leftmost variable occurring in ¢).

This, obviously, providés a decision proceduré for checking whether ,
given an equation € 1in at most Sym(I), it belongs to GFq[F] or
not. Consequently, OEq[l' 1 is decidable with respect to E(I).

By applying Theorem 1.1.1. exactly as in the previous theorem,
we prove that OEq[r ] is base-undecidable with respect to E(I). 0

Condition b. Let A and B be any two infinite models of TI%,
such that A C3. :

Let a5 € A be the 1nterpretat10n of the constant symbol <5 in
2£J. ; in other words, let

VjeJ,'cg[=a.=c'fB M

. Consider the éxpansion of £ by A
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£A=£U{ca:a€A}

and the sét of “CA sentences
l-A=ru{cj =caj :jeJrU e, = ¢ a = b},
/

Claim © [l'A] is complétc in ‘CA‘

Proof of thé claim.

A has the following propértiés :

a. It has no finite models (since,because of the construction of FA, '
any model of it has at least as many elements 'é;ﬂ). -

b. It is a—catégorical, for some infinite a (becausé if € and
D are any two £ pA-models of Ta of cardinality «, there always exists

a bijection
f:C»»D

that maps, for each a € A, cg to c?. Wé can easily show that f£ is
an isomorphism between the two structures). '
Conditions a and b of Theorem 0.1.0. are satisfied by T A

SO l‘A is complete. 0

Now, by the claim, any two models of [, are elementary
equivalent. The £,-structures ’HA and B, (see §0.1.  for their |
definition) are, because of relations (1), models of I'A; consequently,

25\ = 23A .
It holds, thus ,that
(Vo € Form ) (¥ 4 € YA) (U E oral « B oLal @

Relation (2) proves that the substructure AL of &, is an eleméntary
substructure of 3.

It has been shown that
VAEMEFS EIM(ACB->AB)

Thus, it has been shown that [® has property P,.
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The remaing part of condition b holds trivially. 0

Condition c. Obv1ously, it suffices to show that cach finite 3 C
BE [ryn E(r) the infinite models of whlch generate a model-- complete
first order theory, is a basis of G) [l'] In other words ‘it suffices

to prove that

VA (AFZ-AED. (M

Towards proving relation (M, let U be any model of 2, and
let B be any infinite model of TI%, such that A n B = ¢. Define the

L-structure

. . 9 9
AUB =AU B, {QimUQS}i e’ {CjJUN%j e3>

as follows :- : o o

a. For each operation symbol Q.l and for each

a-= <ag’000ar(i)_1> € r(i)A U B’
r(2-2‘”"3(50 -¥@, if ie™Wa

o,V 8@ = oB@, if ae s

QQ[UQS() QQIU23

(ag,ap,-+-ay), otherwise.

-~

b. For each constant symbol <5
cAUB_ B
J J
Obviously, A U3 is well-defined.

Claim AuB is a model of 5.

Proof of thé claim.

Let k(v ) be any term with no constant symbols and with exactly
the variable vy in it. ' '
It can be shown, by an easy induction on the length of k, that

¥ aenE V3w = )

and
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v 2 e P - R,

Thus, because of (2) and (3) and of the definition of Qm u3 , the
following also hold :
RQIUQS(Q;[ u23 kV[(QQ[(a)), if5e T,
0P X “3(5)) - @), ifae Ty (4)
kaU‘Q}(QiQIUQS(a)) . k:‘)[(Qi'Q[U%(aO,...aO)), otherwise.

Since 3 is included in E(I), each equation (¥V) (p =¢) in 3
contains no constant symbols anci it is of one of the following forms :

i. ® and ¢ contain one and the same variable, in which case,
the satisfaction of ¥V) (¢ = V) by AUB is implied by the fact that
both A and B satisfy (¥v) (¢ = ¢) and relations (2) and (3) hold.

ii. for some k and some i€ I, ¢ is k[ino

b is Qvg.. Vr(i)-1*

Viee ‘vr(i)—1] and

Since [ is a model of 2, it holds :
vie Ayatiedan = o¥an. )

Relations (4) and (5) imoly that, if 3 € T(A, then it holds that.

A - _
K ”%2{“ @) = @y - F@,

and, if a ¢ T(Wp put a, € A, then it holds that

RAuYB 2[u23 3 :)r(Q,\[ (a,

() 2= QG ea)

Q -
Q A UQS(a)

.The remaining cases accept similar treatment.

We’ve proved, thus, that
- AU, - A -
waeUupEia = v

_which means that 2l U satisfies the equation (¥V) (o = V).

iii..for some k and some i€ I, ¢ is k[QiV "'Vr(i)—1] and

is k[Vo]
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Since 2 .is a model of 2, it holds that
- (i 9 9 9
v ae " Mya M) = xan ®
- Consequently, because of relations (2), (4 and (6), we gct that , if
ae r(l)A then

(')
k [U"‘B(Q AB@) = ¥ @) = Kfay)

A}

and, if 3¢ TWA put &eA,ma

kﬂ[ur%(Q .JUQB(—)) - ]\ (Q ( » ao)) = k'?[(a )

2[u~3
=k (ap)-

Similarly,for the remainig'cases. :
Thus, AUB satisfies the equation (¥v) (¢ = V).
We have proved that évery possible equation in 2  is satisfied

by AUB; so, we have proved the claim. O

We use the claim in order to prove that <A itself is a model of

Since % UB extends B, by_gonsffﬁction it is infinite .
Consequently, we have found two infinite models B and MU B of 3,
such that the former is a substructure of the latter. U U B is, thus,
elementary equivalent to B (because of the fact that 2 has  the
property Pz’ by hypothesis). Consequently,

AUBET.
This implies that
2[%[‘.
_ Relation (1) has now been proved and, as an immediate consequence

the satisfaction of condition c. of Theorem 1.1.0 by I has also been
established. . ]

Theorem 1.2.3. follows, now, by a simple application of Theorem
1.1.0. 0
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Theorem 1.2.4. Let £ be a non-trivial finite algebraic language

which contains at least one constant symbol. There is no algorlthm that
enables us to decide whether, given any finite 3 C Eq,, . has the-
property P. (i€ {3,4,5}) or not.

Proof

Let

L=<ilyepce>

be any non-trivial algébraic languagé, with I finite.
Then, the set of <£-equations '

T {(¥vg) (Qqugvyeevy = Vg) & i€ 1}

is also finite. We shall prové that [ satisfies conditions ‘a, b and
c of Theorem 1.1.0. for P =P, (i€ {3,4,5D

Condition 'a. The base-undeC1dab111ty of Gq[l‘] W1th respect to

E(T) follows from the fact that there exists a term 0, satisfying the
requ1rements of Theorem 1.1.1.

" Claim. W o€ Tsym(I) (T E (Fvg) (9 = vp))

‘Proof of the ¢laim. (By induction on the length of ).

For ¢ =v,, it holds that T ¥ \(0) Vo = Vo)

Suppose that for any term 6, of length less than that of g¢,it
holds that T (¥v(6 = V) Suppose also that o = Q;8,0 r(1) 1
>eT(1) Tsym(l' ). Then we have

for some i€ I and some <60 ..

, r(1)-1
that
rk Qieoel...er(i)_l = ino»vo...v0 =V,
This completés the proof of the claim. 0
' By the claim, ahy equation in at most Sym(l) is in GEq[l'] ; SO
OEq[I'] is decidable with respect to E(I). _ g

Condition b. Let A and B be any two models of . By Theorem

0.2.1., AxB is also a model of T. Consider the injective mappings

f : A>>A x B and By»—3A x B,
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__givén by the rulés )

. 9
f@) = <a,c> and gb) =<c%b>,

respectivélyu Obviously, they are both émbéddings. Since any two models
of [ can be enbedded in a third, [, ™! and I~ have the joint
embedding property.The remaining part of condition b holds trivially.Q

Condition c.

3

Claim. For any finite set of f-equations 3, in at most ’{Qi}i c1V
U vy}, and for any i€ I, it holds

S E Wv&(%ﬁﬁr.mo=vw«+2FQf:c.nc=c.

" Proof of the claim

Direction - holds trivially.
I prove direction <. Suppose that, for some i € I,

SEQcc..c=c, M
but
b3 hﬁ () (QVg e +Vy = V)
Then, there exists a model A of 3, and an element a e A,such that
Qg%a, a, ...a) # a. (2)
Consider the structure

' A
A=< QY ¢ pp 2>

Since 3 doesn’t contain c, 9

2),

is a model of 3. Also, because of

Q['Qe, Qic C +.aC = C.

This contradicts relation (1). So, we are done. O

" Let 2 be a finite set of £-équations, in at most '{Qi}i eI v

‘{vb}, such that

Opq[3] & OpoLTI.
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Then, there cxists an i € I, so that

S G@vo)(ino...V0.= vo) ' | (M
Because of the claim, relation (N impliés that
> K Qic C ..C = C,
Let :SF and 53% be the term algébras of the equational théories
GL [r1 and OEq[Z], reqpcctlvely. Then, because of Theorem 0.2. 2., We
get

(F F3"uiQcc c=ch a & FuiQeccc=ch (2)

We have found two models of 5%, that cannot be embedded in a thlrd

model of it (because, otherw1se this third model would satlsfy the
contradictory statement

Qcc..c=c A (Qcc..c=q),

as relation (2) shows). Thus, -3% doesn’t have fh@ joiﬁt . embedding_
property; hence, neither 5! nor 3 have it. 0

Since conditions a, b and ¢ of Theorem 1.1.0. are satlsfled for
.any P.(i€ {3,4,5)), the needed undecidability of the plopertles,A for
finite sets of equations of the language (£ = < {Qi} s €12 €% is
established. '

-

Suppose now that the language contains more than one  constant

symbols. In other words, suppose that

<Q} {c}u{cj}jeJ>.

iel
For any finite E£ c Eqﬁ, consider the finite set

3.=3 U{c.=c: jeEJ}.

Obviously, for each Pi (i€ {3,4,5}), and for each finite 2, C Eq,,it
holds : ' .

Pi(2£) inf = Pi(z_c',) incg’. (3)

Consequently, Pi’s are also undecidable for finite sets of L-equations.
O
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For languages containing constant symbols, properties P. , D,
: o =

and P are, thus, undecidable. It is natural to ask what happens if

L contains no constant symbols :

In such languages, the set
2, = {¥v) (v, = v}

has the propérties Pi . (bécause, for any twa models A and B of

it, with An B =@, one can find a common extention of them).

On the other hand, in the language .
=<f, g>,.

where f and g - are unary opération symbols, the set

5 o= {wvo W) EWY = £v) ]

has none of properties P.. (because : if we consider any two infinite
models A and B of 3, such that

AU W) (@EW)) = £(vy))
and
B (W) (g(Ev)) = £(v), M
and if
A6 EDE L WE)A k :306), )

then, for any a € A and any ce C, it holds :

£€ € ©) = € m@)) - ne X)) -
e ¥ @) - S - €.
Consequently,
€ b (W) () = £v,)). 3

Because of (3) and of the fact that B is embeddable in @, it holds
that '

Bi= (W) (g(£(v,)) = £(v,))
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which contadicts (1). 2 has, thus, none of properties Pi).

Since we have found sets of £—equat10ns haV1ng the properties P
(1 € {3,4,5}) and sets of L-equations not having them, the answer to

the following question is not trivial :

Question. Are the prOpertles Py, P, and P, undecidable fbr finite
sets of equations of a non-trivial finite algebralc language containing

no constant symbols ? '

Our method (Theorem 1.1.0) cannot be applied in this case;becéuse,
for any [ C qu ) OEq[F] is bound to contain 2 ='{CVVi)(vi = v;)}c

E(r') , for some i € w.

As we mentioned in the introduct%bn,’in Perkins’ [ 19 1 the
undecidability of the property "eEq,[z ] 1s equationally complete " for
finite sets of equations of any finite language with at least two constant
symbols and two operation symbols,is proved.We have obtained, hence, an
‘extention of Perkins’ result, in this section.

To the best of my knowledge, the results,concerning the remaining

properties, are completely new.
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- §1.3.Denumerable languages.

We have proved, in the previous section, that properties Py - Pg
are undecidable f01 finite sets of equations of any finite non-trivial
language (with some weak restrictions on it, in certain cases). What
happens, though, if £ is infinite?Our general method might be applied
here, but before making_ such an atempt, we should examine whether

‘sets, having the propérty Pi’ exist in these‘languages :

-A. Wewéxaminé pI'OpevatiieAS b, P, and P,.

If £ is an infinite non—tr1v1a1 algebraic language then cither
it contalns 1nf1n1tely many operatlon symbols, or, it contains finitely
many operatlon symbols but infinitely many constant symbols, We examine

’

the two cases, separately
Case A, '"C contains infinitély many opération symbols .

. Let = bea finite set of L-equations and let L’z be the
sub anguacre of £, with exactly the non-logical symbols occurring in 3.
Then, since "CZ is finite, £ - Ls contains operation symbols.

If- GEq£ [5] 1is equationally inconsistent, then 2 has none of
properties Pi'

If BEq£ [2] is equationally cohsistént, then QE%EZ] is also

equationally consistent; so 2 has an infinite Ls-model. Consequently:
by Theorem 0.1. 3, it has an .Cz-model AL, of cardinality w .Consider

any denumerable subset X of A. If [, is the substructure of

A generatéd by X, it has cardinality v (as the relations X € A, and
Va€A)@P o€ Tem£z) (3 xe mX) (a = qﬂ(fc)) imply). So we have

(UEZ) A (A k) A (A (1)

Consider now any two a, € A and b € A A and any £ - expansmn

A of 2L, which satisfies the relatlons _

3 Q €t-ep)(vae T 0) Q¥ (@)=ay)
- - (2)
VQ eL-Ly)(¥vae r(1)1\-;\0) (Qf.f[ (@)=by) -
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AL, is accordingly expanded to a submodel Qq)of o -
Relation (1) implies that ' ‘

(U F ) A (A B2 (g U,
while, relations (2) imply that
- LAF ) Qv e Vi 5y 17 V(g Vor(i)-1).

,Q[; hﬁ(Vﬁ)(ino...Vf(i)_l= inr(i)"fvér(i)-l) .

Consequently, 2 has none of propértiés_ P..

We have proved that in lanpuages with infinitely many operation

symbols, there are no finite sets with any of the properties Py, P; and
on ’

Case A, " L contains finitely many operation symbols and- infinitely
rnany constant symbols'' .

Lét, again, 2 be a finite set of £~équations, and let 32 be
the sublanguage of £ with exactly the non-logical symbols occuring
in 2. Then, since 2 is finite, £-£z contains at least two distinct

constant symbols c. and c. .
. N 2

If eEq [2]is equationally inconsistént, then 3 has none of
L

properties Py and P;. A
1f eEq [2]is equationally consistent, then 2 has an infinite
L

Ls ~model A. Obviously, one can always find two £-éxpansions A" and
A" of A, such that ' '

(A E Z.U{Ch = Cjz}) AU = Zu{cjl z cjz})

This prové that 3 has none of propérties "Pp and P,.

We have proved,thus,that in languages with finitely many operation

symbols _and infinitely many constant symbols, there are no finite sets

with any of the properties Py, and Pj.

On the other hand, as far as property P, is concérnéd, one can
prove exactly as in Theorem 1.1.3 ‘that the finite set

3= L) (QqVgVy e Vpggyoy = Vo )i €T
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has property P, and that P; is undecidable for finite sets of

languages with finitely many operation symbols.

We summarise what we’ve said above, in the following thcorem :

Theorem 1.3.0. Let £ be a denumerable non-trivial algebraic

language.'Then,

a. If £ contains infinitely ﬁény dperation symbols, the

properties Po’ P, and P, are decidable for finite sets of
L-equations, and

b. if £ contains finitely many operation symbols, properties
P, and P, are decidable, while property P, is undecidable
for finite sets of L-equations.

B.We examine properties . P, P, and ‘Ps.

The decision problem of P.’s , for languages with no constant

symbols was discussed at the end of the previous section Everything
said there for finite languages can be repeated here, for the
demmerable case.Now we deal with demumerable languages with at least
one constant symbol :

Let c be a constant symbol in L.
Let X be any finite set of £-equations and let Ls be the
least language in which 2 can be formulated,.C--.C2 contains either

i. an‘opération.symbol Q, or

ii,a constant symbol ¢’ different from c.

If eEqPEZ] is equationally consistent,then S has an infinite
£z-mode1_2£. Obviously, there always exist two fL-expansions of
9, say 9 and 9", such that,in case (i),

(A F3U{Qcci.c=cha(U kS UQcc...c#c})
and ,in case (ii),

(A EsUfc=c) A (A" EZU{c=c'].



65

This proves that 2  has none of propérties Ps.
If 0. [3]is equationally inconsistent, then it has Pj but

Fa

not P, and Ps.

We have proved, thus, that there is no finite > with the

prbperty Py or the property Ps and that it holds

Py(3) ey, [3] = By

Towards examining the decision problem of P;,now,let us consider

_ the set_

————————— . — - —————— e S S,

F={(Wyvy) Qug...vg =vﬂ},

if £ contains an operation symbol Q or rank gréatér than oné, or

the set )

e - -

F=AMvyv)(fgvy, = vl,

if £ contains only unary operation symbols.
We can easily verify, helped by relation (1), that I satisfies
conditions a, b and c¢ of Theorem 1.1.0. for P, 5 hence, the

undecidability of Pj3, for- finite sets of [f-equations follows.

Sumarising what we have proved above, we gét the following
theorenm :
Theorem 1.3.1. Let £ be any dénumerable non - trivial algebraic

language, with at least onc constant symbol.Property P; is undecidable,
are decidable, for finite sets of [ -

while properties P, and Pg

equations.

In this section and in the previous one, the decision problems of
Pi’s, for finite sets of equations of all kinds of non-trivial countable

languages, were examined.Negative answers to the majority of the

problems were given, which obviously. imply negative answers to the

corresponding problems, for recursive sets of equations.
All the same in the rare cases, given by Theorems 1.3.0 and 1.3.1,
where positive answers were obtained, no answers concerning recursive
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sets are implicit. The corresponding decision problem for recursive
sets of - -equations are still to be answered. This is the task of tho

follow1nﬂ theorem :

Theorem 1.3.2. In any demumerable non-trivial algébraic 1anguagé L

(with at least one constant symbol, in cases P;, P, and Ps), there is
no algorithm that enables us to decide whether, given any recursive sect
5 CEq,, 2 has the property P, (i € {0,1,2,4,5} ).

Al

Proof
Let

<[Q }l € I’ {CJ}J € J>

£ contains an operation symbol Qp of minimal rank r, and possibly
a constant symbol c,. Consider any non-trivial finite sublanguage £,
of £, such that )

{Qoy CO} c 'CO’

and associate, with each finite 3, C qu , the recursive set of £ -
0 -

equations
3=3, U{(V )(Q VoVyeesV. (1) -1 Q VooV 0_1) : Qi €EL-Lo} U

{cj = c0 : Cj € £-£0}

If we prove that, for each P., it holds that
_P.(zo) in £, P. ) in £,

the reduction of the unsolvable decision problems of P ’s, for f1n1te
sets of £ p-equations, to the decision problems under ekamlnatlon will
have been obtained and the needed undec1dab111ty will have been
established. It suffices, thus, to prove the following claim:

Clalnu For each finite 2 C Eq£ , and for each i€ {0,1,2,4,5},it
holds : . ' |

P;(5,) in £ © P;(5) in ¢

Proof of the claim.
Direction "«—'" is obv1ous for all i’s. We are proving the other

‘dlrectlon :



67

For Py, D, and P, .

Suppose that P,(%,) holds; i.e. suppose that

¥ Al= TNEB/E (Y © B < ). (1)

Consider any two infinite £-models of 2, say YA and B such
that A  is included in Q3. It is a matter of simplé observation that
each f-formula, ¢, is equivalent under 2 to an £Ly-formula d)(p. In
other words, obviously it holds : '

1

(v ¢ € Form)) (3 4, € Form, YV 6 k 3)(V T € “0) (GF UIET « & K, [E1) ()

So, by relations (1) and (2), we get that, ;for each ¢ € Form,, and for
each a € YA, it holds :

AL ora1 « Ak G a1« Aseg b b1«
@ B/Ly k blal « Bk ww[aj -
+BE olal.
We have proved that
VAE ¥ B E)(ACB > A, <).

So, we have proved that 3 has the property P,.
The two other cases are treated similarly.

For P, and P
Suppose that 3z, has the property P,.

Consider any two non-trivial £-models of 3, say AL and &,
and their restrictions A /L, and B/, . By hypothesis, these  are
embeddable in an fy-model § of %;, which can be obviously expanded
to an L-model & of 3.

We’ve proved , thus, that

vukhewskEhae Ehaou~»6)ag: 3 6).

Consequently, 2 has the property P,.
Similarly, for Ps. -0
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CHAPTER 2.

UNDECIDABLE PROPERTIES OF RECURSIVE SETS OF
EQUATIONS

§2.0. Introduction

The main concern of this chapter is "undecidable properties P

of recursive sets of equations” .

In §2.1. we reduce a well-known recursively unsolvablé problem
(namely, the halting problem for Turing Machines) to the problem of
the existence of an algorithm for deciding whether a computable field
is finite. We establish, thus, the non-existence of such an algorithm.

In §2.2. we further reduce the problem of the existence of the
above mentioned decision procedure to the decision problem of each

of properties
Pg : 2 has finite non-trivial models,

P; : The first-order theory of the non-trivial models of 32 is

complete,

Pg : The first-order theory of the non-trivial models of 3 1is model~’

conplete,

for recursive sets 2 of equations of any strong language with

infinitely many operation symbols. The undecidablity of the properties

thus, follows.
We conclude § 2.2. with a discussion about the results obtained

and the open problems raised in relation to them.’
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§ 2.1. We cannot decide whether a field is finite

We plove, in this sectlon, that there is no algorlthm which enables
us to decide whether a field has a finite domain.

We hope it has been made clear in Chapter 0, that,in order for such

a problem to accept a mathematlcal formulation, the objects undcrcon51dcrat10n

(here the fields) must be given in a way that HlelGS an 1ndcx1ng of them
(i.e. a representatlon of each one of them by a natural number).Obviously,
the class of all fields is too broad to’be indexed; but,for our purpose,an
indexing of a subclass of it suffices:

We call a field § =<F , i , S > computable if [ 1is a recursive
set of natural numbers and if +° and § are resursive functions.
Let G be the goedel mumbering of the set of Turing Machines,defined

on pg. 19.For each natural mumber x,let wz be the n-ary resursive function,

calculated by G !(x), and let Rx be the resursive set with characteristic

- function mi. We call x an index of @2 or an index of Rx , respectively.

. The function i, that maps each triple of the form
: 2
<Rx,®y,0§>
to the natural number
2% . 3V, 5?

is, obviously, an injection. It implies, thus, an indexing of the set of
all triples. Since every recursive field is a triple of the above kind
i also indexes the class of all computable fields.

CWe call i(F) =2° .3 . 5% an index of the field &=<RX,@§,@§>

We now advance to prove the main theorem of this section:

Theorem 2.1.0. There is no algorithm that enables us to decide whether
a computable field is finite.

Proof

Let A and B be the following two séts of natural numbérs:




A={w=2%.3,5%; i"l(w) is a field}
B={w=2".3".5": R is finite }

It suffices to show that theré is no unary partial resursive function

¢ with the properties:
i. For every w€ A, u(w) is defined ,
ii. ¢(w)=1 for every w in AN B, while ¢(w)=0 for
every w € A-B. . 1 ‘

~ Towards establishing -the non-existence of such a WU, we shall prove
the following:

Claim An b;seqtlence

8:n=<Fn"§n’ ,8;n>
of computable fields can be constructed, such that:
a. Fo_ = {0,1} and any. other Fn is infinige
b. Any two F and F_ have exactly the elements 0 and 1 in
common
c. There exists an algorithm that enables us to fin&, for each
X € 0, the Fn’s} to which x belongs.

Proof of the claim

The construction is carried out step by step as follows:

‘l_—s_E step

Let <Z,+, .> be the unigue factorisation domain of the integers,
and let f:Z » @y be the bijection,given by the rule

f(n)=2n , if n€w

f(n)=2|n|-1 , if n€Z - w
The structure <w,®,0>, with ® and © given by the rules

¥<mn>€ % , men=fEm)+£m)
mon=f(f 1 m).f ()

is, obviously, isomorphic with <Z,+, .> . It is, thus, a unique
factorisation domain with unit 2 -and zero 0.
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21—lé step

Let y#0 and lét g.c.d. (x.y) stand for "the gréatést conmon
divisor of x and y in <Z, +, .> 'takén as positivé and such that the
greatest common divisor of 0 and y 1s ly] U51ng welHnown facts about
1ntegers, since f is algorlthmlc we conclude that the following

functlons and relatlons are recursxve'

(1) G.C.D.(x,y) = £(g.c.d. (1 (x),£ 1 (y))
(2) G.C.D.(x,y) =2
(3) O (x, -»:E(quotlent of the division of f (x) by the
- “g.c.d. (£ (X £ ()
D mz(x,)ﬂ = f (quotient of the division of f (y) by the
' g.c.d. (£ ), £ ()

The recursiveness of relation (2) 1mmed1ate1y implies the

recursiveness of the sets

= 10,2}
A ={2¢. 3" p, G.CD(KMN =2, hE 2 - 1)
A= 5 p GO =2 AE 20~ T
. P .1 (k,A) €20~ 1}

while the recursiveness of functions (3) and (4) imply the recursiveness
of the binary partial recursive functions @ and © , which are defined

as follows:

0©@0=0,002=200=2,2@2 =

2X.3y.p-zz .3w'pl=2¢>1 (Xow@yOz,yOw) .Sd)z(wa@yOz,yO‘w)

Fi
for aﬁy <y,W> € 2(2w-—1)
0©0=0,002=200=0,202=2
© VZX.SY.pi©2Z.3W.pi=2q)1 (x0z ,yOow) .SQZ(XOZ’yOW)‘.pi .
for any <y,w> € Z(Zﬂw-1)
It can be easily verified that the triple

= A ,0,0)

is a computablé field which, for n # 0, has 20 32, P, as 2€10 s
. n
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BESPR
2u~ .
w1 g . P_,1 @s opposite of 2 3h,

22 . 32 .p ., asunit, 2 .3 P41 @
sz.. 3. P,,; as opposite of 2%t 3% . Ppa1 , 2" T_Szk . P4 as
inverse of 22* . 3" Po4q and /AR S P41 &S inverse of

X L Posp *

Let £, : w~>uw be the function that maps 2 to 1 and leaves
every other element unchanged. For every n > 0, let fn : w-> 0 be the

. 0 ,2 . 2
function that maps 2" .3". Pr+q to 0, 22, 3°. P41 to .1 and leaves every

other element unchangéd. The structure

| & ;
gn=<Fn’+n,'8‘n>’
with
F, = 10,1} |
' : 0 22 2 22
¥n>0, F, ={0,17U (A -{2".3 .pn+1,2 .3 .pn+1})
and
8:11 - -1 -1 A 3
x+ Py = £ (£ @£ ()
i -1 -
x Ty =£ (£ )0 £ ()

is isomorphic with 21n , and, since f£ is a recursive function, it is
a computable field.

It is obvious that the so constructed w-sequence of’%%’s;satisfies
conditions a,b and ¢ of the claim. ~ 0.

For each natural number x, let ué consider the recursive function
0" 0w ,A
with
0% (0) =0%(1) =1

and,for y £ (0,1}, 0"(y) calculated by the following algorithm  (the -
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construction of the algorithm is based on the recursiveness of F >s and

- the operation of Turing machines that has .been .expldined - -

introductory chapter):

1) Check whether .y € F; -

T —

If Xes , check whether the Turing machine G (x),
given input x, halts after 0 steps
"If'Xés » put Ox(y)
“If mo , put 0°(y)
""If no ,
2) Check whether . Yy € F,

\

1
0

"If'zés s check whether the Turing machine G—l(x),
given input x, halts after 1 steps.

If yes , put 0*(y) =
If no , put Ox(y) =0

¢ s e ® e 8 e * e ® ® e 2 ¢ * @ o s e s o . . . L]

n) Check whether y € Fn

If yes check whether the Turing machine ',
given input x, halts after n-1 steps.

If yes , put 0 (y) =
" If no , put ®x(y) =

y-1)Check whether y € Fy_1

-1
If yes , check whether the Turing machine G (%),

given input x, halts after y-2 steps.

If yes , put 0%(y) = 1
- "Ifno , put O%(y) =0

“Ifno , put O%(y) =

in the

Since every y ¢ {0,1} is in at most one F_, the function 0% is

well-defined (If there were a y & {0,171} both in E_ and F_
Turing machine G (x) given input x, mlght stop worklng after

. In this case, we would have ®%(y) =1 and ®%(y) = 0.So

be well-defined).

, then the
m-1

0* wouldn’t:
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The way,in which 0* has been constructéd, implies that

a) 0° is the characteristic functiqﬁ of some F_(not necessarily
identical with Fx)_and ‘ _

b) 0% is the characteristic function of Fg, if 'G"l(x) , given
input x, never halts. ' '

The réasoning for this is quité simplé: G-I(X)5 given input x ,
either stops after, say, K stéps or it never stops. In the first case,

0* gets the value 1 for any y€F and the value 0 for any

k+1
y & Feyp- In the second case, 0* gets the valle 1 exactly for y = 0

and y = 1.

After having defined Ox,.we associate with it two binary partial
recursive functions +° and ., in the following way:

For <k,A> € %w, check vhether 0%(k) = 0X(A) = 1 (this can

be done, since 0* is recursive).

If no , then k+*A and k. A are not defined.

If yes , k and A must belong to the same Fh’s (because
of property a. of 0%). .

Find the Fn’s to which k and A belong (this can be
done because of property c. of Fn’s) and put

§n, 5

kA =xk+ 9 KX\ =k . nDA ’

where n, 1is the smallest mnatural number--such  that

0
<K,A> € Fu}

Finally, let us consider three recursive functions

g;(ﬂ—b&)
y;w»w
zZ 2 W ->0

such that g maps x to an index of 0%, y maps x to an index of
+* and z maps x to an index of .% . For the three functions it

holds, in other words, that

1 2 X

_aX - 2 _ X
wg(x)'-o ’ q)y(x)--+ gnd mZ(X)- )

Such functions can be easily constructed. (For example, g can be taken
by the following procedure: Write down the set of instructions,previously
given, for calculating ¢”. Since it is known that each Turing machine
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calculutes a unary partial recursive function,find the Turing machine T
whose the set of instructions for calculating a unary function coincides
with that of 0%. Put g(x)=G(T). Functions y and z can be constructed
smularly) ‘ o

The recursiveness of g,y and z jnmédiatély inlpliés the

recursiveness of the function

given by the following rule: ' ]

¥xeo, wx) = 283, &) gzlx)

Slnce for each x € w, 1 Fn is the set characterised by %, then +*
and ¥ coincide with n and ~0n s respectlvely, it holds that

' ’ 2 2

Rg(x) ? (py(x) ’ (pz(x)>=(yn

This fact, together with properties a and b of 0* implies that:
a: ¥ x€w, wix) is the index of a computable field and
~b! V x € w, R 2 (x) is finite if and only if the Turing machine

(x) given input Xx, never halts.

Reconsider now our original problem ofpg.71. If A and B are

the sets, defined there, properties a‘* and b’ can be rewritten as
follows:
a".¥x ey wx) el

b" ¥x ey W) €B &G (x), given input x, never halts.Supnose

that a partial recursive function U, with properties i. and ii., exists. |
Then, properties i and a"' imply that the function '

Gow
is defined on ®, while properties ii and b" imply that:

Yowx)=1 if G '(x), given input x,doesn’t halt

g e wx)=0 if G '(x), given input x, halts
y°ow' is, thus, the characteristic function of the set

, - S o
={xew:G (x), given input x, never halts) ,
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which must be recursive.

On the other hand, the non-recursiveness of K (i.e. the recursive
unsolvability of the halting‘problém) is a well-known fact (see Rogers’
[243 pg 25). '

Assumjnﬂ that cx1sts we derlve a contradlctlon, so, such-a

doesn’t exist. This unplles the non—ex1stence of a procedure for deciding
whether .a field is finite. ' [l
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§ 2.2. The undecidability of properties P, , P, and Pg .

In this sectlon we establlqh the undec1dab111ty of properties Pg,
P, and Py, for 1ecur51ve sets of equatlons of strong langmqes with
infinitely many operatlon symbols. We obtain the results by effectively
reducing the p1oblem of the existence of an algorlthm for dec1d1ng whether
a comnutalb\, field is finite to the decision preblems of P s and by

maklnc7 use of the fact that the former algorithm doesn’t ex15t

Let

L =<+, =>

be the language with a binary operation symbol + and a unary operation

symbol - . For each field

& =<F +8 -8:>

let us consider the language

“c’&#“’ “hers

taken from £ by addlng a new unary operatlon symbol f, , for each
A€ F. The theory of vector spaces over & can be v1ewed as the first

order «fg -theory, that is generated by the following set of equations:

= {leovl) (votv=vi+vy) , BV, v,) ((V+vy ) +v,=v+ (v +v,)),
GLVOVI) (V0+(—V0)=V1+("V1)) ’ Wvovl) (V0+(V1.+ ("Vl) = Vo)} U

- _ . _2
U {G‘Vo)(fx;b”'x Vo= £, v+ £, Vi) 1A A2 EF U

1 2
' - 2
v {G’lvo)(fxl.%z o= £ lf. Ay 7 Vi <A ,APEFIU

U {0ov)) (£, (g#vy) = £yvg * fvy) 12 € FJU
U {() (£vy =V, )1 .

An £v(& -model of VES’ is a Vectorkspace over & . If A is a vector

space over { , any linearly independent set of generators of it is a_
basis of 2. All bases of 2 are known to have the same cardinality,which

is called the dimension of 9 and it is denoted by dim L.

In the course of proving our basic Theorem 2.2.2., we shall make
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use of the following two Leinmas, proofs of which can be found in any
standard text of Algebra:

Lemma 2.2.0. The following conditions hold:

a. Any two vector spaces over § , with the same dimension, are
isomorphic
b. If 9 is any infinite vector space over &, then

)

loel] = 1] -dim 2t

Lémma 2.2.1. Consi_dér thé .CES; —structuré

¥ ol 4O - &

5 -qr, LTy
with f§ defined by the rule
wner, 9 an=a B

Then,for each natural number n different from zero, the £ & ~Sstructure

"F oo GxFxo. xF

is a vector space over ¢ with dimension n.

Theorem 2.2.2. The following three conditions hold:

a. Vré: has non-trivial finite models. if and only if & is finite

b. The first-order theory of the non-trivial models of VS" is
complete if and only if § is infinite

c. The first-order theory of the non-trivial models of Vi is
model-complete if and only if § is infinite.

Proof

[

Condition a. If § 1is finite, then {§ is a finite non-trivial model of
Vg. . |

Suppose, conversely, that § is infinite. Any non-trivial finite
model A of Vr& would, obviously, ha;fe a finite émension-so, by Lemmas
2.2.1. and 2.2.0.a., it would be isomorphic with "y u should, thus, be
infinite,which contradicts the hypothesis that [ 1is finite. V?f has, thus,
no finite non-trivial models.

Conditions b.and c. We denote by lFl+ the smallest cardinal number which

is greater than the cardinality of F. We shall prové the following:




Claim VS, is max{w, |F|+}—categ0rical.
oy ' : :

Proof of the claim

We distinguish two cases:

““Case 1 max{w, |F|7}=u
Let 9 be any model of . V‘(\)' , of caldma;lty w. If A had a finite
dlmensmn, then it would be isomorphic with the vector spaces

dJmQ[

through Lemmas 2.2.1. and 2.2.0.a. But, since |F|® is at most equal with
» |F| is a natural number.  would have thus, cardinality

ldlm'r‘)[

|F € w

3

vhich would contradict the hypothe51s that |A]=
The dimension of is, thus,an infinite number smaller than its
cardinality. We have proved thus, that '

v [ v with [A]=6) @in2=0) )
“Case 2 max{w, |F|"}=F{"
' Let, again, A be any model of Vg of cardinality IE|*. A

had a finite dnnensmn, then its cardinality would be equal to
dim?U
|F]

But |F| is at least as large as w; so it would hold that
dimAL
[F[ = IF @

From (2) we would deduce that the cardinality of [ would be equal to
|F| and we would derive a contradiction. & has, thus, infinite dimension
not greater than its cardinality. I.e. it holds that

< dim2 < |F T (3)

Also, from Leﬁma 2.2.0.b. we deduce that
JA] = dim2C - |F| = |F[ . )
Relations (3) and (4) and cardinal arithmetic (sée Suppes [ 261) imply that

dim = |F|*



We. have proved that

GI2£I= Vg with JA| = |F|T )(dmm~ =S (5)

Relations (1) and (5) say that any two vector Spaces over & , of
cardinality max{w, ]I‘] }, have the same dimension. They are,thus, by
Lemma 2.2.0.a., isomorphic. Hence, Vﬁ is max{w, |F|7}- catecorlcal and
we are done. _ g

3

The first order thcory of the non-trivial models of V8 can,obviously,
be considered as the theory

0 = 80V UT(3vv,) (Vg #vp) ]

Ve have, already, p1*oved that, if § is infinite, the following two
conditions hold: _ N

i. © has no finite models and

ii. 0 is max{w, ]F] } - categorical. :
This, together with Theorem 0.1. 0., 1mp11es that O is a complete first
order theory. Since 0 is axiomatizable just by ¥ 3- sentences conditions -
i and ii, together with Theorems0.1.1. and 0.1.2.,imply that 0 is, also,

model-complete. We have, thus, proved direction <« of conditions b and
¢ of the theorem. - . T _

We prove the converse direction.
Suppose that § is finite. We consider the vector space § and
its basis

{<1,0,0>, <0,1,0>, <0,0,1>} ,
The substructure A of &, generated by the set
{<1,0,0>., <0,1,0>} ,

34—
has dimension 2; it is, thus,a proper substructure of ‘8 Smce ¥ has °

|F]? elements, it holds that
7=
J )= (Qxlxz...x]f;'a)(xl FX,F e X )

and

AW (lexz...x]Fls)(xl#xz# s FX )
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We have, thus, found two non-trivial models Qf and '38 of VLS and a

“sentence ¢ of &S’ such that
3= 3=
CHA(FRFDIA(AF D

This means that the theory of the non- tr1v1a1 models of Va, is neither

complete nor model-complete so we are done. a

What we have just proved togcther with the fact that there is no
algorlthm that enables us to decide whether a computable field is finite,

‘-helps us establish our undec1dab111ty results:

Theorem 2.2.3. Let £’ be any storg algebralc langu1ge with infinitely

many operatlon symbols. There is no algorithm that enables us to decide
whether a recursive 2 C Eq,. has each of the follow1ng properties:

P :3 has finite non-trivial models

6
P, : The first-order theory-of the non-trivial models of 3 is
complete
Pg: The first-order theory of the non-trivial models of 3 1is
model—complete.
- Proof
Let

=< Q) e 0 Te5he >

be any lanouage w1th at least one operatlon symbol - Q of rank greater

than one, denumerably many operatlon symbols Q of arbitrary rank and
at most denumerably many constant symbols Cye '

For each computable field
§=<P,+o‘ -8:>

3 3

let us consider the system S: definitions for £y in £, which is
given by the following rule:
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OF(+) = Qugvyvy .y,

Ox ( ) = QOVOVQ vy

&(f}‘) =Q}\+1v0v0...v ,YMANETF .
As we have seen on pg 34,a function

1nq : Te11n£m* Term£d
§ Ry
3
is, then, defined.

g

If Vg is an définéd onpg 78, let us consider the set of
L'~ equations '

Vg = { (W) (in6&m= iné(&lb) (W) (o=¢) € V‘[)‘”} U

U () (@ - ing (737,)) 5 B9) Q¥ = iny (~vg))) ¥
U L) (Q,, V= inécs(fkvo)) :AEF}U { (W) (Q
%

A+1v=vo) AT} U

U {0wy) (g = in68(v0+ Cve)):je

For each

o =-'<A , +2[’ _2[’ {fﬂf}

Ve r?

LES"- model of Vg, 1let us define the £- structure

q : {
Q;x n€y °? {CQ}:] eJ)
as follows: .
¥ 5e T (@) , QQf,(ai) = a, +(“)Iz=1l , s \
vzet®h @ - ﬁ‘ao
| ¥ a er()Hl) Q}:{l(a) f (ao) NE T | f’
¥ ze Ty @Aﬂl(a)=a'0 A¢E
A X jeyJ
J . J

(1)

(We have denoted by 02[ the element of A that is equal with a+9”{(—'é[a),

for all a € A). 4
It can be easily checked that. U .is an. £'emodel of . \%

. On the other hand, for each

: o
=, L@ >
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' | . . . . .
£ -model of '\{S , let us define the Lqr-structure

0
o A oy 2
A=<A,+ , -7, {f;ﬁkef)

as follows:
yea,bs € 28, a@b = @ (a,b,b,...,b)
-. yaeA ,'-2[=Q2[(aé,,.;.,a) (2)
‘vaea ,£@ =@ @a,...,2) reF)

)\+1

Again, it is éasy to Vérify that 2L .is .an. &Br-model of \’6, .

Let Mod \’8 and Mod \8 be the classes of £8—models of VYS‘ and
L'-models of Vg , respectnely We are going to prove the following:

"'Claim 1. Thé function
. . . o
f: M.od \8 - Mod \8 ,

that maps A - to the structure 9f s givén by relations (1), is a bijection.

* Proof of the claim
We prove that £ 'is injective; i.e. that it holds:

A B~ £(A) # £(B) (3)

If ,‘2[ is different from B, elther they have different universes
or the mterpretatlons of at least one operatlon symbol in the two '
structures are different. In the flrst case, I’ and B’ will have different
universes, whlle in the second case, the corresponding, through relations
M, —operatlon symbol will have different 1nterpretat10ns in A’ and "
In both cases, f£(A) differs from £(B). We have, thus, proved relation

(3).

If 9" is an £ -model of V. , then it can be easily verified that

the .,c;modél of \f(, , which is given by relations (2), has the property
g .

fa) =A.

£ is, thus; surjective. This completes the proof of the claim. O

" Claim 2. The following conditions hold:
a. Vﬁ' has property P, if and only if {¥ is finite
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- b. .\:’?5_ ’has each of I)I‘Opérti.és_ P, and P, if and only if § is
infinite.

Proof of the claim

‘Condition a. Since A and £(9) havé, by construétidn, the same

universe and because of the fact that f is bijective, it holds that
V{S‘ has pl’*operty P6 fvfg has property Ps : 4
Relation (4) and Theorem 2.2.2.a. imply that

V{K} has'prope'rty P, =¥ is finite.

Condition b. and c. Let o and be any two .r,’rg-modéls of v, and let

&
i: A—»B -

be a bijection. It is very easy to show that, if i is an isomorphism
'betwccn A and B, then it is 8'so an isomorphism between the structures
2" and 3, which correspond to 3f and® ', through formation rules (1).
It holds, thus, that

(¥4m3>€%wvgnm=%*fmw=ﬂmn (5)

In the course of proving Theorem 2.2.2. we has shown that Vg is
max{w , IF[+} - categorical. If Q' and 9% are any two models of g
of cardinality max{w, IP|+}, then £ 1(9) and £ !(93) are models of
V8 with cardinality max{w, [F|+}. They are, thus, isomorphic. So are ,
because of (5), their images through f. Hence,it holds that

a = £ ) = fEH ) = B

We have proved that \é is also mai{w, [F[J"} - categorical.

Suppose, now, that & is infinite. Then, Theorem 2.2.2. and

condition a.of this theorem imply that VS; ‘has no finite non-trivial
models. This fact, combined with the max{w, ]F]+}‘ - categoricity of V]
and Theorem 0.1.0., imply that V’é? has the property P. If we take into
account the fact that the first order theory of the non-trivial models of
V'g is axiomatizable by ¥ 3-- sentcnces, we derive from 'Ihem:ems 0.1.1.
and 0.1.2. that \fg has, also, the property P, . .Hence, we have proved
that:
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c e , e D
& is flnlte s ,Vf&? has properties P, and Py
Direction <« of the claim has, thus, been proved.

We proire the ether direction. )

Suppose tha‘t ¥ is finite. Then, as we have scen on pg 81,there
exist two £ -model:: of Vo A and 3, such that A is a substructure
of B ARN<IF® amd” NBU=IFP

For the Jma.ges of A and B through £ ,. it also holds that

Y

(FQCECI) A GECIC I YA CECBM= 1A

This, obviously, implies that VE has neither property P, mnor property
P,.. | ' :
8

The pr_oof of condition b of the claim is now complete. 0

Up to thls point, we' have managed to relate with each computable
fleld ¥ a set V«& of £’ —equatlons and to find conditions under which
it has the requ1red propertles

The computablllty of § , obviously, implies the decidability V
this fact and the computabllltv of 6& imply that Vﬁ is decidable.
Consequently, if

* e
£v-" BPLI nd (1)

is the goedel numberlnc* of the set of explessmns of £’ , defincd of pe 19,
.the set '

*(*'
.C'EVJ

is a recursive subset of w .

In the introductory chapter (pg 29), we gave a mathematical
formulation of the decision problem of a property p of recursive sets
of ¢ -equatlons Under the convetions made in §2.1., the decision problems

of - Pg ; P, and  Pg--are- the problems of the existence or not of a unary

" partial recursive function ¢, with the properties:

i. ¥xeC , o) is defined
¥xeDb , o =
¥xe€CD, ok =

ii.

 where
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(@]
1]

x: R, =g*(2]1 for some £ C Eq£.}
and

{x: R = g*[2] for some I C Eq,-  with the

[w e
i

prope‘rt);: Pg (or-~P, or —Pg) }

Llet A, B and i are as defined on pg 70.A partial recursive
function f, with domain A, that maps each w¥ A to the index (see
pg 70 ) of the recursive set

grtvi_, 3
L1 T(w)

can be constructed, in the obvious way. It holds, thus, for f that

M WEA,R = gtV ]
w .1
L i (w)

Suppose that a partial recursive function ¢, with properties i

and 1ii, given above, exists. Since, for each we€ A, f(w) is the index

of g*[v 1 -1 (w)],for the unary partial recursive function
L -
0o £

it holds that
_ i YweA, ¢ o £(w) is defined
Also claim 2 implies that, if w is the index of a finite field, then
f(w) is in D while, if w is the index of an infinite field, then
f(w) is in C-D. Combining this fact with the properties of ¢ .we
derive that '
L YweANB, ¢ o £f(W)
ii.
YweA-B, 9o f(w) =0
As we have seen on pg71,a function with properties i’ and ii”

1

Il

n

provides a procedure for deciding whether a computable field is finite.
This contradicts Theorem 2.1.0. Ve conclude,thus,that ¢ doesn’t exist.

This fact proves that properties Pg , P; and Pg are undecidable
for recursive sets of L'-equations. a

In McKenzie’s [12] it is proved that, in every strong algebraic

.Jlanguage, there is no algorithm which enables us to decide whether a
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single equation € has finite non-trivial models. This résul‘f~ obviously,
- implies ours. As we have seen on pg 37,the tcchmqms by which the two _
results are obtained have no similarity. WWe have included our weaker .
result (Theorem 2.2.3.a.) in the thesm, 1n order to show the range of
application of our method. At any rate, we had to follow the same procedure

in order to establish the remaining undecndabﬂlty rcsults of this section,

The undec1dab111ty results concelnlng propcrtles P, and Py ,
*which have been obtained in this sectlon, are new in the literature.

The complemty of the 1anguacre, in which the results are taken,is
_' Very high, though This fact, certalnly diminishes the significance of
_them. Our belief is that they can be extended in any strong language, by
' the following procedure ‘

As McNulty has shown in [13] , for each computable ficld
a universal system 68 of deflnltlons for £ & in £, with respect to
{(leo) (V 0)}, exists. If we manage to effectively associate,with each
such § , a suitable Gg and a recursive extension \/}é of in 'Vrg SO
that

’
(ch has the property Pi) ¢ (ViS’ has the property Pi)

thén, we will derive the ﬁndecidabilify of pro‘perti‘es P, and Py , for
recursive sets of fL-equations.: .-© SR

Unfortunately, in spite of our intense efforts, we have not been
able to find these ag’s . We hope someone else will succeed in doing this.

The fact that a property P is undec1dab1e for recursive sets of
- equations Jmplles no inmediate answer to the decision problem of the

property, for finite sets of £ - equations.

In the special case of P, and Pg , there is not even hope that
one can establish the undesidability of them for finite sets, following .
the same (or a similar) method that was used for recursive sets. This is
because. the method is based on thedistinction between finite and infinite
i.e. because it is based on the fact that

Vé has P, = & is infinite < \8‘ is infinite

_ Another method should, thus, be found. Maybe this of chapter 1,
provided that we have been able to find finite sets 3 with the property
P, (For trivial languages, it will be shown, in'chapter 3, that such
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sets doit exist). The following problem is,thus, open:
Problem : Investigate the decision problem of P; and Pg , for finite
sets of equations of non-trivial languages.
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CHAPTER -3

TRIVIAL LANGUAGES

§3.0. Introduction

In the previous chapters, the decision problems of properties

P : the first-order thcory of 2 1is complete,

P : the first- order theory of 3 is model-complete,

P,: the equational theory of 3 is equationally complete,

P,: the first-order theory of the infinite models of 2 is
complete,

P,: the first-order theory of the infinite models of 3 is

model-complete,

P,: 2 has the joint embedding property,

P,: the first-order theory of the non-trivial models of Z has
the joint embedding property,

P.: the first-order theory of the infinite models of 3 has the
joint embedding property, )

P,: 2 has no finite non-trivial models,

P,: the first-order theory of the non-trivial models of % is
complete and .

Pg: the first - order theory of the non-trivial models of 2 is
model-complete, _
for sets 2 of equations of non-trivial algebraic languages, were
examined.

In this chapter, we work in trivial algebraic languéges L(i.e.
in algebraic languages, with exactly one unary operation symbol and no
operation symbols of rank greater than one) and we construct algorithms
that enable us to decide whether a finite 2 C By, has each of the

above mentioned properties.

‘The decidability of properties P, 7P, P.,P, and P, is proved
in §3.1. In §3.2. the general procedure. followed, in order for the
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decision problems of properties Py-Ps to be answered, is explained.
The base-decidability of any finifely based equational theory,in any
trivial language with at most one constant symbol,is proved in §3.3.,
and,as a consequence, the decidability of properties Pg-Ps, for
finite sets of equatidn of such languages, is established. Finally |,
§ 3.4. deals with the decision problems of Pj-Ps, in languages with

more than one constant symbols.
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§ 3.1. The base-decidability of qu and the positive solution

to the decision problems of P,P,P.,P, and P,.

In McNulty > s [13], it is proved that, in any non-trivial
language, the equational theory Eq,- is base-undecidable. We prove, in
this section, that, in any trivial language, Eq, is a base - decidable
equational theory. We use this result in order to establish the
decidability of properties P, P and Pg, in such languages. The non-

existence of equational f-theories with properties P, or Pg is also
proved.

L ={f} v {cj :j € J}

be any trivial algebraic language. For any £L-term, ¢ , let Vﬁ be the
set of variables,occurriny in o, and let C¢ be the set of constant
symbols,occurring in ¢. Since f is unary, the two sets are at most
"~ singletons.

We define four equational theories, as follows:

]

L= O L0 (Vg =vy)T

]

= 2
0, OEq[{vao)(fvo==v0)}LJ{cjl==¢j2; <ji,Jp€ I

!

0, = 0 [ (Wvy) (£vp=1v,)]

02 BEq[{Gwvo)(fvo==cj): j € J}]

It is obvious that, if J =§, then 9, and 0, coincide with ¢, and
0,, respectively. It is also obvious that, since non-trivial models .of
the above theories can be easily constructed, they are equationally

consistent. We are going to prove that

Theorem 3.1.0. The following relations hold:

1.0 = {GA)(9=1) : (V,=V,) A (Co= C))
2.6;={GWM@=W PV =V}
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(&}
>
1l

5 {lei)(vi=vi) i€ w} UV {cj=cj :jEJI U

{0A) (0= ) : <9,0>€ (Term, - V_ - {cy: JEI))

(0w,) (v; =v;): H€0) U {BA) (0= 1) ¢ <o,4€ " (Term, = V,))

E-N
>
1l

_Proof..

We prove relation (1).

From the axioms of derivation for eauational logic (pg 21), = it
follows that the set '

{OA) (p=0) : (Vo=V§) A (Co=CP)}

contains its equational consequences. It is, thus, an equational theory
and, since C¥v0)(fvo = VO) is in it, it holds that

0, C{)(p=10) : (Vo=Vi) A (Co=Cl)}. (5)
On the other hand, the equation CVvo)(fvo==V;) implies the equations
n_ _ n_ _ .
G%vi)(f vi—-vi) and f Cj cj , -

for any n , i and j. It implies, thus, the equation

(0 =0,

for any pair <o@,0> with Vo =Vy and Co =Cy .
We have proved that it holds:

0, 2 LB (0=1) : (Vo=V¥) A (Co=Ch)}. (6)

From (5) and (6), relation (1) follows

Relation (2) is proved in the same way.

We prove relation (3).

The axioms of derivation for equational logic, obviously, imply
that no equation of the forms

(W) (v; = 0) and (A)(c; = 1)

where ¢ is a variable different from v, ora constant,and ¢ is a
constant different from c; ora variable, is implied by the set

.{(vvi)(vi=vi):iem}U{c.=c.;j€J}U{(¥V)(m=¢)':
S « 1 | (7)
‘(<@,¢>62(Termﬁ-Va—{cj:jEJ})}'
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This set is, thus, an equational theory which includes 0,.
, it holds that

On the other hand, for any pair <o,{> EzTcan

CRev,) (£,=Ev,) | OA) (£0=L). L (8)

From this we deduce that each equation in the set (7) is implied by the

equation (#v,v,) (fvy=fv,).We have proved,thus, that the set (7) is included

in @2.

This completes the proof of relation (3).

B |

Relation (4) is proved similarly. - 0

Procedures for deciding whether an f-equation is in each one of
the four theories are tacitly implied by Theorem 3.1.0. and elementary
Recursion Theory (see Monk’s [15],chapter 10).We have,thus,the following:

Corollary 3.1.7 The equational theories ¢, ,0 ,0, and 0, are
decidable. ' :

The diagram below gives the exact position of any £-equation, with
respect to 0, , 0, , O, and 9,.(For simplicity, we omit the universal
quantifier and we dont’t distinguish ¢={¢ from ¢=¢):
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Making use of this diagram, we are going to prove the following:

Theorem 3.1.2. An equational theory ¢ is equationally consistent if

and only if it is included in ®;, or in 0,.

_ 7 Proof

Since ®, and @, have models of any given cardinality a,so does
every subset of each of them. Every subtheory of '?D’l or 0, has, thus,

non-trivial models; hence,it is equationally consistent

We prove the other direction:

If ¢ is not included in any of ﬁi’s, then, either it contains
an equation not in ®; U 0,, or it is included in @, U @, but it has a
non-emply intersection with both @, - ¢, and @, - 0;.

In the first case, since any equation not in ®, U ®, is of the

form
S
(¥Vil¥viz)(f vil'— Viz)
or
. n _ . *
chi) (f Cj —Vi) »

for some n € 'w, ® must contain an equation of the above form. Clearly ,
such an equation has only trivial models. So does 0 . We have proved
thus, that

6 = Eq£ .
In the second case, either, for some n , n, , m in w-1,
n — M m |
AW I E V), W) (E vl vl co, (M
or, for some n , n, in w-1 and for some constant term ¢,
- nl ) :
{ (W) (fnvowo)sWVo)(f vo=9)} C 0. ) (2)

Relation (1) implies that

n nm

] . mny ] '
V=), W) (£ Tvp=f Cv)} Co,

n

((¥v,) (£
while relation (2) implies that
i n n

o nn)
@) (F ~vp=vp), W) (E "ve=f 0)} C 0 .
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Either
_ pm,
W) (v,=£ vl)
or

. | () (vy = £79)

is, thus, in O. Since these equations have both only trivial models, so
does ©. From this we conclude that 1

0 =Eq, ‘ 0

The reader is reminded, at this point, that an equational theory
0 is called base-decidable if there exists an algorithm that enables

us to decide whether, given any finite 2 C Eqp , 2 1is a basis of @. We
have, thus, as an immediate consequence of Theorem 3.1.2., the following:

Corollary 3.1.3. In any trivial language £, the equational theory

Eq£ is basc-decidable.

We observe now that, since E&iAand ®, have finite non - trivial
models extendable to infinite models of them, every equationally consistent
equational theory has also, by Theorem 3.1.%., finite non-trivial models
that can be extended to infinite models of it. We conclude, thus, that
no set of [-equations has the first-order theory of its non-trivial models

complete or model-complete.

We also conclude that the only first-order theory axiomatizable by

L-equations, that either has no finite non-trivial models or is complete

or is model-complete, is O[Eq,] .

Combining the remarks, made above, with Corollary 3.1.3. we
finally derive the following: '

Corollary 3.1.4. In any trivial language £, properties P, P ,P,
P, and P

g are decidable, for finite sets of L-equations.
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§ 3.2. The decision problems of properties P,-P..

Towards examining the decision problems of properties Py-Pg in any
trivial language £, we give below (Theorem 3.2.0.) necessary and sufficient
conditions in order for a set of £-equations to have each onc of properties
P, (i€ {0,1,2,3,4,5)): |

Theorem 3.2.0. Let £ be any trivial langudge and let 2 be any set
of L-equations. Then, the following hold: .
a. 2 has the property P ® (OEq[EJ =0,) v (OEq[E] =0,).

b. S has the property P; < (OEq[EJ =0,) v (OEq[E] =62).
c. 2 has the property P,* (0,C GEq[EJC@)V 0, ¢ OEq[Z]Cﬁ—)Z)

d. If £ has no constant symbols, then all 2’s have the property

P; . Otherwise, - (

> has the property Py« 2| {fcj =C; (jJE JIV {c:jl ='cj2:<j1 ,j2>€2J},
e. If £ has no constant symbols, then |

2 has the property P, ¢ 2 1is equationally consistent,

Otherwise,
2 has the property P, ® (2 1is equationally consistent} A

.. =2
' .=C;:j€JIV{c., =c. : >
A (ZF{ch ¢y J} {cj1 c:Jz <j1»J,>€ ),
f. If £ has no constant symbols, then _
2 has the property P; ® 2 is equationally consistent,

Otherwise, ;
2 has the property P, ¢ (2 is equationally consistent) A

.. 2
.=C.*1E U . =C. ° >=
A (5l={fcj c;:j €JIV {cy c32 <j1»3,>€ N

1

Proof

We prove relations a. and b.

-In Theorem 1.2.0., we proved that @, has properties P, and P,.
Similarly, we can prove that @, has the two properties.

_'On the other hand, if 2 1is neither a basis of @1 nor a basis of

®_, theorem 3.1.2. shows that either

2’

OBq[Z] = Eq, or OEq[Z] < 0, or eEq[;']-g 52 .
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So, 2 doesn’t have the property P, and, because of lemma 1.2.1., it

doesn’t have the property P,, either. This completes the proof of

relations a. and b. ‘ o g

We prove relation c.

In theorem 1.2.3., we proved that any 2, such that
®1 c Oeqzl C:61v
has the property P,. In a similar way, one can prove that any 2, with
®2 - oEq[EJ co,,

has the property P,. Direction <« of relation ¢ has, thus, been shown .
The proof of direction = of relation c¢ will be given later, on
pg 121. We consider this necessary, because, otherwise, a series of lemmas
should be given at this point, which might make the understanding of the
gencral procedure difficult. . ' 0

We prove relations d , e and f.

Suppose, firstly, that £ = <f> ,

If OEq[ZJ is equationally inconsistent, then it, obviously, has
property P, but not properties P, and P, .

1f BEq[EJ is equationally consistent but it contains only
variable-uniform equations, then any two models of it 2 and B , with
AnB =g, can be embedded in its model & U 3, through the inclusion
mapping§. GEq[Z] has, thus, properties Pi (1 € {3,4,5}).

If OBq[ZJ is equationally consistent but it contains at least one
equation of the form

n

fv, ’ j i ’
VJ) j# 1.

n
CVViVj)ff Vs

then 2 implies the equation

CVvivj)(fmvi fmvj),
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which, in _its turn, implies
Givi)'(fmﬂvi = £f'v.) .
Coﬁsequently,.
2R @ v v, =vy) - 1)

Suppose, now, that A and B are any two models of 2. Because
of (1), there exists a pair <a,b> € A x B, such that :"f’Q[ (a) = a and
£B (b) = b . Consider the mappings

g:AUA->AUxB and h : F->AxB

~ which are given by the rules:

¥x€A, gx) <x,b>

I

¥yeB,h(y) =<ay . -

It can be easily shown that g and h are embeddings, and that, since

A x B is amodel of 3, 3 has properties Py, P, Aa.nd P.
Summarising what -_»:ze have proved above, we can say that every set

of - L-equations ‘has property P, and that every equationally consistent

--set of f-equations has properties P, and P..

L}

Suppose, now, that £ contains arbitrarily many constant symbols.

In this languége, if 3 implies the set
‘ s _ L s 2.0 .
| {fcj —cj._jeJ}U{cjl —cj2.<31,32>e J} ,
any two models L and 2 of it can be embedded in A xB .

On the other hand, if 3 doesn’t imply the equation fcy =¢5 ,
then it has two models 2 and B such that

AE fc=c and BY¥ fc=c ,

and if 2 doesn’t imply the equation Cj = cj , then it has two
models A and B such that - o 2 -

A]c. =c, ‘and Bfc, =c. .
J1 Jo J1 J2
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In both cases, A and B cannot be embedded in a third L-structure.

We have provgd, thus, that the following hold:

- ‘= = . 3 | = . 3 1 2
P,(2) < 2| {fey cj._-JeJ}LJ{cjl cj2.<Jl,J?>e 7}

and
P,(2) ¢« (2 1is equationally consistent) A
A fc.=c,:jEJIVU{c, =c., :<j;,j,>€ 2 s
(BF{feg=cyt JEIIU ey =c5 1 <j1]p7€ T3 )P ()
So, we are done ' 0
It easily follows from theorem 3.2.0. that, if we manage to prove
that every finite' set of equations of a trivial language generates

a base-decidable (hence decidable) equational theory, we can derive a
positive solution of the decision problems of Pi’s , as an immediate
consequence.

Since, among the mumerous base-undecidable equational. theories ,
which are known in the 1iterature,.ncith¢r cah be formulated in a trivial
language, and since all our atiémpés‘to construct new such theories were
unsuccessful, we have good reasons to believe that all equational L-theories

are base-decidable.

In the next sections, a partly successful attempt to - procve the
required base-decidability result is made, the reasoning of which is

exhibited below:

Let G be the set of all variables and constant symbols of £ ';

i.e. let
G =Va‘U {cj : jEJ} .
We associate,with each finite 2 C Eq, , a set of invariants
[s = {A5(2):g€ G} U {Bs(g,,8,):<81,8,> € G, 8178} »

which is defined as follows:

Az(g) = <m,n> if m.is the.smallést_natural nunber, such that, for some
i #m, the equation f'g = £'g is implied by 3 and n is the
smallest natural mumber different from zero,such that the equation
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f'g = fmmg is implied by 2.

A2 (g) = = if there is no pair Qf dist.:inct natural nunbers <i,j> , such
that the equation f'g = flg is implied by 3.

Bz‘(gl,gz) = <m,n> if m is the smallest.natural mumber, such that, for
some 1, the equation fmgl = flg2 is implied by 2 and n
is the smallest natural number, such that the equation fmgl =
fng2 is implied by 2.

B2 (g,,8,) == if there ig no pa@r of natural numbers <i,j>,such that
the equation flgl = flg2 is implied by 2.

If we prove that the set ):~z characterises the equational thcory,
which is generated by 2 (i.e. that GEq[le = BEqEZZJ , if and only if
"[-2-1 = 122) and that the set of invariants [y can be effectively
discovered from 2 (i.e. that there exists an algorithmic procedure that
gives, for each 2, the set [2) , then we will have a procedure for
deciding whether a finite T C Eq, is a basis of BEq[EJ (since we can
find Iz and Ly and check whether they are equal or not).
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- § 3.3 The base-decidability of all equational theories of a  trivial

algebraic Janguage with at most onc constant symbol and the positive

solution to the decision problems of P,-P_, in this language.

" Let
L =<f> or £ =<f,c>

and let 2 be any finite set of £—equations.‘we prove,in this section,
that the equational theory OEq[ZJ is base-decidable, from which it
follows that it is decidable. We make use of this fact and of Theorem
3.2.0. of the previous section in order to give a positive solution to
the decision problems of Pi’s, for finite sets of [-equations.

Let 2 be any set of f-equations and let ¥ be the result of
replacing in 2 each equation of the form ‘

by the cquation

vy (£, = £vy)
and each equation of the form

o) (f"c = fnvi)
or

(vvi) (fmvi = fnc)
by the equation .

vovy) (Fv, = £7v)),

2 contains, thus, no constant symbols. We shall prove the following:

Lemma 3.3.0. For any 2 C Eq, and for any pair <m,n> of natural
numbers, it holds that

SEfc=fc o Tl W), = £v)
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Proof

Direction - is an immcdiate consequence of the axioms of

derivation of fi.;s*-'orJer' logic.

We prove the converse direction.
 Suppose that 2 doesn’t imply the equation f'c = £ c. Then,there
exists a model Y of 2, such that

m n
£ Ay £ £ ).
Consider the substructure <c¥> of Q[ , which is generated by cA . Each
element of <cil> is of the fom
£ (L2

for some K & w.
. v,
For each equation of the form f'c = £f'c in I and for each K€ w,

it holds » that

S E e = £
Consequently, since 2 is a model of 2, it follows that
u * v P .
£30 2 Ay = £ e My, (M

For each equation of the form (v;) (fuvi = f\’c) in 2 and for
each pair <K,A> € Zw, the following series of equalities is deduced from
2:

f‘”KC = f'f'c = V¢ = fuvi = fufxc = foAc = f‘)“c
It holds, thus, that
u u v 2
£ (A (cAyy = A (A My (2)

From (1) and (2) and from the way in which 2 has been constructed,

we derive that
<« FZ
and that
«cs B o) (£, = £v,).

This implies that
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y T ) (M, = £y
This completes the proof of the lemma. 0
Lemma 3.3.1. Let 2 be any finite set of L-equations , which is

included in 0,

If > contains at least one non-tautology with variables, then

the equational theory, generated by 32, equals, the equational theory,
gencrated by the set

{CVVO)(kaO = fk+dv0) s e = £178cy ',

~ where :
a. k 1is the smallest natural number such that, for some i€ v
and some n € w - 1, the cquation

) (v, = £ or (W) (", = £))

1

is contained in 2,

b. d 1is the greatest common divisor of the set
. k+m  _ kin
{|m-n| : v )E Ty, = £ v,) € 3}

c. 1 is the smallest natural number such that, for some i€ &
and some n€ w - 1, the equation

W), = £ or ) E Y, = &)

or

1

fle = £

: + 1
¢ or fl Pc = f¢

is contained in 2, and
d. g 1is the greatest common divisor of the set

1

{Im-n| : C¥vi)(fl+mvi =f +nvi) €3 or £ = £ e 5)

If all the non-tautologies, contained in 5, have no variables,

then the equational theory, generated by 2, equals the equational theory,
generated by the set

{flc = %8¢y

"where -1 and g are as before.
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~. . Proof

Claim 1. For any pair <m,n> of natural numbers and for any P €W ,
it holds that

(Wi)(fnvi = ;fnvi) E (Vvi)(fmvi = grteimeol V; ) (1)
Proof of the claim (By induction on )

For p=0, it holds. ‘ ?
Suppose that (1) holds for p = k. Since we have that

i{n-r(k-l-l)-nn—nkvi - fm+klm—nlf|m-nlv.

the induction hypothesis leads us to the conclusion that
;) (v, = £v)) F o) (DIl gnlyy )
If m > n, then the relation , .
V ] monl, _ @
) (v, = £v) k) (£F v, = £10 v, = £v,),
i together with (2), imply that |
, y )
) (v, = £v) F ) (v, = g *_1)'"‘ "lv,) .
If m < n, then the relation
o) (v, = v ) kv @My = v = V)
together with (2), again, imply that
- ; _ m " _ +(k+1)lm—n,
,) (fmvi = £'v,) F W,) (f“vi = £ v) .

We have, thus, proved that, if relation (1) holds for p = k, then it
holds for p = k+1.
So, we are done. O

Claim.2. For each quadruple of natural numbers <k,1,m,n> , with 1 # 0,
it holds that

)

' k _ k41 | " k+m _ckin - . k. _k+|m-n]
ey 8%y =8y 3, 0, )Ty 6Ty 0k g (et Il

1 . 1 2

Proof of the claim
Let us take m>n and p such that pl = n. By claim 1, the

following implications hold:
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fiv., = fk+lv. v
. 11 1l 0
ﬁ
fk+mv. - gk, ghetm
1, 1
/ -k _ rk+pl
f vy = f v,
> -
fk+n+(m-n)v - fk+n
0 0

0 =

So, the equation

is implied.

Claim 3

| GLVO)(kaO - gkt|m-n] )

For any triple of natural numbers

_ rk+pl
—>

_ kin
o =E v,
k _ k+pl
f v, = T v,

-

fk+plfm—nVO - fk+plVO
0)

<k,m,n> -, it holds that

(ow,) (fkvo _ fk-rmvo) , () (fk"o _ fk+nvn)}}= v,) (fk"o _ fk+g.c.d(m,n)vo)

Proof of the claim

Let us take m2 n. If m = p.n, we are done. If not, let n
the residue of the division of m by n. Then,

1
m 1is written as pn+n

for some p € w-1. The following implications hold:

—>

k _ k+m k _ ckt+pnin
f v, = f Vo f v, = T lvo

—_— _ﬁ
k _ ckin k _ rkin
f v, = f v, f v, = f v,
£y, = £y vy = £y

—_ >

fkvo - fk+pnvo fkfn1V0 - fk+pnfnIVO
-k _ rktn
flvyg = £ 1v0

So, the equation

be

1’
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X k+n
Gv) £y, = f lvo)
is implied.
If n, is the greatest common divisor of m .and n, then we are

1
done If not, we divide n by n; and, if n, is the residue of the

division, we derive the equation
k k+n
) (v = £ 2v)

Continuing this procedure, after finitely many,steps, we derive  the

equation

vao)(f v, = k+g c.d(m, n) 0) 0

We now advance to prove the lemma. For this purpose, let k,d,1

and g be as defined on pg 105.

From claim 2 it follows that 2 implies the set

(o) (B, = £ I ly oy (8, = £

+n _
Avi) G 2}

and, from claim 3, that the equation

ook _ ck+d

C¥vo)(f v, = f Vo)

_’is implied. : _
Also, if 2 is as defined on pg 103,we derive, in the same way,
that '

Sk o)y, = £78).
So, by lemma 3.3.0., we get that
5 | fle = £178c

‘We have proved, thus, that the equatlonal theory of 2 includes
the equational theory of

tow ) (e, = %), fle = £78,
Conversely, each equation in' 2 1is either of the form

CVVO)(fk+mV0 - fk+nvo)

or of the form
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c = c ,

where |m-n| is a multiple of d or g, respectively.
In thé first case, we have that

k+pd

M) (Fvy = £ ) b @) (Fv, = £

Vo) l=

]

F vao)(fkvo 'fk+|m—n]v0)|= CVvo)(fk+mv - fk+nvo)’

0

while, in the second case, we have that !

W) (Flv, = £78v ) | @) (€11, = £177y ).
Through Lemma 3.3.0., we derive that
flC - fl+gC F f1+mc - fl+nC

We have proved that the equational theory, generated by 2, is

included in the equational theory, generated by the set
{(V\’o)(fk\’ - k+d 0) , l+gc}

The proof of the lemma has been completed. 0

Lemma 3.3.2. Let 2 be a finite subset of 0, ,which is not included

in 0,. Then, the equational theory, generated by I ,coincides with the
equational theory generated by the set

ey (v, = ), )y, = £,

where:
a. k 1is the smallest natural number such that, for some term ¢,
the non-tautology

G (v, =) or A = £V

is contained in 2
b. 1 is the smallest natural number such that, for some term o,
the non-tautology ’

G0 (£v; = 0) or. (0 = £1v;)
or

G (flc =9) or ) (0 = £l
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is confaihed in 2.
Proof

I prove, firstly, that
k k
S vy (v, = £v,)), M

Because of the construction of @é, either for some term ¢ not
1

containing v the equation

0 b4
G (£, = o)
is implied by 2, or , for some m € w-1 , the equation
k k
() (Ev, = £Mv)

is implied by 2. -

In the first case , 2 also implies the equation G@V)(fkvl =) .
Relation (1) is, thus, deduced.

In the second case , since 3 is not included in 51, an equation
of the form

®vv,) (£, = ),

where ¢ doesn’t contain v, , is implied by 2. If we choose p , so
that pm > n , we deduce from claim 1 of Lemma 3.3.1. that the following
implications hold

fkvo - k+pmvo fkv0 - k+pmVo
5 > —> - fkvo = £
fk+nVo =0 f}<+pmv0 - fpm-n(p

Hence, exactly as in the previous case, relation (1) is deduced.-
We ﬂfbvé thét
PR ) (e = £7)) (2)

If 1 is equal with k , we are done.
Suppose that 1 is smaller than k. Then, either an equation of
. the form

(W) (e = £ )
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‘or an equation of the form
flc = e nz1)

is implied by 2. o
In the first case , relation (1) implies that f mvo equals

fkv0 and we are done.
In the second case , we can choose p such that pn 2k and,

thus, we can have that

fle = £ = £ = el

Using relation (1), we derive that 2 implies the required equation.

We have proved, thus, relation (2).

Relations (T) and (2), obviously, imply that the equational theory,
which is generated by the set )

(o)) (£, = £9)), (v ) (e = £5v )1

is included in theequational theory,which is generated by 2. The converse
clearly holds. So we have proved the lemma. ]

We use, now, the lemmas, in order to prove that the set of invariants
can be effectively discovered from 3 and that it characterises the

I
X
equational theory generated by 2. (Theorems 3.3.3. and 3.3.4., respectively)

We derive, in the obvious way, that BE [2] is base-decidable (Theorem
3.3.5.) and decidable (Theorem 3.3.6.). Finally, we get the decidability
of. Pi’s, for finite sets of f-equations (Theorem 3.3.6.):

Theorem 3.3.3, For any finite set I of f-equations, the Set of
invariants [, can be effectively discovered from 3; i.e. there exists
an algorithmic procedure that gives, for each finite 3, the set IZ

Proof
Before giving the procedure, we shall prove the following:

Claim If 2 1is a finite subset of 5&, which contains at least one
equation of the form

cvvi)(f“vi = f”vi) ,



112

" for u and v distinct, and if the quadruple <k,d,1l,g> is as defincd
- on pg 105, then ; ‘
a. For each i€ w, AZ (Vi] equals <k,d> and

b. A (c) equals <1,g>.

Proof of the claim .
a. It is obvious that AZ (vi) is not «. So, A):(Vi) is an ordered

pair of natural numbers.
3

From the axioms of derivation for equational logic (pg. 21 ), we
deduce that the only non-tautologies containing variables , which are
implied by 3, are of the form '

- £% Y
lei) (fu\/i =f Vi) ’ '

with p and v not smaller than k. Hence, it follows that the first

member of Az(vi) is k.

- On the other hand, if we consider the equation
v ) (£, = £%), (1)

any £L-structure Q[ , with domain {ag,a;,..5a4 1} and f‘Q[ defined by
the rule ‘

.

; A,y =
¥v<d-1 , £ (av) a1

A -
£ (ad-l) =d; o

is a model of it. If p is smaller than d, it holds that, for ' each
v<d,

b

2N @) #a, -

This implies that
k =~ gktp
¥p<d, AW W) v, = £,
We have, thus, proved that, for any p < d,
k K .
(h) (£ = £7% ) B ) (v = £7Pv) (2)

Since, by Lemma 3.3.1., any non-tautology,containing variables,
implied by 2, must be implied by the equation (1),we deduce from relation
*(2) that
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vo<d, 3k @), = £,

From this it,obviously, follows that the second member of AZ(Vi) is d.

0

We have proved that, for each i€ w,

AZ(Vi) = <k,d>

b. Exactly as before, we get that )

AW = <lg> .

Consequently, by Lenma 3.3.0., we have that

Ag(c) = <1,g>

This completes the proof of the claim o O

We now advance to present the required procedure:

Check whether 3 € 0,. This can be done, since 2 is finite and

is, by corollary 3.1.1., decidable. If yes, then, in order to find

Ly do the following:

Check whether there exist two distinct p and v such that,

for some i € w, the equation (W) (f'v; = fvvi) is in 3.
If yes, then, by the claim,

Az(vi) = <k,d>
and

Az(c) = <1)g> b ]

which, because of lemma 3.3.1., can be recursively found. If

no, then check whether there exist two distinct g and v

such that the equation f'c = f'c is in 5. If yes, then

, Az(vi) =
and
A;(©) = <l,g> .

If no, then 3 1is composed exclusively of tautologies, and

VgeG, Al ==
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We have, thus, found A (g)°’s.
It easily follows from Theorem 3.1.0. that, for any
two distinct g, and g, it holds that

Bz(gl’gz) = @

If no, then check whether 3 C 55. This can be donc, since 2 1is finite

and 5é is, by corollary 3.1.1., decidable. If yes, then, in order to
find IZ’ do the following:

. k)
Find the pair <k,1> , by the procedure given in Lecmma 3.
3.2. It easily follows from the rules of derivation of
equational logic (pg. 21) that, for any pair of distinct
variables <Vi,Vj>, it holds that ‘

BZ(Vi,Vj) = <k,k>

Bz(vi,c) = <k,1>

Bz(c,vi) = <1,k> .
From this we derive that
Az(c) = <1,1>

and that, for any v, ,

Aszi) = <k,1>.

If no, then,becauée of Theorem 3.1.2., 2 genératés the equational theory
_— . . »
Eq,. We have, thus, that

VgEG, Al = <0,1>

and that, for any two distinct <g,,8,> € 2G,
|
Bz(glﬁgz) = <O’O>

This completes the proceduré that enables us to effectively find
I, from 3. ‘ a

Theorem 3.3.4. For any two finite sets of f-equations 3 and T,it
holds that

I.= [, if and only if OEqEEJ = OEq[T]
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" Proof

Direction <« of the thcorem is obvious. We prove the converse

direction:
Suppose that OEq[EJ is different {rom OEq[T]. Since the two
theories cannot be, at the same time, equationally inconsistent, and

because of Theorem 3.1.2., one of the following four cases holds:

Case 1. The one set, say 2, generates Eq£ and the other doesn’t.Then
it holds that i

Bz(vo,vl) = <0,0> # BT(VO,VI).

- Case 2. The one set, say 2, is included in @; and the other is
included in ®, but not in @, . In this case,

By (Vgsvy) = = # B (vg,vy) -

Case 3. Both the sets are included in 51. Then, either the one set
consists exclusively of tautologies and the other doesn’t, in which
case there exists a g € G such that

As(g) # AL(8)

or both the sets contain non-tautologies , in which case, by Lemma
3.3.1., we get that
}ﬁ ky+d, 1, 1,+g,
OEq[{ Qv XE vy=£ vy),f c=f c}] = Ggq[zj #
2 katd, 1, Yo4g,

GBq[T] = OEq[{C¥v0)(f ve=1f Vo),f ¢ =£77%}]
From this we deduce that the two quadruples <k,,d,,1,,8,> and
<k2,d2,12,g2> cannot be equal. Making use of the procedure,exhibited
in the previous theorem, we easily derive that, for some g € G,

AL(@) # A

Case 4. Both the sets are included in 0, but not in ®,. In this
last case, if <k,,1,> and <k,,1,> are as defined in Lemma  3.3.2.
.for 2 and T, respectively, and because of the fact that

Kk, ky kq 1,
Op LTV I(E vy =1 v)),(Wo) (£ vy = £ c)}] = O (2] #
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kz k2 k2 l2
# GEq[T;J = eEq[{ v v ) (E vy =€ V), () (£ vy = £ c)}l,

we conclude that either k, #k, or 1, #1, . Consequently, cither

BZ'(VO ’Vl) 7£ BT(VO ,Vl) or B):(VO’C) i‘ BI.(VO,C) .

We have proved that, in all four cases, if the equational theories
generated by 2 and T differ, so do the sets, of invariants . This

completes the proof of the theorem. _ : 0

Theorem 3.3.5. Let 3 be any finite set of L-equations.The equational .

~theory, generated by 2, is base-decidable.

Proof ,
Find the set of invariants Iz (By theorem 3.3.3., there exists an
algorithmic procedure for doing this). Then, for any finite T C Eq, ,

Find the set of invariants [, and check whether I = [,
(this can be done, since the two sets are , obviously,
recursive). If yes, then T is a basis of OEq[EJ. If o,
then T is not a'basis of OEq[EJ. 0

Theorem 3.3.6. Let I be any finite set of f-equations. The equational

[N

theory, generated by 2, is decidable.

‘Proof _
The following is, obviously, a procedure for deciding whether an-

L-equation € is implied by 32:

Check whether 5 U {e} 1is a basis of OBq[EJ (this can be
done, because of - the previous theorem). If yes, then
'g € OEq[EJ. If no, then € ¢ BBq[ZJ . " ]

Theorem 3.3.7. There exist algorithms that enable us to decide whether,

given a finite 3 CEq, , it has each of the properties Po’Pl’Pz’Ps’Pq
and P..
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The proof is an Dimediate consequence of theorems 3.2.0., 3.3.5.
and 3.3.6.:

The base-decidability and the decidability of the equational theory,
that is generated by an arbitrary finite 2 C Lq, , implies that the right-
hand parts of the equivalences of Theorem 3.2.0. are decidable predicates.
Hence, the left-hand parts also are. 0



! ' 118

§ 3.4. The decision problems of properties P, -P , in trivial

languages with more than one constant symhols.

Troughout this section, let

=}V e gy

be any trivial language with arbitrarily many constant symbols.

We have tried to use the method, CKhlbltEd in §3. 2, in order to
prove that all flnltely based equatlonal L-theories are base-decidable
and, thus to give a quick positive answer to the decision problems of
P ’s, for finite sets of £L-equations. Although we are almost certain that .
the method can be applled in the general case, we have not obtained the
result, yet.

Since, as Theorem 3.2.0. indicates, the base-decidability of all
finitely based equational theories is amuch stronger condition than  the
one required in order for the decidability of Pi (i€ (0,1,2,3,4,5}) to
be taken, in what follows, we shall try to prove the base-decidability of

each one P., separately:

We prove, firstly, a series of lemmas:

Lemma 3.4.0. Let 2 be any finite set of f-equations, which is included

in @i. 3 implies 0, 1if and only if the following two conditions hold:

a. There exists a pair <n,i> € (w-1) x w, such that either
n — -
W)V, =v,) ez or W) (v, = fnvi) €3
b. 1 is the.greatest common divisor of the set
. m_ _ N

{|{m-n| : (W) (v, =fv,) € 5}
Proof.
If 3 satisfies the two conditions, then Lemma 3.3.1. leads us to

the conclusion that the subset of X, which contains no constant symbols,
generates the equational theory

0L (4v,) (¥, - f7)1 = 0.

It holds, thus, that
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2RO,

and direction <« of the lcmma is proved.

We prove the converse direction.
Suppose that at least one condition is not satisfied by 2. We shall
show that:

Claim ELvery model A of 0, can be extended to a model & ' of $, that
is not a model of O,.

Proof of the claim

Let A be any model of @, .

i. If for 3 condition a.doesn’t hold; take as A’ any extension of
A by a new element a’, such that fzf(a') € A. Since A is a model of the -
equation (¥v ) (v, = fv,), it is obvious that

£ @y = % @)
and , consequently, that
A E O (v =8vy) (1)

From (1) and the construction of 2 it easily follows that A ' is a model
of all the equations of 2, which contain variables. It is also obvious

that 2 ' satisfies all the equations,without variables, that R does. We
have found, thus, an extension [’ of 21, such that

A (2[' |= 2) A (2[' V leo) (VU = fvo)) s

and, so, we are done.

ii. If for 3 condition a. holds but condition b. doesn’t , then

lemma 3.3.1. implies that the part of 3, which contains variables, generates

the equationalAtheory
OpqLG¥o) (£0vg = V)T,
for some d € w - 2. Consequently,
0 £vo= —c. i<i i
3cC Eq[{(¥wb)( Vo-Vo?}L){le“cj2-<31,32>e J}] @)

Take now as AL any extension of A by d new elements ay,a;,
cees@30 s such that
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vved-1, £ (a)

I
o

vl

and

e

a = a

d—l) 0 .

It can be easily checked that, because of (1), 9" is a model of 3, which

doesn’t satisfy the equation
(av,) (Fv, = v,) *

This completes the proof of the claim o

Since the claim assures us that, if 3 doesn’t satisfy at least
one of conditions a and b, we can always find a model of it which is

1

not a model of ®;, we derive that, in this case,

S0,

and the proof of direction - of the lemma is finished 0

Lemma 3.4.1 Let 3 beAany finite set of £L-equations, which is included
in 0,. 5 implies ¢, if and only if it is not included in ®; and , for

some i € © and some term ©, the non-tautology -
o) (fv; = 0)

or its reverse is contained in 2.

Proof .
Direction <« of the lemma is proved exactly as in Lemma 3.3.2.

We prove the converse derection: ‘
Suppose that either 2 is also included in @} or there is no temm,

‘such that the equation

) (fv; = 9)

or its reverse 1s contained in 2, We shall prove the following:

, B | )
Claim Every model A of ¢, can beextended to amodel R of I,which

‘is not a model of @2 .
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Proof of the claim
Let A be any model of ©,.

i. If 2 1is included in @&, we work as in case i of the previous
claim and we construct the required 2A'.

ii. If 2 contains no equations of the form
CA)(fv; = @) or (W) (0 = £v,.),
then it is composed exclusively of equations of the form
‘m = T sl 4= =
(Wivj)(f A fvj) or (W)(fv, =0)oro=1¢,

2 .
for <m,n> in (w-2) and ¢,y constant terms. In this case, take as 7
9 any extension of A by two new elements . a, and a, , such that
oo 0 , o _ ) )
_fQL (a;) = f“[(ao), for some a; € A, and £ (a,) =a,
It is obvious that, since £ (a)) is different from £¥ (a,),
Q[',%S not a model of 02. It is also obvious that, since, for any nfw-2,
() .
f“L'(al) = f?fn(az)s fﬂf“(ao),g[' is a model of 3. This completes the
proof of the claim, from which the proof of direction -+ of the lemma
follows. ' n

Now, it is the right time to complete the proof of relation c. of

Theorem 3.2.0., which we have left unfinished. It remains to prove direction
+ of the relation:

Suppose that 2 satisfies neither of relations
0, C OpL21 C 9,
and
0, C OBqEZJ co,

Thén, Theorem 3.1.2. shows that either OEqEZJ = Eqﬁ», in which case -2
doesn’t- have property P2, or

EcT) A EFo)

or
(ECT,) A (EF0)

In the last two cases,the claims, included in the proofs of Lemmas 3.4.0. and
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3.4.1., imply that we can find two infinite mod;ls A and A " of 2 such
that
QLAY A QL () (Evg=vg)) A @ B () (£v47v))
or
QCA') A (UF (vgv)) (Evy=£v))) o Q@ ¥ Ovp) (Ev, = £v)))

respectively. Consequently, 2 doesn’t have property P2 and = we are
' a

done

" Lemma 3.4.2. Let 3 be any finite set of f-equations,such that

o, C OBq[Z_] c o,
2 generates 5.1 if and‘only if, for any two distinct J, and j, inJ,
there exists a finite sequence a

80 F) 81 s 82 900y 8n

of equations in 3.N (51 - Q)l);sucll. that

i. for every vE n, £, and €, have a constant symbol in common,

+1
and
ii. ¢, isin g; and c, isin €_.
3, i, n
Proof Obvious 0

Lemma 3.4.3. Let 3 be any finite set of f-equations,such that
0, C GEq[Z‘] co, .

3 generates 62 if and only if, for every j € J, there exists a tem fo,

such -that a finite sequence of equations

and one of the following two equations

) (c; =fo) , W) (fo. = c; )

n n

are in 2.
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Proof Obvious : a

. N

We now advance to construct decision procedures for checking whether,
given a finite 2 C Eq, , it has each one of properties P, , Py and P, :

For properties P, and P,

]

Check whether OEq[ZJ = 0,, using the following procedure:

Check whether 2 C @, (this can be done, since
0, is, by Corollary 3.141., decidable). If no,
then GBq[EJ # 0,. If yes, then check, by the
procedure given in Lemma 3.4.0., whether ZE0.
If no, then GEq[E] # 0 . If yes, then check,
by the procedure given in Lemma 3.4.2.,whether
OEq[Z] = En.

If yes, then Theorem 3.2.0. implies that 3 has the properties P, and P,.
If no, then check whether 0. [3] =@, , using the following procedure:
LIRS _ Be 2

Check whether 3 C 0,. If no, then BEq[EJ # 0,
If yes, then check by the procedure given in
Lemma 3.4.1., whether 3k 0,. If no , then
OBq[Z] # 0,. If yes, then check , by the
procedure given in Lemma . 3.4.3. , whether
BEq[ZJ = 0,. '

<

If yes, then Theorem 3.2.0. implies that 3 has the properties P, and P,.
If no, then Theorem 3.2.0. implies that 2 has neither property P, nor
property P,. ' -

For property P,

Check whether 0, Cz C'wl, using the following procedure:

Check whether 3 c 0,. If yes , then check

whether 3 F 0, using the procedure given in
Lemma 3.4.0.

If yes, then Theorem 3.2.0. implies that 2 has the property P2 .
If no, then check whether 0, C 2 C @, using the obvious procedure.Theorem

3,2.0. implies that, if yes, then 2 has the property P, and if no, then
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2 doesn’t have the property P, . ’ . g
We have, thus, proved that

Theorem 3.4.4. In any trivial language £, propcrties Py » P, and

'P, are decidable for finite sets of L-equations.

LI

The decision problems of properties P; , P, and Pc should now

be examined:
In §3.3., we proved that they accept a positive solution,for finite.
sets of equations of trivial languages with at most one constant symbol

It is also obvious that, if the language £ contains infinitely
many constant symbols, the arbitrary finite set of £L-equations, 2 |,

doesn’t contain at least two cj’s, say cjl and Cﬁz . The existence
of non-trivial models of 2, thus, implies the existence of models of 3
not satisfying the equation le = cjz. From this easily follows that,
given any finite 3 C Eq, , it holds that

sk {cj1= e, ; <j1,j2>€EJ}+ﬂ-GEqEE] = Iq, | (M)

Theorem 3.2.0. and relation (1) obviously imply that there is no finite

'set of fL-equations with property P, or Ps. They also imply that the

only finite sets of <L-equations having property P3; are the bases of

Eq,. The three properties have again been proved decidable.

In the case of trivial languages, with more than onc,but finitely

many, constant symbol, we have not yet found an answer. As Theorem 3.2.0

implies,the problem would be positively solved if we were able to construct
an algorithm for deciding whether, given a finite 3 C Eq ,it holds that
. L
= . s _ PR 2
2= {fcjfcj. jeEJI L {cjl—cjz. <Jppdy> I},
or, equivalently, an algorithm for deciding whether , given .a finite
2 C Eqp, it holds that

¥jeJd , A(c) = <0,1>

- 2
¥ <dpdp> €07, Byley ’Cjz) = <0,0>

1
Since such algorithms have not been constructed up to now, the following

- question is still open:
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Question Are properties P, , P, and P, decidable for finite sets of
equations of trivial languages with more than one but finitely many constant”
symbols ?
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