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P R E F A C E

The problems discussed in this thesis arise in the geometry of 

numbers, a part of the theory of numbers which originated under the 

inspiration of Minkowski at the turn of the last century.

The first chapter is introductory and provides the background to

the main part of the thesis. The well known theorems which are needed 
later are stated without proofs, references being given in the appendix. 

In each of the remaining three chapters a different problem is 

considered and is preceded by a short summary. The theorems are 

numbered according to the chapter in which they occur.

The subject matter of this thesis has been suggested by my 
supervisor, Dr. J.H.H.Chalk. 1 am very deeply indebted to him for all 

his invaluable help and encouragement throughout its preparation.

1 am very grateful to Dr. G.L.Watson for his help in the solution 

of the problem discussed in Chapter 3 and for making a number of

suggestions leading to the improvement of Chapter 4. My thanks are also

due to Professor H.Davenport and to the Referee of the Quarterly Journal 

of Mathematics (Oxford) for their kind assistance in improving the 
presentation of Chapters 2 and 3, respectively. Finally 1 should like 

to thank Professor W.R.Bailey for suggesting the theory of numbers as a 

subject for research, and the University of London for their award of a 
postgraduate studentship for fifteen months.

London, May I96O. D.M.E.F.
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1.

CHAPTm 1.

The geometry of numbers is that part of the theory of numbers which 

is concerned with the solubility of various types of inequalities in 

integers. For instance, given a function n real

variables • it is sometimes possible to find constants

depending upon n and possibly upon some invariant of 

such that the inequalities

< y*rv 0*0
are always soluble in integers . There are certain functions

for which the best possible constants X̂  ̂ are known, for example 

quadratic forms with real coefficients in a small number of variables.

In particular, the cases when either one of X^ or is zero or X^= -y** 

have been extensively studied. We shall consider, in this thesis, 

slightly more general functions of the form

where
A. TV

I Jv- I S I
is a quadratic form in the variables with real coefficients

s a) ̂  not all zero, having determinant

^ -V 0.A A-H
is a real linear polynomial in Such a function

we will call a quadratic polynomial.
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We nov/ introduce the idea of an integral unimodular substitution of 

the variables  ̂ .
Definition 1.1. A substitution of the form

where the -rv ̂  s->^..yn + 0 are integers with determinant

)l = V ̂  \ , is said to be an integral unimodular
substitution of the variables u , , , . w  ̂  .

Definition 1.2. Two functions  ̂ and - y

are said to be equivalent, or ^  o(u,,. .. ̂  u^) , if one

can be transformed into the other by anintegral unimodular substitution 
of the variables.

To illustrate our methods, we indicate briefly the type of inductive 

argument which leads to inequalities of the form (l.l.) for the 

polynomial  ̂u^) . Some knowledge about small values of the

quadratic form — y may allow us to suppose, after applying a
suitable unimodular substitution to the variables ^ , that

= °-,y <  ^

where S depends only upon the determinant of v  v ^ n.') ’ 
on completing the square for u., , we may rewrite

V/hen considering values of quadratic forms the integral unimodular 

substitutions which are used are always homogeneous, that is 

b, n. » V V - b = O  . ̂9 I A .l\4l
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where are appropriate real numbers and

^C^a/--•>»‘-'a) is a quadratic polynomial in the variables 

yUV' if we can now use an inductive hypothesis for
establish the existence of integers '-‘»v

satisfying

for appropriate constants  ̂̂  ̂ we still have one variable,

namely v^^at our disposal. We will show that a suitable choice 

of the integer u, will lead to inequalities of the type required 
in each of the cases considered. Hence, provided that we can find 

; /^n for some integer ^^^an inductive argument will give a 
result for general y\ .

To give a geometrical interpretation of the inequalities
(l.l) we are led naturally to the introduction of an 

n-dimensional lattice. Referred to a rectangular Cartesian 

system of axes in some n-dimensional Euclidean space E^, every 

point is uniquely determined by a set of n inhomogeneous 

coordinates  ̂  ̂ and the aggregate of all points with
integral coordinates is said to form the fundamental lattice 

. Thus if we denote by K the set of points  ̂ in

E^, defined by

X

it is clear that the solubility of (l.l) in integers implies the
CO)

existence of a point of in K and conversely.

More generally, an n-dimensional lattice in E,n consists
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of a set of all points whose coordinates satisfy a
relation of the form

S ■=. I
where the ^ - y - a) are fixed real numbers whose determinant

1, i o  and u . . are allowed to take the valuesII«ASU A ^ ̂  A
1l \y t 2̂ ... . The determinant of the lattice is given by the

absolute value of --y #v ■ Clearly a homogeneous, integral,
unimodular substitution applied to the variables leaves the

lattice invariant.

With the usual vector notation, if A-,...,A . ̂ 1’ ’ n are the n points

of having coordinates , • - ■ )y - - - y C -y
respectively, then every point of A ^  may be expressed in the form

U, A ̂ 4- - -- -V ^ ̂  Ar\,

and A^,...,A^, together with the origin 0, are said to generate A^^ 

This particular set of generating points of A ^  is not unique.

It may be proved that a necessary and sufficient condition that n 

points of should generate the lattice is that the n x n

determinant formed by their x-coordinates should be - or 

equivalently, that the n x n determinant formed by their corresponding 
u-coordinates should be - ' . We observe finally that A^is affinely

Aequivalent to since the non-singular linear transformation of

coordinates given by
TV A

-V AS 3
” * C*")transforms yC into ATV OX
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The foundations of the geometry of numbers were set by Minkowski 

PO^who introduced ideas of considerable generality. His theorem on 
convex bodies in E^, for example, occupies a central position in the 

subject and can often be used to give a crude estimate for the types of 

inequalities required. A convex body may be defined as follows;

Definition 1.3* A convex body K in E^ is a closed and
bounded set of points, having at least one inner point, and such that if 

P, Q are any two points of K then the mid-point, ^ Q o f  the 

segment PQ also belongs to K. If a convex body K contains 

some point, say the origin 0, which is such that if belongs to

K, the point 0 - P also belongs to K, then K is said to be 

symmetrical about 0. It is known that every convex body has a

volume in the Jordan sense. V/e can now state the fundamental theorem

of which there are several proofs by Minkowski and others^ .

Although we shall not give any of these proofs, it is perhaps interesting 

to observe that some of them depend only on ideas of elementary geometry 

and convexity.

TEEOBMi 1.1. If K is a convex body which is symmetrical 

about the origin 0 and has volume 3  ̂ ^ A ^  ̂ then K contains a

point of A ,  other than 0.
We shall only be directly concerned with two of the many applications 

of Minkowski*s theorem. These are stated explicitly in Corollaries 1.1 

and 1.2.
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COROLLARY 1.1. If X., are n positive real numbers

satisfying
X y • • -  A j

there is a point of other than 0 , in the n-dimensional
rectangular parallelepiped consisting of all points whose

coordinates satisfy
\ ^  ^ , y  ̂  ̂ I ^ X ̂  .

Proof. The proof is immediate, since the volume of the rectangular 
parallelepiped under consideration is 2. X, - - 3.

Now suppose that is a positive definite quadratic
form, so that in particular ̂ > o . Denote by the least upper bound 

of the minima of all positive definite quadratic forms in n variables 

of determinant 1 for integral values of the variables, not all zero.

COROLLARY 1.2.

Proof. Again the proof follows easily when we observe that
(^(uy. "y may be written in the form

YVwhere
"—  OvSs =

for appropriate real  ̂(y. x) . On comparison of determinants,
we see that - = a ' An application of Minkowski's
fundamental theorem to the n-dimensional sphere

c>c A_v, . - - -4̂ ^ ^  ^

which has volume 3 now gives the result.
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Although Corollary 1.2. is only best possible when -n-ly in 

which case - I ̂ the following values of for are known, by
theorems of Lagrange, Gauss, Korkine and Zolotareff ^33] Blichfeldt % 

(see Van der Waerden for further references). _____
</x

r, . 2
For values of 9 the problem becomes more difficult and remains 

unsolved, although Corollary 1.2. has since been superseded by theorems 

of Blichfeldt, Rankin and Rogers who have shown that, for large

values of n, F it may be verified that this is an

improvement of Minkowski's asymptotic estimate by a factor l/2 3- 

At present the best known result in the opposite direction,

is a consequence of a theorem of Hlawka .

We now turn our attention to indefinite quadratic forms, and 

suppose henceforth that is indefinite. A classical

theorem ( Ij'TJ ̂  Theorem 59 ) due to Meyer states that if 

has integral coefficients, then it assumes the value zero for integral 

values of the variables, not all zero, provided that This

suggested the following conjecture.

CONJECTURE. If the coefficients of are not all in a

rational ratio, then '-j can be made arbitrarily small for

integral values of the variables, not all zero, provided that bX

Until recently no substantial progress on this problem had been made

except in two or three special cases considered by Davenport and 
Heilbronn [)2] , Watson and Oppenheim [3 3J . In particular we
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mention the following two theorems of Oppenheim as they will be 

required for Chapters 3 and 4 .

THEOREM 1. 3. Let G y Q . If is an indefinite

quadratic form in 4 variables whose coefficients are not all in a 

rational ratio and which represents zero non-trivially, the inequalities

O  \ \ ^
are always soluble in integers u w -

THEOREM 1. 4. If is an indefinite quadratic form
such that, for every > the inequalities

are soluble in integers , then if n>^3,the inequalities

O  -C —  I y ' y  ^  G

are also soluble in integers for every positive G .

Although the proof of Theorem 1. 4 is fairly straightforward, the
proof of Theorem 1. 3 is not elementary. For it depends upon 

properties of quadratic forms with integral coefficients, and the 

following simple case of a general theorem of Weyl on the uniformity

of distribution of the values ( «xodi I ) of a polynomial in a single 

integral variable.

THEOREM 1. 5. If at least one of is irrational and G is

any assigned positive number,the inequalities

\ 0 , + y  -t- I ^ ^

have an infinity of solutions in integers z,y.



Returning to the donjecture a very considerable advance has been

made during the last four years by Davenport, Birch and Ridout, using 
analytical methods ( )

We now consider the minimum value of I cj(u,y . -y \ for all

integers in the cases when n 2, 3 and
state two classical results due to Markoff and Korkine and Zolotareff
[3 4j.

THEOREM 1. 6. The inequalities

are always soluble in integers Oy o with strict inequality

unless ^  X ( u A  ^ .

THEOREM 1. 7 > The inequalities
_L

I ' Cl
are always soluble in integers u, . u, . ^ Q  with strict

inequality, unless ^  A ( u A  -̂r -h u A  - ^ ) •

Proofs of these are given in Dickson's books; ( 4 Theorem 119)
and ( Theorem 8&), respectively. A recent theorem of

Watson, which gives an inequality for the values of a non-zero 

binary quadratic form and depends partly upon Theorem 1. 6, is also 

needed in Chapter 4#

THEOREM 1. 8. If P, N denote the lower bounds of the positive

values of respectively for all integers
u,, \ o, o > then

P N S -  /IT



10.

provided that Ua.) does not represent zero non-trivially.
The equality sign is required when ^  X ( u,̂ 4- u, ~u^) .

A more general result , obtained by Blaney ( , Lemma I )

and stated in the next theorem, provides an estimate for the upper 

bound of the least positive value of and will be useful

in Chapter 2.

THEOREM 1. 9. There exists a constant depending only on n , 

such that for any indefinite quadratic form « y of

determinant B^, there are relatively prime integers u,y...yU^

satisfying
------- f/>v

O <  ■ - y
. o. y\-\This holds in particular with b-yy z:

The best possible value of ^ is well known «SP J ,

Davenport and Oppenheim jjlA^ later found the best possible

values of and |d̂  ^ For values of 5^ the inequalities

are probably soluble with any > o ̂  however small, if the coefficients 

of .y 0,̂) are not all in a rational ratio; otherwise the problem

of finding the best possible value of has been solved by Watson, 

as we shall show presently.

It is well known that an indefinite quadratic form in the 

variables u,y..̂  u^ may be expressed in an infinity of ways as a sum 

of signed squares of real linear forms m  u,y..yU^, By Sylvester's 

law of inertia, the numbers and t say, of positive and negative 
signs, respectively, are invariant; hence so also are the signature
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and rank of the form, namely 2>=yt-t and ç>=wH.-v(: , respectively.

Consider the special case where ^ ..y *\) and

C  ̂J ~ V ' "y ‘̂ ) are integers. Then the
indefinite form has integral coefficients, determinant

and signature say. We write

^3. y rv Ù o d d  .

A weaker form of the following theorem of Watson, whose proof

depends upon the classical theory of integral quadratic forms, is 

essential in the solution of the problem considered in Chapter 3,

( see Lemma 3*4)•

THEOREM 1. 10. There exists integers

satisfying

O  C X.YV

Û  i \

A 3

4-

-h
z

\(^od 9 )

J

If we introduce the quadratic form in 'n-v I variablesV\4' A-vV
QC^.y - V  Syv.)

J\̂ \ a - (
with determinant say, clearly ■ y^r.) may now be written

. ..y ' V .
In Chapter 2, we consider the case when " y is an

indefinite quadratic form^whence 3^ z^O . Thus we may define
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The following theorem, significant only for large values of -Qy was 

first obtained by Blaney ( [3]^Theorem 2), in a slightly different form.

THEOREM 1. 11. There exist constants depending
only on n, such that the inequalities

O  < ^ Q  0  <

are always soluble in integers v,,' - with V̂ ry- l/l-

The special case 1 was later studied by Blaney, ]̂ '4j ̂  who obtained 

an improved value of i /3 ̂  a result which can also be deduced from 

a theorem of Macbeath. We shall show that the theorem is true,

possibly for different constants ^ with (/ The proof, j

which is by induction on n, is similar to that of Blaney, and in fact
;

makes use of his Theorem 1. 9*

The remaining case 3\:>0 is considered separately in Chapter 3*

In fact we suppose that the rank of is a -' so that

■g) ( - -  0  i • - • -  X_, C  Q-i.)

where are n homogeneous real linear forms in the n

variables u,y...y having a non-zero determinant of coefficients

y\  ̂ say, and c is an arbitrary constant.

The polynomial ^(u,y...yU^) in (1* <3) bas already been
studied in some detail by Macbeath. In 1950, he proved the

following tŵ o theorems relating to the case n ~  Theorems

1 and 2).
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THEOREM 1. 12. There exists integers v , s a t i s f y i n g

unless - is equivalent to one of the following;

U,l+ u , + <3aj^-vc9j

4  C')

^ (3 4. 4-U^ + C')

for some real number c'. If c' — ' j I ÿ'I V j if c' - 4

l^x\ >y 4  ; l&al ^ ( |

THEOREM 1. 13. Given 6 po, there is a finite set of

polynomials jp.,--, such that if %» is not equivalent to a

iaultiple of a polynomial of the form -v c [ C - V " )____
then integers u,^ exist such that

1 "V I ^ G .

The proof of Theorem 1. 12 is arithmetical while that of Theorem 1. 13 

depends upon two important lemmas, one of which has already been 

mentioned as Theorem 1. 5. The other lemma, which is concerned with

the approximation to an irrational number by a fraction with a square 

denominator was first proved by Hardy and Littlewood and subsequently 

improved by Vinogradov and Heilbronn ( see and references given

there).
A later theorem of Macbeath considerably more general

in scope, and yielding information about the position of those points

 ̂ For & simple proof of Hecbeath*s theorem, see Rogers .
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of a non-homogeneous lattice in ( that is one which d^es not

necessarily contain the origin ), which are near the boundary of a 

given convex region leads, in particular, to an inequality for a 

general polynomial, provided that the signature of its quadratic 

section is n - 1;

THEOREM 1. 14. The inequalities
/ \ ) 

I + • - ■ C ,  ^  ̂ ' 6 (c. \à\)
are always soluble in integers u,;.. with

C

It is our object in Chapter 3 to establish two further theorems, 

analogous to Theorems 1. 12, 1. 13 for the general polynomial

V • -y  '

THEOREM 1. 15. If the coefficients of ÿ -c are not all in

<3, J. U, A-  ̂WO. U. ** V ^ WO. W

THEOREM 1. 16. If the coefficients of ^ - c are in a

rational ratio, then there are integers satisfying

1 • V
except possibly when \sl = A-V and A 3 ̂ O : the equality sign

being required when ^  where

= t ", r u, 4. , ; ± - - Ï +■ ') + V ,

The proof of Theorem 1. 15, although based upon Weyl's result
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as stated in Theorem 1. 5> is not immediate in the cases where the 

quadratic section of represents zero non-trivially, and

has signature 4 3 . These arise only when y\ y/ 3 and our treat

ment ( ad hoc for 3^4) requires theorems of Oppenheim  ̂25^ IL lî ] 

on the representation of arbitrarily small numbers by indefinite zero 

quadratic forms in four or more variables. Theorem 1. l6 is proved 

by induction on n ; the case being contained in Theorem 1. 12.

As we need this special case in Chapter 4j we include a version of 

Macbeath*s proof.

The remaining problem, considered in Chapter 4, is 

concerned with the values of an indefinite quadratic form 

of determinant It is shown that is equivalent to

a form, each of whose diagonal coefficients is bounded above in terms 

of I I . A result of this type clearly gives some Information

about generating points of in the three-dimensional region 

I  ̂ I j and may indeed be stated in geometrical terms.

Problems of a similar type have already been considered by Minkowski 

and others. In particular, Minkowski proved by simple '

geometrical arguments that the region

always contains two generating points of This result was

extended by Chalk who in a later paper!?] gave the following 

conjecture, proving it for n =3 and 4.
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CONJECTURE. There exist n lattice points, generating j

in the region

 \  -  ■

In terms of quadratic forms the two theorems of Chapter 4 are 

as follows.

THEOREM 1. 17. If represents zero non-

trivially, it is équivalent to a form for which

I ÛcCl C W  I ''' (c =

with strict inequality unless or where

THEOREM 1. 18. If 3̂) does not represent zero

non-trivially, it is equivalent to a form for which

I ;$ [§$ '^3*) '
with strict inequality unless 9 ̂  X^x. where

~ ^ -4- J  3̂ '

The proof of Theorem 1. 17 is not difficult, and depends on 

an elementary result in the theory of continued fractions and on the 

case n ~ 2  of Theorem 1. I6. In order to prove Theorem 1. I8 we
use Theorems 1. 6, 1. 7 and 1. 8 together with an extension of 

Minkowski’s theorem on generating points of A^^
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CHAPTER 2.

TV TV

2.1 Let ^ ^  ^

denote an indefinite quadratic form in n variables with real 
coefficients and with determinant T^d^o. Blaney ( [5]  ̂Theorem 2) 

proved that for any there is a number ( = H[V,yv) such that

the inequalities

+ + I (3-0

are soluble in integers for any real

The object of this chapter is to establish an estimate for T  

as a function of (f. The result obtained, which is naturally 

only significant if X is large, is as follows.

THEOREM 2.1. The inequalities (2.1) are always soluble

in integers if

' ^ V  ^ +-
where are suitable positive numbers depending only on n .

The value of F obtained by Blaney depends on an arbitrary

parameter c > o and is not given explici-Qy, but examination of the

proof shows that any value so found would exceed ^ by an amount of
'/x.order at least V when 0 is large. The more precise estimate

(2.2) is obtained by a refinement of Blaney's argument. His proof 

is by induction on n and falls into two cases. In one case, after 

a reduction of the homogeneous form depending on

the choice of only one of .y in (2.1 ) is made to depend on Y  .

At the corresponding stage in our proof, we allow at least one more
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variable to depend on Y , The other case is treated on different 

lines from Blaney’s and avoids the use of the arbitrary parameter c. 

The case n was considered by Blaney in a later paper 

( [4]^Theorem 3), and the value

rev, a) = Y  ^ + oo)
was obtained by methods of the geometry of numbers. The same

estimate can be deduced from a result of Macbeath

It is convenient to express Theorem 2.1 in a slightly more 

general form in terms of quadratic polynomials. Let v -

be a real quadratic form in n-vl variables, of determinant ;

and suppose that the section o) is an indefinite form in

' V of determinant ^ o .

Let

THEOREM 2.2. There exist; integers satisfying

o  < <L + (r .
Theorem 2.1 is an easy consequence of Theorem 2.2, as will be 

shown in below.
2.2. The deduction of Theorem 2.1 from Theorem 2.2 is elementary.

Given the indefinite form of determinant and the

numbers we apply Theorem 2.2 to the form

This form has determinant

so that ü ï ï  from (2.3). Theorem 2.2 asserts the existence of
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integers such that
-» />- r i/n 1 r> V

and this is (2.1) with ^ as in (2.2).

2.3. For the proof of Theorem 2.2 we need two lemmas.

The first is Lemma 1 of Blaney 1^1•

LEMIÆA. 2.1. There exists such that, for any indefinite

quadratic form of determinant l̂ n > there are integers

with highest common factor 1 satisfying
l/rx.

O  (y V ' y n̂ ivl ♦
This holds in particular when jpw _ «3

COROLLARY. If is such that ,o) is

indefinite and has determinant  ̂and if 6 -- I is given, then 

there exists an integral unimodular substitution on such

that the coefficient of * say a„, in the transformed form 

satisfies
(■3-0

LEMMA 2.2. For any real d y CL'? o , , there exists an

integer u. such that

O  ^ ^ < (2 (0.̂ 9 + (Q %)

and provided a there also exists an integer ^ such that
l/X

O  <  - (L ( UL< (Y 4  ^(CL^) .

PBoof. (2.7) holds if

^ u-V ' ;

and (2.8) holds if
, a
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assuming

2.4. Proof of Theorem 2.2 when n ~ 2. If = o then

0 is the product of two inhomogeneous linear forms of 
'/x

determinant «2 . In this case, (2.4 ) is known to be soluble for
any ^ (see  ̂Theorem 1 ). Hence we may suppose ^^1-0.

Since is indefinite we have < O.

By the Corollary to Lemma 2.1 we may suppose, without loss of 

generality, that

O < IV . \ s .3 a,. \  <  o  , (^.<0

We have, identically,

^  IV X.

for appropriate Hence

% (yV 0  - Gn ( + ^ 3) — C3J -  I ^ 3  ̂1 •
Û,. (  A ' '

If G,^>o J we choose the integer so that
u^4r ^  ̂ _c ^  J (̂<P. I oj

where 0  < ̂  ̂  L Then

where ^>0 and
(V <  I X \  ^  ^  U . . T > 3 l

3/x 'I4
< \A) ^ 2 IX) X I

=  I x i  (  '
by (2.9) and (2.3). By Lemma 2.2 there exists u, such that

n
O  <  0  ^  A ,  +

< a I X I a i x i " Y  1+ y

which is of the form (2.4 ).
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If a„<0 we choose so that 3 < 6 < 3  in (2.10). This gives

Q  (9v ') = - l«,.l ( u,-v j Y  + p ̂
where ^ > o and

Since > -4 \ >/ d,,

by (2.9); we have and the second part of Lemma 2.2 is

applicable, giving

O  < Ĝ (uyUî  ̂ ^  C (  ̂ )
As before, this is of the form (2.4), but with different constants.

Since we do not know whether the exponent of -0. in (2.4) is 
best possible or not, there is little point in working out good 

values for the constants Cj.

2.5. Proof of Theorem 2.2 when 'w ̂  3 , We proceed by

induction and assume the truth of the result when n is replaced 

by n - 1. Let the form oj be expressed as a sum of n

signed squares of real linear forms, and consider two cases 

according as (j) there are at least two positive signs, or (jO there 

is just one positive sign.
Case 1. By the Corollary to Lemma 2.1 we can suppose that

O < o... s  (3 -n)

We have, identically,

-  <J-„ C " .  +  - ^ 1  "1  -*•■-- +  X x . .  A . ,  ) ^  X 4 -  v V . )

for appropriate y^^^^^bere Q is a quadratic form in n variables

of determinant a,'/. Also is indefinite, by the
'Tyhypothesis of the present case, and has determinant . By the
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inductive hypothesis, applied to - Q ’K  there exist

integers such that - = p where

O  < < (IDJ
where

A , .  1 î„., K . ' " n

4

kby (2.11) and (2.3). Hence, again by (2.11), ,

*.,p < C )

y

for suitable constants \ . By Lemma 2.2 we can choose u,

so that
o  < ') = a„ |i < a (a„ p)'""-»- 0.,, 3

and by (2.11) and the above estimate for a,^p^this gives a result
of the form (2.4 ).

Case 2. By the Corollary to Lemma 2.1 we can suppose that

O < - a , ,  < I'^rv) p . i i )

As in Case 1,

Q("u- V "n.,) = - - + ^
and the determinant of y is again The form

o) is indefinite, by the hypothesis of the present case,

and its determinant is ^Q„'. Let

Q  (Uĵ ,.. n Q  (^X^--v ~ l̂ rv\Drvl + , -
Plainly Q" f'-‘j. j - v i - s  therefore indefinite
with determinant . We require the determinant of the form

Q  )' V î\A.)j since this differs only from that of Q ' & y  by
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having an amount added to the element in the bottom

right hand corner, its value is

sr' -
_ ''By the inductive hypothesis, applied to Q^we can satisfy

O  <  Q  * ' r̂v, 9 < I I  ̂ C ^
where

Now

T\ /(TTV-X) «f^-O _

by (2.12) and (2.3).

Thus Q  ' P where

for suitable constants . Nov/

Q  (u,^...^ l) =  - la„\ ( U, t ^ ^ y

and since the condition p > is satisfied by (2.12), it follows 
from the second part of Lemma 2.2 that there is an integer 

such that
. (/I

We have .
u a .  ' K i x i " ' ! . , , !  . i ^ j " - ‘k , X " ’( G a ' \ c : )

and we again obtain a result of the form (2.4). This completes the 

proof.

o
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CHAPTER 3.

3*1* Let ^ I; ' ' ̂  denote homogeneous linear forms 
in 'vv. variables with real coefficients and determinant

A ^  ^ ^ s-nd let C- be any real number. We write

^  ~ ^  (yv ^  - - Lj'' t_ . .. 1 +- L,̂  -V t ̂  ( 3'9

I  -V u.) = - t . . ± L^ _ , (3.x)

where ^ is a singular quadratic form with rank n~ I and signature 

S - -H. being the number of positive signs in ( 3.2 ). If ^

and are any two such polynomials, we say that they are equivalent,

writing ^  ^  if they can be transformed into one another by an

integral, inhomogeneous, uniraodular substitution of the variables 

. From his general theorem on infinite convex

regions Macbeath has deduced, with a slightly different normalization, 

that, if U\ =r  ̂the inequality

I S I < ( C l A I ) * ' ' " " '  6.3;

is soluble in integers —  with

'y\-C

This constant is not best-possible and indeed, for large values of ^  ̂  

a substantial improvement can be obtained by a modification of his 

a r g u m e n t I n  this chapter we prove the following two theorems.

THEOREM 3.1. If the coefficients of ^  -c are not all in a 
rational ratio, 9? assumes arbitrarily small values for integers 

See next page.
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THEOREM 3.2. If the coefficients of are in a

rational ratio, then there are integers u , s a t i s f y i n g

Ij., ,

except possibly when ( s\ - vv-\ and i O .

We observe that when

t  u, ( U, +,) t  . ± ,  ̂ +') ^ ^ (,

the equality sign in ( 3.5 ) is necessary. For ^ ^ s) when

u, .. are integers, and so

I S . 1 > I = ( i  ■ j
The proof of each theorem is to a large extent by induction

on nrv ̂  starting with the case r\^ 2. This was studied by Macbeath 

who obtained, in addition, some isolation results for the minimum 

of a quadratic polynomial in two variables. For completeness, we prove 

both theorems for n- 2. in ^ As in the general case these proofs

depend on Lemmas 3.1 and 3.2. Lemma 3.1 is stated without proof and
is a consequence of a general theorem [5ij due to Weyl on the uniformity 
of distributional the quadratic polynomial 8 ^ x 4 Ô3 (»̂ ool

Lemma 3.2, which gives an inequality for a quadratic in a single 

integral variable, is a corollary of Lemma 5 given by Davenport but

j- An application of Macbeath*s theorem combined with
Blichfeldt*s classical estimate for the critical determinant of an 
n-dimensional sphere, leads to a constant
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for convenience a proof is given in ̂ 3.2. The proof of Theorem 3.2, 

for general tv ĵ see ^ 3 5^^ is based upon the fact that a suitable 

integral unimodular substitution of the variables reduces

" V  to a non-singular quadratic form in -a - • variables
of determinant 2> say, with the property that its first coefficient 

(say Q̂ ) satisfies
_ _  , I /(-A-v)0 < I ÛL \ I

In the final section §3.4 we prove Theorem 3.1, the proof depending 

mainly on Lemmas 3.1 and 3.5, and at one point on Theorem 3.2.

3.2. LEMMA 3.1. If at least one of is irrational,
and Q is any assigned positive number, the inequality

I 0, 4r ^ 4- 8 3 ) c G

has an infinity of solutions in integers ^ .

LEMMA 3.2. If 2 and a, are any real numbers
satisfying

0 < Q- < o2 (3. t)
n I- (0 < < 1 - 0- ^ {3.yyf4  ^

then there is an integer u for which

1 CL ( - a ' t  s ' • ^3.S)

Proof. Put Q-(u.-V:dL)^-

for convenience. Since

<2q.-'( t X  :? a >/ J i  > 1^
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by (3.6 ) and (3.7), we can choose an integer u which satisfies

I u-tr \ <  a'' ( 0-)

and then {̂̂ ') satisfies

-  0 .- ' ^  c ^ )  < '  •

Hence, if t X o - ^  (3.8) is valid with strict inequality. Suppose 

now that (=̂ 3 and let ^  denote the integer for which

a.'' ( ^ ^ «-) .

Clearly, if it also satisfies
X / '1 \Lk 4r oL > a* ( (r — 0-) ^

(3.8 ) is again satisfiedwith strict inequality. Hence we may suppose 

that
a-' ( Q.)''’" - \ é u-k ot < 0.'' ( ^

where q.'’ ( O \  6

The condition (3.9) combined with (3.7) gives us a lower bound for a.;

for on rearranging (3.9) and squaring we have

2  (t"»- 3

where 2 X -  X  3 3 o. - ^ 3 o.

Squaring once again, we then have

and so, on using (3.7), <2 cl' -<x 3  9

which gives a  t . (3, io_)

The statement of the lemïna remains true if we replace (3*7) by
O  < -L CL.̂  ex. -V C'oT- O <: a ^t)

Q i ^ c i  O  S 6:^ 6  JL f- CL f  ̂ -r- i G Q~ <  2  .
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since Consider now • From our present choice of we
have

a-' ( olV'^- j -1 + 5 a'' ( ^ 9

where , ifx

hy (3.10). Hence

(L I a - ' ( X - o ’'^- t}’’ - ' o_| a}'

where
r . ,>»a \ 0.-' ( t ^ +  a - o/'t^ = u  4  ( f c X x V ^  > ^ I.

0^ ■:? cx > CL^- a.since ^  ^

follows from <x 4 «2  ̂ and where
i/x

&_ { ^ - oj't ' -  a. - I -  3 ( t a) 3
rL \-\l'ŷ

since a -v X  ^  ^ ‘2a. _ a ^ t^  4

follows from (3.7) and (3.IO).

Note that equality in (3.8) occurs only when

either (1^  ~r ^^ --   Q

or o?^ 0 . ^ 2 ^  (V ^  o % 3.

Proof of Theorems 3.1 and 3.2 { n\^ A ). By considering a 

suitable multiple of ^  in place of ^  if necessary we may assume 

that |A\ — ^ C-̂ -‘0
Then it is sufficient to show that ^)(X, û_̂ ) assumes arbitrarily
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small values for integers unless the coefficients of ^  - c.

are in a rational ratio;in which case, we show that 1^1 < I is 

soluble in integers , Let G > o . Then, by Minkowski's theorem

on linear forms, there are coprime integers satisfying

1 L, ( <  G  ̂ ll^l < 2 G (8. il)

After applying a suitable integral unimodular substitution to the 

variables we can ensure that (u*; ; and then - ^

can be expressed as

^  ^  ( u , -V -V ^  3 ) 4- C, u , 4r ^3 -

for suitable real  ̂ where

either (i ) [) <c (L ^ G ^ c, — C)

or (A) (X>o  ̂ - 0.

Note that (̂» ) is an obvious consequence of (3.12) provided that

while ) arises naturally when - O.

Case Cl). By (3.11), we have Q- I Choosing u ,

successively, and writing 4- - ~X^we can ensure that
A 'I Z’-

O  < % < I til - /

t LI 4, -F -''3

(3.149

Then 1 'Î? \ ^ ^

by (3.14), and, since d & where G is arbitrary, it follows that ^  

assumes arbitrarily small values for integral u,^u^ .

Case (ilk) We may apply Lemma 3.1 directly to
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where lĉ | ^ 2  ̂by taking

0 ,  -  (LcJ ^ G ^ z  c , c /  .

Thus, unless the coefficients of ^ are in a rational ratio, ^

assumes arbitrarily small values* Otherwise, on writing ^ ^  in 
the alternative form

- = (L ( u,4 d) ̂  p

with appropriate we can establish the required inequality I.
I

For, if \ĉ \ < 2^ we may select any value of u ̂ and then choose 

to satisfy I ^  ^ Iĉ I < ( . If 1̂ x1 we apply Lemma 3*2; note that 
since Q-^ U j  - 2_ we havej

a < 1

Writing 4-ĵ for convenience, we choose first to

satisfy
L t , < io. -I *

Then, if \ <  o  ̂the integer may be selected so that

( u, ) 4 ^

and then " 4  ' *'
But, if we may introduce Q-X and then the choice of

in Lemma 3.2 ensures that I j by(3.15) and (3.16)5 and in fact

we again have strict inequality unless

y  ^  C (^o,®-4- u ,  Q u ,  - 1)

3.3. For the proof of Theorem 3.2 when -ags 3. we require two
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further lemmas.

LEMMA 3.3 If (Uy ' is a singular quadratic

form in the -n. variables ‘ with rational coefficients

and rank or\̂ \, it is equivalent to a non-singular quadratic form 

in T\-l variables with rational coefficients.

Proof. By Lagrange's reduction of a quadratic form 

we can express in the form

^ L, 4. . - - 4. j

where  ̂ are rational non-zero numbers and

are independent linear forms in with rational

coefficients. If we write

where the u are rational, we may suppose, by permuting the 

variables, that

Then there exist rational numbers u .  ̂ satisfying the

equations

L, . ■■■ » 1-,.,.° (a.'.J

for any prescribed rational value of Since the equations (3.17)

are linear, it follows that they have a solution in coprime integers
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V  'V
j "j apply a suitable unimodular substitution

to the variables -y  ̂we may suppose that y - • j

V  ^  ' Hence 1%; - y reduce to linear forms in 'n-i
variables with rational coefficients, and  ̂ is of the required form*

LEMMA 3.4. If ^ is an indefinite

quadratic form in ox variables with rational coefficients

and determinant %L,then there are integers satisfying
I I / A.o  ^ U)j .

Remark* We give the proof in two parts. The first is 

elementary and gives the required inequality for forms with small 

signature. This partial result interested Dr. G.L.Watson and he has 

recently found a proof of a rather better inequality valid for any 

signature. A brief outline of his argument is given in the second 

part of the proof. See G.L.Watson, Quart. J. of Math. (Oxford) (2)

9 (1958) 99 - 108 for details.J This proof is not elementary and it

would be of interest to find a direct proof t of Lemma 3.4»

Proof. Let the signature be s .

(i) Suppose The lemma has been established for

^  ' ly 3 ‘ and 4  by Segre Davenport Ilo] and Oppenheim y

without the restriction that the forms be rational. Thus it is

sufficient to consider values of and the proof is inductive,

depending on the cases 4 - 3  and -4 • By considering a suitable

multiple of ^ in place of ̂ y if necessary, we may suppose that \\\ -

-j It seems difficult to modify our argument for Isj ^ ? .
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and it suffices to show that the inequalities

O < <̂ < 3
are soluble in integers By a classical theorem of Meyer’s

represents zero for relatively prime integers - and after

applying a suitable integral unimodular substitution to the variables 

u,,' v "A we can take = (l/O, -yO). Then

for appropriate rational O- relatively prime integers r. y

and ,. By a further integral unimodular substitution of the type

U^' = Uj, 4 - - - 4='^’̂ ^ J

4 - - - 4 IV

we see that ^  a- u, ^

or a  f ’̂1-’- A  (Aj - - ^ > v ^

for appropriate  ̂relatively prime integers - y and .

With a third integral unimodular substitution, on the variables 

we have

-4- ) 4-

where is a quadratic form in the m  -X variables

U. q with rational coefficients and determinant say.

Comparing determinants we see that

\ ^ \  . ^  ol'̂ . (3-1o)

By changing the sign of ct^^if necessary, we can ensure that

a  >  O  .
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If Ol < .e letJ

and choose u, to he an integer satisfying 

O  < (L C u , < a,

which gives (3.18). If GL') 2^ then

0 . 2 9

by (3.20). Since the signature of ^ is an algebraic invariant,

it follows, by (3.19), that has the same signature as ^ . Since 

the lemma holds for 'tv ~ ^  4 ^ we suppose that it is true for

indefinite quadratic forms in at most 4- variables, and then

prove it true for indefinite quadratic forms in m. variables. Thus 

the result will follow by induction on Since \S\ Ç ̂  j .̂4 (
is a quadratic form in ^-2. variables which is indefinite for tv M  

but may be either indefinite or definite when ^  G i\ < 10. if 

'̂3,9 is indefinite, there are integers ^

satisfying

by the inductive hypothesis, which gives (3.18) with u, - -^O.

If, however, definite, in which case ^  < i\ < 10^

it is well known [6̂ 3 by classical estimates that there are integers 

^̂ 3/' 'V satisfying (3.22) with replaced by \ĉ \̂ . Then (3.18) is 

again true with ^ unless Is negative definite.

In this casethere are relatively prime integers

C'^‘y - ‘ y (?y 5  "^3^ ' “ V

for which ^  say, where

O
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If we now apply a suitable unimodular substitution to 

we may write

^ U, 4 4^ 4  . . - (Ui) . . .J ^

v/here ~ Is an indefinite quadratic form in  ̂u

of determinant

3)' ^  ±  Jy'\ (3-34)

Then there are integers '-̂ ŷ- y^K for which > where

o  4 X < (32^)

by the inductive hypothesis. Hence

^  ' y U, 4- -V A u A y

for some . By the case 2. of the lemma we can satisfy

O  c  -  X - ( u  , -V o(^ ^  -'r ^  ^  Ç ^ \ )

in integers u,^ ^ this is sufficient for our purpose unless

X X  > \ ( 3. LGj

Thus we suppose (3.26) true. If X S 2^ we choose an integer 

to satisfy
|U, 4 /  I ^ Z

and, since X ~ Z < O   ̂ ^  ^  ;

by (3.23) and (3.26),we have

y,'7 X - 3.) < (u, 4 ^ )  < 4 .''X ^

which gives (3.18) with - I - If (3.25) implies that

O < X  < I

We therefore have the inequality 

U 4 X ) "  > I- \ Aw-0 C/ a
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and so, by (3.25) , A
Thus

X''* *  < - ± L ^  *  ^

and so . X  ̂ - ( X -1) _ 2  / [ X h. (X- 0.J) ''̂  ̂} > X

Hence there is an integer u, satisfying (3.27). The lemma is now 
established when ls( < g».

(il) General case. Let ^ be expressed in the form
0 z: § ^ - - . 4. P — ? § ('a~o^4,G s==.A~G)L ’ A4\ JV+fc ^

where y are real linear forms in the variables u,^. ^

Then we say that is of type (xy Let (r̂  be any positive

integers satisfying

4 t.' S -K (kW 0 C« 4 .) ^ = t (tO.C>d 4) ^ V  t' = 1\ .

Then the following principle due to Watson is sufficient for our 

purpose.

For na 4, there exists a form in the n  variables 

' V '-'n, with the same determinant as 9. and of type y 

with the property that it represents, for integral values of the 

variables, the same set of values as

Thus, in particular, there is such a form with signature s'

satisfying (s'\< -4  ̂ and clearly it must be indefinite.

Proof of Theorem 3.2 when x >  2 • We suppose that the

theorem is valid for polynomials in on-I variables, and then prove 

it valid for x. variables. Since the theorem has been

established for two variables, the result follows by induction.
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There is again no loss of generality in taking lAl - 2  ̂and it no» 

suffices to show that there are integers u u  ̂  for which

\ §> \ < » (3 3»)

provided that i\ < 9 when Isl ^ n-\. By Lemma 3.3, we may

suppose that L , , L  are linear forms in the n - l  variables

V  with determinant ^  If zz a -I < S’^

it is well known that we can apply a further unimodular 

substitution to the variables to ensure that the ̂ W>\
coefficient of u,^  ̂ say satisfies

o  < L a  < a w r * " " ;

\  I 7  S -  T\ -  I  ̂ ( i - J o j
where VC l| S-=-Crv-\).
Otherwise, if \s| - w- (  ̂ we can ensure that a  satisfies (3.29) 

with
■j 4 s 4 aa-3^
i (3.J.)

q  LtManaO. 3 .4. ,

Thus in either case we may suppose, by considering - ^  in place 

of ^  if necessary, that

o  < a  < a  I
^ 7L_

P  ) I j -V C  .We write ^  d L, - - - rv-i ^

where Vs-V
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To evaluate the absolute value of the determinant A ̂  say, of the 

linear forms Q. y - y we consider the quadratic form

in the original nrv variables and a new variable .

Its determinant - \ is clearly left invariant under unimodular 

substitutions applied to ...̂ u . Thus the quadratic form

t  t  L ,  4- L  -V C u

also has determinant ^ ^ ~ z and. so I M  - A. Hence,

comparing determinants,

) û'<^Krv^ - A .

It is convenient to express ^  in the form

^  = OL ( c, ^ X) " ± C  t  . - - i  ^ C
— I

where the absolute value of the determinant of y - - y j

in the 'VV-' variables is

by (3.33). The theorem is trivial if G 2 since for

any values of  ̂ we can always choose an integer so

that
I % )  I ^  ^  ^  '

We therefore suppose that > ^ y  which implies that \^'| ^ *y

by (3.33); and hence
0  < a  < Î.

Consider the polynomial

§  - ^  . ■ - J - "  ' -  c'.
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If Isl = the quadratic section of ^ is a definite

quadratic form in  ̂while, if Ul ^  a - \   ̂ our choice of o.

in (3*29) and (3*3l) ensures that the quadratic section of ^  is an 

indefinite quadratic form in u^y. ^. in either case, therefore, 

we can apply the inductive hypothesis to ^ to establish the 

existence of integers . .. y for which

_ 1  V

where ^  ^  ~  ̂ X. < ^  ^  ̂ ^ ^

With these values of we have

^  ^ 0. ( o, V) ̂  (3-3<9

for an appropriate value of . If
1 (k. - \ <. X < o

we can always choose an integer u, so that

I U, -V ] < 4  y

and then ^ a 4- ^ - 1
Thus we can suppose that

- 1 / >\.
0 <  X < _L d -  I -V 2 a

or, if cvX that;
Ù  6 (r

Hence, by Lemma 3.2, there is an integer u, satisfying

I 0L( U, ^  D* I G ' y

by (3.34), (3.35), (3.36). This completes the proof of the theorem.

Remark. If U1 - w-* the argument above gives a constant

-L I ̂ -A-\2 VT-
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- a/ (n\Ar\)
in place of on the right-hand side of (3.5). This is

asymptotically equivalent to Macbeath's constant  ̂ in (3.3),

for large values of when we introduce Blichfeldt's estimate for

3*4* Before proving the general case of Theorem 3*1 we 
require a further lemma.

LEMMA. 3.5._____For -n % 3 suppose that the equations

- - - - - Q have no solution in integers other

than - j Q. Then the singular quadratic form
4- ) L -V

in the variables u,, . -, assumes an arbitrarily small non-zero
tvalue for integers u,,. . i 

Proof. If we write

the matrix ) has rank y\~\. by the hypothesis, and we
V  -A .S  /  l \ - \ y  rv. /

may suppose, without loss of generality, that

For any C there are an infinity of integers u ̂

satisfying
/Cm-O^ h IA,9 (3-3?9

by Minkowski's theorem on linear forms and our hypothesis concerning 

• Hence

I t  t  - 1  C., ' « '

•f
' It is assumed that L,,... , I are linearly independent,/ / TV-I
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for integers and, unless

' A "  : - . t

when ^  A, - - - t ^  ^ r\-» ^

there is nothing further to prove. Suppose that there are integers
Cck,; . - . y U ̂  ^  ( Oy . .

for which — L,^ 1 . .. ± - O-

Consider first the cases ^ - 3  and .

If A -  3y it is well known ( E6] y 2  ̂ Theorem 3 ) that there

are integers Uy satisfying

O  < ((, ^ ^ .

If T\ - 4y each of the integer-vectors satisfying

(3.38) gives rise to a point
2-dimensional projective space . Two at least of these points, 

say P and ($ ( Qiust be distinct, and,unless they

both lie on the conic

± ( y

there is nothing further to prove. If, however, they both lie on this 

conic, then P-<r Q  does not, for we cannot have three collinear points 

on a conic, and hence

In other words, there are integers U y .^ satisfying

O  < \ ± C XT'- \ < ^  t -

which is again the required result.
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IVe now suppose that ^  ̂  ^  and, by interchanging the ( c' - ly .y '
M

o\-i) if necessary, that

for relatively prime integers (<j,7  - uZ ) . By applying a suitable 

integral unimodular substitution to u,^..^ we may assume further

that

8 - 5  "^3 - 5 - Vv O) .

If we again write Tv

S :z|
where the o? are not necessarily the same as before, the rank of«V i
the matrix O^As)r\vK J By hypothesis. Let oî ( i\ )
denote the column vector in  ̂and let /I ( c'̂ ly. ^ rvj denote

the i\-\ < Tv-\ matrices formed from ) by omitting the

column. Since the rank of is T\-\ ̂ at least one of \hc\

{C - 1̂ y  }v) does not vanish. Consider the effect on ( of a

substitution of the type

u . - u ̂  -4 ĵ\.c f Jv. - )y ‘ A.) J (3- 397-Ac ^

 ̂It ~ '' '' L o /

applied to the forms convenience of notation, denote

the new matrix of coefficients by ) and use Uj ̂  A ̂ with their

natural meanings. Then clearly = 3k ^^*-y and â . = aa^-^and

so
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If, for any C Z ^ | we can find j so that 1

and then the substitution (3.39) makes U / |  ^ O .

We are allowed to perform any substitution of type (3*39) 

with ^  Z ̂  and so it follows that the set of forms given by (3.37) 
may be replaced by an equivalent set for which

If we put Oy C, 1 ... - is a quadratic form in ^ *4

variables u,̂  .  ̂ with determinant Wrvl . Moreover it

represents zero for integers (u,̂  ...y -Qy 3/" v v

and so it is indefinite. Hence, by theorems given by Oppenheim 

(|S3] ̂ TT and HT }y it represents arbitrarily small non-zero values unless 

it is a multiple of a form with rational coefficients. In the latter

case, all the terms in the original form 1 C 1 ) which do

not involve are in a rational ratio. If we repeat the argument

with u - O  and with ̂  O  , since there is no term inf\-V r\- X  y

t ) involving three variables, we deduce that either

^ t . . . —  ̂) assumes an arbitrarily small non-zero value for

integers u,^..yVi^ or it is equivalent to a multiple of a rational 

form in variables. In the latter case, by Lemma 3.3, -

is equivalent to a multiple of a non-singular rational quadratic form 

in OA- 1 variables, and we now show that this is impossible by our

hypothesis concerning (,y -y . For, after applying a suitable

unimodular substitution to the variables Uy...yU^ we may assume that 

3; ( .  . . — ) is a non-singular quadratic form in the 'A-l

variables . We may writeV V K-l ^

S = I
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where A  - Il H ~ r\ ̂  ^  - Then, by differentiating

1 1 - . - - ) partially with respect to  ̂ we have

since the quadratic form,when expressed in terms of the /c -
is independent of Hence

either (i) - y r̂\., are linearly dependent

2L (ii) ^ - - -- ^  G/r\_ŷ
Clearly (i) is impossible since Z) 4 O . In (ii), none of the forms 

A r̂\-\ involve  ̂ and so the equations X, - ' - ^

are soluble with

y . . . y u ̂  u 9y

which is contrary to the hypothesis of the lemma. This completes

the proof.

Proof of Theorem 3*1 when 2- As in the proof of 

Theorem 3.2 we suppose that the theorem is true for "h- ( variables 

and then prove it is true for a . variables, the case ti^ i having 

been established independently. The proof divides into two parts 

according as the Trv-i equations

1 , =  --- = k - , ' 0

have, or do not have, a non-trivial solution in integers Uy,..^ o^.

If the equations (3*41 ) have a non-trivial solution in 

integers '-Sy-y which we may take to be relatively prime, we may 

suppose, by applying a suitable unimodular substitution to the variables
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u,j . .. ^ that

( u , % -  "  5 ^ - .  - - 8 ^  •- v ù v ; .

Then linear forms in the tv-v variables ^v ' v i
only. We may write

^  ^ (u,y '  ̂ ) -̂  ■+ C y  ̂̂
y\-\ y\~\

where a (u,^--.^ ui„_, ) ^ 2  2_C Jl% ( 5-'

and, if T) - i  ̂y A-i ; comparing determinants we see that

Since A  by hypothesis, it follows that ^ <o . If we take

all the variables to be zero except u w h e r e  1 1 s & v\-(y

we have

Now put - O. Then, by Lemma 3.1 with

©, -

it follows that ^  assumes an arbitrarily small value for integers

u ̂  unless the ratios

«"jvV-v ; i JV= 9 . • -̂  /V-'9

are all rational. We therefore suppose that this is the case and 

now take . By a further application of Lemma 3.1 with

G, = y  +■ 8  y  (,oi.vJL ̂  °<nO
we deduce that ^  again assumes an arbitrarily small value for
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integers unless the ratios

are all rational* However, this is impossible since the coefficients 

of ^ - G are not all in a rational ratio, and we therefore have the 
required result.

If the equations (3.4I) have no solution in integers ( u ^  )

other than (8^ • • y then, by Lemma 3»5 y 1 assumes an

arbitrarily small non-zero value for integers ( y  ̂  . .. y say. We may

assume that these integers are relatively prime, and by applying a 

suitable unimodular substitution to the variables we may

suppose further that u^y . .. y (y . y o) . Thus, for any G >

we may write

—  ^  -  -+ ^  ^  - y

where O  < o- < G .

Here L, is a linear form in with the coefficient of u,

equal to unity and ^ ^ ^ y is a polynomial of the form

I  - - ^ - C  i i  C  - 8  - s

y. - y being linear forms in of determinant - a ^ .

If the coefficients of ~ C are not all in a rational ratio, by 

our inductive hypothesis, there exist integers û .̂..yCĵ  satisfying

8  \ < i  "' ■
If we now choose an integer u, so that

\ L, A ) < 3  )

we have, for these values of * y
V §>\  <
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Alternatively, if the coefficients of ^  -c are all in a rational 

ratio, we apply Theorem 3.2 or Macheath's theorem for

polynomials in variables. Thus there are integers
for which ^  ~ where

o  6 \ ^ a  ( C ^  IA\ 0. 0  ^
I -I /irv ,  ̂ . a_/TV

O  < CL X < a a ( c ,  iûl) (3 4^)

for some constant depending only on ■n . For these values of

^ w e  have
4-

We can always choose an integer u such that

where 6 » is a suitable real number satisfying

U  \ i -L • C^ A4)

With this value of u, we have

± = 5 C a X ) " "  e, ^

and hence \ ^

by (3.43) and (3.44). Since O c a <  G and c is arbitrary, it 

follows that \^\ can be made arbitrarily small for integers G,,..

This completes the proof of the theorem.
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C H A P T E R  4.

4.I. Let be a lattice of determinant 4 ^  > O  in some 

n — dimensional Euclidean space . The problem of finding

infinite regions in which contain the origin and ^  further

generating points of has already been considered by Minkowski.

In particular, Minkowski proved by simple geometrical

arguments that the region

I tx, \ <

always contains two generating points of A ^  , Chalk obtained a

generalisation of this result, and later suggested the following 

conjecture ^ which he proved for 'n - 3 and -4.

CONJECTURE. There exist 'n. lattice points, generating

yy in the region

I ^ 2 'n-v ^  '

Clearly the conjectured inequality, if true for general would be

best possible when the lattice A ^  is of the form

^ j 4- ^ u ̂  j î\ - ^ i\ •

Further results of a slightly different nature concerning generating 

points in and ^  ̂  have also been obtained by Chalk and Rogers

^ Barnes [*J and Oppenheim •
Our object is to prove the following two theorems, which
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yield information about sets of generating points of in the

three dimensional region | *x A ~   ̂.

THEOREM 4*1* If A ^  has a point, other than the origin,

on the surface A  the region
2_/‘\

] +, - ^ 3̂  \ <
contains a set of three generating points of ^3 -

THEOREM 4*2. If A ^  has no point, other than the origin,

on the surface, :x.̂  a % A  - the region

'^ 4  ^  -  ^3"" I ,6 “̂3 ) f

contains a set of three generating points of A 3.

We shall show that the inequalities (4*1) and(4.2) are best
possible. Before doing so, however, it is convenient to restate

Theorems 4.1 and 4.2 in terms of indefinite quadratic forms in three

variables. For, if A^ is given by equations of the form
3

^  >̂ 5 (^ - I" -1, 3) ,

Where H °<avII -x, s= i, 3 ; clearly + - -  atj*' maybe
expressed as an indefinite quadratic form

 ̂ 3
^ 3) = ^  ^  V sL v5\-l & -1

for appropriate (1̂ ^ (  ̂ 3)  ̂ with determinant

T)=\\(L Hjvs 1 1 3 * comparison of determinants, we see that

3)^= - < o.
V. VThe following Theorems 4.1 , 4.2 , which are expressed in terms of
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quadratic forms, contain the assertions of Theorems 4.I, 4.2
respectively, and we prove them in this form.

THEOREM 4*1 . If ) represents zero non-
trivially, it is equivalent to a form for which

I^C. U  I '/I, 3)
with strict inequality unless ^"v or X w h e r e

and----  I '/
sc

"3I = 5 >A, -+ Uj

THEOREM ^.2  If ^ f u,, û ) does not represent zero

non-trivially, it is equivalent to a form for which

-jk
with strict inequality unless ^ ̂  X<̂ a_ where

( u,̂  ) = '-‘4 u, Uj - X j -

The proof of Theorem 4»1^ in ^ - 4 %  divides into two cases,

in one of which we use an elementary result in the theory of continued
%

fractions ( Lemma 4.I) to replace the inequalities (4*1) by

t We observe that the unimodular substitution 
U, ̂  u, , / u, ̂  U3

transforms G ̂  into where
Q  u,), o,.- 0 .V,
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for any ç > 0 . The other case is less trivial and the proof depends 

upon a theorem (0^3^ Theorem 1 ̂  of Macbeath (Lemma 4*2) on values of 
a quadratic polynomial in two variables.

The proof of Theorem 4*2 is rather different and is 

based upon four further lemmas. Lemma 4*3; which is needed as a 

starting point for the proof of the theorem, is classical and gives the 

first * minimum* for an indefinite quadratic form in three variables. 

Lemma 4*4 is a straightforward extension, to a two- dimensional 

asymmetric hyperbolic region, of Minkowski*s original theorem on 

generating points of A^. The result stated in Lemma 4.5 is a special 
Case of a recent theorem of Watson on values of a non-zero binary 

quadratic form. Finally, Lemma 4*6 gives a useful inequality for a 

quadratic in a single integral variable, and its proof is contained in 

that of Lemma 3.2.

V4.2. For the proof of Theorem 4*1 we require the 

following two lemmas.

LEMMA 4.1. If ^  is a given positive irrational number 

and G '>o^ the inequalities

a/vd 0 <  I < ^

are always soluble in integer pairs and____________ )____ with

t-x ^  I-

Proof. Take to he successive

convergents to the continued fraction for W^ with 'h . odd and 

sufficiently large.
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LEMMA 4*2. If are two real linear forms in the

variables with determinant Zi ^ O  and c is any real

number, the inequalities

U,^-v c, ^ c\ <  (^ 

are always soluble in integers Uî  unless

4  ^  c  \  i u ,  -V

The proof is contained in Theorems 3.1 and 3.2.

yProof of Theorem 4.1 By considering a positive multiple

of ^ ^  'Jj) in place of if necessary, we may assume

that \ - I . Then it suffices to prove that, unless ^ 

or X  ̂the inequalities

1 "s; I <  ' 0 - ^ / 3 ;
are soluble in integers (u,j^ with ,̂ ,̂ 3 -
since the integral unimodular substitution

s -,
will transform | into a form each of whose diagonal coefficients 

is less than 1 in absolute value.
As represents zero non—trivially, we may suppose, after 

applying an integral unimodular substitution to the variables, that 

^  O and hence now takes the form

Since ZD̂  the coefficients 0̂  ̂ cannot both be zero.

By interchanging if necessary we may suppose that ^  o  .
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Two cases now arise according as the ratio is irrational or
rational•

Suppose first that j is irrational and let G > o .

By changing the signs of  ̂ if necessary we may assume that
) a ^ < O.

Choose (u,, ̂  ) - (\J By Lemma 4*1, since

C  ^ ^ ^  there exist integer pairs ^  and (
with ^3 3 “ satisfying

O  < I U ;, + u ,; ( < ;  (s = a ,3) .

o3i \JL2 3 '
U 4- ^3 U

jS/ >
corresponding integer u  ̂ ^  ̂  ̂ s) satisfying

"as, \ 6 C-
and (4.3) follows, with the triads Qy

f {J, u  ̂3 since G may he arbitrarily small.\ I 3 ;  ̂3; 3 3y y

Now suppose that j? / ̂  where are

integers with Q)̂  =. I . It is known that there exist integers ))\

with = ' satisfying - I. '̂ben the integral

unimodular substitution given by

u/ = J ^ A "3' = ^'"1 "

will reduce to the form

\ ( %  "j) - ^ -^a "'•1 -+
for appropriate . Comparing determinants we see that

I A , '  = f D . I  -  '
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If 14,^ I C I the result is easily proved. For we choose 
the triads CU o) and ) where u,,)
are the integers satisfying

1 2. 4r -Axx \ — I I ^

and I 3 '^/z '^21. -+ 3 - 4  \ < I'^jx  ̂ ^  ̂•

Now suppose that and hence <1^ by (4.4).
We first choose the triads (1y oj ^nd . Then taking

we have on rearranging,

 ̂ (y 3̂) ~ ^ 3 3 ( '̂ 3 j -4 3 4- .
By Lemma 4*2, there are integers satisfying

( (^3, */ ^ 33)) ^ ( a  • 2 -U,^| ^ ^

by (4.4 )# Thus (4.3) now follows with the triads y

and (u,, , "at) ■
It remains to consider the case when I — ^^33 I - I.

By changing the signs of ^ ^ if necessary we may suppose that

'l ( "j. -t ■*- ^3 •

Further by absorbing integral multiples of into *-*,

changing the sign of if necessary we may suppose that

I ^ ' ÛLrvol O  ^ 2 ^  ̂ '

If < I ̂  the congruences

A a  -  A j  -  °

together imply that ^^2 ^ ^  - Thus if

and
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integers satisfying

I ^ A a .  •? A i  ' I & '

and I  ̂A j  -I 1 ^ '

respectively, it follows that |<^(< | for the triads ^

and(u,^^\^y or (",) ̂  0  unless

If I  ̂then ^ is equivalent to the form

f '̂ Lj = <Q 2 ■+ Uj ■

Let v̂,3 be an integer satisfying

I + A 3 - ' \ ^ I ■

Thus I c I for the triads (̂ 1̂  o)^(^-1^ ~0 and (yu,^  ̂-1/ t)

unless o2 ~ ' y which case

^  - 0 V,

'k '4.3. In this section we prove Theorem 4.2 . The
%proof is independent of Theorem 4.1 and uses the following four lemmas 

LEMMA 4.3. The inequalities

are always soluble in integers_ îxi, j ^3) ^ Cp^

For a proof of this classical result, which is the 

first of a sequence of minima of an indefinite quadratic form in 

three variables, see Theorem 83. We observe, in passing,

that the particular form relating to the fourth minimum arises as the 

critical form ( u ^ ^  in Theorem 4*2 .
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Æ E A — 4.4. For any f >  Q, the region

- r  A ^

always contains two generating points of A:^-

Proof. Consider the tangent parallelogram defined

by
) f ' - X |  - V  I: a i l  <  ;  I f '  X ,  _  t  \ <  a  •

Clearly IT^ is symmetrical about the origin, and since it may be 

transformed by a linear substitution of determinant 2 into a rectangle 

having area its area is By Minkowski's fundamental theorem^

Tl  ̂ contains a point of other than the origin 0. Further,

by varying ^ continuously, we can obtain a parallelogram which

contains two independent points ^  Q  say of other than 0. Let

9'  ̂ be the reflections of fy Q respectively in 0. If the

parallelogram PQP^Q^ contains points of ; other than O^we simply

replace it by a smaller parallelogram. Thus we assume that P Q  

does not contain any point of ; other than 0.

Since R  Q  are lattice points, it follows that the area of 

the parallelogram with sides O  O Q  is an integral multiple of . 

say KYv The area of the parallelogram is

< A  and so two possibilities arise according as

or «2 , If rK^l^ the parallelogram with sides “O Q

has area A ^  and hence Q   ̂ together with 0, generate •

If 2.̂  the parallelogram coincides with the original

tangent parallelogram TT̂ _ and ^  4) together with 0,

generate y(^.
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We observe that the two generating points obtained lie 

entirely inside the region considered if there is no point of 

on either bounding hyperbola. However if there is a point of A  ̂  

on one of these hyperbolae the tangent parallelogram JTf. for suitable 
y  through that point will have on its boundary two basis points 

lying inside the region unless there is a primitive point of 

on the other hyperbola. In this case is of the form

A [2ÎT u, _  t  J rA

Restating the result, with we obtain the

following corollary,

COBOLLAHY.______ lf M'>'̂  and if ^

is an indefinite quadratic form in Uy of determinant 

^ ^   the inequalities

are always soluble in integers (L*,,,  with

V II  ̂1.1 - ' unless

 ̂ ^  J U T

A proof of the next lemma, due to Watson, is given for 

convenience as his has not been published. Let
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denote an indefinite quadratic form in which does not

represent zero non-trivially and has determinant

d  - CL c - O  ,

Denote hy fyN the lower bounds of the positive values of

respectively for all integers ^  o)

LEMMA 4.5. P N  < 
with equality when ( u ^ A ( u u, .

Proof. j  We suppose PN d O  ̂  for otherwise the 

result is obvious. Also if P^IM the result is well known

C Theorem II9) since

? ^ H  < J 5 A '  •

By changing the sign of  ̂ if necessary, we may suppose that

H  <  P

Hence N  <

If we consider a suitable multiple of instead of we may take 

P \  ̂ and it now suffices to prove that
|\| < 4  l4 \ . (4 • 0

Let G > 0 . After applying an appropriate unimodular substitution 

to the variables we may assume that

i <  a _  <  i Gx -L Q .  <  A  <

■j The proof given here is an adaptation of that of 

Dr. Wat son, who has very kindly let me include it in my thesis.
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By our hypothesis concerning P and N ^ it follows that either ^  | 
or - N  for all integers (̂ u,̂  ,

The inequality (4.6) follows easily if 141 . For in
this case we have

by

H  < < 4

(4.5 ). Thus suppose now that

4
Since QlC - %  ̂  = <4 < 0

we have d C - <1 A j ^ < Q-

by (4.7); and hence
C  <  Q l . -

Thus either (i) 1-V^

or (ii) e. <L ^ •

In the first case
^  ̂ - Gl — 2 4 - v C

and by (4 .7 ), (4.9) and the choice of we have

I -  a c i ^ c - )  .  1 <

- :Ig <

which is impossible if G is sufficiently small. Thus only the

second case can arise, and we have therefore
(4 fe)

(L < - M  ^
»

Now
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ol I ~ 4-  ^ CL N ^  C L ^  ^  I c>2 ̂

>, N -L X ^ { A . - ^ ) ^

so that

N  <  W I — ^

<C 1  (dl
s  ^

by (4.8).

LEMMA 4.6. If <X.,ol,L are any constants satisfying

O  <  Q- ^  I 

0  <  t  ^  <  l - t  .4

the inequalities

| a ( u 4 o t ) ^  —  <-'

are always soluble for an integer gl .

The proof follows immediately from Lemma 3.2.

5

Proof of Theorem 4.2 By considering a suitable

positive multiple of ^ ^  I place of if necessary,

we can take ~ ~ X Then, as in the proof of Theorem 4*1 ^

it suffices to prove that, unless ^  ^ ̂  the inequalities

"<>> ' ‘ ' '

are always soluble in integers [ ̂  i $ y } y ~

with \;1,3 -

If M denotes the lower bound of t ^ I over all
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integer triads P;  ̂ then hy a weaker form.of
Lemma 4*3 we have

O  < M  <  4/(0 .

Suppose first that . Then, for any the
inequalities

O  < I C *̂ 3) 1 < c-

are always soluble in integers u  ̂ and it follows that the

inequalities
O < Uj) < Cr

are also soluble for any G ^ ^ ^ b y  Theorem I.4 of Oppenheim (

Now suppose that and choose 6 so that

O < G < 1 /  .

By the definition of M  ̂  there are coprime integers U 

satisfying

O ^  < h i /  Ct - G)  < 1 .

Thus, if the inequalities O  < c. ( are insoluble in integers 

^ then the inequalities 0 < 1 are soluble in

integers u,^ .

In either case, therefore, after applying a suitable 

unimodular substitution to the variables we may ensure

that
either (i) ^  ^ \
or (ii) O  < _  a„ < M  /C (-t^ <  I and the

inequalities 0 <  C I are insoluble in integers
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Case (i). We may write

=  a , y  U ,  +  U j  +  t j  -3 % ,  f  U j ) ,

for suitable constants and which is an

indefinite quadratic form in of determinant - 3r /(27a,,) .
By the corollary to Lemma 4.4, with yu = { (4,-a„ H  2*t a„) 

there are integer pairs and ""33) with «ax’-*33' “31̂ 33 ~
satisfying

1 O o
(4-a.,)a7a„

< 2 , ( Wjt, ^,s) -I tzAj.' 0 - 2 . 3 )  (A.IX)

unless

If
*4 — Qi (

0  ^  t, '-^xsy ^ s )  ^ — —"4
for some S - 2̂  3 we choose an integer satisfying

I U,5 i- + S  *̂ 33 ' a 2

and then

!<(( -as2 3̂s)l <  i  "'•
Now suppose that = ~ ^ for some s ■=. 2.,J where

O  C A < |0o / (57a„( 4 -

or O  < a„ V  < ( O O  I { à n C  A ~ x „ ) t -

In this case we have

C . ««xj; ^3s) = ( U, -4 - ‘*•1. ( °-h^) •

Since O  < CX,, <i I ^ we have successively.



63 — -----------  ^

(3 d|, - A) ( 3 Q|, - S?) ^

a,f - (Oi? Q.,̂ + 10? 3 2. < 0 ^

4 o o  -  .2'7(4-a„)(4-v x A )  <

1 0 0  I \ n  ( 4 -X.A t ^ (4 -(• ) / 4  .

By Lemma 4.6, with &  = Q.,,̂  q„ there is an integer u,j
satisfying

1 t ("'1/ ^ ' ■
Thus the inequalities (4.11) follow with the triads ( o) ̂ 

and (

It remains to consider the case when

/ (l"f (111) j /

where ( 4  - (L,,̂ ( If we choose

f O  O  / A / w 4l-^U^  ^  x> I ̂  ~ ^
(4_ x.y 57CC,, 4

and (4.11) again follows with the triads (iyp/p) ; ( and

VyO unless Si - V s .  In this case ya = ( / and g 

is equivalent to

(u ) = # ( "1 ^ <  "3 ^ A  ^y ^  ̂ 3
a- ; •for some constants cT ; . By absorbing integral multiples of

into and changing the sign of if necessary, we

may assume that

O  < c/ < ^  arvcjL "31 arvoL 0 <



We shall show that there are three triads of determinant 1  for 
which A 1 unless e/ ^ ^ and Ĉ ' = 0 .

If X ̂  and Cj 4-0 y we choose the triads ( oj

^ ^ ^ ^ ~ Î  ^ choose the
triads (ly Oy 'o) ^ (ly ly -i) and 0 ^ finally if cj ^  c/^O
we choose the triads (l^o^o) ̂ (ly -i) and ,

In the remaining case when (c(  ̂c( ] z "="y) ^ the
unimodular substitution

will transform ^ into the equivalent form C]) =. Q) ( 

where

3. Q (  +  u, -  Mx J  ̂  ■*2
It may be verified that ^  (Q does not represent zero and has

absolute minimum 1 , attained only when H  O  (^ûd 1.)

Case (ii). In this case we write

^  - K m K  CI3 U3) ^

for suitable constants and  ̂which is a positive

definite quadratic form in of determinant (qi,

and
Û  <  u„l < I .

After applying an integral unimodular substitution to the variables

■ it is known ( Q  4-J^ Theorem 51 ) that we can ensure

that
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vihere
A C _ e ^  - 2C. . >2B\ < A Q/vol o < A < nxA } U  = H Ü

J7I&. I  27la..l Jstla,,!

(4 '))
We again choose (o,,^ ^  We next choose

that

~ ^  C )  ~ |q.ii\ (  ^( "t- cL^ ]  — 1 «̂il C   ̂ ^  )  y
f or appropriate d^ ̂ where

U .q  A 4o <

<  f  -c - L U u l ^
<? i

by the inequality of the arithmetic and geometric mean. Since 
O  <  \ \  ̂ we have

(  2 .  ( a . , I )  < J

or f  4- -L  ̂ 2  ;
« ^ J X

and hence 0 < l < b ^ , \ / 4  < '‘ ’̂ 4, ‘

By Lemma 4*6, with CL - \ d u\3 W n  IA ̂  we can always choose an

integer satisfying

Finally we take so that

-  ̂  0  ^  lo^ul ( U, <<3 ) - |Q„r' ( k j c )  3
for some constant . We now show, with the help of Lemma 4*5, that A 

cannot be too small, and then deduce that lo.,d C is bounded above in 

terms of
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Consider the quadratic section

I C '-’v  ""iy ° )  = -  lo-ul ( U, Hr dx Ux)"' +  A «2"

of (. Vj^u^^%^yThis is an indefinite quadratic form in 

of determinant ~lo.,,|/l j which does not represent zero non-trivially. 

Thus if (y N  denote the lower hounds of the positive values of 

c^(u,yO^^ o)^ ~ ^ ( u,̂  o) respectively, it follows, by Lemma 4*5,
that

p f\) < I A . ("4

By hypothesis

p > l  OaoI N > M  > UuUI-c-) . (4./̂
Thus by (4.14) and (4.15) we have

la..\(|-c-') < M  < N < PI4 6 ^  I'"'-'
and hence

A ? g  C 1 - C - ) .
A

But since < A < C  ̂ by (4.13)^we have

3 Cl-e-) C  <  3 A c  < A C - 6 ^ =  — )
4  Â  A  1'̂ "'

r' •"

which leads to

la,ac <  ̂ 4  '
since G < i/^l, A final application of Lemma 4*6, with GL = (a„|

C ^ shows that
J
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for some integer . The inequalities (4.11) now follow with the 
triads ^ ly o ) and ( u, ̂ -

Note. If denotes the lower hound of the positive

values of ^ taken over all integer triads ^

(O^ y  hy a theorem of Barnes, we have

H '  S  .  ( ' - S 5 ) ' ' *V 3 / V S'! /
It may he remarked that this is inadequate to ensure 0 < Q,, < 

and thereby exclude case (ii) of Theorem 4*2 .
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